
SunLink™ P2P LU6.2 9.1
Programmer’s Manual

Part No.: 802-2680-12
Revision A, August 1997

The Network Is the Computer™

Sun Microsystems Computer Company
2550 Garcia Avenue
Mountain View, CA 94043 USA
415 960-1300 fax 415 969-9131

Please
Recycle

Copyright 1997 Sun Microsystems, Inc. 2550 Garcia Avenue, Mountain View, California 94043-1100 U.S.A. All rights reserved.

This product or document is protected by copyright and distributed under licenses restricting its use, copying, distribution, and decompilation.
No part of this product or document may be reproduced in any form by any means without prior written authorization of Sun and its licensors,
if any. Third-party software, including font technology, is copyrighted and licensed from Sun suppliers.

Parts of this product may be derived from Berkeley BSD systems, licensed from the University of California. UNIX is a registered trademark in
the U. S. and other countries, exclusively licensed through X/Open Company Ltd.

RESTRICTED RIGHTS: Use, duplication, or disclosure by the U.S. Government is subject to restrictions of FAR 52.227-
14(g)(2)(6/87) and FAR 52.227-19(6/87), or DFAR 252.227-7015(b)(6/95) and DFAR 227.7202-3(a).

Sun, Sun Microsystems, the Sun logo, AnswerBook, SunDocs, SunLink, OpenWindows, and Solaris are trademarks, registered trademarks, or
service marks of Sun Microsystems, Inc. in the U. S. and other countries. All SPARC trademarks are used under license and are trademarks or
registered trademarks of SPARC International, Inc. in the U. S. and other countries. Products bearing SPARC trademarks are based upon an
architecture developed by Sun Microsystems, Inc.

The OPEN LOOK and Sun™ Graphical User Interface was developed by Sun Microsystems, Inc. for its users and licensees. Sun acknowledges
the pioneering efforts of Xerox in researching and developing the concept of visual or graphical user interfaces for the computer industry. Sun
holds a non-exclusive license from Xerox to the Xerox Graphical User Interface, which license also covers Sun’s licensees who implement OPEN
LOOK GUIs and otherwise comply with Sun’s written license agreements.

DOCUMENTATION IS PROVIDED “AS IS” AND ALL EXPRESS OR IMPLIED CONDITIONS, REPRESENTATIONS AND WARRANTIES,
INCLUDING ANY IMPLIED WARRANTY OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR
NON-INFRINGEMENT, ARE DISCLAIMED, EXCEPT TO THE EXTENT THAT SUCH DISCLAIMERS ARE HELD TO BE LEGALLY
INVALID.

Copyright 1997 Sun Microsystems, Inc., 2550 Garcia Avenue, Mountain View, Californie 94043-1100 U.S.A. Tous droits réservés.

Ce produit ou document est protégé par un copyright et distribué avec des licences qui en restreignent l’utilisation, la copie et la décompilation.
Aucune partie de ce produit ou de sa documentation associée ne peut être reproduite sous aucune forme, par quelque moyen que ce soit, sans
l’autorisation préalable et écrite de Sun et de ses bailleurs de licence, s’il y en a.

Des parties de ce produit pourront être derivées du système UNIX® licencié par Novell, Inc. et du système Berkeley 4.3 BSD licencié par
l’Université de Californie. UNIX est une marque enregistrée aux Etats-Unis et dans d’autres pays, et licenciée exclusivement par X/Open
Company Ltd. Le logiciel détenu par des tiers, et qui comprend la technologie relative aux polices de caractères, est protégé par un copyright et
licencié par des fournisseurs de Sun.

Sun, Sun Microsystems, le logo Sun, AnswerBook, SunDocs, SunLink, OpenWindows, et Solaris sont des marques déposées ou enregistrées de
Sun Microsystems, Inc. aux Etats-Unis et dans d’autres pays. Toutes les marques SPARC, utilisées sous licence, sont des marques déposées ou
enregistrées de SPARC International, Inc. aux Etats-Unis et dans d’autres pays. Les produits portant les marques SPARC sont basés sur une
architecture développée par Sun Microsystems, Inc.

Les utilisateurs d’interfaces graphiques OPEN LOOK® et Sun™ ont été développés de Sun Microsystems, Inc. pour ses
utilisateurs et licenciés. Sun reconnaît les efforts de pionniers de Xerox Corporation pour la recherche et le développement du
concept des interfaces d’utilisation visuelle ou graphique pour l’industrie de l’informatique. Sun détient une licence non
exclusive de Xerox sur l’interface d’utilisation graphique, cette licence couvrant aussi les licenciés de Sun qui mettent en place les
utilisateurs d’interfaces graphiques OPEN LOOK et qui en outre se conforment aux licences écrites de Sun.

CETTE PUBLICATION EST FOURNIE "EN L’ETAT" SANS GARANTIE D’AUCUNE SORTE, NI EXPRESSE NI IMPLICITE, Y COMPRIS,
ET SANS QUE CETTE LISTE NE SOIT LIMITATIVE, DES GARANTIES CONCERNANT LA VALEUR MARCHANDE, L’APTITUDE DES
PRODUITS A REPONDRE A UNE UTILISATION PARTICULIERE OU LE FAIT QU’ILS NE SOIENT PAS CONTREFAISANTS DE PRODUITS
DE TIERS.

iii

Contents

Preface . xxi

1. Introduction . 1-1

1.1 SunLink SNA PU2.1 9.1 Server . 1-1

1.2 SunLink LU6.2 API Features . 1-3

1.2.1 Conversation Verbs . 1-3

1.2.2 Control Operator Verbs . 1-5

1.2.3 Connection Verbs . 1-5

1.2.4 Character Conversion. 1-6

1.2.5 Unix Security . 1-7

1.2.6 Tracing . 1-7

1.3 Unsupported Features . 1-7

1.3.1 Map Names . 1-7

1.3.2 Sync-point Services . 1-7

1.3.2.1 Control Operator LU6.2 Definition Verbs 1-8

1.4 SunLink LU6.2 Components . 1-8

iv SunLink Peer-to-Peer LU6.2 9.1 Programmer’s Manual—August 1997

2. SunLink LU6.2 Concepts . 2-1

2.1 APPC and Logical Unit Type 6.2 (LU6.2) 2-1

2.1.1 Transaction Program (TP) . 2-2

2.1.2 Conversations and Verbs . 2-3

2.1.3 Mapped and Basic Conversations. 2-3

2.1.4 Conversation Initiation and State Transitions 2-3

2.1.5 Sessions . 2-4

2.1.6 Modes . 2-4

2.1.7 Parallel Sessions . 2-4

2.1.8 Session Polarity . 2-5

2.1.9 Control Operator Verbs . 2-5

3. Getting Started with
SunLink LU6.2. 3-1

3.1 Installing SunLink LU6.2 . 3-2

3.2 Intra-Node Configuration . 3-3

3.3 Starting the SunLink PU2.1 SNA Server 3-4

3.4 Stopping the SunLink PU2.1 SNA Server 3-5

3.5 Running the Application . 3-5

3.6 Token Ring Peer-to-Peer Configuration. 3-6

3.7 SunLink PU2.1 Monitoring and Control 3-9

3.8 Using sunscope . 3-9

4. Configuration. 4-1

4.1 Resource Definition . 4-2

4.1.1 Logical Unit (LU) . 4-3

Contents v

4.1.2 VTAM . 4-3

4.1.3 CICS . 4-4

4.1.4 AS/400 . 4-5

4.2 Partner Logical Unit (PTNR_LU) . 4-5

4.2.1 VTAM . 4-6

4.2.2 CICS . 4-6

4.2.3 AS/400 . 4-7

4.2.4 Mode (MODE) . 4-7

4.2.5 VTAM . 4-8

4.2.6 CICS . 4-8

4.2.7 AS/400 . 4-9

4.3 Transaction Program (TP) . 4-9

4.3.1 CICS . 4-9

4.3.2 LU Access Security Information (SECURITY). 4-10

4.3.3 TP Resource Access Security Information
(SEC_ACCESS) . 4-10

4.4 Security . 4-11

4.4.1 Session-Level Security . 4-11

4.4.2 Conversation-Level Security 4-11

4.4.3 Unix-Level Security . 4-15

5. Using the LU6.2 API . 5-1

5.1 Call Conventions . 5-1

5.2 Handling Connections to the SunLink PU2.1 SNA Server 5-3

5.2.1 Connecting to the SunLink PU2.1 SNA Server 5-4

vi SunLink Peer-to-Peer LU6.2 9.1 Programmer’s Manual—August 1997

5.2.2 Disconnecting from the SunLink PU2.1 SNA Server 5-5

5.3 Allocating Conversations . 5-6

5.4 Accepting Conversations. 5-7

5.4.1 Accepting Multiple Conversations 5-9

5.4.2 Accepting Conversations for Multiple TPs 5-9

5.5 Transaction Dispatch Using lu62_listen 5-11

5.6 Handling Multiple Concurrent Conversations 5-13

5.7 Mapped Conversations . 5-15

5.7.1 Sending Data Records. 5-15

5.7.2 Receiving Data. 5-16

5.8 Basic Conversations . 5-17

5.8.1 Sending Logical Records . 5-18

5.8.2 Receiving Data. 5-19

5.9 Select Calls to Multiplex LU6.2 Events with Events from Other
Devices. 5-21

5.9.1 Multiple Non-Blocking Conversations. 5-21

5.9.2 Mixing Non-Blocking and Blocking Conversations 5-22

5.9.3 Polling for a Verb Response . 5-23

5.10 Control Operator Programming . 5-25

5.11 Using the Select Call to Receive CNOS Notifications . . . 5-27

6. man Page Conventions . 6-1

6.1 Data Types . 6-2

6.2 Request Structures . 6-2

7. Connection Verbs . 7-1

Contents vii

7.1 Program Connections to the SunLink PU2.1 SNA Server 7-2

7.2 Multiplexed Communication Channels. 7-2

7.3 Processing Mode. 7-2

7.4 User Select Control . 7-3

7.5 *lu62_close . 7-3

7.6 *lu62_get_readfds . 7-4

7.7 *lu62_open . 7-5

7.8 *lu62_set_processing_mode . 7-9

7.9 *lu62_wait_server . 7-10

8. Basic Conversation Verbs . 8-1

8.1 lu62_allocate . 8-2

8.1.1 lu62_allocate_t Request Structure Members . . 8-3

8.2 lu62_confirm . 8-9

8.2.1 u62_confirm_t Request Structure Members 8-10

8.3 lu62_confirmed . 8-11

8.3.1 lu62_confirmed_t Request Structure Members . 8-12

8.4 lu62_deallocate . 8-13

8.4.1 lu62_deallocate_t Request Structure Members 8-14

8.5 lu62_flush . 8-18

8.5.1 lu62_flush_t Request Structure Members 8-18

8.6 lu62_get_attributes . 8-19

8.6.1 lu62_get_attributes_t Request Structure
Members. 8-20

8.7 lu62_post_on_receipt . 8-23

viii SunLink Peer-to-Peer LU6.2 9.1 Programmer’s Manual—August 1997

8.7.1 lu62_post_on_receipt_t Request Structure
Members. 8-23

8.8 lu62_prep_to_receive . 8-25

8.8.1 lu62_prep_to_receive_t Request Structure
Members. 8-26

8.9 lu62_receive_and_wait . 8-29

8.9.1 lu62_receive_t Request Structure Members . . . 8-29

8.10 lu62_receive_immediate . 8-34

8.10.1 lu62_receive_t Request Structure Members . . 8-35

8.11 lu62_request_to_send . 8-40

8.11.1 lu62_request_to_send_t Request Structure
Members. 8-41

8.11.2 lu62_send_data_t Request Structure Members . 8-43

8.12 lu62_send_error . 8-46

8.12.1 lu62_send_error_t Request Structure Members 8-47

8.13 lu62_test . 8-50

8.13.1 lu62_test_t Request Structure Members 8-51

9. Mapped Conversation Verbs. 9-1

9.1 lu62_mc_allocate . 9-2

9.1.1 lu62_allocate_t Request Structure Members . . 9-4

9.2 lu62_mc_confirm . 9-9

9.2.1 lu62_confirm_t Request Structure Members . . 9-10

9.3 lu62_mc_confirmed . 9-12

9.3.1 lu62_confirmed_t Request Structure Members . 9-12

9.4 lu62_mc_deallocate . 9-14

Contents ix

9.5 lu62_mc_flush . 9-18

9.5.1 lu62_flush_t Request Structure Members 9-18

9.6 lu62_mc_get_attributes . 9-19

9.7 lu62_mc_post_on_receipt . 9-23

9.7.1 lu62_post_on_receipt_t Request Structure
Members. 9-23

9.8 lu62_mc_prep_to_receive . 9-25

9.8.1 lu62_prep_to_receive_t Request Structure
Members. 9-26

9.9 lu62_mc_receive_and_wait . 9-29

9.9.1 lu62_receive_t Request Structure Members . . . 9-29

9.10 lu62_mc_receive_immediate . 9-34

9.10.1 lu62_receive_t Request Structure Members . . . 9-35

9.11 lu62_mc_request_to_send . 9-40

9.11.1 lu62_request_to_send_t Request Structure
Members. 9-40

9.12 lu62_mc_send_data . 9-42

9.12.1 u62_send_data_t Request Structure Members . . 9-42

9.13 lu62_mc_send_error . 9-45

9.13.1 lu62_send_error_t Request Structure Members 9-46

9.14 lu62_mc_test . 9-49

9.14.1 lu62_test_t Request Structure Members 9-49

10. Type-Independent Verbs . 10-1

10.1 *lu62_abort . 10-2

10.1.1 lu62_abort_t Request Structure Members 10-2

x SunLink Peer-to-Peer LU6.2 9.1 Programmer’s Manual—August 1997

10.2 *lu62_accept . 10-3

10.2.1 lu62_accept_t Request Structure Members 10-4

10.3 lu62_get_tp_properties . 10-6

10.3.1 lu62_get_tp_properties_t Request Structure
Members. 10-6

10.4 lu62_get_type . 10-8

10.4.1 lu62_get_type_t Request Structure Members . . 10-9

10.5 *lu62_listen . 10-10

10.5.1 lu62_listen_t Request Structure Members 10-12

10.6 *lu62_register_tp . 10-17

10.6.1 lu62_register_t Request Structure Members . 10-17

10.7 *lu62_unregister_tp . 10-19

10.7.1 lu62_send_ps_data_t Request Structure Members
10-20

10.7.2 lu62_send_ps_data_t Request Structure Members
10-21

10.8 lu62_wait . 10-23

10.8.1 lu62_wait_t Request Structure Members 10-24

11. Control Operator Verbs . 11-1

11.1 Control Operator Privileges . 11-1

11.2 CNOS Verbs. 11-2

11.2.1 CNOS Privilege . 11-2

11.2.2 Single-Sessions and SNA Service Manager
(SNASVCMG) . 11-2

11.2.3 Parallel-Sessions . 11-2

11.2.4 lu62_change_session_limit 11-3

Contents xi

11.2.5 lu62_change_session_limit_t Request Structure
Members. 11-3

11.2.6 lu62_init_session_limit 11-6

11.2.7 lu62_init_session_limit_t Request Structure
Members. 11-6

11.2.8 lu62_reset_session_limit 11-9

11.2.9 lu62_reset_session_limit_t Request Structure
Members. 11-10

11.3 CNOS Notification Verbs. 11-14

11.3.1 Receiving CNOS Notifications 11-14

11.4 lu62_receive_notification . 11-15

11.4.1 lu62_notification_header_t Request Structure
Members. 11-16

11.4.2 lu62_cnos_notification_t Request Structure. 11-17

11.4.3 lu62_request_notification 11-20

11.4.4 lu62_request_notification_t Request Structure
Members. 11-20

11.4.5 lu62_poll_notification 11-22

11.4.6 lu62_stop_notification 11-23

11.4.7 lu62_stop_notification_t Request Structure
Members. 11-24

11.5 Session Control Verbs. 11-25

11.5.1 lu62_activate_session 11-25

11.5.2 lu62_activate_session_t Request Structure
Members. 11-26

11.5.3 lu62_deactivate_session 11-28

xii SunLink Peer-to-Peer LU6.2 9.1 Programmer’s Manual—August 1997

11.5.4 lu62_deactivate_session_t Request Structure
Members. 11-29

11.6 Display Verbs . 11-31

11.6.1 lu62_display_local_lu 11-31

11.6.2 lu62_display_local_lu_t Request Structure
Members. 11-32

11.6.3 lu62_display_mode . 11-35

11.6.4 lu62_display_mode_t Request Structure Members
11-37

11.7 lu62_display_remote_lu . 11-41

11.7.1 lu62_display_remote_lu_t Request Structure
Member . 11-42

11.7.2 lu62_display_tp . 11-44

11.7.3 lu62_display_tp_t Request Structure Members11-45

12. SunLink LU6.2 Utilities . 12-1

12.1 *lu62_trace . 12-2

12.2 *lu62_dump_buffer . 12-4

12.3 Character Conversion Routines . 12-5

A. SunLink LU6.2 Return Codes. A-1

A.1 Implementing Return Codes and Subcodes A-2

A.2 Conversation Return Codes and Subcodes A-2

A.2.1 LU62_ALLOCATION_ERROR A-3

A.2.1.1 LU62_ALLOCATE_FAILURE_NO_RETRY A-3

A.2.1.2 LU62_ALLOCATE_FAILURE_RETRY. A-3

A.2.1.3 LU62_CONVERSATION_TYPE_MISMATCH . . . A-4

A.2.2 LU62_PIP_NOT_SPECIFIED_CORRECTLY. A-4

Contents xiii

A.2.2.1 LU62_SECURITY_NOT_VALID A-4

A.2.3 LU62_SYNC_LEVEL_NOT_SUPPORTED_PGM. A-4

A.2.4 LU62_TPN_NOT_RECOGNIZED A-4

A.2.5 LU62_TP_NOT_AVAILABLE_NO_RETRY A-5

A.2.6 LU62_TP_NOT_AVAILABLE_RETRY. A-5

A.2.7 LU62_DEALLOCATE_ABEND A-5

A.2.8 LU62_DEALLOCATE_ABEND_PROG. A-5

A.2.9 LU62_DEALLOCATE_ABEND_SVC. A-6

A.2.10 LU62_DEALLOCATE_ABEND_TIMER. A-6

A.2.11 LU62_DEALLOCATE_NORMAL A-6

A.2.12 LU62_FMH_DATA_NOT_SUPPORTED. A-6

A.2.13 LU62_OK. A-7

A.2.14 LU62_PARAMETER_ERROR. A-7

A.2.15 LU62_POSTING_NOT_ACTIVE A-7

A.2.16 LU62_PROGRAM_ERROR_NO_TRUNC. A-7

A.2.17 LU62_PROGRAM_ERROR_PURGING. A-8

A.2.18 LU62_PROGRAM_ERROR_TRUNC A-8

A.2.19 LU62_PROGRAM_PARAMETER_CHECK A-9

A.2.20 LU62_PROGRAM_STATE_CHECK A-9

A.2.21 LU62_RESOURCE_FAILURE_NO_RETRY A-9

A.2.22 LU62_RESOURCE_FAILURE_RETRY. A-9

A.2.22.1 LU62_SVC_ERROR_NO_TRUNC A-10

A.2.22.2 LU62_SVC_ERROR_PURGING. A-10

A.2.22.3 LU62_SVC_ERROR_TRUNC. A-10

xiv SunLink Peer-to-Peer LU6.2 9.1 Programmer’s Manual—August 1997

A.2.23 LU62_UNSUCCESSFUL . A-10

A.3 Control Operator Return Codes and Subcodes A-10

A.3.1 LU62_ACTIVATION_FAILURE_NO_RETRY. A-11

A.3.2 LU62_ACTIVATION_FAILURE_RETRY A-11

A.3.3 LU62_ALLOCATION_ERROR A-11

A.3.3.1 LU62_ALLOCATE_FAILURE_NO_RETRY A-11

A.3.3.2 LU62_ALLOCATE_FAILURE_RETRY. A-11

A.3.3.3 LU62_TP_NOT_AVAILABLE_RETRY. A-12

A.3.4 LU62_COMMAND_RACE_REJECT A-12

A.3.5 LU62_MODE_SESSION_LIMIT_CLOSED A-12

A.3.6 LU62_MODE_SESSION_LIMIT_EXCEEDED. A-12

A.3.7 LU62_MODE_SESSION_LIMIT_NOT_ZERO. A-13

A.3.8 LU62_MODE_SESSION_LIMIT_ZERO A-13

A.3.9 LU62_SESSION_LIMIT_EXCEEDED. A-13

A.3.10 LU62_OK. A-13

A.3.11 LU62_REQUEST_EXCEEDS_MAX_ALLOWED. A-14

A.3.12 LU62_RESOURCE_FAILURE_NO_RETRY A-14

A.3.13 LU62_UNRECOGNIZED_MODE_NAME. A-14

A.4 Product-Specific Return Codes and Subcodes A-14

A.4.1 LU62_API_ERR . A-15

A.4.2 LU62_OPERATION_INCOMPLETE. A-15

A.4.3 LU62_SERVER_ERROR . A-15

A.4.4 LU62_SERVER_RESOURCE_FAILURE A-15

A.4.5 LU62_TPI_ERROR. A-15

Contents xv

A.4.6 LU62_WAIT_TIMEOUT . A-16

B. Conversation State Table . B-1

B.1 Conversation States . B-1

B.2 State Table Abbreviations . B-2

B.2.1 Return Code Values [] . B-2

B.2.2 what_received Values . B-4

B.3 Table Symbols . B-5

B.4 Using the State Table . B-6

C. LU 6.2 Include Files . C-1

D. Sample LU6.2 Programs . D-1

E. SunLink LU6.2 Configuration Examples. E-1

F. LU6.2 Sync-Point . F-1

F.1 Sync-Point Flows . F-1

F.1.1 Configuring for Sync-Point . F-1

F.1.2 Logical Unit of Work ID . F-2

F.1.3 Sending PS Headers . F-3

F.1.4 Forget Flows . F-3

F.1.5 Receiving PS Headers. F-3

F.1.6 Deallocate Unbind . F-4

F.2 Sync-Point Recovery . F-4

G. SunLink LU6.2 9.0 to 9.1 Instructions . G-1

G.1 Linking the Application. G-1

G.2 Differences Between Version 9.0 and 9.1 G-1

G.2.1 F10 Key Conflict . G-3

xvi SunLink Peer-to-Peer LU6.2 9.1 Programmer’s Manual—August 1997

Index . Index-1

xvii

Figures

Figure 1-1 SunLink P2P LU6.2 Application Support 1-2

Figure 1-2 SunLink P2P LU6.2 9.1 Components . 1-9

Figure 2-1 SunLink LU6.2 Model . 2-2

Figure 3-1 Intra-Node Configuration . 3-3

Figure 3-2 Token Ring Loopback Configuration . 3-7

Figure 3-3 Token Ring Peer-to-Peer Configuration. 3-8

Figure 4-1 SunLink LU6.2 Security Processing . 4-13

Figure 5-1 Logical Record Format . 5-18

xviii SunLink Peer-to-Peer LU6.2 9.1 Programmer’s Manual—August 1997

xix

Tables

Table 1-1 LU6.2 Verbs supported by SunLink P2P LU6.2 9.1 API 1-3

Table 1-2 Control Operator Verbs Implemented by API 1-5

Table 1-3 Connection Verbs Supported by SunLink P2P LU6.2 9.1 1-6

Table 4-1 Logical Sources . 4-2

Table 4-2 Physical Connectivity Logical Sources . 4-2

Table 4-3 Access Security Information . 4-12

Table 6-1 Data Types . 6-2

Table 7-1 SunLink LU6.2 Connection Verbs. 7-1

Table 8-1 SunLU6.2 Basic Conversation Verbs. 8-1

Table 9-1 SunLink LU6.2 Mapped Conversation Verbs 9-1

Table 10-1 SunLink LU6.2 Type-Independent Verbs 10-1

Table 10-2 Request Structure. 10-6

Table 11-1 SunLink LU6.2 CNOS Verbs . 11-2

Table 11-2 SunLink LU6.2 CNOS Notification Verbs 11-14

Table 11-3 SunLink LU6.2 Session Control Verbs 11-25

Table 11-4 SunLink LU6.2 Display Verbs . 11-31

xx SunLink Peer-to-Peer LU6.2 9.1 Programmer’s Manual—August 1997

Table 12-1 SunLink LU6.2 Utilities. 12-1

Table B-1 Conversation States . B-2

Table B-2 Return Codes Values. B-3

Table B-3 what_received Values . B-4

Table B-4 State Table Symbols. B-5

Table B-5 Conversion State Table . B-7

xxi

Preface

This book is a reference for developers of SunLink P2P LU6.2 9.1 programs on
Sun™ Workstations™. It describes the SunLink implementation of the LU6.2
transaction verbs. These verbs allow program-to-program communications
across an IBM SNA network using Logical Unit type 6.2 (LU6.2). SunLink P2P
LU6.2 9.1 uses the services of the SunLink SNA PU2.1 9.1 server product to
provide peer-to-peer SNA communications support for Sun Workstations. The
SunLink SNA PU2.1 9.1 product set includes:

• SNA interface, including SDLC, X.25, IBM Token Ring, Ethernet, and
physical device drivers implemented in Unix System V streams

• A server that controls the SNA interface and provides SNA network access
to its client applications

• Client programs, including sun3270 , sun3770 , and sunSNM

• The SunLink P2P LU6.2 9.1 Application Programming Interfaces (APIs) for
users who want to create their own LU6.2 applications, i.e., the SunLink P2P
LU6.2 9.1 API described in this document, and the SunLink P2P CPI-C 9.1
API

• Dependent LU APIs for users who want to create their own client
applications, including the SunLink LU0 API

xxii SunLink Peer-to-Peer LU6.2 9.1 Programmer’s Manual—August 1997

Who Should Use This Book
This manual documents the SunLink P2P LU6.2 9.1 API. Use this book as a
guide and reference for using the API. As a SunLink P2P LU6.2 9.1
programmer, you are expected to be familiar with the C programming
language and the Unix operating system. You should also be familiar with the
SNA Advanced-Program-to-Program-Communication (APPC) model for
distributed transaction processing.

How to Use This Book
This manual is organized as follows:

• Chapter 1, “Introduction,” introduces the functions and features of SunLink
P2P LU6.2 9.1. It describes how the client/server paradigm is used to allow
the distribution of your programs on the Local Area Network (LAN), and
illustrates how programs written using the API communicate with peer
programs in an SNA environment to provide an APPC application.

• Chapter 2, “SunLink LU6.2 Concepts,” introduces LU6.2 terminology and
describes the concepts you need to write APPC applications.

• Chapter 3, “Getting Started with SunLink LU6.2,” is designed to introduce
you to SunLink P2P LU6.2 9.1 application programming. The chapter guides
you through the steps necessary to build and run a sample APPC
application. The sample programs that comprise the APPC application are
located in the appendixes, together with the sample SNA configuration. This
is an important chapter for understanding and implementing the SunLink
P2P LU6.2 9.1 application program.

• Chapter 4, “Configuration,” describes how to configure local LU6.2s and
define TPs, partner LUs, and modes. Corresponding VTAM, CICS and
OS/400 configurations are discussed.

• Chapter 5, “Using the LU6.2 API,” describes the nature of the LU6.2 API
and its use. This chapter shows you how to organize your program and,
with examples, illustrates how the API is used to perform most of the
“standard” LU6.2 operations.

• Chapter 6, “man Page Conventions,” describes the format and conventions
used in the man pages in chapters 7 to 12.

Preface xxiii

• Chapter 7, “Connection Verbs,”describes the connection verbs that are used
to establish and maintain connection to one or more SunLink SNA PU2.1 9.1
servers.

• Chapter 8, “Basic Conversation Verbs,” describes the SunLink SNA PU2.1
9.1 basic conversation verbs.

• Chapter 9, “Mapped Conversation Verbs,” describes the SunLink SNA
PU2.1 9.1 mapped conversation verbs.

• Chapter 10, “Type-Independent Verbs,” describes the SunLink SNA PU2.1
9.1 type-independent verbs for basic and mapped conversations.

• Chapter 11, “Control Operator Verbs,” describes the SunLink SNA PU2.1
9.1 control operator (COPR) verbs that are used to control and monitor the
local LU.

• Chapter 12, “SunLink LU6.2 Utilities,” describes the utilities supplied with
the SunLink LU6.2 API.

• Appendix A, “SunLink LU6.2 Return Codes,” explains the return codes
that are passed to the program when an execution verb is completed.

• Appendix B, “Conversation State Table,” provides a conversation state
table.

• Appendix C, “LU 6.2 Include Files,” contains the SunLink P2P LU6.2 9.1
include files.

• Appendix D, “Sample LU6.2 Programs,” provides code examples.

• Appendix E, “SunLink LU6.2 Configuration Examples,” provides code
samples of SunLink configurations.

• Appendix F, “LU6.2 Sync-Point,” describes Sync-Point flows and recovery.

• Appendix G, “SunLink LU6.2 9.0 to 9.1 Instructions,” describes the
migration path for using your SunLink 8.0 P2P LU6.2 applications. Also
described are the object files with libraries and discrepancies between the
SunLink 8.0 and SunLink 9.1 products.

xxiv SunLink Peer-to-Peer LU6.2 9.1 Programmer’s Manual—August 1997

Related Documentation

Sun Documentation
• SunLink SNA PU2.1 9.1 Server Configuration and Administration Manual

• SunLink SNA 3270 9.1 End Node Planning and Installation Manual

• SunLink P2P CPI-C 9.1 Programmer’s Guide

IBM Documentation
• IBM Systems Network Architecture Concepts and Products, GC30-3072

• IBM Systems Network Architecture Technical Overview, GC30-3073

• IBM SNA Transaction Programmer's Reference Manual, GC30-3084

• IBM SNA LU6.2 Reference: Peer Protocols, SC31-6808

• IBM SNA Formats, GA27-3136

Ordering Sun Documents
SunDocsSM is a distribution program for Sun Microsystems technical
documentation. Easy, convenient ordering and quick delivery is available from
SunExpress. You can find a full listing of available documentation on the World
Wide Web: http://www.sun.com/sunexpress/

Table P-1 SunExpress Contact Information

Country Telephone Fax

United States 1-800-873-7869 1-800-944-0661

United Kingdom 0800-89-88-88 0800-89-88-87

Canada 1-800-873-7869 1-800-944-0661

France 0800-90-61-57 0800-90-61-58

Belgium 02-720-09-09 02-725-88-50

Luxembourg 32-2-720-09-09 32-2-725-88-50

Germany 01-30-81-61-91 01-30-81-61-92

The Netherlands 06-022-34-45 06-022-34-46

Sweden 020-79-57-26 020-79-57-27

Preface xxv

Typographic Conventions
The following table describes the typographic changes used in this book.

Sun Welcomes Your Comments
Please use the Reader Comment Card that accompanies this document. We are
interested in improving our documentation and welcome your comments and
suggestions.

If a card is not available, you can email or fax your comments to us. Please
include the part number of your document in the subject line of your email or
fax message.

• Email: smcc-docs@sun.com

• Fax: SMCC Document Feedback
1-415-786-6443

Switzerland 0800-55-19-26 0800-55-19-27

Holland 06-022-34-45 06-022-34-46

Japan 0120-33-9096 0120-33-9097

Typeface or
Symbol Meaning Example

AaBbCc123 The names of commands,
files, and directories;
on-screen computer output.

Edit your .login file.
Use ls -a to list all files.
% You have mail.

AaBbCc123 What you type, when
contrasted with on-screen
computer output.

% su
Password:

AaBbCc123 Command-line variable:
replace with a real name or
value.

To delete a file, type rm filename.

Book titles, new words or
terms, words to be
emphasized

Read Chapter 6 in the User’s Guide.
These are called class options.
You must be root to do this.

Table P-1 SunExpress Contact Information (Continued)

xxvi SunLink Peer-to-Peer LU6.2 9.1 Programmer’s Manual—August 1997

1-1

Introduction 1

This book is a guide and reference for SunLink P2P LU6.2 9.1 developers.
The SunLink P2P LU6.2 9.1 application programming interface (API) allows
program-to-program communications using IBM SNA logical unit 6.2 (LU6.2).
It provides a consistent and full-featured implementation of the LU6.2 verb set
defined in the IBM SNA Transaction Programmer's Reference Manual.

You can use the SunLink P2P LU6.2 9.1 API program to:

• Connect to multiple SunLink SNA PU2.1 9.1 servers

• Associate with multiple local LUs

• Initiate or accept multiple conversations

• Handle multiple conversations concurrently

• Issue Control Operator verbs.

1.1 SunLink SNA PU2.1 9.1 Server
The API provides programs with access to the SunLink SNA PU2.1 9.1 server.
The server can support multiple SunLink P2P LU6.2 9.1 client programs, and
client programs can connect to multiple servers. As a TCP/IP network server,
the SunLink SNA PU2.1 9.1 server provides LU6.2 and PU2.1 node services to
SunLink P2P LU6.2 9.1 client programs and SunLink IBM connectivity end-
point products such as sun3270 and sun3770 running anywhere in the

1-2 SunLink Peer-to-Peer LU6.2 9.1 Programmer’s Manual—August 1997

1

TCP/IP internetwork. The SunLink SNA PU2.1 9.1 server supports IBM Token
Ring, Ethernet, SDLC, and X.25 network connections into the SNA backbone
network.

Figure 1-1 shows the environment in which your SunLink P2P LU6.2 9.1
programs run. Instances of SunLink LU6.2 programs are shown as TPx. Note
the CPI-C program CP1, which is written using the SunLink LU6.2 CPI-C API.
This API implements the “standard” programming interface for LU6.2
specified by IBM System Application Architecture (SAA) Common Programming
Interface. SunLink LU6.2 CPI-C is layered on top of the SunLink LU6.2 API. See
the SunLink P2P CPI-C 9.1 Programmer’s Manual for more information.

Figure 1-1 SunLink P2P LU6.2 Application Support

IBM mainframe

AS/400

TCP/IP

SunLU6.2

 SunPU2.1

CICS

TR
APPC/PC

CP2 CP1 CP2

TPA

Conversation

CPx
TPx

- CPI-C program
- LU6.2 TP

CP3

CP4

Introduction 1-3

1

1.2 SunLink LU6.2 API Features
Table 1-1 below list the LU6.2 verbs supported by the SunLink P2P LU6.2 9.1
API. See the [TPRM] for a functional description of the LU6.2 verbs. The tables
also identify Sun extensions to the LU6.2 verb set. These extensions are noted
by (*), and their function is summarized.

Note – If you are the SunLink PTP LU6.2 8.0 user, be sure to read the file,
SunLink Notes that is included in the distribution media. It describes how to
convert the 8.0 TP and utility proprietary verbs into 9.1 proprietary verbs.

1.2.1 Conversation Verbs

Table 1-1 LU6.2 Verbs supported by SunLink P2P LU6.2 9.1 API

SunLink LU6.2 LU6.2

Basic Conversation Verbs

lu62_allocate ALLOCATE

lu62_confirm CONFIRM

lu62_confirmed CONFIRMED

lu62_deallocate DEALLOCATE

lu62_flush FLUSH

lu62_get_attributes GET_ATTRIBUTES

lu62_post_on_receipt POST_ON_RECEIPT

lu62_prep_to_receive PREPARE_TO_RECEIVE

lu62_receive_and_wait RECEIVE_AND_WAIT

lu62_receive_immediate RECEIVE_IMMEDIATE

lu62_request_to_send REQUEST_TO_SEND

lu62_send_data SEND_DATA

lu62_send_error SEND_ERROR

lu62_test TEST

1-4 SunLink Peer-to-Peer LU6.2 9.1 Programmer’s Manual—August 1997

1

Mapped Conversation Verbs

lu62_mc_allocate MC_ALLOCATE

lu62_mc_confirm MC_CONFIRM

lu62_mc_confirmed MC_CONFIRMED

lu62_mc_deallocate MC_DEALLOCATE

lu62_mc_flush MC_FLUSH

lu62_mc_get_attributes MC_GET_ATTRIBUTES

lu62_mc_post_on_receipt MC_POST_ON_RECEIPT

lu62_mc_prep_to_receive MC_PREPARE_TO_RECEIVE

lu62_mc_receive_and_wait MC_RECEIVE_AND_WAIT

lu62_mc_receive_immediate MC_RECEIVE_IMMEDIATE

lu62_mc_request_to_send MC_REQUEST_TO_SEND

lu62_mc_send_data MC_SEND_DATA

lu62_mc_send_error MC_SEND_ERROR

lu62_mc_test MC_TEST

Type-Independent Verbs

*lu62_abort Aborts conversation processing

*lu62_accept Listens for and accept an incoming conversation

*lu62_register_tp Registers a local TP for incoming conversations

lu62_get_tp_properties GET_TP_PROPERTIES

lu62_get_type GET_TYPE

*lu62_listen Listens for an incoming conversation

*lu62_send_ps_data Sends Presentation Services data

lu62_wait WAIT

Table 1-1 LU6.2 Verbs supported by SunLink P2P LU6.2 9.1 API (Continued)

SunLink LU6.2 LU6.2

Introduction 1-5

1

1.2.2 Control Operator Verbs

The SunLink P2P LU6.2 9.1 API implements the following control operator
verbs, as shown in Table 1-2.

1.2.3 Connection Verbs

Connection verbs are SunLink P2P LU6.2 9.1 extensions that are used to
establish and control the connections to SunLink SNA PU2.1 9.1 server(s). Your
program establishes a connection to the SunLink SNA PU2.1 9.1 server for each
local LU with which it is associated.

Table 1-2 Control Operator Verbs Implemented by API

SunLink LU6.2 LU6.2

CNOS Verbs

lu62_change_session_limit CHANGE_SESSION_LIMIT

lu62_initialize_session_limi
t

INITIALIZE_SESSION_LIMIT

lu62_process_session_limit PROCESS_SESSION_LIMIT

lu62_reset_session_limit RESET_SESSION_LIMIT

Session Control Verbs

lu62_activate_session ACTIVATE_SESSION

lu62_deactivate_conv_group DEACTIVATE_CONVERSATION_GROUP

lu62_deactivate_session DEACTIVATE_SESSION

LU Definition Verbs

lu62_display_local_lu DISPLAY_LOCAL_LU

lu62_display_mode DISPLAY_MODE

lu62_display_remote_lu DISPLAY_REMOTE_LU

lu62_display_tp DISPLAY_TP

1-6 SunLink Peer-to-Peer LU6.2 9.1 Programmer’s Manual—August 1997

1

Conversations are allocated on sessions between the local LU and one of its
defined partner LUs. All such conversations are multiplexed over the single
connection to the server. Conversations may be BLOCKING or NON_BLOCKING.
When a verb is issued on a non-blocking conversation, you must issue a
lu62_wait_server call when you are ready to process the return.

1.2.4 Character Conversion

Your Unix system uses the ASCII character set while the LU6.2 protocol
requires that certain characteristics are transmitted as EBCDIC characters. The
SunLink P2P LU6.2 9.1 API allows you to work with native ASCII characters
for all such characteristics, and converts them automatically to and from
EBCDIC, as required. These characteristics are:

• Mode name
• Partner LU name
• Remote TP name
• Log data
• Conversation security user_ID
• Conversation security password
• Conversation security profile

User data must, however, be sent in the character set expected by the remote
TP, ASCII or EBCDIC. SunLink P2P LU6.2 9.1 API provides conversion
routines for EBCDIC character set 00640.

Table 1-3 Connection Verbs Supported by SunLink P2P LU6.2 9.1

SunLink LU6.2 Function

*lu62_open Opens a connection with the SunLink PU2.1 SNA
server

*lu62_close Closes a connection with the SunLink PU2.1 SNA
server

*lu62_set_processing_mo
e

Sets to BLOCKING or NON_BLOCKING mode

*lu62_wait_server Waits for any posted conversation

*lu62_get_readfds Returns the select fdsets for posted conversations

Introduction 1-7

1

1.2.5 Unix Security

SunLink P2P LU6.2 9.1 can be configured to use Unix security mechanisms to
enforce conversation-level security. Thus, the user identifier, password (and
optional profile), supplied on a conversation start-up request, is required to
correspond, respectively, to a user name, password (and group), defined to
Unix. See the SunLink SNA PU2.1 9.1 Configuration and Administration Manual
for more information.

1.2.6 Tracing

SunLink P2P LU6.2 9.1 incorporates extensive trace capabilities to assist in
developing and debugging your programs. Trace points are built-in to the
SunLink P2P LU6.2 9.1 API to provide information on program calls, program
errors, exchange of buffers with the SunLink SNA PU2.1 9.1 server, and
internal API errors. Traces may be selectively enabled using external trace
flags, and output is written to a unique file. The trace facility is exposed so that
you can include trace points in your own programs.

1.3 Unsupported Features
The following subsections describe the P2P LU6.2 unsupported features.

1.3.1 Map Names

SunLink P2P LU6.2 9.1 does not currently support Map Names in its mapped
conversation support.

1.3.2 Sync-point Services

SunLink P2P LU6.2 9.1 provides limited support for LU6.2 sync-point services.
TPs can establish sync-level sync-point conversations and exchange sync-point
flows using the lu62_send_ps_data verb. An external sync-point manager
can send sync-point recovery GDS variables as FMH data on mapped
conversations. See Appendix F for a more complete description of the sync-
point support provided.

1-8 SunLink Peer-to-Peer LU6.2 9.1 Programmer’s Manual—August 1997

1

Sync-point verbs are not recognized, sync-point states are not maintained and,
if the conversation sync-level is sync-point, deallocate and
prepare_to_receive types of sync-level are not supported.

1.3.2.1 Control Operator LU6.2 Definition Verbs

SunLink P2P LU6.2 9.1 does not currently support dynamic configuration. The
SunLink P2P LU6.2 9.1 API, therefore, does not support the following [TPRM]
LU6.2 verbs:

• DEFINE_LOCAL_LU

• DEFINE_MODE

• DEFINE_TP

• DEFINE_REMOTE_LU

• DELETE

1.4 SunLink LU6.2 Components
To develop a SunLink P2P LU6.2 9.1 application program, you should be
familiar with the SunLink P2P LU6.2 9.1 components. In particular, the
programmer should know the LU6.2 parameters defined to the SunLink SNA
PU2.1 9.1 server. Refer to the SunLink SNA PU2.1 9.1 Server Configuration and
Administration Manual for more information. Figure 1-2 identifies the SunLink
P2P LU6.2 9.1 components, including the SunLink P2P LU6.2 9.1 API.

Introduction 1-9

1

Figure 1-2 SunLink P2P LU6.2 9.1 Components

The following subsections describe the LU6.2 components described in
Figure 1-2.

sunlu6.2

Your programs connect to the sunlu6.2 daemon process for LU and
presentation services. The sunlu6.2 interfaces with the sunpu2.1 daemon
to access the network and to cooperate in control point functions.

sunpu2.1

sunop

Streams drivers

System bus

Communications ports

User

Kernel

BMD

LU6.2 program

SunLink LU6.2 API

sunlu6.2

sunpu2.config

SunLink 3270

CPI-C program

SunLink LU6.2 API

CPI-C API

sunscope

1-10 SunLink Peer-to-Peer LU6.2 9.1 Programmer’s Manual—August 1997

1

sunpu2.1

The sunpu2.1 daemon process implements the higher-level SNA protocols
and services. This process runs in the background in the application space. It is
responsible for starting the sunlu6.2 daemon and interfaces to the protocol
drivers and with its client programs. In addition, the sunpu2.1 processes local
operator requests from sunop .

sunpu2.config

The sunpu2.1 and sunlu6.2 daemon processes read a configuration file to
determine the configured SNA resources. The default name of this
configuration file is sunpu2.config .

BMD
The SunLink Basic Message Database lists all error and informational messages
displayed by SunLink IBM Connectivity software.

sunop

The sunop process implements the SunLink IBM Connectivity local operator
interface. This process allows you to monitor and control SNA resources.

sunscope

The sunscope process is a logical data scope, which allows you to monitor the
data sent and received on the data links.

Streams Drivers
The serial communication boards and network interface controllers are
managed by STREAMS device drivers.

2-1

SunLink LU6.2 Concepts 2

This chapter introduces SunLink LU6.2 terminology and describes the concepts
you need for writing APPC applications and assumes that you have an
understanding of IBM System Network Architecture (SNA). For more
information on SNA, refer to IBM's Systems Network Architecture Concepts and
Products. For the formal definition of the SunLink LU6.2 verb set, see the IBM
SNA Transaction Programmer's Reference Manual.

2.1 APPC and Logical Unit Type 6.2 (LU6.2)
The SNA Advanced program-to-program communication (APPC) architecture
defines the Logical Unit type 6.2 (LU6.2). Its purpose is to support
communication between application programs running on any APPC-capable
node in an SNA network. This enables distributed processing, in which two or
more programs running on different systems cooperate to perform a particular
function. Figure 2-1 summarizes the SunLink LU6.2 model.

2-2 SunLink Peer-to-Peer LU6.2 9.1 Programmer’s Manual—August 1997

2

Figure 2-1 SunLink LU6.2 Model

All the elements of the SunLink LU6.2 model shown in Figure 2-1 are
described below.

2.1.1 Transaction Program (TP)

A TP accesses the SNA network through its local SunLink LU6.2. The SunLink
LU6.2 makes resources, including sessions, available to the TP, and operates
the session protocols. A key feature of the SunLink LU6.2 is that it can invoke
a local TP on receiving an allocation (or Attach) request from a remote TP.

Although SunLink LU6.2 has most often been used to implement distributed
transaction processing systems, it can be used to support any type of program-
to-program communication. In this document, the term transaction program is
used to describe any program that uses the SunLink LU6.2 protocol to
communicate.

Mapped conversation
protocol boundary

Basic conversation
protocol boundary

Mapped
conversation

Basic conversation

LU6.2 LU6.2

Parallel sessions
TP

TPTP

TP

SunLink LU6.2 Concepts 2-3

2

TPs, SunLink LU6.2 and sessions are described from the perspective of the
local node. Thus the local TP connects to its local SunLink LU6.2, which in turn
is in session with its partner (or remote) SunLink LU6.2. The remote TP is located
at the partner LU.

2.1.2 Conversations and Verbs

TPs always communicate in pairs. A logical connection called a conversation is
established between the two programs. Conversations temporarily use sessions
that are set up between the TPs' respective SunLink LU6.2s. Programs
communicate on conversations using the verbs defined on the conversation
protocol boundary between the TP and its local SunLink LU6.2; mapped and
basic conversation types are supported.

2.1.3 Mapped and Basic Conversations

In a basic conversation, TPs exchange data in a logical record format that
includes a two-byte prefix. In a mapped conversation, TPs exchange simple
data records (with no length prefix). TPs can also specify mapping information
so that the local SunLink LU6.2 can convert data to and from the format
understood by the local TP. This feature, however, is usually not implemented.
Mapped conversations are easier to program since the TP is not responsible for
formatting data into logical records.

2.1.4 Conversation Initiation and State Transitions

A conversation is initiated by one TP that issues an allocate verb. The local
SunLink LU6.2 assigns a session (provided one is available or can be activated)
to the conversation and issues an allocation request on the session. The partner
SunLink LU6.2 receives the request and (provided the request is valid), invokes
the remote TP. The conversation is then established with the conversation
initiator in Send state, and the initiated TP in Receive state. As the conversation
progresses, the conversation, as perceived by the individual TPs, changes state
as the TPs issue verbs. For example, the TP in Send state can transition to
Receive state and cause the remote TP to enter Send state by issuing a
Prepare_To_Receive verb .

2-4 SunLink Peer-to-Peer LU6.2 9.1 Programmer’s Manual—August 1997

2

The verbs that a program may issue on a conversation depend on the state of
the conversation. This is enforced by the conversation protocol boundary.
Appendix B, “Conversation State Table,” defines the verbs that are valid in
each conversation state, and the state changes (or transitions) that can occur
when a verb is issued.

2.1.5 Sessions

In SNA, sessions are the logical connections that are maintained between
network addressable units (NAUs). SunLink LU6.2 sessions are allocated to
one conversation at a time, but since their establishment and removal involves
significant processing, a session is usually left running when a conversation
terminates, so it can be available for the next conversation.

2.1.6 Modes

The characteristics of a session between a pair of SunLink LU6.2s are specified
with a mode. The mode defines various communications and usage
parameters, including:

• preferred RU size specifies the preferred size of the request/response units
(RUs) that are exchanged by the two SunLink LU6.2s

• parallel session support specifies whether parallel sessions are supported
between the two SunLink LU6.2s

• maximum session limit defines the maximum number of active sessions of this
particular type that can exist between the two SunLink LU6.2s. If this
number is greater than 1, parallel sessions must be supported

• polarity of the sessions

Modes must be defined identically to each SunLink LU6.2. Session limits and
session polarities may be changed using a set of control operator verbs called
change number of sessions (CNOS) verbs.

2.1.7 Parallel Sessions

Parallel session support indicates that the SunLink LU6.2 pair can support
more than one active session of the same mode at a time. Parallel sessions
allow optimal use of the SunLink LU6.2 pair, enabling multiple transactions of
the same type to proceed concurrently. An installation will normally designate

SunLink LU6.2 Concepts 2-5

2

some of the defined sessions as auto-activated sessions. These sessions are
automatically activated whenever the local SunLink LU6.2 is started or reset.
Thus a free pool of sessions is established, avoiding the session activation
overhead whenever a conversation requests a session.

2.1.8 Session Polarity

The session polarity determines which SunLink LU6.2 “wins” if both LUs
simultaneously attempt to activate a particular session. When the session is
a contention-winner (or first-speaker) the local LU always wins when there is
contention. When the session is a contention-loser (or bidder), the partner LU
always wins. In this case the contention-loser SunLink LU6.2 bids the
contention-winner to use the session. The mode defines the minimum number
of conwinner and conloser sessions available.

2.1.9 Control Operator Verbs

The SunLink LU6.2 supports another protocol boundary not shown in
Figure 2-1. Control operator verbs are specified that allow a control operator
program to define, monitor, and control SunLink LU6.2 resources. The control
operator verbs fall into three main categories:

• Change Number of Sessions (CNOS) verbs

• Session control verbs

• SunLink LU6.2 definition verbs

CNOS verbs enable the control operator to initialize, change, or reset a mode
session limit and session polarities. When the mode supports parallel sessions,
changes to these CNOS parameters are negotiated by the involved SunLink
LU6.2s. The local SunLink LU6.2 initiates a conversation with its partner and
transmits a CNOS request. The partner SunLink LU6.2 returns a CNOS
response, at which point both SunLink LU6.2s make the agreed changes.

Session control verbs enable the control operator to activate and deactivate
sessions. SunLink LU6.2 definition verbs are used to define and display the
network resources controlled by the local SunLink LU6.2.

2-6 SunLink Peer-to-Peer LU6.2 9.1 Programmer’s Manual—August 1997

2

3-1

Getting Started with
SunLink LU6.2 3

Getting Started is designed to guide you through the steps necessary to install
and run an APPC application in which two SunLink P2P LU6.2 9.1 client
programs, running on different Unix workstations, send and receive data. The
sample programs used are distributed with SunLink P2P LU6.2 9.1 and are
included in Appendix D.

The tp_sr initiates the conversation. The tp_sr allocates a basic conversation
and sends data with or without a request for confirmation to tp_rs. The
tp_sr then enters Receive state to receive data from tp_rs .

The tp_rs accepts incoming conversations, and issues an
lu62_receive_and_wait command to receive information. If data is
received, it is displayed. If a confirmation request is received, it is confirmed. If
a send indication is received, the program enters Send state and sends data to
tp_sr .

These programs are compiled and linked with the SunLink P2P LU6.2 9.1 API
library, liblu62.a . Before the programs can be run, however, the SunLink
P2P LU6.2 9.1 software must be installed, configured, and activated. Sun
delivers SunLink P2P LU6.2 9.1 with installation scripts and sample
configurations to simplify the process.

Getting started with SunLink P2P LU6.2 9.1 is performed in three stages.

• In the first stage, the sample application will be run over an intra-node
session, i.e., tp_sr and tp_rs and is executed on the same workstation.
This allows you to remain isolated from network considerations and to
concentrate solely on the LU6.2 configuration.

3-2 SunLink Peer-to-Peer LU6.2 9.1 Programmer’s Manual—August 1997

3

• In the second stage, tp_sr and tp_rs will again execute on the same
workstation, but will communicate over the Token Ring. This allows you to
verify the Token Ring connection.

• In the final stage, the programs are run on different workstations in the SNA
network. The LU6.2 configuration is split between two peer SunLink SNA
PU2.1 9.1 nodes. This introduces you to the network configuration issues.

Getting Started in the SunLink SNA PU2.1 9.1 Server Configuration and User's
Manual provides step-by-step instructions to configure and start up the
SunLink PU2.1 SNA server.

The sample configuration files are distributed with SunLink P2P LU6.2 9.1 and
are documented in Appendix E. The configuration files are located in the
SunLink installation directory.

3.1 Installing SunLink LU6.2
The installation process extracts the SunLink SNA PU2.1 9.1 server and
SunLink P2P LU6.2 9.1 software from the distribution media and installs it on
your system. Please consult the SunLink SNA3270 9.1 End Node Planning and
Installation Manual for detailed instructions. A summary of the procedure
follows:

1. Install communications hardware and software, as necessary.

2. Install the SunLink SNA PU2.1 9.1 server, SunLink P2P LU6.2 9.1, and
FlexLM product files from the distribution media.

3. Obtain and install the required FlexLM licenses.

SunLink SNA PU2.1 9.1 server, and SunLink P2P LU6.2 9.1 are now installed
on your Sun Workstation and ready for use. All path names in the remainder
of this chapter are specified relative to the Sun installation directory, which
should be /opt . The SunLink SNA 3270 9.1 End Node Planning and Installation
Guide, which is system-specific, identifies the installation directory for your
particular system type.

Getting Started with SunLink LU6.2 3-3

3

3.2 Intra-Node Configuration
Figure 3-1 depicts the sample intra-node configuration. The corresponding
configuration file, sunlu62.local , is distributed with SunLink LU6.2 and is
included in Appendix E. Figure 3-1 shows the pertinent configuration
parameters.

Figure 3-1 Intra-Node Configuration

LU NAME=LUA,
 NQ_LU_NAME=IBMLAN.LUA;

PTNR_LU NAME=PLUB,
 LOC_LU_NAME=LUA
 NQ_LU_NAME=IBMLAN.LUB;

MODE NAME=MODEAB,
 PTNR_LU=PLUB,
 DLC_NAME=LOCAL;

LUA LUB

LUA

tp_sr

TPB

tp_rs

LU

sunlu6.2

sunpu2.1

Local

LU NAME=LUB,
 NQ_LU_NAME=IBMLAN.LUB;

PTNR_LU NAME=PLUA,
 LOC_LU_NAME=LUB
 NQ_LU_NAME=IBMLAN.LUA;
MODE NAME=MODEAB,
 PTNR_LU=PLUA,
 DLC_NAME=LOCAL;

TP TP_NAME=TPB,
 LOC_LU_NAME=LUB,
 TP_PATH="xterm -e tp_rs";

3-4 SunLink Peer-to-Peer LU6.2 9.1 Programmer’s Manual—August 1997

3

tp_sr will connect to LUA and allocate a conversation with TPB located at the
partner LU, PLUB, using mode MODEAB. At LUB, a TP_PATH parameter is
configured for TPB. Thus tp_rs will be invoked using this shell command
when an allocate request is received for TPB.

3.3 Starting the SunLink PU2.1 SNA Server
You are now ready to start the SunLink SNA PU2.1 9.1 server. The SunLink
SNA PU2.1 9.1 Server Configuration and Administration Manual lists the options
for invoking the sunpu2.1 process. This manual has a troubleshooting chapter
to aid in resolving SNA connectivity problems.

The sunpu2.1 reads the local configuration file to learn about its SNA
resources during initialization.

♦ To invoke the SunLink PU2.1 SNA server with the sample configuration
sunlu62.local, enter the following Unix command as superuser:

The sunpu2.1 daemon will terminate immediately if an error is detected
during initialization. If initialization is successful, sunpu2.1 responds as
follows:

cd /opt/SUNWpu21
sunpu2.1 -f ../SUNWlu62/config/sunlu62.local

sunpu2.1 -f ../SUNWlu62/config/sunlu62.local
PU200001 : Initializing SunLink PU2.1 SNA Server
BCFG0104 : *** WARNING: Duplicate NQ Name 'IBMLAN.LUA' Specified
PU200002 : Initialization complete
Copyright (c)1997 Sun Microsystems, Inc.
LU620003 : Parsing Configuration,
../SunLU62/config/sunlu62.local
BCFG0104 : *** WARNING: Duplicate NQ Name 'IBMLAN.LUA' Specified
LU620005 : Initialization Started
LU620006 : Initialization Complete

Getting Started with SunLink LU6.2 3-5

3

The “Duplicate NQ Name” WARNINGs can be ignored because this is a
loopback configuration.

The sunlu6.2 is started automatically by sunpu2.1 . Note the use of the -d
(debug) flag. This specifies that sunpu2.1 is to remain in the foreground, and
enables you to invoke tp_rs in a shell tool window with standard IO
available. The -d flag is normally omitted, however. This allows sunpu2.1 to
become a daemon that runs as its own process group leader is disassociated
from the controlling terminal, and is detached from standard IO.

3.4 Stopping the SunLink PU2.1 SNA Server
♦ Use the sunop application to terminate the SunLink PU2.1 SNA server:

If you change the configuration, you must stop and restart the server for the
changes to occur. The SunLink PU2.1 SNA server only accesses its
configuration file during initialization.

3.5 Running the Application
♦ Compile and link tp_sr and tp_rs using the Makefile provided.

The SunLink P2P LU6.2 9.1 API verbs are located in the library (random
archive,” liblu62.a .

% sunop
SunLink Controller
-> kill
(0) kill
->
OP200018 : SunPU2 SNA Server connection broken
%

% cd /opt/SUNWlu62/examples
% make

3-6 SunLink Peer-to-Peer LU6.2 9.1 Programmer’s Manual—August 1997

3

tp_sr connects to LUA and allocates a conversation with TPB located at the
partner LU, PLUB, using mode MODEAB. tp_rs is invoked using the
configured TP_PATH command when the allocated request is received for
TPB. If tp_rs is successfully started, the programs will start sending and
receiving data.

Both tp_sr and tp_rs accept a number of command line options. The tp_sr
can, for example, initiate a conversation with a synchronization level of
confirm. Consult the program headers for more information on the available
options. In the example here, the program usage is kept as simple as possible.

To stop the application, type Control-C to terminate tp_sr or tp_rs .

3.6 Token Ring Peer-to-Peer Configuration
Figure 3-3 depicts the example peer-to-peer Token Ring configuration. The
corresponding configuration files, sunlu62.a.tr and sunlu62.b.tr , are
distributed with the SunLink P2P LU6.2 9.1 product and are included in
Appendix E. Figure 3-3 shows the pertinent configuration parameters.

The sunlu62.loopback.tr configuration is split between the two
workstations, System A and System B. System A defines DLC1 as its data link
connection with System B. Note the use of the DLC parameters RMTMACADDR,
LCLLSAP, and RMTLSAP. The RMTMACADDR parameters correspond to the
TRLINE SOURCE_ADDRESS of the other system.

Re-run the application as described in Section 3.5, “Running the Application.”

Then, with sunpu2.1 running, invoke tp_sr as follows.
% tp_sr

Getting Started with SunLink LU6.2 3-7

3

Figure 3-2 Token Ring Loopback Configuration

LUA

LUA

tp_sr

TPB

tp_rs

LUB

sunlu6.2

sunpu2.1
DLC1 DLC2

Token Ring

LU NAME=LUB,
 NQ_LU_NAME=IBMLAN.LUB;

PTNR_LU NAME=PLUA,
 LOC_LU_NAME=LUB
 NQ_LU_NAME=IBMLAN.LUA;

MODE NAME=MODEAB,
 PTNR_LU=PLUA,
 DLC_NAME=DLC2;

TP TP_NAME=TPB,
 LOC_LU_NAME=LUB,
 TP_PATH="xterm -e tp_rs";

DLC NAME=DLC2,
 LINK_NAME=MAC1,
 TERMID=X'01712345',
 LCLLSAP=X'04',
 RMTLSAP=X'08',
 RMTMACADDR=<sysA_mac_addr>;

LUB
LU NAME=LUA,
 NQ_LU_NAME=IBMLAN.LUA;

PTNR_LU NAME=PLUB,
 LOC_LU_NAME=LUA
 NQ_LU_NAME=IBMLAN.LUB;

MODE NAME=MODEAB,
 PTNR_LU=PLUB,
 DLC_NAME=DLC1;

TRLINE NAME=MAC1;
 SOURCE_ADDRESS=<sysA_mac_addr>;

DLC NAME=DLC1,
 LINK_NAME=MAC1,
 TERMID=X'01712345',
 LCLLSAP=X'08',
 RMTLSAP=X'04',
 RMTMACADDR=<sysA_mac_addr>;

3-8 SunLink Peer-to-Peer LU6.2 9.1 Programmer’s Manual—August 1997

3

Figure 3-3 Token Ring Peer-to-Peer Configuration

SYSTEM A SYSTEM B

TPB

tp_rs

sunlu6.2

sunpu2.1

tp_sr

DLC1 DLC2

LU NAME=LUA,
 NQ_LU_NAME=IBMLAN.LUA;

PTNR_LU NAME=PLUB,
 LOC_LU_NAME=LUA
 NQ_LU_NAME=IBMLAN.LUB;

MODE NAME=MODEAB,
 PTNR_LU=PLUB,
 DLC_NAME=DLC1;

TRLINE NAME=MAC1;
 SOURCE_ADDRESS=<sysA_mac_addr>;

DLC NAME=DLC1,
 LINK_NAME=MAC1,
 TERMID=X'01712345',
 LCLLSAP=X'04',
 RMTLSAP=X'04',
 RMTMACADDR=<sysB_mac_addr>;

LU NAME=LUB,
 NQ_LU_NAME=IBMLAN.LUB;

PTNR_LU NAME=PLUA,
 LOC_LU_NAME=LUB
 NQ_LU_NAME=IBMLAN.LUA;

MODE NAME=MODEAB,
 PTNR_LU=PLUA,
 DLC_NAME=DLC2;

TP TP_NAME=XPB,
 LOC_LU_NAME=LUB,
 TP_PATH="xterm -e cpic_rs";

TRLINE NAME=MAC1;
 SOURCE_ADDRESS=<sysB_mac_addr>;

DLC NAME=DLC2,
 LINK_NAME=MAC1,
 TERMID=X'01712345',
 LCLLSAP=X'04',
 RMTLSAP=X'04',
 RMTMACADDR=<sysA_mac_addr>;

LUA

Token Ring

LUB

Getting Started with SunLink LU6.2 3-9

3

3.7 SunLink PU2.1 Monitoring and Control
Use the sunop application to display the status of the SunLink SNA PU2.1 9.1
server data links. The sunop application prompts you for management
requests (- > is the sunop prompt).

To view the PU2.1 status:

1. Enter dis (display status), as follows:

2. Exit from sunop by typing quit at the sunop prompt.

3.8 Using sunscope

The SunLink SNA PU2.1 9.1 server is distributed with sunscope. sunscope
is a logical data scope, which allows you to monitor the data sent and received
via a physical device driver, in this case, the Token Ring network interface
device, /dev/nit (see TRLINE DEVICE parameter). Once sunpu2.1 is
running, use the sunscope command as follows:

The -t option is required for Token Ring devices. The -e option causes
printable data to be displayed in EBCDIC. Refer to the SunLink SNA PU2.1 9.1
Server Configuration and Administration Manual for more information on the
sunscope command and its use.

% sunop
(0) dis
->
OP200038 : (0) Control Point SUNCP
OP200039 : (0) Independent LU LUA - 1 active sessions
OP200025 : (0) Link MAC1 - (2) Active
OP20001e : (0) Physical Unit/DLC DLC1 - (5) Pending
Active/Contacted

sunscope -t -e -d /dev/zbxa

3-10 SunLink Peer-to-Peer LU6.2 9.1 Programmer’s Manual—August 1997

3

4-1

Configuration 4

This chapter concentrates on the former directives and describes how to
configure your system for LU6.2 with respect to host and peer nodes within the
SNA network. A complete description of the configuration directives,
parameters, and arguments is found in the SunLink SNA PU2.1 9.1 Server
Configuration and Administration Manual. The purpose of this chapter is to
highlight certain configuration issues and to describe the SunLink P2P LU6.2
9.1 security model. When applicable, configuration parameters for the
following systems are discussed:

• VTAM

• CICS

• AS/400

The SunLink SNA PU2.1 9.1 server configuration specifies the operating
characteristics of the local SNA resources with respect to LU6.2. Of particular
importance to the LU6.2 application programmer are the logical resources
described in Table 4-1.

4-2 SunLink Peer-to-Peer LU6.2 9.1 Programmer’s Manual—August 1997

4

Note – If the TP configuration does not specify an LU, it is available to all
LUs.

The resources shown below are also important, but mainly for physical
connectivity rather than LU6.2 programming.

4.1 Resource Definition
The following subsections provide definitions for various resources.

Table 4-1 Logical Sources

Resource Description

LU Logical unit

PTNR_LU Partner LU

MODE Mode

TP Transaction Program

SECURITY LU security access information

SEC_ACCESS TP Security Resource Access Information

Table 4-2 Physical Connectivity Logical Sources

Resource Description

CP Control point

SDLCLINE SDLC Serial Link

QLLCLINE X.25 PDSN Link

TRLINE Token Ring LAN Link

LLC Logical Link Control for LAN Links

Configuration 4-3

4

4.1.1 Logical Unit (LU)

The LU configuration directive defines an LU6.2 entry point from the local
node into the SNA network. When connecting to an SNA host (i.e., VTAM or
CICS) either dependent and independent LUs may be specified. A dependent
LU requires SSCP assistance to establish a session and must act as a secondary,
single-session LU. Independent LUs require no SSCP intervention and can be a
primary LU that supports parallel sessions. Independent LUs, normally used
for connecting with peer PU2.1 systems such as an AS/400 or a PC running
APPC/PC, can also be connected directly into an IBM host. From the
perspective of the LU6.2 programmer, only the name of the LU is relevant,
since the other aspects are controlled by the configuration.

