
A Sun Microsystems, Inc. Business
2550 Garcia Avenue
Mountain View, CA 94043
U.S.A.

X Server Device Developer’s Guide

SunSoft, Inc.

Please
Recycle

Copyright 1997 Sun Microsystems, Inc. 2550 Garcia Avenue, Mountain View, California 94043-1100 U.S.A. All rights reserved.

This product or document is protected by copyright and distributed under licenses restricting its use, copying, distribution, and decompilation. No part of
this product or document may be reproduced in any form by any means without prior written authorization of Sun and its licensors, if any. Third-party
software, including font technology, is copyrighted and licensed from Sun suppliers.

Parts of the product may be derived from Berkeley BSD systems, licensed from the University of California. UNIX is a registered trademark in the U.S. and
other countries, exclusively licensed through X/Open Company, Ltd.

Sun, Sun Microsystems, the Sun logo, SunSoft, Sun Microsystems Computer Corporation, SunDocs, SunExpress, Solaris, OpenWindows, DeskSet, ONC,
ONC+, and NFS are trademarks, registered trademarks, or service marks of Sun Microsystems, Inc. in the U.S. and other countries. All SPARC trademarks
are used under license and are trademarks or registered trademarks of SPARC International, Inc. in the U.S. and other countries. Products bearing SPARC
trademarks are based upon an architecture developed by Sun Microsystems, Inc. PostScript and Display PostScript are trademarks of Adobe Systems, Inc.
Intel is a registered trademark of Intel Corporation. Viper is a trademark of Diamond Computer Systems, Inc. X Window System is a trademark of The
Open Group, Inc. All other product names mentioned herein are the trademarks of their respective owners.

The OPEN LOOK and Sun™ Graphical User Interface was developed by Sun Microsystems, Inc. for its users and licensees. Sun acknowledges the
pioneering efforts of Xerox in researching and developing the concept of visual or graphical user interfaces for the computer industry. Sun holds a non-
exclusive license from Xerox to the Xerox Graphical User Interface, which license also covers Sun’s licensees who implement OPEN LOOK GUIs and
otherwise comply with Sun’s written license agreements.

RESTRICTED RIGHTS: Use, duplication, or disclosure by the U.S. Government is subject to restrictions of FAR 52.227-14(g)(2)(6/87) and FAR 52.227-
19(6/87), or DFAR 252.227-7015(b)(6/95) and DFAR 227.7202-3(a).

DOCUMENTATION IS PROVIDED “AS IS” AND ALL EXPRESS OR IMPLIED CONDITIONS, REPRESENTATIONS AND WARRANTIES,
INCLUDING ANY IMPLIED WARRANTY OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT, ARE
DISCLAIMED, EXCEPT TO THE EXTENT THAT SUCH DISCLAIMERS ARE HELD TO BE LEGALLY INVALID.

Copyright 1997 Sun Microsystems, Inc., 2550 Garcia Avenue, Mountain View, Californie 94043-1100 Etats-Unis. Tous droits réservés.

Ce produit ou document est protégé par un copyright et distribué avec des licences qui en restreignent l’utilisation, la copie, la distribution, et la
décompilation. Aucune partie de ce produit ou document ne peut être reproduite sous aucune forme, par quelque moyen que ce soit, sans l’autorisation
préalable et écrite de Sun et de ses bailleurs de licence, s’il y en a. Le logiciel détenu par des tiers, et qui comprend la technologie relative aux polices de
caractères, est protégé par un copyright et licencié par des fournisseurs de Sun.

Des parties de ce produit pourront être dérivées des systèmes Berkeley BSD licenciés par l’Université de Californie. UNIX est une marque déposée aux
Etats-Unis et dans d’autres pays et licenciée exclusivement par X/Open Company, Ltd.

Sun, Sun Microsystems, le logo Sun, SunSoft, Sun Microsystems Computer Corporation, SunDocs, SunExpress, Solaris, OpenWindows, DeskSet, ONC,
ONC+, et NFS sont des marques de fabrique ou des marques déposées, ou marques de service, de Sun Microsystems, Inc. aux Etats-Unis et dans d’autres
pays. Toutes les marques SPARC sont utilisées sous licence et sont des marques de fabrique ou des marques déposées de SPARC International, Inc. aux
Etats-Unis et dans d’autres pays. Les produits portant les marques SPARC sont basés sur une architecture développée par Sun Microsystems, Inc.
PostScript et Display PostScript sont des marques de fabrique d’Adobe Systems, Inc. Intel est une marque déposée d’Intel Corporation. Viper est une
marque de fabrique de Diamond Computer Systems, Inc. X Window System est une marque de fabrique de The Open Group, Inc..

L’interface d’utilisation graphique OPEN LOOK et Sun™ a été développée par Sun Microsystems, Inc. pour ses utilisateurs et licenciés. Sun reconnaît les
efforts de pionniers de Xerox pour la recherche et le développement du concept des interfaces d’utilisation visuelle ou graphique pour l’industrie de
l’informatique. Sun détient une licence non exclusive de Xerox sur l’interface d’utilisation graphique Xerox, cette licence couvrant également les licenciés
de Sun qui mettent en place l’interface d’utilisation graphique OPEN LOOK et qui en outre se conforment aux licences écrites de Sun.

CETTE PUBLICATION EST FOURNIE "EN L’ETAT" ET AUCUNE GARANTIE, EXPRESSE OU IMPLICITE, N’EST ACCORDEE, Y COMPRIS DES
GARANTIES CONCERNANT LA VALEUR MARCHANDE, L’APTITUDE DE LA PUBLICATION A REPONDRE A UNE UTILISATION
PARTICULIERE, OU LE FAIT QU’ELLE NE SOIT PAS CONTREFAISANTE DE PRODUIT DE TIERS. CE DENI DE GARANTIE NE S’APPLIQUERAIT
PAS, DANS LA MESURE OU IL SERAIT TENU JURIDIQUEMENT NUL ET NON AVENU.

iii

Contents

Preface. xvii

1. DDX Porting Overview . 1

The DDX Interface . 2

The Loadable DDX. 3

Simple Frame Buffer Support. 3

Multiple-Plane Group Support . 3

Performance Enhancements . 4

x86: In-line Assembly Language Note . 4

DPS Extension Graphics Rendering . 6

Test/Verify Recommendation . 7

2. The Loadable DDX Interface . 9

How the Server Interfaces With the Loadable DDX Handler. . 9

The Initialization Function . 11

Device Self-Identification . 12

DDX Versioning . 12

iv X Server Device Developer’s Guide—August 1997

3. Screen Initialization . 15

Initialization Steps . 16

sunGetDDKVersion . 16

Initialize the ScreenRec Functions . 17

sunScreenAllocate . 18

Device-Dependent Initialization . 18

sunSetPixmapFormat . 20

sunGetMonitorRes. 21

sunGetVisualInfo . 22

Export Supported Visuals . 22

Initialize Utility Layers . 23

Initialize the Banner Code . 23

Supply a SaveScreen Function . 24

Supply a CloseScreen Function . 25

Initializing Visual Gamma . 25

Gamma-Corrected Visuals . 25

The Monitor Intensity Response Property 26

Initializing a Root Window Property 27

4. Cursors . 29

The Basic DDX Interface . 29

Software Cursor . 30

miDC Layer . 30

miPointer Layer . 32

miSprite Layer . 33

Contents v

miSetZeroLineBias Function . 34

Hardware Cursor . 34

The sunSprite Layer. 35

Examples of miPointerSpriteFuncs . 37

Kernel Cursor Tracking - The sunHWCursor Layer 41

5. Multiple Plane Group Interface . 45

MPG Architectural Overview. 45

Data Structure Initialization . 47

MPG Functional Interface . 48

initPixmap . 48

mpgGetScreenState . 49

mpgInsertPlanegroup . 51

Plane Group Aliasing . 53

mpgScreenInit . 57

getMpgInfoFromVisual . 59

mpgChangeInfo . 59

freeMpgInfo . 60

mpgCursorInitialize . 60

mpgSetCursorValues . 61

mpgSetCursorHasEnable . 61

CopyPlanes and AggregatePlanes . 61

mpgSetScreenFuncs . 65

6. Overlay Window Interface . 67

Introduction . 67

vi X Server Device Developer’s Guide—August 1997

Device Setup . 68

Transparent Pixel . 69

Initializing Overlays . 72

Overlay GPI Specification . 73

OvlPairs. 73

ovlScreenInit. 73

ovlWrapDevFuncs . 74

ovlGetPaintType . 75

ovlIsOverlay . 75

XOvlClutInfo . 76

OvlDevFuncs . 76

7. Window ID Interface . 85

Hardware Window IDs . 85

Software WID Object . 86

WID Object Attributes. 86

Accessing WID . 88

Using MPG . 88

How to Use WID . 88

DDX Handler . 88

MPG. 89

CMAP . 89

WID Data Types . 90

WidPtr . 90

WidAllocFunc. 91

Contents vii

WidFreeFunc . 92

WidSetColorLutFunc. 92

Window ID Functions . 93

General Routines . 93

Handler-Specific Routines . 99

WID Device-Dependent Allocation and Free Functions
Implementation . 100

Allocation Function . 101

Free Function . 102

8. Colormap Interface . 103

Introduction to CMAP. 103

Sharing Equivalent Colormaps . 104

CMAP Call Summary . 104

General Calls . 104

MHC Calls . 104

Compiling and Linking . 105

MPG and WID Initialization. 105

CMAP Initialization and Utilities . 106

Screen Initialization Routine . 106

Device-Dependent Color LUT Access Routines. 107

Color LUT Pool Description . 114

Initialization Example - Multiple Color LUT 124

Initialization Example - Single Color LUT 125

WID Types . 125

viii X Server Device Developer’s Guide—August 1997

Utility Routines . 125

Colormap Private Data . 127

Controlling MHC’s WIDs . 128

Overloading WIDs. 129

Overloading Control Routines . 130

Changing a Window’s WID . 132

cmapMhcWindowAttachWid. 132

cmapMhcWindowDetachWid . 133

Changing A Window’s Colormap . 133

cmapMhcChangeFlavor . 134

Allocating Unique WIDs. 136

9. Direct Graphics Access Drawable Client Interface. 139

Overview. 139

Drawable Types . 140

DGA Drawables . 140

Mutual Exclusion . 141

Sites . 142

Backing Store . 143

Zombie Drawables. 144

Compiling and Linking . 144

DGA Drawable Functions. 145

Initialization and Cleanup . 145

Drawable Locking and Change Detection 147

Ancillary Buffer Management Interface 151

Contents ix

General Utility Functions . 158

Drawable Sites . 161

Clipping State. 166

Dealing with Cursor Conflicts . 170

Backing Store Routines . 172

DGA Overlays . 177

Colormap Grabber Interface. 180

Miscellaneous Grabbers . 184

10. Direct Graphics Access Drawable DDX Interface. 189

Initializing Drawable Grabs . 189

Device-Supplied Routines. 191

Caching Routines . 201

Device Information Routines . 203

DGA and Colormaps . 204

11. Input Devices. 205

Extension Input Device Overview . 206

Handling of Extension Input Devices . 207

Extension Device Initialization . 207

Extension Device Open . 208

Reading Input Data . 208

Extension Device Close . 210

Restart and Shutdown. 210

Adding An Extension Input Device . 210

Writing the Device Handler . 211

x X Server Device Developer’s Guide—August 1997

Adding An OWconfig File Entry . 214

Debugging the Device Handler . 214

Writing The STREAMS Module . 215

Input Library Functions . 215

Public Server Functions . 215

Device Shared Library Functions. 234

12. Direct Pixel Access DDX Interface. 243

The Direct Access Cycle . 243

Requirements for Drawables Using DPA 244

Initialization . 245

sunDPAScreenRec . 245

sunDPAScreenInit . 246

Device-Supplied Routines. 247

sunDPAAccessType . 247

13. Debug Server Modules . 251

14. MIT Shared Memory Extension . 253

MIT Shared Memory Interface . 254

ShmRegisterFbFuncs . 254

ShmRegisterFuncs . 255

ShmSetPixmapFormat. 255

A. The OWconfig File . 257

SPARC: Sample OWconfig File . 258

x86: Sample OWconfig File . 260

File Format Definition . 262

Contents xi

File and Module Search Paths . 263

Multiple OWconfig Files . 264

The XDISPLAY Class . 265

The XSCREENCONFIG Class . 266

The XSCREEN Class . 267

The XINPUT Class . 267

SPARC: Sample XINPUT Class . 268

x86: Sample XINPUT Class . 268

The XEXTENSION Class. 269

OWconfig Access Method. 269

OWconfig Database . 269

OWconfig API . 270

Packaging . 272

Typical Usage . 272

B. Packaging and Installation Hints. 275

Installation Hints . 275

Packaging Hints . 276

C. Virtual User Input Device Interface. 281

Virtual User Input Device (VUID) . 281

VUID Station Codes. 282

Firm Events. 283

Device Controls . 285

D. Dynamically Loadable Extensions. 287

Index . 289

xii X Server Device Developer’s Guide—August 1997

xiii

Figures

Figure 1-1 DDX Handler Utility Library Interfaces. 2

Figure 5-1 MPG DDX Library Interfaces. 46

Figure 8-1 Relationship Between Visuals and mpgInfo s in the mpgVisInfo
Table . 117

Figure 8-2 Changing the mpgInfo of a Window. 118

Figure 8-3 Relationship Between Visuals, Default mpgInfo s, and Color LUT
Pools. 119

Figure 8-4 mpgVisInfo Table and Color LUT Pool Description for Multi-
Depth (not supported) . 120

Figure 9-1 Screen and Backing Store Memory Relationship 143

Figure 11-1 Extension Input Device Block Diagram 206

Figure 11-2 Data Flow When Reading Devices . 209

xiv X Server Device Developer’s Guide—August 1997

xv

Tables

Table 1-1 Utility Libraries . 2

Table 3-1 Pixmap Formats . 20

Table 12-1 Required Pixel Packing in Memory . 244

Table 14-1 MIT Shared Memory Extension Functions 254

xvi X Server Device Developer’s Guide—August 1997

xvii

Preface

The X Server Device Developer’s Guide provides detailed information on writing
device drivers that run with the OpenWindows™ environment. These device
drivers are DDX handlers that interface with the OpenWindows server.

Who Should Use This Book
If you are an Independent Hardware Vendor (IHV) interested in writing device
drivers, you should read this book.

Before You Read This Book
This manual assumes that the reader has a programming background and
familiarity with, or access to, appropriate documentation for:

• Solaris 2.6
• The X Window System; specifically the X11 sample server and the DDX

(Device Dependent X) porting layer.
• C Language
• X, Xlib

How This Book Is Organized
Chapter 1, “DDX Porting Overview,” provides an overview of porting features
and requirements of the DDX layer.

xviii X Server Device Developer’s Guide—August 1997

Chapter 2, “The Loadable DDX Interface,” explains how the server interfaces
to a loadable DDX handler.

Chapter 3, “Screen Initialization,” describes some aspects of Screen
initialization common to many devices.

Chapter 4, “Cursors,” discusses software and hardware cursor
implementations and helps you decide which cursor layer to use for your
purposes.

Chapter 5, “Multiple Plane Group Interface,” provides an architectural
overview and describes the feature of the multiple plane group (MPG) DDX
module.

Chapter 6, “Overlay Window Interface,” describes the overlay window
interface (OVL) for your DDX handler.

Chapter 7, “Window ID Interface,” defines the window management interface
routines that are part of the MPG package.

Chapter 8, “Colormap Interface,” describes all of the routines that are part of
the CMAP package. It also provides several examples.

Chapter 9, “Direct Graphics Access Drawable Client Interface,” describes the
DGA library interface for clients.

Chapter 10, “Direct Graphics Access Drawable DDX Interface,” describes the
DGA library interface for DDX handlers.

Chapter 11, “Input Devices,” explains how to add an extension input device to
the server and how to access the extension with MIT’s XInput Extension.

Chapter 12, “Direct Pixel Access DDX Interface,” describes the direct pixel
access (DPA) interface for DDX handlers.

Chapter 13, “Debug Server Modules,” provides information about the debug
server modules.

Chapter 14, “MIT Shared Memory Extension,” explains how to implement the
MIT Shared Memory extension.

Appendix A, “The OWconfig File,” includes the default OWconfig file and
explains its content.

Preface xix

Appendix B, “Packaging and Installation Hints,” discusses packaging and
installation issues pertaining to loadable modules.

Appendix C, “Virtual User Input Device Interface,” explains the mechanism
that sets up input devices to generate event codes and what a device driver
needs to do in order to conform to the vuid interface.

Appendix D, “Dynamically Loadable Extensions,” discusses requirements X
extensions must meet to be dynamically loadable by the server.

Related Books

Solaris Release Information

For information on this release, see the following:
• Solaris Reviewer’s Guide
• Solaris Driver Developer Kit Introduction
• Solaris Driver Developer Kit Installation Guide
• Solaris Software Developer Kit Installation Guide

OpenWindows Environment Information

To learn how to use the OpenWindows environment, see the following
manuals:

• Solaris User’s Guide
• Solaris Advanced User’s Guide
• Writing Device Drivers

X Window System Information

The following X Window System manuals are available through SunExpress or
your local bookstore. Contact your SunSoft representative for information
about ordering.

• XView Reference Manual, O’Reilly & Associates
• XView Programming Manual, O’Reilly & Associates
• Xlib Reference Manual, O’Reilly & Associates
• Xlib Programming Manual, O’Reilly & Associates
• X Toolkit Intrinsics Reference Manual, O’Reilly & Associates

xx X Server Device Developer’s Guide—August 1997

• The X Window System, Digital Press
• The X Window System Server, Digital Press

Sample Server Porting Information

The following manuals are available online in the /doc/Server directory of
the SUNWxwddk package. The default installation directory of this package is
/opt/SUNWddk/xserver . These manuals are recommended if you are new to
X11 server development. The associated filename is in parentheses.

• Strategies for Porting the X v11 Sample Server (strat.ms)
• Definition of the Porting Layer for the X v11 Sample Server (ddx.tbl.ms)

Obtaining Sample Server Information

The X11 sample server and documentation are available via the World Wide
Web. The URL is http://www.rdg.opengroup.org You can use the File
Transfer Protocol (ftp) to download files from this system. If you need help
using ftp , refer to the ftp (1) man page. To determine if your system is
connected to the World Wide Web, see your system administrator.

What Typographic Changes and Symbols Mean
The following table describes the type changes and symbols used in this book.

Table P-1 Typographic Conventions

Typeface or
Symbol Meaning Example

AaBbCc123 The names of commands, files,
and directories; on-screen
computer output

Edit your .login file.
Use ls -a to list all files.
system% You have mail.

AaBbCc123 What you type, contrasted with
on-screen computer output

system% su
Password:

AaBbCc123 Command-line placeholder:
replace with a real name or
value

To delete a file, type rm filename.

Preface xxi

AaBbCc123 Book titles, new words or terms,
or words to be emphasized

Read Chapter 6 in User’s Guide.
These are called class options.
You must be root to do this.

Code samples are included in boxes and may display the following:

% UNIX C shell prompt system%

$ UNIX Bourne and Korn shell
prompt

system$

Superuser prompt, all shells system#

Table P-1 Typographic Conventions (Continued)

Typeface or
Symbol Meaning Example

xxii X Server Device Developer’s Guide—August 1997

1

DDX Porting Overview 1

The OpenWindows server is based on the X11R6 sample server from The Open
Group. The OpenWindows server dynamically loads DDX handler modules at
run time. This enables you, an Independent Hardware Vendor (IHV), to
develop DDX modules that can be delivered as separate components.

Sun also provides DDX utility libraries to help you port the server to new
graphics devices. These libraries contain functions common across devices.

See “Related Books” on page xix for recommended reading on the DDX layer.

Note – All porting interfaces documented in this manual are uncommitted
interfaces; therefore, they might change in future releases in ways that could
require you to change your DDX port.

2 X Server Device Developer’s Guide—August 1997

1

The DDX Interface
As shown in Figure 1-1 on page 2, the DDX interface is quite extensive: the
Screen structure alone contains approximately 70 functions.

Figure 1-1 DDX Handler Utility Library Interfaces

Many of these functions do not need to be specialized for every device.
Table 1-1 on page 2 describes general-purpose utility libraries that can be used
to simplify your DDX handler implementation. The MI, CFB, and MFB
libraries are from The Open Group.

Table 1-1 Utility Libraries

Utility Library Description

MI Machine independent, high-level

CFB Memory-mapped color frame buffers

MFB Monochrome frame buffers

OVL Transparent window overlay

DGA Direct graphics access for client and DDX handler

SUN Sun-specific ioctl s for frame buffers

DDX Interface

MI CFB MFB SUN MPG CMAP

OpenWindows
Server

WID

OVL DGA

Device DDX Handler

DDX Porting Overview 3

1

The Loadable DDX
The loadable DDX allows the server to dynamically load DDX modules at
runtime instead of having to relink the server to add support for new devices.
A DDX module is a shared object that is loaded by the server at runtime
through an explicit call to dlopen (3X). The location of the DDX modules and
their mappings between devices is determined by the OWconfig
(OpenWindows configuration) file.

See Appendix A, “The OWconfig File” for more information about the
OWconfig file.

Simple Frame Buffer Support

The OpenWindows server provides a set of general-purpose support routines
for simple memory-mapped frame buffers. This includes the MFB library for
monochrome frame buffers and the CFB library for color frame buffers.

Note – Although CFB code can be compiled to support depths of 2, 4, 8, 16,
and 32 bits, only the 8, 16 and 32-bit depths are supported in this release.

Multiple-Plane Group Support

For devices with multiple-plane groups there is a utility library that provides
most of the management functions necessary for MPG devices. This library
also includes functions to minimize exposure events between windows that
reside in different plane groups. The MPG interface is designed so that the CFB
and MFB libraries can be used to render and manipulate windows.

MPG Multiple plane groups and multiple hardware colormaps

WID Window Identification that is part of the MPG library

CMAP Hardware colormap control

Table 1-1 Utility Libraries (Continued)

Utility Library Description

4 X Server Device Developer’s Guide—August 1997

1

Performance Enhancements
If you NFS mount the window server, mount it setuid allowable. This enables
the server to take advantage of performance features in the Solaris operating
system.

x86 In-line Assembly Language Note
The SunPro™ C Compilation system includes in-line assembly language
provides direct access to x86 I/O instructions, as well as optimized in-line
expansion templates. See the manual pages for cc (1) and inline (1), and
SunPro’s ProCompiler C 2.0.1 Programmer’s Guide for more information.

If you want to include in-line assembly language in your code, place the in-line
assembly definition file (with the .il extension) first in the cc command line:

Common in-line examples are included in the file below.

cc -O inline.il bitblt.c

///
/ File: inline.il
/
///
/ in and out
/ int ioaddr = 0x3c4;
/
/ Called as:
/ char data;
/ data = inb(ioaddr);
/
 .inline inb,4
 movl (%esp), %edx
 xorl %eax, %eax
 inb (%dx)
 .end

/ Called as:
/ short data;
/ data = inw(ioaddr);
/
 .inline inw,4

DDX Porting Overview 5

1

 movl (%esp), %edx
 xorl %eax, %eax
 inw (%dx)
 .end

/ Called as:
/ int data;
/ data = inl(ioaddr);
/
 .inline inl,4
 movl (%esp), %edx
 xorl %eax, %eax
 inl (%dx)
 .end

/ Called as:
/ char data;
/ outb(ioaddr,data);
/
 .inline outb,8
 movl (%esp), %edx
 movl 4(%esp), %eax
 outb (%dx)
 .end

/ Called as:
/ short data;
/ outw(ioaddr,data);
/
 .inline outw,8
 movl (%esp), %edx
 movl 4(%esp), %eax
 outw (%dx)
 .end

/ Called as:
/ int data;
/ outl(ioaddr,data);
/
 .inline outl,8
 movl (%esp), %edx
 movl 4(%esp), %eax
 outl (%dx)
 .end

6 X Server Device Developer’s Guide—August 1997

1

DPS Extension Graphics Rendering
Due to a bug in this release of the DPS code, pixmaps used by DPS must have
their pPixmap->devKind field equal to the width of the pixmap in bytes. This
means that frame buffers that cache pixmaps in off-screen video memory need
to use regular memory under certain conditions.

A flag has been added to inform DDX handlers when they should force
pixmaps into regular memory. Make the following declaration in your DDX
handler’s pScreen->CreatePixmap routine:

Check this variable before creating a pixmap in off-screen memory. If the
variable is TRUE, your DDX handler should force the pixmap into regular
processor memory.

Note – This DPS bug workaround is unchanged from OpenWindows 3.4.

///
/ Set and clear direction flags
/

/ Called as: cld();
/
 .inline cld,0
 cld
 .end

/ Called as: std();
/
 .inline std,0
 std
 .end

extern int sunCreateDFBPixmap

DDX Porting Overview 7

1

Test/Verify Recommendation
To test and verify a DDX handler, it is recommended that you run the UniSoft
Test Suite. This test suite is available from The Open Group.

You can access The Open Group information if your system is connected to the
Internet. The URL is http://www.rdg.opengroup.org Use the File Transfer
Protocol (ftp) to download files from this system. If you need help using ftp ,
refer to the ftp (1) man page. To determine if your system is connected to the
Internet, see your system administrator.

8 X Server Device Developer’s Guide—August 1997

1

9

The Loadable DDX Interface 2

The server interfaces to a loadable DDX handler. This chapter discusses the
following topics:

• How the Server Interfaces With the Loadable DDX Handler
• The Initialization Function
• Device Self-Identification
• DDX Module Versioning

How the Server Interfaces With the Loadable DDX Handler
The server interfaces with the loadable DDX handler in the following manner.

1. The module containing the device’s DDX handler is installed in the modules
directory—the default directory is /usr/openwin/server/modules .
Since the /usr/openwin path could be an NFS mount point, a parallel
directory structure can be created on the local machine under
/etc/openwin/server/modules . The DDX handler modules that are
distributed with the standard OpenWindows packages are always installed
in /usr/openwin/server/modules . DDX handlers supplied by
Independent Hardware Vendors (IHVs) can be installed in either the
machine local path (preferred, if the installation will not be shared between
different machines), or under the default path /usr/openwin . (See
Appendix B, “Packaging and Installation Hints” for more details).

10 X Server Device Developer’s Guide—August 1997

2

The server searches for DDX handlers using the following path:
/etc/openwin/server/modules:/usr/openwin/server/modules .
This search path cannot be altered by the end user.

Note – For debugging purposes, create symbolic links from /etc/openwin to
point to your development environment where you want to debug your code.
You will need to edit the /etc/openwin/server/etc/OWconfig file to
load/configure your DDX handler. Use /etc/openwin because it is intended
to be local to the target machine (your development environment); do not use
/usr/openwin because it is intended to be shared by many machines.

2. The devices that are added as Screens are specified with the -dev
command-line option to openwin . For example:

For SPARC systems – If no devices are specified on the command line, the
server defaults to opening the /dev/fb device. This is a symbolic link to the
appropriate driver entry in /dev/fbs , created when the system is booted with
boot -r . See the openwin (1) man page for more information.

For x86 systems – If no devices are specified on the command line, the server
defaults to values specified in the OWconfig file. The argument specified with
the -dev command line option is the name of a supported display (such as
8514 , v256 , or vga4). This name is matched against the name attribute
specified in a resource line. See Appendix A, “The OWconfig File” for more
details.

3. The server reads a configuration file (OWconfig) to determine the filename
of the dynamically loadable DDX handler. This file is searched using the
search path /etc/openwin/server/etc:/usr/openwin/server/etc .
If the configuration file is found in both locations, the server constructs a
database combining the two files. This search path cannot be altered by the
end user.

example% openwin -dev /dev/cgsix0 -dev /dev/cgthree0 left

The Loadable DDX Interface 11

2

For debugging purposes only, an alternate directory in which the OWconfig
file can be found can be specified by setting the environment variable
OW_CONFIG_PATH before running the server. This environment variable is
not documented in any end-user documentation and should not be
recommended to end users.

(See Appendix A, “The OWconfig File” for more information on the
OWconfig file).

4. The server loads the appropriate DDX handler module and calls
ddxInitFunc . The ddxInitFunc initializes the device and data structures
so that the server can run. The ddxInitFunc has the same specification as
the scrInitProc defined in the MIT document, Definition of the Porting
Layer for the X v11 Sample Server.

The Initialization Function

Each graphics adapter’s DDX handler defines an initialization function that is
called at server restart. This function initializes the device and the Screen data
structure associated with it.

For SPARC systems – For a sample implementation of the ddxInitFunc and
a complete sample implementation of a minimal DDX handler for a simple-
memory frame buffer, see the sample cg3 DDX handler online in
ddk_2.6/xserver/server/ddx/solaris/sparc/cg3 .

For x86 systems – For a sample implementation of the ddxInitFunc and a
complete sample implementation of an equivalent DDX handler for a simple
256 color VGA display adapter, see the sample v256 DDX handler online in
ddk_2.6/xserver /server/ddx/solaris/i386/displays/v256 .

example% setenv OW_CONFIG_PATH /home/joe

Bool xxxInit(int index, ScreenPtr pScreen, int argc,
char **argv);

12 X Server Device Developer’s Guide—August 1997

2

Device Self-Identification

As noted in Step 2 on page 10, devices added as X screens are specified by
using the openwin command line and the -dev option. The server opens each
device specified with -dev in its InitOutput routine, in turn. (If no devices
are specified, the default device is /dev/fb). It then issues an ioctl
(VIS_GETIDENTIFIER) to the device driver. The device driver for the graphics
device is expected to implement this ioctl to identify the device uniquely.
The ioctl returns a unique string name. The server looks up this string name
in the OWconfig file under the class XSCREEN. The DDX handler filename
specified in this entry is then dynamically loaded by the server, and the
ddxInitFunc symbol specified in the entry is called by the DIX routine
AddScreen . For a complete specification of the device identification ioctl ,
see Writing Device Drivers.

For x86 systems – This release does not automatically self-identify the various
video card adapters supported. The video cards are not able to specify the card
type and supported resolutions and features on most Intel architecture
machines. Default video adapter types, initialization and resolution
information is stored in the OWconfig file for Intel machines. This information
is created during installation with input from the user. The default video
display selection is also determined during installation and stored in the
OWconfig file.

DDX Versioning

A versioning scheme is required to ensure that the server and the DDX handler
it dynamically loads are compatible. The OpenWindows server component of
the Device Developer’s Kit (DDK) contains the header files and documentation
that define the DDX interface (consisting of data structures and functions)
between the server and the dynamically loaded DDX handlers. This
component is used to build a DDX handler and has a version number, referred

The Loadable DDX Interface 13

2

to as the DDK version number. The DDK version number is available as a
manifest constant in the header file sun.h that every DDX handler must
include. The following are the important defines from the sun.h header file:

Each release of OpenWindows is accompanied by a release of the DDK that
was used to build the server. This DDK is used by IHVs to build DDX handlers
that are compatible with the OpenWindows server in that release. IHVs
supplying DDX handlers must follow these versioning rules:

• The DDK majorVersion used to build the DDX handler is stamped in the
filename of the handler, such as, ddxSUNWcg6.so.1 . The convention used
in naming DDX handlers is:

• The server is also stamped internally with the DDK version number used to
build the server. The server never dynamically loads a module with a
majorVersion greater than its own. For example, a server built with a
DDK version 1.0 will never load a DDX handler built with a DDK version
2.0.

• The server dynamically loads a DDX handler with a DDK majorVersion
less than its own DDK majorVersion , only if the server has explicitly
decided to emulate that lesser majorVersion interface. Every time a new
version of OpenWindows and a new version of the server DDK are released,
this DDK document specifies which, if any, DDK majorVersions are
emulated by the server.

/*
 * Server Device Developer’s Kit (DDK) Version number
 */

#define DDK_MAJOR_VERSION 1
#define DDK_MINOR_VERSION 2

typedef struct {
 CARD16 majorVersion;
 CARD16 minorVersion;
} sunDDKVersionRec, *sunDDKVersionPtr;

sunDDKVersionPtr sunGetDDKVersion(void);

ddx <organization><device> .so. <majorVersion>

14 X Server Device Developer’s Guide—August 1997

2

Note – For this release of the server DDK, no prior versions are emulated.

• The server dynamically loads a module that has the same DDK
majorVersion as itself. If the DDX module depends on functionality that
was added in a particular minorVersion of the DDK, it is up to you to
check for the existence of that functionality, by checking the server’s DDK
version number.

A DDX module can provide its own workaround if the functionality does
not exist, or it can fail with an appropriate error message indicating the
server version number it requires.

The functionality differences between minorVersion releases of the DDK
will be documented in future releases of this manual. A DDX handler
module can check the server’s DDK version number by calling the sun
library function sunGetDDKVersion .

#include “sun.h”

sunDDKVersionRec serverVersion = sunGetDDKVersion();

if (serverVersion->majorVersion == 1
&& serverVersion->minorVersion < 5) {
....

}
else {

....

15

Screen Initialization 3

The ddxInitFunc device function should initialize the Screen structure and
all of its function vectors. See “The Initialization Function” on page 11 for
information on ddxInitFunc . This chapter provides information on some
aspects of Screen initialization common to many devices. Additional
initialization steps might be required depending on the utility layers you use in
your DDX handler. These steps are documented in subsequent chapters
describing the utility layers provided by the server.

A set of common utility functions is provided in the server that:

• Allocate private data structures
• Inquire current command-line options
• Advertise pixmap formats and supported visuals

For SPARC systems – A complete sample implementation of the
ddxInitFunc for a simple-memory frame buffer is available on line. See the
cg3 DDX handler in the following directory:
ddk_2.6/xserver/server/ddx/solaris/sparc/cg3

For x86 systems – A complete sample implementation of the ddxInitFunc for
a simple 256 color VGA display adapter is available on line. See the v256 DDX
handler in the following directory:
ddk_2.6/xserver/server/ddx/solaris/i386/displays/v256

16 X Server Device Developer’s Guide—August 1997

3

Initialization Steps
Your device handler’s ddxInitFunc function should perform the following
steps to initialize the Screen structure:

• Initialize the ScreenRec structure fields
• Initialize the device
• Map device registers and the frame buffer into the address space (if the

device is memory-mappable)
• Allocate required private data structures
• Query command-line options that affect your DDX handler
• Advertise pixmap formats, visuals, and depths the device supports
• Initialize various utility layers you plan to use

It is important to know that ddxInitFunc could be called more than once
during the lifetime of the server. The server is capable of restarting, and the
ddxInitFunc is called again when this happens. This is why it is important to
wrap pScreen->CloseScreen in your ddxInitFunc , and free all data
structures allocated in the ddxInitFunc and elsewhere in the DDX handler.

Additionally, on multi-screen configurations which have multiple Screens of
the same device type (hence served by a common DDX handler), the DDX
handler module only needs to be loaded once into the server. Thereafter, the
index of the Screen is used to distinguish between Screen s. In this case, the
ddxInitFunc will be called once for each Screen . It is recommended that
any Screen private data required by the DDX handler be stored by allocating
a devPrivate index on the Screen structure. The use of global variables in
the DDX handler is discouraged for the same reason.

sunGetDDKVersion

One of the first things your DDX handler might do is check the DDK version
number of the server that is attempting to load it. This is useful if your DDX
handler depends on server functionality that was added in a specific minor
version of the server DDK. Call the server function sunGetDDKVersion to
obtain this information. See “DDX Versioning” on page 12 for a complete
specification.

sunDDKVersionPtr
sunGetDDKVersion();

Screen Initialization 17

3

Note – The sample DDX handlers provided on line do not call
sunGetDDKVersion because they are not dependent on any minor version
functionality in the server DDK.

Initialize the ScreenRec Functions

Since some utility layers wrap the functions in the ScreenRec , it’s important
that your DDX handler initialize all the functions in the ScreenRec with valid
function pointers, or NULL pointers for functions that are expected to be
wrapped by other utility layers. The ScreenRec that is passed to the
ddxInitFunc is uninitialized. It is the responsibility of ddxInitFunc to
initialize ScreenRec with valid data or NULL as appropriate. To do this, at the
beginning of your ddxInitFunc , include code that NULLs out all the Screen
functions that are not supplied in your DDX handler. This could help prevent
bugs due to uninitialized ScreenRec function pointers in your DDX handler.

Note – This step is not required if your ddxInitFunc provides valid function
pointers for all the ScreenRec functions.

/* For example, if your DDX handler does not provide an
 * implementation of pScreen->BlockHandler or
 * pScreen->WakeupHandler, but these are expected to be wrapped
 * from the sunKbd device handler (for the keyboard) later in the
 * Initialization sequence.
*/
pScreen->BlockHandler = NULL;
pScreen->WakeupHandler = NULL;

18 X Server Device Developer’s Guide—August 1997

3

sunScreenAllocate

Purpose This function allocates a Screen private index
(sunScreenIndex) and allocates the sunScreenRec data
structure used by various utility layers (defined in
server/ddx/solaris/sun.h).

Called by Your ddxInitFunc before initializing any utility layers.

Results A pointer to the sunScreenRec structure is stored in
pScreen->devPrivates[sunScreenIndex].ptr .

Returns TRUE on success
else FALSE

The sunScreenRec data structure must be freed in the CloseScreen routine
of your DDX handler. Some of the fields of this data structure are filled by
various Sun utility layers; however, a few fields need to be filled in by your
ddxInitFunc .

Note – A future release of the server might provide interfaces that will make
this data structure opaque to the DDX handler.

Access the private data structure using the macros GetScreenPrivate and
SetupScreen defined in sun.h .

Device-Dependent Initialization

Device-dependent initialization typically consists of the following steps:

• Opening the device-special file for the graphics device

Bool
sunScreenAllocate(ScreenPtr pScreen)

#define GetScreenPrivate(s) \
((sunScreenPtr) ((s)->devPrivates[sunScreenIndex].ptr))
#define SetupScreen(s) \
sunScreenPtr pPrivate = GetScreenPrivate(s)

Screen Initialization 19

3

• Mapping the device registers or the frame buffer into the server address
space (if the device is memory-mappable)

• Storing the file descriptor and memory mapping information in the private
sunScreenRec data structure

Note – The sample DDX handlers (such as the cg3) use a private helper
function called sunOpenFrameBuffer to open the device. This routine is
called for example only; do not call it from your ddxInitFunc . It relies on
ioctl s that are private to the cg3 device driver, and are not required to be
implemented in your device driver.

The device-special filename you should open in your ddxInitFunc can be
obtained by calling the GetDevname macro in sun.h .

The file descriptor and device name should be stored in the sunScreenRec
private structure. These are used by other utility layers (such as DGA) in the
server. The code in your ddxInitFunc might look like this:

If your cursor implementation uses the sunPointerScreenFuncs utility
functions that implement Screen crossings and cursor warping, you should
initialize the pPrivate->sunFbs .EnterLeave field to NULL in your
ddxInitFunc . See Chapter 4, “Cursors” for information on
sunPointerScreenFuncs .

Note – The sample DDX handlers store device-dependent information about
the device memory-mappings in some of the other private fields of the
sunScreenRec data structure, for use in the CloseScreen routine. It is

char *
GetDevname(int index); /* The Screen’s index */

{
SetupScreen(pScreen);

...
pPrivate->sunFbs.fd = open(GetDevname(index), O_RDWR, 0);
strcpy(pPrivate->sunFbs.devName, GetDevname(index));
...

}

20 X Server Device Developer’s Guide—August 1997

3

recommended that you minimize dependencies on the sunScreenRec private
data structure, and store device-dependent information in data structures that
are private to your own DDX handler. These data structures can be stored by
allocating a devPrivate index on the Screen that is private to your DDX
handler.

sunSetPixmapFormat

Purpose This function is used by each device to advertise the pixmap
formats supported for each depth. If there are multiple
Screens supporting the same depth, they should support a
common pixmap format for that depth. The first pixmap
format defined for that depth is the one used for all Screens
that are added.

Called by Your ddxInitFunc calls this routine once for each depth
that it plans to export in the pScreen->allowedDepths
field.

Returns TRUE if it is the first pixmap format definition for specified
depth, or if it is a repeat definition that agrees with the
existing one

FALSE for any attempt to define a new format for an existing
depth. The request variable is set to the defined format for
that depth; use the format returned in your new Screen’s
DDX handler.

Table 3-1 lists the pixmap formats supported by some devices.

Bool
sunSetPixmapFormat(PixmapFormatRec *request)

Table 3-1 Pixmap Formats

Depth BitsPerPixel ScanlinePad

1 1 BITMAP_SCANLINE_PAD

4 4 BITMAP_SCANLINE_PAD

4 8 BITMAP_SCANLINE_PAD

Screen Initialization 21

3

If you want your new device to support one of these depths, use one of the
pixmap formats specified in Table 3-1 so that your device can be used with
devices by other IHV’s in a multi-screen configuration.

Note – The two 4-bit deep screen formats may not coexist simultaneously with
other IHV’s devices. The 4-bit deep, 4 BitsPerPixel format is the only 4-bit deep
screen format supported during an X server session.

If a new depth is exported by a device, register the pixmap format with Sun for
inclusion in this table, or be prepared to handle differing pixmap formats (that
is, sunSetPixmapFormat returns FALSE) in your DDX handler.

sunGetMonitorRes

Purpose This function gets the monitor’s resolution.

Results The default value, 90 DPI, is used if a monitor resolution is
not specified.

Note – Currently the monitor’s resolution is specified with the -dev
command-line option. Future releases of the OpenWindows server might offer
alternate mechanisms to query the monitor resolution, such as specifying it in
the OWconfig database.

8 8 BITMAP_SCANLINE_PAD

24 32 BITMAP_SCANLINE_PAD

32 32 BITMAP_SCANLINE_PAD

void
sunGetMonitorRes(int screenIndex, int *dpix int *dpiy)

Table 3-1 Pixmap Formats (Continued)

Depth BitsPerPixel ScanlinePad

22 X Server Device Developer’s Guide—August 1997

3

sunGetVisualInfo

Purpose This function gets the command-line options for Visual
information specified by the user for the Screen . Since the
user can specify the default visual class, the default depth, or
gray visual, the DDX handler must query these values before
setting up the visuals to be exported for this Screen .

Returns The default visual class specified as defclass in the
-dev command-line option, if specified; else the default
specified with the -cc option; else -1 .

The defDepth specified with the -dev option.

TRUE for grayVis , if the user specified the grayvis
modifier to the -dev option. This suppresses color visuals
and is useful if a grayscale monitor is connected to the
device. If grayVis is TRUE, this function ensures that the
user has selected a gray defClass , if a defClass has been
specified; else defClass is set to -1 .

Export Supported Visuals

The ddxInitFunc should advertise the visuals it supports, based on device
capabilities and user preferences selected with command-line options.

Note – The sample cg3 DDX handler uses the cfb utility layer to select and
advertise its visual list. See the sunCG3C.c file in the
server/ddx/solaris/reference/cg3 directory for details.

void
sunGetVisualInfo(int screenIndex, int *defClass, int *defDepth,

Bool *grayVis);

Screen Initialization 23

3

Initialize Utility Layers

The various utility layers used by your DDX handler should be initialized in
your ddxInitFunc . Depending on the utility layers used, the order of
initialization might be important, as a number of the utility layers wrap the
DDX functions.

Initialize the Banner Code

Purpose This function initializes the banner display code.

Called by The following code in your ddxInitFunc :

Results A banner is displayed by the server on every Screen, unless
openwin is started with the -nobanner command-line
option.

Note – The sample cg3 DDX handler does not implement this directly. It calls a
private helper function, sunScreenInit , to initialize the banner code and
perform other miscellaneous initialization. sunScreenInit is called for
example only; do not call it from your ddxInitFunc . It has the undesirable
effect of installing a SaveScreen routine that relies on ioctl s private to the
cg3 device driver.

extern int noBanner;
extern void sunInitBanner(ScreenPtr pScreen);

{
extern int noBanner;
extern void sunInitBanner(ScreenPtr pScreen);
...

if (!noBanner) {
sunInitBanner(pScreen);

}
...

}

24 X Server Device Developer’s Guide—August 1997

3

Supply a SaveScreen Function

The field on has the following values:

SCREEN_SAVER_ON Turns on the screen saver; disables video

SCREEN_SAVER_OFF Turns off the screen saver; enables video

SCREEN_SAVER_FORCERUpdates time of last screen saver mode change

Note – The sample DDX handlers install a private helper routine called
sunSaveScreen as the pScreen->SaveScreen routine. Do not use this
implementation in your DDX handler; it relies on ioctl s private to the sample
device implementation. Instead, implement your own SaveScreen routine.

The following is a simple SaveScreen implementation:

Bool
pScreen->SaveScreen(ScreenPtr pScreen, int on)

Bool
xxxSaveScreen(ScreenPtr pScreen, int on)
{

if (on == SCREEN_SAVER_FORCER) {
SetTimeSinceLastInputEvent();

}
else {

if (on == SCREEN_SAVER_ON) {
VIDEO_OFF(); /* Device specific video disable */

}
else {

VIDEO_ON(); /* Device specific video enable */
}

}
return TRUE;

}

Screen Initialization 25

3

Supply a CloseScreen Function

The CloseScreen function should be wrapped by ddxInitFunc . The
CloseScreen routine should clean-up all the device state, to the extent
required by the device. For example, you might follow these steps in your
CloseScreen function:

• Enable video, if the ScreenSaver disabled video
• Clear the Screen before exiting
• Reset the device’s LUT with colors appropriate for displaying console

messages, if the device also acts as a system console
• Call the CloseScreen functions that were wrapped
• Unmap the device registers and frame buffer, if it is a memory-mapped

frame buffer
• Close all file descriptors opened by the DDX handler
• Free all allocated memory

For SPARC systems – For a sample CloseScreen implementation, see the
ddk_2.6/xserver/server/ddx/solaris/sparc/cg3 directory.

For x86 systems – For a sample CloseScreen implementation, see the
ddk_2.6/xserver /server/ddx/solaris/i386/displays/v256
directory.

Initializing Visual Gamma
If your device supports linear and nonlinear visuals, you might want to
advertise the XSolarisGetVisualGamma property; otherwise, it is optional.

Gamma-Corrected Visuals

Some devices have linear, or gamma corrected visuals. Applications can
distinguish between linear visuals and nonlinear visuals by calling
XSolarisGetVisualGamma (3). For more information on this routine see the
Solaris X Window System Developer’s Guide and the manual page.

Devices that have linear visuals should export these visuals by adding them to
the pScreen->visuals list just like any other visual. A root window
property distinguishes it from the nonlinear visuals.

