
Sun Java System Application
Server Enterprise Edition 8.2
Deployment Planning Guide

Sun Microsystems, Inc.
4150 Network Circle
Santa Clara, CA 95054
U.S.A.

Part No: 819–4741–11
August 2007

Copyright 2007 Sun Microsystems, Inc. 4150 Network Circle, Santa Clara, CA 95054 U.S.A. All rights reserved.

This product or document is protected by copyright and distributed under licenses restricting its use, copying, distribution, and decompilation. No part of this
product or document may be reproduced in any form by any means without prior written authorization of Sun and its licensors, if any. Third-party software,
including font technology, is copyrighted and licensed from Sun suppliers.

Parts of the product may be derived from Berkeley BSD systems, licensed from the University of California. UNIX is a registered trademark in the U.S. and other
countries, exclusively licensed through X/Open Company, Ltd.

Sun, Sun Microsystems, the Sun logo, docs.sun.com, AnswerBook, AnswerBook2, and Solaris are trademarks or registered trademarks of Sun Microsystems, Inc. in
the U.S. and other countries. All SPARC trademarks are used under license and are trademarks or registered trademarks of SPARC International, Inc. in the U.S. and
other countries. Products bearing SPARC trademarks are based upon an architecture developed by Sun Microsystems, Inc.

The OPEN LOOK and SunTM Graphical User Interface was developed by Sun Microsystems, Inc. for its users and licensees. Sun acknowledges the pioneering efforts
of Xerox in researching and developing the concept of visual or graphical user interfaces for the computer industry. Sun holds a non-exclusive license from Xerox to
the Xerox Graphical User Interface, which license also covers Sun's licensees who implement OPEN LOOK GUIs and otherwise comply with Sun's written license
agreements.

U.S. Government Rights – Commercial software. Government users are subject to the Sun Microsystems, Inc. standard license agreement and applicable provisions
of the FAR and its supplements.

DOCUMENTATION IS PROVIDED “AS IS” AND ALL EXPRESS OR IMPLIED CONDITIONS, REPRESENTATIONS AND WARRANTIES, INCLUDING ANY
IMPLIED WARRANTY OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT, ARE DISCLAIMED, EXCEPT TO
THE EXTENT THAT SUCH DISCLAIMERS ARE HELD TO BE LEGALLY INVALID.

Copyright 2007 Sun Microsystems, Inc. 4150 Network Circle, Santa Clara, CA 95054 U.S.A. Tous droits réservés.

Ce produit ou document est protégé par un copyright et distribué avec des licences qui en restreignent l'utilisation, la copie, la distribution, et la décompilation.
Aucune partie de ce produit ou document ne peut être reproduite sous aucune forme, par quelque moyen que ce soit, sans l'autorisation préalable et écrite de Sun et
de ses bailleurs de licence, s'il y en a. Le logiciel détenu par des tiers, et qui comprend la technologie relative aux polices de caractères, est protégé par un copyright et
licencié par des fournisseurs de Sun.

Des parties de ce produit pourront être dérivées du système Berkeley BSD licenciés par l'Université de Californie. UNIX est une marque déposée aux Etats-Unis et
dans d'autres pays et licenciée exclusivement par X/Open Company, Ltd.

Sun, Sun Microsystems, le logo Sun, docs.sun.com, AnswerBook, AnswerBook2, et Solaris sont des marques de fabrique ou des marques déposées, de Sun
Microsystems, Inc. aux Etats-Unis et dans d'autres pays. Toutes les marques SPARC sont utilisées sous licence et sont des marques de fabrique ou des marques
déposées de SPARC International, Inc. aux Etats-Unis et dans d'autres pays. Les produits portant les marques SPARC sont basés sur une architecture développée par
Sun Microsystems, Inc.

L'interface d'utilisation graphique OPEN LOOK et Sun a été développée par Sun Microsystems, Inc. pour ses utilisateurs et licenciés. Sun reconnaît les efforts de
pionniers de Xerox pour la recherche et le développement du concept des interfaces d'utilisation visuelle ou graphique pour l'industrie de l'informatique. Sun détient
une licence non exclusive de Xerox sur l'interface d'utilisation graphique Xerox, cette licence couvrant également les licenciés de Sun qui mettent en place l'interface
d'utilisation graphique OPEN LOOK et qui en outre se conforment aux licences écrites de Sun.

CETTE PUBLICATION EST FOURNIE “EN L'ETAT” ET AUCUNE GARANTIE, EXPRESSE OU IMPLICITE, N'EST ACCORDEE, Y COMPRIS DES
GARANTIES CONCERNANT LA VALEUR MARCHANDE, L'APTITUDE DE LA PUBLICATION A REPONDRE A UNE UTILISATION PARTICULIERE, OU
LE FAIT QU'ELLE NE SOIT PAS CONTREFAISANTE DE PRODUIT DE TIERS. CE DENI DE GARANTIE NE S'APPLIQUERAIT PAS, DANS LA MESURE OU
IL SERAIT TENU JURIDIQUEMENT NUL ET NON AVENU.

070813@18135

Contents

Preface ...13

1 Product Concepts ...19
J2EE Platform Overview ... 20

J2EE Applications .. 20
Containers .. 21
J2EE Services ... 22
Web Services ... 22
Client Access ... 23
External Systems and Resources .. 23

Application Server Components ... 24
Server Instances .. 25
Administrative Domains ... 26
Clusters .. 27
Node Agents ... 27
Named Configurations .. 28
HTTP Load Balancer Plug-in ... 28
Session Persistence ... 29
IIOP Load Balancing in a Cluster ... 30
Message Queue and JMS Resources ... 32

High-Availability Database .. 32
HADB System Requirements ... 33
HADB Architecture ... 33
Mitigating Double Failures ... 37
HADB Management System ... 37

Setup and Configuration Roadmap .. 40
▼ To Set Up and Configure Application Server for High Availability 40

3

2 Planning your Deployment ..43
Establishing Performance Goals .. 43

Estimating Throughput .. 44
Estimating Load on Application Server Instances ... 44
Estimating Load on the HADB ... 49

Planning the Network Configuration ... 52
Estimating Bandwidth Requirements ... 52
Calculating Bandwidth Required ... 52
Estimating Peak Load .. 53
Configuring Subnets .. 53
Choosing Network Cards .. 54
Network Settings for HADB ... 54

Planning for Availability ... 55
Rightsizing Availability ... 55
Using Clusters to Improve Availability ... 56
Adding Redundancy to the System .. 57

Design Decisions ... 58
Designing for Peak or Steady State Load ... 58
System Sizing .. 59

Planning Message Queue Broker Deployment .. 62
Multi-Broker Clusters ... 62
Configuring Application Server to Use Message Queue Brokers ... 63
Example Deployment Scenarios .. 65

3 Selecting a Topology ...69
Common Requirements ... 69

General Requirements ... 69
HADB Nodes and Machines ... 70
Load Balancer Configuration ... 71

Co-located Topology .. 71
Example Configuration ... 71
Variation of Co-located Topology ... 73

Separate Tier Topology ... 75
Example Configuration ... 75
Variation of Separate Tier Topology ... 77

Contents

Sun Java System Application Server Enterprise Edition 8.2 Deployment Planning Guide • August 20074

Determining Which Topology to Use .. 79
Comparison of Topologies ... 79

4 Checklist for Deployment ..81
Checklist for Deployment .. 81

Index ..87

Contents

5

6

Figures

FIGURE 1–1 IIOP Load Balancing in a Cluster .. 31
FIGURE 1–2 Sample HADB Configuration with Double Interconnects 35
FIGURE 1–3 HADB Management Architecture .. 38
FIGURE 2–1 Typical Profile of Throughput Versus Concurrent Users 46
FIGURE 2–2 Response Time with Increasing Number of Users .. 47
FIGURE 2–3 Availability versus Cost and Complexity .. 56
FIGURE 2–4 Default MQ Deployment .. 66
FIGURE 2–5 Application Server Cluster Using an MQ Broker Cluster 67
FIGURE 2–6 Application-specific MQ broker cluster ... 68
FIGURE 3–1 Example Co-located Topology .. 72
FIGURE 3–2 Variation of Co-located Topology .. 74
FIGURE 3–3 Example Separate Tier Topology ... 76
FIGURE 3–4 Variation of Separate Tier Topology ... 78

7

8

Tables

TABLE 2–1 Comparison of Persistence Frequency Options .. 50
TABLE 2–2 Comparison of Persistence Scope Options .. 51
TABLE 2–3 HADB Storage Space Requirement for Total Session Data Size of x MB 61
TABLE 3–1 Comparison of Topologies ... 80
TABLE 4–1 Checklist ... 81

9

10

Examples

EXAMPLE 2–1 Calculation of Response Time ... 48
EXAMPLE 2–2 Calculation of Requests Per Second .. 49
EXAMPLE 2–3 Calculation of Bandwidth Required .. 53
EXAMPLE 2–4 Calculation of Peak Load .. 53

11

12

Preface

Deployment Planning Guide explains how to build a production deployment.

This preface contains information about and conventions for the entire Sun JavaTM System
Application Server documentation set.

Application Server Documentation Set
The Application Server documentation set describes deployment planning and system
installation. The Uniform Resource Locator (URL) for stand-alone Application Server
documentation is http://docs.sun.com/app/docs/coll/1310.4. The URL for Sun Java
Enterprise System (Java ES) Application Server documentation is
http://docs.sun.com/app/docs/coll/1310.3. For an introduction to Application Server,
refer to the books in the order in which they are listed in the following table.

TABLE P–1 Books in the Application Server Documentation Set

Book Title Description

Release Notes Late-breaking information about the software and the documentation. Includes a
comprehensive, table-based summary of the supported hardware, operating system, Java
Development Kit (JDKTM), and database drivers.

Quick Start Guide How to get started with the Application Server product.

Installation Guide Installing the software and its components.

Deployment Planning Guide Evaluating your system needs and enterprise to ensure that you deploy the Application Server
in a manner that best suits your site. General issues and concerns that you must be aware of
when deploying the server are also discussed.

Developer’s Guide Creating and implementing Java 2 Platform, Enterprise Edition (J2EETM platform)
applications intended to run on the Application Server that follow the open Java standards
model for J2EE components and APIs. Includes information about developer tools, security,
debugging, deployment, and creating lifecycle modules.

J2EE 1.4 Tutorial Using J2EE 1.4 platform technologies and APIs to develop J2EE applications.

13

http://docs.sun.com/app/docs/coll/1310.4
http://docs.sun.com/app/docs/coll/1310.3

TABLE P–1 Books in the Application Server Documentation Set (Continued)
Book Title Description

Administration Guide Configuring, managing, and deploying Application Server subsystems and components from
the Administration Console.

High Availability Administration
Guide

Post-installation configuration and administration instructions for the high-availability
database.

Administration Reference Editing the Application Server configuration file, domain.xml.

Upgrade and Migration Guide Migrating your applications to the new Application Server programming model, specifically
from Application Server 6.x and 7. This guide also describes differences between adjacent
product releases and configuration options that can result in incompatibility with the product
specifications.

Performance Tuning Guide Tuning the Application Server to improve performance.

Troubleshooting Guide Solving Application Server problems.

Error Message Reference Solving Application Server error messages.

Reference Manual Utility commands available with the Application Server; written in man page style. Includes
the asadmin command line interface.

Related Documentation
Application Server can be purchased by itself or as a component of Java ES, a software
infrastructure that supports enterprise applications distributed across a network or Internet
environment. If you purchased Application Server as a component of Java ES, you should be
familiar with the system documentation at http://docs.sun.com/coll/1286.2. The URL for
all documentation about Java ES and its components is
http://docs.sun.com/prod/entsys.5.

For other Sun Java System server documentation, go to the following:

■ Message Queue documentation
■ Directory Server documentation
■ Web Server documentation

Additionally, the following resources might be useful:

■ The J2EE 1.4 Specifications (http://java.sun.com/j2ee/1.4/docs/index.html)
■ The J2EE 1.4 Tutorial

(http://java.sun.com/j2ee/1.4/docs/tutorial/doc/index.html)
■ The J2EE Blueprints (http://java.sun.com/reference/blueprints/index.html)

Preface

Sun Java System Application Server Enterprise Edition 8.2 Deployment Planning Guide • August 200714

http://docs.sun.com/coll/1286.2
http://docs.sun.com/prod/entsys.5
http://java.sun.com/j2ee/1.4/docs/index.html
http://java.sun.com/j2ee/1.4/docs/tutorial/doc/index.html
http://java.sun.com/j2ee/1.4/docs/tutorial/doc/index.html
http://java.sun.com/reference/blueprints/index.html

Default Paths and File Names
The following table describes the default paths and file names that are used in this book.

TABLE P–2 Default Paths and File Names

Placeholder Description Default Value

install-dir Represents the base installation directory for
Application Server.

Sun Java Enterprise System (Java ES) installations on the
SolarisTM platform:

/opt/SUNWappserver/appserver

Java ES installations on the Linux platform:

/opt/sun/appserver/

Other Solaris and Linux installations, non-root user:

user’s home directory/SUNWappserver

Other Solaris and Linux installations, root user:

/opt/SUNWappserver

Windows, all installations:

SystemDrive:\Sun\AppServer

domain-root-dir Represents the directory containing all domains. Java ES installations on the Solaris platform:

/var/opt/SUNWappserver/domains/

Java ES installations on the Linux platform:

/var/opt/sun/appserver/domains/

All other installations:

install-dir/domains/

domain-dir Represents the directory for a domain.

In configuration files, you might see domain-dir
represented as follows:

${com.sun.aas.instanceRoot}

domain-root-dir/domain-dir

instance-dir Represents the directory for a server instance. domain-dir/instance-dir

Preface

15

Typographic Conventions
The following table describes the typographic changes that are used in this book.

TABLE P–3 Typographic Conventions

Typeface Meaning Example

AaBbCc123 The names of commands, files, and
directories, and onscreen computer
output

Edit your .login file.

Use ls -a to list all files.

machine_name% you have mail.

AaBbCc123 What you type, contrasted with onscreen
computer output

machine_name% su

Password:

AaBbCc123 A placeholder to be replaced with a real
name or value

The command to remove a file is rm filename.

AaBbCc123 Book titles, new terms, and terms to be
emphasized (note that some emphasized
items appear bold online)

Read Chapter 6 in the User's Guide.

A cache is a copy that is stored locally.

Do not save the file.

Symbol Conventions
The following table explains symbols that might be used in this book.

TABLE P–4 Symbol Conventions

Symbol Description Example Meaning

[] Contains optional arguments
and command options.

ls [-l] The -l option is not required.

{ | } Contains a set of choices for a
required command option.

-d {y|n} The -d option requires that you use
either the y argument or the n
argument.

${ } Indicates a variable
reference.

${com.sun.javaRoot} References the value of the
com.sun.javaRoot variable.

- Joins simultaneous multiple
keystrokes.

Control-A Press the Control key while you press
the A key.

+ Joins consecutive multiple
keystrokes.

Ctrl+A+N Press the Control key, release it, and
then press the subsequent keys.

Preface

Sun Java System Application Server Enterprise Edition 8.2 Deployment Planning Guide • August 200716

TABLE P–4 Symbol Conventions (Continued)
Symbol Description Example Meaning

→ Indicates menu item
selection in a graphical user
interface.

File → New → Templates From the File menu, choose New.
From the New submenu, choose
Templates.

Documentation, Support, and Training
The Sun web site provides information about the following additional resources:

■ Documentation (http://www.sun.com/documentation/)
■ Support (http://www.sun.com/support/)
■ Training (http://www.sun.com/training/)

Third-Party Web Site References
Third-party URLs are referenced in this document and provide additional, related information.

