
2550 Garcia Avenue
Mountain View, CA 94043
U.S.A.

Application Packaging Developer’s
Guide

A Sun Microsystems, Inc. Business



Please
Recycle

 1994 Sun Microsystems, Inc.
2550 Garcia Avenue, Mountain View, California 94043-1100 U.S.A.

All rights reserved. This product and related documentation are protected by copyright and distributed under licenses
restricting its use, copying, distribution, and decompilation. No part of this product or related documentation may be
reproduced in any form by any means without prior written authorization of Sun and its licensors, if any.

Portions of this product may be derived from the UNIX® and Berkeley 4.3 BSD systems, licensed from UNIX System
Laboratories, Inc., a wholly owned subsidiary of Novell, Inc., and the University of California, respectively. Third-party font
software in this product is protected by copyright and licensed from Sun’s font suppliers.

RESTRICTED RIGHTS LEGEND: Use, duplication, or disclosure by the United States Government is subject to the restrictions
set forth in DFARS 252.227-7013 (c)(1)(ii) and FAR 52.227-19.

The product described in this manual may be protected by one or more U.S. patents, foreign patents, or pending applications.

TRADEMARKS
Sun, the Sun logo, Sun Microsystems, Sun Microsystems Computer Corporation, SunSoft, the SunSoft logo, Solaris, SunOS,
OpenWindows, DeskSet, ONC, ONC+, and NFS are trademarks or registered trademarks of Sun Microsystems, Inc. in the U.S.
and certain other countries. UNIX is a registered trademark of Novell, Inc., in the United States and other countries; X/Open
Company, Ltd., is the exclusive licensor of such trademark. OPEN LOOK® is a registered trademark of Novell, Inc. PostScript
and Display PostScript are trademarks of Adobe Systems, Inc. All other product names mentioned herein are the trademarks
of their respective owners.

All SPARC trademarks, including the SCD Compliant Logo, are trademarks or registered trademarks of SPARC International,
Inc. SPARCstation, SPARCserver, SPARCengine, SPARCstorage, SPARCware, SPARCcenter, SPARCclassic, SPARCcluster,
SPARCdesign, SPARC811, SPARCprinter, UltraSPARC, microSPARC, SPARCworks, and SPARCompiler are licensed
exclusively to Sun Microsystems, Inc. Products bearing SPARC trademarks are based upon an architecture developed by Sun
Microsystems, Inc.

The OPEN LOOK and Sun™ Graphical User Interfaces were developed by Sun Microsystems, Inc. for its users and licensees.
Sun acknowledges the pioneering efforts of Xerox in researching and developing the concept of visual or graphical user
interfaces for the computer industry. Sun holds a non-exclusive license from Xerox to the Xerox Graphical User Interface,
which license also covers Sun’s licensees who implement OPEN LOOK GUIs and otherwise comply with Sun’s written license
agreements.

X Window System is a product of the Massachusetts Institute of Technology.

THIS PUBLICATION IS PROVIDED “AS IS” WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR IMPLIED,
INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A
PARTICULAR PURPOSE, OR NON-INFRINGEMENT.

THIS PUBLICATION COULD INCLUDE TECHNICAL INACCURACIES OR TYPOGRAPHICAL ERRORS. CHANGES ARE
PERIODICALLY ADDED TO THE INFORMATION HEREIN; THESE CHANGES WILL BE INCORPORATED IN NEW
EDITIONS OF THE PUBLICATION. SUN MICROSYSTEMS, INC. MAY MAKE IMPROVEMENTS AND/OR CHANGES IN
THE PRODUCT(S) AND/OR THE PROGRAM(S) DESCRIBED IN THIS PUBLICATION AT ANY TIME.



iii

Contents

1. Distributing Software on CD-ROM  . . . . . . . . . . . . . . . . . . . . . 1

Introduction  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

Manufacturing a CD-ROM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

Documentation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

CD-ROM Packaging  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

Putting Your Software on CD-ROM  . . . . . . . . . . . . . . . . . . . . . . 8

File System Formats. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

Installing Software from CD-ROM  . . . . . . . . . . . . . . . . . . . . . . . 15

Software Packaging . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

Using Rock Ridge to Create a CD-ROM . . . . . . . . . . . . . . . . . . . 17

CD-ROM File System Creation Procedure . . . . . . . . . . . . . . 18

2. Application Packaging . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

What Are Packages?  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

Licensing Considerations for Packages. . . . . . . . . . . . . . . . . . . . 23

Installation Media  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24



iv Application Packaging Developer’s Guide—November 1995

Package Components  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

Required Package Components . . . . . . . . . . . . . . . . . . . . . . . 28

Optional Package Components . . . . . . . . . . . . . . . . . . . . . . . 29

Package Objects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

A Package Creation Scenario . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

Assigning a Package Abbreviation  . . . . . . . . . . . . . . . . . . . . 33

Defining a Package Instance. . . . . . . . . . . . . . . . . . . . . . . . . . 33

Defining Object Classes. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

Defining Package and Object Locations . . . . . . . . . . . . . . . . 37

Writing Your Installation Scripts . . . . . . . . . . . . . . . . . . . . . . 39

Creating the pkginfo  File . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

Defining Package Dependencies . . . . . . . . . . . . . . . . . . . . . . 40

Writing a Copyright Message. . . . . . . . . . . . . . . . . . . . . . . . . 41

Reserving Additional Space on the Installation Machine. . 41

Distributing Packages over Multiple Volumes. . . . . . . . . . . 42

Creating the prototype  File. . . . . . . . . . . . . . . . . . . . . . . . . 42

Creating a Package with pkgmk . . . . . . . . . . . . . . . . . . . . . . . 49

Transferring the Package to the Media with pkgtrans . . . 52

Installation Scripts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

The Request Script . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

The Procedure Script . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

The Class Action Script . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

3. Installing and Checking Packages . . . . . . . . . . . . . . . . . . . . . . . 69

The Installation Software Database . . . . . . . . . . . . . . . . . . . . . . . 70



Contents v

Installing Software Packages  . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

Interacting with pkgadd . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

Installing Packages for Clients on a Server. . . . . . . . . . . . . . 72

Checking Installation Accuracy . . . . . . . . . . . . . . . . . . . . . . . . . . 73

Displaying Information About Installed Packages . . . . . . . 74

4. Creating Icons and Package Clusters. . . . . . . . . . . . . . . . . . . . . 79

Creating an Icon for Your Application  . . . . . . . . . . . . . . . . . . . . 79

Using Clusters  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

Contents and Order Files  . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

A. Packaging Guidelines  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

Optimize for Client-Server Configurations  . . . . . . . . . . . . . . . . 83

Package by Functional Boundaries  . . . . . . . . . . . . . . . . . . . . . . . 83

Package Along Royalty Boundaries  . . . . . . . . . . . . . . . . . . . . . . 84

Package by Machine Dependencies. . . . . . . . . . . . . . . . . . . . . . . 84

Overlap in Packages  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

Sizing Considerations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

Localization Software Packaging Guidelines . . . . . . . . . . . . . . . 84

B. Packaging Case Studies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

Introduction  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

Case #1: Using a request  Script . . . . . . . . . . . . . . . . . . . . . . 85

Case #2: Using Classes, Class Action Scripts, and the space
File . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

Case #3: Using copyright , compver , and depend  Files  . 94

Case #4a: Using the sed  Class and a postinstall  Script 96



vi Application Packaging Developer’s Guide—November 1995

Case #4b: Using Classes and Class Action Scripts . . . . . . . . 99

Case #4c: Using the build  Class . . . . . . . . . . . . . . . . . . . . . . 102

Case #5: Using crontab  in a Class Action Script . . . . . . . . 104

Case #6: Installing a Driver. . . . . . . . . . . . . . . . . . . . . . . . . . . 108

Case #7:Using the sed  Class and postinstall  and
preremove  Scripts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111

Glossary  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123



vii

Tables

Table P-1 Typographic Conventions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xiii

Table 1-1 CD-ROM Levels and File Formats  . . . . . . . . . . . . . . . . . . . . . . . 12

Table 2-1 Packaging Commands and Files . . . . . . . . . . . . . . . . . . . . . . . . . 22

Table 2-2 Packages Run on Different Hardware . . . . . . . . . . . . . . . . . . . . 34

Table 2-3 Packages Run on the Same Hardware . . . . . . . . . . . . . . . . . . . . 35

Table 2-4 Installation Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

Table 2-5 Installation Script Exit Codes. . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

Table 3-1 Package Parameters. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75



viii Application Packaging Developer’s Guide—November 1995



ix

Figures

Figure 1-1 CD-ROM Development Cycle . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

Figure 1-2 Summary of Documentation Process . . . . . . . . . . . . . . . . . . . . . 7

Figure 1-3 CD-ROM Manufacturing Process . . . . . . . . . . . . . . . . . . . . . . . . 11

Figure 2-1 The Contents of a Package . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

Figure 2-2 Packaging Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

Figure 4-1 CD-ROM Directory Hierarchy Example  . . . . . . . . . . . . . . . . . . 80

Figure 4-2 Hierarchical Directory Structure . . . . . . . . . . . . . . . . . . . . . . . . . 116

Figure 4-3 Flat Directory Structure  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117



x Application Packaging Developer’s Guide—November 1995



xi

Preface

Purpose of  This Guide
The Developer’s Guide to Application Packaging describes how to prepare your
software for distribution on CD-ROM. This guide does not cover application
design, user interface design, retrieval software, or multimedia. You should
have completed coding and testing your software before you begin work on
package creation.

Audience
This guide is for developers who are writing applications intended to run
under Solaris® system software.

Organization of this Guide
This guide is organized as follows:

Chapter 1, “Distributing Software on CD-ROM,” describes the tasks required
to put your software on CD-ROM for distribution.

Chapter 2, “Application Packaging,” describes the application packaging
tools.

Chapter 3, “Installing and Checking Packages,” describes the tools for verifying
that a package has been installed correctly.



xii Application Packaging Developer’s Guide—November 1995

Chapter 4, “Creating Icons and Package Clusters,” describes how to use
clusters and meta-clusters when packaging software.

Appendix A,  “Packaging Guidelines,” describes the application packaging
guidelines to be followed when creating software packages.

Appendix B,  “Packaging Case Studies,” provides several examples of
creating application packages.

 For More Information
For background information on packaging, refer to:

• System V Application Binary Interface (UNIX Press)
• SPARC systems: System V Application Binary Interface SPARC™ Processor

Supplement (UNIX Press)
• x86 systems: System V Application Binary Interface Intel386 Processor

Supplement



xiii

What Typographic Changes and Symbols Mean

The following table describes the type changes and symbols used in this book.

Manual Page References

When commands are mentioned in the text for the first time, a reference to the
command’s manual page is included in parentheses: command(section). The
numbered sections are located in the Solaris 2.5 Reference Manual AnswerBook.

Information in the Examples

The examples in this guide match what you see on the screen as closely as
possible.  However, your system may have a different configuration or be
running a different release of the SunOS operating system.

Table P-1 Typographic Conventions

Typeface or
Symbol Meaning Example

AaBbCc123 The names of commands, files,
and directories; on-screen
computer output

Edit your .login  file.
Use ls -a  to list all files.
system% You have mail.

AaBbCc123 What you type, contrasted with
on-screen computer output

system% su
Password::

AaBbCc123 Command-line placeholder:
replace with a real name or
value

To delete a file, type rm filename.

AaBbCc123 Book titles, new words or terms,
or words to be emphasized

Read Chapter 6 in User’s Guide.
These are called class options.
You must be root to do this.

Code samples are included in boxes and may display the following:

% UNIX C shell prompt system%

$ UNIX Bourne and Korn shell
prompt

system$

# Superuser prompt, all shells system#



xiv Application Packaging Developer’s Guide—November 1995

Complete code samples should compile and work as represented. Code
fragments, while not compiled, reflect high standards of coding accuracy.



1

Distributing Software on CD-ROM 1

Introduction
After you have completed development of your software, you need to put the
software on medium in a form that can be easily installed by users. The
medium should be packaged with any documentation required for your
product before being distributed to customers.

CD-ROM is the best medium available for the distribution of data. For this
reason, all SunSoft software is released on CD-ROM. Some features of CD-
ROM include:

• Large capacity – 644 megabytes of digital data, or 325,000 pages, saving
several trees.

• Multimedia – Can contain text, images, graphics, and high quality sound
data.

• Portable – Unlike hard disks, CD-ROMs can be easily moved.
• Stable storage – CD-ROMs are optical, not magnetic, and are read-only. They

can’t be accidentally erased or overwritten.
• Low cost – About $2 each to produce. Making 100 CD-ROMs is break-even

with tape.
• Mass produced – Injection molded, not magnetically duplicated.
• High quality – Digital error correction means fewer data errors.
• Interchangeable – All CD-ROMs are the same at the bit level. Almost any

CD-ROM player can read ISO 9660 formatted CD-ROMs.
• Interactive – Random-access file system allows execution from the CD-ROM.



2 Application Packaging Developer’s Guide—November 1995

1

CD-ROMs are random-access devices that can be directly mounted by the
operating system. Unlike tapes, CD-ROMs are not limited to serving as serial
input/output devices.

Software can be published on a CD-ROM in a serial format such as tar  or can
be published as a complete file system. The latter is preferred since it enables
the individual data files to be directly accessed or executed from the CD-ROM.

Direct access and execution benefits the user because the software does not
have to consume scarce disk resources before it is used. For trial and
demonstration uses, installation time can be drastically reduced since the CD-
ROM file system only has to be mounted, not copied and installed onto hard
disk.

This chapter describes how to create a CD-ROM image for your application
and prepare it for mass duplication. An image is a device-independent
electronic representation of your data and software.

The SVR4 application packaging tools provide a means to bundle the files for
your application into one installable unit. You provide several text files
describing the contents of the package and where the contents should be
installed. Chapter 2, “Application Packaging,” describes how to use the SVR4
packaging tools to create a package that can be placed on CD-ROM.

After you have created a package, you should verify that it installs correctly.
Tools such as pkgchk (1M) help you verify the installation. Chapter 3,
“Installing and Checking Packages,” describes these tools.

You may want to use admintool  for installation of your application. The
admintool  software provides a graphical user interface to the SVR4
packaging tools.

Manufacturing a CD-ROM
Several tasks are required to produce a CD-ROM and bring it to publication.
Experience at SunSoft shows that some of these tasks can be done at the same
time, in particular, documentation and software development. Figure 1-1
illustrates the development cycles for each. If you can perform these processes
independently, you can save time.



Distributing Software on CD-ROM 3

1

Figure 1-1 CD-ROM Development Cycle

Documentation Software Development

Artwork Creation

Installation Document Modification

Artwork Delivery to Vendor

Software Distribution

Code “Freeze”

Source Build

Testing

(One-off)

CD Mastering at Vendor

Final Verification

Mass Production of CDs



4 Application Packaging Developer’s Guide—November 1995

1

Documentation

Three kinds of documentation can accompany a CD-ROM:

• Documentation and artwork printed on heavy insert stock
• Artwork silkscreened on the disc itself
• Separate, traditional documentation printed on paper

The traditional paper documentation for CD-ROM will probably differ only
slightly from your documentation for tape release. You will need to modify
your installation instructions to discuss CD-ROM installation and may want to
add a short discussion of the CD-ROM medium.

You also need to consider what type of paper documentation is needed.
Typically, there are three kinds of paper documentation: user’s guide,
developer’s guides, and system administration manuals. Your application may
only require a user’s guide. But if a system administrator needs to install and
configure the software, you probably want to include a manual or section for
administrators, too.

If manual pages accompany your software, you need to make sure the manual
pages have the correct section numbers. The contents of the manual page
sections are as follows:

• Section 1 - describes user commands and applications
• Section 1M - describes system administration commands
• Section 2 - describes system calls
• Section 3 - describes user-level library routines
• Section 4 - describes device drivers, protocols, and network interfaces
• Section 5 - describes the format of files used by various programs
• Section 6 - describes games
• Section 7 - contains miscellaneous information, mostly relating to troff

macro packages
• Section 9 - provides an overview of DDI/DKI device driver interface

specifications
• Section 9E - describes DDI/DKI driver entry points
• Section 9F - describes DDI/DKI kernel functions
• Section 9S - describes DDI/DKI data structures



Distributing Software on CD-ROM 5

1

CD-ROM Packaging

Each CD-ROM can be packaged in a jewel box, a small plastic case, or a less
expensive paper sleeve. In addition to the CD-ROM disc, the jewel box
contains an insert and a J-card.

Insert

The insert slides into the front cover of the CD-ROM jewel box, and usually
serves as the product label. Inserts usually include the file system format type,
part numbers, and trademark and copyright information associated with the
specific product. If your documentation is short enough, you can include it in
the insert, as well.

The insert can be one page with text and artwork, or it can be several pages
long. In fact, a small booklet can be produced, with artwork for the cover of the
jewel box and text describing the product and giving simple installation
instructions. Keep in mind, however, that the printing may be quite small and
difficult to read on the insert.

J-card

The optional J-card is a printed card with a small folded edge that fits into the
back of the CD-ROM jewel box. It typically has the product name and part
number, which can be read by the user without opening the jewel box. It serves
the same function as printing on the spine of a book. The J-card can give basic
information instead of an insert, allowing the artwork on the disc itself to show
through the front cover.

The artwork for the J-card and CD-ROM insert are prepared by a graphic artist.
The artwork is assembled at the manufacturer’s location with the CD-ROM
and jewel box.

CD-ROM Artwork

The CD-ROM itself can have label art, but the amount of information that can
be put on the label is limited because of the CD-ROM size. The disc artwork
should include product name, company name and address, part number,
revision level, trademark, copyright, and a list of platforms on which it runs. It
can also have limited boot instructions or state the file system format type.



6 Application Packaging Developer’s Guide—November 1995

1

Delivery to the CD-ROM Manufacturer

Documentation production has a long lead time. Because the printing is done
by an external vendor for your company, you have limited control of the
schedule. The CD-ROM manufacturer, or its subcontractor, usually takes four
weeks to produce a first article (a completed CD-ROM used to verify artwork
and contents) from camera ready artwork. This time could be accelerated by
coordinating your own printing locally, but your printed materials would have
to be integrated with the finished CD-ROM after the manufacturing process.
Schedules for lead times can be negotiated with your manufacturer.

Contact the CD-ROM manufacturing company early to discuss requirements
and limitations for creating and printing insert text and graphics, because each
vendor has different specifications.

Plan to deliver the camera ready disc artwork, the insert copy artwork, and the
optional J-card artwork to the CD-ROM manufacturer. The manufacturer
places the printed material and the disc in the jewel box and then shrink-wraps
the jewel box in clear plastic.



Distributing Software on CD-ROM 7

1

Figure 1-2 Summary of Documentation Process

Documentation Software Development

Finished Artwork (4 weeks ahead):
Insert
J-card
Disc Label

Software Distribution

CD Mastering at Vendor

Final Verification

Mass Production of CDs

Installation Document Modifications

Traditional Documentation Printed



8 Application Packaging Developer’s Guide—November 1995

1

Putting Your Software on CD-ROM
The simplest way to make a CD-ROM for distribution is to create a CD-ROM
image of your application on magnetic disk and transfer that image to tape for
delivery to a CD-ROM mass producer. However, this approach gives you no
opportunity to test an actual CD-ROM version of your product. You may also
want more control or require more involvement in the process.

Every company has a different process to release and manufacture a product.
At a minimum, the following steps are necessary to transfer your software to
CD-ROM:

1. Completing the application code.

2. Building the source into an executable media image.

3. Testing the image and installation.

4. Verifying the master image.

5. Mass producing the CD-ROM media (by the manufacturer).

6. Receiving the finished goods and combining with documentation for
distribution.

The rest of this section explains each of these steps in more detail.

1. After the application code source is complete, all the data that makes up the
product is collected in one location. The file system structure layout must be
determined by this time. See the section “File System Formats” on page 12.

2. At build time, quality audits are done and a prototype executable is made.
When the prototype media image is satisfactorily built, you have to choose
how to hand off this image to be tested. Because CD-ROM is a read-only
random-access file system, this image could be simulated electronically,
using a read-only magnetic disk image of the CD-ROM file system for
testing on a magnetic disk partition. If applicable to your product, this
electronic handoff would provide you more opportunities for testing before
you actually create a CD-ROM.

A more complex option is to use an actual CD-ROM for testing. The
CD-ROM can be created in a variety of ways. One common way is to take a
magnetic tape with a CD-ROM image to a CD-ROM service bureau. For a



Distributing Software on CD-ROM 9

1

fee, usually $600 to $800 (check with various service bureaus), the service
bureau creates a CD-ROM using a pre-mastering or one-off machine. Many
CD-ROM manufacturing facilities offer these services.

