
2550 Garcia Avenue
Mountain View, CA 94043
U.S.A.

Solaris OpenGL 1.1 Implementation and
Performance Guide

Part No: 805-1015-10
Revision A, July1997

A Sun Microsystems, Inc. Business

Please
Recycle

Copyright 1997 Sun Microsystems, Inc., 2550 Garcia Avenue, Mountain View, California 94043-1100 U.S.A. All rights reserved.

This product or document is protected by copyright and distributed under licenses restricting its use, copying, distribution, and
decompilation. No part of this product or related documention may be reproduced in any form by any means without prior
written authorization of Sun and its licensors, if any. Third party software, including font technology, is copyrighted and licensed
from Sun suppliers.

RESTRICTED RIGHTS LEGEND: Use, duplication, or disclosure by the U.S. Government is subject to restrictions of FAR 52.227-
14(g)(2)(6/87) and FAR 52.227-19(6/87), or DFAR 252.227-7015(b)(6/95) and DFAR 227.7202-3(a).

Sun, Sun Microsystems, the Sun logo, Solaris, the Solaris logo, SunOS, SunSoft, ONC, NFS, OpenWindows, DeskSet,
AnswerBook, SunLink, SunView, SunDiag, NeWS, OpenBoot, OpenFonts, SunInstall, SunNet, ToolTalk, X11/NeWS and XView
are trademarks or registered trademarks of Sun Microsystems, Inc. in the United States and other countries. Parts of this product
may be derived from the Berkeley BSD system licensed from the University of California. OpenGL is a trademark of Silicon
Graphics, Inc. PostScript is a registered trademark of Adobe Systems, Inc.

All SPARC trademarks are used under license and are trademarks or registered trademarks of SPARC International, Inc. in the
United States and other countries. Products bearing SPARC trademarks are based upon an architecture developed by Sun
Microsystems, Inc.

The OPEN LOOK® and Sun™ Graphical User Interfaces were developed by Sun Microsystems, Inc. for its users and licensees.
Sun acknowledges the pioneering efforts of Xerox in researching and developing the concept of visual or graphical user
interfaces for the computer industry. Sun holds a non-exclusive license from Xerox to the Xerox Graphical User Interface, which
license also covers Sun’s licensees who implement OPEN LOOK GUIs and otherwise comply with Sun’s written license
agreements.

DOCUMENTATION IS PROVIDED “AS IS” WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR IMPLIED,
INCLUDING, BUT NOT LIMITED TO, ANY EXPRESS OR IMPLIED WARRANTY OF NON-INFRINGEMENT, OR THE
IMPLIED WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.

iii

Contents

1. Introduction to the Solaris OpenGL Software 1

Overview. 1

Solaris OpenGL 1.1 Product Functionality 1

Supported OpenGL 1.1 Extensions . 2

Compatibility Issues . 3

MT-Safe . 3

Supported Platforms . 4

Where to Look for Information on OpenGL Programming . . . 4

2. Solaris OpenGL Architecture . 5

 Acceleration vs. Optimization. 5

A Quick Review of the OpenGL Architecture 6

Graphics Hardware Architecture. 7

Solaris OpenGL Software Architecture . 8

Vertex Processing Architecture . 11

Rasterization and Fragment Processing Architecture 11

iv Solaris OpenGL 1.1 Implementation and Performance Guide—February 1997

Solaris OpenGL Interface Layers . 12

3. Performance . 15

General Tips on Vertex Processing. 15

Vertex Arrays . 16

Consistent Data Types . 16

Low Batching . 17

Optimized Data Types. 18

Creator3D Graphics and Creator Graphics Performance 19

Attributes Affecting Creator3D Performance. 19

Attributes Affecting Creator Performance 26

Pixel Operations. 30

GX Performance . 33

4. X Visuals for the Solaris OpenGL Software. 35

Programming With X Visuals for the Solaris OpenGL Software 35

Colormap Flashing for OpenGL Indexed Applications 38

GL Rendering Model and X Visual Class 38

Depth Buffer . 38

Accumulation Buffer . 39

Stencil Buffer. 39

Auxiliary Buffers . 39

Stereo . 39

▼ To Set Up the Frame Buffer for Stereo Operation: 39

Rendering to DirectColor Visuals . 40

Overlays . 40

Contents v

Server Overlay Visual (SOV) Convention. 40

Enabling SOV Visuals . 41

OpenGL Restrictions on SOV. 41

Compatibility of SOV with other Overlay Models 42

Gamma Correction. 43

5. Tips and Techniques. 45

Identifying the Solaris OpenGL Library Version 45

Avoiding Overlay Colormap Flashing . 46

Changing the Limitation on the Number of Simultaneous GLX
Windows . 46

Hardware Window ID Allocation Failure Message. 47

Getting Peak Frame Rate. 47

Frequently Asked Questions . 47

vi Solaris OpenGL 1.1 Implementation and Performance Guide—February 1997

vii

Figures

Figure 2-1 OpenGL Architecture . 6

Figure 2-2 Solaris OpenGL Software Architecture 10

Figure 2-3 Solaris OpenGL Data Paths . 13

Figure 3-1 Hardware Rasterizer Path for Creator3D 23

Figure 3-2 Software Rasterizer Data Path for Creator3d and Creator . . . 29

Figure 3-3 Solaris OpenGL Architecture for Drawing Pixels. 30

viii Solaris OpenGL 1.1 Implementation and Performance Guide—February 1997

ix

Tables

Table 2-1 Data Paths through the Solaris OpenGL System 9

Table 2-2 Performance Data for 3D Line Strips in Display List Mode . . 14

Table 2-3 Performance Data for 3D Triangle Strips in Display List Mode 15

Table 2-4 Performance Data for 3D Texture-Mapped Triangles in Display List
Mode . 15

Table 2-5 Performance Data for glDrawPixels() 16

Table 4-1 Visuals Available for Ultra Creator 3D 36

x Solaris OpenGL 1.1 Implementation and Performance Guide—January 1997

xi

Preface

Solaris OpenGL 1.1 Implementation and Performance Guide provides information
on the SolarisTM OpenGLTM 1.1 software.

Who Should Use This Book
This book is intended for application developers who are using the Solaris
OpenGL software to port OpenGL applications to Sun hardware. It assumes
familiarity with OpenGL functionality and with the principles of 2D and 3D
computer graphics.

How This Book Is Organized
This book is organized as follows:

Chapter1,” Introduction to Solaris OpenGL,” provides a description of the
Solaris OpenGL software.

Chapter 2, “Solaris OpenGL Architecture,” presents information on the
Solaris OpenGL architecture.

Chapter 3, ”Performance,” presents specific information on using Sun’s
OpenGL library for specific hardware platforms.

Chapter 4, “X Visuals for Solaris OpenGL,” presents information on visuals
for the Solaris OpenGL product.

xii Solaris OpenGL 1.1 Implementation and Performance Guide—February 1997

Chapter 5, “Tips and Techniques,” contains information that may make using
the Solaris OpenGL library easier.

Related Books
For information on the OpenGL library, refer to the following books:

• Neider, Jackie, Tom Davis, Mason Woo, OpenGL Programming Guide,
Reading, Mass., Addison-Wesley, 1993.

• OpenGL Review Board, OpenGL Reference Manual, Reading, Mass., Addison-
Wesley, 1992.

• Kilgard, Mark, OpenGL Programming for X Windows Systems, Reading, Mass.,
Addison-Wesley, 1996.

What Typographic Changes Mean
The following table describes the typographic changes used in this book.

Table P-1 Typographic Conventions

Typeface or
Symbol Meaning Example

AaBbCc123 The names of commands,
files, and directories;
on-screen computer output

Edit your .login file.
Use ls -a to list all files.
machine_name% You have mail.

AaBbCc123 What you type, contrasted
with on-screen computer
output

machine_name% su
Password:

AaBbCc123 Command-line placeholder:
replace with a real name or
value

To delete a file, type rm filename.

AaBbCc123 Book titles, new words or
terms, or words to be
emphasized

Read Chapter 6 in User’s Guide.
These are called class options.
You must be root to do this.

Introduction to the Solaris OpenGL Software 1

1

Introduction to the Solaris OpenGL
Software 1

Overview
The Solaris OpenGL software is Sun’s native implementation of the OpenGL
application programming interface (API). The OpenGL API is an industry-
standard, vendor-neutral graphics library. It provides a small set of low-level
geometric primitives and many basic and advanced 3D rendering features,
such as modeling transformations, shading, lighting, anti-aliasing, texture
mapping, fog, and alpha blending.

Solaris OpenGL 1.1 Product Functionality

The Solaris OpenGL 1.1 software is a functionally conforming implementation
based on the OpenGL 1.1, GLX 1.2, and GLU 1.2 standard specifications. The
Solaris OpenGL software incorporates the new features in OpenGL 1.1 and
includes support for the SERVER_OVERLAY_VISUALS property.

OpenGL 1.1 Library

The OpenGL 1.1 library is a superset of OpenGL 1.0, including all OpenGL 1.0
functionality and additional features that were available as extensions to
OpenGL 1.0. The added extensions, which are listed Table 1-1 on page 2, have
become part of base OpenGL functionality; however, the semantics or syntax

2 Solaris OpenGL 1.1 Implementation and Performance Guide—February 1997

1

may have changed for inclusion in OpenGL 1.1. For detailed information on
the extensions incorporated into the OpenGL 1.1 specification, see Appendix C
in The OpenGL Graphics System: A Specification, Version 1.1.

