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Preface

This manual describes the programmatic  interfaces to transport services in the
Solaris operating system.

In this guide the terms SunOS and Solaris are used interchangeably because
the interfaces described in this manual are common to both. Solaris 2.5,
SunSoft’s™ distributed computing operating environment, is a superset of
SunOS. It is comprised of SunOS release 5.5 with ONC+™, OpenWindows™,
ToolTalk™, DeskSet™,  OPEN LOOK®, and other utilities. This release of
Solaris is fully compatible with System V, Release 4 (SVR4) and conforms to the
third edition of the System V Interface Description (SVID). It supports all
System V network services.

Who Should Use This Book
The guide assists you in developing a networked, distributed application in the
Solaris operating system.

Use of this guide assumes basic competence in programming, a working
familiarity with the C programming language, and a working familiarity with
the UNIX® operating system. Previous experience in network programming is
helpful, but is not required to use this manual.
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How This Book Is Organized
Chapter 1, “Introduction to Network Programming Interfaces,” gives a high-
level introduction to networking concepts and the topics covered in this book.

Chapter 2, “Programming With Sockets,” describes the socket interface at the
transport layer.

Chapter 3, “Programming With the Transport Layer Interface (TLI),”
describes the UNIX System V Transport Interface.

Chapter 4, “Transport Selection and Name-to-Address Mapping,” describes
the network selection mechanisms used by applications in selecting a network
transport and its configuration.

Related Books
The following on-line System AnswerBook® products cover related network
programming topics:

• Solaris 2.5 Reference Manual AnswerBook
• Solaris 2.5 Software Developer AnswerBook

The following third-party books are excellent sources on network
programming topics:

• UNIX Network Programming, W. Richard Stevens, Prentice Hall Software
Series, 1990.

• System V Network Programming, Stephen A. Rago, Addison-Wesley, 1993.
• TCP/IP Illustrated, Volume I, W. Richard Stevens, Addison-Wesley, 1994.
• Networking Applications on UNIX System V Release 4, Michael Padovano,

Prentice Hall, Inc., 1993.
• Internetworking with TCP/IP, Volume I: Principles, Protocols, and Architecture,

2nd Edition, Douglas E. Comer and David L. Stevens, Prentice Hall, Inc.,
1991.

• Internetworking with TCP/IP, Volume II: Design, Implementation, and Internals,
Douglas E. Comer and David L. Stevens, Prentice Hall, Inc., 1991.

• Internetworking with TCP/IP, Volume III: Client-Server Programming and
Applications, BSD Sockets Version, Douglas E. Comer and David L. Stevens,
Prentice Hall, Inc., 1993.
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• Internetworking with TCP/IP, Volume III: Client-Server Programming and
Applications, AT&T TLI Version, Douglas E. Comer and David L. Stevens,
Prentice Hall, Inc., 1994.

What Typographic Changes and Symbols Mean
The following table describes the typographic changes used in this book.

Table P-1 Typographic Conventions

Typeface or
Symbol Meaning Example

AaBbCc123 The names of commands,
files, and directories;
on-screen computer output

Edit your .login  file.
Use ls -a  to list all files.
machine_name% You have mail.

AaBbCc123 What you type, contrasted
with on-screen computer
output

machine_name% su
Password:

AaBbCc123 Command-line placeholder:
replace with a real name or
value

To delete a file, type rm filename.

AaBbCc123 Book titles, new words or
terms, or words to be
emphasized

Read Chapter 6 in User’s Guide.
These are called class options.
You must be root to do this.
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Shell Prompts in Command Examples
The following table shows the default system prompt and superuser prompt
for the C shell, Bourne shell, and Korn shell.

Table P-2 Shell Prompts

Shell Prompt

C shell prompt machine_name%

C shell superuser prompt machine_name#

Bourne shell and Korn shell
prompt

$

Bourne shell and Korn shell
superuser prompt

#
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Introduction to Network
Programming Interfaces 1

This chapter is a high-level introduction to this book. It is most helpful to those
who are new to network programming and for those who would like a brief
overview of network programming in the Solaris environment.

Note – Because this chapter briefly introduces these topics, you may find the
reference books listed in “Related Books” on page xvi to be helpful.

The Client-Server Model page 2

Network Services in the Solaris Environment page 3

Layered Protocols page 4

Open Systems Interconnection Reference Model page 5

Internet Protocol Suite (TCP/IP) page 7

Connection-Oriented Protocols page 9

Connectionless Protocols page 9

Choosing Between COTS and CLTS page 10
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The Client-Server Model
The client-server model is a common method of implementing distributed
applications. Figure 1-1 shows a typical networked environment where
different services are provided and used by client and server processes.

Figure 1-1 Client-Server Model

A server is a process that provides a service that can be used by other processes.
Examples are a file service such as the NFS filesystem, which provides access
to files and directories to other processes or systems, and a display service,
such as the X Window System™ environment, which provides access to a high
resolution display device. A server process normally listens at a known
address for service requests. When a request is received, the server is
unblocked and serves the client requests.

Runs display server
Client of file service

Runs print service

Runs file service
Client of display service
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A client is a process that makes use of a service, or services, provided by other
processes. An individual system may be both client and server for different
services, or even for the same service. For example, a print server receives print
requests, but may need to issue a client request to a file server to access a file.

Network Services in the Solaris Environment
The Solaris environment provides a large number of networking services based
upon the Internet protocol suite (also loosely referred to as the TCP/IP
protocol suite, described on page 7). These services are listed in Table 1-1.

Table 1-1 TCP/IP Services

Service Service Description

ARP Address Resolution Protocol. Used to obtain the hardware network
address corresponding to an IP address.

RARP Reverse Address Resolution Protocol. Used primarily in diskless clients
systems that have a hardware address but need to find out their IP
address.

IP Internet Protocol. The core protocol of the TCP/IP protocol suite.

ICMP Internet Control Message Protocol. Used to relay error and control
information. Used by TCP for flow control.

TCP Transmission Control Protocol. Reliable connection-oriented byte
stream transport.

UDP User Datagram Protocol. Unreliable connectionless datagram transport.

SMTP Simple Mail Transfer Protocol. Electronic mail delivery protocol.

TELNET Terminal emulation. Enables login and interactive session on a remote
system.

FTP File Transfer Protocol. Reliable file transfer. Allows ASCII and binary
files to be transferred interactively.

TFTP Trivial File Transfer Protocol. Simpler but less secure version of FTP.

DNS Domain Name System. Name service used by the Internet. Uses both
TCP and UDP protocols.

BOOTP Boot Protocol. Allows diskless systems to boot from a remote server.

SNMP Simple Network Management Protocol. Basis of many network
management packages. Allows activity throughout network to be
monitored.
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In addition to the base protocols and services it also provides some commonly
used utility applications (such as rcp , rsh , and rlogin ) built on top of the
Internet protocol suite.

The Solaris computing environment also provides heterogeneous distributed
computing facilities in its ONC+ architecture. The ONC+ architecture is a set of
services built on top of Sun’s remote procedure call (RPC) protocol. The
programming interfaces available in the ONC+ platform are described fully in
the ONC+ Developer’s Guide.

Layered Protocols
A protocol is a set of rules and conventions that describes how information is to
be exchanged between two entities. Networking tasks often require more than
one protocol in order to perform a task, such as file transfer.

Figure 1-2 Layered Protocols

Layer 3

data

data

Layer 2

data

Layer 1

Connection medium

data

Layer 3

data
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Layer 2

data
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These protocols can be conceptualized in a model comprising of a series of
layers, each of which deals with one functional aspect of the communication.
Each layer has a well-defined interface to the layer immediately above and
below it. Figure 1-2 on page 4 shows that data is passed through the interface
to the layer below. Each layer adds on the necessary information in order for
the receiving system to understand and be able to route the data. At the bottom
layer, the data is physically transmitted across some medium to the receiving
system. It is passed up through the layers, with each layer removing the
control information added by the layers on the sending system. A set of
protocols layered in this way is called a protocol stack. A layer can have more
than one protocol defined for it.

Two well-known reference models are discussed in the following sections: OSI
reference model and Internet (TCP/IP) protocol suite.

Open Systems Interconnection Reference Model

The open systems interconnection (OSI) reference model is used to
conceptualize network service architectures and as a convenient framework for
explaining networking concepts. It is not the basis for the Internet protocol
suite, but the Internet protocol’s four-layer model can be mapped to the more
general OSI reference model. The OSI protocol suite follows the OSI reference
model closely.

The OSI reference model divides networking functions into seven layers, as
shown in Figure 1-3 on page 6. Each protocol layer performs services for the
layer above it. The ISO definition of the protocol layers gives designers
considerable freedom in implementation. For example, some applications skip
the presentation and session layers to interface directly with the transport
layer. In this case, the application performs any needed presentation and
session services.

Industry standards have been or are being defined for each layer of the
reference model.
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Figure 1-3 OSI Reference Model

Layer 1: Physical Layer
The hardware layer of the model. It specifies the physical media connecting
hosts and networks, and the procedures used to transfer data between
machines using a specified media.

Layer 2: Data-Link Layer
Manages the reliable delivery of data across the physical network. For
example, it provides the abstraction of a reliable wire over the potentially
unreliable physical layer.

Layer 3: Network Layer
This layer is responsible for routing machine-to machine communications.
It determines the path a transmission must take, based upon the destination
machine’s address.

Layer 4: Transport Layer
This layer provides end-to-end sequenced delivery of data. It is the lowest
layer that provides applications and higher layers with end-to-end service.
This layer hides the topology and characteristics of the underlying network
from users. It provides reliable end-to-end data delivery if the service
characteristics require it.
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Layer 5: Session Layer
The session layer manages sessions between cooperating applications.

Layer 6: Presentation Layer
Performs the translation between the data representation local to the computer
and the processor-independent format that is sent across the network. It can
also negotiate the transfer formats in some protocol suites.

Layer 7: Application Layer
At this top layer are the user-level programs and network services. Some
examples are telnet , ftp , and tftp .

Internet Protocol Suite (TCP/IP)

TCP/IP is a widely used protocol suite for internetworking, a term that refers
to the connection of various physical networks to form one large virtual
network. Any system connected to a TCP/IP internetwork should be able to
communicate with any other system within the internetwork, regardless of
which physical network the systems actually reside. Networks are linked
together by a system that functions as a gateway between systems.

TCP/IP has a closely associated history with UNIX systems, but the protocols
themselves are independent of the operating system, the network topology,
and the connection medium. TCP/IP operates on Ethernet and Token Ring
local area networks (LANs), across wide area links such as X.25, and serial
connections. Support for TCP/IP networking has been an integral part of
SunOS in all versions of the operating system.

TCP/IP Protocol Stack

The TCP/IP protocol suite can be described using a reference model similar to
the OSI seven layer reference model. Figure 1-4 shows the corresponding OSI
layers and some example services at each layer. TCP/IP does not delineate the
presentation and session layers as the OSI model does; application code
provides the necessary presentation or session functionality.
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Figure 1-4 TCP/IP Protocol Stack

The core protocol is IP, which corresponds to the network layer in the OSI
reference model. IP provides a connectionless, “unreliable” packet-forwarding
service which routes packets from one system to another.

Built on top of IP are the two transport protocols, TCP, a connection-oriented
transport service (COTS), and the user datagram protocol (UDP), a
connectionless transport service (CLTS).

The TCP/IP protocols are defined in documents called Requests for Comments
(RFCs). RFCs are maintained by the Network Information Center (NIC), the
organization that handles address registration for the Internet.

RFCs define a number of applications, the most widely used being telnet , a
terminal emulation service on remote hosts, and ftp , which allows files to be
transferred between systems.

Connection Oriented and Connectionless Protocols
A number of characteristics can be used to describe communications protocols.
The most important is the distinction between connection-oriented transport
(COTS) and connectionless transport (CLTS).
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Connection-Oriented Protocols

TCP is an example of a connection-oriented protocol. It requires a logical
connection to be made between two processes before data can be exchanged.
The connection must be maintained during the time communication is taking
place and then released afterwards. The process is much like a telephone call,
where a virtual circuit is established—the caller must know the person’s
telephone number and the person must answer the phone before the message
can be delivered.

TCP/IP is also a connection-oriented transport with orderly release. With
orderly release, any data remaining in the buffer will be sent before the
connection is terminated. The release is accomplished in a four-way handshake
between client and server processes. The connection-oriented protocols in the
OSI protocol suite do not support orderly release. Applications perform any
handshake necessary for ensuring orderly release.

Connectionless Protocols

In contrast, connectionless protocols allow data to be exchanged without
setting up a link between processes. Each unit of data is transferred
independently with all the necessary information to route it to the intended
destination. UDP is a connectionless protocol. It is known as a datagram
protocol because it is analogous to sending a letter where you don’t
acknowledge receipt.
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Choosing Between COTS and CLTS

The application developer must decide which type of protocol works best for
the particular application. Some questions to ask are:

• How reliable must the connection be?
• Must the data arrive in the same order as it was sent?
• Must it be able to handle duplicate data packets?
• Must it have flow control?
• Must it acknowledge the messages it receives?
• What kind of service can the application live with?
• What level of performance is required?

Broadcasting and tftp  are other examples of applications that use CLTS.
NFS is one example of an application that uses a connectionless protocol such
as UDP. However, recent versions of NFS also operate over TCP.

On the other hand, if reliability is paramount, then COTS is better. telnet ,
rlogin , and ftp  are examples of services that use COTS.
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Programming With Sockets 2

This chapter presents the socket interface and illustrates them with sample
programs. The programs demonstrate the Internet domain sockets.

Sockets are Multithread Safe
The interface described in this chapter is multithread safe. Applications that
contain socket function calls can be used freely in a multithreaded application.

SunOS Binary Compatibility
There are two major changes from SunOS 4.x that hold true for Solaris 2.x
releases. The binary compatibility package allows SunOS 4.x–based
dynamically linked socket applications to run in Solaris 2.x.

1. You must explicitly specify the socket library (-lsocket ) on the
compilation line.

What Are Sockets page 12

Socket Tutorial page 14

Standard Routines page 31

Client-Server Programs page 34

Advanced Topics page 41

Moving Socket Applications to Solaris 2.x page 54
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2. You must recompile all SunOS 4.x socket-based applications with the socket
library to run under Solaris 2.x. The differences in the two socket
implementations are outlined in “Moving Socket Applications to Solaris 2.x”
on page 54.

What Are Sockets
Sockets are the 4.2 Berkeley software distribution (BSD) UNIX interface to
network protocols. It has been an integral part of SunOS releases since 1981.
They are commonly referred to as Berkeley sockets or BSD sockets. Since the
days of early UNIX, applications have used the file system model of
input/output to access devices and files. The file system model is sometimes
called open-close-read-write after the basic system calls used in this model.
However, the interaction between user processes and network protocols are
more complex than the interaction between user processes and I/O devices.

A socket is an endpoint of communication to which a name can be bound. A
socket has a type and one associated process.   Sockets were designed to
implement the client-server model for interprocess communication where:

• The interface to network protocols needs to accommodate multiple
communication protocols, such as TCP/IP, XNS, and UNIX domain.

• The interface to network protocols need to accommodate server code that
waits for connections and client code that initiates connections.

• They also need to operate differently, depending on whether communication
is connection-oriented or connectionless.

• Application programs may wish to specify the destination address of the
datagrams it delivers instead of binding the address with the open()  call.

To address these issues and others, sockets are designed to accommodate
network protocols, while still behaving like UNIX files or devices whenever it
makes sense to. Applications create sockets when they need to. Sockets work
with the open() , close() , read() , and write()  system calls, and the
operating system can differentiate between the file descriptors for files, and file
descriptors for sockets.

UNIX domain sockets are named with UNIX paths. For example, a socket may
be named /tmp/foo . UNIX domain sockets communicate only between
processes on a single host. Sockets in the UNIX domain are not considered part
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of the network protocols because they can only be used to communicate with
processes within the same UNIX system. They are rarely used today and are
only briefly covered in this manual.

Socket Libraries

The socket interface routines are in a library that must be linked with the
application. The libraries libsocket.so  and libsocket.a  are contained in
/usr/lib  with the rest of the system service libraries. The difference is that
libsocket.so  is used for dynamic linking, whereas libsocket.a  is used
for static linking. Static linking is strongly discouraged.

Socket Types

Socket types define the communication properties visible to a user. The
Internet domain sockets provide access to the TCP/IP transport protocols. The
Internet domain is identified by the value AF_INET. Sockets exchange data
only with sockets in the same domain.

Three types of sockets are supported:

1. Stream sockets allow processes to communicate using TCP. A stream socket
provides bidirectional, reliable, sequenced, and unduplicated flow of data
with no record boundaries. Once the connection has been established, data
can be read from and written to these sockets as a byte stream. The socket
type is SOCK_STREAM.

2. Datagram sockets allow processes to use UDP to communicate. A datagram
socket supports bidirectional flow of messages. A process on a datagram
socket may receive messages in a different order from the sending sequence
and may receive duplicate messages. Record boundaries in the data are
preserved. The socket type is SOCK_DGRAM.

3. Raw sockets provide access to ICMP. These sockets are normally datagram
oriented, although their exact characteristics are dependent on the interface
provided by the protocol. Raw sockets are not for most applications. They
are provided to support developing new communication protocols or for
access to more esoteric facilities of an existing protocol. Only superuser
processes may use raw sockets. The socket type is SOCK_RAW. See “Selecting
Specific Protocols” on page 46 for further information.
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Socket Tutorial
This section covers the basic methodologies of using sockets.

Socket Creation

The socket()  call creates a socket,

s = socket(domain, type, protocol);

in the specified domain and of the specified type. If the protocol is unspecified
(a value of 0), the system selects a protocol that supports the requested socket
type. The socket handle (a file descriptor) is returned.

The domain is specified by one of the constants defined in <sys/socket.h> .
For the UNIX domain the constant is AF_UNIX. For the Internet domain it is
AF_INET. Constants named AF_<suite> specify the address format to use in
interpreting names.

Socket types are defined in <sys/socket.h> . SOCK_STREAM, SOCK_DGRAM,
or SOCK_RAW is supported by AF_INET  and AF_UNIX. The following creates a
stream socket in the Internet domain:

s = socket(AF_INET, SOCK_STREAM, 0);

This call results in a stream socket with the TCP protocol providing the
underlying communication. A datagram socket for intramachine use is created
by:

s = socket(AF_UNIX, SOCK_DGRAM, 0);

Use the default protocol (the protocol argument is 0) in most situations. You can
specify a protocol other than the default, as described in “Advanced Topics” on
page 41.

Binding Local Names

A socket is created with no name. A remote process has no way to refer to a
socket until an address is bound to it. Communicating processes are connected
through addresses. In the Internet domain, a connection is composed of local
and remote addresses, and local and remote ports. In the UNIX domain, a
connection is composed of (usually) one or two path names. In most domains,
connections must be unique.
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In the Internet domain, there may never be duplicate ordered sets, such as:
<protocol , local address , local port , foreign address , foreign
port> . UNIX domain sockets need not always be bound to a name, but when
bound there may never be duplicate ordered sets such as: <local pathname ,
foreign pathname >. The path names may not refer to existing files.

The bind()  call allows a process to specify the local address of the socket. This
forms the set  <local address , local port > (or <local pathname >)
while connect()  and accept()  complete a socket’s association. The bind()
system call is used as follows:

bind ( s, name, namelen);

s is the socket handle. The bound name is a byte string that is interpreted by
the supporting protocol(s). Internet domain names contain an Internet address
and port number. UNIX domain names contain a path name and a family.
Code Example 2-1 binds the name /tmp/foo  to a UNIX domain socket.

Code Example 2-1 Bind Name to Socket

#include <sys/un.h>
 ...
struct sockaddr_un addr;
 ...
strcpy(addr.sun_path, "/tmp/foo");
addr.sun_family = AF_UNIX;
bind (s, (struct sockaddr *) &addr,

 strlen(addr.sun_path) + sizeof (addr.sun_family));

Note that in determining the size of an AF_UNIX socket address, null bytes are
not counted, which is why strlen()  use is fine.

The file name referred to in addr.sun_path  is created as a socket in the
system file name space. The caller must have write permission in the directory
where addr.sun_path  is created. The file should be deleted by the caller
when it is no longer needed. AF_UNIX sockets can be deleted with unlink() .

Binding an Internet address is more complicated. The call is similar:

#include <sys/types.h>
#include <netinet/in.h>
...
struct sockaddr_in sin;
 ...
bind (s, (struct sockaddr *) &sin, sizeof sin);
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The content of the address sin  is described in “Address Binding” on page 47,
where Internet address bindings are discussed.

Connection Establishment

Connection establishment is usually asymmetric, with one process acting as the
client and the other as the server. The server binds a socket to a well-known
address associated with the service and blocks on its socket for a connect
request. An unrelated process can then connect to the server. The client
requests services from the server by initiating a connection to the server’s
socket. On the client side, the connect()  call initiates a connection. In the
UNIX domain, this might appear as:

struct sockaddr_un server;
server.sun.family = AF_UNIX;
 ...
connect(s, (struct sockaddr *)&server,
        strlen(server.sun_path) + sizeof (server.sun_family));

while in the Internet domain it might be:

struct sockaddr_in server;
 ...
connect(s, (struct sockaddr *)&server, sizeof server);

If the client’s socket is unbound at the time of the connect call, the system
automatically selects and binds a name to the socket. See “Signals and Process
Group ID” on page 45. This is the usual way that local addresses are bound to
a socket on the client side.