You could also purchase your own one-off system, if your CD-ROM
production quantity requires it. A one-off machine produces each copy of
the CD-ROM individually, so a one-off machine is not usually used for high
volume manufacturing of CD-ROMs. The CD-ROM medium itself is more
expensive than tape and can cost from $35 to $80 each, depending on
volume and discount.

3. The media image is handed off to testing. The image must be tested against
all configurations of systems on which it is expected to operate. It is
extremely important to test the installation process. For manual or
automated installation testing, having a CD-ROM one-off is invaluable.

4. When all tests have been completed, the final image must be captured for
mass production. When you want to cut a CD-ROM, you need to put it on
the medium that your CD-ROM manufacturing facility can accept. Contact
the manufacturer for the appropriate medium. In many cases the
manufacturer expects the master image on a tape, sometimes on EXATAPE®
8mm data cartridges.

An outline of the basic steps to lay out your file system for the Rock Ridge
format (the recommended file system format for CD-ROMs) is provided in
“Using Rock Ridge to Create a CD-ROM” on page 17. The software toolkit
for creating a CD-ROM in the Rock Ridge format is available from Young
Minds, Inc. Please consult your Catalyst Catalog.

If your application contains any audio data, you will need to contact the
manufacturer to find out the medium and format required to handle this
data. For example, some manufacturers require that you provide this data
on Digital Audio Tape (DAT) at 44.1 KHz.

5. If you use an external CD-ROM manufacturer, you can expect a turnaround
ranging from one day to several days, depending on the quantity and how
much you are willing to pay for faster turnaround. In general, it costs about
$800 to $2500 to set up the master, and approximately $2 for each CD-ROM
produced. Required turnaround time and quantities affect these numbers.
The process at the CD-ROM manufacturing factory usually follows the path
shown in Figure 1-3.



10 Application Packaging Developer’s Guide—November 1995

1

The CD-ROM manufacturer transfers the image from your tape master to a
glass master. From this, a metal stamping tool is produced. This tool is used
to manufacture the CD-ROMs. A limited number of CD-ROMs, called check
discs or first articles, can be produced and returned to you for a final media
check against your original media image.

Depending on the manufacturer, the media check can be done at several
different stages. Some manufacturers may produce a data proof for early
review. A data proof is a disc with a generic label but the actual data image
on the disc. For review at a later stage a manufacturer may produce a first
article, a disc with the actual data image and the actual label artwork.

The media check is an optional step that can take time, but it is your safety
net. If there is any discrepancy, you may save yourself the cost of
remastering and redoing an expensive mass production run. The cost and
conditions for these review services can be negotiated with your CD-ROM
manufacturer.

When all is satisfactory, the CD-ROM manufacturer can begin mass
production of your CD-ROMs.

6. The CD-ROM manufacturer returns CD-ROMs to you in jewel boxes with
optional inserts, all in shrink-wrapped packages. These can then be
packaged with documentation for distribution. For an additional fee, some
manufacturers handle the distribution as well. Check with them for fees and
schedules.



Distributing Software on CD-ROM 11

1

Figure 1-3 CD-ROM Manufacturing Process

Data Proof or First Article
Final Media Compare and
Approval

Documentation Software Product Engineering

Software Distribution

CD Mastering at Vendor

Final Verification

Mass Production of CDs

Tape Master
Glass Master
Metal Stamping Tool
Production CD-ROMs



12 Application Packaging Developer’s Guide—November 1995

1

File System Formats

There are nine levels of information on a CD-ROM as shown in Table 1-1.
There are standards for the lowest three levels of the CD-ROM (file/volume,
data, and physical). This section discusses the file system format (file/volume
in Table 1-1) level.

High Sierra

In 1985, several CD-ROM and computer manufacturers met and agreed upon a
common format for file systems on CD-ROM. The format covers the logical
structure (file system format); the physical structure is the same as for music
CD-ROMs. This logical structure became known as the High Sierra File System
(HSFS).

HSFS fit naturally into a DOS environment, supporting various DOS features
and naming conventions. Unfortunately, it did not support several UNIX®
features.

ISO 9660

In 1988, the International Organization for Standardization (ISO) adopted a
superset of the HSFS requirements as the ISO 9660 standard. This standard
included support for the VMS® operating system.

Table 1-1 CD-ROM Levels and File Formats

User Interface

Applications

Operating System Extensions

Device Driver

Hardware Interface

Drive/Commands

File/Volume (High Sierra, ISO 9660, UFS, Rock Ridge)

Data

Physical



Distributing Software on CD-ROM 13

1

Though any file system format can be used, the international standard for CD-
ROM is ISO 9660. Many different types and classes of computers read ISO
9660, allowing data interchange among the different ISO 9660 compatible
systems. For example, a database application on a CD-ROM could contain the
data, plus access software for UNIX, Apple Macintosh®, MS-DOS® and other
types of systems.

Unfortunately, ISO 9660 is a least-common-denominator approach and has
several limitations in an IEEE/POSIX or X/Open environment such as the
SunOS operating system:

• File names are limited in length and allowable characters
• The depth of subdirectories is limited to seven
• File mode bits are not fully supported

UFS

Since any bit pattern can be written to a CD-ROM, alternatives to ISO 9660 can
be used. For example, the file format used by Solaris on hard disks, UFS, can
also be used on CD-ROM. However, UFS is not effective for CD-ROM use
because UFS was designed for both reading and writing. Therefore, UFS can be
slower than ISO 9660. More importantly, UFS is not a CD-ROM standard and
does not offer the data interchange capabilities of ISO 9660. The advantage of
UFS is that it does not have the naming and other limitations of ISO 9660.

Rock Ridge Extensions to ISO 9660

To provide UNIX functionality on the ISO standard, a set of UNIX extensions
has been adopted as a solution. These extensions are known as the Rock Ridge
Extensions. Rock Ridge adds all the functionality UNIX needs in the file
system, such as directory depths greater than eight levels and symbolic links to
files.

Features of the Rock Ridge Extensions
The Rock Ridge extensions support capabilities that are not available under the
MS-DOS or VAX VMS operating systems for which the ISO 9660 was designed.
These capabilities include support for mixed-case names, long filenames,
special characters, directory structures deeper than seven levels, symbolic
links, special file types, setuid, setgid and sticky bits, as well as more efficient
encoding of user and group IDs and permissions.



14 Application Packaging Developer’s Guide—November 1995

1

When mounted on a system that supports the Rock Ridge format, such as
Solaris 1.x system or later, all the UNIX file system information is available to
the user. On systems that support only the ISO 9660, all the file content is
available to the user (minus some of the UNIX file system information),
supporting the major goal of the ISO 9660 information interchange.

The combination of the ISO 9660 and the Rock Ridge extensions provide an
exceptional blend of flexibility and performance. Rock Ridge CD-ROMs
execute 25% to 30% faster than UFS images recorded on CD-ROMs, yet
support complete POSIX file system semantics. Further, the Rock Ridge
protocols are a nonproprietary, open specification being implemented by many
of the major UNIX vendors. The protocols provide support within
heterogeneous networks, including multiple product lines from a single
vendor. Multiplatform software vendors can also use a single Rock Ridge
format CD-ROM to distribute their products for many or all the platforms they
support.

Choosing a File System Format

As a software developer who wants to publish software via CD-ROM, you
have four options:

• ISO 9660 format with tar  (or cpio  or similar) files. The tar files can contain
long names and unlimited subdirectories. The files cannot be directly
executed or read from the CD-ROM. Existing Solaris applications can easily
be ported with this method. The CD-ROM can be read by most systems,
allowing software for multiple systems to be published on the same CD-
ROM.

• ISO 9660 format as a file system. The files must conform to ISO 9660 naming
restrictions. For preexisting UNIX applications, this requirement can create a
great deal of work. SunSoft does not provide third-party tools for producing
CD-ROMs using the ISO 9660 file system format.

• UFS format as a file system. The files can be directly read and executed from
the CD-ROM. There are no additional file naming restrictions beyond those
in Solaris. Existing Solaris applications can be ported to CD-ROM easily;
however, performance is not optimal because this is not the CD-ROM
standard.



Distributing Software on CD-ROM 15

1

• Rock Ridge format as a file system. When the CD-ROM is created, a utility
can be used to automatically create ISO 9660 file names from the longer
UNIX file names. “Makedisc” is a utility with this capability; it is available
from Young Minds, Inc., a Catalyst vendor: (714) 335-1350. Check your
Catalyst Catalog for others.

If you are interested in using the Rock Ridge file system format for your CD-
ROM image, refer to the outline of basic steps provided in the section
“Using Rock Ridge to Create a CD-ROM” on page 17.

The Solaris system software supports CD-ROMs encoded using High Sierra,
ISO 9660, UFS, and Rock Ridge formats.

Installing Software from CD-ROM
The goal of installation is to move code from a distribution medium to a
customer’s system. CD-ROM simplifies this, because the customer handles
only one CD-ROM instead of multiple tapes or diskettes.

Your installation instructions should tell the user to insert the CD-ROM into
the CD-ROM caddy before inserting it into the CD-ROM drive. Some CD-ROM
devices, like home audio units, do not have a caddy.

The user does not need to mount the CD-ROM; it is automatically mounted by
the volume management software.

The installation method you choose depends upon the product format you
select for laying out your files on the CD-ROM. The product format is largely
independent of the file system you choose, with the exception of the limitations
already mentioned for ISO 9660.

For Solaris 2.x releases, Sun is standardizing on the Rock Ridge file system
format for both OS and unbundled product CD-ROMs. SVR4 software packages
is the standard API that is used for the product format, both for OS and
unbundled product CD-ROMs. The Solaris admintool  can be used as an easy-
to-use installation tool and as a frontend to the Package utilities such as
pkgadd  and pkgrm . The admintool is bundled with Solaris 2.x and is available
for use as an installation tool for any product that uses SVR4 Packages. See the
Solaris Advanced User’s Guide and the admintool(1M)  man page for more
information.



16 Application Packaging Developer’s Guide—November 1995

1

A CD-ROM file system toolkit is a set of tools and utilities that enables you to
easily transition to CD-ROM for distributing computer-based materials. The
critical component is a CD-ROM formatting utility that converts a UNIX file
system to a CD-ROM disc image compliant with the ISO 9660 international
standard format. If the utility also supports the Rock Ridge extensions to the
ISO 9660, the resulting CD-ROM retains all the UNIX file system features.

Software Packaging

The System V ABI specifies a new model, called software packages, for the
distribution format of applications. Software that is formatted with the ABI
model is guaranteed to install correctly, easily, and in a similar manner on all
ABI-compliant systems. All software producers, including applications
programmers and developers of device drivers, kernel modules, and other
system software for Solaris 2.x, should use the software packages model and
packaging tools. See Chapter 2, “Application Packaging,” for more information
on the packaging tools.

If you distribute your software as one or more software packages, you can
instruct the user to install this software with either of the package installation
facilities bundled with Solaris: generic ABI package commands (pkgadd ) or
the admintool .

Generic Package Interface

If you document the ABI package commands as your preferred means of
installation, you need to provide instructions for each of the following
functions:

• Invoking pkgadd

See Chapter 2, “Application Packaging,” for more information on using
pkgadd .

• Installing the software on diskless and dataless clients

See Chapter 3, “Installing and Checking Packages,” for information on
installing software on clients.



Distributing Software on CD-ROM 17

1

You do not need to provide instructions for mounting the CD-ROM. The CD-
ROM is mounted automatically by the volume management software when it
is inserted into the drive. If volume management isn’t running, pkgadd
mounts the volume.

Executing Applications from CD-ROM

CD-ROM can be used for execution as well as distribution. CD-ROM is a
random-access file system, so you can execute your application directly from
the mounted CD-ROM without installing it onto a magnetic disk first. This can
save magnetic disk resources.

There are three things that must be considered when executing directly from
CD-ROM:

• Make sure the application does not try to create files on the distribution file
system. For example, don’t let the application write a log file to
./logfile.  In the past, this was not a problem because you loaded the
product onto magnetic disk where you had write permission. But if you
execute directly from the CD-ROM, you cannot write to it, because it is a
read-only medium.

• The application should not rely on an absolute mount point. The application
should use path names that are relative to the mount point instead.

• Performance. An optical disk is slower than a magnetic hard disk.

Using Rock Ridge to Create a CD-ROM
This section describes how to put application software on a CD-ROM that is
usable under Solaris system software. The procedures described in this section
explain how to make a mountable UFS file system, containing your software,
that can be transferred to CD-ROM. The topics covered include:

• How to create a file system you can use on CD-ROM
• Transferring your files to this file system
• Making an image of the file system that can be used to create a CD-ROM

At the end of this section is a brief discussion of the steps required to make a
mountable Rock Ridge file system.



18 Application Packaging Developer’s Guide—November 1995

1

This material does not describe how to prepare audio tracks to be placed on
CD-ROM, nor does it address the specific techniques for transferring the file
system or audio tracks to a CD-ROM. These techniques should be explained by
the CD-ROM mastering machine documentation.

CD-ROM File System Creation Procedure

The steps for creating a file system to put on a CD-ROM are as follows:

1. Determining which files will be on the CD-ROM

2. Finding a disk partition for the file system

3. Creating the file system

4. Mounting the file system

5. Transferring your files to the file system

6. Unmounting the file system

7. Making an image of the file system

8. Testing the image before transferring it to CD-ROM

Determining Which Files Go on the CD-ROM
Choose the directories and files that you want to put on the CD-ROM file
system. Keep in mind that this is a read-only file system.

You should create a clean directory structure containing only the files and
directories you want to put on the file system. This makes the tasks of
determining the size required for the file system and transferring the files to
the file system much easier.

Finding a Disk Partition
Find or create a disk partition large enough to hold the file system. A
reasonable minimum size is one and a half times the size of the directory
hierarchy you want to place on the CD-ROM. The maximum size is the size of
the CD-ROM, roughly 600 Mbytes. Choosing a size closer to the minimum
saves storage space and CD-ROM creation time. It also leaves space on the CD-
ROM for audio tracks.



Distributing Software on CD-ROM 19

1

Creating and Mounting the File System
Create a file system in the partition and mount the file system. See System
Administration Guide, Volume I for information about creating and mounting file
systems.

Transferring Your Directory Structure to the File System
Copy your files to the new file system. The directory structure should be as
you want it on your CD-ROM. Make sure all file attributes, such as
permissions, modes, and links, are set correctly.

Unmounting the File System
See the System Administration Guide, Volume I for information on unmounting
file systems.

Making a Rock Ridge Image of the File System
Use the third party tool you have selected to create a Rock Ridge image of the
UFS file system created in the preceding step. After the Rock Ridge file system
image is created, it can be copied to a standard disk, and tested.

To copy the partition to a regular file, use dd  as follows:

where part is the device for the disk partition containing the file system and
cdromimage is the name of the file where the image should be put.

If you are copying the image to a tape, you probably have to specify block size.
Block size is determined by your tape drive and by the equipment the tape will
be read on. Your CD-ROM mastering equipment or the company mastering
your CD-ROM will specify this. Find a suitable block size (such as 8Kbyte) and
use dd  as follows:

where part is the device for the disk partition containing the file system.
If needed, replace rmt0  with the correct name for the tape drive.

# dd if=/dev/r part of= cdromimage

# dd if=/dev/r part of=/dev/rmt0 obs=8k



20 Application Packaging Developer’s Guide—November 1995

1

If the entire image won’t fit on a single tape, use a series of dd  commands to
transfer the image, as follows:

using the device for your disk partition for part. Replace rmt0  with the correct
name for the tape drive. Replace the 16000  following count with the capacity
of your tape drive (in 8Kbyte blocks), and increase the skip value by this
amount for each successive tape.

Testing Your CD-ROM Master
When you receive your CD-ROM master, check the contents. The CD-ROM is
automatically mounted by the volume management software when it is
inserted in the drive. The mount point will be /cdrom/ cdrom_name.

Make sure its contents are the same as your original directory structure.

(insert first tape)
# dd if=/dev/r part of=/dev/rmt0 bs=8k count=16000 skip=0
(when done, insert second tape)
# dd if=/dev/ rpart of=/dev/rmt0 bs=8k count=16000 skip=16000
(then the third tape)
# dd if=/dev/ rpart of=/dev/rmt0 bs=8k count=16000 skip=32000
(etc)



21

Application Packaging 2

This chapter describes application packages and the tools used to create a
package. The following topics are covered:

• What a package is and what it is used for
• Licensing considerations for packages
• Installation media format and file organization
• Package components
• A package build scenario
• Custom installation scripts

What Are Packages?
Application software is delivered in units called packages. A package is a
collection of files and directories required for the software product.

It is recommended that you package your application software using pkgmk.
See “A Package Creation Scenario” on page 31 for more information on
creating packages using pkgmk. See the System V Application Binary Interface
for more information on application packages.

The components of a package fall into two categories: package objects, the files
to be installed; and control files, which control how, where, and if the package is
installed.



22 Application Packaging Developer’s Guide—November 1995

2

Table 2-1 shows the commands and control files available to help you create a
package. These commands and files are described in more detail in the
following sections and in the man pages.

Table 2-1 Packaging Commands and Files

Command or File Purpose

pkgmk(1) Create an installable package

pkgparam (1) Display package parameter values

pkgproto (1) Generate a prototype  file for input to pkgmk

pkginfo (1) Display software package information

pkgtrans (1) Transfer and/or translate packages

installf (1M) Add a file to the software installation database

pkgadd (1M) Install software package onto a host

pkgask (1M) Store answers to a request script

pkgchk (1M) Check accuracy of an installed software package

pkgrm (1M) Remove a package from a host

removef (1M) Remove a file from the software installation database

admintool (1M) Manage local systems, including adding and removing
software on local system.

admin (4) Package installation defaults file

compver (4) Package compatible versions file

copyright (4) Package copyright information file

depend (4) Software dependencies file

pkginfo (4) Package characteristics file

pkgmap(4) Package contents description file

prototype (4) Package information file

space (4) Package disk space requirements file

preinstall

postinstall



Application Packaging 23

2

Licensing Considerations for Packages
If you are distributing software that uses licensing, there are several things you
need to consider:

• Business operations
• Communication with users
• Technology

Business Operations
Before you begin distributing licensed software, set up your business
operations to distribute, price, and track licenses. There are a variety of ways to
distribute licenses, such as fax, electronic mail, or an 800 telephone number.
You need to choose a method of distribution and set up all the necessary
processes. You also need to consider whether licenses need to be upgraded
with the software and how this will be done.

Pricing policy and types of licenses must also be considered. You must
consider how the product is used and what kinds of licenses your users will
need to use the product effectively. Single user licenses may not be appropriate
for many situations.

Communication with Users
Before you implement licensing, you need to inform your users, particularly if
the product has not been licensed in the past.

classaction

preremove

postremove

request

checkinstall

Table 2-1 Packaging Commands and Files

Command or File Purpose



24 Application Packaging Developer’s Guide—November 1995

2

When you do implement licensing, you may want to consider implementing it
gradually. The first step would be monitoring the use of licenses, followed by
warning that the software is being used without a license, and finally, denying
the use of the software.

Technology
If you are going to use a commercial product for licensing, there are many
things to consider when making your choice. You need to decide what your
priorities are. For example, is ease of administration and use most important?
Or is enforcing the licensing policy more important?

You also need to consider whether the software will be used in a
heterogeneous or homogeneous environment and whether standards are
important. You may also want to look at the security provided by the product.
Is it easy to get around the enforcement of licenses?

The issues involved in choosing a commercial product will vary depending on
the kind of application and your reasons for implementing licensing.

Installation Media
Application software packages are installed from the distribution medium. In
addition to CD-ROM distribution media, SunOS 5.x supports the physical
distribution media listed in the following:

• SPARC systems: System V Application Binary Interface SPARC Processor
Supplement

• x86 systems: System V Application Binary Interface Intel386 Processor
Supplement

Packages are stored in data stream or directory format on the distribution
media. There are two types of data streams: continuous and segmented. The
continuous data stream is valid for all media. The segmented data stream is
valid for media that support multiple sequential files, media with a no rewind
mode of operation (such as a 9-track tape). For the segmented data stream,
each of the logical parts of the data stream is an individual file. For the
continuous data stream, all logical parts on a given volume of media are
contained in a single file. Both data stream types can be created using the
pkgmk and pkgtrans  utilities.



Application Packaging 25

2

A segmented data stream format is used whenever multiple volumes are
required to contain the package. Use of this format is common when diskettes
are the distribution medium, uncommon for tapes or CD-ROM. Continuous
stream format is most common for tape and directory format for CD-ROM.

