
Sun Java System Access Manager
7.1 Technical Overview

Sun Microsystems, Inc.
4150 Network Circle
Santa Clara, CA 95054
U.S.A.

Part No: 819–4669–10
March 2007

Copyright 2007 Sun Microsystems, Inc. 4150 Network Circle, Santa Clara, CA 95054 U.S.A. All rights reserved.

Sun Microsystems, Inc. has intellectual property rights relating to technology embodied in the product that is described in this document. In particular, and without
limitation, these intellectual property rights may include one or more U.S. patents or pending patent applications in the U.S. and in other countries.

U.S. Government Rights – Commercial software. Government users are subject to the Sun Microsystems, Inc. standard license agreement and applicable provisions
of the FAR and its supplements.

This distribution may include materials developed by third parties.

Parts of the product may be derived from Berkeley BSD systems, licensed from the University of California. UNIX is a registered trademark in the U.S. and other
countries, exclusively licensed through X/Open Company, Ltd.

Sun, Sun Microsystems, the Sun logo, the Solaris logo, the Java Coffee Cup logo, docs.sun.com, Java, Java, and Solaris are trademarks or registered trademarks of Sun
Microsystems, Inc. in the U.S. and other countries. All SPARC trademarks are used under license and are trademarks or registered trademarks of SPARC
International, Inc. in the U.S. and other countries. Products bearing SPARC trademarks are based upon an architecture developed by Sun Microsystems, Inc.

The OPEN LOOK and SunTM Graphical User Interface was developed by Sun Microsystems, Inc. for its users and licensees. Sun acknowledges the pioneering efforts
of Xerox in researching and developing the concept of visual or graphical user interfaces for the computer industry. Sun holds a non-exclusive license from Xerox to
the Xerox Graphical User Interface, which license also covers Sun's licensees who implement OPEN LOOK GUIs and otherwise comply with Sun's written license
agreements.

Products covered by and information contained in this publication are controlled by U.S. Export Control laws and may be subject to the export or import laws in
other countries. Nuclear, missile, chemical or biological weapons or nuclear maritime end uses or end users, whether direct or indirect, are strictly prohibited. Export
or reexport to countries subject to U.S. embargo or to entities identified on U.S. export exclusion lists, including, but not limited to, the denied persons and specially
designated nationals lists is strictly prohibited.

DOCUMENTATION IS PROVIDED “AS IS” AND ALL EXPRESS OR IMPLIED CONDITIONS, REPRESENTATIONS AND WARRANTIES, INCLUDING ANY
IMPLIED WARRANTY OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT, ARE DISCLAIMED, EXCEPT TO
THE EXTENT THAT SUCH DISCLAIMERS ARE HELD TO BE LEGALLY INVALID.

Copyright 2007 Sun Microsystems, Inc. 4150 Network Circle, Santa Clara, CA 95054 U.S.A. Tous droits réservés.

Sun Microsystems, Inc. détient les droits de propriété intellectuelle relatifs à la technologie incorporée dans le produit qui est décrit dans ce document. En particulier,
et ce sans limitation, ces droits de propriété intellectuelle peuvent inclure un ou plusieurs brevets américains ou des applications de brevet en attente aux Etats-Unis
et dans d'autres pays.

Cette distribution peut comprendre des composants développés par des tierces personnes.

Certaines composants de ce produit peuvent être dérivées du logiciel Berkeley BSD, licenciés par l'Université de Californie. UNIX est une marque déposée aux
Etats-Unis et dans d'autres pays; elle est licenciée exclusivement par X/Open Company, Ltd.

Sun, Sun Microsystems, le logo Sun, le logo Solaris, le logo Java Coffee Cup, docs.sun.com, Java, Java et Solaris sont des marques de fabrique ou des marques déposées
de Sun Microsystems, Inc. aux Etats-Unis et dans d'autres pays. Toutes les marques SPARC sont utilisées sous licence et sont des marques de fabrique ou des marques
déposées de SPARC International, Inc. aux Etats-Unis et dans d'autres pays. Les produits portant les marques SPARC sont basés sur une architecture développée par
Sun Microsystems, Inc.

L'interface d'utilisation graphique OPEN LOOK et Sun a été développée par Sun Microsystems, Inc. pour ses utilisateurs et licenciés. Sun reconnaît les efforts de
pionniers de Xerox pour la recherche et le développement du concept des interfaces d'utilisation visuelle ou graphique pour l'industrie de l'informatique. Sun détient
une licence non exclusive de Xerox sur l'interface d'utilisation graphique Xerox, cette licence couvrant également les licenciés de Sun qui mettent en place l'interface
d'utilisation graphique OPEN LOOK et qui, en outre, se conforment aux licences écrites de Sun.

Les produits qui font l'objet de cette publication et les informations qu'il contient sont régis par la legislation américaine en matière de contrôle des exportations et
peuvent être soumis au droit d'autres pays dans le domaine des exportations et importations. Les utilisations finales, ou utilisateurs finaux, pour des armes nucléaires,
des missiles, des armes chimiques ou biologiques ou pour le nucléaire maritime, directement ou indirectement, sont strictement interdites. Les exportations ou
réexportations vers des pays sous embargo des Etats-Unis, ou vers des entités figurant sur les listes d'exclusion d'exportation américaines, y compris, mais de manière
non exclusive, la liste de personnes qui font objet d'un ordre de ne pas participer, d'une façon directe ou indirecte, aux exportations des produits ou des services qui
sont régis par la legislation américaine en matière de contrôle des exportations et la liste de ressortissants spécifiquement designés, sont rigoureusement interdites.

LA DOCUMENTATION EST FOURNIE "EN L'ETAT" ET TOUTES AUTRES CONDITIONS, DECLARATIONS ET GARANTIES EXPRESSES OU TACITES
SONT FORMELLEMENT EXCLUES, DANS LA MESURE AUTORISEE PAR LA LOI APPLICABLE, Y COMPRIS NOTAMMENT TOUTE GARANTIE
IMPLICITE RELATIVE A LA QUALITE MARCHANDE, A L'APTITUDE A UNE UTILISATION PARTICULIERE OU A L'ABSENCE DE CONTREFACON.

071218@19028

Contents

Preface ...7

1 Introduction to Access Manager ...15
An Access Management Paradigm .. 15

The Problem ... 16
The Solution ... 16

What Access Manager Does ... 16
Access Manager Installation Modes .. 17

Realm Mode .. 18
Legacy Mode ... 19

Access Manager Architecture .. 20
Access Manager Framework ... 21
Access Manager Information Tree ... 23
Realms ... 25
Identity Repository Framework ... 28
Core Components and Internal Services .. 31
Web Services ... 31
SPIs and Plug-ins .. 32
Client APIs .. 34
Access Manager Policy Agents ... 34

How Access Manager Works ... 35
Authentication Service .. 36
Policy Service .. 36
User Session Management .. 37
SAML Service ... 37
Federation Service .. 37
Logging .. 38

3

2 User Session Management and Single Sign-On ... 39
User Sessions and the Session Service ... 39
Sessions, Session Tokens, and Cookies ... 40
Policy Agents .. 41
Basic User Session ... 42

Initial HTTP Request ... 42
User Authentication .. 44
Session Validation .. 46
Policy Evaluation and Enforcement .. 48
Logging Results .. 50

Single Sign-On Session ... 51
Cross-Domain Single Sign-On Session .. 54
Session Termination ... 56

User Ends Session .. 56
Administrator Ends Session ... 56
Access Manager Enforces Timeout Rules ... 57
Session Quota Constraints .. 57

3 Authentication ...59
Authentication Overview ... 59
Authentication Modules ... 60
Authentication Configuration Services .. 62

General Authentication Service ... 62
Authentication Configuration Service .. 62

Authentication Service User Interface .. 63
Distributed Authentication User Interface .. 65
Inside the Core Authentication Component ... 67

Client Detection Service .. 67
Authentication Type Configurations .. 67
Login URLs and Redirection URLs ... 68
Account Locking .. 69
Authentication Chaining .. 69
Fully Qualified Domain Name Mapping ... 70
Persistent Cookie ... 70
Session Upgrade ... 70

Contents

Sun Java System Access Manager 7.1 Technical Overview • March 20074

Validation Plug-in Interface ... 71
JAAS Shared State .. 71

Authentication Programming Interfaces ... 71

4 Authorization and the Policy Service ... 73
Authorization Overview ... 73
Access Control and Realms .. 74
Policy Types ... 74

Normal Policy ... 75
Referral Policy .. 77

Policy Framework .. 78
Policy Service .. 78
Policy Configuration Service .. 78

Policy SPIs and Plug-Ins Layer ... 79
Policy Client APIs .. 80

5 Federation, SAML, and Web Services ... 81
Federating Identities ... 81
The Liberty Alliance Project ... 82
How Federation Works .. 82
The Web Services Stack .. 84

Implemented Services ... 86
Web Services Process ... 86

SAML Service ... 88

6 Logging and the Java Enterprise System Monitoring Framework ... 89
Logging Overview ... 89

Logging Service .. 89
Logging Configuration .. 90
Recorded Events ... 90

Log Files .. 91
Log File Formats ... 91
Error and Access Logs ... 93

Access Manager Component Logs .. 94

Contents

5

Additional Logging Features .. 95
Secure Logging ... 95
Remote Logging ... 95
Log Reading .. 96

Java Enterprise System Monitoring Framework .. 96

Index ..97

Contents

Sun Java System Access Manager 7.1 Technical Overview • March 20076

Preface

Sun JavaTM System Access Manager is a component of the Sun Java Enterprise System (Java ES),
a set of software components that provide services needed to support enterprise applications
distributed across a network or Internet environment. The Sun Java System Access Manager 7.1
Technical Overview describes Access Manager features, explains what Access Manager does,
and illustrates how Access Manager works.

Before You Read This Book
This book is intended for use by IT administrators and software developers who implement a
web access platform using Sun Java System servers and software. Readers of this guide should be
familiar with the following:

■ Web containers in which Access Manager can be deployed:
■ Sun Java System Application Server
■ Sun Java System Web Server
■ BEA WebLogic
■ IBM WebSphere Application Server

■ Technologies:
■ Lightweight Directory Access Protocol (LDAP)
■ Java
■ JavaServer PagesTM (JSP)
■ HyperText Transfer Protocol (HTTP)
■ HyperText Markup Language (HTML)
■ eXtensible Markup Language (XML)
■ SOAP
■ HyperText Transfer Protocol (HTTP)
■ Liberty Alliance Project specifications

7

Related Books
Related documentation is available as follows:

■ “Access Manager Installation Instructions” on page 8
■ “Access Manager Core Documentation” on page 8
■ “Sun Java System Product Documentation” on page 9
■ “Sun Java Enterprise System Product Documentation” on page 9

Access Manager Installation Instructions
For detailed information about installing Access Manager, see the following Sun Java Enterprise
System documents:

■ Sun Java Enterprise System 5 Release Notes for UNIX
■ Sun Java Enterprise System 2006Q3 Deployment Planning Guide
■ Sun Java Enterprise System 5 Installation Guide for UNIX
■ Sun Java Enterprise System 2006Q3 Upgrade Guide

Access Manager Core Documentation
The Access Manager core documentation set contains the following titles:

■ The Sun Java System Access Manager 7.1 Release Notes will be available online after the
product is released. It gathers an assortment of last-minute information, including a
description of what is new in this current release, known problems and limitations,
installation notes, and how to report issues with the software or the documentation.

■ The Sun Java System Access Manager 7 Technical Overview (this guide) provides an
overview of how Access Manager components work together to protect enterprise assets
and web-based applications. It also explains basic Access Manager concepts and
terminology.

■ The Sun Java System Access Manager 7.1 Deployment Planning Guide provides planning and
deployment solutions for Sun Java System Access Manager based on the solution life cycle

■ The Sun Java System Access Manager 7.1 Postinstallation Guide provides information for
configuring Access Manager after running the Java ES installer.

■ The Sun Java System Access Manager 7.1 Performance Tuning Guide provides information
on how to tune Access Manager and its related components for optimal performance.

■ The Sun Java System Access Manager 7.1 Administration Guide describes various
administrative tasks such as Realms Management, Policy Management, Authentication and
Directory Management. Most of the tasks described in this book are performed through the
Access Manager console as well as through the command line utilities.

Preface

Sun Java System Access Manager 7.1 Technical Overview • March 20078

■ The Sun Java System Access Manager 7.1 Administration Reference is a look-up guide
containing information about the command line interfaces, configuration attributes, Access
Manager files, and error codes.

■ The Sun Java System Access Manager 7.1 Federation and SAML Administration Guide
provides information about the Federation module based on the Liberty Alliance Project
specifications and the use of the Security Assertion Markup Language (SAML). It includes
information on the integrated services based on these specifications, instructions for
enabling a web services environment, and summaries of the application programming
interface (API) for extending the framework.

■ The Sun Java System Access Manager 7.1 Developer’s Guide offers information on how to
customize Access Manager and integrate its functionality into an organization’s current
technical infrastructure. It also contains details about the programmatic aspects of the
product and its API.

■ The Sun Java System Access Manager 7.1 C API Reference provides summaries of data types,
structures, and functions that make up the public Access Manager C APIs.

■ The Sun Java System Access Manager 7.1 Java API Reference provides information about the
implementation of Java packages in Access Manager.

■ The Sun Java System Access Manager Policy Agent 2.2 User’s Guide provides an overview of
the policy functionality and the policy agents available for Access Manager.

Updates to the Release Notes and links to modifications of the core documentation can be found
on the Access Manager page at the Sun Java Enterprise System documentation web site.
Updated documents will be marked with a revision date.

Sun Java System Product Documentation
Useful information can be found in the documentation for the following products:

■ Sun Java System Directory Server Enterprise Edition 6.0
■ Sun Java System Web Server 7.0
■ Sun Java System Application Server Enterprise Edition 8.2
■ Sun Java System Web Proxy Server 4.0.4

Sun Java Enterprise System Product Documentation
A full list of the Java Enterprise System documentation is documented in the following table.

Preface

9

http://docs.sun.com/app/docs/coll/1292.2
http://docs.sun.com/prod/entsys.05q4
http://docs.sun.com/coll/1224.1
http://docs.sun.com/coll/1308.3
http://docs.sun.com/coll/1310.3
http://docs.sun.com/coll/1311.4

TABLE P–1 Sun Java Enterprise System Documentation Listing

Document Title Contents

Sun Java Enterprise System 5 Release
Notes for UNIX

Sun Java Enterprise System 5 Release
Notes for Microsoft Windows

Contains the latest information about Java ES, including known
problems. In addition, components have their own release notes listed
in the Release Notes Collection.

Sun Java Enterprise System 5 Update 1
Technical Overview

Introduces the technical and conceptual foundations of Java ES.
Describes components, the architecture, processes, and features.

Sun Java Enterprise System 2006Q3
Deployment Planning Guide

Provides an introduction to planning and designing enterprise
deployment solutions based on Java ES. Presents basic concepts and
principles of deployment planning and design, discusses the solution
life cycle, and provides high-level examples and strategies to use when
planning solutions based on Java ES.

Sun Java Enterprise System 5
Installation Planning Guide

Helps you develop the implementation specifications for the hardware,
operating system, and network aspects of your Java ES deployment.
Describes issues such as component dependencies to address in your
installation and configuration plan.

Sun Java Enterprise System 5
Installation Guide for UNIX

Sun Java Enterprise System 5
Installation Guide for Microsoft
Windows

Guides you through the process of installing Java ES. Also shows how
to configure components after installation, and verify that they
function properly.

Sun Java Enterprise System 5
Installation Reference for UNIX

Gives additional information about configuration parameters,
provides worksheets to use in your configuration planning, and lists
reference material such as default directories and port numbers on the
Solaris Operating System and Linux operating environment.

Sun Java Enterprise System 2006Q3
Upgrade Guide

Sun Java Enterprise System 5 Upgrade
Guide for Microsoft Windows

Provides instructions for upgrading to Java ES 5 from previously
installed versions.

Sun Java Enterprise System 5
Monitoring Guide

Gives instructions for setting up the Monitoring Framework for each
product component and using the Monitoring Console to view
real-time data and create monitoring rules.

Sun Java Enterprise System Glossary Defines terms that are used in Java ES documentation.

Preface

Sun Java System Access Manager 7.1 Technical Overview • March 200710

http://docs.sun.com/coll/1315.2

Searching Sun Product Documentation
Besides searching Sun product documentation from the docs.sun.comSM web site, you can use a
search engine by typing the following syntax in the search field:

search-term site:docs.sun.com

For example, to search for “broker,” type the following:

broker site:docs.sun.com

To include other Sun web sites in your search (for example, java.sun.com, www.sun.com, and
developers.sun.com), use sun.com in place of docs.sun.com in the search field.

Documentation, Support, and Training
The Sun web site provides information about the following additional resources:

■ Documentation (http://www.sun.com/documentation/)
■ Support (http://www.sun.com/support/)
■ Training (http://www.sun.com/training/)

Third-Party Web Site References
Third-party URLs are referenced in this document and provide additional, related information.

Note – Sun is not responsible for the availability of third-party web sites mentioned in this
document. Sun does not endorse and is not responsible or liable for any content, advertising,
products, or other materials that are available on or through such sites or resources. Sun will not
be responsible or liable for any actual or alleged damage or loss caused or alleged to be caused by
or in connection with use of or reliance on any such content, goods, or services that are available
on or through such sites or resources.

