
XGL Reference Manual

Sun Microsystems, Inc.
2550 Garcia Avenue
Mountain View, CA 94043
U.S.A.

A Sun Microsystems, Inc. Business

 1997 Sun Microsystems, Inc., 2550 Garcia Avenue, Mountain View, California 94043-1100 USA.

All rights reserved. This product or document is protected by copyright and distributed under licenses restricting its use,
copying, distribution and decompilation. No part of this product or document may be reproduced in any form by any
means without prior written authorization of Sun and its licensors, if any. Third-party software, including font technology,
is copyrighted and licensed from Sun suppliers.

Parts of the product may be derived from Berkeley BSD systems, licensed from the University of California. UNIX is a
registered trademark in the U.S. and other countries, exclusively licensed through X/Open Company, Ltd.

Sun, Sun Microsystems, the Sun logo, SunSoft, SunDocs, SunExpress, XGL, and Solaris are trademarks, registered
trademarks, or service marks of Sun Microsystems, Inc. in the U.S. and other countries. All SPARC trademarks are used
under license and are trademarks or registered trademarks of SPARC International, Inc. in the U.S. and other countries.
Products bearing SPARC trademarks are based upon an architecture developed by Sun Microsystems, Inc.

The OPEN LOOK and Sun(TM) Graphical User Interface was developed by Sun Microsystems, Inc. for its users and
licensees. Sun acknowledges the pioneering efforts of Xerox in researching and developing the concept of visual or
graphical user interfaces for the computer industry. Sun holds a non-exclusive license from Xerox to the Xerox Graphical
User Interface, which license also covers Sun’s licensees who implement OPEN LOOK GUIs and otherwise comply with
Sun’s written license agreements.

RESTRICTED RIGHTS: Use, duplication, or disclosure by the U.S. Government is subject to restrictions of FAR 52.227-
14(g)(2)(6/87) and FAR 52.227-19(6/87), or DFAR 252.227-7015(b)(6/95) and DFAR 227.7202-3(a).

DOCUMENTATION IS PROVIDED "AS IS" AND ALL EXPRESS OR IMPLIED CONDITIONS, REPRESENTATIONS AND
WARRANTIES, INCLUDING ANY IMPLIED WARRANTY OF MERCHANTABILITY, FITNESS FOR A PARTICULAR
PURPOSE OR NON-INFRINGEMENT, ARE DISCLAIMED, EXCEPT TO THE EXTENT THAT SUCH DISCLAIMERS ARE
HELD TO BE LEGALLY INVALID.

XGL Graphics Library Intro (3)

NAME intro − introduces the XGL graphics library

DESCRIPTION These Reference Manual pages describe the syntax for using the operators (functions)
and attributes in the XGL Graphics Library. Special sections immediately following this
introduction describe the XGL enumerated types, XGL macro values, XGL point list struc-
tures, and XGL data structures. The next two sections describe, in alphabetical order, the
XGL attributes and operators.

The XGL programming paradigm is built around objects, which are instances of abstract
data types. The application can create an object and apply operators to it. The applica-
tion cannot, however, extend the definition of an object or modify the behavior of opera-
tors. Therefore, XGL is not an object-oriented programming system, although its design
does incorporate some object-oriented concepts.

The XGL operators are standard C language library calls and are documented as such.
Note that some operators can take a variable number of parameters. For example, the
operator xgl_object_set is described this way:

#include <xgl/xgl.h>

void xgl_object_set (
Xgl_object obj,
<attribute-list> attributes);

The first parameter is of the type Xgl_object, which is a handle to the XGL object data.
The next argument, whose type is shown as <attribute-list>, is a variable length list of
attribute-value pairs. A zero (ASCII NULL character) is used to mark the end of the list.

Each XGL object has a set of attributes associated with it. An attribute is a named field
inside the object. The application can set an attribute’s value, or it can retrieve its value,
or both. The documentation for the XGL attributes specifies the C data type needed for
setting the attribute and the C data type needed for getting (retrieving) its value. The fol-
lowing example describes how to set and get the attribute XGL_CTX_LINE_WIDTH_SCALE_-

FACTOR(3), which controls the width of lines in the Context object.

#include <xgl/xgl.h>

Xgl_ctx ctx;

xgl_object_set(ctx, XGL_CTX_LINE_WIDTH_SCALE_FACTOR, float, 0);
xgl_object_get(ctx, XGL_CTX_LINE_WIDTH_SCALE_FACTOR, float ∗);

This notation indicates that to set the attribute value, the application passes a float, and to
get the value, the application passes a pointer to a float, which is overwritten with a new
value.

Naming Scheme The XGL library defines symbols that start with XGL, Xgl, xgl, XGLI, Xgli, and xgli. The
application program should not define any symbols (type names, enumerated values,
cpp definitions, function names, and so on) beginning with these prefixes.

modified August 1994 1

Intro (3) XGL Graphics Library

Printed Manual vs.
On-line Manual

Most attributes and operators are discussed on their own separate manual page. In some
cases, however, several related attributes are discussed together on a single manual page.
In the printed reference manual, only the page where they are discussed is printed, but
for the on-line manual, you can use man (1) for any of the topics discussed on that page.

For example, both XGL_3D_CTX_SURF_BACK_AMBIENT(3) and XGL_3D_CTX_SURF_FRONT_-

AMBIENT(3) are discussed on the page for XGL_3D_CTX_SURF_FRONT_AMBIENT(3). In the
printed reference manual, you will find only the page for XGL_3D_CTX_SURF_FRONT_-

AMBIENT(3) printed. You can look up XGL_3D_CTX_SURF_BACK_AMBIENT(3) in the index to
see where it is discussed. You can issue either of the following commands for the on-line
version, however:

man XGL_3D_CTX_SURF_BACK_AMBIENT

man XGL_3D_CTX_SURF_FRONT_AMBIENT

You can also access the following descriptions of other aspects of XGL:

Data Structures
described in xgl_struct(3)

Enumerated Types
described in xgl_enum_types(3)

Macro Values
described in xgl_macro_values(3)

Point Lists
described in xgl_pt_list(3)

Object Types
described on their individual man pages
XGL_2D_CTX(3)
XGL_3D_CTX(3)
XGL_CGM_DEV(3)
XGL_CMAP(3)
XGL_DMAP_TEXTURE(3)
XGL_GCACHE(3)
XGL_LIGHT(3)
XGL_LPAT(3)
XGL_MARKER(3)
XGL_MEM_RAS(3)
XGL_MIPMAP_TEXTURE(3)
XGL_PCACHE(3)
XGL_SFONT(3)
XGL_STREAM(3)
XGL_SYS_STATE(3)
XGL_TMAP(3)
XGL_TRANS(3)
XGL_WIN_RAS(3)

2 modified August 1994

XGL Graphics Library Intro (3)

modified August 1994 3

xgl_enum_types (3) XGL Graphics Library

NAME xgl_enum_types − XGL Enumerated Types

DESCRIPTION This section lists the different C enumerated types XGL uses. The types appear with brief
descriptions explaining their use, and they are listed by name in alphabetical order.

Accumulation Buffer Depth

typedef enum {
XGL_ACCUM_DEPTH_1X,
XGL_ACCUM_DEPTH_2X

} Xgl_accum_depth;

Arc Fill Styles

Choices available for XGL_CTX_ARC_FILL_STYLE(3). Used when rendering arcs with xgl_-
multiarc(3).

typedef enum {
XGL_ARC_OPEN,
XGL_ARC_SECTOR,
XGL_ARC_CHORD

} Xgl_arc_fill_style;

Axes Used for Rotation Transforms

typedef enum {
XGL_AXIS_X,
XGL_AXIS_Y,
XGL_AXIS_Z

} Xgl_axis;

Bounding Box Data Types

typedef enum {
XGL_BBOX_I2D,
XGL_BBOX_F2D,
XGL_BBOX_F3D,
XGL_BBOX_STATUS,
XGL_BBOX_D2D,
XGL_BBOX_D3D

} Xgl_bbox_type;

Blend Equation

typedef enum {
XGL_BLEND_NONE,
XGL_BLEND_ARBITRARY_BG,
XGL_BLEND_CONST_BG,

4 modified February 1995

XGL Graphics Library xgl_enum_types (3)

XGL_BLEND_ADD_TO_BG
} Xgl_blend_eq;

Blend Draw Modes

typedef enum {
XGL_BLEND_DRAW_ALL,
XGL_BLEND_DRAW_NOT_BLENDED,
XGL_BLEND_DRAW_BLENDED

} Xgl_blend_draw_mode;

Status Returned by xgl_context_display_gcache

typedef enum {
XGL_CACHE_NOT_CHECKED, /∗ displayed but not check ∗/
XGL_CACHE_DISPLAY_OK, /∗ display OK on this ctx ∗/
XGL_CACHE_ATTR_STATE_DIFFERENT /∗ something in this cache’s

∗ saved attribute state is
∗ different from the state in ctx ∗/

} Xgl_cache_display;

Homogeneous Color Type

typedef enum {
XGL_COLOR_RGBW

} Xgl_color_homogeneous_type;

Color Types

typedef enum {
XGL_COLOR_INDEX,
XGL_COLOR_GRAY,
XGL_COLOR_RGB,
XGL_COLOR_Z

} Xgl_color_type;

Curve Approximation Methods

Choices available for XGL_CTX_NURBS_CURVE_APPROX(3). Used when rendering curves
with xgl_nurbs_curve(3), and when rendering 3D circles using xgl_multicircle(3).

typedef enum {
XGL_CURVE_UNUSED, /∗ was XGL_CURVE_CONST_PARAM_SUBDIV ∗/
XGL_CURVE_CONST_PARAM_SUBDIV_BETWEEN_KNOTS,
XGL_CURVE_METRIC_WC,
XGL_CURVE_METRIC_VDC,
XGL_CURVE_METRIC_DC,
XGL_CURVE_CHORDAL_DEVIATION_WC,
XGL_CURVE_CHORDAL_DEVIATION_VDC,
XGL_CURVE_CHORDAL_DEVIATION_DC,

modified February 1995 5

xgl_enum_types (3) XGL Graphics Library

XGL_CURVE_RELATIVE_WC,
XGL_CURVE_RELATIVE_VDC,
XGL_CURVE_RELATIVE_DC

} Xgl_curve_approx;

Data Types

The data types supported within XGL for geometric representation of data, transforma-
tions, and internal calculations.

typedef enum {
XGL_DATA_INT, /∗ 32-bit integer ∗/
XGL_DATA_FLT, /∗ single precision floating point ∗/
XGL_DATA_DBL /∗ double precision floating point ∗/

} Xgl_data_type;

Deferral Modes

Choices available for XGL_CTX_DEFERRAL_MODE(3). Used to specify whether to buffer
rendering operations.

typedef enum {
XGL_DEFER_ASTI,
XGL_DEFER_ASAP

} Xgl_deferral_mode;

Depth Cue Modes

Choices available for XGL_3D_CTX_DEPTH_CUE_MODE(3). Used to specify the kind of
depth-cueing desired.

typedef enum {
XGL_DEPTH_CUE_OFF,
XGL_DEPTH_CUE_LINEAR,
XGL_DEPTH_CUE_SCALED

} Xgl_depth_cue_mode;

Graphics Library Error Categories

typedef enum {
XGL_ERROR_SYSTEM,
XGL_ERROR_CONFIGURATION,
XGL_ERROR_RESOURCE,
XGL_ERROR_ARITHMETIC,
XGL_ERROR_USER

} Xgl_error_category;

6 modified February 1995

XGL Graphics Library xgl_enum_types (3)

Error Types

typedef enum {
XGL_ERROR_RECOVERABLE,
XGL_ERROR_NONRECOVERABLE

} Xgl_error_type;

Facet Types

Describes type of information available with polygonal facet data.

typedef enum {
XGL_FACET_NONE,
XGL_FACET_COLOR,
XGL_FACET_NORMAL,
XGL_FACET_COLOR_NORMAL

} Xgl_facet_type;

Filter Shape

typedef enum {
XGL_FILTER_GAUSSIAN

} Xgl_filter_shape;

Modes for Storing NURBS Geometry in Gcaches

typedef enum {
XGL_GCACHE_NURBS_DYNAMIC,
XGL_GCACHE_NURBS_COMBINED,
XGL_GCACHE_NURBS_STATIC

} Xgl_gcache_nurbs_mode;

Method for Calculating Facet Normals

Choices available for XGL_3D_CTX_SURF_GEOM_NORMAL(3). Defines how facet normals are
calculated from vertex data if such normals are not provided by the application.

typedef enum {
XGL_GEOM_NORMAL_FIRST_POINTS,
XGL_GEOM_NORMAL_LAST_POINTS

} Xgl_geom_normal;

Hidden Line and Hidden Surface Mode

Choices available for XGL_3D_CTX_HLHSR_MODE(3).

typedef enum {
XGL_HLHSR_NONE,
XGL_HLHSR_Z_BUFFER

} Xgl_hlhsr_mode;

modified February 1995 7

xgl_enum_types (3) XGL Graphics Library

Inquire Support fivel

typedef enum {
XGL_INQ_NOT_SUPPORTED,
XGL_INQ_SOFTWARE,
XGL_INQ_HARDWARE

} Xgl_inq_support_level;

Rule Used for Determining Interior of Filled Polygonal Surfaces

Choice available for XGL_CTX_SURF_INTERIOR_RULE(3).

typedef enum {
XGL_EVEN_ODD

} Xgl_interior_rule;

Isoparametric Curve Distribution

typedef enum {
XGL_ISO_CURVE_BETWEEN_KNOTS, /∗ u & v iso-curves spaced between knots ∗/
XGL_ISO_CURVE_BETWEEN_LIMITS /∗ u & v iso-curves spaced between limits ∗/

} Xgl_iso_curve_placement;

Light Object Types

typedef enum {
XGL_LIGHT_AMBIENT,
XGL_LIGHT_DIRECTIONAL,
XGL_LIGHT_POSITIONAL,
XGL_LIGHT_SPOT

} Xgl_light_type;

Line Cap Types

Choices available for XGL_CTX_LINE_CAP(3). Used to specify the shape of the endpoints of
a line.

typedef enum {
XGL_CAP_BUTT,
XGL_CAP_ROUND,
XGL_CAP_SQUARE

} Xgl_line_cap;

Line Color Selector

Choices available for XGL_CTX_LINE_COLOR_SELECTOR(3). Used to specify the source of
line colors when rendering.

typedef enum {
XGL_LINE_COLOR_CONTEXT,
XGL_LINE_COLOR_VERTEX

} Xgl_line_color_sel;

8 modified February 1995

XGL Graphics Library xgl_enum_types (3)

Line Join Types

Choices available for XGL_CTX_LINE_JOIN(3). Used to specify how line segments are joined
together.

typedef enum {
XGL_JOIN_MITER,
XGL_JOIN_ROUND,
XGL_JOIN_BEVEL,
XGL_JOIN_DEVICE

} Xgl_line_join;

Line Patterns

Choices available for XGL_CTX_EDGE_STYLE(3) and XGL_CTX_LINE_STYLE(3). Used to request
rendering of patterned lines.

typedef enum {
XGL_LINE_SOLID,
XGL_LINE_PATTERNED,
XGL_LINE_ALT_PATTERNED

} Xgl_line_style;

Line Pattern Coordinate System

Choice available for XGL_LPAT_COORD_SYS(3).

typedef enum {
XGL_LPAT_DC

} Xgl_lpat_coord_sys;

Line Pattern Styles

Choices available for XGL_LPAT_STYLE(3).

typedef enum {
XGL_LPAT_FIXED_OFFSET,
XGL_LPAT_BALANCED_SEGMENT

} Xgl_lpat_style;

Line Pattern Balanced Dash

Choices available for XGL_LPAT_BALANCED_DASH(3).

typedef enum {
XGL_LPAT_BAL_DASH_0,
XGL_LPAT_BAL_DASH_1

} Xgl_lpat_bal_dash;

Marker Color Selector

Choices available for XGL_CTX_MARKER_COLOR_SELECTOR(3). Used to specify the source
of marker colors when rendering.

modified February 1995 9

xgl_enum_types (3) XGL Graphics Library

typedef enum {
XGL_MARKER_COLOR_CONTEXT,
XGL_MARKER_COLOR_POINT

} Xgl_marker_color_sel;

Multiarc Types

typedef enum {
XGL_MULTIARC_I2D,
XGL_MULTIARC_F2D,
XGL_MULTIARC_D2D,
XGL_MULTIARC_F3D,
XGL_MULTIARC_AF3D,
XGL_MULTIARC_D3D,
XGL_MULTIARC_AD3D

} Xgl_multiarc_type;

Multicircle Types

typedef enum {
XGL_MULTICIRCLE_I2D,
XGL_MULTICIRCLE_F2D,
XGL_MULTICIRCLE_D2D,
XGL_MULTICIRCLE_F3D,
XGL_MULTICIRCLE_AF3D,
XGL_MULTICIRCLE_D3D,
XGL_MULTICIRCLE_AD3D

} Xgl_multicircle_type;

Multielliptical Arc Types

typedef enum {
XGL_MULTIELLARC_F3D,
XGL_MULTIELLARC_AF3D,
XGL_MULTIELLARC_D3D,
XGL_MULTIELLARC_AD3D

} Xgl_multiell_type;

Multirectangle Types

typedef enum {
XGL_MULTIRECT_I2D,
XGL_MULTIRECT_F2D,
XGL_MULTIRECT_D2D,
XGL_MULTIRECT_F3D,
XGL_MULTIRECT_AF3D,
XGL_MULTIRECT_D3D,
XGL_MULTIRECT_AD3D

10 modified February 1995

XGL Graphics Library xgl_enum_types (3)

} Xgl_multirect_type;

NURBS Surface Types

typedef enum {
XGL_SURF_NURBS,
XGL_SURF_PLANAR,
XGL_SURF_CYLINDRICAL,
XGL_SURF_CONICAL,
XGL_SURF_SPHERICAL

} Xgl_nurbs_surf_type;

XGL Object Types

typedef enum {
XGL_OBJ, /∗ Generic object (not valid in xgl_object_create()) ∗/
XGL_2D_CTX, /∗ 2D Xgl context ∗/
XGL_3D_CTX, /∗ 3D Xgl context ∗/
XGL_MEM_RAS, /∗ Memory raster device ∗/
XGL_WIN_RAS, /∗ Window raster device ∗/
XGL_STREAM, /∗ Stream device ∗/
XGL_CMAP, /∗ Color map ∗/
XGL_TRANS, /∗ Transform ∗/
XGL_LIGHT, /∗ Light ∗/
XGL_MARKER, /∗ Marker ∗/
XGL_SFONT, /∗ Stroke font ∗/
XGL_LPAT, /∗ Line pattern ∗/
XGL_SYS_STATE, /∗ System state ∗/
XGL_GCACHE, /∗ Geometry Cache ∗/
XGL_DMAP_TEXTURE, /∗ Data Map Texture ∗/
XGL_MIPMAP_TEXTURE, /∗ MipMap Texture ∗/
XGL_TMAP, /∗ Texture Map ∗/
XGL_PCACHE /∗ Primitive Cache ∗/

} Xgl_obj_type;

Paint Types

Choices available for XGL_CTX_PAINT_TYPE(3).

typedef enum {
XGL_PAINT_TRANSPARENT,
XGL_PAINT_OPAQUE

} Xgl_paint_type;

Picking Methods

Choices available for XGL_CTX_PICK_STYLE(3). Used to specify how pick events are stored
in the pick buffer.

modified February 1995 11

xgl_enum_types (3) XGL Graphics Library

typedef enum {
XGL_PICK_LAST_N,
XGL_PICK_FIRST_N

} Xgl_pick_style;

Picking Surface Styles

typedef enum {
XGL_PICK_SURF_AS_SOLID,
XGL_PICK_SURF_AS_FILL_STYLE

} Xgl_pick_surf_style;

Polygon Types

Choices available for XGL_GCACHE_POLYGON_TYPE(3).

typedef enum {
XGL_POLYGON_COMPLEX, /∗ General, complex polygon ∗/
XGL_POLYGON_NSI /∗ Not Self Intersecting complex polygon ∗/

} Xgl_polygon_type;

Primitive Types

Choices available for XGL_GCACHE_ORIG_PRIM_TYPE(3) and XGL_GCACHE_DISPLAY_PRIM_-

TYPE(3).

typedef enum {
XGL_PRIM_NONE,
XGL_PRIM_MULTIMARKER,
XGL_PRIM_MULTIPOLYLINE,
XGL_PRIM_NURBS_CURVE,
XGL_PRIM_MULTIRECTANGLE,
XGL_PRIM_MULTIARC,
XGL_PRIM_MULTICIRCLE,
XGL_PRIM_ELLIPTICAL_ARC,
XGL_PRIM_MULTI_SIMPLE_POLYGON,
XGL_PRIM_POLYGON,
XGL_PRIM_TRIANGLE_LIST,
XGL_PRIM_TRIANGLE_STRIP,
XGL_PRIM_QUADRILATERAL_MESH,
XGL_PRIM_NURBS_SURFACE,
XGL_PRIM_STROKE_TEXT,
XGL_PRIM_ANNOTATION_TEXT,
XGL_PRIM_IMAGE

} Xgl_primitive_type;

Point Types

typedef enum {
XGL_PT_I2D,
XGL_PT_COLOR_I2D,

12 modified February 1995

XGL Graphics Library xgl_enum_types (3)

XGL_PT_FLAG_I2D,
XGL_PT_I2H,
XGL_PT_F2D,
XGL_PT_COLOR_F2D,
XGL_PT_FLAG_F2D,
XGL_PT_F2H,
XGL_PT_F3D,
XGL_PT_COLOR_F3D,
XGL_PT_NORMAL_F3D,
XGL_PT_COLOR_NORMAL_F3D,
XGL_PT_FLAG_F3D,
XGL_PT_COLOR_FLAG_F3D,
XGL_PT_NORMAL_FLAG_F3D,
XGL_PT_COLOR_NORMAL_FLAG_F3D,
XGL_PT_F3H,
XGL_PT_DATA_F3D,
XGL_PT_COLOR_DATA_F3D,
XGL_PT_NORMAL_DATA_F3D,
XGL_PT_COLOR_NORMAL_DATA_F3D,
XGL_PT_FLAG_DATA_F3D,
XGL_PT_COLOR_FLAG_DATA_F3D,
XGL_PT_NORMAL_FLAG_DATA_F3D,
XGL_PT_COLOR_NORMAL_FLAG_DATA_F3D,
XGL_PT_D2D,
XGL_PT_COLOR_D2D,
XGL_PT_FLAG_D2D,
XGL_PT_D2H,
XGL_PT_D3D,
XGL_PT_COLOR_D3D,
XGL_PT_NORMAL_D3D,
XGL_PT_COLOR_NORMAL_D3D,
XGL_PT_FLAG_D3D,
XGL_PT_COLOR_FLAG_D3D,
XGL_PT_NORMAL_FLAG_D3D,
XGL_PT_COLOR_NORMAL_FLAG_D3D,
XGL_PT_D3H

} Xgl_pt_type;

Raster Fill Styles

Choices available for XGL_CTX_RASTER_FILL_STYLE(3).

typedef enum {
XGL_RAS_FILL_COPY,
XGL_RAS_FILL_STIPPLE,
XGL_RAS_FILL_OPAQUE_STIPPLE
XGL_RAS_FILL_STENCIL

modified February 1995 13

xgl_enum_types (3) XGL Graphics Library

} Xgl_raster_fill_style;

Color to Modify During Texture Mapping

typedef enum {
XGL_RENDER_COMP_DIFFUSE_COLOR,
XGL_RENDER_COMP_REFLECTED_COLOR,
XGL_RENDER_COMP_FINAL_COLOR

} Xgl_render_component;

Rendering Order of Graphics Primitives

Choices available for XGL_CTX_RENDERING_ORDER(3).

typedef enum {
XGL_RENDERING_ORDER_GIVEN,
XGL_RENDERING_ORDER_HLHSR,
XGL_RENDERING_ORDER_ANY

} Xgl_rendering_order;

Stereo Setting

typedef enum {
XGL_STEREO_NONE,
XGL_STEREO_LEFT,
XGL_STEREO_RIGHT

} Xgl_stereo_mode;

Surface Approximation Methods

typedef enum {
XGL_SURF_UNUSED, /∗ was XGL_SURF_CONST_PARAM_SUBDIV ∗/
XGL_SURF_CONST_PARAM_SUBDIV_BETWEEN_KNOTS,
XGL_SURF_METRIC_WC,
XGL_SURF_METRIC_VDC,
XGL_SURF_METRIC_DC,
XGL_SURF_PLANAR_DEVIATION_WC,
XGL_SURF_PLANAR_DEVIATION_VDC,
XGL_SURF_PLANAR_DEVIATION_DC,
XGL_SURF_RELATIVE_WC,
XGL_SURF_RELATIVE_VDC,
XGL_SURF_RELATIVE_DC

} Xgl_surf_approx;

Surface Color Selector

Choices available for XGL_CTX_SURF_FRONT_COLOR_SELECTOR(3) and XGL_3D_CTX_SURF_-

BACK_COLOR_SELECTOR(3). Used to specify the source of surface colors when rendering.

14 modified February 1995

XGL Graphics Library xgl_enum_types (3)

typedef enum {
XGL_SURF_COLOR_CONTEXT,
XGL_SURF_COLOR_FACET,
XGL_SURF_COLOR_VERTEX_ILLUM_DEP,
XGL_SURF_COLOR_VERTEX_ILLUM_INDEP

} Xgl_surf_color_sel;

Surface Cull Modes

Choices available for XGL_3D_CTX_SURF_FACE_CULL(3).

typedef enum {
XGL_CULL_OFF,
XGL_CULL_FRONT,
XGL_CULL_BACK

} Xgl_surf_cull_mode;

Fill Styles for Polygonal Facets

Choices available for XGL_CTX_SURF_FRONT_FILL_STYLE(3) and other fill style attributes.

typedef enum {
XGL_SURF_FILL_SOLID,
XGL_SURF_FILL_STIPPLE,
XGL_SURF_FILL_OPAQUE_STIPPLE,
XGL_SURF_FILL_PATTERN,
XGL_SURF_FILL_HOLLOW,
XGL_SURF_FILL_EMPTY

} Xgl_surf_fill_style;

Illumination Type for Surfaces

Choices available for XGL_3D_CTX_SURF_FRONT_ILLUMINATION(3).

typedef enum {
XGL_ILLUM_NONE,
XGL_ILLUM_NONE_INTERP_COLOR,
XGL_ILLUM_PER_FACET,
XGL_ILLUM_PER_VERTEX

} Xgl_surf_illumination;

Stroke Text Types

Annotation text styles.

typedef enum {
XGL_ATEXT_STYLE_NORMAL,
XGL_ATEXT_STYLE_LINE

}Xgl_atext_style;

modified February 1995 15

xgl_enum_types (3) XGL Graphics Library

Horizontal text alignment for stroke fonts.

typedef enum {
XGL_STEXT_ALIGN_HORIZ_LEFT,
XGL_STEXT_ALIGN_HORIZ_CENTER,
XGL_STEXT_ALIGN_HORIZ_RIGHT,
XGL_STEXT_ALIGN_HORIZ_NORMAL

} Xgl_stext_align_horiz;

Vertical text alignment for stroke fonts.

typedef enum {
XGL_STEXT_ALIGN_VERT_TOP,
XGL_STEXT_ALIGN_VERT_CAP,
XGL_STEXT_ALIGN_VERT_HALF,
XGL_STEXT_ALIGN_VERT_BASE,
XGL_STEXT_ALIGN_VERT_BOTTOM,
XGL_STEXT_ALIGN_VERT_NORMAL

} Xgl_stext_align_vert;

Text path for stroke fonts.

typedef enum {
XGL_STEXT_PATH_RIGHT,
XGL_STEXT_PATH_LEFT,
XGL_STEXT_PATH_UP,
XGL_STEXT_PATH_DOWN

} Xgl_stext_path;

Text precision for stroke fonts.

typedef enum {
XGL_STEXT_PRECISION_STROKE

} Xgl_stext_precision;

Boundary Operation for Texture Mapping

typedef enum {
XGL_TEXTURE_BOUNDARY_CLAMP,
XGL_TEXTURE_BOUNDARY_WRAP,
XGL_TEXTURE_BOUNDARY_TRANSPARENT,
XGL_TEXTURE_BOUNDARY_MIRROR,
XGL_TEXTURE_BOUNDARY_CLAMP_BOUNDARY

} Xgl_texture_boundary;

Coordinate Source for Texture Mapping

typedef enum {
XGL_TEXTURE_COORD_VERTEX,
XGL_TEXTURE_COORD_NORMAL,

16 modified February 1995

XGL Graphics Library xgl_enum_types (3)

XGL_TEXTURE_COORD_DATA
} Xgl_texture_coord_source;

Domain for Texture Mapping

typedef enum {
XGL_TEXTURE_COLOR

} Xgl_texture_domain;

Interpolation Method for Texture Mapping

typedef enum {
XGL_TEXTURE_INTERP_POINT,
XGL_TEXTURE_INTERP_BILINEAR,
XGL_TEXTURE_INTERP_MIPMAP_POINT,
XGL_TEXTURE_INTERP_MIPMAP_BILINEAR,
XGL_TEXTURE_INTERP_MIPMAP_TRILINEAR,
XGL_TEXTURE_INTERP_MIPMAP_PT_LINEAR

} Xgl_texture_interp_method;

Operation for Texture Mapping

typedef enum {
XGL_TEXTURE_OP_NONE,
XGL_TEXTURE_OP_MODULATE,
XGL_TEXTURE_OP_REPLACE,
XGL_TEXTURE_OP_DECAL,
XGL_TEXTURE_OP_BLEND,
XGL_TEXTURE_OP_DECAL_INTRINSIC,
XGL_TEXTURE_OP_BLEND_INTRINSIC

} Xgl_texture_op;

Parameterization Type for Texture Mapping

typedef enum {
XGL_TEXTURE_PARAM_EXPLICIT,
XGL_TEXTURE_PARAM_REFLECT_SPHERE_EC,
XGL_TEXTURE_PARAM_REFLECT_SPHERE_WC,
XGL_TEXTURE_PARAM_LINEAR_EC

} Xgl_texture_param_type;

Texture Perspective Correction

typedef enum {
XGL_TEXTURE_PERSP_NONE,
XGL_TEXTURE_PERSP_PIXEL,
XGL_TEXTURE_PERSP_NO_INTERP

} Xgl_texture_persp_correction;

modified February 1995 17

xgl_enum_types (3) XGL Graphics Library

Type of Texture Mapping

typedef enum {
XGL_TEXTURE_TYPE_MIPMAP

} Xgl_texture_type;

Transform Types

Transform spatial dimensions.

typedef enum {
XGL_TRANS_2D,
XGL_TRANS_3D

} Xgl_trans_dimension;

Methods for updating transforms using operators scale, rotate, translate.

typedef enum {
XGL_TRANS_REPLACE,
XGL_TRANS_PRECONCAT,
XGL_TRANS_POSTCONCAT

} Xgl_trans_update;

Transparent Primitives Methods

typedef enum {
XGL_TRANSP_NONE,
XGL_TRANSP_SCREEN_DOOR,
XGL_TRANSP_BLENDED

} Xgl_transp_method;

Trim Curve Approximation Methods

typedef enum {
XGL_TRIM_CURVE_CONST_PARAM_SUBDIV_BETWEEN_KNOTS, /∗ static tessellation ∗/
XGL_TRIM_CURVE_VIEW_DEPENDENT /∗ dynamic tessellation ∗/

} Xgl_trim_curve_approx;

Window Resizing Policy for Mapping VDC to DC

Choices available for XGL_CTX_VDC_MAP(3).

typedef enum {
XGL_VDC_MAP_OFF,
XGL_VDC_MAP_ALL,
XGL_VDC_MAP_ASPECT,
XGL_VDC_MAP_DEVICE

} Xgl_vdc_map;

Orientations for Virtual Device Coordinates

18 modified February 1995

XGL Graphics Library xgl_enum_types (3)

Choices available for XGL_CTX_VDC_ORIENTATION(3).

typedef enum {
XGL_Y_DOWN_Z_AWAY,
XGL_Y_UP_Z_TOWARD

} Xgl_vdc_orientation;

Z-buffer Comparison Methods

typedef enum {
XGL_Z_COMP_LESS_THAN,
XGL_Z_COMP_LESS_THAN_OR_EQUAL,
XGL_Z_COMP_EQUAL,
XGL_Z_COMP_GREATER_THAN,
XGL_Z_COMP_GREATER_THAN_OR_EQUAL,
XGL_Z_COMP_NOT_EQUAL,
XGL_Z_COMP_NEVER,
XGL_Z_COMP_ALWAYS

} Xgl_z_comp_method;

SEE ALSO xgl_macro_values(3)
xgl_pt_list(3)
xgl_struct(3)

modified February 1995 19

xgl_enum_types (3) XGL Graphics Library

20 modified February 1995

XGL Graphics Library xgl_macro_values (3)

NAME xgl_macro_values − XGL macro values

DESCRIPTION This section lists the different macro values XGL uses. The values appear with brief
descriptions explaining their use, and they are listed by name in alphabetical order.

Buffer Selector

typedef Xgl_sgn32 Xgl_buffer_sel;
XGL_BUFFER_SEL_Z
XGL_BUFFER_SEL_ACCUM
XGL_BUFFER_SEL_DRAW
XGL_BUFFER_SEL_DISPLAY
XGL_BUFFER_SEL_NONE

Stroke Text Types

Character encoding schemes.

typedef Xgl_usgn32 Xgl_char_encoding;
XGL_CHAR_MBY
XGL_CHAR_ISO
XGL_SINGLE_STR
XGL_MULTI_STR

Flags for Enabling View Clip Planes

typedef Xgl_usgn32 Xgl_clip_planes;
XGL_CLIP_XMIN
XGL_CLIP_XMAX
XGL_CLIP_YMIN
XGL_CLIP_YMAX
XGL_CLIP_ZMIN
XGL_CLIP_ZMAX

Context New Frame Action

typedef Xgl_usgn32 Xgl_ctx_new_frame_action;
XGL_CTX_NEW_FRAME_NONE
XGL_CTX_NEW_FRAME_VRETRACE
XGL_CTX_NEW_FRAME_CLEAR
XGL_CTX_NEW_FRAME_HLHSR_ACTION
XGL_CTX_NEW_FRAME_SWITCH_BUFFER

Facet Flags

Describes the different facet flags to speed up polygon display.

modified February 1995 21

xgl_macro_values (3) XGL Graphics Library

typedef Xgl_usgn32 Xgl_facet_flags;

/∗ mask and flags for facet sides ∗/
XGL_FACET_FLAG_SIDES_MASK
XGL_FACET_FLAG_SIDES_UNSPECIFIED
XGL_FACET_FLAG_SIDES_ARE_3
XGL_FACET_FLAG_SIDES_ARE_4

/∗ mask and flags for convexity information ∗/
XGL_FACET_FLAG_SHAPE_MASK
XGL_FACET_FLAG_SHAPE_UNKNOWN
XGL_FACET_FLAG_SHAPE_NONCONVEX
XGL_FACET_FLAG_SHAPE_CONVEX

/∗ mask and flags to indicate that Facet Normals are consistent ∗/
XGL_FACET_FLAG_FN_CONSISTENT_MASK
XGL_FACET_FLAG_FN_NOT_CONSISTENT
XGL_FACET_FLAG_FN_CONSISTENT

/∗ mask and flags for geometry data ∗/
XGL_FACET_FLAG_DATA_CONTIG_MASK
XGL_FACET_FLAG_DATA_NOT_CONTIG
XGL_FACET_FLAG_DATA_CONTIG

/∗ OR all facet flag mask ∗/
XGL_FACET_FLAG_ALL_MASKS

Flush Action

typedef Xgl_usgn32 Xgl_flush_action;
XGL_FLUSH_GEOM_DATA
XGL_FLUSH_BUFFERS
XGL_FLUSH_SYNCHRONIZE

Geometry Status

Geometry status for bounding box and facet orientation.

typedef Xgl_usgn32 Xgl_geom_status;
XGL_GEOM_STATUS_VIEW_ACCEPT
XGL_GEOM_STATUS_VIEW_REJECT
XGL_GEOM_STATUS_VIEW_SMALL
XGL_GEOM_STATUS_MODEL_ACCEPT
XGL_GEOM_STATUS_MODEL_REJECT
XGL_GEOM_STATUS_FACING_FRONT
XGL_GEOM_STATUS_FACING_BACK

22 modified February 1995

XGL Graphics Library xgl_macro_values (3)

Light Enable Component

typedef Xgl_usgn32 Xgl_light_enable_component;
XGL_LIGHT_ENABLE_COMP_AMBIENT
XGL_LIGHT_ENABLE_COMP_DIFFUSE
XGL_LIGHT_ENABLE_COMP_SPECULAR

Flags For Updating the Context Model Transforms

typedef Xgl_usgn32 Xgl_model_trans_request;
XGL_MTR_PUSH
XGL_MTR_POP
XGL_MTR_LOCAL_TRANS
XGL_MTR_GLOBAL_TRANS
XGL_MTR_NEW_LEVEL

NURBS Surface Styles

typedef Xgl_usgn32 Xgl_nurbs_surf_param_style;
XGL_SURF_PLAIN
XGL_SURF_ISO_CURVES
XGL_SURF_MC_LEVEL_CURVES
XGL_SURF_WC_LEVEL_CURVES
XGL_SURF_SHOW_TESSELLATION
XGL_SURF_INCR_SILHOUETTE_TESS
XGL_SURF_DEVICE_DEPENDENT

Render Mode
typedef Xgl_usgn32 Xgl_render_mode;

XGL_RENDER_DISPLAY_BUFFER
XGL_RENDER_DRAW_BUFFER
XGL_RENDER_Z_BUFFER
XGL_RENDER_ACCUM_BUFFER

Raster Operations (Two Styles: Pixrect and X11)

typedef Xgl_usgn32 Xgl_rop_mode;

/∗ Raster operations (Pixrect): XGL_ROP_SRC and XGL_ROP_DST can be combined
∗ with the C the binary operators |, &, ˆ, and the macro XGL_ROP_NOT.
∗/

XGL_ROP_CLR
XGL_ROP_SET
XGL_ROP_NOT(op)
XGL_ROP_SRC
XGL_ROP_DST

/∗ Raster operations (X11) ∗/
XGL_ROP_CLEAR

modified February 1995 23

xgl_macro_values (3) XGL Graphics Library

XGL_ROP_AND
XGL_ROP_AND_REVERSE
XGL_ROP_AND_INVERTED
XGL_ROP_XOR
XGL_ROP_OR
XGL_ROP_NOR
XGL_ROP_EQUIV
XGL_ROP_INVERT
XGL_ROP_OR_REVERSE
XGL_ROP_COPY_INVERTED
XGL_ROP_OR_INVERTED
XGL_ROP_NAND

Triangle List Global Flag Word

typedef Xgl_usgn32 Xgl_tlist_flags;

/∗ mutually exclusive tri_list flag bits ∗/
XGL_TLIST_FLAG_TRI_RESTART
XGL_TLIST_FLAG_TRI_STRIP
XGL_TLIST_FLAG_TRI_STAR
XGL_TLIST_FLAG_USE_VTX_FLAGS
XGL_TLIST_FLAG_TRI_MASK

/∗ other tri_list flag bits ∗/
XGL_TLIST_FLAG_EDGES_ON
XGL_TLIST_FLAG_IS_PLANAR

/∗ mask and flag to indicate that Facet Normals are consistent ∗/
XGL_TLIST_FLAG_FN_CONSISTENT_MASK
XGL_TLIST_FLAG_FN_NOT_CONSISTENT
XGL_TLIST_FLAG_FN_CONSISTENT

XGL_TLIST_FLAG_ALL_MASKS

Transform Memberships

typedef Xgl_usgn32 Xgl_trans_member;
XGL_TRANS_MEMBER_IDENTITY
XGL_TRANS_MEMBER_TRANSLATION
XGL_TRANS_MEMBER_SCALE
XGL_TRANS_MEMBER_ROTATION
XGL_TRANS_MEMBER_WINDOW
XGL_TRANS_MEMBER_SHEAR_SCALE
XGL_TRANS_MEMBER_LENGTH_PRESERV
XGL_TRANS_MEMBER_ANGLE_PRESERV
XGL_TRANS_MEMBER_AFFINE

24 modified February 1995

XGL Graphics Library xgl_macro_values (3)

XGL_TRANS_MEMBER_LIM_PERSPECTIVE

Macros and Defines for Setting Vertex Flags

XGL_VERTEX_PICK_BITS /∗ bits used to encode vertex pick info ∗/

XGL_DRAW_EDGE /∗ edge from v(n) to v(n-1) ∗/
XGL_DRAW_PREV_EDGE /∗ other edge for strips/stars/quads ∗/
XGL_DRAW_BOTH_EDGES

XGL_TRIANGLE_STRIP /∗ per-vertex triangle star ∗/
XGL_TRIANGLE_STAR /∗ per-vertex triangle strip ∗/
XGL_TRIANGLE_RESTART /∗ per-vertex independent triangles ∗/

/∗ For restartable triangles see XGL_RESTART_TRIANGLE(PT) below ∗/
XGL_STAR_AND_BOTH_EDGES (XGL_TRIANGLE_STAR | XGL_DRAW_BOTH_EDGES)
XGL_STRIP_AND_BOTH_EDGES (XGL_TRIANGLE_STRIP | XGL_DRAW_BOTH_EDGES)

XGL_FACE_IS_CCW /∗ face orientation ∗/
XGL_EDGE_IS_INTERNAL /∗ edge from v(n) to v(n-1) is internal ∗/
XGL_PREV_EDGE_IS_INTERNAL /∗ other edge is internal ∗/

/∗ modify the following to set bits that copy convert should keep ∗/
XGL_PRESERVED_FLAG_BITS (XGL_STAR_AND_BOTH_EDGES | XGL_VERTEX_PICK_BITS)

/∗ use the following macros to set and get pick vertex values from vertex flags ∗/
XGL_SET_VERTEX_PICK(PICK_VAL) (PICK_VAL << 16) /∗ shift PICK_VAL to proper bits for FLAG ∗/

XGL_GET_VERTEX_PICK(FLAG) ((FLAG >> 16) & 0xffff) /∗ get pick value bits from FLAG ∗/

XGL_SET_EDGE_FLAG(PT) (PT)->flag |= XGL_DRAW_EDGE;

XGL_SET_PREV_EDGE_FLAG(PT) (PT)->flag |= XGL_DRAW_PREV_EDGE;

XGL_SET_BOTH_EDGE_FLAGS(PT) (PT)->flag |= XGL_DRAW_BOTH_EDGES;

XGL_SET_TRI_STAR_FLAG(PT) (PT)->flag |= XGL_TRIANGLE_STAR;

XGL_SET_TRI_STRIP_FLAG(PT) (PT)->flag |= XGL_TRIANGLE_STRIP;

XGL_CLR_EDGE_FLAG(PT) (PT)->flag &= ˜XGL_DRAW_EDGE;

XGL_CLR_PREV_EDGE_FLAG(PT) (PT)->flag &= ˜XGL_DRAW_PREV_EDGE;

XGL_CLR_BOTH_EDGE_FLAGS(PT) (PT)->flag &= ˜XGL_DRAW_BOTH_EDGES;

modified February 1995 25

xgl_macro_values (3) XGL Graphics Library

XGL_CLR_TRI_STAR_FLAG(PT) (PT)->flag &= ˜XGL_TRIANGLE_STAR;

XGL_CLR_TRI_STRIP_FLAG(PT) (PT)->flag &= ˜XGL_TRIANGLE_STRIP;

XGL_RESTART_TRIANGLE(PT) (PT)->flag &= ˜(XGL_TRIANGLE_STRIP | XGL_TRIANGLE_STAR);

Window Types

Choice available for XGL_WIN_RAS_TYPE(3).

typedef Xgl_usgn32 Xgl_window_type;
XGL_WIN_X

/∗ Protocols are in the upper 24 bits ∗/
XGL_WIN_PROTO_MASK

/∗ WIN_X protocols ∗/
XGL_WIN_X_PROTO_DEFAULT
XGL_WIN_X_PROTO_XLIB
XGL_WIN_X_PROTO_PEX
XGL_WIN_X_PROTO_DGA

SEE ALSO xgl_enum_types(3)
xgl_pt_list(3)
xgl_struct(3)

26 modified February 1995

XGL Graphics Library xgl_pt_list (3)

NAME xgl_pt_list − structure used to pass vertex information to several XGL primitives

SYNOPSIS #include <xgl/xgl.h>

typedef struct {
Xgl_pt_type pt_type;
Xgl_bbox ∗bbox;
Xgl_usgn32 num_pts;
Xgl_usgn32 num_data_values;
Xgl_pt_ptr_union pts;

} Xgl_pt_list;

DESCRIPTION Xgl_pt_list is the structure used to pass vertex information to the following XGL primi-
tives:

xgl_multi_simple_polygon(3)
xgl_multimarker(3)
xgl_multipolyline(3)
xgl_polygon(3)
xgl_quadrilateral_mesh(3)
xgl_triangle_list(3)
xgl_triangle_strip(3)

Other XGL primitives (for example, xgl_multiarc(3)) use more specialized data structures
to define their associated vertex information. Still other XGL primitives (for example,
xgl_nurbs_curve(3)) restrict the possible point types to a subset of the types listed here.

Double point types (d2d and d3d) are not supported for any primitives except for the
Transform primitives.

DATA implies the use of a texture map value.

The individual members of Xgl_pt_list are defined as follows:

pt_type Specifies the point type of the vertex information stored in the array pts. One of
38 different point types can be used, 12 for 2D Contexts, 26 for 3D Contexts. The
enumerated type Xgl_pt_type specifies the 38 types available (see table below for
a listing of all available types). The point type names are formed by combining
words and abbreviations that specify the information available within the vertex
information.

Colors, normals, data, and flags can be included within the vertex information
(the flags specify whether edges will be drawn). The vertex position information
can be specified in one of three data types: Integer (I), Floating Point (F), or
Fixed-Point Binary (B). It can be 2D or 3D, and it can be homogeneous (H). As an
example, vertex information that contains floating point x-, y-, and z- coordinate
information (3D), with colors and normals included for each vertex, have a type
name of: XGL_PT_COLOR_NORMAL_F3D.

bbox Specifies a bounding box that surrounds all of the vertices within this point list.
This entry is optional; it saves some checking for XGL. If the user doesn’t specify

modified January 1995 27

xgl_pt_list (3) XGL Graphics Library

this field, it should be NULL. If the bounding box is given, it is the application’s
responsibility to ensure that it is correct.