4.1.2 VTAM

The SunLink LU configuration is matched against the VTAM LU when it is
connected with an IBM host.

♦ For a dependent LU configure as follows:

A dependent LU must be associated with a specific DLC (formerly PU2)
directive in the SunLink configuration file. Network or fully-qualified names,
which consist of an optional network identifier period, separated from a node
identifier, can be used and are defined with the NQ_LU_NAMEparameter as
follows:

Note – When connecting to a host as a dependent LU, the uninterpreted LU
name, UI_LU_NAME, should be set to the host configured value to ensure
proper SSCP translation.

Independent LUs connecting to a host are not associated with a specific local
address and must be specified as follows:

LOCADDR=n where n is a non-zero value representing the local
address.

NQ_LU_NAME=[NETID.]NODEID

4-4 SunLink Peer-to-Peer LU6.2 9.1 Programmer’s Manual—August 1997

4

There is no corresponding PU as with the case of a dependent LU. Instead,
independent LUs are, by default, associated with the local control point (CP).
Both the CP and LU have network-qualified names, of which the network id
prefix must be identical. This network id prefix must also match what is
defined for the network. Remember that the host may also connect to
SunLink PU2.1 as a peer and use independent LUs. In this case, the PU
definition in VTAM must include the following:

Consult the SunLink SNA PU2.1 9.1 Configuration and Administration Manual for
more information on PU definition.

4.1.3 CICS

When connecting with CICS for local LU definition, aspects of the connection
definition must be examined. Specifically, for connection definition, look for
the following:

Code Example 4-1

LOCADDR=0

PUTYPE=2
XID=YES

CONNECTION IDENTIFIERS
NETNAME
INDSYS

REMOTE ATTRIBUTES
REMOTESYSTEM
REMOTENAME

CONNECTION PROPERTIES
ACCESSMETHOD: VTAM
PROTOCOL: APPC

Configuration 4-5

4

To define the Terminal Control Table, DFHTCT, with respect to the Local LU
definition, use the following parameters:

Code Example 4-2

4.1.4 AS/400

When connecting to an AS/400 for local LU definition, the Line Description,
Controller Description, and Device Descriptions must be modified. Verify the
following parameters:

Code Example 4-3

4.2 Partner Logical Unit (PTNR_LU)

The PTNR_LU configuration directive defines type 6.2 LUs on remote systems
that are accessible to a locally-defined LU6.2. Each remote LU6.2 has a name
that is locally known. Using locally known LU names allows network
reconfiguration to be transparent to the LU6.2 programmer. The partner LU
can reside on either a host or a peer node. There are some minor differences in
defining partner LUs on each of these alternate node types. These differences
are highlighted later in this chapter.

DATASTREAM: USER
RECORDFORMAT: U

TRMTYPE=LUTYPE62
SYSIDNT=idname
NETNAME=netname

CRTCLTAPPC
RMTCPNAME=remote-control-point-name
RMTNETID=remote-network-identifier
AUT=authorization-list-name

CONNECTION IDENTIFIERS

4-6 SunLink Peer-to-Peer LU6.2 9.1 Programmer’s Manual—August 1997

4

4.2.1 VTAM

Partner LUs on the host follow the model that was presented for LUs in the
previous section. Partner LUs for local dependent LUs must be primary, single-
session LUs, in contrast to the independent LUs, which may be either primary
or secondary LUs that support parallel sessions. VTAM defines resources that
are viewed as remote LUs by SunLink P2P LU6.2 9.1 with the APPL resource
definition directive. Parameters of particular interest are shown below.

Code Example 4-4

Other parameters in the APPL resource definition directive are used for LU6.2,
and are discussed in the following subsections.

4.2.2 CICS

When connecting with CICS for partner LU definition, aspects of the
connection definition must be examined. For connection definition see the
example below.

Code Example 4-5

The following parameters are relevant for defining the terminal control table,
DFHTCT, with respect to the partner LU definition:

APPC
PARSESS =YES for independent LUs

 =NO for dependent LUs

CONNECTION PROPERTIES
SINGLESESS
SECURITY
BINDPASSWORD

Configuration 4-7

4

Code Example 4-6

BINDPWD is the password used to encrypt and decrypt random data on both
the BIND and its associated response. This field is matched against the
LU_LU_PASS parameter in the PTNR_LU configuration directive.

4.2.3 AS/400

When connecting to an AS/400 for partner LU definition, the line description,
controller description, and device descriptions must be modified. Verify that
the parameters shown in the code example below are present.

Code Example 4-7

4.2.4 Mode (MODE)

The Mode configuration directive defines the characteristics of sessions
between logical units. The mode, along with the partner LU and the
transaction program name, is specified on the various types of ALLOCATE
requests. The mode name must be common to both the local and partner LUs.

Note – In addition to the values described in the SunLink SNA PU2.1 9.1
Configuration and Administration Manual, you may specify a
UNIQUE_SESSION_NAME parameter with LU6.2 that is used to specify the node
in the allocate and listen verbs.

FEATURE =SINGLE
=PARALLEL

BINDPWD=xxxxxxxxxxxxxxxx

CRTDEVAPPC
LCLLOCNAME=local-location-name
SNGSSN=number-of-conversations
LOCPWD=location-password
SECURELOC=YES|NO
AUT=authorization-list-name

4-8 SunLink Peer-to-Peer LU6.2 9.1 Programmer’s Manual—August 1997

4

4.2.5 VTAM

Mode entries are defined using the MODEENT macroinstruction. Parameters of
particular interest are shown below.

Code Example 4-8

4.2.6 CICS

When connecting with CICS for mode definition, aspects of the session
definition must be examined. Verify the following for the session definition as
shown below.

Code Example 4-9

For defining the Terminal Control Table, DFHTCT, with respect to the mode
definition, the parameters shown below are relevant.

Code Example 4-10

FMPROF=X'13'
TSPROF=X'07'
SSNDPAC=n
SRCVPAC=n
RUSIZES=n

OBJECT CHARACTERISTICS

SESSION_IDENTIFIERS
MODENAME
SENDSIZE
RECEIVESIZE

MODENAME=mode-name
FEATURE=features
RUSIZE=n

Configuration 4-9

4

4.2.7 AS/400

When connecting to an AS/400 for mode definition, the line description,
controller description, and device descriptions must be modified. Verify that
the parameters shown below are present.

4.3 Transaction Program (TP)
The TP configuration directive defines transaction programs to which
incoming allocate requests may be directed. Access to TPs may be restricted
depending upon both LU access security and TP resource access security.
Security issues are explained in both the following subsections and in
Section 4.4, “Security.” Note that TPs on remote systems are not configured to
the local system. The selection of the remote TPs is made by the LU6.2 program
so you should know how TPs are defined on the remote system.

4.3.1 CICS

CICS transaction programs are defined by the processing program table,
DFHPPT, and the program control table, DFHPCT, statements.
Code Example 4-12 defines a CICS program, PRG1, which supports two
transactions, TR100 and TR101. These TRANSIDnames correspond to the
remote_tp_name parameter to lu62_allocate (8.1) or lu62_mc_allocate
(9.1) verbs.

Code Example 4-11

CRTDEVAPPC
MODE=mode-name

MODE DESCRIPTION
MODD=mode-name
COS=class-of-service-name
MAXSSN=maximum-sessions
MAXCNV=maximum-conversations
LCLCTLSSN=locally-controlled-sessions
PREESTSSN=pre-established-sessions
INPACING=inbound-pacing-value
OUTPACING=outbound-pacing-value
MAXLENRU=maximum-length-of-request-unit

4-10 SunLink Peer-to-Peer LU6.2 9.1 Programmer’s Manual—August 1997

4

4.3.2 LU Access Security Information (SECURITY)

The SECURITY configuration directive defines Access Security information for
the local LU. If Access Security is included, only authorized users are allowed
access to the services of this LU. Further restrictions on access to the TPs can be
done through TP resource access and partner LU security acceptance
(SEC_ACCEPT). Inclusion of the SECURITY directive for a particular LU creates
a Security Access list for that LU. The section on security at the end of this
chapter will discuss LU security access in greater detail.

4.3.3 TP Resource Access Security Information (SEC_ACCESS)

The SEC_ACCESS configuration directive defines resource access security
information for the local LU. Resource Access security further restricts access
to the local TP, even if SECURITY checks are enabled. Inclusion of the
SEC_ACCESS directive for a particular TP creates a resource access list for that
LU. The section on security at the end of this chapter discusses TP resource
access in greater detail.

Code Example 4-12

,” PPT: define PRG1

 DFHPPT TYPE=ENTRY,
 PROGRAM=PRG1,
 PGMLANG=ASSEMBLER,

,” PCT: define PRG1 transactions

 DFHPCT TYPE=ENTRY,
 TRANSID=TR100,
 PROGRAM=PRG1,
 DTB=(NO),

 DFHPCT TYPE=ENTRY,
 TRANSID=TR101,
 PROGRAM=PRG1,
 DTB=(NO),

Configuration 4-11

4

4.4 Security
The SunLink LU6.2 security paradigm is a multi-tiered access model that
provides LU6.2-based and Unix-based security. Sun has integrated Unix
security into the model to more closely follow the restriction put in place by
the Unix system administrator.

4.4.1 Session-Level Security

Prior to any transaction program security access, session(s) must first be
established between the communicating logical units. Session verification
between two LUs occurs during BIND processing by the use of LU-LU
passwords. Specifically, if session-level security will be used for BIND
verification, then both sides must have the operation enabled. LU-LU
verification is done with the specification of the LU_LU_PASS parameter on
the PTNR_LU configuration directive, as shown in Code Example 4-13.

Code Example 4-13

Verification of the BIND and response to the BIND is internal to SunLink LU6.2
and is not visible to the LU6.2 programmer. Consult the LU6.2 architectural
specifications for details on session-level security.

4.4.2 Conversation-Level Security

Conversation level security occurs after a session is established between two
LUs. Whether the two LUs have used LU-LU verification while a session was
established is not important for conversation-level security. Conversation-level
security occurs when an allocation request is received by the partner LU. An
allocation request is generated when a program issues an (MC_)ALLOCATE
verb or a CPI-C Allocate (CMALLC) call. The request is transmitted as an
SNA Request Unit (RU) containing a Function Management Header Type 5
(FMH-5), also known as an attach. Allocation requests can also occur as a

PTNR_LU Name=SECURELU,
...
LU_LU_PASS=X'23AF9006DD71',
...;

4-12 SunLink Peer-to-Peer LU6.2 9.1 Programmer’s Manual—August 1997

4

result of an explicit or implicit Change Number of Session (CNOS) request. The
attach structure can contain the access security information as described in
Table 4-1.

ALREADY_VERIFIED signifies that the identity of the user was previously
verified by the local LU, the assumption being that the partner LU relies on the
local LU. No password is sent in this case. The operation is specified by the
PTNR_LU configuration directive as described in Code Example 4-14.

Code Example 4-14

This operation is supported through BIND processing and its associated
response. The use of the other security access parameters, USER_ID,
PASSWORD, and PROFILE , with respect to conversation-level security and
Unix-level security is shown in Figure 4-1.

Table 4-3 Access Security Information

Parameter Description

USER_ID User identification name

PASSWORD User password

PROFILE User profile characteristics

ALREADY_VERIFIED Flag for password identification conducted by local LU

PTNR_LU Name=ALRVERLU,
...

 SEC_ACCEPT=ALREADY_VERIFIED,
...;

Configuration 4-13

4

Figure 4-1 SunLink LU6.2 Security Processing

CMALLC/ALLOCATE/MC_ALLOCATE
FMH-5 (attach)

SECURITY
defined for
this LU?

Perform security access verification
against USER_ID/PASSWORD/PROFILE

using SECURITY list
and PTNR_LU SEC_ACCEPT

as match criteria

Security
access
passed?

Perform resource access verification
against USER_ID/PROFILE
using SEC_ACCESS list

Security
access
passed?

Verify against
PTNR_LU

SEC_ACCEPT

PTNR_LU
SEC_ACCEPT

valid?

Perform Unix
security verification

Security
access
passed?

Reject
attach

Reject
attach

Reject
attach

Accept
attach

Yes

Yes

Yes

Yes

Yes

No

No
No

No

No

Reject
Attach

4-14 SunLink Peer-to-Peer LU6.2 9.1 Programmer’s Manual—August 1997

4

If the attach contains security information, and the LU has a security
restriction, then parameters in the attach are matched against those in the LU
security list. There is one security list per LU and entries are created by the
SECURITY configuration directive. An example of such a directive is described
in Code Example 4-15.

Code Example 4-15

In addition to zero or more PROFILEs, multiple directives may be defined per
LU. PASSWORDs on subsequent directives for the same user and LU are
optional and if additional PASSWORDs are supplied, its definition will replace
the last one defined.

The LU security list is searched using the SEC_ACCEPTparameter of the
PTNR_LU configuration directive. If NONE is specified, then the request will be
rejected if any security parameters are present. If CONVERSATION is specified,
then any request containing security, but not an already-verified indicator will
be searched for a match. A match will be successful, if an entry in the security
list matches all the security fields in the attach, otherwise the request will be
rejected. If the match is successful, additional verification may be done; this is
described later. Finally, if ALREADY_VERIFIED is configured, then the attach
will be checked for not only conversation, but also for already-verified state, in
place of a password.

If no security parameters are defined for this LU, none are located in the attach,
and the partner LU expects no security. The attach is then passed to resource
verification; otherwise, it is rejected.

Resource access verification is conducted after security access; it is a restriction
on access to the transaction program. Resource access verification is conducted
against the TP resource access list. There is one resource access list per TP and
entries are created by the SEC_ACCESS configuration directive. An example of
such a directive is given in Code Example 4-16.

SECURITY LOC_LU_Name=SECURELU,
 USER_ID=USER1,
 PASSWORD=PASSXXX,
 PROFILE=ACCTRCV;...

Configuration 4-15

4

Code Example 4-16

In addition to zero or more PROFILEs, multiple directives may be defined per
TP. PASSWORDs are not specified for resource access. Resource access checking
is conducted if any of the following arguments are specified for the
SEC_REQUIRED parameter in the TP configuration directive: USER_ID,
PROFILE, or USER_ID_PROFILE. If a value of CONVERSATION is specified for
this field, then security access is verified, but not the resource access. If a value
of NONE is specified for this field, then no verification is required. If the
security parameters are received, however, CONVERSATION checks need to be
conducted. If any of these checks fail, then the request is rejected; otherwise an
additional set of tests is conducted.

4.4.3 Unix-Level Security

The final set of security checks is a Sun enhancement to the LU6.2 architecture
for security management on Unix systems, known as Unix-level security. Unix-
level security has two modes. The first, the default mode, occurs when
UNIX_SEC is set to a value of NO. Specifically, this controls how processes are
invoked from remote systems onto the local system. SunLink LU6.2 does not
allow processes to be invoked as root unless it is explicitly instructed to do so
as described later.

The effective user id for SunLink LU6.2 under Unix is sunlu62 . This value
must be added to /etc/passwd at installation time. Unlike other system files,
which are automatically modified when the Sun product is installed,
/etc/passwd (or any associated NIS password database) is not modified for
security reasons. If you try to invoke a TP through an attach and
/etc/passwd has not been updated, the attach will be rejected and the session
is brought down with a security violation sense code.

The default user id for TP process invocation can be changed from sunlu62 to
a user-specified value by modifying the CP configuration directive. This is also
true of the group id, which normally gets its default value from /etc/passwd .
The CP directive would be modified as shown in Code Example 4-17.

SEC_ACCESS LOC_LU_Name=SECURELU,
TP_NAME=SECURETP,
USER_ID=USER1,
PROFILE=ACCTPAY,
PROFILE=ACCTRCV;

4-16 SunLink Peer-to-Peer LU6.2 9.1 Programmer’s Manual—August 1997

4

Code Example 4-17

If sunadm and sungrp are properly defined in /etc/passwd and
/etc/group , then programs invoked on this machine will have the
corresponding user and group id. If there are any misconfigurations, the attach
will be rejected and the session will be terminated. Error messages will also
appear on the operator console to indicate that such an action is occurring.

The second mode of Unix security involves using the user id, password, and
profile from the attach to map onto Unix system parameters. Such processing
occurs when the UNIX_SEC parameter of the CP configuration directive is set
to YES. The attach parameters are matched against /etc/passwd and
/etc/group as the final check. If there is verification, then the TP process is
invoked with:

• Effective user id = Attach (USER_ID)

• Effective group id = Attach (PROFILE)

An example CP directive that supports such an operation is shown in
Code Example 4-18.

The USER specified is the default when there is no security present on the
attach. If there are any violations, the attach will be rejected and the session
will be brought down. Error messages will also appear on the operator console

CP NAME=SUNCP,
 NQ_CP_NAME=IBMLAN.SUNCP,
 USER=sunadm,
 GROUP=sungrp,
 UNIX_SEC=NO;

Code Example 4-18

CP NAME=SUNCP,
 NQ_CP_NAME=IBMLAN.SUNCP,
 USER=sundeflt,
 UNIX_SEC=YES;

Configuration 4-17

4

to indicate that such an action is occurring. Note that in this mode of security
processing, a PASSWORD value is not configured in the Security Access List
since the password on the attach is verified against /etc/passwd.

4-18 SunLink Peer-to-Peer LU6.2 9.1 Programmer’s Manual—August 1997

4

5-1

Using the LU6.2 API 5

This chapter describes the SunLink P2P LU6.2 9.1 API. It shows how to
organize your program by providing examples and illustrates how the API is
used to perform standard LU6.2 operations. It also shows how the advanced
features of the SunLink P2P LU6.2 9.1 API can be used to implement more
powerful programs.

5.1 Call Conventions
User programs make simple function calls to issue SunLink P2P LU6.2 9.1 API
verbs. To use the API you must include the include file, sunlu62.h , in your
program files and link with the SunLink P2P LU6.2 9.1 library, liblu621.a .
sunlu62.h is listed in Appendix C, “LU 6.2 Include Files.”

The SunLink P2P LU6.2 9.1 API provides a consistent function call interface.
The following example of lu62_prep_to_receive is typical.

5-2 SunLink Peer-to-Peer LU6.2 9.1 Programmer’s Manual—August 1997

5

Code Example 5-1

#include “sunlu62.h”

extract from sunlu62.h...

 typedef enum {
 PR_SYNC_LEVEL = 0,
 PR_FLUSH,
 PR_CONFIRM
 } lu62_prep_to_receive_type_e;

 typedef struct
 bit32 conv_id; ,“ s ,“
 lu62_prep_to_receive_type_e type; ,“ s ,“
 bit32 return_code; ,“ r ,“
 lu62_prep_to_receive_t;

end of extract

...

lu62_prep_to_receive_t *rqp;
bit32 conv_id;
int rc;

,” Issue PREPARE_TO_RECEIVE ,“
rqp = (lu62_prep_to_receive_t ,“
 calloc(1,sizeof(lu62_prep_to_receive_t));
rqp->conv_id = conv_id;
rqp->type = PR_FLUSH;
rc = lu62_prep_to_receive(rqp);
if (rc ,“ LU62_ERROR)
 errmsg(“lu62_prep_to_receive error = %x\n”, rqp-
>return_code);
 exit(1);

Using the LU6.2 API 5-3

5

Note the following regarding Code Example 5-1:

• All verbs (except certain connection verbs) have an associated request
structure such as lu62_prep_to_receive_t . Some request structures are
more complicated than others. Request structure fields are either supplied
inputs (/* s */), returned values (/* r */), or both (/* sr */).

• Mapped and basic verbs share the same request structures. Fields that are
only applicable to one conversation type are ignored by the other.

• The request structure is initialized to zero before it is used (in this case by
calloc). First initialize the request structures to zero and then set them
with the required parameter values. This ensures that pointer values are
initialized to NULL and enumerated type values are defaulted. Enumerated
types are defined so that the default value is zero.

• Enumerated types such as lu62_prep_to_receive_type_e are used
extensively to describe field values.

• All verbs return an integer value, LU62_OK or LU62_ERROR. If
LU62_ERROR is returned, the external variable, lu62_errno contains the
reason for the error.

• All verb request structures include a return_code field that is set to the
result of the operation. When the return value is LU62_ERROR, the
return_code contains the same value as lu62_errno. return_code
values are defined in sunlu62.h .

• conv_id is the handle used to identify the conversation. conv_id is
assigned by the API when a conversation is allocated by
lu62_(mc_)allocate or accepted by lu62_accept .

5.2 Handling Connections to the SunLink PU2.1 SNA Server
Your program operates as a separate process from the SunLink SNA PU2.1 9.1
server. Before you can issue SunLink P2P LU6.2 9.1 verbs you must establish a
connection to a SunLink SNA PU2.1 9.1 server using the lu62_open
connection verb. When your program has completed communications with its
peers, it should disconnect from the server using the lu62_close verb. Be
sure to use lu62_open and lu62_close to “bracket” your program as shown
in Code Example 5-2.

5-4 SunLink Peer-to-Peer LU6.2 9.1 Programmer’s Manual—August 1997

5

5.2.1 Connecting to the SunLink PU2.1 SNA Server

To open a connection, the user program sets up an open request data structure
specifying the name of the local LU to which it wants to be associated. The
open request can also be used to specify the SunLink PU2.1 SNA server host,
that is, the workstation in the local area network on which the server is
running. This open request is passed to the API in the lu62_open call as
illustrated in the Code Example 5-3.

Code Example 5-2

main ,“
{
 lu62_open(&open_req);

 API calls
 ...

 lu62_close(&close_req);

 ...
}

Using the LU6.2 API 5-5

5

5.2.2 Disconnecting from the SunLink PU2.1 SNA Server

A user program relinquishes a connection to the SunLink SNA PU2.1 9.1 server
by calling lu62_close . Active conversations should first be deallocated,
otherwise, the server will deallocate them on behalf of the program. The
lu62_close call is issued as follows, where port_id is the value returned
from the corresponding lu62_open request.

Code Example 5-3

lu62_open_req_t open_req;

,” initialize open request to default values ,“
bzero(&open_req, sizeof(struct lu62_open_req));

strncpy(open_req.host, LU62_SERVER, MAXHOSTNAMELEN);
strncpy(open_req.lu_name, LOCAL_LU, LU62_LU_NAME_LEN);

if (lu62_open(&open_req) ,“ LU62_ERROR) {
 printf(“lu62_open error, 0x%x\n”, lu62_errno);
 exit(1);
port_id = open_req.port_id; ,“ save returned port_id ,“

Code Example 5-4

lu62_close_req_t close_req;

close_req.port_id = port_id;

if (lu62_close(&close_req) ,“ LU62_ERROR) {
 printf(“lu62_close error, 0x%x\n”, lu62_errno);
 exit(1);
}

5-6 SunLink Peer-to-Peer LU6.2 9.1 Programmer’s Manual—August 1997

5

5.3 Allocating Conversations
LU6.2 programs initiate conversation with remote TPs using the
lu62_(mc_)allocate verb. The verb specifies the port_id of the previously
opened LU connection. If successful, it returns a conversation identifier,
conv_id , which is used as the handle for all subsequent conversation verbs.
Note that multiple conversations may be supported on the same LU
connection.

The allocate request structure, lu62_allocate_t , specifies the location of the
remote TP as follows:

• lu_name , specifies the locally known name of the partner LU at which the
remote TP resides. This parameter corresponds to the PTNR_LU NAME
parameter in the configuration.

• mode_name, identifies the characteristics of the required session. This value
corresponds to the MODE NAME parameter in the configuration.

• remote_tp_name . This value corresponds to the TP TP_NAME parameter
(or its equivalent) in the remote LU6.2 configuration.

As noted, these input parameters correspond to values in the configuration file.
See Chapter 4, “Configuration,” for more information.

In the Code Example 5-5, the program initiates a CICS reservation update
transaction, RESUPD. The conversation is mapped, sync_level is confirmed,
and security access parameters are provided. Default values (of 0) are used for
all other parameters.

Code Example 5-5

struct lu62_allocate_t allocate_req;

,” initialize allocate request with default values ,“
bzero(&allocate_req, sizeof(struct lu62_allocate_req));

,” specify the location of the remote TP ,“
strncpy(allocate_req.remote_tp_name, “RESUPD”,
LU62_TP_NAME_LEN);
strncpy(allocate_req.lu_name, “CICS2174”, LU62_LU_NAME_LEN);
strncpy(allocate_req.mode_name, “CRESUPD”, LU62_MODE_NAME_LEN);

Using the LU6.2 API 5-7

5

5.4 Accepting Conversations
In the LU6.2 model, the logical unit initiates a local transaction program when
an incoming allocation request is received. The transaction program can
subsequently allocate further conversations, but it cannot receive any more
allocation requests. SunLink P2P LU6.2 9.1 programs, however, can accept
multiple conversations.

When an incoming conversation arrives, there are three ways to dispatch the
transaction to a SunLink P2P LU6.2 9.1 program:

• Your program can be started (fork and exec) by the SunLink SNA PU2.1 9.1
server using the TP TP_PATH parameter. The server sets the UID and GID
of the client process to that of the configured CP USER (default sunlu62).
This approach is best for programs that handle a single transaction, run to
completion, and then exit.

• Your program can be started ahead of time while you wait for an incoming
conversation. Typically this approach is taken when a program accepts and
processes multiple conversations concurrently.

,” security information is supplied by the program ,“
allocate_req.security_type = SECURITY_PROGRAM;
strncpy(allocate_req.user_id, “USER”, LU62_MAX_USER_ID_LEN);
strncpy(allocate_req.passwd, “PASSWORD”, LU62_MAX_PASSWD_LEN);

,” conversation sync level ,“
allocate_req.sync_level = SYNC_LEVEL_CONFIRM;

if (lu62_mc_allocate(&allocate_req) ,“ LU62_ERROR) {
 printf(“lu62_allocate error, 0x%x\n”, lu62_errno);
 exit(1);

}
,” transaction continues ,“

Code Example 5-5 (Continued)

5-8 SunLink Peer-to-Peer LU6.2 9.1 Programmer’s Manual—August 1997

5

Note – Allow the server to invoke the program when the first conversation is
received. Your program should not fork a child to process the transaction (or
wait for the next conversation). The SunLink P2P LU6.2 9.1 API maintains
open file descriptors and context structures for each connection, and maintains
context structures for each accepted conversation. If you want to build a
Unix server of this nature, use the lu62_listen verb.

• You can build a custom transaction dispatcher using the lu62_listen verb
(see Section 5.5, “Transaction Dispatch Using lu62_listen.”)

• The behavior of your program is exactly the same in each case; it should
perform its initialization, register a TP name with its local LU using
lu62_register_tp , and then issue lu62_accept . The registered TP
name is the same name used by the remote TP when it issues its
ALLOCATE verb. It must be configured in the SunLink SNA PU2.1 9.1
server configuration. lu62_accept returns the conversation’s identifier,
conv_id , which is used as the handle for all subsequent conversation verbs.

In the Code Example 5-6 that follows, the program is set up to accept an
incoming conversation for TP “FRED.”

Code Example 5-6

lu62_accept_t accept_req;
lu62_register_tp_t register_req;

,” Register with LU as TP FRED ,“
register_req.port_id = open_req.port_id;
strncpy(register_req.tp_name, “FRED”, LU62_TP_NAME_LEN);
if (lu62_register_tp(®ister_req) ,“ LU62_ERROR) {
 printf(“lu62_register_tp error, 0x%x\n”, lu62_errno);
 exit(1);

}
,” Wait for incoming conversation ,“
accept_req.port_id = open_req.port_id;
if (lu62_accept(&accept_req) ,“ LU62_ERROR) {
 printf(“lu62_accept error, 0x%x\n”, lu62_errno);
 exit(1);

Using the LU6.2 API 5-9

5

5.4.1 Accepting Multiple Conversations

The program can accept multiple conversations for its TPs. Assuming the same
set-up as above, this program extract accepts incoming conversations and
processes the transaction. When the transaction is complete, the program waits
for another conversation. In this example, the transactions are processed
sequentially. In the next section, non-blocking operations are used to enable a
program to process multiple transactions concurrently.

5.4.2 Accepting Conversations for Multiple TPs

Programs may register with the SunLink SNA PU2.1 9.1 server as more than
one TP. In the example below, the program is set up to accept incoming
conversations to two TPs. When a conversation is accepted,
lu62_get_tp_properties is issued to determine which TP the conversation
is for.

See Code Example 5-8.

}
process_transaction(accept_req.conv_id);

Code Example 5-7

,” Listen for incoming conversation ,“
accept_req.port_id = open_req.port_id;
while (lu62_accept(&accept_req) ,“ LU62_OK) {
 ,“ conversation accepted ,“
 process_transaction(accept_req.conv_id);
}

Code Example 5-6

lu62_accept_t accept_req;

5-10 SunLink Peer-to-Peer LU6.2 9.1 Programmer’s Manual—August 1997

5

Code Example 5-8

lu62_accept_t accept_req;
lu62_register_tp_t register_req;
lu62_get_tp_properties_t properties;

,” Register with LU as TP FRED ,“
register_req.port_id = open_req.port_id;
strncpy(register_req.tp_name, “FRED”, LU62_TP_NAME_LEN);
if (lu62_register_tp(®ister_req) ,“ LU62_ERROR) {
 printf(“lu62_register_tp error, %0x%x\n”, lu62_errno);
 exit(1);

}
,” Register with LU as TP BARNEY ,“
register_req.port_id = open_req.port_id;
strncpy(register_req.tp_name, “BARNEY”, LU62_TP_NAME_LEN);
if (lu62_register_tp(®ister_req) ,“ LU62_ERROR) {
 printf(“lu62_register_tp error, %0x%x\n”, lu62_errno);
 exit(1);

}
,” Listen for incoming conversation ,“
accept_req.port_id = open_req.port_id;
while (lu62_accept(&accept_req) ,“ LU62_OK) {
 ,“ conversation accepted - which TP ? ,“
 properties.conv_id = accept_req.conv_id;
 (void)lu62_get_tp_properties(&properties);

 ,“ dispatch ,“
 if (strcasecmp(properties.tp_name, “FRED”) ,“ 0) {
 process_transaction(fred, accept_req.conv_id,
&properties);

 }
 else {
 process_transaction(barney, accept_req.conv_id,
&properties);
 }
 }

Using the LU6.2 API 5-11

5

5.5 Transaction Dispatch Using lu62_listen

lu62_listen is used much like lu62_accept , except that the SunLink SNA
PU2.1 9.1 server does not allocate the conversation to the listening program.
Instead, the listener is informed that a conversation (FMH5 Attach) has arrived
and can then dispatch the transaction as required. It could fork and execute a
child, or enqueue a message to the program transaction queue. The listen
response contains all the conversation attributes and TP properties, including
the own_tp_instance value that the SunLink SNA PU2.1 9.1 server assigns to the
TP instance. The eventual acceptor issues lu62_register_tp and
lu62_accept as usual, but passes the own_tp_instance value to lu62_accept
to receive that TP instance.

If a child process is forked and executed to accept the conversation, the forked
child should close the file descriptor for its connection to the local LU before
executing as shown in Code Example 5-9.

Code Example 5-9

In the Code Example 5-10, a listener program registers a wild-card TP name to
dispatch all transactions in a program suite. A wild card TP name is configured
in the SunLink SNA PU2.1 9.1 server configuration as described in the next
section.

if (fork() ,“ 0) {
 ,“ child continues ,“
 close(listen_req.port_desc);
 ...
 exec();
}

5-12 SunLink Peer-to-Peer LU6.2 9.1 Programmer’s Manual—August 1997

5

Code Example 5-10

TP TP_Name=TR10?
LOC_LU_NAME=LUA
CONV_TYPE=MAPPED
SYNC_LVL=CONFIRM
ATTACH_TIMEOUT=5;

lu62_listen_t listen_req;
lu62_register_tp_t register_req;

,” Register with LU for all TPs “TR10?” ,“
register_req.port_id = open_req.port_id;
strncpy(register_req.tp_name, “TR10?”, LU62_TP_NAME_LEN);
if (lu62_register_tp(®ister_req) ,“ LU62_ERROR) {
 printf(“lu62_register_tp error, %0x%x\n”, lu62_errno);
 exit(1);

}
,” Listen and dispatch incoming conversations ,“
listen_req.port_id = open_req.port_id;
while (lu62_listen(&accept_req) != LU62_ERROR) {
 if (strcmp(listen_req.tp_name, “TR100”) ,“ 0) {
 dispatch_tr100(listen_req.own_tp_instance);
 }
 else if (strcmp(listen_req.tp_name, “TR101”) ,“ 0) {
 dispatch_tr101(listen_req.own_tp_instance);
 }
 else if (strcmp(listen_req.tp_name, “TR102”) ,“ 0) {
 dispatch_tr102(listen_req.own_tp_instance);

 else {
 printf(“attach arrived for unknown TP”);
 ,“ let the server time it out ,“
 }
}

printf(“lu62_listen error, %0x%x\n”, lu62_errno);

Using the LU6.2 API 5-13

5

5.6 Handling Multiple Concurrent Conversations
A SunLink P2P LU6.2 9.1 program can participate in multiple concurrent
conversations. To do this effectively, the program cannot afford to block while
it waits for an operation on one conversation to complete—it must be set up to
operate in non-blocking mode. In non-blocking mode, verbs that require the
API to issue a request to the SunLink SNA PU2.1 9.1 server return to your
program with a return_code of LU62_OPERATION_INCOMPLETE. You cannot
issue any further verbs on that conversation until the operation is completed,
that is, the API has received an eventual response from the server. You may,
however, issue verbs on other conversations. The lu62_wait_server call is
issued when you need to synchronize completion of the operation.

Each conversation may be independently set into PM_BLOCKINGor
PM_NON_BLOCKING modes. The initial mode is established by
lu62_(mc_)allocate and lu62_accept verbs. The
lu62_set_processing_mode verb can be issued subsequently to change the
mode.

Code Example 5-11 accepts incoming conversations and processes them
concurrently. Note that the processing mode is set by lu62_accept .

5-14 SunLink Peer-to-Peer LU6.2 9.1 Programmer’s Manual—August 1997

5

Code Example 5-11

lu62_accept_t accept_req;
lu62_register_tp_t register_req;
bit32 conv_id, new_conv_id;

,” Register with LU as TP FRED ,“
register_req.port_id = open_req.port_id;
strncpy(register_req.tp_name, “FRED”, LU62_TP_NAME_LEN);
if (lu62_register_tp(®ister_req) ,“ LU62_ERROR) {
 printf(“lu62_register_tp error, %0x%x\n”, lu62_errno);
 exit(1);

,” Listen for incoming conversation ,“
accept_req.port_id = open_req.port_id;
accept_req.processing_mode = PM_NON_BLOCKING;
if (lu62_accept(&accept_req) ,“ LU62_ERROR)
 printf("lu62_accept error, 0x%x, lu62_errno);
 exit(1);

}
/*
 * accept_req.return_code must be LU62_OPERATION_INCOMPLETE
 * and the conv_id for pending conversation is assigned.
 */
new_conv_id = accept_req.conv_id;

while (1) {
 /* wait indefinitely for operation to complete */
 if (lu62_wait_server(NULL, &conv_id) == LU62_ERROR) {
 printf("lu62_wait_server error, %0x%x\n", lu62_errno);
 exit(1);

 }
 /* received new conversation ? */
 if (conv_id == new_conv_id) {
 initiate_transaction(conv_id);

 /* and listen for the next one */
 if (lu62_accept(&accept_req) == LU62_ERROR) {
 printf("lu62_accept error, %0x%x\n", lu62_errno);
 exit(1);
 }

Using the LU6.2 API 5-15

5

5.7 Mapped Conversations
Use mapped conversations whenever possible since they are easier to program.
When a conversation is mapped, your program sends and receives one record
at a time, where each record contains data only. Sending and receiving data,
therefore, is relatively straightforward. In contrast, basic conversations require
you to format your data into logical records, as described in the rest of this
section.

Mapped conversations are so called because data mapping is one of the
possible options in the [TPRM]. Data mapping allows communicating TPs to
work with data formats that they understand. Each LU converts (or maps)
received data into the local format using mapping routines and are identified
by a map_name, specified by the local TP. The use of map_names, however, is not
currently supported by SunLink P2P LU6.2 9.1.

5.7.1 Sending Data Records

Mapped conversation programs send data records to the remote TP using
lu62_mc_send_data . The LU6.2 copies the data record into a Request Unit
(RU) for transmission. The RU is not transmitted until either:

• The RU is completely full.

• The sending program issues an lu62_mc_flush verb.

• The sending program issues a verb that requires a response
(lu62_mc_confirm , lu62_mc_prep_to_receive,
lu62_mc_receive_and_wait , or lu62_mc_deallocate).

In theCode Example 5-12, the lu62_mc_flush verb is used to force a record to
be sent to the remote TP.

 new_conv_id = accept_req.conv_id;
 }
 else{
 continue_transaction(conv_id);
 }
}

Code Example 5-11 (Continued)

lu62_accept_t accept_req;

5-16 SunLink Peer-to-Peer LU6.2 9.1 Programmer’s Manual—August 1997

5

5.7.2 Receiving Data

On the receiving side, your program issues the lu62_mc_receive_and_wait
verb or the lu62_mc_receive_immediate verb to receive information on the
mapped conversation. This information may be data or status information. In
this case the conversation sync_level characteristic is SYNC_LEVEL_NONE, so
no confirmation request can be received.

Code Example 5-13 continues to illustrate the remote TP that is receiving one
record at a time using lu62_mc_receive_and_wait. This verb will wait
indefinitely until the local LU receives information for the program.

Code Example 5-12

lu62_send_data_t send_data_req;
lu62_flush_t flush_req;
char data_rec[MAX_RECORD_LENGTH];
int len;

data_rec is set with data record to send, len is record length

send_data.conv_id = conv_id;
send_data_req.data = data_rec;
send_data_req.length = len;
if (lu62_mc_send_data(&send_data_req) == LU62_ERROR) {
 printf("lu62_mc_send_data error, %0x%x\n", lu62_errno);
 exit(1);

}
flush.conv_id = conv_id;
if (lu62_mc_flush(&flush_req) == LU62_ERROR) {
 printf("lu62_mc_flush error, %0x%x\n", lu62_errno);
 exit(1);
}

Using the LU6.2 API 5-17

5

5.8 Basic Conversations
In contrast to mapped conversations, basic conversations use a simple logical
record format for transferring data. Logical records contain a 2- byte “LL”
prefix that contains the length of the data record (including the LL prefix).
Figure 5-1 depicts the logical record format.

Code Example 5-13

lu62_receive_t receive_req;
bit8 buf[MAX_RECORD_LENGTH];
int receive_state = TRUE;

bzero(&receive_req, sizeof(lu62_receive_t));
receive_req.conv_id = conv_id;
receive_req.data = buf;
while (receive_state) {
 receive_req.length = MAX_RECORD_LENGTH;
 if (lu62_mc_receive_and_wait(&receive_req) == LU62_ERROR) {
 printf("lu62_mc_receive_and_wait error, %0x%x\n",
lu62_errno);
 exit(1);
 }
 switch (receive_req.what_received) {
 case WR_DATA_COMPLETE:
 process_record(buf, len);
 break;
 case WR_DATA_INCOMPLETE:
 /* issue another receive to determine why */
 break;
 case WR_SEND:
 receive_state = FALSE;
 break;
 }
}

5-18 SunLink Peer-to-Peer LU6.2 9.1 Programmer’s Manual—August 1997

5

Figure 5-1 Logical Record Format

5.8.1 Sending Logical Records

Basic conversation programs send buffers to the LU6.2 using the
lu62_send_data verb. Send buffers are not necessarily split into whole
logical records; the sending program determines it. In Code Example 5-14,
however, data is sent one logical record at a time, and confirmation requested
for each record is sent. Note that the conversation sync_level must be
SYNC_LEVEL_CONFIRM.

0 2 32767

LL Data (variable length)

Using the LU6.2 API 5-19

5

5.8.2 Receiving Data

On the receiving side, the program issues the lu62_receive_and_wait verb
or the lu62_receive_immediate verb to receive information on the basic
conversation. This information may be data or status information. You may
choose to receive one record at a time (fill type = FILL_LL), or you may choose
to receive complete buffers (fill type = FILL_BUFFER). In the latter case, your
program is responsible for extracting logical records from the buffer.

The example below illustrates the remote TP that receives one record at a time,
and responds to confirmation requests with lu62_confirmed.

Code Example 5-14

lu62_confirm_t confirm_req;
lu62_send_data_t send_data_req;
struct {
 bit16 ll_hdr;
 data[MAX_DATA_LEN];
}
ll_rec;
int len;

build data into ll_rec.data maintaining len variable

/* Send Data */
len += 2; /* include ll_hdr */
ll_rec.ll_hdr = (bit16)len;
send_data_req.conv_id = conv_id;
send_data_req.data = &ll_rec;
send_data.length = len;
if (lu62_send_data(&send_data_req) == LU62_ERROR) {
 printf("lu62_send_data error, %0x%x\n", lu62_errno);
 exit(1);
}
confirm_req.conv_id = conv_id;
if (lu62_confirm(&confirm_req) == LU62_ERROR) {
 printf("lu62_confirm error, %0x%x\n", lu62_errno);
 exit(1);
}

5-20 SunLink Peer-to-Peer LU6.2 9.1 Programmer’s Manual—August 1997

5

Code Example 5-15

lu62_receive_t receive_req;
lu62_confirmed_t confirmed_req;
bit8 buf[MAX_RECORD_LENGTH];
int receive_state = TRUE;
int rc = LU62_OK;

confirmed_req.conv_id = conv_id;
receive_req.conv_id = conv_id;
receive_req.data = buf;
receive_req.length = MAX_RECORD_LENGTH;
receive_req.fill = FILL_LL;
while ((rc == LU62_OK) && receive_state) {
 rc = lu62_receive_and_wait(&receive_req);
 if (rc == LU62_ERROR) {
 printf("lu62_receive_and_wait error, %0x%x\n",
lu62_errno);
 break;
 }
 switch (receive_req.what_received) {
 case WR_DATA_COMPLETE:
 rc = process_record(buf, len);
 break;
 case WR_LL_TRUNCATED:
 case WR_DATA_INCOMPLETE:
 /* issue another receive to determine why */
 break;
 case WR_SEND:
 receive_state = FALSE;
 break;
 case WR_CONFIRM:
 rc = lu62_confirmed(&confirmed_req);
 break;
 case WR_CONFIRM_SEND:
 case CM_CONFIRM_DEALLOCATE:
 receive_state = FALSE;
 rc = lu62_confirmed(&confirmed_req);
 break;
 }
}

Using the LU6.2 API 5-21

5

5.9 Select Calls to Multiplex LU6.2 Events with Events from Other Devices
User programs are frequently required to handle multiple, inter-mixed events,
for example, terminal input and LU6.2 events. The examples below illustrate
the Unix select call to multiplex between standard input and LU6.2
connections.

5.9.1 Multiple Non-Blocking Conversations

In the Code Example 5-16, two conversations are multiplexed over a single
LU6.2 connection.

Code Example 5-16

int tin;
fd_set readfds;

/* standard input file descriptor */
tin = fileno(stdin);

lu62_open(&open_req);

/* Issue Allocate requests in LU62_NON_PROCESSING_MODE */
allocate_req1.processing_mode = LU62_NON_BLOCKING;
lu62_allocate(&allocate_req1);
allocate_req2.processing_mode = LU62_NON_BLOCKING;
lu62_allocate(&allocate_req2);

/* Main Select Loop */
while (1) {
 /* set up fds for select call */
 FD_ZERO(&readfds);
 lu62_get_readfds(&readfds); /* LU6.2 connections*/
 FD_SET(tin, &readfds); /* standard input */

 /* wait for read event to be posted */
 if ((n = select(FD_SETSIZE, &readfds, NULL, NULL, NULL)) < 0) {
 /* select call can be interrupted - ignore interrupts */
 if (errno != EINTR) {
 perror("select");
 exit(1);

5-22 SunLink Peer-to-Peer LU6.2 9.1 Programmer’s Manual—August 1997

5

When an LU6.2 connection event occurs, it signals the arrival of a verb
response on one of the two conversations (or some other socket read event,
such as a broken pipe). lu62_wait_server is called to receive off the socket
and set-up any verb return values for the caller. The returned conv_id
indicates the conversation on which the operation is completed.

5.9.2 Mixing Non-Blocking and Blocking Conversations

If you are using the select call to receive notification of LU6.2 events, special
consideration is required if you want to mix non-blocking and blocking
conversations on the same LU6.2 connection.

The calling sequence in Code Example 5-17 is used to illustrate the potential
problem. In this example, a non-blocking lu62_receive_and_wait is issued
followed by a blocking lu62_send_data. A select call is issued after the
lu62_send_data completes to wait for the LU6.2 read event, corresponding
to the arrival of the lu62_receive_and_wait response. When this event
occurs, lu62_send_data is issued to receive the response.

 }
}
 if (FD_ISSET(tin, &read_fds) {
 read_and_process_terminal_input();
 }

 if (FD_ISSET(open_req.port_desc, &read_fds) {
 rc = lu62_wait_server(NULL, &conv_id);
 if (rc == LU62_ERROR)
 printf("lu62_wait_server error, %0x%x\n", lu62_errno);
 exit(1);
 }
 continue_conversation(conv_id);
 }
}

Code Example 5-16 (Continued)

Using the LU6.2 API 5-23

5

If both pieces of conversations are multiplexed over the same LU6.2 connection
while the LU6.2 API waits for the lu62_send_data response, the
lu62_receive_and_wait verb response may arrive. In this case the API
processes the lu62_receive_and_wait response and enqueues it so it is
available when the program next issues lu62_wait_server . Then the
lu62_send_data response is received and the lu62_send_data verb
returns. When the select call is made, no read event is pending since the
lu62_receive_and_wait response has already been received, and
lu62_wait_server is not called.

If the conversations are multiplexed over different LU6.2 connections, the
lu62_receive_and_wait response remains in the pipe and its presence is
signaled by a select read event. The simplest solution, therefore, is not to mix
non-blocking and blocking conversations on the same LU6.2 connection. Open
a separate LU6.2 connection for each mode.

5.9.3 Polling for a Verb Response

Another approach to select handling is to poll the LU6.2 connections for
pending verb responses after handling other read events. See
Code Example 5-18 for details.

Code Example 5-17

,” issue non-blocking receive on conversation 1 ,"
lu62_receive_and_wait(&receive_req);

/* issue blocking send on conversation 2 */
lu62_send_data(&send_req);

lu62_get_readfds(&readfds); /* LU6.2 connections*/

/* wait for read event to be posted */
n = select(FD_SETSIZE, &readfds, NULL, NULL, NULL);
if (FD_ISSET(open_req.port_desc, &read_fds) {
 rc = lu62_wait_server(NULL, &conv_id);
}

5-24 SunLink Peer-to-Peer LU6.2 9.1 Programmer’s Manual—August 1997

5

Code Example 5-18

,” return immediately from lu62_wait_server calls ,"
struct timeval timeout = , 0

while (1) {
 /* set up fds for select call */
 lu62_get_readfds(&readfds); /* LU6.2 connections*/

 FD_SET(tin, &readfds); /* standard input */

 /* wait for read event to be posted */
 if ((n = select(FD_SETSIZE, &readfds, NULL, NULL, NULL)) < 0) {
 /* select call can be interrupted - ignore interrupts */
 if (errno != EINTR) {
 perror("select");
 exit(1);
 }
 }
 /* handle non-LU6.2 read events */
 if (FD_ISSET(tin, &read_fds) {
 read_and_process_terminal_input();
 /* verb may be issued */
 }

 /* poll LU6.2 connections */
 rc = lu62_wait_server(&timeout, &conv_id);
 if (rc == LU62_ERROR) {
 switch (lu62_errno) {
 case LU62_NO_VERB_IN_PROGRESS:
 break;
 case LU62_WAIT_TIMEOUT)
 /* operation remains incomplete */
 break;
 default:
 printf("lu62_wait_server error, %0x%x, lu62_errno);
 exit(1);
 }
 }
 else {
 continue_conversation(conv_id);
 }
}

Using the LU6.2 API 5-25

5

5.10 Control Operator Programming
Control operator programs open connections to an LU in the SunLink SNA
PU2.1 9.1 server using the lu62_open verb, much like transaction programs.
The only difference is that the open request must specify a tp_name . To
perform control operator functions, programs require special privileges. These
privileges are assigned in the configuration using the TP PRIVILEGE
parameter. The tp_name in the open request is used to associate the
connecting program with a configured TP and, therefore, determine its
privileges.

Once an LU connection is achieved, control operator verbs are issued using the
port_id of the open connection. In the Code Example 5-19, a control operator
connection is established to issue an lu62_activate_session verb.

5-26 SunLink Peer-to-Peer LU6.2 9.1 Programmer’s Manual—August 1997

5

Code Example 5-19

lu62_open_req_t open_req;
lu62_activate_session_t act_sess_req;
lu62_close_req_t close_req;

char *copr = "COPR"; /* configured Control Operator */

/* build open request */
bzero(&open_req, sizeof(struct lu62_open_req));
strncpy(open_req.host, LU62_SERVER, MAXHOSTNAMELEN);
strncpy(open_req.lu_name, LOCAL_LU, LU62_LU_NAME_LEN);
strncpy(open_req.tp_name, copr, LU62_TP_NAME_LEN);

if (lu62_open(&open_req) == LU62_ERROR) {
 printf("lu62_open error, 0x%x\n", lu62_errno);
 exit(1);
}

/*
 * activate session
 * - assume partner_lu and mode name are established
 */
act_sess_req.port_id = open_req.port_id;
strncpy(act_sess.lu_name, partner_lu, LU62_LU_NAME_LEN);
strncpy(act_sess.mode_name, mode_name, LU62_MODE_NAME_LEN);
if (lu62_activate_session(&act_sess_req) == LU62_ERROR) {
 printf("lu62_activate_session error, 0x%x\n", lu62_errno);
 exit(1);
}

close_req.port_id = port_id;
if (lu62_close(&close_req) == LU62_ERROR) {
 printf("lu62_close error, 0x%x\n", lu62_errno);
 exit(1);
}

Using the LU6.2 API 5-27

5

5.11 Using the Select Call to Receive CNOS Notifications
Normally, all messages sent by the SunLink SNA PU2.1 9.1 server to a client
program are done in response to a prior request. CNOS notifications are an
exception. CNOS notifications are sent to requesting control operator programs
whenever CNOS parameters are updated by the LU. These notifications are
unsolicited and can arrive at any time.

To receive CNOS notifications, a special connection is made to the LU using the
lu62_request_notification verb. This verb opens a separate socket
connection to the SunLink SNA PU2.1 9.1 server. Your program then issues
lu62_receive_notification to read a notification from the socket.
lu62_receive_notification will, however, block until a notification is
available to read. To prevent blocking, your program can poll the connection
for pending notifications, using the lu62_poll_notification verb, or it can
use the Unix select call to receive CNOS notifications asynchronously.

In Code Example 5-20, the select call is used to multiplex program control
between COPR verb returns, CNOS events, and terminal input.

Code Example 5-20 (1 of 3)

lu62_open_req_t open_req;
lu62_request_notification_t req_notify;
lu62_notification_header_t notify_hdr;
lu62_cnos_notification_t cnos_notification;
int cnos_notifications_requested = TRUE;
int tin;
fd_set readfds;
char *copr = "COPR"; /* configured Control Operator */

/* standard input file descriptor */
tin = fileno(stdin);

/* connect to local_lu to issue COPR verbs */
bzero(&open_req, sizeof(lu62_open_req_t));
strncpy(open_req.host, LU62_SERVER, MAXHOSTNAMELEN);
strncpy(open_req.lu_name, LOCAL_LU, LU62_LU_NAME_LEN);
strncpy(open_req.tp_name, copr, LU62_TP_NAME_LEN);
if (lu62_open(&open_req) == LU62_ERROR) {
 printf("lu62_open error, 0x%x\n", lu62_errno);
 exit(1);

5-28 SunLink Peer-to-Peer LU6.2 9.1 Programmer’s Manual—August 1997

5

}

/* request CNOS notifications from local_lu */
bzero(&req_notify, sizeof(lu62_request_notification_t));
strncpy(req_notify.lu_name, LOCAL_LU, LU62_LU_NAME_LEN);
rc = lu62_request_notification(&req_notify);
if (rc == LU62_ERROR) {
 printf("lu62_request_notification error = 0x%x\n",
 req_notify.return_code);
 exit(1);
}

/* initialize for CNOS notification processing */
notify_hdr.port_id = req_notify.port_id;

while (rc != LU62_ERROR) {
 /* set up fds for select call */
 FD_ZERO(&readfds);
 lu62_get_readfds(&readfds); /* LU62 channels */
 if (cnos_notifications_requested)
 FD_SET(req_notify.port_desc, &readfds);
 FD_SET(tin, &readfds); /* standard input */

 /* wait for read event to be posted */
 if ((n = select(FD_SETSIZE, &readfds, NULL, NULL, NULL)) < 0) {
 /* select call can be interrupted - ignore interrupts */
 if (errno != EINTR) {
 perror("select");
 exit(1);
 }
 }

 /* dispatch read events */
 if (FD_ISSET(req_notify.port_desc, &readfds) {
 rc = lu62_receive_notification(¬ify_hdr,
&cnos_notification);
 if (rc == LU62_OK) {
 switch (notify_hdr.op_code) {
 case LU62_REQUEST_NOTIFICATION_REPLY:
 break;
 case LU62_CNOS_NOTIFICATION:
 process_cnos_notification(&cnos_notification);
 break;

Code Example 5-20 (2 of 3)

Using the LU6.2 API 5-29

5

 case LU62_STOP_NOTIFICATION_REPLY:
 cnos_notifications_requested = FALSE;
 break;
 }
 }

 else if (FD_ISSET(tin, &readfds) {
 read_and_process_terminal_input();
 /* copr verb may be issued */
 }
 else {
 /* receive response to COPR verb */
 rc = lu62_wait_server(NULL, &id);
 if (rc == LU62_OK) {
 process_copr_return(id);
 }
 }

Code Example 5-20 (3 of 3)

5-30 SunLink Peer-to-Peer LU6.2 9.1 Programmer’s Manual—August 1997

5

6-1

man Page Conventions 6

The remaining chapters of this manual contains man pages for the SunLink
P2P LU6.2 9.1 verbs. The function of each verb is described, and the following
information is provided, if it applies:

Synopsis
ANSI C language function prototypes are used to show the name of the API
call and parameters. For example:

where lu62_flush is the name of the call, which takes a request structure of
type lu62_flush_t.

• Request Structure—Describes the request data structure, see Data Types and
Request Structure, below.

• State Changes—Specifies the changes in the conversation state that can
result from this call.

Usage Notes
Provides any additional information that applies to the call.

int lu62_flush (lu62_flush_t *rqp);

6-2 SunLink Peer-to-Peer LU6.2 9.1 Programmer’s Manual—August 1997

6

See Also
References material in this manual that is related to the call.

6.1 Data Types
Many of the parameters and data structure members are defined as bit8,
bit16 , or bit32 . These data types are used instead of the standard integer
types, when it is necessary to ensure that a parameter type is independent of
the actual integer size of the particular machine. Table 6-1 defines these three
data types.

6.2 Request Structures
Each member (referred to in the following documentation as both parameter
and field) of the request data structure is described as being supplied,
returned, supplied/returned, or ignored.

• Supplied parameters are set by the user program.

• Returned parameters are set by the successful operation of the verb.

• Supplied/returned parameters are set by the user program when the verb is
issued, but their values may change after the successful operation of the
verb.

• Ignored parameters are not used or set by the verb.

Initialization of every member of the structure is handled by the application.
You should first initialize the request structures to zero and then set them with
the required parameter values. This ensures that pointer values are initialized
to NULL and enumerated type values are defaulted. Enumerated types are
defined so that the default value, which is underlined, is zero.

Table 6-1 Data Types

Data Type Definition

bit8 An unsigned character in the range of 0x00 to 0xff

bit16 An unsigned integer in the range of 0x0000 to 0xffff

bit32 An unsigned integer in the range of 0x00000000 to 0xffffffff

man Page Conventions 6-3

6

Supplied parameters are further specified as required, conditional, or optional:

• Required parameters must be set by the application program.

• Conditional parameters may have a required value, depending on the
setting of another parameter.

• Optional parameters need not be set.

6-4 SunLink Peer-to-Peer LU6.2 9.1 Programmer’s Manual—August 1997

6

7-1

Connection Verbs 7

Connection verbs are used to establish and maintain connection to one or more
SunLink SNA PU2.1 9.1 servers (Table 7-1). These verbs are all SunLink P2P 9.1
extensions to the LU6.2 verb set defined in the IBM SNA Transaction
Programmer’s Reference Manual.

The use of the connection verbs is summarized below, followed by detailed
man pages.

Table 7-1 SunLink LU6.2 Connection Verbs

Verb Function

*lu62_open Opens a connection with the SunLink PU2.1 SNA
server

*lu62_close Closes a connection with the SunLink PU2.1 SNA
server

*lu62_set_processing_mo
de

Sets to BLOCKING or NON_BLOCKING mode

*lu62_wait_server Waits for a response from the server

*lu62_get_readfds Returns the select fdsets for LU connections

7-2 SunLink Peer-to-Peer LU6.2 9.1 Programmer’s Manual—August 1997

7

7.1 Program Connections to the SunLink PU2.1 SNA Server
lu62_open must be issued before communication with the SunLink SNA
PU2.1 9.1 server can take place. This verb establishes a socket connection
between your program and a specific LU supported by the SunLink SNA
PU2.1 9.1 server. Your program can connect to many LUs in the SunLink SNA
PU2.1 9.1 server. It can also connect to multiple SunLink SNA PU2.1 9.1
servers. When your program has completed communication, it should
disconnect from the server using lu62_close .

7.2 Multiplexed Communication Channels
Socket connections to the server are opened using lu62_open . When the
connection is first opened, a control channel is set up. All LU-level verbs
(lu62_close , control operator verbs, etc.) are transported on this control
channel. Multiple conversations may be multiplexed over each connection.
Each time a conversation is allocated or accepted, a new channel is established.

7.3 Processing Mode
Each communication channel may be independently set into PM_BLOCKING or
PM_NON_BLOCKING modes. The initial mode for the control channel is
established by lu62_open ; the initial mode for conversation channels is
established by lu62_allocate and lu62_accept verbs. The
lu62_set_processing_mode verb is used to change the mode of the LU
control channel or any conversation channel.

In PM_BLOCKING mode, all verbs wait for their response from the SunLink
SNA PU2.1 9.1 server before returning to the caller. In PM_NON_BLOCKING
mode, the verb returns to the caller once the request has been sent to the
server.

The caller must issue an lu62_wait_server verb when it is ready to receive
the response(s). This verb returns with the id of the first channel to receive a
response to its outstanding verb. An lu62_wait_server call must eventually
be made for all channels with verb responses outstanding.

Connection Verbs 7-3

7

7.4 User Select Control
You may also want to use the Unix select call to multiplex program control
between SunLink P2P LU6.2 9.1 connections, and other open devices such as
TTY. To do this, you must have access to the SunLink P2P LU6.2 9.1 socket file
descriptors to construct the select readfds . Socket file descriptors are
returned by lu62_open . In addition, lu62_get_readfds returns select
readfds for all sockets that carry channels with verb responses outstanding.
Add the file descriptors for other devices to the readfds , using FD_SET and
issuing select . If select indicates a pending read on a SunLink P2P LU6.2
9.1 socket, call lu62_wait_server to perform the read.

7.5 * lu62_close

A program closes a connection to the SunLink SNA PU2.1 9.1 server using the
lu62_close call. Before making this call, a program should ensure that all
conversations are deallocated. The SunLink SNA PU2.1 9.1 server will
deallocate (type = ABEND_SVC) any conversations that are active when
lu62_close is issued.

Synopsis

Request Structure

The lu62_close_req_t request structure members are:

int lu62_close(lu62_close_req_t *rqp);

typedef struct {
 bit32 port_id; /* s */
 bit32 return_code; /* r */
}lu62_close_req_t;

7-4 SunLink Peer-to-Peer LU6.2 9.1 Programmer’s Manual—August 1997

7

port_id

(supplied); specifies the port_id of the LU connection to be closed. The
port_id is returned by lu62_open .

return_code

(returned); specifies the result of verb execution to be one of:

• LU62_OK

• LU62_OPERATION_INCOMPLETE

• LU62_PARAMETER_CHECK

• LU62_PORT_ID_UNKNOWN

• LU62_PROGRAM_STATE_CHECK

• LU62_VERB_IN_PROGRESS

State Changes
When return_code is LU62_OK, the LU connection is closed. All active
conversations on the LU are terminated.

Usage Notes
When multiple connections to SunLink SNA PU2.1 9.1 server(s) are
maintained, the program should retain the port_ids returned by lu62_open
calls, so that it can use lu62_close to take down the connections gracefully.

See Also
lu62_open —describes how to handle connections to the SunLink SNA PU2.1
9.1 server.

7.6 * lu62_get_readfds

lu62_get_readfds returns select readfds for sockets with outstanding
verb responses. Users who want to use select to multiplex SunLink LU6.2
socket events with events from other devices can use this verb to include the
active SunLink LU6.2 sockets (identified by their port descriptors) in the
select readfds. You should then add your own file descriptors to the

Connection Verbs 7-5

7

readfds using FD_SET and issue select . If select indicates a pending
read on a SunLink LU6.2 socket, issue lu62_wait_server to read the
response.

Synopsis

Parameters
readfds_p

(returned). Specifies the address of an fd_set structure to receive the socket
fds for all channels with outstanding verbs.

Return Value
The verb always returns LU62_OK.

See Also
lu62_wait_server .

7.7 *lu62_open

A program opens a connection to the SunLink SNA PU2.1 9.1 server using the
lu62_open verb. A connection associates your program with a specific LU
defined to a SunLink SNA PU2.1 9.1 server. Your program can connect to many
LUs in the SunLink SNA PU2.1 9.1 server. It can also connect to multiple
SunLink SNA PU2.1 9.1 servers.

Each connection is identified by a port_id . All subsequent non-conversation
verbs issued to the selected LU designate this port_id .

#include <sys/types.h>
int lu62_get_readfds(fd_set *readfds_p);

7-6 SunLink Peer-to-Peer LU6.2 9.1 Programmer’s Manual—August 1997

7

Synopsis

Request Structure

The lu62_open_req_t request structure members are:

host
(supplied/optional). Specifies the TCP/IP hostname of the SunLink SNA
PU2.1 9.1 server host. Hostnames are configured in the Unix network
configuration file, /etc/hosts , or are maintained by NIS. server is supplied
as an ASCII (null-terminated) string. If host is not supplied, localhost is
assumed.

lu_name

(supplied/optional). Specifies the name of the logical unit in the SunLink
SNA PU2.1 9.1 server with which this connection is to be associated. This
name corresponds to the LU_NAME parameter of the LU definition. lu_name
is supplied as an ASCII (null-terminated) string. If not specified, it will get
assigned by the Gateway. It can be examined using get_tp_properties .

int lu62_open(lu62_open_req_t *rqp);

typedef struct {
 char host[MAXHOSTNAMELEN+1]; /* so */
 char lu_name[LU62_LU_NAME_LEN+1]; /* s */
 char tp_name[LU62_TP_NAME_LEN+1]; /* so */
 lu62_processing_mode_e processing_mode; /* s */
 bit32 return_code; /* r */
 bit32 port_id; /* r */
 int port_desc; /* r */
} lu62_open_req_t;

Connection Verbs 7-7

7

tp_name

(supplied/optional). Specifies the name of the local transaction program. A
tp_name is required if the program requires any special privileges, such as
the ability to issue control operator verbs. Such privileges are associated
with local TPs via the configuration file. See the TP directive in the
configuration. tp_name is supplied as an ASCII (null-terminated) string.

processing_mode

(supplied). Specifies the initial processing mode of the LU connection as
either:
• PM_BLOCKING

• PM_NON_BLOCKING

If processing_mode is set to PM_BLOCKING, lu62_open does not return
until open processing is successfully completed (return_code = LU62_OK) or
fails. If processing_mode is set to PM_NON_BLOCKING and initial
parameter checks pass, return_code is set to
LU62_OPERATION_INCOMPLETE and the lu62_wait_server must be
issued to receive the eventual return.

The specified processing_mode remains in effect for the LU control
channel until lu62_set_processing_mode is issued or the connection is
closed. Note, the processing mode of conversations allocated or accepted
over the LU connection is specified separately on the respective
lu62_allocate and lu62_accept verbs.

return_code

(returned). Specifies the result of call execution. The return_code variable
may have one of the following values:
• LU62_OK

• LU62_OPERATION_INCOMPLETE

• LU62_PARAMETER_CHECK

• LU62_HOST_UNKNOWN

• LU62_SERVER_UNKNOWN

7-8 SunLink Peer-to-Peer LU6.2 9.1 Programmer’s Manual—August 1997

7

• LU62_LU_NAME_REQD

• LU62_BAD_LU_NAME

• LU62_BAD_TP_NAME

• LU62_BAD_PROCESSING_MODE

port_id

(returned). Specifies the port identifier assigned to the connection. All
subsequent non-conversation verbs issued to the selected LU designate this
port_id.

port_desc

(returned). Specifies the file descriptor associated with the socket
connection. The port_desc is available for users who want to perform
their own select processing.

State Changes
Not applicable.

Usage Notes
1. lu62_open must be issued before any communication with the SunLink

SNA PU2.1 9.1 server can take place. When the connection is first opened, a
control channel is set up. All LU-level verbs (lu62_close , control operator
verbs, etc.) are transported on this control channel. Multiple conversations
may be multiplexed over each connection. Each time a conversation is
allocated or accepted, a new conversation channel is established.

2. You may connect to LUs supported by multiple SunLink SNA PU2.1 9.1
servers. For each LU that you require access to, a separate connection is
required. Multiple conversations may be multiplexed over each connection.

See Also
Handling Connections to the SunLink SNA PU2.1 9.1 server.

Connection Verbs 7-9

7

7.8 * lu62_set_processing_mode

lu62_set_processing_mode is used to set the processing mode of a
communications channel to blocking or non-blocking.

