
A Sun Microsystems, Inc. Business
2550 Garcia Avenue
Mountain View, CA 94043
U.S.A.

Beta Draft

XIL Test Suite User’s Guide

Part No: 802-5906-06
Revision 50, March 1997

SunSoft, Inc.

Please
Recycle

Copyright 1997 Sun Microsystems, Inc. 2550 Garcia Avenue, Mountain View, California 94043-1100 U.S.A. All rights reserved.

This product or document is protected by copyright and distributed under licenses restricting its use, copying, distribution, and decompilation. No part of
this product or document may be reproduced in any form by any means without prior written authorization of Sun and its licensors, if any. Third-party
software, including font technology, is copyrighted and licensed from Sun suppliers.

Parts of the product may be derived from Berkeley BSD systems, licensed from the University of California. UNIX is a registered trademark in the U.S. and
other countries, exclusively licensed through X/Open Company, Ltd.

Sun, Sun Microsystems, the Sun logo, SunSoft, SunDocs, SunExpress, Solaris, SunOS, OpenWindows, DeskSet, ONC, ONC+, NFS, XIL, and AnswerBook
are trademarks, registered trademarks, or service marks of Sun Microsystems, Inc. in the U.S. and other countries. All SPARC trademarks are used under
license and are trademarks or registered trademarks of SPARC International, Inc. in the U.S. and other countries. Products bearing SPARC trademarks are
based upon an architecture developed by Sun Microsystems, Inc. PostScript and Display PostScript are trademarks of Adobe Systems Inc., which may be
registered in certain jurisdictions.

The OPEN LOOK and Sun™ Graphical User Interface was developed by Sun Microsystems, Inc. for its users and licensees. Sun acknowledges the
pioneering efforts of Xerox in researching and developing the concept of visual or graphical user interfaces for the computer industry. Sun holds a non-
exclusive license from Xerox to the Xerox Graphical User Interface, which license also covers Sun’s licensees who implement OPEN LOOK GUIs and
otherwise comply with Sun’s written license agreements.

RESTRICTED RIGHTS: Use, duplication, or disclosure by the U.S. Government is subject to restrictions of FAR 52.227-14(g)(2)(6/87) and FAR 52.227-
19(6/87), or DFAR 252.227-7015(b)(6/95) and DFAR 227.7202-3(a).

DOCUMENTATION IS PROVIDED “AS IS” AND ALL EXPRESS OR IMPLIED CONDITIONS, REPRESENTATIONS AND WARRANTIES,
INCLUDING ANY IMPLIED WARRANTY OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT, ARE
DISCLAIMED, EXCEPT TO THE EXTENT THAT SUCH DISCLAIMERS ARE HELD TO BE LEGALLY INVALID.

Copyright 1997 Sun Microsystems, Inc., 2550 Garcia Avenue, Mountain View, Californie 94043-1100 Etatis-Unis. Tous droits réservés.

Ce produit ou document est protégé par un copyright et distribué avec des licences qui en restreignent l’utilisation, la copie, la distribution, et la
décompilation. Aucune partie de ce produit ou document ne peut être reproduite sous aucune forme, par quelque moyen que ce soit, sans l’autorisation
préalable et écrite de Sun et de ses bailleurs de licence, s’il y en a. Le logiciel détenu par des tiers, et qui comprend la technologie relative aux polices de
caractères, est protégé par un copyright et licencié par des fournisseurs de Sun.

Des parties de ce produit pourront être dérivées des systèmes Berkeley BSD licenciés par l’Université de Californie. UNIX est une marque déposée aux
Etats-Unis et dans d’autres pays et licenciée exclusivement par X/Open Company, Ltd.

Sun, Sun Microsystems, le logo Sun, SunSoft, SunDocs, SunExpress, Solaris, SunOS, OpenWindows, DeskSet, ONC, ONC+, NFS, XIL, and AnswerBook
sont des marques de fabrique ou des marques déposées, ou marques de service, de Sun Microsystems, Inc. aux Etats-Unis et dans d’autres pays. Toutes les
marques SPARC sont utilisées sous licence et sont des marques de fabrique ou des marques déposées de SPARC International, Inc. aux Etats-Unis et dans
d’autres pays. Les produits portant les marques SPARC sont basés sur une architecture développée par Sun Microsystems, Inc. PostScript et Display
PostScript sont des marques déposées d’ Adobe Systems, Inc., lesquelles pourront être enregistrées dans des juridictions compétentes.

L’interface d’utilisation graphique OPEN LOOK et Sun™ a été développée par Sun Microsystems, Inc. pour ses utilisateurs et licenciés. Sun reconnaît les
efforts de pionniers de Xerox pour la recherche et le développement du concept des interfaces d’utilisation visuelle ou graphique pour l’industrie de
l’informatique. Sun détient une licence non exclusive de Xerox sur l’interface d’utilisation graphique Xerox, cette licence couvrant également les licenciés
de Sun qui mettent en place l’interface d’utilisation graphique OPEN LOOK et qui en outre se conforment aux licences écrites de Sun.

CETTE PUBLICATION EST FOURNIE "EN L’ETAT" ET AUCUNE GARANTIE, EXPRESSE OU IMPLICITE, N’EST ACCORDEE, Y COMPRIS DES
GARANTIES CONCERNANT LA VALEUR MARCHANDE, L’APTITUDE DE LA PUBLICATION A REPONDRE A UNE UTILISATION
PARTICULIERE, OU LE FAIT QU’ELLE NE SOIT PAS CONTREFAISANTE DE PRODUIT DE TIERS. CE DENI DE GARANTIE NE S’APPLIQUERAIT
PAS, DANS LA MESURE OU IL SERAIT TENU JURIDIQUEMENT NUL ET NON AVENU.

iii

Contents

Preface. xi

XIL 1.3 New Features . xv

1. Overview of the XIL Test Suite. 1

Test Programs . 2

Reference Data . 2

Reference Signatures . 3

Benchmarking. 3

What Is Tested?. 4

Test Conditions. 4

Deferred Execution . 4

Architecture/Platform Testing . 5

The Parts of the XIL Test Suite . 5

2. .
Running Test Programs in the XIL Test Suite 7

Getting Started . 7

Packaging . 7

iv XIL Test Suite User’s Guide—March 1997

Resources You Need . 7

Environment Variables . 8

How the XIL Test Suite Works . 9

Verifying Against References . 11

Creating References . 12

Files Used or Created by Xilch . 12

The Testlist File. 13

The Test Matrix File . 17

The Log File . 21

Xilch Command Line Options . 23

Example Invocations . 26

Error Messages . 29

Running a Test Program Without Running Xilch 29

Additional Options For Running Individual Tests 29

3. Writing Test Programs in the XIL Test Suite Environment . . 35

Example Test Program. 35

Available XIL Test Suite Library Functions 40

Other Useful Examples . 42

After You Write Your Test Program . 42

Writing and Using Benchmarking Programs 43

Running Your Benchmarking Program. 44

Using Equivalence Testing Functions . 44

The Test Suite Library . 45

Include Files . 45

Contents v

General Functions . 45

Image Functions. 49

Lookup Table Functions . 55

CIS Functions . 61

Float and Integer Functions . 65

Equivalence Testing Functions. 70

A. XIL Test Suite Directory Structure . 73

The Top Level . 73

The Subdirectories . 74

B. Example Test Program . 75

C. Equivalence Testing Example . 79

ts_automatic_tests Example. 80

Index . 83

vi XIL Test Suite User’s Guide—March 1997

vii

List of Figures

Figure 1-1 Parts of the XIL Test Suite . 5

Figure 2-1 Xilch Example . 11

viii XIL Test Suite User’s Guide—March 1997

ix

List of Tables

Table P-1 Typographic Conventions . xiii

Table 2-1 Test Programs Available in $XILCHHOME/bin 14

Table 2-2 Xilch Command Line Options . 23

Table 2-3 Xilch Error Messages . 29

Table 2-4 Terms for Comparing Image Tolerances 30

Table 2-5 Individual Test Options . 31

Table 3-1 Functions Available in the XIL Test Suite Library (libts) . . 40

x XIL Test Suite User’s Guide—March 1997

xi

Preface

What Is the Solaris XIL Imaging Library?
The Solaris™ XIL™ Imaging Library is the Solaris software’s foundation
imaging library. Foundation libraries are the lowest-level device-independent
software layer of Solaris software. This level of interface is designed to support
a wide variety of common functions; higher-level libraries can be built on top
of the foundation, or an application can use the foundation layer directly.

The XIL Imaging Library is suitable for use by libraries or applications that
require imaging or digital video capabilities, such as document imaging, color
prepress, or digital video generation and playback. The current version of the
XIL Imaging Library is multithreaded and supports tiling of images.

Prerequisites
You should be thoroughly familiar with the XIL Imaging Library and should
have read the XIL Programmer’s Guide before you begin working with the XIL
Test Suite.

What Is the XIL Test Suite?
The XIL Test Suite is a suite of test programs that enable you to test XIL
functionality and a set of functions that enable you to write your own test
programs.

xii XIL Test Suite User’s Guide—March 1997

What’s in This Book?
Chapter 1, “Overview of the XIL Test Suite” is an overview of the XIL Test
Suite.

Chapter 2, “Running Test Programs in the XIL Test Suite” describes how to
run test programs in the XIL Test Suite. Requirements for setting up and
running the Xilch master control program, or harness, are described in detail.

Chapter 3, “Writing Test Programs in the XIL Test Suite Environment”
describes how to write new test programs that will run under the Xilch
harness. The functions in the XIL Test Suite library are described, and other
pertinent details are discussed.

The XIL Test Suite may be useful to some system developers as they enhance
XIL functionality by porting the XIL library to new devices or by creating new
molecules. The usefulness of the XIL Test Suite to system developers is also
described in this chapter.

Appendix A, “XIL Test Suite Directory Structure” describes the XIL Test Suite
directory structure.

Appendix B, “Example Test Program” contains the text of an example test
program.

Appendix C, “Equivalence Testing Example” provides an example of the
equivalence testing functions.

Related Books
For information about the XIL Imaging Library, refer to the XIL Programmer’s
Guide, which provided in the SDK portion of XIL 1.3 AnswerBook™. This book
explains how to use XIL functions to develop application programming
interfaces (APIs) and end-user applications.

A companion to the XIL Programmer’s Guide is the XIL Reference Manual, which
is also provided in the XIL 1.3 AnswerBook. The reference manual contains
man pages for all of the functions in the XIL library.

Because programming with the XIL library can be closely tied to programming
with the X library, you may also find it useful to consult the Xlib Programming
Manual and the Xlib Reference Manual.

Preface xiii

What Typographic Changes and Symbols Mean
The following table describes the type changes and symbols used in this book.

Table P-1 Typographic Conventions

Typeface or
Symbol Meaning Example

AaBbCc123 The names of commands, files,
and directories; on-screen
computer output

Edit your .login file.
Use ls -a to list all files.
system% You have mail.

AaBbCc123 What you type, contrasted with
on-screen computer output

system% su
Password:

AaBbCc123 Command-line placeholder:
replace with a real name or
value

To delete a file, type rm filename.

AaBbCc123 Book titles, new words or terms,
or words to be emphasized

Read Chapter 6 in User’s Guide.
These are called class options.
You must be root to do this.

Code samples are included in boxes and may display the following:

% UNIX C shell prompt system%

$ UNIX Bourne and Korn shell
prompt

system$

Superuser prompt, all shells system#

xiv XIL Test Suite User’s Guide—March 1997

xv

XIL 1.3 New Features

This document lists the new features in XIL 1.3. For a list and descriptions of
the new XIL 1.3 functions, see the XIL Programmer’s Guide in the Solaris XIL 1.3
AnswerBook.

MT-Safe and MT-Hot
The XIL 1.3 library is MT-safe. You can write multithreaded applications
without putting locks around XIL functions. The library also is MT-hot. It takes
advantage of multiprocessor systems without applications having to be
rewritten.

Tiled Storage
XIL 1.3 stores very large images in separate buffers of contiguous memory
called tiles. If a region of an image within a tile boundary is needed, only that
tile is loaded into memory, thereby increasing performance.

Tiled storage is backwards compatible with existing XIL applications and can
be completely transparent.

Optionally, you can manipulate XIL images stored as tiles by using tiling
functions. Keep in mind, however, that XIL uses tiling behind the scenes to
enhance performance whether or not an application makes explicit calls to
tiling functions.

xvi XIL Test Suite User’s Guide—March 1997

XIL 1.3 includes a new XilStorage storage object. XilStorage provides
access to an image’s data storage directly. Unlike the backwards-compatible
XilMemoryStorage structure, the XilStorage object supports tiled as well
as contiguous storage.

New Data Type
XIL 1.3 supports the 754 32-bit, single-precision, IEEE floating point data type.
Using this data type allows you to develop highly sophisticated scientific
imaging applications.

Temporary Images
XIL 1.3 supports temporary images. Temporary images are images used as an
intermediate step in creating a subsequent image. They may only be written to,
and read from, once. Temporary images are advantageous in that they improve
XIL’s ability to defer operations efficiently and circumvent having to call
xil_toss() .