In releases of XGL before 3.0, if an application provided a bounding box, then
bbox was a pointer to a structure of type Xgl_bbox. In XGL 3.0 and subsequent
releases, this approach is still supported for backward compatibility, but applica-
tions now can store bounding box information in any of six new structures,
which are similar to Xgl_bbox:

Xgl_bbox_i2d
Xgl_bbox_f2d
Xgl_bbox_f3d
Xgl_bbox_status
Xgl_bbox_d2d
Xgl_bbox_d3d

In place of a structure of type Xgl_bbox, an application can use one of the above
structures. For example, if an application uses a variable called bbox_f2d of type
Xgl_bbox_f2d, it needs to cast the pointer to this structure using (Xgl_bbox ∗)
(&bbox_f2d) before passing the information to XGL.

num_pts
The number of vertices stored in the array pts.

num_data_values
The number of data values at each point. This is ignored if pt_type does not have
data.

pts A pointer to an array of vertex information. The type Xgl_pt_ptr_union is a union
of pointers to different point types. It is a structure defined in xgl_struct(3) as
follows:

typedef union {
Xgl_pt_i2d ∗i2d;
Xgl_pt_color_i2d ∗color_i2d;
Xgl_pt_flag_i2d ∗flag_i2d;
Xgl_pt_i2h ∗i2h;

Xgl_pt_f2d ∗f2d;
Xgl_pt_color_f2d ∗color_f2d;
Xgl_pt_flag_f2d ∗flag_f2d;
Xgl_pt_f2h ∗f2h;
Xgl_pt_f3d ∗f3d;
Xgl_pt_color_f3d ∗color_f3d;
Xgl_pt_normal_f3d ∗normal_f3d;
Xgl_pt_color_normal_f3d ∗color_normal_f3d;
Xgl_pt_flag_f3d ∗flag_f3d;
Xgl_pt_color_flag_f3d ∗color_flag_f3d;
Xgl_pt_normal_flag_f3d ∗normal_flag_f3d;
Xgl_pt_color_normal_flag_f3d ∗color_normal_flag_f3d;

28 modified January 1995

XGL Graphics Library xgl_pt_list (3)

Xgl_pt_f3h ∗f3h;
Xgl_pt_data_f3d ∗data_f3d;
Xgl_pt_color_data_f3d ∗color_data_f3d;
Xgl_pt_normal_data_f3d ∗normal_data_f3d;
Xgl_pt_color_normal_data_f3d ∗color_normal_data_f3d;
Xgl_pt_flag_data_f3d ∗flag_data_f3d;
Xgl_pt_color_flag_data_f3d ∗color_flag_data_f3d;
Xgl_pt_normal_flag_data_f3d ∗normal_flag_data_f3d;
Xgl_pt_color_normal_flag_data_f3d ∗color_normal_flag_data_f3d;

Xgl_pt_d2d ∗d2d;
Xgl_pt_color_d2d ∗color_d2d;
Xgl_pt_flag_d2d ∗flag_d2d;
Xgl_pt_d2h ∗d2h;
Xgl_pt_d3d ∗d3d;
Xgl_pt_color_d3d ∗color_d3d;
Xgl_pt_normal_d3d ∗normal_d3d;
Xgl_pt_color_normal_d3d ∗color_normal_d3d;
Xgl_pt_flag_d3d ∗flag_d3d;
Xgl_pt_color_flag_d3d ∗color_flag_d3d;
Xgl_pt_normal_flag_d3d ∗normal_flag_d3d;
Xgl_pt_color_normal_flag_d3d ∗color_normal_flag_d3d;
Xgl_pt_d3h ∗d3h;
Xgl_pt_data_d3d ∗data_d3d;

} Xgl_pt_ptr_union;

The tables below show how to use the pts member of the XGL point list structure:

For a 2D Context, the valid point types are:

Field Name Type Point Type
��
pts.i2d Xgl_pt_i2d ∗ XGL_PT_I2D

pts.color_i2d Xgl_pt_color_i2d ∗ XGL_PT_COLOR_I2D

pts.flag_i2d Xgl_pt_flag_i2d ∗ XGL_PT_FLAG_I2D

pts.i2h Xgl_pt_i2h ∗ XGL_PT_I2H

pts.f2d Xgl_pt_f2d ∗ XGL_PT_F2D

pts.color_f2d Xgl_pt_color_f2d ∗ XGL_PT_COLOR_F2D

pts.flag_f2d Xgl_pt_flag_f2d ∗ XGL_PT_FLAG_F2D

pts.f2h Xgl_pt_f2h ∗ XGL_PT_F2H

pts.d2d Xgl_pt_d2d ∗ XGL_PT_D2D

pts.color_d2d Xgl_pt_color_d2d ∗ XGL_PT_COLOR_D2D

pts.flag_d2d Xgl_pt_flag_d2d ∗ XGL_PT_FLAG_D2D

pts.d2h Xgl_pt_d2h ∗ XGL_PT_D2H

modified January 1995 29

xgl_pt_list (3) XGL Graphics Library

For a 3D Context, the valid point types are:

Field Name Type Point Type
��
pts.f3d Xgl_pt_f3d ∗ XGL_PT_F3D

pts.color_f3d Xgl_pt_color_f3d ∗ XGL_PT_COLOR_F3D

pts.normal_f3d Xgl_pt_normal_f3d ∗ XGL_PT_NORMAL_F3D

pts.color_normal_f3d Xgl_pt_color_normal_f3d ∗ XGL_PT_COLOR_NORMAL_F3D

pts.flag_f3d Xgl_pt_flag_f3d ∗ XGL_PT_FLAG_F3D

pts.color_flag_f3d Xgl_pt_color_flag_f3d ∗ XGL_PT_COLOR_FLAG_F3D

pts.normal_flag_f3d Xgl_pt_normal_flag_f3d ∗ XGL_PT_NORMAL_FLAG_F3D

pts.color_normal_flag_f3d Xgl_pt_color_normal_flag_f3d ∗ XGL_PT_COLOR_NORMAL_FLAG_F3D

pts.f3h Xgl_pt_f3h ∗ XGL_PT_F3H

pts.data_f3d Xgl_pt_data_f3d ∗ XGL_PT_DATA_F3D

pts.color_data_f3d Xgl_pt_color_data_f3d ∗ XGL_PT_COLOR_DATA_F3D

pts.normal_data_f3d Xgl_pt_normal_data_f3d ∗ XGL_PT_NORMAL_DATA_F3D

pts.color_normal_data_f3d Xgl_pt_color_normal_data_f3d ∗ XGL_PT_COLOR_NORMAL_DATA_F3D

pts.flag_data_f3d Xgl_pt_flag_data_f3d ∗ XGL_PT_FLAG_DATA_F3D

pts.color_flag_data_f3d Xgl_pt_color_flag_data_f3d ∗ XGL_PT_COLOR_FLAG_DATA_F3D

pts.normal_flag_data_f3d Xgl_pt_normal_flag_data_f3d ∗ XGL_PT_NORMAL_FLAG_DATA_F3D

pts.color_normal_flag_data_f3d Xgl_pt_color_normal_flag_data_f3d ∗ XGL_PT_COLOR_NORMAL_FLAG_DATA_F3D

pts.d3d Xgl_pt_d3d ∗ XGL_PT_D3D

pts.color_d3d Xgl_pt_color_d3d ∗ XGL_PT_COLOR_D3D

pts.normal_d3d Xgl_pt_normal_d3d ∗ XGL_PT_NORMAL_D3D

pts.color_normal_d3d Xgl_pt_color_normal_d3d ∗ XGL_PT_COLOR_NORMAL_D3D

pts.flag_d3d Xgl_pt_flag_d3d ∗ XGL_PT_FLAG_D3D

pts.color_flag_d3d Xgl_pt_color_flag_d3d ∗ XGL_PT_COLOR_FLAG_D3D

pts.normal_flag_d3d Xgl_pt_normal_flag_d3d ∗ XGL_PT_NORMAL_FLAG_D3D

pts.color_normal_flag_d3d Xgl_pt_color_normal_flag_d3d ∗ XGL_PT_COLOR_NORMAL_FLAG_D3D

pts.d3h Xgl_pt_d3h ∗ XGL_PT_D3H

SEE ALSO xgl_multi_simple_polygon(3)
xgl_multimarker(3)
xgl_multipolyline(3)
xgl_polygon(3)
xgl_quadrilateral_mesh(3)
xgl_triangle_list(3)
xgl_triangle_strip(3)
xgl_nurbs_curve(3)
xgl_struct(3)

30 modified January 1995

XGL Graphics Library xgl_struct (3)

NAME xgl_struct − XGL Data Structures

DESCRIPTION This section lists the different C structures XGL uses. The structures appear with explana-
tions about the fields used in a given structure.

Arc Structures

In the point given for the center of the arc, the flag field determines whether edges are
drawn and also provides storage for an identification number to label individual arcs
when picking multiarcs. The start and stop angles are in radians. All 2D angles increase
counterclockwise and start (are equal to 0) on the positive x axis.

2D Arcs

typedef struct {
Xgl_pt_flag_i2d center; /∗ center point ∗/
Xgl_usgn32 radius; /∗ radius of curvature ∗/
float start_angle, /∗ start and stop angles ∗/

stop_angle;
} Xgl_arc_i2d;

typedef struct {
Xgl_pt_flag_f2d center; /∗ center point ∗/
float radius; /∗ radius ∗/
float start_angle, /∗ start and stop angles ∗/

stop_angle;
} Xgl_arc_f2d;

typedef struct {
Xgl_pt_flag_d2d center; /∗ center point ∗/
double radius; /∗ radius ∗/
double start_angle, /∗ start and stop angles ∗/

stop_angle;
} Xgl_arc_d2d;

3D Arcs

typedef struct {
Xgl_pt_flag_f3d center; /∗ center point ∗/
Xgl_pt_f3d dir[3]; /∗ dir. vectors and normal vector ∗/
Xgl_boolean dir_normalized; /∗ TRUE when dir[] are unit vectors ∗/
Xgl_boolean dir_normal; /∗ TRUE if dir[2] is a valid vector ∗/
float radius; /∗ radius ∗/
float start_angle, /∗ start and stop angles ∗/

stop_angle;

modified February 1995 31

xgl_struct (3) XGL Graphics Library

} Xgl_arc_f3d;

typedef struct {
Xgl_pt_flag_f3d center; /∗ center point = ref point in MC ∗/
float radius; /∗ radius in VDC ∗/
float start_angle, /∗ start and stop angles ∗/

stop_angle;
} Xgl_arc_af3d;

typedef struct {
Xgl_pt_flag_d3d center; /∗ Center point ∗/
Xgl_pt_d3d dir[3]; /∗ dir. vectors and normal vector ∗/
Xgl_boolean dir_normalized; /∗ TRUE when dir[] are unit vectors ∗/
Xgl_boolean dir_normal; /∗ TRUE if dir[2] is a valid vector ∗/
double radius; /∗ Radius ∗/
double start_angle, /∗ Start and stop angles ∗/

stop_angle;
} Xgl_arc_d3d;

typedef struct {
Xgl_pt_flag_d3d center; /∗ Center point = ref point in MC ∗/
double radius; /∗ Radius in VDC∗/
double start_angle, /∗ Start and stop angles ∗/

stop_angle;
} Xgl_arc_ad3d; /∗ Annotation 3D arc ∗/

Arc List Structure

The bounding box applies to all of the arc centers.

typedef struct {
Xgl_usgn32 num_arcs; /∗ number of arcs ∗/
Xgl_multiarc_type type; /∗ data type of multiarc ∗/
Xgl_bbox ∗bbox; /∗ optional box containing all arcs ∗/
union { /∗ union of pointers to arcs ∗/

Xgl_arc_i2d ∗i2d;
Xgl_arc_f2d ∗f2d;
Xgl_arc_d2d ∗d2d;
Xgl_arc_f3d ∗f3d;
Xgl_arc_af3d ∗af3d;
Xgl_arc_d3d ∗d3d;
Xgl_arc_ad3d ∗ad3d;

} arcs;
} Xgl_arc_list;

32 modified February 1995

XGL Graphics Library xgl_struct (3)

Bounding Box Structures

XGL bounding boxes are used to optimize geometric operations within the XGL pipeline.
The application should provide the bounding box information whenever possible. If you
don’t supply a bbox to function argument, use NULL instead.

typedef struct {
Xgl_bbox_type bbox_type;/∗ specifies the type of the bbox ∗/
union {

Xgl_bounds_i2d i2d; /∗ type can be integer 2d, ∗/
Xgl_bounds_f2d f2d; /∗ float 2d, ∗/
Xgl_bounds_f3d f3d; /∗ or float 3d ∗/

} box;
} Xgl_bbox;

typedef struct {
Xgl_bbox_type bbox_type;
union {

Xgl_bounds_i2d i2d;
} box;

} Xgl_bbox_i2d;

typedef struct {
Xgl_bbox_type bbox_type;
union {

Xgl_bounds_f2d f2d;
} box;

} Xgl_bbox_f2d;

typedef struct {
Xgl_bbox_type bbox_type;
union {

Xgl_bounds_f3d f3d;
} box;

} Xgl_bbox_f3d;

typedef struct {
Xgl_bbox_type bbox_type;
union {

Xgl_geom_status status;
} box;

} Xgl_bbox_status;

typedef struct {

modified February 1995 33

xgl_struct (3) XGL Graphics Library

Xgl_bbox_type bbox_type;
union {

Xgl_bounds_d2d d2d;
} box;

} Xgl_bbox_d2d;

typedef struct {
Xgl_bbox_type bbox_type;
union {

Xgl_bounds_d3d d3d;
} box;

} Xgl_bbox_d3d;

Bounds Structures

Bounds structures are used to define bounding boxes, windows, and viewports or to del-
imit a range of values between minimal and maximal limits.

typedef struct {
float bmin;
float bmax;

} Xgl_bounds_f1d;

typedef struct {
double bmin;
double bmax;

} Xgl_bounds_d1d;

typedef struct {
float xmin;
float xmax;
float ymin;
float ymax;

} Xgl_bounds_f2d;

typedef struct {
double xmin;
double xmax;
double ymin;
double ymax;

} Xgl_bounds_d2d;

typedef struct {
float xmin;

34 modified February 1995

XGL Graphics Library xgl_struct (3)

float xmax;
float ymin;
float ymax;
float zmin;
float zmax;

} Xgl_bounds_f3d;

typedef struct {
double xmin;
double xmax;
double ymin;
double ymax;
double zmin;
double zmax;

} Xgl_bounds_d3d;

typedef struct {
Xgl_sgn32 xmin;
Xgl_sgn32 xmax;
Xgl_sgn32 ymin;
Xgl_sgn32 ymax;

} Xgl_bounds_i2d;

Circle Structures

In the point given for the center of a circle, the flag field determines whether edges are
drawn and also provides storage for an identification number to label individual circles
when picking multicircles.

typedef struct {
Xgl_pt_flag_i2d center; /∗ center point ∗/
Xgl_usgn32 radius; /∗ radius ∗/

} Xgl_circle_i2d;

typedef struct {
Xgl_pt_flag_f2d center; /∗ center point ∗/
float radius; /∗ radius ∗/

} Xgl_circle_f2d;

typedef struct {
Xgl_pt_flag_d2d center; /∗ Center point ∗/
double radius; /∗ Radius ∗/

} Xgl_circle_d2d;

modified February 1995 35

xgl_struct (3) XGL Graphics Library

typedef struct {
Xgl_pt_flag_f3d center; /∗ center point ∗/
Xgl_pt_f3d dir[3]; /∗ direction and normal vectors ∗/
Xgl_boolean dir_normalized; /∗ TRUE when dir[] are unit vectors ∗/
Xgl_boolean dir_normal; /∗ TRUE when dir[3] is a valid vector ∗/
float radius; /∗ radius ∗/

} Xgl_circle_f3d;

typedef struct {
Xgl_pt_flag_f3d center; /∗ center point = ref point in MC ∗/
float radius; /∗ radius in VDC ∗/

} Xgl_circle_af3d;

typedef struct {
Xgl_pt_flag_d3d center; /∗ Center point ∗/
Xgl_pt_d3d dir[3]; /∗ dir. vectors and normal vector ∗/
Xgl_boolean dir_normalized; /∗ TRUE when dir[] are unit vectors ∗/
Xgl_boolean dir_normal; /∗ TRUE if dir[2] is a valid vector ∗/
double radius; /∗ Radius ∗/

} Xgl_circle_d3d;

typedef struct {
Xgl_pt_flag_d3d center; /∗ Center point = ref point in MC ∗/
double radius; /∗ Radius in VDC ∗/

} Xgl_circle_ad3d; /∗ Annotation 3D circle ∗/

Circle List Structure

The bounding box applies to all of the circle centers.

typedef struct {
Xgl_usgn32 num_circles; /∗ Number of circles ∗/
Xgl_multicircle_type type; /∗ Data type of multicircle ∗/
Xgl_bbox ∗bbox; /∗ Optional box containing all

circles; NULL means no box ∗/
union { /∗ Union of pointers to circles ∗/

Xgl_circle_i2d ∗i2d;
Xgl_circle_f2d ∗f2d;
Xgl_circle_d2d ∗d2d;
Xgl_circle_f3d ∗f3d;
Xgl_circle_af3d ∗af3d;
Xgl_circle_d3d ∗d3d;
Xgl_circle_ad3d ∗ad3d;

} circles;
} Xgl_circle_list;

36 modified February 1995

XGL Graphics Library xgl_struct (3)

Color Structure

The color can be defined as an index, a gray level, an RGB, or a z quadruplet.

typedef union {
Xgl_color_index index;
Xgl_color_gray gray;
Xgl_color_rgb rgb;
Xgl_color_z z;

} Xgl_color;

Color Index Structure
typedef Xgl_usgn32 Xgl_color_index;

Color Gray Structure
typedef float Xgl_color_gray;

Color RGB Structure

In RGB, the color is defined by a triplet of floating point values between 0.0 and 1.0.

typedef struct {
float r, g, b;

} Xgl_color_rgb;

Color Z Structure
typedef Xgl_usgn32 Xgl_color_z;

Homogeneous Color Structure

typedef struct {
float r, g, b;
float w;

} Xgl_color_rgbw;

Homogeneous Color Type

typedef union {
Xgl_color_rgbw rgbw;

} Xgl_color_homogeneous;

modified February 1995 37

xgl_struct (3) XGL Graphics Library

Color List Structure

This structure is used to list color entries. It can be used to set an XGL Color Map.

typedef struct {
Xgl_usgn32 start_index; /∗ starting index for table ∗/
Xgl_usgn32 length; /∗ number of entries in table ∗/
Xgl_color ∗colors; /∗ color table array ∗/

} Xgl_color_list;

Color Models Returned by Inquiry

typedef struct {
unsigned index:1;
unsigned rgb:1;

} Xgl_color_type_supported;

Color Spline for Color-Mapped NURBS Curves

typedef struct {
Xgl_usgn32 order;
Xgl_usgn32 num_knots;
float ∗knot_vector;
Xgl_color_homogeneous ∗colors;

} Xgl_curve_color_spline;

Elliptical Arc Structures

The elliptical arc structure flag determines whether edges are drawn and also provides
storage for an identification number to label individual ellipse when picking multiellipse.

typedef struct {
Xgl_pt_flag_f3d center; /∗ center point ∗/
Xgl_pt_f3d dir[3]; /∗ dir. vectors and normal vector ∗/
Xgl_boolean dir_normalized; /∗ TRUE when dir[] are unit vectors ∗/
Xgl_boolean dir_normal; /∗ TRUE if dir[2] is a valid vector ∗/
float major_axis, /∗ major and minor axis ∗/

minor_axis;
float rot_angle; /∗ ellipse rotation angle ∗/
float start_angle, /∗ start and stop angles ∗/

stop_angle;
} Xgl_ell_f3d;

38 modified February 1995

XGL Graphics Library xgl_struct (3)

typedef struct {
Xgl_pt_flag_f3d center; /∗ Center point = ref point in MC ∗/
float major_axis, /∗ Major & Minor axis in VDC∗/

minor_axis;
float rot_angle; /∗ Ellipse rotation angle ∗/
float start_angle, /∗ Start and stop angles ∗/

stop_angle;
} Xgl_ell_af3d; /∗ Annotation 3D elliptical arc ∗/

typedef struct {
Xgl_pt_flag_d3d center; /∗ Center point ∗/
Xgl_pt_d3d dir[3]; /∗ dir. vectors and normal vector ∗/
Xgl_boolean dir_normalized; /∗ TRUE when dir[] are unit vectors ∗/
Xgl_boolean dir_normal; /∗ TRUE if dir[2] is a valid vector ∗/
double major_axis, /∗ Major & Minor axis ∗/

minor_axis;
double rot_angle; /∗ Ellipse rotation angle ∗/
double start_angle, /∗ Start and stop angles ∗/

stop_angle;
} Xgl_ell_d3d;

typedef struct {
Xgl_pt_flag_d3d center; /∗ Center point = ref point in MC ∗/
double major_axis, /∗ Major & Minor axis in VDC∗/

minor_axis;
double rot_angle; /∗ Ellipse rotation angle ∗/
double start_angle, /∗ Start and stop angles ∗/

stop_angle;
} Xgl_ell_ad3d; /∗ Annotation 3D elliptical arc ∗/

Elliptical Arc List Structure

typedef struct {
Xgl_usgn32 num_ells; /∗ number of elliptical arcs ∗/
Xgl_multiell_type type; /∗ data type of multiell ∗/
Xgl_bbox ∗bbox; /∗ optional box containing all

elliptical arcs, NULL means no box ∗/
union { /∗ union of pointers to ells ∗/

Xgl_ell_f3d ∗f3d;
Xgl_ell_af3d ∗af3d;
Xgl_ell_d3d ∗d3d;
Xgl_ell_ad3d ∗ad3d;

} ells;
} Xgl_ell_list;

modified February 1995 39

xgl_struct (3) XGL Graphics Library

Error Structure Containing Error Attributes

typedef struct {
Xgl_error_type type;
Xgl_error_category category;
char∗ id;
char∗ msg;
char∗ cur_op;
char∗ cur_obj;
char∗ operand1;
char∗ operand2;

} Xgl_error_info;

Facet with Color Structure

A facet contains information for a simple polygon, such as a single boundary polygon, or
one triangle in a triangle strip, but it can also represent a complex set of boundaries for a
planar polygon. The information contained in a facet can be color, normal vector, or
both.

typedef struct {
Xgl_color color;

} Xgl_color_facet;

Facet with Normal Vector Structure

For details, see Facet with Color Structure.

typedef struct {
Xgl_pt_f3d normal;

} Xgl_normal_facet;

Facet with Color and Normal Vector Structure

For details, see Facet with Color Structure.

typedef struct {
Xgl_color color;
Xgl_pt_f3d normal;

} Xgl_color_normal_facet;

40 modified February 1995

XGL Graphics Library xgl_struct (3)

Facet Structure

Used to specify the color or surface normal vector, or both, for one facet.

typedef union {
Xgl_color_facet color_facet;
Xgl_normal_facet normal_facet;
Xgl_color_normal_facet color_normal_facet;

} Xgl_facet;

List of Polygonal Facets

When providing a list of facet information, all the facets must be of the same type.

typedef struct {
Xgl_facet_type facet_type; /∗ type of facet ∗/
Xgl_usgn32 num_facets; /∗ number of facets ∗/
union { /∗ pointers to array of facets ∗/

Xgl_color_facet ∗color_facets;
Xgl_normal_facet ∗normal_facets;
Xgl_color_normal_facet ∗color_normal_facets;

} facets;
} Xgl_facet_list;

List of Facet Lists

typedef struct {
Xgl_usgn32 num_facet_lists; /∗ number of facet lists ∗/
Xgl_facet_list ∗facet_lists; /∗ array of facet lists ∗/

} Xgl_facet_list_list;

HLHSR Structure

Currently, the only supported HLHSR mode uses a z-buffer. This structure is used to
pass initialization information to the z-buffer. Values given for z-value are positive
numbers.

typedef union {
struct {

float z_value;
} z_buffer;

} Xgl_hlhsr_data;

Inquire Data Structure

typedef struct {
char ∗name;
Xgl_boolean dga_flag;

modified February 1995 41

xgl_struct (3) XGL Graphics Library

Xgl_color_type_supported color_type;
Xgl_sgn32 depth, width, height;
Xgl_sgn32 maximum_buffer;
Xgl_boolean db_buffer_is_copy;
Xgl_pt_type_supported pt_type;
Xgl_hlhsr_mode hlhsr_mode;
Xgl_inq_support_level picking;
Xgl_inq_support_level double_buffer;
Xgl_inq_support_level indexed_color;
Xgl_inq_support_level true_color;
Xgl_inq_support_level depth_cueing;
Xgl_inq_support_level lighting;
Xgl_inq_support_level shading;
Xgl_inq_support_level hlhsr;
Xgl_inq_support_level antialiasing;
Xgl_boolean stereo;
Xgl_usgn32 extns;
Xgl_inq_support_level transparency;

} Xgl_inquire;

Window Rectangles and Window Rectangles List

These structures define the storage type of clip lists used by the window system.

typedef struct {
Xgl_usgn32 xmin;
Xgl_usgn32 xmax;
Xgl_usgn32 ymin;
Xgl_usgn32 ymax;

} Xgl_irect;

typedef struct {
Xgl_usgn32 num_irects;
Xgl_irect ∗rects;

} Xgl_irect_list;

Strings and Text Structures

XGL accepts two different ways of describing text. Text can be a NULL -terminated C-
style string of characters, or it can be coded as a list of mono-encoded character strings.

typedef struct {
Xgl_object font_obj; /∗ Each mono-encoded string has its ∗/
char ∗text; /∗ font and C type string of characters ∗/

} Xgl_mono_text;

typedef struct {

42 modified February 1995

XGL Graphics Library xgl_struct (3)

Xgl_usgn32 mono_num; /∗ number of mono-encoded strings ∗/
Xgl_mono_text ∗mono_list; /∗ array of mono-encoded strings ∗/

} Xgl_mono_text_list;

NURBS Curve and Surface Structures

These structures are used with the XGL curve and surface operators to draw NURBS curves
and surfaces.

/∗ Nonuniform B-spline curve (XGL 1.0 and 2.0 definition of Xgl_nurbs_curve) ∗/
typedef struct {

Xgl_usgn32 order; /∗ Order of curve ∗/
Xgl_usgn32 num_knots; /∗ Number of knots ∗/
float ∗knot_vector; /∗ Knot vector ∗/
Xgl_bounds_f1d range; /∗ Range of parameter ∗/
Xgl_pt_list ctrl_pts; /∗ List of control points ∗/
Xgl_boolean trim_curve_vis; /∗ If this is a trim curve, is

its outline edge drawn? ∗/
} Xgl_nu_bspline_curve;

/∗ Nonuniform B-spline curve (definition for XGL 3.0 and subsequent releases) ∗/
typedef struct {

Xgl_usgn32 order; /∗ Order of curve ∗/
Xgl_usgn32 num_knots; /∗ Number of knots ∗/
float ∗knot_vector; /∗ Knot vector ∗/
Xgl_pt_list ctrl_pts; /∗ List of control points ∗/

} Xgl_nurbs_curve;

typedef struct {
Xgl_usgn32 order_u; /∗ Order of surface in u ∗/
Xgl_usgn32 order_v; /∗ Order of surface in v ∗/
Xgl_usgn32 num_knots_u; /∗ Number of knots in u ∗/
float ∗knot_vector_u; /∗ Knot vector in u ∗/
Xgl_usgn32 num_knots_v; /∗ Number of knots in v ∗/
float ∗knot_vector_v; /∗ Knot vector in v ∗/
Xgl_pt_list ctrl_pts; /∗ Row-ordered list of control

points (index changes faster
in u direction than v). ∗/

} Xgl_nurbs_surf;

modified February 1995 43

xgl_struct (3) XGL Graphics Library

NURBS Surface Geometry Description

typedef union {
Xgl_plane planar;
struct {

Xgl_pt_f3d axial_pt;
Xgl_pt_f3d axis_dir;
float radius;
Xgl_boolean norm_flag;

} cylindrical;
struct {

Xgl_pt_f3d apex;
Xgl_pt_f3d axis_dir;
float cone_angle; /∗ 0 = zero width cone (line)∗/
Xgl_boolean norm_flag;

} conical;
struct {

Xgl_pt_f3d center;
float radius;
Xgl_boolean norm_flag;

} spherical;
} Xgl_nurbs_surf_geom_desc;

NURBS Surface Simple Geometry Structure

typedef struct {
Xgl_nurbs_surf_type surf_type;
Xgl_nurbs_surf_geom_desc geom_desc;

} Xgl_nurbs_surf_simple_geom;

Object Descriptor

typedef union {
struct {

Xgl_window_type type; /∗ window type ∗/
void ∗desc;

} win_ras;
char ∗sfont_name;
struct {

Xgl_object raster;
} accum_buf;
struct {

char ∗name; /∗ library name (eg. xglSUNWcgm) ∗/
void ∗desc; /∗ opaque handle for stream-specific info. ∗/

} stream;
} Xgl_obj_desc;

44 modified February 1995

XGL Graphics Library xgl_struct (3)

Pick Info Structure

When picking graphical entities, the pick IDs are stored into pick info structures.
vertex_flag.

typedef struct {
Xgl_usgn32 id1;
Xgl_usgn32 id2;
Xgl_usgn32 vertex_flag;

} Xgl_pick_info;

Plane Structure

typedef struct {
Xgl_pt_d3d pt; /∗ a point on the plane in WC ∗/
Xgl_pt_d3d normal; /∗ normal vector components ∗/

} Xgl_plane;

Plane List Structure

typedef struct {
Xgl_usgn32 num_planes; /∗ number of planes ∗/
Xgl_plane ∗planes; /∗ pointer to array of planes ∗/

} Xgl_plane_list;

Point Structures

XGL defines numerous data types an application can use to specify geometry. Most of
these structures define data for a single vertex. A single vertex must at least have the
point coordinates in model coordinates. It can also contain color, normal, data, or flag
information. The coordinates can be float, double-precision float, or integer (2D). Color is
defined with an Xgl_color structure; the normal vector is composed of three floating-point
values representing a normalized vector; and, in the current implementation, the two lower
bits of the flag field are used to specify whether an edge should be drawn. The 16 upper
bits of the flag field can be used by the application to set an identifier on a per-vertex
basis. XGL then returns the identifier vertex information to the application when picking
is performed.

A single point structure with only position information.

typedef struct {
Xgl_pt_type pt_type; /∗ type of point ∗/
Xgl_pt_position pt; /∗ union of pointers to one point ∗/

} Xgl_pt;

modified February 1995 45

xgl_struct (3) XGL Graphics Library

Structures for Floating Point Coordinates

typedef struct {
float x;
float y;

} Xgl_pt_f2d;

typedef struct {
float x;
float y;
Xgl_color color;

} Xgl_pt_color_f2d;

typedef struct {
float x;
float y;
Xgl_usgn32 flag;

} Xgl_pt_flag_f2d;

typedef struct {
float x;
float y;
float w;

} Xgl_pt_f2h;

typedef struct {
float x;
float y;
float z;

} Xgl_pt_f3d;

typedef struct {
float x;
float y;
float z;
Xgl_color color;

} Xgl_pt_color_f3d;

typedef struct {
float x;
float y;
float z;
Xgl_pt_f3d normal;

46 modified February 1995

XGL Graphics Library xgl_struct (3)

} Xgl_pt_normal_f3d;

typedef struct {
float x;
float y;
float z;
Xgl_color color;
Xgl_pt_f3d normal;

} Xgl_pt_color_normal_f3d;

typedef struct {
float x;
float y;
float z;
Xgl_usgn32 flag;

} Xgl_pt_flag_f3d;

typedef struct {
float x;
float y;
float z;
Xgl_color color;
Xgl_usgn32 flag;

} Xgl_pt_color_flag_f3d;

typedef struct {
float x;
float y;
float z;
Xgl_pt_f3d normal;
Xgl_usgn32 flag;

} Xgl_pt_normal_flag_f3d;

typedef struct {
float x;
float y;
float z;
Xgl_color color;
Xgl_pt_f3d normal;
Xgl_usgn32 flag;

} Xgl_pt_color_normal_flag_f3d;

typedef struct {

modified February 1995 47

xgl_struct (3) XGL Graphics Library

float x;
float y;
float z;
float data[1];

} Xgl_pt_data_f3d;

typedef struct {
float x;
float y;
float z;
Xgl_color color;
float data[1];

} Xgl_pt_color_data_f3d;

typedef struct {
float x;
float y;
float z;
Xgl_pt_f3d normal;
float data[1];

} Xgl_pt_normal_data_f3d;

typedef struct {
float x;
float y;
float z;
Xgl_color color;
Xgl_pt_f3d normal;
float data[1];

} Xgl_pt_color_normal_data_f3d;

typedef struct {
float x;
float y;
float z;
Xgl_usgn32 flag;
float data[1];

} Xgl_pt_flag_data_f3d;

typedef struct {
float x;
float y;
float z;

48 modified February 1995

XGL Graphics Library xgl_struct (3)

Xgl_color color;
Xgl_usgn32 flag;
float data[1];

} Xgl_pt_color_flag_data_f3d;

typedef struct {
float x;
float y;
float z;
Xgl_pt_f3d normal;
Xgl_usgn32 flag;
float data[1];

} Xgl_pt_normal_flag_data_f3d;

typedef struct {
float x;
float y;
float z;
Xgl_color color;
Xgl_pt_f3d normal;
Xgl_usgn32 flag;
float data[1];

} Xgl_pt_color_normal_flag_data_f3d;

typedef struct {
float x;
float y;
float z;
float w;

} Xgl_pt_f3h;

Structures for Double-Precision Floating Point Coordinates

typedef struct {
double x;
double y;

} Xgl_pt_d2d;

typedef struct {
double x;
double y;
Xgl_color color;

} Xgl_pt_color_d2d;

modified February 1995 49

xgl_struct (3) XGL Graphics Library

typedef struct {
double x;
double y;
Xgl_usgn32 flag;

} Xgl_pt_flag_d2d;

typedef struct {
double x;
double y;
double w;

} Xgl_pt_d2h;

typedef struct {
double x;
double y;
double z;

} Xgl_pt_d3d;

typedef struct {
double x;
double y;
double z;
Xgl_color color;

} Xgl_pt_color_d3d;

typedef struct {
double x;
double y;
double z;
Xgl_pt_f3d normal;

} Xgl_pt_normal_d3d;

typedef struct {
double x;
double y;
double z;
Xgl_color color;
Xgl_pt_f3d normal;

} Xgl_pt_color_normal_d3d;

typedef struct {
double x;
double y;

50 modified February 1995

XGL Graphics Library xgl_struct (3)

double z;
Xgl_usgn32 flag;

} Xgl_pt_flag_d3d;

typedef struct {
double x;
double y;
double z;
Xgl_color color;
Xgl_usgn32 flag;

} Xgl_pt_color_flag_d3d;

typedef struct {
double x;
double y;
double z;
Xgl_pt_f3d normal;
Xgl_usgn32 flag;

} Xgl_pt_normal_flag_d3d;

typedef struct {
double x;
double y;
double z;
Xgl_color color;
Xgl_pt_f3d normal;
Xgl_usgn32 flag;

} Xgl_pt_color_normal_flag_d3d;

typedef struct {
double x;
double y;
double z;
double w;

} Xgl_pt_d3h;

Structures for Integer Point Coordinates

typedef struct {
Xgl_sgn32 x;
Xgl_sgn32 y;

} Xgl_pt_i2d;

modified February 1995 51

xgl_struct (3) XGL Graphics Library

typedef struct {
Xgl_sgn32 x;
Xgl_sgn32 y;
Xgl_color color;

} Xgl_pt_color_i2d;

typedef struct {
Xgl_sgn32 x;
Xgl_sgn32 y;
Xgl_usgn32 flag;

} Xgl_pt_flag_i2d;

typedef struct {
Xgl_sgn32 x;
Xgl_sgn32 y;
Xgl_sgn32 w;

} Xgl_pt_i2h;

Point List and Point List List Structures

Each list of points describes a single set of connected lines, or a single boundary for
polygons. For each list, the application can specify a bounding box in order to optimize
geometrical computations. The point type should be identical for all the point lists
passed to a single primitive at the same time.

typedef struct {
Xgl_pt_type pt_type; /∗ type of point ∗/
Xgl_bbox ∗bbox; /∗ optional box containing

all points ∗/
Xgl_usgn32 num_pts; /∗ number of points ∗/
Xgl_usgn32 num_data_values; /∗ number of data values at

each point ∗/
Xgl_pt_ptr_union pts; /∗ union of pointers to array

of points ∗/
} Xgl_pt_list;

typedef struct {
Xgl_bbox ∗bbox;
Xgl_usgn32 num_pt_lists;
Xgl_pt_list ∗pt_lists;

} Xgl_pt_list_list;

52 modified February 1995

XGL Graphics Library xgl_struct (3)

Union of Pointers to Point Structures

These structures are used as pointers to any XGL point type.

typedef union {
Xgl_pt_i2d ∗i2d;
Xgl_pt_color_i2d ∗color_i2d;
Xgl_pt_flag_i2d ∗flag_i2d;
Xgl_pt_i2h ∗i2h;

Xgl_pt_f2d ∗f2d;
Xgl_pt_color_f2d ∗color_f2d;
Xgl_pt_flag_f2d ∗flag_f2d;
Xgl_pt_f2h ∗f2h;
Xgl_pt_f3d ∗f3d;
Xgl_pt_color_f3d ∗color_f3d;
Xgl_pt_normal_f3d ∗normal_f3d;
Xgl_pt_color_normal_f3d ∗color_normal_f3d;
Xgl_pt_flag_f3d ∗flag_f3d;
Xgl_pt_color_flag_f3d ∗color_flag_f3d;
Xgl_pt_normal_flag_f3d ∗normal_flag_f3d;
Xgl_pt_color_normal_flag_f3d ∗color_normal_flag_f3d;
Xgl_pt_f3h ∗f3h;
Xgl_pt_data_f3d ∗data_f3d;
Xgl_pt_color_data_f3d ∗color_data_f3d;
Xgl_pt_normal_data_f3d ∗normal_data_f3d;
Xgl_pt_color_normal_data_f3d ∗color_normal_data_f3d;
Xgl_pt_flag_data_f3d ∗flag_data_f3d;
Xgl_pt_color_flag_data_f3d ∗color_flag_data_f3d;
Xgl_pt_normal_flag_data_f3d ∗normal_flag_data_f3d;
Xgl_pt_color_normal_flag_data_f3d ∗color_normal_flag_data_f3d;

Xgl_pt_d2d ∗d2d;
Xgl_pt_color_d2d ∗color_d2d;
Xgl_pt_flag_d2d ∗flag_d2d;
Xgl_pt_d2h ∗d2h;
Xgl_pt_d3d ∗d3d;
Xgl_pt_color_d3d ∗color_d3d;
Xgl_pt_normal_d3d ∗normal_d3d;
Xgl_pt_color_normal_d3d ∗color_normal_d3d;
Xgl_pt_flag_d3d ∗flag_d3d;
Xgl_pt_color_flag_d3d ∗color_flag_d3d;
Xgl_pt_normal_flag_d3d ∗normal_flag_d3d;
Xgl_pt_color_normal_flag_d3d ∗color_normal_flag_d3d;
Xgl_pt_d3h ∗d3h;
Xgl_pt_data_d3d ∗data_d3d;

} Xgl_pt_ptr_union;

modified February 1995 53

xgl_struct (3) XGL Graphics Library

Union of Pointers to Points with Only Position Information

typedef union {
Xgl_pt_i2d ∗i2d;
Xgl_pt_f2d ∗f2d;
Xgl_pt_d2d ∗d2d;
Xgl_pt_f3d ∗f3d;
Xgl_pt_d3d ∗d3d;

} Xgl_pt_position;

Point Types Returned by Inquiry

typedef struct {
unsigned pt_dim_2d:1;
unsigned pt_dim_3d:1;
unsigned pt_type_int:1;
unsigned pt_type_float:1;
unsigned pt_type_double:1;

} Xgl_pt_type_supported;

Rectangle Structures

In the point given for the first point of the rectangle, the flag field determines whether
edges are drawn and also provides storage for an identification number to label indivi-
dual rectangles when picking multirectangles.

typedef struct {
Xgl_pt_flag_i2d corner_min;
Xgl_pt_i2d corner_max;

} Xgl_rect_i2d;

typedef struct {
Xgl_pt_flag_f2d corner_min;
Xgl_pt_f2d corner_max;

} Xgl_rect_f2d;

typedef struct {
Xgl_pt_flag_d2d corner_min;
Xgl_pt_d2d corner_max;

} Xgl_rect_d2d;

typedef struct {
Xgl_pt_flag_f2d corner_min; /∗ 1st corner in the plane ∗/
Xgl_pt_f2d corner_max; /∗ 2nd corner in the plane ∗/
Xgl_pt_f3d dir[3]; /∗ dir. vectors and normal vector ∗/

54 modified February 1995

XGL Graphics Library xgl_struct (3)

Xgl_boolean dir_normalized; /∗ TRUE when dir[] are unit vectors ∗/
Xgl_boolean dir_normal; /∗ TRUE if dir[2] is a valid vector ∗/

} Xgl_rect_f3d;

typedef struct {
Xgl_pt_flag_f3d corner_min; /∗ 1st corner = ref point in MC ∗/
Xgl_pt_f2d corner_max; /∗ deltas x&y in VDC, rel. to 1st point ∗/

} Xgl_rect_af3d;

typedef struct {
Xgl_pt_flag_d3d corner_min; /∗ reference corner of the rectangle ∗/
Xgl_pt_d2d corner_max; /∗ width & height of the rectangle, in MC ∗/
Xgl_pt_d3d dir[3]; /∗ dir. vectors and normal vector ∗/
Xgl_boolean dir_normalized; /∗ TRUE when dir[] are unit vectors ∗/
Xgl_boolean dir_normal; /∗ TRUE if dir[2] is a valid vector ∗/

} Xgl_rect_d3d;

typedef struct {
Xgl_pt_flag_d3d corner_min; /∗ 1st corner = ref point in MC ∗/
Xgl_pt_d2d corner_max; /∗ deltas x&y in VDC, rel. to 1st point ∗/

} Xgl_rect_ad3d; /∗ Annotation 3D rectangle ∗/

Rectangle List Structure

The bounding box applies to all the rectangles.

typedef struct {
Xgl_usgn32 num_rects; /∗ number of rectangles ∗/
Xgl_multirect_type rect_type; /∗ data type of multirectangle ∗/
Xgl_bbox ∗bbox; /∗ optional box contain. all rectangles ∗/
union { /∗ union of pointers to rectangles ∗/

Xgl_rect_i2d ∗i2d;
Xgl_rect_f2d ∗f2d;
Xgl_rect_d2d ∗d2d;
Xgl_rect_f3d ∗f3d;
Xgl_rect_af3d ∗af3d;
Xgl_rect_d3d ∗d3d;
Xgl_rect_ad3d ∗ad3d;

} rects;
} Xgl_rect_list;

modified February 1995 55

xgl_struct (3) XGL Graphics Library

Color Map Ramp Structure

An XGL color ramp is defined by an offset, where the ramp starts in the color_map, and
by the length of the ramp.

typedef struct {
Xgl_usgn32 offset; /∗ starting index of ramp in color table ∗/
Xgl_usgn32 length; /∗ length of ramp ∗/

} Xgl_segment;

Color Spline for Color-Mapped NURBS Surfaces

typedef struct {
Xgl_usgn32 order_u;
Xgl_usgn32 order_v;
Xgl_usgn32 num_knots_u;
float ∗knot_vector_u;
Xgl_usgn32 num_knots_v;
float ∗knot_vector_v;
Xgl_color_homogeneous ∗colors;

} Xgl_surf_color_spline;

Texture Operation Structures and Unions

typedef struct {
Xgl_color_rgb c1;
Xgl_color_rgb c2;

} Xgl_texture_blend_rgb;

typedef union {
Xgl_texture_blend_rgb rgb;

} Xgl_texture_blend_op;

typedef struct {
Xgl_color_rgb c;

} Xgl_texture_decal_rgb;

typedef union {
Xgl_texture_decal_rgb rgb;

} Xgl_texture_decal_op;

typedef struct {
Xgl_color_rgb c;

} Xgl_texture_blend_intrinsic_rgb;

56 modified February 1995

XGL Graphics Library xgl_struct (3)

typedef union {
Xgl_texture_blend_intrinsic_rgb rgb;

} Xgl_texture_blend_intrinsic_op;

typedef struct {
Xgl_render_component comp;
Xgl_texture_op texture_op;
union Xgl_op_info {

Xgl_texture_blend_op blend;
Xgl_texture_decal_op decal;
Xgl_texture_blend_intrinsic_op blend_int;

} op;
} Xgl_render_component_desc;

Description for Texture Map Types

typedef struct {
Xgl_texture_type texture_type
Xgl_texture_color_comp_info comp_info;
Xgl_texture_interp_info interp_info; /∗ filter to use ∗/
union {

Xgl_texture_mipmap_desc mipmap;
} info;

} Xgl_texture_desc;

typedef union {
Xgl_texture_color_comp_info color_info;

} Xgl_texture_comp_info;

typedef struct {
Xgl_texture_type texture_type;
Xgl_texture_comp_info comp_info;
union {

Xgl_texture_general_mipmap_desc mipmap;
} texture_info;

} Xgl_texture_general_desc;

Texture Map Interpolation Information

typedef struct {
Xgl_texture_interp_method filter1;
Xgl_texture_interp_method filter2;

} Xgl_texture_interp_info;

modified February 1995 57

xgl_struct (3) XGL Graphics Library

typedef struct {
Xgl_usgn32 num_render_comp_desc;
Xgl_render_component_desc render_component_desc[2];
Xgl_usgn32 num_channels[2];
Xgl_usgn32 channel_number[2];

} Xgl_texture_color_comp_info;

Texture MipMap Description

typedef struct {
Xgl_texture texture_map;
float max_u_freq;
float max_v_freq;
Xgl_texture_boundary u_boundary;
Xgl_texture_boundary v_boundary;
Xgl_usgn8 boundary_values[4];
float depth_interp_factor;

} Xgl_texture_mipmap_desc;

typedef struct {
Xgl_texture texture_map;
float max_u_freq;
float max_v_freq;
Xgl_texture_boundary u_boundary;
Xgl_texture_boundary v_boundary;
Xgl_usgn8 boundary_values[4];
float depth_interp_factor;
Xgl_texture_interp_info interp_info;
Xgl_matrix_f2d orientation matrix;

} Xgl_texture_general_mipmap_desc;

Threshold Structure

Individual values can be given for primitives rendered with vectors (polylines, curves,
stroke text), circles, and polygons.

typedef struct {
Xgl_usgn32 vectors;
Xgl_usgn32 circles;
Xgl_usgn32 polygons;

} Xgl_threshold;

58 modified February 1995

XGL Graphics Library xgl_struct (3)

NURBS Trim Curve and Trim Loop List Structures

The trim curve and loop structures define the trimmed portion of the displayed NURBS
surface.

typedef struct {
Xgl_usgn32 order; /∗ Order of curve ∗/
Xgl_usgn32 num_knots; /∗ Number of knots ∗/
float ∗knot_vector; /∗ Knot vector ∗/
Xgl_bounds_f1d range; /∗ Range of parameter ∗/
Xgl_pt_list ctrl_pts; /∗ List of control points ∗/

/∗
∗ Trim curve structure fields (applicable only to trim curves)
∗/

Xgl_boolean trim_curve_vis; /∗ Highlight trim curve ∗/
Xgl_trim_curve_approx trim_curve_approx; /∗ Approx type ∗/
float trim_curve_approx_value; /∗ Approx value ∗/

} Xgl_trim_curve;

typedef struct {
Xgl_usgn32 num_curves;
Xgl_trim_curve ∗curves;

} Xgl_trim_loop;

typedef struct {
Xgl_usgn32 num_loops;
Xgl_trim_loop ∗trim_loops;

} Xgl_trim_loop_list;

X11 Window Descriptor Structure

X11 data structure for create raster call with XGL_WIN_X. Please refer to example pro-
grams on how to fill the fields of this structure.

typedef struct {
void ∗X_display; /∗ pointer to X display ∗/
int X_screen; /∗ X screen number ∗/
Xgl_usgn32 X_window; /∗ X window or drawable from server ∗/

} Xgl_X_window;

SEE ALSO xgl_enum_types(3)
xgl_macro_values(3)
xgl_pt_list(3)

modified February 1995 59

xgl_struct (3) XGL Graphics Library

60 modified February 1995

XGL Graphics Library XGL_3D_CTX (3)

NAME XGL_2D_CTX
XGL_3D_CTX − a 2D or 3D Context object

OVERVIEW XGL_2D_CTX and XGL_3D_CTX are the XGL Context objects for 2D and 3D. The type of the 2D
Context is XGL_2D_CTX. The type of the 3D Context is XGL_3D_CTX.

The XGL Context is an abstraction of a graphics renderer that draws onto an XGL Device
object (which is an abstraction of a graphics device). Most of the operators of the Context
class are the primitives that are rendered, such as lines, polygons, and text; the other
operators control the Device. The attributes of the Context control the visual appearance
of the primitives that are drawn.

At creation time, a Context is not associated with any Device. The application must expli-
citly do this by setting the XGL_CTX_DEVICE(3) attribute in the Context.

After creating the Context, using xgl_object_create(3), the application can inquire about
the values of its attributes by using the xgl_object_get(3) operator.