Sun Welcomes Your Comments
Sun is interested in improving its documentation and welcomes your comments and
suggestions. To share your comments, go to http://docs.sun.com and click Send Comments.
In the online form, provide the full document title and part number. The part number is a
7-digit or 9-digit number that can be found on the book's title page or in the document's URL.
For example, the title of this book is Sun Java System Access Manager 7.1 Technical Overview,
and the part number is 819–4669–10.

Preface

11

http://java.sun.com
http://www.sun.com
http://developers.sun.com
http://www.sun.com/documentation/
http://www.sun.com/support/
http://www.sun.com/training/
http://docs.sun.com

Typographic Conventions
The following table describes the typographic changes that are used in this book.

TABLE P–2 Typographic Conventions

Typeface Meaning Example

AaBbCc123 The names of commands, files, and
directories, and onscreen computer
output

Edit your .login file.

Use ls -a to list all files.

machine_name% you have mail.

AaBbCc123 What you type, contrasted with onscreen
computer output

machine_name% su

Password:

AaBbCc123 A placeholder to be replaced with a real
name or value

The command to remove a file is rm filename.

AaBbCc123 Book titles, new terms, and terms to be
emphasized (note that some emphasized
items appear bold online)

Read Chapter 6 in the User's Guide.

A cache is a copy that is stored locally.

Do not save the file.

Shell Prompts in Command Examples
The following table shows default system prompts and superuser prompts.

TABLE P–3 Shell Prompts

Shell Prompt

C shell on UNIX and Linux systems machine_name%

C shell superuser on UNIX and Linux systems machine_name#

Bourne shell and Korn shell on UNIX and Linux systems $

Bourne shell and Korn shell superuser on UNIX and Linux systems #

Microsoft Windows command line C:\

Preface

Sun Java System Access Manager 7.1 Technical Overview • March 200712

Symbol Conventions
The following table explains symbols that might be used in this book.

TABLE P–4 Symbol Conventions

Symbol Description Example Meaning

[] Contains optional arguments
and command options.

ls [-l] The -l option is not required.

{ | } Contains a set of choices for a
required command option.

-d {y|n} The -d option requires that you use
either the y argument or the n
argument.

${ } Indicates a variable
reference.

${com.sun.javaRoot} References the value of the
com.sun.javaRoot variable.

- Joins simultaneous multiple
keystrokes.

Control-A Press the Control key while you press
the A key.

+ Joins consecutive multiple
keystrokes.

Ctrl+A+N Press the Control key, release it, and
then press the subsequent keys.

→ Indicates menu item
selection in a graphical user
interface.

File → New → Templates From the File menu, choose New.
From the New submenu, choose
Templates.

Preface

13

14

Introduction to Access Manager

Sun JavaTM System Access Manager 7.1 integrates authentication and authorization services,
policy agents, and identity federation to provide a comprehensive solution for protecting
network resources. These functions allow an Access Manager deployment to prevent
unauthorized access to web service applications and web content. Topics in this introductory
chapter include:

■ “An Access Management Paradigm” on page 15
■ “What Access Manager Does” on page 16
■ “Access Manager Installation Modes” on page 17
■ “Access Manager Architecture” on page 20
■ “How Access Manager Works” on page 35

An Access Management Paradigm
Think of all the different types of information a company must store and make available
throughout its enterprise. Now consider the various users who must make use of that
information in order for the company’s business to run smoothly. For example, the following
are routine information transactions that occur every day in a typical company:

■ An employee looks up a colleague’s phone number in the corporate phone directory.
■ A manager looks up employee salary histories to help determine an individual’s merit raise.
■ An administrative assistant adds a new hire to the corporate database, triggering the

company’s health insurance provider to add the new hire to its enrollment.
■ An engineer sends an internal URL for a specification document to another engineer who

works for a partner company.
■ A customer logs into the company’s web site and looks for a product in the company’s online

catalog.
■ A vendor submits an online invoice to the company’s accounting department.

1C H A P T E R 1

15

In each of these examples, the company must determine who is allowed to view its information
or use its applications. Some information such as the company’s product descriptions and
advertising can be made available to everyone, even the public at large, in the company’s online
catalog. Other information such as accounting and human resources information must be
restricted to employees only. And some internal information is appropriate to share with
partners and suppliers, but not with customers.

The Problem
Many enterprises grant access to information on a per-application basis. For example, an
employee might have to set up a user name and password to access the company’s health
benefits administration web site. The same employee must use a different user name and
password to access the Accounting Department online forms. Within the same enterprise, a
customer sets up a user name and password to access the public branch of the company web
site. For each web site or service, an administrator must convert the enterprise user’s input into
a data format that the service can recognize. Each service added to the enterprise must be
provisioned and maintained separately.

The Solution
Sun Java System Access Manager reduces the administrative costs and eliminates the redundant
user information associated with per-application solutions. Access Manager enables an
administrator to assign specific rules or policies that govern the information or services each
user can access. Policy agents are deployed on application or web servers to process HTTP
requests and to enforce these policies. Together, these access policies and the associated user’s
information comprise the user’s enterprise identity. Thus, Access Manager makes it possible for
a user to access many resources in the enterprise with just one identity.

What Access Manager Does
When an enterprise user or an external application tries to access content stored on a company’s
server, an Access Manager policy agent intercepts the request and directs it to the Access
Manager server. Access Manager then asks the user to present credentials such as a username
and password. If the credentials match those stored in the appropriate identity repository,
Access Manager determines that the user’s credentials are authentic.

Following authentication, the Access Manager policy agent evaluates the policies associated
with the user’s identity to determine authorization to access the requested content. Policies are
created using Access Manager and identify which users (or groups of users) are allowed to
access a particular resource, specifying the conditions under which this authorization is valid.
Based upon the policy evaluation results, the policy agent either grants or denies the user access
to the information. Figure 1–1 below illustrates one way Access Manager can be configured to
act as the gatekeeper to a company’s information resources.

What Access Manager Does

Sun Java System Access Manager 7.1 Technical Overview • March 200716

Access Manager Installation Modes
When you install Access Manager, you are asked to choose either Realm Mode or Legacy Mode.
Realm Mode is the new Access Manager architecture; Legacy Mode is based on the Access
Manager 6.3 architecture. The following table briefly compares these options. The sections
following the table give a more in-depth explanation of each installation modes.

TABLE 1–1 Comparison of Realm and Legacy Modes

Realm Mode Legacy Mode

Supports all new Access Manager 7.1 features. Yes Yes

Supports identity repositories in Sun Java System Directory Server
and other data stores.

Yes Yes

Supports Access Manager 6 user management features. No Yes

Internet

Customers

Business
Partners

Administrator
Employees

Content and Application Servers
with Access Manager Policy

Agents

Access Manager

Administration
Console

Core
Components

Non-administrator
Employees

Access
Manager
Information
Tree

Identity
Repository

FIGURE 1–1 Access Manager as Gatekeeper to a Company's Enterprise Resources

Access Manager Installation Modes

Chapter 1 • Introduction to Access Manager 17

TABLE 1–1 Comparison of Realm and Legacy Modes (Continued)
Realm Mode Legacy Mode

Can coexist with Access Manager 6 2005Q1 in multiple-server
installations.

No Yes

Before installation, identity repository can exist in Sun Java Directory
Server .

Yes Yes

Before installation, identity repository can exist in an LDAP version 3
compliant directory server.

Yes No

To determine if an already installed instance of Access Manager is running in realm or legacy
mode, type the following into the location bar of your web browser:

protocol://FQDN_server:port/amserver/SMSServlet?method=isRealmEnabled

The server will return true if running in realm mode. More information on the installation
modes can be found in the following sections:

■ “Realm Mode” on page 18
■ “Legacy Mode” on page 19

Realm Mode
Realm mode is based on the Access Manager information tree and Identity Repository
Management Service described in previous sections. Realm Mode is appropriate in most new
Access Manager deployments where you want to keep identity repositories independent of
access management, or where you cannot maintain user data within the required object classes
of Sun Java System Directory Server. If you choose Realm Mode at installation, your identity
repositories can exist in any of the following configurations:

■ In the same Directory Server instance and the same suffix as the Access Manager
information tree.

■ In the same Directory Server instance but in a different suffix as the Access Manager
information tree.

■ In a different directory server instance from the Access Manager information tree.

Figure 1–2 is a screen capture of the Access Manager Administration Console when the product
has been installed in Realm Mode.

Access Manager Installation Modes

Sun Java System Access Manager 7.1 Technical Overview • March 200718

Legacy Mode
Legacy Mode is based on the Access Manager 6.3 architecture. This legacy Access Manager
architecture uses the Lightweight Directory Access Protocol (LDAP) directory information tree
(DIT) that comes with Sun Java System Directory Server. In Legacy Mode, both user
information and access control information are stored in LDAP organizations. When you
choose Legacy Mode, an LDAP organization is the equivalent of an access control realm. Realm
information is integrated within LDAP organizations.

Legacy Mode is appropriate in deployments where you want to use Access Manager user
management. It is typically used in deployments where Access Manager is built upon Sun Java
System Portal Server or other Sun Java System communication products that require the use of
Sun Java System Directory Server as the central identity repository. If you choose Legacy Mode
during installation, the top-level ream resides in the same Directory Server branch as the Access
Manager information tree, and user information is intermingled with access information.

Figure 1–3 is a screen capture of the Access Manager Administration Console when the product
has been installed in Legacy Mode.

FIGURE 1–2 Realm Mode User Interface

Access Manager Installation Modes

Chapter 1 • Introduction to Access Manager 19

Access Manager Architecture
Access Manager uses a Java technology-based architecture for scalability, performance, and
ease of development. It also leverages industry standards including the HyperText Transfer
Protocol (HTTP), the eXtensible Markup Language (XML), the Security Assertion Markup
Language (SAML), and SOAP. The internal architecture is multi-layered and includes the
following:

■ A presentation layer
■ Web services
■ Core components
■ Client application programming interfaces (APIs)
■ Service provider interfaces (SPIs)
■ An integrated framework
■ A plug-ins layer

Custom applications access the Access Manager web services through the Access Manager
client APIs installed on each protected resource. Custom plug-in modules interact with both the
Access Manager SPIs and the plug-ins layer. The plug-in modules retrieve required information

FIGURE 1–3 Legacy Mode User Interface

Access Manager Architecture

Sun Java System Access Manager 7.1 Technical Overview • March 200720

from the Access Manager information tree and deliver it to other plug-ins when necessary, and
to the Access Manager framework for data processing. Additional information can be found in
the following sections.

■ “Access Manager Framework” on page 21
■ “Access Manager Information Tree” on page 23
■ “Realms” on page 25
■ “Identity Repository Framework” on page 28
■ “Core Components and Internal Services” on page 31
■ “Web Services” on page 31
■ “SPIs and Plug-ins” on page 32
■ “Client APIs” on page 34
■ “Access Manager Policy Agents” on page 34

Access Manager Framework
The Access Manager framework is where the Access Manager business logic is implemented.
Each core component uses its own framework to retrieve customer data from the plug-in layer
and to provide data to the core components. The Access Manager framework integrates all of
these frameworks to form one layer in the architecture that is accessible to all core components
and Access Manager plug-ins. Figure 1–4 illustrates the plug-ins layer, Access Manager
framework, core components, and web services that form the Access Manager architecture.

Access Manager Architecture

Chapter 1 • Introduction to Access Manager 21

Authentication
XML/http(s)

Policy
XML/http(s)

SAML
XML/http(s)

Federated
Identity

XML/http(s)

Administration
Console

HTML/http(s)

Administration
CLI

Java
Applications

Authentication SAML
Federated

Identity Session Logging

Authentication
Policy

(Authorization)

Policy
Authorization

Plug-ins

Policy
(Authorization)

Service
Configuration Delegation

Identity
Repository

Management

Service
Configuration

Plug-ins

Delegation
Plug-ins

Identity
Repository

Plug-ins

Access Manager SPIs

Access Manager Framework

Access Manager Components

Access Manager Web Services

Servlet / J2EE Container

Protected Resource

Access Manager Client APIs

C
Applications

SAML
Applications

Liberty
Applications

Web
Browser

Authentication
Plug-ins

FIGURE 1–4 Access Manager Internal Architecture

Access Manager Architecture

Sun Java System Access Manager 7.1 Technical Overview • March 200722

Access Manager Information Tree
When installed in Realm Mode, Access Manager creates a special and proprietary branch in an
LDAP data store for storing realm configurations, authentication properties, and authorization
policies. Access Manager components and plug-ins access the data stored in the Access
Manager information tree, and use it for various purposes including the following examples:

■ Policy runtime accesses policy data for policy evaluation.
■ Identity Repository plug-in finds configuration information for data stores.
■ Authentication Service finds authentication configuration information.

By default, the Access Manager information tree is created and maintained by Access Manager
as a special branch in Sun Java System Directory Server, apart from any user data (identity
repository). Figure 1–5 illustrates this default configuration.

But, the Access Manager information tree can also be created in a directory that is separate from
the one hosting the Access Manager Identity Repository. Figure 1–6 illustrates this custom
configuration.

Sun Java ES
Directory Server

Identity
Repository

Access Manager
Information Tree

Access Manager
Server

Content and
Application Server

Client APIs

FIGURE 1–5 Default Configuration for Access Manager Information Tree

Access Manager Architecture

Chapter 1 • Introduction to Access Manager 23

The following figure compares two directory information trees: the first illustration represents a
default hierarchical LDAP structure while the second represents the structure when the Access
Manager information tree is integrated.

Data Store 2

Access
Manager

Information
Tree

Data Store 1

Identity
Repository

Access Manager
Server

Content and
Application Server

Client APIs

FIGURE 1–6 Access Manager Information Tree Configured in Second Data Store

Access Manager Architecture

Sun Java System Access Manager 7.1 Technical Overview • March 200724

Realms
An Access Manager realm is a grouping of configuration information that you can associate
with a user, a group of users, or a collection of protected resources. The configuration
information can include, but is not limited to, the following:

■ A definition of one or more identity repositories, identifying a set of users, groups, and roles
to whom the remaining realm configuration information applies.

■ An authentication configuration, identifying, for example, the location of the authentication
repository, and the type of authentication required.

■ Policy information that will be used to determine which resources protected by Access
Manager the subjects can access.

Devices

Site 1

Site 2
Site 3

Example Corporation

Typical Directory Server

Groups

People

Customers

Employees
Vendors

User 1

User 2
User 3

Devices

Example Corporation

Directory Server with
Access Manager Installed

Groups

People

Access Manager Information

Region 1

Region 2
Region 3

Development

Operations
Sales

FIGURE 1–7 Directory Server With and Without an Access Manager Information Tree

Access Manager Architecture

Chapter 1 • Introduction to Access Manager 25

■ Responder information that allows applications to personalize the user experience, once the
user has successfully authenticated and been given access.

The Access Manager framework aggregates realm properties within the proprietary Access
Manager information tree. The following figure illustrates how realm data stored in an Access
Manager information tree can be grouped by region and by company functions.

Access Manager Architecture

Sun Java System Access Manager 7.1 Technical Overview • March 200726

Service Configuration
 • Policies
 • Authorization Attributes
 • Identity Repository Plug-ins

Service Configuration
 • Policies
 • Authorization Attributes

Service Configuration
 • Policies
 • Authorization Attributes

Service Configuration
 • Policies
 • Authorization Attributes

Service Configuration
 • Policies
 • Authorization Attributes

Service Configuration
 • Policies
 • Authorization Attributes

Region 1

Access Manager Information Tree

Region 2

Region 3

Development

Operations

Sales

FIGURE 1–8 Realm Data in Access Manager Information Tree

Access Manager Architecture

Chapter 1 • Introduction to Access Manager 27

Identity Repository Framework
An identity repository is a data store where information about users and groups in a company or
organization is stored. The Access Manager Identity Repository Framework and related APIs
are a model by which plug-ins can be written that allow communication with different types of
identity repositories. Following is an illustration of the Identity Repository Framework and how
it is integrated within the other features of Access Manager.

Note – The information in an identity repository is maintained by provisioning products
separate from Access Manager. The supported provisioning product is Sun Java System Identity
Manager. See Sun Java System Identity Manager for more information.

The Identity Repository Framework is configured as a service within an Access Manager realm.
Multiple identity repository plug-ins can be configured for each realm. Each plug-in
configuration includes details about what operations are supported on each of the identity types
based on the underlying data store. Once an Access Manager realm is configured to use a
plug-in, the Identity Repository Framework will instantiate it and execute operations on the
identity repository it supports. This model allows the following:
■ Data store independence enables you to view and retrieve user information without making

changes to your existing user database.
■ Universal identities allow you to access the many profiles of one identity across multiple

data repositories, if necessary.
■ Caching helps to improve repository read performance.

Access Manager Architecture

Sun Java System Access Manager 7.1 Technical Overview • March 200728

http://www.sun.com/software/products/identity_mgr/index.jsp

When deploying Access Manager, you must choose one or more of the supported plug-ins
based on the data store. You can configure the Identity Repository Service per realm to use its
own list of identity repositories to store service configurations for both users and roles. The
Access Manager framework integrates data from the identity repository plug-in with data from
other Access Manager plug-ins to form a virtual identity for each user. Access Manager can then
use this identity in authentication and authorization processes among more than one identity
repositories. The virtual user identity is destroyed when the user’s session ends.