26 X Server Device Developer’s Guide—August 1997

3

Note – If a device has a linear visual with a nonlinear counterpart having a
gamma of approximately 2.22, it is a good idea to place the nonlinear one
before the linear one on the screen visual list. Most X11 applications prefer a
nonlinear visual with this gamma value. Make the server default visual
nonlinear as well.

The Monitor Intensity Response Property

Linear and nonlinear visuals are differentiated by describing their gamma
value through a root window property, XDCCC_LINEAR_RGB_CORRECTION. It
is a standard X11 ICCCM property originally created for the X Color
Management System. The routine XSolarisGetVisualGamma also reads it.
This property specifies for a visual a set of tables (one for each of the red,
green, and blue color channels) that describe how the intensity of colors
coming out of the frame buffer map to actual display colors on the monitor
screen. This is the intensity response of colors displayed in the visual. If the
intensity response of more than one visual is described, the property contains
more than one set of tables. See The X Window System for detailed information
on XDCCC_LINEAR_RGB_CORRECTION.

Here are some guidelines for creating the property:

1. Create the property with type XA_INTEGER and format 16.

2. Visuals with a gamma of exactly 2.22 may be omitted from the property. In
this case, XSolarisGetVisualGamma assumes a value of 2.22. This is the
most efficient way to specify this value.

3. Visuals with a gamma of exactly 1.0 should be represented using a 2-entry
type 0 table. For each channel, the first entry should be (0, 0) and the second
entry should be (numIntensities - 1, 0xffff), where numIntensities
is (1 << visual->bitsPerRGBValue) .

4. All other visuals should be represented using a type 1 table. To create this
type of table, the following expression should be evaluated for each color
channel and for each value x between 0 and xmax:

y = (unsigned short) ((65535.0 * pow((double)x/(double)xmax, γ)) + 0.5)

Screen Initialization 27

3

where γ is the gamma of the visual and xmax is numIntensities -1 (see
guideline #3).

5. bpr is the bitsPerRGBValue member of the visual structure.

6. If the gamma of all visuals is exactly 2.22, the property does not need to be
created at all.

Note – XDCCC_LINEAR_RGB_CORRECTION describes the intensity response of
the entire path from the frame buffer through the monitor, rather than just the
gamma correction function.

Note – It may be acceptable if the intensity response described in this property
is only approximate. The DDX may not know the specific monitor attached to
the device and may need to provide an estimate. A gamma value of 2.22 is a
good estimate for most monitors.

The next section describes how to create a root window property from within a
DDX handler screen initialization function.

Initializing a Root Window Property

A root window property cannot be directly created from a DDX screen
initialization routine because at the time this routine is called the root window
has not yet been created. However, the initialization routine can arrange for the
property to be created at a later time, after the root window has been created.

The first call to pScreen->CreateWindow is for the root window. This screen
function should be wrapped. On the first call to the wrapper function, the
property should be created on the argument window. This is guaranteed to be
the root window.

28 X Server Device Developer’s Guide—August 1997

3

A property is created by first determining the atoms for the property’s name
and type strings. If the string has a predefined atom, simply use the defined
symbol for that atom (see /usr/openwin/include/Xatom.h for the list of
predefined atoms). Otherwise, call MakeAtom to intern the string and receive
back an atom.

string is the name of the string to be interned, len is its length (in bytes),
and makeit should be TRUE. A numeric value (the atom) is returned.

Next, the property is added to the window by calling
ChangeWindowProperty :

pWin is the argument to the CreateWindow wrapper routine, property is the
interned atom for the string “XDCCC_LINEAR_RGB_CORRECTION”, type is
XA_INTEGER, format is 16, mode is PropModeReplace , len is the length of
the property (in units of 16-bit short words), value is pointer to the property
data and sendevent should be FALSE. Success is returned if the property
creation succeeded.

Note – It is a good idea to unwrap pScreen->CreateWindow after the
property has been created so other calls to CreateWindow do not incur extra
overhead.

Atom
MakeAtom (char *string, unsigned len, Bool makeit)

int
ChangeWindowProperty (WindowPtr pWin, Atom property, Atom type,

int format, int mode, unsigned long len, pointer value,
Bool sendevent)

29

Cursors 4

Cursor implementations for most device handlers fall into one of these
categories:

• Software cursor
• Limited-size hardware cursor

You can use a number of software layers to help with your cursor
implementation, depending on your graphics adapter hardware. This chapter
helps you choose the cursor layer that is best for your hardware. The porting
interface for each of the available layers is also discussed in detail.

The Basic DDX Interface
The basic DDX interface describing cursor routines for a screen is defined in
the X11 sample server document Definition of the Porting Layer for the Xv11
Sample Server. This interface consists of the following functions:

pScreen->RealizeCursor(pScr, pCurs)
pScreen->UnrealizeCursor(pScr, pCurs)
pScreen->DisplayCursor(pScr, pCurs)
pScreen->RecolorCursor(pScr, pCurs, displayed)
pScreen->ConstrainCursor(pScr, pBox)
pScreen->PointerNonInterestBox(pScr, pBox)
pScreen->CursorLimits(pScr, pCurs, pHotBox, pTopLeftBox)
pScreen->SetCursorPosition(pScr, newx, newy, generateEvent)

30 X Server Device Developer’s Guide—August 1997

4

It is possible for your DDX handler to port directly at this level. You can do
this by supplying fully customized versions of these functions in your screen
initialization routine.

A DDX implementation of these cursor functions is provided in utility layers
discussed in the remainder of this chapter. If your graphics device is an MPG
(multiple plane group) device and your cursor implementation is in a separate
plane group, refer to Chapter 5, “Multiple Plane Group Interface.”

Note – Due to implementation constraints in the server, the Sun mouse
implementation requires you to initialize the mipointer code in your DDX
handler. The following miPointer routines are used by the ddxSUNWmouse
device handler.

• miPointerGetMotionEvents
• miPointerGetMotionBufferSize
• miPointerDeltaCursor
• miPointerPosition
• miPointerAbsoluteCursor

Software Cursor
This section describes the software cursor porting interface for your DDX
handler.

miDC Layer

The mi utility layer provides a software cursor implementation in the miDC
(mi Display Cursor) layer. If your display adapter does not have any hardware
cursor capability, a complete software cursor implementation can be enabled
by calling the miDCInitialize function in your screen initialization routine.

For SPARC systems – For an example of a software cursor implementation, see
the cg3 reference DDX handler in the following directory:
ddk_2.6/xserver/server/ddx/solaris/sparc/cg3

Cursors 31

4

For x86 systems – For an example of a software cursor implementation, see the
v256 reference DDX handler in the following directory:
ddk_2.6/xserver/server/ddx/solaris/i386/displays/v256

Call the miDCInitialize function after most of the screen functions have
been initialized. It uses the miSprite layer that wraps most of the screen
functions. See the sample cg3, v256, or p9100 handler for an example of the
order in which to call the screen initialization functions.

Call the miDCInitialize routine with the following parameters:

The Sun layer provides a set of screenFuncs that is an array of pointers to
functions required by the miPointer layer (such as CursorOffScreen ,
CrossScreen and WarpCursor).

The following example is all that is required in your DDX handler to enable the
software cursor implementation in the mi layer.

The following sections describe in more detail the mi layers that the miDC
layer uses to provide a software cursor. If you are in a hurry to get a software
cursor working on your graphics adapter, you do not need to know all of the
mi layer details.

The miDC layer internally uses the miSprite and miPointer layers to
implement the software cursor.

#include “mipointer.h”
...
miDCInitialize(ScreenPtr pScreen,

miPointerScreenFuncPtr screenFuncs);

#include “sun.h”
...
#include “mipointer.h”
...
...
extern miPointerScreenFuncRec sunPointerScreenFuncs;
...
miDCInitialize(pScreen, &sunPointerScreenFuncs)

32 X Server Device Developer’s Guide—August 1997

4

miPointer Layer

The miPointer layer offers a set of the basic DDX cursor interface. This means
that it supplies an implementation of the DDX eight discussed in “The Basic
DDX Interface” on page 29. To get the miPointer layer to work however, you
must provide an implementation of miPointerSpriteFuncs and
miPointerScreenFuncs . Each of these is an array of four functions that you
pass to miPointerInitialize .

miPointerSpriteFuncs is a set of four functions that implement the sprite
software.

miPointerScreenFuncs is a set of functions that implement Screen
crossings and cursor warping.

Irrespective of which sprite implementation you choose, use the
miPointerScreenFuncs implementation provided in the sun layer. The
sunPointerScreenFuncs array provides implementations for
CursorOffScreen , CrossScreen , and WarpCursor . It has NULL pointers
for EnqueueEvents and NewEventScreen ; these are initialized by

miPointerInitialize(ScreenPtr pScreen,
miPointerSpriteFuncPtr spriteFuncs,
miPointerScreenFuncPtr screenFuncs, Bool waitForUpdate)

RealizeCursor(pScr, pCurs)
UnrealizeCursor(pScr, pCurs)
SetCursor(pScr, pCurs, x, y)
MoveCursor(pScr, x, y)

CursorOffScreen(pScr, x, y)
CrossScreen(pScr, entering)
WarpCursor(pScr, x, y)
EnqueueEvent(xEvent)
NewEventScreen(pScr)

Cursors 33

4

miPointerInitialize to the routines mieqEnqueue and
mieqSwitchScreen . The sunPointerScreenFuncs array is used by
including the following code in your DDX handler.

miSprite Layer

The miSprite layer provides a set of the miPointerSpriteFuncs required to
drive the miPointer layer. The miSprite layer offers a software sprite—a
software overlay that can be moved around on the screen, while preserving
other images on the screen.

The miSprite layer does this by wrapping all the Screen rendering functions
and all the GC functions. It saves areas under the sprite, and restores them
when the sprite moves. It removes the sprite while rendering occurs to areas
under the sprite, and restores the sprite when required. To get miSprite to
work, miSpriteInitialize needs to be passed an array of
miSpriteCursorFuncs .

miSpriteCursorFuncs is an array of these functions:

#include “sun.h”
...
#include “mipointer.h”
...
...
extern miPointerScreenFuncRec sunPointerScreenFuncs;

miSpriteInitialize(ScreenPtr pScreen,
miSpriteCursorFuncPtr cursorFuncs,
miPointerScreenFuncPtr screenFuncs);

RealizeCursor(pScr, pCurs)
UnrealizeCursor(pScr, pCurs)
PutUpCursor(pScr, pCurs, x, y)
SaveUnderCursor(pScr, x, y, w, h)
RestoreUnderCursor(pScr, x, y, w, h)
MoveCursor(pScr, x, y, w, h, dx, dy)
ChangeSave(pScr, x, y, w, h, dx, dy)
InCursorPlanes(pWin)

34 X Server Device Developer’s Guide—August 1997

4

An implementation of these functions is provided by the miDC layer. This layer
draws the software cursor image.

miSetZeroLineBias Function

Purpose This function allows the developer to specify the device line
renderering bias. Each device may specify its own line bias
based on a bias byte. This bias is honored by all thin line
rendering in cfb , mfb and mi .

Arguments bias is an 8-bit mask indicating which octants to step axially
when the error term is 0. The preprocessor definitions
needed to construct a bias byte are defined in the header file
mipixel.h and are named OCTANT1 through OCTANT8.

Results If this function is not called when needed to tune the
software thin line bias for a device, a default value is
automatically provided.

Hardware Cursor
This section describes the porting interface for your DDX handler if you have a
hardware cursor. The hardware cursor is limited by the size of the cursor
image registers.

The X Protocol leaves it up to the server implementation to decide what the
cursor looks like if the cursor defined for the Screen exceeds the physical
limits imposed by the cursor hardware. Some server implementations choose
to trim the cursor image around the hotspot such that it fits into the size limits
imposed by the hardware.

Another strategy, and one that is followed by the OpenWindows server, is to
revert to a software cursor implementation whenever a cursor defined for a
Window does not fit in the hardware. This means that if there are multiple
cursors defined on the same screen, some small enough to fit in the hardware
cursor registers, and some larger, the cursor dynamically switches between

extern void miSetZeroLineBias (ScreenPtr pScreen, unsigned int
bias);

Cursors 35

4

hardware and software forms as the pointer is moved across the screen. This
hardware and software cursor switching is implemented in a utility layer in
the server, called sunSprite .

The sunSprite Layer

The sunSprite layer implements a sprite that can switch between hardware and
software forms. It uses the software cursor layers described in “Software
Cursor” on page 30 whenever the cursor does not fit into hardware.

In your DDX handler, you might want to use the sunSprite layer to handle
your cursor if you want to switch between hardware and software cursors on
the same screen. It is recommended that the cursor defined by the application
be displayed as actual size, even if this means that it cannot fit into hardware.
This is motivated by the desire to keep the application’s look and feel
consistent across all graphics adapters supported by the OpenWindows server.

The sunSprite code is initialized in the DDX handler’s screen initialization
function by calling the following function:

To make the sunSprite layer work, you must pass the sunSprite layer a set
of four functions that implement a hardware cursor on your device
(miPointerSpriteFuncPtr) and a function that is called by the

#include “sun.h”
...
...
Bool sunSpriteInitialize(ScreenPtr pScreen,

Bool (*putInHardware)(),
miPointerSpriteFuncPtr hardwareSpriteFuncs,
miPointerScreenFuncPtr screenFuncs)

36 X Server Device Developer’s Guide—August 1997

4

sunSpriteLayer to check if a defined cursor should be put in hardware or
software (putInHardware). An implementation of screenFuncs is already
available:

The four functions that implement the hardware cursor and the
putCursorInHardware function are needed to port to your hardware.

This function returns TRUE if the cursor should be placed in hardware; FALSE
if the cursor should be drawn by software (miDC).

The following code is a sample implementation of this function on a device
that has a 32x32 cursor register.

#include “sun.h”
....
#include “mipointer.h”
....
....
extern miPointerScreenFuncRec sunPointerScreenFuncs;

Bool xxxPutInHardware(ScreenPtr pScr, CursorPtr pCurs)

Bool
XXXPutInHardware(pScreen, pCursor)

ScreenPtr pScreen;
CursorPtr pCursor;

{
if (pCursor->bits->width > 32 || pCursor->bits->height > 32)

return FALSE;
return TRUE;

}

Cursors 37

4

Examples of miPointerSpriteFuncs

The following code is a sample pseudo-implementation of the four
miPointerSpriteFuncs that implement a hardware cursor on the same
device.

Code Example 4-1 Hardware Cursor Pseudocode

#include “sun.h”
#include “dixfontstr.h”
#include “mipointer.h”
#include “cursorstr.h”
#include “XXXhardware.h”
...
...
static Bool
XXXRealizeCursor (pScreen, pCursor)

ScreenPtrpScreen;
CursorPtrpCursor;

{
pCursor->bits->devPriv[pScreen->myNum] = NULL;
return TRUE;

}
static Bool
XXXUnrealizeCursor (pScreen, pCursor)

ScreenPtrpScreen;
CursorPtrpCursor;

{
return TRUE;

}

/*
 * XXXLoadCursor -- Load the cursor into XXX hardware registers. When the
 * sunSprite layer is used, this routine is passed a cursor to install
 * into hardware only if the cursor fits into hardware (in this case <= 32x32).
 * However, just in case it is not the sunSprite layer calling this
 * routine, or if for DGA reasons you decide you want to force the cursor into
 * hardware regardless of its size, this routine is able to accept a
 * cursor larger than 33x32, trim it around the hotspot, and fit it into the
 * cursor register. You can either trim the cursor exactly around the
 * hotspot (bitBlt), or trim it so that you use the
 * 32-bit word of each scanline that the hotspot falls within. Do the latter
 * because it is faster. (The protocol says “The components of the cursor
 * can be transformed arbitrarily to meet display limitations...”)
 */

38 X Server Device Developer’s Guide—August 1997

4

static void
XXXLoadCursor (pScreen, pCursor, x, y)

ScreenPtr pScreen;
CursorPtr pCursor;
int x, y;

{
SetupScreen(pScreen);
int w, h;
Unsgn32 source[32], mask[32], *pSource, *pMask;
int i;

w = pCursor->bits->width;
h = pCursor->bits->height;
xhot = pCursor->bits->xhot;
yhot = pCursor->bits->yhot;
/* Assumes BITMAP_SCANLINE_PAD == 32 in the non-trim case */
pSource = (Unsgn32 *)pCursor->bits->source;
pMask = (Unsgn32 *)pCursor->bits->mask;

/* Do I need to trim the cursor? */
if (w > 32 || h > 32) { /* trim ! */

int scanline = ((BitmapBytePad((int)(pCursor->bits->width))) >> 2);
int startWord = 0, startscan = 0, endscan = h - 1;
if (w > 32) {

xhot = pCursor->bits->xhot % 32;
startWord = pCursor->bits->xhot / 32;
w = 32;

}
if (h > 32) {

yhot = 16; /* easy to center around yhot */
endscan = pCursor->bits->yhot + 15;
while (endscan > h) {
endscan--;
yhot++;
}
startscan = endscan - 31;
while (startscan < 0) {
startscan++;
yhot--;
}
h = 32;

}
pSource = pSource + startWord + startscan * scanline;
pMask = pMask + startWord + startscan * scanline;

Code Example 4-1 Hardware Cursor Pseudocode (Continued)

Cursors 39

4

for (i = 0; i < h; i++) {
source[i] = *pSource; pSource += scanline;
mask[i] = *pMask; pMask += scanline;

}
pSource = source;
pMask = mask;

}

/* By the time we reach this point, w <= 32 && h <=32 */

/* Set the hardware cursor position and image here */
/* This is where hardware-specific code is added... */
XXXDOSETCURSORIMAGEANDPOSITION(pSource, pMask, x, y);

}

static void
XXXSetCursor (pScreen, pCursor, x, y)

ScreenPtr pScreen;
CursorPtr pCursor;
int x, y;

{

if (pCursor)
XXXLoadCursor (pScreen, pCursor, x, y);

else
XXXDisableCursor (pScreen);

}

static void
XXXMoveCursor (pScreen, x, y)

ScreenPtr pScreen;
int x, y;

{
XXXMOVECURSOR((((x - xhot) << 16) | ((y - yhot) & 0xffff)));

}

static void
XXXQueryBestSize (class, pwidth, pheight, pScreen)

int class;
short *pwidth, *pheight;
ScreenPtr pScreen;

{

Code Example 4-1 Hardware Cursor Pseudocode (Continued)

40 X Server Device Developer’s Guide—August 1997

4

switch (class)
{
case CursorShape:

if (*pwidth > 32)
*pwidth = 32;

if (*pheight > 32)
*pheight = 32;

break;
default:

mfbQueryBestSize (class, pwidth, pheight, pScreen);
break;

}
}

static miPointerSpriteFuncRec XXXPointerSpriteFuncs = {
XXXRealizeCursor,
XXXUnrealizeCursor,
XXXSetCursor,
XXXMoveCursor,

};

/*
 * This function is called from the DDX handler’s Screen Init routine. */
void
XXXCursorInitialize (pScreen)

ScreenPtrpScreen;
{

extern miPointerScreenFuncRec sunPointerScreenFuncs;

pScreen->QueryBestSize = XXXQueryBestSize;
sunSpriteInitialize (pScreen, XXXPutInHardware,

&XXXPointerSpriteFuncs,
&sunPointerScreenFuncs);

}

void
XXXDisableCursor (pScreen)

ScreenPtrpScreen;
{

XXXSWITCHOFFCURSOR();
}

Code Example 4-1 Hardware Cursor Pseudocode (Continued)

Cursors 41

4

Kernel Cursor Tracking - The sunHWCursor Layer

The preceding section outlined examples of a hardware cursor implementation
in which the hardware cursor was tracked by the X server process—that is, the
cursor position was updated in user-domain code. Under conditions of heavy
system load, this approach of tracking the cursor in the X server process might
result in a considerable latency between pointer motion and corresponding
cursor motion on the screen. One way to improve the interactive performance
of the cursor is to track the cursor in the kernel-domain.

The sunHWCursor layer offers an implementation of a hardware cursor that is
tracked in the kernel. To use this layer, the device driver for your graphics
adapter must implement a set of kernel cursor tracking ioctl s that are
documented in Writing Device Drivers. If your device driver implements these
ioctl s, and you use the sunHWCursor layer utilities for your cursor
implementation, a module (called hwc) is pushed on the mouse stream that
intercepts mouse events and sends them directly to the graphics adapter’s
device driver via the Kernel Cursor Tracking ioctl s issued from the kernel-
domain.

Additionally, the sunHWCursor implementation is layered over the sunSprite
layer. This means that when this layer is used for your cursor implementation,
the cursor switches to a software form (tracked in the user-domain) over
windows that define a cursor that is too large to fit in the hardware cursor
image registers.

The sunHWCursor code is initialized in the DDX handler’s Screen
initialization function by calling the following function:

sunCursorInitialize initializes pScreen->QueryBestSize with
sunQueryBestSize , and then calls sunSpriteInitialize . As mentioned
in “The sunSprite Layer” on page 35, the sunSprite layer requires an
implementation of the PutInHardware , hardwareSpriteFuncs and
screenFuncs functions.

#include “sun.h”
...
...
Bool sunCursorInitialize(ScreenPtr pScreen)

42 X Server Device Developer’s Guide—August 1997

4

Note – In this release, the ability to specialize these functions for the sunSprite
layer is not available when using the sunHWCursor layer; the sunHWCursor
layer has built-in implementations of these functions and the
sunQueryBestSize function. The ability to specialize some of these functions
when using the sunHWCursor layer might be offered in a future release of the
OpenWindows server.

Invoking sunCursorInitialize in your DDX handler’s initialization
routine, and implementing the ioctl s in the device driver is sufficient to
obtain a kernel-tracked cursor. If you are in a hurry to get a kernel-tracked
hardware cursor implementation going on your graphics adapter, you do not
need to know all of the sunHWCursor layer details that follow.

sunHWCursor Functions

The functions provided in the sunHWCursor layer are described in this
section.

sunQueryBestSize

Results If class is CursorShape , this function issues an ioctl to
the device driver to determine the maximum hardware
cursor size. For all other values of class , this function calls
mfbQueryBestSize .

Returns If the hardware cursor size is smaller than the maximum
screen bounds, this function returns these values in pWidth
and pHeight , else it returns the maximum screen bounds.

If this implementation of pScreen->QueryBestSize is not desired, supply
an equivalent function in your DDX handler after sunCursorInitialize
has been called.

static void sunQueryBestSize(int class, short *pWidth,
short *pHeight, ScreenPtr pScreen)

Cursors 43

4

sunPutInHardware

Purpose This function is the sunHWCursor layer’s implementation of
the PutInHardware routine required by the sunSprite layer.

Results This function issues an ioctl to the device driver to
determine the maximum hardware cursor size.

Returns If the cursor passed in pCursor is larger than the hardware
size, this function returns FALSE, else it returns TRUE.

screenFuncs

Purpose This is an implementation of the screenFuncs functions
that is passed to the sunSprite layer. See “miPointer Layer”
on page 32.

hardwareSpriteFuncs

Purpose This is the sunHWCursor layer’s implementation of the
hardwareSpriteFuncs array required by the sunSprite
layer. These functions load the hardware cursor, and enable
kernel cursor tracking via the hwc module that has been
pushed onto the mouse stream. The sunMoveCursor
function is a stub that does not get called while kernel cursor
tracking is active. If the cursor is switched to a software form
by the sunSprite layer (this might happen when the pointer

static Bool sunPutInHardware(ScreenPtr pScreen,
CursorPtr *pCursor)

extern miPointerScreenFuncRec sunPointerScreenFuncs;

miPointerSpriteFuncRec sunPointerSpriteFuncs = {
sunRealizeCursor, sunUnRealizeCursor, sunSetCursor,
sunMoveCursor,

};

44 X Server Device Developer’s Guide—August 1997

4

traverses a window that has a large cursor defined, which
does not fit in the hardware cursor image registers), the
cursor is tracked in user-domain by the miDC layer.

45

Multiple Plane Group Interface 5

Some devices contain multiple plane groups (MPG) to support overlays and
visuals of varying depths. The MPG utility library provides the following
features for those devices:

• Windowing Operations

These functions are necessary to operate on windows with multiple plane
groups. When a window is moved, all of its physical plane groups need to
be moved; when a window is exposed, all of its damaged plane groups need
to be repaired.

• Minimizing Exposure Events

These functions minimize exposure events between windows that reside in
separate plane groups. See “CopyPlanes and AggregatePlanes” on page 61
for more information.

• Leveraging of Existing DDX Interfaces

MPG is designed to use existing rendering and windowing libraries, such as
CFB or MFB.

MPG Architectural Overview
MPG is data-driven; DDX handlers need to inform MPG which plane groups
are used by which windows and how they are used within the windows. Then
the MPG windowing operations take care of moving, preparing and computing
exposures to the plane groups.

46 X Server Device Developer’s Guide—August 1997

5

Figure 5-1 shows the MPG library’s interfaces to other DDX utility libraries.

Figure 5-1 MPG DDX Library Interfaces

The MPG DDX library does not actually do any rendering. Instead, it is
designed to lie on top of other DDX libraries, such as CFB and MFB or device-
specific code, which provide all of the rendering and some of the windowing
functions. This way a frame buffer with a 24-bit color plane group and a 1-bit
overlay plane group can use CFB32 and MFB for its depth-specific rendering
and windowing functions. MPG manages the depth-specific setup and
switching between the underlying DDX libraries, and provides the rest of the
windowing functions. MPG does not explicitly call CFB or MFB, and can use
any device-specific functions.

Each physical plane group requires a screen pixmap, which is a pixmap
structure that points to an on-screen data area. Each window uses one or more
plane groups. Two windows can share the same plane group, but use it
differently.

The MPG info of a window is comprised of its plane group combination and
usage. The MPG info is stored in the mpgInfoRec structure that may be
shared among windows. The flavor of a window is defined by its MPG info
and visual. There is a one-to-many relationship between MPG infos and
visuals. A sample device, such as the CG8, might have:

• three plane groups: 24-bit color, 1-bit overlay, 1-bit overlay enable

and might provide:

Device DDX Handler

MPG

MFB CFB

Multiple Plane Group Interface 47

5

• two MPG infos: color underlay and monochrome overlay, and
• three visuals: StaticGray , TrueColor , and DirectColor

In the above example, windows with TrueColor or DirectColor visuals
share the same color underlay MPG info. Each supported visual is matched by
an MPG info in the mpgPerVisInfo structure. Each window is assigned to an
MPG info based on its visual.

Data Structure Initialization

In a single plane group (SPG) device, some members of the screen structure
apply to only a single depth. In an MPG device that supports various depths,
this depth-specific information must be stored somewhere else. Currently, most
of this information is stored in the mpgInfoRec structure; the rest stored in the
mpgPerDepthInfo structure which is arranged by depth. Pointers to all
mpgInfoRec structures are listed in the mpgPerVisInfo structure arranged
by visual.

The mpgPerVisInfo and mpgPerDepthInfo structures are initialized
directly in the device’s DDX handler and attached to the screen private
structure via the mpgScreenInit function. Each mpgInfoRec structure is

48 X Server Device Developer’s Guide—August 1997

5

initialized indirectly via mpgGetScreenState and mpgInsertPlanegroup
functions. See “MPG Functional Interface” for a detailed description of these
functions.

MPG Functional Interface

initPixmap

Purpose This function initializes the screen pixmap of a plane group.

Arguments width , height and depth are the plane group dimensions.

linebytes is the number of bytes to pad a scan line on the
plane group of a given width and depth .

Code Example 5-1 MPG Data Structure Direct Initialization

#define NUMVISUALS 3
#define NUMVISUALS1 1
#define NUMVISUALS24 2
#define NUMDEPTHS 2 /* 1 and 24 bit */

static mpgInfoRec overlay_info, color_info;

static mpgPerVisInfo cg8MPGPerVisInfo[NUMVISUALS] = {
(VisualID)0, &overlay_info,
(VisualID)0, &color_info,
(VisualID)0, &color_info,

};

static const mpgPerDepthInfo cg8MPGPerDepthInfo[NUMDEPTHS] = {
{1, mfbCreateGC, mfbCreatePixmap, mfbDestroyPixmap,

mfbGetImage, mfbGetSpans},
{24, cfb32CreateGC, cfb32CreatePixmap, cfb32DestroyPixmap,

cfb32GetImage, cfb32GetSpans}
};

void
initPixmap(ScreenPtr pScreen, int width, int height,

int linebytes, int depth,
PixmapPtr pScreenPixmap, pointer data)

Multiple Plane Group Interface 49

5

data is a pointer to a memory-mapped on-screen data area
that is used to initialize the devPrivate field of the screen
pixmap.

The following code shows you a few samples of how to use initPixmap .

mpgGetScreenState

Purpose This function stores depth-specific information about the
screen in the mpgInfoRec structure pointed to by
pMPGInfo . It stores the blackPixel and whitePixel
values, a set of depth-specific screen functions, a plane
group-specific SetupScreen function, and a set of depth-
specific backing store functions pointed to by pBSFuncs .

The following depth-specific screen functions are currently stored by
mpgGetScreenState :

• GetImage
• GetSpans
• ResolveColor
• CreateColormap
• DestroyColormap
• CopyWindow
• CreateWindow
• DestroyWindow
• RealizeWindow
• PositionWindow
• UnrealizeWindow

Code Example 5-2 initPixmap

initPixmap(pScreen, width, height, PixmapBytePad(width, 1), 1,
&cg8Private->pixmaps[CG8_ENABLE], overlay_enable_data);

initPixmap(pScreen, width, height, PixmapBytePad(width, 1), 1,
&cg8Private->pixmaps[CG8_OVERLAY], overlay_data);

initPixmap(pScreen, width, height, PixmapBytePad(width, 24), 24,
&cg8Private->pixmaps[CG8_COLOR_24], color_data);

Bool
mpgGetScreenState(ScreenPtr pScreen, mpgInfoPtr pMPGInfo,

void (*SetupScreen)(), miBSFuncPtr pBSFuncs)

50 X Server Device Developer’s Guide—August 1997

5

• PaintWindowBorder
• PaintWindowBackground
• ChangeWindowAttributes

SetupScreen

Purpose This function normally initializes the devPrivate field of
the screen structure to point to the screen pixmap of a
specific plane group. It may also perform other software set
up for rendering on that specific plane group.

The following code shows you a few samples of how to set up screens.

mpgGetScreenState extracts most of its information from the current state of
the screen. Do not over-initialize the screen before calling
mpgGetScreenState . Routines like mfbScreenInit and cfbScreenInit
usually do too much, such as bringing in much of the MI library that might not
be necessary or allocating a lot of redundant memory. Use routines like
mfbSetupScreen and cfbSetupScreen instead.

void
(* SetupScreen)(ScreenPtr pScreen)

Code Example 5-3 SetupScreen

static void
cg8MFBSetup(ScreenPtr pScreen)
{

pScreen->devPrivate = (pointer)&pCG8Private->pixmaps[CG8_OVERLAY];
}

static void
cg8CFB32Setup(ScreenPtr pScreen)
{

pScreen->devPrivate = (pointer)&pCG8Private->pixmaps[CG8_COLOR_24];
pScreen->devPrivates[cfb32ScreenPrivateIndex].ptr = pScreen->devPrivate;

}

Multiple Plane Group Interface 51

5

The following code shows you a few samples of how to get the screen state.

mpgGetScreenState returns TRUE if it’s successful, FALSE otherwise.

mpgInsertPlanegroup

Purpose This function builds the MPG info by filling the mpgInfoRec
structure pointed to by pMPGInfo with information on plane
group combination and usage.

Arguments iid and eid are the plane group internal and external
identifiers. Plane group identifiers are unique small integers.
Each device can enumerate its own plane groups to uniquely
identify them. Plane group identifiers are normally used to
index arrays of screen pixmaps. They are also bit-encoded
and combined together to create plane group bit masks that
express the plane group combination in each window and

Code Example 5-4 mpgGetScreenState

mfbSetupScreen(pScreen, pCG8Private->pixmaps[CG8_OVERLAY].devPrivate,
pScreen->width, pScreen->height, monitorResolution,
monitorResolution, pScreen->width);

mpgGetScreenState(pScreen, &overlay_info, cg8MFBSetup,
&mfbBSFuncRec);

cfb32SetupScreen(pScreen,
pCG8Private->pixmaps[CG8_COLOR_24].devPrivate, pScreen->width,
pScreen->height, monitorResolution, monitorResolution,
pScreen->width);

mpgGetScreenState(pScreen, &color_info, cg8CFB32Setup,
&cfb32BSFuncRec);

Bool
mpgInsertPlanegroup(mpgInfoPtr pMPGInfo, mpgPlaneId iid,

mpgPlaneId eid, mpgType type, mpgOp op, unsigned long val)

52 X Server Device Developer’s Guide—August 1997

5

facilitate the plane group interaction among windows. MPG
provides the following macros to create and perform set
operations on plane group bit masks:

Currently the bit-encoding scheme limits plane group identifiers to be
between 0 and 31 inclusive. iid is used to represent a plane group
internally within the window, while eid is used to represent a plane group
externally with respect to other windows. For example, iid is used in
rendering and preparing plane groups in each window, while eid is used in
checking plane group interference among windows and moving a family of
windows across the screen. Windows that share the same eid damage each
other on that plane group. Normally the eid of a plane group is identical to
its iid . For backward compatibility, entering 0 for the eid currently forces
it to be identical to the iid .

type describes the usage of each plane group within its window. Entering
MPG_VISIBLE for type means the plane group is used for describing
visibility. Entering MPG_DRAWABLE for type means the plane group is used
for client rendering or to assist client rendering, for example, as the Z buffer
in 3D rendering or the WID (window ID) buffer in hardware clipping. (See
Chapter 7, “Window ID Interface” for detailed information on WIDs.)
Entering MPG_VISIBLE_DRAWABLE for type means the plane group is used
for all of the purposes stated above. Each window has one plane group of
type MPG_VISIBLE or MPG_VISIBLE_DRAWABLE to describe visibility.
Entering MPG_OTHER for type means the plane group is used for purposes
other than the ones stated above, such as clearing buffers or switching
colormaps.

Each plane group with a unique eid has a region that represents the area of
the screen pixmap claimed by its window with respect to other windows.
The region of a plane group of type MPG_VISIBLE or
MPG_VISIBLE_DRAWABLE is used in processing VisibilityNotify
events—it is used to describe if its window is unobstructed, fully obscured,
or partially obscured by other windows that share the same plane group.
The region of a plane group of type MPG_DRAWABLE or

#define mpg_bit_encoded(i) (1<<(i))
#define mpg_union(a,b) ((a)|(b))
#define mpg_intersect(a,b) ((a)&(b))
#define mpg_subtract(a,b) ((a)&(~(b)))
#define mpg_subset(a,b) ((a)==((a)&(b)))

Multiple Plane Group Interface 53

5

MPG_VISIBLE_DRAWABLE is used in processing Expose events—it is used
to compute the effective rendering clip of its window. A window does not
receive an Expose event until all of its plane groups of type MPG_DRAWABLE
or MPG_VISIBLE_DRAWABLE are exposed.

op is performed on each plane group when it is exposed. Entering
MPG_NOOP for op means the plane group is not filled or rendered—it does
not contain data. A plane group with MPG_NOOP operation can be viewed as
a virtual plane group. It is normally used to force interference among
windows with different plane group combinations. A virtual plane group is
not copied when its window is moved.

Entering MPG_DRAW for op means the plane group is rendered by clients—it
contains data. Multiple plane groups can have the MPG_DRAW operation. The
last plane group inserted is the drawing plane group. The iid of this plane
group is used to render color data.

Note – In the current release, use MPG_DRAW with plane groups of type
MPG_DRAWABLE or MPG_VISIBLE_DRAWABLE.

Entering MPG_FILL for op means the plane group is filled with the value
supplied in val , which is constant throughout the window’s existence.
Entering MPG_FILL_WID for op means the plane group is filled with the
window id value associated with its window. Window ids are a finite
resource that can be shared and rotated among windows.

val is the value to fill the plane group with when op is MPG_FILL. It is
ignored for all other cases.

Plane Group Aliasing

In addition to supporting plane groups with multiple purposes, MPG also
supports multiple ways of addressing them. MPG allows plane group aliasing—
the ability to address a plane group partially, internal or external to the
window. This enables a plane group to be split into several disjoint partitions
or aggregated with other plane groups to form a larger cohesive entity. For
example, a 24-bit color plane group is internally addressed as an 8-bit color
plane group to support 8-bit windows, or is split into three disjoint 8-bit color

54 X Server Device Developer’s Guide—August 1997

5

plane groups, in which mutually non-interfering 8-bit windows coexist. Enter a
different iid and eid per plane group with mpgInsertPlanegroup to use
plane group aliasing.

Note – Currently a one-to-many relationship between iid s and eid s in each
window is supported.

The following examples show you how to implement plane group aliasing
with mpgInsertPlanegroup . Each example gets more complex—the first
example shows the most common ways to plane group alias, while the last
example shows a disjointed plane group.

Code Example 5-5 Common use of mpgInsertPlanegroup

mpgInsertPlanegroup(&overlay_info, CG8_OVERLAY, CG8_OVERLAY,
MPG_DRAWABLE, MPG_DRAW, 0);

mpgInsertPlanegroup(&overlay_info, CG8_ENABLE, CG8_ENABLE,
MPG_VISIBLE, MPG_FILL, 1);

mpgInsertPlanegroup(&color_info, CG8_COLOR_24, CG8_COLOR_24,
MPG_DRAWABLE, MPG_DRAW, 0);

mpgInsertPlanegroup(&color_info, CG8_OVERLAY, CG8_OVERLAY,
MPG_OTHER, MPG_FILL, 0);

mpgInsertPlanegroup(&color_info, CG8_ENABLE, CG8_ENABLE,
MPG_VISIBLE, MPG_FILL, 0);

Multiple Plane Group Interface 55

5

Code Example 5-6 Complex use of mpgInsertPlanegroup

mpgInsertPlanegroup(&overlay_info, CG8_OVERLAY, CG8_OVERLAY,
MPG_DRAWABLE, MPG_DRAW, 0);

mpgInsertPlanegroup(&overlay_info, CG8_ENABLE, CG8_ENABLE,
MPG_VISIBLE, MPG_FILL, 1);

mpgInsertPlanegroup(&color8_info, CG8_COLOR_8, CG8_COLOR_24,
MPG_DRAWABLE, MPG_DRAW, 0);

mpgInsertPlanegroup(&color8_info, CG8_OVERLAY, CG8_OVERLAY,
MPG_OTHER, MPG_FILL, 0);

mpgInsertPlanegroup(&color8_info, CG8_ENABLE, CG8_ENABLE,
MPG_VISIBLE, MPG_FILL, 0);

mpgInsertPlanegroup(&color24_info, CG8_COLOR_24, CG8_COLOR_24,
MPG_DRAWABLE, MPG_DRAW, 0);

mpgInsertPlanegroup(&color24_info, CG8_OVERLAY, CG8_OVERLAY,
MPG_OTHER, MPG_FILL, 0);

mpgInsertPlanegroup(&color24_info, CG8_ENABLE, CG8_ENABLE,
MPG_VISIBLE, MPG_FILL, 0);

56 X Server Device Developer’s Guide—August 1997

5

mpgInsertPlanegroup returns TRUE if successful, FALSE otherwise.

Code Example 5-7 More Complex use of mpgInsertPlanegroup

mpgInsertPlanegroup(&overlay_info, CG8_OVERLAY, CG8_OVERLAY,
MPG_DRAWABLE, MPG_DRAW, 0);

mpgInsertPlanegroup(&overlay_info, CG8_ENABLE, CG8_ENABLE,
MPG_VISIBLE, MPG_FILL, 1);

mpgInsertPlanegroup(&color8A_info, CG8_COLOR_8A, CG8_COLOR_8A,
MPG_DRAWABLE, MPG_DRAW, 0);

mpgInsertPlanegroup(&color8A_info, CG8_OVERLAY, CG8_OVERLAY,
MPG_OTHER, MPG_FILL, 0);

mpgInsertPlanegroup(&color8A_info, CG8_ENABLE, CG8_ENABLE,
MPG_VISIBLE, MPG_FILL, 0);

mpgInsertPlanegroup(&color8B_info, CG8_COLOR_8B, CG8_COLOR_8B,
MPG_DRAWABLE, MPG_DRAW, 0);

mpgInsertPlanegroup(&color8B_info, CG8_OVERLAY, CG8_OVERLAY,
MPG_OTHER, MPG_FILL, 0);

mpgInsertPlanegroup(&color8B_info, CG8_ENABLE, CG8_ENABLE,
MPG_VISIBLE, MPG_FILL, 0);

mpgInsertPlanegroup(&color24_info, CG8_COLOR_24, CG8_COLOR_8A,
MPG_DRAWABLE, MPG_DRAW, 0);

mpgInsertPlanegroup(&color24_info, CG8_COLOR_24, CG8_COLOR_8B,
MPG_DRAWABLE, MPG_DRAW, 0);

mpgInsertPlanegroup(&color24_info, CG8_COLOR_24, CG8_COLOR_8C,
MPG_DRAWABLE, MPG_DRAW, 0);

mpgInsertPlanegroup(&color24_info, CG8_OVERLAY, CG8_OVERLAY,
MPG_OTHER, MPG_FILL, 0);

mpgInsertPlanegroup(&color24_info, CG8_ENABLE, CG8_ENABLE,
MPG_VISIBLE, MPG_FILL, 0);

Multiple Plane Group Interface 57

5

mpgScreenInit

Purpose This function completes the MPG screen initialization.

Arguments numPlanes is the total number of plane groups in the
device.

pScreenPixmaps is a pointer to an array of screen pixmaps.

dispPlanes is the displayable plane groups in the device.
Displayable plane groups are plane groups that are visible at
one time or another on the screen. For example, in CG8, the
24-bit color and 1-bit overlay plane groups are displayable,
but not the 1-bit overlay enable plane group. dispPlanes is
entered as a plane group bit mask, created by combining bit-
encoded displayable plane group identifiers.

pMPGPerVisInfo is a pointer to the mpgPerVisInfo
structure, which is an arranged-by-visual array of MPG infos.

pMPGPerDepthInfo is a pointer to the mpgPerDepthInfo
structure, which is an arranged-by-depth array of depth-
specific screen functions.

Bool
mpgScreenInit(ScreenPtr pScreen, int numPlanes,

PixmapPtr pScreenPixmaps, mpgPlanes dispPlanes,
mpgPerVisInfoPtr pMPGPerVisInfo,
mpgPerDepthInfo pMPGPerDepthInfo,
void (* SwitchScreen)());

58 X Server Device Developer’s Guide—August 1997

5

SwitchScreen

Purpose This function is a pointer to a function that performs the
hardware set up for rendering on a specific plane group.
Entering NULL means the device does not need it. pid is the
identifier of a plane group to which the screen has to be
switched.

Returns TRUE if successful; FALSE otherwise

The following fields in the screen structure should be initialized before calling
mpgScreenInit :

• visuals
• numDepths
• numVisuals
• CloseScreen
• allowedDepths

The following code shows you a sample of how to use mpgScreenInit .

Note – The initialization order for devices that use both MPG and DGA is:
MPG, DGA, and then the screen pixmap devPrivates at the end of your
DDX handler initialization,

void
(* SwitchScreen)(ScreenPtr pScreen, mpgPlaneId pid)

mpgScreenInit(pScreen, NUM_CG8_PLANEGROUPS, pCG8Private->pixmaps,
mpg_union(mpg_bit_encoded(CG8_OVERLAY),
mpg_bit_encoded(CG8_COLOR_24)), cg8MPGPerVisInfo,
cg8MPGPerDepthInfo, NULL);

Multiple Plane Group Interface 59

5

getMpgInfoFromVisual

Purpose This function uses vid to search the arranged-by-visual
mpgPerVisInfo structure, which is attached to the screen
private structure.

Returns A pointer to the matching mpgInfoRec structure.

mpgChangeInfo

Purpose This function replaces the MPG info of a window with a new
mpgInfoRec structure pointed to by pNewMPGInfo . It can
be used to change the flavor of a window at any given time.
Changing the MPG info is similar to adding, subtracting, or
replacing plane groups, or changing their types and
operations.

The following code shows you a sample of how to use mpgChangeInfo .

mpgInfoPtr
getMpgInfoFromVisual(ScreenPtr pScreen, VisualID vid)

void
mpgChangeInfo(WindowPtr pWin, mpgInfoPtr pNewMPGInfo)

/* migrate pWin from 8-bit color plane group A to 8-bit color */
/* plane group B */
if (getMpgInfoFromVisual(pScreen, pWin->optional->visual) ==

&color8A_info)
mpgChangeInfo(pWin, &color8B_info);

60 X Server Device Developer’s Guide—August 1997

5

freeMpgInfo

Purpose This function frees the memory associated with the
mpgInfoRec structure pointed to by pMPGInfo , but not the
structure itself. The freed memory has been previously
allocated by mpgGetScreenState and
mpgInsertPlanegroup .

The following code shows you a few samples of how to use freeMpgInfo .

mpgCursorInitialize

Purpose This function sets up the screen to use the MPG software
cursor. If the device has a hardware cursor there is no need to
call mpgCursorInitialize .

Arguments cid is the identifier for the cursor plane group, on which the
cursor image is rendered with the default foreground and
background colors of 1 and 0, respectively.

eid is the identifier for the cursor enable plane group, on
which the cursor mask is filled with the default value of 1.

isDedicated is TRUE if the cursor and the cursor enable
plane groups are dedicated to the cursor and not used by any
window. Otherwise, MPG has to lift the cursor for any
conflicting rendering operation and drop it again afterwards.

Returns TRUE if successful, FALSE otherwise

void
freeMpgInfo(mpgInfoPtr pMPGInfo)

freeMpgInfo(&overlay_info);
freeMpgInfo(&color_info);

Bool
mpgCursorInitialize(ScreenPtr pScreen,

mpgPlaneId cid, mpgPlaneId eid, Bool isDedicated)

Multiple Plane Group Interface 61

5

mpgSetCursorValues

Purpose This function resets the cursor enable plane group’s fill
value, the cursor’s foreground color, and the cursor’s
background color with eval , fval and bval , respectively.

mpgSetCursorHasEnable

Purpose This function resets the need for the cursor enable plane
group.

Arguments hasEnable is FALSE if the cursor enable plane group is not
needed.

The following code shows you a sample of how to use
mpgSetCursorHasEnable .