Note – Sun is not responsible for the availability of third-party web sites mentioned in this
document. Sun does not endorse and is not responsible or liable for any content, advertising,
products, or other materials that are available on or through such sites or resources. Sun will not
be responsible or liable for any actual or alleged damage or loss caused or alleged to be caused by
or in connection with use of or reliance on any such content, goods, or services that are available
on or through such sites or resources.

Sun Welcomes Your Comments
Sun is interested in improving its documentation and welcomes your comments and
suggestions. To share your comments, go to http://docs.sun.com and click Send Comments.
In the online form, provide the full document title and part number. The part number is a
7-digit or 9-digit number that can be found on the book's title page or in the document's URL.
For example, the part number of this book is 819-4741.

Preface

17

http://www.sun.com/documentation/
http://www.sun.com/support/
http://www.sun.com/training/
http://docs.sun.com

18

Product Concepts

The Sun Java System Application Server provides a robust platform for the development,
deployment, and management of J2EE applications. Key features include scalable transaction
management, container-managed persistence runtime, web services performance, clustering,
high availability session state, security, and integration capabilities.

Application Server is available in three editions, each of which is designed to provide specific
functionality for specific usage scenarios and service levels.

Platform Edition is free and is intended for software development and department-level
production environments. It provides a production platform for deploying Java EE applications
and is integrated with the Solaris operating system. It contains a developer-friendly, lightweight
J2EE container. It is simple to configure because of the small number of processes and is
supported by a fast and efficient deployment interface. Application Server Platform Edition is
also integrated with some developer tools, including the NetBeans 5.5 integrated development
environment (IDE).

Standard Edition is different from Platform Edition in the following ways:

■ Application Server Standard Edition provides a high-performance web container that scales
better than Application Server Platform Edition

■ Application Server Standard Edition provides enhanced multi-machine administration
capabilities that allow you to control more than one server from a single console of a remote
server.

Application Server Standard Edition provides the following service availability capabilities:

■ The load balancing feature allows you to forward client requests to more than one
application server to achieve minimum response time and better throughput.

■ More than one application server can be running in clustering for better scalability and
failover.

1C H A P T E R 1

19

Application Server Enterprise Edition adds data availability to Application Server Standard
Edition. Application Server Enterprise Edition uses the high availability database (HADB) as a
highly available (HA) session store. The conversational states are stored in HADB and are
recoverable for the HTTP sessions and SFSBs. Availability provides failover protection of
application server instances in a cluster. Application Server Enterprise Editionis most suitable
for enterprise-scale applications and service deployment where session state is important.

This chapter covers the following topics:

■ “J2EE Platform Overview” on page 20
■ “Application Server Components” on page 24
■ “High-Availability Database” on page 32
■ “Setup and Configuration Roadmap” on page 40

J2EE Platform Overview
The Application Server implements Java 2 Enterprise Edition (J2EE) 1.4 technology which
defines the standard for developing multitier enterprise applications. The J2EE platform
simplifies enterprise applications by basing them on standardized, modular components, by
providing a complete set of services to those components, and by handling many details of
application behavior automatically, without complex programming.

J2EE Applications
J2EE applications are made up of components such as JavaServer Pages (JSP), Java servlets, and
Enterprise JavaBeans (EJB) modules. These components enable software developers to build
large-scale, distributed applications. Developers package J2EE applications in Java Archive
(JAR) files (similar to zip files), which can be distributed to production sites. Administrators
install J2EE applications onto the Application Server by deploying J2EE JAR files onto one or
more server instances (or clusters of instances).

The following figure illustrates the components of the J2EE platform discussed in the following
sections.

J2EE Platform Overview

Sun Java System Application Server Enterprise Edition 8.2 Deployment Planning Guide • August 200720

Containers
The J2EE application model divides enterprise applications into three fundamental parts:
components, containers, and connectors. Components are the key focus of application
developers, while system vendors implement containers and connectors to conceal complexity
and promote portability. Containers intercede between clients and components, providing
services transparently to both, including transaction support and resource pooling. Container
mediation allows many component behaviors to be specified at deployment time, rather than in
program code.

Browser
Client

Web
Service
Client

HTTP(s)

Web Server

Web Container

JN
D

I/N
am

ing

Transaction

C
onnector

M
essaging

JavaM
ail

S
ecurity

JD
B

C
/P

ersistence

N
am

ing S
ervice

E
IS

JM
S

 B
roker

S
M

T
P

 S
erver

JA
C

C
 P

rovider

D
atabase

J2EE Services/Resources

ORB

EJB Container

EJB
Client

Rich
Client

IIOP/SSL

J2EE Platform Overview

Chapter 1 • Product Concepts 21

In the Application Server, each server instance includes two containers: web and EJB. A
container is a runtime environment that provides services such as security and transaction
management to J2EE components. Web components, such as Java Server Pages and servlets,
run within the web container. Enterprise JavaBeans run within the EJB container.

J2EE Services
The J2EE platform services simplify application programming and allow components and
applications to be customized at deployment time to use resources available in the deployment
environment. This section gives a brief overview of the J2EE platform naming, deployment,
transaction, and security services.The J2EE platform provides services for applications,
including:

■ Naming -A naming and directory service binds objects to names. A J2EE application can
locate an object by looking up its Java Naming and Directory Interface (JNDI) name.

■ Security - The Java Authorization Contract for Containers (JACC) is a set of security
contracts defined for the J2EE containers. Based on the client’s identity, containers can
restrict access to the container’s resources and services.

■ Transaction management - A transaction is an indivisible unit of work. For example,
transferring funds between bank accounts is a transaction. A transaction management
service ensures that a transaction is either completed, or is rolled back.

■ Message Service - Applications hosted on separate systems can communicate with each
other by exchanging messages using the JavaTM Message Service (JMS). JMS is an integral
part of the J2EE platform and simplifies the task of integrating heterogeneous enterprise
applications.

Web Services
Clients can access a J2EE 1.4 application as a remote web service in addition to accessing it
through HTTP, RMI/IIOP, and JMS. Web services are implemented using the Java API for
XML-based RPC (JAX-RPC). A J2EE application can also act as a client to web services, which
would be typical in network applications.

Web Services Description Language (WSDL) is an XML format that describes web service
interfaces. Web service consumers can dynamically parse a WSDL document to determine the
operations a web service provides and how to execute them. The Application Server distributes
web services interface descriptions using a registry that other applications can access through
the Java API for XML Registries (JAXR).

J2EE Platform Overview

Sun Java System Application Server Enterprise Edition 8.2 Deployment Planning Guide • August 200722

Client Access
Clients can access J2EE applications in several ways. Browser clients access web applications
using hypertext transfer protocol (HTTP). For secure communication, browsers use the HTTP
secure (HTTPS) protocol that uses secure sockets layer (SSL).

Rich client applications running in the Application Client Container can directly lookup and
access Enterprise JavaBeans using an Object Request Broker (ORB), Remote Method
Invocation (RMI) and the internet inter-ORB protocol (IIOP), or IIOP/SSL (secure IIOP). They
can access applications and web services using HTTP/HTTPS, JMS, and JAX-RPC. They can
use JMS to send messages to and receive messages from applications and message-driven beans.

Clients that conform to the Web Services-Interoperability (WS-I) Basic Profile can access J2EE
web services. WS-I is an integral part of the J2EE standard and defines interoperable web
services. It enables clients written in any supporting language to access web services deployed to
the Application Server.

The best access mechanism depends on the specific application and the anticipated volume of
traffic. The Application Server supports separately configurable listeners for HTTP, HTTPS,
JMS, IIOP, and IIOP/SSL. You can set up multiple listeners for each protocol for increased
scalability and reliability.

J2EE applications can also act as clients of J2EE components such as Enterprise JavaBeans
modules deployed on other servers, and can use any of these access mechanisms.

External Systems and Resources
On the J2EE platform, an external system is called a resource. For example, a database
management system is a JDBC resource. Each resource is uniquely identified and by its Java
Naming and Directory Interface (JNDI) name. Applications access external systems through
the following APIs and components:

■ Java Database Connectivity (JDBC) - A database management system (DBMS) provides
facilities for storing, organizing, and retrieving data. Most business applications store data
in relational databases, which applications access via JDBC. The Application Server includes
the PointBase DBMS for use sample applications and application development and
prototyping, though it is not suitable for deployment. The Application Server provides
certified JDBC drivers for connecting to major relational databases. These drivers are
suitable for deployment.

■ Java Message Service - Messaging is a method of communication between software
components or applications. A messaging client sends messages to, and receives messages
from, any other client via a messaging provider that implements the Java Messaging Service
(JMS) API. The Application Server includes a high-performance JMS broker, the Sun Java
System Message Queue. The Platform Edition of Application Server includes the free

J2EE Platform Overview

Chapter 1 • Product Concepts 23

Platform Edition of Message Queue. Application Server Enterprise Edition includes
Message Queue Enterprise Edition, that supports clustering and failover.

■ J2EE Connectors - The J2EE Connector architecture enables integrating J2EE applications
and existing Enterprise Information Systems (EIS). An application accesses an EIS through
a portable J2EE component called a connector or resource adapter, analogous to using JDBC
driver to access an RDBMS. Resource adapters are distributed as standalone Resource
Adapter Archive (RAR) modules or included in J2EE application archives. As RARs, they
are deployed like other J2EE components. The Application Server includes evaluation
resource adapters that integrate with popular EIS.

■ JavaMail - Through the JavaMail API, applications can connect to a Simple Mail Transport
Protocol (SMTP) server to send and receive email.

Application Server Components
This section describes the components in the Sun Java System Application Server:

■ “Server Instances” on page 25
■ “Administrative Domains” on page 26
■ “Clusters” on page 27
■ “Node Agents” on page 27
■ “Named Configurations” on page 28
■ “HTTP Load Balancer Plug-in” on page 28
■ “IIOP Load Balancing in a Cluster” on page 30
■ “Message Queue and JMS Resources” on page 32

The following figure illustrates how these Application Server components interact using a
simple example topology that provides high availability. In this example topology, one
administrator manages two machines organized as a cluster. HADB and Application server
processes are located on the same machine. The Domain Administration Server may be hosted
on a separate machine by itself or on any one of the machines hosting application server
instances. The lines in the diagram indicate communication or control.

The administration tools, such as the browser-based Admin Console, communicate with the
domain administration server (DAS), which in turn communicates with the node agents and
server instances.

Application Server Components

Sun Java System Application Server Enterprise Edition 8.2 Deployment Planning Guide • August 200724

Server Instances
A server instance is a Application Server running in a single Java Virtual Machine (JVM)
process. The Application Server is certified with Java 2 Standard Edition (J2SE) 5.0 and 1.4. The
recommended J2SE distribution is included with the Application Server installation.

It is usually sufficient to create a single server instance on a machine, since the Application
Server and accompanying JVM are both designed to scale to multiple processors. However, it
can be beneficial to create multiple instances on one machine for application isolation and
rolling upgrades. In some cases, a large server with multiple instances can be used in more than
admiistrative domain. The administration tools make it easy to create, delete and manage server
instances across multiple machines.

Admin
Tools

Domain
Admin
Server

Node
Agent

Server
Instances

Deployed
Apps

Domain
Config

Central
Repository

Domain 1

Node
Agent

Server
Instances

Domain 2

HADB

Node

DRU0

Node

DRU1

Application Server Components

Chapter 1 • Product Concepts 25

Administrative Domains
An administrative domain (or simply domain) is a group of server instances that are
administered together. A server instance belongs to a single administrative domain. The
instances in a domain can run on different physical hosts.

You can create multiple domains from one installation of the Application Server. By grouping
server instances into domains, different organizations and administrators can share a single
Application Server installation. Each domain has its own configuration, log files, and
application deployment areas that are independent of other domains. Changing the
configuration of one domain does not affect the configurations of other domains. Likewise,
deploying an application on a one domain does not deploy it or make it visible to any other
domain. At any given time, an administrator can be authenticated to only one domain, and thus
can only perform administration on that domain.

Domain Administration Server (DAS)
A domain has one Domain Administration Server (DAS), a specially-designated application
server instance that hosts the administrative applications. The DAS authenticates the
administrator, accepts requests from administration tools, and communicates with server
instances in the domain to carry out the requests.

The administration tools are the asadmin command-line utility and the browser-based Admin
Console. The Application Server also provides a JMX-based API for server administration. The
administrator can view and manage a single domain at a time, thus enforcing secure separation.

The DAS is also sometimes referred to as the admin server or default server. It is referred to as
the default server because it is the default target for some administrative operations.

Since the DAS is an application server instance, it can also host J2EE applications for testing
purposes. However, do not use it to host production applications. You might want to deploy
applications to the DAS, for example, if the clusters and instances that will host the production
application have not yet been created.

The DAS keeps a repository containing the configuration of each domain and all the deployed
applications. If the DAS is inactive or down, there is no impact on the performance or
availability of active server instances, however administrative changes cannot be made. In
certain cases, for security purposes, it may be useful to intentionally stop the DAS process; for
example to freeze a production configuration.

Administrative commands are provided to backup and restore domain configuration and
applications. With the standard backup and restore procedures, you can quickly restore
working configurations. If the DAS host fails, you must create a new DAS installation to restore
the previous domain configuration. For instructions, see “Recreating the Domain
Administration Server” in Sun Java System Application Server Enterprise Edition 8.2
Administration Guide.

Application Server Components

Sun Java System Application Server Enterprise Edition 8.2 Deployment Planning Guide • August 200726

Sun Cluster Data Services provides high availability of the DAS through failover of the DAS
host IP address and use of the Global File System. This solution provides nearly continuous
availability for DAS and the repository against many types of failures. Sun Cluster Data Services
are available with the Sun Java Enterprise System or purchased separately with Sun Cluster. For
more information, see the documentation for Sun Cluster Data Services.

Clusters
A cluster is a named collection of server instances that share the same applications, resources,
and configuration information. You can group server instances on different machines into one
logical cluster and administer them as one unit. You can easily control the lifecycle of a
multi-machine cluster with the DAS.

Clusters enable horizontal scalability, load balancing, and failover protection. By definition, all
the instances in a cluster have the same resource and application configuration. When a server
instance or a machine in a cluster fails, the load balancer detects the failure, redirects traffic
from the failed instance to other instances in the cluster, and recovers the user session state.
Since the same applications and resources are on all instances in the cluster, an instance can
failover to any other instance in the cluster.

Clusters, domains, and instances are related as follows:
■ An administrative domain can have zero or more clusters.
■ A cluster has one or more server instances.
■ A cluster belongs to a single domain

Node Agents
A node agent is a lightweight process that runs on every machine that hosts server instances,
including the machine that hosts the DAS. The node agent:
■ Starts and stops server instances as instructed by the DAS.
■ Restarts failed server instances.
■ Provides a view of the log files of failed servers and assists in remote diagnosis
■ Synchronizes the local configuration repository of each server instance with the DAS's

central repository. For details, see Chapter 8, “Configuring Node Agents,” in Sun Java
System Application Server Enterprise Edition 8.2 High Availability Administration Guide.

■ When an instance is initially created, creates directories the instance needs and
synchronizes the instance’s configuration with the central repository.

■ Performs appropriate cleanup when a server instance is deleted.

Each physical host must have at least one node agent for each domain to which the host belongs.
If a physical host has instances from more than one domain, then it needs a node agent for each
domain. There is no a

Application Server Components

Chapter 1 • Product Concepts 27

Because a node agent starts and stops server instances, it must always be running. Therefore, it
is started when the operating system boots up. On Solaris and other Unix platforms, the node
agent can be started by the inetd process. On Windows, the node agent can be made a
Windows service.

For more information on node agents, see Chapter 8, “Configuring Node Agents,” in Sun Java
System Application Server Enterprise Edition 8.2 High Availability Administration Guide.