In the examples that follow, only AF_INET  sockets are described.

To receive a client’s connection, a server must perform two steps after binding
its socket. The first is to indicate how many connection requests can be queued.
The second step is to accept a connection:

struct sockaddr_in from;
 ...
listen(s, 5);                /* Allow queue of 5 connections */
fromlen = sizeof(from);
newsock = accept(s, (struct sockaddr *) &from, &fromlen);

s is the socket bound to the address to which the connection request is sent.
The second parameter of listen()  specifies the maximum number of
outstanding connections that may be queued. from  is a structure that is filled
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with the address of the client. A NULL pointer may be passed. fromlen is the
length of the structure. (In the UNIX domain, from  is declared a struct
sockaddr_un .)

accept()  normally blocks. accept()  returns a new socket descriptor that is
connected to the requesting client. The value of fromlen is changed to the actual
size of the address.

There is no way for a server to indicate that it will accept connections only
from specific addresses. The server can check the from-address returned by
accept()  and close a connection with an unacceptable client. A server can
accept connections on more than one socket, or avoid blocking on the accept
call. These techniques are presented in “Advanced Topics” on page 41.

Connection Errors

An error is returned if the connection is unsuccessful (however, an address
bound by the system remains). Otherwise, the socket is associated with the
server and data transfer may begin.

Table 2-2 lists some of the more common errors returned when a connection
attempt fails.

Table 2-2 Socket Connection Errors

Socket Errors Error Description

ENOBUFS Lack of memory available to support the call.

EPROTONOSUPPORT Request for an unknown protocol.

EPROTOTYPE Request for an unsupported type of socket.

ETIMEDOUT No connection established in specified time. This happens
when the destination host is down or when problems in
the network result in lost transmissions.

ECONNREFUSED The host refused service. This happens when a server
process is not present at the requested address.

ENETDOWN or
EHOSTDOWN

These errors are caused by status information delivered by
the underlying communication interface.
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Data Transfer

This section describes the functions to send and receive data. You can send or
receive a message with the normal read()  and write()  system calls:

write(s, buf, sizeof buf);
read(s, buf, sizeof buf);

Or the calls send()  and recv()  can be used:

send(s, buf, sizeof buf, flags);
recv(s, buf, sizeof buf, flags);

send()  and recv()  are very similar to read()  and write() , but the flags
argument is important. The flags, defined in <sys/socket.h> , can be
specified as a nonzero value if one or more of the following is required:

MSG_OOB send and receive out-of-band data
MSG_PEEK look at data without reading
MSG_DONTROUTE send data without routing packets

Out-of-band data is specific to stream sockets. When MSG_PEEK is specified
with a recv()  call, any data present is returned to the user but treated as still
unread. The next read()  or recv()  call on the socket returns the same data.
The option to send data without routing applied to the outgoing packets is
currently used only by the routing table management process and is unlikely
to be interesting to most users.

Closing Sockets

A SOCK_STREAM socket can be discarded by a close()  system call. If data is
queued to a socket that promises reliable delivery after a close() , the
protocol continues to try to transfer the data. If the data is still undelivered
after an arbitrary period, it is discarded.

ENETUNREACH or
EHOSTUNREACH

These operational errors can occur either because there is
no route to the network or host, or because of status
information returned by intermediate gateways or
switching nodes. The status returned is not always
sufficient to distinguish between a network that is down
and a host that is down.

Table 2-2 Socket Connection Errors (Continued)

Socket Errors Error Description



Programming With Sockets 19

2

shutdown()  closes SOCK_STREAM sockets gracefully. Both processes can
acknowledge that they are no longer sending. This call has the form:

shutdown(s, how);

where how is 0 disallows further receives, 1 disallows further sends, and 2
disallows both.

Connecting Stream Sockets

Figure 2-1 and the next two code examples illustrate initiating and accepting
an Internet domain stream connection.

To initiate a connection, the client program in Code Example 2-2 creates a
stream socket and calls connect() , specifying the address of the socket to
connect to. If the target socket exists and the request is accepted, the
connection is complete and the program can send data. Data are delivered in
sequence with no message boundaries. The connection is destroyed when
either socket is closed. For more information about data representation
routines, such as ntohl() , ntohs() , htons() , and htonl() ,  in this
program, see the byteorder(3N) man page.

The program in Code Example 2-3 is a server. It creates a socket and binds a
name to it, then displays the port number. The program calls listen()  to
mark the socket ready to accept connection requests and initialize a queue for
the requests. The rest of the program is an infinite loop. Each pass of the loop
accepts a new connection and removes it from the queue, creating a new
socket. The server reads and displays the messages from the socket and closes
it. The use of INADDR_ANY is explained in “Address Binding” on page 47.
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Figure 2-1 Connection-Oriented Communication Using Stream Sockets

Code Example 2-2 Internet Domain Stream Connection (Client)

#include <sys/types.h>
#include <sys/socket.h>
#include <netinet/in.h>
#include <netdb.h>
#include <stdio.h>

#define DATA "Half a league, half a league . . ."
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/*
 * This program creates a socket and initiates a connection with the
 * socket given in the command line. Some data are sent over the
 * connection and then the socket is closed, ending the connection.
 * The form of the command line is: streamwrite hostname portnumber
 * Usage: pgm host port

 */
main(argc, argv)

int argc;
char *argv[];

{
int sock;
struct sockaddr_in server;
struct hostent *hp, *gethostbyname();
char buf[1024];

/* Create socket. */
sock = socket( AF_INET, SOCK_STREAM, 0 );
if (sock == -1) {

perror("opening stream socket");
exit(1);

}
/* Connect socket using name specified by command line. */
server.sin_family = AF_INET;
hp = gethostbyname(argv[1] );

/*
 * gethostbyname returns a structure including the network address
 * of the specified host.
 */

if (hp == (struct hostent *) 0) {
fprintf(stderr, "%s: unknown host\n", argv[1]);
exit(2);

}
memcpy((char *) &server.sin_addr, (char *) hp->h_addr,
    hp->h_length);
server.sin_port = htons(atoi( argv[2]));
if (connect(sock, (struct sockaddr *) &server, sizeof server)
    == -1) {

perror("connecting stream socket");
exit(1);

}
if (write( sock, DATA, sizeof DATA ) == -1)

perror("writing on stream socket");
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close(sock);
exit(0);

}

Code Example 2-3 Accepting an Internet Stream Connection (Server)

#include <sys/types.h>
#include <sys/socket.h>
#include <netinet/in.h>
#include <netdb.h>
#include <stdio.h>

#define TRUE 1

/*
 * This program creates a socket and then begins an infinite loop.
 * Each time through the loop it accepts a connection and prints
 * data from it. When the connection breaks, or the client closes
 * the connection, the program accepts a new connection.
 */

main()
{

int sock, length;
struct sockaddr_in server;
int msgsock;
char buf[1024];
int rval;

/* Create socket. */
sock = socket(AF_INET, SOCK_STREAM, 0);
if (sock == -1) {

perror("opening stream socket");
exit(1);

}
/* Bind socket using wildcards.*/
server.sin_family = AF_INET;
server.sin_addr.s_addr = INADDR_ANY;
server.sin_port = 0;
if (bind(sock, (struct sockaddr *) &server, sizeof server)
    == -1)

perror("binding stream socket");
exit(1);

}
/* Find out assigned port number and print it out. */
length = sizeof server;
if (getsockname(sock,(struct sockaddr *) &server,&length)
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     == -1) {
perror("getting socket name");
exit(1);

}
printf("Socket port #%d\n", ntohs(server.sin_port));
/* Start accepting connections. */
listen(sock, 5);
do {

msgsock = accept(sock,(struct sockaddr *) 0,(int *) 0);
if (msgsock == -1

perror("accept");
else do {

memset(buf, 0, sizeof buf);
if ((rval = read(msgsock,buf, 1024)) == -1)

perror("reading stream message");
if (rval == 0)

printf("Ending connection\n");
else

printf("-->%s\n", buf);
} while (rval != 0);
close(msgsock);

} while(TRUE);
/*
 * Since this program has an infinite loop, the socket "sock" is
 * never explicitly closed. However, all sockets will be closed
 * automatically when a process is killed or terminates normally.
 */
 exit(0);

}

Datagram Sockets

A datagram socket provides a symmetric data exchange interface. There is no
requirement for connection establishment. Each message carries the destination
address. Figure 2-2 shows the flow of communication between server and
client.

Datagram sockets are created as described in “Socket Creation” on page 14. If a
particular local address is needed, the bind()  operation must precede the first
data transmission. Otherwise, the system sets the local address and/or port
when data is first sent. To send data, the sendto()  call is used:

sendto(s, buf, buflen, flags, (struct sockaddr *) &to, tolen);
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The s, buf, buflen, and flags parameters are the same as in connection-oriented
sockets. The to and tolen values indicate the address of the intended recipient
of the message. A locally detected error condition (such as an unreachable
network) causes a return of –1  and errno to be set to the error number.

To receive messages on a datagram socket, the recvfrom()  call is used:

recvfrom(s, buf, buflen, flags, (struct sockaddr *) &from,
       &fromlen);

Before the call, fromlen is set to the size of the from buffer. On return it is set to
the size of the address from which the datagram was received.

Datagram sockets can also use the connect()  call to associate a socket with a
specific destination address. It can then use the send()  call. Any data sent on
the socket without explicitly specifying a destination address is addressed to
the connected peer, and only data received from that peer is delivered. Only
one connected address is permitted for one socket at a time. A second
connect()  call changes the destination address. Connect requests on
datagram sockets return immediately. The system simply records the peer’s
address. accept( ), and listen()  are not used with datagram sockets.

While a datagram socket is connected, errors from previous send()  calls may
be returned asynchronously. These errors can be reported on subsequent
operations on the socket, or an option of getsockopt , SO_ERROR, can be used
to interrogate the error status.
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Figure 2-2 Connectionless Communication Using Datagram Sockets

Code Example 2-4 shows how to read an Internet call, and Code Example 2-5
shows how to send an Internet call.

Code Example 2-4 Reading Internet Domain Datagrams

#include <sys/types.h>
#include <sys/socket.h>
#include <netinet/in.h>

socket()

bind()

recvfrom()

data

Server
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data

normally block until a
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process
the request
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for reply
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sendto()
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#include <stdio.h>

/*
 * The include file <netinet/in.h> defines sockaddr_in as:
 * struct sockaddr_in {
 * short sin_family;
 * u_short sin_port;
 * struct in_addr sin_addr;
 * char sin_zero[8];
 * };
 * This program creates a datagram socket, binds a name to it, then
 * reads from the socket.
 */

main()
{

int sock, length;
struct sockaddr_in name;
char buf[1024];

/* Create socket from which to read. */
sock = socket(AF_INET, SOCK_DGRAM, 0);
if (sock == -1) {

perror("opening datagram socket");
exit(1);

}
/* Create name with wildcards. */
name.sin_family = AF_INET;
name.sin_addr.s_addr = INADDR_ANY;
name.sin_port = 0;
if (bind(sock,(struct sockaddr *)&name, sizeof name) == -1) {

perror("binding datagram socket");
exit(1);

}
/* Find assigned port value and print it out. */
length = sizeof(name);
if (getsockname(sock,(struct sockaddr *) &name, &length)

== -1) {
perror("getting socket name");
exit(1);

}
printf("Socket port #%d\n", ntohs( name.sin_port));
/* Read from the socket. */
if ( read(sock, buf, 1024) == -1 )

perror("receiving datagram packet");
printf("-->%s\n", buf);
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close(sock);
exit(0);

}

Code Example 2-5 Sending an Internet Domain Datagram

#include <sys/types.h>
#include <sys/socket.h>
#include <netinet/in.h>
#include <netdb.h>
#include <stdio.h>

#define DATA "The sea is calm, the tide is full . . ."

/*
 * Here I send a datagram to a receiver whose name I get from the
 * command line arguments. The form of the command line is:
 * dgramsend hostname portnumber
  */
main(argc, argv)

int argc;
char *argv[];

{
int sock;
struct sockaddr_in name;
struct hostent *hp, *gethostbyname();

/* Create socket on which to send. */
sock = socket(AF_INET,SOCK_DGRAM, 0);
if (sock == -1) {

perror("opening datagram socket");
exit(1);

}
/*
 * Construct name, with no wildcards, of the socket to ‘‘send’’
 * to. gethostbyname returns a structure including the network
 * address of the specified host. The port number is taken from
 * the command line.
 */
hp = gethostbyname(argv[1]);
if (hp == (struct hostent *) 0) {

fprintf(stderr, "%s: unknown host\n", argv[1]);
exit(2);

}
memcpy((char *) &name.sin_addr, (char *) hp->h_addr,
        hp->h_length);
name.sin_family = AF_INET;
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name.sin_port = htons( atoi( argv[2] ));
/* Send message. */
if (sendto(sock,DATA, sizeof DATA ,0,
    (struct sockaddr *) &name,sizeof name) == -1)

perror("sending datagram message");
close(sock);
exit(0 );

}

Input/Output Multiplexing

Requests can be multiplexed among multiple sockets or files. The select()
call is used to do this:

#include <sys/time.h>
#include <sys/types.h>
#include <sys/select.h>
 ...
fd_set readmask, writemask, exceptmask;
struct timeval timeout;
 ...
select(nfds, &readmask, &writemask, &exceptmask, &timeout);

The first argument of select()  is the number of file descriptors in the lists
pointed to by the next three arguments.

The second, third, and fourth arguments of select()  are pointers to three sets
of file descriptors: a set of descriptors to read on, a set to write on, and a set on
which exception conditions are accepted. Out-of-band data is the only
exceptional condition. Any of these pointers can be a properly cast null. Each
set is a structure containing an array of long integer bit masks. The size of the
array is set by FD_SETSIZE (defined in select.h ). The array is long enough
to hold one bit for each FD_SETSIZE file descriptor.

The macros FD_SET(fd, &mask) and FD_CLR(fd, &mask) add and delete,
respectively, the file descriptor fd in the set mask. The set should be zeroed
before use, and the macro FD_ZERO(&mask) clears the set mask.

A time-out value may be specified. If the timeout  pointer is NULL, select()
blocks until a descriptor is selectable, or until a signal is received. If the fields
in timeout  are set to 0, select()  polls and returns immediately.
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select()  normally returns the number of file descriptors selected. select()
returns a 0 if the time-out has expired. select()  returns -1  for an error or
interrupt with the error number in errno and the file descriptor masks
unchanged.

For a successful return, the three sets indicate which file descriptors are ready
to be read from, written to, or have exceptional conditions pending.

Test the status of a file descriptor in a select mask with the FD_ISSET(fd,
&mask) macro. It returns a nonzero value if fd is in the set mask, and 0 if it is
not. Use select()  followed by a FD_ISSET( fd, &mask) macro on the read set
to check for queued connect requests on a socket.

Code Example 2-6 shows how to select on a “listening” socket for readability
to determine when a new connection can be picked up with a call to
accept() . The program accepts connection requests, reads data, and
disconnects on a single socket.

Code Example 2-6 Check for Pending Connections With select()

#include <sys/types.h>
#include <sys/socket.h>
#include <sys/time.h>
#include <netinet/in.h>
#include <netdb.h>
#include <stdio.h>

#define TRUE 1

/*
 * This program uses select to check that someone is
 * trying to connect before calling accept.
 */

main()
{

int sock, length;
struct sockaddr_in server;
int msgsock;
char buf[1024];
int rval;
fd_set ready;
struct timeval to;

/* Open a socket and bind it as in previous examples. */
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/* Start accepting connections. */
listen(sock, 5);
do {

FD_ZERO(&ready);
FD_SET(sock, &ready);
to.tv_sec = 5;
to.tv_usec = 0;
if (select(1, &ready, (fd_set *)0, (fd_set *)0, &to) == -1) {

perror("select");
continue;

}
if (FD_ISSET(sock, &ready)) {

msgsock = accept(sock, (struct sockaddr *)0,
 (int *)0);
if (msgsock == -1)

perror("accept");
else do {

memset(buf, 0, sizeof buf);
if ((rval = read(msgsock, buf, 1024)) == -1)

perror("reading stream message");
else if (rval == 0)

printf("Ending connection\n");
else

printf("-->%s\n", buf);
} while (rval > 0);
close(msgsock);

} else
printf("Do something else\n");

} while (TRUE);
exit(0);

}

In previous versions of the select()  routine,  its arguments were pointers to
integers instead of pointers to fd_sets . This style of call still works if the
number of file descriptors is smaller than the number of bits in an integer.

select()  provides a synchronous multiplexing scheme. The SIGIO  and
SIGURG signals described in “Advanced Topics” on page 41 provide
asynchronous notification of output completion, input availability, and
exceptional conditions.
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Standard Routines
You may need to locate and construct network addresses. This section
describes the new routines that manipulate network addresses. Unless
otherwise stated, functions presented in this section apply only to the Internet
domain.

Locating a service on a remote host requires many levels of mapping before
client and server communicate. A service has a name for human use. The
service and host names must be translated to network addresses. Finally, the
address is used to locate and route to the host. The specifics of the mappings
may vary between network architectures. Preferably, a network will not require
that hosts be named, thus protecting the identity of their physical locations.
It is more flexible to discover the location of the host when it is addressed.

Standard routines map host names to network addresses, network names to
network numbers, protocol names to protocol numbers, and service names to
port numbers, and the appropriate protocol to use in communicating with the
server process. The file <netdb.h>  must be included when using any of these
routines.

Host Names

An Internet host name to address mapping is represented by the hostent
structure:

struct hostent {
char *h_name;          /* official name of host */
char **h_aliases;      /* alias list */
int h_addrtype;       /* hostaddrtype(e.g.,AF_INET) */
int h_length;         /* length of address */
char **h_addr_list;    /* list of addrs, null terminated */

};
/*1st addr, net byte order*/
#define h_addr h_addr_list[0]

gethostbyname()  maps an Internet host name to a hostent  structure.
gethostbyaddr()  maps an Internet host address to a hostent  structure.
inet_ntoa()  maps an Internet host address to a displayable string.
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The routines return a hostent  structure containing the name of the host, its
aliases, the address type (address family), and a NULL-terminated list of
variable length addresses. The list of addresses is required because a host can
have many addresses. The h_addr  definition is for backward compatibility,
and is the first address in the list of addresses in the hostent  structure.

Network Names

There are routines to map network names to numbers, and back. These
routines return a netent  structure:

/*
 * Assumes that a network number fits in 32 bits.
 */
struct netent {

char *n_name;     /* official name of net */
char **n_aliases; /* alias list */
int n_addrtype;  /* net address type */
int n_net;       /* net number, host byte order */

};

getnetbyname() , getnetbyaddr() , and getnetent()  are the network
counterparts to the host routines described above.

Protocol Names

The protoent  structure defines the protocol-name mapping used with
getprotobyname() , getprotobynumber() , and getprotoent() :

struct protoent {
char *p_name;     /* official protocol name */
char **p_aliases; /* alias list */
int p_proto;     /* protocol number */

};

In the UNIX domain, no protocol database exists.

Service Names

An Internet domain service resides at a specific, well-known port and uses a
particular protocol. A service name to port number mapping is described by
the servent  structure:
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struct servent {
char *s_name;     /* official service name */
char **s_aliases; /* alias list */
int s_port;      /* port number, network byte order */
char *s_proto;    /* protocol to use */

};

getservbyname()  maps service names and, optionally, a qualifying protocol
to a servent  structure. The call

sp = getservbyname("telnet", (char *) 0);

returns the service specification of a telnet server using any protocol. The call

sp = getservbyname("telnet", "tcp");

returns the telnet server that uses the TCP protocol. getservbyport()  and
getservent()  are also provided. getservbyport()  has an interface similar
to that of getservbyname() ; an optional protocol name may be specified to
qualify lookups.

Other Routines

In addition to address-related database routines, there are several other
routines that simplify manipulating names and addresses. Table 2-3
summarizes the routines for manipulating variable-length byte strings and
byte-swapping network addresses and values.

Table 2-3 Run-Time Library Routines

Call Synopsis

memcmp(s1, s2, n) Compares byte-strings; 0 if same, not 0 otherwise

memcpy(s1, s2, n) Copies n bytes from s2 to s1

memset( base, value, n) Sets n bytes to value  starting at base

htonl( val) 32-bit quantity from host into network byte order

htons( val) 16-bit quantity from host into network byte order

ntohl( val) 32-bit quantity from network into host byte order

ntohs( val) 16-bit quantity from network into host byte order
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The byte-swapping routines are provided because the operating system
expects addresses to be supplied in network order. On some architectures the
host byte ordering is different from network byte order, so, programs must
sometimes byte-swap values. Routines that return network addresses do so in
network order. There are byte-swapping problems only when interpreting
network addresses. For example, the following code formats a TCP or UDP
port:

printf("port number %d\n", ntohs(sp->s_port));

On certain machines, where these routines are not needed, they are defined as
null macros.

Client-Server Programs
The most common form of distributed application is the client/server model.
In this scheme, client processes request services from a server process.