CopyPlanes and AggregatePlanes

To minimize window exposures, MPG wraps, or replaces the existing X
windowing screen functions. For example, it cannot use the basic CopyWindow
screen function for moving a family of windows with various depths and other
attributes across the screen, since this operation involves copying different
regions on several plane groups. Instead, it allocates two function pointers in
the MPG screen private structure, CopyPlanes and AggregatePlanes , and
uses them. AggregatePlanes is a complement to CopyPlanes , and is called

void
mpgSetCursorValues(ScreenPtr pScreen, unsigned long eval,

unsigned long fval, unsigned long bval)

void
mpgSetCursorHasEnable(ScreenPtr pScreen, Bool hasEnable)

mpgCursorInitialize(pScreen, CG8_OVERLAY, CG8_ENABLE, FALSE);
mpgSetCursorValues(pScreen, 1, 0, 1);/* reverse */
mpgSetCursorHasEnable(pScreen, FALSE);

62 X Server Device Developer’s Guide—August 1997

5

inside any CopyPlanes implementation. AggregatePlanes notifies
CopyPlanes if the device can copy several plane groups simultaneously, so
that CopyPlanes adjusts accordingly and improves its performance;
otherwise, CopyPlanes copies those plane groups one-by-one.

CopyPlanes

Note – MPG provides a generic implementation of CopyPlanes in
mpgCopyPlanes . It is highly recommended that you use mpgCopyPlanes
directly, or wrap it in conjunction with AggregatePlanes , instead of
providing your own implementations.

Arguments pWin is a pointer to the highest window in the window
subtree being moved—it is the root of the subtree. Currently
it serves as a flag to override AggregatePlanes . When
pWin is NULL, CopyPlanes still copies plane groups one at
a time, even though AggregatePlanes insists that the
device is capable of copying them simultaneously. In
mpgCopyPlanes , pWin is used as a starting point to repair
the damage on the window subtree being moved that may be
caused by copying plane groups simultaneously.

pRegions is a pointer to an indexed-by-plane group array of
regions to be copied. These regions often differ from each
other.

planes is a plane group bit mask indicating which entries
are valid in the array of regions pointed to by pRegions .

dx and dy are the horizontal and vertical distances to copy
those regions on their plane groups.

void
(* CopyPlanes)(ScreenPtr pScreen, WindowPtr pWin,

RegionPtr pRegions[], mpgPlanes planes, int dx, int dy)

Multiple Plane Group Interface 63

5

AggregatePlanes

Purpose MPG does not provide a generic implementation of
AggregatePlanes . By default, mpgCopyPlanes copies
plane groups one-by-one. Providing an implementation of
AggregatePlanes and attaching it to the screen private
structure are sufficient to allow mpgCopyPlanes to copy
plane groups simultaneously. Some devices might also need
to wrap mpgCopyPlanes .

Arguments planes is a plane group bit mask indicating which plane
groups have regions to be copied.

Returns A plane group identifier representing the aggregate of all
plane groups in planes if they can be aggregated; a negative
number otherwise.

Note – Currently CopyPlanes and AggregatePlanes are initialized by
mpgScreenInit to mpgCopyPlanes and NULL, respectively. These default
function assignments should be sufficient for a lot of devices.

When a device needs to reset AggregatePlanes , wrap mpgCopyPlanes or
implement your own CopyPlanes ,

MPG provides a macro, mpg_priv_scr , to access the screen private structure:

int
(* AggregatePlanes)(ScreenPtr pScreen, mpgPlanes planes)

#define mpg_priv_scr(pScreen) ((mpgPrivScreenPtr)(
(pScreen)->devPrivates[mpgScreenPrivateIndex].ptr))

(pScreen)->devPrivates[mpgScreenPrivateIndex].ptr))

64 X Server Device Developer’s Guide—August 1997

5

The following code shows you samples of how to use CopyPlanes and
AggregatePlanes .

Code Example 5-8 CopyPlanes and AggregatePlanes

/* after calling mpgScreenInit, wrap mpgCopyPlanes and initialize */
/* AggregatePlanes */
{
mpgPrivScreenPtr pMPGPrivScreen = mpg_priv_scr(pScreen);

pMPGPrivScreen->CopyPlanes = cg8CopyPlanes;
pMPGPrivScreen->AggregatePlanes = cg8AggregatePlanes;

}
int
cg8AggregatePlanes(ScreenPtr pScreen, mpgPlanes planes)
{

switch (planes) {
case mpg_union(mpg_bit_encoded(CG8_COLOR_8A),

mpg_union(mpg_bit_encoded(CG8_COLOR_8B),
mpg_bit_encoded(CG8_COLOR_8C))):

return CG8_COLOR_24;
default:

return -1;
}

}

void
cg8CopyPlanes(ScreenPtr pScreen, WindowPtr pWin,

RegionPtr pRegions[], mpgPlanes planes, int dx, int dy)
{

mpgPlanes plns = mpg_union(mpg_bit_encoded(CG8_COLOR_8A),
mpg_union(mpg_bit_encoded(CG8_COLOR_8B),
mpg_bit_encoded(CG8_COLOR_8C)));

if (mpg_subset(plns, planes)) {
mpgCopyPlanes(pScreen, pWin, pRegions, plns, dx, dy);
mpgCopyPlanes(pScreen, pWin, pRegions,

pg_subtract(planes, plns), dx, dy);
} else

mpgCopyPlanes(pScreen, pWin, pRegions, planes, dx, dy);
}

Multiple Plane Group Interface 65

5

mpgSetScreenFuncs

Purpose This function allows the device developer to supply an
arbitrary number of wrapper functions.

Arguments funcs is a structure containing the wrapper functions.

mask indicating which of the wrapper functions is valid.

oldfuncs contains previous wrapper functions.

Returns The previous values of the indicated function vectors so that
devices may make use of the more generalized default
implementation to handle the more obscure cases of the
particular function they are wrapping.

The mpgSetScreenFuncs() function examines the mask parameter to
determine which functions are being wrapped. For each wrapper indicated,
this function stores the previous wrapper function (or NULL if there was no
default value) into the appropriate member of the oldfuncs structure (if
supplied) and then loads the new wrapper function from the appropriate
member of the funcs structure into the internal MPG function vector.

The oldfuncs parameter may be NULL if the device does not need to refer to
the previous versions of any of the functions which it is overriding. The
oldfuncs parameter may also be a pointer to the same structure as the funcs
parameter, in which case mpgSetScreenFuncs() safely swaps the two
function values.

long
mpgSetScreenFuncs(pScreen, funcs, mask, oldfuncs)

66 X Server Device Developer’s Guide—August 1997

5

67

Overlay Window Interface 6

This chapter discusses the overlay window (OVL) graphics programming
interface (GPI). It describes how to set up your device, how to initialize
overlays, and it defines all of the functions and data types in this interface.

Note – This chapter applies only to Sun transparent overlays. It does not apply
to server overlays. For information about transparent overlays and server
overlays, see the Solaris X Window System Developer’s Guide.

Introduction
The OpenWindows server provides the basic infrastructure for the OVL GPI in
the OVL package. Your X11 client can create and configure overlay windows,
and use backing store and gravity. These features are exported by the X11
client libraries libX11 (the core Xlib library) and libXext (the Xlib extension
library).

In addition to overlay window manipulation, the server provides a means for
rendering transparent pixels into overlay windows. An extension routine that
specifies an X11 GC paint type attribute is provided. The behavior of the core
X11 rendering routines is extended to use this attribute while rendering. For
more specific information, see the Solaris X Window System Developer’s Guide
which is part of the SDK (Software Developer’s Kit).

68 X Server Device Developer’s Guide—August 1997

6

These capabilities are made available on all device types. However, some
devices can optimize the overlay window manipulation and rendering. This is
exported to the client through a visual in the screen’s list of visuals. The client
then creates optimal overlay windows on these visuals. However, the client still
needs to know what is the best visual to use as a matching overlay/underlay
visual for the exported visual. The Overlay Window API provides this
information, but the server gets this information from the device.

Also, some devices specify their own functions to process the requests in the
overlay extension. This interface, called the Overlay GPI, presents a solution to
these problems.

Note – The OVL package is dependent on the Multiple Plane Group (MPG)
package (see Chapter 5, “Multiple Plane Group Interface“).

Device Setup
The OpenWindows server fully implements overlay windows and renders
transparency. Device setup for overlay windows is done with the MPG
package. This section provides examples of different device types and how to
set them up for optimal performance.

The four basic types of devices are as follows.

1. Transparent Pixel

The transparent pixel device renders into a drawable plane group with a
special value to provide transparency. The special value causes a different
drawable plane group to show through.

2. Control Plane Group

The control plane group device has a special plane group that specifies
which drawable plane group is currently visible. This plane group is often
referred to as the control plane group. It could be a 1-bit enable plane, a
multi-bit WID plane group, or some other type of control plane group.

3. Shared

The shared device has the overlay windows and the underlay windows
coexisting in the same drawable plane group.

Overlay Window Interface 69

6

4. Custom

The custom device is different than the above device types—it could be a
device with some or all overlay and underlay plane groups are not memory
mapped, or a device that can render into image and control plane groups
simultaneously.

Overlay window processing and rendering transparency is dependent on how
the devices different physical plane groups are presented to MPG. In general,
rendering transparency can be thought of as making the window behind the
overlay window visible. So, all mpg setup should follow the guideline of
attaching all plane groups to an MPG info structure that would allow a
window associated with that MPG info to be visible. In the following sections,
each device type is presented with the appropriate plane group partitioning
that would facilitate overlay window processing and rendering transparency.

Transparent Pixel

A transparent pixel device has the following plane groups:

• a 24-bit drawing plane group (DRAW_A),
• an 8-bit drawing plane group (DRAW_B), and
• another 8-bit drawing plane group that can render transparency by

rendering one of several set pixel values (OVERLAY).

Also, a given transparent pixel value may be different depending on what
plane group is expected to show through. For DRAW_A, the pixel value is 254
and for DRAW_B, the pixel value is 255. The question now is what should the
mpg setup look like.

The transparent pixel device has three MPG infos. The overlay MPG info has
just the OVERLAY plane group with a type of MPG_VISIBLE_DRAWABLE and
an op of MPG_DRAW. The other two MPG infos have specific MPG_DRAWABLE
plane groups and an OVERLAY plane group as well; however, the OVERLAY
plane group is of type MPG_VISIBLE and the op is MPG_FILL. For DRAW_A,
the fill value is 254 corresponding to the pixel value needed to make DRAW_A
visible. For the same reason, the fill value for DRAW_B should be 255. The calls
to mpgInsertPlaneGroup are shown below.

70 X Server Device Developer’s Guide—August 1997

6

A transparent pixel device is one of the more difficult devices to set up. The
other device types should be easier.

Control Plane Group

The control plane group device requires no special MPG setup for overlay
window processing. Use the standard MPG setup facilities and overlay
window processing and rendering transparency work properly.

For example, a device with a 24-bit image plane group (DRAW_A), an 8-bit
image plane group (DRAW_B), an 8-bit overlay plane group (OVERLAY), and
a control plane group (WID), has the following segmentation:

MPG infoRec pseudo_color_info, true_color_info, overlay_info;

/* Overlay Window Plane group */
mpgInsertPlaneGroup(&overlay_info, OVERLAY, 0, MPG_VISIBLE_DRAWABLE,

MPG_DRAW, 0);

/* 24 bit plane group */
mpgInsertPlaneGroup(&true_color_info, DRAW_A, 0, MPG_DRAWABLE,

MPG_DRAW, 0);
mpgInsertPlaneGroup(&true_color_info, OVERLAY, 0,

MPG_VISIBLE, MPG_FILL, 254);

/* 8 bit plane group */
mpgInsertPlaneGroup(&pseudo_color_info, DRAW_B, 0, MPG_DRAWABLE,

MPG_DRAW, 0);
mpgInsertPlaneGroup(&pseudo_color_info, OVERLAY, 0,

MPG_VISIBLE, MPG_FILL, 255);

Overlay Window Interface 71

6

Shared

If the shared device is a memory-mapped device with the
pScreen->devPrivate pointing to a screen pixmap that can address the
device, the OVL package is automatically initialized. This enables overlays to
be available on that screen.

Custom

The custom device is the most difficult to use in the OVL package. If the device
almost adheres to one of the above device types, it can initialize everything, and
then wrap all of the necessary rendering/window manipulation components to
complete its processing. For overlay window requests that are not a part of the
core protocol, a wrapping mechanism is provided in this GPI. See
“ovlWrapDevFuncs” on page 74 for a complete description of this wrapping
process.

A device able to port using this method is one that has an extra plane group
that requires special processing that MPG does not provide.

MPG infoRec pseudo_color_info, true_color_info, overlay_info;

/* Overlay Window Plane group */
mpgInsertPlaneGroup(&overlay_info, OVERLAY, 0, MPG_DRAWABLE,

MPG_DRAW, 0);
mpgInsertPlaneGroup(&overlay_info, WID, 0, MPG_VISIBLE,

MPG_FILL_WID, 0);

/* 24-bit plane group */
mpgInsertPlaneGroup(&true_color_info, DRAW_A, 0, MPG_DRAWABLE,

MPG_DRAW, 0);
mpgInsertPlaneGroup(&true_color_info, WID, 0, MPG_VISIBLE,

MPG_FILL_WID, 0);

/* 8-bit plane group */
mpgInsertPlaneGroup(&pseudo_color_info, DRAW_B, 0, MPG_DRAWABLE,

MPG_DRAW, 0);
mpgInsertPlaneGroup(&pseudo_color_info, WID, 0, MPG_VISIBLE,

MPG_FILL_WID, 0);

72 X Server Device Developer’s Guide—August 1997

6

Initializing Overlays
The server implements all of the functionality for overlay window processing
and rendering transparency. There are three basic steps required to use this
feature on a device. First, the device must describe its plane groups
appropriately to the MPG package. This was discussed in the previous section.
The last two steps are described here. They are combined into a single
initialization function, ovlScreenInit .

Once a device has described its plane groups to the MPG package, the OVL
package can create and process overlay windows on any visual supported by
the device. However, some of the visuals may be better than others for overlay
window processing. For example, a device may have a plane group that has
special features for rendering transparency or that is simply a dedicated
overlay plane group to facilitate minimum damage to its underlay plane
groups. The device needs a method to tell the client that this visual is better for
overlay windows than other visuals.

In the Overlay Window API there are portable visual queries that allow the
client to query which visual pairs are optimal for overlay window processing.
If the device has specified that there are no optimal visual pairs, the portable
visual queries return regular visuals that match the client’s request. See the
Solaris X Window System Developer’s Guide for a complete description of the
portable visual queries.

The second step for enabling overlay window processing is to describe all of
the overlay and underlay combinations that are optimally supported by the
device. An overlay/underlay combination is called a pair. The second step is
combined with the third step, calling the overlay initialization function
ovlScreenInit .

ovlScreenInit is called to initialize overlay window processing and describe
the set of optimal overlay/underlay pairs supported by the device. This
routine is given a list of pairs and the number of pairs. It must be called during
screen initialization and it must be called after the MPG package has been
initialized.

Each pair in the list has an overlay and underlay MPG info structure. All
visuals pairs that may be derived from the MPG info pairs are then used to
signify an optimal pair of overlay/underlay visual pairings. Because of the
matching scheme used in the API, devices are encouraged to submit the pair
list in order from optimal to not-as-good.

Overlay Window Interface 73

6

Some devices may not have any good overlay/underlay pairs. This is the case
on shared pixel devices described above. If this is the case, ovlScreenInit ()
should still be called to initialize overlay window processing, but there should
be no pairs passed into the function. This will indicate to the OVL package that
no pairs are optimal.

Overlay GPI Specification
The following functions and data types define the Overlay GPI specification.

OvlPairs

Description Specifies to the system a particular overlay/underlay pair
that the device optimally supports.

ovlScreenInit

Description This is the screen initialization function for Overlay Window
support. The given set of pairs is exported to the client as the
optimal pairs. If the device has no optimal pairs, pass in 0 for
numPairs and null for pPairs .

Results Initializes overlay support on the given screen.

Returns TRUE on success
otherwise FALSE

Arguments pScreen is the screen structure for the device.

typedef struct {
mpgInfoPtr pOvMpgInfo; /* overlay mpgInfo */
mpgInfoPtr pUnMpgInfo; /* underlay mpgInfo */

} OvlPair;

Bool
ovlScreenInit (ScreenPtr pScreen, unsigned int numPairs,

OvlPair *pPairs)

74 X Server Device Developer’s Guide—August 1997

6

numPairs is the number of overlay/underlay pairs.

pPairs is a list describing the pairs.

OvlPair points to the MPG infos of the optimal
overlay/underlay pair.

ovlWrapDevFuncs

Description This function allows devices to wrap the requests associated
with the overlay window extension. A full description of all
the wrappable functions is given below.

This routine should only be needed by custom devices. The
default functions handle all processing for devices that are
supported by MPG.

Results Wraps the overlay request dispatch functions.

Arguments pScreen is the screen structure for the device.

newfuncs is a pointer to the new OvlDevFuncs to be
instantiated.

funcmask is a mask of all the functions specified in
newfuncs . funcmask indicates which functions in
newfuncs are to be wrapped. If a given mask bit in
funcmask is set, the appropriate field in newfuncs must be
filled in with a valid function pointer. If a given mask bit in
funcmask is not set, the appropriate field in newfuncs will
not be accessed

oldfuncs (return) A pointer to the OvlDevFuncs
previously instantiated.

The previously instantiated OvlDevFuncs is returned in
oldfuncs , if provided. OvlDevFuncs is a structure
containing pointers to the wrappable functions.

void
ovlWrapDevFuncs (ScreenPtr pScreen, OvlDevFuncs *newfuncs,

long funcmask, OvlDevFuncs *oldfuncs)

Overlay Window Interface 75

6

Valid values for funcmask are:

ovlGetPaintType

Description XSolarisOvlPaintOpaque is returned unless a client has
explicitly set the paint type to
XSolarisOvlPaintTransparent .

Returns Current paint type of the given GC.

Arguments GC is the specified GC.

ovlIsOverlay

Description Specifies whether the given window is an overlay window.

Returns TRUE if the window is an overlay window
FALSE otherwise.

Arguments pWin is the specified window.

#define CopyPaintTypeMask (1<<0)
#define CopyAreaAndPaintTypeMask (1<<1)
#define GetClutInfosMask (1<<2)
#define ReadScreenInitMask (1<<3)
#define ReadScreenMask (1<<4)
#define ReadScreenUninitMask (1<<5)

XSolarisOvlPaintType
ovlGetPaintType (GCPtr pGC)

Bool
ovlIsOverlay (WindowPtr pWin)

76 X Server Device Developer’s Guide—August 1997

6

XOvlClutInfo

Description A structure containing color lookup table information.

OvlDevFuncs

Description Defines the function vector of DDX handler functions for
devices that want to wrap the overlay requests.

The following definitions are of data types in OvlDevFuncs .

CopyPaintType

Description If a device wraps the CopyPaintType request, their
CopyPaintType function should take this form. This
function uses the paint type information of the specified
rectangle of src to control fill operations in the specified

typedef struct {
VisualID vid;
int pool;
int count;

} XOvlClutInfo;

typedef struct {
RegionPtr (*CopyPaintType)();
RegionPtr (*CopyAreaAndPaintType)();
int (*GetClutInfos)();
int (*ReadScreenInit)();
int (*ReadScreen)();
void (*ReadScreenUninit)();

} OvlDevFuncs;

RegionPtr
(*CopyPaintType) (OvlDevFuncs * devfuncs, DrawablePtr src,

DrawablePtr dst, GCPtr pGC, int src_x, int src_y,
unsigned int width, unsigned int height, int dest_x,
int dest_y, unsigned long action, unsigned long plane)

Overlay Window Interface 77

6

rectangle of dst . src can be any type of drawable. If src is
not an overlay window, plane specifies which bit-plane to
use for paint type data. dst can be any type of drawable. The
region of dst that corresponds to opaque pixels in src is
filled with the current fill attributes of pGC. If dst is an
overlay, then the region of dst that corresponds to
transparent pixels in src is filled with transparent paint. If
dst is not an overlay, then the region of dst that
corresponds to transparent pixels in src is filled with the fill
attributes of pGC, but with the fg and bg pixel values
reversed. The function must restrict its fills according to the
specified action which is one of
XSolarisOvlCopyOpaque ,
XSolarisOvlCopyTransparent , or
XSolarisOvlCopyAll referring to the filling of just the
opaque pixels, just the transparent pixels, or both.

Results Fills the appropriate regions of dst depending on the paint
type data of src and the indicated action . Returns the
region for which GraphicsExpose events must be
generated.

Arguments devfuncs is the current set of ovldevfuncs.

src is the source drawable.

dst is the destination drawable.

pGC is the GC to use for the fills. It has the same depth as
dst .

src_x and src_y are the X and Y coordinates of the upper-
left corner of the source rectangle relative to the origin of the
source drawable.

width and height are the dimensions in pixels of both the
source and destination rectangles.

dest_x and dest_y are the X and Y coordinates of the
upper-left corner of the destination rectangle relative to the
origin of the destination drawable.

action specifies which regions of dst should be filled.

78 X Server Device Developer’s Guide—August 1997

6

plane specifies which plane of src should be used if it is
not an overlay window. 1 means opaque, 0 means
transparent.

CopyAreaAndPaintType

Description If a device wraps the CopyAreaAndPaintType request,
their CopyAreaAndPaintType function should take this
form. This function copies the specified area from colorsrc
to the specified area in colordst and copies the paint type
area specified in painttypesrc to the specified paint type
area of painttypedst . If painttypesrc is not an overlay
window, plane specifies which bit-plane to use for paint
type data. colordst may be any drawable of the same
depth as colorsrc . painttypedst may be any type of
drawable. If colordst is an overlay, then painttypedst
will be the same overlay. If painttypedst is not an overlay,
then painttypegc is used to fill the opaque and transparent
regions of painttypedst . Opaque regions are filled
according to the fill attributes of painttypegc while
transparent regions are filled similarly but with the
foreground and background pixel values reversed. This
function must also handle the specified action . An action
may be one of XSolarisOvlCopyOpaque ,
XSolarisOvlCopyTransparent , or
XSolarisOvlCopyAll referring to the copying of just the
opaque pixels, just the transparent pixels, or both. A pointer
to a region indicating which areas must be exposed on the
colordst drawable due to incomplete color or paint type

void
(*CopyAreaAndPaintType) (OvlDevFuncs * devfuncs,

DrawablePtr colorsrc, DrawablePtr painttypesrc,
DrawablePtr colordst, DrawablePtr painttypedst,
GCPtr colorgc, GCPtr painttypegc, int colorsrc_x,
int colorsrc_y, int painttypesrc_x, int painttypesrc_y,
unsigned int width, unsigned int height, int colordst_x,
int colordst_y, int painttypedst_x, int painttypedst_y,
unsigned long action, unsigned long plane,
RegionPtr *colorexposergn, RegionPtr *painttypeexposergn)

Overlay Window Interface 79

6

information is returned in the location pointed to by
colorexposergn . A pointer to a region indicating which
areas must be exposed on the painttypedst drawable due
to incomplete paint type information is returned in the
location pointed to by painttypeexposergn .

Results Copies the given area and paint type data from one drawable
to another. Returns the regions for which GraphicsExpose
events must be generated.

Arguments devfuncs is the current set of ovldevfuncs .

colorsrc is the color information source drawable. It can be
any type of drawable.

painttypesrc is the paint type source drawable. It can be
any type of drawable.

colordst is the color information destination drawable. It
must be the same depth as colorsrc . It may be any type of
drawable.

painttypedst is the paint type destination drawable. It can
be any type of drawable. If colordst is an overlay, this
parameter will be the same as colordst .

colorgc is the GC to use for copying the color information.
It has the same depth as colordst .

painttypegc is the GC to use for rendering the opaque and
transparent regions of the paint type information if
painttypedst is not an overlay. If colordst and
painttypedst are an overlay, this parameter will be the
same as colorgc . It has the same depth as painttypedst .

colorsrc_x and colorsrc_y are the X and Y coordinates
of the upper-left corner of the source rectangle relative to the
origin of the color source drawable.

painttypesrc_x and painttypesrc_y are the X and Y
coordinates of the upper-left corner of the source rectangle
relative to the origin of the paint type source drawable.

80 X Server Device Developer’s Guide—August 1997

6

width and height are the dimensions in pixels of all the
source and destination rectangles.

colordst_x and colordst_y are the X and Y coordinates
of the upper-left corner of the destination rectangle relative
to the origin of the color destination drawable.

painttypedst_x and painttypedst_y are the X and Y
coordinates of the upper-left corner of the destination
rectangle relative to the origin of the paint type destination
drawable. If colordst and painttypedst are an overlay,
these values will be the same as colordst_x and
colordst_y .

action specifies which portions of the paint type should be
copied.

plane specifies which painttypesrc plane to use as paint
type information if it is not an overlay window. 1 means
opaque, 0 means transparent.

colorexposergn is a pointer to a location in which to store
a pointer to the region that is to be exposed on the colordst
drawable.

painttypeexposergn is a pointer to a location in which to
store a pointer to the region that is to be exposed on the
painttypedst drawable.

GetClutInfos

Description If a device does not use the Multiple Hardware Colormap
(MHC) package to maintain its hardware colormaps, it needs
to wrap this function. This information is used by the
portable visual queries documented in the Solaris X Window
System Developer’s Guide.

int
(*GetClutInfos)(OvlDevFuncs * devfuncs, ScreenPtr pScreen,
XOvlClutInfo ** pClutInfos)

Overlay Window Interface 81

6

This function should allocate a XOvlClutInfo structure for
each visual that it exports. Each structure should contain the
visual id, a unique pool identifier, and the number of
hardware color look up tables that are available to the visual.
The pool identifier will only be used to uniquely identify the
group. This function should return the number of structures
that are being returned. The calling function will free the
data returned in pClutInfos .

Results Gets hardware color lookup table information.

Arguments devfuncs is the current set of ovldevfuncs .

pScreen points to the ScreenRec structure for which
information is needed.

pClutInfos (return) is a pointer to be assigned the array of
XOvlClutInfo structures returned.

XOvlClutInfo is a structure containing color lookup table
information and is defined on page 76.

ReadScreenInit

Description If a device wants to wrap the ReadScreen request, it should
wrap this function, as well as ReadScreen and
ReadScreenUninit . If a device wraps the ReadScreen
request, their ReadScreenInit function should take this
form. This function is responsible for any initialization that
the device needs to prepare for the ReadScreen request. The
region of interest is specified by x , y, width , and height . x
and y are relative to pWin . This function could, for example,
take the cursor down if the cursor were a software cursor,
intersected the region of interest, and includeCursor was
set to xFalse .

int
(*ReadScreenInit)(OvlDevFuncs * devfuncs, WindowPtr pWin,

int x, int y, unsigned int width, unsigned int height,
Bool includeCursor)

82 X Server Device Developer’s Guide—August 1997

6

Results Prepares for getting the color data displayed in a specified
area.

Returns Success if no errors were encountered,
!Success otherwise

Arguments devfuncs is the current set of ovldevfuncs .

pWin points to the WindowRec structure used to compute the
area of interest.

x and y specify the X and Y coordinates of the upper-left
corner of the area to be read.

width and height are the dimensions of the area to be read.

includeCursor specifies whether or not to include the
cursor image in the image.

ReadScreen

Description If a device wants to wrap the ReadScreen request, it should
wrap this function, as well as ReadScreenInit and
ReadScreenUninit . If a device wraps the ReadScreen
request, their ReadScreen function should take this form.
This function is responsible for getting the color information
of the area specified by x , y, width , and height . x and y are
relative to pWin . pBuffer is a pointer to an area of memory
big enough to store width*height number of long integers.
It is important to note that this function copies into pBuffer
the actual theoretical colors that can be displayed in the area
and not the pixel values. Each long stored in pBuffer is of
the form XXBBGGRR, where XX is unused, BB is a 16-bit
intensity of blue, GG is a 16-bit intensity of green, and RR is
a 16-bit intensity of red. pBuffer is allocated and freed by
the calling function.

int
(*ReadScreen)(OvlDevFuncs * devfuncs, WindowPtr pWin, int x,

int y, unsigned int width, unsigned int height,
Bool includeCursor, pointer pBuffer)

Overlay Window Interface 83

6

Called by More than once for a single ReadScreen request. It will
always be called within a
ReadScreenInit /ReadScreenUninit block.

Results Gets the color data displayed in a specified area.

Returns Success if no errors were encountered,
an X protocol error otherwise

Arguments devfuncs is the current set of ovldevfuncs .

pWin points to the WindowRec structure used to compute the
area of interest.

x and y specify the X and Y coordinates of the upper-left
corner of the area to be read.

width and height are the dimensions of the area to be read.

includeCursor specifies whether or not to include the
cursor image in the image.

pBuffer (return) points to an area of memory that is
guaranteed to be large enough to hold the color data.

ReadScreenUninit

Description If a device wants to wrap the ReadScreen request, it should
wrap this function, as well as ReadScreenInit and
ReadScreen . If a device wraps the ReadScreen request,
their ReadScreenUninit function should take this form.
This function is responsible for doing any cleanup necessary
after ReadScreen processing has completed. This could
include putting the cursor back up, if it was previously taken
down.

Results Cleans up after getting the color data displayed in a specified
area.

void
(*ReadScreenUninit)(OvlDevFuncs * devfuncs, WindowPtr pWin,

Bool includeCursor)

84 X Server Device Developer’s Guide—August 1997

6

Arguments devfuncs is the current set of ovldevfuncs .

pWin points to the WindowRec structure used to compute the
area of interest.

includeCursor specifies whether or not to include the
cursor image in the image.

85

Window ID Interface 7

This chapter describes the window identifier (WID) interface visible to Solaris
Independent Hardware Vendors (IHVs) writing DDX ports. This interface
consists of routines that are part of the MPG package. The MPG package is
discussed in Chapter 5, “Multiple Plane Group Interface.”

Hardware Window IDs
Some graphics devices use WIDs to control the video output circuitry and
drawing functions of their frame buffer. The term display ID (DID) is also
used. For each pixel, a portion of the frame buffer describes how that pixel is to
be output to the monitor. Examples of these attributes are: the specific buffer
the color data is to be taken from, the other buffers it is to be combined with,
and the output lookup tables to use. These video output aspects are called WID
pixel attributes and are meaningful to the video display circuitry by a distinct
bit pattern.

On indirect WID devices, the WID value in the frame buffer is used to look up
the WID pixel attributes in a hardware table called a WID lookup table. On these
devices, the WID value serves as an index into this table.

On direct WID devices the WID value in the frame buffer is the actual bit pattern
of the WID pixel attributes. In this case, there is no indirection through a lookup
table.

86 X Server Device Developer’s Guide—August 1997

7

Usually, the pixels for a given window all share the same pixel attributes. For
example, the pixels are all the same depth and all possess Z buffer information.
Because of this, a distinct WID is allocated for use by the window and the WID
plane group in the window’s visible region is filled with the value of this WID.

Note – In this release, the WID interface refers to direct WID devices that are
not supported in this release.

Software WID Object
The OpenWindows DDX interface provides a software object to represent
hardware WIDs. On a direct WID device, each software WID represents a single
hardware WID value. On indirect WID devices, a software WID can represent
one or more contiguous hardware WID values.

The DDX interface provides functions a device handler can use to allocate
WIDs. It also provides routines to initialize WID management. These routines
are included in the MPG package.

On indirect WID devices there is a concept of a WID free pool. These are the
WIDs in the hardware WID table that are not already being used by some
window.

An opaque type, WidPtr , points to the software WID object. Opaque means that
the format of the memory pointed to is known only by MPG. WID object
attributes are only accessible with the routines defined in “Window ID
Functions” on page 93.

The purpose of the software WID object is to be general enough that all device
architectures can share WID properties, and to be extensible enough to
accommodate device dependencies.

WID Object Attributes

A WID object has the following attributes. READ ONLY means that the attribute
is set at WID allocation time by WID or a device-dependent WID routine. After
allocation, the attribute cannot be changed by clients of WID.

• Screen READ ONLY

The device that owns the WID.

Window ID Interface 87

7

• Visual READ ONLY

The visual of the window passed to the allocation function.

• Value READ ONLY

The bit pattern rendered into the WID plane group that uses the WID.

• Number READ ONLY

The number of contiguous WIDs described by the WID object. For direct
WID devices, this will always be 1. For indirect WID devices, the value of
the WID object is the index into the WID table of the first WID in the group.
The values of the other WIDs in the group are in sequentially ascending
order relative to the first WID. To be specific, if n is the value of the WID
object, the values of subsequent WIDs in the group are n+1, n+2, ...,
n+(number-1).

• Unique READ ONLY

A Boolean that indicates whether the WID can be shared among multiple
windows. A value of TRUE means that the WID is not sharable; a value of
FALSE means that the WID can be shared.

For example, the unique attribute of the WID of a hardware double-buffered
window might be TRUE. Another example of a unique WID is for hardware
clipping. This type of WID must be unique because if another window
shares the WID, drawing to the first window could happen in the other
window sharing the WID, which is not the desired behavior.

• Flavor READ ONLY

A small integer representing the union of all pixel attributes for the device,
not including unique fields and colormap control. Unique fields include
display buffer control and hardware clipping. Non-unique fields include
depth and Z buffer. The values of this attribute are device-dependent. For
more information on flavors, see Chapter 8, “Colormap Interface.”

• DevData READ/WRITE

An opaque handle to arbitrary device-specific data.

• ColorLut READ/WRITE

The identifier of the hardware color lookup table to use for displaying
windows using WID.

88 X Server Device Developer’s Guide—August 1997

7

For devices supporting only a single hardware color lookup table, the value
of this attribute is undefined and setting it is ignored.

Two WID objects are considered to be equal if their values are equal.

Accessing WID
All files using the WID routines of MPG must include the following header file:

Dynamically link all shared objects using WID with libmpg.so .

Using MPG
Devices that use WIDs are multiple plane group (MPG) devices because there
must be a plane group filled with the proper WID values when a window is
moved. MPG does this filling with a process called WID preparation.

Device handlers that use WIDs must first initialize MPG by calling
mpgScreenInit , mpgInsertplanegroup , and other MPG functions.

How to Use WID
This section describes the purpose for and usage of the WID function listed in
“Window ID Functions” on page 93.

DDX Handler

DDX handlers use the WID function to:

• Initialize WID

widScreenInit is used to initialize WID for the screen and should be
called before any other WID functions.

• Create windows

#include “mpg/wid.h”

Window ID Interface 89

7

The DDX handler wraps pScreen->CreateWindow . If the device has a
single color lookup table, call widAllocate to create a new WID for that
window and then call widSetWindowWid to attach it.

If the device has multiple color lookup tables, the DDX handler calls
cmapMhcWindowAttachWid .

See Chapter 8, “Colormap Interface” for more information on devices with
multiple color lookup tables.

MPG

MPG uses WID to:

• Change WIDs

MPG uses widDecref to indicate there is one less window using old WID
and widIncref to indicate there is one more window using the new WID.

• Prepare Window WIDs

MPG uses widGetValue to get the value with which to fill the WID plane
group.

CMAP

CMAP uses WID function to:

• Avoid unnecessary preparations

If CMAP assigns a WID to a window that was the same as the old, it does
not try to reprepare the WID. It uses widGetValue and the comparison
operator == to make the necessary test.

• Notify WIDs of color lookup table changes

When XInstallColormap changes the hardware color lookup table
assignment of a colormap, the WIDs of all windows using that colormap are
notified of the change so that the given color lookup table can be displayed
in these windows. To do this notification, CMAP calls widSetColorLut .
This can also occur in XUninstallColormap if it tries to implicitly reinstall
a colormap that previously lost its color lookup table because of another
installation.

90 X Server Device Developer’s Guide—August 1997

7

• Manage flavors

CMAP attempts to share WIDs between windows of the same flavor. It uses
widGetWindowWid , widGetFlavor , widGetValue , and the comparison
operator == to do the necessary tests. When CMAP attempts to share WIDs,
it ignores unique WIDs by calling widGetUnique .

• Assign new WIDs

When an XSetWindowColormap occurs, CMAP attempts to find an existing
WID of the same flavor as the window. If it cannot, it creates a new one,
using widAllocate , and assigns it to the window using
mpgSetWindowWid .

See Chapter 8, “Colormap Interface” for more information on WID creation
and manipulation by the CMAP package.

WID Data Types
The function that initializes WID is widScreenInit . The following WID data
types describe the device-dependent WID functions that must be supplied to
the widScreenInit function.

WidPtr

A pointer to a WID object. A WID object represents one or more device WIDs.
This pointer is not passed as an argument to widScreenInit (see page 93), but
it is central to the set of functions described in this chapter.

Note – This pointer is opaque. The internal format of _WidObj is not exposed
to the DDX handler. Use the utility functions provided to access WidPtr .

typedef void *WidPtr;

Window ID Interface 91

7

WidAllocFunc

Purpose This is the WID allocation routine supplied by the device
handler.

Results It allocates one or more contiguous WIDs from a WID table.
The location and format of the WID table is device, and
possibly visual, dependent.

Arguments visual is used by devices whose WID allocation depends
on the window’s visual. This type of device internally
associates a visual with device-dependent WID data, such as
the location of the WID table. When the allocate function is
called, the device data associated with pWin ’s visual is
retrieved and used as appropriate.

count is the number of contiguous WIDs to allocate. For
direct WID devices, a WID object is limited to a single
hardware WID, so this value must always be 1. The base
WID value is aligned on a power-of-two boundary, which is
determined by rounding up count to the next power of two.
If n is the base WID value, subsequent WID values in the
sequence are n+1, n+2, ..., n+(count - 1).

unique is TRUE if the WID is non-sharable. This argument is
used by devices that allocate unique WIDs in different tables
from the non-unique ones.

flavor is the type or flavor of the WID. For example, if
hardware clipping WIDs are allocated in a different WID
table than software WIDs, flavor would be used to indicate
the allocation of a hardware WID versus a software WID. See
“Flavors” on page 120 for a detailed description of how to
assign flavor values.

Returns On direct WID devices, this routine returns NULL if
count <> 1. For indirect WID devices, if count > 1, multiple
contiguous hardware WIDs are allocated.

typedef WidPtr (*WidAllocFunc)(ScreenPtr pScreen,
VisualID visual, int count, Bool unique, CARD32 flavor);

92 X Server Device Developer’s Guide—August 1997

7

On indirect WID devices, this function marks the returned
WID(s) as allocated and removes them from the free pool.

WidFreeFunc

Purpose The WID free routine supplied by the device handler.

Returns On indirect WID devices, WidFreeFunc returns the WID(s)
represented by the given WID object to the free pool and
frees the WID object memory.

On direct WID devices, this routine frees the WID object
memory.

WidSetColorLutFunc

Purpose Specifies the color lookup table ID that a WID is to display.
This function is supplied by the device handler.

Results On indirect WID devices, this routine updates the WID table
for the WID to display the given color lookup table.

On direct WID devices, this routine changes the Value
attribute.

If the WID object consists of more than one hardware WID,
the color lookup table selection attributes of all hardware
WIDs is set to the same value, the appropriate value for
clutId . Currently, this is only applicable to indirect WID
devices.

Note – No WID preparation is done. The client is expected to call an MPG
function to reprepare. This only affects direct WID devices.

typedef void (*WidFreeFunc)(WidPtr pWid);

typedef void (*WidSetColorLutFunc) (WidPtr pWid, CARD32 clutId);

Window ID Interface 93

7

Window ID Functions
This section lists the WID functions used by other parts of MPG, CMAP, and
DDX handlers.

General Routines

These routines are used by several different software components of the server,
including MPG, CMAP, and the device handler. The device handler can call
some of these routines from screen function wrappers such as CreateWindow ,
or from the device-dependent WID functions supplied to widScreenInit .

widScreenInit

Purpose This function initializes WID management for a screen.

Called by A DDX handler at screen initialization.

Arguments The argument functions are device-dependent functions that
understand the device details for managing WIDs. These
functions must be non-NULL.

widScreenClose

Purpose This function frees resources allocated by widScreenInit .

Called by the device’s ScreenClose procedure

Bool
widScreenInit (ScreenPtr pScreen, WidAllocFunc allocFunc,

WidFreeFunc freeFunc, WidSetColorLutFunc setClutFunc)

void
widScreenClose (ScreenPtr pScreen)

94 X Server Device Developer’s Guide—August 1997

7

widAllocate

Purpose This function allocates a WID object appropriate for the
specified visual on pScreen . Initially, the reference count for
the WID is 0.

Arguments flavor must be less than the maxFlavors of the WID’s
plane group, or NULL is returned. maxFlavors is the value
passed to cmapScreenInit for the WID’s plane group. See
Chapter 8, “Colormap Interface” for more information.

If count is > 1 on direct WID devices, a WID object is limited
to a single hardware WID, so this value must be 1. For
indirect WID devices, if count > 1, multiple contiguous
hardware WIDs are allocated. The base WID value is aligned
on a power-of-two boundary, which is determined by
rounding up count to the next power of two. The base WID
value is retrieved by calling widGetValue . If this value is n,
subsequent WID values in the sequence are n+1, n+2, ...,
n+(count - 1).

Returns On direct WID devices, this routine returns NULL if
count > 1.

widIncref

Purpose This function increments the reference count of a WID object.

WidPtr
widAllocate (ScreenPtr pScreen, VisualID visual, int count,

Bool unique, CARD32 flavor)

void
widIncref (WidPtr pWid)

Window ID Interface 95

7

widDecref

Purpose This function decrements the reference count of a WID
object. If the reference count becomes less than or equal to 0,
the device-dependent widFree function is called. This
function frees the WID object memory (see below).

Returns For indirect WID devices, the WID value(s) represented by
the WID object are returned to the free pool.

widGetScreen

Returns A pointer to the WID object’s screen.

widGetVisual

Returns Returns the ID of the visual of the window with which the
WID was created.

void
widDecref (WidPtr pWid)

ScreenPtr
widGetScreen (WidPtr pWid)

VisualID
widGetVisual (WidPtr pWid)

96 X Server Device Developer’s Guide—August 1997

7

widGetValue

Purpose For single WID objects, this is the WID bit pattern to be
rendered into the frame buffer. For multiple WID objects, this
is the bit pattern of the first WID in the sequence.

Returns The value of the WID object.

widSetValue

Purpose For single WID objects, this is the WID bit pattern to be
rendered into the frame buffer.

Returns The value of the WID object.

widWinGetValue

Returns The value of the WID object for the specified window.

widGetNumber

Returns The number of hardware WID values represented by the
argument WID object.

unsigned long
widGetValue (WidPtr pWid)

void
widSetValue (WidPtr pWid, unsigned long value)

unsigned long
widWinGetValue (WindowPtr pWin)

unsigned int
widGetNumber (WidPtr pWid)

Window ID Interface 97

7

widGetUnique

Returns Whether a WID is unique.

widGetFlavor

Returns The flavor of a WID.

widSetDevData

Purpose This function sets device-dependent data on a WID object.

widGetDevData

Purpose This function gets device-dependent data on a WID object.

Bool
widGetUnique (WidPtr pWid)

CARD32
widGetFlavor (WidPtr pWid)

void
widSetDevData (WidPtr pWid, pointer pDevData)

pointer
widGetDevData (WidPtr pWid)

98 X Server Device Developer’s Guide—August 1997

7

widSetColorLut

Purpose This function sets the color lookup table ID for a WID object.

Results If the WID object consists of more than one hardware WID,
the color lookup table selection attributes of the hardware
WIDs are set to the same value, that is, the appropriate value
for clutId .

Note – On devices with a single color lookup table, this value is ignored.

widGetColorLut

Purpose This function gets the color lookup table ID for a WID object.

Note – On devices with a single color lookup table, this value is undefined.

widSetWindowWid

Purpose This function specifies a window’s WID.

Results The reference count of pWid increases and the reference
count of the old WID decreases.

void
widSetColorLut (WidPtr pWid, CARD32 clutId)

CARD32
widGetColorLut (WidPtr pWid)

void
widSetWindowWid (WindowPtr pWin, WidPtr pWid, Bool prepare)

Window ID Interface 99

7

If prepare is TRUE, the WID plane group in the window’s
visible region is filled with the WID value. This is done even
if the old WID is the same as pWid .

widGetWindowWid

Returns The WID of a window. This is NULL if mpgWindowSetWid
has not been called.

Handler-Specific Routines

Call these functions only from the device-dependent WID functions supplied to
widScreenInit .

widAllocObj

Purpose This function allocates memory for a software WID object.

Called by The device-dependent allocFunc.

Results The reference count of this WID object is set to 0.

widSetValue

Purpose This function sets the value of a WID.

Called by The device-dependent allocFunc .

WidPtr
widGetWindowWid (WindowPtr pWin)

WidPtr
widAllocObj ()

void
widSetValue (WidPtr pWid, unsigned long value)

100 X Server Device Developer’s Guide—August 1997

7

widFreeObj

Purpose Frees memory allocated by widAllocObj .

Called by The device-dependent freeFunc .

WID Device-Dependent Allocation and Free Functions Implementation
The widScreenInit function initializes WID for a device. Before calling this
routine, make whatever device-dependent preparations are necessary to start
using WIDs. For example, allocate a screen devPrivate slot for storing device-
specific WID data on the screen.

On indirect WID devices, after widScreenInit is called, all of the device WIDs
are considered to be unallocated and in the free pool. WID values returned in
WID objects allocated by allocFunc are removed from this pool until freed.

For some plane groups of a device, there is only a single WID. In this case, the
allocFunc can return a WID object with this WID as its value; ignore the WID
reference count.

void
widFreeObj (WidPtr pWid)

Window ID Interface 101

7

Allocation Function

widScreenInit takes an allocFunc argument. This is the device-dependent
WID allocation function. This function calls widAllocObj , which returns a
partially initialized WID object. allocFunc then fills in various device-
dependent attributes of the WID. This is illustrated in the following example
function.

value is of type unsigned long , clutId is of type CARD32, and
devPrivate is of type pointer .

/* Note: required for a bug workaround (described below) */
typedef struct {

unsigned long opaque1[6];
CARD32 clutId;
unsigned long opaque2[2];

} *WidInsidePtr;

WidPtr
myAllocFunc (ScreenPtr pScreen, VisualId visual, int count,

Bool unique, CARD32 flavor)
{

WidPtr pWid;

if (!(pWid = widAllocObj ())
return (NULL);

<allocate a hardware WID value>

widSetValue(pWid, <window ID value>);
widSetDevData(pWid, <anything the handler wants>);

/*
** Initialize the color LUT by reaching inside the
** opaque object. This is a temporary bug workaround.
** See note below.
*/
<initialize color LUT of hardware WID>
{ WidInsidePtr *pWidInside;
 pWidInside = (WidInsidePtr) pWid;
 pWidInside->clutId = <initial color LUT>;
}

}

102 X Server Device Developer’s Guide—August 1997

7

The client is required to initialize the value attribute. It is also required that
clutId be initialized. Initialization of devPrivate is completely optional.