Named Configurations
A named configurationis an abstraction that encapsulates Application Server property settings.
Clusters and standalone server instances reference a named configuration to get their property
settings. With named configurations, J2EE containers’ configurations are independent of the
physical machine on which they reside, except for particulars such as IP address, port number,
and amount of heap memory. Using named configurations provides power and flexibility to
Application Server administration.

To apply configuration changes, you change the property settings of the named configuration,
and all the clusters and standalone instances that reference it pick up the changes. You can only
delete a named configuration when all references to it have been removed. A domain can
contain multiple named configurations.

The Application Server comes with a default configuration, called default-config. The default
configuration is optimized for developer productivity in Application Server Platform Edition
and for security and high availability in the Application Server Standard and Enterprise
Editions.

You can create your own named configuration based on the default configuration that you can
customize for your own purposes. Use the Admin Console and asadmin command line utility
to create and manage named configurations.

HTTP Load Balancer Plug-in
The load balancer distributes the workload among multiple physical machines, thereby
increasing the overall throughput of the system. The Application Server Enterprise Edition
includes the load balancer plug-in for the Sun Java System Web Server, the Apache Web Server,
and Microsoft Internet Information Server.

The load balancer plug-in accepts HTTP and HTTPS requests and forwards them to one of the
application server instances in the cluster. Should an instance fail, become unavailable (due to
network faults), or become unresponsive, requests are redirected to existing, available
machines. The load balancer can also recognize when a failed instance has recovered and
redistribute the load accordingly.

Application Server Components

Sun Java System Application Server Enterprise Edition 8.2 Deployment Planning Guide • August 200728

For simple stateless applications, a load-balanced cluster may be sufficient. However, for
mission-critical applications with session state, use load balanced clusters with HADB.

To setup a system with load balancing, in addition to the Application Server, you must install a
web server and the load-balancer plug-in. Then you must:

■ Create Application Server clusters that you want to participate in load balancing.
■ Deploy applications to these load-balanced clusters.

Server instances and clusters participating in load balancing have a homogenous environment.
Usually that means that the server instances reference the same server configuration, can access
the same physical resources, and have the same applications deployed to them. Homogeneity
assures that before and after failures, the load balancer always distributes load evenly across the
active instances in the cluster.

Use the asadmin command-line tool to create a load balancer configuration, add references to
clusters and server instances to it, enable the clusters for reference by the load balancer, enable
applications for load balancing, optionally create a health checker, generate the load balancer
configuration file, and finally copy the load balancer configuration file to your web server
config directory. An administrator can create a script to automate this entire process.

For more details and complete configuration instructions, see Chapter 5, “Configuring HTTP
Load Balancing,” in Sun Java System Application Server Enterprise Edition 8.2 High Availability
Administration Guide.

Session Persistence
J2EE applications typically have significant amounts of session state data. A web shopping cart
is the classic example of a session state. Also, an application can cache frequently-needed data in
the session object. In fact, almost all applications with significant user interactions need to
maintain a session state. Both HTTP sessions and stateful session beans (SFSBs) have session
state data.

While the session state is not as important as the transactional state stored in a database,
preserving the session state across server failures can be important to end users.The Application
Server provides the capability to save, or persist, this session state in a repository. If the
application server instance that is hosting the user session experiences a failure, the session state
can be recovered. The session can continue without loss of information.

The Application Server supports the following types of session persistence stores:

■ Memory
■ High availability (HA)
■ File

Application Server Components

Chapter 1 • Product Concepts 29

With memory persistence, the state is always kept in memory and does not survive failure. With
HA persistence, the Application Server uses HADB as the persistence store for both HTTP and
SFSB sessions. With file persistence, the Application Server serializes session objects and stores
them to the file system location specified by session manager properties. For SFSBs, if HA is not
specified, the Application Server stores state information in the session-store sub-directory of
this location.

Checking an SFSB’s state for changes that need to be saved is called checkpointing. When
enabled, checkpointing generally occurs after any transaction involving the SFSB is completed,
even if the transaction rolls back. For more information on developing stateful session beans,
see “Using Session Beans” in Sun Java System Application Server Enterprise Edition 8.2
Developer’s Guide. For more information on enabling SFSB failover, see “Stateful Session Bean
Failover” in Sun Java System Application Server Enterprise Edition 8.2 High Availability
Administration Guide.

Apart from the number of requests being served by the Application Server, the session
persistence configuration settings also affect the number of requests received per minute by the
HADB, as well as the session information in each request.

For more information on configuring session persistence, see Chapter 9, “Configuring High
Availability Session Persistence and Failover,” in Sun Java System Application Server Enterprise
Edition 8.2 High Availability Administration Guide.

IIOP Load Balancing in a Cluster
With IIOP load balancing, IIOP client requests are distributed to different server instances or
name servers. The goal is to spread the load evenly across the cluster, thus providing scalability.
IIOP load balancing combined with EJB clustering and availability features in the Sun Java
System Application provides not only load balancing but also EJB failover.

When a client performs a JNDI lookup for an object, the Naming Service creates a
InitialContext (IC) object associated with a particular server instance. From then on, all
lookup requests made using that IC object are sent to the same server instance. All EJBHome
objects looked up with that InitialContext are hosted on the same target server. Any bean
references obtained henceforth are also created on the same target host. This effectively
provides load balancing, since all clients randomize the list of live target servers when creating
InitialContext objects. If the target server instance goes down, the lookup or EJB method
invocation will failover to another server instance.

Application Server Components

Sun Java System Application Server Enterprise Edition 8.2 Deployment Planning Guide • August 200730

For example, as illustrated in this figure, ic1, ic2, and ic3 are three different InitialContext
instances created in Client2’s code. They are distributed to the three server instances in the
cluster. Enterprise JavaBeans created by this client are thus spread over the three instances.
Client1 created only one InitialContext object and the bean references from this client are only
on Server Instance 1. If Server Instance 2 goes down, the lookup request on ic2 will failover to
another server instance (not necessarily Server Instance 3). Any bean method invocations to
beans previously hosted on Server Instance 2 will also be automatically redirected, if it is safe to
do so, to another instance. While lookup failover is automatic, Enterprise JavaBeans modules
will retry method calls only when it is safe to do so.

IIOP Load balancing and failover happens transparently. No special steps are needed during
application deployment. Adding or deleting new instances to the cluster will not update the
existing client’s view of the cluster. You must manually update the endpoints list on the client
side.

Server
Instance 1

Server
Instance 2

Server
Instance 3

Client 1

ic
1.

lo
ok

up
(n

am
e)

ic
2.

lo
ok

up
(n

am
e)

ic
3.

lo
ok

up
(n

am
e)

Client 2

Cluster

FIGURE 1–1 IIOP Load Balancing in a Cluster

Application Server Components

Chapter 1 • Product Concepts 31

Message Queue and JMS Resources
The Sun Java System Message Queue (MQ) provides reliable, asynchronous messaging for
distributed applications. MQ is an enterprise messaging system that implements the Java
Message Service (JMS) standard. MQ provides messaging for J2EE application components
such as message-driven beans (MDBs).

The Application Server implements the Java Message Service (JMS) API by integrating the Sun
Java System Message Queue into the Application Server. The Enterprise Edition of the
Application Server includes the Enterprise version of MQ which has failover, clustering and
load balancing features.

For basic JMS administration tasks, use the Application Server Admin Console and asadmin

command-line utility.

For advanced tasks, including administering a Message Queue cluster, use the tools provided in
the install_dir/imq/bin directory. For details about administering Message Queue, see the Sun
Java System Message Queue Administration Guide.

For information on deploying JMS applications and MQ clustering for message failover, see
“Planning Message Queue Broker Deployment” on page 62.

High-Availability Database
This section discusses the following topics:

■ “HADB System Requirements” on page 33
■ “HADB Architecture” on page 33
■ “Mitigating Double Failures” on page 37
■ “HADB Management System” on page 37

J2EE applications’ need for session persistence was previously described in “Session
Persistence” on page 29. The Application Server uses the high-availability database (HADB) as a
highly available session store. HADB is included with the Application Server Enterprise Edition,
but in deployment can be run on seprate hosts. HADB provides a highly available data store for
HTTP session and stateful session bean data.

The advantages of this decoupled architecture include:

■ Server instances in a highly available cluster are loosely coupled and act as high performance
J2EE containers.

■ Stopping and starting server instances does not affect other servers or their availability.

High-Availability Database

Sun Java System Application Server Enterprise Edition 8.2 Deployment Planning Guide • August 200732

■ HADB can run on a different set of less expensive machines (for example, with single or dual
processors). Several clusters can share these machines. Depending upon the deployment
needs, you can run HADB on the same machines as Application Server (co-located) or
different machines (separate tier). For more information on the two options, see
“Co-located Topology” on page 71

■ As state management requirements change, you can add resources to the HADB system
without affecting existing clusters or their applications.

Note – HADB is optimized for use by Application Server and is not meant to be used by
applications as a general purpose database.

HADB System Requirements
The system requirements for HADB hosts are:

■ At least one CPU per HADB node.
■ At least 512 MB memory per node

For network configuration requirements, see Chapter 2, “Installing and Setting Up High
Availability Database,” in Sun Java System Application Server Enterprise Edition 8.2 High
Availability Administration Guide. For additional requirements for very high availability, see
“Mitigating Double Failures” on page 37.

HADB Architecture
HADB is a distributed system consisting of pairs of nodes. Nodes are divided into two data
redundancy units (DRUs), with a node from each pair in each DRU, as illustrated in “Data
Redundancy Units” on page 34.

Each node consists of:

■ A set of processes for transactional state replication
■ A dedicated area of shared memory used for communication among the processes.
■ One or more secondary storage devices (disks).

A set of HADB nodes can host one or more session databases. Each session database is
associated with a distinct application server cluster. Deleting a cluster also deletes the associated
session database.

Nodes and Node Processes
There are two types of HADB nodes:

■ Active nodes that store data.

High-Availability Database

Chapter 1 • Product Concepts 33

■ Spare nodes that do not contain any data initially, but perform as active nodes if an active
node becomes unavailable. Spare nodes are optional but useful for achieving higher
availability.

Each node has a parent process and several child processes. The parent process, called the node
supervisor (NSUP), is started by the management agent. It is responsible for creating the child
processes and keeping them running.

The child processes are:

■ Transaction server process (TRANS), that coordinates transactions on distributed nodes,
and manages data storage.

■ Relational algebra server process (RELALG) that coordinates and executes complex
relational algebra queries such as sorts and and joins.

■ SQL shared memory server process (SQLSHM) that maintains the SQL dictionary cache.
■ SQL server process (SQLC), that receives client queries, compiles them into local HADB

instructions, sends the instructions to TRANS, receives the results and conveys them to the
client. Each node has one main SQL server and one sub-server for each client connection.

■ Node manager server process (NOMAN) that management agents use to execute
management commands issued by the hadbm management client.

Data Redundancy Units
As previously described, an HADB instance contains a pair of DRUs. Each DRU has the same
number of active and spare nodes as the other DRU in the pair. Each active node in a DRU has a
mirror node in the other DRU. Due to mirroring, each DRU contains a complete copy of the
database.

The following figure shows an example HADB architecture with six nodes: four active nodes
and two spare nodes. Nodes 0 and 1 are a mirror pair, as are nodes 2 and 3. In this example, each
host has one node. In general, a host can have more than one node if it has sufficient system
resources (see “HADB System Requirements” on page 33).

Note – You must add machines that host HADB nodes in pairs, with one machine in each DRU.

HADB achieves high availability by replicating data and services. The data replicas on mirror

High-Availability Database

Sun Java System Application Server Enterprise Edition 8.2 Deployment Planning Guide • August 200734

nodes are designated as primary replicas and hot standby replicas. The primary replica performs
operations such as inserts, deletes, updates, and reads. The hot standby replica receives log
records of the primary replica’s operations and redoes them within the transaction life time.
Read operations are performed only by the primary node and thus not logged. Each node
contains both primary and hot standby replicas and plays both roles. The database is
fragmented and distributed over the active nodes in a DRU. Each node in a mirror pair contains
the same set of data fragments. Duplicating data on a mirror node is known as replication.
Replication enables HADB to provide high availability: when a node fails, its mirror node takes
over almost immediately (within seconds). Replication ensures availability and masks node
failures or DRU failures without loss of data or services.

When a mirror node takes over the functions of a failed node, it has to perform double work: its
own and that of the failed node. If the mirror node does not have sufficient resources, the
overload will reduce its performance and increase its failure probability. When a node fails,
HADB attempts to restart it. If the failed node does not restart (for example, due to hardware
failure), the system continues to operate but with reduced availability.

HADB tolerates failure of a node, an entire DRU, or multiple nodes, but not a “double failure”
when both a node and its mirror fail. For information on how to reduce the likelihood of a
double failure, see “Mitigating Double Failures” on page 37

Spare Nodes
When a node fails, its mirror node takes over for it. If the failed node does not have a spare node,
then at this point, the failed node will not have a mirror. A spare node will automatically replace
a failed node’s mirror. Having a spare node reduces the time the system functions without a
mirror node.

Host 0

Node 0

Host 2

Node 2

Host 4

Spare

DRU 0

Host 1

Node 1

Host 3

Node 3

Host 5

Spare

DRU 1

Switch

Switch

Network

FIGURE 1–2 Sample HADB Configuration with Double Interconnects

High-Availability Database

Chapter 1 • Product Concepts 35

A spare node does not normally contain data, but constantly monitors for failure of active
nodes in the DRU. When a node fails and does not recover within a specified timeout period,
the spare node copies data from the mirror node and synchronizes with it. The time this takes
depends on the amount of data copied and the system and network capacity. After
synchronizing, the spare node automatically replaces the mirror node without manual
intervention, thus relieving the mirror node from overload, thus balancing load on the mirrors.
This is known as failback or self-healing.

When a failed host is repaired (by shifting the hardware or upgrading the software) and
restarted, the node or nodes running on it join the system as a spare nodes, since the original
spare nodes are now active.

Spare nodes are not required, but they enable a system to maintain its overall level of service
even if a machine fails. Spare nodes also make it easy to perform planned maintenance on
machines hosting active nodes. Allocate one machine for each DRU to act as a spare machine,
so that if one of the machines fails, the HADB system continues without adversely affecting
performance and availability.

Note – As a general rule, have a spare machine with enough Application Server instances and
HADB nodes to replace any machine that becomes unavailable.

Example Spare Node Configurations
The following examples illustrate using spare nodes in HADB deployments. There are two
possible deployment topologies: co-located, in which HADB and Application Servers reside on
the same hosts, and separate tier , in which they reside on separate hosts. For more information
on deployment topologies, see Chapter 3, “Selecting a Topology”

Example: co-located configuration

As an example of a spare node configuration, suppose you have a co-located topology with four
Sun FireTM V480 servers, where each server has one Application Server instance and two HADB
data nodes.

For spare nodes, allocate two more servers (one machine per DRU). Each spare machine runs
one application server instance and two spare HADB nodes.

Example: separate tier configuration

Suppose you have a separate-tier topology where the HADB tier has two Sun FireTM 280R
servers, each running two HADB data nodes. To maintain this system at full capacity, even if
one machine becomes unavailable, configure one spare machine for the Application Server
instances tier and one spare machine for the HADB tier.

High-Availability Database

Sun Java System Application Server Enterprise Edition 8.2 Deployment Planning Guide • August 200736

The spare machine for the Application Server instances tier must have as many instances as the
other machines in the Application Server instances tier. Similarly, the spare machine for the
HADB tier must have as many HADB nodes as the other machines in the HADB tier.

