
2550 Garcia Avenue
Mountain View, CA 94043
U.S.A.

System Interfaces Guide

A Sun Microsystems, Inc. Business

Please
Recycle

 1995 Sun Microsystems, Inc. 2550 Garcia Avenue, Mountain View, California 94043-1100 U.S.A.

All rights reserved. This product or document is protected by copyright and distributed under licenses restricting its use,
copying, distribution, and decompilation. No part of this product or document may be reproduced in any form by any means
without prior written authorization of Sun and its licensors, if any.

Portions of this product may be derived from the UNIX® system, licensed from UNIX System Laboratories, Inc., a wholly owned
subsidiary of Novell, Inc., and from the Berkeley 4.3 BSD system, licensed from the University of California. Third-party
software, including font technology in this product, is protected by copyright and licensed from Sun’s suppliers.

RESTRICTED RIGHTS LEGEND: Use, duplication, or disclosure by the government is subject to restrictions as set forth in
subparagraph (c)(1)(ii) of the Rights in Technical Data and Computer Software clause at DFARS 252.227-7013 and FAR 52.227-19.
The product described in this manual may be protected by one or more U.S. patents, foreign patents, or pending applications.

TRADEMARKS
Sun, Sun Microsystems, the Sun logo, SunSoft, the SunSoft logo, Solaris, SunOS, OpenWindows, DeskSet, ONC, ONC+, and NFS
are trademarks or registered trademarks of Sun Microsystems, Inc. in the United States and other countries. UNIX is a registered
trademark in the United States and other countries, exclusively licensed through X/Open Company, Ltd. OPEN LOOK is a
registered trademark of Novell, Inc. PostScript and Display PostScript are trademarks of Adobe Systems, Inc.

All SPARC trademarks are trademarks or registered trademarks of SPARC International, Inc. in the United States and other
countries. SPARCcenter, SPARCcluster, SPARCompiler, SPARCdesign, SPARC811, SPARCengine, SPARCprinter, SPARCserver,
SPARCstation, SPARCstorage, SPARCworks, microSPARC, microSPARC-II, and UltraSPARC are licensed exclusively to Sun
Microsystems, Inc. Products bearing SPARC trademarks are based upon an architecture developed by Sun Microsystems, Inc.

The OPEN LOOK® and Sun™ Graphical User Interfaces were developed by Sun Microsystems, Inc. for its users and licensees.
Sun acknowledges the pioneering efforts of Xerox in researching and developing the concept of visual or graphical user
interfaces for the computer industry. Sun holds a non-exclusive license from Xerox to the Xerox Graphical User Interface, which
license also covers Sun’s licensees who implement OPEN LOOK GUIs and otherwise comply with Sun’s written license
agreements.

X Window System is a trademark of X Consortium, Inc.

THIS PUBLICATION IS PROVIDED “AS IS” WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR IMPLIED,
INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A
PARTICULAR PURPOSE, OR NON-INFRINGEMENT.

THIS PUBLICATION COULD INCLUDE TECHNICAL INACCURACIES OR TYPOGRAPHICAL ERRORS. CHANGES ARE
PERIODICALLY ADDED TO THE INFORMATION HEREIN. THESE CHANGES WILL BE INCORPORATED IN NEW
EDITIONS OF THE PUBLICATION. SUN MICROSYSTEMS, INC. MAY MAKE IMPROVEMENTS AND/OR CHANGES IN
THE PRODUCT(S) AND/OR THE PROGRAMS(S) DESCRIBED IN THIS PUBLICATION AT ANY TIME.

iii

Contents

1. Introduction to the API . 1

The Programming Interface . 1

Interface Functions . 2

Libraries . 2

Static libraries. 2

Dynamic libraries. 3

Interface Taxonomy . 3

Standard Classification . 4

Public Classification . 4

 Classification . 4

Obsolete Classification . 5

2. Processes. 7

Overview. 7

Functions. 8

Spawning new processes . 9

iv System Interfaces Guide—November 1995

Runtime Linking . 11

Process Scheduling . 13

Error Handling . 14

Signals . 14

Overview . 14

3. Process Scheduler . 23

Overview of the Process Scheduler . 25

Time-Sharing Class . 26

System Class. 27

Real-time Class. 27

Commands and Functions . 27

The priocntl Command . 30

The priocntl Function . 34

The priocntlset Function . 44

Interaction with Other Functions. 46

Kernel Processes . 46

fork and exec . 47

nice . 47

init . 47

Performance . 47

Process State Transition. 48

Software Latencies . 50

4. Input/Output Interfaces. 51

Files and I/O . 51

Contents v

Basic File I/O . 52

Advanced File I/O. 53

File System Control . 54

File and Record Locking . 55

Supported File Systems . 55

Choosing A Lock Type . 55

Terminology . 56

Setting a File Lock . 56

Opening a File for Record Locking . 58

Setting and Removing Record Locks. 58

Getting Lock Information . 59

Forking Locks. 60

Deadlock Handling . 61

Selecting Advisory or Mandatory Locking 61

Cautions about Mandatory Locking 62

Terminal I/O . 63

5. System V IPC. 65

Permissions. 66

IPC Functions, Key Arguments, and Creation Flags. 67

Messages . 68

Structure of a Message Queue . 69

Initializing a Message Queue with msgget (). 71

Controlling Message Queues with msgctl () 72

Sending and Receiving Messages . 73

vi System Interfaces Guide—November 1995

Semaphores . 75

Structure of a Semaphore Set . 77

Initializing a Semaphore Set with semget () 78

Controlling Semaphores with semctl () 80

Performing Semaphore Operations with semop(). 82

System V Shared Memory . 83

Structure of a System V Shared Memory Segment 84

Using shmget () to Access a Shared Memory Segment. . . . 85

Controlling a Shared Memory Segment with shmctl () . . . 87

Attaching and Detaching a Shared Memory Segment with
shmat () and shmdt () . 88

6. Memory Management . 91

Overview of the Virtual Memory System 91

Virtual Memory, Address Spaces, and Mapping 91

Networking, Heterogeneity, and Coherence 93

Memory Management Interfaces . 94

Creating and Using Mappings . 94

Removing Mappings . 100

Cache Control. 100

Other Mapping Functions . 103

Address Space Layout . 103

7. Realtime Programming and Administration 107

Basic Rules of Realtime Applications . 107

Degrading Response Time . 108

Contents vii

Runaway Realtime Processes . 111

I/O Behavior . 111

Scheduling . 112

Dispatch Latency . 112

System Calls That Control Scheduling 121

Utilities that Control Scheduling . 122

Configuring Scheduling . 124

Memory Locking . 127

Overview . 127

High Performance I/O . 129

 Asynchronous I/O . 129

Synchronized I/O . 131

Interprocess Communication . 133

Overview . 133

Signals . 134

Pipes . 134

IPC Message Queues . 135

IPC Semaphores . 136

Shared Memory . 136

Choice of IPC Mechanism. 138

Asynchronous Networking . 138

Modes of Networking . 138

Networking Programming Models . 139

Asynchronous Connectionless-Mode Service 140

viii System Interfaces Guide—November 1995

Asynchronous Connection-Mode Service 141

Asynchronous Open . 143

Timers . 145

Timestamp Functions . 145

Interval Timer Functions. 146

A. Full Code Examples . 149

Index . 181

ix

Tables

Table 2-1 Process Functions . 8

Table 2-2 Signal Functions. 15

Table 3-1 Valid priocntl ID Types . 30

Table 3-2 Valid idtype Values . 31

Table 3-3 Class-Specific Options for priocntl . 32

Table 3-4 Valid priocntl.h idtypes . 35

Table 3-5 Valid cmd Values. 35

Table 3-6 What PC_GETPARMS Returns . 41

Table 3-7 Special Values for rt_tqnsecs . 44

Table 4-1 Basic File I/O Functions . 52

Table 4-2 Advanced File I/O Functions . 53

Table 4-3 File System Control Functions. 54

Table 4-4 Terminal I/O Functions . 63

Table 5-1 IPC Reference Manual Pages . 66

Table 5-2 Octal Permission Values. 67

Table 7-1 Realtime System Dispatch Latency with SunOS 5.x. 115

x System Interfaces Guide—November 1995

Table 7-2 Class Options for the dispadmin(1M) Utility 123

xi

Figures

Figure 3-1 SunOS 5.x Process Scheduler . 25

Figure 3-2 Process Priorities (Programmer’s View) 28

Figure 3-3 Process State Transition Diagram . 48

Figure 5-1 Structure of a Message Queue . 69

Figure 5-2 Structure of a Semaphore . 77

Figure 5-3 Structure of a Shared Memory Segment 84

Figure 5-4 Synopsis of shmctl () . 87

Figure 6-1 Traditional UNIX System Address-Space Layout 104

Figure 6-2 Address-Space Layout . 105

Figure 7-1 Unbounded Priority Inversion . 110

Figure 7-2 Application Response Time . 113

Figure 7-3 Internal Dispatch Latency . 114

Figure 7-4 Dispatch Priorities for Scheduling Classes 116

Figure 7-5 The Kernel Dispatch Queue. 118

xii System Interfaces Guide—November 1995

xiii

Code Samples

Code Example 4-1 Basic file I/O . 52

Code Example 4-2 Seek code . 53

Code Example 5-1 IPC Permissions Data Structure 66

Code Example 5-2 Message Queue Control Structure 70

Code Example 5-3 Message Header Structure. 71

Code Example 5-4 Example of msgget () call . 71

Code Example 5-5 Example msgctl () calls . 73

Code Example 5-6 Example msgsnd() and msgrcv () calls 74

Code Example 5-7 Synopsis of semget () . 79

Code Example 5-8 Example semget () call . 79

Code Example 5-9 Example semctl () call . 81

Code Example 5-10 Example semop() call . 83

Code Example 5-11 Sample Program to Illustrate shmget (). 86

Code Example 5-12 Sample shmctl () call . 87

Code Example 5-13 Sample shmat () and shmdt () calls. 89

Code Example 7-1 Asynchornous Network Transfers 140

xiv System Interfaces Guide—November 1995

Code Example 7-2 Asynchronous Connection Request 142

Code Example 7-3 Asynchronous LIstening . 143

Code Example 7-4 File Descriptor Transfer . 144

Code Example 7-5 Controlling Timer Interrupts. 147

Code Example A-1 Sample Program to Illustrate msgget (). 149

Code Example A-2 Sample Program to Illustrate msgctl (). 150

Code Example A-3 Sample Program to Illustrate msgsnd() and msgrcv () 153

Code Example A-4 Sample Program to Illustrate semget (). 157

Code Example A-5 Sample Program to Illustrate semctl (). 159

Code Example A-6 Sample Program to Illustrate semop() 164

Code Example A-7 Sample Program to Illustrate shmget (). 168

Code Example A-8 Sample Program to Illustrate shmctl (). 170

Code Example A-9 Sample Program to Illustrate shmat () and shmdt () . 173

Code Example A-10 Example of Record Locking With Lock Promotion . . 178

Code Example A-11 Record Write Locks With lockf () 179

xv

Preface

Purpose
Read this guide for information about system interfaces provided by SunOS
libraries. Rather than teaching you to write programs, this guide supplements
programming texts by concentrating on other elements that are part of getting
programs into operation.

Audience and Prerequisite Knowledge
This guide addresses programmers. Expert programmers, such as those
developing system software, might find that this guide lacks the depth of
information they need. Expert programmers should see the Solaris 2.5 Reference
Manual AnswerBook.

Knowledge of terminal use, of a UNIX system editor, and of the UNIX system
directory and file structure is assumed. Read the Solaris User’s Guide to review
these basic tools and concepts.

The C Connection
The SunOS system supports many programming languages. Nevertheless, the
relationship between this operating system and C has always been and
remains very close.

xvi System Interfaces Guide—November 1995

Most of the code in the operating system is written in the C language. So, while
this guide is intended to be useful to you no matter what language you are
using, most of the examples assume you are programming in C.

Hardware And Software Dependency
Except for hardware-specific information such as addresses, most of the text in
this book applies to any computer running the Solaris 2.x operating system.

If commands work differently in your system environment, your system might
be running a different software release. If some commands do not seem to
exist, they might be in packages that are not installed on your system—talk to
your system administrators to find out what commands you have available.

Typeface Conventions
The following conventions are used in this guide:

• Prompts and error messages from the system are printed in listing type
like this .

• Information you type as a command or in response to prompts is shown in
boldface listing type like this . Type everything shown in
boldface exactly as it appears in the text.

• Parts of a command shown in italic text like this refer to a variable that you
have to substitute from a selection. It is up to you to make the correct
substitution.

• Output to the screen by the system or an application are in currier , inputs
from the keyboard are in currier bold :

$pwd
/home/traveler/scotty

• You are expected to press the RETURN key after entering a command or
menu choice, so the RETURN key is not explicitly shown in these cases. If,
however, you are expected to press RETURN without typing any text, the
notation is shown.

• Control characters are shown by the string “CTRL-” followed by the
appropriate character, such as D (this is known as CTRL-D). To enter a
control character, hold down the key marked CTRL (or CONTROL) and
press the D key.

Preface xvii

• The default prompt signs for an ordinary user and root are the dollar sign
or percent sign ($ or %) and the number sign (#). When the # prompt is used
in an example, the command illustrated can be executed only by root .

Command References
When a command is mentioned in a section of the text for the first time, a
reference to the manual section where the command is formally described is
included in parentheses: command(section). Numbered sections are in the
Solaris 2.5 Reference Manual AnswerBook.

For example, “See priocntl(2) ” tells you to look at the priocntl page in
section 2 of the Solaris 2.5 Reference Manual AnswerBook.

Information in the Examples
While every effort has been made to present displays of information just as
they appear on your terminal, it is possible that your system might produce
slightly different output. Some displays depend on a particular machine
configuration that might differ from yours.

xviii System Interfaces Guide—November 1995

1

Introduction to the API 1

A SunSoft goal is to define the Architectural Interfaces of Solaris. There are two
reasons:

• The system interface is an effective “contract” with our customers. We tell
our customers exactly what we offer them to use, and help ensure that only
the official (intended) interface is used.

• We use the definition to ensure that we honor this contract. Interfaces we
offer in a particular version of the product are preserved in future versions
of the product. Thus, we maintain upward compatibility in subsequent
releases of Solaris.

The Programming Interface
Solaris offers many kinds of “interface”, such as: the programming interface,
elements of the user interface, protocols, and rules about naming and the
locations of objects in the file system. One of the most important interfaces to
the system is the programming interface - the one offered to developers. The
programming interface has two major parts: one seen by developers of
applications, which we call the API, and one seen by developers of system
components such as device drivers and platform support modules, which we
call the SPI (system programming interface).

Each programming interface to Solaris is also “visible” to the developer at two
levels, source level and binary. When we use the acronyms API and SPI, we
indicate the source level programming interface to the system. We use the
terms Application Binary Interface (ABI) and System Binary Interface (SBI) to

2 System Interfaces Guide—November 1995

1

indicate the binary interfaces corresponding to the respective source level
programming interfaces. (Because the phrase “the ABI” can be confused with
other binary interfaces, we refer to the “Solaris ABI” only by name.)

Interface Functions

The Solaris 2.x functions discussed in this manual are the interfaces between
the services provided by the kernel and application programs. The functions
described in Sections 2 and 3 of the Solaris 2.5 Reference Manual AnswerBook are
an application’s interface to the Solaris 2.x operating system. These functions
are how an application uses facilities such as the file system, interprocess
communication primitives, and multitasking mechanisms. This manual is one
of a set that describe major elements of the API. Other manuals in the set are
STREAMS Programming Guide, Multithreaded Programming Guide, Transport
Interfaces Programming Guide, etc.

When you use the library routines described in sections 2 and 3 of the Solaris
2.5 Reference Manual AnswerBook, the details of their implementation are
transparent to the program. For example, the function read underlies the
fread implementation in the standard C library.

A C program is automatically linked to the invoked functions when you
compile the program. The procedure might be different for programs written in
other languages. See the Linker and Libraries Guide for more information.

Libraries
Solaris provides both static and dynamic implementations of libraries. Static
libraries do not provide an interface, they provide only an implementation. The
application programming interface of Solaris is made available to developers
through the shared libraries (also called shared objects). In the runtime
environment, a dynamic executable and shared objects are processed by the
runtime linker, to produce a runnable process. The official API to the system is
the interface between an application and the dynamic shared libraries.

Static libraries

The traditional, static, implementation of libraries (.a files or archives), do not
separate the application programming interface from its implementation (the
contents of the library). When an application is linked to a static library, the

Introduction to the API 3

1

object code that implements that library is bound into the executable object
resulting from the build. The source-level programming interface to the library
may be preserved, but the application must be relinked to produce an
executable that runs on a later version of an operating system. Future binary
compatibility is only assured when shared libraries are used.

The presence of static libraries is a historical artifact and there is no mechanism
to define their interfaces in a way that is separate from their implementation.
For this reason, use of static libraries should be avoided by new applications.

Dynamic libraries

Unlike the static libraries, shared libraries do separate the application
programming interface from the implementation. The interface is bound to an
implementation of the library only at runtime. This allows SunSoft to evolve
the library’s implementation - such as changing internal interfaces, while
maintaining the API and preserving binary compatibility with applications
built against it.

Interface Taxonomy
The Interface Taxonomy classifies commitment level of an interface. The
commitment level identifies who may, or how to, use the interface. Definitions:.

Open specification An interface specification that we publish, which customers can use
freely (build products that use our implementation of the interface).
Others are free to provide alternative implementations without
licensing or legal restrictions.

Closed specification An interface specification that we do not publish. On which we do
not want customers to build products and of which we do not want
others to build alternative implementations.

Compatible change A change to an interface or its implementation has no effect on
previously valid programs.

Incompatible change A change to an interface or its implementation that makes
previously valid programs invalid. This may include bug fixes or
performance degradation. This does not include programs which
depend on unspecified “artifacts of the implementation”.

4 System Interfaces Guide—November 1995

1

Standard Classification

Standard interfaces are those whose specification is controlled by a group
outside of Sun. This includes standards such as POSIX and ANSI C, as well as
industry specifications from groups such as X/Open, the MIT X-Consortium,
and the OMG.

Public Classification

These are interfaces whose specification is completely under Sun’s control. We
publish the specification of these interfaces and commit to remain compatible
with them.

 Classification

Uncommitted interfaces are available for use by customers, but they lack the
commitment that comes with a Public interface. We often publish specifications
of the current versions of these interfaces in a “this is how it works in this
release, but we may change it next release” form. Use these interfaces at your
own risk in experiments.

Specification: Open

Incompatible Change: major release (X.0)

Examples: POSIX, ANSI-C, Solaris ABI, SCD, SVID, XPG, X11, DKI,
VMEbus, Ethernet

Specification: Open

Incompatible Change: major release (X.0)

Examples: Sun DDI, XView, ToolTalk, NFS protocol, Sbus, OBP

Specification: Open

Incompatible Change: minor release (X.Y)

Examples: VFS interface, vm kernel interfaces, libkvm

Introduction to the API 5

1

Some of these interfaces are ones we would like to elevate to “Public” status,
but at the moment we don’t feel confident enough in them to commit to the
compatibility constraints of a Public interface. The VFS and vm interfaces are
examples of this.

Obsolete Classification

An interface no longer in general use. An existing interface can be downgraded
from some other status (such as Public or Standard) to Obsolete through a
standard proactive program to communicate the change in commitment to
customers.

A change in commitment requires one year’s notice to the customer base and
the Sun product development community of the intended obsoleting of the
interface. A full year must elapse before delivering a product that contains a
change incompatible with the present status of the interface.

Acceptable means of customer notice includes letters to customers on support
contracts, release notes or product documentation, or announcements to
customer forums appropriate for the interface in question.

The notice of obsolescence is considered to be “public” information in that it is
freely available to the customers. It is not intended that this require specific
actions to “publish” the information, such as press releases or similar forms of
publicity.

Specification: None

Incompatible Change: Minor release (.X.0)

Examples: RFS

6 System Interfaces Guide—November 1995

1

7

Processes 2

Overview
When you execute a command, you start a process that is numbered and
tracked by the operating system. A flexible feature of the operating system is
that processes are generated by other processes. For example, log in to your
system running a shell, then use an editor such as vi . Take the option of
invoking the shell from vi . Execute the ps command and you will see a
display resembling this (which shows the results of a ps –f command):

Here, user abc has four processes active. When you trace the chain shown in the
process ID (PID) and parent process ID (PPID) columns, you see that the shell that
was started when user abc logged on is process 24210; its parent is the
initialization process (process ID 1). Process 24210 is the parent of process 24631,
and so on.

The four processes in the example are shell-level commands, but you can start
new processes from your own program.

UID PID PPID C STIME TTY TIME COMD
abc 24210 1 0 06:13:14 tty29 0:05 –sh
abc 24631 24210 0 06:59:07 tty29 0:13 vi c2
abc 28441 28358 80 09:17:22 tty29 0:01 ps –f
abc 28358 24631 2 09:15:14 tty29 0:01 sh –i

8 System Interfaces Guide—November 1995

2

Overlooking the case where your program is interactive and contains many
choices for the user, it might need to run one or more other programs based on
conditions it encounters in its own processing. The reasons why it might not be
practical to create one large executable include:

• The load module might get too big to fit in the maximum process size for
your system.

• You might not have control over the object code of all the other modules
you want to include.

With the “fork(2)” on page 9 and “exec(2)” on page 10 functions
you can create a new process (copy of the creating process) and make a process
start a new executable in place of the running one.

Functions
These functions are used to control user processes:

Table 2-1 Process Functions

Function Name Purpose

fork Create a new process

exec
execl
execv
execle
execve
execlp
execvp

Execute a program

exit
_exit

Terminate a process

wait Wait for a child process to stop or terminate

dladdr Translate address to symbolic information

dlclose Close a shared object

dlerror Get diagnostic information

dlopen Open a shared object

dlsym Get the address of a symbol in a shared object

Processes 9

2

Spawning new processes

fork(2)

The fork call creates a new process that is an exact copy of the calling process.
The new process is called the child process; the creator is called the parent
process. The child gets a new, unique process ID. When the fork function has

setuid
setgid

Set user and group IDs

setpgrp Set process group ID

chdir
fchdir

Change working directory

chroot Change root directory

nice Change priority of a process

getcontext
setcontext

Get and set current user context

getgroups
setgroups

Get or set supplementary group access list IDs

getpid
getpgrp
getppid
getpgid

Get process, process group, and parent process IDs

getuid
geteuid
getgid
getegid

Get real user, effective user, real group, and effective group IDs

pause Suspend process until signal

priocntl Control process scheduler

setpgid Set process group ID

setsid Set session ID

waitid Wait for a child process to change state

Table 2-1 Process Functions (Continued)

Function Name Purpose

10 System Interfaces Guide—November 1995

2

finished successfully, it returns a 0 to the child process and the child’s process
ID to the parent. The returned value is how an executable determines whether
it is the parent process or the child process.

Leaving out the possibility of named files, the new process created by the fork
or exec function has the three standard files that are automatically opened:
stdin , stdout , and stderr . When the parent has buffered output that
should appear before output from the child, the buffers must be flushed before
the fork .

Also, if the parent and the child process both read input from a stream,
whatever is read by one process will be lost to the other. That is, once
something has been delivered from the input buffer to a process, the pointer
has moved on.

Note – An obsolete practice is to use fork() and exec() to start another
executable, then wait for the new process to die. In effect, a second process is
created to perform a subroutine call. It is much more efficient to use
dlopen() , dlsym() , and dlclose() as described in “Runtime Linking” on
page 11.

exec (2)

exec is the name of a family of functions that includes execl , execv ,
execle , execve , execlp , and execvp . They all transform the calling process
into a new process, but with different ways of pulling together and presenting
the arguments of the function. For example, execl could be used like this

execl("/usr/bin/prog2", “prog2”, progarg1, progarg2, (char (*)0);

The execl argument list is:

/usr/bin/prog2 The path name of the new process file.
prog2 The name the new process gets in its argv[0].
progarg1 , progarg2 The arguments to prog2 as char (*)s.
(char (*)0) A null char pointer to mark the end of the

arguments.

See exec (2) for more details.

Processes 11

2

The key point about the exec family is that there is no return from a successful
execution; the new process overlays the process that makes the exec call. The
new process also takes over the process ID and other attributes of the old
process. If the call to exec is unsuccessful, control is returned to your program
with a return value of –1. You can check errno to learn why it failed.

main()
{

pid_t pid;

pid = fork;
switch (pid) {

case -1: /* fork failed */
perror (“fork”);
exit (1);

case 0: /* in new chiild process */
printf (“In child, my pid is: %d\n”, getpid(););
do_child_stuff();
exit (0);

default: /* in parent, pid contains PID of child */
printf (“In parent, my pid is %d, my child is %d\n”,

getpid(), pid);
break;

}

/* Parent process code */
...

}

Runtime Linking

An application can extend its address space during execution by binding to
additional shared objects. There are several advantages in this delayed binding
of shared objects:

• Processing a shared object when it is required, rather than during the
initialization of an application, may greatly reduce start-up time. Also, the
shared object may not be required during a particular run of the application,
for example, help or debugging information.

• The application may choose between a number of different shared objects
depending on the exact services required, for example, a networking
protocol.

• Any shared objects added to the process address space during execution
may be freed after use.

12 System Interfaces Guide—November 1995

2

A typical scenario that an application may perform to access an additional
shared object is:

• A shared object is located and added to the address space of a running
application using dlopen(3X) . Any dependencies of shared object are also
located and added as this time. For example:

#include <stdio.h>
#include <dlfcn.h>

main(int argc, char ** argv)
{

void * handle;
.....
if ((handle = dlopen(“foo.so.1”, RTLD_LAZY)) == NULL) {

(void) printf(“dlopen: %s\n”, dlerror());
exit (1);

}
.....

• The added shared object(s) are relocated, and any initialization sections in
the new shared object(s) are called.

• The application locates symbols in the added shared object(s) using
dlsym(3X) . The application can then reference the data or call the functions
defined by these new symbols. Continuing the preceding example:

if (((fptr = (int (*)())dlsym(handle, “foo”)) == NULL) ||
 ((dptr = (int *)dlsym(handle, “bar”)) == NULL)) {

(void) printf(“dlsym: %s\n”, dlerror());
exit (1);

}

• After the application has finished with the shared object(s) the address
space is freed using dlclose(3X) . Any termination sections within the
shared object(s) being freed are called at this time. For example:

if (dlcose (handle) != 0) {
(void) printf(“dlclose: %s\n”, dlerror());
exit (1);

}

• Any error conditions that occur as a result of using these runtime linker
interface routines can be displayed using dlerror(3X) .

Processes 13

2

The services of the runtime linker are defined in the header file dlfcn.h and
are made available to an application via the shared library libdl.so.1 . For
example:

$ cc -o prog main.c -ldl

Here the file main.c can refer to any of the dlopen(3X) family of routines,
and the application prog will be bound to these routines at runtime.

For a thorough discussion of application directed runtime linking, see Chapter
3 of Linker and Libraries Guide. See dladdr (3X), dlclose (3X), dlerror (3X),
dlopen (3X), and dlsym (3X) for use details.

Process Scheduling

The system scheduler determines when processes run. It maintains process
priorities based on configuration parameters, process behavior, and user
requests; it uses these priorities to assign processes to the CPU.

Scheduler functions give users varying degrees of control over the order in
which certain processes run and the amount of time each process may use the
CPU before another process gets a chance.

By default, the scheduler uses a time-sharing policy. A time-sharing policy
adjusts process priorities dynamically in an attempt to give good response time
to interactive processes and good throughput to CPU-intensive processes.

The scheduler offers an alternate real-time scheduling policy as well. Real-time
scheduling allows users to set fixed priorities— priorities that the system does
not change. The highest priority real-time user process always gets the CPU as
soon as it can be run, even if other system processes are also eligible to be run.
A program can therefore specify the exact order in which processes run. You
can also write a program so that its real-time processes have a guaranteed
response time from the system.

For most SunOS 5.x system environments, the default scheduler configuration
works well and no real-time processes are needed: administrators need not
change configuration parameters and users need not change scheduler
properties of their processes. However, for some programs with strict timing
constraints, real-time processes are the only way to guarantee that the timing
requirements are met.

14 System Interfaces Guide—November 1995

2

For more information, see priocntl(1) , priocntl(2) and dispadmin(1M)
of the man Pages(2): System Calls.

Error Handling
Functions that do not conclude successfully almost always return a value of –1
to your program. (For a few functions in Section 2 of the man Pages(2): System
Calls, there are a few calls for which no return value is defined, but these are
the exceptions.) In addition to the –1 that is returned to the program, the
unsuccessful function places an integer in an externally declared variable,
errno . In a C program, you can determine the value in errno if your program
contains the following statement

#include <errno.h>

The value in errno is not cleared on successful calls, so check it only if the
function returned –1. See error descriptions in intro (2) of the man Pages(2):
System Calls.

You can use the C language function perror (3C) to print an error message on
stderr based on the value of errno .

Signals

Overview

The system defines a set of signals that can be delivered to a process. Signal
delivery resembles the occurrence of a hardware interrupt: the signal is
normally blocked from further occurrence, the current process context is saved,
and a new one is built. A process can specify the handler to which a signal is
delivered or specify that the signal is to be blocked or ignored. A process can
also specify that an action is to be taken when signals occur.

Some signals cause a process to exit when they are not caught. This can be
accompanied by creation of a core image file, containing the current memory
image of the process for use in postmortem debugging. A process can choose
to have signals delivered on a particular stack, so that sophisticated software
stack manipulations are possible.

Processes 15

2

Not all signals have the same priority. If multiple signals are simultaneously
pending and deliverable, the signal with the smallest number will be delivered
first. A signal routine usually executes concurrently with the signal that caused
its invocation, but other signals can still occur. Mechanisms are provided so
that critical sections of code can protect themselves against the occurrence of
specified signals.

Each signal defined by the system falls into one of five classes:

• Hardware conditions
• Software conditions
• Input/output notification
• Process control
• Resource control

The set of signals is defined in the header <signal.h> .

The signal functions include:

Table 2-2 Signal Functions

Function Name Purpose

sigaction
sigset
sighold
sigrelse
sigignore

 Manage signal (detailed)

sigaltstack Set or get signal alternate stack context

signal
sigpause

Manage signal (simplified)

sigpending Examine signals that are blocked and pending

sigprocmask Change or examine signal mask

kill Send a signal to a process or group of processes

sigsend
sigsendset

Send a signal to a process or group of processes

sigqueue Send a signal with a value to a process

sigwaitinfosigti
sigtimedwait

Receive a value and signal synchronously

sigsuspend Install a signal mask and suspend process until signal

16 System Interfaces Guide—November 1995

2

Hardware Signals

Hardware signals are derived from exceptional conditions that can occur
during execution. Such signals include

• SIGFPE—representing floating point and other arithmetic exceptions

• SIGILL — for illegal instruction execution

• SIGSEGV—for addresses outside the currently assigned area of memory or
for accesses that violate memory protection constraints

• SIGBUS—for accesses that result in hardware-related errors

Other, more CPU-specific hardware signals exist, such as SIGIOT , SIGEMT, and
SIGTRAP.

Software Signals

Software signals reflect interrupts generated by user request:

• SIGINT —the normal interrupt signal

• SIGQUIT—this more powerful quit signal usually causes a core image to
be generated

• SIGHUP and SIGTERM—these signals provide graceful process termination,
either because a user has “hung up” or through a user or program request

• SIGKILL —a more powerful termination signal that a process cannot catch
or ignore

• SIGUSR1 and SIGUSR2—allow programs to define their own asynchronous
events

• SIGRTMIN through SIGRTMAX—a range of signals which allow programs to
define their own events

Other software signals (SIGALRM, SIGVTALRM, SIGPROF) indicate the
expiration of interval timers.

Notification Signals

A process can request notification with a SIGPOLL signal when input or
output is possible on a descriptor, or when an operation finishes.

Processes 17

2

A process can request to receive a SIGURG signal when an urgent condition
arises on a communication channel.

Process Control Signals

A process can be notified by a signal sent to it or to the members of its process
group.

• SIGSTOP—stops the process; this powerful signal cannot be caught

• SIGTSTP—indicates that a user request stopped the process

• SIGTTIN—indicates that an input request stopped the process

• SIGTTOU—indicates that an output request stopped the process

• SIGCONT—indicates that a process continued from a stopped state

• SIGCHLD—notifies a process that a child process has changed state, either
by stopping or by terminating

Resource Limit Signals

Exceeding resource limits can generate signals.

• SIGXCPU occurs when a process nears its CPU time limit

• SIGXFSZ warns that the limit on file-size creation has been reached

Signal Handlers

A process has a handler associated with each signal. The handler controls the
way the signal is delivered.

Each handler specifies an interrupt routine for the signal, that the signal is to
be ignored, or that a default action (usually process termination) takes place if
the signal occurs. The constants SIG_IGN and SIG_DFL, used as values for
sa_handler , cause ignoring or defaulting of a condition.

