
Transport Interfaces Programming
Guide

Sun Microsystems, Inc.
2550 Garcia Avenue

Mountain View, CA 94043-1100
U.S.A.

Part No: 802-5886
August 1997

Copyright 1997 Sun Microsystems, Inc. 901 San Antonio Road, Palo Alto, California 94303-4900 U.S.A. All rights reserved.
This product or document is protected by copyright and distributed under licenses restricting its use, copying, distribution, and
decompilation. No part of this product or document may be reproduced in any form by any means without prior written authorization of
Sun and its licensors, if any. Third-party software, including font technology, is copyrighted and licensed from Sun suppliers.
Parts of the product may be derived from Berkeley BSD systems, licensed from the University of California. UNIX is a registered
trademark in the U.S. and other countries, exclusively licensed through X/Open Company, Ltd.
Sun, Sun Microsystems, the Sun logo, SunSoft, SunDocs, SunExpress, and Solaris are trademarks, registered trademarks, or service marks
of Sun Microsystems, Inc. in the U.S. and other countries. All SPARC trademarks are used under license and are trademarks or registered
trademarks of SPARC International, Inc. in the U.S. and other countries. Products bearing SPARC trademarks are based upon an
architecture developed by Sun Microsystems, Inc.
The OPEN LOOK and SunTM Graphical User Interface was developed by Sun Microsystems, Inc. for its users and licensees. Sun
acknowledges the pioneering efforts of Xerox in researching and developing the concept of visual or graphical user interfaces for the
computer industry. Sun holds a non-exclusive license from Xerox to the Xerox Graphical User Interface, which license also covers Sun’s
licensees who implement OPEN LOOK GUIs and otherwise comply with Sun’s written license agreements.

RESTRICTED RIGHTS: Use, duplication, or disclosure by the U.S. Government is subject to restrictions of FAR 52.227–14(g)(2)(6/87) and
FAR 52.227–19(6/87), or DFAR 252.227–7015(b)(6/95) and DFAR 227.7202–3(a).
DOCUMENTATION IS PROVIDED “AS IS” AND ALL EXPRESS OR IMPLIED CONDITIONS, REPRESENTATIONS AND WARRANTIES,
INCLUDING ANY IMPLIED WARRANTY OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR
NON-INFRINGEMENT, ARE DISCLAIMED, EXCEPT TO THE EXTENT THAT SUCH DISCLAIMERS ARE HELD TO BE LEGALLY
INVALID.

Copyright 1997 Sun Microsystems, Inc. 901 San Antonio Road, Palo Alto, Californie 94303-4900 Etats-Unis. Tous droits réservés.

Ce produit ou document est protégé par un copyright et distribué avec des licences qui en restreignent l’utilisation, la copie, la
distribution, et la décompilation. Aucune partie de ce produit ou document ne peut être reproduite sous aucune forme, par quelque
moyen que ce soit, sans l’autorisation préalable et écrite de Sun et de ses bailleurs de licence, s’il y en a. Le logiciel détenu par des tiers, et
qui comprend la technologie relative aux polices de caractères, est protégé par un copyright et licencié par des fournisseurs de Sun.
Des parties de ce produit pourront être dérivées du système Berkeley BSD licenciés par l’Université de Californie. UNIX est une marque
déposée aux Etats-Unis et dans d’autres pays et licenciée exclusivement par X/Open Company, Ltd.
Sun, Sun Microsystems, le logo Sun, SunSoft, SunDocs, SunExpress, et Solaris sont des marques de fabrique ou des marques déposées, ou
marques de service, de Sun Microsystems, Inc. aux Etats-Unis et dans d’autres pays. Toutes les marques SPARC sont utilisées sous licence
et sont des marques de fabrique ou des marques déposées de SPARC International, Inc. aux Etats-Unis et dans d’autres pays. Les produits
portant les marques SPARC sont basés sur une architecture développée par Sun Microsystems, Inc.
L’interface d’utilisation graphique OPEN LOOK et SunTM a été développée par Sun Microsystems, Inc. pour ses utilisateurs et licenciés.
Sun reconnaît les efforts de pionniers de Xerox pour la recherche et le développement du concept des interfaces d’utilisation visuelle ou
graphique pour l’industrie de l’informatique. Sun détient une licence non exclusive de Xerox sur l’interface d’utilisation graphique Xerox,
cette licence couvrant également les licenciés de Sun qui mettent en place l’interface d’utilisation graphique OPEN LOOK et qui en outre
se conforment aux licences écrites de Sun.
CETTE PUBLICATION EST FOURNIE “EN L’ETAT” ET AUCUNE GARANTIE, EXPRESSE OU IMPLICITE, N’EST ACCORDEE, Y
COMPRIS DES GARANTIES CONCERNANT LA VALEUR MARCHANDE, L’APTITUDE DE LA PUBLICATION A REPONDRE A UNE
UTILISATION PARTICULIERE, OU LE FAIT QU’ELLE NE SOIT PAS CONTREFAISANTE DE PRODUIT DE TIERS. CE DENI DE
GARANTIE NE S’APPLIQUERAIT PAS, DANS LA MESURE OU IL SERAIT TENU JURIDIQUEMENT NUL ET NON AVENU.

Please
Recycle

Contents

Preface vii

1. Introduction to Network Programming Interfaces 1

The Client-Server Model 1

Network Services in the Solaris Environment 3

Layered Protocols 4

Open Systems Interconnection (OSI) Reference Model 5

TCP/IP Internet Protocol Suite 7

TCP/IP Protocol Stack 7

Connection Oriented and Connectionless Protocols 9

Connection-Oriented Protocols 9

Connectionless Protocols 10

Choosing Between COTS and CLTS 10

2. Programming With Sockets 11

Sockets are Multithread Safe 11

SunOS Binary Compatibility 11

What Are Sockets? 12

Socket Libraries 12

Socket Types 13

Socket Tutorial 13

Contents iii

Socket Creation 13

Binding Local Names 14

Connection Establishment 16

Connection Errors 17

Data Transfer 18

Closing Sockets 19

Connecting Stream Sockets 19

Datagram Sockets 23

Input/Output Multiplexing 27

Standard Routines 30

Host Names 30

Network Names 31

Protocol Names 31

Service Names 31

Other Routines 32

Client-Server Programs 33

Servers 33

Clients 36

Connectionless Servers 37

Advanced Topics 39

Out-of-Band Data 40

Nonblocking Sockets 41

Asynchronous Sockets 42

Interrupt-Driven Socket I/O 43

Signals and Process Group ID 44

Selecting Specific Protocols 45

Address Binding 46

Broadcasting and Determining Network Configuration 47

iv Transport Interfaces Programming Guide ♦ August 1997

Zero Copy and Chechsum Offload 50

Socket Options 50

inetd Daemon 52

3. Programming with XTI and TLI 53

XTI/TLI Is Multithread Safe 53

XTI/TLI Is not Asynchronous Safe 54

What Is XTI and TLI? 54

Connectionless Mode 56

Connectionless Mode Routines 56

Connectionless Mode Service 57

Endpoint Initiation 57

Data Transfer 59

Datagram Errors 61

Connection Mode 61

Connection Mode Routines 62

Connection Mode Service 65

Endpoint Initiation 66

Connection Establishment 71

Data Transfer 76

Connection Release 80

Read/Write Interface 81

Write 83

Read 83

Close 83

Advanced Topics 84

Asynchronous Execution Mode 84

Advanced Programming Example 85

State Transitions 91

Contents v

XTI/TLI States 91

Outgoing Events 92

Incoming Events 93

Transport User Actions 94

State Tables 94

Guidelines to Protocol Independence 98

XTI/TLI Versus Socket Interfaces 99

Socket-to-XTI/TLI Equivalents 100

4. Transport Selection and Name-to-Address Mapping 103

Transport Selection Is Multithread Safe 103

Transport Selection 104

How Transport Selection Works 104

/etc/netconfig File 105

NETPATHEnvironment Variable 107

NETPATHAccess to netconfig Data 108

Accessing netconfig 109

Loop Through all Visible netconfig Entries 111

Looping Through User-Defined netconfig Entries 111

Name-to-Address Mapping 112

straddr.so Library 113

Using the Name-to-Address Mapping Routines 114

Portability From Previous Releases 118

Glossary 119

Index 121

vi Transport Interfaces Programming Guide ♦ August 1997

Preface

This manual describes the programmatic interfaces to transport services in the Solaris
operating environment.

In this guide, the terms SunOS and Solaris are used interchangeably because the
interfaces described in this manual are common to both. Solaris 2.6, SunSoft’s
distributed computing operating environment, is a superset of SunOS. It consists of
SunOS release 5.5 with ONC+TM , OpenWindowsTM , ToolTalkTM , DeskSetTM , OPEN
LOOK®, and other utilities. This release of Solaris is fully compatible with System V,
Release 4 (SVR4) of UNIX® and conforms to the third edition of the System V
Interface Description (SVID). It supports all System V network services.

Who Should Use This Book
The guide assists you in developing a networked, distributed application in the
Solaris operating environment.

Use of this guide assumes basic competence in programming, a working familiarity
with the C programming language, and a working familiarity with the UNIX
operating system. Previous experience in network programming is helpful, but is not
required to use this manual.

How This Book Is Organized
Chapter 1 gives a high-level introduction to networking concepts and the topics
covered in this book.

Preface vii

Chapter 2 describes the socket interface at the transport layer.

Chapter 3 describes the X/Open Transport Interface (XTI) and UNIX System V
Transport Layer Interface (TLI).

Chapter 4 describes the network selection mechanisms used by applications in
selecting a network transport and its configuration.

Ordering Sun Documents
The SunDocsSM program provides more than 250 manuals from Sun Microsystems,
Inc. If you live in the United States, Canada, Europe, or Japan, you can purchase
documentation sets or individual manuals using this program.

� For a list of documents and how to order them, see the catalog section of
SunExpressTM Internet site at http://www.sun.com/sunexpress .

Related Books
The following online System AnswerBookTM products cover related network
programming topics:

� Solaris 2.6 Reference Manual AnswerBook

� Solaris 2.6 Software Developer Collection Vol 1

� Solaris 2.6 Software Developer AnswerBook Vol 2

The following third-party books are excellent sources on network programming
topics:

� W. Richard Stevens. UNIX Network Programming. Prentice Hall Software Series,
1990.

� Stephen A. Rago. System V Network Programming. Addison-Wesley, 1993.

� W. Richard Stevens. TCP/IP Illustrated, Volume I. Addison-Wesley, 1994.

� Networking Applications on UNIX System V Release 4, Michael Padovano,
Prentice Hall, Inc., 1993

� Douglas E. Comer and David L. Stevens. Internetworking with TCP/IP, Volume I:
Principles, Protocols, and Architecture, 2nd Edition. Prentice Hall, Inc., 1991.

� Douglas E. Comer and David L. Stevens. Internetworking with TCP/IP, Volume II:
Design, Implementation, and Internals. Prentice Hall, Inc., 1991.

viii Transport Interfaces Programming Guide ♦ August 1997

� Douglas E. Comer and David L. Stevens. Internetworking with TCP/IP, Volume III:
Client-Server Programming and Applications, BSD Sockets Version. Prentice Hall,
Inc., 1993.

� Douglas E. Comer and David L. Stevens. Internetworking with TCP/IP, Volume III:
Client-Server Programming and Applications, AT&T TLI Version. Prentice Hall, Inc.,
1994.

What Typographic Changes and
Symbols Mean
Table P–1 describes the typographic changes used in this book.

TABLE P–1 Typographic Conventions

Typeface or
Symbol

Meaning Example

AaBbCc123 The names of commands,
files, and directories;
on-screen computer output

Edit your .login file.

Use ls -a to list all files.

machine_name% You have mail.

AaBbCc123 What you type, contrasted
with on-screen computer
output

machine_name% su

Password:

AaBbCc123 Command-line placeholder:

replace with a real name or
value

To delete a file, type rm filename.

AaBbCc123 Book titles, new words or
terms, or words to be
emphasized

Read Chapter 6 in User’s Guide. These
are called class options.

You must be root to do this.

ix

Shell Prompts in Command Examples
Table P–2 shows the default system prompt and superuser prompt for the C shell,
Bourne shell, and Korn shell.

TABLE P–2 Shell Prompts

Shell Prompt

C shell prompt machine_name%

C shell superuser prompt machine_name#

Bourne shell and Korn shell prompt $

Bourne shell and Korn shell superuser prompt #

x Transport Interfaces Programming Guide ♦ August 1997

CHAPTER 1

Introduction to Network Programming
Interfaces

This chapter is a high-level introduction to this book. It is most helpful to those who
are new to network programming and for those who would like a brief overview of
network programming in the Solaris environment.

� “The Client-Server Model” on page 1

� “Network Services in the Solaris Environment” on page 3

� “Layered Protocols” on page 4

� “Open Systems Interconnection (OSI) Reference Model” on page 5

� “TCP/IP Internet Protocol Suite” on page 7

� “Connection-Oriented Protocols” on page 9

� “Connectionless Protocols” on page 10

� “Choosing Between COTS and CLTS” on page 10

Note - Because this chapter briefly introduces these topics, you might find the
reference books listed in “Related Books” on page viii to be helpful.

The Client-Server Model
The client-server model is a common method of implementing distributed
applications. Figure 1–1 shows a typical networked environment where different
services are provided and used by client and server processes.

1

Runs display server
Client of file service

Runs print service

Runs file service
Client of display service

Figure 1–1 Client-Server Model

A server is a process that provides a service that can be used by other processes.
Servers accept requests, perform their service, and return the results to the requester.
Some examples of servers are:

� A file service such as the NFSTM file system, which provides access to files and
directories to other processes or systems

� A display service, such as the X Window SystemTM environment, which provides
access to a high resolution display device

� A time-of-day server that returns the current time whenever a client requests it

A server process normally listens at a well-known address for service requests. When
a request is received, the server is unblocked and processes the client’s request.
Multiple servers can offer the same service, and they execute on the same machine or
on multiple machines. It is common to replicate copies of a given server onto
physically independent machine’s to increase reliability or improve performance. If a
machine’s primary purpose is to support a particular server program, the term server
can be applied to the machine as well as to the server program. Thus, you hears
statements such as “Jurassic is our mail server.”

A client is a process that makes use of a service, or services, provided by other
processes and waits for a response. An individual system might be both a client and
a server for different services, or even for the same service. For example, a print

2 Transport Interfaces Programming Guide ♦ August 1997

server receives print requests from a client, but might need to issue a client request
to a file server to access a file.

Network Services in the Solaris
Environment
The Solaris environment provides a large number of networking services based upon
the Internet protocol suite (also loosely referred to as the TCP/IP protocol suite,
described on “TCP/IP Internet Protocol Suite” on page 7). These services are listed in
Table 1–1.

TABLE 1–1 TCP/IP Services

Service Service Description

ARP Address Resolution Protocol. Used to obtain the hardware network
address corresponding to an IP address.

BOOTP Boot Protocol. Allows diskless systems to boot from a remote server.

DNS Domain Name System. Name service used by the Internet. Uses both
TCP and UDP protocols.

FTP File Transfer Protocol. Reliable file transfer. Allows interactive transfer of
ASCII and binary files.

ICMP Internet Control Message Protocol. Used to relay error and control
information. Used by TCP for flow control.

IP Internet Protocol. The core protocol of the TCP/IP protocol suite.

RARP Reverse Address Resolution Protocol. Used primarily in diskless clients
systems that have a hardware address but need to find out their IP
address.

SMTP Simple Mail Transfer Protocol. Electronic mail delivery protocol.

SNMP Simple Network Management Protocol. Basis of many network
management packages. Allows monitoring of activity throughout a
network.

TCP Transmission Control Protocol. Reliable connection-oriented byte stream
transport.

Introduction to Network Programming Interfaces 3

TABLE 1–1 TCP/IP Services (continued)

Service Service Description

TELNET Terminal emulation. Enables login and interactive session on a remote
system.

TFTP Trivial File Transfer Protocol. Simpler but less secure version of FTP.

UDP User Datagram Protocol. Unreliable connectionless datagram transport.

In addition to the base protocols and services, the protocol suite also provides some
commonly used utility applications (such as rcp , rsh , and rlogin) built on top of
the Internet protocol suite.

The Solaris computing environment also provides heterogeneous distributed
computing facilities in its ONC+ architecture. The ONC+ architecture is a set of
services built on top of Sun’s remote procedure call (RPC) protocol. The
programming interfaces available in the ONC+ platform are described in the ONC+
Developer’s Guide.

Layered Protocols
A protocol is a set of rules and conventions that describe how information is to be
exchanged between two entities. Networking tasks often require more than one
protocol to perform a task, such as file transfer.

These protocols are often conceptualized in a model consisting of a series of layers,
each of which deals with one functional aspect of the communication. Each layer has
a well-defined interface to the layer immediately above and below it. The left side of
Figure 1–2 shows that data is passed down through the interface to the layer below.
Each layer adds the necessary information to the data so that the receiving system
understands how to handle the data and is able to route the data. At the bottom
layer on the sending side, the data is physically transmitted across some medium to
the receiving system. It is passed up through the layers on the right side of Figure
1–2, with each layer removing the information added by the corresponding layers on
the sending system. A set of protocols layered in this way is called a protocol stack. A
layer can have more than one protocol defined for it.

4 Transport Interfaces Programming Guide ♦ August 1997

Layer 3

data

data

Layer 2

data

Layer 1

Connection medium

data

Layer 3

data

data

Layer 2

data

Layer 1

data

Figure 1–2 Layered Protocols

Two well-known reference models are discussed in the following sections: open
systems interconnection (OSI) reference model and Internet (TCP/IP) protocol suite.

Open Systems Interconnection (OSI) Reference
Model
The OSI reference model is used to conceptualize network service architectures and
as a convenient framework for explaining networking concepts. It is not the basis for
the Internet protocol suite, but the Internet protocol’s four-layer model can be
mapped to the more general OSI reference model. The OSI protocol suite follows the
OSI reference model closely.

The OSI reference model divides networking functions into seven layers, as shown in
Figure 1–3. Each protocol layer performs services for the layer above it. The ISO
definition of the protocol layers gives designers considerable freedom in
implementation. For example, some applications skip the presentation and session
layers (layers 5 and 6) to interface directly with the transport layer. In this case, the
application performs any needed presentation and session services.

Industry standards have been or are being defined for each layer of the reference
model.

Introduction to Network Programming Interfaces 5

Application Layer

Presentation Layer

Session Layer

Transport Layer

Network Layer

Data Link Layer

Physical Layer

7

6

5

4

3

2

1

Figure 1–3 OSI Reference Model

OSI Reference Model Description
The following section explains each layer the OSI reference model.

Layer 1: Physical Layer

This layer specifies the physical media connecting hosts and networks, and the
procedures used to transfer data between machines using a specified media. This
layer is commonly referred to as the hardware layer of the model.

Layer 2: Data-Link Layer

This layer manages the reliable delivery of data across the physical network. For
example, it provides the abstraction of a reliable connection over the potentially
unreliable physical layer.

Layer 3: Network Layer

This layer is responsible for routing machine-to machine communications. It
determines the path a transmission must take, based upon the destination machine’s
address. This layer must also respond to network congestion problems.

Layer 4: Transport Layer

This layer provides end-to-end sequenced delivery of data. It is the lowest layer that
provides applications and higher layers with end-to-end service. This layer hides the
topology and characteristics of the underlying network from users. It provides
reliable end-to-end data delivery if the service characteristics require it.

6 Transport Interfaces Programming Guide ♦ August 1997

Layer 5: Session Layer
This layer manages sessions between cooperating applications.

Layer 6: Presentation Layer
This layer performs the translation between the data representation local to the
computer and the processor-independent format that is sent across the network. It
can also negotiate the transfer formats in some protocol suites. Typical examples
include standard routines that compress text or convert graphic images into bit
streams for transmission across a network.

Layer 7: Application Layer
This layer consists of the user-level programs and network services. Some examples
are telnet , ftp , and tftp .

TCP/IP Internet Protocol Suite
TCP/IP is a widely used protocol suite for internetworking, a term that refers to the
connection of various physical networks to form one large virtual network. Any
system connected to a TCP/IP internetwork should be able to communicate with any
other system within the internetwork, regardless of which physical network the
systems actually reside. Networks are linked together by a system that functions as a
gateway between systems.

While TCP/IP has a closely associated history with UNIX systems, the TCP/IP
protocols themselves are independent of the operating system, the network topology,
and the connection medium. TCP/IP operates on Ethernet and Token Ring local area
networks (LANs), across wide area links such as X.25, and serial connections.
Support for TCP/IP networking has been an integral part of SunOS in all versions of
the operating system.

TCP/IP Protocol Stack
The TCP/IP protocol suite can be described using a reference model similar to the
OSI reference model. Figure 1–4 shows the corresponding OSI layers and some
example services at each layer. TCP/IP does not delineate the presentation and
session layers as the OSI model does; application code provides the necessary
presentation or session functionality.

The TCP/IP protocols are defined in documents called Requests for Comments
(RFCs). RFCs are maintained by the Network Information Center (NIC), the
organization that handles address registration for the Internet.

Introduction to Network Programming Interfaces 7

RFCs define a number of applications, the most widely used being telnet , a
terminal emulation service on remote hosts, and ftp , which allows files to be
transferred between systems.

Application

Presentation

Session

Transport

Network

Data Link

Physical

7

6

5

4

3

2

1

Application

TCP UDP

IP

OSI model Internet Protocols

Device Driver

sockets
TLI

Figure 1–4 TCP/IP Protocol Stack

TCP/IP Protocol Stack Description
The following section describes the sections of the TCP/IP protocol stack.

Device Drivers

The device driver layer (also called the Network Interface) is the lowest TCP/IP
layer and is responsible for accepting IP datagrams and transmitting them over a
specific network. A network interface might consist of a device driver or a complex
subsystem that uses its own data link protocol.

Internet Protocol (IP) Layer

The Internet Protocol layer handles communication from one machine to another. It
accepts requests to send data from the transport layer along with an identification of
the machine to which the data is to be sent. It encapsulates the data into an IP
datagram, fills in the datagram header, uses the routing algorithm to determine how
to deliver the datagram, and passes the datagram to the appropriate device driver
for transmission.

The IP layer corresponds to the network layer in the OSI reference model. IP
provides a connectionless, “unreliable” packet-forwarding service which routes
packets from one system to another.

8 Transport Interfaces Programming Guide ♦ August 1997

Transport Layer

The primary purpose of the transport layer is to provide communication from one
application program to another. The transport software divides the stream of data
being transmitted into smaller pieces called packets in the ISO terminology and
passes each packet along with the destination information to the next layer for
transmission.

This layer consists of Transport Control Protocol (TCP), a connection-oriented
transport service (COTS), and the user datagram protocol (UDP), a connectionless
transport service (CLTS).

Application Layer

The application layer consists of user invoked application programs that access
services available across a TCP/IP Internet. The application program passes data in
the requires form to the transport layer for delivery.

Connection Oriented and
Connectionless Protocols
A number of characteristics can be used to describe communications protocols. The
most important is the distinction between connection-oriented transport services
(COTS) and connectionless transport services (CLTS).

Connection-Oriented Protocols
TCP is an example of a connection-oriented protocol. It requires a logical connection
to be established between the two processes before data is exchanged. The
connection must be maintained during the entire time that communication is taking
place, then released afterwards. The process is much like a telephone call, where a
virtual circuit is established—the caller must know the person’s telephone number
and the phone must be answered—before the message can be delivered.

TCP/IP is also a connection-oriented transport with orderly release. With orderly
release, any data remaining in the buffer is sent before the connection is terminated.
The release is accomplished in a four-way handshake between client and server
processes. The connection-oriented protocols in the OSI protocol suite, on the other
hand, do not support orderly release. Applications perform any handshake necessary
for ensuring orderly release.

Introduction to Network Programming Interfaces 9

Examples of services that use connection-oriented transport services are telnet ,
rlogin , and ftp .