Storage Formats

XIL_GENERAL

XIL 1.3 supports a new XIL_GENERAL storage format. This format allows you
the flexibility of obtaining input for each band of a multiband image from a
separate source. Furthermore, each band can be in any of the formats that XIL
supports.

XIL_BAND_SEQUENTIAL

XIL 1.3 now supports the XIL_BAND_SEQUENTIAL format for all data types,
not just XIL_BIT images.

XIL 1.3 New Features xvii

KCMS Integration
The XIL 1.3 library includes Kodak Color Management System (KCMS™)
support. With KCMS integration, you can achieve as close as possible color
matching between a display image and the actual stored image.

Additional XIL Functions
In addition, the XIL 1.3 library includes general object, double buffering, and
other miscellaneous functions.

Backwards Compatibility
XIL 1.3 still supports the existing functions xil_set_memory_storage()
and xil_get_memory_storage() , but these functions cannot be used in
combination with the new XIL 1.3 functions for tiled images or the new storage
formats.

Note – Existing applications should run with XIL 1.3 without being modified or
recompiled.

xviii XIL Test Suite User’s Guide—March 1997

1

Overview of the XIL Test Suite 1

The XIL Test Suite enables you, as a system developer, to verify that new
functionality (devices and molecules) that you have added to the XIL Imaging
Library is performing accurately. The XIL Test Suite provides a set of test
programs to verify XIL functionality and provides a set of functions that enable
you to write your own test programs.

System developers may find the XIL Test Suite useful during certain phases of
the development process; however, using the XIL Test Suite is not a complete
testing solution. In general, it is most useful for developers who are writing
XIL molecules or who are writing handlers for compute devices such as
accelerators. In these cases, you might choose to test your code against
reference data.

The usefulness of the XIL Test Suite to your development process depends on
the product you are developing:

• If you are writing a compute device handler, you can use the XIL Test Suite
to verify that your version of the XIL atomic functions is equivalent to the
XIL implementation.

• If you are writing XIL molecules, you can write additional test programs
that would invoke your molecule and test it against the corresponding
atomic functions in the XIL Imaging Library.

• If you are developing an input device handler, the XIL Test Suite is not
useful in directly testing it.

2 XIL Test Suite User’s Guide—March 1997

1

• If you are developing a storage device handler, the XIL Test Suite cannot
directly test it, but it can test an associated compute handler. If the tests for
the operators that use the storage handler pass for a variety of images, it is
an indication that the storage device handler is performing properly.

For more information on these XIL device types, consult the XIL Device Porting
and Extensibility Guide.

Test Programs
The XIL Test Suite test programs were designed to test XIL Imaging Library
functions using a wide range of input parameters. Stored versions of data,
referred to as reference data, were produced when running the test programs to
verify the XIL functions. Reference data are images and colormaps, for
example. Because reference data requires large amounts of disk space for
storage, reference signatures were created from the reference data. These
reference signatures are provided with the XIL Test Suite for use in regression
testing. For information about how the XIL Test Suite uses test programs and
references, see Chapter 2, “Running Test Programs in the XIL Test Suite.”

Because of the low-level nature of the XIL Imaging Library, it is critical that the
functions in this library perform as expected. Therefore, the code for test
programs was reviewed to ensure accuracy, and reference data was verified by
visual inspection.

Reference Data
You use reference data to verify the accuracy of the development library.
Again, reference data is stored versions of data produced by tests programs
and has been verified as accurate. Therefore, reference data can be used to
debug development code.

Reference data is not provided but can be generated, as discussed in Chapter 2,
“Running Test Programs in the XIL Test Suite.” The primary disadvantage of
using reference data is the large amount of disk space required if images are
saved for all useful permutations of image sizes, pixel types, and other
parameters. The disk space used by these images can be tens of gigabytes.

Also, to verify the accuracy of development code, you can specify a tolerance
range for comparisons when you run the XIL Test Suite. With a specified
tolerance range, you can successfully verify data even if there are minor

Overview of the XIL Test Suite 3

1

discrepancies caused by floating point precision effects. These discrepancies
occur mostly in operations such as convolution and
compression/decompression.

New options have been added to the XIL Test Suite for improvement of image
comparison tolerance. An absolute and relative tolerance between the current
and reference images can be defined.

It is also possible to save discrepancies between current and reference images
for later visual inspection of discrepancies or for printing the differences
between them.

Reference Signatures
Reference signatures are used for regression testing. Reference signatures
represent a Cyclic Redundancy Codes (CRC) checksum derived from reference
data. For more information on the CRC algorithm used in the XIL Test Suite,
see the document entitled “A Painless Guide to CRC Error Detection
Algorithms” by Ross Williams. You can locate this document on the web at
ftp://ftp.rocksoft.com/clients/rocksoft . A reference signature
uniquely identifies the data, just as a person’s signature uniquely identifies
that person. Reference signatures are used to avoid storing a large amount of
data.

Regression testing is performed by producing a signature for the functions
being tested and comparing that signature to the corresponding stored
reference signature. If differences are found, errors are assumed to be in the
functions being tested.

Benchmarking
The XIL Test Suite includes functions that allow you to create benchmarking
programs to measure the performance of XIL functions. Performance is
measured in frames per second. Chapter 3, “Writing Test Programs in the XIL
Test Suite Environment” includes a discussion of how to write benchmarking
programs.

4 XIL Test Suite User’s Guide—March 1997

1

What Is Tested?
To thoroughly verify each function, the XIL Test Suite provides tests that are
appropriate to the function and to the platform on which you are running. The
following three sections, “Test Conditions,” “Deferred Execution,” and
“Architecture/Platform Testing” discuss XIL function testing.

Test Conditions

The XIL Test Suite uses a set of general and function-specific test conditions to
test each function. In the general case, all functions are tested under
permutations of the following conditions when possible and appropriate:

• All pixel types
• Various image sizes
• Various numbers of bands
• Various image origins
• With and without regions of interest (ROIs)
• Images as parent and child images
• With random (noise) and ordered images as the source

Many of the functions are tested with function-specific test conditions. For
example, the geometric operations test for additional parameters, such as
rotation angles, scale factors, and interpolation types.

Deferred Execution

In general, testing of the deferred execution mechanism is no different from
testing a particular function, except that you verify images after a group of
function calls instead of after individual function calls. Consult the XIL
Programmer’s Guide for information on deferred execution.

Because the current release of the XIL Library is multithreaded and supports
tiled images, control options are added to support testing XIL’s threading and
tiling performance.

Overview of the XIL Test Suite 5

1

Architecture/Platform Testing

You can verify XIL functions on all supported platforms and architectures. To
verify XIL functions on a particular platform, you must run test programs on
the platform you wish to verify. By doing this, you verify the consistency of
test cases from platform to platform.

The Parts of the XIL Test Suite
The XIL Test Suite has three parts:

• Xilch , the master control program, or harness, that runs all of the tests in
the test suite.

• libts , the test suite library that provides utility functions and functions to
generate and verify data. Also, you can write your own test program using
these functions.

• A set of test programs, which are dynamically linked with functions in
libts , that verify the accuracy of the XIL functions being tested.

Figure 1-1 shows the test suite’s parts.

Figure 1-1 Parts of the XIL Test Suite

Xilch

Test Programs

Test Suite Library

Runs test programs

Verifies XIL functions

XIL Test Suite

(libts)

6 XIL Test Suite User’s Guide—March 1997

1

Test programs consist of libts functions. These functions are used to exercise
the XIL function that is being verified. You can invoke a test program through
the Xilch harness, or you can run the test program by itself.

The Xilch harness accepts a variety of options that allow you to precisely
control what is being tested or created. See Chapter 2, “Running Test Programs
in the XIL Test Suite,” for a detailed discussion about how the XIL Test Suite
works.

7

Running Test Programs in the XIL
Test Suite 2

This chapter describes how to run the XIL Test Suite. It explains how the XIL
Test Suite works, explains what options you can set when running the test
suite, and provides examples of invocations.

Getting Started
Before you begin using the XIL Test Suite, make sure that you have the correct
packages of the Solaris Driver Developer’s Kit (DDK) installed, that you have
the correct resources, and that you set the needed environment variables.

Packaging

You must have the following Driver Developer’s Kit packages installed to run
the XIL Test Suite and write your own test programs.

• SUNWxildh

• SUNWxiltg

• SUNWxilts, if you are running on SPARC

• SUNWxiltx, if you are running on x86

Resources You Need

The XIL Test Suite is supported on SPARC® and x86 platforms with the
following minimum configurations:

8 XIL Test Suite User’s Guide—March 1997

2

• SPARC: A SPARCstation™ 2 (with a minimum of 100MB of swap space)
running the current version of Solaris system software

• x86: A 486 (with 100MB of swap space) running the current version of
Solaris system software

Before you can run the XIL Test Suite, you also need the following:

• The XIL Imaging Library

• SPARC: The SPARCompiler™ C 2.0.1 and SPARCWorks™ 2.0.1 software or
later (if you plan to write your own test programs)

Note – See the the XIL Programmer’s Guide in the Solaris XIL 1.3 AnswerBook for
recommended SPARC compilers.

• x86: The ProCompiler™ C 2.0.1 and ProWorks™ 2.0.1 software (if you plan to
write your own test programs)

Environment Variables

Before running the XIL Test Suite, you must set some environment variables. If
you used the default installation directory when you installed the XIL library,
you probably have already set the XILHOME environment variable as follows:

% setenv XILHOME /opt/SUNWits/Graphics-sw/xil

Assuming that you’ve installed the Solaris XIL Imaging Library Driver
Developer’s Kit (of which the XIL Test Suite is a part) according to the defaults,
you must set the other needed environment variables as follows:

1. Set the XILCHHOME environment variable to the location of the current
Xilch directory:
% setenv XILCHHOME /opt/SUNWddk/xil/ddk_2.4/Xilch/ arch

where arch is either sparc or i386 depending on which platform you are
running.

2. Update your LD_LIBRARY_PATH to include $XILCHHOME/lib :
% setenv LD_LIBRARY_PATH \
$XILHOME/lib:$XILCHHOME/lib:$LD_LIBRARY_PATH

Running Test Programs in the XIL Test Suite 9

2

3. If you want to run XGL tests, you must set the XGLHOME environment
variable to point to the top directory of your XGL installation and
appropriately append LC_LIBRARY_PATH.
See your XGL documentation for details.

4. If you do not want to tile images during the test, you need to set the
environment variable XILCH_NO_TILES to TRUE.

5. If you do not want to use multithreading capability of the XIL library, you
must set the XIL_DEBUG environment variable:
%setenv XIL_DEBUG=threads= ncpu

where ncpu is the number of CPUs on the machine.

Environment Notes

To display decompression tests, you must be running the OpenWindows™
environment or Common Desktop Environment (CDE). Also, a user cannot use
a system to run tests if he or she is not the user logged into the console.

How the XIL Test Suite Works
As discussed in Chapter 1, “Overview of the XIL Test Suite,” the XIL Test Suite
has three parts:

• Xilch , the master control program, or harness, that runs all of the tests in
the test suite.

• libts , the test suite library that provides utility functions and functions to
generate and verify data. Also, you can write your own test program using
these functions.

• A set of test programs, which are dynamically linked with functions in
libts , that generate test data.

You can run Xilch to:

• Verify XIL functions against reference signatures

• Verify XIL functions against reference data (for example, images and color
maps)

• Create reference signatures for XIL functions and place the signatures in a
reference directory

10 XIL Test Suite User’s Guide—March 1997

2

• Create reference data for XIL functions and place the data in a reference
directory

When you create test data, Xilch determines which platform you are running
on and generates the test data for that platform. Reference signatures and data
may be platform-specific, or they may be generic (same result on multiple
platforms). The SPARC platform is considered the “generic” platform. By
default, the reference directory for the SPARC platform is named generic and
contains all reference signatures for all test programs.

When you invoke a test program through Xilch , the test program dynamically
links with the XIL Imaging Library. If you are verifying an XIL function, test
signatures or data are created for the function and compared to the stored
reference signatures or data for that function.

Figure 2-1 is an example of how Xilch works. In the figure, the testlist file, a
file that contains a list of test programs, begins by starting test1 . In this
example, test1 calls:

• ts_get_src1_image() , which retrieves input data as specified in the test
matrix file via the function in libts .

• xil_add() , which makes a call to the XIL Imaging Library.

• ts_verify() , which verifies that the test data is identical to the stored
reference data. The comparison is made through libts . Results of the
comparison are displayed on your terminal (stdout). Or, when you invoke
Xilch , you can specify that results print to a log file of a specified name.

Note – If you invoked Xilch to create reference data, the test data generated
by each test program is placed in a reference directory; no comparison is made.

Running Test Programs in the XIL Test Suite 11

2

Figure 2-1 Xilch Example

Verifying Against References

As discussed in Chapter 1, “Overview of the XIL Test Suite,” you can use
reference signatures and data to verify the accuracy of XIL Imaging Library
functionality. Reference signatures are used primarily for regression testing,
and a set of reference signatures for the XIL Imaging Library functions are
provided with the XIL Test Suite. Reference data is used primarily for verifying
the accuracy of new development code.