When a Context is no longer needed in an application, it can be explicitly destroyed by
calling the xgl_object_destroy(3) operator to free the resources associated with it.

A System State object must have been created with the xgl_open(3) operator before any
Context can be created.

Note that depending on the attribute used and the hardware, XGL may not render with
pixel perfection. Different pixels may be touched when different attributes are set.

Context uses the following attributes:

XGL_3D_CTX_ACCUM_OP_DEST(3)
XGL_3D_CTX_BLEND_DRAW_MODE(3)
XGL_3D_CTX_BLEND_FREEZE_Z_BUFFER(3)

XGL_3D_CTX_DEPTH_CUE_COLOR(3)
XGL_3D_CTX_DEPTH_CUE_INTERP(3)
XGL_3D_CTX_DEPTH_CUE_MODE(3)
XGL_3D_CTX_DEPTH_CUE_REF_PLANES(3)
XGL_3D_CTX_DEPTH_CUE_SCALE_FACTORS(3)

XGL_3D_CTX_HLHSR_DATA(3)
XGL_3D_CTX_HLHSR_MODE(3)

XGL_3D_CTX_JITTER_OFFSET(3)

XGL_3D_CTX_LIGHTS(3)
XGL_3D_CTX_LIGHT_NUM(3)
XGL_3D_CTX_LIGHT_SWITCHES(3)

XGL_3D_CTX_LINE_COLOR_INTERP(3)

XGL_3D_CTX_MODEL_CLIP_PLANE_NUM(3)
XGL_3D_CTX_MODEL_CLIP_PLANES(3)

modified August 1995 61

XGL_3D_CTX (3) XGL Graphics Library

XGL_3D_CTX_NORMAL_TRANS(3)

XGL_3D_CTX_SURF_BACK_AMBIENT(3)
XGL_3D_CTX_SURF_BACK_COLOR(3)
XGL_3D_CTX_SURF_BACK_COLOR_SELECTOR(3)
XGL_3D_CTX_SURF_BACK_DIFFUSE(3)
XGL_3D_CTX_SURF_BACK_DMAP(3)
XGL_3D_CTX_SURF_BACK_DMAP_NUM(3)
XGL_3D_CTX_SURF_BACK_DMAP_SWITCHES(3)
XGL_3D_CTX_SURF_BACK_FILL_STYLE(3)
XGL_3D_CTX_SURF_BACK_FPAT(3)
XGL_3D_CTX_SURF_BACK_FPAT_POSITION(3)
XGL_3D_CTX_SURF_BACK_ILLUMINATION(3)
XGL_3D_CTX_SURF_BACK_LIGHT_COMPONENT(3)
XGL_3D_CTX_SURF_BACK_SPECULAR(3)
XGL_3D_CTX_SURF_BACK_SPECULAR_COLOR(3)
XGL_3D_CTX_SURF_BACK_SPECULAR_POWER(3)
XGL_3D_CTX_SURF_BACK_TMAP(3)
XGL_3D_CTX_SURF_BACK_TMAP_NUM(3)
XGL_3D_CTX_SURF_BACK_TMAP_SWITCHES(3)
XGL_3D_CTX_SURF_BACK_TRANSP(3)
XGL_3D_CTX_SURF_DC_OFFSET(3)
XGL_3D_CTX_SURF_FACE_CULL(3)
XGL_3D_CTX_SURF_FACE_DISTINGUISH(3)
XGL_3D_CTX_SURF_FRONT_AMBIENT(3)
XGL_3D_CTX_SURF_FRONT_DIFFUSE(3)
XGL_3D_CTX_SURF_FRONT_DMAP(3)
XGL_3D_CTX_SURF_FRONT_DMAP_NUM(3)
XGL_3D_CTX_SURF_FRONT_DMAP_SWITCHES(3)
XGL_3D_CTX_SURF_FRONT_ILLUMINATION(3)
XGL_3D_CTX_SURF_FRONT_LIGHT_COMPONENT(3)
XGL_3D_CTX_SURF_FRONT_SPECULAR(3)
XGL_3D_CTX_SURF_FRONT_SPECULAR_COLOR(3)
XGL_3D_CTX_SURF_FRONT_SPECULAR_POWER(3)
XGL_3D_CTX_SURF_FRONT_TMAP(3)
XGL_3D_CTX_SURF_FRONT_TMAP_NUM(3)
XGL_3D_CTX_SURF_FRONT_TMAP_SWITCHES(3)
XGL_3D_CTX_SURF_FRONT_TRANSP(3)
XGL_3D_CTX_SURF_GEOM_NORMAL(3)
XGL_3D_CTX_SURF_LIGHTING_NORMAL_FLIP(3)
XGL_3D_CTX_SURF_NORMAL_FLIP(3)
XGL_3D_CTX_SURF_SILHOUETTE_EDGE_FLAG(3)
XGL_3D_CTX_SURF_TMAP_PERSP_CORRECTION(3)
XGL_3D_CTX_SURF_TRANSP_BLEND_EQ(3)
XGL_3D_CTX_SURF_TRANSP_METHOD(3)

62 modified August 1995

XGL Graphics Library XGL_3D_CTX (3)

XGL_3D_CTX_VIEW_CLIP_PLUS_W_ONLY(3)

XGL_3D_CTX_Z_BUFFER_COMP_METHOD(3)
XGL_3D_CTX_Z_BUFFER_WRITE_MASK(3)

XGL_CTX_ARC_FILL_STYLE(3)

XGL_CTX_ATEXT_CHAR_HEIGHT(3)
XGL_CTX_ATEXT_CHAR_SLANT_ANGLE(3)
XGL_CTX_ATEXT_CHAR_UP_VECTOR(3)
XGL_CTX_ATEXT_STYLE(3)
XGL_CTX_ATEXT_ALIGN_HORIZ(3)
XGL_CTX_ATEXT_ALIGN_VERT(3)
XGL_CTX_ATEXT_PATH(3)

XGL_CTX_BACKGROUND_COLOR(3)
XGL_CTX_CLIP_PLANES(3)
XGL_CTX_DC_VIEWPORT(3)
XGL_CTX_DEFERRAL_MODE(3)
XGL_CTX_DEVICE(3)

XGL_CTX_EDGE_AA_BLEND_EQ(3)
XGL_CTX_EDGE_AA_FILTER_SHAPE(3)
XGL_CTX_EDGE_AA_FILTER_WIDTH(3)
XGL_CTX_EDGE_ALT_COLOR(3)
XGL_CTX_EDGE_CAP(3)
XGL_CTX_EDGE_COLOR(3)
XGL_CTX_EDGE_JOIN(3)
XGL_CTX_EDGE_MITER_LIMIT(3)
XGL_CTX_EDGE_PATTERN(3)
XGL_CTX_EDGE_STYLE(3)
XGL_CTX_EDGE_WIDTH_SCALE_FACTOR(3)

XGL_CTX_GEOM_DATA_IS_VOLATILE(3)
XGL_CTX_GLOBAL_MODEL_TRANS(3)

XGL_CTX_LINE_AA_BLEND_EQ(3)
XGL_CTX_LINE_AA_FILTER_SHAPE(3)
XGL_CTX_LINE_AA_FILTER_WIDTH(3)
XGL_CTX_LINE_ALT_COLOR(3)
XGL_CTX_LINE_CAP(3)
XGL_CTX_LINE_COLOR(3)
XGL_CTX_LINE_COLOR_SELECTOR(3)
XGL_CTX_LINE_JOIN(3)
XGL_CTX_LINE_MITER_LIMIT(3)
XGL_CTX_LINE_PATTERN(3)
XGL_CTX_LINE_STYLE(3)
XGL_CTX_LINE_WIDTH_SCALE_FACTOR(3)

modified August 1995 63

XGL_3D_CTX (3) XGL Graphics Library

XGL_CTX_LOCAL_MODEL_TRANS(3)

XGL_CTX_MARKER(3)
XGL_CTX_MARKER_AA_BLEND_EQ(3)
XGL_CTX_MARKER_AA_FILTER_SHAPE(3)
XGL_CTX_MARKER_AA_FILTER_WIDTH(3)
XGL_CTX_MARKER_COLOR(3)
XGL_CTX_MARKER_COLOR_SELECTOR(3)
XGL_CTX_MARKER_SCALE_FACTOR(3)

XGL_CTX_MAX_TESSELLATION(3)
XGL_CTX_MC_TO_DC_TRANS(3)
XGL_CTX_MIN_TESSELLATION(3)

XGL_CTX_MODEL_TRANS(3)
XGL_CTX_MODEL_TRANS_STACK_SIZE(3)

XGL_CTX_NEW_FRAME_ACTION(3)

XGL_CTX_NURBS_CURVE_APPROX(3)
XGL_CTX_NURBS_CURVE_APPROX_VAL(3)
XGL_CTX_NURBS_SURF_APPROX(3)
XGL_CTX_NURBS_SURF_APPROX_VAL_U(3)
XGL_CTX_NURBS_SURF_APPROX_VAL_V(3)
XGL_CTX_NURBS_SURF_ISO_CURVE_PLACEMENT(3)
XGL_CTX_NURBS_SURF_ISO_CURVE_U_NUM(3)
XGL_CTX_NURBS_SURF_ISO_CURVE_V_NUM(3)
XGL_CTX_NURBS_SURF_PARAM_STYLE(3)

XGL_CTX_PICK_APERTURE(3)
XGL_CTX_PICK_BUFFER_SIZE(3)
XGL_CTX_PICK_ENABLE(3)
XGL_CTX_PICK_ID_1(3)
XGL_CTX_PICK_ID_2(3)
XGL_CTX_PICK_STYLE(3)
XGL_CTX_PICK_SURF_STYLE(3)

XGL_CTX_PLANE_MASK(3)

XGL_CTX_RASTER_FILL_STYLE(3)
XGL_CTX_RASTER_FPAT(3)
XGL_CTX_RASTER_FPAT_POSITION(3)
XGL_CTX_RASTER_STIPPLE_COLOR(3)

XGL_CTX_RENDER_BUFFER(3)
XGL_CTX_RENDERING_ORDER(3)
XGL_CTX_ROP(3)

XGL_CTX_SFONT_0(3)
XGL_CTX_SFONT_1(3)
XGL_CTX_SFONT_2(3)
XGL_CTX_SFONT_3(3)

64 modified August 1995

XGL Graphics Library XGL_3D_CTX (3)

XGL_CTX_STEXT_AA_BLEND_EQ(3)
XGL_CTX_STEXT_AA_FILTER_SHAPE(3)
XGL_CTX_STEXT_AA_FILTER_WIDTH(3)
XGL_CTX_STEXT_ALIGN_HORIZ(3)
XGL_CTX_STEXT_ALIGN_VERT(3)
XGL_CTX_STEXT_CHAR_ENCODING(3)
XGL_CTX_STEXT_CHAR_EXPANSION_FACTOR(3)
XGL_CTX_STEXT_CHAR_HEIGHT(3)
XGL_CTX_STEXT_CHAR_SLANT_ANGLE(3)
XGL_CTX_STEXT_CHAR_SPACING(3)
XGL_CTX_STEXT_CHAR_UP_VECTOR(3)
XGL_CTX_STEXT_COLOR(3)
XGL_CTX_STEXT_PATH(3)
XGL_CTX_STEXT_PRECISION(3)

XGL_CTX_SURF_AA_BLEND_EQ(3)
XGL_CTX_SURF_AA_FILTER_SHAPE(3)
XGL_CTX_SURF_AA_FILTER_WIDTH(3)
XGL_CTX_SURF_EDGE_FLAG(3)
XGL_CTX_SURF_FRONT_COLOR(3)
XGL_CTX_SURF_FRONT_COLOR_SELECTOR(3)
XGL_CTX_SURF_FRONT_FILL_STYLE(3)
XGL_CTX_SURF_FRONT_FPAT(3)
XGL_CTX_SURF_FRONT_FPAT_POSITION(3)
XGL_CTX_SURF_INTERIOR_RULE(3)

XGL_CTX_THRESHOLD(3)

XGL_CTX_VDC_MAP(3)
XGL_CTX_VDC_ORIENTATION(3)
XGL_CTX_VDC_WINDOW(3)

XGL_CTX_VIEW_CLIP_BOUNDS(3)
XGL_CTX_VIEW_TRANS(3)

XGL_OBJ_APPLICATION_DATA(3)
XGL_OBJ_SYS_STATE(3)
XGL_OBJ_TYPE(3)

modified August 1995 65

XGL_3D_CTX_ACCUM_OP_DEST (3) XGL Graphics Library

NAME XGL_3D_CTX_ACCUM_OP_DEST − specifies the buffer to be used as destination during
the accumulation operation

SYNOPSIS #include <xgl/xgl.h>

Xgl_ctx ctx;

xgl_object_set(ctx, XGL_3D_CTX_ACCUM_OP_DEST, Xgl_buffer_sel, 0);
xgl_object_get(ctx, XGL_3D_CTX_ACCUM_OP_DEST, Xgl_buffer_sel∗);

DESCRIPTION This attribute specifies the destination buffer during the accumulation operations xgl_-
context_accumulate(3) and xgl_context_clear_accumulation(3). The data type Xgl_-
buffer_sel takes on values:

XGL_BUFFER_SEL_NONE
No accumulation is done.

XGL_BUFFER_SEL_ACCUM
The accumulation buffer is used as the destination buffer during xgl_context_-
accumulate(3) and xgl_context_clear_accumulation(3). The accumulation buffer
is created for the first time when this option is selected, and when xgl_context_-
accumulate(3) or xgl_context_clear_accumulation(3) is called.

XGL_BUFFER_SEL_DISPLAY
The current display buffer is used as the destination buffer during xgl_context_-
accumulate(3) and xgl_context_clear_accumulation(3).

The default value is XGL_BUFFER_SEL_NONE.

SEE ALSO xgl_object_set(3)
xgl_object_get(3)
xgl_context_accumulate(3)
xgl_context_clear_accumulation(3)

66 modified August 1994

XGL Graphics Library XGL_3D_CTX_BLEND_DRAW_MODE (3)

NAME XGL_3D_CTX_BLEND_DRAW_MODE − controls if blended primitives and non-
blended are drawn

SYNOPSIS #include <xgl/xgl.h>

Xgl_ctx ctx;

xgl_object_set(ctx, XGL_3D_CTX_BLEND_DRAW_MODE, Xgl_blend_draw_mode, 0);
xgl_object_get(ctx, XGL_3D_CTX_BLEND_DRAW_MODE, Xgl_blend_draw_mode ∗);

DESCRIPTION This attribute controls the drawing of blended and non-blended primitives. A blended
primitive is one that uses a blending equation such as a transparent or antialiased primi-
tive. Since the final color of blended primitives depends upon what is already on the
Device, a typical approach is to draw the non-blended primitives first and then the
blended ones. It is not always possible for the application to determine if a primitive will
be blended when it is rendered (due to face distinguishing).

The attribute enables the application to send the same scene to XGL twice in a row. The
first time XGL can only render non-blended primitives and the second time it renders
blended primitives.

The data type Xgl_blend_draw_mode takes on values:

XGL_BLEND_DRAW_ALL
All primitives are drawn.

XGL_BLEND_DRAW_NOT_BLENDED
Draw only those primitives which are not blended but do not draw edges of sur-
face primitives.

XGL_BLEND_DRAW_BLENDED
Draw only blended surfaces and surface primitive edges.

The default value is XGL_BLEND_DRAW_ALL.

This attribute is pushed by xgl_context_push(3).

SEE ALSO xgl_object_set(3)
xgl_object_get(3)
xgl_context_push(3)

XGL_3D_CTX_SURF_TRANSP_BLEND_EQ(3)
XGL_3D_CTX_SURF_TRANSP_METHOD(3)
XGL_CTX_EDGE_AA_BLEND_EQ(3)
XGL_CTX_LINE_AA_BLEND_EQ(3)
XGL_CTX_MARKER_AA_BLEND_EQ(3)
XGL_CTX_STEXT_AA_BLEND_EQ(3)
XGL_CTX_SURF_AA_BLEND_EQ(3)

modified August 1994 67

XGL_3D_CTX_BLEND_FREEZE_Z_BUFFER (3) XGL Graphics Library

NAME XGL_3D_CTX_BLEND_FREEZE_Z_BUFFER − controls if blended primitives update the
Z Buffer

SYNOPSIS #include <xgl/xgl.h>

Xgl_ctx ctx;

xgl_object_set(ctx, XGL_3D_CTX_BLEND_FREEZE_Z_BUFFER, Xgl_boolean, 0);
xgl_object_get(ctx, XGL_3D_CTX_BLEND_FREEZE_Z_BUFFER, Xgl_boolean ∗);

DESCRIPTION This attribute controls all blended primitives (antialiased strokes and transparent sur-
faces). If this attribute is TRUE, then blended objects don’t update the Z buffer; the Z com-
parison is still made and the blended pixel is only written if the comparison is true. If
this attribute is FALSE, then the Z buffer is updated.

The default value is TRUE.

This attribute is pushed by xgl_context_push(3).

SEE ALSO xgl_object_set(3)
xgl_object_get(3)
xgl_context_push(3)

XGL_3D_CTX_SURF_TRANSP_BLEND_EQ(3)
XGL_3D_CTX_SURF_TRANSP_METHOD(3)
XGL_CTX_EDGE_AA_BLEND_EQ(3)
XGL_CTX_LINE_AA_BLEND_EQ(3)
XGL_CTX_MARKER_AA_BLEND_EQ(3)
XGL_CTX_STEXT_AA_BLEND_EQ(3)
XGL_CTX_SURF_AA_BLEND_EQ(3)

68 modified August 1994

XGL Graphics Library XGL_3D_CTX_DEPTH_CUE_COLOR (3)

NAME XGL_3D_CTX_DEPTH_CUE_COLOR − specifies the color that depth-cued primitives
tend toward for increasing values of device coordinate z

SYNOPSIS #include <xgl/xgl.h>

Xgl_ctx ctx;

xgl_object_set(ctx, XGL_3D_CTX_DEPTH_CUE_COLOR, Xgl_color ∗, 0);
xgl_object_get(ctx, XGL_3D_CTX_DEPTH_CUE_COLOR, Xgl_color ∗);

DESCRIPTION Depth-cueing modulates the color of 3D primitives based upon their depth (or distance
away from the viewer in VDC space). The attribute XGL_3D_CTX_DEPTH_CUE_MODE(3) con-
trols whether depth-cueing is enabled.

XGL_3D_CTX_DEPTH_CUE_COLOR is applied only when the the application is using the RGB
color model (that is, when XGL_DEV_COLOR_TYPE(3) is set to XGL_COLOR_RGB) and when
XGL_3D_CTX_DEPTH_CUE_MODE(3) is set to XGL_DEPTH_CUE_LINEAR or XGL_DEPTH_CUE_-
SCALED.

XGL_3D_CTX_DEPTH_CUE_COLOR specifies the color that vertices will be modulated to with
increasing depth. In other words, vertices that have a greater z-value will have a color
close to the XGL_3D_CTX_DEPTH_CUE_COLOR. For a more detailed description of depth-
cueing in XGL, see XGL_3D_CTX_DEPTH_CUE_MODE(3).

The default value is: RGB (0,0,0).

This attribute is pushed by xgl_context_push(3).

SEE ALSO xgl_object_set(3)
xgl_object_get(3)

XGL_3D_CTX_DEPTH_CUE_MODE(3)
XGL_DEV_COLOR_TYPE(3)

modified August 1994 69

XGL_3D_CTX_DEPTH_CUE_INTERP (3) XGL Graphics Library

NAME XGL_3D_CTX_DEPTH_CUE_INTERP − defines the depth-cue interpolation mode in a
Context

SYNOPSIS #include <xgl/xgl.h>

Xgl_ctx ctx;

xgl_object_set(ctx, XGL_3D_CTX_DEPTH_CUE_INTERP, Xgl_boolean, 0);
xgl_object_get(ctx, XGL_3D_CTX_DEPTH_CUE_INTERP, Xgl_boolean ∗);

DESCRIPTION Depth-cueing attenuates the color of 3D primitives based upon their depth (distance
away from the viewer), as defined by the attribute XGL_3D_CTX_DEPTH_CUE_MODE(3). This
attribute controls whether depth-cueing interpolation is calculated along the depth axis,
for the current Context ctx. Possible values for the attribute are:

TRUE A linear interpolation is performed all along the primitive for each pixel ren-
dered, using the color defined at each vertex of the primitive by the attribute
XGL_3D_CTX_DEPTH_CUE_MODE(3).

FALSE The attribute XGL_3D_CTX_DEPTH_CUE_MODE(3) is used to calculate the depth-cue
color at each vertex; however, no interpolation is done at rendering time. Indivi-
dual lines, in a polyline, are drawn using the color defined at the end vertex of
the line, and surfaces are rendered using the color computed for the first vertex
of the surface.

This attribute is assumed to be TRUE if either of the following conditions is true:

1) You are rendering polylines and XGL_3D_CTX_LINE_COLOR_INTERP(3) is TRUE.

2) You are rendering surfaces and the attribute controlling illumination on the surface,
either XGL_3D_CTX_SURF_BACK_ILLUMINATION(3) or XGL_3D_CTX_SURF_FRONT_-

ILLUMINATION(3), is set to XGL_ILLUM_NONE_INTERP_COLOR or XGL_ILLUM_PER_VERTEX.

In other words, if per-pixel interpolated shading has already been requested by the set-
ting of other Context attributes, then XGL_3D_CTX_DEPTH_CUE_INTERP has no effect on the
rendering.

The default value is TRUE.

This attribute is pushed by xgl_context_push(3).

SEE ALSO xgl_object_set(3)
xgl_object_get(3)

XGL_3D_CTX_DEPTH_CUE_MODE(3)
XGL_3D_CTX_LINE_COLOR_INTERP(3)
XGL_3D_CTX_SURF_BACK_ILLUMINATION(3)
XGL_3D_CTX_SURF_FRONT_ILLUMINATION(3)

NOTES Some devices may not implement this functionality, because they are faster in doing
interpolation at rendering time, instead of having to select a specific color. Interpolated
depth-cue always gives a better visual effect.

70 modified August 1994

XGL Graphics Library XGL_3D_CTX_DEPTH_CUE_MODE (3)

NAME XGL_3D_CTX_DEPTH_CUE_MODE − defines the depth-cue mode in a Context

SYNOPSIS #include <xgl/xgl.h>

Xgl_ctx ctx;

xgl_object_set(ctx, XGL_3D_CTX_DEPTH_CUE_MODE, Xgl_depth_cue_mode, 0);
xgl_object_get(ctx, XGL_3D_CTX_DEPTH_CUE_MODE, Xgl_depth_cue_mode ∗);

DESCRIPTION Depth-cueing attenuates the color of 3D primitives based upon their depth (z-value in VDC
space). This attribute controls how depth-cueing is calculated in the current Context ctx.
The attribute is device-dependent (see below under the value XGL_DEPTH_CUE_LINEAR).
Possible values for the attribute are shown below. The following notation is used in the
equations below:

Notation:

C
i

= input color value

C´
i

= depth-cued output color value

C
d

= depth-cue color [See comments following equations.]

Z = Z coordinate of vertex
Z

f
= Z coordinate of front depth-cue reference plane [from XGL_3D_CTX_DEPTH_CUE_REF_PLANES]

Z
b

= Z coordinate of back depth-cue reference plane [from XGL_3D_CTX_DEPTH_CUE_REF_PLANES]

S
f

= front depth-cue scale factor [from XGL_3D_CTX_DEPTH_CUE_SCALE_FACTORS]

S
b

= back depth-cue scale factor [from XGL_3D_CTX_DEPTH_CUE_SCALE_FACTORS]

The function (scalar ∗ color) means different things, depending on the Device color
type.

For indexed color, scalar ∗ color → color´ means:
color´.index = scalar ∗ (color.index — ramp.bottom) + ramp.bottom
(Where ramp.bottom is the smallest index in the ramp specified by
color.index. See XGL_CMAP_RAMP_LIST(3))

For RGB color, scalar ∗ color → color´ means:
color´.r = scalar ∗ color.r
color´.g = scalar ∗ color.g
color´.b = scalar ∗ color.b

The possible values for XGL_3D_CTX_DEPTH_CUE_MODE are:

XGL_DEPTH_CUE_OFF
No depth-cueing is performed.

XGL_DEPTH_CUE_LINEAR
A linear depth-cueing function is applied. The color at each vertex of a primitive
is calculated using the linear weighting technique shown below. Calculation of
the weighting factor depends on the value of the attribute XGL_CTX_VDC_-

ORIENTATION(3) using the following test when Z
f

and Z
b

are initialized:

modified August 1994 71

XGL_3D_CTX_DEPTH_CUE_MODE (3) XGL Graphics Library

if (XGL_CTX_VDC_ORIENTATION is XGL_Y_DOWN_Z_AWAY) {
Z

f
= VDC z minimum

Z
b

= VDC z maximum
} else { /∗ XGL_Y_UP_Z_TOWARD ∗/

Z
f

= VDC z maximum
Z

b
= VDC z minimum

}

The resultant depth-cued color is calculated as follows:

Z in front of Z
f

:

C
i
´ = C

i

Z behind Z
b

:

C
i
´ = C

d

Z between Z
f
and Z

b
:

r = (Z - Z
b
) / (Z

f
- Z

b
)

C
i
´ = r ∗ C

i
+ (1 - r) ∗ C

d

The weighting factor, r, is a normalized depth of each vertex. It determines the
proportion of the primitive’s color that will be mixed with the depth-cued color
(described below).

Note that if an application has XGL_CTX_VDC_MAP(3) set to XGL_VDC_MAP_OFF,
then it must adjust the value of XGL_CTX_DC_VIEWPORT(3) by the maximum Z
value given by XGL_DEV_MAXIMUM_COORDINATES(3), which varies across devices
because of the actual depth of the Z-buffer. This adjustment is necessary for both
correct Z-buffering and depth cueing. XGL automatically makes this adjustment
for values of XGL_CTX_VDC_MAP(3) other than XGL_VDC_MAP_OFF.

XGL_DEPTH_CUE_SCALED
Similar to XGL_DEPTH_CUE_LINEAR in that a linear weighting function is applied.
However, it is only applied between two depth-cueing reference planes that are
specified by the application using the attribute XGL_3D_CTX_DEPTH_CUE_REF_-

PLANES(3). Also, the proportion of the original primitive’s color that is mixed
with the depth-cued color can be specified at the two reference planes using the
attribute XGL_3D_CTX_DEPTH_CUE_SCALE_FACTORS(3).

The resultant depth-cued color is calculated as follows:

Z in front of Z
f

:

C
i
´ = S

f
∗ C

i
+ (1 - S

f
) ∗ C

d

Z behind Z
b

:

C
i
´ = S

b
∗ C

i
+ (1 - S

b
) ∗ C

d

Z between Z
f
and Z

b
:

r = S
b

+ ((Z - Z
b
) ∗ (S

f
- S

b
) / (Z

f
- Z

b
))

72 modified August 1994

XGL Graphics Library XGL_3D_CTX_DEPTH_CUE_MODE (3)

C
i
´ = r ∗ C

i
+ (1 - r) ∗ C

d

The determination of the depth-cued color, C
d

, varies depending upon the Device color
type, specified by the attribute XGL_DEV_COLOR_TYPE(3). The two alternatives are as fol-
lows:

1. When the Device color type is XGL_COLOR_INDEX, the depth-cued color is the
color index at the beginning of the color ramp associated with the vertex color.
(For a description of color ramps, see XGL_CMAP_RAMP_LIST(3).) Thus, for
depth-cueing to be calculated properly with indexed colors, a color ramp must
be associated with the vertex color.

2. When the Device color type is XGL_COLOR_RGB, the depth-cued color is the color
specified by the attribute XGL_3D_CTX_DEPTH_CUE_COLOR(3).

In all cases where depth-cueing is in effect, the attribute XGL_3D_CTX_DEPTH_CUE_INTERP
controls how interpolation along rendered lines is performed.

The default value is XGL_DEPTH_CUE_OFF.

This attribute is pushed by xgl_context_push(3).

SEE ALSO xgl_object_set(3)
xgl_object_get(3)

XGL_3D_CTX_DEPTH_CUE_COLOR(3)
XGL_3D_CTX_DEPTH_CUE_INTERP(3)
XGL_3D_CTX_DEPTH_CUE_REF_PLANES(3)
XGL_3D_CTX_DEPTH_CUE_SCALE_FACTORS(3)
XGL_CMAP_RAMP_LIST(3)
XGL_DEV_COLOR_TYPE(3)

modified August 1994 73

XGL_3D_CTX_DEPTH_CUE_REF_PLANES (3) XGL Graphics Library

NAME XGL_3D_CTX_DEPTH_CUE_REF_PLANES − defines the planes that specify where
depth-cueing occurs under certain conditions

SYNOPSIS #include <xgl/xgl.h>

Xgl_ctx ctx;

xgl_object_set(ctx, XGL_3D_CTX_DEPTH_CUE_REF_PLANES, double ∗, 0);
xgl_object_get(ctx, XGL_3D_CTX_DEPTH_CUE_REF_PLANES, double ∗);

DESCRIPTION Depth-cueing attenuates the color of 3D primitives based upon their depth (z-value in
VDC space). This attribute is used only when the depth-cueing mode, as specified by
XGL_3D_CTX_DEPTH_CUE_MODE(3), is set to XGL_DEPTH_CUE_SCALED. In this case, the
depth-cueing function is only used between the two reference planes, front and back,
specified by this attribute.

The two planes are normal to the z-axis in the VDC coordinate system and are specified as
two z-values expressed as an array of two doubles. The first value in the array
corresponds to the front reference plane, and the second value to the back plane.

Because the planes are specified in VDC, they are dependent on the value of the attribute
XGL_CTX_VDC_ORIENTATION(3). When the VDC orientation is XGL_Y_DOWN_Z_AWAY, the
z-value of the front plane must be less than or equal to that of the back plane. In the oppo-
site case, when VDC orientation is XGL_Y_UP_Z_TOWARD, the z-value of the front plane
must be greater than or equal to that of the back plane.

For a complete description of scaled depth-cueing, see XGL_3D_CTX_DEPTH_CUE_MODE(3).

The default value is (0.0, 1.0).

This attribute is pushed by xgl_context_push(3).

SEE ALSO xgl_object_set(3)
xgl_object_get(3)

XGL_3D_CTX_DEPTH_CUE_COLOR(3)
XGL_3D_CTX_DEPTH_CUE_MODE(3)
XGL_3D_CTX_DEPTH_CUE_SCALE_FACTORS(3)
XGL_CMAP_RAMP_LIST(3)
XGL_DEV_COLOR_TYPE(3)

NOTES The default values for the reference planes are specified based on a XGL_CTX_VDC_-

ORIENTATION(3) of XGL_Y_DOWN_Z_AWAY. Thus, if XGL_CTX_VDC_ORIENTATION(3) is
changed to XGL_Y_UP_Z_TOWARD, and XGL_3D_CTX_DEPTH_CUE_MODE(3) is set to XGL_-
DEPTH_CUE_SCALED before the reference planes are changed, an error message is gen-
erated and the values of the front and back reference planes are exchanged (so that the
back reference plane is indeed behind the front reference plane). To avoid this, when the
orientation is XGL_Y_UP_Z_TOWARD, set the reference planes to the values that you want to
use before setting depth cueing to XGL_DEPTH_CUE_SCALED.

74 modified August 1994

XGL Graphics Library XGL_3D_CTX_DEPTH_CUE_SCALE_FACTORS (3)

NAME XGL_3D_CTX_DEPTH_CUE_SCALE_FACTORS − defines scale factors used in mixing
primitive and depth-cued colors under certain conditions

SYNOPSIS #include <xgl/xgl.h>

Xgl_ctx ctx;

xgl_object_set(ctx, XGL_3D_CTX_DEPTH_CUE_SCALE_FACTORS, float ∗, 0);
xgl_object_get(ctx, XGL_3D_CTX_DEPTH_CUE_SCALE_FACTORS, float ∗);

DESCRIPTION Depth-cueing attenuates the color of 3D primitives based upon their depth (z value in
VDC space). This attribute modifies the appearance of depth-cued primitives and is only
used when the depth-cueing mode, as specified by XGL_3D_CTX_DEPTH_CUE_MODE(3), is
set to XGL_DEPTH_CUE_SCALED. In this case, depth-cueing occurs only between the two
reference planes, front and back, specified by the attribute XGL_3D_CTX_DEPTH_CUE_REF_-

PLANES(3). Then, XGL_3D_CTX_DEPTH_CUE_SCALE_FACTORS defines scale factors used to
determine the portion of the primitive’s color that is mixed with the depth-cued color
(described below).

The front and back scale factors are specified as two z-values expressed as an array of two
floats. The first value in the array corresponds to the front scale factor, and the second
value to the back scale factor.

The front scale factor defines the portion of the primitive color that is combined with (1 −
front_scale_factor) times the depth-cued color at, or in front of, the front reference plane.
Likewise, the back scale factor specifies the portion of the primitive color applied at, or
behind, the back reference plane. In between the two planes, the portion of the depth-
cued color combined with the primitive color is modulated by linearly interpolating
between the two scaling factors. For a more complete description of scaled depth-cueing,
see XGL_3D_CTX_DEPTH_CUE_MODE(3).

The determination of the depth-cued color varies depending on the Device color type,
specified by the attribute XGL_DEV_COLOR_TYPE(3). The two alternatives are as follows:

1. When the Device color type is XGL_COLOR_INDEX, the depth-cued color is the color
index at the beginning of the color ramp associated with the vertex color. (For a
description of color ramps, see XGL_CMAP_RAMP_LIST(3).) Thus, for depth-cueing
to be calculated properly with indexed colors, a color ramp must be associated
with the vertex color.

2. When the Device color type is XGL_COLOR_RGB, the depth-cued color is the color
specified by the attribute XGL_3D_CTX_DEPTH_CUE_COLOR(3).

The default value is (1.0, 0.0).

This attribute is pushed by xgl_context_push(3).

modified August 1994 75

XGL_3D_CTX_DEPTH_CUE_SCALE_FACTORS (3) XGL Graphics Library

SEE ALSO xgl_object_set(3)
xgl_object_get(3)

XGL_3D_CTX_DEPTH_CUE_COLOR(3)
XGL_3D_CTX_DEPTH_CUE_MODE(3)
XGL_3D_CTX_DEPTH_CUE_REF_PLANES(3)
XGL_CMAP_RAMP_LIST(3)
XGL_DEV_COLOR_TYPE(3)

76 modified August 1994

XGL Graphics Library XGL_3D_CTX_EDGE_Z_OFFSET (3)

NAME XGL_3D_CTX_EDGE_Z_OFFSET − defines the offset added to a surface to specify the
DC location of the surface edge

SYNOPSIS #include <xgl/xgl.h>

Xgl_ctx ctx;

xgl_object_set(ctx, XGL_3D_CTX_EDGE_Z_OFFSET, float, 0);
xgl_object_get(ctx, XGL_3D_CTX_EDGE_Z_OFFSET, float ∗);

DESCRIPTION This attribute specifies the offset added to a surface to define the DC location of the sur-
face edge. The value specified by this attribute is a fraction of the device maximum Z
coordinate.

When Z-buffering is on, a small constant is added to the Z-coordinate of edge vertices to
ensure that edges are rendered in front of surfaces. This attribute allows a user to control
the DC Z-offset. The attribute has no effect when Z-buffering is off.

The default value is 0.001.

This attribute is pushed by xgl_context_push(3).

SEE ALSO xgl_object_set(3)
xgl_object_get(3)
xgl_context_push(3)

XGL_3D_CTX_HLHSR_MODE(3)

modified September 1996 77

XGL_3D_CTX_HLHSR_DATA (3) XGL Graphics Library

NAME XGL_3D_CTX_HLHSR_DATA − defines data used to clear the z-buffer

SYNOPSIS #include <xgl/xgl.h>

Xgl_ctx ctx;

xgl_object_set(ctx, XGL_3D_CTX_HLHSR_DATA, Xgl_hlhsr_data ∗, 0);
xgl_object_get(ctx, XGL_3D_CTX_HLHSR_DATA, Xgl_hlhsr_data ∗);

DESCRIPTION The operator xgl_context_new_frame(3) clears the device coordinate (DC) viewport in a
way specified by the attribute XGL_CTX_NEW_FRAME_ACTION(3). If one of the actions
specified by XGL_CTX_NEW_FRAME_ACTION is XGL_CTX_NEW_FRAME_HLHSR_ACTION, and if
the attribute XGL_3D_CTX_HLHSR_MODE(3) is set to XGL_HLHSR_Z_BUFFER, then this attribute
contains the value to write into the z-buffer for the new frame. The value must be
between 0.0 and the maximum z-value allowed by the Device as specified by the attribute
XGL_DEV_MAXIMUM_COORDINATES(3). Values outside the maximum z-value will get
clamped.

XGL sets the value of XGL_3D_CTX_HLHSR_DATA to the z-value of XGL_DEV_MAXIMUM_-

COORDINATES(3) when an application associates a Device with a 3D Context.

The default value is device independent: infinity.

This attribute is pushed by xgl_context_push(3).

SEE ALSO xgl_object_set(3)
xgl_object_get(3)
xgl_context_push(3)
xgl_context_new_frame(3)

XGL_3D_CTX_HLHSR_MODE(3)
XGL_CTX_NEW_FRAME_ACTION(3)
XGL_DEV_MAXIMUM_COORDINATES(3)

78 modified August 1994

XGL Graphics Library XGL_3D_CTX_HLHSR_MODE (3)

NAME XGL_3D_CTX_HLHSR_MODE − defines the mode used for hidden line/hidden surface
removal

SYNOPSIS #include <xgl/xgl.h>

Xgl_ctx ctx;

xgl_object_set(ctx, XGL_3D_CTX_HLHSR_MODE, Xgl_hlhsr_mode, 0);
xgl_object_get(ctx, XGL_3D_CTX_HLHSR_MODE, Xgl_hlhsr_mode ∗);

DESCRIPTION This attribute specifies whether hidden line and hidden surface removal (HLHSR) will be
done on primitives rendered using the 3D Context ctx. A standard z-buffer technique is
used to accomplish hidden line and hidden surface removal. The z-buffering is useful
when rendering 3D images because primitives that are obscured by objects closer to the
viewer are not shown. Two options are available for this attribute:

XGL_HLHSR_NONE
Primitives are rendered into the frame buffer in the order they are received.
Primitives that are near the observer can be overlapped by those farther away.

XGL_HLHSR_Z_BUFFER
Each pixel in a primitive is rendered into the frame buffer only if its device coor-
dinate z-value is less than or equal to the z-value of the pixel currently stored in
the frame buffer.

The z-buffer is cleared by calling xgl_context_new_frame(3), providing the attribute
XGL_CTX_NEW_FRAME_ACTION(3) allows for XGL_CTX_NEW_FRAME_HLHSR_ACTION and that
XGL_3D_CTX_HLHSR_MODE(3) is set to XGL_HLHSR_Z_BUFFER. The z-buffer is cleared to the
value specified by XGL_3D_CTX_HLHSR_DATA(3).

The default value is XGL_HLHSR_NONE.

This attribute is pushed by xgl_context_push(3).

SEE ALSO xgl_object_set(3)
xgl_object_get(3)
xgl_context_push(3)
xgl_context_new_frame(3)

XGL_3D_CTX_HLHSR_DATA(3)
XGL_CTX_NEW_FRAME_ACTION(3)

NOTES XGL does not clear or initialize the contents of the z-buffer upon an expose event. For the
contents of the z-buffer to be initialized or reinitialized, the application must explicitly
call xgl_context_new_frame(3) with the attribute XGL_CTX_NEW_FRAME_ACTION(3) allow-
ing for XGL_CTX_NEW_FRAME_HLHSR_ACTION.

Such an exposure occurs upon, but may not be limited to, the following:
· The creation of the raster.
· A resize event.
· ‘‘Popping’’ the raster above others.

modified August 1994 79

XGL_3D_CTX_HLHSR_MODE (3) XGL Graphics Library

On devices that implement a software z-buffer, the first Context attached to a given Ras-
ter that has the setting XGL_HLHSR_Z_BUFFER causes the allocation of the software z-buffer.
This z-buffer remains allocated until the Raster is destroyed. To determine whether your
device uses a software z-buffer, check the hlhsr_mode field returned by the operator xgl_-
inquire(3).

When an application requests a VDC mapping (see XGL_CTX_VDC_MAP(3)) of XGL_VDC_-
MAP_DEVICE and z-buffering is enabled, the range of the z-values in the application’s data
should be greater than the range of the x-values. Otherwise, incorrect values may be writ-
ten into the z-buffer.

The results of picking are affected by this mode. If XGL_3D_CTX_HLHSR_MODE is XGL_-
HLHSR_NONE, all objects in a pick aperture can be picked. If it is on, only the visible (that
is, not obscured by other primitives) can be picked.

80 modified August 1994

XGL Graphics Library XGL_3D_CTX_JITTER_OFFSET (3)

NAME XGL_3D_CTX_JITTER_OFFSET − specifies the amount by which the geometry should be
offset in DC before drawing

SYNOPSIS #include <xgl/xgl.h>

Xgl_ctx ctx;

xgl_object_set(ctx, XGL_3D_CTX_JITTER_OFFSET, Xgl_pt_d2d∗, 0);
xgl_object_get(ctx, XGL_3D_CTX_JITTER_OFFSET, Xgl_pt_d2d∗);

DESCRIPTION This attribute specifies the amount by which the geometry should be offset in DC before
drawing. Alternatively, jitter offset is the value by which the DC viewport is offset before
rendering the primitive.

An application can use jitter offset to render an image before accumulating.

The default value is (0.0, 0.0).

This attribute is pushed by xgl_context_push(3).

SEE ALSO xgl_object_set(3)
xgl_object_get(3)
xgl_context_push(3)
xgl_context_accumulate(3)

modified August 1994 81

XGL_3D_CTX_LIGHTS (3) XGL Graphics Library

NAME XGL_3D_CTX_LIGHTS − list of Lights in a 3D Context

SYNOPSIS #include <xgl/xgl.h>

Xgl_3d_ctx ctx;

xgl_object_set(ctx, XGL_3D_CTX_LIGHTS, Xgl_light [], 0);
xgl_object_get(ctx, XGL_3D_CTX_LIGHTS, Xgl_light []);

DESCRIPTION This attribute is an array of Lights used by the 3D Context ctx. The number of Lights in
the list is given by the 3D Context attribute XGL_3D_CTX_LIGHT_NUM(3). The 3D Context
has a corresponding list of switches given by XGL_3D_CTX_LIGHT_SWITCHES(3) for turning
on and off the individual Lights.

An application can set XGL_3D_CTX_LIGHT_NUM to the required number of Lights, and then
get the list of Lights. This gives the application access to the individual Lights used by
the Context as given by XGL_3D_CTX_LIGHTS.

Alternatively, an application can explicitly create its own list of Lights with the operator
xgl_object_create(3). The number in this list should be the same as the value of XGL_3D_-
CTX_LIGHT_NUM. Then the application can set XGL_3D_CTX_LIGHTS with its list. XGL des-
troys the Context’s list of Lights (provided that no other 3D Context is using these Lights)
before setting XGL_3D_CTX_LIGHTS to the list specified by the application.

The default value is NULL.

This attribute is not pushed by xgl_context_push(3).

SEE ALSO xgl_object_set(3)
xgl_object_get(3)
xgl_object_create(3)

XGL_3D_CTX_LIGHT_NUM(3)
XGL_3D_CTX_LIGHT_SWITCHES(3)

NOTE When an application sets the light list in XGL, the array of light objects is not copied by
XGL. The context updates an array of pointers which point to the light objects in the
Xgl_light array which was passed in the Xgl_object_set call. This differs from other lists
like the list of clip rectangles (XGL_RAS_RECT_LIST) where XGL makes an internal copy of
the clip rectangle list.

82 modified September 1995

XGL Graphics Library XGL_3D_CTX_LIGHT_NUM (3)

NAME XGL_3D_CTX_LIGHT_NUM − number of Lights in a 3D Context

SYNOPSIS #include <xgl/xgl.h>

Xgl_3d_ctx ctx;

xgl_object_set(ctx, XGL_3D_CTX_LIGHT_NUM, Xgl_usgn32, 0);
xgl_object_get(ctx, XGL_3D_CTX_LIGHT_NUM, Xgl_usgn32 ∗);

DESCRIPTION This attribute is the number of Lights in a 3D Context. When an application sets this attri-
bute, XGL changes the number of Lights and their corresponding on and off switches to
match this attribute. If the value of this attribute is m, the list of Lights as given by XGL_-

3D_CTX_LIGHTS(3) and its list of switches as given by XGL_3D_CTX_LIGHT_SWITCHES(3) are
indexed from 0 to m-1. If the new number n exceeds the current number m, XGL creates
n-m Lights and switches and appends these to the appropriate lists in the Context at index
positions m to n-1. The light switches for the new lights are on by default. The Lights and
switches that existed before increasing the number of Lights remain unchanged. If the
new number is less than the current number, XGL destroys Lights and switches with
indices n to m-1 (providing no other 3D Context is using these Lights).

The default value is 0.

This attribute is not pushed by xgl_context_push(3).

SEE ALSO xgl_object_set(3)
xgl_object_get(3)
xgl_object_create(3)
xgl_object_destroy(3)

XGL_3D_CTX_LIGHT_SWITCHES(3)
XGL_3D_CTX_LIGHTS(3)

modified August 1994 83

XGL_3D_CTX_LIGHT_SWITCHES (3) XGL Graphics Library

NAME XGL_3D_CTX_LIGHT_SWITCHES − list of switches for a 3D Context’s Lights

SYNOPSIS #include <xgl/xgl.h>

Xgl_3d_ctx ctx;

xgl_object_set(ctx, XGL_3D_CTX_LIGHT_SWITCHES, Xgl_boolean [], 0);
xgl_object_get(ctx, XGL_3D_CTX_LIGHT_SWITCHES, Xgl_boolean []);

DESCRIPTION This attribute is an array of on and off switches corresponding to the 3D Context’s array
of Lights, given by XGL_3D_CTX_LIGHTS(3). The number of switches in the list is given by
XGL_3D_CTX_LIGHT_NUM(3).

The Context’s array of Lights have indices 0 to n-1, where n is the value of XGL_3D_CTX_-
LIGHT_NUM. An application can turn on Light i by setting flag i in its own array of
switches to TRUE. Similarly, FALSE turns a Light off. After establishing the values of all
switches, an application can set XGL_3D_CTX_LIGHT_SWITCHES with this array to turn Lights
on or off.

The default value is NULL.

This attribute is pushed by xgl_context_push(3).

SEE ALSO xgl_object_set(3)
xgl_object_get(3)
xgl_context_push(3)
xgl_object_create(3)

XGL_3D_CTX_LIGHT_NUM(3)
XGL_3D_CTX_LIGHTS(3)

84 modified August 1994

XGL Graphics Library XGL_3D_CTX_LINE_COLOR_INTERP (3)

NAME XGL_3D_CTX_LINE_COLOR_INTERP − controls color interpolation along 3D lines

SYNOPSIS #include <xgl/xgl.h>

Xgl_ctx ctx;

xgl_object_set(ctx, XGL_3D_CTX_LINE_COLOR_INTERP, Xgl_boolean, 0);
xgl_object_get(ctx, XGL_3D_CTX_LINE_COLOR_INTERP, Xgl_boolean ∗);

DESCRIPTION This attribute specifies whether a line, when drawn with an XGL operator that renders
line segments (such as xgl_multipolyline(3)) in the 3D Context ctx, will have a color that
is linearly interpolated between the colors of its vertices. Possible values are:

TRUE The interpolation will be done. Vertices must have a color associated with them.
The distance between vertices along the line is used to control the interpolation.
The interpolation is done in device coordinates. Thus, for instance, two lines that
project to an equal length on the device show the same color-stepping interval,
regardless of their orientation in world coordinates.

FALSE No line color interpolation will be done. The color of the line segment n−1 to n is
the color at vertex n.