A communications channel is multiplexed over the socket connection between
the client program and the SunLink SNA PU2.1 9.1 server. The channel is
either the control channel, which carries LU-level verbs, or a conversation
channel, which carries conversation verbs.

The processing mode affects any verb that requires an interaction with the
SunLink SNA PU2.1 9.1 server. If the processing mode is set to PM_BLOCKING,
such verbs do not return until the server responds. If the processing mode is
set to PM_NON_BLOCKING and initial parameter checks pass, the verb's
return_code is set to LU62_OPERATION_INCOMPLETE and
lu62_wait_server must be issued to receive the eventual return.

The processing mode cannot be changed when a verb response is outstanding.

Synopsis

Parameters

id

(supplied). Specifies the channel identifier. For the control channel, this is
the port_id returned by lu62_open . For a conversation channel, this is the
conv_id returned by lu62_allocate or lu62_accept .

pmode

(supplied). Specifies the required processing mode as either:
• PM_BLOCKING

• PM_NON_BLOCKING

RETURN VALUE. The verb returns an integer error code:
• LU62_OK, indicates that the processing mode was successfully updated.

int lu62_set_processing_mode(bit32 id, lu62_processing_mode_e
pmode);

7-10 SunLink Peer-to-Peer LU6.2 9.1 Programmer’s Manual—August 1997

7

• LU62_ERROR, indicates that the verb failed. lu62_errno is set to indicate the
reason for failure:

• LU62_CONV_ID_UNKNOWN

• LU62_VERB_IN_PROGRESS

Usage Notes

See Also
lu62_open , lu62_accept , lu62_allocate , lu62_mc_allocate,
lu62_wait_server and Handling Multiple Concurrent Conversations.

7.9 *lu62_wait_server

lu62_wait_server is used to wait for and receive a response to an
outstanding verb, that is, a verb that was issued on a PM_NON_BLOCKING
channel and that returned LU62_OPERATION_INCOMPLETE.

Synopsis

Parameters

timeout

(supplied). Specifies the time to wait for a response. If NULL,
lu62_wait_server will wait indefinitely. If a pointer to a zeroed
timeval structure, lu62_wait_server polls all channels with an
outstanding response to see if a response has been received, but does not
wait for one.

#include <sys/time.h>
int lu62_wait_server(struct timeval *timeout, bit32 *id_p);

Connection Verbs 7-11

7

id_p

(returned). Specifies the location to receive the identifier of the channel on
which a response has been received. This may be the port_id of an LU
control channel or the conv_id of a conversation channel.

RETURN VALUE. The verb returns an integer error code as described
below.
• LU62_OK, indicates that a response was successfully received.
• LU62_ERROR, indicates that the verb has failed. lu62_errno is set to indicate

the reason for failure:

• LU62_NO_VERB_IN_PROGRESS

• LU62_WAIT_TIMEOUT.

Usage Notes
When multiple connections to SunLink PU2.1 SNA server(s) are maintained,
the program should retain the port_ids returned by lu62_open call so that it
can use lu62_close to take down the connections gracefully.

See Also
Handling Multiple Concurrent Conversations.

7-12 SunLink Peer-to-Peer LU6.2 9.1 Programmer’s Manual—August 1997

7

8-1

Basic Conversation Verbs 8

This chapter describes the basic conversation verbs. Table 8-1 lists the SunLink
P2P LU6.2 9.1 basic conversation verbs. Detailed man pages follow.

Table 8-1 SunLU6.2 Basic Conversation Verbs

Verb Function

lu62_allocate Initiates a conversation with a remote TP

lu62_confirm Issues a confirmation request to the remote TP

lu62_confirmed Issues a confirmation response

lu62_deallocate Terminates a conversation

lu62_flush Forces transmission of data in the send buffer

lu62_get_attributes Returns information about a conversation

lu62_post_on_receipt Sets receive posting conditions for a conversation

lu62_prep_to_receive Changes the conversation from send to receive state

lu62_receive_and_wait Waits for information to arrive and then receives it

lu62_receive_immediat
e

Receives available information but does not wait

lu62_request_to_send Requests the turn

8-2 SunLink Peer-to-Peer LU6.2 9.1 Programmer’s Manual—August 1997

8

8.1 lu62_allocate

lu62_allocate is used to initiate a basic or mapped conversation with a
remote (partner) transaction program. A session is assigned for the exclusive
use of the local and remote programs for the duration of the conversation. A
conversation id is assigned to the conversation. This conversation id is used to
identify the conversation in all subsequent verb issuances.

Synopsis

Request Structure
Thelu62_allocate_t request structure members are shown in
Code Example 8-1.

lu62_send_data Sends data on the conversation

lu62_send_error Notifies the remote program of a detected error

lu62_test Tests a conversation for posting

int lu62_allocate(lu62_allocate_t *rqp);

Code Example 8-1

typedef struct {
 bit32 port_id; /* s */
 bit32 tp_id; /* s */

char unique_session_name /* so */
[LU62_UNIQUE_SESSION_NAME_LEN+1];

 char lu_name[LU62_LU_NAME_LEN+1]; /* s */
 char mode_name[LU62_MODE_NAME_LEN+1]; /* s */
 char remote_tp_name[LU62_TP_NAME_LEN+1]; /*
s */
 bit32 conv_grp_id; /* s */

Table 8-1 SunLU6.2 Basic Conversation Verbs

Verb Function

Basic Conversation Verbs 8-3

8

8.1.1 lu62_allocate_t Request Structure Members

The following subsections describe the lu62_allocate_t request structure
members:

port_id

(supplied) Specifies the port_id for the LU connection. The port_id is
returned by lu62_open .

tp_id

(Supplied/optional.) Specifies the id of a registered TP for which a
conversation has been accepted. This parameter is used when security =
SECURITY_SAME, see below. The tp_id is returned by lu62_accept .

unique_session_name

Used to specify the actual node used from the configuration instead of
lu_name and node . To use unique session names, the TP must not use an
lu_name in the previous open.

 lu62_processing_mode_e processing_mode; /*
s */
 lu62_conv_type_e type; /* s */
 lu62_flush_e flush; /* s */
 lu62_return_control_e return_control; /* s */
 lu62_sync_level_e sync_level; /* s */
 lu62_pip_presence_e pip_presence; /* s */
 lu62_security_e security; /* s */
 char user_id[LU62_MAX_USER_ID_LEN+1]; /* s */
 char passwd[LU62_MAX_PASSWD_LEN+1]; /* s */
 char profile[LU62_MAX_PROFILE_LEN+1]; /* s */
 bit32 conv_id; /* r */

int luw_len; /* s/r */
bit8 luw[LU62_MAX_LUW_LEN]; /* s/r */

 bit32 return_code; /* r */
} lu62_allocate_t;

Code Example 8-1 (Continued)

8-4 SunLink Peer-to-Peer LU6.2 9.1 Programmer’s Manual—August 1997

8

lu_name

(supplied) Specifies the locally known name of the partner LU at which the
remote transaction program, remote_tp_name , is located. lu_name is
supplied as an ASCII (null-terminated) string. It corresponds to the
PTNR_LU_NAME or NO_LU_NAME parameter in the configuration.

mode_name

(supplied) Specifies the name of the required mode. The conversation is
allocated on a session of this mode. mode_name is supplied as an ASCII
(null-terminated) string and is translated to EBCDIC by the SunLink SNA
PU2.1 9.1 server. It corresponds to the MODE NAME parameter in the
configuration.

remote_tp_name

(supplied) Specifies the name of the transaction program to which
conversation attachment is required. remote_tp_name is supplied as an
ASCII (null-terminated) string and is translated to EBCDIC by the SunLink
SNA PU2.1 9.1 server.

conv_grp_id

(ignored) Reserved for future use.

processing_mode

(supplied) Specifies the initial processing mode of the conversation from one
of the following:
• PM_BLOCKING

• PM_NON_BLOCKING

If processing_mode is set to PM_BLOCKING, lu62_allocate does not
return until a conversation is successfully allocated (return_code =
LU62_OK) or the verb fails. If processing_mode is set to
PM_NON_BLOCKING and initial parameter checks pass, return_code is set
to LU62_OPERATION_INCOMPLETE and lu62_wait_server must be
issued to receive the eventual return.

The specified processing_mode remains in effect for the allocated
conversation until lu62_set_processing_mode is issued or the
conversation terminates.

Basic Conversation Verbs 8-5

8

type

(supplied) Specifies the conversation type from one of the following:
• CONVERSATION_BASIC

• CONVERSATION_MAPPED

flush

(supplied) Specifies whether the allocation request is sent to the remote LU
as soon as a session is allocated for the conversation, or whether the
allocation request is retained until another flush condition arises. flush is
set to one of the following:
• FLUSH_NO

• FLUSH_YES

return_control

(supplied) Specifies when, in relation to the allocation of a session for the
conversation, the local LU returns control to the program.
return_control is set to one of the following:
• RC_WHEN_SESSION_ALLOCATED

• RC_IMMEDIATE

Note – LU62_OPERATION_INCOMPLETE will still be returned when the
processing mode is non-blocking.

• RC_WHEN_CONWINNER_ALLOCATED

sync_level

(supplied) Specifies the synchronization level for the conversation from one
of the following:
• SYNC_LEVEL_NONE

• SYNC_LEVEL_CONFIRM

• SYNC_LEVEL_SYNCPT

The selected sync_level must correspond to the TP SYNC_LEVEL
configuration of the remote TP.

8-6 SunLink Peer-to-Peer LU6.2 9.1 Programmer’s Manual—August 1997

8

pip_presence

(supplied) Specifies whether the pip_presence field of the FMH-5 Attach
request is to be set or not by one of the following parameters:
• PIP_NOT_PRESENT

• PIP_PRESENT

If PIP_PRESENT is set, the FMH-5 Attach request is built with the
pip_presence indicator set. The caller is obliged to build the PIP variable
(see Chapter 11 of the IBM SNA Formats manual and send it using the
lu62_send_data verb.

security

(supplied) Specifies the access security information that the partner LU
requires to verify the identity of the conversation initiator and validates
access to the remote program and its resources. security may be one of
the following:
• SECURITY_NONE

Security access information is omitted.
• SECURITY_SAME

Specifies to use known (and already verified) user_id (and profile)
information. If user_id (and profile) are supplied, these values are used.
Otherwise, if tp_id is supplied, information is taken from the first
allocation request accepted for that TP, or if tp_id is not supplied, the
Unix user_id is sent.

• SECURITY_PROGRAM
Indicates that the required user_id , password (and profile) are included
in this allocate request.

user_id

(Supplied/conditional.) If security is SECURITY_NONE or
SECURITY_PROGRAM, a user_id is required. user_id is specified as an
ASCII (null-terminated) string and is translated to EBCDIC by the SunLink
SNA PU2.1 9.1 server.

passwd

(Supplied/conditional). If security is SECURITY_PROGRAM, passwd is
required. passwd is specified as an ASCII (null-terminated) string and is
translated to EBCDIC by the SunLink SNA PU2.1 9.1 server.

Basic Conversation Verbs 8-7

8

profile

(Supplied/conditional.) profile is specified as an ASCII (null-terminated)
string and is translated to EBCDIC by the SunLink SNA PU2.1 9.1 server.

conv_id

(returned) Specifies the identifier of the allocated conversation. All
subsequent verbs issued on this conversation require this identifier.

luw

(Supplied/returned.) This extension to [TPRM] is provided for
SYNC_LEVEL_SYNCPT (see Appendix F). If supplied, luw contains the
complete Logical Unit of work identifier to be set in the FMH-5 Attach
(see Chapter 11 of the IBM SNA Formats manual). If luw is not supplied for
SYNC_LEVEL_SYNCPT, the SunLink SNA PU2.1 9.1 server will generate the
LUW on the caller’s behalf.

luw_len

(supplied/returned) Length of logical unit of work.

return_code

(returned) Specifies the result of verb execution. return_code values are
affected by the value of the return_control parameter. The following
return_codes can occur with all values of return_control:

• LU62_OK

• LU62_OPERATION_INCOMPLETE

• LU62_PARAMETER_CHECK

— LU62_PORT_ID_UNKNOWN

— LU62_BAD_LU_NAME

— LU62_BAD_MODE_NAME

— LU62_BAD_REMOTE_TP_NAME

— LU62_BAD_PROCESSING_MODE

— LU62_BAD_CONV_TYPE

— LU62_BAD_FLUSH_TYPE

— LU62_BAD_RETURN_CONTROL

8-8 SunLink Peer-to-Peer LU6.2 9.1 Programmer’s Manual—August 1997

8

— LU62_BAD_SYNC_LEVEL

— LU62_BAD_SECURITY

— LU62_BAD_SECURITY_PROGRAM

— LU62_BAD_USERID

— LU62_BAD_PASSWD

— LU62_BAD_PROFILE

— LU62_LU_NAME_REQD

— LU62_MODE_NAME_REQD

— LU62_REMOTE_TP_NAME_REQD

— LU62_UNKNOWN_TP

• LU62_PROGRAM_STATE_CHECK

— LU62_TP_NOT_STARTED

• LU62_ALLOCATION_ERROR

— LU62_SYNC_LEVEL_NOT_SUPPORTED_BY_LU

If return_control is set to RC_WHEN_SESSION_ALLOCATED or
RC_WHEN_CONWINNER_ALLOCATED, the following additional
return_codes are possible:

• LU62_PARAMETER_ERROR

— LU62_UNKNOWN_MODE

— LU62_UNKNOWN_PARTNER_LU

• LU62_ALLOCATION_ERROR

— LU62_ALLOCATION_FAILURE_NO_RETRY

— LU62_ALLOCATION_FAILURE_RETRY

If return_control is set to RC_IMMEDIATE, the following additional
return_codes are possible:

• LU62_PARAMETER_ERROR

— LU62_UNKNOWN_MODE

— LU62_UNKNOWN_PARTNER_LU

• LU62_UNSUCCESSFUL (no session is available)

State Changes
When return_code is LU62_OK, the conversation enters Send state.

Basic Conversation Verbs 8-9

8

Usage Notes
• Session contention occurs when the two LUs both attempt to allocate a

conversation on the session at the same time. Contention is resolved by
making one LU the contention-winner, and the other the contention-loser.
The contention-winner is guaranteed access to the session; the contention-
loser must first ask permission of the contention-winner LU before it
attempts to allocate a conversation on the session. See the MODE directive
in the configuration for more information on session limits, conwinnners,
and conlosers.

• An allocation error resulting from the local LU's failure to obtain a session
for the conversation is reported on the lu62_allocate call. An allocation
error resulting from the remote LU's rejection of the allocation request is
reported on a subsequent conversation call.

See Also
Section 5.3, “Allocating Conversations,” provides an example of how this verb
is used.

8.2 lu62_confirm

lu62_confirm sends a request for confirmation to the remote transaction
program and waits for a reply. In normal circumstances, the remote program
issues an lu62_confirmed verb in response. The LU flushes the
conversation's send buffer as a function of this verb.

Synopsis

Request Structure

int lu62_confirm(lu62_confirm_t *rqp);

typedef struct {
 bit32 conv_id; /* s */
 bit32 return_code; /* r */
 bit32 request_to_send_received; /* r */
} lu62_confirm_t;

8-10 SunLink Peer-to-Peer LU6.2 9.1 Programmer’s Manual—August 1997

8

8.2.1 u62_confirm_t Request Structure Members

The following subsections describe the lu62_confirm_t request structure
members:

conv_id

(supplied) Specifies the id of the conversation to use. conv_id is returned
by lu62_allocate or lu62_accept .

return_code

(returned) Specifies the result of verb execution from one of the following:
• LU62_OK

• LU62_OPERATION_INCOMPLETE

• LU62_PARAMETER_CHECK

— LU62_CONV_ID_UNKNOWN

— LU62_BAD_SYNC_LEVEL

• LU62_PROGRAM_STATE_CHECK

— the conversation is not is Send state
— LU62_PIP_PENDING - the conversation is in Send state following an

lu62_(mc_)_allocate verb in which pip_presence was indicated.
A basic send, lu62_send_data , is required to send the PIP Variable.

— LU62_VERB_IN_PROGRESS

• LU62_ALLOCATION_ERROR

• LU62_DEALLOCATE_ABEND_PROG

• LU62_DEALLOCATE_ABEND_TIMER

• LU62_DEALLOCATE_ABEND_SVC

• LU62_PROG_ERROR_PURGING

— LU62_RESOURCE_FAILURE_NO_RETRY

— LU62_RESOURCE_FAILURE_RETRY

— LU62_SVC_ERROR_PURGING

request_to_send_received

(returned) Indicates whether or not a request-to-send indication has been
received from the remote program:
• TRUE, indicates that a request-to-send indication was received.

Basic Conversation Verbs 8-11

8

• FALSE, indicates that a request-to-send indication was not received.

State Changes
This verb can only be issued in Send state. No state change occurs.

Usage Notes
1. This verb is used to synchronize local and remote processing:

• The initiating program may issue this verb immediately following
lu62_allocate to ensure that the remote program is available and
attached before sending any data.

• The sending program may issue this verb as a request for
acknowledgment of the data it sent to the remote program. The remote
program issues lu62_confirmed to positively acknowledge receipt, or
lu62_send_error to indicate that it encountered an error.

2. When request_to_send_received is TRUE, the remote program is
requesting that the local program “give up the turn”, that is, that it enter
Receive state, thereby placing the remote program in Send state. The local
program enters Receive state by issuing lu62_prep_to_receive or
lu62_receive_and_wait . The remote program issues
lu62_receive_immediate or lu62_receive_and_wait to receive the
resulting send indication (what_received = WR_SEND).

See Also
lu62_confirmed , lu62_send_error

Section 5.8, “Basic Conversations,” illustrates how programs can be
synchronized using confirmation requests.

8.3 lu62_confirmed

lu62_confirmed sends a confirmation reply in response to a confirmation
request from the remote transaction program. The local program issues this
verb when it receives a confirmation request. (See the what_received
parameter of the lu62_receive_and_wait and
lu62_receive_immediate verbs). This verb can only be issued as a reply to
a confirmation request; it cannot be issued at any other time.

8-12 SunLink Peer-to-Peer LU6.2 9.1 Programmer’s Manual—August 1997

8

Synopsis

Request Structure

8.3.1 lu62_confirmed_t Request Structure Members

The following subsections describe the lu62_confirmed_t request structure
members:

conv_id

(supplied) Specifies the id of the conversation to use. conv_id is returned
by lu62_allocate or lu62_accept .

return_code

(returned) Specifies the result of verb execution from one of the following:
• LU62_OK

• LU62_OPERATION_INCOMPLETE

• LU62_PARAMETER_CHECK

— LU62_CONV_ID_UNKNOWN

• LU62_PROGRAM_STATE_CHECK

— the conversation is not in Confirm , Confirm_Send or
Confirm_Deallocate state

— LU62_VERB_IN_PROGRESS

State Changes
The state change depends on the value of the what_received parameter of the
preceding lu62_receive_and_wait or lu62_receive_immediate verb:

int lu62_confirmed(lu62_confirmed_t *rqp);

typedef struct {
 bit32 conv_id; /* s */
 bit32 return_code; /* r */
} lu62_confirmed_t;

Basic Conversation Verbs 8-13

8

• Receive state is entered when what_received = WR_CONFIRM

• Send state is entered when what_received = WR_CONFIRM_SEND

• Deallocate state is entered when what_received =
WR_CONFIRM_DEALLOCATE.

Usage Notes
The local and remote programs use the lu62_confirm and lu62_confirmed
verbs to synchronize their processing. For example, the remote program can
request acknowledgment that the data it sent was received by the local
program. The local program issues lu62_confirmed to provide a positive
acknowledgment or lu62_send_error to send a negative acknowledgment.

See Also
lu62_receive_and_wait , lu62_receive_immediate , lu62_confirm ,
and lu62_send_error .

Section 5.8, “Basic Conversations,” illustrates how programs can be
synchronized using confirmation requests.

8.4 lu62_deallocate

lu62_deallocate deallocates the specified conversation from the
transaction program. The deallocation can include the function of the
lu62_flush or lu62_confirm verb, depending on the value of the type
parameter.

Synopsis

int lu62_deallocate(lu62_deallocate_t *rqp,”

8-14 SunLink Peer-to-Peer LU6.2 9.1 Programmer’s Manual—August 1997

8

Request Structure

8.4.1 lu62_deallocate_t Request Structure Members

The following subsections describe the lu62_deallocate_t request structure
members:

conv_id

(supplied) Specifies the id of the conversation to use. conv_id is returned
by lu62_allocate or lu62_accept .

type

(supplied) Specifies the type of deallocation to perform and can be one of
the following:

• DA_SYNC_LEVEL
Deallocation processing is dependent on the conversation synchronization
level (as specified by the sync_level parameter of the lu62_allocate
verb):

• SYNC_LEVEL_NONE
Perform the function of the lu62_flush verb and deallocate the
conversation normally.

• SYNC_LEVEL_CONFIRM
Perform the function of the lu62_confirm verb and, if successful,
deallocate the conversation normally. DA_SYNC_LEVEL is not supported
when the sync_level is SYNC_LEVEL_SYNCPT.

• DA_FLUSH
Perform the function of the lu62_flush verb and deallocate the
conversation normally.

typedef struct {
 bit32 conv_id; /* s */
 lu62_deallocate_type_e type; /* s */
 char *log_data; /* s */
 bit32 return_code; /* r */
} lu62_deallocate_t;

Basic Conversation Verbs 8-15

8

• DA_CONFIRM
Perform the function of the lu62_confirm verb and, if successful,
deallocate the conversation normally. This deallocation type can only be
used on conversations with sync_level = SYNC_LEVEL_CONFIRM.

• DA_ABEND_PROG, DA_ABEND_SVC, DA_ABEND_TIMER
Perform the function of the lu62_flush verb and deallocate the
conversation abnormally. Logical record truncation can occur if the
program is in Send state; data purging can occur in Receive state.

• DA_UNBIND
Forces the session to be deactivated by the SunLink SNA PU2.1 9.1 server.
This extension to [TPRM] is provided for SYNC_LEVEL_SYNCPT (see
Appendix F).

• DA_LOCAL
Deallocate the conversation locally. This type of deallocation can only be
specified, and must be specified, if the conversation is in Deallocate state.

log_data

(supplied/conditional/optional). On deallocation of type DA_ABEND*, this
parameter specifies any product-unique error information that is to be
placed in the system error logs of the LUs supporting this conversation. If
supplied, log_data is specified as an ASCII (null-terminated) string and is
translated to EBCDIC by the SunLink SNA PU2.1 9.1 server.

return_code

(returned) Specifies the result of verb execution. return_code is
dependent on the deallocation type.

When the function of the lu62_flush verb is performed (see above),
return_code can be one of the following:
• LU62_OK

• LU62_OPERATION_INCOMPLETE

• LU62_PARAMETER_CHECK

— LU62_CONV_ID_UNKNOWN

— LU62_BAD_DEALLOCATE_TYPE

• LU62_PROGRAM_STATE_CHECK

— The conversation is not in Send state.
— The conversation is in Send state but is in the process

 of sending a logical record.

8-16 SunLink Peer-to-Peer LU6.2 9.1 Programmer’s Manual—August 1997

8

— LU62_VERB_IN_PROGRESS

When the function of the lu62_confirm verb is performed (see above),
return_code can be one of the following:
• LU62_OK

• LU62_OPERATION_INCOMPLETE

• LU62_PARAMETER_CHECK

— LU62_CONV_ID_UNKNOWN

• LU62_PROGRAM_STATE_CHECK

— The conversation is not in Send state.
— The conversation is in Send state but is in the process

 of sending a logical record.
— LU62_VERB_IN_PROGRESS

• LU62_ALLOCATION_ERROR

• LU62_DEALLOCATE_ABEND_PROG

• LU62_DEALLOCATE_ABEND_TIMER

• LU62_DEALLOCATE_ABEND_SVC

• LU62_PROG_ERROR_PURGING

• LU62_SVC_ERROR_PURGING

• LU62_RESOURCE_FAILURE_NO_RETRY

• LU62_RESOURCE_FAILURE_RETRY

When deallocation type is DA_ABEND* or DA_UNBIND, return_code can
be one of the following:
• LU62_OK

• LU62_OPERATION_INCOMPLETE

• LU62_PARAMETER_CHECK

— LU62_CONV_ID_UNKNOWN

• LU62_PROGRAM_STATE_CHECK

— The conversation is not in Send, Receive, or Confirm state.
— LU62_VERB_IN_PROGRESS

When deallocation type is DA_LOCAL, return_code can be one of the
following:
• LU62_OK

• LU62_OPERATION_INCOMPLETE

• LU62_PARAMETER_CHECK

Basic Conversation Verbs 8-17

8

— LU62_CONV_ID_UNKNOWN

• LU62_PROGRAM_STATE_CHECK

— The conversation is not in Deallocate state.

LU62_VERB_IN_PROGRESS

State Changes
When return_code is LU62_OK, the conversation is Reset.

Usage Notes
1. The deallocation type DA_SYNC_LEVEL causes the conversation deallocation

to be performed based on the conversation's synchronization level.

2. If the deallocation type is DA_LOCAL, or DA_SYNC_LEVEL and the
sync_level is SYNC_LEVEL_NONE, the conversation is unconditionally
deallocated. The remote program lu62_receive* return_code is
LU62_DEALLOCATE_NORMAL, which causes it to enter Deallocate state. In
Deallocate state, the remote program issues lu62_deallocate (DA_LOCAL)
to end the conversation.

3. If the deallocation type is DA_CONFIRM, or DA_SYNC_LEVEL and the
sync_level is SYNC_LEVEL_CONFIRM, the function of the
lu62_confirm verb is performed prior to deallocation. The remote
program receives what_received = WR_CONFIRM_DEALLOCATE, and may
issue an lu62_confirmed verb in response. In this case the conversation is
deallocated when the local LU receives the confirmation response. If,
however, the remote program issues lu62_send_error , the conversation
remains allocated.

4. The deallocation types DA_ABEND* are intended to be used to
unconditionally deallocate the conversation, irrespective of its
synchronization level or state. If, however, the conversation is operating in
non-blocking mode, and an operation is incomplete, an attempt to
lu62_deallocate (DA_ABEND*) will cause an
LU62_PROGRAM_STATE_ERROR. In this situation use the lu62_abort verb
to abandon the conversation.

See Also
lu62_receive_and_wait, lu62_receive_immediate, and lu62_abor t.

8-18 SunLink Peer-to-Peer LU6.2 9.1 Programmer’s Manual—August 1997

8

8.5 lu62_flush

lu62_flush flushes the local LU's conversation send buffer. Any buffered
information is sent to the remote LU. Information buffered by the LU can
come from lu62_allocate (flush = FLUSH_NO), lu62_send_data , or
lu62_send_error .

Synopsis

Request Structure

8.5.1 lu62_flush_t Request Structure Members

The following subsections describe the lu62_flush_t request structure
members:

conv_id

(supplied) Specifies which id conversation to use. conv_id is returned by
lu62_allocate or lu62_accept .

return_code

(returned) Specifies the result of verb execution from one of the following:
• LU62_OK

• LU62_OPERATION_INCOMPLETE

• LU62_PARAMETER_CHECK

— LU62_CONV_ID_UNKNOWN

— LU62_BAD_FLUSH_TYPE

• LU62_PROGRAM_STATE_CHECK

int lu62_flush(lu62_flush_t *rqp);

typedef struct {
 bit32 conv_id; /* s */
 bit32 return_code; /* r */
} lu62_flush_t;

Basic Conversation Verbs 8-19

8

— The conversation is not in Send state
— LU62_VERB_IN_PROGRESS

State Changes
This verb can only be issued in Send state. No state change occurs.

Usage Notes
1. Normally the LU buffers the data from consecutive lu62_send_data verbs

until it has completely filled the current request unit (RU), or the local
program issues a verb that causes an end-of-chain to be sent to the remote
LU. Only then does it send the data to the remote LU. In this way
transmission overhead is minimized. The lu62_flush verb enables the
local program to force buffer transmission.

2. The LU flushes its buffer only if it has something to send. Nothing is sent if
the buffer is empty.

See Also
lu62_allocate, lu62_send_data , and lu62_send_error .

8.6 lu62_get_attributes

lu62_get_attributes is used to provide information regarding the
specified conversation.

Synopsis

int lu62_get_attributes(lu62_get_attributes_t *rqp);

8-20 SunLink Peer-to-Peer LU6.2 9.1 Programmer’s Manual—August 1997

8

Request Structure

8.6.1 lu62_get_attributes_t Request Structure Members

The following subsections describe the lu62_get_attributes_t request
structure members:

conv_id

(supplied) Specifies the id of the conversation to use. conv_id is returned
by lu62_allocate or lu62_accept .

return_code

(returned) Specifies the result of verb execution as one of the following:
• LU62_OK

• LU62_PARAMETER_CHECK

— LU62_CONV_ID_UNKNOWN

typedef struct {
 bit32 conv_id; /* s */
 bit32 return_code; /* r */

char unique_session_name /* r */
[LU62_UNIQUE_SESSION_NAME_LEN+1];

 char partner_lu_name[LU62_LU_NAME_LEN+1]; /* r */
 char mode_name[LU62_MODE_NAME_LEN+1]; /* r */
 bit8 partner_qlu_name[LU62_NQ_LU_NAME_LEN+1];/* r */
 int partner_qlu_name_len; /* r */
 lu62_sync_level_e sync_level; /* r */
 lu62_conv_state_e conv_state; /* r */
 int conv_corr_len; /* r */
 bit8 conv_corr[LU62_MAX_CONV_CORR_LEN]; /* r */
 bit32 conv_grp_id; /* r */
 int sess_id_len; /* r */
 bit8 sess_id[LU62_MAX_SESS_ID_LEN]; /* r */
 int luw_len; /* r */
 bit8 luw[LU62_MAX_LUW_LEN]; /* r */
} lu62_get_attributes_t;

Basic Conversation Verbs 8-21

8

unique_session_name

Used to specify the actual node used from the configuration instead of
lu_name and node. Furthermore to use unique session names, the TP
cannot have used an lu_name in the previous open.

partner_lu_name

(returned) Specifies the name of the partner LU at which the remote
transaction program is located. partner_lu_name corresponds to the
PTNR_LU NAME parameter in the configuration.

mode_name

(returned) Specifies the name of the selected mode. The conversation is
allocated on a session of this mode. mode_name corresponds to the MODE
NAME parameter in the configuration.

partner_qlu_name_len

Length of partner_qlu_len in bytes.

partner_qlu_name

(returned) Specifies the fully qualified name of the partner LU at which the
remote transaction program is located. partner_qlu_name corresponds to
the PTNR_LU NQ_LU_NAME parameter in the configuration.

sync_level

(returned) Specifies the synchronization level for the conversation as one of
the following:
• SYNC_LEVEL_NONE

• SYNC_LEVEL_CONFIRM

• SYNC_LEVEL_SYNCPT

conv_state

(returned) Specifies the current state of the conversation as one of the
following:
• CONV_RESET

• CONV_SEND

8-22 SunLink Peer-to-Peer LU6.2 9.1 Programmer’s Manual—August 1997

8

• CONV_RECEIVE

• CONV_CONFIRM

• CONV_CONFIRM_SEND

• CONV_CONFIRM_DEALLOCATE

• CONV_DEALLOCATE

conv_grp_id

(ignored) Reserved for future use.

conv_corr_len
conv_corr

(ignored) Reserved for future use.

sess_id_len

Length of session id.

sess_id

(returned) Returns the assigned session identifier. The sess_id is returned as
binary data. (Contrast this to lu62_display_mode and
lu62_deactivate_session in which session_id is an ASCII-hex
string).

*luw_len*luw

(returned) This extension to [TPRM] is provided for SYNC_LEVEL_SYNCPT
(see Appendix F). luw contains the complete Logical Unit of Work Identifier
as set in the FMH-5 Attach that initiated the conversation (see Chapter 11 of
the IBM SNA Formats manual.

State Changes
No state change occurs.

See Also
Section 5.4, “Accepting Conversations,” provides an example of the use of this
verb.

Basic Conversation Verbs 8-23

8

8.7 lu62_post_on_receipt

lu62_post_on_receipt causes the LU to post the specified conversation
when information is available to be received. The information can be data,
conversation status, or a request for confirmation. When the conservation is
posted, the information is retrieved using lu62_receive_and_wait or
lu62_receive_immediate . Programs can issue the lu62_wait verb to wait
for posting to occur. Alternatively, programs can issue lu62_test to poll a
conversation to see if it is posted.

Synopsis

Request Structure

8.7.1 lu62_post_on_receipt_t Request Structure Members

The following subsections describe the lu62_post_on_receipt_t request
structure members:

conv_id

(supplied) Specifies the id of the conversation to use. conv_id is returned
by lu62_allocate or lu62_accept .

length

(supplied) Specifies the maximum amount of data the program can receive.

int lu62_post_on_receipt(lu62_post_on_receipt_t *rqp);

typedef struct {
 bit32 conv_id; /* s */
 int length; /* s */
 lu62_fill_e fill; /* s */
 bit32 return_code; /* r */
} lu62_post_on_receipt_t;

8-24 SunLink Peer-to-Peer LU6.2 9.1 Programmer’s Manual—August 1997

8

fill

(supplied) Specifies when posting is to occur as one of the following:
• FILL_LL

Posting occurs when a complete or truncated logical record is received, or
the length value is satisfied, whichever occurs first.

• FILL_BUFFER
Posting occurs when length data is received or end of data occurs,
whichever occurs first.

return_code

(returned) Specifies the result of verb execution as one of the following:
• LU62_OK

• LU62_OPERATION_INCOMPLETE

• LU62_PARAMETER_CHECK

— LU62_CONV_ID_UNKNOWN

— LU62_BAD_LENGTH

— LU62_BAD_FILL_TYPE

• LU62_PROGRAM_STATE_CHECK

— the conversation is not is Receive state
— LU62_VERB_IN_PROGRESS

State Changes
This verb can only be issued in Receive state. No state change occurs.

Usage Notes
1. The lu62_post_on_receipt, lu62_wait , and lu62_test verbs

together, provide the architected solution for handling multiple
conversations in a non-blocking manner as mentioned in the IBM SNA
Transaction Programmer’s Reference Manual. This solution, however, handles
receive processing only. All conversations must still wait for one
conversation to confirm an operation, or for another to deallocate. An
alternative approach is to use lu62_set_processing_mode to set your
conversations into PM_NON_BLOCKING mode. In this mode, all verbs that
require interaction with the SunLink SNA PU2.1 9.1 server return as
LU62_OPERATION_INCOMPLETE as soon as a request is sent to the server.
Other conversations can then be processed. When the program is ready,

Basic Conversation Verbs 8-25

8

it issues lu62_wait_server to wait for an outstanding operation to
complete. Thus lu62_receive_and_wait may be used to wait for
conversation data or status, without blocking other conversations.

2. Posting occurs when the LU has any information that would satisfy a
receive verb (issued with the same length and fill parameters). Refer to
lu62_receive_and_wait for a description of what information can be
received (what_received).

3. Posting remains in effect until the conversation is posted, posting is reset,
or posting is canceled.

Posting is reset when one of the following verbs is issued on the conversation
after the conversation is posted:

• lu62_deallocate (DA_ABEND*)

• lu62_receive_and_wait

• lu62_receive_immediate

• lu62_send_error

• lu62_test

• lu62_wait

Posting is canceled when any of the following verbs is issued on the
conversation before the conversation is posted:

• lu62_deallocate (DA_ABEND*)

• lu62_receive_and_wait

• lu62_receive_immediate

• lu62_send_error

See Also
lu62_receive_and_wait , lu62_receive_immediate , lu62_test,
lu62_wait , lu62_wait_server

8.8 lu62_prep_to_receive

lu62_prep_to_receive changes the conversation from Send to Receive
state, in preparation to receive data.

8-26 SunLink Peer-to-Peer LU6.2 9.1 Programmer’s Manual—August 1997

8

Synopsis

Request Structure

8.8.1 lu62_prep_to_receive_t Request Structure Members

The following subsections describe the request structure members of the
lu62_prep_to_receive_t .

conv_id

(supplied) Specifies the id of the conversation to use. conv_id is returned
by lu62_allocate or lu62_accept .

type

(supplied) Specifies the type of prepare to receive, to perform one of:

• PR_SYNC_LEVEL
Processing is dependent on the conversation synchronization level (as
specified by the sync_level parameter of the lu62_allocate verb):
— SYNC_LEVEL_NONE

Perform the function of the lu62_flush verb and enter Receive state.
— SYNC_LEVEL_CONFIRM

Perform the function of the lu62_confirm verb and, if successful,
enter Receive state. PR_SYNC_LEVEL is not supported when the
sync_level is SYNC_LEVEL_SYNCPT.

int lu62_prep_to_receive(lu62_prep_to_receive_t *rqp);

typedef struct {
 bit32 conv_id; /* s */
 lu62_prep_to_rcv_type_e type; /* s */
 lu62_locks_elocks; /* s */
 bit32 return_code; /* r */
} lu62_prep_to_receive_t;

Basic Conversation Verbs 8-27

8

• PR_FLUSH
Perform the function of the lu62_flush verb and enter Receive state.

• PR_CONFIRM
Perform the function of the lu62_confirm verb and, if successful,
enter Receive state. This type can only be used on conversations with
sync_level =SYNC_LEVEL_CONFIRM.

locks

(supplied/conditional) Specifies when control is to be returned to the local
program. This parameter is only relevant if type = PR_CONFIRM. It may be
one of:
• LOCKS_SHORT

Control is returned immediately after the confirmation response is
received from the remote program.

• LOCKS_LONG
Control is returned when information, such as data or status, is received
from the remote program following the confirmation response.

return_code

(returned) Specifies the result of verb execution. return_code is dependent
on the type.

The following return_codes can be returned for all values of the type
parameter:
• LU62_OK

• LU62_OPERATION_INCOMPLETE

• LU62_PARAMETER_CHECK

— LU62_CONV_ID_UNKNOWN

— LU62_BAD_PREP_TO_RCV_TYPE

— LU62_BAD_LOCKS_TYPE

• LU62_PROGRAM_STATE_CHECK

— The conversation is not in Send state
— The conversation is in Send state but is in the process of sending a

logical record

8-28 SunLink Peer-to-Peer LU6.2 9.1 Programmer’s Manual—August 1997

8

— LU62_PIP_PENDING - the conversation is in Send state following an
lu62_(mc_)_allocate verb in which pip_presenc e was indicated.
A basic send, lu62_send_data , is required to send the PIP Variable.

— LU62_VERB_IN_PROGRESS

When the function of the lu62_confirm verb is performed (see above),
additional return_codes are possible:
• LU62_OK

• LU62_ALLOCATION_ERROR

• LU62_DEALLOCATE_ABEND_PROG

• LU62_DEALLOCATE_ABEND_TIMER

• LU62_DEALLOCATE_ABEND_SVC

• LU62_PROG_ERROR_PURGING

• LU62_SVC_ERROR_PURGING

• LU62_RESOURCE_FAILURE_NO_RETRY

• LU62_RESOURCE_FAILURE_RETRY

State Changes
When return_code is LU62_OK, the conversation is in Receive state.

Usage Notes
1. When type = PR_SYNC_LEVEL, send control is transferred to the remote

program based on the synchronization level of the conversation. Thus,
if the synchronization level is SYNC_LEVEL_CONFIRM, a confirmation
response is required before handing over send control.

2. When type = PR_FLUSH, or type = PR_SYNC_LEVEL and the
synchronization level is SYNC_LEVEL_NONE, send control is transferred to
the remote program without a confirmation. The remote program's
lu62_receive* verb returns with a what_received value of WR_SEND.

3. When type = PR_CONFIRM, or type = PR_SYNC_LEVEL and the
synchronization level is SYNC_LEVEL_CONFIRM, a confirmation response
is required before handing over send control. The remote program's
lu62_receive* verb returns with a what_received value of
WR_CONFIRM_SEND.

Basic Conversation Verbs 8-29

8

See Also
lu62_confirmed , lu62_receive_and_wait, lu62_receive_immediate

8.9 lu62_receive_and_wait

lu62_receive_and_wait waits for information to be received on the
specified conversation. The information can be data, conversation status, or
a request for confirmation—an indication of the type of information received
is returned.

Synopsis

Request Structure

8.9.1 lu62_receive_t Request Structure Members

The following subsections describe the lu62_receive_t request structure
members:

conv_id

(supplied) Specifies the id of the conversation to use. conv_id is returned
by lu62_allocate or lu62_accept .

int lu62_receive_and_wait(lu62_receive_t *rqp);

typedef struct {
 bit32 conv_id; /* s */
 lu62_fill_e fill; /* s */
 int length; /* s/r */
 bit32 return_code; /* r */
 bit32 request_to_send_received; /* r */
 bit8 *data; /* r */
 lu62_what_received_e what_received; /* r */
 char map_name[LU62_MAP_NAME_LEN+1]; /* r */
} lu62_receive_t;

8-30 SunLink Peer-to-Peer LU6.2 9.1 Programmer’s Manual—August 1997

8

fill

(supplied) Specifies whether the program requires to receive data as a
logical record, or independently of logical record format. fill may be one
of:
• FILL_LL

The verb returns when a complete or truncated logical record is received,
or the length value is satisfied, whichever occurs first.

• FILL_BUFFER
The verb returns when length data is received or end of data occurs,
whichever occurs first.

length

(supplied/returned) On input, this parameter specifies the maximum
amount of data the program can receive. On return, and if data is received,
the parameter is set with the amount of data received. If no data is received,
this parameter is unchanged. return_code (returned) specifies the result of
verb execution, one of the following:
• LU62_OK

• LU62_OPERATION_INCOMPLETE

• LU62_PARAMETER_CHECK

— LU62_CONV_ID_UNKNOWN

— LU62_BAD_LENGTH

— LU62_BAD_FILL_TYPE

— LU62_NULL_DATA

• LU62_PROGRAM_STATE_CHECK

— The conversation is not in Send or Receive state.
— The conversation is in Send state but is in the process of sending a

logical record.
— LU62_PIP_PENDING - the conversation is in Send state following an

lu62_(mc_)_allocate verb in which pip_presence was indicated.
A basic send, lu62_send_data , is required to send the PIP Variable.

— LU62_VERB_IN_PROGRESS

• LU62_ALLOCATION_ERROR

• LU62_DEALLOCATE_ABEND_PROG

• LU62_DEALLOCATE_ABEND_TIMER

• LU62_DEALLOCATE_ABEND_SVC

Basic Conversation Verbs 8-31

8

• LU62_DEALLOCATE_NORMAL

• LU62_PROG_ERROR_NO_TRUNC

• LU62_PROG_ERROR_PURGING

• LU62_PROG_ERROR_TRUNC (only in Receive state)
• LU62_SVC_ERROR_NO_TRUNC

• LU62_SVC_ERROR_PURGING

• LU62_SVC_ERROR_TRUNC (only in Receive state)
• LU62_RESOURCE_FAILURE_NO_RETRY

• LU62_RESOURCE_FAILURE_RETRY.

request_to_send_received

(returned) Indicates whether or not a request-to-send indication is received
from the remote program:
• TRUE, indicates that a request-to-send indication was received.
• FALSE, indicates that a request-to-send indication was not received.

data

(supplied/returned) Specifies the buffer into which any received data is to
be written. The buffer should be at least length bytes long. If
what_received indicates that information other than data was received,
nothing is written into this buffer.

what_received

(returned) Indicates the type of information that was received from one of
the following:
• WR_DATA

Indicated when FILL_BUFFER is specified and data is received.
• WR_DATA_COMPLETE

Indicated when FILL_LL is specified and a complete logical record is
received (or the remaining portion thereof).

• WR_DATA_INCOMPLETE
Indicated when FILL_LL is specified and less than a complete logical
record is received. The local program must issue at least one more
lu62_receive_and_wait verb to receive the remaining data.

8-32 SunLink Peer-to-Peer LU6.2 9.1 Programmer’s Manual—August 1997

8

• *WR_PS_DATA_COMPLETE
Indicated when FILL_LL is specified and a PS Header is received on a
SYNC_LEVEL_SYNCPT conversation (or the remaining portion thereof).
This extension to the IBM SNA Transaction Programmer’s Reference Manual
is provided for SYNC_LEVEL_SYNCPT (see Appendix F).

• *WR_PS_DATA_INCOMPLETE
Indicated when FILL_LL is specified and less than a complete PS Header
is received on a SYNC_LEVEL_SYNCPT conversation. The local program
must issue at least one more lu62_receive_and_wait verb to receive
the remaining data. This extension is provided for SYNC_LEVEL_SYNCPT
(see Appendix F).

• WR_LL_TRUNCATED
Indicated when FILL_LL is specified and the 2 bye LL field of a logical
record is truncated after the first byte. The local program should issue
another lu62_receive_and_wait verb to determine why the truncation
occurred (the remote program or LU has issued lu62_send_error or
lu62_deallocate (type = DA_ABEND*).

• WR_SEND
Indicates that the remote program has entered Receive state. The local
program transitions to Send state.

• WR_CONFIRM
Indicates that the remote program has issued lu62_confirm . The local
program may respond by issuing lu62_confirmed .

• WR_CONFIRM_SEND
Indicates that the remote program requires a confirmation response before
entering Receive state. The local program may respond by issuing
lu62_confirmed .

• WR_CONFIRM_DEALLOCATE
Indicates that the remote program requires a confirmation response before
deallocating the conversation. The local program may terminate the
conversation by issuing lu62_confirmed .

map_name

(ignored) Mapped conversations only.

State Changes
If the return_code is LU62_OK, the state changes according to the initial
state and the value of the what_received parameter:

Basic Conversation Verbs 8-33

8

• Receive state is entered when the verb is issued in Send state and
what_received = WR_DATA, WR_DATA_COMPLETE,
WR_DATA_INCOMPLETE, WR_PS_DATA_COMPLETE,
WR_PS_DATA_INCOMPLETE, or WR_LL_TRUNCATED.

• Send state is entered when what_received = WR_SEND.

• Confirm state is entered when what_received = WR_CONFIRM,
WR_CONFIRM_SEND, or WR_CONFIRM_DEALLOCATE.

No state change occurs when the verb is issued in Receive state and
what_received = WR_DATA, WR_DATA_COMPLETE, WR_DATA_INCOMPLETE,
WR_PS_DATA_COMPLETE, WR_PS_DATA_INCOMPLETE or WR_LL_TRUNCATED.

Usage Notes
1. lu62_receive_and_wait receives only one type of information at a time.

It may receive data, status, or a confirmation request, as indicated by the
value of what_received .

2. When lu62_receive_and_wait is issued in Send state, an implicit
lu62_prep_to_receive (PR_FLUSH) is executed by the local LU.

3. lu62_receive_and_wait includes posting. If posting is already active,
the post conditions (length, fill) are superceded by those specified by this
verb.

4. When fill = FILL_LL and what_received = WR_DATA_INCOMPLETE,
either the length of the logical record exceeds the maximum length of the
user's data buffer, or the logical record has been truncated by the remote
program issuing a lu62_send_error , or lu62_deallocate
(DA_ABEND*) . The local program must issue another
lu62_receive_and_wait to determine which of the aforementioned
conditions occur first.

5. When fill = FILL_BUFFER and the length received is less than that
requested, then the LU must have received end-of-chain. The end-of-chain
condition corresponds to a change of state of the remote program, that is, a
change to Send, Confirm or Deallocate states.

6. The request-to-send notification is usually received when the local program
is in Send state, and is reported to the program via the
request_to_send_received parameter of the lu62_send_data or

8-34 SunLink Peer-to-Peer LU6.2 9.1 Programmer’s Manual—August 1997

8

lu62_send_error verb. The notification can also be received, however,
when the conversation is in Receive state. This can occur under three
different circumstances:

• When the local program enters Receive state and the remote program issues
lu62_request_to_send before it enters Send state.

• When the remote program enters Receive state using
lu62_prep_to_receive (not lu62_receive_and_wait), and then
issues lu62_request_to_send before the local program enters Send state.
This can occur because the request-to-send is transmitted as an expedited
request and can therefore arrive ahead of the request, carrying the send
indication. Potentially, the local program cannot distinguish this condition
from the first. This ambiguity is avoided if the remote program waits until it
receives information from the local program before it issues
lu62_request_to_send .

• When the remote program issues lu62_request_to_send in Send state.
This can be used to signal the local program that data is about to be sent.
The local program issues lu62_test (test =
TEST_REQUEST_TO_SEND_RECEIVED) to poll the local LU for this
situation. Only when the result is TRUE does the local program issue
lu62_receive_and_wait.

See Also
lu62_post_on_receipt

Section 5.8, “Basic Conversations,” illustrates the use of this verb.

8.10 lu62_receive_immediate

lu62_receive_immediate requests any information that is available for the
specified conversation. In contrast to lu62_receive_and_wait , it does not
wait for information to arrive. The information can be data, conversation
status, or a request for confirmation, an indication of the type of information
received is returned.

Basic Conversation Verbs 8-35

8

Synopsis

Request Structure

8.10.1 lu62_receive_t Request Structure Members

The following subsections describe the lu62_receive_t request structure
members.

conv_id

(supplied) Specifies which id conversation to use. conv_id is returned by
lu62_allocate or lu62_accept .

fill

(supplied) Specifies whether the program requires to receive data as a
logical record, or independently of a logical record format. fill may be:
• FILL_LL

The verb returns when a complete or truncated logical record is received,
or the length value is satisfied, whichever occurs first.

• FILL_BUFFER
The verb returns when length data is received or end-of-data occurs,
whichever occurs first.

int lu62_receive_immediate(lu62_receive_t *rqp);

typedef struct {
 bit32 conv_id; /* s */
 lu62_fill_e fill; /* s */
 int length; /* s/r */
 bit32 return_code; /* r */
 bit32 request_to_send_received; /* r */
 bit8 *data; /* r */
 lu62_what_received_e what_received; /* r */
 char map_name[LU62_MAP_NAME_LEN+1]; /* r */
} lu62_receive_t;

8-36 SunLink Peer-to-Peer LU6.2 9.1 Programmer’s Manual—August 1997

8

length

(supplied/returned) On input, this parameter specifies the maximum
amount of data the program can receive. On return, and if data is received,
the parameter is set with the amount of data received. If no data is received,
this parameter is unchanged.

return_code

(returned) Specifies the result of verb execution:
• LU62_OK

• LU62_OPERATION_INCOMPLETE

• LU62_PARAMETER_CHECK

— LU62_CONV_ID_UNKNOWN

— LU62_BAD_LENGTH

— LU62_BAD_FILL_TYPE

— LU62_NULL_DATA

• LU62_PROGRAM_STATE_CHECK

— the conversation is not in Receive state
— LU62_VERB_IN_PROGRESS

• LU62_ALLOCATION_ERROR

• LU62_DEALLOCATE_ABEND_PROG

• LU62_DEALLOCATE_ABEND_TIMER

• LU62_DEALLOCATE_ABEND_SVC

• LU62_DEALLOCATE_NORMAL

• LU62_PROG_ERROR_NO_TRUNC

• LU62_PROG_ERROR_PURGING

• LU62_PROG_ERROR_TRUNC(only in Receive state)
• LU62_SVC_ERROR_NO_TRUNC

• LU62_SVC_ERROR_PURGING

• LU62_SVC_ERROR_TRUNC (only in Receive state)
• LU62_RESOURCE_FAILURE_NO_RETRY

• LU62_RESOURCE_FAILURE_RETRY

• LU62_UNSUCCESSFUL (there is nothing to receive)

Basic Conversation Verbs 8-37

8

request_to_send_received

(returned) Indicates whether or not a request-to-send indication is received
from the remote program:
• TRUE, indicates that a request-to-send indication was received.
• FALSE, indicates that a request-to-send indication was been received.

data

(supplied/returned) Specifies the buffer into which any received data is to
be written. The buffer should be at least as many bytes long as specified in
the lu62_receive_t request structure. If what_received indicates that
information other than data has been received, nothing is written into this
buffer.

what_received

(returned) Indicates the type of information that is received:
• WR_DATA

Is indicated when FILL_BUFFER is specified and data is received.
• WR_DATA_COMPLETE

Is indicated when FILL_LL is specified and a complete logical record is
received (or the remaining portion thereof).

• WR_DATA_INCOMPLETE
Is indicated when FILL_LL is specified and less than a complete logical
record is received. The local program must issue at least one more
lu62_receive_immediate verb to receive the remaining data.

• WR_PS_DATA_COMPLETE
Is indicated when FILL_LL is specified and a PS header is received on a
SYNC_LEVEL_SYNCPT conversation (or the remaining portion thereof).
This extension to the IBM SNA Transaction Programmer’s Reference Manual
is provided for SYNC_LEVEL_SYNCPT (see Appendix F).

• *WR_PS_DATA_INCOMPLETE
Is indicated when FILL_LL is specified and less than a complete PS
header is received on a SYNC_LEVEL_SYNCPT conversation. The local
program must issue at least one more lu62_receive_immediate verb
to receive the remaining data. This extension to IBM SNA Transaction
Programmer’s Reference Manual is provided for SYNC_LEVEL_SYNCPT (see
Appendix F).

8-38 SunLink Peer-to-Peer LU6.2 9.1 Programmer’s Manual—August 1997

8

• WR_LL_TRUNCATED
Is indicated when FILL_LL is specified and the 2-bye LL field of a logical
record is truncated after the first byte. The local program should issue
another lu62_receive_immediate verb to determine why the
truncation occurred (the remote program or LU issued
lu62_send_error or lu62_deallocate (type = DA_ABEND*).

• WR_SEND
Indicates that the remote program has entered Receive state. The local
program transitions to Send state.

• WR_CONFIRM
Indicates that the remote program has issued lu62_confirm . The local
program may respond by issuing lu62_confirmed .

• WR_CONFIRM_SEND
Indicates that the remote program requires a confirmation response before
entering Receive state. The local program may respond by issuing
lu62_confirmed .

• WR_CONFIRM_DEALLOCATE
Indicates that the remote program requires a confirmation response before
deallocating the conversation. The local program may terminate the
conversation by issuing lu62_confirmed .

map_name

(ignored) Mapped conversations only.

State Changes
If the return_code is LU62_OK, the state changes according to the initial
state and the value of the what_received parameter:

• Receive state is entered when the verb is issued in Send state and
what_received = WR_DATA, WR_DATA_COMPLETE,
WR_DATA_INCOMPLETE, WR_PS_DATA_COMPLETE,
WR_PS_DATA_INCOMPLETE, or WR_LL_TRUNCATED.

• Send state is entered when what_received = WR_SEND.

• Confirm state is entered when what_received = WR_CONFIRM,
WR_CONFIRM_SEND, or WR_CONFIRM_DEALLOCATE.

Basic Conversation Verbs 8-39

8

No state change occurs when the verb is issued in Receive state and
what_received = WR_DATA, WR_DATA_COMPLETE,
WR_DATA_INCOMPLETE, WR_PS_DATA_COMPLETE,
WR_PS_DATA_INCOMPLETE, or WR_LL_TRUNCATED.

Usage Notes
1. lu62_receive_immediate receives only one type of information at a

time. It may receive data, status, or a confirmation request, as indicated by
the value of what_received .

2. lu62_receive_immediate resets or cancels posting. If posting is active
and the conversation has been posted, posting is reset. If posting is active
and the conversation is not posted, posting is canceled.

3. When fill = FILL_LL and what_received = WR_DATA_INCOMPLETE,
either the length of the logical record exceeds the maximum length of the
user's data buffer, or the logical record is truncated by the remote program
issuing a lu62_send_error or lu62_deallocate (DA_ABEND*). The
local program must issue another lu62_receive_immediate to determine
whichever of the aforementioned conditions occurs first.

4. When fill = FILL_BUFFER, the program receives whatever data is available,
up to the amount requested by the length parameter. If the length
received is less than that requested, then either the LU received the end-of-
chain or less than the requested amount of data is available. The end-of-
chain condition corresponds to a change of state of the remote program, that
is, a change to Send, Confirm or Deallocate states.

5. The request-to-send notification is usually received when the local program
is in Send state, and is reported to the program via the
request_to_send_received parameter of the lu62_send_data or
lu62_send_error verb. The notification can also be received, however,
when the conversation is in Receive state. This can occur under three
different circumstances:
• When the local program enters Receive state and the remote program

issues lu62_request_to_send before it enters Send state.

• When the remote program enters Receive state using
lu62_prep_to_receive (not lu62_receive_and_wait), and then
issues lu62_request_to_send before the local program enters Send
state. This can occur because the request-to-send is transmitted as an

8-40 SunLink Peer-to-Peer LU6.2 9.1 Programmer’s Manual—August 1997

8

expedited request and can therefore arrive ahead of the request that
carries the send indication. Potentially, the local program cannot
distinguish this condition from the first. This ambiguity is avoided if the
remote program waits until it receives information from the local program
before it issues lu62_request_to_send.

• When the remote program issues lu62_request_to_send in Send
state. This can be used to signal the local program that data is about to be
sent. The local program issues lu62_test
(TEST_REQUEST_TO_SEND_RECEIVED) to poll the local LU for this
situation. Only when the result is TRUE does the local program issue
lu62_receive_immediate .

See Also
lu62_post_on_receipt

8.11 lu62_request_to_send

lu62_mc_request_to_send sends a notification to the remote program to
indicate that the local program would like to enter Send state. The
conversation remains in its current state, however, until a send indication
is received from the remote program.

Synopsis

Request Structure

int lu62_request_to_send(lu62_request_to_send_t *rqp);

typedef struct {
 bit32 conv_id; /* s */
 bit32 return_code; /* r */
} lu62_request_to_send_t;

Basic Conversation Verbs 8-41

8

8.11.1 lu62_request_to_send_t Request Structure Members

The following subsections describe the lu62_request_to_send_t request
structure members:

conv_id

(supplied) Specifies the id of the conversation to be used. conv_id is
returned by lu62_allocate or lu62_accept .

return_code

(returned) Specifies the result of verb execution, which is one of the
following:
• LU62_OK

• LU62_OPERATION_INCOMPLETE

• LU62_PARAMETER_CHECK

• LU62_CONV_ID_UNKNOWN

• LU62_PROGRAM_STATE_CHECK

• The conversation is not is Receive, Confirm, or Send state

• LU62_VERB_IN_PROGRESS

State Changes
No state change occurs.

Usage Notes
1. The remote program is informed of the arrival of a request-to-send

notification by means of the request_to_send_received parameter
returned by lu62_confirm , lu62_receive_and_wait ,
lu62_receive_immediate , lu62_send_data , and lu62_send_error .
The remote program may also poll the LU to determine if a request-to-send
notification was received using lu62_test
(TEST_REQUEST_TO_SEND_RECEIVED). When the remote program
receives the request-to-send notification, it issues
lu62_receive_and_wait or lu62_prep_to_receive to enter Receive
state and thereby places the local program in Send state. The local program
enters Send state when it issues an lu62_receive_and_wait or
lu62_receive_immediate and receives the send indication.

8-42 SunLink Peer-to-Peer LU6.2 9.1 Programmer’s Manual—August 1997

8

2. The remote LU retains the request-to-send notification until the remote
program issues one of the verbs identified above. Additional request-to-
send notifications are discarded until the retained notification is passed to
the remote program.

See Also
lu62_confirm , lu62_prep_to_receive , lu62_receive_and_wait,
lu62_receive_immediate , lu62_send_data , lu62_send_error ,
lu62_test

lu62_send_data , which is used to send data to the remote program. The data
consists of logical records. The amount of data is specified independently of
the data format.

Synopsis

Request Structure

int lu62_send_data(lu62_send_data_t *rqp);

typedef struct {
 bit32 conv_id; /* s */
 bit8 *data; /* s */
 int length; /* s */
 char map_name[LU62_MAP_NAME_LEN+1]; /* s */
 lu62_fmh_data_e fmh_data; /* s */
 lu62_encrypt_e encrypt; /* s */
 lu62_flush_eflush; /* s */
 bit32 return_code; /* r */
 bit32 request_to_send_received; /* r */
} lu62_send_data_t;

Basic Conversation Verbs 8-43

8

8.11.2 lu62_send_data_t Request Structure Members

The following subsections describe the lu62_send_data_t request structure
members:

conv_id

(supplied) Specifies the id of the conversation to use. conv_id is returned
by lu62_allocate or lu62_accept .

data

(supplied) The address of the user buffer containing the data to be sent. The
data is structured in logical records, each comprising a two-byte LL field
followed by a data field. The length of the data can range from 0 to 32765
bytes. The LL field contains the 15-bit binary length of the record. The high
order bit is passed transparently by the sending LU and is used to support
the mapped conversations. The length of the record includes the length of
the LL field.

length

(supplied) Specifies the length of the data to be sent. This data length is not
related to the length of a logical record (unless the data field contains one
and only one complete logical record). A data length of zero is permitted.
No data is sent, but all other parameters retain their meaning.

map_name

(ignored) Mapped conversations only.

fmh_data

(ignored) Mapped conversations only.

encrypt

(ignored) Reserved for future use.

8-44 SunLink Peer-to-Peer LU6.2 9.1 Programmer’s Manual—August 1997

8

flush

(supplied) Specifies whether the supplied data is to be sent to the remote
program immediately or buffered in the local LU's send buffer. flush is set to
one of the following:
• FLUSH_NO

• FLUSH_YES

return_code

(returned) Specifies the result of verb execution, one of the following:
• LU62_OK

• LU62_OPERATION_INCOMPLETE

• LU62_PARAMETER_CHECK

— LU62_CONV_ID_UNKNOWN

— LU62_NULL_DATA

— LU62_BAD_LENGTH

• LU62_PROGRAM_STATE_CHECK

— The conversation is not is Send state.
— LU62_VERB_IN_PROGRESS

• LU62_ALLOCATION_ERROR

• LU62_DEALLOCATE_ABEND_PROG

• LU62_DEALLOCATE_ABEND_TIMER

• LU62_DEALLOCATE_ABEND_SVC

• LU62_PROG_ERROR_PURGING

• LU62_SVC_ERROR_PURGING

• LU62_RESOURCE_FAILURE_NO_RETRY

• LU62_RESOURCE_FAILURE_RETRY

request_to_send_received

(returned) Indicates whether or not a request-to-send indication is received
from the remote program:
• TRUE, indicates that a request-to-send indication was received.
• FALSE, indicates that a request-to-send indication was not received.

State Changes
No state change occurs.

Basic Conversation Verbs 8-45

8

Usage Notes
1. The data sent by the program during a basic conversation consists of logical

records. The logical records are independent of the length of data as
specified by the length parameter. The data can contain one or more
complete records, the beginning of a record, the middle of a record, or the
end of a record. The following combinations of data are also possible:
• One or more complete records, followed by the beginning of a record
• The end of a record, followed by one or more complete records
• The end of a record, followed by one or more complete records, followed

by the beginning of a record; and the end of a record, followed by the
beginning of a record

2. The program must finish sending a logical record before issuing any of the
following calls:
• lu62_confirm

• lu62_deallocate, DA_FLUSH, DA_CONFIRM , or DA_SYNC_LEVEL

• lu62_prep_to_receive

• lu62_receive_and_wait

A program finishes sending a logical record when it sends a complete record
or when it truncates an incomplete record.

3. A complete logical record contains the 2-byte-long LL field and all bytes of
the data field, as determined by the logical-record length. If the data field
length is zero, the complete logical record contains only the 2-byte-long
length field. An incomplete logical record consists of any amount of data
less than a complete record. It can consist of only the first byte of the LL
field, the 2-byte-long LL field plus all of the data field except the last byte, or
any amount between. A logical record is incomplete until the last byte of the
data field is sent, or until the second byte of the LL field is sent if the data
field is zero.

4. A program can truncate an incomplete logical record by issuing the
lu62_send_error verb. lu62_send_error causes the LU to flush its
send buffer, which includes sending the truncated record. The LU then
treats the first two bytes of data specified in the next lu62_send_data as
the LL field. Issuing lu62_deallocate with type set to DA_ABEND* also
truncates an incomplete logical record.

8-46 SunLink Peer-to-Peer LU6.2 9.1 Programmer’s Manual—August 1997

8

5. The local LU buffers the data to be sent to the remote LU until it
accumulates a sufficient amount of data for transmission (from one or more
lu62_send_data verbs), or until the local program issues a call that causes
the LU to flush its send buffer. The amount of data sufficient for
transmission depends on the characteristics of the session allocated for the
conversation, and varies from one session to another.

6. When request_to_send_received is TRUE, the remote program
requests that the local program “give up the turn”, that is, enter Receive
state, thereby placing the remote program in Send state. The local program
enters Receive state by issuing lu62_prep_to_receive or
lu62_receive_and_wait . The remote program issues
lu62_receive_immediate or lu62_receive_and_wait to receive the
resulting Send indication (what_received = WR_SEND).

See Also
lu62_send_error

Section 5.8, “Basic Conversations,” illustrates the use of this verb.

8.12 lu62_send_error

lu62_send_error is used by a program to inform the remote program that
the local program detected an error during a conversation. If the conversation
is in Send state, lu62_send_error forces the LU to flush its send buffer.

When this call completes successfully, the local program is in Send state and
the remote program is in Receive state. Further action is defined by program
logic.