Xilch

Your Terminal

XIL

Testlist File

test1
test2

test1

xil_add()
ts_verify() libts

test1
.

.

.

Test Program

calls

Reference

test2

.

Test data

Reference
data

Signatures or Data

. .
 .

Test Matrix
File

Xilch is invoked to either
verify XIL functions or
create references for functions.

ts_get_*_image()

Input data

(stdout)
or a log file

Imaging
Library

12 XIL Test Suite User’s Guide—March 1997

2

When you want to verify against reference signatures, you need not specify an
option when running Xilch because the -test_signatures option is the
default.

When you want to verify against reference data, you specify the -test_data
option when running Xilch . This option provides a more thorough testing
(pixel-by-pixel comparison), but it also takes longer to execute. It is a very
convenient test when you are developing new functionality in your library and
need to compare execution of new functions against the old reference data.

Creating References

Reference data for the XIL Imaging Library functions are not provided with the
XIL Test Suite; only reference signatures are provided. However, you can create
reference data by running all of the XIL Test Suite test programs with the
-create_data option when running Xilch .

Also, if you run the test programs using different test matrix files (input data)
than the test matrix files provided with the XIL Test Suite, you will need to
create your own set of references (signature and/or data) for the new input
data. Test matrix files are discussed in the section “The Test Matrix File” on
page 17.

Files Used or Created by Xilch

Xilch uses two files and can create one file when it runs. When you invoke
Xilch , you can specify which testlist and test matrix file to use. Default
versions of both of these files are called automatically if you don’t specify them
on the Xilch command line.

When you invoke Xilch , you can specify that a log file be created that will
contain information reported by Xilch as it runs. By default, this information
is displayed at your terminal and not printed to a log file.

With the -save_images option, you can also create a reference image and test
the image (image created by a particular test), the absolute error image, and an
absolute threshold image. These images can be displayed as .vff images and
discrepancies visually inspected. There is also a file created that prints
differences between the reference and absolute image on a pixel-by-pixel basis.
To limit the file size, the number of errors recorded has a pre-determined upper
bound.

Running Test Programs in the XIL Test Suite 13

2

The Testlist File

The testlist file is a list of test programs, one per line, and any options for those
tests. If you do not specify a testlist file, Xilch first looks for a file called
testlist in the current directory; then, it looks in $XILCHHOME/config . The
default testlist file contains many of the available test programs. If you want a
testlist file that contains all the test programs, you must create your own
testlist file. However, to spread the execution time of Xilch tests, it is
recommended that you create several test files and run separate Xilch tests,
depending on the category of functions being tested.

If you want to use a testlist file other than the default file when running
Xilch , you specify the testlist file to Xilch using the -f option. For example,

% Xilch -f my_testlist

If one of the test programs in the testlist file fails, Xilch continues to run
through the rest of the programs in the list except in the case of a deadlock in a
multithreaded environment. Currently there is no provision for removing
deadlocked tests.

When you create a testlist file, you can specify conditions for a particular test
by using Xilch options. For example, suppose you want to use a different test
matrix file for a test program named my_test in your testlist file. (See “The
Test Matrix File” on page 17 for a description of a test matrix file.) In this case,
after my_test in your testlist file, you would use the -m option to specify the
name of the test matrix file you want to use. For example,

% $XILCHHOME/bin/my_test -m my_test_matrix

Then, when you invoke Xilch , you can either use the default test matrix file or
specify another test matrix file. When Xilch reaches my_test in your testlist
file, it will substitute the test matrix file specified for my_test .

Note – Testlist file options override command-line options.

An easy way to create your own customized testlist file is to start with the
testlist file in $XILCHHOME/config . Copy it to a file with a name you
choose. Then edit the file, removing the test programs you don’t want to run

14 XIL Test Suite User’s Guide—March 1997

2

and inserting additional programs. The following table lists the test programs
available at the time of the printing of this manual. For the most up-to-date list
of test programs, look in the $XILCHHOME/bin directory.

Table 2-1 Test Programs Available in $XILCHHOME/bin (1 of 3)

XIL Function Type Test Program

Arithmetic absolute_test

arith_test

logical_test

Compression/CIS cbm_test

cell_compress_test

cell_decompress_test

cellb_compressor_test

cellb_decompress_test

fax_test

fax_compressor_test

fax_decompress_test

jpeg_compressor_test

jpeg_decompress_test

jpegll_test

mpeg1_decompress_test

px64_decompress_test

Geometry affine_test

rotate_test

scale_test

subsample_adaptive_test

subsample_binary_to_gray_test

tablewarp_test

translate_test

transpose_test

Miscellaneous absolute_test

Running Test Programs in the XIL Test Suite 15

2

band_combine_test

black_generation_test

color_convert_test

combined_lookup_test

convolve_test

copy_pattern_test

copy_test

copy_with_planemask_test

create_copy_test

device_test

dilate_test

edge_detection_test

erode_test

extrema_test

fb_rw_test

histogram_test

interpolation_table_test

lookup_convert_test

minmax_test

photocd_test

rescale_test

set_value_test

threshold_test

tile_use_test

xil_lookup_test

Molecules memory_test

Object dag_test

Table 2-1 Test Programs Available in $XILCHHOME/bin (2 of 3)

XIL Function Type Test Program

16 XIL Test Suite User’s Guide—March 1997

2

Most of the names of the test programs include the name of the XIL function
that’s tested. For example, the Xilch test program affine_test verifies the
correct functioning of the XIL function xil_affine() . However, the names
listed below are not obvious.

dithermask_test

image_test

kernel_test

lookup_test

non_std_roi_test

roi_test

roi_get_as_image_test

state_test

sel_test

Presentation blend_test

choose_colormap_test

error_diffusion_test

fill_test

nearest_color_test

ordered_dither_test

paint_test

soft_fill_test

squeeze_range_test

Utility cast_test

cbm_test Tests CIS Buffer Manager functionality

fb_rw_test Tests frame buffer read-write functionality

Table 2-1 Test Programs Available in $XILCHHOME/bin (3 of 3)

XIL Function Type Test Program

Running Test Programs in the XIL Test Suite 17

2

The Test Matrix File

A test matrix file provides descriptions of input data (images) to Xilch . A test
program loops through the test matrix file, retrieving images via libts
functions, until it runs out of images. If you do not specify a test matrix file, the
default file, xilch_tests (in $XILCHHOME/config), is used. Chapter 3,
“Writing Test Programs in the XIL Test Suite Environment,” provides an
example of a test matrix file.

The test programs for some XIL functions are designed to work with
specialized matrix files, which are also in $XILCHHOME/config . For example,
the matrix file called fax_tests is designed to be used with the test program
that verifies the fax decompression portion of the XIL library.

Note – The images referenced in the test matrix files are located in the
directory $XILCHHOME/data/images/std . These images are all in .vff
format. This is an unsupported, Sun-internal format. The format of these
images may change in future releases.

You specify the fax_tests matrix file by using the -m option in your testlist
file. In this case when you invoke Xilch , it uses the default matrix file for
every test program in your testlist file except for the fax test program, where it
uses the fax_tests matrix file that you specified in your testlist file. If you
decide to add a test program to the XIL Test Suite, you might want to create
new test matrix files as discussed next.

The content of a test matrix file is tightly coupled with Xilch reference data
(that is, reference data reflects the parameters used in the matrix file when they
were created during the Xilch run with that file). Therefore, if you decide to
change the matrix file for future runs, you must also recreate the reference data
and signatures based on the new matrix file.

Writing a Test Matrix File

Images can be generated from parameters or loaded from a specified file. The
functions ts_get_src[123]_image() and ts_get_dst[123]_image()
return source and destination images based on the tables defined in the test
matrix file (explained in the next section). See Code Example 3-2 for an
example of how this is done. A test matrix file contains tags, which specify the
images used by a test program.

18 XIL Test Suite User’s Guide—March 1997

2

Tags of a Test Matrix File
The tags that can occur in a test matrix file are described in detail in this
section. For an application showing how these tags are used in a test matrix
file, see “Test Matrix File Example” on page 20.

Note – Tags and labels are case insensitive; parameters are case sensitive. All
parameters must be specified in the order shown, separated by whitespaces;
there are no default values. Also, the values of the parameters must be of the
correct data type.

Table [SRC1|SRC2|SRC3|DST1 | DST2| DST3] xsize ysize nbands datatype
imagecontent value xorigin yorigin filename

The Table tag denotes the beginning of a table of image data. The Table
tag must be followed by one of the following table labels: SRC1, SRC2,
SRC3, DST1, DST2, or DST3. SRC and DST labels correspond to the
parameter names in the libts functions ts_get_src[123]_image() and
ts_get_dst[123]_image() . Parameters of the Table tag are:

xsize Width of the image.

ysize Height of the image.

nbands Number of bands in the image.

datatype XIL_BIT (unsigned), XIL_BYTE (unsigned),
XIL_SHORT (signed), or XIL_SHORT (floating point).

imagecontent TS_RANDOM: image filled with numbers from a
random number generator (user-specified seed
number), TS_CONSTANT: image filled with a user-
specified constant, TS_RAMP: image filled with
increasing numbers, or TS_NOFILL: image filled
with whatever random values are in memory.

value Value associated with the imagecontent. It can be a
seed or a constant. This number must be less than
256 for XIL_BYTE TS_CONSTANT images. For
XIL_SHORT TS_CONSTANT images, this number
must be between -32,768 and 32,767.

Running Test Programs in the XIL Test Suite 19

2

Child <Label> ch_x ch_y ch_xsize ch_ysize ch_startband ch_num_of_bands

The Child tag specifies the characteristics of a child image. A Label name is
not required, but can be used as an optional identifier. A Child tag always
immediately follows the parameters of its parent image (see example test
matrix files). Parameters of the Child tag are:

ROI roi1_x roi1_y roi1_xsize roi1_ysize roi2_x roi2_y etc...

The ROI tag is used to specify the characteristics of a region of interest. The
Label parameter option is not available with this tag. Parameters of the ROI
tag are:

xorigin x coordinate of the origin.

yorigin y coordinate of the origin.

filename File name of a stored image file in .vff format. All
other parameters in the line, except xorigin and
yorigin, are ignored but must appear as placeholders.
If you do not specify a prestored image, then you
must enter “NULL” for this parameter (see the
example). If a file name is specified, its parameters
supersede other specified parameters, such as xsize
and ysize.

ch_x x coordinate offset from the parent image.

ch_y y coordinate offset from the parent image.

ch_xsize Width of the child image.

ch_ysize Height of the child image.

ch_startband Specifies which band in the parent image the child
image starts in (0 based).

ch_num_of_bands Number of bands in the child image.

roi1_x x coordinate for the first region.

roi1_y y coordinate for the first region.

roi1_xsize Width of the first region.

roi1_ysize Height of the first region.

20 XIL Test Suite User’s Guide—March 1997

2

End <Label>

The End tag indicates the end of a Table . A Label name, corresponding to
the Table label, is optional (see “Test Matrix File Example” on page 20).

Table REF1 ref_name

The REF1 label lists the reference names for the ts_*_verify() function.
For ts_*_verify() to look in the test matrix file for reference names, you
must specify the -ref_matrix option when running Xilch .

Requirements and Limitations

Test programs that use two source images should call ts_get_src1() and
ts_get_src2() . A test program can create its own destination image, or it
can call ts_get_dst1() . The XIL Test Suite library makes no consistency
checks between tables. For example, it would not notice if the number of bands
in the third image of the SRC2 table was the same as the number for the third
image in the SRC1 table.

Test Matrix File Example

The following example will give you an idea of the kind of information
contained in a typical test matrix file. Note that each file can contain as many
parent and child images as you want. Child images must always follow the
parent image with which they are associated; ROI tags must always follow the
image, parent, or child with which they are associated.

This example specifies one source table (SRC1) that has two parent images and
a child image associated with the second parent image, and one destination
table (DST1) that has two parent images.

The Source Table
The first parent image is a 256 x 256, single-banded, short image initially filled
with random data, using 12989 as the seed; its origin is (0.0, 0.0). NULL means
no file is associated with this image. The second parent image is a 257 x 193, 3-

ref_name Name of a reference that corresponds to the
sequential calls to ts_*_verify() in the test
program.

Running Test Programs in the XIL Test Suite 21

2

banded, unfilled bit image with origin coordinates of (10.0, 10.0). The child
image is offset from its parent (the image specified directly above it) in x by 7
and y by 13. It’s a 23 x 37, 2-banded image that begins in the second band of its
parent.

The Destination Table
The first parent image is a 256 x 256, single-banded, short image filled with
constant data (0’s); its origin is (10.0, 10.0). The second parent image is a 257 x
193, 3-banded, bit image initially filled with random data, using 73142 as the
seed; its origin is (0.0, 0.0).

The Log File

By default, the information reported by Xilch is displayed on your terminal
(stdout). You can specify that this information be printed to a log file by using
the -l option when you invoke Xilch .

