
2550 Garcia Avenue
Mountain View, CA 94043
U.S.A.

XGL Architecture Guide

A Sun Microsystems, Inc. Business

Please
Recycle

 1995 Sun Microsystems, Inc. 2550 Garcia Avenue, Mountain View, California 94043-1100 U.S.A.

All rights reserved. This product or document is protected by copyright and distributed under licenses restricting its use,
copying, distribution, and decompilation. No part of this product or document may be reproduced in any form by any means
without prior written authorization of Sun and its licensors, if any.

Portions of this product may be derived from the UNIX® system, licensed from UNIX System Laboratories, Inc., a wholly owned
subsidiary of Novell, Inc., and from the Berkeley 4.3 BSD system, licensed from the University of California. Third-party
software, including font technology in this product, is protected by copyright and licensed from Sun’s suppliers.

RESTRICTED RIGHTS LEGEND: Use, duplication, or disclosure by the government is subject to restrictions as set forth in
subparagraph (c)(1)(ii) of the Rights in Technical Data and Computer Software clause at DFARS 252.227-7013 and FAR 52.227-19.
The product described in this manual may be protected by one or more U.S. patents, foreign patents, or pending applications.

TRADEMARKS
Sun, Sun Microsystems, the Sun logo, SunSoft, the SunSoft logo, Solaris, SunOS, OpenWindows, DeskSet, ONC, ONC+, NFS,
and XGL are trademarks or registered trademarks of Sun Microsystems, Inc. in the United States and other countries. UNIX is a
registered trademark in the United States and other countries, exclusively licensed through X/Open Company, Ltd. OPEN
LOOK is a registered trademark of Novell, Inc. PostScript and Display PostScript are trademarks of Adobe Systems, Inc.

All SPARC trademarks are trademarks or registered trademarks of SPARC International, Inc. in the United States and other
countries. SPARCcenter, SPARCcluster, SPARCompiler, SPARCdesign, SPARC811, SPARCengine, SPARCprinter, SPARCserver,
SPARCstation, SPARCstorage, SPARCworks, microSPARC, microSPARC-II, and UltraSPARC are licensed exclusively to Sun
Microsystems, Inc. Products bearing SPARC trademarks are based upon an architecture developed by Sun Microsystems, Inc.

The OPEN LOOK® and Sun™ Graphical User Interfaces were developed by Sun Microsystems, Inc. for its users and licensees.
Sun acknowledges the pioneering efforts of Xerox in researching and developing the concept of visual or graphical user
interfaces for the computer industry. Sun holds a non-exclusive license from Xerox to the Xerox Graphical User Interface, which
license also covers Sun’s licensees who implement OPEN LOOK GUIs and otherwise comply with Sun’s written license
agreements.

X Window System is a trademark of X Consortium, Inc.

THIS PUBLICATION IS PROVIDED “AS IS” WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR IMPLIED,
INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A
PARTICULAR PURPOSE, OR NON-INFRINGEMENT.

THIS PUBLICATION COULD INCLUDE TECHNICAL INACCURACIES OR TYPOGRAPHICAL ERRORS. CHANGES ARE
PERIODICALLY ADDED TO THE INFORMATION HEREIN. THESE CHANGES WILL BE INCORPORATED IN NEW
EDITIONS OF THE PUBLICATION. SUN MICROSYSTEMS, INC. MAY MAKE IMPROVEMENTS AND/OR CHANGES IN
THE PRODUCT(S) AND/OR THE PROGRAMS(S) DESCRIBED IN THIS PUBLICATION AT ANY TIME.

iii

Contents

Preface. xiii

1. Introduction to XGL . 1

Introduction to the XGL Product . 1

Running an Application in the X Window Environment . . 2

Introduction to the XGL Programming Model. 4

What Is an XGL Object? . 4

How the XGL Programming Interface Works 5

XGL Object-Oriented Programming 8

Overview of XGL Functionality . 9

Opening and Closing the XGL Library 9

Graphical Display . 9

Primitives . 11

Graphical Context . 12

Transformations . 14

XGL Viewing Pipeline. 14

iv XGL Architecture Guide—November 1995

Color . 16

Lighting and Shading . 18

Stroke Fonts . 18

Raster Text . 18

Line Patterns. 19

Geometry Caching. 19

NURBS Curves and Surfaces . 20

Texture Mapping . 20

2. Overview of the XGL Architecture . 21

XGL Architecture Design Goals . 22

Basic Components of the XGL Architecture 22

Device-Independent Library . 23

Graphics Pipelines . 23

Overview of the Device Pipeline Architecture. 28

Architecture at the API Level . 29

Internal Pipeline Architecture . 29

Software Pipeline and Pipeline Switching 34

Handling Context State Changes. 34

First Things First: What Is Context? 35

Explicit XGL State Changes . 36

Intraprocess State Changes. 36

Window System Interaction . 37

Color . 39

3. XGL Class Structure . 41

Contents v

Overview of the XGL Class Structure . 41

Device-Independent Classes. 42

Classes That Implement the XGL API. 43

Classes That Provide Internal Utility Functions 45

Device Pipeline Classes. 48

Pipeline Library Class Hierarchy. 49

Device Pipeline Manager Class Hierarchy 51

Device-Dependent Device Class Hierarchy 52

Pipeline-Context Class Hierarchy . 53

Classes for Internal Data Storage. 55

4. Object Interactions . 57

Opening XGL . 57

How API Calls Are Mapped to XGL Internal Calls. 58

Instantiation of API Objects . 58

System State Object and API Object Lists. 59

What Is a Device Object? . 60

What Is a Context Object?. 61

Device and Context Association . 62

How the Pipelines Are Created and Managed. 64

The XGL Environment Is Set Up . 64

A Device Object Is Created. 65

A Context Object Is Created . 66

The Device Is Associated With the Context 66

Object Communication . 68

vi XGL Architecture Guide—November 1995

API Object Relationships . 68

Architecture of Object Relationships. 69

Object Registration: The User List . 70

Message Passing . 73

Destroying Objects and Closing XGL . 75

Destroying the Device Object. 75

Destroying the Context Object . 75

Closing XGL . 76

5. Rendering and Handling State Changes 77

Goals of the Rendering Architecture . 77

How Rendering Works . 78

What Is the opsVec Array? . 79

Device Pipeline Options for Rendering 81

More on the Rendering Architecture. 82

Context State Changes. 83

State Changes From Attribute Setting. 84

State Changes From XGL Object Message Passing 86

View Model Derived Data . 88

Changes in Context Stroke Attributes 92

Device State Changes . 94

Rendering Into Backing Store. 95

Architecture of Backing Store. 95

Creating a Shadow Device . 97

Rendering Into the Backing Store Device 99

Contents vii

Propagation of API Changes to the Backing Store Device . 103

Backing Store Support for the Z-Buffer and Accumulation
Buffer. 103

6. Error Handling . 105

Design Goals. 105

Overview of Error Handling . 105

External Error Handling Mechanism . 106

Error Notification Function . 106

Error Types and Categories . 107

Internal Error Handling Mechanism . 109

7. XGL Coding Guidelines . 111

Naming Conventions for C++ Constructs 111

Naming Conventions for C++ Internal Classes 115

Coding Conventions for set() and get() Interfaces 116

Conventions for set() Member Functions 116

Conventions for get() Member Functions. 117

Index . 119

viii XGL Architecture Guide—November 1995

ix

Figures

Figure 1-1 XGL API and Foundation Library . 2

Figure 1-2 Using DGA in the OpenWindows Environment 3

Figure 1-3 Using Xlib or PEXlib in the OpenWindows Environment . . . 4

Figure 1-4 XGL Object Hierarchy. 5

Figure 1-5 2D Viewing Pipeline . 16

Figure 1-6 3D Viewing Pipeline . 16

Figure 2-1 Basic View of XGL Architecture . 22

Figure 2-2 High-level View of the Loadable Interface Layers 24

Figure 2-3 High-Level View of the XGL Architecture 27

Figure 2-4 Architecture at the API level . 29

Figure 2-5 Device Pipeline Architecture: DpCtx Object 30

Figure 2-6 Device Pipeline Architecture: DpDev Object 31

Figure 2-7 Device Pipeline Architecture: DpMgr Object 32

Figure 2-8 Device Pipeline Architecture: DpLib Object 33

Figure 2-9 XGL Color Translation . 39

Figure 3-1 Top-Level View of the XGL Class Hierarchies 42

x XGL Architecture Guide—November 1995

Figure 3-2 API Class Hierarchy . 43

Figure 3-3 View Cache Class Hierarchy . 45

Figure 3-4 View Group Class Hierarchy. 46

Figure 3-5 Pipeline Library Class Hierarchy . 50

Figure 3-6 Device Pipeline Manager Class Hierarchy 52

Figure 3-7 Device-Dependent Device Class Hierarchy. 53

Figure 3-8 Pipeline-Context Class Hierarchy . 54

Figure 4-1 Components of the Device Object. 60

Figure 4-2 Components of the Context Object . 61

Figure 4-3 Device and Context Association . 62

Figure 4-4 Device Association with Multiple Contexts 63

Figure 4-5 Pipeline Objects Instantiated at Runtime. 67

Figure 4-6 User List . 71

Figure 5-1 Rendering Through the opsVec Array . 80

Figure 5-2 opsVecGen Architecture. 83

Figure 5-3 Derived Data Mechanism. 90

Figure 5-4 Multiplexing Primitives on MultiPolyline() 92

Figure 5-5 Stroke Group Objects in the 3D Context Object. 93

Figure 5-6 Shadow Objects Created for Backing Store 96

Figure 5-7 Architecture of the Backing Store Device 96

Figure 5-8 Rendering into the Backing Store Device. 99

xi

Tables

Table 1-1 Generic XGL Operators . 7

Table 1-2 Object Relationships . 8

Table 1-3 XGL Primitives. 11

Table 2-1 Functionality of the Device Pipeline Layers 26

Table 3-1 Device Pipeline Class Hierarchies. 48

Table 4-1 API User Object and Used Object Relationships 68

Table 6-1 Error Categories. 108

Table 6-2 Error Types . 108

Table 6-3 State Information Saved in an Error Object 109

Table 7-1 Summary of Naming Conventions for C++ Constructs 114

xii XGL Architecture Guide—November 1995

xiii

Preface

The XGL Architecture Guide provides information on XGL™ architecture and
presents details on the implementation of some of the key aspects of the
architecture. This document also provides some information on the design of
the loadable pipelines and describes XGL’s object-oriented internal design and
coding conventions. For information on writing a device pipeline, see the XGL
Device Pipeline Porting Guide.

Who Should Use This Book
This document is designed for implementors of XGL device pipelines, and for
XGL developers and maintainers.

Before You Read This Book
It is assumed that the reader is familiar with C++ and with the ideas of classes
and class inheritance in C++.

How This Book Is Organized
This manual is organized into seven chapters:

Chapter 1, “Introduction to XGL,”, provides a brief description of XGL
functionality.

xiv XGL Architecture Guide—November 1995

Chapter 2, “Overview of the XGL Architecture,” introduces the XGL
architecture.

Chapter 3, “XGL Class Structure,” gives information on the device-
independent and device-dependent class hierarchies.

Chapter 4, “Object Interactions,” provides information on XGL object
instantation and the process of pipeline creation.

Chapter 5, “Rendering and Handling State Changes,” discusses the
interactions between the device-independent internal code and the device
pipelines.

Chapter 6, “Error Handling,” provides information on the XGL error scheme.

Chapter 7, “XGL Coding Guidelines,” presents the coding conventions used
in XGL code.

Related Books
For information on writing a device driver for the XGL product, see the
following documents:

• XGL Device Pipeline Porting Guide

• XGL Test Suite User’s Guide

For information on the XGL product, see the following documents:

• XGL Programmer’s Guide

• XGL Reference Manual

• XGL Accelerator Guide for Reference Frame Buffers

Preface xv

What Typographic Changes and Symbols Mean
The following table describes the type changes and symbols used in this book.

Table P-1 Typographic Conventions

Typeface or
Symbol Meaning Example

AaBbCc123 The names of commands, files,
and directories

Edit your .login file.
Use ls -a to list all files.

AaBbCc123 Book titles, new words or terms,
or words to be emphasized

Read Chapter 6 in User’s Guide.
These are called class options.
You must be root to do this.

xvi XGL Architecture Guide—November 1995

1

Introduction to XGL 1

Introduction to the XGL Product
XGL™ is a foundation library of two-dimensional (2D) and three-dimensional
(3D) graphics functions designed to support a wide variety of geometry-based
graphics applications. XGL provides direct mapping of graphics functionality
to underlying hardware and implicitly uses hardware graphics acceleration
whenever possible. Where hardware acceleration does not exist, XGL provides
software emulation, allowing applications to run and produce nearly identical
results on all platforms and graphics devices.

For application developers, the XGL library provides immediate-mode
rendering and separate, complete 2D and 3D rendering pipelines. XGL has a
rich set of graphics primitives as well as view and modeling transform
support. Standard features include 2D and 3D primitive support (such as lines
and polygons); depth cueing, lighting and shading; NURBS curve and surface
support; and direct and indirect color model support. Advanced features
include transparency, antialiasing, texture mapping, stereo, and accumulation
buffer for motion blur and other special effects. Multi-primitive operators
permit batching of simple primitive calls into groups. Besides providing a rich
application programmer’s interface (API) for application developers, the XGL
library also serves as a foundation library for other graphics APIs, such as
PHIGS, PEX, and GKS.

For developers of hardware graphics devices, the XGL product provides an
open, well-defined graphics porting interface (GPI) in a loadable device
pipeline architecture. This architecture enables hardware developers to build

2 XGL Architecture Guide—November 1995

1

display devices that optimize specific features of XGL. If a hardware vendor
releases a new graphics device and provides an XGL device handler for that
device, an application compiled for XGL will work without recompilation on
the new device. By using the XGL library as a foundation-level interface,
graphics devices under the Solaris™ environment will support any XGL
application, and applications and graphics APIs written to the XGL library will
run with any graphics device under the Solaris environment.

The XGL library resides directly above the hardware and firmware of the
display device and graphics accelerator, minimizing software overhead within
the XGL graphics pipeline. The relationship between XGL applications, high-
level programming interfaces, and the XGL foundation library is illustrated in
Figure 1-1.

Figure 1-1 XGL API and Foundation Library

Running an Application in the X Window Environment

XGL runs within a window environment managed by an X11-R5 compatible
server. XGL uses Sun’s Direct Graphics Access (DGA) display technology,
available in the OpenWindows environment, to accelerate XGL applications.
DGA arbitrates access to the display screen between XGL and the X11 window
system.

DGA technology enables XGL applications to achieve high-performance
graphics when the application is running on the same machine as the X11
server and the hardware has DGA support. DGA synchronizes with the X11

PHIGS GKS Other high-level
libraryXGL API

XGL foundation libraryXGL

Display Devices and Accelerators

ApplicationApplicationApplicationApplication

Introduction to XGL 3

1

server and allows XGL to send commands directly to the accelerator or frame
buffer. This eliminates the overhead that results from building X11 protocol
requests and passing them from the client to the server. An XGL program
running locally with the server and using DGA is illustrated in Figure 1-2:

Figure 1-2 Using DGA in the OpenWindows Environment

When the XGL client program is running remotely, XGL uses Xlib or PEXlib to
do all rendering. If the server includes the PEX extension and XGL has access
to the PEX loadable library, XGL uses PEXlib to render. If PEX is not available,
XGL uses Xlib for 2D rendering, and for primitives and rendering options that
are not supported by Xlib, XGL does scan conversion to send the pixels
through Xlib to the device. Figure 1-3 on page 4 llustrates remote rendering.

Client

XGL
Xlib/PEXlib

X11 OpenWindows

application

Display Device and Accelerator

DGA

XGL Application and X11 Server on the Same Machine

Server renders
other window
commands to

XGL renders
graphics

deviceto device
commands

Server

4 XGL Architecture Guide—November 1995

1

Figure 1-3 Using Xlib or PEXlib in the OpenWindows Environment

DGA ensures that XGL drawing operations are synchronized with the server. It
also preserves the integrity of the display when windows are resized, moved,
or obscured. DGA is transparent to the XGL application programmer.
Applications or new graphics interfaces layered on top of XGL automatically
benefit from features provided through XGL, such as DGA and remote
rendering through X11 protocol.

Introduction to the XGL Programming Model
The XGL API is structured hierarchically through a series of abstract data types
called classes (see Figure 1-4 on page 5). Applications can create instances of
classes, where an instance of a class is an object. The class of an object
determines the attributes it possesses and the operators that can act on it. XGL
objects separate the application programmer from the specifics of the window
system and the underlying hardware device. They present a consistent, device-
independent graphics model that simplifies the work of the application
programmer.

What Is an XGL Object?

An XGL object is an abstraction of a graphics resource. Each object describes a
virtual component of the graphics rendering system and contains the
information necessary to perform graphics operations, such as defining a line
pattern or rendering a polygon. Display devices, for example, are known to the
XGL programmer as Window Raster Device objects. Graphics state information

Client

XGL

X and/or PEX
protocol requests

X11 Server

application

Display Device and Accelerator

XGL Client Machine Server Machine

Xlib/PEXlib

Introduction to XGL 5

1

describing how XGL graphics primitives are drawn on the device is stored in a
2D Context or 3D Context object. Figure 1-4 illustrates the XGL class hierarchy
from which graphics objects are derived.

Figure 1-4 XGL Object Hierarchy

An XGL object is an instance of a class and contains state information (known
as attributes in XGL) and member functions (known as operators) specific to its
class. A class can be instantiated many times to create distinct objects that all
belong to the class. Each object inherits its specific attributes and operators
from its parent class. Operators perform predefined actions on objects of their
parent classes.

How the XGL Programming Interface Works

An XGL application follows the general format of Xlib or X toolkit
programming, using the event-driven model of X applications for interaction
handling. With either Xlib or X toolkit calls, the application first creates the
window system objects that it needs, such as a window for graphics display,
and then opens the XGL system. When XGL is opened, it automatically creates

Color MapSystem State

Stroke Font

Window
Memory

2D Context

3D Context

Light

Transform

Line Pattern

Marker

 XglObject

Device

Raster

Context

Stream

Texture Map

PCache

CGM

GCache

MipMap Texture

6 XGL Architecture Guide—November 1995

1

the System State object as well as internal objects that handle interactions
between the device-dependent and the device-independent parts of the XGL
system.

To set up a framework for rendering, the application must create a Device
object, which is an abstraction representing the display device, and a Context
object, which controls all rendering actions on a device. These objects are
created using an XGL object creation operator that takes attributes describing
the object as input arguments, creates an instance of the object, and returns a
handle to the object. The application program must associate the Device object
with the Context object before geometry can be rendered. When the Context
object and Device object are associated, the application can use XGL primitives
to do rendering and can pass control of the program to Xlib or an X toolkit to
process events.

During the work session, the application can change Context attributes to
change the display characteristics of geometry. It can render geometric data
using XGL drawing primitives and create other objects as needed. For
example, the application might want to create several Stroke Font objects to
enable the use of different character sets, or create Line Pattern objects to
provide the user with application-specific line patterns. Multiple Device
objects, such as Window Raster and Memory Raster devices, can be associated
with and disassociated from the Context object as needed for rendering. When
the application exits XGL, the System State object destroys existing objects,
frees resources, and then destroys itself, closing XGL.

XGL Attributes

Attributes control much of the functionality of XGL, such as the appearance of
rendered geometry, the way picking is handled, and the orientation of virtual
device coordinate space. While some attributes are read-only, an application
can change the value of most attributes at any time. Attributes are input as
arguments to XGL operators, some of which take an attribute-value list as one
of the input parameters.

Introduction to XGL 7

1

XGL Operators
XGL provides a set of operators that applications can use to create objects and
modify the attributes of objects. XGL includes several types of operators:
generic operators used with all API objects, geometry-rendering operators,
utility operators, and object-specific operators. The generic operators, listed in
Table 1-1, provide a consistent method of working with all XGL objects.

The rendering operators are the XGL drawing primitives. XGL provides a wide
range of drawing primitives, including polylines, text, and filled areas such as
rectangles, quadrilateral meshes, multiple single-boundary polygons, and
multiple-boundary polygons. Primitives are available to an application as
operators of the Context object.

Utility operators perform tasks such as clearing the Device viewport or
copying blocks of pixels from a buffer in one Raster to a buffer in another
Raster. Object-specific operators are provided for some objects; for example,
the Transform object includes a set of operators that perform matrix
operations.

Object Relationships

The relationship between XGL objects is managed internally by XGL object-
management functions. When an application creates a new object, it can
establish an association between the new object and an existing object using
the xgl_object_set() operator, a connecting attribute, and the handles of
the two objects. Table 1-2 on page 8 lists objects that are associated with the
Context and Device objects as graphics resources.

Table 1-1 Generic XGL Operators

Operator Description

xgl_object_create() Creates an XGL object.

xgl_object_set() Sets the value of an attribute.

xgl_object_get() Gets the value of an attribute.

xgl_object_destroy() Destroys an object.

8 XGL Architecture Guide—November 1995

1

XGL Object-Oriented Programming

From the point of view of the architecture, XGL is an object-oriented system,
since the internal code underlying the API adhers to the following basic
principles of object-oriented programming:

• Objects consist of member data (attributes) and methods (operators).

• Objects derive from classes in a class hierarchy and inherit the data and
functions of their parent classes.

To the application programmer, however, XGL is an object-based programming
model, since an application can only define instances of classes and cannot
create new classes to extend the class hierarchy. The application can access an
object only via its object handle and operators; the object’s actual data
structures are not accessible to the application.