Color interpolation applies only to primitives rendering 3D line segments that have colors
specified at each vertex. The edges of a polygon cannot be rendered using the line color
interpolation attribute.

The default value is FALSE.

This attribute is pushed by xgl_context_push(3).

SEE ALSO xgl_object_set(3)
xgl_object_get(3)
xgl_context_push(3)
xgl_multipolyline(3)

modified August 1994 85

XGL_3D_CTX_MODEL_CLIP_PLANES (3) XGL Graphics Library

NAME XGL_3D_CTX_MODEL_CLIP_PLANES − specifies list of model clipping planes to use

SYNOPSIS #include <xgl/xgl.h>

Xgl_ctx ctx;

xgl_object_set(ctx, XGL_3D_CTX_MODEL_CLIP_PLANES, Xgl_plane [], 0);
xgl_object_get(ctx, XGL_3D_CTX_MODEL_CLIP_PLANES, Xgl_plane []);

DESCRIPTION This attribute specifies the list of model clipping planes to use when rendering primitives
within the Context ctx. Model clipping is provided to allow clipping of graphics primi-
tives before viewing. The application uses this attribute in conjunction with the attribute
XGL_3D_CTX_MODEL_CLIP_PLANE_NUM to specify which and how many model clipping
planes should be considered when rendering XGL primitives.

Setting a new list of model clipping planes replaces the previous (if any) list of model clip-
ping planes. The application is also responsible for making sure that enough memory is
available when getting the list of clipping planes from XGL.

Each model clipping plane is defined as a point in world coordinates (WC), and as a unit
vector normal to the plane, also in world coordinates, pointing in the direction of the half
space.

All the graphics on the side of the normal vector are kept, and the graphics on the other
side are clipped. Providing several planes defines a clipping volume, limited by a set of
half spaces.

XGL_3D_CTX_MODEL_CLIP_PLANES is a pointer to a C structure of type Xgl_plane, which is
defined as follows:

typedef struct {
Xgl_pt_d3d pt; /∗ a point on the plane in WC ∗/
Xgl_pt_d3d normal; /∗ normal vector components ∗/

} Xgl_plane;

When performing model clipping, XGL considers all of the enabled model clipping
planes, in the order the application has provided them.

By default, XGL does not perform any model clipping.

This attribute is pushed by xgl_context_push(3).

SEE ALSO xgl_object_set(3)
xgl_object_get(3)
xgl_context_push(3)

XGL_3D_CTX_MODEL_CLIP_PLANE_NUM(3)

NOTES Model clipping of some primitives (annotation text, or annotation 3D circle, arc, rectangle,
or ellipse, ...) is performed only on the reference point. If the reference point is clipped,
the entire primitive is considered clipped.

86 modified August 1994

XGL Graphics Library XGL_3D_CTX_MODEL_CLIP_PLANES (3)

Model clipping of primitives defined with a point type that lacks an edge flag field
(XGL_PT_F3D, XGL_PT_COLOR_NORMAL_F3D,... for example) will generate a clipped primitive
with all edges visible, even on the modeling clipping plane boundaries.

modified August 1994 87

XGL_3D_CTX_MODEL_CLIP_PLANE_NUM (3) XGL Graphics Library

NAME XGL_3D_CTX_MODEL_CLIP_PLANE_NUM − specifies the number of model clipping
planes in use

SYNOPSIS #include <xgl/xgl.h>

Xgl_ctx ctx;

xgl_object_set(ctx, XGL_3D_CTX_MODEL_CLIP_PLANE_NUM, Xgl_usgn32, 0);
xgl_object_get(ctx, XGL_3D_CTX_MODEL_CLIP_PLANE_NUM, Xgl_usgn32 ∗);

DESCRIPTION This attribute specifies the number of model clipping planes in use when rendering primi-
tives within the Context ctx. The application uses this attribute in conjunction with the
attribute XGL_3D_CTX_MODEL_CLIP_PLANES to specify which and how many model clipping
planes should be considered when rendering XGL primitives.

Setting this attribute to 0 disables model clipping. Setting it back to a positive value
enables model clipping.

When additional model clipping planes must be defined, the application must first pro-
vide the number of planes, and then the list of model clipping planes. To enable the first
n planes of those already defined, the application may set only the new number of planes,
without sending the list of model clipping planes to XGL.

When performing model clipping, XGL considers all the enabled model clipping planes,
in the order the application provides them.

The default value is ‘‘no model clipping planes enabled’’ — that is, 0 (zero).

This attribute is pushed by xgl_context_push(3).

SEE ALSO xgl_object_set(3)
xgl_object_get(3)
xgl_context_push(3)

XGL_3D_CTX_MODEL_CLIP_PLANES(3)

88 modified February 1995

XGL Graphics Library XGL_3D_CTX_NORMAL_TRANS (3)

NAME XGL_3D_CTX_NORMAL_TRANS − the Normal Transform

SYNOPSIS #include <xgl/xgl.h>

Xgl_ctx ctx;

xgl_object_get(ctx, XGL_3D_CTX_NORMAL_TRANS, Xgl_trans ∗);

DESCRIPTION This read-only attribute is the Transform object used for the Normal Transform, which
transforms normal vectors from model coordinates (MC) to world coordinates (WC). The
Transform’s value is the inverse of the Model Transform (see XGL_CTX_MODEL_TRANS(3)).

To improve performance in XGL 3.0 and subsequent releases, evaluation of the Normal
Transform is deferred until either XGL needs the Normal Transform internally or the
application explicitly gets it. Before attempting to use the Normal Transform, call
xgl_object_get(3) to get XGL_3D_CTX_NORMAL_TRANS to ensure XGL evaluates the Normal
Transform if it requires updating.

Since this attribute is read-only, do not get a handle to this Transform and use it to set
XGL_CTX_LOCAL_MODEL_TRANS(3), XGL_CTX_GLOBAL_MODEL_TRANS(3), or XGL_CTX_VIEW_-

TRANS(3).

The Transform of this read-only Context attribute always has XGL_TRANS_DATA_TYPE(3)
set to XGL_DATA_DBL.

The default value is the Identity Transform.

This attribute is not pushed by xgl_context_push(3).

SEE ALSO xgl_object_set(3)
xgl_object_get(3)

XGL_3D_CTX_SURF_FRONT_ILLUMINATION(3)
XGL_3D_CTX_SURF_BACK_ILLUMINATION(3)
XGL_3D_CTX_SURF_FACE_CULL(3)
XGL_3D_CTX_SURF_FACE_DISTINGUISH(3)
XGL_3D_CTX_SURF_SILHOUETTE_EDGE_FLAG(3)
XGL_CTX_GLOBAL_MODEL_TRANS(3)
XGL_CTX_LOCAL_MODEL_TRANS(3)
XGL_CTX_MODEL_TRANS(3)
XGL_CTX_VIEW_TRANS(3)
XGL_TRANS_DATA_TYPE(3)

modified August 1994 89

XGL_3D_CTX_SURF_DC_OFFSET (3) XGL Graphics Library

NAME XGL_3D_CTX_SURF_DC_OFFSET − offsets in z the DC coordinates of 3D polygons

SYNOPSIS #include <xgl/xgl.h>

Xgl_ctx ctx;

xgl_object_set(ctx, XGL_3D_CTX_SURF_DC_OFFSET, Xgl_boolean, 0);
xgl_object_get(ctx, XGL_3D_CTX_SURF_DC_OFFSET, Xgl_boolean ∗);

DESCRIPTION This attribute controls whether an offset should be added to polygons in device coordi-
nates (DC) to backup polygons from their computed depth position. If TRUE, a DC offset
is computed for each polygon rendered, using all the vertices of the polygon, and this
offset is further added to the z-component of each vertex of the polygon before the
polygon is rendered. Therefore, the polygon will be backed from its computed position.
This attribute can be used to lay other primitives such as polylines ‘‘on top’’ of polygons,
without unwanted z-buffer interactions.

Typically, when z-buffering is on, drawing a polygon followed by another graphic primi-
tive to generate a decal effect will generate incomplete rendering of the last primitive.
This is so because z-buffer values prevent the second primitive being rendered.

This attribute ensures that the first polygon will be behind its computed z-position in dev-
ice coordinates so that the decal will be correctly rendered.

When FALSE, no offset is computed.

This attribute has no effect when the value of the Context attribute XGL_3D_CTX_HLHSR_-

MODE(3) is not XGL_HLHSR_Z_BUFFER.

The default value is FALSE.

This attribute is pushed by xgl_context_push(3).

SEE ALSO xgl_object_set(3)
xgl_object_get(3)
xgl_context_push(3)

XGL_3D_CTX_HLHSR_MODE(3)

90 modified August 1994

XGL Graphics Library XGL_3D_CTX_SURF_FACE_CULL (3)

NAME XGL_3D_CTX_SURF_FACE_CULL − controls face culling in a 3D Context

SYNOPSIS #include <xgl/xgl.h>

Xgl_ctx ctx;

xgl_object_set(ctx, XGL_3D_CTX_SURF_FACE_CULL, Xgl_surf_cull_mode, 0);
xgl_object_get(ctx, XGL_3D_CTX_SURF_FACE_CULL, Xgl_surf_cull_mode ∗);

DESCRIPTION This attribute controls how face culling is done within the 3D Context ctx. When a face of
a surface is ‘‘culled,’’ it is not rendered by XGL. For example, if an application program-
mer did not care about surfaces facing away from the viewer, the programmer could
invoke back-face culling, which causes these surfaces to be ignored. The data type Xgl_-
surf_cull_mode takes on values:

XGL_CULL_OFF
No culling is done.

XGL_CULL_FRONT
Front-facing primitives are culled.

XGL_CULL_BACK
Back-facing primitives are culled.

The default value is XGL_CULL_OFF.

This attribute is pushed by xgl_context_push(3).

SEE ALSO xgl_object_set(3)
xgl_object_get(3)
xgl_context_push(3)

modified August 1994 91

XGL_3D_CTX_SURF_FACE_DISTINGUISH (3) XGL Graphics Library

NAME XGL_3D_CTX_SURF_FACE_DISTINGUISH − controls whether front- and back-facing
surfaces are distinguished from each other

SYNOPSIS #include <xgl/xgl.h>

Xgl_ctx ctx;

xgl_object_set(ctx, XGL_3D_CTX_SURF_FACE_DISTINGUISH, Xgl_boolean, 0);
xgl_object_get(ctx, XGL_3D_CTX_SURF_FACE_DISTINGUISH, Xgl_boolean ∗);

DESCRIPTION This attribute controls whether back-facing surfaces are distinguished from front-facing
ones. If TRUE, back-facing primitives use the XGL_3D_CTX_SURF_BACK_... attributes. Other-
wise, all surfaces use the XGL_3D_CTX_SURF_FRONT_... and XGL_CTX_SURF_FRONT_... attri-
butes.

This attribute does not affect the processing of facets to determine if they are front- or
back-facing. Thus, facets may be culled, for instance, by using the attribute XGL_3D_CTX_-

SURF_FACE_CULL(3), even when XGL_3D_CTX_SURF_FACE_DISTINGUISH is FALSE.

The default value is FALSE.

This attribute is pushed by xgl_context_push(3).

SEE ALSO xgl_object_set(3)
xgl_object_get(3)
xgl_context_push(3)

XGL_3D_CTX_SURF_BACK_AMBIENT(3)
XGL_3D_CTX_SURF_BACK_COLOR(3)
XGL_3D_CTX_SURF_BACK_COLOR_SELECTOR(3)
XGL_3D_CTX_SURF_BACK_DIFFUSE(3)
XGL_3D_CTX_SURF_BACK_DMAP(3)
XGL_3D_CTX_SURF_BACK_DMAP_NUM(3)
XGL_3D_CTX_SURF_BACK_DMAP_SWITCHES(3)
XGL_3D_CTX_SURF_BACK_FILL_STYLE(3)
XGL_3D_CTX_SURF_BACK_FPAT(3)
XGL_3D_CTX_SURF_BACK_FPAT_POSITION(3)
XGL_3D_CTX_SURF_BACK_ILLUMINATION(3)
XGL_3D_CTX_SURF_BACK_LIGHT_COMPONENT(3)
XGL_3D_CTX_SURF_BACK_SPECULAR(3)
XGL_3D_CTX_SURF_BACK_SPECULAR_COLOR(3)
XGL_3D_CTX_SURF_BACK_SPECULAR_POWER(3)
XGL_3D_CTX_SURF_BACK_TRANSP(3)
XGL_3D_CTX_SURF_FACE_CULL(3)
XGL_3D_CTX_SURF_FRONT_AMBIENT(3)
XGL_3D_CTX_SURF_FRONT_DIFFUSE(3)
XGL_3D_CTX_SURF_FRONT_DMAP(3)
XGL_3D_CTX_SURF_FRONT_DMAP_NUM(3)
XGL_3D_CTX_SURF_FRONT_DMAP_SWITCHES(3)

92 modified August 1994

XGL Graphics Library XGL_3D_CTX_SURF_FACE_DISTINGUISH (3)

XGL_3D_CTX_SURF_FRONT_ILLUMINATION(3)
XGL_3D_CTX_SURF_FRONT_LIGHT_COMPONENT(3)
XGL_3D_CTX_SURF_FRONT_SPECULAR(3)
XGL_3D_CTX_SURF_FRONT_SPECULAR_COLOR(3)
XGL_3D_CTX_SURF_FRONT_SPECULAR_POWER(3)
XGL_3D_CTX_SURF_FRONT_TRANSP(3)
XGL_3D_CTX_SURF_SILHOUETTE_EDGE_FLAG(3)
XGL_CTX_SURF_FRONT_COLOR(3)
XGL_CTX_SURF_FRONT_COLOR_SELECTOR(3)
XGL_CTX_SURF_FRONT_FILL_STYLE(3)
XGL_CTX_SURF_FRONT_FPAT(3)
XGL_CTX_SURF_FRONT_FPAT_POSITION(3)

modified August 1994 93

XGL_3D_CTX_SURF_FRONT_AMBIENT (3) XGL Graphics Library

NAME XGL_3D_CTX_SURF_BACK_AMBIENT,
XGL_3D_CTX_SURF_FRONT_AMBIENT − define ambient lighting coefficients for a 3D
Context

SYNOPSIS #include <xgl/xgl.h>

Xgl_ctx ctx;

xgl_object_set(ctx, XGL_3D_CTX_SURF_BACK_AMBIENT, float, 0);
xgl_object_set(ctx, XGL_3D_CTX_SURF_FRONT_AMBIENT, float, 0);

xgl_object_get(ctx, XGL_3D_CTX_SURF_BACK_AMBIENT, float ∗);
xgl_object_get(ctx, XGL_3D_CTX_SURF_FRONT_AMBIENT, float ∗);

DESCRIPTION These attributes define the ambient reflection coefficients used for lighting calculations
within the 3D Context ctx.

XGL_3D_CTX_SURF_BACK_AMBIENT specifies the ambient reflection coefficient used for
back-facing surfaces, and XGL_3D_CTX_SURF_FRONT_AMBIENT specifies the coefficient used
for front-facing surfaces. The Context attribute XGL_3D_CTX_SURF_FACE_DISTINGUISH(3)
must be TRUE for XGL_3D_CTX_SURF_BACK_AMBIENT to be used (otherwise, XGL_3D_CTX_-
SURF_FRONT_AMBIENT is used for both front-facing and back-facing surfaces).

The default value for each attribute is 0.0.

This attribute is pushed by xgl_context_push(3).

SEE ALSO xgl_object_set(3)
xgl_object_get(3)
xgl_context_push(3)

XGL_3D_CTX_SURF_FACE_DISTINGUISH(3)

The Lighting Equations section of the XGL Programmer’s Guide.

94 modified August 1994

XGL Graphics Library XGL_3D_CTX_SURF_FRONT_DIFFUSE (3)

NAME XGL_3D_CTX_SURF_BACK_DIFFUSE,
XGL_3D_CTX_SURF_FRONT_DIFFUSE − define diffuse lighting coefficients for a 3D
Context

SYNOPSIS #include <xgl/xgl.h>

Xgl_ctx ctx;

xgl_object_set(ctx, XGL_3D_CTX_SURF_BACK_DIFFUSE, float, 0);
xgl_object_set(ctx, XGL_3D_CTX_SURF_FRONT_DIFFUSE, float, 0);

xgl_object_get(ctx, XGL_3D_CTX_SURF_BACK_DIFFUSE, float ∗);
xgl_object_get(ctx, XGL_3D_CTX_SURF_FRONT_DIFFUSE, float ∗);

DESCRIPTION These attributes define the diffuse reflection coefficients used for lighting calculations
within the 3D Context ctx.

XGL_3D_CTX_SURF_BACK_DIFFUSE specifies the diffuse reflection coefficient used for back-
facing surfaces, and XGL_3D_CTX_SURF_FRONT_DIFFUSE specifies the coefficient used for
front-facing surfaces. The Context attribute XGL_3D_CTX_SURF_FACE_DISTINGUISH(3) must
be TRUE for XGL_3D_CTX_SURF_BACK_DIFFUSE to be used (otherwise, XGL_3D_CTX_SURF_-
FRONT_DIFFUSE is used for both front-facing and back-facing surfaces).

The default value for each attribute is 1.0.

This attribute is pushed by xgl_context_push(3).

SEE ALSO xgl_object_set(3)
xgl_object_get(3)
xgl_context_push(3)

XGL_3D_CTX_SURF_FACE_DISTINGUISH(3)

The Lighting Equations section of the XGL Programmer’s Guide.

modified August 1994 95

XGL_3D_CTX_SURF_FRONT_DMAP (3) XGL Graphics Library

NAME XGL_3D_CTX_SURF_BACK_DMAP
XGL_3D_CTX_SURF_FRONT_DMAP − specify a list of Data Map Texture objects in a 3D
Context

SYNOPSIS #include <xgl/xgl.h>

Xgl_ctx ctx;

xgl_object_set(ctx, XGL_3D_CTX_SURF_BACK_DMAP, Xgl_data_map [], 0);
xgl_object_set(ctx, XGL_3D_CTX_SURF_FRONT_DMAP, Xgl_data_map [], 0);

xgl_object_get(ctx, XGL_3D_CTX_SURF_BACK_DMAP, Xgl_data_map []);
xgl_object_get(ctx, XGL_3D_CTX_SURF_FRONT_DMAP, Xgl_data_map []);

DESCRIPTION These attributes specify an array of Data Map Texture objects used by the 3D Context ctx.
The number of data map textures in the lists is given by the 3D Context attributes XGL_3D_-

CTX_SURF_BACK_DMAP_NUM(3) and XGL_3D_CTX_SURF_FRONT_DMAP_NUM(3). The 3D Con-
text has a corresponding list of switches given by XGL_3D_CTX_SURF_BACK_DMAP_-

SWITCHES(3) and XGL_3D_CTX_SURF_FRONT_DMAP_SWITCHES(3) for turning on and off the
individual data map textures.

An application can set XGL_3D_CTX_SURF_BACK_DMAP_NUM(3) and XGL_3D_CTX_SURF_-

FRONT_DMAP_NUM(3) to the required number of data map textures, and then get the list of
data map textures. This gives the application access to the individual data map textures
that the Context uses as given by XGL_3D_CTX_SURF_BACK_DMAP and XGL_3D_CTX_SURF_-
FRONT_DMAP.

Alternatively, an application can explicitly create its own list of data map textures with the
operator xgl_object_create(3). The number in the list should be the same as the number
specified in XGL_3D_CTX_SURF_BACK_DMAP_NUM(3) and XGL_3D_CTX_SURF_FRONT_DMAP_-

NUM(3). The application can now set XGL_3D_CTX_SURF_BACK_DMAP and XGL_3D_CTX_-
SURF_FRONT_DMAP with this list. XGL destroys the Context’s list of Data Map Texture
objects (provided that no other 3D Context is using them) before setting XGL_3D_CTX_-
SURF_BACK_DMAP and XGL_3D_CTX_SURF_FRONT_DMAP to the list specified by the applica-
tion.

When multiple data maps are active, they are applied sequentially and are cumulative.
That is, data map 0 is applied before data map 1 and so on.

The default value for each attribute is NULL.

This attribute is not pushed by xgl_context_push(3).

SEE ALSO xgl_object_set(3)
xgl_object_get(3)
xgl_object_create(3)

96 modified August 1994

XGL Graphics Library XGL_3D_CTX_SURF_FRONT_DMAP (3)

XGL_3D_CTX_SURF_BACK_DMAP_NUM(3)
XGL_3D_CTX_SURF_BACK_DMAP_SWITCHES(3)
XGL_3D_CTX_SURF_FRONT_DMAP_NUM(3)
XGL_3D_CTX_SURF_FRONT_DMAP_SWITCHES(3)

NOTES Texturing is only supported when the color type of the raster attached to a 3D Context is
XGL_COLOR_RGB.

At this release, a new object, Texture Map, has been provided for texture mapping. The
Data Map Texture object is retained for backward compatibility, but will be removed
from the XGL library in a future release. Because of this, we recommend that application
programs use the Texture Map object for texture mapping.

modified August 1994 97

XGL_3D_CTX_SURF_FRONT_DMAP_NUM (3) XGL Graphics Library

NAME XGL_3D_CTX_SURF_BACK_DMAP_NUM
XGL_3D_CTX_SURF_FRONT_DMAP_NUM − specify the number of Data Map Texture
objects in a 3D Context

SYNOPSIS #include <xgl/xgl.h>

Xgl_ctx ctx;

xgl_object_set(ctx, XGL_3D_CTX_SURF_BACK_DMAP_NUM, Xgl_usgn32, 0);
xgl_object_set(ctx, XGL_3D_CTX_SURF_FRONT_DMAP_NUM, Xgl_usgn32, 0);

xgl_object_get(ctx, XGL_3D_CTX_SURF_BACK_DMAP_NUM, Xgl_usgn32 ∗);
xgl_object_get(ctx, XGL_3D_CTX_SURF_FRONT_DMAP_NUM, Xgl_usgn32 ∗);

DESCRIPTION These attributes set the number of Data Map Texture objects in a 3D Context. When an
application sets these attributes, XGL changes the number of Data Map Texture objects
and their corresponding on and off switches to match these attributes. If the value of
these attributes is m, the lists of Data Map Texture objects given by XGL_3D_CTX_SURF_-

BACK_DMAP and XGL_3D_CTX_SURF_FRONT_DMAP and their lists of switches as given by
XGL_3D_CTX_SURF_BACK_DMAP_SWITCHES and XGL_3D_CTX_SURF_FRONT_DMAP_SWITCHES

are indexed from 0 to m-1. If the new number n exceeds the current number m, XGL
creates n-m Data Map Texture objects and switches and appends these to the appropriate
lists in the Context at index positions m to n-1.

The data map texture switches are on by default. The Data Map Texture objects and
switches that existed before increasing the number of Data Map Texture objects remain
unchanged. If the number is less than the current number, XGL destroys the Data Map
Texture objects and switches with indices n to m-1 (provided that no other 3D Context is
using them).

The default value for each attribute is 0.

This attribute is not pushed by xgl_context_push(3).

SEE ALSO xgl_object_set(3)
xgl_object_get(3)
xgl_object_create(3)

XGL_3D_CTX_SURF_BACK_DMAP(3)
XGL_3D_CTX_SURF_BACK_DMAP_SWITCHES(3)
XGL_3D_CTX_SURF_FRONT_DMAP(3)
XGL_3D_CTX_SURF_FRONT_DMAP_SWITCHES(3)

NOTES Texturing is enabled when these attributes are non-zero and the 3D surface primitive has
data in its vertex information.

Texturing is only supported when the color type of the raster attached to a 3D Context is
XGL_COLOR_RGB.

98 modified August 1994

XGL Graphics Library XGL_3D_CTX_SURF_FRONT_DMAP_NUM (3)

At this release, a new object, Texture Map, has been provided for texture mapping. The
Data Map Texture object is retained for backward compatibility, but will be removed
from the XGL library in a future release. Because of this, we recommend that application
programs use the Texture Map object for texture mapping.

modified August 1994 99

XGL_3D_CTX_SURF_FRONT_DMAP_SWITCHES (3) XGL Graphics Library

NAME XGL_3D_CTX_SURF_BACK_DMAP_SWITCHES
XGL_3D_CTX_SURF_FRONT_DMAP_SWITCHES − specify the list of switches for a 3D
Context’s Data Map Texture objects

SYNOPSIS #include <xgl/xgl.h>

Xgl_ctx ctx;

xgl_object_set(ctx, XGL_3D_CTX_SURF_BACK_DMAP_SWITCHES, Xgl_boolean [], 0);
xgl_object_set(ctx, XGL_3D_CTX_SURF_FRONT_DMAP_SWITCHES, Xgl_boolean [], 0);

xgl_object_get(ctx, XGL_3D_CTX_SURF_BACK_DMAP_SWITCHES, Xgl_boolean []);
xgl_object_get(ctx, XGL_3D_CTX_SURF_FRONT_DMAP_SWITCHES, Xgl_boolean []);

DESCRIPTION These attributes specify an array of on and off switches corresponding to the 3D Context’s
array of Data Map Texture objects, given by XGL_3D_CTX_SURF_FRONT_DMAP(3) and XGL_-

3D_CTX_SURF_BACK_DMAP(3). The number of switches in the list is given by XGL_3D_CTX_-

SURF_FRONT_DMAP_NUM(3) and XGL_3D_CTX_SURF_BACK_DMAP_NUM(3).

The Context’s array of textures have indices 0 to n-1, where n is the value of XGL_3D_CTX_-

SURF_FRONT_DMAP_NUM(3) and XGL_3D_CTX_SURF_BACK_DMAP_NUM(3). An application
can turn on texture i by setting flag i in its own array of switches to TRUE. Similarly, FALSE
turns a texture off. After establishing the values of all switches, an application can set
these attributes with this array to turn textures on or off.

The default value for each attribute is NULL.

This attribute is pushed by xgl_context_push(3).

SEE ALSO xgl_object_set(3)
xgl_object_get(3)
xgl_context_push(3)

XGL_3D_CTX_SURF_BACK_DMAP(3)
XGL_3D_CTX_SURF_BACK_DMAP_NUM(3)
XGL_3D_CTX_SURF_FRONT_DMAP(3)
XGL_3D_CTX_SURF_FRONT_DMAP_NUM(3)

NOTES At this release, a new object, Texture Map, has been provided for texture mapping. The
Data Map Texture object is retained for backward compatibility, but will be removed
from the XGL library in a future release. Because of this, we recommend that application
programs use the Texture Map object for texture mapping.

100 modified August 1994

XGL Graphics Library XGL_3D_CTX_SURF_FRONT_ILLUMINATION (3)

NAME XGL_3D_CTX_SURF_BACK_ILLUMINATION,
XGL_3D_CTX_SURF_FRONT_ILLUMINATION − specify the model used to calculate
the illumination of surface primitives

SYNOPSIS #include <xgl/xgl.h>

Xgl_ctx ctx;

xgl_object_set(ctx, XGL_3D_CTX_SURF_BACK_ILLUMINATION, Xgl_surf_illumination, 0);
xgl_object_set(ctx, XGL_3D_CTX_SURF_FRONT_ILLUMINATION, Xgl_surf_illumination, 0);

xgl_object_get(ctx, XGL_3D_CTX_SURF_BACK_ILLUMINATION, Xgl_surf_illumination ∗);
xgl_object_get(ctx, XGL_3D_CTX_SURF_FRONT_ILLUMINATION, Xgl_surf_illumination ∗);

DESCRIPTION These attributes dictate where and how the illumination calculation is performed.

XGL_3D_CTX_SURF_FRONT_ILLUMINATION(3) specifies the illumination model used for
front-facing surfaces in the 3D Context ctx, and XGL_3D_CTX_SURF_BACK_ILLUMINATION(3)
specifies the illumination model for back-facing surfaces. Four different options are
available for this attribute:

XGL_ILLUM_NONE
No illumination calculation is done. The surface is filled with a single color, as
specified by the surface color. The surface will have this constant color, regard-
less of its position.

XGL_ILLUM_NONE_INTERP_COLOR
No illumination calculation is done. XGL directly interpolates vertex colors
across the surface.

XGL_ILLUM_PER_FACET
The illumination calculation is done once for the surface. The surface is filled
with a single color computed from the surface color, the surface normal, and the
other illumination attributes. (This illumination model is also known as flat
shading.)

XGL selects the normal vector for the facet illumination calculation as follows:
The normal in the primitive’s facet data is used if the application specifies it; oth-
erwise the normal is calculated from the vertices (see XGL_3D_CTX_SURF_GEOM_-

NORMAL(3)).

However, if the facet is front-facing and the value of XGL_CTX_SURF_FRONT_-

COLOR_SELECTOR(3) is XGL_SURF_COLOR_VERTEX_ILLUM_INDEP, then the normal
associated with the first vertex of the facet is used when the application specifies
normals with vertices; in the absence of vertex normals, the normal is selected by
the method in the previous paragraph. If the facet is back-facing, a similar pro-
cedure applies for XGL_3D_CTX_SURF_BACK_COLOR_SELECTOR(3).

XGL_ILLUM_PER_VERTEX
The illumination calculation is done at each vertex; the resulting vertex colors are
then interpolated across the surface. The vertex color and vertex normal are used

modified August 1994 101

XGL_3D_CTX_SURF_FRONT_ILLUMINATION (3) XGL Graphics Library

as input into the illumination calculation. If neither of the vertex color nor the
vertex normal is supplied, the surface color or surface normal, respectively, are
used. (This illumination model is also known as Gouraud shading.)

In the discussion above, the surface color used for the illumination is determined by the
attributes XGL_CTX_SURF_FRONT_COLOR_SELECTOR(3) and XGL_3D_CTX_SURF_BACK_-

COLOR_SELECTOR(3). For more information, see the man pages for these attributes.

The default value for each attribute is XGL_ILLUM_NONE.

These attributes are pushed by xgl_context_push(3).

SEE ALSO xgl_object_set(3)
xgl_object_get(3)
xgl_context_push(3)

XGL_3D_CTX_SURF_BACK_COLOR_SELECTOR(3)
XGL_CTX_SURF_FRONT_COLOR_SELECTOR(3)

NOTES Unexpected results can occur if the application uses XGL_ILLUM_PER_VERTEX illumination
with point list data whose color indices lie in two or more different color ramps. In other
words, XGL does not force all of the vertex color values of a ‘‘per-vertex’’ shaded polygon
to lie within the same color ramp. It is the application’s responsibility to ensure that the
vertex colors for a single per-vertex shaded polygon are all within the same ramp.

102 modified August 1994

XGL Graphics Library XGL_3D_CTX_SURF_FRONT_LIGHT_COMPONENT (3)

NAME XGL_3D_CTX_SURF_BACK_LIGHT_COMPONENT,
XGL_3D_CTX_SURF_FRONT_LIGHT_COMPONENT − define which components of the
lighting equation are used

SYNOPSIS #include <xgl/xgl.h>

Xgl_ctx ctx;

xgl_object_set(ctx, XGL_3D_CTX_SURF_BACK_LIGHT_COMPONENT,
Xgl_light_enable_component, 0);

xgl_object_set(ctx, XGL_3D_CTX_SURF_FRONT_LIGHT_COMPONENT,
Xgl_light_enable_component, 0);

xgl_object_get(ctx, XGL_3D_CTX_SURF_BACK_LIGHT_COMPONENT,
Xgl_light_enable_component ∗);

xgl_object_get(ctx, XGL_3D_CTX_SURF_FRONT_LIGHT_COMPONENT,
Xgl_light_enable_component ∗);

DESCRIPTION These attributes specify which components of the illumination equation are used to com-
pute a color within the 3D Context ctx. There are three components: ambient, diffuse, and
specular. The application can enable any combination of the components by logically
OR’ing flags representing each component. The flags are:

XGL_LIGHT_ENABLE_COMP_AMBIENT
Enable the ambient component of the illumination equation.

XGL_LIGHT_ENABLE_COMP_DIFFUSE
Enable the diffuse component of the illumination equation.

XGL_LIGHT_ENABLE_COMP_SPECULAR
Enable the specular component of the illumination equation.

Front-facing surfaces use XGL_3D_CTX_SURF_FRONT_LIGHT_COMPONENT(3). Back-facing
surfaces use XGL_3D_CTX_SURF_BACK_LIGHT_COMPONENT(3). The Context attribute XGL_-

3D_CTX_SURF_FACE_DISTINGUISH(3) must be TRUE for XGL_3D_CTX_SURF_BACK_LIGHT_-
COMPONENT to be used (otherwise, XGL_3D_CTX_SURF_FRONT_LIGHT_COMPONENT is used
for both front-facing and back-facing surfaces).

The default value for these attributes is XGL_LIGHT_ENABLE_COMP_AMBIENT | XGL_LIGHT_-
ENABLE_COMP_DIFFUSE

These attributes are pushed by xgl_context_push(3).

SEE ALSO xgl_object_set(3)
xgl_object_get(3)
xgl_context_push(3)

XGL_3D_CTX_SURF_FACE_DISTINGUISH(3)

modified August 1994 103

XGL_3D_CTX_SURF_FRONT_SPECULAR (3) XGL Graphics Library

NAME XGL_3D_CTX_SURF_BACK_SPECULAR,
XGL_3D_CTX_SURF_FRONT_SPECULAR,
XGL_3D_CTX_SURF_BACK_SPECULAR_COLOR,
XGL_3D_CTX_SURF_FRONT_SPECULAR_COLOR,
XGL_3D_CTX_SURF_BACK_SPECULAR_POWER,
XGL_3D_CTX_SURF_FRONT_SPECULAR_POWER − define values used in specular
component of lighting equation

SYNOPSIS #include <xgl/xgl.h>

Xgl_ctx ctx;

xgl_object_set(ctx, XGL_3D_CTX_SURF_BACK_SPECULAR, float, 0);
xgl_object_set(ctx, XGL_3D_CTX_SURF_FRONT_SPECULAR, float, 0);
xgl_object_set(ctx, XGL_3D_CTX_SURF_BACK_SPECULAR_COLOR, Xgl_color ∗, 0);
xgl_object_set(ctx, XGL_3D_CTX_SURF_FRONT_SPECULAR_COLOR, Xgl_color ∗, 0);
xgl_object_set(ctx, XGL_3D_CTX_SURF_BACK_SPECULAR_POWER, float, 0);
xgl_object_set(ctx, XGL_3D_CTX_SURF_FRONT_SPECULAR_POWER, float, 0);

xgl_object_get(ctx, XGL_3D_CTX_SURF_BACK_SPECULAR, float ∗);
xgl_object_get(ctx, XGL_3D_CTX_SURF_FRONT_SPECULAR, float ∗);
xgl_object_get(ctx, XGL_3D_CTX_SURF_BACK_SPECULAR_COLOR, Xgl_color ∗);
xgl_object_get(ctx, XGL_3D_CTX_SURF_FRONT_SPECULAR_COLOR, Xgl_color ∗);
xgl_object_get(ctx, XGL_3D_CTX_SURF_BACK_SPECULAR_POWER, float ∗);
xgl_object_get(ctx, XGL_3D_CTX_SURF_FRONT_SPECULAR_POWER, float ∗);

DESCRIPTION These attributes define the specular coefficient, the specular color, and the specular
power used in computing lighting within the 3D Context ctx.

Front-facing surfaces use XGL_3D_CTX_SURF_FRONT_SPECULAR(3), XGL_3D_CTX_SURF_-

FRONT_SPECULAR_COLOR(3), and XGL_3D_CTX_SURF_FRONT_SPECULAR_POWER(3). Back-
facing surfaces use XGL_3D_CTX_SURF_BACK_SPECULAR(3), XGL_3D_CTX_SURF_BACK_-

SPECULAR_COLOR(3), and XGL_3D_CTX_SURF_BACK_SPECULAR_POWER(3). The Context attri-
bute XGL_3D_CTX_SURF_FACE_DISTINGUISH(3) must be TRUE for the back-facing surfaces to
use the back-facing attributes. Otherwise, the front-facing attributes are used for both the
front-facing and back-facing surfaces.

The color must be set according to the XGL_DEV_COLOR_TYPE(3) attribute of the Raster
associated with the Context. If the Device color type is XGL_COLOR_INDEX, the type of the
color should be XGL_COLOR_INDEX. Likewise, if the Device color type is XGL_COLOR_RGB,
the color passed to the Context should also be XGL_COLOR_RGB.

When specifying a color of type XGL_COLOR_INDEX, the value given as the index should be
consistent with the size of the color table within the Device Color Map object associated
with the Context (see XGL_DEV_COLOR_MAP(3)).

The default value for the specular coefficient is 0.0.

104 modified August 1994

XGL Graphics Library XGL_3D_CTX_SURF_FRONT_SPECULAR (3)

The default value for the specular color is: INDEX 1 or RGB (green).

The default value for the specular power is 32.0.

These attributes are pushed by xgl_context_push(3).

SEE ALSO xgl_object_set(3)
xgl_object_get(3)
xgl_context_push(3)

XGL_3D_CTX_SURF_FACE_DISTINGUISH(3)

The Lighting Equations section of the XGL Programmer’s Guide.

modified August 1994 105

XGL_3D_CTX_SURF_FRONT_TMAP (3) XGL Graphics Library

NAME XGL_3D_CTX_SURF_BACK_TMAP
XGL_3D_CTX_SURF_FRONT_TMAP − specify a list of Texture Map objects in a 3D Con-
text

SYNOPSIS #include <xgl/xgl.h>

Xgl_ctx ctx;

xgl_object_set(ctx, XGL_3D_CTX_SURF_BACK_TMAP, Xgl_tmap [], 0);
xgl_object_set(ctx, XGL_3D_CTX_SURF_FRONT_TMAP, Xgl_tmap [], 0);

xgl_object_get(ctx, XGL_3D_CTX_SURF_BACK_TMAP, Xgl_tmap []);
xgl_object_get(ctx, XGL_3D_CTX_SURF_FRONT_TMAP, Xgl_tmap []);

DESCRIPTION These attributes specify an array of Texture Map objects used by the 3D Context ctx. The
number of Texture Map objects in the list is given by the 3D Context attributes XGL_3D_-

CTX_SURF_BACK_TMAP_NUM(3) and XGL_3D_CTX_SURF_FRONT_TMAP_NUM(3). The 3D Con-
text has a corresponding list of switches given by XGL_3D_CTX_SURF_BACK_TMAP_-

SWITCHES(3) and XGL_3D_CTX_SURF_FRONT_TMAP_SWITCHES(3) for turning on and off the
individual Texture Map objects.

An application can set XGL_3D_CTX_SURF_BACK_TMAP_NUM(3) and XGL_3D_CTX_SURF_-

FRONT_TMAP_NUM(3) to the required number of Texture Map objects, and then get the list
of textures. This gives the application access to the individual Texture Map objects that
the Context uses as given by XGL_3D_CTX_SURF_BACK_TMAP and XGL_3D_CTX_SURF_FRONT_-
TMAP.

Alternatively, an application can explicitly create its own list of Texture Map objects with
the operator xgl_object_create(3). The number in the list should be the same as the
number specified in XGL_3D_CTX_SURF_BACK_TMAP_NUM(3) and XGL_3D_CTX_SURF_-

FRONT_TMAP_NUM(3). The application can now set XGL_3D_CTX_SURF_BACK_TMAP and
XGL_3D_CTX_SURF_FRONT_TMAP with this list. XGL destroys the Context’s list of Texture
Map objects (provided that no other 3D Context is using them) before setting XGL_3D_-
CTX_SURF_BACK_TMAP and XGL_3D_CTX_SURF_FRONT_TMAP to the list specified by the appli-
cation.

When multiple texture map objects are active, they are applied sequentially and are
cumulative. That is, texture map 0 is applied before texture map 1 and so on.

The default value for each attribute is NULL.

This attribute is not pushed by xgl_context_push(3).

SEE ALSO xgl_object_set(3)
xgl_object_get(3)
xgl_object_create(3)

XGL_3D_CTX_SURF_BACK_TMAP_NUM(3)
XGL_3D_CTX_SURF_BACK_TMAP_SWITCHES(3)
XGL_3D_CTX_SURF_FRONT_TMAP_NUM(3)
XGL_3D_CTX_SURF_FRONT_TMAP_SWITCHES(3)

106 modified August 1994

XGL Graphics Library XGL_3D_CTX_SURF_FRONT_TMAP (3)

NOTES Texturing is only supported when the color type of the raster attached to a 3D Context is
XGL_COLOR_RGB.

modified August 1994 107

XGL_3D_CTX_SURF_FRONT_TMAP_NUM (3) XGL Graphics Library

NAME XGL_3D_CTX_SURF_BACK_TMAP_NUM
XGL_3D_CTX_SURF_FRONT_TMAP_NUM − specify the number of Texture Map
objects in a 3D Context

SYNOPSIS #include <xgl/xgl.h>

Xgl_ctx ctx;

xgl_object_set(ctx, XGL_3D_CTX_SURF_BACK_TMAP_NUM, Xgl_usgn32, 0);
xgl_object_set(ctx, XGL_3D_CTX_SURF_FRONT_TMAP_NUM, Xgl_usgn32, 0);

xgl_object_get(ctx, XGL_3D_CTX_SURF_BACK_TMAP_NUM, Xgl_usgn32 ∗);
xgl_object_get(ctx, XGL_3D_CTX_SURF_FRONT_TMAP_NUM, Xgl_usgn32 ∗);

DESCRIPTION These attributes set the number of Texture Map objects in a 3D Context. When an appli-
cation sets these attributes, XGL changes the number of Texture Map objects and their
corresponding on and off switches to match these attributes. If the value of these attri-
butes is m, the lists of Texture Map objects given by XGL_3D_CTX_SURF_BACK_TMAP(3) and
XGL_3D_CTX_SURF_FRONT_TMAP(3) and their lists of switches as given by XGL_3D_CTX_-

SURF_BACK_TMAP_SWITCHES(3) and XGL_3D_CTX_SURF_FRONT_TMAP_SWITCHES(3) are
indexed from 0 to m-1. If the new number n exceeds the current number m, XGL creates
n-m Texture Map objects and switches and appends these to the appropriate lists in the
Context at index positions m to n-1.

The texture map switches are on by default. The Texture Map objects and switches that
existed before increasing the number of Texture Map objects remain unchanged. If the
number is less than the current number, XGL destroys the Texture Map objects and
switches with indices n to m-1 (provided that no other 3D Context is using them).

The default value for each attribute is 0.

This attribute is not pushed by xgl_context_push(3).

SEE ALSO xgl_object_set(3)
xgl_object_get(3)
xgl_object_create(3)

XGL_3D_CTX_SURF_BACK_TMAP(3)
XGL_3D_CTX_SURF_BACK_TMAP_SWITCHES(3)
XGL_3D_CTX_SURF_FRONT_TMAP(3)
XGL_3D_CTX_SURF_FRONT_TMAP_SWITCHES(3)

NOTES Texturing is enabled when these attributes are non-zero and the 3D surface primitive has
data in its vertex information.

Texturing is only supported when the color type of the raster attached to a 3D Context is
XGL_COLOR_RGB.

108 modified August 1994

XGL Graphics Library XGL_3D_CTX_SURF_FRONT_TMAP_SWITCHES (3)

NAME XGL_3D_CTX_SURF_BACK_TMAP_SWITCHES
XGL_3D_CTX_SURF_FRONT_TMAP_SWITCHES − specify the list of switches for a 3D
Context’s Texture Map objects

SYNOPSIS #include <xgl/xgl.h>

Xgl_ctx ctx;

xgl_object_set(ctx, XGL_3D_CTX_SURF_BACK_TMAP_SWITCHES, Xgl_boolean [], 0);
xgl_object_set(ctx, XGL_3D_CTX_SURF_FRONT_TMAP_SWITCHES, Xgl_boolean [], 0);

xgl_object_get(ctx, XGL_3D_CTX_SURF_BACK_TMAP_SWITCHES, Xgl_boolean []);
xgl_object_get(ctx, XGL_3D_CTX_SURF_FRONT_TMAP_SWITCHES, Xgl_boolean []);

DESCRIPTION These attributes specify an array of on and off switches corresponding to the 3D Context’s
array of Texture Map objects, given by XGL_3D_CTX_SURF_FRONT_TMAP(3) and XGL_3D_-

CTX_SURF_BACK_TMAP(3). The number of switches in the list is given by XGL_3D_CTX_-

SURF_FRONT_TMAP_NUM(3) and XGL_3D_CTX_SURF_BACK_TMAP_NUM(3).

The Context’s array of textures have indices 0 to n-1, where n is the value of XGL_3D_CTX_-

SURF_FRONT_TMAP_NUM(3) and XGL_3D_CTX_SURF_BACK_TMAP_NUM(3). An application
can turn on texture i by setting flag i in its own array of switches to TRUE. Similarly, FALSE
turns a texture off. After establishing the values of all switches, an application can set
these attributes with this array to turn textures on or off.

The default value for each attribute is NULL.

This attribute is pushed by xgl_context_push(3).

SEE ALSO xgl_object_set(3)
xgl_object_get(3)
xgl_context_push(3)

XGL_3D_CTX_SURF_BACK_TMAP(3)
XGL_3D_CTX_SURF_BACK_TMAP_NUM(3)
XGL_3D_CTX_SURF_FRONT_TMAP(3)
XGL_3D_CTX_SURF_FRONT_TMAP_NUM(3)

modified August 1994 109

XGL_3D_CTX_SURF_FRONT_TRANSP (3) XGL Graphics Library

NAME XGL_3D_CTX_SURF_FRONT_TRANSP,
XGL_3D_CTX_SURF_BACK_TRANSP − specify the transparency value for surface
primitives

SYNOPSIS #include <xgl/xgl.h>

Xgl_ctx ctx;

xgl_object_set(ctx, XGL_3D_CTX_SURF_FRONT_TRANSP, float, 0);
xgl_object_set(ctx, XGL_3D_CTX_SURF_BACK_TRANSP, float, 0);

xgl_object_get(ctx, XGL_3D_CTX_SURF_FRONT_TRANSP, float ∗);
xgl_object_get(ctx, XGL_3D_CTX_SURF_BACK_TRANSP, float ∗);

DESCRIPTION These attributes specify the transparency value of a surface primitive. The values can
range from 0.0 to 1.0; a value of 0.0 means the surface is not transparent (i.e. it is opaque);
a value of 1.0 means the surface is fully transparent and is not visible. A transparent sur-
face is still subject to the XGL_3D_CTX_HLHSR_MODE(3) attribute.

Front-facing surfaces use XGL_3D_CTX_SURF_FRONT_TRANSP and back-facing surfaces use
XGL_3D_CTX_SURF_BACK_TRANSP.

The attribute XGL_3D_CTX_SURF_TRANSP_METHOD(3) controls how transparent surfaces are
rendered. The following attributes affect blended transparent surfaces:

XGL_3D_CTX_SURF_TRANSP_BLEND_EQ
Controls what equation is used to blend the transparent pixel value with the
current pixel value.

XGL_3D_CTX_BLEND_DRAW_MODE
Controls if blended primitives are drawn.

XGL_3D_CTX_BLEND_FREEZE_Z_BUFFER
Controls if the Z buffer is updated.

The default value for both attributes is 0.0.

These attributes are pushed by xgl_context_push(3).

SEE ALSO xgl_object_set(3)
xgl_object_get(3)
xgl_context_push(3)

XGL_3D_CTX_BLEND_DRAW_MODE(3)
XGL_3D_CTX_BLEND_FREEZE_Z_BUFFER(3)
XGL_3D_CTX_SURF_TRANSP_BLEND_EQ(3)
XGL_3D_CTX_SURF_TRANSP_METHOD(3)

110 modified August 1994

XGL Graphics Library XGL_3D_CTX_SURF_GEOM_NORMAL (3)

NAME XGL_3D_CTX_SURF_GEOM_NORMAL − controls how surface normals are calculated,
in a 3D Context, when they are not explicitly given in the application’s data

SYNOPSIS #include <xgl/xgl.h>

Xgl_ctx ctx;

xgl_object_set(ctx, XGL_3D_CTX_SURF_GEOM_NORMAL, Xgl_geom_normal, 0);
xgl_object_get(ctx, XGL_3D_CTX_SURF_GEOM_NORMAL, Xgl_geom_normal ∗);

DESCRIPTION This attribute controls how the facet normal for a surface is calculated within the Context
ctx if the facet normal is not provided as part of the application’s data. The method for
determining the facet normal depends on the XGL surface primitive type as shown below.
The alternatives for this attribute are:

XGL_GEOM_NORMAL_FIRST_POINTS

For all surface primitives except xgl_triangle_strip(3), xgl_triangle_list(3), and xgl_-
quadrilateral_mesh(3) −
The facet normal is computed by selecting three points: A, B, and C. Point A is the first
point in the XGL point list defining the vertices for the surface. Point B is the next point
from the list that is non-coincident with A. Point C is the next point after B that is non-
colinear with A and B. The geometric normal is the normalized cross product of the vec-
tor extending from A to B with the vector extending from A to C.