Note – Because the Solaris OpenGL 1.1 software is based on a more current
version of the OpenGL specifications (OpenGL 1.1, GLX 1.2, GLU 1.2) than the
Solaris OpenGL 1.0 version, Solaris OpenGL 1.0 customers should be alert for
software changes required to support the updated OpenGL specifications.

Supported OpenGL 1.1 Extensions

The Solaris OpenGL 1.1 software supports the following OpenGL 1.1
extensions:

• 3D texture mapping extension – GL_EXT_texture3D

• ABGR reverse-order color format extension – GL_EXT_abgr

• Texture color table extension – GL_SGI_texture_color_table

• SGI color table extension – GL_SGI_color_table

• Sun geometry compression extension – GL_SUNX_geometry_compression

• Rescale normal extension - GL_EXT_rescale_normal

Table 1-1 OpenGL 1.1 Additions

OpenGL 1.1 Name 1.0 Extension Name
Changed Syntax
or Semantics

Vertex arrays GL_EXT_vertex_array Yes

Polygon offset GL_EXT_polygon_offset Yes

RGBA logical operations GL_EXT_blend_logic_op No

Internal texture image formats GL_EXT_texture No

Texture replace environment GL_EXT_texture No

Texture proxies GL_EXT_texture Yes

Copy texture and subtexture GL_EXT_copy_texture
GL_EXT_subtexture

No

Texture objects GL_EXT_texture_object Yes

Introduction to the Solaris OpenGL Software 3

1

The Solaris OpenGL software also supports the following GLX extension:

• Return the transparent pixel index for an overlay/underlay window pair –
GLX_SUN_get_transparent_index. See the
glXGetTransparentIndexSUN (3gl) man page.

Note that other implementations of OpenGL may have used extensions that
your application calls. To determine what extensions, if any, your application
uses, search for command-name patterns such as gl ProcedureEXT(3gl) . If your
application uses extensions, you will need to ensure that it also handles the
functionality in an OpenGL 1.1-compliant manner. To determine what
extensions an OpenGL implementation supports, use
glXQueryExtensionString(3gl).

Compatibility Issues

Applications compiled with the Solaris OpenGL 1.0 library will run unchanged
with the Solaris OpenGL 1.1 implementation. However, note the following
backward compatibility issues:

• To reduce function call overhead and improve performance for vertex calls
in immediate mode, vertex commands such as glVertex, glColor,
glNormal, glTexCoord and glIndex have been redefined as macros in
the Solaris OpenGL 1.1 software. Therefore, by default, applications
compiled with the Solaris OpenGL 1.1 library will not run on the 1.0 library.
However, to compile an application with the Solaris OpenGL 1.1 library and
maintain compatibility with 1.0, use the flag
-DSUN_OGL_NO_VERTEX_MACROS when compiling the application. See the
glVertex (3gl) man page for further information.

• If your application uses the new features in the Solaris OpenGL 1.1 library,
it will not be backward compatible with the Solaris OpenGL 1.0 library.

MT-Safe

The Solaris OpenGL 1.1 library is MT-safe as long as there is only one OpenGL
rendering thread. For example, an application can create an OpenGL
rendering thread and a separate Xlib thread for handling a graphics user
interface. To be MT-safe with Xlib, the application must call XInitThreads
before any of the GLX calls.

4 Solaris OpenGL 1.1 Implementation and Performance Guide—February 1997

1

Supported Platforms

The Solaris OpenGL 1.1 software supports the following devices:

• Creator Graphics and Creator3D Graphics – OpenGL functionality is
accelerated in hardware.

• SX, ZX, GX, GX+, TGX, TGX+, S24 – OpenGL functionality is performed in
software.

• All SMCC SPARCTM systems equipped with the following frame buffers are
supported on the OpenGL 1.1 software: the TCX, SX, GX, ZX and Creator
families of frame buffers. This includes UltraTM desktop, Ultra EnterpriseTM

and all the legacy SPARCstationTM family.

• The software requirement is:
• Solaris 2.5.1 plus patch 103796-09 or higher.
• Solaris 2.6 software or higher.

Where to Look for Information on OpenGL Programming
For information on how to write an OpenGL application, see the following
books:

• OpenGL Programming Guide by Neider, Davis, and Woo

• OpenGL Reference Manual by the OpenGL Architecture Review Board

• OpenGL Programming for X Windows Systems by Mark Kilgard

These books are published by Addison-Wesley and are available through your
local bookstore.

For more information on OpenGL, you may want to refer to “The Design of the
OpenGL Interface” written by Mark Segal and Kurt Akeley. A PostScript copy
of this document is included in the SUNWgldoc package or the Solaris OpenGL
1.1 CD-ROM. For the complete specification of what constitutes OpenGL, see
The OpenGL Graphics System: A Specification, Version 1.1, also written by Mark
Segal and Kurt Akeley. An online version of this specification is located at
http://www.sgi.com/Technology/OpenGL/glspec1.1/glspec.html).

Finally, for a good source of answers to questions you may have about
OpenGL, see Silicon Graphics’s OpenGL information center at
http://www.sgi.com/Technology/OpenGL/opengl.html .

5

Solaris OpenGL Architecture 2

The purpose of designing a graphics system architecture is to enable
performance within the constraints of cost and functionality goals. Hardware
design places various stages of the graphics pipeline into hardware
accelerators. Software design uses the hardware features and complements the
hardware by providing complete coverage of functionality.

Understanding the hardware and software architecture of a particular system
will help you determine whether a feature is accelerated in the graphics
hardware or implemented in software. This will enable you to identify which
path through the system your application uses for the feature. With this
information, you can project your application’s performance. Given knowledge
of performance versus functionality tradeoffs, you can make informed choices
about how to use the system to maximize your application’s interactivity.

This chapter describes the Solaris OpenGL architecture. First it defines two
terms commonly used when discussing hardware and software performance.

 Acceleration vs. Optimization
When discussing performance, understanding how the hardware implementor,
software implementor, and application programmer define and differentiate
the terms hardware acceleration and software optimization is helpful.

• To the hardware designer, hardware accelerating OpenGL means
implementing logic in the form of gates and data paths for OpenGL
functions.

6 Solaris OpenGL 1.1 Implementation and Performance Guide—February 1997

2

• To the OpenGL software implementor, accelerating OpenGL functions
means writing software to use the graphics hardware features. In addition,
the software implementor can optimize OpenGL features that are not
accelerated in hardware by writing highly tuned code to make the
performance of those features as efficient as possible.

• To the OpenGL application programmer, acceleration typically means the
speed at which various combinations of geometry and OpenGL state render,
with the goal generally being interactive performance.

With these definitions in mind, the next sections describe the OpenGL
architecture and at the implementation of this architecture in the Solaris
OpenGL software.

A Quick Review of the OpenGL Architecture
As a first step in examining the Solaris OpenGL architecture, Figure 2-1 shows
the basic architecture of the OpenGL library.

Figure 2-1 OpenGL Architecture

In the first stage of the OpenGL pipeline, vertex data enters the pipeline, and
curve and surface geometry is evaluated. Next, colors, normals, and texture
coordinates are associated with vertices, and vertices are transformed and lit.
Vertices are then assembled into geometric primitives.

1. From Segal, Mark, and Kurt Akeley, “The OpenGL Graphics System: A Specification,” Mountain View, CA,
1995.

Texture
Memory

Rasterization
Per-
Fragment
Operations

Frame BufferEvaluator

Display List

Per-Vertex
Operations

Primitive
Assembly

Pixel
Operations

Solaris OpenGL Architecture 7

2

The rasterization stage converts geometric primitives into frame buffer
addresses and values, or fragments. Each fragment may be altered by per-
fragment operations, such as blending. Per-fragment operations store updates
into the frame buffer based on incoming and previously stored Z values (for Z
buffering), blending of incoming fragment colors with stored colors, as well as
masking and other logical operations.

Pixel data is processed in the pixel operation stage. The resulting data is stored
as texture memory, or rasterized and processed as fragments before being
written to the frame buffer.

The task of the hardware and software implementors at Sun was to implement
the OpenGL functionality. The remainder of this chapter describes this
implementation.

Graphics Hardware Architecture
Graphics hardware architectures can be designed to meet varying constraints
of cost and CPU performance. High-performance model coordinate (MC)
devices typically implement vertex processing and transformations in
hardware. A model coordinate device may perform lighting, coordinate
transformations, clipping, and culling as well as rasterization and fragment
processing in hardware, thereby providing very fast performance.

At a different performance level, rasterization devices typically use the host
CPU to perform vertex processing and use the rasterization hardware to
convert device coordinate geometry into pixel values. The Ultra Creator and
Creator3D systems are examples of device coordinate (DC) devices. The
graphics hardware architecture of the Creator3D graphics system is designed
as follows:

• Primitive assembly and vertex processing are performed on the
UltraSPARCTM CPU. Texturing operations are also performed on the CPU.

• Rasterization and fragment processing are performed in the Creator3D
Graphics hardware subsystem. The Creator3D graphics system accelerates
rasterization of lines, points, and triangles, and also accelerates per-
fragment operations such as the pixel ownership test, scissor test, depth
buffer test, blending, logical operations, line anti-aliasing, line stippling, and
polygon stippling.