Table 1-2 Object Relationships

User object Related object

Raster Device System State
Color Map

Context System State
Device
Transform
Line Pattern
Marker
Pcache
Stroke Font
Light (3D Context only)
Texture Map (3D Context only)

Introduction to XGL 9

1

Overview of XGL Functionality
The XGL product is a software library that defines how graphics functions,
such as transformations, lighting, shading, texture mapping, and other
geometric operations, are performed. The library provides a full set of 2D and
3D primitives, which are listed in Table 1-3 on page 11. Broad coordinate-type
support is provided for 2D and 3D pipelines, including:

• Integer, floating point, and double precision floating point types for 2D
pipelines.

• Floating point and double precision floating point types for 3D pipelines.

Additionally, the XGL library provides features such as dynamic tessellation of
NURBS curves and surfaces, surface trimming of NURBS surfaces, geometry
caching, and backing store support.

The following sections provide a brief introduction to XGL functionality. For
detailed information on the use of specific API object operators and attributes,
see the XGL Programmer’s Guide and the XGL Reference Manual.

Opening and Closing the XGL Library

The XGL library is opened and closed by operators of the System State object.
The System State object maintains information pertaining to all operations
occurring during a single XGL session. Only one System State object can be
created for any single XGL session.

System State attributes provide information on the location of font data and
allow the application to set the default path used by XGL to access stroke font
data files used in the text primitives. System State attributes also adjust the
degree of error handling XGL performs and allow the application to supply its
own error-handling functions in place of the XGL default error function.

Graphical Display

The XGL interface renders onto a graphical display through an XGL Device
object and 2D or 3D Context objects. The display device is generally an X11
window linked to the XGL application through a window handle. The XGL
application links the on-screen window to an XGL Raster Device object when
the raster is created.

10 XGL Architecture Guide—November 1995

1

The Device object is an abstraction of a drawing surface. It provides a
framework for interacting with hardware graphics devices in an abstract
manner. The Device class itself is not instantiated to objects; instead, it is
subclassed to raster devices, which represent two-dimensional rectangular
arrays of pixels, and non-raster devices, which represent images that are not
displayed via pixels. Raster device classes are instantiated to provide the
following objects:

• Window Raster Device object – This object represents an area of the frame
buffer that XGL will write into.

• Memory Raster Device object – This object represents a block of memory
allocated from main memory. The pixels composing a Memory Raster object
are in the application’s memory space.

Non-raster objects are subclassed to provide Stream device objects. Stream
devices provide a protocol-independent pipeline for creating formatted output
such as Computer Graphics Metafile (CGM) output. The XGL Stream device
maintains no protocol itself but relies on an instantiated third-party non-raster
device pipeline to implement the appropriate output protocol data format. The
XGl library includes CGM functionality that conforms to the ISO 8632:1985
standard.

Raster Attributes
Raster attributes allow an application to determine raster height, width, and
depth. The Raster depth attribute defines the number of bits used to specify the
color of one pixel in an XGL Raster. The depth of a Window Raster is device
dependent. For a Memory Raster, three depths are supported: 1, 8, and 32. The
1-bit depth is used for creating stipple patterns.

The application can specify single or double buffering and can utilize hardware
double buffering when it is available. If the hardware supports only a single
buffer, color map double buffering can be performed. Backing store support
can be enabled for a Window Raster; however, backing store and double
buffering are not supported concurrently. The application can also set an
attribute to specify a stereo window for rendering.

An application can set or get the starting address of the array of pixels set
aside for an XGL Memory Raster, including the Memory Raster’s Z-buffer. This
allows the application programmer to read and write pixel data directly.

Window Memory

Raster Stream

Device

CGM

Introduction to XGL 11

1

Primitives

The XGL library accepts a number of different representations of geometrical
data, providing applications with flexibility in choosing an appropriate
implementation. Data representation includes coordinate types and attributes
associated with the rendered geometry. Most primitives can be rendered
through both 2D and 3D pipelines. Available primitives are listed in Table 1-3.

Table 1-3 XGL Primitives

Operators Description

xgl_annotation_text() Renders annotation text (2D or 3D).

xgl_multiarc() Draws a list of arcs (2D or 3D).

xgl_multicircle() Draws a list of circles (2D or 3D).

xgl_multi_elliptical_arc() Draws a list of elliptical arcs (3D only).

xgl_multimarker() Draws markers at a list of points (2D or 3D).

xgl_multipolyline() Draws a list of unconnected polylines (2D or
3D).

xgl_multirectangle() Draws a list of rectangles (2D or 3D).

xgl_multi_simple_polygon() Draws a list of polygons (2D or 3D).

xgl_nurbs_curve() Draws non-uniform B-spline curves (2D or 3D).

xgl_nurbs_surface() Draws non-uniform B-spline surfaces (3D only).

xgl_polygon() Draws a single polygon (2D or 3D).

xgl_quadrilateral_mesh() Draws a quadrilateral mesh (3D only).

xgl_stroke_text() Renders stroke text (2D or 3D).

xgl_triangle_list() Draws a triangle strip, triangle star, or batch or
unconnected triangles (3D only).

xgl_triangle_strip() Draws a triangle strip (3D only).

12 XGL Architecture Guide—November 1995

1

Graphical Context

The Context object is the central object that holds information about the
rendering of geometric data. Context attributes control the position and
appearance of geometry when it is rendered. Context operators include the
drawing primitives and a number of utility functions. The utility operators
include raster functions and pixel functions. The Context object can be
associated with other objects that serve as graphics resources for the Context,
such as the Line Pattern object and the Light object.

Rendering Attributes

Context graphics state attributes control many aspects of rendering, including
the following:

• Line Characteristics – Context attributes set the polyline style to solid or
patterned and define the color of a line. They also define the shape of the
endpoints of lines and curves, set the line width scale factor, and define the
shape of joins between line segments. An application can define a new line
pattern by creating a Line Pattern object and attaching it to the Context
object.

• Marker Characteristics – Context attributes define the size, color, and type of
marker that is rendered. An application can define a new marker by creating
a Marker object and attaching it to the Context object.

• Stroke Text Characteristics – Context text attributes define stroke text
character height, width, spacing, and alignment. They also define text
horizontal and vertical alignment, direction, and color. Multiple fonts can be
attached to the Context object with Context attributes.

• Annotation Text Characteristics – Annotation text is text that is embedded in
a plane parallel to the display surface. Context attributes define annotation
text character height, character alignment, text alignment, and text direction.

• Transformation Characteristics – Context Transform attributes direct the
conversion of geometric data from application coordinates to device
coordinates. Transform objects are manipulated via Context object
attributes.

• Surface Characteristics – Context attributes set the color used to fill surfaces
and define the way in which surfaces are filled. They also enable hidden line
and surface removal, control the drawing of silhouette edges around a

Introduction to XGL 13

1

surface, and define how surface normals are calculated when they are not
provided in application data. The application can define a fill pattern for a
surface by creating a Memory Raster object and attaching it to the Context
for the front fill pattern or the back fill pattern.

• Surface Edge Characteristics – Context attributes set the edge style, color,
and width characteristics of the edges of surfaces (rectangles, circles,
polygons, or arcs). An application can define a new pattern for a surface
edge by creating a Line Pattern object and attaching it to the Context with a
Context edge attribute.

• Surface Lighting Characteristics (3D attributes) – A 3D Context attribute sets
the number of lights available to the Context; XGL then creates or destroys
lights to match the specified number. Existing lights can be turned off or on,
and they can be positioned and aimed to illuminate graphical objects for a
desired effect. Context attributes control the global rendering properties of
materials, such as material color, and the reflection coefficients for the
various components of reflected light. An application can also create its own
array of lights by creating a Light object and attaching it to the Context
object.

• Surface Shading Characteristics (3D attributes) – A 3D Context attribute
determines how a surface is shaded by defining the object’s illumination
style. The following illumination styles are available:
• Objects can be drawn without lighting or color interpolation; in this case,

the objects are drawn in their intrinsic color.
• Objects can be drawn without lighting but with colors interpolated from

the object vertex colors.
• Objects can be drawn with lighting calculations performed at each facet;

as a result, the entire object is drawn in the reflected color.
• Objects can be drawn with lighting calculations performed at each vertex.

If illumination per vertex is requested, XGL draws the object by linearly
interpolating the reflected colors at the vertices across edges and
subsequently across scan lines.

• Surface Transparency (3D attributes) – Context attributes enable
applications to render transparent surfaces. XGL provides screen-door and
blended (two-pass) transparency. If the transparency method is screen-door,
a device-dependent screen door (a mesh that allows rendering of only some
of the surface’s pixels) is applied to the primitive. If the transparency
method is blended, blending equations determine how the surface pixel
values are blended with the background color or existing pixel values.

14 XGL Architecture Guide—November 1995

1

• Curved Surface Characteristics – Context attributes enable the application to
control the smoothness of curved surface tessellation, to specify static or
dynamic surface tessellation, and to define the placement of isoparametric
curves on the surface. Surfaces can be trimmed using NURBS curves
defined with Context curve attributes.

• Depth Cueing (3D attributes) – 3D Context attributes define the type of
depth cueing rendered, specify the color that the primitive will be
modulated to as the depth increases, and define how the depth cueing
interpolation is calculated.

• Accumulation Buffers – Context attributes specify the destination buffer for
an accumulation operation and specify the amount of jittering for the
accumulation. When jittered images are averaged together, the resulting
image is effectively antialiased.

Transformations

Geometric transformations specify a linear mapping from one coordinate space
to another. An XGL Transform object represents a set of functions for
transformation operations as well as a set of transformation matrices used to
map geometry between coordinate systems on its way through the rendering
pipeline. A transformation can be applied to the x, y, and z coordinates of
geometric primitives using Transform objects. Data may be associated with a
Transform object by loading a 4 × 4 matrix for a 3D transform or a 3 × 2 matrix
for a 2D transform.

The Transform operators concatenate new matrices with existing Transforms
and perform a variety of other functions, such as copy a Transform or multiply
two Transforms. See the XGL Programmer’s Guide or the XGL Reference Manual
for more information on the Transform operators.

XGL Viewing Pipeline

The XGL viewing pipeline manages the transformation and rendering of
geometric data from the application to the underlying display hardware. It
moves geometric data along the viewing pipeline with a set of transformations
and clipping attributes. During this process, lighting, depth cueing, shading,
and transparency properties are applied. The XGL viewing model is based on
the PHIGS model.

Introduction to XGL 15

1

The Context object includes information that specifies the mapping and
clipping of geometric data between coordinate spaces. Each Context has its
own set of Transforms to implement the mapping between the sequence of
coordinate systems. All Transforms default to the identify transform. To change
a Transform, an application can use the Transform operators to build a new
matrix, or it can input the matrix directly into the Transform object. When the
new matrix is input to the Context as the target of a Transform operator, the
Context object becomes aware of the change to its pipeline.

The application can update the following Transforms:

• Model Transform – The application controls the placement of each
coordinate system in world coordinates with a transformation called the
Model Transform. Although an application cannot access the Model
Transform directly, it can change the Model Transform via attributes and
transformations that set the Local Model Transform and the Global Model
Transform. The Local Model Transform maps an element of the graphic
scene to a global modeling space where the complete scene is assembled.
The Global Model Transform maps the complete scene into world
coordinate space. The Model Transform is the Local Model Transform
preconcatenated with the Global Model Transform.

• Normal Transform (3D Contexts only) – 3D Context objects also have a
Normal Transform, which maps normal vectors from model coordinates to
world coordinates. The Normal Transform is the inverse of the Model
Transform. XGL treats normal vectors as column vectors and points as row
vectors.

• View Transform – The View Transform determines the application’s viewing
direction, orientation, and perspective, and maps coordinate values from
world coordinates to virtual device coordinates. The transformation pipeline
passes the geometric data assembled into world coordinates through the
View Transform into virtual device coordinate space. The View Transform,
view clip bounds, and VDC orientation collectively determine the generated
image in VDC space.

XGL maps from Virtual Device Coordinate values to Device Coordinate values
automatically using the VDC Transform. The VDC Transform performs this
mapping by comparing the VDC and DC ranges. The VDC-to-DC mapping
allows much of the pipeline from Model Coordinates to Virtual Device
Coordinates to remain device independent. The VDC Transform is not
accessible to the application.

16 XGL Architecture Guide—November 1995

1

Figure 1-5 illustrates the 2D viewing pipeline. Figure 1-6 illustrates the 3D
viewing pipeline.

Figure 1-5 2D Viewing Pipeline

Figure 1-6 3D Viewing Pipeline

Color

The XGL color pipeline defines how colors are moved from the application’s
color type to the hardware device color type. The application’s color type is
defined with respect to the XGL Raster Device object associated with the
Context. If the color type requested by the application is the same as the color
type of the underlying hardware, no color conversion is necessary. The color
values of the pixels are passed to the hardware without modification.

If the application color type is different from the hardware color type, a color
conversion is required. In this case, the Color Map object is used to define color
conversion from one color space to another. The application can perform color
conversion in the following cases:

Local Model
Transform

Global Model
Transform

View
Transform

View
Clipping

Window
Clipping

VDC
Transform Device

Model Transform

MC WC VDC DC

Local Model
Transform

Global Model
Transform

View
Transform

View
Clipping

Window
Clipping

VDC
Transform Device

Model Transform

MC WC

VDC DC

Model
Clipping

Division
by w

Introduction to XGL 17

1

• The application can request indexed colors when the underlying hardware
is true-color RGB. The indexed-to-RGB conversion is carried out using a
color table stored in the XGL Color Map object.

• The application can request RGB colors when the underlying hardware is
indexed. The RGB-to-indexed conversion is done using a color cube stored
in an XGL Color Map object.

The Color Map object is an abstraction of a color table that is associated with a
Device object. In simple cases with no conversion, the Color Map object is used
as the software interface between the application programmer and the device
color lookup table. The default color table, initialized at the creation of the
Color Map object, is a two-element, black and white color table. When an
indexed Window Raster Device object is created, either the default Color Map
or an application-created Color Map is attached to the Raster.

Color Map Attributes
Color Map attributes fall into two categories: attributes used for indexed-to-
RGB conversion, and attributes used for RGB-to-indexed conversion.

• For indexed-to-RGB conversion, Color Map attributes identify the color
table structure, specify the number of entries in the color table, and
determine the maximum number of entries the underlying hardware allows
in a color table. When the color type is indexed color and vertex shading is
required, color ramps must be defined in the color table for the colors used
in shading. The application can write its own function to map colors from
indexed to RGB color type.

• If an application’s Device object color type is RGB and the underlying
hardware is indexed, XGL uses a color cube and dithering to convert the
application’s RGB colors to the display’s indexed colors. The color cube is
located in the color table associated with an XGL Color Map. A Color Map
attribute sets the size of the color cube, which is formatted as an array of
three integers specifying the size of the red, green, and blue axes of the color
cube.

18 XGL Architecture Guide—November 1995

1

Lighting and Shading

The XGL API supports flat shading and Gouraud shading. Light sources are
defined as Light objects. A Light object can simulate ambient, directional,
positional, and spot lighting, and it defines the illumination calculations that
XGL uses for rendering. Lights are also used to compute the color of the
vertices of the geometric data of a primitive.

Light object attributes specify light colors, positions, and directions, and
determine the attenuation coefficients of the light. For a spotlight, attributes
determine the angle of the beam and the light’s attenuation characteristics.

Stroke Fonts

XGL provides a set of fonts that can be used for rendering text in an associated
Context object. Text strings can be composed of characters from a single font or
up to four fonts per Context. Text-encoding schemes permit multibyte text
encoding and ISO encoding. Multibyte encoding (also known as Extended
Unix Coding or EUC) uses control characters and bit patterns to specifiy
different character sets within a character string. Allowing different encoding
schemes and up to four fonts per Context supports internationalization
extensions, allowing switching between different languages (character sets)
within a text string. By default, a monospaced roman font is supplied with the
Context object.

Text can be rendered in any orientation in 3D space using the
xgl_stroke_text() operator, or it can be rendered parallel to the display
surface using the xgl_annotation_text() operator. The appearance of
rendered text is determined by Context stroke text and annotation text
attributes.

Raster Text

XGL provides raster text functionality through the XGL Memory Raster object
and the XGL raster operators xgl_context_copy_buffer() and
xgl_image() . The raster text feature enables applications to render text with
bitmap fonts. Applications can generate bitmap fonts through the X window
system, or they can use their own bitmap fonts. Raster text can be rendered as
stencils or in block format, and is rendered parallel to the display surface.

Introduction to XGL 19

1

Line Patterns

XGL provides a number of predefined line patterns that an application can
request through the Context object. In addition, an application can create new
line patterns using the Line Pattern object. Line patterns are used to define the
pattern of lines, curves, and surface edges.

The default line style for rendering is a solid line. Context attributes change the
line style to a patterned line and define the pattern as one of the predefined
line patterns or as the pattern defined by the Line Pattern object. Context
attributes also determine the color of the pattern, which can be drawn in a
single color or in two alternating colors.

A new line pattern is specified by defining an array of alternating on and off
segment lengths. The segments are used cyclically: when the end of a pattern is
reached, the pattern starts over again from the beginning. For surface edges,
the pattern wraps cyclically along edges and around corners until the end of
the edge is reached.

Geometry Caching

XGL provides two buffering mechanisms to cache the geometric representation
of data. One mechanism, the Pcache object, provides non-editable, non-
hierarchical display list functionality for XGL. The Pcache object stores a
sequence of primitives and relevant attributes for rendering at one time. Using
the Pcache object, application programmers can write XGL code and tune it for
the high performance that display lists can provide. The use of Pcache objects
optimizes performance for most 3D graphics applications running on graphics
adaptors with display list capabilities.

The second mechanism, the Gcache object, provides a facility to decompose
complex primitives and accelerate their rendering through the use of simpler
primitives that are suited for a particular graphics device. The Gcache object
reduces the complexity of a primitive by allowing XGL to process the primitive
into many simple primitives, storing the relevant attribute values. For example,
a Gcache could contain the polylines that comprise a string of stroke text, or
the triangles that make up a polygon. A Gcache also enables an application to
decompose a primitive once and then render the result many times.

20 XGL Architecture Guide—November 1995

1

NURBS Curves and Surfaces

XGL includes advanced primitives for non-uniform rational B-spline (NURBS)
curves and surfaces. NURBS are effective for representing simple or complex
geometric shapes, and include powerful mathematical properties that provide
ease of manipulation and use. XGL NURBS curves are general enough for
users to generate uniform curves such as Bezier curves or uniform B-splines.
NURBS attributes enable the application to control the precision of curve
rendering and the smoothness of the curve, and allow the application to
balance the requirements of curve appearance and performance. XGL NURBS
surfaces can be trimmed to define non-rectangular topologies, and the display
of the surfaces can be enhanced with isoparametric curves.

The display of NURBS curves and surfaces can be improved using Gcache
objects. Much of the processing time required for NURBS curve and surface
display is absorbed during the creation of the Gcache object. This can
substantially speed up rendering of NURBS curves and surfaces.

Texture Mapping

The XGL library supports 2D texturing of 3D surface primitives using a
texturing raster image specified by the MipMap Texture object through the
Texture Map object. Textures are defined in a normalized texture space (u,v),
with the u and v coordinates defined in the range 0.0 to 1.0.

Mapping of the texture onto a polygon is accomplished by deriving (u,v)
values from the vertex, normal, or data fields of the polygon vertices. For
example, if a texture image is mapped completely onto a four-sided polygon
(in a simple manner with no wrapping), the lower vertex of the polygon would
be represented by the (u,v) coordinate pair (0.0,0.0), the upper left vertex by
(0.0,1.0), the upper right by (1.0,1.0), and the lower right by (1.0,0.0).

The result of the texturing operation can be applied to different stages of the
rendering pipeline. XGL supports sampling methods such as point, bilinear,
and trilinear to obtain texture values and supports several color composition
techniques, such as blend, decal, and modulate.

Note – At this release, the Texture Map object should be used for texture
mapping. The Data Map Texture object is retained for backward compatibility,
but it will be removed from the XGL library at a future release.

21

Overview of the XGL Architecture 2

This chapter presents an overview of the XGL architecture. It provides an
introduction to the following topics:

• Goals of the architecture

• Overview of the device-independent and device-dependent components of
the architecture

• Architecture of the device pipelines

• Role of the software pipeline in the rendering process

• Context state handling

• Window system and device pipeline interaction

• Color

More detailed information on these and other aspects of the XGL architecture
is provided in later chapters of this manual.

The following terms and acronyms are used in this chapter and throughout the
remainder of this book in discussions of the XGL architecture: Core and DI
refer to the device-independent parts of XGL; device pipeline (Dp) refers to the
device-dependent parts of XGL.

22 XGL Architecture Guide—November 1995

2

XGL Architecture Design Goals
The XGL architecture enables independent software vendors (ISVs) and
independent hardware vendors (IHVs) to port XGL to a wide range of graphics
applications and hardware platforms. The XGL architecture was designed to
fulfill the following goals:

• Define a graphics porting interface (GPI) that enables structured porting of
XGL to new display devices (frame buffers, accelerators, etc.).

• Clearly define the relationships between internal objects.

• Optimize XGL device-independent performance to ensure that graphics
accelerators are able to achieve their maximum possible performance.

The XGL library does not contain any device-dependent code. It contains only
device-independent code and utilities (such as lighting calculations). The
device-dependent code, which controls graphics hardware, resides in separate
files called device pipelines.

Basic Components of the XGL Architecture
At the most basic level, XGL has two components: the device-independent
component and the device-dependent graphics pipelines. The device-
independent code functions as the interface between the application program
and the graphics pipelines. The pipelines turn geometric primitives and their
state attributes into pixel data that is displayed on a graphics hardware device
or written into memory. These basic components are illustrated in Figure 2-1:

Figure 2-1 Basic View of XGL Architecture

XGL Device

Device

DI code Pipelines
Graphics

Application

Overview of the XGL Architecture 23

2

Device-Independent Library

The device-independent component of the library contains class hierarchies for
internal and API objects and abstract pipeline class interfaces to the underlying
pipeline operations. It takes care of a variety of device-independent tasks,
including:

• Mapping XGL C API function calls to internal C++ functions

• Creating and managing API graphics objects

• Providing utility functions to facilitate the implementation of device
pipelines

Graphics Pipelines

The graphics pipelines include one or more device pipelines and a software
pipeline. The device pipeline code resides in libraries that are dynamically
loaded at runtime. When an XGL application begins execution, XGL
determines what device the application is running on and loads the pipeline
library needed to control that device. Thus, device support is not contained
within XGL but is loadable at runtime.