Note – To reset a signal handler from within a signal handler, reset the signal
handler routine that catches the signal (signal(n, SIG_DFL);) and unblock
the blocked signal with sigprocmask .

18 System Interfaces Guide—November 1995

2

Signal Set Operations
The sa_mask field specifies the set of signals to be masked when the handler is
invoked; it implicitly includes the signal that invoked the handler.

Five operations are permitted on signal sets.

• sigemptyset —empties the signal set
• sigfillset —fills the signal set with every signal currently supported
• sigaddset —adds specific signals to the set
• sigdelset —deletes specific signals from the set
• sigismember —tests set membership

Initialize signal sets with a call to sigemptyset or sigfillset .

Unique Signal Properties
The sa_flags field specifies unique properties of the signal. Such properties
include:

• whether or not functions should be restarted if the signal handler returns

• whether the signal action should be reset to SIG_DFL when it is caught

• whether subsequent occurrences of a signal which is already pending
should be queued

• whether the handler should operate on the normal runtime stack or on a
particular signal stack.

If osa is nonzero, the previous signal action is returned.

Signal Generation
A process can send a signal to another process or group of processes with the
calls:

#include <signal.h>

int
kill(pid_t pid, int sig);

#include <signal.h>

int
sigsend(idtype_t idtype, id_t id, int sig);

Processes 19

2

int
sigsendset(procset_t *psp, int sig);

or

#include <signal.h>

int
sigqueue (pid_t pid, int signo, const union sigval value);

Unless the process sending the signal is privileged, its real or effective user ID
must be that of the receiving process’s real or saved user ID.

Signals can also be sent from a terminal device to the process group or session
leader associated with the terminal. See the termio(7I) manual page for more
information.

Signal Delivery
When a signal condition arises for a process, the signal is added to a set of
signals pending for the process. If the signal is not currently blocked by the
process then it will be delivered.

The process of signal delivery:

• Adds the signal to be delivered and those signals specified in the associated
signal handler’s sa_mask to a set of those masked for the process

• Saves the current process context

• Places the process in the context of the signal handling routine

The call is arranged so that if the signal handling routine exits normally the
signal mask is restored and the process resumes execution in the original
context.

Note – For the process to resume in a different context it must arrange to
restore the signal mask itself.

The mask of blocked signals is independent of handlers for delays. It delays
the delivery of signals in the same way that a raised hardware interrupt
priority level delays hardware interrupts. Preventing an interrupt from
occurring by changing the handler is like disabling a device from further
interrupts.

20 System Interfaces Guide—November 1995

2

The signal handling routine sa_handler is called by a C call of the form

#include <siginfo.h>
#include <ucontext.h>

(*sa_handler)(int signo, siginfo_t *infop, ucontext_t *ucp);

The signo field gives the number of the signal that occurred. The infop field
is either equal to 0 or points to a structure that contains information detailing
the reason the signal was generated. This information must be explicitly asked
for when the signal action is specified. The ucp field is a pointer to a structure
containing the process’s context before delivery of the signal. It restores the
process’s context upon return from the signal handler.

To block a section of code against one or more signals, use a sigprocmask call
to add a set of signals to the existing mask and to return the old mask:

#include <signal.h>

int
sigprocmask(int SIG_BLOCK,const sigset_t *mask,sigset_t *omask);

The old mask can then be restored later with sigprocmask

#include <signal.h>

int
sigprocmask(int SIG_UNBLOCK, const sigset_t *mask, sigset_t *omask);

Or, the old mask can be reset with

#include <signal.h>

int
sigprocmask(int SIG_SETMASK, const sigset_t *mask, sigset_t *omask);

The sigprocmask call can be used to read the current mask without changing
it by specifying a null pointer as its mask argument.

You can check conditions with some signals blocked, and then pause to wait
for a signal and restore the mask, by using

#include <signal.h>

int
sigsuspend(const sigset_t *mask);

Applications can receive signals synchronously by using

Processes 21

2

#include <signal.h>

int
sigwaitinfo(const sigset_t *mask, siginfo_t *siginfo);

int
sigtimedwait(const sigset_t *mask,siginfo_t *siginfo,

 const struct timespec *timeout);

Programs maintaining complex or fixed-size stacks can use the call

#include <signal.h>

int
sigaltstack(const stack_t *ss, stack_t *oss);

where the stack_t structure contains

int *ss_sp
long ss_size
int ss_flags

This provides the system with a stack based at ss_sp of size ss_size for
signal delivery. The system automatically adjusts for direction of stack growth.
ss_flags indicates whether the process is currently on the signal stack and
whether or not the signal stack is disabled.

When a signal is to be delivered and the process has requested that it be
delivered on the alternate stack (see sigaction above), the system checks
whether the process is on a signal stack. If it is not, then the process is switched
to the signal stack for delivery, with the return from the signal arranged to
restore the previous stack.

For a process to take a nonlocal exit from the signal routine, or to run code
from the signal stack that uses a different stack, use a sigaltstack call to
reset the signal stack.

22 System Interfaces Guide—November 1995

2

23

Process Scheduler 3

The UNIX system scheduler determines when processes run. It maintains
process priorities based on configuration parameters, process behavior, and
user requests; it uses these priorities to assign processes to the CPU.

This chapter describes the process scheduler for the process model. See the
Multithreaded Programming Guide for scheduler information under the
multithreading model.This chapter is addressed to programmers who need
more control over order of process execution than they get using default
scheduler parameters.

The SunOS 5.x system gives users absolute control over the order in which
certain processes run and the amount of time each process can use the CPU
before another process gets a chance.

By default, the scheduler uses a time-sharing policy. A time-sharing policy
adjusts process priorities dynamically to provide good response time to
interactive processes and good throughput to processes that use a lot of CPU
time.

The SunOS 5.x system scheduler offers a real-time scheduling policy as well as
a time-sharing policy. Real-time scheduling allows users to set fixed priorities
on a per-process basis. The highest-priority real-time user process always gets
the CPU as soon as the process is runnable, even if system processes are
runnable. A program can therefore specify the order in which processes run.

24 System Interfaces Guide—November 1995

3

A program can also be written so that its real-time processes have a guaranteed
response time from the system. See Chapter 7, “Realtime Programming and
Administration” for detailed information.

For most UNIX environments, the default scheduler configuration works well
and no real-time processes are needed. Administrators should not change
configuration parameters and users should not change scheduler properties of
their processes. However, when the requirements for a program include strict
timing constraints, real-time processes sometimes provide the only way to
satisfy those constraints.

Note – Real-time processes used carelessly can have a dramatically negative
effect on the performance of time-sharing processes.

Because changes in scheduler administration can affect scheduler behavior,
programmers might also need to know something about scheduler
administration.

There are a few reference manual entries with information on scheduler
administration:

• dispadmin (1M) tells how to change scheduler configuration in a running
system.

• ts_dptbl (4) and rt_dptbl (4) describe the time-sharing and real-time
parameter tables that are used to configure the scheduler.

The rest of this chapter is organized as follows.

• The “Overview of the Process Scheduler” tells what the scheduler does and
how it does it. It also introduces scheduler classes.

• The “Commands and Functions” section describes and gives examples of the
priocntl (1) command and the priocntl (2) and priocntlset (2)
functions, which are the user interfaces to scheduler services. The
priocntl functions allow you to retrieve scheduler parameters for a
process or for a set of processes.

• “Interaction with Other Functions” describes the interactions between the
scheduler and related functions.

• The “Performance” section discusses scheduler latencies about which some
programs must be aware.

Process Scheduler 25

3

Overview of the Process Scheduler
Figure 3-1 shows how the SunOS 5.x process scheduler works:

Figure 3-1 SunOS 5.x Process Scheduler

When a process is created, it inherits its scheduler parameters, including
scheduler class and a priority within that class. A process changes class only as
a result of a user request. The system manages the priority of a process based
on user requests and a policy associated with the scheduler class of the
process.

In the default configuration, the initialization process belongs to the time-
sharing class. Because processes inherit their scheduler parameters, all user
login shells begin as time-sharing processes in the default configuration.

The scheduler converts class-specific priorities into global priorities. The global
priority of a process determines when it runs—the scheduler always runs the
runnable process with the highest global priority. Numerically higher priorities

Global
priority

Scheduling
order

Class-specific
priorities

Scheduler
classes

Run
queues

Highest First

Lowest Last

Kernel
threads of

realtime LWPs

Kernel
service
threads

Kernel
threads of

time-sharing LWPs

Real-time
priorities

System
priorities

Time-sharing
priorities

26 System Interfaces Guide—November 1995

3

run first. Once the scheduler assigns a process to the CPU, the process runs
until it uses up its time slice, sleeps, or is preempted by a higher-priority
process. Processes with the same priority run round-robin.

Administrators specify default time slices in the configuration tables, but users
can assign per-process time slices to real-time processes.

You can display the global priority of a process with the –cl options of the
ps (1) command. You can display configuration information about class-specific
priorities with the priocntl (1) command and the dispadmin (1M) command.

By default, all real-time processes have higher priorities than any kernel
process, and all kernel processes have higher priorities than any time-sharing
process.

Note – As long as there is a runnable real-time process, no kernel process and
no time-sharing process run.

The following sections describe the scheduling policies of the three default
classes.

Time-Sharing Class

The goal of the time-sharing policy is to provide good response time to
interactive processes and good throughput to CPU-bound processes. The
scheduler switches CPU allocation frequently enough to provide good
response time, but not so frequently that it spends too much time doing the
switching. Time slices are typically on the order of a few hundred milliseconds.

The time-sharing policy changes priorities dynamically and assigns time slices
of different lengths. The scheduler raises the priority of a process that sleeps
after only a little CPU use (a process sleeps, for example, when it starts an I/O
operation such as a terminal read or a disk read); frequent sleeps are
characteristic of interactive tasks such as editing and running simple shell
commands. On the other hand, the time-sharing policy lowers the priority of a
process that uses the CPU for long periods without sleeping.

Process Scheduler 27

3

The default time-sharing policy gives larger time slices to processes with lower
priorities. A process with a low priority is likely to be CPU-bound. Other
processes get the CPU first, but when a low-priority process finally gets the
CPU, it gets a bigger chunk of time. If a higher-priority process becomes
runnable during a time slice, however, it preempts the running process.

The scheduler manages time-sharing processes using configurable parameters
in the time-sharing parameter table ts_dptbl . This table contains information
specific to the time-sharing class.

System Class

The system class uses a fixed-priority policy to run kernel processes such as
servers and housekeeping processes like the paging daemon. The system class
is reserved for use by the kernel; users can neither add nor remove a process
from the system class. Priorities for system class processes are set up in the
kernel code for those processes; once established, the priorities of system
processes do not change. (User processes running in kernel mode are not in the
system class.)

Real-time Class

The real-time class uses a fixed-priority scheduling policy so that critical
processes can run in predetermined order. Real-time priorities never change
except when a user requests a change. Contrast this fixed-priority policy with
the time-sharing policy, in which the system changes priorities to provide good
interactive response time.

Privileged users can use the priocntl command or the priocntl function to
assign real-time priorities.

The scheduler manages real-time processes using configurable parameters in
the real-time parameter table rt_dptbl . This table contains information
specific to the real-time class.

Commands and Functions
Here is a programmer’s view of default process priorities.

28 System Interfaces Guide—November 1995

3

Figure 3-2 Process Priorities (Programmer’s View)

From a user’s or programmer’s point of view, a process priority has meaning
only in the context of a scheduler class. You specify a process priority by
specifying a class and a class-specific priority value. The class and class-
specific value are mapped by the system into a global priority that the system
uses to schedule processes.

• Real-time priorities run from zero to a configuration-dependent maximum.
The system maps them directly into global priorities. They never change
except when a user changes them.

• System priorities are controlled entirely in the kernel. Users cannot affect
them.

• Time-sharing priorities have a user-controlled component (the “user
priority”) and a component controlled by the system. The system does not
change the user priority except as the result of a user request. The system
changes the system-controlled component dynamically on a per-process

Global
priority

Scheduling
order

Class-specific
priorities

Scheduler
classes

Highest First

Lowest Last

Real-time
class

System
class

Time-sharing
class

RT max

0

+ TS max

- TS max
0

Process Scheduler 29

3

basis to provide good overall system performance; users cannot affect the
system-controlled component. The scheduler combines these two
components to get the process global priority.

The user priority runs from the negative of a configuration-dependent
maximum to the positive of that maximum. A process inherits its user
priority. Zero is the default initial user priority.

The “user priority limit” is the configuration-dependent maximum value of
the user priority. You can set a user priority to any value below the user
priority limit. With appropriate permission, you can raise the user priority
limit. Zero is the default user priority limit.

You can lower the user priority of a process to give the process reduced
access to the CPU or, with the appropriate permission, raise the user priority
to get better service. Because you cannot set the user priority above the user
priority limit, you must raise the user priority limit before you raise the user
priority if both have their default values of zero.

An administrator configures the maximum user priority independent of
global time-sharing priorities. In the default configuration, for example, a
user can set a user priority only in the range from –20 to +20, but 60 time-
sharing global priorities are configured.

A system administrator’s view of priorities is different from that of a user or
programmer. When configuring scheduler classes, an administrator deals
directly with global priorities. The system maps priorities supplied by users
into these global priorities. See System Administration Guide, Volume I for more
information about priorities.

The ps -cel command reports global priorities for all active processes. The
priocntl command reports the class-specific priorities that users and
programmers use.

Note – Global process priorities and user-supplied priorities are in ascending
order: numerically higher priorities run first.

The priocntl (1) command and the priocntl (2) and priocntlset (2)
functions set or retrieve scheduler parameters for processes. The basic idea for
setting priorities is the same for all three functions:

• Specify the target processes.

30 System Interfaces Guide—November 1995

3

• Specify the scheduler parameters you want for those processes.

• Do the command or function to set the parameters for the processes.

You specify the target processes using an ID type and an ID. The ID type tells
how to interpret the ID. [This concept of a set of processes applies to signals as
well as to the scheduler; see sigsend (2).] The following table lists the valid ID
types that you can specify.

These IDs are basic properties of UNIX processes. [See intro (2).] The class ID
refers to the scheduler class of the process. priocntl works only for the time-
sharing and the real-time classes, not for the system class. Processes in the
system class have fixed priorities assigned when they are started by the kernel.

The priocntl Command

The priocntl command comes in four forms:

• priocntl –l displays configuration information.

• priocntl –d displays the scheduler parameters of processes.

• priocntl –s sets the scheduler parameters of processes.

• priocntl –e executes a command with the specified scheduler
parameters.

Table 3-1 Valid priocntl ID Types

priocntl ID types

process ID

parent process ID

process group ID

session ID

class ID

effective user ID

effective group ID

all processes

Process Scheduler 31

3

Here is the output of the –l option for the default configuration.

The –d option displays the scheduler parameters of a process or a set of
processes. The syntax for this option is

priocntl -d -i idtype idlist

idtype tells what kind of IDs are in idlist. idlist is a list of IDs separated by white
space. Here are the valid values for idtype and their corresponding ID types in
idlist:

Here are some examples of the –d option of priocntl .

$ priocntl –l
CONFIGURED CLASSES
==================

SYS (System Class)

TS (Time Sharing)
Configured TS User Priority Range: -20 through 20

RT (Real Time)
Maximum Configured RT Priority: 59

Table 3-2 Valid idtype Values

idtype idlist

pid process IDs

ppid parent process IDs

pgid process group IDs

sid session IDs

class class names (TS or
RT)

uid effective user IDs

gid effective group IDs

all

32 System Interfaces Guide—November 1995

3

Display information on all processes

$ priocntl -d -i all
 .
 .
 .

Display information on all time-sharing processes

$ priocntl -d -i class TS
 .
 .
 .

Display information on all processes with user ID 103 or 6626

$ priocntl -d -i uid 103 6626
 .
 .
 .

The –s option sets scheduler parameters for a process or a set of processes. The
syntax for this option is

priocntl -s -c class class_options -i idtype idlist

idtype and idlist are the same as for the –d option described above.

class is TS for time-sharing or RT for real-time. You must be superuser to create
a real-time process, to raise a time-sharing user priority above a per-process
limit, or to raise the per-process limit above zero. Class options are class-
specific:

For a real-time process you can assign a priority and a time slice.

Table 3-3 Class-Specific Options for priocntl

Class-specific options for priocntl

class -c class Options Meaning

real-time RT -p pri priority

-t tslc time slice

-r res resolution

time-sharing TS -p upri user priority

-muprilim user priority limit

Process Scheduler 33

3

• The priority is a number from 0 to the real-time maximum as reported by
priocntl -l ; the default maximum value is 59.

• You specify the time slice as a number of clock intervals and the resolution
of the interval. Resolution is specified in intervals per second. The time slice,
therefore, is tslc/res seconds. To specify a time slice of one-tenth of a second,
for example, you could specify a tslc of 1 and a res of 10. If you specify a
time slice without specifying a resolution, millisecond resolution (a res of
1000) is assumed.

If you change a time-sharing process into a real-time process, it gets a default
priority and time slice if you don’t specify one. To change only the priority of a
real-time process and leave its time slice unchanged, omit the –t option. To
change only the time slice of a real-time process and leave its priority
unchanged, omit the –p option.

For a time-sharing process you can assign a user priority and a user priority
limit.

• The user priority is the user-controlled component of a time-sharing
priority. The scheduler calculates the global priority of a time-sharing
process by combining this user priority with a system-controlled component
that depends on process behavior. The user priority has the same effect as a
value set by nice (except that nice uses higher numbers for lower
priority).

• The user priority limit is the maximum user priority a process can set for
itself without being superuser. By default, the user priority limit is 0; you
must be superuser to set a user priority limit above 0.

Both the user priority and the user priority limit must be within the user
priority range reported by the priocntl -l command. The default range is
-20 to +20.

You can lower and raise a process user priority as often as you like, as long as
the value is below the process user priority limit. It is a courtesy to other users
to lower your user priority for big chunks of low-priority work. On the other
hand, if you lower your user priority limit, you must be superuser to raise it. A
typical use of the user priority limit is to reduce permanently the priority of
child processes or of some other set of low-priority processes.

34 System Interfaces Guide—November 1995

3

The user priority can never be greater than the user priority limit. If you set the
user priority limit below the user priority, the user priority is lowered to the
new user priority limit. If you attempt to set the user priority above the user
priority limit, the user priority is set to the user priority limit.

Here are some examples of the –s option of priocntl :

Make the process with ID 24668 a real-time process with default parameters

$ priocntl -s -c RT -i pid 24668

Make 3608 RT with priority 55 and a one-fifth second time slice.

$ priocntl -s -c RT -p 55 -t 1 -r 5 -i pid 3608

Change all processes into time-sharing processes

$ priocntl -s -c TS -i all

For uid 1122, reduce TS user priority and user priority limit to -10

$ priocntl -s -c TS -p -10 -m -10 -i uid 1122

The –e option sets scheduler parameters for a specified command and executes
the command. The syntax for this option is

priocntl -e -c class class_options command [command arguments]

The class and class options are the same as for the –s option described above.

Start a real-time shell with default real-time priority

$ priocntl -e -c RT /bin/sh

Run make with a time-sharing user priority of -10.

$ priocntl -e -c TS -p -10 make bigprog

The priocntl command subsumes the function of nice . nice works only on
time-sharing processes and uses higher numbers to assign lower priorities. The
example above is equivalent to using nice to set an “increment” of 10

$ nice -10 make bigprog

The priocntl Function
#include <sys/types.h>
#include <sys/procset.h>
#include <sys/priocntl.h>
#include <sys/rtpriocntl.h>
#include <sys/tspriocntl.h>

Process Scheduler 35

3

long priocntl(idtype_t idtype, id_t id, int cmd,
cmd_struct arg);

The priocntl function gets or sets the scheduler parameters of a set of
processes. The input arguments follow.

• idtype is the type of ID you are specifying.

• id is the ID.

• cmd specifies which priocntl function to perform. The functions are listed
in Table 3-4.

• arg is a pointer to a structure that depends on cmd.

Here are the valid values for idtype, which are defined in priocntl.h , and
their corresponding ID types in id:

Here are the valid values for cmd, their meanings, and the type of arg :

Table 3-4 Valid priocntl.h idtypes

idtype Interpretation of id

P_PID process ID (of a single process)

P_PPID parent process ID

P_PGID process group ID

P_SID session ID

P_CID class ID

P_UID effective user ID

P_GID effective group ID

P_ALL all processes

Table 3-5 Valid cmd Values

priocntl Commands

cmd arg Type Function

PC_GETCID pcinfo_t get class ID and attributes

36 System Interfaces Guide—November 1995

3

Here are the values priocntl returns on success:

• The GETCID and GETCLINFO commands return the number of configured
scheduler classes.

• PC_SETPARMS returns 0.

• PC_GETPARMS returns the process ID of the process whose scheduler
properties it is returning.

On failure, priocntl returns –1 and sets errno to indicate the reason for the
failure. See priocntl (2) for the complete list of error conditions.

PC_GETCID, PC_GETCLINFO

The PC_GETCID and PC_GETCLINFO commands retrieve scheduler
parameters for a class based on the class ID or class name. Both commands use
the pcinfo structure to send arguments and receive return values:

typedef struct pcinfo {
id_t pc_cid;/* class id */
char pc_clname[PC_CLNMSZ];/* class name */
long pc_clinfo[PC_CLINFOSZ];/* class information */

} pcinfo_t;

The PC_GETCID command gets scheduler class ID and parameters given the
class name. The class ID is used in some of the other priocntl commands to
specify a scheduler class. The valid class names are TS for time-sharing and RT
for real-time.

For the real-time class, pc_clinfo contains an rtinfo structure, which holds
rt_maxpri , the maximum valid real-time priority. In the default
configuration, this is the highest priority any process can have. The minimum
valid real-time priority is zero. rt_maxpri is a configurable value

PC_GETCLINFO pcinfo_t get class name and attributes

PC_SETPARMS pcparms_t set class and scheduling parameters

PC_GETPARMS pcparms_t get class and scheduling parameters

Table 3-5 Valid cmd Values

priocntl Commands

cmd arg Type Function

Process Scheduler 37

3

typedef struct rtinfo {
short rt_maxpri;/* maximum real-time priority */

} rtinfo_t;

For the time-sharing class, pc_clinfo contains a tsinfo structure, which
holds ts_maxupri, the maximum time-sharing user priority. The minimum
time-sharing user priority is –ts_maxupri . ts_maxupri is also a
configurable value.

typedef struct tsinfo {
short ts_maxupri;/* limits of user priority range */

} tsinfo_t;

The following program is a substitute for priocntl –l ; it gets and prints the
range of valid priorities for the time-sharing and real-time scheduler classes

/*
 * Get scheduler class IDs and priority ranges.
 */

#include <sys/types.h>
#include <sys/priocntl.h>
#include <sys/rtpriocntl.h>
#include <sys/tspriocntl.h>
#include <stdio.h>
#include <string.h>
#include <stdlib.h>
#include <errno.h>
main ()
{

pcinfo_t pcinfo;
tsinfo_t *tsinfop;
rtinfo_t* rtinfop;
short maxtsupri, maxrtpri;

/* time sharing */
(void) strcpy (pcinfo.pc_clname, "TS");
if (priocntl (0L, 0L, PC_GETCID, &pcinfo) == -1L) {

perror ("PC_GETCID failed for time-sharing class");
exit (1);

}
tsinfop = (struct tsinfo *) pcinfo.pc_clinfo;
maxtsupri = tsinfop->ts_maxupri;
(void) printf("Time sharing: ID %ld, priority range -%d

through %d\n",
pcinfo.pc_cid, maxtsupri, maxtsupri);

38 System Interfaces Guide—November 1995

3

The following screen shows the output of this program, called getcid in this
example.

The following function is useful in the examples below. Given a class name, it
uses PC_GETCID to return the class ID and maximum priority in the class.

Note – The following examples omit the lines that include header files. The
examples compile with the same header files used in the previous code
example.

/*
 * Return class ID and maximum priority.
 * Input argument name is class name.
 * Maximum priority is returned in *maxpri.
 */

id_t
schedinfo (name, maxpri)

char *name;
short *maxpri;

{
pcinfo_t info;
tsinfo_t *tsinfop;
rtinfo_ *rtinfop;

(void) strcpy(info.pc_clname, name);
if (priocntl (0L, 0L, PC_GETCID, &info) == -1L) {

return (-1);
}
if (strcmp(name, "TS") == 0) {

tsinfop = (struct tsinfo *) info.pc_clinfo;
*maxpri = tsinfop->ts_maxupri;

} else if (strcmp(name, "RT") == 0) {
rtinfop = (struct rtinfo *) info.pc_clinfo;
*maxpri = rtinfop->rt_maxpri;

} else {
return (-1);

$ getcid
Time sharing: ID 1, priority range -20 through 20
Real time: ID 2, priority range 0 through 59

Process Scheduler 39

3

}
return (info.pc_cid);

}

The PC_GETCLINFO command gets a scheduler class name and parameters
given the class ID. This command makes it easy to write programs that make
no assumptions about what classes are configured.

The following program uses PC_GETCLINFO to get the class name of a process
based on the process ID. This program assumes the existence of a function
getclassID , which retrieves the class ID of a process given the process ID;
this function is given in the following section

/* Get scheduler class name given process ID. */

main (argc, argv)
int argc;
char *argv[];

{
pcinfo_t pcinfo;
id_t pid, classID;
id_t getclassID();

if ((pid = atoi(argv[1])) <= 0) {
perror ("bad pid");
exit (1);

}
if ((classID = getclassID(pid)) == -1) {

perror ("unknown class ID");
exit (2);

}
pcinfo.pc_cid = classID;
if (priocntl (0L, 0L, PC_GETCLINFO, &pcinfo) == -1L) {

perror ("PC_GETCLINFO failed");
exit (3);

}
(void) printf("process ID %d, class %s\n", pid,
 pcinfo.pc_clname);

}

PC_GETPARMS, PC_SETPARMS

The PC_GETPARMS command gets and the PC_SETPARMS command sets
scheduler parameters for processes. Both commands use the pcparms
structure to send arguments or receive return values:

40 System Interfaces Guide—November 1995

3

typedef struct pcparms {
id_t pc_cid;/* process class */
long pc_clparms[PC_CLPARMSZ];/* class specific */

} pcparms_t;

Ignoring class-specific information for the moment, here is a simple function
for returning the scheduler class ID of a process, as promised in the previous
section.

/*
 * Return scheduler class ID of process with ID pid.
 */

getclassID (pid)
id_t pid;

{
pcparms_t pcparms;

pcparms.pc_cid = PC_CLNULL;
if (priocntl(P_PID, pid, PC_GETPARMS, &pcparms) == -1) {

return (-1);
}
return (pcparms.pc_cid);

}

For the real-time class, pc_clparms contains an rtparms structure. rtparms
holds scheduler parameters specific to the real-time class.

typedef struct rtparms {
short rt_pri; /* realtime priority */
ulong rt_tqsecs; /* seconds in time quantum */
long rt_tqnsecs;/* additional nsecs in quantum */

} rtparms_t;

rt_pri is the real-time priority; rt_tqsecs is the number of seconds and
rt_tqnsecs is the number of additional nanoseconds in a time slice. That is,
rt_tqsecs seconds plus rt_tqnsecs nanoseconds is the interval a process
can use the CPU without sleeping before the scheduler gives another process a
chance at the CPU.

For the time-sharing class, pc_clparms contains a tsparms structure.
tsparms holds the scheduler parameter specific to the time-sharing class.

typedef struct tsparms {
short ts_uprilim; /* user priority limit */
short ts_upri; /* user priority */

} tsparms_t;

Process Scheduler 41

3

ts_upri is the user priority, the user-controlled component of a time-sharing
priority. ts_uprilim is the user priority limit, the maximum user priority a
process can set for itself without being superuser. These values are described
above in the discussion of the -s option of the priocntl command. Both the
user priority and the user priority limit must be within the range reported by
the priocntl -l command; this range is also reported by the PC_GETCID
and PC_GETCLINFO commands to the priocntl function.

The PC_GETPARMS command gets the scheduler class and parameters of a
single process. The return value of the priocntl is the process ID of the
process whose parameters are returned in the pcparms structure. The process
chosen depends on the idtype and id arguments to priocntl and on the
value of pcparms.pc_cid , which contains PC_CLNULL or a class ID returned
by PC_GETCID:

If idtype and id select a single process and pc_cid does not conflict with the
class of that process, priocntl returns the scheduler parameters of the
process. If they select more than one process of a single scheduler class,
priocntl returns parameters using class-specific criteria as shown in the
table. priocntl returns an error in the following cases:

• idtype and id select one or more processes and none is in the class
specified by pc_cid .

• idtype and id select more than one process and pc_cid is PC_CLNULL.

• idtype and id select no processes.

The following program takes a process ID as its input and prints the scheduler
class and class-specific parameters of that process.

Table 3-6 What PC_GETPARMS Returns

Number of
Processes Selected
by idtype and id

pc_cid

RT class ID TS class ID PC_CLNULL

1 RT parameters of
process selected

TS parameters of
process selected

class and
parameters of
process selected

More than 1 RT parameters of
highest-priority
RT process

TS parameters of
process with
highest user
priority

(error)

42 System Interfaces Guide—November 1995

3

/*
 * Get scheduler class and parameters of
 * process whose pid is input argument.
 */

main (argc, argv)
int argc;
char *argv[];

{
pcparms_t pcparms;
rtparms_t *rtparmsp;
tsparms_t *tsparmsp;
id_t pid, rtID, tsID;
id_t schedinfo();
short priority, tsmaxpri, rtmaxpri;
ulong secs;
long nsecs;

pcparms.pc_cid = PC_CLNULL;
rtparmsp = (rtparms_t *) pcparms.pc_clparms;
tsparmsp = (tsparms_t *) pcparms.pc_clparms;
if ((pid = atoi(argv[1])) <= 0) {

perror ("bad pid");
exit (1);

}
/* get scheduler properties for this pid */
...
}

The PC_SETPARMS command sets the scheduler class and parameters of a set
of processes. The idtype and id input arguments specify the processes to be
changed.

The pcparms structure contains the new parameters: pc_cid contains the ID
of the scheduler class to which the processes are to be assigned, as returned by
PC_GETCID; pc_clparms contains the class-specific parameters:

• If pc_cid is the real-time class ID, pc_clparms contains an rtparms
structure in which rt_pri contains the real-time priority and rt_tqsecs
plus rt_tqnsecs contains the time slice to be assigned to the processes.

• If pc_cid is the time-sharing class ID, pc_clparms contains a tsparms
structure in which ts_uprilim contains the user priority limit and
ts_upri contains the user priority to be assigned to the processes.

Process Scheduler 43

3

The following program takes a process ID as input, makes the process a real-
time process with the highest valid priority minus 1, and gives it the default
time slice for that priority. The program calls the schedinfo function listed
above to get the real-time class ID and maximum priority.

/*
 * Input arg is proc ID. Make process a realtime
 * process with highest priority minus 1.
 */

main (argc, argv)
int argc;
char *argv[];

{
pcparms_tpcparms;
rtparms_t*rtparmsp;
id_t pid, rtID;
id_t schedinfo();
short maxrtpri;
if ((pid = atoi(argv[1])) <= 0) {

perror ("bad pid");
exit (1);

}

/* Get highest valid RT priority. */
if ((rtID = schedinfo ("RT", &maxrtpri)) == -1) {

perror ("schedinfo failed for RT");
exit (2);

}

/* Change proc to RT, highest prio - 1, default time slice */
pcparms.pc_cid = rtID;
rtparmsp = (struct rtparms *) pcparms.pc_clparms;
rtparmsp->rt_pri = maxrtpri - 1;
rtparmsp->rt_tqnsecs = RT_TQDEF;

if (priocntl(P_PID, pid, PC_SETPARMS, &pcparms) == -1) {
perror ("PC_SETPARMS failed");
exit (3);

}
}

44 System Interfaces Guide—November 1995

3

The following table lists the special values rt_tqnsecs can take when
PC_SETPARMS is used on real-time processes. When any of these is used,
rt_tqsecs is ignored. These values are defined in the header file
rtpriocntl.h .

RT_TQINF specifies an infinite time slice. RT_TQDEF specifies the default time
slice configured for the real-time priority being set with the SETPARMS call.
RT_NOCHANGE specifies no change from the current time slice; this value is
useful, for example, when you change process priority but do not want to
change the time slice. (You can also use RT_NOCHANGE in the rt_pri field to
change a time slice without changing the priority.)

The priocntlset Function
#include<sys/types.h>
#include<sys/signal.h>
#include<sys/procset.h>
#include<sys/priocntl.h>
#include<sys/rtpriocntl.h>
#include<sys/tspriocntl.h>

long priocntlset(procset_t *psp, int cmd, cmd_struct arg);

The pri ocntlset function changes scheduler parameters of a set of
processes, just like priocntl . priocntlset has the same command set as
priocntl ; the cmd and arg input arguments are the same. But while
priocntl applies to a set of processes specified by a single idtype/id pair,
priocntlset applies to a set of processes that results from a logical
combination of two idtype/id pairs.