The information reported by Xilch consists of a header and the results of the
test programs as they iterate through the test matrix file. The header contains
the following information:

TABLE SRC1
256 256 1 XIL_SHORT TS_RANDOM 12989 0.0 0.0 NULL
257 193 3 XIL_BIT TS_NOFILL 0 10.0 10.0 NULL

CHILD 7 13 23 37 1 2
END SRC1

TABLE DST1
256 256 1 XIL_SHORT TS_CONSTANT 0 10.0 10.0 NULL
257 193 XIL_BIT TS_RANDOM 73142 0.0 0.0 NULL

END DST1

Xilch Started Time the Xilch run began

User User name of the person running Xilch

Host Name of machine running Xilch

Invocation What the user typed to invoke this run of Xilch

22 XIL Test Suite User’s Guide—March 1997

2

At the end of the log file is information stating the number of programs
executed, the number of failures, and the percentage of program success. You
can look at this information to see quickly the results of the test program.

The following is an excerpt from a Xilch run that has no failures.

XILHOME The value of this environment variable

XILCHHOME The value of this environment variable

XILCHREFDATA The value of this environment variable

Code Example 2-1 Log File Example (1 of 2)

Xilch Started: May 20 94 01:03:13
User: xil
Host: emulsion
Invocation: bin/Xilch -l Xilch_run.log
XILHOME: /home/xil/devel/sparc/sparc
XILCHHOME: /home/xil/xilch/devel/sparc/sparc
XILCHREFHOME: /home/xil/xilch/devel/sparc/data/references

> /home/xil/xilch/devel/sparc/sparc/bin/arith_test: Started
01:03:14
> /home/xil/xilch/devel/sparc/sparc/bin/arith_test: Passed
01:05:30

> /home/xil/xilch/devel/sparc/sparc/bin/black_generation_test:
Started 01:05:30
> /home/xil/xilch/devel/sparc/sparc/bin/black_generation_test:
Passed 01:06:50

> /home/xil/xilch/devel/sparc/sparc/bin/blend_test -m
blend_tests: Started 01:06:50
> /home/xil/xilch/devel/sparc/sparc/bin/blend_test -m
blend_tests: Passed 01:12:24

> /home/xil/xilch/devel/sparc/sparc/bin/cast_test -m
quick_tests: Started 01:12:25
> /home/xil/xilch/devel/sparc/sparc/bin/cast_test -m
quick_tests: Passed 01:13:13
.
.
.

Running Test Programs in the XIL Test Suite 23

2

Xilch Command Line Options
The Xilch harness runs the test programs in the test suite. Use its options to
vary testing conditions. You have already learned about some of the options
you can use with Xilch : -f to specify a testlist file, -m to specify a test matrix
file, and -l to specify a log file. Following is a complete list of the command
line options.

> /home/xil/xilch/devel/sparc/sparc/bin/xil_lookup_test: Started
01:37:30
> /home/xil/xilch/devel/sparc/sparc/bin/xil_lookup_test: Passed
01:38:59

>>>>> Number of programs executed: 27
>>>>> Number of program failures: 0
>>>>> Program success %: 100.00%

Xilch Done: May 20 994 01:38:59

Table 2-2 Xilch Command Line Options (1 of 4)

Option Description

-create_data Creates reference data in the reference directory. This
option cannot be used with -create_signatures ,
-test_signatures , or -test_data . See also
-ref_directory .

-create_signatures Creates reference signatures in the reference directory.
This option cannot be used with -create_data ,
-test_signatures , or -test_data . See also
-ref_directory .

-D Turns on display mode. This option displays both the
test image and the reference image, if any.

Code Example 2-1 Log File Example (2 of 2)

24 XIL Test Suite User’s Guide—March 1997

2

-f file Use file as the testlist file. The default file is testlist
in the current directory, and if not found there, the file
testlist in $XILCHHOME/config . Each line in the
testlist file specifies the name of a test program to run
and its options, if any.

-l logfile Uses logfile to log test information reported by Xilch
and the test suite library. The default log file is
stdout .

-m file Uses file as the test matrix file for all test programs in
this Xilch run. If file cannot be found in the current
directory, then $XILCHHOME/config is searched. If
file is still not found, then
$XILCHHOME/config/xilch_tests is used. This
option does not really affect the operation of Xilch
itself. Instead, it is passed to the test program and
used by the test suite library to find and/or generate
its test images.

-no_auto Turns off automatic testing.

-no_ref_backup Does not back up the references before creating new
references. By default a backup reference is created.

-percent value Uses value, a floating point number between 0 and 100,
as the acceptable percentage difference for
comparisons. A value of 0 means that the test data
and the reference data must match perfectly. A value
of 10 means up to 10% of the pixels can be different.

-platform string Species the name of the platform (string) for which
you want to create references or verify data (for
example, x86). The default value is the CPU on which
the test is run. For example, if you run the tests on a
SPARC platform, the default platform name is
generic ; if you run the tests on an x86 platform, the
default platform name is x86 . This can be used to
create accelerator-specific references.

When creating references, Xilch uses the specified
platform to create the references and stores them in a
directory for that platform. When testing, Xilch uses
the references stored for the specified platform.

Table 2-2 Xilch Command Line Options (2 of 4)

Option Description

Running Test Programs in the XIL Test Suite 25

2

-ref_directory dir Uses the directory dir to obtain references when
testing or to store references when creating references.
When this option is specified, the value overrides the
default directory name or the directory name specified
in the environment variable XILCHREFDATA.

When testing, the reference directory you specify must
have subdirectories: signatures for signature testing
and data for data testing. When creating reference
signatures or data, Xilch creates subdirectories if they
do not exist.

This option is useful to create references in a
temporary location during development.

-t prog args Runs only the test program prog. Xilch runs in single-
test mode when this option is specified and ignores
any testlist file. When you specify only one test
program to run, you can also specify any of the other
Xilch command line options, args, other than -f .

-test_data Tests images against data. This option cannot be used
with -test_signatures , -create_data , or
-create_signatures .

-test_signatures Tests images against signatures. This is the default.
This option cannot be used with -test_data ,
-create_data , or -create_signatures .

-tol value Uses value as the floating point tolerance for
comparisons. For ts_*_verify() , this option is
meaningful when used with the -test_data option.

For XIL_SHORT images, value can be any number
between 0 and 65535. For XIL_BYTE images, value can
be any number between 0 and 255. In both these cases,
a value of 0 means that the test data perfectly matches
the reference data. If you specify the maximum value,
the comparison always succeeds. For XIL_BIT
images, the tolerance value is ignored.

Table 2-2 Xilch Command Line Options (3 of 4)

Option Description

26 XIL Test Suite User’s Guide—March 1997

2

Note – All of the Xilch options can be used inside a testlist file.

Example Invocations
In this section, several example invocations of Xilch , using different options,
are provided to give you a feel for ways to use the test suite environment.

For most XIL functions, you should specify a tolerance
of 0, because you should be able to achieve a perfect
pixel-to-pixel comparison. However, this perfect
correspondence is not achievable for the geometric
operators. It also may not be possible for dithering,
error diffusion, and compression operations. In these
cases, your tolerance value probably needs to be
greater than 0, keeping in mind that you want to
achieve as close a match as possible.

-use_ref_backup Uses the backup references for each test case. By
default, when you create references, Xilch backs up
the existing references before creating the new
references. When you specify this option on the Xilch
command line, Xilch uses the backup references. See
also -no_ref_backup .

This option is valid only when either the
-test_data or -test_signatures option is
specified.

-v Runs in verbose mode. This option also reports
additional information for tests run without the
harness. See “Additional Options For Running
Individual Tests” on page 29 for details.

-use_ref_matrix Uses the reference names listed in the test matrix file
instead of the names specified in the calls to
ts_*_verify() . When you use this option, the last
parameter of ts_*_verify() , ref_name, is ignored.
This option can be used only with -test_data and is
intended for use during test development, not
regression testing.

Table 2-2 Xilch Command Line Options (4 of 4)

Option Description

Running Test Programs in the XIL Test Suite 27

2

% Xilch

Xilch is invoked with the following default conditions:

• The file testlist in the current directory is used as the testlist file. If this
file is not found, then $XILCHHOME/config/testlist is used.

• Test information is logged to stdout .

• The file xilch_tests in $XILCHHOME/config is used as the default test
matrix file.

• Terse test information is provided.

• Images are tested against reference signatures.

% Xilch -f mytests -l mytests.log -v

Xilch is invoked with the following conditions:

• The file mytests in the current directory is used as the testlist file.

• Test information is logged to the file mytests.log .

• The file xilch_tests in $XILCHHOME/config is used as the default test
matrix file.

• Verbose test information is provided.

• Images are tested against reference signatures.

% Xilch -create_signatures -platform my_accelerator -m my_list

Xilch is invoked with the following conditions:

• The file testlist in the current directory is used as the testlist file. If this
file is not found, then $XILCHHOME/config/testlist is used.

• Reference signatures are created for the platform my_accelerator and
stored in a directory for that platform; no comparisons are made.

• The file my_list is used as the test matrix file.

• Information is logged to stdout . When you run Xilch to create references,
a log file is created even though no verification of data is performed.

% Xilch -test_data

Xilch is invoked with the following conditions:

28 XIL Test Suite User’s Guide—March 1997

2

• The file testlist in the current directory is used as the testlist file. If this
file is not found, then $XILCHHOME/config/testlist is used.

• Test information is logged to stdout .

• The file xilch_tests in $XILCHHOME/config is used as the default test
matrix file.

• Terse test information is provided.

• Images are tested against reference data.

% Xilch -t rotate_test -v

Xilch is invoked with the following conditions:

• The test program called rotate_test is run. No other test programs are
run.

• Test information is logged to stdout .

• The file xilch_tests in $XILCHHOME/config is used as the default test
matrix file.

• Verbose test information is provided.

• Images are tested against reference signatures.

% Xilch -f mytests -m quick_tests -test_data -v

Xilch is invoked with the following conditions:

• The file mytests in the current directory is used as the testlist file.

• Test information is logged to stdout .

• The file quick_tests is used as the test matrix file.

• Verbose test information is provided.

• Images are tested against reference data.

Running Test Programs in the XIL Test Suite 29

2

Error Messages
You will encounter the error messages listed in Table 2-3 if Xilch cannot find
the reference directory, or cannot find a signature or data in the reference
directory. These error messages are sent to the log file.

Running a Test Program Without Running Xilch

All of the supplied test programs can be run without using the Xilch harness.
You might find this mode useful for debugging new test programs that you
create to verify code that you write to work with the XIL library. You might
also find this mode useful to exercise your version of an XIL function, because
the existing Xilch tests do a good job of checking a given operation’s
functionality.

All of the Xilch options discussed in this chapter (besides those mentioned in
this section) can be used when running test programs.

Additional Options For Running Individual Tests

The following XIL Test Suite options provide for tolerance in image
comparisons, allowing small hardware arithmetic rounding errors in the image
algorithms:

• -abs_tol
• -rel_tol
• -nbhd

Use the following reporting options with the tolerance options:

• -detail_info

Table 2-3 Xilch Error Messages

Error Message Explanation

Cannot access the reference
directory. Exiting.

Xilch cannot find the reference
directory.

Could not load ref crc (VERIFY) Xilch cannot find a specific reference
signature.

Could not find ref image (VERIFY) Xilch cannot find a specific reference
data.

30 XIL Test Suite User’s Guide—March 1997

2

• -save_images

In addition, you must use the Xilch harness -v option, which is enhanced to
report information specific to the above tolerance options.

Terms and Individual Test Option Descriptions

Individual test options assume you are familiar with the terms in Table 2-4.

Table 2-4 Terms for Comparing Image Tolerances

Term Description

abs_error This value is computed as the absolute value of the difference
between the reference (ref) and image (im) pixel values:
abs_error = abs(im - ref)
If the value of abs_error is greater than abs_error_max,
abs_error, position, new image, and reference image values are
reported.

rel_error This value is computed using neighborhood average:

rel_error = abs_error/(neighborhood_average + 1.0)

If the value of rel_error is greater than rel_error_max, rel_error,
abs_error_at_rel_error_max, (x,y) position, image, and
reference pixel values are reported.

abs_error and rel_error are reported to the detail file with (x,y)
position up to MAXERRORS. MAXERRORS is a constant currently
set to 64*64*64*4.

Running Test Programs in the XIL Test Suite 31

2

Table 2-5 describes the individual test options.

Table 2-5 Individual Test Options

Option Description

-abs_tol value Uses value, a floating point number, to compare the absolute
pixel value of an image and a reference image to within a
specified absolute degree of tolerance. This option generally is
useful for determining the success or failure of image
comparisons with hardware acceleration. Test failure occurs if
abs_error ever exceeds -abs_tol value.

-detail_info dir Uses the directory dir to report the first MAXERRORS errors for
abs_error and rel_error.

-nbhd n Uses the unsigned int n to set the neighborhood size
parameter for use with the -rel_tol option, so that the base
value is the intensity average for a nbhd -sized as
(2n+1)x(2n+1) and centered on (x,y). This option helps prevent
small values for the reference image (x,y) from causing
inordinately large values for rel_error. It is useful for
improving -rel_tol for a test generating a large number of
errors due to a wide range of pixel-value differences or for
fine-tuning a previous test run using -rel_tol .
Recommended values: 0, 1 (default is 0).