Connectionless Protocols
Connectionless protocols, in contrast, allow data to be exchanged without setting up
a link between processes. Each unit of data, with all the necessary information to
route it to the intended destination, is transferred independent of other data packets
and can travel over different paths to reach the final destination. Some data packets
might be lost in transmission or might arrive out of sequence to other data packets.

UDP is a connectionless protocol. It is known as a datagram protocol because it is
analogous to sending a letter where you don’t acknowledge receipt.

Examples of applications that use connectionless transport services are broadcasting
and tftp . NFS is another example of an application that uses a connectionless
protocol such as UDP. However, recent versions of NFS also operate over TCP.

Choosing Between COTS and CLTS
The application developer must decide which type of protocol works best for the
particular application. Some questions to ask are:

� How reliable must the connection be?

� Must the data arrive in the same order as it was sent?

� Must it be able to handle duplicate data packets?

� Must it have flow control?

� Must it acknowledge the messages it receives?

� What kind of service can the application live with?

� What level of performance is required?

If reliability is paramount, then connection-oriented transport services (COTS) is
better.

10 Transport Interfaces Programming Guide ♦ August 1997

CHAPTER 2

Programming With Sockets

This chapter presents the socket interface and illustrates it with sample programs.
The programs demonstrate the Internet domain sockets.

� “What Are Sockets?” on page 12

� “Socket Tutorial” on page 13

� “Standard Routines” on page 30

� “Client-Server Programs” on page 33

� “Advanced Topics” on page 39

Sockets are Multithread Safe
The interface described in this chapter is multithread safe. Applications that contain
socket function calls can be used freely in a multithreaded application.

SunOS Binary Compatibility
Two major changes from SunOS 4.x hold true for Solaris 2.x releases. The binary
compatibility package allows SunOS 4.x–based dynamically linked socket
applications to run in Solaris 2.x.

1. You must explicitly specify the socket library (lsocket) on the compilation line.

2. You must recompile all SunOS 4.x socket-based applications with the socket
library to run under Solaris 2.x.

11

What Are Sockets?
Sockets are the 4.2 Berkeley software distribution (BSD) UNIX interface to network
protocols. They havebeen an integral part of SunOS releases since 1981. They are
commonly referred to as Berkeley sockets or BSD sockets. Since the days of early
UNIX, applications have used the file system model of input/output to access
devices and files. The file system model is sometimes called open-close-read-write after
the basic function calls used in this model. However, the interaction between user
processes and network protocols are more complex than the interaction between user
processes and I/O devices.

A socket is an endpoint of communication to which a name can be bound. A socket
has a type and one associated process. Sockets were designed to implement the
client-server model for interprocess communication where:

� The interface to network protocols needs to accommodate multiple communication
protocols, such as TCP/IP, Xerox internet protocols (XNS), and UNIX domain.

� The interface to network protocols needs to accommodate server code that waits
for connections and client code that initiates connections.

� It also needs to operate differently, depending on whether communication is
connection-oriented or connectionless.

� Application programs might want to specify the destination address of the
datagrams it delivers instead of binding the address with the open() call.

To address these issues and others, sockets are designed to accommodate network
protocols, while still behaving like UNIX files or devices whenever it makes sense.
Applications create sockets when they are needed. Sockets work with the open() ,
close() , read() , and write() function calls, and the operating system can
differentiate between the file descriptors for files, and file descriptors for sockets.

UNIX domain sockets are named with UNIX paths. For example, a socket might be
named /tmp/foo . UNIX domain sockets communicate only between processes on a
single host. Sockets in the UNIX domain are not considered part of the network
protocols because they can only be used to communicate with processes within the
same UNIX system. They are rarely used today and are only briefly covered in this
manual.

Socket Libraries
The socket interface routines are in a library that must be linked with the application.
The libraries libsocket.so and libsocket.a are contained in /usr/lib with
the rest of the system service libraries. The difference is that libsocket.so is used
for dynamic linking, whereas libsocket.a is used for static linking.

12 Transport Interfaces Programming Guide ♦ August 1997

Note - Static linking is strongly discouraged.

Socket Types
Socket types define the communication properties visible to a user. The Internet
domain sockets provide access to the TCP/IP transport protocols. The Internet
domain is identified by the value AF_INET . Sockets exchange data only with sockets
in the same domain.

Three types of sockets are supported:

1. Stream sockets allow processes to communicate using TCP. A stream socket
provides bidirectional, reliable, sequenced, and unduplicated flow of data with no
record boundaries. After the connection has been established, data can be read
from and written to these sockets as a byte stream. The socket type is
SOCK_STREAM.

2. Datagram sockets allow processes to use UDP to communicate. A datagram
socket supports bidirectional flow of messages. A process on a datagram socket
can receive messages in a different order from the sending sequence and can
receive duplicate messages. Record boundaries in the data are preserved. The
socket type is SOCK_DGRAM.

3. Raw sockets provide access to ICMP. These sockets are normally datagram
oriented, although their exact characteristics are dependent on the interface
provided by the protocol. Raw sockets are not for most applications. They are
provided to support developing new communication protocols or for access to
more esoteric facilities of an existing protocol. Only superuser processes can use
raw sockets. The socket type is SOCK_RAW.

See “Selecting Specific Protocols” on page 45 for further information.

Socket Tutorial
This section covers the basic methodologies of using sockets.

Socket Creation
The socket() call creates a socket in the specified domain and of the specified type.

s = socket(domain, type, protocol);

Programming With Sockets 13

If the protocol is unspecified (a value of 0), the system selects a protocol that
supports the requested socket type. The socket handle (a file descriptor) is returned.

The domain is specified by one of the constants defined in sys/socket.h .
Constants named AF_suite specify the address format to use in interpreting names as
shown in Table 2–1.

TABLE 2–1 Protocol Family

AF_APPLETALK Apple Computer Inc. Appletalk network

AF_INET Internet domain

AF_PUP Xerox Corporation PUP internet

AF_UNIX Unix file system

Socket types are defined in sys/socket.h . These types—SOCK_STREAM,
SOCK_DGRAM, or SOCK_RAW—are supported by AF_INET and AF_UNIX. The
following creates a stream socket in the Internet domain:

s = socket(AF_INET, SOCK_STREAM, 0);

This call results in a stream socket with the TCP protocol providing the underlying
communication. The following creates a datagram socket for intramachine use:

s = socket(AF_UNIX, SOCK_DGRAM, 0);

Use the default protocol (the protocol argument is 0) in most situations. You can
specify a protocol other than the default, as described in “Advanced Topics” on page
39.

Binding Local Names
A socket is created with no name. A remote process has no way to refer to a socket
until an address is bound to it. Communicating processes are connected through
addresses. In the Internet domain, a connection is composed of local and remote
addresses, and local and remote ports. In the UNIX domain, a connection is
composed of (usually) one or two path names. In most domains, connections must
be unique.

14 Transport Interfaces Programming Guide ♦ August 1997

In the Internet domain, there can never be duplicate ordered sets, such as:
protocol , local address , local port , foreign address , foreign port .
UNIX domain sockets need not always be bound to a name, but, when bound, there
can never be duplicate ordered sets such as: local pathname or
foreign pathname . The path names can not refer to existing files.

The bind() call allows a process to specify the local address of the socket. This
forms the set local address , local port (or local pathname) while
connect() and accept() complete a socket’s association. The bind() function
call is used as follows:

bind (s, name, namelen);

s is the socket handle. The bound name is a byte string that is interpreted by the
supporting protocol(s). Internet domain names contain an Internet address and port
number. UNIX domain names contain a path name and a family. Code Example 2–1
shows binding the name /tmp/foo to a UNIX domain socket.

CODE EXAMPLE 2–1 Bind Name to Socket

#include <sys/un.h>
...

struct sockaddr_un addr;
...

strcpy(addr.sun_path, "/tmp/foo");
addr.sun_family = AF_UNIX;
bind (s, (struct sockaddr *) &addr,

strlen(addr.sun_path) + sizeof (addr.sun_family));

When determining the size of an AF_UNIX socket address, null bytes are not
counted, which is why strlen() use is fine.

The file name referred to in addr.sun_path is created as a socket in the system file
name space. The caller must have write permission in the directory where
addr.sun_path is created. The file should be deleted by the caller when it is no
longer needed. AF_UNIX sockets can be deleted with unlink() .

Binding an Internet address is more complicated but the call is similar:

#include <sys/types.h>
#include <netinet/in.h>
...
struct sockaddr_in sin;

...

(continued)

Programming With Sockets 15

(Continuation)

bind (s, (struct sockaddr *) &sin, sizeof sin);

The content of the address sin is described in “Address Binding” on page 46, where
Internet address bindings are discussed.

Connection Establishment
Connection establishment is usually asymmetric, with one process acting as the client
and the other as the server. The server binds a socket to a well-known address
associated with the service and blocks on its socket for a connect request. An
unrelated process can then connect to the server. The client requests services from the
server by initiating a connection to the server’s socket. On the client side, the
connect() call initiates a connection. In the UNIX domain, this might appear as:

struct sockaddr_un server;
server.sun.family = AF_UNIX;

...
connect(s, (struct sockaddr *)&server,

strlen(server.sun_path) + sizeof (server.sun_family));

In the Internet domain it might appear as:

struct sockaddr_in server;
...

connect(s, (struct sockaddr *)&server, sizeof server);

If the client’s socket is unbound at the time of the connect call, the system
automatically selects and binds a name to the socket. See “Signals and Process Group
ID” on page 44. This is the usual way that local addresses are bound to a socket on
the client side.

In the examples that follow, only AF_INET sockets are described.

To receive a client’s connection, a server must perform two steps after binding its
socket. The first is to indicate how many connection requests can be queued. The
second step is to accept a connection:

16 Transport Interfaces Programming Guide ♦ August 1997

struct sockaddr_in from;
...

listen(s, 5); /* Allow queue of 5 connections */

fromlen = sizeof(from);
newsock = accept(s, (struct sockaddr *) &from, &fromlen);

s is the socket bound to the address to which the connection request is sent. The
second parameter of listen() specifies the maximum number of outstanding
connections that might be queued. from is a structure that is filled with the address
of the client. A NULL pointer might be passed. fromlen is the length of the structure.
(In the UNIX domain, from is declared a struct sockaddr_un .)

accept() normally blocks. accept() returns a new socket descriptor that is
connected to the requesting client. The value of fromlen is changed to the actual size
of the address.

A server cannot indicate that it accepts connections only from specific addresses. The
server can check the from-address returned by accept() and close a connection
with an unacceptable client. A server can accept connections on more than one
socket, or avoid blocking on the accept call. These techniques are presented in
“Advanced Topics” on page 39.

Connection Errors
An error is returned if the connection is unsuccessful (however, an address bound by
the system remains). Otherwise, the socket is associated with the server and data
transfer can begin.

Table 2–2 lists some of the more common errors returned when a connection attempt
fails.

TABLE 2–2 Socket Connection Errors

Socket Errors Error Description

ENOBUFS Lack of memory available to support the call.

EPROTONOSUPPORT Request for an unknown protocol.

EPROTOTYPE Request for an unsupported type of socket.

ETIMEDOUT No connection established in specified time. This happens
when the destination host is down or when problems in the
network result in lost transmissions.

Programming With Sockets 17

TABLE 2–2 Socket Connection Errors (continued)

Socket Errors Error Description

ECONNREFUSED The host refused service. This happens when a server
process is not present at the requested address.

ENETDOWNor EHOSTDOWN These errors are caused by status information delivered by
the underlying communication interface.

ENETUNREACHor
EHOSTUNREACH

These operational errors can occur either because there is no
route to the network or host, or because of status information
returned by intermediate gateways or switching nodes. The
status returned is not always sufficient to distinguish
between a network that is down and a host that is down.

Data Transfer
This section describes the functions to send and receive data. You can send or receive
a message with the normal read() and write() function calls:

write(s, buf, sizeof buf);
read(s, buf, sizeof buf);

Or the calls send() and recv() can be used:

send(s, buf, sizeof buf, flags);
recv(s, buf, sizeof buf, flags);

send() and recv() are very similar to read() and write() , but the flags
argument is important. The flags, defined in sys/socket.h , can be specified as a
nonzero value if one or more of the following is required:

MSG_OOB Send and receive out-of-band data

MSG_PEEK Look at data without reading

MSG_DONTROUTE Send data without routing packets

Out-of-band data is specific to stream sockets. When MSG_PEEKis specified with a
recv() call, any data present is returned to the user but treated as still unread. The
next read() or recv() call on the socket returns the same data. The option to send

18 Transport Interfaces Programming Guide ♦ August 1997

data without routing applied to the outgoing packets is currently used only by the
routing table management process and is unlikely to be interesting to most users.

Closing Sockets
A SOCK_STREAM socket can be discarded by a close() function call. If data is
queued to a socket that promises reliable delivery after a close() , the protocol
continues to try to transfer the data. If the data is still undelivered after an arbitrary
period, it is discarded.

A shutdown() closes SOCK_STREAM sockets gracefully. Both processes can
acknowledge that they are no longer sending. This call has the form:

shutdown(s, how);

Where how is defined as:

0 Disallows further receives

1 Disallows further sends

2 Disallows both further sends and receives

Connecting Stream Sockets
Figure 2–1 and the next two examples illustrate initiating and accepting an Internet
domain stream connection.

Programming With Sockets 19

socket()

bind()

listen()

Connection
establishment

Server

Client

Data
transfer

accept()

read()/
write()

shutdown()
and/or

close()

read()/
write()

shutdown()
and/or

close()

socket()

connect()

Figure 2–1 Connection-Oriented Communication Using Stream Sockets

The program in Code Example 2–2 is a server. It creates a socket and binds a name
to it, then displays the port number. The program calls listen() to mark the socket
ready to accept connection requests and initialize a queue for the requests. The rest
of the program is an infinite loop. Each pass of the loop accepts a new connection
and removes it from the queue, creating a new socket. The server reads and displays
the messages from the socket and closes it. The use of INADDR_ANYis explained in
“Address Binding” on page 46.

CODE EXAMPLE 2–2 Accepting an Internet Stream Connection (Server)

#include <sys/types.h>
#include <sys/socket.h>
#include <netinet/in.h>
#include <netdb.h>
#include <stdio.h>

#define TRUE 1

/*
* This program creates a socket and then begins an infinite loop.
* Each time through the loop it accepts a connection and prints
* data from it. When the connection breaks, or the client closes

(continued)

20 Transport Interfaces Programming Guide ♦ August 1997

(Continuation)

* the connection, the program accepts a new connection.
*/

main()
{

int sock, length;
struct sockaddr_in server;
int msgsock;
char buf[1024];
int rval;

/* Create socket. */
sock = socket(AF_INET, SOCK_STREAM, 0);
if (sock == -1) {

perror("opening stream socket");
exit(1);

}
/* Bind socket using wildcards.*/
server.sin_family = AF_INET;
server.sin_addr.s_addr = INADDR_ANY;
server.sin_port = 0;
if (bind(sock, (struct sockaddr *) &server, sizeof server)

== -1)
perror("binding stream socket");
exit(1);

}
/* Find out assigned port number and print it out. */
length = sizeof server;
if (getsockname(sock,(struct sockaddr *) &server,&length)

== -1) {
perror("getting socket name");
exit(1);

}
printf("Socket port #%d\n", ntohs(server.sin_port));
/* Start accepting connections. */
listen(sock, 5);
do {

msgsock = accept(sock,(struct sockaddr *) 0,(int *) 0);
if (msgsock == -1

perror("accept");
else do {

memset(buf, 0, sizeof buf);
if ((rval = read(msgsock,buf, 1024)) == -1)

perror("reading stream message");
if (rval == 0)

printf("Ending connection\n");
else

printf("-->%s\n", buf);
} while (rval != 0);
close(msgsock);

} while(TRUE);
/*

* Since this program has an infinite loop, the socket "sock" is

(continued)

Programming With Sockets 21

(Continuation)

* never explicitly closed. However, all sockets will be closed
* automatically when a process is killed or terminates normally.
*/

exit(0);
}

To initiate a connection, the client program in Code Example 2–3 creates a stream
socket and calls connect() , specifying the address of the socket for connection. If
the target socket exists and the request is accepted, the connection is complete and
the program can send data. Data are delivered in sequence with no message
boundaries. The connection is destroyed when either socket is closed. For more
information about data representation routines, such as ntohl() , ntohs() ,
htons() , and htonl() , in this program, see the byteorder (3N) man page.

CODE EXAMPLE 2–3 Internet Domain Stream Connection (Client)

#include <sys/types.h>
#include <sys/socket.h>
#include <netinet/in.h>
#include <netdb.h>
#include <stdio.h>

#define DATA "Half a league, half a league . . ."

/*
* This program creates a socket and initiates a connection with
the
* socket given in the command line. Some data are sent over the
* connection and then the socket is closed, ending the connection.
* The form of the command line is: streamwrite hostname portnumber
* Usage: pgm host port

*/
main(argc, argv)

int argc;
char *argv[];

{
int sock;

struct sockaddr_in server;
struct hostent *hp, *gethostbyname();
char buf[1024];

/* Create socket. */
sock = socket(AF_INET, SOCK_STREAM, 0);
if (sock == -1) {

perror("opening stream socket");
exit(1);

}
/* Connect socket using name specified by command line. */

(continued)

22 Transport Interfaces Programming Guide ♦ August 1997

(Continuation)

server.sin_family = AF_INET;
hp = gethostbyname(argv[1]);

/*
* gethostbyname returns a structure including the network address
* of the specified host.

if (hp == (struct hostent *) 0) {
fprintf(stderr, "%s: unknown host\n", argv[1]);
exit(2);

}
memcpy((char *) &server.sin_addr, (char *) hp->h_addr,

hp->h_length);
server.sin_port = htons(atoi(argv[2]));
if (connect(sock, (struct sockaddr *) &server, sizeof server)

== -1) {
perror("connecting stream socket");
exit(1);

}
if (write(sock, DATA, sizeof DATA) == -1)

perror("writing on stream socket");
close(sock);
exit(0);

}

Datagram Sockets
A datagram socket provides a symmetric data exchange interface. There is no
requirement for connection establishment. Each message carries the destination
address. Figure 2–2 shows the flow of communication between server and client.

Programming With Sockets 23

socket()

bind()

recvfrom()

data

Server

Client

data

Normally block until a
request is received

Process
the request

Normally block
waiting
for reply

socket()

sendto()

sendto()

recvfrom()

Figure 2–2 Connectionless Communication Using Datagram Sockets

Datagram sockets are created as described in “Socket Creation” on page 13. If a
particular local address is needed, the bind() operation must precede the first data
transmission. Otherwise, the system sets the local address and/or port when data is
first sent. To send data, the sendto() call is used:

sendto(s, buf, buflen, flags, (struct sockaddr *) &to, tolen);

The s, buf, buflen, and flags parameters are the same as in connection-oriented sockets.
The to and tolen values indicate the address of the intended recipient of the message.
A locally detected error condition (such as an unreachable network) causes a return
of --1 and errno to be set to the error number.

To receive messages on a datagram socket, the recvfrom() call is used:

recvfrom(s, buf, buflen, flags, (struct sockaddr *) &from, &fromlen);

Before the call, fromlen is set to the size of the from buffer. On return, it is set to the
size of the address from which the datagram was received.

24 Transport Interfaces Programming Guide ♦ August 1997

Datagram sockets can also use the connect() call to associate a socket with a
specific destination address. It can then use the send() call. Any data sent on the
socket without explicitly specifying a destination address is addressed to the
connected peer, and only data received from that peer is delivered. Only one
connected address is permitted for one socket at a time. A second connect() call
changes the destination address. Connect requests on datagram sockets return
immediately. The system simply records the peer’s address. accept() , and
listen() are not used with datagram sockets.

While a datagram socket is connected, errors from previous send() calls can be
returned asynchronously. These errors can be reported on subsequent operations on
the socket, or an option of getsockopt() , SO_ERROR, can be used to interrogate
the error status.

Code Example 2–4 shows how to send an Internet call by creating a socket, binding a
name to the socket, and sending the message to the socket.

CODE EXAMPLE 2–4 Sending an Internet Domain Datagram

#include <sys/types.h>
#include <sys/socket.h>
#include <netinet/in.h>
#include <netdb.h>
#include <stdio.h>

#define DATA "The sea is calm, the tide is full . . ."

/*
* Here I send a datagram to a receiver whose name I get from
* the command line arguments. The form of the command line is:
* dgramsend hostname portnumber
*/

main(argc, argv)
int argc;
char *argv[];

{
int sock;
struct sockaddr_in name;
struct hostent *hp, *gethostbyname();

/* Create socket on which to send. */
sock = socket(AF_INET,SOCK_DGRAM, 0);
if (sock == -1) {

perror("opening datagram socket");
exit(1);

}
/*

* Construct name, with no wildcards, of the socket to ‘‘send’’
* to. gethostbyname returns a structure including the network
* address of the specified host. The port number is taken from
* the command line.
*/

hp = gethostbyname(argv[1]);
if (hp == (struct hostent *) 0) {

(continued)

Programming With Sockets 25

(Continuation)

fprintf(stderr, "%s: unknown host\n", argv[1]);
exit(2);

}
memcpy((char *) &name.sin_addr, (char *) hp->h_addr,

hp->h_length);
name.sin_family = AF_INET;

name.sin_port = htons(atoi(argv[2]));
/* Send message. */
if (sendto(sock,DATA, sizeof DATA ,0,

(struct sockaddr *) &name,sizeof name) == -1)
perror("sending datagram message");

close(sock);
exit(0);

}

Code Example 2–5 shows how to read an Internet call by creating a socket, binding a
name to the socket, and then reading from the socket.

CODE EXAMPLE 2–5 Reading Internet Domain Datagrams

#include <sys/types.h>
#include <sys/socket.h>
#include <netinet/in.h>
#include <stdio.h>

/*
* The include file <netinet/in.h> defines sockaddr_in as:

* struct sockaddr_in {
* short sin_family;
* u_short sin_port;
* struct in_addr sin_addr;
* char sin_zero[8];
* };
* This program creates a datagram socket, binds a name to it, then
* reads from the socket.
*/

main()
{

int sock, length;
struct sockaddr_in name;
char buf[1024];

/* Create socket from which to read. */
sock = socket(AF_INET, SOCK_DGRAM, 0);
if (sock == -1) {

perror("opening datagram socket");
exit(1);

}
/* Create name with wildcards. */

(continued)

26 Transport Interfaces Programming Guide ♦ August 1997

(Continuation)

name.sin_family = AF_INET;
name.sin_addr.s_addr = INADDR_ANY;
name.sin_port = 0;
if (bind(sock,(struct sockaddr *)&name, sizeof name) == -1) {

perror("binding datagram socket");
exit(1);

}
/* Find assigned port value and print it out. */
length = sizeof(name);
if (getsockname(sock,(struct sockaddr *) &name, &length)

== -1) {
perror("getting socket name");
exit(1);

}
printf("Socket port #%d\n", ntohs(name.sin_port));
/* Read from the socket. */
if (read(sock, buf, 1024) == -1)

perror("receiving datagram packet");
printf("-->%s\n", buf);
close(sock);
exit(0);

}

Input/Output Multiplexing
Requests can be multiplexed among multiple sockets or files. The select() call is
used to do this:

#include <sys/time.h>
#include <sys/types.h>
#include <sys/select.h>

...
fd_set readmask, writemask, exceptmask;
struct timeval timeout;

...
select(nfds, &readmask, &writemask, &exceptmask, &timeout);

The first argument of select() is the number of file descriptors in the lists pointed
to by the next three arguments.

The second, third, and fourth arguments of select() are pointers to three sets of
file descriptors: a set of descriptors to read on, a set to write on, and a set on which
exception conditions are accepted. Out-of-band data is the only exceptional
condition. Any of these pointers can be a properly cast null. Each set is a structure
containing an array of long integer bit masks. The size of the array is set by

Programming With Sockets 27

FD_SETSIZE (defined in select.h). The array is long enough to hold one bit for
each FD_SETSIZE file descriptor.