An alternate scheme is a service server that can eliminate dormant server
processes. An example is inetd , the Internet service daemon. inetd  listens at
a variety of ports, determined at start up by reading a configuration file. When
a connection is requested on an inetd  serviced port, inetd  spawns the
appropriate server to serve the client. Clients are unaware that an intermediary
has played any part in the connection. inetd  is described in more detail in
“inetd Daemon” on page 53.

Servers

Most servers are accessed at well-known Internet port numbers or UNIX
domain names. Code Example 2-7 illustrates the main loop of a remote-login
server.

Code Example 2-7 Remote Login Server

main(argc, argv)
int argc;
char *argv[];

{
int f;
struct sockaddr_in from;
struct sockaddr_in sin;
struct servent *sp;
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sp = getservbyname("login", "tcp");
if (sp == (struct servent *) NULL) {

fprintf(stderr, "rlogind: tcp/login: unknown service");
exit(1);

}
...

#ifndef DEBUG
/* Disassociate server from controlling terminal. */
...

#endif
sin.sin_port = sp->s_port;/* Restricted port */
sin.sin_addr.s_addr = INADDR_ANY;
...
f = socket(AF_INET, SOCK_STREAM, 0);
...
if (bind( f, (struct sockaddr *) &sin, sizeof sin ) == -1) {

...
}
...
listen(f, 5);
while (TRUE) {

int g, len = sizeof from;
g = accept(f, (struct sockaddr *) &from, &len);
if (g == -1) {

if (errno != EINTR)
syslog(LOG_ERR, "rlogind: accept: %m");

continue;
}
if (fork() == 0) {

close(f);
doit(g, &from);

}
close(g);

}
exit(0);

}

First, the server gets its service definition, as Code Example 2-8 shows.

Code Example 2-8 Remote Login Server: Step 1

sp = getservbyname("login", "tcp");
if (sp == (struct servent *) NULL) {

fprintf(stderr, "rlogind: tcp/login: unknown service\n");
exit(1);

}



36 Transport Interfaces Programming Guide—November 1995

2

The result from getservbyname()  is used later to define the Internet port at
which the program listens for service requests. Some standard port numbers
are in /usr/include/netinet/in.h .

In the non-DEBUG mode of operation, the server dissociates from the
controlling terminal of its invoker, shown in Code Example 2-9.

Code Example 2-9 Dissociating from the Controlling Terminal

(void) close(0);
(void) close(1);
(void) close(2);
(void) open("/", O_RDONLY);
(void) dup2(0, 1);
(void) dup2(0, 2);
setsid();

This prevents the server from receiving signals to the process group of the
controlling terminal. Once a server has dissociated itself, it cannot send reports
of errors to a terminal and must log errors with syslog() .

A server next creates a socket and listens for service requests. bind()  insures
that the server listens at the expected location. (The remote login server listens
at a restricted port number, so it runs as super-user.)

Code Example 2-10 illustrates the main body of the loop.

Code Example 2-10 Remote Login Server: Main Body

while(TRUE) {
int g, len = sizeof(from);
if (g = accept(f, (struct sockaddr *) &from, &len) == -1) {

if (errno != EINTR)
syslog(LOG_ERR, "rlogind: accept: %m");

continue;
}
if (fork() == 0) {                              /* Child */

close(f);
doit(g, &from);

}
close(g);                                       /* Parent */

}
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accept()  blocks until a client requests service. accept()  returns a failure
indication if it is interrupted by a signal such as SIGCHLD. The return value
from accept()  is checked and an error is logged with syslog()  if an error
has occurred.

The server then forks a child process and invokes the main body of the remote
login protocol processing. The socket used by the parent to queue connection
requests is closed in the child. The socket created by accept()  is closed in the
parent. The address of the client is passed to doit()  for authenticating clients.

Clients

This section describes the steps taken by the client remote login process. As in
the server, the first step is to locate the service definition for a remote login:

sp = getservbyname("login", "tcp");
if (sp == (struct servent *) NULL) {

fprintf(stderr,"rlogin: tcp/login: unknown service");
exit(1);

}

Next, the destination host is looked up with a gethostbyname()  call:

hp = gethostbyname(argv[1]);
if (hp == (struct hostent *) NULL) {

fprintf(stderr, "rlogin: %s: unknown host", argv[1]);
exit(2);

}

Then, connect to the server at the requested host and start the remote login
protocol. The address buffer is cleared and filled with the Internet address of
the foreign host and the port number at which the login server listens:

memset((char *) &server, 0, sizeof server);
memcpy((char*) &server.sin_addr,hp->h_addr,hp->h_length);
server.sin_family = hp->h_addrtype;
server.sin_port = sp->s_port;

A socket is created, and a connection initiated. connect()  implicitly does a
bind() , since s  is unbound.

s = socket(hp->h_addrtype, SOCK_STREAM, 0);
if (s < 0) {

perror("rlogin: socket");
exit(3);

}
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 ...
if (connect(s, (struct sockaddr *) &server, sizeof server) < 0) {

perror("rlogin: connect");
exit(4);

}

Connectionless Servers

Some services use datagram sockets. The rwho  service provides status
information on hosts connected to a local area network. (Avoid running
in.rwho ; it causes heavy network traffic.) This service requires the ability to
broadcast information to all hosts connected to a particular network. It is an
example of datagram socket use.

A user on a host running the rwho  server may get the current status of another
host with ruptime . Typical output is illustrated in Code Example 2-11.

Code Example 2-11 Output of ruptime  Program

itchy up 9:45, 5 users, load 1.15, 1.39, 1.31
scratchy up 2+12:04, 8 users, load 4.67, 5.13, 4.59
click up 10:10, 0 users, load 0.27, 0.15, 0.14
clack up 2+06:28, 9 users, load 1.04, 1.20, 1.65
ezekiel up 25+09:48, 0 users, load 1.49, 1.43, 1.41
dandy 5+00:05, 0 users, load 1.51, 1.54, 1.56
peninsula down 0:24
wood down 17:04
carpediem down 16:09
chances up 2+15:57, 3 users, load 1.52, 1.81, 1.86

Status information is periodically broadcast by the rwho  server processes on
each host. The server process also receives the status information and updates
a database. This database is interpreted for the status of each host. Servers
operate autonomously, coupled only by the local network and its broadcast
capabilities.

Use of broadcast is fairly inefficient, since a lot of net traffic is generated.
Unless the service is used widely and frequently, the expense of periodic
broadcasts outweighs the simplicity.

A simplified version of the rwho  server is shown in Code Example 2-12. It does
two tasks: receives status information broadcast by other hosts on the network
and supplies the status of its host. The first task is done in the main loop of the
program: Packets received at the rwho  port are checked to be sure they were
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sent by another rwho  server process, and are stamped with the arrival time.
They then update a file with the status of the host. When a host has not been
heard from for an extended time, the database routines assume the host is
down and logs it. This application is prone to error, as a server may be down
while a host is up.

Code Example 2-12 rwho  Server

main()
{

...
sp = getservbyname("who", "udp");
net = getnetbyname("localnet");
sin.sin_addr = inet_makeaddr(net->n_net, INADDR_ANY);
sin.sin_port = sp->s_port;
...
s = socket(AF_INET, SOCK_DGRAM, 0);
...
on = 1;
if (setsockopt(s, SOL_SOCKET, SO_BROADCAST, &on, sizeof on)
          == -1) {

syslog(LOG_ERR, "setsockopt SO_BROADCAST: %m");
exit(1);

}
bind(s, (struct sockaddr *) &sin, sizeof sin);
...
signal(SIGALRM, onalrm);
onalrm();
while(1) {

struct whod wd;
int cc, whod, len = sizeof from;
cc = recvfrom(s, (char *) &wd, sizeof(struct whod), 0,
     (struct sockaddr *) &from, &len);
if (cc <= 0) {

if (cc == -1 && errno != EINTR)
syslog(LOG_ERR, "rwhod: recv: %m");

continue;
}
if (from.sin_port != sp->s_port) {

syslog(LOG_ERR, "rwhod: %d: bad from port",
   ntohs(from.sin_port));

continue;
}
...
if (!verify( wd.wd_hostname)) {
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syslog(LOG_ERR, "rwhod: bad host name from %x",
   ntohl(from.sin_addr.s_addr));

continue;
}
(void) sprintf(path, "%s/whod.%s", RWHODIR, wd.wd_hostname);
whod = open(path, O_WRONLY|O_CREAT|O_TRUNC, 0666);
...
(void) time(&wd.wd_recvtime);
(void) write(whod, (char *) &wd, cc);
(void) close(whod);

}
exit(0);

}

The second server task is to supply the status of its host. This requires
periodically acquiring system status information, packaging it in a message,
and broadcasting it on the local network for other rwho  servers to hear. This
task is run by a timer and triggered with a signal. Locating the system status
information is involved but uninteresting.

Status information is broadcast on the local network. For networks that do not
support broadcast, another scheme must be used.

It is important that software operating in a distributed environment not have
any site-dependent information compiled into it. This would require a separate
copy of the server at each host and make maintenance a severe problem. The
system isolates host-specific data from applications by providing system calls
that return the required data. (For example, uname()  returns the host’s official
name.) The ioctl()  call lets you find the networks to which a host is directly
connected. A local network broadcasting mechanism has been implemented at
the socket level. Combining these two features lets a process broadcast on any
directly connected local network that supports broadcasting in a site-
independent manner. This solves the problem of deciding how to propagate
status with rwho , or more generally in broadcasting. Such status is broadcast
to connected networks at the socket level, where the connected networks have
been obtained through the appropriate ioctl()  calls. “Broadcasting and
Determining Network Configuration” on page 49 details the specifics of
broadcasting.
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Advanced Topics
For most programmers, the mechanisms already described are enough to build
distributed applications. Others will need some of the features in this section.

Out-of-Band Data

The stream socket abstraction includes out-of-band data. Out-of-band data is a
logically independent transmission channel between a pair of connected
stream sockets. Out-of-band data is delivered independently of normal data.
The out-of-band data facilities must support the reliable delivery of at least one
out-of-band message at a time. This message can contain at least one byte of
data, and at least one message may be pending delivery at any time.

For communications protocols that support only in-band signaling (that is,
urgent data is delivered in sequence with normal data), the message is
extracted from the normal data stream and stored separately. This lets users
choose between receiving the urgent data in order and receiving it out of
sequence, without having to buffer the intervening data.

You can peek (with MSG_PEEK) at out-of-band data. If the socket has a process
group, a SIGURG signal is generated when the protocol is notified of its
existence. A process can set the process group or process id to be informed by
SIGURG with the appropriate fcntl()  call, as described in “Interrupt Driven
Socket I/O” on page 44 for SIGIO . If multiple sockets have out-of-band data
waiting delivery, a select()  call for exceptional conditions can be used to
determine the sockets with such data pending.

A logical mark is placed in the data stream at the point at which the out-of-
band data was sent. The remote login and remote shell applications use this
facility to propagate signals between client and server processes. When a signal
is received, all data up to the mark in the data stream is discarded.

To send an out-of-band message, the MSG_OOB flag is applied to send()  or
sendto() . To receive out-of-band data, specify MSG_OOB to recvfrom()  or
recv()  (unless out-of-band data is taken in line, in which case the MSG_OOB
flag is not needed). The SIOCATMARK ioctl  tells whether the read pointer
currently points at the mark in the data stream:

ioctl(s, SIOCATMARK, &yes);
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If yes is 1 on return, the next read returns data after the mark. Otherwise,
assuming out-of-band data has arrived, the next read provides data sent by the
client before sending the out-of-band signal. The routine in the remote login
process that flushes output on receipt of an interrupt or quit signal is shown in
Code Example 2-13. This code reads the normal data up to the mark (to discard
it), then reads the out-of-band byte.

Code Example 2-13 Flushing Terminal I/O on Receipt of Out-of-Band Data

#include <sys/ioctl.h>
#include <sys/file.h>

...

oob()
{

int out = FWRITE;
char waste[BUFSIZ];
int mark;

/* flush local terminal output */
ioctl(1, TIOCFLUSH, (char *) &out);
while(1) {

if (ioctl(rem, SIOCATMARK, &mark) == -1) {
perror("ioctl");
break;

}
if (mark)

break;
(void) read(rem, waste, sizeof waste);

}
if (recv(rem, &mark, 1, MSG_OOB) == -1) {

perror("recv");
...

}
...

}

A process can also read or peek at the out-of-band data without first reading
up to the mark. This is more difficult when the underlying protocol delivers
the urgent data in-band with the normal data, and only sends notification of its
presence ahead of time (for example, TCP, the protocol used to provide socket
streams in the Internet domain). With such protocols, the out-of-band byte may
not yet have arrived when a recv()  is done with the MSG_OOB flag. In that
case, the call returns the error of EWOULDBLOCK. Also, there may be enough in-
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band data in the input buffer that normal flow control prevents the peer from
sending the urgent data until the buffer is cleared. The process must then read
enough of the queued data before the urgent data can be delivered.

There is also a facility to retain the position of urgent in-line data in the socket
stream. This is available as a socket-level option, SO_OOBINLINE. See the
getsockopt(3N) manpage for usage. With this option, the position of urgent
data (the mark) is retained, but the urgent data immediately follows the mark
in the normal data stream returned without the MSG_OOB flag. Reception of
multiple urgent indications causes the mark to move, but no out-of-band data
are lost.

Nonblocking Sockets

Some applications require sockets that do not block. For example, requests that
cannot complete immediately and would cause the process to be suspended
(awaiting completion) are not executed. An error code would be returned.
Once a socket is created and any connection to another socket is made, it may
be made nonblocking by fcntl()  as Code Example 2-14 shows.

Code Example 2-14 Set Nonblocking Socket

#include <fcntl.h>
#include <sys/file.h>
 ...
int fileflags;
int s;
 ...
s = socket(AF_INET, SOCK_STREAM, 0);
 ...
if (fileflags = fcntl(s, F_GETFL, 0) == -1)

perror("fcntl F_GETFL");
exit(1);

}
if (fcntl(s, F_SETFL, fileflags | FNDELAY) == -1)

perror("fcntl F_SETFL, FNDELAY");
exit(1);

}
 ...

When doing I/O on a nonblocking socket, check for the error EWOULDBLOCK
(in <errno.h >), which occurs when an operation would normally block.
accept() , connect() , send() , recv() , read() , and write()  can all
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return EWOULDBLOCK. If an operation such as a send()  cannot be done in its
entirety, but partial writes work (such as when using a stream socket), the data
that can be sent immediately are processed, and the return value is the amount
actually sent.

Asynchronous Sockets

Asynchronous communication between processes is required in real-time
applications. Asynchronous sockets must be SOCK_STREAM type. Make a
socket asynchronous as shown in Code Example 2-15.

Code Example 2-15 Making a Socket Asynchronous

#include <fcntl.h>
#include <sys/file.h>
 ...
int fileflags;
int s;
 ...
s = socket(AF_INET, SOCK_STREAM, 0);
 ...
if (fileflags = fcntl(s, F_GETFL ) == -1)

perror("fcntl F_GETFL");
exit(1);

}
if (fcntl(s, F_SETFL, fileflags | FNDELAY | FASYNC) < 0)

perror("fcntl F_SETFL, FNDELAY | FASYNC");
exit(1);

}
 ...

After sockets are initialized, connected, and made asynchronous,
communication is similar to reading and writing a file asynchronously. A
send() , write() , recv() , or read()  initiates a data transfer. A data transfer
is completed by a signal-driven I/O routine, described in the next section.

Interrupt Driven Socket I/O

The SIGIO  signal notifies a process when a socket (actually any file descriptor)
has finished a data transfer. There are three steps in using SIGIO :

• Set up a SIGIO  signal handler with the signal()  or sigvec()  calls.
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• Use fcntl()  to set the process ID or process group ID to receive the signal
to its own process ID or process group ID (the default process group of a
socket is group 0).

• Convert the socket to asynchronous as shown in “Asynchronous Sockets”
on page 44.

Sample code to allow a given process to receive information on pending
requests as they occur for a socket is shown in Code Example 2-16. With the
addition of a handler for SIGURG, this code can also be used to prepare for
receipt of SIGURG signals.

Code Example 2-16 Asynchronous Notification of I/O Requests

#include <fcntl.h>
#include <sys/file.h>
 ...
signal(SIGIO, io_handler);
/* Set the process receiving SIGIO/SIGURG signals to us. */
if (fcntl(s, F_SETOWN, getpid()) < 0) {

perror("fcntl F_SETOWN");
exit(1);

}

Signals and Process Group ID

For SIGURG and SIGIO , each socket has a process number and a process group
ID. These values are initialized to zero, but may be redefined at a later time
with the F_SETOWN fcntl() , as in the previous example. A positive third
argument to fcntl()  sets the socket’s process ID. A negative third argument
to fcntl()  sets the socket’s process group ID. The only allowed recipient of
SIGURG and SIGIO  signals is the calling process.

A similar fcntl() , F_GETOWN, returns the process number of a socket.

Reception of SIGURG and SIGIO  can also be enabled by using ioctl()  to
assign the socket to the user’s process group:

/* oobdata is the out-of-band data handling routine */
sigset(SIGURG, oobdata);
int pid = -getpid();
if (ioctl(client, SIOCSPGRP, (char *) &pid) < 0) {

perror("ioctl: SIOCSPGRP");
}
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Another signal that is useful in server processes is SIGCHLD. This signal is
delivered to a process when any child process changes state. Normally, servers
use the signal to “reap” child processes that have exited without explicitly
awaiting their termination or periodically polling for exit status. For example,
the remote login server loop shown previously can be augmented as shown in
Code Example 2-17.

Code Example 2-17 SIGCHLD Signal

int reaper();
 ...
sigset(SIGCHLD, reaper);
listen(f, 5);
while (1) {

int g, len = sizeof from;
g = accept(f, (struct sockaddr *) &from, &len);
if (g < 0) {

if (errno != EINTR)
syslog(LOG_ERR, "rlogind: accept: %m");

continue;
}
...

}

#include <wait.h>

reaper()
{

int options;
int error;
siginfo_t info;

options = WNOHANG | WEXITED;
bzero((char *) &info, sizeof(info));
error = waitid(P_ALL, 0, &info, options);

}

If the parent server process fails to reap its children, zombie processes result.

Selecting Specific Protocols

If the third argument of the socket()  call is 0, socket()  selects a default
protocol to use with the returned socket of the type requested. The default
protocol is usually correct, and alternate choices are not usually available.
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When using “raw” sockets to communicate directly with lower-level protocols
or hardware interfaces, it may be important for the protocol argument to set up
de-multiplexing. For example, raw sockets in the Internet domain can be used
to implement a new protocol on IP, and the socket will receive packets only for
the protocol specified. To obtain a particular protocol, determine the protocol
number as defined in the protocol domain. For the Internet domain, use one of
the library routines discussed in “Standard Routines” on page 31, such as
getprotobyname() :

#include <sys/types.h>
#include <sys/socket.h>
#include <netinet/in.h>
#include <netdb.h>
 ...
pp = getprotobyname("newtcp");
s = socket(AF_INET, SOCK_STREAM, pp->p_proto) ;

This results in a socket s  using a stream-based connection, but with protocol
type of newtcp  instead of the default tcp .

Address Binding

In the Internet Protocol family, bindings are composed of local and foreign IP
addresses, and of local and foreign port numbers. Port numbers are allocated
in separate spaces, one for each system and one for each transport protocol
(TCP or UDP). Through bind() , a process specifies the <local IP address, local
port number> half of an association, while connect()  and accept()  complete
a socket’s association by specifying the <foreign IP address, foreign port number>
part. Since the association is created in two steps, the association-uniqueness
requirement might be violated, unless care is taken. It is unrealistic to expect
user programs to always know proper values to use for the local address and
local port, since a host may reside on multiple networks and the set of
allocated port numbers is not directly accessible to a user.

The wildcard address simplifies local address binding in the Internet domain.
When an address is specified as INADDR_ANY (a constant defined in
<netinet/in.h> ), the system interprets the address as any valid address.
Code Example 2-18 binds a specific port number to a socket, and leaves the
local address unspecified.
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Code Example 2-18 Bind Port Number to Socket

#include <sys/types.h>
#include <netinet/in.h>
 ...
struct sockaddr_in sin;
 ...

s = socket(AF_INET, SOCK_STREAM, 0);
sin.sin_family = AF_INET;
sin.sin_addr.s_addr = htonl(INADDR_ANY);
sin.sin_port = htons(MYPORT);
bind(s, (struct sockaddr *) &sin, sizeof sin);

Each network interface on a host typically has a unique IP address. Sockets
with wildcard local addresses may receive messages directed to the specified
port number and sent to any of the possible addresses assigned to a host. For
example, if a host has two interfaces with addresses 128.32.0.4 and 10.0.0.78,
and a socket is bound as in Code Example 2-18, the process can accept
connection requests addressed to 128.32.0.4 or 10.0.0.78. To allow only hosts on
a specific network to connect to it, a server binds the address of the interface
on the appropriate network.

Similarly, a local port number can be left unspecified (specified as 0), in which
case the system selects a port number. For example, to bind a specific local
address to a socket, but to leave the local port number unspecified:

sin.sin_addr.s_addr = inet_addr("127.0.0.1");
sin.sin_family = AF_INET;
sin.sin_port = htons(0);
bind(s, (struct sockaddr *) &sin, sizeof sin);

The system uses two criteria to select the local port number:

• The first is that Internet port numbers less than 1024(IPPORT_RESERVED)
are reserved for privileged users (that is, the superuser). Nonprivileged
users may use any Internet port number greater than 1024. The largest
Internet port number is 65535.