-rel_tol value Uses value, a floating point number, to normalize abs_error to
the reference pixel value or neighborhood average of the
reference pixel value. Neighborhood averaging prevents
unusually small base values from causing rel_error to
artificially exceed tolerance values. This option is very useful
for testing XIL functions involving geometric transformations,
multiplications (for example, convolution), and
decompression. The normalization is not to any fixed absolute
scale (such as a percentage value), since the ratio base is added
to 1.0 before dividing to prevent division by 0. The exact level
of -rel_tol has no significance other than for relative
comparison purposes. Test failure occurs if rel_error ever
exceeds the value of -rel_tol .

Combining -abs_tol and -rel_tol provides added
flexibility when comparing images, because it requires both
options to exceed tolerances simultaneously to determine a
test failure. This technique filters spurious abs_error or
rel_error values by the other option, allowing a stronger
comparison criterion to be used.

32 XIL Test Suite User’s Guide—March 1997

2

Note – The Xilch options -create_signatures and -test_signatures
have no meaning when used with the tolerance options described in this
section.

Using the Tolerance Options

Individual tests are usually executed with the -detail_info dir option as
well as one or more of the following Xilch harness options:

• -create_data
• -m file
• -ref_directory dir
• -test_data
• -v

-save_images dir Uses the dir directory to save the compared images, the verify
test image, the absolute error image, and the absolute error
threshold image. This option allows the tester to visualize test
images using an image visualization tool or otherwise
manipulate test objects (CIS, LUT) beyond the test program. It
returns information similar to what the -detail_info option
returns.

This option is used only in VERIFY run mode. It is added to
all tests using the -abs_tol option.

Conventions for naming files are:
v. n -verify test image
c0. n -compare image0
c1. n -compare image1
e. n -absolute error image
t. n -absolute error threshold image
s. n -default test image
where n is the sequential numbering of the file in the save
directory determined by the counter for the image type.

-v This option is an enhancement of the Xilch verbose option
(described in Table 2-3). It reports max_abs_error (-abs_tol),
max_rel_error (-rel_tol), rel_error_at_abs_error_max, and
abs_error_at_max_rel_error (-abs_tol and -rel_tol).

Table 2-5 Individual Test Options (Continued)

Option Description

Running Test Programs in the XIL Test Suite 33

2

Because the -detail_info dir option is an individual test option rather than
a Xilch harness option, it must be set on an individual command line for each
test you run. This option allows you to specify a separate directory name for
each test to avoid overwriting the detail results files.

Note – Overwriting a results file still occurs for the same test when that test is
re-run.

Invocation of A Single Test From A Command Line
This example runs the affine_test on general interpolation for byte images
and saves the data so that the results can be viewed:

affine_test -v -test_data -i general \

-detail_info /export/xilch/logs/detail/general \

-save_images /export/xilch/logs/err_imgs/general

Note – The ‘\’ indicates continuation of the command line.

The detail_info directory (/export/xilch/logs/detail/general in
this example) gathers a text file report of the errors. The save_images
directory (/export/xilch/logs/err_imgs/general) creates the *.vff
images for visual inspection.

Using a Test List File
If you want to run several individual tests, you can use the tolerance options
with the Xilch -f option, for example

% Xilch -f my_testlist

In this case, the my_testlist file would contain a list of the individual tests
to be executed with the tolerance options and their values. The format of each
test would be the same as if you had invoked that individual test from the
command line. See “Invocation of A Single Test From A Command Line” for
an example of how an individual test entry might appear in the my_testlist
file.

34 XIL Test Suite User’s Guide—March 1997

2

35

Writing Test Programs in the XIL
Test Suite Environment 3

This chapter provides the information you need to write test programs to
verify new functionality (for example, a new molecule) that you have added to
the XIL library. For information on how to add functionality to the XIL library,
see the XIL Device Porting and Extensibility Guide.

Example Test Program
As described in Chapter 2, “Running Test Programs in the XIL Test Suite,” all
test programs use calls to the XIL library and to the XIL Test Suite library
(libts) to verify that test programs produce signatures or data identical to the
stored reference signatures or data. The functions available in libts are
described in detail later in this chapter.

The simple example of a test program in Code Example 3-1 gives you an idea
of what such a program should do. The program image_example_test.c
tests the XIL library function xil_add() . The full text of this program is in
Appendix B, “Example Test Program.” The program itself is located in the
$XILCHHOME/../src/tests/examples directory.

36 XIL Test Suite User’s Guide—March 1997

3

After the usual declarations (notice that a tolerance of 0.0 is specified, meaning
that results from the test program must match the stored reference), the first
thing any test program must do is open the XIL library with xil_open() and
the XIL Test Suite library with ts_init() , and start the test case with
ts_start_test_case() .

Code Example 3-1 Test Program Example: Initializing the Libraries

#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <xil/xil.h>
#include <xilch/ts.h>

main (
int argc,
char**argv)
{
 int i;
 int errors = 0;
 int total_errors = 0;
 char *specfile = NULL;
 float tol = 0.0;
 XilImage src1, src2, dst1;
 XilSystemState xil_State;

 /*
 * process command line arguments
 */

 for (i = 1; i < argc; i++) {
if (!strcmp (argv[i], “-m”)) {

specfile = argv[++i];
}
if (!strcmp (argv[i], “-tol”)) {

tol = atof (argv[++i]);
}

 }

 /*
 * initialize XIL and the test suite library
 */

Writing Test Programs in the XIL Test Suite Environment 37

3

Next, the program retrieves the images it needs for testing with calls to
ts_get_src[123]_image and ts_get_dst[123]_image .

These functions retrieve test images as specified in the test matrix file
specfile . If a file name had not been specified (specfile == NULL), the
default test matrix file, xilch_tests , would have been used.

After a call to the XIL function you are testing (in this case, xil_add()), the
next step is to verify your results with a call to ts_verify() . When the test
program gets to the ts_verify() call, the test signature or data is compared
to the stored reference.

This part of the program does one other thing. It contains a loop to call a series
of images, rather than just one set of images. The loop continues to retrieve
images from specfile , the test matrix file, until all the images in that file
have been retrieved.

Code Example 3-2 contains the loop with the call to ts_verify() . Note that
the function’s comment parameter does not have to be NULL. (This parameter
puts a comment in the log file.)

 if ((xil_State = xil_open ()) == (XilSystemState) NULL) {
fprintf (stderr, “Error initializing XIL\n”);
exit (1);

 }

 if (ts_init (&argc, argv, xil_State) == TS_FAILURE) {
exit (1);

 }
ts_start_case(“image_example_test”);

 /*
 * get some test images
 */

 src1 = ts_get_src1_image (specfile);
 src2 = ts_get_src2_image (specfile);
 dst1 = ts_get_dst1_image (specfile);

Code Example 3-1 Test Program Example: Initializing the Libraries (Continued)

38 XIL Test Suite User’s Guide—March 1997

3

Code Example 3-2 Test Program Example: Looping over Images in the
Test Matrix File

/*
 * loop over the images in the test matrix file
 */

 while ((src1 != (XilImage) NULL) &&
 (src2 != (XilImage) NULL) &&
 (dst1 != (XilImage) NULL)) {

/*
 * do the operation(s), add two images into a destination
 */

xil_add (src1, src2, dst1);

/*
 * verify the results
 */

errors = ts_verify (“add”, NULL, dst1, tol, NULL);

if (errors != 0) {

/*
* save the src and dst images for further study
*/

ts_save (src1, “add_src1”);
ts_save (src2, “add_src2”);
ts_save (dst1, “add_dst”);

total_errors++;

exit (total_errors);
}

/*
 * get rid of the images
 */

ts_destroy (src1);

Writing Test Programs in the XIL Test Suite Environment 39

3

The final part of the program ends the test case, and closes the XIL Test Suite
library and the XIL library.

As you have seen, this example program gives you a basic idea of the kinds of
things you need to include in test programs you might develop. These include:

1. Calls to initialize the relevant libraries.

2. Calls to retrieve the images that will be used.

3. Calls to the functionality you are testing.

4. Calls to ts_verify() to compare the results of your test program to the
stored reference.

ts_destroy (src2);
ts_destroy (dst1);

/*
 * get some more test images
 */

src1 = ts_get_src1_image (specfile);
src2 = ts_get_src2_image (specfile);
dst1 = ts_get_dst1_image (specfile);

 }

 /*
 * return the total number of errors (required) and close XIL
 */
 ts_end_test_case();
 xil_close (xil_State);

 total_errors = ts_end ();

 exit (total_errors);
}

Code Example 3-2 Test Program Example: Looping over Images in the
Test Matrix File (Continued)

40 XIL Test Suite User’s Guide—March 1997

3

5. Calls to close the relevant libraries.

Available XIL Test Suite Library Functions

The XIL Test Suite library provides many more functions than the ones used in
this example program.Table 3-1 lists all the functions available in libts by
function category. Syntax and usage of these functions are described in detail
at the end of this chapter.

Table 3-1 Functions Available in the XIL Test Suite Library (libts) (1 of 3)

Function Category Function Name

General Functions ts_init()

ts_end()

ts_benchmark_start()

ts_benchmark_end()

ts_expect_errors()

ts_log()

ts_start_test_case()

ts_end_test_case()

Image Functions ts_verify()

ts_getref()

ts_compare()

ts_image_gen()

ts_load()

ts_save()

ts_checksum()

ts_get_src1_image()
ts_get_src2_image()
ts_get_src3_image()
ts_get_dst1_image()
ts_get_dst2_image()
ts_get_dst3_image()

ts_get_complex_roi()

Writing Test Programs in the XIL Test Suite Environment 41

3

ts_destroy()

ts_display()

Lookup Table Functions ts_lookup_verify()

ts_lookup_verify_contents()

ts_lookup_getref()

ts_lookup_compare()

ts_lookup_compare_contents()

ts_lookup_contents_checksum()

ts_lookup_load()

ts_lookup_save()

CIS Functions ts_cis_verify()

ts_cis_getref()

ts_cis_compare()

ts_cis_checksum()

ts_cis_load()

ts_cis_save()

ts_cis_destroy()

Float and Integer Functions ts_float_verify()

ts_float_getref()

ts_float_load()

ts_float_save()

ts_int_verify()

ts_int_getref()

ts_int_load()

ts_int_save()

Table 3-1 Functions Available in the XIL Test Suite Library (libts) (2 of 3)

Function Category Function Name

42 XIL Test Suite User’s Guide—March 1997

3

Other Useful Examples

In the same directory with image_test_example.c are two other examples
that might be useful:

• $XILCHHOME/../src/tests/examples/example_bench.c

A simple benchmarking program

• $XILCHHOME/../src/tests/examples/Makefile

An example Makefile

The examples subdirectory also includes the source code for two typical test
programs: fax_test.c and rotate_test.c .

See the section “Writing and Using Benchmarking Programs” for details on
benchmarking programs.

After You Write Your Test Program

When you write your own test program, you cannot use the references shipped
with the XIL Test Suite to verify XIL functions; you must create your own
references that correspond to the new test program.

Unless you use the image data provided in the xilch_tests test matrix file,
you will need to create your own test matrix for your test program to use. This
data must conform to the test matrix file format, which is described in
Chapter 2, “Running Test Programs in the XIL Test Suite.”

After you have created your test matrix file and written your test program, you
should run your program alone (not under Xilch) to debug it. This procedure
is described in Chapter 2, “Running Test Programs in the XIL Test Suite.”

Equivalence Testing
Functions

ts_automatic_tests()

ts_verify_needed()

ts_child_check()

ts_roi_check()

Table 3-1 Functions Available in the XIL Test Suite Library (libts) (3 of 3)

Function Category Function Name

Writing Test Programs in the XIL Test Suite Environment 43

3

To build your test program, you must link with the following libraries: libts,
libfileio, libvff, libxil , and libm . For an example, see the
Makefile in $XILCHHOME/../src/tests/examples .

Writing and Using Benchmarking Programs
You can write benchmarking programs with XIL Test Suite library functions
that will measure the performance, in frames per second, of a given XIL
function. As mentioned earlier, source for an example benchmarking program
is located in $XILCHHOME/../src/tests/examples/example_bench.c .

Here’s the code for a simple benchmarking function that tests the performance
of xil_threshold ():

The libts function ts_benchmark_start() is used to get the starting time
of the program, and ts_benchmark_end() gets the time the program ended,
and calculates how many frames per second xil_threshold() takes to run.

You get more accurate results if you specify a fairly high number for iterations,
because this lessens the impact of program overhead. You specify the number
of iterations on the command line. The xil_sync() call is needed to prevent
the operation from being deferred.

/*
 * benchmark loop
 */
ts_benchmark_start (“threshold”);
for (j = 0; j < iterations; j++) {

xil_threshold (src1, src1, lowvalue, highvalue, mapvalue);
xil_sync (src1);

}
ts_benchmark_end (iterations, comment);

44 XIL Test Suite User’s Guide—March 1997

3

Running Your Benchmarking Program

You can run your benchmarking program in several ways. The simplest way is
to run it outside of Xilch . For example, if your program name were bench
and you wanted to run it for 20 iterations, you would type the following at the
command line:

% bench -I 20

The output gives you the performance of the function that bench tests.