Each new plug-in developed must have a corresponding service management schema defining
its configuration attributes. This schema is enveloped into the service management file for the
Identity Repository Service (named idRepoService.xml) as a sub schema. Currently, Access
Manager provides out-of-the-box plug-in support for the following types of identity
repositories:

■ “Access Manager Repository Plug-in (Sun Java System Directory Server)” on page 29
■ “Generic Lightweight Directory Access Protocol (LDAP) version 3” on page 30
■ “Flat Files Repository” on page 30
■ “Active Directory” on page 30
■ “Sun Directory Server With Access Manager Schema” on page 30

Access Manager Repository Plug-in (Sun Java System Directory Server)
The Access Manager Repository can reside only in Sun Java System Directory Server. During
installation, the repository itself is created in the same instance of Sun Java System Directory
Server that holds the Access Manager information tree. (This is the default installation mode
when using the Sun Java Enterprise System installer.) The two information trees are configured
in separate nodes under a single directory suffix. The Access Manager Repository Plug-in is
designed to work with Sun Java System Directory Server as it makes use of features specific to
the server including roles and class of service. It uses a DIT structure similar to that of previous
versions of Access Manager.

Note – Previously, the functionality of this plug-in was provided by the AMSDK component. In
Access Manager 7.1, the AMSDK functionality still exists, but as a plug-in only. (See “AM SDK
Plug-in” on page 34.) Thus, the Access Manager Repository is compatible with previous
versions of Access Manager.

When you configure an instance of Access Manager in realm mode for the first time, the
following occurs:

■ An Access Manager Repository is created under the top-level realm.
■ The Access Manager Repository is populated with internal Access Manager users.

Access Manager Architecture

Chapter 1 • Introduction to Access Manager 29

Note – The Java Enterprise System installer does not set up an Access Manager Repository when
you configure an Access Manager instance in legacy mode. Legacy mode requires an identity
repository that is mixed with the Access Manager information tree under a single directory
suffix.

Active Directory
This data store type uses the LDAP version 3 specification to write identity data to an instance of
Microsoft® Active Directory®.

Generic Lightweight Directory Access Protocol (LDAP) version 3
Generic LDAPv3 identity repositories may reside on an instance of any directory that complies
with the LDAPv3 specifications. The directory can not make use of features that are not part of
the LDAP version 3 specification, and no specific DIT structure can be assumed as LDAPv3
identity repositories are simply DIT branches that contain user and group entries. The identity
repositories might or might not reside in the same instance of Sun Java System Directory Server
as the Access Manager information tree. Each data store has a name that is unique among a
realm's data store names, but not necessarily unique across all realms in the Access Manager
information tree. The com.sun.identity.idm.plugins.ldapv3.LDAPv3Repo class provides
the default LDAPv3 identity repository implementation.

Note – This configuration is not compatible with previous versions of Access Manager.

Flat Files Repository
This repository allows you to store data and identities in a flat DIT structure on the local
installation of Access Manager without having to create a separate data store. This is generally
used for testing or proof of concept deployments.

Note – If deploying an instance of Access Manager from a single WAR file, the default identity
repository is a flat file.

Sun Directory Server With Access Manager Schema
This repository resides in an instance of Sun Java System Directory Server and holds the Access
Manager information tree. It differs from the Access Manager Repository Plug-in in that more
configuration attributes allow for better customization.

Access Manager Architecture

Sun Java System Access Manager 7.1 Technical Overview • March 200730

Core Components and Internal Services
The core components provide the logic that performs the main Access Manager functions,
working with the services that run within Access Manager. These internal services process data
solely for use by Access Manager. The following table lists the core components and internal
services with brief descriptions.

TABLE 1–2 Core Components and Internal Services

Core Component or Internal Service What it Does

Authentication component Validates user’s credentials and verifies that the user is who he claims to
be.

Authorization (Policy) component Evaluates policies to determine whether the user has permission to
access the requested resource.

SAML component Provides a protocol-based alternative to using cookies for performing a
SSO session.

Federation component Enables user to access resources provided by multiple business partners
in a SSO session.

User Session Management
component

Maintains information about user sessions, and enforces timeout limits.
Provides continued proof of identity to enable single sign-on sessions.

Logging Service Tracks a user’s interactions with web applications. Creates log messages
to form an audit trail of important events within the system.

Naming Service Defines URLs for other Access Manager components and internal
services, enabling a client to locate them.

Platform Service Manages configurable attributes used in an Access Manager
deployment.

Client Detection Service Detects the client type of the browser being used to access the Access
Manager application. Client types include HyperText Markup Language
(HTML) and Wireless Markup Language (WML), among other
protocols.

Web Services
Web services follow a standardized way of integrating Web-based applications using XML,
SOAP, and other open standards over an Internet protocol backbone. Web services enable
applications from various sources to communicate with each other because they are not tied to
any one operating system or programming language. Businesses use web services to
communicate with each other and their respective clients without having to know detailed
aspects of each other's IT systems. Access Manager provides web services that use XML and

Access Manager Architecture

Chapter 1 • Introduction to Access Manager 31

SOAP over HTTP. These web services are designed to be centrally provided in an enterprise's
network for convenient access by client applications. The following table summarizes the web
services provided in Access Manager.

TABLE 1–3 Access Manager Web Services

Web Service Name Description

Authentication Verifies that a user really is the person he claims to be.

Policy (Authorization) Evaluates rules (policies) associated with a user’s identity, and determines
whether an authenticated user has permission to access a protected
resource.

SAML Enables single sign-on sessions among different business domains. Allows
business partners to securely exchange authentication and authorization
information over the Internet.

Federation Enables a user to log in at one service provider’s site and move to an
affiliated service provider site without having to re-authenticate or
re-establish identity.

Session Maintains information about the user’s interaction with various
applications the user accesses.

Access Manager uses both XML files and Java interfaces to manage web services and web service
configuration data. An Access Manager XML file is based on the structure defined in a
Document Type Definition (DTD) file which defines the structure, elements and qualifying
attributes needed to form the valid XML document. The DTD files are located in
AccessManager-base/SUNWam/dtd. The main sms.dtd file defines the structure for all Access
Manager XML service files (located in /etc/opt/SUNWam/config/xml).

Caution – Do not modify any of the Access Manager DTD files. The Access Manager APIs and
their internal parsing functions are based on the default definitions. Alterations to the DTD files
may hinder the operation of Access Manager.

SPIs and Plug-ins
The Access Manager SPIs work with plug-ins to provide customer data to the framework for
back-end processing. Some customer data comes from external data base applications such as
identity repositories while other customer data comes from the Access Manager plug-ins
themselves. You can develop additional custom plug-ins to work with the Access Manager SPIs.
For a complete listing of Access Manager SPIs, see the Sun Java System Access Manager 7.1 Java
API Reference. The following sections contain brief descriptions of the plug-ins installed with
Access Manager.
■ “Authentication Plug-in” on page 33

Access Manager Architecture

Sun Java System Access Manager 7.1 Technical Overview • March 200732

■ “Delegation Plug-in” on page 33
■ “Identity Repository Management Plug-in” on page 33
■ “Policy Plug-in” on page 34
■ “Service Configuration Plug-in” on page 34
■ “AM SDK Plug-in” on page 34

Authentication Plug-in
The Authentication Plug-in accesses user data in a specified identity repository to determine if a
user’s credentials are valid.

Delegation Plug-in
The Delegation plug-in aggregates policies and roles to determine the scope of a network
administrator’s authority. The Authentication Service and the Policy Service then use the
aggregated data to perform authentication and authorization processes. The Delegation plug-in
works together with the Identity Repository Management plug-in (where default administrator
roles are defined) to form rules that describe the scope of privileges for each network
administrator, and specifies the roles to which these rules apply. The following is a list of roles
defined by the Identity Repository Management plug-in, and the default rule the Delegation
plug-in applies to each.

TABLE 1–4 Access Manager Administrator Roles and Scope of Privileges

Administrator Role Delegation Rule

Realm Administrator Can access all data in all realms of the Access Manager information
tree.

Subrealm Administrator Can access all data within a specific realm of the Access Manager
information tree.

Policy Administrator Can access all policies in all realms of the Access Manager
information tree.

Policy Realm Administrator Can access policies only within the specific realm of the Access
Manager information tree.

Note – The Delegation plug-in code is not public in Access Manager.

Identity Repository Management Plug-in
The Identity Repository Management plug-in returns identity information such as user
attributes and membership status for purposes of authentication.

Access Manager Architecture

Chapter 1 • Introduction to Access Manager 33

Policy Plug-in
The Policy plug-in aggregates policies and rules to determine whether a user is authorized to
access a protected resource.

Service Configuration Plug-in
The Service Configuration plug-in stores and manages configuration data required by the core
components and other Access Manager plug-ins. In previous versions of Access Manager, the
functionality provided by the Service Configuration plug-in was known as the Service
Management Service (SMS).

AM SDK Plug-in
The AM SDK plug-in creates and modifies users and stores information in the user branch of
the identity repository. It implements the user management APIs used in previous Access
Manager releases.

Client APIs
Enterprise resources cannot be protected by Access Manager until the Access Manager client
APIs are installed on the Web Server or Application Server that you want to protect. (The client
APIs are automatically installed when you install a policy agent.) The client APIs allow you to
customize an application by enabling communication with Access Manager for retrieving user,
session, and policy data.

Access Manager Policy Agents
You install an Access Manager Policy Agent on a resource you'd like to protect to enforce the
policy decisions determined by the Policy Service. The policy agent intercepts requests from
applications, and redirects the requests to Access Manager for authentication. Once the user is
authenticated, the policy agent communicates with the Policy Service for authorization. The
policy agent allows or denies the user access depending upon the result of policy evaluation.
Policy agents are downloaded and installed separately from the Access Manager server. For
more information, see Sun Java System Access Manager Policy Agent 2.2 User’s Guide.

Access Manager Architecture

Sun Java System Access Manager 7.1 Technical Overview • March 200734

How Access Manager Works
When Access Manager starts up, it initializes the Access Manager information tree with
configuration data from various Access Manager service plug-ins including those for
Authorization, Policy, Identity Repository Management, and Service Configuration. When a
browser sends an HTTP request for access to a protected resource, Access Manager
immediately binds to the appropriate Identity Repository to obtain user information (which
may include definitions for roles, realms, user IDs, and so forth). At the same time, a policy
agent installed on the protected resource intercepts the request and examines it. If no session
token is found, the policy agent contacts the Access Manager server which will then invoke the
authentication and authorization processes. Figure 1–9 illustrates how policy agents protect the
enterprise's web servers by directing HTTP requests to a centralized Access Manager server for
processing.

Directory
Server

Web Browser

Firewall

Access Manager
Server

Firewall

Web Server Web Server Web Server

Access Manager Policy AgentAccess Manager Policy Agent Access Manager Policy Agent

Access Manager
Information Tree

FIGURE 1–9 Basic Access Manager Deployment

How Access Manager Works

Chapter 1 • Introduction to Access Manager 35

Access Manager integrates the following functions into one product. They can be viewed and
configured using a single administration console:

■ “Authentication Service” on page 36
■ “Policy Service” on page 36
■ “User Session Management” on page 37
■ “SAML Service” on page 37
■ “Federation Service” on page 37
■ “Logging” on page 38

Authentication Service
Authentication is the first step in determining whether a user is allowed to access a resource
protected by Access Manager. The Access Manager Authentication Service verifies that a user
really is the person he claims to be. It consists of the following components:

■ Plug-in modules
■ A framework for connecting plug-in modules
■ A core authentication component
■ A graphical user interface
■ Client APIs

The Authentication Service interacts with the Authentication database to validate user
credentials, and with Identity Repository Management plug-ins to retrieve user profile
attributes. When the Authentication Service determines that a user’s credentials are genuine, a
valid user session token is issued, and the user is said to be authenticated.

Policy Service
Authorization is the process with which Access Manager evaluates policies associated with a
user’s identity, and determines whether an authenticated user has permission to access a
protected resource. The Access Manager Policy Service enables authorization to take place. It
consists of the following components:

■ Policy plug-ins
■ A framework for connecting policy plug-ins
■ A core policy component
■ A graphical user interface
■ Client APIs

The Policy Service interacts with Access Manager service configurations, a delegation plug-in
(which helps to determine a network administrator’s scope of privileges), and identity
repository plug-ins to verify that the user has access privileges from a recognized authority.

How Access Manager Works

Sun Java System Access Manager 7.1 Technical Overview • March 200736

User Session Management
An Access Manager user session is the interval between the moment a user logs in to a network
resource protected by Access Manager, and the moment the user logs out of the resource.
During the user session, the Access Manager Session Service maintains information about the
interactions the user has with the various applications. Access Manager uses this information to
enforce time-dependent rules such as timeout limits. Also during the user session, Access
Manager provides continuous proof of the user’s identity. This proof of identity enables the user
to access multiple enterprise resources without having to provide credentials each time.

The Access Manager Session Service enables the following types of user sessions:

■ Basic user session. The user provides credentials to log in to one application, and then logs
out of the same application.

■ Single sign-on (SSO) session. The user provides credentials once, and can then access
multiple applications within the same DNS domain.

■ Cross domain SSO (CDSSO) session. The user provides credentials once, and can then
access applications among multiple DNS domains.

SAML Service
Access Manager uses the Security Assertion Markup Language (SAML), an XML-based
framework for exchanging security information. While the Session Service enables SSO
sessions among different DNS domains within the same intranet, the SAML Service enables
CDSSO sessions among different business domains. Using the SAML protocol, business
partners can securely exchange authentication and authorization information over the Internet.
The SAML Service consists of the following components:

■ A framework to which web services can connect
■ A core SAML component
■ A graphical user interface

Federation Service
Identity federation allows a user to consolidate the many local identities he has configured
among multiple service providers. With one federated identity, the user can log in at one service
provider’s site and move to an affiliated service provider site without having to re-authenticate
or re-establish identity. The Federation Service uses SAML to enable SSO sessions among
business partners over the Internet. It consists of the following components:

■ A framework that complies with the Liberty Alliance Project specifications
■ A core Federation component
■ A graphical user interface

How Access Manager Works

Chapter 1 • Introduction to Access Manager 37

Logging
When a user logs in to a resource protected by Access Manager, the Logging component
records information about the user's activity. You can write custom log operations and
customize log plug-ins to generate log reports for auditing purposes.

How Access Manager Works

Sun Java System Access Manager 7.1 Technical Overview • March 200738

User Session Management and Single Sign-On

This chapter explains how the Access Manager Session Service works with other core Access
Manager components to process HTTP requests and to manage user session data. The chapter
traces events in a basic user session, a single sign-on session (SSO), and a cross-domain single
sign-on session (CDSSO) to give you an overview of Access Manager’s features and process
flows. Topics covered include:
■ “User Sessions and the Session Service” on page 39
■ “Sessions, Session Tokens, and Cookies” on page 40
■ “Policy Agents” on page 41
■ “Basic User Session” on page 42
■ “Single Sign-On Session” on page 51
■ “Cross-Domain Single Sign-On Session” on page 54
■ “Session Termination” on page 56

User Sessions and the Session Service
The Session Service in Sun Java System Access Manager tracks a user’s interaction with web
applications. For example, the Session Service maintains information about how long a user has
been logged in to Access Manager, and enforces time-out limits when necessary. Additionally,
the Session Service performs the following actions:
■ Generates session identifiers.
■ Maintains a master copy of session state information.
■ Implements time-dependent behavior of sessions.
■ Implements session life cycle events such as logout and session destruction.
■ Generates session life cycle event notifications.
■ Generates session property change notifications.
■ Implements session quota constraints.
■ Implements session failover.

2C H A P T E R 2

39

■ Enables single sign-on (SSO) and cross-domain single sign-on (CDSSO) among
applications external to Access Manager.

A user session is the interval between the moment a user logs in to Access Manager, and the
moment the user logs out of Access Manager. In a typical user session, an employee attempts to
access the corporate benefits administration application. The application is protected by Access
Manager, and Access Manager prompts the user for a username and password. First, Access
Manager authenticates, or verifies that the user is who he says he is. Following user
authentication, Access Manager allows the user access to the application (providing the user has
the appropriate permissions). For a more detailed explanation, see “Basic User Session” on
page 42.

Oftentimes, in the same user session (without logging out of the corporate benefits application),
the same employee attempts to access the corporate expense reporting application. Because the
expense reporting application is also protected by Access Manager, the Session Service provides
continued proof of the user’s authentication, and the employee is automatically allowed to
access the expense reporting application. The employee has accessed more than one application
in a single user session without having to re-authenticate. This functionality is called Single
Sign-On (SSO). When SSO occurs among applications in more than one DNS domain, the
functionality is called Cross-Domain Single Sign-On (CDSSO). For more detailed explanations,
see “Single Sign-On Session” on page 51 and “Cross-Domain Single Sign-On Session” on
page 54, respectively.