The XGL graphics porting interface consists of three layers of pipeline
interface, with each layer responsible for specific rendering functions. The top
layer, Loadable Interface 1 (LI-1), specifies the interface that lies directly below
the XGL API. Functions in this layer take the points defining the primitive and
transform, light (in the 3D case), and clip the geometry in preparation for the
rendering operations in the next layer. The second layer (LI-2) is responsible
for scan converting more complex primitives like polygons and polylines. The
third layer (LI-3) is responsible for rendering pixels, individually or in spans
on the device. The way that these layers are implemented differs between the
device pipelines and the software pipeline.

Device Pipelines

Device pipelines written at the LI-1 layer typically implement the full graphics
pipeline for each primitive. An LI-1 pipeline takes the points defining a
primitive and transforms, lights (in the 3D case) and clips the geometry,
performs scan conversion, and renders pixels on the device. Thus, an LI-1
pipeline will normally start the processing of geometry at the LI-1 layer and
continue, including all the functionality below LI-1. Device pipelines written at

24 XGL Architecture Guide—November 1995

2

the second layer (LI-2) perform scan conversion and render pixels on the
device. A device pipeline port to the lowest layer (LI-3) is responsible only for
rendering pixels. IHVs can implement different GPI functions at different
layers to tailor a port for a particular device.

Figure 2-2 illustrates the loadable interface layers.

Figure 2-2 High-level View of the Loadable Interface Layers

XGL Software Pipeline

The XGL product provides a software implementation of most of the
primitives in the LI-1 and LI-2 layers. This allows IHVs to port to the level of
functionality appropriate to a device. IHVs can make full use of the capabilities
of their device and use the XGL software pipeline for functionality that the
device lacks.

The software pipeline consists of functions that implement the geometry
pipeline and scan conversion functions in software. The functions in the top
layer (LI-1) of the software pipeline take the points defining the primitive and
transform, light (if necessary), and clip the geometry. The second layer (LI-2) is
responsible for scan converting more complex primitives like polygons and

API or Application

Display Device

LI - 3

C Wrappers
Object Management

XGL Core

Loadable

LI - 1

LI - 2

Basic
Display Hardware

Functionality

Intermediate
Display

Hardware

Advanced
Display

Hardware

Pipelines

Loadable
Interfaces

Utilities
Library

Functionality
Functionality

Overview of the XGL Architecture 25

2

polylines. The software pipeline does not include LI-3 functions, since these are
device dependent. Therefore, at a minimum, an IHV must provide a set of LI-3
functions for a device.

How the Device Pipeline and Software Pipeline Work Together

At rendering time, if the device pipeline has implemented an LI-1 function, the
flow of control first goes to the device pipeline at the LI-1 level. The pipeline
determines from the setting of API attributes whether it can or cannot render
the primitive at that level. If it can render the primitive, it will generally
perform all the operations necessary for rendering from the LI-1 level to the
hardware. However, the architecture allows the flow of control to go to the
device pipeline at LI-1 for part of the work and go to the software pipeline to
complete LI-1 operations or to do LI-2 level processing. In general, when a
device pipeline implements an LI-1 primitive, there is a match between the
primitive-attribute combinations and what the accelerator can do.

As with LI-1, if the device pipeline receives a primitive at the LI-2 level, the
flow of control will usually stay within the device pipeline until the primitive
is rendered. A typical scenario for a device pipeline is that it will support some
combinations of primitives and attributes at the LI-1 level, some at the LI-2
level, and some at the LI-3 level. For example, the pipeline might accelerate
solid lines at LI-1 but support dashed lines at LI-2. To render dashed lines, the
device pipeline would let the software pipeline handle the LI-1 layer geometry
operations, and it would take over the rendering operations at the LI-2 layer.

By allowing the device to switch to the software pipeline, XGL provides a
device pipeline with flexibility in how it renders a primitive. The pipeline can
be written to fully accelerate a primitive from model coordinates to device
coordinates, to partially accelerate a primitive and fall back on the software
pipeline for some of the rendering tasks, or to not accelerate the primitive and
let the software pipeline perform all but the most basic rendering tasks.
Whenever a primitive or a rendering attribute for a primitive is not supported
by the hardware, the device pipeline can fall back to the software pipeline for
some or all of the processing for rendering. This dynamic decision making is
one of the primary design features of the XGL architecture.

26 XGL Architecture Guide—November 1995

2

Writing a Device Pipeline

The task of writing device pipeline functions at different levels varies in
complexity. Writing functions at the LI-1 layer is complex and may require a
significant amount of time. Table 2-1 summarizes the functionality of a device
pipeline port at a particular layer.

As mentioned above, a minimal port of XGL to a device must include functions
at the LI-3 layer, since functions at this layer are not provided by the software
pipeline. However, XGL provides a utility object called RefDpCtx (Reference
Device Pipeline Context) that can help a pipeline writer quickly implement
LI-3 functions. See the XGL Device Pipeline Porting Guide for information on
RefDpCtx.

Figure 2-3 on page 27 illustrates the stages of the device and software pipelines
as well as some of the components of the XGL core. For more information on
the architecture of the device pipelines, turn to page 28.

Table 2-1 Functionality of the Device Pipeline Layers

Layer Responsibilities

LI-1 Must handle all aspects of processing an XGL primitive and all
rendering operations, including scan conversion and pixel painting.

LI-2 Assumes responsibility for rendering but leaves geometry processing
operations to the XGL software version of the LI-1 layer.

LI-3 Requires implementing span and dot renderers, but all other
operations needed to process a primitive and reduce it to the pixel level
are provided by XGL’s default software implementation.

Overview of the XGL Architecture 27

2

Figure 2-3 High-Level View of the XGL Architecture

Note – The XGL library provides a Stream device that supports output to a file;
however, the bulk of this chapter assumes that you are writing to a pixel-based
frame buffer.

XGL Core Library

LI-1 Software Pipeline

LI-2 Software Pipeline

Display Device

LI-1 Layer

LI-2 Layer

LI-3 Layer

XGL Core API to Pipeline Layer

Utilities

DI
Objects

LI-3 Device Pipeline

LI
-2

D
ev

ic
e

P
ip

el
in

e

LI
-1

 D
ev

ic
e

P
ip

el
in

e

Application

28 XGL Architecture Guide—November 1995

2

Overview of the Device Pipeline Architecture
Because XGL runs in a workstation windowing environment, it must provide
support for applications with multiple windows, for multiple applications per
frame buffer, and for multiple physical display devices. It must also include
support for a range of hardware devices. The XGL loadable pipeline
architecture was developed to explicitly address the wide range of geometry-
oriented graphics devices currently in use and to provide a foundation for
future display technology.

To provide the support necessary for a variety of hardware devices, XGL
includes a set of well-defined, abstract interfaces that link the device pipelines
with the XGL core. The XGL graphics library does not contain any device-
dependent code and hence cannot render directly to a frame buffer itself. To
access a frame buffer, XGL loads the device pipeline appropriate for that frame
buffer. Although the term pipeline traditionally refers to the steps in the
rendering process, in XGL the design of the loadable pipelines includes
components that serve as the framework connecting the device-independent
code to the device pipeline code.

The device pipeline is made up of a number of C++ classes. The classes are
abstract classes in that they define a set of functions that must be implemented
by the device pipeline. As part of the process of writing a device pipeline, the
implementor must subclass the XGL-provided abstract classes and implement
them to provide device-specific classes and objects.

Overview of the XGL Architecture 29

2

Architecture at the API Level

At the API level, XGL has two primary entities that are responsible for
rendering: the Context object and the Device object. The Context object is the
central object for the application program; it acts as a clearing house for
attribute information and does the work of drawing graphics. Geometry and
related attributes are rendered through the Context object to the physical
device via the Device object. Multiple Context objects can be set up for each
Device object, as would be the case if an application program wanted to render
2D and 3D geometry. Figure 2-4 shows a possible set of Context and Device
objects that might be attached to one window of an application program. The
Window Raster Device object represents application window 1.

Figure 2-4 Architecture at the API level

Internal Pipeline Architecture

Internally, XGL uses a set of objects to connect the device-independent Context
and Device objects with the device-specific pipeline code. These objects are:

• Device pipeline context object

• Device pipeline device object

• Device pipeline manager object

• Device pipeline library object

The sections that follow introduce and illustrate these objects.

Context 2

Context 1

Application

Window 1

Window 2

Window
Raster
Device

30 XGL Architecture Guide—November 1995

2

Device Pipeline Context Object

The device pipeline-context (DpCtx) object is the device-dependent
representation of a Context object for a specific hardware device. When the
application program associates a Context object with a Device object, XGL
creates a DpCtx object for the Device and Context pair.

The DpCtx object contains the actual rendering functions for a device and
keeps track of Context state. Figure 2-5 shows the DpCtx objects that represent
two Contexts associated with the Window Raster Device object. In this figure,
the objects in the pipeline framework are shown as ovals with dark borders.

Figure 2-5 Device Pipeline Architecture: DpCtx Object

Context 2

Context 1

DpCtx 2

DpCtx 1

Application

Window 1

Window 2

Window
Raster
Device

Overview of the XGL Architecture 31

2

Device Pipeline Device Object

Figure 2-6 introduces the device pipeline device object (DpDev). This object
manages the DpCtx objects corresponding to each Device object. The DpDev
object is the device-dependent part of the XGL Device object, and it is used to
manage the device dependencies of the DpCtx objects.

Figure 2-6 Device Pipeline Architecture: DpDev Object

Context 2

Context 1

DpCtx 2

DpDev

Application

Window 1

Window 2

Window
Raster
Device

DpCtx 1

32 XGL Architecture Guide—November 1995

2

Device Pipeline Manager Object

Figure 2-7 presents the device pipeline manager (DpMgr) object. This object
handles various categories of devices, such as frame buffers. The DpMgr object
is unique in that is does not have a corresponding API-visible object, whereas
the DpDev object corresponds to the API Device object, and the DpCtx object
corresponds to the associated API Device and Context objects.

The DpMgr object manages the DpDev objects for the device. If the category is
a frame buffer, the DpMgr initializes the frame buffer. Figure 2-7 shows a
single DpMgr object for the two DpDev objects that represent two application
windows.

Figure 2-7 Device Pipeline Architecture: DpMgr Object

Application

Window 1

Window 2

Window
Raster

Device 1

Context 2

Context 1

DpCtx 2

DpCtx 1

DpDev 1

Window
Raster

Device 2

DpMgr 1
DpDev 2

Overview of the XGL Architecture 33

2

Device Pipeline Library Object

The device pipeline library (DpLib) object represents the shared library for the
device pipeline. Figure 2-8 shows the DpLib object in a system with two frame
buffers of the same type. In this diagram, a single application has opened two
windows on one screen and one window on another screen. The DpLib object
allows more than one DpMgr to share hardware and software resources. For
more information on the pipeline framework, see the subsequent chapters of
this book and the XGL Device Pipeline Porting Guide.

Figure 2-8 Device Pipeline Architecture: DpLib Object

Application

Window 1

Window 2

Window
Raster

Device 1

Context 2

Context 1

DpCtx 2

DpCtx 1

DpDev 1

Window
Raster

Device 2

DpMgr 1

DpDev 2

Window 3

DpMgr 2

Context 3

DpCtx 3

DpDev 3

Window
Raster

Device 3

DpLib

Frame Buffer 1

Frame Buffer 2

34 XGL Architecture Guide—November 1995

2

Software Pipeline and Pipeline Switching
For all geometry primitives, XGL includes a complete software implementation
of the top two layers of the rendering pipeline interfaces. Device pipeline
implementors writing for a specific graphics hardware device can choose to
interpose their own functions for the interfaces that exist at the top two
pipeline layers, or they can let the XGL-supplied software pipeline perform the
tasks. Even if the device pipeline provides its own implementation of pipeline
interfaces, it can call the software pipeline at the LI-1 or LI-2 layers to continue
processing the data.

The lowest layer of loadable interfaces, which is responsible for writing pixels
to the device, is device dependent. This layer does not exist in software,
although there is a set of utilities in software that implements most of LI-3. A
device pipeline must include functions for this lowest layer of the pipeline.

Handling Context State Changes
An application program can cause the state of a single XGL Context object to
change in two ways:

• The application can set attributes to explicitly change the state of an XGL
Context object.

• The application can change objects associated with the Context, such as a
Transform object. This indirectly causes Context state to change.

Changes in the state of a Context object resulting from attribute setting on the
Context or on an object associated with the Context are passed directly to the
device pipeline by the XGL device-independent code. However, because of the
various models of hardware context switching, changes to Context state
resulting from intraprocess Context switching (in other words, the application
switches the XGL Context it is using to render) are left to the device pipeline
implementor to manage.

Overview of the XGL Architecture 35

2

First Things First: What Is Context?

Before examining how the XGL core handles Context state changes, it might be
helpful to look at the different uses of the term context. From the point of view
of XGL, context can refer to the XGL API Context object, to the context of a
UNIX® process, or to a hardware context. In a broad sense, context refers to a
set of persistent state that controls an executing entity. We might apply this
definition to the types of context as follows:

XGL Context The set of state that controls rendering of XGL
primitives, such as line color or transforms.

Process context The set of state that controls a UNIX process, such as
the program counter, the signal mask, or file
descriptors. This state also includes memory mapping
for devices.

Hardware context The set of state that controls the rendering on graphics
accelerators, for example line color or raster operation
register values.

The problem for the device pipeline writer is to map these different sets of
state to the graphics hardware. This mapping is potentially complex, since the
following points should be considered:

• The graphics hardware may have one or more sets of state, which provide
one or more hardware contexts.

• There are one or more UNIX processes using the graphics hardware via
XGL. There is one special process, the X window server, which is also using
the hardware.

DGA and the segment driver help maintain consistency between each of the
UNIX processes and the hardware contexts. Note that the kernel may
context-switch a process at any time.

• Each of the UNIX processes may be an XGL program that opens one or
more application windows via the X server. Each window is bound to an
XGL Device, and each Device may have many XGL Contexts.

Thus, the challenge for the device pipeline writer is to map an arbitrary
number of XGL Context objects onto the number of hardware contexts
supported by the graphics accelerator.

36 XGL Architecture Guide—November 1995

2

Explicit XGL State Changes

Operations required for keeping track of the XGL Context attribute state are
handled by the Context object in a device-independent manner. These
operations include the getting and setting of attribute values and the storing of
values. Information on attribute changes is passed directly to the pipelines.
When the device pipeline is first associated with an XGL Context object, it gets
the current values of the attributes and sets up the hardware. During program
execution, the pipeline is notified of attribute changes as the changes occur,
and it has the option of updating the hardware each time changes occur or of
noting that changes occurred and updating the hardware at a later time.

The mechanism that notifies the pipeline of attribute changes is an array
defined in the device-independent XglDpCtx object and managed by the
pipeline in its device’s specific XglDpCtx object. This array serves as the means
of communication between the device-independent code and the device
pipeline.

Intraprocess State Changes

When an application switches from drawing through one Context to drawing
through another, state information must be saved in the graphics pipeline and
the hardware. Because the XGL system cannot know what the state
requirements for a particular hardware device are, how many hardware
contexts are available, or how expensive it is to swap hardware contexts, XGL
has left it up to the device pipeline implementor to handle state changes
resulting from intraprocess context switching.

XGL defines the basic components of the device pipeline, but the pipeline
writer must complete the task of mapping XGL state to the hardware. For
example, a pipeline for a frame buffer with one hardware context might decide
that it needs a concept of a current XGL Context. To implement this, it may use
one of the device pipeline interface objects to keep track of which Context
object is the current Context.

The pipeline architecture provides four places for the device pipeline
implementor to insert device-dependent information for a specific hardware
device. Depending on the requirements of the hardware, the device pipeline
writer can include data in the pipeline interface objects:

Overview of the XGL Architecture 37

2

• DpCtx object - Include data relevant to state information

• DpDev object - Include data relevant to the device or window

• DpMgr object - Include data relevant to the physical device

• DpLib object - Include data relevant to the pipeline library as a whole

By providing a variety of locations for device-dependent information, the XGL
architecture has given the device pipeline writer the flexibility to support
different hardware state models.

Window System Interaction
The XGL system uses Sun’s DGA technology to accelerate XGL applications
that are running under the OpenWindows server. DGA is a set of mechanisms
that enables OpenWindows client processes to directly drive a graphics device
when the client and server are on the same machine.

The current implementation of DGA uses shared memory as the means of
coordinating information between the client and the server. The shared
memory contains information about the window, such as the window’s size
and position on the screen. DGA includes a client library of functions that
enable the client program to get information about the window from the
shared memory and to lock the window so that the client can render. The client
library is part of the OpenWindows product and includes functions that
provide access to the window, manage rapid color map changes, perform
multibuffering, support windows with backing store, and handle software
cursors when rendering.

To provide the device pipelines with a way to manage window system
interaction and with an interface to the DGA client library, the XGL
architecture provides the XglDrawable object. The XglDrawable conceptualizes
the sharing of a device with another entity, most often the window system, but
possibly also a Memory Raster or a stream device. If the other entity is the
window system, the XglDrawable manages the sharing of information through
DGA (for local rendering) or through PEXlib/Xlib (for remote rendering). For
example, when the window clip list changes, the two entities that are sharing
the device must each be made aware of the changes and must cooperate to
manage the changes.

38 XGL Architecture Guide—November 1995

2

The XglDrawable object provides a high-level abstraction of the window for
the variety of devices that XGL has to deal with. The goals of the XglDrawable
are to:

• Encapsulate the DGA interface within the XglDrawable object. This allows
the specifics of the sharing of the device and the other entity to be hidden
from the pipeline.

• Hide window system dependencies and actual device interaction from the
XGL core.

• Hide the differences in client- and server-mode DGA interactions from the
device pipelines.

• Hide the handling of backing store from the device pipelines.

The XglDrawable class derives to objects that reflect the type of device the
application is rendering on. For a Window Raster Device, the XglDrawable
object embeds the DGA client library, libdga, as an underlying layer, thus
providing the device pipelines with the DGA window-locking mechanism for
rendering and enabling the pipelines to determine whether the window clip
list has changed. The Memory Raster Drawable object contains information on
the user clip list and on the depth of the window but does not embed DGA
calls or workstation clip list information.

XglDrawable objects can be created for Xlib rendering, for rendering to a
backing store, and potentially for other types of rendering, such as rendering
to a raw frame buffer. The instantiation of the appropriate XglDrawable object
for a device is handled automatically by the XGL device-independent code.
Once the object is instantiated, the XGL core does not need to check the device
or Drawable type before invoking a window system operation.

Overview of the XGL Architecture 39

2

Color
XGL supports both indexed and RGB color models, and it allows an
application to use either color model without requiring the application to take
into account the color model of the hardware that it is running on. XGL
manages the mapping of color values to the underlying hardware for the
application. At device creation time, XGL determines the real color type of the
device and maps the color type that the application specified for the API
Device object to the actual color type of the hardware. In this mapping, XGL
must take into account these four cases:

• Indexed application color model on indexed hardware device
• Indexed application color model on RGB hardware device
• RGB application color model on indexed hardware device
• RGB application color model on RGB hardware device

The mapping consists of translating XGL colors into pixel values (in the case of
the X window system, into X pixel values), such that the final device color
format represents a color as close as possible to the original XGL color. The
process of color translation into X pixel values is shown in Figure 2-9.

Figure 2-9 XGL Color Translation

For window rasters, the translation scheme depends on the hardware but the
goal is the same: the visible color should be as close as possible to the
requested color.

To manage the relationship between the XGL Color Map object (defining the
application color type) and the XGL window raster, XGL provides the
XglCmapDrawable object. This object encapsulates color handling and hides
the sharing of colors between XGL and the window system.

The XglCmapDrawable object is instantiated by the XGL core during Window
Raster creation. It is associated with both the Window Raster object and the
Color Map object. Note that, unlike the XglDrawable object, there is no need
for XglCmapDrawable objects for Memory Raster devices or Stream devices.

XGL color XGL color
mapping X pixel Displayed colorHardware color

look-up table

40 XGL Architecture Guide—November 1995

2

41

XGL Class Structure 3

This chapter discusses the XGL class hierarchies. In this chapter, device-
independent classes are referred to as DI classes, and pipeline classes are
referred to as device pipeline (Dp) classes and software pipeline (Swp) classes.

Overview of the XGL Class Structure
The XGL class hierarchy can be thought of as providing three sets of classes:

• Classes for implementing API objects

• Internal classes used for device-independent utilities

• Classes subclassed by device pipeline implementors for device pipelines

The root of the XGL class tree is XglDbgObject. All device-independent, device
pipeline, and software pipeline classes derive from this class. This class also
assigns each instantiated object an object ID for debugging purposes.

XglDbgObject has a number of immediate subclasses. A top-level view of the
XGL class structure is shown in Figure 3-1 on page 42. In this diagram, pipeline
classes are shown with dark borders, the base class of the API hierarchy is
shown as a filled oval, and the internal utility classes have thin borders.

42 XGL Architecture Guide—November 1995

3

Figure 3-1 Top-Level View of the XGL Class Hierarchies

The XGL device-independent classes and the device pipeline and software
pipeline classes are described in more detail in the sections that follow and in
subsequent chapters. See Chapter 6, “Error Handling” for information on XGL
error handling.

Device-Independent Classes
The device-independent classes handle operations that are done in a device-
independent manner on behalf of the device pipelines and software pipeline in
response to requests from the API. Device-independent classes are defined by
the XGL device-independent code. There are two general categories of DI
classes: the API classes and the internal utility classes.