The macros FD_SET(fd, &mask) and FD_CLR(fd, &mask) add and delete, respectively,
the file descriptor fd in the set mask. The set should be zeroed before use, and the
macro FD_ZERO(&mask) clears the set mask.

The fifth argument of select() allows a time-out value to be specified. If the
timeout pointer is NULL, select() blocks until a descriptor is selectable, or until a
signal is received. If the fields in timeout are set to 0, select() polls and returns
immediately.

select() normally returns the number of file descriptors selected. select()
returns a 0 if the time-out has expired. select() returns -1 for an error or
interrupt with the error number in errno and the file descriptor masks unchanged.
For a successful return, the three sets indicate which file descriptors are ready to be
read from, written to, or have exceptional conditions pending.

You shouls test the status of a file descriptor in a select mask with the FD_ISSET(fd,
&mask) macro. It returns a nonzero value if fd is in the set mask, and 0 if it is not.
Use select() followed by a FD_ISSET(fd, &mask) macro on the read set to check
for queued connect requests on a socket.

Code Example 2–6 shows how to select on a “listening” socket for readability to
determine when a new connection can be picked up with a call to accept() . The
program accepts connection requests, reads data, and disconnects on a single socket.

CODE EXAMPLE 2–6 Check for Pending Connections With select
()

#include <sys/types.h>
#include <sys/socket.h>
#include <sys/time.h>
#include <netinet/in.h>
#include <netdb.h>
#include <stdio.h>

#define TRUE 1

/*
* This program uses select to check that someone is
* trying to connect before calling accept.
*/

main()
{

int sock, length;
struct sockaddr_in server;
int msgsock;
char buf[1024];
int rval;
fd_set ready;

(continued)

28 Transport Interfaces Programming Guide ♦ August 1997

(Continuation)

struct timeval to;

/* Open a socket and bind it as in previous examples. */

/* Start accepting connections. */
listen(sock, 5);
do {

FD_ZERO(&ready);
FD_SET(sock, &ready);
to.tv_sec = 5;
to.tv_usec = 0;
if (select(1, &ready, (fd_set *)0, (fd_set *)0, &to) == -1) {

perror("select");
continue;

}
if (FD_ISSET(sock, &ready)) {

msgsock = accept(sock, (struct sockaddr *)0,
(int *)0);

if (msgsock == -1)
perror("accept");

else do {
memset(buf, 0, sizeof buf);
if ((rval = read(msgsock, buf, 1024)) == -1)

perror("reading stream message");
else if (rval == 0)

printf("Ending connection\n");
else

printf("-->%s\n", buf);
} while (rval > 0);
close(msgsock);

} else
printf("Do something else\n");

} while (TRUE);
exit(0);

}

In previous versions of the select() routine, its arguments were pointers to
integers instead of pointers to fd_sets . This style of call still works if the number of
file descriptors is smaller than the number of bits in an integer.

select() provides a synchronous multiplexing scheme. The SIGIO and SIGURG
signals described in “Advanced Topics” on page 39 provide asynchronous
notification of output completion, input availability, and exceptional conditions.

Programming With Sockets 29

Standard Routines
You might need to locate and construct network addresses. This section describes the
routines that manipulate network addresses. Unless otherwise stated, functions
presented in this section apply only to the Internet domain.

Locating a service on a remote host requires many levels of mapping before client
and server communicate. A service has a name for human use. The service and host
names must be translated to network addresses. Finally, the address is used to locate
and route to the host. The specifics of the mappings can vary between network
architectures. Preferably, a network will not require that hosts be named, thus
protecting the identity of their physical locations. It is more flexible to discover the
location of the host when it is addressed.

Standard routines map host names to network addresses, network names to network
numbers, protocol names to protocol numbers, and service names to port numbers,
and the appropriate protocol to use in communicating with the server process. The
file netdb.h must be included when using any of these routines.

Host Names
An Internet host-name-to-address mapping is represented by the hostent structure:

struct hostent {
char *h_name; /* official name of host */
char **h_aliases; /* alias list */
int h_addrtype; /* hostaddrtype(e.g.,AF_INET) */
int h_length; /* length of address */
char **h_addr_list; /* list of addrs, null terminated */

};
/*1st addr, net byte order*/
#define h_addr h_addr_list[0]

gethostbyname() maps an Internet host name to a hostent structure,
gethostbyaddr() maps an Internet host address to a hostent structure, and
inet_ntoa() maps an Internet host address to a displayable string.

The routines return a hostent structure containing the name of the host, its aliases,
the address type (address family), and a NULL-terminated list of variable length
addresses. The list of addresses is required because a host can have many addresses.
The h_addr definition is for backward compatibility, and is the first address in the
list of addresses in the hostent structure.

30 Transport Interfaces Programming Guide ♦ August 1997

Network Names
The routines to map network names to numbers, and back return a netent
structure:

/*
* Assumes that a network number fits in 32 bits.
*/

struct netent {
char *n_name; /* official name of net */
char **n_aliases; /* alias list */
int n_addrtype; /* net address type */
int n_net; /* net number, host byte order */

};

getnetbyname() , getnetbyaddr() , and getnetent() are the network
counterparts to the host routines described above.

Protocol Names
The protoent structure defines the protocol-name mapping used with
getprotobyname() , getprotobynumber() , and getprotoent() :

struct protoent {
char *p_name; /* official protocol name */
char **p_aliases /* alias list */
int p_proto; /* protocol number */

};

In the UNIX domain, no protocol database exists.

Service Names
An Internet domain service resides at a specific, well-known port and uses a
particular protocol. A service-name-to-port-number mapping is described by the
servent structure:

Programming With Sockets 31

struct serven
char *s_name; /* official service name */
char **s_aliases; /* alias list */
int s_port; /* port number, network byte order */
char *s_proto; /* protocol to use */

};

getservbyname() maps service names and, optionally, a qualifying protocol to a
servent structure. The call:

sp = getservbyname("telnet", (char *) 0);

returns the service specification of a telnet server using any protocol. The call:

sp = getservbyname("telnet", "tcp");

returns the telnet server that uses the TCP protocol. getservbyport() and
getservent() are also provided. getservbyport() has an interface similar to
that of getservbyname() ; an optional protocol name can be specified to qualify
lookups.

Other Routines
In addition to address-related database routines, there are several other routines that
simplify manipulating names and addresses. Table 2–3 summarizes the routines for
manipulating variable-length byte strings and byte-swapping network addresses and
values.

TABLE 2–3 Runtime Library Routines

Call Synopsis

memcmp(s1, s2, n) Compares byte-strings; 0 if same, not 0 otherwise

memcpy(s1, s2, n) Copies n bytes from s2 to s1

memset(base, value, n) Sets n bytes to value starting at base

htonl(val) 32-bit quantity from host into network byte order

htons(val) 16-bit quantity from host into network byte order

32 Transport Interfaces Programming Guide ♦ August 1997

TABLE 2–3 Runtime Library Routines (continued)

Call Synopsis

ntohl(val) 32-bit quantity from network into host byte order

ntohs(val) 16-bit quantity from network into host byte order

The byte-swapping routines are provided because the operating system expects
addresses to be supplied in network order. On some architectures, the host byte
ordering is different from network byte order, so programs must sometimes
byte-swap values. Routines that return network addresses do so in network order.
There are byte-swapping problems only when interpreting network addresses. For
example, the following code formats a TCP or UDP port:

printf("port number %d\n", ntohs(sp->s_port));

On certain machines, where these routines are not needed, they are defined as null
macros.

Client-Server Programs
The most common form of distributed application is the client/server model. In this
scheme, client processes request services from a server process.

An alternate scheme is a service server that can eliminate dormant server processes.
An example is inetd , the Internet service daemon. inetd listens at a variety of
ports, determined at start up by reading a configuration file. When a connection is
requested on an inetd serviced port, inetd spawns the appropriate server to serve
the client. Clients are unaware that an intermediary has played any part in the
connection. inetd is described in more detail in “inetd Daemon” on page 52.

Servers
Most servers are accessed at well-known Internet port numbers or UNIX domain
names. Code Example 2–7 illustrates the main loop of a remote-login server.

Programming With Sockets 33

CODE EXAMPLE 2–7 Remote Login Server

main(argc, argv)
int argc;

char *argv[];
{

int f;
struct sockaddr_in from;
struct sockaddr_in sin;
struct servent *sp;

sp = getservbyname("login", "tcp");

if (sp == (struct servent *) NULL) {
fprintf(stderr, "rlogind: tcp/login: unknown service");
exit(1);

}
...
#ifndef DEBUG
/* Disassociate server from controlling terminal. */
...
#endif

sin.sin_port = sp->s_port; /* Restricted port */
sin.sin_addr.s_addr = INADDR_ANY;
...
f = socket(AF_INET, SOCK_STREAM, 0);
...
if (bind(f, (struct sockaddr *) &sin, sizeof sin) == -1) {
...
}
...
listen(f, 5);
while (TRUE) {

int g, len = sizeof from;
g = accept(f, (struct sockaddr *) &from, &len);
if (g == -1) {

if (errno != EINTR)
syslog(LOG_ERR, "rlogind: accept: %m");

continue;
}
if (fork() == 0) {

close(f);
doit(g, &from);

}
close(g);

}
exit(0);

}

Code Example 2–8 shows how the server getting its service definition.

34 Transport Interfaces Programming Guide ♦ August 1997

CODE EXAMPLE 2–8 Remote Login Server: Step 1

sp = getservbyname("login", "tcp");
if (sp == (struct servent *) NULL) {

fprintf(stderr, "rlogind: tcp/login: unknown service\n");
exit(1);

}

The result from getservbyname() is used later to define the Internet port at which
the program listens for service requests. Some standard port numbers are in
/usr/include/netinet/in.h .

Code Example 2–9 shows the server dissociates from the controlling terminal of its
invoker in the non-DEBUGmode of operation.

CODE EXAMPLE 2–9 Dissociating From the Controlling Terminal

(void) close(0);
(void) close(1);
(void) close(2);
(void) open("/", O_RDONLY);
(void) dup2(0, 1);
(void) dup2(0, 2);
setsid();

This prevents the server from receiving signals from the process group of the
controlling terminal. After a server has dissociated itself, it cannot send reports of
errors to a terminal and must log errors with syslog() .

A server next creates a socket and listens for service requests. bind() ensures that
the server listens at the expected location. (The remote login server listens at a
restricted port number, so it runs as super-user.)

Code Example 2–10 illustrates the main body of the loop.

CODE EXAMPLE 2–10 Remote Login Server: Main Body

while(TRUE) {
int g, len = sizeof(from);
if (g = accept(f, (struct sockaddr *) &from, &len) == -1) {

if (errno != EINTR)
syslog(LOG_ERR, "rlogind: accept: %m");

continue;
}
if (fork() == 0) { /* Child */

close(f);
doit(g, &from);

}

(continued)

Programming With Sockets 35

(Continuation)

close(g); /* Parent */
}

accept() blocks messages until a client requests service. accept() returns a
failure indication if it is interrupted by a signal, such as SIGCHLD. The return value
from accept() is checked and an error is logged with syslog() if an error has
occurred.

The server then forks a child process and invokes the main body of the remote login
protocol processing. The socket used by the parent to queue connection requests is
closed in the child. The socket created by accept() is closed in the parent. The
address of the client is passed to doit() for authenticating clients.

Clients
This section describes the steps taken by the client remote login process. As in the
server, the first step is to locate the service definition for a remote login:

sp = getservbyname("login", "tcp");
if (sp == (struct servent *) NULL) {

fprintf(stderr,"rlogin: tcp/login: unknown service");
exit(1);

}

Next, the destination host is looked up with a gethostbyname() call:

hp = gethostbyname(argv[1]);
if (hp == (struct hostent *) NULL) {

fprintf(stderr, "rlogin: %s: unknown host", argv[1]);
exit(2);

}

Then, connect to the server at the requested host and start the remote login protocol.
The address buffer is cleared and filled with the Internet address of the foreign host
and the port number at which the login server listens:

36 Transport Interfaces Programming Guide ♦ August 1997

memset((char *) &server, 0, sizeof server);
memcpy((char*) &server.sin_addr,hp->h_addr,hp->h_length);
server.sin_family = hp->h_addrtype;
server.sin_port = sp->s_port;

A socket is created, and a connection initiated. connect() implicitly does a
bind() , since s is unbound.

s = socket(hp->h_addrtype, SOCK_STREAM, 0);
if (s < 0) {

perror("rlogin: socket");
exit(3);

}
...

if (connect(s, (struct sockaddr *) &server, sizeof server) < 0) {
perror("rlogin: connect");
exit(4);

}

Connectionless Servers
Some services use datagram sockets. The rwho service provides status information
on hosts connected to a local area network. (Avoid running in.rwho ; it causes
heavy network traffic.) This service requires the ability to broadcast information to all
hosts connected to a particular network. It is an example of datagram socket use.

A user on a host running the rwho server can get the current status of another host
with ruptime . Typical output is illustrated in Code Example 2–11.

CODE EXAMPLE 2–11 Output of ruptime Program

itchy up 9:45, 5 users, load 1.15, 1.39, 1.31
scratchy up 2+12:04, 8 users, load 4.67, 5.13, 4.59
click up 10:10, 0 users, load 0.27, 0.15, 0.14
clack up 2+06:28, 9 users, load 1.04, 1.20, 1.65
ezekiel up 25+09:48, 0 users, load 1.49, 1.43, 1.41
dandy 5+00:05, 0 users, load 1.51, 1.54, 1.56
peninsula down 0:24
wood down 17:04
carpediem down 16:09
chances up 2+15:57, 3 users, load 1.52, 1.81, 1.86

Status information is periodically broadcast by the rwho server processes on each
host. The server process also receives the status information and updates a database.
This database is interpreted for the status of each host. Servers operate
autonomously, coupled only by the local network and its broadcast capabilities.

Use of broadcast is fairly inefficient, because a lot of net traffic is generated. Unless
the service is used widely and frequently, the expense of periodic broadcasts
outweighs the simplicity.

Programming With Sockets 37

Code Example 2–12 shows a simplified version of the rwho server. It performs two
tasks: receives status information broadcast by other hosts on the network and
supplies the status of its host. The first task is done in the main loop of the program:
Packets received at the rwho port are checked to be sure they were sent by another
rwho server process, and are stamped with the arrival time. They then update a file
with the status of the host. When a host has not been heard from for an extended
time, the database routines assume the host is down and logs it. This application is
prone to error, as a server might be down while a host is up.

CODE EXAMPLE 2–12 rwho Server

main()
{

...
sp = getservbyname("who", "udp");
net = getnetbyname("localnet");
sin.sin_addr = inet_makeaddr(net->n_net, INADDR_ANY);
sin.sin_port = sp->s_port;
...
s = socket(AF_INET, SOCK_DGRAM, 0);
...
on = 1;
if (setsockopt(s, SOL_SOCKET, SO_BROADCAST, &on, sizeof on)

== -1) {
syslog(LOG_ERR, "setsockopt SO_BROADCAST: %m");
exit(1);

}
bind(s, (struct sockaddr *) &sin, sizeof sin);
...
signal(SIGALRM, onalrm);
onalrm();
while(1) {

struct whod wd;
int cc, whod, len = sizeof from;

cc = recvfrom(s, (char *) &wd, sizeof(struct whod), 0,
(struct sockaddr *) &from, &len);

if (cc <= 0) {
if (cc == -1 && errno != EINTR)

syslog(LOG_ERR, "rwhod: recv: %m");
continue;
}
if (from.sin_port != sp->s_port) {

syslog(LOG_ERR, "rwhod: %d: bad from port",
ntohs(from.sin_port));

continue;
}
...
if (!verify(wd.wd_hostname)) {

syslog(LOG_ERR, "rwhod: bad host name from %x",
ntohl(from.sin_addr.s_addr));

continue;
}
(void) sprintf(path, "%s/whod.%s", RWHODIR, wd.wd_hostname);
whod = open(path, O_WRONLY|O_CREAT|O_TRUNC, 0666);
...

(continued)

38 Transport Interfaces Programming Guide ♦ August 1997

(Continuation)

(void) time(&wd.wd_recvtime);
(void) write(whod, (char *) &wd, cc);
(void) close(whod);

}
exit(0);

}

The second server task is to supply the status of its host. This requires periodically
acquiring system status information, packaging it in a message, and broadcasting it
on the local network for other rwho servers to hear. This task is run by a timer and
triggered with a signal. Locating the system status information is involved but
uninteresting.

Status information is broadcast on the local network. For networks that do not
support broadcast, another scheme must be used.

It is important that software operating in a distributed environment not have any
site-dependent information compiled into it. This would require a separate copy of
the server at each host and make maintenance a severe problem. The system isolates
host-specific data from applications by providing function calls that return the
required data. (For example, uname() returns the host’s official name.) The
ioctl() call lets you find the networks to which a host is directly connected. A
local network broadcasting mechanism has been implemented at the socket level.
Combining these two features lets a process broadcast on any directly connected
local network that supports broadcasting in a site- independent manner. This solves
the problem of deciding how to propagate status with rwho , or more generally in
broadcasting. Such status is broadcast to connected networks at the socket level,
where the connected networks have been obtained through the appropriate
ioctl() calls. “Broadcasting and Determining Network Configuration” on page 47
details the specifics of broadcasting.

Advanced Topics
For most programmers, the mechanisms already described are enough to build
distributed applications. Others will need some of the additional features in this
section.

Programming With Sockets 39

Out-of-Band Data
The stream socket abstraction includes out-of-band data. Out-of-band data is a
logically independent transmission channel between a pair of connected stream
sockets. Out-of-band data is delivered independent of normal data. The out-of-band
data facilities must support the reliable delivery of at least one out-of-band message
at a time. This message can contain at least one byte of data, and at least one
message can be pending delivery at any time.

For communications protocols that support only in-band signaling (that is, urgent
data is delivered in sequence with normal data), the message is extracted from the
normal data stream and stored separately. This lets users choose between receiving
the urgent data in order and receiving it out of sequence, without having to buffer
the intervening data.

You can peek (with MSG_PEEK) at out-of-band data. If the socket has a process
group, a SIGURGsignal is generated when the protocol is notified of its existence. A
process can set the process group or process id to be informed by SIGURGwith the
appropriate fcntl() call, as described in “Interrupt-Driven Socket I/O” on page 43
for SIGIO . If multiple sockets have out-of-band data waiting delivery, a select()
call for exceptional conditions can be used to determine the sockets with such data
pending.

A logical mark is placed in the data stream at the point at which the out-of-band
data was sent. The remote login and remote shell applications use this facility to
propagate signals between client and server processes. When a signal is received, all
data up to the mark in the data stream is discarded.

To send an out-of-band message, the MSG_OOBflag is applied to send() or
sendto() . To receive out-of-band data, specify MSG_OOBto recvfrom() or
recv() (unless out-of-band data is taken in line, in which case the MSG_OOBflag is
not needed). The SIOCATMARK ioctl tells whether the read pointer currently points
at the mark in the data stream:

ioctl(s, SIOCATMARK, &yes);

If yes is 1 on return, the next read returns data after the mark. Otherwise, assuming
out-of-band data has arrived, the next read provides data sent by the client before
sending the out-of-band signal. The routine in the remote login process that flushes
output on receipt of an interrupt or quit signal is shown in Code Example 2–13. This
code reads the normal data up to the mark (to discard it), then reads the out-of-band
byte.

CODE EXAMPLE 2–13 Flushing Terminal I/O on Receipt of Out-of-Band Data

#include <sys/ioctl.h>
#include <sys/file.h>
...
oob()

(continued)

40 Transport Interfaces Programming Guide ♦ August 1997

(Continuation)

{
int out = FWRITE;
char waste[BUFSIZ];
int mark;

/* flush local terminal output */
ioctl(1, TIOCFLUSH, (char *) &out);
while(1) {

if (ioctl(rem, SIOCATMARK, &mark) == -1) {
perror("ioctl");
break;

}
if (mark)

break;
(void) read(rem, waste, sizeof waste);

}
if (recv(rem, &mark, 1, MSG_OOB) == -1) {

perror("recv");
...

}
...

}

A process can also read or peek at the out-of-band data without first reading up to
the mark. This is more difficult when the underlying protocol delivers the urgent
data in-band with the normal data, and only sends notification of its presence ahead
of time (for example, TCP, the protocol used to provide socket streams in the Internet
domain). With such protocols, the out-of-band byte might not yet have arrived when
a recv() is done with the MSG_OOBflag. In that case, the call returns the error of
EWOULDBLOCK. Also, there might be enough in-band data in the input buffer that
normal flow control prevents the peer from sending the urgent data until the buffer
is cleared. The process must then read enough of the queued data before the urgent
data can be delivered.

There is also a facility to retain the position of urgent in-line data in the socket
stream. This is available as a socket-level option, SO_OOBINLINE. See the
getsockopt (3N) manpage for usage. With this option, the position of urgent data
(the mark) is retained, but the urgent data immediately follows the mark in the
normal data stream returned without the MSG_OOBflag. Reception of multiple urgent
indications causes the mark to move, but no out-of-band data are lost.

Nonblocking Sockets
Some applications require sockets that do not block. For example, requests that
cannot complete immediately and would cause the process to be suspended
(awaiting completion) are not executed. An error code would be returned. After a

Programming With Sockets 41

socket is created and any connection to another socket is made, it can be made
nonblocking by issuing a fcntl() call as shown in Code Example 2–14.

CODE EXAMPLE 2–14 Set Nonblocking Socket

#include <fcntl.h>
#include <sys/file.h>
...
int fileflags;
int s;
...
s = socket(AF_INET, SOCK_STREAM, 0);
...
if (fileflags = fcntl(s, F_GETFL, 0) == -1)

perror("fcntl F_GETFL");
exit(1);

}
if (fcntl(s, F_SETFL, fileflags | FNDELAY) == -1)

perror("fcntl F_SETFL, FNDELAY");
exit(1);

}
...

When doing I/O on a nonblocking socket, check for the error EWOULDBLOCK(in
errno.h), which occurs when an operation would normally block. accept() ,
connect() , send() , recv() , read() , and write() can all return
EWOULDBLOCK. If an operation such as a send() cannot be done in its entirety, but
partial writes work (such as when using a stream socket), the data that can be sent
immediately are processed, and the return value is the amount actually sent.

Asynchronous Sockets
Asynchronous communication between processes is required in real-time
applications. Asynchronous sockets must be SOCK_STREAM type. To make a socket
asynchronous, you issue a fcntl() call, as shown in Code Example 2–15.

CODE EXAMPLE 2–15 Making a Socket Asynchronous

#include <fcntl.h>
#include <sys/file.h>
...
int fileflags;
int s;
...
s = socket(AF_INET, SOCK_STREAM, 0);
...
if (fileflags = fcntl(s, F_GETFL) == -1)

(continued)

42 Transport Interfaces Programming Guide ♦ August 1997

(Continuation)

perror("fcntl F_GETFL");
exit(1);

}
if (fcntl(s, F_SETFL, fileflags | FNDELAY | FASYNC) < 0)

perror("fcntl F_SETFL, FNDELAY | FASYNC");
exit(1);

}
...

After sockets are initialized, connected, and made asynchronous, communication is
similar to reading and writing a file asynchronously. A send() , write() , recv() ,
or read() initiates a data transfer. A data transfer is completed by a signal-driven
I/O routine, described in the next section.

Interrupt-Driven Socket I/O
The SIGIO signal notifies a process when a socket (actually any file descriptor) has
finished a data transfer. The steps in using SIGIO are:

� Set up a SIGIO signal handler with the signal() or sigvec() calls.

� Use fcntl() to set the process ID or process group ID to receive the signal to its
own process ID or process group ID (the default process group of a socket is
group 0).

� Convert the socket to asynchronous, as shown in “Asynchronous Sockets” on page
42.

Code Example 2–16 shows some sample code to allow a given process to receive
information on pending requests as they occur for a socket. With the addition of a
handler for SIGURG() , this code can also be used to prepare for receipt of SIGURG
signals.