8 Solaris OpenGL 1.1 Implementation and Performance Guide—February 1997

2

The benefit of building custom hardware for graphics is that when operations
are parallelized in hardware circuits, turning on features (like both Z-buffering
and blending) has a very small performance cost. If a feature is provided in
hardware, the hardware is usually designed to allow sustained throughput for
that feature. Thus, you can make full use of features that have been
implemented in hardware without experiencing performance degradation.

The benefit of putting graphics functions in software is that since the CPU is a
required and shared computing resource, using it for graphics operations
imposes no additional financial cost. The disadvantage is that each additional
graphics operation requires CPU cycle time. When an application asks more of
the CPU, the CPU may perform more slowly.

Solaris OpenGL Software Architecture
Once the hardware designers have determined what the hardware will
accelerate, all other decisions regarding performance fall to the software
implementors. Software implementors need to consider the following
questions:

1. What hardware features will be used?

2. What features that are not accelerated in hardware can the software
optimize?

3. How will the software implement all functionality?

In response to these questions, the Solaris OpenGL software developers
implemented OpenGL as follows:

• Accelerated OpenGL by using using all features of the Creator and
Creator3D graphics subsystems.

• For the Creator and Creator3D systems optimized line and point
transformation and clip test, and a subset of texture lookup and filtering.

• Implemented OpenGL to its complete specification by writing code for
primitive assembly and vertex processing, including:
• Coordinate transformations
• Texture coordinate generation
• Clipping

Solaris OpenGL Architecture 9

2

• Implemented two forms of software rasterization for OpenGL features not
rasterized in hardware:
• Optimized software rasterizer for many texturing functions and pixel

operations. Software rasterization is done by the CPU using an optimized
implementation. On an UltraSPARC CPU, some features, such as texturing
rasterization, may be handled using software code employing the VIS
instruction set.

• A software rasterizer for all features not handled by the hardware or by
the VIS software.

This implementation of the Solaris OpenGL library allows devices with
varying capabilities to run efficiently on the OpenGL software. It enables
Solaris OpenGL applications to run on the following types of devices:

• Model coordinate device – Handles most OpenGL functionality in
hardware, including vertex processing, primitive assembly, rasterization,
and fragment operations.

• Device coordinate device (Creator or Creator3D graphics system) – Performs
vertex processing. Rasterization and fragment processing is handled in
hardware.

• Memory mappable devices (SX, ZX, GX, GX+, TGX, TGX+, TCX) – Vertex
processing, primitive assembly, rasterization, and fragment processing are
performed in software, and the results are written to the memory-mapped
frame buffer.

Figure 2-2 on page 10 illustrates the graphics software architecture of the
Solaris OpenGL product. This figure shows the paths that application data can
take through the OpenGL system, depending on the type of hardware device
the application is running on. Table 2-1 summarizes the data paths with
reference to several hardware platforms.

Table 2-1 Data Paths Through the Solaris OpenGL System

Platform Vertex Processing Rasterization Performance

MC device Hardware vertex processing Hardware rasterizer Fastest path

Software vertex processing Hardware rasterizer Fast path

Software vertex processing Software rasterizer Slow path

10 Solaris OpenGL 1.1 Implementation and Performance Guide—February 1997

2

Figure 2-2 Solaris OpenGL Software Architecture

DC device
(Creator3D
 or Creator)

Software vertex processing

Software vertex processing

Hardware rasterizer

Software rasterizer

Fast path

Slow path

Memory map
(ZX, GX, SX)

Software vertex processing Software rasterizer Only path

Table 2-1 Data Paths Through the Solaris OpenGL System (Continued)

Platform Vertex Processing Rasterization Performance

Batched vertex processing

Device coordinate Software
rasterization

Vertex

Rasterization/

Device independent code
OpenGL API
to Pipeline
Layer

Processing

API or Application

Frame buffer

Per-Fragment
Operations

hardware rasterization
(Creator/Creator3D)

Model
coordinate
hardware

Software

Hardware

Solaris OpenGL Architecture 11

2

Vertex Processing Architecture

As Figure 2-2 shows, Sun’s OpenGL implementation handles vertex processing
in several ways:

• Hardware vertex processing – On model coordinate devices, vertex
processing is done via the hardware. In addition to hardware acceleration,
the model coordinate (MC) pipeline is optimized for vertex arrays and
display list mode. The model coordinate pipeline also recognizes consistent
data types within glBegin /glEnd pairs. If the data is consistent, the
software is able to use hardware resources efficiently.

• Software vertex processor – This is the fully optimized path from the
software implementor's point of view. The principal optimization is that the
model coordinate software pipeline recognizes consistent data types within
glBegin /glEnd pairs: if the data is consistent, the software pipeline is able
to use CPU resources efficiently.

The OpenGL vertex array commands result in the best performance for vertex
processing on all hardware platforms. For repeated rendering of the same
geometry, display lists provide significant performance benefits over
immediate mode rendering.

Rasterization and Fragment Processing Architecture

Rasterization and fragment processing is handled in one of the following ways:

• Hardware rasterizer – The graphics subsystem handles lines, points, and
triangles, and does simple fragment processing, such as blending and the
depth-buffer test.

• Optimized software rasterizer – The CPU does software rasterization using
an optimized implementation. On an UltraSPARC CPU, some features, such
as texturing rasterization, may be handled by the UltraSPARC CPU using
software code employing the VIS instruction set.

• Software rasterizer – The CPU does software rasterization using a generic,
unoptimized implementation. The generic software rasterizer is
approximately one-sixth the speed of the optimized software rasterizer.

12 Solaris OpenGL 1.1 Implementation and Performance Guide—February 1997

2

Solaris OpenGL Interface Layers

The Solaris OpenGL implementation has three layers of interfaces with the
hardware, each requiring successively more processing by the host CPU. These
interface layers correspond to the stages of the OpenGL pipeline. The
rendering interface is determined by the value of the current OpenGL
attributes, and in a small number of cases by the geometry itself. In general,
the more host processing needed, the slower the resulting rendering, so an
application should avoid attributes that force the slower rendering layers to be
used.

Figure 2-3 on page 13 shows the interface layers and their relationship to data
paths through the Solaris OpenGL system. In this illustration, the filled boxes
represent the hardware-specific device pipeline (DP) components and show the
hardware data paths. The white boxes represent the device-independent (DI)
software components and show the software data paths.

The more efficiently an application can reach a filled box, the better the
application’s performance will be. For example, for an application running on
a model coordinate device, the fast data paths are those that result in rendering
in hardware at the vertex processing layer. Setting an attribute that causes the
use of the software pipeline for model coordinate processing can result in a
significant drop in performance. Setting an attribute that results in the use of
software rasterizing can cause an even more significant drop in performance.

On a device coordinate device such as the Creator3D system, hardware
rasterization is about three times faster than the VIS (optimized) rasterizer. The
VIS rasterizer is about five-to-six times faster than the generic software
rasterizer. Thus, the best way to increase rasterization and fragment processing
performance on a DC device is to stay in the hardware rasterizer whenever
possible.

Memory-mappable devices without hardware support use the software
pipeline for model coordinate operations and the software rasterizer for
rasterization. Examples of this device are the single-buffered GX, and TGX. For
devices that do not allow memory access, the Solaris OpenGL architecture
provides a pixel--rendering interface layer. However, at this time no Sun
hardware devices use this interface layer.

For detailed information on attributes that result in slower rendering paths, see
Chapter 3, “Performance.”

Solaris OpenGL Architecture 13

2

Figure 2-3 Solaris OpenGL Data Paths

MC Layer -

DP MC Renderer

glBegin

glEnd
glCallList

DP MC Renderer

glDrawArray

Software Rasterizer/ DP DC Renderer

glEnable

DP Pipeline
Selection

DP MC Renderer

Management
StateVertex

Array
Display

List
 Buffered
Primitives

DP State

(Non-buffered)

Pipeline Renderer
Software

.

.

Fragment Processing

DC Layer -

Memory Map
Layer

Frame buffer

Vertex Processing

Rasterization

14 Solaris OpenGL 1.1 Implementation and Performance Guide—February 1997

2

15

 Performance 3

This chapter provides performance information that you can use to tune your
application to make the best use of Sun hardware graphics accelerators. The
first section provides general advice on how to optimize vertex processing
performance for a variety of platforms. The subsequent sections provide
specific techniques to ensure maximum performance on the Creator3D and
Creator graphics accelerators.

General Tips on Vertex Processing
To achieve the best vertex processing performance on all Sun platforms, follow
these guidelines:

1. Use vertex arrays or display list mode rather than immediate mode
whenever rendering data repeatedly.

2. Use consistent patterns of data types between glBegin (3gl) and
glEnd (3gl) . Consistent data types are described in “Consistent Data Types”
on page 16.

3. If you must use immediate mode, try to include as many primitives of the
same type as possible between one glBegin and the corresponding
glEnd .

4. If vertex array is used, try to stay in vertex array mode, rather than
switching between vertex array and immediate mode.

These guidelines are discussed in the sections that follow.