Packages can also be stored as a standard file system that allows distribution of
multiple packages on large removable media, such as Winchester disks or
optical discs. These types of distribution media are not supported by the ABI.

In a standard file system media format, the application package(s) form a tree
of packages. The file system can be mounted and packages installed using
pkgadd  from that spooled package file system.



26 Application Packaging Developer’s Guide—November 1995

2

Package Components
To package your applications, you must create the required and optional
components that make up your package, then use the packaging tools to build
the package.

A software package has the following parts:

• Deliverable object files

• Two required metafiles

• Optional scripts and metafiles

As shown in Figure 2-1, the contents of a package fall into three categories:

• Required components (the pkginfo  (4) file, the prototype  (4) file, and
package objects)

• Optional package metafiles

• Optional control scripts

Figure 2-1 The Contents of a Package

Figure 2-2 shows an overview of the package creation process.

Optional package
information files

pkginfo
file

prototype
file

Package
objects

Optional packaging
scripts

Objects can be 
grouped into classes



Application Packaging 27

2

Figure 2-2 Packaging Overview

Package
Objects

Optional
Information

Files

Required
Information

Files

Optional
Information

Files

Optional
Scripts

prototype
pkginfo

compver
depend
space

copyright

request script
other scripts

pkgmk

Package content (on media or system)

pkg.abbrev.n    directory

root & reloc    dirs install  directory

pkginfo
pkgmap

Package
Objects

directories
files
etc...

compver
depend
space

copyright

Optional
Scripts

request script
other scripts

admin

responsespkgask

pkgadd

pkgrm

(pkginfo, pkgparam)

Configuration
management

Installed 
Basepkgchk

Developer
Input

Tool

Package

Installation
Interface

files



28 Application Packaging Developer’s Guide—November 1995

2

Required Package Components

 A package must contain the following components:

• Package Objects

These are the components that make up the software. They can be
• Files (executable or data)
• Directories
• Named pipes
• Links
• Devices

Objects can be manipulated in groups during installation by putting them in
classes. See the section “Package Objects” on page 30” for more information
on objects.

• The pkginfo  File

The pkginfo  file is a required package information file defining parameter
values such as the package abbreviation, the full package name, and the
package architecture. See the pkginfo (4) manual page for more
information.

• The prototype  File

The prototype  file is a required package information file that lists the
components of the package. It describes the location, attributes, and file type
for each component within a package.

There is one entry for each deliverable object. An entry consists of several
fields of information describing the object. All package components,
including the metafiles and control scripts, must be listed in the prototype
file. See the prototype (4) manual page for more information.

• The pkgmap file

The pkgmk command creates the pkgmap file when it processes the
prototype  file. This new file contains all the information in the
prototype  file plus additional fields for each entry used for validation at
install time. See the pkgmk(1) and pkgmap(4) manual pages for more
information.



Application Packaging 29

2

Optional Package Components

Package Information Files

There are four optional package information files you can include in your
package:

• The compver  (4) File

Defines previous versions of the package that are compatible with this
version.

• The depend  (4) File

Defines any software dependencies associated with this package.

• The space  (4) File

Defines disk space requirements for the target environment. This is space
that is required in addition to the space used by objects defined in the
prototype  file. For example, additional space might be needed for files
that are dynamically created at installation time.

• The copyright  (4) File

Defines the text for a copyright message that is displayed at the time of
package installation.

Each package information file used should have an entry in the prototype
file. All of these files are described further in the manual pages.

Installation Scripts

Installation scripts are not required. However, you can deliver scripts that
perform customized actions. An installation script is comprised of Bourne
commands text. It should be mode 0644 and doesn’t need to contain the shell
identifier (#! /bin/sh ). The four script types are as follows:

• request script (requests input from the installer)

• checkinstall  script (performs special file system tests)

• class action scripts (define a set of actions to perform on a group of objects)



30 Application Packaging Developer’s Guide—November 1995

2

• procedure script (defines actions that occur at particular points during
installation)

Refer to “Installation Scripts” on page 54, for a more detailed discussion of
installation scripts. Refer to Appendix B, “Packaging Case Studies,” for
examples of installation scripts.

Package Objects

These are the files that are being distributed, the files that make up the
application. For example, for a driver the package objects would be the
loadable driver module, the hardware configuration file, the driver’s header
file, and a test program.

Object Locations

You specify package object pathnames in the prototype  file. Note that during
packaging and installation, a package object can reside in any of three
locations. You need to be aware of which of the three locations is being
discussed. The locations are:

• Development machine

Packages originate on a development machine. They can be in a different
directory structure from the installation machine. pkgmk(1) can to locate
components on the development machine and give them different
pathnames on the installation machine.

• Installation media

When pkgmk copies the package components from the development
machine to the installation medium, it places them in the locations defined
in your prototype  (4) file and in a format that pkgadd  (1M) recognizes.

• Installation machine

pkgadd  copies a package from the installation medium to the installation
machine and puts it in the structure defined in your pkgmap file.

Note – Those objects that do not require an absolute path name should be
specified as “relocatable.”



Application Packaging 31

2

A Package Creation Scenario
The following is an overview of some of the steps you might use in a
packaging scenario. Not all of these steps are required, and there is no
mandated order for their execution.

Note –  This list and the following procedures are intended as guidelines and
should not replace either your own planning or reading the rest of this manual
to learn about available package options. Each of the steps is explained in more
detail in the following sections.

1. Assign a package abbreviation.

Every package installed in the environment must have a package
abbreviation.

2. Define and identify a package instance.

Decide on values for the three package parameters that make each package
instance unique. See the section “Defining a Package Instance” on page 33.

3. Define your object classes.

Decide on the classes you are going to use before you create the prototype
file and before you write your class action scripts.

4. Define the location of the package and its objects.

Package objects can be delivered with
• Relocatable locations (they have no absolute path location requirements)
• Fixed locations (their location is defined by the package and cannot be

changed)

All of a package or parts of a package can be defined as relocatable. Decide
if package objects will have fixed locations or be relocatable before you
write any installation scripts and before you create the prototype  file.

Note – Use relocatable objects whenever possible. In general the major part of
a package is relocatable with a few files (such as those in /etc  or /var )
specified as absolute.



32 Application Packaging Developer’s Guide—November 1995

2

5. Write installation scripts for your package, if needed.

Assess the needs of your package beyond the actions provided by pkgadd
and decide which types of installation scripts are necessary to install your
software.

6. Create the pkginfo  file.

Create a pkginfo  file before executing pkgmk. The pkginfo  file should
define basic information about the package and can be created with any
editor as long as it follows the format described in the pkginfo (4) manual
page. See the section “Creating the pkginfo File” on page 39 for more
information.

7. Define package dependencies.

Determine whether your package has dependencies on other packages and
if any other packages depend on yours. If so, create the depend  file. If there
are special dependencies upon files or file behaviors put that test into the
request file or checkinstall  for 2.5 and above.

8. Write a copyright message.

Decide whether your package must display a copyright message while it is
being installed and removed. If so, create the copyright  file.

Note – You should include a copyright  file to provide legal protection for
your application.

9. Reserve additional space on the installation machine.
Determine whether your package needs additional disk space in addition to
the space required by the package objects. If so, create the space  package
information file.

10. Distribute packages over multiple volumes.

pkgmk automatically distributes packages over multiple volumes if the
selected medium dictates that. Decide if you want to leave those
calculations up to pkgmk or customize package placement on multiple
volumes in the prototype  file.



Application Packaging 33

2

11. Create the prototype  file.

This file is required and must be created before you execute pkgmk. It lists
all the objects that belong to a package and information about each object
(such as its file type and class). Create it with any editor, following the
format described in the prototype  entry in the manual pages. You can also
use the pkgproto(1M)  command.

12. Create the package.

Create the package with the pkgmk command, which copies objects from the
development machine to the installation medium, puts them into the proper
structure, and automatically spans them across multiple volumes, if
necessary.

This is always the last step of packaging, unless you want to create a
datastream structure for your package. If so, you must execute pkgtrans
after creating a package with pkgmk.

13. Optionally, transfer the package to tape or datastream media with
pkgtrans(1M) .

The remainder of this chapter gives procedural information for each step.

Assigning a Package Abbreviation

Each installed package must have a package abbreviation assigned to it. This
abbreviation is defined with the PKG parameter in the pkginfo  file.

A valid package abbreviation must meet the criteria defined below:

• It must start with a letter. Additional characters may be alphanumeric and
can be the two special characters + and - .

• It must be nine or fewer characters.

• Reserved names are install , new, and all .

Defining a Package Instance

The same software package can have different versions, architectures or both.
Multiple variations of the same package can reside on the same machine. Each
variation is known as a package instance.



34 Application Packaging Developer’s Guide—November 1995

2

pkgadd  assigns a package identifier to each package instance at installation.
The package identifier is the package abbreviation with a numerical suffix. This
identifier distinguishes an instance from any other package, including other
instances of the same package.

Identifying a Package Instance

Three parameters defined in the pkginfo  file combine to uniquely identify
each instance. The combination of these parameters should be unique for each
instance. These parameters are:

• PKG

Defines the software package abbreviation and remains constant for every
instance of a package.

• VERSION

Defines the software package version.

• ARCH

Defines the software package architecture.

For example, you might identify two identical versions of a package that run
on different hardware as shown in Table 2-2.

Table 2-2 Packages Run on Different Hardware

Instance #1 Instance #2

PKG=myapp1 PKG=myapp1

VERSION=1.0 VERSION=1.0

ARCH=sparc ARCH=intel



Application Packaging 35

2

Two different versions of a package that run on the same hardware might be
identified as shown in Table 2-3.

At the time of installation, pkgadd  assigns a numerical suffix to the package
abbreviation. The combination, for example mypkg.2 , is known as the package
identifier. This ID maps the three pieces of information that identify a package
instance to one name, which becomes the name of this instance on your
machine.

The first instance of a package installed on a system does not have a suffix, so
its instance identifier will be the package abbreviation. pkgadd  assigns
subsequent instances a suffix, beginning with .2. An instance is given the
lowest integer extension available so it may not correspond to the order in
which a package was installed. For example, if mypkg.2  was deleted after
mypkg.3  was installed, the next instance to be added would be named
mypkg.2 .

When asked for pkgid in any of the procedures described in this chapter, you
must use the package identifier. Remember that when you have only one
instance of a package on a machine, which is probably the most common
situation, the package identifier is the package abbreviation.

Defining Object Classes

Object classes allow a series of actions to be performed on a group of package
objects at installation or removal. You put objects in a class in the prototype
file. All package objects must be given a class, although the class of none  may
be used for objects that require no special action.

The installation parameter CLASSES, defined in the pkginfo  file, is a list of
classes to be installed (including the none  class). Objects defined in the
pkgmap file that belong to a class not listed in this parameter won’t be

Table 2-3 Packages Run on the Same Hardware

Instance #1 Instance #2

PKG=myapp1 PKG=myapp1

VERSION=1.0 VERSION=2.0

ARCH=sparc ARCH=sparc



36 Application Packaging Developer’s Guide—November 1995

2

installed. If the object is a class action script, then pkgadd  and pkgrm  will not
copy or run the script, respectively. The actions to be performed on a class are
defined in a class action script. These scripts are named after the class itself.

The CLASSES list determines the order of installation. Class none  is always
installed first, if present, and removed last. Since directories are the
fundamental support structure for all other file system objects, they should all
be assigned to the none  class. Exceptions can be made, but as a general rule,
none  is safest. The reason for this is to assure that the directories are created
before the objects they will contain and also to assure that no attempt is made
to delete a directory before it has been emptied.

For example, to define and install a group of objects belonging to a class
named application , follow these steps:

1. Define the objects belonging to application  in the prototype  file entry.
For example,

2. Ensure that the CLASSES parameter in the pkginfo  file has an entry for
application . For example:

3. Ensure that a class action script exists for this class. An installation script for
a class named manpage would be named i.manpage  and a removal script
would be named r.manpage .

Note – When a file is part of a class that has a class action script, the script
must install the file. pkgadd  does not install files for which a class action script
exists, although it does verify the installation.

If you define a class but do not deliver a class action script, the only action
taken for that class is to copy components from the installation medium to the
installation machine (the default pkgadd  behavior).

f manpage /usr/share/man/manl/myappl.1l
f application /usr/bin/myappl

CLASSES=manpage application none



Application Packaging 37

2

In addition to the classes that you can define, there are three standard classes
for your use. The sed  class provides a method for using sed  instructions to
edit files upon package installation and removal. The awk class provides a
method for using awk instructions to edit files upon package installation and
removal. The build  class provides a method to dynamically construct a file
during package installation.

Defining Package and Object Locations

Package objects can be delivered either with fixed or relocatable locations.

• Fixed location

Location on the installation machine is defined by the package and cannot
be changed. Locations are indicated by specifying absolute pathnames in the
prototype  file.

• Relocatable

There are no absolute path location requirements on the installation
machine. The location for relocatable package objects is determined during
the installation process.

You can define two types of relocatable objects: collectively relocatable and
individually relocatable. Collectively relocatable objects are located relative to the
same directory once the relocatable root directory is established. Individually
relocatable objects are not restricted to the same directory location as
collectively relocatable objects. Individually relocatable objects should be kept
to a minimum since they are more difficult to manage than collectively
relocatable objects. If the package contains many different relocations, multiple
packages should be considered, each with a different BASEDIR.

Defining Collectively Relocatable Objects

Follow these steps to define package objects as collectively relocatable:

1. Define a value for the BASEDIR parameter.

Put a definition for the BASEDIR parameter in your pkginfo  file. This
parameter names a directory where relocatable objects are stored by default.
If you supply no value for BASEDIR, no package objects are considered
collectively relocatable, and all paths in the pkgmap must be absolute.



38 Application Packaging Developer’s Guide—November 1995

2

2. Define objects as collectively relocatable in the prototype  file.

You define an object as collectively relocatable by using a relative path name
in its entry in the prototype  file. A relative path name does not begin with
a slash. For example, src/myfile  is a relative path name, while
/src/myfile  is an absolute path name.

Note –  A package can deliver some objects with relocatable locations and
others with fixed locations.

All objects defined as collectively relocatable are put under the same root
directory on the installation machine. The root directory value is one of the
following (and is determined in this order):
• The value of BASEDIR as it is defined in the installer’s admin (4) file (the

BASEDIR value assigned in the admin  file overrides the value in the
pkginfo  file)

• The installer’s response to pkgadd  when asked where relocatable objects
should be installed

• The value of BASEDIR as it is defined in your pkginfo  file (this value is
used as the default in case the other two possibilities do not supply a
value). For interactive installations, this is the most common source of the
BASEDIR.

• For 2.5 applications and above, the BASEDIR can be modified by the
request  script or the checkinstall  script.

Defining Individually Relocatable Objects

You define a package object as individually relocatable by using a variable in
its path name definition in the prototype  file. Your request script must ask
the installer where such an object should be stored, then assign the response
value to the variable. At the time of installation, pkgadd  expands the path
name based on the output of your request script. Case Study 1 in Appendix B,
“Packaging Case Studies,” shows an example of the use of variable path names
and the request script needed to solicit a value for the base directory.

This approach may result in widely scattered package components which may
be difficult to isolate when installing multiple versions or architectures. Try to
use the BASEDIR whenever possible.



Application Packaging 39

2

Writing Your Installation Scripts

Refer to “Installation Scripts” on page 54, for a discussion of scripts that are
available to use in installation and how to modify them. You can also look at
the case studies in Appendix B, “Packaging Case Studies,” to see examples of
ways in which the various scripts can be used.

You are not required to write any installation scripts for a package. The
pkgadd  command performs all the actions necessary to install your package,
using the information you supply with the package information files. Any
installation script that you provide is used to perform customized actions
beyond those executed by pkgadd .

Creating the pkginfo  File

The pkginfo  file establishes values for parameters that describe the package
and is a required package component. The format for an entry in this file is as
follows:

PARAM can be any of the 19 standard parameters described in the pkginfo (4)
manual page. You can also create your own package parameters simply by
assigning a value to them in this file. Your parameter names must begin with a
capital letter followed by either upper or lowercase letters.

Parameters beginning with uppercase letters are install time variables. Those
beginning with lowercase letters are build time variables. Only install variables
become part of the install environment and are visible to all control scripts.
Build variables can be used for passing private messages from the request
script to the checkinstall  script.

The following five parameters are required:

• PKG (package abbreviation)

• NAME (full package name)

• ARCH (package architecture)

• VERSION (package version)

• CATEGORY (package category)

PARAM=value



40 Application Packaging Developer’s Guide—November 1995

2

In addition, the CLASSES parameter dictates which classes are installed and
the order of installation. Although the parameter is not required, no classes
will be installed without it. Even if you have no class action scripts, the none
class must be defined in the CLASSES parameter before objects belonging to
that class are installed. See also pkginfo (4).

Note –  You can choose to define the value of CLASSES with a request script
instead of defining it in the pkginfo  file.

You can create the pkginfo  file with any editor. The following example is for
a package that installs a device driver:

Defining Package Dependencies

Package dependencies and incompatibilities can be defined with two of the
optional package information files, compver  and depend . Delivering a
compver  file lets you name versions of your package that are compatible with
the one being installed. Delivering a depend  file lets you define three types of
dependencies associated with your package. These dependency types are:

• A prerequisite package (meaning your package depends on the existence of
another package)

• A reverse dependency (meaning another package depends on the existence
of your package)

Note –  The reverse dependency type should be used only when a package that
cannot deliver a depend  file relies on the newer package.

• An incompatible package (meaning your package is incompatible with the
named package)

PKG=bppdev
NAME=bpp device driver
CATEGORY=system
ARCH=sparc
VERSION=bpp release 2.0
CLASSES=none



Application Packaging 41

2

Refer to the depend (4) and compver (4) manual pages for details on the
formats of these files.

Note –  Be certain that your depend  and compver  files have entries in the
prototype  file. The file type should be i  (for package information file).

The depend  file is only a shorthand brute force method for resolving very
basic dependencies. If your package depends upon a specific file or its contents
or behavior, the depend  file does not supply adequate precision. In this case
the request  script or (for 2.5 and above) the checkinstall  script should be
used for this detailed dependency checking. No other control scripts are
capable of cleanly halting a pkgadd .

Writing a Copyright Message

To deliver a copyright message, you must create a copyright file, copyright .
The message is displayed exactly as it appears in the file (with no formatting)
as the package is being installed. Refer to the copyright (4) entry in the
manual pages for more detail.

Be certain that your copyright  file has an entry in the prototype  file. Its file
type should be i  (for package information file).

Reserving Additional Space on the Installation Machine

pkgadd  ensures that there is enough disk space to install your package, based
on the object definitions in the pkgmap file. However, a package may require
additional disk space beyond that needed by the objects defined in the pkgmap
file. For example, your package might create a file during installation. pkgadd
checks for additional space when you deliver a space  file with your package.
Refer to the space (4) manual page for details on the format of this file.

Be certain that your space  file has an entry in the prototype  file. Its file type
should be i  (for package information file).



42 Application Packaging Developer’s Guide—November 1995

2

Distributing Packages over Multiple Volumes

pkgmk performs the calculations and actions necessary to organize a multiple
volume package. As pkgmk creates your package, it prompts you to insert a
new volume as often as necessary to distribute the complete package over
multiple volumes. A multiple volume package is called “segmented.”

However, you can use the optional part  field in the prototype  file to define
in which part you want an object to be located. A number in this field
overrides pkgmk and forces the placement of the component into the part
given in the field. Note that there is a one-to-one correspondence between
parts and volumes for removable media formatted as file systems. If the
volumes are preassigned by the developer, pkgmk will issue an error if there is
insufficient space on any volume.

Creating the prototype  File

Each package must have a prototype  file that describes the package objects.
You can create this file with an editor or with pkgproto .

A very common technique is to create the package using make. pkgproto
produces a preliminary prototype file which is completed using awk or sed .

When creating a prototype  file, you must supply the following information
about each object:

• ftype
• The object class
• The object pathname

The path name can define an absolute path name such as
/mypkg/src/filename , a collectively relocatable path name such as
src/filename , or an individually relocatable path name such as
$BIN/filename  or /opt/$PKGINST/filename .

The format for a prototype  file entry is as follows:

[part] ftype class pathname[major minor][mode owner group]



Application Packaging 43

2

The path name parameter defines where the component should reside on the
installation medium and tells pkgmk where to find it on your machine. If these
names differ, use the path1=path2 format for pathname, where path1 is the name
it should have on the installation machine and path2 is the name it has on your
machine. Links must use the path1= path2 format and if the link is relative, it
must not begin with a /.  Refer to the prototype (4) manpage for more
information on each of the parameters.

