
2550 Garcia Avenue
Mountain View, CA 94043
U.S.A.

XIL Device Porting and Extensibility Guide

A Sun Microsystems, Inc. Business

Please
Recycle

Copyright 1997 Sun Microsystems, Inc. 2550 Garcia Avenue, Mountain View, California 94043-1100 U.S.A. All rights reserved.

This product or document is protected by copyright and distributed under licenses restricting its use, copying, distribution, and decompilation. No part of
this product or document may be reproduced in any form by any means without prior written authorization of Sun and its licensors, if any. Third-party
software, including font technology, is copyrighted and licensed from Sun suppliers.

Parts of the product may be derived from Berkeley BSD systems, licensed from the University of California. UNIX is a registered trademark in the U.S. and
other countries, exclusively licensed through X/Open Company, Ltd.

Sun, Sun Microsystems, the Sun logo, SunSoft, SunDocs, SunExpress, Solaris, SunOs, OpenWindows, Deskset, ONC, ONC+, NFS, XIL, and AnswerBook
are trademarks, registered trademarks, or service marks of Sun Microsystems, Inc. in the U.S. and other countries. All SPARC trademarks are used under
license and are trademarks or registered trademarks of SPARC International, Inc. in the U.S. and other countries. Products bearing SPARC trademarks are
based upon an architecture developed by Sun Microsystems, Inc. PostScript and Display PostScript are trademarks of Adobe Systems Inc., which may be
registered in certain jurisdictions.

The OPEN LOOK and Sun™ Graphical User Interface was developed by Sun Microsystems, Inc. for its users and licensees. Sun acknowledges the
pioneering efforts of Xerox in researching and developing the concept of visual or graphical user interfaces for the computer industry. Sun holds a non-
exclusive license from Xerox to the Xerox Graphical User Interface, which license also covers Sun’s licensees who implement OPEN LOOK GUIs and
otherwise comply with Sun’s written license agreements.

RESTRICTED RIGHTS: Use, duplication, or disclosure by the U.S. Government is subject to restrictions of FAR 52.227-14(g)(2)(6/87) and FAR 52.227-
19(6/87), or DFAR 252.227-7015(b)(6/95) and DFAR 227.7202-3(a).

DOCUMENTATION IS PROVIDED “AS IS” AND ALL EXPRESS OR IMPLIED CONDITIONS, REPRESENTATIONS AND WARRANTIES,
INCLUDING ANY IMPLIED WARRANTY OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT, ARE
DISCLAIMED, EXCEPT TO THE EXTENT THAT SUCH DISCLAIMERS ARE HELD TO BE LEGALLY INVALID.

Copyright 1997 Sun Microsystems, Inc., 2550 Garcia Avenue, Mountain View, Californie 94043-1100 Etatis-Unis. Tous droits réservés.

Ce produit ou document est protégé par un copyright et distribué avec des licences qui en restreignent l’utilisation, la copie, la distribution, et la
décompilation. Aucune partie de ce produit ou document ne peut être reproduite sous aucune forme, par quelque moyen que ce soit, sans l’autorisation
préalable et écrite de Sun et de ses bailleurs de licence, s’il y en a. Le logiciel détenu par des tiers, et qui comprend la technologie relative aux polices de
caractères, est protégé par un copyright et licencié par des fournisseurs de Sun.

Des parties de ce produit pourront être dérivées des systèmes Berkeley BSD licenciés par l’Université de Californie. UNIX est une marque déposée aux
Etats-Unis et dans d’autres pays et licenciée exclusivement par X/Open Company, Ltd.

Sun, Sun Microsystems, le logo Sun, SunSoft, SunDocs, SunExpress, Solaris, SunOs, OpenWindows, Deskset, ONC, ONC+, NFS, XIL, et AnswerBook sont
des marques de fabrique ou des marques déposées, ou marques de service, de Sun Microsystems, Inc. aux Etats-Unis et dans d’autres pays. Toutes les
marques SPARC sont utilisées sous licence et sont des marques de fabrique ou des marques déposées de SPARC International, Inc. aux Etats-Unis et dans
d’autres pays. Les produits portant les marques SPARC sont basés sur une architecture développée par Sun Microsystems, Inc. PostScript et Display
PostScript sont des marques déposées d’Adobe Systems, Inc., lesquelles pourront être enregistrées dans des juridictions compétentes.

L’interface d’utilisation graphique OPEN LOOK et Sun™ a été développée par Sun Microsystems, Inc. pour ses utilisateurs et licenciés. Sun reconnaît les
efforts de pionniers de Xerox pour la recherche et le développement du concept des interfaces d’utilisation visuelle ou graphique pour l’industrie de
l’informatique. Sun détient une licence non exclusive de Xerox sur l’interface d’utilisation graphique Xerox, cette licence couvrant également les licenciés
de Sun qui mettent en place l’interface d’utilisation graphique OPEN LOOK et qui en outre se conforment aux licences écrites de Sun.

CETTE PUBLICATION EST FOURNIE "EN L’ETAT" ET AUCUNE GARANTIE, EXPRESSE OU IMPLICITE, N’EST ACCORDEE, Y COMPRIS DES
GARANTIES CONCERNANT LA VALEUR MARCHANDE, L’APTITUDE DE LA PUBLICATION A REPONDRE A UNE UTILISATION
PARTICULIERE, OU LE FAIT QU’ELLE NE SOIT PAS CONTREFAISANTE DE PRODUIT DE TIERS. CE DENI DE GARANTIE NE S’APPLIQUERAIT
PAS, DANS LA MESURE OU IL SERAIT TENU JURIDIQUEMENT NUL ET NON AVENU.

iii

Contents

Preface. xiii

1. Overview . 19

Introduction to the XIL Imaging Library 19

Solaris Graphics Architecture. 20

Division of Function in the XIL Library 20

XIL API Layer. 21

XIL Base Classes. 23

The XilGlobalState Class . 23

The XilObject Class . 23

The XilSystemState Class . 24

XIL API Level Classes . 24

The XilCis Class . 25

The XilColorspace Class . 25

The XilColorspaceList Class 25

The XilDevice Class . 26

iv XIL Device Porting and Extensibility Guide—April 1997

The XilDitherMask Class . 26

The XilError Class . 26

The XilHistogram Class. 27

The XilImage Class . 27

The XilImageFormat Class . 27

The XilInterpolationTable Class 28

The XilKernel Class . 28

The XilLookup Class . 28

The XilRoi Class . 28

The XilSel Class . 29

The XilStorage Class . 29

XIL Core Layer . 29

Deferred Execution . 30

The XIL Library Method . 30

Graph Evaluation and Molecules. 31

Some Considerations . 32

Unusual Effects of Deferred Execution 34

XIL GPI Layer . 35

GPI Layer Device Classes . 36

The XilDeviceManager Class 36

GPI Layer Supporting Classes . 37

The XilBox Class . 37

The XilBoxList Class . 38

The XilCondVar Class . 38

Contents v

The XilConvexRegionList Class 38

The XilFunctionInfo Class 38

The XilMutex Class . 39

The XilOp Class. 39

The XilRectList Class . 40

The XilScanlineList Class 40

The XilTile Class . 40

The XilTileList Class . 40

Writing Device Handlers. 41

I/O Devices. 41

Compute Devices . 41

Compression Devices. 41

Storage Devices . 42

2. More on Writing Device Handlers . 43

What Does the XIL Library Provide?. 43

What Kinds of Ports Are Possible in the XIL Library? 44

What Kinds of Ports Are Not Possible in the XIL Library? 45

The Development Environment . 45

Installing XIL Device Handlers . 47

Error Reporting for XIL Device Handlers 47

Version Control for XIL Handlers . 48

How XIL Device Handlers Work . 49

Implementing an XIL Operation . 52

Operation Prototype: Atomic Function. 53

vi XIL Device Porting and Extensibility Guide—April 1997

Basic Structure: Atomic Function. 54

Step 1: Splitting Boxes on Tile Boundaries 55

Obtaining Necessary Images and XilOp Object
Parameters. 55

Step 3: Looping Over Boxes . 56

Step 4: Acquiring Storage . 56

Step 5: Processing the Data . 59

Handling Failure and Return Values 61

Operation Prototype: Molecule . 62

Basic Structure: Molecule . 63

Step 1: (Optional) Verifying the Passed-In Molecule . 64

Step 2: Obtaining the XilOp Objects and Their
Parameters. 64

Step 3: Splitting Boxes on Tile Boundaries 66

Step 4: Obtaining Images and XilOp Object Parameters66

Step 5: Looping Over Boxes . 68

Step 6: Acquiring Storage . 68

Step 7: Processing the Data . 69

Supporting Re-entrancy . 70

Pre-Process and Post-Process Methods 71

Pre-Process Method . 71

Post-Process Method . 73

Registering Operations With the XIL Library. 73

Generating describeMembers() . 73

XilConfig Syntax Describing an Operation 74

Contents vii

Example of Generating describeMembers() 75

Generic Steps To Writing a Device Handler 76

3. I/O Devices. 79

About I/O Devices. 79

I/O Device Capabilities . 80

Implementing an I/O Device . 81

Implementing an I/O Device Manager. 81

Creating a Device Manager. 81

Required Device Manager Functions. 82

Implementing a Device . 85

Creating a Device . 86

Required Device Functions . 86

Optional Device functions. 90

Adding an I/O Device. 91

4. Compute Devices . 93

About Compute Devices . 93

Implementing an XIL Function . 93

Loading Compute Handlers . 94

config Entry . 94

Formatting Guidelines . 95

Using Script Files . 96

Appending An Entry . 96

Removing An Entry . 98

Compute Device Handler- Basic Structure Variations 100

viii XIL Device Porting and Extensibility Guide—April 1997

Data Collection Operations . 100

Area-Based Operations . 101

Convolution, Erode, and Dilate 101

Fill and Error Diffusion . 108

Geometric Operations . 109

Transpose. 110

Affine . 112

Rotate . 115

Scale and Translate. 115

Tablewarp . 116

5. Compression/Decompression . 117

6. Storage Devices . 119

About Storage Devices . 119

A. XilOp Object . 121

Extracting Images and Parameters . 121

Extracting Source Images . 121

Extracting Destination Images . 122

Extracting Parameters . 122

Source Images, Destination Image, and Parameters 123

B. XIL Atomic Functions. 129

ix

Figures

Figure P-1 Directory Structure of XIL DDK Release xvi

Figure 1-1 The XIL Internal Architecture . 21

Figure 2-1 An Example of Creating an I/O Handler 51

Figure 2-2 Flow of Creating an I/O, Storage, or Compression Handler . 52

Figure 2-3 Operation Sequence . 65

Figure 4-1 A 5x5 Kernel . 102

Figure 4-2 Box Types . 103

Figure 4-3 Center Box. 104

Figure 4-4 XIL_AREA_LEFT_EDGE Box . 105

Figure 4-5 Corner Boxes . 106

Figure 4-6 Fill and Error Diffusion Source Box Setup. 109

x XIL Device Porting and Extensibility Guide—April 1997

xi

Tables

Table P-1 Typographic Conventions . xv

Table 1-1 XIL C++ Device-Independent Classes . 22

Table 1-2 XilLookup Subclasses. 28

Table 1-3 XIL GPI Layer Classes. 35

Table 1-4 XilDeviceManager Subclasses . 37

Table 1-5 Device-Specific Base Classes . 37

Table 2-1 XIL_DEBUG Options . 46

Table 3-1 Required Frame Buffer Attributes . 87

Table 3-2 Double Buffering Device Functions . 90

Table 4-1 XIL Device Handler Attributes . 96

Table B-1 XIL Atomic Functions . 130

xii XIL Device Porting and Extensibility Guide—April 1997

xiii

Preface

Note – This is an in-progress document that has not had final review. It is
subject to change. We appreciate your input on any sections that require
correction or further clarification.

This document describes the architecture of, and internal interfaces to, the XIL
library. It describes the library’s C++ classes and discusses the mechanism for
acceleration and porting of new hardware. The functionality of the XIL library
is discussed in the documents XIL Programmer’s Guide and XIL Reference
Manual.

Who Should Use This Book
This book is designed for people porting hardware to use the XIL imaging
library, as well as for people who are writing additional device-independent
acceleration code for XIL functions.

Before You Read This Book
It is assumed that the reader is familiar with C++ and the ideas of classes and
class inheritance in C++. It is further assumed that the reader has studied the
XIL Programmer’s Guide to become familiar with the capabilities of the XIL
library.

xiv XIL Device Porting and Extensibility Guide—April 1997

What’s in This Book?
Chapter 1, “Overview” provides an overview of the XIL library and describes
the device-independent classes used to implement the library.

Chapter 2, “More on Writing Device Handlers” provides general information
about writing XIL device handlers.

Chapter 3, “I/O Devices” describes how to write I/O device handlers and
provides an example implementation of an I/O device handler.

Chapter 4, “Compute Devices” describes how to write compute device
handlers and provides an example implementation of a compute device
handler.

Chapter 6, “Storage Devices” describes how to write storage device handlers
and provides an example implementation of a storage device handler.

Chapter 5, “Compression/Decompression” describes how to add a new
compression method and compression hardware, and provides an example
implementation of a compressor.

Appendix A, “XilOp Object” lists the number of image sources supported by
an XIL function and the XilOp member functions that must be used to extract
the image sources and to extract an XIL function’s parameters from the XilOp
object.

Appendix B, “XIL Atomic Functions” provides the name of the function that
must be supplied in the XILCONFIG header comment to associate an
implemented function with an API call.

Related Books
XIL Reference Manual

XIL Programmer’s Guide

XIL Test Suite User’s Guide

Preface xv

What Typographic Changes and Symbols Mean
The following table describes the type changes and symbols used in this book.

Table P-1 Typographic Conventions

Typeface or
Symbol Meaning Example

AaBbCc123 The names of commands, files,
and directories; on-screen
computer output

Edit your .login file.
Use ls -a to list all files.
system% You have mail.

AaBbCc123 What you type, contrasted with
on-screen computer output

system% su
Password:

AaBbCc123 Command-line placeholder:
replace with a real name or
value

To delete a file, type rm filename.

AaBbCc123 Book titles, new words or terms,
or words to be emphasized

Read Chapter 6 in User’s Guide.
These are called class options.
You must be root to do this.

Code samples are included in boxes and may display the following:

% UNIX C shell prompt system%

$ UNIX Bourne and Korn shell
prompt

system$

Superuser prompt, all shells system#

xvi XIL Device Porting and Extensibility Guide—April 1997

XIL DDK Directory Structure
The default installation directory for the XIL DDK (Driver Developer Kit) is
/opt/SUNWddk/ddk_2.4/xil . The structure of the XIL DDK directories is
described in Figure P-1 and in the sections that follow.

Figure P-1 Directory Structure of XIL DDK Release

/opt/SUNWddk

src Xilch

arch src

lib

testscg6_device_handler

compressor

compute_device_handler

io_device_handler

molecule

storage_device_handler doc

xil

ddk_2.4

examples

data

include

data

config

bin

p9000

Preface xvii

src/

The src directory contains seven subdirectories of examples; six of these
examples are described in this manual: cg6_device_handler , compressor ,
compute_device_handler , io_device_handler , molecule , and
storage_device_handler .

Note – The directory src/cg6_device_handler contains an example I/O
device handler that treats a SPARC GX frame-buffer window as an I/O device.
The directory src/p9000 , which isn’t discussed in this manual, contains an
example for an x86-specific module that is based on the SPARC GX example: it
treats a p9000 frame-buffer window as an I/O device. The p9000 example isn’t
discussed in this manual because the p9000 architecture is similar to the CG6
architecture. The p9000 code is included to demonstrate some of the differences
you can expect when writing an XIL module for x86.

The src/doc directory contains a source (.po) file used for generating error
messages.

Xilch/

The Xilch directory contains the files for the XIL Test Suite, including
executables, data files, and examples. The XIL Test Suite is described in the XIL
Test Suite User’s Guide.

xviii XIL Device Porting and Extensibility Guide—April 1997

19

Overview 1

This chapter describes the Solaris™ XIL™ Imaging Library. It has the following
main sections.

Introduction to the XIL Imaging Library
The Solaris XIL Imaging Library provides a basic set of functions for imaging
and video applications. The XIL library is the imaging component of the
Solaris Graphics Architecture, a strategy for providing low-level software
interfaces known as foundation libraries. Application and API developers can
port their code to such foundation libraries. The XIL library is complemented
by the OpenGL Graphics Library, which addresses application and API
requirements for geometry-based graphics, and the Kodak Color Management
System (KCMS™) library, which enables device color management.

Introduction to the XIL Imaging Library page 19

Solaris Graphics Architecture page 20

Division of Function in the XIL Library page 20

XIL API Layer page 21

XIL Core Layer page 29

XIL GPI Layer page 35

Writing Device Handlers page 41

20 XIL Device Porting and Extensibility Guide—April 1997

1

Solaris Graphics Architecture
The XIL foundation library is an integral part of the Solaris Graphics
Architecture. The Solaris software, using loadable drivers, enables display
devices using the Solaris Graphics Architecture to be easily installed and used,
without requiring kernel modifications. The Solaris Graphics Architecture,
through the XIL, OpenGL, KCMS, and X11 software, provides a means for
third-party hardware and software vendors to develop applications with the
knowledge that their investment will see long-term benefits, including access
to a range of computing platforms and complete integration into the Solaris
environment.

Note – Currently, the compression GPI interfaces to the XIL library discussed
in this book are not binary committed. Due to the evolving nature of the C++
language, these interfaces may change in ways that may require you to change
your code and recompile in a later Solaris release. However, the compute, I/O,
and storage GPI interfaces are now committed, which means that we will
maintain source-code compatibility. The API continues to be committed for
binary compatibility.

Division of Function in the XIL Library
The XIL architecture consists of a high-level application programming interface
(API), device-independent core code (including the XIL API and GPI layers),
which manages the loading and calling of specific device-dependent functions,
a graphic porting interface (GPI), which separates device-independent and
device-dependent code, and the device-dependent (DD) algorithm
implementation. Figure 1-1 illustrates this division of function and shows how
these sections relate:

Overview 21

1

Figure 1-1 The XIL Internal Architecture

This document describes the XIL core (including the XIL API and GPI layers),
the GPI, and the method needed to supply alternative DD code. In general,
porting new hardware to the XIL environment involves providing new
implementations of DD modules. The GPI is the interface through which the
DD modules are called and is responsible for allowing the creation of new DD
implementations without requiring exposure of XIL library source code.

XIL API Layer
The API layer in the XIL library contains the C wrappers on the C++ device-
independent classes. It consists of functions that can be categorized in the
following way:

• Create and destroy objects
• Set and get object attributes
• Modify image data
• Extract information from an image
• Modify data in non-image objects
• Synchronize operations

Application

XIL API

XIL API Layer

XIL Core

XIL GPI Layer

XIL GPI

Device-Dependent Modules

Standard dynamic linking

Runtime linking with dlopen

22 XIL Device Porting and Extensibility Guide—April 1997

1

The semantics of the functions exposed in the API are described in the XIL
Programmer’s Guide and the XIL Reference Manual.

The C++ device-independent classes are used to implement the API functions
described above. These classes provide a device-independent interface to the
XIL library imaging functionality and are primarily used to pass information
through the GPI to the DD modules. Table 1-1 briefly summarizes these classes
and presents them alphabetically as base classes or API-level classes. For
additional information on each class, see “XIL Base Classes” on page 23, and
“XIL API Level Classes” on page 24.

