Sun Java System Application
Server Enterprise Edition 8.2
Developer's Guide

X Sun

microsystems

Sun Microsystems, Inc.
4150 Network Circle
Santa Clara, CA 95054
US.A.

Part No: 819-4734-15
March 2009

Copyright 2009 Sun Microsystems, Inc. 4150 Network Circle, Santa Clara, CA 95054 U.S.A. All rights reserved.

Sun Microsystems, Inc. has intellectual property rights relating to technology embodied in the product that is described in this document. In particular, and without
limitation, these intellectual property rights may include one or more U.S. patents or pending patent applications in the U.S. and in other countries.

U.S. Government Rights - Commercial software. Government users are subject to the Sun Microsystems, Inc. standard license agreement and applicable provisions
of the FAR and its supplements.

This distribution may include materials developed by third parties.

Parts of the product may be derived from Berkeley BSD systems, licensed from the University of California. UNIX is a registered trademark in the U.S. and other
countries, exclusively licensed through X/Open Company, Ltd.

Sun, Sun Microsystems, the Sun logo, the Solaris logo, the Java Coffee Cup logo, docs.sun.com, Java, and Solaris are trademarks or registered trademarks of Sun
Microsystems, Inc. in the U.S. and other countries. All SPARC trademarks are used under license and are trademarks or registered trademarks of SPARC
International, Inc. in the U.S. and other countries. Products bearing SPARC trademarks are based upon an architecture developed by Sun Microsystems, Inc.

The OPEN LOOK and Sun™ Graphical User Interface was developed by Sun Microsystems, Inc. for its users and licensees. Sun acknowledges the pioneering efforts
of Xerox in researching and developing the concept of visual or graphical user interfaces for the computer industry. Sun holds a non-exclusive license from Xerox to
the Xerox Graphical User Interface, which license also covers Sun's licensees who implement OPEN LOOK GUIs and otherwise comply with Sun's written license
agreements.

Products covered by and information contained in this publication are controlled by U.S. Export Control laws and may be subject to the export or import laws in
other countries. Nuclear, missile, chemical or biological weapons or nuclear maritime end uses or end users, whether direct or indirect, are strictly prohibited. Export
or reexport to countries subject to U.S. embargo or to entities identified on U.S. export exclusion lists, including, but not limited to, the denied persons and specially
designated nationals lists is strictly prohibited.

DOCUMENTATION IS PROVIDED “ASIS” AND ALL EXPRESS OR IMPLIED CONDITIONS, REPRESENTATIONS AND WARRANTIES, INCLUDING ANY
IMPLIED WARRANTY OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT, ARE DISCLAIMED, EXCEPT TO
THE EXTENT THAT SUCH DISCLAIMERS ARE HELD TO BE LEGALLY INVALID.

Copyright 2009 Sun Microsystems, Inc. 4150 Network Circle, Santa Clara, CA 95054 U.S.A. Tous droits réservés.

Sun Microsystems, Inc. détient les droits de propriété intellectuelle relatifs a la technologie incorporée dans le produit qui est décrit dans ce document. En particulier,
et ce sans limitation, ces droits de propriété intellectuelle peuvent inclure un ou plusieurs brevets américains ou des applications de brevet en attente aux Etats-Unis
et dans d'autres pays.

Cette distribution peut comprendre des composants développés par des tierces personnes.

Certaines composants de ce produit peuvent étre dérivées du logiciel Berkeley BSD, licenciés par 1'Université de Californie. UNIX est une marque déposée aux
Etats-Unis et dans d'autres pays; elle est licenciée exclusivement par X/Open Company, Ltd.

Sun, Sun Microsystems, le logo Sun, le logo Solaris, le logo Java Coffee Cup, docs.sun.com, Java et Solaris sont des marques de fabrique ou des marques déposées de
Sun Microsystems, Inc. aux Etats-Unis et dans d'autres pays. Toutes les marques SPARC sont utilisées sous licence et sont des marques de fabrique ou des marques
déposées de SPARC International, Inc. aux Etats-Unis et dans d'autres pays. Les produits portant les marques SPARC sont basés sur une architecture développée par
Sun Microsystems, Inc.

L'interface d'utilisation graphique OPEN LOOK et Sun a été développée par Sun Microsystems, Inc. pour ses utilisateurs et licenciés. Sun reconnait les efforts de
pionniers de Xerox pour la recherche et le développement du concept des interfaces d'utilisation visuelle ou graphique pour l'industrie de I'informatique. Sun détient
une licence non exclusive de Xerox sur l'interface d'utilisation graphique Xerox, cette licence couvrant également les licenciés de Sun qui mettent en place l'interface
d'utilisation graphique OPEN LOOK et qui, en outre, se conforment aux licences écrites de Sun.

Les produits qui font l'objet de cette publication et les informations qu'il contient sont régis par la legislation américaine en matiére de contréle des exportations et
peuvent étre soumis au droit d'autres pays dans le domaine des exportations et importations. Les utilisations finales, ou utilisateurs finaux, pour des armes nucléaires,
des missiles, des armes chimiques ou biologiques ou pour le nucléaire maritime, directement ou indirectement, sont strictement interdites. Les exportations ou
réexportations vers des pays sous embargo des Etats-Unis, ou vers des entités figurant sur les listes d'exclusion d'exportation américaines, y compris, mais de maniére
non exclusive, la liste de personnes qui font objet d'un ordre de ne pas participer, d'une fagon directe ou indirecte, aux exportations des produits ou des services qui
sont régis par la legislation américaine en matiére de contrdle des exportations et la liste de ressortissants spécifiquement designés, sont rigoureusement interdites.

LA DOCUMENTATION EST FOURNIE "EN LETAT" ET TOUTES AUTRES CONDITIONS, DECLARATIONS ET GARANTIES EXPRESSES OU TACITES
SONT FORMELLEMENT EXCLUES, DANS LA MESURE AUTORISEE PAR LA LOI APPLICABLE, Y COMPRISNOTAMMENT TOUTE GARANTIE
IMPLICITE RELATIVE A LA QUALITE MARCHANDE, A LAPTITUDE A UNE UTILISATION PARTICULIERE OU A L'ABSENCE DE CONTREFACON.

090302@21990

Partl

Contents

NetBeans IDE ..o 41
The asant ULc.oveveirieeiciirccrecreeceieee ettt ese et sse s s sasasesesaen 41
AEPLOYLOOL ettt
Verifier
Migration Tool
Debugging TOOLS ..o 42
PrOfIlING TOOLS .ecvnieeiciccitecee et naen
Sample Applications
SeCUriNG APPLICAtIONSooiiii e es s 45
SECULTLY GOALS ..ttt ettt 45
Application Server Specific SECUrity FEATUIESc.cvuuiuiuercierereririieeieiseeesene e saesssseseens 46
CONtAINET SECUTILY .oviiiiiiiiiicii s 46
Programmatic SECUTILY ... 47
Declarative SECUTILYc.vuveuieieeieiriieicieieieeeis et nans 47

Realm Configuration

SUPPOTTEA REAIMS ...ttt 48

Contents

How to Configure @ REAIM «.....c.ovucuiuieeiieriieiciiiecieireieeeseieeceeie et sseesese s ese s ssasesesnees 48
How to Set a Realm for an Application 0r ModULEcoeeveeeurereeeieinieeiciriinieneeneeeneineeeenes 49
Creating a Custom Realm ..o 49
JACC SUPPOTL .ottt 51
Pluggable Audit MOAULE SUPPOLLc.ceviieeicireiicieieieeeree e ese e 51
Configuring an Audit Module ... 51
The AuditModule CLass ... 51
The SEIVEI.POLICY FILE ...cevuiieiciieecirttrecctreicrei ettt ettt sttt seae s 52
Default PEIMISSIONSvuiuiiiiiiiiicieieeiiiteieese s 52
Changing Permissions for an Application ... 53
Configuring MeSSage SECUTILYcvuuuruereeruirririieiererierse et ssessessessessesssessessessessessessessessnns

Message Security Responsibilities

Application-Specific Message Protection

Understanding and Running the Example Applicationcccoveeeuneereceneeneeerceneeenenneerenes 59
Programmatic LOGINccccoiiiiiiiiiiiiiicc s 62
Precautions ... 62
Granting Programmatic Login Permission ..., 63

The ProgrammaticLogin Classc.ccoceeeurennee.

User Authentication for Single Sign-on

DefiNING ROLES ..ottt ettt se st

APPLICALIONS ettt ettt ettt bbbttt tsees 69
J2EE Standard DeSCIIPLOLSc.ccueureeerieriueicinieeieeteeseeesseesesessesesensesssssesessessesessesssessessssesessees 71
Sun Java System Application Server DeSCIIPLOrScccoviurimiunemceerneeeseriesersensesenseseeseenseens 71
Naming Standards72
DIrectOry SEIUCLUIEviiiiiiiiii b 73
Runtime ENvironments ..ottt 74
ClASSIOAAETS ..ottt 76
Assembling Modules and APPLICATIONSc.cuecurerreueeneireeeicireireieiretreeeteeseseeessesseeessetsesessessesesaesnes 82
EPLOYLOOL ...

Apache Ant
NetBeans IDE

4 Sun Java System Application Server Enterprise Edition 8.2 Developer's Guide « March 2009

Contents

The Deployment Descriptor VETIfIErcoceureuevcuiureecunienieeieireseneineesesessessesesessesessessesensens 83
Deploying Modules and APPLICAtIONSc.cueureeeereureueecirernieeineireieieireeeeeeesessesesessesessetseseesessessesenaes 88
DePlOYMENt EITOTSvuruiiieeiricieiiciricteieiciettiet ettt tsesesesseae et ssesesessacsenssacs 88
The Deployment Life CYcle ..o 88

Tools for Deployment
Deployment by Module or Application
Deploying a WAR MOAUIEc.vueviiieeiciiiriciiecieierceiseieneteeie e sessnsessssesesaesesenaens 93
Deploying an EJB JAR MOUIE ..ottt ssesesesaesesenaees 94
Deploying a Lifecycle MOAUIEccovuveiriiriciniiniieicireiecntisceieieeseeeescseeseie e ses s 94
Deploying an Application CHENtccocuiecueeeiriniiiireeise e seessesseseseseene 95
Deploying a J2EE CA ReSoUrce Adapter ... ssensssseaens 96
Access to Shared Frameworks ...
asant Assembly and Deployment TOOLc.cvcevuriueiciniinicrneineieeeieeenetseeeessesessessesseeensesseaenses

asant Tasks for Sun Java System Application Server
SUN-APPSEIV-AEPLOY evvuvrivrieiriirieeietrieeteerti ettt sse bbbt saen
SUN-APPSEIV-UNAEPLOY ..ovrveiriiieiniiiicicie e e
SUN-APPSEIV-INSTANCE ..oovrivriiriiiiiiiiiiie it
SUN-APPSEIV-COMPOIIEIL ..uvriiuiiuciecieiasieiasst e s s sessssss s sse s s ss s sesssesaas
SUN-APPSETV-AAIMUIIL ..vovuieiincieieeciicierec ettt et eb ettt eeaes
SUN-APPSEIV-JSPC wevvurieriirivriisitiieiseis s iasssssss bbb ss e
SUN-APPSEIV-UPAALE ...cevvririiriciciciieiiie ettt
Reusable SUBEIEMENLS ...
server
COMIPOIIEIIT 1ottt et e b e e ae b beetbeebeese e beetsebe e
FIIESEL ..ot

4 Debugging APPlICAtioNSc.oooiiiii et 127

Enabling DeDUGEZINGccvvuiueieiiiricieineeeieieecieieieeeeie st sss s ese s ese s ssesenaees 127

V To set the server to automatically start up in debug modeccoocuveuvecenenivncnnncncncnn. 128
JPDA OPLIONS .ottt

Generating a Stack Trace for Debugging

UsING AN IDE ..o s

V To use the NetBeans IDE for DeDUZEINGccuvvureuiuererercrererieineireneirenesenenseneeesesaneeens 129
Sun Java System Message Queue DebUg@ingc.cevureueecurerneceneineeenceneenecenenseesenseseneeseseeees 130
Enabling Verbose MOde ... ssse s sasens 130

Contents

Partll

6 Using Enterprise JavaBeans Technology

LOGEINE et 131
PIOFILING vttt 131
The HPROF Profiler ... sssssssssssssssssnes 131
The Optimizeit PIOALETc.ocuiiciiiiiiiircccice it 133
Developing Applications and Application Componentsococoooveernnnneneceeeereenes 135
Developing Web ApPlIicationscooiiiireririr et eees 137
USING SEIVIELS ..ot 137
Invoking a Servlet With @ URLc.ccuiiiiunieiiirieicinciricciseeeses e sseseesenns 138
SEIVIEE OULPUL oottt st bttt 138
Caching Servlet RESULLSc..c.veeveuieereiiiieeieienestee e e eaensenes 139
About the Servlet ENGINeccocuoiiiiiiiiiiiccreee e 142
UsIng JavaServer PAgescccviiiiiiiiiiiiicccciciccee et 143
JSP Tag Libraries and Standard Portable Tagscccccveureeueuneericrnenecrneineenneineeeenseenesenne 143
JSP Caching
Creating and Managing HTTP SESSIONSccccvuurueeuirreuercrrereieeeineieneeseeeiesseseesessessesensessesessenne 147
CONTIGUIING SESSIONS ..uvrrveiuiriiiaeireieiicitiseieteisese ettt ettt 148
5€8S10N MANAZETS ...vviiiiiiiiiici b 150
Sample Session Persistence APPLICAtIONSc.ccccuuiuiuiuiereicireieieieerieseseeseeseisee e ssesessaesans 153
Advanced Web Application FEATUTESc.oveueureiurinieirieieirccieireie ettt eeaeaees 153
Internationalization Issues
VALUAL SEIVETS ..ot s
Default Web ModUules ... sssssses
Classloader DeEle@ationcccecuereueueuneueieineinieitisese e ssessese ettt ssese e ssessesenns
Using the default-web.XmI Fileccorieriinieciecrecceceees e
Configuring Logging in the Web Containercccccininieinniniicicisessecsesiins
Configuring Idempotent URL REQUESEScveuevueumiurmmemmerreemncrieeneneenesensessesesessesessenessesenne
Configuring HTML Error Pages
Header Managementccveeeeureeeeecuminieeseenesesesesessesessesessessesessessessssessessesesessesessessessssenns
Redirecting URLScovurveeiurieereeieeeienieeenesesensesese s ese s ssesssssssesssesssessssssenns

SUMMAry Of EJB 2.1 Changesccveureueecureuriecincireieieineieieeisesseeeeetsesessessessesessessesessessesessessessssesns

Sun Java System Application Server Enterprise Edition 8.2 Developer's Guide - March 2009

Contents

Value Added FEAtures ... 162
Read-ONLY BEANSuceeeiriiieciiiieceireicisi ittt e 162
PASS-DY-TEIEIENICE ettt e e 163
Pooling and Caching ... 163
Bean-Level Container-Managed Transaction TIMEOULSccceveuerreeeecrnerreennerreenrernenenne 164

Priority Based Scheduling of Remote Bean Invocations

Immediate FIUSRINGcvvueviiiiriciiiricciecieeeeeis et ssese e essesenns
EJB TIMET SEIVICE vttt ettt et etsea e ete et ebeetsenseesseasaebeesseseessensesssenseseessensees
USIiNg SeSSi0oN BEAISc.cuiuiiiiiiiiiiiciicicic e
About the Session Bean CONAINETScccucueueruiuriuieeieieneiesesieesisesesssese e ssesesssens
Stateful Session Bean FailOVETccocuiiiiiiiiniiiiiiiisiecise s sossaaes
Restrictions and Optimizations
Using Read-Only BEANSc.cccuiurieiiirieereiieeneieieeieneiseiesseseeensesssessessessssessessssessesssssssessesesessens
Read-Only Bean Characteristics and Life Cyclecoveunineeunerneemnerninecrneneeeneeenenneenene
Read-Only Bean GOod PractiCesceueueuniurieuniunieeneineueenescesesessessesessessesessessessesesesseseens
Refreshing Read-Only BEANScccvuiuriiniiuiiiiiiieiiiiciesiss s sessasnes
Deploying Read Only BEanscccveeeureeererieneeriinieeneineeeneseesesesessesessessesessesessssessessesenns
Using Message-Driven Beans
Message-Driven Bean Configuration
Restrictions and OPtiMIZAtIONScccureeueirieeerineieireeieeeieiseeie ettt ssesesseneans
Sample Message-Driven Bean XML Filescccccueiuiniiniineiiinciceeirsinessesecee s
Handling Transactions with Enterprise Beansccccccveeeneveereereeererneeenerneeseenessesensessesensens
Flat TTANSACHIONS ...ucvuuienieiiiiiicic ittt
Global and Local Transactions
ComMUIE OPLIONS «..ocvvimiiiiiieieccirtre ettt es s e ns

Administration and MONItOTINGc.cceereeeeeuniereerniereeenerneeeeeseesesessessesessessesesessessesesessesesns

Using Container-Managed Persistence for Entity Beans

Sun Java System Application Server SUPPOItcocueecureureeeererreueecererreeeeretseeeesetseseesessessesessessesenaes
Container-Managed Persistence Mapping ... ssesssssssens
Mapping Capabilitiescccveeeuiureeriirieneieieeeieieee e ssese e s sessesenns
The Mapping Deployment Descriptor Filecvcreeieunericeniiniceneeeneeeeneisee e
Mapping Considerationsc.eecereureeeeneiriunereererrieereee e sseseesenns
Automatic Schema Generation

SUPPOITEd DAta TYPES ..ceuvereereiieiriirireiseireieieeiseae sttt et

Contents

Generation OPHIONS ...

SCHEMA CAPLULE ..cuivreieictreicictret ettt eb ettt sttt eae st
Automatic Database Schema Captureccveeeeuiereeureineeieiseieieiseisee e sessesenns
Using the capture-schema Utilityc.ccoociiiiiniiiiscec e

Configuring the CIMP RESOUICTEcuvuueururiueumiererererierserieiseiseasenessessessessssessssssssessessessessessesseses

Configuring Queries for 1.1 Finders
ADOUL JDOQL QUETIES «..veveeeiereeeeerieeeteeeteeeeteeeeetese et eteseesesesssssssesesesassessssesessssessssensssenssenen
QUETY FIlter EXPIeSSION w.uvuvuvuririeiniiieciecieie et ssese s sessese e st sscsssnenns
QUETY Parametersc.ccuciiiiiiiiiiiiiiici e
QUETY VATIADIES ...ttt st
JDOQL EXAMIPLES «..ecvvrerircieiiecieieietrecieeeceseese et s esese e seesese s sesssaeasesesesssacseessassseacs

Performance-Related Features
Version Column Consistency Checking
Relationship PrefetChingccceeecuniereciniinicicieieeiseei e ssesessenne
Read-OnlY BEANSvuiuiieiiiiicicireietitieie ettt e e

Restrictions and OptimiZationsc..ceeecuiueeciiirieiinieieeeieee e ssees
Eager Loading of Field State ... s ssesessenne
Restrictions on Remote Interfaces
Sybase Finder LIMItationcccccveueeeuiiriemiiieneiieeeiseenessese s e sesseesenns
Date and Time Fields as CMP Field TYPESc.vuvvueuivrmmemmirreerernieenenerneeneisesesessesessensessesenne
No Support for lock-when-loaded on Sybase and DB2c.cceceuveunerincinienccneineeicreinenenne
Set RECURSIVE_TRIGGERS to false 0n MSSQLc.ooveuivieeeereeeeeeeeeeeeeeeeeeere e
MySQL Database RESTIICHONS w....c.ueurueumrviuerniiieeneiiieiaeseesesenessesesseseseesessessesesessesessessessesenns

Connecting to a Remote EJB Module Through a Firewallccccveveuneneencninercrncneenne

¥V Toaccess aJMS resource from an application clientcocvceeeeveeneeencrneereeenerneeeenernenneenne
Running an Application Client Using the ACCccoccuvrcmnireemnernieeeneeeeeeee e
Packaging an Application Client Using the ACC ...

CHENTPOLICY vttt

Sun Java System Application Server Enterprise Edition 8.2 Developer's Guide - March 2009

Contents

10

Developing Clients Without the ACCccoveuiineeieniinicineeeereeeeeseeseeesessesesse s ssessesens 215
V Toaccess an EJB component from a stand-alone clientcoceecuveerecenerrenencineenencenennennen. 215
V Toaccess an EJB component from a server-side modulec.ocoeuveureeenerrenencineincneenenneennn. 217
WV To access a JMS resource from a stand-alone clientccooeeeiveeeveereeeeeeeeeeeeeeenes 218

Developing Connectors

Connector 1.5 Support in the Application SEIVETc.ccoccvveerireciriniecirereirinecieeeieseeieeseaeseeeaes 222
Connector Architecture for JMS and JDBCc.ovvvviiveeieeeeeeeeeeeeeeeeeeseee e 222
Connector CONTIGUIATIONcuurueueurerieeieireieieieieeie ettt e ene 222

Deploying and Configuring a Stand-Alone Connector Modulec.cccoeuvcunivciirecniinceenennnes 223

V¥V To deploy and configure a stand-alone connector modulecocvecceneuneeercrnenccnnennennnne 223

Redeploying a Stand-Alone Connector Modulecveecureerecencrneeincireeeecineiseeesesneeeeseeseeenaes 224

Deploying and Configuring an Embedded Resource Adapter ... 224

Advanced Connector Configuration Options
Thread Pools
Security Maps

Overriding Configuration PrOPEIties ..o sessias
Testing a Connection POOL ..ot sessesenne
Handling Invalid CONNECHIONSc..cuvvevueueeericrirrieneineeenetneienseseesesesessesessessesessesessesesessesenne
Setting the ShutdOWn TIMEOULc.vueuueuieriiciiirietireeeetreiee et ene
Using Last Agent Optimization of TTansactionseceeceeeeerereeeereuseeremsemererensessssesessennes 228
Inbound CommUNICAION SUPPOTLL ..ecviuieiicirireieirieieireete ettt eaebees 228

Configuring a Message Driven Bean to Use a Resource Adapterc.coveeevcneerecenceneeenceneennnes 229

Example Resource Adapter for Inbound Communication

Developing Lifecycle LIStENErs ..ottt
Server Life Cycle EVENLS ..ottt sese et sebe st ses st sese st sesessessesessesnes
The LifecycleListener INTeIface ..o sssssssssessssssssanes
The LifecyCleEVENT CLASScuvuevmiuieerciriieeeeiieeeeieieieneeesense e ssessesesse s ssesssssesesssssesessessesessees
The Server Lifecycle Event Context

Deploying a Lifecycle MOUIE ..o ssesassens
Considerations for Lifecycle MOAUIEScoccuevereereeieniineineinenerererienessenesseesenesensessessessessssens 236

Contents

10

Partlll

11

UsSiNG ServiceSand APIScoooviuieieieieeecee ettt a s 237

Using the JDBC API for Database ACCESSccccvurieiirinireninisiessiisee st ssssssessssssessnens
General Steps for Creating a JDBC Resource
Integrating the JDBC DIIVET ...c.c.cveuriueuiireeeieireieieineeeieinesseseseisese e sessese e ssesessenns
Creating a Connection Pool ...
Testing a CONNECtiON POOL ...t sseaessenns
Creating a JDBC RESOUICEcuoviuiiiiiiiiiiiicicc s sessssassnaes
Creating Applications That Use the JDBC API
Sharing CONNECHIONScuiuiueeeiiiieciiirieee et e

Obtaining a Physical Connection from a Wrapped Connectionc.c.coeceevcureereerrerncenene
Using Non-Transactional CONNECIONSc.cceveuiureeemimriemeirieeeeieereeneisese e seseesenns
Using JDBC Transaction ISolation Levelscccrcuriuneeieineeeierninecicineeeisesesesseesesenne
Configurations for SPecific JDBC DIIVELSc.ccuevuereereerenerneeeeenensenserserseesesssesessessessessessessesseses
Java DB TYPE 4 DIIVET ...cviuiuiieiiiiiciiciciicirieie ettt ssnaes
Sun Java System JDBC Driver for DB2 Databasesccocveueurerermereeeeeeeneesemsenserenserseseerenes
Sun Java System JDBC Driver for Oracle 8, 9i, and 10g Databases
Sun Java System JDBC Driver for Microsoft SQL Server Databases
Sun Java System JDBC Driver for Sybase Databasescccveureeeveereeercenierneenieneenneenenennens
IBM DB2 8.1 Type 2 DIiVer ..o
JConnect Type 4 Driver for Sybase ASE 12.5 Databases
MM MySQL Type 4 Driver (NOD-XA)occouiuiereriirienerseenenseeenenesessensessesesesssessessessesenns
MM MySQL Type 4 Driver (XA ONlY) ..c.ccceereeeeunierieieineeeeineseeessesnesesessesesessesessessessesenns
Inet Oraxo JDBC Driver for Oracle 8i, 9i, and 10g Databases
Inet Merlia JDBC Driver for Microsoft SQL Server Databases
Inet Sybelux JDBC Driver for Sybase Databasescccvveueurieererreeneemerneerenneeeeensenneenne
Oracle Thin Type 4 Driver for Oracle 8, 91, and 10g Databasesccccocveeercurerecrrernennne
OCI Oracle Type 2 Driver for Oracle 8i, 91, and 10g Databasescccccovuveerneureercrneeennces
IBM INfOrmix TYPE 4 DIIVET ..ccvueuieiecinierieeieieieeeineisiseseeseseseisese e ssessssenns

12 Using the TranSactioN SEIVICE ..o asane

Transaction Resource Managers ... sssesssssessssssens
Transaction SCOPE ...

Configuring the Transaction Service

Transaction LOZG@ING ..o

Sun Java System Application Server Enterprise Edition 8.2 Developer's Guide - March 2009

Contents

13

14

15

Using the Java Naming and Directory Interfaceccccoviuiienninncennccncecereeee 259
Accessing the Naming CONEXLcuiuiuiuiicieieieiiieieisese e sse s s ssnens 259
Naming Environment for J2EE Application COMPONENtscccveuveeererreeeercererreenrersennne 260
Accessing EJB Components Using the CosNaming Naming Contextccocveveevreuneenne 260
Accessing EJB Components in a Remote Application Server
Naming Environment for Lifecycle Modulescccccveurenernieencrnenecnneneeeneeee s
CoNfIGUIING RESOUICES ...ucvuivriuiiiieieireiciciret sttt sttt seb et ses ettt besaesnes
EXternal INDI RESOUICES ...cvoueveveeiereeeeereeeeeeeeeeeseeeeseeeseseeseseseseseesesssesessesesssesensesessesessssssensenes

CUSTOIM RESOUICES ...ttt ettt ettt ettt be et e steeas e beessesesssenseessessesseensenseessensees

Mapping REFEIENICESc.cvuivrierecieieicieirieeieiere et saen

Using the Java MesSage SEIVICEccoorriiiiieieieeereecce ettt et enes
B ST Y 30 5 e} 74 e L= OO
Message Queue ReSOUICe AdAPLETcovcuiuieerceiireeiiirieneieensee e esensessssense s s sssssesens
Administration Of the JIMS SEIVICE ...c.cvvviiviieiieeeeieeceieeeeeteee ettt sa e e ns

Configuring the JMS SEIVICEcuiuieuiirierieiiire e eseeseesenns
The Default JIMIS HOSEviuiieeeieceeietceeetete ettt sttt sttt sae st sasnessenen
Creating JMS HOSESccuciiiiiiiiiiiciicicicc s sesnaes
Checking Whether the JMS Provider Is RUNNINGc.ovueviuneeciciniiricnirecinesccenceeeennenene
Creating Physical Destinations
Creating JMS Resources: Destinations and Connection Factories
Restarting the JMS Client After JMS Configurationccceveeeereeeeerneeniereeseenerseeenenseeseeens
JMS CONNECION FEATUIESveivviriciiitieeeceete ettt ettt ettt et ere et beessesbeeaeeveeasensenseessensens
ConNECtion POOINGc.vuveeuiiriciiericieireeeeee et e noe
Connection Failover
Load-Balanced Message Inflow
Transactions and NOn-Persistent MESSAZESc.wurrvereureurmeuriermmereereseresnesessesessssesssssesessessesessens
ConnectionFactory AuthentiCationcccocvecureeeecineineernerneeeereseeeesesseeessessesessesseseesessessesenses
Message Queue Varhome DIFECLOITc.oc.veueeriueieurierieeintireieieiseeeseeseesese e ssesesse s s sessesens
Delivering SOAP Messages Using the JMS API
V To send SOAP messages using the JMS APc.cc.veiinrnenneneneineeeineeseeeseiseseesesseseenenne
V To receive SOAP messages using the JMS APT ...

Using the JavaMail API

Introducing JAVAMAILcocueueiciiiriccirccie et

Contents

12

16

Creating a JavaMail SESSIONc.cueveueuriecincirieeicireiericietseie ettt sese st ssesseaessessesesscanes 278
JavaMail SESSION PTOPEITIEScuvvreuerueriiriecieiriieieireie ettt saeen 278
Looking Up a JavaMail SESSIONc.ccceuecmiuriierciiiieiiisieneieienseseee s ssessesessessssessessssesensees 278
Sending and Reading Messages Using JavaMailcocevcurevrecencrneeerncenereecenenneensensesenseesesssennes 279
V To send a message using JavaMailc.cccvcureeirciniinecncineeineneeeeneiseeeiseee et snenne 279
V To read a message using JavaMailccccucucieieniniiniineineieiceeieneeeeesese e sassenes 280
Using the Java Management Extensions (JMX) APlcccccoemirreeenenneecse s 281
ADOUE AMX .t s e 282
AMX MBEANS ...ttt s 283
Configuration MBEAILSc..cvvueveuiuereiiiieeeieieeestee e sessese e ese e sessssenns 283
Monitoring MBeans ... 284
UHLEY MBEANS ...oeoeeieieiiiicireieie ittt ss s s 284
J2EE Management MBEanSsccccooviiiiiniii e 284
Other MBeans
MBean Notifications
Access to MBean AttIIDULESccccuiuiciiiiiicieccc e 285
PIOXIES oottt 285
Connecting to the Domain Administration SEIVerccccveererreueeneerereecererneeeserneneeeesesseennes 286
Examining AMX Code SAMPIESc.curiueiiuriurieciiiiicieireieieiseiseieeeseseseisese et sese e ssesesaeen
Connecting to the DAS ..ot naes
Starting an AppliCAtion SEIVETc.ccuureereureereriereneesee e ssesensenns
Deploying an ATCHIVE ...c.c.ciueeeueuieeitinieeicieiseeeiseie ettt e snenne
Displaying the AMX MBean Hierarchy
Setting MONItOring StAtescceiieiiiiiiiiiiiiicic e
Accessing AMX MBEANScciuiiiiiiiiiiiiiiiii e
Accessing and Displaying the Attributes of an AMX MBeanccocveeuveureeevcrneenecrreenenenne 296
Listing AMX MBean PrOPEIiesccccvvuiiuereurireieiiieieiciie s 298
QUETYING ettt 299
Monitoring Attribute ChanGEscccereereuriereerniinieeeiseieeeteesee e ssese e sessesesns 300
Undeploying MOAUIES ...t sse s saesaes 303
Stopping an APPLICAtion SEIVETc.cciuieuiuieeerieieeir e e seeseesnas 303

Running the AMX Samples

Sun Java System Application Server Enterprise Edition 8.2 Developer's Guide - March 2009

Contents

A Deployment Descriptor Files ... sane 305
Sun Java System Application Server DeSCIIPLOLScvurveeueureveecererreecenerreeeeseareseescesesseeessessesennes 305
The sun-application. XML FILEc.ovcuiirieeiiniieicicenecrcieeeei et saeen 307
The sun-wWeb.XMI FILEc.ciuiiiiiiiiccrce et

The sun-ejb-jar.xml File

The sun-cmp-mappings. XML FIleccoiiuiiieiciniiirence e sse e e saeens 315
The sun-application-clHeNnt.XMIfIIE ..o eseeaees 319
The sun-acc.XMIFILE ..ot saes 320

activation-config

ACtiVAtiON-CONMAZ-PIOPEILY ..ouvvrieiuiieineiieeeieteieeiestis ettt eseseasesnne 321
activation-CONfig-ProPerty-Nameccecereereereereeerersesemsessessesesessesessessesesensessesesessesesns 322
activation-CONfig-Property-valtle ... sessesesns 322
as-context

auth-method

AUERATEAIIN .ottt ettt reae et nenenenen 323

CACKE-NEIPET .o e

CAChE-NEIPEI-TEf ...ttt
cache-idle-timeout-in-seconds
CAChE-MAPPING ..ot
CAL-PIOPEILY oo
CAllET-PIOPAZALION ...eeveerereiiiieeieeieeeee ettt e noe
CETTAD ettt ettt b bbb bbbt b b b s s e tetes
check-all-at-commit

check-modified-at-commit
check-version-of-accessed-INStANCESccccereiriieiereeeeieieeee et sasaesenes 333
checkpoint-at-end-0f-mMethodcoeuiiiricirercc e 333
checkpointed-methods
class-loader

client-container

Contents

14

CITIP-TESOUICE w.vvvevvrrvereeseesesesseesesesseasesessessesseaesasesesesas b tse e bt s e sae bt beese bt b s ebae bt s seae bt b eae e beeaesaesas
cmr-field-mapping ...
CINT-FIEIA-NAIMIE .eeeeviiee ettt bbbt b s s sanseaes
CINE-HIMEOUL-IN-SECOMAS ..uvuinieiiieieieieiiiceeeet ettt ettt essnnsene
COIUIMMTIAINIE .oeitiieiieicteieietee ettt bbbttt eaesetseacs
COIUMIMPAIT carttriiiieirecte ettt ettt
commit-option
CONAAENTIALILY cvovevrereiiiecietcc e e
COMSISTEIICY wvviviiiininiiiitc bbb bbb a s
CONSETAINT-TIELA ...voieeieiecieieie ettt bbb bbb s nsnansenas
CONSLIAINt-TIElA-VAIUE ...vovvviieceieeieicecce et sanse e
context-root
cookie-properties

create-tables-at-dePloy ... e

defaultcccovevviinnnnce
default-helper
default-resource-principalccceecireecinieniecreccs e
AESCIIPLION cuvvriviieireeeieeie ettt bbbt bttt
QISPALCRET .ttt
drop-tables-at-undeploy

ejb-ref-name
eNAPOINT-AAATESS UL eucuvireieieecieireeireci ettt bbbt
CNEEIPIISE-DEAILS ...oveeieiciiiicc e e
ENTILY-TNAPPING oottt
establish-trust-in-client

establish-trust-in-target

Sun Java System Application Server Enterprise Edition 8.2 Developer's Guide - March 2009

Contents

GOI-CLASSES ...t e 360

Fo b o oo [OOSR 361

IdemMPOtENt-UII-PATLEITIcueieceiiecieiee ettt 362
INEEGTILY ettt s 363
OT-SECUITLY-COMNMG vuvvivuirivieiiieiciireecici et ettt 363
is-cache-0overflow-alloWed ... e 364
is-one-one-cmp

is-read-only-bean

JAVA-INENOM 1.t

jms-durable-SUDSCIIPHION-TIAIMEcuvueuriereciiirieeieireie ettt esesaees 365
jms-max-messages-load
JIAI-TIAIIIC oottt

FSPCOMIIG ettt bbb

10Cal-hOME-TMPL .ottt eeaeaen
LOCAI-IIMIPL ettt ettt
10Cale-ChArSEt-INO ...cueecicieecicireeeectre ettt e
locale-charset-map ...
LOCAIPATT ..ttt et
1OCKk-When-10aded ..ottt
1oCk-When-mOdifled ..ot
LOG-SEIVICE .ottt e
login-config

Contents

16

MANAGET-PTOPEITIES wvovvviiiiiiiiiiiiiti b

MAPPING-PIOPEITIES ..ottt
INAX-CACHE-SIZE ouvvrrvrreirciiicieireietciet ettt bbbt st
INAX-POOL-SIZE .vevrivieireiiicieireie ettt et e
max-wait-time-in-millis
MAD-CONNECHON-FACLOTY ...ueririeiiiieiiiie et
MAD-TESOUICE-AAAPLET ...cvreeeiieiicictrecteicrt ettt
INIESSAZE .cvvvveivsresrssrssisssisss s bbb s R R
MEeSSAZE-AEStINAtION ...ouvurerereieeicieieeciie et e

message-destination-name

method-param

MEthOA-PATAINS ...ttt

named-group

NAMESPACEURI ...ttt

Parameter-enCOdiNg ..o
PASS-DY-TEIEIONICE ...ttt
PASSWOIM ecvuvrieiaiiteiecieee ettt bbb bbbt ettt
pm-descriptors
P0ol-idle-timeout-in-SECONMASccreriuririiieiriicirircieircie ettt eeeaes
POTt-COMPONENT-NAINE ..ccveiiiiiieiiiiieieieee e b e n b e
POTE-INTO ottt bbbt bbb b
prefetch-disabled
principalccocoveeenee.

principal-name

Sun Java System Application Server Enterprise Edition 8.2 Developer's Guide - March 2009

Contents

Property (With attributes)ccocvceeceriunieincnercreiccee et eseesene 393
property (With SUDEleMEnts)c.cccuviureeeinciriirecineieeerce e easeseene 394
PIOVIAET-COMNIIE .vivuiritieictiecietreteec ettt ettt et 394

query-filter
QUETY-INETNOM ..ottt
query-ordering
QUETY-PATAINS eovvvvieveervessssessscsssssssssssssssss s sss s ss s st ss s ss st ss s ssse e snsenes
query-variables

refresh-period-in-SECOMNMAS ..o
removal-timeout-in-seconds
1emMOte-NOME-TIMPL ..eovuiriiiiiiric et
FEIMOTE-TIMIPL ottt ettt st bttt eaes
FEQUEST-POLICY orveevrvreiaciiieieciterie ettt s st
FEQUEST-PIOLECTION .euiuiiiiiicicic s
required
TES-TEE-TIAINIE ..viveeiniieieceeeeeecet et st
FESIZE-QUANTILY ovviiiiiiiiiccc s
1eSOUICe-AdaAPLEr-INIA ...uevveieriiriieiierieeieireie ettt et
FESOULCE-CIIV-TEoeeeiiiiereciiteiie et e
resource-env-ref-name
TESOUICE-TEE w.outiieiiaitieiiete ettt bbbt bttt
TESPONSE-POLICY ecnvreireiriiiiciiteci e e
TESPONSE-PIOLECTION weviviiiniiiiiiiiiircii e b e enes

role-name

SChemMa-generator-ProPertiescccurmcerereeserieiererseeseressessessesssssssesessessesaensesssssessns 407
secondary-table
SECUTILY v,

security-role-mapping

Contents

18

Service-endPOINt-INTEITACEcoiuiverecuierieiiireieieite et 411
SEIVICE-TIMPI-CIASS .veveiuierieirririecicieie ettt e 411
RS g Tal T o B0 o o LR 411
SEIVICETEE ..eutiitiieiieeiecici ettt bbb bt ettt 412
SEIVICE-TEI-TIAIME ...vuveiririeiciriteieice ettt bbbttt et 413

servlet

servlet-impl-class

SEIVIET-TIAIMIE ...eoevvieeveeeececee ettt ettt ettt s oot ese et s s ese e e s ese s ese s et ensesese s esensesenesesensesenserenn 414

SEEAAY-POOL-SIZE ..uvvereirirriecirieriecicireie ettt et et 417
STOTE-PIOPEITIES w..oviiiiiiiiiicicc s 418
SEUD - PIOPEILY oottt e e 420
SUN-APPLICALION ecvuiviieiriiiiciciriteiet ettt bbb 420
SUN-APPLICALION-CLHENT ettt 421
sun-cmp-mapping
sun-cmp-mappings
SUN-EJDJAT wvoviiiciii s
SUII-WED QPP -vevrevtincieiiaetsieietsesci ettt ettt bbbttt sttt bttt enaes
TADLE-TIAINIE ..vueiieieeci et e
L2850 3) O
HIE-CLASS cvurvevareeiectet ettt e e
timeout
ELANSPOIE-CONIIG orvriveriiciiiiiece ettt sa s nans
trANSPOIt-GUATANTEE «..cuvviiiciciiiiic et 429
.. 430
UNEQUEIA ceveeiiii ittt s 430
UTL-PATTETTL oottt sttt 430
USE-Thread-POOL-idc.cuieciiiriiciciriccc et e 430

Sun Java System Application Server Enterprise Edition 8.2 Developer's Guide - March 2009

Contents

TWED ettt e ettt 432
TWED UL 1ottt bbb e b 432
WEDSEIVICE-AESCIIPHION .cuiviuiuiiecieieicieireietrect ettt eseen 432
WeDbService-desSCriPiON-NAIMIEcccriureeeeeuriureetretreeeietreeseessetsese e sseseesesessesesesseseesessesseseens 433
webservice-endpoint

wsdl-override

WSAL-POTT 1ottt ettt bttt ettt

WSAL-PUDLISh-10CAtION ...uvuiiiiciicicce e eacaen 435
INAEX .. bbbt 437

20

Figures

FIGURE 3-1 Module assembly and deployment

FIGURE 3-2 Application assembly and deployment

FIGURE 3-3 Module runtime environment ...
FIGURE 3-4 Application runtime eNVIrONIMENT ...c.c.cuueeeeermeereeererereeenernesenessesesessesessessessesenne
FIGURE 3-5 Classloader runtime hierarchy ..., 77

21

22

Tables

TABLE 3-1
TABLE 3-2
TABLE 3-3
TABLE 3-4
TABLE 3-5
TABLE 3-6
TABLE 3-7
TABLE 3-8
TABLE 3-9
TABLE 3-10
TABLE 3-11
TABLE 3-12
TABLE 3-13
TABLE 3-14
TABLE 3-15
TABLE 3-16
TABLE 3-17
TABLE 3-18
TABLE 5-1
TABLE 5-2
TABLE 5-3
TABLE 5-4
TABLE 6-1
TABLE 7-1
TABLE 7-2
TABLE 7-3
TABLE 7-4

TABLE 7-5

J2EE Standard DeSCIIPLOLSc.vcvueueurrcuiurieereiniienneiesenseseaeesenessesessessesessessessesenne 71
Sun Java System Application Server Descriptorscccocveencereeeecereereerrerrenennes 72
Sun Java System Application Server Classloaderscocevcureeenceriiriccenerricnnes 78
VErIfIer OPLIONS w.oueeeeireeieeiretreieietreteee ettt ettt 84
sun-appserv-deploy Subelements98
sun-appserv-deploy AtIIIDULEScccoiveveieeeececcecece e 99

sun-appserv-undeploy Subelements

sun-appserv-undeploy Attributes105
sun-appserv-instance SUDElEmMENtScccovevvveveveveveeeeeeeeeereree e 107
SUN-appsServ-instance AtIDULEScccoeveieeeieieeeeetetceeeee et 108
sun-appserv-component SUDEIEMENtSccoeiveeviveeieieeeieeeeeeeee e 112
sun-appserv-component AttrDULESococveveevereeieieieeeeeeeeeeee e 112
sun-appserv-admin Subelementscccoeevevereieieeeeceiereeeeeeee e 114
SUN-appsery-admin AtEIDULESccoeeveveveeeeeeeeeeerereeeeeee e 115
SUN-APPSErV-3SPC AIIIDULES ...vovievvieieceiecec e 117
sun-appserv-update AtrDULESccoeeeveeieeeeeececcceeeeee e 118
SEIVET ALLIIDULES ..evvieiiiceceiet ettt ettt nsaenes 119
COMPONENT AETIDULES ...vovvieieeiieeeetetctccteee ettt enns 123
URL Fields for Servlets Within an Applicationccooveeeereeureneeunineeeincsnenenes 138
CACNE ALLIIDULES ..ottt es 145
TLUSH ALLIIDULES oottt bbb s 147
Object Types Supported for J2EE Web Application Session State Failover149
Object Types Supported for J2EE Stateful Session Bean State Failover 168
Java Type to JDBC Type Mappingsccccceeeuveneerriemniieinienensieneiiesseesenssenns 189
Mappings of JDBC Types to Database Vendor Specific TYpescccccceuvuunennee 190
sun-ejb-jar.xml Generation EIEMeNtsccooovvvervvevieveiieeeeeeeeeeeeeeenenns 192
asadmin deploy and asadmin deploydir Generation Optionsccecceenee. 192
asadmin undeploy Generation OPtions ... 194

Tables

24

TABLE 11-1
TABLE 13-1
TABLE A-1

TABLE A-2

TABLE A-3

TABLE A-4

TABLE A-5

TABLE A-6

TABLE A-7

TABLE A-8

TABLE A-9

TABLE A-10
TABLE A-11
TABLE A-12
TABLE A-13
TABLE A-14
TABLE A-15
TABLE A-16
TABLE A-17
TABLE A-18
TABLE A-19
TABLE A-20
TABLE A-21
TABLE A-22
TABLE A-23
TABLE A-24
TABLE A-25
TABLE A-26
TABLE A-27
TABLE A-28
TABLE A-29
TABLE A-30
TABLE A-31
TABLE A-32
TABLE A-33

TABLE A-34

Transaction ISOlation LEVELSccovvviviviieiieeieieceeeeeeeeeeee e 244

Standard JNDI Subcontexts for Connection Factories ...

Sun Java System Application Server Descriptorsoveeeveereeercereereeeeneeresenees 306
activation-configsubelementscooiiiieieieiererereeeeeeeeeee e 321
activation-config-property subelementsccoovvevioveerereeeeeeeeenenenens 322
as-CoNteXt SUDEIEMENLScccoeveverieeiiiiieieete ettt e 323
auth-realmsubelementcocooioieeeiriririreeee et 324
AUEN - realmattriDULES c.oovveeeeeiee ettt eens 324
bean-cache SUDEIEMENLScccceeuriririririiereieeieseeese ettt sesesenas 325
DEan-pPOOTL SUDEIEIMENLSo.ooveeeeeieereeeeeeteeeeeeee ettt nenene 326
CACHE SUDELEIMENLSvcvvviiiececieieieie sttt sessnsenas 327
CACNE ALLIIDULES .uvviveieieieieicccee ettt s s sens 327
CAChe ProPerties ... 328
CaCheC1asSNaME VAIUEScccveveueuererereieiecicieie ettt s s sesnssas 328
cache-helper SUDEIEMENTSccccvevvvevevererieeeeeeeteeereteteeese et eaeas 329
CaChe-helper ATIIDULEScceeeiieeeeeeereeeteeeeete ettt s e seaenan 329
cache-mapping SUDELEMENTSc.ceveveuieeeeeiereeeeeetceereeeeeetee e enenens 330
call-property SUDEIEMENTSccocoviiveeeieececieeceeeetc et nenns 331
CErt-dDALLITDULES .ovcvivieieiciiecece ettt anas 332
check-version-of-accessed-instances Subelements..........cccocoevieeurennnnne. 333
checkpoint-at-end-of-method Subelementsc..cocoeieeeeeeveeeeeeeeeeeennne 334
class-loader SUDEIEMENLScccceeveveeeeecieieiereeecsse et eas 334
C1lass-10ader AtTIDULESc.ccoveueucrereieieeecceie e enas 334
client-container SUDEIEMENLScoceuevieereeeieieiriniicce et eeenes 336
client-container AtIDULEScccccceeeeieieeccieeieeeeeeesse et eas 336
client-container Properties ... 336
client-credential SUDElEMENtcccoviiiieeeieirieirieceeeete s 337
client-credential attriDULESccccceeeeeeereieeieeiseeeee et eseas 337
CMP SUDEIEMENTSvviveieiieeetereteteeeeeete ettt ettt ettt ae s eseseseneaes 338
cmp-field-mapping SUbelements........cccocivieeiririeiereeecceeeeeeee e 338
CMP-reSoUrCe SUDEIEMENTSc.oueveveeiceeeieeeeeeeeeee et enenens 339
cmr-field-mapping SUDEIEMENTScccuiiieieviieretcreeceeeeee e 340
CoOlumMN-Pair SUDEIEMENLScoccuevivereieiieccetee et 341
CONSIiStENCY SUDELEMENTSooveeeeieeeeeeececeecee et eenene 342
constraint-field SUDEIEMENLScccooieiieeeeieieieieiecse e 343
constraint-field AtIDULEScccceeeeeeeeceeeete et 344

Sun Java System Application Server Enterprise Edition 8.2 Developer's Guide - March 2009

Tables

TABLE A-35
TABLE A-36
TABLE A-37
TABLE A-38
TABLE A-39
TABLE A-40
TABLE A-41
TABLE A-42
TABLE A-43
TABLE A-44
TABLE A-45
TABLE A-46
TABLE A-47
TABLE A-48
TABLE A-49
TABLE A-50
TABLE A-51
TABLE A-52
TABLE A-53
TABLE A-54
TABLE A-55
TABLE A-56
TABLE A-57
TABLE A-58
TABLE A-59
TABLE A-60
TABLE A-61
TABLE A-62
TABLE A-63
TABLE A-64
TABLE A-65
TABLE A-66
TABLE A-67
TABLE A-68
TABLE A-69

TABLE A-70

constraint-field-value AtriDULESocooieeceieieieeee et 345
cookie-properties Subelements...... ... 346
cookie-properties Properties ... 346
default-helper SUDEIEMENLSccoeveveveeeiiieeeeereeeeeee et 348
default-helper Properties ... 348
default-resource-principal Subelementscccococveerirreeereerererereeeeeneenans 349
€D SUDELEIMENTS ...ttt enean 350
€D ALETIDULES ...ttt ettt neae e ne e enenn 353
€D -ref SUDEIEIMENTScvovieeeieeeeeeeeeeee ettt nens 354
enterprise-beans SUDEIEMENtSccoovvviieeeicrieiieceeeeee e 356
entity-mapping SUDEIEMENLSccoevevivevieiiiieerecee e 357
fetched-with SUDEIEMENLScccoceveveiriiieecee e 359
FiNder SUDEIEMENLS ...c.eovivereieiieecee ettt b s 360
flush-at-end-of-method Subelementscccceeeeieeeeeererereeeeceee e 360
9en-classes SUDEIEMENTScceveveverereeeeeieeeeeete et 361
idempotent-url-pattern AtriDULESccooeveveviiieiererereeeeeeee e 362
ior-security-config Subelementsccooooeivieeieeeeeieeeeeeeeeeee e 364
java-method SUDEIEMENTSccoeveviieeiicceceecte et 365
JSP-CONTig SUDEIEMENLTS ...cooueivrereteteeeeeeeeeeeeetetcteeee ettt nnene 367
JSP-CONTigPrOPErties ... 367
KEY - FLETA ALETIDULES ...ttt enene 370
locale-charset-inTo SUDEIEMENLScccovoeeeueveieieiriieceeete s 372
locale-charset-inTo AttrIDULEScccceeeeereeeecrereieieeeee et 372
locale-charset-map SUDEIEMENLSc.coveveeeveeeeeereeieerceeeeeee e 372
locale-charset-map AtIDULES ...c.oocvievveeeieeeeeceece e 373
Example agent Attribute VAlUes ... 373
10g-5€rvVice SUDEIEMENToevveereeieeeceeceeeeeeeee et 374
10g-SErViCeatIIIDULES ..vovivieieieiietetetctceceee ettt e 375
10gin-config SUDEIEMENTScocvevevevivieieiieeeereretcceee ettt enee 375
manager-properties SUbelementscooceeeerereeeieieieee e 376
manager-properties Properties ... iinnneeceeeneeeneeneenene 376
mdb-connection-factory Subelementsccccocveeieireeiererereeeeeeeeeeeeveeene 379
mdb-resource-adapter subelementsccoooveveeeiereieieieeeeeeee e 379
MESSAGE SUDELEIMENTSo.vveeieeteeeeeee ettt enenes 380
message-destination SUbElEMENtSccoovieiererevereeiieieeee e 380
message-security SUDElEMENtScccveiivevevereeeeeeeee et 381

25

Tables

26

TABLE A-71
TABLE A-72
TABLE A-73
TABLE A-74
TABLE A-75
TABLE A-76
TABLE A-77
TABLE A-78
TABLE A-79
TABLE A-80
TABLE A-81
TABLE A-82
TABLE A-83
TABLE A-84
TABLE A-85
TABLE A-86
TABLE A-87
TABLE A-88
TABLE A-89
TABLE A-90
TABLE A-91
TABLE A-92
TABLE A-93
TABLE A-94
TABLE A-95
TABLE A-96
TABLE A-97
TABLE A-98
TABLE A-99
TABLE A-100
TABLE A-101
TABLE A-102
TABLE A-103
TABLE A-104
TABLE A-105

TABLE A-106

message-security-binding Subelementsccccccooeirieerereeieieeeeeeieeeeseenns 382
message-security-binding AttriDULESocccoceeieeeeeirieeerereeeeeee e 382
message-security-config Subelementscoveveeeeiveeveveveeeeeeeeeeeeeeeennns 383
message-security-config AtriDULES ..o 383
Method SUDEIEMENTScocveeieieiecieieie et 383
method-params SUDEIEMENLSc.cceeveerercuereieiieeeee et 385
one-one-finders SUDElemMENtsccccvruririieeieieirirreeeeee s 387
parameter-encoding AtIriDULEScccooeevevieeereeeecceeeeeeeee e 388
POrt-inTo SUDELEIMENTS ...c.oevevieiieeieeteeececteeeeeeee e eenene 391
prefetch-disabled SUDEIEMENTScccovevevevieeiieierieeeceeeeeeee e 392
Principal SUDEIEMENTSooiiveeeiieeieieeeteeeceeeeeee ettt nenene 392
Property SUDEIEIMENTSc.oovevieieeeiieeceeeectcecee ettt esnens 393
PropPerty AtEITDULES ..ccvcieievevereteteeeeieee ettt ettt aeaas 393
Property SUDEIEIMENTScceveuiueiiieeetetete ettt seseaeaas 394
provider-config SUDEIEMENTSccceueveveiieeereiereecteeeeeee e 395
provider-config AtIIDULEScocovveveveerieeeeeeetereeeteeeeeee e eaeaas 395
query-method Subelements

refresh-field Attributes......

request-policy Attributes

request-protection AtriDULEScciveveieeeeeeereeeeeeeee e 401
resource-env-ref SUDElEMENtScccveveeeniriririeee e 403
resource-ref SUDEIEMENTScccccueiriieieeeeeiee e 404
response-policy AtIDULES ..occceverevceiieeeeeeteeec ettt 405
response-protection AtribULEScooeieieeiereceeceeeee s 406
55 - CONTEXT SUDEIEMENLSocevvicrieiicccee et eseas 407
schema-generator-properties Subelementsccccocoeveveveveeeeeeereeererereennes 408
schema-generator-properties Propertiesccicnninnnnnicncncnenes 408
schema-generator-properties Column Attributescocoeeeeierevererererennne. 408
secondary table SUDEIEMENLScceeieieeerereretceeeeeeeeeee et 409
SECUTrity SUDEIEMENTScvoeevieiiceieeteeeceeeeeeeeeee et neaens 410
security-role-mapping SUDElEMENtScccoevveveeieveviiceeeeeeeeee e 410
service-qname SUDEIEMENTSc.cccvvvevevevevieieeeeeeeecteteeeeeee et 412
Service-ref SUDEIEMENLSc.cccueveveveiiieceeete ettt 412
SEIVLET SUDEIEMENLES ...vvviececceieie ettt sens 413
5€5510N-CoNTig SUDEIEMENTS ...c.coviverereteeeteeeeeeee e 414
S€5510N-Manager SUDEIEMENTSc.cveveveveeiiieeeeerereteteeese e seaeas 415

Sun Java System Application Server Enterprise Edition 8.2 Developer's Guide - March 2009

Tables

TABLE A-107
TABLE A-108
TABLE A-109
TABLE A-110
TABLE A-111
TABLE A-112
TABLEA-113
TABLEA-114
TABLE A-115
TABLEA-116
TABLE A-117
TABLEA-118
TABLE A-119
TABLE A-120
TABLE A-121
TABLE A-122
TABLE A-123
TABLE A-124
TABLE A-125
TABLE A-126
TABLE A-127
TABLE A-128

TABLE A-129

SeSSion-manager AtIIDULEScccvevevevereeeeeeeee et

session-properties SUbEleMENtScccocoeereiereieeeeeereretee e

session-properties Properties ...

sslattributes

store-properties SUDEIEMENtScoooiicerevereieieecee et

store-properties PrOPerties ...

Stub-property SUDEIEMENLSccoovvvevevererereteeeeeeeeeetetetee et

sun-application SUDEIEMENTSccoovieiereiereeieereeeeeeeee et

sun-application-client subelements

SUN-CMP-MaPPing SUDEIEMENTSooveveverereteeeeieceeeeeeteteteeeee et

Sun-cmp-mappings SUDEIEMENLScoeeveveierieieeteeeeeeeeeeteeeeeee e eenene

SUN-€7D-Far SUDELEMENTS ...c.cveeeeieiiceieececcee et enne

SUN-Web-app SUDEIEMENLSccveveveiiieccctere et

sun-web-app Attributes

sun-web-app Properties

target-server SubelemMentscccoeieveeiereiereeiereee e

target-serverattribULES ...t

timeout Attributes

transport-config SUDElemMENtSsc.coooeveveieveeiereeereeeeeeeeeeee e

web Subelements

webservice-descriptionsubelements

webservice-endpoint SUDElEMENtSccccveveveveeieveveieeeeeeeeeeeee e

wsdl-port subelements

27

28

Examples

EXAMPLE 8-1
EXAMPLE 8-2
EXAMPLE 8-3
EXAMPLE 16-1
EXAMPLE 16-2
EXAMPLE 16-3
EXAMPLE 16-4
EXAMPLE 16-5
EXAMPLE 16-6
EXAMPLE 16-7
EXAMPLE 16-8
EXAMPLE 16-9
EXAMPLE 16-10
EXAMPLE 16-11
EXAMPLE 16-12
EXAMPLE 16-13

EXAMPLE 16-14

Client Load Balancing and FailOVercccocveeecuninecrnernecenerniencnneeseenesnesenne

Client Load Balancing and FailoVer ...

Client Load Balancing and Failover ..o

Connecting to the DAS

Starting an APpliCation SEIVETc.cccueuiuriuriereineirereeeisiseeieesesseesesessenesesenans

Obtaining a Named J2EE server instance

Uploading an archive ..
Deploying anarchive ..

Displaying the AMX MBean Hierarchycccccveeevcunenercrnernecrnenneenenneenenenne
Setting MoONitoring States ...
Accessing AMX MBEANS ..ot

Accessing and Displaying the Attributes of an AMX MBean

Listing AMX MBean Properties ...

Querying and displaying wild cardscccveveninervcniccnreeseeeeennes

Querying ...

Monitoring Attribute Changes ...,

Undeploying Modules

29

30

Preface

This Developer's Guide describes how to create and run Java™ 2 Platform, Enterprise Edition
(J2EE™ platform) applications that follow the open Java standards model for J2EE components
and APIs in the Sun Java System Application Server environment. Topics include developer
tools, security, debugging, and creating lifecycle modules. This book is intended for use by

software developers who create, assemble, and deploy J2EE applications using Sun Java System
servers and software.

This preface contains information about and conventions for the entire Sun Java System
Application Server documentation set.

Application Server Documentation Set

The Application Server documentation set describes deployment planning and system
installation. The Uniform Resource Locator (URL) for stand-alone Application Server
documentation is http://docs.sun.com/app/docs/coll/1310. 4. The URL for Sun Java
Enterprise System (Java ES) Application Server documentation is
http://docs.sun.com/app/docs/coll/1310.3. For an introduction to Application Server,
refer to the books in the order in which they are listed in the following table.

TABLEP-1 Books in the Application Server Documentation Set

BookTitle

Description

Release Notes

Late-breaking information about the software and the documentation. Includes a
comprehensive, table-based summary of the supported hardware, operating system, Java
Development Kit (JDK™), and database drivers.

Quick Start Guide

How to get started with the Application Server product.

Installation Guide

Installing the software and its components.

Deployment Planning Guide

Evaluating your system needs and enterprise to ensure that you deploy the Application Server

in a manner that best suits your site. General issues and concerns that you must be aware of
when deploying the server are also discussed.

31

http://docs.sun.com/app/docs/coll/1310.4
http://docs.sun.com/app/docs/coll/1310.3

Preface

TABLEP-1 Books in the Application Server Documentation Set (Continued)
BookTitle Description
Developer’s Guide Creating and implementing Java 2 Platform, Enterprise Edition (J2EE platform) applications

intended to run on the Application Server that follow the open Java standards model for J2EE
components and APIs. Includes information about developer tools, security, debugging,
deployment, and creating lifecycle modules.

J2EE 1.4 Tutorial

Using J2EE 1.4 platform technologies and APIs to develop J2EE applications.

Administration Guide

Configuring, managing, and deploying Application Server subsystems and components from
the Administration Console.

High Availability Administration
Guide

Post-installation configuration and administration instructions for the high-availability
database.

Administration Reference

Editing the Application Server configuration file, domain. xml.

Upgrade and Migration Guide

Migrating your applications to the new Application Server programming model, specifically
from Application Server 6.x and 7. This guide also describes differences between adjacent
product releases and configuration options that can result in incompatibility with the product
specifications.

Performance Tuning Guide

Tuning the Application Server to improve performance.

Troubleshooting Guide

Solving Application Server problems.

Error Message Reference

Solving Application Server error messages.

Reference Manual

Utility commands available with the Application Server; written in man page style. Includes
the asadmin command line interface.

Related Documentation

Application Server can be purchased by itself or as a component of Java ES, a software
infrastructure that supports enterprise applications distributed across a network or Internet
environment. If you purchased Application Server as a component of Java ES, you should be
familiar with the system documentation at http://docs.sun.com/coll/1286.3. The URL for
all documentation about Java ES and its components is
http://docs.sun.com/prod/entsys.5.

For other Sun Java System server documentation, go to the following:

= Message Queue documentation
= Directory Server documentation
= Web Server documentation

Additionally, the following resources might be useful:

= TheJ2EE 1.4 Specifications (http://java.sun.com/j2ee/1.4/docs/index.html)

32 Sun Java System Application Server Enterprise Edition 8.2 Developer's Guide - March 2009

http://docs.sun.com/coll/1286.3
http://docs.sun.com/prod/entsys.5
http://java.sun.com/j2ee/1.4/docs/index.html

Preface

m TheJ2EE 1.4 Tutorial
(http://java.sun.com/j2ee/1.4/docs/tutorial/doc/index.html)
® TheJ2EE Blueprints (http://java.sun.com/reference/blueprints/index.html)

Default Paths and File Names

The following table describes the default paths and file names that are used in this book.

TABLEP-2 Default Paths and File Names

Placeholder Description Default Value
install-dir Represents the base installation directory for Sun Java Enterprise System (Java ES) installations on the
Application Server. Solaris™ platform:

/opt/SUNWappserver/appserver

Java ES installations on the Linux platform:
/opt/sun/appserver/

Other Solaris and Linux installations, non-root user:
user’s home directory/SUNWappserver

Other Solaris and Linux installations, root user:
/opt/SUNWappserver

Windows, all installations:

SystemDrive:\Sun\AppServer

domain-root-dir Represents the directory containing all domains. | Java ES installations on the Solaris platform:
/var/opt/SUNWappserver/domains/

Java ES installations on the Linux platform:
/var/opt/sun/appserver/domains/

All other installations:

install-dir/domains/

domain-dir Represents the directory for a domain. domain-root-dir/domain-dir

In configuration files, you might see domain-dir
represented as follows:

${com.sun.aas.instanceRoot}

instance-dir Represents the directory for a server instance. domain-dir/instance-dir

33

http://java.sun.com/j2ee/1.4/docs/tutorial/doc/index.html
http://java.sun.com/j2ee/1.4/docs/tutorial/doc/index.html
http://java.sun.com/reference/blueprints/index.html

Preface

Typographic Conventions

The following table describes the typographic changes that are used in this book.

TABLEP-3 Typographic Conventions

Typeface Meaning Example
AaBbCc123 The names of commands, files, and Edit your .login file.
directories, and onscreen computer .
Use s -a to list all files.
output
machine name% you have mail.
AaBbCc123 What you type, contrasted with onscreen machine_name% su
computer output
Password:
AaBbCc123 A placeholder to be replaced with a real The command to remove a file is rm filename.
name or value
AaBbCcl23 Book titles, new terms, and terms to be Read Chapter 6 in the User's Guide.

emphasized (note that some emphasized
items appear bold online)

A cacheis a copy that is stored locally.

Do not save the file.

Symbol Conventions

34

The following table explains symbols that might be used in this book.

TABLEP-4 Symbol Conventions

Symbol Description Example Meaning
[1 Contains optional arguments 1s [-1] The -1 option is not required.
and command options.

{3} Contains a set of choices fora -d {y|n}
required command option.

${ } Indicates a variable

reference.

- Joins simultaneous multiple ~ Control-A
keystrokes.

+ Joins consecutive multiple Ctrl+A+N
keystrokes.

${com.sun.javaRoot}

The -d option requires that you use
either the y argument or the n
argument.

References the value of the
com.sun.javaRoot variable.

Press the Control key while you press
the A key.

Press the Control key, release it, and
then press the subsequent keys.

Sun Java System Application Server Enterprise Edition 8.2 Developer's Guide - March 2009

Preface

TABLEP-4 Symbol Conventions (Continued)
Symbol Description Example Meaning
- Indicates menu item File — New — Templates From the File menu, choose New.
selection in a graphical user From the New submenu, choose
interface. Templates.

Documentation, Support, and Training

The Sun web site provides information about the following additional resources:

® Documentation (http://www.sun.com/documentation/)
= Support (http://www.sun.com/support/)
= Training (http://www.sun.com/training/)

Searching Sun Product Documentation

Besides searching Sun product documentation from the docs.sun.com®™ web site, you can use a
search engine by typing the following syntax in the search field:

search-term site:docs.sun.com
For example, to search for “broker,” type the following:
broker site:docs.sun.com

To include other Sun web sites in your search (for example, java.sun.com, www.sun.com, and
developers.sun.com), use sun. comin place of docs. sun. comin the search field.

Third-Party Web Site References

Third-party URLs are referenced in this document and provide additional, related information.

Note - Sun is not responsible for the availability of third-party web sites mentioned in this
document. Sun does not endorse and is not responsible or liable for any content, advertising,
products, or other materials that are available on or through such sites or resources. Sun will not
be responsible or liable for any actual or alleged damage or loss caused or alleged to be caused by
or in connection with use of or reliance on any such content, goods, or services that are available
on or through such sites or resources.

35

http://www.sun.com/documentation/
http://www.sun.com/support/
http://www.sun.com/training/
http://java.sun.com
http://www.sun.com
http://developers.sun.com

Preface

Sun Welcomes Your Comments

Sun is interested in improving its documentation and welcomes your comments and
suggestions. To share your comments, go to http://docs.sun.comand click Send Comments.
In the online form, provide the full document title and part number. The part number is a
7-digit or 9-digit number that can be found on the book's title page or in the document's URL.
For example, the part number of this book is 819-4734.

36 Sun Java System Application Server Enterprise Edition 8.2 Developer's Guide « March 2009

http://docs.sun.com

PART I

Developing and Deploying Applications

37

38

L K R 4 CHAPTER 1

Setting Up a Development Environment

This chapter gives guidelines for setting up an application development environment in the Sun
Java™ System Application Server. Setting up an environment for creating, assembling,
deploying, and debugging your code involves installing the mainstream version of the
Application Server and making use of development tools. In addition, sample applications are
available. These topics are covered in the following sections:

“Installing and Preparing the Server for Development” on page 39
“High Availability Features” on page 40

“Tools” on page 40

“Sample Applications” on page 43

Installing and Preparing the Server for Development

For the Sun Java Enterprise System, Application Server installation is part of the system
installation process. For more information, see
http://www.sun.com/software/javaenterprisesystem/index.html.

For more information about stand-alone Application Server installation, see the Sun Java
System Application Server Enterprise Edition 8.2 Installation Guide.

The following components are included in the full installation.

= Application Server core, including:

J2EE 1.4 compliant application server
Administration Console

asadmin utility

deploytool

Other development and deployment tools
Sun Java System Message Queue software
= J2SE1.4.2

39

http://www.sun.com/software/javaenterprisesystem/index.html
http://docs.sun.com/doc/819-4732
http://docs.sun.com/doc/819-4732

High Availability Features

= Java DB database, based on the Derby database from Apache
(http://db.apache.org/derby/manuals)
= The High-Availability Database (HADB)
= Load balancer plug-ins for web servers
» JDK

= Sample Applications

The NetBeans IDE bundles the Platform Edition of the Application Server, so information
about this IDE is provided as well.

After you have installed Application Server, you can further optimize the server for
development in these ways:

= Locate utility classes and libraries so they can be accessed by the proper classloaders. For
more information, see “Using the System Classloader” on page 80 or “Using the Common
Classloader” on page 80.

= Set up debugging. For more information, see Chapter 4, “Debugging Applications”

= Configure the Java Virtual Machine (JVM™) software. For more information, see the Sun
Java System Application Server Enterprise Edition 8.2 Administration Guide.

High Availability Features

Tools

40

High availability features such as load balancing and session failover are discussed in detail in
the Sun Java System Application Server Enterprise Edition 8.2 High Availability Administration
Guide. This Developer's Guide describes the following features in the following sections:

= For information about HTTP session persistence, see “Distributed Sessions and Persistence”
on page 148.

= For information about checkpointing of the stateful session bean state, see “Stateful Session
Bean Failover” on page 168.

= For information about failover and load balancing for Java clients, see Chapter 8,
“Developing Java Clients”

= For information about load balancing for message-driven beans, see “Load-Balanced
Message Inflow” on page 271.

The following general tools are provided with the Application Server:

= “The asadmin Command” on page 41
® “The Administration Console” on page 41

The following development tools are provided with the Application Server or downloadable
from Sun:

Sun Java System Application Server Enterprise Edition 8.2 Developer's Guide - March 2009

http://db.apache.org/derby/manuals
http://db.apache.org/derby/manuals
http://docs.sun.com/doc/819-4733
http://docs.sun.com/doc/819-4733
http://docs.sun.com/doc/819-4740
http://docs.sun.com/doc/819-4740

Tools

“NetBeans IDE” on page 41
“The asant Utility” on page 41
“deploytool” on page 42
“Verifier” on page 42
“Migration Tool” on page 42

The following third-party tools might also be useful:

= “Debugging Tools” on page 42
= “Profiling Tools” on page 42

The asadmin Command

The asadmin command allows you to configure a local or remote server and perform both
administrative and development tasks at the command line. For general information about
asadmin, see the Sun Java System Application Server Enterprise Edition 8.2 Reference Manual.

The asadmin command is located in the install-dir/bin directory. Type asadmin help for a list
of subcommands.

The Administration Console

The Administration Console lets you configure the server and perform both administrative and
development tasks using a web browser. For general information about the Administration
Console, see the Sun Java System Application Server Enterprise Edition 8.2 Administration
Guide.

To access the Administration Console, type https://host: 4849 in your browser. The host is the
name of the machine on which the Application Server is running.

NetBeans IDE

The NetBeans™ IDE (integrated development environment) allows you to create, assemble, and
debug code from a single, easy-to-use interface. The Platform Edition of the Application Server
is bundled with the NetBeans 5 IDE. For more information about using the NetBeans IDE, see
http://www.netbeans.org.

The asant Utility

Apache Ant 1.6.5 is provided with the Application Server and can be launched from the bin
directory using the command asant. The Application Server also provides server-specific tasks

Chapter 1 « Setting Up a Development Environment 41

http://docs.sun.com/doc/819-4736
http://docs.sun.com/doc/819-4733
http://docs.sun.com/doc/819-4733
http://www.netbeans.org

Tools

42

for deployment; see “asant Assembly and Deployment Tool” on page 97. The sample
applications provided with the Application Server use Ant build.xml files; see “Sample
Applications” on page 43.

For more information about Ant, see the Apache Software Foundation web site at
http://ant.apache.org/.

deploytool

You can use the deploytool, provided with Application Server, to assemble J2EE applications
and modules, configure deployment parameters, perform simple static checks, and deploy the
final result. For more information about using the deploytool, see the J2EE 1.4 Tutorial at
http://java.sun.com/j2ee/1.4/docs/tutorial/doc/index.html.

Verifier

The verifier tool checks a J2EE application file (EAR, JAR, WAR, RAR), including Java classes
and deployment descriptors, for compliance with J2EE specifications. Use it to check whether
an application has compliance bugs and to make applications portable across application
servers. The verifier can be launched from the deploytool or from the command line. For more
information, see “The Deployment Descriptor Verifier” on page 83.

Migration Tool

The Migration Tool converts and reassembles Java EE applications and modules developed on
other application servers. This tool also generates a report listing how many files are
successfully and unsuccessfully migrated, with reasons for migration failure. For more
information and to download the Migration Tool, see
http://java.sun.com/j2ee/tools/migration/index.html.

For additional information on migration, see the Sun Java System Application Server Enterprise
Edition 8.2 Upgrade and Migration Guide.

Debugging Tools

You can use several debuggers with the Application Server. For more information, see
Chapter 4, “Debugging Applications.”

Profiling Tools

You can use several profilers with the Application Server. For more information, see “Profiling”
on page 131.

Sun Java System Application Server Enterprise Edition 8.2 Developer's Guide - March 2009

http://ant.apache.org/
http://java.sun.com/j2ee/1.4/docs/tutorial/doc/index.html
http://java.sun.com/j2ee/tools/migration/index.html
http://docs.sun.com/doc/819-4737
http://docs.sun.com/doc/819-4737

Sample Applications

Sample Applications

Sample applications that you can examine and deploy are included with the full installation of
the Application Server. You can also download these samples separately if you installed the
Application Server without them initially.

If installed with the Application Server, the samples are in the install-dir/samples directory.
The samples are organized in categories such as ejb, jdbc, connectors, 118n, and so on. Each
sample category is further divided into subcategories. For example, under the ejb category are
stateless, stateful, security, mdb, bmp, and cmp subcategories.

Most Application Server samples have the following directory structure:

= The docs directory contains instructions for how to use the sample.

= Thebuild.xml file defines asant targets for the sample (see “asant Assembly and
Deployment Tool” on page 97.

= Thebuild and javadocs directories are generated as a result of targets specified in the
build.xml file.

= The src/java directory under each component contains source code for the sample.

= The src/conf directory under each component contains the deployment descriptors.

With a few exceptions, sample applications follow the standard directory structure described
here: http://java.sun.com/blueprints/code/projectconventions.html.

The install-dir/samples/common-ant . xml file defines properties common to all sample
applications and implements targets needed to compile, assemble, deploy and undeploy sample
applications. In most sample applications, the build.xml file includes common-ant . xmtl.

For a detailed description of the helloworld sample and how to deploy and run it, see the
associated documentation at:

install-dir/samples/ejb/stateless/apps/simple/docs/index.html

After you deploy the helloworld sample in Application Server, you can invoke it using the
following URL:

http://server:port/helloworld

Chapter 1 « Setting Up a Development Environment 43

http://java.sun.com/blueprints/code/projectconventions.html

44

L K R 4 CHAPTER 2

Securing Applications

This chapter describes how to write secure J2EE applications, which contain components that
perform user authentication and access authorization for servlets and EJB business logic. For
information about administrative security for the server, see the Sun Java System Application
Server Enterprise Edition 8.2 Administration Guide. For general information about J2EE
security, see the security chapter of the J2EE 1.4 Tutorial at
http://java.sun.com/j2ee/1.4/docs/tutorial/doc/index.html.

This chapter contains the following sections:

= “Security Goals” on page 45

= “Application Server Specific Security Features” on page 46
= “Container Security” on page 46

= “Realm Configuration” on page 48

“JACC Support” on page 51

“Pluggable Audit Module Support” on page 51

= “The server.policy File” on page 52

= “Configuring Message Security” on page 54

= “Programmatic Login” on page 62

= “User Authentication for Single Sign-on” on page 64
= “Defining Roles” on page 66

Security Goals

In an enterprise computing environment, there are many security risks. The goal of the Sun Java
System Application Server is to provide highly secure, interoperable, and distributed
component computing based on the J2EE security model. Security goals include:

= Full compliance with the J2EE security model (for more information, see the J2EE
specification, v1.4 Chapter 3 Security).

45

http://docs.sun.com/doc/819-4733
http://docs.sun.com/doc/819-4733
http://java.sun.com/j2ee/1.4/docs/tutorial/doc/index.html

Application Server Specific Security Features

Full compliance with the EJB v2.1 security model (for more information, see the Enterprise
JavaBean specification v2.1 Chapter 15 Security Management). This includes EJB role-based
authorization.

Full compliance with the Java Servlet v2.4 security model (for more information, see the Java
Servlet specification, v2.4 Chapter 11 Security). This includes servlet role-based
authorization.

Support for single sign-on across all Application Server applications within a single security
domain.

Support for message security.
Security support for application clients.

Support for several underlying authentication realms, such as simple file and LDAP.
Certificate authentication is also supported for SSL client authentication. For Solaris, OS
platform authentication is supported in addition to these.

Support for declarative security through Application Server specific XML-based role
mapping.

Support for JACC (Java Authorization Contract for Containers) pluggable authorization as
included in the J2EE 1.4 specification and defined by JSR-115.

Application Server Specific Security Features

The Application Server supports the J2EE v1.4 security model, as well as the following features
which are specific to the Application Server:

Message security; see “Configuring Message Security” on page 54

Single sign-on across all Application Server applications within a single security domain; see
“User Authentication for Single Sign-on” on page 64

Programmatic login; see “Programmatic Login” on page 62

A GUI-based deploytool for building XML files containing the security information; see
“deploytool” on page 42

Container Security

46

The component containers are responsible for providing J2EE application security. There are
two security forms provided by the container:

“Programmatic Security” on page 47
“Declarative Security” on page 47

Sun Java System Application Server Enterprise Edition 8.2 Developer's Guide - March 2009

Container Security

Programmatic Security

Programmatic security involves an EJB component or servlet using method calls to the security
API, as specified by the J2EE security model, to make business logic decisions based on the
caller or remote user’s security role. Programmatic security should only be used when
declarative security alone is insufficient to meet the application’s security model.

The J2EE specification, v1.4 defines programmatic security as consisting of two methods of the
EJB EJBContext interface and two methods of the servlet HttpServletRequest interface. The
Application Server supports these interfaces as specified in the specification.

For more information on programmatic security, see the following:

= Section 3.3.6, Programmatic Security, in the J2EE Specification, v1.4
= “Programmatic Login” on page 62

Declarative Security

Declarative security means that the security mechanism for an application is declared and
handled externally to the application. Deployment descriptors describe the J2EE application’s
security structure, including security roles, access control, and authentication requirements.

The Application Server supports the deployment descriptors specified by J2EE v1.4 and has
additional security elements included in its own deployment descriptors; see Appendix A,
“Deployment Descriptor Files” Declarative security is the application deployer’s responsibility.

There are two levels of declarative security, as follows:

= “Application Level Security” on page 47
= “Component Level Security” on page 47

Application Level Security

The application XML deployment descriptor (application.xml) contains descriptors for all
user roles for accessing the application’s servlets and EJB components. On the application level,
all roles used by any application container must be listed in a role-name element in this file. The
role names are scoped to the EJB XML deployment descriptors (ejb-jar.xml and
sun-ejb-jar.xml files) and to the servlet XML deployment descriptors (web.xml and
sun-web.xml files). The sun-application.xml file must also contain matching
security-role-mapping elements for each role-name used by the application.

Component Level Security

Component level security encompasses web components and EJB components.

A secure web container authenticates users and authorizes access to a servlet or JSP by using the
security policy laid out in the servlet XML deployment descriptors (web .xml and sun-web. xml

files).

Chapter2 - Securing Applications 47

Realm Configuration

The EJB container is responsible for authorizing access to a bean method by using the security
policy laid out in the EJB XML deployment descriptors (ejb-jar.xml and sun-ejb-jar.xml
files).

Realm Configuration

This section covers the following topics:

= “Supported Realms” on page 48

= “How to Configure a Realm” on page 48

= “How to Set a Realm for an Application or Module” on page 49
= “Creatinga Custom Realm” on page 49

Supported Realms

The following realms are supported in the Application Server:

= file- Stores user information in a file. This is the default realm when you first install the
Application Server.

= ldap - Stores user information in an LDAP directory.

= certificate - Sets up the user identity in the Application Server security context, and
populates it with user data obtained from cryptographically verified client certificates.

= solaris - Allows authentication using Solaris username+password data. This realm is only
supported on Solaris 9 and above.

For detailed information about configuring each of these realms, see the Sun Java System
Application Server Enterprise Edition 8.2 Administration Guide.

How to Configure a Realm

You can configure a realm in one of these ways:

= Inthe Administration Console, open the Security component under the relevant
configuration and go to the Realms page. For details, see the Sun Java System Application
Server Enterprise Edition 8.2 Administration Guide.

= Use the asadmin create-auth-realm command to configure realms on local servers. For
details, see the Sun Java System Application Server Enterprise Edition 8.2 Reference Manual.

48 Sun Java System Application Server Enterprise Edition 8.2 Developer's Guide « March 2009

http://docs.sun.com/doc/819-4733
http://docs.sun.com/doc/819-4733
http://docs.sun.com/doc/819-4733
http://docs.sun.com/doc/819-4733
http://docs.sun.com/doc/819-4736

Realm Configuration

How to Set a Realm for an Application or Module

The following deployment descriptor elements have optional realmor realm-name data
subelements or attributes that override the domain’s default realm:

sun-application elementin sun-application.xml
web-app element in web . xml

as-context elementin sun-ejb-jar.xml
client-container elementin sun-acc.xml
client-credential elementin sun-acc.xml

If modules within an application specify realms, these are ignored. If present, the realm defined
in sun-application.xml is used, otherwise the domain’s default realm is used.

For example, a realm is specified in sun-application.xml as follows:
<sun-application>

<realm>ldap</realm>
</sun-application>

For more information about the deployment descriptor files and elements, see Appendix A,
“Deployment Descriptor Files.”

Creating a Custom Realm

You can create a custom realm by providing a custom Java Authentication and Authorization
Service (JAAS) login module class and a custom realm class. Note that client-side JAAS login
modules are not suitable for use with the Application Server.

JAAS is a set of APIs that enable services to authenticate and enforce access controls upon users.
JAAS provides a pluggable and extensible framework for programmatic user authentication
and authorization. JAAS is a core API and is an underlying technology for Java EE security
mechanisms. For more information about JAAS, refer to the JAAS specification for Java SDK,
availableathttp://java.sun.com/products/jaas/.

For general information about realms and login modules, see the Security chapter of the J2EE
1.4 Tutorial (http://java.sun.com/j2ee/1.4/docs/tutorial/doc/index.html).

Custom login modules must extend the
com.sun.appserv.security.AppservPasswordLoginModule class. This class implements
javax.security.auth.spi.LoginModule. Custom login modules must not implement
LoginModule directly.

Custom login modules must provide an implementation for one abstract method defined in
AppservPasswordLoginModule:

Chapter2 - Securing Applications 49

http://java.sun.com/products/jaas/
http://java.sun.com/j2ee/1.4/docs/tutorial/doc/index.html
http://java.sun.com/j2ee/1.4/docs/tutorial/doc/index.html

Realm Configuration

50

abstract protected void authenticateUser() throws LoginException

This method performs the actual authentication. The custom login module must not
implement any of the other methods, such as login(), logout (), abort(), commit (), or
initialize().Defaultimplementations are provided in AppservPasswordLoginModule which
hook into the Application Server infrastructure.

The custom login module can access the following protected object fields, which it inherits from
AppservPasswordLoginModule. These contain the user name and password of the user to be
authenticated:

protected String _username;
protected String password;

The authenticateUser () method must end with the following sequence:

String[] grpList;

// populate grpList with the set of groups to which

// _username belongs in this realm, if any

return commitUserAuthentication(username, password,
_currentRealm, grpList);

Custom realms must extend the com. sun.appserv.security.AppservRealm class and
implement the following methods:

public void init(Properties props) throws BadRealmException,
NoSuchRealmException

This method is invoked during server startup when the realm is initially loaded. The props
argument contains the properties defined for this realm in domain.xml. The realm can do any
initialization it needs in this method. If the method returns without throwing an exception, the
Application Server assumes the realm is ready to service authentication requests. If an exception
is thrown, the realm is disabled.

public String getAuthType()

This method returns a descriptive string representing the type of authentication done by this
realm.

public abstract Enumeration getGroupNames(String username) throws
InvalidOperationException, NoSuchUserException

This method returns an Enumeration (of String objects) enumerating the groups (if any) to
which the given username belongs in this realm.

Sun Java System Application Server Enterprise Edition 8.2 Developer's Guide - March 2009

Pluggable Audit Module Support

JACC Support

JACC (Java Authorization Contract for Containers) is part of the J2EE 1.4 specification and
defined by JSR-115. JACC defines an interface for pluggable authorization providers. This
provides third parties with a mechanism to develop and plug in modules that are responsible for
answering authorization decisions during J2EE application execution. The interfaces and rules
used for developing JACC providers are defined in the JACC 1.0 specification.

The Application Server provides a simple file-based JACC-compliant authorization engine as a
default JACC provider. To configure an alternate provider using the Administration Console,
open the Security component under the relevant configuration, and select the JACC Providers
component. For details, see the Sun Java System Application Server Enterprise Edition 8.2
Administration Guide.

Pluggable Audit Module Support

Audit modules collect and store information on incoming requests (servlets, EJB components)
and outgoing responses. You can create a custom audit module. This section covers the
following topics:

= “Configuring an Audit Module” on page 51
= “The AuditModule Class” on page 51

Configuring an Audit Module

To configure an audit module, you can perform one of the following tasks:

= To specify an audit module using the Administration Console, open the Security
component under the relevant configuration, and select the Audit Modules component. For
details, see the Sun Java System Application Server Enterprise Edition 8.2 Administration
Guide.

= You can use the asadmin create-audit-module command to configure an audit module.
For details, see the Sun Java System Application Server Enterprise Edition 8.2 Reference
Manual.

The AuditModule Class

You can create a custom audit module by implementing a class that extends
com.sun.appserv.security.AuditModule. The AuditModule class provides default “no-op”
implementations for each of the following methods, which your custom class can override.

public void init(Properties props)

Chapter2 - Securing Applications 51

http://docs.sun.com/doc/819-4733
http://docs.sun.com/doc/819-4733
http://docs.sun.com/doc/819-4733
http://docs.sun.com/doc/819-4733
http://docs.sun.com/doc/819-4736
http://docs.sun.com/doc/819-4736

The server.policy File

This method is invoked during server startup when the audit module is initially loaded. The
props argument contains the properties defined for this module in domain.xml. The module
can do any initialization it needs in this method. If the method returns without throwing an
exception, the Application Server assumes the module realm is ready to service audit requests. If
an exception is thrown the module is disabled.

public void authentication(String user, String realm, boolean success)

This method is invoked when an authentication request has been processed by a realm for the
given user. The success flag indicates whether the authorization was granted or denied.

public void webInvocation(String user, HttpServletRequest req, String type,
boolean success)

This method is invoked when a web container call has been processed by authorization. The
success flag indicates whether the authorization was granted or denied. The req object is the
standard HttpServletRequest object for this request. The type string is one of
hasUserDataPermission or hasResourcePermission (see JSR-115).

public void ejbInvocation(String user, String ejb, String method, boolean
success)

This method is invoked when an EJB container call has been processed by authorization. The
success flag indicates whether the authorization was granted or denied. The ejb and method
strings describe the EJB component and its method that is being invoked.