The input argument psp points to a procset structure that specifies the two
idtype/id pairs and the logical operation to perform. This structure is
defined in procset.h .

Table 3-7 Special Values for rt_tqnsecs

rt_tqnsecs Time Slice

RT_TQINF infinite

RT_TQDEF default

RT_NOCHANGE unchanged

Process Scheduler 45

3

typedef struct procset {
idop_t p_op /* operator connecting */

/* left and right sets */

/* left set: */
idtype_t p_lidtype; /* left ID type */
id_t p_lid; /* left ID */

/* right set: */
idtype_t p_ridtype; /* right ID type */
id_t p_rid; /* right ID */

} procset_t;

p_lidtype and p_lid specify the ID type and ID of one (“left”) set of
processes; p_ridtype and p_rid specify the ID type and ID of a second
(“right”) set of processes. p_op specifies the operation to perform on the two
sets of processes to get the set of processes to operate on.

The valid values for p_op and the processes they specify are:

• POP_DIFF: set difference—processes in left set and not in right set

• POP_AND: set intersection—processes in both left and right sets

• POP_OR: set union—processes in either left or right sets or both

• POP_XOR: set exclusive-or—processes in left or right set but not in both

The following macro, also defined in procset.h , offers a convenient way to
initialize a procset structure.

#define setprocset(psp, op, ltype, lid, rtype, rid) \
(psp)->p_op= (op); \
(psp)->p_lidtype= (ltype); \
(psp)->p_lid= (lid); \
(psp)->p_ridtype= (rtype); \
(psp)->p_rid= (rid);

Here is a situation where priocntlset would be useful: suppose a program
had both real-time and time-sharing processes that ran under a single user ID.
If the program wanted to change the priority of only its real-time processes
without changing the time-sharing processes to real-time processes, it could do
so as follows. (This example uses the function schedinfo , which is defined
above in the section on PC_GETCID.

/*
 * Change real-time priorities of this uid
 * to highest realtime priority minus 1.

46 System Interfaces Guide—November 1995

3

 */

main (argc, argv)
int argc;
char *argv[];

{
procset_t procset;
pcparms_t pcparms;
struct rtparms *rtparmsp;
id_t rtclassID;
id_t schedinfo();
short maxrtpri;

/* left set: select processes with same uid as this process */
procset.p_lidtype = P_UID;
procset.p_lid = getuid();

/* get info on realtime class */
if ((rtclassID = schedinfo ("RT", &maxrtpri)) == -1) {

perror ("schedinfo failed");
exit (1);

}

...
}

priocntl offers a simple scheduler interface that is adequate for many
applications. When a process needs a more powerful way to specify sets, use
priocntlset .

Interaction with Other Functions

Kernel Processes

The kernel assigns its daemon and housekeeping processes to the system
scheduler class. Users can neither add processes to nor remove processes from
this class, nor can they change the priorities of these processes. The command
ps –cel lists the scheduler class of all processes. Processes in the system class
are identified by a SYS entry in the CLS column.

Process Scheduler 47

3

If the work load on a machine contains real-time processes that use too much
CPU, they can lock out system processes, which can lead to trouble. Real-time
applications must ensure that they leave some CPU time for system and other
processes.

fork and exec

Scheduler class, priority, and other scheduler parameters are inherited across
the fork (2) and exec (2) functions.

nice

The nice (1) command and the nice (2) function work as in previous versions
of the UNIX system. They allow you to change the priority of a time-sharing
process. You still use lower numeric values to assign higher time-sharing
priorities with these functions.

To change the scheduler class of a process or to specify a real-time priority, you
must use one of the priocntl functions. You use higher numeric values to
assign higher priorities with the priocntl functions.

init

The init process is treated as a special case by the scheduler. To change the
scheduler properties of init , init must be the only process specified by
idtype and id or by the procset structure.

Performance
Because the scheduler determines when and for how long processes run, it has
an overriding importance in the performance and perceived performance of a
system.

By default, all processes are time-sharing processes. A process changes class
only as a result of one of the priocntl functions.

48 System Interfaces Guide—November 1995

3

In the default configuration, all real-time process priorities are above any time-
sharing process priority. This implies that as long as any real-time process is
runnable, no time-sharing process or system process ever runs. So if a real-time
application is not written carefully, it can completely lock out users and
essential kernel housekeeping.

Besides controlling process class and priorities, a real-time application must
also control several other factors that influence its performance. The most
important factors in performance are CPU power, amount of primary memory,
and I/O throughput. These factors interact in complex ways. In particular, the
sar (1) command has options for reporting on all the factors discussed in this
section.

Process State Transition

Applications that have strict real-time constraints might need to prevent
processes from being swapped or paged out to secondary memory. Here’s a
simplified overview of UNIX process states and the transitions between states:

Figure 3-3 Process State Transition Diagram

An active process is normally in one of the five states in the diagram. The
arrows show how it changes states.

running

runnable
in memory

runnable
swapped

sleep

sleeping
in memory

swap out swap outswap in

wakeup

wakeup

assign CPU preempt

sleeping
swapped

Process Scheduler 49

3

• A process is running if it is assigned to a CPU. A process is preempted—that
is, removed from the running state—by the scheduler if a process with a
higher priority becomes runnable. A process is also preempted if it
consumes its entire time slice and a process of equal priority is runnable.

• A process is runnable in memory if it is in primary memory and ready to
run, but is not assigned to a CPU.

• A process is sleeping in memory if it is in primary memory but is waiting
for a specific event before it can continue execution. For example, a process
is sleeping if it is waiting for an I/O operation to complete, for a locked
resource to be unlocked, or for a timer to expire. When the event occurs, the
process is sent a wake up; if the reason for its sleep is gone, the process
becomes runnable.

• A process is runnable and swapped if it is not waiting for a specific event
but has had its whole address space written to secondary memory to make
room in primary memory for other processes.

• A process is sleeping and swapped if it is both waiting for a specific event
and has had its whole address space written to secondary memory to make
room in primary memory for other processes.

If a machine does not have enough primary memory to hold all its active
processes, it must page or swap some address space to secondary memory:

• When the system is short of primary memory, it writes individual pages of
some processes to secondary memory but still leaves those processes
runnable. When a process runs, if it accesses those pages, it must sleep while
the pages are read back into primary memory.

• When the system gets into a more serious shortage of primary memory, it
writes all the pages of some processes to secondary memory and marks
those processes as swapped. Such processes get back into a state where they
can be scheduled only by being chosen by the system scheduler daemon
process, then read back into memory.

Both paging and swapping, and especially swapping, introduce delay when a
process is ready to run again. For processes that have strict timing
requirements, this delay can be unacceptable.

To avoid swapping delays, real-time processes are never swapped, though
parts of them can be paged. A program can prevent paging and swapping by
locking its text and data into primary memory.

50 System Interfaces Guide—November 1995

3

For more information see memcntl (2). Of course, how much can be locked is
limited by how much memory is configured. Also, locking too much can cause
intolerable delays to processes that do not have their text and data locked into
memory.

Trade-offs between performance of real-time processes and performance of
other processes depend on local needs. On some systems, process locking
might be required to guarantee the necessary real-time response.

Software Latencies

See “Dispatch Latency” on page 112 for information about latencies in real-
time applications.

51

Input/Output Interfaces 4

Files and I/O
Files that are organized as a sequence of data are called regular files. These can
contain ASCII text, text in some other encoding binary data, executable code,
or any combination of text, data, and code. The file has two components:

• The control data, called the inode. These data include the file type, the access
permissions, the owner, the file size, and the location(s) of the data blocks.

• The file contents: an nonterminated sequence of bytes.

Solaris provides three basic forms of file input/output interfaces.

• One form is the traditional style of file I/O described in “Basic File I/O” on
page 52.

• The second form is the “standard file I/O”. The buffering provided by
standard I/O provides an easier interface and improved efficiency to an
application that is run on a system without virtual memory. In an
application running in a virtual memory environment, such as the Solaris
2.x system, standard file I/O is a very inefficient anachronism.

• The third form of file I/O is provided by the memory mapping interface
described in “Memory Management Interfaces” on page 94. Mapping files is
the most efficient and powerful form of file I/O for most applications run in
the Solaris 2.x environment.

52 System Interfaces Guide—November 1995

4

Note that it is not necessary to use traditional file I/O to obtain locking of file
elements. The lighter weight synchronization mechanisms described in
Multithreaded Programming Guide can be used more effectively with mapped
files.

Basic File I/O

These functions perform basic operations on files:

Code Example 4-1, below, demonstrates the use of the basic file I/O interface.
read (2) and write (2) both transfer no more than the specified number of
bytes, starting at the current offset into the file. The number of bytes actually
transferred is returned. The end of a file is indicated, on a read (), by a return
value of zero.
Code Example 4-1 Basic file I/O

#include <fcntl.h>
#define MAXSIZE 256

main()
{

int fd, n;
char array[MAXSIZR]

fd = open (“/etc/motd”, O_RDONLY);
if (fd == -1) {

perror (“open”);
exit (1);

}

Table 4-1 Basic File I/O Functions

Function Name Purpose

open Open a file for reading or writing

close Close a file descriptor

read Read from a file

write Write to a file

creat Create a new file or rewrite an existing one

unlink Remove a directory entry

lseek Move read/write file pointer

Input/Output Interfaces 53

4

while ((n = read (fd, array, MAXSIZE)) > 0)
if (write (1, array, n) != n)

perror (“write”);
if (n == -1)

perror (“read);
close (fd);

}

Always close a file when you are done reading or writing it.

Offset into an open file are changed by read ()s, write ()s, or by calls to
lseek (2). Some examples of using lseek() are:
Code Example 4-2 Seek code

off_t start, n;
struct record rec;

/* record current offset in start */
start = lseek (fd, 0L, SEEK_CUR);

/*go back to start */
n = lseek (fd, start, SEEK_SET);
read (fd, (char *)&rec, sizeof (rec));

/* rewrite previous record */
n = lseek (fd, -sizeof (rec), SEEK_CUR);
write (fd, (char *)&rec, sizeof (rec));

Advanced File I/O

These functions create and remove directories and files, create links to existing
files, and obtain or modify file status information:

Table 4-2 Advanced File I/O Functions

Function Name Purpose

link Link to a file

access Determine accessibility of a file

mknod Make a special or ordinary file

chmod Change mode of file

chown
lchown
fchown

Change owner and group of a file

54 System Interfaces Guide—November 1995

4

File System Control

These functions allow you to control various aspects of the file system:

utime Set file access and modification times

stat
lstat
fstat

Get file status

fcntl Perform file control functions

ioctl Control device

fpathconf
pathconf

Get configurable path name variables

opendir
readdir
closedir

Perform directory operations

mkdir Make a directory

readlink Read the value of a symbolic link

rename Change the name of a file

rmdir Remove a directory

symlink Make a symbolic link to a file

Table 4-3 File System Control Functions

Function Name Purpose

ustat Get file system statistics

sync Update super block

mount Mount a file system

unmount Unmount a file system

statvfs
fstatvfs

Get file system information

sysfs Get file system type information

Table 4-2 Advanced File I/O Functions (Continued)

Function Name Purpose

Input/Output Interfaces 55

4

File and Record Locking
You lock files, or portions of files, to prevent the errors that can occur when
two or more users of a file try to update information at the same time.

File locking and record locking are really the same thing, except that file
locking implies that the whole file is affected, while record locking means that
only a specified portion of the file is locked. (In the SunOS 5.x system, file
structure is undefined: a record is a concept of the programs that use the file.)

Supported File Systems

Both advisory and mandatory locking are supported on the following types of
file systems:

• ufs —the default disk-based file system
• fifofs —a pseudo file system of named pipe files that give processes

common access to data.
• namefs —a pseudo file system used mostly by STREAMS for dynamic

mounts of file descriptors on top of files.
• specfs —a pseudo file system that provides access to special character and

block devices.

only advisory file locking is supported on NFS.

File locking is not supported for the proc and fd file systems.

Choosing A Lock Type

Mandatory locking suspends a process until the requested file segments are
free. Advisory locking returns a result indicating whether the lock was
obtained or not. Processes can ignore the result and do the I/O anyway. You
cannot have both mandatory and advisory file locking on the same file at the
same time. The mode of the file at the time it is opened determines whether the
existing locks on the file are treated as mandatory or advisory.

Of the two basic locking calls, fcntl (2) is more portable, more powerful, and
less easy to use than lockf (3C). fcntl () is specified in Posix 1003.1 standard.
lockf () is provided to be compatible with older applications.

56 System Interfaces Guide—November 1995

4

Terminology

Some important definitions:
record An arbitrary sequence of bytes in a file. The UNIX

operating system supports no record structure.
Programs that use the files can impose any desired
record structure.

cooperating processes Processes use some technique to access a shared re-
source, often a synchronization mechanism.

read lock Used to control access to segments of files. A read
lock lets other processes also lock the same seg-
ment to read, but lets no other process have a write
lock on an overlapping segment of the file.

write lock Used to control access to segments of files. No oth-
er process can read or write the record.

advisory lock The form of record lock that does not suspend exe-
cution of other processes. Advisory locking is not
enforced on creat (2), open (2), read (2), or
write (2) operations. Advisory locking lets calling
processes poll the state of a lock and do other work
if a lock is not available.

mandatory lock A record lock that suspends execution of processes
that do not hold the lock. Access to locked records
is enforced on creat (2), open (2), read (2), and
write (2) operations.

Setting a File Lock

There are several ways to set a lock on a file. Choice of method depends on
how the lock interacts with the rest of the program, performance, and
portability. To lock an entire file, set the offset to zero, and, by convention, set
the size to zero.

The first example uses the POSIX standard-compatible fcntl (2) function. It
tries to lock a file until one of the following happens:

• The file is successfully locked
• There is an error

Input/Output Interfaces 57

4

• MAX_TRY is exceeded, and the program gives up trying to lock the file

#include <fcntl.h>

...
struct flock lck;

...
lck.l_type = F_WRLCK;/* setting a write lock */
lck.l_whence = 0;/* offset l_start from beginning of file */
lck.l_start = (off_t)0;
lck.l_len = (off_t)0;/* until the end of the file */
if (fcntl(fd, F_SETLK, &lck) <0) {

if (errno == EAGAIN || errno == EACCES) {
(void) fprintf(stderr, "File busy try again later!\n");
return;

}
perror("fcntl");
exit (2);

}
...

The second example uses lockf (3C):

#include <unistd.h>

...

/* make sure the file pointer is at the beginning of the file. */
lseek(fd, (off_t)0, 0);
if (lockf(fd, F_TLOCK, 0L) < 0) {

if (errno == EAGAIN || errno == EACCES) {
(void) fprintf(stderr,"File busy try again later!\n");
return;

}
perror("lockf");
exit(2);

}
...

Note that the lockf (3C) example is simpler, but the fcntl (2) example shows
more flexibility. Using fcntl (2), you can set the type and start of the lock
request by setting a few structure variables. The lockf method sets only write
(exclusive) locks; an additional function, lseek , is required to specify the start
of the lock.

58 System Interfaces Guide—November 1995

4

Opening a File for Record Locking

A lock can only be requested on a file with a valid open descriptor. For read
locks, the file must be opened with at least read access. For write locks, the file
must also be opened with write access. In the example, a file is opened for both
read and write access:

...
filename = argv[1];
fd = open (filename, O_RDWR);
if(fd < 0) {

perror(filename);
exit(2);

}
...

Note – Mapped files cannot be locked with flock (). See mmap(2).

Setting and Removing Record Locks

Locking a record is done the same way as locking a file except that the starting
point and length of the lock segment are not set to zero.

Plan a failure strategy for when you cannot obtain all the required locks.
Contention for records is why you use record locking, so different programs
might:

• Wait a certain amount of time, then try again
• Abort the procedure and warn the user
• Let the process sleep until signaled that the lock has been freed
• Do some combination of the above

This example shows locking a record using fcntl ():

{
struct flock lck;

...
lck.l_type = F_WRLCK;/* setting a write lock */
lck.l_whence = 0;/* offset l_start from beginning of file */
lck.l_start = here;
lck.l_len = sizeof(struct record);

/* lock "this" with write lock */

Input/Output Interfaces 59

4

lck.l_start = this;
if (fcntl(fd, F_SETLKW, &lck) < 0) {

/* "this" lock failed. */
return (-1);

...
}

The next example shows the lockf function:

#include <unistd.h>

...
/* lock "this" */
(void) lseek(fd, this, SEEK_SET);
if (lockf(fd, F_LOCK, sizeof(struct record)) < 0) {

/* Lock on "this" failed. Clear lock on "here". */
(void) lseek(fd, here, 0);
(void) lockf(fd, F_ULOCK, sizeof(struct record));
return (-1);

Locks are removed the same way they are set—only the lock type is different
(F_ULOCK). An unlock cannot be blocked by another process and affects only
locks placed by the process. The unlock affects only the segment of the file
specified in the preceding locking call.

Getting Lock Information

You can determine which process, if any, is holding a lock. Use this as a simple
test or to find locks on a file. A lock is set, as in the previous examples, and
F_GETLK is used in the fcntl call. The next example finds and prints
indentifying data on all the locked segments of a file:

struct flock lck;

lck.l_whence = 0;
lck.l_start = 0L;
lck.l_len = 0L;
do {

lck.l_type = F_WRLCK;
(void) fcntl(fd, F_GETLK, &lck);
if (lck.l_type != F_UNLCK) {

(void) printf("%d %d %c %8d %8d\n", lck.l_sysid,
lck.l_pid, (lck.l_type == F_WRLCK) ? ’W’ : ’R’,
lck.l_start, lck.l_len);

60 System Interfaces Guide—November 1995

4

/* If this lock goes to the end of the address space, no
 * need to look further, so break out. */
if (lck.l_len == 0) {
/* else, look for new lock after the one just found. */

lck.l_start += lck.l_len;
}

}
} while (lck.l_type != F_UNLCK);

The fcntl function with the F_GETLK command can sleep while waiting for a
server to respond, and it can fail (returning ENOLCK) if there is a resource
shortage on either the client or server.

The lockf function with the F_TEST command can also be used to test if a
process is blocking a lock. This function does not return information about
where the lock is and which process owns the lock.

(void) lseek(fd, 0, 0L);
/* set the size of the test region to zero (0). to test until the
 end of the file address space. */
if (lockf(fd, (off_t)0, SEEK_SET) < 0) {

switch (errno) {
case EACCES:
case EAGAIN:

(void) printf("file is locked by another process\n");
break;

case EBADF:
/* bad argument passed to lockf */
perror("lockf");
break;

default:
(void) printf("lockf: unexpected error <%d>\n", errno);
break;

}

Forking Locks

When a process forks, the child receives a copy of the file descriptors that the
parent opened. Locks are not inherited by the child because they are owned by
a specific process. The parent and child share a common file pointer for each
file. Both processes can try to set locks on the same location in the same file.

Input/Output Interfaces 61

4

This problem happens with both lockf (3C) and fcntl(2). If a program holding
a record lock forks, the child process should close the file and reopen it to set a
new, separate file pointer.

Deadlock Handling

The UNIX locking facilities provide deadlock detection/avoidance. Deadlocks
can happen only when the system is about to put a record locking function to
sleep. A search is made to determine whether process A will wait for a lock
that B holds while B is waiting for a lock that A holds. If a potential deadlock
is detected, the locking function fails and sets errno to indicate deadlock.
Processes setting locks using F_SETLK do not cause a deadlock because they
do not wait when the lock cannot be granted immediately.

Selecting Advisory or Mandatory Locking

For mandatory locks, the file must be a regular file with the set-group-ID bit on
and the group execute permission off. If either condition fails, all record locks
are advisory. Get mandatory enforcement as follows:

#include <sys/types.h>
#include <sys/stat.h>

int mode;
struct stat buf;

...
if (stat(filename, &buf) < 0) {

perror("program");
exit (2);

}
/* get currently set mode */
mode = buf.st_mode;
/* remove group execute permission from mode */
mode &= ~(S_IEXEC>>3);

/* set ’set group id bit’ in mode */
mode |= S_ISGID;
if (chmod(filename, mode) < 0) {

perror("program");
exit(2);

}
...

62 System Interfaces Guide—November 1995

4

Files to be record locked should never have any execute permission set. This is
because the operating system ignores record locks when executing a file.

The chmod(1) command can also be used to set a file to permit mandatory
locking. For example:

$ chmod +l file

(Note that this is letter “l” and not the number “1”.) This command sets two
permission bits in the file mode, which indicates mandatory locking on the file.
The two bits in the mode are .1./.../..0/... An individual file cannot
simultaneously be enabled for mandatory locking and have the set-group-ID
on execution bit set. Nor can an individual file be enabled for mandatory
locking and for group execution.

The ls (1) command shows this setting when you ask for the long listing
format with the –l option:

$ ls -l file

displays following information:

-rw---l--- 1 user group size mod_time file

The letter “l” in the permissions indicates that the set-group-ID bit is on, so
mandatory locking is enabled, as well as the normal semantics of set group ID.

Cautions about Mandatory Locking
• Mandatory locking works only for local files. It is not supported when

accessing files through NFS.
• Mandatory locking protects only the segments of a file that are locked. The

remainder of the file can be accessed according to normal file permissions.
• If multiple reads or writes are needed for an atomic transaction, the process

should explicitly lock all such segments before any I/O begins. Advisory
locks are sufficient for all programs that perform in this way.

• Arbitrary programs should not have unrestricted access permission to files
on which record locks are used.

• Advisory locking is more efficient because a record lock check does not have
to be performed for every I/O request.

Input/Output Interfaces 63

4

Terminal I/O
These functions deal with a general terminal interface for controlling
asynchronous communications ports:

Table 4-4 Terminal I/O Functions

Function Name Purpose

tcgetattr
tcsetattr

Get and set terminal attributes

tcsendbreak
tcdrain
tcflush
tcflow

Perform line control functions

cfgetospeed
cfgetispeed
cfsetispeed
cfsetospeed

Get and set baud rate

tcgetpgrp
tcsetpgrp

Get and set terminal foreground process group ID

tcgetsid Get terminal session ID

64 System Interfaces Guide—November 1995

4

65

System V IPC 5

The SunOS 5.x system provides several mechanisms that allow processes to
exchange data and synchronize execution. The simpler of these mechanisms
are pipes, named pipes, and signals. These are limited, however, in what they
can do:

• Pipes do not allow unrelated processes to communicate.
• Named pipes allow unrelated processes to communicate, but do not provide

private channels for pairs of communicating processes; that is, any process
with appropriate permission can read from or write to a named pipe.

• Sending signals with the kill function allows arbitrary processes to
communicate, but the message consists only of the signal number.

The SunOS 5.x system provides an InterProcess Communication (IPC) package
that supports three more versatile types of interprocess communication:

• Messages allow processes to send formatted data streams to arbitrary
processes.

• Semaphores allow processes to synchronize execution.
• Shared memory allows processes to share parts of their virtual address

space.

When implemented as a unit, these three mechanisms share common
properties:

• Each mechanism contains a “get” function to create a new entry or retrieve
an existing one.

• Each mechanism contains a “control” function to query the status of an
entry, to set status information, and to remove the entry from the system.

66 System Interfaces Guide—November 1995

5

• Each mechanism contains one or more “operations” functions to perform
various operations on an entry.

This chapter describes the functions for each of these three forms of IPC.

This information is for programmers who write multiprocess applications.
These programmers should have a general understanding of what semaphores
are and how they are used.

See the following manual pages as listed in Code Example 5-1 for more
information about IPC.

Included in this chapter are several example programs showing the use of
these IPC functions. You can accomplish the same task in many ways, so keep
in mind that the example programs were written for clarity and not for
program efficiency. Usually, functions are embedded within a larger user-
written program that uses a particular function provided by the calls.

Permissions

Permissions for messages, semaphores, and shared memory can be extended to
users other than the one for which the facility was created. The creating
process identifies the default owner. Unlike files, however, the creator can
assign ownership of the facility to another user; it can also revoke an
ownership assignment. The current owner process, in turn, can grant read or
write access to still other users.

The definition of the IPC permissions data structure ipc_perm is given in
<sys/ipc.h> :
Code Example 5-1 IPC Permissions Data Structure

struct ipc_perm
{

uid_t uid; /* owner’s user id */

Table 5-1 IPC Reference Manual Pages

ipcrm (1) ipcs (1) intro (2)

msgget (2) msgctl (2) msgop(2)

semget (2) semctl (2) semop(2)

shmget (2) shmctl (2) shmop(2)

stdipc (3C)

System V IPC 67

5

gid_t gid; /* owner’s group id */
uid_t cuid; /* creator’s user id */
gid_t cgid; /* creator’s group id */
mode_t mode; /* access modes */
ulong seq; /* slot usage sequence number */
key_t key; /* key */
long pad[4]; /*reserve area */

};

This structure is common to messages, semaphores, and shared memory.
Permissions for an IPC facility are initialized by the creating process and can
be modified by any process with permission to perform control operations on
that facility.

Permissions are specified as octal values in the flags argument of the
appropriate IPC creation or control function:

For instance, to get read access by the owner and read and write access by
others, the permissions value is 0406 .

IPC Functions, Key Arguments, and Creation Flags

Processes requesting access to a common IPC facility must have a way to
determine the identity of the facility. To do this, functions that initialize or
provide access to an IPC facility use a key argument (of type key_t).

Table 5-2 Octal Permission Values

Access Permissions Octal Value

Write by Owner 0200

Read by Owner 0400

R/W by Owner 0600

Write by Group 0020

Read by Group 0040

R/W by Group 0060

Write by Others 0002

Read by Others 0004

R/W by Others 0006

68 System Interfaces Guide—November 1995

5

This key is a value known to all the programs, or one that can be derived from
a common seed at run time. A common way to derive the key is with ftok
(see stdipc (3C)). This converts a filename to a key value that is virtually
unique within the system. The key value can be used by all programs
(processes) attempting to access the facility.

Functions that initialize or get access to messages, semaphores, or shared
memory return an ID number of type int . IPC functions that perform read,
write, and control operations use this ID.

If the key argument is specified as IPC_PRIVATE (defined to be zero), the call
initializes a new instance of an IPC facility that is private to the creating
process.

When the IPC_CREAT flag is supplied in the flags argument appropriate to the
call, the function attempts to create the facility if it does not exist already.

When called with both the IPC_CREAT and IPC_EXCL flags, the function fails
if the facility already exists. This can be useful when more than one process
might attempt to initialize the facility. One such case might involve several
server processes having access to the same facility. If they all attempt to create
the facility with IPC_EXCL in effect, only the first attempt succeeds.

If neither of these flags is given and the facility already exists, the functions to
get access simply return the ID of the facility. If IPC_CREAT is omitted and the
facility is not already initialized, the calls fail.

These control flags are combined, using logical (bitwise) OR, with the octal
permission modes to form the flags argument. For example, the statement
below initializes a new message queue if the queue does not exist.

msqid = msgget(ftok("/tmp", ’A’), (IPC_CREAT | IPC_EXCL | 0400));

The first argument evaluates to a key (‘A’ in the following figure) based on
the string ("/tmp " in the following figure). The second argument evaluates to
the combined permissions and control flags.

Messages
IPC messaging allows processes to send and receive messages, and to queue
messages for processing in an arbitrary order. Unlike the file byte-stream
model of data flow used for pipes, each IPC message has an explicit length.
More importantly, messages can be assigned a specific type. Because of this, a

System V IPC 69

5

server process can direct message traffic between clients on its queue by using
the client process PID as the message type. For single-message transactions,
multiple server processes can work in parallel on transactions sent to a shared
message queue.

Before a process can send or receive a message, the queue must be initialized
through the msgget (2) function. The owner or creator of a queue can change
its ownership or permissions using msgctl (2). Also, any process with
permission to do so can use msgctl() for control operations.

Operations to send and receive messages are performed by the msgsnd() and
msgrcv() functions, respectively (see msgop(2)). When a message is sent, its
text is copied to the message queue.

The msgsnd() and msgrcv() functions can be performed as either blocking
or non-blocking operations. A blocked message operation remains suspended
until one of the following three conditions occurs:

• The call succeeds.
• The process receives a signal.
• The queue is removed.

Structure of a Message Queue

A message queue contains a control structure with a unique ID, a linked list of
message headers, and a buffer for the message text. The identifier for the queue
is the msqid .

Figure 5-1 Structure of a Message Queue

control
structure

header message
buffer

70 System Interfaces Guide—November 1995

5

The control structure for the message queue contains the following
information:

• A permissions structure.
• A pointer to the first message on the queue.
• A pointer to the last message on the queue.
• The number of bytes in the queue.
• The number of messages in the queue.
• The maximum number of bytes allowed in the queue.
• The process ID (PID) of the last message sender.
• The PID of the last message receiver.
• The time the last message was sent.
• The time the last message was received.
• The time of the last change to the structure.

Each message header contains the following information:

• A pointer to the next message on the queue.
• The message type.
• The message text size.
• The message text address.

The message queue control structure is defined in <sys/msg.h>
Code Example 5-2 Message Queue Control Structure

struct msqid_ds
{

struct ipc_permmsg_perm; /* operation permission struct */
struct msg *msg_first; /* ptr to first message on q */
struct msg *msg_last; /* ptr to last message on q */
ulong msg_cbytes; /* current # bytes on q */
ulong msg_qnum; /* # of messages on q */
ulong msg_qbytes; /* max # of bytes on q */
pid_t msg_lspid; /* pid of last msgsnd */
pid_t msg_lrpid; /* pid of last msgrcv */
time_t msg_stime; /* last msgsnd time */
long msg_pad1; /* reserved to expand time_t */
time_t msg_rtime; /* last msgrcv time */
long msg_pad2; /* time_t expansion */
time_t msg_ctime; /* last change time */
long msg_pad3; /* time expansion */
long msg_pad4[4]; /* reserve area*/

};

The definition of the message-header data structure is the following

System V IPC 71

5

Code Example 5-3 Message Header Structure

struct msg
{

struct msg *msg_next; /* ptr to next message on q */
long msg_type; /* message type */
short msg_ts; /* message text size */
short msg_spot; /* message text map address */

};

Initializing a Message Queue with msgget ()

The msgget() function initializes a new message queue. It can also return the
message queue ID (msqid) of the queue corresponding to the key argument.
When the call fails, it returns –1 and sets the external variable errno to the
appropriate error code. The msgget() synopsis is:

#include <sys/types.h>
#include <sys/ipc.h>
#include <sys/msg.h>

int msgget (key_t key, int msgflg);

The value passed as the msgflg argument must be an octal integer with
settings for the queue’s permissions and control flags.

The MSGMNI kernel configuration option determines the maximum number of
unique message queues that the kernel will support. The msgget() function
fails when this limit is exceeded.

The following example is a simple program that illustrates the msgget()
function. The program prompts for a key, an octal permissions code, and for
your choice of control flags. It allows all possible combinations. When msgget
succeeds, it displays the message queue ID that the call returned. When
msgget () fails, the program indicates that there was an error and displays the
reason for the failure:
Code Example 5-4 Example of msgget () call
#include <sys/types.h>
#include <sys/ipc.h>
#include <sys/msg.h>

main()
{

key_t key; /* key to be passed to msgget() */
int msgflg, /* msgflg to be passed to msgget() */

72 System Interfaces Guide—November 1995

5

msqid; /* return value from msgget() */

...
key = ...
msgflg = ...
if ((msqid = msgget(key, msgflg)) == –1)
{

perror("msgget: msgget failed");
exit(1);

} else
(void) fprintf(stderr, “msgget succeeded");

exit(0);
}

Controlling Message Queues with msgctl ()

The msgctl() function alters the permissions and other characteristics of a
message queue. Its synopsis is

#include <sys/types.h>
#include <sys/ipc.h>
#include <sys/msg.h>

int msgctl(int msqid, int cmd, .../* struct msqid_ds *buf */);

Upon successful completion, the call returns zero. Upon failure, it returns –1
and sets errno appropriately.

The msqid argument must be the ID of an existing message queue. The cmd
argument is one of the following:

IPC_STAT
Place information about the status of the queue in the data structure pointed
to by buf . The process must have read permission for this call to succeed.

IPC_SET
Set the owner’s user and group ID, the permissions, and the size (in number
of bytes) of the message queue. A process must have the effective user ID of
the owner, creator, or superuser for this call to succeed.

IPC_RMID
Remove the message queue specified by the msqid argument.