Note – There is a bug in this release: myAllocFunc cannot call
widSetColorLut to initialize pWid ’s color LUT because the screen of pWid
has not yet been initialized. pWid must have a screen assigned for
widSetColorLut to work. The workaround is to access the clutId field of
the pWid object directly. This direct access to a normally opaque object is
allowed only for this workaround and will be removed in a future release
when a widXXX function is provided for color LUT setting that does not
require the screen to be initialized.

Note – Even if the device-dependent WID freeFunc calls
cmapMhcReleaseOverload , myAllocFunc should never call
cmapMhcForceOverload . This call is invoked at a higher level in the system.

Note – In general, you should not attempt to share WIDs between windows
within this routine. Instead, you should use the facilities described in
Chapter 8, “Colormap Interface.” The only exception to this rule is when there
is only a single WID for a visual. In this case, myAllocFunc can allocate pWid
only once and return copies of the pointer to it.

Free Function

The widScreenInit function takes a freeFunc argument. This is the device-
dependent WID free function.

If the device has multiple color lookup tables, this function should call
cmapMhcReleaseOverload to notify CMAP that it might be possible to
remove some overloading conditions. It passes the return value of
widGetVisual as the argument to this routine. See Chapter 8, “Colormap
Interface” for more information.

Next, it performs any device-dependent actions needed to free the WID. Finally,
freeFunc frees the WID object memory by calling widFreeObj .

If the device does not have multiple color lookup tables, this function performs
the device-dependent free actions followed by a call to widFreeObj .

103

Colormap Interface 8

This chapter describes the colormap interfaces (CMAP) visible to Solaris
Independent Hardware Vendors (IHVs) writing DDX ports. The topics
discussed are:

• Introduction to CMAP
• CMAP Call Summary
• Compiling and Linking
• MPG and WID Initialization
• CMAP Initialization and Utilities
• Controlling Multiple Hardware Colormap (MHC) device’s WIDs
• Changing a Window’s WID
• Changing a Window’s Colormap

Introduction to CMAP
The CMAP interface provides colormap management for devices with
hardware color lookup tables. Call it from your DDX handler to initialize the
colormap functions of your device’s pScreen .

CMAP manages colormaps for devices with both a single hardware color
lookup table and multiple hardware color lookup tables.

Note – If you do not use CMAP to manage your colormaps, part of the DGA
interface will not work. For information, see “DGA and Colormaps” on
page 204.

104 X Server Device Developer’s Guide—August 1997

8

Sharing Equivalent Colormaps

Programs can assign a colormap of one visual to a window that was created
with a different visual, as long as the two visuals are colormap equivalent. This
means that they share the same plane group and have the same number of
colormap entries. For more information on colormap equivalence, see the
XSolarisCheckColormapEquivalence(3) man page.

CMAP Call Summary

General Calls

The CMAP interface provides these functions for initializing colormap
management for devices, retrieving the device colormap attributes, and
releasing memory:

• cmapScreenInit
• cmapCloseScreen
• cmapGetDevFuncs
• cmapGetMultiple
• cmapGetCmapPriv
• cmapGetWidType

When calling cmapScreenInit , you must specify whether the device has a
single-color lookup table or multiple-color lookup tables.

MHC Calls

When you call cmapGetMultiple , multiple color LUT management has been
selected and CMAP provides the following additional routines. These routines
only operate when multiple color LUT management has been selected; they
return error status in the single-color LUT case.

• cmapMhcForceOverload
• cmapMhcReleaseOverload
• cmapMhcWindowAttachWid
• cmapMhcWindowDetachWid
• cmapMhcChangeFlavor
• cmapMhcAllocWids

Colormap Interface 105

8

Compiling and Linking
If you have a color device, use cmapScreenInit to initialize CMAP. The
interface to these routines is provided by these header files:

• colormapst.h
• cmap.h

These routines are built into the server, so symbolic references to these routines
are resolved when your DDX handler shared object is loaded into the server.

Additionally, MPG DDX handlers should use mpgScreenInit to initialize
MPG. The interface to this routine, and associated routines, is provided by the
following header file:

• mpg.h

These routines are provided by libmpg.so . Dynamically link the device
handler with this shared object.

Finally, dynamically link DDX handlers that use the following routines with
libmhc.so :

• cmapMhcForceOverload
• cmapMhcReleaseOverload
• cmapMhcWindowAttachWid
• cmapMhcWindowDetachWid
• cmapMhcChangeFlavor
• cmapMhcAllocWids

MPG and WID Initialization
The Multiple Hardware Colormap (MHC) devices supported by CMAP are
MPG devices that mostly use window IDs (WIDs). The Solaris DDK provides
the WID interface for managing these aspects of device control. See Chapter 7,
“Window ID Interface.”

Prior to initializing CMAP for multiple color LUT management, initialize MPG
by calling mpgScreenInit and mpgGetScreenState . For more information,
see Chapter 5, “Multiple Plane Group Interface.”

If the device also has WIDs, call widScreenInit . For more information see
Chapter 7, “Window ID Interface.”

106 X Server Device Developer’s Guide—August 1997

8

CMAP Initialization and Utilities

Screen Initialization Routine

To initialize either single or multiple color lookup table management, call
cmapScreenInit . For MHC devices, call this routine after the MPG and WID
packages have been appropriately initialized.

cmapScreenInit

Purpose Initialize colormap management for the given screen. This
routine changes the following members of the screen:
CreateColormap , DestroyColormap ,
InstallColormap , UninstallColormap ,
ListInstalledColormaps , and StoreColors .

The device must supply device-dependent routines for
accessing its hardware color LUT(s).

Arguments pDevFuncs points to a structure with pointers to these
functions. This pointer must be non-NULL.

If multiple is FALSE, single hardware color lookup table
management is initialized.

If multiple is TRUE, multiple hardware color lookup table
management is selected. If this mode is selected, information
describing the configuration of the hardware color lookup
tables must be passed in the arguments numClutPools and
pClutPoolDescs .

If multiple is TRUE, the argument widType indicates
whether the device uses WIDs and, if so, what type of WID
device it is.

Bool
cmapScreenInit (ScreenPtr pScreen, CmapDevFuncs *pDevFuncs,

Bool multiple, int numClutPools,
CmapClutPoolDesc *pClutPoolDescs, CmapWidType widType)

Colormap Interface 107

8

If multiple is TRUE, mpgScreenInit must have been
already called. If not, this routine returns FALSE.
Furthermore, if multiple is TRUE and widType is
CmapWidIndirect or CmapWidDirect , widScreenInit
must have already been called. Otherwise, this routine
returns FALSE.

Results The contents of pDevFuncs and pClutPoolDescs are
copied into an internal structure rather than copying the
pointers.

The data types used by cmapScreenInit are described in the following
section.

Device-Dependent Color LUT Access Routines

A pointer to the CmapDevFuncs structure is passed to cmapScreenInit .

CmapDevFuncs

Purpose Specifies device-dependent routines for accessing the
device’s hardware color LUTs. Use WriteClutFunc in your
device handler to write an entire colormap into one of the
hardware color LUTs. This structure member must always be
non-NULL.

Arguments clutId is the device-dependent hardware identifier of the
hardware color LUT into which the color data is written. If a
single hardware color LUT operation has been selected, the
value of clutId is arbitrary.

typedef struct {
Bool (*writeClutFunc) (ColormapPtr pCmap, CARD32 clutId)
Bool (*storeColorsFunc)(ColormapPtr pCmap, CARD32 clutId,

int ndef, xColorItem *pdefs)
/* reserved for future expansion */
pointer reserved[4];
} CmapDevFuncs;

108 X Server Device Developer’s Guide—August 1997

8

storeColorsFunc is provided by the device handler to
update a hardware color LUT with a set of XColorItem
changes. ndef is the number changes specified in the list of
changes in pdefs .

Returns TRUE on success; FALSE on failure.

Implementing writeClutFunc

When updating a color LUT, a DDX handler should avoid updating color LUT
entries whose corresponding colormap entry is unallocated. This reduces
colormap flashing. The following sections discuss the various ways to
implement this behavior.

Loading Color Lookup Tables
Some devices are mapped-access devices—devices with color LUTs memory-
mapped into the X server process. The DDX handler can access the contents of
these LUTs quickly. Other devices are request-access devices—devices with color
LUTs accessed through a request, such as a kernel driver ioctl .

For best results, request-access devices require a different color LUT update
strategy than mapped-access devices because the time required per access is
different.

For request-access devices, the possible strategies are:

• Get the entire color LUT contents, update it with allocated colormap cells,
and put the entire color LUT back.

• Get the color data for the allocated colormap cells and the list of allocated
cells. Determine contiguous ranges of allocated entries. Invoke several
requests to put the color data for these ranges into the hardware.

For mapped-access devices, the best strategy is:

• Get the color data for the allocated colormap cells and the list of allocated
cells. Use the allocation information to directly copy the data into the
hardware.

Do not use the strategy of caching color LUT contents in the DDX handler
because this does not work with DGA colormap-grabbing clients. Instead, use one
of the above strategies.

Colormap Interface 109

8

cmapGetColorData8

Purpose Gets color data and allocation information from a colormap.
Use it if the hardware color LUTs have 8 output bits per
channel.

Arguments For indexed colormaps, the data for entry i is placed in
pRmap[i] , pGmap[i] , and pBmap[i] .

For direct colormaps, the data for red entry i is placed in
pRmap[i] , for green entry i in pGmap[i] , and for blue
entry i in pBmap[i] .

The pRmap, pGmap, and pBmap locations corresponding to
unallocated entries in pCmap are unchanged.

If you are not interested in allocation information for
pRallocs , pGallocs , and pBallocs , the arguments are
NULL.

Returns The value 1 is returned on success, 0 on failure.

In pRmap, pGmap, and pBmap the color data allocated in
pCmap. It is assumed that the number of output bits per
channel is eight. The pRmap, pGmap, and pBmap arrays must
be long enough to hold all of the entries of pCmap.

Information on allocated entries, if requested. To request
allocation information, supply non-NULL arguments to
pRallocs , pGallocs , and pBallocs .

For indexed colormaps, if entry i is allocated in pCmap,
pRallocs[i] is returned as TRUE, otherwise FALSE.

For direct colormaps, if red entry i is allocated in pCmap,
pRallocs[i] is returned as TRUE, otherwise FALSE.
Likewise, pGallocs and pBallocs are used to return the
allocation status of the green and blue entries.

int
cmapGetColorData8 (ColormapPtr pCmap, unsigned char *pRmap,

unsigned char *pGmap, unsigned char *pBmap,
Bool *pRallocs, Bool *pGallocs, Bool *pBallocs)

110 X Server Device Developer’s Guide—August 1997

8

cmapGetColorData16

Returns This routine returns the color data for allocated entries in
pCmap in pRmap, pGmap, and pBmap.

Note – This function returns the full 16 bits of color data for each channel. It is
up to the caller to convert this data to the output bits of the hardware color
LUT.

Implementing storeColorsFunc

Code Example 8-1 shows how to implement this device-dependent function in
your DDX handler.

Note – In Code Example 8-1, the color LUTs are indexed, the pixel size is 8 bits,
and hardware color LUT channel outputs size is 8 bits each.

int
cmapGetColorData16 (ColormapPtr pCmap, unsigned short *pRmap,

unsigned short *pGmap, unsigned short *pBmap,
Bool *pRallocs, Bool *pGallocs, Bool *pBallocs)

Code Example 8-1 Direct or Indirect Colormap Into Indirect Color LUT

Bool
exampleDDstoreColors (ColormapPtr pCmap, CARD32 clutId,

int ndef, xColorItem *pdefs)
{

unsigned char rmap[256], gmap[256], bmap[256];
xColorItem expanddefs[256];

/* Since the color LUTs are indexed, if we have a direct
 * colormap, we must translate the pdefs.*/

if ((pCmap->pVisual->class | DynamicClass) == DirectColor) {
ndef = cfbExpandDirectColors(pCmap, ndef, pdefs,

expanddefs);
pdefs = expanddefs;
}

Colormap Interface 111

8

Code Example 8-1 shows a special case when only a single entry is being
changed and all three channels of that entry are being changed. This is a
significant optimization because this situation happens very frequently when
color applications are started. For devices that use a system call to get the color
LUT contents out of the hardware, this optimization avoids an extra system
call.

/* Optimization: A common case for optimization is for the
 * change to be to all channels of a single entry. This
 * frequently happens when XAllocColor is called on a dynamic
 * colormap. */

if (ndef == 1 &&
(pdefs->flags & (DoRed|DoGreen|DoBlue)==(DoRed|DoGreen|DoBlue))) {

unsigned char red, green, blue;
red = pdefs->red >> 8;
green = pdefs->green >> 8;
blue = pdefs->blue >> 8;

<< put red, green, blue into color LUT clutId at pdefs->pixel >>

return (TRUE);

}

<< get entire current contents of color LUT clutId into rmap, gmap, bmap>>

/* apply changes */
while (ndef--) {

if (pdefs->flags & DoRed)
rmap[pdefs->pixel] = pdefs->red >> 8;

if (pdefs->flags & DoGreen)
gmap[pdefs->pixel] = pdefs->green >> 8;
if (pdefs->flags & DoBlue)

bmap[pdefs->pixel] = pdefs->blue >> 8;
pdefs++;

}

<<put entire rmap, gmap, bmap into the color LUT for clutId>>

return (TRUE);

}

Code Example 8-1 Direct or Indirect Colormap Into Indirect Color LUT (Continued)

112 X Server Device Developer’s Guide—August 1997

8

Simulating a Direct Color LUT With an Indirect Color LUT
In Code Example 8-1, something special must be done when the colormap is
direct (either TrueColor or DirectColor) and the color LUT is indexed.

When an XStoreColors is performed on a single channel of a direct color
LUT, it affects the displayed colors for all pixels containing the bit pattern of
the channel entry changed. For example, if red entry 0x05 was updated, the
colors change for pixels 0x05GGBB, where GG and BB are any legal value for
the green and blue portions of the pixel. In this example, a single change to the
red entry changes the colors of multiple pixels.

When the color LUT is indexed rather than direct, several color LUT entries
must be changed to get this same effect. This is done by calling
cfbExpandDirectColors . It converts the pdefs change list describing the
changed channel entries into another change list which, when applied, updates
an indexed color LUT to achieve the desired effect.

The specification of cfbExpandDirectColors is:

This DDX function can be used by devices with any arbitrary number of color
LUT output bits. It is not limited to devices with eight bits of output per
channel.

Simulating an Indirect Colormap With a Direct Color LUT
The preceding section dealt with the case where the device has indexed color
LUTs and the device handler chooses to export indexed visuals. It is also
possible to simulate indexed visuals if the device color LUTs are direct. This is
the subject of the next section.

Code Example 8-2 is a routine that can load either indirect or direct colormaps
into a direct color LUT. The only difference is in the treatment of the pixel
value. For an indirect colormap, the same pixel value is used to index into all
three color channels. For a direct colormap, the pixel value is divided into
separate channel indexes.

int
cfbExpandDirectColors (ColormapPtr pCmap, int ndef,

xColorItem *indefs, xColorItem *outdefs)

Colormap Interface 113

8

Code Example 8-2 Direct or Indirect Colormap Into Direct Color LUT

Bool
exampleDDstoreColor (ColormapPtr pCmap, CARD32 clutId, int ndef,

xColorItem *pdefs)
{

unsigned char rmap[256], gmap[256], bmap[256];
Pixel pix;
VisualPtr pVis = pCmap->pVisual;
int direct = (pVis->class|DynamicClass) == DirectColor;

<<get entire current contents of color LUT clutId into rmap, gmap, bmap>>

/* apply changes */
while (ndef--) {

pix = pdefs->pixel;
if (direct) {

/* Direct colormap */
if (pdefs->flags & DoRed)

rmap[(pix&pVis->redmask)>>pvis->redoffset] = pdefs-
>red>>8;

if (pdefs->flags & DoGreen)
gmap[pix&pVis->greenmask)>>pVis->greenoffset] = pdefs-

>green>>8;
if (pdefs->flags & DoBlue)

bmap[pix&pVis->bluemask)>>pVis->blueoffset] = pdefs-
>blue>>8;

} else {
/* Indirect colormap */
if (pdefs->flag & DoRed)

rmap[pix] = pdefs->red>>8;
if (pdefs->flags & DoGreen)

gmap[ix] = pdefs->green>>8;
if (pdefs->flags & DoBlue)

bmap[pix] = pdefs->blue>>8;
}
pdefs++;

}
<<put entire rmap, gmap, bmap into the color LUT for clutId>>

return (TRUE);
}

114 X Server Device Developer’s Guide—August 1997

8

Note – The single-entry optimization in “Simulating a Direct Color LUT With
an Indirect Color LUT” on page 112 can also be used in this situation, although
it is not shown in Code Example 8-2.

Color LUT Pool Description

For multiple color LUT devices, each MPG mpgInfo structure uses a specific
color LUT pool, called a clut pool. A clut pool contains one or more color LUTs.
Windows with a particular mpgInfo have their colormaps installed into the
color LUTs in this pool. The color LUTs in a pool are assigned on a first-come-
first-served basis. Throughout its existence mpgInfo always refers to the same
color LUT.

The mpgInfo structure is in the MPG library. It defines the plane groups used
by a window, what they are used for, and the window management operations
that are performed on them. For more information, see Chapter 5, “Multiple
Plane Group Interface”.

A color LUT is identified with a clut ID that is a small positive number. The
value is only interpreted by the device handler and is opaque to CMAP.

In the call to cmapScreenInit , the device handler must supply a description
of the device’s clut pools, the pool each color LUT resides in, and the pools
used by the device’s default mpgInfo s. The default mpgInfo s are the ones that
the device handler specifies in the mpgVisInfo structure passed to
mpgScreenInit . The device handler provides this description by passing in
an array of CmapClutPoolDesc structures, one for each clut pool. The number
of clut pools is passed as an argument to cmapScreenInit .

There are limitations on how mpgInfo s use clut pools. These are described
below.

Colormap Interface 115

8

CmapClutPoolDesc Structure

Code Example 8-3 shows the CmapClutPoolDesc structure that describes the
color LUTs assigned to a particular pool and the MPG infos that use them.

For each clut pool, numCluts specifies the number of color LUTs in the pool.
pClutIds is an array containing color LUT IDs for each color LUT in the pool.
numPgs is the number of mpgInfo s using the pool. pPgs is an array
containing drawing IDs (DIDs) for each mpgInfo using the pool. The DID is
the internal ID (iid) of the drawing plane group of that mpgInfo (this is the last
plane group inserted into the mpgInfo with op MPG_DRAW). numPgs is the
number of mpgInfo DIDs in the pPgs array. An mpgInfo DID can appear in
no more than one clut pool description.

Note – Currently, numPgs must always be equal to 1. See “Multi-Depth Color
LUT Pool Sharing” on page 119 for more details on this constraint.

The maximum number of flavors (maxFlavors) for the pool must also be
specified. See “Flavors” on page 120 for more detailed information.

Code Example 8-3 CmapClutPoolDesc Structure

typedef struct {

/* number of cluts in pool */
unsigned int numCluts;

/* array of clut IDs in pool */
CARD32 pClutIds[CMAP_POOL_MAX_CLUTS];

/* number of MPG infos using pool */
unsigned int numPgs;

/* array of MPG info dids */
CARD32 pPgs[CMAP_MAX_PGS];

/*
** maximum number of flavors for MPG infos
** using this pool
*/
unsigned int maxFlavors;

} CmapClutPoolDesc;

116 X Server Device Developer’s Guide—August 1997

8

Note – The CMAP interface refers to an mpgInfo with the abbreviations “Pg”
or “PG.” These do not refer to individual plane groups. These abbreviations
refer to combinations of plane groups and correspond to mpg Info structures.

Note – Currently, CMAP_POOL_MAX_CLUTS is 32 and CMAP_MAX_PGS is 32 .

Relationship to MPG

This section describes the relationship between windows, visuals, mpgInfo s,
and clut pools in greater detail. See also Chapter 5, “Multiple Plane Group
Interface” for additional information.

When mpgScreenInit is called, the device handler supplies an mpgVisInfo
table that specifies, for each visual ID in the table, the default mpgInfo that is
to be assigned to windows created with that visual. When cmapScreenInit is
called, CMAP uses this table to map visual IDs to clut pools. It uses this
mapping to determine the color LUT into which a window’s colormap should
be installed. This depends on the window’s visual.

Window contents are stored in device memory buffers called plane groups.
Multiple plane groups can be associated with a window. The plane group in
which the image color data is stored is called the drawing plane group. Besides
the drawing plane group, the window might require other plane groups to
control rendering and to properly display the window contents. For example, it
might require a window id plane group to control visibility or a Z buffer plane
group to control 3D rendering. All the plane groups associated with a window
are described in its mpgInfo .

When an X window is created, the X client selects a visual for the window. This
visual is a type descriptor describing how the window should be displayed. It
contains information such as class and colormap entries. At the same time the
client selects a visual for the window, a depth is also selected. Both the depth
and visual remain constant for a window throughout its existence. The device
handler must assign each visual a unique visual ID.

The mpgVisInfo table passed to mpgScreenInit contains, for each visual,
the default mpgInfo for that visual. This means that when a window is
created, this table is used to find the mpgInfo for the window’s visual. This
mpgInfo is assigned to the window and controls display of the window

Colormap Interface 117

8

contents and render to the window. In the mpgVisInfo table, more than one
visual ID can point to the same mpgInfo . For example, this can happen if the
visuals differ only in the type of colormap they use for display—an 8-bit
PseudoColor visual and an 8-bit StaticColor visual can share the same
mpgInfo .

Note – Currently, the number of visuals that can refer to the same mpgInfo is
limited to 6.

The mpgVisInfo table is shown in Figure 8-1.

Figure 8-1 Relationship Between Visuals and mpgInfo s in the mpgVisInfo Table

After a window has been created, the X client may do something to it that
requires a different mpgInfo . For example, the window might become
multibuffered, grabbed through DGA, or a Z buffer attached. It might be
necessary to move the window contents to a different drawing plane group. It

8-bit StaticColor (vid0)

8-bit PseudoColor (vid1)

24-bit TrueColor (vid2)

24-bit DirectColor (vid3)

DID = 0

DID = 1

Visuals mpgInfos

118 X Server Device Developer’s Guide—August 1997

8

might also be necessary to add plane groups to the combination used by the
window. MPG provides a routine, mpgChangeInfo , to allow a DDX handler to
change the mpgInfo of a window. This is shown in Figure 8-2.

Figure 8-2 Changing the mpgInfo of a Window.

Because the visual and depth of a window never change, the new mpgInfo
must have the same depth as the original mpgInfo . In addition, the new
mpgInfo must always use the same clut pool as the original mpgInfo . For this
reason, it is only necessary to specify to cmapScreenInit the clut pools used
by the default mpgInfo s.

The first entry in the pPgs array of a clut pool description (pPgs[0]) defines
the default mpgInfo that uses that clut pool. Other variants of this default
mpgInfo , attached to windows using mpgChangeInfo , also use that same clut
pool. This is shown in Figure 8-3.

Window
vid2 (24-bit TrueColor)

(24-bit, no Z-buffer)

mpgInfo 1
(default)

related through
mpgVisInfocurrent

(24-bit, with Z-buffer)

mpgInfo 2

new

Colormap Interface 119

8

Figure 8-3 Relationship Between Visuals, Default mpgInfo s, and Color LUT Pools.

Multi-Depth Color LUT Pool Sharing

The CmapClutPoolDesc structure has an array of mpgInfo DIDs instead of
just a single DID so that future configurations with multiple depths can share
the same color LUT pool. These are called multi-depth configurations.

Note – Multi-depth configurations are not supported in the current release.
Consequently, the numPgs of a clut pool description must always be 1. This
restriction might be relaxed in a future release.

In a multi-depth configuration, a set of color LUTs is used by mpgInfo s of
different depths. In such a configuration, the pPgs array contains more than
one mpgInfo DID. It contains one for each default mpgInfo that used the clut
pool. The different mpgInfo s in the array could be referred to by visuals of
different depths. This is shown in Figure 8-4.

8-bit StaticColor

8-bit PseudoColor

24-bit TrueColor

24-bit DirectColor

DID = 0

DID = 1

Visuals Default mpgInfos Clut Pools

120 X Server Device Developer’s Guide—August 1997

8

Figure 8-4 mpgVisInfo Table and Color LUT Pool Description for Multi-Depth (not
supported)

Note – Sharing clut pools between default mpgInfo s of different depths is not
supported in the current release. Also, sharing clut pools between default
mpgInfo s of the same depth, but which differ in some other characteristic, is
not supported either.

Flavors

CMAP needs to know the flavors of the mpgInfo s using its clut pools. At any
one time, a window has an mpgInfo . On WID devices, a window’s WID
depends on this mpgInfo . The visible shape of the window is filled with this
WID. The hardware uses the WID to control display of and rendering into the
window. The type of the WID is called its flavor. CMAP uses the flavor of a
WID to promote the sharing of WIDs between similar windows.

4-bit StaticColor

4-bit PseudoColor

24-bit TrueColor

24-bit DirectColor

DID = 0

DID = 2

Visuals Default mpgInfos Clut Pools

8-bit TrueColor

8-bit DirectColor

DID = 1

Colormap Interface 121

8

When CMAP is first initialized and the clut pools are described, the device
handler needs to know the maximum number of flavors used by the set of all
mpgInfo s using each clut pool. On non-WID devices, maxFlavors is always 0
for each clut pool description.

A flavor is a distinct combination of hardware WID attributes. It is identified
by a small positive number. This number is opaque to CMAP and its value is
not interpreted by CMAP. Because the number uniquely identifies a flavor, the
term “flavor” is often applied to the number itself, although it really means the
combination of WID attributes it represents.

For a particular hardware WID, the flavor of a WID depends on the hardware
characteristics. The hardware WID is the bit pattern that the video display
hardware uses to display a particular pixel on the screen. The bit pattern can
also be used to control rendering to that pixel. Each pixel on the screen has an
associated WID. On Direct WID devices, the controlling bit pattern is derived
from the WID value itself. On Indirect WID devices, the WID value is used as
an index into a table to find the controlling bit pattern. The controlling bit
pattern of a WID is called its attributes. The attributes bit pattern is subdivided
into a number of fields, each of which controls a particular characteristic, such
as depth, double-buffer selection, or color LUT selection.

Note – Direct WID devices are not supported.

Since the purpose of flavors is to promote sharing of WIDs among similar
windows, any WID attribute field that is specific to an individual window, and
not sharable with other windows, is not a part of the flavor. For example, the
double-buffer selection field of a WID is not part of the flavor because buffer
changes to one window should not affect other windows. These types of WID
attribute fields are referred to as unique fields. This means that each window
that requires a WID in which a unique field changes, requires a unique WID. It
cannot share the WID of another window.

Another example of a unique field is hardware clipping. It is unique because
we don’t want hardware-clipped rendering into one window to spill out into
another window. On some hardware, a WID field controlling the selection of a
fast clear set might be a unique field. (A fast clear set is a hardware construct for
rapidly setting the entire shape of a window to a specified pixel value).

Only sharable WID attribute fields are a part of the flavor. Examples include
depth and Z-buffer-enable fields. These fields are called flavor fields.

122 X Server Device Developer’s Guide—August 1997

8

The attribute fields of a WID vary from device to device. Follow this list of
rules to determine the flavor fields for a device:

1. Start with the list of WID attribute fields that the hardware supports.

2. Eliminate the fields that are constant for all WIDs.

3. Eliminate those fields that, if enabled, prevent the WID from being shared
by other windows. Examples: hardware clip, fast clear set.

4. Eliminate those fields that will be dynamically manipulated for an
individual window. Examples: double buffer display select.

5. Eliminate those fields whose values are dependent on the values of other
fields.

6. Eliminate the color LUT select field.

The remaining fields are the flavor fields. To derive the set of flavor IDs, assign
unique small positive integers to all possible combinations of the flavor
attributes.

The following is an example of four possible flavors that might be used by a
device:

• Flavor 0: 8-bit, no Z buffer
• Flavor 1: 8-bit, Z buffer
• Flavor 2: 24-bit, no Z buffer
• Flavor 3: 24-bit, Z buffer

The maxFlavors of a clut pool is the sum of the flavors of the mpgInfo s that
can use the pool. Continuing the above example, if clut pool 0 can be used by
both an mpgInfo with an 8-bit Z buffer flavor and one with an 8-bit non-Z
buffer flavor, the maxFlavors of this pool is 2.

When multiple windows using the same mpgInfo share the same colormap,
only one WID is necessary to display the window contents. This is the WID for
that mpgInfo . However, if the windows have different colormaps, then one
WID per colormap is necessary. This is because CMAP installs each colormap
into its own color LUT.

Colormap Interface 123

8

For example, there are three 24-bit Z buffered windows, each with its own
colormap. These colormaps are installed into color LUTs 0, 1, and 2. These
windows require three distinct WIDs, each differing only in the color LUT
selection field. But the flavor attributes of these WIDs are all set to 24-bit and
Z-buffered.

If a fourth window is created that shares the same colormap as the first
window, it can share the first window’s WID; it does not need a new WID.
CMAP is designed to notice these opportunities for sharing.

For MHC WID devices, CMAP keeps track of the WIDs of windows using the
colormaps it is managing. Whenever it needs to allocate a new WID for a
window, it first checks to see if an appropriate sharable WID is already
available. An appropriate WID is defined as a WID having the same color LUT
as the window’s colormap and flavor attributes the same as the desired flavor.

More on Flavors
It is important to understand how flavors are related to software colormaps
and hardware color lookup tables (color LUTs). Earlier, there was a discussion
of flavor attributes versus unique attributes of a hardware WID. It is
important to understand that colormaps and color LUTs are neither flavor
attributes nor unique attributes.

Since one of the purposes of defining flavors and defining unique attributes is
so MHC can wisely distribute color LUTs in real time, we must omit color
LUTs as a WID attribute when defining flavors and uniques.

Software colormaps are obviously not a WID attribute. But it is useful to
understand that MHC keeps track of WIDs assigned to flavors on a colormap
basis. So for each software colormap, there is a structure that holds WIDs
being used with this colormap, and their associated flavors. MHC uses this
information to share WIDs between colormaps. Two colormaps are checked to
see if they both have a WID in a certain flavor. If they do, the two colormaps
share one of the WIDs and the other one is freed.

For example, defining a flavor as “flavor 1 is for the default colormap” is
incorrect. As described above, colormaps do not play a role in distinguishing
between flavors. Defining a flavor for a particular software colormap defeats
the purpose of flavors, and is not expected to work properly.

Correctly defining flavors is critical to proper operation of MHC.

124 X Server Device Developer’s Guide—August 1997

8

Initialization Example - Multiple Color LUT

Code Example 8-4 hows how to initialize colormap management for a device
with two mpgInfo s. The first mpgInfo has one dedicated color LUT and the
second one has four dedicated color LUTs.

pMyDevFuncs is a pointer to a structure with the device-dependent colormap
access functions.

Code Example 8-4 Initialize CMAP For a Device With Two Plane Groups

CmapClutPoolDesc myclutDescArray[] = {

/* Pool for 8-bit mpgInfo */
{

/* clut ids */
1, { 0 },

/* used by which mpgInfo */
1, { 0 },

 /* max flavors */
3

},

/* Pool for 24-bit mpgInfo */
{

/* clut ids */
3, { 1, 2, 3 },

/* used by which mpgInfo */
1, { 1 },

/* max flavors */
1

}
};

cmapScreenInit(pMyScreen, pMyDevFuncs, TRUE, 2,
&myclutDescArray, cmapWidIndirect);

Colormap Interface 125

8

Initialization Example - Single Color LUT

To initialize colormap management for a single color LUT, the following call
should be used:

pMyDevFuncs is a pointer to a structure with the device-dependent colormap
access functions.

WID Types

When initialized for multiple color LUT management, CMAP needs to know
whether the device uses WIDs. If the device uses WIDS, it needs to know
whether the device is an indirect or direct WID device. Use the widType
argument to cmapScreenInit to indicate this with one of the following
values:

Note – The value of the widType argument to cmapScreenInit is ignored in
single-color LUT mode. CmapWidUnknown is for use by the system; do not use
it in your DDX handler.

Note – Direct WID devices are not supported in this release.

Utility Routines

The following utility routines are provided for cleaning up after colormap
management is no longer needed, accessing arguments to cmapScreenInit ,
and making the storage method of these data opaque to the calling function.

cmapScreenInit(pMyScreen, pMyDevFuncs, FALSE, 0, NULL, CmapWidNone);

typedef enum {
CmapWidUnknown,
CmapWidNone,
CmapWidIndirect,
CmapWidDirect,

} CmapWidType;

126 X Server Device Developer’s Guide—August 1997

8

cmapCloseScreen

Purpose This function cleans up state initialized by
cmapScreenInit . This function is responsible for restoring
the color lut, the hardware wid, and other device dependent
hardware states to correctly display the black and white
colors of the glass tty console.

Called by The device-dependent CloseScreen .

cmapGetDevFuncs

Returns The device-dependent colormap access functions passed to
cmapScreenInit .

cmapGetMultiple

Returns TRUE if the given screen has been initialized with multiple
color lookup table management.

Bool
cmapCloseScreen (int index,ScreenPtr pScreen)

CmapDevFuncs*
cmapGetDevFuncs (ScreenPtr pScreen)

Bool
cmapGetMultiple (ScreenPtr pScreen)

Colormap Interface 127

8

cmapGetClutPoolDescs

Results The output arguments are untouched in the single-color LUT
management case.

Returns In the multiple-color LUT management case, this procedure
returns the number and array of pool descriptions given to
cmapScreenInit .

cmapGetWidType

Returns widType argument passed to cmapScreenInit , in
multiple-color LUT mode.

CmapWidUnknown, in single-color LUT mode.

Colormap Private Data

CMAP uses the devPriv member of ColormapRec for its own purposes. If
you want to attach device-dependent data to a colormap, it must coordinate
with CMAP.

CMAP attaches its own private data structure to all colormaps. The colormap
devPriv member points to this structure. CMAP reserves in its structure a
data member called devPriv . Set devPriv to point to your own data.

To access devPriv , call cmapGetCmapPriv .

void
cmapGetClutPoolDescs (ScreenPtr pScreen, int *pNumClutPools,

 CmapClutPoolDesc **pClutPoolDescs)

CmapWidType
cmapGetWidType (ScreenPtr pScreen)

128 X Server Device Developer’s Guide—August 1997

8

cmapGetCmapPriv

Results If devPriv is NULL, a CmapPrivRec is created and devPriv
is pointed to it.

Returns The devPriv member of a colormap. This function returns a
pointer to a structure of the following format:

You can read and write to CmapPrivRec.devPriv as
needed by your DDX handler. The cmapopaqueX members
are opaque; do not read or write to them. So, if pCmapPriv is
the pointer returned by cmapGetCmapPriv , read or write to
the pCmapPriv->devPriv data member to attach device-
dependent data to the colormap.

Controlling MHC’s WIDs
Most MHC devices are also WID devices. This section applies only to MHC
devices that have WIDs.

An example of an MHC device that does not have WIDs, is a device with an 8-
bit plane group and a 24-bit plane group whose visibility is selected by a 1-bit
control plane. The value 0 in the control plane selects display of the 8-bit plane
group and 1 selects the 24-bit plane group. Each plane group has a single,
dedicated color LUT. This is an MHC device because it has two color LUTs; one
each for the 8-bit and 24-bit plane groups. However, visibility is controlled by
a control plane, not WIDs. If visibility was selected using a WID, then the
device would be a WID device.

CmapPrivPtr
cmapGetCmapPriv (ColormapPtr pCmap)

typedef {
pointer cmapOpaque1;
pointer cmapOpaque2;
int cmapOpaque3;
pointer devPriv;

} CmapPrivRec, *CmapPrivPtr;

Colormap Interface 129

8

Devices that support more than one color LUT per plane group are usually
WID devices. This sections applies to these devices also.

MHC devices with WIDs need to initialize the WID package. See Chapter 7,
“Window ID Interface” for more information on WIDs.

CMAP uses a set of hardware WIDs to display colormaps in windows. CMAP
is flexible about the number of WIDs it requires. It can be told to use more or
less WIDs. If it uses less, color flashing might increase. The flashing condition
persists until CMAP is told to use more WIDs, or until one of the colormaps
causing the flashing is destroyed. See “Overloading Control Routines” on
page 130 for information on how to tell CMAP the number of WIDs to use.

Overloading WIDs

CMAP uses WIDs to display different hardware color LUTs in different
windows. Since, even on advanced display devices, WIDs are a relatively
scarce resource, there might be times when you need a WID, but cannot get
one.

The CMAP package is designed to be flexible about the number of WIDs it
uses. In normal operation, it tries to use as many WIDs as it needs. However, if
it tries to allocate a WID for a colormap and cannot, it shares the WID of
another colormap that has a similar WID. This colormap is called an overload
partner. When a colormap shares a WID with an overload partner, it uses the
color LUT of the partner. Visually, the colormap flashes against the partner
colormap. If all WIDs are used, this kind of flashing can occur even if there are
free hardware color LUTs because there must be a free WID and a free
hardware color LUT for a window to have its own LUT. This WID sharing
technique is called overloading.

Depending on the type of device, CMAP might not be the only consumer of
WIDs; the handler itself might need to use WIDs. For example, if it assigns
special WIDs to hardware clipped windows or hardware double-buffered
windows. In some situations, when the handler needs a WID it absolutely
must acquire it; it cannot share the WID with some other window. In this case,
the handler uses a unique WID.

You need to handle WID allocation failure if your handler uses WIDs. Rather
than failing the operation requiring the WID, the handler is permitted to steal a
WID from CMAP. It does this by forcing CMAP into an overloading situation.

130 X Server Device Developer’s Guide—August 1997

8

In most cases, this approach is preferable: overloading CMAP means that there
is more colormap flashing, but failing means that the application window
needing the WID cannot be created at all.

It is recommended, therefore, that when you try to allocate a unique WID, and
the allocation fails, call cmapMhcForceOverload . (The only exception to this
is from the device-dependent widAllocate function.) This routine forces
CMAP to give up a WID by overloading two colormaps onto each other.
However, this routine does not always result in a free WID—there might not be
any more free WIDs. When cmapMhcForceOverload fails (returns 0), the
handler has no other option but to return failure.

When forcing an overload condition, be sure to also call
cmapMhcReleaseOverload whenever it frees a WID. This allows CMAP to
remove any overloading conditions that exist and go back to less flashing.
Always do this from the device-dependent WID free function, freeFunc . See
Chapter 7, “Window ID Interface” for more information.

Note – The use of cmapMhcReleaseOverload and cmapMhcForceOverload
from the WID free function is not symmetric. Even when the free function calls
cmapMhcReleaseOverload , its counterpart allocation function should never
call cmapMhcForceOverload . The cmapMhcForceOverload call is made
elsewhere in the device-independent layers of the system.

Overloading Control Routines

cmapMhcForceOverload

Purpose Forces CMAP to give up a WID.

Called by A device handler that needs a unique WID for another
purpose, such as double buffering.

Arguments visual indicates the visual type of the WID.

Returns 1 if it gives up a WID; 0 otherwise.

int
cmapMhcForceOverload (ScreenPtr pScreen, VisualID visual)

Colormap Interface 131

8

This code seeks to free a WID of any flavor for the visual. It starts at the least
recently installed colormap in the visual’s color LUT pool and progresses
toward more recently installed ones. For each colormap, it attempts to find a
viable overload partner colormap of the same flavor. To find the overload
partner, it starts at the least recently installed colormap and progresses toward
the most recently installed. It prefers partners that are not already overloaded,
but accepts partners already overloaded. If it finds a partner that is already
overloaded, the colormap becomes over-overloaded.

Note – This heuristic attempts to minimize the effect on windows with hot
(most recently installed) colormaps by confining flashing effects on less
recently used colormaps, even if it has to over-overload to do it.

Note – Call this routine only if the device handler needs a unique WID and
cannot get one. Do not call this function when creating a sharable WID for a
window. Instead, let cmapMhcWindowAttachId handle it.

cmapMhcReleaseOverload

Purpose This routine tries to take back any overloaded colormaps.
This requires a WID, so this routine is called when the caller
has reason to expect that a WID is available. This is the case
when the caller has just freed a WID.

The installed list of that visual’s color LUT pool is searched
for a colormap that is overloaded. The search progresses
from the most recently installed colormap toward less
recently installed ones until one is found that is overloaded
or the end of the list is reached. When it finds one, it allocates
a new WID and assigns it to all windows using that
colormap. The overload condition is then removed.

Arguments visual indicates the visual type of the WID that is needed.

void
cmapMhcReleaseOverload (ScreenPtr pScreen, VisualID visual)

132 X Server Device Developer’s Guide—August 1997

8

Changing a Window’s WID
When the DDX handler for a non-MHC device creates a window, or changes a
window’s WID, it uses the WID routines of the MPG package to make the
change. For example, when a window is first created the CreateWindow
routine of the device’s screen is called. This routine calls widAllocate to
allocate a WID and then widSetWindowWid to attach the WID to the window.

If the device is MHC, it must let CMAP change the WID. To promote WID
sharing, the CMAP package needs to keep track of both WIDs and colormaps
used by windows. Specifically, CMAP must be notified when the DDX handler
does one of the following operations:

• Creates a window
• Destroys a window
• Changes a window’s colormap
• Changes a window from software clipping to hardware clipping
• Changes a window from single buffered to hardware double buffered

In either the MHC or non-MHC case, the DDX handler has ultimate
responsibility for deciding when WIDs get allocated and when WID attributes
are changed. MHC DDX handlers must use CMAP for these operations.

cmapMhcWindowAttachWid

A device that uses WIDs must wrap the pScreen->CreateWindow routine to
create the window by assigning the window a WID.

When the wrapping routine is called, it first calls the wrapped CreateWindow .
Next, it calls the following routine that ensures that the window is assigned an
appropriate WID. This routine checks if there is another window with an
appropriate WID, and uses that; if not, it allocates a new WID. It can force an
overload to get this WID.

This routine chooses an appropriate WID for the given window. The choice of
WID depends on:

• The window’s colormap

int
cmapMhcWindowAttachWid (WindowPtr pWin, Bool unique, CARD32 flavor)

Colormap Interface 133

8

• The specified flavor
• The specified uniqueness

Arguments If unique is FALSE, CMAP tries to use an existing sharable
WID of the given flavor. If it cannot find an existing one, a
new WID is allocated.

Results If the window already has a WID, it is freed.

Returns 1 is returned on success and 0 on failure.

cmapMhcWindowDetachWid

Prior to destroying a window on an MHC device, CMAP must be notified. To
do this, the device handler wraps pScreen->DestroyWindow . It calls the
following routine and then destroys the window. When the window is
destroyed the reference count of the attached WID decreases. If this was the
only reference to this particular WID, the WID is freed.

Changing A Window’s Colormap
The device handler should wrap pScreen->ChangeWindowAttributes .
This way, the device handler detects if a CWColormap change is occurring. If it
does not, then call the wrapped ChangeWindowAttributes normally.

If the colormap is being changed, then it calls cmapMhcWindowDetachWid on
the window first, the wrapped ChangeWindowAttributes next. then the
cmapMhcWindowAttachWid last.

Note – If the call to cmapMhcWindowAttachWid fails, the device handler
returns an error.

If a CMAP routine returns failure status during the the device handler’s
wrapped ChangeWindowAttributes or during the call to
cmapMhcWindowAttachWid , then this indicates the MHC could not allocate a
WID. If this is the case, the device handler needs to back out of the change it

int
cmapMhcWindowDetachWid (WindowPtr pWin)

134 X Server Device Developer’s Guide—August 1997

8

was trying to make. To do this, the device handler should attach the old
colormap to the window using the wrapped ChangeWindowAttributes .
Next, it should call cmapMhcWindowAttachWid using the flavor and unique
values of the old WID (that is, the WID that used to be attached to the
window).

Note – This call to cmapMhcWindowAttachWid should never fail since the old
WID was returned to the free pool of WIDs and should still be there.

Finally, the device handler’s wrapped ChangeWindowAttributes should
return a BadAlloc failure status.

cmapMhcChangeFlavor

Whenever a window is modified in a way that changes its flavor, CMAP must
be notified. A new WID needs to be assigned to the window, one with the new
flavor. It is CMAP that makes this reassignment.

Call the following routine whenever the device handler is about to make a
change that affects a WID’s flavor. The routine is given the desired flavor and
it attempts to either share a WID of the same flavor or else allocate a new one.
In either case, it finds a WID and assigns it to the window.

This function tells CMAP that you want a WID of a different flavor attached to
the window. CMAP selects a new WID for the window, using either an existing
sharable WID or a new WID.

Note – Call this function only for windows with sharable WIDs.

This function returns 1 on success and 0 on failure. A failure return indicates
that a WID of the desired flavor could not be acquired for the window. In this
case, the previous WID of the window is left untouched.

int
cmapMhcChangeFlavor (WindowPtr pWin, CARD32 newFlavor)

Colormap Interface 135

8

Example

Code Example 8-5 shows you how to change the flavor of a window in pseudo-
code. Attaching a Z buffer to a window is used as a hypothetical example. This
code might be called from the DGA GPI routine DgaZbufSetup in response to
a call to the libdga XDgaZbufGrab API routine. See Chapter 9, “Direct
Graphics Access Drawable Client Interface” for more information.

Note – This is only a hypothetical example to illustrate the changing of a WID
flavor attribute. MPG provides a superior service for attaching a Zbuffer to a
window. For most devices, the MPG service is preferred because it sets up the
Z buffer contents to be moved when the window moves. See Chapter 5,
“Multiple Plane Group Interface” for more information. The actual possibilities
for changeable flavor attributes are device-dependent.

Note – Depth is a WID flavor attribute, but dynamically changing the depth of
a window is not permitted under the X model.

Code Example 8-5 Changing the Flavor of a Window Pseudo-Code

#define DDZBufFlavor<< device-dependent >>

DDAttachZBuffer (WindowPtr pWin)
{

WidPtr pWid;
unsigned long value;

pWid = mpgWindowGetWid(pWin);
value = widGetValue(pWid);

if (widGetUnique(pWid)) {
if (device has indirect WIDs) {

widAttrs = get WID LUT entry ‘value’
<change widAttrs to specify Z buffer attached>
WID LUT entry ‘value’ = widAttrs

} } else {
/* device has direct WIDs */
<change ‘value’ to specify hardware clipping>
widSetValue(pWid, value);

}
} else {

if (!mhcChangeFlavor(pWin, DDZBufFlavor))

136 X Server Device Developer’s Guide—August 1997

8

Allocating Unique WIDs

There are times when one or more non-sharable WIDs are needed for a
window—double buffering and XGL stenciling. These techniques require
unique WIDs. Use the following function to allocate unique WIDs; it forces an
overload if the WID allocation fails.

