
A Sun Microsystems, Inc. Business
2550 Garcia Avenue
Mountain View, CA 94043
U.S.A.

Developer’s Guide

Solaris X Window System

SunSoft, Inc.

Please
Recycle

Copyright 1997 Sun Microsystems, Inc. 2550 Garcia Avenue, Mountain View, California 94043-1100 U.S.A. All rights reserved.

This product or document is protected by copyright and distributed under licenses restricting its use, copying, distribution, and decompilation.
No part of this product or document may be reproduced in any form by any means without prior written authorization of Sun and its licensors,
if any. Third-party software, including font technology, is copyrighted and licensed from Sun suppliers.

Parts of the product may be derived from Berkeley BSD systems, licensed from the University of California. UNIX is a registered trademark in
the U.S. and other countries, exclusively licensed through X/Open Company, Ltd.

Sun, Sun Microsystems, the Sun logo, SunSoft, SunDocs, SunExpress, Solaris, OpenStep, and OpenWindows are trademarks, registered
trademarks, or service marks of Sun Microsystems, Inc. in the U.S. and other countries. All SPARC trademarks are used under license and are
trademarks or registered trademarks of SPARC International, Inc. in the U.S. and other countries. Products bearing SPARC trademarks are
based upon an architecture developed by Sun Microsystems, Inc. OPEN LOOK is a registered trademark of Novell, Inc. PostScript and Display
PostScript are trademarks of Adobe Systems, Inc. X Window System is a trademark of X Consortium, Inc.

The OPEN LOOK and Sun™ Graphical User Interface was developed by Sun Microsystems, Inc. for its users and licensees. Sun acknowledges
the pioneering efforts of Xerox in researching and developing the concept of visual or graphical user interfaces for the computer industry. Sun
holds a non-exclusive license from Xerox to the Xerox Graphical User Interface, which license also covers Sun’s licensees who implement OPEN
LOOK GUIs and otherwise comply with Sun’s written license agreements.

RESTRICTED RIGHTS: Use, duplication, or disclosure by the U.S. Government is subject to restrictions of FAR 52.227-14(g)(2)(6/87) and
FAR 52.227-19(6/87), or DFAR 252.227-7015(b)(6/95) and DFAR 227.7202-3(a).

DOCUMENTATION IS PROVIDED “AS IS” AND ALL EXPRESS OR IMPLIED CONDITIONS, REPRESENTATIONS AND WARRANTIES,
INCLUDING ANY IMPLIED WARRANTY OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-
INFRINGEMENT, ARE DISCLAIMED, EXCEPT TO THE EXTENT THAT SUCH DISCLAIMERS ARE HELD TO BE LEGALLY INVALID.

Copyright 1997 Sun Microsystems, Inc., 2550 Garcia Avenue, Mountain View, Californie 94043-1100 Etats-Unis. Tous droits réservés.

Ce produit ou document est protégé par un copyright et distribué avec des licences qui en restreignent l’utilisation, la copie, la distribution, et la
décompilation. Aucune partie de ce produit ou document ne peut être reproduite sous aucune forme, par quelque moyen que ce soit, sans
l’autorisation préalable et écrite de Sun et de ses bailleurs de licence, s’il y en a. Le logiciel détenu par des tiers, et qui comprend la technologie
relative aux polices de caractères, est protégé par un copyright et licencié par des fournisseurs de Sun.

Des parties de ce produit pourront être dérivées des systèmes Berkeley BSD licenciés par l’Université de Californie. UNIX est une marque
déposée aux Etats-Unis et dans d’autres pays et licenciée exclusivement par X/Open Company, Ltd.

Sun, Sun Microsystems, le logo Sun, SunSoft, SunDocs, SunExpress, Solaris, OpenStep, et OpenWindows sont des marques de fabrique ou des
marques déposées, ou marques de service, de Sun Microsystems, Inc. aux Etats-Unis et dans d’autres pays. Toutes les marques SPARC sont
utilisées sous licence et sont des marques de fabrique ou des marques déposées de SPARC International, Inc. aux Etats-Unis et dans d’autres
pays. Les produits portant les marques SPARC sont basés sur une architecture développée par Sun Microsystems, Inc. OPEN LOOK est une
marque enregistrée de Novell, Inc. PostScript et Display PostScript sont des marques d’Adobe Systems, Inc. Le système X Window est un
produit du X Consortium, Inc.

L’interface d’utilisation graphique OPEN LOOK et Sun™ a été développée par Sun Microsystems, Inc. pour ses utilisateurs et licenciés. Sun
reconnaît les efforts de pionniers de Xerox pour la recherche et le développement du concept des interfaces d’utilisation visuelle ou graphique
pour l’industrie de l’informatique. Sun détient une licence non exclusive de Xerox sur l’interface d’utilisation graphique Xerox, cette licence
couvrant également les licenciés de Sun qui mettent en place l’interface d’utilisation graphique OPEN LOOK et qui en outre se conforment aux
licences écrites de Sun.

CETTE PUBLICATION EST FOURNIE "EN L’ETAT" ET AUCUNE GARANTIE, EXPRESSE OU IMPLICITE, N’EST ACCORDEE, Y COMPRIS
DES GARANTIES CONCERNANT LA VALEUR MARCHANDE, L’APTITUDE DE LA PUBLICATION A REPONDRE A UNE UTILISATION
PARTICULIERE, OU LE FAIT QU’ELLE NE SOIT PAS CONTREFAISANTE DE PRODUIT DE TIERS. CE DENI DE GARANTIE NE
S’APPLIQUERAIT PAS, DANS LA MESURE OU IL SERAIT TENU JURIDIQUEMENT NUL ET NON AVENU.

v

Contents

Preface. xv

1. Introduction to the Solaris X Server . 1

About the Solaris X Server . 1

X11R6 Sample Server. 2

DPS Extension . 4

X Consortium Extensions . 4

AccessX . 7

Shared Memory Transport . 7

Visual Overlay Windows . 7

X11 Libraries. 8

Applications That Run With the Solaris X Server 8

Supported X11 Applications. 9

Unsupported Applications . 10

OpenWindows Directory Structure . 10

Notes on X11 Programming . 13

vi Solaris X Window System Developer’s Guide—August 1997

Compose Key Support . 13

NumLock Key Support . 13

Color Name Database . 14

Color Recommendations. 14

Further Reading . 15

2. DPS Features and Enhancements . 17

About DPS . 17

How DPS Works. 18

DPS Font Enhancements in the Solaris Server 20

DPS Libraries . 20

Adobe NX Agent Support . 20

DPS Security Issues . 21

System File Access . 21

Secure Context Creation . 21

When DPS Encounters Internal Errors . 23

How To Access Information From Adobe. 23

DPS Compositing Operators . 24

Operator Descriptions . 26

Implementation Notes and Limitations 31

3. Visuals on the Solaris X Server. 35

About Visuals . 35

Default Visual. 36

Visuals on Multi-Depth Devices . 37

Hints for Windows Programming With Visuals 37

Contents vii

Gamma-Corrected Visuals . 38

Finding a Linear Visual . 39

Visual Selection Alternatives . 41

4. Font Support . 43

Font Support in the Solaris X Server . 43

X Font Server . 44

Available Font Formats . 44

Associated Files . 45

Outline and Bitmap Fonts . 46

Replacing Outline Fonts With Bitmap Fonts 47

Using TrueType and F3 Fonts in DPS . 48

Locating Fonts . 48

Changing the Default Font Path in X11. 49

Installing and Managing Fonts. 49

Using OPEN LOOK Fonts on X Terminals 50

5. Server Overlay Windows. 51

Server Overlays Versus Transparent Overlays 51

Tips for Programming Overlays. 52

Parent-Child Model . 52

Stacking. 52

Server Overlays . 53

6. Transparent Overlay Windows . 55

What are Transparent Overlay Windows? 55

Basic Characteristics of Transparent Overlay Windows 57

viii Solaris X Window System Developer’s Guide—August 1997

Paint Type . 57

Viewability . 58

Rendering Transparent Paint . 58

More on Transparent Overlay Characteristics 58

Background. 59

Window Border . 60

Backing Store . 60

Window Gravity . 60

Colormaps . 61

Input Distribution Model . 61

Print Capture . 62

Choosing Visuals for Overlay/Underlay Windows 62

Example Program. 64

Overview of the Solaris Transparent Overlay Window API. . . 65

Creating Transparent Overlay Windows. 66

Setting the Paint Type of a Graphics Context 67

Setting the Background State of a Transparent Overlay Window 68

Rendering to a Transparent Overlay Window 69

Querying the Characteristics of a Transparent Overlay Window 70

Determining Whether a Window is an Overlay Window. . 70

Determining the Paint Type of a Graphics Context. 70

Pixel Transfer Routines . 70

Filling an Area Using the Source Area Paint Type 71

Copying an Area and Its Paint Type 73

Contents ix

Retrieving Overlay Color Information 77

Using Existing Xlib Pixel Transfer Routines 79

Designing an Application for Portability 80

Selecting a Visual for an Overlay/Underlay Window 81

Selecting an Optimal Overlay/Underlay Visual Pair 86

7. Security Issues. 91

Access Control Mechanisms . 92

User-Based . 92

Host-Based . 92

Authorization Protocols . 93

MIT-MAGIC-COOKIE-1 . 93

SUN-DES-1 . 93

Changing the Default Authorization Protocol 94

Manipulating Access to the Server . 95

Client Authority File . 96

Allowing Access When Using MIT-MAGIC-COOKIE-1. . . 97

Allowing Access When Using SUN-DES-1. 97

Running Clients Remotely, or Locally as Another User 98

A. Reference Display Devices . 99

Solaris Reference Display Devices . 99

SPARC: Supported Reference Devices 100

x86: Supported Reference Devices . 102

Glossary . 105

Index . 111

x Solaris X Window System Developer’s Guide—August 1997

xi

Figures

Figure 1-1 Solaris X Server . 2

Figure 1-2 Solaris X Server Architecture . 3

Figure 1-3 OpenWindows Directory Structure . 11

Figure 2-1 DPS Extension to X . 19

Figure 2-2 Compositing Operator Example Program. 26

Figure 2-3 Results of Compositing Operations . 29

xii Solaris X Window System Developer’s Guide—August 1997

xiii

Tables

Table 1-1 X11 Libraries. 8

Table 1-2 OpenWindows Directories. 11

Table 2-1 DPS Libraries . 20

Table 2-2 Factors of the Compositing Equation . 28

Table 4-1 Outline Font Formats . 44

Table 4-2 Bitmap Font Formats. 44

Table 4-3 Font File Availability. 45

Table 4-4 Bitmap Font Binaries . 47

Table 4-5 Font Directory Structure. 48

Table 6-1 Background Values for a Transparent Overlay Window 59

Table 6-2 List of Transparent Overlay Window Routines 65

Table 6-3 XSolarisOvlCopyPaintType Source/Destination Combinations and
Actions. 72

Table 6-4 XSolarisOvlCopyAreaAndPaintType Source/Destination
Combinations and Actions. 76

Table A-1 Solaris Reference Display Devices . 100

xiv Solaris X Window System Developer’s Guide—August 1997

xv

Preface

The Solaris X Window System Developer’s Guide provides detailed information on
the Solaris™ X server. The guide provides an overview of the server
architecture and tells you where to look for more information.

This guide provides detailed information for software developers interested in
interfacing with the Solaris X server.

Who Should Use This Book
Programming in this environment primarily involves using a toolkit and
possibly interfacing with the server and its protocols. The protocols and
toolkits are documented elsewhere (see “Related Books” on page xvii). Read
this manual if you need detailed information on the:

• Features of the Solaris X server
• Differences from and enhancements to the X Consortium sample server
• DPS imaging system
• Supported display devices
• Authorization schemes and protocols for server connections

xvi Solaris X Window System Developer’s Guide—August 1997

Before You Read This Book
This manual assumes that the reader has a programming background and
familiarity with, or access to, appropriate documentation for:

• Solaris 2.x
• X Window System™
• C programming language
• PostScript™
• The Display PostScript™ System (DPS)
• olwm window manager
• XView™ toolkit

How This Book Is Organized
Although you can read this book in sequence, it is designed for you to read
only those chapters of interest. This book serves both as an overview and as a
reference document.

Chapter 1, “Introduction to the Solaris X Server,” describes the architecture of
the Solaris X server, the X and DPS extensions, Sun’s enhancements to the X
Consortium libraries and extensions, notes on color-related issues, and a list of
applications you can run with the server.

Chapter 2, “DPS Features and Enhancements” describes the DPS features
specific to Solaris and includes information on compositing operators provided
as an extension to standard DPS.

Chapter 3, “Visuals on the Solaris X Server,” describes visuals in the Solaris
environment. It also provides hints for window programming with visuals.

Chapter 4, “Font Support,” describes the set of fonts provided and how to
manage fonts.

Chapter 5, “Server Overlay Windows,” describes server overlays and contrasts
them with transparent overlays.

Chapter 6, “Transparent Overlay Windows,” describes the Solaris Transparent
Overlay Extension application programming interface (API) for transparent
overlay windows.

Chapter 7, “Security Issues,” describes the security features of the Solaris
environment.

Preface xvii

Appendix A, “Reference Display Devices,” describes the graphics devices
provided as reference devices with the Solaris environment.

Related Books
For information on how to write applications in the Solaris environment,
consult the following manuals:

• Desktop Integration Guide
• ToolTalk Reference Guide
• OpenWindows Desktop Reference Manual
• Solaris X Window System Reference Manual
• X Server Device Developer’s Guide
• Font Administrator User’s Guide
• XView Developer’s Notes
• OLIT QuickStart Programmer’s Guide
• OLIT Reference Manual
• XIL Programmer’s Guide

The following X-related manuals are available through SunExpress or your
local bookstore. Contact your SunSoft representative for information on
ordering any of these books.

• XView Reference Manual, O’Reilly & Associates
• XView Programming Manual, O’Reilly & Associates
• Xlib Reference Manual, O’Reilly & Associates
• Xlib Programming Manual, O’Reilly & Associates
• X Protocol Reference Manual, O’Reilly & Associates
• Programmer’s Supplement for Release 5, O’Reilly & Associates
• X Toolkit Intrinsics Reference Manual, O’Reilly & Associates
• X Window System, Third Edition, Digital Press
• The X Window System Server, X Version 11, Release 5, Digital Press

The following PostScript and DPS-related manuals are available through
SunExpress or your local bookstore. Contact your SunSoft representative for
information on ordering.

• PostScript Language Reference Manual, Second Edition, Adobe® Systems
Incorporated

• PostScript Language Tutorial and Cookbook, Adobe Systems Incorporated
• Programming the Display PostScript System with X, Adobe Systems

Incorporated

xviii Solaris X Window System Developer’s Guide—August 1997

• PostScript Language Program Design, Adobe Systems Incorporated
• Adobe Type I Font Format, Adobe Systems Incorporated

Ordering Sun Documents
The SunDocsSM program provides more than 250 manuals from Sun
Microsystems, Inc. If you live in the United States, Canada, Europe, or Japan,
you can purchase documentation sets or individual manuals using this
program.

For a list of documents and how to order them, see the catalog section of
SunExpress™ On The Internet at http://www.sun.com/sunexpress.

What Typographic Changes Mean
The following table describes the typographic changes used in this book.

Table P-1 Typographic Conventions

Typeface or
Symbol Meaning Example

AaBbCc123 The names of commands,
files, and directories;
on-screen computer output

Edit your .login file.
Use ls -a to list all files.
machine_name% You have mail.

AaBbCc123 What you type, contrasted
with on-screen computer
output

machine_name% su
Password:

AaBbCc123 Command-line placeholder:
replace with a real name or
value

To delete a file, type rm filename.

AaBbCc123 Book titles, new words or
terms, or words to be
emphasized

Read Chapter 6 in User’s Guide.
These are called class options.
You must be root to do this.

Preface xix

Shell Prompts in Command Examples
The following table shows the default system prompt and superuser prompt
for the C shell, Bourne shell, and Korn shell.

What Is x86?
The term “x86” refers to the Intel 8086 family of microprocessor chips,
including the Pentium and Pentium Pro processors and compatible
microprocessor chips made by AMD and Cynix. In this document, the term
“x86” refers to the overall platform architecture, whereas “Intel Platform
Edition” appears in the product name.

Table P-2 Shell Prompts

Shell Prompt

C shell prompt machine_name%

C shell superuser prompt machine_name#

Bourne shell and Korn shell
prompt

$

Bourne shell and Korn shell
superuser prompt

#

xx Solaris X Window System Developer’s Guide—August 1997

1

Introduction to the Solaris X Server 1

This chapter provides information on the Solaris X server. The Solaris X server
implements the X Window System client-server model for the Solaris product.
The chapter includes information on the following topics:

• Features of the Solaris X server, including supported extensions from the X
Consortium and the Display PostScript extension

• Supported and unsupported X11 applications

• OpenWindows™ directory structure

About the Solaris X Server
The Solaris X server, XSun, is composed of the X Consortium’s X11R6 sample
server with the Display PostScript (DPS) imaging system extension, additional
X Consortium X extensions, and Sun added value. The Solaris X server is the
foundation for the Common Desktop Environment (CDE) and underlies the
CDE desktop. The server handles communication between client applications,
the display hardware, and input devices. By default, the Solaris X server runs
with the CDE dtlogin and window manager (dtwm), but any X Window System
manager that is ICCCM (Inter-Client Communication Conventions Manual)
compliant runs with the server. Software developers can write applications for
the Solaris environment using the Xlib library or a variety of toolkits, including
the Motif toolkit and the Xt toolkit.

Figure 1-1 illustrates the relationship between the Solaris X server, several
desktop client applications, the display, and input devices.

2 Solaris X Window System Developer’s Guide—August 1997

1

Figure 1-1 Solaris X Server

X11R6 Sample Server

An important component of the Solaris X server is the X11R6 sample server
from the X Consortium. The X11R6 sample server was designed and
implemented to be portable; it hides differences in the underlying hardware
from client applications. The sample server handles all drawing, interfaces
with device drivers to receive input, and manages off-screen memory, fonts,
cursors, and colormaps.

D
IS

P
LA

Y
 M

A
N

A
G

E
R

W
IN

D
O

W
 M

A
N

A
G

E
R

X
T

E
R

M

X
C

LO
C

K

M
A

IL
T

O
O

L

Y
O

U
R

 A
P

P
LI

C
A

T
IO

N X11 R6
SERVER

DPS

PostScript
fonts

bitmap fonts
mouse

keyboard

XSUNX CLIENTS HARDWARE

Xlib

requests

replies

events

to
ol

ki
t

interclient
comminication

monitor

X Extensions

Font Server

Introduction to the Solaris X Server 3

1

The sample server contains the following parts, or layers:

• Device-Independent Layer (DIX) – Dispatches client requests, manages the
event queue, distributes events to clients, and manages visible data
structures. This layer contains functions that do not depend on graphics
hardware, input devices, or the host operating system.

• Device-Dependent Layer (DDX) – Creates and manipulates pixmaps,
clipping regions, colormaps, screens, fonts, and graphics contexts. In
addition, the DDX layer collects events from input devices and relays them
to the DIX layer. This layer contains routines that depend on graphics
hardware and input devices the server must accommodate.

• Operating System Layer (OS) – Manages client connections and connection
authorization schemes, and provides routines for memory allocation and
deallocation. The OS layer contains functions that rely on the host operating
system.

• Font Management Library – The font management library enables the server
to use font files of different formats and to load fonts from the X font server.
The server’s font features are described in detail in Chapter 4, “Font
Support.”

Figure 1-2 illustrates the structure of the server. Note that throughout this
document, server is used interchangeably with the Solaris X server, and sample
server is used interchangeably with the X Consortium’s X11R6 sample server.