The following code sample illustrates the msgctl (2) function with all its
various flags:

System V IPC 73

5

Code Example 5-5 Example msgctl () calls

#include <sys/types.h>
#include <sys/ipc.h>
#include <sys/msg.h>

...
do_msgctl(msqid, IPC_STAT, &buf);
...
do_msgctl(msqid, IPC_SET, &buf);
...

int
do_msgctl(msqid, cmd, buf)
struct msqid_ds*buf; /* pointer to queue descriptor buffer */
int cmd, /* command code */

msqid; /* queue ID */
{

int rtrn; /* hold area for return value from msgctl() */

if (rtrn = msgctl(msqid, cmd, buf) == –1) {
perror("msgctl: msgctl failed");
exit(1);

} else {
return (rtrn);

}
}

Sending and Receiving Messages

The msgsnd () and msgrcv () functions (see the msgop(2) manual page) send
and receive messages, respectively. Their synopses are:

#include <sys/types.h>
#include <sys/ipc.h>
#include <sys/msg.h>

int msgsnd(int msqid, const void *msgp, size_t msgsz, int msgflg);

int msgrcv(int msqid, void *msgp, size_t msgsz, long msgtyp,
int msgflg);

74 System Interfaces Guide—November 1995

5

On successful completion, each of these functions returns zero. When
unsuccessful, each call returns –1 and sets the external variable errno to the
appropriate error code.

The msqid argument must be the ID of an existing message queue. The msgp
argument is a pointer to a structure that contains the type of the message and
its text. The msgsz argument specifies the length of the message in bytes.

Various control flags can be passed in the msgflg argument. Combine flags
within the argument using the logical OR operator. When IPC_NOWAIT is set,
a send or receive operation that cannot finish fails. For instance, a non-blocking
msgrcv() operation fails when there is no message to receive. If
MSG_NOERROR is set, then a message longer than the size specified by msgsz is
truncated to that size. The trailing portion of the truncated message is lost.
Without the MSG_NOERROR flag, attempting to receive a message that is
longer than expected results in failure.

The msgtyp argument to msgrcv() indicates the type of message to receive.
When msgtyp() equals zero, the call receives the first message on the queue.
When it is greater than zero, the call receives the first message of the indicated
type.

When msgtyp is less than zero, the call receives the first message on the queue
with lowest type value, up to and including the absolute value of the
argument. For instance, when msgtyp has a value of –3, the call retrieves the
first message of type 1, if any, or the first message of type 2, if any, or the first
message of type 3. It does not receive a message of type 4. This allows you to
prioritize message processing according to type.

The following code sample illustrates msgsnd() and msgrcv() :
Code Example 5-6 Example msgsnd() and msgrcv () calls

#include <sys/types.h>
#include <sys/ipc.h>
#include <sys/msg.h>

{
int msgflg;/* message flags for the operation */
struct msgbuf *msgp; /* pointer to the message buffer */
int msgsz; /* message size */
long msgtyp; /* desired message type */
int msqid /* message queue ID to be used */

...

System V IPC 75

5

msgp = (struct msgbuf *)malloc((unsigned)(sizeof(struct msgbuf)
– sizeof msgp–>mtext + maxmsgsz));

if (msgp == NULL) {
(void) fprintf(stderr, "msgop: %s %d byte messages.\n",

"could not allocate message buffer for", maxmsgsz);
exit(1);

...
msgsz = ...
msgflg = ...
if (msgsnd(msqid, msgp, msgsz, msgflg) == –1)

perror("msgop: msgsnd failed");
...

...
msgsz = ...
msgtyp = first_on_queue;
msgflg = ...
if (rtrn = msgrcv(msqid, msgp, msgsz, msgtyp, msgflg) == –1)

perror("msgop: msgrcv failed");
...

Semaphores
Semaphores let processes query or alter status information. They are often used
to monitor and control the availability of system resources such as shared
memory segments. Semaphores can be operated on as individual units or as
elements in a set.

A semaphore set consists of a control structure and an array of individual
semaphores. By default, a set of semaphores can contain up to 25 elements.
Your system administrator can alter this limit through the SEMMSL system
configuration option.

Before a process can use a semaphore, the semaphore set must be initialized
using semget (2). The semaphore owner or creator can change its ownership or
permissions using semctl (2). Also, any process with permission to do so can
use semctl() to perform control operations.

76 System Interfaces Guide—November 1995

5

Semaphore operations are performed by the semop(2) function. This call
accepts a pointer to an array of semaphore operation structures. Each structure
in the operations array contains information about an operation to perform on
a semaphore. The operations array is described in detail in the Semaphore
Operations section.

Any process with read permission can test to see whether or not a semaphore
has a zero value by supplying a 0 in the sem_op field of the operation
structure. Operations to increment or decrement a semaphore require alter
permission (write permission).

When an attempt to perform any of the requested operations fails, none of the
semaphores is altered. The process blocks (unless the IPC_NOWAIT flag is set),
and remains blocked until one of the following occurs:

• the semaphore operations can all finish, so the call succeeds,

• the process receives a signal, or

• the semaphore set is removed.

When a semaphore operation fails, the call returns –1 and sets errno
appropriately.

Only one process at a time can update a semaphore. Simultaneous requests by
different processes are performed in an arbitrary order. When an array of
operations is given by a semop() call, the updates are made atomically. That
is, no updates are done until all operations in the array can finish in order
successfully.

When a process performs an operation on a semaphore, the system does not
usually keep track of whether or not that operation has been undone. If a
process with exclusive use of a semaphore terminates abnormally and neglects
to undo the operation or free the semaphore, the semaphore remains locked in
memory.

To prevent this, semop() accepts the SEM_UNDO control flag. When this flag is
in effect, semop() allocates an undo structure for each semaphore operation.
That structure contains the operation needed to return the semaphore to its
previous state.

When the process dies, the system applies the operations in the undo
structures. That way an aborted process does not leave a semaphore set in an
inconsistent state.

System V IPC 77

5

If processes share access to a resource controlled by a semaphore, operations
on the semaphore should not be made with SEM_UNDO in effect. If the process
that currently has control of the resource terminates abnormally, the resource is
presumed to be inconsistent. Another process must be able to recognize this to
restore the resource to a consistent state.

When performing a semaphore operation with SEM_UNDO in effect, you must
also have it in effect for the call that would perform the reversing operation.
When the process runs normally, the reversing operation updates the undo
structure with a complementary value.

This insures that, unless the process is aborted, the values applied to the undo
structure will eventually cancel out to zero. When the undo structure reaches
zero, it is removed.

Using SEM_UNDO inconsistently can lead to excessive resource consumption
because allocated undo structures might not be freed until the system is
rebooted.

Structure of a Semaphore Set

A semaphore set is a control structure with a unique ID and an array of
semaphores. The identifier for the semaphore or array is called the semid :

Figure 5-2 Structure of a Semaphore

The control structure for the semaphore contains the following information:

• The permissions structure
• A pointer to first semaphore in the array
• The number of semaphores in the array
• The time of the last operation on any semaphore the array

control
structure

semaphore
array

78 System Interfaces Guide—November 1995

5

• The time of the last update to any semaphore in the array

Each semaphore structure in the array contains the following information:

• The semaphore value
• *The PID of the process performing the last successful operation
• The number of processes waiting for the semaphore to increase
• The number of processes waiting for the semaphore to reach zero

The control structure is defined in <sys/sem.h>

struct semid_ds
{

struct ipc_perm sem_perm; /* operation permission struct */
struct sem *sem_base; /* ptr to first semaphore in set */
ushort sem_nsems; /* # of semaphores in set */
time_t sem_otime; /* last semop time */
long sem_pad1; /* reserved for time_t expansion */
time_t sem_ctime; /* last change time */
long sem_pad2; /* time_t expansion */
long sem_pad3[4]; /* reserve area */

};

The sem_perm member of this structure uses ipc_perm (defined in
<sys/ipc.h>) as a template.

The semaphore structure is defined in the same header file

struct sem
{

ushort semval; /* semaphore text map address */
pid_t sempid; /* pid of last operation */
ushort semncnt; /* # awaiting semval > cval */
ushort semzcnt; /* # awaiting semval = 0 */

};

Initializing a Semaphore Set with semget ()

The semget() function initializes or gains access to a semaphore. When the
call succeeds, it returns the semaphore ID (semid). When the call fails, it
returns –1 and sets the external variable errno to the appropriate error code.
The semget() function has the following synopsis

System V IPC 79

5

Code Example 5-7 Synopsis of semget ()

#include <sys/types.h>
#include <sys/ipc.h>
#include <sys/sem.h>

int semget(key_t key, int nsems, int semflg);

The key argument is a value associated with the semaphore ID.

The nsems argument specifies the number of elements in a semaphore array.
The call fails when nsems is greater than the number of elements in an existing
array; when the correct count is not known, supplying 0 for this argument
assures that it will succeed. The semflg argument specifies the initial access
permissions and creation control flags.

The SEMMNI system configuration option determines the maximum number of
semaphore arrays allowed. The SEMMNS option determines the maximum
possible number of individual semaphores across all semaphore sets. The
semget() call fails when one of these limits is exceeded. Because of
fragmentation between semaphore sets, it might not be possible to allocate all
available semaphores.

The following program illustrates the semget() function. It begins by
prompting for a hexadecimal key, an octal permissions code, and control
command combinations selected from a menu. All possible combinations are
allowed.

It then asks the number of semaphores in the array and issues the function to
initialize the array. If the call succeeds, the program displays the returned
semaphore ID. Otherwise, it displays an error message:
Code Example 5-8 Example semget () call
#include <sys/types.h>
#include <sys/ipc.h>
#include <sys/sem.h>

{
key_t key; /* key to pass to semget() */
int semflg; /* semflg to pass to semget() */
int nsems; /* nsems to pass to semget() */
int semid; /* return value from semget() */

...
key = ...

80 System Interfaces Guide—November 1995

5

nsems = ...
semflg = ...
...
if ((semid = semget(key, nsems, semflg)) == –1) {

perror("semget: semget failed");
exit(1);

} else
exit(0);

}

Controlling Semaphores with semctl ()

The semctl() function allows a process to alter permissions and other
characteristics of a semaphore set. Its synopsis is as follows

#include <sys/types.h>
#include <sys/ipc.h>
#include <sys/sem.h>

union semun {
int val;
struct semid_ds *buf;
ushort * array;

};

int semctl(int semid, int semnum, int cmd, union semun arg)

The semid value is a valid semaphore ID. The semnum value selects a
semaphore within an array by its index. The cmd argument is one of the
following control flags. What you supply for arg depends upon the control
flag given in cmd:

GETVAL
Return the value of a single semaphore.

SETVAL
Set the value of a single semaphore. In this case, arg is taken as arg.val ,
an int .

GETPID
Return the PID of the process that performed the last operation on the
semaphore or array.

System V IPC 81

5

GETNCNT
Return the number of processes waiting for the value of a semaphore to
increase.

GETZCNT
Return the number of processes waiting for the value of a particular
semaphore to reach zero.

GETALL
Return the values for all semaphores in a set. In this case, arg is taken as
arg.array , a pointer to an array of unsigned short s.

SETALL
Set values for all semaphores in a set. In this case, arg is taken as
arg.array , a pointer to an array of unsigned short s.

IPC_STAT
Return the status information from the control structure for the semaphore
set and place it in the data structure pointed to by arg.buf , a pointer to a
buffer of type semid_ds .

IPC_SET
Set the effective user and group identification and permissions. In this case,
arg is taken as arg.buf .

IPC_RMID
Remove the specified semaphore set.

A process must have an effective user identification of OWNER, CREATOR, or
superuser to perform an IPC_SET or IPC_RMID command. Read and write
permission is required as for the other control commands.

The following program illustrates semctl()
Code Example 5-9 Example semctl () call
#include <sys/types.h>
#include <sys/ipc.h>
#include <sys/sem.h>

register int i;

i = semctl(semid, semnum, cmd, arg);
if (i == –1) {

82 System Interfaces Guide—November 1995

5

perror("semctl: semctl failed");
exit(1);

}

Performing Semaphore Operations with semop()

The semop() function performs operations on a semaphore set. Its synopsis is
as follows

#include <sys/types.h>
#include <sys/ipc.h>
#include <sys/sem.h>

int semop(int semid, struct sembuf *sops, size_t nsops);

The semid argument is the semaphore ID returned by a previous semget()
call. The sops argument is a pointer to an array of structures, each containing
the following information about a semaphore operation:

• The semaphore number
• The operation to be performed
• Control flags, if any

The sembuf structure specifies a semaphore operation, as defined in
<sys/sem.h>

struct sembuf {
ushort sem_num; /* semaphore # */
short sem_op; /* semaphore operation */
short sem_flg; /* operation flags */

};

The nsops argument specifies the length of the array, the maximum size of
which is determined by the SEMOPM configuration option; this is the maximum
number of operations allowed by a single semop() call, and is set to 10 by
default.

The operation to be performed is determined as follows:

• A positive integer increments the semaphore value by that amount.
• A negative integer decrements the semaphore value by that amount.

However, a semaphore can never take on a negative value. An attempt to set
a semaphore to a value below zero either fails or blocks, depending on
whether or not IPC_NOWAIT is in effect.

• A value of zero means to wait for the semaphore value to reach zero.

System V IPC 83

5

You can use the following control flags with semop() :

IPC_NOWAIT
This operation command can be set for any operations in the array. The
function returns unsuccessfully without changing any semaphore values if
any operation for which IPC_NOWAIT is set cannot be performed
successfully. The function will be unsuccessful when trying to decrement a
semaphore more than its current value, or when testing for a semaphore to
be equal to zero when it is not.

SEM_UNDO
This command allows individual operations in the array to be undone when
the process exits.

The following program illustrates the semop() function
Code Example 5-10 Example semop() call

#include <sys/types.h>
#include <sys/ipc.h>
#include <sys/sem.h>

int i; /* work area */
int nsops; /* number of operations to do */
int semid; /* semid of semaphore set */
struct sembuf *sops; /* ptr to operations to perform */

...
if ((i = semop(semid, sops, nsops)) == –1) {

perror("semop: semop failed");
} else

(void) fprintf(stderr, "semop: returned %d\n", i);
}

System V Shared Memory
In the Solaris 2.x operating system, the most efficient way to implement shared
memory applications is to rely on native virtual memory management and the
mmap(2) function. However, Solaris 2.x also supports System V shared memory.

System V shared memory lets more than one process at a time attach a segment
of physical memory to its virtual address space. When write access is allowed
for more than one process, an outside protocol or mechanism such as a
semaphore can be used to prevent inconsistencies and collisions.

84 System Interfaces Guide—November 1995

5

A process creates a shared memory segment using the shmget (2) function.
This call can also be used to obtain the ID of an existing shared segment. The
creating process sets the permissions and the size in bytes for the segment.

The original owner of a shared memory segment can assign ownership to
another user with the shmctl (2) function; it can also revoke this assignment.
Other processes with proper permission can perform various control functions
on the shared memory segment using shmctl().

Once created, a shared segment can be attached to a process address space
using the shmat () function; it can be detached using shmdt (). (See shmop(2)
for details.)

The attaching process must have the appropriate permissions for shmat() to
succeed. Once attached, the process can read or write to the segment, as
allowed by the permission requested in the attach operation. A shared segment
can be attached multiple times by the same process.

If the above-mentioned function fails, it returns –1 and sets the external
variable errno to the appropriate value.

Structure of a System V Shared Memory Segment

A shared memory segment is composed of a control structure with a unique ID
that points to an area of physical memory. The identifier for the segment is
referred to as the shmid .

Figure 5-3 Structure of a Shared Memory Segment

The data structure includes the following information about the memory
segment:

• Access permissions.
• Segment size.
• The PID of the process performing last operation.

control
structure shared memory segment

System V IPC 85

5

• The PID of the creator process.
• The current number of processes to which the segment is attached.
• The time of the last attachment.
• The time of the last detachment.
• The time of the last change to the segment.
• Memory map segment descriptor pointer.

The structure definition for the shared memory segment control structure can
be found in <sys/shm.h> . This structure definition is shown below

struct shmid_ds {
struct ipc_permshm_perm; /* operation permission struct */
int shm_segsz; /* size of segment in bytes */
struct anon_map*shm_amp; /* segment anon_map pointer */
ushort shm_lkcnt; /* number of times it is locked */
pid_t shm_lpid; /* pid of last shmop */
pid_t shm_cpid; /* pid of creator */
ulong shm_nattch;/* used only for shminfo */
ulong shm_cnattch;/* used only for shminfo */
time_t shm_atime; /* last shmat time */
long shm_pad1; /* reserved for time_t expansion */
time_t shm_dtime; /* last shmdt time */
long shm_pad2; /* reserved for time_t expansion */
time_t shm_ctime; /* last change time */
long shm_pad3; /* reserved for time_t expansion */
long shm_pad4[4];/* reserve area */

};

Note that the shm_perm member of this structure uses ipc_perm as a
template, as defined in <sys/ipc.h> .

Using shmget () to Access a Shared Memory Segment

The shmget() function is used to obtain access to a shared memory segment.
When the call succeeds, it returns the shared memory segment ID (shmid).
When it fails, it returns –1 and sets errno to the appropriate error code. The
shmget() function has the following synopsis

#include <sys/types.h>
#include <sys/ipc.h>
#include <sys/shm.h>

int shmget(key_t key, int size, int shmflg);

86 System Interfaces Guide—November 1995

5

The value passed as the shmflg argument must be an integer, which
incorporates settings for the segment’s permissions and control flags, as
described under “Permissions” on page 66.

The SHMMNI system configuration option determines the maximum number of
shared memory segments that are allowed, 100 by default.

The function fails if the size value is less than SHMMIN or greater than
SHMMAX, the configuration options for the minimum and maximum segment
sizes. By default, SHMIN is 1, SHMAX is 131072.

The following sample program illustrates the shmget() function:
Code Example 5-11 Sample Program to Illustrate shmget ()

#include <sys/types.h>
#include <sys/ipc.h>
#include <sys/shm.h>

extern void exit();
extern void perror();

main()
{

key_t key; /* key to be passed to shmget() */
int shmflg; /* shmflg to be passed to shmget() */
int shmid; /* return value from shmget() */
int size; /* size to be passed to shmget() */

...
key = ...
size = ...
shmflg) = ...
if ((shmid = shmget (key, size, shmflg)) == –1) {

perror("shmget: shmget failed");
exit(1);

} else {
(void) fprintf(stderr,

"shmget: shmget returned %d\n", shmid);
exit(0);

}
...

System V IPC 87

5

Controlling a Shared Memory Segment with shmctl ()

The shmctl() function is used to alter the permissions and other
characteristics of a shared memory segment. It synopsis is as follows

#include <sys/types.h>
#include <sys/ipc.h>
#include <sys/shm.h>

int shmctl (int shmid, int cmd, struct shmid_ds *buf);

Figure 5-4 Synopsis of shmctl ()

The shmid argument is the ID of the shared memory segment as returned by
shmget() .

The cmd argument is one of following control commands:

SHM_LOCK
Lock the specified shared memory segment in memory. The process must
have the effective ID of superuser to perform this command.

SHM_UNLOCK
Unlock the shared memory segment. The process must have the effective ID
of superuser to perform this command.

IPC_STAT
Return the status information contained in the control structure and place it
in the buffer pointed to by buf . The process must have read permission on
the segment to perform this command.

IPC_SET
Set the effective user and group identification and access permissions. The
process must have an effective ID of owner, creator or superuser to perform
this command.

IPC_RMID
Remove the shared memory segment. The process must have an effective ID
of owner, creator or superuser to perform this command.

The following program illustrates the shmctl() function
Code Example 5-12 Sample shmctl () call

#include <sys/types.h>
#include <sys/ipc.h>
#include <sys/shm.h>

88 System Interfaces Guide—November 1995

5

{
int cmd; /* command code for shmctl() */
int shmid; /* segment ID */
struct shmid_dsshmid_ds; /* shared memory data structure to

hold results */

...
shmid = ...
cmd = ...
if ((rtrn = shmctl(shmid, cmd, shmid_ds)) == –1) {

perror("shmctl: shmctl failed");
exit(1);

...

Attaching and Detaching a Shared Memory Segment with shmat () and
shmdt ()

The shmat() and shmdt() functions are used to attach and detach shared
memory segments. Their synopses are as follows

#include <sys/types.h>
#include <sys/ipc.h>
#include <sys/shm.h>

void *shmat(int shmid, void *shmaddr, int shmflg);

int shmdt (void *shmaddr);

Upon successful completion, the shmat() function returns a pointer to the
head of the shared segment; when unsuccessful, it returns (void *) –1 and
sets the external variable errno to the appropriate error code.

The shmid argument is the ID of an existing shared memory segment. The
shmaddr argument is the address at which to attach the segment. If supplied
as zero, the system provides a suitable address. For portability, it is usually
better to allow the system to determine the address.

The shmflg argument is a control flag used to pass the SHM_RND and
SHM_RDONLY flags to the shmat() function.

System V IPC 89

5

The shmdt() function detaches the shared memory segment located at the
address indicated by shmaddr . Upon successful completion, schmdt()
returns zero; when unsuccessful, it returns –1 and sets the external variable
errno to the appropriate error code.

The following sample code illustrates calls to shmat() and shmdt():
Code Example 5-13 Sample shmat () and shmdt () calls
#include <sys/types.h>
#include <sys/ipc.h>
#include <sys/shm.h>

static struct state{ /* Internal record of currently attached
segments. */

int shmid; /* shmid of attached segment */
char *shmaddr; /* attach point */
int shmflg; /* flags used on attach */
ap[MAXnap]; /* State of current attached segments. */

static int nap; /* Number of currently attached segments. */

{
register int action; /* action to be performed */
char *addr; /* address work variable */
register int i; /* work area */
register struct state*p; /* ptr to current state entry */

p = &ap[nap++];
p–>shmid = ...
p–>shmaddr = ...
p–>shmflg = ...
p–>shmaddr = shmat(p->shmid, p->shmaddr, p->shmflg);
if(p–>shmaddr == (char *)-1) {

perror("shmop: shmat failed");
nap–-;

} else
 (void) fprintf(stderr, "shmop: shmat returned %#8.8x\n",

p–>shmaddr);
...

...
addr);
i = shmdt(addr);
if(i == –1) {

perror("shmop: shmdt failed");
} else {

90 System Interfaces Guide—November 1995

5

(void) fprintf(stderr, "shmop: shmdt returned %d\n", i);
for (p = ap, i = nap; i–-; p++) {

if (p–>shmaddr == addr)
*p = ap[–-nap];

}
}
...

91

Memory Management 6

Overview of the Virtual Memory System
The UNIX system provides a complete set of memory management
mechanisms, providing applications complete control over the construction of
their address space and permitting a wide variety of operations on both
process address spaces and the variety of memory objects in the system.

Process address spaces are composed of a vector of memory pages, each of
which can be independently mapped and manipulated. Typically, the system
presents the user with mappings that simulate the traditional UNIX process
memory environment, but other views of memory are useful as well.

The UNIX memory-management facilities do the following.

• Unify system operations on memory

• Provide a set of kernel mechanisms powerful and general enough to
support the implementation of fundamental system services without
special-purpose kernel support

• Maintain consistency with the existing environment, in particular using the
UNIX file system as the name space for named virtual-memory objects

Virtual Memory, Address Spaces, and Mapping

The system virtual memory (VM) consists of all available physical memory
resources. Examples include local and remote file systems, processor primary
memory, swap space, and other random-access devices. Named objects in the

92 System Interfaces Guide—November 1995

6

virtual memory are referenced though the UNIX file system. However, not all
file system objects are in the virtual memory; devices that cannot be treated as
storage, such as terminal and network device files, are not in the virtual
memory. Some virtual memory objects, such as private process memory and
shared memory segments, do not have names.

A process address space is defined by mappings onto objects in the system
virtual memory (usually files). Each mapping is constrained to be sized and
aligned with the page boundaries of the system on which the process is
executing. Each page may be mapped (or not) independently. Only process
addresses that are mapped to some system object are valid, for there is no
memory associated with processes themselves—all memory is represented by
objects in the system virtual memory.

Each object in the virtual memory has an object address space defined by some
physical storage. A reference to an object address accesses the physical storage
that implements the address within the object. The physical storage associated
with virtual memory is thus accessed by transforming process addresses to
object addresses, and then to the physical store.

A given process page may map to only one object, although a given object
address may be the subject of many process mappings. An important
characteristic of a mapping is that the object to which the mapping is made is
not affected by the existence of the mapping. Thus, it cannot, in general, be
expected that an object has an “awareness” of having been mapped, or of
which portions of its address space are accessed by mappings; in particular, the
notion of a “page” is not a property of the object. Establishing a mapping to an
object simply provides the potential for a process to access or change the
object’s contents.

The establishment of mappings provides an access method that renders an
object directly addressable by a process. Applications may find it
advantageous to access the storage resources they use directly rather than
indirectly through read and write . Potential advantages include efficiency
(elimination of unnecessary data copying) and reduced complexity (single-step
updates rather than the read , modify buffer, write cycle). The ability to
access an object and have it retain its identity over the course of the access is
unique to this access method, and facilitates the sharing of common code and
data.

Memory Management 93

6

Networking, Heterogeneity, and Coherence

The VM system is designed to fit well with the larger UNIX heterogeneous
environment. This environment extensively uses networking to access file
systems—file systems that are now part of the system virtual memory.

Networks are not constrained to consist of similar hardware or to be based
upon a common operating system; in fact, the opposite is encouraged, for such
constraints create serious barriers to accommodating heterogeneity.

Although a given set of processes might apply a set of mechanisms to establish
and maintain the properties of various system objects—properties such as page
sizes and the ability of objects to synchronize their own use—a given operating
system should not impose such mechanisms on the rest of the network.

As it stands, the access method view of a virtual memory maintains the
potential for a given object (say a text file) to be mapped by systems running
the UNIX memory management system and also to be accessed by systems for
which virtual memory and storage management techniques such as paging are
totally foreign, such as PC-DOS. Such systems can continue to share access to
the object, each using and providing its programs with the access method
appropriate to that system.

Another consideration arises when applications use an object as a
communications channel, or otherwise attempt to access it simultaneously. In
both of these cases, the object is being shared, and the applications must use
some synchronization mechanism to guarantee the coherence of their
transactions with it. The scope and nature of the synchronization mechanism is
best left to the application to decide.

For example, file access on systems that do not support virtual memory access
methods must be indirect, by way of read and write . Applications sharing
files on such systems must coordinate their access using semaphores, file
locking, or some application-specific protocols.

What is required in an environment where mapping replaces read and write
as the access method is an operation, such as fsync , that supports atomic
update operations.

The nature and scope of synchronization over shared objects is application-
defined from the outset. If the system attempted to impose any automatic
semantics for sharing, it might prohibit other useful forms of mapped access
that have nothing whatsoever to do with communication or sharing.

94 System Interfaces Guide—November 1995

6

By providing the mechanism to support coherency, and leaving it to
cooperating applications to apply the mechanism, the needs of applications are
met without erecting barriers to heterogeneity. Note that this design does not
prohibit the creation of libraries that provide coherent abstractions for common
application needs.

Memory Management Interfaces
The applications programmer gains access to the facilities of the virtual
memory system through several sets of functions. This section summarizes
these calls and provides examples of their use. For details, see the man Pages(2):
System Calls.

Creating and Using Mappings
caddr_t
mmap(caddr_t addr, size_t len, int prot, int flags, int fd,

 off_t off);

mmap establishes a mapping between a process address space and an object in
the system virtual memory. It is the system’s most fundamental function for
defining the contents of an address space—all other system functions that
contribute to the definition of an address space are built from mmap. The
format of an mmap call is:

paddr = mmap(addr, len, prot, flags, fd, off);

mmap establishes a mapping from the process address space at an address paddr
for len bytes to the object specified by fd at offset off for len bytes. The value
returned by mmap is an implementation-dependent function of the parameter
addr and the setting of the MAP_FIXED bit of flags, as described below. A
successful call to mmap returns paddr as its result. The address range [paddr,
paddr + len)1 must be valid for the address space of the process and the range
[off, off + len) must be valid for the virtual memory object.

Note – The mapping established by mmap replaces any previous mappings for
the process pages in the range [paddr, paddr + len].

1. Read the notation [lower, lower + upper) as “from and including the lower boundary up to, but not including,
the upper boundary.”

Memory Management 95

6

The parameter prot determines whether read, execute, write, or some
combination of accesses are permitted to the pages being mapped. To deny all
access, set prot to PROT_NONE. Otherwise, specify permissions by an OR of
PROT_READ, PROT_EXECUTE, and PROT_WRITE (note that PROT_EXECUTE is
specific to the SPARC architecture). A write access will fail if PROT_WRITE has
not been set, though the behavior of the write can be influenced by setting
MAP_PRIVATE in the flags parameter, as described below.

The flags parameter provides other information about the handling of mapped
pages.

• MAP_SHARED and MAP_PRIVATE specify the mapping type, and one of
them must be specified. The mapping type describes the disposition of store
operations made by this process into the address range defined by the
mapping operation.

If MAP_SHAREDis specified, write references will modify the mapped
object. No further operations on the object are necessary to effect a
change—the act of storing into a MAP_SHARED mapping is equivalent to
doing a write function.

On the other hand, if MAP_PRIVATE is specified, an initial write reference
to a page in the mapped area will create a copy of that page and redirect the
initial and successive write references to that copy. This operation is
sometimes referred to as copy-on-write and occurs invisibly to the process
causing the store. Only pages actually modified have copies made in this
manner.

The mapping type is retained across a fork .

Note – The private copy is not created until the first write; until then, other
users who have the object mapped MAP_SHARED can change the object. That is,
if one user has an object mapped MAP_PRIVATE and another user has the same
object mapped MAP_SHARED, and the MAP_SHARED user changes the object
before the MAP_PRIVATE user does the first write, then the changes appear in
the MAP_PRIVATE user’s copy that the system makes on the first write. If an
application needs isolation from changes made by other processes, it should
use read to make a copy of the data it is isolating.

96 System Interfaces Guide—November 1995

6

MAP_PRIVATE mappings are used by system functions such as exec (2)
when mapping files containing programs for execution. This permits
operations by programs such as debuggers to modify the “text” (code) of
the program without affecting the file from which the program is obtained.

• MAP_FIXED informs the system that the value returned by mmap must be
exactly addr. The use of MAP_FIXED is discouraged, as it can prevent an
implementation from making the most effective use of system resources.

When MAP_FIXED is not set, the system uses addr as a hint to arrive at paddr.
The paddr so chosen is an area of the address space that the system deems
suitable for a mapping of len bytes to the specified object. An addr value of
zero grants the system complete freedom in selecting paddr, subject to
constraints described below. A non-zero value of addr is taken as a
suggestion of a process address near which the mapping should be placed.

When the system selects a value for paddr, it never places a mapping at
address 0, nor replaces any extant mapping, nor maps into areas considered
part of the potential data or stack “segments.” The system strives to choose
alignments for mappings that maximize the performance of the hardware
resources.

• MAP_NORESERVE specifies that no swap space is to be reserved in advance
for a mapping. Without this flag, a MAP_PRIVATE mapping has swap space
reserved for it when the mapping is first created; this swap space is later
used to back the private pages that are created by copy-on-write operations.

Without this advance reservation, swap space might not be available in the
system when a copy-on-write is attempted; the system then fails the write
access to the page and sends a SIGBUS signal to the process. However, a
process can prevent swap space from being reserved in advance by setting
the MAP_NORESERVE flag if that process is willing to handle the case in
which swap space is not available.

The advantage of using this flag is that a process can, for example, create
and access a huge data segment on a machine that has a relatively small
amount of swap space, as long as the process also provides for the case
where writes into the segment might fail. Without MAP_NORESERVE it
would be impossible to create this segment.

Memory Management 97

6

The file descriptor used in a mmap call need not be kept open after the mapping
is established. If it is closed, the mapping will remain until such time as it is
replaced by another call to mmap that explicitly specifies the addresses
occupied by this mapping or until the mapping is removed either by process
termination or a call to munmap.

Although the mapping endures independent of the existence of a file
descriptor, changes to the file can influence accesses to the mapped area, even
if they do not affect the mapping itself.

For instance, should a file be shortened by a call to truncate , such that the
mapping now “overhangs” the end of the file, then accesses to that area of the
file that no longer exists, SIGBUS signals will result.

It is possible to create the mapping in the first place such that it “overhangs”
the end of the file—the only requirement when creating a mapping is that the
addresses, lengths, and offsets specified in the operation be possible (such as,
within the range permitted for the object in question), not that they exist at the
time the mapping is created (or subsequently.)

Similarly, if a program accesses an address in a manner inconsistent with how
it has been mapped (for instance, by attempting a store operation into a
mapping that was established with only PROT_READ access), then a SIGSEGV
signal will result. SIGSEGV signals will also result on any attempt to reference
an address not defined by any mapping.

In general, if a program references an address that is inconsistent with the
mapping (or lack of a mapping) established at that address, the system will
respond with a SIGSEGV violation.

However, if a program references an address consistent with how the address
is mapped, but that address does not evaluate at the time of the access to
allocated storage in the object being mapped, then the system will respond
with a SIGBUS violation.