Table 1-1 XIL C++ Device-Independent Classes

Class Name Description

XIL Base Classes

XilGlobalState Contains a list of system states and the tree of
atomic/molecular operations and their corresponding
function pointers

XilObject Is the parent class for all XIL API classes

XilSystemState Contains the creation methods for all API classes

XIL API Level Classes

XilCis Contains the compressed image data and compression
functions

XilColorspace Contains information to specify a color space

XilColorspaceList Contains information for specifying a list of color
spaces

XilDevice Contains multiple device attributes

XilDitherMask Contains dither matrices for ordered dithering

XilError Contains information for reporting errors

XilHistogram Contains image histogram information

XilImage Contains the basic data elements for XIL functions

XilImageFormat Contains an image description without data

XilInterpolationTable Contains an array of 1 x n kernels that represent the
interpolation filter in either the horizontal or vertical
direction

Overview 23

1

XIL Base Classes

The XilGlobalState Class

One instance of XilGlobalState exists for each heavyweight XIL process.

This class is responsible for loading DD code as needed by the application.
This class contains a table that converts operation numbers to operation names
and vice versa.

The XilGlobalState class is defined in the _XilGlobalState.hh header
file.

The XilObject Class

XilObject is the base class from which all API level XIL objects are derived.
It is the parent of the XilDeferrableObject and
XilNonDeferrableObject classes from which the API level XIL objects are
directly derived.

The XilObject class contains all the attributes and functions that are generic
to the exposed objects. It is an abstract class; no instance of this class is ever
created.

Each API level object has a 64-bit object number and version number. The
combination of these two numbers indicates a unique version of the same
object and can be returned for any XilObject derived class using the member
function getVersion() . A copy of an object returns the same version number.

XilKernel Contains kernel data used in convolution, error
diffusion, paint, and band combine

XilLookup Contains data for image conversion and colormap use

XilRoi Contains region of interest information for an image

XilSel Contains a structuring element used in erosion and
dilation

XilStorage Contains storage format information for an image

Table 1-1 XIL C++ Device-Independent Classes (Continued)

Class Name Description

24 XIL Device Porting and Extensibility Guide—April 1997

1

When API-level objects are modified, their version number is changed. Use of
object versions allows intelligent caching of API objects within the
implementation.

This XilObject class is defined in the _XilObject.hh header file.

The XilDeferrableObject Class
The XilDeferrableObject class is used to derive those objects that may be
deferred, such as the XilImage and the XilCis . These objects have common
characteristics of the deferrable execution information. For more information
on deferral of objects, see “Deferred Execution” on page 30.

The XilNonDeferrableObject Class
The XilNonDeferrableObject class contains all those objects that are not
deferrable such as the XilRoi , XilLookup , XilHistogram , and so forth.

The XilSystemState Class

The XilSystemState class contains the common information for an
individual XIL session initiated via xil_open() . This class can be used to
create objects. All objects have a reference to the system state that created
them. The system state is also used to generate errors via macros defined in its
header file.

The XilSystemState class is defined in the _XilSystemState.hh header
file.

XIL API Level Classes

The sections below describe the API level classes. As stated in “The XilObject
Class” on page 23, XilObject is the base class for all the API level classes.
You cannot instantiate an object from these classes; instead, you must get a
copy of or a reference (pointer) to the object. If you get a copy, you are
responsible for freeing the allocated data.

Overview 25

1

The XilCis Class

The XilCis (for compressed image sequence) class is the primary object for
compression in the XIL library. It contains member functions to allow access to
and movement through compressed data. The XilCis is created by loading a
specified compressor.

The XilCis class is defined in the _XilCis.hh header file.

The XilColorspace Class

XilColorspace describes a color space of an image in such a way that images
may be transformed from one color space to another. The XIL Imaging Library
supports ten named color spaces. XilColorspace may contain a KCMS
profile which is used by xil_color_correct() , not by
xil_color_convert() .

Each of the named color spaces is identified as an XilColorspaceOpCode .
XilColorspaceOpCode is an enumeration type with the values shown below:

• XIL_CS_RGBLINEAR
• XIL_CS_RGB709
• XIL_CS_PHOTOYCC
• XIL_CS_YCC601
• XIL_CS_YCC709
• XIL_CS_YLINEAR
• XIL_CS_Y601
• XIL_CS_Y709
• XIL_CS_CMY
• XIL_CS_CMYK

The XilColorspace class is defined in the _XilColorspace.hh header file.

The XilColorspaceList Class

The XilColorspaceList class contains information for specifying a list of
color spaces.

The XilColorspaceList class is defined in the _XilColorspaceList.hh
header file.

26 XIL Device Porting and Extensibility Guide—April 1997

1

The XilDevice Class

The XilDevice class describes the attribute/value pairs of a device. The
member functions of this class enable you to access and set a device’s
attributes.

An XilDevice object can be used to set multiple device attributes
simultaneously. This is important when device images are created and when
the setting of device attributes incurs substantial overhead.

When you use this object to create a device, you should set only attributes the
device understands. If the device does not recognize an attribute that you have
set through the XilDevice object, an error is generated. You should set
default values for a device’s attributes based on the list of attribute/value pairs
returned by the XilDevice object.

The XilDevice class is defined in the _XilDevice.hh header file.

The XilDitherMask Class

In the simplest case, the dither mask is a two-dimensional array of values that
determines how the noise added during the dither process is spread across the
image. In the XIL library, the dither mask can have multiple bands, each band
with its own matrix. This allows noise to be spread differently for each channel
of a true-color image, which can enhance the result of the dither operation. For
dithering of multiband images, the number of bands in the dither mask
matches the number of bands in the source image.

The XilDitherMask class is defined in the _XilDitherMask.hh header file.

The XilError Class

The XilError class describes errors in the XIL library. Its member functions
allow programs to get information about the error, to retrieve the object that is
associated with the error, and to control the error handling routines.

The XilError class is defined in the _XilError.hh header file.

Overview 27

1

The XilHistogram Class

The XilHistogram class describes a multidimensional histogram. This object
can be used to gather statistical information on images.

The XilHistogram class is defined in the _XilHistogram.hh header file.

The XilImage Class

Derived from the XilImageFormat class, XilImage represents an image
along with its associated data. The XilImage class contains member functions
that make up the XIL image functions. It also contains member functions for
storage and retrieval of image attributes.

The XilImage class is defined in the _XilImage.hh header file.

The XilImageFormat Class

The XilImageFormat class carries information about an image, independent
of its associated pixel values.

Note – This class is equivalent to the API class XilImageType .

XilImageFormat is used at the API level to return information about the kind
of image the application should create to act as a destination from a
decompression or device capture, or as a source to a compression or device
display. It is subclassed by the XIL library to create the XilImage class. There
is an API function that creates an image directly from an XilImageFormat
object.

The XilImageFormat class is defined in the _XilImageFormat.hh header
file.

28 XIL Device Porting and Extensibility Guide—April 1997

1

The XilInterpolationTable Class

The XilInterpolationTable class supports general interpolation. See the
XIL Programmer’s Guide for a discussion about general interpolation. This class
describes an array of 1 x n kernels. The array represents the interpolation filter
in either the horizontal or vertical direction. The member functions of this class
enable you to access the data in an XilInterpolationTable object.

The XilInterpolationTable class is defined in the
_XilInterpolationTable.hh header file.

The XilKernel Class

The XilKernel class represents a two-dimensional array of floating point
values. XilKernel objects are used as parameters in functions like image
convolution and error diffusion.

The XilKernel class is defined in the _XilKernel.hh header file.

The XilLookup Class

The XilLookup class describes data that is used to interpret image data.
XilLookup is defined in the _XilLookup.hh header file.

Three classes are derived from XilLookup . Table 1-2 lists these classes and the
header files in which they are defined.

The XilRoi Class

XilRoi describes an arbitrary region of interest (ROI). Member functions exist
to manipulate and logically combine XIL ROIs.

A ROI has three internal representations:

Table 1-2 XilLookup Subclasses

Class Name Header File

XilLookupColorCube _XilLookupColorcube.hh

XilLookupCombined _XilLookupCombined.hh

XilLookupSingle _XilLookupSingle.hh

Overview 29

1

• A list of rectangles (set and get as rectangles by the user)
• A bitmask (set as an image by the user)
• A list of convex regions (accessible by the core and GPI only)

Translation between types is done as needed and stored in the ROI until
invalidated by subsequent changes to the ROI.

The XilRoi class is defined in the _XilRoi.hh header file.

The XilSel Class

The XilSel class describes a structuring element, which is a two-dimensional
description of a pixel neighborhood. In the XIL library, the structuring element
is described with a two-dimensional boolean (integer) array, with pixels in a
neighborhood having true values in the array, and pixels excluded from the
neighborhood having false values. Structuring elements are currently used as
parameters to the xil_erode() and xil_dilate() functions.

The XilSel class is defined in the _XilSel.hh header file.

The XilStorage Class

The XilStorage class describes a contiguous region of memory associated
with a given image. At construction, an XilStorage object contains no
information but is filled in by subsequent calls. For improved performance and
to ensure that an XilStorage object is destroyed automatically when no
longer needed, an XilStorage object should be constructed on the stack.You
fill in XilStorage objects by calling the
XilDeferrableObject::getStorage() and XilImage::getStorage()
methods for the appropriate images.

XIL Core Layer
The Core layer in the XIL library manages the dynamic loading of device
handlers, deferred execution, and operation scheduling.

30 XIL Device Porting and Extensibility Guide—April 1997

1

Deferred Execution

The primary problem in achieving adequate performance in an imaging library
comes from the way in which the units (or atoms) of functionality are
arbitrarily combined to perform useful work. The typical imaging case is much
more general than, for example, OpenGL with its well-defined processing
pipeline. This has tended to limit the usefulness of general imaging libraries,
since any reasonable division of imaging functionality into atoms renders the
performance of many applications substandard. The result is that useful
libraries tend to be closely tailored to applications and vertical markets.

The use of multiple passes of atoms impedes performance in at least three
ways:

• Multiple passes through an image cause the entire image to be paged into
memory multiple times. Since in many cases the images are large compared
with available physical memory, and the application is often working with
multiple images simultaneously, this significantly impairs performance.
Often a pixel operation can be performed in a single CPU clock cycle, so the
time spent getting to the data far outweighs the time needed for the
operation. Imaging is often a worst case of I/O bound processing.

• Many combinations of atoms can be performed in a single logical step with
little penalty. For example, in the case of a rotation followed by a zoom, the
backward-mapped algorithms often used to perform the rotation can
perform both operations in nearly the same time as the rotation alone.

• The application must often create temporary images to hold intermediate
results. Such intermediate images are not needed in customized code and
may be avoided if the operations can be combined.

The XIL Library Method

There are several methods that can address these problems. In the XIL library,
we have chosen to implement deferred execution and multiple atomic
operation replacement. The goal is to identify and replace a sequence of atomic
operations with a functionally equivalent single operation (a molecule). In this
approach, the core-layer code keeps track of image dependencies and causes
the operations to occur as late as possible. This enables significant performance
improvements as described below.

Overview 31

1

In the library, atomic functions are, by default, deferred as long as possible. To
implement this, the API level function creates an instance of the XilOp class
(described in “The XilOp Class” on page 39), adds the API parameters to the
XilOp , and then places the operation on a tree-like structure that holds
deferred operation information. void is then returned to the calling routine
(the C binding in this case).

The deferred execution data is stored as a directed acyclic graph (DAG), where
the nodes are the instances of the XilOp class described above. The fact that a
destination function depends on its sources is stored, along with the operation
and parameters necessary to produce the destination image once the sources
are produced. As image results are needed, the parts of the graph that hold
that information are evaluated. Their dependent images are generated by
performing the operations that have been stored.

Several actions can cause the evaluation of a subgraph:

• A request for results by the application—either from an I/O image or
through storage acquisition

• A call to xil_state_set_synchronize() which modifies all images in
the library to run synchronously

• A call to xil_set_synchronize() that turns on synchronization for an
image

The DAG is disassembled upon a call to xil_close() .

Graph Evaluation and Molecules

When the graph is evaluated, each node’s op (the operation used to produce
the node’s destination image) is available and could be used to index into a list
of function pointers. In fact, the library does something a little more general
than this, and thus gains the ability to accelerate combined operations.

The XIL library stores its function table as an array of trees, each tree having
one of the atomic functions as its base. Branches exist from the base node
describing each composite operation (molecule) that exists. This structure is
built from the description of the contents of each compute device handler. As
the core code looks at the DAG, it attempts to match the longest sequence of
atoms in the DAG to the function table. If the needed molecule is available, it
is called; otherwise, the sequence of functions is checked again, leaving off the
last function, which is performed atomically.

32 XIL Device Porting and Extensibility Guide—April 1997

1

Each node on the function tree is a list of possible functions, usually using
different compute devices. The core code calls the highest priority function,
which is assumed to be the optimal (accelerated) one. The accelerated function
is allowed to fail gracefully, in which case the second function in the list is
called. Typically, the last function in the list is the unaccelerated memory port,
which is guaranteed to work for all cases. This construction allows an IHV to
accelerate a function for only a subset of the input parameters. For example,
the code supporting an accelerator that only scales images up can fail
gracefully (and cause the memory function to be called) if the scale factors it
pulls off the DAG are less than unity. The mechanism for inserting a function
into the table is described later in this document (see “Registering Operations
With the XIL Library” on page 73).

The core code does not require porting.

When porting devices, you can accelerate either atomic functions or molecules.
You can create molecules from any combination of atomic functions; however,
you cannot add new atomic functionality to the library.

Some Considerations

The time needed to determine the sequence of operations from the DAG and
choose the appropriate function from the table is trivial compared to typical
image operations.

Not all operations can be deferred. An example of this is the xil_extrema()
function, which supplies the maximum and minimum image values. The
library makes no effort to hide the values returned in an opaque structure, the
contents of which could be deferred. Thus, the use of xil_extrema() causes
an evaluation of the source image. In general, only the functions that have as
their destination an XilDeferrable object such as XilImage or XilCis
object (or create those objects) can be deferred. The complete list of the rules
for deferred execution is as follows:

1. Functions that return information based on values in the current image
cannot be deferred. These functions are:

• xil_choose_colormap()
• xil_extrema()
• xil_histogram()
• xil_lookup_convert()
• xil_squeeze_range()

Overview 33

1

2. Functions that have nonstandard ROI, origin, or size behavior cannot be
deferred. These functions are listed below:

Note – The xil_scale() and xil_transpose() functions may be deferred
under special circumstances. See the XIL Programmer’s Guide.

• xil_affine()
• xil_paint()
• xil_rotate()
• xil_scale()
• xil_subsample_adaptive()
• xil_subsample_binary_to_gray()
• xil_tablewarp()
• xil_tablewarp_horizontal()
• xil_tablewarp_vertical()
• xil_translate()
• xil_transpose()

3. General rules that apply to the other XIL functions are as follows:

Note – The xil_copy_pattern() function is exempt from general rules b
and c below.

a. The source and destination images must have the same ROI.

b. The source and destination images must have the same origins.

c. The source and destination images must have the same width (xsize) and
height (ysize).

d. The source images cannot have the same parent as the destination image.

We do not envision a large number of molecules in a typical release. In
particular, display(zoom(decompress())) molecules have proven to be
advantageous. Other display pipelines (display(zoom()) ,
display(dither(zoom())) , etc.) will prove useful. It is expected, however,
for a third party to add molecules that particularly benefit its vertical market,
without requiring that other software running on the XIL library be modified.

One goal of deferred execution is that the application need never know when
functions are actually performed. Asynchronous error reporting allows this to
be the case in general. However, some cases are impossible to hide. Consider

34 XIL Device Porting and Extensibility Guide—April 1997

1

the case of a frame grabber used as a source to an operation that is done in
response to an external signal. In normal operation, the actual grab would be
postponed until the dependency tree was evaluated, possibly several steps
further in the program. A possible resolution to this is to make the destination
of the grab operation synchronized. This causes the grab to occur when the
function call is made, but precludes any optimization of the grab function. In
the end, the application must choose whether the operation should be deferred
or not, and when the synchronization should occur. With the general rule “no
optimization through synchronization,” the application writer can judge an
appropriate place to synchronize.

Molecules must behave semantically like the sequence of atomic operations,
and produce the same (or nearly the same) results as calling the individual
atomic functions. A molecule cannot have a greater precision than the atomic
functions that the molecule contains. For example, a molecule of two
XIL_BYTE convolutions cannot use floating point between the convolutions. It
must clamp the intermediate results to XIL_BYTE images. An alternative
molecule would be:

cast;8->f,convolve;f,convolve;f,cast,f->8

See Appendix B, “XIL Atomic Functions, “ for information on the syntax of
atomic functions.

Unusual Effects of Deferred Execution

One effect of deferred execution is that in some cases source code may not
accurately reflect the actual operations done. Consider the following case,
where im2 is not set to be synchronous.

In the XIL library, only one add (the last one) is done as a result of this code,
since the earlier results are obscured by the later ones. If the final copy were
not called, no evaluation of the add would take place at all. In normal code,
such cases rarely arise, but one must be careful in benchmarking the library.
This is not unlike the situation that occurs with optimizing compilers.

for (i=0; i<N; i++) {
a[0] = i;
xil_add_const(im1, a, im2);

}
xil_copy(im2, display_image);

Overview 35

1

Consider another case where only the final decompress is executed.

Each call to xil_decompress() schedules a frame from cis to be
decompressed into image im2 . This destination image is not used until the
decompress loop is exited. The last decompressed frame is copied to a display
image; this is the only operation that is evaluated.

XIL GPI Layer
The GPI layer is the interface for device-dependent code. In general, porting a
device to the XIL library requires subclassing one or more of the base device
classes defined below, and then configuring the resulting object files so that
they can be loaded at run-time by the library. In addition to enabling third
parties to port hardware, the functions and device access in the standard XIL
release are provided through this interface as well.

Table 1-3 lists the classes that are defined in the GPI layer.

while (xil_cis_has_frame(cis)) {
xil_decompress(cis,im2);

}

xil_copy(im2,display_image);

Table 1-3 XIL GPI Layer Classes

Class Name Definition

GPI LAYER DEVICE CLASSES

XilDeviceManager Is the base class for the device type object

XilDeviceManagerIO Is the abstract class for I/O devices

XilDeviceIO Is the device-specific base class for I/O

XilDeviceManagerCompute Is the abstract class for compute devices

XilDeviceManagerCompression Is the abstract class for compression devices

XilDeviceCompression Is the device-specific class for compression
devices

XilDeviceManagerStorage Is the abstract class for storage devices

36 XIL Device Porting and Extensibility Guide—April 1997

1

GPI Layer Device Classes

The XIL library has the concept of devices—software and hardware—which are
represented by the device handler modules. More than one instance of a device
may be created. In this case, information that is common to all instances of a
device should be held in the XilDeviceManager class.

The XilDeviceManager Class

XilDeviceManager is an abstract class, containing the general information
needed at this level.

XilDeviceStorage Is the device-specific base class for storage

GPI LAYER SUPPORTING CLASSES

XilBox Represents the area to be processed

XilBoxList Represents a list of destination areas and their
corresponding source area

XilCondVar Contains wrappers for conditional variables

XilConvexRegionList Contains information for representing a list of
convex regions.