Sessions, Session Tokens, and Cookies
The Access Manager Session Service creates a session data structure to store information about
a user session and uses cookies to store a token that identifies the session data structure. When a
user logs in and is successfully authenticated, the user is assigned a session, a session data
structure that, minimally, stores the following information about a user session:

Maximum Idle Time Maximum number of minutes without activity before the session
will expire and the user must reauthenticate.

Maximum Session Time Maximum number of minutes (activity or no activity) before the
session expires and the user must reauthenticate.

Maximum Caching Time Maximum number of minutes before the client contacts Access
Manager to refresh cached session information.

Internally, these session attributes are used to enforce Access Manager timeout limits. But a
session can also contain additional attributes and properties which can be used by other
applications. For example, a session data structure can store information about a user’s identity,
or about a user’s browser preferences. You can configure Access Manager to include the
following types of information in a session:

■ Fixed session attributes

Sessions, Session Tokens, and Cookies

Sun Java System Access Manager 7.1 Technical Overview • March 200740

■ Protected properties
■ Custom properties

For a detailed summary of information that can be included in a session, see Configuring Access
Manager Sessions in the Sun Java System Access Manager 7.1 Postinstallation Guide.

The Session Service also generates a session token for the new session data structure. The session
token, also known as a sessionID, is an encrypted, unique string that identifies the specific
session instance. If the session token is known to a protected resource such as an application,
the application can access the session and all user information contained in it. In Access
Manager, a session token is carried in a cookie. A cookie is an information packet generated by a
web server and passed to a web browser. The fact that a web server generates a cookie for a user
does not guarantee that the user is allowed access to protected resources. The cookie simply
points to user information in a data store from which an access decision can be derived.

Note – Cookies are domain-specific. For example, a cookie generated by a web server within
Domain A cannot be used by a web server in Domain B. Cookies can be passed only between
servers in the same domain in which the cookie was set. Similarly, servers can set cookies only
on servers within in their own domain.

Policy Agents
Policy agents are an integral part of SSO and CDSSO sessions. They are programs that police the
web server or application server that hosts protected resources. When a user requests access to a
protected resource such as a server or an application, the policy agent intercepts the request and
redirects it to the Access Manager Authentication Service for authentication. Following this, the
policy agent will also enforce the authenticated user’s assigned policies. (A policy defines the
rules that specify a user's access privileges to a protected resource.) Access Manager supports
two types of policy agents:

■ The web agent enforces URL-based policy for C applications.
■ The J2EE/Java agent enforces URL-based policy and J2EE-based policy for Java applications

on J2EE containers.

Both types of agents are available for you to install as programs separate from Access Manager.
For an overview of the available policy agents and links to specific information on installation,
see the Sun Java System Access Manager Policy Agent 2.2 User’s Guide.

Policy Agents

Chapter 2 • User Session Management and Single Sign-On 41

Note – When Access Manager policy agents are implemented, all HTTP requests are implicitly
denied unless explicitly allowed by the presence of two things:

1. A valid session
2. A policy allowing access

You can modify this default configuration so that Access Manger implicitly allows access unless
explicitly denied.

Basic User Session
The following sections describe the process behind a basic user session by tracing what happens
when a user logs in to a resource protected by Access Manager. In these examples, the server
which hosts an application is protected by an Access Manager policy agent. The Basic User
Session includes the following phases:

■ “Initial HTTP Request” on page 42
■ “User Authentication” on page 44
■ “Session Validation” on page 46
■ “Policy Evaluation and Enforcement” on page 48
■ “Logging Results” on page 50

Initial HTTP Request
When a user initiates a user session by using a browser to log in to a web-based application, the
events in the following illustration occur. The accompanying text describes the process.

Basic User Session

Sun Java System Access Manager 7.1 Technical Overview • March 200742

1. The user’s browser sends an HTTP request to the protected resource.
2. The policy agent inspects the user’s request and finds no session token.
3. The policy agent contacts the configured authentication URL.

In this example, the authentication URL it is set to the URL of the Distributed
Authentication User Interface Service.

4. The browser sends a GET request to the Distributed Authentication User Interface.
5. The Session Service creates a new session (session data structure) and generates a session

token. The session token is a randomly-generated string that represents the user.
6. The Authentication Service sets the session token in a cookie.

Distributed
Authentication

Service Interface

J2EE Container

Protected Resource

Data Store

Access Manager Server

Authentication
Service

Session
Service

Client Detection
Service

Naming
Service

Logging
Service

Policy
Service

Access Manager
Information Tree

Directory
Information Tree

User’s Browser

Firewall

Firewall

Access Manager
Policy Agent

Access Manager
Client APIs

Application

1

2

5
6

3

4

FIGURE 2–1 Initial HTTP Request

Basic User Session

Chapter 2 • User Session Management and Single Sign-On 43

The next part of the user session is User Authentication.

User Authentication
When the browser sends a GET request to the Distributed Authentication User Interface, the
events in the following illustration occur. The accompanying text describes the process.

1. Using the parameters in the GET request, the Distributed Authentication User Interface
contacts the Authentication Service installed on the Access Manager server.

Protected Resource

Data Store

Access Manager Server

Authentication
Service

Session
Service

Client Detection
Service

Naming
Service

Logging
Service

Policy
Service

Access Manager
Information Tree

Directory
Information Tree

User’s Browser

Firewall

Firewall

Access Manager
Policy Agent

Application

Distributed
Authentication

Service Interface

J2EE
Container

6

12

1

2 3

4

1110

8

5

13

Access Manager
Client APIs

9

7

Basic User Session

Sun Java System Access Manager 7.1 Technical Overview • March 200744

2. The Authentication Service determines the appropriate authentication module to use based
upon Access Manager configuration and the request parameters passed by the Distributed
Authentication User Interface using the Authentication client APIs.
For example, if Access Manager is configured to use the LDAP Authentication type of
module, the Authentication Service determines that the LDAP Authentication login page
will be used.

3. The Authentication Service determines which presentation callbacks should be presented,
and sends to the Distributed Authentication User Interface all necessary credentials,
requirements, and callbacks for use by the presentation framework layer.

4. The Client Detection Service determines which protocol, such as HTML or WML, to use to
display the login page.

5. The Distributed Authentication User Interface returns to the Web browser a dynamic
presentation extraction page along with the session cookie.
The presentation extraction page contains the appropriate credentials request and callbacks
info obtained from the Access Manager server.

6. The user’s browser displays the login page.
The user enters information in the Username and Password fields of the login page.

7. The browser replies to the Distributed Authentication User Interface with a POST that
contains the required credentials.

8. The Distributed Authentication User Interface uses the Authentication client APIs to pass
credentials to the Access Manager server.

9. The Authentication Service uses the appropriate authentication module type to validate the
user’s credentials.
For example, if the LDAP authentication module type is used, the Authentication Service
verifies that the username and password provided exist in the LDAP directory. Other
authentication module types have different requirements.

10. Assuming authentication is successful, the Authentication Service activates the session by
calling the appropriate methods in the Session Service.
The Authentication Service stores information such as Login time, Authentication Scheme,
and Authentication Level in the session data structure.

11. Once the session is activated, the Session Service changes the state of the session token to
valid.

12. The Distributed Authentication User Interface replies to the protected resource with an
SSOToken in a set-cookie header.

13. Now, the browser makes another request to the original resource protected by a policy
agent.
This time, the request includes a valid session token, created during the authentication
process.

Basic User Session

Chapter 2 • User Session Management and Single Sign-On 45

The next part of the user session is Session Validation.

Session Validation
After authentication, when the user’s browser redirects the initial HTTP request to the server
for a second time, the events in the following illustration occur. The accompanying text
describes the process.

1. The policy agent intercepts the second access request.
The request now contains a session token in the same DNS domain as Access Manager.

Protected Resource

Data Store
Access Manager Server

Authentication
Service

Session
Service

Client Detection
Service

Naming
Service

Logging
Service

Policy
Service

Access Manager
Information Tree

User’s Browser

Firewall

Firewall

Access Manager
Policy Agent

Access Manager
Client APIs

Application

1

4

6

5

3
2

Web Browser

Directory
Information Tree

FIGURE 2–2 Session Validation

Basic User Session

Sun Java System Access Manager 7.1 Technical Overview • March 200746

2. The policy agent determines the validity of the session token.
a. The policy agent contacts the Naming Service to learn where the session token

originated.
The Naming Service allows clients to find the service URL for the internal services used
by Access Manager. This information can then be used for communication regarding a
session.

b. The Naming Service decrypts the session token and returns the corresponding URLs .
The URLs will be used by other services to obtain information about the user session.

3. The policy agent, using the information provided by the Naming Service, makes a POST
request to the Session Service to validate the included session token.

4. The Session Service receives the request and determines whether the session token is valid
based on the following criteria:
a. Has the user been authenticated?
b. Does a session data structure associated with the session token exist?

5. If all criteria are met, the Session Service responds that the session token is valid.
This assertion is coupled with supporting information about the user session itself.

6. The policy agent creates a Session Listener and registers the Session Listener with the
Session Service. This enables notification to the policy agent when a change in the session
token state or validity occurs.

The next part of the user session is Policy Evaluation.

Basic User Session

Chapter 2 • User Session Management and Single Sign-On 47

Policy Evaluation and Enforcement
After a session token has been validated, the policy agent determines if the user can be granted
access to the server by evaluating it's defined policies. The following illustration and
accompanying text describes the process.

Protected Resource

Data Store

Access Manager Server

Authentication
Service

Session
Service

Client Detection
Service

Naming
Service

Logging
Service

Policy
Service

Access Manager
Information Tree

Directory
Information Tree

User’s Browser

Firewall

Firewall

Access Manager
Policy Agent

Access Manager
Client APIs

Application

2

3
4

1

Web Browser

FIGURE 2–3 Policy Evaluation

Basic User Session

Sun Java System Access Manager 7.1 Technical Overview • March 200748

1. The policy agent sends a request to the Policy Service.
The request asks for decisions regarding resources in the policy agent’s portion of the HTTP
namespace. The request also includes additional environmental information. For example,
IP address or DNS name could be included in the request because they might impact
conditions set on a configuration policy.

2. The Policy Service checks for policies that apply to the request.
Policies are cached in Access Manager. If the policies have not been cached already, then the
policies are loaded from the Access Manager information tree in the Identity Repository.

3. If policies that apply to the request are found, the Policy Service checks if the user identified
by the session token is a member of any of the Policy Subjects.
a. If no policies that match the resource are found, the user is denied access. Skip to step 5.
b. If policies are found that match the resource, and the user is a valid subject, the Policy

Service evaluates the conditions of each policy. For example, Is it the right time of day? or
Are requests coming from the correct network?
■ If the conditions are met, the policy applies.
■ If the conditions are not met, the policy is skipped.

4. The Policy Service aggregates all policies that apply, encodes a final decision to grant or deny
access, and responds to the policy agent with the appropriate decision.

The next part of the user session is logging the policy evaluation results.

Basic User Session

Chapter 2 • User Session Management and Single Sign-On 49

Logging Results
When the policy agent receives an allow decision from the Policy Service, the events in the
following illustration occur. The accompanying text describes the process.

Protected Resource

Data StoreAccess Manager Server

Authentication
Service

Session
Service

Client Detection
Service

Naming
Service

Logging
Service

Policy
Service

Access Manager
Information Tree

Directory
Information Tree

User’s Browser

Firewall

Firewall

Access Manager
Policy Agent

Access Manager
Client APIs

Application

3 4

1 2

5

Web Browser

FIGURE 2–4 Logging the Policy Evaluation Results

Basic User Session

Sun Java System Access Manager 7.1 Technical Overview • March 200750

1. The allow decision is cached in the policy agent, along with the session token, so that
subsequent requests can be checked using the cache.
It is no longer necessary for the policy agent to contact Access Manager. The cache will
expire after an interval has passed or upon an explicit notification of change in policy or
session status. The interval is configurable.

2. The policy agent issues a logging request to the Logging Service.
3. The Logging Service logs the policy evaluation results to a flat file (which can be signed) or to

a JDBC store, depending upon the log configuration.
4. The Logging Service notifies the policy agent of the new log.
5. The policy agent allows or denies the user access to the application.

a. If the user is denied access, the policy agent displays an “access denied” page.
b. If the user is granted access, the resource displays its access page.

Assuming the browser displays the application interface, this basic user session is valid until
it is terminated. See “Session Termination” on page 56.

While the user is still logged in, if he attempts to log into another protected resource, the Single
Sign-On session begins.

Single Sign-On Session
SSO is always preceded by a basic user session in which a session is created, its session token is
validated, the user is authenticated, and access is allowed. SSO begins when the authenticated
user requests a protected resource on a second server in the same DNS domain. The following
example describes an SSO session by tracing what happens when an authenticated user accesses
a second application in the same DNS domain as the first application. Because the Session
Service maintains user session information with input from all applications participating in an
SSO session, in this example, it maintains information from the application the user was
granted access to in “Basic User Session” on page 42. We will assume the application previously
accessed was a corporate benefits administration application. For this SSO session, the user is
attempting access to an expense reporting application.

Single Sign-On Session

Chapter 2 • User Session Management and Single Sign-On 51

1. The user attempts to access an expense reporting application.
Both the expense reporting application and the corporate benefits administration
application are hosted on servers in the same domain.

2. The user’s browser sends an HTTP request to the expense reporting application. The request
includes the user’s session token.

3. The policy agent intercepts and inspects the request to determine whether a session token
exists.
A session token indicates the user is already authenticated. Since the user was authenticated
when the user logged in to the corporate benefits administration application, the
Authentication Service is not required at this time. The SSO APIs retrieve the session data

Web Browser

Access Manager
Policy Agent

Application

Access Manager Policy Agent

Application

Web Server

Access Manager
Policy Agent

Access Manager
Server

CDSSO Controller

Domain2.example.comDomain1.example.com

Access Manager
Policy Agent

Application

Access Manager
Policy Agent

Application

1

Data
Store

4

5

6 7 9 10 11

12

13

2

8

Web Browser

3

FIGURE 2–5 Single Sign-On Session

Single Sign-On Session

Sun Java System Access Manager 7.1 Technical Overview • March 200752

structure using the session token imbedded in the cookie. The session data structure is
referred to as the SSOToken by the SSO APIs. The session token is referred to as the
SSOTokenID.

4. The policy agent determines the validity of the session.
For detailed steps, see “Session Validation” on page 46.

5. The Session Service sends a reply to the policy agent indicating whether the SSOToken is
valid.
■ If the SSOToken is not valid, the user is redirected to the Authentication page.
■ If the SSOToken is valid, the Session Service creates a Session Listener.

A Session Listener allows notification to the policy agent when a change in the SSOToken
state or validity occurs.

6. The policy agent sends a request to the Policy Service.
The request asks for a decision regarding resources in the policy agent’s portion of the HTTP
namespace.

7. The Policy Service checks for policies that apply to the request.
■ If Policy Service does not find policy allowing access to the protected resource, the user is

denied access and the following events occur:
a. The Logging Service logs a denial of access.
b. The policy agent issues a Forbidden message to the user.

The user can then be redirected to an administrator-specified page indicating the
user was denied access.

■ If the Policy Service finds policy allowing access to the protected resource, the user is
granted access to the protected resource and the SSO session is valid until it is
terminated. See “Session Termination” on page 56.

While still logged in, if the user decides to attempt to log in to another protected resource
located in a different DNS domain, Cross-Domain Single Sign-On takes place.

Single Sign-On Session

Chapter 2 • User Session Management and Single Sign-On 53

Cross-Domain Single Sign-On Session
CDSSO occurs when an authenticated user requests a protected resource on a different server in
a different DNS domain. The user in the previous sections, “Basic User Session” on page 42 and
“Single Sign-On Session” on page 51, for example, accessed applications in his company’s DNS
domain. In the following example, the same user will log in to a travel administration
application supplied to his company by an external company. The travel administration
application is hosted on the external company’s DNS domain. In this scenario, the CDSSO
Controller Service within Access Manager transfers the user’s session information from the
initial domain, making the it available to applications in this second domain.

When the user logs in to the travel administration application in the external DNS domain, the
events in the following illustration occur. The process is described in the accompanying text.

1. The user’s browser sends an HTTP request to the travel administration application.

Access Manager
Policy Agent

Application
Access Manager

Policy Agent

Application

Access Manager
Policy Agent

Application

Access Manager
Server

CDSSO Controller

Domain2.example.comDomain1.example.com

Access Manager
Policy Agent

Application

Data
Store

5

4

6

2 37

1Web Browser

Cross-Domain Single Sign-On Session

Sun Java System Access Manager 7.1 Technical Overview • March 200754

2. The policy agent intercepts the request and inspects it to determine if a session token exists
for the domain in which the travel administration application exists. One of the following
occurs:
■ If a session token is present, the policy agent validates the session.
■ If no session token is present, the policy agent (which is configured for CDSSO) redirects

the HTTP request to the CDSSO Controller Service.

Note – The CDSSO Controller Service uses Liberty Alliance Project protocols to transfer
sessions so the relevant parameters are included in the redirect.

In this example, no session token for the second domain is found.
3. The policy agent redirects the HTTP request to the CDSSO Controller Service.
4. The user’s browser allows the redirect to the CDSSO Controller Service.

Recall that earlier in the user session the session token was set in a cookie in the initial
domain which is now part of the redirect.

5. The CDSSO Controller Service's CDC Servlet receives the session token from the initial
domain, extracts the user's session information, and formulates a Liberty POST profile
response containing the information. The response is returned to the browser.