For xgl_triangle_strip −
The facet normal of each triangle within the strip is the normalized cross product of vec-
tors along two of its sides. The vectors used are different for even numbered and odd
numbered triangles (The triangles are implicitly numbered by their position within the
strip. The first triangle within the strip is triangle number 1). If the three consecutive
points defining a triangle are called A, B, and C, then the vectors are selected as follows:

For odd numbered triangles, the geometric normal is the normalized cross pro-
duct of the vector extending from A to B with the vector extending from A to C.

For even numbered triangles, the geometric normal is the normalized cross pro-
duct of the vector extending from A to C with the vector extending from A to B.

For xgl_triangle_list −
There are three cases to consider where a triangle list is arranged as a triangle strip, trian-
gle star, and set of independent triangles.

1. In the triangle strip case:

The facet normal of each triangle within the strip is the normalized cross product of
vectors along two of its sides. The vectors used are different for even numbered and
odd numbered triangles (The triangles are implicitly numbered by their position
within the strip. The first triangle within the strip is triangle number 1). If the three
consecutive points defining a triangle are called A, B, and C, then the vectors are
selected as follows:

modified February 1995 111

XGL_3D_CTX_SURF_GEOM_NORMAL (3) XGL Graphics Library

For odd numbered triangles, the geometric normal is the normalized cross pro-
duct of the vector extending from A to B with the vector extending from A to C.

For even numbered triangles, the geometric normal is the normalized cross pro-
duct of the vector extending from A to C with the vector extending from A to B.

2. In the triangle star and set of independent triangles cases:

The facet normal of each triangle within the list is the normalized cross product of
vectors along two of its sides. Call the three consecutive points defining a triangle A,
B, and C. In the triangle star case, point A may not be contiguous to point B in the
point list, instead it may be a holdover from farther back in the point list. In this
case, point A is still considered to be the first point making up the triangle. The vec-
tors used to compute the geometric normal are selected as follows:

The geometric normal is the normalized cross product of the vector extending
from A to B with the vector extending from A to C.

For xgl_quadrilateral_mesh −
The facet normal of each quadrilateral within the mesh is the normalized cross product of
its two diagonal vectors. If the two consecutive points in the first row making up the
‘‘top’’ of the quadrilateral are called A and B, and the two consecutive points in the next
row that makes up its ‘‘bottom’’ are called C and D, then the normal is computed as fol-
lows:

The geometric normal is the normalized cross product of the vector extending
from A to D with the vector extending from C to B.

XGL_GEOM_NORMAL_LAST_POINTS

For all surface primitives except xgl_triangle_strip(3), xgl_triangle_list(3), and xgl_-
quadrilateral_mesh(3) −
The facet normal is computed by selecting three points: A, B, and C. Point A is the last
point in the XGL point list defining the vertices for the surface. Point B is the next point
from the list, working backwards from the last point, that is non-coincident with A. Point
C is the next point before B, again working backwards, that is non-colinear with A and B.
The geometric normal is the normalized cross product of the vector extending from A to
B with the vector extending from A to C.

For xgl_triangle_strip −
The facet normal of each triangle within the strip is the normalized cross product of vec-
tors along two of its sides. The vectors used are different for even numbered and odd
numbered triangles (The triangles are implicitly numbered by their position within the
strip. The first triangle within the strip is triangle number 1). If the three consecutive
points defining a triangle are called A, B, and C (beginning at the first point comprising
the triangle), then the vectors are selected as follows:

For odd numbered triangles, the geometric normal is the normalized cross pro-
duct of the vector extending from A to C with the vector extending from A to B.

For even numbered triangles, the geometric normal is the normalized cross pro-
duct of the vector extending from A to B with the vector extending from A to C.

112 modified February 1995

XGL Graphics Library XGL_3D_CTX_SURF_GEOM_NORMAL (3)

For xgl_triangle_list −
There are three cases to consider where a triangle list is arranged as a triangle strip, trian-
gle star, and set of independent triangles.

1. In the triangle strip case:

The facet normal of each triangle within the strip is the normalized cross product of
vectors along two of its sides. The vectors used are different for even numbered and
odd numbered triangles (The triangles are implicitly numbered by their position
within the strip. The first triangle within the strip is triangle number 1). If the three
consecutive points defining a triangle are called A, B, and C (beginning at the first
point comprising the triangle), then the vectors are selected as follows:

For odd numbered triangles, the geometric normal is the normalized cross pro-
duct of the vector extending from A to C with the vector extending from A to B.

For even numbered triangles, the geometric normal is the normalized cross pro-
duct of the vector extending from A to B with the vector extending from A to C.

2. In the triangle star and set of independent triangles cases:

The facet normal of each triangle within the list is the normalized cross product of
vectors along two of its sides. Call the three consecutive points defining a triangle A,
B, and C. In the triangle star case, point A may not be contiguous to point B in the
point list, instead it may be a holdover from farther back in the point list. In this
case, point A is still considered to be the first point making up the triangle. The vec-
tors used to compute the geometric normal are selected as follows:

The geometric normal is the normalized cross product of the vector extending
from A to C with the vector extending from A to B.

For xgl_quadrilateral_mesh −
The facet normal of each quadrilateral within the mesh is the normalized cross product of
its two diagonal vectors. If the two consecutive points in the first row making up the
‘‘top’’ of the quadrilateral are called A and B, and the two consecutive points in the next
row that makes up its ‘‘bottom’’ are called C and D, then the normal is computed as fol-
lows:

The geometric normal is the normalized cross product of the vector extending
from C to B with the vector extending from A to D.

The default value is XGL_GEOM_NORMAL_FIRST_POINTS.

This attribute is pushed by xgl_context_push(3).

SEE ALSO xgl_object_set(3)
xgl_object_get(3)
xgl_context_push(3)
xgl_quadrilateral_mesh(3)
xgl_triangle_list(3)
xgl_triangle_strip(3)

modified February 1995 113

XGL_3D_CTX_SURF_LIGHTING_NORMAL_FLIP (3) XGL Graphics Library

NAME XGL_3D_CTX_SURF_LIGHTING_NORMAL_FLIP − specifies how surface normals are
to be treated for lighting

SYNOPSIS #include <xgl/xgl.h>

Xgl_ctx ctx;

xgl_object_set(ctx, XGL_3D_CTX_SURF_LIGHTING_NORMAL_FLIP, Xgl_boolean, 0);
xgl_object_get(ctx, XGL_3D_CTX_SURF_LIGHTING_NORMAL_FLIP, Xgl_boolean∗);

DESCRIPTION This attribute defines how surface normals are to be treated for lighting. When set to
TRUE, XGL will always use a front facing normal to light polygons. If a polygon is back
facing, then the normal will be multiplied by -1 (flipped) so that the normal is front fac-
ing. If lighting is per facet, then the facet normal will be flipped. If vertex lighting is
being performed than the vertex normals will be flipped. The flipping of the normal is
for the lighting calculation only and does not affect face determination or face culling.

When this attribute is set to FALSE, the normal is used unchanged, regardless of the
polygon’s facing.

The default value is TRUE.

This attribute is pushed by xgl_context_push(3).

SEE ALSO xgl_object_set(3)
xgl_object_get(3)
xgl_context_push(3)

114 modified August 1994

XGL Graphics Library XGL_3D_CTX_SURF_NORMAL_FLIP (3)

NAME XGL_3D_CTX_SURF_NORMAL_FLIP − specifies whether vertex and facet normals are
flipped

SYNOPSIS #include <xgl/xgl.h>

Xgl_ctx ctx;

xgl_object_set(ctx, XGL_3D_CTX_SURF_NORMAL_FLIP, Xgl_boolean, 0);
xgl_object_get(ctx, XGL_3D_CTX_SURF_NORMAL_FLIP, Xgl_boolean ∗);

DESCRIPTION This attribute can be set to either TRUE or FALSE. When TRUE, it will cause all the user sup-
plied normals specified as facet or vertex data to be flipped 180 degrees. This is useful if
the application’s data has normals that point toward the back face instead of toward the
front face, which is XGL’s convention.

The default value is FALSE.

This attribute is pushed by xgl_context_push(3).

SEE ALSO xgl_object_set(3)
xgl_object_get(3)
xgl_context_push(3)

NOTES This attribute applies to the normal when it comes from the vertex or facet and not when
XGL calculates it.

modified August 1994 115

XGL_3D_CTX_SURF_SILHOUETTE_EDGE_FLAG (3) XGL Graphics Library

NAME XGL_3D_CTX_SURF_SILHOUETTE_EDGE_FLAG − controls the drawing of silhouette
edges around a surface

SYNOPSIS #include <xgl/xgl.h>

Xgl_3d_ctx ctx;

xgl_object_set(ctx, XGL_3D_CTX_SURF_SILHOUETTE_EDGE_FLAG, Xgl_boolean, 0);
xgl_object_get(ctx, XGL_3D_CTX_SURF_SILHOUETTE_EDGE_FLAG, Xgl_boolean ∗);

DESCRIPTION This attribute controls whether silhouette edges are drawn around a surface. When solid
objects are modeled with surfaces, silhouette edges show the horizons where the compo-
site surface changes from front-facing to back-facing. Silhouette edges are not drawn
when the side of a polygon corresponds to a clipping boundary.

The algorithm for detecting the presence of silhouette edges actually finds a close approx-
imation to the actual silhouette edges. Vertex normal vectors must be supplied with the
geometric surface data. The algorithm requires surfaces to be decomposed into triangles.
For some primitives, XGL may have to execute this decomposition, render the surface and
any silhouette edges, and finally dispose to the decomposed surface representation. The
decomposition process may be computationally intensive, so it behooves the application
to store the decomposed surface representation in a Geometry Cache (see XGL_GCACHE(3)
) when the surface is needed for more than one frame.

XGL_3D_CTX_SURF_SILHOUETTE_EDGE_FLAG(3) ignores any local edge flag that may be
stored in the vertices of the surface geometry. This attribute is also independent of XGL_-
CTX_SURF_EDGE_FLAG. Although an application can display both silhouette edges and
highlighting edges simultaneously, a user probably would prefer to see only one type at
any given time.

All the attributes that apply to highlighted edges for color, width, pattern, and depth-
cueing also apply to silhouette edges, as described in XGL_CTX_SURF_EDGE_FLAG(3).

The default value is FALSE.

This attribute is pushed by xgl_context_push(3).

SEE ALSO xgl_object_set(3)
xgl_object_get(3)
xgl_context_push(3)

XGL_3D_CTX_DEPTH_CUE_MODE(3)
XGL_3D_CTX_SURF_BACK_COLOR(3)
XGL_3D_CTX_SURF_FRONT_ILLUMINATION(3)
XGL_3D_CTX_SURF_BACK_ILLUMINATION(3)
XGL_CTX_BACKGROUND_COLOR(3)
XGL_CTX_EDGE_COLOR(3)
XGL_CTX_EDGE_PATTERN(3)
XGL_CTX_EDGE_STYLE(3)
XGL_CTX_EDGE_WIDTH_SCALE_FACTOR(3)

116 modified August 1994

XGL Graphics Library XGL_3D_CTX_SURF_SILHOUETTE_EDGE_FLAG (3)

XGL_CTX_SURF_FRONT_COLOR(3)
XGL_CTX_SURF_EDGE_FLAG(3)
XGL_GCACHE(3)

modified August 1994 117

XGL_3D_CTX_SURF_TMAP_PERSP_CORRECTION (3) XGL Graphics Library

NAME XGL_3D_CTX_SURF_TMAP_PERSP_CORRECTION − specifies the method used to
compute texture coordinate values

SYNOPSIS #include <xgl/xgl.h>

Xgl_ctx ctx;

xgl_object_set(ctx, XGL_3D_CTX_SURF_TMAP_PERSP_CORRECTION,
Xgl_texture_persp_correction, 0);

xgl_object_get(ctx, XGL_3D_CTX_SURF_TMAP_PERSP_CORRECTION,
Xgl_texture_persp_correction ∗);

DESCRIPTION This attribute specifies the method used to compute texture coordinate values in surfact
interiors when a textured surface primitive is rendered. Possible values for this attribute
are:

XGL_TEXTURE_PERSP_NONE
Texture mapping coordinates are linearly interpolated without perspective
correction.

XGL_TEXTURE_PERSP_PIXEL
As the texture mapping coordinates are interpolated, their values are manipu-
lated to account for a perspective projection.

XGL_TEXTURE_PERSP_NO_INTERP
Texture mapping coordinates are not interpolated at all. Instead, texture map-
ping coordinates are used to compute per-vertex color only.

This method has limitations in that it only supports the following:

· frontfacing texture maps
· XGL_RENDER_COMP_DIFFUSE_COLOR rendering component.

The default value is XGL_TEXTURE_PERSP_PIXEL.

This attribute is not pushed by xgl_context_push(3).

SEE ALSO xgl_object_set(3)
xgl_object_get(3)
xgl_object_create(3)

118 modified February 1995

XGL Graphics Library XGL_3D_CTX_SURF_TRANSP_BLEND_EQ (3)

NAME XGL_3D_CTX_SURF_TRANSP_BLEND_EQ − controls how transparent surfaces are ren-
dered

SYNOPSIS #include <xgl/xgl.h>

Xgl_ctx ctx;

xgl_object_set(ctx, XGL_3D_CTX_SURF_TRANSP_BLEND_EQ, Xgl_blend_eq, 0);
xgl_object_get(ctx, XGL_3D_CTX_SURF_TRANSP_BLEND_EQ, Xgl_blend_eq ∗);

DESCRIPTION This attribute controls how the pixels values in transparent surfaces are blended with the
existing pixel values in the Device when XGL_3D_CTX_SURF_TRANSP_METHOD(3) is XGL_-
TRANSP_BLENDED.

The type Xgl_blend_eq has these values:
typedef enum {

XGL_BLEND_NONE,
XGL_BLEND_ARBITRARY_BG,
XGL_BLEND_CONST_BG,
XGL_BLEND_ADD_TO_BG

} Xgl_blend_eq;

The equations used are:

NONE d = s
ARBITRARY_BG d = (s ∗ alpha) + (d ∗ (1 - alpha))
CONST_BG d = ((s - ctx_bg) ∗ alpha) + d
ADD_TO_BG d = (s ∗ alpha) + d

where:
s = source pixel value
d = destination pixel value
alpha = weight of source pixel
ctx_bg = Context background color

We strongly recommend that transparency use XGL_BLEND_ARBITRARY_BG or XGL_BLEND_-
ADD_BG.

The default value is XGL_BLEND_NONE.

This attribute is pushed by xgl_context_push(3).

SEE ALSO xgl_object_set(3)
xgl_object_get(3)
xgl_context_push(3)

XGL_3D_CTX_SURF_TRANSP_METHOD(3)
XGL_CTX_SURF_AA_BLEND_EQ(3)

modified August 1994 119

XGL_3D_CTX_SURF_TRANSP_BLEND_EQ (3) XGL Graphics Library

NOTES If both XGL_3D_CTX_SURF_TRANSP_BLEND_EQ(3) and XGL_CTX_SURF_AA_BLEND_EQ(3) are
other than XGL_BLEND_NONE, and a hollow antialiased transparent surface is being drawn,
then the blending equation used will be the value of either the XGL_3D_CTX_SURF_-

TRANSP_BLEND_EQ(3) or the XGL_CTX_SURF_AA_BLEND_EQ(3) attribute, and the choice is
device dependent.

120 modified August 1994

XGL Graphics Library XGL_3D_CTX_SURF_TRANSP_METHOD (3)

NAME XGL_3D_CTX_SURF_TRANSP_METHOD − controls how transparent surfaces are ren-
dered

SYNOPSIS #include <xgl/xgl.h>

Xgl_ctx ctx;

xgl_object_set(ctx, XGL_3D_CTX_SURF_TRANSP_METHOD, Xgl_transp_method, 0);
xgl_object_get(ctx, XGL_3D_CTX_SURF_TRANSP_METHOD, Xgl_transp_method ∗);

DESCRIPTION This attribute controls how transparent surfaces are rendered. A transparent surface is
one whose transparency value (as specified by XGL_3D_CTX_SURF_FRONT_TRANSP(3) or
XGL_3D_CTX_SURF_BACK_TRANSP(3)) is greater than 0.0. The data type Xgl_transp_method
takes on values:

XGL_TRANSP_NONE
No transparency calculations are done, even if the surface’s transparency value is
greater than 0.0.

XGL_TRANSP_SCREEN_DOOR
Transparent surfaces are rendered through a device-dependent stipple mask.
This mask allows some pixels of the transparent surface to be written while it res-
tricts others. Where the transparent surface pixels are restricted, the existing
background pixels are left untouched and appear inside the surface.

The human visual system then blends the pixels from the surface and the back-
ground together and the result is that the surface looks, somewhat, transparent.
This method is so-named because it is similar to looking through a screen door or
a window screen. This method is less computationally expensive than XGL_-
TRANSP_BLENDED and is a viable option in situations where performance is more
important than image quality.

XGL_TRANSP_BLENDED
Each value pixel of the transparent surface is blended with the XGL_CTX_-
BACKGROUND_COLOR or with the existing value pixel to determine the final pixel
value. The equation used for blending is controlled by the XGL_3D_CTX_SURF_-

TRANSP_BLEND_EQ(3) attribute. The attribute XGL_3D_CTX_BLEND_DRAW_MODE(3)
controls how blended surfaces are drawn. The attribute XGL_3D_CTX_BLEND_-

FREEZE_Z_BUFFER(3) controls if the Z Buffer is updated.

The default value is XGL_TRANSP_NONE.

This attribute is pushed by xgl_context_push(3).

SEE ALSO xgl_object_set(3)
xgl_object_get(3)
xgl_context_push(3)

XGL_3D_CTX_SURF_FRONT_TRANSP(3)
XGL_3D_CTX_SURF_BACK_TRANSP(3)
XGL_3D_CTX_SURF_TRANSP_BLEND_EQ(3)

modified August 1994 121

XGL_3D_CTX_SURF_TRANSP_METHOD (3) XGL Graphics Library

XGL_3D_CTX_BLEND_DRAW_MODE(3)
XGL_3D_CTX_BLEND_FREEZE_Z_BUFFER(3)

122 modified August 1994

XGL Graphics Library XGL_3D_CTX_VIEW_CLIP_PLUS_W_ONLY (3)

NAME XGL_3D_CTX_VIEW_CLIP_PLUS_W_ONLY − controls clipping in homogeneous space

SYNOPSIS #include <xgl/xgl.h>

Xgl_ctx ctx;

xgl_object_set(ctx, XGL_3D_CTX_VIEW_CLIP_PLUS_W_ONLY, Xgl_boolean, 0);
xgl_object_get(ctx, XGL_3D_CTX_VIEW_CLIP_PLUS_W_ONLY, Xgl_boolean ∗);

DESCRIPTION It is possible for the application to specify a 3D Transform that maps geometry in homo-
geneous space to be in front of and behind the observer. In this case, the homogeneous
coordinates can have w values that are both positive and negative. XGL_3D_CTX_VIEW_-

CLIP_PLUS_W_ONLY(3) specifies how the clipping of geometry with positive and negative
values of w is handled. It is a boolean attribute defined as follows:

FALSE The 3D clipping process checks for both positive w and negative w. This means
that primitives are clipped twice: once for each region. For example, a line seg-
ment that has one endpoint in positive w and the other in negative w is split into
two line segments.

TRUE All vertices with negative w values are clipped. If a line segment has one vertex
with a negative w value and one vertex with a positive w value, rendering is
undefined.

Since clipping to both positive w and negative w is expensive and in most cases unneces-
sary, the default value is TRUE.

This attribute is pushed by xgl_context_push(3).

SEE ALSO xgl_object_set(3)
xgl_object_get(3)
xgl_context_push(3)

NOTE The value of this attribute may have significant impact on performance. To verify the best
setting for the platform used, refer to your accelerator guide.

modified October 1996 123

XGL_3D_CTX_Z_BUFFER_COMP_METHOD (3) XGL Graphics Library

NAME XGL_3D_CTX_Z_BUFFER_COMP_METHOD − specifies the Z comparison method to be
used when updating current buffer

SYNOPSIS #include <xgl/xgl.h>

Xgl_ctx ctx;

xgl_object_set(ctx, XGL_3D_CTX_Z_BUFFER_COMP_METHOD, Xgl_z_comp_method, 0);
xgl_object_get(ctx, XGL_3D_CTX_Z_BUFFER_COMP_METHOD, Xgl_z_comp_method ∗);

DESCRIPTION This attribute defines the comparison technique to be used when operating on the Z
buffer. It specifies the function used to compare the incoming Z value with the Z value
present in the Z buffer. The result of the comparison determines how the destination
buffer is updated.

When rendering into an image buffer, this attribute is only applicable when XGL_3D_CTX_-

HLHSR_MODE(3) is set to XGL_HLHSR_Z_BUFFER. If the result of the Z comparison function is
TRUE then the incoming pixel color is written to the image buffer.

Whether the Z buffer is updated or not is dependent on the value of XGL_3D_CTX_Z_-

BUFFER_WRITE_MASK(3). The data type Xgl_z_comp_method takes on values:

Zin Incoming Z value

Zcur Z value currently in the Z buffer

Zcomp The result of the comparison. The destination buffer is updated if zcomp is TRUE.

XGL_Z_COMP_LESS_THAN

Zcomp = Zin < Zcur

XGL_Z_COMP_LESS_THAN_OR_EQUAL

Zcomp = Zin ≤ Zcur

XGL_Z_COMP_EQUAL

Zcomp = Zin == Zcur

XGL_Z_COMP_GREATER_THAN

Zcomp = Zin > Zcur

XGL_Z_COMP_GREATER_THAN_OR_EQUAL

Zcomp = Zin ≥ Zcur

XGL_Z_COMP_NOT_EQUAL

Zcomp = Zin != Zcur

XGL_Z_COMP_NEVER

Zcomp = FALSE

XGL_Z_COMP_ALWAYS

Zcomp = TRUE

The default value is XGL_ZCOMP_LESS_THAN_OR_EQUAL.

This attribute is pushed by xgl_context_push(3).

124 modified August 1994

XGL Graphics Library XGL_3D_CTX_Z_BUFFER_COMP_METHOD (3)

SEE ALSO xgl_object_set(3)
xgl_object_get(3)
xgl_context_push(3)
xgl_context_new_frame(3)

XGL_3D_CTX_HLHSR_MODE(3)
XGL_3D_CTX_Z_BUFFER_WRITE_MASK(3)

NOTES xgl_context_new_frame(3) is not affected by this attribute.

modified August 1994 125

XGL_3D_CTX_Z_BUFFER_WRITE_MASK (3) XGL Graphics Library

NAME XGL_3D_CTX_Z_BUFFER_WRITE_MASK − defines which bit planes of the Z buffer are
written

SYNOPSIS #include <xgl/xgl.h>

Xgl_ctx ctx;

xgl_object_set(ctx, XGL_3D_CTX_Z_BUFFER_WRITE_MASK, Xgl_usgn32, 0);
xgl_object_get(ctx, XGL_3D_CTX_Z_BUFFER_WRITE_MASK, Xgl_usgn32 ∗);

DESCRIPTION This attribute specifies the enable mask for writing to the Z buffer bit planes. Each bit in
the mask corresponds to a bit plane of the Z buffer. In the current release, the only sup-
ported values are 0 and 0xffffffff. A value of 0 implies writing into the Z buffer is dis-
abled. A value of 0xffffffff implies writing into the Z buffer is enabled.

When rendering into the image buffer, this attribute is used in conjunction with XGL_3D_-

CTX_Z_BUFFER_COMP_METHOD(3) and XGL_3D_CTX_HLHSR_MODE(3).

The default value is 0xffffffff.

This attribute is pushed by xgl_context_push(3).

SEE ALSO xgl_object_set(3)
xgl_object_get(3)
xgl_context_push(3)

XGL_3D_CTX_HLHSR_MODE(3)
XGL_3D_CTX_Z_BUFFER_COMP_METHOD(3)

126 modified August 1994

XGL Graphics Library XGL_CGM (3)

NAME XGL_CGM − a CGM Metafile format

OVERVIEW XGL_CGM is the type of a format representing a Computer Graphics Metafile (CGM) out-
put device. It is used as the type parameter value for xgl_object_create(3).

XGL graphics are rendered onto a Device object. This Device object outputs a CGM for-
mat. The CGM is a Unix file, written in a standard format, for representing and exchang-
ing 2D images. XGL currently outputs Version 1 of the CGM as defined by ISO 8632:1985.

The contents of the Metafile are written to a stream (that is, a FILE ∗). The application can
indicate which file is associated with the output stream; the default is standard output.
Since the CGM device is implemented as a stream pipeline, the name of the stream pipe-
line must be placed in the desc parameter. See the XGL Programmer’s Guide for example
code.

After creating the Metafile Device, using xgl_object_create(3), the application can inquire
about the values of its attributes by using the xgl_object_get(3) operator.

The following is a brief description of the attributes associated with CGM Metafile format.
These attributes are defined in the file "xgl_cgm-2.0.h" which must be included in any
application using the CGM format. For more information on how to create a CGM device,
see the man page for each attribute and the XGL Programmer’s Guide for example code.

XGL_CGM_DESCRIPTION(3)
Specifies a structure that contains the output file pointer; a string containing the
Metafile signature string; and the descriptor string, which describes the Metafile
conformance level.

XGL_CGM_ENCODING(3)
Specifies the output encoding used to write the Metafile. The three alternatives
are as follows:

XGL_CGM_CLEAR_TEXT
XGL_CGM_CHARACTER
XGL_CGM_BINARY

XGL_CGM_PICTURE_DESCRIPTION(3)
Specifies a string to describe the picture being output to the Metafile.

XGL_CGM_SCALE_FACTOR(3)
Specifies the mapping of one unit of VDC space to one millimeter of screen space.
The value can be any floating point value. It is used only when the XGL_CGM_-
SCALE_MODE is metric.

XGL_CGM_SCALE_MODE(3)
Specifies the type of scaling mode in the Metafile. The two alternatives are:

XGL_CGM_ABSTRACT
XGL_CGM_METRIC

modified August 1994 127

XGL_CGM (3) XGL Graphics Library

XGL_CGM_TYPE(3)
Specifies which CGM version the Metafile conforms to. The only supported value
for type is XGL_METAFILE_CGM_V1.

XGL_CGM_VDC_EXTENT(3)
Specifies the type and range of coordinate values in the Metafile. The three alter-
natives are as follows:

XGL_CGM_VDC_EXT_FLOAT
XGL_CGM_VDC_EXT_SHORT
XGL_CGM_VDC_EXT_LONG

The first value, XGL_CGM_VDC_EXT_FLOAT, is not currently implemented.

XGL_OBJ_APPLICATION_DATA(3)
This attribute allows the application program to store its own data with an object.

XGL_OBJ_SYS_STATE(3)
This read-only attribute returns the System State that was used to create the
object.

XGL_OBJ_TYPE(3)
This read-only attribute defines the type of an XGL object.

XGL_STREAM(3)
This is the type of an object representing a Stream.

128 modified August 1994

XGL Graphics Library XGL_CGM_DESCRIPTION (3)

NAME XGL_CGM_DESCRIPTION − describes the Metafile headers and output file

SYNOPSIS #include <xgl/xgl.h>
#include <xgl/xgl_cgm-2.0.h>

Xgl_cgm_description cgm;

xgl_object_set(cgm, XGL_CGM_DESCRIPTION, Xgl_cgm_description, 0);
xgl_object_get(cgm, XGL_CGM_DESCRIPTION, Xgl_cgm_description ∗);

DESCRIPTION This attribute defines the Metafile header information and the file pointer to the Metafile
output file. It can only be set prior to the writing to disk of any part of the Metafile. After
that, this attribute becomes read-only.

The Metafile description information is defined by the data type Xgl_cgm_description:
typedef struct {

FILE ∗cgm_fp;
char ∗cgm_signature;
char ∗cgm_description;

} Xgl_cgm_description;

The three structure components are defined as follows:

cgm_fp Names the file where the Metafile should be written. If the file already exists,
XGL appends the Metafile to it.

If XGL is given a structure with the file pointer equal to NULL, the default value is:
stdout.

cgm_signature
A string containing the Metafile label. This label could include a description of
the Metafile’s contents.

If XGL is given a structure with the signature equal to NULL, the default value is:
XGL <current release number> CGM 1.0 date:time:year.

cgm_description
A string containing descriptive information about the Metafile. This could
include the author of the Metafile, the place of origin, and date and time of gen-
eration.

If XGL is given a structure with the description equal to NULL, the default value is:
Sun Microsystems CGM TOP/FULL conformance.

SEE ALSO xgl_object_set(3)
xgl_object_get(3)
xgl_object_create(3)

NOTES This attribute can only be set prior to the writing to disk of any part of the Metafile. It is
read-only thereafter.

modified August 1994 129

XGL_CGM_DEV (3) XGL Graphics Library

NAME XGL_CGM_DEV − a CGM Metafile Device object

OVERVIEW XGL_CGM_DEV is the type of an object representing a Computer Graphics Metafile (CGM)
output device. It is used as the type parameter value for xgl_object_create(3).

XGL graphics are rendered onto a Device object. This Device object outputs a CGM. The
CGM is a Unix file, written in a standard format, for representing and exchanging 2D
images. XGL currently outputs Version 1 of the CGM as defined by ISO 8632:1985.

The contents of the Metafile are written to a stream (that is, a FILE ∗). The application can
indicate which file is associated with the output stream; the default is standard output.
Since the CGM device is implemented as a stream pipeline, the name of the stream pipe-
line must be placed in the desc parameter. See the XGL Programmer’s Guide for example
code.

After creating the Metafile Device, using xgl_object_create(3), the application can inquire
about the values of its attributes by using the xgl_object_get(3) operator.

The following is a brief description of the attributes associated with CGM Metafile format.
For more information, see the man page for each attribute.

XGL_CGM_DESCRIPTION(3)
Specifies a structure that contains the output file pointer; a string containing the
Metafile signature string; and the descriptor string, which describes the Metafile
conformance level.

XGL_CGM_ENCODING(3)
Specifies the output encoding used to write the Metafile. The three alternatives
are as follows:

XGL_CGM_CLEAR_TEXT
XGL_CGM_CHARACTER
XGL_CGM_BINARY

XGL_CGM_PICTURE_DESCRIPTION(3)
Specifies a string to describe the picture being output to the Metafile.

XGL_CGM_SCALE_FACTOR(3)
Specifies the mapping of one unit of VDC space to one millimeter of screen space.
The value can be any floating point value. It is used only when the XGL_CGM_-
SCALE_MODE is metric.

XGL_CGM_SCALE_MODE(3)
Specifies the type of scaling mode in the Metafile. The two alternatives are:

XGL_CGM_ABSTRACT
XGL_CGM_METRIC

XGL_CGM_TYPE(3)
Specifies which CGM version the Metafile conforms to. The only supported value
for type is XGL_METAFILE_CGM_V1.

XGL_CGM_VDC_EXTENT(3)
Specifies the type and range of coordinate values in the Metafile. The three

130 modified August 1994

XGL Graphics Library XGL_CGM_DEV (3)

alternatives are as follows:
XGL_CGM_VDC_EXT_FLOAT
XGL_CGM_VDC_EXT_SHORT
XGL_CGM_VDC_EXT_LONG

The first value, XGL_CGM_VDC_EXT_FLOAT, is not currently implemented.

XGL_OBJ_APPLICATION_DATA(3)
This attribute allows the application program to store its own data with an object.

XGL_OBJ_SYS_STATE(3)
This read-only attribute returns the System State that was used to create the
object.

XGL_OBJ_TYPE(3)
This read-only attribute defines the type of an XGL object.

XGL_STREAM(3)
This is the type of an object representing a Stream.

modified August 1994 131

XGL_CGM_ENCODING (3) XGL Graphics Library

NAME XGL_CGM_ENCODING − the encoding used on the contents of the Metafile

SYNOPSIS #include <xgl/xgl.h>
#include <xgl/xgl_cgm-2.0.h>

Xgl_cgm cgm;

xgl_object_set(cgm, XGL_CGM_ENCODING, Xgl_cgm_encoding, 0);
xgl_object_get(cgm, XGL_CGM_ENCODING, Xgl_cgm_encoding ∗);

DESCRIPTION This attribute defines the data representation used to store graphical objects in an XGL
Metafile. It can only be set before any part of the Metafile is written to the file stream.
After that, this attribute becomes read-only.

Three encoding formats are currently supported in XGL as defined by the enumerated
data type Xgl_cgm_encoding, conforming to the CGM standard.

The three encoding styles are defined as follows:

XGL_CGM_CLEAR_TEXT
This encoding uses only the 94 printing characters from the ISO 646 7-bit code
table to represent data. This encoding is designed to be ‘‘human readable’’ and
self-delimiting. Parsing and generating clear text encoding is slower and more
complex than binary encoding.

XGL_CGM_CHARACTER
This encoding uses ASCII bytes, including control characters, to represent element
codes and parameters. It is self-delimiting and more compact than clear text
encoding. It is designed for transmission over communication lines. It is slower
to parse and generate than binary encoding.

XGL_CGM_BINARY
This encoding outputs CGM elements in binary format, as described in ANSI
X3.122-1986. This format is the most compact, and it is the fastest to read and
write. It outputs elements in 16-bit blocks, and every bit is significant.

The default value is: XGL_CGM_CLEAR_TEXT.

SEE ALSO xgl_object_set(3)
xgl_object_get(3)
xgl_object_create(3)

NOTES This attribute can only be set prior to the writing to the file stream of any part of the
Metafile. It is read-only thereafter.

132 modified August 1994

XGL Graphics Library XGL_CGM_PICTURE_DESCRIPTION (3)

NAME XGL_CGM_PICTURE_DESCRIPTION − picture label within a Metafile

SYNOPSIS #include <xgl/xgl.h>
#include <xgl/xgl_cgm-2.0.h>

Xgl_cgm cgm;

xgl_object_set(cgm, XGL_CGM_PICTURE_DESCRIPTION, char ∗, 0);
xgl_object_get(cgm, XGL_CGM_PICTURE_DESCRIPTION, char []);

DESCRIPTION This attribute defines the descriptive label for a picture within an XGL Metafile. It can
only be set prior to the writing to the file stream of any part of the Metafile. After that,
the attribute becomes read-only. XGL currently supports only one picture per Metafile.

The string that defines the picture name is output to the Metafile with the BEGIN PICTURE
delimiter in the Metafile. This delimiter is written (and a new picture is started) when the
user calls xgl_context_new_frame(3). Any changes to the picture name attribute after
this call will not affect the current picture.

If no picture description is given, XGL uses the last picture name given.

If no picture name was ever given, the default picture name is xgl_cgm_picture.

SEE ALSO xgl_object_set(3)
xgl_object_get(3)
xgl_object_create(3)

XGL_CGM_DESCRIPTION(3)
XGL_CGM_TYPE(3)

NOTES This attribute can only be set prior to the writing to the file stream of any part of the
Metafile. It is read-only thereafter.

modified August 1994 133

XGL_CGM_SCALE_FACTOR (3) XGL Graphics Library

NAME XGL_CGM_SCALE_FACTOR − defines the scale factor if the Metafile is using Metric
Scaling

SYNOPSIS #include <xgl/xgl.h>
#include <xgl/xgl_cgm-2.0.h>

Xgl_cgm cgm;

xgl_object_set(cgm, XGL_CGM_SCALE_FACTOR, float ∗, 0);
xgl_object_get(cgm, XGL_CGM_SCALE_FACTOR, float ∗);

DESCRIPTION This attribute defines the scale factor used when the SCALEMODE delimiter is set to METRIC.
It can only be set prior to the writing to the file stream of any part of the Metafile. After
that, the attribute becomes read-only.

The value is the address of a floating point number, defined as follows:

A scale factor used to convert the coordinates in the Metafile to the coordinates used
to display the image on the screen. The scale factor sets the ratio between one unit in
the Metafile coordinate values and one millimeter on the screen display.

The default value is 1.0.

SEE ALSO xgl_object_set(3)
xgl_object_get(3)
xgl_object_create(3)

NOTES This attribute can only be set prior to the writing to the file stream of any part of the
Metafile. It is read-only thereafter.

134 modified August 1995

XGL Graphics Library XGL_CGM_SCALE_MODE (3)

NAME XGL_CGM_SCALE_MODE − defines the scaling mode used in the contents of the
Metafile

SYNOPSIS #include <xgl/xgl.h>
#include <xgl/xgl_cgm-2.0.h>

Xgl_cgm cgm;

xgl_object_set(cgm, XGL_CGM_SCALE_MODE, Xgl_cgm_scale_mode, 0);
xgl_object_get(cgm, XGL_CGM_SCALE_MODE, Xgl_cgm_scale_mode ∗);

DESCRIPTION This attribute defines the data representation used to store graphical objects in an XGL
Metafile. It can only be set prior to the writing to the file stream of any part of the
Metafile. After that, the attribute becomes read-only.

Two encoding formats are currently supported in XGL as defined by the enumerated data
type Xgl_cgm_scale_mode, conforming to the CGM standard.

The two encoding styles are defined as follows:

XGL_CGM_ABSTRACT
This value means there is no correspondence between the range of coordinate
values in the Metafile and the image that Metafile produces. In the Metafile, the
SCALEMODE will be ABSTRACT, and the scale factor will always be 1.0.

XGL_CGM_METRIC
This value means there is a correspondence between the range of coordinate
values in the Metafile and the image that Metafile produces. In the Metafile, the
SCALEMODE will be METRIC, and the scale factor will indicate the mapping
between one unit in the Metafile coordinate values and one millimeter in the
displayed image. This mode allows images of predetermined sizes to be
exchanged using CGM. The scale factor is set by XGL_CGM_SCALE_FACTOR(3).

The default value is XGL_CGM_ABSTRACT.

SEE ALSO xgl_object_set(3)
xgl_object_get(3)

XGL_CGM_SCALE_FACTOR(3)

NOTES This attribute can only be set prior to the writing to the file stream of any part of the
Metafile. It is read-only thereafter.

modified August 1994 135

XGL_CGM_TYPE (3) XGL Graphics Library

NAME XGL_CGM_TYPE − defines the type of an XGL Metafile object

SYNOPSIS #include <xgl/xgl.h>
#include <xgl/xgl_cgm-2.0.h>

Xgl_cgm_type type;

xgl_object_get(cgm, XGL_CGM_TYPE, Xgl_cgm_type ∗);

DESCRIPTION This read-only attribute defines the type associated with an XGL object. It can be used to
inquire about the object type when only a generic Xgl_cgm handle to that object is
known. XGL currently defines the following values for an object type Xgl_obj_type:

XGL_CGM_V1
A Metafile object that conforms to a version 1 CGM Metafile (ISO 8632:1985
standard).

The Metafile type is associated by XGL at the creation of the object. It cannot be modified
later. Users cannot define their own objects.

SEE ALSO xgl_object_get(3)
xgl_object_create(3)

136 modified August 1995

XGL Graphics Library XGL_CGM_VDC_EXTENT (3)

NAME XGL_CGM_VDC_EXTENT − defines the range and type of allowed coordinate values in
the Metafile

SYNOPSIS #include <xgl/xgl.h>
#include <xgl/xgl_cgm-2.0.h>

Xgl_cgm cgm;

xgl_object_set(cgm, XGL_CGM_VDC_EXTENT, Xgl_cgm_vdc_extent, 0);
xgl_object_get(cgm, XGL_CGM_VDC_EXTENT, Xgl_cgm_vdc_extent ∗);

DESCRIPTION This attribute defines the range and type of coordinate values used to store graphical
objects in an XGL Metafile. It can only be set prior to the writing to the file stream of any
part of the Metafile. After that, the attribute becomes read-only.

Three encoding formats are currently supported in XGL as defined by the enumerated
data type Xgl_cgm_vdc_extent.

The three extent types are defined as follows:

XGL_CGM_VDC_EXT_FLOAT

Note: This extent is currently not implemented. It may be supported in future
releases of XGL.

All values in this extent are floating point. The values range from 0.0 to 1.0. If
this extent is selected, the VDCTYPE output to the Metafile will be of type REAL.

XGL_CGM_VDC_EXT_SHORT
All values in this extent are 16 bit integers. The values range from 0 to 216−1. If
this extent is selected, the VDCTYPE output to the Metafile will be of type INTEGER.
With this extent, there is no danger of integer overflow.

XGL_CGM_VDC_EXT_LONG
All values in this extent are 32 bit integers. The values range from 0 to 232−1. If
this extent is selected, the VDCTYPE output to the Metafile will be of type INTEGER.
Although this extent has a larger range of values, there is a possibility of integer
overflow.

The default value is XGL_CGM_VDC_EXT_SHORT.

SEE ALSO xgl_object_set(3)
xgl_object_get(3)
xgl_object_create(3)

NOTES This attribute can only be set prior to the writing to the file stream of any part of the
Metafile. It is read-only thereafter.

modified August 1994 137

XGL_CMAP (3) XGL Graphics Library

NAME XGL_CMAP − a Color Map object

OVERVIEW XGL_CMAP is the type of an object representing a Color Map object. It is used as the type
parameter value for xgl_object_create(3).

An XGL Color Map object provides the facility to convert colors from one color type to
another. Once the Color Map has been created, to be useful it must be attached to a Ras-
ter. This is done explicitly by the application by setting the XGL_DEV_COLOR_MAP(3) attri-
bute in the Raster.

After creating the Color Map, using xgl_object_create(3), the application can inquire
about the values of its attributes by using the xgl_object_get(3) operator.

The following is a brief description of the attributes associated with Color Map objects.
For more information, see the man page for each attribute.

XGL_CMAP_COLOR_CUBE_SIZE(3)
The size of the color cube associated with a Color Map object when RGB-to-Index
color conversions are required.

XGL_CMAP_COLOR_MAPPER(3)
The function that maps color values from XGL_COLOR_INDEX to XGL_COLOR_RGB.

XGL_CMAP_COLOR_TABLE(3)
The structure that includes an array of color values providing a mapping from
XGL_COLOR_INDEX colors to XGL_COLOR_RGB colors.

XGL_CMAP_COLOR_TABLE_SIZE(3)
The number of elements in the array associated with a color table array.

XGL_CMAP_DITHER_MASK_N(3)
XGL_CMAP_DITHER_MASK_X
XGL_CMAP_DITHER_MASK_Y

The number of columns and rows, respectively, in the dither mask used for RGB-
to-Index conversions.

XGL_CMAP_DITHER_MASK(3)
The dithering array used for RGB-to-Index color conversions.

XGL_CMAP_INVERSE_COLOR_MAPPER(3)
The function that maps color values from XGL_COLOR_RGB to XGL_COLOR_INDEX.

XGL_CMAP_MAX_COLOR_TABLE_SIZE(3)
The maximum number of elements that can be stored in a color table array.

138 modified August 1994

XGL Graphics Library XGL_CMAP (3)

XGL_CMAP_NAME(3)
The name given to a window-system-generated Color Map. It allows for the
sharing of window-system resources.

XGL_CMAP_RAMP_LIST(3)
An array of offset and length pairs describing color ramps embedded within a
color table.

XGL_CMAP_RAMP_NUM(3)
Number of color ramps within a color table.

XGL_OBJ_APPLICATION_DATA(3)
This attribute allows the application program to store its own data with an object.

XGL_OBJ_SYS_STATE(3)
This read-only attribute returns the System State that was used to create the
object.

XGL_OBJ_TYPE(3)
This read-only attribute defines the type of an XGL object.

When a Color Map is no longer needed in an application, it can be explicitly destroyed by
calling the xgl_object_destroy(3) operator to free the resources associated with it.

A System State object must have been created with the xgl_open(3) operator before a
Color Map can be created.

modified August 1994 139

XGL_CMAP_COLOR_CUBE_SIZE (3) XGL Graphics Library

NAME XGL_CMAP_COLOR_CUBE_SIZE − defines the size of the color cube associated with a
Color Map object when RGB-to-Index color conversions are required

SYNOPSIS #include <xgl/xgl.h>

Xgl_cmap cmap;

xgl_object_set(cmap, XGL_CMAP_COLOR_CUBE_SIZE, Xgl_usgn32 ∗, 0);
xgl_object_get(cmap, XGL_CMAP_COLOR_CUBE_SIZE, Xgl_usgn32 ∗);

DESCRIPTION The color table associated with an XGL Color Map object may contain a color cube for
converting RGB colors to indexed colors. An RGB-to-Index conversion is required if the
XGL Device color type (see XGL_DEV_COLOR_TYPE(3)) is XGL_COLOR_RGB and the underly-
ing hardware is indexed. It is used only in this RGB-to-Index conversion case.

This attribute specifies the size of the color cube. It is formatted as an array of three
unsigned integers that specify the size of the red, green, and blue axes of the color cube,
respectively. It can be used instead of the three separate size attributes (see XGL_CMAP_-

COLOR_CUBE_RSIZE(3), XGL_CMAP_COLOR_CUBE_GSIZE(3), and XGL_CMAP_COLOR_CUBE_-

BSIZE(3)) to set or to get simultaneously all three components of the color cube size.

The defaults are:
red = 6
green = 9
blue = 4

SEE ALSO xgl_object_set(3)
xgl_object_get(3)
xgl_object_create(3)

XGL_CMAP_COLOR_CUBE_BSIZE(3)
XGL_CMAP_COLOR_CUBE_GSIZE(3)
XGL_CMAP_COLOR_CUBE_RSIZE(3)
XGL_DEV_COLOR_TYPE(3)

140 modified August 1994

XGL Graphics Library XGL_CMAP_COLOR_MAPPER (3)

NAME XGL_CMAP_COLOR_MAPPER,
XGL_CMAP_INVERSE_COLOR_MAPPER − define functions used to map colors from
one color space to another

SYNOPSIS #include <xgl/xgl.h>
Xgl_cmap cmap;
xgl_object_set(cmap, XGL_CMAP_COLOR_MAPPER, void (∗) (), 0);
xgl_object_set(cmap, XGL_CMAP_INVERSE_COLOR_MAPPER, void (∗) (), 0);

xgl_object_get(cmap, XGL_CMAP_COLOR_MAPPER, void (∗(∗)) ());
xgl_object_get(cmap, XGL_CMAP_INVERSE_COLOR_MAPPER, void (∗(∗)) ());

DESCRIPTION XGL_CMAP_COLOR_MAPPER specifies a function that maps the color values from the device
color space set by the application (see XGL_DEV_COLOR_TYPE(3)) to the underlying real
color space (see XGL_DEV_REAL_COLOR_TYPE(3)).

XGL_CMAP_INVERSE_COLOR_MAPPER specifies a function that maps the color values from
the underlying real color space (see XGL_DEV_REAL_COLOR_TYPE(3)) to the device color
space set by the application (see XGL_DEV_COLOR_TYPE(3)).

Conceptually, these functions are visible to the application programmer to provide flexi-
bility when manipulating colors. However, in the current XGL release, most typical color
operations can be handled without changing these two attributes.