Commands may be specified in the prototype  file to support resolution of
file sources and attributes. These commands are:

!search
!include
!parameter=value

Their scope ranges from the command to the end of the prototype file. All
prototype commands are all local.

All parameters beginning with a lowercase letter are build variables and must
be resolved at build time in pkgmk. All parameters beginning with an
uppercase letter are install variables, and will not be resolved at build time.
Any global install variable defined at build time will be inserted into the
pkginfo  file for use at install time.

Using an Editor to Create the prototype  File

You can create a prototype  file with any editor. There must be one entry for
every package component. The following is an example of a prototype file:

# Package “prototype” file for the bbp device driver.
# Bidirectional Parallel Port Driver for SBus Printer Card.
#

i pkginfo
i request
i copyright
i postinstall
f none bbp.kmod 0444 root sys
f none bbp_make_node 0555 root sys
f none bbp_remove_node 0555 root sys



44 Application Packaging Developer’s Guide—November 1995

2

Creating the prototype  File with pkgproto

The pkgproto  command scans your directories and generates a prototype
file. pkgproto  cannot assign ftype s of v  (volatile files), e (editable files), or x
(exclusive directories). You can edit the prototype  file and add these ftype s,
as well as perform any other fine tuning you require (for example, adding
command lines or classes).

pkgproto  writes its output to the standard output. To create a file, redirect the
output to a file. The examples shown in this section do not perform redirection.

Creating a Basic prototype File
The standard format of pkgproto  is

where path is the name of one or more paths to be included in the prototype
file. If path is a directory, then entries are created recursively for the contents of
that directory as well.

With the following form of the command, all objects are put in the none  class
and are assigned the same mode owner group  as exists on your machine.
The following example shows pkgproto  being executed to create a file for all
objects in the directory /usr/bin :

To create a prototype  file that contains the output of the example above, you
would execute pkgproto /usr/bin > prototype

pkgproto [-i] [-c class] [ path1[= path2]...]

 $  pkgproto /usr/bin
 d none /usr/bin 755 bin bin
 f none /usr/bin/file1 755 bin bin
 f none /usr/bin/file2 755 bin bin
 f none /usr/bin/file3 755 bin bin
 f none /usr/bin/file4 755 bin bin
 f none /usr/bin/file5 755 bin bin



Application Packaging 45

2

Note –  If no path names are supplied when executing pkgproto , standard
input (stdin ) is assumed to be a list of paths. Refer to the pkgproto (4)
manual page for details.

Assigning Objects to a Class
You can use the –c class  option of pkgproto  to assign objects to a class
other than none . When using this option, you can only name one class. To
define multiple classes in a prototype  file created by pkgproto , you must
edit the file after its creation, or call pkgproto  once per class passing it the
package objects via stdin .

The following example is the same as above except the objects have been
assigned to class1 .

Renaming Pathnames with pkgproto

You can use a path1=path2 format on the pkgproto  command line to give an
object a different pathname in the prototype  file than it has on your machine.
You can, for example, use this format to define relocatable objects in a
prototype  file created by pkgproto .

The following example is like the others shown in this section, except that the
objects are now defined as bin  (instead of /usr/bin ) and are thus relocatable.

 $  pkgproto -c class1 /usr/bin
 d class1 /usr/bin 755 bin bin
 f class1 /usr/bin/file1 755 bin bin
 f class1 /usr/bin/file2 755 bin bin
 f class1 /usr/bin/file3 755 bin bin
 f class1 /usr/bin/file4 755 bin bin
 f class1 /usr/bin/file5 755 bin bin

 $ pkgproto -c class1 /usr/bin=bin
 d class1 bin 755 bin bin
 f class1 bin/file1 755 bin bin
 f class1 bin/file2 755 bin bin
 f class1 bin/file3 755 bin bin
 f class1 bin/file4 755 bin bin
 f class1 bin/file5 755 bin bin



46 Application Packaging Developer’s Guide—November 1995

2

pkgproto  and Links
pkgproto  detects linked files and creates entries for them in the prototype
file. If multiple files are linked together, it considers the first path encountered
as the source of the link.

If you have symbolic links established on your machine but want to generate
an entry for that file with an ftype  of f  (file), then use the –i  option of
pkgproto . This option creates a file entry for all symbolic links.

Creating Links

To create links during package installation, define the following in the
prototype  entry for the linked object:

• Its ftype  as l  (a link) or s  (a symbolic link).
• Its path name with the format path1=path2 where path1 is the destination

and path2 is the source file. Source files can be absolute or relative to the
destination. Absolute links must be preceded with a /; otherwise, it is
considered to be a relative link. For example a prototype entry defining a
symbolic link could be:

Relative links would be specified in this manner whether the package is
installed as absolute or relocatable.

Defining Objects for pkgadd  to Create

You can use the prototype  file to define objects that are not actually
delivered on the installation medium. pkgadd  creates objects with the required
ftype s if they do not already exist at the time of installation.

To request that one of these objects be created on the installation machine, add
an entry for it in the prototype  file with the appropriate ftype .

For example, if you want a directory created on the installation machine, but
do not want to deliver it on the installation medium, an entry for the directory
in the prototype  file is sufficient. An entry such as the one shown below will
cause the directory to be created on the installation machine, even if it does not
exist on the installation medium.

s none etc/mount=../usr/etc/mount



Application Packaging 47

2

The only objects that must be delivered are regular files and edit scripts
(ftype=e,v,f ) and the directories required to contain them. pkgadd  creates
the following objects based on the information in the pkgmap file without
reference to the delivered objects, directories, named pipes, devices, hard links,
and symbolic links.

Note that objects cannot be defined with a symbolic link that is a defined
object. The reasons can best be illustrated by the following example. Consider
the following valid prototype entries:

After running pkgmk, you get a pkgmap file that looks something like this:

Note how pkgmk sorts the pkgmap file by pathname, with no regard to the
type field in column 1. pkgmk also creates the spooled package in this order,
pkgadd  installs it in this order, thus directories are created before any
references to files which will reside in those directories.

d none /directory 644 root other

 i pkginfo
 d none usr 755 root sys
 d none usr/bin 755 root sys
 s none bin=usr/bin
 f none usr/bin/prog=prog 555 root bin

l 65
l s none bin=usr/bin
l i pkginfo 167 13556 651817887
l d none usr 0755 root sys
l d none usr/bin 0755 root sys
l f none usr/bin/prog 0555 root bin 8645 63299 651810096



48 Application Packaging Developer’s Guide—November 1995

2

Now, consider the same prototype  file, with the exception that the pathname
prefix for installed files is specified with respect to a symbolic link, which is
also a defined object:

After running pkgmk, you get a pkgmap file that looks like this:

Note that the pkgmap file is sorted by path name. The attempt to create the file
bin/prog  would fail because the directory usr/bin , referenced by the
symbolic link bin , has not been created yet. This restriction applies whether
the package is installed at a fixed location or is relocatable.

Using Commands in a prototype  file

There are four types of commands that you can put in a prototype  file. They
allow you to do the following:

• Nest prototype  files (the include  command)

• Define directories for pkgmk to look in when attempting to locate objects as
it creates the package (the search  command)

• Set a default value for mode, owner,  and group  (the default  command).
If all or most of your objects have the same values, using the default
command keeps you from having to define these values for every entry in
the prototype  file.

• Assign a temporary value for variable pathnames to tell pkgmk where to
locate these relocatable objects on your machine (with PARAM=value).

 i pkginfo
 d none usr 755 root sys
 d none usr/bin 755 root sys
 s none bin=usr/bin
 f none bin/prog=prog 555 root bin

 1 s none bin=usr/bin
 1 f none bin/prog 0555 root bin 8645 63299 651810096
 1 i pkginfo 167 13556 651815761
 1 d none usr 0755 root sys
 1 d none usr/bin 0755 root sys



Application Packaging 49

2

Creating a Package with pkgmk

pkgmk takes all the objects on your machine (as defined in the prototype
file), puts them into the directory format, and copies everything in the form of
a directory format package to the installation medium.

To create a package, execute pkgmk as follows:

In the pkgmk command:

• -d  specifies that the package should be copied onto device, which may be a
diskette, CD-ROM image, or online package repository

• –r  requests that the root directory rootpath be used to locate objects on your
machine

• –b  requests that basedir be prepended to relocatable paths when pkgmk is
searching for objects on your machine

• –f  names a file, filename, that is used as your prototype  file

• PARAM=value sets environment variables. Variables beginning with lower
case letters are resolved at build time. Those beginning with uppercase
letters are placed into the pkginfo  file for use at install time.

pkgmk creates a new instance of a package when you specifically assign a new
instance name on the pkgmk command line.

Other options are described in the pkgmk(1M) manual page. For example,
executing pkgmk –d /vol/dev/rfd0/unlabeled creates a package based on a file
named prototype  in your current working directory. The package is
formatted and copied to the diskette in the device /vol/dev/rfd0/unlabeled.

Specifying the Location of Package Contents

This section describes situations that might require supplying pkgmk with
extra information and provides an explanation of how to do so.

• Your development area is not structured in the same way that you want
your package structured.

$ pkgmk [–d device] [–r rootpath] [–b basedir] [–f filename]
[PARAM=value]



50 Application Packaging Developer’s Guide—November 1995

2

Use the path1=path2 pathname format in your prototype  file.

• You have relocatable objects in your package.

You can use the path1=path2 pathname format in your prototype  file, with
path1 as a relocatable name and path2 a full pathname to that object on your
machine.

Or you can use the search  command in your prototype  file to tell pkgmk
where to look for objects.

Or you can use the –b basedir option of pkgmk to define a path name to
prepend to relocatable object names while creating the package. For
example, the following command looks in the directory
/usr2/myhome/reloc  for any relocatable objects in the package.

• You have variable object names.

You can use the search  command in your prototype  file to tell pkgmk
where to look for objects.

Or you can use the PARAM=value command in your prototype  file to give
pkgmk a value to use for the object name variables while it creates your
package.

Or you can use the VARIABLE=value option on the pkgmk command line to
define a temporary value for variable names.

$ pkgmk –d /vol/dev/rfd0/unlabeled –b /usr2/myhome/reloc



Application Packaging 51

2

Note – In determining search paths and include files both build and install
variables are resolved. Only build variables will be resolved within the
resulting package. For example:

!THEdir=/home/buddy/etc

!MYDIR=/home/buddy/src

!thedir=/opt

!search=$MYDIR,$thedir

f none $MYDIR/reader=$THEdir/reader

f none $thedir/staff

f none writer

will result in the following pkgmap entries:

1 f none $ MYDIR/reader

1 f none /opt/stuff

1 none writer

• The root directory on your machine differs from the root directory described
in the prototype  file.

–r rootpath ignores destination paths in the prototype files. Instead, it uses
the indicated rootpath with the source pathname appended to locate objects
on the source machine.

• If you put package information files (such as pkginfo  and prototype )
and the package objects in two different directories, indicate this by using
the -b  <basedir> and -r  <rootpath> options to pkgmk. If you have your
package objects in a directory called /product/pkgbin  and the other
package information files in a directory called /product/pkgsrc , you
could use the following command to place the package in the
/var/spool/pkg  directory:

Or, you could change directory to the package source directory and use the
following command:

$ pkgmk -b /product/pkgbin -r /product/pkgsrc -f /product/pkgsrc/prototype

$ pkgmk -b /product/pkgbin



52 Application Packaging Developer’s Guide—November 1995

2

In this case, pkgmk uses the current working directory to find the other parts of
the package (like the prototype  and pkginfo  package information files).

The following example shows the directory structure for a test package and the
commands to use for this directory structure:

Transferring the Package to the Media with pkgtrans

pkgtrans  moves packages and performs package format translations. You can
use pkgtrans  to perform the following translations for an installable package:

• File system format to datastream format
• Data stream format to file system format
• One file system format to another file system format

% pwd
/pkgtest
% ls pkgsrc
 Makefile
 packages/
 prototype
 pkginfo
 SCCS/
 copyright
 depend
 pkgicon
% ls pkgbin
 colortool*
 cdplayer*
 mailcheck*
% more pkgsrc/prototype
#ident  “@(#)prototype  1.1     90/09/27 ABC, Inc.”
i pkginfo
i pkgicon
i copyright
i depend
f none colortool 0555 user staff
f none cdplayer 0555 user staff
f none mailcheck 0555 user staff
% cd pkgsrc
% pkgmk -o -b /pkgtest/pkgbin -f prototype

--or--
% pkgmk -o -r /pkgtest/pkgsrc -b /pkgtest/pkgbin -f prototype



Application Packaging 53

2

To perform a basic translation, execute the following command:

where

• device1 is the name of the device where the package currently resides

• device2 is the name of the device onto which the translated package will be
written

• pkg[,pkg2...] is one or more package names

If no package names are given, all packages residing in device1 are translated
and written to device2.

Note –  If more than one instance of a package resides on device1, you must use
an instance identifier for pkg.

Creating a Datastream Package

Creating a datastream package requires two steps:

1. Create a directory format package using pkgmk.

Use the default device (the installation spool directory) or name a directory
in which the package should be stored. pkgmk creates a package in a fixed
directory format. Specify the capacity of the device where the datastream
will be put as an argument to the -l  option.

2. After the software is formatted in fixed directory format and is residing in a
spool directory, execute pkgtrans .

This command translates the fixed directory format to the datastream format
and writes the datastream to the specified medium.

For example, the two steps shown below create a datastream package.

$ pkgtrans device1 device2 [ pkg1[, pkg2[ ...]]]

$ pkgmk –d spool -l 1400
$ pkgtrans spool ctape1 package1



54 Application Packaging Developer’s Guide—November 1995

2

The first step formats a package into a fixed directory format under the device
alias named spool . spool  is a device alias that exists in
/etc/device.tab.

The second step translates the fixed directory format of package1  residing on
spool  into a format supported by the destination device, ctape1 . If the
destination device supports a file system, the translation is in fixed directory
format. Otherwise, the translation is in datastream format, which would
normally be the case for a device called ctape1 , a tape device.

The following command is similar to the second step above, except that it sets
the datastream package on the medium in a device named diskette .
pkgtrans  forces translation into datastream format on the destination device.

The -s  option indicates that the package will be copied as a datastream.
Because a diskette supports a file system format, and pkgtrans  creates a file
system by default (if possible), the -s  option is necessary to override the
default.

Translating a Package Instance

When an instance of the package being translated already exists on device2,
pkgtrans  does not perform the translation. You can use the –o  option to tell
pkgtrans  to overwrite any existing instances on the destination device and
the –n  option to tell it to create a new instance if one already exists. Note that
this check does not apply when device2 supports a datastream format.

Installation Scripts
This section discusses the optional package installation scripts. The pkgadd
command automatically performs all the actions necessary to install a package
using the package information files as input. You do not have to supply any
packaging scripts. However, you may want to create customized installation
procedures for your package.

$ pkgtrans -s spool diskette1 package1



Application Packaging 55

2

An installation script must be executable by sh . It should be made 0644
containing Bourne commands text. There are four types of installation scripts
with which you can perform customized actions under Solaris 2.5:

• request  script

Solicits administrator interaction during package installation for the
purpose of assigning or redefining environment parameters.

• Procedure scripts

Specify a procedure to be invoked before or after the installation or removal
of a package. The four procedure script types are preinstall ,
postinstall , preremove , and postremove .

• Class action scripts

Define an action or set of actions that should be applied to a class of files
during installation or removal. You can define your own classes or use one
of the three standard classes (sed , awk, and build ).   See the section
“Creating the prototype File” on page 42 for details on how to define a class.

• checkinstall  script

Examines the file system for special features and determines whether the
install proceeds.. This is only executed on Solaris 2.5 and later.

Script Processing During Package Installation

The type of scripts you use depends on when the action of the script is needed
during the installation process. As a package is installed, pkgadd  performs the
following steps:

1. Executes the request script. This is the only point at which your package
can solicit input from the installer.

Note that the request script is executed only in interactive mode. In non-
interactive mode, the request script should have been previously run by
pkgask . The request script is executed in non-privileged mode as user
“install.” If no such user is located it is executed as user “nobody.”

2. Executes the checkinstall  script (only under Solaris 2.5 and above.)
The checkinstall  script...



56 Application Packaging Developer’s Guide—November 1995

2

3. Executes the preinstall  script.

4. Creates symbolic links, devices, named pipes and required directories.

5. Installs the regular files (ftype e,v,f ).

Installation occurs class by class. Class action scripts are executed
accordingly. The class Action script is only passed regular files to install. All
other package objects are created automatically from information in the
pkgmap. The list of classes operated on and the order in which they should
be installed is initially defined with the CLASSES parameter in your
pkginfo  file. However, your request script can change the value of
CLASSES.

6. Creates all hard links.

7. Executes the postinstall  script.

Script Processing During Package Removal

When a package is being removed, pkgrm  performs these steps:

1. Executes the preremove  script.

2. Removes hard links.

3. Removes regular files.

Removal also occurs class by class. Removal scripts are processed in the
reverse order of installation, based on the sequence defined in the CLASSES
parameter at installation.

4. Removes symbolic links, devices, and named pipes.

5. Executes the postremove  script.

The request script is not processed at the time of package removal. However,
its output (a list of parameter values) is saved and made available to removal
scripts.



Application Packaging 57

2

Installation Parameters

The following four groups of parameters are available to all installation scripts.
Some of the parameters can be modified by a request script.

• The four system parameters that are part of the installation software (see
Table 2-4). None of these parameters can be modified by a package.

• The 19 standard installation parameters defined in the pkginfo  file. Of
these, the request or checkinstall  script can modify only the CLASSES
parameter. (The standard installation parameters are described in detail in
the pkginfo  entry in the manual pages.) In Solaris 2.5 and above, the
BASEDIR parameter may be modified.

• You can define your own installation parameters by assigning values to
them in the pkginfo  file. Such parameters must be alphanumeric with
initial capital letters. Any of these parameters can be changed by a request
or checkinstall  script.

• Your request script can define new parameters by assigning values to them
and putting them in the installation environment.

Table 2-4 Installation Parameters

Parameter Description

PATH Specifies the search list used by sh  to find commands on
script invocation, PATH is set to
/sbin:/usr/sbin:/usr/bin:/usr/sadm/
install/bin

UPDATE Indicates that the current installation is intended to update
the system.   Automatically set to yes  if the package being
installed is overwriting a version of itself.

PKGINST Specifies the instance identifier of the package being installed.
If another instance of the package is not already installed, the
value is the package abbreviation.   Otherwise, it is the
package abbreviation followed by a suffix, such as pkg.1

PKGSAV Specifies the directory where files can be saved for use by
removal scripts or where previously saved files can be found.



58 Application Packaging Developer’s Guide—November 1995

2

Getting Package Information for a Script

Two commands can be used from scripts to solicit information about a
package:

• The pkginfo  command returns information about software packages, such
as the instance identifier and package name.

•  The pkgparam  command returns values only for the parameters requested.

See the pkginfo (1) and pkgparam  (1) manual pages for details on these tools.

Exit Codes for Scripts

Each script must exit with one of the exit codes shown in Table 2-5.

See Appendix B, “Packaging Case Studies,” for examples of exit codes in
installation scripts.

Note – All installation scripts delivered with your package should have an
entry in the prototype  file. The file type should be i .

Table 2-5 Installation Script Exit Codes

Code Meaning

0 Successful completion of script.

1 Fatal error. Installation process is terminated at this point.

2 Warning or possible error condition. Installation continues. A warning
message is displayed at the time of completion.

3 Script was interrupted and possibly left unfinished. Installation
terminates at this point. If checkinstall  script returns this, the
pkgadd  halts cleanly.

10 System should be rebooted when installation of all selected packages
is completed. (This value should be added to one of the single-digit
exit codes described above.)

20 System should be rebooted immediately upon completing installation
of the current package. (This value should be added to one of the
single-digit exit codes described above.)



Application Packaging 59

2

The Request Script

The request script solicits interaction during installation and is the only way
your package can interact directly with the installer. It can be used, for
example, to ask the installer if optional pieces of a package should be installed.

It is executed as non-privileged user “install” if such a user is identified on the
system. Otherwise, it executes as non-privileged user “nobody.”

The output of a request script must be a list of parameters and their values.
This list can include any of the parameters you created in the pkginfo  file and
the CLASSES parameter. The list can also introduce parameters that have not
been defined elsewhere. Remember the binding rules for install vs. build time
parameters.