• The second criterion is that the port number is not currently bound to some
other socket.

The port number and IP address of the client is found through either
accept()  (the from result) or getpeername() .
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In certain cases, the algorithm used by the system to select port numbers is
unsuitable for an application. This is because associations are created in a two-
step process. For example, the Internet file transfer protocol specifies that data
connections must always originate from the same local port. However,
duplicate associations are avoided by connecting to different foreign ports. In
this situation the system would disallow binding the same local address and
port number to a socket if a previous data connection’s socket still existed. To
override the default port selection algorithm, an option call must be performed
before address binding:

 ...
int on = 1;
...
setsockopt(s, SOL_SOCKET, SO_REUSEADDR, &on, sizeof on);
bind(s, (struct sockaddr *) &sin, sizeof sin);

With this call, local addresses can be bound that are already in use. This does
not violate the uniqueness requirement, because the system still verifies at
connect time that any other sockets with the same local address and port do
not have the same foreign address and port. If the association already exists,
the error EADDRINUSE is returned.

Broadcasting and Determining Network Configuration

Messages sent by datagram sockets can be broadcast to reach all of the hosts on
an attached network. The network must support broadcast; the system
provides no simulation of broadcast in software. Broadcast messages can place
a high load on a network since they force every host on the network to service
them. Broadcasting is usually used for either of two reasons: to find a resource
on a local network without having its address, or functions like routing require
that information be sent to all accessible neighbors.

To send a broadcast message, create an Internet datagram socket:

s = socket(AF_INET, SOCK_DGRAM, 0);

and bind a port number to the socket:

sin.sin_family = AF_INET;
sin.sin_addr.s_addr = htonl(INADDR_ANY);
sin.sin_port = htons(MYPORT);
bind(s, (struct sockaddr *) &sin, sizeof sin);
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The datagram can be broadcast on only one network by sending to the
network’s broadcast address. A datagram can also be broadcast on all attached
networks by sending to the special address INADDR_BROADCAST, defined in
<netinet/in.h> .

The system provides a mechanism to determine a number of pieces of
information (including the IP address and broadcast address) about the
network interfaces on the system. The SIOCGIFCONF ioctl  call returns the
interface configuration of a host in a single ifconf  structure. This structure
contains an array of ifreq  structures, one for each address domain supported
by each network interface to which the host is connected. Code Example 2-19
shows these structures defined in <net/if.h> .

Code Example 2-19 net/if.h  Header File

struct ifreq {
#define IFNAMSIZ 16
char ifr_name[IFNAMSIZ]; /* if name, e.g., "en0" */
union {

struct sockaddr ifru_addr;
struct sockaddr ifru_dstaddr;
char ifru_oname[IFNAMSIZ]; /* other if name */
struct sockaddr ifru_broadaddr;
short ifru_flags;
int ifru_metric;
char ifru_data[1]; /* interface dependent data */
char ifru_enaddr[6];

} ifr_ifru;
#define ifr_addr ifr_ifru.ifru_addr
#define ifr_dstaddr ifr_ifru.ifru_dstaddr
#define ifr_oname ifr_ifru.ifru_oname
#define ifr_broadaddr ifr_ifru.ifru_broadaddr
#define ifr_flags ifr_ifru.ifru_flags
#define ifr_metric ifr_ifru.ifru_metric
#define ifr_data ifr_ifru.ifru_data
#define ifr_enaddr ifr_ifru.ifru_enaddr
};

The call that obtains the interface configuration is:

struct ifconf ifc;
char buf[BUFSIZ];

ifc.ifc_len = sizeof buf;
ifc.ifc_buf = buf;
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if (ioctl(s, SIOCGIFCONF, (char *) &ifc ) < 0) {
...

}

After this call, buf contains an array of ifreq  structures, one for each network
to which the host is connected. These structures are ordered first by interface
name and then by supported address families. ifc.ifc_len  is set to the
number of bytes used by the ifreq  structures.

Each structure has a set of interface flags that tell whether the corresponding
network is up or down, point to point or broadcast, and so on. The
SIOCGIFFLAGS ioctl  returns these flags for an interface specified by an
ifreq  structure shown in Code Example 2-20.

Code Example 2-20 Obtaining Interface Flags

struct ifreq *ifr;
ifr = ifc.ifc_req;
for (n = ifc.ifc_len/sizeof (struct ifreq); --n >= 0; ifr++) {

/*
 * Be careful not to use an interface devoted to an address
 * domain other than those intended.
 */
if (ifr->ifr_addr.sa_family != AF_INET)

continue;
if (ioctl(s, SIOCGIFFLAGS, (char *) ifr) < 0) {

...
}
/* Skip boring cases */
if ((ifr->ifr_flags & IFF_UP) == 0 ||
    (ifr->ifr_flags & IFF_LOOPBACK) ||
    (ifr->ifr_flags & (IFF_BROADCAST | IFF_POINTOPOINT)) == 0)

continue;
}

Code Example 2-21 shows the broadcast of an interface can be obtained with
the SIOGGIFBRDADDR ioctl() .

Code Example 2-21 Broadcast Address of an Interface

if (ioctl(s, SIOCGIFBRDADDR, (char *) ifr) < 0) {
...

}
memcpy((char *) &dst, (char *) &ifr->ifr_broadaddr,

sizeof ifr->ifr_broadaddr);
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The SIOGGIFBRDADDR ioctl  can also be used to get the destination address
of a point-to-point interface.

After the interface broadcast address is obtained, transmit the broadcast
datagram with sendto() :

sendto(s, buf, buflen, 0, (struct sockaddr *)&dst, sizeof dst);

Use one sendto()  for each interface to which the host is connected that
supports the broadcast or point-to-point addressing.

Socket Options

You can set and get several options on sockets through setsockopt()  and
getsockopt() ; for example changing the send or receive buffer space. The
general forms of the calls are:

setsockopt(s, level, optname, optval, optlen);

and

getsockopt(s, level, optname, optval, optlen);

Table 2-4 shows the arguments of the calls.

For getsockopt() , optlen is a value-result argument, initially set to the size of
the storage area pointed to by optval and set on return to the length of storage
used.

It is sometimes useful to determine the type (for example, stream or datagram)
of an existing socket. Programs invoked by inetd  may need to do this by
using the SO_TYPE socket option and the getsockopt()  call:

Table 2-4 setsockopt()  and getsockopt()  Arguments

Arguments Description

s Socket on which the option is to be applied

level Specifies the protocol level, i.e. socket level, indicated by the
symbolic constant SOL_SOCKET in <sys/socket.h>

optname Symbolic constant defined in <sys/socket.h> that specifies the
option

optval Points to the value of the option

optlen Points to the length of the value of the option
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#include <sys/types.h>
#include <sys/socket.h>

int type, size;

size = sizeof (int);
if (getsockopt(s, SOL_SOCKET, SO_TYPE, (char *) &type, &size) < 0) {

...
}

After getsockopt() , type  is set to the value of the socket type, as defined in
<sys/socket.h> . For a datagram socket, type  would be SOCK_DGRAM.

inetd  Daemon

One of the daemons provided with the system is inetd . It is invoked at start-
up time, and gets the services for which it listens from the /etc/inetd.conf
file. The daemon creates one socket for each service listed in
/etc/inetd.conf , binding the appropriate port number to each socket. See
the inetd(1M) man page for details.

inetd  does a select()  on each socket, waiting for a connection request to
the service corresponding to that socket. For SOCK_STREAM type sockets,
inetd  does an accept()  on the listening socket, fork() s, dup() s the new
socket to file descriptors 0 and 1 (stdin  and stdout ), closes other open file
descriptors, and exec() s the appropriate server.

The primary benefit of inetd  is that services that are not in use are not taking
up machine resources. A secondary benefit is that inetd  does most of the
work to establish a connection. The server started by inetd  has the socket
connected to its client on file descriptors 0 and 1, and can immediately
read() , write() , send() , or recv() . Servers can use buffered I/O as
provided by the stdio  conventions, as long as they use fflush()  when
appropriate.

getpeername()  returns the address of the peer (process) connected to a
socket; it is useful in servers started by inetd . For example, to log the Internet
address in decimal dot notation (such as 128.32.0.4, which is conventional for
representing an IP address of a client), an inetd  server could use the
following:
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struct sockaddr_in name;
int namelen = sizeof name;
 ...
if (getpeername(0, (struct sockaddr *) &name, &namelen) < 0) {

syslog(LOG_ERR, "getpeername: %m");
exit(1);

} else
syslog(LOG_INFO, "Connection from %s",
        inet_ntoa(name.sin_addr));

 ...

Moving Socket Applications to Solaris 2.x
Sockets and the socket implementation are mostly compatible with previous
releases of SunOS. But, an application programmer must be aware of some
differences that are listed in the tables provided in this section.

Table 2-5 Connection-Mode Primitives (SunOS 4.x/Solaris 2.x)

SunOS 4.x (BSD) Solaris 2.x

connect()

When connect()  is called on an
unbound socket, the protocol determines
whether the endpoint is bound before the
connection takes place.

When connect()  is called on an
unbound socket, that socket is always
bound to an address selected by the
protocol.

Table 2-6 Data Transfer Primitives (SunOS 4.x/Solaris 2.x)

SunOS 4.x (BSD) Solaris 2.x

write()

write()  fails with errno set to
ENOTCONN if it is used on an
unconnected socket.

A call to write()  appears to succeed,
but the data are discarded. The socket
error option SO_ERROR returns
ENOTCONN if this happens.
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write()  can be used on type
SOCK_DGRAM sockets (either AF_UNIX or
AF_INET  domains) to send zero-length
data.

A call to write()  returns -1 , with errno
set to ERANGE. send() , sendto() , or
sendmsg()  should be used to send zero-
length data.

read()

read()  fails with errno set to ENOTCONN
if read()  is used on an unconnected
socket.

read()  returns zero bytes read if the
socket is in blocking mode. If the socket
is in non-blocking mode, it returns -1
with errno set to EAGAIN.

Table 2-7 Information Primitives (SunOS 4.x/Solaris 2.x)

 SunOS 4.x (BSD)  Solaris 2.x

getsockname()

getsockname()  works even when a
previously existing connection has been
closed.

getsockname()  returns -1  and errno is
set to EPIPE if a previously existing
connection has been closed.

ioctl()  and fcntl()

The argument of the
SIOCSPGRP/FIOSETOWN/F_SETOWN
ioctl() s and the F_SETOWNfcntl()
are a positive process ID or negative
process group ID of the intended
recipient list of subsequent SIGURG and
SIGIO  signals.

This is not the case in Solaris 2.x. The
only acceptable argument of these system
calls is the caller's process ID or a
negative of the caller's process group ID.
So, the only recipient of SIGURG and
SIGIO  is the calling process.

Table 2-8 Local Management (SunOS 4.x/Solaris 2.x)

 SunOS 4.x (BSD)  Solaris 2.x

bind()

bind()  uses the credentials of the user
at the time of the bind()  call to
determine if the requested address is
allocated or not.

socket()  causes the user's credentials
to be found and used to validate
addresses used later in bind() .

setsockopt()

Table 2-6 Data Transfer Primitives (SunOS 4.x/Solaris 2.x)

SunOS 4.x (BSD) Solaris 2.x
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setsockopt()  can be used at any time
during the life of a socket.

If a socket is unbound and
setsockopt()  is used, the operation
succeeds in the AF_INET  domain but
fails in the AF_UNIX domain.

shutdown()

If shutdown()  is called with how set to
zero, further tries to receive data returns
zero bytes (EOF).

If a shutdown()  call with how set to
zero is followed by a read(2)  call and
the socket is in nonblocking mode,
read()  returns -1  with errno set to
EAGAIN. If one of the socket receive
primitives is used, the correct result
(EOF) is returned.

If shutdown()  is called with the value of
2 for how, further tries to receive data
return EOF. Tries to send data return -1
with errno set to EPIPE and a SIGPIPE  is
issued.

The same result happens, but tries to
send data using write(2)  cause errno to
be set to EIO . If a socket primitive is
used, the correct errno is returned.

Table 2-9 Signals (SunOS 4.x/Solaris 2.x)

SunOS 4.x (BSD) Solaris 2.x

SIGIO

SIGIO  is delivered every time new data
are appended to the socket input queue.

SIGIO  is delivered only when data are
appended to a socket queue that was
previously empty.

SIGURG

A SIGURG is delivered every time new
data are anticipated or actually arrive.

A SUGURG is delivered only when data
are already pending.

S_ISSOCK()

The S_ISSOCK macro takes the mode of
a file as an argument. It returns 1 if the
file is a socket and 0 otherwise.

The S_ISSOCK macro does not exist.
Here, a socket is a file descriptor
associated with a STREAMS character
device that has the socket module
pushed onto it.

Table 2-8 Local Management (SunOS 4.x/Solaris 2.x)

 SunOS 4.x (BSD)  Solaris 2.x
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Table 2-10 Miscellaneous Socket Issues (SunOS 4.x/Solaris 2.x)

SunOS 4.x (BSD) Solaris 2.x

Invalid buffers

If an invalid buffer is specified in a
function, the function returns -1  with
errno set to EFAULT.

If an invalid buffer is specified in a
function, the user's program probably
dumps core.

Sockets in Directories

If ls -l  is executed in a directory
containing a UNIX domain socket, an s  is
displayed on the left side of the mode
field.

If ls -l  is executed in a directory that
contains a UNIX domain socket, a p is
displayed on the left side of the mode
field.

An ls -F  causes an equal sign (=) to be
displayed after any file name of a UNIX
domain socket.

Nothing is displayed after the file name.
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 Programming With the Transport
Layer Interface (TLI) 3

The transport layer interface (TLI) is a set of functions that enable networked
applications to be transport independent. TLI and the socket interface are the
standard network interfaces in the current release of SunOS. TLI may be more
appropriate for some applications than are the socket services.

TLI Is Multithread Safe
The interface described in this chapter is multithread safe. This means that
applications that contain TLI function calls can be used freely in a
multithreaded application.

What Is TLI page 60

Connectionless Mode page 61

Connection Mode page 67

A Read/Write Interface page 90

Advanced Topics page 93

State Transitions page 100

TLI Versus Socket Interfaces page 107
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What Is TLI
TLI was introduced with AT&T’s System V, Release 3 in 1986. It provides a
non-BSD transport layer interface. TLI is modeled after the ISO Transport
Service Definition and provides an API between the OSI transport and session
layers.

TLI is referred to as a library of functions, rather than a set of system calls.
Whereas system calls are implemented within the kernel, TLI functions are
user-callable and hide the actual streams interface to the networking system.

Intrinsic to TLI are the notions of transport endpoints and a transport provider.
The transport endpoints are two processes that are communicating, and the
transport provider is the set of routines on the computer host that provide
communication support for user processes. TLI is the interface to the transport
provider, not the provider itself.  See Figure 3-1.

Figure 3-1 How TLI Works

TLI code can be written to be independent of transport provider. The Solaris
2.x product includes some transport providers (TCP, for example) as part of the
base operating system. A transport provider performs services, and the
transport user requests the services. The transport user issues service requests

Service requests

Service events and
   requests

 Transport user

Transport provider

 Transport

 interface

    (From user)

 (from provider)
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to the transport provider. An example is a request to transfer data over a
connection TCP and UDP are examples of transport providers. A transport
user may be a networking application or a session layer protocol.

TLI can also be used for transport-independent programming. TLI has two
components to achieve this:

• Library routines that perform the transport services, in particular, transport
selection and name-to-address translation. The network services library
includes a set of functions that implement TLI for user processes.
See Chapter 4, “Transport Selection and Name-to-Address Mapping."

Programs using TLI should be linked with the network services library,
lnsl , as follows:

cc prog.c -lnsl

• State transition rules that define the sequence in which the transport
routines may be invoked. For more information on state transition rules, see
section, “State Transitions” on page 100. The state tables define the legal
sequence of library calls based on the state and the handling of events.
These events include user-generated library calls, as well as provider-
generated event indications. TLI programmers should understand all state
transitions before using the interface.

TLI provides two modes of service, connection mode and connectionless mode.
The next two sections give an overview of these modes.

Connectionless Mode
Connectionless mode is message oriented. Data are transferred in self-
contained units with no relationship between the units. This service requires
only an established association between the peer users that determines the
characteristics of the data. All the information required to deliver a message
(such as the destination address) is presented to the transport provider, with
the data to be transmitted, in one service request. Each message is entirely self-
contained. Use connectionless mode service for applications that:

• Have short-term request/response interactions
• Are dynamically reconfigurable
• Do not require sequential delivery of data
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Connectionless transports are usually called “unreliable,” since they do not
necessarily maintain message sequence, and messages are sometimes lost.

Connectionless Mode Routines

Connectionless-mode transport service has two phases: local management and
data transfer. The local management phase defines the same local operations as
for the connection mode service.

The data transfer phase lets a user transfer data units (usually called
datagrams) to the specified peer user. Each data unit must be accompanied by
the transport address of the destination user. t_sndudata()  sends and
t_rcvudata()  receives messages. Table 3-1 summarizes all routines for
connectionless mode data transfer.

Connectionless Mode Service
Connectionless mode service is appropriate for short-term request/response
interactions, such as transaction-processing applications. Data are transferred
in self-contained units with no logical relationship required among multiple
units.

Endpoint Initiation

Transport users must initiate TLI endpoints before transferring data. They
must choose the appropriate connectionless service provider using t_open()
and establish its identity using t_bind() .

Table 3-1 Routines for Connectionless-Mode Data Transfer

Command Description

t_sndudata Sends a message to another user of the transport

t_rcvudata Receives a message sent by another user of the transport

t_rcvuderr Retrieves error information associated with a previously sent
message
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Use t_optmgmt()  to negotiate protocol options. Like connection mode
service, each transport provider specifies the options, if any, it supports.
Option negotiation is a protocol-specific activity. In Code Example 3-22, the
server waits for incoming queries, and processes and responds to each query.
The example also shows the definitions and initiation sequence of the server.

Code Example 3-22 CLTS Server

#include <stdio.h>
#include <fcntl.h>
#include <tiuser.h>
#define SRV_ADDR 2             /* server’s well known address */

main()
{

int fd;
int flags;
struct t_bind *bind;
struct t_unitdata *ud;
struct t_uderr *uderr;
extern int t_errno;

if ((fd = t_open("/dev/exmp", O_RDWR, (struct t_info *) NULL))
        == -1) {

t_error("unable to open /dev/exmp");
exit(1);

}
if ((bind = (struct t_bind *)t_alloc(fd, T_BIND, T_ADDR))
         == (struct t_bind *) NULL) {

t_error("t_alloc of t_bind structure failed");
exit(2);

}
bind->addr.len = sizeof(int);
*(int *)bind->addr.buf = SRV_ADDR;
bind->qlen = 0;
if (t_bind(fd, bind, bind) == -1) {

t_error("t_bind failed");
exit(3);

}
/*
 * is the bound address correct?
 */
if (bind -> addr.len != sizeof(int) ||
        *(int *)bind->addr.buf != SRV_ADDR) {
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fprintf(stderr, "t_bind bound wrong address\n");
exit(4);

}

The server establishes a transport endpoint with the desired transport provider
using t_open() . Each provider has an associated service type, so the user may
choose a particular service by opening the appropriate transport provider file.
This connectionless mode server ignores the characteristics of the provider
returned by t_open()  by setting the third argument to NULL. The transaction
server assumes the transport provider has the following characteristics:

• The transport address is an integer value that uniquely identifies each user.

• The transport provider supports the T_CLTS service type (connectionless
transport service, or datagram).

• The transport provider does not require any protocol-specific options.

The connectionless server binds a transport address to the endpoint so that
potential clients can access the server. A t_bind  structure is allocated using
t_alloc()  and the buf  and len  fields of the address are set accordingly.

One difference between a connection mode server and a connectionless mode
server is that the qlen  field of the t_bind  structure is 0 for connectionless
mode service. There are no connection requests to queue.

TLI defines an inherent client-server relationship between two users while
establishing a transport connection in the connection mode service. No such
relationship exists in connectionless mode service. This example, not TLI,
defines one user as a server and the other as a client.

Because the address of the server is known by all potential clients, the server
checks the bound address returned by t_bind()  to ensure it is correct.
t_bind()  can also bind the endpoint to a separate, free address if the one
requested is busy.

Data Transfer

Once a user has bound an address to the transport endpoint, datagrams may
be sent or received over the endpoint. Each outgoing message carries the
address of the destination user. TLI also lets you specify protocol options to the
transfer of the data unit (for example, transit delay). Each transport provider
defines the set of options on a datagram. When the datagram is passed to the
destination user, the associated protocol options may be passed too.
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Code Example 3-23 illustrates the data transfer phase of the connectionless
mode server.