16 Solaris OpenGL 1.1 Implementation and Performance Guide—February 1997

3

Vertex Arrays

Vertex array commands provide the best performance for vertex processing of
big primitives because they avoid the function call overhead of passing one
vertex, color, and normal at a time. Instead of calling an OpenGL command for
each vertex, you can pre-specify arrays of vertices, colors, and normals, and
use them to define a primitive or set of primitives of the same type with a
single command. Interleaved vertex arrays may enable even faster
performance, since the application passes the data packed in a single array.

Consistent Data Types

For the Solaris OpenGL implementation on all Sun platforms, vertex
processing is optimized if the application provides consistent, supported data
types within a glBegin /glEnd pair. Data types are consistent when the
commands between one vertex call, such as glVertex3fv , and the next vertex
call include identical patterns of data types in the identical order. In other
words, consistent data is data for which the pattern is the same for each vertex,
except when glCallList or glEval* is included. For example, the following
set of commands is consistent because the primitive is defined by the repeating
set of calls glColor3fv (3gl); glVertex3fv (3gl) .

glBegin(GL_LINES);
glColor3fv(...);
glVertex3fv(...);
glColor3fv(...);
glVertex3fv(...);
glColor3fv(...);
glVertex3fv(...);

glEnd();

 As another example, the following set of commands is consistent since each
vertex contains the same data- a color, normal, and vertex in repeating order.

glBegin(GL_LINES);
glColor3f(...);
glNormal3f(...);
glVertex3f(...);
glColor3f(...);
glNormal3f(...);
glVertex3f(...);

glEnd();

Performance 17

3

Note – The *f versions of the calls may be used interchangeably with the *fv
versions.

Inconsistent data types do not follow a repeating, supported pattern. In the
first example below, the data is inconsistent because the first vertex has a
normal, but the second vertex doesn’t. In the second example, the order is
reversed in the second set of commands, although both vertices have a color
and a normal.

glBegin(GL_LINES);
glNormal3fv(...);
glColor3fv(...);
glVertex3fv(...);
glColor3fv(...);
glVertex3fv(...);

glEnd();

glBegin(GL_LINES);
glColor3fv(...);
glNormal3fv(...);
glVertex3fv(...);
glNormal3fv(...);
glColor3fv(...);
glVertex3fv(...);

glEnd();

For general information on the vertex data that can be specified between
glBegin(3gl) and glEnd(3gl) calls, see the glBegin(3gl) reference page.

Low Batching

Solaris OpenGL 1.1 performs best when given big primitives. If small
primitives are sent to the library, the library will try to batch these primitives
together, providing that the primitives are of the same primitive type, with the
same consistent data pattern, and there are no attribute state changes outside
the glBegin call.

For example, the following primitives will be batched together by the library.
glBegin(GL_TRIANGLES);
 glNormal3fv(...);
 glVertex3fv(...);

18 Solaris OpenGL 1.1 Implementation and Performance Guide—February 1997

3

 glNormal3fv(...);
 glVertex3fv(...);
 glNormal3fv(...);
 glVertex3fv(...);
glEnd();

glBegin(GL_TRIANGLES);
 glNormal3fv(...);
 glVertex3fv(...);
 glNormal3fv(...);
 glVertex3fv(...);
 glNormal3fv(...);
 glVertex3fv(...);
glEnd();

The following example shows that the primitives are not batched together
because the glColor3fv call outside the glBegin call breaks the batching of
the primitives.

glBegin(GL_LINES);
 glVertex3fv(...);
 glVertex3fv(...);
glEnd();

glColorfv(...);
glBegin(GL_LINES);
 glVertex3fv(...);
 glVertex3fv(...);
glEnd();

Optimized Data Types

On any platform that uses the software pipeline for model coordinate
rendering, your application will get better performance if it can pass vertex
data in patterns for which the software pipeline has optimized code.
Optimized data patterns are consistent data patterns which contain none of the
following:

• glEdgeFlag*()

• glMaterial*()

• glEvalCoord*()

Performance 19

3

• glCallList() or glCallLists()

• both glColor*() and glIndex*()

• both glTexCoord*() and glIndex*()

Creator3D Graphics and Creator Graphics Performance
The Ultra Creator and Creator 3D Graphics systems accelerate rasterization of
lines, points, and triangles as well as most per-fragment operations. Vertex
processing and texturing operations are performed on the UltraSPARC CPU.
The Solaris OpenGL implementation for the Creator and Creator3D frame
buffers uses all features of the Creator graphics subsystem.

Rasterization and fragment processing is handled in one of three ways:

• Creator3D hardware rasterizer – Handles lines, points, and triangles, and
does simple fragment processing.

• Optimized software rasterizer – UltraSPARC VIS (Visual Instruction Set)
handles many texturing functions and pixel operations.

• Generic software rasterizer – Performs rasterization for all features not
handled by the hardware or by the VIS software.

To find out more about the Creator and Creator3D hardware platforms, refer to
the Architecture Technical White paper at
http://www.sun.com/desktop/products/Ultra2/ .

The following sections provide specific information on attribute use and pixel
operations on these platforms.

Attributes Affecting Creator3D Performance

Primitive-attribute settings affect performance; therefore, you will get a better
level of performance if you can avoid setting the attributes listed below. In
some cases, the listed attributes simply increase the amount of processing in
the hardware or optimized software data paths. In other cases, setting these
attributes forces the use of the software rasterizer, resulting in slow
performance.

20 Solaris OpenGL 1.1 Implementation and Performance Guide—February 1997

3

Attributes That Increase Vertex Processing Overhead

Attributes that that result in more vertex processing overhead include:

• Enabling lighting.

• Turning on user specified clip planes (GL_CLIP_PLANE[i]).

• Enabling color material (GL_COLOR_MATERIAL).

• Enabling non-linear fog (glFog(GL_FOG_MODE, GL_EXP{2})). An
exception to this is using RGBA mode on Creator3D Series 2.

• Enabling GL_NORMALIZE.

• Turning on polygon offset. However, polygon offset is optimized for the
case when the factor parameter of the glPolygonOffset call is set to 0.0.
Users may have to adjust the units parameter accordingly to avoid stitching
for this case.

Primitive Types and Vertex Data Patterns That Increase Vertex
Processing Overhead

Types and patterns that result in more vertex processing overhead are:

• Using a surface primitive type as an argument to glBegin . The surface
primitive types are: GL_TRIANGLES, GL_TRIANGLE_STRP,
GL_TRIANGLE_FAN, GL_QUADS, GL_QUAD_STRIP and GL_POLYGON.

• Using a vertex data pattern for GL_POINTS, GL_LINES,
GL_LINE_STRIP, and GL_LINE_LOOP,other than one of the following
repeating patterns. These are the patterns that are maximally accelerated.

V3F:

glVertex3f(...);
...

C3F_V3F:

glColor3f(...);
glVertex3f(...);

...

Performance 21

3

C4F_V3F:

glColor4f(...);
glVertex3f(...);

...

V2F:

glVertex2f(...);
...

C3F_V2F:

glColor3f(...);
glVertex2f(...);

...

C4F_V2F:

glColor4f(...);
glVertex2f(...);

...

• Using glDrawElements in immediate mode.

Attributes That Increase Hardware Rasterization Overhead

Attributes that result in slower hardware rasterization are:

• Enabling line antialiasing (GL_LINE_SMOOTH)

• Enabling point antialiasing (GL_POINT_SMOOTH)

Attributes That Force the Use of the Software Rasterizer

Setting the following attributes forces the use of the software rasterizer. This is
the slowest data path. If your application requires any of the following
attributes for performance critical functionality, you may want to determine
whether this performance is acceptible. If not, you can evaluate whether the
use of these attributes is advisable.

22 Solaris OpenGL 1.1 Implementation and Performance Guide—February 1997

3

1. Rasterization attributes
• In Indexed color mode, enabling line anti-aliasing (GL_LINE_SMOOTH) or

point anti-aliasing (GL_POINT_SMOOTH)
• Enabling polygon anti-aliasing (GL_POLYGON_SMOOTH)
• Stippled lines (GL_LINE_STIPPLE) where the line stipple scale factor is

larger than 15
• Non-antialiased (“jaggy”) points with glPointSize(3gl) greater than 1.0

Note – The only anti-aliased point size supported by Creator3D and Creator is
1.0. glPointSize is ignored for anti-aliased points. Although the nominal
antialiased point size is 1.0, the actual visible size is approximately 1.5.

2. Fragment Attributes
• Blending (GL_BLEND) forces the use of the software rasterizer unless both

the source and destination blend functions are in the following set of blend
functions supported by the hardware:
GL_ZERO
GL_ONE
GL_SRC_ALPHA
GL_ONE_MINUS_SRC_ALPHA

• Enabling the stencil test (GL_STENCIL_TEST)

On the UltraSPARC platform, a VIS optimized software rasterizer is
used for smooth-shaded non-textured stenciled triangles whenever
the glStencilOp parameter fail is anything other than GL_INCR or
GL_DECR and the depth test does not affect the stencil buffer. (This
is the case when depth test is disabled or the glStencilOp
parameters zfail and zpass are identical).

• Enabling any type of fog in Indexed color mode

Performance 23

3

Figure 3-1 shows the data path for hardware rasterization on the Creator3D
system. Figure 3-2 on page 29 illustrates the data path that the application uses
when it sets an attribute that forces the use of the software rasterizer.