When your request script assigns values to a parameter, it must then make
those values available to pkgadd  and other packaging scripts. The following
example shows a request script segment that performs this task for the four
parameters CLASSES, NCMPBIN, EMACS, and NCMPMAN.

Note – There can be only one request script per package and it must be named
request .

Request Script Usage Rules
• The request script cannot modify any files. It only interacts with users and

creates a list of parameter assignments based upon that interaction. (To
enforce this restriction, the request script is executed as the nonprivileged
user install  if that user exists; otherwise it is executed as the
nonprivileged user “nobody.”)

# make parameters available to installation service
# and any other packaging script we might have
cat >$1 <<!
CLASSES=$CLASSES
NCMPBIN=$NCMPBI
EMACS=$EMACS
NCMPMAN=$NCMPMAN
!



60 Application Packaging Developer’s Guide—November 1995

2

• pkgadd  calls the request script with one argument that names the script’s
output file.

• The parameter assignments should be added to the installation environment
for use by pkgadd  and other packaging scripts by writing them to $1 .

• System parameters and standard installation parameters, except for the
CLASSES parameter, cannot be modified by a request script. Any of the
other available parameters can be changed.

• The format of the output list should be PARAM= value. For example:

• The list should be written to the file named as the argument to the request
script.

• The user’s terminal is defined as standard input to the request script.

• The request script is not executed during package removal. However, the
parameter values assigned in the script are saved and are available during
removal.

• The checkinstall script

The Procedure Script

The procedure script gives a set of instructions performed at particular points
in installation or removal. Four possible procedure scripts are described below.
Appendix B, “Packaging Case Studies,” shows examples of procedure scripts.

The four procedure scripts must use one of the names listed below, depending
on when these instructions are to be executed.

• preinstall  (executes before class installation begins, no files can be
installed by this script)

• postinstall  (executes after all volumes have been installed)

• preremove  (executes before class removal begins; no files can be removed
by this script)

• postremove  (executes after all classes have been removed)

CLASSES=none class1



Application Packaging 61

2

Procedure Script Usage Rules
• Procedure scripts are executed as uid=root  and gid=other .

• Each script should be able to be executed more than once since it is executed
once for each volume in a package. This means that executing a script any
number of times with the same input produces the same results as executing
the script only once.

• Each procedure script which installs a package object not in the pkgmap
must use the installf  command to notify the package  database that it is
adding or modifying a path name.  After all additions or modifications are
complete, this command should be invoked with the –f  option. Only
postinstall and postremove may install package objects in this way. (See the
entry for the installf  command in the manual pages and the case studies
in Appendix B, “Packaging Case Studies,” for details and examples.)

• User interaction is not permitted during execution of a procedure script. All
user interaction is restricted to the request script.

• Each procedure script which removes files not installed from the pkgmap
must use the removef  command to notify the package database that it is
removing a path name. After removal is complete, this command should be
invoked with the -f  option. (See the entry for the removef  command in the
manual pages and the case studies in Appendix B, “Packaging Case
Studies,” for details and examples.)

Note –  The installf  and removef  commands must be used because
procedure scripts are not automatically associated with any pathnames listed
in the pkgmap file.

The Class Action Script

The class action script defines a set of actions to be executed during installation
or removal of a package. The actions are performed on a group of path names
based on their class definition. (See Appendix B, “Packaging Case Studies,” for
examples of class action scripts.)



62 Application Packaging Developer’s Guide—November 1995

2

The name of a class action script is based on the class on which it should
operate and whether those operations should occur during package installation
or removal. The two name formats are as follows:

For example, the name of the installation script for a class named class1
would be i.class1  and the removal script would be named r.class1.

Class Action Script Usage Rules
• Class action scripts are executed as uid=root  and gid=other .

• If a package spans more than one volume, the class action script is executed
once for each volume that contains at least one file belonging to the class.
Consequently, each script must be able to be executed more than once. This
means that executing a script any number of times with the same input
must produce the same results as executing the script only once.

Note –  The installation service relies upon this condition being met.

• The script is not executed if no files in the given class exist on the current
volume.

• pkgadd  and pkgrm  create a list of all objects listed in the pkgmap file that
belong to the class. As a result, a class action script can act only upon
pathnames defined in the pkgmap that belong to a particular class.

• A class action script should never add, remove, or modify a path name or
system attribute that does not appear in the list generated by pkgadd .

• When the class action script is executed for the last time (meaning the input
path name is the last path on the last volume containing a file of this class),
it is executed with the keyword argument ENDOFCLASS. This flag enables
you to include post-processing actions into your script.

Name Format Description

 i .class Operates on pathnames in the indicated class during
package installation.

 r. class Operates on pathnames in the indicated class during
package removal.



Application Packaging 63

2

• User interaction is not permitted during execution of a class action script.
All user interaction is restricted to the request script.

Installation of Classes

The following steps outline the system actions that occur when a class is
installed. The actions are repeated once for each volume of a package as that
volume is being installed.

1. pkgadd  creates a pathname list.

pkgadd  creates a list of pathnames upon which the action script will
operate. Each line of this list contains source and destination pathnames,
separated by a space. The source pathname indicates where the object to be
installed resides on the installation volume and the destination pathname
indicates the location on the installation machine where the object should be
installed. The contents of the list are restricted by the following criteria:
• The list contains only pathnames belonging to the associated class.
• Directories, named pipes, character/block devices, and symbolic links are

included in the list with the source path name set to /dev/null , only
under the rare situation that the attempt to create the package object
failed. Normally they will be automatically created by pkgadd  (if not
already in existence) and given proper attributes (mode, owner, group) as
defined in the pkgmap file.

• Linked files where ftype  is l  are not included in the list. ftype  defines
the file type and is defined in the prototype file. Links in the given class
are created in Step 4.

• If a path name already exists on the target machine and it is the same as
the path name being installed, it is not included in the list. The path name
is judged the same if size and checksum are identical.

2. If no class action script is provided for installation of a particular class, the
path names in the generated list are copied from the volume to the
appropriate target location.

3. If there is a class action script, the script is executed.

The class action script is invoked with standard input containing the list
generated in Step 1. If this is the last volume of the package and there are no
more objects in this class, the script is executed with the single argument of
ENDOFCLASS.



64 Application Packaging Developer’s Guide—November 1995

2

4. pkgadd  performs a content and attribute audit and creates links.

After successfully executing Step 2 or 3, pkgadd  audits both content and
attribute information for the list of pathnames. pkgadd  creates the links
associated with the class automatically. Detected attribute inconsistencies
are corrected for all pathnames in the generated list.

Removal of Classes

Objects are removed class by class. Classes that exist for a package but that are
not listed in the CLASSES parameter are removed first (for example, an object
installed with the installf  command). Classes listed in the CLASSES
parameter are removed in reverse order. The none class is always removed last.
The following steps outline the system actions that occur when a class is
removed:

1. pkgrm  creates a pathname list.

pkgrm  creates a list of installed pathnames that belong to the indicated
class. Pathnames referenced by another package are excluded from the list
unless their ftype  is e (meaning the file should be edited upon installation
or removal).

Referenced pathnames may be modified to remove information put in it by
the package being removed.

2. If there is no class action script, the pathnames are removed.

If your package has no removal class action script for the class, all the
pathnames in the list generated by pkgrm  are removed.

Note –  Always assign a class to files with an ftype  of e (editable) and have
an associated class action script for that class. Otherwise, the files will be
removed at this point, even if the pathname is shared with other packages.

3. If there is a class action script, the script is executed.

pkgrm  invokes the class action script with standard input for the script
containing the list generated in Step 1.

4. pkgrm  performs an audit.



Application Packaging 65

2

After successfully executing the class action script, pkgrm  removes
knowledge of the pathnames from the system unless a pathname is
referenced by another package.

The Special System Classes

The system provides three special classes. They are:

• The sed  class

Provides a method for using sed  instructions to edit files upon installation
and removal.

• The awk class

Provides a method for using awk instructions to edit files upon installation
and removal.

• The build  class

Provides a method to dynamically construct a file during installation.

The sed  Class Script
The sed  installation class provides a method to install and remove objects that
modify an existing object on the target machine. A sed  class action script
delivers sed  instructions in the format shown in the next figure.

Two commands indicate when instructions should be executed. sed
instructions that follow the !install  command are executed during package
installation and those that follow the !remove  command are executed during
package removal. It does not matter which order the commands are used in the
file.



66 Application Packaging Developer’s Guide—November 1995

2

The sed  class action script executes automatically at installation if a file
belonging to class sed  exists. The name of the sed  class file should be the
same as the name of the file on which the instructions will be executed.

address, function, and arguments are as defined in the sed (1) manual page. See
Case Studies #4a and #4b in Appendix B, “Packaging Case Studies,” for
examples of sed  class action scripts.

The awk Class Script
The awk installation class provides a method to install and remove objects that
modify an existing object on the target machine. Modifications are delivered as
awk instructions in an awk class action script.

The awk class action script is executed automatically at installation if a file
belonging to class awk exists. Such a file contains instructions for the awk class
script in the format shown in the following figure.

Two commands indicate when instructions should be executed. awk
instructions that follow the !install  command are executed during package
installation, and those that follow the !remove  command are executed during
package removal. It does not matter in which order the commands are used in
the file.

# comment, which may appear on any line in the file
!install
# sed(1) instructions which will be invoked during
# installation of the object
[ address [, address]] function [ arguments]
  . . .
!remove
# sed(1) instructions to be invoked during the removal process
[ address [, address]] function [ arguments]



Application Packaging 67

2

The name of the awk class file should be the same as the name of the file on
which the instructions will be executed.

The file to be modified is used as input to awk and the output of the script
ultimately replaces the original object. Parameters may not be passed to awk
with this syntax.

The build  Class Script
The build  class installs or removes objects by executing instructions that
create or modify the object file. These instructions are delivered as a build
class action script.

The name of the instruction file should conform to standard system naming
conventions.

The build  class action script executes automatically at installation if a file
belonging to class build  exists.

A build  script must be executable by sh . The script’s output becomes the new
version of the file as it is built.

See Case Study #4c in Appendix B, “Packaging Case Studies,” for an example
build  class action script.

# comment, which may appear on any line in the file
!install
# awk(1) program to install changes
 . . . (awk program)
!remove
# awk1(1) program to remove changes
 . . . (awk program)



68 Application Packaging Developer’s Guide—November 1995

2



69

Installing and Checking Packages 3

This chapter describes how to install and check your software package. You
should install from your CD-ROM image and verify that the installation is
correct before having CD-ROMs manufactured. The following topics are
discussed:

• Installation software database

Describes the database that keeps track of the packages that have been
installed.

• Installing software packages

Briefly describes the installation command pkgadd . Installing software for
clients on a server is also discussed.

• Checking installation accuracy and displaying information about installed
packages

Describes how to use the pkgchk  command to check the integrity of your
packages after they have been installed. Also describes the various types of
information you can display with the pkginfo  command.



70 Application Packaging Developer’s Guide—November 1995

3

The Installation Software Database
Information for all packages installed on a system is kept in the installation
software database. There is an entry for every object in a package, with
information such as the component name, where it resides, and its type. An
entry contains a record of the package to which a component belongs; other
packages that might reference the component; and information such as
pathname, where the component resides and the component type. Entries are
added and removed automatically by pkgadd  and pkgrm . You can view the
information in the database by using the pkgchk  command.

Two types of information are associated with each package component. The
attribute information describes the component itself. For example, the
component’s access permissions, owner ID, and group ID are attribute
information. The content information describes the contents of the component,
such as file size and time of last modification.

The installation software database keeps track of the package status. A package
can be either fully installed, (it has successfully completed the installation
process), or partially installed (it did not successfully complete the installation
process).

When a package is partially installed, portions of a package may have been
installed before installation was terminated; thus, part of the package is
installed, and recorded in the database, and part is not. When you reinstall the
package, you are prompted to start at the point where installation stopped
because pkgadd  can access the database and detect which portions have
already been installed. You can also remove the portions that have been
installed, based on the information in the installation software database.

You can use the pkginfo  command to survey the contents of the installation
software database. The commands installf  and removef  can be used to
modify its contents.



Installing and Checking Packages 71

3

Installing Software Packages
The default installation mode is interactive. To install a software package
named pkgA  from a disk device named /dev/dsk/c0t0d0s0 , you would
enter the following command:

You can install multiple packages at the same time, as long as you separate
package names with a space, as follows:

If you do not name the device on which the package resides, the command
checks the default spool directory (/var/spool/pkg ). If the package is not
there, installation fails. The name given after the –d  option must be a full
pathname to a device, directory (as shown in the example), or device alias.

Note – You must use a package identifier if multiple versions reside on the
installation medium. In most cases, there is only one instance of a package on a
medium and the package identifier is the package abbreviation without a
suffix.

Be aware that the suffix of a package identifier defines the package instance on
that particular medium. A new package identifier is assigned to this package
when it has been installed on your system. (Use pkginfo –d device to find
out what instances are on a medium.)

Interacting with pkgadd

When pkgadd  encounters a problem, it first checks the admin  file for
instructions. (See the admin (4) manual page for details on the format of this
file.) If no instructions exist, or if the parameter is defined as ask , pkgadd
displays a message describing the problem and prompts for a reply. The
prompt is usually Do you want to continue with this
installation . You should respond with yes , no , or quit . If you have

# pkgadd –d /dev/dsk/c0t0d0s0 pkgA

# pkgadd –d /dev/dsk/c0t0d0s0 pkgA pkgB pkgC



72 Application Packaging Developer’s Guide—November 1995

3

specified more than one package, no  stops installation of the package being
installed but pkgadd  continues with installation of the other packages. quit
indicates that pkgadd  should stop installation of all packages.

Installing Packages for Clients on a Server

This section describes how to install packages for a client that place files in the
root  file system. Packages that do not place files in root  can be made
available to clients by installing the package on the server with pkgadd . These
packages are then made available when the file systems are mounted by the
clients.

Unbundled software packages should be installed into /opt/PKG . However,
some packages, such as a package containing a device driver, must be installed
into /  or /usr .

Installing Packages on a Server for Diskless Clients

You use pkgadd  on a server to install software either for the use of clients.
Software installed for the use of clients is installed in the client’s root  file
system, not the server’s root  file system.

A diskless client’s root  file system is located on the server, in the directory
/export/root/client . The client’s /usr  file system is located in
/export/exec/ os_identifier/usr , where os_identifier is a string that identifies
the operating system, version, and instruction architecture of the client.

Use the pkgadd  command with the -R  option to specify the location of the
client’s root filesystem for the installation. For example:

Files installed in the client’s root  file system appear in the client’s software
database as installed . Files that the client expects to find in its /usr  file
system are shown as shared in the client’s database. The shared files must be
installed on the server with a separate invocation of pkgadd .

# /usr/sbin/pkgadd -d device -R root_path



Installing and Checking Packages 73

3

You can use the -R  option with other package commands, for example:

Installing Packages on a Server for Dataless Clients

Installing a dataless client is similar to the installation procedure covered
under “Installing Packages on a Server for Diskless Clients.” The client’s root
file system must be a remote mount on the server. The client must export its
root file system with read and write access to the server’s root.

After mounting the client’s root filesystem on the server, use the pkgadd
command with the -R  option to specify the root filesystem of the client for the
installation. For example:

Files installed into the client’s root  file system appear in the client’s software
database as installed . Files that the client expects to find in the /usr  file
system are shown as shared in the client’s database. The shared files must be
installed on the server with a separate invocation of pkgadd .

Checking Installation Accuracy
pkgchk  (1M) enables you to check the accuracy of installed files or display
information about package files. It checks the integrity of directory structures
and the files. pkgchk  can list or check the following:

• Contents or attributes, or both, of objects currently installed on the system

• Contents of a spooled, uninstalled package

• Contents or attributes, or both, of objects described in the specified pkgmap
file

For more detailed information about this command, refer to the pkgchk (1M)
manual page.

# /usr/sbin/pkgchk -R root_path
# /usr/sbin/pkgrm -R root_path

# /usr/sbin/pkgadd -d device -R root_path



74 Application Packaging Developer’s Guide—November 1995

3

pkgchk  performs two kinds of checks. It checks file attributes (the permissions
and ownership of a file and major/minor numbers for block or character
special devices) and the file contents (the size, checksum, and modification
date). By default, the command checks both the file attributes and the file
contents.

The pkgchk  command also compares the file attributes and contents of the
installed package against the installation software database. The entries
concerning a package may have been changed since the time of installation; for
example, another package may have changed a package component. The
database reflects that change.

If you use the -f  option to pkgchk , file attributes are corrected when
discrepancies are found.

Displaying Information About Installed Packages

You can use two commands to display information about packages:

• pkgparam  displays parameter values
• pkginfo  displays information from the software database

The pkgparam  Command

pkgparam  enables you to display the values associated with the parameters
you have requested on the command line. The values are retrieved from either
the pkginfo  file for pkginst  or from the file you name. One parameter value
is shown per line. You can display the values only or the parameters and their
values.

For detailed information, refer to the pkgparam  (1) manual page.

The pkginfo  Command

You can display information about installed packages with the pkginfo
command. pkginfo  has several options that enable you to customize both the
format and the contents of the display.

You can request information about any number of package instances.



Installing and Checking Packages 75

3

Parameter Descriptions for the pkginfo  Display
Table 3-1 describes the package parameters that can be displayed for each
package. A parameter and its value are displayed only when the parameter has
a value assigned to it.

Table 3-1Package Parameters

Parameter Description

ARCH The architecture supported by this package.

BASEDIR The base directory in which the software package resides (shown if the
package is relocatable).

CATEGORY The software category, or categories, of which this package is a member
(for example, system  or application ).

CLASSES A list of classes defined for a package. The order of the list determines
the order in which the classes are installed. Classes listed first will be
installed first (on a media by media basis). This parameter may be
modified by the request script.

DESC Text that describes the package.

EMAIL The electronic mail address for user inquiries.

HOTLINE Information on how to receive hotline help concerning this package.

INTONLY Indicates that the package should only be installed interactively when
set to any non-NULL value.

ISTATES A list of allowable run states for package installation (for example,
S s 1 ).

MAXINST The maximum number of package instances that should be allowed on
a machine at the same time. By default, only one instance of a package
is allowed. This parameter must be set to allow for multiple instances of
a package.

NAME The package name, generally text describing the package abbreviation.

ORDER A list of classes defining the order in which they should be put on the
medium. Used by pkgmk in creating the package. Classes not defined in
this parameter are placed on the medium using the standard ordering
procedures.

PKGINST Abbreviation for the package being installed.

PSTAMP The production stamp for this package

RSTATES A list of allowable run states for package removal (for example, S s
1).



76 Application Packaging Developer’s Guide—November 1995

3

You can request that all spooled packages on a particular device, or in a
particular directory, be included in the pkginfo  list by using the –d  option.
For example, the following command shows information in the extracted
format for all the packages in the spool directory /opt/spooldir :

For detailed information about the pkginfo  command, refer to the
pkginfo (4) manual page.

The Default pkginfo  Display
When pkginfo  is executed without options, it displays the category, package
instance, and package name of all packages that have been completely installed
on your system. The display is organized by categories as shown in the
following example.

Customizing the Format of the pkginfo  Display
You can get a pkginfo  display in any of three formats: short, extracted, and
long.

ULIMIT If set, this parameter is passed as an argument to the ulimit
command, which establishes the maximum size of a file during
installation. This applies only to files created by control scripts.

VENDOR The name of the vendor who supplied the software package.

VERSION The version of this package.

VSTOCK The vendor-supplied stock number.

# pkginfo -d /opt/spooldir -x

$ pkginfo
system int Installation Utilities
system backup Backup/Restore Utilities
application pkgA Package A
application pkgA.2 Package A
application anpkg Another Package
$

Table 3-1Package Parameters



Installing and Checking Packages 77

3

The short format is the default. It shows only the category, package
abbreviation, and full package name. It presents one line of information per
package.

The extracted format shows the package abbreviation, package name, package
architecture (if available), and package version (if available). Use the –x  option
to request the extracted format as shown in the next example.

Using the –l  option produces a display in the long format showing all of the
available information about a package, as in the following example.

Customizing the Contents of the pkginfo  Display
You can use the pkginfo  options to specify packages to be included in the
display. See the pkginfo  (1M) manual page for a description of the options.