Or you could run your program through Xilch . To do this, type:

% Xilch -t “bench -I 20”

The output gives you the performance of the function that bench tests.

Running your benchmarking programs through Xilch gives you one
advantage over running the programs outside of Xilch —you can create a
testlist file containing all your benchmarking programs and use the -f Xilch
option to run that file. For example, suppose you had a testlist file called
benches that contained your benchmarking programs. To run them all
through Xilch , type:

% Xilch -f benches

Of course, you could vary the number of iterations by specifying them for
individual programs in your testlist file.

Using Equivalence Testing Functions
The XIL Test Suite library provides a set of functions that enables the test
writer to test certain XIL features (such as child images and ROIs) without
requiring any visual verification. These functions are:

• ts_child_check()
• ts_roi_check()
• ts_automatic_tests()

These functions produce a “reference result” and a “test result.” (These
functions do not test against reference signatures or data). These two results
should be identical if the XIL feature under test is working correctly. These

Writing Test Programs in the XIL Test Suite Environment 45

3

functions use the FUNCFORMAT structure to receive descriptions of XIL
operations. See Appendix C, “Equivalence Testing Example,” for an example of
how to use these functions.

The Test Suite Library
The Test Suite library, libts , provides functions to aid the test program writer
in activities such as verifying images, generating test images, and logging test
information. These functions are divided into categories (general, image,
lookup table, CIS, float and integer, and equivalence testing functions) and are
described on the following pages.

Include Files

The file <xilch/ts.h > must be included after <xil/xil.h >.

General Functions

ts_init

int ts_init (int * argc, char ** argv, XilSystemState xil_state);

Description
ts_init() initializes the Test Suite library. It handles the command line
arguments specific to the Test Suite library, which include the options -f , -r ,
and -t . This function must be called before any other Test Suite functions and
after xil_open(3) has been called. If it is successful, ts_init() returns
TS_SUCCESS. Otherwise, it returns TS_FAILURE.

46 XIL Test Suite User’s Guide—March 1997

3

Parameters

ts_end

int ts_end ();

Description
ts_end() releases the Test Suite library and all of its resources. It should be
called at the end of the test program. If it is successful, ts_end() returns
TS_SUCCESS; otherwise, it returns TS_FAILURE.

Note – This function does not destroy images when it is called. You must call
ts_destroy() to destroy images.

ts_benchmark_start

int ts_benchmark_start (char * funcname);

Description
ts_benchmark_start() marks the beginning of benchmark code and starts
a timer. Appropriate entries are made in the log file. This function returns the
time it started.

argc The number of command-line arguments the program
was invoked with.

argv A pointer to an array of character strings that contain the
arguments, one per string.

xil_state The system state created when xil_open is invoked

Writing Test Programs in the XIL Test Suite Environment 47

3

Parameters

ts_benchmark_end

int ts_benchmark_end (int iterations, char * comment);

Description
ts_benchmark_end() marks the end of benchmark code. Appropriate entries
are made in the log file. The function ts_benchmark_end() returns the
elapsed time since the last call to ts_benchmark_start() .

Parameters

ts_expect_errors

void ts_expect_errors (int linenum, char * error_str, char
* error_str, ..., NULL);

Description
ts_expect_errors() installs an XIL error handler and begins looking for
the “expected” errors to occur.

funcname A string containing the name of the function being
benchmarked.

iterations The number of command-line arguments the program
was invoked with.

comment A string containing a comment written to the log file if
verbose mode is on. The string can be NULL.

48 XIL Test Suite User’s Guide—March 1997

3

Parameters
This function accepts a variable number of arguments terminated by a NULL.

ts_log

int ts_log (char * comment);

Description
ts_log() writes the supplied comment to the log file if verbose mode is on. It
returns TS_SUCCESS if it is successful; otherwise, it returns TS_FAILURE.

Parameters

ts_start_test_case

int ts_start_test_case (char * test_case_name);

Description
ts_start_test_case() starts a test case.

Parameters

linenum The current line number. Usually this parameter is the
macro __LINE__ .

error_str XIL error strings that identify expected errors. These
strings are of the form di -number.

comment A string containing a comment written to the log file if
verbose mode is on. The string can be NULL.

test_case_name The name of the test case. The name must be unique in
the Test Suite.

Writing Test Programs in the XIL Test Suite Environment 49

3

ts_end_test_case

void ts_end_test_case ();

Description
ts_end_test_case() ends a test case.

Image Functions

ts_verify

int ts_verify (char * funcname, char * comment, XilImage im,
float tolerance, char * ref_name);

Description
ts_verify() verifies a test program against stored reference signatures or
data. This function returns the number of differences it finds.

Note – As a debugging aid, the environment variable XILCHSAVE can be used
to save the two images that were verified against each other and the last source
images retrieved via ts_get_src[123]_image() . The format of XILCHSAVE
is a list of numbers separated by a colon, where the numbers represent the
images that are a result of calls to ts_verify() that you want to save. The
count starts at 0. For example, if you had 5 calls to ts_verify() and you
wanted to save the images from the first and fourth calls, XILCHSAVE would
look like this: 0:3.

50 XIL Test Suite User’s Guide—March 1997

3

Parameters

ts_getref

XilImage ts_getref ();

Description
ts_getref() retrieves reference data, if any. It returns NULL if there is no
reference data. The reference data it retrieves is the data named by the current
default reference name—the reference name used by the most recent call to
ts_*_verify() in the current test case. See ts_verify() for an explanation

funcname A string containing the name of the function that
generated the image to be verified.

comment A string containing a comment written to the log file if
verbose mode is on. It can be NULL.

im The name of the image to be verified.

tolerance Specifies a tolerance to be used in the comparison.

ref_name Specifies the reference name that the library uses. If
ref_name is NULL, the library uses a default name for the
reference. Explicit naming is useful when a variable
number of verifications is performed within a single test
case or when ts_getref() is used (see ts_getref()).
ref_name must be unique within the test case.

The library assigns default reference names in the
following way. The call to ts_start_ref() initializes
the default reference name to “r.0.” Each call to
ts_*_verify() that has NULL specified as ref_name
will increment the default reference name. For example,
the reference name used in the first call to
ts_*_verify() that has NULL specified as ref_name is
“r.1” and the second is “r.2.” When you supply a
reference name, you should not specify a default name.
When Xilch is run in verbose mode, reference names
are printed to the log file.

Writing Test Programs in the XIL Test Suite Environment 51

3

of reference names. If you call ts_getref() before calling ts_verify() in
the current test case, NULL is returned. You cannot call ts_getref() outside a
test case.

ts_compare

int ts_compare (XilImage im1, XilImage im2, float tolerance);

Description
ts_compare() compares two images. It returns the number of differences it
finds.

Parameters

ts_image_gen

int ts_image_gen (XilImage im, int type, int * value);

Description
ts_image_gen() generates an image from a set of predefined image types.

im1 and im2 The names of the images to be compared.

tolerance Specifies a tolerance to be used in the comparison.

52 XIL Test Suite User’s Guide—March 1997

3

Parameters

ts_load

XilImage ts_load (char * filename);

Description
ts_load() loads the image from a file and returns a handle to that image if
successful. Otherwise, it returns NULL. Currently, this function only handles
images in .vff format. This is an unsupported, Sun-internal file format. The file
format accepted by this function may change in future releases.

Parameters

ts_save

int ts_save (XilImage im, char * filename);

Description
ts_save() saves an image into a file. Images are saved in .vff format. If this
function runs successfully, it returns the value 0 (zero); otherwise, it returns the
value 1.

im The previously created image handle. ts_image_gen()
returns TS_SUCCESS if it is successful; otherwise, it
returns TS_FAILURE.

type One of the following: TS_RANDOM, TS_CONSTANT, or
TS_RAMP.

value A pointer to a vector that specifies the random number
seed for TS_RANDOM, or the constant value for
TS_CONSTANT. value is not used with TS_RAMP. This
vector should match in size with the number of bands in
the image im.

filename The name of the file from which ts_load() loads the
image.

Writing Test Programs in the XIL Test Suite Environment 53

3

Parameters

ts_checksum

unsigned int ts_checksum (XilImage im);

Description
ts_checksum() returns a 32-bit CRC code for an image.

Parameters

ts_get_src[123]_image and
ts_get_dst[123]_image

XilImage ts_get_src1_image (char * filename);
XilImage ts_get_src2_image (char * filename);
XilImage ts_get_src3_image (char * filename);
XilImage ts_get_dst1_image (char * filename);
XilImage ts_get_dst2_image (char * filename);
XilImage ts_get_dst3_image (char * filename);

Description
ts_get_src[123]_image() and ts_get_dst[123]_image retrieve test
images from a test matrix file. ts_get_src[123]_image and
ts_get_dst[123]_image return images each time they are called until there
are no more images specified in the test matrix file, at which time they return
NULL. The next call after a returned NULL restarts the cycle of images (in
other words, a return of NULL signals the end of a cycle).

im The name of the image being saved.

filename The name of the file into which ts_save() saves the
image.

im The name of the image on which to perform a checksum
calculation.

54 XIL Test Suite User’s Guide—March 1997

3

Parameters

ts_get_complex_roi

XilRoi ts_get_complex_roi (int xsize, int ysize);

Description
ts_get_complex_roi returns a ROI object. After you have finished using the
ROI, use the XIL function xil_roi_destroy() to delete the ROI.

Parameters

ts_destroy

int ts_destroy (XilImage im);

Description
Use this function to destroy any image created by the Test Suite library,
because it also destroys the parent image if the passed image is a child image.
If it is successful, ts_destroy() returns TS_SUCCESS. Otherwise, it returns
TS_FAILURE.

Parameters

ts_display

void ts_display (XilImage im);

filename Specifies the name of the test matrix file to use. If filename
is NULL, then the default test matrix file xilch_tests
is used.

xsize and ysize Dimensions of the image to which you want to attach the
ROI.

im Name of the image to destroy.

Writing Test Programs in the XIL Test Suite Environment 55

3

Description
This function displays the image specified.

Parameters

Lookup Table Functions

ts_lookup_verify

int ts_lookup_verify (char * funcname, char * comment,
XilLookup lut, float tolerance, char * ref_name);

Description
ts_lookup_verify() verifies a lookup table (LUT) generated by the test
program against the corresponding stored reference. It returns the number of
differences it finds. This function is sensitive to the position of the entries in
colormaps. In other words, if entry [i] in one colormap is BGR, then entry [i] in
the other colormap must also be BGR. Otherwise, the function returns the
differences resulting from entry position differences.

See also ts_lookup_verify_contents() .

im Name of the image to display.

56 XIL Test Suite User’s Guide—March 1997

3

Parameters

ts_lookup_verify_contents

int ts_lookup_verify_contents (char * funcname, char * comment,
XilLookup lut, float tolerance, char * ref_name)

Description
ts_lookup_verify_contents() verifies a lookup table (LUT) generated by
the test program against the corresponding stored reference. It returns the
number of differences it finds. This function is not sensitive to the position of
the entries in colormaps. In other words, if entry [i] is BGR and entry [j] is bgr

funcname A string containing the name of the function that
generated the LUT to be verified.

comment A string containing a comment written to the log file if
verbose mode is on. It can be NULL.

lut The LUT to be verified.

tolerance Specifies a tolerance to be used in the comparison. For an
exact comparison, use a tolerance of 0.0.

ref_name Specifies the reference name that the library uses. If
ref_name is NULL, the library uses a default name.
Explicit naming is useful when a variable number of
verifications is performed within a single test case or
when ts_lookup_getref() is used. ref_name must be
unique within the test case.

The library assigns default reference names in the
following way. The call to ts_start_ref() initializes
the default reference name to “r.0.” Each call to
ts_*_verify() that has NULL specified as ref_name
increments the default reference name. For example, the
reference name used in the first call to ts_*_verify()
that has NULL specified as ref_name is “r.1” and the
second is “r.2.” When you supply a reference name, you
should not specify a default name. When Xilch runs in
verbose mode, reference names are printed to the log file.

Writing Test Programs in the XIL Test Suite Environment 57

3

in one colormap, and entry [i] is bgr and entry [j] is BGR in the other colormap,
and all other entries in the two colormaps match, then this function will not
find any differences. ts_lookup_verify() would find differences in this
case.

Parameters

funcname A string containing the name of the function that
generated the LUT to be verified.

comment A string containing a comment written to the log file.

lut The LUT to be verified.

tolerance Specifies a tolerance to be used in the comparison. For an
exact comparison, use a tolerance of 0.0.

ref_name Specifies the reference name that the library uses. If
ref_name is NULL, the library uses a default name.
Explicit naming is useful when a variable number of
verifications is performed within a single test case or
when ts_lookup_getref() is used. ref_name must be
unique within the test case.

The library assigns default reference names in the
following way. The call to ts_start_ref() initializes
the default reference name to “r.0.” Each call to
ts_*_verify() that has NULL specified as ref_name
increments the default reference name. For example, the
reference name used in the first call to ts_*_verify()
that has NULL specified as ref_name is “r.1” and the
second is “r.2.” When you supply a reference name, you
should not specify a default name. When Xilch runs in
verbose mode, reference names are printed to the log file.