Synopsis

int lu62_send_error(lu62_send_error_t *rqp);

Basic Conversation Verbs 8-47

8

Request Structure

8.12.1 lu62_send_error_t Request Structure Members

The following subsections describe the lu62_send_error_t request structure
members:

conv_id

(supplied) Specifies the id of the conversation to be used. conv_id is
returned by lu62_allocate or lu62_accept .

type

(supplied) Specifies the program type, one of:
• PROG—Indicates that an end-user application error is being reported.
• PROG_SVC—Indicates that an LU services error is being reported.

log_data

(supplied/optional) If supplied, this parameter specifies any product-
unique error information that is to be placed in the system error logs of the
LUs that support this conversation. If supplied, log_data is specified as
an ASCII (null-terminated) string and is translated to EBCDIC by the
SunLink SNA PU2.1 9.1 server.

error_direction

(ignored) Reserved for use by CPI-C.

typedef struct {
 bit32 conv_id; /* s */
 lu62_prog_type_etype; /* s */
 char *log_data; /* s */
 int error_direction; /* s */
 bit32 return_code; /* r */
 bit32 request_to_send_received; /* r */
} lu62_send_error_t;

8-48 SunLink Peer-to-Peer LU6.2 9.1 Programmer’s Manual—August 1997

8

return_code

(returned) Specifies the result of verb execution. return_code may be one
of the following:
• LU62_OK

• LU62_OPERATION_INCOMPLETE

• LU62_PARAMETER_CHECK

— LU62_CONV_ID_UNKNOWN

— LU62_BAD_PROG_TYPE

— LU62_BAD_LOG_DATA

• LU62_PROGRAM_STATE_CHECK

• The conversation is not is Send, Receive, or Confirm state.
• LU62_VERB_IN_PROGRESS

If the verb is issued in Send state, return_code can additionally be one of
the following:
• LU62_ALLOCATION_ERROR

• LU62_DEALLOCATE_ABEND_PROG

• LU62_DEALLOCATE_ABEND_TIMER

• LU62_DEALLOCATE_ABEND_SVC

• LU62_PROG_ERROR_PURGING

• LU62_SVC_ERROR_PURGING

• LU62_RESOURCE_FAILURE_NO_RETRY

• LU62_RESOURCE_FAILURE_RETRY

If the verb is issued in Receive state, return_code can additionally be:
• LU62_DEALLOCATE_NORMAL

• LU62_RESOURCE_FAILURE_NO_RETRY

• LU62_RESOURCE_FAILURE_RETRY

request_to_send_received

(returned) Indicates whether or not a request-to-send indication is received
from the remote program:
• TRUE, indicates that a request-to-send indication was received
• FALSE, indicates that a request-to-send indication was not received

Basic Conversation Verbs 8-49

8

State Changes
When return_code is LU62_OK:

• Send state is entered when the verb is issued in Receive or Confirm states.

• No state change occurs when the verb is issued in Send state.

Usage Notes
1. The LU sends the error notification to the remote LU immediately (during

the processing of this call).

2. Log data is buffered by the local LU until it is implicitly or explicitly
flushed.

3. The issuance of lu62_send_error is reported to the remote program as
one of the following return codes:
• LU62_PROG_ERROR_TRUNC or LU62_SVC_ERROR_TRUNC

The local program issued lu62_send_error in Send state after
sending an incomplete logical record (see lu62_send_data). The record
is truncated.

• LU62_PROG_ERROR_NO_TRUNC or LU62_SVC_ERROR_NO_TRUNC

The local program issued lu62_send_error in Send state after
sending a complete logical record; or before sending any record. No
truncation occurs.

• LU62_PROG_ERROR_PURGING or LU62_SVC_ERROR_PURGING

The local program issued lu62_send_error in Receive state. All
information sent by the remote program and not yet received by the local
program is purged; or the local program issues lu62_send_error in
Confirm state, in which case no purging occurs.

4. When lu62_send_error is issued in Receive state, incoming information
is also purged. Because of this purging, the return_code of
LU62_DEALLOCATE_NORMAL is reported instead of:
• LU62_ALLOCATION_ERROR

• LU62_DEALLOCATED_ABEND_PROG

• LU62_DEALLOCATED_ABEND_SVC

• LU62_DEALLOCATED_ABEND_TIMER

8-50 SunLink Peer-to-Peer LU6.2 9.1 Programmer’s Manual—August 1997

8

Similarly, a return_code of LU62_OK is reported instead of:
• LU62_PROG_ERROR_NO_TRUNC

• LU62_PROG_ERROR_PURGING

• LU62_PROG_ERROR_TRUNC

The following types of incoming information are also purged:
• Data sent with the lu62_send_data call
• Confirmation request sent with the lu62_confirm,

lu62_prep_to_receive , or lu62_deallocate verbs

If the confirmation request was sent with type set to DA_CONFIRM or
DA_SYNC_LEVEL, the deallocation request is also purged.

The request-to-send notification is not purged. This notification is reported
to the program when it issues a call that includes the
request_to_send_received parameter.

5. When request_to_send_received is TRUE, the remote program is
requesting that the local program “give up the turn”, that is, that it enter
Receive state, thereby placing the remote program in Send state. The local
program enters Receive state by issuing lu62_prep_to_receive or
lu62_receive_and_wait . The remote program issues
lu62_receive_immediate or lu62_receive_and_wait to receive the
resulting Send indication (what_received = WR_SEND).

6. The program can use this call for various application-level functions. For
example, the program can issue this call to truncate an incomplete logical
record it is sending; to inform the remote program of an error detected in
data received, or to reject a confirmation request.

7. lu62_send_error resets or cancels posting. If posting is active and the
conversation is posted, posting is reset. If posting is active and the
conversation is not posted, posting is canceled.

See Also
lu62_confirm , lu62_receive_and_wait , lu62_receive_immediate

8.13 lu62_test

lu62_test tests the specified conversation to see if it was posted or a request-
to-send notification was received.

Basic Conversation Verbs 8-51

8

Synopsis

Request Structure

8.13.1 lu62_test_t Request Structure Members

The following subsections describe the lu62_test_t request structure
members:

conv_id

(supplied) Specifies the id of the conversation to use. conv_id is returned
by lu62_allocate or lu62_accept .

test

(supplied) Specifies the condition to be tested, as either:
• TEST_POSTED

• TEST_REQUEST_TO_SEND_RECEIVED

return_code

(returned) Specifies the result of verb execution.

If test = TEST_POSTED, return_code can be one of the following:
• LU62_OK_DATA, data is available to be received
• LU62_OK_NO_DATA, information other than data (that is, status or a

confirmation request) is available to be received
• LU62_OPERATION_INCOMPLETE

• LU62_PARAMETER_CHECK

int lu62_test(lu62_test_t *rqp);

typedef struct {
 bit32 conv_id; /* s */
 lu62_test_type_etest; /* s */
 bit32 return_code; /* r */
} lu62_test_t;

8-52 SunLink Peer-to-Peer LU6.2 9.1 Programmer’s Manual—August 1997

8

• LU62_CONV_ID_UNKNOWN

• LU62_BAD_TEST_TYPE

• LU62_PROGRAM_STATE_CHECK

— The conversation is not in Receive state.
— LU62_VERB_IN_PROGRESS

• LU62_POSTING_NOT_ACTIVE

• LU62_UNSUCCESSFUL (no information is available)
• LU62_ALLOCATION_ERROR

• LU62_DEALLOCATE_ABEND_PROG

• LU62_DEALLOCATE_ABEND_TIMER

• LU62_DEALLOCATE_ABEND_SVC

• LU62_DEALLOCATE_NORMAL

• LU62_PROG_ERROR_NO_TRUNC

• LU62_PROG_ERROR_PURGING

• LU62_PROG_ERROR_TRUNC

• LU62_SVC_ERROR_NO_TRUNC

• LU62_SVC_ERROR_PURGING

• LU62_SVC_ERROR_TRUNC

• LU62_RESOURCE_FAILURE_NO_RETRY

• LU62_RESOURCE_FAILURE_RETRY

If test = TEST_REQUEST_TO_SEND_RECEIVED, return_code can be:
• LU62_OK

• LU62_OPERATION_INCOMPLETE

• LU62_PARAMETER_CHECK

— LU62_CONV_ID_UNKNOWN

— LU62_BAD_TEST_TYPE

• LU62_PROGRAM_STATE_CHECK

— The conversation is not is Send or Receive state.
— LU62_VERB_IN_PROGRESS

— LU62_UNSUCCESSFUL (request-to-send not received)

State Changes
No state change occurs.

Basic Conversation Verbs 8-53

8

Usage Notes
1. See the Usage Notes for lu62_post_on_receipt for a discussion of using

lu62_test (TEST_POSTED) in conjunction with lu62_post_on_receipt
and lu62_wait to provide non-blocking receive processing.

2. If the return_code to lu62_test (POSTED) indicates that information is
available to be received (LU62_DATA or LU62_NO_DATA), the local program
issues lu62_receive_and_wait or lu62_receive_immediate to
receive the information.

3. If the return_code to lu62_test (TEST_POSTED) is
LU62_UNSUCCESSFUL, posting remains active for the conversation.

4. If the return_code to lu62_test
(TEST_REQUEST_TO_SEND_RECEIVED) is LU62_OK, a request-to-send
notification is received by the local LU. LU62_UNSUCCESSFUL indicates that
a request-to-send notification was not received.

See Also
lu62_post_on_receipt , lu62_receive_and_wait,
lu62_receive_immediate , lu62_test

8-54 SunLink Peer-to-Peer LU6.2 9.1 Programmer’s Manual—August 1997

8

9-1

Mapped Conversation Verbs 9

This chapter describes the SunLink P2P LU6.2 9.1 mapped conversation verbs
See Table 9-1 for a list of verbs, along with their function. Detailed man pages
follow.

Table 9-1 SunLink LU6.2 Mapped Conversation Verbs

Verb Function

lu62_mc_allocate Initiates a conversation with a remote TP

lu62_mc_confirm Issues a confirmation request to the remote TP

lu62_mc_confirmed Issue a confirmation responses

lu62_mc_deallocate Terminates a conversation

lu62_mc_flush Forces transmission of data in the send buffer

lu62_mc_get_attributes Returns information about a conversation

lu62_mc_post_on_receipt Sets receives posting conditions for a conversation

lu62_mc_prep_to_receive Changes the conversation from Send to Receive
state

lu62_mc_receive_and_wait Waits for information to arrive and then receives
it

lu62_mc_receive_immediat
e

Receives available information but does not wait

lu62_mc_request_to_send Requests the turn

9-2 SunLink Peer-to-Peer LU6.2 9.1 Programmer’s Manual—August 1997

9

9.1 lu62_mc_allocate

lu62_mc_allocate is used to initiate a mapped conversation with a remote
(partner) transaction program. A session is assigned for the exclusive use of the
local and remote programs for the duration of the conversation. A conversation
id is assigned to the mapped conversation. This conversation id is used to
identify the conversation in all subsequent verbs that are issued.

Synopsis

 lu62_mc_send_data Sends data on the conversation

 lu62_mc_send_error Notifies the remote program of a detected error

 lu62_mc_test Tests a conversation for posting

int lu62_mc_allocate(lu62_allocate_t *rqp);

Table 9-1 SunLink LU6.2 Mapped Conversation Verbs (Continued)

Verb Function

Mapped Conversation Verbs 9-3

9

Request Structure

Code Example 9-1

 typedef struct {

 bit32 port_id; /*s*/

 bit32 tp_id; /*s*/

 char unique_session_name /*s*/

[LU62_UNIQUE_SESSION_NAME_LEN+1]; /*s*/

 char lu_name[LU62_LU_NAME_LEN+1]; /*s*/

 char mode_name[LU62_MODE_NAME_LEN+1]; /*s*/

 char remote_tp_name[LU62_TP_NAME_LEN+1]; /*s*/

 bit32 conv_grp_id; /*s*/

 lu62_processing_mode_e processing_mode; /*s*/

 lu62_conv_type_e type; /*s*/

 lu62_flush_e flush; /*s*/

 lu62_return_control_e return_control; /*s*/

 lu62_sync_level_e sync_level; /*s*/

 lu62_pip_presence_e pip_presence; /*s*/

 lu62_security_e security; /*s*/

 char user_id[LU62_MAX_USER_ID_LEN+1]; /*s*/

 char passwd[LU62_MAX_PASSWD_LEN+1]; /*s*/

 char profile[LU62_MAX_PROFILE_LEN+1]; /*s*/

 bit32 conv_id; /*r*/

 int luw_len /*r*/

 bit8 luw[LU62_MAX_LUW_LEN]; /*r*/

 bit32 return_code; /*r*/

 } lu62_allocate_t;

9-4 SunLink Peer-to-Peer LU6.2 9.1 Programmer’s Manual—August 1997

9

9.1.1 lu62_allocate_t Request Structure Members

The lu62_allocate_t request structure members are described in the
following subsections:

port_id

(supplied) Specifies the port_id of the LU connection to use. The port_id
is returned by lu62_open .

tp_id

(supplied/optional) Specifies the id of a registered TP for which a
conversation is accepted. This parameter is used when security =
SECURITY_SAME (see below). The tp_id is returned by lu62_accept .

unique_session_name

Used to specify the actual node used from the configuration instead of
lu_name and node. Furthermore, to use unique session names, the TP
cannot use an lu_name in the previous open.

lu_name

(supplied) Specifies the locally known name of the partner LU at which the
remote transaction program, remote_tp_name , is located. lu_name is
supplied as an ASCII (null-terminated) string. It corresponds to the
PTNR_LU NAME or NO_LU_NAME parameter in the configuration.

mode_name

(supplied) Specifies the name of the required mode. The conversation is
allocated on a session of this mode. mode_name is supplied as an ASCII
(null-terminated) string and is translated to EBCDIC by the SunLink SNA
PU2.1 9.1 server. It corresponds to the MODE NAME parameter in the
configuration.

Mapped Conversation Verbs 9-5

9

remote_tp_name

(supplied) Specifies the name of the transaction program to which
conversation attachment is required. remote_tp_name is supplied as an
ASCII (null-terminated) string and is translated to EBCDIC by the SunLink
SNA PU2.1 9.1 server.

conv_grp_id

(ignored) Reserved for future use.

processing_mode

(supplied) Specifies the initial processing mode of the conversation from one
of the following:
• PM_BLOCKING

• PM_NON_BLOCKING

If processing_mode is set to PM_BLOCKING, lu62_mc_allocate does
not return until a conversation is successfully allocated (return_code =
LU62_OK) or the verb fails for some reason. If processing_mode is set to
PM_NON_BLOCKING and initial parameter checks pass, return_code is set
to LU62_OPERATION_INCOMPLETE and lu62_wait_server must be
issued to receive the eventual return.

The specified processing_mode remains in effect for the allocated
conversation until lu62_set_processing_mode is issued or the
conversation terminates.

type

(ignored) Basic conversations only.

flush

(supplied) Specifies whether the allocation request is sent to the remote LU
as soon as a session is allocated for the conversation, or whether the
allocation request is retained until some other flush condition arises.
flush is set to one of the following:
• FLUSH_NO

• FLUSH_YES

9-6 SunLink Peer-to-Peer LU6.2 9.1 Programmer’s Manual—August 1997

9

return_control

(supplied) Specifies when, in relation to the allocation of a session for the
conversation, the local LU is to return control to the program.
return_control is set to one of the following:
• RC_WHEN_SESSION_ALLOCATED

• RC_IMMEDIATE

Note – LU62_OPERATION_INCOMPLETE will still be returned when the
processing mode is non-blocking.

• RC_WHEN_CONWINNER_ALLOCATED

sync_level

(supplied) Specifies the synchronization level for the conversation from one
of the following:
• SYNC_LEVEL_NONE

• SYNC_LEVEL_CONFIRM

• SYNC_LEVEL_SYNCPT

The selected sync_level must correspond to the TP SYNC_LEVEL
configuration of the remote TP.

pip_presence

(supplied) Specifies whether the pip_presence field of the FMH-5 Attach
request is to be set or not:
• PIP_NOT_PRESENT

• PIP_PRESENT

If PIP_PRESENT, the FMH-5 attach request is built with the pip_presence
indicator set. The caller is obliged to build the PIP variable (see Chapter 11
of the IBM SNA Formats manual and send it using the lu62_send_data
verb.

security

(supplied) Specifies the access security information that the partner LU
requires to verify the identity of the conversation initiator and validate
access to the remote program and its resources. security may be:

Mapped Conversation Verbs 9-7

9

• SECURITY_NONE—Security access information is omitted
• SECURITY_SAME—Specifies to use known (and already verified) user_id

(and profile) information. If user_id (and profile) are supplied, these
values are used. Otherwise, if tp_id is supplied, information is taken
from the first allocation request accepted for that TP, or if tp_id is not
supplied, the Unix user_id is sent.

• SECURITY_PROGRAM—Indicates that the required user_id , password
(and profile) are included in this allocate request.

user_id

(supplied/conditional) If security is SECURITY_NONE or
SECURITY_PROGRAM, a user_id is required. user_id is specified as an
ASCII (null-terminated) string and is translated to EBCDIC by the SunLink
SNA PU2.1 9.1 server.

passwd

(supplied/conditional) If security is SECURITY_PROGRAM, passwd is
required. passwd is specified as an ASCII (null-terminated) string and is
translated to EBCDIC by the SunLink SNA PU2.1 9.1 server.

profile

(supplied/conditional) profile is specified as an ASCII (null-terminated)
string and is translated to EBCDIC by the SunLink SNA PU2.1 9.1 server.

conv_id

(returned) Specifies the identifier of the allocated conversation. All
subsequent verbs issued on this conversation require this identifier.

luw_len
luw

(supplied/returned) This extension to the IBM SNA Transaction Programmer’s
Reference Manual is provided for SYNC_LEVEL_SYNCPT (see Appendix F). If
supplied, luw contains the complete Logical Unit of Work Identifier to be set
in the FMH-5 Attach (see Chapter 11 of the IBM SNA Formats manual). If
luw is not supplied for SYNC_LEVEL_SYNCPT, the SunLink SNA PU2.1 9.1
server will generate the luw on the caller’s behalf.

9-8 SunLink Peer-to-Peer LU6.2 9.1 Programmer’s Manual—August 1997

9

return_code

(returned) Specifies the result of verb execution. return_code values are
affected by the value of the return_control parameter. The following
return_codes can occur with all values of return_control :
• LU62_OK

• LU62_OPERATION_INCOMPLETE

• LU62_PARAMETER_CHECK

— LU62_PORT_ID_UNKNOWN

• LU62_BAD_LU_NAME

• LU62_BAD_MODE_NAME

• LU62_BAD_REMOTE_TP_NAME

• LU62_BAD_PROCESSING_MODE

• LU62_BAD_CONV_TYPE

• LU62_BAD_FLUSH_TYPE

• LU62_BAD_RETURN_CONTROL

• LU62_BAD_SYNC_LEVEL

• LU62_BAD_SECURITY

• LU62_BAD_SECURITY_PROGRAM

• LU62_BAD_USERID

• LU62_BAD_PASSWD

• LU62_BAD_PROFILE

• LU62_LU_NAME_REQD

• LU62_MODE_NAME_REQD

• LU62_REMOTE_TP_NAME_REQD

• LU62_UNKNOWN_TP

• LU62_PROGRAM_STATE_CHECK

— LU62_TP_NOT_STARTED

• LU62_ALLOCATION_ERROR

— LU62_SYNC_LEVEL_NOT_SUPPORTED_BY_LU

If return_control is set to RC_WHEN_SESSION_ALLOCATED or
RC_WHEN_CONWINNER_ALLOCATED, the following additional
return_codes are possible:
• LU62_PARAMETER_ERROR

— LU62_UNKNOWN_MODE

— LU62_UNKNOWN_PARTNER_LU

Mapped Conversation Verbs 9-9

9

• LU62_ALLOCATION_ERROR

— LU62_ALLOCATION_FAILURE_NO_RETRY

— LU62_ALLOCATION_FAILURE_RETRY

If return_control is set to RC_IMMEDIATE, the following additional
return_codes are possible:
• LU62_PARAMETER_ERROR

— LU62_UNKNOWN_MODE

— LU62_UNKNOWN_PARTNER_LU

• LU62_UNSUCCESSFUL (no session is available).

State Changes
When return_code is LU62_OK, the conversation enters Send state.

Usage Notes
1. Session contention occurs when both LUs attempt to allocate a conversation

on the session at the same time. Contention is resolved by making one LU
the contention-winner, and the other the contention-loser. The contention-
winner is guaranteed access to the session; the contention-loser must first
ask permission of the contention-winner LU before it attempts to allocate a
conversation on the session. See the MODE directive in the configuration for
more information on session limits, conwinnners and conlosers.

2. An allocation error resulting from the local LU's failure to obtain a session
for the conversation is reported on the lu62_mc_allocate call. An
allocation error resulting from the remote LU's rejection of the allocation
request is reported on a subsequent conversation call.

See Also
Section 5.3, “Allocating Conversations,” which provides an example of the use
of this verb.

9.2 lu62_mc_confirm

lu62_mc_confirm sends a request for confirmation to the remote transaction
program and waits for a reply. In normal circumstances, the remote program
issues an lu62_mc_confirmed verb in response. The LU flushes the
conversation's send buffer as a function of this verb.

9-10 SunLink Peer-to-Peer LU6.2 9.1 Programmer’s Manual—August 1997

9

Synopsis

Request Structure

9.2.1 lu62_confirm_t Request Structure Members

The following subsections describe the lu62_confirm_t request structure
members:

conv_id

(supplied) Specifies the id of the conversation to use. conv_id is returned
by lu62_mc_allocate or lu62_accept .

return_code

(returned) Specifies the result of verb execution from one of the following:
• LU62_OK

• LU62_OPERATION_INCOMPLETE

• LU62_PARAMETER_CHECK

— LU62_CONV_ID_UNKNOWN

— LU62_BAD_SYNC_LEVEL

• LU62_PROGRAM_STATE_CHECK

— the conversation is not is Send state
— LU62_PIP_PENDING - the conversation is in Send state following an

lu62_(mc_)_allocate verb in which pip_presence was indicated.
A basic send, lu62_send_data , is required to send the PIP Variable.

— LU62_VERB_IN_PROGRESS

• LU62_ALLOCATION_ERROR

int lu62_mc_confirm(lu62_confirm_t *rqp);

typedef struct {
 bit32 conv_id; /* s */
 bit32 return_code; /* r */
 bit32 request_to_send_received; /* r */
} lu62_confirm_t;

Mapped Conversation Verbs 9-11

9

• LU62_DEALLOCATE_ABEND

• LU62_FMH_DATA_NOT_SUPPORTED

• LU62_PROG_ERROR_PURGING

• LU62_RESOURCE_FAILURE_NO_RETRY

• LU62_RESOURCE_FAILURE_RETRY

request_to_send_received

(returned) Indicates whether or not a request-to-send indication is received
from the remote program:
• TRUE, indicates that a request-to-send indication was received.
• FALSE, indicates that a request-to-send indication was not received.

State Changes
This verb can only be issued in Send state. No state change occurs.

Usage Notes
1. This verb is used to synchronize local and remote processing:

• The initiating program may issue this verb immediately following
lu62_mc_allocate to ensure that the remote program is available and
attached before sending any data.

• The sending program may issue this verb as a request for
acknowledgment of the data it sent to the remote program. The remote
program issues lu62_mc_confirmed to positively acknowledge receipt,
or lu62_mc_send_error to indicate that it encountered an error.

2. When request_to_send_received is TRUE, the remote program is
requesting that the local program to “give up the turn” and enter Receive
state, thereby placing the remote program in Send state. The local program
enters Receive state by issuing lu62_mc_prep_to_receive or
lu62_mc_receive_and_wait . The remote program issues
lu62_mc_receive_immediate or lu62_mc_receive_and_wait to
receive the resulting send indication (what_received = WR_SEND).

See Also
lu62_mc_confirmed , lu62_mc_send_error

9-12 SunLink Peer-to-Peer LU6.2 9.1 Programmer’s Manual—August 1997

9

Section 5.8, “Basic Conversations,” illustrates how programs may be
synchronized using confirmation requests.

9.3 lu62_mc_confirmed

lu62_mc_confirmed sends a confirmation reply in response to a
confirmation request from the remote transaction program. The local program
issues this verb when it receives a confirmation request. (See the
what_received parameter of the lu62_mc_receive_and_wait and
lu62_mc_receive_immediate verbs). This verb can only be issued as a
reply to a confirmation request and cannot be issued at any other time.

Synopsis

Request Structure

9.3.1 lu62_confirmed_t Request Structure Members

The following subsections describe the lu62_confirmed_t request structure
members:

conv_id

(supplied) Specifies the id of the conversation to use. conv_id is returned
by lu62_mc_allocate or lu62_accept .

return_code

(returned) Specifies the result of verb execution from one of the following:
• LU62_OK

• LU62_OPERATION_INCOMPLETE

int lu62_mc_confirmed(lu62_confirmed_t *rqp);

typedef struct {
 bit32 conv_id; /* s */
 bit32 return_code; /* r */
} lu62_confirmed_t;

Mapped Conversation Verbs 9-13

9

• LU62_PARAMETER_CHECK

— LU62_CONV_ID_UNKNOWN

• LU62_PROGRAM_STATE_CHECK

— Conversation is not in Confirm , Confirm_Send , or
Confirm_Deallocate state

— LU62_VERB_IN_PROGRESS

State Changes
The state change depends on the value of the what_received parameter of
the preceding lu62_mc_receive_and_wait or
lu62_mc_receive_immediate verb:

• Receive state is entered when what_received = WR_CONFIRM.

• Send state is entered when what_received = WR_CONFIRM_SEND.

• Deallocate state is entered when what_received =
WR_CONFIRM_DEALLOCATE.

Usage Notes
1. The local and remote programs use the lu62_mc_confirm and

lu62_mc_confirmed verbs to synchronize their processing. For example,
the remote program can request an acknowledgment that the data it sent
was received by the local program. The local program issues
lu62_mc_confirmed to provide a positive acknowledgment or
lu62_mc_send_error , to send a negative acknowledgment.

See Also
lu62_mc_receive_and_wait, lu62_mc_receive_immediate,
lu62_mc_confirm, lu62_mc_send_error.

Section 5.8, “Basic Conversations,” illustrates how programs may be
synchronized using confirmation requests.

9-14 SunLink Peer-to-Peer LU6.2 9.1 Programmer’s Manual—August 1997

9

9.4 lu62_mc_deallocate

lu62_mc_deallocate deallocates the specified conversation from the
transaction program. The deallocation can include the function of the
lu62_mc_flush or lu62_mc_confirm verb, depending on the value
of the type parameter.

Synopsis

Request Structure

The lu62_deallocate_t request structure members are:

conv_id

(supplied) Specifies the id of the conversation to use. conv_id is returned
by lu62_mc_allocate or lu62_accept .

type

(supplied) Specifies the type of deallocation to perform one of the following:
• DA_SYNC_LEVEL

Deallocation processing is dependent on the conversation synchronization
level (as specified by the sync_level parameter of the
lu62_mc_allocate verb):
— SYNC_LEVEL_NONE: Performs the function of the lu62_mc_flush

verb and deallocates the conversation normally

int lu62_mc_deallocate(lu62_deallocate_t *rqp);

typedef struct {
 bit32 conv_id; /* s */
 lu62_deallocate_type_e type; /* s */
 char *log_data; /* s */
 bit32 return_code; /* r */
} lu62_deallocate_t;

Mapped Conversation Verbs 9-15

9

— SYNC_LEVEL_CONFIRM: Performs the function of the
lu62_mc_confirm verb and, if successful, deallocates the conversation
normally

— DA_SYNC_LEVEL is not supported when the sync_level is
SYNC_LEVEL_SYNCPT

• DA_FLUSH
Performs the function of the lu62_mc_flush verb and deallocates the
conversation normally

• DA_CONFIRM
Performs the function of the lu62_mc_confirm verb and, if successful,
deallocates the conversation normally. This deallocation type can only be
used on conversations with sync_level =SYNC_LEVEL_CONFIRM.

• DA_ABEND
Performs the function of the lu62_mc_flush verb and deallocates the
conversation abnormally. Data purging can occur in Receive state

• DA_UNBIND
Forces the session to be deactivated by the SunLink SNA PU2.1 9.1 server.
This extension to the IBM SNA Transaction Programmer’s Reference Manual
is provided for SYNC_LEVEL_SYNCPT (see Appendix F)

• DA_LOCAL
Deallocates the conversation locally. This type of deallocation can only be
specified, and must be specified, if the conversation is in Deallocate state

log_data

(ignored) Basic conversations only.

return_code

(returned) Specifies the result of verb execution. return_code is
dependent on the deallocation type.

9-16 SunLink Peer-to-Peer LU6.2 9.1 Programmer’s Manual—August 1997

9

When the function of the lu62_mc_flush verb is performed (see above),
return_code can be:
• LU62_OK

• LU62_OPERATION_INCOMPLETE

• LU62_PARAMETER_CHECK

— LU62_CONV_ID_UNKNOWN

— LU62_BAD_DEALLOCATE_TYPE

• LU62_PROGRAM_STATE_CHECK

— the conversation is not in Send state
— LU62_VERB_IN_PROGRESS

When the function of the lu62_mc_confirm verb is performed (see above),
return_code can be:
• LU62_OK

• LU62_OPERATION_INCOMPLETE

• LU62_PARAMETER_CHECK

— LU62_CONV_ID_UNKNOWN

— LU62_BAD_SYNC_LEVEL

• LU62_PROGRAM_STATE_CHECK

— the conversation is not in Send state
— LU62_VERB_IN_PROGRESS

• LU62_ALLOCATION_ERROR

• LU62_DEALLOCATE_ABEND

• LU62_FMH_DATA_NOT_SUPPORTED

• LU62_PROG_ERROR_PURGING

• LU62_RESOURCE_FAILURE_NO_RETRY

• LU62_RESOURCE_FAILURE_RETRY

When deallocation type is DA_ABEND or DA_UNBIND, return_code can
be:
• LU62_OK

• LU62_OPERATION_INCOMPLETE

• LU62_PARAMETER_CHECK

— LU62_CONV_ID_UNKNOWN

• LU62_PROGRAM_STATE_CHECK

— The conversation is not in Send, Receive, or Confirm state.

Mapped Conversation Verbs 9-17

9

— LU62_VERB_IN_PROGRESS

When deallocation type is DA_LOCAL, return_code can be:
• LU62_OK

• LU62_OPERATION_INCOMPLETE

• LU62_PARAMETER_CHECK

— LU62_CONV_ID_UNKNOWN

• LU62_PROGRAM_STATE_CHECK

— The conversation is not in Deallocate state.
— LU62_VERB_IN_PROGRESS

State Changes
When return_code is LU62_OK, the conversation is Reset.

Usage Notes
1. The deallocation type DA_SYNC_LEVEL causes the conversation deallocation

to be performed based on the conversation's synchronization level.

2. If the deallocation type is DA_LOCAL, or DA_SYNC_LEVEL and the
sync_level is SYNC_LEVEL_NONE, the conversation is unconditionally
deallocated. The remote program lu62_receive * return_code is
LU62_DEALLOCATE_NORMAL, which causes it to enter Deallocate state. In
Deallocate state, the remote program issues
lu62_mc_deallocate (DA_LOCAL) to end the conversation.

3. If the deallocation type is DA_CONFIRM, or DA_SYNC_LEVEL and the
sync_level is SYNC_LEVEL_CONFIRM, the function of the
lu62_mc_confirm verb is performed prior to deallocation. The remote
program receives what_received = WR_CONFIRM_DEALLOCATE, and may
issue an lu62_mc_confirmed verb in response. In this case the
conversation is deallocated when the local LU receives the confirmation
response. If the remote program issues lu62_mc_send_error , the
conversation remains allocated.

4. The deallocation type DA_ABEND is intended to be used to unconditionally
deallocate the conversation irrespective of its synchronization level or state.
If the conversation is operating in non-blocking mode, and an operation is

9-18 SunLink Peer-to-Peer LU6.2 9.1 Programmer’s Manual—August 1997

9

incomplete, an attempt to lu62_mc_deallocate(DA_ABEND) will cause an
LU62_PROGRAM_STATE_ERROR. In this situation use the lu62_abort verb
to abandon the conversation.

See Also
lu62_mc_receive_and_wait , lu62_mc_receive_immediate,
lu62_abort

9.5 lu62_mc_flush

lu62_mc_flush flushes the local LU's conversation send buffer. Any buffered
information is sent to the remote LU. Information buffered by the
LU can come from lu62_mc_allocate (flush = FLUSH_NO),
lu62_mc_send_data , or lu62_mc_send_error .

Synopsis

Request Structure

9.5.1 lu62_flush_t Request Structure Members

The following subsections describe the lu62_flush_t request structure
members:

conv_id

(supplied) Specifies the id of the conversation to use. conv_id is returned
by lu62_mc_allocate or lu62_accept .

int lu62_mc_flush(lu62_flush_t *rqp);

typedef struct {
 bit32 conv_id; /* s */
 bit32 return_code; /* r */
} lu62_flush_t;

Mapped Conversation Verbs 9-19

9

return_code

(returned) Specifies the result of verb execution as one of the following:
• LU62_OK

• LU62_OPERATION_INCOMPLETE

• LU62_PARAMETER_CHECK

— LU62_CONV_ID_UNKNOWN

— LU62_BAD_FLUSH_TYPE

• LU62_PROGRAM_STATE_CHECK

— The conversation is not is Send state.
— LU62_VERB_IN_PROGRESS

State Changes
This verb can only be issued in Send state. No state change occurs.

Usage Notes
1. Normally, the LU buffers the data from consecutive lu62_mc_send_data

verbs until it has completely filled the current request unit (RU), or the local
program issues a verb that causes an end-of-chain to be sent to the remote
LU. Only then it sends the data to the remote LU. This way the transmission
overhead is minimized. The lu62_mc_flush verb enables the local
program to force buffer transmission.

2. The LU flushes its buffer only if it has something to send. Nothing is sent if
the buffer is empty.

See Also
lu62_mc_allocate , lu62_mc_send_data , lu62_mc_send_error

9.6 lu62_mc_get_attributes

lu62_mc_get_attributes is used to provide information regarding the
specified conversation.

9-20 SunLink Peer-to-Peer LU6.2 9.1 Programmer’s Manual—August 1997

9

Synopsis

Request Structure

The lu62_get_attributes_t request structure members are:

conv_id

(supplied) Specifies the id of the conversation to use. conv_id is returned
by lu62_mc_allocate or lu62_accept.

return_code

(returned) Specifies the result of verb execution, as one of the following:
• LU62_OK

• LU62_PARAMETER_CHECK

int lu62_mc_get_attributes(lu62_get_attributes_t *rqp);

typedef struct {
 bit32 conv_id; /* s */
 bit32 return_code; /* r */

char unique_session_name /* r */
[LU62_UNIQUE_SESSION_NAME_LEN+1];

 char partner_lu_name[LU62_LU_NAME_LEN+1]; /* r */
 char mode_name[LU62_MODE_NAME_LEN+1]; /* r */
 bit8 partner_qlu_name[LU62_NQ_LU_NAME_LEN+1]; /* r */
 int partner_qlu_name_len; /* r */
 lu62_sync_level_e sync_level; /* r */
 lu62_conv_state_e conv_state; /* r */
 int conv_corr_len; /* r */
 bit8 conv_corr[LU62_MAX_CONV_CORR_LEN]; /* r */
 bit32 conv_grp_id; /* r */
 int sess_id_len; /* r */
 bit8 sess_id[LU62_MAX_SESS_ID_LEN]; /* r */
 int luw_len; /* r */
 bit8 luw[LU62_MAX_LUW_LEN]; /* r */
} lu62_get_attributes_t;

Mapped Conversation Verbs 9-21

9

— LU62_CONV_ID_UNKNOWN

unique_session_name

Used to specify the actual node used from the configuration instead of
lu_name and node. Furthermore, to use unique session names, the TP
cannot have used an lu_name in the previous open.

partner_lu_name

(returned) Specifies the name of the partner LU at which the remote
transaction program is located. partner_lu_name corresponds to the
PTNR_LU NAME parameter in the configuration.

mode_name

(returned) Specifies the name of the selected mode. The conversation is
allocated on a session of this mode. mode_name corresponds to the MODE
NAME parameter in the configuration.

partner_qlu_name_len
partner_qlu_name

(returned) Specifies the fully qualified name of the partner LU at which the
remote transaction program is located. partner_qlu_name corresponds
to the PTNR_LU NQ_LU_NAME parameter in the configuration.

sync_level

(supplied) Specifies the synchronization level for the conversation, as one of
the following:
• SYNC_LEVEL_NONE

• SYNC_LEVEL_CONFIRM

• SYNC_LEVEL_SYNCPT

conv_state

(supplied) Specifies the current state of the conversation, as one of the
following:
• CONV_RESET

• CONV_SEND

• CONV_RECEIVE

9-22 SunLink Peer-to-Peer LU6.2 9.1 Programmer’s Manual—August 1997

9

• CONV_CONFIRM

• CONV_CONFIRM_SEND

• CONV_CONFIRM_DEALLOCATE

• CONV_DEALLOCATE

conv_grp_id

(ignored) Reserved for future use.

conv_corr_len
conv_corr

(ignored) Reserved for future use.

sess_id_len
sess_id

(returned) Returns the assigned session identifier. The sess_id is returned
as binary data. (Contrast this to lu62_display_mode and
lu62_deactivate_session in which session_id is an ASCII-hex
string).

*luw_len*luw

(returned) This extension to the IBM SNA Transaction Programmer’s Reference
Manual is provided for SYNC_LEVEL_SYNCPT (see Appendix F). luw
contains the complete Logical Unit of Work Identifier as set in the FMH-5
Attach that initiated the conversation (see Chapter 11 of the IBM SNA
Formats manual.

State Changes
No state change occurs.

See Also
Section 5.4, “Accepting Conversations,” provides an example of how this verb
is used.

Mapped Conversation Verbs 9-23

9

9.7 lu62_mc_post_on_receipt

lu62_mc_post_on_receipt causes the LU to post the specified conversation
when information is available to be received. The information can be data,
conversation status, or a request for confirmation. When the conservation is
posted, the information is retrieved using lu62_mc_receive_and_wait or
lu62_mc_receive_immediate . Programs can issue the lu62_wait verb to
wait for posting to occur. Alternatively, programs can issue lu62_mc_test to
poll a conversation to see if it is posted.

Synopsis

Request Structure

9.7.1 lu62_post_on_receipt_t Request Structure Members

The following subsections describe the lu62_post_on_receipt_t request
structure members:

conv_id

(supplied) Specifies the id of the conversation to use. conv_id is returned
by lu62_mc_allocate or lu62_accept .

length

(supplied) Specifies the maximum amount of data the program can receive.

int lu62_mc_post_on_receipt(lu62_post_on_receipt_t *rqp);

typedef struct {
 bit32 conv_id; /* s */
 int length; /* s */
 lu62_fill_e fill; /* s */
 bit32 return_code; /* r */
} lu62_post_on_receipt_t;

9-24 SunLink Peer-to-Peer LU6.2 9.1 Programmer’s Manual—August 1997

9

fill

(ignored) Basic conversations only.

return_code

(returned) Specifies the result of verb execution from one of the following:
• LU62_OK

• LU62_OPERATION_INCOMPLETE

• LU62_PARAMETER_CHECK

— LU62_CONV_ID_UNKNOWN

— LU62_BAD_LENGTH

• LU62_PROGRAM_STATE_CHECK

— Conversation is not is Receive state.
— LU62_VERB_IN_PROGRESS

State Changes
This verb can only be issued in Receive state. No state change occurs.

Usage Notes
1. The lu62_mc_post_on_receipt , lu62_wait , and lu62_mc_test verbs

together provide the IBM SNA Transaction Programmer’s Reference Manual
architected solution for handling multiple conversations in a non-blocking
manner. This solution, however, handles receive processing only. All
conversations must still wait for one conversation to confirm an operation,
or for another to deallocate. An alternative approach is to use
lu62_set_processing_mode to set your conversations into
LU62_NON_BLOCKING mode. In this mode, all verbs that require interaction
with the SunLink SNA PU2.1 9.1 server return as
LU62_OPERATION_INCOMPLETE as soon as a request is sent to the server.
Other conversations can then be processed. When the program is ready, it
issues lu62_wait_server to wait for an outstanding operation to
complete. Thus, lu62_mc_receive_and_wait may be used to wait for
conversation data or status without blocking other conversations.

2. Posting occurs when the LU has any information that would satisfy a
receive verb. Refer to lu62_mc_receive_and_wait for a description of
what information can be received (what_received).

Mapped Conversation Verbs 9-25

9

3. Posting remains in effect until the conversation is posted, posting is reset,
or posting is cancelled.

Posting is reset when one of the following verbs is issued on the
conversation after the conversation is posted:
• lu62_mc_deallocate (DA_ABEND)

• lu62_mc_receive_and_wait

• lu62_mc_receive_immediate

• lu62_mc_send_error

• lu62_mc_test

• lu62_wait

Posting is cancelled when any of the following verbs is issued on the
conversation before the conversation is posted:
• lu62_mc_deallocate (DA_ABEND)

• lu62_mc_receive_and_wait

• lu62_mc_receive_immediate

• lu62_mc_send_error

See Also
lu62_mc_receive_and_wait , lu62_mc_receive_immediate,
lu62_mc_test , lu62_wait , lu62_wait_server

9.8 lu62_mc_prep_to_receive

lu62_mc_prep_to_receive changes the conversation from Send to Receive
state, in preparation to receive data.

Synopsis

int lu62_mc_prep_to_receive(lu62_prep_to_receive_t *rqp);

9-26 SunLink Peer-to-Peer LU6.2 9.1 Programmer’s Manual—August 1997

9

Request Structure

9.8.1 lu62_prep_to_receive_t Request Structure Members

The following subsections describe the lu62_prep_to_receive_t request
structure members.

conv_id

(supplied) Specifies the id of the conversation to use. conv_id is returned
by lu62_mc_allocate or lu62_accept.

type

(supplied) Specifies the type of prepare to receive in order to perform one of
the following:
• PR_SYNC_LEVEL

Processing is dependent on the conversation synchronization level (as
specified by the sync_level parameter of the lu62_mc_allocate
verb):
— SYNC_LEVEL_NONE, performs the function of the lu62_mc_flush

verb and enters Receive state
— SYNC_LEVEL_CONFIRM, performs the function of the

lu62_mc_confirm verb and, if successful, enters Receive state
— PR_SYNC_LEVEL is not supported when the sync_level is

SYNC_LEVEL_SYNCPT

• PR_FLUSH
Performs the function of the lu62_mc_flush verb and enters Receive
state

typedef struct {
 bit32 conv_id; /* s */
 lu62_prep_to_rcv_type_e type; /* s */
 lu62_locks_e locks; /* s */
 bit32 return_code; /* r */
} lu62_prep_to_receive_t;

Mapped Conversation Verbs 9-27

9

• PR_CONFIRM
Perform the function of the lu62_mc_confirm verb and, if successful,
enters Receive state. This type can only be used on conversations with
sync_level =SYNC_LEVEL_CONFIRM

locks

(supplied/conditional) Specifies when control is to be returned to the local
program. This parameter is only relevant if type = PR_CONFIRM. It may be
one of the following:
• LOCKS_SHORT

Control is returned immediately after the confirmation response is
received from the remote program

• LOCKS_LONG
Control is returned when information, such as data or status, is received
from the remote program following the confirmation response

return_code

(returned) Specifies the result of verb execution. return_code is dependent
on the type .

The following return_codes can be returned for all values of the type
parameter:
• LU62_OK

• LU62_OPERATION_INCOMPLETE

• LU62_PARAMETER_CHECK

— LU62_CONV_ID_UNKNOWN

— LU62_BAD_PREP_TO_RCV_TYPE

— LU62_BAD_LOCKS_TYPE

• LU62_PROGRAM_STATE_CHECK

— Conversation is not in Send state.
— LU62_PIP_PENDING - the conversation is in Send state following an

lu62_(mc_)_allocate verb in which pip_presence was indicated.
A basic send, lu62_send_data , is required to send the PIP Variable

— LU62_VERB_IN_PROGRESS

9-28 SunLink Peer-to-Peer LU6.2 9.1 Programmer’s Manual—August 1997

9

When the function of the lu62_mc_confirm verb is performed (see above),
additional return_codes are possible:
• LU62_OK

• LU62_ALLOCATION_ERROR

• LU62_DEALLOCATE_ABEND

• LU62_FMH_DATA_NOT_SUPPORTED

• LU62_PROG_ERROR_PURGING

• LU62_RESOURCE_FAILURE_NO_RETRY

• LU62_RESOURCE_FAILURE_RETRY

State Changes
When return_code is LU62_OK, the conversation is in Receive state.

Usage Notes
1. When type = PR_SYNC_LEVEL, send control is transferred to the remote

program based on the synchronization level of the conversation. Thus, if the
synchronization level is SYNC_LEVEL_CONFIRM, a confirmation response is
required before handing over send control.

2. When type = PR_FLUSH, or type =PR_SYNC_LEVEL and the
synchronization level is SYNC_LEVEL_NONE, send control is transferred to
the remote program without a confirmation. The remote program's
lu62_mc_receive* verb returns with a what_received value of
WR_SEND.

3. When type = PR_CONFIRM, or type = PR_SYNC_LEVEL and the
synchronization level is SYNC_LEVEL_CONFIRM, a confirmation response is
required before handing over send control. The remote program's
lu62_mc_receive* verb returns with a what_received value of
WR_CONFIRM_SEND.

See Also
lu62_mc_confirmed , lu62_mc_receive_and_wait,
lu62_mc_receive_immediate

Mapped Conversation Verbs 9-29

9

9.9 lu62_mc_receive_and_wait

lu62_mc_receive_and_wait waits for information to be received on the
specified conversation. The information can be data, conversation status, or a
request for confirmation. An indication of the type of information received is
returned.

Synopsis

Request Structure

9.9.1 lu62_receive_t Request Structure Members

The following subsections describe the lu62_receive_t request structure
members:

conv_id

(supplied) Specifies the id of the conversation to use. conv_id is returned
by lu62_mc_allocate or lu62_accept .

fill

(ignored) Basic conversations only.

int lu62_mc_receive_and_wait(lu62_receive_t *rqp);

typedef struct {
 bit32 conv_id; /* s */
 lu62_fill_e fill; /* s */
 int length; /* s/r */
 bit32 return_code; /* r */
 bit32 request_to_send_received; /* r */
 bit8 *data; /* r */
 lu62_what_received_e what_received; /* r */
 char map_name[LU62_MAP_NAME_LEN+1]; /* r */
} lu62_receive_t;

9-30 SunLink Peer-to-Peer LU6.2 9.1 Programmer’s Manual—August 1997

9

length

(supplied/returned) On input, this parameter specifies the maximum
amount of data the program can receive. On return, and if data is received,
the parameter is set with the amount of data received. If no data is received,
this parameter is unchanged.

return_code

(returned) Specifies the result of verb execution, as one of the following:
• LU62_OK

• LU62_OPERATION_INCOMPLETE

• LU62_PARAMETER_CHECK

— LU62_CONV_ID_UNKNOWN

— LU62_BAD_LENGTH

— LU62_NULL_DATA

• LU62_PROGRAM_STATE_CHECK

— The conversation is not in Send or Receive state.
— LU62_PIP_PENDING - the conversation is in Send state following an

lu62_(mc_)_allocate verb in which pip_presence was indicated.
A basic send, lu62_send_data , is required to send the PIP Variable.

— LU62_PIP_PENDING - the conversation is in Receive state following an
lu62_accept verb in which pip_presence was indicated. A basic
receive, lu62_receive_and_wait , is required to receive the PIP
variable.

— LU62_VERB_IN_PROGRESS

• LU62_ALLOCATION_ERROR

• LU62_DEALLOCATE_ABEND

• LU62_FMH_DATA_NOT_SUPPORTED

• LU62_DEALLOCATE_NORMAL

• LU62_PROG_ERROR_NO_TRUNC

• LU62_PROG_ERROR_PURGING

• LU62_RESOURCE_FAILURE_NO_RETRY

• LU62_RESOURCE_FAILURE_RETRY

Mapped Conversation Verbs 9-31

9

request_to_send_received

(returned) Indicates whether or not a request-to-send indication is received
from the remote program:
• TRUE, indicates that a request-to-send indication was received.
• FALSE, indicates that a request-to-send indication was not received.

data

(Supplied/returned.) Specifies the buffer into which any received data is
to be written. The buffer should be at least length bytes long. If
what_received indicates that information other than data has been
received, nothing is written into this buffer.

what_received

(returned) Indicates the type of information that is received as one of the
following:
• WR_DATA_COMPLETE

A complete data record is received (or the remaining portion thereof).
• WR_DATA_TRUNCATED

An incomplete data record is received and the LU discards the remainder
of the data record.

• WR_DATA_INCOMPLETE
Less than a complete data record is received and the LU retained the
remainder of the data record. The local program must issue at least one
more lu62_mc_receive_and_wait verb to receive the remaining data.

• *WR_PS_DATA_COMPLETE
A PS header is received on a SYNC_LEVEL_SYNCPT conversation (or the
remaining portion thereof). The complete PS header is returned, including
the (invalid) LL length bytes. This extension to IBM SNA Transaction
Programmer’s Reference Manual is provided for SYNC_LEVEL_SYNCPT (see
Appendix F).

• *WR_PS_DATA_INCOMPLETE
Less than a complete PS header is received on a SYNC_LEVEL_SYNCPT
conversation. The local program must issue at least one more
lu62_receive_and_wait verb to receive the remaining data. This
extension to IBM SNA Transaction Programmer’s Reference Manual is
provided for SYNC_LEVEL_SYNCPT (see Appendix F).

9-32 SunLink Peer-to-Peer LU6.2 9.1 Programmer’s Manual—August 1997

9

• WR_FMH_DATA_COMPLETE
A complete GDS user-control variable is received (or its remaining
portion).

• WR_FMH_DATA_INCOMPLETE
Less than a complete GDS user-control variable is received and the LU
retained the remainder of the record. The local program must issue at least
one more lu62_mc_receive_and_wait verb to receive the remaining
data.

• WR_FMH_DATA_TRUNCATED
An incomplete GDS variable is received and the LU discards the
remainder of the record.

• WR_SEND
The remote program has entered Receive state. The local program
transitions to Send state.

• WR_CONFIRM
The remote program issued lu62_mc_confirm . The local program may
respond by issuing lu62_mc_confirmed.

• WR_CONFIRM_SEND
The remote program requires a confirmation response before entering
Receive state. The local program may respond by issuing
lu62_mc_confirmed.

• WR_CONFIRM_DEALLOCATE
The remote program requires a confirmation response before deallocating
the conversation. The local program may terminate the conversation by
issuing lu62_mc_confirmed.

map_name

(ignored) Reserved for future use.

State Changes
If the return_code is LU62_OK, the state changes according to the initial
state and the value of the what_received parameter:

• Receive state is entered when the verb is issued in Send state, and when the
following conditions are present:

what_received = WR_DATA_COMPLETE, WR_DATA_INCOMPLETE,
WR_PS_DATA_COMPLETE, WR_PS_DATA_INCOMPLETE,
WR_FMH_DATA_COMPLETE, WR_FMH_DATA_INCOMPLETE

Mapped Conversation Verbs 9-33

9

• Send state is entered when what_received = WR_SEND

• Confirm state is entered when what_received = WR_CONFIRM,
WR_CONFIRM_SEND, or WR_CONFIRM_DEALLOCATE

No state change occurs when the verb is issued in Receive state and in the
following conditions:

what_received = WR_DATA_COMPLETE, WR_DATA_INCOMPLETE,
WR_PS_DATA_COMPLETE, WR_PS_DATA_INCOMPLETE,
WR_FMH_DATA_COMPLETE, WR_FMH_DATA_INCOMPLETE, or
WR_FMH_DATA_TRUNCATED.

Usage Notes
1. lu62_mc_receive_and_wait receives only one type of information at

a time. It may receive data, status, or a confirmation request, as indicated by
the value of what_received .

2. When lu62_mc_receive_and_wait is issued in Send state, an implicit
lu62_mc_prep_to_receive (PR_FLUSH) is executed by the local LU.

3. When what_received = WR_DATA_INCOMPLETE or
WR_FMH_DATA_INCOMPLETE, the length of the data record exceeds the
maximum length of the user's data buffer. The local program must issue at
least on more lu62_mc_receive_and_wait to receive the remainder of
the data.

4. lu62_mc_receive_and_wait includes posting. If posting is already
active, this verb supersedes the prior lu62_mc_post_on_receipt .

5. The request-to-send notification is usually received when the local program
is in Send state and is reported to the program via the
request_to_send_received parameter of the lu62_mc_send_data or
lu62_mc_send_error verb. The notification can also be received,
however, when the conversation is in Receive state. This can occur under
three different circumstances:

• When the local program enters Receive state and the remote program issues
lu62_mc_request_to_send before it enters Send state

• When the remote program enters Receive state using
lu62_mc_prep_to_receive (not lu62_mc_receive_and_wait), and
then issues lu62_mc_request_to_send before the local program enters

9-34 SunLink Peer-to-Peer LU6.2 9.1 Programmer’s Manual—August 1997

9

Send state. This can occur because the request-to-send is transmitted as an
expedited request and can therefore arrive ahead of the request that carries
the send indication. Potentially, the local program cannot distinguish this
condition from the first. This ambiguity is avoided if the remote program
waits until it receives information from the local program before it issues
lu62_mc_request_to_send.

• When the remote program issues lu62_mc_request_to_send in Send
state. This can be used to signal the local program that data is about to be
sent. The local program issues lu62_mc_test
(TEST_REQUEST_TO_SEND_RECEIVED) to poll the local LU for this
situation. Only when the result is TRUE does the local program issue
lu62_mc_receive_and_wait.

See Also
lu62_mc_post_on_receipt

Section 5.7, “Mapped Conversations,” illustrates the use of this verb.

9.10 lu62_mc_receive_immediate

lu62_mc_receive_immediate requests any information that is available for
the specified conversation. In contrast to lu62_mc_receive_and_wait , it
does not wait for information to arrive. The information can be data,
conversation status, or a request-for-confirmation; an indication of the type of
information received is returned.

Synopsis

int lu62_mc_receive_immediate(lu62_receive_t *rqp);

Mapped Conversation Verbs 9-35

9

Request Structure

9.10.1 lu62_receive_t Request Structure Members

The following subsections describe the lu62_receive_t request structure
members:

conv_id

(supplied) Specifies the id of the conversation to use. conv_id is returned
by lu62_mc_allocate or lu62_accept .

fill

(ignored) Basic conversations only.

length

(supplied/returned) On input, this parameter specifies the maximum
amount of data the program can receive. On return, and if data has been
received, the parameter is set with the amount of data received. If no data is
received, this parameter is unchanged.

return_code

(returned) Specifies the result of verb execution as one of the following:
• LU62_OK

• LU62_OPERATION_INCOMPLETE

• LU62_PARAMETER_CHECK

typedef struct {
 bit32 conv_id; /* s */
 lu62_fill_e fill; /* s */
 int length; /* s/r */
 bit32 return_code; /* r */
 bit32 request_to_send_received; /* r */
 bit8 *data; /* r */
 lu62_what_received_e what_received; /* r */
 char map_name[LU62_MAP_NAME_LEN+1]; /* r */
} lu62_receive_t;

9-36 SunLink Peer-to-Peer LU6.2 9.1 Programmer’s Manual—August 1997

9

— LU62_CONV_ID_UNKNOWN

— LU62_BAD_LENGTH

— LU62_NULL_DATA

• LU62_PROGRAM_STATE_CHECK

— The conversation is not in Receive state
— LU62_PIP_PENDING - the conversation is in Receive state following an

lu62_accept verb in which pip_presence was indicated. A basic
receive, lu62_receive_and_wait , is required to receive the PIP
variable

— LU62_VERB_IN_PROGRESS

• LU62_ALLOCATION_ERROR

• LU62_DEALLOCATE_ABEND

• LU62_FMH_DATA_NOT_SUPPORTED

• LU62_DEALLOCATE_NORMAL

• LU62_PROG_ERROR_NO_TRUNC

• LU62_PROG_ERROR_PURGING

• LU62_RESOURCE_FAILURE_NO_RETRY

• LU62_RESOURCE_FAILURE_RETRY

• LU62_UNSUCCESSFUL (there is nothing to receive)

request_to_send_received

(returned) Indicates whether or not a request-to-send indication is received
from the remote program:
• TRUE, indicates that a request-to-send indication was received.
• FALSE, indicates that a request-to-send indication was not received.

data

(supplied/returned) Specifies the buffer into which any received data is to
be written. The buffer should be at least length bytes long. If
what_received indicates that information other than data is received,
nothing is written into this buffer.

what_received

(returned) Indicates the type of information that is received as one of the
following:

Mapped Conversation Verbs 9-37

9

• WR_DATA_COMPLETE
A complete data record is received (or its remaining portion)

• WR_DATA_TRUNCATED
An incomplete data record is received and the LU discarded the
remainder of the data record

• WR_DATA_INCOMPLETE
Less than a complete data record is received and the LU retained the
remainder of the data record. The local program must issue at least one
more lu62_mc_receive_and_wait verb to receive the remaining data

• *WR_PS_DATA_COMPLETE
A PS header is received on a SYNC_LEVEL_SYNCPT conversation (or the
remaining portion thereof). The complete PS header is returned, including
the (invalid) LL length bytes. This extension to the IBM SNA Transaction
Programmer’s Reference Manual is provided for SYNC_LEVEL_SYNCPT (see
Appendix F)

• *WR_PS_DATA_INCOMPLETE
Less than a complete PS header is received on a SYNC_LEVEL_SYNCPT
conversation. The local program must issue at least one more
lu62_receive_immediate verb to receive the remaining data. This
extension to the IBM SNA Transaction Programmer’s Reference Manual is
provided for SYNC_LEVEL_SYNCPT (see Appendix F)

• WR_FMH_DATA_COMPLETE
A complete GDS user-control variable is received (or its remaining
portion)

• WR_FMH_DATA_INCOMPLETE
Less than a complete GDS user-control variable is received and the LU
retained the remainder of the record. The local program must issue at least
one more lu62_mc_receive_and_wait verb to receive the remaining
data

• WR_FMH_DATA_TRUNCATED
An incomplete GDS variable is received and the LU discarded the
remainder of the record

• WR_SEND
The remote program entered Receive state. The local program transitions
to Send state

• WR_CONFIRM
The remote program issued lu62_mc_confirm . The local program may
respond by issuing lu62_mc_confirmed

9-38 SunLink Peer-to-Peer LU6.2 9.1 Programmer’s Manual—August 1997

9

• WR_CONFIRM_SEND
The remote program requires a confirmation response before entering
Receive state. The local program may respond by issuing
lu62_mc_confirmed

• WR_CONFIRM_DEALLOCATE
The remote program requires a confirmation response before deallocating
the conversation. The local program may terminate the conversation by
issuing lu62_mc_confirmed

map_name

(ignored) Mapped conversations only.

State Changes
If the return_code is LU62_OK, the state changes according to the initial state
and the value of the what_received parameter:

• Receive state is entered when the verb is issued in Send state and
what_received = WR_DATA_COMPLETE, WR_DATA_INCOMPLETE,
WR_PS_DATA_COMPLETE, WR_PS_DATA_INCOMPLETE,
WR_FMH_DATA_COMPLETE, WR_FMH_DATA_INCOMPLETE

• Send state is entered when what_received = WR_SEND

• Confirm state is entered when what_received = WR_CONFIRM,
WR_CONFIRM_SEND, or WR_CONFIRM_DEALLOCATE

No state change occurs when what_received = WR_DATA_COMPLETE,
WR_DATA_INCOMPLETE, WR_PS_DATA_COMPLETE,
WR_PS_DATA_INCOMPLETE, WR_FMH_DATA_COMPLETE,
WR_FMH_DATA_INCOMPLETE, or WR_FMH_DATA_TRUNCATED

Usage Notes
1. lu62_mc_receive_immediate receives only one type of information at a

time. It may receive data, status, or a confirmation request, as indicated by
the value of what_received .

Mapped Conversation Verbs 9-39

9

2. When what_received = WR_DATA_INCOMPLETEor
WR_FMH_DATA_INCOMPLETE, the length of the data record exceeds the
maximum length of the user's data buffer. The local program must issue at
least on more lu62_mc_receive_immediate to receive the remainder of
the data.

3. lu62_receive_immediate resets or cancels posting. If posting is active
and the conversation is posted, posting is reset. If posting is active and the
conversation is not posted, posting is cancelled.

4. The request-to-send notification is usually received when the local program
is in Send state, and is reported to the program via the
request_to_send_received parameter of the lu62_mc_send_data or
lu62_mc_send_error verb. The notification can also be received,
however, when the conversation is in Receive state. This can occur under
three different circumstances:
• When the local program enters Receive state and the remote program

issues lu62_mc_request_to_send before it enters Send state.

• When the remote program enters Receive state using
lu62_mc_prep_to_receive (not lu62_mc_receive_and_wait), and
then issues lu62_mc_request_to_send before the local program enters
Send state. This can occur because the request-to-send is transmitted as an
expedited request and can therefore arrive ahead of the request carrying
the send indication. Potentially, the local program cannot distinguish this
condition from the first. This ambiguity is avoided if the remote program
waits until it receives information from the local program before it issues
lu62_mc_request_to_send.

• When the remote program issues lu62_mc_request_to_send in Send
state. This can be used to signal the local program that data is about to be
sent. The local program issues lu62_mc_test
(TEST_REQUEST_TO_SEND_RECEIVED) to poll the local LU for this
situation. Only when the result is TRUE does the local program issue
lu62_mc_receive_immediate.

See Also
lu62_mc_post_on_receipt

9-40 SunLink Peer-to-Peer LU6.2 9.1 Programmer’s Manual—August 1997

9

9.11 lu62_mc_request_to_send

lu62_mc_request_to_send sends a notification to the remote program to
indicate that the local program wants to enter Send state. The conversation
remains in its current state, however, until a send indication is received from
the remote program.

Synopsis

Request Structure

9.11.1 lu62_request_to_send_t Request Structure Members

The following subsections describe the lu62_request_to_send_t request
structure members.

conv_id

(supplied) Specifies the id of the conversation to use. conv_id is returned
by lu62_mc_allocate or lu62_accept .

return_code

(returned) Specifies the result of verb execution from one of the following:
• LU62_OK

• LU62_OPERATION_INCOMPLETE

• LU62_PARAMETER_CHECK

— LU62_CONV_ID_UNKNOWN

int lu62_mc_request_to_send(lu62_request_to_send_t *rqp);

typedef struct {
 bit32 conv_id; /* s */
 bit32 return_code; /* r */
} lu62_request_to_send_t;

Mapped Conversation Verbs 9-41

9

• LU62_PROGRAM_STATE_CHECK

— The conversation is not is Receive, Confirm, or Send state.
— LU62_VERB_IN_PROGRESS

State Changes
No state change occurs.

Usage Notes
1. The remote program is informed of the arrival of a request-to-send

notification by means of the request_to_send_received parameter
returned by lu62_mc_confirm , lu62_mc_receive_and_wait ,
lu62_mc_receive_immediate , lu62_mc_send_data , and
lu62_mc_send_error . The remote program may also poll the LU to
determine if a request-to-send notification was received using
lu62_mc_test (TEST_REQUEST_TO_SEND_RECEIVED). When the
remote program receives the request-to-send notification, it issues
lu62_mc_receive_and_wait or lu62_mc_prep_to_receive to enter
Receive state and thereby places the local program in Send state. The local
program enters Send state when it issues an lu62_mc_receive_and_wait
or lu62_mc_receive_immediate and receives the send indication.

2. The remote LU retains the request-to-send notification until the remote
program issues one of the verbs identified above. Additional request-to-
send notifications are discarded until the retained notification is passed to
the remote program.

See Also
lu62_mc_confirm, lu62_mc_prep_to_receive,
lu62_mc_receive_and_wait , lu62_mc_receive_immediate,
lu62_mc_send_data , lu62_mc_send_error , lu62_mc_test

9-42 SunLink Peer-to-Peer LU6.2 9.1 Programmer’s Manual—August 1997

9

9.12 lu62_mc_send_data

lu62_mc_send_data is used to send one data record to the remote program.
The program can specify whether the data record includes FM headers.

Synopsis

Request Structure

9.12.1 u62_send_data_t Request Structure Members

The following subsections describe the lu62_send_data_t request structure
members:

conv_id

(supplied) Specifies the id of the conversation to use. conv_id is returned
by lu62_mc_allocate or lu62_accept .

data

(supplied) The address of the user buffer containing the data to be sent.

int lu62_mc_send_data(lu62_send_data_t *rqp);

typedef struct {
 bit32 conv_id; /* s */
 bit8 *data; /* s */
 int length; /* s */
 char map_name[LU62_MAP_NAME_LEN+1]; /* s */
 lu62_fmh_data_efmh_data; /* s */
 lu62_encrypt_e encrypt; /* s */
 lu62_flush_e flush; /* s */
 bit32 return_code; /* r */
 bit32 request_to_send_received; /* r */
} lu62_send_data_t;

Mapped Conversation Verbs 9-43

9

length

(supplied) Specifies the length of the data record.

map_name

(ignored) Reserved for future use.

fmh_data

(ignored) Specifies whether the data record contains FM headers from one of
the following:
• FMH_NO

• FMH_YES

The following extensions to the IBM SNA Transaction Programmer’s Reference
Manual are provided for sync-point recovery (see
,”Appendix F
,"
• *FMH_ELN

• *FMH_CS

encrypt

(ignored) Reserved for future use.

flush

(supplied) Specifies whether the supplied data is to be sent to the remote
program immediately or buffered in the local LU's send buffer. flush is set
to one of the following:
• FLUSH_NO

• FLUSH_YES

return_code

(returned) Specifies the result of verb execution from one of the following:
• LU62_OK

• LU62_OPERATION_INCOMPLETE

• LU62_PARAMETER_CHECK

— LU62_CONV_ID_UNKNOWN

9-44 SunLink Peer-to-Peer LU6.2 9.1 Programmer’s Manual—August 1997

9

— LU62_NULL_DATA

— LU62_BAD_LENGTH

— LU62_BAD_FMH_DATA_TYPE

• LU62_PROGRAM_STATE_CHECK

— The conversation is not is Send state
— LU62_PIP_PENDING - the conversation is in Send state following an

lu62_(mc_)_allocate verb in which pip_presence is indicated. A
basic send, lu62_send_data , is required to send the PIP variable.

— LU62_VERB_IN_PROGRESS

• LU62_ALLOCATION_ERROR

• LU62_DEALLOCATE_ABEND

• LU62_FMH_DATA_NOT_SUPPORTED

• LU62_PROG_ERROR_PURGING

• LU62_RESOURCE_FAILURE_NO_RETRY

• LU62_RESOURCE_FAILURE_RETRY

request_to_send_received

(returned) Indicates whether or not a request-to-send indication is received
from the remote program:
• TRUE, indicates that a request-to-send indication was received
• FALSE, indicates that a request-to-send indication was not received

State Changes
No state change occurs.