Mitigating Double Failures
HADB’s built-in data replication enables it to tolerate failure of a single node or an entire DRU.
By default, HADB won’t survive a double failure , when a mirror node pair or both DRUs fail. In
such cases, HADB become unavailable.

In addition to using spare nodes as described in the previous section, you can minimize the
likelihood of a double failure by taking the following steps:

■ Providing independent power supplies: For optimum fault tolerance, the servers that
support one DRU must have independent power (through uninterruptible power supplies),
processing units, and storage. If a power failure occurs in one DRU, the nodes in the other
DRU continue servicing requests until the power returns.

■ Providing double interconnections: To tolerate single network failures, replicate the lines
and switches between DRUs as shown in Figure 1–2.

These steps are optional, but will increase the overall availability of the HADB instance.

HADB Management System
The HADB management system provides built-in security and facilitates multi-platform
management. As illustrated in the following figure, the HADB management architecture
contains the following components:

■ “Management Client” on page 38
■ “Management Agent” on page 39
■ “Management Domains” on page 39
■ “Repository” on page 40

As shown in the figure, one HADB management agent runs on every machine that runs the
HADB service. Each machine typically hosts one or more HADB nodes. An HADB
management domain contains many machines, similar to an Application Server domain. At
least two machines are required in a domain for the database to be fault tolerant, and in genera
there must be an even number of machines to form the DRU pairs. Thus, a domain contains
many management agents.

As shown in the figure, a domain can contain one or more database instances. One machine can
contain one or more nodes belonging to one or more database instances.

High-Availability Database

Chapter 1 • Product Concepts 37

Management Client
The HADB management client is a command-line utility, hadbm, for managing the HADB
domain and its database instances. HADB services can run continously— even when the
associated Application Server cluster is stopped—but must be shut down carefully if they are to
be deleted. For more information on using hadbm, see Chapter 3, “Administering High
Availability Database,” in Sun Java System Application Server Enterprise Edition 8.2 High
Availability Administration Guide.

HADB Admin
CLI (hadbm)

JDBC
Driver

Mgmt
API

Database
Administrator

MA Agent

HADB Process

Node 1

HADB Process

Node 3

Host B DRU 1

Database A

Management Domain

MA Agent

HADB Process

Node 1

HADB Process

Node 3

Host B DRU 1

MA Agent

HADB Process

Node 1

HADB Process

Node 3

Host D DRU 1

Database B

MA Agent

HADB Process

Node 0

HADB Process

Node 2

Host C DRU 0

FIGURE 1–3 HADB Management Architecture

High-Availability Database

Sun Java System Application Server Enterprise Edition 8.2 Deployment Planning Guide • August 200738

You can use the asadmin command line utility to create and delete the HADB instance
associated with a highly available cluster. For more information, see Chapter 9, “Configuring
High Availability Session Persistence and Failover,” in Sun Java System Application Server
Enterprise Edition 8.2 High Availability Administration Guide.

Management Agent
The management agent is a server process (named ma) that can access resources on a host; for
example, it can create devices and start database processes. The management agent coordinates
and performs management client commands such as starting or stopping a database instance.

A management client connects to a management agent by specifying the address and port
number of the agent. Once connected, the management client sends commands to HADB
through the management agent. The agent receives requests and executes them. Thus, a
management agent must be running on a host before issuing any hadbm management
commands to that host. The management agent can be configured as a system service that starts
up automatically.

Ensuring availability of management agents

The management agent process ensures the availability of the HADB node supervisor processes
by restarting them if they fail. Thus, for deployment, you must ensure the availability of the ma
process to maintain the overall availability of HADB. After restarting, the management agent
recovers the domain and database configuration data from other agents in the domain.the
system.

Use the host operating system (OS) to ensure the availability of the management agent. On
Solaris or Linux, init.d ensures the availability of the ma process after a process failure and
reboot of the operating system. On Windows, the management agent runs as a Windows
service. Thus, the OS restarts the management agent if the agent fails or the OS reboots.

Management Domains
An HADB management domain is a set of hosts, each of which has a management agent
running on the same port number. The hosts in a domain can contain one or more HADB
database instances. A management domain is defined by the common port number the agents
use and an identifier (called a domainkey) generated when you create or the domain or add an
agent to it. The domainkey provides a unique identifier for the domain, crucial since
management agents communicate using multicast. You can set up an HADB management
domain to match with an Application Server domain.

Having multiple database instances in one domain can be useful in a development
environment, since it enables different developer groups to use their own database instance. In
some cases, it may also be useful in production environments.

High-Availability Database

Chapter 1 • Product Concepts 39

All agents belonging to a domain coordinate their management operations. When you change
the database configuration through an hadbm command, all agents will change the
configuration accordingly. You cannot stop or restart a node unless the management agent on
the node’s host is running. However, you can execute hadbm commands that read HADB state or
configuration variable values even if some agents are not available.

Use the following management client commands to work with management domains:
■ hadbm createdomain: creates a management domain with the specified hosts. For more

information, see hadbm-createdomain(1).
■ hadbm extenddomain: adds hosts to an existing management domain. For more

information, see hadbm-extenddomain(1).
■ hadbm deletedomain: removes a management domain. For more information, see

hadbm-deletedomain(1).
■ hadbm reducedomain: removes hosts from the management domain. For more

information, see hadbm-reducedomain(1).
■ hadbm listdomain: lists all hosts defined in the management domain. For more

information, see hadbm-listdomain(1).

Repository
Management agents store the database configuration in a repository. The repository is highly
fault-tolerant, because it is replicated over all the management agents. Keeping the
configuration on the server enables you to perform management operations from any
computer that has a management client installed.

A majority of the management agents in a domain must be running to perform any changes to
the repository. Thus, if there are M agents in a domain, at least M/2 + 1 agents (rounded down
to a whole number) must be running to make a change to the repository.

If some of the hosts in a domain are unavailable, for example due to hardware failures, and you
cannot perform some management commands because you don’t have a quorum, use the hadbm
disablehost command to remove the failed hosts from the domain. For more information on
this command, see hadbm-disablehost(1).

Setup and Configuration Roadmap

▼ To Set Up and Configure Application Server for High
Availability

Determine your performance and QoS requirements and goals, as described in Chapter 1,
“Product Concepts”

1

Setup and Configuration Roadmap

Sun Java System Application Server Enterprise Edition 8.2 Deployment Planning Guide • August 200740

Size your system, as described in “Design Decisions”on page 58 in Chapter 1,“Product
Concepts”

■ Number of Application Server Instances
■ Number of HADB Nodes and Hosts
■ HADB Storage Capacity

Determine system topology, as described in Chapter 3,“Selecting a Topology.”
This determines whether you are going to intall HADB on the same host machines as
Application Server or on different machines.

Install Application Server instances, along with related subcomponents such as HADB and a
web server.

Create domains and clusters.

Configure your web server software.

Install the Load Balancer Plug-in.

Setup and configure load balancing.

Setup and configure HADB nodes and DRUs.

Configure AS Web container and EJB container for HA session persistence.

Deploy applications and configure them for high availability and session failover.

Configure JMS clusters for failover if you are using messaging extensively.
For more information, see Chapter 9, “Working With Broker Clusters,” in Sun Java System
Message Queue 3.7 UR1 Administration Guide

2

3

4

5

6

7

8

9

10

11

12

Setup and Configuration Roadmap

Chapter 1 • Product Concepts 41

42

Planning your Deployment

Before deploying the Application Server, first determine the performance and availability goals,
and then make decisions about the hardware, network, and storage requirements accordingly.

This chapter contains the following sections:

■ “Establishing Performance Goals” on page 43
■ “Planning the Network Configuration” on page 52
■ “Planning for Availability” on page 55
■ “Design Decisions” on page 58
■ “Planning Message Queue Broker Deployment” on page 62

Establishing Performance Goals
At its simplest, high performance means maximizing throughput and reducing response time.
Beyond these basic goals, you can establish specific goals by determining the following:

■ What types of applications and services are deployed, and how do clients access them?
■ Which applications and services need to be highly available?
■ Do the applications have session state or are they stateless?
■ What request capacity or throughput must the system support?
■ How many concurrent users must the system support?
■ What is an acceptable average response time for user requests?
■ What is the average think time between requests?

You can calculate some of these metrics using a remote browser emulator (RBE) tool, or web
site performance and benchmarking software that simulates expected application activity.
Typically, RBE and benchmarking products generate concurrent HTTP requests and then
report the response time for a given number of requests per minute. You can then use these
figures to calculate server activity.

2C H A P T E R 2

43

The results of the calculations described in this chapter are not absolute. Treat them as
reference points to work against, as you fine-tune the performance of the Application Server
and your applications.

This section discusses the following topics:

■ “Estimating Throughput” on page 44
■ “Estimating Load on Application Server Instances” on page 44
■ “Estimating Load on the HADB” on page 49
■ “Estimating Bandwidth Requirements” on page 52
■ “Estimating Peak Load” on page 53

Estimating Throughput
In broad terms, throughput measures the amount of work performed by Application Server. For
Application Server, throughput can be defined as the number of requests processed per minute
per server instance. High availability applications also impose throughput requirements on
HADB, since they save session state data periodically. For HADB, throughput can be defined as
volume of session data stored per minute, which is the product of the number of HADB
requests per minute, and the average session size per request.

As described in the next section, Application Server throughput is a function of many factors,
including the nature and size of user requests, number of users, and performance of Application
Server instances and back-end databases. You can estimate throughput on a single machine by
benchmarking with simulated workloads.

High availability applications incur additional overhead because they periodically save data to
HADB. The amount of overhead depends on the amount of data, how frequently it changes,
and how often it is saved. The first two factors depend on the application in question; the latter
is also affected by server settings.

HADB throughput can be defined as the number of HADB requests per minute multiplied by
the average amount of data per request. Larger throughput to HADB implies that more HADB
nodes are needed and a larger store size.

Estimating Load on Application Server Instances
Consider the following factors to estimate the load on Application Server instances:

■ “Maximum Number of Concurrent Users” on page 45
■ “Think Time” on page 47
■ “Average Response Time” on page 47
■ “Requests Per Minute” on page 48

Establishing Performance Goals

Sun Java System Application Server Enterprise Edition 8.2 Deployment Planning Guide • August 200744

Maximum Number of Concurrent Users
Users interact with an application through a client, such as a web browser or Java program.
Based on the user’s actions, the client periodically sends requests to the Application Server. A
user is considered active as long as the user’s session has neither expired nor been terminated.
When estimating the number of concurrent users, include all active users.

The following figure illustrates a typical graph of requests processed per minute (throughput)
versus number of users. Initially, as the number of users increases, throughput increases
correspondingly. However, as the number of concurrent requests increases, server performance
begins to saturate, and throughput begins to decline.

Identify the point at which adding concurrent users reduces the number of requests that can be
processed per minute. This point indicates when optimal performance is reached and beyond
which throughput start to degrade. Generally, strive to operate the system at optimal
throughput as much as possible. You might need to add processing power to handle additional
load and increase throughput.

Establishing Performance Goals

Chapter 2 • Planning your Deployment 45

Pubs Column Width Border (5 in X 7 in)

R
eq

u
es

ts
 p

er
 M

in
u

te

Maximum number of users
that the system can support
before requests per minute
start to decrease

Number of Users

FIGURE 2–1 Typical Profile of Throughput Versus Concurrent Users

Establishing Performance Goals

Sun Java System Application Server Enterprise Edition 8.2 Deployment Planning Guide • August 200746

Think Time
A user does not submit requests continuously. A user submits a request, the server receives and
processes the request, and then returns a result, at which point the user spends some time before
submitting a new request. The time between one request and the next is called think time.

Think times are dependent on the type of users. For example, machine-to-machine interaction
such as for a web service typically has a lower think time than that of a human user. You may
have to consider a mix of machine and human interactions to estimate think time.

Determining the average think time is important. You can use this duration to calculate the
number of requests that need to be completed per minute, as well as the number of concurrent
users the system can support.

Average Response Time
Response time refers to the amount of time Application Server takes to return the results of a
request to the user. The response time is affected by factors such as network bandwidth, number
of users, number and type of requests submitted, and average think time.

In this section, response time refers to the mean, or average, response time. Each type of request
has its own minimal response time. However, when evaluating system performance, base the
analysis on the average response time of all requests.

The faster the response time, the more requests per minute are being processed. However, as the
number of users on the system increases, the response time starts to increase as well, even
though the number of requests per minute declines, as the following diagram illustrates:

A system performance graph similar to this figure indicates that after a certain point, requests
per minute are inversely proportional to response time. The sharper the decline in requests per
minute, the steeper the increase in response time (represented by the dotted line arrow).

Seconds Requests per minute

Requests
per minute/users

Response
time/users

FIGURE 2–2 Response Time with Increasing Number of Users

Establishing Performance Goals

Chapter 2 • Planning your Deployment 47

In the figure, the point of the peak load is the point at which requests per minute start to decline.
Prior to this point, response time calculations are not necessarily accurate because they do not
use peak numbers in the formula. After this point, (because of the inversely proportional
relationship between requests per minute and response time), the administrator can more
accurately calculate response time using maximum number of users and requests per minute.

Use the following formula to determine Tresponse, the response time (in seconds) at peak load:

Tresponse = n/r - Tthink

where
■ n is the number of concurrent users
■ r is the number requests per second the server receives
■ Tthink is the average think time (in seconds)

To obtain an accurate response time result, always include think time in the equation.

EXAMPLE 2–1 Calculation of Response Time

If the following conditions exist:
■ Maximum number of concurrent users, n, that the system can support at peak load is 5,000.
■ Maximum number of requests, r, the system can process at peak load is 1,000 per second.

Average think time, Tthink, is three seconds per request.

Thus, the calculation of response time is:

Tresponse = n/r - Tthink = (5000/ 1000) - 3 sec. = 5 - 3 sec.

Therefore, the response time is two seconds.

After the system’s response time has been calculated, particularly at peak load, compare it to the
acceptable response time for the application. Response time, along with throughput, is one of
the main factors critical to the Application Server performance.

Requests Per Minute
If you know the number of concurrent users at any given time, the response time of their
requests, and the average user think time, then you can calculate the number of requests per
minute. Typically, start by estimating the number of concurrent users that are on the system.

For example, after running web site performance software, the administrator concludes that the
average number of concurrent users submitting requests on an online banking web site is 3,000.
This number depends on the number of users who have signed up to be members of the online
bank, their banking transaction behavior, the time of the day or week they choose to submit
requests, and so on.

Establishing Performance Goals

Sun Java System Application Server Enterprise Edition 8.2 Deployment Planning Guide • August 200748

Therefore, knowing this information enables you to use the requests per minute formula
described in this section to calculate how many requests per minute your system can handle for
this user base. Since requests per minute and response time become inversely proportional at
peak load, decide if fewer requests per minute is acceptable as a trade-off for better response
time, or alternatively, if a slower response time is acceptable as a trade-off for more requests per
minute.

Experiment with the requests per minute and response time thresholds that are acceptable as a
starting point for fine-tuning system performance. Thereafter, decide which areas of the system
require adjustment.

Solving for r in the equation in the previous section gives:

r = n/(Tresponse + Tthink)

EXAMPLE 2–2 Calculation of Requests Per Second

For the values:

■ n = 2,800 concurrent users
■ Tresponse = 1 (one second per request average response time)
■ Tthink = 3, (three seconds average think time)

The calculation for the number of requests per second is:

r = 2800 / (1+3) = 700

Therefore, the number of requests per second is 700 and the number of requests per minute is
42000.

Estimating Load on the HADB
To calculate load on the HADB, consider the following factors:

■ “HTTP Session Persistence Frequency” on page 49
■ “HTTP Session Size and Scope” on page 50
■ “Stateful Session Bean Checkpointing” on page 51

For instructions on configuring session persistence, see Chapter 9, “Configuring High
Availability Session Persistence and Failover,” in Sun Java System Application Server Enterprise
Edition 8.2 High Availability Administration Guide.