58 XIL Test Suite User’s Guide—March 1997

3

ts_lookup_checksum

unsigned int ts_lookup_checksum (XilLookup lut);

Description
ts_lookup_checksum() returns a 32-bit CRC code for a LUT. This function
performs a checksum calculation. Unlike
ts_lookup_contents_checksum() , it does not produce identical CRC
codes for lookups that have the same entries but with different ordering. The
orderings must be the same to get the same CRC codes.
ts_lookup_checksum() corresponds to ts_lookup_verify() .

Parameters

ts_lookup_contents_checksum

unsigned int ts_lookup_contents_checksum (XilLookup lut);

Description
ts_lookup_contents_checksum() returns a 32-bit CRC code for a LUT.
This function sorts the lookup table specified and then performs a checksum
calculation. It produces identical CRC codes for lookups that have the same
entries but with different ordering. ts_lookup_contents_checksum()
corresponds to ts_lookup_verify_contents() .

Parameters

lut The LUT on which to perform a checksum calculation.

lut The LUT on which to perform a checksum calculation.

Writing Test Programs in the XIL Test Suite Environment 59

3

ts_lookup_getref

XilLookup ts_lookup_getref ();

Description
ts_lookup_getref() retrieves reference data, if any. It returns NULL if there
is no reference data. The reference data it retrieves is the data named by the
current default reference name—the reference name used by the most recent
call to ts_*_verify() in the current test case. See ts_verify() for an
explanation of reference names. If you call ts_lookup_getref before calling
ts_lookup_verify in the current test case, NULL is returned. You cannot call
ts_lookup_getref outside a test case.

ts_lookup_compare

int ts_lookup_compare (XilLookup lut1, XilLookup lut2, float
tolerance);

Description
ts_lookup_compare() compares two lookup tables. It returns the number of
differences it finds. This function is sensitive to the position of the entries in
colormaps. In other words, if entry [i] in one colormap is BGR, then entry [i] in
the other colormap must also be BGR. Otherwise, the function returns the
differences resulting from entry position differences.

See also ts_lookup_compare_contents() .

Parameters

lut1 and lut2 The LUTs to compare.

tolerance Specifies a tolerance to use in the comparison.

60 XIL Test Suite User’s Guide—March 1997

3

ts_lookup_compare_contents

int ts_lookup_compare_contents (XilLookup lut1, XilLookup
lut2, float tolerance);

Description
ts_lookup_compare_contents() compares two lookup tables. It returns
the number of differences it finds. This function is not sensitive to the position
of entries in colormaps. In other words, if entry [i] is BGR and entry [j] is bgr in
one colormap, and entry [i] is bgr and entry [j] is BGR in the other colormap,
and all other entries in the two colormaps match, then this function will not
find any differences. ts_lookup_compare() would find differences in this
case.

Parameters

ts_lookup_load

XilLookup ts_lookup_load (char * filename);

Description
ts_lookup_load() loads the lookup table (LUT) from a file and returns a
handle to that LUT if it is successful. Otherwise, it returns NULL.

Parameters

lut1 and lut2 The LUTs to compare.

tolerance Specifies a tolerance to use in the comparison.

filename The name of the file from which ts_lookup_load()
loads the LUT.

Writing Test Programs in the XIL Test Suite Environment 61

3

ts_lookup_save

int ts_lookup_save (XilLookup lut, char * filename);

Description
ts_lookup_save() saves a lookup table into a file. If this function runs
successfully, it returns the value 1. Otherwise, it returns the value 0 (zero).

Parameters

CIS Functions

ts_cis_verify

int ts_cis_verify (char * funcname, char * comment, XilCis cis,
float tolerance, char * ref_name);

Description
ts_cis_verify() verifies a compressed image sequence (CIS) generated by
the test program against the corresponding stored reference. This function
returns the number of differences it finds.

Parameters

lut The name of the lookup table being saved.

filename The name of the file into which ts_lookup_save()
saves the LUT.

funcname A string containing the name of the function that
generated the CIS to verify.

comment A string containing a comment written to the log file if
verbose mode is on. It can be NULL.

cis The CIS to verify.

tolerance Specifies a tolerance to use in the comparison.

62 XIL Test Suite User’s Guide—March 1997

3

ts_cis_getref

XilCis ts_cis_getref ();

Description
ts_cis_getref() retrieves the named reference data, if any. It returns NULL
if there is no reference data. The reference data it retrieves is the data named by
the current default reference name—the reference name used by the most
recent call to ts_*_verify() in the current test case. See ts_verify() for
an explanation of reference names. If you call ts_cis_getref() before
calling ts_cis_verify() in the current test case, NULL is returned. You
cannot call ts_cis_getref() outside a test case.

ref_name Specifies the reference name that the library uses. If
ref_name is NULL, the library uses a default name.
Explicit naming is useful when a variable number of
verifications is performed within a single test case or
when ts_cis_getref() is used. ref_name must be
unique within the test case.

The library assigns default reference names in the
following way. The call to ts_start_ref() initializes
the default reference name to “r.0.” Each call to
ts_*_verify() that has NULL specified as ref_name
will increment the default reference name. For example,
the reference name used in the first call to
ts_*_verify() that has NULL specified as ref_name is
“r.1” and the second is “r.2.” When you supply a
reference name, you should not specify a default name.
When Xilch is run in verbose mode, reference names
are printed to the log file.

Writing Test Programs in the XIL Test Suite Environment 63

3

ts_cis_compare

int ts_cis_compare (XilCis cis1, XilCis cis2, float tolerance);

Description
ts_cis_compare() compares two CISs. This function returns the number of
differences it finds.

Parameters

ts_cis_checksum

unsigned int ts_cis_checksum (XilCis cis);

Description
ts_cis_checksum() returns a 32-bit CRC code for a CIS.

Parameters

ts_cis_load

XilCis ts_cis_load (char * cis_type, char * filename, int partial,
int copy, int nbytes);

Description
ts_cis_load() loads the compressed image sequence (CIS) from a file and
returns a handle to that CIS if successful. Otherwise, it returns NULL.

cis1 and cis2 The CISs to be compared.

tolerance Specifies a tolerance to be used in the comparison.

cis The CIS on which to perform a checksum calculation.

64 XIL Test Suite User’s Guide—March 1997

3

Parameters

ts_cis_save

int ts_cis_save (XilCis cis, char * filename);

Description
ts_cis_save saves the compressed image sequence (CIS) into a file. If this
function runs successfully, it returns the value 1. Otherwise, it returns the
value 0 (zero). If ts_cis_save() runs when verbose mode is on, it prints the
number of frames and number of bytes it saved.

Parameters

cis_type A string that describes the type of compression, for
example, “Mpeg1” or “JpegLL.”

filename The name of the file from which ts_cis_load() loads
the CIS.

partial Indicates that there are partial frames in the bitstream.

copy Loads a copy of the CIS when the value is 1. When the
value is 0 (zero), it returns a pointer to the CIS.

nbytes Specifies the number of bytes the function loads. This
parameter needs to be specified only if the function is
loading partial bitstreams.

cis The CIS to save.

filename The name of the file into which ts_cis_save() saves
the CIS.

Writing Test Programs in the XIL Test Suite Environment 65

3

ts_cis_destroy

int ts_cis_destroy (XilCis cis)

Description
ts_cis_destroy() destroys a CIS. You should use this function only to
destroy a CIS that was created by ts_cis_load() . If this function runs
successfully, it returns the value 1. Otherwise, it returns the value 0 (zero).

Parameters

Float and Integer Functions

ts_float_verify

int ts_float_verify (char * funcname, char * comment,
float * fvec, int vecsize, float tolerance, char * ref_name);

Description
ts_float_verify() verifies a floating point vector generated by the test
program against the corresponding stored reference. This function returns the
number of differences it finds.

Parameters

cis The CIS to destroy.

funcname A string containing the name of the function that
generated the floating point vector to verify.

comment A string containing a comment written to the log file if
verbose mode is on. It can be NULL.

fvec A pointer to the floating point vector to be verified.

66 XIL Test Suite User’s Guide—March 1997

3

ts_float_getref

float *ts_float_getref (unsigned int *);

Description
ts_float_getref() returns the number of items in the array of the
unsigned int argument pointer. You cannot call ts_float_getref() outside
a test case.

ts_float_load

float *ts_float_load (char * filename, unsigned int * nvalues);

vecsize The size of the floating point vector.

tolerance Specifies a tolerance to use in the comparison.

ref_name Specifies the reference name that the library will use. If
ref_name is NULL, the library uses a default name.
Explicit naming is useful when a variable number of
verifications is performed within a single test case or
when ts_float_getref() is used. ref_name must be
unique within the test case.

The library assigns default reference names in the
following way. The call to ts_start_ref() initializes
the default reference name to “r.0.” Each call to
ts_*_verify() that has NULL specified as ref_name
will increment the default reference name. For example,
the reference name used in the first call to
ts_*_verify() that has NULL specified as ref_name is
“r.1” and the second is “r.2.” When you supply a
reference name, you should not specify a default name.
When Xilch is run in verbose mode, reference names
are printed to the log file.

Writing Test Programs in the XIL Test Suite Environment 67

3

Description
ts_float_load() loads a floating point vector from a file and returns a
pointer to the float if successful. Otherwise, it returns NULL.

Parameters

ts_float_save

int ts_float_save (float * vector, unsigned int nvalues,
char * filename);

Description
ts_float_save() saves a floating point vector into a file. If this function
runs successfully, it returns the value 1; otherwise, it returns the value 0 (zero).

Parameters

ts_int_verify

int ts_int_verify (char * funcname, char * comment, int * ivec,
int vecsize, float tolerance, char * ref_name);

Description
ts_int_verify() verifies an integer vector generated by the test program
against the corresponding stored reference. This function returns the number
of differences it finds.

filename The name of the file from which ts_float_load()
loads the floating point vector.

nvalues The number of values in the vector.

vector A pointer to the floating point vector.

nvalues The number of values in the vector.

filename The name of the file into which ts_float_save()
saves the floating point vector.

68 XIL Test Suite User’s Guide—March 1997

3

Parameters

ts_int_getref

int *ts_int_getref (unsigned int *);

Description
ts_int_getref() returns the number of items in the array of the unsigned
int argument pointer. You cannot call ts_int_getref() outside a test case.

funcname A string containing the name of the function that
generated the integer vector to be verified.

comment A string containing a comment written to the log file if
verbose mode is on. It can be NULL.

ivec A pointer to the integer vector to be verified.

vecsize The size of the integer vector.

tolerance Specifies a tolerance to be used in the comparison.

ref_name Specifies the reference name that the library will use. If
ref_name is NULL, the library uses a default name.
Explicit naming is useful when a variable number of
verifications is performed within a single test case or
when ts_int_getref() is used. ref_name must be
unique within the test case.

The library assigns default reference names in the
following way. The call to ts_start_ref() initializes
the default reference name to “r.0.” Each call to
ts_*_verify() that has NULL specified as ref_name
will increment the default reference name. For example,
the reference name used in the first call to
ts_*_verify() that has NULL specified as ref_name is
“r.1” and the second is “r.2.” When you supply a
reference name, you should not specify a default name.
When Xilch is run in verbose mode, reference names
are printed to the log file.

Writing Test Programs in the XIL Test Suite Environment 69

3

ts_int_load

int *ts_int_load (char * filename, unsigned int * nvalues);

Description
ts_int_load() loads an integer vector from a file and returns a pointer to
the int if successful. Otherwise, it returns NULL.

Parameters

ts_int_save

int ts_int_save (int * vector, unsigned int nvalues,
char * filename);

Description
ts_int_save() saves an integer vector into a file. If this function runs
successfully, it returns the value 1; otherwise, it returns the value 0 (zero).

Parameters

filename The name of the file into which ts_int_load() loads
the integer vector.

nvalues The number of values in the integer vector.

vector A pointer to the integer vector.

nvalues The number of values in the integer vector.

filename The name of the file into which ts_int_save() saves
the integer vector.

70 XIL Test Suite User’s Guide—March 1997

3

Equivalence Testing Functions

ts_child_check

int ts_child_check (char * comment, FUNCFORMAT * format_list,
int operation_count, float tol, Display * display);

Description
ts_child_check() tests the behavior of a child image. The behavior is tested
by producing a reference result and a test result and then comparing the test
and reference results. A reference result is produced by performing the given
operations on specified images. A test result is produced by performing the
given operations on src and dst images, which are equivalent to the given
images except that they are children of parent images.

Note – The test result should be exactly the same as the reference result.

This function returns the number of errors found. 0 (zero) is returned if the test
succeeds. This function cannot be used with xil_lookup_convert ,
xil_histogram , and xil_compress .

Parameters

comment A string containing a comment written to the log file if
verbose mode is on. It can be NULL.

format_list An operation list and can contain more than one
operation. Child images are created for the source
images of the first operation and for the destination
image of the last operation. Other elements of the format
list are not used. Comparisons are based on the results of
the last operation. xil_decompress can be used only as
the first operation in the format_list. See Appendix C,
“Equivalence Testing Example,” for an explanation of
format lists.