CODE EXAMPLE 2–16 Asynchronous Notification of I/O Requests

#include <fcntl.h>
#include <sys/file.h>

...
signal(SIGIO, io_handler);
/* Set the process receiving SIGIO/SIGURG signals to us. */
if (fcntl(s, F_SETOWN, getpid()) < 0) {

perror("fcntl F_SETOWN");
exit(1);

(continued)

Programming With Sockets 43

(Continuation)

}

Signals and Process Group ID
For SIGURGand SIGIO , each socket has a process number and a process group ID.
These values are initialized to zero, but can be redefined at a later time with the
F_SETOWN fcntl() , as in the previous example. A positive third argument to
fcntl() sets the socket’s process ID. A negative third argument to fcntl() sets
the socket’s process group ID. The only allowed recipient of SIGURGand SIGIO
signals is the calling process. A similar fcntl() , F_GETOWN, returns the process
number of a socket.

Reception of SIGURGand SIGIO can also be enabled by using ioctl() to assign
the socket to the user’s process group:

/* oobdata is the out-of-band data handling routine */
sigset(SIGURG, oobdata);
int pid = -getpid();
if (ioctl(client, SIOCSPGRP, (char *) &pid) < 0) {

perror("ioctl: SIOCSPGRP");
}

Another signal that is useful in server processes is SIGCHLD. This signal is delivered
to a process when any child process changes state. Normally, servers use the signal
to “reap” child processes that have exited without explicitly awaiting their
termination or periodically polling for exit status. For example, the remote login
server loop shown previously can be augmented as shown in Code Example 2–17.

CODE EXAMPLE 2–17 SIGCHLDSignal

int reaper();
...
sigset(SIGCHLD, reaper);
listen(f, 5);
while (1) {

int g, len = sizeof from;
g = accept(f, (struct sockaddr *) &from, &len);
if (g < 0) {

if (errno != EINTR)
syslog(LOG_ERR, "rlogind: accept: %m");

continue;
}
...

}

(continued)

44 Transport Interfaces Programming Guide ♦ August 1997

(Continuation)

#include <wait.h>

reaper()
{

int options;
int error;
siginfo_t info;

options = WNOHANG | WEXITED;
bzero((char *) &info, sizeof(info));
error = waitid(P_ALL, 0, &info, options);

}

If the parent server process fails to reap its children, zombie processes result.

Selecting Specific Protocols
If the third argument of the socket() call is 0, socket() selects a default protocol
to use with the returned socket of the type requested. The default protocol is usually
correct, and alternate choices are not usually available. When using “raw” sockets to
communicate directly with lower-level protocols or hardware interfaces, it may be
important for the protocol argument to set up de-multiplexing. For example, raw
sockets in the Internet domain can be used to implement a new protocol on IP, and
the socket receives packets only for the protocol specified. To obtain a particular
protocol, determine the protocol number as defined in the protocol domain. For the
Internet domain, use one of the library routines discussed in “Standard Routines” on
page 30, such as getprotobyname() :

#include <sys/types.h>
#include <sys/socket.h>
#include <netinet/in.h>
#include <netdb.h>

...
pp = getprotobyname("newtcp");
s = socket(AF_INET, SOCK_STREAM, pp->p_proto) ;

This results in a socket s using a stream-based connection, but with protocol type of
newtcp instead of the default tcp .

Programming With Sockets 45

Address Binding
In the Internet Protocol family, bindings are composed of local and foreign IP
addresses, and of local and foreign port numbers. Port numbers are allocated in
separate spaces, one for each system and one for each transport protocol (TCP or
UDP). Through bind() , a process specifies the local IP address, local port number half
of an association, while connect() and accept() complete a socket’s association
by specifying the foreign IP address, foreign port number part. Because the association is
created in two steps, the association-uniqueness requirement might be violated,
without specific care. It is unrealistic to expect user programs to always know proper
values to use for the local address and local port, since a host can reside on multiple
networks and the set of allocated port numbers is not directly accessible to a user.

The wildcard address simplifies local address binding in the Internet domain. When
an address is specified as INADDR_ANY(a constant defined in netinet/in.h), the
system interprets the address as any valid address. The sample code in Code
Example 2–18 binds a specific port number to a socket, and leaves the local address
unspecified.

CODE EXAMPLE 2–18 Bind Port Number to Socket

#include <sys/types.h>
#include <netinet/in.h>
...
struct sockaddr_in sin;
...

s = socket(AF_INET, SOCK_STREAM, 0);
sin.sin_family = AF_INET;
sin.sin_addr.s_addr = htonl(INADDR_ANY);
sin.sin_port = htons(MYPORT);
bind(s, (struct sockaddr *) &sin, sizeof sin);

Each network interface on a host typically has a unique IP address. Sockets with
wildcard local addresses can receive messages directed to the specified port number
and sent to any of the possible addresses assigned to a host. For example, if a host
has two interfaces with addresses 128.32.0.4 and 10.0.0.78, and a socket is bound as
in Code Example 2–18, the process can accept connection requests addressed to
128.32.0.4 or 10.0.0.78. To allow only hosts on a specific network to connect to it, a
server binds the address of the interface on the appropriate network.

Similarly, a local port number can be left unspecified (specified as 0), in which case
the system selects a port number. For example, to bind a specific local address to a
socket, but to leave the local port number unspecified:

sin.sin_addr.s_addr = inet_addr("127.0.0.1");
sin.sin_family = AF_INET;
sin.sin_port = htons(0);
bind(s, (struct sockaddr *) &sin, sizeof sin);

46 Transport Interfaces Programming Guide ♦ August 1997

The system uses two criteria to select the local port number:

� The first is that Internet port numbers less than 1024 (IPPORT_RESERVED) are
reserved for privileged users (that is, the superuser). Nonprivileged users can use
any Internet port number greater than 1024. The largest Internet port number is
65535.

� The second criterion is that the port number is not currently bound to some other
socket.

The port number and IP address of the client is found through either accept() (the
from result) or getpeername() .

In certain cases, the algorithm used by the system to select port numbers is
unsuitable for an application. This is because associations are created in a two-step
process. For example, the Internet file transfer protocol specifies that data
connections must always originate from the same local port. However, duplicate
associations are avoided by connecting to different foreign ports. In this situation, the
system would disallow binding the same local address and port number to a socket
if a previous data connection’s socket still existed. To override the default port
selection algorithm, an option call must be performed before address binding:

...
int on = 1;
...
setsockopt(s, SOL_SOCKET, SO_REUSEADDR, &on, sizeof on);
bind(s, (struct sockaddr *) &sin, sizeof sin);

With this call, local addresses already in use can be bound. This does not violate the
uniqueness requirement, because the system still verifies at connect time that any
other sockets with the same local address and port do not have the same foreign
address and port. If the association already exists, the error EADDRINUSEis returned.

Broadcasting and Determining Network
Configuration
Messages sent by datagram sockets can be broadcast to reach all of the hosts on an
attached network. The network must support broadcast; the system provides no
simulation of broadcast in software. Broadcast messages can place a high load on a
network since they force every host on the network to service them. Broadcasting is
usually used for either of two reasons: to find a resource on a local network without
having its address, or functions like routing require that information be sent to all
accessible neighbors.

To send a broadcast message, create an Internet datagram socket:

s = socket(AF_INET, SOCK_DGRAM, 0);

Programming With Sockets 47

and bind a port number to the socket:

sin.sin_family = AF_INET;
sin.sin_addr.s_addr = htonl(INADDR_ANY);
sin.sin_port = htons(MYPORT);
bind(s, (struct sockaddr *) &sin, sizeof sin);

The datagram can be broadcast on only one network by sending to the network’s
broadcast address. A datagram can also be broadcast on all attached networks by
sending to the special address INADDR_BROADCAST, defined in netinet/in.h .

The system provides a mechanism to determine a number of pieces of information
(including the IP address and broadcast address) about the network interfaces on the
system. The SIOCGIFCONF ioctl() call returns the interface configuration of a host
in a single ifconf structure. This structure contains an array of ifreq structures,
one for each address domain supported by each network interface to which the host
is connected. Code Example 2–19 shows these structures defined in net/if.h .

CODE EXAMPLE 2–19 net/if.h Header File

struct ifreq {
#define IFNAMSIZ 16
char ifr_name[IFNAMSIZ]; /* if name, e.g., "en0" */
union {

struct sockaddr ifru_addr;
struct sockaddr ifru_dstaddr;
char ifru_oname[IFNAMSIZ]; /* other if name */
struct sockaddr ifru_broadaddr;
short ifru_flags;
int ifru_metric;
char ifru_data[1]; /* interface dependent data */
char ifru_enaddr[6];

} ifr_ifru;
#define ifr_addr ifr_ifru.ifru_addr
#define ifr_dstaddr ifr_ifru.ifru_dstaddr
#define ifr_oname ifr_ifru.ifru_oname
#define ifr_broadaddr ifr_ifru.ifru_broadaddr
#define ifr_flags ifr_ifru.ifru_flags
#define ifr_metric ifr_ifru.ifru_metric
#define ifr_data ifr_ifru.ifru_data
#define ifr_enaddr ifr_ifru.ifru_enaddr
};

The call that obtains the interface configuration is:

48 Transport Interfaces Programming Guide ♦ August 1997

struct ifconf ifc;
char buf[BUFSIZ];

ifc.ifc_len = sizeof buf;
ifc.ifc_buf = buf;
if (ioctl(s, SIOCGIFCONF, (char *) &ifc) < 0) {

...
}

After this call, buf contains an array of ifreq structures, one for each network to
which the host is connected. These structures are ordered first by interface name, and
by supported address families. ifc.ifc_len is set to the number of bytes used by
the ifreq structures.

Each structure has a set of interface flags that tell whether the corresponding
network is up or down, point-to-point or broadcast, and so on. Code Example 2–20
shows the SIOCGIFFLAGS ioctl() returning these flags for an interface specified
by an ifreq structure.

CODE EXAMPLE 2–20 Obtaining Interface Flags

struct ifreq *ifr;
ifr = ifc.ifc_req;
for (n = ifc.ifc_len/sizeof (struct ifreq); --n >= 0; ifr++) {

/*
* Be careful not to use an interface devoted to an address
* domain other than those intended.
*/

if (ifr->ifr_addr.sa_family != AF_INET)
continue;

if (ioctl(s, SIOCGIFFLAGS, (char *) ifr) < 0) {
...

}
/* Skip boring cases */
if ((ifr->ifr_flags & IFF_UP) == 0 ||

(ifr->ifr_flags & IFF_LOOPBACK) ||
(ifr->ifr_flags & (IFF_BROADCAST | IFF_POINTOPOINT)) == 0)
continue;

}

Code Example 2–21 shows the broadcast of an interface can be obtained with the
SIOGGIFBRDADDR ioctl() .

Programming With Sockets 49

CODE EXAMPLE 2–21 Broadcast Address of an Interface

if (ioctl(s, SIOCGIFBRDADDR, (char *) ifr) < 0) {
...

}
memcpy((char *) &dst, (char *) &ifr->ifr_broadaddr,

sizeof ifr->ifr_broadaddr);

The SIOGGIFBRDADDR ioctl() can also be used to get the destination address of a
point-to-point interface.

After the interface broadcast address is obtained, transmit the broadcast datagram
with sendto() :

sendto(s, buf, buflen, 0, (struct sockaddr *)&dst, sizeof dst);

Use one sendto() for each interface to which the host is connected that supports
the broadcast or point-to-point addressing.

Zero Copy and Chechsum Offload
In Solaris 2.6, the TCP/IP protocol stack has been enhanced to support two new
features: zero copy and TCP checksum offload.

� Zero copy uses virtual memory MMU remapping and copy-on-write technique to
move data between the application and the kernel space.

� Checksum offloading replies on special hardware logic to offload the TCP
checksum calculation.

Note - Although zero copy and checksum offloading are functionally independent of
each other, they have to work together to obtain the optimal performance. Checksum
offloading requires hardware support from the network interface and, without this
hardware support, zero copy is not enabled.

Zero copy requires that the applications supply page-aligned buffers before VM page
remapping can be applied. Applications should use large, circular buffers on the
transmit side to avoid expensive copy-on-write faults. A typical buffer allocation is
16 8k buffers.

Socket Options
You can set and get several options on sockets through setsockopt() and
getsockopt() ; for example changing the send or receive buffer space. The general
forms of the calls are:

50 Transport Interfaces Programming Guide ♦ August 1997

setsockopt(s, level, optname, optval, optlen);

and

getsockopt(s, level, optname, optval, optlen);

Table 2–4 shows the arguments of the calls.

TABLE 2–4 setsockopt() and getsockopt() Arguments

Arguments Description

s Socket on which the option is to be applied

level Specifies the protocol level, such as socket level, indicated by the
symbolic constant SOL_SOCKET in sys/socket.h

optname Symbolic constant defined in sys/socket.h that specifies the option

optval Points to the value of the option

optlen Points to the length of the value of the option

For getsockopt() , optlen is a value-result argument, initially set to the size of the
storage area pointed to by optval and set on return to the length of storage used.

It is sometimes useful to determine the type (for example, stream or datagram) of an
existing socket. Programs invoked by inetd can do this by using the SO_TYPE
socket option and the getsockopt() call:

#include <sys/types.h>
#include <sys/socket.h>

int type, size;

size = sizeof (int);
if (getsockopt(s, SOL_SOCKET, SO_TYPE, (char *) &type, &size) <0) {

...
}

After getsockopt() , type is set to the value of the socket type, as defined in
sys/socket.h . For a datagram socket, type would be SOCK_DGRAM.

Programming With Sockets 51

inetd Daemon
One of the daemons provided with the system is inetd . It is invoked at start-up
time, and gets the services for which it listens from the /etc/inetd.conf file. The
daemon creates one socket for each service listed in /etc/inetd.conf , binding the
appropriate port number to each socket. See the inetd (1M) man page for details.

inetd does a select() on each socket, waiting for a connection request to the
service corresponding to that socket. For SOCK_STREAMtype sockets, inetd does an
accept() on the listening socket, fork() s, dup() s the new socket to file
descriptors 0 and 1 (stdin and stdout), closes other open file descriptors, and
exec() s the appropriate server.

The primary benefit of inetd is that services that are not in use are not taking up
machine resources. A secondary benefit is that inetd does most of the work to
establish a connection. The server started by inetd has the socket connected to its
client on file descriptors 0 and 1, and can immediately read() , write() , send() ,
or recv() . Servers can use buffered I/O as provided by the stdio conventions, as
long as they use fflush() when appropriate.

getpeername() returns the address of the peer (process) connected to a socket; it is
useful in servers started by inetd . For example, to log the Internet address in
decimal dot notation (such as 128.32.0.4, which is conventional for representing an IP
address of a client), an inetd server could use the following:

struct sockaddr_in name;
int namelen = sizeof name;

...
if (getpeername(0, (struct sockaddr *) &name, &namelen) < 0) {

syslog(LOG_ERR, "getpeername: %m");
exit(1);

} else
syslog(LOG_INFO, "Connection from %s",

inet_ntoa(name.sin_addr));
...

52 Transport Interfaces Programming Guide ♦ August 1997

CHAPTER 3

Programming with XTI and TLI

The X/Open Transport Interface (XTI) and the Transport Layer Interface (TLI) are a
set of functions that constitute a network programming interface. XTI is an evolution
from the older TLI interface available on SunOS. Both interfaces are supported,
though XTI represents the future direction of this set of interfaces.

� “What Is XTI and TLI?” on page 54

� “Connectionless Mode” on page 56

� “Connection Mode” on page 61

� “Read/Write Interface” on page 81

� “Advanced Topics” on page 84

� “State Transitions” on page 91

� “XTI/TLI Versus Socket Interfaces ” on page 99

XTI/TLI Is Multithread Safe
The interfaces described in this chapter are multithread safe. This means that
applications that contain XTI/TLI function calls can be used freely in a
multithreaded application.

53

XTI/TLI Is not Asynchronous Safe
The XTI/TLI interface behavior has not been well specified in an asynchronous
environment. It is not recommended that these interfaces be used from signal
handler routines.

What Is XTI and TLI?
TLI was introduced with AT&T’s System V, Release 3 in 1986. It provided a transport
layer interface API. TLI was modeled after the ISO Transport Service Definition and
provides an API between the OSI transport and session layers. TLI interfaces evolved
further in AT&T System V, Release 4 version of Unix and were made available in
release of SunOS 5.X operating system interfaces too.

XTI interfaces are an evolution of TLI interfaces and represents the future direction of
this family of interfcaces. Compatibility for applications using TLI interfaces is
available. There is no intrinsic need to immediate port TLI applications to XTI. New
applications can use the XTI interface and older applications can be ported to XTI
when necessary.

XTI/TLI are implemented as a set of function calls in a library (libnsl) to which
the applications link.

Note - An application using the XTI interface uses the xti.h header file, whereas an
application using the TLI interface includes the tiuser.h header file.

Intrinsic to XTI/TLI are the notions of transport endpoints and a transport provider. The
transport endpoints are two entities that are communicating, and the transport
provider is the set of routines on the computer host that provides the underlying
communication support. XTI/TLI is the interface to the transport provider, not the
provider itself. See Figure 3–1.

54 Transport Interfaces Programming Guide ♦ August 1997

Service requests

Service events and
 requests

 Transport user

Transport provider

 Transport

 interface

 (From user)

 (from provider)

Figure 3–1 How XTI/TLI Works

XTI/TLI code can be written to be independent of transport providers in use in
conjunction with some additional interfaces and mechanisms described in Chapter 4.
The SunOS 5.x product includes some transport providers (TCP, for example) as part
of the base operating system. A transport provider performs services, and the
transport user requests the services. The transport user issues service requests to the
transport provider. An example is a request to transfer data over a connection TCP
and UDP.

XTI/TLI can also be used for transport-independent programming. XTI/TLI has two
components to achieve this:

� Library routines that perform the transport services, in particular, transport
selection and name-to-address translation. The network services library includes a
set of functions that implement XTI/TLI for user processes. See Chapter 4.

Programs using XTI/TLI should be linked with the network services library, lnsl ,
as follows:

cc prog.c -lnsl

� State transition rules that define the sequence in which the transport routines may
be invoked. For more information on state transition rules, see section, “State
Transitions” on page 91. The state tables define the legal sequence of library calls
based on the state and the handling of events. These events include user-generated
library calls, as well as provider-generated event indications. XTI/TLI
programmers should understand all state transitions before using the interface.

XTI/TLI provides two modes of service, connection mode and connectionless mode.
The next two sections give an overview of these modes.

Programming with XTI and TLI 55

Connectionless Mode
Connectionless mode is message oriented. Data are transferred in self-contained units
with no relationship between the units. This service requires only an established
association between the peer users that determines the characteristics of the data. All
the information required to deliver a message (such as the destination address) is
presented to the transport provider, with the data to be transmitted, in one service
request. Each message is entirely self-contained. Use connectionless mode service for
applications that:

� Have short-term request/response interactions

� Are dynamically reconfigurable

� Do not require sequential delivery of data

Connectionless transports can be “unreliable.” They need not necessarily maintain
message sequence, and messages are sometimes lost.

Connectionless Mode Routines
Connectionless-mode transport service has two phases: local management and data
transfer. The local management phase defines the same local operations as for the
connection mode service.

The data transfer phase lets a user transfer data units (usually called datagrams) to
the specified peer user. Each data unit must be accompanied by the transport address
of the destination user. t_sndudata() sends and t_rcvudata() receives
messages. Table 3–1 summarizes all routines for connectionless mode data transfer.

TABLE 3–1 Routines for Connectionless-Mode Data Transfer

Command Description

t_sndudata Sends a message to another user of the transport

t_rcvudata Receives a message sent by another user of the transport

t_rcvuderr Retrieves error information associated with a previously sent message

56 Transport Interfaces Programming Guide ♦ August 1997

Connectionless Mode Service
Connectionless mode service is appropriate for short-term request/response
interactions, such as transaction-processing applications. Data are transferred in
self-contained units with no logical relationship required among multiple units.

Endpoint Initiation
Transport users must initiate XTI/TLI endpoints before transferring data. They must
choose the appropriate connectionless service provider using t_open() and
establish its identity using t_bind() .

Use t_optmgmt() to negotiate protocol options. Like connection mode service, each
transport provider specifies the options, if any, it supports. Option negotiation is a
protocol-specific activity. In Code Example 3–1, the server waits for incoming
queries, and processes and responds to each query. The example also shows the
definitions and initiation sequence of the server.

CODE EXAMPLE 3–1 CLTS Server

#include <stdio.h>
#include <fcntl.h>
#include <xti.h> /* TLI applications use <tiuser.h> */
#define SRV_ADDR 2 /* server’s well known address */

main()
{

int fd;
int flags;
struct t_bind *bind;
struct t_unitdata *ud;
struct t_uderr *uderr;
extern int t_errno;

if ((fd = t_open("/dev/exmp", O_RDWR, (struct t_info *) NULL))
== -1) {

t_error("unable to open /dev/exmp");
exit(1);

}
if ((bind = (struct t_bind *)t_alloc(fd, T_BIND, T_ADDR))

== (struct t_bind *) NULL) {
t_error("t_alloc of t_bind structure failed");
exit(2);

}
bind->addr.len = sizeof(int);
*(int *)bind->addr.buf = SRV_ADDR;
bind->qlen = 0;
if (t_bind(fd, bind, bind) == -1) {

(continued)

Programming with XTI and TLI 57

(Continuation)

t_error("t_bind failed");
exit(3);

}
/*

* TLI interface applications need the following code which
* is no longer needed for XTI interface applications.
* -------------------------------------
* Verify if the bound address correct?
*
* if (bind -> addr.len != sizeof(int) ||
* *(int *)bind->addr.buf != SRV_ADDR) {
* fprintf(stderr, "t_bind bound wrong address\n");
* exit(4);
* }
* ---------------------------------------
*/

The server establishes a transport endpoint with the desired transport provider using
t_open() . Each provider has an associated service type, so the user can choose a
particular service by opening the appropriate transport provider file. This
connectionless mode server ignores the characteristics of the provider returned by
t_open() by setting the third argument to NULL. The transaction server assumes
the transport provider has the following characteristics:

� The transport address is an integer value that uniquely identifies each user.

� The transport provider supports the T_CLTS service type (connectionless transport
service, or datagram).

� The transport provider does not require any protocol-specific options.

The connectionless server binds a transport address to the endpoint so that potential
clients can access the server. A t_bind structure is allocated using t_alloc() and
the buf and len fields of the address are set accordingly.

One difference between a connection mode server and a connectionless mode server
is that the qlen field of the t_bind structure is 0 for connectionless mode service.
There are no connection requests to queue.

XTI/TLI interfaces define an inherent client-server relationship between two users
while establishing a transport connection in the connection mode service. No such
relationship exists in connectionless mode service. This example, not XTI/TLI,
defines one user as a server and the other as a client.

Because the address of the server is known by all potential clients, the server checks
the bound address returned by t_bind() to ensure that it is correct. t_bind() can
also bind the endpoint to a separate, free address if the one requested is busy.

58 Transport Interfaces Programming Guide ♦ August 1997

Data Transfer
After a user has bound an address to the transport endpoint, datagrams can be sent
or received over the endpoint. Each outgoing message carries the address of the
destination user. XTI/TLI also lets you specify protocol options to the transfer of the
data unit (for example, transit delay). Each transport provider defines the set of
options on a datagram. When the datagram is passed to the destination user, the
associated protocol options can be passed too.

Code Example 3–2 illustrates the data transfer phase of the connectionless mode
server.