XglGlobalState

XglApiObject

XglPipeLib

XglDpMgr

XglDpDev

XglStrokeGroup

XglPipeCtx

XglDrawable

XglViewCache XglViewGrp3d

XglViewGrp2d
XglViewConcern3d

XglViewConcern2d

XglDbgObject

XglCmapDrawable

XglError

XGL Class Structure 43

3

Classes That Implement the XGL API

The XGL API presents the C programmer with objects that are abstractions of
graphics resources. Internally, XGL implements these objects using a hierarchy
of C++ classes. Some classes in this hierarchy become API objects used by the
application; other classes are not made into objects but are simply subclassed
to provide classes that become API objects. The complete API class hierarchy is
shown in Figure 3-2.

Figure 3-2 API Class Hierarchy

XglGcache

XglCmap
XglSfont

XglRasterWin XglRasterMem XglContext2d XglContext3d

XglLight

XglTransform

XglLinePattern

XglRaster XglContext

XglApiObject

XglSysState XglObject

XglDbgObject

XglTexture

XglDeviceXglMipMapTexture

XglTmap

XglStream

XglCtxObject

XglPcache

XglMarker

XgDmapTexture

44 XGL Architecture Guide—November 1995

3

The creation of the System State object is managed by the XglGlobalState
object. All other API objects are instantiated through the System State object.
The System State object maintains a list of all API objects created in the XGL
system and is responsible for destroying API objects during xgl_close() .
See Chapter 4, “Object Interactions” for information on object instantiation
through the System State object. For information on the API objects, see the
XGL Programmer’s Guide or the XGL Reference Manual.

The classes in the API hierarchy that do not become API objects are:

XglApiObject
Contains the object type and pointer to the application data. The setting and
getting of application data (API attribute XGL_OBJ_APPLICATION_DATA) is
handled in this class.

XglObject
The base class of the API classes with the exception of the System State
class. XglObject manages the user list for the API objects. The interface for
user list message receiving is defined in this class and is overridden by the
API object classes that do processing based on received messages. XglObject
also handles object destruction.

XglCtxObject
Defines the Context hierarchy and the Pcache object.

XglDevice
Contains device-independent data and operations that are common to all
devices. This object constitutes the device-independent part of a device
object and contains a pointer to the device-dependent part of the device
object. For information on the components of the Device object, see
Chapter 4, “Object Interactions”.

XglRaster
Contains the raster-specific definition of a device. XglRaster also contains a
pointer to the device-dependent part of the Raster object. This class is the
parent class of the XglRasterWin and XglRasterMem classes.

XglContext
Contains the device-independent part of the Context object. XglContext
contains device-independent data, some cached data that all device
pipelines and the software pipeline share, and functions to set and get

XGL Class Structure 45

3

Context attributes. XglContext is the parent class for the XglContext2d and
XglContext3d classes. For information on the components of the Context
object, see Chapter 4, “Object Interactions”.

Classes That Provide Internal Utility Functions

The device-independent utility classes provide a variety of functions. For
example, several of these classes work together to provide a mechanism that
enables the passing of view model information from the application to the
device pipeline. Briefly, the DI utility classes provide the following functions:

XglGlobalState
The XglGlobalState class handles device pipeline and software pipeline
loading and maintains the handles to the shared objects. XglGlobalState also
handles some of the initial interactions between the device-independent
classes and the device-pipeline classes. The XglGlobalState class instantiates
the XglGlobalState object during xgl_open() just before the System State
object is created.

XglViewCache
The XglViewCache class is the base class of the view model derived data
facility. It is the abstract class from which XglViewCache2d and
XglViewCache3d are derived. XglViewCache defines the data and functions
common to the 2D and 3D classes. XglViewCache2d and XglViewCache3d
consist of cached view model derived data and functions for evaluating the
data when the pipeline requests it. Figure 3-3 shows the class hierarchy for
the view cache class. For more information on the view modal derived data
facility, see Chapter 5, “Rendering and Handling State Changes.

Figure 3-3 View Cache Class Hierarchy

XglViewCache

XglViewCache2d XglViewCache3d

XglDbgObject

46 XGL Architecture Guide—November 1995

3

XglViewGrp{2,3}d
XglViewGrp{2,3}d is the base class that defines pointers to evaluation
functions in the cache of view model derived data. It is the abstract class
from which XglViewGrp{2,3}dConfig and XglViewGrp{2,3}dItf are derived.
Figure 3-4 shows the class hierarchy for the view group class in the 2D case.

Figure 3-4 View Group Class Hierarchy

XglViewGrp{2,3}dItf provides the interface to the view model derived data
from device and software pipelines. An object of this class consists of
functions that describe when derived data have changed and functions for
getting evaluated individual derived data items.

XglViewGrp{2,3}dConfig describes the configuration of the view model
derived data for geometry entering LI-1 from a particular coordinate
system. An object of this class consists of flags in a table for individual
derived data items adjusted for a coordinate system that can be other than
model coordinates.

XglViewConcern{2,3}d
XglViewConcern{2,3}d registers the collection of concerns for each
coordinate system from which geometry can enter LI-1. Upon entering LI-1,
a primitive for a pipeline cares about only a limited selection of derived data
items. Objects of this class store this selection for each coordinate system.

XglDrawable
The XglDrawable class provides a public interface for window system
interaction. This class maintains information about the window size and clip
list, as well as information about the device. XglDrawable subclasses to
drawables for Window Raster objects, Memory Raster objects, Xlib/PEXlib
connections, and backing store objects.

XglViewGrp2d

XglViewGrp2dConfig XglViewGrp2dItf

XglDbgObject

XGL Class Structure 47

3

The base XglDrawable class serves as a repository for shared internal data,
such as window dimensions and clip list information, as well as providing
default or common operations for the derived classes. It also provides the
public interface for the hierarchy. Actual window system interactions are
implemented in the derived classes and are transparent to the device
pipelines.

Creation of the appropriate Drawable class object is done by the XGL core
through the XglDrawable class during XGL device creation, based on the
descriptor that is passed in through the API or attributes that are set
internally (for backing store mode).

XglCmapDrawable
The XglCmapDrawable class encapsulates color sharing between XGL and
the X window server.

XglStrokeGroup
The XglStrokeGroup class maintains the attributes used for multiplexing
line drawing to handle different primitives. The Context object maintains
one XglStrokeGroup object for lines, markers, text, edges, and hollow
polygons. For more information on stroke groups, see Chapter 5,
“Rendering and Handling State Changes”.

48 XGL Architecture Guide—November 1995

3

Device Pipeline Classes
The pipeline hierarchies provide predefined interfaces between the device-
independent code and the device pipelines. These interfaces allow the XGL
device-independent code to interact with the device pipeline code in expected
ways. For each specific device pipeline implementation, the device pipeline
writer must subclass a device-dependent class from each of the four pipeline
class hierarchies. The objects instantiated from the device-specific subclasses
will then provide the functionality that the XGL device-independent code
expects.

All member functions for device-dependent internal object management are
defined in the base classes provided by the XGL device-independent code.
When subclassing a device pipeline class, the device pipeline writer can add
member data and functions as needed.

The four device-dependent pipeline class hierarchies are listed in Table 3-1.

Table 3-1 Device Pipeline Class Hierarchies

Name Definition Description

XglPipeLib Hierarchy for the
pipeline library objects

This hierarchy represents the loaded shared
library of a device or software pipeline. It handles
the creation and destruction of the XglDpMgr
subclass of objects.

XglDpMgr Hierarchy for the
device pipeline
manager

This hierarchy represents a category of devices,
such as frame buffers. In the case of multiple
frame buffers, a XglPipeLib object can choose to
maintain multiple XglDpMgr objects, each of
which maps to a physical frame buffer. This
hierarchy handles the creation of the XglDpDev
subclass of objects.

Mandatory behavior
of the derived class

Pipeline added data

XGL Class Structure 49

3

The following sections provide information on the pipeline hierarchies.

Pipeline Library Class Hierarchy

A pipeline library object maps to to a unique .so shared library. Thus, for each
shared library (for example, libxglcfb.so) that is loaded into the XGL
environment, there is an XglPipeLib subclassed object that represents it.

The base class of the pipeline library hierarchy is XglPipeLib. XglPipeLib
subclasses to the device pipeline library (XglDpLib) class and the software
pipeline library (XglSwpLib) class. XglPipeLib simply serves as a general
category for these two specific shared library classes and has no member
functions of its own. Individual pipeline implementations derive to device
pipeline-specific objects, such as XglDpLibGx. Figure 3-5 on page 50 shows the
pipeline library hierarchy.

XglDpDev Hierarchy for the
device-dependent part
of the Device object

This hierarchy holds the device-dependent
elements of an XglDevice object. It also manages
the creation and manipulation of the device
pipeline-context objects.This hierarchy is device-
specific and is not subclassed by the software
pipeline.

XglPipeCtx Hierarchy for the
pipeline-context objects

This hierarchy represents the interfaces for the
loadable interface layers of the device pipelines
and the software pipeline.

Table 3-1 Device Pipeline Class Hierarchies (Continued)

Name Definition Description

50 XGL Architecture Guide—November 1995

3

Figure 3-5 Pipeline Library Class Hierarchy

The primary characteristics of the device pipeline library and software pipeline
library base classes are as follows:

XglSwpLib
The XglSwpLib object represents the unique software pipeline shared
library and is the base class for the software pipeline class.

When the software pipeline shared library is loaded, the XglSwpLib object is
created by a call to xgli_create_PipeLib() . The handle to the
XglSwpLib object is maintained by the XglGlobalState object. There is one
XglSwpLib object for the software pipeline in the XGL system, and it is
assumed that there is only one software pipeline. The software pipeline is
the default pipeline and is provided with the XGL product.

The XglSwpLib class is responsible for creating the software pipeline-
context objects during Context creation. The XglSwpLib class can be used to
store state information that can be shared by all software-context objects.

Other devices

XglSwpLibXglDpLib

XglDpLibMemRas

XglDpLibGx XglDpLibCfb

XglPipeLib

XglSwpLibDef

Derived by

XglDbgObject

Derived by

XGL core

Pipelines

XGL Class Structure 51

3

XglDpLib
The XglDpLib object is the base class for the XglDpLib classes in the device
pipelines. This class maps to a loaded device pipeline, and there is one
loaded device pipeline per device type. XglDpLib is also responsible for the
creation of the device pipeline manager object. In the case of frame buffers,
XglDpLib allows more than one XglDpMgr (each of which represents a
physical frame buffer) to share hardware or software resources. When the
device pipeline shared library is loaded through the XglGlobalState object,
an instance of the derived XglDpLib object is created by a call to
xgli_create_PipeLib() .

Note that since the XGL core does not control the actual number of
XglDpMgr objects created, it is the device pipeline’s responsibility to
destroy any existing XglDpMgr objects during the destruction of the
XglDpLib object when this is invoked by the XGL core.

Device Pipeline Manager Class Hierarchy
The XglDpMgr class is responsible for the creation and management of the
device-dependent part (XglDpDev) of a Device object. XglDpMgr allows
multiple XglDpDev objects to share the physical resources of a device.
XglDpMgr is the base class for the XglDpMgr subclasses defined in a
pipeline implementation.

In the case of a window raster device, each instance of an XglDpMgr
subclass represents a physical device (frame buffer), and there is one
XglDpMgr object per physical device. The frame buffers can be the same
type (for example, both GX) or different types. If there are multiple devices
of the same type on a system, there will usually be multiple instantiations of
the same XglDpMgr subclass, all of which map to the same device pipeline.
However, since the creation and destruction of all XglDpMgr objects is
handled internally by the device-dependent XglDpLib object, a device can
choose to have only one XglDpMgr object for more than one frame buffer of
its type.

If the devices are of different types, the XglDpMgr object corresponding to
each device type will be created by the XglDpLib unique to the shared
library. Figure 3-6 on page 52 shows the device pipeline manager class
hierarchy.

52 XGL Architecture Guide—November 1995

3

Figure 3-6 Device Pipeline Manager Class Hierarchy

Device-Dependent Device Class Hierarchy

XglDpDev is the base class for the device-dependent part of the Device object.
A pointer to the XglDpDev object is stored by the device-independent Device
object. XglDpDev has the following functions:

• It creates the device pipeline-context objects.

• It performs device-dependent device operations, such as propagating
changes of the device-independent Device object to the device pipeline.

XglDpDev is created as part of the Device object creation process and remains
attached to the Device object for the lifetime of the Device instance. XglDpDev
was designed to isolate the device-dependent operations from the device-
independent operations. Each pipeline implementation must define the actual
device-specific operations for the device.

If an application has multiple windows using the same underlying frame
buffer, the XglDpMgr object representing that frame buffer will create multiple
XglDpDev objects. If an application runs on a system with more than one
frame buffer and creates multiple windows on each frame buffer, the
XglDpMgr object representing each frame buffer will create the XglDpDev
objects for the application windows. For an illustration of the device pipeline
objects created for a multi-headed system, see Chapter 2, “Overview of the
XGL Architecture”.

XglDpMgrCfbXglDpMgrGx

XglDpMgr

XglDbgObject

Other devices

Derived by

Derived by

XGL core

Pipelines

XGL Class Structure 53

3

In Figure 3-7, XglDpDevWinRas and XglDpDevMemRas contain the abstract
class interfaces provided by the XGL core. The pipeline implementation
derives to XglDpDevCfb, XglDpDevGx, etc., to define the actual device-
dependent operations.

Figure 3-7 Device-Dependent Device Class Hierarchy

Pipeline-Context Class Hierarchy

The base class of the pipeline-context hierarchy is XglPipeCtx. The derived
classes in this hierarchy, XglPipeCtx2d and XglPipeCtx3d, represent the
pipeline interfaces for Context operations. The software and device pipelines
subclass from these two classes to implement the actual 2D and 3D primitive
operations.

Each Context object links with two XglPipeCtx subclassed objects: one for the
software pipeline (for example, XglSwpCtx3d) and one for the device pipeline
(for example, XglDpCtx3dCfb). Figure 3-8 on page 54 illustrates the pipeline-
context hierarchy.

XglDpDev

XglDpDevRaster

XglDpDevWinRas XglDpDevMemRas

XglDpDevGx

XglDpDevCfb

Other devices XglDpDevMemRas

XglDbgObject

Derived by

Derived by

XGL core

Pipelines

54 XGL Architecture Guide—November 1995

3

Figure 3-8 Pipeline-Context Class Hierarchy

Pipeline-Context Objects

The software pipeline-context object is created by XglSwpLib during
XglContext creation time and remains attached to the Context object for the
lifetime of the Context object.

The device pipeline-context object is created and maintained by a subclass of
XglDpDev during the first association of a Context and a Device. The device
pipeline-context object remains associated with the Context object until the
Context switches devices. When a Context object is destroyed, the System State
object destroys the associated pipeline-context objects for all existing devices.

The interfaces for the XglPipeCtx hierarchy are defined in an array of function
pointers to device pipeline or software pipeline renderers. The function
pointers represent the primitives for Context operations at the LI-1, LI-2, and
LI-3 layers.

XglSwpCtx2d XglDpCtx2d XglDpCtx3d XglSwpCtx3d

XglDpCtx2dMem

XglDpCtx2dGx

XglDpCtx3dMem

 XglDpCtx3dGxOther devices

XglPipeCtx

XglPipeCtx3dXglPipeCtx2d

XglDbgObject

Other devices

XglSwpCtx3dDefXglSwpCtx2dDef

XGL Class Structure 55

3

Classes for Internal Data Storage
The internal data types are represented by the following C++ classes:

XglPrimData
The XglPrimData class formats API geometric data to the XGL internal point
type in the software pipeline. It includes an array of several levels of point
list data (contained in the XglLevel subclass) that can be created when data
is moved down through the graphics pipeline (in other words, transformed
points are stored at a different level than the original points). Briefly, this
class includes member functions that:

• Allocate and free memory used for containing geometric data, and copy
and convert geometric data into the form appropriate for a particular
stage of the geometric pipeline.

• Set and test the per-facet or per-primitive flags for hollow flags, global
edge flags, vertex edge flags, pick information, and silhouette edge flags.

XglConicData2d / XglConicData3d
The XglConicData classes format conic data (in circles, arcs, ellipses, or
elliptical arcs) to the appropriate internal point type. Like the XglPrimData
class, these classes include an array of levels of point list data (contained in
the XglConicList2d and XglConicList3d subclasses) that can be created
when data is moved down through the graphics pipeline.

XglRectData2d / XglRectData3d
The XglRectData classes format rectangle data to the appropriate internal
point type. Like the XglPrimData class, this class includes an array of levels
of point list data (contained in the XglRectList2d and XglRectList3d
subclasses) that can be created when data is moved down through the
graphics pipeline.

XglPixRect
The XglPixRect class manages pixel data. A PixRect is an abstraction of a 2D
rectangular array of pixels. The XglPixRect class subclasses to classes that
represent memory-based PixRect objects.

For more information on the internal point type classes, see the XGL Device
Pipeline Porting Guide.

56 XGL Architecture Guide—November 1995

3

57

Object Interactions 4

This chapter provides information on XGL objects. It includes information on
the following topics:

• API object instantiation

• Pipeline loading and pipeline object instantiation

• Communication between objects

• Object destruction

Opening XGL
The API operator xgl_open() initializes XGL. This operator first checks that
the XglGlobalState object does not already exist (to prevent multiple
xgl_open() calls). If this is the case, the xgl_open() routine instantiates the
Global State object. The Global State object maintains the state of the XGL
environment and is responsible for the loading and manipulation of the
pipeline shared library objects and the corresponding XglPipeLib objects. There
is only one Global State object in the XGL environment.

The XglGlobalState object loads the software pipeline shared library and then
calls the function xgli_create_PipeLib() (defined in the software pipeline
shared library) to create the XglSwpLib object. The XglSwpLib object defines
the member functions necessary to create and destroy the software pipeline
subclasses of the DI provided classes. For more information on pipeline
loading, see “How the Pipelines Are Created and Managed” on page 64.

58 XGL Architecture Guide—November 1995

4

The Global State object also creates the System State object. The System State
object handles API object creation and destruction, error mode setting, and
internal error reporting. In future releases, it may be possible to have more
than one System State object. If multiple System States are allowed, the Global
State object will manage them.

Note – The software pipeline is loaded when XGL is opened so that the open
fails if there is no software pipeline.

How API Calls Are Mapped to XGL Internal Calls
From the API perspective, all API-visible XGL objects are device independent.
The application manipulates XGL objects and executes primitives via C object
handles and C function calls. The C function calls and object handles are
mapped to the C++ internal code by a set of C wrappers that provide the
translation between the C API and the C++ device-independent classes and
objects. For example, the application might ask to have a 2D Context created:

ctx = xgl_object_create(SysState, XGL_2D_CTX, NULL, NULL);

This call is mapped in XglWrapApi.cc to the C++ internal call:

obj = (XglObject*)((XglSysState*) sys_state)->createContext2d();

Each API object has a wrapper function that maps its object-specific operators
and attribute set and get calls to internal calls. For example, an API request to
set the line style in a 2D Context object:

xgl_object_set(ctx, XGL_CTX_LINE_STYLE, XGL_LINE_PATTERNED, NULL);

is mapped to the internal call:

ctx2d->setLineStyle(<argument>);

Instantiation of API Objects
As mentioned in Chapter 1, an object consists of member data and the methods
(or functions) needed to operate on that data. A class is a container for data
and methods common to a set of similar objects. An instance of a class inherits
the data and methods of each of its parent classes, starting from the top of the
class tree and adding the data and methods from each of the derived classes.
Thus, for example, a 3D Context object has the following inheritance:

Object Interactions 59

4

The 3D Context object inherits the following data and methods from its parent
classes:

XglDbgObject This object is intended for debugging purposes only.

XglApiObject Adds fields for the object type and application data.

XglObject Adds mechanisms to enable information on state changes
to be communicated between objects.

XglCtxObject Adds data and methods to enable the use of the Pcache
object.

XglContext Adds data and methods shared between 2D and 3D
Context objects. For example, surface front face attributes
are available to both 2D and 3D objects.

XglContext3d Adds 3D Context object-specific data and methods, such as
attributes for depth cue color.

System State Object and API Object Lists

All API objects are instantiated through the System State object. The object
creation call is routed by the wrapper function to the System State object,
which instantiates the object. The System State object keeps track of all API
objects in two lists: a list of pointers to Device objects and a list of pointers to
all other API objects. When the System State object instantiates an API object, it
adds a pointer to the object to the list.

For most API objects, object instantiation is performed in a reasonably straight-
forward way, with the System State object invoking object instantiation and the
object constructor initializing default values. However, object instantiation for
the Device object and the Context object is more complex, since each of these
API objects is actually composed of more than one internal object. The sections
that follow discuss the components of the Device and Context objects.

XglDbgObject XglApiObject XglObject

XglContext XglContext3d 3D Context
object

+ +

+ =

XgCtxObject

+

+

60 XGL Architecture Guide—November 1995

4

What Is a Device Object?

From the perspective of the XGL API, a Device object is an abstract entity that
represents a drawing surface. From the internal perspective, however, a Device
object is actually composed of two objects that are linked together throughout
the lifetime of the objects. The components of the Device object are:

• A device-independent object subclassed and instantiated from one of the
leaves of the Device class, such as XglRasterWin.

• A device-dependent object subclassed and instantiated from a
corresponding leaf of the XglDpDev class, which in the case of a window
raster device might be XglDpDevGx. The XglDpDev subclassed object is
created as part of the Device object creation process and remains associated
with the Device object for the lifetime of the Device instance.

The two ways of looking at a Device object are illustrated in Figure 4-1, using a
window raster device as an example.