XilFunctionInfo Holds the information for a device to describe
a function to the XIL library

XilMutex Contains wrappers for mutex locks

XilOp Holds the information required to store the
operation on the DAG

XilRectList Contains information for generating a
rectangular list

XilScanlineList Contains information representing a scanline
list

XilTile Contains the information representing a tile

XilTileList Contains a list of tiles

Table 1-3 XIL GPI Layer Classes (Continued)

Class Name Definition

Overview 37

1

The XilDeviceManager class is defined in the _XilDeviceManager.hh
header file.

XilDeviceManager SubClasses
The XIL library subclasses XilDeviceManager for each kind of device that is
supported. Devices combine with the appropriate XilDeviceManager
subclasses to implement all pipelines. Table 1-4 lists the subclass for each
device type and the header file in which each is defined.

Device-Specific Base Classes
Table 1-5 lists the device-specific base class for each device type and the header
file in which each is defined.

GPI Layer Supporting Classes

The XilBox Class

The XilBox class holds all the information needed to represent the area of an
image that is to be processed.

Table 1-4 XilDeviceManager Subclasses

Subclass Header File

XilDeviceManagerIO _XilDeviceManagerIO.hh

XilDeviceManagerCompute _XilDeviceManagerCompute.hh

XilDeviceManagerCompression _XilDeviceManagerCompression.hh

XilDeviceManagerStorage _XilDeviceManagerStorage.hh

Table 1-5 Device-Specific Base Classes

Device-Specific Class Header File

XilDeviceIO _XilDeviceIO.hh

XilDeviceCompression _XilDeviceCompression.hh

XilDeviceStorage _XilDeviceStorage.hh

38 XIL Device Porting and Extensibility Guide—April 1997

1

The class contains member functions to retrieve the coordinates of an image
area from the box, however most routines will simply pass an XIL box on as
arguments to other functions.

The XilBox class is defined in the _XilBox.hh header file.

The XilBoxList Class

The XilBoxList class holds all the information needed to represent a
destination area and its corresponding source areas for processing.

The class contains member functions to retrieve all the boxes from the list, one
set at a time, until all boxes are processed.

The XilBoxList class is defined in the _XilBoxList.hh header file.

The XilCondVar Class

The XilCondVar class provides support for thread control within a compute
routine.

The XilCondVar class is defined in the _XilCondVar.hh header file.

The XilConvexRegionList Class

The XilConvexRegionList class contains information for representing a list
of convex regions when backward mapping from a destination image to a
source image generates non-rectangular regions (such as in an affine
operation). For more information on convex regions, see the subsection entitled
“Affine” on page 112 in “Geometric Operations.”

The XilConvexRegionList class is defined in the _XilConvexRetion.hh
header file.

The XilFunctionInfo Class

The XilFunctionInfo class contains member functions that store the
descriptions of device function capabilities. It is set when adding a function via
addFunction() .

Overview 39

1

The XilFunctionInfo class is defined in the _XilFunctionInfo.hh
header file.

Note – It is recommended that device providers use the xilcompdest.pl
script, which takes care of describing functions to the XIL library. For more
information, see “Registering Operations With the XIL Library” on page 73.

The XilMutex Class

The XilMutex class provides support for thread locking within a compute
routine.

The XilMutex class is defined in the_XilMutex.hh header file.

The XilOp Class

The XilOp class contains all the information representing a specific XIL
operation. The class contains all the information to define a particular imaging
function including but not limited to:

• Operations such as ROI manipulation
• Backward mapping from a destination point to a point in the source
• Whether an operation can be forward mapped
• Forward mapping from a point in the source to a point in the destination
• A pointer to a list of other operations if this operation is part of a sequence

The XilOp class describes an operation completely. Any deviation from what
is described for an operation in an XilOp class is, by definition, a distinct op .

Atomic operations may have up to three source images and one destination
image. However, the interface is generalized to support more diverse atomic
operations. You can extract the source and destination images or CISs as well
as the other parameters of an XIL operation—all of which are stored in an
XilOp object—by using XilOp member functions. See Appendix A, “XilOp
Object,” for a list of all the source and destination images and parameters for
each XIL operation and an description of how to use XilOp member functions
to extract this information from an XilOp object.

A molecule is a chain of atomic operations. For a molecule, you must follow
the chain properly to extract in a logical order the parameters and images from
the XilOp object. The op passed to the routine is the op associated with the

40 XIL Device Porting and Extensibility Guide—April 1997

1

last operation in the chain (the operation that writes its output to a destination
image). It contains a pointer to an ordered list of XilOp objects, which allow
you to pick up parameters for previous ops in the chain.

For more information on molecules and operation chains, see “Operation
Prototype: Molecule” on page 62.

The XilOp class is defined in the _XilOp.hh header file.

The XilRectList Class

The XilRectList class contains information for generating a rectangular list.
For more information on using XilRectList objects, see “Geometric
Operations” on page 109.

The XilRectList class is defined in the _XilRectList.hh header file.

The XilScanlineList Class

The XilScanlineList class contains information representing a scanline list.
An XilScanlineList object provides a convenient way for geometric
operations to turn a convex region into a list of scanlines. For more information
on using XilScanlineList , see “Geometric Operations” on page 109.

The XilScanlineList object is defined in the _XilScanlineList.hh
header file.

The XilTile Class

The XilTile class contains information representing a tile.

The XilTile class is defined in the _XilTile.hh header file.

The XilTileList Class

The XilTileList class contains a list of tiles.

The XilTileList class is defined in the _XilTileList.hh header file.

Overview 41

1

Writing Device Handlers
Chapter 2, “More on Writing Device Handlers,” discusses information that
generally applies to all devices. Chapters 3 through 6 discuss information
specific to each device type.

I/O Devices

I/O devices include any devices that can produce or display images, such as
scanners, frame grabbers, image files, and displays. Configured I/O devices
appear as “device images” to XIL applications, and may be used as sources
and destinations for all XIL imaging operations. These devices are described in
Chapter 3, “I/O Devices.”

Compute Devices

Compute handlers contain the device-dependent implementation of one or
more atoms or molecules. For example, a compute device might implement the
geometric operators accelerated by an add-on card, or might provide a
combination of frequently used functions in the form of a molecule. A compute
device may be hardware specific, or may be a software-only implementation of
a superior algorithm. Compute handlers are loaded during the first call to
xil_open() . These handlers are described in Chapter 4, “Compute Devices.”

Compression Devices

Compression devices contain most of the utility functions for implementing a
method of compression and decompression, even though the actual compress
and decompress functions are provided in an associated compute device
handler. The compression device performs buffer management and
implements the semantics of the XilCis object. A compression device for a
specified compressor is loaded when xil_cis_create() is called.
Compression devices are discussed in Chapter 5,
“Compression/Decompression.”

42 XIL Device Porting and Extensibility Guide—April 1997

1

Storage Devices

Storage devices allow images to reside in other places besides host CPU
memory. Such a device is typically associated with a compute device, allowing
an accelerator to take advantage of image data remaining local to the
accelerator during sequential function calls.

The handlers for storage devices are responsible for allocating, deallocating,
and describing the data format of the storage on their devices. They are also
responsible for data conversion between storage devices. In addition, it is
useful to have the storage handler perform single-pixel access for
xil_get_pixel() and xil_set_pixel() to avoid having to convert image
data in those cases.

Typically, a compute device handler causes the storage device handler for the
device to be loaded when it first tries to create an image on the device. The
CPU memory storage handler is loaded at the time of the first image creation.
Storage devices are discussed in detail in Chapter 6, “Storage Devices.”

43

More on Writing Device Handlers 2

This chapter provides basic information on writing device handlers that use
the XIL library.

What Does the XIL Library Provide?
The XIL library provides software implementations of all atomic functions and
default implementations of some molecules. In addition, it supports four
device handler types. Through creation of one or more device handlers, you
can provide alternate implementations for any of the XIL-provided atomic
functions or molecules, or any additional molecules that you may define.

An atomic function is a basic XIL function. A molecule is composed of more
than one atomic function.

What Does the XIL Library Provide? page 43

The Development Environment page 45

Installing XIL Device Handlers page 47

Error Reporting for XIL Device Handlers page 47

Version Control for XIL Handlers page 48

How XIL Device Handlers Work page 49

Implementing an XIL Operation page 52

Registering Operations With the XIL Library page 73

Generic Steps To Writing a Device Handler page 76

44 XIL Device Porting and Extensibility Guide—April 1997

2

You can port functions to provide hardware acceleration or access to your
particular device. Porting is discussed in the sections that follow.

What Kinds of Ports Are Possible in the XIL Library?

The mechanism for porting in the XIL library allows you to decide which
functions would provide the maximum benefit for your customers. If an add-
on card is only good at geometric operators, only those functions need to be
ported; the memory versions of the remaining functions are called
automatically. If the device is a general-purpose imaging accelerator, you may
find it reasonable to provide a compute handler for most or all of the possible
XIL atomic functions.

If only a compute handler is written, the XIL library expects that an image
ends up residing in the CPU memory after each operation. If an accelerator has
its own memory, it is often an advantage to allow the image data to reside on
the device between operations. This avoids the overhead of having to copy the
data back to the CPU after each operation. The XIL library has the concept of a
storage handler, which is a set of functions which implements a copy to and
from the specific device. If a storage handler is written, the XIL core code
allows the image to reside in accelerator memory until another function
requests that it be moved somewhere else. Writing a storage handler can
greatly speed up a port for certain types of accelerator devices.

Additional molecules may be implemented by combining atomic functions in
ways that accelerate specific application areas. Faster implementations of
atomic functions can be used in place of the default implementation. While not
properly a device port, molecules can greatly improve the performance of
groups of operations.

For devices that act as either a source or destination image in an operation, the
XIL library has the concept of an I/O handler. Once the handler is written, the
application programmer can use the I/O device as a source or destination
through the device image mechanism. The I/O device handler may also
provide image processing for the source or destination image.

A single device may be represented by more than one handler. For example, an
input frame grabber that has integrated processing support can be described
by an I/O handler and an associated compute handler. If it appears as though
multiple processing operations will be done often on the grabbed images, a
storage handler can be written for the frame-grabber board as well.

More on Writing Device Handlers 45

2

Compression devices must implement the compression but may be associated
with other compute, storage, or I/O handlers as well.

A chapter in this guide describes the details of each type of handler.

What Kinds of Ports Are Not Possible in the XIL Library?

The major constraint on porting in the XIL library is that the set of atomic
functions may not be extended by the user. All molecules, including those
going to I/O hardware, must be made up of groups of the atomic functions
that the XIL library defines and implements. The list of available atomic
functions is given in Appendix B, “XIL Atomic Functions.”

In addition, the IHV should not change the meaning of existing atomic
functions; a new implementation should do exactly what the original version
does. The correctness of a new function can be tested using the XIL Test Suite.

Porting of functions not defined by the XIL library must be performed using
the mechanism defined by xil_export() .

The Development Environment
The porting interface for the XIL library is written in C++. Because C++
compilers lack a stable binary interface, it is important that you write device
handler code with the same compiler as the interface part of the library. Two
compilers are supported: SPARCompiler™ C++ 4.2 and ProCompiler™ C++
4.2.

A compiler flag selects the C++ Application Binary Interface (ABI) used by the
XIL library. The flag is added to the compile line and is:

-Qoption ccfe -abi=1:4.2:1

The XIL library contains the XIL Test Suite. It enables you to perform
regression tests against proven reference signatures. The XIL Test suite is
described in XIL Test Suite User’s Guide, which is part of this software release.

46 XIL Device Porting and Extensibility Guide—April 1997

2

The environment variable XIL_DEBUG can be useful in development situations.
The options for XIL_DEBUG are described in Table 2-1.

Multiple variables may be set at once. For example, you could set XIL_DEBUG
to show_action:set_synchronize .

Table 2-1 XIL_DEBUG Options

XIL_DEBUG Option Definition

link xx Add the two characters following the option link to the
base name of the loadable handlers. This option is
especially useful when you want to load a debug version
of a handler. For example, link_g causes
xilioxlib_g.so.1 to be loaded. If this version does not
exist, the handler with the standard name
(xilioxlib.so.1) is loaded.

show_action Print XIL_ACTION , the name of the device (such as
XilDeviceComputeMemory), and the name of the
function being called to execute each XIL operation (such
as setvalue8()), for example:
XIL_ACTION[XilDeviceComputeMemory]:setvalue8
()

set_synchronize Disable deferred execution.

provide_warnings Have the default error handler also output warnings.

use_stripping Make stripping the tiling mode.

txsize=* Set the default X tile size (0 = default tiling).

tysize=* Set the default Y tile size (0 = default tiling).

threads=* Override the number of threads to create for this machine.
This value normally is dependent on the number of
processors in the machine. Setting the value to 1 turns off
threading.

split_threashold=* Override the minimum Y tile size for thread splitting.

More on Writing Device Handlers 47

2

Installing XIL Device Handlers
XIL picks up the software pipelines provided by Sun from

/usr/openwin/lib/xil/devhandlers

Any machine specific libraries, such as those provided by third-party driver
developers, should be installed in:

/etc/openwin/lib/xil/devhandlers

Note – The environment variable XILHOME no longer exists and will not be
read by XIL. If the device handlers are not in
/etc/openwin/lib/xil/devhandlers , they will not be found.

Compute devices are identified in the OWconfig file. See Chapter 4, “Compute
Devices,” for more information.

Note – The file xil.compute is no longer used as a configuration file for
handlers and their dependencies. Instead, compute devices are identified in the
OWconfig file.

Note – Be sure not to overwrite any existing files when you write your device
handlers to the devhandlers directory.

Error Reporting for XIL Device Handlers
All the possible error messages in the XIL library are listed in Appendix B,
“XIL Error Messages,” in the XIL Programming Guide.

Where possible, you should make use of the currently existing error messages.
When you need to use device-specific error messages that are to be included in
the standard XIL release, you should create a new error file. The XIL
Programming Guide contains the device-independent error message IDs. These
IDs are numbered and prefixed with the string di- (for example, di-312).

48 XIL Device Porting and Extensibility Guide—April 1997

2

For device-dependent errors, the prefix for the error ID should be the device
name for the handler. For example, for a handler with the device name
XXXCamera (where XXX is the company name), the error IDs should have the
form XXXCamera-123 . In this example, the XIL library looks for the device-
specific error message number 123 in the directory

/usr/openwin/lib/xil/locale/ current_locale\
/LC_MESSAGES/XXXCamera.mo

The XIL library is internationalized; that is, it uses functions to extract error
messages for a given locale. For information on localization of error messages,
see the document Developer’s Guide to Internationalization (available in
AnswerBook).

Version Control for XIL Handlers
The XIL core contains the global function:

xilVersionPtr* XilGetVersion()

This function returns a pointer to a structure that contains 16-bit unsigned
integers containing the major and minor release numbers of the current XIL
library. The structure looks like this:

The rules for loading handlers are fairly simple:

• The library will not load a module with a majorVersion greater than its
own. An attempt to load a module greater than the current library version
results in an error.

• Currently, the allowable (earlier) module versions that are supported are
versions 1.1 and 1.2. Thus, majorVersion can only equal 1, and
minorVersion can equal either 1 or 2.

• The library loads and executes any module with the same majorVersion
number.

typedef struct {
 Xil_unsigned16 majorVersion;
 Xil_unsigned16 minorVersion;
} *xilVersionPtr;

More on Writing Device Handlers 49

2

Similar version control rules exist for all of the OGI foundation libraries,
including the port for the OpenWindows software.

These rules have implications for writers of XIL device handlers. You should
write your handler with the earliest version of the Solaris operating system
that you wish to support. Upgrading to a new operating system version by the
end user will, in general, not require a new release of XIL device handlers. If
you wish to write a handler that requires functionality only available after a
specific library release, you must check the majorVersion and
minorVersion numbers to make sure the handler has been loaded by an
appropriate version of the library.

For the XIL library to properly load handlers, the name of the handler must
contain its major version number as a suffix. For example, the standard XIL
I/O handler for X11 support is called xilioxlib.so.1 . For the 1.x release of
the XIL library, it is sufficient to ensure that each handler name includes the
suffix .1 .

How XIL Device Handlers Work
Each type of device in the XIL library handles a different aspect of imaging
device dependence. The inner workings of each type of device are detailed in
Chapter 3, “I/O Devices,” through Chapter 6, “Storage Devices,” in this guide,
along with pointers to examples of each device handler. However, the overall
concept behind providing a device handler is similar among different kinds of
devices.

Note – If you are writing a device handler, be aware that not all XIL
application programs call xil_close() before exiting. Therefore you should
make sure, if possible, that your device handler releases any persistent system
resources if an application dies abnormally.

To implement a specific device, you must define a derived class from the
appropriate XilDeviceManager class that represents the device. Only one
derived class can exist for each device, and therefore only one for each handler.
The purpose of the derived class is to:

• Initialize the device.

• Create the derived XilDevice class.

50 XIL Device Porting and Extensibility Guide—April 1997

2

As an example, consider the case of an I/O device called XXXCamera, which
represents the combination of a frame grabber and camera (as shown in
Figure 2-1).

Note – The XXX in the device name represents the name of the company
creating the device. For details on I/O device naming, see “Adding an I/O
Device” on page 91.

This example demonstrates the flow of creating an XIL handler, as follows:

1. The subclass XilDeviceManagerIO XXXCamera is created by a call to the
XilDeviceManager member function create() , which must exist in the
loadable library that contains the handler.

2. The XilDeviceManagerIO XXXCamera subclass initializes the frame
grabber, and holds all the global information that is shared among different
instances of the actual device. The create() function is called when the
handler is loaded. In this example of an I/O device, this happens the first
XXXCamera handler name as the device-name parameter.

3. After initializing, the XIL core code calls code in
XilDeviceManagerIO XXXCamera that creates an instance of the derived
class XilDeviceIO XXXCamera. This class contains all the code needed to
perform the image acquisition. The second time the application calls
xil_create_from_device() with the same device name, the second
instance of XilDeviceIO XXXCamera is created. To the application, this
appears as a second device image. The two device images can exist in
sequence or simultaneously.

More on Writing Device Handlers 51

2

Figure 2-1 An Example of Creating an I/O Handler

XilDeviceManagerIOXXXCamera

initialize frame grabber

XilDeviceManagerIO::create()

XilDeviceIOXXXCamera

device image #1

hold global device info
create device instances

handler global routine

implement capture

XilDeviceIOXXXCamera

device image #2
implement capture

XilDeviceIOXXXCamera

device image #3
implement capture

52 XIL Device Porting and Extensibility Guide—April 1997

2

The flow of creating a device handler is essentially the same for I/O, storage,
and compression handlers (Figure 2-2), but is not identical for compute
devices.

Figure 2-2 Flow of Creating an I/O, Storage, or Compression Handler

Compute devices have only a single instantiation, which is controlled by the
XIL core code. Thus, there is no derived class called XilDeviceCompute ; only
the XilDeviceManagerCompute class exists. Like the other device classes,
the XilDeviceManagerCompute class must be subclassed, this time to
represent the XIL functions that are being accelerated. The mechanism for
allowing the XIL core code to instantiate the compute class is described in
detail in Chapter 4, “Compute Devices.”

Implementing an XIL Operation
To create a handler for a compute, I/O, or compression device, you must
implement an XIL operation.