CODE EXAMPLE 3–2 Data Transfer Routine

if ((ud = (struct t_unitdata *) t_alloc(fd, T_UNITDATA,T_ALL))
== (struct t_unitdata *) NULL) {

t_error("t_alloc of t_unitdata struct failed");
exit(5);

}
if ((uderr = (struct t_uderr *) t_alloc(fd, T_UDERROR, T_ALL))

== (struct t_uderr *) NULL) {
t_error("t_alloc of t_uderr struct failed");
exit(6);

}
while(1) {

if (t_rcvudata(fd, ud, &flags) == -1) {
if (t_errno == TLOOK) {

/* Error on previously sent datagram */
if(t_rcvuderr(fd, uderr) == -1) {
exit(7);
}
fprintf(stderr, "bad datagram, error=%d\n",

uderr->error);
continue;

}
t_error("t_rcvudata failed");
exit(8);

}
/*

* Query() processes the request and places the response in
* ud->udata.buf, setting ud->udata.len
*/

query(ud);
if (t_sndudata(fd, ud) == -1) {

t_error("t_sndudata failed");
exit(9);

}
}

}

/* ARGS USED */
void
query(ud)
struct t_unitdate *ud;

(continued)

Programming with XTI and TLI 59

(Continuation)

{
/* Merely a stub for simplicity */

}

To buffer datagrams, the server first allocates a t_unitdata structure, which has the
following format:

struct t_unitdata {
struct netbuf addr;
struct netbuf opt;
struct netbuf udata;

}

addr holds the source address of incoming datagrams and the destination address of
outgoing datagrams. opt holds any protocol options on the datagram. udata holds
the data. The addr , opt , and udata fields must all be allocated with buffers large
enough to hold any possible incoming values. The T_ALL argument of t_alloc()
ensures this and sets the maxlen field of each netbuf structure accordingly. The
provider does not support protocol options in this example, so maxlen is set to 0 in
the opt netbuf structure. The server also allocates a t_uderr structure for
datagram errors.

The transaction server loops forever, receiving queries, processing the queries, and
responding to the clients. It first calls t_rcvudata() to receive the next query.
t_rcvudata() blocks until a datagram arrives, and returns it. The second
argument of t_rcvudata() identifies the t_unitdata structure in which to buffer
the datagram. The third argument, flags , points to an integer variable and can be
set to T_MOREon return from t_rcvudata() to indicate that the user’s udata
buffer is too small to store the full datagram. If this happens, the next call to
t_rcvudata() retrieves the rest of the datagram. Because t_alloc() allocates a
udata buffer large enough to store the maximum size datagram, this transaction
server does not have to check flags . This is true only of t_rcvudata() and not of
any other receive primitives.

When a datagram is received, the transaction server calls its query routine to
process the request. This routine stores a response in the structure pointed to by ud ,
and sets ud-->udata.len to the number of bytes in the response. The source
address returned by t_rcvudata() in ud-->addr is the destination address for
t_sndudata() . When the response is ready, t_sndudata() is called to send the
response to the client.

60 Transport Interfaces Programming Guide ♦ August 1997

Datagram Errors
If the transport provider cannot process a datagram sent by t_sndudata() , it
returns a unit data error event, T_UDERR, to the user. This event includes the
destination address and options of the datagram, and a protocol-specific error value
that identifies the error. Datagram errors are protocol specific.

Note - A unit data error event does not always indicate success or failure in
delivering the datagram to the specified destination. Remember, connectionless
service does not guarantee reliable delivery of data.

The transaction server is notified of an error when it tries to receive another
datagram. In this case, t_rcvudata() fails, setting t_errno to TLOOK. If TLOOKis
set, the only possible event is T_UDERR, so the server calls t_rcvuderr() to
retrieve the event. The second argument of t_rcvuderr() is the t_uderr structure
that was allocated earlier. This structure is filled in by t_rcvuderr() and has the
following format:

struct t_uderr {
struct netbuf addr;
struct netbuf opt;
long error;

}

where addr and opt identify the destination address and protocol options specified
in the bad datagram, and error is a protocol-specific error code. The transaction
server prints the error code, then continues.

Connection Mode
Connection mode is circuit oriented. Data are transmitted in sequence over an
established connection. The mode also provides an identification procedure that
avoids address resolution and transmission in the data transfer phase. Use this
service for applications that require data stream-oriented interactions. Connection
mode transport service has four phases:

� Local management

� Connection establishment

� Data transfer

� Connection release

The local management phase defines local operations between a transport user and a
transport provide as shown in Figure 3–2. For example, a user must establish a

Programming with XTI and TLI 61

channel of communication with the transport provider. Each channel between a
transport user and transport provider is a unique endpoint of communication, and is
called the transport endpoint. t_open() lets a user choose a particular transport
provider to supply the connection mode services, and establishes the transport
endpoint.

 Transport user

Transport provider

 Transport

 interface

Transport
endpoint

Figure 3–2 Transport Endpoint

Connection Mode Routines
Each user must establish an identity with the transport provider. A transport address
is associated with each transport endpoint. One user process can manage several
transport endpoints. In connection mode service, one user requests a connection to
another user by specifying the other’s address. The structure of a transport address is
defined by the transport provider. An address can be as simple as an unstructured
character string (for example, file_server), or as complex as an encoded bit
pattern that specifies all information needed to route data through a network. Each
transport provider defines its own mechanism for identifying users. Addresses can
be assigned to the endpoint of a transport by t_bind() .

In addition to t_open() and t_bind() , several routines support local operations.
Table 3–2 summarizes all local management routines of XTI/TLI.

TABLE 3–2 Routines of XTI/TLI for Operating on the Endpoint

Command Description

t_alloc Allocates XTI/TLI data structures

t_bind Binds a transport address to a transport endpoint

62 Transport Interfaces Programming Guide ♦ August 1997

TABLE 3–2 Routines of XTI/TLI for Operating on the Endpoint (continued)

Command Description

t_close Closes a transport endpoint

t_error Prints a XTI/TLI error message

t_free Frees structures allocated using t_alloc

t_getinfo Returns a set of parameters associated with a particular
transport provider

t_getprotaddr Returns the local and/or remote address associated with
endpoint (XTI only)

t_getstate Returns the state of a transport endpoint

t_look Returns the current event on a transport endpoint

t_open Establishes a transport endpoint connected to a chosen
transport provider

t_optmgmt Negotiates protocol-specific options with the transport
provider

t_sync Synchronizes a transport endpoint with the transport
provider

t_unbind Unbinds a transport address from a transport endpoint

The connection phase lets two users create a connection, or virtual circuit, between
them, as shown in Figure 3–3.

Programming with XTI and TLI 63

 Transport user 1

Transport

interface

Transport user 2

Transport connection

 Transport provider

Figure 3–3 Transport Connection

For example, the connection phase occurs when a server advertises its service to a
group of clients, then blocks on t_listen() to wait for a request. A client tries to
connect to the server at the advertised address by a call to t_connect() . The
connection request causes t_listen() to return to the server, which can call
t_accept() to complete the connection.

Table 3–3 summarizes all routines available for establishing a transport connection.
Refer to man pages for the specifications on these routines.

TABLE 3–3 Routines for Establishing a Transport Connection

Command Description

t_accept Accepts a request for a transport connection

t_connect Establishes a connection with the transport user at a specified
destination

t_listen Listens for connect request from another transport user

t_rcvconnect Completes connection establishment if t_connect was called in
asynchronous mode (see “Advanced Topics” on page 84)

The data transfer phase lets users transfer data in both directions via the connection.
t_snd() sends and t_rcv() receives data through the connection. It is assumed
that all data sent by one user is guaranteed to be delivered to the other user in the
order in which it was sent. Table 3–4 summarizes the connection mode data-transfer
routines.

64 Transport Interfaces Programming Guide ♦ August 1997

TABLE 3–4 Connection Mode Data Transfer Routines

Command Description

t_rcv Receives data that has arrived over a transport connection

t_snd Sends data over an established transport connection

XTI/TLI has two types of connection release. The abortive release directs the
transport provider to release the connection immediately. Any previously sent data
that has not yet been transmitted to the other user may be discarded by the transport
provider. t_snddis() initiates the abortive disconnect. t_rcvdis() receives the
abortive disconnect. All transport providers usually support some form of abortive
release procedure.

Some transport providers also support an orderly release that terminates
communication without discarding data. t_sndrel() and t_rcvrel() perform
this function. Table 3–5 summarizes the connection release routines. Refer to man
pages for the specifications on these routines.

TABLE 3–5 Connection Release Routines

Command Description

t_rcvdis Returns a reason code for a disconnection and any remaining user data

t_rcvrel Acknowledges receipt of an orderly release of a connection request

t_snddis Aborts a connection or rejects a connect request

t_sndrel Requests the orderly release of a connection

Connection Mode Service
The main concepts of connection mode service are illustrated through a client
program and its server. The examples are presented in segments.

Programming with XTI and TLI 65

In the examples, the client establishes a connection to a server process. The server
transfers a file to the client. The client receives the file contents and writes them to
standard output.

Endpoint Initiation
Before a client and server can connect, each must first open a local connection to the
transport provider (the transport endpoint) through t_open() , and establish its
identity (or address) through t_bind() .

Many protocols perform a subset of the services defined in XTI/TLI. Each transport
provider has characteristics that determine the services it provides and limit the
services. Data defining the transport characteristics are returned by t_open() in a
t_info structure. Table 3–6 shows the fields in a t_info structure.

TABLE 3–6 t_info Structure

Field Content

addr Maximum size of a transport address

options Maximum bytes of protocol-specific options that may be passed
between the transport user and transport provider

tsdu Maximum message size that may be transmitted in either connection
mode or connectionless mode

etsdu Maximum expedited data message size that may be sent over a
transport connection

connect Maximum number of bytes of user data that may be passed between
users during connection establishment

discon Maximum bytes of user data that may be passed between users during
the abortive release of a connection

servtype The type of service supported by the transport provider

The three service types defined by XTI/TLI are:
T_COTS— The transport provider supports connection mode service but does
not provide the orderly release facility. Connection termination is abortive, and
any data not already delivered is lost.
T_COTS_ORD— The transport provider supports connection mode service with
the orderly release facility.

66 Transport Interfaces Programming Guide ♦ August 1997

T_CLTS — The transport provider supports connectionless mode service.

Only one such service can be associated with the transport provider identified by
t_open() .

t_open() returns the default provider characteristics of a transport endpoint. Some
characteristics can change after an endpoint has been opened. This happens with
negotiated options (option negotiation is described later in this section).
t_getinfo() returns the current characteristics of a transport endpoint.

After a user establishes an endpoint with the chosen transport provider, the client
and server must establish their identities. t_bind() does this by binding a transport
address to the transport endpoint. For servers, this routine informs the transport
provider that the endpoint is used to listen for incoming connect requests.

t_optmgmt() can be used during the local management phase. It lets a user
negotiate the values of protocol options with the transport provider. Each transport
protocol defines its own set of negotiable protocol options, such as quality-of-service
parameters. Because the options are protocol-specific, only applications written for a
specific protocol use this function.

Client
The local management requirements of the example client and server are used to
discuss details of these facilities. Code Example 3–3 shows the definitions needed by
the client program, followed by its necessary local management steps.

CODE EXAMPLE 3–3 Client Implementation of Open and Bind

#include <stdio.h>
#include <tiuser.h>
#include <fcntl.h>
#define SRV_ADDR 1 /* server’s address */

main()
{

int fd;
int nbytes;
int flags = 0;
char buf[1024];
struct t_call *sndcall;
extern int t_errno;

if ((fd = t_open("/dev/exmp", O_RDWR, (struct t_info *),NULL))
== -1) {

t_error("t_open failed");
exit(1);

}
if (t_bind(fd, (struct t_bind *) NULL, (struct t_bind *) NULL)

== -1) {

(continued)

Programming with XTI and TLI 67

(Continuation)

t_error("t_bind failed");
exit(2);

}

The first argument of t_open() is the path of a file system object that identifies the
transport protocol. /dev/exmp is the example name of a special file that identifies a
generic, connection-based transport protocol. It must be created on the workstation
for this purpose. The second argument, O_RDWR, specifies to open for both reading
and writing. The third argument points to a t_info structure in which to return the
service characteristics of the transport. This data is useful to write
protocol-independent software (see “Guidelines to Protocol Independence” on page
98). In this example, a NULL pointer is passed. For Code Example 3–3, the transport
provider must have the following characteristics:

� The transport address is an integer value that uniquely identifies each user.

� The transport provider supports the T_COTS_ORDservice type since the example
uses orderly release.

� The transport provider does not require protocol-specific options.

If the user needs a service other than T_COTS_ORD, another transport provider can
be opened. An example of the T_CLTS service invocation is shown in the section
“Read/Write Interface” on page 81.

t_open() returns the transport endpoint file handle that is used by all subsequent
XTI/TLI function calls. The identifier is a file descriptor from opening the transport
protocol file. See open (2).

The client then calls t_bind() to assign an address to the endpoint. The first
argument of t_bind() is the transport endpoint handle. The second argument
points to a t_bind structure that describes the address to bind to the endpoint. The
third argument points to a t_bind structure that describes the address that the
provider bound.

The address of a client is rarely important, because no other process tries to access it.
That is why the second and third arguments to t_bind() are NULL. The second
NULL argument directs the transport provider to choose an address for the user.

If t_open() or t_bind() fails, the program calls t_error() to display an
appropriate error message via stderr . The global integer t_errno is assigned an
error value. A set of error values is defined in tiuser.h . t_error() is analogous
to perror() . If the transport function error is a system error, t_errno() is set to
TSYSERR, and errno is set to the appropriate value.

68 Transport Interfaces Programming Guide ♦ August 1997

Server
The server example must also establish a transport endpoint at which to listen for
connection requests. Code Example 3–4 shows the definitions and local management
steps.

CODE EXAMPLE 3–4 Server Implementation of Open and Bind

#include <tiuser.h>
#include <stropts.h>
#include <fcntl.h>
#include <stdio.h>
#include <signal.h>

#define DISCONNECT -1
#define SRV_ADDR 1 /* server’s address */
int conn_fd; /* connection established here */
extern int t_errno;

main()
{

int listen_fd; /* listening transport endpoint */
struct t_bind *bind;
struct t_call *call;

if ((listen_fd = t_open("/dev/exmp’’, O_RDWR,
(struct t_info *) NULL)) == -1) {
t_error(‘‘t_open failed for listen_fd’’);
exit(1);

}
/*

* Because it assumes the format of the provider’s address,
* this program is transport-dependent
*/

if ((bind = (struct t_bind *)t_alloc(listen_fd, T_BIND, T_ALL))
== (struct t_bind *) NULL) {

t_error("t_alloc of t_bind structure failed");
exit(2);

}
bind->qlen = 1;
bind->addr.len = sizeof(int);
*(int *) bind->addr.buf = SRV_ADDR;
if (t_bind (listen_fd, bind, bind) < 0) {

t_error("t_bind failed for listen_fd");
exit(3);

}
/* Was the correct address bound? */
if (bind->addr.len != sizeof(int) ||

*(int *)bind->addr.buf != SRV_ADDR) {
fprintf(stderr, "t_bind bound wrong address\n");
exit(4);

}

Programming with XTI and TLI 69

Like the client, the server first calls t_open() to establish a transport endpoint with
the desired transport provider. The endpoint, listen_fd , is used to listen for
connect requests.

Next, the server binds its address to the endpoint. This address is used by each client
to access the server. The second argument points to a t_bind structure that specifies
the address to bind to the endpoint. The t_bind structure has the following format:

struct t_bind {
struct netbuf addr;
unsigned qlen;

}

Where addr describes the address to be bound, and qlen specifies the maximum
number of outstanding connect requests. All XTI structure and constant definitions
made visible for use by applications programs through xti.h . All TLI structure and
constant definitions are in tiuser.h .

The address is specified in the netbuf structure with the following format:

struct netbuf {
unsigned int maxlen;
unsigned int len;
char *buf;

}

Where maxlen specifies the maximum length of the buffer in bytes, len specifies the
bytes of data in the buffer, and buf points to the buffer that contains the data.

In the t_bind structure, the data identifies a transport address. qlen specifies the
maximum number of connect requests that can be queued. If the value of qlen is
positive, the endpoint can be used to listen for connect requests. t_bind() directs
the transport provider to queue connect requests for the bound address immediately.
The server must dequeue each connect request and accept or reject it. For a server
that fully processes a single connect request and responds to it before receiving the
next request, a value of 1 is appropriate for qlen . Servers that dequeue several
connect requests before responding to any should specify a longer queue. The server
in this example processes connect requests one at a time, so qlen is set to 1.

t_alloc() is called to allocate the t_bind structure. t_alloc() has three
arguments: a file descriptor of a transport endpoint; the identifier of the structure to
allocate; and a flag that specifies which, if any, netbuf buffers to allocate. T_ALL
specifies to allocate all netbuf buffers, and causes the addr buffer to be allocated in
this example. Buffer size is determined automatically and stored in the maxlen field.

Each transport provider manages its address space differently. Some transport
providers allow a single transport address to be bound to several transport
endpoints, while others require a unique address per endpoint. XTI and TLI differ in

70 Transport Interfaces Programming Guide ♦ August 1997

some significant ways in providing the address binding. In TLI, based on its rules, a
provider determines if it can bind the requested address. If not, it chooses another
valid address from its address space and binds it to the transport endpoint. The
application program must check the bound address to ensure that it is the one
previously advertised to clients. In XTI, if the provider determines it cannot bind to
the requested address, it fails the t_bind() request with an error.

If t_bind() succeeds, the provider begins queueing connect requests, entering the
next phase of communication.

Connection Establishment
XTI/TLI imposes different procedures in this phase for clients and servers. The client
starts connection establishment by requesting a connection to a specified server using
t_connect() . The server receives a client’s request by calling t_listen() . The
server must accept or reject the client’s request. It calls t_accept() to establish the
connection, or t_snddis() to reject the request. The client is notified of the result
when t_connect() returns.

TLI supports two facilities during connection establishment that might not be
supported by all transport providers:

� Data transfer between the client and server when establishing the connection. The
client can send data to the server when it requests a connection. This data is
passed to the server by t_listen() . The server can send data to the client when
it accepts or rejects the connection. The connect characteristic returned by
t_open() determines how much data, if any, two users can transfer during
connect establishment.

� The negotiation of protocol options. The client can specify preferred protocol
options to the transport provider and/or the remote user. XTI/TLI supports both
local and remote option negotiation. Option negotiation is a protocol-specific
capacity.

These facilities produce protocol-dependent software (see “Guidelines to Protocol
Independence” on page 98).

Client
The steps for the client to establish a connection are shown in Code Example 3–5.

CODE EXAMPLE 3–5 Client-to-Server Connection

/*
* Because it assumes it knows the format of the provider’s
* address, this program is transport-dependent

(continued)

Programming with XTI and TLI 71

(Continuation)

*/
if ((sndcall = (struct t_call *) t_alloc(fd, T_CALL, T_ADDR))

== (struct t_call *) NULL) {
t_error("t_alloc failed");
exit(3);

}
sndcall->addr.len = sizeof(int);
*(int *) sndcall->addr.buf = SRV_ADDR;
if (t_connect(fd, sndcall, (struct t_call *) NULL) == -1) {

t_error("t_connect failed for fd");
exit(4);

}

The t_connect() call connects to the server. The first argument of t_connect()
identifies the client’s endpoint, and the second argument points to a t_call structure
that identifies the destination server. This structure has the following format:

struct t_call {
struct netbuf addr;
struct netbuf opt;
struct netbuf udata;
int sequence;

}

addr identifies the address of the server, opt specifies protocol-specific options to
the connection, and udata identifies user data that can be sent with the connect
request to the server. The sequence field has no meaning for t_connect() . In this
example, only the server’s address is passed.

t_alloc() allocates the t_call structure dynamically. The third argument of
t_alloc() is T_ADDRwhich specifies that the system needs to allocate a netbuf
buffer. The server’s address is then copied to buf , and len is set accordingly.

The third argument of t_connect() can be used to return information about the
newly established connection, and can return any user data sent by the server in its
response to the connect request. The third argument here is set to NULL by the client.
The connection is established on successful return of t_connect() . If the server
rejects the connect request, t_connect() sets t_errno to TLOOK.

Event Handling

The TLOOKerror has special significance. TLOOKis set if an XTI/TLI routine is
interrupted by an unexpected asynchronous transport event on the endpoint. TLOOK
does not report an error with a XTI/TLI routine, but the normal processing of the

72 Transport Interfaces Programming Guide ♦ August 1997

routine is not done because of the pending event. The events defined by XTI/TLI are
listed in Table 3–7.

TABLE 3–7 Asynchronous Endpoint Events

Name Description

T_LISTEN Connection request arrived at the transport endpoint

T_CONNECT Confirmation of a previous connect request arrived (generated when a
server accepts a connect request)

T_DATA User data has arrived

T_EXDATA Expedited user data arrived

T_DISCONNECT Notice of an aborted connection or of a rejected connect request arrived

T_ORDREL A request for orderly release of a connection arrived

T_UDERR Notice of an error in a previous datagram arrived. (See “Read/Write
Interface” on page 81.)

The state table in “State Transitions” on page 91 shows which events can happen in
each state. t_look() lets a user determine what event has occurred if a TLOOKerror
is returned. In the example, if a connect request is rejected, the client exits.

Server
When the client calls t_connect() , a connect request is sent at the server’s
transport endpoint. For each client, the server accepts the connect request and
spawns a process to service the connection.

if ((call = (struct t_call *) t_alloc(listen_fd, T_CALL, T_ALL))
== (struct t_call *) NULL) {

t_error("t_alloc of t_call structure failed");
exit(5);

}
while(1) {

if (t_listen(listen_fd, call) == -1) {
t_error("t_listen failed for listen_fd");
exit(6);

}

(continued)

Programming with XTI and TLI 73

(Continuation)

if ((conn_fd = accept_call(listen_fd, call)) != DISCONNECT)
run_server(listen_fd);

}

The server allocates a t_call structure, then does a closed loop. The loop blocks on
t_listen() for a connect request. When a request arrives, the server calls
accept_call() to accept the connect request. accept_call() accepts the
connection on an alternate transport endpoint (as discussed below) and returns the
handle of that endpoint. (conn_fd is a global variable.) Because the connection is
accepted on an alternate endpoint, the server can continue to listen on the original
endpoint. If the call is accepted without error, run_server() spawns a process to
service the connection.

Note - XTI/TLI supports an asynchronous mode for these routines that prevents a
process from blocking. See “Advanced Topics” on page 84.

When a connect request arrives, the server calls accept_call() to accept the
client’s request, as Code Example 3–6 shows.

CODE EXAMPLE 3–6 accept_call() Function

accept_call(listen_fd, call)
int listen_fd;
struct t_call *call;
{

int resfd;

if ((resfd = t_open("/dev/exmp", O_RDWR, (struct t_info *) NULL))
== -1) {

t_error("t_open for responding fd failed");
exit(7);

}
if (t_bind(resfd,(struct t_bind *) NULL, (struct t_bind *NULL))

== -1) {
t_error("t_bind for responding fd failed");
exit(8);

}
if (t_accept(listen_fd, resfd, call) == -1) {

if (t_errno == TLOOK) { /* must be a disconnect */
if (t_rcvdis(listen_fd,(struct t_discon *) NULL) == -1) {

t_error("t_rcvdis failed for listen_fd");
exit(9);

}
if (t_close(resfd) == -1) {

t_error("t_close failed for responding fd");
exit(10);

(continued)

74 Transport Interfaces Programming Guide ♦ August 1997

(Continuation)

}
/* go back up and listen for other calls */
return(DISCONNECT);

}
t_error("t_accept failed");
exit(11);

}
return(resfd);

}

accept_call() has two arguments:

listen_fd The file handle of the transport endpoint where the connect request
arrived.

call Points to a t_call structure that contains all information associated
with the connect request.

The server first opens another transport endpoint by opening the clone device special
file of the transport provider and binding an address. A NULL specifies not to return
the address bound by the provider. The new transport endpoint, resfd, accepts the
client’s connect request.

The first two arguments of t_accept() specify the listening transport endpoint and
the endpoint where the connection is accepted, respectively. Accepting a connection
on the listening endpoint prevents other clients from accessing the server for the
duration of the connection.