Figure 1-2 Solaris X Server Architecture

OS Layer

DIX Layer

Server Architecture

DDX Layer

X Extensions

DPS Extension

Font Management
Library

4 Solaris X Window System Developer’s Guide—August 1997

1

DPS Extension

In addition to the X11R6 sample server, the Solaris X server includes the
Display PostScript system. DPS provides X applications with the PostScript
imaging model and with access to the Adobe Type Library. The Display
PostScript system is implemented as an extension to the X Window System as
part of the client-server network architecture; the extension is sometimes
referred to as DPS/X.1

In the DPS system, the PostScript interpreter is implemented as an extension to
the X server, and each application is a client. The application sends PostScript
language code to the server through single operator calls, and data can be
returned from the server in the form of output arguments. DPS client-server
communication is implemented transparently using the low-level
communication protocols provided by the X Window System. For more
information on the DPS system, see Chapter 2, “DPS Features and
Enhancements”.

X Consortium Extensions

The Solaris X server supports X extensions as defined by the X Consortium.
These extensions are briefly described in the sections below. The sections
provide the specification name for each extension, as well as the associated file
name (on ftp.x.org) in parentheses. For information on the standard X
Extension Mechanism, see The X Window System Server and the Xlib
Programming Manual.

The X Consortium X11 standards referenced in the following sections are
readily available to systems on the World Wide Web. The URL is
http://www.rdg.opengroup.org The X11 documentation resides in the
/pub/R6untarred/mit/doc/extensions directory on the ftp.x.org
machine. Use the file transfer protocol (ftp) to download files from this
system. If you need help using ftp , refer to the ftp(1) man page. To
determine if your system is connected to the World Wide Web, see your system
administrator.

1. This section is based on Chapter 2 of Programming the Display PostScript System with X by Adobe Systems
Incorporated (Addison-Wesley Publishing Company, Inc., 1993) and is used with the permission of the
copyright holder.

Introduction to the Solaris X Server 5

1

X Input Extension

The X Input Extension is Sun’s implementation of the X Consortium standard,
X11 Input Extension Protocol Specification
(/pub/X11/R6.1/xc/doc/specs/Xi/protocol.ms). This extension
controls access to alternate input devices (that is, other than the keyboard and
pointer). It allows client programs to select input from these devices
independently of each other and independently of the core devices.

Double Buffer Extension

The double buffer extension (DBE) is Sun’s implementation of the X
Consortium standard. Double-buffering provides flicker-free animation
capabilities by allowing applications to show the user only completely
rendered frames. Frames are rendered in a non-displayed buffer and then
moved into a displayed buffer.

Shape Extension

The Shape Extension is Sun’s full implementation of the X Consortium
standard, X11 Nonrectangular Window Shape Extension (shape.ms). This
extension provides the capability of creating arbitrary window and border
shapes within the X11 protocol.

Shared Memory Extension

The Shared Memory extension is Sun’s full implementation of the X
Consortium experimental Shared Memory Extension (mit-shm.ms). This
extension provides the capability to share memory XImages and pixmaps by
storing the actual image data in shared memory. This eliminates the need to
move data through the Xlib interprocess communication channel; thus, for
large images, system performance increases. This extension is useful only if the
client application runs on the same machine as the server.

6 Solaris X Window System Developer’s Guide—August 1997

1

XTEST Extension

The XTEST extension is Sun’s full implementation of the X Consortium
proposed standard, X11 Input Synthesis Extension Proposal (xtest1.mm). This
extension provides the capability for a client to generate user input and to
control user input actions without a user being present. This extension requires
modification to the DDX layer of the server.

Miscellaneous Extension

The MIT-SUNDRY-NONSTANDARD extension was developed at MIT and
does not have a standard, or specification, on the ftp.x.org machine. This
extension handles miscellaneous erroneous protocol requests from X11R3 and
earlier clients. It provides a request that turns on bug-compatibility mode so
that certain erroneous requests are handled or turns off bug-compatibility
mode so that an error for erroneous requests is returned. The extension also
provides a request that gets the current state of the mode.

This extension can be dynamically turned on or off with xset , or at server
startup with openwin . See the xset(1) and openwin(1) man pages,
specifically the -bc option, for more information.

XC-MISC

This standard X Consortium extension allows an application to recycle XIDs.
Some applications create and destroy XIDs so rapidly that they exceed the
fixed range of XIDs. Most applications do not need to use this extension. The
specification is in /pub/X11/xc/doc/specs/Xext/xc-misc.ms

X Imaging Extension

Sun’s implementation of X includes the standard X Imaging Extension (XIE);
however, it is recommended that you use Sun’s XIL™ software instead. XIL
uses hardware acceleration where possible to speed up imaging operations.
XIL is documented in the XIL Programmer’s Guide. To view the on-line version
of this guide, see the Solaris XIL 1.3 AnswerBook located at the following web
site: http://docs.sun.com

Introduction to the Solaris X Server 7

1

AccessX

The Solaris X server also supports keyboard features compliant with the
American Disabilities Act (ADA). These features are available through an
extension to the server, called AccessX. The AccessX extension provides the
following capabilities: sticky keys, slow keys, toggle keys, mouse keys, bounce
keys and repeat keys. Use the client program accessx to enable and disable
these capabilities. The accessx client controls the toggle, bounce, and repeat
keys and their settings. The sticky, slow, and mouse keys can be enabled using
shift or other keys. For information on using AccessX, see the Solaris User’s
Guide.

Before running accessx , set the UIDPATH environment variable to
/usr/openwin/lib/app-defaults/accessx.uid .

The accessx client is part of the SUNWxwacx package. To install it, you need
to install the All Cluster .

Shared Memory Transport

The Solaris X server includes the Sun extension SUN_SME, Sun’s
implementation of a shared memory transport mechanism. This extension
provides the capability of sending client requests to the server via shared
memory. Shared memory is used for client requests only. Replies from the
server and events are sent via the default transport mechanism. To enable this
transport mechanism, set the DISPLAY environment variable to :x.y , where x
is the display number, and y is the screen number, and set the environment
variable XSUNTRANSPORT to shmem. The size of the segment can be set by
setting the environment variable XSUNSMESIZE to the desired size in Kbytes.
By default, XSUNSMESIZE is set to 64.

Visual Overlay Windows

The Solaris X server supports two application programmer’s interfaces (APIs)
that enable use of overlay windows. An overlay is a pixel buffer (either
physical or software-simulated) into which graphics can be drawn.
Applications can use overlays to display temporary imagery in a display
window. For more information on the overlay APIs, see Chapter 5, “Server
Overlay Windows,” and Chapter 6, “Transparent Overlay Windows.”

8 Solaris X Window System Developer’s Guide—August 1997

1

X11 Libraries

Table 1-1 lists the X11 libraries. The .so and .a files that comprise these
libraries are in /usr/openwin/lib.

Applications That Run With the Solaris X Server
You can run the following kinds of applications with the Solaris X server:

• Applications written with the following toolkits:
• OpenWindows toolkits: OLIT and XView
• Motif toolkit
• Xt toolkit

Table 1-1 X11 Libraries

Library Description

Available
From the X
Consortium Sun Value Added

libX11 Xlib Yes MT safe
Dynamic loading of locale
Search path includes /usr/openwin,
New keysyms

libXau X Authorization library Yes None

libXaw Athena Widget Set library Yes None

libXext X Extensions library Yes Bug fixes, transparent overlays

libXinput Binary compatibility library for
previous input extension

No Sun library

libXi Xinput Extension library Yes Bug fixes
Supports Solaris X extensions

libXmu X Miscellaneous Utilities library Yes Search path includes/usr/openwin

libXol OLIT library No Sun product—see the preface for a list of
OLIT manuals (Available from USL)

libXt Xt Intrinsics library Yes None

libxview XView library Yes Sun product donated to X Consortium
Bug fixes not included in X11R6
libxview

Introduction to the Solaris X Server 9

1

• Applications written for the X protocol

• Applications written for the DPS interface

• SPARC OpenWindows Version 3 X11 applications compiled under SunOS
4.x

Note – The OpenWindows Version 3 X11 applications must adhere to the
system Binary Compatibility Package. See the Binary Compatibility Guide for
more information.

• x86 Applications from Interactive Unix

Applications written with the following interfaces are not supported:
• TNT, NeWS, and XVPS
• SunView, SunWindows, and Pixrect

Supported X11 Applications

The Solaris X server supports the following client applications available from
the X Consortium. These clients are also included as part of the Solaris
environment.

• xterm terminal emulator
• twm window manager
• xdm display manager
• bitmap bitmap editor
• xfd font display utility
• xauth access control program
• xhost access control utility
• xrdb resource control program
• xset user preference setting program
• xsetroot root window appearance setting utility
• xmodmap keyboard control utility
• xlsfonts server font listing utility
• xfontsel font selection utility
• xlswins window listing utility
• xwininfo window information utility
• xlsclients client applications information utility
• xdpyinfo server information display utility
• xprop window and font properties utility

10 Solaris X Window System Developer’s Guide—August 1997

1

Unsupported Applications

The following are some applications and libraries, all of which are available
from the X Consortium, that run on the server but are not distributed or
supported by Sun:

• Andrew, InterViews
• The uwm and wm window managers
• The CLX Common Lisp interface
• contrib X Consortium clients

OpenWindows Directory Structure
The OpenWindows directory structure, which includes the Solaris X server
executable and X11 core distribution libraries, is shown in Figure 1-3 on
page 11. Note that /openwin/etc is a symbolic link to
/openwin/share/etc , /openwin/include is a link to
/openwin/share/include , and /openwin/man is a link to
/openwin/share/man . The /share directory contains architecture-
independent files.

For more information on the X11 libraries in /openwin/lib , see page 8.

Introduction to the Solaris X Server 11

1

Figure 1-3 OpenWindows Directory Structure

Table 1-2 briefly describes the contents of the top level directories in the
OpenWindows directory structure.

Table 1-2 OpenWindows Directories

Directory Subdirectory Content

/etc /keytables US and international keytables, and keytable.map

/tt ToolTalk® data files

/workspace /patterns (.xbm files and attributes)

/include /X11 X11 header files, /DPS, /Xaw , /Xmu, /bitmaps , /extensions

/Xau Symbolic link to /include/X11

/Xol OLIT header files

/config generic.h header file

/desktop Classing engine header files

/usr

/openwin

/bin /demo /etc /man /server /lib/include /share

/man/include/etc

man pages
Xsun

xterm
xclock
xdm
xmh
xmag
.
.
etc.

/X11

OpenWindows
demonstration
programs

/keytables
/tt
/workspace

/X11
/Xau
/Xol
/config
/desktop
/dga
/help
/images
/olgx
/pixrect
/portable
/xview

OpenWindows
executables

/images /src

/Xol
/app-
defaults
/cetables
/config
/help
/libp
/locale
/xdm

/locale /xnews

OpenWindows
startup files,
X core
libraries,
rgb files

12 Solaris X Window System Developer’s Guide—August 1997

1

/dga dga.h header file

/help libhelp header files

/images Various bitmap files

/olgx olgx header file

/pixrect Pixrect header files

/portable c_varieties.h and portable.h header files

/xview XView header files

/lib /X11 Server support files, /fonts , and DPS .upr files

/Xol OLIT data files

/app-defaults X applications default files

/cetables Classing Engine tables

/config imake files

/help Symbolic link to /locale/C/help

/libp Profiles libraries

/locale Locale libraries (/C , /iso_8859_1)

/xdm Xdm configuration files

/man /man1, /man1m OpenWindows command man pages

/man3 Library man pages, for XView, OLIT, Xt, Xlib, etc.

/man4 AnswerBook man pages

/man5 File format man pages

/man6 Demos man pages

/man7 Non-command man pages

/server Server private files for internal use only

/share /etc Location of files in /etc

/images /PostScript , /fish , /raster

/include Location of files in /include

/locale Location of files in /lib/locale

Table 1-2 OpenWindows Directories (Continued)

Directory Subdirectory Content

Introduction to the Solaris X Server 13

1

Notes on X11 Programming
Common X11 programming issues are discussed in the following sections.

Compose Key Support

The OpenWindows version of Xlib supports Compose Key processing through
calls to XLookupString .

For x86 systems – On x86 keyboards, use the Control-Shift-F1 key sequence for
the Compose Key functionality.

NumLock Key Support

The OpenWindows version of Xlib supports NumLock Key processing through
calls to XLookupString . This change does not affect the NumLock processing
that exists in XView, OLIT, Motif, or X applications.

For x86 systems – On x86 keyboards, the NumLock Key resides in the top line
of the keypad section of the keyboard..

/man Location of files in /man

/src /dig_samples , /extensions , /fonts , /olit , /tooltalk ,
/xview

/xnews /client

Table 1-2 OpenWindows Directories (Continued)

Directory Subdirectory Content

14 Solaris X Window System Developer’s Guide—August 1997

1

Color Name Database

The color name database provides a mapping between ASCII color names and
RGB color values. This mapping increases the portability of color programs
and eases programming. Note that this mapping is subjective and has no
objective scientific basis.

The source of the database is /usr/openwin/lib/X11/rgb.txt . This file is
identical to the one provided in X11R6 from the X Consortium. rgb.txt is
compiled into the dbm(3) database files, rgb.dir and rgb.pag . When the
server starts up, it builds an internal representation of rgb.dir and rgb.pag
used to map a color name to a color value.

X11 clients use XLookupColor or XAllocNamedColor to map a color name to
a color value. The color name string passed to these routines is converted to
lowercase before it is looked up in the database.

Color Recommendations

This section contains recommendations for using the Solaris X server color
support facilities. Use these hints to maximize portability and color sharing:

• Do not rely on the locations of black and white in the default PseudoColor
colormap. Always use XAllocColor to allocate a pixel for rendering.

Note – Do not rely on black and white being in certain pixel locations. Future
versions of the Solaris X server and the servers of other vendors may have
these colors located in different positions than the current server. For
maximum portability and compatibility, always write X11 clients so that they
use the XAllocColor function to allocate desired colors for rendering.

• Do not use a visual before you have checked on all supported visual types,
using XGetVisualInfo or XMatchVisualInfo . Note that
XGetVisualInfo is the recommended function to use because it has the
ability to distinguish between visuals of the same class and depth.

• To reduce colormap flashing, it is usually a good policy to try to first
allocate colors from the default colormap. Only when this allocation fails
should you create a private colormap.

• For more hints on writing portable X11 color clients, see “Hints for
Windows Programming With Visuals” on page 37.

Introduction to the Solaris X Server 15

1

Further Reading
There are numerous books on all aspects of X and the X Window System. For
more information on the X Window System, see page xvii of the preface for a
list of recommended books available through SunExpress and your local book
store. For more information on the Solaris X server and the X Consortium
sample server, see the following manual pages:

• Xsun(1) – Solaris X server

• Xserver(1) – the X Consortium sample server

• openwin(1) – OpenWindows startup command

16 Solaris X Window System Developer’s Guide—August 1997

1

17

DPS Features and Enhancements 2

This chapter provides information on the Display PostScript (DPS) extension to
the Solaris X server. The following topics are briefly discussed:

• Overview information on the DPS system

• Solaris font enhancements to DPS

• DPS security issues

• DPS compositing operators

About DPS
The Display PostScript system displays graphical information on the computer
screen with the same PostScript language imaging model that is a standard for
printers and typesetters.1 The PostScript language makes it possible for an X
application to draw lines and curves with perfect precision, rotate and scale
images, and manipulate type as a graphic object. In addition, X applications
that use the Display PostScript system have access to the entire Adobe Type
Library.

1. This section is based on Chapter 4 of Programming the Display PostScript System with X by Adobe Systems
Incorporated (Addison-Wesley Publishing Company, Inc., 1993) and is used with the permission of the
copyright holder.

18 Solaris X Window System Developer’s Guide—August 1997

2

Device and resolution independence are important benefits of PostScript
printers and typesetters. The Display PostScript system extends these benefits
to interactive displays. An application that takes advantage of the DPS system
will work and appear the same on any display without modification to the
application program.

How DPS Works

The DPS system has several components, including the PostScript interpreter,
the Client Library, and the pswrap translator. The Client Library is the link
between an application and the PostScript interpreter.

Each application that uses the DPS extension creates a context. A context can be
thought of as a virtual PostScript printer that sends its output to a window or
an offscreen pixmap. It has its own set of stacks, input/output facilities, and
memory space. Separate contexts enable multiple applications to share the
PostScript interpreter, which runs a single process in the server.

Although the DPS system supports multiple contexts for a single application,
one context is usually sufficient for all drawing within an application. A single
context can handle many drawing areas. There are exceptions, however, when
it is preferable to use more than one context in a client. For example, a separate
context might be used when importing Encapsulated PostScript (EPS) files.
This simplifies error recovery if an included EPS file contains PostScript errors.

An application draws on the screen by making calls to Client Library
procedures. These procedures generate PostScript language code that is sent to
the PostScript interpreter for execution. In addition to the Client Library, the
DPS system provides the pswrap translator. It takes PostScript language
operators and produces a C-language procedure–called a wrap–that can then
be called from an application program.

The PostScript interpreter handles the scheduling associated with executing
contexts in time slices. The interpreter switches among contexts, giving
multiple applications access to the interpreter. Each context has access to a
private portion of PostScript virtual memory space (VM). An additional
portion of VM, called shared VM, is shared among all contexts and holds
system fonts and other shared resources. Private VM can hold fonts private to
the context.

DPS Features and Enhancements 19

2

Figure 2-1 shows the components of DPS and their relationship to X.

Figure 2-1 DPS Extension to X

An application interacts with the DPS system in the following manner:

1. The application creates a PostScript execution context and establishes a
communication channel to the server.

2. The application sends Client Library procedures and wraps to the context
and receives responses from it.

3. When the application exits, it destroys the context and closes the
communications channel, freeing resources used during the session.

The structure of a context is the same across all DPS platforms. Creating and
managing a context, however, can differ from one platform to another. The
Client Library Reference Manual and Client Library Supplement for X contain
information on contexts and the routines that manipulate them, and Display
PostScript Toolkit for X contains utilities for Display PostScript developers.

DPS Extension

PostScript Interpreter

Stacks
I/O
private VM

Stacks
I/O
private VM

Shared VM
(fonts, etc.)

Context Context

X protocol with
DPS extension

Client (Application)

Widget set
OSF/Motif
X Toolkit

Xlib

Display
PostScript
Client
Library

Wraps

20 Solaris X Window System Developer’s Guide—August 1997

2

DPS Font Enhancements in the Solaris Server
The Solaris X server includes the following font enhancements to the DPS
system:

• Support for F3 Latin and Asian fonts

• Support for TrueType fonts

See Chapter 4, “Font Support,” for more information.

DPS Libraries
Table 2-1 lists the DPS libraries. The .so and .a files that comprise these
libraries are located in the /usr/openwin/lib and
/usr/openwin/lib/libp directories. For information on these libraries, see
Programming the Display PostScript System with X and PostScript Language
Reference Manual.

Adobe NX Agent Support

The context creation routines (XDPSCreateSimpleContext and
XDPSCreateContext) in libdps attempt to contact the DPS NX agent if they
are unable to connect to the DPS/X extension. The NX client must be started
manually, usually during the boot or X startup process.

The Adobe DPS NX agent, which is available from Adobe Systems Inc., is a
separate process from the X server and the DPS/X client. When connected to
the DPS NX agent, the client’s DPS calls are intercepted and converted into
standard X Protocol requests. Thus, a DPS client can run on an X server that
does not natively support the DPS extension.

Table 2-1 DPS Libraries

Library Description

libdps DPS Client library

libdpstk DPS Toolkit library

libpsres PostScript Language Resource Location library

libdpstkXm DPS Motif Toolkit library

DPS Features and Enhancements 21

2

DPS Security Issues
The Solaris environment provides, and in some cases exceeds, the X
Consortium’s X11R5 sample server security levels. In particular, DPS
programmers should be aware of two DPS-specific security features: PostScript
file operators’ inability to access system files, and secure context creation.
These features are described below.