$ pkginfo –x pkgA anpkg
pkgA Package A
(SunOS) Release 2, Version 3
anpkg Another Package
(SunOS) Release 4

$ pkginfo –l mypkg
PKGINST: pkgA.3
NAME: Package A
CATEGORY: application
ARCH: SunOS
VERSION: Version 3
INSTDATE: Tue Apr 14 08:41:40 MDT 1988
BASEDIR: /opt/pkgA
VSTOCK: sdr9000
STATUS: completely installed
FILES: 31 installed
                 3 linked files
                10 directories
                13 executable

nnnn blocks used (approx)
                SERIALNUM: 201-790b
$



78 Application Packaging Developer’s Guide—November 1995

3



79

Creating Icons and Package Clusters 4

This chapter describes creating icons, package clusters, and how to create
them. Clusters can be used with admintool  to provide a simplified user
interface for installing software.

Creating an Icon for Your Application
If you want to provide an icon for your application, you can use iconedit (1)
to create one. See the iconedit (1) man page for more information. Before you
save the icon, be sure your iconedit  settings are as follows:

• Black and White (not color)
• Format is XView Icon
• Size is 64

You set Size and Format using the Properties menu.

You must also specify the location of the icon in the pkginfo  file. Set the
SUNW_ICON parameter to the path name of the icon. The path name should be
the relative path to the icon.

Using Clusters
A cluster is a group of one or more software objects such that each object is
either a software package or another cluster.



80 Application Packaging Developer’s Guide—November 1995

4

Clusters provide a modular view of the contents of the installation medium. By
using the admintool add software capability, a user can display a list of the
clusters contained in a product. The user can then choose which clusters to
install.

Clusters can also simplify the removal and upgrade of software packages and
the distribution of localization modules and machine-dependent code. You can
package each localization module separately, allowing the user to install only
the needed modules. You can also put machine-dependent code in individual
packages so that only the code for the specific system is installed.

Contents and Order Files

You can use four files to create clusters for your package:

• .cdtoc  - the CD-ROM table of contents file
• .clustertoc  - the cluster table of contents file
• .packagetoc  - the package table of contents file
• .order  - the package installation order file

These files are optional. You need to use them only if you are using clusters.

Figure 4-1 shows an example of a directory hierarchy for a CD-ROM, including
the locations of the contents and order files. A product can consist of multiple
clusters, some of which may be optional.

Figure 4-1 CD-ROM Directory Hierarchy Example

top-level directory of CD-ROM

product1 product2 ...

pkg1 pkg2 locale .order

C

.packagetoc.clustertoc

.cdtoc



Creating Icons and Package Clusters 81

4

If your package has other locales than C (English), there would be a directory
under locale  for each locale. Each locale directory would contain the
localized .clustertoc  and .packagetoc  files.

.cdtoc  File

The .cdtoc  resides in the top-level directory on the CD-ROM. It is a text file
that describes the location of each product on a CD-ROM. This file is not
required to define clusters, but your CD_ROM should contain one if you are
putting multiple software products on one CD-ROM.

Each line in the file has the following form:

PARAM can be one of:

• PRODNAME - full name of the product
• PRODVERS - version of the product
• PRODDIR - the directory containing the product

The parameters are grouped by product and PRODNAME should be the first
parameter for each product. See the cdtoc (4) man page for detailed
information.

.clustertoc  File

The .clustertoc  file describes all the clusters that make up a product, listing
the packages contained in each cluster. This is the only file that is required to
define clusters for a product.

The .clustertoc  file must be in the locale  directory for the product. Each
product can have one .clustertoc  file describing all the clusters in the
product.

Each line in the file has the following format:

PARAM=value

PARAM=value



82 Application Packaging Developer’s Guide—November 1995

4

Parameters are grouped by cluster with the first parameter for a group being
CLUSTER=identifier and the last parameter for a group being END. See the
clustertoc (4) man page for a complete description of the parameters.

.packagetoc  File

The .packagetoc  file describes the packages that make up a product. This
file must also be in the appropriate subdirectory of the locale  directory for
the product. There can only be one .packagetoc  per product.

Note – If your product has a .packagetoc  file, it must also have a .order
file.

Each line in the file has the following form:

Parameters are grouped by package with the first parameter for a package
being PKG=identifier. See the packagetoc (4) man page for a complete
description of the parameters.

.order  File

The .order  file is a text file that specifies the order in which the packages
must be installed. The file consists of a list of package identifiers, one per line.
The .order  file resides in the product directory (the directory specified for the
product in the .cdtoc  file). This file is not required to use package clusters.
There can be only one .order  file per product.

PARAM=value



83

Packaging Guidelines A

This appendix provides a list of criteria to use when building packages.

Many of the good packaging criteria present trade-offs among themselves. It
will often be difficult to satisfy all requirements equally. These criteria are
presented in order of importance; however, this sequence is meant to serve as a
flexible guide depending on the circumstances. Although each of these criteria
is important, it is up to you to optimize these requirements to produce a good
set of packages.

Optimize for Client-Server Configurations
You should consider the various types of system software configurations
(diskfull, diskless, and server) when laying out packages. Good packaging
design divides the affected files to optimize installation of each configuration
type. For example, the contents of root  and usr  should be segmented so that
dataless and server configurations can easily be supported.

Package by Functional Boundaries
Packages should be self-contained and distinctly identified with a set of
functionality. For example, a package containing UFS should contain all UFS
utilities and be limited to only UFS binaries.

Packages should be organized from a customer’s point of view into functional
units.



84 Application Packaging Developer’s Guide—November 1995

A

Package Along Royalty Boundaries
Put code that requires royalty payments due to contractual agreements in a
dedicated package or group of packages. Do not to disperse the code into more
packages than necessary.

Package by Machine Dependencies
Keep machine dependent binaries in dedicated packages. For example, the
kernel code should be in a dedicated package with each implementation
architecture corresponding to a distinct package instance. This rule also applies
to binaries for different architectures. For example, SPARC binaries would be in
one package and binaries for an Intel machine would be in another.

Overlap in Packages
When constructing the packages, ensure that duplicate files are eliminated
when possible. Unnecessary duplication of files results in support and version
difficulties. If your product has multiple packages, constantly compare the
contents of these packages for redundancies.

Sizing Considerations
Size is package-specific and depends on other criteria. For example, the
maximum size of /opt  should be considered. When possible, a good package
should not contain only one or two files or contain extremely large numbers of
files. There are cases where a smaller or larger package might be appropriate to
satisfy other criteria.

Localization Software Packaging Guidelines
Localization specific items should be in their own package. An ideal packaging
model would have a product’s localizations delivered as one package per
locale. Unfortunately, in some cases organizational boundaries may conflict
with the functional or product boundaries criterion.

International defaults can also be delivered in a package. This would isolate
the files necessary for localization changes and standardize delivery format of
localization packages.



85

Packaging Case Studies B

Introduction
This appendix presents case studies to show packaging techniques such as
installing objects conditionally, determining at run time how many files to
create, and modifying an existing data file during package installation and
removal.

Each case begins with a description of the study, followed by a list of the
packaging techniques used and a narrative description of the approach taken
when using those techniques. After this material, sample files and scripts
associated with the case study are shown.

Case #1: Using a request  Script

This package has three types of objects. The installer may choose which of the
three types to install and where to locate the objects on the installation
machine.

Techniques
This case study shows examples of the following techniques:

• Using variables in object pathnames

• Using the request script to solicit input from the installer

• Setting conditional values for an installation parameter



86 Application Packaging Developer’s Guide—November 1995

B

Approach
To set up selective installation, you must:

• Define a class for each type of object that can be installed.

In this case study, the three object types are the package executables, the
manual pages, and the emacs executables. Each type has its own class: bin ,
man, and emacs, respectively. Notice that in the prototype  file all the
object files belong to one of these three classes.

• Initialize the CLASSES parameter in the pkginfo  file to all classes.

Normally when you define a class, you should list that class in the CLASSES
parameter. Otherwise, no objects in that class are installed. For this example,
the parameter is initially set to all classes. Since the pkginfo  file contains
the default settings, all classes are included. CLASSES is given values by the
request script, based on the package pieces chosen by the installer. This way,
CLASSES is set to only those object types that the installer wants installed.
The first figure shows the pkginfo  file associated with this package. Notice
that the CLASSES parameter is set to null.

• Use variables to define object pathnames in the prototype  file.

The request script sets these variables to the value which the installer
provides. pkgadd  resolves these variables at installation time and so knows
where to install the package.

The three variables used in this example are set to their default in the
pkginfo file and serve the following purposes:
• $NCMPBIN defines the location for object executables
• $NCMPMAN defines the location for manual pages
• $EMACS defines the location for emacs executables

The example prototype file shows how to define the object pathnames with
variables.

• Create a request script to ask the installer which parts of the package should
be installed and where they should be placed.

The request script for this package asks two questions:
• Should this part of the package be installed?



Packaging Case Studies 87

B

When the answer is yes, the appropriate class name is added to the
CLASSES parameter. For example, when the installer chooses to install the
manual pages associated with this package, the class man is added to the
CLASSES parameter.

• If so, where should that part of the package be placed?

The appropriate variable is set to the response to this question. In the
manual page example, the variable $NCMPMAN is set to the response value.

These two questions are repeated for each of the three object types.

At the end of the request script, the parameters are made available to the
installation environment for pkgadd  and any other packaging scripts. The
request script does this by writing these definitions to the file provided by the
calling utility. For this example, no other scripts are provided.

When looking at the request script for this example, notice that the questions
are generated by the data validation tools ckyorn  and ckpath . See also
ckyorn (1) and ckpath (1).

Sample Files
The following example shows the pkginfo  file for Case #1:

Pkg=ncmp
NAME=NCMP Utilities
CATEGORY=application, tools
BASEDIR=/
ARCH=SPARC
VERSION=RELEASE 1.0, Issue 1.0
CLASSES=bin emacs man
NCMPBIN=/bin
NCMPMAN=/usr/man
EMACS=/usr/emacs



88 Application Packaging Developer’s Guide—November 1995

B

This example file shows the prototype  file for Case #1:

i pkginfo
i request
x bin $NCMPBIN 0755 root other
f bin $NCMPBIN/dired=/usr/ncmp/bin/dired 0755 root other
f bin $NCMPBIN/less=/usr/ncmp/bin/less 0755 root other
f bin $NCMPBIN/ttype=/usr/ncmp/bin/ttype 0755 root other
f emacs $NCMPBIN/emacs=/usr/ncmp/bin/emacs 0755 root other
x emacs $EMACS 0755 root other
f emacs $EMACS/ansii=/usr/ncmp/lib/emacs/macros/ansii 0644 root
other
f emacs $EMACS/box=/usr/ncmp/lib/emacs/macros/box 0644 root
other
f emacs $EMACS/crypt=/usr/ncmp/lib/emacs/macros/crypt 0644 root
other
f emacs $EMACS/draw=/usr/ncmp/lib/emacs/macros/draw 0644 root
other
f emacs $EMACS/mail=/usr/ncmp/lib/emacs/macros/mail 0644 root
other
f emacs $NCMPMAN/man1/emacs.1=/usr/ncmp/man/man1/emacs.1 0644
root other
d man $NCMPMAN 0755 root other
d man $NCMPMAN/man1 0755 root other
f man $NCMPMAN/man1/dired.1=/usr/ncmp/man/man1/dired.1 0644 root
other
f man $NCMPMAN/man1/ttype.1=/usr/ncmp/man/man1/ttype.1 0644 root
other
f man $NCMPMAN/man1/less.1=/usr/ncmp/man/man1/less.1 0644 inixmr
other



Packaging Case Studies 89

B

 This example file shows the request script for Case #1:

Note that the request script can exit without leaving any files on the filesystem.
For installations on Solaris versions prior to 2.5 (where no checkinstall
script may be used) the request script is the correct place to test the file system
in any manner necessary to assure that the installation will succeed. When the
request script exits with code 1, the installation will quit cleanly.

These examples show the use of parametric paths to establish multiple base
directories. It is necessary to show how this is done, but the preferred method
involves use of the $BASEDIR parameter which is managed and validated by
pkgadd . Whenever multiple base directories are used, special care must be
taken to provide for installation of multiple versions and architectures on the
same platform.

trap ’exit 3’ 15
# determine if and where general executables should be placed
ans=‘ckyorn -d y \
-p "Should executables included in this package be installed"
‘ || exit $?
if [ "$ans" = y ]
then
CLASSES="$CLASSES bin"
NCMPBIN=‘ckpath -d /usr/ncmp/bin -aoy \
-p "Where should executables be installed"
‘ || exit $?
fi
# determine if emacs editor should be installed, and if it should
# where should the associated macros be placed
ans=‘ckyorn -d y \
-p "Should emacs editor included in this package be installed"
‘ || exit $?
if [ "$ans" = y ]
then
CLASSES="$CLASSES emacs"
EMACS=‘ckpath -d /usr/ncmp/lib/emacs -aoy \
-p "Where should emacs macros be installed"
‘ || exit $?



90 Application Packaging Developer’s Guide—November 1995

B

Case #2: Using Classes, Class Action Scripts, and the space  File

This study creates a database file at installation and saves a copy of the
database when the package is removed.

Techniques
This case study shows examples of the following techniques:

• Using classes and class action scripts to perform special actions on different
sets of objects

• Using the space  file to inform pkgadd  that extra space is required to install
this package properly

• Using the installf  command

Approach
To create a database file at installation and save a copy on removal, you must:

• Create three classes.

This package requires the following three classes to be defined in the
CLASSES parameter:
• The standard class of none  (contains a set of processes belonging in the

subdirectory bin )
• The admin  class (contains an executable file config  and a directory

containing data files)
• The cfgdata  class (contains a directory)

• Make the package collectively relocatable.

Notice in the prototype  file that none of the pathnames begins with a
slash or a variable. This indicates that they are collectively relocatable.

• Calculate the amount of space the database file requires and create a space
file to deliver with the package. This file notifies pkgadd  that the package
requires extra space and specifies how much extra space.

• Create an installation class action script for the admin  class.

The script shown initializes a database using the data files belonging to the
admin  class. To perform this task, it:
• Copies the source data file to its proper destination



Packaging Case Studies 91

B

• Creates an empty file named config.data  and assigns it to a class of
cfgdata

• Executes the bin/config  command (delivered with the package and
already installed) to populate the database file config.data  using the
data files belonging to the admin  class

• Executes installf –f  to finalize installation

No special action is required for the admin  class at removal time so no
removal class action script is created. This means that all files and
directories in the admin  class are removed from the system.

• Create a removal class action script for the cfgdata  class.

The removal script makes a copy of the database file before it is deleted. No
special action is required for this class at installation time, so no installation
class action script is needed.

Remember that the input to a removal script is a list of path names to
remove. Path names always appear in lexical order with the directories
appearing first. This script captures directory names so that they can be
acted upon later and copies files to a directory named /tmp . When all the
path names have been processed, the script then goes back and removes all
directories and files associated with the cfgdata  class.

The outcome of this removal script is to copy config.data  to /tmp  and
then remove the config.data  file and the data directory.

Sample Files
The following example file shows the pkginfo  file for Case #2:

PKG=krazy
NAME=KrAzY Applications
CATEGORY=applications
BASEDIR=/
ARCH=SPARC
VERSION=Version 1
CLASSES=none cfgdata admin



92 Application Packaging Developer’s Guide—November 1995

B

This example file shows the prototype file for Case #2:

The following example file shows the space  file:

i pkginfo
i request
i i.admin
i r.cfgdata
d none bin 555 root sys
f none bin/process1 555 root other
f none bin/process2 555 root other
f none bin/process3 555 root other
f admin bin/config 500 root sys
d admin cfg 555 root sys
f admin cfg/datafile1 444 root sys
f admin cfg/datafile2 444 root sys
f admin cfg/datafile3 444 root sys
f admin cfg/datafile4 444 root sys
d cfgdata data 555 root sys

# extra space required by config data which is
# dynamically loaded onto the system
data 500 1



Packaging Case Studies 93

B

The following example file shows the installation script:

This illustrates a rare instance in which installf  is appropriate in a class
action script. Since a space file has been used to reserve room on a specific
filesystem, this new file may be safely added even though it is not included in
the pkg map.

Normal installf ’s should be saved for use in the postinstall script after the
package database is stable.

# PKGINST parameter provided by installation service
# BASEDIR parameter provided by installation service
while read src dest
do
# the installation service provides ‘/dev/null’ as the
# pathname for directories, pipes, special devices, etc.
# which it knows how to create.
[ "$src" = /dev/null ] && continue
cp $src $dest || exit 2
done
# if this is the last time this script will be executed
# during the installation, do additional processing here.
if [ "$1" = ENDOFCLASS ]
then
# our config process will create a data file based on any changes
# made by installing files in this class; make sure the data file
# is in class ‘cfgdata’ so special rules can apply to it during
# package removal.
installf -c cfgdata $PKGINST $BASEDIR/data/config.data f 444 root
sys || exit 2
$BASEDIR/bin/config > $BASEDIR/data/config.data || exit 2
installf -f -c cfgdata $PKGINST || exit 2
fi
exit 0



94 Application Packaging Developer’s Guide—November 1995

B

This example file shows the removal script for Case #2:

Case #3: Using copyright , compver , and depend  Files

This package uses the optional packaging files to define package
compatibilities and dependencies and to present a copyright message during
installation.

Techniques
This case study shows examples of the following techniques:

• Using the copyright  file

• Using the compver  file

• Using the depend  file

# the product manager for this package has suggested that
# the configuration data is so valuable that it should be
# backed up to /tmp before it is removed!
while read path
do
# pathnames appear in lexical order, thus directories
# will appear first; you can’t operate on directories
# until done, so just keep track of names until
# later
if [ -d $path ]
then
dirlist="$dirlist $path"
continue
fi
mv $path /tmp || exit 2
done
if [ -n "$dirlist" ]
then
rm -rf $dirlist || exit 2
fi
exit 0



Packaging Case Studies 95

B

Approach
To meet the requirements in the description, you must:

• Create a copyright  file.

A copyright  file contains the ASCII text of a copyright message. The
message shown in the figure is displayed on the screen during package
installation (and also during package removal).

• Create a compver  file.

The pkginfo  file shown in the next figure defines this package version as
version 3.0. The compver  file defines version 3.0 as being compatible with
versions 2.3, 2.2, 2.1, 2.1.1, 2.1.3 and 1.7.

• Create a depend  file.

Files listed in a depend  file must already be installed on the system when a
package is installed. The example shown has 11 packages which must
already be on the system at installation time.

Sample Files
 The following example file shows the pkginfo  file for Case #3:

This example file shows the copyright  file for Case #3:

PKG=case3
NAME=Case Study #3
CATEGORY=application
BASEDIR=/
ARCH=SPARC
VERSION=Version 3.0
CLASSES=none

Copyright (c) 1989 company_name
All Rights Reserved.
THIS PACKAGE CONTAINS UNPUBLISHED PROPRIETARY SOURCE CODE OF
company_name.
The copyright notice above does not evidence any
actual or intended publication of such source code



96 Application Packaging Developer’s Guide—November 1995

B

The following example file shows the compver  file for Case #3:

This example file shows the depend  file for Case #3:

Case #4a: Using the sed  Class and a postinstall  Script

This study modifies a file which exists on the installation machine during
package installation. It uses one of three modification methods. The other two
methods are shown in Cases #4b and #4c. The file modified is
/sbin/inittab .

Techniques
This case study shows examples of the following techniques:

• Using the sed  class

Version 2.3
Version 2.2
Version 2.1
Version 2.1.1
Version 2.1.3
Version 1.7

P acu Advanced C Utilities
Issue 4 Version 1
P cc C Programming Language
Issue 4 Version 1
P dfm Directory and File Management Utilities
P ed Editing Utilities
P esg Extended Software Generation Utilities
Issue 4 Version 1
P graph Graphics Utilities
P rfs Remote File Sharing Utilities
Issue 1 Version 1
P rx Remote Execution Utilities
P sgs Software Generation Utilities
Issue 4 Version 1
P shell Shell Programming Utilities
P sys System Header Files
Release 3.1



Packaging Case Studies 97

B

• Using a postinstall  script

Approach
To modify /sbin/inittab  at the time of installation, you must:

• Add the sed  class script to the prototype  file.

The name of a script must be the name of the file that will be edited. In this
case, the file to be edited is /sbin/inittab  and so our sed script is named
/sbin/inittab . There are no requirements for the mode owner group
of a sed script (represented in the sample prototype  by question marks).
The file type of the sed  script must be e (indicating that it is editable).

• Set the CLASSES parameter to include sed .

In the case of the example shown next, sed  is the only class being installed.
However, it could be one of any number of classes.

• Create a sed  class action script.

You cannot deliver a copy of /sbin/inittab  that looks the way you need
it to, since /sbin/inittab  is a dynamic file and you have no way of
knowing how it will look at the time of package installation. Using a sed
script allows us to modify the /sbin/inittab  file during package
installation.