Code Example 3-23 Data Transfer Routine

if ((ud = (struct t_unitdata *) t_alloc(fd, T_UNITDATA, T_ALL))
       == (struct t_unitdata *) NULL) {

t_error("t_alloc of t_unitdata struct failed");
exit(5);

}
if ((uderr = (struct t_uderr *) t_alloc(fd, T_UDERROR, T_ALL))
          == (struct t_uderr *) NULL) {

t_error("t_alloc of t_uderr struct failed");
exit(6);

}
while(1) {

if (t_rcvudata(fd, ud, &flags) == -1) {
if (t_errno == TLOOK) {

/* Error on previously sent datagram */
if(t_rcvuderr(fd, uderr) == -1) {

exit(7);
}
fprintf(stderr, "bad datagram, error=%d\n",
     uderr->error);
continue;

}
t_error("t_rcvudata failed");
exit(8);

}
/*
 * Query() processes the request and places the response in
 * ud->udata.buf, setting ud->udata.len
 */
query(ud);
if (t_sndudata(fd, ud) == -1) {

t_error("t_sndudata failed");
exit(9);

}
}

}

/* ARGS USED */
void
query(ud)
struct t_unitdate *ud;
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{
/* Merely a stub for simplicity */

}

To buffer datagrams, the server first allocates a t_unitdata  structure, which
has the following format:

struct t_unitdata {
struct netbuf addr;
struct netbuf opt;
struct netbuf udata;

}

addr  holds the source address of incoming datagrams and the destination
address of outgoing datagrams. opt  holds any protocol options on the
datagram. udata  holds the data. The addr , opt , and udata  fields must all be
allocated with buffers large enough to hold any possible incoming values. The
T_ALL argument of t_alloc()  ensures this and sets the maxlen  field of each
netbuf  structure accordingly. The provider does not support protocol options
in this example, so maxlen  is set to 0 in the opt netbuf  structure. The server
also allocates a t_uderr  structure for datagram errors.

The transaction server loops forever, receiving queries, processing the queries,
and responding to the clients. It first calls t_rcvudata()  to receive the next
query. t_rcvudata()  blocks until a datagram arrives, and returns it. The
second argument of t_rcvudata()  identifies the t_unitdata  structure in
which to buffer the datagram. The third argument, flags,  points to an integer
variable and may be set to T_MORE on return from t_rcvudata()  to indicate
that the user’s udata  buffer is too small to store the full datagram. If this
happens, the next call to t_rcvudata()  gets the rest of the datagram. Because
t_alloc()  allocates a udata  buffer large enough to store the maximum size
datagram, this transaction server does not have to check flags . This is true
only of t_rcvudata()  and not of any other receive primitives.

When a datagram is received, the transaction server calls its query  routine to
process the request. This routine stores a response in the structure pointed to
by ud , and sets ud–>udata.len  to the number of bytes in the response. The
source address returned by t_rcvudata()  in ud–>addr  is the destination
address for t_sndudata() . When the response is ready, t_sndudata()  is
called to send the response to the client.
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Datagram Errors

If the transport provider cannot process a datagram sent by t_sndudata() , it
returns a unit data error event, T_UDERR, to the user. This event includes the
destination address and options of the datagram, and a protocol-specific error
value that identifies the error. Datagram errors are protocol specific.

Note – A unit data error event does not always indicate success or failure in
delivering the datagram to the specified destination. Remember, connectionless
service does not guarantee reliable delivery of data.

The transaction server is notified of an error when it tries to receive another
datagram. In this case, t_rcvudata()  will fail, setting t_errno  to TLOOK. If
TLOOK is set, the only possible event is T_UDERR, so the server calls
t_rcvuderr()  to retrieve the event. The second argument of t_rcvuderr()
is the t_uderr  structure that was allocated earlier. This structure is filled in by
t_rcvuderr()  and has the following format:

struct t_uderr {
struct netbuf addr;
struct netbuf opt;
long error;

}

where addr  and opt  identify the destination address and protocol options
specified in the bad datagram, and error  is a protocol-specific error code. The
transaction server prints the error code and then continues.

Connection Mode
Connection mode is circuit oriented. Data are transmitted in sequence over an
established connection. The mode also provides an identification procedure
that avoids address resolution and transmission in the data transfer phase. Use
this service for applications that require data stream-oriented interactions.
Connection mode transport service has four phases:

• Local management
• Connection establishment
• Data transfer
• Connection release
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The local management phase defines local operations between a transport user
and a transport provider. For example, a user must establish a channel of
communication with the transport provider. Each channel between a transport
user and transport provider is a unique endpoint of communication, and is
called the transport endpoint. t_open()  lets a user choose a particular
transport provider to supply the connection mode services, and establishes the
transport endpoint.

Figure 3-2 Transport Endpoint

Connection Mode Routines

Each user must establish an identity with the transport provider. A transport
address is associated with each transport endpoint. One user process may
manage several transport endpoints. In connection mode service, one user
requests a connection to another user by specifying the other’s address. The
structure of a transport address is defined by the transport provider. An
address may be as simple as an unstructured character string (for example,
file_server ), or as complex as an encoded bit pattern that specifies all
information needed to route data through a network. Each transport provider
defines its own mechanism for identifying users. Addresses may be assigned to
the endpoint of a transport by t_bind() .

 Transport user

Transport provider

 Transport

 interface

Transport
endpoint
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In addition to t_open()  and t_bind() , several routines support local
operations. Many TLI routines have equivalents in the socket service library.
The following table summarizes all local management routines of TLI.

Table 3-2 Endpoint Establishment Routines of TLI

Command Description

t_alloc Allocates TLI data structures

t_bind Binds a transport address to a transport endpoint

t_close Closes a transport endpoint

t_error Prints a TLI error message

t_free Frees structures allocated using t_alloc

t_getinfo Returns a set of parameters associated with a particular transport
provider

t_getstate Returns the state of a transport endpoint

t_look Returns the current event on a transport endpoint

t_open Establishes a transport endpoint connected to a chosen transport
provider

t_optmgmt Negotiates protocol-specific options with the transport provider

t_sync Synchronizes a transport endpoint with the transport provider

t_unbind Unbinds a transport address from a transport endpoint
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Figure 3-3 Transport Connection

The connection phase lets two users create a connection, or virtual circuit,
between them, as shown in Figure 3-3.

For example, the connection phase occurs when a server advertises its service
to a group of clients, and then blocks on t_listen()  to wait for a request. A
client tries to connect to the server at the advertised address by a call to
t_connect() . The connection request causes t_listen()  to return to the
server, which can call t_accept()  to complete the connection.

Table 3-3 summarizes all routines available for establishing a transport
connection. Refer to man pages for the specifications on these routines.

Table 3-3 Routines for Establishing a Transport Connection

Command Description

t_accept Accepts a request for a transport connection

t_connect Establishes a connection with the transport user at a specified
destination

t_listen Listens for connect request from another transport user

t_rcvconnect Completes connection establishment if t_connect  was called in
asynchronous mode (see “Advanced Topics” on page 93)

 Transport user 1

Transport

interface

Transport user 2

Transport connection

    Transport provider
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The data transfer phase lets users transfer data in both directions via the
connection. t_snd()  sends and t_rcv()  receives data through the
connection. It is assumed that all data sent by one user is guaranteed to be
delivered to the other user in the order in which it was sent. Table 3-4
summarizes the connection mode data transfer routines.

TLI has two types of connection release. The abortive release directs the
transport provider to release the connection immediately. Any previously sent
data that has not yet been transmitted to the other user may be discarded by
the transport provider. t_snddis()  initiates the abortive disconnect.
t_rcvdis()  cleans up after an abortive disconnect. All transport providers
must support the abortive release procedure.

Transport providers may also support an orderly release that terminates
communication without discarding data. t_sndrel()  and t_rcvrel()
perform this function. Table 3-5 summarizes the connection release routines.
Refer to man pages for the specifications on these routines.

Table 3-4 Connection Mode Data Transfer Routines

Command Description

t_rcv Receives data that has arrived over a transport connection

t_snd Sends data over an established transport connection

Table 3-5 Connection Release Routines

Command Description

t_rcvdis Returns a reason code for a disconnection and any remaining user
data

t_rcvrel Acknowledges receipt of an orderly release of a connection request

t_snddis Aborts a connection or rejects a connect request

t_sndrel Requests the orderly release of a connection



72 Transport Interfaces Programming Guide—November 1995

3

Connection Mode Service
The main concepts of connection mode service are illustrated through a client
program and its server. The examples are presented in segments.

In the examples, the client establishes a connection to a server process. The
server transfers a file to the client. The client receives the file contents and
writes them to standard output.

Endpoint Initiation

Before a client and server can connect, each must first open a local connection
to the transport provider (the transport endpoint) through t_open() , and
establish its identity (or address) through t_bind() .

Many protocols perform a subset of the services defined in TLI. Each transport
provider has characteristics that determine the services it provides and limit
the services. Data defining the transport characteristics are returned by
t_open()  in a t_info  structure. Table 3-6 shows the fields in a t_info
structure.

Table 3-6 t_info  Structure

Field Content

addr Maximum size of a transport address

options Maximum bytes of protocol-specific options that may be passed
between the transport user and transport provider

tsdu Maximum message size that may be transmitted in either
connection mode or connectionless mode

etsdu Maximum expedited data message size that may be sent over a
transport connection

connect Maximum number of bytes of user data that may be passed between
users during connection establishment

discon Maximum bytes of user data that may be passed between users
during the abortive release of a connection

servtype The type of service supported by the transport provider
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The three service types defined by TLI are:

T_COTS– The transport provider supports connection mode service but
does not provide the orderly release facility. Connection termination is
abortive, and any data not already delivered is lost.

T_COTS_ORD– The transport provider supports connection mode service
with the orderly release facility.

T_CLTS – The transport provider supports connectionless mode service.

Only one such service can be associated with the transport provider identified
by t_open() .

t_open()  returns the default provider characteristics of a transport endpoint.
Some characteristics may change after an endpoint has been opened. This
happens with negotiated options (option negotiation is described later in this
section). t_getinfo()  returns the current characteristics of a transport
endpoint.

Once a user establishes an endpoint with the chosen transport provider, the
client and server must establish their identities. t_bind()  does this by
binding a transport address to the transport endpoint. For servers, this routine
informs the transport provider that the endpoint is used to listen for incoming
connect requests.

t_optmgmt()  can be used during the local management phase. It lets a user
negotiate the values of protocol options with the transport provider. Each
transport protocol defines its own set of negotiable protocol options, such as
quality-of-service parameters. Because the options are protocol-specific, only
applications written for a specific protocol use this function.

Client

The local management requirements of the example client and server are used
to discuss details of these facilities. Code Example 3-24 shows the definitions
needed by the client program, followed by its necessary local management
steps.

Code Example 3-24 Client Implementation of Open and Bind

#include <stdio.h>
#include <tiuser.h>
#include <fcntl.h>
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#define SRV_ADDR 1                        /* server’s address */

main()
{

int fd;
int nbytes;
int flags = 0;
char buf[1024];
struct t_call *sndcall;
extern int t_errno;

if ((fd = t_open("/dev/exmp", O_RDWR, (struct t_info *), NULL))
        == -1) {

t_error("t_open failed");
exit(1);

}
if (t_bind(fd, (struct t_bind *) NULL, (struct t_bind *) NULL)
          == -1) {

t_error("t_bind failed");
exit(2);

}

The first argument of t_open()  is the path of a file system object that
identifies the transport protocol. /dev/exmp  is the example name of a special
file that identifies a generic, connection-based transport protocol. It must be
created on the workstation for this purpose. The second argument, O_RDWR,
specifies to open for both reading and writing. The third argument points to a
t_info  structure in which to return the service characteristics of the transport.
This data is useful to write protocol-independent software (see “Guidelines to
Protocol Independence” on page 106). In this example a NULL pointer is
passed. For Code Example 3-24 on page 73, the transport provider must have
the following characteristics:

• The transport address is an integer value that uniquely identifies each user.

• The transport provider supports the T_COTS_ORD service type since the
example uses orderly release.

• The transport provider does not require protocol-specific options.

If the user needs a service other than T_COTS_ORD, another transport provider
can be opened. An example of the T_CLTS service invocation is shown in the
section “A Read/Write Interface” on page 90.
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t_open()  returns the transport endpoint file handle that is used by all
subsequent TLI function calls. The identifier is a file descriptor from opening
the transport protocol file. See open(2) .

The client then calls t_bind()  to assign an address to the endpoint. The first
argument of t_bind()  is the transport endpoint handle. The second argument
points to a t_bind  structure that describes the address to bind to the endpoint.
The third argument points to a t_bind  structure that describes the address
that the provider bound.

The address of a client is rarely important, because no other process tries to
access it. That is why the second and third arguments to t_bind()  are NULL.
The second NULL argument directs the transport provider to choose an address
for the user.

If t_open()  or t_bind()  fails, the program calls t_error()  to display an
appropriate error message via stderr . The global integer t_errno  is assigned
an error value. A set of error values is defined in <tiuser.h> . t_error()  is
analogous to perror() . If the transport function error is a system error,
t_errno()  is set to TSYSERR, and errno  is set to the appropriate value.

Server

The server example must also establish a transport endpoint at which to listen
for connection requests. Code Example 3-25 shows the definitions and local
management steps.

Code Example 3-25 Server Implementation of Open and Bind

#include <tiuser.h>
#include <stropts.h>
#include <fcntl.h>
#include <stdio.h>
#include <signal.h>

#define DISCONNECT -1
#define SRV_ADDR 1                        /* server’s address */
int conn_fd;/* connection established here */
extern int t_errno;

main()
{

int listen_fd;              /* listening transport endpoint */
struct t_bind *bind;
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struct t_call *call;

if ((listen_fd = t_open("/dev/exmp”, O_RDWR,
   (struct t_info *) NULL)) == -1) {

t_error(“t_open failed for listen_fd”);
exit(1);

}
/*
 * Because it assumes the format of the provider’s address,
 * this program is transport-dependent
 */
if ((bind = (struct t_bind *)t_alloc( listen_fd, T_BIND, T_ALL ))
            == (struct t_bind *) NULL) {

t_error("t_alloc of t_bind structure failed");
exit(2);

}
bind->qlen = 1;
bind->addr.len = sizeof(int);
*(int *) bind->addr.buf = SRV_ADDR;
if (t_bind (listen_fd, bind, bind) < 0 ) {

t_error("t_bind failed for listen_fd");
exit(3);

}
/* Was the correct address bound? */
if (bind->addr.len != sizeof(int) ||
   *(int *)bind->addr.buf != SRV_ADDR) {

fprintf(stderr, "t_bind bound wrong address\n");
exit(4);

}

Like the client, the server first calls t_open()  to establish a transport endpoint
with the desired transport provider. The endpoint, listen_fd , is used to
listen for connect requests.

Next, the server binds its address to the endpoint. This address is used by each
client to access the server. The second argument points to a t_bind  structure
that specifies the address to bind to the endpoint. The t_bind  structure has
the following format:

struct t_bind {
struct netbuf addr;
unsigned qlen;

}
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where addr  describes the address to be bound, and qlen  specifies the
maximum number of outstanding connect requests. All TLI structure and
constant definitions are in <tiuser.h> .

The address is specified in the netbuf  structure with the following format:

struct netbuf {
unsigned int maxlen;
unsigned int len;
char *buf;

}

where maxlen  specifies the maximum length of the buffer in bytes, len
specifies the bytes of data in the buffer, and buf  points to the buffer that
contains the data.

In the t_bind  structure, the data identifies a transport address. qlen  specifies
the maximum number of connect requests that can be queued. If the value of
qlen  is positive, the endpoint can be used to listen for connect requests.
t_bind()  directs the transport provider to queue connect requests for the
bound address immediately. The server must dequeue each connect request
and accept or reject it. For a server that fully processes a single connect request
and responds to it before receiving the next request, a value of 1 is appropriate
for qlen . Servers that dequeue several connect requests before responding to
any should specify a longer queue. The server in this example processes
connect requests one at a time, so qlen  is set to 1.

t_alloc()  is called to allocate the t_bind  structure. t_alloc()  has three
arguments: a file descriptor of a transport endpoint; the identifier of the
structure to allocate; and a flag that specifies which, if any, netbuf  buffers to
allocate. T_ALL specifies to allocate all netbuf  buffers, and causes the addr
buffer to be allocated in this example. Buffer size is determined automatically
and stored in the maxlen  field.

Each transport provider manages its address space differently. Some transport
providers allow a single transport address to be bound to several transport
endpoints, while others require a unique address per endpoint. TLI supports
both. Based on its rules, a provider determines if it can bind the requested
address. If not, it chooses another valid address from its address space and
binds it to the transport endpoint. The server must check the bound address to
ensure that it is the one previously advertised to clients.

If t_bind()  succeeds, the provider begins queueing connect requests, entering
the next phase of communication.
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Connection Establishment

TLI imposes different procedures in this phase for clients and servers. The
client starts connection establishment by requesting a connection to a specified
server using t_connect() . The server receives a client’s request by calling
t_listen() . The server must accept or reject the client’s request. It calls
t_accept()  to establish the connection, or t_snddis()  to reject the request.
The client is notified of the result when t_connect()  returns.

TLI supports two facilities during connection establishment that may not be
supported by all transport providers:

• Data transfer between the client and server when establishing the
connection – The client may send data to the server when it requests a
connection. This data is passed to the server by t_listen() . The server
can send data to the client when it accepts or rejects the connection. The
connect characteristic returned by t_open()  determines how much data, if
any, two users may transfer during connect establishment.

• The negotiation of protocol options – The client may specify preferred
protocol options to the transport provider and/or the remote user. TLI
supports both local and remote option negotiation. Option negotiation is a
protocol-specific capacity.

These facilities produce protocol-dependent software (see “Guidelines to
Protocol Independence” on page 106).

Client

The steps for the client to establish a connection are shown in Code Example
3-26.

Code Example 3-26 Client-to-Server Connection

/*
 * Because it assumes it knows the format of the provider’s
 * address, this program is transport-dependent
 */
if ((sndcall = (struct t_call *) t_alloc(fd, T_CALL, T_ADDR))
      == (struct t_call *) NULL) {

t_error("t_alloc failed");
exit(3);

}
sndcall->addr.len = sizeof(int);
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*(int *) sndcall->addr.buf = SRV_ADDR;
if (t_connect( fd, sndcall, (struct t_call *) NULL) == -1 ) {

t_error("t_connect failed for fd");
exit(4);

}

The t_connect()  call connects to the server. The first argument of
t_connect()  identifies the client’s endpoint, and the second argument points
to a t_call  structure that identifies the destination server. This structure has
the following format:

struct t_call {
struct netbuf addr;
struct netbuf opt;
struct netbuf udata;
int sequence;

}

addr  identifies the address of the server, opt  specifies protocol-specific
options to the connection, and udata  identifies user data that may be sent with
the connect request to the server. The sequence  field has no meaning for
t_connect() . In this example, only the server’s address is passed.

t_alloc()  allocates the t_call  structure dynamically. The third argument of
t_alloc()  is T_ADDR to specify to allocate a netbuf  buffer. The server’s
address is then copied to buf , and len  is set accordingly.

The third argument of t_connect()  can be used to return information about
the newly established connection, and can return any user data sent by the
server in its response to the connect request. The third argument here is set to
NULL by the client. The connection is established on successful return of
t_connect() . If the server rejects the connect request, t_connect()  sets
t_errno  to TLOOK.
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Event Handling

The TLOOK error has special significance. TLOOK is set if a TLI routine is
interrupted by an unexpected asynchronous transport event on the endpoint.
TLOOK does not report an error with a TLI routine, but the normal processing
of the routine is not done because of the pending event. The events defined by
TLI are listed in Table 3-7.

The state table in “State Transitions” on page 100 shows which events can
happen in each state. t_look()  lets a user determine what event has occurred
if a TLOOK error is returned. In the example, if a connect request is rejected, the
client exits.

Server

When the client calls t_connect() , a connect request is sent at the server’s
transport endpoint. For each client, the server accepts the connect request and
spawns a process to service the connection.

if ((call = (struct t_call *) t_alloc(listen_fd, T_CALL, T_ALL))
      == (struct t_call *) NULL) {
t_error("t_alloc of t_call structure failed");
exit(5);

}
while(1) {

if (t_listen( listen_fd, call) == -1) {

Table 3-7 Asynchronous Endpoint Events

Name Description

T_LISTEN Connection request arrived at the transport endpoint

T_CONNECT Confirmation of a previous connect request arrived (generated
when a server accepts a connect request)

T_DATA User data has arrived

T_EXDATA Expedited user data arrived

T_DISCONNECT Notice of an aborted connection or of a rejected connect request
arrived

T_ORDREL A request for orderly release of a connection arrived

T_UDERR Notice of an error in a previous datagram arrived. (see “A
Read/Write Interface” on page 90)
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t_error("t_listen failed for listen_fd");
exit(6);

}
if ((conn_fd = accept_call(listen_fd, call)) != DISCONNECT)

run_server(listen_fd);
}

The server allocates a t_call  structure, then does a closed loop. The loop
blocks on t_listen()  for a connect request. When a request arrives, the
server calls accept_call()  to accept the connect request. accept_call()
accepts the connection on an alternate transport endpoint (as discussed below)
and returns the handle of that endpoint. ( conn_fd is a global variable.) Because
the connection is accepted on an alternate endpoint, the server can continue to
listen on the original endpoint. If the call is accepted without error,
run_server  spawns a process to service the connection.

Note – TLI supports an asynchronous mode for these routines that prevents a
process from blocking. See “Advanced Topics” on page 93.

When a connect request arrives, the server calls accept_call()  to accept the
client’s request, as Code Example 3-27 shows.