System File Access

The PostScript language provides file operations that allow users to access
system devices such as disk files. This presents a serious security problem. In
the Solaris environment, you cannot—by default—use PostScript file operators
to open or otherwise access a system file.

For applications, the client rather than the server should perform necessary file
operations. Thus, the client does not need all the same access privileges that
the server needs. If you want PostScript file operators to access system files,
start the server with the -dpsfileops option (see the Xsun(1) man page). If
you attempt to access system files without specifying -dpsfileops , you will
get a PostScript undefinedfilename error. This issue is particularly
important in the CDE or xdm environment, as the server process is owned by a
super-user.

Secure Context Creation

DPS contexts normally have access to global data. This allows a context to look
into the activities of another context. For example, one context could intercept
a document that another context is imaging. This section describes how to
create secure contexts in the Solaris environment.

Section 7.1.1, “Creating Contexts,” in the PostScript Language Reference Manual,
Second Edition describes three ways that contexts can share VM:

1. “Local and global VM are completely private to the context.” This capability
is new with Level 2, and a context created this way is called a secure context.

2. “Local VM is private to the context, but global VM is shared with some
other context.” This is the normal situation for contexts created with
XDPSCreateContext and XDPSCreateSimpleContext .

22 Solaris X Window System Developer’s Guide—August 1997

2

3. “Local and global VM are shared with some other context.” This is the
situation for contexts created with XDPSCreateContext and
XDPSCreateSimpleContext when the space parameter is not NULL.

To create a secure context, use XDPSCreateSecureContext as shown below:

All parameters have the identical meaning to those in XDPSCreateContext ,
but the context being created has its own private global VM. If the space
parameter is not NULL, it must identify a space created with a secure context. A
space created with a secure context cannot be used for the creation of a
nonsecure context. Specifying a nonsecure space with a secure context or a
secure space with a nonsecure context generates an access error.

XDPSCreateSecureContext DPSContext XDPSCreateSecureContext(dpy,
drawable, gc, x, y, eventmask, grayramp, ccube, actual,
textProc, errorProc, space)

Display *dpy;
Drawable drawable;
GC gc;
int x;
int y;
unsigned int eventmask;
XStandardColormap *grayramp;
XStandardColormap *ccube;
int actual;
DPSTextProc textProc;
DPSErrorProc errorProc;
DPSSpace space;

DPS Features and Enhancements 23

2

When DPS Encounters Internal Errors
DPS conducts consistency checks during execution. In the rare event that it
encounters internal errors, DPS applications will not be able to connect to the
server. If this happens, you must restart the Solaris environment. If a client
tries to connect to a server with the DPS extension in this state, the following
error message sometimes appears:

How To Access Information From Adobe
The following information is readily available from Adobe’s public access file
server: source code examples, Adobe Metric Font (AMF) files, documentation,
PostScript printer description (PPP) files, and press releases. You can obtain
this information if you have access to the Internet or UUCP electronic mail.

If you have access to the Internet, use the file transfer protocol (ftp) program
to download files from the ftp.mv.us.adobe.com machine. Read the
README.first file for information on the archived files. For details on
obtaining information from Adobe by electronic mail, see the “Public Access
File Server” section in the preface of Programming the Display PostScript System
with X.

XError: 130
Request Major code 129 (Adobe-DPS_Extension)

24 Solaris X Window System Developer’s Guide—August 1997

2

DPS Compositing Operators

Warning – The operators defined in this section are extensions to the Display
PostScript language. They are not part of the standard DPS and thus are not
available in all DPS implementations. An application that depends on these
operators is not portable and cannot display on servers that do not support
these operators.

Compositing is an OpenStep™ extension to the Display PostScript system.
Compositing enables separately rendered images to be combined into a final
image. It encompasses a wide range of imaging capabilities:

• It provides a means for simply copying an image as is from one place to
another with PostScript.

• It allows two images to be added together so that both appear in the
composite superimposed on each other.

• It defines a number of operations that take advantage of transparency in one
or both images that are combined. When the images are composited, the
transparency of one image can let parts of the other image show through.

Compositing can be used for copying within the same window, as during
scrolling, or for taking an image rendered in one drawable and transferring it
to another. In OpenStep applications, images are often stored in pixmaps and
composited into windows as they are needed.

When images are partially transparent, they can be composited so that the
transparent sections of one image determine what the viewer sees of the other.
Each compositing operation uses transparency in a different way. In a typical
operation, one image provides a background or foreground for the other. When
parts of an image are transparent, it can be composited over an opaque
background, which will show though transparent “holes” in the image on top.
In other operations, transparent sections of one image can be used to “erase”
matching sections of the images it is composited with. In most operations, the
composite is calculated from the transparency of both images.

Compositing with transparency can achieve a variety of interesting visual
effects. A partially transparent, uniformly gray area can be used like a pale
wash to darken the image it is composited with. Patches of partially

DPS Features and Enhancements 25

2

transparent gray can add shadows to another image. Repeated compositing
while slowly altering the transparency of two images can dissolve one into
another. Or an animated figure can be composited over a fixed background.

Before images can be composited, they must be rendered. To take advantage of
transparency when compositing, at least one of the images needs to be
rendered with transparent paint.

The following PostScript program fragment shows the use of the compositing
operators. The program creates two simple images and composites them. The
first image, the destination, is a 0.8 gray triangle on a white backround; the
second, the source, is a 0.6 gray triangle on a transparent background.

The eighth operand to the composite operator, Sover , defines how the source
and destination pixels are combined. In the example, the opaque parts of the
source image are placed over the destination image. The resulting image looks
like Figure 2-2 on page 26.

% Create the Destination triangle
0.8 setgray
100 100 moveto
100 0 rlineto
0 -100 rlineto
fill

% Make the background of the source transparent
0 setalpha
0 0 100 100 rectfill

% Draw the Source triangle
1 setalpha
0.6 setgray
0 0 moveto
0 100 rlineto
100 0 rlineto
fill

% Compute the result
0 0 100 100 null 100 0 Sover composite

26 Solaris X Window System Developer’s Guide—August 1997

2

Figure 2-2 Compositing Operator Example Program

Operator Descriptions

This section describes the new DPS operators. The information is provided in
the format used in the PostScript manuals PostScript Language Reference Manual
and Programming the Display PostScript System with X.

setalpha coverage setalpha

Sets the coverage parameter in the current graphics state to coverage. coverage
should be a number between 0 and 1, with 0 corresponding to transparent, 1
corresponding to opaque, and intermediate values corresponding to partial
coverage. The default value is 1. This establishes how much background
shows through for purposes of compositing. If the coverage value is less
than 0, the coverage parameter is set to 0. If the value is greater than 1, the
coverage parameter is set to 1.

The coverage value affects the color painted by PostScript marking
operations. The current color is pre-multiplied by the alpha value before
rendering. This multiplication occurs after the current color has been
transformed to RGB space.

Errors stackunderflow , typecheck

See also composite , currentalpha

DPS Features and Enhancements 27

2

currentalpha - currentalpha coverage

Returns the coverage parameter of the current graphics state.

Errors None

See also composite, setalpha

composite srcx srcy width height srcgstate destx desty op composite

Performs the compositing operation specified by op between pairs of pixels
in two images, a source and a destination. The source pixels are in the
drawable referred to by the srcgstate graphics state, and the destination
pixels are in the drawable specified by the current graphics state. If srcgstate
is NULL, the current graphics state is assumed.

The rectangle specified by srcx, srcy, width, and height defines the source
image. The outline of the rectangle may cross pixel boundaries due to
fractional coordinates, scaling, or rotated axes. The pixels included in the
source are all those that the outline of the rectangle encloses or enters.

The destination image has the same size, shape, and orientation as the
source; destx and desty give destination’s location image compared to the
source. Even if the two graphic states have different orientations, the images
will not; composite will not rotate images.

Both images are clipped to the frame rectangles of the respective drawables.
The destination image is further clipped to the clipping path of the current
graphics state. The result of a composite operation replaces the destination
image.

op specifies the compositing operation. The color of each destination image
pixel (alpha value) after the operation, dst’ (dstA’), is given by:

dst’ = src * Fs(srcA, dstA, op) + dst * Fd(srcA, dstA, op)

dstA’ = srcA * Fs(srcA, dstA, op) + dstA * Fs(srcA, dstA, op)

where src and srcA are the source color and alpha values, dst and dstA
are the destination color and alpha values, and Fs and Fd are the functions
given in Table 2-2 on page 28.

The choices for the composite op are given in Table 2-2. See Figure 2-3 on
page 29 for the result of each operation.

28 Solaris X Window System Developer’s Guide—August 1997

2

Errors rangecheck, stackunderflow, typecheck

See also compositerect, setalpha, setgray, sethsbcolor, setrgbcolor

Figure 2-3 on page 29 shows the result of the compositing operations.

1. PlusD does not follow the general equation. The equation is dst’=(1-dst)+(1-src).
If the result is less than 0 (black), then the result is 0.

2. For PlusL, the addition asturates. That is, if (src+dst) > white), the result is white.

Table 2-2 Factors of the Compositing Equation

Op Fs Fd

Clear 0 0

Copy 1 0

Sover 1 1 - srcA

Sin dstA 0

Sout 1 - dstA 0

Satop dstA 1 - srcA

Dover 1 - dstA 1

Din 0 srcA

Dout 0 1 - srcA

Datop 1 - dstA srcA

Xor 1 - dstA 1 - srcA

PlusD 1 N/A N/A

PlusL 2 1 1

DPS Features and Enhancements 29

2

Figure 2-3 Results of Compositing Operations

Dover

Clear

Sover

Sin

Sout

Dout

Satop

Datop

Xor

Source image wherever source image is opaque, and destination image elsewhere.

Destination image wherever destination image is opaque, and source image elsewhere.

Source image wherever both images are opaque, and transparent elsewhere.

Source image wherever source image is opaque but destination image is transparent,
and transparent elsewhere.

Source image wherever both images are opaque, destination image wherever destination
image is opaque but source image is transparent, and transparent elsewhere.

Destination image wherever both images are opaque, source image wherever source
image is opaque but destination image is transparent, and transparent elsewhere.

Source image wherever source image is opaque but destination image is transparent,
destination image wherever destination image is opaque but source image is transparent,
and transparent elsewhere.

Transparent.

Destination image wherever destination image is opaque but source image is transparent,
and transparent elsewhere.

Operation Destination after

Sum of source and destination images, with color values approaching 1 as a limit.
PlusL

PlusD Sum of source and destination images, with color values approaching 0 as a limit.

opaque

Source
Destination

before

opaque

transparent

Din Destination image wherever both images are opaque, and transparent elsewhere.

Copy Source image.

transparent

30 Solaris X Window System Developer’s Guide—August 1997

2

compositerect destx desty width height op compositerect -

In general, this operator is the same as the composite operator except that
there is no real source image. The destination is in the current graphics state;
destx, desty, width, and height describe the destination image in that graphics
state’s current coordinate system. The effect on the destination is as if there
were a source image filled with the color and coverage specified by the
graphics state’s current color and coverage parameters. op has the same
meaning as the op operand of the composite operator; however, one
additional operation, Highlight, is allowed.

Highlight turns every white pixel in the destination rectangle to light gray
and every light gray pixel to white, regardless of the pixel’s coverage value.
Light gray is defined as 2/3. Repeating the same operation reverses the
effect. (On monochrome displays, Highlight inverts each pixel so that white
becomes black, black becomes white.)

Note – The Highlight operation doesn’t change the value of a pixel’s coverage
component. To ensure that the pixel’s color and coverage combination remains
valid, Highlight operations should be temporary and should be reversed
before any further compositing.

For compositerect, the pixels included in the destination are those that the
outline of the specified rectangle encloses or enters. The destination image is
clipped to the frame rectangle and clipping path of the window in the
current graphics state.

Errors rangecheck, stackunderflow, typecheck

See also composite, setalpha, setgray, sethsbcolor, setrbgcolor

dissolve srcx srcy width height srcgstate destx desty delta dissolve -

The effect of this operation is a blending of a source and a destination
image. The first seven arguments choose source and destination pixels as
they do for composite. The exact fraction of the blend is specified by delta,
which is a floating-point number between 0.0 and 1.0. The resulting image
is:

delta * source + (1-delta) * destination

DPS Features and Enhancements 31

2

If srcgstate is null, the current graphics state is assumed.

Errors stackunderflow, typecheck

See also composite

The values of the composite op are available for applications in the PostScript
systemdict. The definitions are as follows:

/Clear 0 def

/Copy 1 def

/Sover 2 def

/Sin 3 def

/Sout 4 def

/Satop 5 def

/Dover 6 def

/Din 7 def

/Dout 8 def

/Datop 9 def

/Xor 10 def

/PlusD 11 def

/Highlight 12 def

/PlusL 13 def

Implementation Notes and Limitations

Partially Transparent Alpha

Alpha values that are not completely opaque (1) or completely transparent (0)
should be used with caution. Compositing operations with partial
transparency yield the highest image quality only when a large number of
colors are available in the DPS color cube and gray ramp. That is, image

32 Solaris X Window System Developer’s Guide—August 1997

2

quality is best with a 24-bit TrueColor or 8-bit StaticGray visual, and image
quality will be poor with an 8-bit PseudoColor visual. In addition, the
performance of compositing operations is greatly reduced for partially
transparent pixels due to the extra computation required in these cases.

Indexed Color Visuals

For best results with the Highlight op, the number of colors in the DPS
context’s gray ramp should be such that

fract(((float) numgrays - 1)* 2. / 3.) == 0

In other words, (numgrays = 4, 7, 6, 8, 16,). This ensures that the color 2/3
gray is not halftoned.

Given the limited number of colors usually available in the DPS color cube and
gray ramp, images with alpha values that are not completely opaque (1) or
completely transparent (0) should be avoided to obtain best image quality.

Compositing operations are only defined for pixels values that are in the gray
ramp or color cube specified by the gstate. Compositing pixels with values
outside the color cube and gray ramp may not yield expected results.

Monochrome Displays

The results of compositing operations for 1-bit drawables that have alpha
values that are not equal to 0 or 1 is undefined.

The op Highlight inverts the color of the pixel on a 1-bit drawable.

Interaction with X Drawing Operations

Drawables that have been rendered to with non-opaque alpha have additional
pixel storage associated with them, called the alpha channel. X Window system
operations do not affect the alpha channel, with the following exceptions:

• When windows with alpha channel are exposed, if the window has an X
background defined (background != None), when the background is
painted, the alpha component of the exposed pixels is painted with
alpha = 1.

• When a window is resized, the alpha channel storage is resized.

DPS Features and Enhancements 33

2

Destroying the Alpha Channel

The erasepage operator paints the current drawable of the graphics state with
opaque white. Thus, the alpha values for all pixels in the drawable are equal to
1, and the alpha channel storage is destroyed.

Drawables with Unequal Depths

Compositing drawables with unequal depths is undefined.

34 Solaris X Window System Developer’s Guide—August 1997

2

35

Visuals on the Solaris X Server 3

This chapter discusses X window visuals on the Solaris X server. The chapter
includes information on the following:

• Default visual

• Visuals on multi-depth devices

• Gamma-corrected visuals

• Hints on window programming with visuals

About Visuals
A display device can support one or more display formats. In the X window
system, the display formats supported by the window server are
communicated to client applications in the form of visuals. A visual is a data
structure describing the display format a display device supports.

When an X11 client creates a window, it specifies the window’s visual. The
visual describes the display characteristics for each pixel in the window. In
other words, a window’s visual instructs the display device’s video hardware
how to interpret the value of the window’s pixels.

For each display device configured into the system, there is an X11 screen. For
each screen, a list of supported visuals is exported by the server to client
applications. This list of visuals tells the client application which display
formats are available for creating windows.

36 Solaris X Window System Developer’s Guide—August 1997

3

The visuals exported by the server for a display screen are not fixed; they
depend on the screen’s device handler. Since the exporting of visuals is under
the control of the device handler, client applications must be prepared to deal
with a wide variety of visuals, including visuals with depths other than those
that have previously been common, such as 1, 8, and 24 bits. Visuals with
depths of 4, 16, and odd depths may not be exported, and clients must be
prepared to handle them.

Client applications can query the list of supported visuals for a screen by
calling the Xlib routines XGetVisualInfo(3) or XMatchVisualInfo(3) ,
and can query the list of supported visuals using the utility xdpyinfo (1). For
general information on color and visuals in X11, see the X11 documentation
listed in the preface to this manual.

Default Visual

For each X11 screen, one of the exported visuals for the screen is designated the
default visual. The default visual is the visual assigned to the screen’s root
window, and this visual is the visual that most applications use to create their
windows. When a client application starts, its windows are assigned the
default visual unless the application specifies a different visual.

The built-in default visual is the visual hard-coded in the Solaris X server. For
each screen, there is a default visual that depends on the characteristics of the
display device for that screen. This is the default visual unless you specify a
different default visual when you run openwin(1) .

Users can change the default visual that window server advertises in the
connection block. One reason for this is to force client programs that cannot
run in the default visual to run in a specific visual. For example, on a 24-bit
device that has the TrueColor visual as its default visual, an application that
cannot run with 24-bit color may run on a PseudoColor visual.

For developers on multi-depth devices, changing the default visual is a useful
way to test that your application works in different configurations. For
information on how to change the default visual, see the xsun(1) man page.
The default visual and the list of supported visuals exported by the server can
be examined from X11 using XGetVisualInfo(3).

Visuals on the Solaris X Server 37

3

Visuals on Multi-Depth Devices

The Solaris X server supports devices that can display windows of more than
one pixel depth simultaneously. These devices are called multi-depth devices.
Since most of these devices are implemented with separate groups of bit planes
for each depth, the term multiple plane group (MPG) device is often used for
these devices.

For each depth, there might be one or more visuals exported. For most MPG
devices, windows can be created using any of the exported visuals. For
applications that prefer a TrueColor visual, the developer should determine
whether the TrueColor visual is available, since it may be available even if
PseudoColor is the default visual.

Hints for Windows Programming With Visuals

This section discusses various issues that may arise when programming X11
applications for devices that support more than one visual.

Default Visual Assumptions

A common mistake in programming an X11 client is to assume that the default
visual has an indexed class (for example, PseudoColor or StaticColor). It is
possible for the default visual to be 24-bit TrueColor on some devices. Clients
expecting to run on these devices must be prepared to handle this type of
default visual.

Other common programming mistakes with visuals are:

• Assuming the default depth is 8
• Assuming the colormap is writable
• Using a default visual that is not appropriate rather than searching for an

appropriate visual using XGetVisualInfo

38 Solaris X Window System Developer’s Guide—August 1997

3

If the device does not support a visual requested by a client, the following
error message is returned. In this error message, # represents the depth number
requested, and n represents the requested display device. If this message is
returned for a supported visual/device combination as indicated in Table A-1
on page 100, then an installation problem exists.

In general, client applications may need to be modified to make them more
portable in the presence of different default visual types.

Setting the Border Pixel

When creating a window with a visual that is not the default visual,
applications must set the border_pixel value in the window attribute
structure, or a BadMatch error occurs. This is a common programming error
that may be difficult to debug. For information on setting the border pixel, see
the XCreateWindow man page.

Note – If you are experiencing improper graphics and double-buffering
performance (such as lack of acceleration), OpenWindows might not have been
installed as root .

Gamma-Corrected Visuals
The linearity attribute of a visual describes the intensity response of colors it
displays. On a cathode ray tube (CRT) monitor, the colors displayed are
actually darker than the colors requested. This darkening is caused by the
physics of monitor construction. Some devices support visuals that compensate
for this darkening effect. This is called gamma correction.

Gamma correction is done by altering colors coming out of the frame buffer
with the inverse of the monitor’s response. Because the overall intensity of a
gamma-corrected visual is a straight line, a gamma corrected visual is called a
linear visual; a visual that is not gamma corrected is called a nonlinear visual.