In this manner a program (or user) can distinguish between whether it is the
mapping or the object that is inconsistent with the access, and take appropriate
remedial action.

Using mmap to access system memory objects can simplify programs in a
variety of ways. Keeping in mind that mmap can really be viewed as just a
means to access memory objects, it is possible to program using mmap in many
cases where you might program with read or write .

98 System Interfaces Guide—November 1995

6

However, it is important to realize that mmap can only be used to gain access to
memory objects—those objects that can be thought of as randomly accessible
storage. Thus, terminals and network connections cannot be accessed with
mmap because they are not “memory.” Magnetic tapes, even though they are
memory devices, cannot be accessed with mmap because storage locations on
the tape can only be addressed sequentially.

Some examples of situations that can be thought of as candidates for use of
mmap over more traditional methods of file access include:

• Random access operations—either map the entire file into memory or, if the
address space cannot accommodate the file or if the file size is variable,
create “windows” of mappings to the object.

• Efficiency—even in situations where access is sequential, if the object being
accessed can be accessed via mmap, an efficiency gain may be obtained by
avoiding the copying operations inherent in accesses via read or write .

• Structured storage—if the storage being accessed is collected as tables or
data structures, algorithms can be more conveniently written if access to the
file is treated just as though the tables were in memory.

Previously, programs could not simply make storage or table alterations in
memory and save them for access in subsequent runs; however, when the
addresses of the table are defined by mappings to a file, then changes to the
storage are changes to the file, and are thus automatically recorded in it.

• Scattered storage—if a program requires scattered regions of storage, such
as multiple heaps or stack areas, such areas can be defined by mapping
operations during program operation.

The remainder of this section illustrates some other concepts surrounding
mapping creation and use.

Mapping /dev/zero gives the calling program a block of zero-filled virtual
memory of the size specified in the call to mmap. /dev/zero is a special
device, that responds to read as an infinite source of bytes with the value 0,
but when mapped creates an unnamed object to back the mapped region of
memory.

The following code fragment demonstrates a use of this to create a block of
scratch storage in a program, at an address that the system chooses.

Memory Management 99

6

/*
 * Function to allocate a block of zeroed storage. Parameter is the
 * number of bytes desired. The storage is mapped as MAP_SHARED, so
 * that if a fork occurs, the child process will be able to access
 * and modify the storage. If we wished to cause the child’s
 * modifications (as well as those by the parent) to be invisible to
 * the ancestry of processes, we would use MAP_PRIVATE.
 */
caddr_t
get_zero_storage(int len);
{

int fd;
caddr_t result;

if ((fd = open("/dev/zero", O_RDWR)) == -1)
return ((caddr_t)-1);

result = mmap(0, len, PROT_READ|PROT_WRITE, MAP_SHARED, fd, 0);
(void) close(fd);
return (result);

}

As written, this function permits a hierarchy of processes to use the area of
allocated storage as a region of communication (for implicit interprocess
communication purposes).

In some cases, devices or files are useful only if accessed via mapping. An
example of this is frame buffer devices used to support bit-mapped displays,
where display management algorithms function best if they can operate
randomly on the addresses of the display directly.

Finally, it is important to remember that mappings can be operated upon at the
granularity of a single page. Even though a mapping operation may define
multiple pages of an address space, there is absolutely no restriction that
subsequent operations on those addresses must operate on the same number of
pages.

For instance, an mmap operation defining ten pages of an address space may be
followed by subsequent munmap (see below) operations that remove every
other page from the address space, leaving five mapped pages each followed
by an unmapped page.

100 System Interfaces Guide—November 1995

6

Those unmapped pages may subsequently be mapped to different locations in
the same or different objects, or the whole range of pages (or any partition,
superset, or subset of the pages) used in other mmap or other memory
management operations.

Further, any mapping operation that operates on more than a single page can
partially succeed in that some parts of the address range can be affected even
though the call returns an overall failure.

Thus, an mmap operation that replaces another mapping, if it fails, might have
deleted the previous mapping and failed to replace it. Similarly, other
operations (unless specifically stated otherwise) might process some pages in
the range successfully before operating on a page where the operation fails.

Not all device drivers support memory mapping. mmap fails if you try to map
a device that does not support mapping.

Removing Mappings
int
munmap(caddr_t addr, size_t len);

munmap removes all mappings for pages in the range [addr, addr + len) from the
address space of the calling process.

It is not an error to remove mappings from addresses that do not have them,
and any mapping, no matter how it was established, can be removed with
munmap. munmap does not in any way affect the objects that were mapped at
those addresses.

Cache Control

The UNIX memory management system can be thought of as a form of “cache
management,” in which processor primary memory is used as a cache for
pages from objects from the system virtual memory. Thus, there are a number
of operations that control or interrogate the status of this cache, as described in
this section

int
mincore(caddr_t addr, size_t len, char *vec);

mincore determines the residency of the memory pages in the address space
covered by mappings in the range [addr, addr + len).

Memory Management 101

6

Using the cache concept described earlier, this function can be viewed as an
operation that interrogates the status of the cache, and returns an indication of
what is currently resident in the cache. The status is returned as a char-per-
page in the character array referenced by *vec (which the system assumes to be
large enough to encompass all the pages in the address range).

The low order bit of each character contains either a 1 (indicating that the page
is resident in the system’s primary storage), or a 0 (indicating that the page is
not resident in primary storage). Other bits in the character are reserved for
possible future expansion—therefore, programs testing residency should test
only the least significant bit of each character.

Because the status of a page can change after mincore checks it, but before
mincore returns the information, returned information might be outdated.
Only locked pages are guaranteed to remain in memory

int
mlock(caddr_t addr, size_t len);

int
munlock(caddr_t addr, size_t len);

mlock causes the pages referenced by the mapping in the range [addr, addr +
len) to be locked in physical memory. References to those pages (through
mappings in this or other processes) will not result in page faults that require
an I/O operation to obtain the data needed to satisfy the reference.

Because this operation ties up physical system resources and has the potential
to disrupt normal system operation, use of this facility is restricted to the
superuser. The system will not permit more than a configuration-dependent
limit of pages to be locked in memory simultaneously. The call to mlock fails if
this limit is exceeded.

munlock releases the locks on physical pages. Note that if multiple mlock
calls are made through the same mapping, only a single munlock call is
required to release the locks (in other words, locks on a given mapping do not
nest).

However, if different mappings to the same pages are processed with mlock ,
then the pages will not be unlocked until the locks on all the mappings are
released.

Locks are also released when a mapping is removed, either through being
replaced with an mmap operation or removed explicitly with munmap.

102 System Interfaces Guide—November 1995

6

A lock will be transferred between pages on the “copy-on-write” event
associated with a MAP_PRIVATE mapping, thus locks on an address range that
includes MAP_PRIVATE mappings will be retained transparently along with
the copy-on-write redirection (see mmap above for a discussion of this
redirection)

int
mlockall(int flags);

int
munlockall(void);

mlockall and munlockall are similar in purpose and restriction to mlock
and munlock , except that they operate on entire address spaces. mlockall
accepts a flags argument built as a bit-field of values from the set:

MCL_CURRENT Current mappings
MCL_FUTURE Future mappings

If flags is MCL_CURRENT, the lock is to affect everything currently in the
address space. If flags is MCL_FUTURE, the lock is to affect everything added in
the future. If flags is (MCL_CURRENT | MCL_FUTURE), the lock is to affect
both current and future mappings.

munlockall removes all locks on all pages in the address space, whether
established by mlock or mlockall

int
msync(caddr_t addr, size_t len, int flags);

msync supports applications that require assertions about the integrity of data
in the storage backing their mapping, either for correctness or for coherent
communications in a distributed environment.

msync causes all modified copies of pages over the range [addr, addr + len) to
be flushed to the objects mapped by those addresses. In the cache analogy
discussed previously, msync is the cache “write-back,” or flush, operation. It is
similar in purpose to the fsync operation for files.

msync optionally invalidates each such cache entry so that the first subsequent
reference to the page causes the system to obtain it from its permanent storage
location.

The flags argument provides a bit field of values that influences the behavior of
msync . The bit names and their interpretations are:

Memory Management 103

6

MS_SYNC synchronized write
MS_ASYNC return immediately
MS_INVALIDATE invalidate caches

MS_SYNC causes msync to return only after all I/O operations are complete.
MS_ASYNC causes msync to return immediately once all I/O operations are
scheduled. MS_INVALIDATE causes all cached copies of data from mapped
objects to be invalidated, requiring them to be obtained again from object
storage upon the next reference.

Other Mapping Functions
long
sysconf(_SC_PAGESIZE);

sysconf returns the system-dependent size of a memory page. For portability,
applications should not embed any constants specifying the size of a page, and
instead should make use of sysconf to obtain that information.

Note that it is not unusual for page sizes to vary even among implementations
of the same instruction set, increasing the importance of using this function for
portability.

int
mprotect(caddr_t addr, size_t len, int prot);

mprotect has the effect of assigning protection prot to all pages in the range of
[addr, addr + len). The protection assigned cannot exceed the permissions
allowed on the underlying object.

For instance, a read-only mapping to a file that was opened for read-only
access cannot be set to be writable with mprotect (unless the mapping is of
the MAP_PRIVATE type, in which case the write access is permitted since the
writes will modify copies of pages from the object, and not the object itself).

Address Space Layout
Traditionally, the address space of a UNIX process has consisted of exactly
three segments: one each for write-protected program code (text), a heap of
dynamically allocated storage (data), and the process stack. Text is read-only
and shared, while the data and stack segments are private to the process.

104 System Interfaces Guide—November 1995

6

Figure 6-1 Traditional UNIX System Address-Space Layout

In the SunOS 5.x system, a process’s address space is simply a vector of pages,
and the division between different address-space segments is not so clear-cut.
Process text and data spaces are simply groups of pages.1

There are often multiple text and data segments, some belonging to specific
programs and some belonging to code running in shared libraries. The
following figure illustrates one possible address space layout.

1. For compatibility, the system maintains address ranges that should belong to such segments to support
operations such as extending or contracting the data segment’s break. These are initialized when a program
is initiated with execve ().

Text

Data

Stack

Memory Management 105

6

Figure 6-2 Address-Space Layout

Although the system still uses text, data, and stack segments, these should be
thought of as constructs provided by the programming environment rather
than by the operating system.

As such, it is possible to construct processes that have multiple segments of
each type, or of types of arbitrary semantic value—programs no longer need to
be built only from objects the system can represent directly.

For instance, a process address space may contain multiple text and data
segments, some belonging to specific programs and some shared among
multiple programs. Text segments from shared libraries, for example, typically
appear in the address spaces of many processes.

text

data

<-- Page 0 left unmapped

For some execve'ed program

<-- Unmapped area

For shared libraries

<-- Other unmapped areas

Stack limit

text
data
data

text

text
data
data

linker

stack
stack
stack

106 System Interfaces Guide—November 1995

6

A process address space is simply a vector of pages, and there is no necessary
division between different address space segments. Process text and data
spaces are simply groups of pages mapped in ways appropriate to the function
they provide the program.

A process address space is usually sparsely populated, with data and text
pages intermingled. The precise mechanics of the management of stack space is
machine-dependent.

By convention, page 0 is not used. Process address spaces are often constructed
through dynamic linking when a program is exec ’d. Operations such as exec
and dynamic linking build upon the mapping operations described previously.

Although the system can have multiple areas that can be considered “data”
segments, for programming convenience the system maintains operations to
operate on an area of storage associated with a process initial “heap storage
area.”

A process can manipulate this area by calling brk and sbrk :

caddr_t
brk(caddr_t addr);

caddr_t
sbrk(int incr);

brk sets the system idea of the lowest data segment location not used by the
caller to addr (rounded up to the next multiple of the system page size).

sbrk , the alternate function, adds incr bytes to the caller data space and
returns a pointer to the start of the new data area.

107

Realtime Programming and
Administration 7

This chapter describes writing and porting realtime applications to run under
SunOS 5.x. This chapter is written for programmers experienced in writing
realtime applications and administrators familiar with realtime processing and
the SunOS system.

Basic Rules of Realtime Applications
Realtime response is guaranteed when certain conditions are met. This section
identifies these conditions and some of the more significant design errors that
can cause problems or disable a system.

Most of the potential problems described here can degrade the response time
of the system. One of the potential problems can freeze a workstation. Other,
more subtle mistakes are priority inversion and system overload (too much to
do).

A SunOS realtime process:

• runs in the RT scheduling class, as described in “Scheduling” on page 112

• locks down all the memory in its process address space, as described in
“Memory Locking” on page 127

• is from a statically-linked program or from a program in which all dynamic
binding is completed early, as described in “Shared Libraries” on page 109

108 System Interfaces Guide—November 1995

7

Realtime operations are described in this chapter in terms of single-threaded
processes, but the description can also apply to multithreaded processes (for
detailed information about multithreaded processes, see the Multithreaded
Programming Guide). To guarantee realtime scheduling of a thread, it must be
created as a bound thread, and the thread’s LWP must be run in the RT
scheduling class. The locking of memory and early dynamic binding is
effective for all threads in a process.

When a process is the highest priority realtime process, it:

• acquires the processor within the guaranteed dispatch latency period of
becoming runnable (see“Dispatch Latency” on page 112)

• continues to run for as long as it remains the highest priority runnable
process

A realtime process can lose control of the processor or can be unable to gain
control of the processor because of other events on the system. These events
include external events (such as interrupts), resource starvation, waiting on
external events (synchronous I/O), and preemption by a higher priority
process.

Realtime scheduling generally does not apply to system initialization and
termination services such as open (2) and close (2).

Degrading Response Time

The problems described in this section all increase the response time of the
system to varying extents. The degradation can be serious enough to cause an
application to miss a critical deadline.

Realtime processing can also significantly impact the operation of aspects of
other applications active on a system running a realtime application. Since
realtime processes have higher priority, time-sharing processes can be
prevented from running for significant amounts of time. This can cause
interactive activities, such as displays and keyboard response time, to be
noticeably slowed.

Realtime Programming and Administration 109

7

System Response Time

System response under SunOS 5.x provides no bounds to the timing of I/O
events. This means that synchronous I/O calls should never be included in any
program segment whose execution is time critical. Even program segments
that permit very large time bounds must not perform synchronous I/O. Mass
storage I/O is such a case, where causing a read or write operation hangs the
system while the operation takes place.

A common application mistake is to perform I/O to get error message text
from disk. This should be done from an independent non-realtime process or
thread.

Interrupt Servicing

Interrupt priorities are independent of process priorities. Prioritizing processes
does not carry through to prioritizing the services of hardware interrupts that
result from the actions of the processes. This means that interrupt processing
for a device controlled by a realtime process is not necessarily done before
interrupt processing for another device controlled by a timeshare process.

Shared Libraries

Time-sharing processes can save significant amounts of memory by using
dynamically linked, shared libraries. This type of linking is implemented
through a form of file mapping. Dynamically linked library routines cause
implicit reads.

Realtime programs can use shared libraries, yet avoid dynamic binding, by
setting the environment variable LD_BIND_NOW to a non-NULL value when
the program is invoked. This forces all dynamic linking to be bound before the
program begins execution. See the Linker and Libraries Guide for more
information.

Priority Inversion

A time-sharing process can block a realtime process by acquiring a resource
that is required by a realtime process. Priority inversion is a condition that
occurs when a higher priority process is blocked by a lower priority process.

110 System Interfaces Guide—November 1995

7

The term blocking describes a situation in which a process must wait for one or
more processes to relinquish control of resources. If this blocking is prolonged,
even for lower level resources, deadlines might be missed.

By way of illustration, consider the case in Figure 7-1 where a high priority
process wanting to use a shared resource gets blocked when a lower priority
process holds the resource, and the lower priority process is preempted by an
intermediate priority process. This condition can persist for a long time,
arbitrarily long, in fact, since the amount of time the high priority process must
wait for the resource depends not only on the duration of the critical section
being executed by the lower priority process, but on the duration until the
intermediate process blocks. Any number of intermediate processes can be
involved.

Figure 7-1 Unbounded Priority Inversion

Sticky Locks

A page is permanently locked into memory when its lock count reaches 65535
(0xFFFF). The value 0xFFFF is implementation-defined and might change in
future releases. Pages locked this way cannot be unlocked.

 Shared Resource

 Intermediate

 Priority

 Higher Priority

 Lower Priority

Realtime Programming and Administration 111

7

Runaway Realtime Processes

Runaway realtime processes can cause the system to halt or can slow the
system response so much that the system appears to halt.

Note – If you have a runaway process on a SPARC system, try typing (Stop-A).
You might have to repeat this procedure many times. If this doesn’t work,
disconnect the keyboard.

When a high priority realtime process will not relinquish control of the CPU,
there is no simple way to regain control of the system until the infinite loop is
forced to terminate. Such a runaway process will not respond to the control-C
kill sequence.

Caution – Attempts to use a shell set at a higher priority than a runaway
process will not succeed. The STREAMS processes that govern tty
management are running at system priority, and so will not get scheduled.
Therefore, keyboard input is not received by the shell, even when the shell is
running at a higher priority.

I/O Behavior

Asynchronous I/O

There is no guarantee that asynchronous I/O operations will be done in the
sequence in which they are queued to the kernel. Nor is there any guarantee
that asynchronous operations will be returned to the caller in the sequence in
which they were done.

If a single buffer is specified for a rapid sequence of calls to aioread (3), there
is no guarantee about the state of the buffer between the time that the first call
is made and the time that the last result is signaled to the caller.

An individual aio_result_t structure can be used only for one
asynchronous read or write at a time.

112 System Interfaces Guide—November 1995

7

Realtime Files

SunOS 5.x provides no facilities to assure that files will be allocated as
physically contiguous.

For regular files, the read () and write () operations are always buffered. An
application can use mmap() and msync () to effect direct I/O transfers between
secondary storage and process memory.

Scheduling
Realtime scheduling constraints are necessary to manage data acquisition or
process control hardware. The realtime environment requires that a process be
able to react to external events in a bounded amount of time. Such constraints
can exceed the capabilities of a kernel designed to provide a “fair” distribution
of the processing resources to a set of time-sharing processes.

This section describes the SunOS 5.x realtime scheduler, its priority queue, and
how to use system calls and utilities that control scheduling. For more
information about the functions described in this section, see the man Pages(3):
Library Routines.

Dispatch Latency

The most significant element in scheduling behavior for realtime applications
is the provision of a real-time scheduling class. The standard time-sharing
scheduling class is not suitable for realtime applications because this
scheduling class treats every process equally and has a limited notion of
priority. Realtime applications require a scheduling class in which process
priorities are taken as absolute and are changed only by explicit application
operations.

The term dispatch latency describes the amount of time it takes for a system to
respond to a request for a process to begin operation. With a scheduler written
specifically to honor application priorities, realtime applications can be
developed with a bounded dispatch latency.

Realtime Programming and Administration 113

7

Figure 7-2 illustrates the amount of time it takes an application to respond to a
request from an external event.

Figure 7-2 Application Response Time

The overall application response time is composed of the interrupt response
time, the dispatch latency, and the time it takes the application itself to
determine its response.

The interrupt response time for an application includes both the interrupt
latency of the system and the device driver’s own interrupt processing time.
The interrupt latency is determined by the longest interval that the system
must run with interrupts disabled; this is minimized in SunOS 5.x using
synchronization primitives that do not commonly require a raised processor
interrupt level.

During interrupt processing, the driver’s interrupt routine wakes up the high
priority process and returns when finished. The system detects that a process
with higher priority than the interrupted process in now dispatchable and
arranges to dispatch that process. The time to switch context from a lower
priority process to a higher priority process is included in the dispatch latency
time.

application response time

dispatch
latency

priority
task

reschedules to run
highest priority
task

interrupt
latency

interrupt
processing

interrupt response

processor
instruction
or system
in critical
region;
locks out
interrupts

system saves
or restores
registers,
and vectors
to interrupt
routine

driver’s
interrupt routine
sends message
to wake up
sleeping
process

returns
from
interrupt

calculates response

external
event to event

response

114 System Interfaces Guide—November 1995

7

Figure 7-3 illustrates the internal dispatch latency/application response time of
a system, defined in terms of the amount of time it takes for a system to
respond to an internal event. The dispatch latency of an internal event
represents the amount of time required for one process to wake up another
higher priority process, and for the system to dispatch the higher priority
process.

The application response time is the amount of time it takes for a driver to
wake up a higher priority process, have a low priority process release
resources, reschedule the higher priority task, calculate the response, and
dispatch the task.

Note – Interrupts can arrive and be processed during the dispatch latency
interval. This processing increases the application response time, but is not
attributed to the dispatch latency measurement, and so is not bounded by the
dispatch latency guarantee.

Figure 7-3 Internal Dispatch Latency

With the new scheduling techniques provided with realtime SunOS 5.x, the
system dispatch latency time is within specified bounds.

application response time

dispatch priority
task

reschedule to run
highest-priority
task

wakeup

calculate response

internal
event to event

response

dispatch latency

low-priority processes release resources
or provide input to higher priority
process

Realtime Programming and Administration 115

7

As you can see in Table 7-1, dispatch latency improves with a bounded number
of processes.

Tests for dispatch latency and experience with such critical environments as
manufacturing and data acquisition have proven that the Sun workstation is an
effective platform for the development of realtime applications. (We apologize
that the examples are not of current products.)

Scheduling Classes

The SunOS 5.x kernel dispatches processes by priority. The scheduler (or
dispatcher) supports the concept of scheduling classes. Classes are defined as
Realtime (RT), System (sys), and Time-Sharing (TS). Each class has a unique
scheduling policy for dispatching processes within its class.

The kernel dispatches highest priority processes first. By default, realtime
processes have precedence over sys and TS processes, but administrators can
configure systems so that TS and RT processes have overlapping priorities.

Table 7-1 Realtime System Dispatch Latency with SunOS 5.x

 Dispatch Latency

Workstation Bounded Number of Processes Arbitrary Number of Processes

SPARCstation 1 < 2.0 milliseconds in a system with
fewer than 8 active processes

 4.5 milliseconds

SPARCstation 1+ < 2.0 milliseconds in a system with
fewer than 8 active processes

 4.0 milliseconds

SPARCstation IPX < 1.0 milliseconds in a system with
fewer than 8 active processes

 2.2 milliseconds

SPARCstation 2 < 1.0 milliseconds in a system with
fewer than 16 active processes

 2.0 milliseconds

116 System Interfaces Guide—November 1995

7

Figure 7-4 illustrates the concept of classes as viewed by the SunOS 5.x kernel.

Figure 7-4 Dispatch Priorities for Scheduling Classes

At highest priority are the hardware interrupts; these cannot be controlled by
software. The interrupt processing routines are dispatched directly and
immediately from interrupts, without regard to the priority of the current
process.

Realtime processes have the highest default software priority. Processes in the
RT class have a priority and time quantum value. RT processes are scheduled
strictly on the basis of these parameters. As long as an RT process is ready to
run, no sys or TS process can run. Fixed priority scheduling allows critical
processes to run in a predetermined order until completion. These priorities
never change unless an application changes them.

An RT class process inherits the parent’s time quantum, whether finite or
infinite. A process with a finite time quantum runs until the time quantum
expires or the process terminates, blocks (while waiting for an I/O event), or is

 System
Interrupts

Realtime
(RT)

Kernel Daemons

Time-Sharing
(TS)

Hardware
Dispatching

 Software
Dispatching

(sys)

Realtime Programming and Administration 117

7

preempted by a higher priority runnable realtime process. A process with an
infinite time quantum ceases execution only when it terminates, blocks, or is
preempted.

The sys class exists to schedule the execution of special system processes, such
as paging, STREAMS, and the swapper. It is not possible to change the class of
a process to the sys class. The sys class of processes has fixed priorities
established by the kernel when the processes are started.

At lowest priority are the time-sharing (TS) processes. TS class processes are
scheduled dynamically, with a few hundred milliseconds for each time slice.
The TS scheduler switches context in round-robin fashion often enough to give
every process an equal opportunity to run, depending upon its time slice
value, its process history (when the process was last put to sleep), and
considerations for CPU utilization. Default time-sharing policy gives larger
time slices to processes with lower priority.

A child process inherits the scheduling class and attributes of the parent
process through fork (2). A process’ scheduling class and attributes are
unchanged by exec (2).

Different algorithms dispatch each scheduling class. Class dependent routines
are called by the kernel to make decisions about CPU process scheduling. The
kernel is class-independent, and takes the highest priority process off its
queue. Each class is responsible for calculating a process’ priority value for its
class. This value is placed into the dispatch priority variable of that process.

118 System Interfaces Guide—November 1995

7

As Figure 7-5 illustrates, each class algorithm has its own method of
nominating the highest priority process to place on the global run queue.

Figure 7-5 The Kernel Dispatch Queue

Each class has a set of priority levels that apply to processes in that class. A
class-specific mapping maps these priorities into a set of global priorities. It is
not required that a set of global scheduling priority maps start with zero, nor
that they be contiguous.

By default, the global priority values for time-sharing (TS) processes range
from -20 to +20, mapped into the kernel from 0-40, with temporary
assignments as high as 99. The default priorities for realtime (RT) processes
range from 0-59, and are mapped into the kernel from 100 to 159. The kernel’s
class-independent code runs the process with the highest global priority on the
queue.

Realtime Priorities

Global Priorities

Time-share Priorities

59

56

01

00

-19

-20

•••

•••

•••

+20

+19

•••
+1

159
158
157
156

100

99
98

01
00

02

•••

-1

58

57

Realtime Programming and Administration 119

7

Dispatch Queue

The dispatch queue is a linear linked list of processes with the same global
priority. Each process is invoked with class specific information attached to it.
A process is dispatched from the kernel dispatch table based upon its global
priority.

Dispatching Processes

When a process is dispatched, the process’ context is mapped into memory
along with its memory management information, its registers, and its stack.
Then execution begins. Memory management information is in the form of
hardware registers containing data needed to perform virtual memory
translations for the currently running process.

Preemption

When a higher priority process becomes dispatchable, the kernel interrupts its
computation and forces the context switch, preempting the currently running
process. A process can be preempted at any time if the kernel finds that a
higher priority process is now dispatchable.

For example, suppose that process A performs a read from a peripheral device.
Process A is put into the sleep state by the kernel. The kernel then finds that a
lower priority process B is runnable, so process B is dispatched and begins
execution. Eventually, the peripheral device interrupts, and the driver of the
device is entered. The device driver makes process A runnable and returns.
Rather than returning to the interrupted process B, the kernel now preempts B
from processing and resumes execution of the awakened process A.

Another interesting situation occurs when several processes contend for kernel
resources. When a lower priority process releases a resource for which a higher
priority realtime process is waiting, the kernel immediately preempts the lower
priority process and resumes execution of the higher priority process.

120 System Interfaces Guide—November 1995

7

Kernel Priority Inversion

Priority inversion occurs when a higher priority process is blocked by one or
more lower priority processes for a long time. The use of synchronization
primitives such as mutual-exclusion locks in the SunOS 5.x kernel can lead to
priority inversion.

The term blocking describes the situation in which a process must wait for one
or more processes to relinquish resources. If this blocking continues, it can lead
to deadlines being missed, even for low levels of utilization.

The problem of priority inversion has been addressed for mutual-exclusion
locks for the SunOS 5.x kernel by implementing a basic priority inheritance
policy. The policy states that a lower priority process inherits the priority of a
higher priority process when the lower priority process blocks the execution of
the higher priority process. This places an upper bound on the amount of time
a process can remain blocked. The policy is a property of the kernel’s behavior,
not a solution that a programmer institutes through system calls or function
execution. User-level processes can still exhibit priority inversion, however.

User Priority Inversion

There is no mechanism by which processes synchronizing with other processes
will automatically inherit the priority of waiting processes. An application can
bound its priority inversion by using priority ceiling emulation.

Under this model, the application associates a priority with each
synchronization object, which is typically the highest priority of any process
that can block on that object.

Each process then uses the following sequence when manipulating the shared
resources

/*
 * raise process priority to maximum of current level
 * and synchronization object level
 */

...

/*
 * acquire synchronization object
 */

...

Realtime Programming and Administration 121

7

/*
 * execute the critical section
 */

...

/*
 * release synchronized object
 */

...

/*
 * return to previous process priority level
 */

...

System Calls That Control Scheduling

System calls implemented for realtime scheduling include the library calls and
functions listed in this section. For more detail about using these, see the man
Pages(3): Library Routines.

Using priocntl (2)

Control over scheduling of active classes is handled with priocntl (2). Class
attributes are inherited over fork (2) and exec (2), along with scheduling
parameters and permissions required for priority control. These characteristics
are true for both the RT and the TS classes.

The priocntl (2) function provides an interface for specifying a realtime
process, a set of processes, or a class to which the system call will apply. The
priocntlset (2) system call also provides the more general interface for
specifying an entire set of processes to which the system call is to apply.

The idtype and id arguments are used together to specify the set of processes on
the queue. Depending upon the value of idtype, id can have values for a single
process ID, a parent process ID, a process group ID, a session ID, a class ID, a
user ID, a group ID, or a lightweight process ID.

122 System Interfaces Guide—November 1995

7

The command arguments of priocntl can be one of: PC_GETCID,
PC_GETCLINFO, PC_GETPARMS, or PC_SETPARMS. The real or effective ID of
the calling process must match that of the affected process or processes, or
must have super-user privilege.

PC_GETCID

This command takes the name field of a structure that contains a recognizable
class name (RT for realtime and TS for time-sharing). The class ID and an array
of class attribute data are returned.

PC_GETCLINFO

This command takes the ID field of a structure that contains a recognizable
class identifier. The class name and an array of class attribute data are
returned.

PC_GETPARMS

This command returns the scheduling class identifier and/or the class specific
scheduling parameters of one of the specified processes. Even though idtype
& id might specify a big set, PC_GETPARMS returns the parameter of only
one process. It is up to the class to select which one.

PC_SETPARMS

This command sets the scheduling class and/or the class specific scheduling
parameters of the specified process or processes.

Utilities that Control Scheduling

The administrative utilities that control process scheduling are
dispadmin (1M) and priocntl (1). Both these utilities support the
priocntl (2) system call with compatible options and loadable modules.
Using these utilities provides system administration functions that control
realtime process scheduling during runtime. For more details about using these
utilities, see the man Pages(1): User Commands and the System Administration
Guide, Volume II guide.

Realtime Programming and Administration 123

7

Using priocntl (1)

The priocntl (1) command sets and retrieves scheduler parameters for
processes.

Using dispadmin (1M)

The dispadmin (1M) utility displays all current process scheduling classes by
including the - l command line option during runtime. Process scheduling can
also be changed for the class specified after the -c option, using RT as the
argument for the realtime class.

The following options are also available:

A class specific file containing the dispatch parameters can also be loaded
during runtime. Use this file to establish a new set of priorities replacing the
default values established during boot time.This class specific file must assert
the arguments in the format used by the -g option. Parameters for the RT class
are found in the rt_dptbl (4), and are listed in the example at the end of this
section.

To add an RT class file to the system, the following modules must be present:

• An rt_init () routine in the class module which loads the rt_dptbl .

• A rt_dptbl module that provides the dispatch parameters and a routine
to return pointers to config_rt_dptbl .

Table 7-2 Class Options for the dispadmin (1M) Utility

option meaning

–l lists scheduler classes currently configured

–c specifies the class whose parameters are to
be displayed or changed

–g gets the dispatch parameters for the specified
class

–r when using –g, specifies time quantum
resolution

–s specifies a file where values can be located

124 System Interfaces Guide—November 1995

7

• The dispadmin executable.

Then load the class specific module with the following command, where
<module_name> is the class specific module.

modload /kernel/sched/<module_name>

Then invoke the dispadmin command

dispadmin -c RT -s <file_name>

The file must describe a table with the same number of entries as the table that
is being overwritten.

Configuring Scheduling

Associated with each scheduling class is a parameter table,
config_rt_dptbl (RT), and config_ts_dptbl (TS). These tables are
configurable by using a loadable module at boot time, or with dispadmin (1M)
during runtime.

The Dispatcher Parameter Table

The in-core table for realtime establishes the properties for RT scheduling. The
config_rt_dptbl structure consists of an array of parameters, struct
rt_dpent , one for each of the n priority levels. The properties of a given
priority level i are specified by the i th parameter structure in the array,
config_rt_dptbl[i] .

A parameter structure consists of the following members (also described in the
/usr/include/sys/rt.h header file):

rt_globpri
The global scheduling priority associated with this priority level. The
rt_globpri values cannot be changed with dispadmin (1M).

rt_quantum
The length of the time quantum allocated to processes at this level in ticks
(see “Timestamp Functions” on page 145). The time quantum value is only a
default or starting value for processes at a particular level. The time
quantum of a realtime process can be changed by using the priocntl (1)
command or the priocntl (2) system call.

Realtime Programming and Administration 125

7

Reconfiguring config_rt_dptbl

A realtime administrator can change the behavior of the realtime portion of the
scheduler by reconfiguring the config_rt_dptbl at any time. Two methods
are described here.