HTTP Session Persistence Frequency
The number of requests per minute received by the HADB depends on the persistence
frequency. Persistence Frequency determines how often Application Server saves HTTP session
data to the HADB.

Establishing Performance Goals

Chapter 2 • Planning your Deployment 49

The persistence frequency options are:

■ web-method (default): the server stores session data with every HTTP response. This
option guarantees that stored session information will be up to date, but leads to high traffic
to HADB.

■ time-based: the session is stored at the specified time interval. This option reduces the traffic
to HADB, but does not guarantee that the session information will be up to date.

The following table summarizes the advantages and disadvantages of persistence frequency
options.

TABLE 2–1 Comparison of Persistence Frequency Options

Persistence Frequency Option Advantages Disadvantages

web-method Guarantees that the most up-to-date
session information is available.

Potentially increased response time and
reduced throughput.

time-based Better response time and potentially better
throughput.

Less guarantee that the most updated
session information is available after the
failure of an application server instance.

HTTP Session Size and Scope
The session size per request depends on the amount of session information stored in the
session.

Tip – To improve overall performance, reduce the amount of information in the session as much
as possible.

It is possible to fine-tune the session size per request through the persistence scope settings.
Choose from the following options for HTTP session persistence scope:

■ session: The server serializes and saves the entire session object every time it saves session
information to HADB.

■ modified-session: The server saves the session only if the session has been modified. It
detects modification by intercepting calls to the bean’s setAttribute() method. This
option will not detect direct modifications to inner objects, so in such cases the SFSB must
be coded to call setAttribute() explicitly.

■ modified-attribute: The server saves only those attributes that have been modified
(inserted, updated, or deleted) since the last time the session was stored. This has the same
drawback as modified-session but can significantly reduce HADB write throughput
requirements if properly applied.

To use this option, the application must:

Establishing Performance Goals

Sun Java System Application Server Enterprise Edition 8.2 Deployment Planning Guide • August 200750

■ Call setAttribute() or removeAttribute() every time it modifies session state.
■ Make sure there are no cross references between attributes.
■ Distribute the session state across multiple attributes, or at least between a read-only

attribute and a modifiable attribute.

The following table summarizes the advantages and disadvantages of the persistence scope
options.

TABLE 2–2 Comparison of Persistence Scope Options

Persistence Scope Option Advantages Disadvantages

modified-session Provides improved response time for requests that
do not modify session state.

During the execution of a web method, typically
doGet() or doPost(), the application must call a
session method:
■ setAttribute() if the attribute was changed
■ removeAttribute() if the attribute was

removed.

session No constraint on applications. Potentially poorer throughput and response time as
compared to the modified-session and the
modified-attribute options.

modified-attribute Better throughput and response time for requests in
which the percentage of session state modified is
low.

As the percentage of session state modified for a
given request nears 60%, throughput and response
time degrade. In such cases, the performance is
worse than the other options because of the
overhead of splitting the attributes into separate
records.

Stateful Session Bean Checkpointing
For SFSB session persistence, the load on HADB depends on the following:

■ Number of SFSBs enabled for checkpointing.
■ Which SFSB methods are selected for checkpointing, and how often they are used.
■ Size of the session object.
■ Which methods are transactional.

Checkpointing generally occurs after any transaction involving the SFSB is completed (even if
the transaction rolls back).

For better performance, specify a small set of methods for checkpointing. The size of the data
that is being checkpointed and the frequency of checkpointing determine the additional
overhead in response time for a given client interaction.

Establishing Performance Goals

Chapter 2 • Planning your Deployment 51

Planning the Network Configuration
When planning how to integrate the Application Server into the network, estimate the
bandwidth requirements and plan the network in such a way that it can meet users’
performance requirements.

The following topics are covered in this section:

■ “Estimating Bandwidth Requirements” on page 52
■ “Calculating Bandwidth Required” on page 52
■ “Estimating Peak Load” on page 53
■ “Configuring Subnets” on page 53
■ “Choosing Network Cards” on page 54
■ “Network Settings for HADB” on page 54
■ “Identifying Failure Classes” on page 57

Estimating Bandwidth Requirements
To decide on the desired size and bandwidth of the network, first determine the network traffic
and identify its peak. Check if there is a particular hour, day of the week, or day of the month
when overall volume peaks, and then determine the duration of that peak.

During peak load times, the number of packets in the network is at its highest level. In general, if
you design for peak load, scale your system with the goal of handling 100 percent of peak
volume. Bear in mind, however, that any network behaves unpredictably and that despite your
scaling efforts, it might not always be able handle 100 percent of peak volume.

For example, assume that at peak load, five percent of users occasionally do not have immediate
network access when accessing applications deployed on Application Server. Of that five
percent, estimate how many users retry access after the first attempt. Again, not all of those
users might get through, and of that unsuccessful portion, another percentage will retry. As a
result, the peak appears longer because peak use is spread out over time as users continue to
attempt access.

Calculating Bandwidth Required
Based on the calculations made in “Establishing Performance Goals” on page 43, determine the
additional bandwidth required for deploying the Application Server at your site.

Depending on the method of access (T-1 lines, ADSL, cable modem, and so on), calculate the
amount of increased bandwidth required to handle your estimated load. For example, suppose
your site uses T-1 or higher-speed T-3 lines. Given their bandwidth, estimate how many lines
are needed on the network, based on the average number of requests generated per second at
your site and the maximum peak load. Calculate these figures using a web site analysis and
monitoring tool.

Planning the Network Configuration

Sun Java System Application Server Enterprise Edition 8.2 Deployment Planning Guide • August 200752

EXAMPLE 2–3 Calculation of Bandwidth Required

A single T-1 line can handle 1.544 Mbps. Therefore, a network of four T-1 lines can handle
approximately 6 Mbps of data. Assuming that the average HTML page sent back to a client is 30
kilobytes (KB), this network of four T-1 lines can handle the following traffic per second:

6,176,000 bits/8 bits = 772,000 bytes per second

772,000 bytes per second/30 KB = approximately 25 concurrent response pages per second.

With traffic of 25 pages per second, this system can handle 90,000 pages per hour (25 x 60
seconds x 60 minutes), and therefore 2,160,000 pages per day maximum, assuming an even load
throughout the day. If the maximum peak load is greater than this, increase the bandwidth
accordingly.

Estimating Peak Load
Having an even load throughout the day is probably not realistic. You need to determine when
the peak load occurs, how long it lasts, and what percentage of the total load is the peak load.

EXAMPLE 2–4 Calculation of Peak Load

If the peak load lasts for two hours and takes up 30 percent of the total load of 2,160,000 pages,
this implies that 648,000 pages must be carried over the T-1 lines during two hours of the day.

Therefore, to accommodate peak load during those two hours, increase the number of T-1 lines
according to the following calculations:

648,000 pages/120 minutes = 5,400 pages per minute

5,400 pages per minute/60 seconds = 90 pages per second

If four lines can handle 25 pages per second, then approximately four times that many pages
requires four times that many lines, in this case 16 lines. The 16 lines are meant for handling the
realistic maximum of a 30 percent peak load. Obviously, the other 70 percent of the load can be
handled throughout the rest of the day by these many lines.

Configuring Subnets
If you use the separate tier topology, where the application server instances and HADB nodes
are on separate host machines, you can improve performance by having all HADB nodes on a
separate subnet. This is because HADB uses the User Datagram Protocol (UDP). Using a
separate subnet reduces the UDP traffic on the machines outside of that subnet. Note, however,
that all HADB nodes must be on the same subnet.

Planning the Network Configuration

Chapter 2 • Planning your Deployment 53

You can still run the management client from a different subnet as long as all the nodes and
management agents are on the same subnet. All hosts and ports should be accessible within all
node agents and node must not be blocked by firewalls, blocking of UDP, and so on.

HADB uses UDP multicast, so any subnet containing HADB nodes must be configured for
multicast.

Choosing Network Cards
For greater bandwidth and optimal network performance, use at least 100 Mbps Ethernet cards
or, preferably, 1 Gbps Ethernet cards between servers hosting the Application Server and the
HADB nodes.

Network Settings for HADB

Note – HADB uses UDP multicast and thus you must enable multicast on your system’s routers
and host network interface cards. If HADB spans multiple sub-networks, you must also enable
multicast on the routers between the sub-networks. For best results, put HADB nodes all on
same network. Application server instances may be on a different sub network.

The following suggestions will enable HADB to work optimally in the network:

■ Use switched routers so that each network interface has a dedicated 100 Mbps or better
Ethernet channel.

■ When running HADB on a multi-CPU machine hosting four or more HADB nodes, use 1
Gbps Ethernet cards. If the average session size is greater than 50 KB, use 1 Gbps Ethernet
cards even if there are less than four HADB nodes per machine.

■ If you suspect network bottlenecks within HADB nodes:
■ Run network monitoring software on your HADB servers to diagnose the problem.
■ Consider replacing any 100 Mbps Ethernet cards in the network with 1 Gbps Ethernet

cards.

Planning the Network Configuration

Sun Java System Application Server Enterprise Edition 8.2 Deployment Planning Guide • August 200754

Planning for Availability
This section contains the following topics:

■ “Rightsizing Availability” on page 55
■ “Using Clusters to Improve Availability” on page 56
■ “Adding Redundancy to the System” on page 57

Rightsizing Availability
To plan availability of systems and applications, assess the availability needs of the user groups
that access different applications. For example, external fee-paying users and business partners
often have higher quality of service (QoS) expectations than internal users. Thus, it may be
more acceptable to internal users for an application feature, application, or server to be
unavailable than it would be for paying external customers.

The following figure illustrates the increasing cost and complexity of mitigating against
decreasingly probable events. At one end of the continuum, a simple load-balanced cluster can
tolerate localized application, middleware, and hardware failures. At the other end of the scale,
geographically distinct clusters can mitigate against major catastrophes affecting the entire data
center.

Planning for Availability

Chapter 2 • Planning your Deployment 55

To realize a good return on investment, it often makes sense identify availability requirements
of features within an application. For example, it may not be acceptable for an insurance
quotation system to be unavailable (potentially turning away new business), but brief
unavailability of the account management function (where existing customers can view their
current coverage) is unlikely to turn away existing customers.

Using Clusters to Improve Availability
At the most basic level, a cluster is a group of application server instances—often hosted on
multiple physical servers—that appear to clients as a single instance. This provides horizontal
scalability as well as higher availability than a single instance on a single machine. This basic
level of clustering works in conjunction with the Application Server’s HTTP load balancer
plug-in, which accepts HTTP and HTTPS requests and forwards them to one of the application
server instances in the cluster. The ORB and integrated JMS brokers also perform load
balancing to application server clusters. If an instance fails, become unavailable (due to network
faults), or becomes unresponsive, requests are redirected only to existing, available machines.
The load balancer can also recognize when an failed instance has recovered and redistribute
load accordingly.

A
va

ila
bi

lit
y

Cost and Complexity

Single Machine
Load-Balanced

Cluster

HADB,
Load-Balanced

Cluster
Geographically
Distinct Silos

FIGURE 2–3 Availability versus Cost and Complexity

Planning for Availability

Sun Java System Application Server Enterprise Edition 8.2 Deployment Planning Guide • August 200756

The HTTP load balancer also provides a health checker program that can monitor servers and
specific URLs to determine whether they are available. You must carefully manage the overhead
of health checking so that it does not become a large processing burden itself.

For stateless applications or applications that only involve low-value, simple user transactions, a
simple load balanced cluster is often all that is required. For stateful, mission-critical
applications, consider using HADB for session persistence. For an overview of HADB, see
“High-Availability Database” on page 32 in Chapter 1, “Product Concepts” Application Server
Administration Guide.

To perform online upgrades of applications, it is best to group the application server instances
into multiple clusters. The Application Server has the ability to quiesce both applications and
instances. Quiescence is the ability to take an instance (or group of instances) or a specific
application offline in a controlled manner without impacting the users currently being served
by the instance or application. As one instance is quiesced, new users are served by the
upgraded application on another instance. This type of application upgrade is called a rolling
upgrade. For more information on upgrading live applications, see “Upgrading Applications
Without Loss of Availability” in Sun Java System Application Server Enterprise Edition 8.2 High
Availability Administration Guide.

Adding Redundancy to the System
One way to achieve high availability is to add hardware and software redundancy to the system.
When one unit fails, the redundant unit takes over. This is also referred to as fault tolerance. In
general, to maximize high availability, determine and remove every possible point of failure in
the system.

Identifying Failure Classes
The level of redundancy is determined by the failure classes (types of failure) that the system
needs to tolerate. Some examples of failure classes are:
■ System process
■ Machine
■ Power supply
■ Disk
■ Network failures
■ Building fires or other preventable disasters
■ Unpredictable natural catastrophes

Duplicated system processes tolerate single system process failures, as well as single machine
failures. Attaching the duplicated mirrored (paired) machines to different power supplies
tolerates single power failures. By keeping the mirrored machines in separate buildings, a
single-building fire can be tolerated. By keeping them in separate geographical locations,
natural catastrophes like earthquakes can be tolerated.

Planning for Availability

Chapter 2 • Planning your Deployment 57

Using HADB Redundancy Units to Improve Availability
To improve availability, HADB nodes are always used in Data Redundancy Units (DRUs) as
explained in “Establishing Performance Goals” on page 43.

Using HADB Spare Nodes to Improve Fault Tolerance
Using spare nodes improves fault tolerance. Although spare nodes are not mandatory, they
provide maximum availability.

Planning Failover Capacity
Failover capacity planning implies deciding how many additional servers and processes you
need to add to the Application Server deployment so that in the event of a server or process
failure, the system can seamlessly recover data and continue processing. If your system gets
overloaded, a process or server failure might result, causing response time degradation or even
total loss of service. Preparing for such an occurrence is critical to successful deployment.

To maintain capacity, especially at peak loads, add spare machines running Application Server
instances to the existing deployment.

For example, consider a system with two machines running one Application Server instance
each. Together, these machines handle a peak load of 300 requests per second. If one of these
machines becomes unavailable, the system will be able to handle only 150 requests, assuming an
even load distribution between the machines. Therefore, half the requests during peak load will
not be served.

Design Decisions
Design decisions include whether you are designing the system for peak or steady-state load,
and the number of machines in various roles and their sizes.

Designing for Peak or Steady State Load
In a typical deployment, there is a difference between steady state and peak workloads:
■ If the system is designed to handle peak load, it can sustain the expected maximum load of

users and requests without degrading response time. This implies that the system can
handle extreme cases of expected system load. If the difference between peak load and steady
state load is substantial, designing for peak loads can mean spending money on resources
that are often idle.

■ If the system is designed to handle steady state load, it does not have all the resources
required to handle the expected peak load. Thus, the system has a slower response time
when peak load occurs.

Design Decisions

Sun Java System Application Server Enterprise Edition 8.2 Deployment Planning Guide • August 200758

How often the system is expected to handle peak load will determine whether you want to
design for peak load or for steady state.

If peak load occurs often—say, several times per day—it may be worthwhile to expand capacity
to handle it. If the system operates at steady state 90 percent of the time, and at peak only 10
percent of the time, then it may be preferable to deploy a system designed around steady state
load. This implies that the system’s response time will be slower only 10 percent of the time.
Decide if the frequency or duration of time that the system operates at peak justifies the need to
add resources to the system.