An XIL operation is a member of one of the following classes:

• XilDeviceManagerCompute
• XilDeviceManagerIO
• XilDeviceManagerCompression

Note – This version of the XIL Graphics Porting Interface (GPI) is different
from earlier versions: you may now implement XIL operations as part of an
I/O, compression, or compute device.

While each type of handler has its own unique features and capabilities,
implementing an XIL operation as a member of a compute, I/O, or
compression class is essentially the same.

 create XilDeviceManager XilDevice

More on Writing Device Handlers 53

2

Operation Prototype: Atomic Function

This section specifically looks at code that implements a compute routine for
the byte case of the add atomic function. However, you can generally apply the
basic structure it describes to atomic functions for I/O and compression
devices.

For a list of all the atomic functions that you can implement, see Appendix B,
“XIL Atomic Functions.”

The prototype for the add operation is shown below.

As you recall, the XilOp class holds the information required to store an XIL
operation in a Directed Acyclic Graph (DAG). The operation parameters are
op , op_count , roi , and bl .

For an XIL atomic function, the op parameter is a pointer to the XilOp object
that represents the specific atomic function in the DAG. The source and
destination images must be accessible to the function. These images are stored
in the XilOp object. The parameters of the atomic function also are stored in
the XilOp object. The XilOp class contains member functions that enable you
to extract the image and parameter information for the atomic function.
Appendix A, “XilOp Object,” identifies the images and parameters supported
by each XIL atomic function and explains how to extract them.

The op_count parameter is the number of operations (also called ops)
combined in the operation. For an atomic function, this number is 1. (For a
molecule, the value is a number greater than 1.)

The roi parameter is a pointer to the XilRoi object, which stores the
intersected region of interest (ROI) for the destination image.

Note – In this version of XIL, the compute routine is not required to calculate
the intersected ROI while processing. The core has already done this.

int
XilDeviceManagerComputeBYTE::Add(
 XilOp* op, // Pointer into the DAG
 int op_count, // Number of combined ops to be done
 XilRoi* roi, // Region of interest used in the op
 XilBoxList* bl) // List of boxes to be processed

54 XIL Device Porting and Extensibility Guide—April 1997

2

The intersected ROI represents the overlapping regions of all source images
and the destination image with image origins aligned. The intersected ROI
represents that portion of the destination to be written.

The bl parameter is a box list. The box list is a list of destination areas and their
corresponding source areas to be processed by the operation.

A box list may have more than one entry. Each entry contains one box
representing a portion of the destination image to be processed in an operation.
In addition, the entry contains a box corresponding to each source image. The
boxes are used to acquire the storage for each image. Before processing, the
ROI is intersected with the box to produce the rectangles relative to the box
that need to be processed.

Basic Structure: Atomic Function

This section looks at the code used to implement a compute routine for the
byte case of the add atomic function.

The complete source code for the XilDeviceManagerComputeBYTE::Add()
atomic function example can be found in the TBD directory.

The basic structure consists of the following steps:

1. Split boxes in the box list on tile boundaries in the sources.

2. Obtain the necessary images and XilOp object parameters.

3. Loop over the boxes to account for all boxes in the box list.

4. Acquire storage for each box.

5. Process the data.

Note – Although this section describes a compute routine, all compute, I/O,
and compression routines have this same basic structure. This was not true for
previous versions of XIL.

More on Writing Device Handlers 55

2

Step 1: Splitting Boxes on Tile Boundaries

Note – Generally the boxes passed in to an operation are already split for tiles
in the destination image so the image does not span tiles. (Some exceptions are
noted in specific sections of Chapter 4, “Compute Devices.”) Boxes have not
yet been split for tiles in the source image.

The first step of the basic structure has the operation take the box list and split
boxes on tile boundaries for the source images, as shown below.

This step guarantees that the storage you later acquire for the boxes (see “Step
4: Acquiring Storage”) lies within a tile. Because this step involves an
operation-specific call, you should see Chapter 4, “Compute Devices,” for
potential specific information.

Obtaining Necessary Images and XilOp Object Parameters

The example code below shows how to get the images for the operation and
the number of bands in the image. See Appendix A, “XilOp Object,” for a
summary of the parameters available for each operation and a description of
the XilOp member functions you need to call to obtain the parameter
information.

XilStatus
XilDeviceManagerComputeBYTE::Add(XilOp* op,
 unsigned int ,
 XilRoi* roi,
 XilBoxList* bl)
{
 if(op->splitOnTileBoundaries(bl) == XIL_FAILURE) {
 return XIL_FAILURE;
 }

XilImage* src1 = op->getSrcImage(1);
XilImage* src2 = op->getSrcImage(2);
XilImage* dest = op->getDstImage(1);

unsigned int nbands = dest->getNumBands();

56 XIL Device Porting and Extensibility Guide—April 1997

2

Step 3: Looping Over Boxes

The compute routine iterates over the box list until no there are no more
storage boxes to be processed. Each box in the list describes the area required
to perform the image operation. While it is possible to retrieve the coordinates
of the image area from the box, most operations simply pass the boxes
retrieved from the list as arguments to other functions.

Each entry in a box list contains a box for each image required by that
operation. As an example, a box list entry for the add operation consists of
three boxes: one for each of the two source images and one for the destination
image.

In the example below, XilBox::getNext() returns FALSE when all boxes
have been processed.

Step 4: Acquiring Storage

The next step of the basic structure acquires storage for each box. Before
describing this procedure, you should understand what XilStorage objects
are and how to construct them.

XilStorage Object
The XilStorage object represents the description of a contiguous region of
memory associated with a given image. At construction, they contain no
information but are filled in by subsequent calls. For improved performance
and to ensure that they are destroyed automatically at the end of the loop,
XilStorage objects should be constructed on the stack as shown below.

 XilBox* src1_box;
 XilBox* src2_box;
 XilBox* dest_box;
 while(bl->getNext(&src1_box, &src2_box, &dest_box)) {

XilStorage src1_storage(src1);
XilStorage src2_storage(src2);
XilStorage dest_storage(dest);

More on Writing Device Handlers 57

2

Filling in the XilStorage Object
You fill in the XilStorage objects for the given boxes by calling
XilImage::getStorage() for the appropriate images, as shown below.

The first parameter to getStorage() is the address of the XilStorage object
to be filled.

The second parameter is the op that was passed in to this function.

Note – The op passed to the getStorage() call is different for molecules. See
“Operation Prototype: Molecule” on page 62 for more information.

The third parameter is the name of the storage that is being requested. The
default is XilMemory . If, however, you have your own storage device, this is
where you would specify its name.

The fourth parameter is the XilStorageAccess type. Source images should
always be accessed as XIL_READ_ONLY. Destination images are accessed as
either XIL_WRITE_ONLY or XIL_READ_WRITE depending on whether the
destination can be read from as well as written to (as is the case with the
xil_copy_with_planemask() function, or for some optimizations).

if((src1->getStorage(&src1_storage, op, src1_box, “XilMemory”,
 XIL_READ_ONLY) == XIL_FAILURE) ||
 (src2->getStorage(&src2_storage, op, src2_box, “XilMemory”,
 XIL_READ_ONLY) == XIL_FAILURE) ||
 (dest->getStorage(&dest_storage, op, dest_box, “XilMemory”,
 XIL_WRITE_ONLY) == XIL_FAILURE)) {
 //
 // Mark this box entry as having failed. If marking the box
 // returns XIL_FAILURE, then we return XIL_FAILURE.
 //
 if(bl->markAsFailed() == XIL_FAILURE) {
 return XIL_FAILURE;
 } else {
 continue;
 }
}

58 XIL Device Porting and Extensibility Guide—April 1997

2

Note – It is very important that you request the storage with the correct
XilStorageAccessType . Not doing so may cause the XIL core to incorrectly
prepare the storage and may generate incorrect results.

Two additional parameters need not be specified as they are default
parameters. These are an XilStorageType and a void* .

The fifth parameter, an XilStorageType , has the default value of
XIL_STORAGE_TYPE_UNDEFINED, which means that any of XIL’s supported
storage types are acceptable and can be processed. If the operation wants to
restrict its processing to another type such as XIL_PIXEL_SEQUENTIAL , it
specifies that as an argument.

Note – It is strongly recommended that you use the default value for
XilStorageType . Unless you know exactly what you are doing, specifying a
different value could significantly impede performance.

The sixth parameter, a void* , allows storage-device specific attributes to be
passed in by the compute routine. This parameter would only be used if you
wrote your own storage device that needed additional information. The
XilMemory storage device in the example shown takes no additional
attributes. However, if you write your own storage device, you may need to
pass in additional information.

Note – Failure can be indicated on a per-box basis. If one box can’t be acquired
or processed, the operation simply marks it as failed and continues. The XIL
memory code picks up that portion of the operation that remains undone.

Determining Storage Formats of the Images
Once storage has been acquired from the images, the compute routine can then
determine the storage format and set up its processing loop accordingly. XIL
supports three storage layouts:

• XIL_PIXEL_SEQUENTIAL
• XIL_BAND_SEQUENTIAL
• XIL_GENERAL

More on Writing Device Handlers 59

2

Although the memory compute routines handle all three storage formats, the
compute routine may want to restrict its processing to certain types or to write
a different image processing loop for each format. For more information on
storage formats, see Chapter 4, “XIL Storage,” in the XIL Programmer’s Guide.

Getting Storage Information
To obtain information from a storage object such as the starting address of the
image data or the pixel stride, the XilStorage::getStorageInfo() is
called. These examples are two overloaded methods for obtaining this data.

For details on storage formats, see Chapter 4, “XIL Storage,” in the XIL
Programmer’s Guide.

Step 5: Processing the Data

At this point the basic compute routine is ready to process the data.

if((src1_storage.isType(XIL_PIXEL_SEQUENTIAL)) &&
 (src2_storage.isType(XIL_PIXEL_SEQUENTIAL)) &&
 (dst_storage.isType(XIL_PIXEL_SEQUENTIAL))) {

// Pixel Sequential
unsigned int src1_pixel_stride;
unsigned int src1_scanline_stride;
Xil_unsigned8* src1_data;
src1_storage.getStorageInfo(&src1_pixel_stride,
 &src1_scanline_stride,
 NULL, NULL,
 (void**)&src1_data);

// Band Sequential, General
for(unsigned int band=0; band<nbands; band++) {
 unsigned int src1_pixel_stride;
 unsigned int src1_scanline_stride;
 Xil_unsigned8* src1_data;
 src1_storage.getStorageInfo(band,
 &src1_pixel_stride,
 &src1_scanline_stride,
 NULL,
 (void**)&src1_data);

60 XIL Device Porting and Extensibility Guide—April 1997

2

Obtaining Intersected ROIs
To account for any ROIs that may be set on the images, the routine creates an
XilRectList object using the roi passed in and the destination box. The
XilRectList constructor gets a list of rectangles to be processed on the
destination. Passing in the box ensures that the rectangles lie within the box
area and causes the rectangles to be relative to the starting x and starting y of
the box.

The ROI passed in to the compute routine represents the intersected ROI of the
operation. (Any deviations from this are noted in the specific compute device
sections in Chapter 4, “Compute Devices.”) The XIL core has correctly mapped
and intersected the source and destination ROIs as appropriate for the
operation.

The code fragment shows the XilRectList object being created on the stack.
This enhances performance, as it eliminates the overhead of using new() and
delete() functions.

Note – The compute routine can construct an XilConvexRegionList instead
of an XilRectList . An XilConvexRegionList is used primarily in
affine() and rotate() geometric operations. For details, see Chapter 4,
“Compute Devices.”

Using the Appropriate X an d Y Values
With the XilRectList object created, the compute routine then moves to the
location of the data to start processing using the x and y values, and it
processes data until all the pixels in the rectangles have been dealt with.

XilRectList rl(roi, dest_box);

 int x;
 int y;
 unsigned int xsize;
 unsigned int ysize;
 while(rl.getNext(&x, &y, &xsize, &ysize)) {
 ...

More on Writing Device Handlers 61

2

Note – The x and y locations are relative to the current box being processed
(that is, they are not image coordinates). The data pointer returned from the
storage object also is relative to the current box.

The following code shows how to calculate the appropriate data starting point
for an XIL_PIXEL_SEQUENTIA L byte image.

Handling Failure and Return Values

As mentioned in “Step 4: Acquiring Storage” on page 56 and “Step 5:
Processing the Data” on page 59, failure can be indicated on a per-box basis.
This allows the operation to continue looping through the box list, processing
those boxes that it can. If any of the boxes has been marked as failed, it is best
to return XIL_FAILURE at the completion of the whole operation. Although
the XIL core catches failed boxes (even if the routine returns XIL_SUCCESS), it
is more efficient to indicate the failure. If all boxes are processed successfully,
the operation returns XIL_SUCCESS upon completion of the box list loop.

Note – Because the XilStorage object and XilRectList are created on the
stack, they are destroyed automatically at the end of each loop through the box
list. Since the information in them is specific to the boxes being processed

XilRectList rl(roi, dest_box);
int x;
int y;
unsigned int xsize;
unsigned int ysize;

while (rl.getNext(&x, &y, &xsize, &ysize)) {
 Xil_unsigned8* src1_scanline = src1_data +
 (y*src1_scanline_stride + (x*src2_pixel_stride);

 Xil_unsigned8* src2_scanline = src2_data +
 (y*src2_scanline_stride + (x*src2_pixel_stride);

 Xil_unsigned8* dest_scanline = dest_data +
 (y*dest_scanline_stride + (x*dest_pixel_stride);

62 XIL Device Porting and Extensibility Guide—April 1997

2

during any given loop, there is no reason to make them persistent. If you do
not create them on the stack, you must explicitly destroy them upon
completion of looping through the box list.

Operation Prototype: Molecule

The prototype for a molecule looks exactly like that for an atomic function.
(Compare the prototype in “Operation Prototype: Atomic Function” on page 53
to the molecule prototype shown here.)

As in an atomic function, the XilOp class holds all the information required to
store an XIL operation in the DAG. In the case of a molecule, however, the op
parameter is a pointer to the XilOp object that represents the last in a sequence
of XIL operations in the DAG. The op_count indicates the number of XIL
operations combined in the molecule.

Any of the previous operations in the molecule’s operation sequence are
accessible from the passed-in op parameter. The source, destination, and
parameters for each individual op in the sequence are available to you from
the appropriate XilOp object.

As in an atomic function, the roi parameter is a pointer to the XilRoi object,
which stores the intersected ROI for the destination image. In the case of a
molecule, the intersected ROI represents the intersected ROI that would be
generated by doing the individual operations in sequence from the start of the
molecule to the final destination.

Note – There are restrictions on which operations are deferrable in XIL1.3. For
more information, see “Some Considerations” on page 32.

int
XilDeviceManagerComputeBYTE::ThresholdThreshold(
 XilOp* op, // Pointer into the DAG
 int op_count; // Number of combined ops to be done
 XilRoi* roi; // Region of interest used in the op
 XilBoxList* bl) // List of boxes to be processed

More on Writing Device Handlers 63

2

The bl parameter is the box list. The box list is a list of destination areas and
their corresponding source areas to be processed by the operation. In the case
of a molecule, the source areas referenced are those for the sources to the first
XilOp object in the operation sequence. The destination areas refer to the
destination of the last XilOp object in the operation sequence. Secondary
sources on intermediate ops would follow in order between the initial sources
and the final destination.

Basic Structure: Molecule

This section looks at the code used to implement a compute routine for the
byte case of the threshold-threshold molecule.

The complete source code for the
XilDeviceManagerComputeBYTE::ThresholdThreshold() molecule
example can be found in the TBD directory.

The structure of a molecule is very similar to that for an atomic function. The
basic structure consists of the following steps:

1. Optionally verify which molecule is being handled.

2. Obtain the individual XilOp objects from the op parameter.

3. Split boxes in the box list on tile boundaries in the source.

4. Obtain the images and XilOp object parameters.

5. Loop over the boxes to account for all boxes in the box list.

6. Acquire storage for the boxes using the appropriate XilOp objects.

7. Process the data.

This basic structure differs from the atomic function basic structure (see “Basic
Structure: Atomic Function” on page 54) in the following ways:

• The first two (additional) steps apply to molecules only.

• Step 3 (splitting boxes on tile boundaries) and step 6 (acquiring storage)
include some modifications for molecules.

64 XIL Device Porting and Extensibility Guide—April 1997

2

Step 1: (Optional) Verifying the Passed-In Molecule

The XIL core ensures that a molecule does not get called unless it meets the
criteria defined when the molecule is registered. It is not necessary for the
molecule to check. Checking the op_count can be valuable, however, when
the function implements more than one molecule. In such cases, the op_count
indicates which molecule is being called. Because only one molecule is
implemented in this example, op_count does not require verification.

A common example of a function that would handle molecules of different
lengths is a decompressed-display molecule that has an optional extra copy.

Step 2: Obtaining the XilOp Objects and Their Parameters

The op parameter contains a pointer to the list of the deferred operations in
depth-first order (that is, the first XilOp object in the list is the bottom op in
the operation sequence). The compute routine views all the individual ops in a
molecule as one operation. As such, it is only interested in the destination
image from the final XilOp object in the op sequence.

XilStatus
XilDeviceManagerComputeBYTE::ThresholdThreshold(XilOp* op,
 unsigned op_count,
 XilRoi* roi,
 XilBoxList* bl)
{

More on Writing Device Handlers 65

2

Figure 2-3 Operation Sequence

As shown in the code example below, the op parameter is the same as the 0
entry in the op list (the first position in the list). The first XilOp object in the
sequence of operations is always in the position (op_count -1) in the op list.

//
// This molecule only has two XilOp objects. The top op
// provides the source image. The bottom op provides the
// destination image.
//
XilOp* src_op = op->getOpList()[1];
XilOp* dst_op = op;

if(dst_op->splitOnTileBoundaries(bl) == XIL_FAILURE) {
 return XIL_FAILURE;
}

OP1

OP2

OP1

OP2

src

dst dst

dst=src

src

66 XIL Device Porting and Extensibility Guide—April 1997

2

Step 3: Splitting Boxes on Tile Boundaries

This next step has the operation take the box list and split boxes on tile
boundaries for the source images, as shown below. Although this code could
be exactly the same as the atomic function code for this step, it is important to
realize that the XilOp::splitOnTileBoundaries() function is being called
on the destination op.

Step 4: Obtaining Images and XilOp Object Parameters

The molecule function needs to get the source images from the first op in the
operation sequence, the destination image from the last op in the operation
sequence, as well as any additional source images needed by intermediate ops
in the sequence. (See Figure 2-3 on page 65.) Once the XilOp objects are
obtained (see “Step 2: Obtaining the XilOp Objects and Their Parameters” on
page 64), you use the same functions to obtain the parameters from each

{
 if(dst_op->splitOnTileBoundaries(bl) == XIL_FAILURE) {
 return XIL_FAILURE;
 }

More on Writing Device Handlers 67

2

individual op as you would for an atomic function, as shown in the code
example below. For more information on these functions, see Appendix A,
“XilOp Object.”