This function allocates the specified number of WIDs for the window. The
window’s current WID is dereferenced and the WID object representing the
new WIDs is attached. The WIDs allocated are contiguous to a power-of-two
boundary determined by rounding up number to the next power of two. The
WIDs are unique.

The value of number must be >= 1.

This function returns 1 on success and 0 on failure. If 0, pWin ’s original WID is
left untouched.

return failure;
}

<Do other device-dependent operations to attach Z buffer>
/* For Direct WId devices, whenever you change a WID
 * attribute, you must reprepare the WID plan group of the
 * window. To do this, set the window’s WID to same WID and
 * specify repreparation. You do not need to do this for
 * Indirect WID devices.
 */
mpgWindowSetWid(pWin, pWid, 1);
return Success;

}

int
cmapMhcAllocWids (WindowPtr pWin, int number)

Code Example 8-5 Changing the Flavor of a Window Pseudo-Code

Colormap Interface 137

8

Example

Code Example 8-6 shows you how to allocate multiple unique WIDs. This is an
example of a DGA-based graphics library that wants to clip rendering to a sub-
region of the window. In the first part of the example, two consecutive unique
WIDs are allocated by the device handler and returned via the DGA
mechanism.
Code Example 8-6 Allocating Multiple Unique WIDs in Pseudo-Code

Initialize this routine as the DGA GPI routine, WidSetup . This routine is
invoked via a call to the libdga API routine, XDgaGrabWids . For more
information on these routines, see Chapter 9, “Direct Graphics Access
Drawable Client Interface.”

To complete the example, the graphics library calls XDgaGrabWids , getting
back the two WID values. The library then does the following:

• Enables the hardware clipping attribute of the WID 1. (This can be done
because WID 1 is unique.)

• Prepares the WID plane group throughout the entire drawable region of the
window to WID 2.

• Prepares the WID plane group in the interior of the clipping sub-region to
WID 1.

• Sets up the hardware to render, clipped to WID 1.
• Renders the graphics.

This will result in the graphics being clipped to the sub-region, as desired.

DDGetClippingWids (WindowPtr pWin)
{

WidPtr pWid;
unsigned long value;

if (!cmapMhcAllocWids(pWin, 2))
return failure;

pWid = widGetWindow(pWin);
value = widGetValue(pWid);

<place value and value+1 in the DGA shared information page>

return Success;
}

138 X Server Device Developer’s Guide—August 1997

8

Note – Currently, this example is applicable only to indirect WID devices.
Multiple hardware WIDs per WID object are not supported on direct WID
devices. If the same feature is desired on a direct WID device, write the routine
to allocate two separate WID objects rather than using cmapMhcAllocWids . In
this case, if either of the WID allocations fails, call cmapMhcForceOverload ,
and retry the failing WID allocation. Once allocated, the hardware WID values
can be derived from the WID objects by calling widGetValue on each one.
Finally, store pointers to these WID objects in the handler’s devPrivates area
of the window so they can later be freed when the window is destroyed. This
may change in future releases.

139

Direct Graphics Access Drawable
Client Interface 9

The direct graphics access (DGA) drawable interface, like the rest of the DGA
client interface, is not an application developer interface. To use it, a developer
must know the specifics of the hardware interface for each device supported.
Many graphics devices are supported under Solaris, and often the hardware
interfaces are not documented in books available in your local bookstore. DGA
is an interface targeted for IHVs (Independent Hardware Vendors) porting
Solaris graphics libraries to a particular graphics device. Developers porting
the OpenGL, XIL, and Direct Xlib libraries may want to take advantage of the
DGA drawable interface in the device handlers for those libraries.

Overview
The DGA drawable interface is the basic mechanism for sharing screen access
between the window server and one or more X11 client processes. This allows
a DGA client to access the frame buffer for improved performance while the
window server is still in charge of managing screen real estate for all clients in
order to maintain the integrity of the screen. This is accomplished via efficient
locking primitives and shared memory information which is accessed via a set
of routines and macros. Not only does it apply to windows residing on a
screen, but to other types of drawables that can be created on a screen, such as
pixmaps and DBE buffers.

The goal of DGA is to provide clients with direct access to the graphics
hardware while retaining coherence with the window system. DGA allows the
window server to pass device-specific information to Solaris visual foundation

140 X Server Device Developer’s Guide—August 1997

9

library clients such as OpenGL, XIL, and Direct Xlib. The device-specific
information is passed to the foundation library device handler so that the
handler knows how to drive the hardware.

The coordination between the server and the client is provided by means of the
DGA drawable interface. This interface performs two primary functions; first,
it allows the server to pass the target drawable’s size and clip shape to the
client; and second, it allows the client to lock the drawable, so that it does not
change while graphics are being rendered. It also enables the client to detect
changes to the drawable, such as the addition of backing store, which the client
must maintain. A secondary function of the drawable interface is a mechanism
that allows the device-dependent portions of the server to share device-
dependent information with the client.

Drawable Types

The OpenWindows server provides clients with several different types of
resources on which graphics can be drawn. These resources are called
drawables. Drawables are always associated with a particular X screen. There
are two basic types of drawables: viewable and nonviewable. The pixel contents
of viewable drawables can be directly seen by the user. They reside in special
device memory from which a video signal can be output to the display screen.
The contents of nonviewable drawables cannot be directly seen by the user. For
the user to be able to view the drawable contents, the pixels of a nonviewable
drawable must be copied to a viewable drawable.

Windows are always viewable drawables. Pixmaps are always nonviewable.

DGA Drawables

A graphics client that intends to do direct rendering into one or more
drawables first makes arrangements with the window system to grab the
drawable. This enables direct access to the drawable.

Once a drawable is grabbed, the client must lock the drawable prior to
rendering to it. The client must provide arguments to the lock routines
specifying the drawable it is going to render to. For each drawable locked, the
lock routines take a Dga_drawable and a buffer index. The buffer index for
windows and pixmaps is always -1. A Dga_drawable is a opaque handle

Direct Graphics Access Drawable Client Interface 141

9

returned by grabbing a drawable. It is some times also called a DGA client
structure for the drawable. For details see “Drawable Locking and Change
Detection” on page 147.

The drawable’s client structure contains a pointer to the shared memory
information about the drawable. This information is shared with the window
server. It acts as a communication pathway between the window server and
the client. DGA clients cannot access the contents of the Dga_drawable
structure or the shared memory information directly; access it through this
DGA interface. When this initialization transaction is complete, the client can
begin rendering into the drawable.

The window server updates its information in response to changes in the
drawable’s attributes. These changes are usually initiated by the user, by
popping up a menu or resizing a window, for example. Some of these changes
can be initiated by a client program through a programmatic interface, such as
the double-buffering extension (DBE). The client uses the routines provided in
the drawable interface to maintain consistency with these changes.

Back Buffers

Clients should use the ancillary buffer management interface to grab a back
buffer. Grabbing a back buffer in some other way will result in DBE being
unable to allocate the buffer. For information about ancillary buffers, see
“Ancillary Buffer Management Interface” on page 151.

Mutual Exclusion

At a given time, only a single process may access the shared drawable
information. Mutual exclusion is enforced by lock and release primitives in the
client and window server code streams. Denial of access permission is
transparent to the requesting process; it will be blocked when it tries to lock
down the shared data structure and will not continue until it has acquired the
right to own the shared data structure. Once a process acquires the shared data
structure, it retains uninterrupted use of it. When a process decides to give up
ownership, another process may acquire ownership. For this reason, the DGA
locking primitives should not be held outside of rendering code or for
extended periods of time. At present, DGA does not support multi-threaded
graphics access to a single drawable from within a single client process.

142 X Server Device Developer’s Guide—August 1997

9

The drawable interface enforces fairness in that, a process which is denied
access is given ownership rights as soon as they become available. Release of
ownership is voluntary and the owning process can retain ownership for an
indefinite period of time. This exposes a potentially vulnerable area in the
mutual exclusion technique, since the owning process may loop, sleep,
terminate or perform time-consuming operation while in possession of access
rights. This situation is ameliorated by a time-out mechanism that limits a
client process’s ownership time to a maximum value (currently three seconds).
The window server process is not so limited and may retain possession of the
lock indefinitely.

Sites

A drawable can reside in different types of memory called drawable site types.
System memory and device off-screen memory are examples of drawable site
types. Within a site type, a drawable has an address. Together, the site type and
address define the drawable’s site.

Because a drawable may change site between locks, the client should either:

• Always check for a site change when the drawable is locked and
DGA_DRAW_MODIF returns nonzero, or

• Register a site change notification function

There are two ways of detecting site changes:

1. MODIF Testing

A site change causes DGA_DRAW_MODIF to return nonzero. As part of the
state interrogation that follows this, the client can call
dga_draw_sitechg to see if the site has changed since the last lock.

2. Notification

Another way to detect site changes is to register a site change notification
function. This function is automatically called by the drawable locking
routines when a site change is detected.

The client may use either of these two approaches.

When a drawable is first grabbed, its site is considered changed so the client
can synchronize with the initial site.

Direct Graphics Access Drawable Client Interface 143

9

Backing Store

When a window has backing store, DGA clients must update the backing store
as illustrated in Figure 9-1.

Figure 9-1 Screen and Backing Store Memory Relationship

The backing store always contains the contents of the nonvisible portion of the
window. Not only is the DGA client supposed to render to the visible portion
of the window, but it is also expected to keep the valid pixel area of the
backing store up-to-date. The valid portion of the backing store always has the
same shape as the nonvisible portion of the window. This shape is equal to the
window’s boundary shape minus the visible shape.

The backing store of a window is not a drawable itself. It can be rendered to
and can be cached like a pixmap, but it cannot be separately grabbed. It has no
XID of its own and no presence in the system independent of its owning
window. Backing store can only be accessed by grabbing the window that
owns it.

During each lock critical section, the amount of rendering the client must
perform depends on the degree to which the window is obscured.
dga_draw_visibility can be called to determine which of the following
cases holds:

Window

Visible
Portion

Nonvisible
Portion

Screen Backing Store Memory

Valid Pixels

Window Backing

Ignored

Store

144 X Server Device Developer’s Guide—August 1997

9

1. If the drawable is entirely unobscured (DGA_VIS_UNOBSCURED), the client
can restrict rendering to just the visible shape of the drawable. This shape is
returned by dga_draw_clipinfo .

2. If the window is partially obscured (DGA_VIS_PARTIALLY_OBSCURED), the
client should render to both the visible and the retained portions.

3. If the drawable is completely obscured (DGA_VIS_FULLY_OBSCURED) then
the client should render entirely to the backing store area.

The client must complete rendering updates to both the drawable and backing
store within a single lock critical section.

If the client needs to read pixels from the drawable, it should use the clip state
of the drawable to determine whether it should read the pixels from the visible
portion of the drawable, the backing store, or both. This is done in a similar
fashion to rendering (described above).

By default, the shared information file for backing store is placed by the server
in /tmp , but because these files can be rather large, the server also supports
placing the files in a path as defined by the -sharedretainedpath server
command-line argument.

Zombie Drawables

There is nothing to prevent an X11 drawable resource from being destroyed at
any time by an X11 client. Even if the underlying drawable resource is
destroyed, a DGA client may still hold a handle to the drawable in the form of
a Dga_drawable client structure. A Dga_drawable window or pixmap
whose underlying X11 resource has been destroyed is called a zombie.

The first time a client locks a zombie drawable after its underlying X11
resource has been destroyed, a site change is reported. The site will be reported
as DGA_SITE_NULL. In addition, dga_draw_clipinfo always returns NULL
for a zombie drawable.

Compiling and Linking
To use this interface, the /usr/openwin/include/dga/dga.h file should be
included in a library device handler’s source file (it contains the definitions of
many of the defined symbols and data structures referred to in this document).

Direct Graphics Access Drawable Client Interface 145

9

The library device handler should be linked with the
/usr/openwin/lib/libdga.so library.

Note – Routines with all uppercase names, such as DGA_DRAW_LOCK, are C
macros—you cannot manipulate them as true C routines.

DGA Drawable Functions
Most DGA drawable routines can only be called when the drawable is locked.
Otherwise, conflicts could occur with either the server or another client
accessing the drawable. An inquiry routine called while the drawable is not
locked may return invalid information. An action routine called while the
drawable is not locked may not have the desired effect.

In the following routine specifications, if a routine must be called within a lock
critical section, it is marked with the tag ”(Lock Only)”. The results of calling
such a routine outside a lock critical section are undefined.

All other routines may be called either inside or outside of a lock critical
section.

Initialization and Cleanup

The following routines initialize DGA, initiate and terminate direct access to a
drawable, and cleanup DGA.

DGA_INIT

Purpose This macro performs the initialization required to use any of
the DGA interfaces: this drawable interface, the window
compatibility interface, the colormap grabber, and the
miscellaneous grabbers.

void
DGA_INIT()

146 X Server Device Developer’s Guide—August 1997

9

Called by All client programs before making any other DGA function
calls. This macro can be called multiple times by a client
program so that, multiple libraries using DGA can be used
by the application program without difficulty.

XDgaGrabDrawable

Purpose Initiates direct access to a window or pixmap drawable.
drawid is the XID of the window or pixmap. If the grab
succeeds, a handle to the DGA client structure for the
drawable is returned. If the grab fails or is refused by the
server, 0 is returned.

Note – If the grabbed drawable is to have ancillary buffers, you must also use
the ancillary buffer functions. For details, see “Ancillary Buffer Management
Interface” on page 151.

Returns The returned Dga_drawable is used to form the handle to
be passed to subsequent DGA inquiry routines on that
drawable.

Results This routine allocates several resources in the calling
process’s address space for the drawable, including a
mapping of the shared memory information. This function
opens a file descriptor for the correct graphics device file,
using information found in the shared memory area. Only
one file descriptor per graphics device will be opened.

Note – One file descriptor is consumed when the client grabs a window by
calling XDgaGrabDrawable . If dga_draw_rtngrab is also called, an
additional file descriptor is consumed. In addition, a single additional file

Dga_drawable
XDgaGrabDrawable (dpy, drawid)
Display *dpy;
Drawable drawid;

Direct Graphics Access Drawable Client Interface 147

9

descriptor is used whenever there are one or more pixmaps grabbed. Finally,
for each file descriptor used by the client, a file descriptor is consumed in the
server.

XDgaUnGrabDrawable

Purpose This function terminates direct access to a drawable. If this
was the last direct use of the drawable by the client, DGA
resources for the drawable in the client’s address space are
freed. These were the resources allocated by a previous call
to XDgaGrabDrawable . All resources and memory
mappings that were created are freed or made inaccessible as
a result of this operation. If this was the last direct use of the
drawable on the screen, the window server DGA resources
for this drawable are also freed.

Results If the drawable is locked at the time of this call, it is first
unlocked.

If resources for backing store have been allocated for the
drawable, these resources are freed. The shared memory
mappings for the backing store in the calling process’s
address space are unmapped, the backing store shared info
file is closed, and the server is notified to free all its resources
associated with the direct access to backing store.

Returns Nonzero on success
0 on failure

Drawable Locking and Change Detection

The following functions provide the ability to gain exclusive access to a
drawable while client operations are being performed. Routines are also
provided to detect changes that have occurred to the drawable since the client
last locked it.

int
XDgaUnGrabDrawable (dgadraw)
Dga_drawable dgadraw;

148 X Server Device Developer’s Guide—August 1997

9

DGA_DRAW_LOCK

Purpose This macro locks the drawable info shared memory data
structure. The client must lock the drawable info shared
memory area before it uses any information in it. This
restrains the window server from applying any modifications
to the attributes of the drawable a client is rendering into it.
It also prevents collisions with other clients. The lock should
be held while any rendering is performed or information
from the shared memory is being accessed. The lock is
lightweight enough to be placed around a small number of
primitives without sacrificing performance. Thus calls to the
locking primitives should be kept in the graphics library and
not exposed in the library API.

Results The current lock subject is the drawable to which subsequent
DGA inquiry routines executed within the lock apply.

Locks nest correctly. If DGA_DRAW_LOCK has been called
multiple times without an intervening unlock,
DGA_DRAW_UNLOCK must be called the same number of times
before the drawable is unlocked.

Arguments bufIndex should be -1.

DGA_DRAW_UNLOCK (Lock Only)

Purpose This macro permits external modification of the information
in the shared memory data structure. This routine should be
used only when a drawable has been first locked with

void
DGA_DRAW_LOCK(dgadraw, bufIndex)
Dga_drawable dgadraw;
short bufIndex;

void
DGA_DRAW_UNLOCK(dgadraw)
Dga_drawable dgadraw;

Direct Graphics Access Drawable Client Interface 149

9

DGA_DRAW_LOCK. Locks nest correctly. If DGA_DRAW_LOCK
has been called multiple times without an intervening
unlock, DGA_DRAW_UNLOCK must be called the same number
of times before the drawable is unlocked.

DGA_DRAW_LOCK_SRC_AND_DST

Purpose This macro atomically locks two drawables at the same time.
It should be used when the client will be accessing two
drawables in a rendering operation. An example of such an
operation is a copy from the source drawable to the
destination drawable. dgasrc must not be the same as
dgadst . Furthermore, it is required that at least one of
dgasrc or dgadst be a pixmap drawable. No failure status
is returned if either of these conditions fails. For this macro,
there are two current lock subjects, one for each
Dga_drawable .

Results The current lock subject is the drawable to which subsequent
DGA inquiry routines executed within the lock apply.

Locks nest correctly. If DGA_DRAW_LOCK_SRC_AND_DST has
been called multiple times without an intervening unlock,
DGA_DRAW_UNLOCK_SRC_AND_DST must be called the same
number of times before the drawables are unlocked.

Arguments bufIndex should be -1 .

When using this macro, make sure you call
DGA_DRAW_MODIF for both dgasrc and dgadst , to
synchronize with any changes that have occurred to either
drawable.

void
DGA_DRAW_LOCK_SRC_AND_DST(dgasrc, bufIndexSrc, dgadst,

bufIndexDst)
Dga_drawable dgasrc;
short bufIndexSrc;
Dga_drawable dgadst;
short bufIndexDst;

150 X Server Device Developer’s Guide—August 1997

9

DGA_DRAW_UNLOCK_SRC_AND_DST (Lock Only)

Purpose This macro permits external modification of the drawable.
This routine should be used only when the drawable was
locked with DGA_DRAW_LOCK_SRC_AND_DST. Locks nest
correctly. If DGA_DRAW_LOCK_SRC_AND_DST has been called
multiple times without an intervening unlock,
DGA_DRAW_UNLOCK_SRC_AND_DST must be called the same
number of times to unlock the drawable.

Results The lock count is decremented, and if zero, the drawable is
unlocked.

DGA_DRAW_MODIF (Lock Only)

Purpose This macro checks to see if the current lock subject has been
altered since the calling client locked it.

Called by The client must call this macro after locking, prior to
rendering.

Returns Nonzero is returned if some state information has changed
with which the client needs to synchronized.

If no change has occurred, or the client has been notified of
all changes through notification call back routines, this
routine returns zero.

If this macro returns nonzero and the client has not registered
with DGA to receive change notifications, the client should
call the following routines to detect changes to the drawable:

void
DGA_DRAW_UNLOCK_SRC_AND_DST(dgasrc, dgadst)
Dga_drawable dgasrc;
Dga_drawable dgadst;

int
DGA_DRAW_MODIF(dgadraw)
Dga_drawable dgadraw;

Direct Graphics Access Drawable Client Interface 151

9

dga_draw_curshandle , dga_draw_sitechg ,
dga_draw_rtnchg and dga_draw_clipchg . These
routines should always be called in this order. (If the client
has registered with DGA to receive a particular type of
change notification by specifying a notification callback, do
not call these routines.)

Ancillary Buffer Management Interface

This interface, like the rest of the DGA client interface, is not an application
developer interface. To use it, a developer must know the specifics of the
hardware interface for each device supported.

The purpose of this interface is to support the full implementation of OpenGL
in Solaris. In particular, OpenGL defines several new graphics buffer types
which the system needs to support both hardware and system memory
implementations.

This interface:

• Allows clients to gain access to (grab) new ancillary buffer types

• Allows clients to gain access to ancillary buffers created by the server and
maintained in system shared memory

• Supports new double buffering semantics required by DBE and GLX

Currently, grabbing buffers is only supported for window drawables.

Ancillary Buffer Manager

Since OpenGL mandates the existence of several ancillary buffers which are
not supported on many devices, and because the GLX specification requires
that multiple GL clients rendering to the same drawable share the ancillary
buffers, buffer creation must be managed by the X server. The module in the X
server that does this is the ancillary buffer manager.

Since ancillary buffers are really an extension of the X drawable, and DGA is
the mechanism for managing shared access to drawables, it is logical to extend
the existing DGA interface to include the new ancillary buffer types. DGA
clients do not have a direct interface with the ancillary buffer manager.

152 X Server Device Developer’s Guide—August 1997

9

Ancillary Buffer Types

Ancillary buffers are represented by an object of type Dga_buffer . Several
buffer types of Dga_buffer are defined. Several functions are provided to
access the buffers associated with a given drawable. These functions may only
be called while a DGA lock of the drawable is in progress.

Several buffer types are defined. The list is based on the ancillary buffer types
supported by OpenGL.

Buffers of a particular type may not be available for a given drawable,
depending on the capabilities of the drawable's X visual. Buffers may be
implemented in either system memory or on the device, depending on the
capabilities of the hardware, and the choice of the client. The maximum
capability for a drawable is determined by the capabilities of the drawable's
visual.

Buffer Realization

Buffers are not realized when a drawable is first created, but are realized (and
allocated) in response to subsequent client requests. When the drawable is
ungrabbed, the previously grabbed buffers are preserved and restored for the
next dga_draw_grab_buffer call, with the exception that if the ungrabbed
buffer is resized, it is unrealized (freed) and will once again be realized upon
later client requests.

typedef enum {
 DGA_DEPTH_BUFFER = 0,
 DGA_STENCIL_BUFFER,
 DGA_ACCUM_BUFFER,
 DGA_ALPHA_BUFFER,
 DGA_BACK_BUFFER,
 DGA_AUX_BUFFER0,
 DGA_AUX_BUFFER1,
 DGA_AUX_BUFFER2,
 DGA_AUX_BUFFER3,
} Dga_buffer_type;

Direct Graphics Access Drawable Client Interface 153

9

dga_draw_grab_buffer

Purpose This function requests the window system to provide
ancillary buffer service for the grabbed drawable named in
the dgadraw argument. The call requests the specified type
of buffer to be grabbed. If buffer_site is
DGA_SITE_SYSTEM, the server allocates the buffer in shared
memory. If it is DGA_SITE_DEVICE, the server tries to grab
hardware buffers. If the device does not support the given
buffer type in hardware, the request fails. This drawable
must have been grabbed previously via
XDgaGrabDrawable . The call to XDgaGrabDrawable
returns a handle dgadraw , which is used in this call. The
window server initializes the portion of shared memory that
relates to ancillary buffers software support. Currently,
grabbing buffers is only supported for window drawables.

Returns This function returns zero if the window system refuses the
registration request. Upon success, this function returns the
buffer pointer.

dga_draw_ungrab_buffer

Purpose This function ungrabs the buffer for the specified drawable
which has been grabbed previously. Note that ungrabbing a
buffer does not necessarily cause it to be freed.

Dga_buffer
dga_draw_grab_buffer(dgadraw, type, buffer_site)
Dga_drawable dgadraw;
Dga_buffer_type type;
int buffer_site;

int
dga_draw_ungrab_buffer(dgadraw, type)
Dga_drawable dgadraw;
Dga_buffer_type type;

154 X Server Device Developer’s Guide—August 1997

9

Returns If any of these steps fail, zero is returned. True is returned
upon success.

dga_draw_bufferchg (Lock Only)

Returns This function returns True if any of the buffers associated
with the drawable have undergone a state change since the
last lock. When this function returns True, the client should
call dga_buffer_sitechg for each of the drawable's
buffers.

dga_draw_get_buffers (Lock Only)

Returns This function returns the number of ancillary buffers
associated with the specified drawable and an array of buffer
pointers. Note that only buffers which have been grabbed by
the client are returned. Buffers which are grabbed by other
clients or by the server are not returned.

dga_buffer_type (Lock Only)

Purpose This function returns the type of the buffer specified.

int
dga_draw_bufferchg(dgadraw)
Dga_drawable dgadraw;

int
dga_draw_get_buffers(dgadraw, pbufs)
Dga_drawable dgadraw;
Dga_buffer *pbufs;

int
dga_buffer_type(bufferp)
Dga_buffer bufferp;

Direct Graphics Access Drawable Client Interface 155

9

dga_buffer_site (Lock Only)

Returns This function returns the site of the buffer specified.

Possible return values are: DGA_SITE_SYSTEM,
DGA_SITE_DEVICE, or DGA_SITE_NULL.

DGA_SITE_SYSTEM indicates the current lock subject resides
in system memory (i.e. memory that is mapped into the
client address space). In this case, the routines
dga_buffer_address , dga_buffer_linebytes
dga_buffer_bitsperpixel return, respectively, the
address of the origin pixel of the drawable, the inter-scanline
stride (i.e. the number of bytes per scanline), and the number
of bits per pixel.

DGA_SITE_DEVICE indicates the drawable resides in device
memory. In this case, the return values of the routines
dga_buffer_address , dga_buffer_linebytes , and
dga_buffer_bitsperpixel are invalid. Information about
the exact location of the drawable within the site can be
queried with dga_draw_devinfo . The data returned by this
routine is device dependent and is not interpreted by DGA.

DGA_SITE_NULL means that the underlying X11 resource for
the drawable has been destroyed since the last time the
drawable was locked.

The site of a viewable drawable is DGA_SITE_SYSTEM,
unless it has been destroyed, in which case the site is
DGA_SITE_NULL. The site of a nonviewable depends on
whether or not it is cached.

int
dga_buffer_site(bufferp)
Dga_buffer bufferp;

156 X Server Device Developer’s Guide—August 1997

9

dga_buffer_sitechg (Lock Only)

Purpose This function checks whether a site change has occurred for
the buffer.

Returns This function returns True if the buffer has the sitechg flag
set. Note that this function always returns False for device
buffers. Only memory buffers can have a site change.
dga_buffer_sitechg also returns the reason for site
change. Currently, the only possible values for reason are
DGA_SITECHG_INITIAL , which is reported the first time a
drawable is locked after a buffer has been created; and
DGA_SITECHG_CACHE, which indicates that the buffer has
been resized since the drawable was last locked.

dga_buffer_address (Lock Only)

Returns This function returns that data pointer from the shared buffer
page of the buffer specified. An address is returned only for
buffers which are located in system memory. If
dga_buffer_address is called on a buffer located with
DGA_SITE_DEVICE, NULL will be returned. The value
returned remains valid across locks until a site change is
reported as described above in the description of
dga_buffer_sitechg .

int
dga_buffer_sitechg(bufferp, reason)
Dga_buffer bufferp;
int *reason;

void *
dga_buffer_address(bufferp)
Dga_buffer bufferp;

Direct Graphics Access Drawable Client Interface 157

9

dga_buffer_linebytes (Lock Only)

Returns This function returns the number of bytes per scanline of the
buffer specified. Only buffers that are located in system
memory are addressable. If dga_buffer_linebytes is
called for a buffer located on the device, 0 is returned.

dga_buffer_bitsperpixel (Lock Only)

Returns This function returns the bits per pixel of the buffer specified
if the buffer is located in system memory. If the buffer is
located on the device, zero is returned. Note that the value
might be different than the number of significant bits. For
example, an unpacked 4-bit stencil buffer would return 8 bits
per pixel, and a 24-bit Z buffer would return 32 bits per pixel.

dga_draw_buffer_swap

Purpose This function swaps front and back buffers if they have been
grabbed. A swap causes DGA_DRAW_MODIF to return
nonzero. The shared page is modified. visfunc is a device-
dependent function that performs the buffer swap.

int
dga_buffer_linebytes(bufferp)
Dga_buffer bufferp;

int
dga_buffer_bitsperpixel(bufferp)
Dga_buffer bufferp;

void
dga_draw_buffer_swap(dgadraw, visfunc)
Dga_drawable dgadraw;
int (*visfunc)(Dga_window);

158 X Server Device Developer’s Guide—August 1997

9

dga_draw_swap_check

Purpose This function checks to see whether a buffer swap has
occurred.

General Utility Functions

These routines allow the client to query various drawable attributes.

dga_draw_display

Returns The display of a drawable that has been grabbed with
XDgaGrabDrawable .

dga_draw_id

Returns The XID of a drawable that has been grabbed with
XDgaGrabDrawable .

int
dga_draw_swap_check(dgadraw)
Dga_drawable dgadraw;

Display *
dga_draw_display(dgadraw)
Dga_drawable dgadraw;

Drawable
dga_draw_id(dgadraw)
Dga_drawable dgadraw;

Direct Graphics Access Drawable Client Interface 159

9

dga_draw_type

Returns The type of the drawable client structure. The returned value
is one of: DGA_DRAW_WINDOW, DGA_DRAW_PIXMAP, or
DGA_DRAW_OVERLAY.

dga_draw_devname

Returns A pointer to a null-terminated string representing the device
name of the screen with which the grabbed drawable is
associated.

dga_draw_devfd

Returns The client’s file descriptor for the screen with which the
grabbed drawable is associated.

int
dga_draw_type(dgadraw)
Dga_drawable dgadraw;

char *
dga_draw_devname(dgadraw)
Dga_drawable dgadraw;

int
dga_draw_devfd(dgadraw)
Dga_drawable dgadraw;

160 X Server Device Developer’s Guide—August 1997

9

dga_draw_depth

Returns This routine returns the depth of the grabbed drawable.

dga_draw_set_client_infop

Purpose This routine allows the client to set a pointer to client-specific
data associated with dgadraw . This pointer could point to
information that is local to the client alone.

dga_draw_get_client_infop

Returns The client-specific data pointer associated with dgadraw . If
this pointer was not set by the client, then this routine
returns NULL.

int
dga_draw_depth(dgadraw)
Dga_drawable dgadraw;

void
dga_draw_set_client_infop(dgadraw, client_info_ptr)
Dga_drawable dgadraw;
void *client_info_ptr;

void *
dga_draw_get_client_infop(dgadraw)
Dga_drawable dgadraw;

Direct Graphics Access Drawable Client Interface 161

9

dga_draw_devinfo (Lock Only)

Returns This function returns a pointer to the device-specific
information area for the current lock subject. The structure
should be accessed by the client to query device-dependent
information to be shared between server and client. DGA
routines do not interpret the device-dependent data, but the
client graphics library device-dependent code may need to
do so. The size of this area is 132 bytes. The returned pointer
is 4-byte aligned.

If the lock subject is cached, the device-dependent
information can specify its location in the cache.

The format of this data area is completely device-dependent.
The return pointer is NULL if the lock subject is not cached.
An example of this structure could be:

Note – This routine returns a pointer to the device_info data member of the
dga_draw_dbinfo structure. A pointer to this structure is returned by the
buffer interface routine dga_win_dbinfop . This routine is still supported for
compatibility with existing clients.

Drawable Sites

The routines in this section allow a client to detect site changes. Write the client
to detect site changes for all types of drawables—all types of drawables may
undergo site changes.

void *
dga_draw_devinfo(dgadraw)
Dga_drawable dgadraw;

struct {
short basex, basey; /* drawable’s position in dev. memory */
u_char mode; /* a device specific mode */
u_char pad[2];
} Cache_Dev_Info;

162 X Server Device Developer’s Guide—August 1997

9

dga_draw_sitechg (Lock Only)

Returns Nonzero if the current lock subject has undergone a change
in site since the last time it was locked by this client.
dga_draw_site can be called to inquire the site in which
the drawable currently resides. The site can change for two
reasons: either the site itself changed or the location within
the site changed.

This routine should be called if DGA_DRAW_MODIF returns
nonzero and the client has not registered a site change
notification function.

Zero is returned if the last site and location within the site
noted by the client still applies.

This routine returns valid results only the first time it is
called after locking the drawable.

If nonzero is returned, reason indicates why the site change
occurred. These are the possible values for this return
argument:

DGA_SITECHG_INITIAL — A site change is always reported
the first time a drawable is locked.

DGA_SITECHG_ZOMBIE — The site change occurred
because the current lock subject is a zombie drawable (i.e. it’s
underlying X11 resource has been destroyed).

DGA_SITECHG_ALIAS — The site change is due to a
change in the display buffer of the current lock subject from
the previous lock subject. (This is only applicable to
drawables that are members of an active multibuffer set).

int
dga_draw_sitechg(dgadraw, reason)
Dga_drawable dgadraw;
int *reason;

Direct Graphics Access Drawable Client Interface 163

9

DGA_SITECHG_CACHE — The site change is due to a
change to the cache state of the current lock subject from the
previous lock subject.

DGA_SITECHG_MB — The site change happened because
the multibuffer set was changed (activated, deactivated, or
replaced).

dga_draw_sitesetnotify

Purpose Registers a function to be called by one of the drawable
locking routines whenever a site change has occurred since
the last lock of the drawable.

Arguments client_data is a client-specific data pointer that is given to
the notification function as an argument.

DgaSiteNotifyFunc is defined as:

Description The calling sequence for a typical notification function is:

The notification function should call dga_draw_site to
determine the current site of the drawable.

int
dga_draw_sitesetnotify(dgadraw, site_notify_func, client_data)
Dga_drawable dgadraw;
DgaSiteNotifyFunc site_notify_func;
void *client_data;

typedef void (*DgaSiteNotifyFunc)
(Dga_drawable, short, void *, int);

void
site_notify_func(dgadraw, bufIndex, client_data, reason)
Dga_drawable dgadraw;
short bufIndex;
void *client_data;
int reason;

164 X Server Device Developer’s Guide—August 1997

9

site_notify_func will be called whenever a site change
occurs to the window. bufIndex is a historical parameter
that is no longer used and should always have a value of -1 .

When a site notification function is registered for a drawable,
the client will receive notification of drawable site changes
only through this function. dga_draw_sitechg will never
return nonzero.

The site notification function is always called within the lock
critical section. Therefore, care should be taken to avoid
performing lengthy and time-consuming operations within
it, such as system calls. Otherwise, the DGA lock time-out
might expire, causing the lock to be prematurely broken.

dga_draw_sitegetnotify

Returns The site notification function and client data for the drawable
which was given to dga_draw_sitesetnotify . NULL is
returned for both if this routine has not been called.

dga_draw_site (Lock Only)

Returns The site in which the current lock subject resides. Possible
return values are: DGA_SITE_SYSTEM, DGA_SITE_DEVICE,
or DGA_SITE_NULL.

void
dga_draw_sitegetnotify(dgadraw, site_notify_func, client_data)
Dga_drawable dgadraw;
DgaSiteNotifyFunc *site_notify_func;
void **client_data;

int
dga_draw_site(dgadraw)
Dga_drawable dgadraw;

Direct Graphics Access Drawable Client Interface 165

9

DGA_SITE_SYSTEM indicates the current lock subject resides
in system memory (i.e. memory that is mapped into the
client address space). In this case, the routines
dga_draw_address , dga_draw_linebytes
dga_draw_bitsperpixel return, respectively, the address
of the origin pixel of the drawable, the inter-scanline stride
(i.e. the number of bytes per scanline), and the number of
bits per pixel.

DGA_SITE_DEVICE indicates the drawable resides in device
memory. In this case, the return values of the routines
dga_draw_address , dga_draw_linebytes , and
dga_draw_bitsperpixel are invalid. Information about
the exact location of the drawable within the site can be
queried with dga_draw_devinfo . The data returned by this
routine is device dependent and is not interpreted by DGA.

DGA_SITE_NULL means that the underlying X11 resource for
the drawable has been destroyed since the last time the
drawable was locked.

The site of a viewable drawable is DGA_SITE_SYSTEM,
unless it has been destroyed, in which case the site is
DGA_SITE_NULL. The site of a nonviewable depends on
whether or not it is cached.

dga_draw_address (Lock Only)

Returns A pointer to the origin pixel of the current lock subject (x = 0,
y = 0). A valid result is only returned when the site of the
drawable is DGA_SITE_SYSTEM.

void *
dga_draw_address (dgadraw)
Dga_drawable dgadraw;

166 X Server Device Developer’s Guide—August 1997

9

dga_draw_linebytes (Lock Only)

Returns The value of the inter-scanline stride of the current lock
subject. A valid result is only returned when the site of the
drawable is DGA_SITE_SYSTEM.

dga_draw_bitsperpixel (Lock Only)

Returns The bits per pixel of the current lock subject. A valid result is
only returned when the site of the drawable is
DGA_SITE_SYSTEM.

Clipping State

The following functions enable clients to detect whether the clipping
information of a drawable has changed and to synchronize with the new
information.

dga_draw_clipchg (Lock Only)

Purpose If DGA_DRAW_MODIF returns nonzero, this routine should be
called to determine if the clipping state for the current lock
subject changed. Zero is returned if there were no such
changes, otherwise nonzero is returned.

int
dga_draw_linebytes(dgadraw)
Dga_drawable dgadraw;

int
dga_draw_bitsperpixel(dgadraw)
Dga_drawable dgadraw;

int
dga_draw_clipchg(dgadraw)
Dga_drawable dgadraw;

Direct Graphics Access Drawable Client Interface 167

9

If a clipping change has occurred, the dga_draw_bbox ,
dga_draw_visibility , dga_draw_empty and
dga_draw_clipinfo routines can be called to inquire the
new clipping information.

Returns Valid information only the first time it is called after the
drawable is locked.

dga_draw_bbox (Lock Only)

Returns The screen coordinates of the upper left origin of the current
lock subject and the width and height in the locations
pointed to by the xp , yp , widthp , and heightp arguments.
These values represent the shape of the bounding box of the
drawable. If dga_draw_visibility returns
DGA_VIS_UNOBSCURED and dga_draw_singlerect
returns nonzero, the bounding box can be used to clip
rendering rather than using the clip shape returned by
dga_draw_clipinfo .

If the current lock subject is a window, the returned rectangle
shape does not include any clipping of the window by other
overlapping windows. For viewable drawables, the
bounding box corresponds to the minimum and maximum x
and y coordinates of the drawable. If the drawable is
nonviewable, the x and y coordinates of the origin are (0, 0).

void
dga_draw_bbox(dgadraw, xp, yp, widthp, heightp)
Dga_drawable dgadraw;
int *xp, *yp, *widthp, *heightp;

168 X Server Device Developer’s Guide—August 1997

9

dga_draw_visibility (Lock Only)

Returns Whether the drawable is fully obscured, partially obscured,
or fully unobscured. Possible return values are:)

DGA_VIS_UNOBSCURED means the drawable is not obscured by
any other drawable (i.e. children, siblings, or ancestors).
DGA_VIS_PARTIALLY_OBSCURED means a proper subset of the
drawable pixels are obscured by some other drawable.
DGA_VIS_FULLY_OBSCURED means the entire drawable is
obscured.

This routine is useful for deciding how much of the backing
store of a window should be rendered. See section “Backing
Store” on page 143 for more details.

dga_draw_empty (Lock Only)

Returns Nonzero if the current clipping shape of the current lock
subject is empty, zero otherwise.

int
dga_draw_visibility(dgadraw)
Dga_drawable dgadraw;

DGA_VIS_UNOBSCURED
DGA_VIS_PARTIALLY_OBSCURED
DGA_VIS_FULLY_OBSCURED

int
dga_draw_empty(dgadraw)
Dga_drawable dgadraw;

Direct Graphics Access Drawable Client Interface 169

9

dga_draw_clipinfo (Lock Only)

Purpose This routine is used to get the address of the clipping shape
of the current lock subject. The clip shape is represented by a
sequence of signed shorts which describes a sequence of
rectangles. The data consists of a sequence of one or more
(ymin , ymax) pairs, each of which is followed by a sequence
of one or more (xmin , xmax) pairs. (xmin , xmax) sequences
are terminated by a single value of DGA_X_EOL. (ymin ,
ymax) sequences are terminated by a single value of
DGA_Y_EOL. DGA_X_EOL and DGA_Y_EOL are defined
constants. This is best described with the following sample
code:

Note that for each (min , max) pair, the min coordinate pixels
are included in the clipping shape, but the max coordinate
pixels are not (they are one pixel unit outside the clipping
shape). The client should not modify the contents of the data
area pointed to by the return value.

If the drawable is a window, this clip shape does not include
the clipping shape of the children of the window.

If the drawable is a pixmap, the clip shape is always a single
rectangle.

short *
dga_draw_clipinfo(dgadraw)
Dga_drawable dgadraw;

short int x0, y0, x1, y1, *ptr;
ptr = dga_draw_clipinfo(dgadraw);
while((y0=*ptr++)!= DGA_Y_EOL) {

y1 = *ptr++;
while((x0=*ptr++)!= DGA_X_EOL) {

x1 = *ptr++;
printf(“rectangle from (%d,%d)to (%d,%d)\n”,x0,y0,x1,y1);

}
}

170 X Server Device Developer’s Guide—August 1997

9

A NULL pointer is returned if the X resource referred to if
the current lock subject no longer exists. In this case, all
rendering to this drawable will be entirely clipped.

Dealing with Cursor Conflicts

The cursor image may conflict with rendering when the DGA client is about to
perform. In these cases, the client must detect the conflict and take down the
cursor image. Only then should the client render. The window system restores
the cursor image after the client unlocks the drawable.

Some devices always render the cursor image in a plane group dedicated for
that purpose. These devices never display viewable drawables in this plane
group. On these types of devices, there will never be any cursor conflicts.
These devices are called dedicated cursor devices.

Some devices always render the cursor image in a plane group in which
viewable drawables also reside. In this case, each time a viewable drawable is
locked, the DGA client must detect a cursor conflict and then deal with the
conflict. These devices are called software cursor devices.

Always truncate the cursor on a hardware cursor device. This forces the cursor
into hardware any time a window is grabbed.

Whether a DGA client must handle potential cursor conflicts depends,
therefore, on the type of device. No cursor conflict handling is needed for
dedicated cursor devices or hardware cursor register devices that always
truncate large cursor images. On the other hand, conflict handling is required
for software cursor devices or hardware cursor register devices that don’t
truncate.

Except on devices for which there will never be conflicts, DGA clients are
required to call dga_draw_curshandle if, after a drawable is locked,
DGA_DRAW_MODIF returns nonzero. This is the case for window drawables
only. This is not required for pixmap drawables. If the cursor image currently
intersects the pixels of the drawable, the cursor will be taken down.

Direct Graphics Access Drawable Client Interface 171

9

dga_draw_curshandle (Lock Only)

Purpose If the device is can have cursor conflicts, this routine should
be called if, after locking a drawable, DGA_DRAW_MODIF
returns nonzero. If there is a cursor conflict, this routine will
take down the cursor.

Arguments take_down_func is a pointer to a client-supplied function
which can take down the cursor by restoring the pixels that
the cursor was rendered over. client_data is a pointer to
arbitrary client data which will be passed to the client-
supplied function. The calling sequence for a typical take-
down function is defined by the following type:

where the Dga_cur_memimage structure is defined as
follows:

void
dga_draw_curshandle(dgadraw, take_down_func, client_data)
Dga_drawable dgadraw;
DgaCursTakeDownFunc take_down_func;
void *client_data;

typedef void (*DgaCursTakeDownFunc)(
void *, /* client_data */
Dga_drawable, /* dgadraw */
int, int, /* x, y */
Dga_curs_memimage */* memimgp */

);

typedef struct dga_curs_memimage {
u_int width;
u_int height;
u_int depth;
u_int linebytes;
void *memptr;

} Dga_curs_memimage;

172 X Server Device Developer’s Guide—August 1997

9

take_down_func should restore (width*height) pixels of
depth depth stored at the locations pointed to by memptr to
the screen starting at (x , y) relative to the window origin.
Successive scanlines of the stored pixels are separated by
linebytes bytes. The current possible depths are 1, 8, 32.
Depth 1 pixels are packed 8 pixels per byte. Depth 8 pixels
are packed 1 pixel per byte. Depth 32 pixels are packed 1
pixel per 4 bytes.

The cursor take-down function is always called within the
lock critical section. Therefore, care should be taken to avoid
performing lengthy and time-consuming operations within
it, such as system calls. Otherwise, the DGA lock time-out
might expire, causing the lock to be prematurely broken.

Note – take_down_func will only be called if the cursor needs to be taken
down because it is currently up and intersects the pixels of the drawable. The
overlap test is currently based on the bounding box of the drawable, not on the
actual exposed shape.

Note – It is very important that dga_draw_curshandle be called after every
window lock for which DGA_DRAW_MODIF returns nonzero. If the drawable is
locked without checking DGA_DRAW_MODIF and calling
dga_draw_curshandle , future locks of the drawable may not notice the
cursor conflict.

Backing Store Routines

The following routines are provided for direct access to the backing store of a
drawable. Currently, only windows have backing store.

Direct Graphics Access Drawable Client Interface 173

9

dga_draw_rtngrab

Purpose This routine provides direct access to the backing store of a
window. A window may have backing store either due to
some client setting the
XWindowAttributes.backing_store attribute of the
window to WhenMapped or Always, or due to the window
being occluded by a save-under window.

Returns Nonzero if direct access to the backing store of a window is
permitted. In this case, the necessary client/server
information sharing channel is established.

Zero is returned if the server denies access to backing store
for the drawable or the routine otherwise fails.

The window does not need to actually have backing store at
the time of the call. The backing store may be provided by
the server at a later time. It is the responsibility of the client
to always check for the presence of backing store. See section
“dga_draw_rtnchg (Lock Only)” on page 174 for more on
this.

Note – If a DGA client does not call this routine, or if it does call it, but the
routine fails, the server assumes that the client is not updating the contents of
the backing store when it renders. If this is the case, the server considers the
backing store inconsistent when the drawable is unlocked. This may cause an
exposure event to be sent for the drawable.

Note – Grabbing the backing store of a drawable consumes one file descriptor
in the client and one file descriptor in the server.

int
dga_draw_rtngrab(dgadraw)
Dga_drawable dgadraw;

174 X Server Device Developer’s Guide—August 1997

9

dga_draw_rtnungrab

Purpose This routine terminates direct access to backing store for the
given window and frees any associated resources.

dga_draw_rtnchg (Lock Only)

Purpose This routine should be called if, after the window drawable
is locked, DGA_DRAW_MODIF returns nonzero.