If you wish to write your own mapper function, XGL will call your function with the
parameters shown below. Notice that your function should take as parameters a Color
Map object, a pointer to a color structure, a pointer to an unsigned long, and a boolean
indicating if the function should use the pixel mapping array (if relevant). The unsigned
long represents most often a pixel value. The only exception is when the pixel mapping
array is not used (boolean set to FALSE) and XGL_DEV_REAL_COLOR_TYPE(3) is index; in this
case the value represents the index in the color table of the Color Map. The functional
interface to the color map function is as follows:

void
mapper(cmap, color, value, use_pixel_mapping)
Xgl_cmap cmap;
Xgl_color ∗color;
Xgl_usgn32 ∗value;
Xgl_boolean use_pixel_mapping;

In the case of XGL_CMAP_COLOR_MAPPER, color is the input and value is the output. In the
case of XGL_CMAP_INVERSE_COLOR_MAPPER, value is the input and color is the output.

The default values are functions defined in XGL that will provide the appropriate
behavior.

SEE ALSO xgl_object_set(3)
xgl_object_get(3)
xgl_object_create(3)

modified August 1994 141

XGL_CMAP_COLOR_MAPPER (3) XGL Graphics Library

XGL_DEV_COLOR_TYPE(3)
XGL_DEV_REAL_COLOR_TYPE(3)

142 modified August 1994

XGL Graphics Library XGL_CMAP_COLOR_TABLE (3)

NAME XGL_CMAP_COLOR_TABLE − the color table associated with a Color Map object

SYNOPSIS #include <xgl/xgl.h>

Xgl_cmap cmap;

xgl_object_set(cmap, XGL_CMAP_COLOR_TABLE, Xgl_color_list ∗, 0);
xgl_object_get(cmap, XGL_CMAP_COLOR_TABLE, Xgl_color_list ∗);

DESCRIPTION A color table provides a way of mapping colors from one color space to another. This
attribute specifies the color table that allows color mapping from XGL_COLOR_INDEX to
XGL_COLOR_RGB.

XGL_CMAP_COLOR_TABLE is a pointer to a C structure of type Xgl_color_list, which is
defined as follows:

typedef struct {
Xgl_usgn32 start_index; /∗ starting index for table ∗/
Xgl_usgn32 length; /∗ number of entries in table ∗/
Xgl_color ∗colors; /∗ color table array ∗/

} Xgl_color_list;

It contains a starting index of the color table, a length, and a pointer to an array of
Xgl_color values of type XGL_COLOR_RGB. The color table array must be allocated by the
application.

The maximum number of entries allowed in the colors array is constrained by the color
map attribute XGL_CMAP_MAX_COLOR_TABLE_SIZE(3). The number of usable entries in the
array is specified by another color map attribute, XGL_CMAP_COLOR_TABLE_SIZE(3).

XGL_CMAP_COLOR_TABLE_SIZE(3) should always be set prior to setting the color map with
XGL_CMAP_COLOR_TABLE. Furthermore, the value of XGL_CMAP_COLOR_TABLE_SIZE(3)
should be greater or equal to the sum of the start_index and length structure elements
passed with XGL_CMAP_COLOR_TABLE.

The default value is a two-element, monochrome (black, white) color table.

SEE ALSO xgl_object_set(3)
xgl_object_get(3)
xgl_object_create(3)

XGL_CMAP_COLOR_TABLE_SIZE(3)
XGL_CMAP_MAX_COLOR_TABLE_SIZE(3)

modified August 1994 143

XGL_CMAP_COLOR_TABLE_SIZE (3) XGL Graphics Library

NAME XGL_CMAP_COLOR_TABLE_SIZE,
XGL_CMAP_MAX_COLOR_TABLE_SIZE − define the maximum possible size of the
color table associated with a Color Map object

SYNOPSIS #include <xgl/xgl.h>

Xgl_cmap cmap;

xgl_object_set(cmap, XGL_CMAP_COLOR_TABLE_SIZE, Xgl_usgn32, 0);

xgl_object_get(cmap, XGL_CMAP_COLOR_TABLE_SIZE, Xgl_usgn32 ∗);
xgl_object_get(cmap, XGL_CMAP_MAX_COLOR_TABLE_SIZE, Xgl_usgn32 ∗);

DESCRIPTION The XGL_CMAP_COLOR_TABLE_SIZE(3) attribute specifies the number of entries in the color
table associated with a Color Map. The XGL_CMAP_MAX_COLOR_TABLE_SIZE(3) is a read-
only attribute that defines the maximum number of entries the hardware allows in a color
table. It is initialized when a Color Map object is attached to a Raster.

A color table associated with an XGL Color Map object can be any size up to the max-
imum size the hardware allows. For more information about color tables associated with
XGL Color Maps, see XGL_CMAP_COLOR_TABLE(3).

XGL_CMAP_COLOR_TABLE_SIZE should always be set prior to setting the color map with
XGL_CMAP_COLOR_TABLE(3).

The default value of XGL_CMAP_COLOR_TABLE_SIZE is 2.

The default value of XGL_CMAP_MAX_COLOR_TABLE_SIZE is 256. When a Color Map is asso-
ciated with a device, the value of XGL_CMAP_MAX_COLOR_TABLE_SIZE will be reset to be
consistent with this device.

SEE ALSO xgl_object_set(3)
xgl_object_get(3)
xgl_object_create(3)

XGL_CMAP_COLOR_TABLE(3)

144 modified August 1994

XGL Graphics Library XGL_CMAP_DITHER_MASK (3)

NAME XGL_CMAP_DITHER_MASK − defines the dither mask associated with a Color Map
object

SYNOPSIS #include <xgl/xgl.h>

Xgl_cmap cmap;

xgl_object_set(cmap, XGL_CMAP_DITHER_MASK, Xgl_usgn32 ∗∗, 0);
xgl_object_get(cmap, XGL_CMAP_DITHER_MASK, Xgl_usgn32 ∗∗);

DESCRIPTION If an application’s Device color type (see XGL_DEV_COLOR_TYPE(3)) is XGL_COLOR_RGB and
the underlying hardware is indexed, XGL will use a color cube (see XGL_CMAP_COLOR_-

CUBE_SIZE(3)) and dithering to convert the application’s RGB colors to the display’s
indexed colors. This attribute permits the application to specify the dither mask (or
dither matrix) that is required for the RGB-to-Index conversion.

The XGL Color Map dither mask size is fixed at 8 × 8. To change the mask to 2 × 2 or
4 × 4, replicate the smaller mask into an 8 × 8 mask, and set this attribute to point to the
new 8 × 8 mask.

SEE ALSO xgl_object_set(3)
xgl_object_get(3)
xgl_object_create(3)

XGL_CMAP_COLOR_CUBE_SIZE(3)
XGL_CMAP_COLOR_CUBE_GSIZE(3)
XGL_CMAP_COLOR_CUBE_BSIZE(3)
XGL_CMAP_DITHER_MASK_N(3)
XGL_DEV_COLOR_TYPE(3)

NOTES The dither mask values should be in the range of 0 to 255.

modified August 1994 145

XGL_CMAP_DITHER_MASK_N (3) XGL Graphics Library

NAME XGL_CMAP_DITHER_MASK_N − defines the dither mask size for a Color Map object

SYNOPSIS #include <xgl/xgl.h>

Xgl_cmap cmap;

xgl_object_get(cmap, XGL_CMAP_DITHER_MASK_N, Xgl_usgn32 ∗);

DESCRIPTION If an application’s Device color type (see XGL_DEV_COLOR_TYPE(3)) is XGL_COLOR_RGB and
the underlying hardware is indexed, XGL uses a color cube (see XGL_CMAP_COLOR_CUBE_-

SIZE(3)) and dithering to convert the application’s RGB colors to the display’s indexed
colors.

This read-only attribute can be used to get the size of the dither mask. The dither matrix
is forced to be square, and its size is fixed at 8 × 8. To change the mask to 2 × 2 or 4 × 4,
the smaller mask should be replicated into an 8 × 8 mask and then set into the XGL dither
mask using the attribute XGL_CMAP_DITHER_MASK(3).

SEE ALSO xgl_object_set(3)
xgl_object_get(3)
xgl_object_create(3)

XGL_CMAP_COLOR_CUBE_SIZE(3)
XGL_CMAP_COLOR_CUBE_RSIZE(3)
XGL_CMAP_COLOR_CUBE_GSIZE(3)
XGL_CMAP_COLOR_CUBE_BSIZE(3)
XGL_CMAP_DITHER_MASK(3)
XGL_DEV_COLOR_TYPE(3)

146 modified August 1994

XGL Graphics Library XGL_CMAP_NAME (3)

NAME XGL_CMAP_NAME − permits the application to use color maps that have been created
using window system function calls

SYNOPSIS #include <xgl/xgl.h>

Xgl_cmap cmap;

xgl_object_set(cmap, XGL_CMAP_NAME, Colormap, 0);
xgl_object_get(cmap, XGL_CMAP_NAME, Colormap ∗);

DESCRIPTION The application can use the OpenWindows and X window systems to create a color map
that will be used to map colors from the XGL application’s color space to the hardware’s
color space. Note that here the term color map refers to the window-system-produced
color map and should not be confused with the XGL Color Map object. This attribute,
XGL_CMAP_NAME(3), is the name given to the color map by the window system. The name
can then be passed to XGL so that XGL can share the use of the color map with the win-
dow system. To do this, an application should do the following:

1. Create a color map solely through calls to window system functions. (In
OpenWindows and X, the application uses the XCreateColormap function
call.)

2. Get the color map name from the window system. (In OpenWindows and X,
this is the XID returned by the XCreateColormap function call.)

3. Get the pixel mapping array returned by the window system after it creates
the color map (see XGL_WIN_RAS_PIXEL_MAPPING(3)).

4. Set the XGL attribute XGL_CMAP_NAME to the window system color map
name.

5. If the XGL_DEV_COLOR_TYPE(3) attribute is XGL_COLOR_INDEX, set the size of
the color table with XGL_CMAP_COLOR_TABLE_SIZE(3). If the XGL_DEV_-

COLOR_TYPE(3) attribute is XGL_COLOR_RGB, set the size of the color cube with
XGL_CMAP_COLOR_CUBE_SIZE(3).

6. Set XGL_WIN_RAS_PIXEL_MAPPING to the window system pixel mapping array.

It is the responsibility of the application to make sure that the RGB values in the window
system color map are correct. When using a window-system-generated color map, the
application cannot inquire about the contents of it (by using xgl_object_get(3) on the
Color Map object’s color table). Instead, the application should manipulate the color map
through window system calls.

If XGL creates the color map (such as the default Color Map object that is created when a
new Window Raster is created), XGL_CMAP_NAME reflects an internal X color map used by
XGL and the window system. In other words, in this case XGL implicitly calls the window
system functions that create the color map and attaches this window-system-created
color map to the Raster.

modified August 1994 147

XGL_CMAP_NAME (3) XGL Graphics Library

The default value is NULL. However, if XGL_CMAP_NAME has not been set, it will be set to
the X colormap of the first window raster to which it is associated.

SEE ALSO xgl_object_set(3)
xgl_object_get(3)
xgl_object_create(3)

XGL_CTX_BACKGROUND_COLOR(3)
XGL_WIN_RAS_PIXEL_MAPPING(3)

NOTES If the application sets the XGL_CMAP_NAME attribute, the XGL_WIN_RAS_PIXEL_MAPPING
attribute must also be set. This guarantees that the application’s indexed colors are prop-
erly mapped to the hardware indices.

Non-contiguous pixel mapping, when used with XGL primitives requiring interpolated
colors, produces undefined results on various graphics hardware and may degrade
rendering performance. To ensure correct results for interpolated color rendering, the
application should use a contiguous pixel mapping. (For a definition of contiguous pixel
mapping, see XGL_WIN_RAS_PIXEL_MAPPING(3).)

148 modified August 1994

XGL Graphics Library XGL_CMAP_RAMP_LIST (3)

NAME XGL_CMAP_RAMP_LIST,
XGL_CMAP_RAMP_NUM − list and number of ramps in a Color Map object

SYNOPSIS #include <xgl/xgl.h>

Xgl_cmap cmap;

xgl_object_set(cmap, XGL_CMAP_RAMP_LIST, Xgl_segment ∗, 0);
xgl_object_set(cmap, XGL_CMAP_RAMP_NUM, Xgl_usgn32, 0);

xgl_object_get(cmap, XGL_CMAP_RAMP_LIST, Xgl_segment ∗);
xgl_object_get(cmap, XGL_CMAP_RAMP_NUM, Xgl_usgn32 ∗);

DESCRIPTION The color table associated with an XGL Color Map object can contain one or more color
ramps. A color ramp is a section of the color table, of specific length, that is frequently
used to store color values that change only by intensity. For instance, a gray ramp could
have 32 color values from dark gray to light gray, in a monotonically increasing fashion.

Color ramps are important when using vertex shading (see XGL_3D_CTX_SURF_FRONT_-

ILLUMINATION(3)) on data whose color type is XGL_COLOR_INDEX. The colors that result
from XGL’s lighting and shading calculations are interpolated along color ramps within
the color table to produce smooth shading effects. Therefore, if the application program-
mer sets the illumination model to XGL_ILLUM_PER_VERTEX, and the Device color type (see
XGL_DEV_COLOR_TYPE(3)) is XGL_COLOR_INDEX, then at least one color ramp should be
defined within the color table associated with the Raster Color Map object (see XGL_DEV_-

COLOR_MAP(3)). In the typical case, where each ramp contains one color hue with vary-
ing intensity values, XGL expects that the intensities will increase with increasing indices
in the color table. If the ramp is not initialized in this way, unexpected shading effects can
occur.

Similarly, color ramps are necessary for depth-cueing (see XGL_3D_CTX_DEPTH_CUE_-

MODE(3)) when the data’s color type is XGL_COLOR_INDEX.

XGL color ramps are specified by an array of Xgl_segment structures, with one member of
the array defining each ramp. Xgl_segment is defined as:

typedef struct {
Xgl_usgn32 offset; /∗ starting index of ramp in color table ∗/
Xgl_usgn32 length; /∗ length of ramp ∗/

} Xgl_segment;

It contains an offset into the color table where the ramp begins, and a length for the ramp.

To make use of ramps, the application should first create a color table (see XGL_CMAP_-

COLOR_TABLE(3)) containing one or more ramps. Then, the application should declare
and initialize an array of Xgl_segments. Each member of the array defines the offset and
length of a ramp in the color table. The attribute XGL_CMAP_RAMP_LIST(3) defines a
pointer to the beginning of this Xgl_segment array.

Next, the application should attach both the color table and the Xgl_segment array to a
Color Map object, via either the xgl_object_set(3) or xgl_object_create(3) operator, using
the attributes XGL_CMAP_COLOR_TABLE and XGL_CMAP_RAMP_LIST, respectively. Finally,

modified August 1994 149

XGL_CMAP_RAMP_LIST (3) XGL Graphics Library

the number of color ramps within the color table must be specified by setting the XGL_-

CMAP_RAMP_NUM(3) attribute.

The default value of XGL_CMAP_RAMP_LIST is NULL.

The default value of XGL_CMAP_RAMP_NUM is 0.

SEE ALSO xgl_object_set(3)
xgl_object_get(3)
xgl_object_create(3)

XGL_3D_CTX_DEPTH_CUE_MODE(3)
XGL_3D_CTX_SURF_FRONT_ILLUMINATION(3)
XGL_DEV_COLOR_TYPE(3)
XGL_DEV_COLOR_MAP(3)
XGL_CMAP_COLOR_TABLE(3)

150 modified August 1994

XGL Graphics Library XGL_CTX_ARC_FILL_STYLE (3)

NAME XGL_CTX_ARC_FILL_STYLE − defines how arcs appear when drawn using the operator
xgl_multiarc

SYNOPSIS #include <xgl/xgl.h>

Xgl_ctx ctx;

xgl_object_set(ctx, XGL_CTX_ARC_FILL_STYLE, Xgl_arc_fill_style, 0);
xgl_object_get(ctx, XGL_CTX_ARC_FILL_STYLE, Xgl_arc_fill_style ∗);

DESCRIPTION The operator xgl_multiarc(3) has the capability to draw arcs three different ways, as
specified by this attribute. The fill style determines the portion of the arc that is displayed
on the Raster. Fill style can be one of the following values:

XGL_ARC_SECTOR
Two line segments are drawn — one from the start point of the arc to the center
of the circle on which the arc lies, and the other from the end point of the arc to
the center of the circle. The enclosed area is filled according to the current Con-
text surface attributes.

XGL_ARC_CHORD
A line segment is drawn from the start point of the arc to the endpoint of the arc.
The enclosed area is filled according to the current Context surface attributes.

XGL_ARC_OPEN
The arc is not closed and not filled. Its properties are specified by the current
context line attributes.

The default value is XGL_ARC_SECTOR.

This attribute is pushed by xgl_context_push(3).

SEE ALSO xgl_object_set(3)
xgl_object_get(3)
xgl_context_push(3)
xgl_multiarc(3)

modified August 1994 151

XGL_CTX_ATEXT_ALIGN_HORIZ (3) XGL Graphics Library

NAME XGL_CTX_ATEXT_ALIGN_HORIZ − defines the horizontal alignment used for annota-
tion text characters

SYNOPSIS #include <xgl/xgl.h>

Xgl_ctx ctx;

xgl_object_set(ctx, XGL_CTX_ATEXT_ALIGN_HORIZ, Xgl_stext_align_horiz, 0);
xgl_object_get(ctx, XGL_CTX_ATEXT_ALIGN_HORIZ, Xgl_stext_align_horiz ∗);

DESCRIPTION This attribute specifies the horizontal alignment used when rendering annotation text
characters in the Context ctx. In XGL, annotation text can be rendered, using four dif-
ferent horizontal alignments, with respect to the text position. The following values are
allowed:

XGL_STEXT_ALIGN_HORIZ_RIGHT
XGL_STEXT_ALIGN_HORIZ_NORMAL

These values are used to specify a text rendered at the right side of
the annotation position of the string.

XGL_STEXT_ALIGN_HORIZ_LEFT
This value should be used each time an application wants the text to be on the
left side of the annotation position given for the annotation text operator.

XGL_STEXT_ALIGN_HORIZ_CENTER
This value centers the text on the annotation position given for the annotation
text operator.

The application can use this attribute to specify how the text string should be aligned
with respect to the position of the text. When rendering annotation text using xgl_-
annotation_text(3), the characters are interpreted from stroke text file in text local coordi-
nates (TLC). This coordinate system is independent of the application’s coordinate sys-
tem, and the stroke characters are transformed to match the given size value in the
application’s virtual device coordinate (VDC) system.

The default value is XGL_STEXT_ALIGN_HORIZ_NORMAL.

This attribute is pushed by xgl_context_push(3).

SEE ALSO xgl_object_set(3)
xgl_object_get(3)
xgl_context_push(3)
xgl_annotation_text(3)

152 modified August 1994

XGL Graphics Library XGL_CTX_ATEXT_ALIGN_VERT (3)

NAME XGL_CTX_ATEXT_ALIGN_VERT − defines the vertical alignment used for annotation
text

SYNOPSIS #include <xgl/xgl.h>

Xgl_ctx ctx;

xgl_object_set(ctx, XGL_CTX_ATEXT_ALIGN_VERT, Xgl_stext_align_vert, 0);
xgl_object_get(ctx, XGL_CTX_ATEXT_ALIGN_VERT, Xgl_stext_align_vert ∗);

DESCRIPTION This attribute specifies the vertical alignment used when rendering annotation text char-
acters in the Context ctx. In XGL, annotation text can be rendered, using six different vert-
ical alignments, with respect to the text position. The following values are allowed:

XGL_STEXT_ALIGN_VERT_BASE
XGL_STEXT_ALIGN_VERT_NORMAL

Indicates that the base line of the character cells must map on the
annotation position specified for the string.

XGL_STEXT_ALIGN_VERT_BOTTOM
XGL_STEXT_ALIGN_VERT_TOP

Used each time an application wants the annotation position given for
annotation text operators to match the bottom line or the top line,
respectively, of the character cells used in the current font.

XGL_STEXT_ALIGN_VERT_HALF
Ensures that the text will be vertically centered on the annotation position given
to the annotation text operators.

XGL_STEXT_ALIGN_VERT_CAP
Maps the cap line of character cells to the annotation position given for the anno-
tation text operators.

The application can use this attribute to specify how the text string should be aligned
with respect to the position of the text. When rendering annotation text using xgl_-
annotation_text(3), the characters are interpreted from stroke text file in text local coordi-
nates (TLC). This coordinate system is independent of the application’s coordinate sys-
tem. The characters are transformed to match the given size value in the application’s
virtual device coordinate (VDC) system.

The default value is XGL_STEXT_ALIGN_VERT_NORMAL.

This attribute is pushed by xgl_context_push(3).

SEE ALSO xgl_object_set(3)
xgl_object_get(3)
xgl_context_push(3)
xgl_annotation_text(3)

modified August 1994 153

XGL_CTX_ATEXT_CHAR_HEIGHT (3) XGL Graphics Library

NAME XGL_CTX_ATEXT_CHAR_HEIGHT − defines the nominal size of annotation text
characters

SYNOPSIS #include <xgl/xgl.h>

Xgl_ctx ctx;

xgl_object_set(ctx, XGL_CTX_ATEXT_CHAR_HEIGHT, float, 0);
xgl_object_get(ctx, XGL_CTX_ATEXT_CHAR_HEIGHT, float ∗);

DESCRIPTION This attribute specifies the nominal height of text characters used with annotation text
(xgl_annotation_text(3)), expressed in virtual device coordinates (VDC).

When rendering annotation text using xgl_annotation_text, the characters are interpreted
from the stroke text data file in text local coordinates (TLC). This coordinate system is
independent of the application’s coordinate systems, and the characters are transformed
to match the given size value in the application’s virtual device coordinate system.

This attribute affects globally the size of XGL annotation characters. Not only does it
affect the height of annotation characters, but also the width and spacing between anno-
tation characters (see XGL_CTX_STEXT_CHAR_SPACING(3) and XGL_CTX_STEXT_CHAR_-

EXPANSION_FACTOR(3)).

The default value is 100.0.

This attribute is pushed by xgl_context_push(3).

SEE ALSO xgl_object_set(3)
xgl_object_get(3)
xgl_context_push(3)
xgl_annotation_text(3)

XGL_CTX_STEXT_CHAR_EXPANSION_FACTOR(3)
XGL_CTX_STEXT_CHAR_SPACING(3)

154 modified August 1994

XGL Graphics Library XGL_CTX_ATEXT_CHAR_SLANT_ANGLE (3)

NAME XGL_CTX_ATEXT_CHAR_SLANT_ANGLE − defines the angle that annotation text
makes with the upright direction

SYNOPSIS #include <xgl/xgl.h>

Xgl_ctx ctx;

xgl_object_set(ctx, XGL_CTX_ATEXT_CHAR_SLANT_ANGLE, float, 0);
xgl_object_get(ctx, XGL_CTX_ATEXT_CHAR_SLANT_ANGLE, float ∗);

DESCRIPTION This attribute specifies the angle of inclination of annotation text characters, expressed as
an angle (in radians), with respect to the upright direction.

When rendering annotation text using xgl_annotation_text(3), the characters are inter-
preted from the stroke text file in text local coordinates (TLC). This coordinate system is
independent of the user’s coordinates, and the characters are transformed to match the
given size value in the user’s virtual device coordinate (VDC) system.

This attribute is used to modify the appearance of the characters without changing their
spacing, height, and width. It can take values between −π/2 and +π/2. A slant angle
between −π/2 and 0 will slant the characters in the backward direction. A slant angle
between 0 and +π/2 will slant the characters in the forward direction.

This attribute does not affect the annotation text alignment, as specified by the attributes
XGL_CTX_ATEXT_ALIGN_HORIZ(3) and XGL_CTX_ATEXT_ALIGN_VERT(3).

The default value is 0.0.

This attribute is pushed by xgl_context_push(3).

SEE ALSO xgl_object_set(3)
xgl_object_get(3)
xgl_context_push(3)
xgl_annotation_text(3)

XGL_CTX_ATEXT_ALIGN_HORIZ(3)
XGL_CTX_ATEXT_ALIGN_VERT(3)

modified August 1994 155

XGL_CTX_ATEXT_CHAR_UP_VECTOR (3) XGL Graphics Library

NAME XGL_CTX_ATEXT_CHAR_UP_VECTOR − defines the up vector for annotation
characters

SYNOPSIS #include <xgl/xgl.h>

Xgl_ctx ctx;

xgl_object_set(ctx, XGL_CTX_ATEXT_CHAR_UP_VECTOR, Xgl_pt_f2d ∗, 0);
xgl_object_get(ctx, XGL_CTX_ATEXT_CHAR_UP_VECTOR, Xgl_pt_f2d ∗);

DESCRIPTION This attribute specifies the up vector for annotation text characters within the Context ctx.
The up vector gives the upright direction of characters in text local coordinates (TLC).

Changing the up vector is equivalent to defining a rotation for the characters when text is
rendered using the xgl_annotation_text(3) operator. This vector is independent of the
orientation of the virtual device coordinates (VDC) that is set by the application with the
XGL_CTX_VDC_ORIENTATION(3) attribute.

With the VDC orientation set to either XGL_Y_UP_Z_TOWARD or XGL_Y_DOWN_Z_AWAY, an
up vector of (0.0, 1.0) renders the text normally. XGL automatically sets the correct inter-
nal values to the transformation of the TLC so that the VDC orientation does not have any
effect on the text to display.

The default value is (0.0, 1.0).

This attribute is pushed by xgl_context_push(3).

SEE ALSO xgl_object_set(3)
xgl_object_get(3)
xgl_context_push(3)
xgl_annotation_text(3)

XGL_CTX_VDC_ORIENTATION(3)

156 modified August 1994

XGL Graphics Library XGL_CTX_ATEXT_PATH (3)

NAME XGL_CTX_ATEXT_PATH − defines the path used when rendering annotation text

SYNOPSIS #include <xgl/xgl.h>

Xgl_ctx ctx;

xgl_object_set(ctx, XGL_CTX_ATEXT_PATH, Xgl_stext_path, 0);
xgl_object_get(ctx, XGL_CTX_ATEXT_PATH, Xgl_stext_path ∗);

DESCRIPTION This attribute specifies the path used when rendering annotation text characters within
the Context ctx. In XGL, annotation text can be rendered in four different directions from
the text position. The following values are allowed to define the text path:

XGL_STEXT_PATH_RIGHT
XGL_STEXT_PATH_LEFT
XGL_STEXT_PATH_UP
XGL_STEXT_PATH_DOWN

The application can use this attribute to specify in which direction the text should be ren-
dered. When rendering stroke text using the xgl_annotation_text(3) operator, the charac-
ters are interpreted from the text font file, using the path specified by the application to
generate the correct data in text local coordinates (TLC). This coordinate system is
independent of the application’s coordinate system. The annotation characters are
transformed to match the given size value in the application’s virtual device coordinate
(VDC) system.

The default value is XGL_STEXT_PATH_RIGHT.

This attribute is pushed by xgl_context_push(3).

SEE ALSO xgl_object_set(3)
xgl_object_get(3)
xgl_context_push(3)
xgl_annotation_text(3)

modified August 1994 157

XGL_CTX_ATEXT_STYLE (3) XGL Graphics Library

NAME XGL_CTX_ATEXT_STYLE − defines the style used for rendering annotation text

SYNOPSIS #include <xgl/xgl.h>

Xgl_ctx ctx;

xgl_object_set(ctx, XGL_CTX_ATEXT_STYLE, Xgl_atext_style, 0);
xgl_object_get(ctx, XGL_CTX_ATEXT_STYLE, Xgl_atext_style ∗);

DESCRIPTION This attribute specifies the style used when rendering annotation text characters in the
Context ctx. In XGL, annotation text can be rendered using two different styles. The fol-
lowing values are allowed:

XGL_ATEXT_STYLE_NORMAL
Indicates that the characters are rendered at the annotation position specified for
the string, without any particular effect.

XGL_ATEXT_STYLE_LINE
Identical to XGL_ATEXT_STYLE_NORMAL, but the reference point is linked to the
annotation point by a single line with attributes from the current settings for xgl_-
multipolyline(3). For a definition of reference point and annotation point, see xgl_-
annotation_text(3).

The default value is XGL_ATEXT_STYLE_NORMAL.

This attribute is pushed by xgl_context_push(3).

SEE ALSO xgl_object_set(3)
xgl_object_get(3)
xgl_context_push(3)
xgl_annotation_text(3)
xgl_multipolyline(3)

158 modified August 1994

XGL Graphics Library XGL_CTX_BACKGROUND_COLOR (3)

NAME XGL_CTX_BACKGROUND_COLOR − defines the color used for painting background
pixels

SYNOPSIS #include <xgl/xgl.h>

Xgl_ctx ctx;

xgl_object_set(ctx, XGL_CTX_BACKGROUND_COLOR, Xgl_color ∗, 0);
xgl_object_get(ctx, XGL_CTX_BACKGROUND_COLOR, Xgl_color ∗);

DESCRIPTION This attribute defines the color used to paint background pixels. When the XGL Raster,
associated with the current Context, is cleared via a call to xgl_context_new_frame(3),
XGL_CTX_BACKGROUND_COLOR is used to fill the Raster.

When XGL_3D_CTX_SURF_BACK_FILL_STYLE or XGL_CTX_SURF_FRONT_FILL_STYLE is XGL_SURF_-
FILL_OPAQUE_STIPPLE and the fill Raster pixel is not set, the corresponding pixel in the
Destination Raster is set to the color XGL_CTX_BACKGROUND_COLOR.

The color must be set according to the XGL_DEV_COLOR_TYPE(3) attribute of the Raster
associated with the Context. If the Device color type is XGL_COLOR_INDEX, the type of the
color should be XGL_COLOR_INDEX. Likewise, if the Device color type is XGL_COLOR_RGB,
the color passed to the Context should also be XGL_COLOR_RGB.

When specifying a color of type XGL_COLOR_INDEX, the value given as the index should be
consistent with the size of the color table within the Device Color Map object associated
with the Context (see XGL_DEV_COLOR_MAP(3)).

The default value is: INDEX 0 or RGB (0,0,0).

This attribute is pushed by xgl_context_push(3).

SEE ALSO xgl_object_set(3)
xgl_object_get(3)
xgl_context_push(3)
xgl_context_new_frame(3)
xgl_context_copy_raster(3)

XGL_3D_CTX_SURF_BACK_FILL_STYLE(3)
XGL_CTX_SURF_FRONT_FILL_STYLE(3)
XGL_DEV_COLOR_TYPE(3)
XGL_DEV_COLOR_MAP(3)

modified August 1994 159

XGL_CTX_CLIP_PLANES (3) XGL Graphics Library

NAME XGL_CTX_CLIP_PLANES − specifies which of the six clipping planes are used in view
clipping

SYNOPSIS #include <xgl/xgl.h>

Xgl_ctx ctx;

xgl_object_set(ctx, XGL_CTX_CLIP_PLANES, Xgl_clip_planes, 0);
xgl_object_get(ctx, XGL_CTX_CLIP_PLANES, Xgl_clip_planes ∗);

DESCRIPTION This attribute specifies which planes are used in view clipping within the Context ctx.
The application can enable any combination of the clipping planes by logically OR’ing
flags representing each plane. The flags are:

XGL_CLIP_XMIN
XGL_CLIP_XMAX
XGL_CLIP_YMIN
XGL_CLIP_YMAX
XGL_CLIP_ZMIN
XGL_CLIP_ZMAX

Each flag handles a specific clipping plane in the virtual device coordinates (VDC). The
flags XGL_CLIP_ZMIN and XGL_CLIP_ZMAX are valid only when applied to 3D Contexts.

The attribute XGL_CTX_VIEW_CLIP_BOUNDS(3) defines the specific boundaries in VDC space
of the clipping area or volume. Note that the values in VDC space that are minimum and
maximum depend on the value of the XGL Context attribute XGL_CTX_VDC_-

ORIENTATION(3).

The default value is ‘‘no clipping planes enabled’’—that is, 0 (zero).

This attribute is pushed by xgl_context_push(3).

SEE ALSO xgl_object_set(3)
xgl_object_get(3)
xgl_context_push(3)

XGL_CTX_VDC_ORIENTATION(3)
XGL_CTX_VDC_WINDOW(3)
XGL_CTX_VIEW_CLIP_BOUNDS(3)

160 modified February 1995

XGL Graphics Library XGL_CTX_DEFERRAL_MODE (3)

NAME XGL_CTX_DEFERRAL_MODE − specifies whether primitives will be buffered before
being sent to the Device

SYNOPSIS #include <xgl/xgl.h>

Xgl_ctx ctx;

xgl_object_set(ctx, XGL_CTX_DEFERRAL_MODE, Xgl_deferral_mode, 0);
xgl_object_get(ctx, XGL_CTX_DEFERRAL_MODE, Xgl_deferral_mode ∗);

DESCRIPTION This attribute controls whether graphics sent to the Device associated with the Context
ctx will be buffered. There are two deferral modes:

XGL_DEFER_ASTI
In ASTI (at some time) mode, XGL keeps an internal buffer of primitives. It sends
these primitives to the Device for display either when the buffer is full or when
the XGL operator xgl_context_flush(3) is called by the application (hence, the
name at some time). If the application wants to guarantee that primitives will be
rendered on the Device, it must explicitly call xgl_context_flush(3). The method
of buffering is device-dependent.

XGL_DEFER_ASAP
In ASAP (as soon as possible) mode, XGL sends a primitive to the Device for
display as soon as it can. Setting XGL_CTX_DEFERRAL_MODE to XGL_DEFER_ASAP
automatically calls xgl_context_flush(3) (ctx, FALSE).

The default value is XGL_DEFER_ASTI.

This attribute is not pushed by xgl_context_push(3).

SEE ALSO xgl_object_set(3)
xgl_object_get(3)
xgl_context_flush(3)

modified August 1994 161

XGL_CTX_DEVICE (3) XGL Graphics Library

NAME XGL_CTX_DEVICE − defines the Device associated with a Context

SYNOPSIS #include <xgl/xgl.h>

Xgl_ctx ctx;

xgl_object_set(ctx, XGL_CTX_DEVICE, Xgl_dev, 0);
xgl_object_get(ctx, XGL_CTX_DEVICE, Xgl_dev ∗);

DESCRIPTION This attribute defines the XGL Device object associated with the Context ctx. The Device
object is created with the XGL operator xgl_object_create(3). The device specifies the
drawing surface for all subsequent graphic operations for the Context.

The current XGL implementation does not render into 1-bit-deep Memory Rasters, but the
xgl_context_copy_raster(3) operator can copy from a 1-bit-deep Memory Raster into
another 1-bit-deep Memory Raster.

The default value is NULL.

This attribute is not pushed by xgl_context_push(3).

SEE ALSO xgl_object_set(3)
xgl_object_get(3)
xgl_object_create(3)

162 modified August 1994

XGL Graphics Library XGL_CTX_EDGE_AA_BLEND_EQ (3)

NAME XGL_CTX_EDGE_AA_BLEND_EQ,
XGL_CTX_EDGE_AA_FILTER_WIDTH,
XGL_CTX_EDGE_AA_FILTER_SHAPE − controls if and how edges are antialiased

SYNOPSIS #include <xgl/xgl.h>

Xgl_ctx ctx;

xgl_object_set(ctx, XGL_CTX_EDGE_AA_BLEND_EQ, Xgl_blend_eq, 0);
xgl_object_set(ctx, XGL_CTX_EDGE_AA_FILTER_WIDTH, Xgl_usgn32, 0);
xgl_object_set(ctx, XGL_CTX_EDGE_AA_FILTER_SHAPE, Xgl_filter_shape, 0);

xgl_object_get(ctx, XGL_CTX_EDGE_AA_BLEND_EQ, Xgl_blend_eq ∗);
xgl_object_get(ctx, XGL_CTX_EDGE_AA_FILTER_WIDTH, Xgl_usgn32 ∗);
xgl_object_get(ctx, XGL_CTX_EDGE_AA_FILTER_SHAPE, Xgl_filter_shape ∗);

DESCRIPTION These attributes control if and how edges are antialiased. Antialiasing smooths out
single-pixel-wide edges by spreading out the spectral energy of the stroke over 2 or more
adjacent pixels. The result is that the sides of the stroke are slightly blurred and, as seen
from a normal viewing distance, smoother than non-antialiased edges.

The blurring of the edge is done by filtering the stroke onto neighboring pixels. The
shape and size of this filter controls how the antialiased edge will look. Currently, XGL_-
FILTER_GAUSSIAN is the only possible value for the XGL_CTX_EDGE_AA_FILTER_SHAPE(3)
attribute.

The width of the filter is controlled by the attribute XGL_CTX_EDGE_AA_FILTER_WIDTH(3).
This is the number of pixels touched by the filter. A Device will use the largest filter
width it supports which is less than or equal to the specified filter width. A width of 0 is
not an error and is treated as if the width was 1.

The attribute XGL_CTX_EDGE_AA_BLEND_EQ(3) controls how the pixel values in the
antialiased edge are blended with the existing pixel values in the Device. The data type
Xgl_blend_eq has these values:

typedef enum {
XGL_BLEND_NONE,
XGL_BLEND_ARBITRARY_BG,
XGL_BLEND_CONST_BG,
XGL_BLEND_ADD_TO_BG

} Xgl_blend_eq;

The equations used are:

NONE d = s
ARBITRARY_BG d = (s ∗ alpha) + (d ∗ (1 - alpha))
CONST_BG d = ((s - ctx_bg) ∗ alpha) + d
ADD_TO_BG d = (s ∗ alpha) + d

modified August 1994 163

XGL_CTX_EDGE_AA_BLEND_EQ (3) XGL Graphics Library

where:
s = source pixel value
d = destination pixel value
alpha = weight of source pixel
ctx_bg = Context background color

We strongly recommend that antialiasing use XGL_BLEND_ARBITRARY_BG or XGL_BLEND_-
CONST_BG.

All three attributes must have consistent settings in order to achieve visually pleasing
results. Some notes on using these attributes:

· Both the XGL_CTX_EDGE_AA_BLEND_EQ and the XGL_CTX_EDGE_AA_FILTER_WIDTH
must be set to something other than defaults to achieve antialiasing.

· Setting the XGL_CTX_EDGE_AA_BLEND_EQ to XGL_BLEND_NONE and the XGL_-
CTX_EDGE_AA_FILTER_WIDTH to greater than 1 is a way to undraw antialiased
edges. The color used for undrawing is the color that the edge would have
been drawn in if antialiasing was off.

· Setting the XGL_CTX_EDGE_AA_BLEND_EQ to other than NONE and the XGL_CTX_-
EDGE_AA_FILTER_WIDTH to 1 is undefined and should not be used. The results
will be device dependent.

The default value for XGL_CTX_EDGE_AA_BLEND_EQ is XGL_BLEND_NONE.

The default value for XGL_CTX_EDGE_AA_FILTER_WIDTH is 1.

The default value for XGL_CTX_EDGE_AA_FILTER_SHAPE is XGL_FILTER_GAUSSIAN.

All these attributes are pushed by xgl_context_push(3).

SEE ALSO xgl_object_set(3)
xgl_object_get(3)
xgl_context_push(3)

NOTES Antialiasing support on 2D Contexts is device dependent.

164 modified August 1994

XGL Graphics Library XGL_CTX_EDGE_ALT_COLOR (3)

NAME XGL_CTX_EDGE_ALT_COLOR − defines the alternate color used in patterned edges

SYNOPSIS #include <xgl/xgl.h>

Xgl_ctx ctx;

xgl_object_set(ctx, XGL_CTX_EDGE_ALT_COLOR, Xgl_color ∗ , 0);
xgl_object_get(ctx, XGL_CTX_EDGE_ALT_COLOR, Xgl_color ∗);

DESCRIPTION This attribute sets the color used to fill even (or alternate) line segments when the edge
style (XGL_CTX_EDGE_STYLE(3)) in the Context ctx is set to XGL_LINE_ALT_PATTERNED . The
odd line segments are filled using the color specified by XGL_CTX_EDGE_COLOR(3).

This attribute applies only to primitives capable of edge rendering.

The color must be set according to the XGL_DEV_COLOR_TYPE(3) attribute of the Raster
associated with the Context. If the Device color type is XGL_COLOR_INDEX, the type of the
color should be XGL_COLOR_INDEX. Likewise, if the Device color type is XGL_COLOR_RGB,
the color passed to the Context should also be XGL_COLOR_RGB.

When specifying a color of type XGL_COLOR_INDEX, the value given as the index should be
consistent with the size of the color table within the Device Color Map object associated
with the Context (see XGL_DEV_COLOR_MAP(3)).

When a Device of color type XGL_COLOR_INDEX is attached to a 3D Context, with depth-
cueing enabled (see XGL_3D_CTX_DEPTH_CUE_MODE(3)), the color table of the Color Map
object associated with the Raster attached to the Context should have consistent ramps to
enable a correct rendering.

The default value is: INDEX 0 or RGB (0,0,0).

This attribute is pushed by xgl_context_push(3).

SEE ALSO xgl_object_set(3)
xgl_object_get(3)
xgl_context_push(3)

XGL_3D_CTX_DEPTH_CUE_MODE(3)
XGL_CTX_EDGE_COLOR(3)
XGL_CTX_EDGE_STYLE(3)
XGL_DEV_COLOR_TYPE(3)
XGL_DEV_COLOR_MAP(3)

modified August 1994 165

XGL_CTX_EDGE_CAP (3) XGL Graphics Library

NAME XGL_CTX_EDGE_CAP − defines the shape of the endpoints of an edge

SYNOPSIS #include <xgl/xgl.h>

Xgl_ctx ctx;

xgl_object_set(ctx, XGL_CTX_EDGE_CAP, Xgl_line_cap, 0);
xgl_object_get(ctx, XGL_CTX_EDGE_CAP, Xgl_line_cap ∗);

DESCRIPTION This attribute defines the shape of the endpoints of an edge. Edges with a width, in dev-
ice coordinates (DC), less than 2.0 ignore this attribute.

The cap is a projection beyond the endpoint of the edge. The amount of the projection
depends on the edge width (see XGL_CTX_EDGE_WIDTH_SCALE_FACTOR(3)).

This attribute is used in conjunction with the XGL_CTX_EDGE_JOIN(3) and XGL_CTX_EDGE_-

MITER_LIMIT(3) attributes to specify the shape of wide edges.

The following information enumerates the possible values for XGL_CTX_EDGE_CAP.

XGL_CAP_BUTT
Butt cap: The edge is squared off at the end with no projection.

XGL_CAP_SQUARE
Square ends: The end of the edge is extended a distance half of the edge width.

XGL_CAP_ROUND
Rounded ends: A semicircle with the diameter equal to the edge width is
appended to the end of the edge.

The default value is XGL_CAP_BUTT.

This attribute is pushed by xgl_context_push(3).

SEE ALSO xgl_object_set(3)
xgl_object_get(3)
xgl_context_push(3)

XGL_CTX_EDGE_JOIN(3)
XGL_CTX_EDGE_MITER_LIMIT(3)
XGL_CTX_EDGE_WIDTH_SCALE_FACTOR(3)

166 modified August 1994

XGL Graphics Library XGL_CTX_EDGE_COLOR (3)

NAME XGL_CTX_EDGE_COLOR − defines the color used for edges of surfaces

SYNOPSIS #include <xgl/xgl.h>

Xgl_ctx ctx;

xgl_object_set(ctx, XGL_CTX_EDGE_COLOR, Xgl_color ∗, 0);
xgl_object_get(ctx, XGL_CTX_EDGE_COLOR, Xgl_color ∗);

DESCRIPTION This attribute sets the color in which surface edges are drawn. This color applies only to
primitives capable of edge rendering.

The color must be set according to the XGL_DEV_COLOR_TYPE(3) attribute of the Raster
associated with the Context. If the Device color type is XGL_COLOR_INDEX, the type of the
color should be XGL_COLOR_INDEX. Likewise, if the Device color type is XGL_COLOR_RGB,
the color passed to the Context should also be XGL_COLOR_RGB.

When specifying a color of type XGL_COLOR_INDEX, the value given as the index should be
consistent with the size of the color table within the Device Color Map object associated
with the Context (see XGL_DEV_COLOR_MAP(3)).

When a Device of color type XGL_COLOR_INDEX is attached to a 3D Context, with depth-
cueing enabled (see XGL_3D_CTX_DEPTH_CUE_MODE(3)), the color table of the Color Map
object associated with the Raster attached to the Context should have consistent ramps to
enable a correct rendering.

The default value is: INDEX 1 or RGB (green).

This attribute is pushed by xgl_context_push(3).

SEE ALSO xgl_object_set(3)
xgl_object_get(3)
xgl_context_push(3)

XGL_3D_CTX_DEPTH_CUE_MODE(3)
XGL_DEV_COLOR_TYPE(3)
XGL_DEV_COLOR_MAP(3)

NOTES The color of edges is not affected by shading or lighting computations.

modified August 1994 167

XGL_CTX_EDGE_JOIN (3) XGL Graphics Library

NAME XGL_CTX_EDGE_JOIN − defines the shape of joints between edge segments

SYNOPSIS #include <xgl/xgl.h>

Xgl_ctx ctx;

xgl_object_set(ctx, XGL_CTX_EDGE_JOIN, Xgl_line_join, 0);
xgl_object_get(ctx, XGL_CTX_EDGE_JOIN, Xgl_line_join ∗);

DESCRIPTION This attribute defines the shape of joins (or joints) between edge segments. Edges with a
width, in device coordinates (DC), less than 2.0 ignore this attribute.

The join is a projection beyond the endpoints of two connected edge segments, that
mathematically takes its point of emanation from the intersection of the two edges’ center
lines.

This attribute is used in conjunction with the XGL_CTX_EDGE_CAP(3) and XGL_CTX_EDGE_-

MITER_LIMIT(3) attributes to specify the shape of wide edges.

The following information enumerates the possible values for XGL_CTX_EDGE_JOIN.

XGL_JOIN_DEVICE
Ensures that the associated hardware uses the most efficient join type. This could
mean that joins are not performed.

XGL_JOIN_BEVEL
Each edge segment is fitted with a butt end cap. The notch between the two end
caps is filled with a triangle.

XGL_JOIN_MITER
Mitered corners are created by extending the edge segments until the outside
edges of each of the wide edge intersect. If the angle between the two wide edges
is very acute, however, the edge join projection is truncated to a beveled join.
The attribute XGL_CTX_EDGE_MITER_LIMIT(3) controls when the truncation occurs.

XGL_JOIN_ROUND
Each edge is fitted with a butt end cap. The notch between the two end caps is
filled with a circular arc, the diameter of which equals the edge width. The
center of the arc is at the point where the two edges intersect.

The default value is XGL_JOIN_MITER.

This attribute is pushed by xgl_context_push(3).

SEE ALSO xgl_object_set(3)
xgl_object_get(3)
xgl_context_push(3)

XGL_CTX_EDGE_CAP(3)
XGL_CTX_EDGE_MITER_LIMIT(3)
XGL_CTX_EDGE_WIDTH_SCALE_FACTOR(3)

168 modified August 1994

XGL Graphics Library XGL_CTX_EDGE_MITER_LIMIT (3)

NAME XGL_CTX_EDGE_MITER_LIMIT − defines the limit for mitering of edge segment corners

SYNOPSIS #include <xgl/xgl.h>

Xgl_ctx ctx;

xgl_object_set(ctx, XGL_CTX_EDGE_MITER_LIMIT, float, 0);
xgl_object_get(ctx, XGL_CTX_EDGE_MITER_LIMIT, float ∗);

DESCRIPTION This attribute sets a limit that determines the treatment of edge segments joined by miter-
ing (for a description of mitered edge segments, see XGL_CTX_EDGE_JOIN(3)). XGL_CTX_-
EDGE_MITER_LIMIT must be greater than or equal to 1.0.

The miter length is the distance between the inside and outside intersections of the two
edge segments being joined. If the ratio of the miter length to the edge width (see XGL_-

CTX_EDGE_WIDTH_SCALE_FACTOR(3)) exceeds the miter limit, the edges receive a beveled
edge join.

Edges with a width, in device coordinates (DC), less than 2.0 ignore this attribute.

To get a sense of why the miter limit is necessary, imagine two edge segments that are
almost parallel and that should end with a miter join. The miter join would, if not con-
strained by the miter limit, shoot off past the intersection of the two edges and dwarf the
length of the two edges it was supposed to be joining.