The server.policy File

52

Each Application Server domain has its own standard J2SE policy file, located in
domain-dir/config. The file is named server.policy.

The Application Server is a J2EE 1.4 compliant application server. As such, it follows the
requirements of the J2EE specification, including the presence of the security manager (the Java
component that enforces the policy) and a limited permission set for J2EE application code.

This section covers the following topics:

= “Default Permissions” on page 52
= “Changing Permissions for an Application” on page 53

Default Permissions

Internal server code is granted all permissions. These are covered by the ALlPermission grant
blocks to various parts of the server infrastructure code. Do not modify these entries.

Sun Java System Application Server Enterprise Edition 8.2 Developer's Guide - March 2009

The server.policy File

Application permissions are granted in the default grant block. These permissions apply to all
code not part of the internal server code listed previously. The Application Server does not
distinguish between EJB and web module permissions. All code is granted the minimal set of
web component permissions (which is a superset of the EJB minimal set).

A few permissions above the minimal set are also granted in the default server.policy file.
These are necessary due to various internal dependencies of the server implementation. J2EE
application developers must not rely on these additional permissions.

One additional permission is granted specifically for using connectors. If connectors are not
used in a particular domain, you should remove this permission, because it is not otherwise
necessary.

Changing Permissions for an Application

The default policy for each domain limits the permissions of J2EE deployed applications to the
minimal set of permissions required for these applications to operate correctly. Do not add
extra permissions to the default set (the grant block with no codebase, which applies to all code).
Instead, add a new grant block with a codebase specific to the applications requiring the extra
permissions, and only add the minimally necessary permissions in that block.

If you develop multiple applications that require more than this default set of permissions, you
can add the custom permissions that your applications need. The com. sun.aas.instanceRoot
variable refers to the domain-dir. For example:

grant "file:${com.sun.aas.instanceRoot}/applications/j2ee-apps/-" { ... }
You can add permissions to stub code with the following grant block:
grant "file:${com.sun.aas.instanceRoot}/generated/-" { ... }

In general, you should add extra permissions only to the applications or modules that require
them, not to all applications deployed to a domain. For example:

grant "file:${com.sun.aas.instanceRoot}/applications/j2ee-apps/MyApp/-"{ ... }
For a module:

grant "file:${com.sun.aas.instanceRoot}/applications/j2ee-modules/MyModule/-" {

-}

Do not add extra permissions to the default set (the grant block with no codebase, which applies
to all code). Instead, add a new grant block with a codebase specific to the application requiring
the extra permissions, and only add the minimally necessary permissions in that block.

Chapter2 - Securing Applications 53

Configuring Message Security

Note - Do not add java.security.AllPermission to the server.policy file for application
code. Doing so completely defeats the purpose of the security manager, yet you still get the
performance overhead associated with it.

Asnoted in the J2EE specification, an application should provide documentation of the
additional permissions it needs. If an application requires extra permissions but does not
document the set it needs, contact the application author for details.

Asalast resort, you can iteratively determine the permission set an application needs by
observing AccessControlException occurrences in the server log. If this is not sufficient, you
can add the -Djava.security.debug=failure JVM option to the domain. For details, see the
Sun Java System Application Server Enterprise Edition 8.2 Administration Guide or the Sun Java
System Application Server Enterprise Edition 8.2 Administration Reference.

You can use the J2SE standard policytool or any text editor to edit the server.policy file. For
more information, see:

http://java.sun.com/docs/books/tutorial/securityl.2/tour2/index.html

For detailed information about the permissions you can set in the server.policy file, see:
http://java.sun.com/j2se/1.4/docs/guide/security/permissions.html

The Javadoc for the Permission class is at:

http://java.sun.com/j2se/1.4/docs/api/java/security/Permission.html

Configuring Message Security

54

In message security, security information is applied at the message layer and travels along with
the web services message. Web Services Security (WSS) in the SOAP layer is the use of XML
Encryption and XML Digital Signatures to secure SOAP messages. WSS profiles the use of
various security tokens including X.509 certificates, SAML assertions, and username/password
tokens to achieve this.

Message layer security differs from transport layer security in that message layer security can be
used to decouple message protection from message transport so that messages remain
protected after transmission, regardless of how many hops they travel on.

For more information about message security, see the following:

» The J2EE 1.4 Tutorial chapter titled Security, which can be viewed from
http://java.sun.com/j2ee/1.4/docs/tutorial/doc/index.html

» The Sun Java System Application Server Enterprise Edition 8.2 Administration Guide chapter
titled Configuring Message Security

Sun Java System Application Server Enterprise Edition 8.2 Developer's Guide - March 2009

http://docs.sun.com/doc/819-4733
http://docs.sun.com/doc/819-4735
http://docs.sun.com/doc/819-4735
http://java.sun.com/docs/books/tutorial/security1.2/tour2/index.html
http://java.sun.com/j2se/1.4/docs/guide/security/permissions.html
http://java.sun.com/j2se/1.4/docs/api/java/security/Permission.html
http://java.sun.com/j2ee/1.4/docs/tutorial/doc/index.html
http://docs.sun.com/doc/819-4733

Configuring Message Security

= The Oasis Web Services Security (WSS) specification at http://docs.oasis-open.org/
wss/2004/01/0asis-200401-wss-soap-message-security-1.0.pdf

The following web services security topics are discussed in this section:

= “Message Security Responsibilities” on page 55
= “Application-Specific Message Protection” on page 56
= “Understanding and Running the Example Application” on page 59

Message Security Responsibilities

Message security responsibilities are assigned to the following:

= “Application Developer” on page 55
= “Application Deployer” on page 55
= “System Administrator” on page 56

Application Developer

The application developer can implement message security, but is not responsible for doing so.
Message security can be set up by the System Administrator so that all web services are secured,
or set up by the Application Deployer when the Application Server provider configuration is
insufficient.

The application developer is responsible for the following:

= Determining if an application-specific policy is necessary for an application. If so, ensure
that policy is satisfied at application assembly, or communicate the requirement for
application-specific message security to the Application Deployer, or take care of
implementing the application-specific policy.

= Determining if message security is necessary at the Application Server level. If so, ensure
that need is communicated to the System Administrator, or take care of implementing
message security at the Application-Server level.

Application Deployer
The application deployer is responsible for:

= Securing the application if it has not been appropriately secured by upstream roles (the
developer or assembler) and only if an application-specific policy is appropriate for the
application.

= Implementing application-specific security by adding the message security binding to the
web service endpoint.

= Modifying Sun-specific deployment descriptors to add message binding information.

Chapter2 - Securing Applications 55

http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-soap-message-security-1.0.pdf
http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-soap-message-security-1.0.pdf

Configuring Message Security

56

These security tasks are discussed in “Application-Specific Message Protection” on page 56. An
example application using message security is discussed in “Understanding and Running the
Example Application” on page 59.

System Administrator

The system administrator is responsible for:

= Configuring message security providers on the Application Server.
= Managing user databases.
= Managing keystore and truststore files.

= Configuring a Java Cryptography Extension (JCE) provider if using Encryption and
running a version of the Java SDK prior to version 1.5.0.

= Installing the samples server in order to work with the example message security
applications.

A system administrator uses the Admin Console or the asadmin tool to manage server security
settings and keytool to manage certificates. System administrator tasks are discussed in the
Configuring Message Security chapter of the Sun Java System Application Server Enterprise
Edition 8.2 Administration Guide.

Application-Specific Message Protection

When the Application Server provided configuration is insufficient for your security needs, and
you want to override the default protection, you can apply application-specific message security
to a web service.

Application-specific security is implemented by adding the message security binding to the web
service endpoint, whether it is an EJB or servlet web service endpoint. Modify Sun-specific XML
files to add the message binding information.

For more details on message security binding for EJB web services, servlet web services, and
clients, see the XML file descriptions in Appendix A, “Deployment Descriptor Files”

= Forsun-ejb-jar.xml, see “The sun-ejb-jar.xml File” on page 310.
= For sun-web.xml, see “The sun-web.xml File” on page 307.
= Forsun-application-client.xml, see “The sun-application-client.xml file” on page 319.

This section contains the following topics:

= “Using a Signature to Enable Message Protection for All Methods” on page 57
= “Configuring Message Protection For a Specific Method Based on Digital Signatures” on
page 58

Sun Java System Application Server Enterprise Edition 8.2 Developer's Guide - March 2009

http://docs.sun.com/doc/819-4733
http://docs.sun.com/doc/819-4733

Configuring Message Security

Using a Signature to Enable Message Protection for All Methods

To enable message protection for all methods using digital signature, update the
message-security-binding element for the EJB web service endpoint in the application’s
sun-ejb-jar.xml file. In this file, add request-protection and response-protection
elements, which are analogous to the request-policy and response-policy elements
discussed in the Configuring Message Security chapter of the Sun Java System Application Server
Enterprise Edition 8.2 Administration Guide. In order to apply the same protection mechanisms
for all methods, leave the method-name element blank. “Configuring Message Protection For a
Specific Method Based on Digital Signatures” on page 58 discusses listing specific methods or
using wildcard characters.

This section uses the sample application discussed in “Understanding and Running the
Example Application” on page 59 to apply application-level message security in order to show
only the differences necessary for protecting web services using various mechanisms.

To enable message protection for all methods using digital signature

In a text editor, open the application’s sun-ejb-jar.xml file.

For the xms example, this file is located in the directory install-dir
/samples/webservices/security/ejb/apps/xms/xms-ejb/src/conf.

Modify the sun-ejb-jar.xml file by adding the message-security-binding element as
shown:
<sun-ejb-jar>
<enterprise-beans>
<unique-id>1l</unique-id>
<ejb>
<ejb-name>HelloWorld</ejb-name>
<jndi-name>HelloWorld</jndi-name>
<webservice-endpoint>
<port-component-name>HelloIF</port-component-name>
<endpoint-address-uri>service/HelloWorld</endpoint-address-uri>
<message-security-binding auth-layer="SOAP">
<message-security>
<request-protection auth-source="content" />
<response-protection auth-source="content"/>
</message-security>
</message-security-binding>
</webservice-endpoint>
</ejb>
</enterprise-beans>
</sun-ejb-jar>

Compile, deploy, and run the application as described in “To Run the Sample Application”on
page 60.

Chapter2 - Securing Applications 57

http://docs.sun.com/doc/819-4733
http://docs.sun.com/doc/819-4733

Configuring Message Security

Configuring Message Protection For a Specific Method Based on Digital
Signatures

To enable message protection for a specific method, or for a set of methods that can be
identified using a wildcard value, follow these steps. As in the example discussed in “Using a
Signature to Enable Message Protection for All Methods” on page 57, to enable message
protection for a specific method, update the message-security-binding element for the EJB
web service endpoint in the application’s sun-ejb-jar.xml file. To this file, add
request-protectionand response-protection elements, which are analogous to the
request-policy and response-policy elements discussed in the Configuring Message Security
chapter of the Sun Java System Application Server Enterprise Edition 8.2 Administration Guide.
The Administration Guide includes a table listing the set and order of security operations for
different request and response policy configurations.

This section uses the sample application discussed in “Understanding and Running the
Example Application” on page 59 to apply application-level message security in order to show
only the differences necessary for protecting web services using various mechanisms.

¥ To enable message protection for a particular method or set of
methods using digital signature

1 Inatexteditor, open the application’s sun-ejb-jar.xml file.

For the xms example, this file is located in the directory
install-dir/samples/webservices/security/ejb/apps/xms/xms-ejb/src/conf.

2 Modifythe sun-ejb-jar.xml file by adding the message-security-binding elementas
shown:

<sun-ejb-jar>
<enterprise-beans>
<unique-id>l</unique-id>
<ejb>
<ejb-name>HelloWorld</ejb-name>
<jndi-name>HelloWorld</jndi-name>
<webservice-endpoint>
<port-component-name>HelloIF</port-component-name>
<endpoint-address-uri>service/HelloWorld</endpoint-address-uri>
<message-security-binding auth-layer="SOAP">
<message-security>
<message>
<java-method>
<method-name>ejbCreate</method-name>
</java-method>
</message>
<message>
<java-method>

58 Sun Java System Application Server Enterprise Edition 8.2 Developer's Guide « March 2009

http://docs.sun.com/doc/819-4733

Configuring Message Security

<method-name>sayHello</method-name>
</java-method>
</message>
<request-protection auth-source="content" />
<response-protection auth-source="content"/>
</message-security>
</message-security-binding>
</webservice-endpoint>
</ejb>
</enterprise-beans>
</sun-ejb-jar>

Compile, deploy, and run the application as described in “To Run the Sample Application” on
page 60.

Understanding and Running the Example Application

This section discusses the WSS sample application, xms, which is located in the directory
install-dir/samples/webservices/security/ejb/apps/xms/. This directory and this sample
application is installed on your system only if you have selected to install the samples server
when you installed the Application Server. If you have not installed the samples, see “T'o Set Up
the Sample Application” on page 60.

The objective of this sample application is to demonstrate how a web service can be secured
with WSS. The web service in the xms example is a simple web service implemented using a
J2EE EJB endpoint and a web service endpoint implemented using a servlet. In this example, a
service endpoint interface is defined with one operation, sayHello, which takes a string then
sends a response with Hello prefixed to the given string. You can view the WSDL file for the
service endpoint interface at
install-dir/samples/webservices/security/ejb/apps/xms/xms-ejb/src/
conf/HelloWorld.wsdl.

In this application, the client lookups the service using the JNDI name
java:comp/env/service/HelloWorld and gets the port information using a static stub to
invoke the operation using a given name. For the name Duke, the client gets the response Hello
Duke!

This example shows how to use message security for web services at the Application Server level
and at the application level. The WSS message security mechanisms implement message-level
authentication (for example, XML digital signature and encryption) of SOAP web services
invocations using the X.509 and username/password profiles of the OASIS WS-Security
standard, which can be viewed from the following URL:

http://docs.oasis-open.org/wss/2004/01/o0asis-200401-wss-soap-message-security-1.0.pdf

This section includes the following topics:

Chapter2 - Securing Applications 59

http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-soap-message-security-1.0.pdf

Configuring Message Security

v

Before You Begin

60

= “To Set Up the Sample Application” on page 60
= “T'o Run the Sample Application” on page 60

To Set Up the Sample Application

The example application is located in the directory
install-dir/samples/webservices/security/ejb/apps/xms/. For ease of reference
throughout the rest of this section, this directory is referred to as simply app-dir/xms/.

In order to have access to this sample application, you must have installed the samples server
during installation of the Application Server. To check to see if the samples are installed, browse
to the directory install-dir/samples/webservices/security/ejb/apps/xms/. If this directory
exists, you do not need to follow the steps in the following section. If this directory does not
exist, the samples server is not installed, and must be installed for access to the sample
application discussed here.

Start the installation for the Application Server.

Click Next on the Welcome page.

Click Yes on the Software License Agreement page. Click Next.

Click Next to accept the installation directory, or change it to match the location where the
Application Server is currently installed.

Select Continue to install to the same directory.

You want to do this because you want the samples/ directory to be a subdirectory of the
Application Server directory, install-dir/samples/.

Reenter the Admin User Name and Password. Click Next.

You are on the page where you select to install just the samples.
Deselect everything except Create Samples Server. Click Next.
Click Install Now to install the samples.

Click Finish to complete the installation.

To Run the Sample Application

Make sure that the Application Server is running.

Message security providers are set up when the asant targets are run, so you don’t need to
configure these on the Application Server prior to running this example.

Sun Java System Application Server Enterprise Edition 8.2 Developer's Guide - March 2009

Configuring Message Security

If you are not running HTTP on the default port of 8080, change the WSDL file for the example to
reflect the change, and change the common . properties file to reflect the change as well.

The WSDL file for this example is located at
install-dir/samples/webservices/security/ejb/apps/xms/xms-ejb/
src/conf/HelloWorld.wsdl. The port number is in the following section:

<service name="HelloWorld">
<port name="HelloIFPort" binding="tns:HelloIFBinding">
<soap:address location="http://localhost:8080/service/HelloWorld"/>
</port>
</service>

Verify that the properties in the install-dir/samples/common. properties file are set properly
for your installation and environment. If you need more description of this file, refer to the
Configuration section for the web services security applications at
install-dir/samples/webservices/security/docs/common.html#Logging.

Change to the install-dir/samples/webservices/security/ejb/apps/xms/ directory.
Run the following asant targets to compile, deploy, and run the example application:

a. Tocompile samples:

asant

b. Todeploysamples:
asant deploy

¢. Torunsamples:
asant run

If the sample has compiled and deployed properly, you see the following response on your
screen after the application has run:

run: [echo] Running the xms program:[exec] Established message level security
Hello Duke!

To undeploy the sample, run the following asant target:

asant undeploy

All of the web services security examples use the same web service name (HelloWorld) and web
service ports in order to show only the differences necessary for protecting web services using
various mechanisms. Make sure to undeploy an application when you have completed running
it, or you receive an Already in Use error and deployment failures when you try to deploy
another web services example application.

Chapter2 - Securing Applications 61

Programmatic Login

Programmatic Login

62

Programmatic login allows a deployed J2EE application to invoke a login method. If the login is
successful, a SecurityContext is established as if the client had authenticated using any of the
conventional J2EE mechanisms.

Programmatic login is useful for an application having special needs that cannot be
accommodated by any of the J2EE standard authentication mechanisms.

Note - Programmatic login is specific to the Application Server and not portable to other
application servers.

This section contains the following topics:

= “Precautions” on page 62
= “Granting Programmatic Login Permission” on page 63
= “The ProgrammaticLogin Class” on page 63

Precautions

The Application Server is not involved in how the login information (user, password) is
obtained by the deployed application. Programmatic login places the burden on the application
developer with respect to assuring that the resulting system meets their security requirements.
If the application code reads the authentication information across the network, it is up to the
application to determine whether to trust the user.

Programmatic login allows the application developer to bypass the application
server-supported authentication mechanisms and feed authentication data directly to the
security service. While flexible, this capability should not be used without some understanding
of security issues.

Since this mechanism bypasses the container-managed authentication process and sequence,
the application developer must be very careful in making sure that authentication is established
before accessing any restricted resources or methods. It is also the application developer’s
responsibility to verify the status of the login attempt and to alter the behavior of the application
accordingly.

The programmatic login state does not necessarily persist in sessions or participate in single
sign-on.

Lazy authentication is not supported for programmatic login. If an access check is reached and
the deployed application has not properly authenticated via the programmatic login method,
access is denied immediately and the application might fail if not properly coded to account for
this occurrence.

Sun Java System Application Server Enterprise Edition 8.2 Developer's Guide - March 2009

Programmatic Login

Granting Programmatic Login Permission

The ProgrammaticLoginPermission permission is required to invoke the programmatic login
mechanism for an application. This permission is not granted by default to deployed
applications because this is not a standard J2EE mechanism.

To grant the required permission to the application, add the following to the
domain-dir/config/server.policy file:

grant codeBase "file:jar-file-path" {
permission com.sun.appserv.security.ProgrammaticlLoginPermission
"login";
Y
The jar-file-path is the path to the application’s JAR file.

For more information about the server.policy file, see “The server.policy File” on page 52

The ProgrammaticLogin Class

The com.sun.appserv.security.ProgrammaticLogin class enables a user to perform login
programmatically. This class has four login methods, two for servlets or JSP files and two for
EJB components.

The login methods for servlets or JSP files have the following signatures:

public java.lang.Boolean login(String user, String password,
javax.servlet.http.HttpServletRequest request,
javax.servlet.http.HttpServletResponse response)

public java.lang.Boolean login(String user, String password,
String realm, javax.servlet.http.HttpServletRequest request,
javax.servlet.http.HttpServletResponse response, boolean errors)
throws java.lang.Exception

The login methods for EJB components have the following signatures:
public java.lang.Boolean login(String user, String password)

public java.lang.Boolean login(String user, String password,
String realm, boolean errors) throws java.lang.Exception

All of these Togin methods:

= Perform the authentication
= Return trueiflogin succeeded, false iflogin failed

Chapter2 - Securing Applications 63

User Authentication for Single Sign-on

The login occurs on the realm specified unless it is null, in which case the domain’s default
realm is used. The methods with no realm parameter use the domain’s default realm.

Ifthe errors flag is set to true, any exceptions encountered during the login are propagated to
the caller. If set to false, exceptions are thrown.

On the client side, realmand errors parameters are ignored and the actual login does not occur
until a resource requiring a login is accessed. A java.rmi.AccessException with COBRA
NO_PERMISSION occurs if the actual login fails.

The logout methods for servlets or JSP files have the following signatures:

public java.lang.Boolean logout(HttpServletRequest request,
HttpServletResponse response)

public java.lang.Boolean logout(HttpServletRequest request,
HttpServletResponse response, boolean errors)
throws java.lang.Exception

The logout methods for EJB components have the following signatures:
public java.lang.Boolean logout()

public java.lang.Boolean logout(boolean errors)
throws java.lang.Exception

All of these logout methods return true if logout succeeded, false iflogout failed.

Ifthe errors flag s set to true, any exceptions encountered during the logout are propagated to
the caller. If set to false, exceptions are thrown.

User Authentication for Single Sign-on

64

The single sign-on feature of the Application Server allows multiple web applications deployed
to the same virtual server to share the user authentication state. With single sign-on enabled,
users who log in to one web application become implicitly logged into other web applications
on the same virtual server that require the same authentication information. Otherwise, users
would have to log in separately to each web application whose protected resources they tried to
access.

An example application using the single sign-on scenario could be a consolidated airline
booking service that searches all airlines and provides links to different airline web sites. Once
the user signs on to the consolidated booking service, the user information can be used by each
individual airline site without requiring another sign-on.

Single sign-on operates according to the following rules:

Sun Java System Application Server Enterprise Edition 8.2 Developer's Guide - March 2009

User Authentication for Single Sign-on

= Single sign-on applies to web applications configured for the same realm and virtual server.
The realm is defined by the realm-name element in the web . xm1 file. For information about
virtual servers, see the Sun Java System Application Server Enterprise Edition 8.2
Administration Guide.

= Aslongas users access only unprotected resources in any of the web applications on a
virtual server, they are not challenged to authenticate themselves.

= Assoon asa user accesses a protected resource in any web application associated with a
virtual server, the user is challenged to authenticate himself or herself, using the login
method defined for the web application currently being accessed.

= Once authenticated, the roles associated with this user are used for access control decisions
across all associated web applications, without challenging the user to authenticate to each
application individually.

= When the user logs out of one web application (for example, by invalidating the
corresponding session), the user’s sessions in all web applications are invalidated. Any
subsequent attempt to access a protected resource in any application requires the user to
authenticate again.

The single sign-on feature utilizes HTTP cookies to transmit a token that associates each
request with the saved user identity, so it can only be used in client environments that support
cookies.

To configure single sign-on, set the following properties in the virtual-server element of the
domain.xml file:

® sso-enabled - If false, single sign-on is disabled for this virtual server, and users must
authenticate separately to every application on the virtual server. The default is true.

® sso-max-inactive-seconds - Specifies the time after which a user’s single sign-on record
becomes eligible for purging if no client activity is received. Since single sign-on applies
across several applications on the same virtual server, access to any of the applications keeps
the single sign-on record active. The default value is 5 minutes (300 seconds). Higher values
provide longer single sign-on persistence for the users at the expense of more memory use
on the server.

® sso-reap-interval-seconds - Specifies the interval between purges of expired single
sign-on records. The default value is 60.

Here is an example configuration with all default values:
<virtual-server id="server" ... >

<property name="sso-enabled" value="true"/>

<property name="sso-max-inactive-seconds" value="450"/>

<property name="sso-reap-interval-seconds" value="80"/>
</virtual-server>

Chapter2 - Securing Applications 65

http://docs.sun.com/doc/819-4733
http://docs.sun.com/doc/819-4733

Defining Roles

Defining Roles

You define roles in the J2EE deployment descriptor file, web . xml, and the corresponding role
mappings in the Application Server deployment descriptor file, sun-application.xml (or
sun-web . xml for individually deployed web modules).

For more information regarding web . xml elements, see Chapter 13, “Deployment Descriptor,’
of the Java Servlet Specification, v2.4. For more information regarding sun-web.xml and
sun-application.xml elements, see Appendix A, “Deployment Descriptor Files”

Each security-role-mapping elementin the sun-application.xml or sun-web.xml file maps
arole name permitted by the web application to principals and groups. For example, a
sun-web . xml file for an individually deployed web module might contain the following:

<sun-web-app>
<security-role-mapping>
<role-name>manager</role-name>
<principal-name>jgarcia</principal-name>
<principal-name>mwebster</principal-name>
<group-name>team-leads</group-name>
</security-role-mapping>
<security-role-mapping>
<role-name>administrator</role-name>
<principal-name>dsmith</principal-name>
</security-role-mapping>
</sun-web-app>

Note that the role-name in this example must match the role-name in the security-role
element of the corresponding web . xm1 file.

Note that for J2EE applications (EAR files), all security role mappings for the application
modules must be specified in the sun-application.xml file. For individually deployed web
modules, the roles are always specified in the sun-web . xml file. A role can be mapped to either
specific principals or to groups (or both). The principal or group names used must be valid
principals or groups in the current default realm.

66 Sun Java System Application Server Enterprise Edition 8.2 Developer's Guide « March 2009

L K R 4 CHAPTER 3

Assembling and Deploying Applications

This chapter describes Sun Java System Application Server modules and how these modules are
assembled separately or together in an application. This chapter also describes classloaders and
tools for assembly and deployment.

The Application Server modules and applications include J2EE standard features and
Application Server specific features. Only Application Server specific features are described in
detail in this chapter.

The following topics are presented in this chapter:

= “Overview of Assembly and Deployment” on page 67
= “Assembling Modules and Applications” on page 82
= “Deploying Modules and Applications” on page 88

= “asant Assembly and Deployment Tool” on page 97

Overview of Assembly and Deployment

Application assembly (also known as packaging) is the process of combining discrete
components of an application into a single unit that can be deployed to a J2EE-compliant
application server. A package can be classified either as a module or as a full-fledged
application. This section covers the following topics:

“Modules” on page 68

“Applications” on page 69

“J2EE Standard Descriptors” on page 71

“Sun Java System Application Server Descriptors” on page 71
“Naming Standards” on page 72

“Directory Structure” on page 73

“Runtime Environments” on page 74

“Classloaders” on page 76

67

Overview of Assembly and Deployment

68

Modules

A J2EE module is a collection of one or more J2EE components that execute in the same
container type (for example, web or EJB) with deployment descriptors of that type. One
descriptor is J2EE standard, the other is Application Server specific. Types of J2EE modules are
as follows:

= Web Application Archive (WAR): A web application is a collection of servlets, HTML
pages, classes, and other resources that can be bundled and deployed to several J2EE
application servers. A WAR file can consist of the following items: servlets, JSP files, JSP tag
libraries, utility classes, static pages, client-side applets, beans, bean classes, and deployment
descriptors (web.xml and optionally sun-web.xml).

= EJBJAR File: The EJB JAR file is the standard format for assembling enterprise beans. This
file contains the bean classes (home, remote, local, and implementation), all of the utility
classes, and the deployment descriptors (ejb-jar.xmland sun-ejb-jar.xml). If the E]B
component is an entity bean with container managed persistence, a . dbschema file and a
CMP mapping descriptor, sun-cmp-mapping.xml, must be included as well.

= Application Client Container JAR File: An ACC client is an Application Server specific
type of J2EE client. An ACC client supports the standard J2EE Application Client
specifications, and in addition, supports direct access to the Application Server. Its
deployment descriptors are application-client.xml and sun-application-client.xml.

= Resource RAR File: RAR files apply to J2EE CA connectors. A connector extends the EJB
container to allow access to external systems much like a device driver provides access to a
peripheral device from a process hosted by an operating system. It is a portable way of
allowing EJB components to access a foreign enterprise system. Each Application Server
connector has a J2EE XML file, ra.xml.

Package definitions must be used in the source code of all modules so the class loader can
properly locate the classes after the modules have been deployed.

Because the information in a deployment descriptor is declarative, it can be changed without
requiring modifications to source code. At run time, the J2EE server reads this information and
acts accordingly.

The Application Server also supports lifecycle modules. See Chapter 10, “Developing Lifecycle
Listeners,” for more information.

EJB JAR and Web modules can also be deployed separately, outside of any application, as in the
following figure. EJB components are assembled in a JAR file with ejb-jar.xml and
sun-ejb-jar.xml deployment descriptors. Web components are assembled in a WAR file with
web.xml and sun-web.xml deployment descriptors. Both module types are deployed to the
Application Server.

Sun Java System Application Server Enterprise Edition 8.2 Developer's Guide - March 2009

Overview of Assembly and Deployment

EJB
module
(.jar file)

J2EE
ejb-jar.xml

Sun

I sun-ejb-jar.xml
Deployment
I ,.| Deploy

to the
Application

Web | " Server

module

(.war file)

Web
JSP

J2EE
web.xml
Web
Servlet

Sun
sun-web.xml

FIGURE3-1 Module assembly and deployment

Applications

A J2EE application is a logical collection of one or more J2EE modules tied together by
application deployment descriptors. Components can be assembled at either the module or the
application level. Components can also be deployed at either the module or the application
level.

The following diagram illustrates how components are assembled into modules and then
assembled into an Application Server application and deployed. EJB components are assembled
in aJAR file with ejb-jar.xml and sun-ejb-jar.xml deployment descriptors. Web components are
assembled in a WAR file with web.xml and sun-web.xml deployment descriptors. An
application client is assembled in a JAR file with application-client.xml and
sun-application-client.xml deployment descriptors. A resource adapter is assembled in a RAR
file with a ra.xml deployment descriptor. All modules are assembled in an EAR file and
deployed to the Application Server.

Chapter 3 - Assembling and Deploying Applications 69

Overview of Assembly and Deployment

EJB
module
I (.jar file)
Web
module
Web (.war file)
= I —
Deployment
to the
Application
icati i Server
Application Client
module
(.jar file)
Application
Client
Connector
module
Resource (-rar file)

— —

FIGURE3-2 Application assembly and deployment

70 Sun Java System Application Server Enterprise Edition 8.2 Developer's Guide - March 2009

Overview of Assembly and Deployment

Each module has an Application Server deployment descriptor and a J2EE deployment
descriptor. The Application Server uses the deployment descriptors to deploy the application
components and to register the resources with the Application Server.

An application consists of one or more modules, an optional Application Server deployment
descriptor, and a required J2EE application deployment descriptor. All items are assembled,
using the Java ARchive (. jar) file format, into one file with an extension of . ear.

J2EE Standard Descriptors

The J2EE platform provides assembly and deployment facilities. These facilities use WAR, JAR,
and EAR files as standard packages for components and applications, and XML-based
deployment descriptors for customizing parameters.

J2EE standard deployment descriptors are described in the J2EE specification, v1.4. You can
find the specification at http://java.sun.com/products/.

To check the correctness of these deployment descriptors prior to deployment, see “The
Deployment Descriptor Verifier” on page 83.

The following table shows where to find more information about J2EE standard deployment
descriptors.

TABLE3-1 J2EE Standard Descriptors

Deployment Descriptor

Where to Find More Information

application.xml

Java 2 Platform Enterprise Edition Specification, v1.4, Chapter 8, “Application Assembly and Deployment
- J2EE:application XML DTD”

web . xml

Java Servlet Specification, v2.4 Chapter 13, “Deployment Descriptor,” and JavaServer Pages Specification,
v2.0, Chapter 7, “JSP Pages as XML Documents,” and Chapter 5, “Tag Extensions”

ejb-jar.xml

Enterprise JavaBeans Specification, v2.1, Chapter 16, “Deployment Descriptor”

application- Java 2 Platform Enterprise Edition Specification, v1.4, Chapter 9, “Application Clients -
client.xml J2EE:application-client XML DTD”
ra.xml Java 2 Enterprise Edition, J2EE Connector Architecture Specification, v1.0, Chapter 10, “Packaging and

Deployment”

Sun Java System Application Server Descriptors

The Application Server uses additional deployment descriptors for configuring features specific
to the Application Server. The sun-application.xml, sun-web.xml, and
sun-cmp-mappings.xml files are optional; all the others are required.

Chapter3 « Assembling and Deploying Applications 71

http://java.sun.com/products/

Overview of Assembly and Deployment

To check the correctness of these deployment descriptors prior to deployment, see “The
Deployment Descriptor Verifier” on page 83.

The following table lists the Application Server deployment descriptors and their DTD files. For
complete descriptions of these files, see Appendix A, “Deployment Descriptor Files”

TABLE3-2 Sun Java System Application Server Descriptors

Deployment Descriptor DTD File Description
sun-application.xml sun-application 1 4-0.dtd Configures an entire J2EE application
(EAR file).
sun-web.xml sun-web-app_2 4-1.dtd Configures a web application (WAR
file).
sun-ejb-jar.xml sun-ejb-jar 2 1-1.dtd Configures an enterprise bean (EJB JAR
file).
sun-cmp-mappings.xml sun-cmp-mapping 1 2.dtd Configures container-managed
persistence for an enterprise bean.
sun-application-client.xml sun-application-client_1 4-1.dtd Configures an Application Client
Container (ACC) client (JAR file).
sun-acc.xml sun-application-client-container_ 1 0.dtd Configures the Application Client
Container.
Naming Standards
Names of applications and individually deployed EJB JAR, WAR, and connector RAR modules
must be unique within an Application Server domain. Modules of the same type within an
application must have unique names. In addition, for entity beans that use CMP,. dbschenma file
names must be unique within an application.
If you do not explicitly specify a name, the default name is the first portion of the file name
(without the .war or . jar extension). Modules of different types can have the same name
within an application, because the directories holding the individual modules are named with
_jar,_warand _rar suffixes. This is the case when you use the Administration Console, the
asadmin command, or the deploytool to deploy an application or module. See “Tools for
Deployment” on page 91.
Make sure your package and file names do not contain spaces or characters that are illegal for
your operating system.
If you are writing your own JSR 88 client to deploy applications to the Application Server using
the following API, the name of the application is taken from the display-name entry in the
72 Sun Java System Application Server Enterprise Edition 8.2 Developer's Guide - March 2009

Overview of Assembly and Deployment

J2EE standard deployment descriptor, because there is no file name in this case. If the
display-name entry is not present, the Application Server creates a temporary file name and
uses that name to deploy the application.

javax.enterprise.deploy.spi.DeploymentManager.distribute(Target[],
InputStream, InputStream)

Neither the Administration Console, the asadmin command, nor the deploytool uses this API.

For more information about JSR 88, see the JSR 88 page at
http://jcp.org/en/jsr/detail?id=88.

Directory Structure

When you deploy an application, the application is expanded to an open directory structure,
and the directories holding the individual modules are named with _jar,_warand _rar
suffixes. If you use the asadmin deploydir command to deploy a directory instead of an EAR
file, your directory structure must follow this same convention.

Module and application directory structures follow the structure outlined in the J2EE
specification. Here is an example directory structure of a simple application containing a web
module, an EJB module, and a client module.

converter 1/
--- converterClient.jar
--+ META-INF/
| --- MANIFEST.MF
|--- application.xml
|--- sun-application.xml
--+ war-ic_war/
|--- index.jsp
| --+ META-INF/
| |--- MANIFEST.MF
| --+ WEB-INF/
|--- web.xml
|--- sun-web.xml
--+ ejb-jar-ic jar/
| --- Converter.class
| --- ConverterBean.class
|--- ConverterHome.class
| --+ META-INF/
| --- MANIFEST.MF
|--- ejb-jar.xml
|--- sun-ejb-jar.xml
--+ app-client-ic_jar/
|--- ConverterClient.class

+
I
|
|
I
|
|
I
I
|
I
I
|
I
I
|
I
I
|
|
I
I

Chapter3 « Assembling and Deploying Applications 73

http://jcp.org/en/jsr/detail?id=88

Overview of Assembly and Deployment

| --+ META-INF/
| --- MANIFEST.MF
|--- application-client.xml
|--- sun-application-client.xml

Here is an example directory structure of an individually deployed connector module.

+ MyConnector/

--- readme.html

--- ra.jar

--- client.jar

--- win.dll

--- solaris.so

--+ META-INF/
| --- MANIFEST.MF
|

--- ra.xml

Runtime Environments

Whether you deploy an individual module or an application, deployment affects both the file
system and the server configuration.

Module Runtime Environment

The following figure illustrates the environment for individually deployed module-based

deployment.
packagingEJB.jar
. Configuration:
<ejb-module> element in domain.xml
L, File System:
domain-dir/ applications/j2ee-modules/packagingEJB/*

FIGURE3-3 Module runtime environment

74 Sun Java System Application Server Enterprise Edition 8.2 Developer's Guide - March 2009

Overview of Assembly and Deployment

For file system entries, modules are extracted as follows:

domain-dir/applications/j2ee-modules/module-name
domain-dir/generated/ejb/j2ee-modules/module-name
domain-dir/generated/jsp/j2ee-modules/module-name

The applications directory contains the directory structures described in “Directory
Structure” on page 73. The generated/ejb directory contains the stubs and ties thatan ACC
client needs to access the module; the generated/jsp directory contains compiled JSP files.

Lifecycle modules (see Chapter 10, “Developing Lifecycle Listeners”) are extracted as follows:

domain-dir/applications/lifecycle-modules/module-name
Configuration entries are added in the domain . xm1 file as follows:

<server>
<applications>
<type-module>
...module configuration...
</type-module>
</applications>
</server>

The type of the module in domain.xml can be lifecycle, ejb, web, or connector. For details
about domain.xml, see the Sun Java System Application Server Enterprise Edition 8.2
Administration Reference.

Application Runtime Environment

The following figure illustrates the environment for application-based deployment.

Chapter3 « Assembling and Deploying Applications

75

http://docs.sun.com/doc/819-4735
http://docs.sun.com/doc/819-4735

Overview of Assembly and Deployment

packagingApp.ear

packagingEJB.jar

>

Configuration:
<j2ee-applications> elementin domain.xml

File System:
domain-dir/applications/j2ee-apps/packagingApp/packagingEJB/*

FIGURE3-4 Application runtime environment

76

For file system entries, applications are extracted as follows:

domain-dir/applications/j2ee-apps/app-name
domain-dir/generated/ejb/j2ee-apps/app-name
domain-dir/generated/jsp/j2ee-apps/app-name

The applications directory contains the directory structures described in “Directory
Structure” on page 73. The generated/ejb directory contains the stubs and ties that an ACC
client needs to access the module; the generated/ j sp directory contains compiled JSP files.

Configuration entries are added in the domain . xm1 file as follows:

<server>
<applications>
<j2ee-application>
...application configuration...
</j2ee-application>
</applications>
</server>

For details about domain . xm1, see the Sun Java System Application Server Enterprise Edition 8.2
Administration Reference.

Classloaders

Understanding Application Server classloaders can help you determine where and how you can
position supporting JAR and resource files for your modules and applications.

In a Java Virtual Machine (JVM), the classloaders dynamically load a specific Java class file
needed for resolving a dependency. For example, when an instance of java.util.Enumeration
needs to be created, one of the classloaders loads the relevant class into the environment. This
section includes the following topics:

Sun Java System Application Server Enterprise Edition 8.2 Developer's Guide - March 2009

http://docs.sun.com/doc/819-4735
http://docs.sun.com/doc/819-4735

Overview of Assembly and Deployment

= “The Classloader Hierarchy” on page 77
= “Classloader Universes” on page 79
= “Circumventing Classloader Isolation” on page 79

The Classloader Hierarchy

Classloaders in the Application Server runtime follow a hierarchy that is illustrated in the
following figure and fully described in Table 3-3.

Bootstrap
Classloader
System
Classloader
Common
Classloader
Connector
Classloader
3
EJB LifeCycleModule
Classloader Classloader
Web
Classloader
JSP Engine
Classloader

[] One classloader instance for each application or stand-alone module

FIGURE3-5 Classloader runtime hierarchy

Chapter3 « Assembling and Deploying Applications 77

Overview of Assembly and Deployment

78

TABLE3-3 Sun Java System Application Server Classloaders

Classloader

Description

Bootstrap

The Bootstrap Classloader loads all the JDK classes. It is parent to the System
Classloader.

System

The System Classloader loads most of the core Application Server classes. It is parent to
the Common Classloader. It is created based on the classpath-prefix, as-install/1ib,
server-classpath, and classpath-suffixattributes of the java-config element in
the domain.xml file. The environment classpath is included if
env-classpath-ignored="false" is set in the java-config element.

Add the classes to the classpath-prefix, server-classpath, or classpath-suffix
attribute of the domain administration server (DAS) in addition to the corresponding
attribute on the server instances that use the classes. The default name for the DAS
configuration is server-config.

Common

The Common Classloader loads into the system classpath classes in the
domain-dir/1ib/classes directory, followed by JAR and ZIP files in the
domain-dir/1ib directory. It is parent to the Connector Classloader. No special
classpath settings are required. The existence of these directories is optional; if they
don’t exist, the Common Classloader is not created.

Connector

The Connector Classloader is a single class loader instance that loads individually
deployed connector modules, which are shared across all applications. It is parent to the
LifeCycleModule Classloader and the EJB Classloader.

LifeCycleModule

The LifeCycleModule Classloader is the parent class loader for lifecycle modules. Each
lifecycle module’s classpath is used to construct its own class loader.

EJB

The EJB Classloader loads the enabled EJB classes in a specific enabled EJB module or
J2EE application. One instance of this class loader is present in each class loader
universe. The EJB Classloader is created with a list of URLs that point to the locations of
the classes it needs to load. It is parent to the Web Classloader.

Web

The Web Classloader loads the servlets and other classes in a specific enabled web
module or J2EE application. One instance of this class loader is present in each class
loader universe. The Web Classloader is created with a list of URLs that point to the
locations of the classes it needs to load. It is parent to the JSP Engine Classloader.

JSP Engine

The JSP Engine Classloader loads compiled JSP classes of enabled JSP files. One instance
of this class loader is present in each class loader universe. The JSP Engine Classloader is
created with a list of URLs that point to the locations of the classes it needs to load.

Note that this is not a Java inheritance hierarchy, but a delegation hierarchy. In the delegation
design, a class loader delegates classloading to its parent before attempting to load a class itself.
A class loader parent can be either the System Classloader or another custom class loader. If the
parent class loader can’tload a class, the findClass () method is called on the class loader
subclass. In effect, a class loader is responsible for loading only the classes not available to the

parent.

Sun Java System Application Server Enterprise Edition 8.2 Developer's Guide - March 2009

Overview of Assembly and Deployment

The Servlet specification recommends that the Web Classloader look in the local class loader
before delegating to its parent. You can make the Web Classloader follow the delegation model
in the Servlet specification by setting delegate="false" in the “class-loader” on page 334
element of the sun-web . xml file. It’s safe to do this only for a web module that does not interact
with any other modules.

The default value is delegate="true", which causes the Web Classloader to delegate in the
same manner as the other classloaders. You must use delegate="true" for a web application
that accesses EJB components or that acts as a web service client or endpoint. For details about
sun-web.xml, see “The sun-web.xml File” on page 307.

Classloader Universes

Access to components within applications and modules installed on the server occurs within
the context of isolated class loader universes, each of which has its own EJB, Web, and JSP
Engine classloaders.

= Application Universe: Each J2EE application has its own class loader universe, which loads
the classes in all the modules in the application.

= Individually Deployed Module Universe: Each individually deployed EJB JAR, web WAR,
or lifecycle module has its own class loader universe, which loads the classes in the module.

Note - A resource such as a file that is accessed by a servlet, JSP, or EJB component must bein a
directory pointed to by the class loader’s classpath. For example, the web class loader’s classpath
includes these directories:

module-name/WEB-INF/classes
module-name/WEB-INF/1ib

If a servlet accesses a resource, it must be in one of these directories or it is not loaded.

Note - In iPlanet Application Server 6.x, individually deployed modules shared the same class
loader. In subsequent Application Server versions, each individually deployed module has its
own class loader universe.

Circumventing Classloader Isolation

Since each application or individually deployed module class loader universe is isolated, an
application or module cannot load classes from another application or module. This prevents
two similarly named classes in different applications from interfering with each other.

To circumvent this limitation for libraries, utility classes, or individually deployed modules
accessed by more than one application, you can include the relevant path to the required classes
in one of these ways:

Chapter3 « Assembling and Deploying Applications 79

Overview of Assembly and Deployment

80

= “Using the System Classloader” on page 80

= “Using the Common Classloader” on page 80

= “Sharing Libraries Across a Cluster” on page 80

= “Using the Java Optional Package Mechanism” on page 81

= “Packaging the Client JAR for One Application in Another Application” on page 81

Using the System class loader or Common class loader requires a server restart and makes a
library accessible to any other application or module across the domain.

Using the System Classloader
To use the System Classloader, do one of the following, then restart the server:

= Use the Administration Console. Select the JVM Settings component under the relevant
configuration, select the Path Settings tab, and edit the Classpath Suffix field. For details, see
the Sun Java System Application Server Enterprise Edition 8.2 Administration Guide.

m Edit the classpath-suffix attribute of the java-config element in the domain.xml file.
For details about domain.xm1, see the Sun Java System Application Server Enterprise
Edition 8.2 Administration Reference.

Using the System Classloader makes an application or module accessible to any other
application or module across the domain.

Add the classes to the classpath-suffix attribute of the DAS in addition to the
classpath-suffix attribute on the server instances that use the classes. The default name for
the DAS configuration is server-config.

Using the Common Classloader

To use the Common Classloader, copy the JAR and ZIP files into the domain-dir/1ib directory
or copy the . class files into the domain-dir/1ib/classes directory, then restart the server.

Using the Common Classloader makes an application or module accessible to any other
application or module across the domain.

For example, this is the recommended way of adding JDBC drivers to the Application Server.
For alist of the JDBC drivers currently supported by the Application Server, see the Sun Java
System Application Server Enterprise Edition 8.2 Release Notes. For configurations of supported
and other drivers, see “Configurations for Specific JDBC Drivers” on page 244.

Sharing Libraries Across a Cluster

To share libraries across a specific cluster instead of the entire domain, copy the JAR files to the
domain-dir/config/cluster-config-name/1ib directory. Then add the path to the JAR files to
the System class loader as explained in “Using the System Classloader” on page 80.

Sun Java System Application Server Enterprise Edition 8.2 Developer's Guide - March 2009

http://docs.sun.com/doc/819-4733
http://docs.sun.com/doc/819-4735
http://docs.sun.com/doc/819-4735
http://docs.sun.com/doc/819-4728
http://docs.sun.com/doc/819-4728

Overview of Assembly and Deployment

Using the Java Optional Package Mechanism

To use the Java optional package mechanism, copy the JAR and ZIP files into the
domain-dir/1ib/ext directory, then restart the server.

Using the Java optional package mechanism makes an application or module accessible to any
other application or module across the domain.

Packaging the Client JAR for One Application in Another Application

By packaging the client JAR for one application in a second application, you allow an EJB or
web component in the second application to call an EJB component in the first (dependent)
application, without making either of them accessible to any other application or module.

As an alternative for a production environment, you can have the Common Classloader load
client JAR of the dependent application as described in “Using the Common Classloader” on
page 80 restart the server to make the dependent application accessible, and it is accessible
across the domain.

To package the client JAR for one application in another application
Deploy the dependent application.

Add the dependent application’s client JAR file to the calling application.

= For a calling EJB component, add the client JAR file at the same level as the EJB component.
Then add a Class-Path entry to the MANIFEST . MF file of the calling EJB component. The
Class-Path entry has this syntax:

Class-Path: filepathl.jar filepath2.jar ...

Each filepath is relative to the directory or JAR file containing the MANIFEST . MF file. For
details, see the J2EE specification, section 8.1.1.2, “Dependencies.”

= Fora calling web component, add the client JAR file under the WEB- INF/lib directory.

If you need to package the client JAR with both the EJB and web components, set
delegate="true"inthe class-loader element of the sun-web. xml file.

This changes the Web Classloader so it follows the standard class loader delegation model and
delegates to its parent before attempting to load a class itself.

For most applications, packaging the client JAR file with the calling EJB component is sufficient.
You do not need to package the client JAR file with both the EJB and web components unless
the web component is directly calling the EJB component in the dependent application.

Chapter3 « Assembling and Deploying Applications 81

Assembling Modules and Applications

4

Deploy the calling application.

The calling EJB or web component must specify in its sun-ejb-jar.xml or sun-web.xml file the
JNDI name of the EJB component in the dependent application. Using an ejb-link mapping
does not work when the EJB component being called resides in another application.

Assembling Modules and Applications

82

Assembling (or packaging) modules and applications in Application Server conforms to all of
the customary J2EE-defined specifications. The only difference is that when you assemble in
Application Server, you include Application Server specific deployment descriptors that
enhance the functionality of the Application Server.

For example, when you assemble an EJB JAR module, you must create two deployment
descriptor files with these names: ejb-jar.xmland sun-ejb-jar.xml (both required). If the
EJB component is an entity bean with container-managed persistence, you can also create a
.dbschema file and a sun-cmp-mapping.xml file, but these are not required. For more
information about sun-ejb-jar.xml and sun-cmp-mapping.xml, see Appendix A,
“Deployment Descriptor Files”

Note - According to the J2EE specification, section 8.1.1.2, “Dependencies,” you cannot package
utility classes within an individually deployed EJB module. Instead, package the EJB module
and utility JAR within an application using the JAR Extension Mechanism Architecture. For
other alternatives, see “Circumventing Classloader Isolation” on page 79.

The Application Server provides these tools for assembling and verifying a module or an
application:

= “deploytool” on page 42

= “Apache Ant” on page 83

= “NetBeans IDE” on page 83

= “The Deployment Descriptor Verifier” on page 83

deploytool

You can use the deploytool, provided with the Application Server, to assemble J2EE
applications and modules, configure deployment parameters, perform simple static checks, and
deploy the final result. For more information about using the deploytool, see the J2EE 1.4
Tutorialathttp://java.sun.com/j2ee/1.4/docs/tutorial/doc/index.html.

Sun Java System Application Server Enterprise Edition 8.2 Developer's Guide - March 2009

http://java.sun.com/j2ee/1.4/docs/tutorial/doc/index.html

Assembling Modules and Applications

Apache Ant

Ant can help you assemble and deploy modules and applications. For details, see “asant
Assembly and Deployment Tool” on page 97.

NetBeans IDE

You can use the NetBeans IDE to assemble J2EE applications and modules. For more
information about using the NetBeans IDE, see http://www.netbeans.org.

The Deployment Descriptor Verifier

The verifier tool validates both J2EE and Application Server specific deployment descriptors
against their corresponding DTD files and gives errors and warnings if a module or application
is not J2EE and Application Server compliant. You can verify deployment descriptors in EAR,
WAR, RAR, and JAR files.

The verifier tool is not simply an XML syntax verifier. Rules and interdependencies between
various elements in the deployment descriptors are verified. Where needed, user application
classes are introspected to apply validation rules.

The verifier isintegrated into Application Server deployment, the deploytool, and the
“sun-appserv-deploy” on page 98 Ant task. You can also run it as a stand-alone utility from the
command line. The verifier islocated in the install-dir/bin directory.

When you run the verifier during Application Server deployment, the output of the verifier
is written to the tempdir/verifier-results/ directory, where tempdir is the temporary
directory defined in the operating system. Deployment fails if any failures are reported during
the verification process. The verifier also logs information about verification progress to the
standard output.

For details on all the assertions tested by the verifier, see the assertions documentation
provided athttp://java.sun.com/j2ee/avk/index.html.

Tip - Using the verifier tool can help you avoid runtime errors that are difficult to debug.

This section covers the following topics:

= “Command Line Syntax” on page 84
= “AntIntegration” on page 85
= “Sample Results Files” on page 85

Chapter 3 - Assembling and Deploying Applications 83

http://www.netbeans.org
http://java.sun.com/j2ee/avk/index.html

Assembling Modules and Applications

84

Command Line Syntax

The verifier tool’s syntax is as follows:

verifier [options] file

The file can be an EAR, WAR, RAR, or JAR file.

The following table shows the options for the verifier tool.

TABLE3-4 Verifier Options

Short Form Long Form Description
-v --verbose Turns on verbose mode.
-d output-dir | --destdir Writes test results to the output-dir, which must already exist. By default,
the results files are created in the current directory.
-r level --reportlevel Sets the output report level to one of the following values:
level B aorall-Reportsall results. This is the default in both verbose and
non verbose modes.
® worwarnings - Reports only warning and failure results.
® forfailures - Reports only failure results.
-n --notimestamp Does not append the timestamp to the output file name.
-? --help Displays help for the verifier command. If you use this option, you do
not need to specify an EAR, WAR, RAR, or JAR file.
-V --version Displays the verifier tool version. If you use this option, you do not
need to specify an EAR, WAR, RAR, or JAR file.
-u --gui Opens a graphical interface for performing verification. If you use this
option, you do not need to specify an EAR, WAR, RAR, or JAR file. For
more information, see the verifier online help.

For example, the following command runs the verifier in verbose mode and writes all the
results of static verification of the ejb. jar file to the output directory ResultsDir:

verifier -v -r a -d ResultsDir ejb.jar

Theresults filesare ejb. jar_verifier.timestamp.txt and
ejb.jar_verifier.timestamp.xml. The format of the timestamp is yyyyMMddhhmm:ss.

If the verifier runs successfully, a result code of @ is returned. This does not mean that no
verification errors occurred. A nonzero error code is returned if the verifier fails to run.

Sun Java System Application Server Enterprise Edition 8.2 Developer's Guide - March 2009

Assembling Modules and Applications

Ant Integration

You can integrate the verifier into an Ant build file as a target and use the Ant call feature to
call the target each time an application or module is assembled. This is because the main method
in com.sun.enterprise.tools.verifier.Verifier is callable from user Ant scripts. The
main method accepts the arguments described in Table 3-4.

Example code for an Ant verify target is as follows:

<target name="verify"s
<echo message="Verification Process for ${testfile}"/>
<java classname="com.sun.enterprise.tools.verifier.Verifier"
fork="yes">
<sysproperty key="com.sun.enterprise.home"
value="${appserv.home}"/>
<sysproperty key="verifier.xsl"
value="${appserv.home}/verifier/config" />
<!-- uncomment the following for verbose output -->
<!--<arg value="-v"/>-->
<arg value="¢${assemble}/${ejbjar}" />
<classpath path="${appserv.cpath}:${java.class.path}"/>
</java>
</target>

Sample Results Files

Here is a sample results XML file:

<static-verification>
<ejb>
<failed>
<test>
<test-name>
tests.ejb.session.TransactionTypeNullForContainerTX
</test-name>
<test-assertion>
Session bean with bean managed transaction demarcation test
</test-assertion>
<test-description>
For [TheGreeter] Error: Session Beans [TheGreeter] with
[Bean] managed transaction demarcation should not have
container transactions defined.
</test-description>
</test>
</failed>
</ejb>

</static-verification>

Chapter 3 - Assembling and Deploying Applications 85

Assembling Modules and Applications

86

Here is a sample results TXT file:

of Failures : 3
of Warnings : 6
of Errors : 0

Test Name : tests.ejb.session.TransactionTypeNullForContainerTX

Test Assertion : Session bean with bean managed transaction demarcation test
Test Description : For [TheGreeter]

Error: Session Beans [TheGreeter] with [Bean] managed transaction
demarcation should not have container transactions defined.

Test Name : tests.ejb.session.ejbcreatemethod.EjbCreateMethodStatic
Test Assertion : Each session Bean must have at least one non-static
ejbCreate method test

Test Description : For [TheGreeter] For EJB Class

[samples.helloworld.ejb.GreeterEJB] method [ejbCreate 1

[samples.helloworld.ejb.GreeterEJB] properly declares non-static
ejbCreate(...) method.

Test Name : tests.ejb.businessmethod.BusinessMethodException
Test Assertion : Enterprise bean business method throws RemoteException test
Test Description :

Test Name : tests.ejb.ias.beanpool.IASEjbBeanPool

Sun Java System Application Server Enterprise Edition 8.2 Developer's Guide - March 2009

Assembling Modules and Applications

Test Assertion :
Test Description : WARNING [IAS-EJB ejb] : bean-pool should be defined for
Stateless Session and Message Driven Beans

Test Name : tests.ejb.entity.pkmultiplefield.PrimaryKeyClassFieldsCmp
Test Assertion : Ejb primary key class properly declares all class fields
within subset of the names of the container-managed fields test.

Test Description : For [TheGreeter] class com.sun.enterprise.tools.
verifier.tests.ejb.entity.pkmultiplefield.PrimaryKeyClassFieldsCmp
expected Entity bean, but called with Session.

Test Name : tests.ejb.entity.ejbcreatemethod.EjbCreateMethodReturn
Test Assertion : Each entity Bean can have zero or more ejbCreate
methods which return primary key type test

Test Description : For [TheGreeter] class com.sun.enterprise.tools.
verifier.tests.ejb.entity.ejbcreatemethod.EjbCreateMethodReturn
expected Entity bean, but called with Session bean.

Test Name : tests.dd.ParseDD

Test Assertion : Test parses the deployment descriptor using a SAX
parser to avoid the dependency on the DOL

Test Description : PASSED [EJB] : [remote] and [home] tags present.
PASSED [EJB]: session-type is Stateless.

PASSED [EJB]: trans-attribute is NotSupported.

PASSED [EJB]: transaction-type is Bean.

Chapter3 « Assembling and Deploying Applications 87

Deploying Modules and Applications

Deploying Modules and Applications

This section describes the different ways to deploy J2EE applications and modules to the
Application Server. It covers the following topics:

“Deployment Errors” on page 88

“The Deployment Life Cycle” on page 88

“Tools for Deployment” on page 91

“Deployment by Module or Application” on page 93
“Deployinga WAR Module” on page 93

“Deploying an EJB JAR Module” on page 94
“Deploying a Lifecycle Module” on page 94

= “Deploying an Application Client” on page 95

= “Deployinga J2EE CA Resource Adapter” on page 96
® “Access to Shared Frameworks” on page 96

Deployment Errors

If an error occurs during deployment, the application or module is not deployed. If a module
within an application contains an error, the entire application is not deployed. This prevents a
partial deployment that could leave the server in an inconsistent state.

The Deployment Life Cycle

After an application is initially deployed, it can be modified and reloaded, redeployed, disabled,
re-enabled, and finally undeployed (removed from the server). This section covers the following
topics related to the deployment life cycle:

“Dynamic Deployment” on page 88

“Disabling a Deployed Application or Module” on page 89
“Dynamic Reloading” on page 89

“Automatic Deployment” on page 90

Note - You can overwrite a previously deployed application by using the - - force option of
asadmin deploy or by checking the appropriate box in the Administration Console during
deployment. However, you must remove a preconfigured resource before you can update it.

Dynamic Deployment

You can deploy, redeploy, and undeploy an application or module without restarting the server
instances. This is called dynamic deployment. Although primarily for developers, dynamic
deployment can be used in operational environments to bring new applications and modules
online without requiring a server restart.

88 Sun Java System Application Server Enterprise Edition 8.2 Developer's Guide « March 2009

Deploying Modules and Applications

See Also

Whenever a redeployment is done, the sessions at that transit time become invalid. The client
must restart the session.

Disabling a Deployed Application or Module

You can disable a deployed application or module without removing it from the server.
Disabling an application makes it inaccessible to clients.

To disable an application or module using the asadmin disable command, see the Sun Java
System Application Server Enterprise Edition 8.2 Reference Manual.

To disable an application or module in the Administration Console
Open the Applications component.

Go to the page for the type of application or module.
For example, for a web application, go to the Web Applications page.

Click on the name of the application or module you wish to disable.

Uncheck the Status Enabled box.

For details, see the Sun Java System Application Server Enterprise Edition 8.2 Administration
Guide.

Dynamic Reloading

If dynamic reloading is enabled (it is by default), you do not have to redeploy an application or
module when you change its code or deployment descriptors. All you have to do is copy the
changed JSP or class files into the deployment directory for the application or module. The
server checks for changes periodically and redeploys the application, automatically and
dynamically, with the changes. This feature is available only on the default server instance.

This is useful in a development environment, because it allows code changes to be tested
quickly. In a production environment, however, dynamic reloading might degrade
performance. In addition, whenever a reload is done, the sessions at that transit time become
invalid. The client must restart the session.

To enable dynamic reloading in the Administration Console
Select the Stand-Alone Instances component.

Select the instance named serverin the table.
This is the Admin Server.

Chapter 3 - Assembling and Deploying Applications 89

http://docs.sun.com/doc/819-4736
http://docs.sun.com/doc/819-4736
http://docs.sun.com/doc/819-4733
http://docs.sun.com/doc/819-4733

Deploying Modules and Applications

90

SeeAlso

Select the Advanced tab.
Check the Reload Enabled box to enable dynamic reloading.

Enter a number of seconds in the Reload Poll Interval field.

This sets the interval at which applications and modules are checked for code changes and
dynamically reloaded. The default is 2.

For details, see the Sun Java System Application Server Enterprise Edition 8.2 Administration
Guide.

Toreload code or deployment descriptor changes

Create an empty file named . reload at the root of the deployed application or module.
For an application:

domain-dir/applications/j2ee-apps/app-name/.reload

For an individually deployed module:
domain-dir/applications/j2ee-modules/module-name/ . reload

Explicitly update the . reload file’s timestamp (touch . reload in UNIX) each time you make
changes.

Automatic Deployment

Automatic deployment, also called autodeployment, involves copying an application or module
file (JAR, WAR, RAR, or EAR) into a special directory, where it is automatically deployed by the
Application Server. To undeploy an automatically deployed application or module, simply
remove its file from the special autodeployment directory. This is useful in a development
environment, because it allows new code to be tested quickly. This feature is available only on
the default server instance.

Autodeployment is enabled by default.
To enable and configure or to disable autodeployment
Select the Stand-Alone Instances component.

Select the instance named serverinthe table.
This is the Admin Server.

Select the Advanced tab.

Sun Java System Application Server Enterprise Edition 8.2 Developer's Guide - March 2009

http://docs.sun.com/doc/819-4733
http://docs.sun.com/doc/819-4733

Deploying Modules and Applications

See Also

Check the Auto Deploy Enabled box to enable autodeployment, or uncheck this box to disable
autodeployment.

Enter a number of seconds in the Auto Deploy Poll Interval field.

This sets the interval at which applications and modules are checked for code changes and
dynamically reloaded. The default is 2.

You can change the Auto Deploy Directory if you like.

You can enter an absolute or relative path. A relative path is relative to domain-dir. The default
is domain-dir/autodeploy.

You can check the Verifier Enabled box to verify your deployment descriptor files. This is
optional.

For details about the verifier, see “The Deployment Descriptor Verifier” on page 83.

Check the Precompile Enabled box to precompile any JSP files.

For details, see the Sun Java System Application Server Enterprise Edition 8.2 Administration
Guide.

Tools for Deployment

This section discusses the various tools that can be used to deploy modules and applications.
The deployment tools include:

“Apache Ant” on page 91

“The deploytool” on page 91

“JSR 88” on page 92

“The asadmin Command” on page 41
“The Administration Console” on page 41

Apache Ant

Ant can help you assemble and deploy modules and applications. For details, see “asant
Assembly and Deployment Tool” on page 97.

The deploytool

You can use the deploytool, provided with Application Server, to assemble J2EE applications
and modules, configure deployment parameters, perform simple static checks, and deploy the
final result. For more information about using the deploytool, see the J2EE 1.4 Tutorial at
http://java.sun.com/j2ee/1.4/docs/tutorial/doc/index.html.

Chapter3 « Assembling and Deploying Applications 91

http://docs.sun.com/doc/819-4733
http://docs.sun.com/doc/819-4733
http://java.sun.com/j2ee/1.4/docs/tutorial/doc/index.html

Deploying Modules and Applications

See Also

92

JSR88

You can write your own JSR 88 client to deploy applications to the Application Server. For more
information, see the JSR 88 pageathttp://jcp.org/en/jsr/detail?id=88.

See “Naming Standards” on page 72 for application and module naming considerations.

The asadmin Command

You can use the asadmin deploy or asadmin deploydir command to deploy or undeploy
applications and individually deployed modules on local servers. For details, see the Sun Java
System Application Server Enterprise Edition 8.2 Reference Manual. The asadmin deploydir
command is available only on the default server instance.

To deploy a lifecycle module, see “Deploying a Lifecycle Module” on page 94.

Note - On Windows, if you are deploying a directory on a mapped drive, you must be running
the Application Server as the same user to which the mapped drive is assigned, or the
Application Server won’t see the directory.

The Administration Console

You can use the Administration Console to deploy modules and applications to both local and
remote Application Server sites.

To use the Administration Console for deployment

Open the Applications component.

Go to the page for the type of application or module.
For example, for a web application, go to the Web Applications page.

Click on the Deploy button.

You can also undeploy, enable, or disable an application or module from this page.

For details, see the Sun Java System Application Server Enterprise Edition 8.2 Administration
Guide.

To deploy alifecycle module, see “Deploying a Lifecycle Module” on page 94.

Sun Java System Application Server Enterprise Edition 8.2 Developer's Guide - March 2009

http://jcp.org/en/jsr/detail?id=88
http://docs.sun.com/doc/819-4736
http://docs.sun.com/doc/819-4736
http://docs.sun.com/doc/819-4733
http://docs.sun.com/doc/819-4733

Deploying Modules and Applications

Deployment by Module or Application

You can deploy applications or individual modules that are independent of applications. The
runtime and file system implications of application-based or individual module-based
deployment are described in “Runtime Environments” on page 74.

Individual module-based deployment is preferable when components need to be accessed by:

= Other modules
= J2EE Applications

= ACC clients (Module-based deployment allows shared access to a bean from an ACC client,
a servlet, or an EJB component.)

Modules can be combined into an EAR file and then deployed as a single module. This is similar
to deploying the modules of the EAR independently.

Deploying a WAR Module
You deploy a WAR module as described in “Tools for Deployment” on page 91.

You can precompile JSP files during deployment by checking the appropriate box in the
Administration Console or by using the - -precompilejsp option of the asadmin deploy or
asadmin deploydir command. The “sun-appserv-deploy” on page 98 and “sun-appserv-jspc”
on page 116 Ant tasks also allow you to precompile JSP files.

You can keep the generated source for JSP files by adding the - keepgenerated flag to the
jsp-configelementin sun-web.xml. If you include this property when you deploy the WAR
module, the generated source is kept in
domain-dir/generated/jsp/j2ee-apps/app-name/module-name if it is in an application or
domain-dir/generated/jsp/j2ee-modules/module-nameif it is in an individually deployed
web module.

For more information about JSP precompilation, see “Options for Compiling JSP Files” on
page 147 “jsp-config” on page 366.

HTTP sessions in WAR modules can be saved in a persistent store in case a server instance fails.
For more information, see “Distributed Sessions and Persistence” on page 148 and the Sun Java
System Application Server Enterprise Edition 8.2 High Availability Administration Guide.

Chapter 3 - Assembling and Deploying Applications 93

http://docs.sun.com/doc/819-4740
http://docs.sun.com/doc/819-4740

Deploying Modules and Applications

94

Note - After a web application is undeployed, its Ht tpSession information is not immediately
removed if sessions are persistent. HttpSession information is removed in the subsequent
cycle, when timed out sessions are removed. Therefore, you should disable a web application
before undeploying it if sessions are persistent.

If you are setting up load balancing, web module context roots must be unique within a cluster.
See the Sun Java System Application Server Enterprise Edition 8.2 High Availability
Administration Guide for more information about load balancing.

Deploying an EJB JAR Module

You deploy an EJB JAR module as described in “T'ools for Deployment” on page 91.

You can keep the generated source for stubs and ties by adding the - keepgenerated flag to the
rmic-options attribute of the java-config elementin domain.xml. If you include this flag
when you deploy the EJB JAR module, the generated source is kept in
domain-dir/generated/ejb/j2ee-apps/app-name/module-name if it is in an application or
domain-dir/generated/ejb/j2ee-modules/module-name if it is in an individually deployed
EJB JAR module. For more information about the - keepgenerated flag, see the Sun Java System
Application Server Enterprise Edition 8.2 Administration Reference.

Generation of stubs and ties is performed asynchronously, so unless you request their
generation during deployment (for example, using the - - retrieve option of the asadmin
deploy command), stubs and ties are not guaranteed to be available immediately after
deployment. You can use the asadmin get-client-stubs command to retrieve the stubs and
ties whether or not you requested their generation during deployment. For details, see the Sun
Java System Application Server Enterprise Edition 8.2 Reference Manual.

Deploying a Lifecycle Module

For general information about lifecycle modules, see Chapter 10, “Developing Lifecycle
Listeners”

You can deploy a lifecycle module using the following tools:

= Inthe Administration Console, open the Applications component and go to the Lifecycle
Modules page. For details, see the Sun Java System Application Server Enterprise Edition 8.2
Administration Guide.

m Usethe asadmin create-1lifecycle-module command. For details, see the Sun Java
System Application Server Enterprise Edition 8.2 Reference Manual.

Sun Java System Application Server Enterprise Edition 8.2 Developer's Guide - March 2009

http://docs.sun.com/doc/819-4740
http://docs.sun.com/doc/819-4740
http://docs.sun.com/doc/819-4735
http://docs.sun.com/doc/819-4735
http://docs.sun.com/doc/819-4736
http://docs.sun.com/doc/819-4736
http://docs.sun.com/doc/819-4733
http://docs.sun.com/doc/819-4733
http://docs.sun.com/doc/819-4736
http://docs.sun.com/doc/819-4736

Deploying Modules and Applications

Next Steps

SeeAlso

Note - Ifthe is-failure- fatal setting is set to true (the default is false), lifecycle module
failure prevents server initialization or startup, but not shutdown or termination.

Deploying an Application Client

Deployment is only necessary for application clients that communicate with EJB components.

To deploy an application client

Assemble the necessary client files.

Assemble the EJB components to be accessed by the client.

Package the client and EJB components together in an application.
Deploy the application as described in “Tools for Deployment”on page 91.

Retrieve the client JARfile.
The client JAR file contains the ties and necessary classes for the ACC client.

You can use the - - retrieve option to get the client JAR file.

You can also use the asadmin get-client-stubs command to retrieve the stubs and ties
whether or not you requested their generation during deployment. For details, see the Sun Java
System Application Server Enterprise Edition 8.2 Reference Manual.

Copy the client JAR file to the client machine, and set the APPCPATH environment variable on
the client to point to this JAR.

To execute the client on the Application Server machine to test it, use the appclient scriptin
the install-dir/bin directory. If you are using the default server instance, the only required
option is -client. For example:

appclient -client converterClient.jar
The -xml parameter, which specifies the location of the sun-acc. xml file, is also required if you

are not using the default instance.

For more detailed information about the appclient script, see Chapter 8, “Developing Java
Clients”

Chapter 3 - Assembling and Deploying Applications 95

http://docs.sun.com/doc/819-4736
http://docs.sun.com/doc/819-4736

Deploying Modules and Applications

96

SeeAlso

To prepare another machine for executing an application client

You can use the package-appclient scriptin the install-dir/bin directory to create the ACC
package JAR file. This is optional.

This JAR file is created in the install-dir /1ib/appclient directory.
Copy the ACC package JARfile to the client machine and unjar it.

Configure the sun-acc.xml file.

This file is located in the appclient/appserv/lib/appclient directory by default if you used
the package-appclient script.

Configure the asenv. conf (asenv.bat on Windows) file.

This file is located in appclient/appserv/bin by default if you used the package-appclient
script.

Copy the client JAR file to the client machine.

You are now ready to execute the client.

For more detailed information about the package-appclient script, see Chapter 8,
“Developing Java Clients.”

Deploying a J2EE CA Resource Adapter

You deploy a connector module as described in “T'ools for Deployment” on page 91. After
deploying the module, you must configure it as described in Chapter 9, “Developing
Connectors”

Access to Shared Frameworks

When J2EE applications and modules use shared framework classes (such as utility classes and
libraries) the classes can be put in the path for the System Classloader or the Common
Classloader rather than in an application or module. If you assemble a large, shared library into
every module that uses it, the result is a huge file that takes too long to register with the server. In
addition, several versions of the same class could exist in different classloaders, which is a waste
of resources. For more information, see “Circumventing Classloader Isolation” on page 79.

Sun Java System Application Server Enterprise Edition 8.2 Developer's Guide - March 2009

asant Assembly and Deployment Tool

asant Assembly and Deployment Tool

Apache Ant 1.6.5 is provided with Application Server and can be launched from the bin
directory using the command asant. The Application Server also provides server-specific tasks
for deployment, which are described in this section.

Make sure you have done these things before using asant:

m Include install-dir/bin in the PATH environment variable (/usr/sfw/bin for Sun Java
Enterprise System on Solaris). The Ant script provided with the Application Server, asant,
is located in this directory. For details on how to use asant, see the Sun Java System
Application Server Enterprise Edition 8.2 Reference Manual and the sample applications
documentation in the install-dir/samples/docs/ant . html file.

= Ifyou are executing platform-specific applications, such as the exec or cvs task, the
ANT_HOME environment variable must be set to the Ant installation directory.

= The ANT_HOME environment variable for Sun Java Enterprise System must include
the following:

= /usr/sfw/bin - the Ant binaries (shell scripts)
m /usr/sfw/doc/ant - HTML documentation
m /usr/sfw/lib/ant - Java classes that implement Ant

= The ANT_HOME environment variable for all other platforms is install-dir/11b.

= Setup your password file. The argument for the passworfile option of each Ant task is a
file. This file contains the password attribute name and its value, in the following format:

AS_ADMIN_PASSWORD=password

For more information about password files, see the Sun Java System Application Server
Enterprise Edition 8.2 Reference Manual.

This section covers the following asant-related topics:

= “asant Tasks for Sun Java System Application Server” on page 97
= “Reusable Subelements” on page 119

For more information about Ant, see the Apache Software Foundation web site at
http://ant.apache.org/.

For information about standard Ant tasks, see the Ant documentation at
http://ant.apache.org/manual/.

asant Tasks for Sun Java System Application Server

Use the asant tasks provided by the Application Server for assembling, deploying, and
undeploying modules and applications, and for configuring the server. The tasks are as follows:

Chapter3 « Assembling and Deploying Applications 97

http://docs.sun.com/doc/819-4736
http://docs.sun.com/doc/819-4736
http://docs.sun.com/doc/819-4736
http://docs.sun.com/doc/819-4736
http://ant.apache.org/
http://ant.apache.org/manual/

asant Assembly and Deployment Tool

= “sun-appserv-deploy” on page 98

= “sun-appserv-undeploy” on page 104

= “sun-appserv-instance” on page 107

= “sun-appserv-component” on page 111
= “sun-appserv-admin” on page 114

= “sun-appserv-jspc” on page 116

= “sun-appserv-update” on page 118

sun-appserv-deploy
Deploys any of the following to a local or remote Application Server instance.

= Enterprise application (EAR file)

= Web application (WAR file)

= Enterprise Java Bean (EJB-JAR file)
= Enterprise connector (RAR file)

= Application client

Subelements

The following table describes subelements for the sun-appserv-deploy task. These are objects
upon which this task acts.

TABLE3-5 sun-appserv-deploy Subelements

Element Description

“server” on An Application Server instance.

page 119

“component” on | A component to be deployed.

page 122

“fileset” on A set of component files that match specified parameters.
page 125
Attributes

The following table describes attributes for the sun-appserv-deploy task.

98 Sun Java System Application Server Enterprise Edition 8.2 Developer's Guide « March 2009

asant Assembly and Deployment Tool

TABLE3-6 sun-appserv-deploy Attributes

Attribute

Default

Description

file

none

(optional ifa component or fileset
subelement is present, otherwise required)
The component to deploy. If this attribute
refers to a file, it must be a valid archive. If
this attribute refers to a directory, it must
contain a valid archive in which all
components have been exploded. If upload
is set to false, this must be an absolute path
on the server machine.

name

file name without extension

(optional) The display name for the
component being deployed.

type

determined by extension

(optional) Deprecated.

force

true

(optional) If true, the component is
overwritten if it already exists on the server.
If false, sun-appserv-deploy fails if the
component exists.

retrievestubs

client stubs not saved

(optional) The directory where client stubs
are saved. This attribute is inherited by
nested component elements.

precompilejsp

false

(optional) If true, all JSP files found in an
enterprise application (.ear) or web
application (.war) are precompiled. This
attribute is ignored for other component
types. This attribute is inherited by nested
component elements.

verify

false

(optional) If true, syntax and semantics for
all deployment descriptors are automatically
verified for correctness. This attribute is
inherited by nested component elements.

contextroot

file name without extension

(optional) The context root for a web
module (WAR file). This attribute is ignored
if the component is not a WAR file.

Chapter 3 - Assembling and Deploying Applications

99

asant Assembly and Deployment Tool

TABLE3-6 sun-appserv-deploy Attributes

(Continued)

Attribute

Default

Description

dbvendorname

sun-ejb-jar.xml entry

(optional) The name of the database vendor
for which tables can be created. Allowed
values are javadb, db2,mssql, oracle,
pointbase, derby (also for CloudScape),
and sybase, case-insensitive.

If not specified, the value of the
database-vendor-name attribute in
sun-ejb-jar.xmlis used.

If no value is specified, a connection is made
to the resource specified by the jndi-name
subelement of the cmp- resource element in
the sun-ejb-jar.xml file, and the database
vendor name is read. If the connection
cannot be established, or if the value is not
recognized, SQL-92 compliance is
presumed.

For details, see “Generation Options” on
page 191.

createtables

sun-ejb-jar.xml entry

(optional) If true, causes database tables to
be created for beans that need them. If
false, does not create tables. If not
specified, the value of the
create-tables-at-deploy attribute in
sun-ejb-jar.xmlis used.

For details, see “Generation Options” on
page 191.

100 Sun Java System Application Server Enterprise Edition 8.2 Developer's Guide - March 2009

asant Assembly and Deployment Tool

TABLE3-6 sun-appserv-deploy Attributes

(Continued)

Attribute

Default

Description

dropandcreatetables

sun-ejb-jar.xml entry

(optional) If true, and if tables were
automatically created when this application
was last deployed, tables from the earlier
deployment are dropped and fresh ones are
created.

If true, and if tables were not automatically
created when this application was last
deployed, no attempt is made to drop any
tables. If tables with the same names as those
that would have been automatically created
are found, the deployment proceeds, but a
warning indicates that tables could not be
created.

If false, settings of
create-tables-at-deploy or
drop-tables-at-undeploy in the
sun-ejb-jar.xml file are overridden.

For details, see “Generation Options” on
page 191.

uniquetablenames

sun-ejb-jar.xml entry

(optional) If true, specifies that table names
are unique within each application server
domain. If not specified, the value of the
use-unique-table-names property in
sun-ejb-jar.xmlis used.

For details, see “Generation Options” on
page 191.

enabled

true

(optional) If true, enables the component.

deploymentplan

none

(optional) A deployment plan is a JAR file
containing Sun-specific descriptors. Use this
attribute when deploying an EAR file that
lacks Sun-specific descriptors.

availabilityenabled

false

(optional) If true, enables high availability
features, including persistence of HTTP
sessions and checkpointing of the stateful
session bean state.

generatermistubs

false

(optional) If true, generates the static
RMI-IIOP stubs and puts them in the client
JAR file.

Chapter 3 - Assembling and Deploying Applications

101

asant Assembly and Deployment Tool

TABLE3-6 sun-appserv-deploy Attributes (Continued)

Attribute Default Description

upload true (optional) If true, the component is
transferred to the server for deployment. If
the component is being deployed on the
local machine, set upload to false to reduce
deployment time. If a directory is specified
for deployment, upload must be false.

virtualservers default virtual server only (optional) A comma-separated list of virtual

servers to be deployment targets. This
attribute applies only to application (.ear)
or web (.war) components and is ignored
for other component types. This attribute is
inherited by nested server elements.

user

admin

(optional) The user name used when logging
into the application server administration
instance. This attribute is inherited by
nested server elements.

password

none

(optional) Deprecated, use passwordfile
instead. The password used when logging
into the application server administration
instance. This attribute is inherited by
nested server elements.

passwordfile

none

(optional) File containing passwords. The
password from this file is retrieved for
communication with the application server
administration instance. This attribute is
inherited by nested server elements. If both
password and passwordfile are specified,
passwordfile takes precedence.

host

localhost

(optional) Target server. When deploying to
aremote server, use the fully qualified host
name. This attribute is inherited by nested
server elements.

port

4849

(optional) The administration port on the
target server. This attribute is inherited by
nested server elements.

target

name of default instance

(optional) Target application server
instance. This attribute is inherited by
nested server elements.

102

Sun Java System Application Server Enterprise Edition 8.2 Developer's Guide - March 2009

asant Assembly and Deployment Tool

TABLE3-6 sun-appserv-deploy Attributes (Continued)

Attribute

Default Description

asinstalldir

see description (optional) The installation directory for the
local Application Server installation, which
is used to find the administrative classes. If
not specified, the command checks to see if
the asinstalldir parameter has been set.
Otherwise, administrative classes must be in
the system classpath.

sunonehome

see description (optional) Deprecated. Use asinstalldir
instead.

Examples

Here is a simple application deployment script with many implied attributes:

<sun-appserv-deploy
file="¢{assemble}/simpleapp.ear"
passwordfile="${passwordfile}" />

Here is an equivalent script showing all the implied attributes:

<sun-appserv-deploy
file="${assemble}/simpleapp.ear"
name="simpleapp"

force="true"
precompilejsp="false"
verify="false"

upload="true"

user="admin"
passwordfile="${passwordfile}"
host="localhost"

port="4849"
target="${default-instance-name}"
asinstalldir="¢${asinstalldir}" />

This example deploys multiple components to the same Application Server instance running on
aremote server:

<sun-appserv-deploy passwordfile="${passwordfile}" host="greg.sun.com"
asinstalldir="/opt/sun" >
<component file="${assemble}/simpleapp.ear"/>
<component file="${assemble}/simpleservlet.war"
contextroot="test"/>
<component file="${assemble}/simplebean.jar"/>
</sun-appserv-deploy>

Chapter 3 - Assembling and Deploying Applications 103

asant Assembly and Deployment Tool

This example deploys multiple components to two Application Server instances running on
remote servers. In this example, both servers are using the same admin password. If this were
not the case, each password could be specified in the server element.

<sun-appserv-deploy passwordfile="${passwordfile}" asinstalldir="/opt/sun" >
<server host="greg.sun.com"/>
<server host="joe.sun.com"/>
<component file="¢${assemble}/simpleapp.ear"/>
<component file="${assemble}/simpleservlet.war"
contextroot="test"/>
<component file="${assemble}/simplebean.jar"/>
</sun-appserv-deploy>

This example deploys the same components as the previous example because the three
components match the fileset criteria, but note that it’s not possible to set some
component-specific attributes. All component-specific attributes (name and contextroot) use
their default values.

<sun-appserv-deploy passwordfile="${passwordfile}" host="greg.sun.com"
asinstalldir="/opt/sun" >

<fileset dir="¢${assemble}" includes="**/* ?ar" />

</sun-appserv-deploy>

sun-appserv-undeploy

Undeploys any of the following from a local or remote Application Server instance.

= Enterprise application (EAR file)

= Web application (WAR file)

= Enterprise Java Bean (EJB-JAR file)
= Enterprise connector (RAR file)

= Application client

Subelements

The following table describes subelements for the sun-appserv-undeploy task. These are
objects upon which this task acts.

TABLE3-7 sun-appserv-undeploy Subelements

Element Description
“server” on An Application Server instance.
page 119

104 Sun Java System Application Server Enterprise Edition 8.2 Developer's Guide - March 2009

asant Assembly and Deployment Tool

TABLE3-7 sun-appserv-undeploy Subelements (Continued)

Element

Description

“component” on
page 122

A component to be deployed.

“fileset” on
page 125

A set of component files that match specified parameters.

Attributes

The following table describes attributes for the sun-appserv-undeploy task.

TABLE3-8 sun-appserv-undeploy Attributes

Attribute

Default Description

name

file name without extension (optional ifa component or fileset subelement is
present or the file attribute is specified, otherwise
required) The display name for the component being
undeployed.

file

none (optional) The component to undeploy. If this attribute
refers to a file, it must be a valid archive. If this attribute
refers to a directory, it must contain a valid archive in
which all components have been exploded.

type

determined by extension (optional) Deprecated.

droptables

sun-ejb-jar.xml entry (optional) If true, causes database tables that were
automatically created when the bean(s) were last
deployed to be dropped when the bean(s) are
undeployed. If false, does not drop tables.

If not specified, the value of the
drop-tables-at-undeploy attribute in
sun-ejb-jar.xmlis used.

For details, see “Generation Options” on page 191.

cascade

false (optional) If t rue, deletes all connection pools and
connector resources associated with the resource
adapter being undeployed.

If false, undeployment fails if any pools or resources
are still associated with the resource adapter.

This attribute is applicable to connectors (resource
adapters) and applications with connector modules.

user

admin (optional) The user name used when logging into the
application server administration instance. This
attribute is inherited by nested server elements.

Chapter 3 - Assembling and Deploying Applications 105

asant Assembly and Deployment Tool

TABLE3-8 sun-appserv-undeploy Attributes (Continued)
Attribute Default Description
password none (optional) Deprecated, use passwordfile instead. The
password used when logging into the application server
administration instance. This attribute is inherited by
nested server elements.
passwordfile none (optional) File containing passwords. The password
from this file is retrieved for communication with the
application server administration instance. This
attribute is inherited by nested server elements. If both
password and passwordfile are specified,
passwordfile takes precedence.
host localhost (optional) Target server. When deploying to a remote
server, use the fully qualified host name. This attribute is
inherited by nested server elements.
port 4849 (optional) The administration port on the target server.
This attribute is inherited by nested server elements.
target name of default instance (optional) Target application server instance. This
attribute is inherited by nested server elements.
asinstalldir see description (optional) The installation directory for the local
Application Server installation, which is used to find the
administrative classes. If not specified, the command
checks to see if the asinstalldir parameter has been
set. Otherwise, administrative classes must be in the
system classpath.
sunonehome see description (optional) Deprecated. Use asinstalldir instead.
Examples
Here is a simple application undeployment script with many implied attributes:
<sun-appserv-undeploy name="simpleapp" passwordfile="${passwordfile}" />
Here is an equivalent script showing all the implied attributes:
<sun-appserv-undeploy
name="simpleapp"
user="admin"
passwordfile="${passwordfile}"
host="localhost"
port="4849"
target="¢${default-instance-name}"
asinstalldir="¢${asinstalldir}" />
106 Sun Java System Application Server Enterprise Edition 8.2 Developer's Guide - March 2009

asant Assembly and Deployment Tool

This example demonstrates using the archive files (EAR and WAR, in this case) for the
undeployment, using the component name (for undeploying the EJB component in this
example), and undeploying multiple components.

<sun-appserv-undeploy passwordfile="${passwordfile}">
<component file="${assemble}/simpleapp.ear"/>
<component file="${assemble}/simpleservliet.war"/>
<component name="simplebean" />
</sun-appserv-undeploy>

As with the deployment process, components can be undeployed from multiple servers in a
single command. This example shows the same three components being removed from two
different instances of the Application Server. In this example, the passwords for both instances
are the same.

<sun-appserv-undeploy passwordfile="${passwordfile}">
<server host="greg.sun.com"/>

<server host="joe.sun.com"/>

<component file="${assemble}/simpleapp.ear"/>
<component file="${assemble}/simpleservlet.war"/>
<component name="simplebean" />
</sun-appserv-undeploy>

sun-appserv-instance

Starts, stops, restarts, creates, or removes one or more application server instances.

Subelements

The following table describes subelements for the sun-appserv-instance task. These are
objects upon which this task acts.