Returns Nonzero if the state of the drawable backing store has
changed since the last time the drawable was locked. If
nonzero is returned, dga_draw_rtnactive should be called
to determine whether backing store is currently present. This
is because the window server may attach or detach backing
store at any time. If backing store is present, the client is
required to update the contents of the backing store
appropriately.

This routine returns valid information only the first time it is
called after locking the drawable. To use this routine,
dga_draw_rtngrab must have first been called on the
drawable and the grab must have succeeded.

For initialization purposes, this routine will always return
nonzero the first time it is called.

int
dga_draw_rtnungrab(dgadraw)
Dga_drawable dgadraw;

int
dga_draw_rtnchg(dgadraw)
Dga_drawable dgadraw;

Direct Graphics Access Drawable Client Interface 175

9

dga_draw_rtnactive (Lock Only)

Purpose This routine should be called each time dga_draw_rtnchg
indicates a change occurred to the state of a window
drawable’s backing store; the server may have granted or
taken away backing store from the windows.

Returns Nonzero if backing store is currently available to the
drawable; otherwise zero.

A return value of zero indicates that backing store is not (or
no longer) available for the drawable. In this case, the client
does not need to update the backing store contents.
Otherwise, the client should call the routines described
below in order to update the backing store.

dga_draw_rtncached (Lock Only)

Returns A nonzero value if the backing store is cached in hardware as
opposed to being in system memory. If the return value is set
to DGA_RTN_NEW_DEV, then it means that the server has re-
cached the backing store from system memory to the
hardware device associated with the drawable. If this is the
case, then the name and type of the device may be obtained
by calling dga_draw_rtndevtype (see page 176).

If the return value is set to DGA_RTN_SAME_DEV, then the
backing store remains cached in the same device as
previously recorded. If the backing store is not cached,

int
dga_draw_rtnactive(dgadraw)
Dga_drawable dgadraw;

int
dga_draw_rtncached(dgadraw)
Dga_drawable dgadraw;

176 X Server Device Developer’s Guide—August 1997

9

DGA_RTN_NOT_CACHED is returned. DGA_RTN_NEW_DEV,
DGA_RTN_SAME_DEV and DGA_RTN_NOT_CACHED are
predefined constants.

dga_draw_rtndevinfop (Lock Only)

Returns A pointer to the device-specific shared backing store
information when the backing store is cached. The pointer is
invalid if the backing store is not cached. This structure
contains device-specific information. This device-specific
information is required because devices that support cached
backing store may implement it differently. The pointer
points to a memory area which is 8 bytes long and 4-byte
aligned. An example of this structure could be:

dga_draw_rtndevtype (Lock Only)

Purpose This routine is used to obtain the shared backing store’s
hardware cache device type and name.

Arguments type is device dependent.

void *
dga_draw_rtndevinfop(dgadraw)
Dga_drawable dgadraw;

struct {
short basex, basey; /* backing store’s position on frame buffer */
u_char mode; /* a device specific mode */
u_char pad[2];
} Shared_Retained_Dev_Info;

void
dga_draw_rtndevtype(dgadraw, type, name)
Dga_drawable dgadraw;
u_char *type;
char **name;

Direct Graphics Access Drawable Client Interface 177

9

name should point to an array of characters. The returned
name will be a maximum of 32 characters long, including a
NULL terminator.

dga_draw_rtndimensions (Lock Only)

Purpose This routine is used to obtain the dimensions of the shared
backing store.

Arguments linebytes is valid only for non-cached backing store.

dga_draw_rtnpixels (Lock Only)

Returns A pointer to the backing store’s pixel memory. This pointer is
valid only for non-cached backing store. The format of the
shared memory backing store is the same as the pixmap
format of the corresponding depth for the window’s screen.

DGA Overlays

The DGA overlay interface allows direct access to windows in overlay planes.
To render in overlay windows, the client must be able to manipulate the
device’s visibility planes. When overlay windows are in the same plane group
as other windows, they are in conflict. Direct rendering to overlay windows in
conflict is not allowed. A client may inquire the overlay state by calling
dga_draw_ovlstate to determine whether the overlay windows supported
on that device are in conflict with other windows.

void
dga_draw_rtndimensions(dgadraw, width, height, linebytes)
Dga_drawable dgadraw;
short *width;
short *height;
u_int *linebytes;

void *
dga_draw_rtnpixels(dgadraw)
Dga_drawable dgadraw;

178 X Server Device Developer’s Guide—August 1997

9

Note – This section applies only to Sun transparent overlays. It does not apply
to server overlays. For information about transparent overlays and server
overlays, see the Solaris X Window System Developer’s Guide.

Note – Currently, direct rendering to backing store associated with overlay
windows is not supported.

Direct access to overlay windows follows the same locking rules as other
windows. dga_draw_type (on page 159) returns DGA_DRAW_OVERLAY for a
grabbed overlay window.

Note – The following new functions are specific to overlay windows and
should only be called when the drawable holds the lock.

dga_draw_ovlstate

Purpose Use this function to determine whether to render directly to
an overlay window. It returns the overlay state for dgadraw .

To render to an overlay, clients need to get additional device-
specific information. Get this information from the device's
devinfo pointer with dga_draw_devinfo (see page 161).

Returns DGA_OVLSTATE_SAFE

If the return state is DGA_OVLSTATE_SAFE, render both
opaque and transparent paint on the window using the
device-specific information.

DGA_OVLSTATE_MULTIWID

If the return state is DGA_OVLSTATE_MULTIWID, render with
opaque paint using the device-specific information. Most
devices are unable to provide enough information for the

int
dga_draw_ovlstate(dgadraw)
Dga_drawable dgadraw;

Direct Graphics Access Drawable Client Interface 179

9

client to successfully render transparent paint on its own. In
this case, use X11 protocol requests to render transparent
paint to the overlay.

DGA_OVLSTATE_CONFLICT

If the return state is DGA_OVLSTATE_CONFLICT, the client
cannot render either opaque or transparent paint to the
overlay.

dga_draw_ovlstatechg

Purpose Indicates whether the overlay state has changed since the last
time the drawable was locked. If the DGA_DRAW_MODIF
macro indicates that an overlay has been altered, use this
function to see if the overlay's state has changed.

Returns 1 if the overlay state has changed; 0 otherwise.

dga_draw_ovlstatesetnotify

Purpose Allows the client to set a pointer to a user-specified overlay
state change notification function associated with dgadraw .
It is automatically called during lock and MODIF flag
processing if the overlay window's conflict state has
changed.

int
dga_draw_ovlstatechg (dgadraw)
Dga_drawable dgadraw;

void
dga_draw_ovlstatesetnotify(dgadraw, ovlstate_notify_func,

client_data)
Dga_drawable dgadraw;
DgaOvlStateNotifyFunc ovlstate_notify_func;
void *client_data;

180 X Server Device Developer’s Guide—August 1997

9

dga_draw_ovlstategetnotify

Purpose Returns the previously set overlay state change notification
function.

Returns NULL if no function has been set.

Colormap Grabber Interface

The following routines are the client’s interface to the colormap grabber
functions.

XDgaGrabColormap

Results This function grabs an existing X11 (virtual) colormap and
creates server-side resources for sharing updates to it with
the client. The window server is sent a protocol request to
create a shared colormap information file.

Returns A token, which is used by the client to access the shared
information.

An error code if the window system refuses the registration
request. The request also fails if the DGA client and the
server are not running on the same machine.

void
dga_draw_ovlstategetnotify(dgadraw, pOvlstate_notify_func,

pClient_data)
Dga_drawable dgadraw;
DgaOvlStateNotifyFunc *ovlstate_notify_func;
void **client_data;

Dga_token XDgaGrabColormap(dpy, cmap)
Display *dpy;
Colormap cmap;

Direct Graphics Access Drawable Client Interface 181

9

dga_cm_grab

Purpose This function is similar to dga_win_grab , in that it maps a
shared memory data structure and returns a pointer to a
client-side structure.

Arguments devfd is the file descriptor of the graphics device on which
the grabbed window is resident.

If the device is not known or not yet opened, the caller can
pass in -1, and dga_cm_grab opens the correct device file,
using information found in the shared memory area.

token must be obtained by a previous call to
XDgaGrabColormap .

Returns A Dga_cmap handle if successful; NULL for failure.

The Dga_cmap structure contains client-specific information
and a pointer to the shared memory. Thus, several clients can
grab the same colormap.

dga_cm_ungrab

Purpose This function releases resources allocated by a previous call
to dga_cm_grab . All resources and memory mappings
created by dga_cm_grab are freed or made inaccessible as a
result of this operation. Call XDgaUnGrabColormap after
invoking this function to free window server resources. If the
cflag argument is a nonzero value, the graphic device file is
also closed.

Dga_cmap dga_cm_grab(devfd, token)
int devfd;
Dga_token token;

void dga_cm_ungrab(dgacmap,cflag)
Dga_cmap dgacmap;
int cflag;

182 X Server Device Developer’s Guide—August 1997

9

XDgaUnGrabColormap

Purpose This function releases server resources associated with a
shared colormap by sending the window server a protocol-
extension request.

dga_cm_devfd

Returns The client’s file descriptor for the frame buffer with which
the grabbed colormap is associated.

dga_cm_devinfop

Returns A pointer to a shared-memory area containing device-
dependent colormap information. The pointer is guaranteed
to be 4-byte aligned and points to an area of 132 bytes. On
devices with multiple hardware colormaps, information
regarding the identity of the hardware colormap associated
with the grabbed X colormap could be stored here. This
device-specific information is required because each device
that supports multiple hardware colormaps implements it
differently. Any device information that needs to be sent
between the server device code and the client device code is
stored here. Device-dependent server code stores information
here that the client can read.

int XDgaUnGrabColormap(dpy, cmap)
Display *dpy;
Colormap cmap;

int dga_cm_devfd(dgacmap)
Dga_cmap dgacmap;

void *dga_cm_devinfop(dgacmap)
Dga_cmap dgacmap;

Direct Graphics Access Drawable Client Interface 183

9

dga_cm_set_client_infop

Purpose This routine allows the client to set a pointer to client-specific
data associated with dgacmap . This pointer could point to
information that is local to the client alone.

dga_cm_get_client_infop

Returns The client-specific data pointer associated with dgacmap . If
this pointer was not set by the client, then this routine
returns NULL.

dga_cm_write

Purpose This function requests that the colormap information in the
red , green , and blue arrays in user data space be placed in
the grabbed colormap referenced by the dgacmap argument,
starting at index , for count entries.

Arguments putfunc is a client-supplied and device-dependent callback
function that updates the hardware colormap when
necessary.

void dga_cm_set_client_infop(dgacmap, client_info_ptr)
Dga_cmap dgacmap;
void *client_info_ptr;

void *dga_cm_get_client_infop(dgacmap)
Dga_cmap dgacmap;

void dga_cm_write(dgacmap, index, count, red, green, blue,
putfunc)

Dga_cmap dgacmap;
int index, count;
u_char *red, *green, *blue;
void (*putfunc());

184 X Server Device Developer’s Guide—August 1997

9

The calling sequence for the callback routine is:

The purpose of calling the device-dependent routine
indirectly through dga_cm_write is to ensure proper
coordination with the server.

If the colormap is currently installed, then the new values are
loaded into the appropriate hardware colormap via the
client-supplied callback routine. If the X11 colormap is not
currently installed, no hardware update is performed. The
putfunc function is called only if the colormap is installed
in hardware.

dga_cm_read

Purpose This function reads colormap information into the red ,
green , and blue arrays in user data space. The dgacmap
argument describes which colormap to read from. The data is
read, starting at index , for count entries. The information is
read from the shared-memory representation of the X11
virtual colormap.

Miscellaneous Grabbers

The following routines define the client interface to the window ID grabber,
fast clear plane grabber, stereo grabber and Z buffer grabber. These grabbers
may require specialized hardware.

Note – Currently, miscellaneous grabbers only work for windows; they will fail
for pixmaps.

void putfunc(dgacmap, index, count, red, green, blue);

void dga_cm_read(dgacmap, index, count, red, green, blue)
Dga_cmap dgacmap;
int index, count;
u_char *red, *green, *blue;

Direct Graphics Access Drawable Client Interface 185

9

XDgaDrawGrabWids

Purpose Some graphics devices control video display characteristics
and/or hardware clipping via a control plane group called a
window ID (WID) plane group. Normally WIDs are allocated
and managed by the server. In some cases, DGA clients can
make use of multiple WIDs for a single window to optimize
some operation. XDgaDrawGrabWids is called to allocate
nwids consecutive WID’s. The window must have
previously been grabbed via XDgaGrabDrawable .

Returns Zero for failure; nonzero for success.

If successful, the WID values can be obtained from the
shared memory via the dga_draw_widinfop (see page 186)
routine. WIDs are 16-bit unsigned integer values. The base
WID will be aligned on a power-of-two boundary which is
determined by rounding up nwids to the next power of two.

int
XDgaDrawGrabWids(dpy, drawid, nwids)
Display dpy;
Drawable drawid;
int nwids;

186 X Server Device Developer’s Guide—August 1997

9

dga_draw_widinfop

Returns A pointer to the dga_widinfo structure in the shared
memory area for dgadraw . The structure is defined as
follows and can also be found in the file dga.h :

In this structure, w_number_wids is the total number of
WIDs that have been allocated as a contiguous block.
w_start_wid is the starting window ID value of this block.
w_wid is the value of the window ID currently being used
for the window associated with the handle dagdraw .

XDgaDrawGrabFCS

Purpose Some graphics devices have a feature called fast clear sets
which can effectively speed up the clearing of the back buffer
in a multibuffering application. Fast clear sets are scarce
resources dedicated to a particular window.
XDgaDrawGrabFCS is used to request one or more fast clear
sets. The window must have previously been grabbed via
XDgaGrabDrawable . The function returns zero for failure,

Dga_widinfo *
dga_draw_widinfop(dgadraw)
Dga_drawable dgadraw;

typedef struct dga_widinfo {
short w_number_wids; /* number contiguous block wids allocated */
short w_start_wid; /* starting wid of the wid block */
short w_wid; /* current drawing wid */
short reserved_1; /* for the future */
} Dga_widinfo;

int
XDgaDrawGrabFCS(dpy, drawid, nfcs)
Display *dpy;
Drawable drawid
int nfcs;

Direct Graphics Access Drawable Client Interface 187

9

nonzero for success. If successful, the FCS values can be
obtained from the shared memory via the
dga_draw_db_dbinfop routine, described in a previous
section. The FCS information will be stored in the device-
dependent section (device_info) of the
dga_draw_dbinfo structure. To release the allocated FCSs
call XDgaDrawGrabFCS with an nfcs argument of zero.

XDgaDrawGrabStereo

Purpose Some graphics devices are capable of stereo display of
images. This function is used to inform the server that a
particular window will be using stereo display. The window
must have previously been grabbed via XDgaGraDrawable .

Returns Zero for failure, nonzero for success.

Arguments st_mode is 1 to enable stereo, 0 to disable it.

int
XDgaDrawGrabStereo(dpy, drawid, st_mode)
Display *dpy;
Drawable drawid
int st_mode;

188 X Server Device Developer’s Guide—August 1997

9

189

Direct Graphics Access Drawable
DDX Interface 10

This chapter describes routines the server provides for you to interface with
DGA with your DDX handlers to make various types of changes to a drawable.
This interface is called the direct graphics access (DGA) drawable DDX
interface.

Note – The old DGA initialization function DgaDevFuncsInit is still
supported. This routine allows grabbing of windows only. DgaDevFuncsInit
and the newer initialization function dgaScreenInit are mutually exclusive.
A DDX handler must use only one of the two functions.

Initializing Drawable Grabs
The DGA application programming interface (API) supports direct access to
window and pixmap drawables. In the initialization sequence that supports
arbitrary drawable types, not only is this same function vector given to DGA,
but two new functions are also given. Providing these new functions is
optional. If they are NULL, the DGA drawable interface (dga_draw_ xxxx API
routines) is only able to grab window drawables.

Call the following initialization routine from the InitOutput routine of your
DDX handler.

190 X Server Device Developer’s Guide—August 1997

10

dgaScreenInit

Arguments pDgadevfuncs is a function vector of device-dependent
functions cast to a void*:

The pDgadevfuncs argument may be NULL. If so, it means
that client DGA is not available on the device.

The device handler is not required fill out all members of
devFunc s; some functions may not be applicable to a device
and these entries should be NULL in the vector.

The major and minor arguments are the major and minor
version numbers for the DDK release as specified in “DDX
Versioning” on page 12.

All of the types and structures listed above are defined in the
include file dga/dgawinstr.h .

int
dgaScreenInit(pScreen, pDgadevfuncs, major, minor)
ScreenPtr pScreen;
void *pDgadevfuncs;
int major;
int minor;

typedef struct _DgaDevFuncsDraw {
int (*DgaAvail)();
void (*GrabDrawable)(DrawablePtr);
void (*UngrabDrawable)(DrawablePtr);
int (*CacheDrawInit)(DrawablePtr);
int (*CacheDrawCleanup)(DrawablePtr);
int (*DbSetup)(WindowPtr, WXINFO*, int, Bool);
int (*WidSetup)(WindowPtr, int, WXINFO*);
int (*FcsSetup)(WindowPtr, WXINFO*, int);
int (*ZbufSetup)(WindowPtr, int, WXINFO*);
int (*StereoSetup)(WindowPtr, int, WXINFO*);
int (*ChokeFb)(ScreenPtr, Bool);
int (*SyncDrawable)(DrawablePtr,GCPtr);
int (*UnsyncDrawable)(DrawablePtr,GCPtr);
int (*CmapSetup)(CmapPtr, Grabbedcmap*)
} DgaDevFuncsDraw;

Direct Graphics Access Drawable DDX Interface 191

10

Device-Supplied Routines
Use the following routines during DGA initialization. Values can be NULL;
however, functionality might be limited.

DgaAvail

Purpose This function advertises the flavor of DGA that a device
supports. If this function is NULL, the device is considered
to not support client DGA. All devices supporting client
DGA must supply this routine.

Returns The definitions of the return codes are found in
dga/dgawinstr.h .

If a device does not support DGA, this routine should return
DGA_AVAIL_NONE.

If the device supports DGA and also has a cursor that is
always rendered in hardware, it should return
DGA_AVAIL_CURS_HW.

If the cursor is always rendered in software, this routine
should return DGA_AVAIL_CURS_SW.

A device that has a limit to the size of cursor that can be
drawn in hardware and intends to support larger cursors in
software, this routine should return
DGA_AVAIL_CURS_HW_SW.

For example, on the GX/GX+, the maximum size for a
hardware cursor is 32x32. If a client loads in a cursor that is
larger than this, the GX switches to software to render this
cursor. So, GX/GX+ would return DGA_AVAIL_CURS_HW_SW
from this routine.

int (*DgaAvail)()

192 X Server Device Developer’s Guide—August 1997

10

GrabDrawable

Purpose This function is called when a drawable is first grabbed to
allow the device handler to initialize device-dependent
information for the drawable.

Note – This function is only called the first time a client grabs the drawable. It
is never called for subsequent attempts to grab the same drawable, either by
the client to first grab or other clients. Likewise, UngrabDrawable is only
called when the last grabbing client ungrabs.

Note – This function is called on the first grab, even if the drawable is a
window that is being grabbed through the older version of the DGA interface,
the Window Compatibility Interface. In this case the WindowPtr is cast to a
DrawablePtr .

UngrabDrawable

Purpose This function is called when a drawable is ungrabbed. It
should undo anything that GrabDrawable has done. For
example, the device-specific shared information may need to
be updated.

Note – This function is called on the first grab, even if the drawable is a
window that is being grabbed through the older version of the DGA interface,
the Window Compatibility Interface. In this case the WindowPtr is cast to a
DrawablePtr .

void (*GrabDrawable)(DrawablePtr pDraw)

void (*UngrabDrawable)(DrawablePtr pDraw)

Direct Graphics Access Drawable DDX Interface 193

10

CachedDrawInit

Purpose This function allows the device handler to do any device-
specific setup needed for the drawable when it is cached.
Examples include: location within the cache and the format
of the data within the cache.

This routine is called for drawables that may be cached in
special device memory. Drawable types that can cached
include: pixmaps, and the backing store of a window.

Note – Drawable refers to backing store in this context, even though a backing
store is technically not a drawable because it doesn’t have an XID.

The type of drawable may be determined by inspecting
pDraw->type . If this is DRAWABLE_WINDOW, the type of
drawable that is being referred to is the drawable’s backing
store. The server-internal structure for this backing store
(which, incidentally, happens to be of type PixmapPtr) can
be derived using the expression:

Results If the drawable is cached, this routine should do the
following:

1. Call DgaCacheDescribeDev on the pScreen of the
drawable with devCode and devname .

2. Call DgaCacheStateChange with a value of TRUE.

3. Call DgaDevInfoGet and DgaDevInfoChange to update
any device-dependent information which is necessary for the
cached drawable.

int (*CachedDrawInit)(DrawablePtr pDraw)

((miBSWindowPtr)((WindowPtr)pDraw)->backStorage)->pBackingPixmap

194 X Server Device Developer’s Guide—August 1997

10

After this routine has been called, whenever the device
handler changes the cache state of the drawable, it should
call these routines.

Returns If this routine returns 0, DGA assumes that the drawable is of
type DGA_DRAW_SYSTEM and it copies the contents of the
pixmap to the shared page.

This routine should return 1 if the drawable is not of type
DGA_DRAW_SYSTEM, or the device handler has already
copied the pixmap to the shared page.

CachedDrawCleanup

Purpose This function is called when a nonviewable drawable or
backing store is ungrabbed. It should undo anything done by
CachedDrawInit . For example, it would call
DgaCacheStateChange to mark the drawable as uncached.
DgaDevInfoGet and DgaDevInfoChange might need to be
called to clean up information in the device-dependent
shared area.

The type of drawable might be determined by inspecting
pDraw->type . If this is DRAWABLE_WINDOW, the type of
drawable being referred to is the drawable’s backing store.
The server-internal structure for this backing store can be
derived using the expression:

Returns 1 on success; 0 on failure. If 0 is returned, DGA assumes the
drawable (or backing store) is uncached and directs its data
pointer at the shared page. At this time, the contents of the
drawable (or backing store) are copied to the shared page.

int
(*CachedDrawCleanup)(DrawablePtr pDraw)

((miBSWindowPtr)((WindowPtr)pDraw)->backStorage)->pBackingPixmap

Direct Graphics Access Drawable DDX Interface 195

10

DbSetup

Purpose This function is called when an application requests direct
access to do multibuffering. Typically, this function would
update some device-specific structures/hardware states, as
well as information on the shared info page.

Arguments The WXINFO structure has a field, wx_dbuf , which is a
structure containing information relevant to multibuffering.
The definitions of these structures are found in
dga/dgawinstr.h .

This function must update the following structures:

infop->wx_dbuf.num_buffers should be set equal to the
total number of buffers that the device supports in hardware.
If the number of buffers available from the device is less than
the requested number, num_buf , this function should return
failure (0).

MPG Devices with hardware window IDs can allocate a new
window ID for the multibuffered window. If so, this function
is responsible for repreparing the window with the new
(hardware) window ID. If a new and unique WID is allocated
for this window, the infop->wx_dbuf.WID field should be
updated with this new value and the
infop->wx_dbuf.UNIQUE flag should be set to 1 to indicate
that this is a unique window ID. See Chapter 5, “Multiple
Plane Group Interface” for more information.

The wx_dbuf structure contains a device-specific field,
wx_dbuf->device , that can be used by the device to
communicate information between the server and the client.
In the wx_dbuf structure, this is declared as:

int
(*DbSetup)(WindowPtr pWin, WXINFO *infop, int num_buf,

Bool flag)

union { char pad[128];} device

196 X Server Device Developer’s Guide—August 1997

10

Each device can cast this to its own structure and
communicate information to the client.

infop->w_refresh_period should be set equal to the
refresh period of the monitor in milliseconds. This
information is required by client-side DGA code. If this value
is not supplied (set to zero), the client-side code defaults to a
66Hz monitor.

Returns 1 on success; 0 on failure.

WidSetup

Purpose This function is called when an application requests a block
of window IDs to be grabbed. The allocation of window IDs
is device specific and should be handled by this routine.

Results On MPG devices, the window might need to be reprepared
after new window IDs are allocated. This routine should take
care of the repreparation as well.

Arguments This routine should update information in the DGA shared
page pertaining to window IDs:

infop->w_number_wids should be set equal to the number
of contiguous WIDs, num_wids that have been allocated. If
the device was not able to allocate the requested number of
contiguous WIDs, this function should return 0 for failure.

infop->w_start_wid should be set equal to the value of
the first WID in the newly allocated block. The base WID
should be aligned on a power-of-two boundary.

infop->w_wid should be set equal to the current WID of the
window. This is often equal to infop->w_start_wid .

int
(*WidSetup)(WindowPtr pWin, int num_wids, WXINFO *infop)

Direct Graphics Access Drawable DDX Interface 197

10

If the window has been allocated a new window ID, this
function is responsible for repreparing the window with this
WID value. See Chapter 5, “Multiple Plane Group Interface”
for details on how to do this.

Returns 1 on success; 0 on failure.

FcsSetup

Purpose This function is called when an application requests a
number of fast clear planes, num_fcs , to be grabbed for a
window, pWin . The allocation of fcs planes is device-specific
and should be handled by this routine.

On MPG devices, allocation of FCS planes may require
repreparation of the window. This function is responsible for
repreparation. See Chapter 5, “Multiple Plane Group
Interface” for more details about accessing the MPG
information.

Arguments This routine should update the information in the DGA
shared page pertaining to fast clear planes. Information
about a window’s fast clear planes is stored in the device-
specific portion of the wx_dbuf structure found in the
WXINFO structure infop->wx_dbuf.device . This structure
can be cast to a device-defined structure and the fcs
information could be stored here.

Returns 1 on success; 0 on failure.

int
(*FcsSetup)(WindowPtr pWin, int num_fcs, WXINFO *infop)

198 X Server Device Developer’s Guide—August 1997

10

ZbufSetup

Purpose This function is called when an application requests direct
access to the Zbuffer for a window, pWin . This is a device-
specific operation and should be handled by this routine.

Arguments This routine should update the device-specific information in
the DGA shared page pertaining to Zbuffer. A device may
support various types of Z buffers and the second argument,
zbuf_type , indicates which type of Zbuffer is being
requested. Each device may support different types of Z
buffers.

Information about a window’s Zbuffer is stored in the
device-specific portion of the wx_dbuf structure found in the
WXINFO structure infop->wx_dbuf.device .

This array can be cast to a device-defined structure and the
Zbuffer information could be stored here. On MPG devices,
allocation of Zbuffer may require repreparation of the
window. This function is responsible for repreparation. See
Chapter 5, “Multiple Plane Group Interface” for more details
about accessing the MPG information.

Returns 1 on success; 0 on failure.

StereoSetup

Purpose This function is called when an application requests that a
stereo mode be associated or disassociated with this window,
pWin .

int
(*ZbufSetup)(WindowPtr pWin, int zbuf_type, WXINFO *infop)

int
(*StereoSetup)(WindowPtr pWin, int st_mode, WXINFO *infop)

Direct Graphics Access Drawable DDX Interface 199

10

Arguments If the second argument, st_mode is a nonzero value, a stereo
mode is associated with the window and if it is equal to zero,
stereo mode is turned off. This is device-specific and should
be handled by this routine.

This routine should update the device-dependent
information in the DGA shared page pertaining to stereo.

Information about a window’s stereo state is stored in the
device-specific portion of the wx_dbuf structure found in the
WXINFO structure infop->wx_dbuf.device .

This array can be cast to a device-defined structure and the
stereo information could be stored here.

Returns 1 on success; 0 on failure.

ChokeFb

Purpose When all windows on a screen are locked down, frame
buffers having asynchronous accelerators need to choke the
accelerator. This prevents the accelerator from rendering into
a locked window. Since this is a device-specific operation,
this function has to implement the choking and unchoking.

Arguments If the second argument, flag , is 1, this function should
choke the accelerator; if flag is 0, it should unchoke the
accelerator. Typically, this is done via an ioctl . For example,
the GT uses the FBIOGRABHW ioctl to choke its accelerator.

Returns 1 on success; 0 on failure.

int
(*ChokeFb)(ScreenPtr pScreenr, Bool flag)

200 X Server Device Developer’s Guide—August 1997

10

SyncDrawable

Purpose When DGA is used to switch buffers, all X rendering
functions need to be directed at the currently displayed
buffer. This function is called before calling the X rendering
function but only if the window is multibuffered.

This routine can also be used to update device-private
structures with the current buffer state.

Results This function might need to call dgaMbGetBufferInfo to
get the current buffer configuration.

UnsyncDrawable

Purpose This function should undo anything that was done in
SyncDrawable .

This routine can also be used to update device private
structures with the current buffer state.

Results This function may need to call dgaMbGetBufferInfo to get
the current buffer configuration.

int
(*SyncDrawable)(DrawablePtr pDraw, GCPtr pGC)

int
(*UnsyncDrawable)(DrawablePtr pDraw, GCPtr pGC)

Direct Graphics Access Drawable DDX Interface 201

10

CmapSetup

Purpose This function is called when a colormap is being grabbed.
The include file that provides definition of the Grabbedcmap
structure is dga/dgacmapstr.h . This function is typically
used by devices supporting multiple hardware colormaps or
other specialized colormap hardware.

Arguments In this routine, the DDX handlers can set up
cginfo->devinfop to point to a private data area. The
maximum size of this private area is DGA_CM_DEV_INFO_SZ,
defined in dga/dgacmapstr.h . This field is declared as an
u_char array.

Each DDX handler can cast this to a device-private structure.
Typically, this device-dependent structure contains
information about the hardware colormap associated with
the grabbed X colormap.

On the client side, the client program can gain access to this
data by using the appropriate libdga function call,
dga_cm_get_devinfo . See Chapter 9, “Multibuffering
Extension to X Interface” for more information.

Devices that do not have specialized colormap hardware, like
multiple hardware color look up tables, do not need to fill
out this element in the function vector, DgaDevFuncsDraw .

Returns The return value is ignored.

Caching Routines
The following routines allow a DDX handler to keep DGA informed of caching
changes on a device.

int
(*CmapSetup)(CmapPtr pCmap, Grabbedcmap cginfop)

202 X Server Device Developer’s Guide—August 1997

10

dgaCacheDescribeDev

Results The contents of devName are copied into an internal
structure.

dgaCacheStateChange

Purpose Informs DGA that a change has occurred to the cache state of
a drawable. DgaCacheDescribeDev must have been called
prior to calling this routine.

Arguments If state is TRUE, the drawable is currently cached. If it is
FALSE, the drawable is not cached.

dgaSharedDataInfo

Purpose When a nonviewable drawable or backing store is not
cached, the data pointer of the drawable should be directed
toward the pixel store that exists in the shared page and the
contents of the drawable should be copied into the shared
page. This is automatically performed by DGA if the DGA

void
DgaCacheDescribeDev (pScreen, devCode, devName)
ScreenPtr pScreen;
int devCode;
char *devName;

void
DgaCacheStateChange (pDraw, state)
DrawablePtr pDraw;
Bool state;

void
DgaSharedDataInfo (pDraw, addr, linebytes)
DrawablePtr pDraw;
pointer *addr;
int *linebytes

Direct Graphics Access Drawable DDX Interface 203

10

routines CacheDrawInit or CacheDrawCleanup return 0.
However, the DDX handler itself may want to copy the
drawable contents into the shared page (for performance). To
do this, the DDX handler must know where to put the data.
It must also know the scanline stride (linebytes). This routine
supplies the necessary information necessary. This routine
should only be called when the drawable has been grabbed.

Device Information Routines
In each shared information page of a drawable, DGA provides an area in
which a DDX handler can place device-specific information. When anything in
this area changes, the DDX handler must inform DGA so that it can signal the
change to the client.

dgaDevInfoGet

Purpose The device-dependent area can be used by DDX handlers to
transmit device-dependent information to the DDX handlers
of the client foundation libraries. The format of this area is
completely opaque to DGA; no interpretation is given.

Called by This routine might need to be called from a DDX handler’s
DGA GrabDrawable routine to initialize device-dependent
information for a drawable. It might also need to be called
for a cached nonviewable drawable if the DDX handler
changes the location of the cache.

Results If the device alters any information in this area, it should call
DgaDevInfoChange to inform DGA.

Returns A pointer to the device-dependent area in the shared
information of the given drawable. Returns NULL if the
drawable has not yet been grabbed.

pointer
DgaDevInfoGet (pDraw)
DrawablePtr pDraw;

204 X Server Device Developer’s Guide—August 1997

10

dgaDevInfoChange

Purpose This routine informs DGA that a change has occurred to the
device-dependent area of the drawable. A pointer to this area
is returned by calling DgaCacheDevInfo . This routine must
be called after any DDX handler changes to this area.

DGA and Colormaps
The colormap grabber is discussed in “Colormap Grabber Interface” on
page 180. It allows DGA foundation libraries to directly load color lookup
tables, bypassing the X protocol. This functionality is not required for Solaris to
operate properly. The implementation of DGA libraries handles the case where
colormap grabs fail and fall back to Xlib to load the lookup tables. The
performance loss is minimal.

The implementation of the colormap grabber uses interfaces which are private
to the CMAP package and DGA. By default, the colormap grabber is disabled
for each screen. It is enabled when the handler for a given screen calls
cmapScreenInit() to initialize the CMAP package for that screen.

If the DDX handler implementor chooses to disable the colormap grabber on a
device that is using the CMAP package, the handler should call the function
dgaDisableCmapGrabs(ScreenPtr) after the call to cmapScreenInit() .

Note – Ideally, the DGA implementation should check the return value from
the screen’s CmapSetup function to disable and enable grabs, but
unfortunately, it does not. This cannot be changed without breaking binary
compatibility.

void
DgaDevInfoChange (pDraw)
DrawablePtr pDraw;

205

Input Devices 11

This chapter describes how to add an extension input device to the
OpenWindows server and access it with the X Input Extension. This extension
is a standard that is distributed with X11 Release 6 (X11R6). The OpenWindows
server loads input devices dynamically and accesses them through the Input
Extension. Dynamic loading reduces the size of the core X server and allows
you to develop device drivers independently.

Note – The client interface for accessing input devices in OpenWindows is the
Input Extension as defined in X11R6. The design presented here does not
change that interface in any way. All client protocol requests in this chapter are
as defined in the Input Extension.

The Input Extension includes the following three documents that are
prerequisite to this chapter. These documents are on line in the
doc/extensions/xinput directory. The associated filename is in
parentheses.

• X11 Input Extension Protocol Specification, Patrick and Sachs, MIT X
Consortium. (protocol .ms)

• X11 Input Extension Library Specification, Patrick and Sachs, MIT X
Consortium. (lib rary.ms)

• X11 Input Extension Porting Document, Sachs, MIT X Consortium.
(porting.ms)

206 X Server Device Developer’s Guide—August 1997

11

Extension Input Device Overview
Figure 11-1 on page 206 shows a block diagram of the device input portion of
the OpenWindows server. The diagram also indicates which components must
be developed by Independent Hardware Vendors (IHVs) and Independent
Software Vendors (ISVs) to add an extension input device to OpenWindows.

The server implements most of the Input Extension capabilities: decoding
protocol requests, managing input devices, and distributing events to
interested clients. No changes to the server are required to add a new input
device.

The device handler reads device events, converts device events to X events, and
adds the events to the servers global event queue. Each new input device must
have a device handler developed for it.

The device’s STREAMS modules convert raw data from the physical input
device into event packets that are read by the device handler. A STREAMS
module is not required for each input device, but when needed it is developed
by the IHV and ISV.

Figure 11-1 Extension Input Device Block Diagram

OpenWindows Server

Sun Supplied

IHV/ISV Supplied

Mouse
Handler

Mouse
STREAM

Keyboard
Handler

Keyboard
STREAM

Extension
Device 1
Handler

Extension
Device 1
STREAM

Extension
Device n
Handler

Extension
Device n
STREAM

Input Devices 207

11

Handling of Extension Input Devices
This section provides a high level discussion of how extension input devices
are implemented in the OpenWindows environment.

Extension Device Initialization

After server start-up, the core keyboard and core pointer are the only devices
that are initialized and generating events. Additional devices can be requested
by a client with the XListInputDevices request. Each time a client issues
this request, the server executes the following tasks:

1. Reads the configuration file

The server parses the OWconfig configuration file, searching for input
devices. Each time the OWconfig file is read due to an
XListInputDevices request, devices listed in the XDISPLAY class as
coreKeyboard and corePointer and at server start-up were not the core
pointer and keyboard, are treated as extension devices.

For more information on the OWconfig file, see Appendix A, “The
OWconfig File.”

2. Loads input device

All devices in the OWconfig file that have not been initialized are loaded.
Thus, for the first request after start-up the core keyboard and core pointer
have already been initialized; only new devices are loaded.

Later, upon receipt of another XListInputDevices request, the server
again searches the OWconfig file for any devices that have been added since
the last request. If it finds new devices, they are loaded.

3. Initializes the device

After a device is loaded, its DeviceControlProc function is called with a
value of DEVICE_INIT , causing the device to register all of its features with
the server. DeviceControlProc is defined on page 234.

The server can now return a reply to the XListInputDevices request
issued by the client. The XListInputDevices request does not turn on the
device so the server does not accept input from them yet.

208 X Server Device Developer’s Guide—August 1997

11

If during initialization the DeviceControlProc routine returns a failure,
the server assumes the hardware is not present and unloads the device.

Extension Device Open

After receiving the reply to the XListInputDevices , the client can open an
extension device and start receiving input from it with the XOpenDevice
request. When the server receives the first XOpenDevice request for a
particular device, it tells the device to start generating events by calling the
DeviceControlProc function with a value of DEVICE_ON.

The server keeps a list of clients that currently have the device open. If the
device is already opened by a client when an XOpenDevice request is
received, the requesting client is added to the client list.

Server start-up is now complete. When input is pending on the device, the
server reads the data and puts it into the event stream. The client can now
issue any of the standard Input Extension protocol requests to receive events,
initiate grabs, and control features of the device.

Reading Input Data

During initialization, devices register a read procedure with the server and set
the device STREAM to generate SIGPOLLs when data reaches the STREAM
head. The input data flow begins when a SIGPOLL signal is received by the
server. The server then loops through the following steps as illustrated in
Figure 11-2 on page 209, until no more events are available on any of the input
devices:

1. For each device that is turned on, call the DeviceReadProc function for
that device. DeviceReadProc is defined on page 236.

2. Check to see if there are any events from all of the sources just read.
• If there are no more events, break out of the loop and return.
• If there are more events, continue to step 3.

3. Find the oldest event.

4. Give the oldest event to the DeviceEnqueueProc for that device.
DeviceEnqueueProc is defined on page 235.

.

Input Devices 209

11

The DeviceEnqueueProc procedure takes an event, processes any device-
dependent information on the event, converts it to an xEvent , and places it
on the global event queue via the mieqEnqueue procedure.

5. Loop back to Step 1.

Figure 11-2 Data Flow When Reading Devices

Receive SIGPOLL

Find oldest event

Return
Any more
events?

Set dev = next dev

No

No

Call Read function
for device

Call EnqueueProc
for oldest event

No

Yes

Yes

Yes

4
5

3

2

1

dev = on?

dev = last dev?

210 X Server Device Developer’s Guide—August 1997

11

Extension Device Close

When a client is finished with a device, it issues an XCloseDevice request to
the server. The client that issued the XCloseDevice request does not receive
any more events from the device. What happens next depends on how many
clients have the device open:

• If other clients have the device open, the server continues to read the device
until no clients have the device open. The client that issued the
XCloseDevice request does not receive any more events from the device
because the event mask for that client is cleared by the Input Extension as
part of the XCloseDevice procedure.

• If the client is the only client with the device open, the server calls the
DeviceControlProc with a value of DEVICE_OFF instructing the device
to stop generating events.

Restart and Shutdown

Restarting and shutting down the server involve the same actions. All open
devices are closed and unloaded. During the close process the input device is
notified of the shutdown. The device must free any memory that has been
allocated and close the device’s file descriptor.

When the server is about to exit or restart, the server calls the
DeviceControlProc function with a value of DEVICE_CLOSE. This call
instructs the device to free all of its resources because the server is about to
exit.

Adding An Extension Input Device
Each device added to the server must have the following components:

• A device handler shared object

• An entry in the local OWconfig file

And is recommended to have:

• A STREAMS module

Input Devices 211

11

Writing the Device Handler

All device handlers must have DeviceControlProc , DeviceGetEvents ,
and DeviceEnqueueProc procedures, as well as device-dependent
procedures. This section describes each of these procedures. A sample tablet
handler is provided in server/ddx/solaris/reference/sunTablet to
aid in the understanding of this chapter.

Device Control Procedure

The DeviceControlProc function allows the server to control an extension
device without having to know the capabilities of each particular device. There
are four actions that the DeviceControlProc must handle:

• DEVICE_INIT
• DEVICE_ON
• DEVICE_OFF
• DEVICE_CLOSE

DEVICE_INIT
When the DeviceControlProc is called with action DEVICE_INIT , the
procedure completes the following tasks:

1. The device is opened and initialized.

2. Any private device structures are allocated and initialized.

3. An atom for the device must be generated and assigned to the device. The
device’s state is initialized to off by setting the device->on flag to FALSE.

4. The device registers its DeviceGetEvents and DeviceEnqueueProc by
calling RegisterFdIo .

5. All device-dependent structures must be initialized and device-dependent
procedures registered. If the device can become the core pointer or the core
keyboard, pointer or keyboard interest must be registered. The initialization
and registry functions are listed in “Public Server Functions” on page 215.

DEVICE_ON
When the DeviceControlProc is called with action DEVICE_ON, the
procedure completes the following tasks:

212 X Server Device Developer’s Guide—August 1997

11

1. Call AddEnabledDevice to let the server know the device has been turned
on.

2. Set the devices on state to TRUE.

3. Cause the device to generate SIGPOLLs with the I_SETSIG ioctl .

DEVICE_OFF
When the DeviceControlProc is called with action DEVICE_OFF, the
procedure completes the following tasks:

1. Call RemoveEnabledDevice to let the server know the device has been
turned off.

2. Set the device’s on state to FALSE.

DEVICE_CLOSE
When the DeviceControlProc is called with action DEVICE_CLOSE, the
procedure completes the following tasks:

1. If the device’s on state is TRUE, call RemoveEnabledDevice and set on
state to FALSE.

2. Perform any device specific clean-up.

3. Close the device.

4. Free any private device structures.

Device Get Events Procedure

The DeviceGetEvents procedure must read the device, put the events into an
XI_event structure, and return a pointer to the event or events. If the
DeviceGetEvents procedure allocates memory for the XI_event structure it
must be freed in the DeviceEnqueueProc . The example tablet device handler
keeps a static array of XI_event structures and passes a pointer to this array
each time.

Input Devices 213

11

Device Enqueue Procedure

The DeviceEnqueueProc is required to be in all device handlers. The
DeviceEnqueueProc takes one XI_eventPtr and enqueues one or more
events on the global event queue. The DeviceEnqueueProc is passed a
XI_event structure which has an opaque pointer to the event. The
DeviceEnqueueProc must typecast this pointer to match the format that the
DeviceGetEvents procedure put into the structure. The server does not do
any processing on the event before it is passed to the DeviceEnqueueProc .
As noted above, if the DeviceGetEvents procedure allocates memory for the
XI_event structure it must be freed here.

As stated in X11 Input Extension Protocol Specification, DeviceKeyPress ,
DeviceKeyRelease , DeviceButtonPress , DeviceButtonRelease ,
ProximityIn , ProximityOut , and DeviceStateNotify events can be
followed by zero or more DeviceValuator events. Devices that have
valuators and are reporting absolute motion must follow each of the above
events with one or more DeviceValuator events to specify the current state
of the valuators. Devices that don’t have valuators or have valuators but are
reporting relative motion send zero DeviceValuator events following the
events listed above. A DeviceMotionNotify event is always followed by one
or more DeviceValuator events regardless of the mode of the device
(relative or absolute). See the Input Extension Protocol Specification for more
details.

Devices that have registered themselves as potential core pointer devices must
be able to control the cursor from this procedure. The device must not control
the cursor until after the server has notified the device that it is the core
pointer. Cursor control is accomplished calling either
miPointerDeltaCursor or miPointerAbsoluteCursor depending on
whether the device is reporting relative or absolute motion. The device must
not enqueue MotionNotify events when it is the core pointer; this is done by
the miPointer procedures. It is the responsibility of the device handler to
enqueue ButtonPress and ButtonRelease events if the device supports buttons.

Devices that have registered themselves as potential core keyboards enqueue
DeviceKeyPress and DeviceKeyRelease events unless the device handler
has been notified that it is the core keyboard. Once it becomes the core
keyboard it must enqueue KeyPress and KeyRelease events until such time the
device is notified it is no longer the core keyboard.

214 X Server Device Developer’s Guide—August 1997

11

Device-Dependent Procedures

Devices also have to support additional procedures based on the types of input
classes a given device supports, such as KEY, BUTTON, and VALUATOR.
These procedures are explained in “Device Shared Library Functions” on
page 234.

Adding An OWconfig File Entry

Appendix A, “The OWconfig File” describes the OWconfig file and the name
value attribute pairs that describe each input device. Appendix B, “Packaging
and Installation Hints” discusses how a new input device is packaged for
installation by users. “DDX Versioning” on page 12” specifies shared object
naming and versioning conventions. Read these sections before attempting to
add an input device.

Debugging the Device Handler

Since the input device handlers are shared objects, breakpoints cannot be set in
the handler until after the server has loaded the shared object. All extension
input device handlers are loaded when the first client issues an
XListInutDevices.

Breakpoints can be set in an input device handler by following these steps:

1. Add a line to the OWconfig file for the input device to be debugged. Make
sure the new line is directly below the mouse and keyboard lines.

2. From a remote machine, debug the server (dbx Xsun or debugger Xsun).

3. Set a breakpoint in AddInputDevice.

4. Run the server. The AddInputDevice breakpoint hits twice during server
initialization; just continue each time.

5. Start a client that opens the extension input device. This causes the
breakpoint to hit again. At this point the input device handler is loaded and
you can set breakpoints inside the handler.

Input Devices 215

11

Writing The STREAMS Module

A STREAMS module is not required for every input device. For example, the
device handler could read, interpret, and format the raw data from the ttya
port. This design is least attractive from a performance perspective and it is
strongly recommended that the interpreting and formatting of data be handled
in a STREAMS module. This method is attractive if you have a limited amount
of time to get an input device working, are unfamiliar with STREAMS module
development, and are not concerned about performance.