Figure 3-1 Hardware Rasterizer Path for Creator3D

3. Texturing Attributes

Software
Pipeline Renderer

DP MC Renderer

glCallList

DP MC Renderer

glDrawArray

Software Rasterizer/ DP DC Renderer

Vertex
Array

Display
List

dpProcessBuffer dpDrawArray

 Buffered
Primitives

glBegin

glEnd

.

.

Fragment Processing

Framebuffer

Creator3D Fast Path

DP Pixel Renderer

24 Solaris OpenGL 1.1 Implementation and Performance Guide—February 1997

3

• Color Table -- When the GL_TEXTURE_COLOR_TABLE_SGI extension is
used, the only glTexEnv texture base internal formats that are accelerated
are GL_LUMINANCE, GL_LUMINANCE_ALPHA and GL_INTENSITY.

• The texture environment mode glTexEnv GL_TEXTURE_ENV_MODE of
GL_BLEND is not accelerated when it is used with the
GL_TEXTURE_COLOR_TABLE_SGI extension.

• Fog -- On Creator3D, only linear fog is accelerated. On Creator3D Series 2,
all types of RGBA fog are accelerated.

Attributes That Vary Optimized Texturing Speed

The VIS optimized software rasterizer will vary in texturing speed based on
the texturing attributes specified. The factors affecting texturing speed are
listed below. Note that this is variance within the optimized path, not the
difference between the optimized and generic paths.

• Projection Type -- The type of projection matrix. Orthographic is faster than
perspective.

• Wrap Mode -- Best speed is when all dimensions (GL_TEXTURE_WRAP_x)
are set to GL_REPEAT.

• Dimension -- In general, 2D texturing is faster than 3D texturing, since there
is one less texture coordinate to deal with. However, this does not mean it is
better to use many 2D textures to approximate 3D texturing since the texture
load time (see next section) may significantly increase the overhead.

• Minfilter -- The fastest GL_TEXTURE_MIN_FILTER parameter is
GL_NEAREST, which is approximately 4x the speed of GL_LINEAR. After
that the approximate relative speed in decreasing order is: GL_LINEAR,
GL_NEAREST_MIPMAP_NEAREST, GL_NEAREST_MIPMAP_LINEAR,
GL_LINEAR_MIPMAP_NEAREST, and GL_LINEAR_MIPMAP_LINEAR.

• Magfilter -- For GL_TEXTURE_MAG_FILTER, the same speed ratio of 4x
applies to GL_NEAREST vs. GL_LINEAR. Note, however, that
GL_TEXTURE_MAG_FILTER is ignored when GL_TEXTURE_MIN_FILTER is
set to GL_NEAREST or GL_LINEAR. This can be overridden with a shell
environment variable but this will slow down texturing speed for
GL_NEAREST and GL_LINEAR, since they now have to perform level-of-
detail calculations to determine when to use GL_TEXTURE_MAG_FILTER.
The shell environment variable that forces this slower behavior is:

setenv SUN_OGL_MAGFILTER “conformant”

Performance 25

3

• Interior Texture Coordinates -- Before a triangle is textured, the texture
coordinates at the triangle’s vertices are checked to determine if they are all
at least 1/2 texel away from the texture map edges towards the inside of the
texture. Triangles that pass this criterion are rendered faster than triangles
whose texture coordinates touch or cross the texture map’s edges. Note that
since quads are broken up into two triangles before texturing that this
applies to quads as well. It also applies to each primitive in a connected list
such as tristrip or quadstrip.

• Env Mode -- The fastest glTexEnv() GL_TEXTURE_ENV_MODE is
GL_REPLACE, followed closely by GL_MODULATE. GL_DECAL is the same
speed as GL_REPLACE.

• Color Table -- The use of the extension GL_TEXTURE_COLOR_TABLE_SGI
will reduce texturing speed.

Attributes That Vary Texture Load Time

The time to load the texture image into a texture object or a display list will
vary depending on the pixel store and pixel transfer attributes specified when
the texture is specified. The following recommendations should be followed
where possible to reduce texture load time:

• If multiple textures are being used, put the textures in texture objects and
use glBindTexture to switch among the textures. This enables the texture
load operation to be performed only once.

• If for some reason texture objects cannot be used, then the next best thing is
to put the texture into a display list, making sure to fully specify in the
display list the scale and bias for glPixelTransfer that are used in the
application. The intent is to not have the display list inherit any changes to
its initial pixel transfer from the calling environment. This avoids
reprocessing the texture image. Avoid calling glPixelMap and
glColorTableSGI (with target GL_COLOR_TABLE_SGI) after creating the
display list that contains the texture image. Avoid calling glPixelMap and
glColorTableSGI (with target GL_COLOR_TABLE_SGI) inside the display
list. Doing so will cause the texture image to be reprocessed for every
glCallList .

• Avoid setting any of the glPixelTransfer parameters to anything other
than their default values.

26 Solaris OpenGL 1.1 Implementation and Performance Guide—February 1997

3

• For GL_RGBA textures, use the extension GL_ABGR_EXT to specify the
texture format and GL_UNSIGNED_BYTE for the texture data type.

• For 3D textures, some combinations of base internal format and incoming
texture image format are optimized as given in the table below. Note that
these optimized cases are valid only for data type GL_UNSIGNED_BYTE.

Attributes Affecting Creator Performance

This section applies when pure software rendering is being used. This
happens on the single-buffered Creator platform when glDrawBuffer (3gl) is
set to GL_BACK or GL_FRONT_AND_BACK. The data presented here is also valid
for the SX, ZX, GX, GX+, TGX, TGX+, and TCX platforms. Note that for non-
Ultra machines, VIS rasterization is replaced by an optimized software
rasterizer.

Attributes That Increase Vertex Processing Overhead

Attributes that result in more vertex processing overhead are:

• Enabling lighting.

• Turning on user specified clip planes (GL_CLIP_PLANE[i]).

• Enabling color material (GL_COLOR_MATERIAL).

• Enabling non-linear fog (glFog (GL_FOG_MODE, GL_EXP{2})). An
exception to this is using RGBA mode on Creator3D Series 2.

• Enabling GL_NORMALIZE.

Table 3-1 3D optimized cases

Format Base Internal Format

GL_LUMINANCE_ALPHA GL_LUMINANCE_ALPHA

GL_RED GL_INTENSITY

GL_RED GL_LUMINANCE

GL_ALPHA GL_ALPHA

GL_LUMINANCE GL_INTENSITY

GL_LUMINANCE GL_LUMINANCE

GL_ABGR_EXT GL_RGBA

Performance 27

3

• Turning on polygon offset. However, polygon offset is optimized when the
factor parameter of the glPolygonOffset call is set to 0.0. Users may
have to adjust the units parameter accordingly to avoid stitching for this
case.

Attributes That Force the Use of the Generic Software Rasterizer

Setting the following attributes forces the use of the generic software rasterizer.
This is the slowest data path. If your application requires any of the following
attributes for performance critical functionality, you may want to determine
whether this performance is acceptable. If not, you can evaluate whether the
use of these attributes is advisable.

1. Texturing Attributes
• All three-dimensional texturing attributes result in the use of the generic

software rasterizer.
• Two-dimensional texture mapping (GL_TEXTURE_2D) in the following

cases:

a. Texture environment mode glTexEnv GL_TEXTURE_ENV_MODE is set to
GL_BLEND.

b. glTexEnv texture base internal format is GL_ALPHA.

c. Texturing of points is handled by the generic software.

d. Fog is enabled.

e. Any use of the SGI Texture Color Table
(GL_SGI_texture_color_table) extension.

2. Fragment Attributes
• Enabling any type of fog in Indexed color mode.

• Enabling blending (glBlendFunc) (3gl) except when the source blending
factor is GL_SRC_ALPHA and the destination blending factor is
GL_ONE_MINUS_SRC_ALPHA. This case is optimized.

• Enabling logical operations.

• Enabling depth test glEnable(GL_DEPTH_TEST) forces the use of the
optimized software rasterizer. If depth test is enabled, then if
glDepthFunc(3gl) is on, enabling any Z comparison other than
GL_LESS or GL_LEQUAL forces the use of the generic software rasterizer.

28 Solaris OpenGL 1.1 Implementation and Performance Guide—February 1997

3

• Enabling alpha test.

• Setting glDrawBuffer(3gl) to GL_BACK or GL_FRONT_AND_BACK, or
setting glReadBuffer(3gl) to GL_BACK.

Index Mode

When pure software rendering is being used, index mode rendering is
handled by the generic software rasterizer. This includes any logic operation,
blending, fog, stencil, alpha test, and the above-mentioned cases for Z
comparison.

Performance 29

3

Figure 3-2 Software Rasterizer Data Path for Creator3d and Creator

Software
Pipeline Renderer

DP MC Renderer

glCallList

DP MC Renderer

glDrawArray

Software Rasterizer/ DP DC Renderer

Vertex
Array

Display
List

dpProcessBuffer dpDrawArray

 Buffered
Primitives

glBegin

glEnd

.

.