TABLE3-9 sun-appserv-instance Subelements

Element Description
“server” on An Application Server instance.
page 119

Attributes

The following table describes attributes for the sun-appserv-instance task.

Chapter3 « Assembling and Deploying Applications 107

asant Assembly and Deployment Tool

TABLE3-10 sun-appserv-instance Attributes

Attribute

Default

Description

action

none

The control command for the target application server.
Valid values are start, stop, restart, create, and
delete. A restart sends the stop command followed
by the start command. The restart command is not
supported on Windows.

debug

false

(optional) Deprecated. If action is set to start or
restart, specifies whether the server starts in debug
mode. This attribute is ignored for other values of
action. If true, the instance generates additional
debugging output throughout its lifetime. This
attribute is inherited by nested server elements.

instanceport

none

(optional) Deprecated.

nodeagent

none

(required if action is create, otherwise ignored) The
name of the node agent on which the instance is being
created.

cluster

none

(optional, applicable only ifactionis create) The
clustered instance to be created. The server’s
configuration is inherited from the named cluster.

The config and cluster attributes are mutually
exclusive. If both are omitted, a stand-alone server
instance is created.

config

none

(optional, applicable only ifactionis create) The
configuration for the new stand-alone instance.

The configuration must exist and must not be
default-config (the cluster configuration template)
or an already referenced stand-alone configuration
(including the administration server configuration
server-config).

The configand cluster attributes are mutually
exclusive. If both are omitted, a stand-alone server
instance is created.

108

Sun Java System Application Server Enterprise Edition 8.2 Developer's Guide - March 2009

asant Assembly and Deployment Tool

TABLE3-10 sun-appserv-instance Attributes (Continued)

Attribute

Default

Description

property

none

(optional, applicable only if action is create) Defines
system properties for the server instance. These
properties override port settings in the server instance’s
configuration. The following properties are defined:
http-listener-1-port, http-listener-2-port,
orb-listener-1-port, SSL-port,
SSL_MUTUALAUTH-port, JMX_SYSTEM_CONNECTOR port

System properties can be changed after instance
creation using the system property commands. For
details, see the Sun Java System Application Server
Enterprise Edition 8.2 Reference Manual.

user

admin

(optional) The username used when logging into the
application server administration instance. This
attribute is inherited by nested server elements.

password

none

(optional) Deprecated, use passwordfile instead. The
password used when logging into the application
server administration instance. This attribute is
inherited by nested server elements.

passwordfile

none

(optional) File containing passwords. The password
from this file is retrieved for communication with the
application server administration instance. This
attribute is inherited by nested server elements. If
both password and passwordfile are specified,
passwordfile takes precedence.

host

localhost

(optional) Target server. If it is a remote server, use the
fully qualified hostname. This attribute is inherited by
nested server elements.

port

4849

(optional) The administration port on the target server.
This attribute is inherited by nested server elements.

instance

name of default instance

(optional) Target application server instance. This
attribute is inherited by nested server elements.

asinstalldir

see description

(optional) The installation directory for the local
Application Server installation, which is used to find
the administrative classes. If not specified, the
command checks to see if the asinstalldir parameter
has been set. Otherwise, administrative classes must be
in the system classpath.

sunonehome

see description

(optional) Deprecated. Use asinstalldir instead.

Chapter 3 - Assembling and Deploying Applications

109

http://docs.sun.com/doc/819-4736
http://docs.sun.com/doc/819-4736

asant Assembly and Deployment Tool

110

Examples

This example starts the local Application Server instance:

<sun-appserv-instance action="start" passwordfile="${passwordfile}"
instance="${default-instance-name}"/>

Here is an equivalent script showing all the implied attributes:

<sun-appserv-instance

action="start"

user="admin"
passwordfile="${passwordfile}"
host="localhost"

port="4849"
instance="¢${default-instance-name}"
asinstalldir="¢${asinstalldir}" />

Multiple servers can be controlled using a single command. In this example, two servers are
restarted, and in this case each server uses a different password:

<sun-appserv-instance action="restart"
instance="¢${default-instance-name}"/>

<server host="greg.sun.com" passwordfile="${password.greg}"/>

<server host="joe.sun.com" passwordfile="${password.joe}"/>

</sun-appserv-instance>

This example creates a new Application Server instance:

<sun-appserv-instance
action="create" instanceport="8080"
passwordfile="¢{passwordfile}"
instance="development" />

Here is an equivalent script showing all the implied attributes:

<sun-appserv-instance
action="create"
instanceport="8080"

user="admin"
passwordfile="${passwordfile}"
host="localhost"

port="4849"
instance="development"
asinstalldir="${asinstalldir}" />

Instances can be created on multiple servers using a single command. This example creates a
new instance named ga on two different servers. In this case, both servers use the same
password.

Sun Java System Application Server Enterprise Edition 8.2 Developer's Guide - March 2009

asant Assembly and Deployment Tool

<sun-appserv-instance
action="create"
instanceport="8080"
instance="qa"
passwordfile="¢{passwordfile}>
<server host="greg.sun.com"/>
<server host="joe.sun.com"/>
</sun-appserv-instance>

These instances can also be removed from their respective servers:

<sun-appserv-instance
action="delete"
instance="qa"
passwordfile="${passwordfile}>
<server host="greg.sun.com"/>
<server host="joe.sun.com"/>
</sun-appserv-instance>

Different instance names and instance ports can also be specified using attributes of the server
subelement:

<sun-appserv-instance action="create" passwordfile="${passwordfile}>

<server host="greg.sun.com" instanceport="8080" instance="ga"/>

<server host="joe.sun.com" instanceport="9090"
instance="integration-test"/>

</sun-appserv-instance>

sun-appserv-component

Enables or disables the following J2EE component types that have been deployed to the
Application Server.

Enterprise application (EAR file)
Web application (WAR file)
Enterprise Java Bean (EJB-JAR file)
Enterprise connector (RAR file)
Application client

You don’t need to specify the archive to enable or disable a component: only the component
name is required. You can use the component archive, however, because it implies the
component name.

Subelements

The following table describes subelements for the sun-appserv-component task. These are
objects upon which this task acts.

Chapter3 « Assembling and Deploying Applications m

asant Assembly and Deployment Tool

TABLE3-11 sun-appserv-component Subelements

Element Description
“server” on An Application Server instance.
page 119
“component” on | A component to be deployed.
page 122
“fileset” on A set of component files that match specified parameters.
page 125
Attributes

The following table describes attributes for the sun-appserv-component task.

TABLE3-12 sun-appserv-component Attributes

Attribute

Default

Description

action

none

The control command for the target application server.
Valid values are enable and disable.

name

file name without extension

(optional ifa component or fileset subelement is
present or the file attribute is specified, otherwise
required) The display name for the component being
enabled or disabled.

file

none

(optional) The component to enable or disable. If this
attribute refers to a file, it must be a valid archive. If this
attribute refers to a directory, it must contain a valid
archive in which all components have been exploded.

type

determined by extension

(optional) Deprecated.

user

admin

(optional) The user name used when logging into the
application server administration instance. This
attribute is inherited by nested server elements.

password

none

(optional) Deprecated, use passwordfile instead. The
password used when logging into the application server
administration instance. This attribute is inherited by
nested server elements.

passwordfile

none

(optional) File containing passwords. The password
from this file is retrieved for communication with the
application server administration instance. This
attribute is inherited by nested server elements. If both
password and passwordfile are specified,
passwordfile takes precedence.

112

Sun Java System Application Server Enterprise Edition 8.2 Developer's Guide - March 2009

asant Assembly and Deployment Tool

TABLE3-12 sun-appserv-component Attributes (Continued)

Attribute Default Description

host localhost (optional) Target server. When enabling or disabling a
remote server, use the fully qualified host name. This
attribute is inherited by nested server elements.

port 4849 (optional) The administration port on the target server.
This attribute is inherited by nested server elements.

target name of default instance (optional) Target application server instance. This
attribute is inherited by nested server elements.

asinstalldir see description (optional) The installation directory for the local
Application Server installation, which is used to find the
administrative classes. If not specified, the command
checks to see if the asinstalldir parameter has been
set. Otherwise, administrative classes must be in the
system classpath.

sunonehome see description (optional) Deprecated. Use asinstalldir instead.

Examples

Here is a simple example of disabling a component:

<sun-appserv-component
action="disable"

name="simpleapp"
passwordfile="${passwordfile}" />

Here is a simple example of enabling a component:

<sun-appserv-component
action="enable"

name="simpleapp"
passwordfile="${passwordfile}" />

Here is an equivalent script showing all the implied attributes:

<sun-appserv-component
action="enable"

name="simpleapp"

user="admin"
passwordfile="¢${passwordfile}"
host="localhost"

port="4849"
target="${default-instance-name}"
asinstalldir="¢${asinstalldir}" />

Chapter3 « Assembling and Deploying Applications 113

asant Assembly and Deployment Tool

114

This example demonstrates disabling multiple components using the archive files (EAR and
WAR, in this case) and using the component name (for an EJB component in this example).

<sun-appserv-component action="disable" passwordfile="¢${passwordfile}">
<component file="¢${assemble}/simpleapp.ear"/>

<component file="${assemble}/simpleservlet.war"/>

<component name="simplebean" />

</sun-appserv-component>

Components can be enabled or disabled on multiple servers in a single task. This example
shows the same three components being enabled on two different instances of the Application
Server. In this example, the passwords for both instances are the same.

<sun-appserv-component action="enable" passwordfile="${passwordfile}">
<server host="greg.sun.com"/>

<server host="joe.sun.com"/>

<component file="${assemble}/simpleapp.ear"/>

<component file="${assemble}/simpleservlet.war"/>

<component name="simplebean" />

</sun-appserv-component>

sun-appserv-admin

Enables arbitrary administrative commands and scripts to be executed on the Application
Server. This is useful for cases where a specific Ant task hasn’t been developed or a set of related
commands are in a single script.

Subelements

The following table describes subelements for the sun-appserv-admin task. These are objects
upon which this task acts.

TABLE3-13 sun-appserv-admin Subelements

Element Description

“server” on An Application Server instance.
page 119
Attributes

The following table describes attributes for the sun-appserv-admin task.

Sun Java System Application Server Enterprise Edition 8.2 Developer's Guide - March 2009

asant Assembly and Deployment Tool

TABLE3-14 sun-appserv-admin Attributes

Attribute

Default

Description

command

none

(exactly one of these is required: command,
commandfile, or explicitcommand) The command
to execute. If the user, passwordfile, host, port, or
target attributes are also specified, they are
automatically inserted into the command before
execution. If any of these options are specified in the
command string, the corresponding attribute values
are ignored.

commandfile

none

(exactly one of these is required: command,
commandfile, or explicitcommand) Deprecated.
The command script to execute. If conmandfile is
used, the values of all other attributes are ignored. Be
sure to end the script referenced by commandfile
with the exit command; if you omit exit, the Ant
task might appear to hang after the command script
is called.

explicitcommand

none

(exactly one of these is required: command,
commandfile, or explicitcommand) The exact
command to execute. No command processing is
done, and all other attributes are ignored.

user

admin

(optional) The user name used when logging into
the application server administration instance. This
attribute is inherited by nested server elements.

password

none

(optional) Deprecated, use passwordfile instead.
The password used when logging into the
application server administration instance. This
attribute is inherited by nested server elements.

passwordfile

none

(optional) File containing passwords. The password
from this file is retrieved for communication with
the application server administration instance. This
attribute is inherited by nested server elements. If
both password and passwordfile are specified,
passwordfile takes precedence.

host

localhost

(optional) Target server. If it is a remote server, use
the fully qualified host name. This attribute is
inherited by nested server elements.

port

4849

(optional) The administration port on the target
server. This attribute is inherited by nested server
elements.

Chapter 3 - Assembling and Deploying Applications

115

asant Assembly and Deployment Tool

TABLE3-14 sun-appserv-admin Attributes (Continued)

Attribute Default Description

asinstalldir see description (optional) The installation directory for the local
Application Server installation, which is used to find
the administrative classes. If not specified, the
command checks to see if the asinstalldir
parameter has been set. Otherwise, administrative
classes must be in the system classpath.

sunonehome see description (optional) Deprecated. Use asinstalldir instead

Examples

Here is an example of executing the create-jms-dest command:

<sun-appserv-admin command="create-jms-dest --desttype topic">

Here is an example of using commandfile to execute the create- jms-dest command:

<sun-appserv-admin commandfile="create jms dest.txt" instance="development">

The create_jms_dest. txt file contains the following:

create-jms-dest --user admin --passwordfile "${passwordfile}" --host
localhost --port 4849 --desttype topic --target serverl simpleJmsDest

Here is an example of using explicitcommand to execute the create-jms-dest command:

<sun-appserv-admin command="create-jms-dest --user admin --passwordfile
"${passwordfile}" --host localhost --port 4849 --desttype topic
--target serverl simpleJmsDest">

sun-appserv-jspc

Precompiles JSP source code into Application Server compatible Java code for initial invocation
by Application Server. Use this task to speed up access to JSP files or to check the syntax of JSP
source code. You can feed the resulting Java code to the javac task to generate class files for the
JSP files.

Subelements

none

Attributes

The following table describes attributes for the sun-appserv-jspc task.

116 Sun Java System Application Server Enterprise Edition 8.2 Developer's Guide - March 2009

asant Assembly and Deployment Tool

TABLE3-15 sun-appserv-jspc Attributes

Attribute

Default

Description

destdir

The destination directory for the generated Java source
files.

srcdir

(exactly one of these is required: srcdir or webapp) The
source directory where the JSP files are located.

webapp

(exactly one of these is required: srcdir or webapp) The
directory containing the web application. All JSP files
within the directory are recursively parsed. The base
directory must have a WEB- INF subdirectory beneath it.
When webapp is used, sun-appserv-jspc hands off all
dependency checking to the compiler.

verbose

(optional) The verbosity integer to be passed to the
compiler.

classpath

(optional) The classpath for running the JSP compiler.

classpathref

(optional) A reference to the JSP compiler classpath.

uribase

(optional) The URI context of relative URI references in
the JSP files. If this context does not exist, it is derived
from the location of the JSP file relative to the declared or
derived value of uriroot. Only pages translated from an
explicitly declared JSP file are affected.

uriroot

see description

(optional) The root directory of the web application,
against which URI files are resolved. If this directory is
not specified, the first JSP file is used to derive it: each
parent directory of the first JSP file is searched for a

WEB- INF directory, and the directory closest to the JSP
file that has one is used. If no WEB- INF directory is found,
the directory sun-appserv-jspc was called from is used.
Only pages translated from an explicitly declared JSP file
(including tag libraries) are affected.

package

(optional) The destination package for the generated
Java classes.

asinstalldir

see description

(optional) The installation directory for the local
Application Server installation, which is used to find the
administrative classes. If not specified, the command
checks to see if the asinstalldir parameter has been
set. Otherwise, administrative classes must be in the
system classpath.

sunonehome

see description

(optional) Deprecated. Use asinstalldir instead.

Chapter 3 - Assembling and Deploying Applications

117

asant Assembly and Deployment Tool

118

Example

The following example uses the webapp attribute to generate Java source files from JSP files. The
sun-appserv-jspc task is immediately followed by a javac task, which compiles the generated
Java files into class files. The classpath value in the javac task must be all on one line with no
spaces.

<sun-appserv-jspc

destdir="¢{assemble.war}/generated"
webapp="¢${assemble.war}"
classpath="¢${assemble.war}/WEB-INF/classes"
asinstalldir="¢${asinstalldir}" />

<javac

srcdir="${assemble.war}/WEB-INF/generated"
destdir="¢${assemble.war}/WEB-INF/generated"

debug="on"
classpath="¢${assemble.war}/WEB-INF/classes:${asinstalldir}/1lib/

appserv-rt.jar:${asinstalldir}/lib/appserv-ext.jar">

<include name="**/*_ java"/>

</javac>

sun-appserv-update

Enables deployed applications (EAR files) and modules (EJB JAR, RAR, and WAR files) to be
updated and reloaded for fast iterative development. This task copies modified class files, XML
files, and other contents of the archive files to the appropriate subdirectory of the
domain-dir/applications directory, then touches the . reload file to cause dynamic reloading
to occur. For more information about dynamic reloading, see “Dynamic Reloading” on page 89.

This is a local task and must be executed on the same machine as the application server.

Subelements

none

Attributes

The following table describes attributes for the sun-appserv-update task.

TABLE3-16 sun-appserv-update Attributes

Attribute Default Description

file none The component to update, which must be a valid archive.

Sun Java System Application Server Enterprise Edition 8.2 Developer's Guide - March 2009

asant Assembly and Deployment Tool

TABLE3-16 sun-appserv-update Attributes (Continued)
Attribute Default Description
domain domainl (optional) The domain in which the application has been previously
deployed.
Example

The following example updates the J2EE application foo.ear, which is deployed to the default
domain, domainl.

<sun-appserv-update file="foo.ear"/>

Reusable Subelements

Reusable subelements of the Ant tasks for the Application Server are as follows. These are
objects upon which the Ant tasks act.

= “server” on page 119
= “component” on page 122
= “fileset” on page 125

server

Specifies an Application Server instance. Allows a single task to act on multiple server instances.
The server attributes override corresponding attributes in the parent task; therefore, the parent
task attributes function as default values.

Subelements

none

Attributes

The following table describes attributes for the server element.

TABLE3-17 server Attributes

Attribute

Default Description

user

admin (optional) The username used when logging into the
application server administration instance.

Chapter3 « Assembling and Deploying Applications 119

asant Assembly and Deployment Tool

TABLE3-17 server Attributes

(Continued)

Attribute

Default

Description

password

none

(optional) Deprecated, use passwordfile instead.
The password used when logging into the
application server administration instance.

passwordfile

none

(optional) File containing passwords. The password
from this file is retrieved for communication with
the application server administration instance. If
both password and passwordfile are specified,
passwordfile takes precedence.

host

localhost

(optional) Target server. When targeting a remote
server, use the fully qualified hostname.

port

4849

(optional) The administration port on the target
server.

instance

name of default instance

(optional) Target application server instance.

domain

(applies to “sun-appserv-update” on page 118 only)
The domain in which the application has been
previously deployed.

instanceport

none

(applies to “sun-appserv-instance” on page 107
only) Deprecated.

nodeagent

none

(applies to “sun-appserv-instance” on page 107 only,
required if action is create, otherwise ignored)
The name of the node agent on which the instance is
being created.

debug

false

(applies to “sun-appserv-instance” on page 107 only,
optional) Deprecated. If actionis setto start,
specifies whether the server starts in debug mode.
This attribute is ignored for other values of action.
If true, the instance generates additional debugging
output throughout its lifetime.

upload

true

(applies to “sun-appserv-deploy” on page 98 only,
optional) If true, the component is transferred to
the server for deployment. If the component is being
deployed on the local machine, set upload to false
to reduce deployment time.

virtualservers

default virtual server only

(applies to “sun-appserv-deploy” on page 98 only,
optional) A comma-separated list of virtual servers
to be deployment targets. This attribute applies only
to application (.ear) or web (.war) components and
is ignored for other component types.

120

Sun Java System Application Server Enterprise Edition 8.2 Developer's Guide - March 2009

asant Assembly and Deployment Tool

Examples

You can control multiple servers using a single task. In this example, two servers are started,
each using a different password. Only the second server is started in debug mode.

<sun-appserv-instance action="start">

<server host="greg.sun.com" passwordfile="${password.greg}"/>

<server host="joe.sun.com" passwordfile="${password.joe}"
debug="true"/>

</sun-appserv-instance>

You can create instances on multiple servers using a single task. This example creates a new
instance named ga on two different servers. Both servers use the same password.

<sun-appserv-instance action="create" instanceport="8080"
instance="ga" passwordfile="${passwordfile}>

<server host="greg.sun.com"/>

<server host="joe.sun.com"/>

</sun-appserv-instance>

These instances can also be removed from their respective servers:

<sun-appserv-instance action="delete" instance="qa"
passwordfile="${passwordfile}>

<server host="greg.sun.com"/>

<server host="joe.sun.com"/>

</sun-appserv-instance>

You can specify different instance names and instance ports using attributes of the nested
server element:

<sun-appserv-instance action="create" passwordfile="${passwordfile}>

<server host="greg.sun.com" instanceport="8080" instance="ga"/>

<server host="joe.sun.com" instanceport="9090"
instance="integration-test"/>

</sun-appserv-instance>

You can deploy multiple components to multiple servers (see the “component” on page 122
nested element. This example deploys each component to two Application Server instances
running on remote servers. Both servers use the same password.

<sun-appserv-deploy passwordfile="${passwordfile}"
asinstalldir="/opt/slas8" >
<server host="greg.sun.com"/>
<server host="joe.sun.com"/>
<component file="${assemble}/simpleapp.ear"/>
<component file="${assemble}/simpleserviet.war"
contextroot="test"/>

Chapter3 « Assembling and Deploying Applications 121

asant Assembly and Deployment Tool

122

<component file="¢${assemble}/simplebean.jar"/>
</sun-appserv-deploy>

You can also undeploy multiple components from multiple servers. This example shows the
same three components being removed from two different instances. Both servers use the same
password.

<sun-appserv-undeploy passwordfile="${passwordfile}">
<server host="greg.sun.com"/>

<server host="joe.sun.com"/>

<component file="${assemble}/simpleapp.ear"/>
<component file="${assemble}/simpleservlet.war"/>
<component name="simplebean" />
</sun-appserv-undeploy>

You can enable or disable components on multiple servers. This example shows the same three
components being enabled on two different instances. Both servers use the same password.

<sun-appserv-component action="enable" passwordfile="${passwordfile}">
<server host="greg.sun.com"/>

<server host="joe.sun.com"/>

<component file="${assemble}/simpleapp.ear"/>

<component file="${assemble}/simpleservlet.war"/>

<component name="simplebean" />

</sun-appserv-component>

component

Specifies a J2EE component. Allows a single task to act on multiple components. The
component attributes override corresponding attributes in the parent task; therefore, the parent
task attributes function as default values.

Subelements

none

Attributes

The following table describes attributes for the component element.

Sun Java System Application Server Enterprise Edition 8.2 Developer's Guide - March 2009

asant Assembly and Deployment Tool

TABLE3-18 component Attributes

Attribute

Default

Description

file

none

(optional if the parent task is “sun-appserv-undeploy”
on page 104 or “sun-appserv-component” on

page 111) The target component. If this attribute refers
to a file, it must be a valid archive. If this attribute refers
to a directory, it must contain a valid archive in which
all components have been exploded. If upload is set to
false, this must be an absolute path on the server
machine.

name

file name without extension

(optional) The display name for the component.

type

determined by extension

(optional) Deprecated.

force

true

(applies to “sun-appserv-deploy” on page 98 only,
optional) If true, the component is overwritten if it
already exists on the server. If false, the containing
element’s operation fails if the component exists.

precompilejsp

false

(applies to “sun-appserv-deploy” on page 98 only,
optional) If true, all JSP files found in an enterprise
application (.ear) or web application (.war) are
precompiled. This attribute is ignored for other
component types.

retrievestubs

client stubs not saved

(applies to “sun-appserv-deploy” on page 98 only,
optional) The directory where client stubs are saved.

contextroot

file name without extension

(applies to “sun-appserv-deploy” on page 98 only,
optional) The context root for a web module (WAR
file). This attribute is ignored if the component is not a
WAR file.

verify

false

(applies to “sun-appserv-deploy” on page 98 only,
optional) If true, syntax and semantics for all
deployment descriptors is automatically verified for
correctness.

Examples

You can deploy multiple components using a single task. This example deploys each
component to the same Application Server instance running on a remote server.

<sun-appserv-deploy passwordfile="${passwordfile}" host="greg.sun.com"
asinstalldir="/opt/slas8" >

<component file="${assemble}/simpleapp.ear"/>

<component file="¢${assemble}/simpleservliet.war"
contextroot="test"/>

Chapter 3 - Assembling and Deploying Applications

123

asant Assembly and Deployment Tool

124

<component file="${assemble}/simplebean.jar"/>
</sun-appserv-deploy>

You can also undeploy multiple components using a single task. This example demonstrates
using the archive files (EAR and WAR, in this case) and the component name (for the EJB
component).

<sun-appserv-undeploy passwordfile="${passwordfile}">
<component file="${assemble}/simpleapp.ear"/
<component file="${assemble}/simpleservlet.war"/>
<component name="simplebean" />
</sun-appserv-undeploy>

You can deploy multiple components to multiple servers. This example deploys each
component to two instances running on remote servers. Both servers use the same password.

<sun-appserv-deploy passwordfile="${passwordfile}" asinstalldir="/opt/slas8" >
<server host="greg.sun.com"/>
<server host="joe.sun.com"/>
<component file="${assemble}/simpleapp.ear"/>
<component file="${assemble}/simpleservliet.war"
contextroot="test"/>
<component file="${assemble}/simplebean.jar"/>
</sun-appserv-deploy>

You can also undeploy multiple components to multiple servers. This example shows the same
three components being removed from two different instances. Both servers use the same
password.

<sun-appserv-undeploy passwordfile="${passwordfile}">
<server host="greg.sun.com"/>

<server host="joe.sun.com"/>

<component file="${assemble}/simpleapp.ear"/>
<component file="${assemble}/simpleservlet.war"/>
<component name="simplebean" />
</sun-appserv-undeploy>

You can enable or disable multiple components. This example demonstrates disabling multiple
components using the archive files (EAR and WAR, in this case) and the component name (for
the EJB component).

<sun-appserv-component action="disable" passwordfile="${passwordfile}">
<component file="${assemble}/simpleapp.ear"/>

<component file="${assemble}/simpleservlet.war"/>

<component name="simplebean" />

</sun-appserv-component>

Sun Java System Application Server Enterprise Edition 8.2 Developer's Guide - March 2009

asant Assembly and Deployment Tool

You can enable or disable multiple components on multiple servers. This example shows the
same three components being enabled on two different instances. Both servers use the same
password.

<sun-appserv-component action="enable" passwordfile="${passwordfile}">
<server host="greg.sun.com"/>

<server host="joe.sun.com"/>

<component file="${assemble}/simpleapp.ear"/>

<component file="${assemble}/simpleservliet.war"/>

<component name="simplebean" />

</sun-appserv-component>

fileset

Selects component files that match specified parameters. When fileset isincluded as a
subelement, the name and contextroot attributes of the containing element must use their
default values for each file in the fileset. For more information, see
http://ant.apache.org/manual/CoreTypes/fileset.html.

Chapter3 « Assembling and Deploying Applications 125

http://ant.apache.org/manual/CoreTypes/fileset.html

126

L R 2 4 CHAPTER 4

Debugging Applications

This chapter gives guidelines for debugging applications in the Sun Java System Application
Server. It includes the following sections:

“Enabling Debugging” on page 127

“JPDA Options” on page 128

“Generating a Stack Trace for Debugging” on page 129
“Using an IDE” on page 129

“Sun Java System Message Queue Debugging” on page 130
“Enabling Verbose Mode” on page 130

“Logging” on page 131

“Profiling” on page 131

Enabling Debugging

When you enable debugging, you enable both local and remote debugging. To start the server in
debug mode, use the - -debug option as follows:

asadmin start-domain --debug [domain-name]

You can then attach to the server from the Java Debugger (jdb) at its default Java Platform
Debugger Architecture (JPDA) port, which is 9009. For example, for UNIX® systems:

jdb -attach 9009

For Windows:

jdb -connect com.sun.jdi.SocketAttach:port=9009
For more information about the jdb debugger, see the following links:

= Java Platform Debugger Architecture - The Java Debugger:
http://java.sun.com/products/jpda/doc/soljdb.html

127

http://java.sun.com/products/jpda/doc/soljdb.html

JPDA Options

SeeAlso

= Java Platform Debugger Architecture - Connecting with JDB:
http://java.sun.com/products/jpda/doc/conninv.html#JDB

Application Server debugging is based on the JPDA (Java Platform Debugger Architecture). For
more information, see “JPDA Options” on page 128.

You can attach to the Application Server using any JPDA compliant debugger, including that of
NetBeans (http://www.netbeans.org), Sun Java Studio, JBuilder, Eclipse, and so on.

You can enable debugging even when the application server is started without the - -debug
option. This is useful if you start the application server from the Windows Start Menu or if you
want to make sure that debugging is always turned on.

To set the server to automatically start up in debug
mode

Select the JVM Settings component under the relevant configuration in the Administration
Console.

Check the Debug Enabled box.

To specify a different port (from 9009, the default) to use when attaching the JVM to a debugger,
specify address= port-number in the Debug Options field.

If you wish to add JPDA options, add any desired JPDA debugging options in Debug Options.
See “JPDA Options” on page 128.

For details, see the Sun Java System Application Server Enterprise Edition 8.2 Administration
Guide.

JPDA Options

128

The default JPDA options in Application Server are as follows:

-Xdebug -Xrunjdwp:transport=dt socket,server=y,suspend=n,address=9009
For Windows, you can change dt_socket to dt_shmem.

If you substitute suspend=y, the JVM starts in suspended mode and stays suspended until a
debugger attaches to it. This is helpful if you want to start debugging as soon as the JVM starts.

To specify a different port (from 9009, the default) to use when attaching the VM to a
debugger, specify address=port-number.

Sun Java System Application Server Enterprise Edition 8.2 Developer's Guide - March 2009

http://java.sun.com/products/jpda/doc/conninv.html#JDB
http://www.netbeans.org
http://docs.sun.com/doc/819-4733
http://docs.sun.com/doc/819-4733

Using an IDE

You can include additional options. A list of JPDA debugging options is available at
http://java.sun.com/products/jpda/doc/conninv.html#Invocation.

Generating a Stack Trace for Debugging

You can generate a Java stack trace for debugging as described here if the Application Server is
in verbose mode (see “Enabling Verbose Mode” on page 130):

http://developer.java.sun.com/developer/technical Articles/Programming/Stacktrace/

The stack trace goes to the domain-dir/1logs/server. log file and also appears on the command
prompt screen.

If the -Xrs flag is set (for reduced signal usage) in the domain.xml file (under jvm-options),
comment it out before generating the stack trace. If the -Xrs flag is used, the server might
simply dump core and restart when you send the signal to generate the trace. For more about
the domain.xml file, see the Sun Java System Application Server Enterprise Edition 8.2
Administration Reference.

Using an IDE

You can use an IDE (integrated development environment) with the Application Server to take
advantage of the IDE's debugging features.

v Tousethe NetBeans IDE for Debugging

The following steps are applicable to the NetBeans 5 IDE and the Sun Java Studio 8 software,
which is built on the NetBeans IDE.

1 Download the latest version of NetBeans from http://www.netbeans.org.
This site also provides documentation for the NetBeans IDE.

2 Startthe NetBeans IDE.

3 IfanApplication Server is not already configured in the NetBeans IDE, perform the following
steps:

a. Select the Runtime tab to display the Runtime window.
b. Right-click on Servers in the Runtime window.

c. Selectthe Add Server command from the menu.

Chapter4 - Debugging Applications 129

http://java.sun.com/products/jpda/doc/conninv.html#Invocation
http://developer.java.sun.com/developer/technicalArticles/Programming/Stacktrace/
http://docs.sun.com/doc/819-4735
http://docs.sun.com/doc/819-4735
http://www.netbeans.org

Sun Java System Message Queue Debugging

d. Onthefirstscreen, select Sun Java System Application Server in the Server field, and type a
name in the Name field. Select Next.

e. Onthesecond screen, fill in the requested configuration information. In the Domains folder
field, use the Browse button to go to the Application Server domain-root-dir directory.

f. Click Finish.
Create a project (an application or module) in the NetBeans IDE.

Right-click on the project in the component tree and select Debug Project from the menu.

This stops the Application Server and restarts it in debug mode.

Set break points in your source file in the NetBeans IDE as usual, and run the application.

Sun Java System Message Queue Debugging

Sun Java System Message Queue has a broker logger, which can be useful for debugging JMS,
including message-driven bean, applications. You can adjust the logger’s verbosity, and you can
send the logger output to the broker’s console using the broker’s - tty option. For more
information, see the Sun Java System Message Queue 3.7 URI Administration Guide.

Enabling Verbose Mode

130

If you want to see the server logs and messages printed to System. out on your command
prompt screen, you can start the server in verbose mode. This makes it easy to do simple
debugging using print statements, without having to view the server. log file every time.

When the server is in verbose mode, messages are logged to the console or terminal window in
addition to the log file. In addition, pressing Ctrl-C stops the server and pressing Ctrl-\ (on
UNIX platforms) or Ctrl-Break (on Windows platforms) prints a thread dump. On UNIX
platforms, you can also print a thread dump using the jstack command (see
http://java.sun.com/j2se/1.5.0/docs/tooldocs/share/jstack.html) or the command
kill -QUIT process_id.

To start the server in verbose mode, use the - -verbose option as follows:

asadmin start-domain --verbose [domain-name]

You can enable verbose mode even when the application server is started without the
- -verbose option. This is useful if you start the application server from the Windows Start
Menu or if you want to make sure that verbose mode is always turned on.

Sun Java System Application Server Enterprise Edition 8.2 Developer's Guide - March 2009

http://docs.sun.com/doc/819-4467
http://java.sun.com/j2se/1.5.0/docs/tooldocs/share/jstack.html

Profiling

Logging

Profiling

You can set the server to automatically start up in verbose mode using the Administration
Console. For details, see the Sun Java System Application Server Enterprise Edition 8.2
Administration Guide.

You can use the Application Server’s log files to help debug your applications. In the
Administration Console, select the Stand-Alone Instances component, select the instance, then
click on the View Log Files button in the General Information page. For details about logging,
see the Sun Java System Application Server Enterprise Edition 8.2 Administration Guide.

You can use a profiler to perform remote profiling on the Application Server to discover
bottlenecks in server-side performance. This section describes how to configure these profilers
for use with the Application Server:

= “The HPROF Profiler” on page 131
= “The Optimizeit Profiler” on page 133

Information about comprehensive monitoring and management support in the Java™ 2
Platform, Standard Edition (J2SE™ platform) version 5.0 is available at
http://java.sun.com/j2se/1.5.0/docs/guide/management/index.html.

The HPROF Profiler

HPROF is a simple profiler agent shipped with the Java 2 SDK. It is a dynamically linked library
that interacts with the JVMPI and writes out profiling information either to a file or to a socket
in ASCII or binary format.

HPROF can present CPU usage, heap allocation statistics, and monitor contention profiles. In
addition, it can also report complete heap dumps and states of all the monitors and threads in
the Java virtual machine. For more details on the HPROF profiler, see the JDK documentation
athttp://java.sun.com/j2se/1.4.2/docs/guide/jvmpi/jvmpi.html#hprof.

Once HPROF is enabled using the following instructions, its libraries are loaded into the server
process.

Chapter4 - Debugging Applications 131

http://docs.sun.com/doc/819-4733
http://docs.sun.com/doc/819-4733
http://docs.sun.com/doc/819-4733
http://java.sun.com/j2se/1.5.0/docs/guide/management/index.html
http://java.sun.com/j2se/1.4.2/docs/guide/jvmpi/jvmpi.html#hprof

Profiling

¥ To use HPROF profiling on UNIX

1 Configure the Application Server using the Administration Console:

a. Selectthe JVM Settings component under the relevant configuration, then select the
Profiler tab.
b. Edit the following fields:

® Profiler Name: hprof

m Profiler Enabled: true

= Classpath: (leave blank)

= Native Library Path: (leave blank)

= JVM Option: For each of these options, select Add, type the option in the Value field,
then check its box:

-Xrunhprof:file=log.txt, options

Here is an example of options you can use:

-Xrunhprof:file=log.txt, thread=y,depth=3

The file option determines where the stack dump is written in Step 2.
The syntax of HPROF options is as follows:
-Xrunhprof[:helpl|[:option=value,option2=value2, ...]

Using help lists options that can be passed to HPROEF. The output is as follows:

Hprof usage: -Xrunhprof[:help]|[:<option>=<value>, ...]
Option Name and Value Description Default
heap=dump|sites|all heap profiling all
cpu=samples|old CPU usage off
format=al|b ascii or binary output a
file=<file> write data to file java.hprof

(.txt for ascii)
send data over a socket write to file
stack trace depth 4

net=<host>:<port>
depth=<size>

132

cutoff=<value> output cutoff point 0.0001
lineno=y|n line number in traces? vy
thread=y|n thread in traces? n
doe=y|n dump on exit? y

Sun Java System Application Server Enterprise Edition 8.2 Developer's Guide - March 2009

Profiling

2

Restart the Application Server. This writes an HPROF stack dump to the file you specified using
the file HPROF optionin Step 1.

The Optimizeit Profiler
You can purchase Optimizeit™ from Borland at http://www.borland. com/optimizeit.

Once Optimizeit is enabled using the following instructions, its libraries are loaded into the
server process.

To enable remote profiling with Optimizeit

Configure your operating system:

= On Solaris, add Optimizeit-dir/1ib to the LD_LIBRARY_PATH environment variable.
= On Windows, add Optimizeit-dir/1ib to the PATH environment variable.

Configure the Application Server using the Administration Console:

a. Select the JVM Settings component under the relevant configuration, then select the
Profiler tab.

b. Editthefollowing fields:

® Profiler Name: optimizeit

= Profiler Enabled: true

» Classpath: Optimizeit-dir/lib/optit.jar
= Native Library Path: Optimizeit-dir/1ib

= JVM Option: For each of these options, select Add, type the option in the Value field,
then check its box:

-DOPTITHOME=Optimizeit-dir -Xrunpri:startAudit=t
-Xbootclasspath/p:/Optimizeit-dir/1ib/oibcp. jar

In addition, you might have to set the following in your server.policy file.
For more information about the server.policy file, see “The server.policy File” on page 52

grant codeBase "file:Optimizeit-dir/lib/optit.jar" {
permission java.security.AllPermission;

+;

Restart the Application Server.

When the server starts up with this configuration, you can attach the profiler.

Chapter4 - Debugging Applications 133

http://www.borland.com/optimizeit

Profiling

SeeAlso For further details, see the Optimizeit documentation.

Troubleshooting If any of the configuration options are missing or incorrect, the profiler might experience
problems that affect the performance of the Application Server.

134 Sun Java System Application Server Enterprise Edition 8.2 Developer's Guide - March 2009

PART 11

Developing Applications and Application
Components

135

136

L K R 4 CHAPTER 5

Developing Web Applications

This chapter describes how web applications are supported in the Sun Java System Application
Server and includes the following sections:

“Using Servlets” on page 137

“Using JavaServer Pages” on page 143

“Creating and Managing HTTP Sessions” on page 147
“Advanced Web Application Features” on page 153

For general information about web applications, see the J2EE 1.4 Tutorial at
http://java.sun.com/j2ee/1.4/docs/tutorial/doc/WebApp.html#wp76431.

Using Servlets

Application Server supports the Java Servlet Specification version 2.4.

Note - Servlet API version 2.4 is fully backward compatible with version 2.3, so all existing
servlets should work without modification or recompilation.

To develop servlets, use Sun Microsystems’ Java Servlet API. For information about using the
Java Servlet AP, see the documentation provided by Sun Microsystems at
http://java.sun.com/products/servliet/index.html.

The Application Server provides the wscompile and wsdeploy tools to help you implement a
web service endpoint as a servlet. For more information about these tools, see the Sun Java
System Application Server Enterprise Edition 8.2 Reference Manual.

This section describes how to create effective servlets to control application interactions
running on an Application Server, including standard-based servlets. In addition, this section
describes the Application Server features to use to augment the standards.

This section contains the following topics:

137

http://java.sun.com/j2ee/1.4/docs/tutorial/doc/WebApp.html#wp76431
http://java.sun.com/products/servlet/index.html
http://docs.sun.com/doc/819-4736
http://docs.sun.com/doc/819-4736

Using Servlets

138

“Invoking a Servlet with a URL’ on page 138
“Servlet Output” on page 138

“Caching Servlet Results” on page 139
“About the Servlet Engine” on page 142

Invoking a Servlet with a URL

You can call a servlet deployed to the Application Server by using a URL in a browser or
embedded as a link in an HTML or JSP file. The format of a servlet invocation URL is as follows:

http://server:port/context-root/serviet-mapping?name=value

The following table describes each URL section.

TABLE5-1 URL Fields for Servlets Within an Application

URL element Description

server: port The IP address (or host name) and optional port number.

To access the default web module for a virtual server, specify only this URL section.
You do not need to specify the context-root or servlet-name unless you also wish to
specify name-value parameters.

context-root For an application, the context root is defined in the context- root element of the
application.xmlor sun-application.xml file. For an individually deployed web
module, the context root is specified during deployment.

For both applications and individually deployed web modules, the default context root
is the name of the WAR file minus the .war suffix.

servlet-mapping The servlet-mapping as configured in the web . xm1 file.

name=value. . . Optional request parameters.

In this example, localhost is the host name, MortPages is the context root, and calcMortgage
is the servlet mapping:

http://localhost:8080/MortPages/calcMortgage?rate=8.0&per=360&bal=180000

When invoking a servlet from within a JSP file, you can use a relative path. For example:

<jsp:forward page="TestServlet"/>
<jsp:include page="TestServlet"/>

Serviet Output

ServletContext.log messages are sent to the server log.

Sun Java System Application Server Enterprise Edition 8.2 Developer's Guide - March 2009

Using Servlets

By default, the System.out and System.err output of servlets are sent to the server log, and
during startup server log messages are echoed to the System. err output. Also by default, there
is no Windows-only console for the System.err output.

To change these defaults using the Administration Console, select the Logger Settings
component under the relevant configuration, then check or uncheck these boxes:

= LogMessages to Standard Error - If checked, System. err output is sent to the server log. If
unchecked, System. err output is sent to the system default location only.

= Write to System Log - If checked, System. out output is sent to the server log. If unchecked,
System.out output is sent to the system default location only.

For more information, see the Sun Java System Application Server Enterprise Edition 8.2
Administration Guide.

Caching Servlet Results

The Application Server can cache the results of invoking a servlet, a JSP, or any URL pattern to
make subsequent invocations of the same servlet, JSP, or URL pattern faster. The Application
Server caches the request results for a specific amount of time. In this way, if another data call
occurs, the Application Server can return the cached data instead of performing the operation
again. For example, if your servlet returns a stock quote that updates every 5 minutes, you set
the cache to expire after 300 seconds.

Whether to cache results and how to cache them depends on the data involved. For example, it
makes no sense to cache the results of a quiz submission, because the input to the servlet is
different each time. However, it makes sense to cache a high level report showing demographic
data taken from quiz results that is updated once an hour.

To define how an Application Server web application handles response caching, you edit
specific fields in the sun-web. xm1 file.

Note — A servlet that uses caching is not portable.

A sample caching application is in install-dir/samples/webapps/apps/caching.
For more information about JSP caching, see “JSP Caching” on page 144.

The rest of this section covers the following topics:

“Caching Features” on page 140
“Default Cache Configuration” on page 140
“Caching Example” on page 141
“CacheKeyGenerator Interface” on page 142

Chapter5 - Developing Web Applications 139

http://docs.sun.com/doc/819-4733
http://docs.sun.com/doc/819-4733

Using Servlets

140

Caching Features

The Application Server has the following web application response caching capabilities:

Caching is configurable based on the servlet name or the URL

When caching is based on the URI, this includes user specified parameters in the query
string. For example, a response from /garden/catalog?category=roses is different from a
response from /garden/catalog?category=lilies. These responses are stored under
different keys in the cache.

Cache size, entry timeout, and other caching behaviors are configurable.

Entry timeout is measured from the time an entry is created or refreshed. To override this
timeout for an individual cache mapping, specify the cache-mapping subelement timeout.

To determine caching criteria programmatically, write a class that implements the
com.sun.appserv.web.cache.CacheHelper interface. For example, if only a servlet knows
when a back end data source was last modified, you can write a helper class to retrieve the
last modified timestamp from the data source and decide whether to cache the response
based on that timestamp.

To determine cache key generation programmatically, write a class that implements the
com.sun.appserv.web.cache.CacheKeyGenerator interface. See “CacheKeyGenerator
Interface” on page 142.

All non-ASCII request parameter values specified in cache key elements must be URL
encoded. The caching subsystem attempts to match the raw parameter values in the request
query string.

Since newly updated classes impact what gets cached, the web container clears the cache
during dynamic deployment or reloading of classes.

The following Ht tpServletRequest request attributes are exposed:

= com.sun.appserv.web.cachedServletName, the cached servlet target
= com.sun.appserv.web.cachedURLPattern, the URL pattern being cached

Results produced by resources that are the target of a RequestDispatcher.include() or
RequestDispatcher.forward() call are cached if caching has been enabled for those
resources. For details, see the descriptions of the “cache-mapping” on page 330 and
“dispatcher” on page 349 elements in the sun-web.xm1 file.

Default Cache Configuration

If you enable caching but do not provide any special configuration for a servlet or JSP, the
default cache configuration is as follows:

The default cache timeout is 30 seconds.
Only the HTTP GET method is eligible for caching.
HTTP requests with cookies or sessions automatically disable caching.

No special consideration is given to Pragma:, Cache-control:, or Vary: headers.

Sun Java System Application Server Enterprise Edition 8.2 Developer's Guide - March 2009

Using Servlets

= The default key consists of the Servlet Path (minus pathInfo and the query string).

= A “least recently used” list is maintained to evict cache entries if the maximum cache size is
exceeded.

= Key generation concatenates the servlet path with key field values, if any are specified.

= Results produced by resources that are the target of a RequestDispatcher.include() or
RequestDispatcher.forward() call are never cached.

Caching Example

Here is an example cache element in the sun-web . xm1 file:

<cache max-capacity="8192" timeout="60">
<cache-helper name="myHelper" class-name="MyCacheHelper"/>
<cache-mapping>
<servlet-name>myservlet</servlet-name>
<timeout name="timefield">120</timeout>
<http-method>GET</http-method>
<http-method>P0ST</http-method>
</cache-mapping>
<cache-mapping>
<url-pattern> /catalog/* </url-pattern>
<!-- cache the best selling category; cache the responses to
-- this resource only when the given parameters exist. Cache
-- only when the catalog parameter has 'lilies’ or ’'roses’
-- but no other catalog varieties:
-- /orchard/catalog?best&category="1lilies’
-- /orchard/catalog?best&category="roses’
-- but not the result of
-- /orchard/catalog?best&category="wild’
-->
<constraint-field name='best’ scope='request.parameter’/>
<constraint-field name='category’ scope='request.parameter’s>
<value> roses </value>
<value> lilies </value>
</constraint-field>
<!-- Specify that a particular field is of given range but the
-- field doesn’t need to be present in all the requests -->
<constraint-field name='SKUnum’ scope='request.parameter’>
<value match-expr="in-range’> 1000 - 2000 </value>
</constraint-field>
<!-- cache when the category matches with any value other than
-- a specific value -->
<constraint-field name="category" scope="request.parameter>
<value match-expr="equals" cache-on-match-failure="true">
bogus
</value>

Chapter5 - Developing Web Applications 141

Using Servlets

142

</constraint-field>
</cache-mapping>
<cache-mapping>
<servlet-name> InfoServlet </servlet-name>
<cache-helper-ref>myHelper</cache-helper-ref>
</cache-mapping>
</cache>

For more information about the sun-web . xml caching settings, see “cache” on page 326.

CacheKeyGenerator Interface

The built-in default CacheHelper implementation allows web applications to customize the key
generation. An application component (in a servlet or JSP) can set up a custom
CacheKeyGenerator implementation as an attribute in the ServletContext.

The name of the context attribute is configurable as the value of the
cacheKeyGeneratorAttrName property in the default-helper element of the sun-web.xml
deployment descriptor. For more information, see “default-helper” on page 347.

About the Servlet Engine

Servlets exist in and are managed by the servlet engine in the Application Server. The servlet
engine is an internal object that handles all servlet meta functions. These functions include
instantiation, initialization, destruction, access from other components, and configuration
management. This section covers the following topics:

= “Instantiating and Removing Servlets” on page 142
= “Request Handling” on page 142

Instantiating and Removing Servlets

After the servlet engine instantiates the servlet, the servlet engine calls the servlet’s init ()
method to perform any necessary initialization. You can override this method to perform an
initialization function for the servlet’s life, such as initializing a counter.

When a servlet is removed from service, the servlet engine calls the destroy () method in the
servlet so that the servlet can perform any final tasks and deallocate resources. You can override
this method to write log messages or clean up any lingering connections that won’t be caught in
garbage collection.

Request Handling

When a request is made, the Application Server hands the incoming data to the servlet engine.
The servlet engine processes the request’s input data, such as form data, cookies, session
information, and URL name-value pairs, into an HttpServletRequest request object type.

Sun Java System Application Server Enterprise Edition 8.2 Developer's Guide - March 2009

Using JavaServer Pages

The servlet engine also creates an HttpServletResponse response object type. The engine then
passes both as parameters to the servlet’s service () method.

In an HTTP servlet, the default service () method routes requests to another method based on
the HTTP transfer method: POST, GET, DELETE, HEAD, OPTIONS, PUT, or TRACE. For example,
HTTP POST requests are sent to the doPost () method, HTTP GET requests are sent to the

doGet () method, and so on. This enables the servlet to process request data differently,
depending on which transfer method is used. Since the routing takes place in the service
method, you generally do not override service() in an HTTP servlet. Instead, override

doGet (), doPost(),and so on, depending on the request type you expect.

To perform the tasks to answer a request, override the service () method for generic servlets,
and the doGet () or doPost () methods for HTTP servlets. Very often, this means accessing EJB
components to perform business transactions, then collating the information in the request
object or in a JDBC ResultSet object.

Using JavaServer Pages

The Application Server supports the following JSP features:

= JavaServer Pages (JSP) Specification version 2.0
= Precompilation of JSP files, which is especially useful for production servers
= JSP taglibraries and standard portable tags

For information about creating JSP files, see Sun Microsystem’s JavaServer Pages web site at
http://java.sun.com/products/jsp/index.html.

For information about Java Beans, see Sun Microsystem’s JavaBeans web page at
http://java.sun.com/beans/index.html.

This section describes how to use JavaServer Pages (JSP files) as page templates in an
Application Server web application. This section contains the following topics:

= “JSP Tag Libraries and Standard Portable Tags” on page 143
= “JSP Caching” on page 144
= “Options for Compiling JSP Files” on page 147

JSP Tag Libraries and Standard Portable Tags

Application Server supports tag libraries and standard portable tags. For more information, see
the JavaServer Pages Standard Tag Library (JSTL) page at
http://java.sun.com/products/jsp/jstl/index. jsp.

Web applications don’t need to bundle copies of the jsf-impl.jar or appserv-jstl.jar JSP
tag libraries (in install-dir/1ib) to use JavaServer™ Faces technology or JSTL, respectively.
These tag libraries are automatically available to all web applications.

Chapter5 - Developing Web Applications 143

http://java.sun.com/products/jsp/index.html
http://java.sun.com/beans/index.html
http://java.sun.com/products/jsp/jstl/index.jsp

Using JavaServer Pages

144

However, the install-dir/1ib/appserv-tags. jar taglibrary for JSP caching is not
automatically available to web applications. See “JSP Caching” on page 144, next.

JSP Caching

JSP caching lets you cache tag invocation results within the Java engine. Each can be cached
using different cache criteria. For example, suppose you have invocations to view stock quotes,
weather information, and so on. The stock quote result can be cached for 10 minutes, the
weather report result for 30 minutes, and so on.

For more information about response caching as it pertains to servlets, see “Caching Servlet
Results” on page 139.

JSP caching is implemented by a tag library packaged into the

install-dir/1ib/appserv-tags. jar file, which you can copy into the WEB- INF/11ib directory of
your web application. The appserv-tags.tld taglibrary descriptor file is in the META- INF
directory of this JAR file.

Note - Web applications that use this tag library are not portable.

To allow all web applications to share this tag library, change the following elements in the
domain.xml file. Change this:

<jvm-options>
-Dcom.sun.enterprise.taglibs=appserv-jstl.jar,jsf-impl.jar
</jvm-options>

to this:

<jvm-options>
-Dcom.sun.enterprise.taglibs=appserv-jstl.jar,jsf-impl.jar,appserv-tags.jar
</jvm-options>

and this:

<jvm-options>
-Dcom.sun.enterprise.taglisteners=jsf-impl.jar
</jvm-options>

to this:

<jvm-options>
-Dcom.sun.enterprise.taglisteners=jsf-impl.jar,appserv-tags.jar
</jvm-options>

Sun Java System Application Server Enterprise Edition 8.2 Developer's Guide - March 2009

Using JavaServer Pages

For more information about the domain.xml file, see the Sun Java System Application Server
Enterprise Edition 8.2 Administration Reference.

Refer to these tags in JSP files as follows:
<%@ taglib prefix="prefix" uri="Sun ONE Application Server Tags" %>

Subsequently, the cache tags are available as <prefix: cache> and <prefix: flush>. For example,
ifyour prefix is mypfx, the cache tags are available as <mypfx: cache>and <mypfx: flush>.

The tags are as follows:

= “cache” on page 145
= “flush” on page 146

cache

The cache tag caches the body between the beginning and ending tags according to the
attributes specified. The first time the tag is encountered, the body content is executed and
cached. Each subsequent time it is run, the cached content is checked to see if it needs to be
refreshed and if so, it is executed again, and the cached data is refreshed. Otherwise, the cached
data is served.

Attributes

The following table describes attributes for the cache tag.

TABLE5-2 cache Attributes

Attribute Default Description

key ServletPath_Suffix (optional) The name used by the container to access the cached entry.
The cache key is suffixed to the servlet path to generate a key to access
the cached entry. If no key is specified, a number is generated
according to the position of the tag in the page.

timeout 60s (optional) The time in seconds after which the body of the tag is
executed and the cache is refreshed. By default, this value is
interpreted in seconds. To specify a different unit of time, add a suffix
to the timeout value as follows: s for seconds, m for minutes, h for
hours, d for days. For example, 2h specifies two hours.

nocache false (optional) If set to true, the body content is executed and served as if
there were no cache tag. This offers a way to programmatically decide
whether the cached response is sent or whether the body has to be
executed, though the response is not cached.

Chapter5 - Developing Web Applications 145

http://docs.sun.com/doc/819-4735
http://docs.sun.com/doc/819-4735

Using JavaServer Pages

TABLE5-2 cache Attributes (Continued)
Attribute Default Description
refresh false (optional) If set to true, the body content is executed and the

response is cached again. This lets you programmatically refresh the
cache immediately regardless of the timeout setting.

Example
The following example represents a cached JSP file:
<%@ taglib prefix="mypfx" uri="Sun ONE Application Server Tags" %>
<%@ taglib prefix="c" uri="http://java.sun.com/jsp/jstl/core" %>
<mypfx:cache key="${sessionScope.loginId}"
nocache="${param.nocache}"
refresh="¢{param.refresh}"
timeout="10m">
<c:choose>
<c:when test="${param.page == ’frontPage’}">
<%-- get headlines from database --%>
</c:when>
<c:otherwise>

</c:otherwise>
</c:choose>
</mypfx:cache>
<mypfx:cache timeout="1h">
<h2> Local News </h2>
<%-- get the headline news and cache them --%>
</mypfx:cache>

flush

Forces the cache to be flushed. If a key is specified, only the entry with that key is flushed. If no
key is specified, the entire cache is flushed.

Attributes

The following table describes attributes for the flush tag.

146 Sun Java System Application Server Enterprise Edition 8.2 Developer's Guide - March 2009

Creating and Managing HTTP Sessions

TABLE5-3 flush Attributes

Attribute Default Description

key ServletPath_Suffix (optional) The name used by the container to access the cached entry.
The cache key is suffixed to the servlet path to generate a key to access
the cached entry. If no key is specified, a number is generated
according to the position of the tag in the page.

Examples

To flush the entry with key="foobar":

<mypfx:flush key="foobar"/>

To flush the entire cache:

<c:if test="${empty sessionScope.clearCache}">
<mypfx:flush />
</c:if>

Options for Compiling JSP Files

Application Server provides the following ways of compiling JSP 2.0 compliant source files into
servlets:

= JSP files are automatically compiled at runtime.

= Theasadmin deploy command has a precompilejsp option. For details, see the Sun Java
System Application Server Enterprise Edition 8.2 Reference Manual.

= Thesun-appserv-jspc Ant task allows you to precompile JSP files; see “sun-appserv-jspc”
on page 116.

= The jspc command line tool allows you to precompile JSP files at the command line. For
details, see the Sun Java System Application Server Enterprise Edition 8.2 Reference Manual.

Creating and Managing HTTP Sessions

This chapter describes how to create and manage a session that allows users and transaction
information to persist between interactions.

This chapter contains the following sections:

= “Configuring Sessions” on page 148
= “Session Managers” on page 150
= “Sample Session Persistence Applications” on page 153

Chapter5 - Developing Web Applications 147

http://docs.sun.com/doc/819-4736
http://docs.sun.com/doc/819-4736
http://docs.sun.com/doc/819-4736

Creating and Managing HTTP Sessions

148

Configuring Sessions

This section covers the following topics:

= “Sessions, Cookies, and URL Rewriting” on page 148
= “Coordinating Session Access” on page 148
= “Distributed Sessions and Persistence” on page 148

Sessions, Cookies, and URL Rewriting

To configure whether and how sessions use cookies and URL rewriting, edit the
session-properties and cookie-properties elementsin the sun-web.xml file for an
individual web application. See “session-properties” on page 415 and “cookie-properties” on
page 345 for more about the properties you can configure.

For information about configuring default session properties for the entire web container, see
the Sun Java System Application Server Enterprise Edition 8.2 Administration Guide and the Sun
Java System Application Server Enterprise Edition 8.2 High Availability Administration Guide.

Coordinating Session Access

Make sure that multiple threads don’t simultaneously modify the same session object in
conflicting ways. If the persistence type is ha (see “The ha Persistence Type” on page 152), the
following message in the log file indicates that this might be happening:

Primary Key Constraint violation while saving session session_id

This is especially likely to occur in web applications that use HTML frames where multiple
servlets are executing simultaneously on behalf of the same client. A good solution is to ensure
that one of the servlets modifies the session and the others have read-only access.

Distributed Sessions and Persistence

A distributed session can run in multiple Application Server instances, provided the following
criteria are met:

= Each server instance has access to the same high-availability database (HADB). For
information about how to enable this database, see the description of the
configure-ha-cluster command in the Sun Java System Application Server Enterprise
Edition 8.2 Reference Manual.

= Each server instance has the same distributable web application deployed to it. The web-app
element of the web . xml deployment descriptor file must have the distributable
subelement specified.

= The web application uses high-availability session persistence. If a non-distributable web
application is configured to use high-availability session persistence, an error is written to
the server log. See “The ha Persistence Type” on page 152.

Sun Java System Application Server Enterprise Edition 8.2 Developer's Guide - March 2009

http://docs.sun.com/doc/819-4733
http://docs.sun.com/doc/819-4740
http://docs.sun.com/doc/819-4740
http://docs.sun.com/doc/819-4736
http://docs.sun.com/doc/819-4736

Creating and Managing HTTP Sessions

= All objects bound into a distributed session must be of the types listed in Table 5-4.

= The web application must be deployed using the deploy or deploydir command with the
--availabilityenabled option set to true. See the Sun Java System Application Server
Enterprise Edition 8.2 Reference Manual.

Note - Contrary to the Servlet 2.4 specification, Application Server does not throw an
IllegalArgumentException if an object type not supported for failover is bound into a
distributed session.

Keep the distributed session size as small as possible. Session size has a direct impact on overall
system throughput.

A servlet that is not deployed as part of a web application is implicitly deployed to a default web
application and has the default ServietContext. The default ServietContext is not
distributed. (A web application with an empty context root does not have the default
ServletContext.)

In the event of an instance or hardware failure, another server instance can take over a
distributed session, with the following limitations:

= Ifadistributable web application references a J2EE component or resource, the reference
might be lost. See Table 5-4 for a list of the types of references that HT TPSession failover
supports.

= References to open files or network connections are lost.

For information about how to work around these limitations, see the Sun Java System
Application Server Enterprise Edition 8.2 Deployment Planning Guide.

In the following table, No indicates that failover for the object type might not work in all cases
and that no failover support is provided. However, failover might work in some cases for that
object type. For example, failover might work because the class implementing that type is
serializable.

For more information about the InitialContext, see “Accessing the Naming Context” on
page 259. For more information about transaction recovery, see Chapter 12, “Using the
Transaction Service” For more information about Administered Objects, see “Creating
Physical Destinations” on page 269.

TABLE5-4 Object Types Supported for J2EE Web Application Session State Failover

Java Object Type Failover Support

Stateless session, stateful session, and entity bean local | Yes
home reference, local object reference

Chapter5 - Developing Web Applications 149

http://docs.sun.com/doc/819-4736
http://docs.sun.com/doc/819-4736
http://docs.sun.com/doc/819-4741
http://docs.sun.com/doc/819-4741

Creating and Managing HTTP Sessions

150

TABLE 5-4 Object Types Supported for J2EE Web Application Session State Failover (Continued)

Java Object Type Failover Support

Colocated and distributed stateless session, stateful Yes
session, and entity bean remote home reference,
remote reference

JNDI Context Yes, InitialContext and java: comp/env

UserTransaction Yes, but if the instance that fails is never restarted, any
prepared global transactions are lost and might not be
correctly rolled back or committed

JDBC DataSource No
Java™ Message Service (JMS) ConnectionFactory, No
Destination

JavaMail™ Session No
Connection Factory No
Administered Object No
Web service reference No
Serializable Java types Yes
Session Managers

A session manager automatically creates new session objects whenever a new session starts. In
some circumstances, clients do not join the session, for example, if the session manager uses
cookies and the client does not accept cookies.

Application Server offers these session management options, determined by the
“session-manager” on page 415 element’s persistence-type attribute in the sun-web. xm1 file:

= “The memory Persistence Type” on page 150, the default

= “The file Persistence Type” on page 151, which uses a file to store session data

= “The ha Persistence Type” on page 152, which uses the high-availability database for session
persistence

Note - If the session manager configuration contains an error, the error is written to the server
log and the default (memory) configuration is used.

The memory Persistence Type

This persistence type is not designed for a production environment that requires session
persistence. It provides no session persistence. However, you can configure it so that the session
state in memory is written to the file system prior to server shutdown.

Sun Java System Application Server Enterprise Edition 8.2 Developer's Guide - March 2009

Creating and Managing HTTP Sessions

To specify the memory persistence type for the entire web container, use the
configure-ha-persistence command. For details, see the Sun Java System Application Server
Enterprise Edition 8.2 Reference Manual.

To specify the memory persistence type for a specific web application, edit the sun-web.xm1 file
as in the following example. The persistence- type property is optional, but must be set to
memory if included. This overrides the web container availability settings for the web
application.

<sun-web-app>

<session-config>
<session-manager persistence-type=memory />
<manager-properties>
<property name="sessionFilename" value="sessionstate" />
</manager-properties>
</session-manager>

</session-config>
</sun-web-app>

The only manager property that the memory persistence type supports is sessionFilename, which
is listed under “manager-properties” on page 375.

For more information about the sun-web.xm1 file, see “The sun-web.xml File” on page 307.

The file Persistence Type

This persistence type provides session persistence to the local file system, and allows a single
server domain to recover the session state after a failure and restart. The session state is
persisted in the background, and the rate at which this occurs is configurable. The store also
provides passivation and activation of the session state to help control the amount of memory
used. This option is not supported in a production environment. However, it is useful for a
development system with a single server instance.

Note — Make sure the delete option is set in the server.policy file, or expired file-based
sessions might not be deleted properly. For more information about server.policy, see “The
server.policy File” on page 52.

To specify the file persistence type for the entire web container, use the
configure-ha-persistence command. For details, see the Sun Java System Application Server
Enterprise Edition 8.2 Reference Manual.

Chapter5 - Developing Web Applications 151

http://docs.sun.com/doc/819-4736
http://docs.sun.com/doc/819-4736
http://docs.sun.com/doc/819-4736
http://docs.sun.com/doc/819-4736

Creating and Managing HTTP Sessions

152

To specify the file persistence type for a specific web application, edit the sun-web.xmt file as
in the following example. Note that persistence-type must be set to file. This overrides the
web container availability settings for the web application.

<sun-web-app>

<session-config>
<session-manager persistence-type=file>
<store-properties>
<property name=directory value=sessiondir />
</store-properties>
</session-manager>

</session-config>
</sun-web-app>

The file persistence type supports all the manager properties listed under
“manager-properties” on page 375 except sessionFilename, and supports the directory store
property listed under “store-properties” on page 418.

For more information about the sun-web.xml file, see “The sun-web.xml File” on page 307.

The ha Persistence Type

The ha persistence type uses the high-availability database (HADB) for session persistence. The
HADB allows sessions to be distributed. For details, see “Distributed Sessions and Persistence”
on page 148. In addition, you can configure the frequency and scope of session persistence. The
HADB is also used as the passivation and activation store. Use this option in a production
environment that requires session persistence.

The HADB must be configured and enabled before you can use distributed sessions. For
configuration details, see the description of the configure-ha-cluster command in the Sun
Java System Application Server Enterprise Edition 8.2 Reference Manual.

To enable the HADB, select the Availability Service component under the relevant
configuration in the Administration Console. Check the Instance Level Availability box. To
enable availability for the web container, select the Web Container Availability tab, then check
the Availability Service box. For details, see the Sun Java System Application Server Enterprise
Edition 8.2 High Availability Administration Guide.

To change settings such as persistence frequency and persistence scope for the entire web
container, see the description of the configure-ha-persistence command in the Sun Java
System Application Server Enterprise Edition 8.2 Reference Manual.

To specify the ha persistence type for a specific web application, edit the sun-web.xml file as in
the following example. Note that persistence-type must be set to ha. This overrides the web
container availability settings for the web application.

Sun Java System Application Server Enterprise Edition 8.2 Developer's Guide - March 2009

http://docs.sun.com/doc/819-4736
http://docs.sun.com/doc/819-4736
http://docs.sun.com/doc/819-4740
http://docs.sun.com/doc/819-4740
http://docs.sun.com/doc/819-4736
http://docs.sun.com/doc/819-4736

Advanced Web Application Features

<sun-web-app>

<session-config>
<session-manager persistence-type=fileha>
<manager-properties>
<property name=persistenceFrequency value=web-method />
</manager-properties>
<store-properties>
<property name=persistenceScope value=session />
</store-properties>
</session-manager>

</session-config>
</sun-web-app>

The ha persistence type supports all the manager properties listed under “manager-properties”
on page 375 except sessionFilename, and supports the persistenceScope store property listed
under “store-properties” on page 418.

For more information about the sun-web. xml file, see “The sun-web.xml File” on page 307.

Sample Session Persistence Applications

The following directories contain sample applications that demonstrate HT'TP session
persistence:

install-dir/samples/ee-samples/highavailability

install-dir/samples/ee-samples/failover

Advanced Web Application Features

This section includes summaries of the following topics:

= “Internationalization Issues” on page 154
= “Virtual Servers” on page 155

= “Default Web Modules” on page 155

= “Classloader Delegation” on page 156

= “Using the default-web.xml File” on page 156

= “Configuring Logging in the Web Container” on page 156
= “Configuring Idempotent URL Requests” on page 157

= “Configuring HTML Error Pages” on page 158

u

“Header Management” on page 159

Chapter5 - Developing Web Applications 153

Advanced Web Application Features

154

= “Redirecting URLs” on page 159

Internationalization Issues

This section covers internationalization as it applies to the following:

= “The Server” on page 154
= “Servlets” on page 154

The Server

To set the default locale of the entire Application Server, which determines the locale of the
Administration Console, the logs, and so on, use the Administration Console. Select the
Domain component, and type a value in the Locale field. For details, see the Sun Java System
Application Server Enterprise Edition 8.2 Administration Guide.

Servlets

This section explains how the Application Server determines the character encoding for the
servlet request and the servlet response. For encodings you can use, see
http://java.sun.com/j2se/1.4/docs/guide/int1l/encoding.doc.html.

Servlet Request

When processing a servlet request, the server uses the following order of precedence, first to
last, to determine the request character encoding:

m ThegetCharacterEncoding () method.

= Ahidden field in the form, specified by the form-hint-field attribute of the
parameter-encoding element in the sun-web. xm1 file.

m The character encoding set in the default-charset attribute of the parameter-encoding
element in the sun-web.xm1 file.

®m The default, which is IS0-8859-1.

For details about the parameter-encoding element, see “parameter-encoding” on page 387.

Servlet Response

When processing a servlet response, the server uses the following order of precedence, first to
last, to determine the response character encoding:

m ThesetCharacterEncoding() or setContentType() method.
m ThesetLocale() method.
® The default, which is IS0-8859-1.

Sun Java System Application Server Enterprise Edition 8.2 Developer's Guide - March 2009

http://docs.sun.com/doc/819-4733
http://docs.sun.com/doc/819-4733
http://java.sun.com/j2se/1.4/docs/guide/intl/encoding.doc.html

Advanced Web Application Features

See Also

Virtual Servers

A virtual server, also called a virtual host, is a virtual web server that serves content targeted for
a specific URL. Multiple virtual servers can serve content using the same or different host
names, port numbers, or IP addresses. The HTTP service directs incoming web requests to
different virtual servers based on the URL.

When you first install the Application Server, a default virtual server is created. (You can also
assign a default virtual server to each new HT TP listener you create. For details, see the Sun Java
System Application Server Enterprise Edition 8.2 Administration Guide.)

Web applications and J2EE applications containing web components can be assigned to virtual
servers.

To assign virtual servers

Deploy the application or web module and assign the desired virtual server to it.

For more information, see “Tools for Deployment” on page 91.

In the Administration Console, open the HTTP Service component under the relevant
configuration.

Open the Virtual Servers component under the HTTP Service component.
Select the virtual server to which you want to assign a default web module.

Select the application or web module from the Default Web Module drop-down list.

For more information, see “Default Web Modules” on page 155.

For details, see the Sun Java System Application Server Enterprise Edition 8.2 Administration
Guide.

Default Web Modules

A default web module can be assigned to the default virtual server and to each new virtual
server. For details, see “Virtual Servers” on page 155. To access the default web module for a
virtual server, point the browser to the URL for the virtual server, but do not supply a context
root. For example:

http://myvserver:3184/

Chapter5 - Developing Web Applications 155

http://docs.sun.com/doc/819-4733
http://docs.sun.com/doc/819-4733
http://docs.sun.com/doc/819-4733
http://docs.sun.com/doc/819-4733

Advanced Web Application Features

156

A virtual server with no default web module assigned serves HTML or JSP content from its
document root, which is usually domain-dir/docroot. To access this HTML or JSP content,
point your browser to the URL for the virtual server, do not supply a context root, but specify
the target file.

For example:

http://myvserver:3184/hellothere. jsp

Classloader Delegation

The Servlet specification recommends that the Web Classloader look in the local class loader
before delegating to its parent. To make the Web Classloader follow the delegation model in the
Servlet specification, set delegate="false" in the class-loader element of the sun-web . xml
file. It’s safe to do this only for a web module that does not interact with any other modules.

The default value is delegate="true", which causes the Web Classloader to delegate in the
same manner as the other classloaders. Use delegate="true" for a web application that accesses
EJB components or that acts as a web service client or endpoint. For details about sun-web . xm1,
see “The sun-web.xml File” on page 307.

For general information about classloaders, see “Classloaders” on page 76.

Using the default-web.xml File

You can use the default-web.xml file to define features such as filters and security constraints
that apply to all web applications.

To use the default-web.xml file

Place the JAR file for the filter, security constraint, or other feature in the domain-dir/1ib
directory.

Editthe domain-dir/config/default-web.xml file to refer to the JARfile.

Restart the server.

Configuring Logging in the Web Container

For information about configuring logging and monitoring in the web container using the
Administration Console, see the Sun Java System Application Server Enterprise Edition 8.2
Administration Guide.

Sun Java System Application Server Enterprise Edition 8.2 Developer's Guide - March 2009

http://docs.sun.com/doc/819-4733
http://docs.sun.com/doc/819-4733

Advanced Web Application Features

Configuring Idempotent URL Requests

An idempotent request is one that does not cause any change or inconsistency in an application
when retried. To enhance the availability of your applications deployed on an Application
Server cluster, configure the load balancer to retry failed idempotent HTTP requests on all the
Application Server instances in a cluster. This option can be used for read-only requests, for
example, to retry a search request.

This section describes the following topics:

= “Specitying an Idempotent URL” on page 157
= “Characteristics of an Idempotent URL” on page 157

Specifying an Idempotent URL

To configure idempotent URL response, specify the URLs that can be safely retried in
“idempotent-url-pattern” on page 362 elements in the sun-web . xml file. For example:

<idempotent-url-pattern url-pattern="sun java/*" no-of-retries="10"/>
For details, see “idempotent-url-pattern” on page 362.

If none of the server instances can successfully serve the request, an error page is returned. To
configure custom error pages, see “Configuring HTML Error Pages” on page 158.

Characteristics of an Idempotent URL

Since all requests for a given session are sent to the same application server instance, and if that
Application Server instance is unreachable, the load balancer returns an error message.
Normally, the request is not retried on another Application Server instance. However, if the
URL pattern matches that specified in the sun-web. xml file, the request is implicitly retried on
another Application Server instance in the cluster.

In HTTP, some methods (such as GET) are idempotent, while other methods (such as POST)
are not. In effect, retrying an idempotent URL should not cause values to change on the server
or in the database. The only difference should be a change in the response received by the user.

Examples of idempotent requests include search engine queries and database queries. The
underlying principle is that the retry does not cause an update or modification of data.

A search engine, for example, sends HTTP requests with the same URL pattern to the load
balancer. Specifying the URL pattern of the search request to the load balancer ensures that
HTTP requests with the specified URL pattern is implicitly retried on another Application
Server instance.

For example, if the request URL sent to the Application Server is of the type
/search/something.html, then the URL pattern can be specified as /search/*.

Chapter5 - Developing Web Applications 157

Advanced Web Application Features

158

Examples of non-idempotent requests include banking transactions and online shopping. If
you retry such requests, money might be transferred twice from your account.

Configuring HTML Error Pages

To specify an error page (or URL to an error page) to be displayed to the end user, use the
error-url attribute of the “sun-web-app” on page 423 element in the sun-web. xml file. For
example:

<sun-web-app error-url="webserver-install-dir/error/errorl.html">
. subelements ...
</sun-web-app>

For details, see “sun-web-app” on page 423.

Ifthe error-url attribute is specified, it overrides all other mechanisms configured for error
reporting.

Note - This attribute should not point to a URL on the Application Server instance, because the
error-url cannot be loaded if the server is down. Instead, specify a URL that points to a
location on the web server.

The Application Server provides the following options for specifying the error page.

= You can specify the error-url to be an HTTP URL. The Application Server forwards the
client request to the specified error URL.

= You can specify the error-url to be the name of an HTML page in the standard load
balancer plug-in’s error pages directory. Do not specify an absolute path in the local file
system. The location must be relative to the
webserver-install-dir/plugins/lbplugin/errorpages directory.

= Ifyoudo not specify the error-url attribute in the sun-web. xm1 file, a default error page,
sun-http-lberror.html, from the standard error pages directory, errorpages, is displayed
if present.

As part of the load balancer plug-in installation, a directory called errorpages is created in
the web server installation directory.

The error page is displayed according to the following rules:

= When an error is encountered for an application, the Application Server first checks if the
error-url attribute is defined. If it is defined, the Application Server reads the URL
attribute and loads the error page.

= Ifthe error-urlattribute is missing or invalid, the Application Server displays the default
error page, sun-http-1lb-error.html, from the errorpages directory of the load balancer
plug-in.

Sun Java System Application Server Enterprise Edition 8.2 Developer's Guide - March 2009

Advanced Web Application Features

= Iftheerror-url hasbeen defined but the page is missing, the Application Server loads the
default error page, sun-http-lb-error.htmt.

= Ifthe default error page is missing, the error is forwarded to the web server.

Header Management

In the Platform Edition of the Application Server, the Enumeration from
request.getHeaders () contains multiple elements. In the Enterprise Edition, this
Enumeration contains a single, aggregated value.

The header names used in HttpServletResponse.addXXXHeader () and
HttpServletResponse.setXXXHeader () are returned differently to the HTTP client from the
Platform Edition and the Enterprise Edition of the Application Server. The Platform Edition
preserves the names as they were created. The Enterprise Edition capitalizes the first letter but
converts all other letters to lower case. For example, if sampleHeaderName2 is used in
response.addHeader (), the response name in the Platform Edition is unchanged, but the
response name in the Enterprise Edition is Sampleheadername2.

Redirecting URLs

You can specify that a request for an old URL is treated as a request for a new URL. This is called
redirectinga URL.

To specify a redirected URL for a virtual server, use the redirect_n property, where nisa
positive integer that allows specification of more than one. This property is a subelement of a
virtual-server element in the domain.xml file. For more information about this element, see
virtual-serverin Sun Java System Application Server Enterprise Edition 8.2 Administration
Reference. Each of these redirect_n properties is inherited by all web applications deployed on
the virtual server.

The value of each redirect_n property has two components, which may be specified in any
order:

The first component, from, specifies the prefix of the requested URI to match.

The second component, url-prefix, specifies the new URL prefix to return to the client. The
from prefix is simply replaced by this URL prefix.

For example:

<property name="redirect 1" value="from=/dummy url-prefix=http://etude"/>

Chapter5 - Developing Web Applications 159

http://docs.sun.com/doc/819-4735
http://docs.sun.com/doc/819-4735

160

L K R 4 CHAPTER 6

Using Enterprise JavaBeans Technology

This chapter describes how Enterprise JavaBeans™ (EJB™) technology is supported in the Sun
Java System Application Server. This chapter addresses the following topics:

= “Summary of EJB 2.1 Changes” on page 161

= “Value Added Features” on page 162

= “EJB Timer Service” on page 165

= “Using Session Beans” on page 166

= “Using Read-Only Beans” on page 173

= “Using Message-Driven Beans” on page 176

= “Handling Transactions with Enterprise Beans” on page 181

For general information about enterprise beans (also called EJB components), read the chapters
on enterprise beans, session beans, message-driven beans, and so on in the J2EE 1.4 Tutorial at
http://java.sun.com/j2ee/1.4/docs/tutorial/doc/index.html.

Summary of EJB 2.1 Changes

The Application Server supports the Sun Microsystems Enterprise JavaBeans (EJB) architecture
as defined by the Enterprise JavaBeans Specification, v2.1 and is compliant with the Enterprise
JavaBeans Specification, v2.0.

Note - The Application Server is backward compatible with 1.1 and 2.0 enterprise beans.
However, to take advantage of version 2.1 features, you should develop new beans as 2.1
enterprise beans.

The changes in the Enterprise JavaBeans Specification, v2.1 that impact enterprise beans in the
Application Server environment are as follows:

161

http://java.sun.com/j2ee/1.4/docs/tutorial/doc/index.html

Value Added Features

= EJB Timer Service: This is a container-managed, reliable, and transactional notification
service that provides methods to allow callbacks to be scheduled for time-based events. See
“EJB Timer Service” on page 165.

= Message-driven beans: This type of enterprise bean can consume any inbound messages
from a Connector 1.5 inbound resource adapter, primarily but not exclusively JMS
messages. See “Using Message-Driven Beans” on page 176.

= EJB Web Services: A stateless session bean can serve as a web service endpoint. In addition,
all EJB component types can act as web service clients. For details, see the web service
elements in the sun-ejb-jar.xml file, described in “The sun-ejb-jar.xml File” on page 310.

Value Added Features

162

The Application Server provides a number of value additions that relate to EJB development.
These capabilities are discussed in the following sections (references to more in-depth material
are included):

= “Read-Only Beans” on page 162

= “pass-by-reference” on page 163

= “Pooling and Caching” on page 163

= “Bean-Level Container-Managed Transaction Timeouts” on page 164
= “Priority Based Scheduling of Remote Bean Invocations” on page 164
= “Immediate Flushing” on page 165

Read-Only Beans

Another feature that the Application Server provides is the read-only bean, an entity bean that is

never modified by an EJB client. Read-only beans avoid database updates completely. A
read-only bean is not portable.

A read-only bean can be used to cache a database entry that is frequently accessed but rarely
updated (externally by other beans). When the data that is cached by a read-only bean is
updated by another bean, the read-only bean can be notified to refresh its cached data.

The Application Server provides a number of ways by which a read-only bean’s state can be
refreshed. By setting the refresh-period-in-seconds elementin the sun-ejb-jar.xml file
and the trans-attribute elementin the ejb-jar.xml file, it is easy to configure a read-only
bean that is (a) always refreshed, (b) periodically refreshed, (c) never refreshed, or (d)
programmatically refreshed.

Read-only beans are best suited for situations where the underlying data never changes, or
changes infrequently. For further information and usage guidelines, see “Using Read-Only
Beans” on page 173.

Sun Java System Application Server Enterprise Edition 8.2 Developer's Guide - March 2009

Value Added Features

pass-by-reference

The pass-by-reference element in the sun-ejb-jar.xml file allows you to specify the
parameter passing semantics for colocated remote EJB invocations. This is an opportunity to
improve performance. However, use of this feature results in non-portable applications. See
“pass-by-reference” on page 388.

Pooling and Caching

The EJB container of the Application Server pools anonymous instances (message-driven
beans, stateless session beans, and entity beans) to reduce the overhead of creating and
destroying objects. The EJB container maintains the free pool for each bean that is deployed.
Bean instances in the free pool have no identity (that is, no primary key associated) and are used
to serve the method calls of the home interface. The free beans are also used to serve all methods
for stateless session beans.

Bean instances in the free pool transition from a Pooled state to a Cached state after ejbCreate
and the business methods run. The size and behavior of each pool is controlled using
pool-related properties in the EJB container or the sun-ejb-jar.xml file.

In addition, the Application Server supports a number of tunable parameters that can control
the number of “stateful” instances (stateful session beans and entity beans) cached as well as the
duration they are cached. Multiple bean instances that refer to the same database row in a table
can be cached. The EJB container maintains a cache for each bean that is deployed.

To achieve scalability, the container selectively evicts some bean instances from the cache,
usually when cache overflows. These evicted bean instances return to the free bean pool. The
size and behavior of each cache can be controlled using the cache-related properties in the EJB
container or the sun-ejb-jar.xml file.

Pooling and caching parameters for the sun-ejb-jar.xml file are described in “bean-cache” on
page 324.

Pooling Parameters

One of the most important parameters of Application Server pooling is steady-pool-size.
When steady-pool-size is set to greater than 0, the container not only pre-populates the bean
pool with the specified number of beans, but also attempts to ensure that there is always this
many beans in the free pool. This ensures that there are enough beans in the ready to serve state
to process user requests.

This parameter does not necessarily guarantee that no more than steady-pool-size instances
exist at a given time. It only governs the number of instances that are pooled over along period
of time. For example, suppose an idle stateless session container has a fully-populated pool with
asteady-pool-size of 10. If 20 concurrent requests arrive for the EJB component, the

Chapter6 - Using Enterprise JavaBeans Technology 163

Value Added Features

164

container creates 10 additional instances to satisty the burst of requests. The advantage of this is
that it prevents the container from blocking any of the incoming requests. However, if the
activity dies down to 10 or fewer concurrent requests, the additional 10 instances are discarded.

Another parameter, pool-idle-timeout-in-seconds, allows the administrator to specify,
through the amount of time a bean instance can be idle in the pool. When
pool-idle-timeout-in-seconds is set to greater than 0, the container removes or destroys any
bean instance that is idle for this specified duration.

Caching Parameters

Application Server provides a way that completely avoids caching of entity beans, using commit
option C. Commit option C is particularly useful if beans are accessed in large number but very
rarely reused. For additional information, refer to “Commit Options” on page 181.

The Application Server caches can be either bounded or unbounded. Bounded caches have
limits on the number of beans that they can hold beyond which beans are passivated. For
stateful session beans, there are three ways (LRU, NRU and FIFO) of picking victim beans when
cache overflow occurs. Caches can also passivate beans that are idle (not accessed for a specified
duration).

Bean-Level Container-Managed Transaction Timeouts

The default transaction timeout for the domain is specified using the Transaction Timeout
setting of the Transaction Service. A transaction started by the container must commit (or
rollback) within this time, regardless of whether the transaction is suspended (and resumed), or
the transaction is marked for rollback.

To override this timeout for an individual bean, use the optional cmt - timeout-in-seconds
elementin sun-ejb-jar.xml. The default value, 0, specifies that the default Transaction Service
timeout is used. The value of cmt - timeout-in-seconds is used for all methods in the bean that
start a new container-managed transaction. This value is not used if the bean joins a client
transaction.

Priority Based Scheduling of Remote Bean Invocations

You can create multiple thread pools, each having its own work queues. An optional element in
the sun-ejb-jar.xml file, use-thread-pool-id, specifies the thread pool that processes the
requests for the bean. The bean must have a remote interface, or use-thread-pool-idis
ignored. You can create different thread pools and specify the appropriate thread pool ID for a
bean that requires a quick response time. If there is no such thread pool configured or if the
element is absent, the default thread pool is used.

Sun Java System Application Server Enterprise Edition 8.2 Developer's Guide - March 2009

EJBTimer Service

Immediate Flushing

Normally, all entity bean updates within a transaction are batched and executed at the end of
the transaction. The only exception is the database flush that precedes execution of a finder or
select query.

Since a transaction often spans many method calls, you might want to find out if the updates
made by a method succeeded or failed immediately after method execution. To force a flush at
the end of a method’s execution, use the “flush-at-end-of-method” on page 360 element in the
sun-ejb-jar.xml file. Only non-finder methods in the Local, Local Home, Remote, and
Remote Home interfaces of an entity bean can be flush-enabled.

Upon completion of the method, the EJB container updates the database. Any exception
thrown by the underlying data store is wrapped as follows:

= Ifthe method that triggered the flush is a create method, the exception is wrapped with
CreateException.

= Ifthe method that triggered the flush is a remove method, the exception is wrapped with
RemoveException.

= For all other methods, the exception is wrapped with EJBException.

All normal end-of-transaction database synchronization steps occur regardless of whether the
database has been flushed during the transaction.

EJB Timer Service

The EJB Timer Service uses a database to store persistent information about EJB timers. The
EJB Timer Service configuration can store persistent timer information in any database
supported by the Application Server CMP container.

For alist of the JDBC drivers currently supported by the Application Server, see the Sun Java
System Application Server Enterprise Edition 8.2 Release Notes. For configurations of supported
and other drivers, see “Configurations for Specific JDBC Drivers” on page 244.

To change the database used by the EJB Timer Service, set the EJB Timer Service’s Timer
DataSource setting to a valid JDBC resource. You must also create the timer database table.
DDL files are located in install-dir/1ib/install/databases. Ideally, each cluster should have
its own timer table.

Using the EJB Timer Service is equivalent to interacting with a single JDBC resource manager.
If an EJB component or application accesses a database either directly through JDBC or
indirectly (for example, through an entity bean’s persistence mechanism), and also interacts
with the EJB Timer Service, its data source must be configured with an XA JDBC driver.

You can change the following EJB Timer Service settings. You must restart the server for the
changes to take effect.

Chapter6 - Using Enterprise JavaBeans Technology 165

http://docs.sun.com/doc/819-4728
http://docs.sun.com/doc/819-4728

Using Session Beans

= Minimum Delivery Interval - Specifies the minimum time in milliseconds before an
expiration for a particular timer can occur. This guards against extremely small timer
increments that can overload the server. The default is 7000.

= Maximum Redeliveries - Specifies the maximum number of times the EJB timer service
attempts to redeliver a timer expiration due for exception or rollback. The default s 1.