Usage Notes
1. One data record at a time may be sent on mapped conversations. Unlike the

logical records sent on basic conversations, data records contain only data.

2. Since one complete data record is sent, the sending program cannot truncate
a data record.

3. The local LU buffers the data to be sent to the remote LU until it
accumulates a sufficient amount of data for transmission (from one or more
lu62_mc_send_data verbs), or until the local program issues a call that

Mapped Conversation Verbs 9-45

9

causes the LU to flush its send buffer. The amount of data sufficient for
transmission depends on the characteristics of the session allocated for the
conversation, and varies from one session to another.

4. When request_to_send_received is TRUE, the remote program
requests that the local program "give up the turn", i.e., that it enter Receive
state, thereby placing the remote program in Send state. The local program
enters Receive state by issuing lu62_mc_prep_to_receive or
lu62_mc_receive_and_wait . The remote program issues
lu62_mc_receive_immediate or lu62_mc_receive_and_wait to
receive the resulting Send indication (what_received = WR_SEND).

See Also
lu62_mc_send_error

Section 5.7, “Mapped Conversations,” illustrates the use of this verb.

9.13 lu62_mc_send_error

lu62_mc_send_error is used by a program to inform the remote program
that the local program detected an error during a conversation. If the
conversation is in Send state, lu62_mc_send_error forces the LU to flush
its send buffer.

When this call completes successfully, the local program is in Send state and
the remote program is in Receive state. Further action is defined by program
logic.

Synopsis

Request Structure

int lu62_mc_send_error(lu62_send_error_t *rqp);

typedef struct {
 bit32 conv_id; /* s */
 lu62_prog_type_e type; /* s */
 char *log_data; /* s */
 int error_direction; /* s */

9-46 SunLink Peer-to-Peer LU6.2 9.1 Programmer’s Manual—August 1997

9

9.13.1 lu62_send_error_t Request Structure Members

The lu62_send_error_t request structure members are:

conv_id

(supplied) Specifies the id of the conversation to use. conv_id is returned
by lu62_mc_allocate or lu62_accept .

type

(ignored) Basic conversations only.

log_data

(ignored) Basic conversations only.

error_direction

(ignored) Reserved for use by CPI-C.

return_code

(returned) Specifies the result of verb execution. return_code may be one
of the folowing:
• LU62_OK

• LU62_OPERATION_INCOMPLETE

• LU62_PARAMETER_CHECK

— LU62_CONV_ID_UNKNOWN

• LU62_PROGRAM_STATE_CHECK

— The conversation is not Send, Receive, or Confirm state
— LU62_VERB_IN_PROGRESS

If the verb is issued in Send state, return_code can additionally be one of
the following:

 bit32 return_code; /* r */
 bit32 request_to_send_received; /* r */
} lu62_send_error_t;

Mapped Conversation Verbs 9-47

9

• LU62_ALLOCATION_ERROR

• LU62_DEALLOCATE_ABEND

• LU62_PROG_ERROR_PURGING

• LU62_RESOURCE_FAILURE_NO_RETRY

• LU62_RESOURCE_FAILURE_RETRY

If the verb is issued in Receive state, return_code can additionally be one
of the following:
• LU62_DEALLOCATE_NORMAL

• LU62_RESOURCE_FAILURE_NO_RETRY

• LU62_RESOURCE_FAILURE_RETRY

request_to_send_received

(returned) Indicates whether or not a request-to-send indication is received
from the remote program:
• TRUE, indicates that a request-to-send indication was received
• FALSE, indicates that a request-to-send indication was not received

State Changes
When return_code is LU62_OK:

• Send state is entered when the verb is issued in Receive or Confirm states

• No state change occurs when the verb is issued in Send state.

Usage Notes
1. The LU sends the error notification to the remote LU immediately (during

the processing of this call).

2. The issuance of lu62_mc_send_error is reported to the remote program
as one of the following return codes:
• LU62_PROG_ERROR_NO_TRUNC

The local program issued lu62_mc_send_error in Send state. No
truncation can occur on mapped conversations.
• LU62_PROG_ERROR_PURGING

9-48 SunLink Peer-to-Peer LU6.2 9.1 Programmer’s Manual—August 1997

9

The local program issued lu62_mc_send_error in Receive state. All
information sent by the remote program and not yet received by the local
program is purged; or the local program issued lu62_mc_send_error in
Confirm state in which case no purging occurrs.

3. When lu62_mc_send_error is issued in Receive state, incoming
information is also purged. Because of this purging, the return_code of
LU62_DEALLOCATE_NORMAL is reported instead of:
• LU62_ALLOCATION_ERROR

• LU62_DEALLOCATE_ABEND

Similarly, a return_code of LU62_OK is reported instead of:
• LU62_FMH_DATA_NOT_SUPPORTED

• LU62_PROG_ERROR_NO_TRUNC

• LU62_PROG_ERROR_PURGING

The following types of incoming information are also purged:
• Data sent with the lu62_mc_send_data call
• Confirmation request sent with the lu62_mc_confirm ,

lu62_mc_prep_to_receive, or lu62_mc_deallocate verbs

If the confirmation request was sent with type set to DA_CONFIRM or
DA_SYNC_LEVEL, the deallocation request is also purged.

The request-to-send notification is not purged. This notification is reported
to the program when it issues a call that includes the
request_to_send_received parameter.

4. When request_to_send_received is TRUE, the remote program
requests that the local program "give up the turn", i.e., that it enter Receive
state, thereby placing the remote program in Send state. The local program
enters Receive state by issuing lu62_mc_prep_to_receive or
lu62_mc_receive_and_wait . The remote program issues
lu62_mc_receive_immediate or lu62_mc_receive_and_wait to
receive the resulting Send indication (what_received = WR_SEND).

5. The program can use this verb for various application-level functions. For
example, the program may issue this verb to inform the remote program of
an error detected in data records it received, or to reject a confirmation
request.

Mapped Conversation Verbs 9-49

9

6. lu62_mc_send_error resets or cancels posting. If posting is active and
the conversation is posted, posting is reset. If posting is active and the
conversation is not posted, the posting is cancelled.

See Also
lu62_mc_confirm, lu62_mc_receive_and_wait,
lu62_mc_receive_immediate

9.14 lu62_mc_test

lu62_mc_test tests the specified conversation to see if it has been posted or if
a request-to-send notification was received.

Synopsis

Request Structure

9.14.1 lu62_test_t Request Structure Members

The following subsections describe the lu62_test_t request structure
members:

conv_id

(supplied) Specifies the id of the conversation to use. conv_id is returned
by lu62_mc_allocate or lu62_accept .

int lu62_mc_test(lu62_test_t *rqp);

typedef struct {
 bit32 conv_id; /* s */
 lu62_test_type_e test; /* s */
 bit32 return_code; /* r */
} lu62_test_t;

9-50 SunLink Peer-to-Peer LU6.2 9.1 Programmer’s Manual—August 1997

9

test

(supplied) Specifies the condition to be tested, which is one of the following:
• TEST_POSTED

• TEST_REQUEST_TO_SEND_RECEIVED

return_code

(returned) Specifies the result of verb execution.

Mapped Conversation Verbs 9-51

9

If test = TEST_POSTED, return_code can be one of the following:
• LU62_OK_DATA, a data record is available to be received
• LU62_OK_NO_DATA, information other than data (that is, status or a

confirmation request) is available to be received
• LU62_OPERATION_INCOMPLETE

• LU62_PARAMETER_CHECK

— LU62_CONV_ID_UNKNOWN

— LU62_BAD_TEST_TYPE

• LU62_PROGRAM_STATE_CHECK

— The conversation is not is Receive state.
— LU62_VERB_IN_PROGRESS

• LU62_POSTING_NOT_ACTIVE

• LU62_UNSUCCESSFUL (no information is available)

• LU62_ALLOCATION_ERROR

• LU62_DEALLOCATE_ABEND

• LU62_FMH_DATA_NOT_SUPPORTED

• LU62_DEALLOCATE_NORMAL

• LU62_PROG_ERROR_NO_TRUNC

• LU62_PROG_ERROR_PURGING

• LU62_PROG_ERROR_TRUNC

• LU62_RESOURCE_FAILURE_NO_RETRY

• LU62_RESOURCE_FAILURE_RETRY

If test = TEST_REQUEST_TO_SEND_RECEIVED, return_code can be one
of the following:
• LU62_OK

• LU62_OPERATION_INCOMPLETE

• LU62_PARAMETER_CHECK

— LU62_CONV_ID_UNKNOWN

— LU62_BAD_TEST_TYPE

• LU62_PROGRAM_STATE_CHECK

— The conversation is not is Send or Receive state.
— LU62_VERB_IN_PROGRESS

• LU62_UNSUCCESSFUL (request-to-send not received)

9-52 SunLink Peer-to-Peer LU6.2 9.1 Programmer’s Manual—August 1997

9

State Changes
No state change occurs.

Usage Notes
1. See the usage notes for lu62_mc_post_on_receipt for a discussion of the

use of lu62_mc_test (TEST_POSTED) in conjunction with
lu62_mc_post_on_receipt and lu62_wait to provide non-blocking
receive processing.

2. If the return_code to lu62_mc_test (POSTED) indicates that
information is available to be received (LU62_DATA or LU62_NO_DATA), the
local program should issue lu62_mc_receive_and_wait or
lu62_mc_receive_immediate to receive the information.

3. If the return_code to lu62_mc_test (TEST_POSTED) is
LU62_UNSUCCESSFUL, posting remains active for the conversation.

4. If the return_code to lu62_mc_test
(TEST_REQUEST_TO_SEND_RECEIVED) is LU62_OK, a request-to-send
notification is received by the local LU. LU62_UNSUCCESSFUL indicates
that a request-to-send notification was not received.

See Also
lu62_mc_post_on_receipt , lu62_mc_receive_and_wait,
lu62_mc_receive_immediate , lu62_mc_test

10-1

Type-Independent Verbs 10

Type-independent verbs are used on both basic and mapped conversations.
Table 10-1 lists the type-independent verbs. Detailed man pages follow.

Table 10-1 SunLink LU6.2 Type-Independent Verbs

Verb Function Function

*lu62_abort Aborts conversation processing

lu62_accept Listens for and accepts an incoming conversation

lu62_get_tp_propertie
s

Returns information about the TPs

lu62_get_type Returns the conversation type

*lu62_listen Listens for an incoming conversation

lu62_register_tp Registers a local TP for incoming conversations

*lu62_unregister_tp Unregisters a local TP for incoming conversations

*lu62_send_ps_data Sends Presentation Services data (sync-point)

lu62_wait Waits for a conversation to be posted

10-2 SunLink Peer-to-Peer LU6.2 9.1 Programmer’s Manual—August 1997

10

10.1 *lu62_abort

lu62_abort is used to abort a conversation. It terminates any incomplete
operation, i.e., a previous verb that received a return_code of
LU62_OPERATION_INCOMPLETE, and causes the conversation (if active)
to be deallocated (type=DA_ABEND_SVC).

lu62_abort may be issued in either blocking or non-blocking mode. It is
designed, however, to be issued in non-blocking mode whenever it is
necessary to abandon an incomplete operation. lu62_abort is the only way to
terminate a conversation that is in this state. In this situation, an
lu62_deallocate (type=DA_ABEND) verb would be refused by sending a
return_code of LU62_PROGRAM_STATE_CHECK;lu62_abort overrides this
state checking.

Synopsis

Request Structure

10.1.1 lu62_abort_t Request Structure Members

The following subsections describe the lu62_abort_t request structure
members:

conv_id

(supplied) Specifies the id of the conversation to use. conv_id is returned
by lu62_allocate or lu62_accept .

return_code

(returned) Specifies the result of verb execution of one of the following:

int lu62_abort(lu62_abort_t *rqp);

typedef struct {
 bit32 conv_id; /* s */
 bit32 return_code; /* r */
} lu62_abort_t;

Type-Independent Verbs 10-3

10

• LU62_OK

• LU62_PARAMETER_CHECK

— LU62_CONV_ID_UNKNOWN

State Changes
When return_code is LU62_OK, the conversation enters Reset state.

Usage Notes
When a program exits, the SunLink SNA PU2.1 9.1 server automatically aborts
any active conversations. It is not necessary, therefore, to abort conversation(s)
if your program is going to exit.

See Also
lu62_wait_server

10.2 *lu62_accept

lu62_accept is used to accept an incoming conversation. A client program
can allocate and accept multiple conversations. To accept conversations,
however, the client program must first register with its local LU to receive
incoming conversations for designated local TPs using the
lu62_register_tp verb.

Synopsis

Request Structure

int lu62_accept(lu62_accept_t *rqp);

typedef struct {
 bit32 port_id; /* s */
 bit32 own_tp_instance; /* s/r */
 lu62_processing_mode_e processing_mode; /* s */
 bit32 conv_id; /* r */
 bit32 tp_id; /* r */

10-4 SunLink Peer-to-Peer LU6.2 9.1 Programmer’s Manual—August 1997

10

10.2.1 lu62_accept_t Request Structure Members

The following subsections describe the lu62_accept_t request structure
members:

port_id

(supplied) Specifies the port_id of the LU connection to use. The port_id
is returned by lu62_open .

processing_mode

(supplied) Specifies the initial processing mode of the conversation of one of
the following:
• PM_BLOCKING

• PM_NON_BLOCKING

If processing_mode is set to PM_BLOCKING, lu62_accept does not
return until a conversation is accepted (return_code = LU62_OK) or
the verb fails for some reason. If processing_mode is set to
PM_NON_BLOCKING and initial parameter checks pass, return_code
is set to LU62_OPERATION_INCOMPLETE and lu62_wait_server must
be issued to receive the eventual return.

The specified processing_mode remains in effect for the allocated
conversation until lu62_set_processing_mode is issued or the
conversation terminates.

own_tp_instance

(supplied/returned) Specifies the SunLink SNA PU2.1 9.1 server’s identifier
for the TP instance.

 lu62_pip_presence_e pip_presence; /* r */

 bit32 return_code; /* r */
} lu62_accept_t;

Type-Independent Verbs 10-5

10

conv_id

(returned) Specifies the identifier of the accepted conversation. All
subsequent verbs issued on this conversation require this identifier.

tp_id

(returned) Specifies the id of the registered TP for which the conversation is
accepted.

pip_presence

(returned) Specifies whether the pip_presence field of the received
FMH-5 attach request is set or not, as shown below.
• PIP_NOT_PRESENT

• PIP_PRESENT

If PIP_PRESENT, the caller is obliged to issue lu62_receive_and_wait
(or lu62_receive_immediate) to receive the PIP variable (see Chapter 11
of the IBM SNA Formats manual).

return_code

(returned) Specifies the result of verb execution of one of the following:
• LU62_OK

• LU62_OPERATION_INCOMPLETE

• LU62_PARAMETER_CHECK

— LU62_PORT_ID_UNKNOWN

— LU62_BAD_PROCESSING_MODE

— LU62_NO_TP_REGISTERED

— LU62_UNKNOWN-TP

State Changes
When return_code is LU62_OK, the conversation enters Send state.

Usage Notes
A program must issue lu62_register_tp for each local TP it supports. Wild
card TP names may be specified. If multiple TPs are registered, determine
which TP the conversation is for by correlating the tp_id returned by

10-6 SunLink Peer-to-Peer LU6.2 9.1 Programmer’s Manual—August 1997

10

lu62_accept with one returned by lu62_register_tp . Alternatively, issue
lu62_get_tp_properties on the newly accepted conversation and examine
the returned tp_name .

See Also
lu62_register_tp, lu62_listen

Section 5.4, “Accepting Conversations,” provides an example of the use of this
verb.

10.3 lu62_get_tp_properties

lu62_get_tp_properties returns information pertaining to the transaction
program issuing the verb.

Type-Independent Verbs 10-7

10

Synopsis

Request Structure

10.3.1 lu62_get_tp_properties_t Request Structure Members

The following subsections describe the lu62_get_tp_properties_t request
structure members:

conv_id

(supplied) Specifies the id of the conversation to use. conv_id is returned
by lu62_allocate or lu62_accept .

return_code

(returned) Specifies the result of verb execution of one of the following:
• LU62_OK

• LU62_PARAMETER_CHECK

— LU62_CONV_ID_UNKNOWN

int lu62_get_tp_properties(lu62_get_tp_properties_t *rqp);

Table 10-2 Request Structure

typedef struct {
bit32 conv_id; /* s */
bit32 return_code; /* r */

 bit32 own_tp_instance; /* r */
char tp_name[LU62_TP_NAME_LEN+1]; /* r */
bit8 qlu_name[LU62_NQ_LU_NAME_LEN+1]; /* r */
int qlu_name_len; /* r */
char user_id[LU62_MAX_USER_ID_LEN+1]; /* r */
int user_id_len; /* r */

 char profile[LU62_MAX_PROFILE_LEN+1]; /* r */
int profile_len; /* r */

} lu62_get_tp_properties_t;

10-8 SunLink Peer-to-Peer LU6.2 9.1 Programmer’s Manual—August 1997

10

own_tp_instance

(returned) Specifies the SunLink SNA PU2.1 9.1 server's identifier for the TP
instance.

tp_name

(returned) Specifies the name of the local transaction program. tp_name is
an ASCII (null-terminated) string.

qlu_name_len

See qlue_name_len description.

qlu_name

(returned) Specifies the fully qualified name of the local LU. qlu_name is an
ASCII (null-terminated) string and corresponds to the LU NQ_LU_NAME
parameter in the configuration.

user_id_len

See user_id description.

user_id

(returned) The security user_id , if any, that was carried on the allocation
request that initiated execution of the local program. user_id is an ASCII
(null-terminated) string.

profile_len

See profile below.

profile

(returned) The security profile, if any, that was carried on the allocation
request that initiated execution of the local program. profile is an ASCII
(null-terminated) string.

State Changes
No state change occurs.

Type-Independent Verbs 10-9

10

Usage Notes
If lu62_get_tp_properties is issued on a conversation that was allocated
by the local program, a tp_name is known only if the allocation request
specified SECURITY_SAME, and a tp_id was provided.

See Also
lu62_allocate, lu62_mc_allocate

Section 5.4, “Accepting Conversations,” provides an example of the use of this
verb.

10.4 lu62_get_type

lu62_get_type returns the conversation type, mapped or basic.

Synopsis

int lu62_get_type(lu62_get_type_t *rqp);

10-10 SunLink Peer-to-Peer LU6.2 9.1 Programmer’s Manual—August 1997

10

Request Structure

10.4.1 lu62_get_type_t Request Structure Members

The following subsections describe the lu62_get_type_t request structure
members:

conv_id

(supplied) Specifies the id of the conversation to use. conv_id is returned
by lu62_allocate or lu62_accept .

type
(returned) Specifies the conversation type from one of the following:
• CONVERSATION_BASIC

• CONVERSATION_MAPPED

return_code

(returned) Specifies the result of verb execution type from one of the
following:
• LU62_OK

• LU62_PARAMETER_CHECK

— LU62_CONV_ID_UNKNOWN

State Changes
No state change occurs.

typedef struct {
 bit32 conv_id; /* s */
 lu62_conv_type_etype; /* r */
 bit32 return_code; /* r */
} lu62_get_type_t;

Type-Independent Verbs 10-11

10

Usage Notes
The configuration allows local TPs to be configured to accept both mapped
and basic conversations. If your program is such a TP, issue this verb when
lu62_accept returns to determine the conversation type.

See Also
lu62_allocate, lu62_mc_allocate

Section 5.4, “Accepting Conversations,” provides an example of the use of this
verb.

10.5 * lu62_listen

lu62_listen is used to receive indication of an incoming conversation and is
designed to let you build your own transaction dispatcher. It is used much like
lu62_accept except that the SunLink SNA PU2.1 9.1 server does not allocate
the conversation to the listening program. Instead, it holds the conversation
until a subsequent lu62_accept is received. The listening program registers
with its local LU to receive incoming conversations for designated local TPs
using the lu62_register_tp verb.

lu62_listen is also used for sync-point recovery. Indication of an “implied
forget” is sent to a listening sync-point manager (TP 06f2), see Appendix F.

Synopsis

int lu62_listen(lu62_listen_t *rqp);

10-12 SunLink Peer-to-Peer LU6.2 9.1 Programmer’s Manual—August 1997

10

Request Structure

typedef struct {
 bit32 port_id; /* s */
 lu62_processing_mode_e processing_mode; /* s */
 bit32 conv_id; /* r */
/* Accept parameters */
 lu62_pip_presence_e pip_presence; /* r */
 lu62_conv_type_e type; /* r */

char uunique_session_name
[LU62_UNIQUE_SESSION_NAME_LEN+1]; /* r */

/* Conversation Attributes - see lu62_get_attributes */
 char partner_lu_name[LU62_LU_NAME_LEN+1]; /* r */
 char mode_name[LU62_MODE_NAME_LEN+1]; /* r */
 bit8 partner_qlu_name[LU62_NQ_LU_NAME_LEN+1];/* r */
 int partner_qlu_name_len /* r */
 lu62_sync_level_e sync_level; /* r */
 int conv_corr_len; /* r */
 bit8 conv_corr[LU62_MAX_CONV_CORR_LEN]; /* r */
 bit32 conv_grp_id; /* r */
/* TP Properties - see lu62_get_tp_properties */
 bit32 tp_id; /* r */
 bit32 own_tp_instance; /* r */
 char tp_name[LU62_TP_NAME_LEN+1] /* r */
 bit8 qlu_name[LU62_NQ_LU_NAME_LEN+1]; /* r */
 int qlu_name_len; /* r */
 char user_id[LU62_MAX_USER_ID_LEN+1]; /* r */
 int user_id_len; /* r */
 char profile[LU62_MAX_PROFILE_LEN+1]; /* r */
 int profile_len; /* r */
 bit32 return_code; /* r */
/* Sync Level sync-point additions */
 lu62_response_type_e response_type; /* r */
 int sess_id_len; /* r */
 bit8 sess_id[LU62_MAX_SESS_ID_LEN]; /* r */
 int luw_len; /* r */
 bit8 luw[LU62_MAX_LUW_LEN]; /* r */
} lu62_listen_t;

Type-Independent Verbs 10-13

10

10.5.1 lu62_listen_t Request Structure Members

The following subsections describe the lu62_listen_t request structure
members:

port_id

(supplied) Specifies the port_id of the LU connection to use. The
port_id is returned by lu62_open .

processing_mode

(supplied) Specifies the processing mode for listening from one of the
following:
• PM_BLOCKING

• PM_NON_BLOCKING

If processing_mode is set to PM_BLOCKING, lu62_listen does not
return until a conversation or implied forget is indicated (return_code =
LU62_OK) or the verb fails for some reason. If processing_mode is set to
PM_NON_BLOCKING and initial parameter checks pass, return_code is set
to LU62_OPERATION_INCOMPLETE and lu62_wait_server must be
issued to receive the eventual return.

conv_id

(returned) Specifies a temporary conversation identifier for lu62_listen
verbs issued in PM_NON_BLOCKING mode.

pip_presence

(returned) Specifies whether the pip_presence field of the received FMH-
5 attach request is set or not:
• PIP_NOT_PRESENT

• PIP_PRESENT

type

(returned) Specifies the conversation type as one of the following:
• CONVERSATION_BASIC

• CONVERSATION_MAPPED

10-14 SunLink Peer-to-Peer LU6.2 9.1 Programmer’s Manual—August 1997

10

unique_session_name

Used to specify the actual node used from the configuration instead of
lu_name and node. The TP cannot use an lu_name in the previous open if
unique session names are used.

partner_lu_name

(returned) Specifies the name of the partner LU at which the remote
transaction program is located. partner_lu_name corresponds to the
PTNR_LU NAME parameter in the configuration.

mode_name

(returned) Specifies the name of the selected mode. The conversation is
allocated on a session of this mode. mode_name corresponds to the MODE
NAME parameter in the configuration.

partner_qlu_name_len

See partner_qlu_name below.

partner_qlu_name

(returned) Specifies the fully qualified name of the partner LU at which the
remote transaction program is located. partner_qlu_name corresponds to
the PTNR_LU NQ_LU_NAME parameter in the configuration.

sync_level

(returned) Specifies the synchronization level for the conversation type from
one of the following:
• SYNC_LEVEL_NONE

• SYNC_LEVEL_CONFIRM

— SYNC_LEVEL_SYNCPT

conv_corr_len

See conv_corr below.

Type-Independent Verbs 10-15

10

conv_corr

(ignored) Reserved for future use.

conv_grp_id

(ignored) Reserved for future use.

tp_id

(returned) Specifies the id of the registered TP for which the indicated
conversation is received.

own_tp_instance

(returned) Specifies the SunLink SNA PU2.1 9.1 server’s identifier for the TP
instance. This value is used in a subsequent lu62_accept verb.

tp_name

(returned) Specifies the name of the local transaction program. tp_name is
an ASCII (null-terminated) string.

qlu_name_len

See qlu_name below.

qlu_name

(returned) Specifies the fully qualified name of the local LU. qlu_name is an
ASCII (null-terminated) string and corresponds to the LU NQ_LU_NAME
parameter in the configuration.

user_id_len

See user_id below.

user_id

(returned) The security user_id , if any, that was carried on the allocation
request that initiated execution of the local program. user_id is an ASCII
(null-terminated) string.

10-16 SunLink Peer-to-Peer LU6.2 9.1 Programmer’s Manual—August 1997

10

profile_len

See profile below.

profile

(returned) The security profile, if any, that was carried on the allocation
request that initiated execution of the local program. profile is an ASCII
(null-terminated) string.

return_code

(returned) Specifies the result of verb execution from one of the following:
• LU62_OK

• LU62_OPERATION_INCOMPLETE

• LU62_PARAMETER_CHECK

— LU62_PORT_ID_UNKNOWN

— LU62_BAD_PROCESSING_MODE

— LU62_NO_TP_REGISTERED

response_type

(returned) Specifies the type of indication received from one of the
following:
• LISTEN_ATTACH

Indicates that an incoming conversation (FMH5 attach) was received for a
registered TP

• LISTEN_FORGET
Sent to the sync-point manager (TP 06f2) to indicate that an “implied
forget” has occurred on the session identified by sess_id (see
Appendix F).

sess_id_len

See sess_id below.

Type-Independent Verbs 10-17

10

sess_id

(returned) Returns the assigned session identifier. The sess_id is returned
as binary data. (Contrast this to lu62_display_mode and
lu62_deactivate_session in which session_id is an ASCII-hex
string).

*luw_len

See *luw below.

*luw

(returned) This extension to the IBM SNA Transaction Programmer’s Reference
Manual is provided for SYNC_LEVEL_SYNCPT (see Appendix F). luw
contains the complete Logical Unit of Work Identifier as set in the FMH-5
attach that initiated the conversation (see Chapter 11 of the IBM SNA
Formats manual).

State Changes
Not applicable.

Usage Notes
A program must issue lu62_register_tp for each local TP it supports. Wild
card TP names may be specified.

See Also
lu62_register_tp, lu62_accept

Section 5.5, “Transaction Dispatch Using lu62_listen,” provides an example of
the use of this verb.

10-18 SunLink Peer-to-Peer LU6.2 9.1 Programmer’s Manual—August 1997

10

10.6 * lu62_register_tp

lu62_register_tp is used to register local TP names (including wild-carded
TP names) with the SunLink SNA PU2.1 9.1 server, thus specifying that it will
accept incoming conversations for those TPs. The TP name must already be
configured on the local LU. A program may register many local TP names and,
when a conversation is accepted, use lu62_get_tp_properties to
determine the identity of the TP.

Synopsis

Request Structure

10.6.1 lu62_register_t Request Structure Members

The following subsections describe the lu62_register_t request structure
members:

port_id

(supplied) Specifies the port_id of the LU connection to use. The port_id
is returned by lu62_open .

tp_name

(supplied) Specifies the name of the local transaction program. This
corresponds to the TP NAME parameter in the configuration. tp_name
is an ASCII (null-terminated) string.

int lu62_register_tp(lu62_register_tp_t *rqp);

typedef struct {
 bit32 port_id; /* s */
 char tp_name[LU62_TP_NAME_LEN+1]; /* s */
 bit32 tp_id; /* r */
 bit32 return_code; /* r */
} lu62_register_tp_t;

Type-Independent Verbs 10-19

10

tp_id

(returned) Specifies the id of the newly registered TP.

return_code

(returned) Specifies the result of verb execution from one of the following:
• LU62_OK

• LU62_OPERATION_INCOMPLETE

• LU62_PARAMETER_CHECK

• LU62_PORT_ID_UNKNOWN

• LU62_TP_ALREADY_REGISTERED

• LU62_PARAMETER_ERROR

• LU62_TP_UNKNOWN

State Changes
Not applicable.

Usage Notes
1. A program must issue lu62_register_tp for each local TP for which it is

prepared to handle conversations. When a conversation is attached to the
local TP, lu62_accept returns the tp_id of the local TP. When multiple
local TPs are registered, correlate this tp_id with those returned by the
lu62_register_tp calls to determine which TP the conversation is for.
Alternatively, issue lu62_get_tp_properties on the newly accepted
conversation and examine the returned tp_name .

2. A program can specify a wild-carded TP name when it calls
lu62_register_tp . The wild-carded name must, however, be configured
on the local LU; i.e, the tp_name parameter must match exactly with a TP
TP_NAME configuration parameter. * and ? matches are allowed, where a * is
used to match any sub-string (including NULL), and ? matches any single
character.

Be sure to configure the wild-carded TP names correctly. When an FMH5
Attach is received, the SunLink SNA PU2.1 9.1 server searches through its local
TPs in the order in which they are configured, and uses the first match it finds

10-20 SunLink Peer-to-Peer LU6.2 9.1 Programmer’s Manual—August 1997

10

to locate a potential acceptor or listener. Thus, if a TP name matches both a
specific name and a wild-card, the first configured will be used. Ideally, a
local TP should match one configuration entry.

See Also
lu62_accept , lu62_listen

Section 5.4, “Accepting Conversations,” provides an example of the use of this
verb with lu62_accept .

Section 5.5, “Transaction Dispatch Using lu62_listen,” provides an example of
the use of this verb with lu62_listen and wild-carded TP names.

10.7 *lu62_unregister_tp

lu62_unregister_tp is used to unregister a local TP name (including a
wild-carded TP name) from the SunLink SNA PU2.1 9.1 server, thus specifying
that the calling program will no longer accept incoming conversations for that
TP. The TP must already be registered on the local LU. Previously issued and
still pending lu62_accept and lu62_listen verbs are unaffected.

Synopsis

Request Structure

int lu62_unregister_tp(lu62_unregister_tp_t * rgp);

typedef struct {
 bit32 port_id; /* s */
 bit32 tp_id; /* s */

bit32 return_code; /* r*/
} lu62_send_ps_data_t;

Type-Independent Verbs 10-21

10

10.7.1 lu62_send_ps_data_t Request Structure Members

The following subsections describe the lu62_send_ps_data_t request
structure members:

port_id

(supplied) Specifies the port_id of the LU connection to use. The port_id
is returned by lu62_open .

tp_id

(supplied) Specifies the id of the registered TP.

return_code

(returned) Specifies the result of verb execution, one of the following:
• LU62_OK

• LU62_OPERATION_INCOMPLETE

— LU62_PARAMETER_CHECK

— LU62_PORT_ID_UNKNOWN

— LU62_PARAMETER_ERROR

— LU62_TP_UNKNOWN

State Changes
Not applicable.

Usage Notes
1. If a local TP is unregistered while an LU62_accept verb is outstanding,

that lu62_accept could still return a conversation for the unregistered TP.
In this case, the returned tp_id will be unknown and cannot be related
with a tp_ids returned by a previous lu62_register_tp . Issue
lu62_get_tp_properties on the newly accepted conversation and
examine the returned tp_name .

See Also
lu62_accept , lu62_listen , lu62_register_tp

10-22 SunLink Peer-to-Peer LU6.2 9.1 Programmer’s Manual—August 1997

10

*lu62_send_ps_data

This extension to the IBM SNA Transaction Programmer’s Reference Manual is
provided to send sync-point flows on SYNC_LEVEL_SYNCPT conversations (see
Appendix F). lu62_send_ps_data is used to send PS headers to the remote
program. The data consists of a completely formatted PS header, including the
two-byte long LL field, specifying an invalid length of one byte.

Synopsis

Request Structure

10.7.2 lu62_send_ps_data_t Request Structure Members

The following subsections describe the lu62_send_ps_data_t request
structure members:

conv_id

(supplied) Specifies the id of the conversation to use. conv_id is returned
by lu62_(mc_)allocate or lu62_accept .

data

(supplied) The address of the user buffer containing the completely
formatted PS Header, including the two-byte long LL field specifying an
invalid length of one byte.

int lu62_send_ps_data(lu62_send_ps_data_t *rqp);

typedef struct {
 bit32 conv_id; /* s */
 bit8 *data; /* s */
 int length; /* s */
 lu62_forget_eforget; /* s */
 lu62_flush_eflush; /* s */
 bit32 return_code; /* r */
 bit32 request_to_send_received; /* r */
} lu62_send_ps_data_t;

Type-Independent Verbs 10-23

10

length

(supplied) Specifies the length of the data to be sent.

forget

(supplied) Set by the sync-point agent to indicate that it has “committed”
the transaction. When the next normal flow is received on the session, the
SunLink SNA PU2.1 9.1 server notifies a listening sync-point manager of the
“implied forget.” See lu62_listen .

flush

(supplied) Specifies whether the PS header is to be sent to the remote
program immediately or buffered in the local LU's send buffer. flush is set
to one of the following:
• FLUSH_NO

• FLUSH_YES

return_code

(returned) Specifies the result of verb execution, one of the following:
• LU62_OK

• LU62_OPERATION_INCOMPLETE

• LU62_PARAMETER_CHECK

• LU62_CONV_ID_UNKNOWN

• LU62_NULL_DATA

• LU62_BAD_LENGTH

• LU62_PROGRAM_STATE_CHECK

— Conversation is not is Send state.
— LU62_VERB_IN_PROGRESS

• LU62_ALLOCATION_ERROR

• LU62_DEALLOCATE_ABEND_PROG

• LU62_DEALLOCATE_ABEND_TIMER

• LU62_DEALLOCATE_ABEND_SVC

• LU62_PROG_ERROR_PURGING

• LU62_SVC_ERROR_PURGING

• LU62_RESOURCE_FAILURE_NO_RETRY

• LU62_RESOURCE_FAILURE_RETRY

10-24 SunLink Peer-to-Peer LU6.2 9.1 Programmer’s Manual—August 1997

10

request_to_send_received

(returned) Indicates whether or not a request-to-send indication is received
from the remote program as follows:
• TRUE, indicates that a request-to-send indication was received
• FALSE, indicates that a request-to-send indication was not received

State Changes
No state change occurs.

Usage Notes
1. The local LU buffers the data to be sent to the remote LU until it

accumulates a sufficient amount of data for transmission (from one or more
lu62_send_(ps_) data verbs), or until the local program issues a call that
causes the LU to flush its send buffer. The amount of data sufficient for
transmission depends on the characteristics of the session allocated for the
conversation, and varies from one session to another.

2. When request_to_send_received is TRUE, the remote program
requests that the local program “give up the turn”, that is, that it enter
Receive state, thereby placing the remote program in Send state. The local
program enters Receive state by issuing lu62_prep_to_receive or
lu62_receive_and_wait . The remote program issues
lu62_receive_immediate or lu62_receive_and_wait to receive the
resulting Send indication (what_received = WR_SEND).

See Also
Appendix F, “LU6.2 Sync-Point,” discusses the use of this verb.

10.8 lu62_wait

lu62_wait is used to wait for posting to occur on any basic or mapped
conversation. A list of conversations for which posting is expected is supplied.
Posting of a conversation occurs when posting is active for the conversation
and the LU has information that the program can receive, that is, data, status,
or a confirmation request. When lu62_wait returns, the program should issue
lu62_receive_immediate or lu62_mc_receive_immediate to receive
the information.

Type-Independent Verbs 10-25

10

Synopsis

Request Structure

10.8.1 lu62_wait_t Request Structure Members

The following subsections describe the lu62_wait_t request structure
members:

port_id

(supplied) Specifies the port_id of the LU connection to use. The port_id is
returned by lu62_open .

conv_count

(supplied) Specifies the number of conversations in the following
conv_list .

conv_list

(supplied) Points to an array of conv_ids , of length conv_count ,
specifying the conversations for which posting is expected.

conv_id

(returned) Specifies the conv_id of the first conversation in the conv_list
to be posted.

int lu62_wait(lu62_wait_t *rqp);

typedef struct {
 bit32 port_id; /* s */
 int conv_count; /* s */
 bit32 *conv_list; /* s */
 bit32 conv_id; /* r */
 bit32 return_code; /* r */
} lu62_wait_t;

10-26 SunLink Peer-to-Peer LU6.2 9.1 Programmer’s Manual—August 1997

10

return_code

(returned) Specifies the result of verb execution.

If a mapped conversation is posted, return_code can be one of the
following:
• LU62_OK

— LU62_OK_DATA

— LU62_OK_NOT_DATA

• LU62_OPERATION_INCOMPLETE

• LU62_PARAMETER_CHECK

— LU62_CONV_ID_UNKNOWN

• LU62_PROGRAM_STATE_CHECK

— LU62_VERB_IN_PROGRESS

— LU62_POSTING_NOT_ACTIVE

• LU62_ALLOCATION_ERROR

• LU62_DEALLOCATE_ABEND

• LU62_DEALLOCATE_NORMAL

• LU62_FMH_DATA_NOT_SUPPORTED

• LU62_PROG_ERROR_NO_TRUNC

• LU62_PROG_ERROR_PURGING

• LU62_RESOURCE_FAILURE_NO_RETRY

• LU62_RESOURCE_FAILURE_RETRY

If a basic conversation is posted, return_code can be one of the following:
• LU62_OK

— LU62_OK_DATA

— LU62_OK_NOT_DATA

• LU62_OPERATION_INCOMPLETE

• LU62_PARAMETER_CHECK

— LU62_CONV_ID_UNKNOWN

• LU62_PROGRAM_STATE_CHECK

— LU62_VERB_IN_PROGRESS

• LU62_ALLOCATION_ERROR

• LU62_DEALLOCATE_ABEND_PROG

• LU62_DEALLOCATE_ABEND_TIMER

• LU62_DEALLOCATE_ABEND_SVC

Type-Independent Verbs 10-27

10

• LU62_DEALLOCATE_NORMAL

• LU62_PROG_ERROR_NO_TRUNC

• LU62_PROG_ERROR_PURGING

• LU62_PROG_ERROR_TRUNC

• LU62_SVC_ERROR_NO_TRUNC

• LU62_SVC_ERROR_PURGING

• LU62_SVC_ERROR_TRUNC

• LU62_RESOURCE_FAILURE_NO_RETRY

• LU62_RESOURCE_FAILURE_RETRY

State Changes
No state change occurs.

Usage Notes
1. This verb is used in conjunction with lu62_(mc_)post_on_receipt to

provide non-blocking receive processing.

2. The conv_list may contain any combination of basic and mapped
conversations. Posting for each conversation may be active or inactive.
The verb waits for posting to occur only on those conversations for which
posting is active.

See Also
lu62_(mc_)post_on_receipt , lu62_(mc_)receive_immediate,
lu62_(mc_)test

10-28 SunLink Peer-to-Peer LU6.2 9.1 Programmer’s Manual—August 1997

10

11-1

Control Operator Verbs 11

Control operator (COPR) verbs are used to control and monitor the operation
of the local LU. SunLink P2P LU6.2 9.1 COPR verbs are divided into the
following categories:

• Change number of sessions (CNOS) verbs

• CNOS notification verbs

• Session control verbs

• Display verbs

Detailed man pages for the verbs follow by category.

11.1 Control Operator Privileges
To perform COPR functions, programs require special privileges and must be
defined as TPs in the SunLink P2P LU6.2 9.1 configuration. The TP
PRIVILEGE parameter is used to assign privileges to TPs. A control operator
program registers its TP name with the SunLink SNA PU2.1 9.1 server when it
opens a connection to the server using lu62_open .

11-2 SunLink Peer-to-Peer LU6.2 9.1 Programmer’s Manual—August 1997

11

11.2 CNOS Verbs
Change-number-of-sessions verbs allow a local program to change the (LU,
mode) session limit, which controls the number of LU-LU sessions per mode
that are available for conversations and, for parallel-sessions, to establish the
contention-winner polarities for the mode. The CNOS verbs apply to both
single- and parallel-session modes. Table 11-1 summarizes the CNOS verbs.

11.2.1 CNOS Privilege

To issue CNOS verbs, your program must be configured with TP PRIVILEGE =
CNOS.

11.2.2 Single-Sessions and SNA Service Manager (SNASVCMG)

Single-session connections, and SNASVCMG, may be initialized or reset. The
requested session limits are applied only at the local LU.

11.2.3 Parallel-Sessions

For parallel-session modes, a CNOS negotiation is initiated with the partner
LU. Both LUs are involved in processing the changes, and parameter
negotiation may occur.

You may use the CNOS notification verbs to receive notifications of all CNOS
events that occur on the local LU, whether initiated locally (by your program
or another control operator program) or remotely.

Table 11-1 SunLink LU6.2 CNOS Verbs

Verb Function

lu62_change_session_limit Changes (LU,mode) session limit for parallel
sessions

lu62_initialize_session_lim
it

Initialize (LU,mode) session limits

lu62_reset_session_limit Resets (LU,mode) session limit to 0

Control Operator Verbs 11-3

11

11.2.4 lu62_change_session_limit

lu62_change_session_limit changes the session limit and the contention-
winner polarities for parallel-session connections.

Synopsis

Request Structure

11.2.5 lu62_change_session_limit_t Request Structure Members

The following subsections describe the lu62_change_session_limit_t
request structure members:

port_id

(supplied) Specifies the port_id of the LU connection to use. The port_id
is returned by lu62_open .

lu_name

(supplied) Specifies the locally known name of the partner LU to which the
change applies. lu_name is supplied as an ASCII (null-terminated) string. It
corresponds to the PTNR_LU NAME parameter in the configuration.

int lu62_change_session_limit(lu62_change_session_limit_t *rqp);

typedef struct {
 bit32 port_id; /* s */
 char lu_name[LU62_LU_NAME_LEN+1]; /* s */
 char mode_name[LU62_MODE_NAME_LEN+1]; /* s */
 int lu_mode_session_limit; /* s */
 int min_conwinners_source; /* s */
 int min_conwinners_target; /* s */
 lu62_responsible_lu_e responsible_lu; /* s */
 bit32 return_code; /* r */
} lu62_change_session_limit_t;

11-4 SunLink Peer-to-Peer LU6.2 9.1 Programmer’s Manual—August 1997

11

mode_name

(supplied) Specifies the name of the mode to be updated. mode_name is
supplied as an ASCII (null-terminated) string and is translated to EBCDIC
by the SunLink SNA PU2.1 9.1 server. It corresponds to the MODE NAME
parameter in the configuration.

lu_mode_session_limit

(supplied) Specifies the maximum number of sessions to be allowed
between the local (source) LU and the partner LU, for the specified
mode_name. lu_mode_session_limit must be greater than 0, and greater
than or equal to the sum of min_conwinners_source +
min_conwinners_target .

min_conwinners_source

(supplied) Specifies the minimum number of sessions for which the local LU
is the contention winner. min_conwinners_source must be greater than
or equal to 0.

min_conwinners_target

(supplied) Specifies the minimum number of sessions for which the partner
LU is the contention winner. min_conwinners_target must be greater
than or equal to 0.

responsible_lu

(supplied) Specifies which LU is responsible for deactivating sessions as a
result of a decrease in the session limit and contention-winners; see Usage
Note 1 for more discussion. responsible_lu can be one of the following:
• SL_SOURCE

• SL_TARGET

return_code

(returned) Specifies the result of verb execution from one of the following:
• LU62_OK

— LU62_OK_AS_SPECIFIED

— LU62_OK_AS_NEGOTIATED

• LU62_OPERATION_INCOMPLETE

Control Operator Verbs 11-5

11

• LU62_PARAMETER_CHECK

— LU62_PROGRAM_NOT_PRIVILEGED

— LU62_PORT_ID_UNKNOWN

— LU62_LU_NAME_REQD

— LU62_MODE_NAME_REQD

— LU62_BAD_LU_NAME

— LU62_BAD_MODE_NAME

— LU62_BAD_RESPONSIBLE_LU

— LU62_BAD_SESSION_LIMIT

— LU62_BAD_MIN_CONWINNERS

• LU62_PROGRAM_STATE_CHECK

— LU62_VERB_IN_PROGRESS

• LU62_PARAMETER_ERROR

— LU62_UNKNOWN_PARTNER_LU

— LU62_UNKNOWN_MODE

• LU62_ALLOCATION_ERROR

• LU62_COMMAND_RACE_REJECT

• LU62_MODE_SESSION_LIMIT_ZERO

• LU62_SESSION_LIMIT_EXCEEDED

• LU62_REQUEST_EXCEEDS_MAX_ALLOWED

• LU62_RESOURCE_FAILURE_NO_RETRY

• LU62_UNRECOGNIZED_MODE_NAME

Usage Notes
1. As a result of this verb, sessions may be activated, deactivated, or both

activated and deactivated to conform to the new session limits. The
responsible_lu deactivates its own conwinner sessions until the new
session limit is exceeded or it reaches its min_conwinners . Either LU may
automatically activate sessions to acquire conwinner sessions. SunLink
LU6.2 LUs will acquire conwinner sessions to satisfy outstanding requests
and to reach the minimum of its min_conwinners and its configured
auto-activation limit, LU AUTOACT_LMT.

2. Sessions with active conversations are not deactivated until the conversation
is deallocated.

11-6 SunLink Peer-to-Peer LU6.2 9.1 Programmer’s Manual—August 1997

11

See Also
CNOS notification verbs.

11.2.6 lu62_init_session_limit

lu62_init_session_limit initializes the session limit for single- and
parallel-session connections, and the contention-winner polarities for parallel-
session connections.

Synopsis

Request Structure

11.2.7 lu62_init_session_limit_t Request Structure Members

The following subsections describe the lu62_init_session_limit_t
request structure members:

port_id

(supplied) Specifies the port_id of the LU connection to use. The port_id
is returned by lu62_open .

int lu62_init_session_limit(lu62_init_session_limit_t *rqp);

typedef struct {
 bit32 port_id; /* s */
 char lu_name[LU62_LU_NAME_LEN+1]; /* s */
 char mode_name[LU62_MODE_NAME_LEN+1]; /* s */
 int lu_mode_session_limit; /* s */
 int min_conwinners_source; /* s */
 int min_conwinners_target; /* s */
 bit32 return_code; /* r */
} lu62_init_session_limit_t;

Control Operator Verbs 11-7

11

lu_name

(supplied) Specifies the locally known name of the partner LU to which the
initialization applies. lu_name is supplied as an ASCII (null-terminated)
string. It corresponds to the PTNR_LU NAME parameter in the configuration.

mode_name

(supplied) Specifies the name of the mode to be initialized. mode_name is
supplied as an ASCII (null-terminated) string and is translated to EBCDIC
by the SunLink SNA PU2.1 9.1 server. It corresponds to the MODE NAME
parameter in the configuration.

lu_mode_session_limit

(supplied) Specifies the maximum number of sessions to be allowed
between the local (source) LU and the partner LU, for the specified
mode_name. lu_mode_session_limit must be greater than 0, and greater
than or equal to the sum of min_conwinners_source +
min_conwinners_target . For single-session modes,
lu_mode_session_limit must be 1.

min_conwinners_source

(supplied) Specifies the minimum number of sessions for which the local LU
is the contention winner. min_conwinners_source must be greater than
or equal to 0.

min_conwinners_target

(supplied) Specifies the minimum number of sessions for which the partner
LU is the contention winner. min_conwinners_target must be greater
than or equal to 0.

return_code

(returned) Specifies the result of verb execution. For single- and parallel-
sessions, return_code may be one of the following:
• LU62_OK

— LU62_OK_AS_SPECIFIED

— LU62_OK_AS_NEGOTIATED

• LU62_OPERATION_INCOMPLETE

11-8 SunLink Peer-to-Peer LU6.2 9.1 Programmer’s Manual—August 1997

11

• LU62_PARAMETER_CHECK

— LU62_PROGRAM_NOT_PRIVILEGED

— LU62_PORT_ID_UNKNOWN

— LU62_LU_NAME_REQD

— LU62_MODE_NAME_REQD

— LU62_BAD_LU_NAME

— LU62_BAD_MODE_NAME

— LU62_BAD_SESSION_LIMIT

— LU62_BAD_MIN_CONWINNERS

• LU62_PROGRAM_STATE_CHECK

— LU62_VERB_IN_PROGRESS

• LU62_PARAMETER_ERROR

— LU62_UNKNOWN_PARTNER_LU

— LU62_UNKNOWN_MODE

• LU62_COMMAND_RACE_REJECT

• LU62_MODE_SESSION_LIMIT_NOT_ZERO

• LU62_SESSION_LIMIT_EXCEEDED

• LU62_REQUEST_EXCEEDS_MAX_ALLOWED

For parallel-sessions, in which a CNOS conversation occurs with the partner
LU, return_code may additionally be one of the following:

• LU62_ALLOCATION_ERROR

• LU62_MODE_SESSION_LIMIT_CLOSED

• LU62_RESOURCE_FAILURE_NO_RETRY

• LU62_UNRECOGNIZED_MODE_NAME

Usage Notes
1. Single-session and SNASVCMG limits are initialized in the local LU only.

Thus the initialization must be performed at both LUs for a session to be
activated. Further, the contention-winner polarity initialized for each LU
must be consistent, i.e., one LU must be configured to be the conwinner,
the other to be the conloser.

Control Operator Verbs 11-9

11

2. SNASVCMG modes must be initialized to:

– lu_mode_session_limit = 2

– min_conwinners_source = 1

– min_conwinners_target = 1

3. To establish the session limits for a parallel-session connection between a
local and a target LU, the session limit and contention-winner polarities for
the SNASVCMG connection between the two LUs must first be initialized.
SNASVCMG is initialized locally so that it can be allocated to the CNOS
conversations used to establish the initial limits for other parallel sessions.

4. As a result of this verb, sessions may be activated by either LU. LUs activate
sessions to satisfy queued conversation allocation requests. LUs also auto-
activate conwinner sessions to acquire a set of available conwinner sessions
for future conversations. Sessions may also be activated manually by local
control operators issuing lu62_activate_session requests. SunLink
LU6.2 LUs will acquire conwinner sessions to satisfy outstanding requests
and to reach the minimum of its min_conwinners and its configured auto-
activation limit, LU CW_AUTOACT_LMT.

See Also
CNOS Notification verbs.

11.2.8 lu62_reset_session_limit

lu62_reset_session_limit resets the session limit for single- and parallel
session connections, and the contention-winner polarities for parallel-session
connections. The verb may be issued for a specified mode, or for all modes
(except SNASVCMG) between the local and partner LUs. All active sessions
for the specified (LU, mode) are deactivated as a result of this verb. No
sessions carrying active conversations are deactivated, however, until the
conversation is deallocated. As an option, currently pending allocation
requests can also be satisfied before the (LU, mode) is closed. An
lu62_init_session_limit verb is required before the (LU, mode) can be
re-used.

11-10 SunLink Peer-to-Peer LU6.2 9.1 Programmer’s Manual—August 1997

11

Synopsis

Request Structure

11.2.9 lu62_reset_session_limit_t Request Structure Members

The following subsections describe the lu62_reset_session_limit_t
request structure members:

port_id

(supplied) Specifies the port_id of the LU connection to use. The port_id
is returned by lu62_open .

lu_name

(supplied) Specifies the locally known name of the partner LU to which the
reset applies. lu_name is supplied as an ASCII (null-terminated) string. It
corresponds to the PTNR_LU NAME parameter in the configuration.

mode_name

(supplied) Specifies the name of the mode to be reset, or LU62_ALL_MODES,
to indicate all modes between the local and partner LU except SNASVCMG.
mode_name is supplied as an ASCII (null-terminated) string and is

int lu62_reset_session_limit(lu62_reset_session_limit_t *rqp);

typedef struct }
 bit32 port_id; /* s */
 char lu_name[LU62_LU_NAME_LEN+1]; /* s */
 char mode_name[LU62_MODE_NAME_LEN+1]; /* s */
 lu62_responsible_lu_e responsible_lu; /* s */
 int drain_source; /* s */
 int drain_target; /* s */
 int force; /* s */
 bit32 return_code; /* r */
} lu62_reset_session_limit_t;

Control Operator Verbs 11-11

11

translated to EBCDIC by the SunLink SNA PU2.1 9.1 server. If not,
LU62_ALL_MODES and mode_name correspond to the MODE NAME
parameter in the configuration.

responsible_lu

(supplied) Specifies which LU is responsible for deactivating sessions as a
result of the reset from one of the following:
• SL_SOURCE

• SL_TARGET

The drain_source and drain_target parameters determine when the
responsible_lu can deactivate the sessions. If an LU is to drain its
allocation requests, the responsible_lu does not deactivate a session
until the current conversation is deallocated and no allocation request is
queued for the session.

drain_source

(supplied) Specifies whether the source LU can drain its allocation requests.
drain_source can be one of the following:
• FALSE: All queued allocation requests, and all subsequent allocation

requests are refused by the local LU with a return_code ,
LU62_ALLOCATION_FAILURE_NO_RETRY, indicating that the session limit
is zero

• TRUE: All allocation requests received while the source LU is draining are
satisfied. Draining ends when no allocation requests are queued; all
subsequent allocation requests are refused with a return_code of
LU62_ALLOCATION_FAILURE_NO_RETRY, indicating that the session
limit is zero

This parameter is not applicable to SNASVCMG.

drain_source

(supplied) Specifies whether the target LU can drain its allocation requests.
drain_target can be one of the following:
• FALSE: All queued allocation requests, and all subsequent allocation

requests are refused by the target LU with a return_code ,
LU62_ALLOCATION_FAILURE_NO_RETRY, indicating that the session limit
is zero

11-12 SunLink Peer-to-Peer LU6.2 9.1 Programmer’s Manual—August 1997

11

• TRUE: All allocation requests received while the target LU is draining are
satisfied. Draining ends when no allocation requests are queued; all
subsequent allocation requests are refused with a return_code of
LU62_ALLOCATION_FAILURE_NO_RETRY, indicating that the session limit
is zero

This parameter is not applicable to SNASVCMG.

force

(supplied) For parallel-session connections, this parameter requests that the
source LU reset the session limit even when certain error conditions occur
that prevent the CNOS negotiation. force can be one of the following:
• FALSE
• TRUE

This parameter is not applicable to single-session connections or
SNASVCMG.

return_code

(returned) Specifies the result of verb execution. For single- and parallel-
sessions, regardless of whether force is set or not, return_code may be
one of the following:
• LU62_OK

— LU62_OK_AS_SPECIFIED

— LU62_OK_AS_NEGOTIATED

• LU62_OPERATION_INCOMPLETE

• LU62_PARAMETER_CHECK

— LU62_PROGRAM_NOT_PRIVILEGED

— LU62_PORT_ID_UNKNOWN

— LU62_LU_NAME_REQD

— LU62_MODE_NAME_REQD

— LU62_BAD_LU_NAME

— LU62_BAD_MODE_NAME

— LU62_BAD_SESSION_LIMIT

— LU62_PLU_SESSION_LIMIT_NOT_ZERO
SNASVCMG is specified and one or more session (LU, mode) session
limits for the partner LU are not 0.

Control Operator Verbs 11-13

11

— LU62_DRAIN_SOURCE_NO_REQD
Session limit is already 0, and drain_source is set.

• LU62_PROGRAM_STATE_CHECK

— LU62_VERB_IN_PROGRESS

• LU62_PARAMETER_ERROR

— LU62_UNKNOWN_PARTNER_LU

— LU62_UNKNOWN_MODE

• LU62_COMMAND_RACE_REJECT

For parallel-sessions, in which a CNOS conversation occurs with the partner
LU, and force is NOT set, return_code may additionally be one of the
following:
• LU62_ALLOCATION_ERROR

• LU62_MODE_SESSION_LIMIT_CLOSED

• LU62_RESOURCE_FAILURE_NO_RETRY

• LU62_UNRECOGNIZED_MODE_NAME

If force is set and the CNOS conversation fails for one of the above
reasons, return_code is:
• LU62_OK_FORCED

Usage Notes
1. Single-session limits are reset at the local LU. The source LU deactivates the

session, if it is active, in accordance with the drain parameters.

2. SNASVCMG modes are reset at the local LU, provided that no other mode
between the source and target LU has non-zero session limits. These modes
could, however, be in the processing of draining. The local LU, therefore,
does not deactivate its conwinner SNASVCMG session, if active, until all
other sessions between the two LUs are deactivated.

3. This verb can be issued when the session limit is already zero to discontinue
draining at the source or target LU.

See Also
CNOS Notification verbs.

11-14 SunLink Peer-to-Peer LU6.2 9.1 Programmer’s Manual—August 1997

11

11.3 CNOS Notification Verbs
Your program can request to receive notifications of CNOS events occurring
at the local LU. Table 11-2 below, summarizes the CNOS notification verbs.

11.3.1 Receiving CNOS Notifications

A separate socket connection is opened to the SunLink SNA PU2.1 9.1 server
using the lu62_request_notification verb. This verb is issued for each
LU for which you want to receive notifications. The
lu62_receive_notification is used to read the notification from the
socket. lu62_receive_notification will, however, block until a
notification is available to be read. To prevent blocking, your program can poll
the connection for pending notifications using the
lu62_poll_notification verb, or it can use the Unix select call to
receive CNOS notifications asynchronously. When you want to stop receiving
notifications from a particular LU, use the lu62_stop_notification call.

Eventual Returns
CNOS notification verbs do not operate in the same way as other COPR verbs,
or any other SunLink LU6.2 API verb. lu62_request_notification and
lu62_stop_notification cause messages to be sent to the SunLink SNA
PU2.1 9.1 server and then return immediately to the caller with a
return_code of LU62_OPERATION_INCOMPLETE. The server generates
responses to these verbs that you must receive using
lu62_receive_notification. Unlike the other API verbs you do not have
the option of setting a blocking processing mode to cause the API to wait for
the verb to complete.

Table 11-2 SunLink LU6.2 CNOS Notification Verbs

Verb Function

*lu62_request_notification Requests notifications of CNOS events

*lu62_stop_notification Stops notifications of CNOS events

*lu62_poll_notification Tests for pending CNOS event

*lu62_receive_notification Receives CNOS event

Control Operator Verbs 11-15

11

See Section 5.11, “Using the Select Call to Receive CNOS Notifications,” for an
example of how the select call may be used to multiplex program control
between COPR verb returns, CNOS events, and terminal input.

11.4 lu62_receive_notification

lu62_receive_notification is used to receive notifications from the
SunLink SNA PU2.1 9.1 server.

Synopsis

Parameters

hp

(supplied) The notification header, see below.

data

(supplied) Specifies the address of a data buffer to receive any data
associated with the notification. The format of the data depends on
hp–>op_code .

Return Value

LU62_OK

Indicates that a notification was received successfully from the SunLink
SNA PU2.1 9.1 server.

LU62_ERROR

 Indicates that the API has rejected the request. lu62_errno is set to indicate
the reason for failure which can be one of the following:
• LU62_PARAMETER_ERROR

• LU62_PORT_ID_UNKNOWN

int lu62_receive_notification(lu62_notification_header_t *hp,
 bit8 *data);

11-16 SunLink Peer-to-Peer LU6.2 9.1 Programmer’s Manual—August 1997

11

• LU62_SERV_DCNX
The connection to the server has failed.

Notification Header

11.4.1 lu62_notification_header_t Request Structure Members

The following subsections describe the lu62_notification_header_t
request structure members:

port_id

(supplied) Specifies the port id of the LU connection to use. The port_id is
returned by lu62_request_notification .

op_code

(returned) Specifies the type of notification received as one of the following:
• LU62_REQUEST_NOTIFICATION_REPLY

The notification is the server response to an
lu62_request_notification verb. There is no associated data.

• LU62_STOP_NOTIFICATION_REPLY
The notification is the server response to an lu62_stop_notification
verb. There is no associated data.

• LU62_CNOS_NOTIFICATION
Unsolicited CNOS notification. The data buffer contains the CNOS
notification, see below.

typedef struct {
 bit32 port_id; /* s */
 lu62_op_code_e op_code; /* r */
 bit32 return_code; /* r */
} lu62_notification_header_t;

Control Operator Verbs 11-17

11

return_code

(returned) For verb replies, return_code specifies the result of verb
execution in the SunLink SNA PU2.1 9.1 server. See the appropriate verb for
specific values. For unsolicited notifications, return_code is set to
LU62_OK.

CNOS Notification

11.4.2 lu62_cnos_notification_t Request Structure

The following subsections describe the lu62_cnos_notification_t request
structure members:

cnos_type

(returned) Specifies the type of CNOS request received by the local LU from
the following:
• LU62_RESET_SESSION_LIMIT

• LU62_INIT_SESSION_LIMIT

• LU62_CHANGE_SESSION_LIMIT

typedef struct {
 lu62_cnos_type_ecnos_type;
 int local_invocation;
 int lu_mode_session_limit;
 int min_conwinners_source;
 int min_conwinners_target;
 lu62_responsible_lu_e responsible_lu;
 int drain_source;
 int drain_target;
 int force;
 char lu_name[LU62_LU_NAME_LEN+1];
 char mode_name[LU62_MODE_NAME_LEN+1];
} lu62_cnos_notification_t;

11-18 SunLink Peer-to-Peer LU6.2 9.1 Programmer’s Manual—August 1997

11

lu_name

(returned) Specifies the name of the affected partner LU. lu_name is an
ASCII (null-terminated) string. It corresponds to the PTNR_LU NAME
parameter in the configuration.

mode_name

(returned) Specifies the name of the affected mode. mode_name is an ASCII
(null-terminated) string. It corresponds to the MODE NAME parameter in the
configuration.

local_invocation

(returned) Specifies whether the corresponding CNOS verb was issued by
the local LU or, for parallel-session connections, the local LU.
local_invocation can be one of the following:
• TRUE: The verb was issued by a COPR program attached to the local LU

(including potentially the current program).
• FALSE: The verb was issued by the remote LU.

lu_mode_session_limit

(returned) Specifies the maximum number of sessions to be allowed
between the local (source) LU and the partner LU, for the specified
mode_name. For cnos_type = LU62_RESET_SESSION_LIMIT,
lu_mode_session_limit should be zero.

min_conwinners_source

(returned) Specifies the minimum number of sessions for which the local LU
is the contention winner.

min_conwinners_target

(returned) Specifies the minimum number of sessions for which the partner
LU is the contention winner.

Control Operator Verbs 11-19

11

responsible_lu

(returned) For cnos_types of LU62_RESET_SESSION_LIMIT and
LU62_CHANGE_SESSION_LIMIT, this value specifies which LU is
responsible for deactivating sessions as a result of a decrease in the session
limit and contention-winners. responsible_lu can be one of the
following:
• SL_SOURCE

• SL_TARGET

This following structure members are only applicable when cnos_type =
LU62_RESET_SESSION_LIMIT.

drain_source

(returned) Specifies whether the source LU can drain its allocation requests.
drain_source can be one of the following:
• FALSE
• TRUE

This parameter is not applicable to SNASVCMG.

force

(returned) For parallel-session connections, this parameter requests that the
source LU reset the session limit even when certain error conditions occur
that prevent the CNOS negotiation. force can be one of the following:
• FALSE
• TRUE

This parameter is not applicable to single-session connections or
SNASVCMG.

See Also
Section 11.2, “CNOS Verbs.”

lu62_request_notification, lu62_stop_notification

11-20 SunLink Peer-to-Peer LU6.2 9.1 Programmer’s Manual—August 1997

11

11.4.3 lu62_request_notification

lu62_request_notification requests that the SunLink SNA PU2.1 9.1
server send notifications of all CNOS events relating to a local LU.

If parameters are valid, lu62_request_notification opens a socket
connection to the specified server and sends the request on to the server.
The verb then returns to the caller with a return_code of
LU62_OPERATION_INCOMPLETE. The caller must issue
lu62_receive_notification to receive the eventual return, which
indicates whether the server accepted the request or not.

Synopsis

Request Structure

11.4.4 lu62_request_notification_t Request Structure Members

The following subsections describe the lu62_request_notification_t
request structure members:

host

(supplied/optional) Specifies the TCP/IP hostname of the SunLink SNA
PU2.1 9.1 server host. Hostnames are configured in the Unix network
configuration file /etc/hosts , or maintained by NIS. Server is supplied as
an ASCII (null-terminated) string. If host is not supplied, localhost is
assumed.

int lu62_request_notification(lu62_request_notification_t *rqp);

typedef struct {
 char host[MAXHOSTNAMELEN+1]; /* s */
 char lu_name[LU62_LU_NAME_LEN+1]; /* s */
 bit32 return_code; /* r */
 bit32 port_id; /* r */
 int port_desc; /* r */
} lu62_request_notification_t;

Control Operator Verbs 11-21

11

lu_name

(supplied) Specifies the name of the logical unit in the SunLink SNA PU2.1
9.1 server with which this connection is to be associated. This name
corresponds to the LU_NAME parameter of the LU definition. lu_name is
supplied as an ASCII (null-terminated) string.

return_code

(returned) Provides an immediate response. The return_code variable can
have one of the following values:
• LU62_OPERATION_INCOMPLETE

Indicates that a request has been sent to the SunLink SNA PU2.1 9.1
server. lu62_receive_notification must be issued to receive the
server's reply.

• LU62_PARAMETER_CHECK

— LU62_HOST_UNKNOWN

— LU62_SERVER_UNKNOWN

— LU62_LU_NAME_REQD

— LU62_BAD_LU_NAME

port_id

(returned) Specifies the port identifier assigned to the connection. All
subsequent CNOS notification verbs issued to the selected LU designate this
port_id .

port_desc

(returned) Specifies the file descriptor associated with the socket connection.
The port_desc is made available for those users who want to use select
to multiplex CNOS events with events from other devices (including other
connections to the SunLink SNA PU2.1 9.1 server).

Server Response
The SunLink SNA PU2.1 9.1 server responds to the request with an eventual
return, which is received using lu62_receive_notification .