Figure 4-1 Components of the Device Object

The Device object was designed with separate device-independent and device-
dependent components to isolate the Device object’s device-dependent
operations from its device-independent operations. In this way, each pipeline
implementation can define the actual device-specific operations for the device.

Instantiation of a Device object is a complex process involving numerous steps.
See “How the Pipelines Are Created and Managed” on page 64 for information
on this process.

API view of the
Device object Internal view of

the components
of the Device object

XglRasterWin

XglDpDevGx

Object Interactions 61

4

What Is a Context Object?

The Context object is responsible for rendering and storing attribute values. As
with the Device object, the conceptual API view of the Context object is
different from its actual internal representation. From the perspective of the
application, the Context object is a single entity that represents the graphics
pipeline. Internally, however, the Context object has several component objects.
When the API Context object is initially created, it is composed of the
following two objects:

• A device-independent object subclassed and instantiated from one of the
leaves of the Context class, such as XglContext3d.

• A device-dependent object subclassed and instantiated from one of the
leaves of the XglPipeCtx class for the software pipeline, such as
XglSwpCtx3d. The software pipeline-context object is linked with the
Context object for the lifetime of the Context object.

Additionally, when the Device object is associated with the Context object, the
following object becomes a component of the Context object:

• A device-dependent object for the device pipeline that is subclassed and
instantiated from the leaves of the XglPipeCtx class that correspond to the
already existing Device and Context, such as XglDpCtx3dGx.

Figure 4-2 shows a 2D Context object that has been associated with a GX frame
buffer.

Figure 4-2 Components of the Context Object

API view of the
Context object Internal view of

the components
of the Context
objectXglDpCtx3dGx

XglContext3d

 XglSwpCtx3d

Component of the Context
object added when the
Device is associated

62 XGL Architecture Guide—November 1995

4

Device and Context Association

The device pipeline-context object is created during the first association of a
Context and a Device and corresponds to a specific Device-Context pair. When
a Device and a Context are first associated, the device-dependent part of the
Device object creates a device pipeline-context object (XglDpCtx) for the
device. If a Device is set on a Context with which it was previously associated,
the Context will disassociate from its current device and ask the Device to
retrieve the handle to the pre-existing XglDpCtx object. If the Device object
finds a pre-existing entry for an XglDpCtx object for this Context, it returns a
pointer to the object to the Context.

Figure 4-3 illustrates the relationships between the various DI and Dp objects
when the Device is first associated with the Context. It shows a Window Raster
Device object, including its device-independent part (XglRasterWin) and its
device-dependent part (XglDpDev), the device pipeline-context object, and the
Device’s list of existing XglDpCtx objects.

Figure 4-3 Device and Context Association

Context3d

XglSwpCtx3d

Context object

Reference relationship
Object pointer List pointer

XglDpDevGx

XglRasterWin

Device object

DpCtx3dGx ctx

dpCtx

next

Object Interactions 63

4

The Device object can be concurrently associated with more than one Context
object. In this case, there is a device pipeline-context object created for each
Device-Context pair. Figure 4-4 shows a Device object with two associated
Context objects.

Figure 4-4 Device Association with Multiple Contexts

Context3d
Context3d

XglRasterWin

XglDpDevGx

DpCtx3dGx ctx

dpCtx

next

ctx

dpCtx

next

DpCtx3dGx

XglSwpCtx3d
XglSwpCtx3d

Reference relationship
Object pointer
List pointer

Context object Context object

Device object

64 XGL Architecture Guide—November 1995

4

How the Pipelines Are Created and Managed
Pipeline creation is a dynamic process that occurs in phases as XGL is opened
and initialized. The process can be summarized in the following general steps:

1. The XGL environment is set up.

2. A Device object is created.

3. A Context object is created.

4. The Device object is associated with the Context object.

The following sections describe this process. See Figure 4-5 on page 67 for an
illustration of an instantiated runtime system.

Note – It is assumed that only one software pipeline exists in the XGL system,
although the actual software pipeline can vary from one runtime environment
to another.

The XGL Environment Is Set Up

When an application calls xgl_open() to initialize XGL, the following set of
events occurs. The events are illustrated in the diagram in the margin. Objects
are represented by ovals; functions are in boxes. Black arrows represent control
flow; shaded arrows represent pointers.

1. The xgl_open() call creates the XglGlobalState object, which is unique in
the XGL system.

2. The XglGlobalState object loads the software pipeline (xglSUNWswp.so.4)
through dlopen() .

3. The XglGlobalState object creates the unique XglSwpLib object for the
software pipeline by calling xgli_create_PipeLib() , which is defined
in xglSUNWswp.so.4 and accessed through dlsym() .

4. The xgl_open() call creates the XglSysState object, and a handle to the
System State object is returned to the Global State object. The System State
object maintains two object lists: one for Device objects and one for non-
Device API objects. During the creation of the System State, the predefined
objects (line patterns, markers, stipple rasters) are created.

xgl_open()

XglGlobalState

XglSwpLib

(xglSUNWswp.so.4)

xgli_create_PipeLib()

XglSysState

Object Interactions 65

4

A Device Object Is Created

When the application calls xgl_object_create() to create a Device object
(such as a window raster for a GX frame buffer), it passes in the device type
and the window descriptor containing the X window identifying information.
The illustration in the margin shows the creation of a Device object. The
following events occur:

1. The XglSysState object initiates the creation of the device-independent part
of the Device object. In the case of a window raster, for example,
XglRasterWin is created.

2. When XglRasterWin is created, it calls XglDrawable::grabDrawable() to
obtain an XglDrawable object. The XglDrawable grabDrawable() function
determines the type of drawable required for the raster, and returns a
drawable object of the appropriate type.

3. During the creation process of XglRasterWin (the device-independent
Device object), the Device object asks the XglGlobalState object to create its
device-dependent part.

4. To start the process of creating the device-dependent part of the Device
object, the XglGlobalState object first traverses its XglDpLibList object list to
determine if an object for the particular pipeline library already exists. If it
finds a matching ID entry in the object list, the object exists, and the process
proceeds to Step 6.

If XglGlobalState does not find a match in its XglDpLibList, XglGlobalState
loads the shared library using dlopen() . The name of the shared library is
obtained from the Drawable object.

5. The XglGlobalState object creates the subclassed XglDpLib object for the
pipeline being loaded, which is XglDpLibGx in this example. To do this,
XglGlobalState calls xgli_create_PipeLib() , which is defined in the
pipeline shared library and accessed through dlsym() .
xgli_create_PipeLib() creates an instance of the pipeline derived
XglDpLib class and returns a pointer. This pointer is then appended to the
XglGlobalState’s XglDpLibList object for future reference. Note that the
XglDpLib object represents one pipeline.

6. The device pipeline derived XglDpLib object creates or retrieves an instance
of the XglDpMgr pipeline derived object. There is one XglDpMgr object per
device category, such as a frame buffer.

XglSysState

XglRasterWin

XglDrawable XglGlobalState

(xglSUNWcg6.so.4)

xgli_create_PipeLib()

XglDpLibGx

XglDpMgrGx

XglDpDevGx

66 XGL Architecture Guide—November 1995

4

7. The XglGlobalState object then asks the XglDpMgr object to create the
device-dependent subclassed XglDpDev object. An XglDpDev object is
created for each new XGL Device. A pointer to this object is returned to the
XglRasterWin object. A pointer to the XglRasterWin object is stored in the
System State’s list of existing Device objects.

A Context Object Is Created

When the application calls xgl_object_create() to create a Context object,
for example, XglContext3d, the following events occur:

1. The XglSysState object initiates the creation of the Context 3D object.

2. The Context object, through the Global State object, requests that the
XglSwpLib object create a software pipeline-context object for the specific
Context (in this example, XglSwpCtx3d). This object remains attached to the
Context object for the lifetime of the Context object.

The pointer to the initialized 3D Context object is stored in the System State
object’s list of existing non-Device API objects.

The illustration in the margin shows the creation of a Context object.

The Device Is Associated With the Context

When the application calls xgl_object_set() to associate the Device object
and the Context object, the following events occur:

1. The Context object will disassociate from the current Device object, if any,
and associate with the new Device object. (If the two Device objects are the
same, no changes will occur, and the process is complete.)

2. The Context object will ask the Device object to retrieve the handle to the
XglDpCtx object that corresponds to the specific Context. This object may
have already been created by a previous association of the same Context
and Device.

3. To retrieve the handle to the XglDpCtx object, the Device object will match
against its list of XglDpCtx objects to determine whether an XglDpCtx
subclassed object (e.g., XglDpCtx3dGx) for the specific Context and Device

XglSysState

XglContext3d

XglSwpCtx3d

XglGlobalState

XglContext3d

XglRasterWin

XglDpDev

XglDpCtx3dGx

Object Interactions 67

4

pair already exists. If it exists, the handle to it is returned. Otherwise, the
Device object will ask the subclassed XglDpDev object to create an
XglDpCtx object for the Context and Device pair. The Device object will
store a pointer to these objects for the lifetime of the Context object.

Figure 4-5 illustrates an instantiated runtime system. Black lines represent one-
way or two-way relationships between objects. Shaded arrows represent
pointers from an object list to the object.

Figure 4-5 Pipeline Objects Instantiated at Runtime

Reference relationship
List pointer

Object list

XglSwpLib

XglDpMgrGx

XglGlobalState

XglDpLibGx

XglRasterWin

XglContext3d

XglSwpCtx3dXglDpCtx3dGx

XglDpDevGx

XglSysState

XglDrawable

68 XGL Architecture Guide—November 1995

4

Object Communication
This section describes how the internal relationship between XGL objects is set
up and how messages are passed between objects.

API Object Relationships

During an XGL session, certain API objects are associated with other objects
that serve as resources containing information relevant to rendering. This
association between objects is established by the application’s use of attributes
whose values are pointers to objects.

Objects are associated with each other in the following manner: each object has
a set of attributes, and one of these attributes may be a pointer to another
object (or an array of pointers to objects). For example, during an XGL session,
the application associates the Device object with the Context object, and it may
also associate additional objects with the Context object, such as Memory
Raster objects and Stroke Font objects. A relationship in which an object uses
another object is referred to as a using relationship. Table 4-1 lists XGL objects
that use other objects via attributes whose values are XGL object pointers.

Table 4-1 API User Object and Used Object Relationships

User Object Linking Attribute Used Object Class

XglContext2d XGL_CTX_DEVICE XglRasterMem
XglRasterWin

XGL_CTX_GLOBAL_MODEL_TRANS
XGL_CTX_LOCAL_MODEL_TRANS
XGL_CTX_MODEL_TRANS (Read-only)
XGL_CTX_VIEW_TRANS
XGL_MC_TO_DC_TRANS (Read-only)

XglTransform
XglTransform
XglTransform
XglTransform
XglTransform

XGL_CTX_LINE_PATTERN
XGL_CTX_EDGE_PATTERN

XglLinePattern
XglLinePattern

XGL_CTX_MARKER XglMarker

XGL_CTX_RASTER_FPAT
XGL_CTX_SURF_FRONT_FPAT

XglRasterMem
XglRasterMem

Object Interactions 69

4

Architecture of Object Relationships

The relationship between API objects is implemented with an object
registration and message passing mechanism. This mechanism is defined in the
XglObject class and is inherited by XglObject’s subclasses. It is designed to do
the following:

• Inform interested user objects of changes in used objects.

When a used object is changed, it might need to communicate its changes to
some of its users. For example, if a Device is attached to a Context and the
Device color map is changed, the Device needs to warn the Context that the
color map has changed. In some cases, however, users might not be
concerned about changes and, therefore, might not want to be informed.

XGL_CTX_SFONT_0
XGL_CTX_SFONT_1
XGL_CTX_SFONT_2
XGL_CTX_SFONT_3

XglSfont
XglSfont
XglSfont
XglSfont

XglContext3d All the above and:

XGL_3D_CTX_NORMAL_TRANS
(Read-only)

XglTransform (3D)

XGL_3D_CTX_SURF_BACK_FPAT XglRasterMem

XGL_3D_CTX_LIGHTS XglLight

XGL_3D_CTX_SURF_FRONT_TMAP
XGL_3D_CX_SURF_BACK_TMAP

XglTextureMap

XGL_3D_CTX_SURF_FRONT_DMAP
XGL_3D_CX_SURF_BACK_DMAP

XglDmapTexture

XglDevice XGL_DEV_COLOR_MAP
XGL_DEV_CONTEXTS

XglCmap
XglContext

XglRasterMem Same attributes as XglDevice

XglRasterWin Same attributes as XglDevice

Table 4-1 API User Object and Used Object Relationships (Continued)

User Object Linking Attribute Used Object Class

70 XGL Architecture Guide—November 1995

4

• Delay the destruction of a used object until it no longer has users.

When an object is asked to destroy itself (by xgl_object_destroy()), it
must only destroy itself if it does not have any other object referencing it. If
it does have another object referencing it, it must postpone its destruction
until it no longer has users. For example, if a Transform object is attached to
the Context object and the API operator xgl_object_destroy() is
invoked to destroy the Transform, the Transform must not destroy itself
immediately, since it is still referenced by the Context object. It can only
destroy itself when the Context attribute referencing the Transform is reset
to another Transform.

The basic data structure of the object registration and message passing
mechanism is the user list.

Object Registration: The User List

An API object stores information on associated objects in its user list. The user
list is a linked list that stores a pointer to the user object, a Boolean value
indicating whether the user object wants to be notified of changes, and a
reference count on a per object basis.

The reference count records how many times a user object has registered itself
with the used object. For example, an application program can associate the
same Line Pattern object with a Context object twice, once to set the pattern of
lines and once to set the pattern of surface edges. If the application does this,
the Line Pattern object will register the Context object as a user two times, and
the reference count of the Line Pattern object’s user list will be incremented
accordingly. If the pattern for lines is then changed to a different pattern, the
Context will remove itself as a user of the original pattern object for line
patterns and register itself as a user of the new pattern object. When this
occurs, the original pattern object decrements its reference count for the
Context object by one. The user list is illustrated in Figure 4-6 on page 71.

Object Interactions 71

4

Figure 4-6 User List

How the User List Works

An object registers itself with another object by invoking the addUser()
member function of the XglObject class and specifying whether it is interested
in receiving a message from the object if a change occurs in the object’s state. A
call to addUser() is shown below:

addUser() determines whether the registering object is already registered in
the used object’s user list. If the registering object is not in the user list,
addUser() adds a new node to the user list. If the notify_interest
variable is set to TRUE, addUser() registers the object as interested in being
notified if the used object changes, and, if the registering object has registered

void addUser(XglObject* obj,Xgl_boolean notify_interest =FALSE);

Pointer to object

Interested / Not Interested

Reference Count

Next

Object

Pointer to object

Interested / Not Interested

Reference Count

Next

Object

User List

Head

72 XGL Architecture Guide—November 1995

4

itself before, the used object increments the reference count for that user and
OR’s the current notify_interest flag with the already existing flag. The
addUser() function is defined in Object.cc as:

When a user object no longer uses another object, it invokes removeUser() to
remove it from the used object’s user list. removeUser() traverses the used
object’s user list, locates the node for the user object, and decrements the
reference count field for that object node by one. If the reference count is zero,
the node is deleted from the user list. removeUser() is a member function of
the XglObject class and is declared in XglObject.h .

As a side effect, removeUser() deletes the used object if the API operator
xgl_object_destroy() has been invoked to delete the object. However, the
used object will not destroy itself if it has any users but will simply note that it
was asked to destroy itself. Thus, if a used object has been asked to destroy
itself and the used object’s only user asks the used object to remove the user
from the used object’s user list, the used object traverses its list, decrements the
reference count, deletes the node, and then destroys itself.

void XglObject::addUser(XglObject* obj, Xgl_boolean notify_interest)
{

XglUser* user = userList;

while (user) {
if (user->object == obj) {

user->refCount++;
user->interest = user->interest || notify_interest;
return;

}
user = user->next;

}

// Create the user
user = new XglUser(obj,notify_interest);
user->next = userList;
userList = user;

}

Object Interactions 73

4

removeUser() is defined in Object.cc as:

Message Passing

Whenever an API object is changed, some or all of its users might want to be
notified of the changes. For example, if a Window Raster Device object is
attached to many Context objects, all of which have expressed an interest in
being notified of changes, and the dimensions of the window change, the
Device object must notify its interested users that its state has changed.

It is the responsibility of the user object to inform the used object that it is
using the used object and that it is interested in being notified of any changes.
It is the responsibility of the used object to notify interested users whenever a
state change occurs. These operations are handled by the XglObject member
functions send() and receive() .

void XglObject::removeUser(XglObject* obj)
{

XglUser* user, *prev_user;

if (userList) {
for (user=userList, prev_user=user; user;

prev_user=user, user=user->next){
if (user->object == obj) {

if (--(user->refCount)==0) {
if (user == userList) //object is in first node

userList = user->next;
else

prev_user->next = user->next;
delete user;
if (destroyed && (userList == NULL))

 delete this;
}
return;

}
}

 }
}

74 XGL Architecture Guide—November 1995

4

How Message Passing Works

A used object sends a message to interested users by invoking the XglObject
member function send() . This function traverses an object’s user list and
sends a message to each of the object’s interested users. send() specifies who
the sender is and contains information on what aspect of the object’s state has
changed. The function is defined as follows:

A user object processes the local impact of changes of a used object with the
receive() function. receive() has two arguments: a pointer to the object
that is sending the message and the message itself. When an object, such as the
Context, receives a message, it determines which of the objects it is currently
using sent the message, and it does processing based on the nature of the
message. When the Context has processed the message, it passes the message
to its parent class, and this class, in turn, passes the message to its parent class,
until the message reaches the top of the DI hierarchy. The message is passed
upward because the attributes associated with the message might be defined in
any of the object’s parent classes.

receive() is a virtual function in XglObject.h and is invoked as follows:

receive() can be overridden by each API object to handle the specific
processing for its own attributes. Only a given class or subclass can do the
specific processing triggered by an incoming message from an object currently
associated with an object of this class.

void XglObject::send(const XglMsg &msg)
{

XglUser* user = userList;

while (user) {
if (user->interest) {

user->object->receive(this,msg);
}
user = user->next;

}
}

virtual void receive(XglObject* obj, const XglMsg &msg);

Object Interactions 75

4

Destroying Objects and Closing XGL
All API objects are destroyed through the System State object. When the
application program calls xgl_object_destroy() to destroy an object, the
System State object searches the appropriate API object list, removes the object
from the list, and then calls the destroy function for the API objects. This
destroy function is also used to destroy all existing API objects during
xgl_close() .

Destroying the Device Object

An application call to xgl_object_destroy() with a Device handle as the
input parameter destroys the Device object if it is not used by any Context
object. When the Device object is asked to destroy itself, the following events
occur:

1. The System State object removes the Device object from its Device object list
and destroys the Device object if it is not referenced by any users.

2. The Device object determines whether if has any users. If it does not have
any users, it notifies all the objects that it is currently using that it will no
longer use them. Then it destroys itself. In the process, it also destroys its
device-dependent part, XglDpDev. If it has users, it notes that it was asked
to destroy itself.

Destroying the Context Object

An application call to xgl_object_destroy() with a Context handle as the
input parameter destroys the Context object. When a Context is destroyed, the
following events occur:

1. The System State object removes the Context object from the list of objects it
has created.

2. The XglSysState asks the Context object to destroy itself. During this
process, the Context object determines whether it has any users.

a. If the Context has users, it notes that it was asked to destroy itself.

b. If the Context does not have users, it does the following:

i. It notifies all the objects that it is currently using that it will no
longer use them.

76 XGL Architecture Guide—November 1995

4

ii. It destroys the software pipeline object.

iii. It destroys itself.

Closing XGL

When XGL is closed, the System State object deletes all the objects it created in
the same process that is used in an xgl_object_destroy() call. The pipeline
XglDpDev object is destroyed as part of the Device object destruction, and the
XglDpCtx object is destroyed during the corresponding Device destruction or
Context destruction. The System State object then deletes itself.

During xgl_close() , the Global State object is destroyed, and the destructor
of the XglDpLib object is called. The XglDpLib destructor is explicitly invoked
using the handle to the object. It is the responsibility of the XglDpLib object to
destroy the XglDpMgr object(s) for the pipeline, since there may be one or
more XglDpMgr objects for a particular pipeline.

The Global State object executes dlclose() to remove the reference to the
pipeline shared object from XGL’s process space.

77

Rendering and Handling State
Changes 5

This chapter describes the processes of rendering and handling Context state
changes. It includes information on the following topics:

• Steps in the rendering process

• Architecture of the mechanisms for storing state changes and passing
information about the changes to the device pipeline

• Architecture of backing store

Goals of the Rendering Architecture
The XGL architecture provides flexibility in the interactions between the device
pipeline and the software pipeline at rendering time. The device pipeline can
choose to accelerate some rendering tasks and to fall back on the XGL software
pipeline for other rendering tasks. This dynamic switching between the device
pipeline and the software pipeline allows the device pipeline implementor to
tailor a port for a specific device.

The goals for the rendering architecture were to:

• Allow the device pipeline LI-1 rendering function to make the decision that
it cannot render a primitive and call the software pipeline for LI-1 or LI-2
processing.

• Allow the software pipeline at the LI-1 layer to call the device pipeline at the
LI-2 layer.

78 XGL Architecture Guide—November 1995

5

• Allow the device pipeline to call the equivalent software pipeline function
within a rendering call if the device pipeline cannot completely accelerate
the primitive.

• Allow the software pipeline to call a different rendering function at the
same level without knowing whether the function is implemented in the
device pipeline. For example, if the device pipeline has not implemented
stroke text, it can call the software pipeline’s LI-1 stroke text function; the
software pipeline’s stroke text function may then tesselate the text into lines
and call back the device pipeline LI-1 polyline function to see if it can render
the partially processed geometry data.

Basic information on the steps of the rendering process is provided in the
following section.