Code Example 3-27 accept_call  Function

accept_call(listen_fd, call)
int listen_fd;
struct t_call *call;
{

int resfd;

if ((resfd = t_open("/dev/exmp", O_RDWR, (struct t_info *)
NULL))

    == -1) {
t_error("t_open for responding fd failed");
exit(7);

}
if (t_bind(resfd,(struct t_bind *) NULL, (struct t_bind *NULL))

== -1) {
t_error("t_bind for responding fd failed");
exit(8);

}
if (t_accept(listen_fd, resfd, call) == -1) {

if (t_errno == TLOOK) {             /* must be a disconnect */
if (t_rcvdis(listen_fd,(struct t_discon *) NULL) == -1) {
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t_error("t_rcvdis failed for listen_fd");
exit(9);

}
if (t_close(resfd) == -1) {

t_error("t_close failed for responding fd");
exit(10);

}
/* go back up and listen for other calls */
return(DISCONNECT);

}
t_error("t_accept failed");
exit(11);

}
return(resfd);

}

accept_call()  has two arguments:

1. listen_fd is the file handle of the transport endpoint where the connect
request arrived.

2. call points to a t_call  structure that contains all information associated
with the connect request.

The server first opens another transport endpoint by opening the clone device
special file of the transport provider and binding an address. A NULL specifies
not to return the address bound by the provider. The new transport endpoint,
resfd, accepts the client’s connect request.

The first two arguments of t_accept()  specify the listening transport
endpoint and the endpoint where the connection is accepted respectively.
Accepting a connection on the listening endpoint prevents other clients from
accessing the server for the duration of the connection.

The third argument of t_accept()  points to the t_call  structure containing
the connect request. This structure should contain the address of the calling
user and the sequence number returned by t_listen() . The sequence
number is significant if the server queues multiple connect requests.
The“Advanced Topics” on page 93 shows an example of this. The t_call
structure also identifies protocol options and user data to pass to the client.
Because this transport provider does not support protocol options or the
transfer of user data during connection, the t_call  structure returned by
t_listen()  is passed without change to t_accept() .
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The example is simplified. The server exits if either the t_open()  or
t_bind()  call fails. exit()  closes the transport endpoint of listen_fd ,
causing a disconnect request to be sent to the client. The client’s t_connect()
call fails, setting t_errno  to TLOOK.

t_accept()  can fail if an asynchronous event occurs on the listening
endpoint before the connection is accepted, and t_errno  will be set to TLOOK.
Table 6-8 on page 207 shows that only a disconnect request can be sent in this
state with only one queued connect request. This event can happen if the client
undoes a previous connect request. If a disconnect request arrives, the server
must respond by calling t_rcvdis() . This routine argument is a pointer to a
t_discon  structure, which is used to retrieve the data of the disconnect
request. In this example, the server passes a NULL.

After receiving a disconnect request, accept_call()  closes the responding
transport endpoint and returns DISCONNECT, which informs the server that the
connection was disconnected by the client. The server then listens for further
connect requests.

The figure illustrates how the server establishes connections:

Figure 3-4 Listening and Responding Transport Endpoints

The transport connection is established on the new responding endpoint, and
the listening endpoint is freed to retrieve further connect requests.
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Transport
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Client Server
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Responding
endpoint
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Data Transfer

Once the connection is established, both the client and the server can transfer
data through the connection using t_snd()  and t_rcv() . TLI does not
differentiate the client from the server from this point on. Either user may send
data, receive data, or release the connection.

There are two classes of data on a transport connection:

1. Normal data

2. Expedited data

Expedited mode is for urgent data. The exact semantics of expedited data vary
between transport providers. Not all transport protocols support expedited
data (see t_open(3N) ).

All connection oriented mode protocols must transfer data in byte streams.
“Byte stream” implies no message boundaries in data sent over a connection.
Some transport protocols preserve message boundaries over a transport
connection. This service is supported by TLI, but protocol-independent
software must not rely on it.

The message boundaries are invoked by the T_MORE flag of t_snd()  and
t_rcv() . The messages, called transport service data units (TSDU), may be
transferred between two transport users as distinct units. The maximum
message size is defined by the underlying transport protocol. Get the message
size through t_open()  or t_getinfo() . You can send a message in multiple
units.

Set the T_MORE flag on every t_snd()  call except the last to send a message in
multiple units. The flag specifies that the data in the current and the next
t_snd()  calls are a logical unit. Send the last message unit with T_MORE
turned off to specify the end of the logical unit.

Similarly, a logical unit may be sent in multiple units. If t_rcv()  returns with
the T_MORE flag set, the user must call t_rcv()  again to receive the rest of the
message. The last unit in the message is identified by a call to t_rcv()  that
does not set T_MORE.

The T_MORE flag implies nothing about how the data is packaged below TLI or
how the data is delivered to the remote user. Each transport protocol, and each
implementation of a protocol, may package and deliver the data differently.
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For example, if a user sends a complete message in a single call to t_snd() ,
there is no guarantee that the transport provider delivers the data in a single
unit to the receiving user. Similarly, a message transmitted in two units may be
delivered in a single unit to the remote transport user. The message boundaries
are preserved only by setting the value of T_MORE for t_snd()  and testing it
after t_rcv() . This guarantees that the receiver sees a message with the same
contents and message boundaries as was sent.

Client

The example server transfers a log file to the client over the transport
connection. The client receives the data and writes it to its standard output file.
A byte stream interface is used by the client and server, with no message
boundaries. The client receives data by the following:

while ((nbytes = t_rcv(fd, buf, nbytes, &flags))!= -1){
if (fwrite(buf, 1, nbytes, stdout) == -1) {

fprintf(stderr, "fwrite failed\n");
exit(5);

}
}

The client repeatedly calls t_rcv()  to receive incoming data. t_rcv()  blocks
until data arrives. t_rcv()  writes up to nbytes of the data available into buf
and returns the number of bytes buffered. The client writes the data to
standard output and continues. The data transfer loop ends when t_rcv()
fails. t_rcv()  fails when an orderly release or disconnect request arrives. If
fwrite()  fails for any reason, the client exits, which closes the transport
endpoint. If the transport endpoint is closed (either by exit()  or t_close() )
during data transfer, the connection is aborted and the remote user receives a
disconnect request.

Server

The server manages its data transfer by spawning a child process to send the
data to the client. The parent process continues the loop to listen for more
connect requests. run_server()  is called by the server to spawn this child
process, as shown in Code Example 3-28.
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Code Example 3-28 Spawning Child Process to Loopback and Listen

connrelease()
{

/* conn_fd is global because needed here */
if (t_look(conn_fd) == T_DISCONNECT) {

fprintf(stderr, “connection aborted\n”);
exit(12);

}
/* else orderly release request - normal exit */
exit(0);

}

run_server(listen_fd)
int listen_fd;
{

int nbytes;
FILE *logfp;                    /* file pointer to log file */
char buf[1024];

switch(fork()) {
case -1:

perror("fork failed");
exit(20);

default:                                          /* parent */
/* close conn_fd and then go up and listen again*/
if (t_close(conn_fd) == -1) {

t_error("t_close failed for conn_fd");
exit(21);

}
return;

case 0:                                            /* child */
/* close listen_fd and do service */
if (t_close(listen_fd) == -1) {

t_error("t_close failed for listen_fd");
exit(22);

}
if ((logfp = fopen("logfile", "r")) == (FILE *) NULL) {

perror("cannot open logfile");
exit(23);

}
signal(SIGPOLL, connrelease);
if (ioctl(conn_fd, I_SETSIG, S_INPUT) == -1) {

perror("ioctl I_SETSIG failed");
exit(24);

}
if (t_look(conn_fd) != 0){           /*disconnect there?*/
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fprintf(stderr, "t_look: unexpected event\n");
exit(25);

}
while ((nbytes = fread(buf, 1, 1024, logfp)) > 0)

if (t_snd(conn_fd, buf, nbytes, 0) == -1) {
t_error("t_snd failed");
exit(26);

}

After the fork, the parent process returns to the main listening loop. The child
process manages the newly established transport connection. If the fork fails,
exit()  closes both transport endpoints, sending a disconnect request to the
client, and the client’s t_connect()  call fails.

The server process reads 1024 bytes of the log file at a time and sends the data
to the client using t_snd() . buf points to the start of the data buffer, and nbytes
specifies the number of bytes to transmit. The fourth argument can be zero or
one of the two optional flags below:

• T_EXPEDITED specifies that the data is expedited.

• T_MORE specifies that the next block will continue the message in this block.

Neither flag is set by the server in this example.

If the user floods the transport provider with data, t_snd()  blocks until
enough data is removed from the transport.

t_snd()  does not look for a disconnect request (showing that the connection
was broken). If the connection is aborted, the server should be notified since
data may be lost. One solution is to call t_look()  to check for incoming
events before each t_snd()  call or after a t_snd()  failure. The example has a
cleaner solution. The I_SETSIG ioctl  lets a user request a signal when a
specified event occurs. See the streamio(7I)  manpage. S_INPUT causes a
signal to the user when any input arrives at the endpoint conn_fd . If a
disconnect request arrives, the signal-catching routine (connrelease() )
prints an error message and exits.

If the server alternates t_snd()  and t_rcv()  calls, it can use t_rcv()  to
recognize an incoming disconnect request.
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Connection Release

At any time during data transfer, either user can release the transport
connection and end the conversation. There are two forms of connection
release. The first way, abortive release, breaks the connection immediately and
discards any data that has not been delivered to the destination user.

Either user can call t_snddis()  to perform an abortive release. The transport
provider can abort a connection if a problem occurs below TLI. t_snddis()
lets a user send data to the remote user when aborting a connection. The
abortive release is supported by all transport providers, the ability to send data
when aborting a connection is not.

When the remote user is notified of the aborted connection, call t_rcvdis()
to receive the disconnect request. The call returns a code that identifies why the
connection was aborted, and returns any data that may have accompanied the
disconnect request (if the abort was initiated by the remote user). The reason
code is specific to the underlying transport protocol, and should not be
interpreted by protocol-independent software.

The second way, orderly release, ends a connection so that no data is lost. All
transport providers must support the abortive release procedure, but orderly
release is an option not supported by all connection-oriented protocols.

Server

This example assumes that the transport provider supports orderly release.
When all the data has been sent by the server, the connection is released as
follows:

if (t_sndrel(conn_fd) == -1) {
t_error(“t_sndrel failed”);
exit(27);

}
pause(); /* until orderly release request arrives */

Orderly release requires two steps by each user. The server can call
t_sndrel() . This routine sends a disconnect request. When the client receives
the request, it can continue sending data back to the server. When all data have
been sent, the client calls t_sndrel()  to send a disconnect request back. The
connection is released only after both users have received a disconnect request.
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In this example, data is transferred only from the server to the client. So there
is no provision to receive data from the client after the server initiates release.
The server calls pause()  after initiating the release.

The client responds with its orderly release request, which generates a signal
caught by connrelease() . (In Code Example 3-28 on page 86, the server
issued an I_SETSIG ioctl  call to generate a signal on any incoming event.)
The only TLI event possible in this state is a disconnect request or an orderly
release request, so connrelease()  exits normally when the orderly release
request arrives. exit()  from connrelease()  closes the transport endpoint
and frees the bound address. To close a transport endpoint without exiting, call
t_close() .

Client

The client releases the connection similarly to the server. The client processes
incoming data until t_rcv()  fails. When the server releases the connection
(using either t_snddis()  or t_sndrel() ), t_rcv()  fails and sets t_errno
to TLOOK. The client then processes the connection release as follows:

if ((t_errno == TLOOK) && (t_look(fd) == T_ORDREL)) {
if (t_rcvrel(fd) == -1) {

t_error(“t_rcvrel failed”);
exit(6);

}
if (t_sndrel(fd) == -1) {

t_error(“t_sndrel failed”);
exit(7);

}
exit(0);

}

Each event on the client’s transport endpoint is checked for an orderly release
request. When one is received, the client calls t_rcvrel()  to process the
request and t_sndrel()  to send the response release request. The client then
exits, closing its transport endpoint.

If a transport provider does not support the orderly release, use abortive
release with t_snddis()  and t_rcvdis() . Each user must take steps to
prevent data loss. For example, use a special byte pattern in the data stream to
indicate the end of a conversation.
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A Read/Write Interface
A user may want to establish a transport connection using exec()  on an
existing program (such as /usr/bin/cat ) to process the data as it arrives
over the connection. Existing programs use read()  and write() . TLI does
not directly support a read/write interface to a transport provider, but one is
available. The interface lets you issue read()  and write()  calls over a
transport connection in the data transfer phase. This section describes the
read/write interface to the connection mode service of TLI. This interface is not
available with the connectionless mode service.

The read/write interface is presented using the client example of “Connection
Mode Service” on page 72 with modifications. The clients are identical until the
data transfer phase. Then the client uses the read/write interface and cat  to
process incoming data. cat  is run without change over the transport
connection. Only the differences between this client and that of the client in
Code Example 3-24 on page 73 are shown in Code Example 3-29.

Code Example 3-29 Read/Write Interface

#include <stropts.h>
.
. /*

 Same local management and connection establishment steps.
 */

.
if (ioctl(fd, I_PUSH, "tirdwr") == -1) {

perror(“I_PUSH of tirdwr failed”);
exit(5);

}
close(0);
dup(fd);
execl(“/usr/bin/cat”, “/usr/bin/cat”, (char *) 0);
perror(“exec of /usr/bin/cat failed”);
exit(6);

}

The client invokes the read/write interface by pushing tirdwr  onto the stream
associated with the transport endpoint. See I_PUSH in streamio(7I) .
tirdwr  converts TLI above the transport provider into a pure read/write
interface. With the module in place, the client calls close()  and dup()  to
establish the transport endpoint as its standard input file, and uses
/usr/bin/cat  to process the input.
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By pushing tirdwr  onto the transport provider, TLI is changed. The semantics
of read()  and write()  must be used, and message boundaries are not
preserved. tirdwr  can be popped from the transport provider to restore TLI
semantics (see I_POP in streamio(7I) .

Caution – The tirdwr  module may only be pushed onto a stream when the
transport endpoint is in the data transfer phase. Once the module is pushed,
the user may not call any TLI routines. If a TLI routine is invoked, tirdwr
generates a fatal protocol error, EPROTO, on the stream, rendering it unusable.
If you then pop the tirdwr  module off the stream, the transport connection is
aborted. See I_POP in streamio(7I) .

write

Send data over the transport connection with write() . tirdwr  passes data
through to the transport provider. If you send a zero-length data packet, which
the mechanism allows, tirdwr  discards the message. If the transport
connection is aborted (for example, because the remote user aborts the
connection using t_snddis() ), a hang-up condition is generated on the
stream, further write()  calls fail, and errno  is set to ENXIO. You can still
retrieve any available data after a hang-up.

read

Receive data that arrives at the transport connection with read() . tirdwr
which passes data from the transport provider. Any other event or request
passed to the user from the provider is processed by tirdwr  as follows:

• read()  cannot identify expedited data to the user. If an expedited data
request is received, tirdwr  generates a fatal protocol error, EPROTO, on the
stream. The error causes further system calls to fail. Do not use read()  to
receive expedited data.

• tirdwr  discards an abortive disconnect request and generates a hang-up
condition on the stream. Subsequent read()  calls will retrieve any
remaining data, then return zero for all further calls (indicating end of file).

• tirdwr  discards an orderly release request and delivers a zero-length
message to the user. As described in read() , this notifies the user of end of
file by returning 0.
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• If any other TLI request is received, tirdwr  generates a fatal protocol error,
EPROTO, on the stream. This causes further system calls to fail. If a user
pushes tirdwr  onto a stream after the connection has been established, no
request is generated.

close

With tirdwr  on a stream, you can send and receive data over a transport
connection for the duration of the connection. Either user can terminate the
connection by closing the file descriptor associated with the transport endpoint
or by popping the tirdwr  module off the stream. In either case, tirdwr  does
the following:

• If an orderly release request was previously received by tirdwr , it is passed
to the transport provider to complete the orderly release of the connection.
The remote user who initiated the orderly release procedure receives the
expected request when data transfer completes.

• If a disconnect request was previously received by tirdwr , no special action
is taken.

• If neither an orderly release nor a disconnect request was previously
received by tirdwr , a disconnect request is passed to the transport provider
to abort the connection.

• If an error previously occurred on the stream and a disconnect request has
not been received by tirdwr , a disconnect request is passed to the transport
provider.

A process cannot initiate an orderly release after tirdwr  is pushed onto a
stream. tirdwr  handles an orderly release if it is initiated by the user on the
other side of a transport connection. If the client in this section is
communicating with the server program in “Connection Mode Service” on
page 72, the server will terminate the transfer of data with an orderly release
request. The server then waits for the corresponding request from the client. At
that point, the client exits and the transport endpoint is closed. When the file
descriptor is closed, tirdwr  initiates the orderly release request from the
client’s side of the connection. This generates the request that the server is
blocked on.

Some protocols, like TCP, require this orderly release to ensure that the data is
delivered intact.
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Advanced Topics
This section presents additional TLI concepts:

• An optional nonblocking (asynchronous) mode for some library calls

• How to set and get TCP and UDP options under TLI

• A program example of a server supporting multiple outstanding connect
requests and operating in an event-driven manner

Asynchronous Execution Mode

Many TLI library routines block to wait for an incoming event. However, some
time-critical applications should not block for any reason. An application may
do local processing while waiting for some asynchronous TLI event.

Asynchronous processing of TLI events is available to applications through the
combination of asynchronous features and the non-blocking mode of TLI
library routines. Use of the poll()  system call and the I_SETSIG ioctl
command to process events asynchronously is described in ONC+ Developer’s
Guide.

Each TLI routine that blocks for an event can be run in a special non-blocking
mode. For example, t_listen()  normally blocks for a connect request. A
server can periodically poll a transport endpoint for queued connect requests
by calling t_listen()  in the non-blocking (or asynchronous) mode. The
asynchronous mode is enabled by setting O_NDELAY or O_NONBLOCK in the file
descriptor. These modes can be set as a flag through t_open() , or by calling
fcntl()  before calling the TLI routine. fcntl()  enables or disables this
mode at any time. All program examples in this chapter use the default
synchronous processing mode.

O_NDELAY or O_NONBLOCK affect each TLI routine differently. You will need to
determine the exact semantics of O_NDELAY or O_NONBLOCK for a particular
routine.

Advanced Programming Example

The following example demonstrates two important concepts. The first is a
server’s ability to manage multiple outstanding connect requests. The second
is event-driven use of TLI and the system call interface.
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The server example in Code Example 3-25 on page 75 supports only one
outstanding connect request, but TLI lets a server manage multiple
outstanding connect requests. One reason to receive several simultaneous
connect requests is to prioritize the clients. A server can receive several connect
requests, and accept them in an order based on the priority of each client. The
second reason for handling several outstanding connect requests is the limits of
single-threaded processing. Depending on the transport provider, while a
server processes one connect request, other clients find it busy. If multiple
connect requests are processed simultaneously, the server will be found busy
only if more than the maximum number of clients try to call the server
simultaneously.

The server example is event-driven: the process polls a transport endpoint for
incoming TLI events, and takes the appropriate actions for the event received.
The example demonstrates the ability to poll multiple transport endpoints for
incoming events.

The definitions and endpoint establishment functions of Code Example 3-30
are similar to those of the server example in Code Example 3-25 on page 75.

Code Example 3-30 Endpoint Establishment (Convertible to Multiple Connections)

#include <tiuser.h>
#include <fcntl.h>
#include <stdio.h>
#include <poll.h>
#include <stropts.h>
#include <signal.h>

#define NUM_FDS 1
#define MAX_CONN_IND 4
#define SRV_ADDR 1                  /* server’s well known address */

int conn_fd;                        /* server connection here */
extern int t_errno;
/* holds connect requests */
struct t_call *calls[NUM_FDS][MAX_CONN_IND];

main()
{

struct pollfd pollfds[NUM_FDS];
struct t_bind *bind;
int i;
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/*
 * Only opening and binding one transport endpoint, but more can
 * be supported
 */
if ((pollfds[0].fd = t_open(“/dev/tivc”, O_RDWR,
          (struct t_info *) NULL)) == -1) {

t_error(“t_open failed”);
exit(1);

}
if ((bind = (struct t_bind *) t_alloc(pollfds[0].fd, T_BIND,
             T_ALL)) == (struct t_bind *) NULL) {

t_error(“t_alloc of t_bind structure failed”);
exit(2);

}
bind->qlen = MAX_CONN_IND;
bind->addr.len = sizeof(int);
*(int *) bind->addr.buf = SRV_ADDR;
if (bind->addr.len != sizeof(int) ||
     t_bind(pollfds[0].fd, bind, bind) == -1) {

t_error(“t_bind failed”);
exit(3);

}
/* Was the correct address bound? */
if (bind->addr.len != sizeof(int) ||
      *(int *)bind->addr.buf != SRV_ADDR) {

fprintf(stderr, “t_bind bound wrong address\n”);
exit(4);

}
}

The file descriptor returned by t_open()  is stored in a pollfd  structure that
controls polling the transport endpoints for incoming data. See poll(2) . Only
one transport endpoint is established in this example. However, the remainder
of the example is written to manage multiple transport endpoints. Several
endpoints could be supported with minor changes to Code Example 3-30.