= Redelivery Interval - Specifies how long in milliseconds the EJB timer service waits after a
failed ejbTimeout delivery before attempting a redelivery. The default is 5000.

= Timer DataSource - Specifies the database used by the EJB Timer Service.

For information about configuring EJB Timer Service settings, see the Sun Java System
Application Server Enterprise Edition 8.2 Administration Guide. For information about the
asadmin list-timers and asadmin migrate-timers commands, see the Sun Java System
Application Server Enterprise Edition 8.2 Reference Manual.

Using Session Beans

166

This section provides guidelines for creating session beans in the Application Server
environment. This section addresses the following topics:

= “About the Session Bean Containers” on page 166
= “Stateful Session Bean Failover” on page 168
= “Restrictions and Optimizations” on page 172

Extensive information on session beans is contained in the chapters 6, 7, and 8 of the Enterprise
JavaBeans Specification, v2.1.

About the Session Bean Containers

Like an entity bean, a session bean can access a database through Java™ Database Connectivity
(JDBC™) calls. A session bean can also provide transaction settings. These transaction settings
and JDBC calls are referenced by the session bean’s container, allowing it to participate in
transactions managed by the container.

™

A container managing stateless session beans has a different charter from a container managing
stateful session beans.

Stateless Container

The stateless container manages stateless session beans, which, by definition, do not carry
client-specific states. All session beans (of a particular type) are considered equal.

A stateless session bean container uses a bean pool to service requests. The Application Server
specific deployment descriptor file, sun-ejb-jar.xml, contains the properties that define the
pool:

Sun Java System Application Server Enterprise Edition 8.2 Developer's Guide - March 2009

http://docs.sun.com/doc/819-4733
http://docs.sun.com/doc/819-4733
http://docs.sun.com/doc/819-4736
http://docs.sun.com/doc/819-4736

Using Session Beans

steady-pool-size
resize-quantity
max-pool-size
pool-idle-timeout-in-seconds

For more information about sun-ejb-jar.xml, see “The sun-ejb-jar.xml File” on page 310.

The Application Server provides the wscompile and wsdeploy tools to help you implement a
web service endpoint as a stateless session bean. For more information about these tools, see the
Sun Java System Application Server Enterprise Edition 8.2 Reference Manual.

Stateful Container

The stateful container manages the stateful session beans, which, by definition, carry the
client-specific state. There is a one-to-one relationship between the client and the stateful
session beans. At creation, each stateful session bean (SFSB) is given a unique session ID that is
used to access the session bean so that an instance of a stateful session bean is accessed by a
single client only.

Stateful session beans are managed using cache. The size and behavior of stateful session beans
cache are controlled by specifying the following sun-ejb-jar.xml parameters:

max-cache-size
resize-quantity
cache-idle-timeout-in-seconds
removal-timeout-in-seconds
victim-selection-policy

The max-cache-size element specifies the maximum number of session beans that are held in
cache. If the cache overflows (when the number of beans exceeds max-cache-size), the
container then passivates some beans or writes out the serialized state of the bean into a file. The
directory in which the file is created is obtained from the EJB container using the configuration
APIs.

For more information about sun-ejb-jar.xmt, see “The sun-ejb-jar.xml File” on page 310.

The passivated beans are stored on the file system. The Session Store Location setting in the EJB
container allows the administrator to specify the directory where passivated beans are stored.
By default, passivated stateful session beans are stored in application-specific subdirectories
created under domain-dir/session-store.

Note - Make sure the delete option is set in the server.policy file, or expired file-based
sessions might not be deleted properly. For more information about server.policy, see “The
server.policy File” on page 52.

The Session Store Location setting also determines where the session state is persisted if it is not
highly available; see “Choosing a Persistence Store” on page 170.

Chapter6 - Using Enterprise JavaBeans Technology 167

http://docs.sun.com/doc/819-4736

Using Session Beans

168

Stateful Session Bean Failover

An SFSB’s state can be saved in a persistent store in case a server instance fails. The state of an
SESB is saved to the persistent store at predefined points in its life cycle. This is called
checkpointing. If SFSB checkpointing is enabled, checkpointing generally occurs after any
transaction involving the SFSB is completed, even if the transaction rolls back.

However, if an SESB participates in a bean-managed transaction, the transaction might be
committed in the middle of the execution of a bean method. Since the bean’s state might be
undergoing transition as a result of the method invocation, this is not an appropriate instant to
checkpoint the bean’s state. In this case, the EJB container checkpoints the bean’s state at the end
of the corresponding method, provided the bean is not in the scope of another transaction when
that method ends. If a bean-managed transaction spans across multiple methods,
checkpointing is delayed until there is no active transaction at the end of a subsequent method.

The state of an SFSB is not necessarily transactional and might be significantly modified as a
result of non-transactional business methods. If this is the case for an SFSB, you can specify a list
of checkpointed methods. If SESB checkpointing is enabled, checkpointing occurs after any
checkpointed methods are completed.

The following sample application demonstrates SFSB session persistence:

install-dir/samples/ee-samples/failover/apps/sfsbfailover

The following table lists the types of references that SFSB failover supports. All objects bound
into an SFSB must be one of the supported types. In the table, No indicates that failover for the
object type might not work in all cases and that no failover support is provided. However,
failover might work in some cases for that object type. For example, failover might work
because the class implementing that type is serializable.

TABLE6-1 Object Types Supported for J2EE Stateful Session Bean State Failover

Java Object Type Failover Support

Stateless session, stateful session, and entity bean local | Yes
home reference, local object reference

Colocated and distributed stateless session, stateful Yes
session, and entity bean remote home reference,
remote reference

JNDI Context Yes, InitialContext and java:comp/env

UserTransaction Yes, but if the instance that fails is never restarted, any
prepared global transactions are lost and might not be
correctly rolled back or committed

JDBC DataSource No

Sun Java System Application Server Enterprise Edition 8.2 Developer's Guide - March 2009

Using Session Beans

TABLE6-1 Object Types Supported for J2EE Stateful Session Bean State Failover (Continued)

Java Object Type Failover Support
Java Message Service (JMS) ConnectionFactory, No
Destination

JavaMail™ Session No
Connection Factory No
Administered Object No

Web service reference No
Serializable Java types Yes

For more information about the InitialContext, see “Accessing the Naming Context” on
page 259. For more information about transaction recovery, see Chapter 12, “Using the
Transaction Service.” For more information about Administered Objects, see “Creating
Physical Destinations” on page 269.

Note - Idempotent URLs are supported along the HTTP path, but not the RMI-IIOP path. For
more information, see “Configuring Idempotent URL Requests” on page 157 and the Sun Java
System Application Server Enterprise Edition 8.2 Administration Guide.

If a server instance to which an RMI-IIOP client request is sent crashes during the request
processing (before the response is prepared and sent back to the client), an error is sent to the
client. The client must retry the request explicitly. When the client retries the request, the
request is sent to another server instance in the cluster, which retrieves session state
information for this client.

HTTP sessions can also be saved in a persistent store in case a server instance fails. In addition,
ifa distributable web application references an SFSB, and the web application’s session fails
over, the EJB reference is also failed over. For more information, see “Distributed Sessions and
Persistence” on page 148.

If an SFSB that uses session persistence is undeployed while the Application Server instance is
stopped, the session data in the persistence store might not be cleared. To prevent this,
undeploy the SFSB while the Application Server instance is running.

Configure SESB failover by:

= “Choosing a Persistence Store” on page 170
= “Enabling Checkpointing” on page 170
= “Specifying Methods to Be Checkpointed” on page 171 (optional)

Chapter6 - Using Enterprise JavaBeans Technology 169

http://docs.sun.com/doc/819-4733
http://docs.sun.com/doc/819-4733

Using Session Beans

170

Choosing a Persistence Store

Two types of persistent storage are supported for passivation and checkpointing of the SFSB
state:

= Thelocal file system - Allows a single server instance to recover the SESB state after a failure
and restart. This store also provides passivation and activation of the state to help control
the amount of memory used. This option is not supported in a production environment that
requires SFSB state persistence. This is the default storage mechanism.

= The high-availability database (HADB) - Allows a cluster of server instances to recover the
SESB state if any server instance fails. The HADB is also used as the passivation and
activation store. Use this option in a production environment that requires SFSB state
persistence. For information about how to set up and configure this database, see the
description of the configure-ha-cluster command in the Sun Java System Application
Server Enterprise Edition 8.2 Reference Manual.

Choose the persistence store in one of the following ways:

= To use thelocal file system, first disable availability. Select the Availability Service
component under the relevant configuration in the Administration Console. Uncheck the
Instance Level Availability box. Then select the EJB Container component and edit the
Session Store Location value. The default is domain-dir/session-store.

= To use the HADB, select the Availability Service component under the relevant
configuration in the Administration Console. Check the Instance Level Availability box. To
enable availability for the EJB container, select the EJB Container Availability tab, then
check the Availability Service box.

For more information, see the Sun Java System Application Server Enterprise Edition 8.2 High
Availability Administration Guide.

Enabling Checkpointing
The following sections describe how to enable SFSB checkpointing:

= “Server Instance and EJB Container Levels” on page 170
= “Application and EJB Module Levels” on page 171
= “SESB Level” on page 171

Server Instance and EJB Container Levels

To enable SFSB checkpointing at the server instance or EJB container level, see “Choosing a
Persistence Store” on page 170.

Sun Java System Application Server Enterprise Edition 8.2 Developer's Guide - March 2009

http://docs.sun.com/doc/819-4736
http://docs.sun.com/doc/819-4736
http://docs.sun.com/doc/819-4740
http://docs.sun.com/doc/819-4740

Using Session Beans

Application and EJB Module Levels

To enable SFSB checkpointing at the application or EJB module level during deployment, use
the asadmin deploy or asadmin deploydir command with the - -availabilityenabled
option set to true. For details, see the Sun Java System Application Server Enterprise Edition 8.2
Reference Manual.

SFSB Level

To enable SFSB checkpointing at the SFSB level, set availability-enabled="true"in theejb
element of the SFSB’s sun-ejb-jar.xml file as follows:

<sun-ejb-jar>
<enterprise-beans>

<ejb availability-enabled="true">
<ejb-name>MySFSB</ejb-name>
</ejb>

</enterprise-beans>
</sun-ejb-jar>

Specifying Methods to Be Checkpointed

If SFSB checkpointing is enabled, checkpointing generally occurs after any transaction
involving the SFSB is completed, even if the transaction rolls back.

To specify additional optional checkpointing of SFSBs at the end of non-transactional business
methods that cause important modifications to the bean’s state, use the
“checkpoint-at-end-of-method” on page 333 element within the ejb element in
sun-ejb-jar.xml.

For example:
<sun-ejb-jar>
<enterprise-beans>

<ejb availability-enabled="true">
<ejb-name>ShoppingCartEJB</ejb-name>
<checkpoint-at-end-of-method>
<method>
<method-name>addToCart</method-name>
</method>
</checkpoint-at-end-of-method>
</ejb>

Chapter6 - Using Enterprise JavaBeans Technology 171

http://docs.sun.com/doc/819-4736
http://docs.sun.com/doc/819-4736

Using Session Beans

172

</enterprise-beans>
</sun-ejb-jar>

The non-transactional methods in the checkpoint-at-end-of-method element can be:

= create() methods defined in the home interface of the SFSB, if you want to checkpoint the
initial state of the SFSB immediately after creation

= For SFSBs using container managed transactions only, methods in the remote interface of
the bean marked with the transaction attribute TX_NOT_SUPPORTED or TX_NEVER

= For SFSBs using bean managed transactions only, methods in which a bean managed

transaction is neither started nor committed

Any other methods mentioned in this list are ignored. At the end of invocation of each of these
methods, the EJB container saves the state of the SFSB to persistent store.

Note - If an SFSB does not participate in any transaction, and if none of its methods are explicitly
specified in the checkpoint-at-end-of-method element, the bean’s state is not checkpointed at
all even ifavailability-enabled="true" for this bean.

For better performance, specify a small subset of methods. The methods chosen should
accomplish a significant amount of work in the context of the J2EE application or should result
in some important modification to the bean’s state.

Restrictions and Optimizations

This section discusses restrictions on developing session beans and provides some optimization
guidelines:

= “Optimizing Session Bean Performance” on page 172
m “Restricting Transactions” on page 172

Optimizing Session Bean Performance

For stateful session beans, colocating the stateful beans with their clients so that the client and
bean are executing in the same process address space improves performance.

Restricting Transactions

The following restrictions on transactions are enforced by the container and must be observed
as session beans are developed:

= A session bean can participate in, at most, a single transaction at a time.

Sun Java System Application Server Enterprise Edition 8.2 Developer's Guide - March 2009

Using Read-Only Beans

= Ifasession bean is participating in a transaction, a client cannot invoke a method on the
bean such that the trans-attribute element in the ejb-jar.xml file would cause the
container to execute the method in a different or unspecified transaction context or an
exception is thrown.

= Ifasession bean instance is participating in a transaction, a client cannot invoke the remove
method on the session object’s home or component interface object or an exception is
thrown.

Using Read-Only Beans

A read-only bean is an entity bean that is never modified by an EJB client. The data thata
read-only bean represents can be updated externally by other enterprise beans, or by other
means, such as direct database updates.

Note - Read-only beans are specific to Application Server and are not part of the Enterprise
JavaBeans Specification, v2.1. Use of this feature results in a non-portable application.

Read-only beans are best suited for situations where the underlying data never changes, or
changes infrequently. The following topics are addressed in this section:

“Read-Only Bean Characteristics and Life Cycle” on page 173
“Read-Only Bean Good Practices” on page 174

“Refreshing Read-Only Beans” on page 174

“Deploying Read Only Beans” on page 176

Read-Only Bean Characteristics and Life Cycle

Read-only beans are best suited for situations where the underlying data never changes, or
changes infrequently. For example, a read-only bean can be used to represent a stock quote for a
particular company, which is updated externally. In such a case, using a regular entity bean

might incur the burden of calling ejbStore, which can be avoided by using a read-only bean.

Read-only beans have the following characteristics:

= Only entity beans can be read-only beans.

= Eijther bean-managed persistence (BMP) or container-managed persistence (CMP) is
allowed. If CMP is used, do not create the database schema during deployment. Instead,
work with your database administrator to populate the data into the tables. See Chapter 7,
“Using Container-Managed Persistence for Entity Beans.”

= Only container-managed transactions are allowed; read-only beans cannot start their own
transactions.

Chapter6 - Using Enterprise JavaBeans Technology 173

Using Read-Only Beans

= Read-only beans don’t update any bean state.
= ejbStoreis never called by the container.

= ejbload is called only when a transactional method is called or when the bean is initially
created (in the cache), or at regular intervals controlled by the bean’s
refresh-period-in-seconds elementinthe sun-ejb-jar.xml file.

= The home interface can have any number of find methods. The return type of the find
methods must be the primary key for the same bean type (or a collection of primary keys).

= Ifthe data that the bean represents can change, then refresh-period-in-seconds must be
set to refresh the beans at regular intervals. ejbLoad is called at this regular interval.

A read-only bean comes into existence using the appropriate find methods.

Read-only beans are cached and have the same cache properties as entity beans. When a
read-only bean is selected as a victim to make room in the cache, ejbPassivate is called and the
bean is returned to the free pool. When in the free pool, the bean has no identity and is used
only to serve any finder requests.

Read-only beans are bound to the naming service like regular read-write entity beans, and
clients can look up read-only beans the same way read-write entity beans are looked up.

Read-Only Bean Good Practices

For best results, follow these guidelines when developing read-only beans:

= Avoid having any create or remove methods in the home interface.
= Useany of the valid EJB 2.1 transaction attributes for the trans-attribute element.

The reason for having TX_SUPPORTED is to allow reading uncommitted data in the same
transaction. Also, the transaction attributes can be used to force ejbLoad.

Refreshing Read-Only Beans

There are several ways of refreshing read-only beans as addressed in the following sections:

= “Invoking a Transactional Method” on page 174
= “Refreshing Periodically” on page 175
m “Refreshing Programmatically” on page 175

Invoking a Transactional Method

Invoking any transactional method invokes ejbLoad.

174 Sun Java System Application Server Enterprise Edition 8.2 Developer's Guide - March 2009

Using Read-Only Beans

Refreshing Periodically

Use the refresh-period-in-seconds element in the sun-ejb-jar.xml file to refresh a
read-only bean periodically.

= Ifthe value specified in refresh-period-in-seconds is zero or not specified, which is the
default, the bean is never refreshed (unless a transactional method is accessed).

= Ifthe value is greater than zero, the bean is refreshed at the rate specified.

Note - This is the only way to refresh the bean state if the data can be modified external to the
Application Server.

Refreshing Programmatically

Typically, beans that update any data that is cached by read-only beans need to notify the
read-only beans to refresh their state. Use ReadOnlyBeanNotifier to force the refresh of
read-only beans.

To do this, invoke the following methods on the ReadOnlyBeanNotifier bean:

public interface ReadOnlyBeanNotifier extends java.rmi.Remote {
refresh(Object PrimaryKey) throws RemoteException;

}

The implementation of the ReadOnlyBeanNotifier interface is provided by the container. The
bean looks up ReadOnlyBeanNotifier usinga fragment of code such as the following example:

com.sun.appserv.ejb.ReadOnlyBeanHelper helper =
new com.sun.appserv.ejb.ReadOnlyBeanHelper();
com.sun.appserv.ejb.ReadOnlyBeanNotifier notifier =
helper.getReadOnlyBeanNotifier("java:comp/env/ejb/ReadOnlyCustomer")
notifier.refresh(PrimaryKey);

For alocal read-only bean notifier, the lookup has this modification:
helper.getReadOnlyBeanLocalNotifier("java:comp/env/ejb/LocalReadOnlyCustomer")

Beans that update any data that is cached by read-only beans need to call the refresh methods.
The next (non-transactional) call to the read-only bean invokes ejbLoad.

Note - Programmatic refresh of read-only beans is not supported in a clustered environment.

Chapter6 - Using Enterprise JavaBeans Technology 175

Using Message-Driven Beans

Deploying Read Only Beans

Read-only beans are deployed in the same manner as other entity beans. However, in the entry
for the bean in the sun-ejb-jar.xml file, the is- read-only-bean element must be set to true.
That is:

<is-read-only-bean>true</is-read-only-bean>

Also, the refresh-period-in-seconds elementin the sun-ejb-jar.xml file can be set to some
value that specifies the rate at which the bean is refreshed. If this element is missing, no refresh
occurs.

All requests in the same transaction context are routed to the same read-only bean instance. Set
the allow-concurrent-access element to either true (to allow concurrent accesses) or false
(to serialize concurrent access to the same read-only bean). The default is false.

For further information on these elements, refer to “The sun-ejb-jar.xml File” on page 310.

Using Message-Driven Beans

176

This section describes message-driven beans and explains the requirements for creating them in
the Application Server environment. This section contains the following topics:

= “Message-Driven Bean Configuration” on page 176
= “Restrictions and Optimizations” on page 178
= “Sample Message-Driven Bean XML Files” on page 179

Message-Driven Bean Configuration

This section addresses the following configuration topics:

= “Using Session Beans” on page 166
= “Message-Driven Bean Pool” on page 177
= “Domain-Level Settings” on page 177

For information about setting up load balancing for message-driven beans, see “Load-Balanced
Message Inflow” on page 271.

Connection Factory and Destination

A message-driven bean is a client to a Connector 1.5 inbound resource adapter. The
message-driven bean container uses the JMS service integrated into the Application Server for
message-driven beans that are JMS clients. JMS clients use JMS Connection Factory- and
Destination-administered objects. A JMS Connection Factory administered object is a resource
manager Connection Factory object that is used to create connections to the JMS provider.

Sun Java System Application Server Enterprise Edition 8.2 Developer's Guide - March 2009

Using Message-Driven Beans

The mdb-connection-factory element in the sun-ejb-jar.xmlfile for a message-driven bean
specifies the connection factory that creates the container connection to the JMS provider.

The jndi-name element of the ejb element in the sun-ejb-jar.xml file specifies the INDI
name of the administered object for the JMS Queue or Topic destination that is associated with
the message-driven bean.

Message-Driven Bean Pool

The container manages a pool of message-driven beans for the concurrent processing of a
stream of messages. The sun-ejb-jar.xml file contains the elements that define the pool (that
is, the bean-pool element):

steady-pool-size
resize-quantity
max-pool-size
pool-idle-timeout-in-seconds

For more information about sun-ejb-jar.xml, see “The sun-ejb-jar.xml File” on page 310.

Domain-Level Settings
You can control the following domain-level message-driven bean settings in the EJB container:

= Initial and Minimum Pool Size - Specifies the initial and minimum number of beans
maintained in the pool. The default is 0.

= Maximum Pool Size - Specifies the maximum number of beans that can be created to satisfy
client requests. The default is 32.

= Pool Resize Quantity - Specifies the number of beans to be created if a request arrives when
the pool is empty (subject to the Initial and Minimum Pool Size), or the number of beans to
remove if idle for more than the Idle Timeout. The defaultis 8.

= Idle Timeout - Specifies the maximum time in seconds that a bean can remain idle in the
pool. After this amount of time, the bean is destroyed. The default is 600 (10 minutes). A
value of @ means a bean can remain idle indefinitely.

For information on monitoring message-driven beans, see the Application Server
Administration Console online help and the Sun Java System Application Server Enterprise
Edition 8.2 Administration Guide.

Note - Running monitoring when it is not needed might impact performance, so you might
choose to turn monitoring off when it is not in use. For details, see the Sun Java System
Application Server Enterprise Edition 8.2 Administration Guide.

Chapter6 - Using Enterprise JavaBeans Technology 177

http://docs.sun.com/doc/819-4733
http://docs.sun.com/doc/819-4733
http://docs.sun.com/doc/819-4733
http://docs.sun.com/doc/819-4733

Using Message-Driven Beans

178

Restrictions and Optimizations

This section discusses the following restrictions and performance optimizations that pertain to
developing message-driven beans:

= “Pool Tuning and Monitoring” on page 178
= “onMessage Runtime Exception” on page 178

Pool Tuning and Monitoring

The message-driven bean pool is also a pool of threads, with each message-driven bean instance
in the pool associating with a server session, and each server session associating with a thread.
Therefore, alarge pool size also means a high number of threads, which impacts performance
and server resources.

When configuring message-driven bean pool properties, make sure to consider factors such as
message arrival rate and pattern, onMessage method processing time, overall server resources
(threads, memory, and so on), and any concurrency requirements and limitations from other
resources that the message-driven bean accesses.

When tuning performance and resource usage, make sure to consider potential JMS provider
properties for the connection factory used by the container (the mdb-connection-factory
element in the sun-ejb-jar.xml file). For example, you can tune the Sun Java System Message
Queue flow control related properties for connection factory in situations where the message
incoming rate is much higher than max-pool-size can handle.

Refer to the Sun Java System Application Server Enterprise Edition 8.2 Administration Guide for
information on how to get message-driven bean pool statistics.

onMessage Runtime Exception

Message-driven beans, like other well-behaved MessageListeners, should not, in general, throw
runtime exceptions. If a message-driven bean’s onMessage method encounters a system-level
exception or error that does not allow the method to successfully complete, the Enterprise
JavaBeans Specification, v2.1 provides the following guidelines:

= Ifthe bean method encounters a runtime exception or error, it should simply propagate the
error from the bean method to the container.

= [fthe bean method performs an operation that results in a checked exception that the bean
method cannot recover, the bean method should throw the javax.ejb.EJBException that
wraps the original exception.

= Any other unexpected error conditions should be reported using javax.ejb.EIBException
(javax.ejb.EJBException isa subclass of java.lang.RuntimeException).

Under container-managed transaction demarcation, upon receiving a runtime exception from
a message-driven bean’s onMessage method, the container rolls back the container-started
transaction and the message is redelivered. This is because the message delivery itself is part of

Sun Java System Application Server Enterprise Edition 8.2 Developer's Guide - March 2009

http://docs.sun.com/doc/819-4733

Using Message-Driven Beans

the container-started transaction. By default, the Application Server container closes the
container’s connection to the JMS provider when the first runtime exception is received from a
message-driven bean instance’s onMessage method. This avoids potential message redelivery
looping and protects server resources if the message-driven bean’s onMessage method
continues misbehaving. To change this default container behavior, use the
cmt-max-runtime-exceptions property of the mdb-container element in the domain . xml file.

The cmt-max- runtime-exceptions property specifies the maximum number of runtime
exceptions allowed from a message-driven bean’s onMessage method before the container starts
to close the container’s connection to the message source. By default this value is 1; -1 disables
this container protection.

A message-driven bean’s onMessage method can use the javax. jms.Message
getIMSRedelivered method to check whether a received message is a redelivered message.

Note - The cmt-max- runtime-exceptions property might be deprecated in the future.

Sample Message-Driven Bean XML Files

This section includes the following sample files:

= “Sample ejb-jar.xml File” on page 179
= “Sample sun-ejb-jar.xml File” on page 180

For general information on the sun-ejb-jar.xml file, see “The sun-ejb-jar.xml File” on
page 310.

Sample ejb-jar.xml File

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE ejb-jar PUBLIC '-//Sun Microsystems, Inc.//DTD Enterprise JavaBeans
2.0//EN’ 'http://java.sun.com/dtd/ejb-jar 2 0.dtd’'>
<ejb-jar>
<enterprise-beans>
<message-driven>
<ejb-name>MessageBean</ejb-name>
<ejb-class>samples.mdb.ejb.MessageBean</ejb-class>
<transaction-type>Container</transaction-type>
<message-driven-destination>
<destination-type>javax.jms.Queue</destination-type>
</message-driven-destination>
<resource-ref>
<res-ref-name>jms/QueueConnectionFactory</res-ref-name>
<res-type>javax.jms.QueueConnectionFactory</res-type>
<res-auth>Container</res-auth>

Chapter6 - Using Enterprise JavaBeans Technology 179

Using Message-Driven Beans

</resource-ref>
</message-driven>
</enterprise-beans>
<assembly-descriptor>
<container-transaction>
<method>
<ejb-name>MessageBean</ejb-name>
<method-intf>Bean</method-intf>
<method-name>onMessage</method-name>
<method-params>
<method-param>javax.jms.Message</method-param>
</method-params>
</method>
<trans-attribute>NotSupported</trans-attribute>
</container-transaction>
</assembly-descriptor
</ejb-jar>

Sample sun-ejb-jar.xml File

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE sun-ejb-jar PUBLIC ’-//Sun Microsystems, Inc.//DTD Application
Server 8.1 EJB 2.1//EN’
"http://www.sun.com/software/appserver/dtds/sun-ejb-jar 2 1-1.dtd’>
<sun-ejb-jar>
<enterprise-beans>
<ejb>
<ejb-name>MessageBean</ejb-name>
<jndi-name>jms/sample/Queue</jndi-name>
<resource-ref>
<res-ref-name>jms/QueueConnectionFactory</res-ref-name>
<jndi-name>jms/sample/QueueConnectionFactory</jndi-name>
<default-resource-principal>
<name>guest</name>
<password>guest</password>
</default-resource-principal>
</resource-ref>
<mdb-connection-factory>
<jndi-name>jms/sample/QueueConnectionFactory</jndi-name>
<default-resource-principal>
<name>guest</name>
<password>guest</password>
</default-resource-principal>
</mdb-connection-factory>
</ejb>
</enterprise-beans>
</sun-ejb-jar>

180 Sun Java System Application Server Enterprise Edition 8.2 Developer's Guide - March 2009

Handling Transactions with Enterprise Beans

Handling Transactions with Enterprise Beans

This section describes the transaction support built into the Enterprise JavaBeans programming
model for the Application Server.

As a developer, you can write an application that updates data in multiple databases distributed
across multiple sites. The site might use EJB servers from different vendors. This section
provides overview information on the following topics:

= “Flat Transactions” on page 181

= “Global and Local Transactions” on page 181

= “Commit Options” on page 181

= “Administration and Monitoring” on page 182
Flat Transactions

The Enterprise JavaBeans Specification, v2.1 requires support for flat (as opposed to nested)
transactions. In a flat transaction, each transaction is decoupled from and independent of other
transactions in the system. Another transaction cannot start in the same thread until the
current transaction ends.

Flat transactions are the most prevalent model and are supported by most commercial database
systems. Although nested transactions offer a finer granularity of control over transactions, they
are supported by far fewer commercial database systems.

Global and Local Transactions

Understanding the distinction between global and local transactions is crucial in understanding
the Application Server support for transactions. See “Transaction Scope” on page 256.

Both local and global transactions are demarcated using the
javax.transaction.UserTransaction interface, which the client must use. Local transactions
bypass the transaction manager and are faster. For more information, see “Naming
Environment for J2EE Application Components” on page 260.

Commit Options

The EJB protocol is designed to give the container the flexibility to select the disposition of the
instance state at the time a transaction is committed. This allows the container to best manage
caching an entity object’s state and associating an entity object identity with the EJB instances.

There are three commit-time options:

= Option A: The container caches a ready instance between transactions. The container
ensures that the instance has exclusive access to the state of the object in persistent storage.

Chapter6 - Using Enterprise JavaBeans Technology 181

Handling Transactions with Enterprise Beans

182

In this case, the container does not have to synchronize the instance’s state from the
persistent storage at the beginning of the next transaction.

Note - Commit option A is not supported for this Application Server release.

= Option B: The container caches a ready instance between transactions, but the container
does not ensure that the instance has exclusive access to the state of the object in persistent
storage. This is the default.

In this case, the container must synchronize the instance’s state by invoking ejbLoad from
persistent storage at the beginning of the next transaction.

= Option C: The container does not cache a ready instance between transactions, but instead
returns the instance to the pool of available instances after a transaction has completed.

The life cycle for every business method invocation under commit option C looks like this:

ejbActivate — ejbLoad — business method — ejbStore — ejbPassivate

If there is more than one transactional client concurrently accessing the same entity
EJBObject, the first client gets the ready instance and subsequent concurrent clients get new
instances from the pool.

The Application Server deployment descriptor has an element, commit-option, that specifies
the commit option to be used. Based on the specified commit option, the appropriate handler is
instantiated.

Administration and Monitoring

An administrator can control a number of domain-level Transaction Service settings. For
details, see “Configuring the Transaction Service” on page 257.

The Transaction Timeout setting can be overridden by a bean. See “Bean-Level
Container-Managed Transaction Timeouts” on page 164.

In addition, the administrator can monitor transactions using statistics from the transaction
manager that provide information on such activities as the number of transactions completed,
rolled back, or recovered since server startup, and transactions presently being processed.

For information on administering and monitoring transactions, see the Application Server
Administration Console online help and the Sun Java System Application Server Enterprise
Edition 8.2 Administration Guide.

Sun Java System Application Server Enterprise Edition 8.2 Developer's Guide - March 2009

http://docs.sun.com/doc/819-4733
http://docs.sun.com/doc/819-4733

L K R 4 CHAPTER 7

Using Container-Managed Persistence for
Entity Beans

This section contains information on how container-managed persistence (CMP) works in the
Sun Java System Application Server in the following topics:

“Sun Java System Application Server Support” on page 183
“Container-Managed Persistence Mapping” on page 184
“Automatic Schema Generation” on page 188

“Schema Capture” on page 194

“Configuring the CMP Resource” on page 195
“Configuring Queries for 1.1 Finders” on page 195
“Performance-Related Features” on page 199

“Restrictions and Optimizations” on page 201

Extensive information on CMP is contained in chapters 10, 11, and 14 of the Enterprise
JavaBeans Specification, v2.1.

You might also want to read the chapters on CMP and Enterprise JavaBeans Query Language
(EJB QL) in the J2EE 1.4 Tutorial at
http://java.sun.com/j2ee/1.4/docs/tutorial/doc/index.html.

Sun Java System Application Server Support

Application Server support for CMP includes:
= Full support for the J2EE v 1.4 specification’s CMP model.

= Support for commit options B and C for transactions, as defined in the Enterprise
JavaBeans Specification, v2.1. See “Commit Options” on page 181.

= The primary key class must be a subclass of java. lang.0bject. This ensures portability,
and is noted because some vendors allow primitive types (such as int) to be used as the
primary key class.

= The Application Server CMP implementation, which provides:

183

http://java.sun.com/j2ee/1.4/docs/tutorial/doc/index.html

Container-Managed Persistence Mapping

= An Object/Relational (O/R) mapping tool that creates XML deployment descriptors for
EJB JAR files that contain beans that use CMP

= Support for compound (multi-column) primary keys

= Support for sophisticated custom finder methods

= Standards-based query language (EJB QL)

= CMP runtime support. See “Configuring the CMP Resource” on page 195.
= Application Server performance-related features, including:

= Version column consistency checking
= Relationship prefetching
= Read-Only Beans

For details, see “Performance-Related Features” on page 199.

Container-Managed Persistence Mapping

184

Implementation for entity beans that use CMP is mostly a matter of mapping CMP fields and
CMR fields (relationships) to the database. This section addresses the following topics:

= “Mapping Capabilities” on page 184
= “The Mapping Deployment Descriptor File” on page 185
= “Mapping Considerations” on page 186

Mapping Capabilities

Mapping refers to the ability to tie an object-based model to a relational model of data, usually
the schema of a relational database. The CMP implementation provides the ability to tie a set of
interrelated beans containing data and associated behaviors to the schema. This object
representation of the database becomes part of the Java application. You can also customize this
mapping to optimize these beans for the particular needs of an application. The result is a single
data model through which both persistent database information and regular transient program
data are accessed.

The mapping capabilities provided by the Application Server include:

Mapping a CMP bean to one or more tables

Mapping CMP fields to one or more columns

Mapping CMP fields to different column types

Mapping tables with compound primary keys

Mapping tables with unknown primary keys

Mapping CMP relationships to foreign keys

Mapping tables with overlapping primary and foreign keys

Sun Java System Application Server Enterprise Edition 8.2 Developer's Guide - March 2009

Container-Managed Persistence Mapping

The Mapping Deployment Descriptor File

Each module with CMP beans must have the following files:

= ejb-jar.xml: The J2EE standard file for assembling enterprise beans. For a detailed
description, see the Enterprise JavaBeans Specification, v2.1.

= sun-ejb-jar.xml: The Application Server standard file for assembling enterprise beans. For
a detailed description, see “The sun-ejb-jar.xml File” on page 310.

= sun-cmp-mappings.xml: The mapping deployment descriptor file, which describes the
mapping of CMP beans to tables in a database. For a detailed description, see “The
sun-cmp-mappings.xml File” on page 315.

The sun-cmp-mappings.xml file can be automatically generated and does not have to exist prior
to deployment. For details, see “Generation Options” on page 191.

The sun-cmp-mappings.xml file maps CMP fields and CMR fields (relationships) to the
database. A primary table must be selected for each CMP bean, and optionally, multiple
secondary tables. CMP fields are mapped to columns in either the primary or secondary
table(s). CMR fields are mapped to pairs of column lists (normally, column lists are the lists of
columns associated with primary and foreign keys).

Note — Table names in databases can be case-sensitive. Make sure that the table names in the
sun-cmp-mappings.xml file match the names in the database.

Relationships should always be mapped to the primary key field(s) of the related table.

The sun-cmp-mappings.xml file conforms to the sun-cmp-mapping 1 2.dtd file and is
packaged with the user-defined bean classes in the EJB JAR file under the META- INF directory.

The Application Server or the deploytool creates the mappings in the sun-cmp-mappings . xml
file automatically during deployment if the file is not present. For information on how to use the
deploytool for mapping, see the “Create Database Mapping” topic in the deploytool’s online
help.

To map the fields and relationships of your entity beans manually, edit the
sun-cmp-mappings.xml deployment descriptor. Only do this if you are proficient in editing
XML.

The mapping information is developed in conjunction with the database schema (. dbschema)
file, which can be automatically captured when you deploy the bean (see “Automatic Database
Schema Capture” on page 194). You can manually generate the schema using the
capture-schema utility (“Using the capture-schema Utility” on page 194.

Chapter7 - Using Container-Managed Persistence for Entity Beans 185

Container-Managed Persistence Mapping

186

Mapping Considerations

This section addresses the following topics:

“Join Tables and Relationships” on page 186
“Automatic Primary Key Generation” on page 186
“Fixed Length CHAR Primary Keys” on page 186
“Managed Fields” on page 187

“BLOB Support” on page 187

= “CLOB Support” on page 188

The data types used in automatic schema generation are also suggested for manual mapping.
These data types are described in “Supported Data Types” on page 189.

Join Tables and Relationships

Use of join tables in the database schema is supported for all types of relationships, not just
many-to-many relationships. For general information about relationships, see section 10.3.7 of
the Enterprise JavaBeans Specification, v2.1.

Automatic Primary Key Generation

The Application Server supports automatic primary key generation for EJB 1.1, 2.0, and 2.1
CMP beans. To specify automatic primary key generation, give the prim-key-class element in
the ejb-jar-xml file the value java.lang.0Object. CMP beans with automatically generated
primary keys can participate in relationships with other CMP beans. The Application Server
does not support database-generated primary key values.

If the database schema is created during deployment, the Application Server creates the schema
with the primary key column, then generates unique values for the primary key column at
runtime.

If the database schema is not created during deployment, the primary key column in the
mapped table must be of type NUMERIC with a precision of 19 or more, and must not be mapped
to any CMP field. The Application Server generates unique values for the primary key column
at runtime.

Fixed Length CHAR Primary Keys

If an existing database table has a primary key column in which the values vary in length, but the
type is CHAR instead of VARCHAR, the Application Server automatically trims any extra spaces
when retrieving primary key values. It is not a good practice to use a fixed length CHAR column
as a primary key. Use this feature with schemas that cannot be changed, such as a schema
inherited from a legacy application.

Sun Java System Application Server Enterprise Edition 8.2 Developer's Guide - March 2009

Container-Managed Persistence Mapping

Managed Fields

A managed field isa CMP or CMR field that is mapped to the same database column as another
CMP or CMR field. CMP fields mapped to the same column and CMR fields mapped to exactly
the same column lists always have the same value in memory. For CMR fields that share only a
subset of their mapped columns, changes to the columns affect the relationship fields in
memory differently. Basically, the Application Server always tries to keep the state of the objects
in memory synchronized with the database.

A managed field can have any “fetched-with” on page 358 subelement except <default/>.

BLOB Support

Binary Large Object (BLOB) is a data type used to store values that do not correspond to other
types such as numbers, strings, or dates. Java fields whose types implement
java.io.Serializable orare represented as byte[] can be stored as BLOBs.

If a CMP field is defined as Serializable, itis serialized into a byte[] before being stored in
the database. Similarly, the value fetched from the database is deserialized. However, if a CMP
field is defined as byte[], it is stored directly instead of being serialized and deserialized when
stored and fetched, respectively.

To enable BLOB support in the Application Server environment, define a CMP field of type
byte[] ora user-defined type that implements the java.io.Serializable interface. If you
map the CMP bean to an existing database schema, map the field to a column of type BLOB.

To use BLOB or CLOB data types larger than 4 KB for CMP using the Inet Oraxo JDBC Driver
for Oracle 8.1.7 and 9.x Databases, you must set the streamstolob property value to true.

For alist of the JDBC drivers currently supported by the Application Server, see the Sun Java
System Application Server Enterprise Edition 8.2 Release Notes. For configurations of supported
and other drivers, see “Configurations for Specific JDBC Drivers” on page 244.

For automatic mapping, you might need to change the default BLOB column length for the
generated schema using the schema-generator-properties elementin sun-ejb-jar.xml. See
your database vendor documentation to determine whether you need to specify the length. For
example:

<schema-generator-properties>

<property>
<name>Employee.voiceGreeting. jdbc-type</name>
<value>BLOB</value>

</property>

<property>
<name>Employee.voiceGreeting.jdbc-maximum-length</name>
<value>10240</value>

</property>

</schema-generator-properties>

Chapter7 - Using Container-Managed Persistence for Entity Beans 187

http://docs.sun.com/doc/819-4728
http://docs.sun.com/doc/819-4728

Automatic Schema Generation

CLOB Support

Character Large Object (CLOB) is a data type used to store and retrieve very long text fields.
CLOBs translate into long strings.

To enable CLOB support in the Application Server environment, define a CMP field of type
java.lang.String. If you map the CMP bean to an existing database schema, map the field to a
column of type CLOB.

To use BLOB or CLOB data types larger than 4 KB for CMP using the Inet Oraxo JDBC Driver
for Oracle 8.1.7 and 9.x Databases, you must set the st reamstolob property value to true.

For alist of the JDBC drivers currently supported by the Application Server, see the Sun Java
System Application Server Enterprise Edition 8.2 Release Notes. For configurations of supported
and other drivers, see “Configurations for Specific JDBC Drivers” on page 244.

For automatic mapping, you might need to change the default CLOB column length for the
generated schema using the schema-generator-properties elementin sun-ejb-jar.xml. See
your database vendor documentation to determine whether you need to specify the length. For
example:

<schema-generator-properties>

<property>
<name>Employee. resume. jdbc-type</name>
<value>CLOB</value>

</property>

<property>
<name>Employee. resume. jdbc-maximum-length</name>
<value>10240</value>

</property>

</schema-generator-properties>

Automatic Schema Generation

188

The automatic schema generation feature provided in the Application Server defines database
tables based on the fields in entity beans and the relationships between the fields. This insulates
developers from many of the database related aspects of development, allowing them to focus
on entity bean development. The resulting schema is usable as-is or can be given to a database
administrator for tuning with respect to performance, security, and so on.

This section addresses the following topics:

= “Supported Data Types” on page 189
= “Generation Options” on page 191

Sun Java System Application Server Enterprise Edition 8.2 Developer's Guide - March 2009

http://docs.sun.com/doc/819-4728
http://docs.sun.com/doc/819-4728

Automatic Schema Generation

Supported Data Types

CMP supports a set of JDBC data types that are used in mapping Java data fields to SQL types.
Supported JDBC data types are as follows: BIGINT, BIT, BLOB, CHAR, CLOB, DATE,
DECIMAL, DOUBLE, FLOAT, INTEGER, NUMERIC, REAL, SMALLINT, TIME,
TIMESTAMP, TINYINT, VARCHAR.

The following table contains the mappings of Java types to JDBC types when automatic
mapping is used.

TABLE7-1 Java Type to JDBC Type Mappings

JavaType JDBCType Nullability
boolean BIT No
java.lang.Boolean BIT Yes
byte TINYINT No
java.lang.Byte TINYINT Yes
double DOUBLE No
java.lang.Double DOUBLE Yes
float REAL No
java.lang.Float REAL Yes
int INTEGER No
java.lang.Integer INTEGER Yes
long BIGINT No
java.lang.Long BIGINT Yes
short SMALLINT No
java.lang.Short SMALLINT Yes
java.math.BigDecimal DECIMAL Yes
java.math.BigInteger DECIMAL Yes
char CHAR No
java.lang.Character CHAR Yes
java.lang.String VARCHAR or CLOB Yes
Serializable BLOB Yes

Chapter7 - Using Container-Managed Persistence for Entity Beans 189

Automatic Schema Generation

TABLE7-1 Java Type to JDBC Type Mappings (Continued)
JavaType JDBCType Nullability
bytel] BLOB Yes
java.util.Date DATE (Oracle only) Yes
TIMESTAMP (all other databases)
java.sql.Date DATE Yes
java.sql.Time TIME Yes
java.sql.Timestamp TIMESTAMP Yes

Note - Java types assigned to CMP fields must be restricted to Java primitive types, Java

Serializabletypes, java.util.Date, java.sql.Date, java.sql.Time, or

java.sql.Timestamp. An entity bean local interface type (or a collection of such) can be the
type of a CMR field.

The following table contains the mappings of JDBC types to database vendor-specific types
when automatic mapping is used. For a list of the JDBC drivers currently supported by the
Application Server, see the Sun Java System Application Server Enterprise Edition 8.2 Release

Notes. For configurations of supported and other drivers, see “Configurations for Specific JDBC

Drivers” on page 244.

TABLE7-2 Mappings of JDBC Types to Database Vendor Specific Types

Java DB, Derby,
JDBCType CloudScape Oracle DB2 Sybase ASE12.5 MS-SQL Server
BIT SMALLINT SMALLINT SMALLINT TINYINT BIT
TINYINT SMALLINT SMALLINT SMALLINT TINYINT TINYINT
SMALLINT SMALLINT SMALLINT SMALLINT SMALLINT SMALLINT
INTEGER INTEGER INTEGER INTEGER INTEGER INTEGER
BIGINT BIGINT NUMBER BIGINT NUMERIC NUMERIC
REAL REAL REAL FLOAT FLOAT REAL
DOUBLE DOUBLE PRECISION DOUBLE PRECISION |DOUBLE DOUBLE PRECISION FLOAT
DECIMAL(p,s) DECIMAL (p,s) NUMBER(p, s) DECIMAL(p,s) DECIMAL(p,s) DECIMAL(p,s)
VARCHAR VARCHAR VARCHAR2 VARCHAR VARCHAR VARCHAR
DATE DATE DATE DATE DATETIME DATETIME
190 Sun Java System Application Server Enterprise Edition 8.2 Developer's Guide « March 2009

http://docs.sun.com/doc/819-4728
http://docs.sun.com/doc/819-4728

Automatic Schema Generation

TABLE7-2 Mappings of JDBC Types to Database Vendor Specific Types

(Continued)

Java DB, Derby,
JDBCType CloudScape Oracle DB2 Sybase ASE 12.5 MS-SQL Server
TIME TIME DATE TIME DATETIME DATETIME
TIMESTAMP TIMESTAMP TIMESTAMP(9) TIMESTAMP DATETIME DATETIME
BLOB BLOB BLOB BLOB IMAGE IMAGE
CLOB CLOB CLOB CLOB TEXT NTEXT
Generation Options

Deployment descriptor elements or asadmin command line options can control automatic
schema generation by:

= Creating tables during deployment

= Dropping tables during undeployment

Dropping and creating tables during redeployment
Specifying the database vendor

Specifying that table names are unique

Specitying type mappings for individual CMP fields

Note - Before using these options, make sure you have a properly configured CMP resource. See
“Configuring the CMP Resource” on page 195.

You can also use the deploytool to perform automatic mapping. For more information about
using the deploytool, see the “Create Database Mapping” topic in the deploytool’s online help.

For aread-only bean, do not create the database schema during deployment. Instead, work with
your database administrator to populate the data into the tables. See “Using Read-Only Beans”
on page 173.

Automatic schema generation is not supported for beans with version column consistency
checking. Instead, work with your database administrator to create the schema and add the
required triggers. See “Version Column Consistency Checking” on page 200.

The following optional data subelements of the cmp- resource element in the sun-ejb-jar.xml
file control the automatic creation of database tables at deployment. For more information
about the cmp- resource element, see “cmp-resource” on page 338 and “Configuring the CMP
Resource” on page 195.

Chapter7 - Using Container-Managed Persistence for Entity Beans 191

Automatic Schema Generation

TABLE7-3 sun-ejb-jar.xml Generation Elements

Element

Default

Description

“create-tables-at-deploy” on page 346

false

If true, causes database tables to be created for beans that are
automatically mapped by the EJB container. If false, does not create
tables.

“drop-tables-at-undeploy” on page 349

false

If true, causes database tables that were automatically created when the
bean(s) were last deployed to be dropped when the bean(s) are
undeployed. If false, does not drop tables.

“database-vendor-name” on page 347

none

Specifies the name of the database vendor for which tables are created.
Allowed values are javadb, db2, mssql, oracle, pointbase, derby (also
for CloudScape), and sybase, case-insensitive.

If no value is specified, a connection is made to the resource specified by
the jndi-name subelement of the cmp- resource element in the
sun-ejb-jar.xml file, and the database vendor name is read. If the
connection cannot be established, or if the value is not recognized,
SQL-92 compliance is presumed.

“schema-generator-properties” on page 407

none

Specifies field-specific column attributes in property subelements. Each
property name is of the following format:

bean-name. field-name. attribute

For example:

Employee.firstName. jdbc-type

Column attributes are described in Table A-98.

Also allows you to set the use-unique-table-names property. If true,
this property specifies that generated table names are unique within each
application server domain. The default is false.

For further information and an example, see
“schema-generator-properties” on page 407.

The following options of the asadmin deploy or asadmin deploydir command control the
automatic creation of database tables at deployment:

TABLE 7-4 asadmin deploy and asadmin deploydir Generation Options

Option Default Description
--createtables none If true, causes database tables to be created for beans that need them. If
false, does not create tables. If not specified, the value of the
create-tables-at-deploy attributein sun-ejb-jar.xml is used.
192 Sun Java System Application Server Enterprise Edition 8.2 Developer's Guide - March 2009

Automatic Schema Generation

TABLE 7-4 asadmin deploy and asadmin deploydir Generation Options (Continued)

Option

Default

Description

--dropandcreatetables none

If true, and if tables were automatically created when this application was
last deployed, tables from the earlier deployment are dropped and fresh ones
are created.

If true, and if tables were not automatically created when this application
was last deployed, no attempt is made to drop any tables. If tables with the
same names as those that would have been automatically created are found,
the deployment proceeds, but a warning indicates that tables could not be
created.

If false, settings of create-tables-at-deploy or
drop-tables-at-undeploy in the sun-ejb-jar.xml file are overridden.

--uniquetablenames

none

If true, specifies that table names are unique within each application server
domain. If not specified, the value of the use-unique- table-names property
insun-ejb-jar.xmlis used.

- -dbvendorname

none

Specifies the name of the database vendor for which tables are created.
Allowed values are javadb, db2,mssql, oracle, pointbase, derby (also for
CloudScape), and sybase, case-insensitive.

If not specified, the value of the database-vendor-name attribute in
sun-ejb-jar.xmlis used.

If no value is specified, a connection is made to the resource specified by the
jndi-name subelement of the cmp- resource element in the
sun-ejb-jar.xml file, and the database vendor name is read. If the
connection cannot be established, or if the value is not recognized, SQL-92
compliance is presumed.

If one or more of the beans in the module are manually mapped and you use any of the asadmin
deploy or asadmin deploydir options, the deployment is not harmed in any way, but the
options have no effect, and a warning is written to the server log.

If the deploytool mapped one or more of the beans, the - -uniquetablenames option of asadmin
deploy or asadmin deploydir has no effect. The uniqueness of the table names was established
when deploytool created the mapping.

The following options of the asadmin undeploy command control the automatic removal of
database tables at undeployment:

Chapter7 - Using Container-Managed Persistence for Entity Beans 193

Schema Capture

TABLE 7-5 asadmin undeploy Generation Options

Option

Default Description

--droptables

none If true, causes database tables that were automatically created when the
bean(s) were last deployed to be dropped when the bean(s) are undeployed.
If false, does not drop tables.

If not specified, the value of the drop-tables-at-undeploy attribute in
sun-ejb-jar.xmlis used.

For more information about the asadmin deploy, asadmin deploydir, and asadmin undeploy
commands, see the Sun Java System Application Server Enterprise Edition 8.2 Reference Manual.

When command line and sun-ejb-jar.xml options are both specified, the asadmin options
take precedence.

Schema Capture

194

This section addresses the following topics:

= “Automatic Database Schema Capture” on page 194
= “Using the capture-schema Utility” on page 194

Automatic Database Schema Capture

You can configure a CMP bean in Application Server to automatically capture the database
metadata and save itin a . dbschema file during deployment. If the sun-cmp-mappings . xml file
contains an empty <schema/> entry, the cmp- resource entry in the sun-ejb-jar.xmt file is
used to get a connection to the database, and automatic generation of the schema is performed.

Note - Before capturing the database schema automatically, make sure you have a properly
configured CMP resource. See “Configuring the CMP Resource” on page 195.

Using the capture-schema Utility

You can use the capture-schema command to manually generate the database metadata
(.dbschema) file. For details, see the Sun Java System Application Server Enterprise Edition 8.2
Reference Manual.

The capture-schema utility does not modify the schema in any way. Its only purpose is to
provide the persistence engine with information about the structure of the database (the
schema).

Sun Java System Application Server Enterprise Edition 8.2 Developer's Guide - March 2009

http://docs.sun.com/doc/819-4736
http://docs.sun.com/doc/819-4736
http://docs.sun.com/doc/819-4736

Configuring Queries for 1.1 Finders

Keep the following in mind when using the capture-schema command:

= The name ofa .dbschema file must be unique across all deployed modules in a domain.

m [fmore than one schema is accessible for the schema user, more than one table with the
same name might be captured if the - schemaname parameter of capture-schema is not set.

= The schema name must be upper case.

= Table names in databases are case-sensitive. Make sure that the table name matches the
name in the database.

= An Oracle database user running the capture-schema command needs ANALYZE ANY
TABLE privileges if that user does not own the schema. These privileges are granted to the
user by the database administrator.

Configuring the CMP Resource

An EJB module that contains CMP beans requires the JNDI name of a JDBC resource in the
jndi-name subelement of the “cmp-resource” on page 338 element in the sun-ejb-jar.xml file.
Set PersistenceManagerFactory properties as properties of the cmp- resource element in the
sun-ejb-jar.xml file.

In the Administration Console, open the Resources component, then select JDBC. Refer to the
Sun Java System Application Server Enterprise Edition 8.2 Administration Guide for information
on creating a new JDBC resource.

For alist of the JDBC drivers currently supported by the Application Server, see the Sun Java
System Application Server Enterprise Edition 8.2 Release Notes. For configurations of supported
and other drivers, see “Configurations for Specific JDBC Drivers” on page 244.

For example, if the JDBC resource has the JNDI name jdbc/MyDatabase, set the CMP resource
in the sun-ejb-jar.xml file as follows:

<cmp-resource>
<jndi-name>jdbc/MyDatabase</jndi-name>
</cmp-resource>

Configuring Queries for 1.1 Finders

This section contains the following topics:

“About JDOQL Queries” on page 196
“Query Filter Expression” on page 196
“Query Parameters” on page 198
“Query Variables” on page 198

Chapter7 - Using Container-Managed Persistence for Entity Beans 195

http://docs.sun.com/doc/819-4733
http://docs.sun.com/doc/819-4728
http://docs.sun.com/doc/819-4728

Configuring Queries for 1.1 Finders

196

= “IDOQL Examples” on page 198

About JDOQL Queries

The Enterprise JavaBeans Specification, v1.1 spec does not specify the format of the finder
method description. The Application Server uses an extension of Java Data Objects Query
Language (JDOQL) queries to implement finder and selector methods. (For EJB 2.0 and later,
the container automatically maps an EJB QL query to JDOQL.) You can specify the following
elements of the underlying JDOQL query:

= Filter expression - A Java-like expression that specifies a condition that each object
returned by the query must satisfy. Corresponds to the WHERE clause in EJB QL.

= Query parameter declaration - Specifies the name and the type of one or more query input
parameters. Follows the syntax for formal parameters in the Java language.

= Query variable declaration - Specifies the name and type of one or more query variables.
Follows the syntax for local variables in the Java language. A query filter might use query
variables to implement joins.

= Query ordering declaration - Specifies the ordering expression of the query. Corresponds
to the ORDER BY clause of E]JB QL.

The Application Server specific deployment descriptor (sun-ejb-jar.xml) provides the
following elements to store the EJB 1.1 finder method settings:

query-filterquery-paramsquery-variablesquery-ordering

The bean developer uses these elements to construct a query. When the finder method that uses
these elements executes, the values of these elements are used to execute a query in the database.
The objects from the JDOQL query result set are converted into primary key instances to be
returned by the EJB 1.1 ejbFind method.

The JDO specification (see JSR 12) provides a comprehensive description of JDOQL. The
following information summarizes the elements used to define EJB 1.1 finders.

Query Filter Expression

The filter expression is a String containing a boolean expression evaluated for each instance of
the candidate class. If the filter is not specified, it defaults to true. Rules for constructing valid
expressions follow the Java language, with the following differences:

= Equality and ordering comparisons between primitives and instances of wrapper classes are
valid.

= Equality and ordering comparisons of Date fields and Date parameters are valid.

= Equality and ordering comparisons of String fields and String parameters are valid.

Sun Java System Application Server Enterprise Edition 8.2 Developer's Guide - March 2009

Configuring Queries for 1.1 Finders

White space (non-printing characters space, tab, carriage return, and line feed) is a
separator and is otherwise ignored.

The following assignment operators are not supported:

=, +=, etc.
= pre- and post-increment
= pre- and post-decrement

Methods, including object construction, are not supported, except for:

Collection.contains(Object o)
Collection.isEmpty()
String.startsWith(String s)
String.endsWith(String e)

In addition, the Application Server supports the following nonstandard JDOQL methods:

String.like(String pattern)
String.like(String pattern, char escape)
String.substring(int start, int length)
String.indexOf (String str)
String.indexOf(String str, int start)
String.length()

Math.abs(numeric n)

Math.sqrt(double d)

Navigation through a null-valued field, which throws a NullPointerException, is treated as
if the sub-expression returned false.

Note - Comparisons between floating point values are by nature inexact. Therefore, equality
comparisons (== and !=) with floating point values should be used with caution. Identifiers in
the expression are considered to be in the name space of the candidate class, with the addition of
declared parameters and variables. As in the Java language, this is a reserved word, and refers
to the current instance being evaluated.

The following expressions are supported:

Operators applied to all types where they are defined in the Java language:
= relational operators (==, I=, >, <, >=, <=)

= boolean operators (&, &&, |, ||, ~,!)

= arithmetic operators (+, -, %, /)

String concatenation is supported only for String + String.

Parentheses to explicitly mark operator precedence

Cast operator

Chapter7 - Using Container-Managed Persistence for Entity Beans 197

Configuring Queries for 1.1 Finders

198

= Promotion of numeric operands for comparisons and arithmetic operations. The rules for
promotion follow the Java rules (see the numeric promotions of the Java language
specification) extended by BigDecimal, BigInteger, and numeric wrapper classes.

Query Parameters

The parameter declaration is a String containing one or more parameter type declarations
separated by commas. This follows the Java syntax for method signatures.

Query Variables

The type declarations follow the Java syntax for local variable declarations.

JDOQL Examples

This section provides a few query examples.

Example 1

The following query returns all players called Michael. It defines a filter that compares the name
field with a string literal:

name == "Michael"

The finder element of the sun-ejb-jar.xml file looks like this:

<finder>
<method-name>findPlayerByName</method-name>
<query-filter>name == "Michael'</query-filter>

</finder>

Example 2

This query returns all products in a specified price range. It defines two query parameters which
are the lower and upper bound for the price: double low, double high. The filter compares the
query parameters with the price field:

low < price && price < high
Query ordering is set to price ascending.

The finder element of the sun-ejb-jar.xml file looks like this:

Sun Java System Application Server Enterprise Edition 8.2 Developer's Guide - March 2009

Performance-Related Features

<finder>
<method-name>findInRange</method-name>
<query-params>double low, double high</query-params>
<query-filter>low < price && price < high</query-filter>
<query-ordering>price ascending</query-ordering>

</finder>

Example 3

This query returns all players having a higher salary than the player with the specified name. It
defines a query parameter for the name java.lang.String name. Furthermore, it defines a
variable to which the player’s salary is compared. It has the type of the persistence capable class
that corresponds to the bean:

mypackage.PlayerEJB 170160966 JDOState player

The filter compares the salary of the current player denoted by the this keyword with the salary
of the player with the specified name:

(this.salary > player.salary) && (player.name == name)

The finder element of the sun-ejb-jar.xml file looks like this:

<finder>
<method-name>findByHigherSalary</method-name>
<query-params>java.lang.String name</query-params>
<query-filter>
(this.salary > player.salary) && (player.name == name)
</query-filter>
<query-variables>
mypackage.PlayerEJB 170160966 JDOState player
</query-variables>
</finder>

Performance-Related Features

The Application Server provides the following features to enhance performance or allow more
fine-grained data checking. These features are supported only for entity beans with container
managed persistence.

= “Version Column Consistency Checking” on page 200
= “Relationship Prefetching” on page 200
= “Read-Only Beans” on page 201

Chapter7 - Using Container-Managed Persistence for Entity Beans 199

Performance-Related Features

Note - Use of any of these features results in a non-portable application.

Version Column Consistency Checking

The version consistency feature saves the bean state at first transactional access and caches it
between transactions. The state is copied from the cache instead of being read from the
database. The bean state is verified by primary key and version column values at flush for
custom queries (for dirty instances only) and at commit (for clean and dirty instances).

V¥ To use version consistency
1 Create the version column in the primary table.
2 Give the version column a numeric data type.

3 Provide appropriate update triggers on the version column.

These triggers must increment the version column on each update of the specified row.

4 Specify the version column.

This is specified in the “check-version-of-accessed-instances” on page 333 subelement of the
“consistency” on page 342 element in the sun-cmp-mappings.xml file.

5 Map the CMP bean to an existing schema.

Automatic schema generation is not supported for beans with version column consistency
checking. Instead, work with your database administrator to create the schema and add the
required triggers.

Relationship Prefetching

In many cases when an entity bean’s state is fetched from the database, its relationship fields are
always accessed in the same transaction. Relationship prefetching saves database round trips by
fetching data for an entity bean and those beans referenced by its CMR fields in a single
database round trip.

To enable relationship prefetching for a CMR field, use the “default” on page 347 subelement of
the “fetched-with” on page 358 element in the sun-cmp-mappings .xml file. By default, these
CMR fields are prefetched whenever findByPrimaryKey or a custom finder is executed for the
entity, or when the entity is navigated to from a relationship. (Recursive prefetching is not
supported, because it does not usually enhance performance.) To disable prefetching for
specific custom finders, use the “prefetch-disabled” on page 391 element in the
sun-ejb-jar.xml file.

200 Sun Java System Application Server Enterprise Edition 8.2 Developer's Guide - March 2009

Restrictions and Optimizations

Read-Only Beans

Another feature that the Application Server provides is the read-only bean, an entity bean that is
never modified by an EJB client. Read-only beans avoid database updates completely.

A read-only bean can be used to cache a database entry that is frequently accessed but rarely
updated (externally by other beans). When the data that is cached by a read-only bean is
updated by another bean, the read-only bean can be notified to refresh its cached data.

The Application Server provides a number of ways by which a read-only bean’s state can be
refreshed. By setting the refresh-period-in-seconds elementin the sun-ejb-jar.xml file
and the trans-attribute elementinthe ejb-jar.xml file, it is easy to configure a read-only
bean that is (a) always refreshed, (b) periodically refreshed, (c) never refreshed, or (d)
programmatically refreshed.

Access to CMR fields of read-only beans is not supported. Deployment will succeed, but an
exception will be thrown at runtime if a get or set method is invoked.

Read-only beans are best suited for situations where the underlying data never changes, or
changes infrequently. For further information and usage guidelines, see “Using Read-Only
Beans” on page 173.

Restrictions and Optimizations

This section discusses restrictions and performance optimizations that pertain to using CMP
entity beans.

“Eager Loading of Field State” on page 201

“Restrictions on Remote Interfaces” on page 202

“Sybase Finder Limitation” on page 202

“Date and Time Fields as CMP Field Types” on page 202

“No Support for lock-when-loaded on Sybase and DB2” on page 203
“Set RECURSIVE_TRIGGERS to false on MSSQL” on page 203
“MySQL Database Restrictions” on page 203

Eager Loading of Field State

By default, the EJB container loads the state for all CMP fields (excluding relationship, BLOB,
and CLOB fields) before invoking the ejbLoad method of the abstract bean. This approach
might not be optimal for entity objects with large state if most business methods require access
to only parts of the state. If this is an issue, use the “fetched-with” on page 358 element in
sun-cmp-mappings.xml for fields that are used infrequently.

Chapter7 - Using Container-Managed Persistence for Entity Beans 201

Restrictions and Optimizations

202

Restrictions on Remote Interfaces

The following restrictions apply to the remote interface of an entity bean that uses CMP:

= Do not expose the get and set methods for CMR fields or the persistence collection classes
that are used in container-managed relationships through the remote interface of the bean.

However, you are free to expose the get and set methods that correspond to the CMP fields
of the entity bean through the bean’s remote interface.

= Do not expose the container-managed collection classes that are used for relationships
through the remote interface of the bean.

= Do not expose local interface types or local home interface types through the remote
interface or remote home interface of the bean.

Dependent value classes can be exposed in the remote interface or remote home interface, and
can be included in the client EJB JAR file.

Sybase Finder Limitation

If a finder method with an input greater than 255 characters is executed and the primary key
column is mapped to a VARCHAR column, Sybase attempts to convert type VARCHAR to type
TEXT and generates the following error:

com.sybase.jdbc2.jdbc.SybSQLException: Implicit conversion from datatype
"TEXT’ to 'VARCHAR’ is not allowed. Use the CONVERT function to run this
query.

To avoid this error, make sure the finder method input is less than 255 characters.

Date and Time Fields as CMP Field Types

If a CMP field type is a Java date or time type (java.util.Date, java.sql.Date,
java.sql.Time, java.sql.Timestamp), make sure that the field value exactly matches the value
in the database.

For example, the following code uses a java.sql.Date type as a primary key field:

java.sql.Date myDate = new java.sql.Date(System.currentTimeMillis())
beanHome.create(myDate, ...);

For some databases, this code results in only the year, month, and date portion of the field value
being stored in the database. Later on if the client tries to find this bean by primary key as
follows:

myBean = beanHome.findByPrimaryKey(myDate) ;

Sun Java System Application Server Enterprise Edition 8.2 Developer's Guide - March 2009

Restrictions and Optimizations

the bean is not found in the database because the value does not match the one that is stored in
the database.

Similar problems can happen if the database truncates the timestamp value while storing it, or if
a custom query has a date or time value comparison in its WHERE clause.

For automatic mapping to an Oracle database, fields of type java.util.Date, java.sql.Date,
and java.sql.Time are mapped to Oracle’s DATE data type. Fields of type
java.sql.Timestamp are mapped to Oracle’s TIMESTAMP (9) data type.

No Support for lock-when-loaded on Sybase and DB2

The “lock-when-loaded” on page 373 consistency level is implemented by placing update locks
on the data corresponding to a bean when the data is loaded from the database. There is no
suitable mechanism available on Sybase and DB2 databases to implement this feature.
Therefore, the lock-when-loaded “consistency” on page 342 level is not supported on Sybase
and DB2 databases.

Set RECURSIVE_TRIGGERS to false on MSSQL

For version consistency triggers on MSSQL, the property RECURSIVE_TRIGGERS must be set to
false, which is the default. If set to true, triggers throw a java.sql.SQLException.

Set this property as follows:

EXEC sp dboption ’'database-name’, 'recursive triggers’, 'FALSE’
go

You can test this property as follows:

SELECT DATABASEPROPERTYEX('database-name’, 'IsRecursiveTriggersEnabled’)
go

MySQL Database Restrictions

The following restrictions apply when you use a MySQL database with the Application Server
for CMP.

= MySQL treats intland int2 as reserved words. If you want to define int1 and int2 as fields
in your table, use ‘int1‘and ‘int2‘ field names in your SQL file.

= When VARCHAR fields get truncated, a warning is displayed instead of an error. To get an
error message, start the MySQL database in strict SQL mode.

= The order of fields in a foreign key index must match the order in the explicitly created
index on the primary table.

Chapter7 - Using Container-Managed Persistence for Entity Beans 203

Restrictions and Optimizations

204

The CREATE TABLE syntax in the SQL file must end with the following line:

) Engine=InnoDB;

InnoDB provides MySQL with a transaction-safe (ACID compliant) storage engine having
commit, rollback, and crash recovery capabilities.

For a FLOAT type field, the correct precision must be defined. By default, MySQL uses four
bytes to store a FLOAT type that does not have an explicit precision definition. For example,
this causes a number such as 12345.67890123 to be rounded off to 12345.7 during an
INSERT. To prevent this, specify FLOAT (10, 2) in the DDL file, which forces the database to
use an eight-byte double-precision column. For more information, see
http://dev.mysql.com/doc/mysql/en/numeric-types.html.

To use | | as the string concatenation symbol, start the MySQL server with the
--sql-mode="PIPES_AS_CONCAT" option. For more information, see
http://dev.mysql.com/doc/refman/5.0/en/server-sql-mode.html and
http://dev.mysql.com/doc/mysql/en/ansi-mode.html.

MySQL always starts a new connection when autoCommit==true is set. This ensures that
each SQL statement forms a single transaction on its own. If you try to rollback or commit
an SQL statement, you get an error message:

javax.transaction.SystemException: java.sql.SQLException:
Can’t call rollback when autocommit=true

javax.transaction.SystemException: java.sql.SQLException:
Error open transaction is not closed

To resolve this issue, add relaxAutoCommit=true to the JDBC URL. For more information,
see http://forums.mysql.com/read.php?39,31326,31404.

Change the trigger create format from the following:

CREATE TRIGGER T_UNKNOWNPKVC1
BEFORE UPDATE ON UNKNOWNPKVC1
FOR EACH ROW

WHEN (NEW.VERSION = OLD.VERSION)
BEGIN

:NEW.VERSION := :0LD.VERSION + 1;
END;
/

to the following:

DELIMITER |

CREATE TRIGGER T_UNKNOWNPKVC1
BEFORE UPDATE ON UNKNOWNPKVC1
FOR EACH ROW

Sun Java System Application Server Enterprise Edition 8.2 Developer's Guide - March 2009

http://dev.mysql.com/doc/mysql/en/numeric-types.html
http://dev.mysql.com/doc/refman/5.0/en/server-sql-mode.html
http://dev.mysql.com/doc/mysql/en/ansi-mode.html
http://forums.mysql.com/read.php?39,31326,31404

Restrictions and Optimizations

WHEN (NEW.VERSION = OLD.VERSION)
BEGIN

:NEW.VERSION := :0LD.VERSION + 1;
END

|
DELIMITER ;

For more information, see http://dev.mysql.com/doc/mysql/en/create-trigger.html.

= MySQL does not allow a DELETE on a row that contains a reference to itself. Here is an
example that illustrates the issue:

create table EMPLOYEE (

empId int NOT NULL,
salary float(25,2) NULL,
mgrId int NULL,

PRIMARY KEY (empId),
FOREIGN KEY (mgrId) REFERENCES EMPLOYEE (empId)
) ENGINE=InnoDB;

insert into Employee values (1, 1234.34, 1);
delete from Employee where empId = 1;

This example fails with the following error message:

ERROR 1217 (23000): Cannot delete or update a parent row:
a foreign key constraint fails

To resolve this issue, change the table creation script to the following:

create table EMPLOYEE (

empId int NOT NULL,
salary float(25,2) NULL,
mgrId int NULL,

PRIMARY KEY (empId),

FOREIGN KEY (mgrId) REFERENCES EMPLOYEE (empId)
ON DELETE SET NULL

) ENGINE=InnoDB;

insert into Employee values (1, 1234.34, 1);
delete from Employee where empld = 1;

This can be done only if the foreign key field is allowed to be null. For more information, see
http://bugs.mysql.com/bug.php?id=12449 and
http://dev.mysql.com/doc/mysql/en/innodb-foreign-key-constraints.html.

= When an SQL script has foreign key constraints defined, capture-schema fails to capture
the table information correctly. To work around the problem, remove the constraints and
then run capture-schema. Here is an example that illustrates the issue:

Chapter7 - Using Container-Managed Persistence for Entity Beans 205

http://dev.mysql.com/doc/mysql/en/create-trigger.html
http://bugs.mysql.com/bug.php?id=12449
http://dev.mysql.com/doc/mysql/en/innodb-foreign-key-constraints.html

Restrictions and Optimizations

206

CREATE TABLE ADDRESSBOOKBEANTABLE (ADDRESSBOOKNAME VARCHAR(255)
NOT NULL PRIMARY KEY,

CONNECTEDUSERS BLOB NULL,
OWNER VARCHAR(256) ,
FK_FOR_ACCESSPRIVILEGES VARCHAR(256) ,

CONSTRAINT FK_ACCESSPRIVILEGE FOREIGN KEY (FK_FOR_ACCESSPRIVILEGES)
REFERENCES ACCESSPRIVILEGESBEANTABLE (ROOT)
) ENGINE=InnoDB;

To resolve this issue, change the table creation script to the following:

CREATE TABLE ADDRESSBOOKBEANTABLE (ADDRESSBOOKNAME VARCHAR(255)
NOT NULL PRIMARY KEY,

CONNECTEDUSERS BLOB NULL,
OWNER VARCHAR(256) ,
FK_FOR_ACCESSPRIVILEGES VARCHAR(256)

) ENGINE=InnoDB;

Sun Java System Application Server Enterprise Edition 8.2 Developer's Guide - March 2009

L K R 4 CHAPTER 8

Developing Java Clients

This chapter describes how to develop, assemble, and deploy J2EE Application Clients in the
following sections:

= “Introducing the Application Client Container” on page 207
= “Developing Clients Using the ACC” on page 208
= “Developing Clients Without the ACC” on page 215

Introducing the Application Client Container

The Application Client Container (ACC) includes a set of Java classes, libraries, and other files
that are required for and distributed with Java client programs that execute in their own Java
Virtual Machine (JVM). The ACC manages the execution of J2EE application client
components, which are used to access a variety of J2EE services (such as JMS resources, EJB
components, web services, security, and so on.) from a JVM outside the Sun Java System
Application Server.

The ACC communicates with the Application Server using RMI-IIOP protocol and manages
the details of RMI-IIOP communication using the client ORB that is bundled with it.
Compared to other J2EE containers, the ACC is lightweight.

Security

The ACC s responsible for collecting authentication data such as the username and password
and sending the collected data to the Application Server. The Application Server then processes
the authentication data using the configured Java™ Authentication and Authorization Service
(JAAS) module.

Authentication techniques are provided by the client container, and are not under the control of
the application client component. The container integrates with the platform’s authentication

207

Developing Clients Using the ACC

system. When you execute a client application, it displays a login window and collects
authentication data from the user. It also supports SSL (Secure Socket Layer)/IIOP if configured
and when necessary.

Naming

The client container enables the application clients to use the Java Naming and Directory
Interface (JNDI) to look up J2EE services (such as JMS resources, EJB components, web
services, security, and so on.) and to reference configurable parameters set at the time of
deployment.

Developing Clients Using the ACC

208

This section describes the procedure to develop, assemble, and deploy client applications using
the ACC. This section describes the following topics:

“To access an EJB component from an application client” on page 208
“Connecting to a Remote EJB Module Through a Firewall” on page 210
“To access a JMS resource from an application client” on page 211
“Running an Application Client Using the ACC” on page 212
“Packaging an Application Client Using the ACC” on page 212
“client.policy” on page 215

For information about Java-based clients that are not packaged using the ACC, see “Developing
Clients Without the ACC” on page 215.

To access an EJB component from an application client

In your client code, instantiate the InitialContext using the default (no argument)
constructor:

InitialContext ctx = new InitialContext();

It is not necessary to explicitly instantiate a naming context that points to the CosNaming
service.

In your client code, look up the home object by specifying the JNDI name of the home object as
specifiedintheejb-jar.xml file.

For example:

Object ref = ctx.lookup("java:comp/env/ejb-ref-name") ;
BeanAHome = (BeanAHome)PortableRemoteObject.narrow(ref,BeanAHome.class);

Sun Java System Application Server Enterprise Edition 8.2 Developer's Guide - March 2009

Developing Clients Using the ACC

Ifload balancing is enabled as in Step 8 and the EJB components being accessed are in a
different cluster, the endpoint list must be included in the lookup, as follows:

corbaname:hostl:portl,host2: port2,.../NameService#ejb/jndi-name

For more information about naming and lookups, see “Accessing the Naming Context” on
page 259.

Definethe ejb-ref elementsin the application-client.xml file and the corresponding
sun-application-client.xml file.

For more information on the sun-application-client.xml file, see “The
sun-application-client.xml file” on page 319. For a general explanation of how to map JNDI
names using reference elements, see “Mapping References” on page 263.

Deploy the application client and EJB component together in an application.
For more information on deployment, see “T'ools for Deployment” on page 91. To get the client
JAR file, use the - - retrieve option.

To retrieve the stubs and ties whether or not you requested their generation during deployment,
use the asadmin get-client-stubs command. For details, see the Sun Java System Application
Server Enterprise Edition 8.2 Reference Manual.

Ensure that the client JAR file includes the following files:

® aJava class to access the bean
= application-client.xml-]J2EE 1.4 application client deployment descriptor.

= sun-application-client.xml - Application Server specific client deployment descriptor.
For information on the sun-application-client.xml file, see “The
sun-application-client.xml file” on page 319.

® The MANIFEST.MF file. This file contains the main class, which states the complete package
prefix and class name of the Java client.

You can package the application client using the package-appclient script. This is optional.
See “Packaging an Application Client Using the ACC” on page 212.

Copy the following JAR files to the client machine and include them in the classpath on the
client side:

m appserv-rt.jar - available at install-dir/1ib
® j2ee.jar - available at install-dir/1ib
® The client JAR file

To access EJB components that are residing in a remote system, make the following changes to
the sun-acc.xml file:

Chapter8 - Developing Java Clients 209

http://docs.sun.com/doc/819-4736
http://docs.sun.com/doc/819-4736

Developing Clients Using the ACC

Example 8-1

= Define the “target-server” on page 426 element’s address attribute to reference the remote
server machine.

= Define the “target-server” on page 426 element’s port attribute to reference the ORB port on
the remote server.

This information can be obtained from the domain.xml file on the remote system. For more
information on domain.xml file, see the Sun Java System Application Server Enterprise
Edition 8.2 Administration Reference.

The target-server element in the sun-acc.xml file is not used if the endpoints property is
defined as in Step 8. For more information about the sun-acc.xml file, see “The sun-acc.xml
File” on page 320.

To set up load balancing and failover of remote EJB references, define the following property as
aproperty subelement of the “client-container” on page 335 elementin the sun-acc.xml file:

com.sun.appserv.iiop.endpoints

The endpoints property specifies a comma-separated list of one or more IIOP endpoints used
for load balancing. An IIOP endpoint is in the form host: port, where the host is an IPv4 address
or host name, and the port specifies the port number.

If the endpoints list is changed dynamically in the code, the new list is used only if a new
InitialContext is created.

Run the application client. See “Running an Application Client Using the ACC" on page 212.

Client Load Balancing and Failover

The following sample application demonstrates client load balancing and failover:

install-dir/samples/ee-samples/failover/apps/sfsbfailover

Connecting to a Remote EJB Module Through a
Firewall

To deploy and run an application client that connects to an EJB module on an Application
Server instance that is behind a firewall, you must set ORB Virtual Address Agent
Implementation (ORBVAA) options. Use the asadmin create-jvm-options command as
follows:

asadmin create-jvm-options --user adminuser -Dcom.sun.corba.ee.ORBVAAHost=public-IP-address

asadmin create-jvm-options --user adminuser -Dcom.sun.corba.ee.ORBVAAPort=3700

asadmin create-jvm-options --user adminuser
-Dcom.sun.corba.ee.ORBUserConfigurators.com.sun.corba.ee.impl.plugin.hwlb.VirtualAddressAgentImpl=x

210

Sun Java System Application Server Enterprise Edition 8.2 Developer's Guide - March 2009

http://docs.sun.com/doc/819-4735
http://docs.sun.com/doc/819-4735

Developing Clients Using the ACC

Set the ORBVAAHost and ORBVAAPort options to the host and port of the public address. The
ORBUserConfigurators option tells the ORB to create an instance of the
VirtualAddressAgentImpl class and invoke the configure method on the resulting object,
which must implement the com.sun.corba.ee.spi.orb.0RBConfigurator interface. The
ORBUserConfigurators value doesn't matter. Together, these options create an ORB that in
turn creates Object references (the underlying implementation of remote EJB references)
containing the public address, while the ORB listens on the private address specified for the
IIOP port in the Application Server configuration.

To access a JMS resource from an application client

Create a JMS client.

For detailed instructions on developing a JMS client, see the J2EE 1.4 Tutorial at
http://java.sun.com/j2ee/1.4/docs/tutorial/doc/IMS.html#wp84181.

Next, configure a JMS resource on the Application Server.

For information on configuring JMS resources, see “Creating JMS Resources: Destinations and
Connection Factories” on page 269.

Define the resource-ref elementsinthe application-client.xml file and the corresponding
sun-application-client.xml file.

For more information on the sun-application-client.xml file, see “The
sun-application-client.xml file” on page 319. For a general explanation of how to map JNDI
names using reference elements, see “Mapping References” on page 263.

Ensure that the client JAR file includes the following files:

®m A Java class to access the resource.
= application-client.xml -]J2EE 1.4 application client deployment descriptor.

= sun-application-client.xml - Application Server specific client deployment descriptor.
For information on the sun-application-client.xml file, see “The
sun-application-client.xml file” on page 319.

= The MANIFEST.MF file. This file contains the main class, which states the complete package
prefix and class name of the Java client.

You can package the application client using the package-appclient script. This is optional.
See “Packaging an Application Client Using the ACC” on page 212.
Copy the following JAR files to the client machine and include them in the classpath on the

clientside:

®m appserv-rt.jar - available at install-dir/1ib
® j2ee.jar -available at install-dir/1ib

Chapter8 - Developing Java Clients 211

http://java.sun.com/j2ee/1.4/docs/tutorial/doc/JMS.html#wp84181

Developing Clients Using the ACC

212

® imgjmsra.jar - available at install-dir/lib/install/aplications/jmsra
m Theclient JAR file

Run the application client.
See “Running an Application Client Using the ACC” on page 212.

Running an Application Client Using the ACC

To run an application client, launch the ACC using the appclient script. For details, see the
Sun Java System Application Server Enterprise Edition 8.2 Reference Manual.

Packaging an Application Client Using the ACC

The package-appclient script, located in the install-dir/bin directory, is used to package a
client application into a single appclient. jar file. Packaging an application client involves the
following main steps:

“Editing the Configuration File” on page 212

“Editing the appclient Script” on page 213

“Editing the sun-acc.xml File” on page 213

“Setting Security Options” on page 213

“To use the package-appclient script bundled with the Application Server” on page 214

Editing the Configuration File

Modify the environment variables in asenv . conf file located in the install-dir/ config directory
as shown below:

m $AS_INSTALL to reference the location where the package was un-jared plus /appclient.
For example: $AS_INSTALL=/install-dir/appclient.

m $AS_NSS to reference the location of the NSS libraries. For example:
UNIX:
$AS_NSS=/install-dir/appclient/1lib
WINDOWS:
%AS_NSS%=\install-dir\appclient\bin
® $AS JAVA to reference the location where the JDK is installed.

® $AS_ACC_CONFIG to reference the configuration XML file (sun-acc.xml). The sun-acc.xml
is located at install-dir/ config.

= $AS_IMQ_LIBto reference the imqhome. Use domain-dir/imq/lib.

Sun Java System Application Server Enterprise Edition 8.2 Developer's Guide - March 2009

http://docs.sun.com/doc/819-4736

Developing Clients Using the ACC

Editing the appclient Script
Modify the appclient script file as follows:

UNIX:
Change $CONFIG_HOME/asenv.conf to your-ACC-dir/config/asenv.conf.
Windows:

Change %CONFIG_HOME%\config\asenv.bat to your-ACC-dir\config\asenv.bat

Editing the sun-acc.xml File
Modify sun-acc.xml file to set the following attributes:

= Ensure that the DOCTYPE references install-dir/1ib/dtds to your-ACC-dir/1ib/dtds.
= Ensure that the <target-server> address attribute references the remote server machine.

= Ensure that the <target-server> port attribute references the ORB port on the remote
server.

= Tolog the messages in a file, specify a file name for the log-service element’s file
attribute. You can also set the log level. For example:

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE client-container SYSTEM
"“file:install-dir/1ib/dtds/sun-application-client-container 1 0.dtd">
<client-container>
<target-server name="gasol-el" address="qasol-el" port="3700">
<log-service level="WARNING"/>
</client-container>

For more information on the sun-acc.xml file, see “The sun-acc.xml File” on page 320.

Setting Security Options

You can run the application client using SSL with certificate authentication. To set the security
options, modify the sun-acc.xml file as shown in the code illustration below. For more
information on the sun-acc.xml file, see “The sun-acc.xml File” on page 320.

<?xml version="1.0" encoding="UTF-8"?>
<IDOCTYPE client-container SYSTEM
"file:install-dir/1ib/dtds/sun-application-client-container 1 0.dtd">
<client-container>
<target-server name="gasol-el" address="gasol-el" port="3700">
<security>
<ssl cert-nickname="cts"
ssl2-enabled="false"

Chapter8 - Developing Java Clients 213

Developing Clients Using the ACC

ss12-ciphers="-rc4, -rc4export,-rc2,-rc2export, -des, -desede3"
ss13-enabled="true"
ss13-tls-ciphers="+rsa rc4 128 md5,-rsa rc4 40 md5,+rsa3 des sha,
+rsa des sha,-rsa rc2 40 md5,-rsa null md5,-rsa des 56 sha,
-rsa_rc4 56_sha"
tls-enabled="true"
tls-rollback-enabled="true"/>
<cert-db path="ignored" password="ignored"/> <!-- not used -->
</security>
</target-server>
<client-credential user-name="j2ee" password="j2ee"/>
<log-service level="WARNING"/>
</client-container>

¥ Tousethepackage-appclient script bundled with the Application
Server

1 Under install-dir /bin directory, run the package-appclient script.
For details, see the Sun Java System Application Server Enterprise Edition 8.2 Reference Manual.

This creates an appclient. jar file and stores it under install-dir/1ib/appclient/ directory.

Note - The appclient. jar file provides an application client container package targeted at
remote hosts and does not contain a server installation. You can run this file from a remote
machine with the same operating system as where it is created. That is, appclient. jar created
on a Solaris platform does not function on Windows.

2 Copytheinstall-dir /lib/appclient/appclient. jar file to the desired location.
The appclient. jar file contains the following files:
® appclient/bin - contains the appclient script used to launch the ACC.
= appclient/lib - contains the JAR and runtime shared library files.
= appclient/lib/appclient - contains the following files:

® sun-acc.xml - the ACC configuration file.

= “client.policy” on page 215 file- the security manager policy file for the ACC.
= appclientlogin.conf file - the login configuration file.

= client.jar file - created during the deployment of the client application.

m appclient/lib/dtds - contains sun-application client-container 1 0.dtd, whichis
the DTD corresponding to sun-acc.xml.

214 Sun Java System Application Server Enterprise Edition 8.2 Developer's Guide - March 2009

http://docs.sun.com/doc/819-4736

Developing Clients Without the ACC

client.policy

The client.policy fileis the J2SE policy file used by the application client. Each application
clienthasa client.policy file. The default policy file limits the permissions of J2EE deployed
application clients to the minimal set of permissions required for these applications to operate
correctly. If an application client requires more than this default set of permissions, edit the
client.policy file to add the custom permissions that your application client needs. Use the
J2SE standard policy tool or any text editor to edit this file.

For more information on using the J2SE policy tool, see
http://java.sun.com/docs/books/tutorial/securityl.2/tour2/index.html.

For more information about the permissions you can set in the client.policy file, see
http://java.sun.com/j2se/1.4/docs/guide/security/permissions.html.

Developing Clients Without the ACC

This section describes the procedure to create, assemble, and deploy a Java-based client that is
not packaged using the Application Client Container (ACC). This section describes the
following topics:

= “Toaccess an EJB component from a stand-alone client” on page 215
= “Toaccess an EJB component from a server-side module” on page 217
= “Toaccessa JMS resource from a stand-alone client” on page 218

For information about using the ACC, see “Developing Clients Using the ACC” on page 208.

v To access an EJB component from a stand-alone client

1 Inyourclientcode, instantiate the InitialContext:
InitialContext ctx = new InitialContext();
It is not necessary to explicitly instantiate a naming context that points to the CosNaming

service.