6. The user’s browser automatically submits the form containing the Liberty document to the
policy agent.
The form is based upon the Action and the Javascript included in the Body tags onLoad.

7. The policy agent receives the document, extracts the session information, validates the
session, and sets a session token in the cookie for the new DNS domain.
For detailed information, see “Session Validation” on page 46.

8. The process continues with policy evaluation and results logging.
See the following sections for detailed information.
■ “Policy Evaluation and Enforcement” on page 48
■ “Logging Results” on page 50

9. The policy agent allows or denies the user access to the application.
a. If the user is denied access, the policy agent displays an “access denied” page.
b. If the user is granted access, the resource displays its access page.

Assuming proper authorization, the policy agent responds to the user by presenting the travel
administration application screen. This new cookie can now be used by all agents in the new
domain, and the session is valid until it is terminated. (See “Session Termination” on page 56.)

Cross-Domain Single Sign-On Session

Chapter 2 • User Session Management and Single Sign-On 55

Session Termination
A user session can be terminated in any of following ways:

■ “User Ends Session” on page 56
■ “Administrator Ends Session” on page 56
■ “Access Manager Enforces Timeout Rules” on page 57
■ “Session Quota Constraints” on page 57

User Ends Session
When a user explicitly logs out of Access Manager by clicking on a link to the Logout Service the
following events occur:

1. The Logout Service receives the Logout request, and performs the following steps:
a. Marks user’s session as destroyed.
b. Destroys session.
c. Returns a successful logout page to the user.

2. The Session Service notifies applications which are configured to interact with the session.
In this case, each of the policy agents was configured for Session Notification, and each is
sent a document instructing the agent that the session is now invalid.

3. The policy agents flush the session from cache and the user session ends.

Administrator Ends Session
Access Manager administrators with appropriate permissions can terminate a user session at
any time. When an administrator uses the Sessions tab in the Access Manager console to end a
user’s session, the following events occur:

1. The Logout Service receives the Logout request, and performs the following steps:
a. Marks user’s session as destroyed.
b. Destroys session.

2. The Session Service notifies applications which are configured to interact with the session.
In this case, each of the policy agents was configured for Session Notification, and each is
sent a document instructing the agent that the session is now invalid.

3. The policy agents flush the session from cache and the user session ends.

Session Termination

Sun Java System Access Manager 7.1 Technical Overview • March 200756

Access Manager Enforces Timeout Rules
When a session timeout limit is reached, the Session Service completes the following steps:

1. Changes session status to invalid.
2. Displays time-out message to user.
3. Starts timer for purge operation delay (default is 60 minutes).
4. When purge operation delay time is reached, purges or destroys the session.
5. If a session validation request comes in after the purge delay time is reached, displays login

page to user.

Session Quota Constraints
Access Manager allows administrators to constrain the amount of sessions one user can have. If
the user has more sessions than the administrator will allow, one (or more) of the existing
sessions can be destroyed.

Session Termination

Chapter 2 • User Session Management and Single Sign-On 57

58

Authentication

The Sun Java System Access Manager Authentication Service determines whether a user is the
person he claims to be. User authentication is the first step in controlling access to web
resources within an enterprise. This chapter explains how the Authentication Service works
with other Access Manager components to authenticate a user, or prove that the user’s identity
is genuine. Topics covered include:

■ “Authentication Overview” on page 59
■ “Authentication Modules” on page 60
■ “Authentication Configuration Services” on page 62
■ “Authentication Service User Interface” on page 63
■ “Distributed Authentication User Interface” on page 65
■ “Inside the Core Authentication Component” on page 67
■ “Authentication Programming Interfaces” on page 71

Authentication Overview
The following example demonstrates how the Authentication Service works from the
perspective of the user. A company employee must look up a colleague’s phone number, so he
uses a browser to access the company’s online phone book. To log in to the phone book service,
the employee provides a user name and password. Access Manager compares the user’s input
with data stored in a central user repository. If Access Manager finds a match for the user name,
and if the given password matches the stored password, Access Manager authenticates the user’s
identity. After authentication, the policy evaluation process occurs. If the policy agent allows
access to the user, the corporate phone book is displayed. The “Basic User Session” on page 42
section in the previous chapter contains a detailed description and illustration of the
authentication process within a basic user session.

3C H A P T E R 3

59

Note – The Authentication Service is client-type aware and supports all configured client types
such as cookieless and cookie-enabled client types.

Authentication Modules
An authentication module is a plug-in that collects user information such as a user ID and
password, and compares the information against entries in a database. If a user provides
information that meets the authentication criteria, the user is granted access to the requested
resource. If the user provides information that does not meet the authentication criteria, the
user is denied access to the requested resource. Access Manager is installed with a number of
authentication modules. The following table provides a brief description of them.

TABLE 3–1 Access Manage Authentication Module Types

Authentication Module Name Description

Active Directory Uses an Active Directory operation to associate a user ID and
password with a particular Active Directory entry. You can define
multiple Active Directory authentication configurations for a realm.
Allows both LDAP and Active Directory to coexist under the same
realm.

Anonymous Enables a user to log in without specifying credentials. You can create
an Anonymous user so that anyone can log in as Anonymous without
having to provide a password. Anonymous connections are usually
customized by the Access Manager administrator so that Anonymous
users have limited access to the server.

Certificate Enables a user to log in through a personal digital certificate (PDC).
The user is granted or denied access to a resource based on whether or
not the certificate is valid. The module can optionally require the use
of the Online Certificate Status Protocol (OCSP) to determine the
state of a certificate.

Data Store Enables authentication against one or more configuration data stores
within a realm.

HTTP Basic Enables authentication to occur with no data encryption. Credentials
are validated internally using the LDAP authentication module.

Java Database Connectivity (JDBC) Enables authentication through any Structured Query Language
(SQL) databases that provide JDBC-enabled drivers. The SQL
database connects either directly through a JDBC driver or through a
JNDI connection pool.

Authentication Modules

Sun Java System Access Manager 7.1 Technical Overview • March 200760

TABLE 3–1 Access Manage Authentication Module Types (Continued)
Authentication Module Name Description

LDAP Enables authentication using LDAP bind, a Directory Server
operation which associates a user ID password with a particular LDAP
entry. You can define multiple LDAP authentication configurations
for a realm.

Membership Enables user to self-register. The user create an account, personalizes
it, and accesses it as a registered user without the help of an
administrator. Implemented similarly to personalized sites such as
my.site.com, or mysun.sun.com.

MSISDN The Mobile Station Integrated Services Digital Network (MSISDN)
authentication module enables authentication using a mobile
subscriber ISDN associated with a device such as a cellular telephone.
It is a non-interactive module. The module retrieves the subscriber
ISDN and validates it against the user repository to find a user that
matches the number.

RADIUS Uses an external Remote Authentication Dial-In User Service
(RADIUS) server to verify identities.

Security Assertion Markup Language
(SAML)

Receives and validates SAML assertions on a target server by using
either a web artifact or a POST response.

SafeWord® Uses Secure Computing’s SafeWord PremierAccessTM server software
and SafeWord tokens to verify identities.

SecurIDTM Uses RSA ACE/Server software and RSA SecurID authenticators to
verify identities.

UNIX® Solaris and Linux modules use a user’s UNIX identification and
password to verify identities.

Windows Desktop Single Sign-On
(SSO)

Allows a user who has already authenticated with a key distribution
center to be authenticated with Access Manager without having to
provide the login information again. Leverages Kerberos
authentication and is specific to the Windows operating system.

Windows NT Uses a Microsoft Windows NTTM server to verify identities.

You can use the Access Manager Console to enable and configure the authentication modules
that are installed with Access Manager by default. You can also create and configure multiple
instances of a particular authentication module. (An authentication module instance is a child
entity that extends the schema of a parent authentication module and adds its own subschema.)

Authentication Modules

Chapter 3 • Authentication 61

Finally, you can write your own custom authentication module (or plug-in) to connect to the
Access Manager authentication framework. See Chapter 4, “Managing Authentication,” in Sun
Java System Access Manager 7.1 Administration Guide for detailed information about enabling
and configuring default authentication modules and authentication module instances. See
Chapter 2, “Using Authentication APIs and SPIs,” in Sun Java System Access Manager 7.1
Developer’s Guide for more information about writing custom authentication modules.

Authentication Configuration Services
The Authentication framework includes the following pluggable and customizable services:

■ “General Authentication Service” on page 62
■ “Authentication Configuration Service” on page 62

General Authentication Service
The General Authentication Service is used for server-related attribute configuration. (Some of
the attributes described in this service are default attributes for all Access Manager
authentication modules.) Configuration is available in each configured realm. The General
Authentication Service enables the Access Manager administrator to define default values for a
realm's authentication parameters. These values can be used if no overriding value is defined in
the specified authentication module. The default values for the General Authentication Service
are defined in the amAuth.xml file and stored in the Access Manager information tree after
installation. For more information, see Chapter 4, “Managing Authentication,” in Sun Java
System Access Manager 7.1 Administration Guide.

Authentication Configuration Service
The Authentication Configuration Service describes all the dynamic attributes for service-based
authentication. This service is used for configuring roles. When you assign a service to a role,
you can also assign other attributes such as a success URL or an authentication post-processing
class to the role. For more information, see “Role-based Authentication” in Sun Java System
Access Manager 7.1 Administration Guide.

Authentication Configuration Services

Sun Java System Access Manager 7.1 Technical Overview • March 200762

Authentication Service User Interface
The Authentication Service implements a user interface that is separate from the Access
Manager administration console. The Authentication Service user interface provides a dynamic
and customizable means for gathering authentication credentials. When a user requests access
to a protected resource, the Authentication Service presents a web-based login page and
prompts the user for user name and password. Once the credentials have been passed back to
Access Manager and authentication is successful, the user can gain access based on the user's
specific privileges:

Authentication Service User Interface

Chapter 3 • Authentication 63

The Authentication Service user interface can be used for the following:

■ Administrators can access the administration portion of the Access Manager console to
manage their realm’s identity data.

■ Users can access their own profiles to modify personal data.

Authentication Service User Interface

Sun Java System Access Manager 7.1 Technical Overview • March 200764

■ A user can access a resource defined as a redirection URL parameter appended to the login
URL.

■ A user can access the resource protected by a policy agent.

Access Manager 7.1 provides customization support for the Authentication Service user
interface. You can customize JavaServer PagesTM (JSPTM) and the file directory level for
/org/service/locale/client_type. See Chapter 12, “Customizing the Authentication User
Interface,” in Sun Java System Access Manager 7.1 Developer’s Guide for more information.

Distributed Authentication User Interface
Access Manager provides a remote authentication user interface component to enable secure,
distributed authentication across two firewalls. A web browser communicates an HTTP request
to the remote authentication user interface which, in turn, presents a login page to the user. The
web browser then sends the user login information through a firewall to the remote
authentication user interface which, in turn, communicates through the second firewall to the
Access Manager server. The Distributed Authentication User Interface enables a policy agent or
an application that is deployed in a non-secured area to communicate with an instance of the
Access Manager Authentication Service installed in a secured area of the deployment. The
following figure illustrates this scenario.

Distributed Authentication User Interface

Chapter 3 • Authentication 65

The Distributed Authentication User Interface uses a JATO presentation framework and is
customizable. (See screen capture in “Authentication Service User Interface” on page 63.) You
can install the Distributed Authentication User Interface on any servlet-compliant web
container within the non-secure layer of an Access Manager deployment. The remote
component then works with the Authentication client APIs and authentication utility classes to
authenticate web users. For a more detailed process flow, see “User Authentication” on page 44.
For detailed installation and configuration instructions, see Chapter 11, “Deploying a
Distributed Authentication UI Server,” in Sun Java System Access Manager 7.1 Postinstallation
Guide.

Protected Resource

Data StoreAccess Manager Server

Authentication Service

Web Service Interface
Component Logic
Framework
SPIs
Plug-in Modules

Access Manager
Information Tree

User’s Browser

Firewall

Firewall

Access Manager
Policy Agent

Access Manager
Client APIs

Application

Distributed
Authentication

Service Interface

J2EE Container

Web Browser

Directory
Information Tree

FIGURE 3–1 Distributed Authentication

Distributed Authentication User Interface

Sun Java System Access Manager 7.1 Technical Overview • March 200766

Inside the Core Authentication Component
The core Authentication component is where default configurations are stored and the
following authentication processes are invoked.

■ “Client Detection Service” on page 67
■ “Authentication Type Configurations” on page 67
■ “Login URLs and Redirection URLs” on page 68
■ “Account Locking” on page 69
■ “Authentication Chaining” on page 69
■ “Fully Qualified Domain Name Mapping” on page 70
■ “Persistent Cookie” on page 70
■ “Session Upgrade” on page 70
■ “Validation Plug-in Interface” on page 71
■ “JAAS Shared State” on page 71

Client Detection Service
An initial step in the authentication process is to identify the type of client making the HTTP(S)
request. This Access Manager feature is known as client detection. The URL information in the
HTTP(S) request is used to retrieve the client’s characteristics. Based on these characteristics,
the appropriate authentication pages are returned. For example, when a Netscape browser is
used to request a web page, Access Manager displays an HTML login page. Once the user is
validated, the client type Netscape browser is added to the session token. For more
information, see Chapter 7, “Client Detection Service,” in Sun Java System Access Manager 7.1
Developer’s Guide.

Authentication Type Configurations
After granting or denying access to a resource, Access Manager checks for information about
where to redirect the user. A specific order of precedence is used when checking this
information. The order is based on whether the user was granted or denied access to the
protected resource, and on the type of authentication specified. When you install Access
Manager, a number of authentication types are automatically configured for you. Following is a
list of authentication type configurations. For more information, see “Authentication Types” in
Sun Java System Access Manager 7.1 Administration Guide.

Realm-based Authentication. User authenticates to a realm or subrealm in
the Access Manager information tree.

Role-based Authentication. User authenticates to a role within a realm or
subrealm of the directory information tree. A
role is a grouping of like items in the repository.
A static role is created when an attribute is

Inside the Core Authentication Component

Chapter 3 • Authentication 67

assigned to a specific user or container. A
filtered role is dynamically generated based on
an attribute contained in the a user’s or
container’s entry. For example, all users that
contain a value for the employee attribute can
be automatically included in a filtered role
named employees.

Service-based Authentication. User authenticates to a specific service or
application registered to a realm or subrealm.

User-based Authentication. User authenticates using an authentication
process configured specifically for him or her.

Authentication Level-based Authentication Administrator specifies the security level of the
modules to which identities can authenticate.

Module-based Authentication. User specifies the module instance to which the
user will authenticate.

Organization-based Authentication. User authenticates to an organization or
suborganization.

Note – This authentication type only applies to
Access Manager when installed in Legacy
mode.

Login URLs and Redirection URLs
In the last phase of the authentication process, Access Manager either grants or denies access to
the user. If access is granted, Access Manager uses a login URL to display a page in the browser.
If access is denied, Access Manager uses a redirection URL to display an alternate page in the
browser. A typical alternate page contains a brief message indicating the user has been denied
access.

Each authentication type (realm-based, role-based, and so forth) uses a login URL or
redirection URL based on a specific order of precedence, and on whether the authentication
succeeded or failed. For a detailed description of how Access Manager proceeds through the
order of precedence, see “Authentication Types” in Sun Java System Access Manager 7.1
Administration Guide.

Inside the Core Authentication Component

Sun Java System Access Manager 7.1 Technical Overview • March 200768

Account Locking
The Authentication Service provides an account locking feature that prevents a user from
completing the authentication process after a specified number of failures. Only modules that
throw an Invalid Password Exception can leverage the Account Locking feature. Access
Manager sends email notifications to administrators when account lockouts occur. Account
locking activities are also logged. Access Manager supports the following types of account
locking:

Physical Locking. By default, user accounts are active or physically unlocked. You can
initiate physical locking by changing the status of an LDAP attribute in
the user’s profile to inactive. The account remains physically locked
until the attribute is changed to active.

Memory Locking. You can enable memory locking by changing the Login Failure Lockout
Duration attribute to a value greater then 0. The user’s account is locked
in memory for the number of minutes you specified. The account is
unlocked after the time period elapses. You can configure Memory
Locking so that a user account is locked in memory after a specified
number of tries. The user account will be locked when AM server is
restarted.

The account locking feature is disabled by default. You can enable it by using the Access
Manager console. For more information, see “Account Locking” in Sun Java System Access
Manager 7.1 Administration Guide.

Authentication Chaining
You can configure one or more authentication module instances so that a user must pass
authentication credentials to all of them before the user is allowed access. This feature is called
authentication chaining. Access Manager uses the Java Authentication and Authorization
Service (JAAS) framework (already integrated in the Authentication Service) to implement
authentication chaining. The JAAS framework validates all user IDs used during the
authentication process, and maps them all to one user. (The mapping is based on the
configuration of the User Alias List attribute in the user's profile.) If all the maps are correct,
then a valid session token is issued to the user. If all the maps are not correct, the user is denied a
valid session token. Once authentication to all modules in the chain succeeds or fails, control is
returned to the Authentication Service from the JAAS framework.

You can configure authentication chaining by realm, user, role, or service. Determining access
is based upon control flags you specify for the chain. Authentication modules use one of the
following control flags to indicate requirements for successful authentication.