11-22 SunLink Peer-to-Peer LU6.2 9.1 Programmer’s Manual—August 1997

11

The lu62_notification_header_t returned values are:

op_code

LU62_REQUEST_NOTIFICATION_REPLY

return_code

One of the following:
• LU62_OK

• LU62_PARAMETER_ERROR

— LU62_UNKNOWN_LU

There is no data associated with an
LU62_REQUEST_NOTIFICATION_REPLY.

See Also
lu62_receive_notification , lu62_stop_notification

11.4.5 lu62_poll_notification

lu62_poll_notification is used to test whether a notification from the
SunLink SNA PU2.1 9.1 server is pending or not.

Synopsis

Parameters

hp

(supplied) The notification header, see lu62_receive_notification .

#include <sys/time.h>
int lu62_poll_notification(lu62_notification_header_t *hp,

 struct timeval *timeout);

Control Operator Verbs 11-23

11

timeout

(supplied) Specifies how long to wait for a notification. If timeout is NULL,
the verb waits indefinitely. If timeout is zeroed, the verb test whether a
notification is pending and returns immediately with the result.

Return Value

LU62_OK

Indicates that a notification is pending. The program should issue
lu62_receive_notification to receive the notification.

LU62_ERROR

It can be one of the following:
• LU62_WAIT_TIMEOUT

No notification is pending.
• LU62_PARAMETER_ERROR

— LU62_PORT_ID_UNKNOWN

• LU62_SERV_DCNX

The connection to the server has failed.

See Also
lu62_receive_notification , lu62_request_notification

11.4.6 lu62_stop_notification

lu62_stop_notification is used to request that the SunLink SNA PU2.1
9.1 server stop sending CNOS notifications to the program.

If parameters are valid, lu62_stop_notification sends the request to the
SunLink SNA PU2.1 9.1 server and sends the request on to the server. The verb
then returns to the caller with a return_code of
LU62_OPERATION_INCOMPLETE. The caller must issue
lu62_receive_notification to receive the eventual return.

11-24 SunLink Peer-to-Peer LU6.2 9.1 Programmer’s Manual—August 1997

11

Synopsis

Request Structure

11.4.7 lu62_stop_notification_t Request Structure Members

The following subsections describe the lu62_stop_notification_t request
structure members:

port_id

(supplied) Specifies the port_id of the LU connection to close. The
port_id is returned by lu62_request_notification .

return_code

(returned) Provides an immediate response. The return_code variable can
have one of the following values:
• LU62_OPERATION_INCOMPLETE

Indicates that a request was sent to the SunLink SNA PU2.1 9.1 server.
lu62_receive_notification must be issued to receive the server's
reply.
• LU62_PARAMETER_CHECK

— LU62_PORT_ID_UNKNOWN

Server Response
The SunLink SNA PU2.1 9.1 server responds to the request with an eventual
return, which is received using lu62_receive_notification .

int lu62_stop_notification(lu62_stop_notification_t *rqp);

typedef struct {
bit32 port_id; /* s */
bit32 return_code; /* r */

} lu62_stop_notification_t

Control Operator Verbs 11-25

11

The lu62_notification_header_t returned values are:

op_code

LU62_STOP_NOTIFICATION_REPLY

return_code

LU62_OK.

There is no data associated with an LU62_STOP_NOTIFICATION_REPLY.

See Also
lu62_receive_notification, lu62_request_notification

11.5 Session Control Verbs
Session control verbs allow a program to activate and deactivate LU-LU
sessions. Table 11-4 summarizes the Session Control verbs.

CNOS Privilege
In order to issue CNOS verbs, your program must be configured with TP
PRIVILEGE = SESSION_CONTROL.

11.5.1 lu62_activate_session

lu62_activate_session activates a session with the specified mode name
to the remote LU.

Table 11-3 SunLink LU6.2 Session Control Verbs

Verb Function

lu62_activate_session Activates a session with the specified mode

lu62_deactivate_session Deactivate LU-LU session

11-26 SunLink Peer-to-Peer LU6.2 9.1 Programmer’s Manual—August 1997

11

Synopsis

Request Structure

11.5.2 lu62_activate_session_t Request Structure Members

The following subsections describe the lu62_activate_session_t request
structure members:

port_id

(supplied) Specifies the port_id of the LU connection to use. The port_id
is returned by lu62_open .

lu_name

(supplied) Specifies the locally known name of the partner LU to which the
session is to be activated. lu_name is supplied as an ASCII (null-
terminated) string. It corresponds to the PTNR_LU NAME parameter in the
configuration.

mode_name

(supplied) Specifies the name of the mode for the session. mode_name is
supplied as an ASCII (null-terminated) string and is translated to EBCDIC
by the SunLink SNA PU2.1 9.1 server. It corresponds to the mode_name
parameter in the configuration.

int lu62_activate_session(lu62_activate_session_t *rqp);

typedef struct {
 bit32 port_id; /* s */
 char lu_name[LU62_LU_NAME_LEN+1]; /* s */
 char mode_name[LU62_MODE_NAME_LEN+1]; /* s */
 bit32 return_code; /* r */
} lu62_activate_session_t;

Control Operator Verbs 11-27

11

return_code

(returned) Specifies the result of verb execution which can be one of the
following:
• LU62_OK

— LU62_OK_AS_SPECIFIED
Single session conwinner activated.

— LU62_OK_AS_NEGOTIATED
Single session conloser activated.

• LU62_OPERATION_INCOMPLETE

• LU62_PARAMETER_CHECK

— LU62_PROGRAM_NOT_PRIVILEGED

— LU62_PORT_ID_UNKNOWN

— LU62_LU_NAME_REQD

— LU62_MODE_NAME_REQD

— LU62_BAD_LU_NAME

— LU62_BAD_MODE_NAME

• LU62_PROGRAM_STATE_CHECK

— LU62_VERB_IN_PROGRESS

• LU62_PARAMETER_ERROR

— LU62_UNKNOWN_PARTNER_LU

— LU62_UNKNOWN_MODE

• LU62_ACTIVATION_FAILURE_NO_RETRY

— LU62_ACTIVATION_FAILURE_RETRY

— LU62_MODE_SESSION_LIMIT_EXCEEDED

— LU62_UNRECOGNIZED_MODE_NAME

Usage Notes
1. This verb can be used to activate a single-session as a contention winner for

the local or remote LU. The contention-winner for the session is established
by lu62_init_session_limit . If the local LU is the conwinner, the
session is activated. If the local LU is the conloser, the local LU bids for the
session.

2. This verb can be used to activate one or both parallel-sessions for the
SNASVCMG mode. The local LU is the conwinner for one session and the
conloser for the other.

11-28 SunLink Peer-to-Peer LU6.2 9.1 Programmer’s Manual—August 1997

11

3. This verb can be used to activate a parallel-session as a contention winner
for the local or remote LU. A conwinner or conloser session is activated by
the local LU depending on the current session limit and contention-
polarities established by CNOS. The local LU activates a conwinner session
if:

active_conwinners < lu_mode_session_limit -
min_conwinners_target

Otherwise, the local LU bids for a session.

See Also
CNOS verbs

11.5.3 lu62_deactivate_session

lu62_deactivate_session deactivates the specified session.

Synopsis

Request Structure

int lu62_deactivate_session(lu62_deactivate_session_t *rqp);

typedef struct {
 bit32 port_id; /* s */
 char session_id[LU62_SESSION_ID_LEN+1]; /* s */
 lu62_ds_type_type; /* s */
 int sense_code_supplied; /* s */
 bit32 sense_code; /* s */
 lu62_ds_return_control_e return_control; /* s */
 bit32 return_code; /* r */
} lu62_deactivate_session_t;

Control Operator Verbs 11-29

11

11.5.4 lu62_deactivate_session_t Request Structure Members

The following subsections describe the lu62_deactivate_session_t
request structure members:

port_id

(supplied) Specifies the port_id of the LU connection to use. The port_id is
returned by lu62_open .

session_id

(supplied) Specifies the identifier of the session to be deactivated. Session
identifiers are returned by lu62_display_mode .

type

(supplied) Specifies the type of deactivation:
• DS_CLEANUP

The session is to be deactivated immediately regardless of whether a
conversation is allocated or not.

• DS_NORMAL
The session is to be deactivated normally, after the current, if any,
conversation is deallocated.

sense_code_supplied

(supplied) Specifies whether a sense_code is provided for the
deactivation. This parameter is ignored if type = DS_NORMAL.
• FALSE
• TRUE

sense_code

(supplied/conditional). Specifies the sense_code to be used in the
deactivation. Refer to the IBM SNA Formats manual for valid sense codes.
No error checking is performed.

11-30 SunLink Peer-to-Peer LU6.2 9.1 Programmer’s Manual—August 1997

11

return_control

(supplied) Specifies when control should be returned to the program to be
one of the following:
• DS_IMMEDIATE

Return control as soon as session deactivation has been initiated by the
local LU.

Note – LU62_OPERATION_INCOMPLETE will still be returned when the
processing mode is non-blocking.

• DS_DELAYED
Return control when session deactivation is complete.

return_code

(returned) Specifies the result of verb execution, which can be one of the
following:
• LU62_OK

• LU62_OPERATION_INCOMPLETE

• LU62_PARAMETER_CHECK

— LU62_PROGRAM_NOT_PRIVILEGED

— LU62_PORT_ID_UNKNOWN

— LU62_SESSION_ID_REQD

• LU62_PROGRAM_STATE_CHECK

— LU62_VERB_IN_PROGRESS

Usage Notes
1. Each session is assigned a unique session ID when it is activated. Session

IDs exist for the duration of the session and are deleted when the session is
deactivated. Use lu62_display_mode to retrieve the session IDs for active
sessions.

2. If session_id specifies an unknown session, the session is assumed to
have been deactivated, and return_code of LU62_OK is returned to the
program.

See Also
lu62_display_mode

Control Operator Verbs 11-31

11

11.6 Display Verbs
Display verbs are used to examine the local LU's operating parameters.
Table 11-4 lists the display verbs.

CNOS Privilege
To issue CNOS verbs, your program must be configured with TP PRIVILEGE =
DISPLAY.

Variable Length Data
The display verbs return fixed length parameters and variable length
parameters. An example of a variable length parameter is the list of TP names
returned by lu62_display_local_lu . To receive such parameters, the user
must provide a data buffer. The verb returns a count of the number of entries
in the list as a fixed length parameter, and then the list entries themselves are
written into the user's buffer. If the user's buffer is of insufficient length to
receive the data, a return_code , LU62_BUFFER_TOO_SMALL, is provided and
no data is returned.

11.6.1 lu62_display_local_lu

lu62_display_local_lu returns the current values of the local LU's
operating parameters.

Table 11-4 SunLink LU6.2 Display Verbs

Verb Function

lu62_display_local_lu Returns information about the local LU

lu62_display_mode Returns information about the mode

lu62_display_remote_lu Returns information about the remote LU

lu62_display_tp Returns information about the TP

11-32 SunLink Peer-to-Peer LU6.2 9.1 Programmer’s Manual—August 1997

11

Synopsis

Request Structure

11.6.2 lu62_display_local_lu_t Request Structure Members

The following subsections describe the lu62_display_local_lu_t request
structure members:

port_id

(supplied) Specifies the port_id of the LU connection to use. The port_id
is returned by lu62_open .

buffer

(supplied) Specifies the address of a user buffer to receive the variable
length parameters returned by this call, see below.

int lu62_display_local_lu(lu62_display_local_lu_t *rqp);

Code Example 11-1

typedef struct {
 bit32 port_id; /* s */
 bit8 *buffer; /* s */
 int length; /* s/r */
 bit32 return_code; /* r */
 char nq_lu_name[LU62_NQ_LU_NAME_LEN+1]; /* r */
 char lu_name[LU62_LU_NAME_LEN+1]; /* r */
 int lu_session_limit; /* r */
 int lu_session_count; /* r */
 int bind_rsp_queue_capability; /* r */
 int security_count; /* r */
 int map_name_count; /* r */
 int remote_lu_name_count; /* r */
 int tp_name_count; /* r */
lu62_display_local_lu_t;
}

Control Operator Verbs 11-33

11

length

(supplied/returned) On input, length specifies the length of the supplied
buffer. On output, length, contains the length of the variable length
parameters contained in the buffer.

nq_lu_name

(returned) Specifies the network qualified name of the local LU.
nq_lu_name is returned as an ASCII (null-terminated) string. It
corresponds to the LU NQ_LU_NAME parameter in the configuration.

lu_name

(returned) Specifies the locally known name of the local LU. lu_name
is returned as an ASCII (null-terminated) string. It corresponds to the LU
NAME parameter in the configuration.

lu_session_limit

(returned) Specifies the maximum number of LU-LU sessions supported by
the local LU for all modes.

lu_session_count

(returned) Specifies the current number of active LU-LU sessions supported
by the local LU for all modes.

bind_rsp_queue_capability

(returned) Specifies whether the local LU allows the remote LU to queue
session activation (BIND) requests if a session cannot be activated
immediately.

security_count

(ignored) Reserved for future use.

map_name_count

(ignored) Reserved for future use.

11-34 SunLink Peer-to-Peer LU6.2 9.1 Programmer’s Manual—August 1997

11

remote_lu_name_count

(returned) Returns the number of entries in the variable length list of
remote_lu_names , see below.

tp_name_count

(returned) Returns the number of entries in the variable length list of
tp_names , see below.

return_code

(returned) Specifies the result of verb execution, one of:
• LU62_OK

• LU62_OPERATION_INCOMPLETE

• LU62_PARAMETER_CHECK

— LU62_PROGRAM_NOT_PRIVILEGED

— LU62_PORT_ID_UNKNOWN

— LU62_NQ_LU_NAME_REQD

— LU62_BUFFER_TOO_SMALL

• LU62_PROGRAM_STATE_CHECK

— LU62_VERB_IN_PROGRESS

• LU62_PARAMETER_ERROR

— LU62_UNKNOWN_LU.

Variable Length Parameters
Variable length parameters are written into the buffer in the following format:

char remote_lu_names [remote_lu_name_count -1]
[LU62_NQ_LU_NAME_LEN+1];

char tp_names [tp_name_count- 1][LU62_TP_NAME_LEN+1];

Control Operator Verbs 11-35

11

where:
remote_lu_names

The list of the network qualified remote LU names defined at the local LU.
Remote LU names are returned as ASCII (null-terminated) strings. The
name corresponds to the NQ_LU_NAME of the partner LU parameter in the
configuration.

tp_names

The list of TP names defined at the local LU. TP names are returned as
ASCII (null-terminated) strings. The name corresponds to the TP_NAME
parameter in the configuration.

Usage Notes

See Also
Refer to the SunLink SNA PU2.1 9.1 Server Configuration and Administration
Manual for more information regarding the configuration parameters.

11.6.3 lu62_display_mode

lu62_display_mode returns the current values of the (LU, mode) operating
parameters.

Synopsis

Request Structure

int lu62_display_mode(lu62_display_mode_t *rqp);

typedef struct {
 bit32 port_id; /* s */
 char nq_lu_name[LU62_NQ_LU_NAME_LEN+1]; /* s */
 char mode_name[LU62_MODE_NAME_LEN+1]; /* s */
 bit8 *buffer; /* s */
 int length; /* s/r */
 bit32 return_code; /* r */
 char lu_name[LU62_LU_NAME_LEN+1]; /* r */

11-36 SunLink Peer-to-Peer LU6.2 9.1 Programmer’s Manual—August 1997

11

 int send_max_ru_size_lb; /* r */
 int send_max_ru_size_ub; /* r */
 int recv_max_ru_size_lb; /* r */
 int recv_max_ru_size_ub; /* r */
 lu62_single_session_reinit_e single_session_reinit; /* r */
 lu62_session_level_crypto_e session_level_crypto; /* r */
 int conwinner_autoactivate_limit; /* r */
 int local_max_session_limit; /* r */
 int lu_mode_session_limit; /* r */
 int min_conwinners; /* r */
 int min_conlosers; /* r */
 int termination_count; /* r */
 int drain_local_lu; /* r */
 int drain_remote_lu; /* r */
 int lu_mode_session_count; /* r */
 int conwinners_session_count; /* r */
 int conlosers_session_count; /* r */
 int conv_group_count; /* r */
 int preferred_received_ru_size; /* r */
 int preferred_send_ru_size; /* r */
 char sess_deact_tp_name[LU62_TP_NAME_LEN+1] /* r */

 char unique_session_name /* r */
[LU62_UNIQUE_SESSION_NAME_LEN+1];

} lu62_display_mode_t;

Control Operator Verbs 11-37

11

11.6.4 lu62_display_mode_t Request Structure Members

The following subsections describe the lu62_display_mode_t request
structure members:

port_id

(supplied) Specifies the port_id of the LU connection to use. The
port_id is returned by lu62_open .

nq_lu_name

(supplied) Specifies the network qualified name of the partner LU.
nq_lu_name is supplied as an ASCII (null-terminated) string. It
corresponds to the PTNR_LU NQ_LU_NAME parameter in the configuration.

mode_name

(supplied) Specifies the name of the mode. mode_name is supplied as an
ASCII (null-terminated) string. It corresponds to the MODE NAME parameter
in the configuration.

buffer

(supplied) Specifies the address of a user buffer to receive the variable
length parameters returned by this call, see below.

length

(Supplied/returned.) On input, length specifies the length of the supplied
buffer. On output, length contains the length of the variable length
parameters contained in the buffer.

lu_name

(returned) Specifies the locally known name of the partner LU. lu_name is
returned as an ASCII (null-terminated) string. It corresponds to the
PTNR_LU NAME parameter in the configuration.

send_max_ru_size_lb

(returned) Specifies the lower bound of the maximum send RU size.

11-38 SunLink Peer-to-Peer LU6.2 9.1 Programmer’s Manual—August 1997

11

send_max_ru_size_ub

(returned) Specifies the upper bound of the maximum send RU size.

recv_max_ru_size_lb

(returned) Specifies the lower bound of the maximum receive RU size.

recv_max_ru_size_ub

(returned) Specifies the upper bound of the maximum receive RU size.

single_session_reinit

(ignored) Reserved for future use.

session_level_crypto

(ignored) Reserved for future use.

conwinner_autoactivate_limit

(returned) Specifies the local LU's automatic activation limit on the number
of conwinner sessions.

local_max_session_limit

(returned) Specifies the maximum number of sessions for all modes
supported by the local LU.

lu_mode_session_limit

(returned) Specifies the maximum number of sessions to be allowed
between the local (source) LU and the partner LU, for the specified
mode_name.

min_conwinners

(returned) Specifies the minimum number of sessions with the given
mode_name for which the local LU is the contention winner.

Control Operator Verbs 11-39

11

min_conlosers

(returned) Specifies the minimum number of sessions with the given
mode_name for which the partner LU is the contention winner.

termination_count

(returned) Specifies the number of sessions that the local LU is responsible
for deactivating as a result of CNOS processing.

drain_local_lu

(returned) Specifies whether or not the local LU is allowed to drain its
allocation requests following a CNOS reset session limit command.

drain_remote_lu

(returned) Specifies whether or not the remote LU is allowed to drain its
allocation requests following a CNOS reset session limit command.

lu_mode_session_count

(returned) Specifies the current (LU, mode) session count. The session
identifiers assigned to the active sessions are returned as variable length
parameters, see below.

conwinners_session_count

(returned) Specifies the number of active sessions for which the local LU is
the contention-winner.

conwinners_session_count

(returned) Specifies the number of active sessions for which the local LU is
the loser.

conv_grp_count

(ignored) Reserved for future use.

preferred_received_ru_size

(returned) Specifies the preferred receive RU size.

11-40 SunLink Peer-to-Peer LU6.2 9.1 Programmer’s Manual—August 1997

11

preferred_send_ru_size

(returned) Specifies the preferred send RU size.

sess_deact_tp_name

(ignored) Reserved for future use.

unique_session_name

(Returned) Specifies the unique_session_name , if specified.

return_code

(returned) Specifies the result of verb execution from one of the following:
• LU62_OK

• LU62_OPERATION_INCOMPLETE

• LU62_PARAMETER_CHECK

— LU62_PROGRAM_NOT_PRIVILEGED

— LU62_PORT_ID_UNKNOWN

— LU62_NQ_LU_NAME_REQD

— LU62_MODE_NAME_REQD

— LU62_BUFFER_TOO_SMALL

• LU62_PROGRAM_STATE_CHECK

— LU62_VERB_IN_PROGRESS

• LU62_PARAMETER_ERROR

— LU62_UNKNOWN_PARTNER_LU

— LU62_UNKNOWN_MODE

Variable Length Parameters
Variable length parameters are written into the buffer in the following format:

char session_ids [lu_mode_session_count -
1][LU62_SESSION_ID_LEN+1];

Control Operator Verbs 11-41

11

where:
session_ids

The session identifiers assigned to the active sessions. A session identifier is
returned as a (null-terminated) ASCII-hex string.

See Also
Refer to the SunLink SNA PU2.1 9.1 Server Configuration and Administration
Manual for more information regarding the configuration parameters.

11.7 lu62_display_remote_lu

lu62_display_remote_lu returns the current values of the parameters that
control the operation of the local LU in conjunction with a remote LU.

Synopsis

Request Structure

int lu62_display_remote_lu(lu62_display_remote_lu_t *rqp);

typedef struct {
 bit32 port_id; /* s */
 char nq_lu_name[LU62_NQ_LU_NAME_LEN+1]; /* s */
 bit8 *buffer; /* s */
 int length; /* s/r */
 bit32 return_code; /* r */
 char lu_name[LU62_LU_NAME_LEN+1]; /* r */
 char ui_lu_name[LU62_LU_NAME_LEN+1]; /* r */
 lu62_initiate_type_e initiate_type; /* r */
 int parallel_session_support; /* r */
 int cnos_support; /* r */
 lu62_security_accept_esecurity_accept_local_lu; /* r */
 lu62_security_accept_esecurity_accept_remote_lu /* r */
 int mode_name_count; /* r */
} lu62_display_remote_lu_t;

11-42 SunLink Peer-to-Peer LU6.2 9.1 Programmer’s Manual—August 1997

11

11.7.1 lu62_display_remote_lu_t Request Structure Member

The following subsections describe the lu62_display_remote_lu_t request
structure members:

port_id

(supplied) Specifies the port_id of the LU connection to use. The port_id
is returned by lu62_open .

nq_lu_name

(supplied) Specifies the network qualified name of the partner LU.
nq_lu_name is supplied as an ASCII (null-terminated) string. It
corresponds to the PTNR_LU NQ_LU_NAME parameter in the configuration.

buffer

(supplied) Specifies the address of a user buffer to receive the variable
length parameters returned by this call, see below.

length

(supplied/returned) On input, length specifies the length of the supplied
buffer. On output, length contains the length of the variable length
parameters contained in the buffer.

lu_name

(returned) Specifies the locally known name of the partner LU. lu_name is
returned as an ASCII (null-terminated) string. It corresponds to the
PTNR_LU NAME parameter in the configuration.

ui_lu_name

(returned) Specifies the uninterpreted name of the partner LU. ui_lu_name
is returned as an ASCII (null-terminated) string. It corresponds to the
PTNR_LU UI_LU_NAME parameter in the configuration.

initiate_type

(returned) Specifies the session-initiation type for the remote LU from one of
the following:

Control Operator Verbs 11-43

11

• INITIATE_ONLY

• INITIATE_OR_QUEUE

parallel_session_support

(returned) Specifies whether or not the remote LU supports parallel sessions
with the local LU.

cnos_support

(returned) Specifies whether or not the remote LU supports CNOS.

security_accept_local_lu

(returned) Specifies the level of access security information the local LU will
accept on allocation requests from the remote LU as one of the following:
• SA_NONE

• SA_CONVERSATION

• SA_ALREADY_VERIFIED

security_accept_remote_lu

(returned) Specifies the level of access security information the remote LU
will accept on allocation requests from the local LU as one of the following:
• SA_NONE

• SA_CONVERSATION

• SA_ALREADY_VERIFIED

mode_name_count

(returned) Returns the number of entries in the variable length list of
mode_names, see below.

return_code

(returned) Specifies the result of verb execution of one of the following:
• LU62_OK

• LU62_OPERATION_INCOMPLETE

• LU62_PARAMETER_CHECK

— LU62_PROGRAM_NOT_PRIVILEGED

11-44 SunLink Peer-to-Peer LU6.2 9.1 Programmer’s Manual—August 1997

11

— LU62_PORT_ID_UNKNOWN

— LU62_NQ_LU_NAME_REQD

— LU62_BUFFER_TOO_SMALL

• LU62_PROGRAM_STATE_CHECK

— LU62_VERB_IN_PROGRESS

• LU62_PARAMETER_ERROR

— LU62_UNKNOWN_PARTNER_LU

Variable Length Parameters
Variable length parameters are written into the buffer in the following format:

where:

mode_names

The list of mode names defined at the local LU for sessions with the remote
LU. Mode names are returned as ASCII (null-terminated) strings. The name
corresponds to the MODE NAME parameter in the configuration.

See Also
Refer to the SunLink SNA PU2.1 9.1 Server Configuration and Administration
Manual for more information regarding the configuration parameters.

11.7.2 lu62_display_tp

lu62_display_tp returns the current values of the parameters that control
the operation of the local LU in conjunction with a transaction program.

Synopsis

char mode_names [mode_name_count-1][LU62_MODE_LEN+1];

int lu62_display_tp(lu62_display_tp_t *rqp);

Control Operator Verbs 11-45

11

Request Structure

11.7.3 lu62_display_tp_t Request Structure Members

The following subsections describe the lu62_display_tp_t request structure
members:

port_id

(supplied) Specifies the port_id of the LU connection to use. The port_id
is returned by lu62_open .

typedef struct {
 bit32 port_id; /* s */
 char nq_lu_name[LU62_NQ_LU_NAME_LEN+1]; /* s */
 char tp_name[LU62_TP_NAME_LEN+1]; /* s */
 bit8 *buffer; /* s */
 int length; /* s/r */
 bit32 return_code; /* r */
 lu62_tp_status_estatus; /* r */
 int basic_support; /* r */
 int mapped_support; /* r */
 int sync_level_none; /* r */
 int sync_level_confirm; /* r */
 int sync_level_syncpt; /* r */
 lu62_security_required_e security_required; /* r */
 int security_access_count; /* r */
 lu62_pip_e pip; /* r */
 int pip_count; /* r */
 int data_mapping; /* r */
 lu62_fmh_data_e fmh_data; /* r */
 int cnos_privilege; /* r */
 int session_control_privilege; /* r */
 int define_privilege; /* r */
 int display_privilege; /* r */
 int allocate_svc_tp_privilege; /* r */
 int instance_limit; /* r */
 int instance_count; /* r */
} lu62_display_tp_t;

11-46 SunLink Peer-to-Peer LU6.2 9.1 Programmer’s Manual—August 1997

11

nq_lu_name

(supplied/optional) By default, lu62_display_tp applies to the local LU
as implied by port_id . For backward compatibility, this verb will allow the
network qualified name of a local LU to be supplied. nq_lu_name is
supplied as an ASCII (null-terminated) string. It corresponds to the LU
NQ_LU_NAME parameter in the configuration.

tp_name

(supplied) Specifies the name of the TP. tp_name is supplied as an ASCII
(null-terminated) string. It corresponds to the TP NAME parameter in the
configuration.

buffer

(supplied) Specifies the address of a user buffer to receive the variable
length parameters returned by this call, see below.

length

(supplied/returned) On input, length specifies the length of the supplied
buffer. On output, length contains the length of the variable length
parameters contained in the buffer.

status

(returned) Specifies the status for starting execution of the transaction
program from one of the following:
• TP_ENABLED

• TP_TEMP_DISABLED

• TP_PERM_DISABLED

basic_support

(returned) Specifies whether or not the TP supports basic conversations.

mapped_support

(returned) Specifies whether or not the TP supports mapped conversations.

Control Operator Verbs 11-47

11

sync_level_none

(returned) Specifies whether or not the TP supports conversations with no
synchronization level.

sync_level_confirm

(returned) Specifies whether or not the TP supports conversations with a
synchronization level of CONFIRM.

sync_level_syncpt

(returned) Specifies whether or not the TP supports conversations with a
synchronization level of SYNCPT.

security_required

(returned) Specifies the type of security verification that is required on
incoming allocation requests to the TP as one of the following:
• SE_NONE

• SE_CONVERSATION

• SA_ACCESS

security_access_count

(ignored) Reserved for future use.

pip

(returned) Specifies whether PIP data is required by the TP and, if so,
whether the LU or the TP verify the number of PIP subfields. pip may be
one of the following:
• PIP_NO

• PIP_NO_LU_VERIFICATION

• PIP_YES

pip_count

(returned) If pip = PIP_YES, specifies the number of PIP subfields required
on incoming allocation requests.

11-48 SunLink Peer-to-Peer LU6.2 9.1 Programmer’s Manual—August 1997

11

data_mapping

(ignored) Reserved for future use.

fmh_data

(returned) Specifies whether or not FMH data support is provided to the TP
for one of the following:
• FMH_NO

• FMH_YES

cnos_privilege

(returned) Specifies whether or not the TP has privilege to issue CNOS
verbs.

session_control_privilege

(returned) Specifies whether or not the TP has privilege to issue session
control verbs.

define_privilege

(ignored) Reserved for future use.

display_privilege

(returned) Specifies whether or not the TP has privilege to issue display
verbs.

allocate_svc_tp_privilege

(ignored) Reserved for future use.

instance_limit

(returned) Specifies the number of instances of the TP that can be active
concurrently.

instance_count

(returned) Specifies the current number of active TP instances.

Control Operator Verbs 11-49

11

return_code

(returned) Specifies the result of verb execution as one of the following:
• LU62_OK

• LU62_OPERATION_INCOMPLETE

• LU62_PARAMETER_CHECK

— LU62_PROGRAM_NOT_PRIVILEGED

— LU62_PORT_ID_UNKNOWN

— LU62_NQ_LU_NAME_REQD

— LU62_TP_NAME_REQD

— LU62_BUFFER_TOO_SMALL

• LU62_PROGRAM_STATE_CHECK

— LU62_VERB_IN_PROGRESS

• LU62_PARAMETER_ERROR

— LU62_UNKNOWN_PARTNER_LU

— LU62_UNKNOWN_TP

Variable Length Parameters
Reserved for future use.

See Also
Refer to the SunLink SNA PU2.1 9.1 Server Configuration and Administration
Manual for more information regarding the configuration parameters.

11-50 SunLink Peer-to-Peer LU6.2 9.1 Programmer’s Manual—August 1997

11

12-1

SunLink LU6.2 Utilities 12

This chapter documents the various utilities supplied with the
SunLink LU6.2 API. These utilities are listed in Table 12-1. Detailed man pages
follow.

Table 12-1 SunLink LU6.2 Utilities

Verb Function

Tracing

*lu62_trace Outputs a program trace

*lu62_set_trace_flag Sets program trace flags

*lu62_get_trace_flag Gets program trace flags

*lu62_dump_buffer Hex dumps a buffer

Character Conversion

*conv_ascii_to_ebcdic Converts a character from ASCII to EBCDIC (640)

*conv_ebcdic_to_ascii Converts a character from EBCDIC (640) to ASCII

*b_asc_to_ebc Converts a buffer from ASCII to EBCDIC (640)

*b_ebc_to_asc Converts a buffer from EBCDIC (640) to ASCII

*str_asc_to_ebc Converts a string from ASCII to EBCDIC (640)

12-2 SunLink Peer-to-Peer LU6.2 9.1 Programmer’s Manual—August 1997

12

12.1 *lu62_trace

lu62_trace is used to output trace information to a file. Traces are only
output if the result of a bitwise AND between the specified trace type and the
external variable lu62_trace_flag is non-zero. lu62_trace_flag is an
external bit32 variable (unsigned), which may be accessed by the routines
lu62_set_trace_flag and lu62_get_trace_flag . Each bit in the
lu62_trace_flag word represents a different trace type.

Trace output is written to a file sunlu62l_$$ in the process working directory
(where ," indicates the current process id). When 1000 traces are accumulated,
the file is saved as sunlu62l_$$.1 , and truncated.

Traces are used extensively by the API. Unused trace types are available for
use by user programs.

*str_ebc_to_asc Converts a string from EBCDIC(640) to ASCII

*strn_asc_to_ebc Converts a max length string from ASCII to
EBCDIC(640)

*strn_ebc_to_asc Converts a max length string from EBCDIC(640) to
ASCII

,” trace flag access ,"
extern bit32 lu62_trace_flag;
void lu62_set_trace_flag(bit32 flag);
bit32 lu62_get_trace_flag();

/* trace statement */
void lu62_trace(unsigned type,
 char *caller,
 char *statement,
 int length,
 char *buffer,
 int format);

Table 12-1 SunLink LU6.2 Utilities (Continued)

Verb Function

SunLink LU6.2 Utilities 12-3

12

Synopsis

Parameters

type

(supplied) Specifies the required trace type. Traces are only output if the
result of a bitwise AND between type and the external variable
lu62_trace_flag is non-zero.

caller

(supplied/optional) The name of the calling routine, supplied as a null-
terminated string.

statement

(supplied/optional) A trace header, supplied as a null-terminated string.

length

(supplied/optional) The length of the trace buffer.

buffer

(supplied/optional) This is the trace buffer.

format

(supplied/optional) Specifies how the trace buffer is to be formatted in
the trace output as one of the following:
• STRING: The buffer contains a null-terminated string for output. The

buffer length is ignored.
• ASCII_DATA: The buffer is dumped as hex data. Buffer contents are

interpreted as ASCII characters and printable data characters are output.
• EBCDIC_DATA:The buffer is dumped as hex data. Buffer contents are

interpreted as EBCDIC characters and printable data characters are
output.

• NO_FMT_DATA: The buffer is dumped as hex data.

12-4 SunLink Peer-to-Peer LU6.2 9.1 Programmer’s Manual—August 1997

12

Example
The use of these parameters is shown in the example below. The following
trace statement is issued by tpi_send_msg (an internal routine), to trace
the transmission of buffers to the SunLink SNA PU2.1 9.1 server:

If the result of (lu62_trace_flag & LU62_API_BUFS) is non-zero, an example
of the resulting trace is as follows:

12.2 * lu62_dump_buffer

lu62_dump_buffer is used by lu62_trace to trace buffers; it is also a
useful debugging routine.

lu62_trace(LU62_API_BUFS, “tpi_send_msg”, sym_conv_id(cp),
 length, send_buffer, ASCII_DATA);

<-- timestamp -><- caller ->< statement >

05/25/95 15:31:27 tpi_send_msg: LUA: 190240
000000000002e720 0000000000000001 0000000000000020
...............
0000000000000000 0000000000000000 0000006700000000
...................g....
4c55410000000000 00434f5052000000 00000000
LUA......COPR.......

<----------------- hex dump of buffer ---------------><--
interpreted data -->

SunLink LU6.2 Utilities 12-5

12

Synopsis

Parameters

file

(supplied) Specifies the required output file.

length

(supplied) The length of the buffer.

buffer

(supplied) The buffer.

format

(supplied) Specifies how the buffer is to be formatted in the output using
one of the following:
• ASCII_DATA : The buffer is dumped as hex data. Buffer contents are

interpreted as ASCII characters and printable data characters are output.
• EBCDIC_DATA: The buffer is dumped as hex data. Buffer contents are

interpreted as EBCDIC characters and printable data characters are
output.

• NO_FMT_DATA: The buffer is dumped as hex data.

12.3 Character Conversion Routines
Character conversion routines convert between ASCII and EBCDIC (00640)
character sets.

void lu62_dump_buffer(FILE *file,
 int length,
 char *buffer,
 int format);

12-6 SunLink Peer-to-Peer LU6.2 9.1 Programmer’s Manual—August 1997

12

The source code for the conversion routines lu62_convert.c is supplied
with the distribution. You are free to modify the source as required. Ensure that
your modified code is linked with your program before the SunLink LU6.2
library, or rebuild the library to include your file.

Synopsis

,” single character conversion ,"
unsigned conv_ascii_to_ebcdic(unsigned asc);
unsigned conv_ebcdic_to_ascii(unsigned ebc);

/* buffer conversion - convert all characters including ‘’ */
unsigned char *b_asc_to_ebc(unsigned char *asc_str,
 unsigned char *ebc_str,
 int len);

unsigned char *b_ebc_to_asc(unsigned char *ebc_str,
 unsigned char *asc_str,
 int len);

/* string conversion - return converted string */
unsigned char *str_asc_to_ebc(unsigned char *asc_str,
 unsigned char *ebc_str);

unsigned char *str_ebc_to_asc(unsigned char *ebc_str,
 unsigned char *asc_str);

/* string length conversion - return converted string */
unsigned char *strn_asc_to_ebc(unsigned char *asc_str,
 unsigned char *ebc_str,
 int len);

unsigned char *strn_ebc_to_asc(unsigned char *ebc_str,
 unsigned char *asc_str,
 int len);

A-1

SunLink LU6.2 Return Codes A

This appendix documents the return codes that are passed to the program at
the completion of a verb execution. The following return codes are described:

• Conversation return codes
• Control Operator return codes
• Product specific return codes

Most verbs support a return_code parameter. The return code can be used to
determine the result of verb execution results and any state changes that may
have occurred on the specified conversation. On some verbs, the return code is
not the only source of verb-execution information. In particular, on the
lu62_receive verbs, the what_received parameter should also be checked.

Some of the return codes indicate the results of the local processing of a verb.
These return codes are returned on the verb that invoked the local processing.
Other return codes indicate results of processing invoked at the remote end of
the conversation. Depending on the verb, these return codes can be returned
on the verb that invoked the remote processing or on a subsequent verb. Still
other return codes report events that originate at the remote end of the
conversation. In all cases, only one code is returned at a time.

Some of the return codes associated with the allocation of a conversation have
the suffix RETRY or NO_RETRY in their names.

A-2 SunLink Peer-to-Peer LU6.2 9.1 Programmer’s Manual—August 1997

A

• RETRY means that the condition indicated by the return code may not be
permanent, and the program can try to allocate the conversation again.
Whether or not the retry attempt succeeds depends on the duration of the
condition. In general, the program should limit the number of times it
attempts to retry without success.

• NO_RETRY means that the condition is probably permanent. In general, the
program should not attempt to allocate the conversation again until the
condition is corrected.

In the descriptions that follow, the SunLink P2P LU6.2 9.1 verb names are used
rather than the IBM SNA Transaction Programmer’s Reference Manual for LU Type
6.2 names.

A.1 Implementing Return Codes and Subcodes
Return codes consist of a primary return code and, in some cases, a qualifying
sub-code. SunLink LU6.2 implements the return code as a 32-bit unsigned
integer (bit32). The top 16 bits contain the primary code, the lower 16 bits
contain the subcode. To check for a particular primary code, you must mask off
the lower 16 bits, as follows:

if ((return_code & 0xFFFF0000) ,“ LU62_ALLOCATION_ERROR)

The SunLink LU6.2 include file, sunlu62.h , located in Appendix C, contains
#defines for all return codes. The return codes include the architected return
codes specified in the IBM SNA Transaction Programmer’s Reference Manual for
LU Type 6.2, and SunLink LU6.2 product-specific return codes and subcodes.

A.2 Conversation Return Codes and Subcodes
The return codes shown below are listed alphabetically, and each description
includes the following:

• The meaning of the return code
• The origin of the condition indicated by the return code
• When the return code is reported to the program
• The state of the conversation when control is returned to the program

The individual verb descriptions in Chapter 8, Chapter 9, and Chapter 10 list
the return code values that are valid for each verb.

SunLink LU6.2 Return Codes A-3

A

A.2.1 LU62_ALLOCATION_ERROR

The local program issued an lu62_(mc_)allocate verb and allocation of the
specified conversation could not be completed. When this return code is
returned to the program, the conversation is in Deallocate state. The following
subcodes identify the specific error.

A.2.1.1 LU62_ALLOCATE_FAILURE_NO_RETRY

The conversation cannot be allocated on a session because of a condition that
is not temporary. When this return code is returned to the program, the
conversation is in Reset state. For example, the session to be used for the
conversation cannot be activated because the current session limit for the
specified LU-name and mode-name pair is 0, or because of a system definition
error or a session activation protocol error. This return code is also returned
when the session is deactivated because of a session protocol error before the
conversation can be allocated. The program should not retry the allocation
request until the condition is corrected. This return code is returned on the
lu62_(mc_)allocate verb when the program specifies (by means of the
return_control parameter) that the local LU is to allocate a session before
returning control to the program; otherwise, it is returned on a subsequent
verb.

A.2.1.2 LU62_ALLOCATE_FAILURE_RETRY

The conversation cannot be allocated on a session because of a condition that
may be temporary. When this return code is returned to the program, the
conversation is in Reset state. For example, the session to be used for the
conversation cannot be activated because of a temporary lack of resources at
the local LU or remote LU. This return code is also returned if the session is
deactivated because of a session outage before the conversation can be
allocated. The program can retry the allocation request. This return code is
returned on the lu62_(mc_)allocate verb when the program specifies (by
means of the return_control parameter) that the local LU is to allocate a
session before returning control to the program. Otherwise, it is returned on a
subsequent verb.

A-4 SunLink Peer-to-Peer LU6.2 9.1 Programmer’s Manual—August 1997

A

A.2.1.3 LU62_CONVERSATION_TYPE_MISMATCH

The remote LU rejected the allocation request because the local program issued
an lu62_mc_allocate or lu62_allocate verb and the remote program
does not support the respective mapped or basic conversation protocol
boundary, or the local program issued an lu62_mc_allocate verb and the
remote LU does not support mapped conversations. This return code is
returned on a verb subsequent to the lu62_(mc_)allocate.

A.2.2 LU62_PIP_NOT_SPECIFIED_CORRECTLY

The remote LU rejected the allocation request because the remote program
requires one or more program initialization parameter (PIP) variable. SunLink
LU6.2 does not support PIP data. This return code is returned on a verb
subsequent to the lu62_(mc_)allocate .

A.2.2.1 LU62_SECURITY_NOT_VALID

The remote LU rejected the allocation request because the access security
information (with the security parameters) is invalid. This return code
is returned on a verb subsequent to the lu62_(mc_)allocate .

A.2.3 LU62_SYNC_LEVEL_NOT_SUPPORTED_PGM

The remote LU rejected the allocation request because the local program
specified a synchronization level (with the sync_level parameter) that the
remote program does not support. This return code is returned on a verb
subsequent to the lu62_(mc_)allocate .

A.2.4 LU62_TPN_NOT_RECOGNIZED

The remote LU rejected the allocation request because the local program
specified a remote program name (with the remote_tp_name parameter) that
the remote LU does not recognize. This return code is returned on a verb
subsequent to the lu62_(mc_)allocate .

SunLink LU6.2 Return Codes A-5

A

A.2.5 LU62_TP_NOT_AVAILABLE_NO_RETRY

The remote LU rejected the allocation request because the local program
specified a remote program that the remote LU recognizes but cannot start. The
condition is not temporary, and the program should not retry the allocation
request. This return code is returned on a verb subsequent to the
lu62_(mc_)allocate .

A.2.6 LU62_TP_NOT_AVAILABLE_RETRY

The remote LU rejected the allocation request because the local program
specified a remote program that the remote LU recognizes but currently cannot
start. The condition may be temporary and the program can retry the
allocation request. This return code is returned on a verb subsequent to the
lu62_(mc_)allocate .

A.2.7 LU62_DEALLOCATE_ABEND

The remote program issued an lu62_mc_deallocate verb with type set to
DA_ABEND, or the remote LU has done so because of a remote program ABEND
condition. If the conversation for the remote program was in Receive state
when the verb was issued, information sent by the local program and not yet
received by the remote program is purged. This return code is reported to the
local program on a verb the program issues in Send or Receive state. The
conversation is in Deallocate state.

A.2.8 LU62_DEALLOCATE_ABEND_PROG

The remote program issued an lu62_deallocate verb with type set to
DA_ABEND_PROG, or the remote LU has done so because of a remote program
ABEND condition. If the conversation for the remote program was in Receive
state when the verb was issued, information sent by the local program and not
yet received by the remote program is purged. This return code is reported to
the local program on a verb the program issues in Send or Receive state. The
conversation is in Deallocate state.

A-6 SunLink Peer-to-Peer LU6.2 9.1 Programmer’s Manual—August 1997

A

A.2.9 LU62_DEALLOCATE_ABEND_SVC

The remote program issued an lu62_deallocate verb with type set to
DA_ABEND_SVC, or the remote LU has done so because of a remote program
ABEND condition. If the conversation for the remote program was in Receive
state when the verb was issued, information sent by the local program and not
yet received by the remote program is purged. This return code is reported to
the local program on a verb the program issues in Send or Receive state. The
conversation is in Deallocate state.

This return code is typically generated by the remote LU, while
LU62_DEALLOCATE_ABEND_PROG is generated by the remote transaction
program. Thus, system errors may be distinguished from program errors.

A.2.10 LU62_DEALLOCATE_ABEND_TIMER

The remote program issued an lu62_deallocate verb with type set to
DA_ABEND_TIMER. If the conversation for the remote program was in Receive
state when the verb was issued, information sent by the local program and not
yet received by the remote program is purged. This return code is reported to
the local program on a verb the program issues in Send or Receive state. The
conversation is in Deallocate state.

A.2.11 LU62_DEALLOCATE_NORMAL

The remote program issued an lu62_mc_deallocate or lu62_deallocate
verb specifying the type parameter as DA_SYNC_LEVEL or DA_FLUSH. If type is
DA_SYNC_LEVEL, the conversation sync-level is SYNC_LEVEL_NONE. This
return code is reported to the local program on a verb the program issues for a
conversation in Receive state. The conversation is in Deallocate state.

A.2.12 LU62_FMH_DATA_NOT_SUPPORTED

The remote program issued an lu62_mc_send_data verb specifying that the
data record contains FM headers (by means of the fmh_data parameter), and
that either the remote LU or remote program does not support FM header data.
This return code is reported on a subsequent verb. All information sent by the
local program on the lu62_mc_send_data verb and subsequent verbs issued
prior to the reporting of the LU62_FMH_DATA_NOT_SUPPORTED return code is
purged. The conversation is in Send state.

SunLink LU6.2 Return Codes A-7

A

A.2.13 LU62_OK

The verb issued by the local program executed successfully (that is, the
function defined for the verb, up to the point at which control is returned to
the program, was performed as specified). The state of the conversation is as
defined for the verb.

lu62_(mc_)test (when the test type is TEST_POSTED) and lu62_wait
verbs return a subcode to provide additional information:

LU62_OK_DATA—Indicates that data is available for the program to receive.

LU62_OK_NOT_DATA—Indicates that information other than data is available
for the program to receive.

A.2.14 LU62_PARAMETER_ERROR

The local program issued a verb specifying a parameter containing an invalid
argument. The source of the argument is considered to be outside the program
definition, such as an LU name supplied by a system administrator and used
as an argument to lu62_(mc_)allocate . This return code is returned on the
verb specifying the invalid argument. The state of the conversation remains
unchanged.

A.2.15 LU62_POSTING_NOT_ACTIVE

This return code indicates that the local program issued lu62_(mc_)test
(when the test type is TEST_POSTED) and posting is not active for the specified
conversation; or the program issued lu62_wait and posting is not active for
any of the specified conversations.

A.2.16 LU62_PROGRAM_ERROR_NO_TRUNC

One of the following has occurred:

• The remote program issued an lu62_mc_send_error verb and the
conversation for the remote program was in Send state. No truncation
occurs at the mapped conversation protocol boundary. This return code is
reported to the local program on an lu62_mc_receive verb the program
type issues before receiving any data records or after receiving one or more
data records.

A-8 SunLink Peer-to-Peer LU6.2 9.1 Programmer’s Manual—August 1997

A

• The remote program issued an lu62_send_error verb with type set to
PROG, the conversation for the remote program was in Send state, and the
verb did not truncate a logical record. No truncation occurs at the basic
conversation protocol boundary when the program issues
lu62_send_error before sending any logical records or after sending a
complete logical record. This return code is reported to the local program on
an lu62_receive verb the program issues before receiving any logical
records or after receiving one or more complete logical records.

The conversation remains in Receive state.

A.2.17 LU62_PROGRAM_ERROR_PURGING

The remote program issued an lu62_mc_send_error verb or it issued an
lu62_send_error verb with type set to PROG, and the conversation for the
remote program was in Receive or Confirm state. The verb may have caused
information to be purged. Purging occurs when a program issues
lu62_send_error for a conversation in Receive before receiving all the
information sent by its partner program (all of the information sent before
reporting the LU62_PROGRAM_ERROR_PURGING return code to the partner
program). The purging can occur at the local LU, remote LU, or both. No
purging occurs when a program issues the verb for a conversation in Confirm
state, or in Receive state after receiving all the information sent by its partner
program.

This return code is normally reported to the local program on a verb the
program issues after sending some information to the remote program.
However, the return code can be reported on a verb the program issues before
sending any information, depending on the verb and when it is issued. The
conversation remains in Receive state.

A.2.18 LU62_PROGRAM_ERROR_TRUNC

The remote program issued an lu62_send_error verb with type set to PROG,
the conversation for the remote program was in Send state, and the verb
truncated a logical record. Truncation occurs at the basic conversation protocol
boundary when a program begins sending a logical record and then issues
lu62_send_error before sending the complete logical record. This return

SunLink LU6.2 Return Codes A-9

A

code is reported to the local program on an lu62_receive verb the program
issues after receiving the truncated logical record. The conversation remains in
Receive state.

A.2.19 LU62_PROGRAM_PARAMETER_CHECK

The local program issued a verb in which a programming error has been found
in one or more of the parameters. The source of the argument is considered to
be inside the program definition (under the control of the local program). This
return code may be caused by the program specifying an incorrect parameter
value, or a parameter value that is inconsistent with the other parameters or
conversation characteristics such as conversation type or sync-level. The
program should not examine any other returned variables associated with
the verb as nothing is placed in the variables. The state of the conversation
remains unchanged.

A.2.20 LU62_PROGRAM_STATE_CHECK

The local program issued a verb for a conversation in a state that was not valid
for the verb. The program should not examine any other returned variables
associated with the verb as nothing is placed in the variables. The state of the
conversation remains unchanged.

A.2.21 LU62_RESOURCE_FAILURE_NO_RETRY

This return code indicates that a failure occurred that caused the conversation
to be prematurely terminated. For example, the session being used for the
conversation was deactivated because of a session protocol error, or the
conversation was deallocated because of a protocol error between the mapped
conversation components of the LUs. The condition is not temporary, and the
program should not retry until the condition is corrected. This return code can
be reported to the local program on a verb it issues for a conversation in any
state other than Reset or Deallocate. The conversation is in Deallocate state.

A.2.22 LU62_RESOURCE_FAILURE_RETRY

This return code indicates that a failure occurred that caused the conversation
to be prematurely terminated. For example, the session being used for the
conversation was deactivated because of a session outage such as a line failure

A-10 SunLink Peer-to-Peer LU6.2 9.1 Programmer’s Manual—August 1997

A

or a modem failure. The condition may be temporary, and the program can
retry the transaction. This return code can be reported to the local program on
a verb it issues for a conversation in any state other than Reset or Deallocate.
The conversation is in Deallocate state.

A.2.22.1 LU62_SVC_ERROR_NO_TRUNC

The remote program issued an lu62_send_error verb with type set to
PROG_SVC. Otherwise, these return codes, as they apply to the basic
conversation protocol boundary, have the same meaning as their
LU62_PROGRAM_ERROR equivalents. The conversation is in Receive state.

A.2.22.2 LU62_SVC_ERROR_PURGING

Refer to Section A.2.22.1, “LU62_SVC_ERROR_NO_TRUNC.”

A.2.22.3 LU62_SVC_ERROR_TRUNC

Refer to Section A.2.22.1, “LU62_SVC_ERROR_NO_TRUNC.”

A.2.23 LU62_UNSUCCESSFUL

The verb issued by the local program did not execute successfully. This return
code is returned on the unsuccessful verb. The state of the conversation
remains unchanged.

A.3 Control Operator Return Codes and Subcodes
The return codes reported by the Control Operator verbs are described below.
Each description includes the meaning of the return code and the origin of the
condition indicated by the return code. The individual verb descriptions in
Chapter 11, “Control Operator Verbs,” list the return code values that are valid
for each verb.

SunLink LU6.2 Return Codes A-11

A

A.3.1 LU62_ACTIVATION_FAILURE_NO_RETRY

The lu62_activate_session verb failed to activate the session because of a
condition that is not temporary. For example, the session cannot be activated
because the current session limit for the specified lu_name and mode_name
pair is 0, or because of a system definition error or a session-activation protocol
error. The control operator should not retry the request until the condition is
corrected.

A.3.2 LU62_ACTIVATION_FAILURE_RETRY

The lu62_activate_session verb failed to activate the session because of a
temporary condition. For example, the session cannot be activated because of a
temporary lack of resources at the source LU or target LU. The control operator
may retry the request later.

A.3.3 LU62_ALLOCATION_ERROR

This return code indicates that a CNOS verb failed because the allocation of the
CNOS conversation with the target LU cannot be completed; the subcode
indicates its reason.

A.3.3.1 LU62_ALLOCATE_FAILURE_NO_RETRY

The CNOS conversation cannot be allocated on a session because of a
condition that is not temporary. For example, a session activation protocol
error occurs when trying to activate a session for the CNOS conversation, or
the session is deactivated because of a session protocol error before the
conversation can be allocated. The control operator should not retry the
request until the condition is corrected.

A.3.3.2 LU62_ALLOCATE_FAILURE_RETRY

The CNOS conversation cannot be allocated on a session because of a
condition that may be temporary. For example, the session to be used for the
conversation cannot be activated because of a temporary lack of resources at
the local LU or remote LU. The program can retry the request later.

A-12 SunLink Peer-to-Peer LU6.2 9.1 Programmer’s Manual—August 1997

A

A.3.3.3 LU62_TP_NOT_AVAILABLE_RETRY

Indicates that the target LU is currently unable to start the CNOS service
transaction program (hex 06F1). The condition is temporary, and the control
operator may retry the request later.

The source and target LUs' CNOS parameters are not changed by the
unsuccessful CNOS verb.

A.3.4 LU62_COMMAND_RACE_REJECT

This return code indicates that the CNOS verb failed because the source or
target LU is currently processing another CNOS transaction for the same
mode_name. The other transaction is processed to completion. The source and
target LUs CNOS parameters are not changed by the unsuccessful CNOS verb.

A.3.5 LU62_MODE_SESSION_LIMIT_CLOSED

This return code indicates that the CNOS verb failed because the target LU
currently will not allow the (LU, mode) session limit for the specified
mode_name to be raised above 0. This condition is not necessarily permanent,
and the control operator may retry the request later.

A.3.6 LU62_MODE_SESSION_LIMIT_EXCEEDED

This return code indicates that the lu62_activate_session verb could not
activate a session with the specified mode_name to the target LU for one of the
following reasons:

• For a single-session connection to the target LU, either the (LU, mode)
session limit is currently 0, or an LU-LU session is already active (with the
specified or different mode_name).

• For a parallel connection to the target LU, the number of currently active
sessions with the specified mode_name equals the (LU, mode) session limit.

SunLink LU6.2 Return Codes A-13

A

A.3.7 LU62_MODE_SESSION_LIMIT_NOT_ZERO

This return code indicates that the program issued an
lu62_initialize_session_limit verb for an (LU, mode) session limit
that is already initialized (already greater than 0). The source and target LUs'
CNOS parameters are unchanged.

A.3.8 LU62_MODE_SESSION_LIMIT_ZERO

This return code indicates that the program issued an
lu62_change_session_limit verb for an (LU, mode) session limit that has
not been initialized (i.e., is 0). The source and target LUs' CNOS parameters are
unchanged.

A.3.9 LU62_SESSION_LIMIT_EXCEEDED

This return code indicates that the CNOS verb did not execute successfully
because the new (LU, mode) session limit would cause the sum of all (LU,
mode) session limits for the source LU to exceed the defined limit (LU
MAX_SESS_LMT).

A.3.10 LU62_OK

The verb executed successfully. The following subcodes may be returned by
CNOS verbs:

LU62_OK_AS_SPECIFIED—Indicates that the source and target LUs
established the requested CNOS parameters.

LU62_OK_AS_NEGOTIATED—Indicates that one or more of the CNOS
parameters have been negotiated. The program can receive the negotiated
values by issuing lu62_display_mode .

LU62_OK_FORCED—Indicates that the source LU forced the resetting of its (LU,
mode) session limit even though an error condition arose that prevented the
CNOS conversation from completing. The target LUs CNOS parameters may
not be changed, depending on the error condition and when it occurred.

A-14 SunLink Peer-to-Peer LU6.2 9.1 Programmer’s Manual—August 1997

A

LU62_PARAMETER_ERROR—The program issued a verb specifying a parameter
containing an invalid argument. The source of the argument is considered to be
outside the program definition, such as an LU name supplied by a system
administrator and used as an argument. If an LU62_PARAMETER_ERROR
occurs, the requested action is not performed.

A.3.11 LU62_REQUEST_EXCEEDS_MAX_ALLOWED

This return code indicates that the CNOS verb did not execute successfully
because the new (LU, mode) session limit would exceed the defined maximum
session limit for the (LU, mode) (MODE LCL_MAX_SESS_LMT).

A.3.12 LU62_RESOURCE_FAILURE_NO_RETRY

This return code indicates that a failure occurred, which caused the CNOS
conversation to be prematurely terminated. For example, the session being
used for the conversation was deactivated because of a session protocol error.
The condition is not temporary, and the program should not retry the request
until the condition is corrected. The CNOS parameters remain unchanged at
the source LU. The target LU's parameters may have been changed, depending
on when the failure occurred.

A.3.13 LU62_UNRECOGNIZED_MODE_NAME

This return code indicates that the CNOS verb did not execute successfully
because the target LU did not recognize the specified mode_name. The source
and target LUs' CNOS parameters are unchanged.

A.4 Product-Specific Return Codes and Subcodes
In addition to the architected return codes described above, additional SunLink
LU6.2 product-specific return codes and subcodes may be received by the local
program. The return codes are described below, together with selected
subcodes. Refer to sunlu62.h for additional subcodes.

SunLink LU6.2 Return Codes A-15

A

A.4.1 LU62_API_ERR

An internal API error has occurred while processing the verb request or
response. The conversation should be aborted. Contact your local Sun dealer or
call Sun Technical Support.

A.4.2 LU62_OPERATION_INCOMPLETE

A non-blocking operation was started on a conversation that was initiated or
set by lu62_set_processing_mode to operate in PM_NON_BLOCKING mode.
The lu62_wait_for_server verb is issued by the local program when it is
prepared to process the return. The conversation state is unchanged until the
verb return is received. No other verb may be issued on the conversation until
that time.

A.4.3 LU62_SERVER_ERROR

The SunLink SNA PU2.1 9.1 server has encountered a fatal error while
processing the verb. The subcode, and server console messages indicate the
reason for the error. The conversation should be aborted. Contact your local
Sun dealer or call Sun Technical Support.

A.4.4 LU62_SERVER_RESOURCE_FAILURE

The server failed to allocate a buffer for the verb execution.

A.4.5 LU62_TPI_ERROR

An error has occurred on the API to server interface. The majority of these
errors affect the establishment and maintenance of the socket connection to the
SunLink SNA PU2.1 9.1 server, and are indicated by the following subcodes:

LU62_HOST_UNKNOWN—The host parameter to the lu62_open call specifies an
unknown host. The specified host is not configured in /etc/hosts or is not
known to NIS. Contact your system administrator.

LU62_SERV_DCNX—The socket connection to the SunLink SNA PU2.1 9.1
server has been broken. Since a socket connection may carry multiple
conversation channels, this condition is reported independently for each
conversation.

A-16 SunLink Peer-to-Peer LU6.2 9.1 Programmer’s Manual—August 1997

A

LU62_SERVER_UNKNOWN—The TCP server sunlu62_serv is not configured in
/etc/services or is not known to NIS. Contact your system administrator.

A.4.6 LU62_WAIT_TIMEOUT

An lu62_wait_for_server verb has returned because the specified timeout
has expired and no verb was completed. The program can issue another
lu62_wait_for_server verb or may abort the conversation using
lu62_abort . No other verb may be issued.

B-1

Conversation State Table B

The verbs that a program may issue on a conversation depend on the state of
the conversation. As the program issues verbs the state of the conversation can
change. The state changes as a result of the function of the verb, the result of a
verb issued by the remote program, or a result of network errors.

This appendix presents the Conversation State Table (Table 2) which defines
the verbs that are valid in each conversation state, and the state changes (or
transitions) that can occur when a program issues a verb. In the descriptions
that follow, the SunLink LU6.2 verb names are used rather than the IBM SNA
Transaction Programmer’s Reference Manual names.

B.1 Conversation States
The state of a conversation is defined in terms of the local program's view of
the its end of the conversation. A conversation may be in one of eight states, as
described in Table B-1. Note that the state numbers correspond to the numbers
defined in the IBM SNA Transaction Programmer’s Reference Manual names. State
numbers are missing because the sync-point states are not maintained.

B-2 SunLink Peer-to-Peer LU6.2 9.1 Programmer’s Manual—August 1997

B

B.2 State Table Abbreviations
Abbreviations are used in the state table to indicate the different permutations
of calls and characteristics. There are two categories of abbreviations:

• return_code abbreviations are enclosed by brackets []

• what_received abbreviations are enclosed by braces { }

B.2.1 Return Code Values []

The abbreviations shown in Table B-2 are used for return_codes .

Table B-1 Conversation States

State Description

1 Reset No conversation exists. The program can issue lu62_(mc_)allocate to initiate an outgoing
conversation, or lu62_accept to receive an incoming conversation.

2 Send The program is able to send data on the conversation or request confirmation.

5 Receive The program is able to receive information from the remote program.

6 Confirm A confirmation request was received on the conversation; that is, the remote program issued
an lu62_confirm call and is waiting for the local program to issue lu62_confirmed . After
responding with lu62_confirmed , the local program's end of the conversation enters Receive
state.

7 Confirm-Send A confirmation request and send control were received on this conversation; that is, the
remote program issued lu62_ (mc_)prep_to_receive (PR_SYNC_LEVEL) and the sync level
for this conversation is SYNC_LEVEL_CONFIRM; or the remote program issued
lu62_(mc_)prep_to_receive (PR_CONFIRM). After responding with lu62_confirmed ,
the local program's end of the conversation enters Send state.

8 Confirm-Deallocate A confirmation request and deallocation notification were received on this conversation; that
is, the remote program issued lu62_(mc_)deallocate (DA_SYNC_LEVEL) and the sync
level for the conversation is SYNC_LEVEL_CONFIRM; or the remote program issued
lu62_(mc_)deallocate (DA_CONFIRM). After the local program responds with
lu62_confirmed , the conversation is deallocated.

12 Deallocate The conversation enters this state when the remote program, the remote LU or the local LU has
abnormally terminated the conversation for some reason. The local program must issue
lu62_(mc_)deallocate (DA_LOCAL).

Conversation State Table B-3

B

Table B-2 Return Codes Values

Abbr Meaning

ae For an lu62_(mc_)allocate call, ae means one of the following:

 • LU62_ALLOCATION_FAILURE_NO_RETRY

 • LU62_ALLOCATION_FAILURE_RETRY

For basic and mapped conversations, ae means one of the following:

• LU62_CONVERSATION_TYPE_MISMATCH

• LU62_PIP_NOT_SPECIFIED_CORRECTLY

• LU62_SECURITY_NOT_VALID

• LU62_SYNC_LEVEL_NOT_SUPPORTED_PGM

 • LU62_TPN_NOT_RECOGNIZED

 • LU62_TP_NOT_AVAILABLE_NO_RETRY

• LU62_TP_NOT_AVAILABLE_RETRY

For mapped conversations, ae can additionally mean:

• LU62_FMH_DATA_NOT_SUPPORTED

da For basic conversations, da means one of the following:

 • LU62_DEALLOCATE_ABEND_PROG

 • LU62_DEALLOCATE_ABEND_SVC

 • LU62_DEALLOCATE_ABEND_TIME

For mapped conversations, da means:

 • LU62_DEALLOCATE_ABEND

dn • LU62_DEALLOCATE_NORMAL

en means one of the following:

 • LU62_PROG_ERROR_NO_TRUNC

 • LU62_SVC_ERROR_NO_TRUNC

ep means one of the following:

 • LU62_PROG_ERROR_PURGING

 • LU62_SVC_ERROR_PURGING

B-4 SunLink Peer-to-Peer LU6.2 9.1 Programmer’s Manual—August 1997

B

B.2.2 what_received Values

The abbreviations shown in Table B-3 are used for what_received
values returned by lu62_(mc_)receive_immediate and
lu62_(mc_)receive_and_wait verbs. See the definition of type
lu62_what_received_e in sunlu62.h , Appendix F.

et means one of the following:

 • LU62_PROG_ERROR_NO_TRUNC

 • LU62_SVC_ERROR_NO_TRUNC

ok • LU62_OK

pc • LU62_PARAMETER_CHECK

pe • LU62_PARAMETER_ERROR

rf means one of the following:

 • LU62_RESOURCE_FAILURE_NO_RETRY

 • LU62_RESOURCE_FAILURE_RETRY

sc • LU62_PROGRAM_STATE_CHECK

un • LU62_UNSUCCESSFUL

Table B-3 what_received Values

Abbr Meaning

da On a basic conversation, da means one of the following:

• WR_DATA

• WR_DATA_COMPLETE

• WR_DATA_INCOMPLETE

• WR_DATA_TRUNCATED

• WR_LL_TRUNCATED

On a mapped conversation, da means one of the following:

• WR_DATA

Table B-2 Return Codes Values (Continued)

Abbr Meaning

Conversation State Table B-5

B

B.3 Table Symbols
The symbols shown in Table B-4 are used in the state table to indicate the
condition that results when a call is issued from a certain state.