System Sizing
Based on the load on the application server instances, the load on the HADB, and failover
requirements, you can determine:
■ “Number of Application Server Instances” on page 59
■ “Number of HADB Nodes” on page 59
■ “Number of HADB Hosts” on page 60
■ “HADB Storage Capacity” on page 61

Number of Application Server Instances
To determine the number of applications server instances (hosts) needed, evaluate your
environment on the basis of the factors explained in “Estimating Load on Application Server
Instances” on page 44 to each application server instance, although each instance can use more
than one Central Processing Unit (CPU).

Number of HADB Nodes
As a general guideline, plan to have one HADB node for each CPU in the system. For example,
use two HADB nodes for a machine that has two CPUs.

Note – If you have more than one HADB node per machine (for example, if you are using bigger
machines), then you must ensure that there is enough redundancy and scalability on the
machines; for example multiple uninterruptible power supplies and independent disk
controllers.

Alternatively, use the following procedure.

▼ To determine the required number of HADB nodes

Determine the following parameters:

■ Maximum number of concurrent users, nusers.
■ Average BLOB size, s.

1

Design Decisions

Chapter 2 • Planning your Deployment 59

■ Maximum transaction rate per user, referred to as NTPS.

Determine the size in Gigabytes of the maximum primary data volume, V data.
Use the following formula:

Vdata = nusers
. s

Determine the maximum HADB data transfer rate, R dt.
This reflects the data volume shipped into HADB from the application side. Use the following
formula:

Rdt = nusers
. s . NTPS

Determine the number of nodes, N NODES,.
Use the following formula:

NNODES = Vdata /5GB

Round this value up to an even number, since nodes work in pairs.

Number of HADB Hosts
Determine the number of HADB hosts based on data transfer requirements. This calculation
assumes all hosts have similar hardware configurations and operating systems, and have the
necessary resources to accommodate the nodes they run.

▼ To calculate the number of hosts

Determine the maximum host data transfer rate, R max..
Determine this value empirically, because it depends on network and host hardware. Note this
is different from the maximum HADB data transfer rate, R dt, determined in the previous
section.

Determine the number of hosts needed to accommodate this data
Updating a volume of data V distributed over a number of hosts N HOSTS causes each host to
receive approximately 4V/N HOSTS of data. Determine the number of hosts needed to
accommodate this volume of data with the following formula:

NHOSTS = 4 . Rdt / Rmax

Round this value up to the nearest even number to get the same number of hosts for each DRU.

Add one host on each DRU for spare nodes.
If each of the other hosts run N data nodes, let this host run N spare nodes. This allows for
single-machine failure taking down N data nodes.

2

3

4

1

2

3

Design Decisions

Sun Java System Application Server Enterprise Edition 8.2 Deployment Planning Guide • August 200760

Each host needs to run at least one node, so if the number of nodes is less than the number of
hosts (NNODES < NHOSTS), adjust NNODES to be equal to NHOSTS. If the number of nodes is
greater than the number of hosts, (NNODES \> NHOSTS), several nodes can be run on the same
host.

HADB Storage Capacity
The HADB provides near-linear scaling with the addition of more nodes until the network
capacity is exceeded. Each node must be configured with storage devices on a dedicated disk or
disks. All nodes must have equal space allocated on the storage devices. Make sure that the
storage devices are allocated on local disks.

Suppose the expected size session data is x MB. Where x MB is the total amount of storage for
the entire system (i.e., x = N users * s). HADB replicates data on mirror nodes, and therefore
requires 2x MB of storage. Further, HADB uses indexes to enable fast access to data. The two
nodes will require an additional 2x MB for indexes, for a total required storage capacity of 4x.
Therefore, HADB’s expected storage capacity requirement is four times the expected data
volume.

To account for future expansion without loss of data from HADB, you must provide additional
storage capacity for online upgrades because you might want to refragment the data after
adding new nodes. In this case, a similar amount (4x) of additional space on the data devices is
required. Thus, the expected storage capacity is eight times (8x) the expected data volume.

Additionally, HADB uses disk space as follows:
■ Space for temporary storage of log buffer. This space is four times the log buffer size. The log

buffer keeps track of operations related to data. The default value of the log buffer size is 48
MB.

■ Space for internal administration purpose. This space is one percent of the storage device
size.

The following table summarizes the HADB storage space requirements for the total session data
of x MB. Note that this is the total amount of session storage data spread across all the nodes of
the HADB database. Device size per node will be shared by all devices specified for that node.

TABLE 2–3 HADB Storage Space Requirement for Total Session Data Size of x MB

Condition HADB Storage Space Required

Addition or removal of HADB nodes while online is not required. (4x/N nodes) MB + (4*log buffer size) + 1% of device size

Addition or removal of HADB nodes while online is required. (8x/N nodes) MB + (4*log buffer size) + 1% of device size

If the HADB runs out of device space, it will not accept client requests to insert or update data.
However, it will accept delete operations. If the HADB runs out of device space, it returns error
codes 4593 or 4592 and writes corresponding error messages to the history files. For more

Design Decisions

Chapter 2 • Planning your Deployment 61

information on these messages, seeChapter 14, “HADB Error Messages,” in Sun Java System
Application Server Enterprise Edition 8.2 Error Message Reference.

Planning Message Queue Broker Deployment
The Java Message Service (JMS) API is a messaging standard that allows J2EE applications and
components to create, send, receive, and read messages. It enables distributed communication
that is loosely coupled, reliable, and asynchronous. The Sun Java System Message Queue, which
implements JMS, is integrated with Application Server, enabling you to create components
such as message-driven beans (MDBs).

Sun Java System Message Queue (MQ) is integrated with Application Server using a connector
module, also known as a resource adapter, as defined by the J2EE Connector Architecture
Specification (JCA) 1.5. A connector module is a standardized way to add functionality to the
Application Server. J2EE components deployed to the Application Server exchange JMS
messages using the JMS provider integrated via the connector module. By default, the JMS
provider is the Sun Java System Message Queue, but if you wish you can use a different JMS
provider, as long as it implements JCA 1.5.

Creating a JMS resource in Application Server creates a connector resource in the background.
So, each JMS operation invokes the connector runtime and uses the MQ resource adapter in the
background.

In addition to using resource adapter APIs, Application Server uses additional MQ APIs to
provide better integration with MQ. This tight integration enables features such as connector
failover, load balancing of outbound connections, and load balancing of inbound messages to
MDBs. These features enable you to make messaging traffic fault-tolerant and highly available.

Multi-Broker Clusters
MQ Enterprise Edition supports using multiple interconnected broker instances known as a
broker cluster. With broker clusters, client connections are distributed across all the brokers in
the cluster. Clustering provides horizontal scalability and improves availability.

A single message broker scales to about eight CPUs and provides sufficient throughput for
typical applications. If a broker process fails, it is automatically restarted. However, as the
number of clients connected to a broker increases, and as the number of messages being
delivered increases, a broker will eventually exceed limitations such as number of file
descriptors and memory.

Having multiple brokers in a cluster rather than a single broker enables you to:

■ Provide messaging services despite hardware failures on a single machine.
■ Minimize downtime while performing system maintenance.

Planning Message Queue Broker Deployment

Sun Java System Application Server Enterprise Edition 8.2 Deployment Planning Guide • August 200762

■ Accommodate workgroups having different user repositories.
■ Deal with firewall restrictions.

However, having multiple brokers does not ensure that transactions in progress at the time of a
broker failure will continue on the alternate broker. While MQ will re-establish a failed
connection with a different broker in a cluster, it will lose transactional messaging and roll back
transactions in progress. User applications will not be affected, except for transactions that
could not be completed. Service failover is assured since connections continue to be usable.

Thus, MQ does not support high availability persistent messaging in a cluster. If a broker
restarts after failure, it will automatically recover and complete delivery of persistent messages.
Persistent messages may be stored in a database or on the file system. However if the machine
hosting the broker does not recover from a hard failure, messages may be lost.

The Solaris platform with Sun Cluster Data Service for Sun Message Queue supports
transparent failover of persistent messages. This configuration leverages Sun Cluster’s global file
system and IP failover to deliver true high availability and is included with Java Enterprise
System.

Master Broker and Client Synchronization
In a multi-broker configuration, each destination is replicated on all of the brokers in a cluster.
Each broker knows about message consumers that are registered for destinations on all other
brokers. Each broker can therefore route messages from its own directly-connected message
producers to remote message consumers, and deliver messages from remote producers to its
own directly-connected consumers.

In a cluster configuration, the broker to which each message producer is directly connected
performs the routing for messages sent to it by that producer. Hence, a persistent message is
both stored and routed by the message’s home broker.

Whenever an administrator creates or destroys a destination on a broker, this information is
automatically propagated to all other brokers in a cluster. Similarly, whenever a message
consumer is registered with its home broker, or whenever a consumer is disconnected from its
home broker—either explicitly or because of a client or network failure, or because its home
broker goes down—the relevant information about the consumer is propagated throughout the
cluster. In a similar fashion, information about durable subscriptions is also propagated to all
brokers in a cluster.

Configuring Application Server to Use Message Queue
Brokers
The Application Server’s Java Message Service represents the connector module (resource
adapter) for the Message Queue. You can manage the Java Message Service through the Admin
Console or the asadmin command-line utility.

Planning Message Queue Broker Deployment

Chapter 2 • Planning your Deployment 63

MQ brokers (JMS hosts) run in a separate JVM from the Application Server process. This
allows multiple Application Server instances or clusters to share the same set of MQ brokers.

In Application Server, a JMS host refers to an MQ broker. The Application Server’s Java Message
Service configuration contains a JMS Host List (also called AddressList) that contains all the
JMS hosts that will be used.

Managing JMS with Admin Console
In the Admin Console, you can set JMS properties using the Java Message Service node for a
particular configuration. You can set properties such as Reconnect Interval and Reconnect
Attempts. For more information, see Chapter 4, “Configuring Java Message Service Resources,”
in Sun Java System Application Server Enterprise Edition 8.2 Administration Guide.

The JMS Hosts node under the Java Message Service node contains a list of JMS hosts. You can
add and remove hosts from the list. For each host, you can set the host name, port number, and
the administration user name and password. By default, the JMS Hosts list contains one MQ
broker, called “default_JMS_host,” that represents the local MQ broker integrated with the
Application Server.

Configure the JMS Hosts list to contain all the MQ brokers in the cluster. For example, to set up
a cluster containing three MQ brokers, add a JMS host within the Java Message Service for each
one. Message Queue clients use the configuration information in the Java Message Service to
communicate with MQ broker.

Managing JMS with asadmin
In addition to the Admin Console, you can use the asadmin command-line utility to manage
the Java Message Service and JMS hosts. Use the following asadmin commands:

■ Configuring Java Message Service attributes: asadmin set
■ Managing JMS hosts:

■ asadmin create-jms-host

■ asadmin delete-jms-host

■ asadmin list-jms-hosts

Managing JMS resources:
■ asadmin create-jms-resource

■ asadmin delete-jms-resource

■ asadmin list-jms-resources

For more information on these commands, see Sun Java System Application Server
Enterprise Edition 8.2 Reference Manualor the corresponding man pages.

Planning Message Queue Broker Deployment

Sun Java System Application Server Enterprise Edition 8.2 Deployment Planning Guide • August 200764

Java Message Service Type
There are two types of integration between Application Server and MQ brokers: local and
remote. You can set this type attribute on the Admin Console’s Java Message Service page.

Local Java Message Service

If the Type attribute is LOCAL, the Application Server will start and stop the MQ broker. When
Application Server starts up, it will start the MQ broker specified as the Default JMS host.
Likewise, when the Application Server instance shuts down, it shuts down the MQ broker.
LOCAL type is most suitable for standalone Application Server instances.

With LOCAL type, use the Start Arguments attribute to specify MQ broker startup parameters.

Remote Java Message Service

If the Type attribute is REMOTE, Application Server will use an externally configured broker or
broker cluster. In this case, you must start and stop MQ brokers separately from Application
Server, and use MQ tools to configure and tune the broker or broker cluster. REMOTE type is
most suitable for Application Server clusters.

With REMOTE type, you must specify MQ broker startup parameters using MQ tools. The
Start Arguments attribute is ignored.

Default JMS Host
You can specify the default JMS Host in the Admin Console Java Message Service page. If the
Java Message Service type is LOCAL, then Application Server will start the default JMS host
when the Application Server instance starts.

To use an MQ broker cluster, delete the default JMS host, then add all the MQ brokers in the
cluster as JMS hosts. In this case, the default JMS host becomes the first JMS host in the JMS
host list.

You can also explicitly set the default JMS host to one of the JMS hosts. When the Application
Server uses a Message Queue cluster, the default JMS host executes MQ-specific commands. For
example, when a physical destination is created for a MQ broker cluster, the default JMS host
executes the command to create the physical destinations, but all brokers in the cluster use the
physical destination.

Example Deployment Scenarios
To accommodate your messaging needs, modify the Java Message Service and JMS host list to
suit your deployment, performance, and availability needs. The following sections describe
some typical scenarios.

Planning Message Queue Broker Deployment

Chapter 2 • Planning your Deployment 65

For best availability, deploy MQ brokers and Application Servers on different machines, if
messaging needs are not just with Application Server. Another option is to run an Application
Server instance and an MQ broker instance on each machine until there is sufficient messaging
capacity.

Default Deployment
Installing the Application Server automatically creates a domain administration server (DAS).
By default, the Java Message Service type for the DAS is LOCAL. So, starting DAS will also start
its default MQ broker.

Creating a new domain will also create a new broker. By default, when you add a standalone
server instance or a cluster to the domain, its Java Message Service will be configured as
REMOTE and its default JMS host will be the broker started by DAS.

The figure below illustrates an example default deployment with an Application Server cluster
containing three instances.

Using an MQ Broker Cluster with an Application Server Cluster
To configure an Application Server cluster to use an MQ broker cluster, add all the MQ brokers
as JMS hosts in the Application Server’s Java Message Service. Any JMS connection factories
created and MDBs deployed will then use the JMS configuration specified.

The following figure illustrates an example deployment with three MQ brokers in an broker
cluster and three Application Server instances in a cluster.

JMS/MDB App

MQ Broker

Appserver Server Cluster
with Three Instances

DAS

jms/mdb/ app

jms/mdb/ app

Default
jms Host

Default
jms Host

jms/mdb/ app

FIGURE 2–4 Default MQ Deployment

Planning Message Queue Broker Deployment

Sun Java System Application Server Enterprise Edition 8.2 Deployment Planning Guide • August 200766

Specifying an Application-Specific MQ Broker Cluster
In some cases, an application may need to use a different MQ broker cluster than the one used
by the Application Server cluster. The following figure illustrates an example of such a scenario.
To do so, use the AddressList property of a JMS connection factory or the activation-config
element in an MDB deployment descriptor to specify the MQ broker cluster.

For more information about configuring connection factories, see “JMS Connection Factories”
in Sun Java System Application Server Enterprise Edition 8.2 Administration Guide. For more
information about MDBs, see “Using Message-Driven Beans” in Sun Java System Application
Server Enterprise Edition 8.2 Developer’s Guide.

Broker 1

Broker 2

Broker 3

Appserver Server Cluster
with Three InstancesMQ Cluster with

Three Brokers

JMS/MDB App

JMS/MDB App

JMS/MDB App

JMS/MDB App

jms-host-1

JMS-Service
Configuration

default-jms-host

jms-host-2

jms-host-3

FIGURE 2–5 Application Server Cluster Using an MQ Broker Cluster

Planning Message Queue Broker Deployment

Chapter 2 • Planning your Deployment 67

Application Clients
When an application client or standalone application accesses a JMS administered object for
the first time, the client JVM retrieves the Java Message Service configuration from the server.
Further changes to the JMS service will not be available to the client JVM until it is restarted.