XilImage* src1_image = src_op->getSrcImage(1);
XilImage* dest_image = dst_op->getDstImage(1);

//
// First Threshold
//
Xil_unsigned8* op1_low;
src_op->getParam(1, (void**)&op1_low);

Xil_unsigned8* op1_high;
src_op->getParam(2, (void**)&op1_high);

Xil_unsigned8* op1_map;
src_op->getParam(3, (void**)&op1_map);

//
// Second Threshold
//
Xil_unsigned8* op2_low;
dst_op->getParam(1, (void**)&op2_low);

Xil_unsigned8* op2_high;
dst_op->getParam(2, (void**)&op2_high);

Xil_unsigned8* op2_map;
dst_op->getParam(3, (void**)&op2_map);

//
// Store away the number of bands for this operation.
//
unsigned int num_bands = dest_image->getNumBands();

68 XIL Device Porting and Extensibility Guide—April 1997

2

Step 5: Looping Over Boxes

The compute routine now iterates over the box list until no there are no more
storage boxes to be processed. This step is exactly the same as if this were an
atomic function.

Step 6: Acquiring Storage

The next step of the basic molecule acquires storage for the boxes. This differs
from an atomic function in that the op parameter passed in to the
XilImage::getStorage() call for a given image must match the XilOp
object with which the image is associated. As shown below, the source image
comes from the top operation (src_op), and the destination image comes from
the bottom operation (dst_op).

 XilBox* src1_box;
 XilBox* dest_box;
 while(bl->getNext(&src1_box, &dest_box)) {

//
// Aquire our storage from the images. The storage returned is valid
// for the box given. Thus, any origins or child offsets have been
// taken into account.
//
XilStorage src1_storage(src1_image);
XilStorage dest_storage(dest_image);
if((src1_image->getStorage(&src1_storage,src_op, src1_box,
 "XilMemory", XIL_READ_ONLY) == XIL_FAILURE) ||
 (dest_image->getStorage(&dest_storage, dst_op, dest_box,
 "XilMemory", XIL_WRITE_ONLY) == XIL_FAILURE)) {
 //
 // Mark this box entry as having failed. If marking the box
 // returns XIL_FAILURE, then we return XIL_FAILURE.
 //
 if(bl->markAsFailed() == XIL_FAILURE) {
 return XIL_FAILURE;
 } else {
 continue;
 }
}

More on Writing Device Handlers 69

2

All other parameters to the XilImage::getStorage() call are the same as
those for an atomic function.

Step 7: Processing the Data

Once storage has been acquired from the images, the compute routine can then
determine the storage format and set up its processing loop accordingly.

The first part of this routine shown here is specialized for
XIL_PIXEL_SEQUENTIAL data.

//
// Test to see if all of our storage is of type XIL_PIXEL_SEQUENTIAL.
// If so, implement a loop optimized fro pixel-sequential storage.
//
if((src1_storage.isType(XIL_PIXEL_SEQUENTIAL)) &&
 (dest_storage.isType(XIL_PIXEL_SEQUENTIAL))) {
 unsigned int src1_pstride;
 unsigned int src1_sstride;
 Xil_unsigned8* src1_data;
 src1_storage.getStorageInfo(&src1_pstride, &src1_sstride,
 NULL, NULL,(void**)&src1_data);

 unsigned int dest_pstride;
 unsigned int dest_sstride;
 Xil_unsigned8* dest_data;
 dest_storage.getStorageInfo(&dest_pstride, &dest_sstride,
 NULL, NULL,(void**)&dest_data);

 //
 // Create a list of rectangles to loop over. The resulting list
 // of rectangles is the area left by intersecting the ROI with
 // the destination box.
 //
 XilRectList rl(roi, dest_box);

 int x1;
 int y1;
 unsigned int xsize;
 unsigned int ysize;
 while(rl.getNext(&x1, &y1, &xsize, &ysize)) {

70 XIL Device Porting and Extensibility Guide—April 1997

2

The latter part of the above routine is shown here. It handles any general
storage layout.

Supporting Re-entrancy

It is critical and expected that routines be fully re-entrant. This is because any
operation can be processing any number of operations simultaneously.
Furthermore, multiple portions of the same operation can be processed
simultaneously.

} else {
 //
 // For XIL_GENERAL and XIL_BAND_SEQUENTIAL images
 //
 XilRectList rl(roi, dest_box);

 int x1;
 int y1;
 unsigned int xsize;
 unsigned int ysize;
 while(rl.getNext(&x1, &y1, &xsize, &ysize)) {
 //
 // Each Band...
 //
 for(unsigned int band=0; band<num_bands; band++) {
 unsigned int src1_pstride;
 unsigned int src1_sstride;
 Xil_unsigned8* src1_data;
 src1_storage.getStorageInfo(band,
 &src1_pstride,
 &src1_sstride,
 NULL,
 (void**)&src1_data);

 unsigned int dest_pstride;
 unsigned int dest_sstride;
 Xil_unsigned8* dest_data;
 dest_storage.getStorageInfo(band,
 &dest_pstride,
 &dest_sstride,
 NULL,
 (void**)&dest_data);

More on Writing Device Handlers 71

2

XIL classes and objects are not multi-thread safe (MT-safe). As such, only
acquiring information is allowed. Global or static variables cause the operation
to fail.

Pre-Process and Post-Process Methods

Some operations such as lookup may need to pre-calculate information for use
by each of multiple threads executing that operation at the same time, and then
perform a single cleanup function. To facilitate this, compute, I/O, and
compression routines can have optional pre-process and post-process methods.
These methods are guaranteed to be called once per operation, but many
threads may be calling them at the same time.

Pre-Process Method

The pre-process routine is guaranteed to be called prior to any threads calling
the main function. (The post-process routine is not called until all the threads
have completed the main function.)

Pre-Process Example
In this example, the pre-process routine fills in a pointer compute_data to the
data to be shared between compute routines.

XilStatus
XilDeviceManagerComputeBYTE::Lookup8Preprocess(XilOp* op,
 unsigned ,
 XilRoi* ,
 void** compute_data
 unsigned int*)
{
 XilImage* dst = op->getDstImage(1);

 //
 // Create a lookup structure no matter what
 //
 LookupData* lud = new LookupData;
 if(lud == NULL) {
 XIL_ERROR(dst->getSystemState(), XIL_ERROR_RESOURCE, “di-1”, TRUE);
 return XIL_FAILURE;
 }
 ...

72 XIL Device Porting and Extensibility Guide—April 1997

2

In the example, the unsigned int parameter to Lookup8Preprocess() is an
optional parameter. By default its value is 0. You can use this parameter, for
example, if you implement multiple versions of the same function in a given
compute routine. You assign a unique value to it for each function so the XIL
core can keep track of which version is being associated with a particular pre-
process routine.

If the pre-process routine returns XIL_FAILURE , the function is never called
for this operation. This can be helpful for detecting operation-specific
conditions (such as only processing one-banded images) without requiring the
main function to test the image format each time it is called.

Accessing the Pre-process Data
The compute routine gets at the pre-process data using a method on the op
XilOp::getPreprocessData() as shown here.

The id parameter is optional. It is a unique value passed in to identify this
particular version of a function.

 // Code deleted for brevity
 ...
 *compute_data = lud;

 return XIL_SUCCESS;
}

LookupData* lud = (LookupData*)op->getPreprocessData(this,id);

XilStatus

More on Writing Device Handlers 73

2

Post-Process Method

The post-process method is called after all the compute (I/O or compression)
operations have been called. Like the pre-process method, the post-process
method is called once per operation but may be called by multiple threads.
This method typically would be used to deallocate the pre-process data. The
following is an example.

Registering Operations With the XIL Library
When a compute, I/O, or compression device handler is loaded into the XIL
library, it calls the device manager's describeMembers() pure virtual
function. Your device handler is required to implement this function to
describe its capabilities to the XIL library. If describeMembers() returns
XIL_SUCCESS, the library assumes all your device manager functions have
been successfully described, and it considers your device handler to have been
loaded. If, however, describeMembers() returns XIL_FAILURE , the library
does not consider your device handler loaded and will not use functions from
the device.

Generating describeMembers()

To simplify generating the describeMembers() function—since the GPI to
describe functions to the XIL library (particularly molecules) is often a place
where mistakes can be made—SunSoft provides the Perl script
xilcompdesc.pl . You can use xilcompdesc.pl to generate a
describeMembers.cc file from your source files. Then compile
describeMembers.cc into your device handler.

XilStatus
XilDeviceManagerComputeBYTE::Lookup8Postprocess(XilOp* ,
 void* compute_data)
{
 LookupData* lud = (LookupData*)compute_data;

 if(lud->allocated != 0) {
 delete lud;
 }
 return XIL_SUCCESS;
}

74 XIL Device Porting and Extensibility Guide—April 1997

2

You invoke the script with three arguments, using the syntax shown here.

<className> is the name of your derived class.

<classType> is the type of class (that is, compute, I/O, or compression).

<files> is a space-delimited list of files from which to extract XILCONFIG
information.

This example invokes xilcompdesc.pl for a compute handler. XILCONFIG
information is extracted from three files: Add.cc , Lookup.cc , and
Multiply.cc .

Usually, you would incorporate an xilcompdesc.pl script into your
Makefile to generate describeMembers.cc and to compile
describeMembers.cc into your device handler.

XilConfig Syntax Describing an Operation

The xilcompdesc.pl script looks for a well-defined XILCONFIG line and an
adjoining block describing the member functions implementing an operation in
the given source files. The XILCONFIG syntax is shown here.

<Member Function> is the name of the member function in your derived class
that implements the functionality described in the adjoining block.

xilcompdesc.pl <className> <classType> <files>

xilcompdesc.pl XilDeviceManagerComputeMyDevice Compute Add.cc Lookup.cc Multiply.cc

//
// XILCONFIG: < Member Function> {
// OP=< XIL Operation Name>
// PRE=< Preprocess Member Function>
// POST=< Postprocess Member Function>
// }
//

More on Writing Device Handlers 75

2

<XIL Operation Name> is the GPI name of the XIL operation you're
implementing. See Appendix A, “XilOp Object,” for a list of the available
atomic function names.

<Preprocess Member Function> and <Postprocess Member Function> are the names
of the member functions in your derived class that act as pre-processor and
post-processor routines, respectively, for the primary member function. See
“Pre-Process Method” on page 71 and “Post-Process Method” on page 73 for
more information on these routines.

In the above syntax, do not precede or follow the equal sign (=) of a
description assignment with a space character delimiter. PRE and POST
assignments are optional, but OP is required.

Example of Generating describeMembers()

Say, for example, an atomic function such as lookup() looks up XIL_BYTE
data and outputs XIL_BIT data. As another example, a molecule implements
an add() followed by a multiply() function. The XILCONFIG lines to
describe each of these operations would look something like this.

//
// XILCONFIG: Lookup {
// OP=lookup;8->1
// PRE=LookupPreprocess
// POST=LookupPostprocess
// }
//
// XILCONFIG: AddMul {
// OP=add;8
// OP=multiply;8
// }
//

76 XIL Device Porting and Extensibility Guide—April 1997

2

For the previous two XILCONFIG lines, the xilcompdesc.pl script generates
this describeMembers() function.

Generic Steps To Writing a Device Handler
The following outlines the steps to adding a device handler to the XIL library:

1. Write the device manager and device class for your driver.
See “Implementing an XIL Operation” on page 52.

2. Determine versioning for your handler.
See “Version Control for XIL Handlers” on page 48.

XilStatus
XilDeviceManagerComputeMyDevice::describeMembers()
{
 XilFunctionInfo* fi;

 fi = XilfunctionInfo::create();
 fi->describeOp(XIL_STEP, 1, "lookup;8->1");
 fi->setFunction((XilComputeFunctionPtr)
 XilDeviceManagerComputeMyDevice::Lookup,
 "lookup;8->1()");
 fi->setPreprocessFunction((XilComputePreprocessFunctionPtr)

XilDeviceManagerComputeMyDevice::LookupPreprocess)
 fi->setPostprocessFunction((XilComputePostprocessFunctionPtr)

XilDeviceManagerComputeMyDevice::LookupPostprocess)
 this->addFunction(fi);
 fi->destroy();

 fi = XilfunctionInfo::create();
 fi->describeOp(XIL_STEP, 1, "multiply;8");
 fi->describeOp(XIL_STEP, 1, "add;8");
 fi->setFunction((XilComputeFunctionPtr)
 XilDeviceManagerComputeMyDevice::AddMul,
 "multiply;8(add;8())");
 this->addFunction(fi);
 fi->destroy();

 return XIL_SUCCESS;}

More on Writing Device Handlers 77

2

3. Write the operations (molecules and/or atomic functions).
Write the imaging functions you need for your device handler.

4. Add your handler to the config file.
See “Loading Compute Handlers” on page 94.

5. Register the operations with the XIL Library.
See “Registering Operations With the XIL Library” on page 73.

6. Test using the XIL Test Suite.
Test your device handler using the guidelines in the XIL Test Suite User’s
Guide.

78 XIL Device Porting and Extensibility Guide—April 1997

2

79

I/O Devices 3

This chapter introduces I/O devices and identifies the basic functions required
to create them. In addition, the chapter provides a step-by-step procedure for
adding an I/O device.

About I/O Devices
In the XIL Imaging Library, I/O devices include any devices that can generate
or receive images, such as frame grabbers, image files, and displays. The XIL
library supports these types of devices by allowing them to appear as device
images to an application. When a device image is used as a source in an
operation, an image is captured from the device. When a device image is used
as a destination in an operation, an image is written to the device.

The I/O device handler provides an implementation for an image captured
from a device and for an image written to a device. The first time a device
image is created using the xil_create_from_device() API call, the
software module containing the handler is loaded. Once the I/O handler is
loaded, any compute devices that have only the I/O handler as a dependence

About I/O Devices page 79

I/O Device Capabilities page 80

Implementing an I/O Device page 81

Adding an I/O Device page 91

80 XIL Device Porting and Extensibility Guide—April 1997

3

are loaded. The I/O handler information is cached so that subsequent creations
of new device images from the same device do not require reloading the I/O
handler.

The character string representing the name of the device, passed as the second
argument to xil_create_from_device() , is used to select the appropriate
loadable library. Currently, the following API call attempts to load an I/O
handler named /etc/openwin/lib/xil/devhandlers/
xilIO_my_device.so.2 and fails with an error if this loadable library does
not exist:

device_image = xil_create_from_device(systemState, “my_device”,
NULL);

I/O Device Capabilities
The current version of the XIL library has added several new capabilities that
affect I/O devices:

• Tiling
• Molecules
• Multithread safe (MT-safe)
• Double buffering
• Push devices

Tiling, a feature common to all of XIL as of the current library version, has
certain implications for I/O devices. First, an I/O device must be able to
provide or process portions of an image as the GPI requests. Second, the I/O
device is responsible for constructing the controlling image for the device, which
is returned to the user.

The library has the ability to implement molecules without a compute routine.

I/O devices are expected to be MT-safe. This means a framebuffer may have to
lock its registers so their contents are accessed by one thread at a time when
multiple threads are running.

XIL supports devices that use double-buffering. (See “Functions for Double
Buffering Devices” on page 90 for more information.)

Finally, a new type of device called a push device controls data flow by
providing data to the core as it is ready. By contrast, pull devices provide data
when the core requests it. While a pull device is the more common

I/O Devices 81

3

implementation, the two methods are not mutually exclusive. When the core
requests the data from a push device, the device is expected to fill in the
requested area at its own pace and to notify the core when processing of the
data is complete. This can be useful for sequential access devices such as
scanners. The core guarantees that the area requested is the entire area needed
and that no asynchronous requests will be made.

Implementing an I/O Device
To implement an I/O device, it is necessary to implement a device manager as
well as a device.

Implementing an I/O Device Manager

The device manager exists from the time the I/O device is created by an API
call such as xil_create_from_device() until xil_close() is called. Only
one device manager exists for any single device. Even if you have two GX
framebuffers on the system, there is only one device manager. However, that
device manager is responsible for creating GX I/O devices on multiple devices

The complete code to the I/O device manager example can be found in the
TBD directory.

Creating a Device Manager

To create a device manager, you derive a class from XilDeviceManagerIO as
shown below. Your device manager is where you might store persistent data
that is not instance specific.

class XilDeviceManagerIOcg6 : public XilDeviceManagerIO {
public:
...
// class definitions go here
...
}

82 XIL Device Porting and Extensibility Guide—April 1997

3

Required Device Manager Functions

You must overload certain functions must be overloaded in your device
manager class:

• static create()
• one device constructor function
• getDeviceName()
• describeMembers()

create()

The first function you must overload is a static
XilDeviceManagerIO::create() . This is the entry point for the XIL library.

The create() function lives in every I/O pipeline and constructs a class
derived from XilDeviceManagerIO . XIL provides the pipeline with the
highest major and minor version numbers of the GPI it supports. At the same
time, the compute pipeline is expected to provide XIL with the highest version
of the GPI it supports. The compute pipeline is expected to fail if the version is
not one that is supported by the pipeline, for example, if there is a mismatch in
the major version numbers or the minor version is lower than the one required
by the pipeline. XIL may decide not to load the pipeline, or it may decide to
alter its behavior to support an older version of the interface.

static XilDeviceManagerIO* create(unsigned int libxil_gpi_major,
 unsigned int libxil_gpi_minor,
 unsigned int* devhandler_gpi_major,
 unsigned int* devhandler_gpi_minor);

I/O Devices 83

3

You can use the macro XIL_BASIC_GPI_VERSION_TEST shown below to test the
version number. It is defined in _XilGPIDefines.hh .

The code below shows how to use XIL_BASIC_GPI_VERSION_TEST.

#define
XIL_BASIC_GPI_VERSION_TEST(lib_major,lib_minor,ptr_major,ptr_mi
nor) \
 { \
 if(lib_major != XIL_GPI_MAJOR_VERSION || \
 lib_minor < XIL_GPI_MINOR_VERSION) { \
 return NULL; \
 } else { \
 *ptr_major = XIL_GPI_MAJOR_VERSION; \
 *ptr_minor = XIL_GPI_MAJOR_VERSION; \
 } \
 }

XilDeviceManagerCompute*
XilDeviceManagerCompute::create(unsigned int libxil_gpi_major,
 unsigned int libxil_gpi_minor,
 unsigned int* devhandler_gpi_major,
 unsigned int* devhandler_gpi_minor)
{
 XIL_BASIC_GPI_VERSION_TEST(libxil_gpi_major,
 libxil_gpi_minor,
 devhandler_gpi_major,
 devhandler_gpi_minor);

 XilDeviceManagerComputeBYTE* device;

 device = new XilDeviceManagerComputeBYTE;

 if(device == NULL) {
 XIL_ERROR(NULL, XIL_ERROR_RESOURCE, "di-1", TRUE);
 return NULL;
 }

 return device;
}

84 XIL Device Porting and Extensibility Guide—April 1997

3

Device Constructor
Your derived I/O device manager should overload one or more of the three
device construct*Device() functions shown here.

getDeviceName() and describeMembers()

You are required to implement two other functions for the device manager
class: getDeviceName() and describeMembers() .

//
// Creates a new XilDeviceIO object for a particular device.
// This construct call is made through
// xil_create_from_device()
//
virtual XilDeviceIO* constructFromDevice(XilSystemState state,
 XilDevice* device);
//
// Creates a new XilDeviceIO object from a display pointer
// and window.
// This construct call is made through
// xil_create_from_window()
//
virtual XilDeviceIO* constructDisplayDevice(
 XilSystemState* state,
 Display* display,
 Window window);

//
// Creates a new XilDeviceIO object which supports double
// buffering froma display pointer and window. At construction
// the device is expected to be referencing the BACK buffer
// of the two buffers.
// This construct call is made through
// xil_create_from_double_buffered_window()
//
virtual XilDeviceIO*

constructDoubleBufferedDisplayDevice(XilSystemState* state,
 Display* display,
 Window window)

I/O Devices 85

3

The prototype of each function is shown here. For information on
describeMembers() , see “Registering Operations With the XIL Library” on
page 73.