How Rendering Works

An application call to render a primitive is mapped by the device-independent
code to a call to the device pipeline. This mapping takes place in the Context
wrapper. For example, the API multirectangle operator is:

xgl_multirectangle(ctx,rect_list);

The wrapper code maps the C function call to the C++ internal code and
forwards the call and the application data to the device pipeline. To do this, the
wrapper gets a pointer to the current pipeline and calls the pipeline’s version
of xgl_multirectangle() . The wrapper locates the pipeline versions of the
XGL primitives in an array of function pointers, which is called the opsVec
array. The sample wrapper code below shows the currOpsVec pointer
pointing to the multirectangle entry of the opsVec array.

void xgl_multirectangle(Xgl_ctx ctx, Xgl_rect_list* rect_list)
{

 // Get pointer to device pipeline
 XglDpCtx* dp = ((XglCtxObject*)ctx)->getDp();

 // Call dp function pointed to by array entry
(dp->*((void(XglDpCtx::*)(Xgl_rect_list*))

 (dp->currOpsVec[XGLI_LI1_MULTIRECTANGLE])
))(rect_list);
}

Rendering and Handling State Changes 79

5

What Is the opsVec Array?

Rendering calls and information on attribute changes are passed from the
device-independent code to the device pipeline through the opsVec array. The
opsVec array is a dynamic array of function pointers to device pipeline or
software pipeline renderers. It serves as the point of communication between
the device-independent code and the device pipeline code. The opsVec array
is designed to minimize the overhead in the device-independent code during
each graphics primitive call. When the application calls a primitive or makes
an attribute change, the pipeline is notified of this immediately through the
opsVec array.

The opsVec array is allocated by the base class XglDpCtx and filled in with
pointers to default base class functions that point to software pipeline
functions. For example, a portion of the default opsVec array in the base
XglDpCtx3d class looks like this:

When the device pipeline is instantiated, it creates a version of the XglDpCtx
object for its own pipeline. This object contains a set of opsVec array pointers
specific to the device. In its version of the array, the device pipeline will
override some or all of the entries in the opsVec array to install function
pointers to its own accelerated renderers. If the device pipeline does not
support a primitive, it can let the default function call the software pipeline for
rendering. For example, the GX pipeline installs the following opsVec entries

.....
opsVec[XGLI_LI1_MULTIMARKER] = XGLI_OPS(XglDpCtx3d::li1MultiMarker);
opsVec[XGLI_LI1_MULTIPOLYLINE] = XGLI_OPS(XglDpCtx3d::li1MultiPolyline);
opsVec[XGLI_LI1_NURBS_CURVE] = XGLI_OPS(XglDpCtx3d::li1NurbsCurve);
opsVec[XGLI_LI1_MULTIRECTANGLE] = XGLI_OPS(XglDpCtx3d::li1MultiRectangle);
opsVec[XGLI_LI1_MULTIARC] = XGLI_OPS(XglDpCtx3d::li1MultiArc);
opsVec[XGLI_LI1_MULTICIRCLE] = XGLI_OPS(XglDpCtx3d::li1MultiCircle);
opsVec[XGLI_LI1_POLYGON] = XGLI_OPS(XglDpCtx3d::li1Polygon);
.....

80 XGL Architecture Guide—November 1995

5

in its XglDpCtx3dGx class. For the remaining primitives, the array inherits the
default entries pointing to the software pipeline when the object is instantiated.

Figure 5-1 shows a device pipeline that implements polyline and polygon
renderers but points to the software pipeline for text rendering.

Figure 5-1 Rendering Through the opsVec Array

opsVec[XGLI_LI1_MULTIMARKER] = XGLI_OPS(XglDpCtx3dGx::li1MultiMarker);
opsVec[XGLI_LI1_MULTIPOLYLINE] = XGLI_OPS(XglDpCtx3dGx::li1MultiPolyline);
opsVec[XGLI_LI1_MULTI_SIMPLE_POLYGON] =

XGLI_OPS(XglDpCtx3dGx::li1MultiSimplePolygon);
opsVec[XGLI_LI1_TRIANGLE_STRIP] = XGLI_OPS(XglDpCtx3dGx::li1TriangleStrip);

xgl_multipolyline (API_info)XGL API

XGL Core

Pipelines

Wrapper

Device

XglDpCtxSampFb

currOpsVec

LI1 line

LI1 polygon

opsVec

. . .

XGL Software Pipeline
Library

LI-1 multiPolyline
LI-1 polygon
LI-1 text
LI-2 multiPolyline

. . . .

LI1 text

LI-2 polygon
LI-2 text

Device Pipeline
Renderers

Rendering and Handling State Changes 81

5

Device Pipeline Options for Rendering

When a device pipeline is loaded, it initializes its XglDpCtx object to assign
pointers to its renderers. The opsVec array architecture allows the device
pipeline to create a set of renderers that are tuned for performance. For
primitives that the pipeline wants to override but that do not need to have
optimal performance, the pipeline might create a single function that handles
error checking and attribute setting. For performance-critical primitives, the
device pipeline may want to create a set of functions including a generic or
“slow” function that performs error and attribute checking and one or more
functions that are optimized to handle particular sets of attribute values. These
“fast” renderers are used when a primitive is called repeatedly without
attribute changes. Depending on the sequence of primitive-attribute calls that
preceded a particular call, the pipeline can determine which renderer it should
set in the opsVec array.

Thus, at rendering time, the device pipeline has several options:

• If the device pipeline has not implemented a rendering function, it need not
reset the opsVec entry but can inherit the pointer to the default function,
which calls the software pipeline.

• The device pipeline can accelerate the primitive by installing a pointer to a
single device pipeline renderer that handles error checking and attribute
checking.

• The pipeline can design a set of functions for primitives whose performance
is critical. In this case, one renderer may handle generic attribute checking
and call another renderer that simply sends data to the hardware given
certain attribute values. When attributes change, the pipeline will again call
the generic renderer to check attribute changes; when the slow processing of
attribute checking is complete, the generic renderer can call the optimized
renderer.

Even when the device pipeline has implemented a primitive, it may need to
call the software pipeline for assistance at times. The device pipeline calls the
software pipeline directly. It can do so in the following cases:

• If the device pipeline doesn’t support the current combination of attribute
values, it can call the software pipeline without processing the primitive
call.

82 XGL Architecture Guide—November 1995

5

• If the device pipeline doesn’t support the combination of primitive
argument values, it must process the primitive call, but it can call the
software pipeline before calling a renderer.

• In some cases, the device pipeline may begin processing the data and decide
that it cannot render all the data. For example, the device pipeline may
request the software pipeline to:
• Render a primitive, as in the case of a clipped polygon that the device

pipeline cannot handle in a xgl_polygon() call.
• Render a subset of the primitive data, as in the case of a polygon that the

device pipeline cannot handle in a xgl_multi_simple_polygon() call.

In this case, the pipeline must call the software pipeline from inside the
renderer.

Note that the device pipeline can reset the opsVec array entries whenever it
needs to. Although the array is defined in the device-independent code, the DI
will never set opsVec entries, and there are no restrictions on when the device
pipeline can change its renderers. For information on how the device pipeline
sets pointers to its functions in the opsVec array, see the XGL Device Pipeline
Porting Guide.

More on the Rendering Architecture

Because the opsVec array was designed to provide the device pipeline with
optimal performance, a way for the device-independent code to handle low
performance functionality, such as backing store and error checking, was
needed. In particular, the device-independent code needed a way to handle
rendering to backing store that would not impact rendering to the primary
device. To meet this need, an array of wrappers to the opsVec function
pointers was designed. This array, called opsVecGen , is a static array that
points to a set of general purpose functions that handle error detection and
backing store, render through the opsVec array, and then check the deferral
mode. Note that the device pipeline cannot change the function pointers in the
opsVecGen array as it can in the opsVec array.

The device-independent code maintains a pointer to specify whether it is
rendering to the opsVec array or the opsVecGen array. This pointer is called
currOpsVec and is defined in DpCtx.h along with the two arrays. If the
application sets the backing store on a device using the attribute
XGL_WIN_RAS_BACKING_STORE, the device-independent wrapper will set the

Rendering and Handling State Changes 83

5

currOpsVec pointer to point to the opsVecGen array instead of the opsVec
array. Any attribute changes are sent to both the primary device and the
backing store device to keep them synchronized.

Figure 5-2 shows the opsVecGen architecture. For more information on
backing store, see page 95.

Figure 5-2 opsVecGen Architecture

Context State Changes
The device pipeline is notified of Context state changes when the changes
occur. The application can cause Context state to change in two ways:

• It can change a Context attribute directly using xgl_object_set() .

• It can change another object, which indirectly causes a Context attribute to
change.

In addition, view model or Transform changes cause changes in a set of items
derived from the Context’s view model attributes.

Information on attribute changes is passed directly to the device pipelines
through the opsVec array. The array has an entry for attribute changes
resulting from xgl_object_set() and another entry for attribute changes
resulting from messages between objects. The array is designed to minimize

opsVec[]

LI1 line

LI1 polygon

. . .

LI1 text

opsVecGen[]

Error detection
Backing store
Multibuffering
opsVec[]
Deferral mode

LI1 line

LI1 polygon
. . .

Wrapper
currOpsVec

XglDpCtx

84 XGL Architecture Guide—November 1995

5

the function call overhead for notifying the device pipeline of attribute
changes. It also allows the device pipeline to act only on the attributes that it is
concerned with and ignore all other attributes.

The sections that follow discuss how the opsVec array passes information on
attribute changes to the device pipeline and how the pipeline can get new
attribute values when changes occur.

State Changes From Attribute Setting

Context state changes can result from an application xgl_object_set() call
with the obj parameter of ctx . An object set call on the Context:

xgl_object_set(ctx, Xgl_CTX_ATTR_NAME, value, NULL);

maps to the following C++ call:

ctx->setAttrName(value);

When an attribute set operation changes a Context attribute value, the Context
wrapper notifies the Context object of the change. The Context updates its
cached attribute value and builds an array of attribute changes. This array lists
attributes that have changed but does not include the new attribute values.

When the entire list of attributes is processed, the wrapper gets a pointer to the
current device pipeline from the Context object, gets the list of changed
attribute types from the Context, and sends the list of changes to the pipeline
through the object set entry of the opsVec array.

The device pipeline must provide an objectSet() function to handle
attribute changes and install a pointer to this function in its opsVec array. The
objectSet() function will check the attribute type of the attributes that the
pipeline is interested in, retrieve the attribute values from the Context, and
update the hardware state. One way of handling changes is to get the new
attribute value from the Context object immediately, as in the following
example code:

Rendering and Handling State Changes 85

5

void XglDpCtx2dGx::objectSet(const Xgl_attribute *att_type)
{
 Xgl_usgn32 change_renderer = 0;

 for (;*att_type;att_type++) {
 switch(*att_type) {

 case XGL_CTX_DEVICE:
// Update all context attributes.
// (ctx->getAttrTypeListAll()); // DI utility list.
objectSet((const Xgl_attribute*) attr2dTypeListStatic);
break;

 case XGL_CTX_BACKGROUND_COLOR:
// Update backgroundColor (background cached color)

 dpDev->cMap->getColorMapper()(dpDev->cMap,
&(Xgl_color&)ctx->getBackgroundColor(),
&backgroundColor, TRUE);

// update hardware
break;

case XGL_CTX_SURF_FRONT_FILL_STYLE:
surfIndex.fld.fstyle = ctx->getSurfFrontFillStyle();
// update hardware
break;

...
}

 }
}

As an alternative, the pipeline can choose to simply note that an attribute was
changed and wait until a later time to update the hardware context, perhaps
updating the hardware context at rendering time. At that time, the device
pipeline will check the XGL Context for the new attribute values and update
the hardware. The following sample code shows a pipeline objectSet()
routine checking for attribute changes.

void XglDpCtx3dSampFb::objectSet(const Xgl_attribute *attr_list)
{
 Xgl_attributeatt_type;

 while (att_type = *attr_list) {
switch(att_type) {
case XGL_CTX_ATEXT_CHAR_SLANT_ANGLE:

update_needed = TRUE;
break;

case XGL_CTX_DEVICE:

86 XGL Architecture Guide—November 1995

5

objectSet(ctx->getAttrTypeListAll());
break;

case XGL_CTX_EDGE_COLOR:
update_needed = TRUE;
break;

...
}

}
}

Note that if the Device is changed, the device pipeline is responsible for
updating its entire attribute cache.

State Changes From XGL Object Message Passing

Context state changes can result from changes to objects used by the Context.
For example, the Context object registers itself as a user of the Device, the Line
Pattern, and the Stroke Font objects, and notes that it wants to be notified when
changes to these objects occur. When an object the Context is using changes,
the object updates its data and sends a message to the Context. The Context
receives the message and reacts accordingly. Objects register interest in other
objects through the user list. For more information on the user list, see page 70.

Objects can change in two ways:

• The application can change the object that it is using; in other words, it can
set a different Line Pattern object on the Context. This change is handled by
the object set mechanism, and the device pipeline is informed of this change
through the object set entry of the opsVec array. Note that a Color Map set
on a Raster is handled by message passing; see page 94 for more
information on Color Map changes.

• The object’s data can change, as would be the case if the application
changed the line pattern data in an existing Line Pattern object. This change
is handled by the message receive mechanism.

In the message receive mechanism, the object sends a message to its users
informing them of the change. For example, if a Line Pattern object changes, it
sends the Context a message informing it that the Line Pattern object has
changed. The Context receives this message in its receive() function and
updates its attribute data. The Context then forwards the message to the device
pipeline through the message receive entry of the opsVec array.

Rendering and Handling State Changes 87

5

To handle forwarded messages, the device pipeline must provide a
messageReceive() function and install a pointer to this function in the
XGLI_LI_MSG_RCV entry of its opsVec array. The pipeline’s
messageReceive() function will check the object type and respond to the
message, as is shown in the following code fragment.

void XglDpCtx{2,3}dGx::messageReceive(XglObject* obj,
 const XglMsg& msg)

{
 switch (obj->getObjType()) {
 case XGL_2D_CTX:
 case XGL_3D_CTX:
 if (msg.flag & (XGLI_MSG_VIEW_COORD_SYS |

 XGLI_MSG_VIEW_CTX_ATTR)) {
transformsChanged = TRUE;
// Set generic renderers.

 }
 break;

 case XGL_WIN_RAS:
 if (obj == device) {
 if (msg.flag & XGLI_MSG_DEV_COLOR) {
 // Update cached colors and plane mask changes.
 }

 break;

 case XGL_LPAT:
 if (obj == ctx->getLinePattern() ||

obj == ctx->getEdgePattern()) {
 objectSet((const Xgl_attribute*) attrTypeList);
}

 break;
 case XGL_TRANS:
 if (obj == (XglObject*)ctx->getGlobalModelTrans() ||
 obj == (XglObject*)ctx->getLocalModelTrans() ||
 obj == (XglObject*)ctx->getViewTrans()) {

transformsChanged = TRUE;
// Set generic renderers.

}
 break;

...
}

}

88 XGL Architecture Guide—November 1995

5

For more specific information on the messages the device pipeline needs to
respond to, see the XGL Device Pipeline Porting Guide.

View Model Derived Data

XGL defines a conceptual view model consisting of a number of coordinate
systems where an application can specify certain operations. XGL provides a
facility named view model derived data to assist pipelines with implementation
of the view model operations.

Derived data maintains a cache of items derived from a Context’s view model
attributes. The derived items include Transforms for mapping geometry
between coordinate systems as well as items in various coordinate systems
such as the view clip bounds, lights, eye positions or eye vectors, model clip
planes, and depth cue reference planes. For example, derived data calculates
the VDC-to-DC Transform from the Context attributes for the VDC map, VDC
orientation, VDC window, DC viewport, and jitter offset, and the Device
attribute for DC orientation. Thus, a derived item can depend on only API
attributes, on only derived items, or on a combination of both.

The design goals of derived data are to:

1. Support geometry entering LI-1 from other coordinate systems (in addition
to Model Coordinates) with a simple interface for pipelines. The pipeline
can set the current coordinate system when one primitive invokes another.
For example, li1AnnotationText() can decompose the text into
polylines in VDC and then invoke li1MultiPolyline() . Derived data
keeps track of the current coordinate system for the pipeline.

2. Provide a fast test to inform a pipeline of changes to derived items of
concern so that the pipeline can minimize data transfer to devices that retain
state. A pipeline can express concern about changes to a specified set of
items. This allows pipelines to filter out irrelevant changes. This is useful
because derived data consists of a large number of items and pipelines are
typically interested in only a few of the items.

3. Defer calculation of a derived item until a pipeline requests that item. The
pipelines are not notified of derived data changes immediately but when
they need them at rendering time.

Rendering and Handling State Changes 89

5

Components of the Derived Data Mechanism

The central object of the derived data mechanism is the view cache object. The
view cache consists of derived items and functions for deferred evaluation of
the items. Each Context has a pointer to its own view cache, which maintains
the derived items specific to that Context. A view cache object is created at
Context creation time by a constructor in the Context object.

The Context constructor creates a set of Transform objects that represent its
default transformations (Local Model Transform, etc.) and creates the view
cache object. The view cache constructor creates internal Transforms that are
needed by derived data. The view cache constructor also creates a set of view
group configuration objects, each of which represents a coordinate system from
which geometry can enter an LI-1 primitive.

The view group interface object is the pipeline’s interface to the view model
derived data. It informs a pipeline when derived items have changed as a
result of either the application changing a view model attribute or a pipeline
changing the coordinate system from which geometry enters the next LI-1
primitive. The view group interface constructor is called in the
XglPipeCtx{2,3}d classes, and the object is created when the pipeline XglDpCtx
object is created.

Each pipeline has a pointer to a view group interface object. The view group
interface has functions for creating and destroying view concern objects. A
view concern object is a description of all the derived items about which a
pipeline is concerned. A pipeline may create as many view concern objects as it
needs. For example, it can create one view concern object for stroke primitives
and another for surface primitives.

Figure 5-3 on page 90 illustrates the set of objects in the derived data
mechamism. This example shows a 3D Context with one view concern object
for stroke primitives and another for surface primitives. Note that for 3D
Contexts, there are five view group configuration objects.

90 XGL Architecture Guide—November 1995

5

Figure 5-3 Derived Data Mechanism

How Derived Data Gets Information From the Context

As mentioned on page 83, there are two ways that Context state can change:
the application can directly set a Context attribute, or the application can
change an object used by the Context, causing the object to send a message to
the Context about the change. Either of these two types of changes can cause
derived data to change.

The Context has a number of attributes that the application can set, among
which are the view model attributes. For example, if the application changes
the VDC window using xgl_object_set() to set XGL_CTX_VDC_WINDOW, a
number of derived items that are dependent on the value of the VDC window
become invalid. But, because the changes are evaluated lazily, the derived data
items are not recalculated until the pipeline requests the items.

XglContext3d XglDpCtx3d

XglViewCache

XglTransform

XglTransform

XglViewGrp3dItf

XglViewConcern
(strokes)

XglViewConcern
(surfaces)

XglTransform

XglTransform

Reference pointer View group configuration objectXglTransform

XglTransform XglTransform XglTransform

Rendering and Handling State Changes 91

5

If the member datum in the Context for the VDC window is changed, the
Context informs the view cache object that the application changed the VDC
window by calling a function in the view cache object. This function
invalidates the derived items that depend on the VDC window. A set of bits
records which derived items changed.

Some Context attributes that are objects, such as Lights, Transforms, or the
Device, can change, causing derived data items to change. For example, if an
application gets the Local Model Transform and changes it, the Transform
sends a message to each Context that uses the Transform. If the Context is
interested in the change to the Transform, it will call a view cache function to
invalidate derived items that depend on the Local Model Transform. This
process is similar for changes to Lights and for Device resizes.

Handling Derived Data Changes

Derived items can change when the application changes a view model
attribute or a pipeline changes the current coordinate system. Each type of
event causes a message to be sent to the device pipeline at the time of the
event; notification is not deferred. The message types are
XGLI_MSG_VIEW_CTX_ATTR for Context attribute changes, and
XGLI_MSG_VIEW_COORD_SYS for current coordinate system changes.

Messages of the two types above give advance warning that the next primitive
may need to get derived items. A pipeline may choose to deal with the
messages simply by setting its own flag at the time of the notification, then
deferring action until the next primitive when it would need to interrogate the
composite at the next level.

A pipeline determines that a Context attribute or derived item has changed by
checking the flag that the pipeline sets upon receiving a message of the types
XGLI_MSG_VIEW_CTX_ATTR or XGLI_MSG_VIEW_COORD_SYS. If the flag is
set, the pipeline determines whether any derived items have changed by
calling the changedComposite() function in the view group interface object,
as in viewGrpItf->changedComposite(surfConcern) . The composite is
a record of the state changes for all derived items. If the
changedComposite() function returns TRUE, the pipeline must check the
change functions for individual items to determine which ones changed. For
more information on using the view group interface object’s change functions,
see the XGL Device Pipeline Porting Guide.

92 XGL Architecture Guide—November 1995

5

Changes in Context Stroke Attributes

The Context object includes a set of objects that contain attribute information
used when the software pipeline draws primitives as lines. For example, if a
device pipeline does not implement text, the software pipeline will render the
text. The software pipeline will convert the text to polylines and call the device
pipeline polyline function to render the lines. However, in this case, the device
pipeline polyline function will want to use the text attributes rather than the
line attributes when rendering the lines. This is handled transparently for the
device pipeline by the stroke group objects.

Lines, markers, text, edges, and front and back hollow polygons are considered
to be stroke types. Since the same set of attributes applies to each of the stroke
types, the Context object maintains a stroke group object for each of the stroke
types. Multiplexing primitives on the MultiPolyline() primitive is shown
in Figure 5-4.

Figure 5-4 Multiplexing Primitives on MultiPolyline()

Note – Stroke groups are used only by the MultiPolyline() primitive.
Other stroke primitives, such as MultiMarker() , do not use stroke groups.