This attribute is used in conjunction with the XGL_CTX_EDGE_CAP and the XGL_CTX_EDGE_-
JOIN attributes to specify the shape of wide edges.

The default value is 10.0.

This attribute is pushed by xgl_context_push(3).

SEE ALSO xgl_object_set(3)
xgl_object_get(3)
xgl_context_push(3)

XGL_CTX_EDGE_CAP(3)
XGL_CTX_EDGE_JOIN(3)
XGL_CTX_EDGE_WIDTH_SCALE_FACTOR(3)

modified August 1994 169

XGL_CTX_EDGE_PATTERN (3) XGL Graphics Library

NAME XGL_CTX_EDGE_PATTERN − specifies the Line Pattern used for patterned edges

SYNOPSIS #include <xgl/xgl.h>

Xgl_ctx ctx;

xgl_object_set(ctx, XGL_CTX_EDGE_PATTERN, Xgl_lpat, 0);
xgl_object_get(ctx, XGL_CTX_EDGE_PATTERN, Xgl_lpat ∗);

DESCRIPTION This attribute is used to set or get the handle of the Line Pattern object XGL uses when
rendering surfaces with patterned edges. It is applicable only when the XGL_CTX_EDGE_-

STYLE(3) attribute is set to XGL_LINE_PATTERNED or XGL_LINE_ALT_PATTERNED.

A Line Pattern object, which defines a patterned line, contains an array of line segment
lengths specifying which portions of a line are on and off. (For more information, see
xgl_object_create(3) and XGL_LPAT_DATA(3).) The Line Pattern is specified in the coordi-
nate system defined by the attribute XGL_LPAT_COORD_SYS(3). The pattern wraps around
over and over again along edges and around corners until the end of the edge is reached.

The application can either create its own Line Pattern object to be used for edges, or it can
use one of the following XGL predefined line patterns.

xgl_lpat_dotted
xgl_lpat_dashed -----------
xgl_lpat_dashed_dotted ...__...__

xgl_lpat_cgm_dotted
xgl_lpat_cgm_dashed _ _ _ _ _ _
xgl_lpat_dash_dot ._._._._._
xgl_lpat_dash_dot_dotted _.._.._.._..
xgl_lpat_long_dashed __ __ __ __

For example, to specify edges using dashed lines, the application sets the edge pattern as
follows:

xgl_object_set(ctx, XGL_CTX_EDGE_STYLE, XGL_LINE_PATTERNED, 0);
xgl_object_set(ctx, XGL_CTX_EDGE_PATTERN, xgl_lpat_dashed, 0);

The color of a patterned edge is specified by one or both of the two attributes XGL_CTX_-

EDGE_COLOR(3) and XGL_CTX_EDGE_ALT_COLOR(3).

XGL_CTX_EDGE_PATTERN applies only to primitives capable of edge rendering.

The default value is xgl_lpat_dotted, a predefined Line Pattern of evenly spaced dots.

This attribute is pushed by xgl_context_push(3).

170 modified August 1994

XGL Graphics Library XGL_CTX_EDGE_PATTERN (3)

SEE ALSO xgl_object_set(3)
xgl_object_get(3)
xgl_context_push(3)
xgl_object_create(3)

XGL_CTX_EDGE_COLOR(3)
XGL_CTX_EDGE_ALT_COLOR(3)
XGL_CTX_EDGE_STYLE(3)
XGL_LPAT_COORD_SYS(3)
XGL_LPAT_DATA(3)

modified August 1994 171

XGL_CTX_EDGE_STYLE (3) XGL Graphics Library

NAME XGL_CTX_EDGE_STYLE − defines the edge style used for edges of surfaces

SYNOPSIS #include <xgl/xgl.h>

Xgl_ctx ctx;

xgl_object_set(ctx, XGL_CTX_EDGE_STYLE, Xgl_line_style, 0);
xgl_object_get(ctx, XGL_CTX_EDGE_STYLE, Xgl_line_style ∗);

DESCRIPTION This attribute defines the style for edges on surfaces within the Context ctx. Edges are
drawn on the perimeter of the surface, but they are not drawn on boundaries produced
by clipping. This attribute applies only to primitives capable of edge rendering.

The following enumerates the values recognized by XGL. The values are the same as
those recognized for line style, as defined by the attribute XGL_CTX_LINE_STYLE(3).

XGL_LINE_PATTERNED
Edges are patterned using the Line Pattern object given by the XGL_CTX_EDGE_-

PATTERN(3) attribute and the color specified by the XGL_CTX_EDGE_COLOR(3) attri-
bute.

XGL_LINE_ALT_PATTERNED
Edges are patterned using the Line Pattern object given by the XGL_CTX_EDGE_-
PATTERN attribute. The color is alternately specified by the XGL_CTX_EDGE_COLOR
attribute for odd line segments, and by the XGL_CTX_EDGE_ALT_COLOR(3) attribute
for even line segments.

XGL_LINE_SOLID
Edges are not patterned. A solid edge is drawn using the color specified by the
XGL_CTX_EDGE_COLOR attribute.

When a patterned edge is specified, the Context attribute XGL_CTX_EDGE_PATTERN is used
to specify the edge pattern.

The default value is XGL_LINE_SOLID.

This attribute is pushed by xgl_context_push(3).

SEE ALSO xgl_object_set(3)
xgl_object_get(3)
xgl_context_push(3)
xgl_object_create(3)

XGL_CTX_EDGE_COLOR(3)
XGL_CTX_EDGE_ALT_COLOR(3)
XGL_CTX_EDGE_PATTERN(3)
XGL_CTX_LINE_STYLE(3)

172 modified August 1994

XGL Graphics Library XGL_CTX_EDGE_WIDTH_SCALE_FACTOR (3)

NAME XGL_CTX_EDGE_WIDTH_SCALE_FACTOR − defines the edge-width scale factor used
to determine the width of surface edges

SYNOPSIS #include <xgl/xgl.h>

Xgl_ctx ctx;

xgl_object_set(ctx, XGL_CTX_EDGE_WIDTH_SCALE_FACTOR, float, 0);
xgl_object_get(ctx, XGL_CTX_EDGE_WIDTH_SCALE_FACTOR, float ∗);

DESCRIPTION This attribute specifies the scale factor by which a nominal edge width is multiplied to
produce the edge width in device coordinates (DC). This attribute is similar to XGL_CTX_-

LINE_WIDTH_SCALE_FACTOR(3), which defines an analogous scale factor for XGL lines.
Wide edges are drawn using a butt cap and device join.

The XGL_CTX_EDGE_WIDTH_SCALE_FACTOR applies only to primitives capable of edge
rendering.

The default value of 0.0 corresponds to the notion of thin lines as defined by the X com-
munity. This means the method actually used to scan-convert the lines is device depen-
dent and generally gives the best performance on that device, with a limited set of con-
straints when drawing 2D vectors (see The X Window System, R.W. Scheifler & AL., Digital
Press). Any value greater than or equal to 1.0 will guarantee X-compliant lines in 2D.
There is no compliance defined for 3D vectors.

In most cases, best results are obtained with an odd value for the scale factor, because the
resulting width is correctly balanced on both sides of the edge. Setting XGL_CTX_EDGE_-
WIDTH_SCALE_FACTOR to a value that produces a width greater than or equal to 1.0 in dev-
ice coordinates affect drawing performance.

The default value is 0.0.

This attribute is pushed by xgl_context_push(3).

SEE ALSO xgl_object_set(3)
xgl_object_get(3)
xgl_context_push(3)

XGL_CTX_LINE_WIDTH_SCALE_FACTOR(3)

modified August 1994 173

XGL_CTX_GEOM_DATA_IS_VOLATILE (3) XGL Graphics Library

NAME XGL_CTX_GEOM_DATA_IS_VOLATILE − specifies whether the application’s data can
be used after XGL primitives return

SYNOPSIS #include <xgl/xgl.h>

Xgl_ctx ctx;

xgl_object_set(ctx, XGL_CTX_GEOM_DATA_IS_VOLATILE, Xgl_boolean, 0);
xgl_object_get(ctx, XGL_CTX_GEOM_DATA_IS_VOLATILE, Xgl_boolean ∗);

DESCRIPTION When this attribute is set to FALSE, the application program guarantees that the geometry
data being sent to XGL will not be modified or destroyed until a subsequent xgl_context_-
flush(3) (ctx, XGL_FLUSH_GEOM_DATA) is called.

Some rendering devices can render by directly processing the application’s data. While
the rendering device is processing that data, it is possible for the rendering routine to
return to the application’s code to gain a degree of parallelism, thus improving the
overall performance. This can only be done if it is guaranteed that the geometry data will
not be changed or destroyed by the application.

When XGL_CTX_GEOM_DATA_IS_VOLATILE(3) is set to FALSE, the application is indicating to
XGL that the geometry data will not change. The Context primitives can potentially
return to the application program before the data in a parameter list has been completely
used. If the application then wants to change or free the data, an appropriate xgl_-
context_flush(3) must be called.

When XGL_CTX_GEOM_DATA_IS_VOLATILE(3) is set to TRUE, the application cannot guaran-
tee the state of the data. All access to the application’s data must be finished before con-
trol is given back to the application’s program.

Resetting XGL_CTX_GEOM_DATA_IS_VOLATILE(3) from FALSE to TRUE automatically calls
xgl_context_flush(3) (ctx, XGL_FLUSH_GEOM_DATA).

The default value is TRUE.

This attribute is not pushed by xgl_context_push(3).

SEE ALSO xgl_object_set(3)
xgl_object_get(3)
xgl_context_flush(3)

174 modified August 1994

XGL Graphics Library XGL_CTX_GLOBAL_MODEL_TRANS (3)

NAME XGL_CTX_GLOBAL_MODEL_TRANS − defines the global model transformation in a
Context

SYNOPSIS #include <xgl/xgl.h>

Xgl_ctx ctx;

xgl_object_set(ctx, XGL_CTX_GLOBAL_MODEL_TRANS, Xgl_trans, 0);
xgl_object_get(ctx, XGL_CTX_GLOBAL_MODEL_TRANS, Xgl_trans ∗);

DESCRIPTION This attribute defines the Transform object used for the Global Model Transform, which
transforms geometry data from global model coordinates (GMC) to world coordinates
(WC).

The Local Model Transform (as defined by the attribute XGL_CTX_LOCAL_MODEL_-

TRANS(3)) and the Global Model Transform (as defined by this attribute) are multiplied
together, with the Local Model Transform on the left of the Global Model Transform, to
form the Model Transform. The attribute XGL_CTX_MODEL_TRANS(3) returns a Transform
object, which represents the concatenation of the XGL_CTX_LOCAL_MODEL_TRANS and the
XGL_CTX_GLOBAL_MODEL_TRANS(3).

If you set this Context attribute to a Transform whose handle is obtained from the same
or a different Context, the original attribute and this attribute use the same Transform.
Changing the Transform of one Context attribute has the same effect on the other Context
attribute. Be careful of this consequence when you share a Transform in this manner. Do
not attempt to set this Context attribute to a handle to a Transform obtained from XGL_-

CTX_MODEL_TRANS(3), XGL_CTX_MC_TO_DC_TRANS(3), or XGL_3D_CTX_NORMAL_TRANS(3)
because these Transforms are read-only.

The default value is the Identity Transform.

This attribute is pushed by xgl_context_push(3), and can also be manipulated with xgl_-
context_update_model_trans(3).

SEE ALSO xgl_object_set(3)
xgl_object_get(3)
xgl_context_push(3)
xgl_context_update_model_trans(3)

XGL_3D_CTX_NORMAL_TRANS(3)
XGL_CTX_LOCAL_MODEL_TRANS(3)
XGL_CTX_MC_TO_DC_TRANS(3)
XGL_CTX_MODEL_TRANS(3)

modified August 1994 175

XGL_CTX_LINE_AA_BLEND_EQ (3) XGL Graphics Library

NAME XGL_CTX_LINE_AA_BLEND_EQ,
XGL_CTX_LINE_AA_FILTER_WIDTH,
XGL_CTX_LINE_AA_FILTER_SHAPE − controls if and how lines are antialiased

SYNOPSIS #include <xgl/xgl.h>

Xgl_ctx ctx;

xgl_object_set(ctx, XGL_CTX_LINE_AA_BLEND_EQ, Xgl_blend_eq, 0);
xgl_object_set(ctx, XGL_CTX_LINE_AA_FILTER_WIDTH, Xgl_usgn32, 0);
xgl_object_set(ctx, XGL_CTX_LINE_AA_FILTER_SHAPE, Xgl_filter_shape, 0);

xgl_object_get(ctx, XGL_CTX_LINE_AA_BLEND_EQ, Xgl_blend_eq ∗);
xgl_object_get(ctx, XGL_CTX_LINE_AA_FILTER_WIDTH, Xgl_usgn32 ∗);
xgl_object_get(ctx, XGL_CTX_LINE_AA_FILTER_SHAPE, Xgl_filter_shape ∗);

DESCRIPTION These attributes control if and how lines are antialiased. Antialiasing smooths out
single-pixel-wide lines by spreading out the spectral energy of the stroke over 2 or more
adjacent pixels. The result is that the sides of the stroke are slightly blurred and, as seen
from a normal viewing distance, smoother than non-antialiased lines.

The blurring of the line is done by filtering the stroke onto neighboring pixels. The shape
and size of this filter controls how the antialiased line will look. Currently, XGL_FILTER_-
GAUSSIAN is the only possible value for the XGL_CTX_LINE_AA_FILTER_SHAPE(3) attribute.

The width of the filter is controlled by the attribute XGL_CTX_LINE_AA_FILTER_WIDTH(3).
This is the number of pixels touched by the filter. A Device will use the largest filter
width it supports which is less than or equal to the specified filter width. A width of 0 is
not an error and is treated as if the width was 1.

The attribute XGL_CTX_LINE_AA_BLEND_EQ(3) controls how the pixel values in the
antialiased line are blended with the existing pixel values in the Device. The data type
Xgl_blend_eq has these values:

typedef enum {
XGL_BLEND_NONE,
XGL_BLEND_ARBITRARY_BG,
XGL_BLEND_CONST_BG,
XGL_BLEND_ADD_TO_BG

} Xgl_blend_eq;

The equations used are:

NONE d = s
ARBITRARY_BG d = (s ∗ alpha) + (d ∗ (1 - alpha))
CONST_BG d = ((s - ctx_bg) ∗ alpha) + d
ADD_TO_BG d = (s ∗ alpha) + d

176 modified August 1994

XGL Graphics Library XGL_CTX_LINE_AA_BLEND_EQ (3)

where:
s = source pixel value
d = destination pixel value
alpha = weight of source pixel
ctx_bg = Context background color

We strongly recommend that antialiasing use XGL_BLEND_ARBITRARY_BG or XGL_BLEND_-
CONST_BG.

All three attributes must have consistent settings in order to achieve visually pleasing
results. Some notes on using these attributes:

· Both the XGL_CTX_LINE_AA_BLEND_EQ and the XGL_CTX_LINE_AA_FILTER_WIDTH
must be set to something other than defaults to achieve antialiasing.

· Setting the XGL_CTX_LINE_AA_BLEND_EQ to XGL_BLEND_NONE and the XGL_CTX_-
LINE_AA_FILTER_WIDTH to greater than 1 is a way to undraw antialiased lines.
The color used for undrawing is the color that the line would have been
drawn in if antialiasing was off.

· Setting the XGL_CTX_LINE_AA_BLEND_EQ to other than NONE and the XGL_CTX_-
LINE_AA_FILTER_WIDTH to 1 is undefined and should not be used. The results
will be device dependent.

The default value for XGL_CTX_LINE_AA_BLEND_EQ is XGL_BLEND_NONE.

The default value for XGL_CTX_LINE_AA_FILTER_WIDTH is 1.

The default value for XGL_CTX_LINE_AA_FILTER_SHAPE is XGL_FILTER_GAUSSIAN.

All these attributes are pushed by xgl_context_push(3).

SEE ALSO xgl_object_set(3)
xgl_object_get(3)
xgl_context_push(3)

NOTES Antialiasing support on 2D Contexts is device dependent.

modified August 1994 177

XGL_CTX_LINE_ALT_COLOR (3) XGL Graphics Library

NAME XGL_CTX_LINE_ALT_COLOR − defines the alternate color used in patterned lines

SYNOPSIS #include <xgl/xgl.h>

Xgl_ctx ctx;

xgl_object_set(ctx, XGL_CTX_LINE_ALT_COLOR, Xgl_color ∗ , 0);
xgl_object_get(ctx, XGL_CTX_LINE_ALT_COLOR, Xgl_color ∗);

DESCRIPTION This attribute sets the color to fill even (or alternate) line segments when the line style
(XGL_CTX_LINE_STYLE(3)) in the Context ctx is set to XGL_LINE_ALT_PATTERNED . The odd
line segments are filled using the color specified by XGL_CTX_LINE_COLOR(3).

This attribute applies to all primitives rendering line segments. Surface edges have their
own set of attributes.

The color must be set according to the XGL_DEV_COLOR_TYPE(3) attribute of the Raster
associated with the Context. If the Device color type is XGL_COLOR_INDEX, the type of the
color should be XGL_COLOR_INDEX. Likewise, if the Device color type is XGL_COLOR_RGB,
the color passed to the Context should also be XGL_COLOR_RGB.

When specifying a color of type XGL_COLOR_INDEX, the value given as the index should be
consistent with the size of the color table within the Device Color Map object associated
with the Context (see XGL_DEV_COLOR_MAP(3)).

When a Device of color type XGL_COLOR_INDEX is attached to a 3D Context, with depth-
cueing enabled (see XGL_3D_CTX_DEPTH_CUE_MODE(3)), the color table of the Color Map
object associated with the Raster attached to the Context should have consistent ramps to
enable a correct rendering.

The default value is: INDEX 0 or RGB (0,0,0).

This attribute is pushed by xgl_context_push(3).

SEE ALSO xgl_object_set(3)
xgl_object_get(3)
xgl_context_push(3)

XGL_3D_CTX_DEPTH_CUE_MODE(3)
XGL_CTX_LINE_COLOR(3)
XGL_CTX_LINE_STYLE(3)
XGL_DEV_COLOR_TYPE(3)
XGL_DEV_COLOR_MAP(3)

178 modified August 1994

XGL Graphics Library XGL_CTX_LINE_CAP (3)

NAME XGL_CTX_LINE_CAP − defines the shape of the endpoints of lines and curves

SYNOPSIS #include <xgl/xgl.h>

Xgl_ctx ctx;

xgl_object_set(ctx, XGL_CTX_LINE_CAP, Xgl_line_cap, 0);
xgl_object_get(ctx, XGL_CTX_LINE_CAP, Xgl_line_cap ∗);

DESCRIPTION This attribute defines the shape of the endpoints of line segments or curves. Lines and
curves with a width, in device coordinates (DC), less than 2.0 ignore this attribute.

The cap is a projection beyond the endpoint of the line. The amount of the projection
depends on the line width (see XGL_CTX_LINE_WIDTH_SCALE_FACTOR(3)).

This attribute is used in conjunction with the XGL_CTX_LINE_JOIN(3) and XGL_CTX_LINE_-

MITER_LIMIT(3) attributes to specify the shape of wide lines.

The following information enumerates the possible values for XGL_CTX_LINE_CAP.

XGL_CAP_BUTT
Butt cap: The line is squared off at the end with no projection.

XGL_CAP_SQUARE
Square ends: The end of the line is extended a distance half of the line width.

XGL_CAP_ROUND
Rounded ends: A semicircle with the diameter equal to the line width is
appended to the end of the line.

The default value is XGL_CAP_BUTT.

This attribute is pushed by xgl_context_push(3).

SEE ALSO xgl_object_set(3)
xgl_object_get(3)
xgl_context_push(3)

XGL_CTX_LINE_JOIN(3)
XGL_CTX_LINE_MITER_LIMIT(3)
XGL_CTX_LINE_WIDTH_SCALE_FACTOR(3)

modified August 1994 179

XGL_CTX_LINE_COLOR (3) XGL Graphics Library

NAME XGL_CTX_LINE_COLOR − defines the color of lines and curves in a Context

SYNOPSIS #include <xgl/xgl.h>

Xgl_ctx ctx;

xgl_object_set(ctx, XGL_CTX_LINE_COLOR, Xgl_color ∗, 0);
xgl_object_get(ctx, XGL_CTX_LINE_COLOR, Xgl_color ∗);

DESCRIPTION This attribute is used to set the color in which lines and curves are drawn. The color
applies only to primitives rendering line segments. Surface edges have their own set of
attributes.

The color must be set according to the XGL_DEV_COLOR_TYPE(3) attribute of the Raster
associated with the Context. If the Device color type is XGL_COLOR_INDEX, the type of the
color should be XGL_COLOR_INDEX. Likewise, if the Device color type is XGL_COLOR_RGB,
the color passed to the Context should also be XGL_COLOR_RGB.

When specifying a color of type XGL_COLOR_INDEX, the value given as the index should be
consistent with the size of the color table within the Device Color Map object associated
with the Context (see XGL_DEV_COLOR_MAP(3)).

When a Device of color type XGL_COLOR_INDEX is attached to a 3D Context, with depth-
cueing enabled (see XGL_3D_CTX_DEPTH_CUE_MODE(3)), the color table of the Color Map
object associated with the Raster attached to the Context should have consistent ramps to
enable a correct rendering.

The default value is: INDEX 1 or RGB (green).

This attribute is pushed by xgl_context_push(3).

SEE ALSO xgl_object_set(3)
xgl_object_get(3)
xgl_context_push(3)
xgl_multipolyline(3)
xgl_nurbs_curve(3)

XGL_3D_CTX_DEPTH_CUE_MODE(3)
XGL_DEV_COLOR_MAP(3)
XGL_DEV_COLOR_TYPE(3)

180 modified August 1994

XGL Graphics Library XGL_CTX_LINE_COLOR_SELECTOR (3)

NAME XGL_CTX_LINE_COLOR_SELECTOR − selects the source of a line’s color from the Con-
text or from vertex data

SYNOPSIS #include <xgl/xgl.h>

Xgl_ctx ctx;

xgl_object_set(ctx, XGL_CTX_LINE_COLOR_SELECTOR, Xgl_line_color_sel, 0);
xgl_object_get(ctx, XGL_CTX_LINE_COLOR_SELECTOR, Xgl_line_color_sel ∗);

DESCRIPTION This attribute selects the source of a line’s color from the Context or the vertex data pro-
vided with a polyline.

XGL_CTX_LINE_COLOR_SELECTOR(3) specifies the color selection used for lines in the 2D or
3D Context ctx. Two options are available for this attribute:

XGL_LINE_COLOR_CONTEXT
XGL takes the line color from the Context attribute XGL_CTX_LINE_COLOR. This is
the color of a line at the beginning of the rendering pipeline. Depth-cueing
affects the final appearance of the line in 3D.

XGL_LINE_COLOR_VERTEX
If the data supplied with a polyline primitive has colors for the individual ver-
tices, XGL applies these colors to the vertices upon entry to the rendering pipe-
line. Line color interpolation and depth-cueing affect the final appearance of the
line in 3D. If the polyline primitive does not have colors for the individual ver-
tices, XGL uses the Context line color.

The default value is XGL_LINE_COLOR_VERTEX.

This attribute is pushed by xgl_context_push(3).

SEE ALSO xgl_object_set(3)
xgl_object_get(3)
xgl_context_push(3)

XGL_CTX_LINE_COLOR(3)

modified August 1994 181

XGL_CTX_LINE_JOIN (3) XGL Graphics Library

NAME XGL_CTX_LINE_JOIN − defines the shape of joints between line segments

SYNOPSIS #include <xgl/xgl.h>

Xgl_ctx ctx;

xgl_object_set(ctx, XGL_CTX_LINE_JOIN, Xgl_line_join, 0);
xgl_object_get(ctx, XGL_CTX_LINE_JOIN, Xgl_line_join ∗);

DESCRIPTION This attribute defines the shape of joins (or joints) between line segments or curves. Lines
and curves with a width, in device coordinates (DC), less than 2.0 ignore this attribute.

The join is a projection, beyond the endpoints of two connected lines, that mathematically
takes its point of emanation from the intersection of the two lines’ center lines.

This attribute is used in conjunction with the XGL_CTX_LINE_CAP(3) and XGL_CTX_LINE_-

MITER_LIMIT(3) attributes to specify the shape of wide lines.

The following enumerates the possible values for XGL_CTX_LINE_JOIN:

XGL_JOIN_DEVICE
Ensures that the associated hardware uses the most efficient join type. This could
mean that joins are not performed.

XGL_JOIN_BEVEL
Each line is fitted with a butt end cap. The notch between the two end caps is
filled with a triangle.

XGL_JOIN_MITER
Mitered corners are created by extending the line segments until the outside
edges of each of the wide lines intersect. If the angle between the two wide lines
is very acute, however, the line join projection is truncated to a beveled join. The
attribute XGL_CTX_LINE_MITER_LIMIT controls when the truncation occurs.

XGL_JOIN_ROUND
Each line is fitted with a butt end cap. The notch between the two end caps is
filled with a circular arc, the diameter of which equals the line width. The center
of the arc is at the point where the two lines intersect.

The default value is XGL_JOIN_MITER.

This attribute is pushed by xgl_context_push(3).

SEE ALSO xgl_object_set(3)
xgl_object_get(3)
xgl_context_push(3)

XGL_CTX_LINE_CAP(3)
XGL_CTX_LINE_MITER_LIMIT(3)
XGL_CTX_LINE_WIDTH_SCALE_FACTOR(3)

182 modified August 1994

XGL Graphics Library XGL_CTX_LINE_MITER_LIMIT (3)

NAME XGL_CTX_LINE_MITER_LIMIT − defines the limit for mitering of line segment corners

SYNOPSIS #include <xgl/xgl.h>

Xgl_ctx ctx;

xgl_object_set(ctx, XGL_CTX_LINE_MITER_LIMIT, float, 0);
xgl_object_get(ctx, XGL_CTX_LINE_MITER_LIMIT, float ∗);

DESCRIPTION This attribute sets a limit that determines the treatment of line segments joined by miter-
ing (for a description of mitered line segments, see XGL_CTX_LINE_JOIN(3)). XGL_CTX_-
LINE_MITER_LIMIT must be greater than or equal to 1.0.

The miter length is the distance between the inside and outside intersections of the two
lines being joined. If the ratio of the miter length to the line width (see XGL_CTX_LINE_-

WIDTH_SCALE_FACTOR(3)) exceeds the miter limit, the lines receive a beveled line join.

Lines and curves with a width, in device coordinates (DC), less than 2.0 ignore this
attribute.

To get a sense of why the miter limit is necessary, imagine two lines that are almost paral-
lel and that should end with a miter join. The miter join would, if not constrained by the
miter limit, shoot off past the intersection of the two lines and dwarf the length of the two
lines it was supposed to be joining.

This attribute is used in conjunction with the XGL_CTX_LINE_CAP and the XGL_CTX_LINE_-
JOIN attributes to specify the shape of wide lines.

The default value is 10.0.

This attribute is pushed by xgl_context_push(3).

SEE ALSO xgl_object_set(3)
xgl_object_get(3)
xgl_context_push(3)

XGL_CTX_LINE_CAP(3)
XGL_CTX_LINE_JOIN(3)
XGL_CTX_LINE_WIDTH_SCALE_FACTOR(3)

modified August 1994 183

XGL_CTX_LINE_PATTERN (3) XGL Graphics Library

NAME XGL_CTX_LINE_PATTERN − defines the pattern used for patterned lines

SYNOPSIS #include <xgl/xgl.h>

Xgl_ctx ctx;

xgl_object_set(ctx, XGL_CTX_LINE_PATTERN, Xgl_lpat, 0);
xgl_object_get(ctx, XGL_CTX_LINE_PATTERN, Xgl_lpat ∗);

DESCRIPTION This attribute is used to set or get the handle of the Line Pattern object XGL uses when
rendering patterned lines or curves. It is applicable only when the XGL_CTX_LINE_STYLE(3)
attribute is set to XGL_LINE_PATTERNED or XGL_LINE_ALT_PATTERNED.

A Line Pattern object, which defines a patterned line, contains an array of line segment
lengths specifying which portions of a line are on and off (for more information, see xgl_-
object_create(3) and XGL_LPAT_DATA(3)). The Line Pattern is specified in the coordinate
system defined by the attribute XGL_LPAT_COORD_SYS(3).

The pattern wraps around over and over again along lines, curves, and around corners
until the end of the line is reached.

The application can either create its own Line Pattern object to be used for lines, or it can
use one of the following XGL predefined line patterns.

xgl_lpat_dotted
xgl_lpat_dashed - - - - - -
xgl_lpat_dashed_dotted ...__...__

xgl_lpat_cgm_dotted
xgl_lpat_cgm_dashed _ _ _ _ _ _
xgl_lpat_dash_dot ._._._._._
xgl_lpat_dash_dot_dotted _.._.._.._..
xgl_lpat_long_dashed __ __ __ __

For example, to specify lines or curves that are dashed, the application sets the line pat-
tern as follows:

xgl_object_set(ctx, XGL_CTX_LINE_STYLE, XGL_LINE_PATTERNED, 0);
xgl_object_set(ctx, XGL_CTX_LINE_PATTERN, xgl_lpat_dashed, 0);

The color of a patterned line is specified by one or both of the two attributes XGL_CTX_-

LINE_COLOR(3) and XGL_CTX_LINE_ALT_COLOR(3).

XGL_CTX_LINE_PATTERN applies only to primitives rendering line segments. Surface edges
have their own set of attributes.

The default value is xgl_lpat_dotted, a predefined Line Pattern of evenly spaced dots.

This attribute is pushed by xgl_context_push(3).

SEE ALSO xgl_object_set(3)
xgl_object_get(3)
xgl_context_push(3)

184 modified August 1994

XGL Graphics Library XGL_CTX_LINE_PATTERN (3)

xgl_object_create(3)

XGL_CTX_LINE_COLOR(3)
XGL_CTX_LINE_ALT_COLOR(3)
XGL_CTX_LINE_STYLE(3)
XGL_LPAT_COORD_SYS(3)
XGL_LPAT_DATA(3)

modified August 1994 185

XGL_CTX_LINE_STYLE (3) XGL Graphics Library

NAME XGL_CTX_LINE_STYLE − defines the line style used in a Context

SYNOPSIS #include <xgl/xgl.h>

Xgl_ctx ctx;

xgl_object_set(ctx, XGL_CTX_LINE_STYLE, Xgl_line_style, 0);
xgl_object_get(ctx, XGL_CTX_LINE_STYLE, Xgl_line_style ∗);

DESCRIPTION This attribute defines the way in which lines or curves are drawn using the Context ctx.
XGL_CTX_LINE_STYLE applies only to primitives rendering line segments or curves. Surface
edges have their own set of attributes.

XGL recognizes the following values. They are the same as the values recognized for
edge style, as defined by the attribute XGL_CTX_EDGE_STYLE(3).

XGL_LINE_PATTERNED
Lines are patterned using the Line Pattern object given by the XGL_CTX_LINE_-

PATTERN(3) attribute and the color specified by the XGL_CTX_LINE_COLOR(3) attri-
bute.

XGL_LINE_ALT_PATTERNED
Lines are patterned using the Line Pattern object given by the XGL_CTX_LINE_-
PATTERN attribute. The color is alternately specified by the XGL_CTX_LINE_COLOR
attribute for odd line segments, and by the XGL_CTX_LINE_ALT_COLOR(3) attribute
for even line segments.

XGL_LINE_SOLID
Lines are not patterned. A solid line is drawn using the color specified by the
XGL_CTX_LINE_COLOR attribute.

When a patterned line is specified, the Context attribute XGL_CTX_LINE_PATTERN is used to
specify the Line Pattern. By default, the Line Pattern set in the Context is xgl_lpat_dotted,
a predefined Line Pattern of evenly spaced dots.

The default value is XGL_LINE_SOLID.

This attribute is pushed by xgl_context_push(3).

SEE ALSO xgl_object_set(3)
xgl_object_get(3)
xgl_context_push(3)
xgl_object_create(3)

XGL_CTX_EDGE_STYLE(3)
XGL_CTX_LINE_COLOR(3)
XGL_CTX_LINE_ALT_COLOR(3)
XGL_CTX_LINE_PATTERN(3)

186 modified August 1994

XGL Graphics Library XGL_CTX_LINE_WIDTH_SCALE_FACTOR (3)

NAME XGL_CTX_LINE_WIDTH_SCALE_FACTOR − defines the line width scale factor used to
determine the width of lines and curves

SYNOPSIS #include <xgl/xgl.h>

Xgl_ctx ctx;

xgl_object_set(ctx, XGL_CTX_LINE_WIDTH_SCALE_FACTOR, float, 0);
xgl_object_get(ctx, XGL_CTX_LINE_WIDTH_SCALE_FACTOR, float ∗);

DESCRIPTION This attribute specifies the scale factor by which a nominal line width is multiplied to
produce the line width in device coordinates (DC). This attribute is similar to XGL_CTX_-

EDGE_WIDTH_SCALE_FACTOR(3), which defines an analogous scale factor for XGL surface
edges.

When used in conjunction with the attributes XGL_CTX_LINE_CAP(3) and XGL_CTX_LINE_-

JOIN(3), XGL_CTX_LINE_WIDTH_SCALE_FACTOR specifies the shape of wide lines.

The line width applies only to primitives rendering line segments. Polygon edges have
their own set of attributes.

The default value of 0.0 corresponds to the notion of thin lines as defined by the X com-
munity. This means the method actually used to scan-convert the lines is device depen-
dent and generally gives the best performance on that device, with a limited set of con-
straints when drawing 2D vectors (see The X Window System, R.W. Scheifler & AL., Digital
Press). Any value greater than or equal to 1.0 will guarantee X-compliant lines in 2D.
There is no compliance defined for 3D vectors.

In most cases, best results are obtained with an odd value for the scale factor because the
resulting width is correctly balanced on both sides of the line. Setting XGL_CTX_LINE_-
WIDTH_SCALE_FACTOR to a value that produces a width greater than or equal to 1.0 in dev-
ice coordinates affect drawing performance.

The default value is 0.0.

This attribute is pushed by xgl_context_push(3).

SEE ALSO xgl_object_set(3)
xgl_object_get(3)
xgl_context_push(3)

XGL_CTX_EDGE_WIDTH_SCALE_FACTOR(3)
XGL_CTX_LINE_CAP(3)
XGL_CTX_LINE_JOIN(3)

modified August 1994 187

XGL_CTX_LOCAL_MODEL_TRANS (3) XGL Graphics Library

NAME XGL_CTX_LOCAL_MODEL_TRANS − defines the local model Transform

SYNOPSIS #include <xgl/xgl.h>

Xgl_ctx ctx;

xgl_object_set(ctx, XGL_CTX_LOCAL_MODEL_TRANS, Xgl_trans, 0);
xgl_object_get(ctx, XGL_CTX_LOCAL_MODEL_TRANS, Xgl_trans ∗);

DESCRIPTION This attribute defines the Transform object used for the Local Model Transform, which
transforms geometry data from model coordinates (MC) to global model coordinates
(GMC).

The Local Model Transform (as defined by this attribute) and the Global Model
Transform (as defined by the attribute XGL_CTX_GLOBAL_MODEL_TRANS(3)) are multiplied
together, with the Local Model Transform preceding the Global Model Transform, to
form the Model Transform. The attribute XGL_CTX_MODEL_TRANS(3) returns a Transform
object that represents the concatenation of the XGL_CTX_LOCAL_MODEL_TRANS and the
XGL_CTX_GLOBAL_MODEL_TRANS.

If you set this Context attribute to a Transform whose handle is obtained from the same
or a different Context, the original attribute and this attribute use the same Transform.
Changing the Transform of one Context attribute has the same effect on the other Context
attribute. Be careful of this consequence when you share a Transform in this manner. Do
not attempt to set this Context attribute to a handle to a Transform obtained from XGL_-

CTX_MODEL_TRANS(3), XGL_CTX_MC_TO_DC_TRANS(3), or XGL_3D_CTX_NORMAL_TRANS(3)
because these Transforms are read-only.

The default value is the Identity Transform.

This attribute is pushed by xgl_context_push(3), and can also be manipulated with xgl_-
context_update_model_trans(3).

SEE ALSO xgl_object_set(3)
xgl_object_get(3)
xgl_context_push(3)
xgl_context_update_model_trans(3)

XGL_3D_CTX_NORMAL_TRANS(3)
XGL_CTX_GLOBAL_MODEL_TRANS(3)
XGL_CTX_MC_TO_DC_TRANS(3)
XGL_CTX_MODEL_TRANS(3)

188 modified August 1994

XGL Graphics Library XGL_CTX_MARKER (3)

NAME XGL_CTX_MARKER − defines the Marker symbol used by the xgl_multimarker operator

SYNOPSIS #include <xgl/xgl.h>

Xgl_ctx ctx;

xgl_object_set(ctx, XGL_CTX_MARKER, Xgl_marker, 0);
xgl_object_get(ctx, XGL_CTX_MARKER, Xgl_marker ∗);

DESCRIPTION This attribute defines the Marker symbol drawn when the operator xgl_multimarker(3)
is used within the Context ctx. For a more complete description of Marker rendering, see
xgl_multimarker(3).

XGL_CTX_MARKER(3) can be set to point to one of the pre-defined Marker objects (listed
below) or to an application-defined Marker object.

The following is a list of pre-defined Marker objects available in XGL. These are declared
as external variables of type Xgl_marker in xgl.h.

xgl_marker_dot
Draws a 1-pixel dot centered at the Marker control point. This Marker ignores
the XGL_CTX_MARKER_SCALE_FACTOR(3); it always draws a 1-pixel dot.

xgl_marker_plus
Draws a plus sign (+) centered at the Marker control point.

xgl_marker_asterisk
Draws an asterisk (∗) centered at the Marker control point.

xgl_marker_circle
Draws a circle (�) centered at the Marker control point.

xgl_marker_cross
Draws a cross (×) centered at the Marker control point.

xgl_marker_square
Draws a square (�) centered at the Marker control point.

xgl_marker_bowtie_ne
xgl_marker_bowtie_nw

Draws a bowtie shaped Marker centered at the control point, which is either
oriented from northeast to southwest or from northwest to southeast.

To define its own Marker objects, the application:

1. Creates a Marker object using xgl_object_create(3).

2. Attaches an application-defined Marker description to that object using the
Marker attribute XGL_MARKER_DESCRIPTION(3).

3. Uses XGL_CTX_MARKER(3) to attach the application-defined Marker to the current
Context.

modified August 1994 189

XGL_CTX_MARKER (3) XGL Graphics Library

Then, a call to xgl_multimarker(3) renders the application-defined Markers into an XGL
Raster.

If the application data associated with this Marker object is a pointer to a floating point
scale factor, when rendering through the CGM stream pipeline, the marker will be
stroked out and scaled by a factor equal to the product of XGL_CTX_MARKER_SCALE_-

FACTOR(3) and the float pointed to by XGL_OBJ_APPLICATION_DATA(3). If there is no object
application data associated with the marker, then a marker other than one of the
predefined markers will be rendered by the CGM stream pipeline as a dot marker. Note
that the XGL_OBJ_APPLICATION_DATA(3) scale factor only applies to the CGM stream pipe-
line. See the XGL Programmer’s Guide for an example.

The default value is xgl_marker_plus.

This attribute is pushed by xgl_context_push(3).

SEE ALSO xgl_object_set(3)
xgl_object_get(3)
xgl_context_push(3)
xgl_multimarker(3)

XGL_CTX_MARKER_COLOR(3)
XGL_CTX_MARKER_COLOR_SELECTOR(3)
XGL_CTX_MARKER_SCALE_FACTOR(3)
XGL_MARKER_DESCRIPTION(3)

190 modified August 1994

XGL Graphics Library XGL_CTX_MARKER_AA_BLEND_EQ (3)

NAME XGL_CTX_MARKER_AA_BLEND_EQ,
XGL_CTX_MARKER_AA_FILTER_WIDTH,
XGL_CTX_MARKER_AA_FILTER_SHAPE − controls if and how markers are antialiased

SYNOPSIS #include <xgl/xgl.h>

Xgl_ctx ctx;

xgl_object_set(ctx, XGL_CTX_MARKER_AA_BLEND_EQ, Xgl_blend_eq, 0);
xgl_object_set(ctx, XGL_CTX_MARKER_AA_FILTER_WIDTH, Xgl_usgn32, 0);
xgl_object_set(ctx, XGL_CTX_MARKER_AA_FILTER_SHAPE, Xgl_filter_shape, 0);

xgl_object_get(ctx, XGL_CTX_MARKER_AA_BLEND_EQ, Xgl_blend_eq ∗);
xgl_object_get(ctx, XGL_CTX_MARKER_AA_FILTER_WIDTH, Xgl_usgn32 ∗);
xgl_object_get(ctx, XGL_CTX_MARKER_AA_FILTER_SHAPE, Xgl_filter_shape ∗);

DESCRIPTION These attributes control if and how markers are antialiased. Antialiasing smooths out
single-pixel-wide markers by spreading out the spectral energy of the stroke or dot over 2
or more adjacent pixels. The result is that the sides of the stroke or dot are slightly
blurred and, as seen from a normal viewing distance, smoother than non-antialiased
markers.

The blurring of the marker is done by filtering the stroke or dot onto neighboring pixels.
The shape and size of this filter controls how the antialiased marker will look. Currently,
XGL_FILTER_GAUSSIAN is the only possible value for the XGL_CTX_MARKER_AA_FILTER_-

SHAPE(3) attribute.

The width of the filter is controlled by the attribute XGL_CTX_MARKER_AA_FILTER_-

WIDTH(3). This is the number of pixels touched by the filter. A Device will use the largest
filter width it supports which is less than or equal to the specified filter width. A width
of 0 is not an error and is treated as if the width was 1.

The attribute XGL_CTX_MARKER_AA_BLEND_EQ(3) controls how the pixel values in the
antialiased marker are blended with the existing pixel values in the Device. The data
type Xgl_blend_eq has these values:

typedef enum {
XGL_BLEND_NONE,
XGL_BLEND_ARBITRARY_BG,
XGL_BLEND_CONST_BG,
XGL_BLEND_ADD_TO_BG

} Xgl_blend_eq;

The equations used are:

NONE d = s
ARBITRARY_BG d = (s ∗ alpha) + (d ∗ (1 - alpha))
CONST_BG d = ((s - ctx_bg) ∗ alpha) + d
ADD_TO_BG d = (s ∗ alpha) + d

modified August 1994 191

XGL_CTX_MARKER_AA_BLEND_EQ (3) XGL Graphics Library

where:
s = source pixel value
d = destination pixel value
alpha = weight of source pixel
ctx_bg = Context background color

We strongly recommend that antialiasing use XGL_BLEND_ARBITRARY_BG or XGL_BLEND_-
CONST_BG.

All three attributes must have consistent settings in order to achieve visually pleasing
results. Some notes on using these attributes:

· Both the XGL_CTX_MARKER_AA_BLEND_EQ and the XGL_CTX_MARKER_AA_-
FILTER_WIDTH must be set to something other than defaults to achieve
antialiasing.

· Setting the XGL_CTX_MARKER_AA_BLEND_EQ to XGL_BLEND_NONE and the XGL_-
CTX_MARKER_AA_FILTER_WIDTH to greater than 1 is a way to undraw antialiased
markers. The color used for undrawing is the color that the marker would
have been drawn in if antialiasing was off.

· Setting the XGL_CTX_MARKER_AA_BLEND_EQ to other than NONE and the XGL_-
CTX_MARKER_AA_FILTER_WIDTH to 1 is undefined and should not be used. The
results will be device dependent.

The default value for XGL_CTX_MARKER_AA_BLEND_EQ is XGL_BLEND_NONE.

The default value for XGL_CTX_MARKER_AA_FILTER_WIDTH is 1.

The default value for XGL_CTX_MARKER_AA_FILTER_SHAPE is XGL_FILTER_GAUSSIAN.

All these attributes are pushed by xgl_context_push(3).

SEE ALSO xgl_object_set(3)
xgl_object_get(3)
xgl_context_push(3)

NOTES Antialiasing support on 2D Contexts is device dependent.

192 modified August 1994

XGL Graphics Library XGL_CTX_MARKER_COLOR (3)

NAME XGL_CTX_MARKER_COLOR − defines color of Markers in a Context

SYNOPSIS #include <xgl/xgl.h>

Xgl_ctx ctx;

xgl_object_set(ctx, XGL_CTX_MARKER_COLOR, Xgl_color ∗, 0);
xgl_object_get(ctx, XGL_CTX_MARKER_COLOR, Xgl_color ∗);

DESCRIPTION Specifies the color in which Markers are drawn within the Context ctx.

The color must be set according to the XGL_DEV_COLOR_TYPE(3) attribute of the Raster
associated with the Context. If the Device color type is XGL_COLOR_INDEX, the type of the
color should be XGL_COLOR_INDEX. Likewise, if the Device color type is XGL_COLOR_RGB,
the color passed to the Context should also be XGL_COLOR_RGB.

When specifying a color of type XGL_COLOR_INDEX, the value given as the index should be
consistent with the size of the color table within the Device Color Map object associated
with the Context (see XGL_DEV_COLOR_MAP(3)).

When a Device of color type XGL_COLOR_INDEX is attached to a 3D Context, with depth-
cueing enabled (see XGL_3D_CTX_DEPTH_CUE_MODE(3)), the color table of the Color Map
object associated with the Raster attached to the Context should have consistent ramps to
enable a correct rendering.

The default value is: INDEX 1 or RGB (green).

This attribute is pushed by xgl_context_push(3).

SEE ALSO xgl_object_set(3)
xgl_object_get(3)
xgl_context_push(3)
xgl_multimarker(3)

XGL_3D_CTX_DEPTH_CUE_MODE(3)
XGL_DEV_COLOR_TYPE(3)
XGL_DEV_COLOR_MAP(3)

modified August 1994 193

XGL_CTX_MARKER_COLOR_SELECTOR (3) XGL Graphics Library

NAME XGL_CTX_MARKER_COLOR_SELECTOR − selects the source of a Marker’s color from
the Context or from the point data

SYNOPSIS #include <xgl/xgl.h>

Xgl_ctx ctx;

xgl_object_set(ctx, XGL_CTX_MARKER_COLOR_SELECTOR, Xgl_marker_color_sel, 0);
xgl_object_get(ctx, XGL_CTX_MARKER_COLOR_SELECTOR, Xgl_marker_color_sel ∗);

DESCRIPTION This attribute selects the source of a Marker’s color from the Context or the point data
provided with a multimarker primitive.

XGL_CTX_MARKER_COLOR_SELECTOR(3) specifies the color selection used for Markers in the
2D or 3D Context ctx. Two options are available for this attribute:

XGL_MARKER_COLOR_CONTEXT
XGL takes the Marker color from the context attribute XGL_CTX_MARKER_COLOR.
This is the color of a Marker at the beginning of the rendering pipeline. Depth-
cueing affects the final appearance of the Marker in 3D.

XGL_MARKER_COLOR_POINT
If the data supplied with a multimarker primitive has colors for the individual
points, XGL applies these colors to the points upon entry to the rendering pipe-
line. Depth-cueing affects the final appearance of the Marker in 3D. If the multi-
marker primitive does not have colors for the individual points, XGL uses the
Context Marker color.

The default value is XGL_MARKER_COLOR_POINT.

This attribute is pushed by xgl_context_push(3).

SEE ALSO xgl_object_set(3)
xgl_object_get(3)
xgl_context_push(3)
xgl_multimarker(3)

XGL_CTX_MARKER_COLOR(3)

194 modified August 1994

XGL Graphics Library XGL_CTX_MARKER_SCALE_FACTOR (3)

NAME XGL_CTX_MARKER_SCALE_FACTOR − defines the Marker scale factor used to deter-
mine the extent of Markers

SYNOPSIS #include <xgl/xgl.h>

Xgl_ctx ctx;

xgl_object_set(ctx, XGL_CTX_MARKER_SCALE_FACTOR, float, 0);
xgl_object_get(ctx, XGL_CTX_MARKER_SCALE_FACTOR, float ∗);

DESCRIPTION This attribute specifies a scale factor by which the nominal Marker extent of the Device
(which is 1 pixel for Raster devices) is multiplied to produce the Marker extent in device
coordinates (DC).