• WR_DATA_COMPLETE

• WR_DATA_INCOMPLETE

• WR_DATA_TRUNCATED

• WR_LL_TRUNCATED

• WR_FMH_DATA_COMPLETE

• WR_FMH_DATA_INCOMPLETE

• WR_FMH_DATA_TRUNCATED

cd • WR_CONFIRM_DEALLOCATE

co • WR_CONFIRM

cs • WR_CONFIRM_SEND

se • WR_SEND

Table B-4 State Table Symbols

Symbo
l Meaning

/ Cannot occur. This input is not allowed or will never return the indicated
return codes for this state.

– Remain in the current state.

1-12 Number of the next state. Note that the state numbers correspond to the
numbers defined in the IBM SNA Transaction Programmer’s Reference
Manual. State numbers are missing because sync-point states are not
maintained.

It is valid to make this call from this state. See the table entries immediately
below to determine the state transition resulting from the call.

Table B-3 what_received Values (Continued)

Abbr Meaning

B-6 SunLink Peer-to-Peer LU6.2 9.1 Programmer’s Manual—August 1997

B

B.4 Using the State Table
Each LU6.2 verb is represented in the table by a group of input rows. The
possible conversation states are shown across the top of the table. The states
correspond to the columns of the matrix. The intersection of input (row) and
state (column) represents the validity of a verb in that particular state and, for
valid calls, what state transition, if any, occurs.

The first row of each call input grouping (delineated by horizontal lines)
contains the name of the call and a symbol in each state column showing
whether the call is valid for that state. A call is valid for a given state only
if that state's column contains the symbol ∆ (delta). If the column contains “pc”
(LU62_PARAMETER_CHECKor sc (LU62_PROGRAM_STATE_CHECK), the call is
invalid for that state and the indicated return_code is returned. No state
transitions occur for invalid verbs.

Example
For example, look at the group of input rows for the
lu62_(mc_)deallocate (Confirm) call. The first row in this group shows
that this call is only valid when the conversation is in Send state. For all other
states, the call is invalid (pc or sc is indicated).

Beneath the input row containing lu62_(mc_)deallocate (Confirm), there
are four rows showing the possible return codes returned by this call. Since the
call is only valid in Send state, only this state's column contain transition
values on these four rows. These transition values provide the following
information:

• The conversation goes from Send state to Reset state when a return code of
LU62_OK (“ok ”) is returned.

• The conversation goes from Send state to Deallocate state when a return
code abbreviated as “ok ,” “da ,” or “rf ” is returned.

• The conversation goes from Send state to Receive state when a return code
abbreviated as “ep” is returned.

• There is no state transition when a return code of LU62_PARAMETER_CHECK
(“pc ”) is returned.

Table B-5 shows the conversion state table.

Conversation State Table B-7

B

Table B-5 Conversion State Table

 Inputs States Reset
1

Send
2

Receive
3

Confirm
4

Confirm
Send
5

Confirm
Dealloc
6

Dealloc
7

lu62_accept ∆ / / / / / /

[ok] 5

[pc] -

lu62_(mc_)allocate ∆ sc sc sc sc sc sc

[ok] 2

[ae] 12

[pc,pe,un] -

lu62_abort pc ∆ ∆ ∆ ∆ ∆ ∆

[ok,pc] - - - - - -

lu62_(mc_)confirm pc ∆ sc sc c sc sc

[ok,pc] -

 [ae,da,rf] 12

[ep] 5

lu62_(mc_)confirmed pc sc sc ∆ ∆ ∆ sc

[ok] 5 2 12

 [pc] - - -

lu62_(mc_)deallocate(Abend) pc ∆ ∆ ∆ ∆ ∆ sc

[ok] 1 1 1 1 1 1

[pc] - - - - -

lu62_(mc_)deallocate(Confirm) pc ∆ sc sc sc sc sc

 [ok] 1

[ae,da,rf] 12

[ep] 5

[pc] -

lu62_(mc_)deallocate(Flush) pc ∆ sc sc sc sc sc

[ok] 1

B-8 SunLink Peer-to-Peer LU6.2 9.1 Programmer’s Manual—August 1997

B

 [pc] -

lu62_(mc_)deallocate(Local) pc sc sc sc sc sc ∆

 [ok] 1

 [pc] -

lu62_(mc_)flush pc ∆ sc sc sc sc sc

 [ok,pc] -

lu62_(mc_)get_attributes pc ∆ ∆ ∆ ∆ ∆ ∆

 [ok,pc] - - - - - -

lu62_get_tp_properties pc ∆ ∆ ∆ ∆ ∆ ∆

 [ok,pc] - - - - - -

lu62_get_type pc ∆ ∆ ∆ ∆ ∆ ∆

 [ok,pc] - - - - - -

lu62_(mc_)post_on_receipt pc sc ∆ sc sc sc sc

 [ok,pc] -

lu62_(mc_)prep_to_receive(Confirm) pc ∆ sc sc sc sc sc

[ok,ep] 5

 [ae,da,rf] 12

 [pc] -

lu62_(mc_)prep_to_receive(Flush) pc ∆ sc sc sc sc sc

 [ok] 5

 [pc] -

lu62_(mc_)receive_and_wait pc ∆ ∆ sc sc sc sc

 [ok]{da} 5 -

 [ok]{se} - 2

 [ok]{co} 6 6

[ok]{cs} 7 7

 [ok]{cd} 8 8

 [ea,da,dn,rf] 12 12

Table B-5 Conversion State Table (Continued)

 Inputs States Reset
1

Send
2

Receive
3

Confirm
4

Confirm
Send
5

Confirm
Dealloc
6

Dealloc
7

Conversation State Table B-9

B

 [en,ep] 5 -

 [et] / -

 [pc] - -

lu62_(mc_)receive_immediate pc sc ∆ sc sc sc sc

 [ok]{da} -

 [ok]{se} 2

 [ok]{co} 6

 [ok]{cs} 7

 [ok]{cd} 8

 [ea,da,dn,rf] 12

 [en,ep,et,pc,un] -

lu62_(mc_)request_to_send pc ∆ ∆ sc sc sc sc

 [ok,pc] - -

lu62_(mc_)send_data pc ∆ sc

[ok] -

 [ae,da,rf] 12

[ep] 5

[pc] -

lu62_(mc_)send_error pc ∆ ∆ ∆ ∆ ∆ sc

 [ok] - 2 2 2 2

 [ae,da] 12 / / / /

 [dn] / 12 / / /

 [ep] 5 / / / /

 [rf] 12 12 12 12 12

 [pc] - - - - -

lu62_(mc_)test(Posted) pc sc ∆ sc sc sc sc

 [ok,en,ep,et,pc,pn,un] -

 [ae,da,dn,rf] 12

Table B-5 Conversion State Table (Continued)

 Inputs States Reset
1

Send
2

Receive
3

Confirm
4

Confirm
Send
5

Confirm
Dealloc
6

Dealloc
7

B-10 SunLink Peer-to-Peer LU6.2 9.1 Programmer’s Manual—August 1997

B

lu62_(mc_)test(RTS_received) pc ∆ ∆ sc sc sc sc

 [ok][*cs] - -

lu62_wait pc sc ∆ sc sc sc sc

[ok,en,ep,et,pc,pn,un] -

[ae,da,dn,rf] 12

Table B-5 Conversion State Table (Continued)

 Inputs States Reset
1

Send
2

Receive
3

Confirm
4

Confirm
Send
5

Confirm
Dealloc
6

Dealloc
7

C-1

LU 6.2 Include Files C

This appendix contains the SunLink P2P LU6.2 9.1 API include files:

• sun_general.h

• sunlu62.h

Code Example C-1 (1 of 39)

/*
 * COPYRIGHT (c) 1997 BY Sun Microsystems, Inc.
 */

#ifndef _sun_general_h
#define _sun_general_h

/***
*
* Module Name: sun_general.h
*
* Function: Gathering place for widely use constants and types.
*
* Usage:
* #include "sun_general.h"
*
* Creation Date: 03/21/91
*
* Change Log:
*

C-2 SunLink Peer-to-Peer LU6.2 9.1 Programmer’s Manual—August 1997

C

***/

#ifndef TRUE
#define TRUE 1
#endif

#ifndef FALSE
#define FALSE 0
#endif

#ifndef NULL
#define NULL 0
#endif

#ifndef SUN_TYPES
#define SUN_TYPES
typedef unsigned long addr_int; /* integer for ptr -> int -> ptr */

#if defined(ALPHA) /* 64 bit */
typedef unsigned char bit8;
typedef unsigned short bit16;
typedef unsigned int bit32;
typedef unsigned int mask;
#else /* 32 bit */
typedef unsigned char bit8;
typedef unsigned short bit16;
typedef unsigned long bit32;
typedef unsigned short mask;
#endif /* !ALPHA */
#endif /* SUN_TYPES */

#if defined(MSWINDOWS) || defined(WNT)

#define CFG

#include <stdio.h>
#include <string.h>
#ifndef MSWINDOWS
#include "tydefs.h"
#endif
#endif /* MSWINDOWS or WNT */

#if defined(ALPHA) /* 64 bit */

Code Example C-1 (2 of 39)

LU 6.2 Include Files C-3

C

typedef unsigned char BIT8;
typedef unsigned short BIT16;
typedef unsigned int BIT32;
#else /* 32 bit */
typedef unsigned char BIT8;
typedef unsigned short BIT16;
typedef unsigned long BIT32;
#endif /* !ALPHA */

typedef char CHAR;
typedef short SHORT;

#ifndef INT
#define INT int
#endif

#ifndef LONG
#define LONG long
#endif

typedef unsigned int UINT;

#ifndef ULONG
typedef unsigned long ULONG;
#endif

typedef int RESULT;

#if !defined (MSWINDOWS)
#define FAR
#define _far
#define __far
#define NEAR
#define _near
#define __near
#endif /* not MSWINDOWS and not WNT */

/* #ifdef MSWINDOWS */

typedef ULONG FAR* FPULONG;

Code Example C-1 (3 of 39)

C-4 SunLink Peer-to-Peer LU6.2 9.1 Programmer’s Manual—August 1997

C

typedef char NEAR* NPCHAR;
typedef char FAR* FPCHAR;

typedef CHAR NEAR* PSTR;
typedef CHAR NEAR* NPSTR;
typedef CHAR FAR* FPSTR;
#ifdef MSWINDOWS
typedef const CHAR FAR* FPCSTR;
#endif

typedef BIT8 FAR* PBIT8;
typedef BIT8 NEAR* NPBIT8;
typedef BIT8 FAR* FPBIT8;

typedef BIT16 FAR* PBIT16;
typedef BIT16 NEAR* NBIT16;
typedef BIT16 FAR* FPBIT16;

typedef BIT32 FAR* PBIT32;
typedef BIT32 NEAR* NPBIT32;
typedef BIT32 FAR* FPBIT32;

typedef INT NEAR* PINT;
typedef INT NEAR* NPINT;
typedef INT FAR* FPINT;

typedef void FAR* FPVOID;

/* #endif */ /* MSWINDOWS */

#if 0
#ifdef WNT

typedef ULONG * FPULONG;

typedef char * NPCHAR;
typedef char * FPCHAR;

typedef CHAR * PSTR;
typedef CHAR * NPSTR;
typedef CHAR * FPSTR;
typedef const CHAR * FPCSTR;

Code Example C-1 (4 of 39)

LU 6.2 Include Files C-5

C

typedef BIT8 * PBIT8;
typedef BIT8 * NPBIT8;
typedef BIT8 * FPBIT8;

typedef BIT16 * PBIT16;
typedef BIT16 * NBIT16;
typedef BIT16 * FPBIT16;

typedef BIT32 * PBIT32;
typedef BIT32 * NPBIT32;
typedef BIT32 * FPBIT32;

typedef INT * PINT;
typedef INT * NPINT;
typedef INT * FPINT;

typedef void * FPVOID;

#endif /* WNT */
#endif

#if defined(SVR4) || defined(WNT)

#if !defined(KERNEL) && !defined(_KERNEL)
#define bcopy(f,t,n) memcpy(t,f,n)
#define bzero(s,n) memset(s,0,n)
#define bcmp(s,d,n) memcmp(s,d,n)
#endif /* not KERNEL */

#define index(s,r) strchr(s,r)
#define rindex(s,r) strrchr(s,r)

#endif /* SVR4 or WNT */

#ifdef MSWINDOWS
#define bcopy(a,b,c) _fmemcpy((FPCHAR) b,(FPCHAR) a,c)
#define bzero(s,n) _fmemset((FPCHAR) s,'',n)
#define bcmp(s,d,n) _fmemcmp((FPCHAR) s,(FPCHAR) d,n)

#endif

#ifdef WNT

Code Example C-1 (5 of 39)

C-6 SunLink Peer-to-Peer LU6.2 9.1 Programmer’s Manual—August 1997

C

#ifdef EVENT_VIEWER
extern brx_log_event(BIT32 type, ...);
#define printf sun_log_event
#else
extern void brx_printf(char *, ...);
#define printf sun_printf

#endif /* WNT and not EVENT_VIEWER */

#endif /* WNT */

#ifdef _SEQUENT_
#define gettimeofday(tvp,x) get_process_stats(tvp, -1, NULL, NULL)
typedef unsigned char u_char;
typedef unsigned short u_short;
typedef unsigned long u_long;
#endif /* _SEQUENT_ */

#endif /* _sun_general_h */

/*
 * COPYRIGHT (c) 1997 Sun Microsystems, Inc.
 */

#ifndef BRXLU62_H
#define BRXLU62_H

/***
*
* Module Name: sunlu62.h
*
* Function: This include file contains the SUNLU62 application interface
* definitions.
*
* Usage:
* #include "sunlu62.h"
*
* External data definitions:
* lu62_errno; sunlu62 library errors
* lu62_trace_flag; sunlu62 trace options
*

Code Example C-1 (6 of 39)

LU 6.2 Include Files C-7

C

* External routine definitions:
* all SUNLU62 API routines
*
* Creation Date: 1/17/92
*
* Change Log:
*
***/

#ifdef WNT
#include <stdlib.h>
#include <winsock.h>

#else /* !WNT */
#include <sys/param.h> /* system parameters */
#endif

#include <sys/types.h>

#ifdef SVR4
#include <netdb.h> /* network db parameters */
#endif

#ifdef SCO
#include <sys/socket.h> /* MAXHOSTNAMELEN */
#endif

#ifndef MAXHOSTNAMELEN
#define MAXHOSTNAMELEN 128
#endif

#include "sun_general.h"

/***
 *
 * LU62 Constants
 *

 */
#define VO_LU62_TP_NAME_LEN 8
#define LU62_TP_NAME_LEN 64

Code Example C-1 (7 of 39)

C-8 SunLink Peer-to-Peer LU6.2 9.1 Programmer’s Manual—August 1997

C

#define LU62_LU_NAME_LEN 8
#define LU62_NQ_LU_NAME_LEN 17
#define LU62_MODE_NAME_LEN 8
#define LU62_MAP_NAME_LEN 8
#define VO_LU62_MAX_USER_LEN 8
#define VO_LU62_MAX_PASSWD_LEN 8
#define VO_LU62_MAX_PROFILE_LEN 10
#define LU62_MAX_USER_ID_LE 64
#define LU62_MAX_PASSWD_LEN 64
#define LU62_MAX_PROFILE_LEN 64
#define LU62_MAX_DATA_LEN3 32767
#define LU62_MAX_CONV_CORR_LEN 8
#define LU62_MAX_LOG_DATA_LEN 512
#define LU62_MAX_RESOURCE_LIST_ENTRIES 256
#define LU62_SESSION_ID_LEN 16 /* ASCII/HEX for COPR verbs */
#define LU62_MAX_SESS_ID_LEN 8 /* binary for attributes */
#define LU62_MIN_LUW_LEN 10
#define LU62_MAX_LUW_LEN 26
#define LU62_LUW_INSTANCE_LEN 16

#define SNASVCMG"SNASVCM4"
#define CPSVCMG"CPSVCM4"
#define LU62_ALL_MODES "*"

/***
 *
 * LU62 Message Field typedefs
 *

 */

/* Conversation Type */
typedef enum lu62_conv_type {
 CONVERSATION_BASIC = 0,
 CONVERSATION_MAPPED
} lu62_conv_type_e;

/* Conversation States */
typedef enum lu62_conv_state {

 CONV_RESET = 0,

Code Example C-1 (8 of 39)

LU 6.2 Include Files C-9

C

 CONV_SEND,
 CONV_DEFER_RECEIVE,
 CONV_DEFER_DEALLOCATE,
 CONV_RECEIVE,

 CONV_CONFIRM,
 CONV_CONFIRM_SEND,
 CONV_CONFIRM_DEALLOCATE,
 CONV_SYNCPT,
 CONV_SYNCPT_SEND,
 CONV_SYNCPT_DEALLOCATE,
 CONV_DEALLOCATE,
 CONV_BACKOUT_REQD,
 CONV_CANT_HAPPEN

} lu62_conv_state_e;

/* Deallocate Type */
typedef enum {
 DA_SYNC_LEVEL = 0,
 DA_FLUSH,
 DA_CONFIRM,
 DA_ABEND,/* MC only */
 DA_ABEND_PROG,/* Basic only */
 DA_ABEND_SVC,/* Basic only */
 DA_ABEND_TIMER,/* Basic only */
 DA_LOCAL,
 /* Sync Level syncpoint additions */
 DA_UNBIND
} lu62_deallocate_type_e;

/* Encrypt Type */
typedef enum {
 ENCRYPT_NO = 0,
 ENCRYPT_YES = 1
} lu62_encrypt_e;

/* Fill type */
typedef enum {
 FILL_LL = 0,
 FILL_BUFFER = 1
lu62_fill_e;

Code Example C-1 (9 of 39)

C-10 SunLink Peer-to-Peer LU6.2 9.1 Programmer’s Manual—August 1997

C

/* FMH Data Type */
typedef enum {
 FMH_NO = 0,
 FMH_YES = 1,
 /* Sync Level syncpoint additions */
 FMH_ELN,
 FMH_CS
} lu62_fmh_data_e;

/* forget indicator type */
typedef enum {
 FORGET_NO = 0,
 FORGET_YES = 1
} lu62_forget_e;

/* Locks type */
typedef enum {
 LOCKS_SHORT = 0,
 LOCKS_LONG = 1
} lu62_locks_e;

/* Log Data Type */
typedef enum {
 FLUSH_NO = 0,
 FLUSH_YES = 1
} lu62_flush_e;

/* PIP presence in allocate or attach */
typedef enum {
 PIP_NOT_PRESENT = 0,
 PIP_PRESENT = 1
} lu62_pip_presence_e;

/* Post Control */
typedef enum {
 PC_ALWAYS_POST = 0,
 PC_USER_POST = 1
} lu62_post_control_e;

/* Prepare to Receive Type */
typedef enum {
 PR_SYNC_LEVEL = 0,

Code Example C-1 (10 of 39)

LU 6.2 Include Files C-11

C

 PR_FLUSH,
 PR_CONFIRM
} lu62_prep_to_rcv_type_e;

/* Processing Mode */
typedef enum {
 PM_BLOCKING = 0,
 PM_NON_BLOCKING = 1
} lu62_processing_mode_e;

/* Program Type */
typedef enum {
 PROG = 0,
 PROG_SVC = 1
} lu62_prog_type_e;

/* Allocation Return Control */
typedef enum {
 RC_WHEN_SESSION_ALLOCATED = 0,
 RC_IMMEDIATE,
 RC_WHEN_CONWINNER_ALLOCATED,
 RC_WHEN_CONV_GROUP_ALLOCATED
} lu62_return_control_e;

/* Conversation Security */
typedef enum {
 SECURITY_NONE = 0,
 SECURITY_SAME,
 SECURITY_PROGRAM
lu62_security_e;

/* Conversation Sync Level */
typedef enum {
 SYNC_LEVEL_NONE = 0,
 SYNC_LEVEL_CONFIRM,
 SYNC_LEVEL_SYNCPT
} lu62_sync_level_e;

/* Test Type */
typedef enum {
 TEST_POSTED = 0,
 TEST_REQUEST_TO_SEND_RECEIVED = 1

Code Example C-1 (11 of 39)

C-12 SunLink Peer-to-Peer LU6.2 9.1 Programmer’s Manual—August 1997

C

} lu62_test_type_e;

/* What Received */
typedef enum {
 WR_DATA = 0,/* Basic only */
 WR_LL_TRUNCATED,/* Basic only */
 WR_DATA_COMPLETE,
 WR_DATA_INCOMPLETE,
 WR_DATA_TRUNCATED,/* MC only */
 WR_FMH_DATA_COMPLETE,/* MC only */
 WR_FMH_DATA_INCOMPLETE,/* MC only */
 WR_FMH_DATA_TRUNCATED,/* MC only */
 WR_SEND,
 WR_CONFIRM,
 WR_CONFIRM_SEND,
 WR_CONFIRM_DEALLOCATE,
 WR_TAKE_SYNCPT,
 WR_TAKE_SYNCPT_SEND,
 WR_TAKE_SYNCPT_DEALLOCATE,

 /* Sync Level syncpoint additions */
 WR_PS_DATA_COMPLETE,/* Basic SYNC_LEVEL_SYNCPT only */
 WR_PS_DATA_INCOMPLETE,/* Basic SYNC_LEVEL_SYNCPT only */
} lu62_what_received_e;

typedef bit8 lu62_pip_t[32];

/* Sync Level syncpoint additions */

/* lu62_listen Response Type */
typedef enum {
 LISTEN_ATTACH = 0,
 LISTEN_FORGET = 1
} lu62_response_type_e;

/***
 *
 * LU62 COPR Message Field typedefs
 *

Code Example C-1 (12 of 39)

LU 6.2 Include Files C-13

C

 */

/* Deactivate Session Type */
typedef enum {
 DS_CLEANUP = 0,
 DS_NORMAL
} lu62_ds_type_e;

/* Deactivate Session Return_Control */
typedef enum {
 DS_IMMEDIATE = 0,
 DS_DELAYED
} lu62_ds_return_control_e;

/* Change Session Limit Responsible */
typedef enum {
 SL_SOURCE = 0,
 SL_TARGET
} lu62_responsible_lu_e;

/* Single Session Reinitiation responsibility */
typedef enum {
 SR_OPERATOR = 0,
 SR_PLU,
 SR_SLU,
 SR_PLU_OR_SLU
} lu62_single_session_reinit_e;

/* Session Level Cryptography */
typedef enum {
 SC_NOT_SUPPORTED = 0,
 SC_MANDATORY,
 SC_SELECTIVE
} lu62_session_level_crypto_e;

/* Session Initiation Type */
typedef enum {
 SI_INITIATE_ONLY = 0,
 SI_INITIATE_OR_QUEUE
} lu62_initiate_type_e;

/* Security Acceptance Level */

Code Example C-1 (13 of 39)

C-14 SunLink Peer-to-Peer LU6.2 9.1 Programmer’s Manual—August 1997

C

typedef enum {
 SA_NONE = 0,
 SA_CONVERSATION,
 SA_ALREADY_VERIFIED
} lu62_security_accept_e;

/* Security Required Level */
typedef enum {
 SE_NONE = 0,
 SE_CONVERSATION,
 SE_ACCESS
} lu62_security_required_e;

/* TP Status */
typedef enum {
 TP_ENABLED = 0,
 TP_TEMP_DISABLED,
 TP_PERM_DISABLED
} lu62_tp_status_e;

/* PIP */
typedef enum {
 PIP_NO = 0,
 PIP_NO_LU_VERIFICATION,
 PIP_YES
 } lu62_pip_e;

/***
 *
 * Open and Close Requests
 *

 */
typedef struct {
 char host[MAXHOSTNAMELEN+1];/* s */
 char lu_name[LU62_LU_NAME_LEN+1];/* so */
 char tp_name[LU62_TP_NAME_LEN+1];/* so */
 lu62_processing_mode_e processing_mode;/* s */

 bit32 return_code; /* r */
 bit32 port_id; /* r */

Code Example C-1 (14 of 39)

LU 6.2 Include Files C-15

C

 int port_desc; /* r */
} lu62_open_req_t;

typedef struct
 bit32 port_id; /* s */
 bit32 return_code; /* r */
lu62_close_req_t;

/***
 *
 * Sun LU6.2 Verbs
 *

 */

typedef struct
 bit32 port_id;/* s */
 bit32 own_tp_instance;/* s/r */
 lu62_processing_mode_e processing_mode;/* s */

 bit32 conv_id; /* r */
 bit32 p_id; /* r */
 lu62_pip_presence_e pip_presence; /* r */
 bit32 return_code; /* r */
} lu62_accept_t;

typedef struct {
 bit32 port_id; /* s */
 char tp_name[LU62_TP_NAME_LEN+1]; /* s */

 bit32 tp_id; /* r */
 bit32 return_code; /* r */
} lu62_register_tp_t;

typedef struct {
 bit32 conv_id; /* s */
 bit32 return_code; /* r */
} lu62_abort_t;

Code Example C-1 (15 of 39)

C-16 SunLink Peer-to-Peer LU6.2 9.1 Programmer’s Manual—August 1997

C

typedef struct {
 bit32 port_id; /* s */
 lu62_processing_mode_e processing_mode; /* s */

 /* conv_id is only valid while LU62_OPERATION_INCOMPLETE */
 bit32 conv_id; /* r */

 /* Accept parameters */
 lu62_pip_presence_e pip_presence; /* r */

 /* Conversation Type - see lu62_get_type */
 lu62_conv_type_e type; /* r */

 /* Conversation Attributes - see lu62_get_attributes */
 char partner_lu_name[LU62_LU_NAME_LEN+1];/* r */
 char mode_name[LU62_MODE_NAME_LEN+1];/* r */
 bit8 partner_qlu_name[LU62_NQ_LU_NAME_LEN+1];/* r */
 int partner_qlu_name_len;/* r */
 lu62_sync_level_e sync_level; /* r */
 int conv_corr_len; /* r */
 bit8 conv_corr[LU62_MAX_CONV_CORR_LEN]; /* r */
 bit32 conv_grp_id; /* ???? *//* r */

 /* TP Properties - see lu62_get_tp_properties */
 bit32 tp_id; /* r */
 bit32 own_tp_instance;/* r */
 char tp_name[LU62_TP_NAME_LEN+1];/* r */
 char local_len_name[LU62_LU_NAME+1]; /* r */
 bit8 qlu_name[LU62_NQ_LU_NAME_LEN+1]; /* r */
 int qlu_name_len; /* r */
 char user_id[LU62_MAX_USER_ID_LEN+1];/* r */
 int user_id_len; /* r */
 char profile[LU62_MAX_PROFILE_LEN+1];/* r */
 int profile_len; /* r */

 bit32 return_code; /* r */

 /* Sync Level syncpoint additions */
 lu62_response_type_e response_type; /* r */
 int sess_id_len; /* r */
 bit8 sess_id[LU62_MAX_SESS_ID_LEN];/* r */
 int luw_len; /* r */

Code Example C-1 (16 of 39)

LU 6.2 Include Files C-17

C

 bit8 luw[LU62_MAX_LUW_LEN];/* r */
} lu62_listen_t;

/***
 *
 * Standard LU6.2 Verbs
 *

 */
typedef struct {
 bit32 port_id;/* s */
 bit32 tp_id; /* s */
 char lu_name[LU62_LU_NAME_LEN+1]; /* s */
 char mode_name[LU62_MODE_NAME_LEN+1]; /* s */
 char remote_tp_name[LU62_TP_NAME_LEN+1];

/* s */
 bit32 conv_grp_id; /* s */
 lu62_processing_mode_e processing_mode; /* s */
 lu62_conv_type_e type;/* Basic only */ /* s */
 lu62_flush_e flush; /* s */
 lu62_return_control_e return_control; /* s */
 lu62_sync_level_e sync_level; /* s */
 lu62_pip_presence_e pip_presence; /* s */
 lu62_security_e security; /* s */
 char user_id[LU62_MAX_USER_ID_LEN+1]; /* s */
 char passwd[LU62_MAX_PASSWD_LEN+1]; /* s */
 char profile[LU62_MAX_PROFILE_LEN+1]; /* s */

 bit32 conv_id; /* r */
 bit32 return_code; /* r */
} lu62_allocate_t;

typedef struct {
 bit32 conv_id; /* s */
 bit32 return_code; /* r */
 bit32 request_to_send_received; /* r */
lu62_confirm_t;

typedef struct {

Code Example C-1 (17 of 39)

C-18 SunLink Peer-to-Peer LU6.2 9.1 Programmer’s Manual—August 1997

C

 bit32 conv_id; /* s */
 bit32 return_code;/* r */
lu62_confirmed_t;

typedef struct
 bit32 conv_id;/* s */
 lu62_deallocate_type_e type;/* s */
 char *log_data;/* Basic only *//* s */
 bit32 return_code;/* r */
} lu62_deallocate_t;

typedef struct
 bit32 conv_id;/* s */
 bit32 return_code;/* r */
lu62_flush_t;

typedef struct
 bit32conv_id; /* s */

 bit32 return_code; /* r */
 char partner_lu_name[LU62_LU_NAME_LEN+1]; /* r */
 char mode_name[LU62_MODE_NAME_LEN+1];/* r */
 bit8 partner_qlu_name[LU62_NQ_LU_NAME_LEN+1];/* r */
 int partner_qlu_name_len;
 lu62_sync_level_esync_level; /* r */
 lu62_conv_state_e conv_state;
 int conv_corr_len; /* r */
 bit8 conv_corr[LU62_MAX_CONV_CORR_LEN]; /* r */
 bit32 conv_grp_id; /* ???? *//* r */

 /* Sync Level syncpoint additions */
 int sess_id_len; /* r */
 bit8 sess_id[LU62_MAX_SESS_ID_LEN];/* r */
 int luw_len; /* r */
 bit8 luw[LU62_MAX_LUW_LEN];/* r */
} lu62_get_attributes_t;

typedef struct {

Code Example C-1 (18 of 39)

LU 6.2 Include Files C-19

C

 bit32 conv_id; /* s */
 int length; /* s */
 lu62_fill_e fill; /* Basic only *//* s */
 bit32 return_code;/* r */
} lu62_post_on_receipt_t;

typedef struct {
 bit32 conv_id; /* s */
 bit32 return_code; /* r */
} lu62_prep_for_syncpt_t;

typedef struct
 bit32 conv_id; /* s */
 lu62_prep_to_rcv_type_e type;/* s */
 lu62_locks_elocks; /* s */
 bit32 return_code; /* r */
} lu62_prep_to_receive_t;

typedef struct {
 bit32 conv_id; /* s */
 lu62_fill_e fill;/* Basic only *//* s */

 int length; /* s/r */

 bit32 return_code; /* r */
 bit32 request_to_send_received;/* r */
 bit8 *data; /* r */
 lu62_what_received_e what_received;/* r */
 char map_name[LU62_MAP_NAME_LEN+1];/* r */

/* MC only */
} lu62_receive_t;

typedef struct {
 bit32 conv_id; /* s */
 bit32 return_code; /* r */
} lu62_request_to_send_t;

Code Example C-1 (19 of 39)

C-20 SunLink Peer-to-Peer LU6.2 9.1 Programmer’s Manual—August 1997

C

typedef struct {
 bit32 conv_id; /* s */
 bit8 *data; /* s */
 int length; /* s */

 charmap_name[LU62_MAP_NAME_LEN+1];/* s */
/* MC only */

 lu62_fmh_data_e fmh_data;/* MC only *//* s */
 lu62_encrypt_e encrypt;/* s */
 lu62_flush_e flush; /* s */

 bit32 return_code; /* r */
 bit32 request_to_send_received;/* r */
} lu62_send_data_t;

type def struct
 bit 32conv_id; /* s */
 bit8 *data; /* s */
 int length; /* s */

 lu62_forget_e forget;/* s */
 lu62_flush_e flush; /* s */

 bit32 return_code; /* r */
 bit32 request_to_send_received;/* r */
} lu62_send_ps_data_t;

typedef struct {
 bit32 conv_id; /* s */
 lu62_prog_type_e type;/* Basic only *//* s */
 char *log_data;/* Basic only *//* s */
 int error_direction;/* CPIC only *//* s */

 bit32 return_code; /* r */
 bit32 request_to_send_received;/* r */
} lu62_send_error_t;

typedef struct {
 bit32 conv_id; /* s */

Code Example C-1 (20 of 39)

LU 6.2 Include Files C-21

C

 lu62_test_type_etest;/* s */
 bit32 return_code; /* r */
} lu62_test_t;

typedef struct {
 bit32 conv_id; /* s */
 lu62_conv_type_etype;/* r */
 bit32 return_code; /* r */
} lu62_get_type_t;

typedef struct {
 bit32 conv_id; /* s */

 bit32 return_code; /* r */
 bit32 own_tp_instance;/* r */
 char tp_name[LU62_TP_NAME_LEN+1];/* r */
 bit8 qlu_name[LU62_NQ_LU_NAME_LEN+1];/* r */
 int qlu_name_len; /* r */
 char user_id[LU62_MAX_USER_ID_LEN+1];/* r */
 int user_id_len; /* r */
 char profile[LU62_MAX_PROFILE_LEN+1];/* r */
 int profile_len; /* r */
} lu62_get_tp_properties_t;

typedef struct {
 bit32 port_id; /* s */
 int conv_count; /* s */
 bit32 *conv_list; /* s */

 bit32 conv_id; /* r */
 bit32 return_code; /* r */
} lu62_wait_t;

/***
 *
 * LU6.2 COPR Verbs
 *

 */

Code Example C-1 (21 of 39)

C-22 SunLink Peer-to-Peer LU6.2 9.1 Programmer’s Manual—August 1997

C

typedef struct {
 bit32 port_id; /* s */
 char lu_name[LU62_LU_NAME_LEN+1]; /* s */
 char mode_name[LU62_MODE_NAME_LEN+1]; /* s */
 bit32 return_code; /* r */
} lu62_activate_session_t;

typedef struct {
 bit32 port_id; /* s */
 bit32 conv_group_id;/* s */
 lu62_ds_type_e type;/* s */
 int sense_code_supplied;/* s */
 bit32 sense_code; /* s */
 lu62_ds_return_control_e return_control;/* s */

 bit32 return_code; /* r */
} lu62_deactivate_conv_group_t;

typedef struct {
 bit32 port_id; /* s */
 char session_id[LU62_SESSION_ID_LEN+1];/* s */
 lu62_ds_type_e type;/* s */
 int sense_code_supplied;/* s */
 bit32 sense_code; /* s */
 lu62_ds_return_control_e return_control;/* s */

 bit32 return_code; /* r */
} lu62_deactivate_session_t;

typedef struct {
 bit32port_id; /* s */
 char lu_name[LU62_LU_NAME_LEN+1]; /* s */
 char mode_name[LU62_MODE_NAME_LEN+1]; /* s */
 int lu_mode_session_limit;/* s */
 int min_conwinners_source;/* s */
 int min_conwinners_target;/* s */
 lu62_responsible_lu_e responsible_lu;/* s */

 bit32 return_code; /* r */

Code Example C-1 (22 of 39)

LU 6.2 Include Files C-23

C

} lu62_change_session_limit_t;

typedef struct {
 bit 32port_id; /* s */
 char lu_name[LU62_LU_NAME_LEN+1]; /* s */
 char mode_name[LU62_MODE_NAME_LEN+1]; /* s */
 int lu_mode_session_limit;/* s */
 int min_conwinners_source;/* s */
 int min_conwinners_target;/* s */

 bit32 return_code; /* r */
} lu62_init_session_limit_t;

typedef struct {
 bit32 port_id; /* s */
 char lu_name[LU62_LU_NAME_LEN+1]; /* s */
 char mode_name[LU62_MODE_NAME_LEN+1]; /* s */
 lu62_responsible_lu_e responsible_lu;/* s */
 int drain_source; /* s */
 int drain_target; /* s */
 int force; /* s */

 bit32 return_code; /* r */
} lu62_reset_session_limit_t;

typedef struct {
 bit32 port_id; /* s */
 bit8 *buffer; /* s */
 int length; /* s/r */

 bit32 return_code; /* r */
 char nq_lu_name[LU62_NQ_LU_NAME_LEN+1];/* r */
 char lu_name[LU62_LU_NAME_LEN+1];/* r */
 int lu_session_limit;/* r */
 int lu_session_count;/* r */
 int bind_rsp_queue_capability;/* r */
 int security_count;/* r */
 int map_name_count;/* r */
 int remote_lu_name_count;/* r */
 int tp_name_count; /* r */
lu62_display_local_lu_t;

Code Example C-1 (23 of 39)

C-24 SunLink Peer-to-Peer LU6.2 9.1 Programmer’s Manual—August 1997

C

typedef struct
 bit32port_id; /* s */
 char nq_lu_name[LU62_NQ_LU_NAME_LEN+1];/* s */
 char mode_name[LU62_MODE_NAME_LEN+1];/* s */
 bit8*buffer; /* s */
 int length; /* s/r */

 bit32return_code; /* r */
 char lu_name[LU62_LU_NAME_LEN+1];/* r */
 int send_max_ru_size_lb;/* r */
 int send_max_ru_size_ub;/* r */
 int recv_max_ru_size_lb;/* r */
 int recv_max_ru_size_ub;/* r */
 lu62_single_session_reinit_e single_session_reinit;/* r */
 lu62_session_level_crypto_e session_level_crypto;/* r */
 int conwinner_autoactivate_limit;/* r */
 int local_max_session_limit;/* r */
 int lu_mode_session_limit;/* r */
 int min_conwinners;/* r */
 int min_conlosers; /* r */
 int termination_count;/* r */
 int drain_local_lu;/* r */
 int drain_remote_lu;/* r */
 int lu_mode_session_count;/* r */
 int conwinners_session_count;/* r */
 int conlosers_session_count;/* r */
 int conv_group_count;/* r */
 int preferred_received_ru_size;/* r */
 int preferred_send_ru_size;/* r */
 char sess_deact_tp_name[LU62_TP_NAME_LEN+1];/* r */
} lu62_display_mode_t;

typedef struct {
 bit32 port_id; /* s */
 char nq_lu_name[LU62_NQ_LU_NAME_LEN+1];/* s */
 bit8 *buffer; /* s */
 int length; /* s/r */

 bit32return_code; /* r */
 char lu_name[LU62_LU_NAME_LEN+1];/* r */

Code Example C-1 (24 of 39)

LU 6.2 Include Files C-25

C

 char ui_lu_name[LU62_LU_NAME_LEN+1];/* r */
 lu62_initiate_type_e initiate_type;/* r */
 int parallel_session_support;/* r */
 int cnos_support; /* r */
 lu62_security_accept_e security_accept_local_lu;/* r */
 lu62_security_accept_e security_accept_remote_lu;/* r */
 int mode_name_count;/* r */
} lu62_display_remote_lu_t;

typedef struct {
 bit32 port_id; /* s */
 char nq_lu_name[LU62_NQ_LU_NAME_LEN+1];/* so */
 char tp_name[LU62_TP_NAME_LEN+1];/* s */
 bit8 *buffer; /* s */
 int length; /* s/r */

 bit32 return_code; /* r */
 lu62_tp_status_e status;/* r */
 int basic_support; /* r */
 int mapped_support;/* r */
 int sync_level_none; /* r */
 int sync_level_confirm; /* r */
 int sync_level_syncpt; /* r */
 lu62_security_required_e security_required; /* r */
 int security_access_count;/* r */
 lu62_pip_e pip; /* r */
 int pip_count; /* r */
 int data_mapping; /* r */
 lu62_fmh_data_e fmh_data;/* r */
 int cnos_privilege;/* r */
 int session_control_privilege;/* r */
 int define_privilege;/* r */
 int display_privilege;/* r */
 int allocate_svc_tp_privilege;/* r */
 int instance_limit;/* r */
 int instance_count;/* r */
} lu62_display_tp_t;

/***
 *

Code Example C-1 (25 of 39)

C-26 SunLink Peer-to-Peer LU6.2 9.1 Programmer’s Manual—August 1997

C

 * COPR Notifications
 *

 */
typedef struct {
 char host[MAXHOSTNAMELEN+1]; /* s */
 char lu_name[LU62_LU_NAME_LEN+1]; /* s */

 bit32 return_code; /* r */
 bit32 port_id; /* r */
 int port_desc; /* r */
} lu62_request_notification_t;

typedef struct {
 bit32 port_id; /* s */
 bit32 return_code; /* r */
} lu62_stop_notification_t;

typedef enum {
 LU62_REQUEST_NOTIFICATION_REPLY = 1,
 LU62_STOP_NOTIFICATION_REPLY,
 LU62_CNOS_NOTIFICATION
} lu62_op_code_e;

typedef enum {
 LU62_RESET_SESSION_LIMIT = 1,
 LU62_INIT_SESSION_LIMIT,
 LU62_CHANGE_SESSION_LIMIT
} lu62_cnos_type_e;

typedef struct {
 bit32 port_id; /* s */
 lu62_op_code_e op_code;/* r */
 bit32 return_code;/* r */
} lu62_notification_header_t;

typedef struct {

Code Example C-1 (26 of 39)

LU 6.2 Include Files C-27

C

 lu62_cnos_type_e cnos_type;
 int local_invocation;
 int lu_mode_session_limit;
 int min_conwinners_source;
 int min_conwinners_target;
 lu62_responsible_lu_e responsible_lu;
 int drain_source;
 int drain_target;
 int force;
 char lu_name[LU62_LU_NAME_LEN+1];
 char mode_name[LU62_MODE_NAME_LEN+1];
} lu62_cnos_notification_t;

/***
 *
 * API Verb Return Codes and Error Handling
 *
 * The majority of the LU62 verbs return a 32 bit return_code in the
 * corresponding field of the user's request.
 *
 * In addition, all LU62 verbs return an integer value. A zero (LU62_OK)
 * return indicates success. The negative LU62_ERROR return value indicates
 * that an error occurred. In this case, lu62_errno is set to indicate the
 * reason for failure.
 *
 * In the case of an error detected by the API, the return_code and
 * lu62_errno will have the same value.
 *
 *--
 * API return values
 *--
 */
#define LU62_ERROR -1

/*--
 * Verb Return Codes - also set in lu62_errno on LU62_ERROR
 *--
 */

/*

Code Example C-1 (27 of 39)

C-28 SunLink Peer-to-Peer LU6.2 9.1 Programmer’s Manual—August 1997

C

 * OK Returns
 */
#define LU62_OK 0x00000000
#define LU62_OK_DATA 0x00000001
#define LU62_OK_NOT_DATA 0x00000002
#define LU62_OK_ALL_AGREED 0x00000003
#define LU62_OK_VOTED_READ_ONLY 0x00000004
#define LU62_OK_LUW_OUTCOME_PENDING 0x00000005
#define LU62_OK_LUW_OUTCOME_MIXED 0x00000006

/* Additional non-blocking OK returns */
#define LU62_OPERATION_INCOMPLETE 0x00000010
#define LU62_READ_INCOMPLETE 0x00000011
#define LU62_WAIT_TIMEOUT 0x00000012

/*
 * API Errors
 */
#define LU62_API_ERR 0x00010000
#define LU62_INTERNAL_ERR 0x00010001
#define LU62_SUN_ALLOC_FAILURE 0x00010002
#define LU62_TPI_CREATE_FAILURE 0x00010003

/*
 * API/Server Errors
 */
#define LU62_TPI_ERROR 0x00020000
#define LU62_SERVER_UNKNOWN 0x00020001
#define LU62_HOST_UNKNOWN 0x00020002
#define LU62_SOCKET 0x00020003
#define LU62_CONNECT 0x00020004
#define LU62_SELECT 0x00020005
#define LU62_SERV_DCNX 0x00020006
#define LU62_OPEN_FAIL 0x00020007
#define LU62_SERVER_WRITE 0x00020008
#define LU62_SERVER_READ 0x00020009
#define LU62_UNEXPECTED_RSP 0x0002000A
#define LU62_UNKNOWN_RSP 0x0002000B
#define LU62_UNKNOWN_NOTIFICATION 0x0002000C
#define LU62_CONV_ID_MISMATCH 0x0002000D
#define LU62_TP_DISCONNECTED 0x0002000E

Code Example C-1 (28 of 39)

LU 6.2 Include Files C-29

C

/*
 * Server Errors
 */
#define LU62_SERVER_ERROR 0x00030000
#define LU62_SERVER_RESOURCE_FAILURE 0x00030001

/*
 * Allocation Errors
 */
#define LU62_ALLOCATION_ERROR 0x00040000
#define LU62_ALLOCATION_FAILURE_NO_RETRY 0x00040001
#define LU62_ALLOCATION_FAILURE_RETRY 0x00040002
#define LU62_CONVERSATION_TYPE_MISMATCH 0x00040003
#define LU62_PIP_NOT_ALLOWED 0x00040004
#define LU62_PIP_NOT_SPECIFIED_CORRECTLY 0x00040005
#define LU62_SECURITY_NOT_VALID 0x00040006
#define LU62_SYNC_LEVEL_NOT_SUPPORTED_BY_LU 0x00040007
#define LU62_SYNC_LEVEL_NOT_SUPPORTED_BY_PGM 0x00040008
#define LU62_TPN_NOT_RECOGNIZED 0x00040009
#define LU62_TP_NOT_AVAILABLE_NO_RETRY 0x0004000A
#define LU62_TP_NOT_AVAILABLE_RETRY 0x0004000B

/*
 * Backed Out Errors
 */
#define LU62_BACKED_OUT 0x00050000
#define LU62_BACKED_OUT_ALL_AGREED 0x00050001
#define LU62_BACKED_OUT_LUW_OUTCOME_PENDING 0x00050002
#define LU62_BACKED_OUT_LUW_OUTCOME_MIXED 0x00050003

/*
 * Deallocation Errors
 */
#define LU62_DEALLOCATE_ABEND 0x00060000
#define LU62_DEALLOCATE_ABEND_BO 0x00060001

#define LU62_DEALLOCATE_ABEND_PROG 0x00070000
#define LU62_DEALLOCATE_ABEND_PROG_BO 0x00070001

#define LU62_DEALLOCATE_ABEND_SVC 0x00080000
#define LU62_DEALLOCATE_ABEND_SVC_BO 0x00080001

Code Example C-1 (29 of 39)

C-30 SunLink Peer-to-Peer LU6.2 9.1 Programmer’s Manual—August 1997

C

#define LU62_DEALLOCATE_ABEND_TIMER 0x00090000
#define LU62_DEALLOCATE_ABEND_TIMER_BO 0x00090001

#define LU62_DEALLOCATE_NORMAL 0x000A0000
#define LU62_DEALLOCATE_NORMAL_BO 0x000A0001

#define LU62_ENCRYPTION_NOT_SUPPORTED 0x000B0000

#define LU62_FMH_DATA_NOT_SUPPORTED 0x000C0000

#define LU62_MAP_EXECUTION_FAILURE 0x000D0000

#define LU62_MAP_NOT_FOUND 0x000E0000

#define LU62_MAPPING_NOT_SUPPORTED 0x000F0000

/*
 * Parameter Errors
 */
#define LU62_PARAMETER_ERROR 0x00100000
#define LU62_UNKNOWN_TP 0x00100001
#define LU62_UNKNOWN_LU 0x00100002
#define LU62_UNKNOWN_PARTNER_LU 0x00100003
#define LU62_UNKNOWN_MODE 0x00100004
#define LU62_NO_SECURITY_INFO 0x00100005

/*
 * Posting Not Active
 */
#define LU62_POSTING_NOT_ACTIVE 0x00110000

/*
 * Program Errors
 */
#define LU62_PROG_ERROR_NO_TRUNC 0x00120000

#define LU62_PROG_ERROR_TRUNC 0x00130000

#define LU62_PROG_ERROR_PURGING 0x00140000

/*
 * Program Parameter Check

Code Example C-1 (30 of 39)

LU 6.2 Include Files C-31

C

 */
#define LU62_PARAMETER_CHECK 0x00150000

/* returned by API */
#define LU62_PORT_ID_UNKNOWN 0x00150001
#define LU62_CONV_ID_UNKNOWN 0x00150002
#define LU62_NULL_REQUEST 0x00150003
#define LU62_NULL_DATA 0x00150004
#define LU62_BUFFER_TOO_SMALL 0x00150005
#define LU62_TP_UNKNOWN 0x00150006
#define LU62_TP_NAME_REQD 0x00150007
#define LU62_TP_ID_REQD 0x00150008
#define LU62_TP_NOT_STARTED 0x00150009
#define LU62_LU_NAME_REQD 0x0015000A
#define LU62_MODE_NAME_REQD 0x0015000B
#define LU62_REMOTE_TP_NAME_REQD 0x0015000C
#define LU62_TP_ALREADY_REGISTERED 0x0015000D

#define LU62_BAD_TP_NAME 0x00150010
#define LU62_BAD_REMOTE_TP_NAME 0x00150011
#define LU62_BAD_LU_NAME 0x00150012
#define LU62_BAD_MODE_NAME 0x00150013
#define LU62_BAD_MAP_NAME 0x00150014
#define LU62_BAD_CONV_SUPPORT 0x00150015
#define LU62_BAD_CONV_TYPE 0x00150016
#define LU62_BAD_DEALLOCATE_TYPE 0x00150017
#define LU62_BAD_ENCRYPT_TYPE 0x00150018
#define LU62_BAD_FILL_TYPE 0x00150019
#define LU62_BAD_FLUSH_TYPE 0x0015001A
#define LU62_BAD_FMH_DATA_TYPE 0x0015001B
#define LU62_BAD_LENGTH 0x0015001C
#define LU62_BAD_LOCKS_TYPE 0x0015001D
#define LU62_BAD_LOG_DATA 0x0015001E
#define LU62_BAD_PIP_PRESENCE 0x0015001F
#define LU62_BAD_POST_CONTROL 0x00150020
#define LU62_BAD_PREP_TO_RCV_TYPE 0x00150021
#define LU62_BAD_PROCESSING_MODE 0x00150022
#define LU62_BAD_PROG_TYPE 0x00150023
#define LU62_BAD_RESOURCE_COUNT 0x00150024
#define LU62_BAD_RETURN_CONTROL 0x00150025
#define LU62_BAD_SECURITY 0x00150026
#define LU62_BAD_SECURITY_PROGRAM 0x00150027

Code Example C-1 (31 of 39)

C-32 SunLink Peer-to-Peer LU6.2 9.1 Programmer’s Manual—August 1997

C

#define LU62_BAD_USERID 0x00150028
#define LU62_BAD_PASSWD 0x00150029
#define LU62_BAD_PROFILE 0x0015002A
#define LU62_BAD_SYNC_LEVEL 0x0015002B
#define LU62_BAD_TEST_TYPE 0x0015002C
#define LU62_BAD_FORGET_TYPE 0x0015002D

#define LU62_PARAM_NOT_SUPPORTED 0x001500F0
#define LU62_LOG_DATA_NOT_SUPPORTED 0x001500F1
#define LU62_SYNCPT_NOT_SUPPORTED 0x001500F2

/* CPIC returns via lu62_errno */
#define LU62_SYM_DEST_UNKNOWN 0x00154001
#define LU62_SYM_DEST_ERROR 0x00154002
#define LU62_BAD_CONVERSATION_ID 0x00154003
#define LU62_BAD_ERROR_DIRECTION 0x00154004
#define LU62_BAD_RECEIVE_TYPE 0x00154005
#define LU62_BAD_SEND_TYPE 0x00154006

/* returned by LU62 Server */
#define LU62_RESOURCE_UNKNOWN 0x00158001
#define LU62_INCOMPATIBLE_VERB 0x00158002
#define LU62_BASIC_CONV_SUPPORT 0x00158003
#define LU62_SVC_MODES_INVALID 0x00158004
#define LU62_INCOMPATIBLE_SYNC_LEVEL 0x00158005
#define LU62_INVALID_LL_FIELD 0x00158006

/*
 * Program State Check
 */
#define LU62_PROGRAM_STATE_CHECK 0x00160000
#define LU62_NO_RSP_EXPECTED 0x00160001
#define LU62_VERB_IN_PROGRESS 0x00160002
#define LU62_NO_VERB_IN_PROGRESS 0x00160003
#define LU62_NO_TP_REGISTERED 0x00160004
#define LU62_SEND_INCOMPLETE 0x00160005
#define LU62_PIP_PENDING 0x00160006

/*
 * Resource Failure
 */
#define LU62_RESOURCE_FAILURE_NO_RETRY 0x00170000

Code Example C-1 (32 of 39)

LU 6.2 Include Files C-33

C

#define LU62_RESOURCE_FAIL_NO_RETRY_BO 0x00170001

#define LU62_RESOURCE_FAILURE_RETRY 0x00180000
#define LU62_RESOURCE_FAIL_RETRY_BO 0x00180001

/*
 * SVC Errors
 */
#define LU62_SVC_ERROR_NO_TRUNC 0x00190000

#define LU62_SVC_ERROR_TRUNC 0x001A0000

#define LU62_SVC_ERROR_PURGING 0x001B0000

/*
 * Unsuccessful
 */
#define LU62_UNSUCCESSFUL 0x001C0000

#define LU62_SYSTEM_EVENT 0x00200000

/*
 * Additional COPR return codes
 */
#define LU62_OK_AS_SPECIFIED 0x00001001
#define LU62_OK_AS_NEGOTIATED 0x00001002
#define LU62_OK_FORCED 0x00001003

/* Program Parameter Checks */
#define LU62_BAD_DS_TYPE 0x00151001
#define LU62_BAD_RESPONSIBLE_LU 0x00151002
#define LU62_BAD_SESSION_ID 0x00151003
#define LU62_BAD_SESSION_LIMIT 0x00151004
#define LU62_BAD_MIN_CONWINNERS 0x00151005
#define LU62_BAD_NQ_LU_NAME 0x00151006

#define LU62_PROGRAM_NOT_PRIVILEGED 0x00151010
#define LU62_SESSION_ID_REQD 0x00151011
#define LU62_PLU_SESSION_LIMIT_NOT_ZERO 0x00151012
#define LU62_DRAIN_SOURCE_NO_REQD 0x00151013
#define LU62_NQ_LU_NAME_REQD 0x00151014

Code Example C-1 (33 of 39)

C-34 SunLink Peer-to-Peer LU6.2 9.1 Programmer’s Manual—August 1997

C

/* COPR codes */
#define LU62_ACTIVATION_FAILURE_NO_RETRY 0x10010000

#define LU62_ACTIVATION_FAILURE_RETRY 0x10020000
#define LU62_COMMAND_RACE_REJECT 0x10030000
#define LU62_MODE_SESSION_LIMIT_CLOSED 0x10040000
#define LU62_MODE_SESSION_LIMIT_EXCEEDED 0x10050000
#define LU62_MODE_SESSION_LIMIT_NOT_ZERO 0x10060000
#define LU62_MODE_SESSION_LIMIT_ZERO 0x10070000
#define LU62_SESSION_LIMIT_EXCEEDED 0x10080000
#define LU62_REQUEST_EXCEEDS_MAX_ALLOWED 0x10090000
#define LU62_UNRECOGNIZED_MODE_NAME 0x100A0000

/***
 *
 * The lu62_trace Facility
 *
 * Traces are output to a trace file, sunlu62l_$$ in the pwd.
 * When 1000 traces have accumulated, the trace file is saved as
 * sunlu62l_$$.1, and truncated.
 *
 * Traces are output if a bit set in the trace type matches the corresponding
 * bit in the external lu62_trace_flag. Trace output is controlled by
 * the format parameter.
 *
 * The lu62_trace interface is as follows:
 *
 * lu62_trace(type, caller, statement, length, buffer, format)
 * unsigned type;- trace type selection, see below
 * char *caller; - calling routine
 * char *statement; - header
 * int length;- length of following buffer (n/a to STRING)
 * char *buffer;- buffer
 * int format;- output format, see below
 *
 * The lu62_trace_flag may be set by
 *
 * lu62_set_trace_flag(flag)
 * bit32 flag;
 *
 * To read lu62_trace_flag, use

Code Example C-1 (34 of 39)

LU 6.2 Include Files C-35

C

 *
 * bit32 lu62_get_trace_flag()
 *
 *--
 * Trace Type Codes
 *
 * Trace types are enabled by setting a bit in the lu62_trace_flag.
 * The top 8 bits are reserved for current (and future) API trace types.
 * The next 8 bits are reserved for Sun supplied Transaction Programs.
 * The bottom 16 bits are available to users.
 *--
 */
#define LU62_API_BUFS 0x80000000/* trace buffers to/from API*/
#define LU62_API_ERROR 0x40000000/* trace API detected errors*/
#define LU62_API_INFO 0x20000000/* API informational trace*/
#define LU62_API_CALLS 0x10000000/* trace lu62 verb calls*/
#define LU62_CPIC_CALLS 0x08000000/* trace CPIC verb calls*/
#define LU62_CPIC_ERROR 0x04000000/* trace CPIC verb calls*/
#define LU62_USR_TRACE 0x00000001 /* user defined */

/*--
 * Trace Output Format Codes
 *--
 */
#define STRING1/* supplied buffer contains string */
#define NO_FMT_DATA0/* hex dump of supplied buffer */
#define ASCII_DATA2/* interpet supplied buffer as ASCII */
#define EBCDIC_DATA3/* interpet supplied buffer as EBCDIC */

/***
 *
 * API Global Data Structures
 *

 */
extern bit32lu62_errno;/* LU62 library errors */
extern bit32lu62_trace_flag;/* trace options */
extern char*sunlu62_serv;/* SUNLU62 tcp service name*/

Code Example C-1 (35 of 39)

C-36 SunLink Peer-to-Peer LU6.2 9.1 Programmer’s Manual—August 1997

C

/***
 *
 * API Entry Points
 *

 */

/* Trace facility */
extern bit32lu62_get_trace_flag();
extern voidlu62_set_trace_flag();
extern voidlu62_trace();
extern voidlu62_dump_buffer();

/*
 * Display verb return values.
 * The following routines are used by lu62_trace to display return values.
 *
 * Interface is as follows unless shown otherwise:
 * tpi_dis_verb_return(rqp, rc)
 * lu62_verb_t *rqp;
 * int rc;
 *
 */
extern char *tpi_display_return();/* (bit32 retcode, int rc) */
extern char *tpi_dis_wait_return(); /* (bit32 conv_id, int rc) */
extern char *tpi_dis_notification();
/* (lu62_notification_header_t *nhp, bit8 *buf, bit32 rc) */

extern char *tpi_dis_abort_return();
extern char *tpi_dis_accept_return();
extern char *tpi_dis_allocate_return();
extern char *tpi_dis_confirm_return();
extern char *tpi_dis_confirmed_return();
extern char *tpi_dis_deallocate_return();
extern char *tpi_dis_display_local_lu_return();
extern char *tpi_dis_display_mode_return();
extern char *tpi_dis_display_remote_lu_return();
extern char *tpi_dis_display_tp_return();
extern char *tpi_dis_flush_return();
extern char *tpi_dis_get_attributes_return();
extern char *tpi_dis_listen_return();
extern char *tpi_dis_open_return();

Code Example C-1 (36 of 39)

LU 6.2 Include Files C-37

C

extern char *tpi_dis_post_on_receipt_return();
extern char *tpi_dis_prep_for_syncpt_return();
extern char *tpi_dis_prep_to_receive_return();
extern char *tpi_dis_receive_return();
extern char *tpi_dis_register_tp_return();

extern char *tpi_dis_request_notification_return();
extern char *tpi_dis_request_to_send_return();
extern char *tpi_dis_send_data_return();
extern char *tpi_dis_send_ps_data_return();
extern char *tpi_dis_send_error_return();
extern char *tpi_dis_test_return();
extern char *tpi_dis_get_type_return();
extern char *tpi_dis_get_tp_properties_return();

/* Character conversion */
extern unsigned int conv_ascii_to_ebcdic();
extern unsigned int conv_ebcdic_to_ascii();
extern unsigned char *b_asc_to_ebc();
extern unsigned char *b_ebc_to_asc();
extern unsigned char *str_asc_to_ebc();
extern unsigned char *str_ebc_to_asc();
extern unsigned char *strn_asc_to_ebc();
extern unsigned char *strn_ebc_to_asc();

/* SUNLU6.2 Connection Control */
extern int lu62_close();
extern int lu62_get_readfds();
extern int lu62_set_service_name();
extern int lu62_open();
extern int lu62_post();
extern int lu62_set_processing_mode();
extern int lu62_set_post_control();
extern int lu62_wait_conversation();
extern int lu62_wait_server();

/* Type Independent Verbs */
extern int lu62_abort();
extern int lu62_accept();
extern int lu62_listen();
extern int lu62_register_tp();
extern int lu62_get_tp_properties();

Code Example C-1 (37 of 39)

C-38 SunLink Peer-to-Peer LU6.2 9.1 Programmer’s Manual—August 1997

C

extern int lu62_get_type();
extern int lu62_wait();

/* Basic Conversation Verbs */
extern int lu62_allocate();
extern int lu62_confirm();

extern int lu62_confirmed();
extern int lu62_deallocate();
extern int lu62_flush();
extern int lu62_get_attributes();
extern int lu62_post_on_receipt();
extern int lu62_prep_to_receive();
extern int lu62_receive_and_wait();
extern int lu62_receive_immediate();
extern int lu62_request_to_send();
extern int lu62_send_data();
extern int lu62_send_ps_data();/* Sync Level syncpoint addition */
extern int lu62_send_error();
extern int lu62_test();
extern int lu62_test_rts_received();

/* Mapped Conversation Verbs */
extern int lu62_mc_allocate();
extern int lu62_mc_confirm();
extern int lu62_mc_confirmed();
extern int lu62_mc_deallocate();
extern int lu62_mc_flush();
extern int lu62_mc_get_attributes();
extern int lu62_mc_post_on_receipt();
extern int lu62_mc_prep_to_receive();
extern int lu62_mc_receive_and_wait();
extern int lu62_mc_receive_immediate();
extern int lu62_mc_request_to_send();
extern int lu62_mc_send_data();
extern int lu62_mc_send_error();
extern int lu62_mc_test();
extern int lu62_mc_test_rts_received();

/* CNOS Verbs */
extern int lu62_change_session_limit();
extern int lu62_initialize_session_limit();

Code Example C-1 (38 of 39)

LU 6.2 Include Files C-39

C

extern int lu62_reset_session_limit();

/* Session Control Verbs */
extern int lu62_activate_session();
extern int lu62_deactivate_conv_group();
extern int lu62_deactivate_session();

/* LU Definition Verbs */
extern int lu62_define_local_lu();
extern int lu62_define_mode();
extern int lu62_define_remote_lu();
extern int lu62_define_tp();
extern int lu62_delete();
extern int lu62_display_local_lu();
extern int lu62_display_mode();
extern int lu62_display_remote_lu();
extern int lu62_display_tp();

extern int lu62_request_notification();
extern int lu62_stop_notification();
extern int lu62_poll_notification();
extern int lu62_receive_notification();

#ifndef BRX_ALLOC_H
#define BRX_ALLOC_H
extern char*sun_malloc(); /* (unsigned size) */
extern char*sun_calloc();/* (unsigned nelem, unsigned size) */
extern int sun_free();/* (char *buf) */
extern bit16 sun_get_bit16();/* (bit8 *bp) */
extern bit32 sun_get_bit32();/* (bit8 *bp) */
extern void sun_set_bit16();/* (bit16 val, bit8 *bp) */
extern void sun_set_bit32();/* (bit32 val, bit8 *bp) */
#endif /* BRX_ALLOC_H */

#endif /* SUNLU62_H */

Code Example C-1 (39 of 39)

C-40 SunLink Peer-to-Peer LU6.2 9.1 Programmer’s Manual—August 1997

C

D-1

Sample LU6.2 Programs D

Code Example D-1 (1 of 32)

/*
 * THE INFORMATION IN THIS SOFTWARE IS SUBJECT TO CHANGE WITHOUT
 * NOTICE AND SHOULD NOT BE CONSIDERED AS A COMMITMENT BY Sun
 * SYSTEMS.
 */

/***
*
* Prog Name: tp_sr.c
*
* Description:
*
* SunCPIC Sample Program - send and receive. This TP is partnered
* with tp_rs.c.
*
* Usage:
*
* tp_sr [-h <server> -l <local_lu> -r <partner_lu> -m <mode_name>
* -p <remote_tp> -c -t <trace_flag>]
*
* where,
*
* -h <server> identifies the LU62 Server host. Default is the
* local host.