Error: cannot provide a default depth # for device /dev/fbs/ n

Visuals on the Solaris X Server 39

3

Linearity is not a standard X11 attribute for visuals. However, some
applications require a linear visual to avoid visible artifacts. For example, a
graphics application using antialiased lines may produce objectionable
“roping” artifacts if it does not use a linear visual. This kind of application is
called a linear application. An application requiring a nonlinear visual for best
display of colors is called a nonlinear application. Most X11 applications are
nonlinear applications.

On most devices, the linearity of default visuals is nonlinear. Therefore, linear
applications should not depend on the default and should always explicitly
search for a linear visual. Similarly, it is a good idea for nonlinear applications
to explicitly search for a nonlinear visual. Since this is typically the default on
most devices, it is not as critical, but it is still a good policy to do so.

To determine whether a visual is linear, applications can use the interface
XSolarisGetVisualGamma (3). For more information on gamma correction,
refer to Fundamentals of Computer Graphics by Foley and Van Dam.

Finding a Linear Visual

Linearity of a visual can be determined in Solaris by querying the visual’s
gamma. This is done by calling XSolarisGetVisualGamma (3). If the gamma
value is equal to (or close to) 1.0, the visual is linear. Otherwise, it is nonlinear.
A good rule-of-thumb for the closeness tolerance is 10%. To use the
XSolarisGetVisualGamma API, the application must be linked with the
Solaris libXmu .

Code Example 3-1 on page 40 is an example of selecting the best visual for a
typical XGL™ 3D linear application. In this example, the application uses a
nonlinear visual if a linear one cannot be found. This is only one possible
visual selection policy.

Note – If the gamma of any visual on the device is changed, either through
reconfiguration or calibration, the window system should be restarted.
Otherwise, applications using XSolarisGetVisualGamma that are already
running will not detect the change and may use the wrong visual.

40 Solaris X Window System Developer’s Guide—August 1997

3

Code Example 3-1 3D Linear Visual Selection

/*
** Returns the visual of the given depth, class and linearity,
** or NULL if not found.
*/
Visual *
match_visual (Display *dpy, int screen, int depth, int class,

 Bool wantLinear)
{
 XVisualInfo template;
 XVisualInfo *vinfo, *vi;
 int nitems, isLinear, i;
 double gamma;

 template.screen = screen;
 template.depth = depth;
 template.class = class;
 if (!(vinfo = XGetVisualInfo(dpy, VisualScreenMask |

VisualDepthMask | VisualClassMask,
&template, &nitems)) || nitems <= 0) {

return (NULL);
 }

 for (i = 0, vi = vinfo; i < nitems; i++, vi++) {
if (XSolarisGetVisualGamma(dpy, screen, vi->visual, &gamma)

== Success) {
 /*
 ** A good rule of thumb for linearity of a visual is
 ** whether the gamma is within 10% of 1.0.
 */
 isLinear = (gamma >= 0.9 && gamma <= 1.1);
 if ((wantLinear && isLinear) || (!wantLinear && !isLinear)) {

Visual *visual = vi->visual;
XFree(vinfo);
return (visual);

 }
}

 }

XFree(vinfo);
return (NULL);
}

Visuals on the Solaris X Server 41

3

Here is the main routine of the example:

Visual Selection Alternatives

The above code example illustrates only one possible visual selection policy.
Other policies can be implemented. It is recommended that applications be
written to handle a wide variety of visual configurations. Some devices, for
example the GX, do not have any linear visuals. Other devices have only a
single linear 24-bit TrueColor visual. Other types of devices may support both
linear and nonlinear visuals at the same time. In general, the most prudent
way to write a portable application is to deal gracefully with all these
configurations. This may involve printing a warning message if the visual of
the desired linearity is not found. Or, if a linear application cannot find a linear
visual, a useful trick is to manually darken in the application the colors given

main ()
{

Visual vis;
 ...

 if ((vis = match_visual(display, screen, 24, TrueColor, True))) {
fprintf(stderr, “Found a linear 24-bit TrueColor visual\n”);
visualClass = TrueColor;
depth = 24;

}
else if ((vis = match_visual(display, screen, 24, TrueColor,False))){

fprintf(stderr, “Found a nonlinear 24-bit TrueColor visual\n”);
visualClass = TrueColor;
depth = 24;

}
else if ((vis = match_visual(display, screen, 8, PseudoColor,False))){

fprintf(stderr, “Found a nonlinear 8-bit PseudoColor visual\n”);
visualClass = PseudoColor;
depth = 8;

}
else {

fprintf(stderr, “Cannot match 24 or 8 bit visual\n”);
exit(1);

}

 ...
}

42 Solaris X Window System Developer’s Guide—August 1997

3

to X11. This is tantamount to performing your own gamma correction. The
gamma value returned by XSolarisGetVisualGamma can be used to
determine how much to darken the colors.

Note – XSolarisGetVisualGamma is a Public interface of Solaris and is fully
supported. In the future, a color management system may also provide this
functionality. When this occurs, this will become the preferred way of getting
this information. But until then, XSolarisGetVisualGamma should be used.
When this color management system is introduced, applications using
XSolarisGetVisualGamma will continue to run with no modification and
will actually benefit from the increased accuracy of the color management
system.

43

Font Support 4

This chapter provides information on font support in the Solaris X server. The
chapter includes information on the following topics:

• X font server

• Available font formats

• Outline and bitmap fonts

• Location of fonts

Font Support in the Solaris X Server
The Solaris X Window System provides font support in both the X11 server and
the Display PostScript (DPS) extension. Font formats from numerous vendors
can be used to display text in English or foreign languages, including Asian
languages. Symbol fonts can be used to display mathematical equations. The
Solaris environment provides 55 Latin fonts for west European text and two
symbol fonts. Other fonts can also be added to the system using the Font
Administrator GUI or command line tools distributed with Solaris.

44 Solaris X Window System Developer’s Guide—August 1997

4

X Font Server

The Solaris X server can be a client of the X font server xfs . The X font server
renders fonts for the X server. The Solaris X font server supports the same fonts
as the standard X font server, plus TrueType fonts from Sun. It does not
support Sun’s proprietary F3 font format. Support for Type 1 fonts is provided
via the Type 1 interpreter donated to the X Consortium.

xfs can be started manually or automatically. For more information on this
command, see the xfs(1) man page.

Available Font Formats

Fonts from different vendors come in different formats. Table 4-1 and Table 4-2
list the various font formats, their vendors, and the associated file types
supported by the Solaris environment. Table 4-1 lists outline fonts; Table 4-2
lists bitmap fonts.

Table 4-1 Outline Font Formats

Font Format Vendor File Type

TrueType Various foundries .ttf

Type1 (ASCII) Adobe and various foundries .pfa

Type1 (binary) Adobe and various foundries .pfb

Type 3 Adobe and various foundries .ps

Speedo Bitstream .spd

F3 SunSoft .f3b

Table 4-2 Bitmap Font Formats

Font Format Vendor File Type

Portable compiled format MIT .pcf

Bitmap distribution format Adobe .bdf

Big Endian prebuilt format Adobe (for sparc) .bepf

Little Endian prebuilt format Adobe (for x86 and ppc) .lepf

Font Support 45

4

The fonts provided by the Solaris X server are located in the
/usr/openwin/lib/X11/fonts directory. For more information on the
directory structure, see “Locating Fonts” on page 48.

The Solaris environment is configured so that most X11 fonts are also available
in DPS (see Table 4-3). DPS supports a slightly different set of fonts than those
supported by X11.

Optional Font Package

Fonts needed by end-user applications are installed with the End-User Cluster.
However, some unusual applications may need fonts in the Developer Cluster.
For these applications, the package to add is the SUNWxwoft package. It is not
necessary to install the entire Developer Cluster.

Associated Files

The Solaris environment provides files with these extensions. They are not
intended to be edited.

• .afm Adobe Font Metrics files read by client for kerning information

Table 4-3 Font File Availability

Font Format Available in X11 Available in DPS

TrueType Yes Yes

Type1 outline fonts-ASCII Yes Yes

Type1 outline fonts-binary Yes Yes

Type 3 Yes Yes

Speedo Yes No

F3 Yes Yes

Portable compiled format Yes Yes

Bitmap distribution format Yes No

Big Endian prebuilt format No Yes

Little Endian prebuilt format No Yes

46 Solaris X Window System Developer’s Guide—August 1997

4

• .map F3 files read by X11 and DPS for encoding purposes

• .trans F3 files read by DPS for composite font construction

• .ps PostScript Files for composite font and PostScript resource
construction

• .enc Encoding files used by X11 and DPS

• .upr Display PostScript resource files

• .ttmap Encoding file for TrueType fonts

Outline and Bitmap Fonts
Solaris supports two types of font representation: outline fonts and bitmap fonts.
To display a letter from an outline font, the server scales and rotates only the
outline of the character. This repositioned outline is then rendered into pixel
form (bitmap) for display on the screen. This rendered bitmap is also stored in
the glyph cache for reuse.

Because certain font sizes occur frequently, they are also kept in separate files
in pre-rendered bitmap form. This saves the server from having to scale and
render them. However, the resulting bitmap fonts can be displayed in only one
size and orientation. Some of the fonts have also been hand-tuned to look
better and be more readable. As they are encountered, these bitmaps are also
placed in the glyph cache. The recommended bitmap format is the portable
compiled format (.pcf).

The /usr/openwin/bin directory contains the following tools to convert
fonts between the outline and bitmap font representation, as well as between
various bitmap formats. See the corresponding man pages for more detailed
information.

• makebdf Creates bitmap distribution format files (.bdf) from F3
outline font files (.f3b)

• bdftopcf Converts a font from .bdf format to portable compiled
format (.pcf)

Font Support 47

4

As illustrated in Table 4-4, many bitmap font file formats are architecture-
dependent binary files. They cannot be shared between machines of different
architectures (for example, between SPARC and x86).

The Solaris environment contains compressed .pcf files (files with .pcf.Z
extensions). You can uncompress these if you want. If you add fonts to your
system, you can either compress the files or not. Use uncompressed files if you
want the fonts to display somewhat faster. Leave the files compressed if you
want to conserve disk space. For more information, see the compress(1) man
page.

Replacing Outline Fonts With Bitmap Fonts

The Solaris environment automatically replaces some outline fonts with bitmap
fonts when the size is appropriate. This improves performance, and in some
cases improves the aesthetics and readability of the text. There may be several
sizes at which replacement occurs for a given outline font.

Replacement Conditions

Currently in DPS, the .pcf bitmap format is substituted for F3 outline fonts,
Type1 and TrueType fonts. Substitution occurs when there is no rotation, the
requested pixel size is within one half of a pixel of the .pcf font size, and the
.pcf font is a resource in a .upr (PostScript resource) file. The .pcf format
can be substituted for all scalable versions of the fonts mentioned above.

Table 4-4 Bitmap Font Binaries

Font Format Binary Architecture-Specific

Bitmap distribution format No No

Portable compiled format Yes No

Little Endian prebuilt format Yes Yes (x86 and ppc)

Big Endian prebuilt format Yes Yes (SPARC)

48 Solaris X Window System Developer’s Guide—August 1997

4

Using TrueType and F3 Fonts in DPS
TrueType and F3 fonts behave exactly like Type1 fonts, except /FontType
returns 42 for TrueType and 7 for F3 fonts. For example, the following
PostScript code works the same regardless of the kind of font.

But the following code yields 42 for a TrueType font, 7 for an F3 font, and 1 for
a Type1 font.

The kind of font returned depends on the current DPS internal resource path.

Locating Fonts
By default, the Solaris server looks for fonts in directories under the
/usr/openwin/lib/X11/fonts directory. Table 4-5 shows the complete font
directory structure. The directory names are preceded by
/usr/openwin/lib/X11/fonts .

/Helvetica findfont 50 scalefont setfont
10 10 moveto (ABC) show

currentfont /FontType get ==

Table 4-5 Font Directory Structure

Directory Subdirectory File Suffixes Contents

/TrueType .ttf TrueType fonts

/TrueType /ttmap .ttmap TrueType character set
specifications

/TTbitmaps .pcf Bitmap fonts

/100dpi .pcf Bitmap fonts

/75dpi .pcf Bitmap fonts

/F3 /afm .f3b F3 format outline fonts

/map .map F3 character set specifications

/F3bitmaps .pcf Bitmap fonts

Font Support 49

4

Changing the Default Font Path in X11

In X11, the default font path is:

/usr/openwin/lib/X11/fonts/F3,
/usr/openwin/lib/X11/fonts/F3bitmaps,
/usr/openwin/lib/X11/fonts/Type1,
/usr/openwin/lib/X11/fonts/Speedo,
/usr/openwin/lib/X11/fonts/misc,
/usr/openwin/lib/X11/fonts/75dpi,
/usr/openwin/lib/X11/fonts/100dpi

Note that the directory paths must be absolute.

To change the default font path, use the Font Administrator GUI or command-
line tools included with Solaris. For information about Font Administrator, see
the Font Administrator User’s Guide.

Installing and Managing Fonts
To install, delete, and view fonts for a workstation or NeWSprint printer, or to
edit font paths or font attributes, use the Font Administrator GUI or command-
line tools included with Solaris. For information about Font Administrator, see
the Font Administrator User’s Guide.

/Speedo .spd Bitstream Speedo format outline
fonts

/Type1 .pfa , .pfb Type1 outline fonts

/afm .afm Adobe font metrics

/outline .pfa , .pfb Type1 outline fonts

/prebuilt .bepf , .lepf Bitmaps for SPARC Solaris and x86

/Xt+ .pcf Bitmap fonts

/Type3 .ps PostScript outline fonts

/encodings .enc Encodings

/misc .pcf Bitmap fonts

Table 4-5 Font Directory Structure (Continued)

Directory Subdirectory File Suffixes Contents

50 Solaris X Window System Developer’s Guide—August 1997

4

Using OPEN LOOK Fonts on X Terminals
The /usr/openwin/share/src/fonts directory contains OPEN LOOK
fonts in bdf format. Follow the instructions from your vendor on how to
install the fonts.

51

Server Overlay Windows 5

This chapter includes information on the following topics:

• Server overlays versus Solaris transparent overlays

• Suggestions for implementing overlays

• Description of server overlays

Server Overlays Versus Transparent Overlays
There are two different APIs that may be used to render transparent pixel
values to an overlay window. The Transparent Overlay Extension is a Sun
proprietary method to provide overlay capability in the X Window System.
Transparent overlays can provide overlay functionality without hardware
overlay support. Another well-known method known as server overlays can be
used if your hardware supports it.

The Transparent Overlay Extension is a full X extension which requires
extension calls to provide the transparency effect. The model is robust enough
to emulate transparency on most systems, even if the hardware does not
support real overlays. However, the operation of transparent windows is
considerably slower when not supported in hardware.

Server Overlays is not an X extension, but instead the API provides a means
for the X client to determine which visuals are overlays, and what pixel values
to use for transparency. This API requires hardware support.

52 Solaris X Window System Developer’s Guide—August 1997

5

The Transparent Overlay Extension and server overlays may both be
supported on the same screen, but they should never be used within the same
window. Results are undefined. Trying to create a transparent overlay
window in a visual specifically designed for server overlays may result in a
BadMatch. Transparent overlays can avoid this by following the proper
procedure to locating a partner overlay visual, as described in Chapter 6,
“Transparent Overlay Windows.”

Tips for Programming Overlays

Parent-Child Model

It is strongly suggested that all transparency and overlays designs follow the
simple underlay-parent overlay-child model. The desired underlay window is
created first, and then the overlay is created as a child of the underlay. The
overlay window is the only child of the underlay. This eliminates a number of
odd cases for the X server, and also helps make sure there are no incidental
interfering windows between the underlay and the overlay.

If using Xlib and/or programming your own XCreateWindow for these calls,
it is important to understand that the client must provide extra information
when creating a window that does not have the same visual as its parent. If the
visual is not the default visual, you must provide a colormap or, if the
colormaps are equivalent, assign the parent visual’s colormap to the child. If
the depths are different, you must provide a BorderPixel or BorderPixmap.
Failure to do so may cause a BadMatch to return as the result of the create
window.

For information about colormap equivalence, see the X Server Device Developer’s
Guide.

Stacking

When you raise a window, it does not matter if the window is an overlay
window or not, it will raise to the top of the stack. If you lower a window, it
does not matter if it is an overlay window, it will lower to the bottom of the
stack.

Server Overlay Windows 53

5

This brings up the confusing notion of an overlay window being below an
underlay window. This actually happens all the time. This is because the X
server is enforcing the simple stacking policy, and it will do whatever is
necessary to make that overlay window appear below the other windows, even
if it has to software clip it.

Problems are best avoided by using the underlay-parent overlay-child model.
That way, an underlay-overlay pair is treated as an entire application from the
parent window, and it raises and lowers together.

Server Overlays
The Server Overlays API provides a simple way for applications to find
overlay visuals and corresponding transparent pixel values. The overlay visual
is used to create an overlay window, and the transparent pixel is a special pixel
value the client may use to cause the underlays to show through. This pixel
value is used in the standard way for foreground or background of any
drawing operation, or the background of the overlay window.

The Server Overlays API specifies that the SERVER_OVERLAY_VISUALS
property on the root window shall contain the following information. The size
of the information returned by the server dictates how many instances of this
structure are returned: one instance for every visual listed.

typedef struct {
unsigned int visualid;
unsigned int trans_type;
unsigned int value;
unsigned int layer;

} ServerOverlaysInfoRec;

visualid The visual ID referenced by the X server. Usually
returned to the client via XGetVisualInfo .

trans_type The transparency type: 0 None, 1 Transparent Pixel, 2
Transparent Mask

value The transparent pixel value or mask value

layer The relative hardware layer of the visual with respect
to transparent effects.

54 Solaris X Window System Developer’s Guide—August 1997

5

The trans_type value exists because there are provisions for other transparency
types that are uncommon in the spec. The trans_type may be zero if a
transparent pixel is not available, yet the X server wishes to advertise the
visual as existing at a different set of plane groups than the usual windows, for
the purpose of preventing exposes.

The layer is usually zero for normal windows, but the layer is really a relative
number, with greater number representing plane groups above lower numbers.
Negative numbers are possible.

Visuals not listed in the SERVER_OVERLAY_VISUALS property may be
assumed to have a layer of zero and a transparency ability of none. These
default values are only applicable to server overlay operations.

The transparent pixel shows through to the first window in the next layer.
Layers do not affect stacking order in any way, but only apply to the
transparency effect. It is strongly recommended to use overlays as a direct and
only child of the designated underlay. This provides the best performance and
the least confusion.

Server overlays support is device-dependent and may be a full hardware port
or partial software emulation or a combination of software and hardware.

Server overlays are specified in “Programming X Overlay Windows” by Mark
J. Kilguard, in the July/August 1993 issue of The X Journal.

55

TransparentOverlay Windows 6

This chapter presents information on the Transparent Overlay Extension
application programming interface (API) that provides transparent overlay
window capabilities in the Solaris OpenWindows environment. The chapter
includes information on the following topics:

• How overlay windows differ from standard X windows

• How to create and draw to overlay windows

• How to ensure that applications using transparent overlay windows are
portable to a wide range of devices

Note – It is recommended that you use server overlays if supported by your
hardware. Server overlays are supported on FFB devices. For more information
about server overlays, see Chapter 5, “Server Overlay Windows.”

What are Transparent Overlay Windows?
The transparent overlay extension allows the creation and manipulation of
transparent overlay windows. These windows are X windows that allow the
user to see through to the underlying window on a per-pixel basis. No special
hardware is needed to create and use transparent overlay windows, as this
functionality has been implemented in software. Complex transparent overlay
manipulation on simple hardware may be time consuming; however, the X
server can make use of special overlay hardware if available and the client

56 Solaris X Window System Developer’s Guide—August 1997

6

chooses the correct visuals. Note that, depending on your hardware and needs,
you may have to adapt the client color allocations for transparent overlay
windows.