2 Intheclient code, look up the home object by specifying the JNDI name of the home object.
For example:

Object ref = ctx.lookup("jndi-name");
BeanAHome = (BeanAHome)PortableRemoteObject.narrow(ref,BeanAHome.class);

Ifload balancing is enabled as in Step 6 and the EJB components being accessed are in a
different cluster, the endpoint list must be included in the lookup, as follows:

corbaname:hostl:portl,host2: port2,.../NameService#e]jb/jndi-name

Chapter8 - Developing Java Clients 215

http://java.sun.com/docs/books/tutorial/security1.2/tour2/index.html
http://java.sun.com/j2se/1.4/docs/guide/security/permissions.html

Developing Clients Without the ACC

216

Example 8-2

For more information about naming and lookups, see “Accessing the Naming Context” on
page 259.

Deploy the EJB component to be accessed.

For more information on deployment, see “Tools for Deployment” on page 91.

Copy the following JAR files to the client machine and include them in the classpath on the
client side:

® appserv-rt.jar - available at install-dir/1ib
® j2ee.jar - available at install-dir/1ib

To access EJB components that are residing in a remote system, set the values for the Java
Virtual Machine startup options:

jvmarg value = "-Dorg.omg.CORBA.ORBInitialHost=${ORBhost}"
jvmarg value = "-Dorg.omg.CORBA.ORBInitialPort=${ORBport}"

Here ORBhost is the Application Server hostname and ORBport is the ORB port number
(default is 3700 for the default instance).

This information can be obtained from the domain.xml file on the remote system. For more
information on domain . xml file, see the Sun Java System Application Server Enterprise
Edition 8.2 Administration Reference.

To set up load balancing and remote EJB reference failover, define the endpoints property as
follows:

jvmarg value = "-Dcom.sun.appserv.iiop.endpoints=hostl:portl,host2:port2,..."

The endpoints property specifies a comma-separated list of one or more IIOP endpoints used
for load balancing. An IIOP endpoint is in the form host: port, where the host is an IPv4 address
or host name, and the port specifies the port number.

If the endpoints list is changed dynamically in the code, the new list is used only if a new
InitialContext is created.

Run the stand-alone client.

Aslong as the client environment is set appropriately and the JVM is compatible, you merely
need to run the main class.

Client Load Balancing and Failover

The following sample application demonstrates client load balancing and failover:

install-dir/samples/ee-samples/failover/apps/sfsbfailover

Sun Java System Application Server Enterprise Edition 8.2 Developer's Guide - March 2009

http://docs.sun.com/doc/819-4735
http://docs.sun.com/doc/819-4735

Developing Clients Without the ACC

v To access an EJB component from a server-side
module

A server-side module can be a servlet, another EJB component, or another type of module.

1 Inyour module code, instantiate the InitialContext:
InitialContext ctx = new InitialContext();

It is not necessary to explicitly instantiate a naming context that points to the CosNaming
service.

To set up load balancing and remote EJB reference failover, define the endpoints property as
follows:

Hashtable env = new Hashtable();
env.put("com.sun.appserv.iiop.endpoints","hostl:portl, host2:port2,..");
InitialContext ctx = new InitialConext(env);

The endpoints property specifies a comma-separated list of one or more IIOP endpoints used
for load balancing. An IIOP endpoint is in the form host: port, where the host is an IPv4 address
or host name, and the port specifies the port number.

If the endpoints list is changed dynamically in the code, the new list is used only if a new
InitialContext is created.

2 Inthe module code, look up the home object by specifying the JNDI name of the home object.
For example:

Object ref = ctx.lookup("jndi-name");
BeanAHome = (BeanAHome)PortableRemoteObject.narrow(ref,BeanAHome.class);

Ifload balancing is enabled as in Step 1 and the EJB components being accessed are in a
different cluster, the endpoint list must be included in the lookup, as follows:
corbaname:hostl:portl,host2: port2,.../NameService#e]jb/jndi-name

For more information about naming and lookups, see “Accessing the Naming Context” on

page 259.

3 Deploy the EJB component to be accessed.

For more information on deployment, see “T'ools for Deployment” on page 91.

4 Toaccess EJB components that are residing in a remote system, set the values for the Java
Virtual Machine startup options:

jvmarg value = "-Dorg.omg.CORBA.ORBInitialHost=${ORBhost}"jvmarg value =
"-Dorg.omg.CORBA.ORBInitialPort=${ORBport}"

Chapter8 - Developing Java Clients 217

Developing Clients Without the ACC

218

Example 8-3

Here ORBhost is the Application Server hostname and ORBport is the ORB port number
(default is 3700 for the default instance).

This information can be obtained from the domain.xml file on the remote system. For more
information on domain.xml file, see the Sun Java System Application Server Enterprise
Edition 8.2 Administration Reference.

Deploy the module.

For more information on deployment, see “Tools for Deployment” on page 91.

Client Load Balancing and Failover

The following sample application demonstrates client load balancing and failover:

install-dir/samples/ee-samples/failover/apps/sfsbfailover

To access a JMS resource from a stand-alone client

Create a JMS client.

For detailed instructions on developing a JMS client, see the J2EE 1.4 Tutorial at
http://java.sun.com/j2ee/1.4/docs/tutorial/doc/JIMS.html#wp84181.

Next, configure a JMS resource on the Application Server.

For information on configuring JMS resources, see “Creating JMS Resources: Destinations and
Connection Factories” on page 269.

Copy the following JAR files to the client machine and include them in the classpath on the
client side:

® appserv-rt.jar -available at install-dir/1ib
® j2ee.jar -available at install-dir/1ib
® imgjmsra.jar - available at install-dir/lib/install/aplications/jmsra

Set the values for the Java Virtual Machine startup options:

jvmarg value = "-Dorg.omg.CORBA.ORBInitialHost=${ORBhost}"
jvmarg value = "-Dorg.omg.CORBA.ORBInitialPort=${ORBport}"

Here ORBhost is the Application Server hostname and ORBport is the ORB port number
(default is 3700 for the default instance).

This information can be obtained from the domain . xml file. For more information on
domain.xml file, see the Sun Java System Application Server Enterprise Edition 8.2
Administration Reference.

Sun Java System Application Server Enterprise Edition 8.2 Developer's Guide - March 2009

http://docs.sun.com/doc/819-4735
http://docs.sun.com/doc/819-4735
http://java.sun.com/j2ee/1.4/docs/tutorial/doc/JMS.html#wp84181
http://docs.sun.com/doc/819-4735
http://docs.sun.com/doc/819-4735

Developing Clients Without the ACC

5 Runthestand-alone client.

Aslong as the client environment is set appropriately and the JVM is compatible, you merely
need to run the main class.

Chapter8 - Developing Java Clients 219

220

CHAPTER 9

Developing Connectors

This chapter describes Sun Java System Application Server support for the J2EE Connector 1.5
architecture.

The J2EE Connector architecture provides a Java solution to the problem of connectivity
between multiple application servers and existing enterprise information systems (EISs). By
using the J2EE Connector architecture, EIS vendors no longer need to customize their product
for each application server. Application server vendors who conform to the J2EE Connector
architecture do not need to write custom code to add connectivity to a new EIS.

This chapter uses the terms connector and resource adapter interchangeably. Both terms refer to
aresource adapter module that is developed in conformance with the J2EE Connector
Specification 1.5.

For more information about connectors, see the J2EE Connector architecture home page, at
http://java.sun.com/j2ee/connector/.

For connector examples, see
http://developers.sun.com/prodtech/appserver/reference/techart/as8_connectors.

You might also want to read the appendix on connector architecture in the J2EE 1.4 Tutorial at
http://java.sun.com/j2ee/1.4/docs/tutorial/doc/index.html.

This chapter includes the following topics:

= “Connector 1.5 Support in the Application Server” on page 222

= “Deploying and Configuring a Stand-Alone Connector Module” on page 223
= “Redeploying a Stand-Alone Connector Module” on page 224

“Deploying and Configuring an Embedded Resource Adapter” on page 224
“Advanced Connector Configuration Options” on page 225

“Inbound Communication Support” on page 228

“Configuring a Message Driven Bean to Use a Resource Adapter” on page 229

221

http://java.sun.com/j2ee/connector/
http://developers.sun.com/prodtech/appserver/reference/techart/as8_connectors
http://java.sun.com/j2ee/1.4/docs/tutorial/doc/index.html

Connector 1.5 Support in the Application Server

Connector 1.5 Supportin the Application Server

222

The Application Server supports the development and deployment of resource adapters that are
compatible with Connector 1.5 specification (and, for backward compatibility, the Connector
1.0 specification).

The Connector 1.0 specification defines the outbound connectivity system contracts between
the resource adapter and the Application Server. The Connector 1.5 specification introduces
major additions in defining system level contracts between the Application Server and the
resource adapter with respect to the following:

= Inbound connectivity from an EIS - The Connector 1.5 defines the transaction and message
inflow system contracts for achieving inbound connectivity from an EIS. The message
inflow contract also serves as a standard message provider pluggability contract, thereby
allowing various providers of messaging systems to seamlessly plug in their products with
any application server that supports the message inflow contract.

= Resource adapter life cycle management and thread management - These features are
available through the lifecycle and work management contracts.

Connector Architecture for JMS and JDBC

In the Administration Console, connector, JMS, and JDBC resources are handled differently,
but they use the same underlying Connector architecture. In the Application Server, all
communication to an EIS, whether to a message provider or an RDBMS, happens through the
Connector architecture. To provide JMS infrastructure to clients, the Application Server uses
the Sun Java System Message Queue software. To provide JDBC infrastructure to clients, the
Application Server uses its own JDBC system resource adapters. The application server
automatically makes these system resource adapters available to any client that requires them.

For more information about JMS in the Application Server, see Chapter 14, “Using the Java
Message Service” For more information about JDBC in the Application Server, see Chapter 11,
“Using the JDBC API for Database Access”

Connector Configuration

The Application Server does not need to use sun- ra.xml, which previous Application Server
versions used, to store server-specific deployment information inside a Resource Adapter
Archive (RAR) file. (However, the sun-ra.xml file is still supported for backward
compatibility.) Instead, the information is stored in the server configuration. As a result, you
can create multiple connector connection pools for a connection definition in a functional
resource adapter instance, and you can create multiple user-accessible connector resources
(that is, registering a resource with a JNDI name) for a connector connection pool. In addition,
dynamic changes can be made to connector connection pools and the connector resource
properties without restarting the Application Server.

Sun Java System Application Server Enterprise Edition 8.2 Developer's Guide - March 2009

Deploying and Configuring a Stand-Alone Connector Module

Deploying and Configuring a Stand-Alone Connector Module

You can deploy a stand-alone connector module using the Administration Console or the
asadmin command. For information about using the Administration Console, see the Sun Java
System Application Server Enterprise Edition 8.2 Administration Guide. For information about
using the asadmin command, see the Sun Java System Application Server Enterprise Edition 8.2
Reference Manual.

Deploying a stand-alone connector module allows multiple deployed J2EE applications to share
the connector module. A resource adapter configuration is automatically created for the
connector module.

v To deploy and configure a stand-alone connector
module

1 Deploy the connector module in one of the following ways.

= In the Administration Console, open the Applications component and select Connector
Modules. When you deploy the connector module, a resource adapter configuration is
automatically created for the connector module.

m Use the asadmin deploy or asadmin deploydir command. To override the default
configuration properties of a resource adapter, if necessary, use the asadmin
create-resource-adapter-config command.

2 Configure connector connection pools for the deployed connector module in one of the
following ways:

= Inthe Administration Console, open the Resources component, select Connectors, and
select Connector Connection Pools.

m Use the asadmin create-connector-connection-pool command.

3 Configure connector resources for the connector connection pools in one of the following ways.

= Inthe Administration Console, open the Resources component, select Connectors, and
select Connector Resources.

m Use the asadmin create-connector-resource command.
This associates a connector resource with a JNDI name.

4 Create an administered object for an inbound resource adapter, if necessary, in one of the
following ways:

= Inthe Administration Console, open the Resources component, select Connectors, and
select Admin Object Resources.

Chapter9 - Developing Connectors 223

http://docs.sun.com/doc/819-4733
http://docs.sun.com/doc/819-4733
http://docs.sun.com/doc/819-4736
http://docs.sun.com/doc/819-4736

Redeploying a Stand-Alone Connector Module

®m Use the asadmin create-admin-object command.

Redeploying a Stand-Alone Connector Module

Redeployment of a connector module maintains all connector connection pools, connector
resources, and administered objects defined for the previously deployed connector module.
You need not reconfigure any of these resources.

However, you should redeploy any dependent modules. A dependent module uses or refers to a
connector resource of the redeployed connector module. Redeployment of a connector module
results in the shared class loader reloading the new classes. Other modules that refer to the old
resource adapter classes must be redeployed to gain access to the new classes. For more
information about classloaders, see “Classloaders” on page 76.

During connector module redeployment, the server log provides a warning indicating that all
dependent applications should be redeployed. Client applications or application components
using the connector module’s resources may throw class cast exceptions if dependent
applications are not redeployed after connector module redeployment.

To disable automatic redeployment, set the - - force option to false. In this case, if the
connector module has already been deployed, the Application Server provides an error
message.

Deploying and Configuring an Embedded Resource Adapter

224

A connector module can be deployed as a J2EE component in a J2EE application. Such
connectors are only visible to components residing in the same J2EE application. Simply deploy
this J2EE application as you would any other J2EE application.

You can create new connector connection pools and connector resources for a connector
module embedded within a J2EE application by prefixing the connector name with app-name#.
For example, if an application appX. ear has jdbcra. rar embedded within it, the connector
connection pools and connector resources refer to the connector module as appX#jdbcra.

However, an embedded connector module cannot be undeployed using the name
app-name#connector-name. To undeploy the connector module, you must undeploy the
application in which it is embedded.

The association between the physical JNDI name for the connector module in the Application
Server and the logical JNDI name used in the application component is specified in the
Application Server specific XML descriptor sun-ejb-jar.xml. You can either hand code this
association or use the deploytool to make this association. (For more information about using
the deploytool, see “deploytool” on page 42.)

Sun Java System Application Server Enterprise Edition 8.2 Developer's Guide - March 2009

Advanced Connector Configuration Options

Advanced Connector Configuration Options

You can use these advanced connector configuration options:

“Thread Pools” on page 225

“Security Maps” on page 225

“Overriding Configuration Properties” on page 226

“Testing a Connection Pool” on page 226

“Handling Invalid Connections” on page 227

“Setting the Shutdown Timeout” on page 227

“Using Last Agent Optimization of Transactions” on page 228

Thread Pools

Connectors can submit work instances to the Application Server for execution. By default, the
Application Server services work requests for all connectors from its default thread pool.
However, you can associate a specific user-created thread pool to service work requests from a
connector. A thread pool can service work requests from multiple resource adapters. To create
athread pool:

= Inthe Administration Console, select Thread Pools under the relevant configuration. For
details, see the Sun Java System Application Server Enterprise Edition 8.2 Administration
Guide.

= Use the asadmin create-threadpool command. For details, see the Sun Java System
Application Server Enterprise Edition 8.2 Reference Manual.

To associate a connector with a thread pool:

= Inthe Administration Console, open the Applications component and select Connector
Modules. Deploy the module, or select the previously deployed module. Specify the name of
the thread pool in the Thread Pool ID field. For details, see the Sun Java System Application
Server Enterprise Edition 8.2 Administration Guide.

= Usethe - -threadpoolid option of the asadmin create-resource-adapter-config
command. For details, see the Sun Java System Application Server Enterprise Edition 8.2
Reference Manual.

If you create a resource adapter configuration for a connector module that is already deployed,
the connector module deployment is restarted with the new configuration properties.

Security Maps

Create a security map for a connector connection pool to map an application principal or a user
group to a back end EIS principal. The security map is usually used in situations where one or
more EIS back end principals are used to execute operations (on the EIS) initiated by various
principals or user groups in the application.

Chapter9 - Developing Connectors 225

http://docs.sun.com/doc/819-4733
http://docs.sun.com/doc/819-4733
http://docs.sun.com/doc/819-4736
http://docs.sun.com/doc/819-4736
http://docs.sun.com/doc/819-4733
http://docs.sun.com/doc/819-4733
http://docs.sun.com/doc/819-4736
http://docs.sun.com/doc/819-4736

Advanced Connector Configuration Options

226

To create or update security maps for a connector connection pool:

= Inthe Administration Console, open the Resources component, select Connectors, select
Connector Connection Pools, and select the Security Maps tab. For details, see the Sun Java
System Application Server Enterprise Edition 8.2 Administration Guide.

m Use the asadmin create-connector-security-map command. For details, see the Sun Java
System Application Server Enterprise Edition 8.2 Reference Manual.

If a security map already exists for a connector connection pool, the new security map is
appended to the previous one. The connector security map configuration supports the use of
the wildcard asterisk (*) to indicate all users or all user groups.

When an application principal initiates a request to an EIS, the Application Server first checks
for an exact match to a mapped back end EIS principal using the security map defined for the
connector connection pool. If there is no exact match, the Application Server uses the wild card
character specification, if any, to determined the mapped back end EIS principal.

Overriding Configuration Properties

You can override the properties specified in the ra.xml file of a resource adapter. Use the
asadmin create-resource-adapter-config command to create a configuration for a
resource adapter. Use this command’s - -property option to specify a name-value pair for a
resource adapter property.

You can use the asadmin create-resource-adapter-config command either before or after
resource adapter deployment. If it is executed after deploying the resource adapter, the existing
resource adapter is restarted with the new properties. For details, see the Sun Java System
Application Server Enterprise Edition 8.2 Reference Manual.

You can also use token replacement for overriding resource adapter configuration properties in
individual server instances when the resource adapter is deployed to a cluster. For example, for
a property called inboundPort, you can assign the value ${inboundPort}. You can then assign a
different value to this property for each server instance. Changes to system properties take effect
upon server restart.

Testing a Connection Pool

After conﬁguring a connector connection pool, use the asadmin ping-connection-pool
command to test the health of the underlying connections. For details, see the Sun Java System
Application Server Enterprise Edition 8.2 Reference Manual.

Sun Java System Application Server Enterprise Edition 8.2 Developer's Guide - March 2009

http://docs.sun.com/doc/819-4733
http://docs.sun.com/doc/819-4733
http://docs.sun.com/doc/819-4736
http://docs.sun.com/doc/819-4736
http://docs.sun.com/doc/819-4736
http://docs.sun.com/doc/819-4736
http://docs.sun.com/doc/819-4736
http://docs.sun.com/doc/819-4736

Advanced Connector Configuration Options

Handling Invalid Connections

If a resource adapter generates a ConnectionErrorOccured event, the Application Server
considers the connection invalid and removes the connection from the connection pool.
Typically, a resource adapter generates a ConnectionErrorOccured event when it finds a
ManagedConnection object unusable. Reasons can be network failure with the EIS, EIS failure,
fatal problems with resource adapter, and so on. If the fail-all-connections property in the
connection pool configuration is set to true, all connections are destroyed and the pool is
recreated.

You can set the fail-all-connections configuration property during creation of a connector
connection pool. Or, you can use the asadmin set command to dynamically reconfigure a
previously set property. For details, see the Sun Java System Application Server Enterprise
Edition 8.2 Reference Manual.

The interface ValidatingManagedConnectionFactory exposes the method
getInvalidConnections to allow retrieval of the invalid connections. The Application Server
checks if the resource adapter implements this interface, and if it does, invalid connections are
removed when the connection pool is resized.

Setting the Shutdown Timeout

According to the Connector 1.5 specification, while an application server shuts down, all
resource adapters should be stopped. A resource adapter might hang during shutdown, since
shutdown is typically a resource intensive operation. To avoid such a situation, you can set a
timeout that aborts resource adapter shutdown if exceeded. The default timeout is 30 seconds
per resource adapter module. To configure this timeout:

= Inthe Administration Console, select JMS/Connector Service under the relevant
configuration. For details, see the Sun Java System Application Server Enterprise Edition 8.2
Administration Guide.

= Use the following command:

asadmin set server-instance.connector-service.shutdown-timeout-in-seconds="num-secs"

For details, see the Sun Java System Application Server Enterprise Edition 8.2 Reference
Manual.

The Application Server deactivates all message-driven bean deployments before stopping a
resource adapter.

Chapter9 - Developing Connectors 227

http://docs.sun.com/doc/819-4736
http://docs.sun.com/doc/819-4736
http://docs.sun.com/doc/819-4733
http://docs.sun.com/doc/819-4733
http://docs.sun.com/doc/819-4736
http://docs.sun.com/doc/819-4736

Inbound Communication Support

Using Last Agent Optimization of Transactions

Transactions that involve multiple resources or multiple participant processes are distributed or
global transactions. A global transaction can involve one non-XA resource if last agent
optimization is enabled. Otherwise, all resources must be XA. For more information about
transactions in the Application Server, see Chapter 12, “Using the Transaction Service”

The Connector 1.5 specification requires that if a resource adapter supports XATransaction,
the ManagedConnection created from that resource adapter must support both distributed and
local transactions. Therefore, even if a resource adapter supports XATransaction, you can
configure its connector connection pools as non-XA or without transaction support for better
performance. A non-XA resource adapter becomes the last agent in the transactions in which it
participates.

The value of the connection pool configuration property transaction-support defaults to the
value of the transaction-support property in the ra.xml file. The connection pool
configuration property can override the ra.xml file property if the transaction level in the
connection pool configuration property is lower. If the value in the connection pool
configuration property is higher, it is ignored.

Inbound Communication Support

228

The Connector 1.5 specification defines the transaction and message inflow system contracts
for achieving inbound connectivity from an EIS. The message inflow contract also serves as a
standard message provider pluggability contract, thereby allowing various message providers to
seamlessly plug in their products with any application server that supports the message inflow
contract. In the inbound communication model, the EIS initiates all communication to an
application. An application can be composed of enterprise beans (session, entity, or
message-driven beans), which reside in an EJB container.

Incoming messages are received through a message endpoint, which is a message-driven bean.
This message-driven bean asynchronously consumes messages from a message provider. An
application can also synchronously send and receive messages directly using messaging style
APIs.

A resource adapter supporting inbound communication provides an instance of an
ActivationSpec JavaBean class for each supported message listener type. Each class contains a
set of configurable properties that specify endpoint activation configuration information
during message-driven bean deployment. The required-config-property element in the
ra.xml file provides a list of configuration property names required for each activation
specification. An endpoint activation fails if the required property values are not specified.
Values for the properties that are overridden in the message-driven bean’s deployment
descriptor are applied to the ActivationSpec JavaBean when the message-driven bean is
deployed.

Sun Java System Application Server Enterprise Edition 8.2 Developer's Guide - March 2009

Configuring a Message Driven Bean to Use a Resource Adapter

Administered objects can also be specified for a resource adapter, and these JavaBeans are
specific to a messaging style or message provider. For example, some messaging styles may need
applications to use special administered objects (such as Queue and Topic objects in JMS).
Applications use these objects to send and synchronously receive messages using connection
objects using messaging style APIs. For more information about administered objects, see
Chapter 14, “Using the Java Message Service.”

Configuring a Message Driven Bean to Use a Resource Adapter

The Connectors 1.5 specification’s message inflow contract provides a generic mechanism to
plug in a wide-range of message providers, including JMS, into a J2EE-compatible application
server. Message providers use a resource adapter and dispatch messages to message endpoints,
which are implemented as message-driven beans.

The message-driven bean developer provides activation configuration information in the
message-driven bean’s ejb-jar.xml file. Configuration information includes
messaging-style-specific configuration details, and possibly message-provider-specific details as
well. The message-driven bean deployer uses this configuration information to set up the
activation specification JavaBean. The activation configuration properties specified in
ejb-jar.xml override configuration properties in the activation specification definition in the
ra.xml file.

According to the EJB specification, the messaging-style-specific descriptor elements contained
within the activation configuration element are not specified because they are specific to a
messaging provider. In the following sample message-driven bean ejb-jar.xml, a
message-driven bean has the following activation configuration property names:
destinationType, SubscriptionDurability, and MessageSelector.

<!-- A sample MDB that listens to a JMS Topic -->
<!-- message-driven bean deployment descriptor -->

<activation-config>
<activation-config-property>
<activation-config-property-name>
destinationType
</activation-config-property-name>
<activation-config-property-value>
javax.jms.Topic
</activation-config-property-value>
</activation-config-property>
<activation-config-property>
<activation-config-property-name>
SubscriptionDurability
</activation-config-property-name>
<activation-config-property-value>

Chapter9 - Developing Connectors 229

Configuring a Message Driven Bean to Use a Resource Adapter

230

Durable
</activation-config-property-value>
</activation-config-property>
<activation-config-property>
<activation-config-property-name>
MessageSelector
</activation-config-property-name>
<activation-config-property-value>
JMSType = 'car’ AND color = 'blue’
</activation-config-property-value>
</activation-config-property>

</activation-config>

When the message-driven bean is deployed, the value for the resource-adapter-mid element
inthe sun-ejb-jar.xml file is set to the resource adapter module name that delivers messages
to the message endpoint (to the message-driven bean). In the following example, the jmsra JMS
resource adapter, which is the bundled resource adapter for the Sun Java System Message
Queue message provider, is specified as the resource adapter module identifier for the
SampleMDB bean.

<sun-ejb-jar>
<enterprise-beans>
<unique-id>l</unique-id>
<ejb>
<ejb-name>SampleMDB</ejb-name>
<jndi-name>SampleQueue</jndi-name>
<!-- INDI name of the destination from which messages would be
delivered from MDB needs to listen to -->
</ejb>
<mdb-resource-adapter>
<resource-adapter-mid>jmsra</resource-adapter-mid>
<!-- Resource Adapter Module Id that would deliver messages to
this message endpoint -->
</mdb-resource-adapter>

</sun-ejb-jar>

When the message-driven bean is deployed, the Application Server uses the
resourceadapter-mid setting to associate the resource adapter with a message endpoint
through the message inflow contract. This message inflow contract with the application server
gives the resource adapter a handle to the MessageEndpointFactory and the ActivationSpec
JavaBean, and the adapter uses this handle to deliver messages to the message endpoint
instances (which are created by the MessageEndpointFactory).

Sun Java System Application Server Enterprise Edition 8.2 Developer's Guide - March 2009

Configuring a Message Driven Bean to Use a Resource Adapter

When a message-driven bean first created for use on the Application Server 7 is deployed, the
Connector runtime transparently transforms the previous deployment style to the current
connector-based deployment style. If the deployer specifies neither a resource-adapter-mid
property nor the Message Queue resource adapter’s activation configuration properties, the
Connector runtime maps the message-driven bean to the jmsra system resource adapter and
converts the JMS-specific configuration to the Message Queue resource adapter’s activation
configuration properties.

Example Resource Adapter for Inbound
Communication

The inbound sample connector bundled with the Application Server is a good example of an
application utilizing the inbound connectivity contract of the J2EE Connector Architecture 1.5
specification. This sample connector is available at
install-dir/samples/connectors/apps/mailconnector.

This example connector shows how to create an inbound J2EE Connector Architecture
1.5-compliant resource adapter and deploy its components. It shows how these resource
adapters interact with other application components. The inbound sample resource adapter
allows message endpoints (that is, message-driven beans) to receive email messages delivered to
a specific mailbox folder on a given mail server.

The application that is bundled along with this inbound sample connector provides a simple
Remote Method Invocation (RMI) back end service that allows the user to monitor the mailbox
folders specified by the message-driven beans. The sample application also contains a sample
message-driven bean that illustrates how the activation configuration specification properties
of the message-driven bean provide the configuration parameters that the back end and
resource adapter require to monitor a specific mailbox folder.

The onMessage method of the message-driven bean uses the JavaMail API to send a reply
acknowledging the receipt of the message. This reply is sufficient to verify that the full process is
working.

Chapter9 - Developing Connectors 231

232

L K R 4 CHAPTER 10

Developing Lifecycle Listeners

Lifecycle listener modules provide a means of running short or long duration Java-based tasks
within the application server environment, such as instantiation of singletons or RMI servers.
These modules are automatically initiated at server startup and are notified at various phases of
the server life cycle.

Alllifecycle module classes and interfaces are in the install-dir/1ib/appserv-rt. jar file.

The following sections describe how to create and use a lifecycle listener module:

“Server Life Cycle Events” on page 233

“The LifecycleListener Interface” on page 234

“The LifecycleEvent Class” on page 234

“The Server Lifecycle Event Context” on page 235
“Deploying a Lifecycle Module” on page 235
“Considerations for Lifecycle Modules” on page 236

Server Life Cycle Events

A lifecycle module listens for and performs its tasks in response to the following events in the
server life cycle:

After the INIT_EVENT, the server reads the configuration, initializes built-in subsystems
(such as security and logging services), and creates the containers.

After the STARTUP_EVENT, the server loads and initializes deployed applications.
After the READY_EVENT, the server is ready to service requests.
After the SHUTDOWN_EVENT, the server destroys loaded applications and stops.

After the TERMINATION_EVENT, the server closes the containers, the built-in subsystems, and
the server runtime environment.

These events are defined in the LifecycleEvent class.

233

The LifecycleListener Interface

The lifecycle modules that listen for these events implement the LifecycleListener interface.

The LifecycleListener Interface

To create a lifecycle module is to configure a customized class that implements the
com.sun.appserv.server.LifecycleListener interface. You can create and simultaneously
execute multiple lifecycle modules.

The LifecyclelListener interface defines this method:

public void handleEvent(com.sun.appserv.server.LifecycleEvent event)
throws ServerLifecycleException

This method responds to a lifecycle event and throws a
com.sun.appserv.server.ServerLifecycleException if an error occurs.

A sample implementation of the LifecycleListener interface is the
LifecycleListenerImpl.java file, which you can use for testing lifecycle events.

The LifecycleEvent Class

The com.sun.appserv.server.LifecycleEvent class defines a server life cycle event. The
following methods are associated with the event:

® public java.lang.Object getData()
This method returns the data associated with the event.
m public int getEventType()

This method returns the type of the last event, which is INIT_EVENT, STARTUP_EVENT,
READY EVENT, SHUTDOWN EVENT, or TERMINATION EVENT.

® public com.sun.appserv.server.LifecycleEventContext
getLifecycleEventContext()

This method returns the lifecycle event context, described next.

A LifecycleEvent instance is passed to the LifecycleListener.handleEvent method.

234 Sun Java System Application Server Enterprise Edition 8.2 Developer's Guide - March 2009

Deploying a Lifecycle Module

The Server Lifecycle Event Context

The com.sun.appserv.server.LifecycleEventContext interface exposes runtime
information about the server. The lifecycle event context is created when the LifecycleEvent
class is instantiated at server initialization. The LifecycleEventContext interface defines these
methods:

® public java.lang.String[] getCmdLineArgs()
This method returns the server startup command-line arguments.
® public java.lang.String getInstallRoot()
This method returns the server installation root directory.
® public java.lang.String getInstanceName()
This method returns the server instance name.
® public javax.naming.InitialContext getInitialContext()

This method returns the initial INDI naming context. The naming environment for lifecycle
modules is installed after the STARTUP_EVENT. A lifecycle module can look up any resource
by its jndi-name attribute after the READY_EVENT.

If a lifecycle module needs to look up resources, it can do so after the READY_EVENT. It can use
the getInitialContext() method to get the initial context to which all the resources are
bound.

Deploying a Lifecycle Module

You can deploy a lifecycle module using the following tools:

= In the Administration Console, open the Applications component and go to the Lifecycle
Modules page. For details, see the Sun Java System Application Server Enterprise Edition 8.2
Administration Guide.

m Usethe asadmin create-lifecycle-module command. For details, see the Sun Java
System Application Server Enterprise Edition 8.2 Reference Manual.

You do not need to specify a classpath for the lifecycle module if you place it in the
domain-dir/1ib or domain-dir/1ib/classes directory for the Domain Administration Server.
Do not place it in the lib directory for a particular instance, or it will be deleted when that
instance synchronizes with the Domain Administration Server.

After you deploy a lifecycle module, you must restart the server to activate it. The server
instantiates it and registers it as a lifecycle event listener at server initialization.

Chapter 10 - Developing Lifecycle Listeners 235

http://docs.sun.com/doc/819-4733
http://docs.sun.com/doc/819-4733
http://docs.sun.com/doc/819-4736
http://docs.sun.com/doc/819-4736

Considerations for Lifecycle Modules

Note - If the is-failure-fatal setting is set to true (the default is false), lifecycle module
failure prevents server initialization or startup, but not shutdown or termination.

Considerations for Lifecycle Modules

236

The resources allocated at initialization or startup should be freed at shutdown or termination.
The lifecycle module classes are called synchronously from the main server thread, therefore it
is important to ensure that these classes don’t block the server. Lifecycle modules can create
threads if appropriate, but these threads must be stopped in the shutdown and termination
phases.

The LifeCycleModule Classloader is the parent class loader for lifecycle modules. Each lifecycle
module’s classpath in domain.xml is used to construct its class loader. All the support classes
needed by a lifecycle module must be available to the LifeCycleModule Classloader or its parent,
the Connector Classloader.

You must ensure that the server. policy file is appropriately set up, or a lifecycle module
trying to perform a System. exec () might cause a security access violation. For details, see “The
server.policy File” on page 52.

The configured properties for a lifecycle module are passed as properties after the INIT_EVENT.
The JNDI naming context is not available before the STARTUP_EVENT. If a lifecycle module
requires the naming context, it can get this after the STARTUP_EVENT, READY_EVENT, or
SHUTDOWN_EVENT.

Sun Java System Application Server Enterprise Edition 8.2 Developer's Guide - March 2009

PART I11

Using Services and APIs

238

CHAPTER 11

Using the JDBC API for Database Access

This chapter describes how to use the Java™ Database Connectivity (J]DBC™) API for database
access with the Sun Java System Application Server. This chapter also provides high level JDBC
implementation instructions for servlets and EJB™ components using the Application Server.
The Application Server supports the JDBC 3.0 APL, which encompasses the JDBC 2.0 Optional
Package API.

The JDBC specifications are available at
http://java.sun.com/products/jdbc/download.html.

A useful JDBC tutorial is located at
http://java.sun.com/docs/books/tutorial/jdbc/index.html.

For explanations of two-tier and three-tier database access models, see the Sun Java System
Application Server Enterprise Edition 8.2 Administration Guide.

Note - The Application Server does not support connection pooling or transactions for an
application’s database access if it does not use standard J2EE™ DataSource objects.

This chapter discusses the following topics:

= “General Steps for Creating a JDBC Resource” on page 240
= “Creating Applications That Use the JDBC API” on page 241
= “Configurations for Specific JDBC Drivers” on page 244

239

http://java.sun.com/products/jdbc/download.html
http://java.sun.com/docs/books/tutorial/jdbc/index.html
http://docs.sun.com/doc/819-4733
http://docs.sun.com/doc/819-4733

General Steps for Creating a JDBC Resource

General Steps for Creating a JDBC Resource

240

To prepare a JDBC resource for use in J2EE applications deployed to the Application Server,
perform the following tasks:

“Integrating the JDBC Driver” on page 240
“Creating a Connection Pool” on page 240
“Testing a Connection Pool” on page 241
“Creating a JDBC Resource” on page 241

For information about how to configure some specific JDBC drivers, see the “Configurations
for Specific JDBC Drivers” on page 244.

Integrating the JDBC Driver

To use JDBC features, you must choose a JDBC driver to work with the Application Server, then
you must set up the driver. This section covers these topics:

= “Supported Database Drivers” on page 240
= “Making the JDBC Driver JAR Files Accessible” on page 240

Supported Database Drivers

Supported JDBC drivers are those that have been fully tested by Sun. For a list of the JDBC
drivers currently supported by the Application Server, see the Sun Java System Application
Server Enterprise Edition 8.2 Release Notes. For configurations of supported and other drivers,
see “Configurations for Specific JDBC Drivers” on page 244.

Note - Because the drivers and databases supported by the Application Server are constantly
being updated, and because database vendors continue to upgrade their products, always check
with Sun technical support for the latest database support information.

Making the JDBC Driver JAR Files Accessible

To integrate the JDBC driver into a Application Server domain, copy the JAR files into the
domain-dir/1ib directory, then restart the server. This makes classes accessible to any
application or module across the domain. For more information , see “Using the Common
Classloader” on page 80.

Creating a Connection Pool

When you create a connection pool that uses JDBC technology (a JDBC connection pool) in the
Application Server, you can define many of the characteristics of your database connections.

You can create a JDBC connection pool in one of these ways:

Sun Java System Application Server Enterprise Edition 8.2 Developer's Guide - March 2009

http://docs.sun.com/doc/819-4728
http://docs.sun.com/doc/819-4728

Creating Applications That Use the JDBC API

= Inthe Administration Console, open the Resources component, open the JDBC
component, and select Connection Pools. For details, see the Sun Java System Application
Server Enterprise Edition 8.2 Administration Guide.

m Use the asadmin create-jdbc-connection-pool command. For details, see the Sun Java
System Application Server Enterprise Edition 8.2 Reference Manual.

Testing a Connection Pool

You can test a JDBC connection pool for usability in one of these ways:

= Inthe Administration Console, open the Resources component, open the JDBC
component, select Connection Pools, and select the connection pool you want to test. Then
select the Ping button in the top right corner of the page. For details, see the Sun Java System
Application Server Enterprise Edition 8.2 Administration Guide.

= Use the asadmin ping-connection-pool command. For details, see the Sun Java System
Application Server Enterprise Edition 8.2 Reference Manual

Both these commands fail and display an error message unless they successfully connect to the
connection pool.

For information about how to tune a connection pool, see the Sun Java System Application
Server Enterprise Edition 8.2 Performance Tuning Guide.

Creating a JDBC Resource

A JDBC resource, also called a data source, lets you make connections to a database using
getConnection(). Create a JDBC resource in one of these ways:

= Inthe Administration Console, open the Resources component, open the JDBC
component, and select JDBC Resources. For details, see the Sun Java System Application
Server Enterprise Edition 8.2 Administration Guide.

= Use the asadmin create-jdbc-resource command. For details, see the Sun Java System
Application Server Enterprise Edition 8.2 Reference Manual.

Creating Applications That Use the JDBCAPI

An application that uses the JDBC API is an application that looks up and connects to one or
more databases. This section covers these topics:

= “Sharing Connections” on page 242
= “Obtaining a Physical Connection from a Wrapped Connection” on page 242
= “Using Non-Transactional Connections” on page 243

Chapter 11 « Using the JDBC API for Database Access 241

http://docs.sun.com/doc/819-4733
http://docs.sun.com/doc/819-4733
http://docs.sun.com/doc/819-4736
http://docs.sun.com/doc/819-4736
http://docs.sun.com/doc/819-4733
http://docs.sun.com/doc/819-4733
http://docs.sun.com/doc/819-4736
http://docs.sun.com/doc/819-4736
http://docs.sun.com/doc/819-4742
http://docs.sun.com/doc/819-4742
http://docs.sun.com/doc/819-4733
http://docs.sun.com/doc/819-4733
http://docs.sun.com/doc/819-4736
http://docs.sun.com/doc/819-4736

Creating Applications That Use the JDBC API

242

= “Using JDBC Transaction Isolation Levels” on page 243

Sharing Connections

When multiple connections acquired by an application use the same JDBC resource, the
connection pool provides connection sharing within the same transaction scope. For example,
suppose Bean A starts a transaction and obtains a connection, then calls a method in Bean B. If
Bean B acquires a connection to the same JDBC resource with the same sign-on information,
and if Bean A completes the transaction, the connection can be shared.

Connections obtained through a resource are shared only if the resource reference declared by
the J2EE component allows it to be shareable. This is specified in a component’s deployment
descriptor by setting the res-sharing-scope element to Shareable for the particular resource
reference. To turn off connection sharing, set res-sharing-scope to Unshareable.

For general information about connections and JDBC URLSs, see the Sun Java System
Application Server Enterprise Edition 8.2 Administration Guide.

Obtaining a Physical Connection from a Wrapped
Connection

The DataSource implementation in the Application Server provides a getConnection method
that retrieves the JDBC driver’s SQLConnection from the Application Server’s Connection
wrapper. The method signature is as follows:

public java.sql.Connection getConnection(java.sql.Connection con)
throws java.sql.SQLException

For example:

InitialContext ctx = new InitialContext();

com.sun.appserv.jdbc.DataSource ds = (com.sun.appserv.jdbc.DataSource)
ctx.lookup("jdbc/MyBase");

Connection con = ds.getConnection();

Connection drivercon = ds.getConnection(con);

// Do db operations.

con.close();

If you get a Connection from an Application Server JDBC connection pool, create a Statement
object, and then use the Statement.getConnection method, the statement returns the physical
connection instead of the wrapped connection. When you close this physical connection, you
break the connection pool logic. To avoid this problem, use the following asadmin
create-jvm-options command, then restart the server:

Sun Java System Application Server Enterprise Edition 8.2 Developer's Guide - March 2009

http://docs.sun.com/doc/819-4733
http://docs.sun.com/doc/819-4733

Creating Applications That Use the JDBC API

asadmin create-jvm-options -Dcom.sun.appserv.jdbc.wrapJdbcObjects=true

For more information about the asadmin create-jvm-options command, see the Sun Java
System Application Server Enterprise Edition 8.2 Reference Manual.

Using Non-Transactional Connections

The DataSource implementation in the Application Server provides a getNonTxConnection
method, which retrieves a JDBC connection that is not in the scope of any transaction. There
are two variants, as follows:

public java.sql.Connection getNonTxConnection() throws java.sql.SQLException

public java.sql.Connection getNonTxConnection(String user, String password)
throws java.sql.SQLException

Another way to get a non-transactional connection is to create a resource with the JNDI name
endingin __nontx. This forces all connections looked up using this resource to be non
transactional.

Typically, a connection is enlisted in the context of the transaction in which a getConnection
call is invoked. However, a non-transactional connection is not enlisted in a transaction context
even if a transaction is in progress.

The main advantage of using non-transactional connections is that the overhead incurred in
enlisting and delisting connections in transaction contexts is avoided. However, use such
connections carefully. For example, if a non-transactional connection is used to query the
database while a transaction is in progress that modifies the database, the query retrieves the
unmodified data in the database. This is because the in-progress transaction hasn’t committed.
For another example, if a non-transactional connection modifies the database and a transaction
that is running simultaneously rolls back, the changes made by the non-transactional
connection are not rolled back.

Here is a typical use case for a non-transactional connection: a component that is updating a
database in a transaction context spanning over several iterations of a loop can refresh cached
data by using a non-transactional connection to read data before the transaction commits.

Using JDBC Transaction Isolation Levels

For general information about transactions, see Chapter 12, “Using the Transaction
Service”and the Sun Java System Application Server Enterprise Edition 8.2 Administration
Guide. For information about last agent optimization, which can improve performance, see
“Transaction Scope” on page 256.

Chapter 11 « Using the JDBC API for Database Access 243

http://docs.sun.com/doc/819-4736
http://docs.sun.com/doc/819-4736
http://docs.sun.com/doc/819-4733
http://docs.sun.com/doc/819-4733

Configurations for Specific JDBC Drivers

Not all database vendors support all transaction isolation levels available in the JDBC API. The
Application Server permits specifying any isolation level your database supports. The following
table defines transaction isolation levels.

TABLE 11-1 Transaction Isolation Levels

Transaction Isolation Level Description

TRANSACTION_READ_UNCOMMITTED Dirty reads, non-repeatable reads and phantom reads can occur.
TRANSACTION_READ_COMMITTED Dirty reads are prevented; non-repeatable reads and phantom reads can occur.
TRANSACTION_REPEATABLE_READ Dirty reads and non-repeatable reads are prevented; phantom reads can occur.
TRANSACTION SERIALIZABLE Dirty reads, non-repeatable reads and phantom reads are prevented.

Note that you cannot call setTransactionIsolation() duringa transaction.

You can set the default transaction isolation level for a JDBC connection pool. For details, see
“Creating a Connection Pool” on page 240.

To verify that a level is supported by your database management system, test your database
programmatically using the supportsTransactionIsolationLevel() methodin
java.sql.DatabaseMetaData, as shown in the following example:

java.sql.DatabaseMetaData db;
if (db.supportsTransactionIsolationLevel(TRANSACTION SERIALIZABLE)
{ Connection.setTransactionIsolation(TRANSACTION SERIALIZABLE); }

For more information about these isolation levels and what they mean, see the JDBC 3.0 API
specification.

Note - Applications that change the isolation level on a pooled connection programmatically
risk polluting the pool, which can lead to errors.

Configurations for Specific JDBC Drivers

244

Application Server 8.2 is designed to support connectivity to any database management system
with a corresponding JDBC driver. The following JDBC driver and database combinations are
supported. These combinations have been tested with Application Server 8.2 and are found to
be J2EE compatible. They are also supported for CMP.

“Java DB Type 4 Driver” on page 245

“Sun Java System JDBC Driver for DB2 Databases” on page 246

“Sun Java System JDBC Driver for Oracle 8i, 9i, and 10g Databases” on page 247
“Sun Java System JDBC Driver for Microsoft SQL Server Databases” on page 247

Sun Java System Application Server Enterprise Edition 8.2 Developer's Guide - March 2009

Configurations for Specific JDBC Drivers

“Sun Java System JDBC Driver for Sybase Databases” on page 248
“IBM DB2 8.1 Type 2 Driver” on page 248

“JConnect Type 4 Driver for Sybase ASE 12.5 Databases” on page 249
“MM MySQL Type 4 Driver (Non-XA)” on page 249

For an up to date list of currently supported JDBC drivers, see the Sun Java System Application
Server Enterprise Edition 8.2 Release Notes.

Other JDBC drivers can be used with Application Server 8.2, but J2EE compliance tests have not
been completed with these drivers. Although Sun offers no product support for these drivers,
Sun offers limited support of the use of these drivers with Application Server 8.2.

“MM MySQL Type 4 Driver (XA Only)” on page 250

“Inet Oraxo JDBC Driver for Oracle 8i, 9i, and 10g Databases” on page 251
“Inet Merlia JDBC Driver for Microsoft SQL Server Databases” on page 251
“Inet Sybelux JDBC Driver for Sybase Databases” on page 252

“Oracle Thin Type 4 Driver for Oracle 8i, 9i, and 10g Databases” on page 252
“OCI Oracle Type 2 Driver for Oracle 8i, 91, and 10g Databases” on page 253
“IBM Informix Type 4 Driver” on page 254

For details about how to integrate a JDBC driver and how to use the Administration Console or
the command line interface to implement the configuration, see the Sun Java System
Application Server Enterprise Edition 8.2 Administration Guide.

Note - An Oracle database user running the capture-schema command needs ANALYZE ANY
TABLE privileges if that user does not own the schema. These privileges are granted to the user
by the database administrator. For information about capture-schema, see “Using the
capture-schema Utility” on page 194.

Java DB Type 4 Driver

The Java DB database is based on the Derby database from Apache
(http://db.apache.org/derby/manuals). The Java DB JDBC driver is included with the
Application Server by default. This configuration applies to CloudScape databases as well.

The JAR file for the Java DB driver is derbyclient.jar.

Configure the connection pool using the following settings:

= Name: Use this name when you configure the JDBC resource later.
= Resource Type: Specify the appropriate value.
= Database Vendor: JavaDB

= DataSource Classname: Specify one of the following:

Chapter 11 « Using the JDBC API for Database Access 245

http://docs.sun.com/doc/819-4728
http://docs.sun.com/doc/819-4728
http://docs.sun.com/doc/819-4733
http://docs.sun.com/doc/819-4733
http://db.apache.org/derby/manuals
http://db.apache.org/derby/manuals

Configurations for Specific JDBC Drivers

org.apache.derby.jdbc.ClientDataSource
org.apache.derby.jdbc.ClientXADataSource

= Properties:
= user - Specify the database user.

This is only necessary if Java DB is configured to use authentication. Java DB does not
use authentication by default. When the user is provided, it is the name of the schema
where the tables reside.

= password - Specify the database password.
This is only necessary if Java DB is configured to use authentication.
= databaseName - Specify the name of the database.
= serverName - Specify the host name or IP address of the database server.

= portNumber - Specify the port number of the database server if it is different from the
default.

= URL: jdbc:derby://serverName: portNumber/databaseName; create=true

Include the ; create=true part only if you want the database to be created if it does not exist.

Sun Java System JDBC Driver for DB2 Databases

The JAR files for this driver are smbase. jar, smdb2.jar, and smutil. jar. Configure the
connection pool using the following settings:

= Name: Use this name when you configure the JDBC resource later.
= Resource Type: Specify the appropriate value.

= Database Vendor: DB2

= DataSource Classname: com.sun.sql.jdbcx.db2.DB2DataSource
= Properties:

= serverName - Specify the host name or IP address of the database server.
= portNumber - Specify the port number of the database server.

= databaseName - Set as appropriate.

= user - Set as appropriate.

= password - Set as appropriate.

= URL: jdbc:sun:db2://serverName: portNumber; databaseName=databaseName

246 Sun Java System Application Server Enterprise Edition 8.2 Developer's Guide - March 2009

Configurations for Specific JDBC Drivers

Sun Java System JDBC Driver for Oracle 8i, 9i, and 10g
Databases

The JAR files for this driver are smbase. jar, smoracle. jar, and smutil. jar. Configure the
connection pool using the following settings:

Name: Use this name when you configure the JDBC resource later.

Resource Type: Specify the appropriate value.

Database Vendor: Oracle

DataSource Classname: com.sun.sql.jdbcx.oracle.OracleDataSource

Properties:

serverName - Specify the host name or IP address of the database server.
portNumber - Specify the port number of the database server.

SID - Set as appropriate.

user - Set as appropriate.

password - Set as appropriate.

URL: jdbc:sun:oracle://serverNamel[: portNumber] [; SID=databaseName]

Sun Java System JDBC Driver for Microsoft SQL Server
Databases

The JAR files for this driver are smbase. jar, smsqlserver. jar,and smutil. jar. Configure the
connection pool using the following settings:

Name: Use this name when you configure the JDBC resource later.

Resource Type: Specify the appropriate value.

Database Vendor: mssql

DataSource Classname: com.sun.sql.jdbcx.sqlserver.SQLServerDataSource

Properties:

serverName - Specify the host name or IP address and the port of the database server.
portNumber - Specify the port number of the database server.

user - Set as appropriate.

password - Set as appropriate.

selectMethod - Set to cursor.

URL: jdbc:sun:sqlserver://serverNamel : portNumber]

Chapter 11 - Using the JDBC API for Database Access 247

Configurations for Specific JDBC Drivers

Sun Java System JDBC Driver for Sybase Databases

The JAR files for this driver are smbase. jar, smsybase. jar,and smutil. jar. Configure the
connection pool using the following settings:

= Name: Use this name when you configure the JDBC resource later.

= Resource Type: Specify the appropriate value.

= Database Vendor: Sybase

= DataSource Classname: com.sun.sql.jdbcx.sybase.SybaseDataSource
= Properties:

= serverName - Specify the host name or IP address of the database server.
= portNumber - Specify the port number of the database server.

= databaseName - Set as appropriate. This is optional.

= user - Setas appropriate.

= password - Set as appropriate.

= URL: jdbc:sun:sybase://serverNamel : portNumber]

IBM DB2 8.1 Type 2 Driver

The JAR files for the DB2 driver are db2jcc. jar,db2jcc_license cu.jar,and db2java.zip.
Set environment variables as follows:

LD LIBRARY_ PATH=/usr/db2user/sqllib/lib:${j2ee.home}/1lib
DB2DIR=/opt/IBM/db2/V8.1

DB2INSTANCE=db2user

INSTHOME=/usr/db2user

VWSPATH=/usr/db2user/sqllib

THREADS FLAG=native

Configure the connection pool using the following settings:

= Name: Use this name when you configure the JDBC resource later.
= Resource Type: Specify the appropriate value.

= Database Vendor: DB2

= DataSource Classname: com.ibm.db2.jcc.DB2SimpleDataSource
= Properties:

= user - Setas appropriate.

= password - Set as appropriate.

= databaseName - Set as appropriate.
= driverType - Set to 2.

m deferPrepares - Set to false.

248 Sun Java System Application Server Enterprise Edition 8.2 Developer's Guide - March 2009

Configurations for Specific JDBC Drivers

JConnect Type 4 Driver for Sybase ASE 12.5 Databases

The JAR file for the Sybase driver is jconn2. jar. Configure the connection pool using the
following settings:

= Name: Use this name when you configure the JDBC resource later.
= Resource Type: Specify the appropriate value.
= Database Vendor: Sybase

= DataSource Classname: Specify one of the following:

com.sybase.jdbc2.jdbc.SybDataSource
com.sybase.jdbc2.jdbc.SybXADataSource

= Properties:
= serverName - Specify the host name or IP address of the database server.
= portNumber - Specify the port number of the database server.
= user - Set as appropriate.
= password - Set as appropriate.

= databaseName - Set as appropriate. Do not specify the complete URL, only the database
name.

= BE_AS_JDBC_COMPLIANT AS_POSSIBLE - Set to true.
" FAKE_METADATA - Set to true.

MM MySQL Type 4 Driver (Non-XA)

The JAR file for the MySQL driver ismysql-connector-java-version-bin-g. jar, for example,
mysql-connector-java-3.1.12-bin-g.jar. Configure the connection pool using the
following settings:

= Name: Use this name when you configure the JDBC resource later.
= Resource Type: Specify the appropriate value.
= Database Vendor: mysql

= DataSource Classname: Specify one of the following:

com.mysql.jdbc.jdbc2.optional.MysqlDataSource

= Properties:
= serverName - Specify the host name or IP address of the database server.
m port - Specify the port number of the database server.

= user - Setasappropriate.

Chapter 11 « Using the JDBC API for Database Access 249

Configurations for Specific JDBC Drivers

password - Set as appropriate.
databaseName - Set as appropriate.

URL - If you are using global transactions, you can set this property instead of
serverName, port, and databaseName.

The MM MySQL Type 4 driver doesn’t provide a method to set the required
relaxAutoCommit property, so you must set it indirectly by setting the URL property:

jdbc:mysql://host:port/database? relaxAutoCommit="true"

MM MySQL Type 4 Driver (XA Only)

The JAR file for the MySQL driver ismysql-connector-java-version-bin-g. jar, for example,
mysql-connector-java-3.1.12-bin-g.jar. Configure the connection pool using the
following settings:

Name: Use this name when you configure the JDBC resource later.

Resource Type: Specify the appropriate value.

Database Vendor: mysql

DataSource Classname: Specify one of the following:

com.mysql.jdbc.jdbc2.optional.MysqlXADataSource

Properties:

serverName - Specify the host name or IP address of the database server.
port - Specify the port number of the database server.

user - Set as appropriate.

password - Set as appropriate.

databaseName - Set as appropriate.

URL - If you are using global transactions, you can set this property instead of
serverName, port, and databaseName.

The MM MySQL Type 4 driver doesn’t provide a method to set the required
relaxAutoCommit property, so you must set it indirectly by setting the URL property:

jdbc:mysql://host: port/database? relaxAutoCommit="true"

250 Sun Java System Application Server Enterprise Edition 8.2 Developer's Guide - March 2009

Configurations for Specific JDBC Drivers

Inet Oraxo JDBC Driver for Oracle 8i, 9i,and 10g
Databases

The JAR file for the Inet Oracle driver is Oranxo. jar. Configure the connection pool using the
following settings:

= Name: Use this name when you configure the JDBC resource later.
= Resource Type: Specify the appropriate value.
= Database Vendor: Oracle
= DataSource Classname: com. inet.ora.0OraDataSource
= Properties:
= user - Specify the database user.
= password - Specify the database password.
= serviceName - Specify the URL of the database. The syntax is as follows:

jdbc:inetora:server: port:dbname

For example:

jdbc:inetora:localhost:1521:payrolldb

In this example,localhost is the host name of the machine running the Oracle server,
1521 is the Oracle server’s port number, and payrolldb is the SID of the database. For
more information about the syntax of the database URL, see the Oracle documentation.

= serverName - Specify the host name or IP address of the database server.
= port - Specify the port number of the database server.

= streamstolob - If the size of BLOB or CLOB data types exceeds 4 KB and this driver is
used for CMP, this property must be set to true.

® xa-driver-does-not-support-non-tx-operations - Set to the value true. Optional:
only needed if both non-XA and XA connections are retrieved from the same
connection pool. Might degrade performance.

As an alternative to setting this property, you can create two connection pools, one for
non-XA connections and one for XA connections.

Inet Merlia JDBC Driver for Microsoft SQL Server
Databases

The JAR file for the Inet Microsoft SQL Server driver isMerlia. jar. Configure the connection
pool using the following settings:

Chapter 11 « Using the JDBC API for Database Access 251

Configurations for Specific JDBC Drivers

252

= Name: Use this name when you configure the JDBC resource later.

= Resource Type: Specify the appropriate value.

= Database Vendor: mssql

= DataSource Classname: com. inet. tds.TdsDataSource

= Properties:
= serverName - Specify the host name or IP address and the port of the database server.
= port - Specify the port number of the database server.
= user - Set as appropriate.

= password - Set as appropriate.

Inet Sybelux JDBC Driver for Sybase Databases
The JAR file for the Inet Sybase driver is Sybelux. jar. Configure the connection pool using the
following settings:
= Name: Use this name when you configure the JDBC resource later.
= Resource Type: Specify the appropriate value.
= Database Vendor: Sybase
= DataSource Classname: com. inet.syb.SybDataSource
= Properties:
= serverName - Specify the host name or IP address of the database server.
= portNumber - Specify the port number of the database server.
= user - Set as appropriate.
= password - Set as appropriate.

= databaseName - Set as appropriate. Do not specify the complete URL, only the database
name.

Oracle Thin Type 4 Driver for Oracle 8i, 9i, and 10g
Databases

The JAR file for the Oracle driver is ojdbc14. jar. Configure the connection pool using the
following settings:

= Name: Use this name when you configure the JDBC resource later.
= Resource Type: Specify the appropriate value.

= Database Vendor: Oracle

Sun Java System Application Server Enterprise Edition 8.2 Developer's Guide - March 2009

Configurations for Specific JDBC Drivers

DataSource Classname: Specify one of the following:

oracle.jdbc.pool.OracleDataSource
oracle.jdbc.xa.client.OracleXADataSource

Properties:
= user - Setasappropriate.
= password - Set as appropriate.

= URL - Specify the complete database URL using the following syntax:

jdbc:oracle:thin: [user/password]@host[: port]/service

For example:

jdbc:oracle:thin:@localhost:1521:customer db

= xa-driver-does-not-support-non-tx-operations - Setto the value true. Optional:
only needed if both non-XA and XA connections are retrieved from the same
connection pool. Might degrade performance.

As an alternative to setting this property, you can create two connection pools, one for
non-XA connections and one for XA connections.

Note - You must set the oracle-xa- recovery-workaround property in the Transaction
Service for recovery of global transactions to work correctly. For details, see “Transaction
Scope” on page 256.

When using this driver, it is not possible to insert more than 2000 bytes of data into a
column. To circumvent this problem, use the OCI driver (JDBC type 2).

OCl Oracle Type 2 Driver for Oracle 8i, 9i, and 10g
Databases

The JAR file for the OCI Oracle driver is 0jdbc14. jar. Make sure that the shared library is
available through LD_LIBRARY_PATH and that the ORACLE_HOME property is set.
Configure the connection pool using the following settings:

Name: Use this name when you configure the JDBC resource later.
Resource Type: Specify the appropriate value.
Database Vendor: Oracle

DataSource Classname: Specify one of the following:

oracle.jdbc.pool.OracleDataSource
oracle.jdbc.xa.client.OracleXADataSource

Chapter 11 « Using the JDBC API for Database Access 253

Configurations for Specific JDBC Drivers

Properties:

user - Set as appropriate.
password - Set as appropriate.

URL - Specify the complete database URL using the following syntax:

jdbc:oracle:oci:[user/pasmvord]@host[:port]/servte

For example:

jdbc:oracle:oci:@localhost:1521:customer db

xa-driver-does-not-support-non-tx-operations - Set to the value true. Optional:
only needed if both non-XA and XA connections are retrieved from the same
connection pool. Might degrade performance.

As an alternative to setting this property, you can create two connection pools, one for
non-XA connections and one for XA connections.

IBM Informix Type 4 Driver

Configure the connection pool using the following settings:

Name: Use this name when you configure the JDBC resource later.

Resource Type: Specify the appropriate value.

Database Vendor: Informix

DataSource Classname: Specify one of the following:

com.informix.jdbcx.IfxDataSource
com.informix.jdbcx.IfxXADataSource

Properties:

serverName - Specify the Informix database server name.

portNumber - Specify the port number of the database server.

user - Set as appropriate.

password - Set as appropriate.

databaseName - Set as appropriate. This is optional.

IfxIFXHost - Specify the host name or IP address of the database server.

254 Sun Java System Application Server Enterprise Edition 8.2 Developer's Guide - March 2009

CHAPTER 12

Using the Transaction Service

The J2EE platform provides several abstractions that simplify development of dependable
transaction processing for applications. This chapter discusses J2EE transactions and
transaction support in the Sun Java System Application Server.

This chapter contains the following sections:

= “Transaction Resource Managers” on page 255

= “Transaction Scope” on page 256

= “Configuring the Transaction Service” on page 257

= “Transaction Logging” on page 258

For more information about the Java™ Transaction API (JTA) and Java Transaction Service
(JTS), see the Sun Java System Application Server Enterprise Edition 8.2 Administration Guide
and the following sites: http://java.sun.com/products/jta/ and
http://java.sun.com/products/jts/.

You might also want to read the chapter on transactions in the J2EE 1.4 Tutorial at
http://java.sun.com/j2ee/1.4/docs/tutorial/doc/index.html.

Transaction Resource Managers

There are three types of transaction resource managers:

= Databases - Use of transactions prevents databases from being left in inconsistent states due
to incomplete updates. For information about JDBC transaction isolation levels, see “Using

JDBC Transaction Isolation Levels” on page 243.
The Application Server supports a variety of JDBC™ XA drivers. For a list of the JDBC

drivers currently supported by the Application Server, see the Sun Java System Application

Server Enterprise Edition 8.2 Release Notes. For configurations of supported and other
drivers, see “Configurations for Specific JDBC Drivers” on page 244.

255

http://docs.sun.com/doc/819-4733
http://java.sun.com/products/jta/
http://java.sun.com/products/jts/
http://java.sun.com/j2ee/1.4/docs/tutorial/doc/index.html
http://docs.sun.com/doc/819-4728
http://docs.sun.com/doc/819-4728

Transaction Scope

= Java Message Service (JMS) Providers - Use of transactions ensures that messages are
reliably delivered. The Application Server is integrated with Sun Java System Message
Queue, a fully capable JMS provider. For more information about transactions and the JMS
API, see Chapter 14, “Using the Java Message Service.”

= J2EE™ Connector Architecture (CA) components - Use of transactions prevents legacy EIS
systems from being left in inconsistent states due to incomplete updates. For more
information about connectors, see Chapter 9, “Developing Connectors.”

For details about how transaction resource managers, the transaction service, and applications
interact, see the Sun Java System Application Server Enterprise Edition 8.2 Administration
Guide.

Note - In the Application Server, the transaction manager is a privileged interface. However,
applications can access UserTransaction. For more information, see “Naming Environment
for J2EE Application Components” on page 260.

Transaction Scope

256

A local transaction involves only one non-XA resource and requires that all participating
application components execute within one process. Local transaction optimization is specific
to the resource manager and is transparent to the J2EE application.

In the Application Server, a JDBC resource is non-XA if it meets any of the following criteria:

= Inthe JDBC connection pool configuration, the DataSource class does not implement the
javax.sql.XADataSource interface.

= The Global Transaction Support box is not checked, or the Resource Type setting does not
exist or is not set to javax.sql.XADataSource.

A transaction remains local if the following conditions remain true:

= Oneand only one non-XA resource is used. If any additional non-XA resource is used, the
transaction is aborted.

= No transaction importing or exporting occurs.

Transactions that involve multiple resources or multiple participant processes are distributed or
global transactions. A global transaction can involve one non-XA resource if last agent
optimization is enabled. Otherwise, all resourced must be XA. The
use-last-agent-optimization property is set to true by default. For details about how to set
this property, see “Configuring the Transaction Service” on page 257.

If only one XA resource is used in a transaction, one-phase commit occurs, otherwise the
transaction is coordinated with a two-phase commit protocol.

Sun Java System Application Server Enterprise Edition 8.2 Developer's Guide - March 2009

http://docs.sun.com/doc/819-4733
http://docs.sun.com/doc/819-4733

Configuring the Transaction Service

A two-phase commit protocol between the transaction manager and all the resources enlisted
for a transaction ensures that either all the resource managers commit the transaction or they all
abort. When the application requests the commitment of a transaction, the transaction
manager issues a PREPARE_TO_COMMIT request to all the resource managers involved. Each of
these resources can in turn send a reply indicating whether it is ready for commit (PREPARED) or
not (NO). Only when all the resource managers are ready for a commit does the transaction
manager issue a commit request (COMMIT) to all the resource managers. Otherwise, the
transaction manager issues a rollback request (ABORT) and the transaction is rolled back.

The Application Server provides workarounds for some known issues with the recovery
implementations of the following JDBC drivers. These workarounds are used unless explicitly
disabled.

= Oracle thin driver - The XAResource. recover method repeatedly returns the same set of
in-doubt Xids regardless of the input flag. According to the XA specifications, the
Transaction Manager initially calls this method with TMSTARTSCAN and then with
TMNOFLAGS repeatedly until no Xids are returned. The XAResource . commit method also
has some issues.

To disable the Application Server workaround, set the oracle-xa-recovery-workaround
property value to false. For details about how to set this property, see “Configuring the
Transaction Service” on page 257.

Note - These workarounds do not imply support for any particular JDBC driver.

Configuring the Transaction Service

You can configure the transaction service in the Application Server in the following ways:

= To configure the transaction service using the Administration Console, open the
Transaction Service component under the relevant configuration. For details, see the Sun
Java System Application Server Enterprise Edition 8.2 Administration Guide.

= To configure the transaction service, use the asadmin set command to set the following
attributes:

server.transaction-service.automatic-recovery = false
server.transaction-service.heuristic-decision = rollback
server.transaction-service.keypoint-interval = 2048
server.transaction-service.retry-timeout-in-seconds = 600
server.transaction-service.timeout-in-seconds = 0
server.transaction-service.tx-log-dir = domain-dir/logs

You can also set these properties:

server.transaction-service.property.oracle-xa-recovery-workaround = false
server.transaction-service.property.disable-distributed-transaction-logging = false

Chapter 12 - Using the Transaction Service 257

http://docs.sun.com/doc/819-4733
http://docs.sun.com/doc/819-4733

Transaction Logging

server.transaction-service.property.xaresource-txn-timeout = 600
server.transaction-service.property.pending-txn-cleanup-interval = 60
server.transaction-service.property.use-last-agent-optimization = true

You can use the asadmin get command to list all the transaction service attributes and
properties. For details, see the Sun Java System Application Server Enterprise Edition 8.2
Reference Manual.

Transaction Logging

The transaction service writes transactional activity into transaction logs so that transactions
can be recovered. You can control transaction logging in these ways:

258

Set the location of the transaction log files using the Transaction Log Location setting in the
Administration Console, or set the tx-log-dir attribute using the asadmin set command.

Turn off transaction logging by setting the disable-distributed-transaction-logging
property to true. Do this only if performance is more important than transaction recovery.

Sun Java System Application Server Enterprise Edition 8.2 Developer's Guide - March 2009

http://docs.sun.com/doc/819-4736
http://docs.sun.com/doc/819-4736

L K R 4 CHAPTER 13

Using the Java Naming and Directory Interface

A naming service maintains a set of bindings, which relate names to objects. The J2EE™ naming
service is based on the Java Naming and Directory Interface™ (JNDI) API. The JNDI API allows
application components and clients to look up distributed resources, services, and EJB™
components. For general information about the JNDI AP, see
http://java.sun.com/products/jndi/.

You can also see the JNDI tutorial at http://java.sun.com/products/jndi/tutorial/.

This chapter contains the following sections:

= “Accessing the Naming Context” on page 259
= “Configuring Resources” on page 262
= “Mapping References” on page 263

Accessing the Naming Context

The Application Server provides a naming environment, or context, which is compliant with
standard J2EE 1.4 requirements. A Context object provides the methods for binding names to
objects, unbinding names from objects, renaming objects, and listing the bindings. The
InitialContext is the handle to the J2EE naming service that application components and
clients use for lookups.

The JNDI API also provides subcontext functionality. Much like a directory in a file system, a
subcontext is a context within a context. This hierarchical structure permits better organization
of information. For naming services that support subcontexts, the Context class also provides
methods for creating and destroying subcontexts.

The rest of this section covers these topics:

= “Naming Environment for J2EE Application Components” on page 260
= “Accessing EJB Components Using the CosNaming Naming Context” on page 260
= “Accessing EJB Components in a Remote Application Server” on page 261

259

http://java.sun.com/products/jndi/
http://java.sun.com/products/jndi/tutorial/

Accessing the Naming Context

= “Naming Environment for Lifecycle Modules” on page 262

Note - Each resource within a server instance must have a unique name. However, two resources
in different server instances or different domains can have the same name.

Naming Environment for J2EE Application
Components

The namespace for objects looked up in a J2EE environment is organized into different
subcontexts, with the standard prefix java: comp/env.

The following table describes standard JNDI subcontexts for connection factories in the
Application Server.

TABLE 13-1 Standard JNDI Subcontexts for Connection Factories

Resource Manager Connection Factory Type JNDI Subcontext

JDBC™ javax.sql.DataSource java:comp/env/jdbc

Transaction Service javax.transaction.UserTransaction java:comp/UserTransaction

JMS javax.jms.TopicConnectionFactory java:comp/env/jms

javax.jms.QueueConnectionFactory

JavaMail™ javax.mail.Session java:comp/env/mail

URL java.net.URL java:comp/env/url

Connector javax.resource.cci.ConnectionFactory java:comp/env/eis
Accessing EJB Components Using the CosNaming
Naming Context
The preferred way of accessing the naming service, even in code that runs outside of a J2EE
container, is to use the no-argument InitialContext constructor. However, if EJB client code
explicitly instantiates an InitialContext that points to the CosNaming naming service, it is
necessary to set these properties in the client JVM when accessing EJB components:
-Djavax.rmi.CORBA.UtilClass=com.sun.corba.ee.impl.javax.rmi.CORBA.Util
-Dorg.omg.CORBA.ORBClass=com.sun.corba.ee.impl.orb.ORBImpl
-Dorg.omg.CORBA.ORBSingletonClass=com.sun.corba.ee.impl.orb.ORBSingleton
-Djava.naming. factory.initial=com.sun.jndi.cosnaming.CNCtxFactory

260 Sun Java System Application Server Enterprise Edition 8.2 Developer's Guide - March 2009

Accessing the Naming Context

Accessing EJB Components in a Remote Application
Server

The recommended approach for looking up an EJB component in a remote Application Server
from a client that is a servlet or EJB component is to use the Interoperable Naming Service
syntax. Host and port information is prepended to any global JNDI names and is automatically
resolved during the lookup. The syntax for an interoperable global name is as follows:

corbaname:iiop:host: port#a/b/name

This makes the programming model for accessing EJB components in another Application
Server exactly the same as accessing them in the same server. The deployer can change the way
the EJB components are physically distributed without having to change the code.

For J2EE components, the code still performs a java: comp/env lookup on an EJB reference.
The only difference is that the deployer maps the ejb-reference element to an interoperable
name in an Application Server deployment descriptor file instead of a simple global JNDI name.

For example, suppose a servlet looks up an EJB reference using java: comp/env/ejb/Foo, and
the target EJB component has a global JNDI name of a/b/Foo.

The ejb-ref element in sun-web. xml looks like this:

<ejb-ref>
<ejb-ref-name>ejb/Foo</ejb-ref-name>
<jndi-name>corbaname:iiop:host:port#a/b/Foo</jndi-name>
<ejb-ref>

The code looks like this:

Context ic = new InitialContext();
Object o = ic.lookup("java:comp/env/ejb/Foo");

For a client that doesn’t run within a J2EE container, the code just uses the interoperable global
name instead of the simple global JNDI name. For example:

Context ic = new InitialContext();
Object o = ic.lookup(“corbaname:iiop:host:port#a/b/Foo");

Objects stored in the interoperable naming context and component-specific (java: comp/env)
naming contexts are transient. On each server startup or application reloading, all relevant
objects are re-bound to the namespace.

Chapter 13 « Using the Java Naming and Directory Interface 261

Configuring Resources

Naming Environment for Lifecycle Modules

Lifecycle listener modules provide a means of running short or long duration Java-based tasks
within the application server environment, such as instantiation of singletons or RMI servers.
These modules are automatically initiated at server startup and are notified at various phases of
the server life cycle. For details about lifecycle modules, see Chapter 10, “Developing Lifecycle
Listeners”

The configured properties for a lifecycle module are passed as properties during server
initialization (the INIT_EVENT). The initial INDI naming context is not available until server
initialization is complete. A lifecycle module can get the InitialContext for lookups using the
method LifecycleEventContext.getInitialContext () during, and only during, the
STARTUP_EVENT, READY_EVENT, or SHUTDOWN_EVENT server life cycle events.

Configuring Resources

262

The Application Server exposes the following special resources in the naming environment. Full
administration details are provided in the following sections:

= “External JNDI Resources” on page 262
= “Custom Resources” on page 262

External JNDI Resources

An external JNDI resource defines custom JNDI contexts and implements the
javax.naming.spi.InitialContextFactory interface. There is no specific JNDI parent
context for external JNDI resources, except for the standard java: comp/env/.

Create an external JNDI resource in one of these ways:

= To create an external JNDI resource using the Administration Console, open the Resources
component, open the JNDI component, and select External Resources. For details, see the
Sun Java System Application Server Enterprise Edition 8.2 Administration Guide.

m To create an external JNDI resource, use the asadmin create-jndi-resource command.
For details, see the Sun Java System Application Server Enterprise Edition 8.2 Reference
Manual.

Custom Resources

A custom resource specifies a custom server-wide resource object factory that implements the
javax.naming.spi.ObjectFactory interface. There is no specific JNDI parent context for
external INDI resources, except for the standard java: comp/env/.

Sun Java System Application Server Enterprise Edition 8.2 Developer's Guide - March 2009

http://docs.sun.com/doc/819-4733
http://docs.sun.com/doc/819-4736
http://docs.sun.com/doc/819-4736

Mapping References

Create a custom resource in one of these ways:

= To create a custom resource using the Administration Console, open the Resources
component, open the JNDI component, and select Custom Resources. For details, see the
Sun Java System Application Server Enterprise Edition 8.2 Administration Guide.

m To create a custom resource, use the asadmin create-custom-resource command. For
details, see the Sun Java System Application Server Enterprise Edition 8.2 Reference Manual.

Mapping References

The following XML elements map JNDI names configured in the Application Server to resource
references in application client, EJB, and web application components:

= resource-env-ref - Maps the resource-env-ref element in the corresponding J2EE XML
file to the absolute JNDI name configured in the Application Server.

= resource-ref - Maps the resource-ref element in the corresponding J2EE XML file to the
absolute JNDI name configured in the Application Server.

= ejb-ref - Mapsthe ejb-ref element in the corresponding J2EE XML file to the absolute
JNDI name configured in the Application Server.

JNDI names for EJB components must be unique. For example, appending the application
name and the module name to the EJB name is one way to guarantee unique names. In this case,
mycompany . pkging.pkgingEJB.MyEJB would be the INDI name for an EJB in the module
pkgingEJB. jar, which is packaged in the pkging.ear application.

These elements are part of the sun-web-app.xml, sun-ejb-ref.xml, and
sun-application-client.xml deployment descriptor files. For more information about how
these elements behave in each of the deployment descriptor files, see Appendix A, “Deployment
Descriptor Files.”

The rest of this section uses an example of a JDBC resource lookup to describe how to reference
resource factories. The same principle is applicable to all resources (such as JMS destinations,
JavaMail sessions, and so on).

The resource-ref element in the sun-web-app.xml deployment descriptor file maps the JNDI
name of a resource reference to the resource-ref element in the web-app.xml J2EE
deployment descriptor file.

The resource lookup in the application code looks like this:

InitialContext ic = new InitialContext();

String dsName = "java:comp/env/jdbc/HelloDbDs"
DataSource ds = (javax.sql.DataSource)ic.lookup(dsName);
Connection connection = ds.getConnection();

The resource being queried is listed in the res- ref-name element of the web . xm file as follows:

Chapter 13 « Using the Java Naming and Directory Interface 263

http://docs.sun.com/doc/819-4733
http://docs.sun.com/doc/819-4736

Mapping References

264

<resource-ref>
<description>DataSource Reference</description>
<res-ref-name>jdbc/HelloDbDs</res-ref-name>
<res-type>javax.sql.DataSource</res-type>
<res-auth>Container</res-auth>

</resource-ref>

The resource-ref section in a Application Server specific deployment descriptor, for example
sun-web.xml, maps the res - ref-name (the name being queried in the application code) to the
JNDI name of the JDBC resource. The JNDI name is the same as the name of the JDBC resource
as defined in the resource file when the resource is created.

<resource-ref>
<res-ref-name>jdbc/HelloDbDs</res-ref-name>
<jndi-name>jdbc/HelloDbDataSource</jndi-name>
</resource-ref>

The JNDI name in the Application Server specific deployment descriptor must match the JNDI
name you assigned to the resource when you created and configured it.

Sun Java System Application Server Enterprise Edition 8.2 Developer's Guide - March 2009

L K R 4 CHAPTER 14

Using the Java Message Service

This chapter describes how to use the Java™ Message Service (JMS) APL. The Sun Java System
Application Server has a fully integrated JMS provider: the Sun Java System Message Queue
software.

For general information about the JMS API, see the J2EE 1.4 Tutorial at
http://java.sun.com/j2ee/1.4/docs/tutorial/doc/IMS.html#wp84181.

For detailed information about JMS concepts and JMS support in the Application Server, see
the Sun Java System Application Server Enterprise Edition 8.2 Administration Guide.

This chapter contains the following sections:

“The JMS Provider” on page 265

“Message Queue Resource Adapter” on page 266
“Administration of the JMS Service” on page 267

“Restarting the JMS Client After JMS Configuration” on page 270
“IMS Connection Features” on page 270

“Load-Balanced Message Inflow” on page 271

“Transactions and Non-Persistent Messages” on page 272
“ConnectionFactory Authentication” on page 272

“Message Queue varhome Directory” on page 272

“Delivering SOAP Messages Using the JMS API” on page 273

The JMS Provider

The Application Server support for JMS messaging, in general, and for message-driven beans,
in particular, requires messaging middleware that implements the JMS specification: a JMS
provider. The Application Server uses the Sun Java System Message Queue software as its native
JMS provider. The Message Queue software is tightly integrated into theApplication Server,
providing transparent JMS messaging support. This support is known within Application
Server as the JMS Service. The JMS Service requires only minimal administration.

265

http://java.sun.com/j2ee/1.4/docs/tutorial/doc/JMS.html#wp84181
http://docs.sun.com/doc/819-4733

Message Queue Resource Adapter

The relationship of the Message Queue software to the Application Server can be one of these
types: LOCAL or REMOTE. The results of these choices and their interactions with clustering are as
follows:

= Jfthe type is LOCAL, the Message Queue broker starts when the Application Server starts.
This is the default for a stand-alone Application Server instance.

To create a 1:1 relationship between Application Server instances and Message Queue
brokers, set the type to LOCAL and give each Application Server instance a different default
JMS host. You can do this regardless of whether clusters are defined in the Application
Server or the Message Queue software.

= Ifthe type is REMOTE, the Message Queue broker must be started separately. This is the
default if clusters are defined in the Application Server. For information about starting the
broker, see the Sun Java System Message Queue 3.7 UR1 Administration Guide.

For more information about setting the type and the default JMS host, see “Configuring the JMS
Service” on page 267.

For more information about the Message Queue software, refer to the documentation at
http://docs.sun.com/app/docs/coll/1307.2.

For general information about the JMS API, see the JMS web page at
http://java.sun.com/products/jms/index.html.

Message Queue Resource Adapter

The Sun Java System Message Queue software is integrated into the Application Server using a
resource adapter that is compliant with the Connector 1.5 specification. The module name of
this system resource adapter is jmsra. Every JMS resource is converted to a corresponding
connector resource of this resource adapter as follows:

= Connection Factory: A connector connection pool with amax-pool-size of 250 and a
corresponding connector resource.

= Destination (Topic or Queue): A connector administered object.

You use connector configuration tools to manage JMS resources. For more information, see
Chapter 9, “Developing Connectors.”

266 Sun Java System Application Server Enterprise Edition 8.2 Developer's Guide - March 2009

http://docs.sun.com/doc/819-4467
http://docs.sun.com/app/docs/coll/1307.2
http://java.sun.com/products/jms/index.html

Administration of the JMS Service

Administration of the JMS Service

To configure the JMS Service and prepare JMS resources for use in applications deployed to the
Application Server, you must perform these tasks:

“Configuring the JMS Service” on page 267

“The Default JMS Host” on page 268

“Creating JMS Hosts” on page 268

“Checking Whether the JMS Provider Is Running” on page 268

“Creating Physical Destinations” on page 269

“Creating JMS Resources: Destinations and Connection Factories” on page 269

For more information about JMS administration tasks, see the Sun Java System Application
Server Enterprise Edition 8.2 Administration Guide and the Sun Java System Message Queue 3.7
URI Administration Guide.

Configuring the JMS Service

The JMS Service configuration is available to all inbound and outbound connections pertaining
to the Application Server cluster or instance. You can edit the JMS Service configuration in the
following ways:

= To edit the JMS Service configuration using the Administration Console, open the Java
Message Service component under the relevant configuration. For details, see the Sun Java
System Application Server Enterprise Edition 8.2 Administration Guide.

= To configure the JMS service, use the asadmin set command to set the following attributes:

server.jms-service.init-timeout-in-seconds = 60
server.jms-service.type = LOCAL
server.jms-service.start-args =
server.jms-service.default-jms-host = default JMS host
server.jms-service.reconnect-interval-in-seconds = 60
server.jms-service.reconnect-attempts = 3
server.jms-service.reconnect-enabled = true
server.jms-service.addresslist-behavior = random
server.jms-service.addresslist-iterations = 3
server.jms-service.mq-scheme = mq
server.jms-service.mq-service = jms

You can also set these properties:
server.jms-service.property.instance-name = imgbroker

server.jms-service.property.instance-name-suffix =
server.jms-service.property.append-version = false

Chapter 14 - Using the Java Message Service 267

http://docs.sun.com/doc/819-4733
http://docs.sun.com/doc/819-4733
http://docs.sun.com/doc/819-4467
http://docs.sun.com/doc/819-4467
http://docs.sun.com/doc/819-4733
http://docs.sun.com/doc/819-4733

Administration of the JMS Service

268

You can use the asadmin get command to list all the JMS service attributes and properties.
For details, see the Sun Java System Application Server Enterprise Edition 8.2 Reference
Manual.

You can override the JMS Service configuration using JMS connection factory settings. For
details, see the Sun Java System Application Server Enterprise Edition 8.2 Administration Guide.

Note - The Application Server instance must be restarted after configuration of the JMS Service.

The Default JMS Host

A JMS host refers to a Sun Java System Message Queue broker. A default JMS host for the JMS
service is provided, named default_JMS_host. This is the JMS host that the Application Server
instance starts when the JMS Service type is configured as LOCAL.

If you have created a multi-broker cluster in the Message Queue software, delete the default JMS
host, then add the Message Queue cluster’s brokers as JMS hosts. In this case, the default JMS
host becomes the first JMS host in the AddressList. (For more information about the
AddressList, see “JMS Connection Features” on page 270. You can also explicitly set the default
JMS host; see “Configuring the JMS Service” on page 267.

When the Application Server uses a Message Queue cluster, it executes Message Queue specific
commands on the default JMS host. For example, when a physical destination is created for a
Message Queue cluster of three brokers, the command to create the physical destination is
executed on the default JMS host, but the physical destination is used by all three brokers in the
cluster.

Creating JMS Hosts

You can create additional JMS hosts in the following ways:

= Use the Administration Console. Open the Java Message Service component under the
relevant configuration, then select the JMS Hosts component. For details, see the Sun Java
System Application Server Enterprise Edition 8.2 Administration Guide.

= Use the asadmin create-jms-host command. For details, see the Sun Java System
Application Server Enterprise Edition 8.2 Reference Manual.

Checking Whether the JMS Provider Is Running

You can use the asadmin jms-ping command to check whether a Sun Java System Message
Queue instance is running. For details, see the Sun Java System Application Server Enterprise
Edition 8.2 Reference Manual.

Sun Java System Application Server Enterprise Edition 8.2 Developer's Guide - March 2009

http://docs.sun.com/doc/819-4736
http://docs.sun.com/doc/819-4736
http://docs.sun.com/doc/819-4733
http://docs.sun.com/doc/819-4733
http://docs.sun.com/doc/819-4733
http://docs.sun.com/doc/819-4736
http://docs.sun.com/doc/819-4736
http://docs.sun.com/doc/819-4736
http://docs.sun.com/doc/819-4736

Administration of the JMS Service

Creating Physical Destinations

Produced messages are delivered for routing and subsequent delivery to consumers using
physical destinations in the JMS provider. A physical destination is identified and encapsulated
by an administered object (a Topic or Queue destination resource) that an application
component uses to specify the destination of messages it is producing and the source of
messages it is consuming.

If a message-driven bean is deployed and the physical destination it listens to doesn’t exist, the
Application Server automatically creates the physical destination and sets the value of the
property maxNumActiveConsumers to -1 (see “Load-Balanced Message Inflow” on page 271).
However, it is good practice to create the physical destination beforehand.

You can create a JMS physical destination in the following ways:

= Use the Administration Console. Open the Resources component, open the JMS Resources
component, then select Physical Destinations. For details, see the Sun Java System
Application Server Enterprise Edition 8.2 Administration Guide.

m Use the asadmin create-jmsdest command. This command acts on the default JMS host
of its target. For details, see the Sun Java System Application Server Enterprise Edition 8.2
Reference Manual.

To create a destination resource, see “Creating JMS Resources: Destinations and Connection
Factories” on page 269.

Creating JMS Resources: Destinations and Connection
Factories

You can create two kinds of JMS resources in the Application Server:

= Connection Factories: administered objects that implement the ConnectionFactory,
QueueConnectionFactory, or TopicConnectionFactory interfaces.

= Destination Resources: administered objects that implement the Queue or Topic interfaces.

In either case, the steps for creating a JMS resource are the same. You can create a JMS resource
in the following ways:

= To create a JMS resource using the Administration Console, open the Resources
component, then open the JMS Resources component. Click Connection Factories to create
a connection factory, or click Destination Resources to create a queue or topic. For details,
see the Sun Java System Application Server Enterprise Edition 8.2 Administration Guide.

= AJMS resource is a type of connector. To create a JMS resource using the command line, see
“Deploying and Configuring a Stand-Alone Connector Module” on page 223.

Chapter 14 - Using the Java Message Service 269

http://docs.sun.com/doc/819-4733
http://docs.sun.com/doc/819-4733
http://docs.sun.com/doc/819-4736
http://docs.sun.com/doc/819-4736
http://docs.sun.com/doc/819-4733

Restarting the JMS Client After JMS Configuration

Note - When a Queue is automatically created for a message-driven bean deployed to an
Application Server cluster, the value of the property maxNumActiveConsumers is set to -1 so that
multiple consumers can access the Queue at the same time. For more information, see
“Load-Balanced Message Inflow” on page 271.