Fragment Processing

Frame buffer

Software Rasterizing -
Slow Path

Creator / Creator3D

30 Solaris OpenGL 1.1 Implementation and Performance Guide—February 1997

3

Pixel Operations

Under optimal conditions, the commands glDrawPixels(3gl) ,
glReadPixels (3gl) , and glCopyPixels (3gl) are optimized on the Creator
and Creator3D systems using the VIS instruction set on the UltraSPARC CPU.
Bitmap operations using the command glBitmap(3gl) are accelerated in the
Creator3D font registers. However, some attribute settings result in the use of
the software rasterizer for pixel operations.

Figure 3-3 shows the rasterization and fragment processing architecture for
glDrawPixels (3gl). The figure shows the optimized and unoptimized paths
for pixel rendering. Your application will experience performance degradation
for each functional box that it needs. In addition, performance degradation will
occur if the data type is not unsigned byte; in this case, the data must be
reformatted internally.

Figure 3-3 Solaris OpenGL Architecture for Drawing Pixels

DrawPixels

unpack

 zoom

transfer/map

texture/ fog

SW per-fragment ops

frame buffer

data type
reformatting

Performance 31

3

Conditions That Result in VIS Optimization on Creator3D Systems

In general, for DrawPixels, CopyPixels, and Bitmap, the use of texture
mapping or nonlinear fog (except in RGBA mode on Creator3D Series 2) will
force the use of the generic software rasterizer, resulting in slow performance.
In addition, if the hardware does not support the per-fragment operations that
the application has enabled, the generic software rasterizer is used. See the
OpenGL documentation or the “OpenGL Machine” diagram for a list of per-
fragment operations.

For the Creator3D system, if the following conditions are true, pixel operations
are optimized. If these conditions are not true, the generic software rasterizer is
used.

glDrawPixels Command
• Pixel format is GL_RGBA, GL_RGB, GL_ABGR_EXT, GL_RED, GL_GREEN,

GL_BLUE and GL_LUMINANCE.
• Data type is GL_UNSIGNED_BYTE.
• For the format of GL_DEPTH_COMPONENT, the types GL_INT,

GL_UNSIGNED_INT, and GL_FLOAT are optimized.
• Texturing is disabled.
• Pixel unpacking is unnecessary.
• Pixel transfer, mapping, and zooming are in the default state.
• Fog mode is linear (Creator 3D) or any fog mode (Creator 3D Series 2).
• The fragment attributes are not those listed in “Fragment Attributes” on

page 24.

glReadPixels Command
• Pixel format is GL_RGBA, GL_RGB, GL_ABGR_EXT, GL_RED, GL_GREEN,

GL_BLUE, GL_LUMINANCE and GL_LUMINANCE_ALPHA.
• Data type is GL_UNSIGNED_BYTE.
• For the format of GL_DEPTH_COMPONENT, the types GL_INT,

GL_UNSIGNED_INT,and GL_FLOAT are optimized.
• Pixel packing is unnecessary.
• Pixel transfer and mapping are in the default state.

glCopyPixels Command
• Pixel type is GL_COLOR.
• Texturing is disabled.

32 Solaris OpenGL 1.1 Implementation and Performance Guide—February 1997

3

• Pixel transfer, mapping and zooming are in the default state.
• Fog mode is linear (Creator 3D) or any fog mode (Creator 3D Series 2).
• The fragment attributes are not those listed in “Fragment Attributes” on

page 24.

glBitmap(3gl)Command
• Texturing is not enabled.
• Blending is not enabled.

Conditions That Result in VIS Optimization on Creator Systems

 For the Creator and non-Creator SMCC frame buffers, if the following
conditions are true, pixel operations are optimized. If these conditions are not
true, the generic software rasterizer is used.

glDrawPixels Command
• Pixel format is GL_RGBA, GL_RGB or GL_ABGR_EXT.
• Data type is GL_UNSIGNED_BYTE.
• Texturing is disabled.
• Pixel unpacking is unnecessary.
• If depth test is enabled, then if glDepthFunc (3gl) is on, enabling any Z

comparison other than GL_LESS or GL_LEQUAL.

glReadPixels Command
• If glReadPixels format is GL_RGBA, GL_RGB or GL_ABGR_EXT, the pixel

type GL_UNSIGNED_BYTE is optimized.
• If glReadPixels format is GL_DEPTH_COMPONENT, then these pixel types

are optimized: GL_INT, GL_UNSIGNED_INT, or GL_FLOAT.
• Pixel packing is unnecessary.

glCopyPixels Command
• Pixel type is GL_COLOR.
• Texturing is disabled.
• Enabling any Z comparison other than GL_LESS or GL_LEQUAL.

glBitmap Command
• Texturing is disabled.

Performance 33

3

• If depth test is enabled, then if glDepthFunc is on, enabling any Z
comparison other than GL_LESS or GL_LEQUAL.

GX Performance
GX performance is affected by attributes that force the use of the generic
software rasterizer:

1. Texturing Attributes

a. Only triangles are optimized. Texturing of points and lines is handled
by the generic software.

b. Texture environment mode glTexEnv(3gl) GL_TEXTURE_ENV_MODE is
GL_BLEND.

2. Fragment Attributes

a. Stencil operations

b. Logic operations

c. Any blending operation

d. Linear or nonlinear fog

e. Enabling any Z comparison other than GL_LESS or GL_LEQUAL

34 Solaris OpenGL 1.1 Implementation and Performance Guide—February 1997

3

35

X Visuals for the Solaris OpenGL
Software 4

Programming With X Visuals for the Solaris OpenGL Software
OpenGL rendering is supported on a subset of the visuals exported by the
Solaris X window server on the Creator and Creator3D workstations. Because
GLX overloads the core X visual classes with a set of attributes that indicate
frame buffer capabilities, such as double buffer mode or stereo capabilities, the
number of visuals supported by an OpenGL-capable X server is potentially
large. For example, for the 24-bit TrueColor visual, the Solaris X window server
on the Creator and Creator3D workstations exports the following types of GLX
visuals: double buffer, single buffer, monoscopic, and stereoscopic.

This approach of exporting multiple GLX visuals for each X protocol core
visual is colloquially referred to as the GLX expansion (or visual explosion). For
each different type of GLX visual that is exported, there is a corresponding X
protocol core visual. Thus, there are multiple GLX visuals whose core X visual
attributes are all identical.

Note – Solaris OpenGL 1.1 does not support windows with backing store.
Enabling backing store on a window will penalize the user’s Creator3D
rendering performance.

Various OpenGL-capable visuals are supported in various releases of the
Solaris operating environment. These are the visuals that an OpenGL program
can use. This information applies to both Creator3D and Creator systems.

36 Solaris OpenGL 1.1 Implementation and Performance Guide—February 1997

4

• In the Solaris 2.5.1 release, there are no expanded visuals. Expanded visuals
are not supported in this release.

• In Solaris 2.5.1-based systems, expanded visuals are disabled by default. The
user will have the option of enabling or disabling expanded visuals by using
the command ffbconfig -expvis < enable|disable>.

See Table 4-1 and Table 4-2 for detailed information on using OpenGL with or
without expanded visuals.

Note – In Solaris 2.5.1-based systems, an OpenGL-capable overlay visual is
present only if you run /usr/sbin/ffbconfig -sov enable before the
Window system is started. You must run this command as root.

The advantage to the overloading of X visuals is that the X server can be
specific about the frame buffer configurations that the graphics hardware
provides. This approach also enables the OpenGL implementation to better
manage resources. Instead of allocating the maximal amount of resources for
each window, the OpenGL implementation only needs to allocate the resources
necessary for the GLX visual the application has selected. Thus, the application
has more direct control over resource allocation.

Using the glXGetConfig(3gl) and glXChooseVisual(3gl) routines,
applications can get information on the supported visuals and choose the
appropriate visual. For helpful information on GLX programming, refer to
OpenGL Programming for X Windows Systems by Mark Kilgard and OpenGL
Programming Guide.

X Visuals for the Solaris OpenGL Software 37

4

Table 4-1 lists OpenGL-capable visuals with expanded visuals.

When the frame buffer video mode is monoscopic, only GL_MONO versions of
these visuals are supported. In a stereoscopic video mode, both GL_MONO
and GL_STEREO versions of these visuals are supported.

Table 4-2 lists OpenGL-capable visuals without expanded visuals.

Table 4-1 OpenGl-capable Visuals With Expanded Visuals

Double Buffer
Capable?

GLX
BufferSize X Visual Class GL_RGBA

Gamma
Corrected? GLX Level

Yes 24 TrueColor True No 0

Yes 24 TrueColor True Yes 0

Yes 24 DirectColor True No 0

Yes 8 PseudoColor False No 0

No 24 TrueColor True No 0

No 24 TrueColor True Yes 0

No 24 DirectColor True No 0

No 8 PseudoColor False No 0

No 8 PseudoColor False No 1

Table 4-2 OpenGL-capable Visuals Without Expanded Visuals

Double Buffer
Capable?

GLX
BufferSize X Visual Class GL_RGBA

Gamma
Corrected? GLX Level

Yes 24 TrueColor True No 0

Yes 24 TrueColor True Yes 0

Yes 24 DirectColor True No 0

Yes 8 PseudoColor False No 0

No 8 PseudoColor False No 1

38 Solaris OpenGL 1.1 Implementation and Performance Guide—February 1997

4

Colormap Flashing for OpenGL Indexed Applications
With the visuals exploded, there is greater potential for colormap flashing to
occur for OpenGL indexed applications. This is because applications are forced
to create private colormaps in order to create windows on the GLX visual they
choose. In the Solaris 2.6 release, the colormap flashing problem is eased by the
colormap equivalence feature. This feature allows OpenGL color indexed
applications to be written in a way that creates less flashing.