This server sets qlen  to a value greater than 1 for t_bind() . This specifies
that the server queues multiple outstanding connect requests. The server
accepts the current connect request before accepting additional connect
requests. This example can queue up to MAX_CONN_IND connect requests. The
transport provider may negotiate the value of qlen  smaller if it cannot support
MAX_CONN_IND outstanding connect requests.
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Once the server has bound its address and is ready to process connect requests,
it behaves as shown in Code Example 3-31.

Code Example 3-31 Processing Connection Requests

pollfds[0].events = POLLIN;

while (TRUE) {
if (poll(pollfds, NUM_FDS, -1) == -1) {

perror(“poll failed”);
exit(5);

}
for (i = 0; i < NUM_FDS; i++) {

switch (pollfds[i].revents) {
default:

perror(“poll returned error event”);
exit(6);

case 0:
continue;

case POLLIN:
do_event(i, pollfds[i].fd);
service_conn_ind(i, pollfds[i].fd);

}
}

}

The events  field of the pollfd  structure is set to POLLIN, which notifies the
server of any incoming TLI events. The server then enters an infinite loop in
which it polls the transport endpoint(s) for events, and processes events as
they occur.

The poll()  call blocks indefinitely for an incoming event. On return, each
entry (one per transport endpoint) is checked for a new event. If revents  is 0,
no event has occurred on the endpoint and the server continues to the next
endpoint. If revents  is POLLIN, there is an event on the endpoint.
do_event()  is called to process the event. Any other value in revents
indicates an error on the endpoint, and the server exits. With multiple
endpoints, it is better for the server to close this descriptor and continue.

For each iteration of the loop, service_conn_ind()  is called to process any
outstanding connect requests. If another connect request is pending,
service_conn_ind()  saves the new connect request and responds to it later.

do_event()  in Code Example 3-32 is called to process an incoming event.
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Code Example 3-32 Event Processing Routine

do_event( slot, fd)
int slot;
int fd;
{

struct t_discon *discon;
int i;

switch (t_look(fd)) {
default:

fprintf(stderr, "t_look: unexpected event\n");
exit(7);

case T_ERROR:
fprintf(stderr, "t_look returned T_ERROR event\n");
exit(8);

case -1:
t_error("t_look failed");
exit(9);

case 0:
/* since POLLIN returned, this should not happen */
fprintf(stderr,"t_look returned no event\n");
exit(10);

case T_LISTEN:
/* find free element in calls array */
for (i = 0; i < MAX_CONN_IND; i++) {

if (calls[slot][i] == (struct t_call *) NULL)
break;

}
if ((calls[slot][i] = (struct t_call *) t_alloc( fd, T_CALL,
            T_ALL)) == (struct t_call *) NULL) {

t_error("t_alloc of t_call structure failed");
exit(11);

}
if (t_listen(fd, calls[slot][i] ) == -1) {

t_error("t_listen failed");
exit(12);

}
break;

case T_DISCONNECT:
discon = (struct t_discon *) t_alloc(fd, T_DIS, T_ALL);
if(t_rcvdis( fd, discon) == -1) {

t_error("t_rcvdis failed");
exit(13);

}
/* find call ind in array and delete it */
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for (i = 0; i < MAX_CONN_IND; i++) {
if (discon->sequence == calls[slot][i]->sequence) {

t_free(calls[slot][i], T_CALL);
calls[slot][i] = (struct t_call *) NULL;

}
}
t_free(discon, T_DIS);
break;

}
}

The arguments are a number (slot) and a file descriptor (fd). slot is the index
into the global array calls . calls  has an entry for each transport endpoint.
Each entry is an array of t_call  structures that hold incoming connect
requests for the endpoint.

do_event()  calls t_look()  to identify the TLI event on the endpoint
specified by fd. If the event is a connect request (T_LISTEN  event) or
disconnect request (T_DISCONNECT event), the event is processed. Otherwise,
the server prints an error message and exits.

For connect requests, do_event()  scans the array of outstanding connect
requests for the first free entry. A t_call  structure is allocated for the entry,
and the connect request is received by t_listen() . The array is large enough
to hold the maximum number of outstanding connect requests. The processing
of the connect request is deferred.

A disconnect request must correspond to an earlier connect request.
do_event()  allocates a t_discon  structure to receive the request. This
structure has the following fields:

struct t_discon {
struct netbuf udata;
int reason;
int sequence;

}

udata  contains any user data sent with the disconnect request. reason
contains a protocol-specific disconnect reason code. sequence  identifies the
connect request that matches the disconnect request.

t_rcvdis()  is called to receive the disconnect request. The array of connect
requests is scanned for one that contains the sequence number that matches the
sequence  number in the disconnect request. When the connect request is
found, its structure is freed and the entry is set to NULL.
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When an event is found on a transport endpoint, service_conn_ind()  is
called to process all queued connect requests on the endpoint as Code Example
3-33 shows.

Code Example 3-33 Process All Connect Requests

service_conn_ind(slot, fd)
{

int i;

for (i = 0; i < MAX_CONN_IND; i++) {
if (calls[slot][i] == (struct t_call *) NULL)

continue;
if((conn_fd = t_open( “/dev/tivc”, O_RDWR,
               (struct t_info *) NULL)) == -1) {

t_error("open failed");
exit(14);

}
if (t_bind(conn_fd, (struct t_bind *) NULL,
         (struct t_bind *) NULL) == -1) {

t_error("t_bind failed");
exit(15);

}
if (t_accept(fd, conn_fd, calls[slot][i]) == -1) {

if (t_errno == TLOOK) {
t_close(conn_fd);
return;

}
t_error("t_accept failed");
exit(16);

}
t_free(calls[slot][i], T_CALL);
calls[slot][i] = (struct t_call *) NULL;
run_server(fd);

}
}

For each transport endpoint, the array of outstanding connect requests is
scanned. For each request, the server opens a responding transport endpoint,
binds an address to the endpoint, and accepts the connection on the endpoint.
If another event (connect request or disconnect request) arrives before the
current request is accepted, t_accept()  fails and sets t_errno  to TLOOK.
(You cannot accept an outstanding connect request if any pending connect
request events or disconnect request events exist on the transport endpoint.)
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If this error occurs, the responding transport endpoint is closed and
service_conn_ind()  will return immediately (saving the current connect
request for later processing). This causes the server’s main processing loop to
be entered, and the new event will be discovered by the next call to poll() . In
this way, multiple connect requests may be queued by the user.

Eventually, all events will be processed, and service_conn_ind()  will be
able to accept each connect request in turn. Once the connection has been
established, the run_server()  routine used by the server in the Code
Example 3-26 on page 78 is called to manage the data transfer.

State Transitions
These tables describe all state transitions associated with TLI. First, however,
the states and events are described.

TLI States

Table 3-8 defines the states used in TLI state transitions, along with the service
types.

Table 3-8 TLI State Transitions and Service Types

State Description Service Type

T_UNIT Uninitialized – initial and final state of
interface

T_COTS,
COTS_ORD,
T_CLTS

T_UNBND Initialized but not bound T_COTS,
T_COTS_ORD,
T_CLTS

T_IDLE No connection established T_COTS,
T_COTS_ORD,
T_CLTS

T_OUTCON Outgoing connection pending for client T_COTS, T_COTS_ORD

T_INCON Incoming connection pending for server COTS, T_COTS_ORD
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Outgoing Events

The outgoing events described in Table 3-9 correspond to the status returned
from the specified transport routines, where these routines send a request or
response to the transport provider. In the table, some events (such as
accept()  are distinguished by the context in which they occur. The context is
based on the values of the following variables:

• ocnt – count of outstanding connect requests
• fd – file descriptor of the current transport endpoint
• resfd – file descriptor of the transport endpoint where a connection is

accepted

T_DATAXFER Data transfer T_COTS, T_COTS_ORD

T_OUTREL Outgoing orderly release (waiting for
orderly release request

T_COTS_ORD

T_INREL Incoming orderly release (waiting to send
orderly release request)

T_COTS_ORD

Table 3-9 Outgoing Events

Event Description Service Type

opened Successful return of t_open() T_COTS, T_COTS_ORD,
T_CLTS

bind Successful return of t_bind() T_COTS, T_COTS_ORD,
T_CLTS

optmgmt Successful return of t_optmgmt() T_COTS, T_COTS_ORD,T_CLTS

unbind Successful return of t_unbind() T_COTS, T_COTS_ORD,T_CLTS

closed Successful return of t_close() T_COTS, T_COTS_ORD,T_CLT

connect1 Successful return of t_connect()
in synchronous mode

T_COTS, T_COTS_ORD

connect2 TNODATA error on t_connect()  in
asynchronous mode, or TLOOK
error due to a disconnect request
arriving on the transport endpoint

T_COTS, T_COTS_ORD

Table 3-8 TLI State Transitions and Service Types

State Description Service Type
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Incoming Events

The incoming events correspond to the successful return of the specified
routines. These routines return data or event information from the transport
provider. The only incoming event not associated directly with the return of a
routine is pass_conn , which occurs when a connection is transferred to
another endpoint. The event occurs on the endpoint that is being passed the
connection, although no TLI routine is called on the endpoint.

In Table 3-10, the rcvdis  events are distinguished by the value of ocnt , the
count of outstanding connect requests on the endpoint.

accept1 Successful return of t_accept()
with ocnt == 1 , fd == resfd

T_COTS, T_COTS_ORD

accept2 Successful return of t_accept()
with ocnt== 1,fd!= resfd

T_COTS, T_COTS_ORD

accept3 Successful return of t_accept()
with ocnt > 1

T_COTS, T_COTS_ORD

snd Successful return of t_snd() T_COTS, T_COTS_ORD

snddis1 Successful return of t_snddis()
with ocnt <= 1

T_COTS, T_COTS_ORD

snddis2 Successful return of t_snddis()
with ocnt > 1

T_COTS, T_COTS_ORD

sndrel Successful return of t_sndrel() T_COTS_ORD

sndudata Successful return of
t_sndudata()

T_CLTS

Table 3-10 Incoming Events

Event Description Service Type

listen Successful return of t_listen() T_COTS, T_COTS_ORD

rcvconnect Successful return of
t_rcvconnect()

T_COTS,T_COTS_ORD

rcv Successful return of t_rcv() T_COTS,T_COTS_ORD

Table 3-9 Outgoing Events (Continued)

Event Description Service Type
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Transport User Actions

Some state transitions (below) have a list of actions the transport user must
take. Each action is represented by a digit from the list below:

• Set the count of outstanding connect requests to zero
• Increment the count of outstanding connect requests
• Decrement the count of outstanding connect requests
• Pass a connection to another transport endpoint as indicated in

t_accept()

State Tables

The tables describe the TLI state transitions. Each box contains the next state,
given the current state (column) and the current event (row). An empty box is
an invalid state/event combination. Each box may also have an action list.
Actions must be done in the order specified in the box.

The following should be understood when studying the state tables:

rcvdis1 Successful return of
rcvdis1t_rcvdis(),
onct <= 0

T_COTS, T_COTS_ORD

rcvdis2 Successful return of t_rcvdis(),
ocnt == 1

T_COTS, T_COTS_ORD

rcvdis3 Successful return of t_rcvdis()
with ocnt > 1

T_COTS, T_COTS_ORD

rcvrel Successful return of t_rcvrel() T_COTS_ORD

rcvudata Successful return of
t_rcvudata()

T_CLTS

rcvuderr Successful return of
t_rcvuderr()

T_CLTS

pass_conn Receive a passed connection T_COTS, T_COTS_ORD

Table 3-10 Incoming Events (Continued)

Event Description Service Type
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• t_close()  will cause an established connection to be terminated for a
connection-oriented transport provider. The connection termination will be
orderly or abortive depending on the service type supported by the
transport provider. See t_getinfo(3N) .

• If a transport user issues a function out of sequence, the function fails and
t_errno  is set to TOUTSTATE. The state does not change.

• The error codes TLOOK or TNODATA after t_connect()  can result in state
changes described in “Event Handling” on page 80. The state tables assume
correct use of TLI.

• Any other transport error does not change the state unless the manual page
for the function says otherwise.

• The support functions t_getinfo() , t_getstate() , t_alloc() ,
t_free() , t_sync() , t_look() , and t_error()  are excluded from the
state tables because they do not affect the state.

Table 3-11, Table 3-12, and Table 3-13 show endpoint establishment, data
transfer in connectionless mode, and connection establishment/connection
release/data transfer in connection mode.

Table 3-11 Connection Establishment State

Event/State T_UNIT T_UNBND T_IDLE

opened T_UNBND

bind T_IDLE[1]

optmgmt T_IDLE

unbind T_UNBND

closed T_UNINIT

Table 3-12 Connection Mode State

Event/State T_IDLE T_OUTCON T_INCON T_DATAXFER T_OUTREL T_INREL

connect1 T_DATAXFER

connect2 T_OUTCON

rcvconnect T_DATAXFER
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listen T_INCON [2] T_INCON [2]

accept1 T_DATAXFER
 [3]

accept2 T_IDLE [3] [4]

accept3 T_INCON [3]
[4]

snd T_DATAXFER T_INREL

rcv T_DATAXFER T_OUTREL

snddis1 T_IDLE T_IDLE [3] T_IDLE T_IDLE T_IDLE

snddis2 T_INCON [3]

rcvdis1 T_IDLE T_IDLE T_IDLE T_IDLE

rcvdis2 T_IDLE [3]

rcvdis3 T_INCON [3]

sndrel T_OUTREL T_IDLE

rcvrel T_INREL T_IDLE

pass_conn T_DATAXFER

Table 3-13 Connectionless Mode State

Event/State T_IDLE

snudata T_IDLE

rcvdata T_IDLE

rcvuderr T_IDLE

Table 3-12 Connection Mode State (Continued)

Event/State T_IDLE T_OUTCON T_INCON T_DATAXFER T_OUTREL T_INREL
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Guidelines to Protocol Independence
TLI’s set of services, common to many transport protocols, offers protocol
independence to applications. Not all transport protocols support all TLI
services. If software must run in a variety of protocol environments, use only
the common services. The following is a list of services that may not be
common to all transport protocols.

1. In connection mode service, a transport service data unit (TSDU) may not be
supported by all transport providers. Make no assumptions about the
preserving logical data boundaries across a connection.

2. Protocol and implementation specific service limits are returned by the
t_open()  and t_getinfo()  routines. Use these limits to allocate buffers
to store protocol-specific transport addresses and options.

3. Do not send user data with connect requests or disconnect requests, such as
t_connect()  and t_snddis() . Not all transport protocols work this way.

4. The buffers in the t_call  structure used for t_listen()  must be large
enough to hold any data sent by the client during connection establishment.
Use the T_ALL argument to t_alloc()  to set maximum buffer sizes to
store the address, options, and user data for the current transport provider.

5. Do not test or change options of any TLI routine. These options are specific
to the underlying transport protocol. Do not pass options with
t_connect()  or t_sndudata() . In such cases, the transport provider will
use default values. Also, a server should use the options returned by
t_listen()  to accept a connection.

6. Do not specify a protocol address on t_bind() . Let the transport provider
assign an appropriate address to the transport endpoint. A server should
retrieve its address for t_bind()  in such a way that it does not require
knowledge of the transport provider’s name space.

7. Do not make assumptions about formats of transport addresses. Transport
addresses should not be constants in a program. Chapter 4, “Transport
Selection and Name-to-Address Mapping, “contains detailed information.

8. The reason codes associated with t_rcvdis()  are protocol-dependent. Do
not interpret this information if protocol-independence is important.

9. The t_rcvuderr()  error codes are protocol dependent. Do not interpret
this information if protocol independence is a concern.
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10. Do not code the names of devices into programs. The device node identifies
a particular transport provider and is not protocol independent. See
Chapter 4, “Transport Selection and Name-to-Address Mapping,” for
details.

11. Do not use the optional orderly release facility of the connection mode
service (provided by t_sndrel()  and t_rcvrel() ) in programs targeted
for multiple protocol environments. This facility is not supported by all
connection-based transport protocols. Its use can prevent programs from
successfully communicating with open systems.

TLI Versus Socket Interfaces
TLI and sockets are different ways of doing the same tasks. Mostly, they
provide mechanisms and services that are functionally similar. They do not
provide one-to-one compatibility of routines or low-level services. Observe the
similarities and differences between the TLI and socket-based interfaces before
you decide to port an application.

The following issues are related to transport independence, and may have
some bearing on RPC applications:

• Privileged ports – Privileged ports are an artifact of the Berkeley Software
Distribution (BSD) implementation of the TCP/IP Internet Protocols. They
are not portable. The notion of privileged ports is not supported in the
transport-independent environment.

• Opaque addresses – There is no transport-independent way of separating the
portion of an address that names a host from the portion of an address that
names the service at that host. Code that assumes it can discern the host
address of a network service must be changed.

• Broadcast – There is no transport independent form of broadcast address.
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Socket-to-TLI Equivalents
Table 3-14 shows approximate equivalents between TLI functions and socket
functions. The comment field describes the differences. If there is no comment
either the functions are similar, or there is no equivalent function in either
interface.

Table 3-14 TLI and Socket Equivalent Functions

TLI function Socket function Comments

t_open() socket()

– socketpair()

t_bind() bind() t_bind() sets the queue depth for passive
sockets, but bind()  doesn’t. For sockets, the
queue length is specified in the call to
listen() .

t_optmgmt() getsockopt()

setsockopt() t_optmgmt()  manages only transport
options. getsockopt()  and setsockopt()
can manage options at the transport layer, but
also at the socket layer and at the arbitrary
protocol layer.

t_unbind() –

t_close() close()

t_getinfo() getsockopt() t_getinfo()  returns information about the
transport. getsockopt()  can return
information about the transport and the
socket.

t_getstate() -

t_sync() -

t_alloc() -

t_free() -

t_look() - getsockopt()  with the SO_ERROR option
returns the same kind of error information as
t_look() .

t_error() perror()
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t_connect() connect() A connect()  can be done without first
binding the local endpoint.

The endpoint must be bound before calling
t_connect() . A connect()  can be done on
a connectionless endpoint to set the default
destination address for datagrams.

Data may be sent on a connect() .

t_rcvconnect() -

t_listen() listen() t_listen()  waits for connection
indications. listen()  merely sets the queue
depth.

t_accept() accept()

t_snd() send()

sendto()

sendmsg() sendto()  and sendmsg()  operate in
connection mode as well as datagram mode.

t_rcv() recv()

recvfrom()

recvmsg() recvfrom()  and recvmsg()  operate in
connection mode as well as datagram mode.

t_snddis() -

t_rcvdis() -

t_sndrel() shutdown()

t_rcvrel() -

t_sndudata() sendto()

recvmsg()

t_rcvuderr() -

read() , write() read() , write() In TLI you must push the tirdwr  module
before calling read()  or write() ; in
sockets, just call read()  or write() .

Table 3-14 TLI and Socket Equivalent Functions (Continued)

TLI function Socket function Comments
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Transport Selection and
Name-to-Address Mapping 4

This chapter covers selecting transports and resolving network addresses. It
describes interfaces that enable you to specify the available communication
protocols for an application. The chapter also describes additional functions
that provide direct mapping of names to network addresses.

Note – In this chapter the terms network and transport are used interchangeably
to refer to the programmatic interface that conforms to the transport layer of
the OSI Reference Mode. The term network is also used to refer to the physical
collection of computers connected through some electronic medium.

Transport Selection Is Multithread Safe
The interface described in this chapter is multithread safe. This means that
applications that contain transport selection function calls can be used freely in
a multithreaded application.

How Transport Selection Works page 112

Name-to-Address Mapping page 120

Using the Name-to-Address Mapping Routines page 122
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Transport Selection
A distributed application must use a standard interface to the transport
services if it is to be portable to different protocols. Transport selection services
provide an interface that allows an application to select which protocols to use.
This makes an application “protocol” and “medium independent.”

Transport selection makes it easy for a client application to try each available
transport until it establishes communication with a server. Transport selection
lets server applications accept requests on multiple transports, and in doing so,
communicate over a number of protocols. Transports may be tried in either the
order specified by the local default sequence or in an order specified by the
user.

Choosing from the available transports is the responsibility of the application.
The transport selection mechanism makes that selection uniform and simple.

How Transport Selection Works

The transport selection component is built around:

• A network configuration database (the /etc/netconfig  file), which
contains an entry for each network on the system

• Optional use of the NETPATH environment variable

The NETPATH variable is set by the user; it contains an ordered list of transport
identifiers. The transport identifiers match the netconfig  network ID field
and are links to records in the netconfig  file. The netconfig  file is
described in “/etc/netconfig File” on page 113. The network selection interface
is a set of access routines for the network-configuration database.

One set of library routines accesses only the /etc/netconfig  entries
identified by the NETPATH environment variable:

setnetpath()
getnetpath()
endnetpath()

They are described in “NETPATH Access to netconfig Data” on page 116 and in
getnetpath(3N) . These routines let the user influence the selection of
transports used by the application.
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To avoid user influence on transport selection, use the routines that access the
netconfig  database directly. These routines are described in “Accessing
netconfig” on page 118 and in getnetconfig(3N) .

setnetconfig()
getnetconfig()
endnetconfig()

The following two routines manipulate netconfig  entries and the data
structures they represent.

getnetconfigent()
freenetconfigent()

/etc/netconfig  File

The netconfig  file describes all transport protocols on a host. The entries in
the netconfig  file are explained briefly in Table 4-1 and in more detail in
netconfig(4) .