All TMS resource properties that used to work with version 7 of the Application Server are
supported for backward compatibility.

Restarting the JMS Client After JMS Configuration

When a JMS client accesses a JMS administered object for the first time, the client JVM retrieves
the JMS service configuration from the Application Server. Further changes to the
configuration are not available to the client JVM until the client is restarted.

JMS Connection Features

270

The Sun Java System Message Queue software supports the following JMS connection features:

= “Connection Pooling” on page 270
= “Connection Failover” on page 271

Both these features use the AddressList configuration, which is populated with the hosts and
ports of the JMS hosts defined in the Application Server. The AddressList is updated whenever
a JMS host configuration changes. The AddressList is inherited by any JMS resource when it is
created and by any MDB when it is deployed.

Note - In the Sun Java System Message Queue software, the AddressList property is called
imgAddressList.

Connection Pooling

The Application Server pools JMS connections automatically.

To dynamically modify connection pool properties using the Administration Console, go to
either the Connection Factories page (see “Creating JMS Resources: Destinations and
Connection Factories” on page 269) or the Connector Connection Pools page (see “Deploying
and Configuring a Stand-Alone Connector Module” on page 223).

To use the command line, use the asadmin create-connector-connection-pool command to
manage the pool (see “Deploying and Configuring a Stand-Alone Connector Module” on
page 223.

Sun Java System Application Server Enterprise Edition 8.2 Developer's Guide - March 2009

Load-Balanced Message Inflow

The addresslist-behavior JMS service attribute is set to random by default. This means that
each ManagedConnection (physical connection) created from the ManagedConnectionFactory
selects its primary broker in a random way from the AddressList.

When a JMS connection pool is created, there is one ManagedConnectionFactory instance
associated with it. If you configure the AddressList as a ManagedConnectionFactory property,
the AddressList configuration in the ManagedConnectionFactory takes precedence over the
one defined in the Application Server.

Connection Failover

To specify whether the Application Server tries to reconnect to the primary broker if the
connection is lost, set the reconnect-enabled attribute in the JMS service. To specify the
number of retries and the time between retries, set the reconnect-attempts and
reconnect-interval-in-seconds attributes, respectively.

If reconnection is enabled and the primary broker goes down, the Application Server tries to
reconnect to another broker in the AddressList. The AddressList is updated whenever a JMS
host configuration changes. The logic for scanning is decided by two JMS service attributes,
addresslist-behaviorand addresslist-iterations.

You can override these settings using JMS connection factory settings. For details, see the Sun
Java System Application Server Enterprise Edition 8.2 Administration Guide.

The Sun Java System Message Queue software transparently transfers the load to another
broker when the failover occurs. JMS semantics are maintained during failover.

Load-Balanced Message Inflow

You can configure ActivationSpec properties of the jmsra resource adapter in the
sun-ejb-jar.xml file for a message-driven bean using “activation-config-property” on
page 321 elements. Whenever a message-driven bean (EndPointFactory) is deployed, the
connector runtime engine finds these properties and configures them accordingly in the
resource adapter.

The Application Server transparently enables messages to be delivered in random fashion to
message-driven beans having same ClientID. The ClientID is required for durable
subscribers.

For nondurable subscribers in which the ClientID is not configured, all instances of a specific
message-driven bean that subscribe to same topic are considered equal. When a
message-driven bean is deployed to multiple instances of the Application Server, only one of the
message-driven beans receives the message. If multiple distinct message-driven beans subscribe
to same topic, one instance of each message-driven bean receives a copy of the message.

Chapter 14 - Using the Java Message Service 271

http://docs.sun.com/doc/819-4733
http://docs.sun.com/doc/819-4733

Transactions and Non-Persistent Messages

To support multiple consumers using the same queue, set the maxNumActiveConsumers
property of the physical destination to a large value. If this property is set, the Sun Java System
Message Queue software allows multiple message-driven beans to consume messages from
same queue. The message is delivered randomly to the message-driven beans. If
maxNumActiveConsumers is set to -1, there is no limit to the number of consumers.

The following sample application demonstrates load-balanced message inflow:

install-dir/samples/ee-samples/failover/apps/mqfailover

Transactions and Non-Persistent Messages

During transaction recovery, non-persistent messages might be lost. If the broker fails between
the transaction manager’s prepare and commit operations, any non-persistent message in the
transaction is lost and cannot be delivered. A message that is not saved to a persistent store is
not available for transaction recovery.

ConnectionFactory Authentication

If your web, EJB, or client module has res-auth set to Container, but you use the
ConnectionFactory.createConnection("user","password") method to get a connection, the
Application Server searches the container for authentication information before using the
supplied user and password. Version 7 of the Application Server threw an exception in this

situation.

Message Queue varhome Directory

272

The Sun Java System Message Queue software uses a default directory for storing data such as
persistent messages and its log file. This directory is called varhome. The Application Server uses
domain-dir/imq as the varhome directory if the type of relationship between the Application
Server and the Message Queue software is LOCAL or EMBEDDED. If the relationship type is REMOTE,
the Message Queue software determines the varhome location. For more information about the
types of relationships between the Application Server and Message Queue, see “The JMS
Provider” on page 265.

When executing Message Queue scripts such as as-install/imq/bin/imqusermgr, use the
-varhome option to point the scripts to the Message Queue data if the relationship type is LOCAL
or EMBEDDED. For example:

imqusermgr -varhome $AS INSTALL/domains/domainl/imq add -u testuser

For more information about the Message Queue software, refer to the documentation at
http://docs.sun.com/app/docs/coll/1343.3.

Sun Java System Application Server Enterprise Edition 8.2 Developer's Guide - March 2009

http://docs.sun.com/app/docs/coll/1343.3

Delivering SOAP Messages Using the JMS API

Delivering SOAP Messages Using the JMS API

Web service clients use the Simple Object Access Protocol (SOAP) to communicate with web
services. SOAP uses a combination of XML-based data structuring and Hyper Text Transfer
Protocol (HTTP) to define a standardized way of invoking methods in objects distributed in
diverse operating environments across the Internet.

For more information about SOAP, see the Apache SOAP web site at
http://xml.apache.org/soap/index.html.

You can take advantage of the JMS provider’s reliable messaging when delivering SOAP
messages. You can converta SOAP message into a JMS message, send the JMS message, then
convert the JMS message back into a SOAP message. The following sections explain how to do
these conversions:

= “Tosend SOAP messages using the JMS API” on page 273
= “Toreceive SOAP messages using the JMS API” on page 274

v Tosend SOAP messages using the JMS API

1 ImporttheMessageTransformer library.

import com.sun.messaging.xml.MessageTransformer;

This is the utility whose methods you use to convert SOAP messages to JMS messages and the
reverse. You can then send a JMS message containing a SOAP payload as if it were a normal
JMS message.

2 Initialize the TopicConnectionFactory, TopicConnection, TopicSession, and publisher.

tcf = new TopicConnectionFactory();

tc = tcf.createTopicConnection();

session = tc.createTopicSession(false,Session.AUTO ACKNOWLEDGE) ;
topic = session.createTopic(topicName);

publisher = session.createPublisher(topic);

3 Construct a SOAP message using the SOAP with Attachments APl for Java (SAA)J).

*construct a default soap MessageFactory */
MessageFactory mf = MessageFactory.newInstance();
/* Create a SOAP message object.*/

SOAPMessage soapMessage = mf.createMessage();

/** Get SOAP part.*/

SOAPPart soapPart = soapMessage.getSOAPPart();

/* Get SOAP envelope. */

SOAPEnvelope soapEnvelope = soapPart.getEnvelope();
/* Get SOAP body.*/

SOAPBody soapBody = soapEnvelope.getBody();

Chapter 14 - Using the Java Message Service 273

http://xml.apache.org/soap/index.html

Delivering SOAP Messages Using the JMS API

274

/* Create a name object. with name space */

/* http://www.sun.com/imq. */

Name name = soapEnvelope.createName("HelloWorld", "hw"
"http://www.sun.com/imq");

* Add child element with the above name. */

SOAPElement element = soapBody.addChildElement(name)

/* Add another child element.*/

element.addTextNode("Welcome to Sun Java System Web Services.");
/* Create an atachment with activation API.*/

URL url = new URL ("http://java.sun.com/webservices/")
DataHandler dh = new DataHandler (url);

AttachmentPart ap = soapMessage.createAttachmentPart(dh);
/*set content type/ID. */

ap.setContentType("text/html")

ap.setContentId("cid-001")

/** add the attachment to the SOAP message.*/
soapMessage.addAttachmentPart(ap);
soapMessage.saveChanges();

Convert the SOAP message to a JMS message by calling the
MessageTransformer.SOAPMessageintoJMSMessage () method.

Message m = MessageTransformer.SOAPMessageIntoJMSMessage (soapMessage,
session);

Publish the JMS message.
publisher.publish(m);

Close the JMS connection.

tc.close();

To receive SOAP messages using the JMS API

Import the MessageTransformer library.
import com.sun.messaging.xml.MessageTransformer;
This is the utility whose methods you use to convert SOAP messages to JMS messages and the

reverse. The JMS message containing the SOAP payload is received as if it were a normal JMS
message.

Initialize the TopicConnectionFactory, TopicConnection, TopicSession, TopicSubscriber,
and Topic.

messageFactory = MessageFactory.newInstance();
tcf = new com.sun.messaging.TopicConnectionFactory();
tc = tcf.createTopicConnection();

Sun Java System Application Server Enterprise Edition 8.2 Developer's Guide - March 2009

Delivering SOAP Messages Using the JMS API

session = tc.createTopicSession(false, Session.AUTO ACKNOWLEDGE) ;
topic = session.createTopic(topicName);

subscriber = session.createSubscriber(topic);
subscriber.setMessagelListener(this);

tc.start();

Use the OnMessage method to receive the message. Use the SOAPMessageF romJMSMessage
method to convert the JMS message to a SOAP message.

public void onMessage (Message message) {

SOAPMessage soapMessage =

MessageTransformer.SOAPMessageFromJMSMessage(message,

messageFactory); }

Retrieve the content of the SOAP message.

Chapter 14 - Using the Java Message Service 275

276

L K R 4 CHAPTER 15

Using the JavaMail API

lTM

This chapter describes how to use the JavaMail™ API, which provides a set of abstract classes

defining objects that comprise a mail system.

This chapter contains the following sections:

= “Introducing JavaMail” on page 277

= “Creating a JavaMail Session” on page 278

= “JavaMail Session Properties” on page 278

= “Looking Up a JavaMail Session” on page 278

= “Sending and Reading Messages Using JavaMail” on page 279

Introducing JavaMail

The JavaMail API defines classes such as Message, Store, and Transport. The API can be
extended and can be subclassed to provide new protocols and to add functionality when
necessary. In addition, the API provides concrete subclasses of the abstract classes. These
subclasses, including MimeMessage and MimeBodyPart, implement widely used Internet mail
protocols and conform to the RFC822 and RFC2045 specifications. The JavaMail API includes
support for the IMAP4, POP3, and SMTP protocols.

The JavaMail architectural components are as follows:

m The abstract layer declares classes, interfaces, and abstract methods intended to support
mail handling functions that all mail systems support.

» The internet implementation layer implements part of the abstract layer using the RFC822
and MIME internet standards.

= JavaMail uses the JavaBeans Activation Framework (JAF) to encapsulate message data and to
handle commands intended to interact with that data.

277

Creating a JavaMail Session

For more information, see the Sun Java System Application Server Enterprise Edition 8.2
Administration Guide and the JavaMail specification at
http://java.sun.com/products/javamail/.

Creating a JavaMail Session

You can create a JavaMail session in the following ways:

= Inthe Administration Console, open the Resources component and select JavaMail
Sessions. For details, see the Sun Java System Application Server Enterprise Edition 8.2
Administration Guide.

m Usethe asadmin create-javamail-resource command. For details, see the Sun Java
System Application Server Enterprise Edition 8.2 Reference Manual.

JavaMail Session Properties

You can set properties for a JavaMail Session object. Every property name must start with a
mail- prefix. The Application Server changes the dash (-) character to a period (.) in the name
of the property and saves the property to the MailConfiguration and JavaMail Session
objects. If the name of the property doesn’t start with mail-, the property is ignored.

For example, if you want to define the property mail. fromin a JavaMail Session object, first
define the property as follows:

m Name-mail-from
= Value - john.doe@sun.com

After you get the JavaMail Session object, you can get the mail. from property to retrieve the
value as follows:

String password = session.getProperty("mail.from");

Looking Up a JavaMail Session

278

The standard Java Naming and Directory Interface™ (JNDI) subcontext for JavaMail sessions is
java:comp/env/mail.

Registering JavaMail sessions in the mail naming subcontext of a JNDI namespace, or in one of
its child subcontexts, is standard. The JNDI namespace is hierarchical, like a file system’s
directory structure, so it is easy to find and nest references. A JavaMail session is bound to a
logical INDI name. The name identifies a subcontext, mail, of the root context, and a logical
name. To change the JavaMail session, you can change its entry in the JNDI namespace without
having to modify the application.

Sun Java System Application Server Enterprise Edition 8.2 Developer's Guide - March 2009

http://docs.sun.com/doc/819-4733
http://docs.sun.com/doc/819-4733
http://java.sun.com/products/javamail/
http://docs.sun.com/doc/819-4733
http://docs.sun.com/doc/819-4733
http://docs.sun.com/doc/819-4736
http://docs.sun.com/doc/819-4736

Sending and Reading Messages Using JavaMail

The resource lookup in the application code looks like this:

InitialContext ic = new InitialContext();
String snName = "java:comp/env/mail/MyMailSession";
Session session = (Session)ic.lookup(snName);

For more information about the JNDI API, see Chapter 13, “Using the Java Naming and
Directory Interface”

Sending and Reading Messages Using JavaMail

v To send a message using JavaMail

1 Importthe packages that you need.
import java.util.*;
import javax.activation.*;
import javax.mail.*;
import javax.mail.internet.*;
import javax.naming.*;

2 Lookup theJavaMail session.

InitialContext ic = new InitialContext();
String snName = "java:comp/env/mail/MyMailSession";
Session session = (Session)ic.lookup(snName);

For more information, see “Looking Up a JavaMail Session” on page 278.

3 Override the JavaMail session properties if necessary.
For example:

Properties props = session.getProperties();
props.put("mail.from", "user2@mailserver.com");

4 Create aMimeMessage.

The msgRecipient, msgSubject, and msgTxt variables in the following example contain input
from the user:

Message msg = new MimeMessage(session);

msg.setSubject(msgSubject);

msg.setSentDate(new Date());

msg.setFrom();

msg.setRecipients(Message.RecipientType.TO,
InternetAddress.parse(msgRecipient, false));

msg.setText(msgTxt);

Chapter 15 « Using the JavaMail API 279

Sending and Reading Messages Using JavaMail

5 Sendthe message.

Transport.send(msg);

v Toread a message using JavaMail

1 Import the packages that you need.

import java.util.*;

import javax.activation.*;
import javax.mail.*;

import javax.mail.internet.*;
import javax.naming.*;

2 Lookup the JavaMail session.

InitialContext ic = new InitialContext();
String snName = "java:comp/env/mail/MyMailSession";
Session session = (javax.mail.Session)ic.lookup(snName);

For more information, see “Looking Up a JavaMail Session” on page 278.

3 Override the JavaMail session properties if necessary.
For example:

Properties props = session.getProperties();
props.put("mail.from", "user2@mailserver.com");

4 GetaStoreobjectfrom the Session, then connect to the mail server using the Store object’s
connect () method.

You must supply a mail server name, a mail user name, and a password.

Store store = session.getStore();
store.connect("MailServer", "MailUser", "secret");

5 Getthe INBOX folder.
Folder folder = store.getFolder("INBOX");

6 ltis efficient to read the Message objects (which represent messages on the server) into an array.

Message[] messages = folder.getMessages();

280 Sun Java System Application Server Enterprise Edition 8.2 Developer's Guide - March 2009

CHAPTER 16

Using the Java Management Extensions (JMX)
API

The Sun Java™ System Application Server uses Java Management Extensions (JMX"™)
technology for monitoring, management and notification purposes. Management and
monitoring of the Application Server is performed by the Application Server Management
Extensions (AMX), which exposes managed resources for remote management via the JMX
Application Programming Interface (API).

The Application Server incorporates the JMX 1.2 Reference Implementation, that was
developed by the Java Community Process as Java Specification Request (JSR) 3, and the JMX
Remote API 1.0 Reference Implementation (JSR 160).

This chapter assumes some familiarity with the JMX technology, but the AMX interfaces can be
used for the most part without understanding JMX.

The JMX specifications and Reference Implementations are available for download at
http://java.sun.com/products/JavaManagement/download.html.

This chapter contains the following topics:

“About AMX” on page 282

“AMX MBeans” on page 283

“Proxies” on page 285

“Connecting to the Domain Administration Server” on page 286
“Examining AMX Code Samples” on page 286

“Running the AMX Samples” on page 304

281

http://java.sun.com/products/JavaManagement/download.html

About AMX

About AMX

282

This section describes the Application Server Management eXtensions (AMX). AMX is an API
that exposes all of the Application Server configuration and monitoring MBeans as easy-to-use
client-side dynamic proxies implementing the AMX interfaces.

Full API documentation for the AMX API is provided in the following Application Server
package:

com.sun.appserv.management

The Application Server is based around the concept of administration domains, which consist
of one or more managed resources. A managed resource can be an Application Server instance, a
cluster of such instances, or a manageable entity within a server instance. A managed resource is
of a particular type, and each resource type exposes a set of attributes and administrative
operations that change the resource’s state.

Managed resources are exposed as JMX management beans, or MBeans. While the MBeans can
be accessed via standard J]MX APIs (for example, MBeanServerConnection), most users find the
use of the AMX client-side dynamic proxies much more convenient.

All the vital components of the Application Server are visible for monitoring and management
via AMX. You can use third-party tools to perform all common administrative tasks
programmatically, based on the JMX and JMX Remote API standards.

The AMX API consists of a set of proxy interfaces. MBeans are registered in the JMX runtime
contained in the Domain Administration Server (DAS). AMX provides routines to obtain
proxies for MBeans, starting with a root-level domain MBean.

You can navigate generically through the MBean hierarchy using the
com.sun.appserv.management.base.Container interface. When using AMX, the interfaces
defined are implemented by client-side dynamic proxies, but they also implicitly define the
MBeanInfo thatis made available by the MBean or MBeans corresponding to it. Certain
operations defined in the interface might have a different return type or a slightly different
name when accessed through the MBean directly. This results from the fact that direct access to
JMX requires the use of ObjectName, whereas use of the AMX interfaces is via strongly typed
proxies implementing the interface(s).

Sun Java System Application Server Enterprise Edition 8.2 Developer's Guide - March 2009

AMX MBeans

AMX MBeans

All AMX MBeans are represented as interfaces in a subpackage of
com.sun.appserv.management and are implemented by dynamic proxies on the client-side.
While you can access AMX MBeans directly through standard JMX APIs, most users find the
use of AMX interface (proxy) classes to be most convenient.

An AMX MBean belongs to an application server domain. There is exactly one domain per
DAS. Thus all MBeans accessible through the DAS belong to a single Application Server
administrative domain. All MBeans in an Application Server administrative domain, and hence
within the DAS, belong to the JMX domain amx. Any MBeans that do not have the JMX domain
amx are not part of AMX, and are neither documented nor supported for use by clients. All
AMX MBeans can be reached navigationally through the DomainRoot.

AMX defines different types of MBean, namely, configuration MBeans, monitoring MBeans,
utility MBeans and J2EE management (JSR 77) MBeans. These MBeans are logically related in
the following ways:

= They all implement the com. sun.appserv.management.base.AMX interface.

= Theyall have a j2eeType and name property within their ObjectName (see
com.sun.appserv.management.base.XTypes and
com.sun.appserv.management. j2ee.J2EETypes for the available values of the j2eeType
property).

= All MBeans that logically contain other MBeans implement the
com.sun.appserv.management.base.Container interface.

= JSR 77 MBeans that have a corresponding configuration or monitoring peer expose it via
getConfigPeer() or getMonitoringPeer(). However, there are many configuration and
monitoring MBeans that do not correspond to JSR 77 MBeans.

Configuration MBeans

Configuration information for a given Application Server domain is stored in a central
repository that is shared by all instances in that domain. The central repository can only be
written to by the DAS. However, configuration information in the central repository is made
available to administration clients via AMX MBeans.

The configuration MBeans are those that modify the underlying domain.xml or related files.
Collectively, they form a model representing the configuration and deployment repository and
the operations that can be performed on them.

The Group Attribute of configuration MBeans, obtained from getGroup (), has a value of
com.sun.appserv.management.base.AMX.GROUP_CONFIGURATION.

Chapter 16 - Using the Java Management Extensions (JMX) API 283

AMX MBeans

284

Monitoring MBeans

Monitoring MBeans provide transient monitoring information about all the vital components
of the Application Server.

The Group Attribute of monitoring MBeans, obtained from getGroup(), has a value of
com.sun.appserv.management.base.AMX.GROUP MONITORING.

Utility MBeans

Utility MBeans provide commonly used services to the Application Server.

The Group Attribute of utility MBeans, obtained from getGroup (), has a value of
com.sun.appserv.management.base.AMX.GROUP UTILITY.

J2EE Management MBeans

The J2EE management MBeans implement, and in some cases extend, the management
hierarchy as defined by JSR 77, which specifies the management model for the whole J2EE
platform. One of the management APIs implemented in JSR 77 is the JMX APL

The implementation of JSR 77 in AMX offers access to and monitoring of MBeans via J2EE
management MBeans, by using the getMonitoringPeer () and getConfigPeer() methods.

The J2EE management MBeans can be thought of as the central hub from which other MBeans
are obtained.

The Group Attribute of J2EE management MBeans, obtained from getGroup(), has a value of
com.sun.appserv.management.base.AMX.GROUP JSR77.

Other MBeans

MBeans that do not fit into one of the above four categories have the value
com.sun.appserv.management.base.AMX.GROUP_OTHER. One such example is
com.sun.appserv.management.deploy.DeploymentMgr.

MBean Notifications

All AMX MBeans that emit Notifications place a java.util.Map within the userData field of a
standard Notification, which can be obtained via Notification.getUserData(). Within the
map are zero or more items, which vary according to the Notification type. Each Notification
type, and the data available within the Notification, is defined in its respective MBean or in an
appropriate place.

Sun Java System Application Server Enterprise Edition 8.2 Developer's Guide - March 2009

Proxies

Proxies

Note that certain standard Notifications, such as
javax.management.AttributeChangeNotification do notand cannot follow this behavior.

Access to MBean Attributes

An AMX MBean Attribute is accessible in three ways:

®» Dotted names via MonitoringDottedNames and ConfigDottedNames

= Attributes on MBeans via getAttribute(s) and setAttributes(s) (from the standard
JMX API)

= Getters/setters within the MBean’s interface class, for example, getPort (), setPort(), and
SO on.

All dotted names that are accessible via the command line interface are available as Attributes
within a single MBean. This includes properties, which are Attributes beginning with the prefix
property., for example, server.property.myproperty.

Note - Certain attributes that may be of a specific type, such as int, are declared as
java.lang.String. This is because the value of the attribute may be a template of a form such
as ${HTTP_LISTENER PORT}.

Proxies are an important part of the AMX API, and enhance ease-of-use for the programmer.

While JMX MBeans can be used directly, client-side proxies are offered to facilitate navigation
through the MBean hierarchy. In some cases, proxies also function as support or helper objects
to simplify the use of the MBeans.

See the API documentation for the com. sun.appserv.management package and its
sub-packages for more information about using proxies. The API documentation explains the
use of AMX with proxies. If you are using JMX directly (for example, via
MBeanServerConnection), the return type, argument types and method names might vary as
needed for the difference between a strongly-typed proxy interface and generic
MBeanServerConnection/ObjectName interface.

Chapter 16 - Using the Java Management Extensions (JMX) API 285

Connecting to the Domain Administration Server

Connecting to the Domain Administration Server

As stated in “Configuration MBeans” on page 283, the AMX API allows client applications to
connect to Application Server instances via the DAS. All AMX connections are established to
the DAS only: AMX does not support direct connections to individual server instances. This
makes it simple to interact with all servers, clusters, and so on, with a single connection.

Sample code for connecting to the DAS is shown in “Connecting to the DAS” on page 286.

Examining AMX Code Samples

The following example uses of AMX are discussed in this document:

“Starting an Application Server” on page 287

“Deploying an Archive” on page 289

“Displaying the AMX MBean Hierarchy” on page 291

“Setting Monitoring States” on page 293

“Accessing AMX MBeans” on page 294

“Accessing and Displaying the Attributes of an AMX MBean” on page 296
“Listing AMX MBean Properties” on page 298

“Querying” on page 299

“Monitoring Attribute Changes” on page 300

“Undeploying Modules” on page 303

“Stopping an Application Server” on page 303

Connecting to the DAS

The connection to the DAS is shown in the following code.

EXAMPLE16-1 Connecting to the DAS

[...]
public static AppserverConnectionSource
connect(
final String host,
final int port,
final String user,
final String password,
final TLSParams tlsParams)
throws IOException
{

final String info = "host=" + host + ", port=

+ port +
, user=" + user + ", password=" + password +
, tls=" + (tlsParams != null);

286 Sun Java System Application Server Enterprise Edition 8.2 Developer's Guide - March 2009

Examining AMX Code Samples

EXAMPLE 16-1 Connecting to the DAS (Continued)

SampleUtil.println("Connecting...:" + info);

final AppserverConnectionSource conn =
new AppserverConnectionSource(
AppserverConnectionSource.PROTOCOL RMI,
host, port, user, password, tlsParams, null);

conn.getJMXConnector(false);

SampleUtil.println("Connected: " + info);

return(conn);

A connection to the DAS is obtained via an instance of the
com.sun.appserv.management.client.AppserverConnectionSource class. For the
connection to be established, you must know the name of the host and port number on which
the DAS is running, and have the correct user name, password and TLS parameters.

Once the connection to the DAS is established, DomainRoot is obtained as follows:

DomainRoot domainRoot = appserverConnectionSource.getDomainRoot();

This DomainRoot instance is a client-side dynamic proxy to the MBean
amx: j2eeType=X-DomainRoot, name=amx.

See the API documentation for
com.sun.appserv.management.client.AppserverConnectionSource for further details
about connecting to the DAS using the AppserverConnectionSource class.

However, if you prefer to work with standard JMX, instead of getting DomainRoot, you can get
the MBeanServerConnection or JMXConnector, as shown:

MBeanServerConnection conn =
appserverConnectionSource.getMBeanServerConnection(false);
JMXConnector jmxConn =
appserverConnectionSource.getJMXConnector(false);

Starting an Application Server

The startServer () method demonstrates how to start an Application Server.

Chapter 16 - Using the Java Management Extensions (JMX) API 287

Examining AMX Code Samples

288

EXAMPLE16-2 Starting an Application Server

[...]

startServer(final String serverName)

{

final J2EEServer server = getJ2EEServer(serverName);

server.start();

This method retrieves and starts an application server instance named server. The serverisan
instance of the com. sun.appserv.management. j2see.J2EEServer interface, and is obtained
by calling another method, getJ2EEServer(), shown in the following code.

EXAMPLE16-3 Obtaining a Named J2EE server instance

[...]
getJ2EEServer(final String serverName)

{
final J2EEDomain j2eeDomain = getDomainRoot().getJ2EEDomain();
final Map servers = j2eeDomain.getServerMap();
final J2EEServer server = (J2EEServer)servers.get(serverName);
if (server == null)
{
throw new IllegalArgumentException(serverName);
}
return(server);
}

To obtain a J2EE server instance, the getJ2EEServer () method first of all obtains an instance of
the J2EEDomain interface by calling the
com.sun.appserv.management.base.AMX.getDomainRoot () and
com.sun.appserv.management.DomainRoot.getJ2EEDomain () methods. The two methods
called establish the following:

= AMX.getDomainRoot () obtains the Application Server domain to which j2eeDomain
belongs.

® DomainRoot.getJ2EEDomain () obtains the J2EE domain for j2eeDomain.

The J2EEServer instance is then started by a call to the start () method. The
com.sun.appserv.management.j2ee.StateManageable.start () method can be used to start
any state manageable object.

Sun Java System Application Server Enterprise Edition 8.2 Developer's Guide - March 2009

Examining AMX Code Samples

Deploying an Archive

The uploadArchive() and deploy () methods demonstrate how to upload and deploy a J2EE
archive file.

EXAMPLE 16-4 Uploading an archive

[...]

uploadArchive (final File archive) throws IOException

{
final FileInputStream input = new FileInputStream(archive);
final long length = input.available();
final DeploymentMgr mgr = getDomainRoot().getDeploymentMgr();
final Object uploadID = mgr.initiateFileUpload(length);
try
{

}
finally

{

input.close();

}
return(uploadID);

The uploadArchive () method creates a standard Java FileInputStreaminstance called input,
to upload the archive archive. It then obtains the AMX deployment manager running in the
application server domain, by calling the DomainRoot . getDeploymentMgr () method.

A call to com. sun.appserv.management.deploy.initiateFileUpload starts the upload of
archive. The initiateFileUpload() method automatically issues an upload ID, that
uploadArchive() returns when it is called by deploy ().

EXAMPLE 16-5 Deploying an archive

[...]
deploy (final File archive) throws IOException
{
final Object uploadID = uploadArchive(archive);
final DeploymentMgr mgr = getDomainRoot().getDeploymentMgr();
final Object deployID = mgr.initDeploy();
final DeployNotificationlListener mylListener =
new DeployNotificationListener(deployID);
mgr.addNotificationListener(myListener, null, null);
try
{

Chapter 16 - Using the Java Management Extensions (JMX) API 289

Examining AMX Code Samples

EXAMPLE 16-5 Deploying an archive (Continued)

final Map options = new HashMap();

options.put(DeploymentMgr.DEPLOY OPTION VERIFY KEY,
Boolean.TRUE.toString());

options.put(DeploymentMgr.DEPLOY OPTION DESCRIPTION KEY,
"description");

mgr.startDeploy(deployID, uploadID, null, null);

while (! myListener.isCompleted())

{
try
{
println("deploy: waiting for deploy of " + archive);
Thread.sleep(1000);
}
catch(InterruptedException e)
{
}
}

final DeploymentStatus status = myListener.getDeploymentStatus();

println("Deployment result: " + getStageStatusString(
status.getStageStatus()));

if (status.getStageThrowable() != null)

{
status.getStageThrowable().printStackTrace();

}
finally

{
try
{

mgr.removeNotificationListener(myListener);

}

catch(Exception e)

The deploy () method calls uploadArchive to get the upload ID for archive. It then identifies
the deployment manager by calling DomainRoot . getDeploymentMgr (). A call to
DeploymentMgr.initDeploy () initializes the deployment and obtains a deployment ID, which
is used to track the progress of the deployment.

A JMX notification listener, myListener, is created and activated to listen for notifications
regarding the deployment of deployID.

290 Sun Java System Application Server Enterprise Edition 8.2 Developer's Guide - March 2009

Examining AMX Code Samples

Deployment is started by calling the DeploymentMgr.startDeploy () method and providing it
with the deployID and uploadID.

While the deployment is continuing, myListener listens for the completion notification and
DeploymentStatus keeps you informed of the status of the deployment by regularly calling its
getStageStatus () method. Once the deployment is complete, the listener is closed down.

Caution - Some of the behavior of the com. sun.appserv.management.deploy APIis
unpredictable, and it should be used with caution.

Displaying the AMX MBean Hierarchy

The displayAMX () method demonstrates how to display the AMX MBean hierarchy.

EXAMPLE16-6 Displaying the AMX MBean Hierarchy

[...]
displayAMX(
final AMX amx,
final int indentCount)

{
final String indent = getIndent(indentCount);
final String j2eeType = amx.getJ2EEType();
final String name = amx.getName();
if (name.equals(AMX.NO NAME))
{
println(indent + j2eeType);
}
else
{
println(indent + j2eeType + "=" + name);
}
}
private void
displayHierarchy(
final Collection amxSet,
final int indentCount)
{
final Iterator iter = amxSet.iterator();
while (iter.hasNext())
{
final AMX amx = (AMX)iter.next();
displayHierarchy(amx, indentCount);
}
}

Chapter 16 - Using the Java Management Extensions (JMX) API 291

Examining AMX Code Samples

EXAMPLE 16-6 Displaying the AMX MBean Hierarchy (Continued)

public void

displayHierarchy(

final AMX amx,

final int indentCount)
{

displayAMX(amx, indentCount);
if (amx instanceof Container)

{
final Map m = ((Container)amx).getMultiContaineeMap(null);
final Set deferred = new HashSet();
final Iterator mapsIter = m.values().iterator();
while (mapsIter.hasNext())
{
final Map instancesMap = (Map)mapsIter.next();
final AMX first = (AMX)instancesMap.values().iterator().next();
if (first instanceof Container)
{
deferred.add(instancesMap);
}
else
{
displayHierarchy(instancesMap.values(), indentCount + 2);
}
}
// display deferred items
final Iterator iter = deferred.iterator();
while (iter.hasNext())
{
final Map instancesMap = (Map)iter.next();
displayHierarchy(instancesMap.values(), indentCount + 2);
}
}
}
public void displayHierarchy()
{
displayHierarchy(getDomainRoot(), 0);
}

public void
displayHierarchy(final String j2eeType)

{
final Set items = getQueryMgr().queryJ2EETypeSet(j2eeType);
if (items.size() == 0)
{

println("No {@link AMX} of j2eeType "
+ SampleUtil.quote(j2eeType) + " found");

292 Sun Java System Application Server Enterprise Edition 8.2 Developer's Guide - March 2009

Examining AMX Code Samples

EXAMPLE 16-6 Displaying the AMX MBean Hierarchy (Continued)

else

{
displayHierarchy(items, 0);

The displayAMX () method obtains the J2EE type and the name of an AMX MBean by calling
AMX.getJ2EEType and AMX. getName respectively.

The displayHierarchy () method defines a standard Java Collection instance, amxSet, which
collects instances of AMX MBeans.

To display the hierarchy of MBeans within a particular MBean in the collection,
displayHierarchy() checks whether the MBean is an instance of Container. If so, it creates a
set of the MBeans it contains by calling the
com.sun.appserv.management.base.Container.getMultiContaineeMap () method.

The MBean hierarchy for a particular J2EE type is displayed by calling the
com.sun.appserv.management.base.QueryMgr.queryJ2EETypeSet (), and passing the result
todisplayHierarchy().

To display the entire AMX MBean hierarchy in a domain, displayHierarchy () calls
getDomainRoot () to obtain the root AMX MBean in the domain.

Setting Monitoring States

The setMonitoring () method demonstrates how to set monitoring states.

EXAMPLE 16-7 Setting Monitoring States

[...]
private static final Set LEGAL MON =
Collections.unmodifiableSet(SampleUtil.newSet(new String[]
{
ModuleMonitoringlLevelValues.HIGH,
ModuleMonitoringlLevelValues.LOW,
ModuleMonitoringlLevelValues.OFF,
1))
public void setMonitoring(
final String configName,
final String state)

Chapter 16 - Using the Java Management Extensions (JMX) API 293

Examining AMX Code Samples

294

EXAMPLE 16-7 Setting Monitoring States (Continued)

if (! LEGAL MON.contains(state))
{

throw new IllegalArgumentException(state);
}
final ConfigConfig config =
(ConfigConfig)getDomainConfig().
getConfigConfigMap().get(configName);
final ModuleMonitoringLevelsConfig mon =
config.getMonitoringServiceConfig().
getModuleMonitoringlLevelsConfig();
mon.setConnectorConnectionPool(state);
mon.setThreadPool(state);
mon.setHTTPService(state);
mon.setJDBCConnectionPool(state);
mon.setORB(state);
mon.setTransactionService(state);
mon.setWebContainer(state);
mon.setEJBContainer(state);

The AMX API defines three levels of monitoring in
com.sun.appserv.management.config.ModuleMonitoringLevelValues, namely, HIGH, LOW,
and OFF.

In this example, the configuration element being monitored is named configName. The
com.sun.appserv.management.config.ConfigConfig interface is used to configure the
config element for configName in the domain.xml file.

An instance of com.sun.appserv.management.config.ModuleMonitoringlLevelsConfig is
created to configure the module-monitoring-levels element for configName in the
domain.xml file.

The ModuleMonitoringlLevelsConfig instance created then calls each of its set methods to
change their states to state.

The above is performed by running the set-monitoring command when you run SimpleMain,
stating the name of the configuration element to be monitored and the monitoring state to one
of HIGH, LOW or OFF.

Accessing AMX MBeans

The handleList () method demonstrates how to access many (but not all) configuration
elements.

Sun Java System Application Server Enterprise Edition 8.2 Developer's Guide - March 2009

Examining AMX Code Samples

EXAMPLE 16-8 Accessing AMX MBeans

[...1]
handleList()
{
final DomainConfig dcp = getDomainConfig();
println("\n--- Top-level --- \n");
displayMap("ConfigConfig", dcp.getConfigConfigMap());
displayMap("ServerConfig", dcp.getServerConfigMap());
displayMap("StandaloneServerConfig"
dcp.getStandaloneServerConfigMap());
displayMap("ClusteredServerConfig"
dcp.getClusteredServerConfigMap());
displayMap("ClusterConfig", dcp.getClusterConfigMap());
println("\n--- DeployedItems --- \n");
displayMap("J2EEApplicationConfig"
dcp.getJ2EEApplicationConfigMap());
displayMap("EJBModuleConfig",
dcp.getEJBModuleConfigMap());
displayMap("WebModuleConfig"
dcp.getWebModuleConfigMap());
displayMap("RARModuleConfig"
dcp.getRARModuleConfigMap());
displayMap("AppClientModuleConfig"
dcp.getAppClientModuleConfigMap());
displayMap("LifecycleModuleConfig"
dcp.getLifecycleModuleConfigMap());
println("\n--- Resources --- \n");
displayMap("CustomResourceConfig"
dcp.getCustomResourceConfigMap());
displayMap("PersistenceManagerFactoryResourceConfig"
dcp.getPersistenceManagerFactoryResourceConfigMap());
displayMap("INDIResourceConfig"
dcp.getINDIResourceConfigMap());
displayMap("JMSResourceConfig"
dcp.getJMSResourceConfigMap());
displayMap("JDBCResourceConfig"
dcp.getJDBCResourceConfigMap());
displayMap("ConnectorResourceConfig"
dcp.getConnectorResourceConfigMap());
displayMap("JDBCConnectionPoolConfig"
dcp.getJIDBCConnectionPoolConfigMap());
displayMap("PersistenceManagerFactoryResourceConfig"
dcp.getPersistenceManagerFactoryResourceConfigMap());
displayMap("ConnectorConnectionPoolConfig"
dcp.getConnectorConnectionPoolConfigMap());
displayMap("AdminObjectResourceConfig"
dcp.getAdminObjectResourceConfigMap());

Chapter 16 - Using the Java Management Extensions (JMX) API 295

Examining AMX Code Samples

296

EXAMPLE 16-8 Accessing AMX MBeans (Continued)

displayMap("ResourceAdapterConfig",
dcp.getResourceAdapterConfigMap());

displayMap("MailResourceConfig"
dcp.getMailResourceConfigMap());

final ConfigConfig config =
(ConfigConfig)dcp.getConfigConfigMap().get("server-config")

println("\n--- HTTPService --- \n");

final HTTPServiceConfig httpService = config.getHTTPServiceConfig();

displayMap("HTTPListeners",
httpService.getHTTPListenerConfigMap());

displayMap("VirtualServers"
httpService.getVirtualServerConfigMap());

The handleList () method makes use of the displayMap () method, which simply prints out
the key value pairs.

The handleList () method identifies the configuration for a domain by calling the
DomainRoot.getDomainConfig() method. This DomainConfig instance then calls each of its
getXXXMap () methods in turn, to obtain a Map for each type of AMX MBean. The Map returned
by each getter is displayed by displayMap().

Similarly, the AMX MBeans representing the http-service element are displayed as Maps by
calling the getXXXMap () methods of the
com.sun.appserv.management.config.HTTPServiceConfig interface, and passing them to
displayMap().

Accessing and Displaying the Attributes of an AMX
MBean

The displayAllAttributes() method demonstrates how to access and display the attributes
ofan AMX MBean.

EXAMPLE 16-9 Accessing and Displaying the Attributes of an AMX MBean

[...]

displayAllAttributes(final AMX item)

{
println("\n--- Attributes for " + item.getJ2EEType() +
"=" + item.getName() + " ---");

final Extra extra = Util.getExtra(item);

final Map attrs = extra.getAllAttributes();

Sun Java System Application Server Enterprise Edition 8.2 Developer's Guide - March 2009

Examining AMX Code Samples

EXAMPLE 16-9 Accessing and Displaying the Attributes of an AMX MBean (Continued)

final Iterator iter = attrs.keySet().iterator();
while (iter.hasNext())

{
final String name = (String)iter.next();
final Object value = attrs.get(name);
println(name + "=" + toString(value));
}

}
public void
displayAllAttributes(final String j2eeType)

{
final Set items = queryForJ2EEType(j2eeType);
if (items.size() == 0)
{
println("No {@link AMX} of j2eeType "
+ SampleUtil.quote(j2eeType) + " found");
}
else
{
final Iterator iter= items.iterator();
while (iter.hasNext())
{
final AMX amx = (AMX)iter.next();
displayAllAttributes(amx);
println(");
}
}
}

The displayAllAttributes () method calls the AMX.getName () and AMX.getJ2EEType()
methods for an AMX MBean and prints the results onscreen. It then gets all the attributes for
that MBean by calling com. sun.appserv.management.base.Extra.getAllAttributes() on
the Extra instance returned by com. sun.appserv.management.base.Util.getExtra(). This
is repeated for every MBean.

The attributes of AMX MBeans of a certain J2EE type can be displayed by specifying the J2EE
type when the command is run. In this case, displayAllAttributes () calls
queryForJ2EEType(). The queryForJ2EEType () method calls the
com.sun.appserv.management.base.QueryManager.queryPropSet () method on the
specified J2EE type to identify all elements of that type in the domain.

Chapter 16 - Using the Java Management Extensions (JMX) API 297

Examining AMX Code Samples

298

Listing AMX MBean Properties

The displayAllProperties() demonstrates how to list AMX MBean properties.

EXAMPLE 16-10 Listing AMX MBean Properties

[...]

getProperties(final PropertiesAccess pa)

{
final HashMap m = new HashMap();
final String[] names = pa.getPropertyNames();
for(int i = 0; i < names.length; ++i)
{
m.put(names[i], pa.getPropertyValue(names[i 1));
}
return(m);
}

public void
displayAllProperties()

{
final Iterator iter = getQueryMgr().queryAllSet().iterator();
while (iter.hasNext())
{
final AMX amx = (AMX)iter.next();
if (amx instanceof PropertiesAccess)
{
final PropertiesAccess pa = (PropertiesAccess)amx;
final Map props = getProperties(pa);
if (props.keySet().size() !=0)
{
println("\nProperties for:
" + Util.getObjectName(AMX)pa));
println(SampleUtil.mapToString(getProperties(pa), "\n"));
}
}
}
}

The displayAllProperties () method uses another Samples method, getProperties(). This
method creates an instance of the com. sun.appserv.management.config.PropertiesAccess
interface, and calls its getPropertyNames () method to obtain the names of all the properties for
a given AMX MBean. For each property name obtained, its corresponding value is obtained by
calling PropertiesAccess.getPropertyValue().

The displayAllProperties() method calls the
com.sun.appserv.management.base.QueryMgr.queryAllSet () method to obtain a set of all

Sun Java System Application Server Enterprise Edition 8.2 Developer's Guide - March 2009

Examining AMX Code Samples

the AMX MBeans present in the domain. All AMX MBeans that have properties obligatorily
extend the PropertiesAccess interface. Any MBean found to extend PropertiesAccess is
passed to the getProperties () method, and the list of property values returned is printed
onscreen.

Querying
The demoQuery () method demonstrates how to issue queries.

The demoQuery () method uses other methods that are defined by Samples, namely
displayWild(),and displayJ2EEType(). The displayWild() method is shown in the
following code.

EXAMPLE 16-11 Querying and displaying wild cards

[...]

queryWild(
final String propertyName,
final String propertyValue)

{
final String[] propNames = new String[] { propertyName };
final String[] propValues = new String[]{ propertyValue };
final Set amxs = getQueryMgr().queryWildSet(propNames, propValues);
return(amxs);
}
public Set
displayWild(
final String propertyName,
final String propertyValue)
{
final Set items = queryWild(propertyName, propertyValue);
println("\n--- Queried for " + propertyName + "="
+ propertyValue + " ---");
final Iterator iter = items.iterator();
while (iter.hasNext())
{
final AMX item = (AMX)iter.next();
println("j2eeType=" + item.getJ2EEType() + "
"+ "name=" + item.getName());
}
}

The displaywild () method calls querywild(), to obtain all the AMX MBeans that have object
names matching propertyName and propertyValue. To do so, querywild() calls the

Chapter 16 - Using the Java Management Extensions (JMX) API 299

Examining AMX Code Samples

com.sun.appserv.management.base.QueryMgr.queryWildSet () method. The
queryWildSet () method returns the list of AMX MBeans with object names matching the wild
card strings.

For each MBean returned, the displayWild() calls AMX.getJ2EEType () to identify its J2EE
type, and prints the result onscreen.

In code that is not shown here, the displayJ2EEType () method calls the queryForJ2EEType()
method, which was seen in “Accessing and Displaying the Attributes of an AMX MBean” on
page 296, to identify MBeans of a certain J2EE type and print their object names onscreen.

EXAMPLE16-12 Querying

[...]
demoQuery ()

{
displayWild(AMX.J2EE TYPE KEY, "X-*ResourceConfig");
displayWild(AMX.J2EE TYPE KEY, "X-*ServerConfig");
displayJ2EEType(XTypes.SSL CONFIG);
displayJ2EEType(XTypes.CLUSTER CONFIG);

}

[...]

In the demoQuery () method, the displayWild() and displayJ2EEType () methods are called
to find the following MBeans:

J2EE_TYPE_KEY MBeans called ResourceConfig
J2EE_TYPE_KEY MBeans called ServerConfig
AlISSL_CONFIG MBeans

AIl CLUSTER CONFIG MBeans

Monitoring Attribute Changes

The demoJMXMonitor () demonstrates how to monitor attribute changes.

EXAMPLE 16-13 Monitoring Attribute Changes

[...]
demoJMXMonitor() throws InstanceNotFoundException, IOException
{
final JMXMonitorMgr mgr = getDomainRoot().getIJMXMonitorMgr();
final String attrName = "SampleString"
final String attrValue = "hello"
final SampleListener sampleListener = new SampleListener();
final MBeanServerConnection conn =
Util.getExtra(mgr).getConnectionSource()

300 Sun Java System Application Server Enterprise Edition 8.2 Developer's Guide « March 2009

Examining AMX Code Samples

EXAMPLE 16-13 Monitoring Attribute Changes (Continued)

.getExistingMBeanServerConnection();
conn.addNotificationListener(
getMBeanServerDelegateObjectName(),
sampleListener, null, null);
final Sample sample = (Sample)getDomainRoot ()
.getContainee(XTypes.SAMPLE);
final String monitorName = "SampleStringMonitor"
AMXStringMonitor mon = null;
try
{
try { mgr.remove(monitorName); }
catch(Exception e) {}
mon = mgr.createStringMonitor(monitorName);
waitMBeanServerNotification(samplelListener,
MBeanServerNotification.REGISTRATION NOTIFICATION,
Util.getObjectName(mon));
sample.addAttribute(attrName, attrValue);
mon.addNotificationListener(sampleListener, null, null);
mon.setObservedAttribute(attrName);
mon.setStringToCompare(attrValue);
mon.setNotifyDiffer(true);
mon.setNotifyMatch(true);
mon.addObservedObject(Util.getObjectName(sample));
final StdAttributesAccess attrs = Util.getExtra(sample);
attrs.setAttribute(new Attribute(attrName, "goodbye"));
attrs.setAttribute(new Attribute(attrName, attrValue));
sample.removeAttribute(attrName);
final Map notifs = sampleListener.getNotifsReceived();
waitNumNotifs(notifs,
AttributeChangeNotification.ATTRIBUTE CHANGE, 4);

}
catch(Throwable t)
{
t.printStackTrace();
}
finally
{
try
{

mon.removeNotificationListener(sampleListener);
if (mon != null)
{
mgr.remove(mon.getName());
waitMBeanServerNotification(samplelListener,
MBeanServerNotification
.UNREGISTRATION NOTIFICATION,

Chapter 16 - Using the Java Management Extensions (JMX) API 301

Examining AMX Code Samples

302

EXAMPLE 16-13 Monitoring Attribute Changes (Continued)

Util.getObjectName(mon));
}
conn.removeNotificationListener(
getMBeanServerDelegateObjectName(),
samplelListener);
}

catch(ListenerNotFoundException e)

The demoJmx () method demonstrates the implementation of a JMX monitor MBean, that
listens for changes in a certain attribute. This is achieved in the following stages:

1.

A com.sun.appserv.management.monitor.JMXMonitorMgr instance is obtained using the
DomainRoot.getIMXMonitorMgr () method.

A SampleListener JMX notification listener that is provided in the sample package is
instantiated.

A connection to the domain’s MBean server is obtained by calling
com.sun.appserv.management.client.ConnectionSource.
getExistingMBeanServerConnection() on the JMXMonitorMgr instance’s Extra
information.

The SampleListener notification listener is added to the MBean server connection, with an
MBean server delegate obtained from getMBeanServerDelegateObject (). The notification
listener is now in place on the MBean server connection.

An AMX MBean, sample, of the type SAMPLE is obtained by calling the
com.sun.appserv.management.base.Container.getContainee () method on an instance
of the Sample interface. The Sample interface defines a basic AMX MBean.

An AMXStringMonitor, an AMX-compatible JMX StringMonitorMBean, is instantiated by
calling createStringMonitor on the JMXMonitorMgr instance created above. The
AMXStringMonitor instance then calls waitMBeanServerNotification(). The
waitMBeanServerNotification() method waits for MBean server notifications of the type
REGISTRATION_NOTIFICATION from the SampleListener instance thatis listening on the
MBean server connection.

An attribute of name attrName and value attrValue is added to the AMX MBean sample.

Various methods of the AMXStringMonitor instance are called, to add a listener, and to set
the value to be observed, the object to be observed, and so on.

Sun Java System Application Server Enterprise Edition 8.2 Developer's Guide - March 2009

Examining AMX Code Samples

9. Access to the sample MBean’s attributes is obtained by passing the sample MBean’s Extra
information to an instance of
com.sun.appserv.management.base.StdAttributesAccess. The
StdAttributesAccess.setAttribute() method isthen called to change the values of these
attributes.

10. The AMXStringMonitor then calls the sample notification listener’s getNotifsReceived()
method to retrieve the notifications that resulted from the calls to setAttribute() above.
The waitNumNotifs () method waits until four ATTRIBUTE_CHANGE notifications have been
received before exiting.

11. The notification listener is then removed and the monitor is closed down.

Undeploying Modules

The undeploy () method demonstrates how to undeploy a module.

EXAMPLE 16-14 Undeploying Modules

[...1]
undeploy (final String moduleName) throws IOException

{
final DeploymentMgr mgr = getDomainRoot().getDeploymentMgr();

final Map statusData = mgr.undeploy(moduleName, null);
final DeploymentStatus status =
DeploymentSupport.mapToDeploymentStatus(statusData);
println("Undeployment result: "
+ getStageStatusString(status.getStageStatus()));
if (status.getStageThrowable() != null)

{
status.getStageThrowable().printStackTrace();

The undeploy () method obtains the DeploymentMgr instance for the domain in the same way
that deploy () does so. It then calls the DeploymentMgr.undeploy () method for a named
module.

Stopping an Application Server

The stopServer () method demonstrates how to stop an application server. The stopServer()
method simply calls the getJ2EEServer () method on a given server instance, and then calls
J2EEServer.stop().

Chapter 16 - Using the Java Management Extensions (JMX) API 303

Running the AMX Samples

Running the AMX Samples

To set up your development environment for using AMX, you must ensure that your Java
classpath contains the following Java archive (JAR) files:

= appserv-admin.jar - The JAR file containing the AMX interfaces needed for your client.
This file is found in install-dir/1ib/. No other classes from this JAR file should be used by
your program.

= jmxri.jar - The runtime libraries for the JMX Reference Implementation. If you are using
JDK 1.5, these are already in the JDK.

= jmxremote.jar - The runtime libraries for the JMX Remote API. If you are using JDK 1.5,
these are already in the JDK.

® j2ee.jar - The runtime libraries for the J2EE Platform. This file is found in
install-dir/1ib/. This JAR file is needed only if you intend to use any of the J2EE
Management Statistic classes (javax.management. j2ee.*).

Start your Java application in a manner similar to this:
export JAR PATH=install-dir/1ib/

export CP="$JAR PATH/j2ee.jar:$JAR PATH/appserv-admin.jar"
java -cp $CP com.mycompany.MyClientMain

304 Sun Java System Application Server Enterprise Edition 8.2 Developer's Guide « March 2009

L K R 4 APPENDIX A

Deployment Descriptor Files

This chapter describes deployment descriptor files specific to the Sun Java System Application
Server in the following sections:

“Sun Java System Application Server Descriptors” on page 71
“The sun-application.xml File” on page 307

“The sun-web.xml File” on page 307

“The sun-ejb-jar.xml File” on page 310

“The sun-cmp-mappings.xml File” on page 315

“The sun-application-client.xml file” on page 319

“The sun-acc.xml File” on page 320

“Alphabetical Listing of All Elements” on page 320

Sun Java System Application Server Descriptors

Sun Java System Application Server uses deployment descriptors in addition to the J2EE
standard descriptors for configuring features specific to the Application Server. The
sun-application.xml, sun-web.xml, and sun-cmp-mappings.xml files are optional; all the
others are required.

Note - Settings in the Application Server deployment descriptors override corresponding
settings in the Java EE deployment descriptors and in the Application Server's domain.xml file
unless otherwise stated. For more information about the domain. xml file, see the Sun Java
System Application Server Enterprise Edition 8.2 Administration Reference.

Each deployment descriptor (or XML) file has a corresponding DTD file, which defines the
elements, data, and attributes that the deployment descriptor file can contain. For example, the
sun-application 1 4-0.dtd file defines the structure of the sun-application.xml file. The
DTD files for the Application Server deployment descriptors are located in the
install-dir/1ib/dtds directory.

305

http://docs.sun.com/doc/819-4735
http://docs.sun.com/doc/819-4735

Sun Java System Application Server Descriptors

Note - Do not edit the DTD files; their contents change only with new versions of the
Application Server.

To check the correctness of these deployment descriptors prior to deployment, see “The
Deployment Descriptor Verifier” on page 83.

For general information about DTD files and XML, see the XML specification at
http://www.w3.0rg/TR/REC-xml.

The following table lists the Application Server deployment descriptors and their DTD files.

TABLEA-1 Sun Java System Application Server Descriptors
Deployment Descriptor DTD File Description
sun-application.xml sun-application 1 4-0.dtd Configures an entire J2EE application
(EAR file).
sun-web.xml sun-web-app_2_4-1.dtd Configures a web application (WAR
file).
sun-ejb-jar.xml sun-ejb-jar 2 1-1.dtd Configures an enterprise bean (EJB JAR
file).
sun-cmp-mappings.xml sun-cmp-mapping 1 2.dtd Configures container-managed
persistence for an enterprise bean.
sun-application-client.xml sun-application-client 1 4-1.dtd Conﬁgures an Application Client
Container (ACC) client (JAR file).
sun-acc.xml sun-application-client-container_1 0.dtd Configures the Application Client
Container.
Note - The Application Server deployment descriptors must be readable and writable by the file
owners.
In each deployment descriptor file, subelements must be defined in the order in which they are
listed under each Subelements heading, unless otherwise noted.
306 Sun Java System Application Server Enterprise Edition 8.2 Developer's Guide « March 2009

http://www.w3.org/TR/REC-xml

The sun-web.xml File

The sun-application.xml File

The element hierarchy in the sun-application.xml file is as follows:

sun-application
web
web-uri
context-root
pass-by-reference
unique-id
security-role-mapping
role-name
principal-name
group-name
realm

Here is a sample sun-application.xml file:

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE sun-application PUBLIC ’'-//Sun Microsystems, Inc.//DTD Application
Server 8.1 J2EE Application 1.4//EN’
"http://www.sun.com/software/appserver/dtds/sun-application 1 4-0.dtd’>
<sun-application>

<unique-1d>67488732739338240</unique-id>
</sun-application>

The sun-web.xml File

The element hierarchy in the sun-web. xm1 file is as follows:

sun-web-app
context-root
security-role-mapping
role-name
principal-name
group-name
servlet
servlet-name
principal-name
webservice-endpoint
port-component-name
endpoint-address-uri
login-config
auth-method
message-security-binding
message-security

Appendix A - Deployment Descriptor Files

307

The sun-web.xml File

message
java-method
method-name
method-params
method-param
operation-name
request-protection
response-protection
transport-guarantee
service-qname
tie-class
. . servlet-impl-class
idempotent-url-pattern
session-config
session-manager
manager-properties
property (with attributes)
description
store-properties
property (with attributes)
description
session-properties
property (with attributes)
description
cookie-properties
property (with attributes)
. description
ejb-ref
ejb-ref-name
jndi-name
resource-ref
res-ref-name
jndi-name
default-resource-principal
name
password
resource-env-ref
resource-env-ref-name
jndi-name
service-ref
service-ref-name
port-info
service-endpoint-interface
wsdl-port
namespaceURI
localpart
stub-property
name

308 Sun Java System Application Server Enterprise Edition 8.2 Developer's Guide « March 2009

The sun-web.xml File

value
call-property
name
value
message-security-binding
message-security
message
java-method
method-name
method-params
method-param
operation-name
request-protection
. response-protection
call-property
name
value
wsdl-override
service-impl-class
service-gname
namespaceURI
localpart
cache
cache-helper
property (with attributes)
description
default-helper
property (with attributes)
description
property (with attributes)
description
cache-mapping
servlet-name
url-pattern
cache-helper-ref
dispatcher
timeout
refresh-field
http-method
key-field
constraint-field
. constraint-field-value
class-loader
property (with attributes)
description
jsp-config
locale-charset-info
locale-charset-map

Appendix A - Deployment Descriptor Files 309

The sun-ejb-jar.xml File

parameter-encoding
property (with attributes)
description
parameter-encoding
message-destination
message-destination-name
jndi-name
webservice-description
webservice-description-name
wsdl-publish-location

Here is a sample sun-web.xml file:

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE sun-web-app PUBLIC ’'-//Sun Microsystems, Inc.//DTD Application
Server 8.1 Servlet 2.4//EN’
"http://www.sun.com/software/appserver/dtds/sun-web-app 2 4-1.dtd’>
<sun-web-app>
<session-config>
<session-manager/>
</session-config>
<resource-ref>
<res-ref-name>mail/Session</res-ref-name>
<jndi-name>mail/Session</jndi-name>
</resource-ref>
<jsp-config/>
</sun-web-app>

The sun-ejb-jar.xml File

The element hierarchy in the sun-ejb-jar.xml file is as follows:

sun-ejb-jar
security-role-mapping
role-name
principal-name
group-name
enterprise-beans
name
unique-id
ejb
ejb-name
jndi-name
ejb-ref
ejb-ref-name
jndi-name

310 Sun Java System Application Server Enterprise Edition 8.2 Developer's Guide - March 2009

The sun-ejb-jar.xml File

resource-ref
res-ref-name
jndi-name
default-resource-principal
name
password
resource-env-ref
resource-env-ref-name
jndi-name
service-ref
service-ref-name
port-info
service-endpoint-interface
wsdl-port
namespaceURI
localpart
stub-property
name
value
call-property
name
value
message-security-binding
message-security
message
java-method
method-name
method-params
method-param
operation-name
request-protection
. response-protection
call-property
name
value
wsdl-override
service-impl-class
service-gname
namespaceURI
localpart
pass-by-reference
cmp
mapping-properties
is-one-one-cmp
one-one-finders
finder
method-name
query-params

Appendix A - Deployment Descriptor Files

311

The sun-ejb-jar.xml File

query-filter
query-variables
query-ordering
prefetch-disabled
query-method
method-name
method-params
Lo method-param
principal
name
mdb-connection-factory
jndi-name
default-resource-principal
name
password
jms-durable-subscription-name
jms-max-messages-load
ior-security-config
transport-config
integrity
confidentiality
establish-trust-in-target
establish-trust-in-client
as-context
auth-method
realm
required
sas-context
caller-propagation
is-read-only-bean
refresh-period-in-seconds
commit-option
cmt-timeout-in-seconds
use-thread-pool-id
gen-classes
remote-impl
local-impl
remote-home-impl
. local-home-impl
bean-pool
steady-pool-size
resize-quantity
max-pool-size
pool-idle-timeout-in-seconds
. max-wait-time-in-millis
bean-cache
max-cache-size
resize-quantity

312 Sun Java System Application Server Enterprise Edition 8.2 Developer's Guide - March 2009

The sun-ejb-jar.xml File

is-cache-overflow-allowed
cache-idle-timeout-in-seconds
removal-timeout-in-seconds
. victim-selection-policy
mdb-resource-adapter
resource-adapter-mid
activation-config
description
activation-config-property
activation-config-property-name
. activation-config-property-value
webservice-endpoint
port-component-name
endpoint-address-uri
login-config
auth-method
message-security-binding
message-security
message
java-method
method-name
method-params
method-param
operation-name
request-protection
response-protection
transport-guarantee
service-qname
tie-class
. servlet-impl-class
flush-at-end-of-method
method
description
ejb-name
method-name
method-intf
method-params
. method-param
checkpointed-methods
checkpoint-at-end-of-method
method
description
ejb-name
method-name
method-intf
method-params
method-param
pm-descriptors

Appendix A - Deployment Descriptor Files

313

The sun-ejb-jar.xml File

cmp-resource
jndi-name
default-resource-principal
name
password
property (with subelements)
name
value
create-tables-at-deploy
drop-tables-at-undeploy
database-vendor-name
schema-generator-properties
property (with subelements)
name
. value
message-destination
message-destination-name
jndi-name
webservice-description
webservice-description-name
wsdl-publish-location

Note - If any configuration information for an enterprise bean is not specified in the
sun-ejb-jar.xml file, it defaults to a corresponding setting in the EJB container if an
equivalency exists.

Here is a sample sun-ejb-jar.xml file:

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE sun-ejb-jar PUBLIC ’-//Sun Microsystems, Inc.//DTD Application
Server 8.1 EJB 2.1//EN’
"http://www.sun.com/software/appserver/dtds/sun-ejb-jar 2 1-1.dtd’>
<sun-ejb-jar>
<display-name>First Module</display-name>
<enterprise-beans>
<ejb>
<ejb-name>CustomerEJB</ejb-name>
<jndi-name>customer</jndi-name>
<bean-pool>
<steady-pool-size>10</steady-pool-size>
<resize-quantity>10</resize-quantity>
<max-pool-size>100</max-pool-size>
<pool-idle-timeout-in-seconds>600</pool-idle-timeout-in-seconds>
</bean-pool>
<bean-cache>
<max-cache-size>100</max-cache-size>

314 Sun Java System Application Server Enterprise Edition 8.2 Developer's Guide - March 2009

The sun-cmp-mappings.xml File

<resize-quantity>10</resize-quantity>
<removal-timeout-in-seconds>3600</removal-timeout-in-seconds>
<victim-selection-policy>LRU</victim-selection-policy>
</bean-cache>
</ejb>
<cmp-resource>
<jndi-name>jdbc/ default</jndi-name>
<create-tables-at-deploy>true</create-tables-at-deploy>
<drop-tables-at-undeploy>true</drop-tables-at-undeploy>
</cmp-resource>
</enterprise-beans>
</sun-ejb-jar>

The sun-cmp-mappings.xml File

The element hierarchy in the sun-cmp-mappings.xml file is as follows:

sun-cmp-mappings
sun-cmp-mapping
schema
entity-mapping
ejb-name
table-name
cmp-field-mapping
field-name
column-name
read-only
fetched-with
default
level
named-group
none
cmr-field-mapping
cmr-field-name
column-pair
column-name
fetched-with
default
level
named-group
none
secondary-table
table-name
column-pair
column-name
consistency

Appendix A - Deployment Descriptor Files 315

The sun-cmp-mappings.xml File

none

check-modified-at-commit

lock-when-1loaded

check-all-at-commit

lock-when-modified

check-version-of-accessed-instances
column-name

Here is a sample database schema definition:

create table TEAMEJB (
TEAMID varchar2(256) not null,
NAME varchar2(120) null,
CITY char(30) not null,
LEAGUEEJB LEAGUEID varchar2(256) null,
constraint PK TEAMEJB primary key (TEAMID)
)
create table PLAYEREJB (
POSITION varchar2(15) null,
PLAYERID varchar2(256) not null,
NAME char(64) null,
SALARY number(1@0, 2) not null,
constraint PK PLAYEREJB primary key (PLAYERID)
)
create table LEAGUEEJB (
LEAGUEID varchar2(256) not null,
NAME varchar2(256) null,
SPORT varchar2(256) null,
constraint PK_LEAGUEEJB primary key (LEAGUEID)
)
create table PLAYEREJBTEAMEJB (
PLAYEREJB PLAYERID varchar2(256) null,
TEAMEJB TEAMID varchar2(256) null
)
alter table TEAMEJB
add constraint FK LEAGUE foreign key (LEAGUEEJB LEAGUEID)
references LEAGUEEJB (LEAGUEID)
alter table PLAYEREJBTEAMEJB
add constraint FK TEAMS foreign key (PLAYEREJB PLAYERID)
references PLAYEREJB (PLAYERID)
alter table PLAYEREJBTEAMEJB
add constraint FK_PLAYERS foreign key (TEAMEJB_TEAMID)
references TEAMEJB (TEAMID)

Here is a corresponding sample sun-cmp-mappings.xml file:
<?xml version="1.0" encoding="UTF-8"?>

<sun-cmp-mappings>
<sun-cmp-mapping>

316 Sun Java System Application Server Enterprise Edition 8.2 Developer's Guide - March 2009

The sun-cmp-mappings.xml File

<schema>Roster</schema>
<entity-mapping>
<ejb-name>TeamEJB</ejb-name>
<table-name>TEAMEJB</table-name>
<cmp-field-mapping>
<field-name>teamId</field-name>
<column-name>TEAMEJB.TEAMID</column-name>
</cmp-field-mapping>
<cmp-field-mapping>
<field-name>name</field-name>
<column-name>TEAMEJB.NAME</column-name>
</cmp-field-mapping>
<cmp-field-mapping>
<field-name>city</field-name>
<column-name>TEAMEJB.CITY</column-name>
</cmp-field-mapping>
<cmr-field-mapping>
<cmr-field-name>league</cmr-field-name>
<column-pair>
<column-name>TEAMEJB.LEAGUEEJB LEAGUEID</column-name>
<column-name>LEAGUEEJB.LEAGUEID</column-name>
</column-pair>
<fetched-with>
<none/>
</fetched-with>
</cmr-field-mapping>
<cmr-field-mapping>
<cmr-field-name>players</cmr-field-name>
<column-pair>
<column-name>TEAMEJB.TEAMID</column-name>
<column-name>PLAYEREJBTEAMEJB. TEAMEJB TEAMID</column-name>
</column-pair>
<column-pair>
<column-name>PLAYEREJBTEAMEJB.PLAYEREJB PLAYERID</column-name>
<column-name>PLAYEREJB.PLAYERID</column-name>
</column-pair>
<fetched-with>
<none/>
</fetched-with>
</cmr-field-mapping>
</entity-mapping>
<entity-mapping>
<ejb-name>PlayerEJB</ejb-name>
<table-name>PLAYEREJB</table-name>
<cmp-field-mapping>
<field-name>position</field-name>
<column-name>PLAYEREJB.POSITION</column-name>
</cmp-field-mapping>

Appendix A - Deployment Descriptor Files 317

The sun-cmp-mappings.xml File

<cmp-field-mapping>
<field-name>playerId</field-name>
<column-name>PLAYEREJB.PLAYERID</column-name>
</cmp-field-mapping>
<cmp-field-mapping>
<field-name>name</field-name>
<column-name>PLAYEREJB.NAME</column-name>
</cmp-field-mapping>
<cmp-field-mapping>
<field-name>salary</field-name>
<column-name>PLAYEREJB.SALARY</column-name>
</cmp-field-mapping>
<cmr-field-mapping>
<cmr-field-name>teams</cmr-field-name>
<column-pair>
<column-name>PLAYEREJB.PLAYERID</column-name>
<column-name>PLAYEREJBTEAMEJB.PLAYEREJB PLAYERID</column-name>
</column-pair>
<column-pair>
<column-name>PLAYEREJBTEAMEJB.TEAMEJB TEAMID</column-name>
<column-name>TEAMEJB.TEAMID</column-name>
</column-pair>
<fetched-with>
<none/>
</fetched-with>
</cmr-field-mapping>
</entity-mapping>
<entity-mapping>
<ejb-name>LeagueEJB</ejb-name>
<table-name>LEAGUEEJB</table-name>
<cmp-field-mapping>
<field-name>leagueld</field-name>
<column-name>LEAGUEEJB.LEAGUEID</column-name>
</cmp-field-mapping>
<cmp-field-mapping>
<field-name>name</field-name>
<column-name>LEAGUEEJB.NAME</column-name>
</cmp-field-mapping>
<cmp-field-mapping>
<field-name>sport</field-name>
<column-name>LEAGUEEJB.SPORT</column-name>
</cmp-field-mapping>
<cmr-field-mapping>
<cmr-field-name>teams</cmr-field-name>
<column-pair>
<column-name>LEAGUEEJB.LEAGUEID</column-name>
<column-name>TEAMEJB.LEAGUEEJB LEAGUEID</column-name>
</column-pair>

318 Sun Java System Application Server Enterprise Edition 8.2 Developer's Guide - March 2009

The sun-application-client.xml file

<fetched-with>
<none/>
</fetched-with>
</cmr-field-mapping>
</entity-mapping>
</sun-cmp-mapping>
</sun-cmp-mappings>

The sun-application-client.xml file

The element hierarchy in the sun-application-client.xml file is as follows:

sun-application-client
ejb-ref
ejb-ref-name
jndi-name
resource-ref
res-ref-name
jndi-name
default-resource-principal
name
password
resource-env-ref
resource-env-ref-name
jndi-name
service-ref
service-ref-name
port-info
service-endpoint-interface
wsdl-port
namespaceURI
localpart
stub-property
name
value
call-property
name
value
message-security-binding
message-security
message
java-method
method-name
method-params
method-param
operation-name

Appendix A - Deployment Descriptor Files 319

The sun-acc.xml File

request-protection
. response-protection
call-property
name
value
wsdl-override
service-impl-class
service-qname
namespaceURI
localpart
message-destination
message-destination-name
jndi-name

The sun-acc.xml File

The element hierarchy in the sun-acc.xml file is as follows:

client-container
target-server
description
security
ssl
cert-db
auth-realm
property (with attributes)
client-credential
property (with attributes)
log-service
property (with attributes)
message-security-config
provider-config
request-policy
response-policy
property (with attributes)
property (with attributes)

Alphabetical Listing of All Elements

320

“A” on page 321 “B” on page 324 “C” on page 326 “D” on page 347 “E” on page 350 “F” on page 358
“G” on page 360 “H” on page 362 “I” on page 362 “J” on page 365 “K” on page 369 “L” on page 370
“M” on page 375 “N” on page 385 “O” on page 387 “P” on page 387 “Q” on page 395 “R” on

page 397 “S” on page 406 “T” on page 426 “U” on page 430 “V” on page 431 “W” on page 432

Sun Java System Application Server Enterprise Edition 8.2 Developer's Guide - March 2009

activation-config

Specifies an activation configuration, which includes the runtime configuration properties of
the message-driven bean in its operational environment. For example, this can include
information about the name of a physical JMS destination. Matches and overrides the

activation-configelementintheejb-jar.xml file.

Superelements

“mdb-resource-adapter” on page 379 (sun-ejb-jar.xml)

Subelements

The following table describes subelements for the activation-config element.

TABLEA-2 activation-configsubelements

Element Required Description

“description” on page 349 Z€ro or one Specifies a text description of the activation
configuration.

“activation-config-property” on page 321 one or more Specifies an activation configuration
property.

activation-config-property

Specifies the name and value of an activation configuration property.

Superelements

“activation-config” on page 321 (sun-ejb-jar.xml)

Subelements

The following table describes subelements for the activation-config-property element.

Appendix A - Deployment Descriptor Files

321

TABLEA-3 activation-config-property subelements

Element Required Description
“activation-config-property-name” on page 322 only one Specifies the name of an activation
configuration property.
“activation-config-property-value” on page 322 only one Specifies the value of an activation
configuration property.
activation-config-property-name
Specifies the name of an activation configuration property.
Superelements
“activation-config-property” on page 321 (sun-ejb-jar.xml)
Subelements
none - contains data
activation-config-property-value
Specifies the value of an activation configuration property.
Superelements
“activation-config-property” on page 321 (sun-ejb-jar.xml)
Subelements
none - contains data
as-context
Specifies the authentication mechanism used to authenticate the client.
Superelements
“ior-security-config” on page 363 (sun-ejb-jar.xml)
Subelements
The following table describes subelements for the as - context element.
322 Sun Java System Application Server Enterprise Edition 8.2 Developer's Guide - March 2009

TABLEA-4 as-context Subelements

Element Required Description

“auth-method” on page 323 only one Specifies the authentication method. The only supported value
is USERNAME _PASSWORD.

“realm” on page 397 only one Specifies the realm in which the user is authenticated.

“required” on page 401 only one Specifies whether the authentication method specified must be

used for client authentication.

auth-method

Specifies the authentication method.

If the parent element is “as-context” on page 322, the only supported value is
USERNAME_PASSWORD.

If the parent element is “login-config” on page 375, specifies the authentication mechanism for
the web service endpoint. As a prerequisite to gaining access to any web resources protected by
an authorization constraint, a user must be authenticated using the configured mechanism.

Superelements

“login-config” on page 375 (sun-web.xml), “as-context” on page 322 (sun-ejb-jar.xml)

Subelements

none - contains data

auth-realm

JAAS is available on the ACC. Defines the optional configuration for a JAAS authentication
realm. Authentication realms require provider-specific properties, which vary depending on
what a particular implementation needs. For more information about how to define realms, see
“Realm Configuration” on page 48.

Superelements

“client-container” on page 335 (sun-acc.xml)

Subelements

The following table describes subelements for the auth- realm element.

Appendix A - Deployment Descriptor Files 323

TABLEA-5 auth-realmsubelement

Element Required Description
“property (with attributes)” on page 393 Zero or more Specifies a property, which has aname and a
value.
Attributes

The following table describes attributes for the auth- realm element.

TABLEA-6 auth-realmattributes

Attribute Default Description

name none Defines the name of this realm.

classname none Defines the Java class which implements this realm.
Example

Here is an example of the default file realm:

<auth-realm name="file"
classname="com.sun.enterprise.security.auth.realm.file.FileRealm">
<property name="file" value="domain-dir/config/keyfile"/>
<property name="jaas-context" value="fileRealm"/>

</auth-realm>

Which properties an auth- realm element uses depends on the value of the auth- realm
element’s name attribute. The file realm uses file and jaas- context properties. Other realms
use different properties. See “Realm Configuration” on page 48.

bean-cache

Specifies the entity bean cache properties. Used for entity beans and stateful session beans.

Superelements
“ejb” on page 350 (sun-ejb-jar.xml)

Subelements

The following table describes subelements for the bean- cache element.

324 Sun Java System Application Server Enterprise Edition 8.2 Developer's Guide - March 2009

TABLEA-7 bean-cache Subelements

Element Required Description

“max-cache-size” on page 378 Zero or one Specifies the maximum number of beans
allowable in cache.

“is-cache-overflow-allowed” on page 364 zero or one Deprecated.

“cache-idle-timeout-in-seconds” on page 329 Zero or one Specifies the maximum time that a stateful
session bean or entity bean is allowed to be
idle in cache before being passivated.
Default value is 10 minutes (600 seconds).

“removal-timeout-in-seconds” on page 399 Zero or one Specifies the amount of time a bean
remains before being removed. If
removal-timeout-in-seconds isless
than idle-timeout, the bean is removed
without being passivated.

“resize-quantity” on page 402 Zero or one Specifies the number of beans to be
created if the pool is empty (subject to the
max-pool-size limit). Values are from 0
to MAX_INTEGER.

“victim-selection-policy” on page 431 Z€ero or one Specifies the algorithm that must be used
by the container to pick victims. Applies
only to stateful session beans.

Example

<bean-cache>
<max-cache-size>100</max-cache-size>
<cache-resize-quantity>10</cache-resize-quantity>
<removal-timeout-in-seconds>3600</removal-timeout-in-seconds>
<victim-selection-policy>LRU</victim-selection-policy>
<cache-idle-timeout-in-seconds>600</cache-idle-timeout-in-seconds>
<removal-timeout-in-seconds>5400</removal-timeout-in-seconds>
</bean-cache>

bean-pool

Specifies the pool properties of stateless session beans, entity beans, and message-driven bean.

Superelements
“ejb” on page 350 (sun-ejb-jar.xml)

Appendix A - Deployment Descriptor Files 325

Subelements

The following table describes subelements for the bean-pool element.

TABLEA-8 bean-pool Subelements

Element

Required

Description

“steady-pool-size” on page 417

Zero or one

Specifies the initial and minimum number
of beans maintained in the pool. Default is
32.

“resize-quantity” on page 402

Zero or one

Specifies the number of beans to be created
if the pool is empty (subject to the
max-pool-size limit). Values are from 0 to
MAX_INTEGER.

“max-pool-size” on page 378

Ze€ro or one

Specifies the maximum number of beans in
the pool. Values are from 0 to
MAX_INTEGER. Default is to the EJB
container value or 60.

“max-wait-time-in-millis” on page 378

Zero or one

Deprecated.

“pool-idle-timeout-in-seconds” on page 390

Zero or one

Specifies the maximum time that a bean is
allowed to be idle in the pool. After this
time, the bean is removed. This is a hint to
the server. Default time is 600 seconds (10
minutes).

Example

<bean-pool>

<steady-pool-size>10</steady-pool-size>
<resize-quantity>10</resize-quantity>
<max-pool-size>100</max-pool-size>
<pool-idle-timeout-in-seconds>600</pool-idle-timeout-in-seconds>

</bean-pool>

cache

Configures caching for web application components.

Superelements

“sun-web-app” on page 423 (sun-web. xml)

326 Sun Java System Application Server Enterprise Edition 8.2 Developer's Guide - March 2009

Subelements

The following table describes subelements for the cache element.

TABLEA-9 cache Subelements

Element Required Description

“cache-helper” on page 328 7€ro or more Specifies a custom class that implements the
CacheHelper interface.

“default-helper” on page 347 Zero or one Allows you to change the properties of the default,
built-in “cache-helper” on page 328 class.

“property (with attributes)” on page 393 Z€ro or more Specifies a cache property, which hasaname and a
value.

“cache-mapping” on page 330 Zero or more Maps a URL pattern or a servlet name to its

cacheability constraints.

Attributes

The following table describes attributes for the cache element.

TABLEA-10 cache Attributes

Attribute Default Description

max-entries 4096 (optional) Specifies the maximum number of
entries the cache can contain. Must be a positive
integer.

timeout-in-seconds 30 (optional) Specifies the maximum amount of

time in seconds that an entry can remain in the
cache after it is created or refreshed. Can be
overridden by a “timeout” on page 428 element.

enabled true (optional) Determines whether servlet and JSP
caching is enabled.

Properties

The following table describes properties for the cache element.

Appendix A - Deployment Descriptor Files 327

TABLEA-11 cache Properties

Property Default Description

cacheClassName com.sun.appserv.web.cache.LruCache Specifies the fully qualified name of the class
that implements the cache functionality. See
“Cache Class Names” on page 328 for
possible values.

MultiLRUSegmentSize 4096 Specifies the number of entries in a segment
of the cache table that should have its own
LRU (least recently used) list. Applicable
only if cacheClassName is set to
com.sun.appserv.web.cache.
MultilLruCache.

MaxSize unlimited; Long.MAX_VALUE Specifies an upper bound on the cache
memory size in bytes (KB or MB units).
Example values are 32 KB or 2 MB.
Applicable only if cacheClassName is set to
com.sun.appserv.web.cache.
BoundedMultil ruCache.

Cache Class Names
The following table lists possible values of the cacheClassName property.

TABLEA-12 cacheClassName Values

Value Description

com.sun.appserv.web.cache. A bounded cache with an LRU (least recently used) cache replacement policy.

LruCache

com.sun.appserv.web.cache. An unbounded cache suitable if the maximum number of entries is known.

BaseCache

com.sun.appserv.web.cache. A cache suitable for alarge number of entries (>4096). Uses the MultiLRUSegmentSize
MultiLruCache property.

com.sun.appserv.web.cache. A cache suitable for limiting the cache size by memory rather than number of entries. Uses
BoundedMultilLruCache the MaxSize property.

cache-helper

Specifies a class that implements the com. sun.appserv.web. cache.CacheHelper interface.

Superelements

“cache” on page 326 (sun-web. xml)

328 Sun Java System Application Server Enterprise Edition 8.2 Developer's Guide - March 2009

Subelements

The following table describes subelements for the cache-helper element.

TABLEA-13 cache-helper Subelements

Element

Required Description

“property (with attributes)” on page 393 Zero or more Specifies a property, which has a name and a value.

Attributes

The following table describes attributes for the cache-helper element.

TABLEA-14 cache-helper Attributes

Attribute

Default Description

name

default Specifies a unique name for the helper class, which is
referenced in the “cache-mapping” on page 330 element.

class-name

none Specifies the fully qualified class name of the cache helper,
which must implement the
com.sun.appserv.web.CacheHelper interface.

cache-helper-ref
Specifies the name of the “cache-helper” on page 328 used by the parent “cache-mapping” on

page 330 element.

Superelements

“cache-mapping” on page 330 (sun-web.xml)

Subelements

none - contains data

cache-idle-timeout-in-seconds

Specifies the maximum time that a bean can remain idle in the cache. After this amount of time,
the container can passivate this bean. A value of 0 specifies that beans never become candidates
for passivation. Default is 600.

Applies to stateful session beans and entity beans.

Appendix A - Deployment Descriptor Files 329

Superelements

“bean-cache” on page 324 (sun-ejb-jar.xml)

Subelements

none - contains data

cache-mapping

Maps a URL pattern or a servlet name to its cacheability constraints.

Superelements

“cache” on page 326 (sun-web. xml)

Subelements

The following table describes subelements for the cache-mapping element.

TABLEA-15 cache-mapping Subelements

Element Required Description

“servlet-name” on page 414 requires one servlet-name or Contains the name of a servlet.
url-pattern

“url-pattern” on page 430 requires one servlet-name or Contains a servlet URL pattern for which
url-pattern caching is enabled.

“cache-helper-ref” on page 329 required if dispatcher, timeout, Contains the name of the “cache-helper” on
refresh-field, http-method, page 328 used by the parent cache-mapping
key-field,and constraint-field are element.
not used

“dispatcher” on page 349 zero or one if cache-helper-ref is not Contains a comma-separated list of
used RequestDispatcher methods for which

caching is enabled.

“timeout” on page 428 zero or one if cache-helper-ref is not Contains the “cache-mapping” on page 330
used specific maximum amount of time in

seconds that an entry can remain in the
cache after it is created or refreshed.

“refresh-field” on page 398 zero or one if cache-helper-ref is not Specifies a field that gives the application
used component a programmatic way to refresh a
cached entry.

330 Sun Java System Application Server Enterprise Edition 8.2 Developer's Guide « March 2009

TABLEA-15 cache-mapping Subelements (Continued)

Element Required Description

“http-method” on page 362 zero or more if cache-helper-refisnot | Containsan HTTP method that is eligible for
used caching.

“key-field” on page 369 zero or more if cache-helper-refisnot | Specifiesa component of the key used to look
used up and extract cache entries.

“constraint-field” on page 343 zero or more if cache-helper-refisnot | Specifies a cacheability constraint for the
used givenurl-patternor servlet-name.

call-property

Specifies JAX-RPC property values that can be set on a javax.xml. rpc.Call object before it is
returned to the web service client. The property names can be any properties supported by the
JAX-RPC Call implementation.

Superelements

“port-info” on page 391, “service-ref” on page 412 (sun-web.xml, sun-ejb-jar.xml,
sun-application-client.xml)

Subelements

The following table describes subelements for the call-property element.

TABLEA-16 call-property subelements

Element Required Description

“name” on page 385 only one Specifies the name of the entity.

“value” on page 431 only one Specifies the value of the entity.
caller-propagation

Specifies whether the target accepts propagated caller identities. The values are NONE,
SUPPORTED, or REQUIRED.

Superelements

“sas-context” on page 406 (sun-ejb-jar.xml)

Subelements

none - contains data

Appendix A - Deployment Descriptor Files 331

cert-db

Not implemented. Included for backward compatibility only. Attribute values are ignored.

Superelements

“security” on page 409 (sun-acc.xml)

Subelements

none

Attributes

The following table describes attributes for the cert-db element.

TABLEA-17 cert-dbattributes

Attribute Default Description

path none Specifies the absolute path of the certificate database.

password none Specifies the password to access the certificate database.
check-all-at-commit

This element is not implemented. Do not use.

Superelements

“consistency” on page 342 (sun-cmp-mappings.xml)

check-modified-at-commit

Checks concurrent modification of fields in modified beans at commit time.

Superelements

“consistency” on page 342 (sun-cmp-mappings.xml)

Subelements

none - element is present or absent

332 Sun Java System Application Server Enterprise Edition 8.2 Developer's Guide - March 2009

check-version-of-accessed-instances
Checks the version column of the modified beans.

Version consistency allows the bean state to be cached between transactions instead of read
from a database. The bean state is verified by primary key and version column values. This
occurs during a custom query (for dirty instances only) or commit (for both clean and dirty
instances).

The version column must be a numeric type, and must be in the primary table. You must
provide appropriate update triggers for this column.

Superelements

“consistency” on page 342 (sun-cmp-mappings.xml)

Subelements

The following table describes subelements for the check-version-of-accessed-instances
element.

TABLEA-18 check-version-of-accessed-instances Subelements

Element

Required Description

“column-name” on page 341 only one Specifies the name of the version column.

checkpoint-at-end-of-method

Specifies that the stateful session bean state is checkpointed, or persisted, after the specified
methods are executed. The availability-enabled attribute of the parent “ejb” on page 350
element must be set to true.

Superelements
“ejb” on page 350 (sun-ejb-jar.xml)

Subelements

The following table describes subelements for the checkpoint-at-end-of-method element.

Appendix A - Deployment Descriptor Files 333

TABLEA-19 checkpoint-at-end-of-method Subelements

Element

Required

Description

“method” on page 383

one or more

Specifies a bean method.

checkpointed-methods

Deprecated. Supported for backward compatibility. Use “checkpoint-at-end-of-method” on

page 333 instead.

Superelements
“ejb” on page 350 (sun-ejb-jar.xml)

class-loader

Configures the class loader for the web module.

Superelements

“sun-web-app” on page 423 (sun-web. xml)

Subelements

The following table describes subelements for the class-loader element.

TABLEA-20 class-loader Subelements

Element

Required

Description

“property (with attributes)” on page 393 Z€ro or more

Specifies a property, which has aname and a
value.