The getDeviceName() function returns the name of the device
(xilIO_ return_value.so.2), for example SUNWcg6.

Optional Device Manager Destructor
The device manager destructor provides an opportunity to clear any persistent
data generated by the constructor. Because a constructor typically is used to
open a device, implementation of the destructor is optional.

Implementing a Device

Every device image has an XilDeviceIO class. The XilDeviceIO class is
called to implement the display and capture operations. In addition the class
may choose to implement certain sequences of operations that involve a
display or capture operation as molecules.

//
// Required function that returns the name of this device.
//
 const char* getDeviceName();

//
// Describe the functions we implement to the XIL core
//
 XilStatus describeMembers();

//
// Constructor Destructor
//
 XilDeviceManagerIOcg6();
 ~XilDeviceManagerIOcg6();

86 XIL Device Porting and Extensibility Guide—April 1997

3

Creating a Device

To create a device, you derive a class from XilDeviceIO , which is your
device.

Required Device Functions

There are several functions in the XilDeviceIO class, some of which must be
overloaded and some of which are optional. The following functions must be
implemented:

• constructControllingImage()
• setAttribute()
• getAttribute()
• Functions for readable and/or writable devices
• Functions for double buffering devices

constructControllingImage()

The controlling image is the image that holds the results of the capture and the
source of the display. It is requested by the XIL core through the
constructControllingImage() function.

When a device image is used as a source, the library inserts a device-
dependent capture into the current operation sequence and returns the
controlling image. When a device image is used as a destination, the library

class XilDeviceIOcg6 : public XilDeviceIO {
public:
...
// class definitions go here
...
}

//
// Return the image created by the device to the
// core, which can then attach the device to it.
//
 XilImage* constructControllingImage();

I/O Devices 87

3

inserts a copy from the source to the controlling image and then inserts a
display operation into the current operation sequence. In the current version of
the XIL library, the IO device is responsible for creating the controlling image
according to the requirements of the device.

setAttribute() and getAttribute()

The setAttribute() and getAttribute() functions provide a way for a
device to set and get device-specific attributes from the API.

I/O devices may define attributes that are used to modify or report their
behavior. For example, a frame grabber would use attributes to allow the
application to select the type of output image or to select which video input to
use. A file input device would use attributes to set the path name.

Note – Device image attributes are defined by the port, but some frame-buffer-
specific attributes have already been defined for XIL handlers and must be
supported.

These attributes are listed in Table 3-1.

//
// Set an attribute on the device
//
XilStatus setAttribute(const char* attribute_name,
 void* value);

//
// Get an attribute from the device
//
XilStatus getAttribute(const char* attribute_name,
 void** value);

Table 3-1 Required Frame Buffer Attributes

Attribute Value

COLORMAP The X colormap of the device image (write only)

88 XIL Device Porting and Extensibility Guide—April 1997

3

Functions for Readable and/or Writable Devices
You must implement two or all four of the following functions depending on
whether the device is readable, writable, or both.

• capture() and getPixel()
• display() and setPixel()

WINDOW The X window (read only)

DISPLAY The X display (read only)

COLORSPACE The color space name

//
// Is the device readable - if it is readable, then
// the capture() and getPixel() functions must be implemented.
//
Xil_boolean isReadable();

//
// Is the device writable - if it is writable, then the
// display() and setPixel() functions must be implemented.
//
Xil_boolean isWritable();

Table 3-1 Required Frame Buffer Attributes (Continued)

Attribute Value

I/O Devices 89

3

If the function isReadable() returns TRUE, the getPixel() and capture()
functions must be implemented. If the isWritable() function returns TRUE,
the display() and setPixel() functions must be implemented.

Note – capture() would only be implemented if the device is a pull device.
For a push device, the class would need to implement startCapture() and
stopCapture() .

//
// Get a pixel from the device
//
XilStatus getPixel(unsigned int x,
 unsigned int y,
 float* data,
 unsigned int offset_band,
 unsigned int nbands);
//
// Capture an image from the device
//
XilStatus capture(XilOp* op,
 unsigned int op_count,
//
// Display an image on the device
//

XilStatus display(XilOp* op,
 unsigned int op_count,
 XilRoi* roi,
 XilBoxList* bl);
//
// Set a pixel on the device
//
XilStatus setPixel(unsigned int x,
 unsigned int y,
 float* data,
 unsigned int offset_band,
 unsigned int nbands);

90 XIL Device Porting and Extensibility Guide—April 1997

3

Functions for Double Buffering Devices
In addition, for those devices that represent double-buffered devices and
whose creation function is constructDoubleBufferedDisplayDevice() ,
you must implement the functions described in Table 3-2.

These functions are shown here.

Optional Device functions

You may choose to overload the hasSubPixelCapture() and
hasSubPixelDisplay() functions to implement special functionality with
your device. These functions may be implemented as a performance
optimization when the device allows less than all bands of a pixel to be
updated.

For example, by creating a one-banded child of an RGB image, the user may
intend on modifying the ‘R’ data only of a display image. If the framebuffer
allows for sub-pixel updates, XIL uses the following optimal two-step
procedure:

Table 3-2 Double Buffering Device Functions

Function Description

getActiveBuffer() Returns the buffer into which data is written

setActiveBuffer() Specifies whether the active buffer is to be set to the front
or back

swapBuffers() Moves contents of the back buffer to the front buffer

//
// Set and get the active buffer state for the device
// and swap back buffer and the front buffer. After a
// swap the contents of the back buffer are UNDEFINED.
//
// These are only valid for devices created as a double
// buffering device via the xil_create_double_buffered_window()
// call.
//
XilStatus setActiveBuffer(XilBufferId active_buffer);
XilBufferId getActiveBuffer();
XilStatus swapBuffers();

I/O Devices 91

3

1. It copies the new ‘R’ band data to the controlling image.

2. It copies the ‘R’ band data back to the framebuffer.

If, however, the framebuffer does not allow for sub-pixel updates, XIL uses a
three-step procedure:

1. It captures all bands to the controlling image.

2. It updates the ‘R’ data in the controlling image.

3. It copies all three bands back to the framebuffer.

Adding an I/O Device
Adding an I/O device is straightforward in the XIL library. The handler writer
must follow these steps:

1. Choose a name for your device.
It is recommend that you include your company’s stock symbol (if you have
one) as part of the name, for example, the Fred framebuffer from the
company FRED-FX (FFX) would name the IO device FFXfred .

2. Create a device manager class, for example, the class name
XilDeviceManagerIOFFXfred .
Implement the static create() function and overload at least one of the
constructors and the two required functions, getDeviceName() and
describeMembers() .

//
// Indicate whether the device's capture and display routines
// support sub-pixels.

// This means the capture routine supports using the band_offset
// num_bands arguments provided. The default is that routines
// do not support writing sub portions of pixels to the device.
//
Xil_boolean hasSubPixelCapture();
Xil_boolean hasSubPixelDisplay();

92 XIL Device Porting and Extensibility Guide—April 1997

3

3. Implement the device class for the device, for example, the device class
name XilDeviceIOFFXfred .
Implement the required functions constructControllingImage() ,
setAttribute() , getAttribute() , isReadable() , and
isWritable(). Implement capture() , display() , and
get/setPixel() as needed. Implement any of the optional overloaded
functions or any molecules as desired.

4. Identify any new molecules to XIL through use of the xilcompdesc.pl
script.
For pull devices, you must identify display() and capture() in
describeMembers() . Push devices do not need to identify capture() but
must identify display() .

5. Place the new loadable library file in an application package so that it will
be installed in the correct location.
See the document SunOS Application Packaging and Installation Guide for
information on using the package system. Also see Chapter 1, “Overview,”
for information about packaging handlers.

The name of the loadable library must be unique; it is strongly suggested
that you use xilIO_ device_name.so , where device_name is the name that
will be used to describe the device in the xil_create_from_device()
API call. The xilIO_ portion of this name is required. As an example, for
the device name FFXfred , the loadable library name is
xilIO_FFXfred.so .

93

Compute Devices 4

About Compute Devices
Compute devices implement XIL image processing operations. The
computation can take place on the CPU or on an auxiliary image processing
board.

Implementing an XIL Function

Note – The values produced by the implementation of an XIL function should
match as closely as possible the values produced by the memory port. This has
several implications. Molecules must behave semantically like the sequence of
atomic operations, and produce the same (or nearly the same) results as calling
the individual atomic functions. A molecule cannot have a greater precision
than the atomic functions that the molecule contains. For many of the simple
functions, any difference from the default version should not be tolerated.
More complicated operations, where there are many floating-point or fixed-
point calculations done for each pixel, do not always allow pixel-for-pixel
accuracy with any sort of reasonable code. Often, new algorithms provide

About Compute Devices page 93

Implementing an XIL Function page 93

Loading Compute Handlers page 94

Compute Device Handler- Basic Structure Variations page 100

94 XIL Device Porting and Extensibility Guide—April 1997

4

slightly different values. It is up to the implementor of the algorithm to make
sure that there are no systematic differences between the new implementation
and the old one.

The XIL Test Suite can aid you in verifying new implementations of XIL
functions. The XIL Test Suite enables you to perform regression tests of new
code against verified reference signatures and includes the capability of
specifying a tolerance for the comparison. This test suite is described in a
separate document, XIL Test Suite User’s Guide, which is part of this release.

Error handling in an implementation is performed by calling the macro
XIL_ERROR. Both compute handler examples use this interface. The method
used to add error messages for device-dependent errors is discussed in
Chapter 2, “More on Writing Device Handlers.”

Loading Compute Handlers
To provide for maximum flexibility in adding software device handlers, your
compute device handler is dynamically loaded as a shared object at run time.
The list of loadable objects (device handlers) is maintained in a configuration
database file called config . You must edit the config file using scripts to add
entries for compute device handlers that will be used by XIL.

XIL merges the two files from /etc/openwin/lib/xil/config and
/usr/openwin/lib/xil/config . If duplicate information between the two
files exists, the information in /etc/openwin/lib/xil/config takes
precedence. You should edit the /etc/openwin/lib/xil/config file only.

This section explains how to create entries for compute device handlers, as
well as how to add and delete these entries from the config file.

config Entry

This example shows a config text file entry for a dynamically loadable
compute device handler.

#Start STOCKTICKERdevicename handler
class=”XIL-COMPUTE” name=”SOCKTICKERdevicename”
 priority=”500” dependencies=”STOCKTICKERiodevname”;
#End STOCKTICKERdevicename handler

Compute Devices 95

4

Formatting Guidelines

The config file has some basic formatting guidelines.

• Any characters following the pound character (#) through the end of a line
are treated as a comment and are disregarded when the file is read.

• Quotation marks around value strings are required only if the string
contains delimiters such as white space or a semicolon (;).

• The back slash character (\) can be used as an escape character. For
example, \” is used to include the double quotation mark character as part
of a string value.

• Parsing routines strip the quotation marks surrounding string values and
pass the string only to the underlying software. The parsing software treats
all values as strings; interpretation of the string value is up to the device
handler.

By convention, the strings ‘Start’ and ‘End’ indicate the beginning and end of
the database definitions for a set of loadable device handlers. In the example
above (see “config Entry” on page 94) the string ‘STOCKTICKERdevicename
handler’ identifies the STOCKTICKER device handler. The contents of the
string you use are up to you. You use this string in a script file to append or
delete your entry from the config file.

Between the ‘Start’ and ‘End’ strings are one or more loadable compute device
handler entries for XIL. Each compute device handler description consists of
up to four “attribute=value” pairs separated by white space (including tabs,
spaces, and new line characters) and terminated by a semicolon.

96 XIL Device Porting and Extensibility Guide—April 1997

4

Table describes each attribute=value pair.

Using Script Files

Before your compute device handler can be loaded, you need to add an entry
in config . To add (or delete) config entries, you should create an executable
script file.

Appending An Entry

You add entry to config by appending the entry to the file. The following
procedure illustrates this process.

Table 4-1 XIL Device Handler Attributes

Attribute= Meaning=

class= This value is always XIL-COMPUTE, which uniquely identifies
the class of compute device handlers for XIL.

name= This value is the name of the compute device. It uniquely
identifies the instance of the class object in the config file and
is different for each device handler. XIL derives the actual
filename from this string as xilcompute_ name.so.2 .

priority= This field is used by XIL to determine which compute device
function to call when there are overlaps. Most compute devices
will implement an atomic function already implemented by the
default XIL memory pipelines. For example, a medical imaging
pipeline may be accelerated single band “lookup 16->8” and no
other lookup routines. Since it is a specialized routine taking
advantage of hardware or a clever algorithm, you will want it
called before the memory device routine.

The priority for the memory pipelines are set at 100. We
recommend device handler providers specify a priority of 500
unless they’re aware of other devices.

A priority of “-1” will turn off the named pipeline such that it
will not be loaded by XIL.

dependencies= These are the names of I/O or compression devices which must
be loaded before the described compute device can be loaded.

Compute Devices 97

4

1. Create an entry.
Use the example below as a template to create your entry, filling in values
for your device handler. Replace the string associated with ‘Start’ and ‘End’
with a string of your choice.

2. Save your entry.
Save locally as config .

3. Create a script file ins.config to append your entry.
Use the script file shown below as a template.

#Start STOCKTICKERdevicename
class=”XIL-COMPUTE” name=”STOCKTICKERdevicename”
 priority=”500” dependencies=”STOCKTICKERiodevname”;
#End STOCKTICKERdevicename

#! /bin/ksh
#
Installation script for the config class
If a config file existed, remove any entry belonging to
this package, and append a new entry
#
echo $1
echo $2
chmod 644 $2
 if [-r $2]
 then
 #It is editable by this script. Edit it.
 cp $2 /tmp/$$config || exit 2
 sed -e “/# Start STOCKTICKERdevicename/,/# End STOCKTICKERdevicename/d” \
 /tmp/$$config > $2 || exit 2
 cat $1 >> $2 || exit 2
 rm -f /tmp/$$config
 else
 #A config file was not present
 cat $1 >> $2 ||exit 2
 fi
chmod 444 $2
exit 0

98 XIL Device Porting and Extensibility Guide—April 1997

4

4. Execute the script file.
First you need to become superuser. The executable script file ins.config
takes two arguments: the relative path to the local text file entry (config)
and the full path to the system config file
(/etc/openwin/lib/xil/config).

As the script file executes, it displays the values (config and
/usr/openwin/lib/xil/config) of the two arguments passed to it.

Removing An Entry

To remove a config entry, use the following procedure.

% su
Password:
./ins.config /etc/openwin/lib/xil/config
config
/etc/openwin/lib/xil/config
^D

Compute Devices 99

4

1. Use the script rm.config below as a template.
Replace the string ‘STOCKTICKERdevicename’ with the string for the entry
you want to remove. Save the script with a name such as rm.config , and
make the file executable.

2. Execute the script.
First become superuser. In this case, the script file rm.config takes one
argument: the path to the system config file. As the script executes, it
displays the value (/etc/openwin/lib/xil/config) of the single
argument passed to it, as shown here.

#! /bin/ksh
#
Removal script for the config class
Remove entries that belong to this device handler
Delete the file if it is empty
#
echo $1
chmod 644 $1
 sed -e “/# Start STOCKTICKERdevicename/,/# End STOCKTICKERdevicename/d” $1 > \
 /tmp/$$config || exit 2
 if [-s /tmp/$$config]
 then
 mv /tmp/$$config $1 || exit 2
 else
 rm $1 || exit 2
 fi
chmod 444 $1
exit 0

% su
Password:
./rm.config /etc/openwin/lib/xil/config
/etc/openwin/lib/xil/config
#^D

100 XIL Device Porting and Extensibility Guide—April 1997

4

Compute Device Handler- Basic Structure Variations
Compute device handlers follow the same basic structure as all operations in
the XIL library. (See “Implementing an XIL Operation” on page 52 for a
description of this basic structure.) Compute handlers also include special case
operations such as convolution and geometric operations that involve
variations on that basic structure.

The following sections take you through basic structure variations that are
required for special case compute operations. Operations are presented in the
following categories:

• Data collection (for example, xil_histogram() , xil_extrema())
• Area-based (for example, xil_convolve() , xil_erode())
• Geometric (for example, xil_affine() , xil_scale())

Data Collection Operations

Data collection operations such as xil_histogram() take an image and
generate data from that image to create a histogram. These operations operate
in a multi-threaded fashion by having each compute routine produce data for
the box list that they are handed and then reporting that data to the XilOp
object which is responsible for collecting the data into a single entity and
reporting the entity to the API user. The XIL core is responsible for
coordinating the multiple calls to the compute routine and reporting the
collected results back to the API user.

The compute routines report the data they have collected to the XilOp object
using the XilOp::reportResults() function. XilOp::reportResults()
takes a variable number of void* arguments, the types of which vary based on
the compute routine. See Appendix A, “XilOp Object,” for details on the
parameters passed back for reportResults() . The example below illustrates
how the histogram compute routine uses this function.

 //
 // Allocate and init histogram data array
 //
 unsigned int nElements = histogram->getNElements();
 unsigned int* data = new unsigned int[nElements];

Compute Devices 101

4

Area-Based Operations

This section covers area-based operations such as xil_convolve() ,
xil_erode() , xil_dilate() , xil_fill() , and
xil_error_diffusion() . Unlike point-based operations such as
xil_add() which generate a single destination pixel from a single source
pixel, area-based operations generate a single destination pixel from multiple
source pixels.

To do this, the compute routine needs to access source data outside of the pixel
area defined by the operation.

XIL accomplishes this by modifying the source boxes passed in to the compute
routine in the XilBoxList to ensure that enough storage exists to access all
needed source pixels.

In a point-based operation, the source box represents the source pixels that
correspond to the destination pixels being touched. In an area-based operation,
the source box represents the area that corresponds to the destination pixels
being touched—with an additional border region to provide the source pixels
for processing the edge pixels of the destination area when there is enough
data in the source image to do so.

The various area-based operations have slightly different requirements, each of
which is detailed in this section.

Convolution, Erode, and Dilate

Convolution, erode, and dilate operations use an XilKernel or an XilSel object
to describe how to combine source pixels in the destination pixel. For these
operations, the call to XilOp::splitOnTileBoundaries() produces source
boxes labeled as one of the following types:

• XIL_AREA_TOP_LEFT_CORNER
• XIL_AREA_TOP_EDGE
• XIL_AREA_TOP_RIGHT_CORNER
• XIL_AREA_LEFT_EDGE

 // Code deleted for brevity

 XilStatus status = op->reportResults((void**)&data);

 //

102 XIL Device Porting and Extensibility Guide—April 1997

4

• XIL_AREA_CENTER
• XIL_AREA_RIGHT_EDGE
• XIL_AREA_BOTTOM_LEFT_CORNER
• XIL_AREA_BOTTOM_EDGE
• XIL_AREA_BOTTOM_RIGHT_CORNER

Generation of these types is based on the position of the box within the source
image, the dimensions of the XilKernel or XilSel object, and its key value.