Overlay windows allow applications to display temporary imagery in a
display window. Users of an application that provides overlays can annotate
an image with text or graphical figures, temporarily highlight certain portions
of the imagery, or animate figures that appear to move against the background
of the imagery. When geometry in the overlay is cleared, any underlying
graphics do not need to be regenerated.

The tranparent overlay extension allows the client to use standard X requests
to draw primitives in opaque paint, which is a name for the standard way of
drawing, or transparent paint, which makes affected pixels invisible. The paint
type is associated with a standard X graphics context. Window backgrounds
may also be set to transparent paint. Transparent overlay windows obey all
regular window rules and operating procedures. For example, a transparent
overlay window can be positioned anywhere in the window stacking order,
regardless of what hardware the windows are associated with. This is
implemented in software with the Solaris X server multiple plane group (MPG)
functionality.

The server’s multiple plane group capability allows windows from different
parts of the hardware to coexist. Each window is associated with a visual,
which in turn is associated with hardware. Although some hardware is
physically created such that there is a definite “layering” (for example,
windows created in a hardware overlay plane might be expected to always be
seen above the regular windows), MPG works around this limitation in
software. MPG allows the stacking order of the windows to be unaffected by
the physical imitations of the hardware. As a result, stacking is simply the
same as in the standard server. If overlay hardware is available and requested,
MPG takes care of minimizing the work and increasing preformance.

In general, an overlay is a pixel buffer (either physical or software simulated)
into which graphics can be drawn. When the overlay is physical (that is, not
simulated in software), erasing the overlay graphics does not damage the
underlying graphics. This provides a performance advantage when the
underlying graphics is complex and requires much time to repaint. When the
overlay is in software, erasing the overlay graphics may generate an Expose
event.

Transparent Overlay Windows 57

6

Basic Characteristics of Transparent Overlay Windows
A transparent overlay window is a special class of an X InputOutput window
into which pixels can be rendered transparently. Handles to transparent
overlay windows have the X window type Window. Just like standard X
windows, overlay windows are drawables, and an overlay window handle can
be passed to any Xlib drawing routine that takes a Drawable .

Transparent overlay windows have extended the set of graphics context
attributes to include an attribute for paint type. With the transparent overlay
extension, transparent overlay windows can be rendered to with either opaque
or transparent paint.

Paint Type

While standard X InputOutput windows and other drawables (such as
pixmaps) accept only opaque paint, transparent overlay windows permit
pixels to be rendered with transparent paint. Valid pixel values painted
opaquely obscure pixels in underlying windows. Such pixels have associated
color values that are displayed. Pixels rendered transparently have no intrinsic
color; they derive their displayed color from the pixels that lie beneath.

Valid pixel values for pixels painted opaquely are obtained via
XAllocColor() or another standard pixel allocation mechanism. Painting
opaquely with a non-valid pixel value, for example a value that falls outside
the valid colormap entries for a visual, produces undefined results for both
transparent overlay windows and standard X InputOutput windows.

Paint type is defined with the data structure XSolarisOvlPaintType . By
default, the paint type of a GC is opaque. The XSolarisOvlPaintType data
structure is defined as:.

typedef enum {
XSolarisOvlPaintTransparent,
XSolarisOvlPaintOpaque,

} XSolarisOvlPaintType;

58 Solaris X Window System Developer’s Guide—August 1997

6

Viewability

A transparent overlay window is considered viewable even if all its pixels are
fully transparent. For viewable pixels in a transparent overlay window that are
fully transparent, the underlying pixels in the underlay will be displayed.

If an overlay window is unmapped or moved, the underlay beneath may
receive exposure events. This, for example, is the case on devices that cannot
display the overlay window and underlay window in different plane groups.

Rendering Transparent Paint

Applications can render into overlay windows using Xlib primitives. In
addition, applications can render transparent paint to transparent overlay
windows through a Solaris Visual graphics library, such as the XGL graphics
library, by specifying in the GC for that library that the paint is to be
transparent. Each Solaris Visual library has a defined way of rendering into a
transparent overlay window. See the library’s documentation for information.

More on Transparent Overlay Characteristics
In most respects, a transparent overlay window is just like a standard X
InputOutput window. Specifically, a transparent overlay window has these
characteristics:

• It can be mapped or unmapped. The routines XMapWindow, XUnmapWindow,
XMapSubwindows , and XUnmapSubwindows apply.

• An overlay window can possess its own cursor or use its parent’s cursor. In
other words, XDefineCursor and XUndefineCursor apply to overlay
windows.

• An overlay window appears in the output of XQueryTree .

• The event_mask and do_not_propagate_mask window attributes
function normally. An overlay window can express interest in any type of
event.

• XTranslateCoordinates and XQueryPointer apply to overlay
windows.

• save_under applies as for standard X windows.

• override_redirect applies as for standard X windows.

Transparent Overlay Windows 59

6

A transparent overlay window also has some characteristics that make it
unique as a window. The following sections describe these characteristics.

Background

As defined in the X specification, windows can have a background. The main
purpose of window background is to display something in the exposed areas
of a window in case the client is slow to repaint these areas. This background
is rendered whenever the window receives an Expose event. The background
is rendered before the Expose event is sent to the client. The background is
also rendered when the client makes an XClearArea or XClearWindow
request.

Like standard X InputOutput windows, transparent overlay windows can
also have a background. The background of a transparent overlay window is
rendered just like a non-overlay window in response to Expose events,
XClearArea requests, or XClearWindow requests. In addition to the standard
types of background (None, pixmap, pixel, or parent relative), transparent
overlay windows can also be assigned a new type of background: transparent.
A new routine, XSolarisOvlSetWindowTransparent , is available to set the
background type to transparent.

The background of a transparent overlay window is transparent by default.
However, the application can still specify one of the usual X types of
background: None, a pixmap XID, a pixel value, or ParentRelative , as
shown in Table 6-1.

Table 6-1 Background Values for a Transparent Overlay Window

Background Description

transparent Background of transparent overlay window is transparent by
default.

None No rendering is performed when the overlay window
encounters a condition that invokes background painting.
Neither transparent nor opaque paint is rendered.

Pixmap ID The background is rendered with opaque paint. The rendered
pixel values are derived from the pixmap as defined in the X
specification.

60 Solaris X Window System Developer’s Guide—August 1997

6

Attempts to set the background of a non-overlay window with
XSolarisOvlSetTransparent generates a BadMatch error. If an underlay
window has a ParentRelative background and the parent window is an
overlay with a transparent background, the underlay child is treated as if it has
a background of None.

Window Border

The border of overlay windows is opaque. It is always drawn with opaque
paint. Just like standard X InputOutput windows, the border width can be
controlled with XSetWindowBorderWidth .

Backing Store

Backing store is disabled for overlay windows.

Window Gravity

The bit and window gravity attributes (bit_gravity and win_gravity)
apply to transparent overlay windows. However, if the gravity calls for the
movement of pixels, the transparency information is moved, along with the
pixel color information.

Single pixel value The background is a solid color rendered with opaque paint.

ParentRelative The behavior for a ParentRelative background depends on the
parent window background and its type. If the parent window
is an underlay, the background for the overlay window child
will be rendered with opaque paint, and the rendered pixels
will be as defined in the X specification. If the parent window
is an overlay, the background of the overlay child will be the
same as that of the parent, either transparent or opaque paint
will be rendered.

Table 6-1 Background Values for a Transparent Overlay Window

Background Description

Transparent Overlay Windows 61

6

Colormaps

Overlay colormap installation follows the X rules. If your application uses
pixel-sharing overlay/underlay pairs, create a single colormap for both
windows. Refer to “Choosing Visuals for Overlay/Underlay Windows” on
page 62 and “Designing an Application for Portability” on page 80 for more on
the subject of pixel-sharing pairs.

If the pair is known never to share hardware color LUTs, different colormaps
can be safely assigned to the overlay and underlay window without the
occurrence of colormap flashing.

Note – To improve the portability of applications and to minimize color
flashing, use colormaps with the same colors in both the overlay and underlay
window colormaps. If this is not possible, use one of the visual inquiry
routines to determine whether different colormaps can be assigned without
producing flashing.

Input Distribution Model

Overlay windows can express interest in events just like a standard X window.
An overlay window receives any event that occurs within its visible shape; the
paint type of the pixel at which the event occurs doesn’t matter. For example, if
the window expresses interest in window enter events, when the pointer enters
the window’s visible shape, the window receives a window enter event,
regardless of whether the pixel is opaque or transparent.

This has some implications for how applications should implement interactive
picking (selection) of graphical objects. Applications that draw graphical figures
into an overlay window above other graphical figures drawn into the underlay
window should express interest in events in either the overlay or underlay
window, but not both. When the application receives an input event, it must
use its knowledge of the overlay/underlay layering to determine which
graphical figure has been picked.

For example, let’s say the application expresses interest in events on the
underlay window. When the application receives an event at coordinate (x, y),
it should first determine if there is a graphical figure at that coordinate in the
overlay. If so, the search is over. If not, the application should next see if there
is a graphical figure at that coordinate in the underlay.

62 Solaris X Window System Developer’s Guide—August 1997

6

Print Capture

After graphical imagery has been rendered to an X window, the user may want
the window contents to be captured and sent to a printer for hard copy output.
The most widespread technique for doing this is to perform a screen dump, that
is, to read back the window pixels with XGetImage , and to send the resulting
image to the printer. To fit the image to the size of the printed page, some
image resampling may be necessary. This can introduce aliasing artifacts into
the image.

Another print capture technique that is growing in popularity in the X11
community is to re-render the graphics through a special printer graphics API.
This API supports the standard Xlib graphics calls. It converts these calls into a
page description language (PDL) format and sends it to the appropriate print
spooler. The advantage of this technique is that the graphics can be scaled to fit
the printed page by scaling the coordinates themselves rather than the pixels
after scan conversion has been applied. As a result, aliasing artifacts are
minimized.

The print API technique has a significant drawback when applied to an
overlay/underlay window pair. Most PDLs only support the notion of opaque
paint; they do not provide for the marking of transparent paint. In the
PostScript PDL, for example, the marked pixels always supersede what was
previously marked. Given such a limitation, it is not always possible to capture
the imagery in an overlay/underlay window pair using this technique.
Certainly, in applications where the background of the overlay is completely
transparent and only opaque paint is drawn to it, the underlay could be
marked first and the overlay marked second. But if transparent paint was
drawn to the overlay, erasing other opaque paint in the overlay, this would not
work.

Until this issue is resolved, capture overlay windows and send them to the
printer using XReadScreen and resampling. Alternatively, do not use overlays
to render information that is to be printed.

Choosing Visuals for Overlay/Underlay Windows
The Solaris transparent overlay API supports multiple plane group (MPG) and
single plane group (SPG) devices. Display devices come in a wide variety of
configurations. Some have multiple plane groups. Some have multiple
hardware color lookup tables (LUTs). Some dedicate color LUTs to particular

Transparent Overlay Windows 63

6

plane groups and some share color LUTs between plane groups. This wide
variety makes it difficult for an application writer to construct portable overlay
applications.

For a given type of underlay window, some devices can provide some types of
overlay windows with high-performance rendering. Other devices provide the
same type of overlay window but with slower rendering. Some devices can
support overlays with many colors, and some devices cannot. Some devices
can support simultaneous display of both overlay and underlay colors for all
types of overlays and underlays. Others support simultaneous display of
colors but not for all overlay/underlay combinations. Still others support a
certain degree of simultaneous color display. These devices support more than
one hardware color LUT. Hardware might not contain enough color LUTs to
enable all applications to display their colors simultaneously.

The following routines enable an application to negotiate with the system for a
suitable overlay/underlay visual pair:

• XSolarisOvlSelectPartner

• XSolarisOvlSelectPair

These routines are described in the section “Designing an Application for
Portability” on page 80.

The assumption is made that each application has an ideal configuration of
windows and colors. An application should start out by asking for the “best”
overlay/underlay pair. If this can be satisfied by the device, then the
negotiation is complete, and the application proceeds to create windows on the
selected underlay and overlay visuals. But if no visual pair satisfies the query,
the application must relax its demands. To this end, it should specify the “next
best” pair. The application may choose to ask for less colorful visuals, or it may
accept lower rendering performance on one of the visuals. The process
continues until either a satisfactory visual is found, or the application decides
it’s not worth running in this environment without certain criteria being met.

The transparent overlay API provides routines that enable the application to
conduct such a negotiation in a single subroutine call. The application specifies
criteria to be matched for either the overlay visual, the underlay visual, or
both. Application programmers are encouraged to use these routines to ensure
portability to the widest range of graphics devices.

64 Solaris X Window System Developer’s Guide—August 1997

6

Example Program
The program below demonstates a simple example of a transparent overlay.
The program creates a transparent overlay window, draws the window border
in white, displays a text string in white, and draws a white filled rectangle. The
paint type is opaque by default, and the window background is transparent by
default. Use the following Makefile to compile and link the program.

Code Example 6-1 Transparent Overlay Example Program

#include <stdio.h>
#include <X11/Xlib.h>
#include “X11/Xmd.h”
#include <X11/extensions/transovl.h>
#include <X11/extensions/transovlstr.h>

Display *display;
Window window;
XSetWindowAttributes attribs;

GC gc;
XGCValues gcvalues;

main()
{
 display = XOpenDisplay(““);
 attribs.override_redirect = True;
 attribs.border_pixel = WhitePixel(display, 0);

 window = XSolarisOvlCreateWindow(display,
DefaultRootWindow(display),
100, 100, 500, 500, 10,
CopyFromParent, InputOutput,CopyFromParent,
CWBorderPixel | CWOverrideRedirect, &attribs);

 gcvalues.font = XLoadFont(display, “fixed”);
 gcvalues.foreground = WhitePixel(display, 0);

 gc = XCreateGC(display, window, GCFont | GCForeground, &gcvalues);

 XMapWindow(display, window);

 XDrawString(display, window, gc, 50, 50, “This is a test”, 14);

 XFillRectangle(display, window, gc, 70, 70, 100, 100);

simple: simple.c
cc -I../ -I/usr/openwin/include -o simple simple.c \
-L/usr/openwin/lib -lX11 -lXext

Transparent Overlay Windows 65

6

 XFlush(display);

 while (1);

}

Overview of the Solaris Transparent Overlay Window API
The transparent overlay window API includes the routines listed in Table 6-2.
These routines are provided by libXext.so . To use the Solaris overlay
routines, do the following:

• Include the file /usr/openwin/include/X11/extensions/transovl.h

• Link the library device handler with the library
/usr/openwin/lib/libXext.so

Table 6-2 List of Transparent Overlay Window Routines

Name Description

XSolarisOvlCreateWindow Creates an overlay window.

XSolarisOvlIsOverlayWindow Indicates whether a window is an
overlay window.

XSolarisOvlSetPaintType Specifies the type of paint rendered by
subsequent Xlib drawing.

XSolarisOvlGetPaintType Gets the current paint type.

XSolarisOvlSetWindowTransparent Sets the background state of an overlay
window to be transparent.

XSolarisOvlCopyPaintType Renders opaque and transparent paint
into the destination drawable based on
the paint type attributes of the pixels in
the source drawable.

XSolarisOvlCopyAreaAndPaintType Copies the area and paint type from one
pair of drawables to another.

XReadScreen Returns the displayed colors in a
rectangle of the screen.

66 Solaris X Window System Developer’s Guide—August 1997

6

The remainder of this chapter discusses the transparent overlay API routines.

Creating Transparent Overlay Windows
You can create a transparent overlay using XSolarisOvlCreateWindow . This
routine behaves exactly as XCreateWindow except that the resulting window
is a transparent overlay window. The newly created window can be rendered
into with both opaque and transparent paint, and the background of the
overlay window is transparent.

The class argument to XSolarisOvlCreateWindow should be
InputOutput . An overlay window can be created as an InputOnly window
but, in this case, it will behave like a standard InputOnly window. It is only
for InputOutput windows that there is a difference between overlay and non-
overlay.

The syntax and arguments for XSolarisOvlCreateWindow are shown below.

The arguments for this routine are the same as those for XCreateWindow .

XSolarisOvlSelectPartner Returns the optimal overlay or underlay
visual for an existing visual.

XSolarisOvlSelectPair Selects an optimal overlay/underlay pair
that best meets a set of defined criteria
for the overlay and underlay visuals.

Window
XSolarisOvlCreateWindow(Display *display, Window parent, int x, int y,

unsigned int width, unsigned int height,
unsigned int border_width, int depth, unsigned int class,
Visual * visual, unsigned long valuemask,
XSetWindowAttributes * attr)

display Specifies the connection to the X server.

parent Specifies the parent window.

Table 6-2 List of Transparent Overlay Window Routines

Name Description

Transparent Overlay Windows 67

6

You can use any visual to create the overlay. However, not all
overlay/underlay visual pairs may be optimal. Each screen defines a set of
optimal overlay/underlay visual pairs. These define the optimal visuals of the
overlay windows that can be created with a particular underlay visual.
Likewise, they define the optimal visuals of underlay windows that can be
created with a particular overlay visual. You can determine the optimal pairs
using XSolarisOvlSelectPair and XSolarisOvlSelectPartner .

The definition of optimal varies from device to device, but it will usually refer
to the ability of a device to create an overlay window in a different plane group
than that of an underlay window. See page 86 for more information on
overlay/underlay visual pairs.

Overlay windows are destroyed with the Xlib routines XDestroyWindow or
XDestroySubwindows .

Setting the Paint Type of a Graphics Context
You can set a GC’s paint type with the XSolarisOvlSetPaintType routine.
XSolarisOvlSetPaintType specifies the type of paint rendered by
subsequent Xlib drawing with the given GC. It controls whether Xlib drawing

x , y Specifies the coordinates of the upper-left pixel of this
window, relative to the parent window.

width , height Specifies the width and height, in pixels, of the
window.

border_width Specifies the width, in pixels, of the window’s
borders.

depth Specifies the depth of the window.

class Specifies the class of the window. If the class is not
InputOutput , the window will not be an overlay
window.

visual Specifies a pointer to the visual structure for this
window.

valuemask Specifies which window attributes are defined in the
attr argument.

attr Specifies the attributes of the window.

68 Solaris X Window System Developer’s Guide—August 1997

6

routines using this GC produce opaque or transparent pixels on overlay
windows. The paint type specified applies to the GC until it is changed by
another call to this routine. The paint type attribute applies to both the
foreground and background GC attributes. The syntax and arguments are
shown below.

The value of paintType can be XSolarisOvlPaintOpaque or
XSolarisOvlPaintTransparent .

• If the value of paintType is XSolarisOvlPaintOpaque , the pixels
generated by subsequent Xlib drawing routines with this GC will be opaque.
This means the pixels will obscure underlying pixels. This is the default.

• If the value of paintType is XSolarisOvlPaintTransparent , the pixels
generated by subsequent Xlib drawing routines with this GC will be
transparent. This means that, for these pixels, the color of the underlying
pixels is displayed.

Setting the Background State of a Transparent Overlay Window
You can set the background state of a transparent overlay window to be
transparent with the XSolarisOvlSetWindowTransparent routine. Any
background rendering that occurs after this request causes the background to
be transparent. To change background state to any other value, use
XChangeWindowAttributes() , XSetWindowBackground() , or
XSetWindowBackgroundPixmap() .

void
XSolarisOvlSetPaintType (Display *display, GC gc,

XSolarisOvlPaintType paintType)

display Specifies the connection to the X server.

gc Specifies the affected GC.

paintType Specifies the type of paint rendered by subsequent
Xlib drawing routines using the specified GC.