The first method is to reconfigure the config_rt_dptb l parameter table with
a loadable module which contains a new dispatch table loaded at boot time.
The module containing the dispatch table is a separate module. This is the only
method that can be used to change the number of realtime priority levels or the
set of global scheduling priorities used by the realtime class. Note that
changing the config_rt_dptbl affects the realtime processes that you set
after the table gets updated.

A second method for examining or modifying the realtime parameter table on
a running system is through using the dispadmin (1M) command. Invoking
dispadmi n for the realtime class allows retrieval of the current rt_quantum
values in the current config_rt_dptbl configuration from the kernel’s in-
core table. When overwriting the current in-core table, the configuration file
used for input to dispadmin must conform to the specific format described in
the manual page for config_rt_dptbl found in the man Pages(1M): System
Administration Commands.

126 System Interfaces Guide—November 1995

7

Following is an example of prioritized processes rtdpent_t with their
associated time quantum config_rt_dptbl[] value as they might appear in
config_rt_dptbl[]:

rtdpent_t rt_dptbl[] = {
 /* prilevel Time quantum */
 100, 100,
 101, 100,
 102, 100,
 103, 100,
 104, 100,
 105, 100,
 106, 100,
 107, 100,
 108, 100,
 109, 100,
 110, 80,
 111, 80,
 112, 80,
 113, 80,
 114, 80,
 115, 80,
 116, 80,
 117, 80,
 118, 80,
 119, 80,
 120, 60,
 121, 60,
 122, 60,
 123, 60,
 124, 60,
 125, 60,
 126, 60,
 127, 60,
 128, 60,
 129, 60,
 130, 40,
 131, 40,
 132, 40,
 133, 40,

 134, 40,
 135, 40,
 136, 40,
 137, 40,
 138, 40
 139, 40,
 140, 20,
 141, 20,
 142, 20,
 143, 20,
 144, 20,
 145, 20,
 146, 20,
 147, 20,
 148, 20,
 149, 20,
 150, 10,
 151, 10,
 152, 10,
 153, 10,
 154, 10,
 155, 10,
 156, 10,
 157, 10,
 158, 10,
 159, 10,
}

Realtime Programming and Administration 127

7

Memory Locking
Locking memory is one of the most important issues for realtime applications.
In a realtime environment, a process must be able to guarantee continuous
memory residence to reduce latency and to prevent paging and swapping.

This section describes the memory locking mechanisms available to realtime
applications in SunOS 5.x. For more details about using memory management
functions and calls, see the man Pages(3): Library Routines for pertinent manual
pages.

Overview

Under SunOS 5.x, the memory residency of a process is determined by its
current state, the total available physical memory, the number of active
processes, and the processes’ demand for memory. This is appropriate in a
time-share environment, but it is often unacceptable for a realtime process. In a
realtime environment, a process must be able to guarantee memory residence
for all or part of itself to reduce its memory access and dispatch latency.

For realtime in SunOS 5.x, memory locking is provided by a set of library
routines that allow a process running with superuser privileges to lock
specified portions of its virtual address space into physical memory. Pages
locked in this manner are exempt from paging until they are unlocked or the
process exits.

There is a system-wide limit on the number of pages that can be locked at any
time. This is a tunable parameter whose default value is calculated at boot
time. It is based on the number of page frames less another percentage
(currently set at ten percent).

Locking a Page

A call to mlock (3) requests that one segment of memory be locked into the
system’s physical memory. The pages that make up the specified segment are
faulted in and the lock count of each is incremented. Any page with a lock
count greater than 0 is exempt from paging activity.

128 System Interfaces Guide—November 1995

7

A particular page can be locked multiple times by multiple processes through
different mappings. If two different processes lock the same page, the page
remains locked until both processes remove their locks. However, within a
given mapping, page locks do not nest. Multiple calls of locking functions on
the same address by the same process are removed by a single unlock request.

If the mapping through which a lock has been performed is removed, the
memory segment is implicitly unlocked. When a page is deleted through
closing or truncating the file, it is also unlocked implicitly.

Locks are not inherited by a child process after a fork (2) call is made. So, if a
process with memory locked forks a child, the child must perform a memory
locking operation in its own behalf to lock its own pages. Otherwise, the child
process incurs copy-on-write page faults, which are the usual penalties
associated with forking a process.

Unlocking a Page

To unlock a page of memory, a process requests that a segment of locked
virtual pages be released by a call to munlock (3). The lock counts of the
specified physical pages are decremented. Once the lock count of a page has
been decremented to 0, the page is swapped normally.

Locking All Pages

A superuser process can request that all mappings within its address space be
locked by a call to mlockall (3). If the flag MCL_CURRENT is set, all the
existing memory mappings are locked. If the flag MCL_FUTURE is set, every
mapping that is added to or that replaces an existing mapping is locked into
memory.

Sticky Locks

A page is permanently locked into memory when its lock count reaches 65535
(0xFFFF). The value 0xFFFF is implementation defined and might change in
future releases. Pages locked in this manner cannot be unlocked. Reboot the
system to recover.

Realtime Programming and Administration 129

7

High Performance I/O
This section describes I/O with realtime processes. With SunOS 5.x, several
functions and calls are available within the libraries supplied to perform fast,
asynchronous I/O operations. For robustness, SunOS provides file
synchronization operations and modes to prevent information loss and data
inconsistency. See the man Pages(3): Library Routines for more detailed
information.

 Asynchronous I/O

Standard UNIX I/O is generally synchronous to the application programmer.
An application that calls read (2) or write (2) is not usually allowed to
proceed until that system call has finished, successfully or otherwise.

Realtime applications need asynchronous bounded I/O behavior. A process that
issues an asynchronous I/O call does not wait until the I/O operation has been
completed before it is allowed to proceed. Instead, the caller is notified that the
I/O operation has finished at a later time while the process is doing something
else.

Asynchronous I/O applies to any SunOS file. Files are opened in the
synchronous way and no special flagging is required. An asynchronous I/O
transfer is composed of three elements: call, request, and operation. The
application calls an asynchronous I/O function, the request for the I/O is
placed on a queue, and the call returns immediately. At some point, the system
dequeues the request and initiates the I/O operation itself.

Asynchronous and standard I/O requests can be intermingled on any file
descriptor. Note, however, that the system does not necessarily maintain any
particular sequence of read and write requests. The system can and does
arbitrarily resequence any and all pending read and write requests. If a specific
sequence is required for the application, the application must assure the
completion of prior operations before issuing the dependent requests.

Notification (SIGIO)

When an asynchronous I/O call returns successfully, the I/O operation has
only been placed on the queue, waiting to be done. The actual operation also
has a return value and a potential error identifier. These are the values that
would have been returned to the caller as the result of a synchronous call.

130 System Interfaces Guide—November 1995

7

When the I/O is finished, the return value and error value are stored at a
location given by the user at the time of the request as a pointer to an
aio_result_t . The structure of the aio_result_t is defined in
<sys/asynch.h>

typedef struct aio_result_t {
int aio_return; /* return value of read or write */
int aio_errno; /* errno generated by the IO */

} aio_result_t;

When aio_result_t has been updated, a SIGIO signal is delivered to the
process that made the I/O request.

Note that a person with two or more asynchronous I/O operations pending
has no certain way to determine which request or even whether either request
is the cause of the SIGIO signal. A process receiving a SIGIO should check all
its conditions which could be generating the SIGIO signal.

Using aioread(3)

The aioread (3) function is the asynchronous version of read (2). In addition
to the normal read arguments, aioread takes the arguments specifying a file
position and the address of an aio_result_t structure at which the system is
to store the result information about the operation.

The file position specifies a seek to be performed within the file before the
operation. If the aioread call succeeds, the file pointer is updated to the
position that would have resulted in a successful seek and read. The file
pointer is also updated when a read fails to allow for subsequent read requests.

Using aiowrite(3)

The aiowrite (3) function is the asynchronous version of write (2). In
addition to the normal write arguments, aiowrite takes arguments
specifying a file position and the address of an aio_result_t structure at
which the system is to store the result information about the operation.

The file position specifies a seek to be performed within the file before the
operation. If the aiowrite call succeeds, the file pointer is updated to the
position that would have resulted in a successful seek and write. The file
pointer is also updated when a write fails to allow for subsequent write
requests.

Realtime Programming and Administration 131

7

Using aiocancel(3)

The aiocancel (3) function attempts to cancel the asynchronous request
whose aio_result_t structure is given as an argument. An aiocancel call
succeeds only if the request is still queued. If the operation is in progress,
aiocancel fails.

Using aiowait(3)

A call to the aiowait (3) function blocks the calling process until at least one
outstanding asynchronous I/O operation is completed. The timeout parameter
points to a maximum interval to wait for I/O completion. A timeout value of
zero specifies that no wait is wanted. The aiowait function returns a pointer
to the aio_result_t structure for the completed operation.

Using poll(2)

When you prefer to poll devices rather than to depend on a SIGIO interrupt,
use the poll (2) system call. You can also poll to determine the origin of an
SIGIO interrupt.

Using close(2)

Files are closed by a call to close (2). The call to close cancels any
outstanding asynchronous I/O request that can be cancelled. The close
function waits on an operation that cannot be cancelled. When a call to close
returns, there is no asynchronous I/O pending for the file descriptor.

Only asynchronous I/O requests that are queued to the specified file descriptor
are cancelled when a file is closed. Any I/O requests that are pending for other
file descriptors are not cancelled.

Synchronized I/O

Applications may need to guarantee that information has been written to
stable storage, or that file updates are performed in a particular order.
Synchronized I/O provides for these needs.

132 System Interfaces Guide—November 1995

7

Modes of Synchronization

Under SunOS 5.x, data is successfully transferred for a write operation to a
regular file when the system ensures that all data written is readable on any

subsequent open of the file (even one that follows a system or power failure) in
the absence of a failure of the physical storage medium. Data is successfully

transferred for a read operation when an image of the data on the physical
storage medium is available to the requesting process. An I/O operation is
complete when either the associated data been successfully transferred or the
operation has been diagnosed as unsuccessful.

An I/O operation has reached synchronized I/O data integrity completion
when:

For reads, the operation has been completed or diagnosed if unsuccessful.
The read is complete only when an image of the data has been successfully
transferred to the requesting process. If there were any pending write
requests affecting the data to be read at the time that the synchronized read
operation was requested, these write requests are successfully transferred
prior to reading the data.

For writes, the operation has been completed or diagnosed if unsuccessful.
The write is complete only when the data specified in the write request is
successfully transferred, and all file system information required to retrieve
the data is successfully transferred.

File attributes that are not necessary for data retrieval (access time,
modification time, status change time) are not successfully transferred prior to
returning to the calling process.

Synchronized I/O file integrity completion is identical to synchronized I/O
data integrity completion with the addition that all file attributes relative to the
I/O operation (including access time, modification time, status change time)
must be successfully transferred prior to returning to the calling process.

Synchronizing a File

The fsync(3C) and fdatasync(3R) functions explicitly synchronize a file
to secondary storage:

int fsync (int fildes);
int fdatasync (int fildes);

Realtime Programming and Administration 133

7

The fsync() guarantees the function is synchronized at the I/O file integrity
completion level, while The fdatasync() guarantees the function is
synchronized at the I/O data integrity completion level.

Applications can arrange that each I/O operation is synchronized before the
operation completes. Setting the O_DSYNC flag on the file description via
open(2) or fcntl(2) ensures that all I/O writes (write(2),
aiowrite(3)) have reached I/O data completion before the operation is
indicated as completed. Setting the O_SYNC flag on the file description
ensures that all I/O writes have reached I/O file completion before the
operation is indicated as completed. Setting the O_RSYNCflag on the file
description ensures that all I/O reads (read(2) , aioread(3)) have
reached the same level of completion as request for writes by the setting
O_DSYNC or O_SYNC on the descriptor.

Interprocess Communication
This section describes the interprocess communication (IPC) functions of
SunOS 5.x as they relate to realtime processing. Signals, pipes, FIFOs (named
pipes), message queues, shared memory, file mapping, and semaphores are
described here. For more information about the libraries, functions, and
routines useful for interprocess communication, see chapter three,
“Interprocess Communication,” and the man Pages(3): Library Routines.

Overview

Realtime processing often requires fast, high-bandwidth interprocess
communication. The choice of which mechanisms should be used can be
dictated by functional requirements, and the relative performance will depend
upon application behavior.

The traditional method of interprocess communication in UNIX is the pipe.
Unfortunately, pipes can have framing problems. Messages can become
intermingled by multiple writers or can be torn apart by multiple readers.

IPC messages mimic the reading and writing of files. They are easier to use
than pipes when more than two processes must communicate by using a single
medium.

134 System Interfaces Guide—November 1995

7

The IPC shared semaphore facility provides process synchronization. Shared
memory is the fastest form of interprocess communication. The main
advantage of shared memory is that the copying of message data is eliminated.
The usual mechanism for synchronizing shared memory access is semaphores.

Signals

Signals may be used to send a small amount of information between processes.
The sender can use the sigqueue(3R) function to send a signal together with
a small amount of information to a target process:

int sigqueue(pid_t pid, int signo, const union sigval value);
union sigval {

int sival_int; /* integer value */
void *sival_ptr; /* pointer value */

};

The target process must have the SA_SIGINFO bit set for the given signal
number (see sigaction(2)) , in order that occurrences of the signal
occurring when that signal is already pending will be queued.

The target process can receive the signals either synchronously or
asynchronously. By leaving that signal blocked (sigprocmask(2)) and
calling either sigwaitinfo(3R) or sigtimedwait(3R), the signal will be
received synchronously, with the value sent by the caller of sigqueue() being
stored in the si_value member of the siginfo_t argument. By leaving the
signal unblocked, the arrival will be delivered to the signal handler specified
by sigaction() , with the value appearing in the si_value of the
siginfo_t argument to the handler.

Only a fixed number of signals with associated values can be sent by a process
and remain undelivered. Storage for {SIGQUEUE_MAX} signals is allocated at
the first call to sigqueue() . Thereafter, a call to sigqueue() either
successfully enqueues at the target process or fails within a bounded amount
of time.

Pipes

Pipes provide one-way communication between processes. Pipes are created by
a process using the pipe (2) system call. The pipe (2) system call returns two
file descriptors, the first for reading and the second for writing. Once the pipe

Realtime Programming and Administration 135

7

is created, the process must create other processes with the fork (2) system
call, which allows the processes to communicate among themselves. Processes
must have a common ancestor in order to communicate with pipes.

Data passed through a pipe is treated as a conventional UNIX byte stream.
Data is sent into the pipe by calls to write (2V) using the writing file
descriptor.

Data is received from the pipe by calls to read (2V) using the reading file
descriptor. The read call is usually a blocking function: it does not return to
the caller until some data can be returned. To get a non-blocking read , the
pipe can be set so that it doesn’t block by using the ioctl (2) or fcntl (2)
functions.

A read on an empty, non-blocking pipe returns with an indication that no data
is available.

Named Pipes

SunOS 5.x provides named pipes or FIFOs. The FIFO is more flexible than the
pipe because it is a named entity in a directory. Once created, a FIFO can be
opened by any process that has legitimate access to it. Processes do not have to
share a parent and there is no need for a parent to initiate the pipe and pass it
to the descendants. A FIFO can be created with mknod(2).

A process connects to a FIFO through a call to open (2V). A process that opens
a FIFO for a read is blocked until that FIFO has been opened by a process for
writing. The decision about whether or not reads block is made in the open
call or by using a subsequent call to fcntl .

As with pipes, data in a FIFO is treated as a byte stream. Input is obtained
from a FIFO with calls to read and output is sent with calls to write . A
process ends use of a FIFO through a call to close (2).

IPC Message Queues

IPC message queues provide a powerful means of communicating between
processes by allowing any number of processes to send and receive from the
same message queue. Messages are passed as blocks of arbitrary size, not as
byte streams. Each message includes an integer type, which can be used by
application convention as a message priority, or as message categories. The

136 System Interfaces Guide—November 1995

7

latter usage provides multiple flows of messages with a single message queue.
This can be simpler than opening an arbitrary number of pipes or FIFOs when
a large number are required. Note that IPC insertion is strictly FIFO.

IPC message queue structures are initiated by a call to msgget (2). A message is
sent by a call to msgsnd(2), and msgrcv (2) is called to extract a message from
the queue structure. The msgctl (2) system call controls various functions on a
message queue structure, including removal.

IPC Semaphores

The IPC semaphore is a mechanism that synchronizes access to shared
resources. IPC semaphores are created in arrays, each element of which can be
used to control the execution of processes that call for operations on the array
elements.

Create an array of IPC semaphores with a call to semget (2). Query or set
individual semaphores or the complete array of semaphores with calls to
semctl (2). Acquire and release a semaphore or the array of semaphores with
calls to semop(2). Look in intro (2) for more information about information
structures and the operation of IPC semaphores.

Note that using IPC semaphores can cause priority inversions unless these are
explicitly avoided by the techniques mentioned earlier in this chapter.

Shared Memory

The fastest way for processes to communicate is directly, through a shared
segment of memory. A common memory area is added to the address space of
processes wishing to communicate. Applications use stores to send data and
fetches to receive communicated data. SunOS 5.x provides two mechanisms for
shared memory: memory mapped files and IPC shared memory.

The major difficulty with shared memory is that results can be wrong when
more than two processes are trying to read and write in it at the same time. See
“Shared Memory Synchronization” on page 138 for more information.

Realtime Programming and Administration 137

7

Memory Mapped Files

The system call mmap(2) connects a shared memory segment to the caller’s
memory. The caller specifies the shared segment by address and length. The
caller must also specify access protection flags and how the mapped pages are
managed.

The mmap(2) system call can also be used to map a file or a segment of a file to
a process’s memory. While this technique is very convenient in some
applications, it is easy to forget that any access to the mapped file segment
might result in implicit I/O. This can make an otherwise bounded process
have unpredictable response times. The function msync (3) forces immediate or
eventual copies of the specified memory segment to its permanent storage
location(s).

The process can later change the access protection of the segment by the
system call mprotect (2). The segment is specified by address and length.

The system call munmap(2) disconnects a mapped memory segment. The
segment is specified by address and length.

Fileless Memory Mapping

The zero special file, /dev/zero (4S), can be used to create an unnamed, zero
initialized memory object. The length of the memory object is the least number
of pages that contain the mapping. The object can be shared only by
descendants of a common ancestor process.

IPC Shared Memory

A shmget (2) call can be used either to create and obtain a shared memory
segment or to obtain an existing shared memory segment. The call specifies an
identifying key, the size of the segment, and a flag parameter. The flags contain
the usual access permission bits and can contain a flag to create a new
segment. The shmget function returns an identifier that is analogous to a file
identifier.

The shared memory segment is made accessible to the process by a call to
shmat (2). The shared memory segment becomes a virtual segment of the
process memory space and can be freely written to and read from depending
on creating permissions. The shared memory segment is detached from a

138 System Interfaces Guide—November 1995

7

process’s memory space by a call to shmdt (2). The shmctl system call can be
used to control a variety of functions on an IPC shared memory object,
including removal.

Shared Memory Synchronization

In sharing memory, a portion of memory can be mapped into the address space
of one or more processes. This allows shared access to that portion of memory
by the attached processes. No method of coordinating access is automatically
provided, so nothing prevents two processes from writing to the shared
memory at the same time. For this reason, it is typically used with semaphores,
which are used to synchronize processes.

Choice of IPC Mechanism

Applications can have specific functional requirements that determine which
IPC mechanism to use. If one of several mechanisms can be used, the
application writer determines which mechanism performs best for the
application. The SunOS 5.x interprocess communication facilities are sensitive
to application behavior. Determine which mechanism provides the best
response capabilities by measuring the throughput capacity of each mechanism
for the particular combination of message sizes used in the application

Asynchronous Networking
This section discusses the techniques of asynchronous network communication
using Transport-Level Interface (TLI) for realtime applications. SunOS provides
support for asynchronous network processing of TLI events using a
combination of STREAMS asynchronous features and the non-blocking mode
of the TLI library routines.

For more information on the Transport-Level Interface, see the Transport
Interfaces Programming Guide and theman Pages(3): Library Routines.

Modes of Networking

The Transport-Level Interface provides two modes of service: connection-mode
and connectionless-mode.

Realtime Programming and Administration 139

7

Connection-Mode Service

The connection-mode is circuit-oriented and enables the transmission of data
over an established connection in a reliable, sequenced manner. It also
provides an identification procedure that avoids the overhead of address
resolution and transmission during the data transfer phase. This service is
attractive for applications that require relatively long-lived, datastream-
oriented interactions.

Connectionless-Mode Service

Connectionless-mode is message-oriented and supports data transfer in self-
contained units with no logical relationship required among multiple units. All
information required to deliver a unit of data, including the destination
address, is passed by the sender to the transport provider, together with the
data, in a single service request. Connectionless-mode service is attractive for
applications that involve short-term request/response interactions and do not
require guaranteed, in-sequence delivery of data. It is generally assumed that
connectionless transports are unreliable.

Networking Programming Models

Like file and device I/O, network transfers can be done synchronously or
asynchronously with process service requests.

Synchronous Networking

Synchronous networking proceeds similarly to synchronous file and device
I/O. Like the write (2) function, the request to send returns after buffering the
message, but might suspend the calling process if buffer space is not
immediately available. Like the read (2) function, a request to receive suspends
execution of the calling process until data arrives to satisfy the request. Because
SunOS 5.x provides no guaranteed bounds for transport services, synchronous
networking is inappropriate for processes that must have realtime behavior
with respect to other devices.

140 System Interfaces Guide—November 1995

7

Asynchronous Networking

Asynchronous networking is provided by non-blocking service requests.
Additionally, applications can request asynchronous notification when a
connection might be established, when data might be sent, or when data might
be received.

Asynchronous Connectionless-Mode Service

Asynchronous connectionless mode networking is conducted by configuring
the endpoint for non-blocking service, and either polling for or receiving
asynchronous notification when data might be transferred. If asynchronous
notification is used, the actual receipt of data typically takes place within a
signal handler.

Making the Endpoint Asynchronous

After the endpoint has been established using t_open (3), and its identity
established using t_bind (3), the endpoint can be configured for asynchronous
service. This is done by using the fcntl (2) function to set the O_NONBLOCK
flag on the endpoint. Thereafter, calls to t_sndudata (3) for which no buffer
space is immediately available return -1 with t_errno set to TFLOW.
Likewise, calls to t_rcvudata (3) for which no data are available return -1
with t_errno set to TNODATA.

Asynchronous Network Transfers

Although an application can use the poll (2) function to wait for the receipt of
data on an endpoint, it might be necessary to receive asynchronous notification
when data has arrived. This can be done by using the ioctl (2) function with
the I_SETSIG command to request that a SIGPOLL signal be sent to the
process upon receipt of data at the endpoint. Applications should check for the
possibility of multiple messages causing a single signal.

In the following example, protocol is the name of the application-chosen
transport protocol.
Code Example 7-1 Asynchornous Network Transfers

#include <sys/types.h>
#include <tiuser.h>
#include <signal.h>

Realtime Programming and Administration 141

7

#include <stropts.h>

int fd;
struct t_bind *bind;
void sigpoll(int);

fd = t_open(protocol, O_RDWR, (struct t_info *) NULL);

bind = (struct t_bind *) t_alloc(fd, T_BIND, T_ADDR);
... /* set up binding address */
t_bind(fd, bind, bin

/* make endpoint non-blocking */
fcntl(fd, F_SETFL, fcntl(fd, F_GETFL) | O_NONBLOCK);

/* establish signal handler for SIGPOLL */
signal(SIGPOLL, sigpoll);

/* request SIGPOLL signal when receive data is available */
ioctl(fd, I_SETSIG, S_INPUT | S_HIPRI);

...

void sigpoll(int sig)
{

int flags;
struct t_unitdata ud;

for (;;) {
... /* initialize ud */
if (t_rcvudata(fd, &ud, &flags) < 0) {

if (t_errno == TNODATA)
break; /* no more messages */

... /* process other error conditions */
}
... /* process message in ud */

}

Asynchronous Connection-Mode Service

For connection-mode service, an application can arrange for not only the data
transfer, but for the establishment of the connection itself to be done
asynchronously. The sequence of operations depends on whether the process is
attempting to connect to another process or is awaiting connection attempts.

142 System Interfaces Guide—November 1995

7

Asynchronously Establishing a Connection

A process can attempt a connection and asynchronously complete the
connection. The process first creates the connecting endpoint, and, using
fcntl (), configures the endpoint for non-blocking operation. As with
connectionless data transfers, the endpoint can also be configured for
asynchronous notification upon completion of the connection and subsequent
data transfers. The connecting process then uses the t_connect (3) function to
initiate setting up the transfer. Then the t_rcvconnect (3) function is used to
confirm the establishment of the connection.

Asynchronous Use of a Connection

To asynchronously await connections, a process first establishes a non-blocking
endpoint bound to a service address. When either the result of poll () or an
asynchronous notification indicates that a connection request has arrived, the
process can get the connection request by using the t_listen (3) function. To
accept the connection, the process uses the t_accept (3) function. The
responding endpoint must be separately configured for asynchronous data
transfers.

The following example illustrates how to request a connection asynchronously
Code Example 7-2 Asynchronous Connection Request

#include <tiuser.h>

int fd;
struct t_call *call;

fd = .../* establish a non-blocking endpoint */

call = (struct t_call *) t_alloc(fd, T_CALL, T_ADDR);
.../* initialize call structure */
t_connect(fd, call, call);

/* connection request is now proceeding asynchronously */

.../* receive indication that connection has been accepted */
t_rcvconnect(fd, &call);

The following example illustrates listening for connections asynchronously

Realtime Programming and Administration 143

7

Code Example 7-3 Asynchronous LIstening

#include <tiuser.h>

int fd, res_fd;
struct t_call call;

fd = ... /* establish non-blocking endpoint */

.../*receive indication that connection request has arrived */
call = (struct t_call *) t_alloc(fd, T_CALL, T_ALL);
t_listen(fd, &call);

.../* determine whether or not to accept connection */
res_fd = ... /* establish non-blocking endpoint for response */
t_accept(fd, res_fd, call);

Asynchronous Open

Occasionally, an application might be required to dynamically open a regular
file in a file system mounted from a remote host, or on a device whose
initialization might be prolonged. However, while such an open is in progress,
the application would be unable to achieve realtime response to other events.
Fortunately, SunOS 5.x provides a means of solving this problem by having a
second process perform the actual open and then pass the file descriptor to the
realtime process.

Transferring a File Descriptor

The STREAMS interface under SunOS 5.x provides a mechanism for passing an
open file descriptor from one process to another. The process with the open file
descriptor uses the ioctl (2) function with a command argument of
I_SENDFD. The second process obtains the file descriptor by calling the
ioctl () function with a command argument of I_RECVFD.

In this example, the parent process prints out information about the test file,
and creates a pipe. Next, the parent creates a child process, which opens the
test file, and passes the open file descriptor back to the parent through the
pipe. The parent process then displays the status information on the new file
descriptor.

144 System Interfaces Guide—November 1995

7

Code Example 7-4 File Descriptor Transfer

#include <sys/types.h>
#include <sys/stat.h>
#include <fcntl.h>
#include <stropts.h>
#include <stdio.h>

#define TESTFILE "/dev/null"
main(int argc, char * argv)
{

int fd;
int pipefd[2];
struct stat statbuf;

stat(TESTFILE, &statbuf);
statout(TESTFILE, &statbuf);
pipe(pipefd);
if (fork() == 0) {

close(pipefd[0]);
sendfd(pipefd[1]);

} else {
close(pipefd[1])
recvfd(pipefd[0]);

}
}

sendfd(int p)
{

int tfd;

tfd = open(TESTFILE, O_RDWR);
ioctl(p, I_SENDFD, tfd);

}

recvfd(int p)
{

struct strrecvfd rfdbuf;
struct stat statbuf;
char fdbuf[32];

ioctl(p, I_RECVFD, &rfdbuf);
fstat(rfdbuf.fd, &statbuf);
sprintf(fdbuf, "recvfd=%d", rfdbuf.fd);
statout(fdbuf, &statbuf);

}

Realtime Programming and Administration 145

7

statout(char *f, struct stat *s)
{

printf("stat: from=%s mode=0%o, ino=%d, dev=%d, rdev=%d\n",
f, s->st_mode, s->st_ino, s->st_dev, s->st_rdev);

fflush(stdout);
}

Timers
This section describes the timing facilities available for realtime applications
under SunOS 5.x. Realtime applications that want to take advantage of these
mechanisms will require detailed information from the manual pages of the
routines listed in this section. These can be found in the man Pages(3): Library
Routines.

The timing functions of SunOS 5.x fall into two separate areas of functionality:
timestamps and interval timers. The timestamp functions provide a measure of
elapsed time and allow the application to measure the duration of a state or the
time between events. Interval timers allow an application to wake up at
specified times and to schedule activities based on the passage of time.
Although an application can poll a timestamp function to schedule itself, such
an application would monopolize the processor to the detriment of other
system functions.

Timestamp Functions

Two functions provide timestamps. The gettimeofday (2) function provides
the current time in a timeval structure, representing the time in seconds and
microseconds since midnight, Greenwich Mean Time, on January 1, 1970. The
clock_gettime(3R) function, with a clockid of CLOCK_REALTIME, provides
the current time in a timespec structure, representing in seconds and
nanoseconds the same time interval returned by gettimeofday ().

SunOS 5.x uses a hardware periodic timer. For some workstations, this is the
sole timing information, and the accuracy of timestamps is limited to the
resolution of that periodic timer. For other platforms, a timer register with a
resolution of one microsecond allows SunOS 5.x to provide timestamps
accurate to one microsecond.

146 System Interfaces Guide—November 1995

7

Interval Timer Functions

Realtime applications often schedule their activities through the use of interval
timers. Interval timers can be either of two types: a “one-shot” type or a
“periodic” type.

The one-shot is an armed timer that is set with an initial expiration time
relative either to current time or to an absolute time. This timer expires once
and is then disarmed. Such a timer might be useful for clearing buffers after
the data has been transferred to storage, or to time-out an operation that
should have finished.

The periodic timer is armed with the initial expiration time (either absolute or
relative) and a repetition interval. Each time the interval timer expires it is
reloaded with the repetition interval and the timer is automatically rearmed.
This timer might be useful for data logging or for servo-control. In calls to
interval timer functions, time values smaller than the resolution of the system
hardware periodic timer are rounded up to the next multiple of the hardware
periodic timer interval (typically 10 ms).

The IPC shared semaphore facility provides process synchronization. Shared
memory is the fastest form of interprocess communication. The main
advantage of shared memory is that the copying of message data is eliminated.
The usual mechanism for synchronizing shared memory access is semaphores.

There are twos set of timers interfaces in SunOS 5.x. The setitimer(2) and
getitimer(2) interfaces provide access to fixed set timers, called the BSD
timers, using the timeval structure to specify time intervals. The POSIX timers
are specifically related to POSIX clocks; the only POSIX clock currently
supported is CLOCK_REALTIME. POSIX timer operations are expressed in
terms of the timespec structure.

The functions getitimer(2) and setitimer(2) respectively retrieve and
establish the value of the specified BSD interval timer. There are three BSD
interval timers available to a process, including a realtime timer designated
ITIMER_REAL. If a BSD timer is armed and allowed to expire, the system
sends a signal appropriate to the timer to the process that set the timer.

The timer_create(3R) function can create up to {TIMER_MAX} POSIX
timers. At the time of creation, the caller can specify what signal and what
associated value will be sent to the process upon timer expiration. The
timer_gettime(3R) and timer_settime(3R) functions respectively
retrieve and establish the value of the specified POSIX interval timer.

Realtime Programming and Administration 147

7

Expirations of POSIX timers while the required signal is pending delivery are
counted, and the function timer_getoverrun(3R) retrieves the count of
such expirations. The function timer_delete(3R) deallocates a POSIX
timer.