Table 4-1 The netconfig  File

Entries Description

network ID A local representation of a transport name (such as tcp ). Do
not assume that this field contains a well-known name (such as
tcp  or udp ) or that two systems use the same name for the
same transport.

semantics The semantics of the particular transport protocol. Valid
semantics are:
tpi_clts  – connectionless
tpi_cots  – connection oriented
tpi_cots_ord  – connection oriented with orderly release

flags May take only the values, v, or hyphen (-) . Only the visible
flag (-v ) is defined.

protocol
family

The protocol family name of the transport provider (for
example, inet  or loopback) .
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Code Example 4-1 shows a sample netconfig  file. Use of the netconfig  file
has been changed for the inet  transports, as described in the commented
section in the sample file. This change is also described in “Name-to-Address
Mapping” on page 120.

Code Example 4-1 Sample netconfig  File

# The “Network Configuration” File.
#
# Each entry is of the form:
#
#<net <semantics>  <flags> <proto    <proto   <device> <nametoaddr_libs>
# id>                       family>   name>
#
# The "-" in <nametoaddr_libs> for inet family transports indicates redirection
# to the name service switch policies for "hosts" and "services. The "-" may be
# replaced by nametoaddr libraries that comply with the SVR4 specs, in which
# case the name service switch will be used for netdir_getbyname, netdir_
# getbyaddr, gethostbyname, gethostbyaddr, getservbyname, and getservbyport.
# There are no nametoaddr_libs for the inet family in Solaris anymore.

#
udp    tpi_clts     v       inet      udp      /dev/udp      -
#
tcp    tpi_cots_ord v       inet      tcp      /dev/tcp      -
#
icmp   tpi_raw      -       inet      icmp     /dev/icmp     -
#
rawip  tpi_raw      -       inet      -        /dev/rawip    -

protocol name The protocol name of the transport provider. For example, if
protocol family is inet , then protocol name is tcp , udp , or icmp .
Otherwise, the value of protocol name is a hyphen (- ).

network device The full path name of the device file to open when accessing
the transport provider.

name-to-
address
translation
libraries

Names of the shared objects. This field contains the comma-
separated file names of the shared objects that contain name-to-
address mapping routines. Shared objects are located through
the path in the LD_LIBRARY_PATH variable. A “- ” in this field
indicates the absence of any translation libraries.

Table 4-1 The netconfig  File

Entries Description
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#
ticlts tpi_clts     v      loopback  -        /dev/ticlts    straddr.so
#
ticots tpi_cots     v      loopback  -        /dev/ticots    straddr.so
#
ticotsord tpi_cots_ord v   loopback  -        /dev/ticotsord straddr.so
#

Network selection library routines return pointers to netconfig  entries. The
netconfig  structure is shown in Code Example 4-2.

Code Example 4-2 The netconfig  Structure

struct netconfig {
char *nc_netid;       /* network identifier */
unsigned long nc_semantics; /* semantics of protocol */
unsigned  long nc_flag;            /* flags for the protocol */
unsigned long nc_protofmly;  /* family name */
unsigned  long nc_proto;          /* proto specific */
char *nc_device;      /* device name for network id */
unsigned long nc_nlookups;   /* # entries in nc_lookups */
char **nc_lookups;  /* list of lookup libraries */
unsigned long nc_unused[8];

};

Valid network IDs are defined by the system administrator, who must ensure
that network IDs are locally unique. If they are not, some network selection
routines can fail. For example, it is not possible to know which network
getnetconfigent("udp")  will use if there are two netconfig  entries with
the network ID udp .

The system administrator also sets the order of the entries in the netconfig
database. The routines that find entries in /etc/netconfig  return them in
order, from the beginning of the file. The order of transports in the netconfig
file is the default transport search sequence of the routines. Loopback entries
should be at the end of the file.

The netconfig  file and the netconfig  structure are described in greater
detail in netconfig(4) .
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The NETPATH Environment Variable

An application usually uses the default transport search path set by the system
administrator to locate an available transport. However, when a user wants to
influence the choices made by an application, the application can modify the
interface by using the environment variable NETPATH and the routines
described in the section, “NETPATH Access to netconfig Data.” These routines
access only the transports specified in the NETPATH variable.

NETPATH is similar to the PATH variable. It is a colon-separated list of transport
IDs. Each transport ID in the NETPATH variable corresponds to the network ID
field of a record in the netconfig  file. NETPATH is described in environ(5) .

The default transport set is different for the routines that access netconfig
through the NETPATH environment variable (described in the next section) and
the routines that access netconfig  directly. The default transport set for
routines that access netconfig  via NETPATH consists of the visible transports
in the netconfig  file. For routines that access netconfig  directly, the default
transport set is the entire netconfig  file. A transport is visible if the system
administrator has included a v  flag in the flags  field of that transport’s
netconfig  entry.

NETPATH Access to netconfig  Data

Three routines access the network configuration database indirectly through
the NETPATH environment variable. The variable specifies the transport or
transports an application is to use and the order to try them. NETPATH
components are read from left to right. The functions have the following
interfaces:

#include <netconfig.h>

void *setnetpath(void);
struct netconfig *getnetpath(void *);
int endnetpath(void *);

A call to setnetpath() initializes the search of NETPATH. It returns a pointer
to a database that contains the entries specified in a NETPATH variable. The
pointer, called a handle, is used to traverse this database with getnetpath() .
setnetpath()  must be called before the first call to getnetpath() .
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When first called, getnetpath()  returns a pointer to the netconfig  file
entry that corresponds to the first component of the NETPATH variable. On
each subsequent call, getnetpath()  returns a pointer to the netconfig
entry that corresponds to the next component of the NETPATH variable;
getnetpath()  returns NULL if there are no more components in NETPATH. A
call to getnetpath()  without an initial call to setnetpath()  causes an
error; getnetpath()  requires the pointer returned by setnetpath()  as an
argument.

getnetpath()  silently ignores invalid NETPATH components. A NETPATH
component is invalid if there is no corresponding entry in the netconfig
database.

If the NETPATH variable is unset, getnetpath()  behaves as if NETPATH were
set to the sequence of default or visible transports in the netconfig  database,
in the order in which they are listed.

endnetpath()  is called to release the database pointer to elements in the
NETPATH variable when processing is complete. endnetpath()  fails if
setnetpath()  was not called previously. Code Example 4-3 shows the
setnetpath() , getnetpath() , and endnetpath()  routines.

Code Example 4-3 setnetpath() , getnetpath() , and endnetpath()

#include <netconfig.h>

void *handlep;
struct netconfig *nconf;

if ((handlep = setnetpath()) == (void *)NULL) {
nc_perror(argv[0]);
exit(1);

}
while ((nconf = getnetpath(handlep)) != (struct netconfig *)NULL) {

/*
 * nconf now describes a transport provider.
 */

}
endnetpath(handlep);

The netconfig  structures obtained through getnetpath()  become invalid
after the execution of endnetpath() . To preserve the data in the structure,
use getnetconfigent(nconf->nc_netid)  to copy them into a new data
structure.
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Accessing netconfig

Three functions access /etc/netconfig  and locate netconfig  entries. The
routines setnetconfig() , getnetconfig() , and endnetconfig()  have
the following interfaces:

#include <netconfig.h>

void *setnetconfig(void);
struct netconfig *getnetconfig(void *);
int endnetconfig(void *);

A call to setnetconfig()  initializes the record pointer to the first index in
the database; setnetconfig()  must be used before the first use of
getnetconfig() . setnetconfig()  returns a unique handle (a pointer into
the database) to be used by the getnetconfig()  routine. Each call to
getnetconfig()  returns the pointer to the current record in the netconfig
database and increments its pointer to the next record. It can be used to search
the entire netconfig  database. getnetconfig()  returns a NULL at the end
of file.

You must use endnetconfig()  to release the database pointer when
processing is complete. endnetconfig()  must not be called before
setnetconfig() .

Code Example 4-4 setnetconfig() , getnetconfig() , and endnetconfig()

void *handlep;
struct netconfig *nconf;

if ((handlep = setnetconfig()) == (void *)NULL){
nc_perror(argv[0]);
exit(1);

}
/*
 * transport provider information is described in nconf.
 * process_transport is a user-supplied routine that
 * tries to connect to a server over transport nconf.
 */
while ((nconf = getnetconfig(handlep)) != (struct netconfig *)NULL){

if (process_transport(nconf) == SUCCESS){
break;

}
}
endnetconfig(handlep);
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The last two functions have the following interface:

#include <netconfig.h>
struct netconfig *getnetconfigent(char *);
int freenetconfigent(struct netconfig *);

getnetconfigent()  returns a pointer to the struct netconfig  structure
corresponding to netid . It returns NULL if netid  is invalid.
setnetconfig()  need not be called before getnetconfigent() .

freenetconfigent()  frees the structure returned by getnetconfigent() .
Code Example 4-5 shows the getnetconfigent()  and
freenetconfigent()  routines.

Code Example 4-5 getnetconfigent()  and freenetconfigent()

/* assume udp is a netid on this host */
struct netconfig *nconf;

if ((nconf = getnetconfigent(“udp”)) == (struct netconfig *)NULL){
nc_perror(“no information about udp”);
exit(1);

}
process_transport(nconf);
freenetconfigent(nconf);

Loop Through All Visible netconfig  Entries

The setnetconfig()  call is used to step through all the transports marked
visible (by a v  flag in the flags  field) in the netconfig  database. The
transport selection routine returns a netconfig  pointer.

Code Example 4-6 Looping Through Visible Transports

void *handlep;
struct netconfig *nconf;

if ((handlep = setnetconfig() == (void *) NULL) {
nc_perror(“setnetconfig”);
exit(1);

}
while (nconf = getnetconfig(handlep))

if (nconf->nc_flag & NC_VISIBLE)
doit(nconf);

(void) endnetconfig(handlep);
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Looping Through User-Defined netconfig  Entries

Users can control the loop by setting the NETPATH environment variable to a
colon-separated list of transport names. If NETPATH is set as follows:

NETPATH=tcp:udp

The loop first returns the tcp  entry, and then the udp  entry.  If NETPATH is not
defined, the loop returns all visible entries in the netconfig  file in the order
in which they are stored. The NETPATH environment variable lets users define
the order in which client-side applications try to connect to a service. It also
lets the server administrator limit transports on which a service can listen.

Use getnetpath()  and setnetpath()  to obtain or modify the network path
variable. Code Example 4-6 shows the form and use, which are similar to the
getnetconfig()  and setnetconfig() routines.

Name-to-Address Mapping
Name-to-address mapping lets an application obtain the address of a service
on a specified host, independent of the transport used. Name-to-address
mapping consists of the following functions:

netdir_getbyname()
netdir_getbyaddr()
netdir_free()
taddr2uaddr()
uaddr2taddr()
netdir_options()

The first argument of each routine points to a netconfig structure that describes
a transport. The routine uses the array of directory-lookup library paths in the
netconfig structure to call each path until the translation succeeds.

The libraries are described in Table 4-2 on page 121. The routines described in
the section, “Using the Name-to-Address Mapping Routines,” are defined in
netdir(3N) .
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Note – The following libraries no longer exist in the Solaris 2.x environment:
tcpip.so , switch.so , and nis.so . For more information on this change,
 see nsswitch.conf(4)  and the NOTES section of gethostbyname(3N) .

straddr.so  Library

Files for the library are created and maintained by the system administrator.
The straddr.so  files are /etc/net/ transport-name/hosts  and
/etc/net/ transport-name/services . transport-name is the local name of the
transport that accepts string addresses (specified in the network ID field of the
/etc/netconfig  file). For example, the host file for ticlts  would be
/etc/net/ticlts/hosts , and the service file for ticlts  would be
/etc/net/ticlts/services .

Even though most string addresses do not distinguish between host and service,
separating the string into a host part and a service part is consistent with other
transports. The /etc/net/ transport-name/hosts  file contains a text string that
is assumed to be the host address, followed by the host name. For example:

joyluckaddr joyluck
carpediemaddr carpediem
thehopaddr thehop
pongoaddr pongo

For loopback transports, it makes no sense to list other hosts because the
service cannot go outside the containing host.

Table 4-2 Name-to-Address Libraries

Library
Transport
Family Description

- inet For networks of the protocol family inet , its name-to-
address mapping is provided by the name service switch
based on the entries for hosts and services in the file
nsswitch.conf . For networks of other families, the "-"
indicates a non-functional name-to-address mapping.

straddr.so loopback Contains the name-to-address mapping routines of any
protocol that accepts strings as addresses, such as the
loopback transports.
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The /etc/net/transport-name/services  file contains service names
followed by strings identifying the service address. For example:

rpcbind rpc
listen serve

The routines create the full string address by concatenating the host address, a
period (. ), and the service address. For example, the address of the listen
service on pongo  is pongoaddr.serve .

When an application requests the address of a service on a particular host on a
transport that uses this library, the host name must be in
/etc/net/ transport/hosts , and the service name must be in
/etc/net/ transport/services . If either is missing, the name-to-address
translation fails.

Using the Name-to-Address Mapping Routines

This section provides an overview of what routines are available to use. The
routines return or convert the network names to their respective network
addresses. Note that netdir_getbyname() , netdir_getbyaddr() , and
taddr2uaddr()  return pointers to data that must be freed by calls to
netdir_free() .

int netdir_getbyname(struct netconfig * nconf,
    struct nd_hostserv * service,
    struct nd_addrlist ** addrs);

netdir_getbyname()  maps the host and service name specified in service to
a set of addresses consistent with the transport identified in nconf. The
nd_hostserv  and nd_addrlist  structures are defined in netdir(3N) . A
pointer to the addresses is returned in addrs.

To find all addresses of a host and service (on all available transports), call
netdir_getbyname()  with each netconfig  structure returned by either
getnetpath()  or getnetconfig() .

int netdir_getbyaddr(struct netconfig * nconf,
    struct nd_hostservlist ** service,
    struct netbuf * netaddr);

netdir_getbyaddr()  maps addresses into host and service names. The
function is called with an address in netaddr and returns a list of host-name and
service-name pairs in service. The nd_hostservlist  structure is defined in
netdir(3N) .
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void netdir_free(void * ptr, int struct_type);

The netdir_free()  routine frees structures allocated by the name-to-address
translation routines. The parameters can take the values shown in Table 4-3.

char *taddr2uaddr(struct netconfig * nconf , struct netbuf * addr );

taddr2uaddr()  translates the address pointed to by addr and returns a
transport-independent character representation of the address (“universal
address”). nconf specifies the transport for which the address is valid. The
universal address can be freed by free() .

struct netbuf *uaddr2taddr(struct netconfig * nconf, char * uaddr);

The “universal address” pointed to by uaddr is translated into a netbuf
structure; nconf specifies the transport for which the address is valid.

int netdir_options(struct netconfig * nconf, int option, int fd,
   char * point_to_args);

netdir_options()  interfaces to transport-specific capabilities (such as the
broadcast address and reserved port facilities of TCP and UDP). nconf specifies
a transport. option specifies the transport-specific action to take. fd may or may
not be used depending upon the value of option. The fourth argument points to
operation-specific data.

Table 4-3 netdir_free()  Routines

struct_type ptr

ND_HOSTSERV pointer to an nd_hostserv  structure

ND_HOSTSERVLIST pointer to an nd_hostservlist  structure

ND_ADDR pointer to a netbuf  structure

ND_ADDRLIST pointer to an nd_addrlist  structure
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Table 4-4 shows the values used for option:

void netdir_perror(char * s);

netdir_perror()  displays the message stating why one of the name-to-
address mapping routines failed on stderr .

char *netdir_sperror(void);

netdir_sperror()  returns a string containing the error message stating why
one of the name-to-address mapping routines failed.

Code Example 4-7 shows network selection and name-to-address mapping.

Code Example 4-7 Network Selection and Name-to-Address Mapping

#include <netconfig.h>
#include <netdir.h>
#include <sys/tiuser.h>

struct nd_hostserv nd_hostserv;   /* host and service information */
struct nd_addrlist *nd_addrlistp; /* addresses for the service */
struct netbuf *netbufp;           /* the address of the service */
struct netconfig *nconf;          /* transport information*/
int i;                            /* the number of addresses */
char *uaddr;                      /* service universal address */
void *handlep;                    /* a handle into network selection */
/*
 * Set the host structure to reference the "date"
 * service on host "gandalf"
 */
nd_hostserv.h_host = "gandalf";

Table 4-4 Values for netdir_options

Option Description

ND_SET_BROADCAST Sets the transport for broadcast (if the transport supports
broadcast).

ND_SET_RESERVEDPORT Lets the application bind to a reserved port (if allowed
by the transport).

ND_CHECK_RESERVEDPORTVerifies that an address corresponds to a reserved port
(if the transport supports reserved ports).

ND_MERGEADDR Transforms a locally meaningful address into an address
to which client hosts can connect,
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nd_hostserv.h_serv = "date";
/*
 * Initialize the network selection mechanism.
 */
if ((handlep = setnetpath()) == (void *)NULL) {

nc_perror(argv[0]);
exit(1);

}
/*
 * Loop through the transport providers.
 */
while ((nconf = getnetpath(handlep)) != (struct netconfig *)NULL) {

/*
 * Print out the information associated with the
 * transport provider described in the "netconfig"
 * structure.
 */
printf("Transport provider name: %s\n", nconf->nc_netid);
printf("Transport protocol family: %s\n", nconf->nc_protofmly);
printf("The transport device file: %s\n", nconf->nc_device);
printf("Transport provider semantics: ");
switch (nconf->nc_semantics) {

case NC_TPI_COTS:
printf("virtual circuit\n");
break;

case NC_TPI_COTS_ORD:
printf("virtual circuit with orderly release\n");
break;

case NC_TPI_CLTS:
printf("datagram\n");
break;

}
/*
 * Get the address for service "date" on the host
 * named "gandalf" over the transport provider
 * specified in the netconfig structure.
 */
if (netdir_getbyname(nconf, &nd_hostserv, &nd_addrlistp)

!= ND_OK) {
printf("Cannot determine address for service\n");
netdir_perror(argv[0]);
continue;

}
printf("<%d> address of date service on gandalf:\n",

nd_addrlistp->n_cnt);
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/*
 * Print out all addresses for service "date" on
 * host "gandalf" on current transport provider.
 */
netbufp = nd_addrlistp->n_addrs;
for (i = 0; i < nd_addrlistp->n_cnt; i++, netbufp++) {

uaddr = taddr2uaddr(nconf,netbufp);
printf("%s\n",uaddr);
free(uaddr);

}
netdir_free( nd_addrlistp, ND_ADDRLIST );

}
endnetconfig(handlep);

Portability From Previous Releases

The list that follows contains the names of the functions with functionality
unchanged from earlier releases.

gethostbyname()
gethostbyaddr()
gethostent()
getrpcbyname()
getrpcbynumber()
getservbyname()
getservbyaddr()
netdir_free()
netdir_getbyname()
netdir_getbyaddr()
netdir_options()
netdir_perror()
netdir_sperror()
taddr2uaddr()
uaddr2taddr()

Other porting issues are described in ONC+ Developer’s Guide.
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Glossary

CLTS
Connectionless transport service. Data may be exchanged without a prior link
between processes. Also known as a datagram protocol because the operation
is like sending a letter.

client
A process that makes use of a service or services provided by other processes.
A client process initiates requests for services.

concurrent server
A multithreaded server that creates a new process to handle each request,
leaving the main server process to listen for more requests. With a
multithreaded OS, such as Solaris, it is possible to implement concurrent
servers without creating a complete process to handle requests; each request
can be dealt with in a single thread.

COTS
Connection-oriented transport service. Requires a logical connection to be
established between two processes before data can be exchanged. Conceptually
analogous to a telephone call.

ephemeral port numbers
Short-lived port numbers. TCP or UDP can assign an unused port to a process.

ICMP
Internet Control Message Protocol. A network layer protocol dealing with
routing, reliability, flow control and sequencing of data.
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internetwork
The connection of different physical networks into a large, virtual network.
The Internet refers to the TCP/IP-based Internet that connects many
commercial sites, government agencies, and universities.

IP
Internet protocol. Core protocol of TCP/IP at the network layer. A
connectionless service, it handles packet delivery for TCP, UDP, and ICMP
protocols.

ISO/OSI
The International Standards Organization (ISO) model for Open Systems
Interconnection (OSI) is a seven layer model for describing networked systems.

iterative server
A single-threaded server that can handle only one request at a time. Requests
are received and processed within a single process. It is possible for client
processes to be blocked for some time while waiting for requests to be finished.

protocol
A set of rules and conventions that describes how information is to be
exchanged between two entities.

protocol stack
A set of layered protocols where each layer has a well-defined interface to the
layer immediately above and immediately below.

protocol peers
A pair of protocols that reside in the same layer. They communicate with each
other.

RFC
Request for Comments. Formal specifications of the Internet protocols.

server
A process that provides some facility that can be used by other processes. A
server process waits for requests.

TCP
Transmission Control Protocol. Built on top of IP at the transport layer, TCP
provides a reliable connection-oriented byte stream service between two hosts
on an internetwork
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UDP
User Datagram Protocol. Built on top of IP at the transport layer, UDP provides
an unreliable datagram-based service between two hosts on an internetwork.

well-known port numbers
16-bit port numbers that identify individual processes on a host. Well-known
services are provided at well-known port numbers.
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