The third argument of t_accept() points to the t_call structure containing the
connect request. This structure should contain the address of the calling user and the
sequence number returned by t_listen() . The sequence number is significant if
the server queues multiple connect requests. The“Advanced Topics” on page 84
shows an example of this. The t_call structure also identifies protocol options and
user data to pass to the client. Because this transport provider does not support
protocol options or the transfer of user data during connection, the t_call structure
returned by t_listen() is passed without change to t_accept() .

The example is simplified. The server exits if either the t_open() or t_bind() call
fails. exit() closes the transport endpoint of listen_fd , causing a disconnect
request to be sent to the client. The client’s t_connect() call fails, setting t_errno
to TLOOK.

t_accept() can fail if an asynchronous event occurs on the listening endpoint
before the connection is accepted, and t_errno is set to TLOOK. Table 6-8 on page
207 shows that only a disconnect request can be sent in this state with only one
queued connect request. This event can happen if the client undoes a previous

Programming with XTI and TLI 75

connect request. If a disconnect request arrives, the server must respond by calling
t_rcvdis() . This routine argument is a pointer to a t_discon structure, which is
used to retrieve the data of the disconnect request. In this example, the server passes
a NULL.

After receiving a disconnect request, accept_call() closes the responding
transport endpoint and returns DISCONNECT, which informs the server that the
connection was disconnected by the client. The server then listens for further connect
requests.

Figure 3–4 illustrates how the server establishes connections:

Transport provider

 Transport

 interface

Client Server

Listening
endpoint

Responding
endpoint

Figure 3–4 Listening and Responding Transport Endpoints

The transport connection is established on the new responding endpoint, and the
listening endpoint is freed to retrieve further connect requests.

Data Transfer
After the connection is established, both the client and the server can transfer data
through the connection using t_snd() and t_rcv() . XTI/TLI does not
differentiate the client from the server from this point on. Either user can send data,
receive data, or release the connection.

There are two classes of data on a transport connection:

1. Normal data

2. Expedited data

Expedited mode is for urgent data. The exact semantics of expedited data vary
between transport providers. Not all transport protocols support expedited data (see
t_open (3N)).

All connection-oriented mode protocols must transfer data in byte streams. “Byte
stream” implies no message boundaries in data sent over a connection. Some

76 Transport Interfaces Programming Guide ♦ August 1997

transport protocols preserve message boundaries over a transport connection. This
service is supported by XTI/TLI, but protocol-independent software must not rely on
it.

The message boundaries are invoked by the T_MOREflag of t_snd() and t_rcv() .
The messages, called transport service data units (TSDU), can be transferred between
two transport users as distinct units. The maximum message size is defined by the
underlying transport protocol. Get the message size through t_open() or
t_getinfo() . You can send a message in multiple units.

Set the T_MOREflag on every t_snd() call, except the last to send a message in
multiple units. The flag specifies that the data in the current and the next t_snd()
calls are a logical unit. Send the last message unit with T_MOREturned off to specify
the end of the logical unit.

Similarly, a logical unit can be sent in multiple units. If t_rcv() returns with the
T_MOREflag set, the user must call t_rcv() again to receive the rest of the message.
The last unit in the message is identified by a call to t_rcv() that does not set
T_MORE.

The T_MOREflag implies nothing about how the data is packaged below XTI/TLI or
how the data is delivered to the remote user. Each transport protocol, and each
implementation of a protocol, can package and deliver the data differently.

For example, if a user sends a complete message in a single call to t_snd() , there is
no guarantee that the transport provider delivers the data in a single unit to the
receiving user. Similarly, a message transmitted in two units can be delivered in a
single unit to the remote transport user. The message boundaries are preserved only
by setting the value of T_MOREfor t_snd() and testing it after t_rcv() . This
guarantees that the receiver sees a message with the same contents and message
boundaries as was sent.

Client
The example server transfers a log file to the client over the transport connection.
The client receives the data and writes it to its standard output file. A byte stream
interface is used by the client and server, with no message boundaries. The client
receives data by the following:

while ((nbytes = t_rcv(fd, buf, nbytes, &flags))!= -1){
if (fwrite(buf, 1, nbytes, stdout) == -1) {

fprintf(stderr, "fwrite failed\n");
exit(5);

}
}

The client repeatedly calls t_rcv() to receive incoming data. t_rcv() blocks until
data arrives. t_rcv() writes up to nbytes of the data available into buf and returns

Programming with XTI and TLI 77

the number of bytes buffered. The client writes the data to standard output and
continues. The data transfer loop ends when t_rcv() fails. t_rcv() fails when an
orderly release or disconnect request arrives. If fwrite() fails for any reason, the
client exits, which closes the transport endpoint. If the transport endpoint is closed
(either by exit() or t_close()) during data transfer, the connection is aborted
and the remote user receives a disconnect request.

Server
The server manages its data transfer by spawning a child process to send the data to
the client. The parent process continues the loop to listen for more connect requests.
run_server() is called by the server to spawn this child process, as shown in
Code Example 3–7.

CODE EXAMPLE 3–7 Spawning Child Process to Loopback and Listen

connrelease()
{

/* conn_fd is global because needed here */
if (t_look(conn_fd) == T_DISCONNECT) {

fprintf(stderr, ‘‘connection aborted\n’’);
exit(12);

}
/* else orderly release request - normal exit */
exit(0);

}
run_server(listen_fd)
int listen_fd;
{

int nbytes;
FILE *logfp; /* file pointer to log file */
char buf[1024];

switch(fork()) {
case -1:
perror("fork failed");
exit(20);
default: /* parent */
/* close conn_fd and then go up and listen again*/
if (t_close(conn_fd) == -1) {

t_error("t_close failed for conn_fd");
exit(21);

}
return;
case 0: /* child */

/* close listen_fd and do service */
if (t_close(listen_fd) == -1) {

t_error("t_close failed for listen_fd");
exit(22);

}
if ((logfp = fopen("logfile", "r")) == (FILE *) NULL) {

perror("cannot open logfile");

(continued)

78 Transport Interfaces Programming Guide ♦ August 1997

(Continuation)

exit(23);
}
signal(SIGPOLL, connrelease);
if (ioctl(conn_fd, I_SETSIG, S_INPUT) == -1) {

perror("ioctl I_SETSIG failed");
exit(24);

}
if (t_look(conn_fd) != 0){ /*disconnect there?*/

fprintf(stderr, "t_look: unexpected event\n");
exit(25);

}
while ((nbytes = fread(buf, 1, 1024, logfp)) > 0)

if (t_snd(conn_fd, buf, nbytes, 0) == -1) {
t_error("t_snd failed");
exit(26);

}

After the fork, the parent process returns to the main listening loop. The child
process manages the newly established transport connection. If the fork fails,
exit() closes both transport endpoints, sending a disconnect request to the client,
and the client’s t_connect() call fails.

The server process reads 1024 bytes of the log file at a time and sends the data to the
client using t_snd() . buf points to the start of the data buffer, and nbytes specifies
the number of bytes to transmit. The fourth argument can be zero or one of the two
optional flags below:

� T_EXPEDITEDspecifies that the data is expedited.

� T_MOREspecifies that the next block continues the message in this block.

Neither flag is set by the server in this example.

If the user floods the transport provider with data, t_snd() blocks until enough
data is removed from the transport.

t_snd() does not look for a disconnect request (showing that the connection was
broken). If the connection is aborted, the server should be notified since data can be
lost. One solution is to call t_look() to check for incoming events before each
t_snd() call or after a t_snd() failure. The example has a cleaner solution. The
I_SETSIG ioctl() lets a user request a signal when a specified event occurs. See
the streamio (7I) manpage. S_INPUT causes a signal to the user when any input
arrives at the endpoint conn_fd . If a disconnect request arrives, the signal-catching
routine (connrelease()) prints an error message and exits.

If the server alternates t_snd() and t_rcv() calls, it can use t_rcv() to
recognize an incoming disconnect request.

Programming with XTI and TLI 79

Connection Release
At any time during data transfer, either user can release the transport connection and
end the conversation. There are two forms of connection release.

� The first way, abortive release, breaks the connection immediately and discards
any data that has not been delivered to the destination user.

Either user can call t_snddis() to perform an abortive release. The transport
provider can abort a connection if a problem occurs below XTI/TLI. t_snddis()
lets a user send data to the remote user when aborting a connection. The abortive
release is supported by all transport providers, the ability to send data when
aborting a connection is not.

When the remote user is notified of the aborted connection, call t_rcvdis() to
receive the disconnect request. The call returns a code that identifies why the
connection was aborted, and returns any data that can have accompanied the
disconnect request (if the abort was initiated by the remote user). The reason code
is specific to the underlying transport protocol, and should not be interpreted by
protocol-independent software.

� The second way, orderly release, ends a connection so that no data is lost. All
transport providers must support the abortive release procedure, but orderly
release is an option not supported by all connection-oriented protocols.

Server
This example assumes that the transport provider supports orderly release. When all
the data has been sent by the server, the connection is released as follows:

if (t_sndrel(conn_fd) == -1) {
t_error(‘‘t_sndrel failed’’);
exit(27);

}
pause(); /* until orderly release request arrives */

Orderly release requires two steps by each user. The server can call t_sndrel() .
This routine sends a disconnect request. When the client receives the request, it can
continue sending data back to the server. When all data have been sent, the client
calls t_sndrel() to send a disconnect request back. The connection is released only
after both users have received a disconnect request.

In this example, data is transferred only from the server to the client. So there is no
provision to receive data from the client after the server initiates release. The server
calls pause() after initiating the release.

The client responds with its orderly release request, which generates a signal caught
by connrelease() . (In Code Example 3–7, the server issued an I_SETSIG

80 Transport Interfaces Programming Guide ♦ August 1997

ioctl() call to generate a signal on any incoming event.) The only XTI/TLI event
possible in this state is a disconnect request or an orderly release request, so
connrelease() exits normally when the orderly release request arrives. exit()
from connrelease() closes the transport endpoint and frees the bound address. To
close a transport endpoint without exiting, call t_close() .

Client

The client releases the connection similar to the way the server releases it. The client
processes incoming data until t_rcv() fails. When the server releases the
connection (using either t_snddis() or t_sndrel()), t_rcv() fails and sets
t_errno to TLOOK. The client then processes the connection release as follows:

if ((t_errno == TLOOK) && (t_look(fd) == T_ORDREL)) {
if (t_rcvrel(fd) == -1) {

t_error(‘‘t_rcvrel failed’’);
exit(6);

}
if (t_sndrel(fd) == -1) {

t_error(‘‘t_sndrel failed’’);
exit(7);

}
exit(0);

}

Each event on the client’s transport endpoint is checked for an orderly release
request. When one is received, the client calls t_rcvrel() to process the request
and t_sndrel() to send the response release request. The client then exits, closing
its transport endpoint.

If a transport provider does not support the orderly release, use abortive release with
t_snddis() and t_rcvdis() . Each user must take steps to prevent data loss. For
example, use a special byte pattern in the data stream to indicate the end of a
conversation.

Read/Write Interface
A user might want to establish a transport connection using exec() on an existing
program (such as /usr/bin/cat) to process the data as it arrives over the
connection. Existing programs use read() and write() . XTI/TLI does not directly
support a read/write interface to a transport provider, but one is available. The
interface lets you issue read() and write() calls over a transport connection in
the data transfer phase. This section describes the read/write interface to the

Programming with XTI and TLI 81

connection mode service of XTI/TLI. This interface is not available with the
connectionless mode service.

The read/write interface is presented using the client example of “Connection Mode
Service” on page 65 with modifications. The clients are identical until the data
transfer phase. Then the client uses the read/write interface and cat to process
incoming data. cat is run without change over the transport connection. Only the
differences between this client and that of the client in Code Example 3–3 are shown
in Code Example 3–8.

CODE EXAMPLE 3–8 Read/Write Interface

#include <stropts.h>
.
./*

Same local management and connection establishment steps.
*/

.
if (ioctl(fd, I_PUSH, "tirdwr") == -1) {

perror(‘‘I_PUSH of tirdwr failed’’);
exit(5);

}
close(0);
dup(fd);
execl(‘‘/usr/bin/cat’’, ‘‘/usr/bin/cat’’, (char *) 0);
perror(‘‘exec of /usr/bin/cat failed’’);
exit(6);

}

The client invokes the read/write interface by pushing tirdwr onto the stream
associated with the transport endpoint. See I_PUSH in streamio (7I). tirdwr
converts XTI/TLI above the transport provider into a pure read/write interface. With
the module in place, the client calls close() and dup() to establish the transport
endpoint as its standard input file, and uses /usr/bin/cat to process the input.

By pushing tirdwr onto the transport provider, XTI/TLI is changed. The semantics
of read() and write() must be used, and message boundaries are not preserved.
tirdwr can be popped from the transport provider to restore XTI/TLI semantics
(see I_POP in streamio (7I).

Caution - The tirdwr module can only be pushed onto a stream when the
transport endpoint is in the data transfer phase. After the module is pushed, the user
can not call any XTI/TLI routines. If a XTI/TLI routine is invoked, tirdwr generates
a fatal protocol error, EPROTO, on the stream, rendering it unusable. If you then pop
the tirdwr module off the stream, the transport connection is aborted. See I_POP in
streamio (7I).

82 Transport Interfaces Programming Guide ♦ August 1997

Write
Send data over the transport connection with write() . tirdwr passes data through
to the transport provider. If you send a zero-length data packet, which the mechanism
allows, tirdwr discards the message. If the transport connection is aborted (for
example, because the remote user aborts the connection using t_snddis()), a
hang-up condition is generated on the stream, further write() calls fail, and errno
is set to ENXIO. You can still retrieve any available data after a hang-up.

Read
Receive data that arrives at the transport connection with read() . tirdwr which
passes data from the transport provider. Any other event or request passed to the
user from the provider is processed by tirdwr as follows:

� read() cannot identify expedited data to the user. If an expedited data request is
received, tirdwr generates a fatal protocol error, EPROTO, on the stream. The
error causes further system calls to fail. Do not use read() to receive expedited
data.

� tirdwr discards an abortive disconnect request and generates a hang-up
condition on the stream. Subsequent read() calls retrieve any remaining data,
then return zero for all further calls (indicating end of file).

� tirdwr discards an orderly release request and delivers a zero-length message to
the user. As described in read() , this notifies the user of end of file by returning
0.

� If any other XTI/TLI request is received, tirdwr generates a fatal protocol error,
EPROTO, on the stream. This causes further system calls to fail. If a user pushes
tirdwr onto a stream after the connection has been established, no request is
generated.

Close
With tirdwr on a stream, you can send and receive data over a transport connection
for the duration of the connection. Either user can terminate the connection by
closing the file descriptor associated with the transport endpoint or by popping the
tirdwr module off the stream. In either case, tirdwr does the following:

� If an orderly release request was previously received by tirdwr , it is passed to
the transport provider to complete the orderly release of the connection. The
remote user who initiated the orderly release procedure receives the expected
request when data transfer completes.

� If a disconnect request was previously received by tirdwr , no special action is
taken.

Programming with XTI and TLI 83

� If neither an orderly release nor a disconnect request was previously received by
tirdwr , a disconnect request is passed to the transport provider to abort the
connection.

� If an error previously occurred on the stream and a disconnect request has not
been received by tirdwr , a disconnect request is passed to the transport provider.

A process cannot initiate an orderly release after tirdwr is pushed onto a stream.
tirdwr handles an orderly release if it is initiated by the user on the other side of a
transport connection. If the client in this section is communicating with the server
program in “Connection Mode Service” on page 65, the server terminates the transfer
of data with an orderly release request. The server then waits for the corresponding
request from the client. At that point, the client exits and the transport endpoint is
closed. When the file descriptor is closed, tirdwr initiates the orderly release
request from the client’s side of the connection. This generates the request that the
server is blocked on.

Some protocols, like TCP, require this orderly release to ensure that the data is
delivered intact.

Advanced Topics
This section presents additional XTI/TLI concepts:

� An optional nonblocking (asynchronous) mode for some library calls

� How to set and get TCP and UDP options under XTI/TLI

� A program example of a server supporting multiple outstanding connect requests
and operating in an event-driven manner

Asynchronous Execution Mode
Many XTI/TLI library routines block to wait for an incoming event. However, some
time-critical applications should not block for any reason. An application can do
local processing while waiting for some asynchronous XTI/TLI event.

Asynchronous processing of XTI/TLI events is available to applications through the
combination of asynchronous features and the non-blocking mode of XTI/TLI library
routines. Use of the poll() system call and the I_SETSIG ioctl command to
process events asynchronously is described in ONC+ Developer’s Guide.

Each XTI/TLI routine that blocks for an event can be run in a special non-blocking
mode. For example, t_listen() normally blocks for a connect request. A server
can periodically poll a transport endpoint for queued connect requests by calling
t_listen() in the non-blocking (or asynchronous) mode. The asynchronous mode

84 Transport Interfaces Programming Guide ♦ August 1997

is enabled by setting O_NDELAYor O_NONBLOCKin the file descriptor. These modes
can be set as a flag through t_open() , or by calling fcntl() before calling the
XTI/TLI routine. fcntl() enables or disables this mode at any time. All program
examples in this chapter use the default synchronous processing mode.

O_NDELAYor O_NONBLOCKaffect each XTI/TLI routine differently. You will need to
determine the exact semantics of O_NDELAYor O_NONBLOCKfor a particular routine.

Advanced Programming Example
The following example demonstrates two important concepts. The first is a server’s
ability to manage multiple outstanding connect requests. The second is event-driven
use of XTI/TLI and the system call interface.

The server example in Code Example 3–4 supports only one outstanding connect
request, but XTI/TLI lets a server manage multiple outstanding connect requests.
One reason to receive several simultaneous connect requests is to prioritize the
clients. A server can receive several connect requests, and accept them in an order
based on the priority of each client.

The second reason for handling several outstanding connect requests is the limits of
single-threaded processing. Depending on the transport provider, while a server
processes one connect request, other clients find it busy. If multiple connect requests
are processed simultaneously, the server will be found busy only if more than the
maximum number of clients try to call the server simultaneously.

The server example is event-driven: the process polls a transport endpoint for
incoming XTI/TLI events, and takes the appropriate actions for the event received.
The example demonstrates the ability to poll multiple transport endpoints for
incoming events.

The definitions and endpoint establishment functions of Code Example 3–9 are
similar to those of the server example in Code Example 3–4.

CODE EXAMPLE 3–9 Endpoint Establishment (Convertible to Multiple Connections)

#include <tiuser.h>
#include <fcntl.h>
#include <stdio.h>
#include <poll.h>
#include <stropts.h>
#include <signal.h>

#define NUM_FDS 1
#define MAX_CONN_IND 4
#define SRV_ADDR 1 /* server’s well known address */

int conn_fd; /* server connection here */
extern int t_errno;

(continued)

Programming with XTI and TLI 85

(Continuation)

/* holds connect requests */
struct t_call *calls[NUM_FDS][MAX_CONN_IND];

main()
{

struct pollfd pollfds[NUM_FDS];
struct t_bind *bind;
int i;

/*
* Only opening and binding one transport endpoint, but more can
* be supported
*/

if ((pollfds[0].fd = t_open(‘‘/dev/tivc’’, O_RDWR,
(struct t_info *) NULL)) == -1) {

t_error(‘‘t_open failed’’);
exit(1);

}
if ((bind = (struct t_bind *) t_alloc(pollfds[0].fd, T_BIND,

T_ALL)) == (struct t_bind *) NULL) {
t_error(‘‘t_alloc of t_bind structure failed’’);
exit(2);

}
bind->qlen = MAX_CONN_IND;
bind->addr.len = sizeof(int);
*(int *) bind->addr.buf = SRV_ADDR;
if (bind->addr.len != sizeof(int) ||

t_bind(pollfds[0].fd, bind, bind) == -1) {
t_error(‘‘t_bind failed’’);
exit(3);

}
/* Was the correct address bound? */
if (bind->addr.len != sizeof(int) ||

*(int *)bind->addr.buf != SRV_ADDR) {
fprintf(stderr, ‘‘t_bind bound wrong address\n’’);
exit(4);

}
}

The file descriptor returned by t_open() is stored in a pollfd structure that
controls polling the transport endpoints for incoming data. See poll (2). Only one
transport endpoint is established in this example. However, the remainder of the
example is written to manage multiple transport endpoints. Several endpoints could
be supported with minor changes to Code Example 3–9.

This server sets qlen to a value greater than 1 for t_bind() . This specifies that the
server queues multiple outstanding connect requests. The server accepts the current
connect request before accepting additional connect requests. This example can
queue up to MAX_CONN_INDconnect requests. The transport provider can negotiate
the value of qlen smaller if it cannot support MAX_CONN_INDoutstanding connect
requests.

86 Transport Interfaces Programming Guide ♦ August 1997

After the server has bound its address and is ready to process connect requests, it
behaves as shown in Code Example 3–10.

CODE EXAMPLE 3–10 Processing Connection Requests

pollfds[0].events = POLLIN;

while (TRUE) {
if (poll(pollfds, NUM_FDS, -1) == -1) {

perror(‘‘poll failed’’);
exit(5);

}
for (i = 0; i < NUM_FDS; i++) {

switch (pollfds[i].revents) {
default:

perror(‘‘poll returned error event’’);
exit(6);
case 0:

continue;
case POLLIN:

do_event(i, pollfds[i].fd);
service_conn_ind(i, pollfds[i].fd);

}
}

}

The events field of the pollfd structure is set to POLLIN, which notifies the server
of any incoming XTI/TLI events. The server then enters an infinite loop in which it
polls the transport endpoint(s) for events, and processes events as they occur.

The poll() call blocks indefinitely for an incoming event. On return, each entry
(one per transport endpoint) is checked for a new event. If revents is 0, no event
has occurred on the endpoint and the server continues to the next endpoint. If
revents is POLLIN, there is an event on the endpoint. do_event() is called to
process the event. Any other value in revents indicates an error on the endpoint,
and the server exits. With multiple endpoints, it is better for the server to close this
descriptor and continue.

For each iteration of the loop, service_conn_ind() is called to process any
outstanding connect requests. If another connect request is pending,
service_conn_ind() saves the new connect request and responds to it later.

The do_event() in Code Example 3–11 is called to process an incoming event.

Programming with XTI and TLI 87

CODE EXAMPLE 3–11 Event Processing Routine

do_event(slot, fd)
int slot;

int fd;
{

struct t_discon *discon;

int i;

switch (t_look(fd)) {
default:

fprintf(stderr, "t_look: unexpected event\n");
exit(7);

case T_ERROR:
fprintf(stderr, "t_look returned T_ERROR event\n");
exit(8);

case -1:
t_error("t_look failed");
exit(9);

case 0:
/* since POLLIN returned, this should not happen */
fprintf(stderr,"t_look returned no event\n");
exit(10);

case T_LISTEN:
/* find free element in calls array */
for (i = 0; i < MAX_CONN_IND; i++) {

if (calls[slot][i] == (struct t_call *) NULL)
break;

}
if ((calls[slot][i] = (struct t_call *) t_alloc(fd, T_CALL,

T_ALL)) == (struct t_call *) NULL) {
t_error("t_alloc of t_call structure failed");
exit(11);

}
if (t_listen(fd, calls[slot][i]) == -1) {

t_error("t_listen failed");
exit(12);

}
break;

case T_DISCONNECT:
discon = (struct t_discon *) t_alloc(fd, T_DIS, T_ALL);
if(t_rcvdis(fd, discon) == -1) {

t_error("t_rcvdis failed");
exit(13);

}
/* find call ind in array and delete it */
for (i = 0; i < MAX_CONN_IND; i++) {

if (discon->sequence == calls[slot][i]->sequence) {
t_free(calls[slot][i], T_CALL);
calls[slot][i] = (struct t_call *) NULL;

}
}
t_free(discon, T_DIS);
break;

}

(continued)

88 Transport Interfaces Programming Guide ♦ August 1997

(Continuation)

}

The arguments are a number (slot) and a file descriptor (fd). slot is the index into the
global array calls . calls has an entry for each transport endpoint. Each entry is
an array of t_call structures that hold incoming connect requests for the endpoint.

do_event() calls t_look() to identify the XTI/TLI event on the endpoint
specified by fd. If the event is a connect request (T_LISTEN event) or disconnect
request (T_DISCONNECTevent), the event is processed. Otherwise, the server prints
an error message and exits.