As already mentioned, the name of a sed  script should be the same as the
name of the file it will edit. A sed  script contains sed  commands to remove
and add information to the file.

• Create a postinstall  script.

You need to execute init q  to inform the system that /sbin/inittab  has
been modified. The only place you can perform that action in this example
is in a postinstall  script. Looking at the example postinstall  script,
you will see that its only purpose is to execute the following command:

This approach to editing /sbin/inittab  during installation has two
drawbacks. First of all, you have to deliver a full script (the postinstall
script) simply to perform init q . In addition to that, the package name at
the end of each comment line is hardcoded.

init q



98 Application Packaging Developer’s Guide—November 1995

B

Sample Files
This example file shows the pkginfo  file for Case #4a:

The following example file shows the prototype  file for Case #4a:

This example file shows the sed  class action script for Case #4a:

KG=case4a
NAME=Case Study #4a
CATEGORY=applications
BASEDIR=/
ARCH=SPARC
VERSION=Version 1d05
CLASSES=sed

i pkginfo
i postinstall
e sed /sbin/inittab ? ? ?

!remove
# remove all entries from the table that are associated
# with this package, though not necessarily just
# with this package instance
/^[^:]*:[^:]*:[^:]*:[^#]*#ROBOT$/d
!install
# remove any previous entry added to the table
# for this particular change
/^[^:]*:[^:]*:[^:]*:[^#]*#ROBOT$/d
# add the needed entry at the end of the table;
# sed(1) does not properly interpret the ’$a’
# construct if you previously deleted the last
# line, so the command
# $a\
# rb:023456:wait:/usr/robot/bin/setup #ROBOT
# will not work here if the file already contained
# the modification. Instead, you will settle for
# inserting the entry before the last line!
$i\
rb:023456:wait:/usr/robot/bin/setup #ROBOT



Packaging Case Studies 99

B

This example file shows the postinstall  script for Case #4a:

Case #4b: Using Classes and Class Action Scripts

This study modifies an existing file during package installation. It uses one of
three modification methods. The other two methods are shown in Cases #4a
and #4c. The file modified is /sbin/inittab .

Techniques
This case study shows examples of the following techniques:

• Creating classes

• Using installation and removal class action scripts

Approach
To modify /sbin/inittab  during installation, you must:

• Create a class.

Create a class called inittab . You must provide an installation and a
removal class action script for this class. Define the inittab  class in the
CLASSES parameter in the pkginfo  file.

• Create an inittab  file.

This file contains the information for the entry that you will add to
/sbin/inittab . Notice in the prototype  file figure that inittab  is a
member of the inittab  class and has a file type of e for editable.

# make init re-read inittab
/sbin/init q ||
exit 2
exit 0



100 Application Packaging Developer’s Guide—November 1995

B

• Create an installation class action script.

Since class action scripts must be multiply executable (meaning you get the
same results each time they are executed), you cannot just add the sample
text to the end of the file. The class action script performs the following
procedures:
• Checks to see if this entry has been added before
• If it has, removes any previous versions of the entry
• Edits the inittab  file and adds the comment lines so you know where

the entry is from
• Moves the temporary file back into /sbin/inittab

• Executes init q  when it receives the end-of-class indicator

Note that init q  can be performed by this installation script. A one-line
postinstall  script is not needed by this approach.

• Create a removal class action script.

The removal  script is very similar to the installation script. The information
added by the installation script is removed and init q  is executed.

This case study resolves the drawbacks to Case #4a. You can support multiple
package instances since the comment at the end of the inittab  entry is now
based on package instance. Also, you no longer need a one-line postinstall
script. However, this case has a drawback of its own. You must deliver two
class action scripts and the inittab  file to add one line to a file. Case #4c
shows a more streamlined approach to editing /sbin/inittab  during
installation.

Sample Files
This example file shows the pkginfo  file for Case #4b:

PKG=case4b
NAME=Case Study #4b
CATEGORY=applications
BASEDIR=/
ARCH=SPARC
VERSION=Version 1d05
CLASSES=inittab



Packaging Case Studies 101

B

The following example file shows the prototype  file for Case #4b:

This example file shows the installation class action script for Case #4b:

i pkginfo
i i.inittab
i r.inittab
e inittab /sbin/inittab ? ? ?

# PKGINST parameter provided by installation service
while read src dest
do
# remove all entries from the table that
# associated with this PKGINST
sed -e "/^[^:]*:[^:]*:[^:]*:[^#]*#$PKGINST$/d" $dest >
/tmp/$$itab ||
exit 2
sed -e "s/$/#$PKGINST" $src >> /tmp/$$itab ||
exit 2
mv /tmp/$$itab $dest ||
exit 2
done
if [ "$1" = ENDOFCLASS ]
then
/sbin/init q ||
exit 2
fi
exit 0



102 Application Packaging Developer’s Guide—November 1995

B

The following example file shows the removal  script for Case #4b:

This example file shows the one line inittab  file needed for Case #4b:

Case #4c: Using the build  Class

This study modifies a file which exists on the installation machine during
package installation. It uses one of three modification methods. The other two
methods are shown in Cases #4a and #4b. The file modified is
/sbin/inittab .

Techniques
This case study shows examples of the following technique:

• Using the build  class

Approach
This approach to modifying /sbin/inittab  uses the build  class. A build
class file is executed as a shell script and its output becomes the new version of
the file being executed. In other words, the data file inittab  that is delivered
with this package will be executed and the output of that execution will
become /sbin/inittab .

# PKGINST parameter provided by installation service
while read src dest
do
# remove all entries from the table that
# are associated with this PKGINST
sed -e "/^[^:]*:[^:]*:[^:]*:[^#]*#$PKGINST$/d" $dest >
/tmp/$$itab ||
exit 2
mv /tmp/$$itab $dest ||
exit 2
done
/sbin/init q ||
exit 2
exit 0

rb:023456:wait:/usr/robot/bin/setup



Packaging Case Studies 103

B

The build  class file is executed during package installation and package
removal. The argument install  is passed to the file if it is being executed at
installation time. Notice in the sample build  file that installation actions are
defined by testing for this argument.

To edit /sbin/inittab  using the build  class, you must:

• Define the build file in the prototype  file.

The entry for the build  file in the prototype  file should place it in the
build  class and define its file type as e. Be certain that the CLASSES
parameter in the pkginfo  file is defined as build .

• Create the build  file.

The build  file shown next performs the following procedures:
• Edits /sbin/inittab  to remove any changes already existing for this

package. Notice that the filename /sbin/inittab  is hardcoded into the
sed  command.

• If the package is being installed, adds the new line to the end of
/sbin/inittab . A comment tag is included in this new entry to remind
us from where that entry came.

• Executes init q .

This solution addresses the drawbacks in case studies #4a and #4b. Only one
short file is needed (beyond the pkginfo  and prototype  files). The file
works with multiple instances of a package since the $PKGINST parameter
is used, and no postinstall  script is required since init q  can be
executed from the build  file.

Sample Files
The following example file shows the pkginfo  file for Case #4c:

PKG=case4c
NAME=Case Study #4c
CATEGORY=applications
BASEDIR=/
ARCH=SPARC
VERSION=Version 1d05
CLASSES=build



104 Application Packaging Developer’s Guide—November 1995

B

This example file shows the prototype  file for Case #4c:

The following example file shows the build  file for Case #4c:

Case #5: Using crontab  in a Class Action Script

This case study modifies crontab  files during package installation.

Techniques
This case study shows examples of the following techniques:

• Using classes and class action scripts

• Using the crontab  command within a class action script

i pkginfo
e build /sbin/inittab ? ? ?

# PKGINST parameter provided by installation service
# remove all entries from the existing table that
# are associated with this PKGINST
sed -e "/^[^:]*:[^:]*:[^:]*:[^#]*#$PKGINST$/d" /sbin/inittab ||
exit 2
if [ "$1" = install ]
then
# add the following entry to the table
echo "rb:023456:wait:/usr/robot/bin/setup #$PKGINST" ||
exit 2
fi
/sbin/init q ||
exit 2
exit 0



Packaging Case Studies 105

B

Approach
You could use the build  class and follow the approach shown for editing
/sbin/inittab  in case study #4c except that you want to edit more than one
file. If you used the build  class approach, you would need to deliver one for
each cron  file edited. Defining a cron  class provides a more general approach.
To edit a crontab  file with this approach, you must:

• Define the cron  files that are edited in the prototype  file.

Create an entry in the prototype  file for each crontab  file that will be
edited. Define the class as cron  and the file type as e for each file. Use the
actual name of the file to be edited.

• Create the crontab  files for the package.

These files contain the information you want added to the existing crontab
files of the same name.

• Create an installation class action script for the cron  class.

The i.cron  script, shown in the next figure, performs the following
procedures:
• Determines the user ID.

This is done by setting the variable user to the base name of the cron
class file being processed. That name equates to the user ID. For example,
the basename of /var/spool/cron/crontabs/root  is root (which is
also the user ID).

• Executes crontab  using the user ID and the –l  option.

Using the –l  options tells crontab  to send the contents of the crontab
for the defined user to the standard output.

• Pipes the output of the crontab  command to a sed  script that removes
any previous entries added with this installation technique.

• Puts the edited output into a temporary file.
• Adds the data file for the root user ID (that was delivered with the

package) to the temporary file and adds a tag so you will know where
these entries came from.

• Executes crontab  with the same user id and give it the temporary file as
input.



106 Application Packaging Developer’s Guide—November 1995

B

• Create a removal class action script for the cron  class.

The removal  script is the same as the installation script except there is no
procedure to add information to the crontab  file.

These procedures are performed for every file in the cron  class.

Sample Files
The following example file shows the pkginfo  file for Case #5:

This example file shows the prototype  file for Case #5:

PKG=case5
NAME=Case Study #5
CATEGORY=application
BASEDIR=/
ARCH=SPARC
VERSION=Version 1.0
CLASSES=cron

i pkginfo
i i.cron
i r.cron
e cron /var/spool/cron/crontabs/root ? ? ?
e cron /var/spool/cron/crontabs/sys ? ? ?



Packaging Case Studies 107

B

This example file shows the installation class action script for Case #5:

The following example file shows the removal class action script for Case #5:

# PKGINST parameter provided by installation service
while read src dest
do
user=‘basename $dest‘ ||
exit 2
(crontab -l $user |
sed -e "/#$PKGINST$/d" > /tmp/$$crontab) ||
exit 2
sed -e "s/$/#$PKGINST/" $src >> /tmp/$$crontab ||
exit 2
crontab $user < /tmp/$$crontab ||
exit 2
rm -f /tmp/$$crontab
done
exit 0

# PKGINST parameter provided by installation service
while read path
do
user=‘basename $path‘ ||
exit 2
(crontab -l $user |
sed -e "/#$PKGINST$/d" > /tmp/$$crontab) ||
exit 2
crontab $user < /tmp/$$crontab ||
exit 2
rm -f /tmp/$$crontab
done
exit



108 Application Packaging Developer’s Guide—November 1995

B

The following two example files show the crontab  files for Case #5:

In any situation in which the editing of a group of files will increase total file
size by more than 10K or so, it is wise to supply a space file so that pkgadd  can
allow for this increase.

Case #6: Installing a Driver

This package installs a driver.

Techniques
This case study shows examples of the following techniques:

• Installing and loading a driver with a postinstall  script

• Unloading a driver with a preremove  script

Approach
To install a driver at the time of installation, you must include the object and
configuration files for the driver in the prototype  file.

In this example, the executable module for the driver is named buffer . This is
the file on which the add_drv  command operates. The buffer.conf  file is
used by the kernel  to help configure the driver.

41,1,21 * * * * /usr/lib/uucp/uudemon.hour > /dev/null
45 23 * * * ulimit 5000; /usr/bin/su uucp -c
"/usr/lib/uucp/uudemon.cleanup" >
/dev/null 2>&1
11,31,51 * * * * /usr/lib/uucp/uudemon.poll > /dev/null

0 * * * 0-6 /usr/lib/sa/sa1
20,40 8-17 * * 1-5 /usr/lib/sa/sa1
5 18 * * 1-5 /usr/lib/sa/sa2 -s 8:00 -e 18:01 -i 1200 -A



Packaging Case Studies 109

B

Looking at the prototype  file for this example notice the following:

• Since no special treatment is required for these files, you can put them into
the standard none  class. The CLASSES parameter is set to none  in the
pkginfo  file example.

• The path names for buffer and buffer.conf  begin with the variable
$KERNDIR. This variable is set in the request script and allows the
administrator to decide where the driver files should be installed. The
default directory is /kernel/drv .

• There is an entry for the postinstall  script (the script that will
perform the driver installation).

• Create a request  script.

The main function of the request  script is to determine where the installer
wants the driver objects to be installed, accomplished by questioning the
installer and assigning the answer to the $KERNDIR parameter.

The script ends with a routine to make the two parameters CLASSES and
KERNDIR available to the installation environment and the postinstall
script.

• Create a postinstall  script.

The postinstall  script actually performs the driver installation. It is
executed after the two files buffer  and buffer.conf  have been installed.
The postinstall  file shown for this example performs the following actions:

• Uses add_drv  to load the driver into the system

• Creates a link for the device using installf

• Finalizes the installation using installf -f

• Create a preremove  script.

The preremove  script uses rem_drv  to unload the driver from the system,
and then removes the link /dev/buffer0 .



110 Application Packaging Developer’s Guide—November 1995

B

Sample Files
This example shows the prototype  file for Case #6:

The following example shows the pkginfo  file for Case #6:

This example shows the request  script for Case #6:

i pkginfo
i request
i postinstall
i preremove
f none $KERNDIR/buffer 444 root root
f none $KERNDIR/buffer.conf 444 root root

PKG=bufdev
NAME=Buffer Device
CATEGORY=system
BASEDIR=
ARCH=INTEL
VERSION=Software Issue #19
CLASSES=none

trap ’exit 3’ 15
# determine where driver object should be placed; location
# must be an absolute pathname that is an existing directory
KERNDIR=‘ckpath -aoy -d /kernel/drv -p \
“Where do you want the driver object installed”‘ || exit $?

# make parameters available to installation service, and
# so to any other packaging scripts
cat >$1 <<!

CLASSES=’$CLASSES’
KERNDIR=’$KERNDIR’
!
exit 0



Packaging Case Studies 111

B

The following example shows the postinstall  script for Case #6:

This example shows the preremove  script for Case #6:

As usual, removef  and installf  must be used judiciously in the preremove
or preinstall  script since they modify the package database while it is still
in transition. Usually these utilities should be restricted to postremove  and
postinstall  scripts.

Case #7:Using the sed  Class and postinstall  and preremove  Scripts

This study shows how to use the two mandatory control files (prototype  and
pkginfo ) and postinstall , sed , and preremove  scripts to install a driver.
There is also a copyright  file.

The prototype  file defines all of the contents of the package, that is, it
contains an entry for each package object and for each control file (except
itself). This file is discussed last (on page 117), immediately before creating the
package itself.

# KERNDIR parameter provided by ‘request’ script
err_code=1                    # an error is considered fatal
# Load the module into the system
cd $KERNDIR
add_drv -m ’* 0666 root sys’ buffer || exit $err_code
# Create a /dev entry for the character node
installf $PKGINST /dev/buffer0=/devices/eisa/buffer*:0 s
installf -f $PKGINST

err_code=1                    # an error is considered fatal
# Unload the driver
rem_drv buffer || exit $err_code
# remove /dev file
removef $PKGINST /dev/buffer0 ; rm /dev/buffer0
removef -f $PKGINST



112 Application Packaging Developer’s Guide—November 1995

B

The pkginfo  File

The pkginfo  file describes the characteristics of the package. It also contains
installation control information. The file consists of a list of parameter=value
pairs. This is the pkginfo  file for the driver example:

All of the parameters shown in the example are mandatory. The settings of
PKG, VERSION and ARCH together define the package instance. The installation
utility, pkgadd (1M), distinguishes instances by appending an instance number
to the package name.

The recommended naming convention for packages is the company stock
symbol followed by the package name.

See the man page pkginfo (4) for full details of the parameters.

The sed  Class Script

sed  class scripts enable you to modify files that already exist on the system.
The script’s name indicates the file that the sed (1) instructions in the script are
executed against. Instructions after the keyword !install  are executed
during installation (after a preinstall  script but before a postinstall
script). Instructions after the keyword !remove  are executed during package
removal, in between the preremove  and the postremove  scripts.

PKG=SUNWsst
NAME=Simple SCSI Target Driver
VERSION=1
CATEGORY=system
ARCH=sparc
VENDOR=Sun Microsystems
BASEDIR=/opt



Packaging Case Studies 113

B

In the driver example, a sed  class script is used to add an entry for the driver
to the file /etc/devlink.tab . This file is used by devlinks(1M)  to create
symbolic links from /dev  into /devices . This is the sed  script:

The postinstall  Installation Script

This is a Bourne shell script that’s run after all files have been installed and all
class scripts have been run. In our example, all the script needs to do is run the
add_drv (1m) utility:

add_drv uses BASEDIR, so the script has to unset BASEDIR before running
the utility, and restore it afterwards.

One of the actions of add_drv is to run devlinks , which uses the entry
placed in /etc/devlink.tab  by the sed  class script to create the /dev
entries for the driver.

# sed class script to modify /etc/devlink.tab
!install
/name=sst;/d
$i\
type=ddi_pseudo;name=sst;minor=characterrsst\\A1

!remove
/name=sst;/d

# Postinstallation script for SUNWsst
SAVEBASE=$BASEDIR
BASEDIR=””; export BASEDIR
/usr/sbin/add_drv sst
STATUS=$?
BASEDIR=$SAVEBASE; export BASEDIR
if [ $STATUS -eq 0 ]
then

exit 20
else

exit 2
fi



114 Application Packaging Developer’s Guide—November 1995

B

The exit code from postinstall  is significant. 20  tells pkgadd  to tell the
user to reboot the system (necessary after installing a driver), and 2 tells
pkgadd  to tell the user that the installation partially failed.

The preremove  Removal Script

The preremove script is also a Bourne shell script, and it is executed before any
package objects are removed from the system. It undoes the actions of the
postinstall  script. In the case of this driver example, it removes the links in
/dev  and runs rem_drv (1m) on the driver.

The script removes the /dev  entries itself; the /devices  entries are removed
by rem_drv .

# Pre removal script for the sst driver
echo “Removing /dev entries”
/usr/bin/rm -f /dev/rsst*

echo “Deinstalling driver from the kernel”
SAVEBASE=$BASEDIR
BASEDIR=””; export BASEDIR
/usr/sbin/rem_drv sst
BASEDIR=$SAVEBASE; export BASEDIR

exit



Packaging Case Studies 115

B

The copyright  File

This is a simple ASCII file containing the text of a copyright notice. The notice
is displayed at the beginning of package installation exactly as it appears in the
file.

Creating a Package

The main task in creating a package is to create the prototype  file. This file
specifies the locations of the package objects on both the development and the
installation workstations. Before creating the prototype  file, you must
determine the layout of the package objects.

Organize the Package Objects
The first step in creating the package is to organize its contents. There are two
ways of doing this:

• Hierarchical, where the objects on the development machine are in the same
directory structure as they will be after installation.

• Flat, where the objects on the development machine are in a single directory.
In this case, the prototype  file contains information on the placement of
objects on both the development and installation workstation.

Copyright (c) 1992 Drivers-R-Us, Inc.
10 Device Drive, Thebus, IO 80586

All rights reserved. This product and related documentation is
protected by copyright and distributed under licenses restricting
its use, copying, distribution and decompilation. No part of this
product or related documentation may be reproduced in any form by
any means without prior written authorization of Drivers-R-Us and
its licensors, if any.



116 Application Packaging Developer’s Guide—November 1995

B

Hierarchical Directory Structure
The source file directory structure must be a mirror of the desired structure on
the installation machine:

Figure 4-2 Hierarchical Directory Structure

The package objects are installed in the same places as they are in the pkg
directory above. The driver modules (sst  and sst.conf ) are installed into
/usr/kernel/drv  and the include file is installed into
/usr/include/sys/scsi/targets . sst , sst.conf , and sst_def.h  are
fixed objects. The test program, sstest.c , and its directory SUNWsst are
relocatable; their installation location is set by the BASEDIR parameter in the
pkginfo  control file (which can be overridden by the administrator during
installation).

The remaining components of the package (all the control files) go in the top
directory of the package on the development machine, except the sed  class
script. This is called devlink.tab  after the file it modifies, and goes into etc ,
the directory containing the real devlink.tab  file.

pkg

kernel

SUNWsst

drv

sst.conf

sstest.c

usr

include

sys

scsi

targets

sst_def.h

pkginfo
postinstall
preremove
copyright

sst

etc

devlink.tab



Packaging Case Studies 117

B

Flat Directory Structure
It may be more convenient to put all the package objects into a single directory
on the development machine. In our example, this is the case, since the
installation directory structure is quite sparse.