Stroke Group Objects

The stroke group object for each stroke type contains the values for the
multipolyline-specific attributes (line color, line width, etc.). When an attribute
set occurs on a Context, the Context updates the attribute’s value, and, if the
set affects a stroke group, the Context also updates the stroke group attribute
for that stroke type.

Markers Edges Text
Hollow

polygons

MultiPolyline()

Lines

when tessellated as lines

Rendering and Handling State Changes 93

5

The XglStrokeGroup object provides interfaces for the pipeline to retrieve the
value of stroke attributes. For example, if a pipeline needs to know the value of
the line color, it invokes the stroke groups’s getColor() function. The
XglStrokeGroup3d object adds 3D-specific attributes to the stroke object. The
stroke group objects are associated with the Context object and are created at
Context creation time. A conceptual sketch of the relationship between the
Context object and the stroke group objects is shown in Figure 5-5.

Figure 5-5 Stroke Group Objects in the 3D Context Object

Rendering Using Stroke Attributes

Each stroke group object contains the attribute values for a particular stroke
type. To indicate which stroke group will be used for rendering, the Context
object provides a current stroke pointer, which points to one of the stroke
group objects. When geometry is rendered as lines, the stroke pointer is set to
the appropriate stroke group and MultiPolyline() renders using that stroke
group.

For example, if a device pipeline does not implement text, the software
pipeline will tesselate the text into polylines and call the device pipeline’s
MultiPolyline() function. However, before this happens, the software
pipeline assigns the current stroke group to the text stroke group. This
generates an objectSet() call to the device pipeline indicating which
attributes need to be loaded from the current stroke group. By the time the
device pipeline MultiPolyline() function is called, all the correct stroke
attributes will already have been processed.

3D Context object

line
stroke
group

text
stroke
group

edge
stroke
group

marker
stroke
group

hollow

polygon
stroke
group

Line color

Line width

Stroke Group Objects

Context
settable
state.

.

.

object object object

object
object

hollow

polygon
stroke
group
object

front back

94 XGL Architecture Guide—November 1995

5

Device State Changes
The state of a Device object can change in the following general ways:

1. Device changes can be color or pixel mapping related. The application can
modify the Color Map object associated with the Device, or it can set a new
Color Map on the Device.

2. Device changes can result from changes to the dimensions of the raster. In
this case, Context state is affected since Window Raster size changes cause
derived data changes.

3. Device changes can result from switching buffers during multibuffering.

The pipeline XglDpCtx object and XglDpDev object are each informed of
Device state changes, as follows:

• The device pipeline XglDpCtx object is notified of Device changes via the
Context object through message passing. This enables the XglDpCtx to
update hardware state. For example, the device-independent Device object
sends a message to the Context about a color map change in these lines:

 XglMsg msg;
 msg.flag = XGLI_MSG_DEV_COLOR;
 send(msg);

The Context receives the message and forwards it to the XglDpCtx through
the opsVec array.

• The device pipeline XglDpDev object is notified of a change by a direct call
from the device-independent code. This allows the pipeline to make device-
specific changes. For example, this call informs XglDpDev of a color map
change:

 ((XglDpDevWinRas*)dpDev)->setCmap(cmap);

See the XGL Device Pipeline Porting Guide for more information on the message
passing mechanism and on the XglDpDev functions that the device-
independent Device object uses to inform the pipeline of device state changes.

Rendering and Handling State Changes 95

5

Rendering Into Backing Store
A backing store consists of a piece of off-screen memory that reflects the
content of the display buffer and that is used by the server to restore
previously obscured areas of the display during an expose event. When
backing store is enabled, XGL renders a primitive to both the visible and
covered portions of the window when the window is clipped. Normally, XGL
renders the covered area to backing store using the inverse clip list and does
not render the exposed area to backing store. However, if the inverse clip list
becomes complex, it is more efficient to render to the entire backing store, and
XGL will, at its option, delete the inverse clip list.

In general, the XGL core is responsible for handling backing store operations.
The device pipeline need only implement a small set of device-dependent
functions in the pipeline to provide support in certain cases. However, the
device pipeline has the option of handling backing store itself. For example,
the PEXlib pipeline can rely on the server to handle backing store operations,
so it does not need the XGL core to provide backing store support.

Architecture of Backing Store

An application that wants to use backing store first requests it through the
server and then through XGL. When the server is asked to provide backing
store, it tries to allocate backing store memory from either system memory or
from a hardware cache. It is up to the server to decide whether to provide the
backing store support and from which area the backing store is allocated.

When XGL is asked to enable backing store, it determines whether the server
granted the request for backing store and whether the window is single
buffered (since XGL cannot render to backing store if double buffering is
enabled). If backing store is enabled, and the window is single buffered, XGL
then requests the handle to the allocated memory through the XglDrawable.

To render into the backing store area, XGL creates a set of shadow objects that
reflect the contents of the parent objects. For example, each Context and Device
pair is associated by a device pipeline-context object. Thus, if there is a shadow
device, there is a parent XglDpCtx, which renders the visible part of the screen,
and a shadow XglDpCtx, which renders to the backing store. The shadow
objects are:

• Shadow device pipeline-context object

96 XGL Architecture Guide—November 1995

5

• Shadow raster object, which can be either a Memory Raster or a Window
Raster

• Shadow device pipeline device object

Figure 5-6 shows the shadow devices that are created when backing store is
enabled.

Figure 5-6 Shadow Objects Created for Backing Store

The parent XglDpCtx and the shadow XglDpCtx have the same structure. Each
has an opsVec pointer, called currOpsVec , and two arrays: the opsVec array
and the opsVecGen array. Figure 5-7 illustrates the parent device pipeline-
context and the backing store device pipeline-context.

Figure 5-7 Architecture of the Backing Store Device

XglContext3d

XglSwpCtx3d XglDpCtx3dGx

XglRasterWin

XglDpDevGx

shadowRaster

shadowDpDev

shadowDpCtx

opsVec opsVecGen

LI-1

LI-2

LI-3

currOpsVec

Display Device
Pipeline Context

Backing Store
Device Pipeline Context

LI-1

LI-2

LI-3

opsVec opsVecGen

LI-1

LI-2

LI-3

currOpsVec

LI-1

LI-2

LI-3

Rendering and Handling State Changes 97

5

Creating a Shadow Device

A shadow device is created the first time that backing store is requested. An
application sets the XGL_WIN_RAS_BACKING_STORE attribute to request
backing store. When backing store is requested, the Window Raster calls the
device pipeline to inquire if it wants the XGL core to create a backing store
device and handle backing store operations. The Window Raster does this with
the pipeline interface dpDev->needRtnDevice() . If
dpDev->needRtnDevice() returns TRUE, the XGL core will:

1. Get a handle to the backing store memory from the server and create a
shadow device, which can either be a Window Raster or a Memory Raster. It
then attaches the shadow device to the parent device. The shadow device
includes its device-independent and device-dependent parts.

2. Create a shadow device pipeline-context object.

3. Synchronize the raster attributes between the base device and the shadow
device.

4. Set the doRetained flag in the parent device to TRUE to indicate that
backing store mode is on and that the server is granting the backing store.

The example code below shows the shadow device being created.

void XglRasterWin::setBackingStore(Xgl_boolean
 backingstore_mode)

{

if (backingstore_mode) { // user set to TRUE
 if (backingStore) return; // backing store aleady set
 // no backing store in server mode or w/ double buffering
 // return if window system is not X

if (buffersAllocated > 1 || XglXServer::isXServerMode()
|| type != XGL_WIN_X)
return;

if (((XglDpDevWinRas*)dpDev)->needRtnDevice())
backingStore = createRtnDevice();

else {
backingStore = TRUE;

}

98 XGL Architecture Guide—November 1995

5

Note that there are two possible scenarios for the creation of the shadow
interface manager when the Context and Device are associated:

• If the Context and Device have not previously been associated, the pointer
to the device pipeline-context object for the Context and Device pair cannot
be retrieved from the parent Device. In this case, the parent Device will
create the parent device pipeline-context object. If backing store is set, the
parent Device will ask the shadow device to create a shadow device
pipeline-context for the Context object and then attach it to the parent
device pipeline-context.

• If the Context and Device have previously been associated, the pointer to
the device pipeline-context object for the Context and Device pair is
retrieved from the parent Device.

If a device pipeline can handle backing store itself, it can return FALSE to
dpDev->needRtnDevice() , in which case all backing store operations
become the responsibility of the device pipeline or its underlying framework.
For example, because the PEXlib pipeline can rely on the server to handle
backing store operations, it returns FALSE to needRtnDevice() .

}
else if { // user set to FALSE

 if (shadowDevice) { // supporting backing store
....

 // free backing store device components,
// reset pointer(s) to NULL
destroyRtnDevice();

}
 if (doRetained) {

drawable->unGrabRetainedWindow();
doRetained - FALSE;

}
backingStore = FALSE;

}
}

Rendering and Handling State Changes 99

5

Tracking Backing Store Changes in the Server

Since the server can potentially drop backing store support or switch the
allocation of backing store memory to another device, the XGL core must track
the changes in backing store on the server side for every WIN_LOCK() call.

Whenever a change is detected, the XGL core destroys the existing shadow
device and shadow device pipeline-context object for that window (device).
New shadow device and shadow device pipeline-context objects are created if
new backing store memory is allocated by the server. This operation can be
rather time-consuming if it happens in the middle of a rendering call, though it
rarely occurs.

Rendering Into the Backing Store Device

When a rendering call occurs and backing store is enabled, XGL first renders
into the parent device and then renders into the shadow device. The rendering
call is duplicated in order to render into both devices. To render into backing
store, the device independent code sets the currOpsVec pointer (used by the
API wrapper to call a device pipeline function) to point to the opsVecGen
array instead of the the opsVec array. The currOpsVec points to the
opsVecGen only in the parent device. The shadow device’s opsVec is called
directly from the routine pointed to by the opsVecGen , and its currOpsVec
pointer is not used. Figure 5-8 illustrates rendering into backing store.

Figure 5-8 Rendering into the Backing Store Device

opsVec opsVecGen

LI-1

LI-2

LI-3

currOpsVec

Display Device
Pipeline Context

Backing Store
Device Pipeline Context

LI-1

LI-2

LI-3

opsVec opsVecGen

LI-1

LI-2

LI-3

currOpsVec

LI-1

LI-2

LI-3

100 XGL Architecture Guide—November 1995

5

Since both the parent XglDpCtx and shadow XglDpCtx derive from the base
class XglDpCtx, a backing store device pipeline doesn’t know it is being used
for backing store. In exactly the same way as the parent device, the shadow
device will either try to render through hardware, or will call the software
pipeline if it doesn’t know how to render a given primitive-attribute
combination.

As a result, any attribute changes are sent to both the parent device and the
shadow device to keep them synchronized. Since the object set function pointer
is also in both opsVec arrays, when backing store is on, attribute setting is
handled through the opsVecGen array, which calls the backing store version of
the object set function. This function calls object set for both the front and
backing store pipelines, keeping them synchronized.

The Context do_retained parameter is used only by the device independent
code and the software pipeline. By default, do_retained is FALSE; the
Context sets it to TRUE when backing store is enabled, and it remains TRUE
until the processing first gets into parent device’s pipeline. Once the rendering
call is sent to the parent device, do_retained is set to FALSE.

If a device pipeline calls the software pipeline, for example at LI-1, the
software pipeline processes only once for both the parent device and the
shadow device at each LI layer until the parent device successfully renders.
That is, if the parent device can only render the primitive at LI-2, then the LI-1
software pipeline processing is done only once for both the parent device and
the shadow device.

The code example below shows the opsVecGen li1MultiPolylineGen()
function rendering into both the parent device and the shadow device if
backing store is enabled and rendering only once to the software pipeline if the
device pipeline calls the software pipeline.

void XglDpCtx3d::li1MultiPolylineGen(Xgl_bbox* bounding_box,
 Xgl_usgn32 num_pt_lists,
 Xgl_pt_list* pl)
{
 if (error_checking) {
 do_error_checking()
 }

 drawBackingStore = FALSE;
if (backing_store_on && !picking) {

 WIN_LOCK(drawable);

Rendering and Handling State Changes 101

5

drawBackingStore = TRUE;
 }

 // Call the parent device to render to
 // the visible part of the screen.
 //
 // NOTE: Add an additional Xgl_boolean (TRUE) parameter in case
 // the parent device pipeline calls swp and uses the DI
 // default function.
 //
 (this->*((void(XglDpCtx::*)
 (Xgl_bbox*,Xgl_usgn32,Xgl_pt_list*,Xgl_boolean))
 (opsVec[XGLI_LI1_MULTIPOLYLINE]))
)(bounding_box,num_pt_lists,pl,TRUE);

 if (backing_store_on && !picking && drawBackingStore) {
 if (dpBs && <other optimization testing>)) {
 // shadow device exists
 swp->setDpCtx(dpBs); // switch dp pointer in swp to
 // dp backing store device

 (dpBs->*((void(XglDpCtx::*)
 (Xgl_bbox*,Xgl_usgn32,Xgl_pt_list*))
 (dpBs->opsVec[XGLI_LI1_MULTIPOLYLINE])
) //call opsVec entry in shadow dpCtx
)(bounding_box,num_pt_lists,pl);

 swp->setDpCtx(this); // reset dp pointer in swp to parent
 }

 WIN_UNLOCK(drawable);
 }

 if (asap_mode_on)
 // do flush stuff
 }
}

The default opsVec li1MultiPolyline() function of the base class
XglDpCtx is shown below. The if statement should only be true if the device’s
doRetained flag is TRUE, and the function is called directly from the
corresponding LI opsVecGen function from the parent device as a result of a
default call to the software pipeline (and not picking).

102 XGL Architecture Guide—November 1995

5

In order to distinguish the full LI opsVecGen software pipeline call from the
multiple calling of the default device pipeline functions from the software
pipeline as a result of partial calls to the software pipeline, an additional
Xgl_boolean gen_punt parameter is added to the LI-1 and LI-2 default
functions:

// Default function pointed to by opsVec array
// if device pipeline wants to call the software pipeline.
void XglDpCtx3d::li1MultiPolyline(Xgl_bbox* bounding_box,
 Xgl_usgn32 num_pt_lists,
 Xgl_pt_list* pl,
 Xgl_boolean gen_punt)
{
 // The doRetained field corresponds to XGL API attribute for
 // XGL_WIN_RAS_BACKING_STORE && the server granting backing
 // store.
 // Also, no picking for backing store case.
 // gen_punt has to be tested *after* doRetained

 if (device->getDoRetained() && gen_punt
 && !ctx->getPickEnable()) {
 // release the lock in li1MultiPolylineGen
 WIN_UNLOCK(drawable);

 swp->li1MultiPolyline(bounding_box, num_pt_lists, pl, TRUE);
 drawBackingStore = FALSE;

 }
 else
 swp->li1MultiPolyline(bounding_box, num_pt_lists, pl);
}

There is no need to add this extra parameter to LI-3 because calling the
software pipeline is not allowed in LI-3, and an error will be issued in that
case. As noted on page page 82, the opsVecGen array is static; in other words,
a device pipeline cannot change function pointer entries in this array.

The Xgl_boolean argument is FALSE by default, so any calls directly from
one XglDpCtx function to another XglDpCtx function do not need to pass the
extra parameter.

Rendering and Handling State Changes 103

5

Propagation of API Changes to the Backing Store Device

The parent device is responsible for propagating any relevant API changes to
the shadow device. These operations are done in the XGL core without the
device pipeline’s intervention, unless set functions are explicitly called. The
parent Window Raster device will reflect all relevant changes to the shadow
device if the shadow device exists. For example, a window resize event could
trigger a change to the memory allocation by the server. The XGL core will
handle the corresponding change to the shadow XGL device by destroying the
old XGL shadow device and creating another one if needed.

These operations involve explicit create and set calls to the device pipeline.
However, the device pipeline does not need to be aware of the internal backing
store operations.

Backing Store Support for the Z-Buffer and Accumulation Buffer

For devices that use a software Z-buffer or accumulation buffer, the server only
provides backing store during an expose event for the image buffer, not for the
Z-buffer or accumulation buffer. XGL enables the sharing of software Z-buffers
and/or accumulation buffers with the backing store device. This allows the
software Z-buffer and accumulation buffer to stay synchronized with the
backing store device.

Devices that may be used as backing store devices (for example, a Memory
Raster) and that use software Z-buffer and/or accumulation buffer must
implement setSwZBuffer() and setSwAccumBuffer() so that the XGL
core can call these functions and pass in the parent’s software buffer addresses
during backing store device creation.

For devices that use software Z-buffer and accumulation buffer, setting HLHSR
mode on or calling the accumulation function for the first time may trigger the
creation of the software buffer in the parent device. The XGL core is
responsible for passing the addresses of the buffer memory from the parent
device to the backing store device for sharing.

The backing store device should cache the parent device pointer that is passed
in during backing store device creation time. Before creating any Z-buffer or
accumulation buffer, these device pipelines should ask the parent device for

104 XGL Architecture Guide—November 1995

5

any software buffer address through parent_dev->getSwZBuffer() or
parent_dev->getSwAccumBuffer() to make sure it is sharing those buffers
as much as possible.

Note that devices with hardware Z-buffer or accumulation buffer cannot share
these buffers with backing store. Thus, these devices may not want to enable
backing store when HLHSR mode is on or when accumulation is needed. See
the XGL_WIN_RAS_BACKING_STORE reference page in the XGL Reference
Manual for more information.

105

Error Handling 6

This chapter describes the XGL error handling mechanism.

Design Goals
Error processing in XGL was designed to do the following:

• Allow an application to provide its own error reporting function(s)

• Allow a device pipeline to provide its own error file containing error
messages specific to the pipeline

• Provide for internationalization of error message strings

• Maintain state information when an error is detected that defines the error,
its cause, and where it occurred

Overview of Error Handling
Error handling in XGL can be viewed in two ways: externally and internally.
The external view describes what the user sees at the API level when an error
occurs. The internal view describes how the error is handled by functions that
are not visible at the API level.

106 XGL Architecture Guide—November 1995

6

External Error Handling Mechanism
Externally, from the API point of view, when an XGL application causes an
error, the error notification function determines the application-visible
response. Because this function is settable by the application, its response can
vary depending on its current definition. The default error notification function
sends an error message to stderr . For example, the following message is
produced by the default function for a malloc error that occurs within an
xgl_polygon() call from a 3D Context:

Error Notification Function

The XGL-provided default error notification function is defined in Error.h .
When an error occurs, this function sends an ASCII string to the standard error
output. The string consists of the XGL error code associated with the error, a
message describing the error, the XGL operator being executed when the error
was detected, the XGL object being used when the error was detected, and
other optional information.

XGL enables an application to supply its own error notification function for
filtering errors and reporting them to the application program. The following
code fragment shows an example of an application error notification function.

Error number di-1: malloc or new failed: out of memory
Operator: xgl_polygon
Object: XGL_3D_CTX

Error Handling 107

6

This function uses the information in the Xgl_error_info structure returned by
XGL_SYS_ST_ERROR_INFO to handle errors. Any of the eight fields in the
structure can be used to filter errors. The System State attribute
XGL_SYS_ST_ERROR_NOTIFICATION_FUNCTION sets the application-specific
error function. The interface for the error notification function is as follows:

my_error_notify_func(Xgl_sys_state sys_state);

Error Types and Categories

XGL errors are grouped into the five categories listed in Table 6-1 on page 108.
These error categories enable an application programmer creating a new error
notification function to detect a particular error group and respond
accordingly. Errors in these categories can be further classified into

#include <xgl/xgl.h>

static Xgl_sgn32 newNotify(system_state)
 Xgl_sys_state system_state;
{
 Xgl_error_info info;

int n;

 xgl_object_get (system_state, XGL_SYS_ST_ERROR_INFO, &info);

 printf (“id = %s\n”, info.id);
 printf (“msg = %s\n”, info.msg);
 printf (“cur_op = %s\n”, info.cur_op);
 printf (“cur_obj = %s\n”, info.cur_obj);

n = atoi (info.id);
if (n < 100) {

 printf (“Non-Recoverable Error!\n”);
 } else {
 printf (“Recoverable Error!\n”);
 }
 return(1);
}

108 XGL Architecture Guide—November 1995

6

RECOVERABLE or NON-RECOVERABLE error types, as described in
Table 6-2. This table also describes the relationship between error types and
categories.

Note that the XGL default error notification function does not use the error
types and categories. These are provided for developers who want to trap
specific error types or categories in their own error notification function.

Table 6-1 Error Categories

Category Description

SYSTEM Internal errors, unsupported features, and errors that
generally cannot be fixed by changing the application.

CONFIGURATION Errors caused by improper installation or configuration of
XGL (such as a .so file not found).

RESOURCE Unavailable resource errors including both hardware and
software resources (such as memory, shared memory,
window ID, frame buffer).

ARITHMETIC Arithmetic exceptions (such as an error resulting from
dividing by 0 or taking the square root of -1).

USER Errors caused by invalid function parameters, non-existent
user files, or situations that may be caused by application
program logic errors.

Table 6-2 Error Types

Type Description

NON-RECOVERABLE XGL immediately aborts processing and returns control to
the caller. Includes SYSTEM and CONFIGURATION
errors, most RESOURCE errors, and some ARITHMETIC
errors.

RECOVERABLE XGL makes assumptions about what the application
intended to do. Includes some RESOURCE errors, most
ARITHMETIC errors, all USER errors.

Error Handling 109

6

Internal Error Handling Mechanism
To comply with internationalization guidelines, XGL device-independent error
handling differs from device-dependent error handling. When XGL detects an
error, it calls an internal error handling function. For device-independent error
handling, this function assigns values to error attributes, searches a look-up
table for the error message, and retrieves the appropriate error message string.
For device-dependent error handling, the error handling function searches for
the error file that contains localized error messages and retrieves the
appropriate error message string. When the error message string is retrieved,
the error handling function calls the application-settable error notification
function for further processing of the error.