For connect requests, do_event() scans the array of outstanding connect requests
for the first free entry. A t_call structure is allocated for the entry, and the connect
request is received by t_listen() . The array is large enough to hold the maximum
number of outstanding connect requests. The processing of the connect request is
deferred.

A disconnect request must correspond to an earlier connect request. do_event()
allocates a t_discon structure to receive the request. This structure has the
following fields:

struct t_discon {
struct netbuf udata;
int reason;
int sequence;

}

udata contains any user data sent with the disconnect request. reason contains a
protocol-specific disconnect reason code. sequence identifies the connect request
that matches the disconnect request.

t_rcvdis() is called to receive the disconnect request. The array of connect
requests is scanned for one that contains the sequence number that matches the
sequence number in the disconnect request. When the connect request is found, its
structure is freed and the entry is set to NULL.

When an event is found on a transport endpoint, service_conn_ind() is called to
process all queued connect requests on the endpoint as Code Example 3–12 shows.

Programming with XTI and TLI 89

CODE EXAMPLE 3–12 Process All Connect Requests

service_conn_ind(slot, fd)
{

int i;

for (i = 0; i < MAX_CONN_IND; i++) {

if (calls[slot][i] == (struct t_call *) NULL)
continue;

if((conn_fd = t_open(‘‘/dev/tivc’’, O_RDWR,
(struct t_info *) NULL)) == -1) {

t_error("open failed");
exit(14);

}
if (t_bind(conn_fd, (struct t_bind *) NULL,

(struct t_bind *) NULL) == -1) {
t_error("t_bind failed");
exit(15);

}
if (t_accept(fd, conn_fd, calls[slot][i]) == -1) {

if (t_errno == TLOOK) {
t_close(conn_fd);
return;

}
t_error("t_accept failed");
exit(16);

}
t_free(calls[slot][i], T_CALL);
calls[slot][i] = (struct t_call *) NULL;
run_server(fd);

}
}

For each transport endpoint, the array of outstanding connect requests is scanned.
For each request, the server opens a responding transport endpoint, binds an address
to the endpoint, and accepts the connection on the endpoint. If another event
(connect request or disconnect request) arrives before the current request is accepted,
t_accept() fails and sets t_errno to TLOOK. (You cannot accept an outstanding
connect request if any pending connect request events or disconnect request events
exist on the transport endpoint.)

If this error occurs, the responding transport endpoint is closed and
service_conn_ind() returns immediately (saving the current connect request for
later processing). This causes the server’s main processing loop to be entered, and
the new event is discovered by the next call to poll() . In this way, multiple connect
requests can be queued by the user.

Eventually, all events are processed, and service_conn_ind() is able to accept
each connect request in turn. After the connection has been established, the
run_server() routine used by the server in the Code Example 3–5 is called to
manage the data transfer.

90 Transport Interfaces Programming Guide ♦ August 1997

State Transitions
These tables describe all state transitions associated with XTI/TLI. First, however, the
states and events are described.

XTI/TLI States
Table 3–8 defines the states used in XTI/TLI state transitions, along with the service
types.

TABLE 3–8 XTI/TLI State Transitions and Service Types

State Description Service Type

T_UNINIT Uninitialized – initial and final state of
interface

T_COTS, T_COTS_ORD,
T_CLTS

T_UNBND Initialized but not bound T_COTS, T_COTS_ORD,
T_CLTS

T_IDLE No connection established T_COTS, T_COTS_ORD,
T_CLTS

T_OUTCON Outgoing connection pending for client T_COTS, T_COTS_ORD

T_INCON Incoming connection pending for server T_COTS, T_COTS_ORD

T_DATAXFER Data transfer T_COTS, T_COTS_ORD

T_OUTREL Outgoing orderly release (waiting for orderly
release request

T_COTS_ORD

T_INREL Incoming orderly release (waiting to send
orderly release request)

T_COTS_ORD

Programming with XTI and TLI 91

Outgoing Events
The outgoing events described in Table 3–9 correspond to the status returned from
the specified transport routines, where these routines send a request or response to
the transport provider. In the table, some events (such as accept() are
distinguished by the context in which they occur. The context is based on the values
of the following variables:

� ocnt – count of outstanding connect requests

� fd – file descriptor of the current transport endpoint

� resfd – file descriptor of the transport endpoint where a connection is accepted

TABLE 3–9 Outgoing Events

Event Description Service Type

opened Successful return of t_open() T_COTS, T_COTS_ORD, T_CLTS

bind Successful return of t_bind() T_COTS, T_COTS_ORD, T_CLTS

optmgmt Successful return of t_optmgmt() T_COTS, T_COTS_ORD, T_CLTS

unbind Successful return of t_unbind() T_COTS, T_COTS_ORD, T_CLTS

closed Successful return of t_close() T_COTS, T_COTS_ORD, T_CLT

connect1 Successful return of t_connect() in
synchronous mode

T_COTS, T_COTS_ORD

connect2 TNODATA error on t_connect() in
asynchronous mode, or TLOOKerror due to a
disconnect request arriving on the transport
endpoint

T_COTS, T_COTS_ORD

accept1 Successful return of t_accept() with ocnt ==
1, fd == resfd

T_COTS, T_COTS_ORD

accept2 Successful return of t_accept() with ocnt==
1, fd!= resfd

T_COTS, T_COTS_ORD

accept3 Successful return of t_accept() with ocnt > 1 T_COTS, T_COTS_ORD

snd Successful return of t_snd() T_COTS, T_COTS_ORD

92 Transport Interfaces Programming Guide ♦ August 1997

TABLE 3–9 Outgoing Events (continued)

Event Description Service Type

snddis1 Successful return of t_snddis() with ocnt <=
1

T_COTS, T_COTS_ORD

snddis2 Successful return of t_snddis() with ocnt > 1 T_COTS, T_COTS_ORD

sndrel Successful return of t_sndrel() T_COTS_ORD

sndudata Successful return of t_sndudata() T_CLTS

Incoming Events
The incoming events correspond to the successful return of the specified routines.
These routines return data or event information from the transport provider. The
only incoming event not associated directly with the return of a routine is
pass_conn , which occurs when a connection is transferred to another endpoint. The
event occurs on the endpoint that is being passed the connection, although no XTI/
TLI routine is called on the endpoint.

In Table 3–10, the rcvdis events are distinguished by the value of ocnt , the count
of outstanding connect requests on the endpoint.

TABLE 3–10 Incoming Events

Event Description Service Type

listen Successful return of t_listen() T_COTS, T_COTS_ORD

rcvconnect Successful return of t_rcvconnect() T_COTS, T_COTS_ORD

rcv Successful return of t_rcv() T_COTS, T_COTS_ORD

rcvdis1 Successful return of
rcvdis1t_rcvdis() , onct <= 0

T_COTS, T_COTS_ORD

rcvdis2 Successful return of t_rcvdis() ,
ocnt == 1

T_COTS, T_COTS_ORD

Programming with XTI and TLI 93

TABLE 3–10 Incoming Events (continued)

Event Description Service Type

rcvdis3 Successful return of t_rcvdis() with
ocnt > 1

T_COTS, T_COTS_ORD

rcvrel Successful return of t_rcvrel() T_COTS_ORD

rcvudata Successful return of t_rcvudata() T_CLTS

rcvuderr Successful return of t_rcvuderr() T_CLTS

pass_conn Receive a passed connection T_COTS, T_COTS_ORD

Transport User Actions
Some state transitions (below) have a list of actions the transport user must take.
Each action is represented by a digit from the list below:

� Set the count of outstanding connect requests to zero

� Increment the count of outstanding connect requests

� Decrement the count of outstanding connect requests

� Pass a connection to another transport endpoint as indicated in t_accept()

State Tables
The tables describe the XTI/TLI state transitions. Each box contains the next state,
given the current state (column) and the current event (row). An empty box is an
invalid state/event combination. Each box can also have an action list. Actions must
be done in the order specified in the box.

The following should be understood when studying the state tables:

� t_close() causes an established connection to be terminated for a
connection-oriented transport provider. The connection termination will be orderly
or abortive, depending on the service type supported by the transport provider.
See t_getinfo (3N).

� If a transport user issues a function out of sequence, the function fails and
t_errno is set to TOUTSTATE. The state does not change.

94 Transport Interfaces Programming Guide ♦ August 1997

� The error codes TLOOKor TNODATAafter t_connect() can result in state
changes described in “Event Handling” on page 72. The state tables assume
correct use of XTI/TLI.

� Any other transport error does not change the state unless the manual page for the
function says otherwise.

� The support functions t_getinfo() , t_getstate() , t_alloc() , t_free() ,
t_sync() , t_look() , and t_error() are excluded from the state tables
because they do not affect the state.

Table 3–11, Table 3–12, Table 3–13, and Table 3–14 show endpoint establishment, data
transfer in connectionless mode, and connection establishment/connection release/
data transfer in connection mode.

TABLE 3–11 Connection Establishment State

Event/State T_UNINIT T_UNBND T_IDLE

opened T_UNBND

bind T_IDLE[1]

optmgmt (TLI only) T_IDLE

unbind T_UNBND

closed T_UNINIT

TABLE 3–12 Connection Mode State—Part 1

Event/State T_IDLE T_OUTCON T_INCON T_DATAXFER

connect1 T_DATAXFER

connect2 T_OUTCON

rcvconnect T_DATAXFER

listen T_INCON [2] T_INCON [2]

Programming with XTI and TLI 95

TABLE 3–12 Connection Mode State—Part 1 (continued)

Event/State T_IDLE T_OUTCON T_INCON T_DATAXFER

accept1 T_DATAXFER [3]

accept2 T_IDLE [3] [4]

accept3 T_INCON [3] [4]

snd T_DATAXFER

rcv T_DATAXFER

snddis1 T_IDLE T_IDLE [3] T_IDLE

snddis2 T_INCON [3]

rcvdis1 T_IDLE T_IDLE

rcvdis2 T_IDLE [3]

rcvdis3 T_INCON [3]

sndrel T_OUTREL

rcvrel T_INREL

pass_conn T_DATAXFER

optmgmt T_IDLE T_OUTCON T_INCON T_DATAXFER

closed T_UNINIT T_UNINIT T_UNINIT T_UNINIT

96 Transport Interfaces Programming Guide ♦ August 1997

TABLE 3–13 Connection Mode State—Part 2

Event/State T_OUTREL T_INREL T_UNBND

connect1

connect2

rcvconnect

listen

accept1

accept2

accept3

snd T_INREL

rcv T_OUTREL

snddis1 T_IDLE T_IDLE

snddis2

rcvdis1 T_IDLE T_IDLE

rcvdis2

rcvdis3

sndrel T_IDLE

rcvrel T_IDLE

pass_conn T_DATAXFER

Programming with XTI and TLI 97

TABLE 3–13 Connection Mode State—Part 2 (continued)

Event/State T_OUTREL T_INREL T_UNBND

optmgmt T_OUTREL T_INREL T_UNBND

closed T_UNINIT T_UNINIT

TABLE 3–14 Connectionless Mode State

Event/State T_IDLE

snudata T_IDLE

rcvdata T_IDLE

rcvuderr T_IDLE

Guidelines to Protocol Independence
XTI/TLI’s set of services, common to many transport protocols, offers protocol
independence to applications. Not all transport protocols support all XTI/TLI
services. If software must run in a variety of protocol environments, use only the
common services. The following is a list of services that might not be common to all
transport protocols.

1. In connection mode service, a transport service data unit (TSDU) might not be
supported by all transport providers. Make no assumptions about preserving
logical data boundaries across a connection.

2. Protocol and implementation specific service limits are returned by the t_open()
and t_getinfo() routines. Use these limits to allocate buffers to store
protocol-specific transport addresses and options.

3. Do not send user data with connect requests or disconnect requests, such as
t_connect() and t_snddis() . Not all transport protocols work this way.

4. The buffers in the t_call structure used for t_listen() must be large enough
to hold any data sent by the client during connection establishment. Use the

98 Transport Interfaces Programming Guide ♦ August 1997

T_ALL argument to t_alloc() to set maximum buffer sizes to store the address,
options, and user data for the current transport provider.

5. Do not specify a protocol address on t_bind() on a client side endpoint. Let the
transport provider assign an appropriate address to the transport endpoint. A
server should retrieve its address for t_bind() in such a way that it does not
require knowledge of the transport provider’s name space.

6. Do not make assumptions about formats of transport addresses. Transport
addresses should not be constants in a program. Chapter 4, contains detailed
information.

7. The reason codes associated with t_rcvdis() are protocol-dependent. Do not
interpret this information if protocol-independence is important.

8. The t_rcvuderr() error codes are protocol dependent. Do not interpret this
information if protocol independence is a concern.

9. Do not code the names of devices into programs. The device node identifies a
particular transport provider and is not protocol independent. See Chapter 4, for
details.

10. Do not use the optional orderly release facility of the connection mode service
(provided by t_sndrel() and t_rcvrel()) in programs targeted for multiple
protocol environments. This facility is not supported by all connection-based
transport protocols. Its use can prevent programs from successfully
communicating with open systems.

XTI/TLI Versus Socket Interfaces
XTI/TLI and sockets are different methods of handling the same tasks. Mostly, they
provide mechanisms and services that are functionally similar. They do not provide
one-to-one compatibility of routines or low-level services. Observe the similarities
and differences between the XTI/TLI and socket-based interfaces before you decide
to port an application.

The following issues are related to transport independence, and can have some
bearing on RPC applications:

� Privileged ports – Privileged ports are an artifact of the Berkeley Software
Distribution (BSD) implementation of the TCP/IP Internet Protocols. They are not
portable. The notion of privileged ports is not supported in the
transport-independent environment.

� Opaque addresses – There is no transport-independent way of separating the
portion of an address that names a host from the portion of an address that names
the service at that host. Be sure to change any code that assumes it can discern the
host address of a network service.

� Broadcast – There is no transport-independent form of broadcast address.

Programming with XTI and TLI 99

Socket-to-XTI/TLI Equivalents
Table 3–15 shows approximate equivalents between XTI/TLI functions and socket
functions. The comment field describes the differences. If there is no comment either
the functions are similar or there is no equivalent function in either interface.

TABLE 3–15 TLI and Socket Equivalent Functions

TLI function Socket function Comments

t_open() socket()

-- socketpair()

t_bind() bind() t_bind() sets the queue depth for passive sockets, but
bind() doesn’t. For sockets, the queue length is specified in
the call to listen() .

t_optmgmt() getsockopt()

setsockopt()

t_optmgmt() manages only transport options.
getsockopt() and setsockopt() can manage options at
the transport layer, but also at the socket layer and at the
arbitrary protocol layer.

t_unbind() --

t_close() close()

t_getinfo() getsockopt() t_getinfo() returns information about the transport.
getsockopt() can return information about the transport
and the socket.

t_getstate() -

t_sync() -

t_alloc() -

t_free() -

100 Transport Interfaces Programming Guide ♦ August 1997

TABLE 3–15 TLI and Socket Equivalent Functions (continued)

TLI function Socket function Comments

t_look() - getsockopt() with the SO_ERRORoption returns the
same kind of error information as t_look() .

t_error() perror()

t_connect() connect() A connect() can be done without first binding the local
endpoint. The endpoint must be bound before calling
t_connect() . A connect() can be done on a
connectionless endpoint to set the default destination
address for datagrams. Data may be sent on a connect() .

t_rcvconnect() -

t_listen() listen() t_listen() waits for connection indications. listen()
merely sets the queue depth.

t_accept() accept()

t_snd() send()

sendto()

sendmsg() sendto() and sendmsg() operate in connection mode as
well as datagram mode.

t_rcv() recv()

recvfrom()

recvmsg() recvfrom() and recvmsg() operate in connection mode
as well as datagram mode.

t_snddis() -

t_rcvdis() -

t_sndrel() shutdown()

Programming with XTI and TLI 101

TABLE 3–15 TLI and Socket Equivalent Functions (continued)

TLI function Socket function Comments

t_rcvrel() -

t_sndudata() sendto()

recvmsg()

t_rcvuderr() -

read() , write() read() , write() In XTI/TLI you must push the tirdwr() module before
calling read() or write() ; in sockets, just call read() or
write() .

102 Transport Interfaces Programming Guide ♦ August 1997

CHAPTER 4

Transport Selection and
Name-to-Address Mapping

This chapter covers selecting transports and resolving network addresses. It describes
interfaces that enable you to specify the available communication protocols for an
application. The chapter also describes additional functions that provide direct
mapping of names to network addresses.

� “How Transport Selection Works” on page 104

� “Name-to-Address Mapping” on page 112

� “Using the Name-to-Address Mapping Routines” on page 114

Note - In this chapter the terms network and transport are used interchangeably to
refer to the programmatic interface that conforms to the transport layer of the OSI
Reference Mode. The term network is also used to refer to the physical collection of
computers connected through some electronic medium.

Transport Selection Is Multithread Safe
The interface described in this chapter is multithread safe. This means that
applications that contain transport selection function calls can be used freely in a
multithreaded application.

103

Transport Selection
A distributed application must use a standard interface to the transport services if it
is to be portable to different protocols. Transport selection services provide an
interface that allows an application to select which protocols to use. This makes an
application “protocol” and “medium independent.”

Transport selection makes it easy for a client application to try each available
transport until it establishes communication with a server. Transport selection lets
server applications accept requests on multiple transports, and in doing so,
communicate over a number of protocols. Transports can be tried in either the order
specified by the local default sequence or in an order specified by the user.

Choosing from the available transports is the responsibility of the application. The
transport selection mechanism makes that selection uniform and simple.

How Transport Selection Works
The transport selection component is built around:

� A network configuration database (the /etc/netconfig file), which contains an
entry for each network on the system

� Optional use of the NETPATHenvironment variable

The NETPATHvariable is set by the user; it contains an ordered list of transport
identifiers. The transport identifiers match the netconfig network ID field and are
links to records in the netconfig file. The netconfig file is described in
“/etc/netconfig File” on page 105. The network selection interface is a set of
access routines for the network-configuration database.

One set of library routines accesses only the /etc/netconfig entries identified by
the NETPATHenvironment variable:

setnetpath() Initializes the search of NETPATH

getnetpath() Returns a pointer to the netconfig entry that corresponds to the next
component of the NETPATHvariable

endnetpath() Releases the database pointer to elements in the NETPATHvariable
when processing is complete

These routines are described in “NETPATHAccess to netconfig Data” on page 108
and in getnetpath (3N). They let the user influence the selection of transports used
by the application.

104 Transport Interfaces Programming Guide ♦ August 1997

To avoid user influence on transport selection, use the routines that access the
netconfig database directly. These routines are described in “Accessing
netconfig ” on page 109 and in getnetconfig (3N):

setnetconfig() Initializes the record pointer to the first index in the database

getnetconfig() Returns a pointer to the current record in the netconfig

database and increments the pointer to the next record

endnetconfig() Releases the database pointer when processing is complete

The following two routines manipulate netconfig entries and the data structures
they represent. These routines are described in “Accessing netconfig ” on page 109:

getnetconfigent() Returns a pointer to the struct netconfig structure
corresponding to netid

freenetconfigent() Frees the structure returned by getnetconfigent()

/etc/netconfig File
The netconfig file describes all transport protocols on a host. The entries in the
netconfig file are explained briefly in Table 4–1 and in more detail in the
netconfig (4) man page.

TABLE 4–1 The netconfig File

Entries Description

network ID A local representation of a transport name (such as tcp). Do not
assume that this field contains a well-known name (such as tcp or
udp) or that two systems use the same name for the same transport.

semantics The semantics of the particular transport protocol. Valid semantics are:
� tpi_clts – connectionless

� tpi_cots – connection oriented

� tpi_cots_ord – connection oriented with orderly release

flags Can take only the values, v , or hyphen (-). Only the visible flag (-v) is
defined.

protocol
family

The protocol family name of the transport provider (for example, inet
or loopback).

Transport Selection and Name-to-Address Mapping 105

TABLE 4–1 The netconfig File (continued)

Entries Description

protocol name The protocol name of the transport provider. For example, if protocol
family is inet , then protocol name is tcp , udp , or icmp . Otherwise, the
value of protocol name is a hyphen (-).

network device The full path name of the device file to open when accessing the
transport provider

name-to-
address
translation
libraries

Names of the shared objects. This field contains the comma-separated
file names of the shared objects that contain name-to-address mapping
routines. Shared objects are located through the path in the
LD_LIBRARY_PATHvariable. A “- ” in this field indicates the absence
of any translation libraries.

Code Example 4–1 shows a sample netconfig file. Use of the netconfig file has
been changed for the inet transports, as described in the commented section in the
sample file. This change is also described in “Name-to-Address Mapping” on page
112.

CODE EXAMPLE 4–1 Sample netconfig File

The ‘‘Network Configuration’’ File.
#
Each entry is of the form:
#
#<net <semantics> <flags> <proto <proto <device> <nametoaddr_libs>
id> family> name>
#
The "-" in <nametoaddr_libs> for inet family transports indicates redirection
to the name service switch policies for "hosts" and "services. The "-" may be
replaced by nametoaddr libraries that comply with the SVR4 specs, in which
case the name service switch will be used for netdir_getbyname, netdir_
getbyaddr, gethostbyname, gethostbyaddr, getservbyname, and getservbyport.
There are no nametoaddr_libs for the inet family in Solaris anymore.
#
udp tpi_clts v inet udp /dev/udp -
#
tcp tpi_cots_ord v inet tcp /dev/tcp -
#
icmp tpi_raw - inet icmp /dev/icmp -
#
rawip tpi_raw - inet - /dev/rawip -
#
ticlts tpi_clts v loopback - /dev/ticlts straddr.so
#
ticots tpi_cots v loopback - /dev/ticots straddr.so
#

(continued)

106 Transport Interfaces Programming Guide ♦ August 1997

(Continuation)

ticotsord tpi_cots_ord v loopback - /dev/ticotsord straddr.so
#

Network selection library routines return pointers to netconfig entries. The
netconfig structure is shown in Code Example 4–2.

CODE EXAMPLE 4–2 The netconfig Structure

struct netconfig {
char *nc_netid; /* network identifier */
unsigned long nc_semantics; /* semantics of protocol */
unsigned long nc_flag; /* flags for the protocol */
unsigned long nc_protofmly; /* family name */
unsigned long nc_proto; /* proto specific */
char *nc_device; /* device name for network id */
unsigned long nc_nlookups; /* # entries in nc_lookups */
char **nc_lookups; /* list of lookup libraries */
unsigned long nc_unused[8];

};

Valid network IDs are defined by the system administrator, who must ensure that
network IDs are locally unique. If they are not, some network selection routines can
fail. For example, it is not possible to know which network
getnetconfigent("udp") will use if there are two netconfig entries with the
network ID udp .

The system administrator also sets the order of the entries in the netconfig
database. The routines that find entries in /etc/netconfig return them in order,
from the beginning of the file. The order of transports in the netconfig file is the
default transport search sequence of the routines. Loopback entries should be at the
end of the file.

The netconfig file and the netconfig structure are described in greater detail in
the netconfig (4) man page

NETPATHEnvironment Variable
An application usually uses the default transport search path set by the system
administrator to locate an available transport. However, when a user wants to
influence the choices made by an application, the application can modify the
interface by using the environment variable NETPATHand the routines described in

Transport Selection and Name-to-Address Mapping 107

the section, “NETPATHAccess to netconfig Data” on page 108. These routines
access only the transports specified in the NETPATHvariable.

NETPATHis similar to the PATHvariable. It is a colon-separated list of transport IDs.
Each transport ID in the NETPATHvariable corresponds to the network ID field of a
record in the netconfig file. NETPATHis described in the environ (5) man page.