A STREAMS module outputs vuid (virtual user input device) type events. See
Appendix C, “Virtual User Input Device Interface” for more information on
vuid events.

Note – The DeviceReadProc function returns the XI_eventPtr structure
that is a timestamp and an opaque pointer to the devices event. This
timestamp could be generated in DeviceReadProc . However it is strongly
recommended that the device’s STREAMS module timestamp the event and
DeviceReadProc use this timestamp for the XI_eventPtr .

Input Library Functions
This section describes new functions in two categories:

• Public server functions
• Device-shared library functions

Public Server Functions

The functions in this section are callable from the device shared library.

216 X Server Device Developer’s Guide—August 1997

11

InitPointerDeviceStruct

Purpose This function is provided to allocate and initialize
ButtonClassRec , ValuatorClassRec , and
PtrFeedbackClassRec .

Used by the initial core pointer device. A call to
InitPointerDeviceStruct is equivalent to calling
InitButtonClassDeviceStruct (page 218),
InitValuatorClassDeviceStruct (page 218), and
InitPtrFeedbackClassDeviceStruct page 221).

Called by DeviceControlProc of the core pointer device during the
DEVICE_INIT action.

Results Allocates and initializes ButtonClassRec ,
ValuatorClassRec , and PtrFeedbackClassRec .

Returns TRUE on success
FALSE on failure

InitKeyboardDeviceStruct

Purpose This function is provided to allocate and initialize
KeyClassRec , FocusClassRec , and
KbdFeedbackClassRec.

Used by the initial core keyboard device. A call to
InitKeyboardDeviceStruct is equivalent to calling
InitKeyClassDeviceStruct (page 217),
InitFocusClassDeviceStruct (page 220), and
InitKbdFeedbackClassDeviceStruct (page 221).

Bool InitPointerDeviceStruct(DevicePtr device, CARD8 *map,
int numButtons, DeviceGetMotionProc GetMotionProc,
DevicePtrCtrlProc PtrCtrlProc, int numMotionEvents)

Bool InitKeyboardDeviceStruct(DevicePtr device,
KeySymsPtr pKeySyms, CARD8 pModifiers[],
DeviceBellProc BellProc, DeviceKbdCtrlProc KbdCtrlProc)

Input Devices 217

11

Called by DeviceControlProc of the core keyboard device during
the DEVICE_INIT action.

Results Allocates and initializes KeyClassRec , FocusClassRec ,
and KbdFeedbackClassRec .

Returns TRUE on success
FALSE on failure

InitKeyClassDeviceStruct

Purpose This function is provided to allocate and initialize a
KeyClassRec , and is called for extension devices that have
keys. It is passed a pointer to the device, and pointers to
arrays of keysyms and modifiers reported by the device.

InitKeyboardDeviceStruct calls this routine for the core
X keyboard. It must be called explicitly for extension devices
that have keys.

Called by DeviceControlProc during the DEVICE_INIT action.

Results Allocates and initializes KeyClassRec .

Returns TRUE on success
FALSE on failure

Bool InitKeyClassDeviceStruct(DeviceIntPtr dev,
KeySymsPtr pKeySyms, CARD8 pModifiers[])

218 X Server Device Developer’s Guide—August 1997

11

InitButtonClassDeviceStruct

Purpose This function is provided to allocate and initialize a
ButtonClassRec , and is called for extension devices that
have buttons. It is passed a pointer to the device, the number
of buttons supported, and a map of the reported button
codes.

InitPointerDeviceStruct calls this routine for the core
X pointer. It must be called explicitly for extension devices
that have buttons.

Called by DeviceControlProc during the DEVICE_INIT action.

Results Allocates and initializes ButtonClassRec .

Returns TRUE on success
FALSE on failure

InitValuatorClassDeviceStruct

Purpose This function is provided to allocate and initialize a
ValuatorClassRec , and is called for extension devices that
have valuators. It is passed the number of axes of motion
reported by the device, the address of the motion history
procedure for the device, the size of the motion history
buffer, and the mode (Absolute or Relative) of the device.

InitPointerDeviceStruct calls this routine for the core
X pointer. It must be called explicitly for extension devices
that report motion.

Called by DeviceControlProc during the DEVICE_INIT action.

Bool InitButtonClassDeviceStruct(DeviceIntPtr dev,
int numButtons, CARD8 *map)

Bool InitValuatorClassDeviceStruct(DeviceIntPtr dev,
int numAxes, DeviceGetMotionProc GetMotionProc,
int numMotionEvents, int mode)

Input Devices 219

11

Results Allocates and initializes ValuatorClassRec .

Returns TRUE on success
FALSE on failure

InitValuatorAxisStruct

Purpose This function is provided to initialize an XAxisInfoRec ,
and is called for core and extension devices that have
valuators. The space for the XAxisInfoRec is allocated by
the InitValuatorClassDeviceStruct function, but is
not initialized.

InitValuatorAxisStruct is called once for each axis of
motion reported by the device. Each invocation is passed the
axis number (starting with 0), the minimum value for the
axis, the maximum value for that axis, and the resolution of
the device in counts per meter. If the device reports relative
motion, 0 is reported as the minimum and maximum values.

This routine is not called by InitPointerDeviceStruct
for the core X pointer. It must be explicitly called for core and
extension devices that report motion.

Called by DeviceControlProc during the DEVICE_INIT action.

Results Initializes XAxisInfoRec .

Returns TRUE on success
FALSE on failure

Bool InitValuatorAxisStruct(DeviceIntPtr dev, int axnum,
int minval, int maxval, int resolution)

220 X Server Device Developer’s Guide—August 1997

11

InitFocusClassDeviceStruct

Purpose This function is provided to allocate and initialize a
FocusClassRec , and is called for extension devices that can
be focused. It is passed a pointer to the device.

InitKeyboardDeviceStruct calls this routine for the core
X keyboard. It must be called explicitly for extension devices
that can be focused. Whether or not a particular device can
be focused is implementation-dependent.

Called by DeviceControlProc during the DEVICE_INIT action.

Results Allocates and initializes FocusClassRec.

Returns TRUE on success
FALSE on failure

InitProximityClassDeviceStruct

Purpose This function is provided to allocate and initialize a
ProximityClassRec , and is called for extension absolute
pointing devices that report proximity. It is passed a pointer
to the device.

Called by DeviceControlProc during the DEVICE_INIT action.

Results Allocates and initializes a ProximityClassRec.

Returns TRUE on success
FALSE on failure

Bool InitFocusClassDeviceStruct(DeviceIntPtr dev)

Bool InitProximityClassDeviceStruct(DeviceIntPtr dev)

Input Devices 221

11

InitKbdFeedbackClassDeviceStruct

Purpose This function is provided to allocate and initialize a
KbdFeedbackClassRec , and is called for extension devices
that support some or all of the feedbacks that the core
keyboard supports. It is passed a pointer to the device, a
pointer to the procedure that sounds the bell, and a pointer
to the device control procedure.

InitKeyboardDeviceStruct calls this routine for the core
X keyboard. It must be called explicitly for extension devices
that have the same feedbacks as a keyboard. Some feedbacks,
such as LEDs and bell, can be supported either with a
KbdFeedbackClass or with BellFeedbackClass or
LedFeedbackClass feedbacks.

Called by DeviceControlProc during the DEVICE_INIT action.

Results Allocates and initializes KbdFeedbackClassRec .

Returns TRUE on success
FALSE on failure

InitPtrFeedbackClassDeviceStruct

Purpose This function is provided to allocate and initialize a
PtrFeedbackClassRec , and is called for extension devices
that allow the setting of acceleration and threshold. It is
passed a pointer to the device, and a pointer to the device
control procedure.

Bool InitKbdFeedbackClassDeviceStruct(DeviceIntPtr dev,
DeviceBellProc BellProc, DeviceKbdCtrlProc KbdCtrlProc)

Bool InitPtrFeedbackClassDeviceStruct(DeviceIntPtr dev,
DevicePtrCtrlProc PtrCtrlProc)

222 X Server Device Developer’s Guide—August 1997

11

InitPointerDeviceStruct () calls this routine for the core
X pointer. It must be called explicitly for the extension
devices that support the setting of acceleration and
threshold.

Called by DeviceControlProc during the DEVICE_INIT action.

Results Allocates and initializes PtrFeedbackClassRec .

Returns TRUE on success
FALSE on failure

InitLedFeedbackClassDeviceStruct

Purpose This function is provided to allocate and initialize a
LedFeedbackClassRec , and is called for extension devices
that have LEDs. It is passed a pointer to the device, and a
pointer to the device control procedure.

Up to 32 LEDs per feedback can be supported, and a device
can have multiple feedbacks of the same type.

Called by DeviceControlProc during the DEVICE_INIT action.

Results Allocates and initializes LedFeedbackClassRec .

Returns TRUE on success
FALSE on failure

Bool InitLedFeedbackClassDeviceStruct(DeviceIntPtr dev,
DeviceLedCtrlProc LedCtrlProc)

Input Devices 223

11

InitBellFeedbackClassDeviceStruct

Purpose This function is provided to allocate and initialize a
BellFeedbackClassRec , and is called for extension
devices that have a bell. It is passed a pointer to the device,
and a pointer to the device control procedure.

Called by DeviceControlProc during the DEVICE_INIT action.

Results Allocates and initializes BellFeedbackClassRec .

Returns TRUE on success
FALSE on failure

InitStringFeedbackClassDeviceStruct

Purpose This function is provided to allocate and initialize a
StringFeedbackClassRec , and is called for extension
devices that have a display upon which a string can be
displayed. It is passed a pointer to the device and a pointer
to the device control procedure.

Called by DeviceControlProc during the DEVICE_INIT action.

Results Allocates and initializes StringFeedbackClassRec .

Returns TRUE on success
FALSE on failure

Bool InitBellFeedbackClassDeviceStruct(DeviceIntPtr dev,
DeviceBellCtrlProc BellCtrlProc)

Bool InitStringFeedbackClassDeviceStruct(DeviceIntPtr dev,
DeviceStringCtrlProc StringCtrlProc, int max_symbols,
int num_symbols_supported, KeySym *symbols)

224 X Server Device Developer’s Guide—August 1997

11

InitIntegerFeedbackClassDeviceStruct

Purpose This function is provided to allocate and initialize an
IntegerFeedbackClassRec , and is called for extension
devices that have a display upon which an integer can be
displayed. It is passed a pointer to the device and a pointer
to the device control procedure.

Called by DeviceControlProc during the DEVICE_INIT action.

Results Allocates and initializes IntegerFeedbackClassRec .

Returns TRUE on success
FALSE on failure

RegisterFdIo

Purpose This function is provided to register the device’s file
descriptor, read function, and enqueue function.

Called by DeviceControlProc during the DEVICE_INIT action.

Results Registers the device’s file descriptor, read function, and
enqueue function with the server. The device’s read
function is called when there is input pending on the given
file descriptor.

Returns Success on success
!Success on failure

Bool InitIntegerFeedbackClassDeviceStruct(DeviceIntPtr dev,
DeviceIntegerCtrlProc IntegerCtrlProc)

int RegisterFdIo(DevicePtr devptr, int fd,
DeviceReadProc readProc, DeviceEnqueueProc enqueueProc)

Input Devices 225

11

RegisterModifierCheckProc

Purpose This function is provided to register a function to be called
when a keycode needs to be checked for validity by the
device. This is only valid for devices that support keys. See
“DeviceModifierCheckProc” on page 236.

Called by DeviceControlProc during the DEVICE_INIT action.

Results If the device supports keys and this function is not specified,
the server assumes that the keycode is valid. If the function is
specified, the server calls the function to check validity.

Returns Success on success
!Success on failure

RegisterSetDeviceModeProc

Purpose This function is provided to register a function to be called
when a client requests a change in the mode of a device. This
refers to the device reporting absolute or relative positions.
See “DeviceSetModeProc” on page 237.

Called by DeviceControlProc during the DEVICE_INIT action.

Results If this function is not specified, the server assumes that the
mode of this device cannot be changed. If the function is
present, the server calls it to notify the device that the client
requests a mode change.

Returns Success on success
!Success on failure

int RegisterModifierCheckProc(DevicePtr devptr,
DeviceModifierCheckProc ModifierCheckProc)

int RegisterSetDeviceModeProc(DevicePtr devptr,
DeviceSetModeProc SetDeviceModeProc)

226 X Server Device Developer’s Guide—August 1997

11

RegisterSetDeviceValuatorsProc

Purpose This function is provided to register a function to be called
when a client requests a change in the valuators of a device.
See “DeviceSetDeviceValuatorsProc” on page 237.

Called by DeviceControlProc during the DEVICE_INIT action.

Results If this function is not specified, the server assumes that the
valuators of this device cannot be changed. If the function is
present, the server calls it to notify the device that the client
requests a change to the valuators.

Returns Success on success
!Success on failure

RegisterChangeDeviceControlProc

Purpose This function is provided to register a function to be called
when a client requests a change in the control of a device.
This can refer to any control on the device, but is currently
limited to just the resolution of the device. See
“DeviceChangeDeviceControlProc” on page 238.

Called by DeviceControlProc during the DEVICE_INIT action.

Results If this function is not specified, the server assumes that the
control of this device cannot be changed. If the function is
present, the server calls it to notify the device that the client
wishes to change the control.

Returns Success on success
!Success on failure

int RegisterSetDeviceValuatorsProc(DevicePtr devptr,
DeviceSetDeviceValuatorsProc SetDeviceValuatorsProc)

int RegisterChangeDeviceControlProc(DevicePtr devptr,
DeviceChangeDeviceControlProc ChangeDeviceControlProc)

Input Devices 227

11

RegisterXKeyboardInterest

Purpose This function is provided to register interest with the server
to indicate that the given device can become the core
keyboard if a client so requests. The focusable argument
specifies whether the device is focusable when it is not the
core keyboard. See “DeviceChangeCoreKeyboardProc” on
page 238.

Called by DeviceControlProc during the DEVICE_INIT action.

Results The device is registered as a possible core keyboard with the
focusability that is specified. If the device is not registered as
a possible core keyboard, the server assumes that the device
cannot become the core keyboard.

Returns Success on success
!Success on failure

RegisterXPointerInterest

Purpose This function is provided to register interest with the server
to indicate that the given device can become the core pointer
if a client so requests. The focusable argument specifies
whether the device is focusable when it is not the core
pointer.

The DevicePointerAxisChangeProc is called when the
client requests this device to become the core pointer. See
“DevicePointerAxisChangeProc” on page 239.

Called by DeviceControlProc during the DEVICE_INIT action.

int RegisterXKeyboardInterest(DevicePtr devptr, Bool focusable,
DeviceChangeCoreKeyboardProc ChangeCoreKeyboardProc)

int RegisterXPointerInterest(DevicePtr devptr, Bool focusable,
DevicePointerAxisChangeProc PointerAxisChangeProc)

228 X Server Device Developer’s Guide—August 1997

11

Results The device is registered as a possible core pointer with the
focusability that is specified. If the device is not registered as
a possible core pointer, the server assumes that the device
cannot become the core pointer.

Returns Success on success
!Success on failure

mieqUpdateKbdPtr

Purpose This function is provided to update the core keyboard or
pointer device.

Called by The device shared libraries calls mieqUpdateKbdPtr from
the DeviceChangeCoreKeyboardProc or
DevicePointerAxisChangeProc each time the core
keyboard or pointer device changes. mieqUpdateKbdPtr is
called by the device that is becoming the core keyboard or
pointer with it’s DevicePtr in the appropriate argument.
Set the other argument to NULL.

Results The mi event code treats the new device as the core keyboard
or pointer.The old keyboard or pointer are treated as
extension devices by the mi event code.

Returns None

mieqEnqueue

Purpose This function is provided to place the xEvent on the server’s
global event queue.

Called by Many different locations in the server, but for the current
design this routine is being called only from the
DeviceEnqueueProc in the device shared library.

void mieqUpdateKbdPtr(DevicePtr pKbd, DevicePtr pPtr)

void mieqEnqueue(xEvent *e)

Input Devices 229

11

Results The xEvent is placed on the global event queue.The event is
copied from the caller, so the memory can be reused by the
DeviceEnqueueProc .

Returns None

miPointerPosition

Purpose This function is provided to obtain the current location of the
cursor. It is passed two pointers that are filled in with the
current location of the cursor.

Called by The device shared libraries when they need to know the
current location of the cursor.

Results The *x and *y pointers are set to the current x and y
position of the cursor.

Returns None

miPointerDeltaCursor

Purpose This function is provided to move the cursor as a result of
device events. It is passed the delta x and y that the cursor is
to move relative to its current position as well as the time of
the motion event.

Called by DeviceEnqueueProc of the current core pointer in the
device shared library.

Results The cursor is moved dx,dy from its previous position.

Returns None

void miPointerPosition(int *x, int *y)

void miPointerDeltaCursor(int dx, int dy, unsigned long time)

230 X Server Device Developer’s Guide—August 1997

11

miPointerAbsoluteCursor

Purpose This function is provided to move the cursor as a result of
device events. It is passed an absolute x and y position to
which the cursor moves, as well as the time of the motion
event.

Called by DeviceEnqueuProc of the current core pointer in the device
shared library.

Results The cursor is moved to x,y .

Returns None

RegisterHandlers

Purpose This function is provided to register wakeup handlers or
block handlers or both for the device. The server calls
wakeupHandler immediately after it comes out of its
select call due to client input or input device activity. The
server calls blockHandler right before going into the
select call. Some devices such as keyboards might need
this functionality to implement features such as auto repeat.
It is passed the address of the devices wakeup handler or
block handler or both and a pointer to the index of the
handler that the device uses to refer to the handler. A NULL
can be passed for either handler indicating not to register it.

Called by DeviceControlProc during the DEVICE_INIT action.

Results A wakeup handler or block handler or both are registered
with the server.

Returns Success on success
!Success on failure

void miPointerAbsoluteCursor(int x, int y, unsigned long time)

int RegisterHandlers(DeviceWakeupHandler wakeupHandler,
DeviceBlockHandler blockHandler, int *index)

Input Devices 231

11

RemoveHandlers

Purpose This function is provided to remove the device’s block
handler or wakeup handler or both. It is passed the index to
the handlers that was returned in the RegisterHandlers
call.

Called by DeviceControlProc during the DEVICE_INIT action.

Results The device’s block handler or wakeup handler or both are
removed.

Returns None

NextWakeupHandler

Purpose This function is provided to call the next wakeupHandler
registered. It must be called by a device’s wakeupHandler
and passes along all the parameters that are passed into the
device’s DeviceWakeupHandlerProc .

Called by The device’s DeviceWakeupHandlerProc.

Results The wakeup handler that was registered just before the
device’s DeviceWakeupHandlerProc is called.

Returns None

void RemoveHandlers(int index)

void NextWakeupHandler(int index, int nscreen, pointer pbdata,
unsigned long err, pointer pReadmask)

232 X Server Device Developer’s Guide—August 1997

11

NextBlockHandler

Purpose This function is provided to call the next blockHandler
registered. Is must be called by a device’s block handler and
passes all the parameters that are passed into the device’s
DeviceBlockHandlerProc .

Called by The device’s DeviceBlockHandlerProc.

Results The block handler that was registered just before the device’s
DeviceBlockHandlerProc is called.

Returns None

MakeAtom

Purpose This function is provided to make an atom for a device to be
passed as a parameter to AssignTypeAndName . It is passed
a char pointer to the name of the device, the length of the
string, and makeit equals FALSE.

Called by DeviceControlProc during the DEVICE_INIT action.

Results An atom is found.

Returns Atom

void NextBlockHandler(int index, int nscreen, pointer pbdata,
struct timeval **pptv, pointer pReadmask)

Atom MakeAtom(char *name, unsigned len, Bool makeit)

Input Devices 233

11

AssignTypeAndName

Purpose This function is provided to assign a type and name to a
device. It is passed a pointer to the device, the atom returned
from MakeAtom, and the char pointer to the name of the
device.

Called by DeviceControlProc during the DEVICE_INIT action.

Results The dev->type and dev->name entries are set to the values
specified by the arguments.

Returns None

AddEnableDevice

Purpose This function is provided to cause the server to start checking
for input on the device corresponding to the given file
descriptor.

Called by DeviceControlProc during the DEVICE_ON action.

Results The device’s file descriptor is selected for pending input.

Returns None

RemoveEnableDevice

Purpose This function is provided to cause OpenWindows to stop
checking for input on the device corresponding to the given
file descriptor.

void AssignTypeAndName(DeviceIntPtr dev, Atom type, char *name)

void AddEnabledDevice(int fd)

void RemoveEnabledDevice(int fd)

234 X Server Device Developer’s Guide—August 1997

11

Called by DeviceControlProc during the DEVICE_OFF action.

Results The device’s file descriptor is no longer selected for pending
input.

Returns None

Device Shared Library Functions

The functions in this section are in the device shared libraries. The
*DeviceHandlerCompatible, *DeviceControlProc ,
*DeviceEnqueueProc , and *DeviceReadProc functions are required for
each device library. All other functions are optional and depend on the features
a particular device supports.

DeviceHandlerCompatible

Purpose This function checks for compatibility and returns the
device’s major and minor numbers as well as a pointer to
DeviceControlProc .

Results Compares the device’s version number against the version
number passed in. If it is incompatible, return !Success ;
otherwise, fill in the device major and minor number and a
pointer to DeviceControlProc .

Returns Success on success
!Success on failure

DeviceControlProc

Purpose This function allows the server to control the actions of a
device.

typedef int (*DeviceHandlerCompatible)(int major, int minor,
int *myMajor, int *myMinor, int (**pContorlProc)());

typedef int (*DeviceControlProc)(DevicePtr devptr, int action);

Input Devices 235

11

Results Results depend upon the given action:

DEVICE_INIT . The device registers all of its features with the
server, opens the device, registers how to read it, and
initializes itself.

DEVICE_ON. The device turns itself on by calling
AddEnabledDevice .

DEVICE_OFF. The device turns itself off by calling
RemoveEnabledDevice .

DEVICE_CLOSE. The device cleans up its resources and
closes itself. The server is about to exit.

Returns Success on success
!Success on failure

DeviceEnqueueProc

Purpose This function places one or more new xEvents on the global
event queue.

Results Completes any device specific processing on a given event,
converts the event into an xEvent , and then places the event
on the global event queue by calling mieqEnqueue.

Note – The memory associated with the XI_event can be freed after
mieqEnqueue has been called to queue the new xEvents .

Returns None

typedef void (*DeviceEnqueueProc)(DevicePtr devptr,
XI_eventPtr Xev);

236 X Server Device Developer’s Guide—August 1997

11

DeviceReadProc

Purpose This function reads data from a device when there is input
pending, and returns a pointer to a list of XI_events . This
routine is only used for devices that can read themselves.

Results If there is no data to be read, this function returns NULL, sets
numev to 0, and sets again to FALSE.

If there is data to be read, this function returns a pointer to a
list of XI_events and sets numev to the number of
XI_events returned. The server uses again to determine if
the device has more data to be read. If again is set to TRUE,
the server calls this function again without reentering
select . If again is set to FALSE, the function is not called
again without reentering select .

Note – The server passes the list of events back to the device’s enqueue
function one at a time, so the memory for the XI_events is released after the
device has called mieqEnqueue in the DeviceEnqueueProc .

Returns A pointer to a list of XI_events or NULL.
numev indicating the number of events returned.
again indicating the possibility of this device having more
data to be read.

DeviceModifierCheckProc

Purpose This function checks the validity of the given keycode .
Checking occurs when a client is trying to set the modifier
map of a device. This function is only valid for devices that
support keys.

typedef XI_eventPtr (*DeviceReadProc)(DevicePtr devptr,
int * numev, Bool * again);

typedef Bool (*DeviceModifierCheckProc)(DevicePtr devptr,
KeyCode keycode);

Input Devices 237

11

Results None

Returns TRUE if the keycode is valid
FALSE if the keycode is not valid

DeviceSetModeProc

Purpose This function sets the mode of a device. The mode can be
either Absolute or Relative. This routine applies only to
devices that generate DeviceMotionNotify events.

Results On success, the mode of the device is set to mode.
On failure, the mode is unchanged.

Returns Success on success
!Success on failure

DeviceSetDeviceValuatorsProc

Purpose This function sets the valuators of a device to the values in
valuators starting with valuator first_valuator and
continuing through num_valuators .

Results On success, the value of the specified valuators are changed
to valuators .

On failure, the value of the valuators is unchanged.

Returns Success on success
!Success on failure

typedef int (*DeviceSetModeProc)(DevicePtr devptr, int mode);

typedef int (*DeviceSetDeviceValuatorsProc)(DevicePtr devptr,
int *valuators, int first_valuator, int num_valuators);

238 X Server Device Developer’s Guide—August 1997

11

DeviceChangeDeviceControlProc

Purpose This function changes the specified device controls on the
given input device. Currently, only the
DEVICE_RESOLUTION control is supported.

Results On success, the specified control is changed.
On failure, the control is unchanged.

Returns Success on success
!Success on failure

DeviceChangeCoreKeyboardProc

Purpose This function notifies the device that a client has requested
that the device is now the core keyboard (isCore == TRUE)
or that it is now not the core keyboard (isCore == FALSE).
The DeviceChangeCoreKeyboardProc function must call
mieqUpdateKbdPtr to notify the server that the core
keyboard has been changed.

Results On success, the specified control is changed.
On failure, the control is unchanged.

Returns Success on success
!Success on failure

typedef int (*DeviceChangeDeviceControlProc)(DevicePtr devptr,
xDeviceCtl *control);

typedef int (*DeviceChangeCoreKeyboardProc)(DevicePtr devptr,
Bool isCore);

Input Devices 239

11

DevicePointerAxisChangeProc

Purpose This function notifies the device that a client has requested
that the device is now the core pointer (isCore == TRUE)
or that it is now not the core pointer (isCore == FALSE).

If (isCore == TRUE) , axis number x moves the pointer in
the X direction and axis number y moves the pointer in the Y
direction.

DevicePointerAxisChangeProc must call
mieqUpdateKbdPtr () to notify the server that the core
keyboard has been changed.

Results On success, the given device becomes the new core pointer,
and the old core device becomes an extension device that has
its focusability set by its focusable flag.

On failure, the core pointer is unchanged.

Returns Success on success
!Success on failure

DeviceGetMotionProc

Purpose This function returns any events in the device’s motion
history buffer that occurred between the start and stop
times.

Called by ProcGetMotionEvents in dix/devices.c .

Results Copies any events in the device’s motion history buffer that
occurred between the start and stop times to coordinates.

typedef int (*DevicePointerAxisChangeProc)(DevicePtr devptr,
Bool isCore, unsigned char x, unsigned char y);

typedef int (*DeviceGetMotionProc)(DeviceIntPtr devptr,
INT32 *coords, unsigned long start, unsigned long stop,
ScreenPtr pScreen);

240 X Server Device Developer’s Guide—August 1997

11

Returns Number of events copied to coordinates.

DeviceBellProc

Purpose This function rings the device’s bell to the specified percent
of maximum.

Results The device’s bell is rung.

Returns None

DeviceWakeupHandlerProc

Purpose Determined by the device handler implementation.

Results Depends on the device handler implementation.

Returns None

DeviceBlockHandlerProc

Purpose Determined by the device handler implementation.

Results Depends on the device handler implementation.

Returns None

typedef void (*DeviceBellProc)(int newpercent,
DeviceIntPtr devptr);

typedef void (*DeviceWakeupHandlerProc)(int nscreen,
pointer pbdata, unsigned long err, pointer pReadMask);

typedef void (*DeviceBlockHandlerProc)(int nscreen,
pointer pbdata, struct timeval **pptv,
pointer pReadmask);

Input Devices 241

11

DevicePtrCtrlProc

Purpose This function allows the server to control the actions of a
pointer device.

Results Sets the value in the device’s PtrCtrl structure.

Returns None

DeviceKbdCtrlProc

Purpose This function allows the server to control the actions of a
keyboard device.

Results Sets the value in the device’s KeybdCtrl structure.

Returns None

DeviceLedCtrlProc

Purpose This function allows the server to control the actions of a
device with LEDs.

Results Sets the value in the device’s LedCtrl structure.

Returns None

typedef void (*DevicePtrCtrlProc) (DeviceIntPtr devintptr,
PtrCtrl *ctrl);

typedef void (*DeviceKbdCtrlProc) (DeviceIntPtr devintptr,
KeybdCtrl *ctrl);

typedef void (*DeviceLedCtrlProc) (DeviceIntPtr devintptr,
LedCtrl *ctrl);

242 X Server Device Developer’s Guide—August 1997

11

DeviceBellCtrlProc

Purpose This function allows the server to control the actions of a
device with a bell.

Results Sets the value in the device’s BellCtrl structure.

Returns None

DeviceStringCtrlProc

Purpose This function allows the server to control the actions of a
device with a display upon which a string can be displayed.

Results Sets the value in the device’s StringCtrl structure.

Returns None

DeviceIntegerCtrlProc

Purpose This function allows the server to control the actions of a
device with a display upon which an integer can be
displayed.

Results Sets the value in the device’s IntegerCtrl structure.

Returns None

typedef void (*DeviceBellCtrlProc) (DeviceIntPtr devintptr,
BellCtrl *ctrl);

typedef void (*DeviceStringCtrlProc) (DeviceIntPtr devintptr,
StringCtrl *ctrl);

typedef void (*DeviceIntegerCtrlProc) (DeviceIntPtr devintptr,
IntegerCtrl *ctrl);

243

Direct Pixel Access DDX Interface 12

This chapter describes the direct pixel access (DPA) interface. DPA allows the
window server to directly manipulate pixels in drawables that you control in
your DDX handler. The Display PostScript (DPS) extension uses DPA to
improve compositing performance. See the Solaris X Window System Developer’s
Guide for information on compositing operators.

The Direct Access Cycle
The fundamental concept of DPA is the direct access cycle. In a direct access
cycle (or cycle), the DPA user (for example, you or the DPS extension) follows
these steps:

1. Call the directAccessOK() function to inquire whether DPA is allowed
for a given drawable or pair of drawables.

2. If DPA is allowed, call the directAccessStart() function to begin a
cycle.

3. Access the pixels.

4. Call the directAccessEnd() function to end the cycle.

244 X Server Device Developer’s Guide—August 1997

12

Requirements for Drawables Using DPA
DPA can only be used for the pixmap and window drawables on devices with
memory-mapped frame buffers that meet the following requirements. (Note
that these requirements are similar to the requirements of cfb and mfb
packages).

• The byte order and pixel order must match the native order of the server:
• SPARC Big-endian
• x86 Little-endian

• Table 12-1 shows how pixels must be packed in memory:

• Given the return values from directAccessStart() , p and
bytesPerRow , the pointer to the beginning of a scanline y is given by:

CARD8* pStart = p + ((y+pDraw->y) * pixelsPerRow)

If bytesPerPixel >= 1 , the pointer to pixel at (x,y) is:

pStart + ((x + pDraw->x) * bytesPerPixel)

And if bytesPerPixel < 1 , the pointer to the byte containing pixel at
(x ,y) is:

pStart + ((x + pDraw->x) >> shift)

Table 12-1 Required Pixel Packing in Memory

bitsPerPixel bytesPerPixel

32 4

16 2

8 1

4 1/2

2 1/4

1 1/8

bitsPerPixel Shift
1 3
2 2
4 1

Direct Pixel Access DDX Interface 245

12

Initialization

sunDPAScreenRec

Arguments dpsMarkMode is described in “directAccessDPS” on
page 249.

mode is described in “sunDPAMode” on page 245.

directAccessOK() , directAccessDPS() ,
directAccessStart() and directAccessEnd() are
defined in “Device-Supplied Routines” on page 247.

The final member of the structure is an array of integers
reserve for future versions of this interface. Set these
members to 0.

sunDPAMode

mode is one of these available modes defined in
sunDPAMode:

typedef struct{
sunDPAMode mode;
sunDPAMode dpsMarkMode;
sunDPAcessType (*directAccessOK)(DrawablePtr, DrawablePtr);
Bool (*directAccessDPS)(DrawablePtr);
Bool (*directAccessStart)(DrawablePtr, CARD8**, int*);
void (*directAccessEnd)(DrawablePtr);
CARD32 reserved[8]

} sunDPAScreenRec;

typedef enum {
sunDPANone,
sunDPACustom,
sunDPAPixmap,
sunDPAAllDrawables

} sunDPAMode;

246 X Server Device Developer’s Guide—August 1997

12

If the mode is set to sunDPANone, DPA is disabled for
screens controlled by your DDX handler.

If your DDX handler’s pixmaps are simple-memory pixmaps,
such as cfb pixmaps, set the mode to sunDPAPixmap to
enable DPA for all pixmaps.

If your DDX handler’s windows are memory mapped and
the device is stateless, set the mode to
sunDPAAllDrawables to enable DPA for windows and
pixmaps.

If your DDX handler cannot use either of the predefined
implementations, set the mode to sunDPACustom and
provide your own DPA routines.

sunDPAMode and sunDPAScreenRec are defined in the dpa/sundpascr.h
header file.

sunDPAScreenInit

Call the following initialization function from your DDX handler’s
InitOutput() function.

Arguments pDPAdevfuncs is a pointer to a sunDPAScreenRec .

If a handler does not call sunDPAScreenInit , DPA is
disabled for screens controlled by your DDX handler.

Since many DDX handlers require very simple and common
DPA handler functions, two predefined implementations are
provided. For these two modes the function pointers
directAccessOK() , directAccessStart() , and
directAccessEnd() are ignored.

int
sunDPAScreenInit(pScreen, pDPAdevfuncs)

ScreenPtr pScreen;
sunDPAScreenRec*pDPAdevfuncs;

Direct Pixel Access DDX Interface 247

12

Device-Supplied Routines

sunDPAAccessType

Purpose This function determines whether simultaneous DPA is
possible for two drawables. You must provide this function if
your DDX handler’s DPA mode is sunDPACustom .

Returns pDraw1 and pDraw2 are sunDPAAccess types for the two
drawables. If pDraw2 is NULL, call directAccessOK() to
determine whether or not DPA is possible for a single
drawable. The return codes are defined in
dpa/sundpatype.h .

If DPA is not allowed for either of the drawables,
sunDPANeither should be returned.

If DPA is allowed for both drawables at the same time,
sunDPABoth should be returned.

If DPA is allowed for the first drawable, but not the second
(or if pDraw2 is NULL), sunDPAOne should be returned.

If DPA is only allowed for the second drawable, sunDPATwo
should be returned.

Finally, if DPA is allowed for either of the drawables, but not
at the same time, sunDPAEitherNotBoth should be
returned. This might occur, for example, if the hardware
register settings are different for the two drawables.

sunDPAAccessType (*directAccessOk)(DrawablePtr pDraw1,
DrawablePtr pDraw2)

248 X Server Device Developer’s Guide—August 1997

12

directAccessStart

Purpose This function is called to begin a cycle for a drawable. Your
DDX handler should set up any device state required to
access the pixels in the drawable. Then set the contents of p
to the pointer at the beginning of the drawable’s frame
buffer, and set *pLineBytes to the number of bytes per
scanline in the drawable.

This function must be provided if the DDX handler’s DPA
mode is sunDPACustom .

While a cycle is in progress, the only other DDX functions
that might be called are directAccessStart() and
pScreen->SourceValidate . No other functions are called
until the cycle has ended.

Returns If the cycle can be started, directAccessStart() should
return TRUE. If a cycle cannot be started, it should return
FALSE.

directAccessEnd

Purpose This function is called to end a cycle for a given drawable. If
your DDX handler never needs to do anything at the end of
a cycle, this function pointer can be NULL.

Bool (*directAccessStart)(DrawablePtr pDraw, CARD8 **p,
int *pLineBytes)

void (*directAccessEnd)(DrawablePtr pDraw)

Direct Pixel Access DDX Interface 249

12

directAccessDPS

Purpose This function allows the DPS extension to determine whether
or not it should use DPA to mark a given drawable as
accessible.

Note that the return value from directAccessOK() tells
whether DPA is allowed for a drawable.
directAccessDPS() tells you whether DPS should use
DPA. It is a performance hint. The values returned for given
drawable types should be determined during performance
tuning. This function must be provided if the handler
specified dpsMarkMode as sunDPACustom . If dpsMarkMode
is set to sunDPAAllDrawables or sunDPAPixmap ,
predefined implementations of directAccessDPS will be
used. directAccessStart and directAccessEnd will be
used to begin and end a cycle as usual.

Returns If DPS can and should use DPA to mark to the drawable,
directAccessDPS() should return TRUE; otherwise, return
FALSE.

Note – If directAccessDPS() returns TRUE for a given drawable,
directAccessStart() must always succeed for that drawable. This is a
requirement due to the design of the DPS extension.

Note – Currently, this function is not called by the window server. The system
will behave as though the dpsMarkMode were sunDPANone for all drawables.
This function will be used in a future release.

Boll (*directAccessDPS)(DrawablePtr pDraw)

250 X Server Device Developer’s Guide—August 1997

12

251

Debug Server Modules 13

A version of the X window server is available for debugging purposes. It is
included in the SUNWxwdes (SPARC) and SUNWxwdex (x86) packages. Use
the debug server with dbx (1).

The source code for some of the dynamic libraries is also in the DDK CD-ROM.
Use dbx ’s file and use commands to step through the dynamic code.

Now you can step through the code examining values as necessary.

For x86 systems – This does not work on x86 because the -xs compiler switch
is not supported. However, you can still print out the arguments to functions.

example% cd /opt/SUNWddk/ddk_2.6/xserver/bin/sparc
example% dbx Xsun-ddkdebug

(dbx) stop in miSpritePolyFillRect
(dbx) cont
stopped in miSpritePolyFillRect at 0xeec15e60
miSpritePolyFillRect+0x2c: ld [%fp + 68], %o0
warning: can’t find source
/export/ddk/ea2/bin/Xsun/mit/server/ddx/mi/misprite.c
(dbx) use /opt/SUNWddk/ddk_2.6/xserver/server/ddx/mi
(dbx) file misprite.c

252 X Server Device Developer’s Guide—August 1997

13

As a device driver developer, you are most likely interested in the initialization
stage of your driver. However, since the server loads your driver dynamically,
its symbols are not available to you at startup time. You can stop the server
before device initialization in the AddScreen function. This function contains
the address of which it is going to switch to initialize the framebuffer device.

The pfnInit() function pointer should point to your device driver’s
initialization function. Now that your dynamic library has been loaded, you
can set breakpoints and step through your code in dbx .

(dbx) stop in AddScreen
(dbx) run
AddScreen(pfnInit = &xxxxxxInit () at 0xef7628a4, argc = 1, argv = 0xeffffaac) at 0x51f50

253

MIT Shared Memory Extension 14

This chapter describes the functions that a ddx handler may call to enable full
functionality of the MIT Shared Memory (MIT_SHM) extension. This extension
is a standard distributed with X11 Release 6 (X11R6).

The MIT_SHM extension is a version of the ximage interface where the actual
image data is stored in a shared memory segment. This extension can yield a
significant increase in performance for large images.

The following document is part of the MIT_SHM extension, and is online in
the doc/hardcopy/Xext directory.

• MIT_SHM - The MIT Shared Memory Extension, Jonathan Corbet, formatted
and edited for release 5 by Keith Packard, MIT X Consortium.

254 X Server Device Developer’s Guide—August 1997

14

MIT Shared Memory Interface
All ddx handlers may use the following functions to implement the MIT
Shared Memory extension.

ShmRegisterFbFuncs

Purpose This function is provided to register the predefined shared
memory functions. The predefined ShmFuncs record is
registered as follows:

Called by This function is called during device screen initialization.

Results This function initializes the shmFuncs array indexed by the
specified screen number with the ShmFuncs record.

Returns None.

Table 14-1 MIT Shared Memory Extension Functions

Function Name Description

ShmRegisterFbFuncs Registers the cfb-compatible functions. The ddx handler
must accept fake pixmaps. Fake pixmaps are pixmaps with
devPrivates initialized to NULL and an internal format
compatible with cfb. Note that ShmRegisterFbFuncs is
called in mpgScreenInit and miScreenInit , so if your
handler calls either of these functions, no other work is
required.

ShmRegisterFuncs Registers the specified shared memory function vectors.
Note that to enable creation of shared memory pixmaps,
you must use ShmRegisterFuncs or
ShmRegisterFbFuncs .

ShmSetPixmapFormat Registers the specified pixmap format.

void ShmRegisterFbFuncs(ScreenPtr pScreen)

ShmFuncs fbFuncs={fbShmCreatePixmap, fbShmPutImage};

MIT Shared Memory Extension 255

14

ShmRegisterFuncs

Purpose This function is provided to register the shared memory
functions. The ShmFuncsPtr has been defined as follows:

Called by This function is called during device screen initialization.

Results This function initializes the shmFuncs array indexed by the
specified screen number with funcs.

Returns None.

ShmSetPixmapFormat

Purpose This function is provided to register the shared memory
pixmap format. The valid pixmap formats are XYPixmap,
XYBitmap or ZPixmap.

Called by This function is called during device screen initialization.

Results This function initializes the shmPixFormat array indexed by
the specified screen number with format .

Returns None.

void ShmRegisterFuncs(ScreenPtr pScreen, ShmFuncsPtr funcs)

typedef struct _ShmFuncs {
PixmapPtr (* CreatePixmap)();
void (* PutImage)();
} ShmFuncs, *ShmFuncsPtr;

void ShmSetPixmapFormat(ScreenPtr pScreen, int format)

256 X Server Device Developer’s Guide—August 1997

14

257

TheOWconfig File A

The OWconfig file is used by the server to dynamically load extensions,
XInput modules, and DDX graphics handler modules. By default, the
OWconfig file is distributed in the /usr/openwin/server/etc directory.

The format of the OWconfig file is an uncommitted interface between the
OpenWindows server and dynamically loaded modules. This file is a server-
private file. It is read by the OpenWindows server and edited by IHV
installation scripts (see Appendix B, “Packaging and Installation Hints”).

For x86 systems – The OWconfig file can be edited by the kdmconfig utility.
This utility runs during installation. You can also invoke kdmconfig any time
after installation to tailor your configuration.

For x86 systems – You should check the default XSCREENCONFIG and
XSCREEN entries in the OWconfig file to make sure they are appropriate for
your display. If the default entries are not appropriate for your display, you
need to edit them to include the appropriate information.

258 X Server Device Developer’s Guide—August 1997

A

SPARC: Sample OWconfig File
 Code Example A-1 lists a sample SPARC OWconfig file.

Code Example A-1 Sample SPARC OWconfig File

Start SUNWxwplt
Copyright 1993 Sun Microsystems, Inc.
#”@(#)OWconfig1.11 26 May 1993 SMI”
OWconfig file for OpenWindows X server Version 3.4
#
WARNING: This file is automatically generated when
the OpenWindows software package is installed. This file can be
automatically edited by other optional software packages that
are installed on the system.
ANY CHANGES YOU MAKE TO THIS FILE WILL BE LOST DURING
PACKAGE INSTALLATION, REMOVAL AND UPGRADES!
The format of this file is private to the OpenWindows
X Server and subject to change in future releases.

X Display
class=”XDISPLAY” name=”0”

coreKeyboard=”IKBD” corePointer=”IMOUSE”;

CG6 display adapter
class=”XSCREEN” name=”SUNWcg6”

ddxHandler=”ddxSUNWcg6.so.1” ddxInitFunc=”sunCG6Init”;

CG3 display adapter
class=”XSCREEN” name=”SUNWcg3”

ddxHandler=”ddxSUNWcg3.so.1” ddxInitFunc=”sunCG3Init”;

CG4 display adapter
class=”XSCREEN” name=”SUNWcg4”

ddxHandler=”ddxSUNWcg4.so.1” ddxInitFunc=”sunCG4Init”;

BW2 display adapter
class=”XSCREEN” name=”SUNWbw2”

ddxHandler=”ddxSUNWbw2.so.1” ddxInitFunc=”sunBW2Init”;

CG8 display adapter
class=”XSCREEN” name=”SUNWcg8”

ddxHandler=”ddxSUNWcg8.so.1” ddxInitFunc=”sunCG8Init”;

CG2 display adapter
class=”XSCREEN” name=”SUNWcg2”

The OWconfig File 259

A

ddxHandler=”ddxSUNWcg2.so.1” ddxInitFunc=”sunCG2Init”;

sun Keyboard module
class=”XINPUT” name=”IKBD”

ddxHandler=”ddxSUNWkbd.so.1”
ddxInitFunc=”ddxSUNWkbdProc”;

sun Mouse module
class=”XINPUT” name=”IMOUSE”

ddxHandler=”ddxSUNWmouse.so.1”
ddxInitFunc=”ddxSUNWmouseProc”;

sun Dials Compatibility module
class=”XINPUT” name=”IDIALSC”

ddxHandler=”ddxSUNWdialsCompat.so.1”
ddxInitFunc=”ddxSUNWdialsCompatProc”;

sun Dials module
class=”XINPUT” name=”IDIALS”

ddxHandler=”ddxSUNWdials.so.1”
ddxInitFunc=”ddxSUNWdialsProc”;

sun Buttons module
class=”XINPUT” name=”IBUTTONS”

ddxHandler=”ddxSUNWdials.so.1”
ddxInitFunc=”ddxSUNWbuttonsProc”;

Example of a dynamically loaded extension “ACMExtn”
class=”XEXTENSION” name=”ACMExtn”
sharedObject=”ACMExtn.so.1”
initFunc=”ACMExtnExtensionInit”
preLoad=”NO”;

End SUNWxwplt

Code Example A-1 Sample SPARC OWconfig File (Continued)

260 X Server Device Developer’s Guide—August 1997

A

x86: Sample OWconfig File
Code Example A-2 lists a sample x86 OWconfig file.