As an example, Figure 4-1 shows a 5x5 kernel with a key value of 1,1. Edges
represent the distance in each direction from the key value to the edge of the
kernel. The edges determine how much extra storage is needed outside a given
box and are referred to by their position: left, right, top, and bottom.

Figure 4-1 A 5x5 Kernel

Key pixel

Bottom edge = 3

Top edge = 1

Left edge = 1

Right edge = 3

Compute Devices 103

4

Figure 4-2 illustrates a source image and shows all nine box types and their
positions within the image. This layout is for the kernel shown in Figure 4-1.

Figure 4-2 Box Types

Note – You cannot go (nor should ever need to go) outside the destination box.

XIL_AREA_CENTER

X
IL

_A
R

E
A

_R
IG

H
T

_E
D

G
E

XIL_AREA_BOTTOM_LEFT_CORNER (1X3)

XIL_AREA_BOTTOM_EDGE

XIL_AREA_BOTTOM_RIGHT_CORNER (3X3)

X
IL

_A
R

E
A

_L
E

F
T

_E
D

G
E

XIL_AREA_TOP_RIGHT_CORNER (3X1)XIL_AREA_TOP_LEFT_CORNER (1X1)

XIL_AREA_TOP_EDGE

104 XIL Device Porting and Extensibility Guide—April 1997

4

Center Boxes
A center box (that is, XIL_AREA_CENTER) represents the simplest case for
processing. A center box represents a source box which provides the required
storage on all sides of the box. (See Figure 4-3.)

Figure 4-3 Center Box

Convolution and Edge Conditions
With convolution, the user may select one of the following edge condition
options:

• XIL_EDGE_EXTEND
• XIL_EDGE_NO_WRITE
• XIL_EDGE_ZERO_FILL

See the XIL Programmer’s Guide for more information.

When the API user selects the XIL_EDGE_NO_WRITE option, the XIL core only
provides boxes of the XIL_AREA_CENTER type. The other two options produce
edge and corner boxes for processing.

Note – As a protection against future versions of XIL that may add other edge
conditions, the compute routine should test for and fail if it encounters an edge
condition other than XIL_EDGE_EXTEND, XIL_EDGE_NO_WRITE, or
XIL_EDGE_ZERO_FILL.

data_ptr

XIL_AREA_CENTER

Pixel area

Storage area

Compute Devices 105

4

In Figure 4-3, the solid line box shows the pixel area in the source, and the
dashed line shows the storage available outside the box. When requesting the
storage information for the box, the XIL core sets the data pointer at the top left
hand pixel coordinate. The compute routine can then be guaranteed that it can
place the kernel key in the top left hand corner of the box to start computing
the destination pixel, knowing also that when it reaches the bottom edge of the
box, source storage is available to correctly compute the destination area. No
edge handling is needed for this case.

Edge Boxes
An edge box (XIL_AREA_TOP, XIL_AREA_BOTTOM, XIL_AREA_LEFT,
XIL_AREA_RIGHT) differs from a center box in that it only has source storage
available on three sides. Figure 4-4 represents an XIL_AREA_LEFT_EDGE box

Figure 4-4 XIL_AREA_LEFT_EDGE Box

Again, the solid line represents the pixel area and the dashed line, the provided
storage. The box follows the edge of the image in one dimension (unless
limited by a ROI) and is the width of the appropriate kernel edge in the other.
In the case of the XIL_AREA_LEFT_EDGE box, the height of the box (assuming
no ROI) is the height of the image minus the TOP_LEFT_CORNER and
BOTTOM_LEFT_CORNER boxes. The width of the box is 1.

The data pointer again is returned at the top left pixel coordinate but, in this
case, no storage is available for the left hand side of the kernel.

The compute routine must process the pixels represented by this box according
to the rules of the operation or, in the case of convolution, according to the
edge condition selected by the API user.

XIL_AREA_CENTER

Pixel area

Storage area

data_ptr

106 XIL Device Porting and Extensibility Guide—April 1997

4

Corner Boxes
A corner box (XIL_AREA_TOP_LEFT_CORNER,
XIL_AREA_TOP_RIGHT_CORNER, XIL_AREA_LOWER_LEFT_CORNER,
XIL_AREA_LOWER_RIGHT_CORNER) is a degenerate case of an edge box. Two
sides of a corner box cannot provide enough source data for the pixel area to
be processed. Figure 4-5 illustrates the case of XIL_AREA_TOP_LEFT_CORNER.

Figure 4-5 Corner Boxes

A corner box is guaranteed to be the size of the kernel edges for the given
corner. In the case of Figure 4-6 with the kernel defined in Figure 4-1, the size
of the XIL_AREA_TOP_LEFT_CORNER is 1x1.

As with edge boxes, the compute routine is responsible for processing the box
according to the rules of the operation.

Getting The Box Type
To get the type of the box, use the getBoxTag() function. This function
returns a void* which, when cast to an XilAreaBoxType , provides the box
type. The same tag is applied to both the source and destination box.

XilBoxAreaType tag = (XilBoxAreaType) src_box->getTag();
switch (tag) {
 case XIL_AREA_TOP_LEFT_CORNER:
 case XIL_AREA_TOP_EDGE:
 case XIL_AREA_TOP_RIGHT_CORNER:
 case XIL_AREA_RIGHT_EDGE:
 case XIL_AREA_CENTER:
 case XIL_AREA_LEFT_EDGE:
 case XIL_AREA_BOTTOM_LEFT_CORNER:

data_ptr

Pixel area

Storage area

Compute Devices 107

4

Although destination boxes have tags, the tag only has meaning with regard to
the source box.

Performance Considerations
It is optional to call XilOp::splitOnTileBoundaries() at the beginning of
a compute routine. However, this has additional ramifications in area
operations.

In the general case, splitOnTileBoundaries() ensures that all source boxes
in the XilBoxList do not cross tile boundaries. To do so, it may have to split
the passed-in boxes into smaller regions. This means, when getStorage() is
subsequently called for each set of boxes in the box list, the core never has to
cobble tiled regions of data for access by the compute routine.

In the area-operation case, splitOnTileBoundaries() not only splits the
boxes along source tiles, it secondarily splits those boxes as needed to indicate
edge or corner conditions.

To process pixels in the destination corresponding to source pixels that lie
along source tile boundaries, the compute routine must access pixels from the
neighboring tile. To minimize cobbling,
splitOnTileBoundaries() generates boxes just large enough to handle
these tile edges. As long as these boxes do not lie on source image edges, the
boxes are tagged as XIL_AREA_CENTER and are processed by the compute
routine as any other center box.

If the compute routine chooses not to call splitOnTileBoundaries() , the
box passed in represents the entire destination region to be processed and the
corresponding source region, regardless of source tiles. None of the boxes are
tagged, and it is up to the compute routine to identify those destination pixels
for which there may not be enough source data. In such cases it should not try
to access outside of the source image.

 case XIL_AREA_BOTTOM_EDGE:
 case XIL_AREA_BOTTOM_RIGHT_CORNER:
 break;

XilBoxAreaType tag = (XilBoxAreaType) src_box->getTag();

108 XIL Device Porting and Extensibility Guide—April 1997

4

Kernel Inversion
In the case of convolution, the kernel that the user generates is inverted before
being passed to the compute routine. This is a difference from previous XIL
releases in which the compute routine was responsible for inverting the kernel.

Note – This is convenient for the compute routine since the kernel is stored on
the op in the form needed for convolution processing.

Fill and Error Diffusion

Fill and error diffusion operations are handled in a similar manner. Currently
these operations are called from a single thread. The destination box supplied
is the same as for the basic case (that is, it corresponds to the destination area
to be written). The source box pixel area corresponds to the basic case with the
exception that the storage is available for the entire source image. This makes it
possible for the compute routine to always have access to the entire source
image data. The data pointer returned from

Compute Devices 109

4

XilStorage::getStorageInfo() points to the box pixel location. The box
location within the image can be retrieved using the XilBox::getAsRect()
function. Figure 4-6 illustrates the source box setup for fill and error diffusion.

Figure 4-6 Fill and Error Diffusion Source Box Setup

Geometric Operations

Geometric operations such as affine, transpose, rotate, scale, translate, and
tablewarp manipulate the image in some geometric fashion. This means that
the mapping of a destination pixel to a pixel in the source is dependent on the
parameters of the operation. Implementation of each of these functions varies
from the implementation of the basic case described in “Basic Structure:
Atomic Function” on page 54.

This section first discusses the transpose operation as it introduces the concept
common to all geometric compute routines of backward mapping from a
destination area to get the corresponding area in the source. The affine
operation builds on this concept and introduces two new objects, the
XilConvexRegionList and the XilScanLineList .

Pixel area

Storage area

Data pointer starts here

0,0,

Image width

Im
ag

e
he

ig
ht

Source box

110 XIL Device Porting and Extensibility Guide—April 1997

4

The tablewarp operation is the most complex. The compute routine is required
to handle almost all the computation, because the XIL core has no knowledge
of how a destination pixel maps back to the source.

Transpose

The transpose operation is a point operator in the sense that it requires only one
source pixel to generate each destination pixel. However, which source pixel
corresponds to which destination pixel is dependent on the flip-type provided
to the operation.

The source box passed in to the transpose routine maps exactly to the
destination box. The compute routine then needs to calculate the mapping of
the pixels within one box to the pixels in the other. The compute routine may
choose to map destination to source pixels for each flip-type explicitly or to use
the XilOp::backwardMap() routine provided by XIL for convenience, as
shown here.

The full interface can be found in _XilOp.hh

As in the base case (see the subsection entitled“Step 5: Processing the Data” on
page 59” in “Basic Structure: Atomic Function”), the transpose routine
generates an XilRectList from the passed-in ROI and destination box. It is
then responsible for correctly copying the equivalent source rectangles into the
destination based on the flip type. As before, the data pointers returned in the
storage object from XilImage::getStorage() are relative to the upper left
corner of each of the boxes.

//
// Backward map a single point in destination box space to the
// corresponding point in source box space. The last (optional)
// argument indicates which source to backward map into.
//
XilStatus backwardMap(XilBox* dst_box,
 float dx,
 float dy,
 XilBox* src_box,
 float* sx,
 float* sy,
 unsigned int src_number = 1);

Compute Devices 111

4

The following example shows how the backwardMap() function could be
used in the memory transpose compute routine to get the correct source area.

//
// Create a list of rectangles to loop over. The resulting list
// of rectangles is the area created by intersecting the ROI with
// the destination box.
//
XilRectList rl(roi, dst_box);
//
// loop over the list of rectangles
//
while (rl.getNext(&dstR_x, &dstR_y, &dstR_xsize, &dstR_ysize)) {
 //
 // The rectangle in the list applies to the dst, so we have
 // to find appropriate rectangle in the src according to
 // the fliptype.
 //
 // The op does the backward map for us.
 //
 {
 float srcx;
 float srcy;
 op->backwardMap(dst_box, dstR_x, dstR_y,
 src_box, &srcx, &srcy);
 srcR_x = (int)srcx;
 srcR_y = (int)srcy;
 }
 src_scanline = src_data + (srcR_y * src_scanline_stride)
 + (srcR_x * src_pixel_stride);
 dst_scanline = dst_data + (dstR_y * dst_scanline_stride)
 + (dstR_x * dst_pixel_stride);

 //
 // Note that the compute routine will still have to take into
 // account incrementing the source in the appropriate
 // direction for the flip-type.
 //

112 XIL Device Porting and Extensibility Guide—April 1997

4

Affine

In an affine operation, backward mapping a rectangle from the destination to
the source may generate a region that is not a rectangle. In order to support
this, the XIL GPI represents an ROI as an XilConvexRegionList .

A convex region is defined as a convex polygon whose points are stored as
floating-point values. The convex region is represented as two arrays of
floating-point values: one for the x-points and the other, forthe y-points. A
point_count indicates the length of the arrays, as shown here. The full
interface can be found in _XilConvexRegionList.hh .

As with the XilRectList , we recommend creating the
XilConvexRegionList on the stack to minimize the use of new() and
delete() within the compute routine. The compute routine then loops
through all convex regions in the list processing each one, until
XilConvexRegionList::getNext() returns NULL.

To process a given region, the compute routine must backward map the
destination region to the equivalent source region. This can be done by the
compute routine with the affine matrix on the op, or it can be done with
XilOp::backwardMap() .

//
// Construction using a roi and a box. The clipped regions in
// the list are all relative to (0, 0) in the box
//
XilConvexRegionList(XilRoi* roi, XilBox* dest_box);
//
// Get the next convex region on the list
//
Xil_boolean getNext(const float** x_array,const float** y_array,
 unsigned int* point_count);

//
// Allows the original full ROI convex region list to be
// clipped by a different box
//
XilStatus reinit(XilBox* dest_box);

Compute Devices 113

4

As with area operators, the source boxes provided to the compute routine have
enough storage associated with them to provide all the data for the given
interpolation type. The destination box is small enough to guarantee enough
source storage is available for interpolating along all destination edges.

Once the compute routine has obtained a destination region and mapped it to
the corresponding source region, it is responsible for moving the data pointers
to the correct positions within the boxes and for generating the destination
pixels using the appropriate interpolation kernel.

For convenience, XIL provides the XilScanLineList object, which can be
used to turn a convex region into a list of scanlines, as shown here. The full
interface can be found in _XilScanlineList.hh .

XilScanlineList(const float* x_array,const float*
 y_array,unsigned int num_points);

//
// Get the next scanline.
//
Xil_boolean getNext(int* y,
 float* x1,
 float* x2);

Xil_boolean getNext(unsigned int* y,
 unsigned int* x1,
 unsigned int* x2);

//
// Return the number of scanlines in the list
//
unsigned int getNumScanlines();

114 XIL Device Porting and Extensibility Guide—April 1997

4

The following example show the use of of the XilConvexRegionList and
the XilScanLineList .

Kernel Definitions
The edge areas available outside the source pixel retion are defined as follows:

1. Nearest neighbor: Left = Right = Top = Bottom = 0

//
// Loop over convex regions in the destination.
//
XilConvexRegionList crl(roi, dst_box);

unsigned int num_pts;
const float* dst_xarray;
const float* dst_yarray;
while(crl.getNext(&dst_xarray, &dst_yarray, &num_pts)) {
 //
 // Create scanline list
 //
 XilScanlineList dst_scanlines(dst_xarray, dst_yarray,
 num_pts);

 //
 // Loop over scanlines.
 //
 unsigned int y;
 unsigned int dst_scan_start;
 unsigned int dst_scan_end;
 while(dst_scanlines.getNext(&y, &dst_scan_start,
 &dst_scan_end)) {
 //
 // Backward map the two endpoints of the line
 //
 op->backwardMap(dst_box, (float)dst_scan_start, (float)y,
 src_box, &start_x, &start_y);
 op->backwardMap(dst_box, (float)dst_scan_end, (float)y,
 src_box, &end_x, &end_y);

 //
 // process destination line, walking the source line
 //

Compute Devices 115

4

2. Bilinear: Left = Top =0

3. Bicubic: Left = Top = 1

4. General: Values are calculated based on the size of the horizontal
interpolation table width and size of the vertical interpolation table height
using these equations.

Performance Considerations
The destination box does not cross-tile boudnaries. The corresponding source
box may cross tile boundaries, and the compute routine may choose to call
XilOp::splitOnTileBoundaries() to split the boxes in the original box
list along source tile boundaries. Because of the area-based nature of affine
operations, some source boxes must cross source tile boundaries. These boxes
are made as small as possible to minimize source data cobbling.

Note – XilOpAffine::splitOnTileBoundaries() currently does nothing.

Rotate

Rotate is very similar to affine. In fact, the XIL core treats the two operations
in the same manner. (See “Affine” on page 112 for details.)

Scale and Translate

Scale and translate operations are special cases of affine that allow you to use
rectangles rather than convex regions. Although the compute routine can use
XilConvexRegionList , performance can be enhanced if it instead uses
XilRectList to generate the destination regions. The compute routine can
use XilOp::backwardMap() to generate the equivalent source rectangle.

unsigned int keyX = (width - 1)/2;
unsigned int keyY = (height - 1)/2;
 Left = keyX;
 Right = width - (keyX + 1);
 Top = keyY;
 Bottom = height - (keyY + 1);

116 XIL Device Porting and Extensibility Guide—April 1997

4

Tablewarp

In the case of the the xil_tablewarp() , xil_tablewarp_vertical() , and
xil_tablewarp_horizontal() functions, the compute routine is
responsible for handling all the backward mappings from the destination box
through the tablewarp image to the source image.

For tablewarp, the ROI passed in to the compute routine is just the ROI of the
destination image. The source ROI is passed in as a separate argument. It is
the responsibility of the compute routine to position the warp image correctly
on the destination ROI and to take the source ROI into account when
calculating the backward mapping position. The source box passed in to the
compute routine represents the whole source image, since mapping of
destination to source pixels is known.

117

Compression/Decompression 5

This chapter is TBD.

118 XIL Device Porting and Extensibility Guide—April 1997

5

119

Storage Devices 6

About Storage Devices
This chapter is TBD.

120 XIL Device Porting and Extensibility Guide—April 1997

6

121

XilOp Object A

This appendix identifies the source images, destination image, and parameters
supported by each XIL atomic function. In addition it explains how to extract
the images and parameters. You must know this information anytime you
implement XIL atomic functions, such as when you write a compute device
handler.

When writing a molecule, you are responsible for retrieving the appropriate
XilOp object from the op list in order to access each XilOp object’s
parameters. For more information on atomic functions and molecules, see the
respective sections:

• “Operation Prototype: Atomic Function” on page 53
• “Operation Prototype: Molecule” on page 62

Extracting Images and Parameters
To extract the images and parameters for an XIL atomic function, use the
XilOp member functions described below. For more information on the XilOp
class, see Chapter 1, “Overview.”

Extracting Source Images

To get source (src) images use the method,

XilOp::getSrcImage(unsigned int image_number)

For example, to get the first source image,

122 XIL Device Porting and Extensibility Guide—April 1997

A

op->getSrcImage(1)

Note – image_number starts at 1, not 0.

Extracting Destination Images

To get the destination (dst) image use the method,

XilOp::getDstImage(unsigned int image_number)

Currently, image_number is always 1.

Extracting Parameters

To get the function parameters, use the method that supports that parameter
type. Each method is shown here.

To use the parameter methods, you are required to obtain the parameters in the
same format in which they were stored. You must always retrieve pointers as
void** . For example, to get a lookup table for xil_lookup() functionality,

XilOp::getParam(unsigned int param_number, int* param);
XilOp::getParam(unsigned int param_number, long long* param);
XilOp::getParam(unsigned int param_number, float* param);
XilOp::getParam(unsigned int param_number, double* param);
XilOp::getParam(unsigned int param_number, void** param);
XilOp::getParam(unsigned int param_number, XilObject** param);

XilLookupTable* lut
op->getParam(1, (XilObject**) &lut);

XilOp Object 123

A

Source Images, Destination Image, and Parameters
The table below alphabetically presents the XIL atomic functions and lists the
applicable source images, destination image, parameters supported by each, as
well as the parameter type for retrieval.