The default transport set is different for the routines that access netconfig through
the NETPATHenvironment variable (described in the next section) and the routines
that access netconfig directly. The default transport set for routines that access
netconfig via NETPATHconsists of the visible transports in the netconfig file.
For routines that access netconfig directly, the default transport set is the entire
netconfig file. A transport is visible if the system administrator has included a v
flag in the flags field of that transport’s netconfig entry.

NETPATHAccess to netconfig Data
Three routines access the network configuration database indirectly through the
NETPATHenvironment variable. The variable specifies the transport or transports an
application is to use and the order to try them. NETPATHcomponents are read from
left to right. The functions have the following interfaces:

#include <netconfig.h>

void *setnetpath(void);
struct netconfig *getnetpath(void *);
int endnetpath(void *);

A call to setnetpath() initializes the search of NETPATH. It returns a pointer to a
database that contains the entries specified in a NETPATHvariable. The pointer, called
a handle, is used to traverse this database with getnetpath() . setnetpath()
must be called before the first call to getnetpath() .

When first called, getnetpath() returns a pointer to the netconfig file entry that
corresponds to the first component of the NETPATHvariable. On each subsequent
call, getnetpath() returns a pointer to the netconfig entry that corresponds to
the next component of the NETPATHvariable; getnetpath() returns NULL if there
are no more components in NETPATH. A call to getnetpath() without an initial
call to setnetpath() causes an error; getnetpath() requires the pointer
returned by setnetpath() as an argument.

getnetpath() silently ignores invalid NETPATHcomponents. A NETPATH
component is invalid if there is no corresponding entry in the netconfig database.

108 Transport Interfaces Programming Guide ♦ August 1997

If the NETPATHvariable is unset, getnetpath() behaves as if NETPATHwere set to
the sequence of default or visible transports in the netconfig database, in the order
in which they are listed.

endnetpath() is called to release the database pointer to elements in the NETPATH
variable when processing is complete. endnetpath() fails if setnetpath() was
not called previously. Code Example 4–3 shows the setnetpath() ,
getnetpath() , and endnetpath() routines.

CODE EXAMPLE 4–3 setnetpath() , getnetpath() , and endnetpath
()

#include <netconfig.h>

void *handlep;
struct netconfig *nconf;

if ((handlep = setnetpath()) == (void *)NULL) {
nc_perror(argv[0]);
exit(1);

}

while ((nconf = getnetpath(handlep)) != (struct netconfig *)NULL)
{

/*
* nconf now describes a transport provider.
*/

}
endnetpath(handlep);

The netconfig structures obtained through getnetpath() become invalid after
the execution of endnetpath() . To preserve the data in the structure, use
getnetconfigent(nconf->nc_netid) to copy them into a new data structure.

Accessing netconfig
Three functions access /etc/netconfig and locate netconfig entries. The
routines setnetconfig() , getnetconfig() , and endnetconfig() have the
following interfaces:

#include <netconfig.h>

void *setnetconfig(void);
struct netconfig *getnetconfig(void *);
int endnetconfig(void *);

Transport Selection and Name-to-Address Mapping 109

A call to setnetconfig() initializes the record pointer to the first index in the
database; setnetconfig() must be used before the first use of getnetconfig() .
setnetconfig() returns a unique handle (a pointer into the database) to be used
by the getnetconfig() routine. Each call to getnetconfig() returns the pointer
to the current record in the netconfig database and increments its pointer to the
next record. It can be used to search the entire netconfig database.
getnetconfig() returns a NULL at the end of file.

You must use endnetconfig() to release the database pointer when processing is
complete. endnetconfig() must not be called before setnetconfig() .

CODE EXAMPLE 4–4 setnetconfig() , getnetconfig() , and endnetconfig
()

void *handlep;
struct netconfig *nconf;

if ((handlep = setnetconfig()) == (void *)NULL){
nc_perror(argv[0]);
exit(1);

}
/*

* transport provider information is described in nconf.
* process_transport is a user-supplied routine that
* tries to connect to a server over transport nconf.
*/

while ((nconf = getnetconfig(handlep)) != (struct netconfig *)NULL){
if (process_transport(nconf) == SUCCESS){

break;
}

}
endnetconfig(handlep);

The last two functions have the following interface:

#include <netconfig.h>
struct netconfig *getnetconfigent(char *);
int freenetconfigent(struct netconfig *);

getnetconfigent() returns a pointer to the struct netconfig structure
corresponding to netid . It returns NULL if netid is invalid. setnetconfig()
need not be called before getnetconfigent() .

freenetconfigent() frees the structure returned by getnetconfigent() . Code
Example 4–5 shows the getnetconfigent() and freenetconfigent()
routines.

110 Transport Interfaces Programming Guide ♦ August 1997

CODE EXAMPLE 4–5 getnetconfigent() and freenetconfigent
()

/* assume udp is a netid on this host */
struct netconfig *nconf;

if ((nconf = getnetconfigent(‘‘udp’’)) == (struct netconfig *)NULL){
nc_perror(‘‘no information about udp’’);
exit(1);

}
process_transport(nconf);
freenetconfigent(nconf);

Loop Through all Visible netconfig Entries
The setnetconfig() call is used to step through all the transports marked visible
(by a v flag in the flags field) in the netconfig database. The transport selection
routine returns a netconfig pointer.

Looping Through User-Defined netconfig
Entries
Users can control the loop by setting the NETPATHenvironment variable to a
colon-separated list of transport names. If NETPATHis set as follows:

NETPATH=tcp:udp

The loop first returns the tcp entry, then the udp entry. If NETPATHis not defined,
the loop returns all visible entries in the netconfig file in the order in which they
are stored. The NETPATHenvironment variable lets users define the order in which
client-side applications try to connect to a service. It also lets the server administrator
limit transports on which a service can listen.

Use getnetpath() and setnetpath() to obtain or modify the network path
variable. Code Example 4–6 shows the form and use, which are similar to the
getnetconfig() and setnetconfig() routines.

CODE EXAMPLE 4–6 Looping Through Visible Transports

void *handlep;
struct netconfig *nconf;

if ((handlep = setnetconfig() == (void *) NULL) {
nc_perror(‘‘setnetconfig’’);

(continued)

Transport Selection and Name-to-Address Mapping 111

(Continuation)

exit(1);
}
while (nconf = getnetconfig(handlep))

if (nconf->nc_flag & NC_VISIBLE)
doit(nconf);

(void) endnetconfig(handlep);

Name-to-Address Mapping
Name-to-address mapping lets an application obtain the address of a service on a
specified host, independent of the transport used. Name-to-address mapping consists
of the following functions:

netdir_getbyname() Maps the host and service name to a set of addresses

netdir_getbyaddr() Maps addresses into host and service names

netdir_free() Frees structures allocated by the name-to-address translation
routines

taddr2uaddr() Translates an address and returns a transport-independent
character representation of the address

uaddr2taddr() The universal address is translated into a netbuf structure

netdir_options() Interfaces to transport-specific capabilities (such as the
broadcast address and reserved port facilities of TCP and
UDP)

The first argument of each routine points to a netconfig structure that describes a
transport. The routine uses the array of directory-lookup library paths in the
netconfig structure to call each path until the translation succeeds.

The libraries are described in Table 4–2. The routines described in the section, “Using
the Name-to-Address Mapping Routines” on page 114, are defined in the
netdir (3N) man page.

Note - The following libraries no longer exist in the Solaris 2.x environment:
tcpip.so , switch.so , and nis.so . For more information on this change, see the
nsswitch.conf (4) man page and the NOTES section of the gethostbyname (3N)
man page

112 Transport Interfaces Programming Guide ♦ August 1997

TABLE 4–2 Name-to-Address Libraries

Library Transport
Family

Description

- inet For networks of the protocol family inet , its
name-to-address mapping is provided by the name
service switch based on the entries for hosts and
services in the file nsswitch.conf . For networks of
other families, the "-" indicates a non-functional
name-to-address mapping.

straddr.so loopback Contains the name-to-address mapping routines of
any protocol that accepts strings as addresses, such as
the loopback transports.

straddr.so Library
Files for the library are created and maintained by the system administrator. The
straddr.so files are /etc/net/ transport-name/hosts and
/etc/net/ transport-name/services . transport-name is the local name of the
transport that accepts string addresses (specified in the network ID field of the
/etc/netconfig file). For example, the host file for ticlts would be
/etc/net/ticlts/hosts , and the service file for ticlts would be
/etc/net/ticlts/services .

Even though most string addresses do not distinguish between host and service,
separating the string into a host part and a service part is consistent with other
transports. The /etc/net/ transport-name/hosts file contains a text string that is
assumed to be the host address, followed by the host name. For example:

joyluckaddr joyluck
carpediemaddr carpediem
thehopaddr thehop
pongoaddr pongo

For loopback transports, it makes no sense to list other hosts because the service
cannot go outside the containing host.

The /etc/net/transport-name/services file contains service names followed
by strings identifying the service address. For example:

Transport Selection and Name-to-Address Mapping 113

rpcbind rpc
listen serve

The routines create the full-string address by concatenating the host address, a
period (.), and the service address. For example, the address of the listen service
on pongo is pongoaddr.serve .

When an application requests the address of a service on a particular host on a
transport that uses this library, the host name must be in
/etc/net/ transport/hosts , and the service name must be in
/etc/net/ transport/services . If either is missing, the name-to-address translation
fails.

Using the Name-to-Address Mapping Routines
This section provides an overview of what routines are available to use. The routines
return or convert the network names to their respective network addresses. Note that
netdir_getbyname() , netdir_getbyaddr() , and taddr2uaddr() return
pointers to data that must be freed by calls to netdir_free() .

int netdir_getbyname(struct netconfig * nconf,
struct nd_hostserv * service,
struct nd_addrlist ** addrs);

netdir_getbyname() maps the host and service name specified in service to a set
of addresses consistent with the transport identified in nconf. The nd_hostserv and
nd_addrlist structures are defined in the netdir (3N) man page. A pointer to the
addresses is returned in addrs.

To find all addresses of a host and service (on all available transports), call
netdir_getbyname() with each netconfig structure returned by either
getnetpath() or getnetconfig() .

int netdir_getbyaddr(struct netconfig * nconf,
struct nd_hostservlist ** service,
struct netbuf * netaddr);

netdir_getbyaddr() maps addresses into host and service names. The function is
called with an address in netaddr and returns a list of host-name and service-name
pairs in service. The nd_hostservlist structure is defined in netdir (3N).

void netdir_free(void * ptr, int struct_type);

114 Transport Interfaces Programming Guide ♦ August 1997

The netdir_free() routine frees structures allocated by the name-to-address
translation routines. The parameters can take the values shown in Table 4–3.

TABLE 4–3 netdir_free() Routines

struct_type ptr

ND_HOSTSERV Pointer to an nd_hostserv structure

ND_HOSTSERVLIST Pointer to an nd_hostservlist structure

ND_ADDR Pointer to a netbuf structure

ND_ADDRLIST Pointer to an nd_addrlist structure

char *taddr2uaddr(struct netconfig * nconf, struct netbuf * addr);

taddr2uaddr() translates the address pointed to by addr and returns a
transport-independent character representation of the address (“universal address”).
nconf specifies the transport for which the address is valid. The universal address can
be freed by free() .

struct netbuf *uaddr2taddr(struct netconfig * nconf, char * uaddr);

The “universal address” pointed to by uaddr is translated into a netbuf structure;
nconf specifies the transport for which the address is valid.

int netdir_options(struct netconfig * nconf, int option, int fd,

char * point_to_args);

netdir_options() interfaces to transport-specific capabilities (such as the
broadcast address and reserved port facilities of TCP and UDP). nconf specifies a
transport. option specifies the transport-specific action to take. fd might or might not
be used depending upon the value of option. The fourth argument points to
operation-specific data.

Table 4–4 shows the values used for option :

Transport Selection and Name-to-Address Mapping 115

TABLE 4–4 Values for netdir_options

Option Description

ND_SET_BROADCAST Sets the transport for broadcast (if the transport
supports broadcast)

ND_SET_RESERVEDPORT Lets the application bind to a reserved port (if allowed
by the transport)

ND_CHECK_RESERVEDPORT Verifies that an address corresponds to a reserved port
(if the transport supports reserved ports)

ND_MERGEADDR Transforms a locally meaningful address into an
address to which client hosts can connect

netdir_perror() displays the message stating why one of the name-to-address
mapping routines failed on stderr .

void netdir_perror(char * s);

netdir_sperror() returns a string containing the error message stating why one
of the name-to-address mapping routines failed.

char *netdir_sperror(void);

Code Example 4–7 shows network selection and name-to-address mapping.

CODE EXAMPLE 4–7 Network Selection and Name-to-Address Mapping

#include <netconfig.h>
#include <netdir.h>
#include <sys/tiuser.h>

struct nd_hostserv nd_hostserv; /* host and service information
*/
struct nd_addrlist *nd_addrlistp; /* addresses for the service */
struct netbuf *netbufp; /* the address of the service */
struct netconfig *nconf; /* transport information*/
int i; /* the number of addresses */
char *uaddr; /* service universal address */
void *handlep; /* a handle into network selection
/*

* Set the host structure to reference the "date"
* service on host "gandalf"
*/

(continued)

116 Transport Interfaces Programming Guide ♦ August 1997

(Continuation)

nd_hostserv.h_host = "gandalf";
nd_hostserv.h_serv = "date";
/*

* Initialize the network selection mechanism.
*/

if ((handlep = setnetpath()) == (void *)NULL) {
nc_perror(argv[0]);
exit(1);

}
/*

* Loop through the transport providers.
*/

while ((nconf = getnetpath(handlep)) != (struct netconfig *)NULL)
{

/*
* Print out the information associated with the
* transport provider described in the "netconfig"
* structure.
*/

printf("Transport provider name: %s\n", nconf->nc_netid);
printf("Transport protocol family: %s\n", nconf->nc_protofmly);
printf("The transport device file: %s\n", nconf->nc_device);
printf("Transport provider semantics: ");

switch (nconf->nc_semantics) {
case NC_TPI_COTS:

printf("virtual circuit\n");
break;

case NC_TPI_COTS_ORD:
printf("virtual circuit with orderly release\n");
break;

case NC_TPI_CLTS:
printf("datagram\n");
break;

}
/*

* Get the address for service "date" on the host
* named "gandalf" over the transport provider
* specified in the netconfig structure.
*/

if (netdir_getbyname(nconf, &nd_hostserv, &nd_addrlistp) != ND_OK) {
printf("Cannot determine address for service\n");

netdir_perror(argv[0]);
continue;

}
printf("<%d> address of date service on gandalf:\n",

nd_addrlistp->n_cnt);
/*

* Print out all addresses for service "date" on
* host "gandalf" on current transport provider.
*/

netbufp = nd_addrlistp->n_addrs;
for (i = 0; i < nd_addrlistp->n_cnt; i++, netbufp++) {
uaddr = taddr2uaddr(nconf,netbufp);

(continued)

Transport Selection and Name-to-Address Mapping 117

(Continuation)

printf("%s\n",uaddr);
free(uaddr);
}

netdir_free(nd_addrlistp, ND_ADDRLIST);

}
endnetconfig(handlep);

Portability From Previous Releases
The following functions are unchanged from earlier releases.

gethostbyaddr()

gethostbyname()

gethostent()

getrpcbyname()

getrpcbynumber()

getservbyaddr()

getservbyname()

netdir_free()

netdir_getbyaddr()

netdir_getbyname()

netdir_options()

netdir_perror()

netdir_sperror()

taddr2uaddr()

uaddr2taddr()

Other porting issues are described in ONC+ Developer’s Guide.

118 Transport Interfaces Programming Guide ♦ August 1997

Glossary

CLTS Connectionless transport service. Data may be exchanged without a
prior link between processes. Also known as a datagram protocol
because the operation is like sending a letter.

client A process that makes use of a service or services provided by other
processes. A client process initiates requests for services.

concurrent server A multithreaded server that creates a new process to handle each
request, leaving the main server process to listen for more requests.
With a multithreaded OS, such as Solaris, it is possible to implement
concurrent servers without creating a complete process to handle
requests; each request can be dealt with in a single thread.

COTS Connection-oriented transport service. Requires a logical connection
to be established between two processes before data can be
exchanged. Conceptually analogous to a telephone call.

ephemeral port
numbers

Short-lived port numbers. TCP or UDP can assign an unused port
to a process.

ICMP Internet Control Message Protocol. A network layer protocol dealing
with routing, reliability, flow control and sequencing of data.

internetwork The connection of different physical networks into a large, virtual
network. The Internet refers to the TCP/IP-based Internet that
connects many commercial sites, government agencies, and
universities.

IP Internet protocol. Core protocol of TCP/IP at the network layer. A
connectionless service, it handles packet delivery for TCP, UDP, and
ICMP protocols.

Glossary-119

ISO/OSI The International Standards Organization (ISO) model for Open
Systems Interconnection (OSI) is a seven layer model for describing
networked systems.

iterative server A single-threaded server that can handle only one request at a time.
Requests are received and processed within a single process. It is
possible for client processes to be blocked for some time while
waiting for requests to be finished.

protocol A set of rules and conventions that describes how information is to
be exchanged between two entities.

protocol stack A set of layered protocols where each layer has a well-defined
interface to the layer immediately above and immediately below.

protocol peers A pair of protocols that reside in the same layer. They communicate
with each other.

RFC Request for Comments. Formal specifications of the Internet
protocols.

server A process that provides some facility that can be used by other
processes. A server process waits for requests.

TCP Transmission Control Protocol. Built on top of IP at the transport
layer, TCP provides a reliable connection-oriented byte stream
service between two hosts on an internetwork

UDP User Datagram Protocol. Built on top of IP at the transport layer,
UDP provides an unreliable datagram-based service between two
hosts on an internetwork.

well-known port
numbers

16-bit port numbers that identify individual processes on a host.
Well-known services are provided at well-known port numbers.

Glossary-120 Transport Interfaces Programming Guide ♦ August 1997

Index

A
accept, 15
accept_call, 76
Asynchronous Safe, 54
asynchronous socket, 42, 43

B
bind, 15
broadcast

sending message, 47

C
checksum offload, 50
child process, 44
client/server model, 1, 33
clone device special file, 68
close, 19
connect, 15, 16, 25
connection mode, 61
connectionless mode, 56

D
daemon

inetd, 52
datagram, 56

errors, 61
socket, 13, 23, 37

E
endnetpath, 108

EWOULDBLOCK, 42

F
fwrite, 78
F_SETOWN fcntl, 44

G
gethostbyaddr, 30
gethostbyname, 30
getnetconfigent, 107, 109
getnetpath, 108, 109, 111
getpeername, 52
getservbyname, 32, 34
getservbyport, 32
getservent, 32
getsockopt, 50

H
handle, 108

socket, 15
transport endpoint, 68

host name mapping, 30
hostent structure, 30

I
inet transport, 106
inetd, 33, 51, 52
inetd.conf, 52
inet_ntoa, 30
Internet

Index-121

host name mapping, 30
port numbers, 47
well known address, 31, 33

ioctl
I_SETSIG, 79
SIOCATMARK, 40

IPPORT_RESERVED, 47
I_SETSIG ioctl, 79

L
libnsl, 54
library

libsocket, 13

M
MSG_DONTROUTE, 18
MSG_OOB, 18
MSG_PEEK, 18, 40
multiple connect (TLI), 85
multithread safe, 53

N
name-to-address translation

inet, 113
nis.so, 112
straddr.so, 113
switch.so, 112
tcpip.so, 112

netbuf structure, 70
netconfig, 104 to 109, 111
netdir_free, 114, 115
netdir_getbyaddr, 114
netdir_getbyname, 114
netdir_options, 115
netdir_perror, 116
netdir_sperror, 116
netent structure, 31
NETPATH, 104, 108, 108, 111
nis.so, 112
nonblocking sockets, 41

O
optmgmt, 92, 95, 96
OSI reference model, 5
osinet, 105

out-of-band data, 40

P
poll, 84, 87
pollfd structure, 86, 87
port numbers for Internet, 47
port to service mapping, 32
porting from TLI to XTI, 54
protoent structure, 31

R
recvfrom, 24
rpcbind, 114
rwho, 37

S
select, 27, 40
send, 25
sendto, 24
servent structure, 32
service to port mapping, 31
setnetpath, 108, 109, 111
setsockopt, 50
shutdown, 19
SIGIO, 43
SIOCATMARK ioctl, 40
SIOCGIFCONF ioctl, 48
SIOCGIFFLAGS ioctl, 49
socket

address binding, 46
AF_INET

bind, 16
create, 14
getservbyname, 32, 34
getservbyport, 32
getservent, 32
inet_ntoa, 30
socket, 14

AF_UNIX
bind, 15
create, 14
delete, 15

asynchronous, 42, 43
close, 19
connect stream, 19

Index-122 Transport Interfaces Programming Guide ♦ August 1997

datagram, 13, 23, 37
getsockopt, 50

handle, 15
initiate connection, 16
multiplexed, 27

nonblocking, 41
out-of-band data, 19, 40
select, 27, 40
selecting protocols, 45
setsockopt, 50
SIOCGIFCONF ioctl, 48
SIOCGIFFLAGS ioctl, 49
SIOGGIFBRDADDR ioctl, 49
SOCK_DGRAM

connect, 25
recvfrom, 24, 40
send, 25

SOCK_STREAM, 45
F_GETOWN fcntl, 44
F_SETOWN fcntl, 44
out-of-band, 40
SIGCHLD signal, 44
SIGIO signal, 43, 44
SIGURG signal, 44

TCP port, 33
UDP port, 33

SOCK_DGRAM, 13, 51
SOCK_RAW, 14
SOCK_STREAM, 13, 45, 52
Solaris

TCP/IP services, 3
straddr.so, 113
stream

data, 40
socket, 13, 19

SVID, vii
SVR4, vii
switch.so, 112

T
TCP

port, 33
TCP/IP

overview, 7
services in Solaris, 3

tcpip.so, 112
tirdwr, 82, 102

tiuser.h, 54
TLI

abortive release, 80
asynchronous mode, 84

broadcast, 100
connection establishment, 71
connection release, 65, 80
connection request, 69, 71, 73
data transfer, 59

data transfer phase, 64
incoming events, 93
multiple connection requests, 85

opaque addresses, 99
orderly release, 80

outgoing events, 92
privileged ports, 99
protocol independence, 98
queue connect requests, 86

queue multiple requests, 86
read/write interface, 81

socket comparison, 99
state transitions, 94
states, 91

transport address, 68
transport endpoint

connection, 66
handle, 68

transport endpoints, 54
transport provider, 54
TSDU, 77
t_accept, 71, 101
t_alloc, 58, 62, 70, 72, 99, 100
t_bind, 58, 62, 66 to 68, 75, 99, 100
t_bind structure, 70
t_call structure, 72, 74
t_close, 63, 81, 94, 100
t_connect, 64, 71, 73, 75, 101
T_DATAXFER, 97
t_errno, 68
t_error, 63, 68, 101
t_free, 63, 100
t_getinfo, 63, 67, 98, 100
t_getprotaddr, 63
t_getstate, 63, 100
t_info structure, 66
t_listen, 64, 71, 85, 101, 99
t_look, 63, 73, 79, 101

Index-123

T_MORE flag, 77
t_open, 62, 63, 66 to 68, 71, 75, 85, 98, 100
t_optmgmt, 57, 63, 67, 100
t_rcv, 65, 76, 101
t_rcvconnect, 64, 101
t_rcvdis, 65, 76, 101, 99
t_rcvrel, 65, 102, 99
t_rcvudata, 56, 61
t_rcvuderr, 56, 61, 102, 99
t_snd, 65, 76, 79, 101
t_snd flag

T_EXPEDITED, 79
T_MORE, 79

t_snddis, 65, 71, 80, 83, 101
t_sndrel, 65, 101, 99
t_sndudata, 56, 61, 102
t_sync, 63, 100

t_unbind, 63, 100
t_unitdata structure, 60

U
UDP

port, 33
unlink, 15

X
XTI, 54
xti.h, 54

Z
zero copy, 50

Index-124 Transport Interfaces Programming Guide ♦ August 1997