D-2 SunLink Peer-to-Peer LU6.2 9.1 Programmer’s Manual—August 1997

D

*
* -l <local_lu> local LU name
*
* -r <partner_lu> Partner LU name
*
* -m <mode_name> Mode name
*
* -p <remote_tp> remote TP name
*
* -c Send and Confirm (default is Send and Flush)
*
* -t <trace_flag> trace options word.
*
* Creation Date: 03/15/92
*
* Change Log:
*
***/

#include <stdio.h>
#include <signal.h>
#include <ctype.h>
#include <string.h>
#include <errno.h>
#include <sys/param.h>
#include <sys/types.h>
#include <netinet/in.h>

#include "sunlu62.h"

/**
 *
 * Program constants and globals
 *
 **
 */
#define MAX_SND_MSG_SIZE 4096 /* MAX size of transmitted messages */
#define MAX_RCV_MSG_SIZE 4096 /* MAX size of received messages */

typedef enum {
 RECEIVER = 0,

Code Example D-1 (2 of 32)

Sample LU6.2 Programs D-3

D

 SENDER,
 DEALLOCATED
} prog_state_e;

char *Prog_name;
char *Host = ""; /* LU62 Server host */

char *LocalLUName = "LUA";

char *TPName = "TPB";
char *PartnerLUName = "PLUB";
char *ModeName = "MODEAB";
char *UserId = "username";
char *Password = "password";
char *Profile = "group";

lu62_processing_mode_e Processing_Mode= PM_BLOCKING;
lu62_return_control_e Return_Control= RC_WHEN_SESSION_ALLOCATED;
lu62_conv_type_e Conv_Type = CONVERSATION_BASIC;
lu62_sync_level_e Sync_Level= SYNC_LEVEL_NONE;
lu62_security_e Security= SECURITY_NONE;

bit32 Trace_flag;

/* send and receive buffers are malloc'ed during initialization */
static char *rbuffer;
static char *sbuffer;

typedef struct ll_record
 bit16 len;
 bit16 seq_num;
 char data[81];
ll_record_t;

static ll_record_t LL_buf1 = { 0, 0,
"1234567890123456789012345678901234567890123456789012345678901234567890123456789\n”};
#define LL_BUF1_LEN 84

static ll_record_t LL_buf2 = \n”}; = { 0, 0,
"ABCDEFGHIJKLMNOPQRSTUVWXYZ
#define LL_BUF2_LEN 31

Code Example D-1 (3 of 32)

D-4 SunLink Peer-to-Peer LU6.2 9.1 Programmer’s Manual—August 1997

D

/*---
 * session
 *---
 */
void
session()
{
 prog_state_e prog_state;
 ll_record_t *recv_buf, *send_buf;
 int send_len;
 int rc;
 bit16 send_seq_num = 0;

 static lu62_open_req_t open_req = { 0, 0};
 static lu62_close_req_t close_req = { 0, 0};
 static lu62_allocate_t alloc_req = { 0, 0};
 static lu62_confirm_t cfm_req = { 0, 0};
 static lu62_confirmed_t cfmd_req = { 0, 0};
 static lu62_deallocate_t deall_req = { 0, 0};
 static lu62_flush_t flush_req = { 0, 0};
 static lu62_send_data_t send_data_req = { 0, 0};
 static lu62_receive_t recv_data_req = { 0, 0};

 rbuffer = (char *)malloc(MAX_RCV_MSG_SIZE);
 sbuffer = (char *)malloc(MAX_SND_MSG_SIZE);

 /* SENDER set up */

 prog_state = SENDER;

 /* convert bit16 fields to network order */
 LL_buf1.len = htons(LL_BUF1_LEN);
 LL_buf2.len = htons(LL_BUF2_LEN);

 bcopy(&LL_buf1, sbuffer, LL_BUF1_LEN);
 bcopy(&LL_buf2, sbuffer + LL_BUF1_LEN, LL_BUF2_LEN);
 send_len = LL_BUF1_LEN + LL_BUF2_LEN;
 send_buf = (ll_record_t *)sbuffer;

 rc = open_lu(&open_req);
 if (rc == LU62_ERROR)
 exit(1);

Code Example D-1 (4 of 32)

Sample LU6.2 Programs D-5

D

 /* establish LU port context for upcoming verbs */
 close_req.port_id = open_req.port_id;
 alloc_req.port_id = open_req.port_id;

 rc = allocate_conv(&alloc_req);
 if (rc == LU62_ERROR)
 exit(1);

 /* display attributes */
 rc = get_attributes(alloc_req.conv_id);
 if (rc == LU62_ERROR)
 exit(1);

 /* display tp_properties */
 rc = get_tp_properties(alloc_req.conv_id);
 if (rc == LU62_ERROR)
 exit(1);

 /* establish conversation context for upcoming verbs */
 cfm_req.conv_id = alloc_req.conv_id;
 cfmd_req.conv_id = alloc_req.conv_id;
 deall_req.conv_id = alloc_req.conv_id;
 flush_req.conv_id = alloc_req.conv_id;
 send_data_req.conv_id = alloc_req.conv_id;
 recv_data_req.conv_id = alloc_req.conv_id;

 /* RECEIVER set up */
 recv_buf = (ll_record_t *)rbuffer;

 while (rc == LU62_OK
 && prog_state != DEALLOCATED) {
 switch (prog_state) {

 case RECEIVER:
 bzero(rbuffer, MAX_RCV_MSG_SIZE);
 recv_data_req.data = (bit8 *)recv_buf;
 recv_data_req.length = MAX_RCV_MSG_SIZE;
 rc = receive_ll(&recv_data_req);

 if (rc == LU62_OK) {

 switch (recv_data_req.what_received) {

Code Example D-1 (5 of 32)

D-6 SunLink Peer-to-Peer LU6.2 9.1 Programmer’s Manual—August 1997

D

 case WR_CONFIRM:
 printf("CONFIRM_RECEIVED \n");
 rc = confirmed_conv(&cfmd_req);
 break;
 case WR_SEND:
 printf("SEND_RECEIVED \n");
 prog_state = SENDER;
 break;
 case WR_CONFIRM_SEND:
 printf("CONFIRM_SEND_RECEIVED \n");
 rc = confirmed_conv(&cfmd_req);
 prog_state = SENDER;
 break;
 case WR_CONFIRM_DEALLOCATE:
 printf("CONFIRM_DEALLOC_RECEIVED
 rc = confirmed_conv(&cfmd_req);
 prog_state = DEALLOCATED;
 break;
 }
 }
 break;

 case SENDER:
 send_seq_num += 1;
 send_buf->seq_num = htons(send_seq_num);
 send_data_req.data = (bit8 *)send_buf;
 send_data_req.length = send_len;
 rc = send_data_conv(&send_data_req);
 if (rc == LU62_OK)
 if (Sync_Level == SYNC_LEVEL_CONFIRM)
 rc = confirm_conv(&cfm_req);
 prog_state = RECEIVER;
 break;

 case DEALLOCATED:
 break;
 }
 }

 close_lu(&close_req);
}

Code Example D-1 (6 of 32)

Sample LU6.2 Programs D-7

D

/*---
 * usage
 *---
 */
usage()
{
 printf("usage: tp_sr [options]
 printf("options are:
 printf(" -h<server = %s>\n", Host);
 printf(" -l<lu_name = %s>\n", LocalLUName);
 printf(" -r<partner_lu_name = %s>\n", PartnerLUName);
 printf(" -m<mode_name = %s>\n", ModeName);
 printf(" -p<tp_name = %s>\n", TPName);
 printf(" -c (send and confirm)\n")’
 printf(" -t (trace) = %x\n", Trace_flag);
 exit(1);

}

/*---
 * main
 *---
 */
main(argc, argv)
int argc;
char *argv[];
{
 extern char *optarg;
 extern int optind;
 char c;

 int errflg = 0;

 char *cp;
 long strtol();

 signal(SIGPIPE, SIG_IGN);

 /* default is no tracing */
 Trace_flag = 0;

 /*

Code Example D-1 (7 of 32)

D-8 SunLink Peer-to-Peer LU6.2 9.1 Programmer’s Manual—August 1997

D

 * Process command line args
 * minimal error checking!
 */
 Prog_name = argv[0];
 for (; cp = strchr(Prog_name, '/'); Prog_name = ++cp);

 while((c = getopt(argc, argv, "h:l:r:m:p:ct:")) != EOF)
 switch(c) {

 case 'h': /* server host */
 Host = optarg;
 break;
 case 'l':
 LocalLUName = optarg;
 break;
 case 'r':
 PartnerLUName = optarg;
 break;
 case 'm':
 ModeName = optarg;
 break;
 case 'p':
 TPName = optarg;
 break;
 case 'c':
 Sync_Level = SYNC_LEVEL_CONFIRM;
 break;
 case 't': /* API tracing options */
 Trace_flag = strtol(optarg, (char **) NULL, 0);
 break;
 case '?': /* help: doesn't work too well with csh */
 errflg++;
 break;
 default: /* the rest are errors */
 errflg++;
 break;
 }

 if (errflg) {
 usage();
 }

Code Example D-1 (8 of 32)

Sample LU6.2 Programs D-9

D

 lu62_set_trace_flag(Trace_flag);

 session();

 exit(0);
}

/*
 * THE INFORMATION IN THIS SOFTWARE IS SUBJECT TO CHANGE WITHOUT
 * NOTICE AND SHOULD NOT BE CONSIDERED AS A COMMITMENT BY Sun
 * SYSTEMS.
 */

/***
*
* Prog Name: tp_rs.c
*
* Description:
*
* SunCPIC Sample Program - receive and send. This TP is partnered
* with tp_sr.c.
*
* Usage:
*
* tp_rs [-h <server> -l <local_lu> -p <local_tp> -t <trace_flag>]
*
* where,
*
* -h <server> identifies the LU62 Server host. Default is the
* local host.
*
* -l <local_lu> local LU name
*
* -p <local_tp> TP name to register for incoming attach
*
* -r <res_id>resource id to use as own TP instance in accept
*
* -t <trace_flag> trace options word.
*
* Creation Date: 03/15/92
*

Code Example D-1 (9 of 32)

D-10 SunLink Peer-to-Peer LU6.2 9.1 Programmer’s Manual—August 1997

D

* Change Log:
*
***/

#include <stdio.h>
#include <signal.h>
#include <ctype.h>
#include <string.h>
#include <errno.h>
#include <sys/param.h>
#include <sys/types.h>
#include <netinet/in.h>

#include "sunlu62.h"

/**
 *
 * Program constants and globals
 *
 **
 */
#define MAX_SND_MSG_SIZE 4096 /* MAX size of transmitted messages */
#define MAX_RCV_MSG_SIZE 4096 /* MAX size of received messages */

typedef enum {
 RECEIVER = 0,
 SENDER,
 DEALLOCATED
} prog_state_e;

char *Prog_name;
char *Host = ""; /* LU62 Server host */

char *LocalLUName = "LUB";

char *TPName = "TPB";
char *PartnerLUName;
char *ModeName;
char *UserId;
char *Password;

Code Example D-1 (10 of 32)

Sample LU6.2 Programs D-11

D

bit32 OwnTPInstance = 0;

lu62_processing_mode_e Processing_Mode= PM_BLOCKING;
lu62_return_control_e Return_Control= RC_WHEN_SESSION_ALLOCATED;
lu62_conv_type_e Conv_Type;
lu62_sync_level_e Sync_Level;
lu62_security_e Security;

bit32 Trace_flag;

/* send and receive buffers are malloc'ed during initialization */
static char *rbuffer;
static char *sbuffer;

typedef struct ll_record {
 bit16 len;
 bit16 seq_num;
 char data[81];
} ll_record_t;

static ll_record_t LL_buf1 = { 0, 0
"1234567890123456789012345678901234567890123456789012345678901234567890123456789\n"};
#define LL_BUF1_LEN 84

static ll_record_t LL_buf2 = { 31, 0.
"ABCDEFGHIJKLMNOPQRSTUVWXYZ\n"};
#define LL_BUF2_LEN 31

/*---
 * session
 *---
 */
void
session()
{
 prog_state_e prog_state;
 ll_record_t *recv_buf, *send_buf;
 int send_len;
 int rc;
 bit16 send_seq_num = 0;

Code Example D-1 (11 of 32)

D-12 SunLink Peer-to-Peer LU6.2 9.1 Programmer’s Manual—August 1997

D

 static lu62_open_req_t open_req = {0,};
 static lu62_close_req_t close_req = {0,};
 static lu62_register_tp_t register_req = {0,};
 static lu62_accept_t accept_req = {0,};
 static lu62_get_attributes_t getattr_req = {0,};
 static lu62_confirm_t cfm_req = {0,};
 static lu62_confirmed_t cfmd_req = {0,};
 static lu62_deallocate_t deall_req = {0,};
 static lu62_flush_t flush_req = {0,};
 static lu62_send_data_t send_data_req = {0,};
 static lu62_receive_t recv_data_req = {0,};

 rbuffer = (char *)malloc(MAX_RCV_MSG_SIZE);
 sbuffer = (char *)malloc(MAX_SND_MSG_SIZE);

 rc = open_lu(&open_req);
 if (rc == LU62_ERROR)
 exit(1);

 /* establish LU port context for upcoming verbs */
 close_req.port_id = open_req.port_id;
 accept_req.port_id = open_req.port_id;

 if (OwnTPInstance) {
 accept_req.own_tp_instance = OwnTPInstance;
 }
 else {
 register_req.port_id = open_req.port_id;
 rc = register_tp(®ister_req, TPName);
 if (rc == LU62_ERROR)
 exit(1);

 }
 rc = accept_conv(&accept_req);
 if (rc == LU62_ERROR)
 exit(1);

 /* display conversation type */
 rc = get_conv_type(accept_req.conv_id);
 if (rc == LU62_ERROR)
 exit(1);

Code Example D-1 (12 of 32)

Sample LU6.2 Programs D-13

D

 /* display attributes */
 rc = get_attributes(accept_req.conv_id);
 if (rc == LU62_ERROR)
 exit(1);

 /* display tp_properties */
 rc = get_tp_properties(accept_req.conv_id);
 if (rc == LU62_ERROR)
 exit(1);

 /* determine sync level */
 getattr_req.conv_id = accept_req.conv_id;
 rc = lu62_get_attributes(&getattr_req);
 if (rc == LU62_ERROR)
 exit(1);
 Sync_Level = getattr_req.sync_level;

 /* establish conversation context for upcoming verbs */
 cfm_req.conv_id = accept_req.conv_id;
 cfmd_req.conv_id = accept_req.conv_id;
 deall_req.conv_id = accept_req.conv_id;
 flush_req.conv_id = accept_req.conv_id;
 send_data_req.conv_id = accept_req.conv_id;
 recv_data_req.conv_id = accept_req.conv_id;

 /* RECEIVER set up */
 prog_state = RECEIVER;
 recv_buf = (ll_record_t *)rbuffer;

 /* SENDER set up */

 /* convert bit16 fields to network order */
 LL_buf1.len = htons(LL_BUF1_LEN);
 LL_buf2.len = htons(LL_BUF2_LEN);

 bcopy(&LL_buf1, sbuffer, LL_BUF1_LEN);
 bcopy(&LL_buf2, sbuffer + LL_BUF1_LEN, LL_BUF2_LEN);
 send_len = LL_BUF1_LEN + LL_BUF2_LEN;
 send_buf = (ll_record_t *)sbuffer;

 while (rc == LU62_OK
 && prog_state != DEALLOCATED) {

Code Example D-1 (13 of 32)

D-14 SunLink Peer-to-Peer LU6.2 9.1 Programmer’s Manual—August 1997

D

 switch (prog_state) {

 case RECEIVER:
 bzero(rbuffer, MAX_RCV_MSG_SIZE);
 recv_data_req.data = (bit8 *)recv_buf;
 recv_data_req.length = MAX_RCV_MSG_SIZE;
 rc = receive_ll(&recv_data_req);

 if (rc == LU62_OK) {

 switch (recv_data_req.what_received) {
 case WR_CONFIRM:
 printf("CONFIRM_RECEIVED
 rc = confirmed_conv(&cfmd_req);
 break;
 case WR_SEND:
 printf("SEND_RECEIVED
 prog_state = SENDER;
 break;
 case WR_CONFIRM_SEND:
 printf("CONFIRM_SEND_RECEIVED
 rc = confirmed_conv(&cfmd_req);
 prog_state = SENDER;
 break;
 case WR_CONFIRM_DEALLOCATE:
 printf("CONFIRM_DEALLOC_RECEIVED
 rc = confirmed_conv(&cfmd_req);
 prog_state = DEALLOCATED;
 break;
 }
 }
 break;

 case SENDER:
 send_seq_num += 1;
 send_buf->seq_num = htons(send_seq_num);
 send_data_req.data = (bit8 *)send_buf;
 send_data_req.length = send_len;
 rc = send_data_conv(&send_data_req);
 if (rc == LU62_OK)
 if (Sync_Level == SYNC_LEVEL_CONFIRM)
 rc = confirm_conv(&cfm_req);

Code Example D-1 (14 of 32)

Sample LU6.2 Programs D-15

D

 prog_state = RECEIVER;
 break;

 case DEALLOCATED:
 break;
 }
 }

 close_lu(&close_req);
 }

/*---
 * usage
 *---
 */
usage()

 printf("usage: tp_rs [options]
 printf("options are:
 printf(" -h<server = %s>, Host); %s>\n",
 printf(" -l<lu_name = %s>, LocalLUName); %s>\n",
 printf(" -p<tp_name = %s>, TPName); %s>\n",
 printf(" -r<res_id = %d>, OwnTPInstance); %s>\n",
 printf(" -t (trace) = %x, Trace_flag); %s>\n",
 exit(1);

/*---
 * main
 *---
 */
main(argc, argv)
int argc;
char *argv[];

 extern char *optarg;
 extern int optind;
 char c;

 int errflg = 0;

Code Example D-1 (15 of 32)

D-16 SunLink Peer-to-Peer LU6.2 9.1 Programmer’s Manual—August 1997

D

 char *cp;
 long strtol();

 signal(SIGPIPE, SIG_IGN);

 /* default is no tracing */
 Trace_flag = 0;

 /*
 * Process command line args
 * minimal error checking!
 */
 Prog_name = argv[0];
 for (; cp = strchr(Prog_name, '/'); Prog_name = ++cp);

 while((c = getopt(argc, argv, "h:l:p:r:t:")) != EOF)
 switch(c) {

 case 'h': /* server host */
 Host = optarg;
 break;
 case 'l':
 LocalLUName = optarg;
 break;
 case 'p':
 TPName = optarg;
 break;
 case 'r':
 OwnTPInstance = strtol(optarg, (char **) NULL, 0);
 break;
 case 't': /* API tracing options */
 Trace_flag = strtol(optarg, (char **) NULL, 0);
 break;
 case '?': /* help: doesn't work too well with csh */
 errflg++;
 break;
 default: /* the rest are errors */
 errflg++;
 break;
 }

 if (errflg)

Code Example D-1 (16 of 32)

Sample LU6.2 Programs D-17

D

 usage();

 lu62_set_trace_flag(Trace_flag);

 session();

 exit(0);
 }

/*
 * THE INFORMATION IN THIS SOFTWARE IS SUBJECT TO CHANGE WITHOUT
 * NOTICE AND SHOULD NOT BE CONSIDERED AS A COMMITMENT BY Sun
 * SYSTEMS.
 */

/***
*
* Prog Name: tp_calls.c
*
* Description: SunLU62 API Sample Program Calls
*
* Simple wrap-around routines are provided for the LU6.2
* basic verbs. These routines trace entry and exit. For
* all blocking verbs, a request structure is passed so that,
* in non-blocking mode, the same operation can be outstanding
* on multiple conversations.
*
* Exit tracing is performed using tpi_dis routines, which are
* not normally exposed to the user.
*
* Creation Date: 3/17/91
*
* Change Log:
*
***/

#include <stdio.h>
#include <ctype.h>
#include <string.h>
#include <signal.h>

Code Example D-1 (17 of 32)

D-18 SunLink Peer-to-Peer LU6.2 9.1 Programmer’s Manual—August 1997

D

#include <errno.h>
#include <sys/param.h>
#include <sys/types.h>

#include "sunlu62.h"

/**
 *
 * Program constants and globals
 *
 **
 */
extern char *Prog_name;
extern char *Host; /* LU62 Server host */

extern char *LocalLUName;
extern char *PartnerLUName;
extern char *ModeName;
extern char *TPName;
extern char *UserId;
extern char *Password;

extern lu62_processing_mode_e Processing_Mode;
extern lu62_return_control_e Return_Control;
extern lu62_conv_type_e Conv_Type;
extern lu62_sync_level_e Sync_Level;
extern lu62_security_e Security;

extern bit32 Trace_flag;

/*---
 * get_attributes
 *---
 */
int
get_attributes(conv_id)
bit32 conv_id;
{
 int rc;
 lu62_get_attributes_t attrib;

Code Example D-1 (18 of 32)

Sample LU6.2 Programs D-19

D

 printf("\n0x%x: lu62_get_attributes:\n", conv_id);

 attrib.conv_id = conv_id;
 rc = lu62_get_attributes(&attrib);

 printf(tpi_dis_get_attributes_return(&attrib, rc));

 return(rc);

/*---
 * get_conv_type
 *---
 */
int
get_conv_type(conv_id)
bit32 conv_id;
{
 int rc;
 lu62_get_type_t conv_type;

 printf("\n0x%x: lu62_get_type:\n", conv_id);

 conv_type.conv_id = conv_id;
 rc = lu62_get_type(&conv_type);

 printf(tpi_dis_get_type_return(&conv_type, rc));

 return(rc);
}

/*---
 * get_tp_properties
 *---
 */
int
get_tp_properties(conv_id)
bit32 conv_id;
{
 int rc;

Code Example D-1 (19 of 32)

D-20 SunLink Peer-to-Peer LU6.2 9.1 Programmer’s Manual—August 1997

D

 lu62_get_tp_properties_t props;

 printf("\n0x%x: lu62_get_tp_properties:\n", conv_id);

 props.conv_id = conv_id;
 rc = lu62_get_tp_properties(&props);

 printf(tpi_dis_get_tp_properties_return(&props, rc));

 return(rc);
 }

/*---
 * open_lu
 *---
 */
int
open_lu(rqp)
lu62_open_req_t *rqp;
{
 int rc;

 printf("\nlu62_open %s:\n", LocalLUName);

 /*
 * Set-up for lu62_open.
 *
 */
 strncpy(rqp->host, Host, MAXHOSTNAMELEN);
 strncpy(rqp->lu_name, LocalLUName, LU62_LU_NAME_LEN);

 rqp->processing_mode = Processing_Mode;

 rc = lu62_open(rqp);

 printf(tpi_dis_open_return(rqp, rc));

 return(rc);
}

Code Example D-1 (20 of 32)

Sample LU6.2 Programs D-21

D

/*---
 * close_lu
 *---
 */
int
close_lu(rqp)
lu62_close_req_t *rqp;
{
 int rc;

 printf("\nlu62_close on LU 0x%x:\n", rqp->port_id);

 rc = lu62_close(rqp);

 printf(tpi_display_return(rqp->return_code, rc));

 return(rc);
}

/*---
 * register_tp
 *---
 */
int
register_tp(rqp, tp_name)
lu62_register_tp_t *rqp;
char *tp_name;
{
 int rc;

 printf("\n lu_register_tp %s on LU 0x%x:\n", tp_name, rqp->port_id);

 /*
 * Set-up for lu62_register_tp.
 *
 */
 bcopy(tp_name, rqp->tp_name, LU62_TP_NAME_LEN);
 rc = lu62_register_tp(rqp);
 if (rc == LU62_ERROR)
 error_string("lu62_register_tp", rqp->return_code, rc);

Code Example D-1 (21 of 32)

D-22 SunLink Peer-to-Peer LU6.2 9.1 Programmer’s Manual—August 1997

D

 return(rc);
 }

/*---
 * listen_conv
 *---
 */
int
listen_conv(rqp)
lu62_listen_t *rqp;
{
 int rc;

 printf("\n lu_listen LU 0x%x:\n", rqp->port_id);

 rc = lu62_listen(rqp);

 printf(tpi_dis_listen_return(rqp, rc));

 return(rc);
}

/*---
 * accept_conv
 *---
 */
int
accept_conv(rqp)
lu62_accept_t *rqp;
{
 int rc;

 printf("\n lu_accept on LU 0x%x:\n", rqp->port_id);

 rc = lu62_accept(rqp);

 printf(tpi_dis_accept_return(rqp, rc));

 return(rc);
}

Code Example D-1 (22 of 32)

Sample LU6.2 Programs D-23

D

/*---
 * allocate_conv
 *---
 */
int
allocate_conv(rqp)
lu62_allocate_t *rqp;
{
 int rc;

 printf("\n lu_allocate on LU 0x%x:\n", rqp->port_id);

 /*
 * Set-up for lu62_allocate.
 *
 */
 strncpy(rqp->remote_tp_name, TPName, LU62_TP_NAME_LEN);
 strncpy(rqp->lu_name, PartnerLUName, LU62_LU_NAME_LEN);
 strncpy(rqp->mode_name, ModeName, LU62_MODE_NAME_LEN);

 rqp->type = Conv_Type;
 rqp->flush = FLUSH_YES;
 rqp->return_control = Return_Control;
 rqp->sync_level = Sync_Level;
 rqp->security = Security;
 if (Security == SECURITY_PROGRAM)
 strncpy(rqp->user_id, UserId, LU62_MAX_USER_ID_LEN);
 strncpy(rqp->passwd, Password, LU62_MAX_PASSWD_LEN);

 rc = lu62_allocate(rqp);

 printf(tpi_dis_allocate_return(rqp, rc));

 return(rc);
}

/*---
 * abort_conv
 *---

Code Example D-1 (23 of 32)

D-24 SunLink Peer-to-Peer LU6.2 9.1 Programmer’s Manual—August 1997

D

 */
int
abort_conv(rqp)
lu62_abort_t *rqp;
{
 int rc;

 printf("\n0x%: lu62_abort:\n", rqp->conv_id);

 rc = lu62_abort(rqp);

 printf(tpi_dis_abort_return(rqp, rc));

 return(rc);
}

/*---
 * confirm_conv
 *---
 */
int
confirm_conv(rqp)
lu62_confirm_t *rqp;
{
 int rc;

 printf("\n0x%x: lu62_confirm:\n", rqp->conv_id);

 rc = lu62_confirm(rqp);

 printf(tpi_dis_confirm_return(rqp, rc));

 return(rc);
}

/*---
 * confirmed_conv
 *---
 */
int

Code Example D-1 (24 of 32)

Sample LU6.2 Programs D-25

D

confirmed_conv(rqp)
lu62_confirmed_t *rqp;
{
 int rc;

 printf("\n0x%x: lu62_confirmed:\n", rqp->conv_id);

 rc = lu62_confirmed(rqp);

 printf(tpi_dis_confirmed_return(rqp, rc));

 return(rc);
}

/*---
 * deallocate_conv
 *---
 */
int
deallocate_conv(rqp)
lu62_deallocate_t *rqp;
{
 int rc;

 printf("\n0x%x: lu62_deallocate:\n", rqp->conv_id);

 rc = lu62_deallocate(rqp);

 printf(tpi_dis_deallocate_return(rqp, rc));

 return(rc);
}

/*---
 * flush_conv
 *---
 */
int
flush_conv(rqp)
lu62_flush_t *rqp;

Code Example D-1 (25 of 32)

D-26 SunLink Peer-to-Peer LU6.2 9.1 Programmer’s Manual—August 1997

D

{
 int rc;

 printf("\n0x%x: lu62_flush:\n", rqp->conv_id);

 rc = lu62_flush(rqp);

 printf(tpi_dis_flush_return(rqp, rc));

 return(rc);
}

/*---
 * post_conv
 *---
 */
int
post_conv(rqp)
lu62_post_on_receipt_t *rqp;
{
 int rc;

 printf("\0x%x: lu62_post_on_receipt:\n", rqp->conv_id);

 rc = lu62_post_on_receipt(rqp);

 printf(tpi_dis_post_on_receipt_return(rqp, rc));

 return(rc);
}

/*---
 * prep_to_receive_conv
 *---
 */
int
prep_to_receive_conv(rqp)
lu62_prep_to_receive_t *rqp;
{
 int rc;

Code Example D-1 (26 of 32)

Sample LU6.2 Programs D-27

D

 printf("\nx%x: lu62_prep_to_receive:\n", rqp->conv_id);

 rc = lu62_prep_to_receive(rqp);

 printf(tpi_dis_prep_to_receive_return(rqp, rc));

 return(rc);

}

/*---
 * request_to_send_conv
 *---
 */
int
request_to_send_conv(rqp)
lu62_request_to_send_t *rqp;
{
 int rc;

 printf("\n0x%x: lu62_request_to_send:\n", rqp->conv_id);

 rc = lu62_request_to_send(rqp);

 printf(tpi_dis_request_to_send_return(rqp, rc));

 return(rc);
}

/*---
 * send_data_conv
 *---
 */
int
send_data_conv(rqp)
lu62_send_data_t *rqp;
{
 int rc;

 printf("\n0x%x: lu62_send_data:\n", rqp->conv_id);

Code Example D-1 (27 of 32)

D-28 SunLink Peer-to-Peer LU6.2 9.1 Programmer’s Manual—August 1997

D

 rc = lu62_send_data(rqp);

 printf(tpi_dis_send_data_return(rqp, rc));

 return(rc);
}

/*---
 * send_error_conv
 *---
 */
int
send_error_conv(rqp)
lu62_send_error_t *rqp;
{
 int rc;

 printf("\n0x%x: lu62_send_error:\n", rqp->conv_id);

 rc = lu62_send_error(rqp);

 printf(tpi_dis_send_error_return(rqp, rc));

 return(rc);
}

/*---
 * test_posted_conv
 *---
 */
int
test_posted_conv(rqp)
lu62_test_t *rqp;
{
 int rc;

 printf("\n0x%x: lu62_test:\n", rqp->conv_id);

 rqp->test = TEST_POSTED;

Code Example D-1 (28 of 32)

Sample LU6.2 Programs D-29

D

 rc = lu62_test(rqp);

 printf(tpi_dis_test_return(rqp, rc));

 return(rc);
}

/*---
 * test_rts_conv
 *---
 */
int
test_rts_conv(rqp)
lu62_test_t *rqp;
{
 int rc;

 printf("\n0x%x: lu62_test:\n", rqp->conv_id);

 rqp->test = TEST_REQUEST_TO_SEND_RECEIVED;

 rc = lu62_test(rqp);

 printf(tpi_dis_test_return(rqp, rc));

 return(rc);
}

/*---
 * wait_all
 *
 * Wait for all incomplete verbs to complete
 *---
 */
int
wait_all(timeout)
struct timeval *timeout;
{
 int rc;
 int conv_id;

Code Example D-1 (29 of 32)

D-30 SunLink Peer-to-Peer LU6.2 9.1 Programmer’s Manual—August 1997

D

 printf("_wait_server:

 while (1) {
 rc = lu62_wait_server(timeout, &conv_id);
 printf(tpi_dis_wait_return(conv_id, rc));

 if (rc == LU62_ERROR)
 break;
 }

 return(rc);
}

/*---
 * receive_ll
 *
 * RECEIVE_AND_WAIT to get the next logical record
 *---
 */
int
receive_ll(rqp)
lu62_receive_t *rqp;
{
 int rc;
 bit16 ll = 0;
 bit8 *buffer;
 int buflen, len;

 printf("\n0x%x:: lu62_receive_and_wait:\n", rqp->conv_id);

 /*
 * Set-up for lu62_receive_and_wait.
 *
 */
 rqp->fill = FILL_LL;
 buflen = rqp->length;
 buffer = rqp->data;

 rc = lu62_receive_and_wait(rqp);
 printf(tpi_dis_receive_return(rqp, rc));

Code Example D-1 (30 of 32)

Sample LU6.2 Programs D-31

D

 if ((rqp->return_code == LU62_OK)
 && ((rqp->what_received == WR_DATA_COMPLETE)
 || (rqp->what_received == WR_DATA_INCOMPLETE))) {
 lu62_dump_buffer((FILE *)stdout, rqp->length, buffer, ASCII_DATA);
 }

 return(rc);
}

/*---
 * receive_buffer
 *
 * RECEIVE_IMMEDIATE to receive full buffers of data until no more data
 *---
 */
int
receive_buffer_immed(rqp)
lu62_receive_t *rqp;
{
 int rc;
 bit8 *buffer;
 int buflen;
 int len = 0;
 int more_data = TRUE;

 rqp->fill = FILL_BUFFER;
 buflen = rqp->length;
 buffer = rqp->data;

 while (more_data) {

 more_data = FALSE;

 rqp->length = buflen;
 rqp->data = (bit8 *)buffer;

 printf("x%x: lu62_receive_immediate:, rqp->conv_id);
 rc = lu62_receive_immediate(rqp);
 printf(tpi_dis_receive_return(rqp, rc));

 if ((rqp->return_code == LU62_OK)

Code Example D-1 (31 of 32)

D-32 SunLink Peer-to-Peer LU6.2 9.1 Programmer’s Manual—August 1997

D

 && (rqp->what_received == WR_DATA)) {
 lu62_dump_buffer((FILE *)stdout,rqp->length,buffer,ASCII_DATA);
 more_data = TRUE;
 }
 }

 return(rc);
}

Code Example D-1 (32 of 32)

E-1

SunLink LU6.2 Configuration
Examples E

Code Example E-1 (1 of 8)

// SunLink LU6.2/sunPU2.1 SNA Server Sample Configuration
//
// This sample configuration allows standalone testing of SunLink LU6.2.
// Two LU6.2s (LUA and LUB) are defined for intra-node (LOCAL)
// communication. TPs TPx, MPx, and XPx are defined to each LU to
// handle, basic, mapped and both conversation types, respectively.
// The COPR TP is defined to each LU with control operator privileges.
//
// XPA XPB
// MPA MPB
// COPR LUA <---- LOCAL ----> LUB COPR
// TPA TPB
//

CP Name=SUNCP,
NQ_CP_NAME=IBMLAN.SUNCP;

// LU6.2 Logical Unit LUA

LU NAME=LUA // Local name (8 char max)
NQ_LU_NAME=IBMLAN.LUA// Network Qualified Name

E-2 SunLink Peer-to-Peer LU6.2 9.1 Programmer’s Manual—August 1997

E

SESS_LMT=12// Max LU sessions
LUTYPE=6.2
;

PTNR_LU NAME=PLUB// Local name (8 char max)
LOC_LU_NAME=LUA// Associated Local LU
NQ_LU_NAME=IBMLAN.LUB// Network Qualified Name
;

MODE NAME=MODEAB// Mode Name (8 char max)
DLC_NAME=LOCAL// Associated DLC
PTNR_LU_NAME=PLUB// Associated Partner LU
LCL_MAX_SESS_LMT=4// Max Session Limit
MIN_CW_SESS=2// Min Conwinners
MIN_CL_SESS=2// Min Conlosers
;

TP TP_NAME=COPR// TP Name (8 char max)
 LOC_LU_NAME=LUA// Associated Local LU
 PRIVILEGE=CNOS// Privileged COPR verbs
 PRIVILEGE=SESSION_CONTROL
 PRIVILEGE=DISPLAY

;

TP TP_NAME=XPA// TP Name (8 char max)
LOC_LU_NAME=LUA// Associated Local LU
CONV_TYPE=BASIC// Conversation Type
CONV_TYPE=MAPPED// Conversation Type
SYNC_LVL=NONE// Sync Level
SYNC_LVL=CONFIRM// Sync Level
TP_PATH="xterm -e '../SUNWappc/examples/cpic_rs -l LUA -p XPA'"
;

TP TP_NAME=TPA
LOC_LU_NAME=LUA
CONV_TYPE=BASIC
SYNC_LVL=NONE
SYNC_LVL=CONFIRM
TP_PATH="xterm -e '../SUNWappc/examples/tp_rs -l LUA -p TPA'"
;

TP TP_NAME=MPA

Code Example E-1 (2 of 8)

SunLink LU6.2 Configuration Examples E-3

E

LOC_LU_NAME=LUA
CONV_TYPE=MAPPED
SYNC_LVL=CONFIRM
TP_PATH=""
;

// LU6.2 Logical Unit LUB

LU NAME=LUB // Local name (8 char max)
NQ_LU_NAME=IBMLAN.LUB// Network Qualified Name
SESS_LMT=12// Max LU sessions
LUTYPE=6.2
;

PTNR_LU NAME=PLUA// Local name (8 char max)
LOC_LU_NAME=LUB// Associated Local LU
NQ_LU_NAME=IBMLAN.LUA// Network Qualified Name
;

MODENAME=MODEAB// Mode Name (8 char max)
DLC_NAME=LOCAL// Associated DLC
PTNR_LU_NAME=PLUA// Associated Partner LU
LCL_MAX_SESS_LMT=4// Max Session Limit
MIN_CW_SESS=2// Min Conwinners
MIN_CL_SESS=2// Min Conlosers
;

TP TP_NAME=COPR// TP Name (8 char max)
 LOC_LU_NAME=LUB// Associated Local LU
 PRIVILEGE=CNOS// Privileged COPR verbs
 PRIVILEGE=SESSION_CONTROL
 PRIVILEGE=DISPLAY

;

TP TP_NAME=XPB// TP Name (8 char max)
LOC_LU_NAME=LUB// Associated Local LU
CONV_TYPE=BASIC// Conversation Type
CONV_TYPE=MAPPED// Conversation Type
SYNC_LVL=NONE// Sync Level
SYNC_LVL=CONFIRM// Sync Level
TP_PATH="xterm -e '../SUNWappc/examples/cpic_rs'"

Code Example E-1 (3 of 8)

E-4 SunLink Peer-to-Peer LU6.2 9.1 Programmer’s Manual—August 1997

E

;

TP TP_NAME=TPB
LOC_LU_NAME=LUB
CONV_TYPE=BASIC
SYNC_LVL=NONE
SYNC_LVL=CONFIRM
TP_PATH="xterm -e '../SUNWappc/examples/tp_rs'"
;

TP TP_NAME=MPB
LOC_LU_NAME=LUB
CONV_TYPE=MAPPED
SYNC_LVL=CONFIRM
TP_PATH=""
;

// Token Ring Peer-to-Peer System A
//
// This sample configuration defines LU6.2 LUA and a partner LUB.
// LUA and LUB support MODEAB sessions over data link DLC1.
// TPs TPA, MPA, and XPA are defined to handle, basic, mapped and
// both conversation types, respectively. The COPR TP is defined
// to the LU with control operator privileges.
//
// The physical connection is realized via a Token Ring interface
// adapter.
//
// You will need to configure the following parameters:
// - TRLINE SOURCE_ADDRESS
// - DLC LCLLSAP
// - DLC RMTLSAP
// - DLC RMTMACADDR
//

CP NAME=SUNCPA// Local name (8 char max)
NQ_CP_NAME=IBMLAN.SUNCPA// Network Qualified Name
;

Code Example E-1 (4 of 8)

SunLink LU6.2 Configuration Examples E-5

E

TRLINENAME=MAC1// Sun specific name
SOURCE_ADDRESS=x'400000000001'// sysA_mac_addr
;

DLC NAME=DLC1 // User defined name (8 char max)
LINK_NAME=MAC1// Line name this station is on
LCLLSAP=x'04'// Local Link Service Access Point
RMTLSAP=x'04'// Remove Link Service Access Point
RMTMACADDR=x'400000000002'// sysB_mac_addr
;

LU NAME=LUA // Local name (8 char max)
NQ_LU_NAME=IBMLAN.LUA// Network Qualified Name
SESS_LMT=12// Max LU sessions
LUTYPE=6.2
;

PTNR_LU NAME=PLUB// Local name (8 char max)
LOC_LU_NAME=LUA// Associated Local LU
NQ_LU_NAME=IBMLAN.LUB// Network Qualified Name
;

MODE NAME=MODEAB// Mode Name (8 char max)
DLC_NAME=DLC1// Associated DLC
PTNR_LU_NAME=PLUB// Associated Partner LU
LCL_MAX_SESS_LMT=4// Max Session Limit
MIN_CW_SESS=2// Min Conwinners
MIN_CL_SESS=2// Min Conlosers
;

TP TP_NAME=COPR// TP Name (8 char max)
 LOC_LU_NAME=LUA// Associated Local LU
 PRIVILEGE=CNOS// Privileged COPR verbs
 PRIVILEGE=SESSION_CONTROL
 PRIVILEGE=DISPLAY

;

TP TP_NAME=XPA// TP Name (8 char max)
LOC_LU_NAME=LUA// Associated Local LU
CONV_TYPE=BASIC// Conversation Type
CONV_TYPE=MAPPED// Conversation Type
SYNC_LVL=NONE// Sync Level

Code Example E-1 (5 of 8)

E-6 SunLink Peer-to-Peer LU6.2 9.1 Programmer’s Manual—August 1997

E

SYNC_LVL=CONFIRM// Sync Level
TP_PATH="xterm -e '../SUNWappc/examples/cpic_rs -l LUA -p XPA'"
;

TP TP_NAME=TPA
LOC_LU_NAME=LUA
CONV_TYPE=BASIC
SYNC_LVL=NONE
SYNC_LVL=CONFIRM
TP_PATH="xterm -e '../SUNWappc/examples/tp_rs -l LUA -p TPA'"
;

TP TP_NAME=MPA
LOC_LU_NAME=LUA
CONV_TYPE=MAPPED
SYNC_LVL=CONFIRM
TP_PATH=""
;

// Token Ring Peer-to-Peer System B
//
// This sample configuration defines LU6.2 LUB and a partner LUA.
// LUA and LUB support MODEAB sessions over data link DLC2.
// TPs TPB, MPB, and XPB are defined to handle, basic, mapped and
// both conversation types, respectively. The COPR TP is defined
// to the LU with control operator privileges.
//
// The physical connection is realized via a Token Ring interface
// adapter.
//
// You will need to configure the following parameters:
// - TRLINE SOURCE_ADDRESS
// - DLC LCLLSAP
// - DLC RMTLSAP
// - DLC RMTMACADDR
//

CP NAME=SUNCPB// Local name (8 char max)
NQ_CP_NAME=IBMLAN.SUNCPB// Network Qualified Name
;

Code Example E-1 (6 of 8)

SunLink LU6.2 Configuration Examples E-7

E

TRLINENAME=MAC2// Sun specific name
SOURCE_ADDRESS=x'400000000002'// sysB_mac_addr
;

DLC NAME=DLC2 // User defined name (8 char max)
LINK_NAME=MAC2// Line name this station is on
LCLLSAP=x'04'// Local Link Service Access Point
RMTLSAP=x'04'// Remove Link Service Access Point
RMTMACADDR=x'400000000001'// sysA_mac_addr
;

LU NAME=LUB // Local name (8 char max)
NQ_LU_NAME=IBMLAN.LUB// Network Qualified Name
SESS_LMT=12// Max LU sessions
LUTYPE=6.2
;

PTNR_LU NAME=PLUA// Local name (8 char max)
LOC_LU_NAME=LUB// Associated Local LU
NQ_LU_NAME=IBMLAN.LUA// Network Qualified Name
;

MODENAME=MODEAB// Mode Name (8 char max)
DLC_NAME=DLC2// Associated DLC
PTNR_LU_NAME=PLUA// Associated Partner LU
LCL_MAX_SESS_LMT=4// Max Session Limit
MIN_CW_SESS=2// Min Conwinners
MIN_CL_SESS=2// Min Conlosers
;

TP TP_NAME=COPR// TP Name (8 char max)
 LOC_LU_NAME=LUB// Associated Local LU
 PRIVILEGE=CNOS// Privileged COPR verbs
 PRIVILEGE=SESSION_CONTROL
 PRIVILEGE=DISPLAY

;

TP TP_NAME=XPB// TP Name (8 char max)
LOC_LU_NAME=LUB// Associated Local LU
CONV_TYPE=BASIC// Conversation Type
CONV_TYPE=MAPPED// Conversation Type
SYNC_LVL=NONE// Sync Level

Code Example E-1 (7 of 8)

E-8 SunLink Peer-to-Peer LU6.2 9.1 Programmer’s Manual—August 1997

E

SYNC_LVL=CONFIRM// Sync Level
TP_PATH="xterm -e '../SUNWappc/examples/cpic_rs'"
;

TP TP_NAME=TPB
LOC_LU_NAME=LUB
CONV_TYPE=BASIC
SYNC_LVL=NONE
SYNC_LVL=CONFIRM
TP_PATH="xterm -e '../SUNWappc/examples/tp_rs'"
;

TP TP_NAME=MPB
LOC_LU_NAME=LUB
CONV_TYPE=MAPPED
SYNC_LVL=CONFIRM
TP_PATH=""

Code Example E-1 (8 of 8)

F-1

LU6.2 Sync-Point F

SunLink P2P LU6.2 9.1 provides limited support for LU6.2 sync-point services.
Transaction programs can establish sync-level sync-point conversations but the
IBM SNA Transaction Programmer’s Reference Manual sync-point verbs are not
recognized. Instead, TPs exchange sync-point flows using the
lu62_send_ps_data verb, which requires that the TP build the PS header
and manage the sync-point state transitions. An external sync-point manager
(TP 06f2) can send sync-point recovery GDS variables (Exchange lognames and
Compare states) on basic conversations transparently to SunLink P2P
LU6.2 9.1.

F.1 Sync-Point Flows
The structure and function of sync-point flow is described below.

F.1.1 Configuring for Sync-Point

Local LUs and TPs must be configured to support sync-point flows.

LU NAME=LUA
NQ_LU_NAME=IBMLAN.LUA
SESS_LMT=128
SYNC_LVL=SYNCPT
LUTYPE=6.2;

F-2 SunLink Peer-to-Peer LU6.2 9.1 Programmer’s Manual—August 1997

F

The LU SYNC_LVL parameter is used when a session is activated (BIND). It
represents the maximum sync-level supported by the LU. The default is
CONFIRM.

The TP SYNC_LVL parameter is used when checking incoming FMH5 attach
requests. Attaches are rejected (FMH7 sense 0x10086041) if the requested sync-
level is not configured. TP SYNC_LVL parameters are ORed together; in this
example, TP XPA supports all sync-levels.

F.1.2 Logical Unit of Work ID

FMH5 attach requests for sync-level sync-point conversations must contain a
logical unit of work identifier (LUW ID). The LUW ID can be supplied by the
transaction program that initiates a SYNC_LEVEL_SYNCPT conversation as a
parameter to lu62_(mc_)allocate . If the LUW ID is not supplied, it is
assigned by LU6.2 presentation services on the caller’s behalf.

The format of the LUW ID is described under the FMH5 attach request in
Chapter 11 of the IBM SNA Formats manual. It consists of three parts: the fully
qualified local LU name (2 - 18 bytes, including the length byte); an instance ID
(6 bytes); and a sequence number (2 bytes). The system time (seconds since
epoch) is copied into the high order word of the instance ID. The remaining
two bytes of the instance ID are used to differentiate LUW IDs that are
allocated during the same second. The two-byte sequence number is always set
to 0.

The lu62_(mc_)get_attributes verb is issued by the allocating or
accepting the program to retrieve the LUW ID. The LUW ID is also returned
with lu62_listen LISTEN_ATTACH responses.

TP TP_Name=XPA
LOC_LU_NAME=LUA
CONV_TYPE=BASIC
CONV_TYPE=MAPPED
SYNC_LVL=NONE
SYNC_LVL=CONFIRM
SYNC_LVL=SYNCPT
TP_PATH=”tp -l LUA -p XPA'”;

LU6.2 Sync-Point F-3

F

F.1.3 Sending PS Headers

The local TP sends PS header messages using the lu62_send_ps_data verb.
This verb may be issued on both basic and mapped conversations. The
supplied data contains the complete PS header, including the two-byte LL field
containing an invalid length of 1, which identifies the record as a PS header.
The lu62_send_ps_data parameter checks ensure that at least the LL field is
sent and that the LL length is 1.

F.1.4 Forget Flows

The lu62_send_ps_data_t request structure contains a forget indicator. This
indicator is set by the TP (the sync-point agent) when it issues the sync-point
“committed” message. The SunLink SNA PU2.1 9.1 server sets a corresponding
flag for the half-session to indicate that the next normal flow received on the
session is an implied forget. Receipt of this implied forget is notified to the
sync-point manager (TP 06f2) via the lu62_listen verb (it is assumed that an
lu62_listen verb is always pending for TP 06f2). The lu62_listen
response_type indicates LISTEN_FORGET and the sess_id field identifies
the session.

The next normal flow can be a real forget message. The SunLink SNA PU2.1 9.1
server treats this like any other normal flow in that it sends an implied forget
notification to the sync-point manager, and posts the record for receipt by the
TP. The TP can discard the forget message, knowing that the sync-point
manager was informed of the implied forget and has wiped its session log.

F.1.5 Receiving PS Headers

PS headers may be received by lu62_receive_and_wait or
lu62_receive_immediate with a fill_type of FILL_LL , or on mapped
conversations by lu62_mc_receive_and_wait or
lu62_mc_receive_immediate . Receipt of a PS header is indicated by a
what_received value of WR_PS_DATA_COMPLETE. The complete PS header is
returned in the receive buffer, including the two-byte LL field containing an
invalid length of 1. The LL field is not stripped on mapped receives. A
what_received value of WR_PS_DATA_INCOMPLETE is indicated if the
supplied receive buffer is too small. It is possible to receive WR_LL_TRUNCATED
for PS headers if the sender splits the LL field; lu62_send_ps_data will not
do this.

F-4 SunLink Peer-to-Peer LU6.2 9.1 Programmer’s Manual—August 1997

F

F.1.6 Deallocate Unbind

Under certain circumstances the TP needs to force a session unbind, preferably
without using the COPR lu62_deactivate_session verb. An additional
deallocate_type , DA_UNBIND, is provided by the lu62_(mc_)deallocate
verb for this purpose. State checking for Deallocate(Unbind) is the same as for
Deallocate(Abend).

F.2 Sync-Point Recovery
The sync-point manager, TP 06f2, sends and receives sync-point GDS variables
(exchange logname and Compare states) on basic conversations to perform
sync-point recovery. Building and parsing GDS variables is the responsibility
of the sync-point manager.

G-1

SunLink LU6.2 9.0 to 9.1
Instructions G

SunLink P2P LU6.2 9.1 provides a migration path for you to use your SunLink
9.0 P2P LU6.2 applications. This chapter provides instructions on how to link
SunLink LU6.2 9.0 to SunLink LU6.2 9.1 applications. Also discussed are the
differences between SunLink LU6.2 9.0 and SunLink LU6.2 9.1.

G.1 Linking the Application
To run the 9.0 version applications with the 9.1 version server, you need to
relink your object files with the following libraries:

• sunlu62.a
• sunp2p.a

G.2 Differences Between Version 9.0 and 9.1
The following lists the differences between the SunLink 9.0 and SunLink 9.1
products.

Note – Version 9.0 functions and parameters appear in boldface. The control
operator verbs are not supported. New verbs with the format lu62_8 are
provided in their place and are described in this manual.

G-2 SunLink Peer-to-Peer LU6.2 9.1 Programmer’s Manual—August 1997

G

allocate : SUB_DELAYED_ALLOCATION_PERMITTED is no longer supported.

appc_error, get_appc_error_msg (and *_mc_*) : No longer
supported. Use tracing as specified elsewhere in this manual

rd_iso_ebcdic_table, wr_iso_ebcdic_table : No longer supported.
Use gateway command line commands to specify ISO-EBCDIC translation.

get_attributes : The following attributes are no longer supported:
• tp_name - returned as ‘\0’.
• pu_name - returned as ‘\0’.
• lu_local_address - returned as ‘\0’.

cnos : No longer supported. Must use one of the following:
• lu62_change_session_limit
• lu62_init_session_limit
• lu62_reset_session_limit

display_local_lu : No longer supported. Must use
lu62_display_local_lu

display_mode : No longer supports send_pac_window,

rcv_pac_window

These values are set to 7 in display_mode return value. You can also use
lu62_display_mode.

display_partner_lu : No longer supports remote_is_sccp

The value is set to inverse of parallel_session_supported . You can also
use lu62_display_remote_lu.

display_tp : No longer supported. You must use lus62_display_tp

deallocate : No longer supports SUB_NODE

send_error : No longer supports dont_flush_fmh7_on_ec,
sense_code_in_fmh

tp_accept : No longer supports security_acceptance. It is always set to
SECURITY_NONE.

tp_listen : No longer supports queue_depth, sync_level, conv_type,
security

These are now specified in the configuration file. They are ignored by the API.

SunLink LU6.2 9.0 to 9.1 Instructions G-3

G

tp_start : Gateway name should be set to the host name of the workstation
running the gateway.

tp_wait_remote_start : No longer supports security_acceptance. It is
always set to SECURITY_NONE.

G.2.1 F10 Key Conflict

In 3270x, under OpenWindows, F10 key switches to the FILE MENU instead of
sending the IBM PF10 key.

▼ To solve this conflict:

1. Copy the appropriate file from /usr/dt/lib/bindings (for sun or
sun_at if you are on an x86) to ~/.motifbind .

2. Change the two entries that use the F10 key to some other key (F9 for
example).

3. Run the following command:

If you have any motif clients already running, you will need to restart them
in order for them to get the new key bindings.

4. If you want to check the bindings on your desktop, run the following:

% xmbind ~/.motifbind

% xprop -root | grep BIND

G-4 SunLink Peer-to-Peer LU6.2 9.1 Programmer’s Manual—August 1997

G

Index-1

Index

Symbols
*lu62_abort , 10-2
*lu62_close , 7-3
*lu62_dump_buffer , 12-4
*lu62_get_readfds , 7-4
*lu62_listen , 10-10
*lu62_open , 7-5
*lu62_register_tp , 10-17
*lu62_send_ps_data , 10-21
*lu62_set_processing_mode , 7-9
*lu62_trace , 12-2
*lu62_unregister_tp , 10-19
*lu62_wait_server , 7-10

A
allocate verb, 2-3
allocating conversations, 5-6
ALREADY_VERIFIED, 4-12, 4-14
API, 1-1
API include files

LU6.2, C-1
APPC, xxii
APPC applications, 2-1
APPC architecture, 2-1
AS/400, 4-1, 4-7, 4-9

attach, 4-14

B
basic conversations, 5-17
BLOCKING, 1-6
BMD, 1-10
buffers exchange, 1-7

C
call conventions, 5-1
character conversion, 1-6
character set 00640, 1-6
CICS, 4-1, 4-4, 4-6, 4-9
CICS program, 4-9
client programs, 1-1
CNOS notifications, 11-14
CNOS privilege, 11-2
CNOS verbs, 11-2
communication channels

multiplexed, 7-2
communications

program-to-program, 1-1
compiling link_tp_sr , 3-5
configuration

intra-node, 3-3

Index-2 SunLink Peer-to-Peer LU6.2 9.1 Programmer’s Manual—August 1997

Token Ring
peer-to-peer, 3-6

configuration directives
parameters, arguments, 4-1

configuration files
location, 3-2

configuring for sync-point, F-1
configuring your system, 4-1
connecting to SunLink PU2.1, 5-4
connection definition, 4-6
connection handling, 5-3
connection verbs, 1-5, 7-1
control operator programming, 5-25
control operator verbs, 1-1, 1-5
controller description, 4-5
conversation

security user_ID , 1-6
conversation initiation

state transition, 2-3
conversation security password, 1-6
conversation security profile, 1-6
conversation state table, B-1
conversation states, B-1
conversation verbs, 1-3

basic, 8-1
conversations

accepting, 5-7
mapped and basic, 2-3

conversations and verbs, 2-3
conversion state table, B-6
converting version 8.0 to 9.0, 1-3
COPR, 11-1
COPR functions, 11-1
COPR verb, 5-27
CP directive, 4-16
CPI-C program, 1-2
custom transaction dispatcher, 5-8

D
daemon

sunpu2.1 , 3-4

data mapping, 5-15
data records

sending, 5-15
data types, 6-2
deallocate unbind, F-4
DEFINE_LOCAL_LU, 1-8
DEFINE_MODE, 1-8
DEFINE_REMOTE_LU, 1-8
DEFINE_TP, 1-8
definition verbs

control operator
LU6.2, 1-8

DELETE, 1-8
dependent LU, 4-3
dependent LU APIs, xxi
DFHTCT, 4-6
disconnecting SunLink PU2.1, 5-5
DLC, 4-3
DLC parameters

RMTMACADDR, 3-6
documentation

related, xxiv
dynamic configuration, 1-8

E
EBCDIC, 3-9
EBCDIC characters, 1-6
environment

SunLink P2P LU6.2, 1-2
errors

API, internal, 1-7

F
FlexLM licenses

obtaining, 3-2
FlexLM product files, 3-2
forget flows, F-3
fork and exec, 5-7

Index-3

G
getting started

with SunLink LU6.2, 3-1
getting started stages

SunLink LU6.2, 3-1
GID, 5-7
group id, 4-16

I
IBM connectivity, 1-1
IBM Token Ring, 1-2
include file

sun_general.h , C-1
sunlu62.h , 5-1, C-1

initialization, 3-4
inking, G-1
Installing

communication hardware and
software, 3-2

installing SunLink LU6.2, 3-2
inter-mixed events handling, 5-21
intra-node, 3-1

L
LCLLSAP, 3-6
liblu62.a , 3-1
line description, 4-5
linking applications

Version 8.0 and 9.0, G-1
listener program, 5-11
local control point, 4-4
log data, 1-6
logical records

sending, 5-18
logical resources, 4-1
logical sources, 4-2
Logical Unit, 4-3
logical unit

work ID, F-2
loopback configuration, 3-5

LU access security, 4-10
LU security list, 4-14
lu_name , 5-6
LU6.2 9.0 API, 5-1
LU6.2 model, 2-2
LU6.2 protocol requirement, 1-6
LU6.2 sync-point services, F-1
lu62_(mc_)allocate , 5-13
lu62_accept , 10-3
lu62_activate_session , 11-25
LU62_ACTIVATION_FAILURE_NO_

RETRY, A-11
LU62_ACTIVATION_FAILURE_

RETRY, A-11
lu62_allocate , 4-9
LU62_ALLOCATE_FAILURE_NO_

RETRY, A-3, A-11
LU62_ALLOCATE_FAILURE_RETRY, A-

3, A-11
LU62_ALLOCATION_ERROR, A-3, A-11
LU62_API_ERR, A-15
lu62_change_session_limit , 11-3
lu62_close , 5-3
lu62_close_req_t , 7-3
LU62_COMMAND_RACE_REJECT, A-12
lu62_confirm , 8-9
lu62_confirmed , 8-11
LU62_CONVERSATION_TYPE_

MISMATCH, A-4
lu62_deactivate_session , 11-28
lu62_deallocate , 8-13
LU62_DEALLOCATE_ABEND, A-5
LU62_DEALLOCATE_ABEND_PROG, A-5
LU62_DEALLOCATE_ABEND_SVC, A-6
LU62_DEALLOCATE_ABEND_TIMER, A-6
LU62_DEALLOCATE_NORMAL, A-6
lu62_display_local_lu , 11-31
lu62_display_mode , 11-35
lu62_display_remote_lu , 11-41
lu62_display_tp , 11-44
lu62_flush , 8-18

Index-4 SunLink Peer-to-Peer LU6.2 9.1 Programmer’s Manual—August 1997

LU62_FMH_DATA_NOT_SUPPORTED, A-6
lu62_get_attributes , 8-19
lu62_get_tp_properties , 5-9, 10-6
lu62_get_type , 10-8
LU62_HOST_UNKNOWN, A-15
lu62_init_session_limit , 11-6
lu62_mc_allocate , 9-2
lu62_mc_confirm , 9-9
lu62_mc_confirmed , 9-12
lu62_mc_deallocate , 9-14
lu62_mc_flush , 9-18
lu62_mc_get_attributes , 9-19
lu62_mc_post_on_receipt , 9-23
lu62_mc_prep_to_receive , 9-25
lu62_mc_receive_and_wait , 9-29
lu62_mc_receive_immediate , 9-34
lu62_mc_request_to_send , 9-40
lu62_mc_send_data , 9-42
lu62_mc_send_error , 9-45
lu62_mc_test , 9-49
LU62_MODE_SESSION_LIMIT_

CLOSED, A-12
LU62_MODE_SESSION_LIMIT_

EXCEEDED, A-12
LU62_MODE_SESSION_LIMIT_NOT_

ZERO, A-13
LU62_MODE_SESSION_LIMIT_ZERO, A-

13
LU62_OK, A-7, A-13
LU62_OK_AS_NEGOTIATED, A-13
LU62_OK_AS_SPECIFIED, A-13
LU62_OK_DATA, A-7
LU62_OK_FORCED, A-13
LU62_OK_NOT_DATA, A-7
lu62_open , 5-3
LU62_OPERATION_INCOMPLETE, A-15
LU62_PARAMETER_ERROR, A-7, A-14
LU62_PIP_NOT_SPECIFIED_

CORRECTLY, A-4
lu62_poll_notification , 11-22
lu62_post_on_receipt , 8-23

LU62_POSTING_NOT_ACTIVE, A-7
lu62_prep_to_receive , 5-1, 8-25
lu62_prep_to_receive_t , 5-3
LU62_PROGRAM_ERROR_NO_TRUNC, A-7
LU62_PROGRAM_ERROR_PURGING, A-8
LU62_PROGRAM_ERROR_TRUNC, A-8
LU62_PROGRAM_PARAMETER_CHECK, A-

9
LU62_PROGRAM_STATE_CHECK, A-9
lu62_receive_and_wait , 3-1, 8-29
lu62_receive_immediate , 8-34
lu62_receive_notification , 11-15
LU62_REQUEST_EXCEEDS_MAX_

ALLOWED, A-14
lu62_request_notification , 11-20
lu62_request_to_send , 8-40
lu62_reset_session_limit , 11-9
LU62_RESOURCE_FAILURE_NO_

RETRY, A-9, A-14
LU62_RESOURCE_FAILURE_RETRY, A-9
LU62_SECURITY_NOT_VALID, A-4
lu62_send_data , 8-42
lu62_send_error , 8-46
lu62_send_ps_data , 1-7
LU62_SERV_DCNX, A-15
LU62_SERVER_ERROR, A-15
LU62_SERVER_RESOURCE_FAILURE, A-

15
LU62_SERVER_UNKNOWN, A-16
LU62_SESSION_LIMIT_EXCEEDED, A-

13
lu62_set_processing_mode , 5-13
lu62_stop_notification , 11-23
LU62_SVC_ERROR_TRUNC, A-10
LU62_SYNC_LEVEL_NOT_SUPPORTED_

PGM, A-4
lu62_test , 8-50
LU62_TP_NOT_AVAILABLE_NO_

RETRY, A-5
LU62_TP_NOT_AVAILABLE_RETRY, A-

5, A-12

Index-5

LU62_TPI_ERROR, A-15
LU62_TPN_NOT_RECOGNIZED, A-4
LU62_UNRECOGNIZED_MODE_NAME, A-

14
LU62_UNSUCCESSFUL, A-10
lu62_wait , 10-23
lu62_wait_server, 1-6
LU62_WAIT_TIMEOUT, A-16
LUA, 3-4

M
man page

conventions, 6-1
map names, 1-7
mapped conversation verbs, 9-1
mapped conversations, 5-15
media

distribution, 1-3
migration path instructions

Version 8.0 to 9.0, G-1
mixing conversations, 5-22
mode, 4-7
mode name, 1-6
mode_name, 5-6
MODEENT macro instruction, 4-8
modes, 2-4
multiple connections

SunLink PU2.1, 1-1
multiple conversations, 1-1, 5-9

handling, 5-13
non-blocking, 5-21

multiple directives, 4-14
multiple local LUs, 1-1
multiple servers, 1-1
multiple TPs conversations, 5-9

N
NIS password database, 4-15
node services

LU6.2 and PU2.1, 1-1

NON_BLOCKING conversation, 1-6
non-blocking operations, 5-9
NQ_LU_NAME, 4-3

O
operating characteristics

local SNA, 4-1

P
parallel sessions, 2-4
parallel-sessions, 11-2
parameter

conditional, 6-3
ignored, 6-2
optional, 6-3
required, 6-3
returned, 6-2
supplied, 6-2

partner Logical Unit, 4-5
partner LU name, 1-6
password, 1-7
password value, 4-17
physical connectivity

logical sources, 4-2
PM_BLOCKING, 5-13
PM_NON_BLOCKING, 5-13
polling verb response, 5-23
preface, xxi
prepare_to_receive , 1-8
printable data, 3-9
processing mode, 7-2
program calls, 1-7
program connections, 7-2
program errors, 1-7
PS headers

receiving, F-3
sending, F-3

PTNR_LU, 4-5

Index-6 SunLink Peer-to-Peer LU6.2 9.1 Programmer’s Manual—August 1997

R
receiving data, 5-16, 5-19
registering TP name, 5-8
remote TP, 1-6
remote_tp_name , 4-9, 5-6
request structures, 6-2
request unit, 5-15
resource access verification, 4-14
resource definition, 4-2
RESUPD, 5-6
return code values, B-2
return codes

control operator, A-1
conversation, A-2
conversion, A-1
LU6.2, A-1
product specific, A-1

return codes and subcodes
control operator, A-10
implementation, A-2
product specific, A-14

RMTLSAP, 3-6
routines

character conversion, 12-5
running application, 3-5

S
sample configuration files, 3-2
sample LU6.2 program, D-1
SDLC and X.25 network, 1-2
SDLC, X.25, xxi
SEC_ACCEPT, 4-14
SEC_REQUIRED, 4-15
security

access information, 4-12
conversation-level, 1-7

security access
TP resource, 4-10

security configuration, 4-10
security UNIX-level, 4-15
select calls

CNOS notifications, 5-27
session definition, 4-8
session polarity, 2-5
single sessions

and SNASVCMG, 11-2
SNA backbone network, 1-2
SNA Service Manager, 11-2
SNA sessions, 2-4
starting SunLink PU2.1 server, 3-4
state table abbreviations, B-2
stopping SunLink PU2.1 server, 3-5
streams drivers, 1-10
SunLink LU6.2

configuration examples, E-1
SunLink LU6.2 and APPC, 2-1
SunLink LU6.2 components, 1-8
SunLink LU6.2 concepts, 2-1
SunLink LU6.2 features, 1-3
SunLink LU6.2 terminology, 2-1
SunLink PU2.1 server, 1-1
sunlu6.2 , 1-9
sunop , 1-10
sunop usage

stopping SunPU2.1, 3-5
sunpu2.1 , 1-10
sunpu2.config , 1-10
sunscope , 1-10
SYNC_LEVEL_CONFIRM, 5-18
sync-point

recovery, F-4
sync-point conversations, 1-7
Sync-point flows, F-1
sync-point flows, 1-7
sync-point manager

external, 1-7
sync-point services, 1-7
sync-point states, 1-8
sync-point verbs, 1-8

Index-7

T
table symbols, B-5
TCP/IP internetwork, 1-2
terminal control table, 4-8
TP, 4-9
TP process invocation

user id, 4-15
TP_PATH, 3-4
tp_rs , 3-1
tp_sr , 3-1
TPB

conversation with, 3-4
trace capabilities, 1-7
tracing, 1-7
transaction dispatch, 5-11
transaction program (TP), 2-2
transaction verbs

LU6.2, xxi
TRANSID names, 4-9
TRLINE DEVICE, 3-9

U
UID, 5-7
UNIX security, 1-7
unsupported features, 1-7
USER, 4-15
user id, 4-16
user identifier, 1-7
user select control, 7-3
user_ID , 1-6
USER_ID_PROFILE, 4-15
using sunscope , 3-9

V
verb

CNOS notification, 11-14
lu62_mc_flush , 5-15

verb set implementation, 1-1
verbs

basic and mapped, 5-3

CNOS, 11-1
session control

LU6.2 definition, 2-5
control operator, 2-5, 11-1
request structures, 5-3
session control, 11-1
type independent, 10-1

verbs supported, 1-3
version 8.0 and 9.0

differences, G-1
VTAM, 4-1, 4-3, 4-6, 4-8
VTAM LU, 4-3

W
warning

Duplicate NQ Name, 3-5
what_received values, B-4
wild-card TP name, 5-11

Index-8 SunLink Peer-to-Peer LU6.2 9.1 Programmer’s Manual—August 1997