Transparent Overlay Windows 69

6

The syntax and arguments of XSolarisOvlSetWindowTransparent are
shown below.

Note – If w is not a transparent overlay window, a BadMatch error results.

Rendering to a Transparent Overlay Window
Once a transparent overlay window is created, you can use all the standard
Xlib primitive rendering routines, such as XDrawLines and
XFillRectangles , to draw into the window. When drawing to transparent
overlay windows, the paint type attribute of the GC is used to control the
quality of the pixels rendered. The paint type attribute applies to both the
foreground and background GC attributes. To set the paint type, use the
XSolarisOvlSetPaintType routine; for information on this routine, see
page 67.

The paint type of the GC also controls the type of pixels rendered with
XPutImage . If the paint type of the argument GC is
XSolarisOvlPaintOpaque , the color information from the source image is
used and the pixels are rendered with opaque paint. However, if the paint type
is XSolarisOvlPaintTransparent , the source color information is ignored,
and the pixels are rendered with transparent paint.

If a GC with a paint type of XSolarisOvlPaintTransparent is used to
render to a drawable other than a transparent overlay window, such as an
underlay window or pixmap, the GC paint type is ignored, and the pixels are
rendered with opaque paint.

void
XSolarisOvlSetWindowTransparent (Display *display, Window w)

display Specifies the connection to the X server.

w The transparent overlay window.

70 Solaris X Window System Developer’s Guide—August 1997

6

Querying the Characteristics of a Transparent Overlay Window
You can determine whether a window is an overlay window using the routine
XSolarisOvlIsOverlayWindow . You can also determine a GC’s current paint
type using the routine XSolarisOvlGetPaintType .

Determining Whether a Window is an Overlay Window

You can use the routine XSolarisOvlIsOverlayWindow to determine
whether a window is an overlay window. The routine returns True if the given
window w is a transparent overlay and returns False otherwise.

Determining the Paint Type of a Graphics Context

The routine XSolarisOvlGetPaintType returns the GC’s current paint type.

Pixel Transfer Routines
The transparent overlay API provides three pixel transfer routines:

• XSolarisOvlCopyPaintType – Renders opaque and transparent point
into a destination drawable based on the paint type attributes of the source
drawable.

Bool XSolarisOvlIsOverlayWindow (Display *display, Window w)

display Specifies the connection to the X server.

w Specifies the window.

XSolarisOvlPaintType
XSolarisOvlGetPaintType (Display *display, GC gc)

display Specifies the connection to the X server.

gc The GC to be inquired about.

Transparent Overlay Windows 71

6

• XSolarisCopyAreaAndPaintType – Copies an area and its paint type
from one pair of drawables to another.

• XReadScreen – Returns the colors displayed in a given area of the screen.

The existing Xlib pixel transfer routines XGetImage , XCopyArea , and
XCopyPlane can also be used with overlay windows. The use of these routines
is described below.

Filling an Area Using the Source Area Paint Type

The XSolarisOvlCopyPaintType routine uses the paint type information of
a specified rectangle in a source rectangle to control a fill operation in a
specified rectangle in a destination rectangle. The source rectangle and
destination rectangle can be any type of drawable. If the source rectangle is a
transparent overlay, the paint type attribute of its pixels is used as the source of
the copy, and the color information is ignored. If the source rectangle is any
other type of drawable, the bit plane specified in the routine is treated as if it
were paint type data and it is used for the copy. In this case, the bit plane must
have only one bit set.

The syntax and arguments are shown below.

void
XSolarisOvlCopyPaintType(Display *display, Drawable src,

Drawable dst, GC gc, int src_x, int src_y,
unsigned int width, unsigned int height, int dest_x,
int dest_y, unsigned long action, unsigned long plane)

display Specifies the connection to the X server.

src Specifies the source drawable from which to obtain
the paint type information.

dst Specifies the destination drawable.

gc Specifies the GC.

src_x , src_y Specify the x and y coordinates of the upper-left
corner of the source rectangle relative to the origin of
the source drawable.

72 Solaris X Window System Developer’s Guide—August 1997

6

src and dst must have the same screen, or a BadMatch error results.

Table 6-3 summarizes the possible combinations of src and dst and their
actions. The left side of the table shows the possible src combinations. The top
of the table shows the possible dst combinations. The actions A1-A4 are
explained following the table.

• A1—Opaque pixels in the source overlay cause the corresponding pixels in
the destination to be filled with opaque color as specified by the fill
attributes of the GC. Transparent pixels in the source cause the
corresponding pixels in the destination to be filled with transparent paint.

• A2—Opaque pixels in the source overlay cause the corresponding pixels in
the destination to be filled according to the fill attributes of the GC.
Transparent pixels in the source overlay cause the corresponding pixels in
the destination to be filled according to the same fill attributes of the GC, but
with the foreground and background pixels swapped.

• A3—The pixels in the destination overlay are filled with opaque paint or
made transparent as in A1 above depending on the bit values of the source
drawable’s plane . Bit values of 1 in the source are treated as if they were
opaque pixels and bit values of 0 are treated as if they were transparent.

width , height Specify the width and height of both the source and
destination rectangles.

dest_x , dest_y Specify the x and y coordinates of the upper-left
corner of the destination rectangle relative to the
origin of the destination drawable.

action Specifies which paint type data is to be copied. This
can be one of XSolarisOvlCopyOpaque ,
XSolarisOvlCopyTransparent , or
XSolarisOvlCopyAll .

plane Specifies the bit-plane of the src drawable to be used
as paint type information when the source is not a
transparent overlay.

Table 6-3 XSolarisOvlCopyPaintType Source/Destination Combinations and Actions

Source/Destination Overlay Drawable

overlay A1 A2

drawable A3 A4

Transparent Overlay Windows 73

6

• A4—The pixels in the destination drawable are filled with paint as in A2
above depending on the bit values of the source drawable’s plane. Bit values
of 1 in the source bit plane are treated as if they were opaque pixels and bit
values of 0 are treated as if they were transparent.

The action argument specifies whether opaque paint
(XSolarisOvlCopyOpaque), transparent paint
(XSolarisOvlCopyTransparent), or both (XSolarisOvlCopyAll) should
be operated upon. This allows a client to accumulate opaque or transparent
paint.

If portions of the source rectangle are obscured or are outside the boundaries
of the source drawable, the server generates Expose events, using the same
semantics as XCopyArea .

This routine uses these GC components: function, plane-mask, fill-style,
subwindow-mode, graphics-exposures, clip-x-origin, clip-y-origin, and clip-
mask. It might use these GC mode-dependent components: foreground,
background, tile, stipple, tile-stipple-x-origin, tile-stipple-y-origin.

XSolarisOvlCopyPaintType can generate BadDrawable , BadGC,
BadMatch , and BadValue errors.

Copying an Area and Its Paint Type

The XSolarisCopyAreaAndPaintType routine copies the specified area of
source drawable for the color information to the specified area of destination
drawable for color information. If the destination drawable is not an overlay, it
also fills the specified areas of paint type information destination drawable
according to the paint type information specified in the paint type information
source drawable.

You can use XSolarisOvlCopyAreaAndPaintType to combine an image in
the client’s memory space (consisting of color and/or paint type information)
with a rectangle of the specified overlay window. To do this, first move the
image and paint type data into the server: use XPutImage to copy the data
into two pixmaps of the appropriate depths. Then call
XSolarisOvlCopyAreaAndPaintType with the color and paint type
drawables to copy information to the overlay.

74 Solaris X Window System Developer’s Guide—August 1997

6

You can also use XSolarisOvlCopyAreaAndPaintType to retrieve pixel
information (color and/or paint type information) from a specified drawable.
To do this, call XSolarisOvlCopyAreaAndPaintType with two separable
destination drawables. To get the data from the server into the client’s memory
space, call XGetImage on each of the drawables.

The syntax and arguments for XSolarisCopyAreaAndPaintType are shown
below.

void
XSolarisOvlCopyAreaAndPaintType(Display * display, Drawable
colorsrc,

Drawable painttypesrc, Drawable colordst,
Drawable painttypedst, GC colorgc, GC painttypegc,
int colorsrc_x, int colorsrc_y, int painttypesrc_x,
int painttypesrc_y, unsigned int width, unsigned int height,
int colordst_x, int colordst_y, int painttypedst_x,
int painttypedst_y, unsigned long action, unsigned long plane)

display Specifies the connection to the X server.

colorsrc The color information source drawable. colorsrc
can be any depth drawable or an overlay window.

painttypesrc The paint type information source drawable.
painttypesrc can be any drawable or an overlay
window. If painttypesrc is not an overlay window,
the bit plane of painttypesrc specified in plane is
treated as if it were paint type data and it is used for
the copy. plane must have only one bit set in this
case.

colordst The color information destination drawable.

painttypedst The paint type information destination drawable. If
colordst is an overlay, this drawable will be
ignored.

colorgc The GC to use for the color information copy.

painttypegc The GC to use to fill areas in painttypedst . If
colordst /painttypedst is an overlay, this GC will
be ignored.

Transparent Overlay Windows 75

6

colordst can be any drawable, but must be of the same depth and have the
same root as colorsrc , otherwise, a BadMatch error results. If colordst is
an overlay, then painttypedst is ignored, otherwise painttypedst can be
any type of drawable.

Table 6-4 summarizes the possible combinations of sources and destinations
and their respective actions. The left side of the table shows the possible
colorsrc/painttypesrc combinations and the top of the table shows the
possible colordst/painttypedst combinations. The actions A1-A8 are

colorsrc_x
colorsrc_y

The X and Y coordinates of the upper-left corner of
the source rectangle for color information relative to
the origin of the color source drawable.

painttypesrc_x
painttypesrc_y

The X and Y coordinates of the upper-left corner of
the source rectangle for paint type information
relative to the origin of the paint type source
drawable.

width, height The dimensions in pixels of all the source and
destination rectangles.

colordst_x
colordst_y

The X and Y coordinates of the upper-left corner of
the destination rectangle for color information
relative to the origin of the color destination
drawable.

painttypedst_x
painttypedst_y

The X and Y coordinates of the upper-left corner of
the destination rectangle for paint type information
relative to the origin of the paint type destination
drawable. If colordst /painttypedst is an overlay,
colordst_x and colordst_y will be used.

action Specifies which paint type data is to be copied. This
can be one of XSolarisOvlCopyOpaque,
XSolarisOvlCopyTransparent, or
XSolarisOvlCopyAll.

plane Specifies the source bit-plane in painttypesrc to be
used as paint type information when painttypesrc
is not an overlay.

76 Solaris X Window System Developer’s Guide—August 1997

6

explained below the table. An Impossible entry in the table indicates that the
given combination is impossible, since the painttypedst is ignored when the
colordst is an overlay.

• A1—The paint type information from painttypesrc is used as a mask to
copy the color information from colorsrc to colordst . Opaque pixels in
painttypesrc cause the corresponding pixel in colorsrc to be copied to
colordst , transparent pixels cause the corresponding pixel in colordst to
be made transparent. If a transparent pixel from colorsrc is copied to
colordst , the actual color transferred will be undefined.

• A2—Same as A1 except that the paint type information is extracted from the
bit-plane of painttypesrc specified by plane . A bit value of 1 indicates
an opaque pixel whereas a bit value of 0 indicates transparent.

• A3—Same as A1 except that a non-overlay drawable is used to obtain the
color information so there will be no undefined colors due to transparent
pixels.

• A4—Same as A3 except that the paint type information is taken from the
specified bit-plane of painttypesrc as in A2.

• A5—The paint type information from painttypesrc is used as a mask to
copy the color information from colorsrc to colordst as in A1. In
addition, the paint type information controls rendering to the
painttypedst drawable as in XSolarisOvlCopyPaintType .

• A6—Same as A5 except that the paint type information is taken from the
specified bit-plane of painttypesrc as in A2.

• A7—Same as A5 except that there will be no undefined colors due to
transparent color source pixels.

• A8—Same as A7 except that the paint type information is taken from the
specified bit-plane of painttypesrc as in A2.

Table 6-4 XSolarisOvlCopyAreaAndPaintType Source/Destination Combinations and
Actions

Overlay/Overlay Overlay/Drawable Drawable/Overlay Drawable/Drawable

overlay/overlay A1 Impossible A5 A5

overlay/drawable A2 Impossible A6 A6

drawable/overlay A3 Impossible A7 A7

drawable/drawable A4 Impossible A8 A8

Transparent Overlay Windows 77

6

The action argument specifies whether opaque paint
(XSolarisOvlCopyOpaque), transparent paint
(XSolarisOvlCopyTransparent), or both (XSolarisOvlCopyAll) should
be copied. This allows a client to accumulate opaque or transparent paint.

NoExpose and GraphicsExpose events are generated in the same manner as
XSolarisOvlCopyPaintType .

If an overlay is used for the colordst argument, the painttypedst ,
painttypegc , painttypedst_x and painttypedst_y arguments will all
be ignored. A NULL pointer can be used for painttypegc and a value of None
can be used for painttypedst . The overlay will have the exact paint type
defined by the pixels in the area specified in painttypesrc . The color
information copy will not affect the destination paint type.

This function uses these GC components from colorgc : function, plane-mask,
subwindow-mode, graphics-exposures, clip-x-origin, clip-y-origin, and clip-
mask.

If colordst is not an overlay then this function will use these GC components
from painttypegc : function, plane-mask, fill-style, subwindow-mode, clip-x-
origin, clip-y-origin, and clip-mask. In addition, it may also use these GC mode-
dependent components: foreground, background, tile, stipple, tile-stipple-x-
origin, and tile-stipple-y-origin.

XSolarisOvlCopyAreaAndPaintType can generate BadDrawable , BadGC,
BadMatch , and BadValue errors.

Retrieving Overlay Color Information

The routine XReadScreen returns the displayed colors in a rectangle of the
screen. It thus provides access to the colors displayed on the screen of the
given window.

On some types of advanced display devices, the displayed colors can be a
composite of the data contained in several different frame stores, and these
frame stores can be of different depth and visual types. In addition, there can
be overlay/underlay window pairs in which part of the underlay is visible
beneath the overlay. Because the data returned by XGetImage is undefined for
portions of the rectangle that have different depths, XGetImage is inadequate
to return the picture the user is actually seeing on the screen. In addition,

78 Solaris X Window System Developer’s Guide—August 1997

6

XGetImage cannot composite pixel information for an overlay/underlay
window pair because the pixel information lies in different drawables.
XReadScreen addresses these problems.

Rather than returning pixel information, XReadScreen returns color
information—the actual displayed colors visible on the screen. The routine
returns the color information from any window within the boundaries of the
specified rectangle. Unlike XGetImage , the returned contents of visible regions
of inferior or overlapping windows of a different depth than the specified
window’s depth are not undefined. Instead, the actual displayed colors for
these windows is returned.

Note – The colors returned are the ones that would be displayed if an
unlimited number of hardware color LUTs were available on the screen. Thus,
the colors returned are the theoretical display colors. If colormap flashing
is present on the screen because there aren’t enough hardware color LUTs to
display all of the software colormaps simultaneously, the returned colors may
be different from the colors that are actually displayed.

The syntax and arguments for this routine are shown below.

XImage *
XReadScreen (Display *display, Window w, int x, int y,

unsigned int width, unsigned int height,
Bool includeCursor)

display Specifies the connection to the X server.

w Specifies the window from whose screen the data is
read.

x , y Specify the X and Y coordinates of the upper-left
corner of the rectangle relative to the origin of the
window w.

width , height Specify the width and height of the rectangle.

includeCursor Specifies whether the cursor image is to be included
in the colors returned.

Transparent Overlay Windows 79

6

If w is an overlay window, the overlay color information is returned wherever
there is opaque paint in the specified rectangle. The color information of the
underlay is returned wherever there is transparent paint in the overlay. In
general, since this underlay can be an overlay window containing transparent
paint, the color information for a coordinate (x, y) that contains transparent
paint is the youngest non-inferior that has opaque paint at (x, y).

The color data is returned as an XImage structure. The returned image has the
same width and height as the arguments specified. The format of the image is
ZPixmap . The depth of the image is 24 and the bits_per_pixel is 32. The most
significant 8 bits of color information for each color channel (red, green, blue)
are returned in the bit positions defined by red_mask , green_mask , and
blue_mask in the XImage. The values of the following attributes of the
XImage are server dependent: byte_order , bitmap_unit ,
bitmap_bit_order , bitmap_pad , bytes_per_line , red_mask ,
green_mask , blue_mask .

If includeCursor is True, the cursor image is included in the returned colors.
Otherwise, it is excluded.

Note that the borders of the argument window (and other windows) can be
included and read with this request.

If a problem occurs, XReadScreen returns NULL.

Using Existing Xlib Pixel Transfer Routines

The Xlib pixel transfer routines XGetImage , XCopyArea , and XCopyPlane
can also be used with transparent overlay windows.

XGetImage

On non-overlay drawables, the XGetImage routine works as defined in the
X11 specification. The same is true for overlay windows, with the exception
that, on these windows, the color information returned for transparent pixels is
undefined. Clients who simply want to retrieve the display colors for a region
on the screen should use XReadScreen .

80 Solaris X Window System Developer’s Guide—August 1997

6

XCopyArea and XCopyPlane

When both the source and destination drawables are non-overlay, the
XCopyArea and XCopyPlane routines work as defined in the X11
specification. However, note the following for the cases in which either the
source or the destination drawable is an overlay window.

• When the source drawable is overlay and the destination drawable is non-
overlay, only the color information is copied; the paint type information in
the source is ignored. Color information for transparent pixels is undefined.

• When the source drawable is non-overlay and the destination drawable is
overlay, the copy is performed as the paint type in the GC indicates. If the
paint type is XSolarisOvlPaintOpaque , the color information is copied
into the destination with opaque paint. If the paint type is
XSolarisOvlPaintTransparent , the color information is ignored, and
the destination pixels are transparent.

• When both the source drawable and destination drawable are overlay, the
paint type of the source is ignored, and this behaves as if the source were
not an overlay. If copying both color and paint type information is the
desired result, use XSolarisOvlCopyAreaAndPaintType .

Designing an Application for Portability
The Solaris overlay API provides two routines that help ensure application
portability across devices. These routines are:

• XSolarisOvlSelectPartner – Enables the application to select the visual
that is the best partner for an existing overlay or underlay visual.

• XSolarisOvlSelectPair – Enables the application to select the optimal
overlay and underlay visual pair from the set of all visual pairs for the
screen.

These routines are described below.

Transparent Overlay Windows 81

6

Selecting a Visual for an Overlay/Underlay Window

Portable applications using overlays can search for an appropriate overlay
visual to use for a given underlay visual, or vice versa. Each X screen
supporting the overlay extension defines a set of overlay visuals whose
windows are best for use as children of underlay windows. For each underlay
visual, there is a set of optimal overlay visuals. Together, all combinations of
underlay visuals and their optimal overlay visuals form the set of optimal
overlay/underlay pairs for that screen. The overlay and underlay visuals of an
optimal pair are partners of each other.

The routine XSolarisOvlSelectPartner allows the client to select, given an
underlay visual, an optimal overlay that meets certain criteria. Inversely, it also
allows the client to select an optimal underlay visual given an overlay visual.
The client is assured that, short of X errors not related to overlays, it can
successfully create a window with the returned visual.

This routine searches through the optimal partners of the given visual,
applying the criteria specified. It returns a success or failure status depending
on whether it finds a visual that meets the criteria. A criterion can be one of
two types:

1. Hard criterion – A criterion that must be satisfied. Only visuals that meet
hard criteria are candidates for successful matches.

2. Soft criterion – A desirable criterion, but one that is not required.

The visual that matches all hard criteria and the most soft criteria is chosen,
and its attributes are returned. If two or more visuals are found that meet all of
the hard criteria and the same number of soft criteria, one of them will be
chosen and returned. It is implementation dependent which one is chosen.