Code Example 7-5 illustrates how to use the setitimer interface to generate a
periodic interrupt, and how to control the arrival of timer interrupts.
Code Example 7-5 Controlling Timer Interrupts

#include<unistd.h>
#include<signal.h>
#include<sys/time.h>

#define TIMERCNT 8

voidtimerhandler();
int timercnt;
structtimeval alarmtimes[TIMERCNT];

main()
{

struct itimerval times;
sigset_tsigset;
int i, ret;
struct sigaction act;

/* block SIGALRM */
sigemptyset(&sigset);
sigaddset(&sigset, SIGALRM);
sigprocmask(SIG_BLOCK, &sigset, NULL);

/* set up handler for SIGALRM */
act.sa_handler = timerhandler;
sigemptyset(&act.sa_mask);
act.sa_flags = SA_SIGINFO;
sigaction(SIGALRM, &act, NULL);
/*
 * set up interval timer, starting in three seconds,
 * then every 1/3 second
 */
times.it_value.tv_sec = 3;
times.it_value.tv_usec = 0;
times.it_interval.tv_sec = 0;
times.it_interval.tv_usec = 333333;
ret = setitimer(ITIMER_REAL, ×, NULL);
printf("main:setitimer ret = %d\n", ret);

148 System Interfaces Guide—November 1995

7

/* now wait for the alarms */
sigemptyset(&sigset);
timerhandler(0, 0, NULL, NULL);
while (timercnt < TIMERCNT) {

ret = sigsuspend(&sigset);
}
printtimes();

}

void timerhandler(sig, siginfo, context)
int sig;
siginfo_tsiginfo;
void *context;

{
printf("timerhandler:start\n");
gettimeofday(&alarmtimes[timercnt], NULL);
timercnt++;
printf("timerhandler:timercnt = %d\n", timercnt);

}

printtimes()
{

int i;

for (i = 0; i < TIMERCNT; i++) {
printf("%d.%06d\n", alarmtimes[i].tv_sec,

alarmtimes[i].tv_usec);
}

}

149

Full Code Examples A

Code Example A-1 Sample Program to Illustrate msgget ()

/*
 * msgget.c: Illustrate the msgget() function.
 * This is a simple exerciser of the msgget() function. It prompts
 * for the arguments, makes the call, and reports the results.
 */

#include <stdio.h>
#include <sys/types.h>
#include <sys/ipc.h>
#include <sys/msg.h>

extern void exit();
extern void perror();

main()
{

key_t key; /* key to be passed to msgget() */
int msgflg, /* msgflg to be passed to msgget() */

msqid; /* return value from msgget() */

(void) fprintf(stderr,
"All numeric input is expected to follow C conventions:\n");

(void) fprintf(stderr,
"\t0x... is interpreted as hexadecimal,\n");

(void) fprintf(stderr, "\t0... is interpreted as octal,\n");
(void) fprintf(stderr, "\totherwise, decimal.\n");
(void) fprintf(stderr, "IPC_PRIVATE == %#lx\n", IPC_PRIVATE);
(void) fprintf(stderr, "Enter key: ");

150 System Interfaces Guide—November 1995

A

(void) scanf("%li", &key);
(void) fprintf(stderr, "\nExpected flags for msgflg argument

are:\n");
(void) fprintf(stderr, "\tIPC_EXCL =\t%#8.8o\n", IPC_EXCL);
(void) fprintf(stderr, "\tIPC_CREAT =\t%#8.8o\n", IPC_CREAT);
(void) fprintf(stderr, "\towner read =\t%#8.8o\n", 0400);
(void) fprintf(stderr, "\towner write =\t%#8.8o\n", 0200);
(void) fprintf(stderr, "\tgroup read =\t%#8.8o\n", 040);
(void) fprintf(stderr, "\tgroup write =\t%#8.8o\n", 020);
(void) fprintf(stderr, "\tother read =\t%#8.8o\n", 04);
(void) fprintf(stderr, "\tother write =\t%#8.8o\n", 02);
(void) fprintf(stderr, "Enter msgflg value: ");
(void) scanf("%i", &msgflg);

(void) fprintf(stderr, "\nmsgget: Calling msgget(%#lx, %#o)\n",
key, msgflg);
if ((msqid = msgget(key, msgflg)) == –1)
{

perror("msgget: msgget failed");
exit(1);

} else {
(void) fprintf(stderr,

"msgget: msgget succeeded: msqid = %d\n", msqid);
exit(0);

}
}

Code Example A-2 Sample Program to Illustrate msgctl ()

/*
 * msgctl.c: Illustrate the msgctl() function.
 *
 * This is a simple exerciser of the msgctl() function. It allows
 * you to perform one control operation on one message queue. It
 * gives up immediately if any control operation fails, so be careful
 * not to set permissions to preclude read permission; you won’t be
 * able to reset the permissions with this code if you do.
 */
#include <stdio.h>
#include <sys/types.h>
#include <sys/ipc.h>
#include <sys/msg.h>
#include <time.h>

static void do_msgctl();
extern void exit();
extern void perror();

Full Code Examples 151

A

static char warning_message[] = "If you remove read permission for \
yourself, this program will fail frequently!";

main()
{

struct msqid_dsbuf; /* queue descriptor buffer for IPC_STAT
 and IP_SET commands */

int cmd, /* command to be given to msgctl() */
msqid; /* queue ID to be given to msgctl() */

(void fprintf(stderr,
"All numeric input is expected to follow C conventions:\n");

(void) fprintf(stderr,
"\t0x... is interpreted as hexadecimal,\n");

(void) fprintf(stderr, "\t0... is interpreted as octal,\n");
(void) fprintf(stderr, "\totherwise, decimal.\n");

/* Get the msqid and cmd arguments for the msgctl() call. */
(void) fprintf(stderr,

"Please enter arguments for msgctls() as requested.");
(void) fprintf(stderr, "\nEnter the msqid: ");
(void) scanf("%i", &msqid);
(void) fprintf(stderr, "\tIPC_RMID = %d\n", IPC_RMID);
(void) fprintf(stderr, "\tIPC_SET = %d\n", IPC_SET);
(void) fprintf(stderr, "\tIPC_STAT = %d\n", IPC_STAT);
(void) fprintf(stderr, "\nEnter the value for the command: ");
(void) scanf("%i", &cmd);

switch (cmd) {
case IPC_SET:

/* Modify settings in the message queue control
structure. */

(void) fprintf(stderr, "Before IPC_SET, get current
values:");

/* fall through to IPC_STAT processing */
case IPC_STAT:

/* Get a copy of the current message queue control
 * structure and show it to the user. */
do_msgctl(msqid, IPC_STAT, &buf);
(void) fprintf(stderr,]
"msg_perm.uid = %d\n", buf.msg_perm.uid);
(void) fprintf(stderr,
"msg_perm.gid = %d\n", buf.msg_perm.gid);
(void) fprintf(stderr,
"msg_perm.cuid = %d\n", buf.msg_perm.cuid);
(void) fprintf(stderr,

152 System Interfaces Guide—November 1995

A

"msg_perm.cgid = %d\n", buf.msg_perm.cgid);
(void) fprintf(stderr, "msg_perm.mode = %#o, ",
buf.msg_perm.mode);
(void) fprintf(stderr, "access permissions = %#o\n",
buf.msg_perm.mode & 0777);
(void) fprintf(stderr, "msg_cbytes = %d\n",

buf.msg_cbytes);
(void) fprintf(stderr, "msg_qbytes = %d\n",

buf.msg_qbytes);
(void) fprintf(stderr, "msg_qnum = %d\n", buf.msg_qnum);
(void) fprintf(stderr, "msg_lspid = %d\n",

buf.msg_lspid);
(void) fprintf(stderr, "msg_lrpid = %d\n",

buf.msg_lrpid);
(void) fprintf(stderr, "msg_stime = %s", buf.msg_stime ?
ctime(&buf.msg_stime) : "Not Set\n");
(void) fprintf(stderr, "msg_rtime = %s", buf.msg_rtime ?
ctime(&buf.msg_rtime) : "Not Set\n");
(void) fprintf(stderr, "msg_ctime = %s",

ctime(&buf.msg_ctime));
if (cmd == IPC_STAT)

break;
/* Now continue with IPC_SET. */
(void) fprintf(stderr, "Enter msg_perm.uid: ");
(void) scanf ("%hi", &buf.msg_perm.uid);
(void) fprintf(stderr, "Enter msg_perm.gid: ");
(void) scanf("%hi", &buf.msg_perm.gid);
(void) fprintf(stderr, "%s\n", warning_message);
(void) fprintf(stderr, "Enter msg_perm.mode: ");
(void) scanf("%hi", &buf.msg_perm.mode);
(void) fprintf(stderr, "Enter msg_qbytes: ");
(void) scanf("%hi", &buf.msg_qbytes);
do_msgctl(msqid, IPC_SET, &buf);
break;

case IPC_RMID:
default:

/* Remove the message queue or try an unknown command. */
do_msgctl(msqid, cmd, (struct msqid_ds *)NULL);
break;

}
exit(0);

}

Full Code Examples 153

A

/*
 * Print indication of arguments being passed to msgctl(), call
 * msgctl(), and report the results. If msgctl() fails, do not
 * return; this example doesn’t deal with errors, it just reports
 * them.
 */
static void
do_msgctl(msqid, cmd, buf)
struct msqid_ds*buf; /* pointer to queue descriptor buffer */
int cmd, /* command code */

msqid; /* queue ID */
{

register intrtrn;/* hold area for return value from msgctl() */

(void) fprintf(stderr, "\nmsgctl: Calling msgctl(%d, %d, %s)\n",
msqid, cmd, buf ? "&buf" : "(struct msqid_ds *)NULL");

rtrn = msgctl(msqid, cmd, buf);
if (rtrn == –1) {

perror("msgctl: msgctl failed");
exit(1);

} else {
(void) fprintf(stderr, "msgctl: msgctl returned %d\n",

rtrn);
}

}

Code Example A-3 Sample Program to Illustrate msgsnd() and msgrcv ()

/*
 * msgop.c: Illustrate the msgsnd() and msgrcv() functions.
 *
 * This is a simple exerciser of the message send and receive
 * routines. It allows the user to attempt to send and receive as many
 * messages as wanted to or from one message queue.
 */

#include <stdio.h>
#include <sys/types.h>
#include <sys/ipc.h>
#include <sys/msg.h>

static intask();
extern voidexit();
extern char*malloc();
extern voidperror();

charfirst_on_queue[] = "–> first message on queue",

154 System Interfaces Guide—November 1995

A

full_buf[] = "Message buffer overflow. Extra message text\
 discarded.";

main()
{

register int c; /* message text input */
int choice;/* user’s selected operation code */
register int i; /* loop control for mtext */
int msgflg;/* message flags for the operation */
struct msgbuf *msgp; /* pointer to the message buffer */
int msgsz; /* message size */
long msgtyp; /* desired message type */
int msqid, /* message queue ID to be used */

maxmsgsz,/* size of allocated message buffer */
rtrn; /* return value from msgrcv or msgsnd */

(void) fprintf(stderr,
"All numeric input is expected to follow C conventions:\n");

(void) fprintf(stderr,
"\t0x... is interpreted as hexadecimal,\n");

(void) fprintf(stderr, "\t0... is interpreted as octal,\n");
(void) fprintf(stderr, "\totherwise, decimal.\n");
/* Get the message queue ID and set up the message buffer. */
(void) fprintf(stderr, "Enter msqid: ");
(void) scanf("%i", &msqid);
/*
 * Note that <sys/msg.h> includes a definition of struct msgbuf
 * with the mtext field defined as:
 * charmtext[1];
 * therefore, this definition is only a template, not a structure
 * definition that you can use directly, unless you want only to
 * send and receive messages of 0 or 1 byte. To handle this,
 * malloc an area big enough to contain the template – the size
 * of the mtext template field + the size of the mtext field
 * wanted. Then you can use the pointer returned by malloc as a
 * struct msgbuf with an mtext field of the size you want. Note
 * also that sizeof msgp–>mtext is valid even though msgp isn’t
 * pointing to anything yet. Sizeof doesn’t dereference msgp, but
 * uses its type to figure out what you are asking about.
 */
(void) fprintf(stderr,

"Enter the message buffer size you want:");
(void) scanf("%i", &maxmsgsz);
if (maxmsgsz < 0) {

(void) fprintf(stderr, "msgop: %s\n",
"The message buffer size must be >= 0.");

exit(1);

Full Code Examples 155

A

}
msgp = (struct msgbuf *)malloc((unsigned)(sizeof(struct msgbuf)

– sizeof msgp–>mtext + maxmsgsz));
if (msgp == NULL) {

(void) fprintf(stderr, "msgop: %s %d byte messages.\n",
"could not allocate message buffer for", maxmsgsz);

exit(1);
}
/* Loop through message operations until the user is ready to

quit. */
while (choice = ask()) {

switch (choice) {
case 1: /* msgsnd() requested: Get the arguments, make the

call, and report the results. */
(void) fprintf(stderr, "Valid msgsnd message %s\n",

"types are positive integers.");
(void) fprintf(stderr, "Enter msgp–>mtype: ");
(void) scanf("%li", &msgp–>mtype);
if (maxmsgsz) {

/* Since you’ve been using scanf, you need the loop
 below to throw away the rest of the input on the
 line after the entered mtype before you start
 reading the mtext. */
while ((c = getchar()) != ’\n’ && c != EOF);
(void) fprintf(stderr, "Enter a %s:\n",

"one line message");
for (i = 0; ((c = getchar()) != ’\n’); i++) {

if (i >= maxmsgsz) {
(void) fprintf(stderr, "\n%s\n", full_buf);
while ((c = getchar()) != ’\n’);
break;

}
msgp–>mtext[i] = c;

}
msgsz = i;

} else
msgsz = 0;

(void) fprintf(stderr,"\nMeaningful msgsnd flag is:\n");
(void) fprintf(stderr, "\tIPC_NOWAIT =\t%#8.8o\n",

IPC_NOWAIT);
(void) fprintf(stderr, "Enter msgflg: ");
(void) scanf("%i", &msgflg);
(void) fprintf(stderr, "%s(%d, msgp, %d, %#o)\n",

"msgop: Calling msgsnd", msqid, msgsz, msgflg);
(void) fprintf(stderr, "msgp–>mtype = %ld\n",

msgp–>mtype);

156 System Interfaces Guide—November 1995

A

(void) fprintf(stderr, "msgp–>mtext = \"");
for (i = 0; i < msgsz; i++)

(void) fputc(msgp–>mtext[i], stderr);
(void) fprintf(stderr, "\"\n");
rtrn = msgsnd(msqid, msgp, msgsz, msgflg);
if (rtrn == –1)

perror("msgop: msgsnd failed");
else

(void) fprintf(stderr,
"msgop: msgsnd returned %d\n", rtrn);

break;
case 2: /* msgrcv() requested: Get the arguments, make the

 call, and report the results. */
for (msgsz = –1; msgsz < 0 || msgsz > maxmsgsz;

(void) scanf("%i", &msgsz))
(void) fprintf(stderr, "%s (0 <= msgsz <= %d): ",

"Enter msgsz", maxmsgsz);
(void) fprintf(stderr, "msgtyp meanings:\n");
(void) fprintf(stderr, "\t 0 %s\n", first_on_queue);
(void) fprintf(stderr, "\t>0 %s of given type\n",

first_on_queue);
(void) fprintf(stderr, "\t<0 %s with type <= |msgtyp|\n",

first_on_queue);
(void) fprintf(stderr, "Enter msgtyp: ");
(void) scanf("%li", &msgtyp);
(void) fprintf(stderr,

"Meaningful msgrcv flags are:\n");
(void) fprintf(stderr, "\tMSG_NOERROR =\t%#8.8o\n",

MSG_NOERROR);
(void) fprintf(stderr, "\tIPC_NOWAIT =\t%#8.8o\n",

IPC_NOWAIT);
(void) fprintf(stderr, "Enter msgflg: ");
(void) scanf("%i", &msgflg);
(void) fprintf(stderr, "%s(%d, msgp, %d, %ld, %#o);\n",

"msgop: Calling msgrcv", msqid, msgsz,
msgtyp, msgflg);

rtrn = msgrcv(msqid, msgp, msgsz, msgtyp, msgflg);
if (rtrn == –1)

perror("msgop: msgrcv failed");
else {

(void) fprintf(stderr, "msgop: %s %d\n",
"msgrcv returned", rtrn);

(void) fprintf(stderr, "msgp–>mtype = %ld\n",
msgp–>mtype);

(void) fprintf(stderr, "msgp–>mtext is: \"");
for (i = 0; i < rtrn; i++)

Full Code Examples 157

A

(void) fputc(msgp–>mtext[i], stderr);
(void) fprintf(stderr, "\"\n");

}
break;

default:
(void) fprintf(stderr, "msgop: operation unknown\n");
break;

}
}
exit(0);

}

/*
 * Ask the user what to do next. Return the user’s choice code.
 * Don’t return until the user selects a valid choice.
 */
static
ask()
{

int response;/* User’s response. */

do {
(void) fprintf(stderr, "Your options are:\n");
(void) fprintf(stderr, "\tExit =\t0 or Control–D\n");
(void) fprintf(stderr, "\tmsgsnd =\t1\n");
(void) fprintf(stderr, "\tmsgrcv =\t2\n");
(void) fprintf(stderr, "Enter your choice: ");

/* Preset response so "^D" will be interpreted as exit. */
response = 0;
(void) scanf("%i", &response);

} while (response < 0 || response > 2);

return(response);
}

Code Example A-4 Sample Program to Illustrate semget ()

/*
 * semget.c: Illustrate the semget() function.
 *
 * This is a simple exerciser of the semget() function. It prompts
 * for the arguments, makes the call, and reports the results.
*/

#include <stdio.h>

158 System Interfaces Guide—November 1995

A

#include <sys/types.h>
#include <sys/ipc.h>
#include <sys/sem.h>

extern void exit();
extern void perror();

main()
{

key_t key; /* key to pass to semget() */
int semflg; /* semflg to pass to semget() */
int nsems; /* nsems to pass to semget() */
int semid; /* return value from semget() */

(void) fprintf(stderr,
"All numeric input must follow C conventions:\n");

(void) fprintf(stderr,
"\t0x... is interpreted as hexadecimal,\n");

(void) fprintf(stderr, "\t0... is interpreted as octal,\n");
(void) fprintf(stderr, "\totherwise, decimal.\n");
(void) fprintf(stderr, "IPC_PRIVATE == %#lx\n", IPC_PRIVATE);
(void) fprintf(stderr, "Enter key: ");
(void) scanf("%li", &key);

(void) fprintf(stderr, "Enter nsems value: ");
(void) scanf("%i", &nsems);
(void) fprintf(stderr, "\nExpected flags for semflg are:\n");
(void) fprintf(stderr, "\tIPC_EXCL = \t%#8.8o\n", IPC_EXCL);
(void) fprintf(stderr, "\tIPC_CREAT = \t%#8.8o\n", IPC_CREAT);
(void) fprintf(stderr, "\towner read = \t%#8.8o\n", 0400);
(void) fprintf(stderr, "\towner alter = \t%#8.8o\n", 0200);
(void) fprintf(stderr, "\tgroup read = \t%#8.8o\n", 040);
(void) fprintf(stderr, "\tgroup alter = \t%#8.8o\n", 020);
(void) fprintf(stderr, "\tother read = \t%#8.8o\n", 04);
(void) fprintf(stderr, "\tother alter = \t%#8.8o\n", 02);
(void) fprintf(stderr, "Enter semflg value: ");
(void) scanf("%i", &semflg);
(void) fprintf(stderr, "\nsemget: Calling semget(%#lx, %

 %#o)\n",key, nsems, semflg);
if ((semid = semget(key, nsems, semflg)) == –1) {

perror("semget: semget failed");
exit(1);

} else {
(void) fprintf(stderr, "semget: semget succeeded: semid =

Full Code Examples 159

A

%d\n",
semid);

exit(0);
}

}

Code Example A-5 Sample Program to Illustrate semctl ()

/*
 * semctl.c:Illustrate the semctl() function.
 *
 * This is a simple exerciser of the semctl() function. It lets you
 * perform one control operation on one semaphore set. It gives up
 * immediately if any control operation fails, so be careful not to
 * set permissions to preclude read permission; you won’t be able to
 * reset the permissions with this code if you do.
 */

#include <stdio.h>
#include <sys/types.h>
#include <sys/ipc.h>
#include <sys/sem.h>
#include <time.h>

struct semid_ds semid_ds;

static void do_semctl();
static void do_stat();
extern char *malloc();
extern void exit();
extern void perror();

char warning_message[] = "If you remove read permission\
for yourself, this program will fail frequently!";

main()
{

union semun arg; /* union to pass to semctl() */
int cmd, /* command to give to semctl() */

i, /* work area */
semid, /* semid to pass to semctl() */
semnum; /* semnum to pass to semctl() */

(void) fprintf(stderr,
"All numeric input must follow C conventions:\n");

(void) fprintf(stderr,
"\t0x... is interpreted as hexadecimal,\n");

160 System Interfaces Guide—November 1995

A

(void) fprintf(stderr, "\t0... is interpreted as octal,\n");
(void) fprintf(stderr, "\totherwise, decimal.\n");
(void) fprintf(stderr, "Enter semid value: ");
(void) scanf("%i", &semid);

(void) fprintf(stderr, "Valid semctl cmd values are:\n");
(void) fprintf(stderr, "\tGETALL = %d\n", GETALL);
(void) fprintf(stderr, "\tGETNCNT = %d\n", GETNCNT);
(void) fprintf(stderr, "\tGETPID = %d\n", GETPID);
(void) fprintf(stderr, "\tGETVAL = %d\n", GETVAL);
(void) fprintf(stderr, "\tGETZCNT = %d\n", GETZCNT);
(void) fprintf(stderr, "\tIPC_RMID = %d\n", IPC_RMID);
(void) fprintf(stderr, "\tIPC_SET = %d\n", IPC_SET);
(void) fprintf(stderr, "\tIPC_STAT = %d\n", IPC_STAT);
(void) fprintf(stderr, "\tSETALL = %d\n", SETALL);
(void) fprintf(stderr, "\tSETVAL = %d\n", SETVAL);
(void) fprintf(stderr, "\nEnter cmd: ");
(void) scanf("%i", &cmd);

/* Do some setup operations needed by multiple commands. */
switch (cmd) {

case GETVAL:
case SETVAL:
case GETNCNT:
case GETZCNT:

/* Get the semaphore number for these commands. */
(void) fprintf(stderr, "\nEnter semnum value: ");
(void) scanf("%i", &semnum);
break;

case GETALL:
case SETALL:

/* Allocate a buffer for the semaphore values. */
(void) fprintf(stderr,

"Get number of semaphores in the set.\n");
arg.buf = &semid_ds;
do_semctl(semid, 0, IPC_STAT, arg);
if (arg.array =

(ushort *)malloc((unsigned)
(semid_ds.sem_nsems * sizeof(ushort)))) {

/* Break out if you got what you needed. */
break;

}
(void) fprintf(stderr,

"semctl: unable to allocate space for %d values\n",
semid_ds.sem_nsems);

exit(2);

Full Code Examples 161

A

}

/* Get the rest of the arguments needed for the specified
 command. */
switch (cmd) {

case SETVAL:
/* Set value of one semaphore. */
(void) fprintf(stderr, "\nEnter semaphore value: ");
(void) scanf("%i", &arg.val);
do_semctl(semid, semnum, SETVAL, arg);
/* Fall through to verify the result. */
(void) fprintf(stderr,

"Do semctl GETVAL command to verify results.\n");
case GETVAL:

/* Get value of one semaphore. */
arg.val = 0;
do_semctl(semid, semnum, GETVAL, arg);
break;

case GETPID:
/* Get PID of last process to successfully complete a
 semctl(SETVAL), semctl(SETALL), or semop() on the
 semaphore. */
arg.val = 0;
do_semctl(semid, 0, GETPID, arg);
break;

case GETNCNT:
/* Get number of processes waiting for semaphore value to
 increase. */
arg.val = 0;
do_semctl(semid, semnum, GETNCNT, arg);
break;

case GETZCNT:
/* Get number of processes waiting for semaphore value to
 become zero. */
arg.val = 0;
do_semctl(semid, semnum, GETZCNT, arg);
break;

case SETALL:
/* Set the values of all semaphores in the set. */
(void) fprintf(stderr,

"There are %d semaphores in the set.\n",
semid_ds.sem_nsems);

(void) fprintf(stderr, "Enter semaphore values:\n");
for (i = 0; i < semid_ds.sem_nsems; i++) {

(void) fprintf(stderr, "Semaphore %d: ", i);
(void) scanf("%hi", &arg.array[i]);

162 System Interfaces Guide—November 1995

A

}
do_semctl(semid, 0, SETALL, arg);
/* Fall through to verify the results. */
(void) fprintf(stderr,

"Do semctl GETALL command to verify results.\n");
case GETALL:

/* Get and print the values of all semaphores in the
 set.*/
do_semctl(semid, 0, GETALL, arg);
(void) fprintf(stderr,

"The values of the %d semaphores are:\n",
semid_ds.sem_nsems);

for (i = 0; i < semid_ds.sem_nsems; i++)
(void) fprintf(stderr, "%d ", arg.array[i]);

(void) fprintf(stderr, "\n");
break;

case IPC_SET:
/* Modify mode and/or ownership. */
arg.buf = &semid_ds;
do_semctl(semid, 0, IPC_STAT, arg);
(void) fprintf(stderr, "Status before IPC_SET:\n");
do_stat();
(void) fprintf(stderr, "Enter sem_perm.uid value: ");
(void) scanf("%hi", &semid_ds.sem_perm.uid);
(void) fprintf(stderr, "Enter sem_perm.gid value: ");
(void) scanf("%hi", &semid_ds.sem_perm.gid);
(void) fprintf(stderr, "%s\n", warning_message);
(void) fprintf(stderr, "Enter sem_perm.mode value: ");
(void) scanf("%hi", &semid_ds.sem_perm.mode);
do_semctl(semid, 0, IPC_SET, arg);
/* Fall through to verify changes. */
(void) fprintf(stderr, "Status after IPC_SET:\n");

case IPC_STAT:
/* Get and print current status. */
arg.buf = &semid_ds;
do_semctl(semid, 0, IPC_STAT, arg);
do_stat();
break;

case IPC_RMID:
/* Remove the semaphore set. */
arg.val = 0;
do_semctl(semid, 0, IPC_RMID, arg);
break;

default:
/* Pass unknown command to semctl. */
arg.val = 0;

Full Code Examples 163

A

do_semctl(semid, 0, cmd, arg);
break;

}
exit(0);

}

/*
 * Print indication of arguments being passed to semctl(), call
 * semctl(), and report the results. If semctl() fails, do not
 * return; this example doesn’t deal with errors, it just reports
 * them.
 */
static void
do_semctl(semid, semnum, cmd, arg)
union semun arg;
int cmd,

semid,
semnum;

{
register int i; /* work area */

void) fprintf(stderr, "\nsemctl: Calling semctl(%d, %d, %d, ",
semid, semnum, cmd);

switch (cmd) {
case GETALL:

(void) fprintf(stderr, "arg.array = %#x)\n",
arg.array);

break;
case IPC_STAT:
case IPC_SET:

(void) fprintf(stderr, "arg.buf = %#x)\n", arg.buf);
break;

case SETALL:
(void) fprintf(stderr, "arg.array = [", arg.buf);
for (i = 0;i < semid_ds.sem_nsems;) {

(void) fprintf(stderr, "%d", arg.array[i++]);
if (i < semid_ds.sem_nsems)

(void) fprintf(stderr, ", ");
}
(void) fprintf(stderr, "])\n");
break;

case SETVAL:
default:

(void) fprintf(stderr, "arg.val = %d)\n", arg.val);
break;

}

164 System Interfaces Guide—November 1995

A

i = semctl(semid, semnum, cmd, arg);
if (i == –1) {

perror("semctl: semctl failed");
exit(1);

}
(void) fprintf(stderr, "semctl: semctl returned %d\n", i);
return;

}

/*
 * Display contents of commonly used pieces of the status structure.
 */
static void
do_stat()
{

(void) fprintf(stderr, "sem_perm.uid = %d\n",
semid_ds.sem_perm.uid);

(void) fprintf(stderr, "sem_perm.gid = %d\n",
semid_ds.sem_perm.gid);

(void) fprintf(stderr, "sem_perm.cuid = %d\n",
semid_ds.sem_perm.cuid);

(void) fprintf(stderr, "sem_perm.cgid = %d\n",
semid_ds.sem_perm.cgid);

(void) fprintf(stderr, "sem_perm.mode = %#o, ",
semid_ds.sem_perm.mode);

(void) fprintf(stderr, "access permissions = %#o\n",
semid_ds.sem_perm.mode & 0777);

(void) fprintf(stderr, "sem_nsems = %d\n", semid_ds.sem_nsems);
(void) fprintf(stderr, "sem_otime = %s", semid_ds.sem_otime ?

ctime(&semid_ds.sem_otime) : "Not Set\n");
(void) fprintf(stderr, "sem_ctime = %s",

ctime(&semid_ds.sem_ctime));
}

Code Example A-6 Sample Program to Illustrate semop()

/*
 * semop.c: Illustrate the semop() function.
 *
 * This is a simple exerciser of the semop() function. It lets you
 * to set up arguments for semop() and make the call. It then reports
 * the results repeatedly on one semaphore set. You must have read
 * permission on the semaphore set or this exerciser will fail. (It
 * needs read permission to get the number of semaphores in the set
 * and to report the values before and after calls to semop().)
 */

Full Code Examples 165

A

#include <stdio.h>
#include <sys/types.h>
#include <sys/ipc.h>
#include <sys/sem.h>

static int ask();
extern void exit();
extern void free();
extern char *malloc();
extern void perror();

static struct semid_dssemid_ds; /* status of semaphore set */

static char error_mesg1[] = "semop: Can’t allocate space for %d\
semaphore values. Giving up.\n";

static charerror_mesg2[] = "semop: Can’t allocate space for %d\
sembuf structures. Giving up.\n";

main()
{

register int i; /* work area */
int nsops; /* number of operations to do */
int semid; /* semid of semaphore set */
struct sembuf *sops; /* ptr to operations to perform */

(void) fprintf(stderr,
"All numeric input must follow C conventions:\n");

(void) fprintf(stderr,
"\t0x... is interpreted as hexadecimal,\n");

(void) fprintf(stderr, "\t0... is interpreted as octal,\n");
(void) fprintf(stderr, "\totherwise, decimal.\n");
/* Loop until the invoker doesn’t want to do anymore. */
while (nsops = ask(&semid, &sops)) {

/* Initialize the array of operations to be performed.*/
for (i = 0; i < nsops; i++) {

(void) fprintf(stderr,
"\nEnter values for operation %d of %d.\n",

i + 1, nsops);
(void) fprintf(stderr,

"sem_num(valid values are 0 <= sem_num < %d): ",
semid_ds.sem_nsems);

(void) scanf("%hi", &sops[i].sem_num);
(void) fprintf(stderr, "sem_op: ");
(void) scanf("%hi", &sops[i].sem_op);
(void) fprintf(stderr,

"Expected flags in sem_flg are:\n");

166 System Interfaces Guide—November 1995

A

(void) fprintf(stderr, "\tIPC_NOWAIT =\t%#6.6o\n",
IPC_NOWAIT);

(void) fprintf(stderr, "\tSEM_UNDO =\t%#6.6o\n",
SEM_UNDO);

(void) fprintf(stderr, "sem_flg: ");
(void) scanf("%hi", &sops[i].sem_flg);

}

/* Recap the call to be made. */
(void) fprintf(stderr,

"\nsemop: Calling semop(%d, &sops, %d) with:",
semid, nsops);

for (i = 0; i < nsops; i++)
{

(void) fprintf(stderr, "\nsops[%d].sem_num = %d, ", i,
sops[i].sem_num);

(void) fprintf(stderr, "sem_op = %d, ", sops[i].sem_op);
(void) fprintf(stderr, "sem_flg = %#o\n",

sops[i].sem_flg);
}

/* Make the semop() call and report the results. */
if ((i = semop(semid, sops, nsops)) == –1) {

perror("semop: semop failed");
} else {

(void) fprintf(stderr, "semop: semop returned %d\n", i);
}

}
}

/*
 * Ask if user wants to continue.
 *
 * On the first call:
 * Get the semid to be processed and supply it to the caller.
 * On each call:
 * 1. Print current semaphore values.
 * 2. Ask user how many operations are to be performed on the next
 * call to semop. Allocate an array of sembuf structures
 * sufficient for the job and set caller-supplied pointer to that
 * array. (The array is reused on subsequent calls if it is big
 * enough. If it isn’t, it is freed and a larger array is
 * allocated.)
 */
static
ask(semidp, sopsp)

Full Code Examples 167

A

int *semidp;/* pointer to semid (used only the first time) */
struct sembuf**sopsp;
{

static union semun arg; /* argument to semctl */
int i; /* work area */
static int nsops = 0;/* size of currently allocated

 sembuf array */
static int semid = –1; /* semid supplied by user */
static struct sembuf*sops; /* pointer to allocated array */

if (semid < 0) {
/* First call; get semid from user and the current state of
 the semaphore set. */
(void) fprintf(stderr,

"Enter semid of the semaphore set you want to use: ");
(void) scanf("%i", &semid);
*semidp = semid;
arg.buf = &semid_ds;
if (semctl(semid, 0, IPC_STAT, arg) == –1) {

perror("semop: semctl(IPC_STAT) failed");
/* Note that if semctl fails, semid_ds remains filled
 with zeros, so later test for number of semaphores will
 be zero. */
(void) fprintf(stderr,

"Before and after values are not printed.\n");
} else {

if ((arg.array = (ushort *)malloc(
(unsigned)(sizeof(ushort) * semid_ds.sem_nsems)))