Error processing is handled centrally in a device-independent manner by the
System State object. For maintainability, however, most error-specific attributes
and methods are defined in a separate Error class.

The System State class defines the API interface functions used for error
processing and contains error attributes exposed at the API. The Error class
contains the default error notification function, functions that initialize the path
to the error file, and a function used for error notification when System State
creation fails. The Error class also defines the error attributes for the System
State object. Other attributes in the Error class define state information that is
saved when an error occurs. These are shown in Table 6-3.

Table 6-3 State Information Saved in an Error Object

Information Description

Type RECOVERABLE or NON-RECOVERABLE

Category SYSTEM, CONFIGURATION, RESOURCE, ARITHMETIC,
USER

ID An error number in the form: <pipeline abbrev.>-##

Message An error message string

Operator XGL API operator in use when the error occurred

Object XGL object in use when the error occurred

Operands Two operands of error notification

110 XGL Architecture Guide—November 1995

6

When the System State object is initialized at xgl_open() , it instantiates an
Error object and saves a pointer to the object. The Error object instantiation also
defines the default error notification function.

When an error is detected, one of two internal error handling functions,
reportError() or reportDiError() in the System State object, is called.
These functions store current state information into the Error object. The error
handling function invokes another internal routine, errorHandler() in the
Error object, which gets the state information from the Error object and passes
it to the current error notification function. It then invokes the error notification
function to complete the error processing.

The state information in the Error object is overwritten when the next error
occurs. Thus, the information stored in the Error object and referenced by the
System State object is valid only during the invocation and execution of the
error notification function.

Note – The Error object must be accessed immediately after the occurrence of
an error, or the state information used by the error notification function may
not be accurate.

111

XGL Coding Guidelines 7

This chapter discusses XGL naming conventions for C++ constructs and
internal C++ classes, and presents the coding conventions for XGL member
data accessor functions.

Naming Conventions for C++ Constructs
The intent of the XGL naming scheme is to provide consistency, simplicity, and
ease of distinction between C and C++ features. In this scheme, XGL identifies
C++-specific constructs by concatenating multiple-word names with the first
letter of each word capitalized, while other constructs that fall within the C
domain preserve the C underscore naming style to ease migration and
maintain C API compatibility. Identifiers in the global name space are prefixed
with the package name to avoid conflicts.

The specific naming conventions are as follows:

• Class names: XglFooClass – Class names begin with the Xgl prefix to
avoid name conflicts. The first letter of a class name is capitalized, and if the
class name is a compound word, the first letter of each subsequent word is
capitalized.

• Class member data: dataMember – The first letter of a member data name
is lower case, but if the member data name is a compound word, the first
letter of each subsequent word is capitalized. Capitalization distinguishes
member data and local variables/function arguments within a member
function when the variable names are compound words. No further effort is
made to distinguish member data from local variables or function

112 XGL Architecture Guide—November 1995

7

arguments, however, as the latter declarations are always within the same
scope and should be easy to locate. Since global variables (which should be
avoided) always start with a capital letter, no confusion will occur.

• Member functions: memberFunc() – The first letter of a member function
name is lower case, but if the member function name is a compound word,
the first letter of each subsequent word is capitalized. Capitalization
distinguishes member functions from non-member C++ functions and
maintains consistency in naming C++-specific constructs.

• Regular (global or file static) C++ functions (non-extern “C”):
XgliGlobalFunc() – The first letter of regular C++ function is capitalized,
and the first letter of each subsequent word in a compound function name is
also capitalized.

• Macro values, enumerated fields, and constants: XGL_CONST_VALUE –
Macros, enumerated fields, and constants are upper case with underscores
separating the words. This follows the C convention for #define constants;
however, #define should not be used to define constants except in the C
API. Instead, constants and enumerated values should be used to allow for
proper type-checking and scope-related constants.

• Macros and global inline functions: XGL_INLINE_FUNC() –
Inline function names are upper case. Inline functions should be used in
place of macro functions except in the C API. Inline functions are expanded
at compile time and produce semantically correct results as well as allowing
type checking.

• Global variables: Xgli_global_var – In general, all global variables
should be scoped within a class as static member data and accessed only
through static member functions. However, if it is determined that a global
variable is necessary, then the first letter of the global variable name is
capitalized. Compound words are constructed with underscores separating
the words. The Xgl package prefix is added where appropriate.

• Local variables and function arguments: local_or_param –
Local variables and function arguments are lower case, with multiple-word
variables separated by underscores. The use of underscores distinguishes
local variables and function arguments from member data inside member
functions.

• Typedef, enumerated types, and C API structures and unions:
Xgl_typedef – Although typedef and enum identifiers are also type
names, and structures and unions are semantically similar constructs to

XGL Coding Guidelines 113

7

classes, typedef s and enums are so extensively used in the existing C API
that their naming should follow the C convention, which is the first letter
capitalized and compound words separated by underscores. For the same
reason, this rule extends to structure and union fields in the API. It is useful
to be able to distinguish “pure” C structures and unions that do not use any
C++ features in this way, although C++ does not differentiate them
semantically. For C++-specific usage, class should always be used in place
of struct , while the union type should be avoided as it defeats strong
type checking.

• Extern “C” functions: xgl_object_create() – To preserve the C API
interface, all extern “C” functions used as C wrappers should use the C
function naming style, which is lower case with compound words separated
by underscores. This also allows clear distinction from their C++
counterparts.

• Pointers and reference variables: int* a; int& b = *a
For pointers and reference variables, bind * and & to the type except in lists.
The placement of * and & should be consistent. It is visually less confusing
to declare a C++ reference type as int& b than as int &b (since &b is like
taking the address in C). It is more coherent to use

A& XgliGlobalFunc (A& a, B&);

than

A & XgliGlobalFUnc (A &a, B &);

Therefore, both * and & should be bound to the type.

One exception to this rule is when there is a list of declarators, as in:

A *x, &y=*x, *z;

in which * and & should be bound to the variables. Note that use of a
declarator list is strongly discouraged. The recommended style is to declare
one variable at a time with a comment for each to the right of the variable.

114 XGL Architecture Guide—November 1995

7

Summary of Naming Conventions for C++ Constructs

Table 7-1 provides a summary of the naming conventions.

Table 7-1 Summary of Naming Conventions for C++ Constructs

Construct Convention Example

Class names First letter of each word
capitalized with remainder of
word lowercase; Xgl prefix

XglFooClass

Class member data First letter lowercase with
following words mixed case

memberData

Member functions First letter lowercase with
following words mixed case

memberFunc()

Regular (global or file static C++
funtions (non-extern “C”)

First letter capitalized with
following words mixed case

XgliGlobalFunc()

Macro values, enumerated
types, constants

All capital letters with
underscores between words

XGL_CONST_VALUE

Macros and global inline
functions

All capital letters with
underscores between words

XGL_INLINE_FUNC()

Global variables First letter capitalized (Xgl
prefix where appropriate) and
underscores between words

Xgli_global_var

Local variables and function
arguments

All lower case with underscores
between words

local_variable

Typedefs, enumerated types,
and C API structures and unions

First letter capitalized with
underscores between words

Xgl_typedef

Extern “C” functions
(for example API wrappers)

All lowercase with underscores
between words

xgl_object_create()

Pointers and reference variables Bind pointers and reference
types to type except in list

int* a;
int& b = *a;
A& XgliGlobalFunc
(A& a);
exception:
A *x, &y = *x, *z;

XGL Coding Guidelines 115

7

Naming Conventions for C++ Internal Classes
The XGL C++ class naming conventions are as follows:

1. All class names are prefixed with Xgl to avoid name collisions. For
example, use XglDevice rather than Device.

2. Compound class names are combined without underscores and with the
first letter of each word capitalized.

3. Classes are named in top-down order in the inheritance hierarchy. For
example, the 2D subclass of XglContext is named XglContext2d.

4. Common prefixes are removed when the meaning is obvious, as in the
following example:

5. Abbreviations are used where appropriate. For example, Context can be
abbreviated as Ctx, Device can be abbreviated as Dev, and
XglDevicepipelineDevice as XglDpDev.

6. Follow common naming order, as in the example below:

7. Prefix pipeline-related classes with Swp for software pipeline classes and Dp
for Device pipeline classes, as in XglDpDev, or XglDpMgr.

8. Follow the mixed-case rule even for acronyms. For example, use XglCgm
rather than XglCGM.

XglObject XglObject

XglRaster XglStreamXglObjectDeviceRaster

XglObjectDevice XglDevice

XglObjectDeviceStream

➪

XglDpDevRaster XglDpDevRaster

XglDpDevMemRas XglDpDevWinRasXglDpDevRasMem XglDpDevRasWin

➪

116 XGL Architecture Guide—November 1995

7

Coding Conventions for set() and get() Interfaces
The following conventions have been adopted by XGL for the C++ member
data accessor functions set() and get() both internally and externally (C++
API level).

Conventions for set() Member Functions

Following are the conventions for the set() member functions.

1. Pass by value all base types and typedefs of base types.

This convention includes all signed and unsigned integer base types,
character base types, as well as float, double, etc. For example,

void xgl_object_set(Xgl_ctx, XGL_CTX_CLIP_PLANES,
Xgl_clip_planes, 0);

 maps to C++:

void XglContext::setClipPlanes(Xgl_clip_planes);

2. Pass “pure” C structures or unions as C++ object references.

For example,

void xgl_object_set(Xgl_ctx, XGL_CTX_BACKGROUND_COLOR,
 Xgl_color*, 0);

maps to C++:

void XglContext::setBackgroundColor(const Xgl_color& color){
backgroundColor = color; }

This is preferable to manually dereferencing a pointer every time you need
to reference it as a structure, as in:

void XglContext::setBackgroundColor(const Xgl_color* pcolor) {
 backgroundColor = *pcolor; }

3. Pass XGL objects, function pointers, and character strings as pointers.

For example,

void xgl_object_set(Xgl_ctx, XGL_CTX_DEVICE, Xgl_dev, 0);

maps to C++:

void XglContext3d::setDevice(XglDevice*);

XGL Coding Guidelines 117

7

Note that Xgl_dev is a pointer itself.

4. Pass array types as arrays.

 For example:

void xgl_object_set(Xgl_3d_ctx, XGL_3D_CTX_LIGHTS,
Xgl_light[], 0);

maps to C++:

void XglContext3d::setLights(const XglLight[]);

Conventions for get() Member Functions

Following are the conventions for the get() member functions.

1. Return by value for base types or typedefs of base types.

For example,

void xgl_object_get(Xgl_ctx, XGL_CTX_CLIP_PLANES,
 Xgl_clip_planes*);

maps to C++:

Xgl_clip_planes XglContext::getClipPlanes() const;

The const means that the XglContext object does not change after calling
its getClipPlanes() member functions. const should be used wherever
appropriate; otherwise, member functions cannot be called by class objects
that are declared as const .

2. Return “pure” C structures or unions as object references.

For example:

void xgl_object_get(Xgl_ctx, XGL_CTX_BACKGROUND_COLOR,
 Xgl_color*);

maps to C++:

const Xgl_color& XglContext::getBackgroundColor() const;

const is used for return types if the internal structures are not supposed to
be modified, and the user has to make a copy. So in a C++ program, you
can have:

Xgl_color mycolor = ctx->getBackgroundColor();

118 XGL Architecture Guide—November 1995

7

Copying from the internal background color in the Context object to
mycolor happens during the assignment.

3. Return XGL objects, function pointers and character strings as pointers.

 For example:

 void xgl_object_get(Xgl_ctx, XGL_CTX_DEVICE, Xgl_dev*);

maps to C++:

XglDevice* XglContext::getDevice() const;

4. Follow the XGL API style for data that involve arrays of objects.

This is an exception to the convention of returning results through function
return types, as there is no implicit way to copy an array. More importantly,
the only way to ensure that the internal array objects (pointers to lights in
the example below) cannot be modified is to provide a copy of the whole
array (of pointers), since return types like const Xgl_light[] are not
allowed. Hence, array types or structures that contain pointers to array
types should continue to be passed and retrieved as function parameters as
in the XGL API.

For example:

 void xgl_object_get(Xgl_3d_ctx, XGL_3D_CTX_LIGHTS, Xgl_light[]);

maps to C++:

void XglContext3d::getLights(Xgl_light[]);

Note that an exception exists even in XGL 2.0, where an application has to
get the value for XGL_3D_CTX_LIGHT_NUM before it calls the above
function.

void xgl_object_get(Xgl_cmap, XGL_CMAP_COLOR_TABLE,
 Xgl_color_list*, 0);

maps to C++:

void XglCmap::getColorTable (Xgl_color_list&) const;

119

Index

B
backing store

and the accumulation buffer, 103
and the Z-buffer, 103
architecture, 95
overview, 95
rendering into the backing store

device, 99
bitmap fonts, 18

C
class hierarchies, see XGL classes
closing XGL, 76
color models, 16, 39
Context object

creation, 66
destruction, 75
functionality, 61
internal components, 61

Context state changes
and the opsVec array, 84
caused by message passing, 86
caused by object set, 84
immediate notification of

pipeline, 36
intraprocess state changes, 36
opsVec array, 86

stroke groups
architecture, 92
current stroke pointer, 93
overview, 92

view model derived data
architecture, 89
opsVec array, 91
overview, 88

current stroke pointer, 93

D
data storage

conic data, 55
pixel data, 55
point data, 55
rectangle data, 55

Device object
creation, 65
destruction, 75
internal components, 60

device pipeline
architecture overview, 28
basic concepts, 23
device pipeline context object, 30, 53

instantiation, 67
device pipeline device object, 31, 52,

66

120 XGL Architecture Guide—November 1995

device pipeline library object, 33, 49,
65

device pipeline loading, 57, 65
device pipeline manager object, 32,

51, 65
device pipeline object creation, 64
device pipeline objects for multiple

frame buffers, 33, 52
device pipeline unloading, 76
Drawable object creation, 65
pipeline class hierarchies, 48
rendering design goals, 77
xgli_create_PipeLib(), 51, 65

Device state changes, 94
DGA (Direct Graphics Access)

overview, 2
XGL’s interface to DGA, 37

dlclose(), 76
dlopen(), 65
dlsym(), 64, 65

E
error handling

design goals, 105
external mechanism

error notification function, 106
error types and categories, 107
overview, 106

error notification function, 106

G
Global State object

creation, 57
destruction, 76
opening XGL, 57
pipeline library list, 65
pipeline loading, 64
pipeline object instantiation, 64

I
immediate mode graphics library, 1
instantiation of XGL objects, 58

N
naming conventions

C++ constructs, 111
XGL classes, 115

O
object communication, 68
object instantiation, 58
opening XGL, 57
opsVec array, 79, 82
opsVecGen array, 82

P
pipeline, see device pipeline or software

pipeline

R
raster text

overview, 18
rendering

basic rendering process, 78
design goals, 77
opsVec array, 79
rendering into backing store, 95

S
software pipeline

base class, 50
basic concepts, 24
pipeline switching, 34
software pipeline context object, 54

instantiation, 66
software pipeline loading, 57, 64
software pipeline object creation, 64
xgli_create_PipeLib(), 50, 64

stroke groups
current stroke pointer, 93

System State object, 58, 59

Index 121

T
text

raster text, 18

W
window system

color, 39
DGA, 37
pipeline interactions, 37

wrappers, 58, 78

X
XGL architecture

basic components, 22
design goals, 22
device pipeline architecture, 28

XGL classes
overview of the XGL class

structure, 41
XglApiObject, 44
XglCmapDrawable, 39, 47
XglConicData2d, 55
XglConicData3d, 55
XglContext, 44
XglCtxObject, 44
XglDbgObject, 41
XglDevice, 44
XglDpDev, 52
XglDpLib, 51
XglDpMgr, 51
XglDrawable, 37, 46
XglError, 109
XglGlobalState, 45
XglObject, 44
XglPipeCtx, 53
XglPipeLib, 49
XglPixRect, 55
XglPrimData, 55
XglRaster, 44
XglRasterMem, 44
XglRasterWin, 44
XglRectData2d, 55
XglRectData3d, 55

XglStrokeGroup, 47
XglSwpLib, 50
XglViewCache, 45
XglViewConcern2d, 46
XglViewConcern3d, 46
XglViewGrp2d, 46
XglViewGrp2dConfig, 46
XglViewGrp2dItf, 46
XglViewGrp3d, 46
XglViewGrp3dConfig, 46
XglViewGrp3dItf, 46

XGL coding conventions, 116
XGL functionality

color, 16
display devices, 9
display lists, 19
geometry cache, 19
graphical context, 12
lighting and shading, 18
line patterns, 19
NURBS curves and surfaces, 20
primitives, 11
raster text, 18
stroke text, 18
texture mapping, 20
transformations, 14
viewing pipeline, 14

XGL objects
API object lists, 59
API object relationships, 68
Context and Device association, 66
Context object instantiation, 66
Context object internal

components, 61
destroying the Context object, 75
destroying the Device object, 75
Device object internal

components, 60
device pipeline object

instantiation, 65
Drawable object instantiation, 65
Global State object, 57
message passing between objects, 73
object instantiation, 58
object registration, 70

122 XGL Architecture Guide—November 1995

software pipeline object
instantiation, 64

stroke group object, 92
System State object, 59

XGL programming model, 4
xgl_close(), 75
xgl_open(), 57
xgli_create_PipeLib(), 51, 57, 64

Copyright 1995 Sun Microsystems Inc., 2550 Garcia Avenue, Mountain View, Californie 94043-1100 U.S.A.

Tous droits réservés. Ce produit ou document est protégé par un copyright et distribué avec des licences qui en restreignent
l’utilisation, la copie, et la décompliation. Aucune partie de ce produit ou de sa documentation associée ne peuvent Être
reproduits sous aucune forme, par quelque moyen que ce soit sans l’autorisation préalable et écrite de Sun et de ses bailleurs
de licence, s’il en a.

Des parties de ce produit pourront etre derivees du système UNIX®, licencié par UNIX System Laboratories, Inc., filiale
entierement detenue par Novell, Inc., ainsi que par le système 4.3. de Berkeley, licencié par l’Université de Californie. Le
logiciel détenu par des tiers, et qui comprend la technologie relative aux polices de caractères, est protégé par un copyright
et licencié par des fourmisseurs de Sun.

LEGENDE RELATIVE AUX DROITS RESTREINTS: l’utilisation, la duplication ou la divulgation par l’administration
americaine sont soumises aux restrictions visées a l’alinéa (c)(1)(ii) de la clause relative aux droits des données techniques et
aux logiciels informatiques du DFARS 252.227-7013 et FAR 52.227-19. Le produit décrit dans ce manuel peut Être protege par
un ou plusieurs brevet(s) americain(s), etranger(s) ou par des demandes en cours d’enregistrement.

MARQUES

Sun, Sun Microsystems, le logo Sun, SunSoft, le logo SunSoft, Solaris, SunOS, OpenWindows, DeskSet, ONC, ONC+, XGL et
NFS sont des marques deposées ou enregistrées par Sun Microsystems, Inc. aux Etats-Unis et dans d’autres pays. UNIX est
une marque enregistrée aux Etats- Unis et dans d’autres pays, et exclusivement licenciée par X/Open Company Ltd. OPEN
LOOK est une marque enregistrée de Novell, Inc. PostScript et Display PostScript sont des marques d’Adobe Systems, Inc.

Toutes les marques SPARC sont des marques deposées ou enregitrées de SPARC International, Inc. aux Etats-Unis et dans
d’autres pays. SPARCcenter, SPARCcluster, SPARCompiler, SPARCdesign, SPARC811, SPARCengine, SPARCprinter,
SPARCserver, SPARCstation, SPARCstorage, SPARCworks, microSPARC, microSPARC-II, et UltraSPARC sont exclusivement
licenciées a Sun Microsystems, Inc. Les produits portant les marques sont basés sur une architecture développée par Sun
Microsystems, Inc.

Les utilisateurs d’interfaces graphiques OPEN LOOK® et Sun™ ont été développés par Sun Microsystems, Inc. pour ses
utilisateurs et licenciés. Sun reconnait les efforts de pionniers de Xerox pour la recherche et le développement du concept des
interfaces d’utilisation visuelle ou graphique pour l’industrie de l’informatique. Sun détient une licence non exclusive de
Xerox sur l’interface d’utilisation graphique, cette licence couvrant aussi les licenciés de Sun qui mettent en place OPEN
LOOK GUIs et qui en outre se conforment aux licences écrites de Sun.

Le système X Window est un produit du X Consortium, Inc.

CETTE PUBLICATION EST FOURNIE “EN L’ETAT” SANS GARANTIE D’AUCUNE SORTE, NI EXPRESSE NI IMPLICITE,
Y COMPRIS, ET SANS QUE CETTE LISTE NE SOIT LIMITATIVE, DES GARANTIES CONCERNANT LA VALEUR
MARCHANDE, L’APTITUDE DES PRODUITS A REPONDRE A UNE UTILISATION PARTICULIERE OU LE FAIT QU’ILS
NE SOIENT PAS CONTREFAISANTS DE PRODUITS DE TIERS.

CETTE PUBLICATION PEUT CONTENIR DES MENTIONS TECHNIQUES ERRONEES OU DES ERREURS
TYPOGRAPHIQUES. DES CHANGEMENTS SONT PERIODIQUEMENT APPORTES AUX INFORMATIONS CONTENUES
AUX PRESENTES. CES CHANGEMENTS SERONT INCORPORES AUX NOUVELLES EDITIONS DE LA PUBLICATION.
SUN MICROSYSTEMS INC. PEUT REALISER DES AMELIORATIONS ET/OU DES CHANGEMENTS DANS LE(S)
PRODUIT(S) ET/OU LE(S) PROGRAMME(S) DECRITS DANS DETTE PUBLICATION A TOUS MOMENTS.