Broker 1

Broker 2

Broker 3

Broker 1 Broker 2

Appserver Server Cluster
with Three Instances

MQ Broker Cluster
with Two Instances

app-1

app-2

app-1

app-2

app-1

app-2

jms-host-1

JMS-Service
Configuration

default-jms-host

jms-host-2

jms-host-3

FIGURE 2–6 Application-specific MQ broker cluster

Planning Message Queue Broker Deployment

Sun Java System Application Server Enterprise Edition 8.2 Deployment Planning Guide • August 200768

Selecting a Topology

After estimating the factors related to performance as explained in Chapter 1, “Product
Concepts” the Application Server. A topology is the arrangement of machines, Application
Server instances, and HADB nodes, and the communication flow among them.

There are two fundamental deployment topologies. Both topologies have common building
blocks: multiple Application Server instances in a cluster, a mirrored set of HADB nodes, and
HADB spare nodes. Both of them require a set of common configuration settings to function
properly.

This chapter discusses:

■ “Common Requirements” on page 69 for both topologies.
■ The two topologies:

■ “Co-located Topology” on page 71 - Application Server instances and HADB nodes are
on the same machine.

■ “Separate Tier Topology” on page 75 - Application Server instances and HADB nodes are
on different machines.

■ “Determining Which Topology to Use” on page 79

Common Requirements
This section describes the requirements that are common to both topologies:

■ “General Requirements” on page 69
■ “HADB Nodes and Machines” on page 70
■ “Load Balancer Configuration” on page 71

General Requirements
Both topologies must meet the following general requirements:

3C H A P T E R 3

69

■ Machines that host HADB nodes must be in pairs. That is, there must be an even number of
them.

■ Each data redundancy unit (DRU) must have the same number of machines. Create the
HADB database in such a way that the mirrored (paired) nodes are on a different DRU than
the primary nodes.

■ Each machine that hosts HADB nodes must have local disk storage, used to store all
persisted information in the HADB.

■ Machines that host the HADB nodes must run the same operating system. It is best to use
identical or nearly identical machines, in terms of configuration and performance.

■ For HTTP and SFSB session information to be persisted to the HADB, the Application
Server instances must be in a cluster and satisfy all related requirements. For more
information on configuring clusters, see Chapter 6, “Using Application Server Clusters,” in
Sun Java System Application Server Enterprise Edition 8.2 High Availability Administration
Guide.

■ Machines hosting the Application Server instances must be as identical as possible, in terms
of configuration and performance. This is because the load balancer plug-in uses a
round-robin policy for load balancing, and if machines of different classes host instances,
then the load will not be balanced in the most optimum way across these machines.

■ Preferably have a separate uninterruptible power supply (UPS) for each DRU.

HADB Nodes and Machines
Each DRU contains a complete copy of the data in HADB and can continue servicing requests if
the other DRU becomes unavailable. However, if a node in one DRU and its mirror in another
DRU fail at the same time, some portion of data is lost. For this reason, it is important that the
system is not set up so that both DRUs can be affected by a single failure such as a power failure
or disk failure.

Note – Each DRU must run on a completely independent, redundant system.

Follow these guidelines when setting up the HADB nodes and machines:

■ To increase capacity and throughput, add nodes in pairs with one node for each DRU.
■ Set up each DRU with a number of spare nodes equal to the number of nodes running on

each machine. This is because if each machine in the configuration runs n data nodes, the
failure of a single machine brings down n nodes.

■ Run the same number of HADB nodes on all machines to balance load as evenly as possible.

Common Requirements

Sun Java System Application Server Enterprise Edition 8.2 Deployment Planning Guide • August 200770

Caution – Do not run nodes from different DRUs on the same machine. If you must run nodes
from different DRUs on the same machine, ensure that the machine can handle any single point
of failure (for failures related to disk, memory, CPU, power, operating system crashes, and so
on).

Load Balancer Configuration
Both the topologies have Application Server instances in a cluster. These instances persist
session information to the HADB. Configure the load balancer to include configuration
information for all the Application Server instances in the cluster.

For more information on setting up a cluster and adding Application Server instances to
clusters, see Chapter 6, “Using Application Server Clusters,” in Sun Java System Application
Server Enterprise Edition 8.2 High Availability Administration Guide.

Co-located Topology
In the co-located topology, the Application Server instance and the HADB nodes are on the
same machine (hence the name co-located). This topology requires fewer machines than the
separate tier topology. The co-located topology uses CPUs more efficiently—an Application
Server instance and an HADB node share one machine and the processing is distributed evenly
among them.

This topology requires a minimum of two machines. To improve throughput, add more
machines in pairs.

Note – The co-located topology is a good for large, symmetric multiprocessing (SMP) machines,
since you can take full advantage of the processing power of these machines.

Example Configuration
The following figure illustrates an example configuration of the co-located topology.

Co-located Topology

Chapter 3 • Selecting a Topology 71

Machine SYS0 hosts Application Server instance A, machine SYS1 hosts Application Server
instance B, machine SYS2 hosts Application Server instance C, and machine SYS3 hosts
Application Server instance D.

These four instances form a cluster that persists information to the two DRUs:

■ DRU0 comprises two machines, SYS0 and SYS2. HADB node active 0 is on the machine
SYS0. HADB node spare 2 is on the machine SYS2.

Switch/Third-party Load Balancer

Load Balancer
Plug-in

Load Balancer
Plug-in

Firewall

Firewall

App. Server
Instance A

HADB Node
Active 0

SYS0

App. Server
Instance C

HADB Node
Spare 2

SYS2

App. Server
Instance B

HADB Node
Active 1

SYS1

App. Server
Instance D

HADB Node
Spare 3

SYS3

Each machine
has one application
server instance and
one HADB node

DRU0
(Data Redundancy Unit 0)

DRU1
(Data Redundancy Unit 1)

FIGURE 3–1 Example Co-located Topology

Co-located Topology

Sun Java System Application Server Enterprise Edition 8.2 Deployment Planning Guide • August 200772

■ DRU1 comprises two machines, SYS1 and SYS3. HADB node active 1 is on the machine
SYS1. HADB node spare 3 is on the machine SYS3.

Variation of Co-located Topology
For better scalability and throughput, increase the number of Application Server instances and
HADB nodes by adding more machines. For example, you could add two machines, each with
one Application Server instance and one HADB node. Make sure to add the HADB nodes in
pairs, assigning one node for each DRU. “Variation of Co-located Topology” on page 73
illustrates this configuration.

Co-located Topology

Chapter 3 • Selecting a Topology 73

Switch/Third-party Load Balancer

Load Balancer
Plug-in

Load Balancer
Plug-in

Firewall

Firewall

Appserver
instance A

HADB Node
active 0

SYS0

Appserver
instance C

HADB Node
active 2

SYS2

Appserver
instance E

HADB Node
spare 4

SYS4

Appserver
instance B

HADB Node
active 1

SYS1

Appserver
instance D

HADB Node
active 3

SYS3

Appserver
instance F

HADB Node
spare 5

SYS5

Each machine
has one application
server instance and
one HADB node

DRU0 (Data Redundancy Unit 0) DRU1 (Data Redundancy Unit 1)

FIGURE 3–2 Variation of Co-located Topology

Co-located Topology

Sun Java System Application Server Enterprise Edition 8.2 Deployment Planning Guide • August 200774

In this variation, the machines SYS4 and SYS5 have been added to the co-located topology
described in “Example Configuration” on page 71.

Application Server instances are hosted as follows:

■ Machine SYS0 hosts instance A
■ Machine SYS1 hosts instance B
■ Machine SYS2 hosts instance C
■ Machine SYS3 hosts instance D
■ Machine SYS4 hosts instance E
■ Machine SYS5 hosts instance F

These instances form a cluster that persists information to the two DRUs:

■ DRU0 comprises machines SYS0, SYS2, and SYS4. HADB node active 0 is on the machine
SYS0. HADB node active 2 is on the machine SYS2. HADB node spare 4 is on the machine
SYS4.

■ DRU1 comprises the machines SYS1, SYS3, and SYS5. HADB node active 1 is on the
machine SYS1. HADB node active 3 is on the machine SYS3. HADB node spare 5 is on the
machine SYS5.

Separate Tier Topology
In this topology, Application Server instances and the HADB nodes are on different machines
(hence the name separate tier).

This topology requires more hardware than the co-located topology. It might be a good fit if you
have different types of machines—you can allocate one set of machines to host Application
Server instances and another to host HADB nodes. For example, you could use more powerful
machines for the Application Server instances and less powerful machines for HADB.

Example Configuration
The following figure illustrates the separate tier topology.

Separate Tier Topology

Chapter 3 • Selecting a Topology 75

In this topology, machine SYS0 hosts Application Server instance A and machine SYS1 hosts
Application Server instance B. These two instances form a cluster that persists session
information to the two DRUs:

■ DRU0 comprises two machines, SYS2 and SYS4. HADB node active 0 is on machine SYS2
and the HADB node spare 2 is on machine SYS4.

■ DRU1 comprises two machines, SYS3 and SYS5. HADB node active 1 is on machine SYS3
and the HADB node spare 3 on machine SYS5.

Switch/Third-party Load Balancer

Load Balancer
Plug-in

Load Balancer
Plug-in

Firewall

Firewall

Appserver
instance A

SYS0

Appserver
instance C

SYS1

HADB Node
spare 2

SYS4

HADB Node
spare 3

SYS5

HADB Node
active 0

SYS2

HADB Node
active 1

SYS3

DRU0 (Data Redundancy Unit 0) DRU1 (Data Redundancy Unit 1)

FIGURE 3–3 Example Separate Tier Topology

Separate Tier Topology

Sun Java System Application Server Enterprise Edition 8.2 Deployment Planning Guide • August 200776

All the nodes on a DRU are on different machines, so that even if one machine fails, the
complete data for any DRU continues to be available on other machines.

Variation of Separate Tier Topology
A variation of the separate tier topology is to increase the number of Application Server
instances by adding more machines horizontally to the configuration. For example, add another
machine to the example configuration by creating a new Application Server instance. Similarly,
increase the number of HADB nodes by adding more machines to host HADB nodes. Recall
you must add the HADB nodes in pairs with one node for each DRU.

“Variation of Separate Tier Topology” on page 77 illustrates this configuration.

Separate Tier Topology

Chapter 3 • Selecting a Topology 77

Firewall

Switch/Third-party Load Balancer

Load Balancer
Plug-in

Load Balancer
Plug-in

Firewall

Appserver
instance A

Appserver
instance B

SYS0

Appserver
instance C

Appserver
instance D

SYS1

Appserver
instance E

Appserver
instance F

SYS2

HADB Node
spare 4

HADB Node
spare 6

SYS5

HADB Node
active 0

HADB Node
active 2

SYS3

HADB Node
active 1

HADB Node
active 3

SYS4

HADB Node
spare 5

HADB Node
spare 7

SYS6

DRU0 (Data Redundancy Unit 0) DRU1 (Data Redundancy Unit 1)

FIGURE 3–4 Variation of Separate Tier Topology

Separate Tier Topology

Sun Java System Application Server Enterprise Edition 8.2 Deployment Planning Guide • August 200778

In this configuration, each machine hosting Application Server instances has two instances.
There are thus a total of six Application Server instances in the cluster.

HADB nodes are on machines SYS3, SYS4, SYS5, and SYS6.

DRU0 comprises two machines:

■ SYS3, which hosts HADB node active 0 and HADB node active 2.
■ SYS5, with HADB node spare 4 and HADB node spare 6.

DRU1 comprises two machines:

■ SYS4, which hosts HADB node active 1 and HADB node active 3.
■ SYS6, which hosts HADB node spare 5 and HADB node spare 7.

Each machine hosting HADB nodes hosts two nodes. Thus, there are a total of eight HADB
nodes: four active nodes and four spare nodes.

Determining Which Topology to Use
To determine which topology (or variation) best meets your performance and availability
requirements, test the topologies and experiment with different combinations of machines and
CPUs.

Determine what trade-offs are required to meet your goals. For example, if ease of maintenance
is critical, the separate tier topology is more suitable. The trade-off is that this topology requires
more machines than the co-located topology.

An important factor in the choice of topology is the type of machines available. If the system
contains large, Symmetric Multiprocessing (SMP) machines, the co-located topology is
attractive because you can take full advantage of the processing power of these machines. If the
system contains various types of machines, the separate tier topology can be more useful
because you can allocate a different set of machines to the Application Server tier and to the
HADB tier. For example, you might want to use the most powerful machines for the
Application Server tier and less powerful machines for the HADB tier.

Comparison of Topologies
The following table compares the co-located topology and the separate tier topology. The left
column lists the name of the topology, the middle column lists the advantages of the topology,
and the right column lists the disadvantages of the topology

Determining Which Topology to Use

Chapter 3 • Selecting a Topology 79

TABLE 3–1 Comparison of Topologies

Topology Advantages Disadvantages

Co-located Topology Requires fewer machines. Because the HADB nodes
and the Application Server instances are on the
same tier, you are able to create an Application
Server instance on each spare node to handle
additional load.

Improved CPU utilization. Processing is distributed
evenly between an Application Server instance and
an HADB node sharing one machine.

Useful for large, Symmetric Multiprocessing (SMP)
machines since it takes full advantage of their
processing power.

Increased complexity of maintenance. For example,
when you have to shut down machines hosting
HADB nodes to perform maintenance, application
server instances on the machine also become
unavailable.

Separate Tier Topology Easier maintenance. For example, you are able to
perform maintenance on the machines that host
Application Server instances without having to
bring down HADB nodes.

Useful with different types of machines. You are
able to allocate a different set of machines to the
Application Server tier and the HADB tier. For
example, you are able to use more powerful
machines for the Application Server tier and the less
powerful machines for the HADB tier.

Requires more machines than the co-located
topology. Because application server instances and
HADB nodes are located on separate tiers,
application server instances cannot be located on
the machines that host the HADB spare nodes.

Reduced CPU utilization. The application server
tier and the HADB tier will likely have uneven
loads. This is more significant with a small number
of machines (four to six).

Determining Which Topology to Use

Sun Java System Application Server Enterprise Edition 8.2 Deployment Planning Guide • August 200780

Checklist for Deployment

This appendix provides a checklist to get started on evaluation and production with the
Application Server.

Checklist for Deployment
TABLE 4–1 Checklist

Component/Feature Description

Application Determine the following requirements for the application to be deployed.
■ Required/acceptable response time.

■ Peak load characteristics.

■ Necessary persistence scope and frequency.

■ Session timeout in web.xml.

■ Failover and availability requirements.
For more information see Sun Java System Application Server Enterprise Edition 8.2
Performance Tuning Guide.

Hardware ■ Use the same type of hardware to host HADB nodes.

■ Have necessary amounts of hard disk space and memory installed.

■ Use the sizing exercise to identify the requirements for deployment.
For more information see Sun Java System Application Server Enterprise Edition 8.2 Release
Notes

4C H A P T E R 4

81

TABLE 4–1 Checklist (Continued)
Component/Feature Description

Operating System ■ Ensure that the product is installed on a supported platform.

■ Ensure that the patch levels are up-to-date and accurate.
For more information see Sun Java System Application Server Enterprise Edition 8.2 Release
Notes

Network Infrastructure ■ Identify single points of failures and address them.

■ Make sure that the NICs and other network components are correctly configured.

■ Run ttcp benchmark test to determine if the throughput meets the requirements/expected
result.

■ Setup rsh/ssh based your preference so that HADB nodes are properly installed.
For more information see Sun Java System Application Server Enterprise Edition 8.2
Installation Guide.

Back-ends and other external data
sources

Check with the domain expert or vendor to ensure that these data sources are configured
appropriately.

System Changes/Configuration ■ Make sure that changes to /etc/system and its equivalent on Linux are completed before
running any performance/stress tests.

■ Make sure the changes to the TCP/IP settings are complete.