== NULL) {
(void) fprintf(stderr, error_mesg1,

semid_ds.sem_nsems);
exit(1);

}
}

}
/* Print current semaphore values. */
if (semid_ds.sem_nsems) {

(void) fprintf(stderr,
"There are %d semaphores in the set.\n",
semid_ds.sem_nsems);

if (semctl(semid, 0, GETALL, arg) == –1) {
perror("semop: semctl(GETALL) failed");

} else {
(void) fprintf(stderr, "Current semaphore values are:");
for (i = 0; i < semid_ds.sem_nsems;

(void) fprintf(stderr, " %d", arg.array[i++]));

168 System Interfaces Guide—November 1995

A

(void) fprintf(stderr, "\n");
}

}
/* Find out how many operations are going to be done in the next
 call and allocate enough space to do it. */
(void) fprintf(stderr,

"How many semaphore operations do you want %s\n",
"on the next call to semop()?");

(void) fprintf(stderr, "Enter 0 or control–D to quit: ");
i = 0;
if (scanf("%i", &i) == EOF || i == 0)

exit(0);
if (i > nsops) {

if (nsops)
free((char *)sops);

nsops = i;
if ((sops = (struct sembuf *)malloc((unsigned)(nsops *

sizeof(struct sembuf)))) == NULL) {
(void) fprintf(stderr, error_mesg2, nsops);
exit(2);

}
}
*sopsp = sops;
return (i);

}

Code Example A-7 Sample Program to Illustrate shmget ()

/*
 * shmget.c: Illustrate the shmget() function.
 *
 * This is a simple exerciser of the shmget() function. It prompts
 * for the arguments, makes the call, and reports the results.
 */

#include <stdio.h>
#include <sys/types.h>
#include <sys/ipc.h>
#include <sys/shm.h>

extern void exit();
extern void perror();

main()
{

key_t key; /* key to be passed to shmget() */
int shmflg; /* shmflg to be passed to shmget() */

Full Code Examples 169

A

int shmid; /* return value from shmget() */
int size; /* size to be passed to shmget() */

(void) fprintf(stderr,
"All numeric input is expected to follow C conventions:\n");

(void) fprintf(stderr,
"\t0x... is interpreted as hexadecimal,\n");

(void) fprintf(stderr, "\t0... is interpreted as octal,\n");
(void) fprintf(stderr, "\totherwise, decimal.\n");

/* Get the key. */
(void) fprintf(stderr, "IPC_PRIVATE == %#lx\n", IPC_PRIVATE);
(void) fprintf(stderr, "Enter key: ");
(void) scanf("%li", &key);

/* Get the size of the segment. */
(void) fprintf(stderr, "Enter size: ");
(void) scanf("%i", &size);

/* Get the shmflg value. */
(void) fprintf(stderr,

"Expected flags for the shmflg argument are:\n");
(void) fprintf(stderr, "\tIPC_CREAT = \t%#8.8o\n", IPC_CREAT);
(void) fprintf(stderr, "\tIPC_EXCL = \t%#8.8o\n", IPC_EXCL);
(void) fprintf(stderr, "\towner read =\t%#8.8o\n", 0400);
(void) fprintf(stderr, "\towner write =\t%#8.8o\n", 0200);
(void) fprintf(stderr, "\tgroup read =\t%#8.8o\n", 040);
(void) fprintf(stderr, "\tgroup write =\t%#8.8o\n", 020);
(void) fprintf(stderr, "\tother read =\t%#8.8o\n", 04);
(void) fprintf(stderr, "\tother write =\t%#8.8o\n", 02);
(void) fprintf(stderr, "Enter shmflg: ");
(void) scanf("%i", &shmflg);

/* Make the call and report the results. */
(void) fprintf(stderr,

"shmget: Calling shmget(%#lx, %d, %#o)\n",
key, size, shmflg);

if ((shmid = shmget (key, size, shmflg)) == –1) {
perror("shmget: shmget failed");
exit(1);

} else {
(void) fprintf(stderr,

"shmget: shmget returned %d\n", shmid);
exit(0);

}
}

170 System Interfaces Guide—November 1995

A

Code Example A-8 Sample Program to Illustrate shmctl ()

/*
 * shmctl.c: Illustrate the shmctl() function.
 *
 * This is a simple exerciser of the shmctl() function. It lets you
 * to perform one control operation on one shared memory segment.
 * (Some operations are done for the user whether requested or not.
 * It gives up immediately if any control operation fails. Be careful
 * not to set permissions to preclude read permission; you won’t be
 *able to reset the permissions with this code if you do.)
*/

#include <stdio.h>
#include <sys/types.h>
#include <sys/ipc.h>
#include <sys/shm.h>
#include <time.h>
static voiddo_shmctl();
extern voidexit();
extern voidperror();

main()
{

int cmd; /* command code for shmctl() */
int shmid; /* segment ID */
struct shmid_dsshmid_ds; /* shared memory data structure to

hold results */

(void) fprintf(stderr,
"All numeric input is expected to follow C conventions:\n");

(void) fprintf(stderr,
"\t0x... is interpreted as hexadecimal,\n");

(void) fprintf(stderr, "\t0... is interpreted as octal,\n");
(void) fprintf(stderr, "\totherwise, decimal.\n");

/* Get shmid and cmd. */
(void) fprintf(stderr,

"Enter the shmid for the desired segment: ");
(void) scanf("%i", &shmid);
(void) fprintf(stderr, "Valid shmctl cmd values are:\n");
(void) fprintf(stderr, "\tIPC_RMID =\t%d\n", IPC_RMID);
(void) fprintf(stderr, "\tIPC_SET =\t%d\n", IPC_SET);
(void) fprintf(stderr, "\tIPC_STAT =\t%d\n", IPC_STAT);
(void) fprintf(stderr, "\tSHM_LOCK =\t%d\n", SHM_LOCK);
(void) fprintf(stderr, "\tSHM_UNLOCK =\t%d\n", SHM_UNLOCK);

Full Code Examples 171

A

(void) fprintf(stderr, "Enter the desired cmd value: ");
(void) scanf("%i", &cmd);

switch (cmd) {
case IPC_STAT:

/* Get shared memory segment status. */
break;

case IPC_SET:
/* Set owner UID and GID and permissions. */
/* Get and print current values. */
do_shmctl(shmid, IPC_STAT, &shmid_ds);
/* Set UID, GID, and permissions to be loaded. */
(void) fprintf(stderr, "\nEnter shm_perm.uid: ");
(void) scanf("%hi", &shmid_ds.shm_perm.uid);
(void) fprintf(stderr, "Enter shm_perm.gid: ");
(void) scanf("%hi", &shmid_ds.shm_perm.gid);
(void) fprintf(stderr,

"Note: Keep read permission for yourself.\n");
(void) fprintf(stderr, "Enter shm_perm.mode: ");
(void) scanf("%hi", &shmid_ds.shm_perm.mode);
break;

case IPC_RMID:
/* Remove the segment when the last attach point is
 detached. */
break;

case SHM_LOCK:
/* Lock the shared memory segment. */
break;

case SHM_UNLOCK:
/* Unlock the shared memory segment. */
break;

default:
/* Unknown command will be passed to shmctl. */
break;

}
do_shmctl(shmid, cmd, &shmid_ds);
exit(0);

}

/*
 * Display the arguments being passed to shmctl(), call shmctl(),
 * and report the results. If shmctl() fails, do not return; this
 * example doesn’t deal with errors, it just reports them.
 */
static void
do_shmctl(shmid, cmd, buf)

172 System Interfaces Guide—November 1995

A

int shmid, /* attach point */
cmd; /* command code */

struct shmid_ds*buf; /* pointer to shared memory data structure */
{

register int rtrn; /* hold area */

(void) fprintf(stderr, "shmctl: Calling shmctl(%d, %d, buf)\n",
shmid, cmd);

if (cmd == IPC_SET) {
(void) fprintf(stderr, "\tbuf–>shm_perm.uid == %d\n",

buf–>shm_perm.uid);
(void) fprintf(stderr, "\tbuf–>shm_perm.gid == %d\n",

buf–>shm_perm.gid);
(void) fprintf(stderr, "\tbuf–>shm_perm.mode == %#o\n",

buf–>shm_perm.mode);
}
if ((rtrn = shmctl(shmid, cmd, buf)) == –1) {

perror("shmctl: shmctl failed");
exit(1);

} else {
(void) fprintf(stderr,

"shmctl: shmctl returned %d\n", rtrn);
}
if (cmd != IPC_STAT && cmd != IPC_SET)

return;

/* Print the current status. */
(void) fprintf(stderr, "\nCurrent status:\n");
(void) fprintf(stderr, "\tshm_perm.uid = %d\n",

buf–>shm_perm.uid);
(void) fprintf(stderr, "\tshm_perm.gid = %d\n",

buf–>shm_perm.gid);
(void) fprintf(stderr, "\tshm_perm.cuid = %d\n",

buf–>shm_perm.cuid);
(void) fprintf(stderr, "\tshm_perm.cgid = %d\n",

buf–>shm_perm.cgid);
(void) fprintf(stderr, "\tshm_perm.mode = %#o\n",

buf–>shm_perm.mode);
(void) fprintf(stderr, "\tshm_perm.key = %#x\n",

buf–>shm_perm.key);
(void) fprintf(stderr, "\tshm_segsz = %d\n", buf–>shm_segsz);
(void) fprintf(stderr, "\tshm_lpid = %d\n", buf–>shm_lpid);
(void) fprintf(stderr, "\tshm_cpid = %d\n", buf–>shm_cpid);
(void) fprintf(stderr, "\tshm_nattch = %d\n", buf–>shm_nattch);
(void) fprintf(stderr, "\tshm_atime = %s",

buf–>shm_atime ? ctime(&buf->shm_atime) : "Not Set\n");

Full Code Examples 173

A

(void) fprintf(stderr, "\tshm_dtime = %s",
buf–>shm_dtime ? ctime(&buf->shm_dtime) : "Not Set\n");

(void) fprintf(stderr, "\tshm_ctime = %s",
ctime(&buf–>shm_ctime));

}

Code Example A-9 Sample Program to Illustrate shmat () and shmdt ()

/*
 * shmop.c: Illustrate the shmat() and shmdt() functions.
 *
 * This is a simple exerciser for the shmat() and shmdt() system
 * calls. It allows you to attach and detach segments and to
 * write strings into and read strings from attached segments.
 */

#include <stdio.h>
#include <setjmp.h>
#include <signal.h>
#include <sys/types.h>
#include <sys/ipc.h>
#include <sys/shm.h>

#define MAXnap 4 /* Maximum number of concurrent attaches. */

static ask();
static voidcatcher();
extern voidexit();
static good_addr();
extern voidperror();
extern char*shmat();

static struct state{ /* Internal record of currently attached
segments. */

int shmid; /* shmid of attached segment */
char *shmaddr; /* attach point */
int shmflg; /* flags used on attach */

} ap[MAXnap]; /* State of current attached segments. */

static int nap; /* Number of currently attached segments. */
static jmp_bufsegvbuf; /* Process state save area for SIGSEGV

 catching. */

main()
{

register int action; /* action to be performed */
char *addr; /* address work area */

174 System Interfaces Guide—November 1995

A

register int i; /* work area */
register struct state*p; /* ptr to current state entry */
void (*savefunc)();/* SIGSEGV state hold area */
(void) fprintf(stderr,

"All numeric input is expected to follow C conventions:\n");
(void) fprintf(stderr,

"\t0x... is interpreted as hexadecimal,\n");
(void) fprintf(stderr, "\t0... is interpreted as octal,\n");
(void) fprintf(stderr, "\totherwise, decimal.\n");
while (action = ask()) {

if (nap) {
(void) fprintf(stderr,

"\nCurrently attached segment(s):\n");
(void) fprintf(stderr, " shmid address\n");
(void) fprintf(stderr, "–----- ----------\n");
p = &ap[nap];
while (p–- != ap) {

(void) fprintf(stderr, "%6d", p–>shmid);
(void) fprintf(stderr, "%#11x", p–>shmaddr);
(void) fprintf(stderr, " Read%s\n",

(p–>shmflg & SHM_RDONLY) ?
"–Only" : "/Write");

}
} else

(void) fprintf(stderr,
"\nNo segments are currently attached.\n");

switch (action) {
case 1: /* Shmat requested. */

/* Verify that there is space for another attach. */
if (nap == MAXnap) {

(void) fprintf(stderr, "%s %d %s\n",
"This simple example will only allow",
MAXnap, "attached segments.");

break;
}
p = &ap[nap++];
/* Get the arguments, make the call, report the

results, and update the current state array. */
(void) fprintf(stderr,

"Enter shmid of segment to attach: ");
(void) scanf("%i", &p–>shmid);

(void) fprintf(stderr, "Enter shmaddr: ");
(void) scanf("%i", &p–>shmaddr);
(void) fprintf(stderr,

"Meaningful shmflg values are:\n");

Full Code Examples 175

A

(void) fprintf(stderr, "\tSHM_RDONLY = \t%#8.8o\n",
SHM_RDONLY);

(void) fprintf(stderr, "\tSHM_RND = \t%#8.8o\n",
SHM_RND);

(void) fprintf(stderr, "Enter shmflg value: ");
(void) scanf("%i", &p–>shmflg);

(void) fprintf(stderr,
"shmop: Calling shmat(%d, %#x, %#o)\n",
p–>shmid, p->shmaddr, p->shmflg);

p–>shmaddr = shmat(p->shmid, p->shmaddr, p->shmflg);
if(p–>shmaddr == (char *)-1) {

perror("shmop: shmat failed");
nap–-;

} else {
(void) fprintf(stderr,

"shmop: shmat returned %#8.8x\n",
p–>shmaddr);

}
break;

case 2: /* Shmdt requested. */
/* Get the address, make the call, report the results,

and make the internal state match. */
(void) fprintf(stderr,

"Enter detach shmaddr: ");
(void) scanf("%i", &addr);

i = shmdt(addr);
if(i == –1) {

perror("shmop: shmdt failed");
} else {

(void) fprintf(stderr,
"shmop: shmdt returned %d\n", i);

for (p = ap, i = nap; i–-; p++) {
if (p–>shmaddr == addr)

*p = ap[–-nap];
}

}
break;

case 3:/* Read from segment requested. */
if (nap == 0)

break;

(void) fprintf(stderr, "Enter address of an %s",
"attached segment: ");

176 System Interfaces Guide—November 1995

A

(void) scanf("%i", &addr);

if (good_addr(addr))
(void) fprintf(stderr, "String @ %#x is ‘%s’\n",

addr, addr);
break;

case 4:/* Write to segment requested. */
if (nap == 0)

break;

(void) fprintf(stderr, "Enter address of an %s",
"attached segment: ");

(void) scanf("%i", &addr);

/* Set up SIGSEGV catch routine to trap attempts to
write into a read–only attached segment. */

savefunc = signal(SIGSEGV, catcher);

if (setjmp(segvbuf)) {
(void) fprintf(stderr, "shmop: %s: %s\n",

"SIGSEGV signal caught",
"Write aborted.");

} else {
if (good_addr(addr)) {

(void) fflush(stdin);
(void) fprintf(stderr, "%s %s %#x:\n",

"Enter one line to be copied",
"to shared segment attached @",
addr);

(void) gets(addr);
}

}
(void) fflush(stdin);

/* Restore SIGSEGV to previous condition. */
(void) signal(SIGSEGV, savefunc);
break;

}
}
exit(0);
/*NOTREACHED*/

}
/*
** Ask for next action.
*/

Full Code Examples 177

A

static
ask()
{

int response; /* user response */
do {

(void) fprintf(stderr, "Your options are:\n");
(void) fprintf(stderr, "\t^D = exit\n");
(void) fprintf(stderr, "\t 0 = exit\n");
(void) fprintf(stderr, "\t 1 = shmat\n");
(void) fprintf(stderr, "\t 2 = shmdt\n");
(void) fprintf(stderr, "\t 3 = read from segment\n");
(void) fprintf(stderr, "\t 4 = write to segment\n");
(void) fprintf(stderr,

"Enter the number corresponding to your choice: ");

/* Preset response so "^D" will be interpreted as exit.
*/

response = 0;
(void) scanf("%i", &response);

} while (response < 0 || response > 4);
return (response);

}
/*
** Catch signal caused by attempt to write into shared memory segment
** attached with SHM_RDONLY flag set.
*/
/*ARGSUSED*/
static void
catcher(sig)
{

longjmp(segvbuf, 1);
/*NOTREACHED*/

}
/*
** Verify that given address is the address of an attached segment.
** Return 1 if address is valid; 0 if not.
*/
static
good_addr(address)
char*address;
{

register struct state *p;/* ptr to state of attached
segment */

for (p = ap; p != &ap[nap]; p++)
if (p–>shmaddr == address)

178 System Interfaces Guide—November 1995

A

return(1);
return(0);

}

Code Example A-10 Example of Record Locking With Lock Promotion

The next example demonstrates inserting an entry into a doubly linked list that
is stored in a file of list element records. For the example, assume that the
record after which the new record is to be inserted has a read lock on it already.
The lock on this record must be changed or promoted to a write lock so that
the record can be edited.

Promoting a lock (generally from read lock to write lock) is permitted if no
other process is holding a read lock in the same section of the file. When
processes with pending write locks are sleeping on the same section of the file,
the lock promotion succeeds and the other (sleeping) locks wait. Changing a
write lock to a read lock carries no restrictions. In either case, the lock is merely
reset with the new lock type. Because the lockf function does not have read
locks, lock promotion does not apply to that call.

The locks on these three records were all set to wait (sleep) if another process
was blocking them from being set. This was done with the F_SETLKW
command. If the F_SETLK command were used instead, the fcntl functions
would fail if blocked. The program would then have to be changed to handle
the blocked condition in each of the error-return sections.

struct record {
... /* data portion of record */
off_t prev; /* index to previous record in the list */
off_t next; /* index to next record in the list */

};

/* Lock promotion using fcntl(2): When this routine is entered it is
 * assumed that there are read locks on "here" and "next." If write
 * locks on "here" and "next" are obtained;
 * Set a write lock on "this."
 * Return index to "this" record.
 * If any write lock is not obtained;
 * Restore read locks on "here" and "next."
 * Remove all other locks.
 * Return a -1.
 */

off_t
set3lock (this, here, next)
off_t this, here, next;

Full Code Examples 179

A

{
struct flock lck;
lck.l_type = F_WRLCK;/* setting a write lock */
lck.l_whence = 0;/* offset l_start from beginning of file */
lck.l_start = here;
lck.l_len = sizeof(struct record);

/* promote lock on "here" to write lock */
if (fcntl(fd, F_SETLKW, &lck) < 0) {

 return (-1);
}
/* lock "this" with write lock */
lck.l_start = this;
if (fcntl(fd, F_SETLKW, &lck) < 0) {

/* "this" lock failed; demote "here" lock to read lock. */
lck.l_type = F_RDLCK;
lck.l_start = here;
(void) fcntl(fd, F_SETLKW, &lck);
return (-1);

/* promote lock on "next" to write lock */
lck.l_start = next;
if (fcntl(fd, F_SETLKW, &lck) < 0) {

/* "next" lock failed; demote lock on "here" to read lock, */
lck.l_type = F_RDLCK;
lck.l_start = here;
(void) fcntl(fd, F_SETLK, &lck);
/* and remove lock on "this". */
lck.l_type = F_UNLCK;
lck.l_start = this;
(void) fcntl(fd, F_SETLK, &lck);
return (-1);/* cannot set lock, try again or quit */

}

return (this);
}

Code Example A-11 Record Write Locks With lockf ()

/* lockf(3C)
 * When this routine is entered, it is assumed that there are no
 * locks on "here" and "next". If locks are obtained: set a lock
 * on "this"; return index to "this" record. If any lock is not
 * obtained: remove all other locks; return a -1.
 */
#include <unistd.h>

long

180 System Interfaces Guide—November 1995

A

set3lock (this, here, next)
long this, here, next;
{

/* lock "here" */
(void) lseek(fd, here, 0);
if (lockf(fd, F_LOCK, sizeof(struct record)) < 0) {

return (-1);
}
/* lock "this" */
(void) lseek(fd, this, SEEK_SET);
if (lockf(fd, F_LOCK, sizeof(struct record)) < 0) {

/* Lock on "this" failed. Clear lock on "here". */
(void) lseek(fd, here, 0);
(void) lockf(fd, F_ULOCK, sizeof(struct record));
return (-1);

}
/* lock "next" */
(void) lseek(fd, next, 0);
if (lockf(fd, F_LOCK, sizeof(struct record)) < 0) {

/* Lock on "next" failed. Clear lock on "here". */
(void) lseek(fd, here, 0);
(void) lockf(fd, F_ULOCK, sizeof(struct record));
/* and remove lock on "this". */
(void) lseek(fd, this, 0);
(void) lockf(fd, F_ULOCK, sizeof(struct record));
return (-1); /* cannot set lock, try again or quit */

}
return (this);

}

181

Index

Symbols
/dev/zero, mapping, 98

A
address space of a process, 92, 103
advisory locking, 56
asynchronous I/O

behavior, 111
endpoint service, 140
guaranteeing buffer state, 111
listen for network connection, 142
making connection request, 142
notification of data arrival, 140
opening a file, 143
using aio_result_t structure, 111
waiting for completion, 129

atomic updates to semaphores, 76

B
blocking mode

defined, 120
finite time quantum, 116
opening a FIFO, 135
priority inversion, 120
time-sharing process, 109
using the read() function, 135

bounded, 112
brk(2), 106

C
chmod(1), 62
class

definition, 115
priority queue, 118
scheduling algorithm, 117
scheduling priorities, 115

connectionless-mode
asynchronous network service, 140
definition, 139

connection-mode
asynchronous network service, 141
asynchronously connecting, 142
definition, 139
using asynchronous connection, 142

context switch
preempting a process, 119

control
semaphore set, 77

creat (), 56
creation flags, IPC, 67 to ??

182 System Interfaces Guide—November 1995

D
dispatch

priorities, 116
dispatch latency, 112

under realtime, 112
dispatch table

configuring, 124
kernel, 119

F
F_GETLK, 59
fcntl(2), 56, 57
FIFO

using as byte stream, 135
file and record locking, 55 to ??
file descriptor

passing to another process, 143
transferring, 143

file system
contiguous, 112
opening dynamically, 143
using pipes, 135

files
lock, 55 to ??
memory-mapped, See mapped files

fork(2), ?? to 10
fsync(2), 93
functions

advanced I/O, 53
basic I/O, 52
IPC, 65 to ??
list file system control, 54
signals, 17 to ??
terminal I/O, 63
user processes, 10

G
GETALL, 81
GETNCNT, 81
GETPID, 80
GETVAL, 80

GETZCNT, 81

I
I/O, See asynchronous I/O, or

synchronous I/O
init(1M), scheduler properties, 47
Interprocess Communication (IPC)

administering, 138
creating pipes, 134
memory mapped files, 137
using fileless memory mapping, 137
using memory mapping, 137
using messages, 135
using named pipes, 135
using pipes, 133
using semaphores, 136
using shared memory, 136
using the open() call, 135

IPC (interprocess communication), 65 to
??

creation flags, 67 to ??
functions, 67 to ??
message header, 71
message queue, 69
messages, 68 to ??
permissions, 66 to 67
semaphore set, 77
semaphores, 75 to 83
shared memory, 83 to ??

IPC_NOWAIT, 83
IPC_RMID, 72, 81, 87
IPC_SET, 72, 81, 87
IPC_STAT, 72, 81, 87

K
kernel

class independent, 117
context switch, 119
dispatch table, 119
preempting current process, 119
queue, 111

Index 183

L
lockf(3C), 57, 60, 178
locking

advisory, 56, 62
F_GETLK, 59
finding locks, 59
mandatory, 56, ?? to 62
memory in realtime, 127
opening a file for, 58
read, 56, 58, 178
record, 58
removing, 58 to ??
setting, 58 to ??
supported file systems, 55
testing locks, 59
with fcntl(2), 56 to 57
with lockf(3C), 57
write, 56, 58, 178

ls(1), 62
lseek(2), 57

M
mandatory locking, 56
mapped files, 94 to 100

private, 95
shared, 95

memory
locking, 127
locking a page, 127
locking all pages, 128
number of locked pages, 127
sticky locks, 128
unlocking a page, 128

memory management, 91 to 106
address spaces, 92
address-space layout, 103
coherence, 93
concepts, 91
functions, 94
heterogeneity, 93
mapping, 91
mlock(3C), 101 to ??
mlockall(3C), 102 to ??

mmap(2), 94 to 100
mprotect(2), 103
msync(3C), 102 to 103
munmap(2), 100
networking, 93
pagesize, 103
virtual memory, 91

memory-mapped files, See mapped files
message queue, 69
message, header, 71
messages, 65, 68 to ??
mlock(3C), 101 to ??
mlockall(3C), 102 to ??
mmap(2), 94 to 100
mprotect(2), 103
msgget(), 69
msqid, 71
msync(3C), 102 to 103
munmap(2), 100

N
named pipe

defined, 135
FIFO, 133
using, 135

named pipes, limitations, 65
network

asynchronous connection, 138
asynchronous service, 140
asynchronous transfers, 140
asynchronous use, 140
connectionless-mode service, 139
connection-mode service, 139
programming models for

realtime, 139
services under realtime, 138
synchronous use, 139
using STREAMS

asynchronously, 138
using Transport-Level Interface

(TLI), 138
nice(1), 47
nice(2), 47

184 System Interfaces Guide—November 1995

non-blocking mode
configuring endpoint

connections, 142
defined, 138
endpoint bound to service

address, 142
network service, 140
polling for notification, 140
service requests, 140
Transport-Level Interface (TLI), 138
using the t_connect() function, 142

O
open (), 56

P
page 0, 106
performance, scheduler effect on, 47
permissions

IPC, 66 to 67
pipe

defined, 135
non-blocking read, 135

pipes, limitations, 65
polling

for a connection request, 142
notification of data, 140
using the poll(2) function, 140

priocntl(1), 30 to ??
priocntl(2), ?? to 44
priocntlset(2), ?? to 46
priority inversion

defined, 109
synchronization, 120

priority queue
linear linked list, 119

process
defined for realtime, 107
dispatching, 119
highest priority, 108
preemption, 119
residence in memory, 127

runaway, 111
scheduling for realtime, 116
setting priorities, 123

process address space, 92, 103
process priority

global, 25
real-time, 28
setting and retrieving, 30 to 46
system, 28
time-sharing, 28

process, spawning, ?? to 10
processes, cooperating, locking, 56

R
read

blocking, 135
read lock, 56, 58, 178
read (), 56
real-time, scheduler class, 27
removing record locks, 58 to ??
response time

blocking processes, 110
bounds to I/O, 109
degrading, 108
inheriting priority, 109
servicing interrupts, 109
sharing libraries, 109
sticky locks, 110

reversing operations for semaphores, 77

S
sbrk(2), 106
scheduler, 13 to 14, 23 to 50

classes, 117
configuring, 124
effect on performance, 47
priority, 115
realtime, 112
real-time policy, 27
scheduling classes, 115
system policy, 27
time-sharing policy, 26

Index 185

using system calls, 121
using utilities, 122

scheduler, class, 27
SEM_UNDO, 83
semaphores, 75 to 83

advantages, 65
arbitrary simultaneous updates, 76
atomic updates, 76
reversing operations and SEM_

UNDO, 77
set structure, 77
undo structure, 76

semget(), 75
semop(), 76
SETALL, 81
setting record locks, 58 to ??
SETVAL, 80
shared memory, 65, 83 to ??
SHM_LOCK, 87
SHM_UNLOCK, 87
shmget(), 84
signals

code blocking, 20
handlers, 17, 20
limitations, 65
process control, 17
resource limits, 17
sending, 18 to 19
stacks, 21 to ??

structure, semaphore set, 77
synchronization, 93, 113

shared memory, 138
synchronous I/O

blocking, 129
critical timing, 109

T
time slice, real-time process, 40
timers

for interval timing, 145
for realtime applications, 145
timestamping, 145

using one-shot, 146
using periodic type, 146

time-sharing
scheduler class, 26
scheduler parameter table, 27

Transport-Level Interface (TLI)
asynchronous endpoint, 140
connectionless-mode, 138
connection-mode, 138

U
undo structure for semaphores, 76
updates, atomic for semaphores, 76
user priority, 29

V
virtual memory, 91 to 106

See also memory management

W
write lock, 56, 58, 178
write (), 56

Z
zero(7), 98

Copyright 1995 Sun Microsystems Inc., 2550 Garcia Avenue, Mountain View, Californie 94043-1100 U.S.A.

Tous droits réservés. Ce produit ou document est protégé par un copyright et distribué avec des licences qui en restreignent
l’utilisation, la copie, et la décompliation. Aucune partie de ce produit ou de sa documentation associée ne peuvent Être
reproduits sous aucune forme, par quelque moyen que ce soit sans l’autorisation préalable et écrite de Sun et de ses bailleurs
de licence, s’il en a.

Des parties de ce produit pourront etre derivees du système UNIX®, licencié par UNIX System Laboratories, Inc., filiale
entierement detenue par Novell, Inc., ainsi que par le système 4.3. de Berkeley, licencié par l’Université de Californie. Le
logiciel détenu par des tiers, et qui comprend la technologie relative aux polices de caractères, est protégé par un copyright
et licencié par des fourmisseurs de Sun.

LEGENDE RELATIVE AUX DROITS RESTREINTS: l’utilisation, la duplication ou la divulgation par l’administration
americaine sont soumises aux restrictions visées a l’alinéa (c)(1)(ii) de la clause relative aux droits des données techniques et
aux logiciels informatiques du DFARS 252.227-7013 et FAR 52.227-19. Le produit décrit dans ce manuel peut Être protege par
un ou plusieurs brevet(s) americain(s), etranger(s) ou par des demandes en cours d’enregistrement.

MARQUES

Sun, Sun Microsystems, le logo Sun, SunSoft, le logo SunSoft, Solaris, SunOS, OpenWindows, DeskSet, ONC, ONC+ et NFS
sont des marques deposées ou enregistrées par Sun Microsystems, Inc. aux Etats-Unis et dans d’autres pays. UNIX est une
marque enregistrée aux Etats- Unis et dans d’autres pays, et exclusivement licenciée par X/Open Company Ltd. OPEN LOOK
est une marque enregistrée de Novell, Inc. PostScript et Display PostScript sont des marques d’Adobe Systems, Inc.

Toutes les marques SPARC sont des marques deposées ou enregitrées de SPARC International, Inc. aux Etats-Unis et dans
d’autres pays. SPARCcenter, SPARCcluster, SPARCompiler, SPARCdesign, SPARC811, SPARCengine, SPARCprinter,
SPARCserver, SPARCstation, SPARCstorage, SPARCworks, microSPARC, microSPARC-II, et UltraSPARC sont exclusivement
licenciées a Sun Microsystems, Inc. Les produits portant les marques sont basés sur une architecture développée par Sun
Microsystems, Inc.

Les utilisateurs d’interfaces graphiques OPEN LOOK® et Sun™ ont été développés par Sun Microsystems, Inc. pour ses
utilisateurs et licenciés. Sun reconnait les efforts de pionniers de Xerox pour la recherche et le développement du concept des
interfaces d’utilisation visuelle ou graphique pour l’industrie de l’informatique. Sun détient une licence non exclusive de
Xerox sur l’interface d’utilisation graphique, cette licence couvrant aussi les licenciés de Sun qui mettent en place OPEN
LOOK GUIs et qui en outre se conforment aux licences écrites de Sun.

Le système X Window est un produit du X Consortium, Inc.

CETTE PUBLICATION EST FOURNIE “EN L’ETAT” SANS GARANTIE D’AUCUNE SORTE, NI EXPRESSE NI IMPLICITE,
Y COMPRIS, ET SANS QUE CETTE LISTE NE SOIT LIMITATIVE, DES GARANTIES CONCERNANT LA VALEUR
MARCHANDE, L’APTITUDE DES PRODUITS A REPONDRE A UNE UTILISATION PARTICULIERE OU LE FAIT QU’ILS
NE SOIENT PAS CONTREFAISANTS DE PRODUITS DE TIERS.

CETTE PUBLICATION PEUT CONTENIR DES MENTIONS TECHNIQUES ERRONEES OU DES ERREURS
TYPOGRAPHIQUES. DES CHANGEMENTS SONT PERIODIQUEMENT APPORTES AUX INFORMATIONS CONTENUES
AUX PRESENTES. CES CHANGEMENTS SERONT INCORPORES AUX NOUVELLES EDITIONS DE LA PUBLICATION.
SUN MICROSYSTEMS INC. PEUT REALISER DES AMELIORATIONS ET/OU DES CHANGEMENTS DANS LE(S)
PRODUIT(S) ET/OU LE(S) PROGRAMME(S) DECRITS DANS DETTE PUBLICATION A TOUS MOMENTS.