Inside the Core Authentication Component

Chapter 3 • Authentication 69

Requisite. The LoginModule is required to succeed. If it succeeds, authentication continues
down the LoginModule list. If it fails, control immediately returns to the
application (authentication does not proceed down the LoginModule list).

Required. Authentication to this module is required to succeed. If any of the required
modules in the chain fails, the whole authentication chain will fail and the user
will be notified of this.

Sufficient. The LoginModule is not required to succeed. If it does succeed, control
immediately returns to the application (authentication does not proceed down
the LoginModule list). If it fails, authentication continues down the
LoginModule list.

Optional. The LoginModule is not required to succeed. Whether it succeeds or fails,
authentication still continues to proceed down the LoginModule list.

For more information, see “Authentication Chaining” in Sun Java System Access Manager 7.1
Administration Guide.

Fully Qualified Domain Name Mapping
Fully Qualified Domain Name (FQDN) mapping enables the Authentication Service to take
corrective action in the case where a user may have typed in an incorrect URL. This is necessary,
for example, when a user specifies a partial host name or IP address to access protected
resources. This feature is also used to allow access to one instance of Access Manager using
many different aliases. For example, you might configure one instance of Access Manager as
intranet.example.com for employees and extranet.example.com for partners. For more
information, see “Fully Qualified Domain Name Mapping” in Sun Java System Access
Manager 7.1 Administration Guide.

Persistent Cookie
A persistent cookie is an information packet that is written to the user's hard drive and,
therefore, continues to exist after the web browser is closed. The persistent cookie enables a user
to log into a new browser session without having to reauthenticate. For more information, see
“Persistent Cookie” in Sun Java System Access Manager 7.1 Administration Guide.

Session Upgrade
The Authentication Service allows for the upgrade of a valid session token based on a second,
successful authentication performed by the same user. If a user with a valid session token
attempts to authenticate to a second resource secured under the realm to which he is currently

Inside the Core Authentication Component

Sun Java System Access Manager 7.1 Technical Overview • March 200770

authenticated, and this second authentication request is successful, the Authentication Service
updates the session with the new properties based on the new authentication. If the
authentication fails, the current user session is returned without an upgrade. If the user with a
valid session attempts to authenticate to a resource secured by a different realm, the user will
receive a message asking whether the user would like to authenticate to the new realm. The user
can choose to maintain the current session, or can attempt to authenticate to the new realm.
Successful authentication will result in the old session being destroyed and a new one being
created. For more information, see “Session Upgrade” in Sun Java System Access Manager 7.1
Administration Guide.

Validation Plug-in Interface
An administrator can write username or password validation logic appropriate for a particular
realm, and plug the logic into the Authentication Service. Before authenticating a user or
changing the user password, Access Manager will invoke this plug-in. If the validation is
successful, authentication continues. If validation fails, an authentication failed page will be
thrown. The plug-in extends the com.iplanet.am.sdk.AMUserPasswordValidation class
which is part of the Service Configuration SPI. For more information, see “Validation Plug-in
Interface” in Sun Java System Access Manager 7.1 Administration Guide.

Note – The Validation Plug-In Interface is only supported by the LDAP and Membership
authentication module types.

JAAS Shared State
The JAAS shared state enables sharing of both user ID and password between authentication
module instances. Options are defined for each authentication module type by realm, user,
service and role. If an authentication fails with the credentials from the shared state, the
authentication module restarts the authentication process by prompting for its required
credentials. If it fails again, the module is marked failed. After a commit, an abort, or a logout,
the shared state will be cleared. For more information, see “JAAS Shared State” in Sun Java
System Access Manager 7.1 Administration Guide.

Authentication Programming Interfaces
Access Manager provides both Java APIs and C APIs for writing authentication clients that
remote applications can use to gain access to the Authenticate Service. Communication
between the APIs and the Authentication Service occurs by sending XML messages over
HTTP(S). The Java and C APIs support all authentication types supported by the

Authentication Programming Interfaces

Chapter 3 • Authentication 71

browser-based user interface. Clients other than Java and C clients can also use the XML/HTTP
interface directly to initiate an authentication request.

Additionally, you can add custom authentication modules to Access Manager by using the
com.iplanet.authentication.spi package. This SPI implements the JAAS LoginModule,
and provides additional methods to access the Authentication Service and module
configuration properties files. Because of this architecture, any custom JAAS authentication
module will work within the Authentication Service.

For more information, see Chapter 2, “Using Authentication APIs and SPIs,” in Sun Java System
Access Manager 7.1 Developer’s Guide.

Authentication Programming Interfaces

Sun Java System Access Manager 7.1 Technical Overview • March 200772

Authorization and the Policy Service

The Sun Java System Access Manager Policy Service determines if a user has been given
permission by a recognized authority to access a protected resource. The process is referred to
as user authorization. This chapter describes how the various parts of the Policy Service work
together to perform authorization. Topics covered include:

■ “Authorization Overview” on page 73
■ “Access Control and Realms” on page 74
■ “Policy Types” on page 74
■ “Policy Framework” on page 78
■ “Policy SPIs and Plug-Ins Layer” on page 79
■ “Policy Client APIs” on page 80

Authorization Overview
A policy is a rule that defines who is authorized to access a resource. A single policy can define
either binary or non-binary decisions. A binary decision is yes/no, true/false or allow/ deny. A
non-binary decision represents the value of an attribute. For example, a mail service might
include a mailboxQuota attribute with a maximum storage value set for each user. In general, a
policy is configured to define what a subject can do to which resource and under what
conditions.

The Access Manager Policy Service allows administrators to define, modify, and delete policies
for protected resources within the Access Manager deployment. Configured policies are
grouped into realms and stored in the Access Manager information tree. The Policy Service
relies on the following:

■ A Policy Enforcement Point (PEP) protects an enterprise's resources by enforcing access
control. The policy agent is the PEP.

■ A Policy Decision Point (PDP) is where the policy is evaluated and a determination is made.
The Policy Service is the PDP.

4C H A P T E R 4

73

■ A data store in which configured policies are stored and from which they are retrieved. The
proprietary Access Manager information tree is the data store.

The Access Manager Policy Service uses configured policies to determine if a user has been
given permission by a recognized authority to access a protected resource. When a user
attempts to access a resource protected by a PEP, the PEP contacts the PDP to get a policy
decision. The Policy Service evaluates the policies that protect the resource and are applicable to
the requesting user. This results in a policy decision indicating whether the user is allowed to
access the resource. Upon receiving the decision, the PEP allows or denies access accordingly.
This whole process is referred to as authorization.

Access Control and Realms
When a user logs into an application, Access Manager plug-ins retrieve all user information,
authentication properties, and authorization policies that the Access Manager framework needs
to form a temporary, virtual user identity. The Authentication Service and the Policy Service use
this virtual user identity to authenticate the user and enforce the authorization policies,
respectively. All user information, authentication properties, and authorization policies is
contained in realms. You can create a realm when you want to apply policies to a group of
related subjects, services or servers. For example, you can create a realm that groups all servers
and services that are accessed regularly by employees in one region. And, within that regional
grouping realm, you can group all servers and services accessed regularly by employees in a
specific division such as Human Resources. A configured policy might state that all Human
Resources administrators can access the URL
http://HR.example.com/HRadmins/index.html.. You might also add constraints to this
policy: it is applicable only Monday through Friday from 9:00 a.m. through 5:00 p.m. Realms
facilitate the delegation of policy management privileges.

Note – Access control realms can be configured to use any user database.

Policy Types
The Policy Service authorizes access to a user based on the policies stored in the Access Manager
information tree. The following sections contain information on the two types of policies you
can create using Access Manager:

■ “Normal Policy” on page 75
■ “Referral Policy” on page 77

Access Control and Realms

Sun Java System Access Manager 7.1 Technical Overview • March 200774

Normal Policy
A normal policy specifies a protected resource and who is allowed to access the resource. The
protected resource can be anything hosted on a protected server. Examples of protected
resources are applications, document files, images, or the server itself. Only a Top-Level Realm
or Policy Administrator can create or manage polices that apply to a resource. A normal policy
consists of rules, subjects, conditions, and response providers. The following sections contain
information regarding these elements.

■ “Rules” on page 75
■ “Subjects” on page 75
■ “Conditions” on page 76
■ “Response Providers” on page 77

Rules
A rule defines the policy itself by specifying a resource, one or more sets of an action, and values
for each action.

■ A resource defines the specific object that is being protected. Examples of protected objects
are an HTML page on a web site, or a user’s salary information accessed using a human
resources service.

■ An action is the name of an operation that can be performed on the resource. Examples of
web page actions are POST and GET. An allowable action for a human resources service
might be canChangeHomeTelephone.

■ A value defines the permission for the action. Examples are allow anddeny.

Subjects
A subject specifies, by implication, the user or collection of users that the policy affects.

You can implement custom subjects by using the Policy APIs. You can assign the following
subjects to policies:

Access Manger Roles The roles you create and manage under the Realms Subject tab can
be added as a value of the subject.

Access Manager Identity The identities you create and manage under the Realms Subject
tab can be added as a value of the subject.

Authenticated Users Any user with a valid SSOToken is a member of this subject. All
authenticated users would be member of this Subject, even if they
have authenticated to a realm that is different from the realm in
which the policy is defined.

LDAP Groups Any member of an LDAP group can be added as a value of this
subject.

Policy Types

Chapter 4 • Authorization and the Policy Service 75

LDAP Roles Any LDAP role can be added as a value of this subject. An LDAP
Role is any role definition that uses the Sun Java System Directory
Server role capability. These roles have object classes mandated by
Directory Server role definition. The LDAP Role Search filter can
be modified in the Policy Configuration Service to narrow the
scope and improve performance.

LDAP Users Any LDAP user can be added as a value of this subject.

Organization Any realm can be added as a value of this subject

Web Services Clients Valid values are the DNs of trusted certificates in the local JKS
keystore, which corresponds to the certificates of trusted web
service clients (WSCs). A WSC identified by the SSOToken is a
member of this subject, if the DN of any principal contained in the
SSOToken matches any selected value of this subject. This subject
has dependency on the Access Manager implementation of the
Liberty Alliance Project Identity Web Services Framework and
should be used only by web service providers to authorize WSCs.

Conditions
A condition specifies additional constraints that must be satisfied for a policy be applicable. For
example, you can define a condition to limit a user’s network access to a specific time period.
The condition might state that the subject can access the network only between 7:00 in the
morning and 10:00 at night.

You can implement custom conditions by using the Policy APIs. Access Manager provides the
following conditions:

Active Session Time Sets a condition based on constraints configured for user
session time such as maximum session time.

Authentication Chain The policy is applicable if the user has successfully
authenticated to the authentication chain in the specified
realm. If the realm is not specified, authentication to any
realm at the authentication chain will satisfy the
condition.

Authentication Level The Authentication Level attribute indicates the level of
trust for authentication. The policy is applicable if the
user's authentication level is greater than or equal to the
Authentication Level set in the condition, or if the user's
authentication level is less than or equal to the
Authentication Level set in the condition, depending on
the configuration.

Policy Types

Sun Java System Access Manager 7.1 Technical Overview • March 200776

Authentication Module Instance The policy applies if the user has successfully
authenticated to the authentication module in the
specified realm. If the realm is not specified,
authentication to any realm at the authentication module
will satisfy the condition.

IP Address/DNS Names Sets a condition based on a range of IP Addresses, or a
DNS name.

Current Session Properties Decides whether a policy is applicable to the request based
on values set in the user's Access Manager session.

LDAP Filter Condition The policy is applicable when the defined LDAP filter
locates the user entry in the LDAP directory that was
specified in the Policy Configuration service.

Realm Authentication The policy applies if the user has authenticated to the
specified realm.

Time Sets the condition based on time constraints (time, day,
date, time zone).

Response Providers
Response providers are plug-ins that provide policy response attributes. Policy response
attributes typically provide values for attributes in the user profile. The attributes are sent with
policy decisions to the PEP which, in turn, passes them in headers to an application. The
application typically uses these attributes for customizing pages such as a portal page. Access
Manager includes one implementation, the IDResponseProvider. You can implement custom
response providers by using the Policy APIs.

Referral Policy
A Realm Administrator or Policy Administrator at the root or top level of the Access Manager
information tree can create policy for any resource. A referral policy enables a Realm
Administrator or a Policy Administrator to delegate policy configuration tasks. A referral policy
delegates both policy creation and policy evaluation, and consists of one or more rules and one
or more referrals.

■ A rule defines the resource whose policy creation or evaluation is being referred.
■ A referral defines the identity object to which the policy creation or evaluation is being

referred.

Referral policies delegate policy management privileges to another entity such as a peer realm, a
subrealm, or even a third-party product. (You can implement custom referrals by using the

Policy Types

Chapter 4 • Authorization and the Policy Service 77

Policy APIs.) For example, a top-level realm exists named ISP. It contains two subrealms:
company1 and company2. The Top-Level Administrator for ISP can delegate policy
management privileges so that a Realm Administrator in company1 can create and manage
policies only within thecompany1 realm, and a Realm Administrator in company2 can create and
manage policies only within the company2 realm. To do this, the Top-Level Administrator
creates two referral policies, defining the appropriate realm in the rule and the appropriate
administrator in the referral.

Note – An administrator or Policy Administrator for realms configured below the root level of
the Access Manager information tree have permission to create policies only for resources
delegated to that realm.

Policy Framework
The Policy framework in Access Manager are the services where policy management and
administration are implemented. The Policy framework includes the following:

■ “Policy Service” on page 78
■ “Policy Configuration Service” on page 78

Policy Service
The Policy Service is defined using the amPolicy.xml. It performs the following functions:

■ Provides a means for defining and managing access policies.
■ Provides a means for defining custom policy plug-ins by providing names and class

locations.
■ Evaluates access policies.
■ Acts as a PDP to deliver the result of a policy evaluation.

In order to configure for custom policy plug-ins, modify amPolicy.xml and use amadmin to
reload it. See “Developing Custom Subjects, Conditions, Referrals, and Response Providers” in
Sun Java System Access Manager 7.1 Developer’s Guide.

Policy Configuration Service
The Policy Configuration Service provides a means to specify how policies are defined and
evaluated. The Policy Configuration Service enables you to specify, for example:

■ Which directory to use for subject lookup

Policy Framework

Sun Java System Access Manager 7.1 Technical Overview • March 200778

■ The directory password
■ Which search filters to use
■ Which subjects, conditions, and response providers to use

This configuration can be done within a realm or a subrealm and is accessible through the
Access Manager console.

Policy SPIs and Plug-Ins Layer
Access Manager includes SPIs that work with the Policy framework to create and manage
policies. You can develop customized plug-ins for creating custom policy subjects, referrals,
conditions, and response providers. For information on creating custom policy plug-ins, see the
Sun Java System Access Manager 7.1 Developer’s Guide.

The following table summarizes the Policy service provider interfaces (SPIs), and lists the
specialized Policy plug-ins that come bundled with Access Manager.

TABLE 4–1 Policy Service Provider Interfaces

Interface Description

Subject Defines a set of authenticated users for whom the policy applies. The
following Subject plug-ins come bundled with Access Manager: Access
Manager Identity Subject, Access Manager Roles, Authenticated Users,
LDAP Groups, LDAP Roles, LDAP Users, Organization Web, and Services
Clients.

Referral Delegates management of policy definitions to another access control
realm.

Condition Specifies applicability of policy based on conditions such as IP address, time
of day, authentication level. The following Condition plug-ins come
bundled with Access Manager: Authentication Level, Authentication
Scheme, IP Address, LE Authentication Level, Session, SessionProperty,
and Time.

Resource Name Allows a pluggable resource.

Response Provider Gets attributes that are sent along with policy decision to the policy agent,
and used by the policy agent to customize the client applications. Custom
implementations of this interface are now supported in Access Manager 7.1.

Policy SPIs and Plug-Ins Layer

Chapter 4 • Authorization and the Policy Service 79

Policy Client APIs
Access Manager provides client APIs that implement policy evaluation logic on a remote web
server or application server. For policy client API information, see the Sun Java System Access
Manager 7.1 Developer’s Guide.

Policy Client APIs

Sun Java System Access Manager 7.1 Technical Overview • March 200780

Federation, SAML, and Web Services

This chapter explains the concept of identity federation, and describes the role of the Federation
feature in Access Manager. For detailed information about enabling or managing identity
federation, or using the Federation Management APIs and SPIs, see the Sun Java System Access
Manager 7.1 Federation and SAML Administration Guide.

This chapter includes the following topics:

■ “Federating Identities” on page 81
■ “The Liberty Alliance Project” on page 82
■ “How Federation Works” on page 82
■ “The Web Services Stack” on page 84
■ “SAML Service” on page 88

Federating Identities
Consider the many times an individual accesses services on the Internet in a single day. At work,
he uses the company intranet to perform a multitude of tasks including reading and sending
email, looking up information in the company phone book, searching internal databases, and
submitting expense reports and other online forms. At home, he checks personal email, logs
into an online news service, finalizes travel plans via a travel agent’s web site, and shops. Each
time he accesses one of these services, he must log in and identify himself.