Writing Test Programs in the XIL Test Suite Environment 71

3

ts_roi_check

int ts_roi_check (char * comment, FUNCFORMAT * format_list,
int operation_count, float tol);

Description
ts_roi_check() tests the behavior of a ROI. The behavior is tested by
producing a reference result and comparing this result with the ROI. This
function cannot be used with xil_lookup_convert ,
xil_choose_colormap , xil_squeeze_range , xil_histogram ,
xil_compress , or xil_extrema .

Parameters

operation_count The number of items in the format list.

tol The tolerance for comparison. Normally 0.0 is specified,
except for molecule testing.

display A pointer to a structure that is returned when you
initially connect to the X server. If a value is specified for
display, a window is created in which the destination
child testing is performed. If NULL is specified for display,
this function uses a memory image instead.

comment A string containing a comment written to the log file if
verbose mode is on. It can be NULL.

format_list An operation list and can contain more than one
operation. This is for testing molecules. The ROI is
placed onto the source images of the first operation and
the destination image of the last operation. Other
elements of the format list are not used. Comparisons are
based on the results of the last operation.
xil_decompres s can be used only as the first operation
in the format_list. See Appendix C, “Equivalence Testing
Example,” for an explanation of format lists.

72 XIL Test Suite User’s Guide—March 1997

3

ts_automatic_tests

int ts_automatic_tests (char * comment, FUNCFORMAT * format_list,
int operation_count, float tol, Display * display);

Description
ts_automatic_test() calls all of the equivalence testing functions
(ts_child_check() and ts_roi_check()) if you invoked Xilch with
either the -test_signatures or -test_data option. This function returns
the total of all of the pixels that differ in all of the automated tests. Equivalence
tests do not modify any of the image arguments.

Parameters

operation_count The number of items in the format list.

tol The tolerance for comparison. Normally 0.0 is specified,
except for molecule testing.

comment A string containing a comment written to the log file if
verbose mode is on. It can be NULL.

format_list An operation list, which can contain more than one
operation. See Appendix C, “Equivalence Testing
Example,” for an explanation of format lists.

operation_count The number of items in the format list.

tol The tolerance for comparison. Normally 0.0 is specified,
except for molecule testing.

display A pointer to a structure that is returned when you
initially connect to the X server. If a value is specified for
display, a window is created in which the destination
child testing is performed. If NULL is specified for display,
this function uses a memory image instead.

73

XIL Test Suite Directory Structure A

The Top Level
The default installation directory for the XIL Test Suite is /opt with the
hierarchy SUNWddk/xil/ddk_2.4/Xilch . The top level of the XIL Test Suite
source tree contains the Xilch directory. The directory contains a README file
and several subdirectories:

arch/ arch is either sparc or i386 depending on which
platform you are running. Subdirectories here contain all
the files of the XIL Test Suite library, except the data files.

data/ Data files for all platforms.

src/ Source code for a few example test programs.

74 XIL Test Suite User’s Guide—March 1997

A

The Subdirectories
The contents of the subdirectories follows.

arch/

data/

src/

bin/ The Xilch program itself and all the test programs

config/ Default and customized testlist and test matrix
files

data/ Symbolic link to ../data

include/ Necessary include files

lib/ The test suite library files

images Image data files

movies Movie data files

photo_cd Photo CD data files

references/
signatures/generic

Generic reference signatures

references/
signatures/x86

x86-specific references (shipped only with x86
packages)

tests/examples Contains the source code for five example
programs: Makefile , example_bench.c ,
fax_test.c , image_example.c , and
rotate_test.c

75

Example Test Program B

This appendix contains the text of the example test program called
image_example_test.c . The source can be found in the
$XILCHHOME/../src/tests/examples directory.

Code Example B-1 Example Test Program, image_example_test.c (1 of 4)

/* @(#)image_example_test.c1.4 93/11/19
 *
 * Example image test program that tests xil_add ()
 *
 * Options:
 * -m <file> use “file” as test specification file
 * -tol # tolerance to use for image comparisons
 *
 */

#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <xil/xil.h>
#include <xilch/ts.h>

main (
int argc,
char**argv)

76 XIL Test Suite User’s Guide—March 1997

B

{
 int i;
 int errors = 0;
 int total_errors = 0;
 char *specfile = NULL;
 float tol = 0.0;
 XilImagesrc1, src2, dst1;
 XilSystemStatexil_State;

 /*
 * process command line arguments
 */

 for (i = 1; i < argc; i++) {
if (!strcmp (argv[i], “-m”)) {
 specfile = argv[++i];
}
if (!strcmp (argv[i], “-tol”)) {
 tol = atof (argv[++i]);
}

 }

 /*
 * initialize XIL and the test suite library
 */

 if ((xil_State = xil_open ()) == (XilSystemState) NULL) {
fprintf (stderr, “Error initializing XIL\n”);
exit (1);

 }

 if (ts_init (&argc, argv, xil_State) == TS_FAILURE) {
 exit (1);
 }

 ts_start_test_case(“image_example_test”);

 /*
 * get some test images
 */
 src1 = ts_get_src1_image (specfile);

Code Example B-1 Example Test Program, image_example_test.c (2 of 4)

Example Test Program 77

B

 src2 = ts_get_src2_image (specfile);
 dst1 = ts_get_dst1_image (specfile);

 /*
 * loop over the images in the test matrix file
 */

 while ((src1 != (XilImage) NULL) &&
 (src2 != (XilImage) NULL) &&
 (dst1 != (XilImage) NULL)) {

/*
 * do the operation(s), add two images into a destination
 */

xil_add (src1, src2, dst1);

/*
 * verify the results
 */

errors = ts_verify (“add”, NULL, dst1, tol, NULL);

if (errors != 0) {

 /*
 * save the src and dst images for further study
 */

 ts_save (src1, “add_src1”);
 ts_save (src2, “add_src2”);
 ts_save (dst1, “add_dst”);

 total_errors++;

 exit (total_errors);
}

/*
 * get rid of the images
 */
ts_destroy (src1);

Code Example B-1 Example Test Program, image_example_test.c (3 of 4)

78 XIL Test Suite User’s Guide—March 1997

B

ts_destroy (src2);
ts_destroy (dst1);

/*
 * get some more test images
 */

src1 = ts_get_src1_image (specfile);
src2 = ts_get_src2_image (specfile);
dst1 = ts_get_dst1_image (specfile);

 }

 /*
 * return the total number of errors (required) and close XIL
 */

 ts_end_test_case();

 xil_close (xil_State);

 total_errors = ts_end ();

 exit (total_errors);
}

Code Example B-1 Example Test Program, image_example_test.c (4 of 4)

79

Equivalence Testing Example C

This appendix explains how to write a test program that uses the equivalence
testing functions and provides an example.

The equivalence testing functions test certain XIL features (such as ROIs and
child images) without requiring any visual verification. These functions use the
TS_FUNCFORMAT structure to receive descriptions of XIL functions. This
structure is a union of structures that each correspond to an argument list for
an XIL function. Take the following steps to write a test program that uses the
equivalence testing functions:

1. Declare the TS_FUNCFORMAT union variable as follows:

TS_FUNCFORMAT format;

2. Declare the specific format pointer.
The format pointer is TS_FN_FORMAT, where FN is the name of the XIL
function in all upper case. For example,

TS_XIL_CHOOSE_COLORMAP_FORMAT *choose_cmap_fmt;

3. Cast the TS_FUNCFORMAT union pointer to a pointer for the structure
needed for the XIL function.
For example,

choose_cmap_fmt = (TS_XIL_CHOOSE_COLORMAP_FORMAT*)&format;

80 XIL Test Suite User’s Guide—March 1997

C

4. Initialize the code element of the format.
The code element must be set to TS_FN_FORMAT_CODE, where FN is the
name of the XIL function in all upper case. For example,

choose_cmap_fmt->code = TS_XIL_CHOOSE_COLORMAP_FORMAT_CODE;

5. Initialize the function element of the format, which must be set to the XIL
function being tested.
For example,

choose_cmap_fmt->function = xil_choose_colormap;

6. Specify values for the arguments of the XIL function.
You must specify a value for each of the XIL function’s arguments. You do
not identify the arguments by name; instead, you use arg1 , arg2 , and so
on. For example,

choose_cmap_fmt->arg1 = src1;
choose_cmap_fmt->arg2 = 255;

ts_automatic_tests Example
Code Example C-1 is the code for testing the child image behavior of the XIL
function, xil_choose_colormap() . The ts_automatic_tests() function
is used.

Code Example C-1 ts_automatic_tests() Example

/*
* Declare TS_FUNCFORMAT union variable and specific format

pointer.
*/

TS_FUNCFORMAT format;
TS_XIL_CHOOSE_COLORMAP_FORMAT*choose_cmap_fmt;

/*
* Initialize variables.
*/

choose_cmap_fmt = (TS_XIL_CHOOSE_COLORMAP_FORMAT*)&format;
choose_cmap_fmt->code = TS_XIL_CHOOSE_COLORMAP_FORMAT_CODE;
choose_cmap_fmt->function = xil_choose_colormap;
choose_cmap_fmt->arg1 = src1;
choose_cmap_fmt->arg2 = 255;

Equivalence Testing Example 81

C

errors = ts_automatic_tests (“choose_colormap”, &format, 1,
0.0, NULL);
.
.

Code Example C-1 ts_automatic_tests() Example (Continued)

82 XIL Test Suite User’s Guide—March 1997

C

83

Index

Symbols
.vff files, 17
.vff format, 52

B
benchmarking, 3
benchmarking programs

running, 44
writing, 43

C
CIS functions, 61
command line options, 23
creating references, 12

D
debugging, 2
deferred execution, 4
directory structure, 73

E
environment notes, 9
environment variables, 8

LD_LIBRARY_PATH, 8

XILCHHOME, 8
XILCHSAVE, 49
XILHOME, 8

equivalence testing example, 79
equivalence testing functions, 44, 70
error messages, 29
examples

equivalence testing, 79
log file, 22
test matrix files, 21
test program, 36

F
files

include, 45
log, 21
test matrix, 17
testlist, 13

float functions, 65

G
getting started, 7

H
hardware requirements, 8
harness, 5

84 XIL Test Suite User’s Guide—March 1997

I
image functions, 49
include files, 45
integer functions, 65

L
LD_LIBRARY_PATH environment

variable, 8
library functions, 40
libts , 5, 45
log file, 21
lookup table functions, 55

M
master control program, 5

O
OpenWindows, 9

P
packaging, 7
platform testing, 5
ProCompiler C 2.0.1, 8
ProWorks 2.0.1, 8

R
reference data, 2, 11

introduction to, 2
reference signatures, 3, 11

introduction to, 2
regression testing, 3
resources needed, 7

S
Solaris 2.3, 8
SPARC, 8
SPARCCompiler C 2.0.1, 8
SPARCworks 2.0.1, 8

system requirements
hardware, 8

T
test conditions, 4
test matrix file, 17

example, 20
tags, 18

Child , 19
End, 20
ROI, 19
Table , 18

writing, 17
test programs, 2

example, 35
running without Xilch , 29

Test Suite library, 5, 45
testlist file, 13
ts_automatic_tests , 72, 80
ts_benchmark_end , 47
ts_benchmark_start , 46
ts_checksum , 53
ts_child_check , 70
ts_cis_checksum , 63
ts_cis_compare , 63
ts_cis_destroy , 65
ts_cis_getref , 62
ts_cis_load , 63
ts_cis_save , 64
ts_cis_verify , 61
ts_compare , 51
ts_destroy , 54
ts_display , 54
ts_end , 46
ts_end_test_case , 49
ts_expect_errors , 47
ts_float_getref , 66
ts_float_load , 66
ts_float_save , 67
ts_float_verify , 65
TS_FUNCFORMAT, 79

Index 85

ts_get_complex_roi , 54
ts_get_dst[123]_image , 53
ts_get_src[123]_image , 53
ts_getref , 50
ts_image_gen , 51
ts_init , 45
ts_int_getref , 68
ts_int_load , 69
ts_int_save , 69
ts_int_verify , 67
ts_load , 52
ts_log , 48
ts_lookup_checksum , 58
ts_lookup_compare , 59
ts_lookup_compare_contents , 60
ts_lookup_contents_checksum , 58
ts_lookup_getref , 59
ts_lookup_load , 60
ts_lookup_save , 61
ts_lookup_verify , 55
ts_lookup_verify_contents , 56
ts_roi_check , 71
ts_save , 52
ts_start_test_case , 48
ts_verify , 49

V
verifying against references, 11

X
x86, 7
XIL Test Suite

directory structure, 73
environment variables, 8
functions

CIS, 61
equivalence testing, 70
float and integer, 65
general, 45
image, 49

lookup table, 55
how it works, 9
library functions, 40
overview, 1
packaging, 7
parts of, 5
resources needed, 7

Xilch , 5
command options, 23
example invocations, 26

xilch/ts.h , 45
XILCHHOME environment variable, 8
XILCHSAVE environment variable, 49
XILHOME environment variable, 8

86 XIL Test Suite User’s Guide—March 1997