Code Example A-2 Sample x86 OWconfig File

Start SUNWxwpls
Copyright 1993 Sun Microsystems, Inc.
#”@(#)OWconfig.x861.14 21 Dec 1993 SMI”
OWconfig file for OpenWindows Version 3.4

X Display
class=”XDISPLAY” name=”0”
Please make sure that one of the two following lines regarding the
type of mouse is always uncommented.
It is assumed that you are using a Logitech Mouseman serial mouse by
default.
#
Logitech Mouseman Serial Mouse
 coreKeyboard=”ATKBD” corePointer=”MOUSEMAN-S”

Logitech Bus Mouse
coreKeyboard=”ATKBD” corePointer=”LOGI-B”

dev0=”/dev/fb”
listOfScreens=”my8514”;

Sample XSCREENCONFIG class
class=”XSCREENCONFIG” name=”my8514”

device=”8514”
pmifile=”/usr/openwin/etc/vesa/8514/ati.pmi”
res=”1024x768”;

Standard VGA display adapter, 640x480 and 16 colors.
class=”XSCREEN” name=”vga4”

ddxHandler=”ddxSUNWvga4.so.1” ddxInitFunc=”vga4Init”;

Standard VGA display adapter, 800x600 and 16 colors.
Panning within a 640x480 window
class=”XSCREEN” name=”vga4”

ddxHandler=”ddxSUNWvga4.so.1” ddxInitFunc=”vga4Init”;

8514 display adapter
class=”XSCREEN” name=”8514”

ddxHandler=”ddxSUNW8514.so.1” ddxInitFunc=”i8514Init”;

The OWconfig File 261

A

Super VGA display adapter, 1024x768 and 256 colors.
class=”XSCREEN” name=”vga8”

ddxHandler=”ddxSUNWvga8.so.1” ddxInitFunc=”vga8Init”;

PC Keyboard module
class=”XINPUT” name=”ATKBD”

ddxHandler=”ddxSUNWatkbd.so.1”
ddxInitFunc=”ATKbdProc”
layout=”1”
type=”101”;

Mouseman module
class=”XINPUT” name=”MOUSEMAN-S”

ddxHandler=”ddxSUNWx86mouse.so.1”
ddxInitFunc=”ddxSUNWmouseProc”
buttons=”3”
strmod=”vuidm4p”
dev=”/dev/tty00”;

Logitech serial module
#class=”XINPUT” name=”LOGI-S”
ddxHandler=”ddxSUNWx86mouse.so.1”
ddxInitFunc=”ddxSUNWmouseProc”
buttons=”3”
strmod=”vuidm5p”
dev=”/dev/tty00”;

Logitech bus module
class=”XINPUT” name=”LOGI-B”

ddxHandler=”ddxSUNWx86mouse.so.1”
ddxInitFunc=”ddxSUNWmouseProc”
buttons=”3”
strmod=”vuidm5p”
dev=”/dev/logi”;

3 button Kdmouse bus module
#class=”XINPUT” name=”KDMOUSE-B”
ddxHandler=”ddxSUNWx86mouse.so.1”
ddxInitFunc=”ddxSUNWmouseProc”
buttons=”3”
strmod=”vuid3ps2”
dev=”/dev/kdmouse”;

Code Example A-2 Sample x86 OWconfig File

262 X Server Device Developer’s Guide—August 1997

A

File Format Definition
The OWconfig file is composed of a number of resource entries, described by a
collection of lines similar to a kernel device driver’s .conf file (see
driver.conf (4)). A resource is typically a device, such as a frame buffer or a
keyboard. Each resource entry consists of a number of “attribute=value ”
pairs, separated by white space (including spaces, tabs, and new line
characters) and terminated by a semicolon (;) character. Any characters
following a “#” through the end of the line are treated as a comment and
disregarded.

The quotes around the value strings are required only if the string contains
delimiters (such as white space or “;” (semicolon)). The back slash character
“\” is used as an escape character. For example, \” could be used to include
the “ character as part of a string value. The parsing routines strip the quotes
surrounding string values and pass just the string to the underlying software.
The parsing software treats all values as strings; the interpretation of the string
value is up to you.

Microsoft serial module
#class=”XINPUT” name=”MS-S”
ddxHandler=”ddxSUNWx86mouse.so.1”
ddxInitFunc=”ddxSUNWmouseProc”
buttons=”3”
strmod=”vuidm3p”
dev=”/dev/tty00”;

Microsoft bus module
#class=”XINPUT” name=”MS-B”
ddxHandler=”ddxSUNWx86mouse.so.1”
ddxInitFunc=”ddxSUNWmouseProc”
buttons=”3”
trmod=”vuidm5p”
dev=”/dev/msm”;
End SUNWxwpls

#Sample OWconfig entry
class=”class name” name=”name”

[property-name=value ...];

Code Example A-2 Sample x86 OWconfig File

The OWconfig File 263

A

Each resource entry in the file completely defines an instance of a class. For
each resource class, there is a set of attributes pertaining to that class. Values
for the class and name attributes are required in every resource entry. The class
attribute defines the class of the resource. It can be one of the following:

• XDISPLAY
• XSCREENCONFIG
• XSCREEN
• XINPUT
• XEXTENSION

The name attribute identifies the particular resource through a string unique to
the class (such as SUNWcg6, IKBD, MIT-SHM). Each class might define
additional mandatory attributes specific to that class. Each class is discussed in
greater detail starting on page 265.

To avoid name space collisions between multiple vendors, it is strongly
recommended (as in driver.conf (4)) that the name attribute for vendor-
specific classes begin with a vendor-unique string. A reasonably compact and
unique choice is the vendor over-the-counter stock symbol. With other classes,
such as XEXTENSION, name space collisions can be avoided by registering
extension names with the Xregistry (maintained by The Open Group).

File and Module Search Paths
By default, OpenWindows is installed in /usr/openwin . The directory
/usr/openwin/server/etc contains the default OWconfig file that is
distributed with the OpenWindows software. Similarly, the directory
/usr/openwin/server/modules will contain the DDX handler modules,
Xinput modules and extension modules that are distributed as part of the
OpenWindows package. These constitute components that are distributed and
maintained by Sun.

In addition to this, DDX support utility libraries, such as cfb, mfb, mi, mpg and
server private libraries such as font, typescaler, and dga are located in the
directory /usr/openwin/server/lib.

Since /usr/openwin can be an NFS-mounted installation that is shared by
multiple machines on the network, you need a machine-specific configuration
directory to describe the local system configuration. You must create this
machine-specific directory path in your installation scripts since it is not

264 X Server Device Developer’s Guide—August 1997

A

created by default nor required. The file that describes the local configuration
is the OWconfig file. The server searches for the OWconfig file in
/etc/openwin/server/etc .

For SPARC systems – It is optional to have an OWconfig file in
/etc/openwin/server/etc because by default,
/usr/openwin/server/etc contains the default OWconfig file.

For x86 systems – It is not optional to have an OWconfig file in
/etc/openwin/server/etc ; the kdmconfig utility always creates the file in
/etc/openwin/server/etc . Your installation script can edit the
/etc/openwin/server/etc/OWconfig file.

The OWconfig search path is:

Dynamically loadable modules (XInput, extensions, or DDX handlers) can be
located in /etc/openwin/server/modules . The search path for loadable
modules is:

Multiple OWconfig Files

If an OWconfig file is present in both locations, both files are read, and the
server merges these files into a single database. If there are conflicting entries
in both files (when an entry has the same values for the “class” and “name”
attributes in both files), the server merges both entries on a per-attribute basis.
That is, the entry from /etc/openwin/server/etc will take precedence
over the entry from the file in /usr/openwin/server/etc . If there are
duplicate entries within the same file (when an entry has the same values for
the “class” and “name” attributes in the same file), then the last entry for either
of these attributes is used.

See Appendix B, “Packaging and Installation Hints” for more details.

/etc/openwin/server/etc:/usr/openwin/server/etc

/etc/openwin/server/modules:/usr/openwin/server/modules

The OWconfig File 265

A

The XDISPLAY Class
An XDISPLAY is a collection of graphics output and input devices that the X
server manages. It is a collection of Screens, Core Keyboard and Core Pointer.

The attributes coreKeyboard and corePointer select devices of class
XINPUT as the core keyboard and pointer respectively.

listOfScreens is an optional attribute that is new to this release:

If this attribute is not present, the graphics adapter selection defaults to
/dev/fb . The value of listOfScreens is a colon-separated list of names of
objects of class XSCREENCONFIG. The names can be modified by geometry
specifiers (left, right, top or bottom). The semantics of these specifiers are
equivalent to the command-line modifiers by the same name. If no geometry
specifier is entered or an erroneous specifier is read, then the default value is
"right". See the Xsun (1) man page.

The Screens specified in listOfScreens are added in order. In the above
example, the server recognizes myGX as Screen 0 and my2ndHead as Screen 1.

For x86 systems – If the display adapter is not associated with the kernel driver
(for vga4, vga8 and 8514) the listOfScreens attribute must exist. The
kdmconfig utility will create a listOfScreens attribute and value in the
XDISPLAY class entry.

XDISPLAY

class=”XDISPLAY” name=”0”
coreKeyboard=”IKBD” corePointer=”IMOUSE”
listOfScreens=”myGX:my2ndHead,left”;

[name[:name[,left|right|top|bottom]]]

266 X Server Device Developer’s Guide—August 1997

A

The XSCREENCONFIG Class
An XSCREENCONFIG instantiates an object of class XSCREEN and abstracts
the per-instance configuration information.

The name attribute is referenced in the listOfScreens of the XDISPLAY
class. Names should be unique within an instance of the OWconfig file, and
should help identify the display type.

The device attribute is equivalent to the -dev command-line option as
specified for Xsun .

The dpix , dpiy , defclass , defdepth , and grayvis attributes are optional
and are equivalent to the -dev command-line option as specified for Xsun (1).

The value of the device attribute depends on whether a kernel graphics device
driver is associated with the display adapter or frame buffer. If a driver exists
(as is always the case on SPARC), the device attribute value is the device
special filename associated with the driver (for example, /dev/fb0). If a
driver does not exist (as can happen with several x86 graphics adapters), the
device attribute value is a descriptive name of the graphics adapter (for
example, 8514), and corresponds directly to the name of an object of class
XSCREEN.

#XSCREENCONFIG
class=”XSCREENCONFIG” name=”my8514”

device=”/dev/fb0” # SPARC example
device=”8514” # x86 example
dpix=”90” dpiy=”90”
defclass=”PseudoColor”
defdepth=”8”
grayvis=”NO”
res=”1024x768” # x86 example
pmifile=”/usr/openwin/etc/vesa/i8514/ati.pmi”;# x86 example

The OWconfig File 267

A

The XSCREEN Class
An XSCREEN is a graphics display adapter, or frame buffer.

The value of the name attribute depends on whether a kernel graphics device
driver is associated with the display adapter or frame buffer. If the kernel
driver exists, it is probed with the VIS_GETIDENTIFIER ioctl to determine
the name of the object of class XSCREEN that is loaded by the server. For more
information on drivers, see Writing Device Drivers.

For x86 systems – The name attribute is a descriptive name of the graphics
adapter and corresponds directly to the value of the device attribute in an
object of class XSCREENCONFIG.

The ddxHandler follows the naming convention
ddx<organization><device>.so.<majorVersion>. The initialization function is the
single symbolic entry point into the DDX handler. To avoid namespace
collisions, it is recommended that IHV’s prefix the InitFunc name with an
<organization><device> prefix. It is further recommended that all symbols
internal to the DDX handler, and symbols in support libraries linked to the
DDX handler (if any), be similarly prefixed to minimize namespace collisions.

The XINPUT Class
The XINPUT class is for X Input Extension modules and X input core
Keyboard and Pointer modules.

XSCREEN
class=”XSCREEN” name=”SUNWcg6”

ddxHandler=”ddxSUNWcg6.so.1” ddxInitFunc=”sunCG6Init”;

268 X Server Device Developer’s Guide—August 1997

A

SPARC: Sample XINPUT Class

x86: Sample XINPUT Class

XINPUT modules follow the naming convention:

Devices of class XINPUT are selected as the coreKeyboard or corePointer
devices by setting the attributes in the XDISPLAY class to the appropriate
value. See “The XDISPLAY Class” on page 265.

sun Keyboard module
class=”XINPUT” name=”IKBD”

ddxHandler=”ddxSUNWkbd.so.1”
ddxInitFunc=”ddxSUNWKbdProc”;

sun Mouse module
class=”XINPUT” name=”IMOUSE”

ddxHandler=”ddxSUNWmouse.so.1”
ddxInitFunc=”ddxSUNWmouseProc”;

3-button Kdmouse bus module
class=”XINPUT” name=”KDMOUSE-S”

ddxHandler=”ddxSUNWx86mouse.so.1”
ddxInitFunc=”ddxSUNWmouseProc”
buttons=”3”
strmod=”vuid3ps2”
dev=”/dev/kdmouse”;

ddx< organization ><device >.so.< majorVersion >.

The OWconfig File 269

A

The XEXTENSION Class
The XEXTENSION class is for X Extension modules that are dynamically
loaded by the server.

In this case, the extension name should be registered in the Xregistry
(maintained by the MIT X Consortium) to avoid name space collisions. The
value of the preLoad attribute can be YES or NO depending on whether you
want the server to load this extension at startup (YES), or when
XQueryExtension is called (NO). Either way, XListExtensions lists all
statically linked extensions in the server and dynamically loadable extensions
with an entry in the OWconfig file. XListExtensions simply lists extensions;
it does not cause the extensions to be dynamically loaded.

OWconfig Access Method
The OWconfig Access Method standardizes access to and manipulation of an
OpenWindows configuration (OWconfig) database file. If your DDX handler
requires configuration information, use this method to access that information
specific to your device. Note that not all DDX handlers require configuration
information.

OWconfig Database

An OWconfig database is a hierarchical list of name/value pairs. The meaning
of a particular name/value pair depends upon its position in the hierarchy, as
well as the application’s interpretation of its value. More concretely:

• An OWconfig database is a list of “classes”; each “class” has a name.
• A “class” is a list of “instances”; each “instance” has a name.
• An “instance” is a list of “attributes”; each “attribute” has a name and a

value.

XEXTENSION named ACMExtn
class=”XEXTENSION” name=”ACMExtn”

sharedObject=”ACMExtn.so.1”
initFunc=”ACMExtnExtensionInit”
preLoad=”NO”;

270 X Server Device Developer’s Guide—August 1997

A

As an example, a typical OWconfig database file contains a declaration of an
instance of class “XDISPLAY” whose name is “0” (for screen 0). This instance
of the “XDISPLAY” class may contain definitions for attributes such as
“coreKeyboard” and “corePointer.” The OWconfig file may contain several
declarations of instances of class “XDISPLAY.”

The access method does not enforce class/instance/attribute naming
conventions, nor does it check values of attributes.

OWconfig API

The C language definition of the OWconfig Access Method API may be found
in the include file /usr/openwin/include/X11/Sunowconfig.h .

OWconfigGetClassNames

Purpose All users of this function should call
OWconfigFreeClassNames to free the list and the strings to
which it points.

Returns (char **) to list of class instance names, or NULL if class
did not exist. The end of the list is indicated by a NULL
pointer.

Arguments class : name of class for which to name all instances.

OWconfigFreeClassNames

Purpose Frees results of OWconfigGetClassNames .

Arguments list: NULL terminated list of strings to free.

char **
OWconfigGetClassNames(char *class)

void
OWconfigFreeClassNames(char **list)

The OWconfig File 271

A

OWconfigGetAttribute

Returns (char *) to value of attribute or NULL if attribute could not
be found. The string returned by this function can be freed
using OWconfigFreeAttribute .

Arguments class : name of class to which named attribute belongs

name: name of instance of class to which named attribute
belongs

attribute : name of sought attribute

OWconfigFreeAttribute

Purpose Frees string returned by OWconfigGetAttribute .

Arguments attribute: string, allocated by OWconfigGetAttribute, to be
freed.

OWconfigGetInstance

Purpose OWconfigGetInstance returns a list of attribute
definitions. Use OWconfigFreeInstance to free the list
returned by OWconfigGetInstance .

Arguments class : name of class from which to list attributes

name: name of instance of class from which to list attributes

char *
OWconfigGetAttribute(char *class, char *name, char *attribute)

void
OWconfigFreeAttribute(char *attribute)

OWconfigAttributePtr
OWconfigGetInstance(char *class, char *name, int *numberInAttr)

272 X Server Device Developer’s Guide—August 1997

A

numberInAttr : receives number of attributes in returned
list

Returns OWconfigAttributePtr or NULL.

OWconfigFreeInstance

Frees a list created by OWconfigGetInstance.

Arguments attr : list of attributes to free

numberInAttr : number of attributes in list

Packaging

The API components of the access method are in the following files:

• /usr/openwin/lib/libowconfig.so.1
• /usr/openwin/lib/libowconfig.so
• /usr/openwin/include/X11/Sunowconfig.h

Typical Usage

If you want to retrieve configuration information for your device from the
OWconfig database you will need to use, at a minimum, the
OWconfigGetAttribute and OWconfigFreeAttribute functions. Note
that not all DDX handlers require configuration information.

By the time your DDX handler’s initialization function is called, the server has
loaded into memory a copy of the OWconfig database. The functions in
“OWconfig API” on page 270 are provided as a read-only access method to this
database. There are two types of configuration information that you may want
to access:

• attributes documented in the DDK manual

void
OWconfigFreeInstance(OWconfigAttributePtr attr, int

numberInAttr)

The OWconfig File 273

A

To access these attributes use the documented class and name values as part
of an appropriate OWconfig function call.

• attributes added to an OWconfig file as part of your installation process
(configuration information specific to your device)

To access these attributes you must first know how to access the OWconfig
attribute that belongs to your device. The following code illustrates how to
get this information:

The tag value is the key to locating information for a particular device driver.

int
ddxACMEProc(DevicePtr pAcme, int what)
{
char *tmp;
...
switch(what) {
case DEVICE_INIT:
...

/* The following illustrates how to get configuration */
/* information belonging to this device (ddx) driver ,which */
/* in this case belongs to the XINPUT class, and which */
/* contains an attribute called dev. */
tmp = OWconfigGetAttribute(”XINPUT”,

((DeviceIntPtr)pAcme)->devEntry->tag, “dev”);
...

274 X Server Device Developer’s Guide—August 1997

A

275

Packaging and Installation Hints B

The Loadable DDX interface introduces issues pertaining to packaging and
installation of loadable modules (DDX handlers, Xinput modules and X
Extension modules). This appendix discusses these issues and assumes
familiarity with the Application Packaging & Installation facilities in Solaris
2.x. See the SunOS 5.x Application Packaging and Installation Guide for more
information.

Installation Hints
Loadable modules and OWconfig file entries are installed in either of two
directories, as discussed in “File and Module Search Paths” on page 263. The
directories in /etc/openwin are intended to be machine-specific, or local,
whereas the directories in /usr/openwin could be either local to the machine
or NFS mounted from a remote filesystem. The /etc/openwin location is
recommended for most loadable modules installed by IHVs (Independent
Hardware Vendors). The exception is when a module is being installed on a
server for shared use by a number of workstations requiring the module. In
this case, install the module in the same directory in which either the
SUNWxwplt (SPARC) or SUNWxwpls (x86) package was installed.

Whether you install a module in the /etc or /usr location, your installation
script should always checks for an OWconfig file and the relevant entries in
that location. If an OWconfig file does not exist in the installation location, the
installation script should create it with the relevant module entries inserted in

276 X Server Device Developer’s Guide—August 1997

B

the file. The package should also have a corresponding removal script that
removes any entries inserted by it into the OWconfig file. It should delete the
file if (and only if) it becomes empty as a result of the deletions.

If you use the /etc location for installation, the installation script takes into
account the fact that there might not be sufficient space in the / filesystem to
accommodate large loadable modules. The recommended approach is to install
the DDX modules in a subdirectory under /opt/<package_name> , and
populate the /etc/openwin/server/modules directory with symbolic
links. Install and edit the OWconfig file in the /etc location directly, not via
symbolic links.

Packaging Hints
Follow the following convention for package names:

For example:

• SUNWxwplt Sun’s OpenWindows required package for SPARC

• SUNWxwpls Sun’s OpenWindows required package for x86

• ACMEowdyn ACME dynamo frame buffer’s DDX handler package

The typical convention is that packages edit the OWconfig file to insert entries
with the following comment lines containing the package name. The package
in this example is ACMEowdyn.

The SUNWxwplt package, for example, marks all of the default entries it
installs (in /usr location) as follows:

<organization><package-descriptor>

Start ACMEowdyn
[a number of lines containing the actual OWconfig entry]
End ACMEowdyn

Start SUNWxwplt
[a number of lines containing the default OWconfig entries]
End SUNWxwplt

Packaging and Installation Hints 277

B

Package Delivery Example

The following is an example of the packaging scripts and prototype files for
delivering a package containing the DDX handler module for the ACME
dynamo graphics display adapter. All of these examples are for the
ACMEowdyn package.

Code Example B-1 pkginfo File

PKG=ACMEowdyn
NAME=ACME Dynamo Display Adapter Support
ARCH=sparc
VERSION=1.0.0,REV=2.2.2
CATEGORY=system,graphics
PRODNAME=Dynamo
PRODVERS=2.3
DESC=”OpenWindows dynamically loaded drivers for the Dynamo
display adapter. Not needed if you do not have a Dynamo display
adapter installed on your system.”
BASEDIR=/etc
VENDOR=”ACME Display Adapters, Inc.”
HOTLINE=”1-800-USA-ACME”
EMAIL=”hotline@ACME.COM”
MAXINST=1000
CLASSES=base OWconfig

Code Example B-2 Prototype File

i pkginfo
i copyright
i depend
i i.OWconfig
i r.OWconfig
d base openwin 0775 root bin
d base openwin/server 0775 root bin
d base openwin/server/etc 0775 root bin
e OWconfig openwin/server/etc/OWconfig 0755 root bin
d base openwin/server/modules 0775 root bin
f base openwin/server/modules/ddxACMEdyn.so.1 0755 bin bin

278 X Server Device Developer’s Guide—August 1997

B

Put the following code in a stub file named OWconfig .

Code Example B-3 OWconfig File

Start ACMEowdyn
ACME dynamo display adapter
class=”XSCREEN” name=”ACMEdyn”

ddxHandler=”ddxACMEdyn.so.1” ddxInitFunc=”ACMEdynInit”;
End ACMEowdyn

Code Example B-4 i.OWconfig File

#
Installation script for the OWconfig class
If an OWconfig file existed, remove any entry belonging to
this package, and append a new entry.
#
while read src dst
do

if [-r $dst]
then

An OWconfig file already exists
if [-w $dst]
then

It’s editable by this script, edit it.
cp $dst /tmp/$$OWconfig || exit 2
sed -e “/# Start ACMEowdyn/,/# End ACMEowdyn/d” \
/tmp/$$OWconfig > $dst || exit 2
cat $src >> $dst || exit 2
rm -f /tmp/$$OWconfig

else
An OWconfig file exists that’s not editable !
exit 2

fi
else

An OWconfig file was not present
cat $src >> $dst || exit 2

fi
done
exit 0

Packaging and Installation Hints 279

B

Code Example B-5 r.OWconfig File

#
Removal script for the OWconfig class
Remove any entries that belong to this package.
Delete the file if it’s empty.
#
while read dst
do

sed -e ~~/# Start ACMEowdyn/,/# End ACMEowdyn/d” $dst > \
/tmp/$$OWconfig || exit 2
if [-s /tmp/$$OWconfig]
then

mv /tmp/$$OWconfig $dst || exit 2
else

rm $dst || exit 2
fi

done
exit 0

Code Example B-6 depend File

P SUNWcar Core Architecture, (Root)
P SUNWkvm Core Architecture, (Kvm)
P SUNWcsr Core Sparc, (Root)
P SUNWcsu Core Sparc, (Usr)
P SUNWcsd Core Sparc Devices
P SUNWxwplt OpenWindows required core package for SPARC
P SUNWxwpls OpenWindows required core package for x86

Code Example B-7 copyright File

Copyright 1993 ACME Display Adapters, Inc.
<insert your copyright information here>

All Rights Reserved.

280 X Server Device Developer’s Guide—August 1997

B

281

Virtual User Input Device Interface C

This appendix discusses the manipulation of workstation data, which is mostly
global data related to input and input devices. This chapter also explains the
mechanism that sets up input devices to generate event codes and how a
device driver conforms to the Virtual User Input Device (VUID) interface.

Virtual User Input Device (VUID)
The VUID is an optional interface between input devices and the device
handler. Device drivers in OpenWindows must read themselves and are not
required to generate VUID events. Devices can generate VUID events, a
variation of the VUID format, or a totally new format. The VUID format
provided in this appendix is an example format.

What Kind of Devices?

VUID is targeted to input devices that gather command data from users.
Examples of these devices are: mice, keyboards, joysticks, light pens, knobs,
sliders, buttons, and ASCII terminals. The VUID interface is not designed to
support input devices that produce extremely large amounts of data, such as
input scanners, disk drives, and voice packets.

282 X Server Device Developer’s Guide—August 1997

C

VUID Station Codes
This section defines the layout of the address space of VUID station codes. It
explains how to extend the VUID address space.

Address Space Layout

The address space for VUID events is 16-bits long, from 0 to 65535 inclusive. It
is broken into 256 segments that are 256 entries long (VUID_SEG_SIZE). The
top 8 bits contain a VUID segment identifier value. The bottom 8 bits contains
a segment-specific value from 0 to 255. Some segments are predefined and
some are available for expansion. Here is how the address space is currently
broken down:

• ASCII_DEVID (0x00) — ASCII codes, which include META codes.

• TOP_DEVID (0x01) — Top codes, which are ASCII with the 9th bit on.

• Reserved (0x02 to 0x7F) — For Sun VUID implementations.

• Reserved for Sun customers (0x80 to 0xFF) — If you are writing a new
VUID, you can use a segment in here.

Adding a New Segment

The central registry of virtual user input devices is
usr/include/sys/vuid_event.h . To allocate a new VUID you must
modify this file:

• Choose an unused portion of the address space. VUIDs from 0x00 to 0x7F
are reserved for use by Sun. VUIDs from 0x80 to 0xFF are reserved for Sun
customers.

• Add the new device with a *_DEVID #define in this file. Briefly describe
the purpose or usage or both of the device. Mention the place where more
information can be found.

• Add the new device to the Vuid_device enumeration with a
VUID_devname entry.

• List the specific event codes in another header file that is specific to the new
device. ASCII_DEVID , TOP_DEVID and WORKSTATION_DEVID events are
listed in vuid_event.h .

Virtual User Input Device Interface 283

C

Firm Events
A stream of firm events is what your driver is expected to emit when called
through the read system call. This stream is a byte stream that encodes
Firm_event structures. A firm event is a structure comprising an ID that
indicates what kind of event it is, the value of the event, and a time when this
event occurred; it also carries some information that allows the event’s
eventual consumer to maintain the complete state of its input system.

The Firm_event Structure

The firm_event structure is defined in usr/include/sys/vuid_event.h :

id — is the event’s unique identifier. It is either the id of an existing VUID
event (if you are trying to emulate part of the VUID) or one you created.

value — is the event’s value. It is often 0 (up) or 1 (down). For valuators it
is a 32-bit integer.

time — is the event’s timestamp of when the event occurred. The
timestamp is not defined to be meaningful except to compare with other
Firm_event time stamps. In the kernel, a call to uniqtime , which takes a
pointer to a struct timeval , gets you a close-to-current unique time. In
user processes, a call to gettimeofday (2) gets time from the same source
(but it is not guaranteed to be unique).

typedef struct firm_event {
u_short id;
u_char pair_type;
u_char pair;
int value;
struct timeval time;

} Firm_event;

#define FE_PAIR_NONE 0
#define FE_PAIR_SET 1
#define FE_PAIR_DELTA 2
#define FE_PAIR_ABSOLUTE 3

284 X Server Device Developer’s Guide—August 1997

C

Pairs

The pair_type and pair fields enable a consumer of events to maintain
input state in an event-independent way. The pair field is critical for an input
state maintenance package—one that is designed to know about the semantics
of particular events, to maintain correct data for corresponding absolute, delta,
and paired-state variables. Some examples help make this clear:

• You have a tablet emitting absolute locations. Depending on the client, the
absolute location is important (for digitizing) or the difference between the
current location and the previous location is important (for computing
acceleration while tracking a cursor).

• You have a keyboard in which the user has typed ^C. Your driver first emits
a SHIFT_CTRL event as the control key goes down. Next your driver emits
a ^C event (one of the events from the ASCII VUID segment) as the “c” key
goes down. Now the application that your are driving happens to be using
the “c” key as a shift key in some specialized application.

The VUID supports a notion of updating a companion event at the same time
that a single event is generated. In the first situation, your want your tablet to
update companion absolute and relative event values with a single event. In
the second situation, you want your keyboard to update companion ^C and
“c” event values with a single event. The VUID supports this notion of
updating a companion event in such a way as to be independent from these
two particular cases. pair_type defines the type of companion event:

FE_PAIR_NONE — is the common case in which pair is not defined, that is,
there is no companion.

FE_PAIR_SET — is used for ASCII controlled events in which pair is the
uncontrolled base event, that is, ^C and “c” or “C”, depending on the state
of the shift key. The use of this pair type is not restricted to ASCII situations.
This pair type simply says to set the pairth event in id ’s VUID segment to
value .

FE_PAIR_DELTA — identifies pair as the delta companion to id . This
means that the pair th event in id ’s VUID segment is set to the delta of id ’s
current value and value . Always create VUID valuator events as
delta/absolute pairs. For example, the events LOC_X_DELTA and
LOC_X_ABSOLUTE are pairs and the events LOC_Y_DELTA and
LOC_Y_ABSOLUTE are pairs.

Virtual User Input Device Interface 285

C

FE_PAIR_ABSOLUTE — identifies pair as the absolute companion to id .
This means that the pair th event in id ’s VUID segment is set to the sum of
id ’s current value and value . Always create VUID valuator events as
delta/absolute pairs.

As indicated, pair must be in the same VUID segment as id .

Device Controls
A VUID driver responds to a variety of device controls.

Output Mode

It is more common to start from an existing device driver that already speaks
its own native protocol and flush this old protocol in favor of the VUID
protocol. In this case, you might want to operate in both modes. VUID*FORMAT
ioctls are used to control which byte stream format an input device emits.

VUIDSFORMAT sets the input device byte stream format to one of:

• VUID_NATIVE — the device’s native byte stream format (it could be VUID).

• VUID_FIRM_EVENT — the byte stream format is Firm_events .

An errno of ENOTTY or EINVAL indicates that a device cannot speak
Firm_events .

VUIDGFORMAT gets the input device byte stream format.

286 X Server Device Developer’s Guide—August 1997

C

287

Dynamically Loadable Extensions D

X extensions must meet the following criteria to be dynamically loadable by
the server:

• The extension must be decoupled from the DIX and DDX layers of the
server. This means that the extension must not require any server code
changes to the DIX or DDX code. Implement all extensions with X11R6
wrappers around DDX vectors.

• The extension must not depend on any resource devPrivates . An
exception is the Screen devPrivates , which can be dynamically
reallocated, unlike other resource devPrivates (such as Window and GC)
that can only be allocated before any resources are instantiated.

Follow these steps to make an X extension meet these criteria:

1. Compile and link the extension as a shared object.

Note – If you are upgrading from an earlier release, it is a good idea to compile
with the SUNSOFT and SUNSOFT_BUYBACK flags turned on as in the example
above.

example% cc -K PIC -DSUNSOFT_BUYBACK -DSUNSOFT ... *.c
example% ld -G -z text *.o ... -o ACMExtn.so.1

288 X Server Device Developer’s Guide—August 1997

D

For x86 systems – On some SunPro development system releases, -z text
flags errors against non-relocatable sections in instances where no problems
exist. In general, you can build the shared object without the -z text flag.

2. Create an entry for the extension in the OWconfig file.
See Appendix A, “The OWconfig File” and Appendix B, “Packaging and
Installation Hints” for information on adding this entry.

3. Install the shared object into the modules directory.
The server searches the following path for extension modules listed in the
OWconfig file:
/etc/openwin/server/modules:/usr/openwin/server/modules .
See Appendix B, “Packaging and Installation Hints” for more information.

4. Start the server and verify if the extension is listed with xdpyinfo .
XListExtensions lists the extension as available if an entry in the
OWconfig file exists, without actually forcing the extension to be loaded.

5. Invoke XQueryExtension or make an extension request to verify that the
extension actually gets dynamically loaded.

289

Index

Numerics
4-bit deep screen format note, 21

A
AddEnableDevice function, 233
AggregatePlanes function, 63

code example, 64
default value, 63

ancillary buffers, 151
AssignTypeAndName function, 233

C
CachedDrawCleanup function, 194
CachedDrawInit function, 193
ChokeFb function, 199
CloseScreen function, 25
CMAP library

introduction, 103
allocating unique WIDs, 136
allocating unique WIDs, example

code, 137
changing a colormap, 133
changing a window’s WID, 132
colormap flashing reduction, 108
controlling MHC’s WIDs, 128 to 131
initialization functions, list of, 104

overloading WIDs, 129
using WID, 89

CmapClutPoolDesc structure, 115
cmapGetColorData16 function, 110
cmapGetColorData8 function, 109
cmapMhcChangeFlavor function, 134
cmapMhcForceOverload function, 130
cmapMhcReleaseOverload function, 131
cmapMhcWindowAttachWid

function, 132
cmapMhcWindowDetachWid

function, 133
CmapSetup function, 201
color LUT pool description, 114
colormap equivalence, 104
colormap flashing reduction with

CMAP, 108
colormaps

sharing, 104
colormaps and DGA, 204
control plane group device with OVL, 70
CopyAreaAndPaintType function, 78
CopyPaintType function, 76
CopyPlanes function, 62

code example, 64
default value, 63

cursor

290 X Server Device Developer’s Guide—August 1997

hardware, 34 to 44
kernel tracking, 41, 44
software, 30 to 34

custom device with OVL, 71

D
DBSetup function, 195
DDX handler naming convention, 13
DDX interface, basic functions, 29
DDX versioning, 12 to 14
debugging note, 10
device self-identification, 12
DeviceBellCtrlProc function, 242
DeviceBellProc function, 240
DeviceBlockHandlerProc function, 240
DeviceChangeCoreKeyboardProc

function, 238
DeviceChangeDeviceControlProc

function, 238
DeviceControlProc function, 234

DEVICE_CLOSE action, 212
DEVICE_INIT action, 211
DEVICE_OFF action, 212
DEVICE_ON action, 211

device-dependent initialization, 18
DeviceEnqueueProc function, 235
DeviceGetMotionProc function, 239
DeviceHandlerCompatible function, 234
DeviceIntegerCtrlProc function, 242
DeviceKbdCtrlProc function, 241
DeviceLedCtrlProc function, 241
DeviceModifierCheckProc function, 236
DevicePointerAxisChangeProc

function, 239
DevicePtrCtrlProc function, 241
DeviceReadProc function, 236
DeviceSetDeviceValuatorsProc

function, 237
DeviceSetModeProc function, 237
DeviceStringCtrlProc function, 242
DeviceWakeupHandlerProc function, 240

DGA drawable client library
overview, 139 to 144
backing store, 143, 172 to 177
backing store and screen

diagram, 143
clipping state, 166 to 170
compiling and linking, 144
cursor conflict, 170 to 172
DGA drawables, 140
drawable sites, 161 to 166
drawable types, 140
locking and change detection, 147 to

151
sites, 142
utility functions, 158 to 161

DGA drawable DDX library
caching functions, 201 to 203
device functions, 191 to 201
device information functions, 203 to

204
initialization, 189 to 190

dga_buffer_address function, 156
dga_buffer_bitsperpixel function, 157
dga_buffer_linebytes function, 157
dga_buffer_site function, 155
dga_buffer_sitechg function, 156
dga_buffer_type function, 154
dga_cm_devfd function, 182
dga_cm_devinfop function, 182
dga_cm_get_client_infop function, 183
dga_cm_grab function, 181
dga_cm_set_client_infop function, 183
dga_cm_ungrab function, 181
dga_cm_write function, 183
Dga_cur_memimage structure, 171
Dga_cur_memimage structure, DGA_

DRAW_MODIF note, 172
dga_draw_address function, 165
dga_draw_bbox function, 167
dga_draw_bitsperpixel function, 166
dga_draw_buffer_swap function, 157
dga_draw_bufferchg function, 154
dga_draw_clipchg function, 166

Index 291

dga_draw_clipinfo function, 169
dga_draw_curshandle function, 171
dga_draw_depth function, 160
dga_draw_devfd function, 159
dga_draw_devinfo function, 161
dga_draw_devname function, 159
dga_draw_display function, 158
dga_draw_empty function, 168
dga_draw_get_buffers function, 154
dga_draw_get_client_infop function, 160
dga_draw_grab_buffer function, 153
dga_draw_id function, 158
dga_draw_linebytes function, 166
DGA_DRAW_LOCK macro, 148
DGA_DRAW_LOCK_SRC_AND_DST

macro, 149
DGA_DRAW_MODIF macro, 150
dga_draw_rtnactive function, 175
dga_draw_rtncached function, 175
dga_draw_rtnchg function, 174
dga_draw_rtndevinfop function, 176
dga_draw_rtndevtype function, 176
dga_draw_rtndimensions function, 177
dga_draw_rtnpixels function, 177
dga_draw_set_client_infop function, 160
dga_draw_site function, 164
dga_draw_sitechg function, 162
dga_draw_sitegetnotify function, 164
dga_draw_sitesetnotify function, 163
dga_draw_swap_check function, 158
dga_draw_type function, 159
dga_draw_ungrab_buffer function, 153
DGA_DRAW_UNLOCK macro, 148
DGA_DRAW_UNLOCK_SRC_AND_

DST macro, 150
dga_draw_visibility function, 168
dga_draw_widinfop function, 186
DGA_INIT macro, 145
DgaAvail function, 191
dgaCacheDescribeDev function, 202

dgaCacheStateChange function, 202
DgaDevFuncsDraw structure, 190
dgaDevInfoChange function, 204
dgaDevInfoGet function, 203
dgaScreenInit function, 189
dgaSharedDataInfo function, 202
direct color LUT, simulating indirect color

LUT, 112
directAccessDPS function, 249
directAccessEnd function, 248
directAccessStart function, 248
document conventions, xx
drawable site types, definition, 142
drawables, definition, 140

E
export supported visuals, 22
extensions

requirements for dynamically
loading, 287 to 288

F
FcsSetup function, 197
firm_event structure, 283 to 285
freeMpgInfo function, 60
ftp program, 7

G
gamma-corrected visuals, 25 to 28
GetClutInfos function, 80
GetDevname macro, 19
getMpgInfoFromVisual function, 59
GrabDrawable function, 192
GrabDrawable function, first grab

notes, 192

H
hardware cursor, 34 to 44
hardware window IDs, 85 to 86

292 X Server Device Developer’s Guide—August 1997

hardwareSpriteFuncs array, 43

I
indirect color LUT, simulating direct color

LUT, 112
InitBellFeedbackClassDeviceStruct

function, 223
InitButtonClassDeviceStruct

function, 218
InitFocusClassDeviceStruct function, 220
initialization

device dependent, 18
function, 11
SPARC example, 11
steps, 16
x86 example, 11

InitIntegerFeedbackClassDeviceStruct
function, 224

InitKbdFeedbackClassDeviceStruct
function, 221

InitKeyboardDeviceStruct function, 216
InitKeyClassDeviceStruct function, 217
InitLedFeedbackClassDeviceStruct

function, 222
initPixmap function, 48
InitPointerDeviceStruct function, 216
InitProximityClassDeviceStruct

function, 220
InitPtrFeedbackClassDeviceStruct

function, 221
InitStringFeedbackClassDeviceStruct

function, 223
InitValuatorAxisStruct function, 219
InitValuatorClassDeviceStruct

function, 218
Input extension library

overview, 206
adding a device, 210 to 215
block diagram, 206
close device, 210
debugging the device handler, 214
device control procedure, 211

device shared functions, 234 to 242
device-dependent procedures, 214
enqueue device procedure, 213
functions, 215 to 242
get device events procedure, 212
initialization, 207
open device, 208
OWconfig file entry, 214
prerequisite MIT documents, 205
reading devices data flow

diagram, 209
reading input data, 208
restart and shutdown, 210
STREAMS module, 215
VUID

overview, 281
device controls, 285
firm events, 283 to 285
firm_event structure, 283
station codes, 282

writing the device handler, 211 to 214

L
libraries

colormap (CMAP), 103 to 138
DGA drawable DDX, 189 to 204
Input extension, 205 to 242
multiple plane group (MPG), 45 to 64
overlay windows (OVL), 67 to 84
where to initialize, 23
window ID (WID), 85 to 102

loadable DDX handler
device self-identification, 12
initialization function, 11
installation hints, 275 to 276
packaging hints, 276 to 279
versioning, 12 to 14

loadable DDX interface
debugging note, 10
how the server interfaces with, 9

M
MakeAtom function, 232

Index 293

mapped-access devices, 108
miDC layer, 30 to 31
mieqEnqueue function, 228
mieqUpdateKbdPtr function, 228
minimize window exposures, how to, 61

to 64
miPointer layer, 32 to 33
miPointerAbsoluteCursor function, 230
miPointerDeltaCursor function, 229
miPointerPosition function, 229
miPointerScreenFuncs, 32
miPointerSpriteFuncs, 32
miPointerSpriteFuncs sample code, 37 to

40
miSetZeroLineBias function, 34
miSprite layer, 33 to 34
MPG info, definition, 46
MPG library

architecture overview, 45 to 48
data structure initialization, 47
data structure initialization code

example, 48
functions, 48 to 64
initialization order with DGA

note, 58
interface diagram, 46
macros, 52
plane group aliasing, 53
with WID, 88, 89

MPG_DRAW, use with note, 53
mpg_priv_scr macro, 63
mpgChangeInfo function, 59
mpgCopyPlanes function, 62
mpgCursorInitialize function, 60
mpgGetScreenState, 49
mpgInfo, changing diagram, 118
mpgInsertPlanegroup function, 51
mpgScreenInit function, 57
mpgSetCursorHasEnable function, 61
mpgSetCursorValues, 61
mpgSetScreenFuncs function, 65
mpgVisInfo diagram, 117

mutiple plane support, 3

N
NextBlockHandler function, 232
NextWakeupHandler function, 231

O
other applicable documents, xix
overview

DDX Interface, 2
utility libraries, 2

OVL library
introduction, 67
device setup, 68 to 71

control plane group, 70
custom, 71
shared, 71
transparent pixel, 69

initialization, 72 to 73
MPG dependency note, 68

OvlDevFuncs structure, 76
ovlGetPaintType function, 75
ovlIsOverlay function, 75
OvlPairs structure, 73
ovlScreenInit function, 73
ovlWrapDevFuncs function, 74
OWconfig file

access method
functions, 270 to 272
packaging, 272
typical usage, 272

attributes, list of, 263
file and module search paths, 263
file format definition, 262
SPARC example file, 258
x86 example file, 260
XDISPLAY class, 265
XEXTENSION class, 269
XSCREEN class, 267
XSCREENCONFIG class, 266

OWconfig file
search path, SPARC, 264

294 X Server Device Developer’s Guide—August 1997

search path, x86, 264
OWconfigFreeAttribute function, 271
OWconfigFreeClassNames, 270
OWconfigFreeClassNames function, 270
OWconfigGetAttribute function, 271
OWconfigGetClassNames, 270
OWconfigGetClassNames function, 270
OWconfigGetInstance function, 271

P
pixmap formats supported, 20
plane group aliasing, 53
prerequisite knowledge, xvii

R
ReadScreen function, 82
ReadScreenInit function, 81
ReadScreenUninit function, 83
RegisterChangeDeviceControlProc

function, 226
RegisterFdIo function, 224
RegisterHandlers function, 230
RegisterModifierCheckProc function, 225
RegisterSetDeviceModeProc

function, 225
RegisterSetDeviceValuatorsProc

function, 226
RegisterXKeyboardInterest, 227
RegisterXPointerInterest function, 227
RemoveEnableDevice function, 233
RemoveHandlers function, 231

S
SaveScreen function, 24
SaveScreen function, sample code, 24
screen pixmap, definition, 46
screenFuncs function, 43
ScreenRec function, 17
SetupScreen function, 50

shared device with OVL, 71
ShmRegisterFbFuncs function, 254
ShmRegisterFuncs function, 255
ShmSetPixmapFormat function, 255
simple frame buffer support, 3
software cursor, 30 to 34
software WID object, 86
StereoSetup function, 198
storeColorsFunc example code, 110
Sun mouse, server constraints note, 30
sunDPAAccessType function, 247
sunGetDDKVersion function, 16
sunGetMonitorRes function, 21
sunGetVisualInfo function, 22
sunHWCursor functions, 42 to 44
sunHWCursor layer, 41 to 44
sunInitBanner function, 23
sunOpenFrameBuffer function, do not use

note, 19
sunPutInHardware function, 43
sunQueryBestSize function, 42
sunSaveScreen function, do not use

note, 24
sunScreenAllocate function, 18
sunScreenInit function, do not use

note, 23
sunScreenRec data structure, minimize

dependencies note, 19
sunSetPixmapFormat function, 20
sunSprite layer, 35 to 36
SwitchScreen function, 58
SyncDrawable function, 200

T
take_down_func structure, 171
take_down_func structure, call note, 172
transparent pixel device with OVL, 69

U
UngrabDrawable function, 192

Index 295

UngrabDrawable function, first grab
note, 192

UnsyncDrawable function, 200

V
virtual user input device (VUID)

interface, 281 to 285

W
WID library

allocation function example
code, 101

changing a WID with CMAP, 132
data types, 90 to 92
device-dependent allocation, 100
free functions, 100, 102
functions, 93 to 100
hardware, 85 to 86
how to access, 88
object attributes, 86 to 88
overloading WIDs with CMAP

library, 129
pixel attributes, definition, 85
using CMAP, 89
using MPG, 88, 89
with DDX handlers, 88

widAllocate function, 94
WidAllocFunc structure, 91
widAllocObj function, 99
widDecref function, 95
WidFreeFunc structure, 92
widFreeObj function, 100
widGetColorLut function, 98
widGetDevData function, 97
widGetFlavor function, 97
widGetNumber function, 96
widGetScreen function, 95
widGetUnique function, 97
widGetValue function, 96
widGetVisual function, 95
widGetWindowWid function, 99
widIncref function, 94

WidPtr structure, 90
widScreenClose function, 93
widScreenInit function, 93
widSetColorLut function, 98
WidSetColorLutFunc structure, 92
widSetDevData function, 97
WidSetup function, 196
widSetValue function, 96, 99
widSetWindowWid function, 98
widWinGetValue function, 96
wx_dbuf structure, device-specific

field, 195

X
X11 sample server, obtaining, xx
X11 sample server, porting

information, xx
XDgaDrawGrabFCS function, 186
XDgaDrawGrabStereo function, 187
XDgaDrawGrabWids function, 185
XDgaGrabColormap function, 180
XDgaGrabDrawable function, 146
XDgaUnGrabColormap function, 182
XDgaUnGrabDrawable function, 147
XDISPLAY class, 265
XEXTENSION class, 269
XOvlClutInfo structure, 76
XSCREEN class, 267
XSCREENCONFIG class, 266

Z
ZbufSetup function, 198

296 X Server Device Developer’s Guide—August 1997