Colormap equivalence allows a program to assign a colormap of one visual to
a window that was created with a different visual, as long as the two visuals
are colormap equivalent. This means, in general, that they share the same
plane group and have the same number of colormap entries. The standard X11
protocol does not let programs mix visuals of colormaps and windows in this
way. For more information on colormap equivalence, see the
XSolarisCheckColormapEquivalence (3) man page.

Colormap equivalence is useful for OpenGL programs because the GLX visual
expansion creates up to four different variants of each base GL_CAPABLE
visual. So, for example, instead of one 8-bit default PseudoColor colormap,
there may be a double-buffered variant, a stereo variant, and so on. Without
colormap equivalence, an application cannot assign the default colormap to
windows of these variant visuals, and this will result in more colormap
flashing. With colormap equivalence, windows of all variants can share a
colormap that was created using the base visual, and less colormap flashing
will occur.

GL Rendering Model and X Visual Class
OpenGL RGBA rendering is supported on the 24-bit TrueColor and
DirectColor visuals. OpenGL indexed rendering is supported on the 8-bit
PseudoColor visuals and on the indexed or 224-color overlay visuals.

Depth Buffer
All GL-capable visuals, except for overlay visuals, have a 28-bit Z buffer
(GLX_DEPTH_SIZE == 28).

X Visuals for the Solaris OpenGL Software 39

4

Accumulation Buffer
All GL RGBA visuals have a (16, 16, 16, 16) accumulation buffer
(GLX_ACCUM_RED_SIZE == GLX_ACCUM_GREEN_SIZE==
GLX_ACCUM_BLUE_SIZE == GLX_ACCUM_ALPHA_SIZE = 16).

Stencil Buffer
All GL capable visuals, except for the overlay and stereo visuals, have a 4-bit
stencil buffer (GLX_STENCIL_SIZE == 4).

Auxiliary Buffers
Auxiliary buffers are not supported by the Solaris OpenGL product
(GLX_AUX_BUFFERS == 0).

Stereo

Note – This section is specific to Creator and Creator3D systems.

To run a stereo application in stereo mode, the frame buffer must be configured
for stereo operation.

▼ To Set Up the Frame Buffer for Stereo Operation:

1. Exit the window system.

2. Type this command:
For Solaris 2.5.1 HW297 /usr/sbin/ffbconfig -res stereo -expvis
enable

For Solaris 2.6 /usr/sbin/ffbconfig -res stereo
Note that in the Solaris 2.6 release, this command must be run under
superuser permissions or sys admin permissions.

3. Restart the window system.

Application can now use the stereo hardware buffers.

40 Solaris OpenGL 1.1 Implementation and Performance Guide—February 1997

4

Rendering to DirectColor Visuals
The OpenGL API has no support for color mapping. The only way to get a
DirectColor visual is to implement visual selection in the application using
XGetVisualInfo(3gl) and glXGetConfig . If you request a visual with
glXChooseVisual , you will get a 24-bit TrueColor visual for RGBA rendering
and an 8-bit PseudoColor visual for index rendering.

When rendering to DirectColor visuals, the GL system calculates pixel values
in the same way as it does for TrueColor visuals. The application is responsible
for loading the window colormap with cells that make sense to the application.

Overlays
The Creator and Creator3D systems have one 8-bit overlay visual in
monoscopic mode and two 8-bit overlays in stereo mode. The overlay visual
GLX level is greater than zero (GLX_LEVEL > 0). Visuals with a GLX level less
than or equal to zero are underlay visuals.

Server Overlay Visual (SOV) Convention

Server Overlay Visual (SOV) is an API for rendering transparent pixels in an
overlay window. A transparent pixel is a special pixel code that allows the
contents of underlay windows underneath to show through. SOV derives its
name from the X property that informs the user of the special transparent pixel
value: SERVER_OVERLAY_VISUALS. This value can be used as the input value
to glIndex* calls so that the transparent pixel can be rendered into the
overlay.

The SOV API, while not an X11 standard, is a convention that is supported by
many X11 vendors. It is described at length in the book OpenGL Programming
for the X Window System by Mark J. Kilgard. This section describes Sun-specific
aspects of the SOV implementation.

Note – In this section, the term underlay is used as a synonym for the normal
planes referred to in OpenGL Programming for the X Window System.

The SERVER_OVERLAY_VISUALS property describes visuals with transparent
pixels (TransparentType = TransparentPixel), and also completely opaque
visuals (TransparentType = None). If you need an overlay visual with a

X Visuals for the Solaris OpenGL Software 41

4

transparent pixel, make sure that you check the TransparentType field of the
entries in this property. The remainder of this section will discuss only the
TransparentPixel SOV visuals.

Enabling SOV Visuals

SOV visuals are present by default in Solaris 2.6. But in Solaris 2.5.1 HW297,
they must be explicitly enabled. SOV visuals can be enabled in an
OpenWindows environment by becoming root , then typing the following
command before starting the OpenWindowsTM system:
/usr/sbin/ffbconfig -sov enable. Then restart the Window system.

 Both Creator and Creator3D platforms support SOV visuals. When these
devices are configured for a monoscopic video mode, there is one
TransparentPixel SOV visual. When in a stereoscopic video mode, there are
two TransparentPixel SOV visuals exported: a monoscopic visual and a
stereoscopic visual.

Note – Regardless of the video mode, there is always one overlay visual
exported on these devices that is not SOV-capable. This visual is provided in
order to support OVL, the Sun-specific overlay extension. This visual is not
GL_CAPABLE and is never returned by glXChooseVisuals .

OpenGL Restrictions on SOV

Note – Creator and Creator3D systems do not directly support SOV, so the
Solaris OpenGL 1.1 software provides the SOV support using a low-overhead
software translation mechanism. If a program follows the restrictions described
below, this mechanism provides rendering to SOV windows at full hardware
speeds in most cases.

SOV is fully supported on SOV-capable visuals except for the following
features, which are not supported:

• Uncorrelated window configurations. These window configurations are
described below.

• Read back of transparent pixels via glReadPixels.

• Interframebuffer copies of transparent pixels via glCopyPixels .

42 Solaris OpenGL 1.1 Implementation and Performance Guide—February 1997

4

• Logic operations other than GL_COPY.

• Index masks other than 0xff.

• glShadeModel (GL_SMOOTH.

If one of these unsupported features is used, rendering will complete without
generating an error but the visual results will be undefined.

A correlated window configuration is a combination of an overlay and an
underlay window that are the exact same size and shape. Typically, the overlay
window is a child of the underlay window, but it may also be a sibling. In
either case, there must be no other windows (mapped or unmapped)
intervening between them. Once the window configuration is set up, it should
not be changed by re-parenting one of the windows. If a window configuration
doesn’t meet this definition, then it is called an uncorrelated configuration and
is not supported by OpenGL.

The application is responsible for maintaining the correlated relationship. The
system does not maintain it automatically. The client must check for underlay
window shape changes and if any occur, it must perform the equivalent
changes on the overlay window.

Compatibility of SOV with other Overlay Models

Programs that use SOV visuals may coexist on the same screen with programs
that use OVL, the Sun-specific overlay extension. But the two may not be used
simultaneously with the same window.

Some XGLTM and OpenGL 1.0 programs are written to use the SOV transparent
pixel if the SOV property is present, and to use XOR rendering in the default
underlay visual if the SOV property is not present. These programs may not
behave properly when the SOV property is present. When the SOV property is
not present and the underlay is being used, a program may simply attach the
default colormap to the default visual underlay window. In the presence of the
SOV visual, the program will switch to using the SOV overlay visual but may
continue to use the default colormap. Since the SOV overlay visual is usually
not the same as the default visual, this will result in an X11 BadMatch error
when the program attempts to attach the colormap to the overlay window.
Care should be taken to write programs that always attach colormaps of the

X Visuals for the Solaris OpenGL Software 43

4

proper visual to overlay windows. In this case, the program should have
created a colormap using the SOV visual instead of trying to use the default
colormap.

Programs that use SOV can also coexist with programs using the Sun visual
overlay capability glXGetTransparentIndexSUN . However,
glXGetTransparentIndexSUN is deprecated. It is provided only for
compatability for existing programs that use it. Newly written transparent
overlay programs should use SERVER_OVERLAY_VISUALS instead.

For information on using the Sun visual overlay capability, see the
glXGetTransparentIndexSUN man page. In addition, look at the overlay
example programs included in the SUNWglut package. These programs are
installed by default into the directory
/opt/SUNWsdk/sdk_2.5/GL/contrib/examples/sun/overlay .

Gamma Correction
On Creator and Creator3D workstations, two 24-bit TrueColor visuals are
exported. One is gamma corrected; the other is not. To support imaging and
Xlib applications, the nonlinear (not gamma-corrected) visuals are listed before
linear visuals. However, to provide linear visuals for graphics applications
running under the Solaris OpenGL software, the glXChooseVisual() call
was modified to return a linear visual.