XIL Function
Src
 1

Src
 2

Src
 3 Dst Parameters

getParam()
 Type

absolute ● ●

add ● ● ●

add_const ● ● const_array[nbands]

1 Xil_signed8 -1 to 1
8 Xil_signed16 -255 to 255
16 Xil_signed32 -65535 to 65535
f32 float values passed on

void*

affine ● ● float matrix[6[
float xoffset
float yoffset
// General Interpolation Only
XilInterpolationTable horiz_tbl
XilInterpolationTable vert_tbl

void*
float
float

XilObject*
XilObject*

and ● ● ●

and_const ● ● const_array[nbands]

1 Xil_unsigned8 0 to 1
8 Xil_unsigned8 0 to 255
16 Xil_unsigned16 0 to 32767

void*

black_generation ● ● float black
float undercolor

float
float

band_combine ● ● XilKernel kernel XilObject*

capture ● ● In place operation src == dst
src is the controlling image

unsigned int bands_written;
unsigned int offset_band;

unsigned int
unsigned int

blend ● ● ● ● Src3 is the alpha image

124 XIL Device Porting and Extensibility Guide—April 1997

A

color_convert ● ● XilColorspace src_colorspace
XilColorspace dst_colorspace

XilObject*
XilObject*

color_correct ● ● XilColorspaceList list XilObject*

compress ● ● Dst is an XilCis
int write_frame int

cast ● ●

convolve ● ● XilKernel kernel
XilEdgeCondition edge_condition

XilObject*
void*

copy ● ●

copy_pattern ● ●

copy_with_planemask ● ● const_array[nbands]

1 unsigned int 0 to 1
8 unsigned int 0 to 255
16 unsigned int 0 to 32767

void*

decompress ● ● src1 is an XilCis
int read_frame int

dilate ● ● XilSel sel XilObject*

divide ● ● ●

display ● ● In place operation src == dst
src is the controlling image

unsigned int bands_written;
unsigned int offset_band;

unsigned int
unsigned int

divide_by_const ● ● float const_array[nbamds] void*

divide_into_const ● ● const_array[nbands]

1 unsigned int 0 to 1
8 unsigned int 0 to 255
16 unsigned int 0 to 32767
f32 value passed on

void*

edge_detection ● ● XilEdgeDetectionType type void*

erode ● ● XilSel sel XilObject*

XIL Function
Src
 1

Src
 2

Src
 3 Dst Parameters

getParam()
 Type

XilOp Object 125

A

error_diffusion ● ● XilLookup colormap
XilKernel distribution

XilObject*
XilObject*

extrema ● // reportResults parameters
float max[nbands]
float min[nbands]

void*
void*

fill ● ● unsigned int xseed
unsigned int yseed

boundary[nbands]
fill[nbands]

1 Xil_unsigned8 0 to 1
8 Xil_unsigned8 (rounded)
16 Xil_unsigned16 (rounded)
f32 Xil_float32

unsigned int
unsigned int

void*
void*

histogram ● XilHistogram histogram
unsigned int skip_x
unsigned int skip_y

// reportResults parameters
unsigned int data[]

XilObject*
unsigned int
unsigned int

void*

lookup ● ● XilLookup lut XilObject*

max ● ●

min ● ●

multiply ● ● ●

multiply_const ● ● float const_array[nbands] void*

nearest_color ● ● XilLookup cmap XilObject*

not ● ●

or ● ● ●

or_const ● ● const_array[nbands]

1 Xil_unsigned8 0 to 1
8 Xil_unsigned8 0 to 255
16 Xil_unsigned16 0 to 32767

void*

XIL Function
Src
 1

Src
 2

Src
 3 Dst Parameters

getParam()
 Type

126 XIL Device Porting and Extensibility Guide—April 1997

A

ordered_dither ● ● XilLookup colormap
XilDitherMask dithermask

XilObject*
XilObject*

paint ● ● float color[nbands]
XilKernel brush
unsigned int count
unsigned int points[count]

void*
XilObject*
unsigned int
void*

rescale ● ● float scale_array[nbands]
float offset_array[nbands]

void*
void*

rotate ● ● float angle
float src_xoffset
float src_yoffset

// General Interpolation only
XilInterpolationTable horiz
XilInterpolationTable vertical

float
float
float

XilObject*
XilObject*

scale ● ● float xfactor
float yfactor

// General Interpolation only
XilInterpolationTable horiz
XilInterpolationTable vertical

float
float

XilObject*
XilObject*

set_value ● const_array[nands]

1 Xil_unsigned8 0 to 1
8 Xil_unsigned8
16 Xil_signed16
f32 Xil_float32

void*

XIL Function
Src
 1

Src
 2

Src
 3 Dst Parameters

getParam()
 Type

XilOp Object 127

A

soft_fill ● ● unsigned int xseed
unsigned int yseed

foreground[nbands]
1 Xil_unsigned8 0 to 1
8 Xil_unsigned8
16 Xil_signed16
f32 Xil_float32

unsigned int num_bgcolor

background[num_bgcolor]
1 Xil_unsigned8 0 to 1
8 Xil_unsigned8
16 Xil_signed16
f32 Xil_float32

fill_color[nbands]
1 Xil_unsigned8 0 to 1
8 Xil_unsigned8
16 Xil_signed16
f32 Xil_float32

unsigned int
unsigned int

void*

unsigned int

void*

void*

squeeze_range ● // reportResults
int imax
int imin
Xil_unsigned8 result_flags[]

int
int
void*

subsample_binary_to_
gray

● ● float xfactor
float yfactor

float
float

subsample_adaptive ● ● float xfactor
float yfactor

float
float

subtract ● ● ●

subtract_from_const ● ● const_array[nbands]

1 Xil_signed8 0 to 2
8 Xil_signed16 0 to 510
16 Xil_signed32 -65536 to 65534
f32 values passed on

void*

XIL Function
Src
 1

Src
 2

Src
 3 Dst Parameters

getParam()
 Type

128 XIL Device Porting and Extensibility Guide—April 1997

A

tablewarp
tablewarp_horizontal
tablewarp_vertical

● ● ● Src2 is the warp_table image

unsigned int src_xoffset
unsigned int src_yoffset
unsigned int dst_xoffset
unsigned int dst_yoffset
unsigned int warp_xoffset
unsigned int warp_yoffset
XilRoi* src_image_roi

// General interpolation only
XilInterpolationTable horiz
XilInterpolationTable vert table

unsigned int
unsigned int
unsigned int
unsigned int
unsigned int
unsigned int
XilObject*

XilObject*
XilObject*

threshold ● ● low[nbands]
high[nbands]
map[nbands]

1 Xil_unsigned8 0 to 1
8 Xil_unsigned8 (values rounded)
16 Xil_signed16 (values rounded)
32 Xil_float32 (values passed on)

void*
void*
void*

translate ● ● float xoffset
float yoffset

// General interpolation only
XilInterpolationTable horiz
XilInterpolationTable vert

float
float

XilObject*
XilObject*

transpose ● ● XilFlipType fliptype void*

xor ● ● ●

xor_const ● ● const_array[nbands]

1 Xil_unsigned8 0 to 1
8 Xil_unsigned8 0 to 255
16 Xil_unsigned16 0 to 32767

void*

XIL Function
Src
 1

Src
 2

Src
 3 Dst Parameters

getParam()
 Type

129

XIL Atomic Functions B

Table B-1 lists the XIL atomic functions. The syntax for these entries is,

If the operation uses of all the same data type this long form is shortened to,

<operation name>;<data type>.

where data type is one of the following,

1. 1 - 1-bit images

2. 8 - 8-bit images

3. 16 - 16-bit images

4. f32 - 32-bit floating point images

For example for the add operation for 16 bit data the atomic function is,

The API call xil_blend() for 32-bit floating point data with a 16-bit blend
image, illustrates the full syntax.

<operation name>;<src1 data type>,<src2 data type>,<src3 data type>-><dst data type>

add;16

blend;f32,f32,16->f32

130 XIL Device Porting and Extensibility Guide—April 1997

B

The first column gives the name of the function that must be supplied in the
config file header comment in order to associate an implemented function
with an API call. The second column lists the data types for which the
operation is valid. The third column gives the name of the API binding call
associated with the atomic name. Further description of these API functions
can be found in the XIL Reference Manual.

Table B-1 XIL Atomic Functions (1 of 5)

Atomic Function Valid Data Combinations API Call

absolute 16 f32 xil_absolute

add 1 8 16 f32 xil_add

add_const 1 8 16 f32 xil_add_const

affine_bicubic 1 8 16 f32 xil_affine , bicubic
interpolation

affine_bilinear 1 8 16 f32 xil_affine , bilinear
interpolation

affine_general 1 8 16 f32 xil_affine , general
interpolation

affine_nearest 1 8 16 f32 xil_affine , nearest
neighbor interpolation

and 1 8 16 xil_and

and_const 1 8 16 xil_and_const

band_combine 1 8 16 f32 xil_band_combine

black_generation 1 8 16 f32 xil_black_generation

XIL Atomic Functions 131

B

blend 1,1,1->1
1,1,8->1
1,1,16->1
1,1,f32->1
8,8,1->8
8,8,8->8
8,8,16->8
8,8,f32->8
16,16,1->16
16,16,8->16
16,16,16->16
16,16,f32->16
f32,f32,1>f32
f32,f32,8->f32
f32,f32,16>f32
f32,f32,f32->f32

xil_blend

choose_colormap 8 xil_choose_colormap

color_convert 1 8 16 f32 xil_color_convert

color_correct 8 xil_color_correct

cast 1->8 1->16 1->f32
8->1 8->16 8->f32
16->1 16->8 16->f32
f32->1 f32->8 f32->16

xil_cast

convolve 1 8 16 f32 xil_convolve

copy 1 8 16 f32 xil_copy

copy_with_planemask 1 8 16 xil_copy_with_planemask

copy_pattern 1 8 16 f32 xil_copy_pattern

dilate 1 8 16 f32 xil_dilate

divide 1 8 16 f32 xil_divide

divide_into_const 1 8 16 f32 xil_divide_into_const

edge_detection 1 8 16 f32 xil_edge_detection

erode 1 8 16 f32 xil_erode

Table B-1 XIL Atomic Functions (2 of 5)

Atomic Function Valid Data Combinations API Call

132 XIL Device Porting and Extensibility Guide—April 1997

B

error_diffusion 1->8 1->16
8->1 8->16
16->1 16->8
f32->1 f32->8 f32->16

xil_error_diffusion

extrema 1 8 16 f32 xil_extrema

fill 1 8 16 f32 xil_fill

histogram 1 8 16 f32 xil_histogram

lookup 1->1 1->8 1->16 1->f32
8->1 8->8 8->16 8->f32
16->1 16->8 16->16 16->f32

xil_lookup

max 1 8 16 f32 xil_max

multiply 1 8 16 f32 xil_multiply

multiply_const 1 8 16 f32 xil_multiply_const

nearest_color 1->1 1->8 1->16
8->1 8->8 8->16
16->1 16->8 16->16
f32->1 f32->8 f32->16

xil_nearest_color

not 1 8 16 xil_not

or 1 8 16 xil_or

or_const 1 8 16 xil_or_const

ordered_dither 1->1 1->8 1->16
8->1 8->8 8->16
16->1 16->8 16->16
f32->1 f32->8 f32->16

xil_ordered_dither

paint 1 8 16 f32 xil_paint

rescale 1 8 16 f32 xil_rescale

rotate_bicubic 1 8 16 f32 xil_rotate , bicubic
interpolation

rotate_bilinear 1 8 16 f32 xil_rotate , bilinear
interpolation

rotate_general 1 8 16 f32 xil_rotate , general
interpolation

Table B-1 XIL Atomic Functions (3 of 5)

Atomic Function Valid Data Combinations API Call

XIL Atomic Functions 133

B

rotate_nearest 1 8 16 f32 xil_rotate , nearest neighbor
interpolation

scale_bicubic 1 8 16 f32 xil_scale , bicubic
interpolation

scale_bilinear 1 8 16 f32 xil_scale , bilinear
interpolation

scale_general 1 8 16 f32 xil_scale , general
interpolation

scale_nearest 1 8 16 f32 xil_scale , nearest neighbor
interpolation

set_value 1 8 16 f32 xil_set_value

separable_convolve 1 8 16 f32 xil_convolve with a separable
kernel

soft_fill 1 8 16 f32 xil_soft_fill

squeeze_range 1 8 16 xil_squeeze_range

subsample_binary_to_gray 1->8 xil_subsample_binary_to_g
ray

subsample_adaptive 1 8 16 f32 xil_subsample_adaptive

subtract 1 8 16 f32 xil_subtract

subtract_from_const 1 8 16 f32 xil_subtract_from_const

tablewarp_bicubic 1 8 16 f32 xil_tablewarp , bicubic
interpolation

tablewarp_bilinear 1 8 16 f32 xil_tablewarp , bilinear
interpolation

tablewarp_general 1 8 16 f32 xil_tablewarp , general
interpolation

tablewarp_nearest 1 8 16 f32 xil_tablewarp , nearest
neighbor interpolation

tablewarp_horizontal_bicubic 1 8 16 f32 xil_tablewarp_horizontal ,
 bicubic interpolation

tablewarp_horizontal_bilinear 1 8 16 f32 xil_tablewarp_horizontal ,
bilinear interpolation

Table B-1 XIL Atomic Functions (4 of 5)

Atomic Function Valid Data Combinations API Call

134 XIL Device Porting and Extensibility Guide—April 1997

B

tablewarp_horizontal_general 1 8 16 f32 xil_tablewarp_horizontal ,
general interpolation

tablewarp_horizontal_nearest 1 8 16 f32 xil_tablewarp_horizontal ,
nearest neighbor interpolation

tablewarp_vertical_bicubic 1 8 16 f32 xil_tablewarp_vertical ,
bicubic interpolation

tablewarp_vertical_bilinear 1 8 16 f32 xil_tablewarp_vertical ,
bilinear interpolation

tablewarp_vertical_general 1 8 16 f32 xil_tablewarp_vertical ,
general interpolation

tablewarp_vertical_nearest 1 8 16 f32 xil_tablewarp_vertical ,
nearest neighbor interpolation

threshold 1 8 16 f32 xil_threshold

translate_bicubic 1 8 16 f32 xil_translate , bicubic
interpolation

translate_bilinear 1 8 16 f32 xil_translate , bilinear
interpolation

translate_general 1 8 16 f32 xil_translate , general
interpolation

translate_nearest 1 8 16 f32 xil_translate , nearest
neighbor interpolation

transpose 1 8 16 f32 xil_transpose

xor 1 8 16 xil_xor

xor_const 1 8 16 xil_xor_const

Table B-1 XIL Atomic Functions (5 of 5)

Atomic Function Valid Data Combinations API Call

135

Index

A
API binding call, 130
API layer, 21
API level classes, 24

base class, 24
XilAttribute , 26
XilCis , 25
XilColorspace , 25
XilDitherMask , 26
XilError , 26
XilHistogram , 27
XilImage , 27
XilImageType , 27
XilInterpolationTable , 28
XilKernel , 28
XilLookup , 28
XilRoi , 28
XilSel , 29

B
base classes, 23

XilDeferrableObject , 24
XilDeviceType , 36
XilGlobalState , 23
XilNonDerrableObject , 24
XilObject , 23
XilSystemState , 24

C
CIS, 25
classes

XilAttribute , 22, 26
XilCis , 22, 25
XilColorspace , 22, 25
XilDeviceType , 36
XilDitherMask , 22, 26
XilError , 22, 26
XilGlobalState , 22, 23
XilHistogram , 22, 27
XilImage , 22, 27
XilImageType , 22, 27
XilInterpolationTable , 22, 28
XilKernel , 23, 28
XilLookup , 23, 28
XilObject , 22, 23
XilOp , 31, 39, 40, 53, 62
XilOpTreeNode , 36, 38
XilRoi , 23, 28
XilSel , 23, 29
XilSystemState , 22, 24

classesXilDeferrableObject , 24
classesXilNonDeferrableObject , 24
compressed image sequence, see CIS
compression, 25, 117
compression devices, 41
compute devices, 41

136 XIL Device Porting and Extensibility Guide—April 1997

error handling, 94
loading, 94

core layer, 29
core layer classes

XilOp , 31, 39, 40, 53, 62
XilOpTreeNode , 36, 38

D
DAG, 31
decompression, 117
deferred execution, 30

rules for, 32
unusual effects, 34

development environment, 45
device handlers, 49

error reporting, 47
flow of creating, 50
installing, 47
version control, 48

device-independent classes, 22
XilAttribute , 22, 26
XilCis , 22, 25
XilColorspace , 22, 25
XilDeferrableObject , 24
XilDeviceType , 36
XilDitherMask , 22, 26
XilError , 22, 26
XilGlobalState , 22, 23
XilHistogram , 22, 27
XilImage , 22, 27
XilImageType , 22, 27
XilInterpolation , 28
XilInterpolationTable , 22
XilKernel , 23, 28
XilLookkup , 23
XilLookup , 28
XilNonDeferrableObject , 24
XilObject , 22, 23
XilRoi , 23, 28
XilSel , 23, 29
XilSystemState , 22, 24

devices
common information, 36
implementing, 49

setting attributes, 26
dither mask, 26

E
environment variables

XIL_DEBUG, 46
errors, 26
extract images of an operation, 39, 121

F
floating point values, 28

G
general interpolation, 28
getSrc1() , 123
GPI layer, 35
graph evaluation, 31

H
histogram, 27

I
I/O devices, 41, 79

adding, 91
name of loadable library, 92

image convolution, 28
image type, 27
interpret image data, 28

L
loading handlers, 48

M
molecules, 31 to 39
multidimensional histogram, 27

N
noise, 26

Index 137

notifyError() , 94

P
pixel neighborhood, 29
porting a device, 35
ports that are not possible, 45
ports that are possible, 44

R
retrieval of image attributes, 27

S
setting attributes of devices, 26
Solaris Graphics Architecture, 20
storage devices, 42, 119
storage of image attributes, 27
structuring element, 29

T
two-dimensional array of floating point

values, 28

V
version control, 48

X
XIL

API layer, 21
API level classes, 24
base classes, 23
core layer, 29
device handlers, 49

error reporting, 47
flow of creating, 50
installing, 47
version control, 48

GPI layer, 35
library

division of function, 20
errors, 26

xil.compute file, 47
XIL_DEBUG environment variable, 46
xil_dilate() , 29
xil_erode() , 29
XIL_ERROR macro, 94
XilAttribute class, 22, 26
XilCis class, 22, 25

definition, 25
XilColorspace class, 22, 25

definition, 25
XILCONFIG, 130
XilDeferrableObject class, 24
XilDeviceType class, 36, 49
XilDitherMask class, 22, 26

definition, 26
XilError class, 22, 26

definition, 26
XilError.h , 94
XilGlobalState class, 22, 23
XilHistogram class, 22, 27

definition, 27
XilImage class, 22, 27

definition, 27
XilImageType class, 22, 27

definition, 27
XilInterpolationTable class, 22, 28

definition, 28
XilKernel class, 23, 28

definition, 28
XilLookup class, 23, 28
XilNonDeferrableObject class, 24
XilObject class, 22, 23

member functions
getVersion() , 23

XilOp class, 31, 39, 40, 53, 62
definition, 40

XilOp object, 121
XilOpTreeNode class, 36, 38
XilRoi class, 23, 28
XilSel class, 23, 29

definition, 29
XilSystemState class, 22, 24

138 XIL Device Porting and Extensibility Guide—April 1997

definition, 24