■ By default, the system comes with lots of services pre-configured. Not all of them are
required to be running. Turn off services that are not needed to conserve system resources.

■ On Solaris, use Setoolkit to determine the behavior of the system. Resolve any flags that
show up.
For more information see Sun Java System Application Server Enterprise Edition 8.2
Performance Tuning Guide.

Application Server and HADB
Installation

■ Ensure that these servers are not installed on NFS mounted volumes.

■ Check for enough disk space and RAM when installing both Application Server and the
HADB nodes on the same machine.

■ Check for enough independent disks when installing multiple HADB nodes on the same
system.
For more information see Chapter 2, “Installing and Setting Up High Availability
Database,” in Sun Java System Application Server Enterprise Edition 8.2 High Availability
Administration Guide

Checklist for Deployment

Sun Java System Application Server Enterprise Edition 8.2 Deployment Planning Guide • August 200782

TABLE 4–1 Checklist (Continued)
Component/Feature Description

HADB Configuration ■ Set the size of the HADB Data Device.

■ Define the DataBufferPoolSize.

■ Define the LogBufferSize.

■ Define the InternalBufferSize.

■ Set the NumberOfLocks.

■ Set optimum time-out values for various Application Server components.

■ Create the Physical layout of HADB nodes on the file system.
For more information, see “Configuring HADB” in Sun Java System Application Server
Enterprise Edition 8.2 High Availability Administration Guide.

Application Server Configuration ■ Logging: Enable access log rotation.

■ Choose the right logging level. WARNING is usually appropriate.

■ Configure J2EE containers using Admin Console.

■ Configure HTTP listeners using Admin Console.

■ Configure ORB threadpool using Admin Console.

■ If using Type2 drivers or calls involving native code, ensure that mtmalloc.so is specified in
the LD_LIBRARY_PATH.

■ Ensure that the appropriate persistence scope and frequency are used and they are not
overridden underneath in the individual Web/EJB modules.

■ Ensure that only critical methods in the SFSB are checkpointed.
For more information on tuning, see Sun Java System Application Server Enterprise
Edition 8.2 Performance Tuning Guide.
For more information on configuration, see Sun Java System Application Server Enterprise
Edition 8.2 Administration Guide.

Load balancer Configuration ■ Make sure the Web Server is installed.

■ Make sure the load balancer plug-in into the Web Server is installed.

■ Make sure patch checks is disabled.

■ Lower the value of the KeepAliveQuery parameter. The lower the value, the lower the
latency is on lightly loaded systems. The higher the value, the higher the throughput is on
highly loaded systems.
For more information, see “Keep Alive” in Sun Java System Application Server Enterprise
Edition 8.2 Performance Tuning Guide

Checklist for Deployment

Chapter 4 • Checklist for Deployment 83

TABLE 4–1 Checklist (Continued)
Component/Feature Description

Java Virtual Machine
Configuration

■ Initially set the minimum and maximum heap sizes to be the same, and at least one GB for
each instance.

■ See Java Hotspot VM Options for more information.

■ When running multiple instances of Application Server, consider creating a processor set
and bind the Application Server to it. This helps in cases where the CMS collector is used to
sweep the old generation.

Configuring time-outs in Load
balancer

■ Response-time-out-in-seconds - How long the load balancer waits before declaring an
Application Server instance unhealthy. Set this value based on the response time of the
application. If set too high, the Web Server and load balancer plug-in wait a long time
before marking an Application Server instance as unhealthy. If set too low and the
Application Server’s response time crosses this threshold, the instance will be incorrectly
marked as unhealthy.

■ Interval-in-seconds - Time in seconds after which unhealthy instances are checked to find
out if they have returned to a healthy state. Too low a value generates extra traffic from the
load balancer plug-in to Application Server instances and too high a value delays the
routing of requests to the instance that has turned healthy.

■ Timeout-in-seconds - Duration for a response to be obtained for a health check request.
Adjust this value based on the traffic among the systems in the cluster to ensure that the
health check succeeds.
For more information, see Chapter 5, “Configuring HTTP Load Balancing,” in Sun Java
System Application Server Enterprise Edition 8.2 High Availability Administration Guide.

Checklist for Deployment

Sun Java System Application Server Enterprise Edition 8.2 Deployment Planning Guide • August 200784

http://java.sun.com/docs/hotspot/VMOptions.html

TABLE 4–1 Checklist (Continued)
Component/Feature Description

Configuring time-outs in HADB ■ sql_client_timeout - Wait time of SQLSUB for an idle client. For example, a client which
has logged on, sends some requests, and then waits for user input. A client that has been
idle for more than 30 minutes is assumed to be dead, and the session is terminated. Setting
the value too low can terminate SQL sessions prematurely. Setting it too high can cause
SQL sessions that are not idle but have exited to occupy resources. This in turn can prevent
other SQL clients from logging on. When tuning this variable, also consider the settings of
nsessions. If the HADB JDBC connection pool steady-pool-size is greater than
max-pool-size, then idle-timeout-in-seconds can be set lower than the sql_client_timeout,
so that the Application Server itself closes the connection before HADB closes the
connection. Default value is 1800 s.

■ lock_timeout - Maximum time in milliseconds that a transaction waits for access to data.
When exceeded, the transaction generates the error message: ”The transaction timed out.”
Such time-outs are caused by transactions waiting for locks held by other transactions
(deadlocks), and causing high server load. Do not set this value to below 500 ms. If you see
the “transaction timed out” messages in the server log, then increase this value. Set the lock
timeout value by adding a property to the HADB’s JDBC connection pool as: <property
name=lockTimeout value="x"\>. Default value is 5000 ms.

■ Querytimeout - Maximum time in milliseconds that HADB waits for a query to execute. If
you see exceptions in the server log consistently indicating the query time out, consider
increasing this value. Set this value by adding the following property to HADB’s JDBC
connection pool: <property name=QueryTimeout value="x"\>. Default value is 30 s.

■ loginTimeout - Maximum time in seconds that the client waits to login to HADB. Set this
value by adding the following property to HADB’s JDBC connection pool: <property
name=loginTimeout value="x"\>. Default value is 10 s.

■ MaxTransIdle - Maximum time in milliseconds that a transaction can be idle between
sending a reply to the client and receiving the next request. This can be changed by adding
a property to the HADB’s JDBC connection pool as: <property name=maxtransIdle
value="x"\>. Default value is 40 s.
For more information: Sun Java System Application Server Performance Tuning Guide.

Checklist for Deployment

Chapter 4 • Checklist for Deployment 85

TABLE 4–1 Checklist (Continued)
Component/Feature Description

Configuring time-outs in
Application Server

■ Max-wait-time-millis - Wait time to get a connection from the pool before throwing an
exception. Default is 6 s. Consider changing this value for highly loaded systems where the
size of the data being persisted is greater than 50 KB.

■ Cache-idle-timeout-in-seconds - Time an EJB is allowed to be idle in the cache before it
gets passivated. Applies only to entity beans and stateful session beans.

■ Removal-timeout-in-seconds - Time that an EJB remains passivated (idle in the backup
store). Default value is 60 minutes. Adjust this value based on the need for SFSB failover.

Adjust all of these values by paying attention to HADB’s JDBC connection pool setting
max-wait-time-in-millis. For more information, see “Configuring the JDBC Connection Pool”
in Sun Java System Application Server Enterprise Edition 8.2 High Availability Administration
Guide.

Tune VM Garbage Collection (GC) Garbage collection pauses of four seconds or more can cause intermittent problems in
persisting session state to HADB. To avoid this problem, tune the VM heap. In cases where
even a single failure to persist data is unacceptable or when the system is not fully loaded, use
the CMS collector or the throughput collector.

These can be enabled by adding:

<jvm-options>-XX:+UseConcMarkSweepGC</jvm-options>

This option may decrease throughput.

Checklist for Deployment

Sun Java System Application Server Enterprise Edition 8.2 Deployment Planning Guide • August 200786

Index

A
active node, 33
active users, 45
Admin Console, 26
administrative domain, 26
Apache Web Server, 28
applications, 20
asadmin command, 26
availability, 55

and clusters, 56
and redundancy, 57
for Data Redundancy Unit, 70-71

B
bandwidth, 52
broker cluster, 62, 66
building blocks, of topology, 69

C
capacity, using spare machines to maintain, 58
checklist, 81
checkpointing, 51
clients, 23

and JMS, 68
clusters, 27

and availability, 56
Message Queue, 62, 66

co-located topology, 69, 71-75

co-located topology (Continued)
canonical configuration, 71-73
using symmetric multiprocessing machines, 71
variation, 73-75

common topology requirements, 69-71
comparison of topologies, 79
components, 24
concurrent users, 45
configurations, 28

default, 28
connectors, 24
containers, 22

D
DAS, 26
Data Redundancy Unit, 34-35

ensuring availability, 70-71
improving availability with, 58
number of machines in, 70
power supply for, 70

default configuration, 28
default deployment, 66
default JMS Host, 65
default server, 26
deployment planning, 43

checklist, 81
example scenarios, 65

design decisions, 58
domain, 26
Domain Administration Server (DAS), 26

87

E
editions, differences, 19
EJB container, 22
Enterprise edition, 19
ethernet cards, 54

F
failover capacity, planning, 58
failure

classes, 57
types, 57

fault tolerance, 57

H
HADB, 32-40, 55

architecture, 33
failure recovery, 37
hosts, 60
load, 49
management agent, 39
management client, 38
management domain, 39
management system, 37
network bottlenecks, 55
network configuration, 55
nodes, 33, 59, 70
repository, 40
storage capacity, 61
system requirements, 33

health checker, 57
high-availability database (HADB), 32-40
hosts, HADB, 60
HTTP sessions, 29

I
InitialContext, 30
instances of the server, 25, 59

J
J2EE Connector architecture, 24
J2EE services, 22
Java 2 Enterprise Edition (J2EE), 20
Java API for XML-based RPC (JAX-RPC), 22
Java API for XML Registries (JAXR), 22
Java Authorization Contract for Containers

(JACC), 22
Java Database Connectivity (JDBC), 23
Java Message Service (JMS), 22, 23, 32, 62
Java Naming and Directory Interface (JNDI), 22
JavaMail API, 24

L
load

HADB, 49
server, 44, 53

load balancing
and topology, 71
HTTP, 28
IIOP, 30

local disk storage, 70

M
machines

in Data Redundancy Unit, 70
maintaining capacity with spare machines, 58

message broker, 62
message-driven beans, 32
Microsoft Internet Information Server, 28
mirror machines, 57
mirror node, 34

N
named configuration, 28
naming, 22
network cards, 54
network configuration

HADB, 55

Index

Sun Java System Application Server Enterprise Edition 8.2 Deployment Planning Guide • August 200788

network configuration (Continued)
server, 52

node agents, 27
nodes, 70
nodes, HADB, 33, 59

O
Object Request Broker (ORB), 23

P
peak load, 53
performance, 43
persistence, session, 29
persistence frequency, 49
persistence scope, 50
Platform edition, 19

R
redundancy, 57-58, 70
remote browser emulator, 43
requests per minute, 48
resource adapters, 24
resources, 23
response time, 47
routers, 53

S
security, 22
separate tier topology, 53, 69, 75-79

reference configuration, 75-77
variation, 77-79

server
clusters, 27
components, 24
containers, 22
domain administration, 26
instances, 25, 59

server (Continued)
load, 44, 53
network configuration, 52
node agent, 27
performance, 43
services, 22

sessions
HTTP, 29
persistence, 29, 49
persistence frequency, 49
persistence scope, 50
size, 50
stateful session bean, 51

Simple Mail Transport Protocol (SMTP), 24
sizing, system, 59-62
spare machines, maintaining capacity with, 58
spare node, 34, 36, 58
stateful session beans, 29, 51
subnets, 53-54
Sun Java System Message Queue, 32, 62
Sun Java System Web Server, 28
symmetric multiprocessing machines, for co-located

topology, 71

T
think time, 47
throughput, 44
topology

building blocks of, 69
co-located, 69, 71-75
common requirements, 69-71
comparison, 79
load balancing, 71
selecting, 69-80
separate tier, 53, 69, 75-79

transactions, 22
types, of failure, 57

U
User Datagram Protocol (UDP), 53
users, concurrent, 45

Index

89

W
web container, 22
web servers, 28
web services, 22
Web Services Description Language (WSDL), 22
Web Services-Interoperability (WS-I), 23

Index

Sun Java System Application Server Enterprise Edition 8.2 Deployment Planning Guide • August 200790

	Sun Java System Application Server Enterprise Edition 8.2 Deployment Planning Guide
	Preface
	Application Server Documentation Set
	Related Documentation
	Default Paths and File Names
	Typographic Conventions
	Symbol Conventions
	Documentation, Support, and Training
	Third-Party Web Site References
	Sun Welcomes Your Comments

	Product Concepts
	J2EE Platform Overview
	J2EE Applications
	Containers
	J2EE Services
	Web Services
	Client Access
	External Systems and Resources

	Application Server Components
	Server Instances
	Administrative Domains
	Domain Administration Server (DAS)

	Clusters
	Node Agents
	Named Configurations
	HTTP Load Balancer Plug-in
	Session Persistence
	IIOP Load Balancing in a Cluster
	Message Queue and JMS Resources

	High-Availability Database
	HADB System Requirements
	HADB Architecture
	Nodes and Node Processes
	Data Redundancy Units
	Spare Nodes
	Example Spare Node Configurations
	Example: co-located configuration
	Example: separate tier configuration

	Mitigating Double Failures
	HADB Management System
	Management Client
	Management Agent
	Ensuring availability of management agents

	Management Domains
	Repository

	Setup and Configuration Roadmap
	To Set Up and Configure Application Server for High Availability

	Planning your Deployment
	Establishing Performance Goals
	Estimating Throughput
	Estimating Load on Application Server Instances
	Maximum Number of Concurrent Users
	Think Time
	Average Response Time
	Requests Per Minute

	Estimating Load on the HADB
	HTTP Session Persistence Frequency
	HTTP Session Size and Scope
	Stateful Session Bean Checkpointing

	Planning the Network Configuration
	Estimating Bandwidth Requirements
	Calculating Bandwidth Required
	Estimating Peak Load
	Configuring Subnets
	Choosing Network Cards
	Network Settings for HADB

	Planning for Availability
	Rightsizing Availability
	Using Clusters to Improve Availability
	Adding Redundancy to the System
	Identifying Failure Classes
	Using HADB Redundancy Units to Improve Availability
	Using HADB Spare Nodes to Improve Fault Tolerance
	Planning Failover Capacity

	Design Decisions
	Designing for Peak or Steady State Load
	System Sizing
	Number of Application Server Instances
	Number of HADB Nodes
	To determine the required number of HADB nodes

	Number of HADB Hosts
	To calculate the number of hosts

	HADB Storage Capacity

	Planning Message Queue Broker Deployment
	Multi-Broker Clusters
	Master Broker and Client Synchronization

	Configuring Application Server to Use Message Queue Brokers
	Managing JMS with Admin Console
	Managing JMS with asadmin
	Java Message Service Type
	Local Java Message Service
	Remote Java Message Service

	Default JMS Host

	Example Deployment Scenarios
	Default Deployment
	Using an MQ Broker Cluster with an Application Server Cluster
	Specifying an Application-Specific MQ Broker Cluster
	Application Clients

	Selecting a Topology
	Common Requirements
	General Requirements
	HADB Nodes and Machines
	Load Balancer Configuration

	Co-located Topology
	Example Configuration
	Variation of Co-located Topology

	Separate Tier Topology
	Example Configuration
	Variation of Separate Tier Topology

	Determining Which Topology to Use
	Comparison of Topologies

	Checklist for Deployment
	Checklist for Deployment

	Index