The syntax and arguments for XSolarisOvlSelectPartner are shown
below.

XSolarisOvlSelectStatus
XSolarisOvlSelectPartner (Display *display, int screen,

VisualID vid, XSolarisOvlSelectType seltype, int numCriteria,
XSolarisOvlVisualCriteria *pCriteria,
XVisualInfo *visinfoReturn,
unsigned long *unmetCriteriaReturn)

82 Solaris X Window System Developer’s Guide—August 1997

6

Argument Types

XSolarisOvlSelectType is an enumeration defining two types of selections
that can be done in XSolarisOvlSelectPartner . It is defined as:

display Specifies the connection to the X server.

screen An integer specifying the screen for the visual
vid .

vid The XID of the visual to find a partner for.

seltype The type of selection that is to be done.

numCriteria The number of XSolarisOvlVisualCriteria
structures in the pCriteria array.

pCriteria An array of criteria structures in priority order
from high to low specifying the criteria to be used
in selecting the visual.

visinfoReturn A pointer to a caller provided XVisualInfo
structure. On successful return, this structure
contains a description of the chosen visual.

unmetCriteriaReturn A pointer to a bitmask that describes the criteria
that were not satisfied. This return argument is
meaningful only when the routine returns a value
of XSolarisOvlQualifiedSuccess , or
XSolarisOvlCriteriaFailure .

typedef enum {
XSolarisOvlSelectBestOverlay,
XSolarisOvlSelectBestUnderlay,

} XSolarisOvlSelectType;

Transparent Overlay Windows 83

6

XSolarisOvlVisualCriteria is a structure defining various criteria to be
used during visual selection, along with indications of the stringency of the
criteria. This structure is defined as:

hardCriteriaMask and softCriteriaMask are bitmasks whose values can
be the logical OR of any of the following bitmasks:

typedef struct {
unsigned long hardCriteriaMask;
unsigned long softCriteriaMask
int c_class;
unsigned int depth;
unsigned int minColors;
unsigned int minRed;
unsigned int minGreen;
unsigned int minBlue;
unsigned int minBitsPerRGB;
unsigned int minBuffers;

} XSolarisOvlVisualCriteria;

#define XSolarisOvlVisualClass (1L<<0)
#define XSolarisOvlDepth (1L<<1)
#define XSolarisOvlMinColors (1L<<2)
#define XSolarisOvlMinRed (1L<<3)
#define XSolarisOvlMinGreen (1L<<4)
#define XSolarisOvlMinBlue (1L<<5)
#define XSolarisOvlMinBitsPerRGB (1L<<6)
#define XSolarisOvlMinBuffers (1L<<7)
#define XSolarisOvlUnsharedPixels (1L<<8)
#define XSolarisOvlUnsharedColors (1L<<9)
#define XSolarisOvlPreferredPartner (1L<<10)

84 Solaris X Window System Developer’s Guide—August 1997

6

Return Types

XSolarisOvlSelectStatus is a value that indicates whether the routine
succeeded in finding a visual and, if it failed, the reason for the failure. The
return value can be one of:

• XSolarisOvlSuccess is returned if the search is completely successful in
finding a visual that meets all hard and soft criteria of one of the
XSolarisOvlVisualCriteria structure.

• XSolarisOvlQualifiedSuccess is returned if the chosen visual satisfies
all hard criteria of one of the XSolarisOvlVisualCriteria structure, but
doesn’t meet all soft criteria. In this case, unmetCriteriaReturn contains
the logical OR of the soft criteria that were not met.

• XSolarisOvlCriteriaFailure indicates that no visual could be found
that meets all the hard criteria of any of the
XSolarisOvlVisualCriteria structures. In this case,
unmetCriteriaReturn contains the logical OR of the hard criteria that
were not met for the XSolarisOvlVisualCriteria structure with the fewest
hard criteria not met.

• XSolarisOvlFailure is returned if some other error is encountered
besides criteria match failure.

Multiple Criteria Sets

XSolarisOvlSelectPartner supports a degradation sequence of criteria sets.
This means that multiple criteria sets can be specified in a single call. First, the
routine attempts to find a visual matching the first criteria set. If a visual is
found that meets all of the hard criteria of the first set, this visual is chosen. If
no visual meets all hard criteria of the first set, the routine performs a search
using the second criteria set. This process continues until either a visual is
found that meets the hard criteria of some criteria set, or all sets have been

typedef enum {
XSolarisOvlSuccess,
XSolarisOvlQualifiedSuccess,
XSolarisOvlCriteriaFailure,
XSolarisOvlFailure,

} XSolarisOvlSelectStatus;

Transparent Overlay Windows 85

6

used to search. This degradation sequence allows clients to specify the criteria
for the most preferred visual as the first criteria set. Visuals that are acceptable
but are less desirable can be specified in criteria sets following the first criteria
set. This allows the search to proceed through a progressive relaxation in the
client’s requirements for the visual with a single subroutine call.

Any of the possible criteria can be specified either as a hard or soft criteria for
a particular criteria set. For a given set, hardCriteriaMask is the logical OR
of the criteria bitmasks that are to be applied as hard criteria during the search.
Likewise, softCriteriaMask is the logical OR of the soft criteria bitmasks.

Some criteria have values associated with them. These values are provided by
other data members in the XSolarisOvlVisualCriteria structure. In the
criteria descriptions that follow, these data members are mentioned where
applicable.

• XSolarisOvlVisualClass specifies that the client wants the selected
visual to have a specific visual class. The required class is specified in
c_class .

• The following criteria interact within one another: XSolarisOvlDepth ,
XSolarisOvlMinColors , XSolarisOvlMinRed ,
XSolarisOvlMinGreen , and XSolarisOvlMinBlue . Typically only some
subset of these should be specified.

• XSolarisOvlDepth specifies that the depth of the selected visual is to be
equal to depth .

• XSolarisOvlMinColors specifies that the selected visual is to have at
least minColors number of total displayable colors.

• XSolarisOvlMinRed , XSolarisOvlMinGreen , and
XSolarisOvlMinBlue can be used to indicate more specific color
requirements for DirectColor or TrueColor visuals. Their corresponding
values are specified in minRed , minGreen , and minBlue , respectively.
These indicate that the selected visual must have at least the specified
number of reds, greens, and/or blues.

• XSolarisOvlMinBitsPerRGB specifies that the selected visual is to have
at least minBitsPerRGB of color channel output from colormaps created on
that visual.

• XSolarisOvlMinBuffers specifies that the client wants the selected
visual to be able to be assigned at least minBuffers number of accelerated
MBX image buffers.

86 Solaris X Window System Developer’s Guide—August 1997

6

• XSolarisOvlUnsharedPixels selects partner visuals whose window
pixels don’t lie in the same drawing plane groups as the window pixels of
the argument visual vid . If a visual uses the same drawing plane group as
the argument visual, it is not matched by this criterion.

• XSolarisOvlUnsharedColors selects partner visuals whose window
pixel colors can be displayed simultaneously when the overlay/underlay
window pair has the colormap focus. If a visual shares the same color LUT
pool and that pool has only one color LUT in it as the argument visual, the
visual is not matched by this criterion.

If either hardCriteriaMask of a criteria set is to 0, any visual will match that
criteria set with a hard match. Likewise, setting the softCriteriaMask of a
criteria set to 0, is sufficient to guarantee at least a soft match for that criteria
set.

Selecting an Optimal Overlay/Underlay Visual Pair

The XSolarisOvlSelectPair routine is similar to
XSolarisOvlSelectPartner . However, instead of selecting a partner visual
given another visual, this routine simultaneously selects both the overlay and
underlay visual from the set of all visual pairs for the given screen. The pair
selected is the one that best matches the given criteria. The client is assured
that, short of X errors not related to overlays, it can successfully create
windows with the returned visuals.

This routine searches through all optimal visual pairs for a given screen, and
then through all pairs of visuals (optimal and non-optimal), applying the
specified criteria. These criteria are specified in pCriteria . Each element of
pCriteria specifies criteria for both the overlay and underlay. It returns a
success or failure status depending on whether it finds a pair that meets all the
given criteria.

The selected pair has an overlay that satisfies all the hard criteria specified for
the overlay. The pair has an underlay visual that satisfies all the hard criteria
for the underlay. The attributes of the overlay visual are returned in
ovVisinfoReturn . Likewise, the attributes of the underlay visual are
specified in unVisinfoReturn . If two or more pairs are found that meet all of
the hard criteria (both overlay and underlay) and the same number of soft
criteria (either overlay or underlay), one of them will be chosen and returned.
Which pair is chosen depends on the implementation.

Transparent Overlay Windows 87

6

The syntax and arguments are shown below.

XSolarisOvlSelectStatus
XSolarisOvlSelectPair (Display *display, int screen, int
numCriteria,

XSolarisOvlPairCriteria *pCriteria,
XVisualInfo *ovVisinfoReturn, XVisualInfo *unVisinfoReturn,
unsigned long *unmetOvCriteriaReturn,
unsigned long *unmetUnCriteriaReturn)

display Specifies the connection to the X server.

screen An integer specifying the screen on which the
visuals are to be searched.

numCriteria The number of XSolarisOvlPairCriteria
structures in the pCriteria array.

pCriteria An array of pair criteria structures in priority
order from high to low specifying the criteria to be
used in selecting the pair.

ovVisinfoReturn A pointer to a caller-provided XVisualInfo
structure. On successful return, this structure
contains a description of the chosen overlay
visual.

unVisinfoReturn A pointer to a caller-provided XVisualInfo
structure. On successful return, this structure
contains a description of the chosen underlay
visual.

unmetOvCriteriaReturn A pointer to a bitmask that describes the criteria
that were not satisfied for the overlay visual. This
return argument is meaningful only when the
routine returns a value of
XSolarisOvlQualifiedSuccess , or
XSolarisOvlCriteriaFailure .

88 Solaris X Window System Developer’s Guide—August 1997

6

Argument Types

XSolarisOvlPairCriteria is a structure defining various criteria to be
used during visual selection, along with indications of the stringency of the
criteria. This structure is defined as:

XSolarisOvlVisualCriteria is defined in the specification of
XSolarisOvlSelectPartner .

Return Types

Refer to the specification of XSolarisOvlSelectPartner for the definition
of the type XSolarisOvlSelectStatus .

• XSolarisOvlSuccess is returned if the search is completely successful in
finding a pair that meets all hard and soft criteria of one of the
XSolarisOvlPairCriteria structures.

• XSolarisOvlQualifiedSuccess is returned if the chosen pair satisfies all
hard criteria of one of the XSolarisOvlPairCriteria structures, but
doesn’t meet all soft criteria. In this case, unmetOvCriteriaReturn and
unmetUnCriteriaReturn contain the logical OR of the soft criteria that
were not met for the overlay and underlay, respectively.

• XSolarisOvlCriteriaFailure indicates that no pair could be found that
meets all the hard criteria of any of the XSolarisOvlPairCriteria
structures. In this case, unmetOvCriteriaReturn and

unmetUnCriteriaReturn A pointer to a bitmask that describes the criteria
that were not satisfied for the underlay visual.
This return argument is meaningful only when the
routine returns a value of
XSolarisOvlQualifiedSuccess , or
XSolarisOvlCriteriaFailure .

typedef struct {
XSolarisOvlVisualCriteriaoverlayCriteria;
XSolarisOvlVisualCriteriaunderlayCriteria;

} XSolarisOvlPairCriteria;

Transparent Overlay Windows 89

6

unmetUnCriteriaReturn contain the logical OR of the hard criteria that
were not met by the XSolarisOvlPairCriteria structure with the fewest
hard failures, for the overlay and underlay, respectively.

• XSolarisOvlFailure is returned if some other error is encountered
besides criteria match failure.

Criteria Sets

Like XSolarisOvlSelectPartner , XSolarisOvlSelectPair supports a
degradation sequence of criteria sets. This means that multiple criteria sets can be
specified in a single call. First, the routine attempts to find a pair matching the
first criteria set for both the overlay and the underlay. If it finds a pair that
meets all of the hard criteria of the first set, it chooses this pair. If no pair meets
all hard criteria of the first set, the routine searchs using the second criteria set.
This process continues until either a pair is found that meets all of the hard
criteria of some criteria set, or all sets have been used to search. This
degradation sequence allows clients to specify the criteria for the most
preferred pair as the first criteria set. Pairs that are acceptable but less desirable
can be specified in criteria sets following the first criteria set. This allows the
search to proceed through a progressive relaxation in the client’s requirements
for the pair with a single subroutine call.

The criteria masks that can be specified are described in “Selecting a Visual for
an Overlay/Underlay Window” on page 81.

90 Solaris X Window System Developer’s Guide—August 1997

6

91

Security Issues 7

The Solaris environment supports two access control mechanisms: user-based
and host-based. It also supports two authorization protocols: MIT-MAGIC-
COOKIE-1 and SUN-DES-1. This chapter discusses these access control
mechanisms and authorization protocols. It also discusses how to change the
server’s access control, and how to run clients remotely, or locally as a different
user.

Notes About This Chapter

If you run applications in any of the following configurations, you need to read
this chapter:

• Linked with a version of Xlib previous to OpenWindows Version 2 or
X11R4. See “Host-Based” on page 92 for details.

• Statically linked to OpenWindows Version 2 libraries and you want to use
the SUN-DES-1 authorization protocol. See “SUN-DES-1” on page 93 for
details.

• On a remote server. See “Running Clients Remotely, or Locally as Another
User” on page 98 for details.

If you are not using any of the configurations listed above, you do not need to
change the default security setup.

92 Solaris X Window System Developer’s Guide—August 1997

7

Access Control Mechanisms
An access control mechanism controls which clients or applications have access
to the OpenWindows server. Only properly authorized clients can connect to
the server. All unauthorized X clients terminate with the following error
message:

The server console displays the following message:

The two types of access control mechanisms are: user-based and host-based.
Unless the -noauth option is used with openwin , both the user-based access
control mechanism and the host-based access control mechanism are active.
See “Manipulating Access to the Server” on page 95 for more information.

User-Based

A user-based, or authorization-based mechanism allows you to give access
explicitly to a particular user on any host. The user’s client passes
authorization data to the server. If the data matches the server’s authorization
data, the user obtains access.

Host-Based

A host-based mechanism is a general purpose mechanism. It allows you to
give access to a particular host, such that all users on that host can connect to
the server. This is a weak form of access control; if a host has access to the
server, all users on that host can connect to the server.

The Solaris environment provides the host-based mechanism for backward
compatibility. Applications linked with a version of Xlib older than
OpenWindows Version 2 or X11R4 do not recognize the new user-based access

Xlib: connection to hostname refused by server
Xlib: Client is not authorized to connect to server

AUDIT: < Date Time Year>: X: client 6 rejected from IP 129.144.152.193 port 3485
Auth name: MIT-MAGIC-COOKIE-1

Security Issues 93

7

control mechanism. To enable these applications to connect to the server, a user
must either switch to the host-based mechanism, or relink with the newer
version of Xlib .

Note – If possible, clients linked with an older version of Xlib should be
relinked with a newer version of Xlib. This enables them to connect to the
server with the new user-based access control mechanism.

Authorization Protocols
The OpenWindows environment supports two different authorization
protocols: MIT-MAGIC-COOKIE-1 and SUN-DES-1. While they differ in the
authorization data used, they are similar in the access control mechanism used.

The MIT-MAGIC-COOKIE-1 protocol, using the user-based mechanism, is the
OpenWindows environment default.

MIT-MAGIC-COOKIE-1

The MIT-MAGIC-COOKIE-1 authorization protocol was developed by the
Massachusetts Institute of Technology (MIT). A magic cookie is a long, randomly
generated binary password. At server startup, the magic cookie is created for
the server and the user who started the system. On every connection attempt,
the user’s client sends the magic cookie to the server as part of the connection
packet. This magic cookie is compared with the server’s magic cookie. The
connection is allowed if the magic cookies match, or denied if they do not
match.

SUN-DES-1

The SUN-DES-1 authorization protocol was developed by Sun Microsystems. It
is based on Secure Remote Procedure Call (RPC) and requires Data Encryption
Software (DES) support. The authorization data is the machine-independent
netname, or network name, of a user. This data is encrypted and sent to the
server as part of the connection packet. The server decrypts the data, and, if
the netname is known, allows the connection.

94 Solaris X Window System Developer’s Guide—August 1997

7

The SUN-DES-1 authorization protocol provides a higher level of security than
the MIT-MAGIC-COOKIE-1 protocol. There is no way for another user to use
your machine-independent netname to access a server, but it is possible for
another user to use the magic cookie to access a server.

This protocol is available only in libraries in the OpenWindows Version 3 and
later environments. Any applications built with static libraries, in particular
Xlib, in environments prior to OpenWindows Version 3 cannot use this
authorization protocol.

“Allowing Access When Using SUN-DES-1” on page 97 describes how to allow
another user access to your server by adding their netname to your server’s
access list.

Changing the Default Authorization Protocol

The default authorization protocol, MIT-MAGIC-COOKIE-1, can be changed to
another supported authorization protocol or to no user-based access
mechanism at all. The default is changed by supplying options with the
openwin command. See the openwin(1) man page for more information.

For example, to change the default from MIT-MAGIC-COOKIE-1 to
SUN-DES-1, start the OpenWindows environment as follows:

If you must run OpenWindows without the user-based access mechanism, use
the -noauth command line option.

Warning – Using -noauth weakens security. It is equivalent to running
OpenWindows with only the host-based access control mechanism; the server
inactivates the user-based access control mechanism. Anyone who can run
applications on your local machine will be allowed access to your server.

example% openwin -auth sun-des

example% openwin -noauth

Security Issues 95

7

Manipulating Access to the Server
Unless the -noauth option is used with openwin (see “Changing the Default
Authorization Protocol” on page 94), both the user-based access control
mechanism and the host-based access control mechanism are active. The server
first checks the user-based mechanism, then the host-based mechanism. The
default security configuration uses MIT-MAGIC-COOKIE-1 as the user-based
mechanism, and an empty list for the host-based mechanism. Since the host-
based list is empty, only the user-based mechanism is effectively active. Using
the -noauth option instructs the server to inactivate the user-based access
control mechanism and initializes the host-based list by adding the local host.

You can use either of two programs to change a server’s access control
mechanism: xhost and xauth . For more information, see the man pages under
xhost and xauth .. These programs access two binary files created by the
authorization protocol. These files contain session-specific authorization data.
One file is for server internal use only. The other file is located in the user’s
$HOME directory:

.Xauthority (Client Authority File)

Use the xhost program to change the host-based access list in the server. You
can add hosts to, or delete hosts from the access list. If you start with the
default configuration–an empty host-based access list–and use xhost to add a
machine name, you lower the level of security. The server allows access to the
host you added, as well as to any user specifying the default authorization
protocol. See “Host-Based” on page 92 for an explanation of why the host-
based access control mechanism is considered a lower level of security.

The xauth program accesses the authorization protocol data in the
.Xauthority client file. You can extract this data from your .Xauthority
file so that other users can merge the data into their .Xauthority file, thus
allowing them access to your server, or to the server to which you connect.

See “Allowing Access When Using MIT-MAGIC-COOKIE-1” on page 97 for
examples of how to use xhost and xauth .

96 Solaris X Window System Developer’s Guide—August 1997

7

Client Authority File

The client authority file is .Xauthority . It contains entries of the form:

connection-protocol auth-protocol auth-data

By default, .Xauthority contains MIT-MAGIC-COOKIE-1 as the auth-
protocol, and entries for the local display only as the connection-protocol and
auth-data. For example, on host anyhost, the .Xauthority file may contain the
following entries:

anyhost:0 MIT-MAGIC-COOKIE-1 82744f2c4850b03fce7ae47176e75

localhost:0 MIT-MAGIC-COOKIE-1 82744f2c4850b03fce7ae47176e75

anyhost/unix:0 MIT-MAGIC-COOKIE-1 82744f2c4850b03fce7ae47176e75

When the client starts up, an entry corresponding to the connection-protocol is
read from .Xauthority , and the auth-protocol and auth-data are sent to the
server as part of the connection packet. In the default configuration, xhost
returns an empty host-based access list and states that the authorization is
enabled.