If you want to use a nonlinear TrueColor visual, you need to get the visual list
from Xlib. Use the Solaris API XSolarisGetVisualGamma (3) to query the
linearity of the visual. To determine whether a visual supports OpenGL, call
glXGetConfig with attrib set to GLX_USE_GL.

If you are using another vendor’s OpenGL and displaying your application on
a Creator or Creator3D graphics workstation, and you want to use a linear
visual, run the command /usr/sbin/ffbconfig -linearorder first to
change the order of visuals so that the linear (gamma-corrected) visual is the
first visual in the visual list. See Solaris X Window System Developer’s Guide for
more information on gamma correction and XSolarisGetVisualGamma .

44 Solaris OpenGL 1.1 Implementation and Performance Guide—February 1997

4

45

Tips and Techniques 5

This chapter presents miscellaneous topics that you may find useful as you
port your application to the Solaris OpenGL software.

Identifying the Solaris OpenGL Library Version
You can identify the library version number and build date of the OpenGL
library components (libGL.so , libGLU.so , libGLw.so , SUNWGLX.so) using
the what(1) command. For example, any of the following commands:

% what /usr/openwin/lib/libGL.so

% what /usr/openwin/lib/libGLU.so

% what /usr/openwin/lib/libGLw.so

% what /usr/openwin/server/modules/SUNWGLX.so.1

would result in something like:

RELEASE VERSION: SUNWglrt Solaris OpenGL version 1.1, libGL.so.1,
sparc, [build date]

RELEASE VERSION: SUNWglrt Solaris OpenGL version 1.1, libGLU.so.1,
sparc, [build date]

RELEASE VERSION: SUNWglwrt Solaris OpenGL version 1.1, libGLw.so.1,
sparc, [build date]

RELEASE VERSION: SUNWglrt Solaris OpenGL version 1.1, SUNWGLX.so.1,
sparc, [build date]

This identifies the OpenGL component to be Solaris OpenGL version 1.1 built
on the specified build date.

46 Solaris OpenGL 1.1 Implementation and Performance Guide—February 1997

5

Avoiding Overlay Colormap Flashing
Colormap flashing may occur when your application uses overlay windows.
This problem stems from several characteristics of the Creator3D system: the
overlay visual is not the default visual, the Creator3D is a single hardware
colormap device, and X11 allocates colormap cells from pixel 0 upward. When
the application renders to the overlay window, it must use a non-default
visual, and a non-default colormap is loaded. In this case, colormap flashing
between the default and non-default colormaps can occur.

The best solution to this problem is to allocate the overlay colors at the high
end of the overlay colormap. In other words, if you have n colors to allocate,
allocate them in the positions colormap_size -n -1 to colormap_size -1.This avoids
the colors in the default colormap, which are allocated upward starting at 0. To
allocate n colors at the top of the overlay colormap, first allocate
colormap_size-n read/write placeholder cells using XAllocColorCells . Then
allocate the n overlay colors using XAllocColor . Finally, free the placeholder
cells. This solution is portable; it works on both single- and multiple-hardware
colormap devices.

Changing the Limitation on the Number of Simultaneous GLX Windows
There is a limitation on the number of GLX windows that an application can
use simultaneously. Each GLX window that has an attached GLX context uses
a file descriptor for DGA (Direct Graphics Access) information. You can find
the current number of open file descriptors using the limit (1) command:

% limit descriptors

descriptors 64

The system response tells you that you have up to 64 direct GLX contexts,
assuming that you have no other processes concurrently using file descriptors.

You can increase the per-process maximum number of open file descriptors
using the limit command as follows:

% limit descriptors 128

This command changes the number of file descriptors available for DGA and
other uses to 128. Use the sysdef (1M) command to determine the maximum
number of file descriptors for your system.

Tips and Techniques 47

5

Hardware Window ID Allocation Failure Message
On Creator3D, when a program calls glXMakeCurrent(3gl) to make a
window the current OpenGL drawable, the system will attempt to allocate a
unique hardware window ID (WID) for the window. This allows double
buffering and hardware WID clipping to be used. Because hardware WIDs are
a scarce resource and can be used for other purposes, there might not be any
WIDs available when glXMakeCurrent is called. If this should happen, the
following message is displayed:

OpenGL/FFB Warning: unable to allocate hardware window ID

In this situation, double buffering will not be provided for the window, and the
window will be treated as a single-buffered window.

Getting Peak Frame Rate
The frame rate that ogl_install_check prints out is symchronized to
monitor frequency. It measures the time it takes to render the frame, wait for
vblank , then swap the buffers. Since FFB can render the
ogl_install_check image very quickly, even on an FFB1 Electron 167 mhz
machine, the bottleneck is waiting for the monitor vblank . So, under normal
circumstances, ogl_install_check is never going to be able to get a frame
rate faster than the monitor frequency.

However, there is an environment variable called OGL_NO_VBLANK that you
can set to see the peak, unsynchronized frame rate. When set, this
environment variable swaps buffers immediately, without waiting for vblank .

Frequently Asked Questions
How can I find out the Release Version Number of the OpenGL Library I am
using?

You can identify the Release Version Number of the OpenGL Library by:

1. Using the what (1) or mcs(1) command:

% what /usr/openwin/lib/libGL.so.1

% mcs -p /usr/openwin/lib/libGL.so.1

2. Programatically, by calling glGetString (GL_VERSION)

48 Solaris OpenGL 1.1 Implementation and Performance Guide—February 1997

5

(see the glGetString man page for more details)

3. Running the Solaris OpenGL install_check demo program:

% /usr/openwin/demo/GL/ogl_install_check

What is the maximum number of GLX windows that can be used
simultaneously?

Each window that is created and to which a GLX context is attached uses a file
descripter of Direct Graphics Access (DGA) information. The per-process
maximum number of open file descriptors can be found, and changed, using
the filename command:

% limit descriptors

descriptors 64

This implies you have up to 64 direct GLX contexts (assuming you have other
things in that process that use up file descriptors).

This limit can be increased by typing:

% limit descriptors 128

This will increase the number of file descriptors available for DGA use and
other uses to 128. The sysdef (1M) command will tell you what the maximum
number of file descriptors is, along with other information.

In addition to the limit on descriptors, there is a limit on the number of
hardware double-buffered windows. On Creator3D, you have up to 32 double-
buffered windows. Beyond that, OpenGL defaults to single-buffered mode.

The Creator3D graphics accelerator supports only double-buffered visuals. I
want to use single-buffer behavior. How can I do this?

You can simulate single-buffer behavior using double-buffered context by
calling glDrawBuffer (GL_FRONT) and avoiding calls to
glXSwapBuffers.

Copyright 1997 Sun Microsystems Inc., 2550 Garcia Avenue, Mountain View, Californie 94043-1100, U.S.A. Tous droits
réservés.

Ce produit ou document est protégé par un copyright et distribué avec des licences qui en restreignent l’utilisation, la copie,
la distribution, et la décompilation. Aucune partie de ce produit ou de sa documentation associée ne peut être reproduite sous
aucune forme, par quelque moyen que ce soit, sans l’autorisation préalable et écrite de Sun et de ses bailleurs de licence, s’il
y en a. Le logiciel détenu par des tiers, et qui comprend la technologie relative aux polices de caractères, est protégé par un
copyright et licencié par des fournisseurs de Sun.

Sun, Sun Microsystems, le logo Sun, Solaris, le logo Solaris, SunOS, SunSoft, ONC, NFS, OpenWindows, Deskset,
Answerbook, SunLink, SunView, SunDiag, NeWS, OpenBoot, OpenFonts, Sun Install, SunNet, Tooltalk,sont des marques
déposées ou enregistrées, ou marques de service de Sun Microsystems, Inc. aux Etats-Unis et dans d’autres pays. Des parties
de ce produit pourront être dérivées des systémes Berkeley BSD licenciés par l’Université de Californie. OpenGL est une
marque de fabrique ou une marque deposêe de Silicon Graphics, Inc. PostScript est une marque enregistrée d’Adobe Systems
Inc.

Toutes les marques SPARC sont utilisées sous licence et sont des marques de fabrique ou des marques déposées de SPARC
International, Inc. aux Etats-Unis et dans d’autres pays. Les produits portant les marques SPARC sont basés sur une
architecture développée par Sun Microsystems, Inc.

Les interfaces d’utilisation graphique OPEN LOOK® et Sun™ ont été développées par Sun Microsystems, Inc. pour ses
utilisateurs et licenciés. Sun reconnaît les efforts de pionniers de Xerox pour la recherche et le développement du concept des
interfaces d’utilisation visuelle ou graphique pour l’industrie de l’informatique. Sun détient une licence non exclusive de
Xerox sur l’interface d’utilisation graphique Xerox, cette licence couvrant aussi les licenciés de Sun qui mettent en place
l’interface d’utilisation graphique OPEN LOOK et qui en outre se conforment aux licences écrites de Sun.

CETTE PUBLICATION EST FOURNIE “EN L’ETAT” SANS GARANTIE D’AUCUNE SORTE, NI EXPRESSE NI IMPLICITE,
Y COMPRIS DES GARANTIES CONCERNANT LA VALEUR MARCHANDE, L’APTITUDE DES PRODUITS A RÉPONDRE
A UNE UTILISATION PARTICULIERE, OU LE FAIT QU’ILS NE SOIENT PAS CONTREFAISANTS DE PRODUITS DE TIERS.