Figure 4-3 Flat Directory Structure

Creating a prototype  File for a Hierarchical Directory Structure
From the pkg  directory, run the pkgproto  utility as follows:

find usr SUNWsst -print | pkgproto > prototype

pkg

sst.conf

sstest.c

sst

sst_def.h

pkginfo
postinstall
preremove
copyright

sst

etc

devlink.tab



118 Application Packaging Developer’s Guide—November 1995

B

The entries for the control files in prototype  have a different format, so you
need to insert them manually rather than having pkgproto  create them for
you. The output from the above command looks like this:

This file needs to be modified. Entries are not needed for directories that
already exist on the installation machine, the access permissions and
ownerships need to be changed, and entries must be added for the control files.
Finally, a slash must be prepended to the fixed package objects. This is the final
prototype  file:

The questions marks in the entry for the sed  script indicate that the access
permissions and ownership of the existing file on the installation machine
should not be changed.

d none usr 0775 pms mts
d none usr/include 0775 pms mts
d none usr/include/sys 0775 pms mts
d none usr/include/sys/scsi 0775 pms mts
d none usr/include/sys/scsi/targets 0775 pms mts
f none usr/include/sys/scsi/targets/sst_def.h 0444 pms mts
d none usr/kernel 0775 pms mts
d none usr/kernel/drv 0775 pms mts
f none usr/kernel/drv/sst 0664 pms mts
f none usr/kernel/drv/sst.conf 0444 pms mts
d none SUNWsst 0775 pms mts
f none SUNWsst/sstest.c 0664 pms mts

i pkginfo
i postinstall
i preremove
i copyright
e sed /etc/devlink.tab ? ? ?
f none /usr/include/sys/scsi/targets/sst_def.h 0644 bin bin
f none /usr/kernel/drv/sst 0755 root sys
f none /usr/kernel/drv/sst.conf 0644 root sys
d none SUNWsst 0775 root sys
f none SUNWsst/sstest.c 0664 root sys



Packaging Case Studies 119

B

Creating a prototype  File for a Flat Directory Structure
Because the placement of files during installation is not indicated by the
development directory structure, file locations must be specified to pkgproto .
From sst , the directory containing the package objects, execute the following
command:

The parameter to pkgproto , .=/usr/kernel/drv  indicates that the objects
in the current directory on the development machine should be installed into
the directory /usr/kernel/drv  on the installation machine. Here’s the
output from pkgproto :

The entries in the prototype  file specify the locations of the objects on both
the development and the installation machines. Note that the source files are
relative, so you need to tell pkgmk where they are when you run it. This would
not be necessary if you had specified ‘pwd‘=/usr/kernel/drv  to
pkgproto  (but the prototype  entries would be rather long).

The initial prototype  file must be edited; entries for the control files are
added and the access permissions and ownerships need to be changed.
Further, the initial prototype  file shows all files being installed into the same

$ find . -print | pkgproto .=/usr/kernel/drv > ../prototype

d none /usr/kernel/drv 0775 pms mts
f none /usr/kernel/drv/sst=sst 0664 pms mts
f none /usr/kernel/drv/sst.conf=sst.conf 0444 pms mts
f none /usr/kernel/drv/sst_def.h=sst_def.h 0444 pms mts
f none /usr/kernel/drv/sstest.c=sstest.c 0664 pms mts



120 Application Packaging Developer’s Guide—November 1995

B

directory; since this is not what you want, the entries for sst_def.h  and
sstest.c  must be changed. An entry for the SUNWsst directory must also be
added. The final file looks like this:

The questions marks in the entry for the sed  script indicate that the access
permissions and ownership of the existing file on the installation machine
should not be changed.

Creating the Package

Having organized the package objects, written all the scripts, and created the
prototype  file, you are now ready to actually create the package by running
the pkgmk(1) utility. This reads the prototype  file and creates a package that
can be installed with pkgadd (1m). The syntax for pkgmk is slightly different
for the flat and hierarchical directory structures.

Creating a Package for a Hierarchical Directory Structure
From the pkg  directory, run pkgmk as follows:

The -d  parameter specifies the location of the package to be created. This
directory, spool , must already exist. The -r  parameter specifies the root
directory for the package objects on the development machine; its value is
prepended to the paths in the prototype  file. The -o  parameter allows an

i pkginfo
i postinstall
i preremove
i copyright
e sed /etc/devlink.tab ? ? ?
f none /usr/kernel/drv/sst=sst 0755 root sys
f none /usr/kernel/drv/sst.conf=sst.conf 0644 root sys
f none /usr/include/sys/scsi/targets/sst_def.h=sst_def.h 0644
bin bin
d none SUNWsst 0755 root sys
f none SUNWsst/sstest.c=sstest.c 0664 root sys

$ pkgmk -o -r ‘pwd‘ -d spool



Packaging Case Studies 121

B

existing package to be overwritten. You can safely ignore warnings about
missing directory entries for directories that already exist on the installation
machine (for example, /usr/kernel ).

Creating a Package for a Flat Directory Structure
In this case, you must specify the location of the package objects on the
development machine with the -b  parameter:

The -r  option is still needed because the prototype  entry for the sed  class
script doesn’t specify a location on the development machine.

The pkgmap File
One of the files created by pkgmk is the pkgmap(4) file. The following example
shows the pkgmap file for our example package (it is the same for both the
hierarchical and the flat directory cases):

$ pkgmk -o -b `pwd`/sst -d `pwd`/spool -r `pwd`

: 1 120
1 e sed /etc/devlink.tab ? ? ? 218 19258 719022555
1 f none /usr/include/sys/scsi/targets/sst_def.h 0644 bin bin
3623 \

23380 711071279
1 f none /usr/kernel/drv/sst 0755 root sys 31808 28921 711830351
1 f none /usr/kernel/drv/sst.conf 0644 root sys 326 26818
711830359
1 d none SUNWsst 0775 root sys
1 f none SUNWsst/sstest.c 0664 root sys 3676 19733 711830366
1 i copyright 434 38929 719080369
1 i pkginfo 165 13317 719107352
1 i postinstall 666 55221 719078817
1 i preremove 424 34950 719079244



122 Application Packaging Developer’s Guide—November 1995

B

Transferring the Package to Diskette or Tape

The final step in creating a package is to transfer it to a distributable medium,
such as diskette or tape. The pkgtrans(1)  utility performs the transfer. For
example, the following command transfers the package SUNWsst from the
local directory spool  to a diskette:

The -s  option tells pkgtrans  to convert from file system format to datastream
format. pkgtrans  supports multiple volumes.

The sed  Class Script

pkgrm  does not run the removal part of the script. You may need to add a line
to the preremove  script to run sed  directly to remove the entry from
/etc/devlink.tab .

Note – This example will probably not work correctly if you install it onto a
diskless client. In this case, you are better off making the whole package
relocatable (install all files into /opt/SUNWsst ), and then copying the
necessary files to the right places in the postinstall  script. Use
installf (1M) to put the files into the installation software database.
Remember to remove the files in the preremove  script and also to use
removef (1M).

Remember to use the appropriate parameters in your path names in order to
assure that when installing to a client from a server, the correct files are
updated.

PKG_INSTALL_ROOT: The root directory of the client.

BASEDIR: The location of the files on the client relative to the server.

CLIENT_BASEDIR: The location of the files on the client relative to the client.

$ pkgtrans -s `pwd`/spool /vol/dev/rfd0/unlabeled SUNWsst



123

Glossary

Artwork
Camera-ready art used to print the CD-ROM disc label, product insert, and
J-card. May contain file system type, part numbers, and trademark and
copyright information associated with specific product.

ABI
Application Binary Interface.

Caddy
The plastic rectangular container that holds the CD-ROM when it is placed into
the CD drive.

Catalyst CDware
The SunSoft Catalyst product that distributes third-party software demos on
CD-ROM from SunSoft distribution centers.

CD-ROM
Compact Disc-Read Only Memory.

CD drive
Same as CD player.

CD master (or master)
The glass disc used to create production discs. The master is created by a CD-
ROM manufacturer from a magnetic (tape or disc) image sent to them.

CD player
The hardware device used to read CD-ROMs.



124 Application Packaging Developer’s Guide—November 1995

Check disc
The name used by some CD-ROM manufacturers to describe a data proof
CD-ROM. This may be used to verify that the software product on CD-ROM
media is correct.

Coaster
A one-off CD-ROM that has been cut incorrectly.

Copyright
The right to own and sell intellectual property, such as software, source code,
or documentation. Ownership must be stated on the CD-ROM and insert text,
whether the copyright is owned by SunSoft, or by another party. Copyright
ownership is also acknowledged in SunSoft documentation.

DAT
Digital Audio Tape.

dd
The Solaris user command used to copy a file system image to tape.

Disc
The optical compact medium used to hold software or audio data. Discs are
read-only, as opposed to read-write.

Disk
The spelling used for hard disk drives, such as SMD, SCSI, or IPI. Does NOT
include CD-ROM.

Electronic handoff (EHO)
The term used to describe the method by which an engineering organization
hands a CD-ROM product release off to be tested. The product image, as it
would appear on CD-ROM, is mounted or copied from one machine to a
partition on a test server. Installation is done from this image prior to creating
a one-off.

Exabyte
A type of magnetic tape cartridge, 8MM format. It is the 3M vendor-preferred
transfer media to receive data for mastering.

First article
The name used to describe a completed CD-ROM. This may be used to verify
that the software and disc label on CD-ROM media are correct and can be used
to approve a production run of the CD-ROM media. The first article comes



Glossary 125

with complete artwork printed on the face of the CD-ROM, including file
system format type, part numbers, and trademark and copyright information
associated with a specific product release.

High Sierra
Early CD-ROM file system standard. See ISO 9660.

Image tape
The software in its file system format ready to be transferred to a CD-ROM.
This image of the software may be transported on a variety of media, 1/2 inch
reel magnetic tape, 1/4 inch cassette magnetic tape, Exabyte magnetic tape, or
compact disc before being mastered into a CD-ROM.

Insert
The name used to describe the document inside the front of the CD-ROM jewel
box. Among other things, the insert may carry product specific information
and installation instructions.

ISO 9660
An industry standard file system used for distribution of software on CD-
ROM. This file system is tailored to the read-only environment, but does not
currently contain many essential POSIX features. This format is often
erroneously referred to as High Sierra, which is a subset.

J-card
Printed card with a small, folded edge that fits into the back of the CD-ROM
jewel box. It carries the product name and part number so that this information
can be read without opening the jewel box. The edge corresponds to the spine
of a book.

Jewel box
The plastic case that contains the CD-ROM, the insert, and the J-card.

Mastering fee
The CD-ROM manufacturer charges a mastering fee to cover the expenses of
preparing to make a CD-ROM for production. This fee includes downloading
your data to a mastering machine, creating a glass master, creating a metal
stamper used in the production run, and testing for quality control of these
processes.



126 Application Packaging Developer’s Guide—November 1995

One-off
A special CD-ROM used as a check disc. This CD-ROM is relatively costly and
cannot be duplicated. It should be used only for internal testing purposes
before mass production.

Packages
A collection of file and directories required for a software application. Packages
are created with pkgmk or swmtool. The software resides in a directory
hierarchy which also contains various information files describing the package
contents.

Premastering machine
The equipment used for cutting pre-master CD-ROMs. Premastering machine
is synonymous with one-off machine. It may be more accurate to call it a CD-
Write Once machine, writable CD-ROM publisher, or check disc recorder.
Premastering usually describes the whole process previous to mastering.

Production disc
The disc distributed to customers.

Replication
The production run of CD-ROM discs at the manufacturer’s facilities.

Rock Ridge
Extensions to the ISO 9660 standard for CD-ROMs. These extensions provide
functionality needed by UNIX file systems, such as symbolic links. SunSoft
currently uses this file system for distribution of its Solaris software.

tar
Tape Archive Retrieval. Solaris command for adding or extracting files from
a media.

UFS
The file system format currently used for Sun’s unbundled products on
CD-ROM. The same format is used for file systems on disk partitions.



127

Index

Symbols
.cdtoc file 81
.clustertoc file 81
.order file 82
.packagetoc file 82

A
abbreviation, package 33
artwork, CD-ROM 5
audio data, distributing 9
awk class 65
awk class script 66

B
build class 65

example 102
build class script 67

C
CD-ROM

artwork 5

creating using Rock Ridge 17
creation task 8
development cycle 3
documentation 4
documentation process 7
features 1
insert 5
installing software from 15
manufacturing process 11
packaging 5
testing 8

check disk 10
checking package installation 73
class action scripts 55, 61

example 90, 104
removal example 99
usage rules 62

classes
build 67
build example 102
installing 63
removing 64
sed 65



128 Application Packaging Developer’s Guide—November 1995

sed example 96
system 65

classes awk 66
clients

installing packages for 72
cluster

definition 79
uses 80

compact disc See CD-ROM

compver file 29, 41
example 94

copyright file 29, 41
example 94, 115

creating a CD-ROM 8
creating a CD-ROM using Rock Ridge 17
creating a package 31
creating a pkginfo file 39
creating a prototype file 42
creating an icon 79

D
data proof 10
depend file 29, 40

example 94
displaying information about installed

packages 74
distributing audio data 9
driver, package example 108

F
file system

High Sierra 12
ISO 9660 12
RockRidge 13
UFS 13

first article 10

G
guidelines, packaging 83

H
High Sierra File System (HSFS) 12

I
icon, creating 79
insert 5
installation

parameters 58
software database 70

installation parameters 57
example 85

installation scripts 29, 39, 54
example 99
exit codes 58
parameters 57
processing of 56

installation software database 70
installation, full 70
installf command example 90
installing a driver, package example 108
installing classes 63
installing packages 71
installing packages on diskless clients 72
installing software from CD-ROM 15
ISO 9660 12

Rock Ridge extensions to 13

J
J-card 5



Index 129

jewel box 5

L
links, creating with prototype file 46

M
manufacturing process for a CD-ROM 11

O
object classes 35, 45

awk 65
build 65
example 99
installing 63
removing 64
sed 65
system 65

object locations 30
objects 30

relocatable 37
one-off machine 9

P
package abbreviation 33
package components 21, 26

optional 26, 29
required 26, 28

package dependencies 40
package instance 33
package objects 30

classes 35
locations 30
relocatable 37

packages

checking installation 73
creation 31, 49
datastream 53
displaying information about 74
identifier 33, 35
installing 71
installing for clients 72
installing on diskless clients 72
licensing considerations 23
objects 28
relocatable objects 38
software 21
transferring to the media 52
translation 54

packaging guidelines 83
packaging overview 27
pkgadd command 63, 71
pkgchk command 73
pkginfo command 74
pkginfo file 28

creating 39
example 111

pkgmap file 28
pkgmk command 49
pkgparam command 58, 74
pkgproto command 44

and links 46
pkgrm command 64
pkgtrans command 52
postinstall script 60

example 97, 108, 113
postremove script 60
preinstall script 60
pre-mastering machine 9



130 Application Packaging Developer’s Guide—November 1995

preremove script 60
example 108, 114

procedure scripts 55, 60
usage rules 61

prototype file 28
creating with an editor 42
creating with pkgproto command 44
example 111
format 42
using commands in 48

R
relocatable objects 37
removing classes 64
request script 55, 59

example 85, 109
usage rules 59

Rock Ridge extensions 13
Rock Ridge, creating a CD-ROM using 17

S
scripts

awk class 66
build class 67
class action 55, 61

example 90, 104
removal 99
usage rules 62

installation example 99
postinstall 60

example 97, 113
postremove 60
preinstall 60
preremove 60

example 114

procedure 55, 60
usage rules 61

processing of 56
request 55, 59

usage rules 59
request example 85
sed class 65

example 112
sed class 65

example 96
sed class script 65

example 112
software licensing 23
software packages 15, 16, 21

components 21, 26
creating 31, 49
instance 33
object locations 30
objects 30
optional components 26, 29
overview 27
required components 26, 28

space file 29, 41
example 90

system object classes 65

T
testing a CD-ROM 8
translating a package 54

U
UFS 13



Index 131



Copyright 1995 Sun Microsystems, Inc., 2550 Garcia Avenue, Mountain View, Californie 94043-1100 U.S.A.

Tous droits réservés. Ce produit ou document est protégé par un  copyright et distribué avec des licences qui en restreignent
l’utilisation, la copie, et la décompliation. Aucune partie de ce produit ou de sa documentation associée ne peuvent Être
reproduits sous aucune forme, par quelque moyen que ce soit sans l’autorisation préalable et écrite de Sun et de ses bailleurs de
licence, s’il en a.

Des parties de ce produit pourront etre derivees du système UNIX®, licencié par UNIX System Laboratories Inc., filiale
entierement detenue par Novell, Inc. ainsi que par le système 4.3. de Berkeley, licencié par l’Université de Californie. Le logiciel
détenu par des tiers, et qui comprend la technologie relative aux polices de caractères, est protégé par un copyright et licencié par
des fourmisseurs de Sun.

LEGENDE RELATIVE AUX DROITS RESTREINTS: l’utilisation, la duplication  ou la divulgation par l’administration
americaine sont soumises aux restrictions visées a l’alinéa (c)(1)(ii) de la clause relative aux droits des données techniques et aux
logiciels informatiques du DFARS 252.227-7013 et FAR 52.227-19. Le produit décrit dans ce manuel peut Être protege par un ou
plusieurs brevet(s) americain(s), etranger(s) ou par des demandes en cours d’enregistrement.

MARQUES

Sun, Sun Microsystems, le logo Sun, Solaris sont des marques deposées ou enregistrées par Sun Microsystems, Inc. aux Etats-
Unis et dans certains autres pays. UNIX est une marque enregistrée aux Etats-Unis et dans d’autres pays, et exclusivement
licenciée par X/Open Company Ltd. OPEN LOOK est  une marque enregistrée de Novell, Inc. PostScript et Display PostScript
sont des marques d’Adobe Systems, Inc.

Toutes les marques SPARC sont des marques deposées ou enregitrées de SPARC International, Inc. aux Etats-Unis et dans
d’autres pays. SPARCcenter, SPARCcluster, SPARCompiler, SPARCdesign, SPARC811, SPARCengine, SPARCprinter,
SPARCserver,  SPARstation, SPARCstorage, SPARCworks, microSPARC, microSPARC-II, et UltraSPARC sont exclusivement
licenciées a Sun Microsystems, Inc. Les produits portant les marques sont basés sur une architecture développée par Sun
Microsystems, Inc.

Les utilisateurs d’interfaces graphiques OPEN LOOK® et Sun™ ont été développés par Sun Microsystems, Inc. pour ses
utilisateurs et licenciés. Sun reconnait les efforts de pionniers de Xerox pour la recherche et le développement du concept des
interfaces d’utilisation  visuelle ou graphique pour l’industrie de l’informatique. Sun détient une licence non exclusive de Xerox
sur l’interface d’utilisation graphique, cette licence couvrant aussi les licenciés de Sun qui mettent en place  OPEN LOOK GUIs et
qui en outre se conforment aux licences écrites de Sun.

Le système X Window est un produit du X Consortium, Inc.

CETTE PUBLICATION EST FOURNIE "EN L’ETAT" SANS GARANTIE D’AUCUNE SORTE, NI EXPRESSE NI IMPLICITE, Y
COMPRIS, ET SANS QUE CETTE LISTE NE SOIT  LIMITATIVE, DES GARANTIES CONCERNANT LA VALEUR
MARCHANDE, L’APTITUDE  DES PRODUITS A REPONDRE A UNE UTILISATION PARTICULIERE OU LE FAIT QU’ILS NE
SOIENT PAS CONTREFAISANTS DE PRODUITS DE TIERS.

CETTE PUBLICATION PEUT CONTENIR DES MENTIONS TECHNIQUES ERRONEES OU DES ERREURS
TYPOGRAPHIQUES. DES CHANGEMENTS SONT  PERIODIQUEMENT APPORTES AUX INFORMATIONS CONTENUES
AUX PRESENTES. CES CHANGEMENTS SERONT INCORPORES  AUX NOUVELLES EDITIONS DE LA PUBLICATION.
SUN MICROSYSTEMS INC. PEUT REALISER DES AMELIORATIONS ET/OU DES CHANGEMENTS DANS LE(S)
PRODUIT(S) ET/OU  LE(S) PROGRAMME(S) DECRITS DANS DETTE PUBLICATION A TOUS MOMENTS.