Attributes

The following table describes attributes for the class-loader element.

TABLEA-21 class-loader Attributes

Attribute

Default

Description

extra-class-path

null

(optional) Specifies additional classpath settings for this
web module.

334

Sun Java System Application Server Enterprise Edition 8.2 Developer's Guide - March 2009

TABLEA-21 class-loader Attributes (Continued)
Attribute Default Description

delegate true (optional) If true, the web module follows the standard
class loader delegation model and delegates to its parent
class loader first before looking in the local class loader.
You must set this to true for a web application that
accesses EJB components or that acts as a web service
client or endpoint.

If false, the web module follows the delegation model
specified in the Servlet specification and looks in its class
loader before looking in the parent class loader. It’s safe to
set this to false only for a web module that does not
interact with any other modules.

dynamic-reload-interval (optional) Not implemented. Included for backward
compatibility with previous Sun Java System Web Server
versions.

Note - If the delegate element is set to false, the class loader delegation behavior complies
with the Servlet 2.4 specification, section 9.7.2. If set to its default value of true, classes and
resources residing in container-wide library JAR files are loaded in preference to classes and
resources packaged within the WAR file.

Portable programs that use this element should not be packaged with any classes or interfaces
that are a part of the J2EE specification. The behavior of a program that includes such classes or
interfaces in its WAR file is undefined.

client-container

Defines the Application Server specific configuration for the application client container. This is
the root element; there can only be one client-container elementina sun-acc.xml file. See
“The sun-acc.xml File” on page 320.

Superelements

none

Subelements

The following table describes subelements for the client-container element.

Appendix A - Deployment Descriptor Files 335

TABLEA-22 client-container Subelements

Element Required Description

“target-server” on page 426 only one Specifies the IIOP listener configuration of the
target server.

“auth-realm” on page 323 Z€ro or one Specifies the optional configuration for JAAS
authentication realm.

“client-credential” on page 337 Zero or one Specifies the default client credential that is sent
to the server.

“log-service” on page 374 zZero or one Specifies the default log file and the severity level

of the message.

“message-security-config” on page 382

Zero or more

Specifies configurations for message security
providers.

“property (with attributes)” on page 393

Zero or more

Specifies a property, which has a name and a
value.

Attributes

The following table describes attributes for the client-container element.

TABLEA-23 client-container Attributes

Attribute

Default

Description

send-password

true

If true, specifies that client authentication
credentials must be sent to the server. Without
authentication credentials, all access to protected
EJB components results in exceptions.

Properties

The following table describes properties for the client-container element.

TABLEA-24 client-container Properties

Property

Default

Description

com.sun.appserv.iiop.endpoints

none

Specifies a comma-separated list of one or
more IIOP endpoints used for load balancing.
AnTIOP endpoint is in the form host: port,
where the host is an IP address or host name,
and the port specifies the port number.

336 Sun Java System Application Server Enterprise Edition 8.2 Developer's Guide « March 2009

client-credential

Default client credentials that are sent to the server. If this element is present, the credentials are
automatically sent to the server, without prompting the user for the user name and password on
the client side.

Superelements

“client-container” on page 335 (sun-acc.xml)

Subelements

The following table describes subelements for the client-credential element.

TABLEA-25 client-credential subelement

Element Required Description
“property (with attributes)” on page 393 Zero or more Specifies a property, which has a name and a
value.
Attributes

The following table describes attributes for the client-credential element.

TABLEA-26 client-credential attributes

Attribute Default Description

user-name none The user name used to authenticate the
Application client container.

password none The password used to authenticate the Application
client container.
realm the default realm for the (optional) The realm (specified by name) where
domain credentials are to be resolved.
cmp

Describes runtime information for a CMP entity bean object for EJB 1.1 and EJB 2.1 beans.

Superelements
“ejb” on page 350 (sun-ejb-jar.xml)

Subelements

The following table describes subelements for the cmp element.

Appendix A - Deployment Descriptor Files 337

TABLEA-27 cmp Subelements

Element Required Description

“mapping-properties” on page 377 Zero or one This element is not implemented.

“is-one-one-cmp” on page 364 Zero or one This element is not implemented.

“one-one-finders” on page 387 Zero or one Describes the finders for CMP 1.1 beans.

“prefetch-disabled” on page 391 ZEero or one Disables prefetching of entity bean states for
the specified query methods.

cmp-field-mapping

The cmp- field-mapping element associates a field with one or more columns to which it maps.
The column can be from a bean’s primary table or any defined secondary table. If a field is
mapped to multiple columns, the column listed first in this element is used as a source for
getting the value from the database. The columns are updated in the order they appear. There is
one cmp-field-mapping element for each cmp- field element defined in the ejb-jar.xml file.

Superelements
“entity-mapping” on page 357 (sun-cmp-mappings.xml)

Subelements

The following table describes subelements for the cmp- field-mapping element.

TABLEA-28 cmp-field-mapping Subelements

Element Required Description

“field-name” on page 359 only one Specifies the Java identifier of a field. This identifier must
match the value of the field-name subelement of the
cmp-field that is being mapped.

“column-name” on page 341 one or more Specifies the name of a column from the primary table, or
the qualified table name (TABLE.COLUMN) of a column
from a secondary or related table.

“read-only” on page 397 ZEro Or one Specifies that a field is read-only.
“fetched-with” on page 358 Z€ro Or one Specifies the fetch group for this CMP field’s mapping.
amp-resource

Specifies the database to be used for storing CMP beans. For more information about this
element, see “Configuring the CMP Resource” on page 195.

338 Sun Java System Application Server Enterprise Edition 8.2 Developer's Guide « March 2009

Superelements

“enterprise-beans” on page 355 (sun-ejb-jar.xml)

Subelements

The following table describes subelements for the cmp- resource element.

TABLEA-29 cmp-resource Subelements

Element Required Description

“jndi-name” on page 366 only one Specifies the absolute jndi-name of a JDBC
resource.

“default-resource-principal” on page 348 Zero or one Specifies the default runtime bindings of a
resource reference.

“property (with subelements)” on page 394 Zero or more Specifies a property name and value. Used

to configure PersistenceManagerFactory
properties if the jndi-name subelement
refers to a JDBC resource.

“create-tables-at-deploy” on page 346 Zero or one If true, specifies that database tables are
created for beans that are automatically
mapped by the EJB container.

“drop-tables-at-undeploy” on page 349 Z€ro or one If true, specifies that database tables that
were automatically created when the
bean(s) were last deployed are dropped
when the bean(s) are undeployed.

“database-vendor-name” on page 347 Zero or one Specifies the name of the database vendor
for which tables can be created.

“schema-generator-properties” on page 407 Z€ro or one Specifies field-specific type mappings and
allows you to set the
use-unique-table-names property.

cmr-field-mapping

A container-managed relationship field has a name and one or more column pairs that define
the relationship. There is one cmr-field-mapping element for each cmr-field element in the
ejb-jar.xml file. A relationship can also participate in a fetch group.

Superelements
“entity-mapping” on page 357 (sun-cmp-mappings.xml)

Appendix A - Deployment Descriptor Files 339

Subelements

The following table describes subelements for the cmr-field-mapping element.

TABLEA-30 cmr-field-mapping Subelements

Element Required Description

“cmr-field-name” on page 340 only one Specifies the Java identifier of a field. Must match the
value of the cmr - field-name subelement of the
cmr-field that is being mapped.

“column-pair” on page 341 one or more Specifies the pair of columns that determine the
relationship between two database tables.

“fetched-with” on page 358 Z€ro or one Specifies the fetch group for this CMR field’s
relationship.

cmr-field-name

Specifies the Java identifier of a field. Must match the value of the cmr-field-name subelement
of the cmr-field element in the ejb-jar.xml file.

Superelements
“cmr-field-mapping” on page 339 (sun-cmp-mappings.xml)

Subelements

none - contains data

cmt-timeout-in-seconds

Overrides the Transaction Timeout setting of the Transaction Service for an individual bean.
The default value, 0, specifies that the default Transaction Service timeout is used. If positive,
this value is used for all methods in the bean that start a new container-managed transaction.
This value is not used if the bean joins a client transaction.

Superelements
“ejb” on page 350 (sun-ejb-jar.xml)

Subelements

none - contains data

340 Sun Java System Application Server Enterprise Edition 8.2 Developer's Guide « March 2009

column-name

Specifies the name of a column from the primary table, or the qualified table name
(TABLE.COLUMN) of a column from a secondary or related table.

Superelements

“check-version-of-accessed-instances” on page 333, “cmp-field-mapping” on page 338,
“column-pair” on page 341 (sun-cmp-mappings.xml)

Subelements

none - contains data

column-pair

Specifies the pair of columns that determine the relationship between two database tables. Each
column-pair must contain exactly two column-name subelements, which specify the column’s
names. The first column-name element names the table that this bean is mapped to, and the
second column-name names the column in the related table.

Superelements
“cmr-field-mapping” on page 339, “secondary-table” on page 409 (sun-cmp-mappings.xml)

Subelements

The following table describes subelements for the column-pair element.

TABLEA-31 column-pair Subelements
Element Required Description
“column-name” on page 341 two Specifies the name of a column from the primary table, or the

qualified table name (TABLE.COLUMN) of a column from a
secondary or related table.

commit-option

Specifies the commit option used on transaction completion. Valid values for the Application
Server are B or C. Default value is B. Applies to entity beans.

Appendix A - Deployment Descriptor Files 341

Note - Commit option A is not supported for this Application Server release.

Superelements
“ejb” on page 350 (sun-ejb-jar.xml)

Subelements

none - contains data

confidentiality

Specifies if the target supports privacy-protected messages. The values are NONE, SUPPORTED, or
REQUIRED.

Superelements

“transport-config” on page 428 (sun-ejb-jar.xml)

Subelements

none - contains data

consistency

Specifies container behavior in guaranteeing transactional consistency of the data in the bean.

Superelements
“entity-mapping” on page 357 (sun-cmp-mappings.xml)

Subelements

The following table describes subelements for the consistency element.

TABLEA-32 consistency Subelements

Element Required Description

“none” on page 386 exactly one subelement | No consistency checking occurs.
is required

342 Sun Java System Application Server Enterprise Edition 8.2 Developer's Guide - March 2009

TABLEA-32 consistency Subelements (Continued)
Element Required Description
“check-modified-at-commit” on page 332 exactly one subelement | Checks concurrent modification of fields in
is required modified beans at commit time.
“lock-when-loaded” on page 373 exactly one subelement | Obtains an exclusive lock when the data is
is required loaded.
“check-all-at-commit” on page 332 This element is not implemented. Do not use.
“lock-when-modified” on page 374 This element is not implemented. Do not use.
“check-version-of-accessed-instances” on page 333 exactly one subelement | Checks the version column of the modified
is required beans.
L3
constraint-field

Specifies a cacheability constraint for the given “url-pattern” on page 430 or “servlet-name” on
page 414.

All constraint-field constraints must pass for a response to be cached. If there are value
constraints, at least one of them must pass.

Superelements

“cache-mapping” on page 330 (sun-web.xml)

Subelements

The following table describes subelements for the constraint-field element.

TABLEA-33 constraint-field Subelements

Element Required Description
“constraint-field-value” on page 344 Zero or more Contains a value to be matched to the input
parameter value.
Attributes

The following table describes attributes for the constraint- field element.

Appendix A - Deployment Descriptor Files 343

TABLEA-34 constraint-field Attributes

Attribute Default Description
name none Specifies the input parameter name.
scope request.parameter (optional) Specifies the scope from which the

input parameter is retrieved. Allowed values are
context.attribute, request.header,
request.parameter, request.cookie,
request.attribute,and session.attribute.

cache-on-match true (optional) If true, caches the response if
matching succeeds. Overrides the same attribute
in a “constraint-field-value” on page 344
subelement.

cache-on-match-failure false (optional) If true, caches the response if
matching fails. Overrides the same attribute in a
“constraint-field-value” on page 344 subelement.

constraint-field-value

Specifies a value to be matched to the input parameter value. The matching is case sensitive. For
example:

<value match-expr="in-range">1-60</value>

Superelements

“constraint-field” on page 343 (sun-web.xml)

Subelements

none - contains data

Attributes

The following table describes attributes for the constraint-field-value element.

344 Sun Java System Application Server Enterprise Edition 8.2 Developer's Guide « March 2009

TABLEA-35 constraint-field-value Attributes

Attribute Default Description

match-expr equals (optional) Specifies the type of comparison performed with
the value. Allowed values are equals, not-equals, greater,
lesser,and in-range.

Ifmatch-expris greater or lesser, the value must be a
number. If match-expr is in- range, the value must be of the
form nl-n2, where nl and n2 are numbers.

cache-on-match true (optional) If true, caches the response if matching succeeds.
cache-on-match-failure false (optional) If true, caches the response if matching fails.
context-root

Contains the web context root for the application or web application. Overrides the
corresponding element in the application.xml or web.xml file.

If you are setting up load balancing, web module context roots must be unique within a cluster.
See the Sun Java System Application Server Enterprise Edition 8.2 High Availability
Administration Guide for more information about load balancing.

Superelements

“web” on page 432 (sun-application.xml), “sun-web-app” on page 423 (sun-web.xml)

Subelements

none - contains data

cookie-properties

Specifies session cookie properties.

Superelements

“session-config” on page 414 (sun-web.xml)

Subelements

The following table describes subelements for the cookie-properties element.

Appendix A - Deployment Descriptor Files 345

http://docs.sun.com/doc/819-4740
http://docs.sun.com/doc/819-4740

TABLEA-36 cookie-properties Subelements

Element

Required

Description

“property (with attributes)” on
page 393

Zero or more

Specifies a property, which has a name and a value.

Properties

The following table describes properties for the cookie-properties element.

TABLEA-37 cookie-properties Properties

Property Default Description
cookiePath Context path at which the web module is | Specifies the pathname that is set when
installed. the cookie is created. The browser sends
the cookie if the pathname for the
request contains this pathname. If set to
/ (slash), the browser sends cookies to all
URLs served by the Application Server.
You can set the path to a narrower
mapping to limit the request URLs to
which the browser sends cookies.
cookieMaxAgeSeconds -1 Specifies the expiration time (in seconds)
after which the browser expires the
cookie.
cookieDomain (unset) Specifies the domain for which the
cookie is valid.
cookieComment Sun Java System Application Server | Specifies the comment thatidentifies the
Session Tracking Cookie session tracking cookie in the cookie file.
Applications can provide a more specific
comment for the cookie.
create-tables-at-deploy
Specifies whether database tables are created for beans that are automatically mapped by the
EJB container. If true, creates tables in the database. If false (the default if this element is not
present), does not create tables.
This element can be overridden during deployment. See Table 7-4.
Superelements
“cmp-resource” on page 338 (sun-ejb-jar.xml)
346 Sun Java System Application Server Enterprise Edition 8.2 Developer's Guide « March 2009

Subelements

none - contains data

database-vendor-name

Specifies the name of the database vendor for which tables can be created. Allowed values are
javadb, db2, mssql, oracle, pointbase, derby (also for CloudScape), and sybase,
case-insensitive.

If no value is specified, a connection is made to the resource specified by the “jndi-name” on
page 366 subelement of the “cmp-resource” on page 338 element, and the database vendor name
is read. If the connection cannot be established, or if the value is not recognized, SQL-92
compliance is presumed.

This element can be overridden during deployment. See Table 7-4.

Superelements

“cmp-resource” on page 338 (sun-ejb-jar.xml)

Subelements

none - contains data

default

Specifies that a field belongs to the default hierarchical fetch group, and enables prefetching for
a CMR field. To disable prefetching for specific query methods, use a “prefetch-disabled” on
page 391 element in the sun-ejb-jar.xml file.

Superelements
“fetched-with” on page 358 (sun-cmp-mappings.xml)

Subelements

none - element is present or absent

default-helper

Passes property values to the built-in default “cache-helper” on page 328 class.

Appendix A - Deployment Descriptor Files 347

Superelements

“cache” on page 326 (sun-web. xml)

Subelements

The following table describes subelements for the default-helper element.

TABLEA-38 default-helper Subelements

Element Required Description

“property (with attributes)” on page 393 Z€ro or more Specifies a property, which has a name and a value.

Properties

The following table describes properties for the default-helper element.

TABLEA-39 default-helper Properties

Property Default Description

cacheKeyGeneratorAttrName Uses the built-in default “cache-helper” | The caching engine looks in the

on page 328 key generation, which
concatenates the servlet path with
“key-field” on page 369 values, if any.

ServletContext for an attribute
with a name equal to the value
specified for this property to
determine whether a customized
CacheKeyGenerator
implementation is used. An
application can provide a
customized key generator rather
than using the default helper. See
“CacheKeyGenerator Interface” on
page 142.

default-resource-principal

Specifies the default principal (user) for the resource.

If this element is used in conjunction with a JMS Connection Factory resource, the name and
password subelements must be valid entries in the Sun Java™ System Message Queue broker
user repository. See the Security Management chapter in the Sun Java System Message Queue 3.7
URI Administration Guide for details.

Superelements

“resource-ref” on page 404 (sun-web.xml, sun-ejb-jar.xml, sun-application-client.xml);
“cmp-resource” on page 338, “mdb-connection-factory” on page 378 (sun-ejb-jar.xml)

348

Sun Java System Application Server Enterprise Edition 8.2 Developer's Guide «

March 2009

http://docs.sun.com/doc/819-4467
http://docs.sun.com/doc/819-4467

Subelements

The following table describes subelements for the default-resource-principal element.

TABLEA-40 default-resource-principal Subelements

Element Required Description
“name” on page 385 only one Specifies the default resource principal name used to sign on to a
resource manager.
“password” on page 389 only one Specifies password of the default resource principal.
description

Specifies a text description of the containing element.

Superelements

“property (with attributes)” on page 393 (sun-web.xml); “activation-config” on page 321,
“method” on page 383 (sun-ejb-jar.xml); “target-server” on page 426 (sun-acc.xml)

Subelements

none - contains data

dispatcher

Specifies a comma-separated list of RequestDispatcher methods for which caching is enabled
on the target resource. Valid values are REQUEST, FORWARD, INCLUDE, and ERROR . If this element
is not specified, the default is REQUEST. See SRV.6.2.5 of the Servlet 2.4 specification for more
information.

Superelements

“cache-mapping” on page 330 (sun-web.xml)

Subelements

none - contains data

drop-tables-at-undeploy

Specifies whether database tables that were automatically created when the bean(s) were last
deployed are dropped when the bean(s) are undeployed. If t rue, drops tables from the database.
If false (the default if this element is not present), does not drop tables.

Appendix A - Deployment Descriptor Files 349

This element can be overridden during deployment. See Table 7-4.

Superelements

“cmp-resource” on page 338 (sun-ejb-jar.xml)

Subelements

none - contains data

ejb

Defines runtime properties for a single enterprise bean within the application. The subelements

listed below apply to particular enterprise beans as follows:

= Alltypes of beans: ejb-name, ejb-ref, resource-ref, resource-env-ref, cmp,
ior-security-config, gen-classes, jndi-name, use-thread-pool-id

= Stateless session beans and message-driven beans: bean-pool

m Stateful session beans: checkpoint-at-end-of-method

= Stateful session beans and entity beans: bean-cache

= Entity beans: commit-option, bean-cache, bean-pool,

is-read-only-bean,

refresh-period-in-seconds, flush-at-end-of-method

u Message—driven beans: mdb-connection-factory, jms-durable-subscription-name,

jms-max-messages-load, bean-pool

Superelements

“enterprise-beans” on page 355 (sun-ejb-jar.xml)

Subelements

The following table describes subelements for the ejb element.

TABLEA-41 ejb Subelements
Element Required Description
“ejb-name” on page 353 only one Matches the ejb-name in the
corresponding ejb-jar.xml file.
350 Sun Java System Application Server Enterprise Edition 8.2 Developer's Guide « March 2009

TABLEA-41 ejb Subelements (Continued)

Element Required Description

“jndi-name” on page 366 Z€ro or more Specifies the absolute jndi-name.

“ejb-ref” on page 354 Zero or more Maps the absolute JNDI name to the
ejb-ref element in the corresponding
J2EE XML file.

“resource-ref” on page 404 Zero or more Maps the absolute JNDI name to the
resource-ref in the corresponding J2EE
XML file.

“resource-env-ref” on page 403 Zero or more Maps the absolute JNDI name to the
resource-env-ref in the corresponding
J2EE XML file.

“service-ref” on page 412 Zero or more Specifies runtime settings for a web service
reference.

“pass-by-reference” on page 388 Zero or one Specifies the passing method used by an
enterprise bean calling a remote interface
method in another bean that is colocated
within the same process.

“cmp” on page 337 Z€ro or one Specifies runtime information for a
container-managed persistence (CMP)
entity bean for EJB 1.1 and EJB 2.1 beans.

“principal” on page 392 Zero or one Specifies the principal (user) name in an
enterprise bean that has the run-as role
specified.

“mdb-connection-factory” on page 378 Zero or one Specifies the connection factory associated
with a message-driven bean.

“jms-durable-subscription-name” on page 365 ZEro or one Specifies the durable subscription
associated with a message-driven bean.

“jms-max-messages-load” on page 365 Zero or one Specifies the maximum number of
messages to load into a Java Message
Service session at one time for a
message-driven bean to serve. The default
is 1.

“ior-security-config” on page 363 ZEero or one Specifies the security information for the
IOR.

“is-read-only-bean” on page 364 Zero or one Specifies that this entity bean is read-only.

“refresh-period-in-seconds” on page 398 Zero or one Specifies the rate at which a
read-only-bean must be refreshed from
the data source.

Appendix A - Deployment Descriptor Files 351

TABLE A-41 ejb Subelements (Continued)

Element Required Description

“commit-option” on page 341 ZE€ro or one Has valid values of B or C. Default value is
B.

“cmt-timeout-in-seconds” on page 340 Zero or one Overrides the Transaction Timeout
setting of the Transaction Service for an
individual bean.

“use-thread-pool-id” on page 430 Z€ro or one Specifies the thread pool from which
threads are selected for remote
invocations of this bean.

“gen-classes” on page 360 ZEero or one Specifies all the generated class names for

abean.

“bean-pool” on page 325

zero or one bean-pool

Specifies the bean pool properties. Used
for stateless session beans, entity beans,
and message-driven bean pools.

“bean-cache” on page 324

zero or one bean-pool

Specifies the bean cache properties. Used
only for stateful session beans and entity
beans.

“mdb-resource-adapter” on page 379

Zero or one

Specifies runtime configuration
information for a message-driven bean.

“webservice-endpoint” on page 433

Zero or more

Specifies information about a web service
endpoint.

“flush-at-end-of-method” on page 360

Zero or one

Specifies the methods that force a database
flush after execution. Used for entity
beans.

“checkpointed-methods” on page 334

Zero or one

Deprecated. Supported for backward
compatibility. Use
“checkpoint-at-end-of-method” on
page 333 instead.

“checkpoint-at-end-of-method” on page 333

Zero or one

Specifies that the stateful session bean
state is checkpointed, or persisted, after
the specified methods are executed. The
availability-enabled attribute must be
setto true.

Attributes

The following table describes attributes for the ejb element.

352 Sun Java System Application Server Enterprise Edition 8.2 Developer's Guide - March 2009

TABLEA-42 ejb Attributes

Attribute

Default Description

availability-enabled false (optional)If set to true, and if availability is enabled in

the EJB container, high-availability features apply to
this bean if it is a stateful session bean.

Example

<ejb>

<ejb-name>CustomerEJB</ejb-name>

<jndi-name>customer</jndi-name>

<resource-ref>
<res-ref-name>jdbc/SimpleBank</res-ref-name>
<jndi-name>jdbc/_ _default</jndi-name>

</resource-ref>

<is-read-only-bean>false</is-read-only-bean>

<commit-option>B</commit-option>

<bean-pool>
<steady-pool-size>10</steady-pool-size>
<resize-quantity>10</resize-quantity>
<max-pool-size>100</max-pool-size>
<pool-idle-timeout-in-seconds>600</pool-idle-timeout-in-seconds>

</bean-pool>

<bean-cache>
<max-cache-size>100</max-cache-size>
<resize-quantity>10</resize-quantity>
<removal-timeout-in-seconds>3600</removal-timeout-in-seconds>
<victim-selection-policy>LRU</victim-selection-policy>

</bean-cache>

</ejb>

ejb-name

In the sun-ejb-jar.xml file, matches the ejb-name in the corresponding ejb-jar.xml file. The
name must be unique among the names of the enterprise beans in the same EJB JAR file.

There is no architected relationship between the ejb-name in the deployment descriptor and
the JNDI name that the deployer assigns to the EJB component’s home.

In the sun-cmp-mappings.xml file, specifies the ejb-name of the entity bean in the ejb-jar.xml
file to which the container-managed persistence (CMP) bean corresponds.

Superelements

“ejb” on page 350, “method” on page 383 (sun-ejb-jar.xml); “entity-mapping” on page 357
(sun-cmp-mappings.xml)

Appendix A - Deployment Descriptor Files 353

Subelements

none - contains data

ejb-ref

Maps the ejb- ref-name in the corresponding J2EE deployment descriptor file ejb- ref entry to
the absolute jndi-name of a resource.

The ejb-ref element is used for the declaration of a reference to an EJB’s home. Applies to
session beans or entity beans.

Superelements

“sun-web-app” on page 423 (sun-web.xml), “ejb” on page 350 (sun-ejb-jar.xml),
“sun-application-client” on page 421 (sun-application-client.xml)

Subelements

The following table describes subelements for the ejb- ref element.

TABLEA-43 ejb-ref Subelements

Element Required Description
“ejb-ref-name” on page 354 only one Specifies the ejb- ref-name in the corresponding J2EE
deployment descriptor file ejb- ref entry.

“jndi-name” on page 366 only one Specifies the absolute jndi-name of a resource.
ejb-ref-name
Specifies the ejb- ref-name in the corresponding J2EE deployment descriptor file ejb- ref
entry.
Superelements
“ejb-ref” on page 354 (sun-web.xml, sun-ejb-jar.xml, sun-application-client.xml)
Subelements
none - contains data

354 Sun Java System Application Server Enterprise Edition 8.2 Developer's Guide « March 2009

endpoint-address-uri

Specifies the relative path combined with the web server root to form the fully qualified
endpoint address for a web service endpoint. This is a required element for EJB endpoints and
an optional element for servlet endpoints.

For servlet endpoints, this value is relative to the web application context root. For EJB
endpoints, the URI is relative to root of the web server (the first portion of the URI is a context
root). The context root portion must not conflict with the context root of any web application
deployed to the same web server.

In all cases, this value must be a fixed pattern (no ”*” allowed).

If the web service endpoint is a servlet that implements only a single endpoint and has only one
url-pattern, itis not necessary to set this value, because the web container derives it from the
web . xml file.

Superelements

“webservice-endpoint” on page 433 (sun-web.xml, sun-ejb-jar.xml)

Subelements

none - contains data

Example
If the web server is listening at http: //localhost: 8080, the following endpoint-address-uri:

<endpoint-address-uri>StockQuoteService/StockQuotePort</endpoint-address-uri>

results in the following target endpoint address:

http://localhost:8080/StockQuoteService/StockQuotePort

enterprise-beans

Specifies all the runtime properties for an EJB JAR file in the application.

Superelements

“sun-ejb-jar” on page 423 (sun-ejb-jar.xml)

Subelements

The following table describes subelements for the enterprise-beans element.

Appendix A - Deployment Descriptor Files 355

TABLEA-44 enterprise-beans Subelements

Element Required Description
“name” on page 385 Zero or one Specifies the name string.
“unique-id” on page 430 Zero or one Specifies a unique system identifier. This data

is automatically generated and updated at
deployment/redeployment. Do not specify or
edit this value.

“ejb” on page 350

Zero or more Defines runtime properties for a single
enterprise bean within the application.

“pm-descriptors” on page 390 Zero or one Deprecated.

“cmp-resource” on page 338 Zero or one Specifies the database to be used for storing
container-managed persistence (CMP) beans
inan EJB JAR file.

“message-destination” on page 380 Zero or more Specifies the name of a logical message
destination.

“webservice-description” on page 432 Zero or more Specifies a name and optional publish

location for a web service.

Example

<enterprise-beans>
<ejb>

<ejb-name>CustomerEJB</ejb-name>
<jndi-name>customer</jndi-name>
<resource-ref>
<res-ref-name>jdbc/SimpleBank</res-ref-name>
<jndi-name>jdbc/ default</jndi-name>
</resource-ref>
<is-read-only-bean>false</is-read-only-bean>
<commit-option>B</commit-option>
<bean-pool>
<steady-pool-size>10</steady-pool-size>
<resize-quantity>10</resize-quantity>
<max-pool-size>100</max-pool-size>
<pool-idle-timeout-in-seconds>600</pool-idle-timeout-in-seconds>
</bean-pool>
<bean-cache>
<max-cache-size>100</max-cache-size>
<resize-quantity>10</resize-quantity>
<removal-timeout-in-seconds>3600</removal-timeout-in-seconds>
<victim-selection-policy>LRU</victim-selection-policy>
</bean-cache>

356 Sun Java System Application Server Enterprise Edition 8.2 Developer's Guide « March 2009

</ejb>
</enterprise-beans>

entity-mapping

Specifies the mapping a bean to database columns.

Superelements

“sun-cmp-mapping” on page 422 (sun-cmp-mappings.xml)

Subelements

The following table describes subelements for the entity-mapping element.

TABLEA-45 entity-mapping Subelements

Element Required Description

“ejb-name” on page 353 only one Specifies the name of the entity bean in the
ejb-jar.xml file to which the CMP bean
corresponds.

“table-name” on page 426 only one Specifies the name of a database table. The
table must be present in the database schema
file.

“cmp-field-mapping” on page 338 one or more Associates a field with one or more columns
to which it maps.

“cmr-field-mapping” on page 339 Zero or more A container-managed relationship field has a
name and one or more column pairs that
define the relationship.

“secondary-table” on page 409 Zero or more Describes the relationship between a bean’s
primary and secondary table.

“consistency” on page 342 Zero or one Specifies container behavior in guaranteeing
transactional consistency of the data in the
bean.

establish-trust-in-client

Specifies if the target is capable of authenticating a client. The values are NONE, SUPPORTED, or
REQUIRED.

Superelements

“transport-config” on page 428 (sun-ejb-jar.xml)

Appendix A - Deployment Descriptor Files 357

358

Subelements

none - contains data

establish-trust-in-target

Specifies if the target is capable of authenticating to a client. The values are NONE, SUPPORTED, or
REQUIRED.

Superelements

“transport-config” on page 428 (sun-ejb-jar.xml)

Subelements

none - contains data

fetched-with

Specifies the fetch group configuration for fields and relationships. The fetched-with element
has different allowed and default subelements based on its parent element and the data types of
the fields.

= Ifthereisno fetched-with subelement of a “cmp-field-mapping” on page 338, and the data
type is not BLOB, CLOB, VARBINARY, LONGVARBINARY, or OTHER, fetched-with
can have any valid subelement. The default subelement is as follows:

<fetched-with><default/></fetched-with>

= Ifthereisno fetched-with subelement of a “cmp-field-mapping” on page 338, and the data
type is BLOB, CLOB, VARBINARY, LONGVARBINARY, or OTHER, fetched-with can
have any valid subelement except <default/>. The default subelement is as follows:

<fetched-with><none/></fetched-with>

= Ifthereisno fetched-with subelement of a “cmr-field-mapping” on page 339,
fetched-with can have any valid subelement. The default subelement is as follows:

<fetched-with><none/></fetched-with>

Managed fields are multiple CMP or CMR fields that are mapped to the same column. A
managed field can have any fetched-with subelement except <default/>. For additional
information, see “Managed Fields” on page 187.

Sun Java System Application Server Enterprise Edition 8.2 Developer's Guide - March 2009

Superelements
“cmp-field-mapping” on page 338, “cmr-field-mapping” on page 339 (sun-cmp-mappings.xml)

Subelements

The following table describes subelements for the fetched-with element.

TABLEA-46 Tfetched-with Subelements

Element Required Description
“default” on page 347 exactly one subelement is Specifies that a CMP field belongs to the default hierarchical
required fetch group, which means it is fetched any time the bean is

loaded from a database. Enables prefetching of a CMR field.

“level” on page 370 exactly one subelement is Specifies the level number of a hierarchical fetch group.
required

“named-group” on page 386 exactly one subelement is Specifies the name of an independent fetch group.
required

“none” on page 386 exactly one subelement is Specifies that this field or relationship is placed into its own
required individual fetch group, which means it is loaded from a

database the first time it is accessed in this transaction.

field-name

Specifies the Java identifier of a field. This identifier must match the value of the field-name
subelement of the cmp-field element in the ejb-jar.xml file.

Superelements
“cmp-field-mapping” on page 338 (sun-cmp-mappings.xml)

Subelements

none - contains data

finder

Describes the finders for CMP 1.1 with a method name and query.

Superelements

“one-one-finders” on page 387 (sun-ejb-jar.xml)

Appendix A - Deployment Descriptor Files 359

Subelements

The following table describes subelements for the finder element.

TABLEA-47 finder Subelements

Element Required Description

“method-name” on page 384 only one Specifies the method name for the finder.

“query-params” on page 396 Zero or one Specifies the query parameters for the CMP 1.1
finder.

“query-filter” on page 395 Z€ro or one Specifies the query filter for the CMP 1.1 finder.

“query-variables” on page 397 Zero or one Specifies variables in query expression for the
CMP 1.1 finder.

“query-ordering” on page 396 Zero or one Specifies the query ordering for the CMP 1.1
finder.

flush-at-end-of-method

Specifies the methods that force a database flush after execution. Applicable to entity beans.

Superelements
“ejb” on page 350 (sun-ejb-jar.xml)

Subelements

The following table describes subelements for the flush-at-end-of-method element.

TABLEA-48 flush-at-end-of-method Subelements

Element Required Description

“method” on page 383 one or more Specifies a bean method.

G

gen-classes

Specifies all the generated class names for a bean.

360 Sun Java System Application Server Enterprise Edition 8.2 Developer's Guide « March 2009

Note - This value is automatically generated by the server at deployment or redeployment time.
Do not specify it or change it after deployment.

Superelements
“ejb” on page 350 (sun-ejb-jar.xml)

Subelements

The following table describes subelements for the gen-class element.

TABLEA-49 gen-classes Subelements

Element Required Description

“remote-impl” on page 399 Zero or one Specifies the fully-qualified class name of the
generated EJBObject impl class.

“local-impl” on page 371 Z€ro or one Specifies the fully-qualified class name of the
generated EJBLocalObject impl class.

“remote-home-impl” on page 399 Zero or one Specifies the fully-qualified class name of the
generated EJBHome impl class.

“local-home-impl” on page 370 Zero or one Specifies the fully-qualified class name of the
generated EJBLocalHome impl class.

group-name

Specifies a group name in the current realm.

Superelements

“security-role-mapping” on page 410 (sun-application.xml, sun-web.xml,
sun-ejb-jar.xml)

Subelements

none - contains data

Appendix A - Deployment Descriptor Files 361

http-method

Specifies an HTTP method that is eligible for caching. The default is GET.

Superelements

“cache-mapping” on page 330 (sun-web. xml)

Subelements

none - contains data

idempotent-url-pattern

Specifies a URL pattern for idempotent requests.

Superelements

“sun-web-app” on page 423 (sun-web. xml)

Subelements

none

Attributes

The following table describes attributes for the idempotent-url-pattern element.

TABLEA-50 idempotent-url-pattern Attributes

Attribute Default

Description

url-pattern none

Specifies a URL pattern, which can contain wildcards. The
URL pattern must conform to the mappings specified in
section SRV 11.2 of the Servlet 2.4 specification.

362 Sun Java System Application Server Enterprise Edition 8.2 Developer's Guide - March 2009

TABLEA-50 idempotent-url-pattern Attributes (Continued)
Attribute Default Description

no-of-retries -1 (optional) Specifies the number of times the load balancer
retries an idempotent request. A value of -1 indicates
infinite retries.

Example

The following example specifies that all requests for the URI sun-java/* are idempotent.

<idempotent-url-pattern url-pattern="sun _java/*" no-of-retries="10"/>

integrity

Specifies if the target supports integrity-protected messages. The values are NONE, SUPPORTED, or
REQUIRED.

Superelements
“transport-config” on page 428 (sun-ejb-jar.xml)

Subelements

none - contains data

ior-security-config

Specifies the security information for the input-output redirection (IOR).

Superelements
“ejb” on page 350 (sun-ejb-jar.xml)

Subelements

The following table describes subelements for the ior-security-config element.

Appendix A - Deployment Descriptor Files 363

TABLEA-51 ior-security-configSubelements
Element Required Description
“transport-config” on page 428 Zero or one Specifies the security information for
transport.
“as-context” on page 322 Z€ro or one Specifies the authentication mechanism used
to authenticate the client. If specified, it is
USERNAME_PASSWORD.
“sas-context” on page 406 Zero or one Describes the sas-context fields.
is-cache-overflow-allowed
This element is deprecated. Do not use.
Superelements
“bean-cache” on page 324 (sun-ejb-jar.xml)
Is-one-one-cmp
This element is not used.
Superelements
“cmp” on page 337 (sun-ejb-jar.xml)
is-read-only-bean
Specifies that this entity bean is a read-only bean if true. If this element is absent, the default
value of false is used.
Superelements
“ejb” on page 350 (sun-ejb-jar.xml)
Subelements
none - contains data
364 Sun Java System Application Server Enterprise Edition 8.2 Developer's Guide « March 2009

java-method

Specifies a method.

Superelements

“message” on page 379 (sun-web.xml, sun-ejb-jar.xml, sun-application-client.xml)

Subelements

The following table describes subelements for the java-method element.

TABLEA-52 java-method Subelements

Element Required Description

“method-name” on page 384 only one Specifies a method name.

“method-params” on page 385 7ero or one Specifies fully qualified Java type names of
method parameters.

jms-durable-subscription-name

Specifies the durable subscription associated with a message-driven bean class. Only applies to
the Java Message Service Topic Destination type, and only when the message-driven bean
deployment descriptor subscription durability is Durable.

Superelements
“ejb” on page 350 (sun-ejb-jar.xml)

Subelements

none - contains data

jms-max-messages-load

Specifies the maximum number of messages to load into a Java Message Service session at one
time for a message-driven bean to serve. The default is 1.

Superelements
“ejb” on page 350 (sun-ejb-jar.xml)

Appendix A - Deployment Descriptor Files 365

366

Subelements

none - contains data

jndi-name
Specifies the absolute jndi-name of a URL resource or a resource.

For entity beans and session beans, this value specifies the global JNDI name of the EJBHome
object. It is only needed if the entity or session bean exposes a remote view.

For JMS message-driven beans, this is the JNDI name of the JMS resource from which the
message-driven bean consumes JMS messages. This information is alternatively specified
within the “activation-config” on page 321 subelement of the “mdb-resource-adapter” on
page 379 element. For more information about JMS resources, see Chapter 14, “Using the Java
Message Service”

Superelements

“ejb-ref” on page 354, “message-destination” on page 380, “resource-env-ref” on page 403,
“resource-ref” on page 404 (sun-web.xml, sun-ejb-jar.xml, sun-application-client.xml);
“cmp-resource” on page 338, “ejb” on page 350, “mdb-connection-factory” on page 378
(sun-ejb-jar.xml)

Subelements

none - contains data

jsp-config

Specifies JSP configuration information.

Superelements

“sun-web-app” on page 423 (sun-web. xml)

Subelements

The following table describes subelements for the jsp-config element.

Sun Java System Application Server Enterprise Edition 8.2 Developer's Guide - March 2009

TABLEA-53 jsp-config Subelements

Element Required Description
“property (with attributes)” on Zero or more Specifies a property.
page 393

Properties

The default property values are tuned for development of JSP files at the cost of performance.
To maximize performance, set jsp-config properties to these non-default values:

= development - false (asan alternative, set to true and give modificationTestIntervala

large value)
® mappedfile- false
® trimSpaces - true
B suppressSmap - true

= fork - false (on Solaris)

classdebuginfo - false

The following table describes properties for the jsp-config element.

TABLEA-54 jsp-configProperties

Property Default Description

checkInterval 0 If development is set to false and
checkIntervalis greater than zero,
background compilations are enabled. The
checkInterval is the time in seconds
between checks to see if a JSP file needs to be
recompiled.

classdebuginfo true Specifies whether the generated Java servlets
are compiled with the debug option set (-g
for javac).

classpath created dynamically based on the current | Specifies the classpath to use when compiling

web application generated servlets.
compiler javac Specifies the compiler Ant uses to compile

JSP files. See the Ant documentation for
more information:

http://antinstaller.sourceforge.net/
manual/manual/

Appendix A - Deployment Descriptor Files

367

http://antinstaller.sourceforge.net/manual/manual/
http://antinstaller.sourceforge.net/manual/manual/

TABLEA-54 jsp-config Properties (Continued)

Property Default Description

development true If set to true, enables development mode,
which allows JSP files to be checked for
modification. Specify the frequency at which
JSPs are checked using the
modificationTestInterval property.

dumpSmap false If set to true, dumps SMAP information for
JSR 45 debugging to a file. Set to false if
suppressSmap is true.

enablePooling true If set to true, tag handler pooling is enabled.

errorOnUseBeanInvalid false If set to true, issues an error when the value
ClassAttribute of the class attribute in a useBean action is
not a valid bean class.

fork true Specifies that Ant forks the compiling of JSP
files, using a JVM separate from the one in
which Tomcat is running.

genStrAsCharArray false If set to true, generates text strings as char
arrays, which improves performance in some
cases.

ieClassId clsid:8AD9C840-044E Specifies the Java plug-in COM class ID for
-11D1-B3E9-00805F499D93 Internet Explorer. Used by the
<jsp:plugin>tags.

javaEncoding UTF8 Specifies the encoding for the generated Java
servlet. This encoding is passed to the Java
compiler that is used to compile the servlet as
well. By default, the web container tries to
use UTF8. If that fails, it tries to use the
javaEncoding value.

For encodings, see:

http://java.sun.com/j2se/1.4/docs/
guide/intl/encoding.doc.html

keepgenerated true If set to true, keeps the generated Java files. If
false, deletes the Java files.

mappedfile true If set to true, generates static content with
one print statement per input line, to ease
debugging.

368 Sun Java System Application Server Enterprise Edition 8.2 Developer's Guide « March 2009

http://java.sun.com/j2se/1.4/docs/guide/intl/encoding.doc.html
http://java.sun.com/j2se/1.4/docs/guide/intl/encoding.doc.html

TABLEA-54 jsp-config Properties (Continued)
Property Default Description

modificationTestInterval 0 Specifies the frequency in seconds at which
JSPs are checked for modification. A value of
0 causes the JSP to be checked on every
access. Used only if development is set to
true.

scratchdir The default work directory for the web Specifies the working directory created for
application storing all the generated code.

suppressSmap false If set to true, generation of SMAP
information for JSR 45 debugging is
suppressed.

trimSpaces false If set to true, trims white spaces in template
text between actions or directives.

usePrecompiled false If set to true, an accessed JSP file is not
compiled. Its precompiled servlet class is
used instead.

It is assumed that JSP files have been
precompiled, and their corresponding
servlet classes have been bundled in the web
application’s WEB- INF/1ib or
WEB-INF/classes directory.

xpoweredBy true If set to true, the X-Powered-By response
header is added by the generated servlet.

key-field

Specifies a component of the key used to look up and extract cache entries. The web container
looks for the named parameter, or field, in the specified scope.

If this element is not present, the web container uses the Servlet Path (the path section that
corresponds to the servlet mapping that activated the current request). See the Servlet 2.4
specification, section SRV 4.4, for details on the Servlet Path.

Superelements

“cache-mapping” on page 330 (sun-web.xml)

Appendix A - Deployment Descriptor Files 369

Subelements

none

Attributes

The following table describes attributes for the key- field element.

TABLEA-55 key-field Attributes

Attribute Default Description
name none Specifies the input parameter name.
scope request.parameter (optional) Specifies the scope from which the input

parameter is retrieved. Allowed values are
context.attribute, request.header,
request.parameter, request.cookie, session.id,
and session.attribute.

level

Specifies the name of a hierarchical fetch group. The name must be an integer. Fields and
relationships that belong to a hierarchical fetch group of equal (or lesser) value are fetched at the
same time. The value of level must be greater than zero. Only one is allowed.

Superelements
“fetched-with” on page 358 (sun-cmp-mappings.xml)

Subelements

none - contains data

local-home-impl

Specifies the fully-qualified class name of the generated EJBLocalHome impl class.

370 Sun Java System Application Server Enterprise Edition 8.2 Developer's Guide - March 2009

Note - This value is automatically generated by the server at deployment or redeployment time.
Do not specify it or change it after deployment.

Superelements

“gen-classes” on page 360 (sun-ejb-jar.xml)

Subelements

none - contains data

local-impl

Specifies the fully-qualified class name of the generated EJBLocalObject impl class.

Note - This value is automatically generated by the server at deployment or redeployment time.
Do not specify it or change it after deployment.

Superelements

“gen-classes” on page 360 (sun-ejb-jar.xml)

Subelements

none - contains data

locale-charset-info

Deprecated. For backward compatibility only. Use the “parameter-encoding” on page 387
subelement of “sun-web-app” on page 423 instead. Specifies information about the application’s
internationalization settings.

Superelements

“sun-web-app” on page 423 (sun-web. xml)

Subelements

The following table describes subelements for the locale-charset-info element.

Appendix A - Deployment Descriptor Files 371

TABLEA-56 locale-charset-info Subelements

Element Required Description

“locale-charset-map” on page 372 one or more Maps alocale and an agent to a character encoding.
Provided for backward compatibility. Used only for
request processing, and only if no
parameter-encoding is defined.

“parameter-encoding” on page 387 Zero or one Determines the default request character encoding

and how the web container decodes parameters
from forms according to a hidden field value.

Attributes

The following table describes attributes for the locale-charset-info element.

TABLEA-57 locale-charset-info Attributes

Attribute Default Description
default-locale none Although a value is required, the value is ignored. Use the
default-charset attribute of the “parameter-encoding” on
page 387 element.
locale-charset-map

Maps locales and agents to character encodings. Provided for backward compatibility. Used
only for request processing. Used only if the character encoding is not specified in the request
and cannot be derived from the optional “parameter-encoding” on page 387 element. For
encodings, see http://java.sun.com/j2se/1.4/docs/guide/int1l/encoding.doc.html.

Superelements

“locale-charset-info” on page 371 (sun-web. xml)

Subelements

The following table describes subelements for the locale-charset-map element.

TABLEA-58 locale-charset-map Subelements

Element Required

Description

“description” on page 349 Zero or one

Specifies an optional text description of a mapping.

Attributes

The following table describes attributes for the locale-charset-map element.

372 Sun Java System Application Server Enterprise Edition 8.2 Developer's Guide - March 2009

http://java.sun.com/j2se/1.4/docs/guide/intl/encoding.doc.html

TABLEA-59 locale-charset-map Attributes

Attribute Default Description
locale none Specifies the locale name.
agent none (optional) Specifies the type of client that interacts with the application

server. For a given locale, different agents can have different preferred
character encodings. The value of this attribute must exactly match the
value of the user-agent HTTP request header sent by the client. See
Table A-60 for more information.

charset none Specifies the character encoding to which the locale maps.

Example Agents

The following table specifies example agent attribute values.

TABLEA-60 Example agent Attribute Values

Agent user-agent Header and agent Attribute Value

Internet Explorer 5.00 for Windows 2000 Mozilla/4.0 (compatible; MSIE 5.01; Windows NT 5.0)

Netscape4.7.7forWindowsZOOO Mozilla/4.77 [en] (Windows NT 5.0; U)

Netscape 4.7 for Solaris Mozilla/4.7 [en] (X11; u; Sun 0S 5.6 sun4du)
localpart

Specifies the local part of a QNAME.

Superelements

“service-qname” on page 411, “wsdl-port” on page 435 (sun-web.xml, sun-ejb-jar.xmt,
sun-application-client.xml)

Subelements

none - contains data

lock-when-loaded

Places a database update lock on the rows corresponding to the bean whenever the bean is
loaded. How the lock is placed is database-dependent. The lock is released when the transaction
finishes (commit or rollback). While the lock is in place, other database users have read access
to the bean.

Appendix A - Deployment Descriptor Files 373

TABLE A-61

Superelements

“consistency” on page 342 (sun-cmp-mappings.xml)

Subelements

none - element is present or absent

lock-when-modified

This element is not implemented. Do not use.

Superelements

“consistency” on page 342 (sun-cmp-mappings.xml)

log-service

Specifies configuration settings for the log file.

Superelements

“client-container” on page 335 (sun-acc.xml)

Subelements

The following table describes subelements for the log-service element.

log-service subelement

Element

Required Description

“property (with attributes)” on page 393 Zero or more Specifies a property, which has a name and a

value.

374

Attributes

The following table describes attributes for the Log-service element.

Sun Java System Application Server Enterprise Edition 8.2 Developer's Guide - March 2009

TABLEA-62 log-serviceattributes

Attribute Default Description

log-file your-ACC-dir/logs/client. log (optional) Specifies the file where the
application client container logging
information is stored.

level SEVERE (optional) Sets the base level of severity.
Messages at or above this setting get logged to
the log file.

L]
login-config

Specifies the authentication configuration for an EJB web service endpoint. Not needed for
servlet web service endpoints. A servlet’s security configuration is contained in the web . xm1 file.

Superelements

“webservice-endpoint” on page 433 (sun-web.xml, sun-ejb-jar.xml)

Subelements

The following table describes subelements for the login-config element.

TABLEA-63 login-configsubelements

Element Required Description
“auth-method” on page 323 only one Specifies the authentication method.
manager-properties

Specifies session manager properties.

Superelements

“session-manager” on page 415 (sun-web. xml)

Subelements

The following table describes subelements for the manager-properties element.

Appendix A - Deployment Descriptor Files

375

TABLEA-64 manager-properties Subelements

Element

Required

Description

“property (with attributes)” on
page 393

Zero or more

Specifies a property, which has a name and a value.

Properties

The following table describes properties for the manager-properties element.

TABLEA-65 manager-properties Properties

Property

Default

Description

reapIntervalSeconds

60

Specifies the number of seconds between
checks for expired sessions. This is also the
interval at which sessions are passivated if
maxSessions is exceeded.

If persistenceFrequency is set to
time-based, active sessions are stored at this
interval.

To prevent data inconsistency, set this value
lower than the frequency at which session
data changes. For example, this value should
be as low as possible (1 second) for a hit
counter servlet on a frequently accessed web
site, or the last few hits might be lost each
time the server is restarted.

Applicable only if the persistence-type
attribute of the parent “session-manager” on
page 415 element is file or ha.

maxSessions

Specifies the maximum number of sessions
that are permitted in the cache, or -1 for no
limit. After this, an attempt to create a new
session causes an I1legalStateException
to be thrown.

The session manager passivates sessions to
the persistent store when this maximum is
reached.

Applicable only if the persistence-type
attribute of the parent “session-manager” on
page 415 element is file or ha.

376 Sun Java System Application Server Enterprise Edition 8.2 Developer's Guide - March 2009

TABLEA-65 manager-properties Properties (Continued)
Property Default Description
sessionFilename none; state is not preserved Specifies the absolute or relative path to the

across restarts

directory in which the session state is
preserved between application restarts, if
preserving the state is possible. A relative

path is relative to the temporary directory

for this web application.

Applicable only if the persistence-type

attribute of the parent “session-manager” on

page 415 element is memory.

persistenceFrequency web-method

Specifies how often the session state is
stored. Allowed values are as follows:

B yeb-method - The session state is stored

at the end of each web request prior to

sending a response back to the client.

This mode provides the best guarantee

that the session state is fully updated in

case of failure.

B time-based - The session state is stored

in the background at the frequency set
by reapIntervalSeconds. This mode

provides less of a guarantee that the

session state is fully updated. However,

it can provide a significant performance

improvement because the state is not
stored after each request.

Applicable only if the
persistence-type attribute of the

parent “session-manager” on page 415

element is ha.

mapping-properties

This element is not implemented.

Superelements
“cmp” on page 337 (sun-ejb-jar.xml)

Appendix A - Deployment Descriptor Files

377

max-cache-size

Specifies the maximum number of beans allowable in cache. A value of zero indicates an
unbounded cache. In reality, there is no hard limit. The max-cache-size limit is just a hint to the
cache implementation. Default is 512.

Applies to stateful session beans and entity beans.

Superelements

“bean-cache” on page 324 (sun-ejb-jar.xml)

Subelements

none - contains data

max-pool-size

Specifies the maximum number of bean instances in the pool. Values are from 0 (1 for
message-driven bean) to MAX_INTEGER. A value of 0 means the pool is unbounded. Default
is 64.

Applies to all beans.

Superelements
“bean-pool” on page 325 (sun-ejb-jar.xml)

Subelements

none - contains data

max-wait-time-in-millis

This element is deprecated. Do not use.

Superelements
“bean-pool” on page 325 (sun-ejb-jar.xml)

mdb-connection-factory

Specifies the connection factory associated with a message-driven bean. Queue or Topic type
must be consistent with the Java Message Service Destination type associated with the
message-driven bean class.

378 Sun Java System Application Server Enterprise Edition 8.2 Developer's Guide - March 2009

Superelements
“ejb” on page 350 (sun-ejb-jar.xml)

Subelements

The following table describes subelements for the mdb-connection-factory element.

TABLEA-66 mdb-connection-factory Subelements

Element Required Description

“jndi-name” on page 366 only one Specifies the absolute jndi-name.

“default-resource-principal” on page 348 Zero or one Specifies the default sign-on
(name/password) to the resource manager.

mdb-resource-adapter

Specifies runtime configuration information for a message-driven bean.

Superelements
“ejb” on page 350 (sun-ejb-jar.xml)

Subelements

The following table describes subelements for the mdb- resource-adapter element.

TABLEA-67 mdb-resource-adapter subelements

Element Required Description
“resource-adapter-mid” on page 402 Zero or one Specifies a resource adapter module ID.
“activation-config” on page 321 one or more Specifies an activation configuration.

Specifies the methods or operations to which message security requirements apply.

Superelements

“message-security” on page 381 (sun-web.xml, sun-ejb-jar.xml,
sun-application-client.xml)

Appendix A - Deployment Descriptor Files 379

Subelements

The following table describes subelements for the message element.

TABLEA-68 message Subelements

Element Required Description

“java-method” on page 365 Zero or one Specifies the methods or operations to which
message security requirements apply.

“operation-name” on page 387 Z€ero or one Specifies the WSDL name of an operation of a
web service.

message-destination

Specifies the name of a logical message -destination defined within an application. The
message-destination-name matches the corresponding message-destination-name in the
corresponding J2EE deployment descriptor file.

Superelements

“sun-web-app” on page 423 (sun-web. xml), “enterprise-beans” on page 355
(sun-ejb-jar.xml), “sun-application-client” on page 421 (sun-application-client.xml)

Subelements

The following table describes subelements for the message-destination element.

TABLEA-69 message-destinationsubelements

Element Required Description

“message-destination-name” on page 380 only one Specifies the name of a logical message
destination defined within the
corresponding J2EE deployment
descriptor file.

“jndi-name” on page 366 only one Specifies the jndi-name of the associated
entity.

message-destination-name

Specifies the name of a logical message destination defined within the corresponding J2EE
deployment descriptor file.

380 Sun Java System Application Server Enterprise Edition 8.2 Developer's Guide « March 2009

Superelements

“message-destination” on page 380 (sun-web.xml, sun-ejb-jar.xml,
sun-application-client.xml)

Subelements

none - contains data

message-security

Specifies message security requirements.

= Ifthe grandparent element is “webservice-endpoint” on page 433, these requirements
pertain to request and response messages of the endpoint.

= Ifthe grandparent element is “port-info” on page 391, these requirements pertain to the port
of the referenced service.

Superelements

“message-security-binding” on page 381 (sun-web.xml, sun-ejb-jar.xml,
sun-application-client.xml)

Subelements

The following table describes subelements for the message-security element.

TABLEA-70 message-security Subelements

Element Required Description

“message” on page 379 one or more Specifies the methods or operations to which
message security requirements apply.

“request-protection” on page 400 Zero or one Defines the authentication policy requirements of
the application’s request processing.

“response-protection” on page 405 Zero or one Defines the authentication policy requirements of
the application’s response processing.

message-security-binding
Specifies a custom authentication provider binding for a parent “webservice-endpoint” on
page 433 or “port-info” on page 391 element in one or both of these ways:

= By binding to a specific provider
= By specifying the message security requirements enforced by the provider

Appendix A - Deployment Descriptor Files 381

Superelements

“webservice-endpoint” on page 433, “port-info” on page 391 (sun-web.xml, sun-ejb-jar.xml,
sun-application-client.xml)

Subelements

The following table describes subelements for the message-security-binding element.

TABLEA-71 message-security-binding Subelements

Element Required Description

“message-security” on page 381 Zero or more Specifies message security requirements.

Attributes

The following table describes attributes for the message-security-binding element.

TABLEA-72 message-security-binding Attributes

Attribute Default Description

auth-layer none Specifies the message layer at which authentication is
performed. The value must be SOAP.

provider-id none (optional) Specifies the authentication provider used
to satisfy application-specific message security
requirements.

If this attribute is not specified, a default provider is
used, if it is defined for the message layer.

if no default provider is defined, authentication
requirements defined in the
message-security-binding are not enforced.

message-security-config

Specifies configurations for message security providers.

Superelements

“client-container” on page 335 (sun-acc.xml)

Subelements

The following table describes subelements for the message-security-config element.

382 Sun Java System Application Server Enterprise Edition 8.2 Developer's Guide - March 2009

TABLEA-73 message-security-configSubelements

Element Required

Description

“provider-config” on page 394

one or more

Specifies a configuration for one message security
provider.

Attributes

The following table describes attributes for the message-security-config element.

TABLEA-74 message-security-config Attributes

Attribute Default Description

auth-layer none Specifies the message layer at which authentication is
performed. The value must be SOAP.

default-provider none (optional) Specifies the server provider that is
invoked for any application not bound to a specific
server provider.

default-client-provider none (optional) Specifies the client provider that is

invoked for any application not bound to a specific
client provider.

method

Specifies a bean method.

Superelements

“flush-at-end-of-method” on page 360 (sun-ejb-jar.xml)

Subelements

The following table describes subelements for the method element.

TABLEA-75 method Subelements

Element Required Description

“description” on page 349 Zero or one Specifies an optional text description.

“ejb-name” on page 353 Zero or one Matches the ejb-name in the corresponding
ejb-jar.xml file.

“method-name” on page 384 only one Specifies a method name.

Appendix A - Deployment Descriptor Files

383

TABLEA-75 method Subelements (Continued)
Element Required Description
“method-intf” on page 384 Zero or one Specifies the method interface to distinguish
between methods with the same name in different
interfaces.
“method-params” on page 385 Zero or one Specifies fully qualified Java type names of
method parameters.

384

method-intf

Specifies the method interface to distinguish between methods with the same name in different
interfaces. Allowed values are Home, Remote, LocalHome, and Local.

Superelements
“method” on page 383 (sun-ejb-jar.xml)

Subelements

none - contains data

method-name

Specifies a method name or * (an asterisk) for all methods. If a method is overloaded, specifies
all methods with the same name.

Superelements

“java-method” on page 365 (sun-web.xml, sun-ejb-jar.xml, sun-application-client.xml);
“finder” on page 359, “query-method” on page 396, “method” on page 383 (sun-ejb-jar.xml)

Subelements

none - contains data

Examples

<method-name>findTeammates</method-name>

<method-name>*</method-name>

method-param

Specifies the fully qualified Java type name of a method parameter.

Sun Java System Application Server Enterprise Edition 8.2 Developer's Guide - March 2009

Superelements

“method-params” on page 385 (sun-web.xml, sun-ejb-jar.xml,
sun-application-client.xml)

Subelements

none - contains data

method-params

Specifies fully qualified Java type names of method parameters.

Superelements

“java-method” on page 365 (sun-web.xml, sun-ejb-jar.xml, sun-application-client.xml);
“query-method” on page 396, “method” on page 383 (sun-ejb-jar.xml)

Subelements

The following table describes subelements for the method-params element.

TABLEA-76 method-params Subelements

Element Required Description
“method-param” on page 384 Zero or more Specifies the fully qualified Java type name of a
method parameter.

name

Specifies the name of the entity.

Superelements

“call-property” on page 331, “default-resource-principal” on page 348, “stub-property” on
page 420 (sun-web.xml, sun-ejb-jar.xml, sun-application-client.xml);
“enterprise-beans” on page 355, “principal” on page 392, “property (with subelements)” on
page 394 (sun-ejb-jar.xml)

Subelements

none - contains data

Appendix A - Deployment Descriptor Files 385

386

named-group

Specifies the name of one independent fetch group. All the fields and relationships that are part
of anamed group are fetched at the same time. A field belongs to only one fetch group,
regardless of what type of fetch group is used.

Superelements
“fetched-with” on page 358 (sun-cmp-mappings.xml)

Subelements

none - contains data

namespaceURI

Specifies the namespace URL

Superelements

“service-qname” on page 411, “wsdl-port” on page 435 (sun-web.xml, sun-ejb-jar.xmt,
sun-application-client.xml)

Subelements

none - contains data

none

Specifies that this field or relationship is fetched by itself, with no other fields or relationships.

Superelements
“consistency” on page 342, “fetched-with” on page 358 (sun-cmp-mappings.xml)

Subelements

none - element is present or absent

Sun Java System Application Server Enterprise Edition 8.2 Developer's Guide - March 2009

one-one-finders

Describes the finders for CMP 1.1 beans.

Superelements
“cmp” on page 337 (sun-ejb-jar.xml)

Subelements

The following table describes subelements for the one-one- finders element.

TABLEA-77 one-one-finders Subelements

Element Required Description
“finder” on page 359 one or more Describes the finders for CMP 1.1 with a method name and
query.
operation-name

Specifies the WSDL name of an operation of a web service.

Superelements

“message” on page 379 (sun-web.xml, sun-ejb-jar.xml, sun-application-client.xml)

Subelements

none - contains data

parameter-encoding

Specifies the default request character encoding and how the web container decodes parameters
from forms according to a hidden field value.

If both the “sun-web-app” on page 423 and “locale-charset-info” on page 371 elements have
parameter-encoding subelements, the subelement of sun-web-app takes precedence. For
encodings, see http://java.sun.com/j2se/1.4/docs/guide/int1l/encoding.doc.html.

Appendix A - Deployment Descriptor Files 387

http://java.sun.com/j2se/1.4/docs/guide/intl/encoding.doc.html

Superelements

“locale-charset-info” on page 371, “sun-web-app” on page 423 (sun-web.xml)

Subelements

none

Attributes

The following table describes attributes for the parameter-encoding element.

TABLEA-78 parameter-encoding Attributes

Attribute Default Description

form-hint-field none (optional) The name of the hidden field in the form.
This field specifies the character encoding the web
container uses for request.getParameter and
request.getReader calls when the charset is not set in
the request’s content - type header.

default-charset 1S0-8859-1 (optional) The default request character encoding.

pass-by-reference

388

Specifies the passing method used by a servlet or enterprise bean calling a remote interface
method in another bean that is colocated within the same process.

= If false (the default if this element is not present), this application uses pass-by-value

semantics.

= Iftrue, this application uses pass-by-reference semantics.

Sun Java System Application Server Enterprise Edition 8.2 Developer's Guide - March 2009

Note - The pass -by- reference element only applies to remote calls. As defined in the EJB 2.1
specification, section 5.4, calls to local interfaces use pass-by-reference semantics.

If the pass-by-reference element is set to its default value of false, the passing semantics for
calls to remote interfaces comply with the EJB 2.1 specification, section 5.4. If set to true,
remote calls involve pass-by-reference semantics instead of pass-by-value semantics, contrary
to this specification.

Portable programs cannot assume that a copy of the object is made during such a call, and thus
that it’s safe to modify the original. Nor can they assume that a copy is not made, and thus that
changes to the object are visible to both caller and callee. When this element is set to true,
parameters and return values should be considered read-only. The behavior of a program that
modifies such parameters or return values is undefined.

When a servlet or enterprise bean calls a remote interface method in another bean that is
colocated within the same process, by default the Application Server makes copies of all the call
parameters in order to preserve the pass-by-value semantics. This increases the call overhead
and decreases performance.

However, if the calling method does not change the object being passed as a parameter, it is safe
to pass the object itself without making a copy of it. To do this, set the pass-by-reference value to
true.

The setting of this element in the sun-application.xml file applies to all EJB modules in the
application. For an individually deployed EJB module, you can set the same element in the
sun-ejb-jar.xml file. If pass-by- reference is used at both the bean and application level, the
bean level takes precedence.

Superelements

“sun-application” on page 420 (sun-application.xml), “ejb” on page 350 (sun-ejb-jar.xml)

Subelements

none - contains data

password

Specifies the password for the principal.

Superelements

“default-resource-principal” on page 348 (sun-web.xml, sun-ejb-jar.xml,
sun-application-client.xml)

Appendix A - Deployment Descriptor Files 389

Subelements

none - contains data

pm-descriptors

This element and its subelements are deprecated. Do not use.

Superelements

“enterprise-beans” on page 355 (sun-ejb-jar.xml)

pool-idle-timeout-in-seconds

Specifies the maximum time, in seconds, that a bean instance is allowed to remain idle in the
pool. When this timeout expires, the bean instance in a pool becomes a candidate for
passivation or deletion. This is a hint to the server. A value of 0 specifies that idle beans remain
in the pool indefinitely. Default value is 600.

Applies to stateless session beans, entity beans, and message-driven beans.

Note - For a stateless session bean or a message-driven bean, the bean is removed (garbage
collected) when the timeout expires.

Superelements
“bean-pool” on page 325 (sun-ejb-jar.xml)

Subelements

none - contains data

port-component-name

Specifies a unique name for a port component within a web or EJB module.

Superelements

“webservice-endpoint” on page 433 (sun-web.xml, sun-ejb-jar.xml)

Subelements

none - contains data

390 Sun Java System Application Server Enterprise Edition 8.2 Developer's Guide « March 2009

port-info
Specifies information for a port within a web service reference.

Eithera service-endpoint-interface or awsdl-port or both must be specified. If both are
specified, wsdl-port specifies the port that the container chooses for container-managed port
selection.

The same wsdl-port value must not appear in more than one port-info element within the
same service-ref.

Ifaservice-endpoint-interface is using container-managed port selection, its value must
not appear in more than one port-info element within the same service- ref.

Superelements

“service-ref” on page 412 (sun-web.xml, sun-ejb-jar.xml, sun-application-client.xml)

Subelements

The following table describes subelements for the port-info element.

TABLEA-79 port-infosubelements

Element Required Description

“service-endpoint-interface” on page 411 7ero or one Specifies the web service reference name
relative to java: comp/env.

“wsdl-port” on page 435 Z€ro or one Specifies the WSDL port.

“stub-property” on page 420 Zero or more Specifies JAX-RPC property values that are
setona javax.xml.rpc.Stub object before
itis returned to the web service client.

“call-property” on page 331 Z€ro or more Specifies JAX-RPC property values that are
setona javax.xml.rpc.Call object before
itis returned to the web service client.

“message-security-binding” on page 381 Zero or one Specifies a custom authentication provider
binding.

prefetch-disabled

Disables prefetching of entity bean states for the specified query methods. Container-managed
relationship fields are prefetched if their “fetched-with” on page 358 element is set to “default”
on page 347.

Appendix A - Deployment Descriptor Files 391

Superelements

“cmp” on page 337 (sun-ejb-jar.xml)

Subelements

The following table describes subelements for the prefetch-disabled element.

TABLEA-80 prefetch-disabled Subelements

Element

Required Description

“query-method” on page 396

one or more Specifies a query method.

principal

Defines a node that specifies a user name on the platform.

Superelements
“ejb” on page 350 (sun-ejb-jar.xml)

Subelements

The following table describes subelements for the principal element.

TABLEA-81 principal Subelements

Element Required Description
“name” on page 385 only one Specifies the name of the user.
principal-name

392

Contains the principal (user) name.

In an enterprise bean, specifies the principal (user) name that has the run-as role specified.

Superelements

“security-role-mapping” on page 410 (sun-application.xml, sun-web.xml,
sun-ejb-jar.xml), “servlet” on page 413 (sun-web.xml)

Subelements

none - contains data

Sun Java System Application Server Enterprise Edition 8.2 Developer's Guide - March 2009

property (with attributes)

Specifies the name and value of a property. A property adds configuration information to its
parent element that is one or both of the following:

= Optional with respect to Application Server

= Needed by a system or object that Application Server doesn’t have knowledge of, such as an
LDAP server or a Java class

Superelements

“cache” on page 326, “cache-helper” on page 328, “class-loader” on page 334,
“cookie-properties” on page 345, “default-helper” on page 347, “manager-properties” on

page 375, “session-properties” on page 415, “store-properties” on page 418, “sun-web-app” on
page 423 (sun-web.xml); “auth-realm” on page 323, “client-container” on page 335,
“client-credential” on page 337, “log-service” on page 374, “provider-config” on page 394
(sun-acc.xml)

Subelements

The following table describes subelements for the property element.

TABLEA-82 property Subelements

Element

Required Description

“description” on page 349 Z€ro or one Specifies an optional text description of a property.

Note - The property element in the sun-acc. xml file has no subelements.

Attributes

The following table describes attributes for the property element.

TABLEA-83 property Attributes

Attribute Default Description
name none Specifies the name of the property.
value none Specifies the value of the property.

Example

<property name="reapIntervalSeconds" value="20" />

Appendix A - Deployment Descriptor Files 393

property (with subelements)

Specifies the name and value of a property. A property adds configuration information to its
parent element that is one or both of the following:

m Optional with respect to Application Server

= Needed by a system or object that Application Server doesn’t have knowledge of, such as an
LDAP server or a Java class

Superelements

“cmp-resource” on page 338, “schema-generator-properties” on page 407 (sun-ejb-jar.xml)

Subelements

The following table describes subelements for the property element.

TABLEA-84 property subelements

Element Required Description
“name” on page 385 only one Specifies the name of the property.
“value” on page 431 only one Specifies the value of the property.

394

Example

<property>
<name>use-unique-table-names</name>
<value>true</value>

</property>

provider-config
Specifies a configuration for one message security provider.

Although the request-policy and response-policy subelements are optional, the
provider-config element does nothing if they are not specified.

Use property subelements to configure provider-specific properties. Property values are passed
to the provider when its initialize method is called.

Superelements

“message-security-config” on page 382 (sun-acc.xml)

Sun Java System Application Server Enterprise Edition 8.2 Developer's Guide - March 2009

Subelements

The following table describes subelements for the provider-config element.

TABLEA-85 provider-configSubelements

Element Required Description

“request-policy” on page 400 Zero or one Defines the authentication policy requirements of
the authentication provider’s request processing.

“response-policy” on page 405 Z€ro Or one Defines the authentication policy requirements of
the authentication provider’s response
processing.

“property (with attributes)” on page 393 Z€ero or more Specifies a property or a variable.

Attributes

The following table describes attributes for the provider-config element.

TABLEA-86 provider-config Attributes

Attribute Default Description
provider-id none Specifies the provider ID.
provider-type none Specifies whether the providerisa client, server, or

client-server authentication provider.

class-name

none Specifies the Java implementation class of the provider. Client
authentication providers must implement the
com.sun.enterprise.security.jauth.ClientAuthModule
interface. Server authentication providers must implement the
com.sun.enterprise.security.jauth.ServerAuthModule
interface. Client-server providers must implement both
interfaces.

query-filter

Specifies the query filter for the CMP 1.1 finder.

Superelements
“finder” on page 359 (sun-ejb-jar.xml)

Appendix A - Deployment Descriptor Files 395

Subelements

none - contains data

query-method

Specifies a query method.

Superelements
“prefetch-disabled” on page 391 (sun-ejb-jar.xml)

Subelements

The following table describes subelements for the query-method element.

TABLEA-87 query-method Subelements

Element Required Description
“method-name” on page 384 only one Specifies a method name.
“method-params” on page 385 only one Specifies the fully qualified Java type names of
method parameters.
query-ordering
Specifies the query ordering for the CMP 1.1 finder.
Superelements
“finder” on page 359 (sun-ejb-jar.xml)
Subelements
none - contains data
query-params
Specifies the query parameters for the CMP 1.1 finder.
Superelements
“finder” on page 359 (sun-ejb-jar.xml)
396 Sun Java System Application Server Enterprise Edition 8.2 Developer's Guide « March 2009

Subelements

none - contains data

query-variables

Specifies variables in the query expression for the CMP 1.1 finder.

Superelements
“finder” on page 359 (sun-ejb-jar.xml)

Subelements

none - contains data

read-only

Specifies that a field is read-only if true. If this element is absent, the default value is false.

Superelements
“cmp-field-mapping” on page 338 (sun-cmp-mappings.xml)

Subelements

none - contains data

realm

Specifies the name of the realm used to process all authentication requests associated with this
application. If this element is not specified or does not match the name of a configured realm,
the default realm is used. For more information about realms, see “Realm Configuration” on
page 48.

Superelements
“sun-application” on page 420 (sun-application.xml), “as-context” on page 322

(sun-ejb-jar.xml)

Appendix A - Deployment Descriptor Files 397

Subelements

none - contains data

refresh-field

Specifies a field that gives the application component a programmatic way to refresh a cached
entry.

Superelements

“cache-mapping” on page 330 (sun-web. xml)

Subelements

none

Attributes

The following table describes attributes for the refresh-field element.

TABLEA-88 refresh-field Attributes
Attribute Default Description
name none Specifies the input parameter name.
scope request.parameter (optional) Specifies the scope from which the input
parameter is retrieved. Allowed values are
context.attribute, request.header,
request.parameter, request.cookie, session.id,
and session.attribute.
L] L]
refresh-period-in-seconds
Specifies the rate at which a read-only-bean must be refreshed from the data source. If the value
is less than or equal to zero, the bean is never refreshed; if the value is greater than zero, the bean
instances are refreshed at the specified interval. This rate is just a hint to the container. Default
is 0 (no refresh).
Superelements
“ejb” on page 350 (sun-ejb-jar.xml)
Subelements
none - contains data
398 Sun Java System Application Server Enterprise Edition 8.2 Developer's Guide « March 2009

removal-timeout-in-seconds

Specifies the amount of time a bean instance can remain idle in the container before it is
removed (timeout). A value of 0 specifies that the container does not remove inactive beans
automatically. The default value is 5400.

If removal-timeout-in-seconds isless than or equal to cache-idle-timeout-in-seconds,
beans are removed immediately without being passivated.

Applies to stateful session beans.

For related information, see “cache-idle-timeout-in-seconds” on page 329.

Superelements

“bean-cache” on page 324 (sun-ejb-jar.xml)

Subelements

none - contains data

remote-home-impl

Specifies the fully-qualified class name of the generated EJBHome imp1 class.

Note - This value is automatically generated by the server at deployment or redeployment time.
Do not specify it or change it after deployment.

Superelements

“gen-classes” on page 360 (sun-ejb-jar.xml)

Subelements

none - contains data

remote-impl

Specifies the fully-qualified class name of the generated EJBObject impl class.

Appendix A - Deployment Descriptor Files 399

Note - This value is automatically generated by the server at deployment or redeployment time.
Do not specify it or change it after deployment.

Superelements

“gen-classes” on page 360 (sun-ejb-jar.xml)

Subelements

none - contains data

request-policy

Defines the authentication policy requirements of the authentication provider’s request
processing.

Superelements

“provider-config” on page 394 (sun-acc.xml)

Subelements

none

Attributes

The following table describes attributes for the request-policy element.

TABLEA-89 request-policy Attributes

Attribute Default Description

auth-source none Specifies the type of required authentication, either
sender (user name and password) or content
(digital signature).

auth-recipient none Specifies whether recipient authentication occurs
before or after content authentication. Allowed
values are before-content and after-content.

request-protection

Defines the authentication policy requirements of the application’s request processing.

400 Sun Java System Application Server Enterprise Edition 8.2 Developer's Guide « March 2009

Superelements

“message-security” on page 381 (sun-web.xml, sun-ejb-jar.xml,
sun-application-client.xml)

Subelements

none

Attributes

The following table describes attributes for the request-protection element.

TABLEA-90 request-protection Attributes

Attribute

Default Description

auth-source

none Specifies the type of required authentication, either
sender (user name and password) or content
(digital signature).

auth-recipient

none Specifies whether recipient authentication occurs
before or after content authentication. Allowed
values are before-content and after-content.

required

Specifies whether the authentication method specified must be used for client authentication.
The value is true or false.

Superelements

“as-context” on page 322 (sun-ejb-jar.xml)

Subelements

none - contains data

res-ref-name

Specifies the res-ref -name in the corresponding J2EE deployment descriptor file
resource-ref entry. The res- ref-name element specifies the name of a resource manager
connection factory reference. The name must be unique within an enterprise bean.

Superelements

“resource-ref” on page 404 (sun-web.xml, sun-ejb-jar.xml, sun-application-client.xml)

Appendix A - Deployment Descriptor Files 401

Subelements

none - contains data

resize-quantity
Specifies the number of bean instances to be:

= Created, if a request arrives when the pool has less than “steady-pool-size” on page 417
quantity of beans (applies to pools only for creation). If the pool has more than
steady-pool-size minus “resize-quantity” on page 402 of beans, then resize-quantity is
still created.

= Removed, when the “pool-idle-timeout-in-seconds” on page 390 timer expires and a cleaner
thread removes any unused instances.

= For caches, when “max-cache-size” on page 378 is reached, resize-quantity beansare
selected for passivation using the “victim-selection-policy” on page 431. In addition, the
“cache-idle-timeout-in-seconds” on page 329 or “removal-timeout-in-seconds” on
page 399 timers passivate beans from the cache.

= For pools, when the “max-pool-size” on page 378 is reached, resize-quantity beans
are selected for removal. In addition, the “pool-idle-timeout-in-seconds” on page 390
timer removes beans until steady-pool-sizeisreached.

Values are from 0 to MAX_INTEGER. The pool is not resized below the steady-pool-size.
Defaultis 16.

Applies to stateless session beans, entity beans, and message-driven beans.

For EJB pools, the value can be defined in the EJB container. Default is 16.

For EJB caches, the value can be defined in the EJB container. Default is 32.

For message-driven beans, the value can be defined in the EJB container. Default is 2.

Superelements
“bean-cache” on page 324, “bean-pool” on page 325 (sun-ejb-jar.xml)

Subelements

none - contains data

resource-adapter-mid

Specifies the module ID of the resource adapter that is responsible for delivering messages to
the message-driven bean.

402 Sun Java System Application Server Enterprise Edition 8.2 Developer's Guide - March 2009

Superelements

“mdb-resource-adapter” on page 379 (sun-ejb-jar.xml)

Subelements

none - contains data

resource-env-ref

Maps the res-ref-name in the corresponding J2EE deployment descriptor file
resource-env-ref entry to the absolute jndi-name of a resource.

Superelements

“sun-web-app” on page 423 (sun-web. xml), “ejb” on page 350 (sun-ejb-jar.xml),
“sun-application-client” on page 421 (sun-application-client.xml)

Subelements

The following table describes subelements for the resource-env-ref element.

TABLEA-91 resource-env-ref Subelements
Element Required Description
“resource-env-ref-name” on page 403 only one Specifies the res - ref-name in the
corresponding J2EE deployment descriptor
file resource-env-ref entry.
“jndi-name” on page 366 only one Specifies the absolute jndi-name of a
resource.

Example

<resource-env-ref>
<resource-env-ref-name>jms/StockQueueName</resource-env-ref-name>
<jndi-name>jms/StockQueue</jndi-name>

</resource-env-ref>

resource-env-ref-name

Specifies the res- ref-name in the corresponding J2EE deployment descriptor file
resource-env-ref entry.

Appendix A - Deployment Descriptor Files 403

Superelements

“resource-env-ref” on page 403 (sun-web.xml, sun-ejb-jar.xml,
sun-application-client.xml)

Subelements

none - contains data

resource-ref

Maps the res-ref-name in the corresponding J2EE deployment descriptor file resource-ref
entry to the absolute jndi-name of a resource.

Note - Connections acquired from JMS connection factories are not shareable in the current
release of the Application Server. The res-sharing-scope elementin the ejb-jar.xml file
resource-ref element is ignored for JMS connection factories.

When resource-ref specifies a JMS connection factory for the Sun Java System Message
Queue, the default-resource-principal (name/password) must exist in the Message Queue
user repository. Refer to the Security Management chapter in the Sun Java System Message
Queue 3.7 URL Administration Guide for information on how to manage the Message Queue
user repository.

Superelements

“sun-web-app” on page 423 (sun-web.xml), “ejb” on page 350 (sun-ejb-jar.xml),
“sun-application-client” on page 421 (sun-application-client.xml)

Subelements

The following table describes subelements for the resource- ref element.

TABLEA-92 resource-ref Subelements
Element Required Description
“res-ref-name” on page 401 only one Specifies the res- ref-name in the corresponding
J2EE deployment descriptor file resource- ref
entry.
“jndi-name” on page 366 only one Specifies the absolute jndi-name of a resource.
“default-resource-principal” on page 348 Z€ro or one Specifies the default principal (user) for the
resource.
404 Sun Java System Application Server Enterprise Edition 8.2 Developer's Guide « March 2009

http://docs.sun.com/doc/819-4467
http://docs.sun.com/doc/819-4467

Example

<resource-ref>

<res-ref-name>jdbc/EmployeeDBName</res-ref-name>

<jndi-name>jdbc/EmployeeDB</jndi-name>

</resource-ref>

response-policy

Defines the authentication policy requirements of the authentication provider’s response

processing.

Superelements

“provider-config” on page 394 (sun-acc.xml)

Subelements

none

Attributes

The following table describes attributes for the response-policy element.

TABLEA-93 response-policy Attributes

Attribute Default Description

auth-source none Specifies the type of required authentication, either
sender (user name and password) or content
(digital signature).

auth-recipient none Specifies whether recipient authentication occurs
before or after content authentication. Allowed
values are before-content and after-content.

tection

Defines the authentication policy requirements of the application’s response processing.

Superelements

“message-security” on page 381 (sun-web.xml, sun-ejb-jar.xmi,

sun-application-client.xml)

Subelements

none

Appendix A - Deployment Descriptor Files

405

Attributes

The following table describes attributes for the response-protection element.

TABLEA-94 response-protection Attributes

Attribute Default Description

auth-source none Specifies the type of required authentication, either
sender (user name and password) or content
(digital signature).

auth-recipient none Specifies whether recipient authentication occurs
before or after content authentication. Allowed
values are before-content and after-content.

role-name

Contains the role-name in the security-role element of the corresponding J2EE deployment
descriptor file.

Superelements

“security-role-mapping” on page 410 (sun-application.xml, sun-web.xml,
sun-ejb-jar.xml)

Subelements

none - contains data

sas-context

Describes the sas-context fields.

Superelements

“ior-security-config” on page 363 (sun-ejb-jar.xml)

Subelements

The following table describes subelements for the sas - context element.

406 Sun Java System Application Server Enterprise Edition 8.2 Developer's Guide « March 2009

TABLEA-95 sas-context Subelements

Element

Required Description

“caller-propagation” on page 331 only one Specifies whether the target accepts

propagated caller identities. The values are
NONE, SUPPORTED, or REQUIRED.

schema

Specifies the file that contains a description of the database schema to which the beans in this
sun-cmp-mappings.xml file are mapped. If this element is empty, the database schema file is
automatically generated at deployment time. Otherwise, the schema element names a
.dbschenma file with a pathname relative to the directory containing the sun-cmp-mappings.xml
file, but without the . dbschema extension. See “Automatic Database Schema Capture” on

page 194.

Superelements

“sun-cmp-mapping” on page 422 (sun-cmp-mappings.xml)

Subelements

none - contains data

Examples
<schema/> <!-- use automatic schema generation -->
<schema>CompanySchema</schema> <!-- use "CompanySchema.dbschema" -->

schema-generator-properties

Specifies field-specific column attributes in property subelements.

Superelements

“cmp-resource” on page 338 (sun-ejb-jar.xml)

Subelements

The following table describes subelements for the schema-generator-properties element.

Appendix A - Deployment Descriptor Files 407

TABLEA-96 schema-generator-properties Subelements

Element

Required

Description

“property (with subelements)” on page 394

Zero or more

Specifies a property name and value.

Properties

The following table describes properties for the schema-generator-properties element.

TABLEA-97 schema-generator-properties Properties

Property Default Description

use-unique-table-names false Specifies that generated table names are unique
within each application server domain. This
property can be overridden during deployment.
See Table 7-4.

bean-name . field-name. attribute none Defines a column attribute. For attribute

descriptions, see Table A-98.

The following table lists the column attributes for properties defined in the
schema-generator-properties element.

TABLEA-98 schema-generator-properties Column Attributes

Attribute

Description

jdbc-type

Specifies the JDBC type of the column created for the CMP
field. The actual SQL type generated is based on this JDBC type
but is database vendor specific.

jdbc-maximum-length

Specifies the maximum number of characters stored in the
column corresponding to the CMP field. Applies only when
the actual SQL that is generated for the column requires a
length.

For example, a jdbc-maximum-length of 32 ona CMP String
field such as firstName normally results in a column
definition such as VARCHAR(32). But if the jdbc-type is
CLOB and you are deploying on Oracle, the resulting column
definition is CLOB. No length is given, because in an Oracle
database, a CLOB has no length.

jdbc-precision

Specifies the maximum number of digits stored in a column
which represents a numeric type.

jdbc-scale

Specifies the number of digits stored to the right of the decimal
point in a column that represents a floating point number.

408 Sun Java System Application Server Enterprise Edition 8.2 Developer's Guide « March 2009

TABLEA-98 schema-generator-properties Column Attributes (Continued)
Attribute Description
jdbc-nullable Specifies whether the column generated for the CMP field
allows null values.

Example
<schema-generator-properties>
<property>
<name>Employee. firstName. jdbc-type</name>
<value>char</value>
</property>
<property>
<name>Employee. firstName. jdbc-maximum-length</name>
<value>25</value>
</property>
<property>
<name>use-unique-table-names</name>
<value>true</value>
</property>

</schema-generator-properties>

secondary-table

Specifies a bean’s secondary table(s).

Superelements
“entity-mapping” on page 357 (sun-cmp-mappings.xml)

Subelements

The following table describes subelements for the secondary-table element.

TABLE A-99 secondary table Subelements

Element Required Description

“table-name” on page 426 only one Specifies the name of a database table.

“column-pair” on page 341 one or more Specifies the pair of columns that determine the
relationship between two database tables.

security

Defines the SSL security configuration for IIOP/SSL communication with the target server.

Appendix A - Deployment Descriptor Files

409

Superelements

“target-server” on page 426 (sun-acc.xml)

Subelements

The following table describes subelements for the security element.

TABLEA-100 security Subelements

Element Required Description
“ss1” on page 416 only one Specifies the SSL processing parameters.
“cert-db” on page 332 only one Not implemented. Included for backward compatibility only.

security-role-mapping

Maps roles to users or groups in the currently active realm. See “Realm Configuration” on
page 48.

The role mapping element maps a role, as specified in the EJB JAR role-name entries, to a
environment-specific user or group. If it maps to a user, it must be a concrete user which exists
in the current realm, who can log into the server using the current authentication method. If it
maps to a group, the realm must support groups and the group must be a concrete group which
exists in the current realm. To be useful, there must be at least one user in that realm who
belongs to that group.