A local identity refers to the set of attributes or information that identify the user to a particular
service provider. These attributes typically include a name and password, plus an email address,
account number or other identifier. Most users have many local identities. For example, the
individual in our scenario might log in at work using an employee number but, at home, he
might log in to his travel agent as Joe Smith. He might use an account number to log in to the car
rental agency he uses frequently, and he might log in to an airline using a frequent flyer number.

Identity federation allows a user to consolidate the many local identities he has configured
among multiple service providers. With a federated identity, the individual can log in at one

5C H A P T E R 5

81

service provider site and move to an affiliated service provider site without having to
re-authenticate or re-establish his identity. For example, with a federated identity, the
individual might want to access both his personal email account and his business email account
from his workplace, and move back and forth between the two services without having to log in
each time. Or at home he might want to log in to an online travel agency to book airline tickets
and make hotel reservations. It is a convenience for the user to be able to access all of these
services without having to provide different user names and passwords at each service site. It is a
valuable benefit to the user when he can do so safely, knowing that his identity information is
secure.

The Liberty Alliance Project
The Liberty Alliance Project develops and delivers specifications that enable federated network
identity management and supporting web services. Using web redirection and open-source
technologies such as SOAP and XML, they enable distributed, cross-domain interactions. The
specifications include:

■ Liberty Identity Federation Framework
■ Liberty Identity Web Services Framework
■ Liberty Identity Services Interface Specifications
■ Schema Files and Service Definition Documents
■ Support Documents

An overview of these specifications as well as background information on the Liberty Alliance
Project can be found in Chapter 1, “Introduction to the Liberty Alliance Project,” in Sun Java
System Access Manager 7.1 Federation and SAML Administration Guide. The specifications
themselves can be found on the Liberty Alliance Project web site.

How Federation Works
The goal of the Liberty Alliance Project specifications is to enable individuals and multiple
organizations to easily conduct network transactions while protecting the individual’s identity.
When organizations form a circle of trust, they agree to exchange user authentication
information using web service technologies. A circle of trust must contain at least one identity
provider, a service provider that maintains and manages identity information. It also includes
multiple service providers that offer web-based services to users. Once a circle of trust is
established, single sign-on is enabled between all the providers and users can federate their
multiple identities.

In Access Manager, the circle of trust is referred to as an authentication domain. An
authentication domain contains entities that are grouped together for the purpose of identity
federation. A travel portal is a good example of an authentication domain. Typically, a travel
portal is a web site designed to help you access various travel-related service providers from one

The Liberty Alliance Project

Sun Java System Access Manager 7.1 Technical Overview • March 200782

http://www.projectliberty.org/index.php/liberty/specifications__1

location. The travel portal forms a partnership with each hotel, airline, and car rental agency
displayed on its web site. The user registers with the travel portal which, in effect, is the
authentication domain's identity provider. After logging in, the user looks for a flight using the
airline service provider. After booking a flight, the user looks for a hotel using the
accommodations service provider. This time, because of the agreements established among the
travel portal partners, the airline web site shares the authentication information obtained earlier
in the user's online session. The user moves from the hotel reservations web site to the airline
reservations web site without having to re-authenticate. All of this is transparent to the user
who must initially choose to unite his local identities. The following figure illustrates the travel
portal example.

Identity
Provider

Airline 1 Airline 2

Cruise 1

Car
Rental 1

Car Rental 2Hotel 3

Hotel 2

Hotel 1

FIGURE 5–1 Federation Within a Travel Portal

How Federation Works

Chapter 5 • Federation, SAML, and Web Services 83

Note – Account federation occurs when a user chooses to unite distinct service accounts and
identity provider accounts. The user retains individual account information with each provider
in the circle. At the same time, the user establishes a link that allows the exchange of
authentication information between them. Users can choose to federate any or all identities
they might have with the service providers. After account federation, when a user successfully
authenticates with one service provider, he can access any of the his accounts within the
authentication domain in a single session without having to reauthenticate.

The Web Services Stack
In Access Manager, the Federation framework enables the secure exchange of authentication
and authorization information by providing an interface for creating, modifying, and deleting
authentication domains and configuring service and identity providers (both remote and
hosted types) as entities. Additionally, the implemented web services define a stack to support
the Federation framework. The following figure illustrates the architecture of the web services
stack and how a web service consumer communicates with the web service provider (Access
Manager).

The Web Services Stack

Sun Java System Access Manager 7.1 Technical Overview • March 200784

User
Agent

Custom
Identity
Service

Custom
Data

Service

Employee
Profile
Service

Personal
Profile
ServiceDiscovery

Service

Authentication
Web

Service

Data Service Templates

Interaction Service APIs

SOAP APIs

SOAP/HTTP(S)

Trusted
Authority

Discovery
Service

Authentication
Web

Service Personal
Profile
Service

Employee
Profile
Service

Custom
Data

Service

Custom
Identity
Service

Data Service Templates

Interaction Service APIs

SOAP Receiver APIs

Interaction
Redirect
Handler

PAOS

PolicyAuthenticationSAMLSDKSSO
Services

Management

Web Service Provider
Contains Service and Service APIs

Web Service Consumer
Contains Client Components and Client APIs

Directory
Server

Metadata

FIGURE 5–2 Web Services Architecture

The Web Services Stack

Chapter 5 • Federation, SAML, and Web Services 85

Implemented Services
Access Manager includes the following web services based on the Liberty Alliance Project
specifications:

Authentication Web Service
Provides authentication to a WSC, allowing the WSC to obtain security tokens for further
interactions with other services at the same provider. Upon successful authentication, the
final Simple Authentication and Security Layer (SASL) response contains the resource
offering for the Discovery Service.

Discovery Service
A web service that allows a requesting entity, such as a service provider, to dynamically
determine a principal's registered attribute provider. Typically, a service provider queries the
Discovery Service, which responds by providing a resource offering that describes the
requested attribute provider. The implementation of the Discovery Service includes Java and
web-based interfaces.

SOAP Binding
A set of Java APIs used by the developer of a Liberty-enabled identity service. The APIs are
used to send and receive identity-based messages using SOAP, an XML-based messaging
protocol.

Liberty Personal Profile Service
A data service that supports storing and modifying a principal's identity attributes. Identity
attributes might include information such as first name, last name, home address, and
emergency contact information. The Liberty Personal Profile Service is queried or updated
by a WSC acting on behalf of the principal.

Web Services Process
The following figure provides a high-level view of the process between the various components
in the web services stack. In this example:

■ The web browser represents a user.
■ The service provider also acts as a web services consumer (WSC), invoking a web service on

behalf of the user. The service provider relies on the identity provider for authentication.
■ The identity provider acts as an authentication provider by authenticating the user. It also

acts as a trusted authority, issuing security tokens through the Discovery Service.
■ The web services provider (WSP) serves requests from web services clients such as the

Liberty Personal Profile Service.

The Web Services Stack

Sun Java System Access Manager 7.1 Technical Overview • March 200786

The following process assume that the user, the identity provider, and the service provider have
already been federated.

1. The user attempts to access a resource hosted on the service provider server.

2. The service provider redirects the user to the identity provider for authentication.

3. The identity provider authenticates the user successfully and sends the single sign-on
assertion to the requesting service provider.

4. The service provider verifies the assertion and the user is issued a session token.

5. The service provider redirects the user to the requested resource.

6. The user requests access to another service hosted on the WSC server.

For example, it might need that value of an attribute from the user’s Liberty Personal Profile
Service.

7. The WSC sends a query to the Discovery Service to determine where the user’s Liberty
Personal Profile Service instance is hosted.

The WSC bootstraps the Discovery Service with the resource offering from the assertion
obtained earlier.

8. The Discovery Service returns a response to the WSC containing the endpoint for the user’s
Liberty Personal Profile Service instance and a security token that the WSC can use to access
it.

9. The WSC sends a query to the Liberty Personal Profile Service instance.

Web Services
Consumer

Service Provider

Access ManagerAccess Manager

Web Services Provider/
Discovery Service

Web Services Provider/
Liberty Personal

Profile Service

1

4

7

109

3

8

6

11 5

Web Browser

Access Manager

Identity Provider

2

FIGURE 5–3 Web Services Stack Process

The Web Services Stack

Chapter 5 • Federation, SAML, and Web Services 87

The query asks for the user’s personal profile attributes, such as home phone number. The
required authentication mechanism specified in the Liberty Personal Profile Service
resource offering must be followed.

10. The Liberty Personal Profile Service instance authenticates and validates authorization for
the requested user or the WSC, or both.
If user interaction is required for some attributes, the Interaction Service will be invoked to
query the user for consents or for attribute values. The Liberty Personal Profile Service
instance returns a response to the WSC after collecting all required data.

11. The WSC processes the Liberty Personal Profile Service response, and renders the service
pages containing the information.

For detailed information about all these components, see the Sun Java System Access
Manager 7.1 Federation and SAML Administration Guide.

SAML Service
SAML defines an eXtensible Markup Language (XML) framework to achieve interoperability
across different vendor platforms that provide SAML assertions. SAML is an XML framework
for exchanging security information over the Internet. Access Manager SAML Service consists
of a web service interface, a SAML core component, and a SAML framework that web services
can connect to.

The Access Manager SAML Service enables the following functionality:

■ Users can authenticate against Access Manager and access trusted partner sites without
having to reauthenticate. This single sign-on process independent of the process enabled by
Access Manager user session management.

■ Access Manager acts as a policy decision point (PDP), allowing external applications to
access user authorization information for the purpose of granting or denying access to their
resources.

■ Access Manager acts as both an attribute authority (allowing trusted partner sites to query a
subject’s attributes) and an authentication authority (allowing trusted partner sites to query
a subject’s authentication information.)

■ Two parties in different security domains can validate each other for the purpose of
performing business transactions.

■ Access Manager SAML APIs can be used to build Authentication, Authorization Decision
and Attribute Assertions.

■ The Access Manager SAML Service provides pluggable XML-based digital signature signing
and verifying.

SAML Service

Sun Java System Access Manager 7.1 Technical Overview • March 200788

Logging and the Java Enterprise System
Monitoring Framework

Sun Java System Access Manager provides its own logging feature that records information
such as user login, user logout, session creation, and policy evaluation. This chapter describes
how Access Manager logging works, and provides some information about the Java Enterprise
System Monitoring Framework. It contains the following sections:

■ “Logging Overview” on page 89
■ “Log Files” on page 91
■ “Access Manager Component Logs” on page 94
■ “Additional Logging Features” on page 95
■ “Java Enterprise System Monitoring Framework” on page 96

Logging Overview
The Logging Service enables Access Manager services to record information such as access
denials, access approvals, authentication events, and authorization violations. Administrators
can use the logs to track user actions, analyze traffic patterns, audit system usage, review
authorization violations, and troubleshoot. The logged information from all Access Manager
services is recorded in one centralized directory. The default location for all Access Manager log
files is /var/opt/SUNWam/logs. Logging client APIs enable external applications to access the
Logging framework. This section contains the following:

■ “Logging Service” on page 89
■ “Logging Configuration” on page 90
■ “Recorded Events” on page 90

Logging Service
The Logging Service stores the attributes and values for the logging function. A global service
configuration file named amLogging.xml defines the Logging attributes. Examples of Logging
Service attributes are maximum log size, log location, and log format (flat file or relational

6C H A P T E R 6

89

database). The attribute values are applied across the Access Manager deployment and
inherited by every configured realm. By default, amLogging.xml is located in the directory
/etc/opt/SUNWam/config/xml when Access Manager is installed in a Solaris environment.
(When installed on Windows, the directory is jes-install-dir\identity\config\xml; on HP-UX
the directory is /etc/opt/sun/identity/config/xml.) The structure of amLogging.xml is
defined by file sms.dtd.

Logging Configuration
When Access Manager starts or when any logging configuration data is changed using the
Access Manager console, the logging configuration data is loaded (or reloaded) into the Logging
Service. This data includes the log message format, log file name, maximum log size, and the
number of history files. Applications can use the client APIs to access the Logging features from
a local or remote server. The client APIs use an XML-over-HTTP layer to send logging requests
to the Logging component on the server where Access Manager is installed.

Recorded Events
The client passes the Logging Service logs information to the
com.sun.identity.log.LogRecord class. The following table summarizes the items logged by
default in the LogRecord.

TABLE 6–1 Events Recorded in LogRecord

Event Description

Time The date (YYYY-MM-DD) and time (HH:MM:SS) at which the log message was
recorded. This field is not configurable.

Data Variable data pertaining to the log records's MESSAGE ID. This field is not
configurable.

Module Name Name of the Access Manager service or application being logged. Additional
information on the value of this field can be found in “Adding Log Data” on page
88.

Domain Access Manager domain to which the user belongs.

Log Level The Java 2 Platform, Standard Edition (J2SE) version 1.4 log level of the log record.

Login ID ID of the user as the subject of the log record. The user ID is taken from the session
token.

IP Address IP address from which the operation was performed.

Logging Overview

Sun Java System Access Manager 7.1 Technical Overview • March 200790

TABLE 6–1 Events Recorded in LogRecord (Continued)
Event Description

Logged By User who writes the log record. The information is taken from the session token
passed during logger.log(logRecord, ssoToken).

Host Name Host name associated with the IP Address above.

MessageID Non-internationalized message identifier for this log record's message.

ContextID Identifier associated with a particular login session.

Log Files
The following sections contain information about Access Manager log files:

■ “Log File Formats” on page 91
■ “Error and Access Logs” on page 93

Log File Formats
Access Manager can record events in either of the following formats:

■ “Flat File Format” on page 91
■ “Relational Database Format” on page 91

Flat File Format
The default flat file format is the W3C Extended Log Format (ELF). Access Manager uses this
format to record the default fields in each log record. See “Recorded Events” on page 90 for a list
of default fields and their descriptions. The following example illustrates an authentication log
record formatted for a flat file. The fields are in this order: Time, Data, ModuleName, MessageID,
Domain, ContextID, LogLevel, LoginID, IPAddr, LoggedBy, and HostName.

EXAMPLE 6–1 Flat File Record From amAuthentication.access

"2005-08-01 16:20:28" "Login Success" LDAP AUTHENTICATION-100

dc=example,dc=com e7aac4e717dda1bd01 INFO

uid=amAdmin,ou=People,dc=example,dc=com 192.18.187.152

"cn=exampleuser,ou=Example Users,dc=example,dc=com" exampleHost

Relational Database Format
When Access Manager uses a relational database to log messages, the messages are stored in a
database table. Access Manager uses Java Database Connectivity (JDBC) to access the database

Log Files

Chapter 6 • Logging and the Java Enterprise System Monitoring Framework 91

table. JDBC provides connectivity to a wide range of SQL databases. JDBC also provides access
to other tabular data sources such as spreadsheets or flat files. Oracle® and MySQL databases are
currently supported.

For log records generated by Access Manager, the Data and MessageID fields are used slightly
differently than in previous versions of Access Manager. Starting with this version of Access
Manager, the MessageID field is introduced as a template for types of log messages. For
example, in previous versions, Access Manager would generate the following message in the
Data field:

Data: "Created group

cn=agroupSubscription1,ou=Groups,dc=iplanet,dc=com"

In this version of Access Manager, two log records are recorded for the one event:

Data: agroupSubscription1|group|/
MessageID: CONSOLE-1

and

Data: agroupSubscription1|group|/
MessageID: CONSOLE-2

These log records reflect the use of identities and realms. In this example, CONSOLE-1 indicates
an attempt to create an identity object, and CONSOLE-2 indicates the attempt to create an
identity object was successful. The root organization notation (dc=iplanet,dc=com) is replaced
with a forward slash (/). The variable parts of the messages (agroupSubscription1, group, and /)
are separated by a pipe character (|), and continue to go into the Data field of each log record.
The MessagID string is not internationalized in order to facilitate machine-readable analysis of
the log records in any locale.

The following table summarizes the schema for a relational database.

TABLE 6–2 Relational Database Log Format

Column Name Data Type Description

TIME VARCHAR(30) Date of the log in the format YYYY-MM-DD HH:MM:SS.

DATA VARCHAR(1024) The variable data part of the log record pertaining to the
MESSAGE ID. For MySQL, the Data Type is VARCHAR(255).

MODULENAME VARCHAR(255) Name of the Access Manager component invoking the log
record.

DOMAIN VARCHAR(255) Access Manager domain of the user.

LOGLEVEL VARCHAR(255) JDK 1.4 log level of the log record.

Log Files

Sun Java System Access Manager 7.1 Technical Overview • March 200792

TABLE 6–2 Relational Database Log Format (Continued)
Column Name Data Type Description

LOGINID VARCHAR(255) Login ID of the user who performed the logged operation.

IPADDR VARCHAR(255) IP Address of the machine from which the logged operation
was performed.

LOGGEDBY VARCHAR(255) Login ID of the user who writes the log record.

HOSTNAME VARCHAR(255) Host name of machine from which the logged operation was
performed.

MESSAGE ID VARCHAR(255) Non-internationalized message identifier for this log record's
message.

CONTEXT ID VARCHAR(255) Identifier associated with a particular login session.

Error and Access Logs
There are two types of Access Manager log files:

■ Access log files
■ Error log files

Access log files record general auditing information concerning the Access Manager
deployment. An access log may contain a single record for an event such as a successful
authentication, or multiple records for the same event. For example, when an administrator
uses the console to change an attribute value, the Logging Service logs the attempt to change in
one record but, the Logging Service also logs the results of the execution of the change in a
second record. Error log files record errors that occur within the application. While an operation
error is recorded in the error log, the operation attempt is recorded in the access log file.