If you have changed the authorization protocol from the default to SUN-DES-
1, the entries in .Xauthority contain SUN-DES-1 as the auth-protocol and the
netname of the user as the auth-data. The netname is in the following form:

unix.userid@NISdomainname

For example, on host, anyhost the .Xauthority file may contain the following
entries:

anyhost:0 SUN-DES-1 “unix.15339@EBB.Eng.Sun.COM”
localhost:0 SUN-DES-1 “unix.15339@EBB.Eng.Sun.COM”
anyhost/unix:0 SUN-DES-1 “unix.15339@EBB.Eng.Sun.COM”

where unix.15339@EBB.Eng.Sun.COM is the machine-independent netname
of the user.

Note – If you do not know your network name, or machine-independent
netname, ask your system administrator.

Security Issues 97

7

Allowing Access When Using MIT-MAGIC-COOKIE-1

If you are using the MIT-MAGIC-COOKIE-1 authorization protocol, follow
these steps to allow another user access to your server.

1. On the machine running the server, use xauth to extract an entry
corresponding to hostname:0 into a file.
For this example, hostname is anyhost and the file is xauth.info.

2. Send the file containing the entry to the user requesting access (using
Mail Tool, rcp , or some other file transfer protocol).

Note – Mailing the file containing your authorization information is a safer
method than using rcp . If you do use rcp , do not place the file in a directory
that is easily accessible by another user.

3. The other user must merge the entry into their .Xauthority file.
For this example, userhost merges xauth.info into their .Xauthority file.

Note – The auth-data is session-specific; therefore, it is valid only as long as the
server is not restarted.

Allowing Access When Using SUN-DES-1

If you are using the SUN-DES-1 authorization protocol, follow these steps to
allow another user access to your server.

1. On the machine running the server, use xhost to make the new user
known to the server.
For example, to allow new user somebody to run on myhost, type:

myhost% $OPENWINHOME/bin/xauth nextract - anyhost:0 > $HOME/ xauth.info

userhost% $OPENWINHOME/bin/xauth nmerge - < xauth.info

myhost% xhost + somebody@

98 Solaris X Window System Developer’s Guide—August 1997

7

2. The new user must use xauth to add the entry into their .Xauthority
file.
For this example, the new user somebody’s machine-independent netname is
unix.15339@EBB.Eng.Sun.COM.

Running Clients Remotely, or Locally as Another User
X clients use the value of the DISPLAY environment variable to get the name of
the server to which they should connect.

To run clients remotely, or locally as another user, follow these steps:

1. On the machine running the server, allow another user access.
Depending on which authorization protocol you use, follow the steps
outlined in either “Allowing Access When Using MIT-MAGIC-COOKIE-1”
on page 97 or “Allowing Access When Using SUN-DES-1” on page 97.

2. Set DISPLAY to the name of the host running the server.
For this example, the host is remotehost.

3. Run the client program.
The client is displayed on the remote machine, remotehost.

userhost% echo ’add myhost:0 SUN-DES-1 “unix. 15339@EBB.Eng.Sun.COM”’ | $OPENWINHOME/bin/xauth

myhost% setenv DISPLAY remotehost:0

myhost% client_program&

99

Reference Display Devices A

This appendix presents information on the Solaris reference display devices
and the visuals they export. For more information on visuals, see Chapter 3,
“Visuals on the Solaris X Server.”

Solaris Reference Display Devices
Certain display devices are considered to be reference devices in the Solaris
environment. These devices have example device handlers provided in the
Solaris Device Developer Kit (DDK). You can use the reference device handler
example code as a template for your own device handler.

The process of writing and configuring a device handler is described in the X
Server Device Developer’s Guide. The Solaris X server supports any device for
which a valid device handler is written and configured into the system.

Solaris Reference Devices and Visuals

Table A-1 lists the reference display devices and the visuals that they export.
The device name specifies the display adapter to the server, and the product
name specifies the type of display card. Note that if there is a distinct product
name for a device, the product name is used in preference to the CGn device
name (for example, TC is used, not CG8).

100 Solaris X Window System Developer’s Guide—August 1997

A

Exported depths specify the depths of the visuals advertised by the server for
screens of this particular device type. MPG (Multiple Plane Group) indicates
that the device supports multiple depth visuals. For other information on
terms used in this table, see “Glossary” on page 105.

Note – The server is configured to support a maximum of 16 displays; any
limitations you might encounter are the number of frame buffers your
hardware supports.

SPARC: Supported Reference Devices

BW2

The BW2 is a simple 1-bit frame buffer supporting monochrome monitors. The
device handler for this device exports the 1-bit StaticGray visual only.
Therefore, this is the built-in default visual. A variety of BW2 frame buffers are
available for different buses and screen resolutions, including third-party
offerings.

Table A-1 Solaris Reference Display Devices

Device Name Product Name Device Driver Bus Exported Depths

BW2 None /dev/fbs/bwtwo X SBus, VME/obio, P4 1-bit

CG3 None /dev/fbs/cgthree X SBus 8-bit

CG6 GX /dev/fbs/cgsix X SBus, P4 8-bit

CG6 GXplus/
TurboGXplus

/dev/fbs/cgsix X SBus 8-bit

CG8 TC /dev/fbs/cgeight X SBus, P4 1, 24-bit (MPG)

leo LEO /dev/fbs/leo0 SBus 1, 24-bit (MPG)

ffb FFB /dev/fbs/ffb0 SBus 1, 24-bit (MPG)

m64 PGX /dev/fbs/m64 X PCI 8-bit

vga4 VGA Not applicable ISA, EISA, MCA 8-bit

vga8 VGA Not applicable ISA, EISA, MCA 8-bit

i8514 8514/A Not applicable ISA, EISA, MCAS 8-bit

Reference Display Devices 101

A

CG3

The CG3 is a simple 8-bit indexed color, dumb frame buffer for SBus systems.
The device handler for this device exports several 8-bit visuals (listed in the
following sections). The built-in default visual is 8-bit PseudoColor.

GX Family of Devices

The GX is an 8-bit indexed color graphics accelerator, specializing in 2D and
3D wireframe, flat-shaded polygon, and general window system acceleration.
Window system acceleration is automatic; you can access other acceleration
features through Solaris graphics APIs. Several 8-bit visuals are supported, and
the built-in default visual is 8-bit PseudoColor. The GX is available for SBus
and P4 bus.

The GXplus device is similar to the GX with additional memory that can be
used for double buffering and expanded screen resolution on SBus systems.
The Solaris X server uses the GXplus to automatically accelerate X11 pixmaps
by using offscreen storage whenever possible.

TC (CG8)

The TC device possesses two separate memory buffers, or plane groups: 1-bit
monochrome and 24-bit color. Windows may be created in both plane groups;
therefore, it is an MPG device. All 1-bit and 24-bit visuals are supported.

Some (older) X11 client applications assume that color frame buffers use an
8-bit built-in default visual and do not run in color on the TC. To avoid this,
the built-in default visual is 1-bit StaticGray.

The plane groups of the TC do not conflict with each other; they are completely
separate memory buffers. OpenWindows takes advantage of this to increase
system performance by not damaging 1-bit windows when they are occluded
by 24-bit windows, and vice versa. This behavior is called minimized exposure.
Use the -nominexp option of openwin(1) to disable this behavior. If this
option is used, 1-bit windows will damage 24-bit windows and 24-bit windows
may damage 1-bit windows.

The Solaris X server also provides minimized exposure for other MPG devices,
when applicable. Use the -nominexp option of openwin with these devices.

102 Solaris X Window System Developer’s Guide—August 1997

A

Note – The X protocol states that cursor components can be arbitrarily
transformed. To enhance general system performance, the OpenWindows
server always renders the cursor in the 1-bit plane group of the TC.

x86: Supported Reference Devices

VGA

The VGA is a simple color dumb frame buffer. The server supports VGA as
8-bit indexed color with all visual types and a default of PseudoColor (vga8),
or 4-bit StaticColor (vga4). When using 8-bit mode, the resolution is most often
1024x768. Four-bit mode is often limited to a resolution of 640x480 because this
is the basic VGA graphics mode that is available on all VGA devices. Most
VGAs provide a bitsPerRGB of 6. The vga8 server is also capable of supporting
the XGA as a dumb frame buffer.

Support for VGA panning is available in modes of the 4-bit VGA. Panning
mode provides the ability to have a physical window that maps onto a larger
virtual display. Movement within the virtual display is performed by
“pushing” the mouse past the edge of the screen. The display automatically
moves the physical window in the virtual display in the direction that the
mouse was pushed until the physical window touches the edge of the virtual
boundary.

Use panning only if you are an experienced OpenWindows user. Icons and
pop-up boxes (menus, dialogs, and so on) can appear off screen with no
immediate visible notification. You must be experienced enough to recognize
these situations, and be able to recover by looking for the hidden window
objects. Pop-up pointer jumping is highly recommended while using panning.
Virtual window managers, such as olvwm or tvwm, can cause additional
confusion; do not use them.

8514/A

The 8514/A is an 8-bit indexed color graphics accelerator providing general
window system acceleration. This device provides substantially improved
performance compared to a VGA. The server limits its support of 8514/A to

Reference Display Devices 103

A

8-bit indexed color and a resolution of 1024x768 or 1280x1024. It supports all
8-bit visuals. The built-in visual is 8-bit PseudoColor. Most 8514/A accelerators
provide a bitsPerRGB of 6.

104 Solaris X Window System Developer’s Guide—August 1997

A

105

Glossary

Access Control Mechanism
An access control mechanism is a means of deciding which clients or
applications have access to the OpenWindows server. There are two different
types of access control mechanisms: user-based and host-based.

Bitmap
A bitmap is a rectangular array of elements, where each element holds either
an inside value or an outside value.

Bitmap Font
A bitmap font is a collection of bitmaps with additional information (for
example, character spacing) that defines how the bitmaps are to be used.

Bus
The bus is the system input/output (I/O) link. The display device is both
physically and logically connected to the system by the bus. The SBus, VME,
and P4 buses are used in SPARC systems. A third-party system may use a bus
other than one of these three buses.

Client
A client is an application program that connects to the window server by some
interprocess communication. It is referred to as a client of the window server.
A client can run on the same machine as the window server or it can connect to
a server running on another machine on the network. A client of the
OpenWindows server must communicate via the X11 protocol.

106 Solaris X Window System Developer’s Guide—August 1997

Client-Server Model
The most commonly used paradigm when writing distributed applications is
the client-server model. In this scheme, clients request services from a window
server process. The client and server require a protocol that must be
implemented at both ends of a connection. The OpenWindows server
implements the X11 protocol.

Color Look-Up Table
A color look-up table is a hardware device that provides a mapping between
pixel values and RGB color values. Also called a look-up table (LUT).

Colormap Flashing
Only one client colormap is installed at a given time. The windows that are
associated with the installed colormap will show their correct colors. Windows
that are associated with some other colormap may show false colors. This
display of false colors is referred to as colormap flashing.

Composite Font
A composite font is a collection of base fonts organized hierarchically.

Connection
The communication path between a client and the server.

Default Visual
The default visual is one of the visuals available on the display device. When
you start a client program, the program will usually run in the default visual
unless a different visual is specified.

Display Device
Your monitor is connected to a display device that controls what is shown on
the monitor. The display device includes memory (called a frame buffer)
dedicated to storing display information. A display device is also referred to as
a graphics adapter.

Device Driver
The device driver is the name of a device in the UNIX file system, where X is
the number of that particular device on your system. For example, if a system
had two CG3s, the first would be named /dev/fbs/cgthree0 , and the
second would be /dev/fbs/cgthree1 . If a system had one CG3 and one GX,
the CG3 would be /dev/fbs/cgthree0 and the GX /dev/fbs/cgsix0 .

Glossary 107

Event
Clients are informed of information asynchronously by means of events.
Events are grouped into types. A client must express interest in an event in
order to receive that event from the server.

Extension
An extension to the core protocol can be defined to extend the functionality of
the system.

Frame Buffer
Pixel data is typically stored in dedicated computer memory known as a frame
buffer or video memory.

Graphics Accelerator
A display device that includes circuitry to increase the rate at which images are
drawn into the frame buffer is called an accelerator, or graphics accelerator. A
graphics accelerator often includes memory and circuitry that permits
enhanced functionality, such as display of additional colors, 3D images, and
animation.

Graphics Adapter
See Display Device.

Hardware Colormap
A hardware colormap is a color LUT. (See also Color Look-Up Table).

Look-Up Table
See Color Look-Up Table.

Multi-Depth Device
The TC display device provides visuals of different depths; it is referred to as a
multiple plane group (MPG) or multi-depth device.

Multiple Plane Group
A display device that can simultaneously support more than one visual
category is known as a multiple plane group (MPG) device.

Outline Font
An outline font is a collection of ideal shapes of characters. Each shape is
defined numerically by continuous curve segments that separate the inside
from the outside of the shape. This method is in use on high-resolution devices
such as photo-typesetters.

108 Solaris X Window System Developer’s Guide—August 1997

Pixmap
A pixmap is a block of off-screen memory in the server; it is an array of pixel
values.

Plane Group
The physical memory on a display device in which the pixel data is stored is
commonly called a plane group.

Product Name
The product name identifies the type of display card.

Request
A request is a command to the server sent over a connection.

RGB
R, G, and B are the voltage levels to drive the red, green, and blue monitor
guns, respectively.

Screen
A screen is a physical monitor and hardware, which is either color or black-
and-white. A typical configuration could be a single keyboard and mouse
shared among the screens.

Software Colormap
A software colormap is a software abstraction of the color mapping process
that a color LUT provides. The software colormap can be loaded, or installed,
into a hardware color LUT. Also called a colormap.

Virtual Colormap
A software colormap that is not visible until it is installed into a hardware
color LUT.

Visual
A visual describes a way of interpreting a pixel value. The visual class and the
pixel size attribute collectively describe a visual.

Visual Category
A visual category is a grouping of all visual classes of a given pixel size. The
following visual categories are supported by OpenWindows: 1-bit, 4-bit, 8-bit,
and 24-bit.

Visual Class
A visual class is how the pixel will be displayed as a color.

Glossary 109

Window
A window provides a drawing surface to clients for text and graphics. A single
client application can use multiple windows.

Window ID Table Descriptor
A window ID (WID) table contains descriptors for visual aspects of a pixel,
such as whether it is an 8-bit pixel or a 24-bit pixel, which LUT should be used
when displaying the pixel, and whether the pixel is double-buffered.

Window Manager
Manipulation of windows on the screen and much of the user interface (policy)
is typically provided by a window manager client. The window manager
communicates only with the window server.

Window Server
A window server, or display server such as the Solaris X server, is a program
that handles the display capabilities of a machine and collects input from user
devices and other clients, and sends events to clients. The server handles all
communication with the window manager.

110 Solaris X Window System Developer’s Guide—August 1997

111

Index

Symbols
.Xauthority file 95–96

A
Adobe FTP site 23
Adobe public access file server 23
authorization protocols, See security
authorization-based access control

mechanism, See security

B
bdftopcf 46
bitmap distribution format 46
bitmap fonts 46–47
Black pixel location note 14
bus, used in SPARCsystems 105
BW2 display device, description of 100

See also display devices

C
CG3 display device, description of 101

See also display devices

CG6 display device, See GX display device
and GXplus display device

CG8 display device, See TC display device
client

running locally as another user 98
running remotely 98

client library
for DPS 18

color
color name database 14
recommendations 14

compose key support 13
compressing font files 47
contexts

and DPS 18
secure 21
three ways to share VM 21

D
DES (Data Encryption Software), with

SUN-DES-1 93
display devices

bus, used in Sun SPARCsystems 105
BW2

112 Solaris X Window System Developer’s Guide—August 1997

description of 100
CG3

description of 101
CG6, See GX and GXplus
CG8, See TC
GT

window damage note 101
GX

description of 101
GXplus

description of 101
programming hints 37
supported devices table 100
TC

description of 101
DISPLAY environment variable 98
Double Buffer Extension 5
DPS

client library 18
font enhancements 20
libraries supported 20
PostScript interpreter 18
pswrap translator 18
security issues 21

F
F3 fonts 48
font management library, definition of 3
fonts

.afm file 45

.enc file 46

.map file 46

.ps file 46

.trans file 46

.ttmap file 46

.upr file 46
and X terminals 50

default font path in X11 49
files included in openwindows 45–

46
formats 44–45
outline and bitmap 46, 47
replacing outline with bitmap 47
using F3 fonts 48

ftp program 4
ftp, accessing Adobe FTP site 23

G
GX display device, description of 101

See also display devices

GXplus display device, description of 101
See also display devices

H
host-based access control mechanism, See

security

L
libraries

DPS. list of 20
X, list of 8

M
makebdf 46
MIT-MAGIC-COOKIE-1 authorization

protocol, See security

MIT-SHM (Shared Memory) X extension 5
multiple plane group, characteristics of 37

N
NISdomainname, definition of 96

Index 113

O
openwin command

-noauth option 92, 94
outline fonts 46, 47
overlay windows

advanced features
background 59
backing store 60
border 60
choosing visuals 62–63
colormap 61
gravity 60
input distribution model 61
print capture 62

and existing pixel transfer routines
79–80

and existing primitive rendering
routines 69

basic features
creation 66
definition 57–67
viewability 58

P
portable compiled format 46

compressed files 47
PostScript interpreter 18
pswrap translator 18

R
RPC (Remote Procedure Call), with SUN-

DES-1 93

S
secure context creation 21
security 91–98

.Xauthority file 95–96, 97
contents with MIT-MAGIC-

COOKIE-1 96
contents with SUN-DES-1 96

access control mechanisms 92–93
definition of 92
how both are active 95

authorization protocols 93–94
default configuration 93
default, how to change 94

authorization-based, See user-based
clients

running locally as another user
98

running remotely 98
connection attempt error message 92
default configuration 93
determining if configuration change

is required 91
host-based, backward compatibility

92
host-based, definition of 92
MIT-MAGIC-COOKIE-1

authorization protocol 93
NISdomainname, definition of 96
-noauth option 92

weakens security warning 94
server

manipulating access 95–98
allowing access with MIT-

MAGIC-COOKIE-1 97
allowing access with SUN-DES-1

97
SUN-DES-1 authorization protocol

definition of 93–94
need to reconfigure 91

user-based, definition of 92
userid, definition of 96

114 Solaris X Window System Developer’s Guide—August 1997

xauth program 95, 97
xhost program 97

server
applications that run with 8
architecture diagram 3
DIX layer, definition of 3
font management library, definition of

3
manipulating access control 95–98
OS layer, definition of 3

server overlays 51
SHAPE X extension 5
SUN-DES-1 authorization protocol, See

security

system file access 21

T
TC display device, description of 101

See also display devices

U
user-based access control mechanism, See

security

V
virtual memory 18
visuals

default
get with XGetVisualInfo function

36
gamma-corrected 38–42
multiple plane group, characteristics

of 37
VM (virtual memory) 18, 21

shared 18

W
White pixel location note 14

X
X

applications not supported 10
applications supported 9
compose key 13
extensions

MIT-SHM (Shared Memory) 5
SHAPE 5
XInput 5
XTEST 6

libraries supported 8
terminals and fonts 50

X Consortium
extensions supported 4

xauth program 95, 97
XCopyArea, and overlay windows 80
XCopyPlane, and overlay windows 80
XDPSCreateSecureContext 22
XGetImage, and overlay windows 79
XGetVisualInfo function

list default visual 36
xhost program 97
XInput X extension 5
XOvlSelectPair 86
XTEST X extension 6