Superelements

“sun-application” on page 420 (sun-application.xml), “sun-web-app” on page 423
(sun-web.xml), “sun-ejb-jar” on page 423 (sun-ejb-jar.xml)

Subelements

The following table describes subelements for the security-role-mapping element.

TABLEA-101 security-role-mapping Subelements

Element Required Description

“role-name” on page 406 only one Contains the role-name in the
security-role element of the
corresponding J2EE deployment
descriptor file.

410 Sun Java System Application Server Enterprise Edition 8.2 Developer's Guide - March 2009

TABLEA-101 security-role-mapping Subelements (Continued)

Element Required Description

“principal-name” on page 392 | one or more if no group-name, otherwise zero or more Contains a principal (user) name in
the current realm. In an enterprise
bean, the principal must have the
run-as role specified.

“group-name” on page 361 one or more if no principal-name, otherwise zero or more | Contains a group name in the
current realm.

service-endpoint-interface

Specifies the web service reference name relative to java: comp/env.

Superelements

“port-info” on page 391 (sun-web.xml, sun-ejb-jar.xml, sun-application-client.xml)

Subelements

none - contains data

service-impl-class

Specifies the name of the generated service implementation class.

Superelements

“service-ref” on page 412 (sun-web.xml, sun-ejb-jar.xml, sun-application-client.xml)

Subelements

none - contains data

service-ghame

Specifies the WSDL service element that is being referred to.

Superelements

“service-ref” on page 412 (sun-web.xml, sun-ejb-jar.xml, sun-application-client.xml);
“webservice-endpoint” on page 433 (sun-web.xml, sun-ejb-jar.xml)

Subelements

The following table describes subelements for the service-qgname element.

Appendix A - Deployment Descriptor Files 411

TABLEA-102 service-gname subelements

Element Required Description

“namespaceURI” on page 386 only one Specifies the namespace URL

“localpart” on page 373 only one Specifies the local part of a QNAME.
service-ref

Specifies runtime settings for a web service reference. Runtime information is only needed in
the following cases:

= To define the port used to resolve a container-managed port

= To define the default Stub/Call property settings for Stub objects

®m To define the URL of a final WSDL document to be used instead of the one associated with
the service-ref in the standard J2EE deployment descriptor

Superelements

“sun-web-app” on page 423 (sun-web.xml), “ejb” on page 350 (sun-ejb-jar.xml),
“sun-application-client” on page 421 (sun-application-client.xml)

Subelements

The following table describes subelements for the service- ref element.

TABLEA-103 service-ref subelements

Element

Required

Description

“service-ref-name” on page 413

only one

Specifies the web service reference name relative to
java:comp/env.

“port-info” on page 391

Z€ro Or more

Specifies information for a port within a web service
reference.

“call-property” on page 331

Zero or more

Specifies JAX-RPC property values that can be set
ona javax.xml.rpc.Call object before itis
returned to the web service client.

“wsdl-override” on page 434 Zero or one Specifies a valid URL pointing to a final WSDL
document.
“service-impl-class” on page 411 Z€ro or one Specifies the name of the generated service

implementation class.

412 Sun Java System Application Server Enterprise Edition 8.2 Developer's Guide - March 2009

TABLEA-103 service-ref subelements (Continued)
Element Required Description
“service-qname” on page 411 Zero or one Specifies the WSDL service element that is being
referenced.
L]
service-ref-name

Specifies the web service reference name relative to java: comp/env.

Superelements

“service-ref” on page 412 (sun-web.xml, sun-ejb-jar.xml, sun-application-client.xml)

Subelements

none - contains data

serviet

Specifies a principal name for a servlet. Used for the run-as role defined in web-xml.

Superelements

“sun-web-app” on page 423 (sun-web. xml)

Subelements

The following table describes subelements for the servlet element.

TABLEA-104 servlet Subelements

Element Required Description

“servlet-name” on page 414 only one Contains the name of a servlet, which is matched
toaservlet-nameinweb.xml.

“principal-name” on page 392 Z€ro or one Contains a principal (user) name in the current
realm.

“webservice-endpoint” on page 433 Zero or more Specifies information about a web service
endpoint.

servlet-impl-class

Specifies the automatically generated name of the servlet implementation class.

Appendix A - Deployment Descriptor Files 413

Superelements

“webservice-endpoint” on page 433 (sun-web.xml, sun-ejb-jar.xml)

Subelements

none - contains data

servlet-name

Specifies the name of a servlet, which is matched to a servlet-name in web.xml. This name
must be present in web . xm1.

Superelements

“cache-mapping” on page 330, “servlet” on page 413 (sun-web.xml)

Subelements

none - contains data

session-config

Specifies session configuration information. Overrides the web container settings for an
individual web application.

Superelements

“sun-web-app” on page 423 (sun-web. xml)

Subelements

The following table describes subelements for the session-config element.

TABLEA-105 session-configSubelements

Element Required Description
session-manager” on page 415 Zero or one Specifies session manager configuration
information.
“session-properties” on page 415 Z€ro or one Specifies session properties.
“cookie-properties” on page 345 Zero or one Specifies session cookie properties.

414 Sun Java System Application Server Enterprise Edition 8.2 Developer's Guide - March 2009

session-manager

Specifies session manager information.

Superelements

“session-config” on page 414 (sun-web.xml)

Subelements

The following table describes subelements for the session-manager element.

TABLEA-106 session-manager Subelements

Element Required Description

“manager-properties” on page 375 Zero or one Specifies session manager properties.

“store-properties” on page 418 Zero or one Specifies session persistence (storage) properties.
Attributes

The following table describes attributes for the session-manager element.

TABLEA-107 session-manager Attributes

Attribute Default Description

persistence-type memory (optional) Specifies the session persistence
mechanism. Allowed values are memory ,file, and
ha.

For production environments that require session
persistence, use ha.

session-properties

Specifies session properties.

Superelements

“session-config” on page 414 (sun-web.xml)

Subelements

The following table describes subelements for the session-properties element.

Appendix A - Deployment Descriptor Files 415

TABLEA-108 session-properties Subelements

Element

Required

Description

“property (with attributes)” on

Zero or more

page 393

Specifies a property, which has a name and a value.

Properties

The following table describes properties for the session-properties element.

TABLEA-109 session-properties Properties

Property

Default

Description

timeoutSeconds

1800

Specifies the default maximum inactive interval
(in seconds) for all sessions created in this web
module. If set to 0 or less, sessions in this web
module never expire.

Ifasession-timeout element is specified in the
web.xml file, the session-timeout value
overrides any timeoutSeconds value. If neither
session-timeout nor timeoutSeconds is
specified, the timeoutSeconds default is used.

Note that the session-timeout element in
web . xml is specified in minutes, not seconds.

enableCookies

true

Uses cookies for session tracking if set to true.

enableURLRewriting

true

Enables URL rewriting. This provides session
tracking via URL rewriting when the browser
does not accept cookies. You must also use an
encodeURL or encodeRedirectURL call in the
servlet or JSP.

416

ssl

Defines SSL processing parameters.

Superelements

“security” on page 409 (sun-acc.xml)

Subelements

none

Sun Java System Application Server Enterprise Edition 8.2 Developer's Guide - March 2009

Attributes
The following table describes attributes for the SSL element.

TABLE A-110 ssl attributes

Attribute

Default Description

cert-nickname

none (optional) The nickname of the server certificate in
the certificate database or the PKCS#11 token. In the
certificate, the name format is tokenname: nickname.
Including the tokenname: part of the name in this
attribute is optional.

ssl2-enabled

false (optional) Determines whether SSL2 is enabled.

ssl2-ciphers

none (optional) A space-separated list of the SSL2 ciphers
used with the prefix + to enable or - to disable. For
example, +rc4. Allowed values are rc4, rcdexport,
rc2, rc2export, idea, des, desede3.

ssl3-enabled

true (optional) Determines whether SSL3 is enabled.

ssl3-tls-ciphers

none (optional) A space-separated list of the SSL3 ciphers
used, with the prefix + to enable or - to disable, for
example +rsa_des_sha. Allowed SSL3 values are
rsa rc4 128 md5, , rsa des sha,

rsa rc4 40 md5, rsa rc2 40 md5,

rsa_null md5. Allowed TLS values are

rsa des 56 sha, rsa rc4 56 sha.

tls-enabled

true (optional) Determines whether TLS is enabled.

tls-rollback-enabled true (optional) Determines whether TLS rollback is

enabled. Enable TLS rollback for Microsoft Internet
Explorer 5.0 and 5.5.

steady-pool-size

Specifies the initial and minimum number of bean instances that are maintained in the pool.
Default is 32. Applies to stateless session beans and message-driven beans.

Superelements
“bean-pool” on page 325 (sun-ejb-jar.xml)

Subelements

none - contains data

Appendix A - Deployment Descriptor Files 417

store-properties

Specifies session persistence (storage) properties.

Superelements

“session-manager” on page 415 (sun-web.xml)

Subelements

The following table describes subelements for the store-properties element.

TABLEA-111 store-properties Subelements

Element Required Description
“property (with attributes)” on Zero or more Specifies a property, which has a name and a value.
page 393

Properties

The following table describes properties for the store-properties element.

TABLEA-112 store-properties Properties

Property Default Description
directory domain-dir/generated/jsp/ Specifies the absolute or relative pathname
j2ee-apps/app-name/app-name_war of the directory into which individual

session files are written. A relative path is
relative to the temporary work directory
for this web application.

Applicable only if the persistence-type
attribute of the parent “session-manager”
on page 415 element is file.

418 Sun Java System Application Server Enterprise Edition 8.2 Developer's Guide - March 2009

TABLEA-112 store-properties Properties (Continued)
Property Default Description
persistenceScope session Specifies how much of the session state is

stored. Allowed values are as follows:

B session - The entire session state is
stored every time. This mode provides
the best guarantee that your session
data is correctly stored for any
distributable web application.

B modified-session - The entire
session state is stored if it has been
modified. A session is considered to
have been modified if
HttpSession.setAttribute() or
HttpSession.removeAttribute()
was called. You must guarantee that
setAttribute() is called every time
an attribute is changed. This is nota
J2EE specification requirement, but it
is required for this mode to work
properly.

® modified-attribute - Only modified
session attributes are stored. For this
mode to work properly, you must
follow some guidelines, which are
explained immediately following this
table.

Applicable only if the
persistence-type attribute of the
parent “session-manager” on page 415
element is ha.

If the persistenceScope store property is set tomodified-attribute, a web application must
follow these guidelines:

= Call setAttribute() every time the session state is modified.

= Make sure there are no cross-references between attributes. The object graph under each
distinct attribute key is serialized and stored separately. If there are any object cross
references between the objects under each separate key, they are not serialized and
deserialized correctly.

= Distribute the session state across multiple attributes, or at least between a read-only
attribute and a modifiable attribute.

Appendix A - Deployment Descriptor Files 419

stub-property

Specifies JAX-RPC property values that are set on a javax.xml. rpc.Stub object before it is
returned to the web service client. The property names can be any properties supported by the
JAX-RPC Stub implementation.

Superelements

“port-info” on page 391 (sun-web.xml, sun-ejb-jar.xml, sun-application-client.xml)

Subelements

The following table describes subelements for the stub-property element.

TABLEA-113 stub-property subelements

Element Required Description

“name” on page 385 only one Specifies the name of the entity.

“value” on page 431 only one Specifies the value of the entity.
Example

<service-ref>
<service-ref-name>service/FooProxy</service-ref-name>
<port-info>
<service-endpoint-interface>a.FooPort</service-endpoint-interface>
<wsdl-port>
<namespaceURI>urn:Foo</namespaceURI>
<localpart>FooPort</localpart>
</wsdl-port>
<stub-property>
<name>javax.xml.rpc.service.endpoint.address</name>
<value>http://localhost:8080/a/Foo</value>
</stub-property>
</port-info>
</service-ref>

sun-application

Defines the Application Server specific configuration for an application. This is the root
element; there can only be one sun-application elementina sun-application.xml file. See
“The sun-application.xml File” on page 307.

Superelements

none

420 Sun Java System Application Server Enterprise Edition 8.2 Developer's Guide - March 2009

Subelements

The following table describes subelements for the sun-application element.

TABLEA-114 sun-application Subelements

Element Required Description

“web” on page 432 Zero or more Specifies the application’s web tier
configuration.

“pass-by-reference” on page 388 Z€ro Or one Determines whether EJB modules use
pass-by-value or pass-by-reference semantics.

“unique-id” on page 430 Zero or one Contains the unique ID for the application.

“security-role-mapping” on page 410 Zero or more Maps arole in the corresponding J2EE XML
file to a user or group.

“realm” on page 397 Z€ro or one Specifies an authentication realm.

sun-application-client

Defines the Application Server specific configuration for an application client. This is the root
element; there can only be one sun-application-client elementina
sun-application-client.xml file. See “The sun-application-client.xml file” on page 319.

Superelements

none

Subelements

The following table describes subelements for the sun-application-client element.

TABLEA-115 sun-application-client subelements

Element Required Description

“ejb-ref” on page 354 Zero or more Maps the absolute JNDI name to the ejb-ref in
the corresponding J2EE XML file.

“resource-ref” on page 404 Zero or more Maps the absolute JNDI name to the
resource-ref in the corresponding J2EE XML
file.

Appendix A - Deployment Descriptor Files

421

TABLEA-115 sun-application-client subelements (Continued)

Element Required Description

“resource-env-ref” on page 403 Zero or more Maps the absolute JNDI name to the
resource-env-ref in the corresponding J2EE
XML file.

“service-ref” on page 412 Zero or more Specifies runtime settings for a web service
reference.

“message-destination” on page 380 Zero or more Specifies the name of a logical message
destination.

]

TABLEA-116 sun-cmp-

Specifies beans mapped to a particular database schema.

Note — A bean cannot be related to a bean that maps to a different database schema, even if the
beans are deployed in the same EJB JAR file.

Superelements

“sun-cmp-mappings” on page 422 (sun-cmp-mappings.xml)

Subelements

The following table describes subelements for the sun-cmp-mapping element.

mapping Subelements

Element Required Description
“schema” on page 407 only one Specifies the file that contains a description of the
database schema.
“entity-mapping” on page 357 one or more Specifies the mapping of a bean to database columns.
L]
sun-cmp-mappings

422

Defines the Application Server specific CMP mapping configuration for an EJB JAR file. This is
the root element; there can only be one sun-cmp-mappings elementina
sun-cmp-mappings.xml file. See “The sun-cmp-mappings.xml File” on page 315.

Superelements

none

Sun Java System Application Server Enterprise Edition 8.2 Developer's Guide - March 2009

Subelements

The following table describes subelements for the sun-cmp-mappings element.

TABLEA-117 sun-cmp-mappings Subelements

Element Required Description

“sun-cmp-mapping” on page 422 one or more Specifies beans mapped to a particular
database schema.

sun-ejb-jar

Defines the Application Server specific configuration for an EJB JAR file. This is the root
element; there can only be one sun-ejb-jar elementina sun-ejb-jar.xml file. See “The
sun-ejb-jar.xml File” on page 310.

Superelements

none

Subelements

The following table describes subelements for the sun-ejb- jar element.

TABLEA-118 sun-ejb-jar Subelements

Element Required Description

“security-role-mapping” on page 410 Zero or more Maps arole in the corresponding J2EE XML
file to a user or group.

“enterprise-beans” on page 355 only one Describes all the runtime properties for an
EJBJAR file in the application.

sun-web-app

Defines Application Server specific configuration for a web module. This is the root element;
there can only be one sun-web-app element in a sun-web . xml file. See “The sun-web.xml File
on page 307.

»

Superelements

none

Subelements

The following table describes subelements for the sun-web-app element.

Appendix A - Deployment Descriptor Files 423

TABLEA-119 sun-web-app Subelements

Element

Required

Description

“context-root” on page 345

Zero or one

Contains the web context root for the web
application.

“security-role-mapping” on page 410

Zero or more

Maps roles to users or groups in the currently
active realm.

“servlet” on page 413

Zero or more

Specifies a principal name for a servlet, which
is used for the run-as role defined in web . xml.

“idempotent-url-pattern” on page 362

Zero or more

Specifies a URL pattern for idempotent
requests.

“session-config” on page 414

Zero or one

Specifies session manager, session cookie, and
other session-related information.

“ejb-ref” on page 354

Zero or more

Maps the absolute JNDI name to the ejb-ref
in the corresponding J2EE XML file.

“resource-ref” on page 404

Zero or more

Maps the absolute JNDI name to the
resource-ref in the corresponding J2EE
XML file.

“resource-env-ref” on page 403

Zero or more

Maps the absolute JNDI name to the
resource-env-ref in the corresponding
J2EE XML file.

“service-ref” on page 412

Zero or more

Specifies runtime settings for a web service
reference.

“cache” on page 326 Zero or one Configures caching for web application
components.

“class-loader” on page 334 Zero or one Specifies class loader configuration
information.

“jsp-config” on page 366 Z€ro or one Specifies JSP configuration information.

“locale-charset-info” on page 371 Z€ero or one Deprecated. Use the parameter-encoding

subelement of sun-web-app instead.

“property (with attributes)” on page 393

Zero or more

Specifies a property, which has a name and a
value.

“parameter-encoding” on page 387

Zero or one

Determines the default request character
encoding and how the web container decodes
parameters from forms according to a hidden
field value.

“message-destination” on page 380

Zero or more

Specifies the name of a logical message
destination.

424 Sun Java System Application Server Enterprise Edition 8.2 Developer's Guide - March 2009

TABLEA-119 sun-web-app Subelements (Continued)
Element Required Description
“webservice-description” on page 432 Z€ro or more Specifies a name and optional publish
location for a web service.

Attributes

The following table describes attributes for the sun-web-app element.

TABLEA-120 sun-web-app Attributes

Attribute

Default

Description

error-url

(blank)

(optional) Specifies a redirect URL in
case of an error.

Properties

The following table describes properties for the sun-web-app element.

TABLEA-121 sun-web-app Properties

Property

Default

Description

allowLinking

true

If true, resources in this web
application that are symbolic links
are served.

crossContextAllowed

true

If true, allows this web application
to access the contexts of other web
applications using the
ServletContext.

getContext () method.

relativeRedirectAllowed

false

If true, allows this web application
to send a relative URL to the client
using HttpServletResponse.
sendRedirect (), and instructs the
web container not to translate any
relative URLs to fully qualified
ones.

reuseSessionID

false

If true, sessions generated for this
web application use the session ID
specified in the request.

Appendix A - Deployment Descriptor Files

425

TABLEA-121 sun-web-app Properties (Continued)
Property Default Description
singleThreadedServletPoolSize 5 Specifies the maximum number of
servlet instances allocated for each
SingleThreadModel servlet in the
web application.
tempdir domain-dir/generated/ Specifies a temporary directory for
j2ee-apps/app-name use by this web module. This value
is used to construct the value of the
or javax.servlet.context.tempdir
domain-dir/generated/ context attribute. Compiled JSP
j2ee-modules/module-name files are also placed in this
directory.
useResponseCTForHeaders false If true, response headers are
encoded using the response’s
charset instead of the default
(UTE-8).

table-name

Specifies the name of a database table. The table must be present in the database schema file. See
“Automatic Database Schema Capture” on page 194.

Superelements
“entity-mapping” on page 357, “secondary-table” on page 409 (sun-cmp-mappings.xml)

Subelements

none - contains data

target-server
Defines the IIOP listener configuration of the target server.

Not used if the endpoints property is defined for load balancing. For more information, see
“client-container” on page 335.

Superelements

“client-container” on page 335 (sun-acc.xml)

426 Sun Java System Application Server Enterprise Edition 8.2 Developer's Guide - March 2009

Subelements

The following table describes subelements for the target-server element.

TABLEA-122 target-server subelements

Element Required Description
“description” on page 349 Zero or one Specifies the description of the target server.
“security” on page 409 Zero or one Specifies the security configuration for the
IIOP/SSL communication with the target server.
Attributes
The following table describes attributes for the target-server element.
TABLEA-123 target-serverattributes
Attribute Default Description
name none Specifies the name of the application server instance accessed by the
client container.
address none Specifies the host name or IP address (resolvable by DNS) of the server
to which this client attaches.
port none Specifies the naming service port number of the server to which this

client attaches.

For a new server instance, assign a port number other than 3700. You
can change the port number in the Administration Console. See the Sun
Java System Application Server Enterprise Edition 8.2 Administration
Guide for more information.

tie-class

Specifies the automatically generated name of a tie implementation class for a port component.

Superelements

“webservice-endpoint” on page 433 (sun-web.xml, sun-ejb-jar.xml)

Subelements

none - contains data

Appendix A - Deployment Descriptor Files 427

http://docs.sun.com/doc/819-4733
http://docs.sun.com/doc/819-4733
http://docs.sun.com/doc/819-4733

timeout
Specifies the “cache-mapping” on page 330 specific maximum amount of time in seconds that

an entry can remain in the cache after it is created or refreshed. If not specified, the default is the
value of the timeout attribute of the “cache” on page 326 element.

Superelements

“cache-mapping” on page 330 (sun-web. xml)

Subelements

none - contains data

Attributes

The following table describes attributes for the timeout element.

TABLEA-124 timeout Attributes

Attribute Default Description

name none Specifies the timeout input parameter, whose value
is interpreted in seconds. The field’s type must be
java.lang.Longor java.lang.Integer.

scope request.attribute (optional) Specifies the scope from which the input
parameter is retrieved. Allowed values are
context.attribute, request.header,
request.parameter, request.cookie,
request.attribute,and session.attribute.

transport-config

Specifies the security transport information.

Superelements

“ior-security-config” on page 363 (sun-ejb-jar.xml)

Subelements

The following table describes subelements for the transport-config element.

428 Sun Java System Application Server Enterprise Edition 8.2 Developer's Guide - March 2009

TABLEA-125 transport-config Subelements

Element Required Description

“integrity” on page 363 only one Specifies if the target supports
integrity-protected messages. The values are
NONE, SUPPORTED, or REQUIRED.

“confidentiality” on page 342 only one Specifies if the target supports
privacy-protected messages. The values are
NONE, SUPPORTED, or REQUIRED.

“establish-trust-in-target” on page 358 only one Specifies if the target is capable of
authenticating o a client. The values are
NONE, SUPPORTED, or REQUIRED.

“establish-trust-in-client” on page 357 only one Specifies if the target is capable of
authenticating a client. The values are NONE,
SUPPORTED, or REQUIRED.

transport-guarantee

Specifies that the communication between client and server is NONE, INTEGRAL, or
CONFIDENTIAL.

= NONE means the application does not require any transport guarantees.

= INTEGRAL means the application requires that the data sent between client and server be sent
in such a way that it can’t be changed in transit.

= CONFIDENTIAL means the application requires that the data be transmitted in a fashion that
prevents other entities from observing the contents of the transmission.

In most cases, a value of INTEGRAL or CONFIDENTIAL indicates that the use of SSL is required.

Superelements

“webservice-endpoint” on page 433 (sun-web.xml, sun-ejb-jar.xml)

Subelements

none - contains data

Appendix A - Deployment Descriptor Files 429

430

unique-id

Contains the unique ID for the application. This value is automatically updated each time the
application is deployed or redeployed. Do not edit this value.

Superelements

“sun-application” on page 420 (sun-application.xml), “enterprise-beans” on page 355
(sun-ejb-jar.xml)

Subelements

none - contains data

url-pattern

Specifies a servlet URL pattern for which caching is enabled. See the Servlet 2.4 specification
section SRV. 11.2 for applicable patterns.

Superelements

“cache-mapping” on page 330 (sun-web. xml)

Subelements

none - contains data

use-thread-pool-id

Specifies the thread pool from which threads are selected for remote invocations of this bean.

Superelements
“ejb” on page 350 (sun-ejb-jar.xml)

Subelements

none - contains data

Sun Java System Application Server Enterprise Edition 8.2 Developer's Guide - March 2009

value

Specifies the value of the entity.

Superelements

“call-property” on page 331, “stub-property” on page 420 (sun-web.xml, sun-ejb-jar.xml,
sun-application-client.xml); “property (with subelements)” on page 394
(sun-ejb-jar.xml)

Subelements

none - contains data

victim-selection-policy

Specifies how stateful session beans are selected for passivation. Possible values are First In, First
Out (FIFO), Least Recently Used (LRU), Not Recently Used (NRU). The default value is NRU, which
is actually pseudo-LRU.

Note - You cannot plug in your own victim selection algorithm.

The victims are generally passivated into a backup store (typically a file system or database).
This store is cleaned during startup, and also by a periodic background process that removes
idle entries as specified by removal-timeout-in-seconds. The backup store is monitored by a
background thread (or sweeper thread) to remove unwanted entries.

Applies to stateful session beans.

Superelements

“bean-cache” on page 324 (sun-ejb-jar.xml)

Subelements

none - contains data

Example

<victim-selection-policy>LRU</victim-selection-policy>

Appendix A - Deployment Descriptor Files 431

If both SSL2 and SSL3 are enabled, the server tries SSL3 encryption first. If that fails, the server
tries SSL2 encryption. If both SSL2 and SSL3 are enabled for a virtual server, the server tries
SSL3 encryption first. If that fails, the server tries SSL2 encryption.

web

Specifies the application’s web tier configuration.

Superelements

“sun-application” on page 420 (sun-application.xml)

Subelements

The following table describes subelements for the web element.

TABLEA-126 web Subelements

Element Required Description
“web-uri” on page 432 only one Contains the web URI for the application.
“context-root” on page 345 only one Contains the web context root for the application.
L]
web-uri

Contains the web URI for the application. Must match the corresponding element in the
application.xml file.

Superelements

“web” on page 432 (sun-application.xml)

Subelements

none - contains data

webservice-description

Specifies a name and optional publish location for a web service.

432 Sun Java System Application Server Enterprise Edition 8.2 Developer's Guide - March 2009

Superelements

“sun-web-app” on page 423 (sun-web. xml), “enterprise-beans” on page 355
(sun-ejb-jar.xml)

Subelements

The following table describes subelements for the webservice-description element.

TABLEA-127 webservice-descriptionsubelements

Element Required Description

“webservice-description-name” on page 433 only one Specifies a unique name for the web service
within a web or EJB module.

“wsdl-publish-location” on page 435 Z€ro or one Specifies the URL of a directory to which a
web service’s WSDL is published during
deployment.

webservice-description-name

Specifies a unique name for the web service within a web or EJB module.

Superelements

“webservice-description” on page 432 (sun-web.xml, sun-ejb-jar.xml)

Subelements

none - contains data

webservice-endpoint

Specifies information about a web service endpoint.

Superelements
“servlet” on page 413 (sun-web.xml), “ejb” on page 350 (sun-ejb-jar.xml)

Subelements

The following table describes subelements for the webservice-endpoint element.

Appendix A - Deployment Descriptor Files 433

TABLEA-128 webservice-endpoint subelements

Element Required Description

«

port-component-name” on page 390 only one Specifies a unique name for a port component
within a web or EJB module.

“endpoint-address-uri” on page 355 Zero or one Specifies the automatically generated endpoint
address.
“login-config” on page 375 Z€ro or one Specifies the authentication configuration for an

EJB web service endpoint.

“message-security-binding” on page 381 zZero or one Specifies a custom authentication provider
binding.
“transport-guarantee” on page 429 Zero or one Specifies that the communication between client

and server is NONE, INTEGRAL, or CONFIDENTIAL.

“service-qname” on page 411 Z€ro or one Specifies the WSDL service element that is being
referenced.
“tie-class” on page 427 Zero or one Specifies the automatically generated name of a

tie implementation class for a port component.

“servlet-impl-class” on page 413 Zero or one Specifies the automatically generated name of
the generated servlet implementation class.

wsdl-override

Specifies a valid URL pointing to a final WSDL document. If not specified, the WSDL document
associated with the service-ref in the standard J2EE deployment descriptor is used.

Superelements

“service-ref” on page 412 (sun-web.xml, sun-ejb-jar.xml, sun-application-client.xml)

Subelements

none - contains data

Example

// available via HTTP
<wsdl-override>http://localhost:8000/myservice/myport?WSDL</wsdl-override>

// in a file
<wsdl-override>file:/home/userl/myfinalwsdl.wsdl</wsdl-override>

434 Sun Java System Application Server Enterprise Edition 8.2 Developer's Guide « March 2009

wsdl-port

Specifies the WSDL port.

Superelements

“port-info” on page 391 (sun-web.xml, sun-ejb-jar.xml, sun-application-client.xml)

Subelements

The following table describes subelements for the wsdl-port element.

TABLEA-129 wsdl-port subelements

Element Required Description
“namespaceURI” on page 386 only one Specifies the namespace URIL.
“localpart” on page 373 only one Specifies the local part of a QNAME.

wsdl-publish-location

Specifies the URL of a directory to which a web service’s WSDL is published during deployment.
Any required files are published to this directory, preserving their location relative to the
module-specific WSDL directory (META-INF/wsdl or WEB- INF/wsdl).

Superelements

“webservice-description” on page 432 (sun-web.xml, sun-ejb-jar.xml)

Subelements

none - contains data

Example

Suppose you have an ejb. jar file whose webservices.xml file’s wsd1- file element contains
the following reference:

META-INF/wsdl/a/Foo.wsdl

Suppose your sun-ejb-jar file contains the following element:

<wsdl-publish-location>file:/home/userl/publish</wsdl-publish-location>

The final WSDL is stored in /home/userl/publish/a/Foo.wsdl.

Appendix A - Deployment Descriptor Files 435

436

Index

A
ACC, 207
ACC clients
appclient script, 212
connecting to a remote EJB module, 210-211
deploying, 95-96
failover, 210
invoking a JMS resource, 211-212
invoking an EJB component, 208-210
load balancing, 210
making a remote call, 209
module definition, 68
package-appclient script, 212-214
preparing the client machine, 96
running, 212
SSL, 208
using SSL with CA, 213
ACC
asenv configuration settings, 212
naming, 208
security, 207
action attribute, 108,112
activation-conﬁg element, 321
activation-config-property element, 271,321-322
activation-config-property-name element, 322
activation-config-property-value element, 322
ActivationSpec properties, 271
address attribute, 427
AddressList
and connections, 270
and default JMS host, 268
administered objects, 269

administered objects (Continued)
and connectors, 223
Administration Console
about, 41
changing servlet output, 139
configuring the web container, 156
setting the connector shutdown timeout, 227
setting the default locale, 154
setting verbose mode, 131
using for deployment, 92
using for dynamic reloading, 89-90
using for HPROF configuration, 132
using for lifecycle module deployment, 94,235
using for Optimizeit configuration, 133
using to add to the server classpath, 80
using to associate a connector with a thread
pool, 225
using to configure audit modules, 51
using to configure JACC providers, 51
using to configure realms, 48
using to configure the JMS Service, 267
using to configure the transaction service, 257
using to create a custom resource, 263
using to create a JavaMail session, 278
using to create a JDBC connection pool, 241
using to create a JDBC resource, 241
using to create an external JNDI resource, 262
using to create JMS hosts, 268
using to create JMS resources, 269
using to create physical destinations, 269
using to create security maps, 226
using to create thread pools, 225

437

Index

Administration Console (Continued)
using to deploy and configure a connector, 223
using to disable modules and applications, 89
using to enable debugging, 128
using to ping a JDBC connection pool, 241
agent attribute, 373
allow-concurrent-access element, 176
allowLinking property, 425
AMX
about, 282
MBeans, 283
proxies, 285
Ant, 41,97
ANT_HOME environment variable, 97
Apache Ant, 41,97
and deployment descriptor verification, 83,85
Sun Java System Application Server specific
tasks, 97
using for deployment, 98-104
using for JSP precompilation, 116
using for server administration, 107,114
API reference
JavaBeans, 143
JSP 2.0 specification, 143
servlets, 137
appclient.jar file, 214
contents, 214
appclient script, 95,212
modifying, 213
Application Client Container, See ACC
application-client.xml file, 71
Application Server Management eXtensions, See AMX
application.xml file, 71
applications
See also modules
definition, 69
directories deployed to, 76
directory structure, 73
disabling, 89,111
examples, 43
naming, 72
runtime environment, 75
security, 45-66
appserv-rt.jar file, 233

438 Sun Java System Application Server Enterprise Edition 8.2 Developer's Guide

appserv-tags.jar file, 144
appserv-tags.tld file, 144
AppservPasswordLoginModule class, 49
AppservRealm class, 50
as-context element, 322
asadmin command, 41
asadmin create-admin-object command, 224
asadmin create-audit-module command, 51
asadmin create-auth-realm command, 48
asadmin create-connector-connection-pool
command, 223,270
asadmin create-connector-resource command, 223
asadmin create-connector-security-map
command, 226
asadmin create-custom-resource command, 263
asadmin create-javamail-resource command, 278
asadmin create-jdbc-connection-pool command, 241
asadmin create-jdbc-resource command, 241
asadmin create-jms-host command, 268
asadmin create-jmsdest command, 269
asadmin create-jndi-resource command, 262
asadmin create-lifecycle-module command, 94,235
asadmin create-resource-adapter-config
command, 223,225,226
asadmin create-threadpool command, 225
asadmin deploy command, 92,223
--force option, 88
--precompilejsp option, 93
asadmin deploydir command, 92,223
asadmin get-client-stubs command, 94, 95,209
asadmin get command, 258,268
asadmin ping-connection-pool command, 241
asadmin set command, 257,258,267
asant script, 41,97
asenv.conf file, 96
asenv configuration settings, 212
asinstalldir attribute
sun-appserv-admin task, 116
sun-appserv-component task, 113
sun-appserv-deploy task, 103
sun-appserv-instance task, 109
sun-appserv-jspc task, 117
sun-appserv-undeploy task, 106

March 2009

Index

assembly

of EJB components, 82

overview, 67-82
audit modules, 51
AuditModule class, 51
auth-layer attribute, 382,383
auth-method element, 323
auth-realm element, 323-324
auth-recipient attribute, 400,401, 405, 406
auth-source attribute, 400, 401, 405, 406
authentication

TMS, 272

realm, 323

single sign-on, 64-65
authorization roles, 66
autodeployment, 90
automatic schema generation, 188-194

options, 191-194
availability-enabled attribute, 353
availability

configuring HTTP session persistence, 152
availabilityenabled attribute, 101
availability

feature summary, 40

for ACC clients, 210

for stand-alone clients, 216,217

for stateful session beans, 168

for web modules, 148

of message-driven beans, 271

BaseCache cacheClassName value, 328

bean-cache element, 324

bean-pool element, 325

bin directory, 97

BLOB support, 187

Bootstrap Classloader, 78

Borland web site, 133

BoundedMultiLruCache cacheClassName value, 328
build.xml file, 42,43

C
cache element, 326-328
cache for JSP files, 144
cache for servlets, 139

default configuration, 140

example configuration, 141

helper class, 140, 142
cache-helper element, 328-329
cache-helper-ref element, 329
cache-idle-timeout-in-seconds element, 329-330
cache management for EJB components, 163
cache-mapping element, 330-331
cache-on-match attribute, 344, 345
cache-on-match-failure attribute, 344, 345
cache tag, 145-146
cacheClassName property, 328
CacheHelper interface, 142,328
cacheKeyGeneratorAttrName property, 142,348
call-property element, 331
caller-propagation element, 331
capture-schema command, 194
cascade attribute, 105
cert-db element, 332
cert-nickname attribute, 417
certificate realm, 48
charset attribute, 373
check-all-at-commit element, 332
check-modified-at-commit element, 332
check-version-of-accessed-instances element, 333
checkInterval property, 367
checkpoint-at-end-of-method element, 171,333-334
checkpointed-methods element, 334
checkpointing, 168

selecting methods for, 171
class loader delegation model, 335
class-loader element, 79, 156, 334-335
class-name attribute, 329,395
classdebuginfo property, 367
classloaders, 76-82

circumventing isolation, 79-82

delegation hierarchy, 77-79

isolation, 79
classname attribute, 324
classpath attribute, 117

439

Index

classpath property, 367
classpath-suffix attribute, 78
classpath, changing, 78
classpathref attribute, 117
client-container element, 335
client-credential element, 337
client JAR file, 81,95
client.policy file, 215
clients, stand-alone, 215-219
failover, 216
invoking a JMS resource, 218-219
invoking an EJB component, 215-216
load balancing, 216,217
making a remote call, 216,217
running, 216,219
CLOB support, 188
CloudScape JDBC driver, 245-246
cluster attribute, 108
cmp element, 337
cmp-field-mapping element, 338
cmp-resource element, 195, 338-339
cmr-field-mapping element, 339
cmr-field-name element, 340
cmt-max-runtime-exceptions property, 179
cmt-timeout-in-seconds element, 340
column-name element, 341
column-pair element, 341
command attribute, 115
command-line server configuration, See asadmin
command
commandfile attribute, 115
commit-option element, 341
commit options, 181,182
common-ant.xml file, 43
Common Classloader, 78
using to circumvent isolation, 80
compiler property, 367
compiling JSP files, 147
component subelement, 122-125
confidentiality element, 342
config attribute, 108
connection factories, INDI subcontexts for, 260
connection factory, 176
ConnectionFactory interface, 269

Connector Classloader, 78,236
connectors, 221
administered objects, 223
and JDBC, 222
and JMS, 222
and message-driven beans, 229
and transactions, 256
configuration options, 225
configuring, 222
connection pools, 223
deploying, 96
deployment, 223-224
embedded, 224
inbound connectivity, 228
invalid connections, 227
JNDI subcontext for, 260
last agent optimization, 228
module definition, 68
redeployment, 224
resources, 223
shutdown timeout, 227

Sun Java System Application Server support, 222

testing connection pools, 226
thread pools, 225
consistency element, 342
constraint-field element, 343-344
constraint-field-value element, 344-345
container-managed persistence, 183-206
configuring 1.1 finders, 196
data type for mapping, 189-191
deployment descriptor, 185
mapping, 184
performance features, 199-201
prefetching, 200
resource manager, 195
restrictions, 201
support, 183
version consistency, 200
contextroot, 138
context-root element, 345
context, for JNDI naming, 259
contextroot attribute, 99,123
cookie-properties element, 345-346
cookieComment property, 346

440 Sun Java System Application Server Enterprise Edition 8.2 Developer's Guide « March 2009

Index

cookieDomain property, 346
cookieMaxAgeSeconds property, 346
cookiePath property, 346

CosNaming naming service, 260
create-tables-at-deploy element, 346-347
createtables attribute, 100
crossContextAllowed property, 425
custom resource, 262

D
DAS, connecting to, 286
data types for mapping, 189-191
database schema, capturing, 194
database-vendor-name element, 347
databases
as transaction resource managers, 255
supported, 240,244
DB2 lock-when-loaded limitation, 203
.dbschema file, 82
dbvendorname attribute, 100
debug attribute, 108,120
debugging, 127-134
enabling, 127
generating a stack trace, 129
JPDA options, 128
default-charset attribute, 388
default-client-provider attribute, 383
default element, 347
default-helper element, 347-348
default-locale attribute, 372
default-provider attribute, 383
default-resource-principal element, 348-349
default virtual server, 155
default web module, 138,155
default-web.xml file, 156
delegate attribute, 335
delegation model for classloaders, 335
delegation, class loader, 78
demoJmx method, 302
demoQuery method, 299
deployment descriptor files, 263
deployment
directory deployment, 92

deployment (Continued)
disabling deployed applications and modules, 89,
111
dynamic, 88-89
errors during, 88
forcing, 88
JSR 88, 72,92
module or application based, 93
of ACC clients, 95-96
of connectors, 96
of EJB components, 94
of lifecycle modules, 94
of web applications, 93-94
overview, 67-82
deploymentplan attribute, 101
deployment
read-only beans, 176
redeployment, 88-89
standard J2EE descriptors, 71
Sun Java System Application Server descriptors, 71,
305-306
tools for, 91-92
undeploying an application or module, 92,104
using Apache Ant, 98-104
using the Administration Console, 92
verifying descriptor correctness, 83
deploytool, 42,82,91
Derby JDBC driver, 245-246
description element, 349
destdir attribute, 117
destinations
destination resources, 269
physical, 269
destroy method, 142
development environment
creating, 39
tools for developers, 40
development property, 368
directory deployment, 92
directory property, 418
dispatcher element, 349
displayAllAttributes method, 297
displayAllProperties method, 298
displayAMX method, 291,293

441

Index

displayWild method, 299 ejb-name element, 353
distributable web application, 148 EJB-QL, 184
distributed HTTP sessions, 148 EJB QL queries, 196
doGet method, 143 ejb-ref element, 263,354
Domain Administration Server, See DAS ejb-ref mapping, using JNDI name instead, 82
domain attribute, 119,120 ejb-ref-name element, 354
domain.xml file EJB reference failover, 210,216,217
application configuration, 76 EJB Timer Service, 165
configuring single sign-on, 65 ejbPassivate, 174
keeping stubs, 94 elements in XML files, 355-357
module configuration, 75 enableCookies property, 416
stack trace generation, 129 enabled attribute, 101,327
System Classloader, 78,80 enablePooling property, 368
doPost method, 143 enableURLRewriting property, 416
drop-tables-at-undeploy element, 349-350 encoding
dropandcreatetables attribute, 101 of JSP files, 368
droptables attribute, 105 of servlets, 154
DTD files, 305 endpoint-address-uri element, 355
location of, 305 enterprise-beans element, 355
dumpSmap property, 368 entity-mapping element, 357
dynamic-reload-interval attribute, 335 env-classpath-ignored attribute, 78
dynamic error pages, 158
deployment, 88-89 error-url attribute, 158,425
reloading, 89-90 errorOnUseBeanInvalidClassAttribute property, 368

errorpages directory, 158
errors during deployment, 88
establish-trust-in-client element, 357

E establish-trust-in-target element, 358
EJB 2.1 changes, summary, 161 events, server life cycle, 233
EJB Classloader, 78 example applications, 43
EJB components explicitcommand attribute, 115
assembling, 82 external JNDIresource, 262
calling from a different application, 81 extra-class-path attribute, 334

deploying, 94
elements, 355-357
flushing, 165

generated source code, 94 F

module definition, 68 fail-all-connections property, 227

pooling, 163, 166 failover

remote bean invocations, 164 for ACC clients, 210

security, 48 for stand-alone clients, 216

thread pools, 164 for web module sessions, 148
ejb element, 350-353 JMS connection, 271
ejb-jar.xmlfile, 71,179-180 object types supported for, 149-150
EJB module, connecting through a firewall, 210-211 of stateful session bean state, 168

442 Sun Java System Application Server Enterprise Edition 8.2 Developer's Guide - March 2009

Index

failover (Continued)
references supported for, 168

fetched-with element, 358

field-name element, 359

file attribute
component element, 123
sun-appserv-component task, 112
sun-appserv-deploy task, 99
sun-appserv-undeploy task, 105
sun-appserv-update task, 118

file realm, 48

fileset subelement, 125

finder element, 359

finder limitation for Sybase, 202

finder methods, 196

firewall, connecting to a remote EJB module
through, 210-211

flat transactions, 181

flush-at-end-of-method element, 360

flush tag, 146-147

flushing of EJB components, 165

force attribute, 99,123

forcing deployment, 88

fork property, 368

form-hint-field attribute, 388

G

generatermistubs attribute, 101
genStrAsCharArray property, 368
getCharacterEncoding method, 154
getCmdLineArgs method, 235
getData method, 234

getEventType method, 234
getHeaders method, 159
getInitialContext method, 235,262
getInstallRoot method, 235
getInstanceName method, 235
getLifecycleEventContext method, 234
getParameter method, 388
getReader method, 388
group-name element, 361

groups in realms, 410

H
HADB, 152,170
handleList method, 296
handling requests, 142
header management, 159
high availability, See availability
high-availability database, See HADB
host attribute
server element, 120
sun-appserv-component task, 113
sun-appserv-deploy task, 102
sun-appserv-instance task, 109
sun-appserv-undeploy task, 106
HPROF profiler, 131-133
http-method element, 362
HTTP sessions, 147
cookies, 148
distributed, 148
object types supported for failover, 149-150
session managers, 150
URL rewriting, 148
HttpServletRequest, 140

|

IBM DB2 JDBC driver, 246,248
idempotent requests, 157
idempotent-url-pattern element, 362-363
ieClassId property, 368

IIOP/SSL configuration, 409-410

IMAP4 protocol, 277

inbound connectivity, 228

Inet MSSQL JDBC driver, 251-252

Inet Oracle JDBC driver, 187,188,251
Inet Sybase JDBC driver, 252

Informix Type 4 JDBC driver, 254
INIT_EVENT, 233

init method, 142

Initial Context naming service handle, 259
installation, 39-40

instance attribute, 109, 120

instanceport attribute, 108, 120
instantiating servlets, 142

integrity element, 363

443

Index

internationalization, 154 JavaMail
Interoperable Naming Service, 261 and JNDIlookups, 278
ior-security-config element, 363 architecture, 277
is-cache-overflow-allowed element, 364 creating sessions, 278
is-failure-fatal attribute, 95,236 defined, 277
is-one-one-cmp element, 364 JNDI subcontext for, 260
is-read-only-bean element, 176, 364 session properties, 278
isolation of classloaders, 79 specification, 278

JDBC

connection pool creation, 240-241
Connection wrapper, 242

J creating resources, 241

J2EE Connector 1.5 architecture, 221 integrating driver JAR files, 240

J2EE tutorial, 137 JNDI subcontext for, 260

J2EE non-transactional connections, 243
security model, 46 sharing connections, 242
standard deployment descriptors, 71 specification, 239

J2SE policy file, 215 supported drivers, 240,244

JACC, 51 transaction isolation levels, 244

JAR Extension Mechanism Architecture, 82 tutorial, 239

JAR file JDOQL, 196
client for a deployed application, 81,95 JMS, 176,265,348

Java Authentication and Authorization Service jms-durable-subscription-name element, 365
(JAAS), 49-50 jms-max-messages-load, 365

Java Authorization Contract for Containers, See JACC JMS

java-config element, 78,94 and transactions, 256

Java Database Connectivity, See JDBC authentication, 272

Java DB JDBC driver, 245-246 checking if provider is running, 268

Java Debugger (jdb), 127 configuring, 267

Java Management Extensions, See JMX connection failover, 271

Java Message Service connection pooling, 270
See JMS creating hosts, 268

java-method element, 365 creating resources, 269

Java Naming and Directory Interface, See JNDI debugging, 130

Java optional package mechanism, 81 default host, 268

Java Platform Debugger Architecture, See JPDA JMS Service administration, 267

Java Servlet API, 137 JNDI subcontext for, 260

Java Transaction API (JTA), 255 load balancing, 271

Java Transaction Service (JTS), 255 provider, 265

JavaBeans, 143 jmsra system JMS connector, 266

javaEncoding property, 368 JMS

JavaMail messages restarting the client, 270
reading, 280 SOAP messages, 273-275
sending, 279-280 system connector for, 266

444 Sun Java System Application Server Enterprise Edition 8.2 Developer's Guide « March 2009

Index

JMS (Continued)

transactions and non-persistent messages, 272

TMX, 281-304
jndi-name element, 366
JNDI

and EJB components, 263

and JavaMail, 278

and lifecycle modules, 235,236,262
custom resource, 262

defined, 259

external JNDI resources, 262

for message-driven beans, 177

mapping references, 263

name for container-managed persistence,
subcontexts for connection factories, 260
tutorial, 259

using instead of ejb-ref mapping, 82

join tables, 186

JPDA debugging options, 128
JSP 2.0 specification, 143
jsp-config element, 93, 366-369
JSP Engine Classloader, 78

JSP files

API reference, 143

caching, 144

command-line compiler, 147
configuring, 366-369
encoding of, 368

generated source code, 93
precompiling, 93,99, 116, 147
tag libraries, 143-144

jspc command, 147
JSR 88 deployment, 72,92

K

-keepgenerated flag, 93,94
keepgenerated property, 368
key attribute

of cache tag, 145
of flush tag, 147

key-field element, 369-370

195

L

last agent optimization, 228,256
ldap realm, 48
level attribute, 375
level element, 370
lib directory

and ACC clients, 96

and the Common Classloader, 78

DTD file location, 305

for a web application, 81
libraries, 79,96
lifecycle modules, 233

allocating and freeing resources, 236

and classloaders, 236

and the server.policy file, 236

deploying, 94

deployment, 235

naming environment, 262
LifecycleEvent class, 234
LifecycleEventContext interface, 235
LifecycleListener interface, 234
LifecycleListenerImpl.java file, 234
LifeCycleModule Classloader, 78,236
load balancing

and idempotent requests, 157

of ACC clients, 210

of message-driven beans, 271

of stand-alone clients, 216,217
locale attribute, 373
locale-charset-info element, 371-372
locale-charset-map element, 372-373
locale, setting default, 154
localpart element, 373
lock-when-loaded consistency level, 203
lock-when-loaded element, 373
lock-when-modified element, 374
log-file attribute, 375
log-service element, 374-375
logging, 131

ACC clients messages, 213

in the web container, 156
login-config element, 375
login method, 63-64
LoginModule, 49

445

Index

login, programmatic, 62 message-driven beans (Continued)
LruCache cacheClassName value, 328 administering, 177
connection factory, 176
load balancing, 271
monitoring, 177

M onMessage runtime exception, 178
managed fields, 187 pool monitoring, 178
manager-properties element, 375-377 pooling, 177

mappedfile property, 368 restrictions, 178

mapping for container-managed persistence sample XML files, 179

considerations, 186-188

data types, 189-191

features, 184
mapping-properties element, 377
mapping resource references, 263
match-expr attribute, 345
max-cache-size element, 378
max-entries attribute, 327
max-pool-size element, 378
max-wait-time-in-millis element, 378
maxSessions property, 376
MaxSize property, 328
MBeans, 282

accessing, 294-296

attributes, 285

configuration, 283

displaying attributes, 296

displaying hierarchy, 291

displaying name and type, 293

using with connectors, 229
message element, 379-380
message security, 54
message-security-binding element, 381
message-security-config element, 382-383
message-security element, 381-382
message security
application-specific, 56
responsibilities, 55
sample application, 59
method element, 383-384
method-intf element, 384
method-name element, 384
method-param element, 384-385
method-params element, 385
Migration Tool, 42
MM MySQL Type 4 JDBC driver
non-XA, 249-250

J2EE management, 284 XA only, 250

listing properties, 298 modificationTestInterval property, 369

monitoring, 284 modules

notifications, 284 See also applications

other types, 284 definition, 68

proxies, 285 directories deployed to, 75

querying, 299 directory structure, 73

undeploying, 303 disabling, 89,111

using to stop a server instance, 303 individual deployment of, 93

utility, 284 invoking an EJB component, 217-218
mdb-connection-factory element, 177,178,378 lifecycle, 233
MDB file samples, 179 naming, 72
mdb-resource-adapter element, 379 runtime environment, 74
message-destination element, 380 monitoring in the web container, 156
message-destination-name element, 380-381 MSSQL Inet JDBC driver, 251-252
message-driven beans, 130,176 MSSQL/SQL Server2000 Data Direct JDBC driver, 247

446 Sun Java System Application Server Enterprise Edition 8.2 Developer's Guide « March 2009

Index

MSSQL version consistency triggers, 203 P

MultiLruCache cacheClassName value, 328 package-appclient script, 96,212-214
MultiLRUSegmentSize property, 328 package attribute, 117

MySQL database restrictions, 203-206 packaging, See assembly

parameter-encoding element, 387-388
pass-by-reference element, 163, 388-389
pass-by-value semantics, 388

N password element, 389-390
name element, 385 path attribute, 332
named-group element, 386 permissions
namespaceURI element, 386 changing in server.policy, 53
naming service, 259 default in server.policy, 52
native library path persistence store
configuring for hprof, 132 for HTTP sessions, 152
configuring for Optimizelt, 133 for stateful session bean state, 168
nested transactions, 181 persistence-type attribute, 415
NetBeans persistenceFrequency property, 377
about, 41 persistenceScope property, 419
debugging, 129-130 physical destinations, 269

plugin tag, 368

pm-descriptors element, 390
pool-idle-timeout-in-seconds element, 390
pool monitoring for MDBs, 178

pooling, 174

using for assembly, 83
no-of-retries attribute, 363
nocache attribute of cache tag, 145
nodeagent attribute, 108, 120

none element, 386 POP3 protocol, 277
portattribute
server element, 120
o sun-appserv-component task, 113

sun-appserv-deploy task, 102

sun-appserv-instance task, 109

sun-appserv-undeploy task, 106

target-server element, 427
port-component-name element, 390
port-info element, 391

Oasis Web Services Security, See message security
object references supported for failover, 168
one-one-finders element, 387

onMessage, 178

operation-name element, 387

Optimizeit profiler, 133 precompilejsp attribute, 99,123
Oracle automatic mapping of date and time fields, 203 --precompilejsp option, 93
Oracle Data Direct JDBC driver, 247 precompiling JSP files, 147
Oracle Inet JDBC driver, 187,188,251 prefetch-disabled element, 391
Oracle OCIJDBC driver, 253-254 prefetching, 200

Oracle Thin Type 4 Driver, workaround for, 257 primary key, 183,186

Oracle Thin Type 4 JDBC driver, 252-253 principal element, 392
oracle-xa-recovery-workaround property, 257 principal-name element, 392
output from servlets, 138-139 profilers, 131

programmatic login, 62

447

Index

ProgrammaticLogin class, 63-64
ProgrammaticLoginPermission permission, 63
properties
about, 393,394
property attribute, 109
property element, 393,394
provider-config element, 394-395
provider-id attribute, 382,395
provider-type attribute, 395
proxies, AMX, 285

Q

query-filter element, 395
query-method element, 396
query-ordering element, 396
query-params element, 396
query-variables element, 397

Queue interface, 269
QueueConnectionFactory interface, 269

R
ra.xml file, 71
read-only beans, 162,173,201
deploying, 176
refreshing, 174
read-only element, 397
ReadOnlyBeanNotifier, 175
READY_EVENT, 233
realm attribute, 337
realm element, 397-398
realms, 323
application-specific, 49
configuring, 48
custom, 49-50
mapping groups and users to, 410
supported, 48
reapIntervalSeconds property, 376
redeployment, 88-89
redirecting URLs, 159
references supported for failover, 168
refresh attribute of cache tag, 146

refresh-field element, 398

refresh-period-in-seconds element, 174,398

relativeRedirectAllowed property, 425

.reload file, 90

reloading, dynamic, 89-90

remote EJB module, connecting through a
firewall, 210-211

removal-timeout-in-seconds element, 399

removing servlets, 142

request object, 142

request-policy element, 400

request-protection element, 400-401

required element, 401

res-ref-name element, 401

res-sharing-scope deployment descriptor setting, 242

resize-quantity element, 402
resource-adapter-mid element, 230, 402-403
resource adapters, See connectors
resource-env-ref element, 263,403
resource-env-ref-name element, 403-404
resource managers, 255-256
resource-ref element, 263,404-405
resource references, mapping, 263
response-policy element, 405
response-protection element, 405-406
retrievestubs attribute, 99,123
reuseSessionID property, 425
rmic-options attribute, 94

role-name element, 406

roles, 66

S
sample applications, 43
sample XML files, 179
sas-context element, 406
schema capture, 194
schema element, 407
schema example, 316
schema generation
automatic, 188-194
options for automatic, 191-194
schema-generator-properties element, 407-409
scope attribute, 344,370, 398, 428

448 Sun Java System Application Server Enterprise Edition 8.2 Developer's Guide « March 2009

Index

scratchdir property, 369
secondary table, 185,338
secondary-table element, 409
security, 45-66
security element, 409-410
security map, 225
security-role-mapping element, 410-411
security

ACC, 207

applications, 47

audit modules, 51-52

declarative, 47

EJB components, 48

goals, 45-46

J2EE model, 46

JACC, 51

JMS, 272

message security, 54

of containers, 46-48

programmatic, 47

programmatic login, 62

roles, 66

server.policy file, 52

Sun Java System Application Server features, 46

using SSL with CA, 213

web applications, 47
send-password attribute, 336
server-classpath attribute, 78
server.policy file, 52

and lifecycle modules, 236

changing permissions, 53

default permissions, 52

Optimizeit profiler options, 133

ProgrammaticLoginPermission, 63
server subelement, 119-122
server

administering instances using Ant, 107

changing the classpath of, 78

installation, 39-40

lib directory of, 78,96, 97,305

life cycle events, 233
ServerLifecycleException, 234
server

optimizing for development, 40

server (Continued)

stopping an instance using an MBean, 303

Sun Java System Application Server deployment

descriptors, 71,305-306

using Ant scripts to control, 114

value-added features, 162
service-endpoint-interface element, 411
service-impl-class element, 411
service method, 143
service-qname element, 411-412
service-ref element, 412-413
service-ref-name element, 413
Servlet 2.4 specification, 137
servlet element, 413
servlet-impl-class element, 413-414
servlet-name element, 414
ServletContext.log messages, 138
servlets, 137-143

APIreference, 137

caching, 139

character encoding, 154

destroying, 142

engine, 142

instantiating, 142

invoking using a URL, 138

output, 138-139

removing, 142

request handling, 142

specification, 137
session beans, 166

container for, 166

optimizing performance, 172

restrictions, 172
session-config element, 414-415
session-manager element, 415
session managers, 150
session persistence

for stateful session beans, 168

for web modules, 148

object types supported, 168-169
session-properties element, 415-416
session-timeout element, 416
sessionFilename property, 377

449

Index

sessions sun-application element, 420-421

and dynamic redeployment, 89 sun-application.xml file, 72,306

and dynamic reloading, 89 elementsin, 307
setCharacterEncoding method, 154 example of, 307
setContentType method, 154 sun-appserv-admin task, 114-116
setLocale method, 154 sun-appserv-component task, 111-114
setMonitoring method, 293 sun-appserv-deploy task, 98-104
setting the ORB port, 213 sun-appserv-instance task, 107-111
setTransactionlsolation method, 244 sun-appserv-jspc task, 116-118
SHUTDOWN_EVENT, 233 sun-appserv-undeploy task, 104-107
Simple Object Access Protocol, See SOAP messages sun-appserv-update task, 118-119
single sign-on, 64-65 sun-cmp-mapping_1_2.dtd file, 72,306
singleThreadedServletPoolSize property, 426 sun-cmp-mapping element, 422
SMTP protocol, 277 sun-cmp-mappings element, 422
SOAP messages, 273-275 sun-cmp-mappings.xml file, 72,185,306
SOAP with Attachments API for Java (SAAJ), 273 elementsin, 315
solaris realm, 48 example of, 316
srcdir attribute, 117 sun-ejb-jar_2_1-1.dtd file, 72,306
ssl element, 416-417 sun-ejb-jar element, 423
ssl2-ciphers attribute, 417 sun-ejb-jar.xml file, 72,171,306
ssl2-enabled attribute, 417 elementsin, 310
ssl3-enabled attribute, 417 example of, 314
ssl3-tls-ciphers attribute, 417 sample, 180
stack trace, generating, 129 sun-http-lberror.html file, 158
STARTUP_EVENT, 233,235 Sun Java Studio, debugging, 129-130
stateful session beans, 167 Sun Java System Message Queue, 130,265, 348

session persistence, 168 checking to see if running, 268
stateless session beans, 166 connector for, 266
steady-pool-size element, 417 varhome directory, 272
store-properties element, 418-419 sun-ra.xml file, 222
stub-property element, 420 sun-web-app_2_4-1.dtd file, 72,306
stubs sun-web-app element, 423-426

directory for, 75,76 sun-web.xml file, 72,93, 306

keeping, 94,99, 123 and classloaders, 79,156

retrieving after deployment, 94 elements in, 307
sun-acc.xml file, 72,96,306 example of, 310

editing, 213 sunhome attribute

elementsin, 320 sun-appserv-admin task, 116
sun-application_1_4-0.dtd file, 72,306 sun-appserv-component task, 113
sun-application-client_1_4-1.dtd file, 72,306 sun-appserv-deploy task, 103
sun-application-client-container_1_0.dtd file, 72,306 sun-appserv-instance task, 109
sun-application-client element, 421-422 sun-appserv-jspc task, 117
sun-application-client.xml file, 72,306 sun-appserv-undeploy task, 106

elementsin, 319 supportsTransactionlsolationLevel method, 244

450 Sun Java System Application Server Enterprise Edition 8.2 Developer's Guide « March 2009

Index

suppressSmap property, 369
Sybase Data Direct JDBC driver, 248
Sybase Inet JDBC driver, 252
Sybase JConnect Type 4 JDBC driver, 249
Sybase
finder limitation, 202
lock-when-loaded limitation, 203
System Classloader, 78
using to circumvent isolation, 80

T
table-name element, 426
tag libraries, 143-144
tags for JSP caching, 144
target attribute, 102,106, 113
target-server element, 426
tasks, Apache Ant, 97
tempdir property, 426
TERMINATION_EVENT, 233
thread pools

and connectors, 225

for bean invocation scheduling, 164
tie-class element, 427
timeout attribute of cache tag, 145
timeout element, 428
timeout-in-seconds attribute, 327
timeoutSeconds property, 416
tls-enabled attribute, 417
tls-rollback-enabled attribute, 417
tools

for deployment, 91-92

for developers, 40
Topic interface, 269
TopicConnectionFactory interface, 269
transaction-support property, 228
transactions, 255-258

administering, 182

administration and monitoring, 182

and EJB components, 181

and non-persistent JMS messages, 272

and session persistence, 168,171

commit options, 181

configuring, 257

transactions (Continued)
flat, 181
global, 181
in the J2EE tutorial, 255
JDBC isolation levels, 244
JNDI subcontext for, 260
local, 181
local or global scope of, 256
logging for recovery, 258
monitoring, 182
nested, 181
resource managers, 255-256
timeouts, 164
transport-config element, 428
transport-guarantee element, 429
trimSpaces property, 369
type attribute, 99,105,112, 123

U

unique-id element, 430

uniquetablenames attribute, 101

upload attribute, 102, 120

uribase attribute, 117

URI, configuring for an application, 432

uriroot attribute, 117

url-pattern attribute, 362

url-pattern element, 430

URL rewriting, 148

URL, JNDI subcontext for, 260

URLs, redirecting, 159

use-thread-pool-id element, 164,430

use-unique-table-names property, 192,408

usePrecompiled property, 369

user attribute
server element, 119
sun-appserv-component task, 112
sun-appserv-deploy task, 102
sun-appserv-instance task, 109
sun-appserv-undeploy task, 105

user-name attribute, 337

useResponseCTForHeaders property, 426

users in realms, 410

utility classes, 79, 82,96

451

Index

) XML files, sample, 179

value attribute, 393 XML specification, 306

value element, 431 XML syntax verifier, 83
varhome directory, 272 xpoweredBy property, 369
verbose attribute, 117 -Xrs option and debugging, 129

verbose mode, 130
verifier tool, 83
verify attribute, 99,123
version consistency, 200
version consistency triggers, 203
victim-selection-policy element, 431
virtual servers, 155
default, 155
virtualservers attribute, 102, 120

w
web applications, 137

deploying, 93-94

distributable, 148

module definition, 68

security, 47
Web Classloader, 78

changing delegation in, 79,156
web container, configuring, 156
web element, 432
web module

default, 138,155
Web Services Security, See message security
web-uri element, 432
web.xml file, 71
webapp attribute, 117
webservice-description element, 432-433
webservice-description-name element, 433
webservice-endpoint element, 433-434
wsdl-override element, 434
wsdl-port element, 435
wsdl-publish-location element, 435
WSS, See message security

X
XA resource, 256

452 Sun Java System Application Server Enterprise Edition 8.2 Developer's Guide - March 2009

	Sun Java System Application Server Enterprise Edition 8.2 Developer's Guide
	Preface
	Application Server Documentation Set
	Related Documentation
	Default Paths and File Names
	Typographic Conventions
	Symbol Conventions
	Documentation, Support, and Training
	Searching Sun Product Documentation
	Third-Party Web Site References
	Sun Welcomes Your Comments

	Developing and Deploying Applications
	Setting Up a Development Environment
	Installing and Preparing the Server for Development
	High Availability Features
	Tools
	The asadmin Command
	The Administration Console
	NetBeans IDE
	The asant Utility
	deploytool
	Verifier
	Migration Tool
	Debugging Tools
	Profiling Tools

	Sample Applications

	Securing Applications
	Security Goals
	Application Server Specific Security Features
	Container Security
	Programmatic Security
	Declarative Security
	Application Level Security
	Component Level Security

	Realm Configuration
	Supported Realms
	How to Configure a Realm
	How to Set a Realm for an Application or Module
	Creating a Custom Realm

	JACC Support
	Pluggable Audit Module Support
	Configuring an Audit Module
	The AuditModule Class

	The server.policy File
	Default Permissions
	Changing Permissions for an Application

	Configuring Message Security
	Message Security Responsibilities
	Application Developer
	Application Deployer
	System Administrator

	Application-Specific Message Protection
	Using a Signature to Enable Message Protection for All Methods
	To enable message protection for all methods using digital signature

	Configuring Message Protection For a Specific Method Based on Digital Signatures
	To enable message protection for a particular method or set of methods using digital signature

	Understanding and Running the Example Application
	To Set Up the Sample Application
	To Run the Sample Application

	Programmatic Login
	Precautions
	Granting Programmatic Login Permission
	The ProgrammaticLogin Class

	User Authentication for Single Sign-on
	Defining Roles

	Assembling and Deploying Applications
	Overview of Assembly and Deployment
	Modules
	Applications
	J2EE Standard Descriptors
	Sun Java System Application Server Descriptors
	Naming Standards
	Directory Structure
	Runtime Environments
	Module Runtime Environment
	Application Runtime Environment

	Classloaders
	The Classloader Hierarchy
	Classloader Universes
	Circumventing Classloader Isolation
	Using the System Classloader
	Using the Common Classloader
	Sharing Libraries Across a Cluster
	Using the Java Optional Package Mechanism
	Packaging the Client JAR for One Application in Another Application
	To package the client JAR for one application in another application

	Assembling Modules and Applications
	deploytool
	Apache Ant
	NetBeans IDE
	The Deployment Descriptor Verifier
	Command Line Syntax
	Ant Integration
	Sample Results Files

	Deploying Modules and Applications
	Deployment Errors
	The Deployment Life Cycle
	Dynamic Deployment
	Disabling a Deployed Application or Module
	To disable an application or module in the Administration Console

	Dynamic Reloading
	To enable dynamic reloading in the Administration Console
	To reload code or deployment descriptor changes

	Automatic Deployment
	To enable and configure or to disable autodeployment

	Tools for Deployment
	Apache Ant
	The deploytool
	JSR 88
	The asadmin Command
	The Administration Console
	To use the Administration Console for deployment

	Deployment by Module or Application
	Deploying a WAR Module
	Deploying an EJB JAR Module
	Deploying a Lifecycle Module
	Deploying an Application Client
	To deploy an application client
	To prepare another machine for executing an application client

	Deploying a J2EE CA Resource Adapter
	Access to Shared Frameworks

	asant Assembly and Deployment Tool
	asant Tasks for Sun Java System Application Server
	sun-appserv-deploy
	Subelements
	Attributes
	Examples

	sun-appserv-undeploy
	Subelements
	Attributes
	Examples

	sun-appserv-instance
	Subelements
	Attributes
	Examples

	sun-appserv-component
	Subelements
	Attributes
	Examples

	sun-appserv-admin
	Subelements
	Attributes
	Examples

	sun-appserv-jspc
	Subelements
	Attributes
	Example

	sun-appserv-update
	Subelements
	Attributes
	Example

	Reusable Subelements
	server
	Subelements
	Attributes
	Examples

	component
	Subelements
	Attributes
	Examples

	fileset

	Debugging Applications
	Enabling Debugging
	To set the server to automatically start up in debug mode

	JPDA Options
	Generating a Stack Trace for Debugging
	Using an IDE
	To use the NetBeans IDE for Debugging

	Sun Java System Message Queue Debugging
	Enabling Verbose Mode
	Logging
	Profiling
	The HPROF Profiler
	To use HPROF profiling on UNIX

	The Optimizeit Profiler
	To enable remote profiling with Optimizeit

	Developing Applications and Application Components
	Developing Web Applications
	Using Servlets
	Invoking a Servlet with a URL
	Servlet Output
	Caching Servlet Results
	Caching Features
	Default Cache Configuration
	Caching Example
	CacheKeyGenerator Interface

	About the Servlet Engine
	Instantiating and Removing Servlets
	Request Handling

	Using JavaServer Pages
	JSP Tag Libraries and Standard Portable Tags
	JSP Caching
	cache
	Attributes
	Example

	flush
	Attributes
	Examples
	Options for Compiling JSP Files

	Creating and Managing HTTP Sessions
	Configuring Sessions
	Sessions, Cookies, and URL Rewriting
	Coordinating Session Access
	Distributed Sessions and Persistence

	Session Managers
	The memory Persistence Type
	The file Persistence Type
	The ha Persistence Type

	Sample Session Persistence Applications

	Advanced Web Application Features
	Internationalization Issues
	The Server
	Servlets
	Servlet Request
	Servlet Response

	Virtual Servers
	To assign virtual servers

	Default Web Modules
	Classloader Delegation
	Using the default-web.xml File
	To use the default-web.xml file

	Configuring Logging in the Web Container
	Configuring Idempotent URL Requests
	Specifying an Idempotent URL
	Characteristics of an Idempotent URL

	Configuring HTML Error Pages
	Header Management
	Redirecting URLs

	Using Enterprise JavaBeans Technology
	Summary of EJB 2.1 Changes
	Value Added Features
	Read-Only Beans
	pass-by-reference
	Pooling and Caching
	Pooling Parameters
	Caching Parameters

	Bean-Level Container-Managed Transaction Timeouts
	Priority Based Scheduling of Remote Bean Invocations
	Immediate Flushing

	EJB Timer Service
	Using Session Beans
	About the Session Bean Containers
	Stateless Container
	Stateful Container

	Stateful Session Bean Failover
	Choosing a Persistence Store
	Enabling Checkpointing
	Server Instance and EJB Container Levels
	Application and EJB Module Levels
	SFSB Level

	Specifying Methods to Be Checkpointed

	Restrictions and Optimizations
	Optimizing Session Bean Performance
	Restricting Transactions

	Using Read-Only Beans
	Read-Only Bean Characteristics and Life Cycle
	Read-Only Bean Good Practices
	Refreshing Read-Only Beans
	Invoking a Transactional Method
	Refreshing Periodically
	Refreshing Programmatically

	Deploying Read Only Beans

	Using Message-Driven Beans
	Message-Driven Bean Configuration
	Connection Factory and Destination
	Message-Driven Bean Pool
	Domain-Level Settings

	Restrictions and Optimizations
	Pool Tuning and Monitoring
	onMessage Runtime Exception

	Sample Message-Driven Bean XML Files
	Sample ejb-jar.xml File
	Sample sun-ejb-jar.xml File

	Handling Transactions with Enterprise Beans
	Flat Transactions
	Global and Local Transactions
	Commit Options
	Administration and Monitoring

	Using Container-Managed Persistence for Entity Beans
	Sun Java System Application Server Support
	Container-Managed Persistence Mapping
	Mapping Capabilities
	The Mapping Deployment Descriptor File
	Mapping Considerations
	Join Tables and Relationships
	Automatic Primary Key Generation
	Fixed Length CHAR Primary Keys
	Managed Fields
	BLOB Support
	CLOB Support

	Automatic Schema Generation
	Supported Data Types
	Generation Options

	Schema Capture
	Automatic Database Schema Capture
	Using the capture-schema Utility

	Configuring the CMP Resource
	Configuring Queries for 1.1 Finders
	About JDOQL Queries
	Query Filter Expression
	Query Parameters
	Query Variables
	JDOQL Examples
	Example 1
	Example 2
	Example 3

	Performance-Related Features
	Version Column Consistency Checking
	To use version consistency

	Relationship Prefetching
	Read-Only Beans

	Restrictions and Optimizations
	Eager Loading of Field State
	Restrictions on Remote Interfaces
	Sybase Finder Limitation
	Date and Time Fields as CMP Field Types
	No Support for lock-when-loaded on Sybase and DB2
	Set RECURSIVE_TRIGGERS to false on MSSQL
	MySQL Database Restrictions

	Developing Java Clients
	Introducing the Application Client Container
	Security
	Naming

	Developing Clients Using the ACC
	To access an EJB component from an application client
	Connecting to a Remote EJB Module Through a Firewall
	To access a JMS resource from an application client
	Running an Application Client Using the ACC
	Packaging an Application Client Using the ACC
	Editing the Configuration File
	Editing the appclient Script
	Editing the sun-acc.xml File
	Setting Security Options
	To use the package-appclient script bundled with the Application Server

	client.policy

	Developing Clients Without the ACC
	To access an EJB component from a stand-alone client
	To access an EJB component from a server-side module
	To access a JMS resource from a stand-alone client

	Developing Connectors
	Connector 1.5 Support in the Application Server
	Connector Architecture for JMS and JDBC
	Connector Configuration

	Deploying and Configuring a Stand-Alone Connector Module
	To deploy and configure a stand-alone connector module

	Redeploying a Stand-Alone Connector Module
	Deploying and Configuring an Embedded Resource Adapter
	Advanced Connector Configuration Options
	Thread Pools
	Security Maps
	Overriding Configuration Properties
	Testing a Connection Pool
	Handling Invalid Connections
	Setting the Shutdown Timeout
	Using Last Agent Optimization of Transactions

	Inbound Communication Support
	Configuring a Message Driven Bean to Use a Resource Adapter
	Example Resource Adapter for Inbound Communication

	Developing Lifecycle Listeners
	Server Life Cycle Events
	The LifecycleListener Interface
	The LifecycleEvent Class
	The Server Lifecycle Event Context
	Deploying a Lifecycle Module
	Considerations for Lifecycle Modules

	Using Services and APIs
	Using the JDBC API for Database Access
	General Steps for Creating a JDBC Resource
	Integrating the JDBC Driver
	Supported Database Drivers
	Making the JDBC Driver JAR Files Accessible

	Creating a Connection Pool
	Testing a Connection Pool
	Creating a JDBC Resource

	Creating Applications That Use the JDBC API
	Sharing Connections
	Obtaining a Physical Connection from a Wrapped Connection
	Using Non-Transactional Connections
	Using JDBC Transaction Isolation Levels

	Configurations for Specific JDBC Drivers
	Java DB Type 4 Driver
	Sun Java System JDBC Driver for DB2 Databases
	Sun Java System JDBC Driver for Oracle 8i, 9i, and 10g Databases
	Sun Java System JDBC Driver for Microsoft SQL Server Databases
	Sun Java System JDBC Driver for Sybase Databases
	IBM DB2 8.1 Type 2 Driver
	JConnect Type 4 Driver for Sybase ASE 12.5 Databases
	MM MySQL Type 4 Driver (Non-XA)
	MM MySQL Type 4 Driver (XA Only)
	Inet Oraxo JDBC Driver for Oracle 8i, 9i, and 10g Databases
	Inet Merlia JDBC Driver for Microsoft SQL Server Databases
	Inet Sybelux JDBC Driver for Sybase Databases
	Oracle Thin Type 4 Driver for Oracle 8i, 9i, and 10g Databases
	OCI Oracle Type 2 Driver for Oracle 8i, 9i, and 10g Databases
	IBM Informix Type 4 Driver

	Using the Transaction Service
	Transaction Resource Managers
	Transaction Scope
	Configuring the Transaction Service
	Transaction Logging

	Using the Java Naming and Directory Interface
	Accessing the Naming Context
	Naming Environment for J2EE Application Components
	Accessing EJB Components Using the CosNaming Naming Context
	Accessing EJB Components in a Remote Application Server
	Naming Environment for Lifecycle Modules

	Configuring Resources
	External JNDI Resources
	Custom Resources

	Mapping References

	Using the Java Message Service
	The JMS Provider
	Message Queue Resource Adapter
	Administration of the JMS Service
	Configuring the JMS Service
	The Default JMS Host
	Creating JMS Hosts
	Checking Whether the JMS Provider Is Running
	Creating Physical Destinations
	Creating JMS Resources: Destinations and Connection Factories

	Restarting the JMS Client After JMS Configuration
	JMS Connection Features
	Connection Pooling
	Connection Failover

	Load-Balanced Message Inflow
	Transactions and Non-Persistent Messages
	ConnectionFactory Authentication
	Message Queue varhome Directory
	Delivering SOAP Messages Using the JMS API
	To send SOAP messages using the JMS API
	To receive SOAP messages using the JMS API

	Using the JavaMail API
	Introducing JavaMail
	Creating a JavaMail Session
	JavaMail Session Properties
	Looking Up a JavaMail Session
	Sending and Reading Messages Using JavaMail
	To send a message using JavaMail
	To read a message using JavaMail

	Using the Java Management Extensions (JMX) API
	About AMX
	AMX MBeans
	Configuration MBeans
	Monitoring MBeans
	Utility MBeans
	J2EE Management MBeans
	Other MBeans
	MBean Notifications
	Access to MBean Attributes

	Proxies
	Connecting to the Domain Administration Server
	Examining AMX Code Samples
	Connecting to the DAS
	Starting an Application Server
	Deploying an Archive
	Displaying the AMX MBean Hierarchy
	Setting Monitoring States
	Accessing AMX MBeans
	Accessing and Displaying the Attributes of an AMX MBean
	Listing AMX MBean Properties
	Querying
	Monitoring Attribute Changes
	Undeploying Modules
	Stopping an Application Server

	Running the AMX Samples

	Deployment Descriptor Files
	Sun Java System Application Server Descriptors
	The sun-application.xml File
	The sun-web.xml File
	The sun-ejb-jar.xml File
	The sun-cmp-mappings.xml File
	The sun-application-client.xml file
	The sun-acc.xml File
	Alphabetical Listing of All Elements
	A
	activation-config
	Superelements
	Subelements

	activation-config-property
	Superelements
	Subelements

	activation-config-property-name
	Superelements
	Subelements

	activation-config-property-value
	Superelements
	Subelements

	as-context
	Superelements
	Subelements

	auth-method
	Superelements
	Subelements

	auth-realm
	Superelements
	Subelements
	Attributes
	Example

	B
	bean-cache
	Superelements
	Subelements
	Example

	bean-pool
	Superelements
	Subelements
	Example

	C
	cache
	Superelements
	Subelements
	Attributes
	Properties
	Cache Class Names

	cache-helper
	Superelements
	Subelements
	Attributes

	cache-helper-ref
	Superelements
	Subelements

	cache-idle-timeout-in-seconds
	Superelements
	Subelements

	cache-mapping
	Superelements
	Subelements

	call-property
	Superelements
	Subelements

	caller-propagation
	Superelements
	Subelements

	cert-db
	Superelements
	Subelements
	Attributes

	check-all-at-commit
	Superelements

	check-modified-at-commit
	Superelements
	Subelements

	check-version-of-accessed-instances
	Superelements
	Subelements

	checkpoint-at-end-of-method
	Superelements
	Subelements

	checkpointed-methods
	Superelements

	class-loader
	Superelements
	Subelements
	Attributes

	client-container
	Superelements
	Subelements
	Attributes
	Properties

	client-credential
	Superelements
	Subelements
	Attributes

	cmp
	Superelements
	Subelements

	cmp-field-mapping
	Superelements
	Subelements

	cmp-resource
	Superelements
	Subelements

	cmr-field-mapping
	Superelements
	Subelements

	cmr-field-name
	Superelements
	Subelements

	cmt-timeout-in-seconds
	Superelements
	Subelements

	column-name
	Superelements
	Subelements

	column-pair
	Superelements
	Subelements

	commit-option
	Superelements
	Subelements

	confidentiality
	Superelements
	Subelements

	consistency
	Superelements
	Subelements

	constraint-field
	Superelements
	Subelements
	Attributes

	constraint-field-value
	Superelements
	Subelements
	Attributes

	context-root
	Superelements
	Subelements

	cookie-properties
	Superelements
	Subelements
	Properties

	create-tables-at-deploy
	Superelements
	Subelements

	D
	database-vendor-name
	Superelements
	Subelements

	default
	Superelements
	Subelements

	default-helper
	Superelements
	Subelements
	Properties

	default-resource-principal
	Superelements
	Subelements

	description
	Superelements
	Subelements

	dispatcher
	Superelements
	Subelements

	drop-tables-at-undeploy
	Superelements
	Subelements

	E
	ejb
	Superelements
	Subelements
	Attributes
	Example

	ejb-name
	Superelements
	Subelements

	ejb-ref
	Superelements
	Subelements

	ejb-ref-name
	Superelements
	Subelements

	endpoint-address-uri
	Superelements
	Subelements
	Example

	enterprise-beans
	Superelements
	Subelements
	Example

	entity-mapping
	Superelements
	Subelements

	establish-trust-in-client
	Superelements
	Subelements

	establish-trust-in-target
	Superelements
	Subelements

	F
	fetched-with
	Superelements
	Subelements

	field-name
	Superelements
	Subelements

	finder
	Superelements
	Subelements

	flush-at-end-of-method
	Superelements
	Subelements

	G
	gen-classes
	Superelements
	Subelements

	group-name
	Superelements
	Subelements

	H
	http-method
	Superelements
	Subelements

	I
	idempotent-url-pattern
	Superelements
	Subelements
	Attributes
	Example

	integrity
	Superelements
	Subelements

	ior-security-config
	Superelements
	Subelements

	is-cache-overflow-allowed
	Superelements

	is-one-one-cmp
	Superelements

	is-read-only-bean
	Superelements
	Subelements

	J
	java-method
	Superelements
	Subelements

	jms-durable-subscription-name
	Superelements
	Subelements

	jms-max-messages-load
	Superelements
	Subelements

	jndi-name
	Superelements
	Subelements

	jsp-config
	Superelements
	Subelements
	Properties

	K
	key-field
	Superelements
	Subelements
	Attributes

	L
	level
	Superelements
	Subelements

	local-home-impl
	Superelements
	Subelements

	local-impl
	Superelements
	Subelements

	locale-charset-info
	Superelements
	Subelements
	Attributes

	locale-charset-map
	Superelements
	Subelements
	Attributes
	Example Agents

	localpart
	Superelements
	Subelements

	lock-when-loaded
	Superelements
	Subelements

	lock-when-modified
	Superelements

	log-service
	Superelements
	Subelements
	Attributes

	login-config
	Superelements
	Subelements

	M
	manager-properties
	Superelements
	Subelements
	Properties

	mapping-properties
	Superelements

	max-cache-size
	Superelements
	Subelements

	max-pool-size
	Superelements
	Subelements

	max-wait-time-in-millis
	Superelements

	mdb-connection-factory
	Superelements
	Subelements

	mdb-resource-adapter
	Superelements
	Subelements

	message
	Superelements
	Subelements

	message-destination
	Superelements
	Subelements

	message-destination-name
	Superelements
	Subelements

	message-security
	Superelements
	Subelements
	message-security-binding
	Superelements
	Subelements
	Attributes

	message-security-config
	Superelements
	Subelements
	Attributes

	method
	Superelements
	Subelements

	method-intf
	Superelements
	Subelements

	method-name
	Superelements
	Subelements
	Examples

	method-param
	Superelements
	Subelements

	method-params
	Superelements
	Subelements

	N
	name
	Superelements
	Subelements

	named-group
	Superelements
	Subelements

	namespaceURI
	Superelements
	Subelements

	none
	Superelements
	Subelements

	O
	one-one-finders
	Superelements
	Subelements

	operation-name
	Superelements
	Subelements

	P
	parameter-encoding
	Superelements
	Subelements
	Attributes

	pass-by-reference
	Superelements
	Subelements

	password
	Superelements
	Subelements

	pm-descriptors
	Superelements

	pool-idle-timeout-in-seconds
	Superelements
	Subelements

	port-component-name
	Superelements
	Subelements

	port-info
	Superelements
	Subelements

	prefetch-disabled
	Superelements
	Subelements

	principal
	Superelements
	Subelements

	principal-name
	Superelements
	Subelements

	property (with attributes)
	Superelements
	Subelements
	Attributes
	Example

	property (with subelements)
	Superelements
	Subelements
	Example

	provider-config
	Superelements
	Subelements
	Attributes

	Q
	query-filter
	Superelements
	Subelements

	query-method
	Superelements
	Subelements

	query-ordering
	Superelements
	Subelements

	query-params
	Superelements
	Subelements

	query-variables
	Superelements
	Subelements

	R
	read-only
	Superelements
	Subelements

	realm
	Superelements
	Subelements

	refresh-field
	Superelements
	Subelements
	Attributes

	refresh-period-in-seconds
	Superelements
	Subelements

	removal-timeout-in-seconds
	Superelements
	Subelements

	remote-home-impl
	Superelements
	Subelements

	remote-impl
	Superelements
	Subelements

	request-policy
	Superelements
	Subelements
	Attributes

	request-protection
	Superelements
	Subelements
	Attributes

	required
	Superelements
	Subelements

	res-ref-name
	Superelements
	Subelements

	resize-quantity
	Superelements
	Subelements

	resource-adapter-mid
	Superelements
	Subelements

	resource-env-ref
	Superelements
	Subelements
	Example

	resource-env-ref-name
	Superelements
	Subelements

	resource-ref
	Superelements
	Subelements
	Example

	response-policy
	Superelements
	Subelements
	Attributes

	response-protection
	Superelements
	Subelements
	Attributes

	role-name
	Superelements
	Subelements

	S
	sas-context
	Superelements
	Subelements

	schema
	Superelements
	Subelements
	Examples

	schema-generator-properties
	Superelements
	Subelements
	Properties
	Example

	secondary-table
	Superelements
	Subelements

	security
	Superelements
	Subelements

	security-role-mapping
	Superelements
	Subelements

	service-endpoint-interface
	Superelements
	Subelements

	service-impl-class
	Superelements
	Subelements

	service-qname
	Superelements
	Subelements

	service-ref
	Superelements
	Subelements

	service-ref-name
	Superelements
	Subelements

	servlet
	Superelements
	Subelements

	servlet-impl-class
	Superelements
	Subelements

	servlet-name
	Superelements
	Subelements

	session-config
	Superelements
	Subelements

	session-manager
	Superelements
	Subelements
	Attributes

	session-properties
	Superelements
	Subelements
	Properties

	ssl
	Superelements
	Subelements
	Attributes

	steady-pool-size
	Superelements
	Subelements

	store-properties
	Superelements
	Subelements
	Properties

	stub-property
	Superelements
	Subelements
	Example

	sun-application
	Superelements
	Subelements

	sun-application-client
	Superelements
	Subelements

	sun-cmp-mapping
	Superelements
	Subelements

	sun-cmp-mappings
	Superelements
	Subelements

	sun-ejb-jar
	Superelements
	Subelements

	sun-web-app
	Superelements
	Subelements
	Attributes
	Properties

	T
	table-name
	Superelements
	Subelements

	target-server
	Superelements
	Subelements
	Attributes

	tie-class
	Superelements
	Subelements

	timeout
	Superelements
	Subelements
	Attributes

	transport-config
	Superelements
	Subelements

	transport-guarantee
	Superelements
	Subelements

	U
	unique-id
	Superelements
	Subelements

	url-pattern
	Superelements
	Subelements

	use-thread-pool-id
	Superelements
	Subelements

	V
	value
	Superelements
	Subelements

	victim-selection-policy
	Superelements
	Subelements
	Example

	W
	web
	Superelements
	Subelements

	web-uri
	Superelements
	Subelements

	webservice-description
	Superelements
	Subelements

	webservice-description-name
	Superelements
	Subelements

	webservice-endpoint
	Superelements
	Subelements

	wsdl-override
	Superelements
	Subelements
	Example

	wsdl-port
	Superelements
	Subelements

	wsdl-publish-location
	Superelements
	Subelements
	Example

	Index