Flat log files are appended with the .error or .access extension. Database column names end
with _ERROR or _ACCESS. For example, a flat file logging console events is named
amConsole.access while a database column logging the same events is named
AMCONSOLE_ACCESS or amConsole_access.

Note – The period (.) separator in a log filename is converted to an underscore (_) in database
formats. Also in databases, table names may be converted to all upper case. For example,
amConsole.access may be converted to AMCONSOLE_ACCESS, or it may be converted to
amConsole_access.

Log Files

Chapter 6 • Logging and the Java Enterprise System Monitoring Framework 93

Access Manager Component Logs
The log files record a number of events for each of the Access Manager components using the
Logging Service. Administrators typically review these log files on a regular basis. The default
location for all Access Manager log files is /var/opt/SUNWam/logs when Access Manager is
installed in a Solaris environment. (When installed on Windows, the directory is
jes-install-dir\identity\logs; on HP-UX the directory is /var/opt/sun/identity/logs.) The
following table provides a brief description of the log files produced by each Access Manager
component.

TABLE 6–3 Access Manager Component Logs

Component Log Filename Information Logged

Session ■ amSSO.access Session management attributes values such as login time,
logout time, and time out limits. Also session creations and
terminations.

Administration
Console

■ amConsole.access

■ amConsole.error

User actions performed through the administration console
such as creation, deletion and modification of
identity-related objects, realms, and policies.
amConsole.access logs successful console events while
amConsole.error logs error events.

Authentication ■ amAuthentication.access

■ amAuthentication.error

User logins and log outs, both successful and failed.

Federation ■ amFederation.access

■ amFederation.error

■ amLiberty.access

■ amLiberty.error

Federation-related events such as the creation of an
authentication domain or the creation of a hosted provider
entity.

Authorization
(Policy)

■ amPolicy.access

■ amPolicy.error

■ amAuthLog

Policy-related events such as policy creation, deletion, or
modification, and policy evaluation. amPolicy.access logs
policy allows, amPolicy.error logs policy error events, and
amAuthLog logs policy denies.

Policy Agent amAgent Exceptions regarding resources that were either accessed by
a user or denied access to a user. amAgent logs reside on the
server where the policy agent is installed. Agent events are
logged on the Access Manager machine in the
Authentication logs.

SAML ■ amSAML.access

■ amSAML.error

SAML-related events such as assertion and artifact creation
or removal, response and request details, and SOAP errors.

Access Manager Component Logs

Sun Java System Access Manager 7.1 Technical Overview • March 200794

TABLE 6–3 Access Manager Component Logs (Continued)
Component Log Filename Information Logged

Command-line ■ amAdmin.access

■ amAdmin.error

Event successes and errors that occur during operations
using the command line tools. Examples are: loading a
service schema, creating policy, and deleting users.

Password Reset ■ amPasswordReset.accessPassword reset events.

For detailed reference information about events recorded in each type of Access Manager log,
see the Sun Java System Access Manager 7.1 Administration Guide.

Additional Logging Features
You can enable a number of logging features for added functionality. The additional features
include:

■ “Secure Logging” on page 95
■ “Remote Logging” on page 95
■ “Log Reading” on page 96

Secure Logging
This feature adds an extra measure of security to the Logging Service. When secure logging is
enabled, the Logging component can detect unauthorized changes to the security logs. No
special coding is required to leverage this feature. However, secure logging uses a certificate that
you must create and install in the container that runs Access Manager. When secure logging is
enabled, a Manifest Analysis and Certification (MAC) is generated and stored for every log
record, and a special signature record is periodically inserted in the log. The signature record
represents the signature for the contents of the log written up to that point. The combination of
the certificate and the signature record ensures that the logs have not been tampered. For
detailed information about enabling secure logging, see the Sun Java System Access Manager 7.1
Administration Guide.

Remote Logging
Remote logging allows a client using the Client APIs to create log records on an instance of
Access Manager deployed on a remote machine. Remote logging is useful in the following
situations:

■ When the login URL in the Naming Service of an Access Manager instance points to a
remote Access Manager instance, and a trust relationship between the two instances has
been configured.

Additional Logging Features

Chapter 6 • Logging and the Java Enterprise System Monitoring Framework 95

■ When the Access Manager APIs are installed in a remote Access Manager instance, and a
client application or a simple Java class running on the Access Manager server uses the
logging APIs.

■ When logging APIs are used by Access Manager agents.

Log Reading
Access Manager provides Logging APIs for writing your own custom log reading program. You
can set up queries to retrieve specific records from the log file or database. This is useful for
auditing purposes. For more information, see the Sun Java System Access Manager 7.1
Developer’s Guide.

Java Enterprise System Monitoring Framework
Access Manager 7.1 integrates with the Java Enterprise System (JES) monitoring framework
through Java Management Extensions (JMX). JMX technology provides the tools for building
distributed, web-based, modular, and dynamic solutions for managing and monitoring devices,
applications, and service-driven networks. Typical uses of the JMX technology include:
consulting and changing application configuration, accumulating statistics about application
behavior, notification of state changes and erroneous behaviors. Data is delivered to centralized
monitoring console. Access Manager 7.1 uses the Java ES Monitoring Framework to capture
statistics and service-related data such as:

■ Number of attempted, successful, and failed authentications
■ Number of active sessions, statistics from session failover DB
■ Session failover database statistics
■ Policy caching statistics
■ Policy evaluation transaction times
■ Number of assertions for a given provider in a SAML/Federation deployment

For comprehensive information about how the JES monitoring framework works and how you
can use the monitoring framework with Access Manager, see the Sun Java Enterprise System 5
Monitoring Guide.

Java Enterprise System Monitoring Framework

Sun Java System Access Manager 7.1 Technical Overview • March 200796

Index

A
access logs, 93
Access Manager, overview, 16
Access Manager information tree, 23-24, 35-38
Access Manager installation modes, See installation

modes
Access Manager Repository Plug-in, identity repository

plug-in, 29-30
account federation, 84
account locking, 69

memory locking, 69
physical locking, 69

action, in policy, 75
Active Directory authentication module, 60
active session time, in policy, 76-77
agent, See policy agent
amLogging.xml, 89-90
amSDK, identity repository plug-in, 34
Anonymous authentication module, 60
architecture

framework layer, 21
overview, 20-34
plug-ins layer, 32-34

auditing, See logging
authentication chain, in policy, 76-77
authentication chaining, 69-70
authentication configuration, 62
authentication configuration service, 62
authentication domain, 82-84
authentication level, in policy, 76-77
authentication level-based authentication, 68
authentication module instance, in policy, 76-77

authentication modules, 60-62
Active Directory, 60
Anonymous, 60
Certificate, 60
HTTP Basic, 60
JDBC, 60
Membership, 61
MSISDN, 61
RADIUS, 61
SafeWord, 61
SAML, 61
SecurID, 61
UNIX, 61
Windows Desktop Single Sign-On, 61
Windows NT, 61

Authentication Service
account locking, 69
authentication chaining, 69-70
authentication configuration, 62
authentication configuration service, 62
authentication level-based authentication, 68
authentication plug-in, 33
client detection, 67
core component, 31, 67-71
description, 32, 36
distributed authentication user interface, 65-66
FQDN name mapping, 70
general authentication service, 62
JAAS shared state, 71
login URLs, 68
module-based authentication, 68
modules, 60-62

97

Authentication Service (Continued)
organization-based authentication, 68
overview, 59-60
process flow, 44-46
realm-based authentication, 67
redirection URLs, 68
role-based authentication, 67
service-based authentication, 68
session upgrade, 70-71
user-based authentication, 68
user interface, 63-65
validation plug-in, 71

Authentication Web Service, 86
authorization

See Policy Service
overview, 73-74

C
CDSSO, See cross-domain single sign-on
Certificate authentication module, 60
circle of trust, 82-84
client APIs, description, 34
Client Detection Service

and authentication, 67
core component, 31
in authentication process, 44-46

components, See core components
condition, in policy, 76-77
cookies, and sessions, 40-41
core components

Authentication Service, 67-71
descriptions, 31

cross-domain single sign-on
definition, 37, 40
process flow, 54-55

current session properties, in policy, 76-77

D
delegation plug-in, defining privileges, 33
Discovery Service, 86

distributed authentication
definition, 65-66
in authentication process, 44-46

documentation
related Access Manager books, 8-10
Sun Java Enterprise System, 9-10
Sun Java System, 9

DTD
files used, 31-32
modifying files, 31-32

E
error logs, 93

F
federated identity, 81-82
federation, 81-88
Federation

core component, 31
description, 32

Federation Service, description, 37
flat files, logging, 91
FQDN name mapping, definition, 70
framework, identity repository, 28-30
framework layer, Access Manager architecture, 21

G
general authentication service, 62
General Policy Service, 78-79
Glossary, Java ES, 10

H
HTTP Basic authentication module, 60
HTTP request, and authentication, 42-44

Index

Sun Java System Access Manager 7.1 Technical Overview • March 200798

I
identity federation

See also Liberty Alliance Project
account federation, 84
authentication domain, 82-84
circle of trust, 82-84
definition, 81-82

identity repository, framework, 28-30
identity repository management, identity repository

management plug-in, 33
information tree, See Access Manager information tree
installation modes

legacy, 17-19
legacy mode, 19
realm, 17-19
realm mode, 18

IP address/DNS names, in policy, 76-77

J
JAAS shared state, in authentication, 71
JDBC, 91-93
JDBC authentication module, 60

L
LDAP authentication module, 61
LDAP filter, in policy, 76-77
LDAPv3, identity repository plug-in, 30
legacy mode, 17-19, 19
Liberty Alliance Project

circle of trust, 82-84
specifications, 82

Liberty Personal Profile Service, 86
local identity, 81-82
log reading, 96
logging

access logs, 93
amLogging.xmll, 89-90
component log filenames, 94
error logs, 93
flat files, 91
log reading, 96

logging (Continued)
overview, 89-91
process flow, 50-51
recorded events, 90-91
relational databases, 91-93
remote logging, 95-96
secure logging, 95

Logging Service
core component, 31
description, 38

login URLs, 68

M
Membership authentication module, 61
module-based authentication, 68
MSISDN authentication module, 61

N
Naming Service

and session validation, 46-47
core component, 31

normal policy, 75-77
condition, 76-77
rule, 75
subject, 75-76

O
organization-based authentication, 68
overview

Authentication Service, 59-60
user session, 39-40

P
PDP, in SAML, 88
persistent cookie, definition, 70
Platform Service, core component, 31

Index

99

plug-ins
Access Manager Repository Plug-in, 29-30
amSDK, 34
architecture, 32-34
authentication

See authentication modules
Authentication Service, 33
delegation, 33
identity repository management, 33
LDAPv3, 30
policy response providers, 77
Policy Service, 34
service configuration, 34

policy
condition, in normal policy, 76-77
definition, 73-74
General Policy Service, 78-79
Policy Configuration Service, 78-79
rule, in normal policy, 75
subject, in normal policy, 75-76

policy administrator, 33
policy agent

definition, 41-42
description, 34

Policy Configuration Service, 78-79
Policy Decision Point, definition, 73-74
Policy Enforcement Point, definition, 73-74
policy evaluation, 48-49
policy organization administrator, 33
Policy Service

authorization, 73-74
core component, 31
definition, 73-80
description, 32, 36
normal policy, 75-77
policy evaluation, 48-49
policy plug-in, 34
policy response provider plug-in, 77
referral policy, 77-78

policy types
normal policy, 75-77
referral policy, 77-78

privileges, and delegation plug-in, 33

R
RADIUS authentication module, 61
realm administrator, 33
realm authentication, in policy, 76-77
realm-based authentication, 67
realm mode, 17-19
realms, 25-26

and access control, 74
redirection URLs, 68
referral policy, 77-78
relational databases, logging, 91-93
remote logging, 95-96
resource, in policy, 75
role-based authentication, 67
roles, and delegation plug-in, 33
rule, in policy, 75

S
SafeWord authentication module, 61
SAML, description, 32
SAML authentication module, 61
SAML Service

core component, 31
description, 37
overview, 88

secure logging, 95
SecurID authentication module, 61
service-based authentication, 68
service configuration plug-in, 34
Service Management Service, 34
services

Access Manager web services, 31-32
Authentication Service, 36
Federation Service, 37
Identity Repository Service, 28-30
internal, 31
Logging Service, 38
Policy Service, 36
SAML Service, 37

session, See user session
session data structure, See session object
session ID, See session token
session management, See User Session Management

Index

Sun Java System Access Manager 7.1 Technical Overview • March 2007100

Session Service, See User Session Management
session termination, 56-57
session token, 40-41
session upgrade, definition, 70-71
session validation, 46-47
single sign-on

definition, 37, 40
process flow, 51-53

SOAP Binding, 86
SSO, See single sign-on
subject, in policy, 75-76
subrealm administrator, 33
Sun Java Enterprise System, documentation, 9-10
Sun Java System, documentation, 9
Sun Java System Directory Server

as identity repository, 28-30
legacy mode, 19

T
time, in policy, 76-77

U
UNIX authentication module, 61
user authentication, 44-46
user-based authentication, 68
user session

basic user session, 42-51
cookies, 40-41
definition, 40
initial HTTP request, 42-44
logging results, 50-51
overview, 39-40
policy evaluation, 48-49
session objects, 40-41
session token, 40-41
session validation, 46-47
user authentication, 44-46

User Session Management
core component, 31
description, 32, 37
session termination, 56-57

V
validation plug-in, in authentication, 71
value, in policy, 75

W
web services

architecture, 84-88
definition, 31-32
implemented services, 86
process, 86-88

Windows Desktop Single Sign-On authentication
module, 61

Windows NT authentication module, 61

X
XML, files used, 31-32

Index

101

102

	Sun Java System Access Manager 7.1 Technical Overview
	Preface
	Before You Read This Book
	Related Books
	Access Manager Installation Instructions
	Access Manager Core Documentation
	Sun Java System Product Documentation
	Sun Java Enterprise System Product Documentation

	Searching Sun Product Documentation
	Documentation, Support, and Training
	Third-Party Web Site References
	Sun Welcomes Your Comments
	Typographic Conventions
	Shell Prompts in Command Examples
	Symbol Conventions

	Introduction to Access Manager
	An Access Management Paradigm
	The Problem
	The Solution

	What Access Manager Does
	Access Manager Installation Modes
	Realm Mode
	Legacy Mode

	Access Manager Architecture
	Access Manager Framework
	Access Manager Information Tree
	Realms
	Identity Repository Framework
	Access Manager Repository Plug-in (Sun Java System Directory Server)
	Active Directory
	Generic Lightweight Directory Access Protocol (LDAP) version 3
	Flat Files Repository
	Sun Directory Server With Access Manager Schema

	Core Components and Internal Services
	Web Services
	SPIs and Plug-ins
	Authentication Plug-in
	Delegation Plug-in
	Identity Repository Management Plug-in
	Policy Plug-in
	Service Configuration Plug-in
	AM SDK Plug-in

	Client APIs
	Access Manager Policy Agents

	How Access Manager Works
	Authentication Service
	Policy Service
	User Session Management
	SAML Service
	Federation Service
	Logging

	User Session Management and Single Sign-On
	User Sessions and the Session Service
	Sessions, Session Tokens, and Cookies
	Policy Agents
	Basic User Session
	Initial HTTP Request
	User Authentication
	Session Validation
	Policy Evaluation and Enforcement
	Logging Results

	Single Sign-On Session
	Cross-Domain Single Sign-On Session
	Session Termination
	User Ends Session
	Administrator Ends Session
	Access Manager Enforces Timeout Rules
	Session Quota Constraints

	Authentication
	Authentication Overview
	Authentication Modules
	Authentication Configuration Services
	General Authentication Service
	Authentication Configuration Service

	Authentication Service User Interface
	Distributed Authentication User Interface
	Inside the Core Authentication Component
	Client Detection Service
	Authentication Type Configurations
	Login URLs and Redirection URLs
	Account Locking
	Authentication Chaining
	Fully Qualified Domain Name Mapping
	Persistent Cookie
	Session Upgrade
	Validation Plug-in Interface
	JAAS Shared State

	Authentication Programming Interfaces

	Authorization and the Policy Service
	Authorization Overview
	Access Control and Realms
	Policy Types
	Normal Policy
	Rules
	Subjects
	Conditions
	Response Providers

	Referral Policy

	Policy Framework
	Policy Service
	Policy Configuration Service

	Policy SPIs and Plug-Ins Layer
	Policy Client APIs

	Federation, SAML, and Web Services
	Federating Identities
	The Liberty Alliance Project
	How Federation Works
	The Web Services Stack
	Implemented Services
	Web Services Process

	SAML Service

	Logging and the Java Enterprise System Monitoring Framework
	Logging Overview
	Logging Service
	Logging Configuration
	Recorded Events

	Log Files
	Log File Formats
	Flat File Format
	Relational Database Format

	Error and Access Logs

	Access Manager Component Logs
	Additional Logging Features
	Secure Logging
	Remote Logging
	Log Reading

	Java Enterprise System Monitoring Framework

	Index