Note that the dot Marker (specified by setting XGL_CTX_MARKER(3) to xgl_marker_dot) is
not affected by XGL_CTX_MARKER_SCALE_FACTOR(3).

The default value is 1.0.

This attribute is pushed by xgl_context_push(3).

SEE ALSO xgl_object_set(3)
xgl_object_get(3)
xgl_context_push(3)
xgl_multimarker(3)

XGL_CTX_MARKER(3)

modified August 1994 195

XGL_CTX_MAX_TESSELLATION (3) XGL Graphics Library

NAME XGL_CTX_MAX_TESSELLATION − defines the maximum tessellation of a circle, arc,
ellipse, curve, or surface

SYNOPSIS #include <xgl/xgl.h>

Xgl_ctx ctx;

xgl_object_set(ctx, XGL_CTX_MAX_TESSELLATION, Xgl_usgn32, 0);
xgl_object_get(ctx, XGL_CTX_MAX_TESSELLATION, Xgl_usgn32 ∗);

DESCRIPTION This attribute is used to set the absolute maximum number of segments in which a 3D
conic curve, a NURBS curve, or a NURBS surface can be tessellated when using the follow-
ing XGL operators:

xgl_multicircle(3)
xgl_multiarc(3)
xgl_multi_elliptical_arc(3)
xgl_nurbs_curve(3)
xgl_nurbs_surface(3)

The method specified by XGL_CTX_NURBS_CURVE_APPROX(3) or XGL_CTX_NURBS_SURF_-

APPROX(3), as well as the value given by XGL_CTX_NURBS_CURVE_APPROX_VAL(3), XGL_-

CTX_NURBS_SURF_APPROX_VAL_U(3), or XGL_CTX_NURBS_SURF_APPROX_VAL_V(3), is used to
compute the number of interpolated segments along the curve or along the isoparametric
directions of the surface. In the case of NURBS curve or surface, the number of segments
refers to the number of segments between pairs of adjacent knots. This number is then
truncated to be less than or equal to XGL_CTX_MAX_TESSELLATION. Thus, XGL_CTX_MAX_-
TESSELLATION provides a trade-off between curve or surface quality and computation
time.

XGL_CTX_MIN_TESSELLATION(3) provides a way to force the number of segments to an
absolute minimum.

The default value is 64.

This attribute is pushed by xgl_context_push(3).

SEE ALSO xgl_object_set(3)
xgl_object_get(3)
xgl_context_push(3)
xgl_multiarc(3)
xgl_multi_elliptical_arc(3)
xgl_multicircle(3)
xgl_nurbs_curve(3)
xgl_nurbs_surface(3)

XGL_CTX_MIN_TESSELLATION(3)
XGL_CTX_NURBS_CURVE_APPROX(3)
XGL_CTX_NURBS_CURVE_APPROX_VAL(3)
XGL_CTX_NURBS_SURF_APPROX(3)
XGL_CTX_NURBS_SURF_APPROX_VAL_U(3)

196 modified August 1994

XGL Graphics Library XGL_CTX_MAX_TESSELLATION (3)

XGL_CTX_NURBS_SURF_APPROX_VAL_V(3)

modified August 1994 197

XGL_CTX_MC_TO_DC_TRANS (3) XGL Graphics Library

NAME XGL_CTX_MC_TO_DC_TRANS − returns the model-coordinate-to-device-coordinate
Transform

SYNOPSIS #include <xgl/xgl.h>

Xgl_ctx ctx;

xgl_object_get(ctx, XGL_CTX_MC_TO_DC_TRANS, Xgl_trans ∗);

DESCRIPTION This read-only attribute returns the Transform object that maps geometry from model
coordinates (MC) to device coordinates (DC).

The MC-to-DC Transform results from the concatenation of the the Model Transform
XGL_CTX_MODEL_TRANS(3), the View Transform XGL_CTX_VIEW_TRANS(3), and the VDC-to-
DC Transform, which XGL calculates internally from several attributes: XGL_CTX_VDC_-

MAP(3), XGL_CTX_VDC_ORIENTATION(3), XGL_CTX_VDC_WINDOW(3), XGL_CTX_DC_-

VIEWPORT(3), XGL_DEV_MAXIMUM_COORDINATES(3), and the Device’s DC orientation. For
3D, the VDC-to-DC Transform also depends on XGL_3D_CTX_JITTER_OFFSET(3).

XGL defers evaluation of the MC-to-DC Transform until either XGL needs this Transform
internally or the application explicitly gets it. Before attempting to use the MC-to-DC
Transform, call xgl_object_get(3) to get XGL_CTX_MC_TO_DC_TRANS to ensure XGL evalu-
ates the MC-to-DC Transform if it requires updating.

This attribute is read-only. To make changes to it, you must modify the following attri-
butes:

XGL_CTX_LOCAL_MODEL_TRANS(3),
XGL_CTX_GLOBAL_MODEL_TRANS(3),
XGL_CTX_VIEW_TRANS(3),
XGL_CTX_VDC_MAP(3),
XGL_CTX_VDC_ORIENTATION(3),
XGL_CTX_VDC_WINDOW(3),
XGL_CTX_DC_VIEWPORT(3),
XGL_3D_CTX_JITTER_OFFSET(3).

XGL will not permit attempts to change this attribute directly with Transform operators.

Since this attribute is read-only, do not get a handle to this Transform and use it to set
XGL_CTX_LOCAL_MODEL_TRANS(3), XGL_CTX_GLOBAL_MODEL_TRANS(3), or XGL_CTX_VIEW_-

TRANS(3)

The Transform of this read-only Context attribute always has XGL_TRANS_DATA_TYPE(3)
set to XGL_DATA_DBL.

The default value is the Identity Transform.

This attribute is not pushed by xgl_context_push(3).

SEE ALSO xgl_object_set(3)
xgl_object_get(3)

198 modified August 1994

XGL Graphics Library XGL_CTX_MC_TO_DC_TRANS (3)

XGL_CTX_GLOBAL_MODEL_TRANS(3)
XGL_CTX_LOCAL_MODEL_TRANS(3)
XGL_CTX_VIEW_TRANS(3)
XGL_CTX_VDC_MAP(3)
XGL_CTX_VDC_ORIENTATION(3)
XGL_CTX_VDC_WINDOW(3)
XGL_CTX_DC_VIEWPORT(3)
XGL_DEV_MAXIMUM_COORDINATES(3)
XGL_TRANS_DATA_TYPE(3)
XGL_3D_CTX_JITTER_OFFSET(3)

modified August 1994 199

XGL_CTX_MIN_TESSELLATION (3) XGL Graphics Library

NAME XGL_CTX_MIN_TESSELLATION − defines the minimum tessellation of a circle, arc,
ellipse, curve, or surface

SYNOPSIS #include <xgl/xgl.h>

Xgl_ctx ctx;

xgl_object_set(ctx, XGL_CTX_MIN_TESSELLATION, Xgl_usgn32, 0);
xgl_object_get(ctx, XGL_CTX_MIN_TESSELLATION, Xgl_usgn32 ∗);

DESCRIPTION This attribute is used to set the absolute minimum number of segments in which a 3D
conic curve, a NURBS curve, or a NURBS surface can be tessellated when using the follow-
ing XGL operators:

xgl_multicircle(3)
xgl_multiarc(3)
xgl_multi_elliptical_arc(3)
xgl_nurbs_curve(3)
xgl_nurbs_surface(3)

The method specified by XGL_CTX_NURBS_CURVE_APPROX(3) or XGL_CTX_NURBS_SURF_-

APPROX(3), as well as the value given by XGL_CTX_NURBS_CURVE_APPROX_VAL(3), XGL_-

CTX_NURBS_SURF_APPROX_VAL_U(3), or XGL_CTX_NURBS_SURF_APPROX_VAL_V(3), is used to
compute the number of interpolated segments along the curve or along the isoparametric
directions of the surface. In the case of NURBS curve or surface, the number of segments
refers to the number of segments between pairs of adjacent knots. This number is then
adjusted to be greater than or equal to XGL_CTX_MIN_TESSELLATION. Thus, XGL_CTX_MIN_-
TESSELLATION provides a trade-off between curve or surface quality and computation
time.

XGL_CTX_MAX_TESSELLATION(3) provides a way to limit the number of segments to an
absolute maximum.

The default value is 1.

This attribute is pushed by xgl_context_push(3).

SEE ALSO xgl_object_set(3)
xgl_object_get(3)
xgl_context_push(3)
xgl_multiarc(3)
xgl_multi_elliptical_arc(3)
xgl_multicircle(3)
xgl_nurbs_curve(3)
xgl_nurbs_surface(3)

XGL_CTX_MAX_TESSELLATION(3)
XGL_CTX_NURBS_CURVE_APPROX(3)
XGL_CTX_NURBS_CURVE_APPROX_VAL(3)
XGL_CTX_NURBS_SURF_APPROX(3)
XGL_CTX_NURBS_SURF_APPROX_VAL_U(3)

200 modified August 1994

XGL Graphics Library XGL_CTX_MIN_TESSELLATION (3)

XGL_CTX_NURBS_SURF_APPROX_VAL_V(3)

modified August 1994 201

XGL_CTX_MODEL_TRANS (3) XGL Graphics Library

NAME XGL_CTX_MODEL_TRANS − returns the Model Transform

SYNOPSIS #include <xgl/xgl.h>

Xgl_ctx ctx;

xgl_object_get(ctx, XGL_CTX_MODEL_TRANS, Xgl_trans ∗);

DESCRIPTION This read-only attribute returns the Transform object that represents the Model
Transform, which maps geometry from model coordinates (MC) to world coordinates
(WC).

The Model Transform results from the concatenation of the Local Model Transform (as
defined by the attribute XGL_CTX_LOCAL_MODEL_TRANS(3)) and the Global Model
Transform (as defined by the attribute XGL_CTX_GLOBAL_MODEL_TRANS(3)), respectively.
This attribute (the Model Transform) is affected by changes to either XGL_CTX_LOCAL_-

MODEL_TRANS(3) or XGL_CTX_GLOBAL_MODEL_TRANS(3).

To improve performance in XGL 3.0 and subsequent releases, evaluation of the Model
Transform is deferred until either XGL needs the Model Transform internally or the appli-
cation explicitly gets it. Before attempting to use the Model Transform, call
xgl_object_get(3) to get XGL_CTX_MODEL_TRANS to ensure XGL evaluates the Model
Transform if it requires updating.

This attribute is read-only. To make changes to it, you must modify XGL_CTX_LOCAL_-
MODEL_TRANS or XGL_CTX_GLOBAL_MODEL_TRANS. Do not get this attribute and use a
Transform operator on it if that operator changes the value of the Model Transform. Do
not perform an xgl_object_set(3) on this attribute. Instead, use XGL_CTX_LOCAL_MODEL_-
TRANS or XGL_CTX_GLOBAL_MODEL_TRANS. Attempts to explicitly change the Model
Transform will result in an error.

Since this attribute is read-only, do not get a handle to this Transform and use it to set
XGL_CTX_LOCAL_MODEL_TRANS(3), XGL_CTX_GLOBAL_MODEL_TRANS(3), or XGL_CTX_VIEW_-

TRANS(3).

The Transform of this read-only Context attribute always has XGL_TRANS_DATA_TYPE(3)
set to XGL_DATA_DBL.

The default value is the Identity Transform.

This attribute is not pushed by xgl_context_push(3), but the Model Transform can
change because of some manipulations done with xgl_context_update_model_trans(3).

SEE ALSO xgl_object_set(3)
xgl_object_get(3)
xgl_context_update_model_trans(3)

XGL_CTX_GLOBAL_MODEL_TRANS(3)
XGL_CTX_LOCAL_MODEL_TRANS(3)
XGL_CTX_VIEW_TRANS(3)
XGL_TRANS_DATA_TYPE(3)

202 modified August 1994

XGL Graphics Library XGL_CTX_MODEL_TRANS_STACK_SIZE (3)

NAME XGL_CTX_MODEL_TRANS_STACK_SIZE − defines the size of the Context’s Transform
stack

SYNOPSIS #include <xgl/xgl.h>

Xgl_ctx ctx;

xgl_object_set(ctx, XGL_CTX_MODEL_TRANS_STACK_SIZE, Xgl_usgn32, 0);
xgl_object_get(ctx, XGL_CTX_MODEL_TRANS_STACK_SIZE, Xgl_usgn32 ∗);

DESCRIPTION This attribute defines the depth of the Transform stack associated with the Context ctx,
expressed in number of Transforms, for use with the xgl_context_update_model_-
trans(3) operator.

Each XGL Context defines a special stack dedicated to pushing and popping the Local
Model Transform or the Global Model Transform with the xgl_context_update_model_-
trans(3) operator in order to get the best possible performance.

Updating the value of XGL_CTX_MODEL_TRANS_STACK_SIZE will cause the contents of the
current stack (if any) to be lost.

The default value is 0.

SEE ALSO xgl_object_set(3)
xgl_object_get(3)
xgl_context_update_model_trans(3)

modified August 1994 203

XGL_CTX_NEW_FRAME_ACTION (3) XGL Graphics Library

NAME XGL_CTX_NEW_FRAME_ACTION − sets the actions performed by the operator
xgl_context_new_frame

SYNOPSIS #include <xgl/xgl.h>

Xgl_ctx ctx;

xgl_object_set(ctx, XGL_CTX_NEW_FRAME_ACTION, Xgl_ctx_new_frame_action, 0);
xgl_object_get(ctx, XGL_CTX_NEW_FRAME_ACTION, Xgl_ctx_new_frame_action ∗);

DESCRIPTION This Context attribute is used to indicate the actions to be performed by the XGL operator
xgl_context_new_frame(3) on the Device attached to the Context ctx. The purpose of
xgl_context_new_frame is to clear the Device attached to the current Context.

The value of this attribute is the combination by logical OR of the new frame actions listed
below. The available new frame actions are specified by the enumerated data type Xgl_-
ctx_new_frame_action.

Possible actions are:

XGL_CTX_NEW_FRAME_NONE
Nothing happens. In this mode, xgl_context_new_frame is equivalent to a no-
operation.

XGL_CTX_NEW_FRAME_VRETRACE
Wait for the frame buffer to enter vertical retrace before executing the xgl_-
context_new_frame operation. This is useful for color-map double buffering, or
when an application needs to synchronize on the device’s vertical retrace.

XGL_CTX_NEW_FRAME_CLEAR
The action taken by xgl_context_new_frame when this flag is set depends on the
value of the attribute XGL_CTX_VDC_MAP(3). When XGL_CTX_VDC_MAP is XGL_CTX_-
VDC_MAP_ALL, XGL_CTX_VDC_MAP_ASPECT, or XGL_CTX_VDC_MAP_DEVICE, xgl_-
context_new_frame clears the entire drawing area associated with the Device.
When XGL_CTX_VDC_MAP is XGL_CTX_VDC_MAP_OFF, it clears only the device coor-
dinate viewport (see XGL_CTX_DC_VIEWPORT(3)) portion of the Device. The
cleared area is set to the color given by the Context attribute XGL_CTX_-

BACKGROUND_COLOR(3). When the Device is cleared, the XGL_CTX_ROP(3) attri-
bute is ignored and the Raster operation (ROP) is forced to XGL_ROP_COPY.

XGL_CTX_NEW_FRAME_HLHSR_ACTION
Perform the HLHSR (hidden line, hidden surface removal) action associated with
the current value of the Context attribute XGL_3D_CTX_HLHSR_MODE(3), using the
current XGL_3D_CTX_HLHSR_DATA(3) value.

XGL_CTX_NEW_FRAME_SWITCH_BUFFER
This flag is used to switch both the values of XGL_WIN_RAS_BUF_DRAW(3) and
XGL_WIN_RAS_BUF_DISPLAY(3) and the actual hardware buffers. Before the switch,
XGL will wait for the current display buffer to be displayed in its entirety. Setting
XGL_CTX_NEW_FRAME_VRETRACE is not necessary to avoid visual artifacts and may
reduce performance. If this flag is set, xgl_context_new_frame(3) sets XGL_WIN_-

204 modified August 1994

XGL Graphics Library XGL_CTX_NEW_FRAME_ACTION (3)

RAS_BUF_DRAW to the prior value of XGL_WIN_RAS_BUF_DISPLAY, and it sets XGL_-
WIN_RAS_BUF_DISPLAY to the prior value of XGL_WIN_RAS_BUF_DRAW.

To initialize XGL_WIN_RAS_BUF_DISPLAY and XGL_WIN_RAS_BUF_DRAW to different
values, use xgl_object_set(3). If their initial values do not differ, setting the flag
XGL_CTX_NEW_FRAME_SWITCH_BUFFER has no effect.

To allocate multiple buffers, request the desired number of buffers by setting
XGL_WIN_RAS_BUFFERS_REQUESTED(3). Inquire the number of buffers actually
allocated via XGL_WIN_RAS_BUFFERS_ALLOCATED(3).

If both XGL_CTX_NEW_FRAME_CLEAR and this attribute are set, the new display
buffer is visible before the new draw buffer is cleared.

After a buffer switch where XGL_WIN_RAS_BUF_DRAW is not equal to XGL_WIN_-
RAS_BUF_DISPLAY, the contents of XGL_WIN_RAS_BUF_DRAW are device-dependent
unless the following flags are set:

· XGL_CTX_NEW_FRAME_CLEAR

· XGL_CTX_NEW_FRAME_HLHSR_ACTION (if z-buffering is being used)

This device dependency falls into two categories:

· After the switch, the pixels in the XGL_WIN_RAS_BUF_DISPLAY are
equivalent to the pixels in the WIN_RAS_BUF_DRAW.

· Both buffer contents are unchanged. To determine the type of your dev-
ice, check the xgl_inquire(3) operator and your accelerator guide.

The default value is XGL_CTX_NEW_FRAME_CLEAR.

This attribute is pushed by xgl_context_push(3).

SEE ALSO xgl_object_set(3)
xgl_object_get(3)
xgl_context_push(3)
xgl_context_new_frame(3)

XGL_3D_CTX_HLHSR_DATA(3)
XGL_3D_CTX_HLHSR_MODE(3)
XGL_CTX_BACKGROUND_COLOR(3)
XGL_CTX_DC_VIEWPORT(3)
XGL_CTX_ROP(3)
XGL_CTX_VDC_MAP(3)
XGL_WIN_RAS_BUFFERS_REQUESTED(3)
XGL_WIN_RAS_BUFFERS_ALLOCATED(3)

modified August 1994 205

XGL_CTX_NEW_FRAME_PAINT_TYPE (3) XGL Graphics Library

NAME XGL_CTX_NEW_FRAME_PAINT_TYPE − specifies the new frame paint type for tran-
sparent overlays

SYNOPSIS #include <xgl/xgl.h>

Xgl_ctx ctx;

xgl_object_set(ctx, XGL_CTX_NEW_FRAME_PAINT_TYPE, Xgl_paint_type, 0);
xgl_object_get(ctx, XGL_CTX_NEW_FRAME_PAINT_TYPE, Xgl_paint_type∗);

DESCRIPTION This attribute specifies the paint type for transparent overlays when an application calls
xgl_context_new_frame(3) and XGL_CTX_NEW_FRAME_ACTION(3) with action XGL_CTX_-
NEW_FRAME_CLEAR. In this case, the color information is set to the background color and
the paint type is set to the value of this attribute. The possible values are XGL_PAINT_-
TRANSPARENT or XGL_PAINT_OPAQUE .

The default value is XGL_PAINT_TRANSPARENT.

This attribute is not pushed by xgl_context_push(3).

SEE ALSO xgl_object_set(3)
xgl_object_get(3)
xgl_context_new_frame(3)

XGL_CTX_NEW_FRAME_ACTION(3)
XGL_CTX_PAINT_TYPE(3)

206 modified August 1994

XGL Graphics Library XGL_CTX_NURBS_CURVE_APPROX (3)

NAME XGL_CTX_NURBS_CURVE_APPROX − defines the curve approximation method

SYNOPSIS #include <xgl/xgl.h>

Xgl_ctx ctx;

xgl_object_set(ctx, XGL_CTX_NURBS_CURVE_APPROX, Xgl_curve_approx, 0);
xgl_object_get(ctx, XGL_CTX_NURBS_CURVE_APPROX, Xgl_curve_approx ∗);

DESCRIPTION This attribute defines the approximation method used to render 3D conic or NURBS curves
when using the following operators:

xgl_multicircle(3)
xgl_multiarc(3)
xgl_multi_elliptical_arc(3)
xgl_nurbs_curve(3)

The alternatives for this attribute are specified by the enumerated data type Xgl_curve_-
approx and are described below:

XGL_CURVE_CONST_PARAM_SUBDIV_BETWEEN_KNOTS
Ensures that the number of segments used to draw the curve between each pair
of adjacent knots will be at least equal to the value of XGL_CTX_NURBS_CURVE_-

APPROX_VAL(3) attribute.

XGL_CURVE_METRIC_WC
XGL_CURVE_METRIC_VDC
XGL_CURVE_METRIC_DC

Ensures that the distance between two consecutive points on the curve will be, at
most, equal to the value of XGL_CTX_NURBS_CURVE_APPROX_VAL(3) attribute. The
distance is expressed in world coordinates (WC), virtual device coordinates
(VDC), or in device coordinates (DC).

XGL_CURVE_CHORDAL_DEVIATION_WC
XGL_CURVE_CHORDAL_DEVIATION_VDC
XGL_CURVE_CHORDAL_DEVIATION_DC

Ensures that the distance between the curve and the chord between two consecu-
tive evaluated points on the curve will be, at most, equal to the value of XGL_-

CTX_NURBS_CURVE_APPROX_VAL(3) attribute. The distance is expressed in world
coordinates (WC), virtual device coordinates (VDC), or in device coordinates
(DC).

XGL_CURVE_RELATIVE_WC
XGL_CURVE_RELATIVE_VDC
XGL_CURVE_RELATIVE_DC

A value of XGL_CTX_NURBS_CURVE_APPROX_VAL(3) attribute between 0 and 1 indi-
cates the relative quality of the rendering to be maintained in world coordinates
(WC), virtual device coordinates (VDC), or in device coordinates (DC). Higher
values mean better relative quality.

modified August 1994 207

XGL_CTX_NURBS_CURVE_APPROX (3) XGL Graphics Library

The XGL_CTX_MIN_TESSELLATION(3) and XGL_CTX_MAX_TESSELLATION(3) attributes ensure
the absolute minimum and maximum number of segments in which a curve will be ren-
dered.

The default value is XGL_CURVE_CONST_PARAM_SUBDIV_BETWEEN_KNOTS.

This attribute is pushed by xgl_context_push(3).

SEE ALSO xgl_object_set(3)
xgl_object_get(3)
xgl_context_push(3)
xgl_multiarc(3)
xgl_multi_elliptical_arc(3)
xgl_multicircle(3)
xgl_nurbs_curve(3)

XGL_CTX_MAX_TESSELLATION(3)
XGL_CTX_MIN_TESSELLATION(3)
XGL_CTX_NURBS_CURVE_APPROX_VAL(3)

208 modified August 1994

XGL Graphics Library XGL_CTX_NURBS_CURVE_APPROX_VAL (3)

NAME XGL_CTX_NURBS_CURVE_APPROX_VAL − defines the curve approximation value

SYNOPSIS #include <xgl/xgl.h>

Xgl_ctx ctx;

xgl_object_set(ctx, XGL_CTX_NURBS_CURVE_APPROX_VAL, float, 0);
xgl_object_get(ctx, XGL_CTX_NURBS_CURVE_APPROX_VAL, float ∗);

DESCRIPTION This attribute is used to set the approximation quality of XGL 3D conic or NURBS curves
when using the following operators:

xgl_multicircle(3)
xgl_multiarc(3)
xgl_multi_elliptical_arc(3)
xgl_nurbs_curve(3)

Depending on the XGL_CTX_NURBS_CURVE_APPROX(3) attribute, XGL_CTX_NURBS_CURVE_-
APPROX_VAL represents a number of subdivisions, maximum distance between two
points, maximum deviation between the curve and the approximation, or a relative qual-
ity measure.

The XGL_CTX_MIN_TESSELLATION(3) and XGL_CTX_MAX_TESSELLATION(3) attributes ensure
the absolute minimum and maximum number of segments in which a curve will be ren-
dered.

The default value is 10.0.

This attribute is pushed by xgl_context_push(3).

SEE ALSO xgl_object_set(3)
xgl_object_get(3)
xgl_context_push(3)
xgl_multiarc(3)
xgl_multi_elliptical_arc(3)
xgl_multicircle(3)
xgl_nurbs_curve(3)

XGL_CTX_MAX_TESSELLATION(3)
XGL_CTX_MIN_TESSELLATION(3)
XGL_CTX_NURBS_CURVE_APPROX(3)

modified August 1994 209

XGL_CTX_NURBS_SURF_APPROX (3) XGL Graphics Library

NAME XGL_CTX_NURBS_SURF_APPROX − defines the surface approximation method

SYNOPSIS #include <xgl/xgl.h>

Xgl_ctx ctx;

xgl_object_set(ctx, XGL_CTX_NURBS_SURF_APPROX, Xgl_surf_approx, 0);
xgl_object_get(ctx, XGL_CTX_NURBS_SURF_APPROX, Xgl_surf_approx ∗);

DESCRIPTION This attribute defines the approximation method used to render NURBS surfaces when
using the xgl_nurbs_surface(3) operator.

The alternatives for this attribute are specified by the enumerated data type Xgl_surf_-
approx and are described below:

XGL_SURF_CONST_PARAM_SUBDIV_BETWEEN_KNOTS
Ensures that the number of segments used to display the surface between each
pair of adjacent knots in U and V parametric direction will be at least equal to the
respective values of XGL_CTX_NURBS_SURF_APPROX_VAL_U(3) and XGL_CTX_-

NURBS_SURF_APPROX_VAL_V(3) attributes.

XGL_SURF_METRIC_WC
XGL_SURF_METRIC_VDC
XGL_SURF_METRIC_DC

Ensures that the distance between two consecutive points on the surface in U and
V parametric directions will be, at most, equal to the respective values of XGL_-

CTX_NURBS_SURF_APPROX_VAL_U(3) and XGL_CTX_NURBS_SURF_APPROX_VAL_V(3)
attributes. The distance is expressed in world coordinates (WC), virtual device
coordinates (VDC), or in device coordinates (DC).

XGL_SURF_PLANAR_DEVIATION_WC
XGL_SURF_PLANAR_DEVIATION_VDC
XGL_SURF_PLANAR_DEVIATION_DC

Ensures that the distance between the surface and the approximating facet will
be, at most, equal to the value of XGL_CTX_NURBS_SURF_APPROX_VAL_U(3) attri-
bute. The distance is expressed in world coordinates (WC), virtual device coordi-
nates (VDC), or in device coordinates (DC). The XGL_CTX_NURBS_SURF_APPROX_-

VAL_V(3) attribute is ignored.

XGL_SURF_RELATIVE_WC
XGL_SURF_RELATIVE_VDC
XGL_SURF_RELATIVE_DC

A value of XGL_CTX_NURBS_SURF_APPROX_VAL_U(3) attribute between 0 and 1
indicates the relative quality of the rendering to be maintained in world coordi-
nates (WC), virtual device coordinates (VDC), or in device coordinates (DC).
Higher values mean better relative quality. The XGL_CTX_NURBS_SURF_APPROX_-

VAL_V(3) attribute is ignored.

210 modified August 1994

XGL Graphics Library XGL_CTX_NURBS_SURF_APPROX (3)

The XGL_CTX_MIN_TESSELLATION(3) and XGL_CTX_MAX_TESSELLATION(3) attributes ensure
the absolute minimum and maximum number of segments in which a curve will be ren-
dered.

The default value is XGL_SURF_CONST_PARAM_SUBDIV_BETWEEN_KNOTS.

This attribute is pushed by xgl_context_push(3).

SEE ALSO xgl_object_set(3)
xgl_object_get(3)
xgl_context_push(3)
xgl_nurbs_surface(3)

XGL_CTX_NURBS_SURF_APPROX_VAL_U(3)
XGL_CTX_NURBS_SURF_APPROX_VAL_V(3)
XGL_CTX_MAX_TESSELLATION(3)
XGL_CTX_MIN_TESSELLATION(3)

modified August 1994 211

XGL_CTX_NURBS_SURF_APPROX_VAL_U (3) XGL Graphics Library

NAME XGL_CTX_NURBS_SURF_APPROX_VAL_U,
XGL_CTX_NURBS_SURF_APPROX_VAL_V − define the surface approximation values

SYNOPSIS #include <xgl/xgl.h>

Xgl_ctx ctx;

xgl_object_set(ctx, XGL_CTX_NURBS_SURF_APPROX_VAL_U, float, 0);
xgl_object_set(ctx, XGL_CTX_NURBS_SURF_APPROX_VAL_V, float, 0);

xgl_object_get(ctx, XGL_CTX_NURBS_SURF_APPROX_VAL_U, float ∗);
xgl_object_get(ctx, XGL_CTX_NURBS_SURF_APPROX_VAL_V, float ∗);

DESCRIPTION These attributes are used to set the approximation quality of XGL NURBS surfaces when
using the xgl_nurbs_surface(3) operator.

Depending on the XGL_CTX_NURBS_SURF_APPROX(3) attribute, XGL_CTX_NURBS_SURF_-
APPROX_VAL_U and XGL_CTX_NURBS_SURF_APPROX_VAL_V represent a number of subdivi-
sions, maximum distance between two points in U or V parametric directions, maximum
deviation between the surface and the approximation, or a relative quality measure.

The XGL_CTX_MIN_TESSELLATION(3) and XGL_CTX_MAX_TESSELLATION(3) attributes ensure
the absolute minimum and maximum number of segments in each parametric direction
in which a surface will be rendered.

The default value is 10.0.

This attribute is pushed by xgl_context_push(3).

SEE ALSO xgl_object_set(3)
xgl_object_get(3)
xgl_context_push(3)
xgl_nurbs_surface(3)

XGL_CTX_NURBS_SURF_APPROX(3)
XGL_CTX_MAX_TESSELLATION(3)
XGL_CTX_MIN_TESSELLATION(3)

212 modified August 1994

XGL Graphics Library XGL_CTX_NURBS_SURF_ISO_CURVE_PLACEMENT (3)

NAME XGL_CTX_NURBS_SURF_ISO_CURVE_PLACEMENT − defines the placement of iso-
parametric lines on a NURBS surface

SYNOPSIS #include <xgl/xgl.h>

Xgl_ctx ctx;

xgl_object_set(ctx, XGL_CTX_NURBS_SURF_ISO_CURVE_PLACEMENT,
Xgl_iso_curve_placement, 0);

xgl_object_get(ctx, XGL_CTX_NURBS_SURF_ISO_CURVE_PLACEMENT,
Xgl_iso_curve_placement ∗);

DESCRIPTION This attribute defines the placement of isoparametric curves in U and V parametric direc-
tions to draw on the NURBS surface when using xgl_nurbs_surface(3) operator. The XGL_-

CTX_NURBS_SURF_PARAM_STYLE(3) attribute must be set to or be combined by logical OR
with the XGL_SURF_ISO_CURVES value.

The alternatives for this attribute are specified by the enumerated data type Xgl_iso_-
curve_placement and are described below:

XGL_ISO_CURVE_BETWEEN_KNOTS
The specified number of isoparametric curves will be drawn between each adja-
cent pair of knots.

XGL_ISO_CURVE_BETWEEN_LIMITS
The specified number of isoparametric curves will be drawn between the
parametric limits of the whole surface.

The number of isoparametric curves is specified by the XGL_CTX_NURBS_SURF_ISO_-

CURVE_U_NUM(3) and XGL_CTX_NURBS_SURF_ISO_CURVE_V_NUM(3) attributes.

The default value is XGL_ISO_CURVE_BETWEEN_KNOTS.

This attribute is pushed by xgl_context_push(3).

SEE ALSO xgl_object_set(3)
xgl_object_get(3)
xgl_context_push(3)
xgl_nurbs_surface(3)

XGL_CTX_NURBS_SURF_PARAM_STYLE(3)
XGL_CTX_NURBS_SURF_ISO_CURVE_U_NUM(3)
XGL_CTX_NURBS_SURF_ISO_CURVE_V_NUM(3)

modified August 1994 213

XGL_CTX_NURBS_SURF_ISO_CURVE_U_NUM (3) XGL Graphics Library

NAME XGL_CTX_NURBS_SURF_ISO_CURVE_U_NUM
XGL_CTX_NURBS_SURF_ISO_CURVE_V_NUM − define the number of isoparametric
curves on a NURBS surface

SYNOPSIS #include <xgl/xgl.h>

Xgl_ctx ctx;

xgl_object_set(ctx, XGL_CTX_NURBS_SURF_ISO_CURVE_U_NUM, Xgl_usgn32, 0);
xgl_object_set(ctx, XGL_CTX_NURBS_SURF_ISO_CURVE_V_NUM, Xgl_usgn32, 0);

xgl_object_get(ctx, XGL_CTX_NURBS_SURF_ISO_CURVE_U_NUM, Xgl_usgn32 ∗);
xgl_object_get(ctx, XGL_CTX_NURBS_SURF_ISO_CURVE_V_NUM, Xgl_usgn32 ∗);

DESCRIPTION These attributes are used to set the number of isoparametric curves in U and V parametric
directions to draw on the NURBS surface when using xgl_nurbs_surface(3) operator. The
XGL_CTX_NURBS_SURF_PARAM_STYLE(3) attribute must be set to or be OR’d with the XGL_-
SURF_ISO_CURVES value.

Depending on the XGL_CTX_NURBS_SURF_ISO_CURVE_PLACEMENT(3) attribute, specified
number of isoparametric lines is drawn between adjacent knots or between the
parametric limits of the surface.

The default value is 0.

This attribute is pushed by xgl_context_push(3).

SEE ALSO xgl_object_set(3)
xgl_object_get(3)
xgl_context_push(3)
xgl_nurbs_surface(3)

XGL_CTX_NURBS_SURF_PARAM_STYLE(3)
XGL_CTX_NURBS_SURF_ISO_CURVE_PLACEMENT(3)

214 modified August 1994

XGL Graphics Library XGL_CTX_NURBS_SURF_PARAM_STYLE (3)

NAME XGL_CTX_NURBS_SURF_PARAM_STYLE − defines the appearance of the NURBS surface

SYNOPSIS #include <xgl/xgl.h>

Xgl_ctx ctx;

xgl_object_set(ctx, XGL_CTX_NURBS_SURF_PARAM_STYLE , Xgl_nurbs_surf_param_style, 0);
xgl_object_get(ctx, XGL_CTX_NURBS_SURF_PARAM_STYLE , Xgl_nurbs_surf_param_style ∗);

DESCRIPTION This attribute defines the appearance of the NURBS surface when using the xgl_nurbs_-
surface(3) operator.

The alternatives for this attribute are specified by the enumerated data type Xgl_nurbs_-
surf_param_style and are described below:

XGL_SURF_PLAIN
No extra lines or edges will be displayed on the surface.

XGL_SURF_ISO_CURVES
Isoparametric curves are drawn on the surface. The number of these curves in U
and V directions and their placement is specified by the XGL_CTX_NURBS_SURF_-

ISO_CURVE_U_NUM(3), XGL_CTX_NURBS_SURF_ISO_CURVE_V_NUM(3), and XGL_CTX_-

NURBS_SURF_ISO_CURVE_PLACEMENT(3) attributes. Isoparametric curves are
drawn using current line attributes.

XGL_SURF_SHOW_TESSELLATION
Edges of all facets that approximate the surface are shown. Edges are shown
using current edge attributes.

XGL_SURF_INCR_SILHOUETTE_TESS
For better rendering quality, surface is tessellated more finely near areas of
silhouette edges. This value is independent of XGL_3D_CTX_SURF_SILHOUETTE_-

EDGE_FLAG(3), which controls the drawing of the silhouette edges themselves.
Also, this value is valid only for dynamic surface approximation types (i.e. for
XGL_SURF_CONST_PARAM_SUBDIV_BETWEEN_KNOTS type tessellation remains
unchanged).

XGL_SURF_DEVICE_DEPENDENT
This value will ensure best performance. No extra lines or edges will be
displayed on the surface.

All values, except for XGL_SURF_DEVICE_DEPENDENT can be OR’d together for simultaneous
display.

The default value is XGL_SURF_PLAIN.

This attribute is pushed by xgl_context_push(3).

SEE ALSO xgl_object_set(3)
xgl_object_get(3)
xgl_context_push(3)
xgl_nurbs_surface(3)

modified August 1994 215

XGL_CTX_NURBS_SURF_PARAM_STYLE (3) XGL Graphics Library

XGL_3D_CTX_SURF_SILHOUETTE_EDGE_FLAG(3)
XGL_CTX_NURBS_SURF_APPROX(3)
XGL_CTX_NURBS_SURF_ISO_CURVE_PLACEMENT(3)
XGL_CTX_NURBS_SURF_ISO_CURVE_U_NUM(3)
XGL_CTX_NURBS_SURF_ISO_CURVE_V_NUM(3)
XGL_CTX_EDGE_AA_BLEND_EQ(3)
XGL_CTX_EDGE_AA_FILTER_SHAPE(3)
XGL_CTX_EDGE_AA_FILTER_WIDTH(3)
XGL_CTX_EDGE_ALT_COLOR(3)
XGL_CTX_EDGE_COLOR(3)
XGL_CTX_EDGE_PATTERN(3)
XGL_CTX_EDGE_STYLE(3)
XGL_CTX_EDGE_WIDTH_SCALE_FACTOR(3)
XGL_CTX_LINE_AA_BLEND_EQ(3)
XGL_CTX_LINE_AA_FILTER_SHAPE(3)
XGL_CTX_LINE_AA_FILTER_WIDTH(3)
XGL_CTX_LINE_ALT_COLOR(3)
XGL_CTX_LINE_CAP(3)
XGL_CTX_LINE_COLOR(3)
XGL_CTX_LINE_COLOR_SELECTOR(3)
XGL_CTX_LINE_JOIN(3)
XGL_CTX_LINE_MITER_LIMIT(3)
XGL_CTX_LINE_PATTERN(3)
XGL_CTX_LINE_STYLE(3)
XGL_CTX_LINE_WIDTH_SCALE_FACTOR(3)
XGL_3D_CTX_LINE_COLOR_INTERP(3)

216 modified August 1994

XGL Graphics Library XGL_CTX_PAINT_TYPE (3)

NAME XGL_CTX_PAINT_TYPE − specifies the paint type for transparent overlays

SYNOPSIS #include <xgl/xgl.h>

Xgl_ctx ctx;

xgl_object_set(ctx, XGL_CTX_PAINT_TYPE, Xgl_paint_type, 0);
xgl_object_get(ctx, XGL_CTX_PAINT_TYPE, Xgl_paint_type∗);

DESCRIPTION This attribute specifies the paint type for transparent overlays. The possible values are
XGL_PAINT_TRANSPARENT or XGL_PAINT_OPAQUE.

This attribute has effect only when the Device associated with a Context is an overlay
window. Otherwise, it is ignored and the paint type is opaque.

Most XGL primitives will render pixels into overlay windows with the paint type given
by the value of this attribute. The following is a list of exceptions:

· xgl_context_accumulate() -- Only the color information of the draw buffer is accumu-
lated into an overlay window that is the destination buffer of the accumulation. The
paint type is not changed.

· xgl_context_copy_buffer() -- If the device associated with the Context is an overlay
window, the color information of the source raster is copied to the destination. If the
source raster is an overlay window, the paint type is copied to the destination. Other-
wise, the paint type of the destination is not changed.

· xgl_context_new_frame() -- If XGL_CTX_NEW_FRAME_ACTION(3) includes XGL_CTX_NEW_-
FRAME_CLEAR, then the color information is set to the background color and the paint
type is set to the value of XGL_CTX_NEW_FRAME_PAINT_TYPE(3).

The default value is XGL_PAINT_OPAQUE.

This attribute is not pushed by xgl_context_push(3).

SEE ALSO xgl_object_set(3)
xgl_object_get(3)

XGL_CTX_NEW_FRAME_ACTION(3)
XGL_CTX_NEW_FRAME_PAINT_TYPE(3)

modified August 1994 217

XGL_CTX_PICK_APERTURE (3) XGL Graphics Library

NAME XGL_CTX_PICK_APERTURE − defines the area (2D) or volume (3D) used for picking
tests

SYNOPSIS #include <xgl/xgl.h>

Xgl_ctx ctx;

For a 2D Context:
xgl_object_set(ctx, XGL_CTX_PICK_APERTURE, Xgl_bounds_d2d ∗, 0);
xgl_object_get(ctx, XGL_CTX_PICK_APERTURE, Xgl_bounds_d2d ∗);

For a 3D Context:
xgl_object_set(ctx, XGL_CTX_PICK_APERTURE, Xgl_bounds_d3d ∗, 0);
xgl_object_get(ctx, XGL_CTX_PICK_APERTURE, Xgl_bounds_d3d ∗);

DESCRIPTION This attribute defines the XGL pick aperture, which is the area (for a 2D Context) or the
volume (for a 3D Context) where, to be picked, some part of the primitive must be
located. Only one pick aperture can be active at any one time. The bounds of the aper-
ture are specified in device coordinates (DC).

For a primitive to generate a pick event, the following conditions must be met:

· A pickable part of the primitive must be in the pick aperture (see discussion
below).

· Any portion of the pickable part must pass the HLHSR test, if z-buffering is
enabled. (Does not apply to 2D.) That is, only objects that are not completely
obscured by closer objects can be picked.

· The current pick IDs must differ from the last entry in the pick buffer.

What Is a Pickable Part of a Primitive?

When point flag information is present for stroke rendering, only the enabled strokes are
pickable (device-independent). The pickable part of a stroke, however, is device-
dependent. (Stroke means any line-like primitive — for example, lines, edges, stroke text,
annotation text, hollow polygons, markers, NURBS curve, and open arcs.)

When XGL_CTX_PICK_SURF_STYLE is XGL_PICK_SURF_AS_SOLID, all of the surface is pickable.

When XGL_CTX_PICK_SURF_STYLE is XGL_PICK_SURF_AS_FILL_STYLE, the pickable part of the
surface is device-dependent for fill styles hollow and stipple. Please see your accelerator
guide.

There are two kinds of device-dependent semantics: geometry and rasterization.

218 modified August 1994

XGL Graphics Library XGL_CTX_PICK_APERTURE (3)

Geometry Semantic
In the geometry picking semantics, the pickable part is the geometric description.
For lines and edges, for example, their mathematical center line is used. The line
or edge style, cap, join, pattern, width, and anti-aliasing have no effect on pick-
ing. For hollow polygons, the bounding lines are picked. The surface stipple fill
style picks no differently than the solid fill style does. The geometry semantic is
preferred for performance reasons on devices that have no hardware picking
support.

Rasterization Semantic
In the rasterization picking semantics, the pickable part is whatever would be
rendered. The rasterization semantic is preferred for performance reasons on
devices that provide hardware picking support.

Some examples comparing the two approaches appear below. Assume for this chart that
the XGL_CTX_PICK_SURF_STYLE is XGL_PICK_SURF_AS_FILL_STYLE.

PICK APERTURE PICKED?
OBJECT IS PLACED EXCLUSIVELY ON... GEOMETRY RASTERIZATION

patterned stroke Off part of line pattern Y N

wide stroke Not over center line, N Y
over wide pixels

anti-aliased stroke Not over center line, just over N Y
outermost anti-aliased pixel

stippled polygon Part of polygon where Y N
stipple pattern is OFF

any geometry where Over a pickable part of prim Y N
rop is XGL_ROP_NOOP
or plane mask is 0

empty polygon Over a pickable part of prim N N

When a pick event occurs, XGL stores a structure of type Xgl_pick_info into the Context pick
buffer. The Xgl_pick_info structure contains the current values of the pick identifiers, XGL_-

CTX_PICK_ID_1(3) and XGL_CTX_PICK_ID_2(3), associated with the primitive that was picked.
The value of the vertex flag copied into the Xgl_pick_info structure is undefined. The size
of the pick buffer is specified by XGL_CTX_PICK_BUFFER_SIZE(3). Xgl_pick_info data are
added to the pick buffer according to the method specified by XGL_CTX_PICK_STYLE(3).

The attribute XGL_CTX_PICK_ENABLE(3) must be TRUE for picking to occur.

The default value for a 2D Context is [-1,1] × [-1,1], and for a 3D Context it is
[-1,1] × [-1,1] × [-1,1].

This attribute is not pushed by xgl_context_push(3).

modified August 1994 219

XGL_CTX_PICK_APERTURE (3) XGL Graphics Library

SEE ALSO xgl_object_set(3)
xgl_object_get(3)
xgl_pick_clear(3)
xgl_pick_get_identifiers(3)

XGL_CTX_PICK_BUFFER_SIZE(3)
XGL_CTX_PICK_ENABLE(3)
XGL_CTX_PICK_ID_1(3)
XGL_CTX_PICK_ID_2(3)
XGL_CTX_PICK_STYLE(3)
XGL_CTX_PICK_SURF_STYLE(3)

220 modified August 1994

XGL Graphics Library XGL_CTX_PICK_BUFFER_SIZE (3)

NAME XGL_CTX_PICK_BUFFER_SIZE − defines the size of the pick buffer used to store infor-
mation about pick events

SYNOPSIS #include <xgl/xgl.h>

Xgl_ctx ctx;

xgl_object_set(ctx, XGL_CTX_PICK_BUFFER_SIZE, Xgl_usgn32, 0);
xgl_object_get(ctx, XGL_CTX_PICK_BUFFER_SIZE, Xgl_usgn32 ∗);

DESCRIPTION This attribute sets the size of the Context pick buffer, which stores information about pick
events. XGL_CTX_PICK_BUFFER_SIZE(3) is the number of variables of type Xgl_pick_info that
the Context pick buffer holds. Each time a primitive passes through the pick aperture
specified by the attribute XGL_CTX_PICK_APERTURE(3), a variable of type Xgl_pick_info is
added to the pick buffer. Xgl_pick_info data are added to the pick buffer according to the
method specified by XGL_CTX_PICK_STYLE(3). If the buffer overflows, the oldest pick infor-
mation may be dropped, or the new pick information is ignored, depending on the set-
ting of XGL_CTX_PICK_STYLE.

When this attribute is modified, the pick buffer is cleared. It is an error to modify this
attribute when XGL_CTX_PICK_ENABLE is TRUE. If this error occurs, the attribute is not
modified.

The default value is 256.

This attribute is not pushed by xgl_context_push(3).

SEE ALSO xgl_object_set(3)
xgl_object_get(3)
xgl_pick_clear(3)
xgl_pick_get_identifiers(3)

XGL_CTX_PICK_APERTURE(3)
XGL_CTX_PICK_ENABLE(3)
XGL_CTX_PICK_ID_1(3)
XGL_CTX_PICK_ID_2(3)
XGL_CTX_PICK_STYLE(3)

modified August 1994 221

XGL_CTX_PICK_ENABLE (3) XGL Graphics Library

NAME XGL_CTX_PICK_ENABLE − controls whether picking is done

SYNOPSIS #include <xgl/xgl.h>

Xgl_ctx ctx;

xgl_object_set(ctx, XGL_CTX_PICK_ENABLE, Xgl_boolean, 0);
xgl_object_get(ctx, XGL_CTX_PICK_ENABLE, Xgl_boolean ∗);

DESCRIPTION This attribute either turns picking on (when TRUE) or off (when FALSE). For a description
of picking in XGL, see the attribute XGL_CTX_PICK_ID_1(3).

When picking is enabled, rendering is automatically disabled.

Picking applies to all rendering primitives except the following:

xgl_context_clear_accumulation
xgl_context_accumulate
xgl_context_copy_buffer
xgl_context_set_pixel
xgl_context_new_frame
xgl_context_set_multi_pixel
xgl_context_set_pixel_row
xgl_image

When this attribute is set to TRUE, all of the above primitives are treated as non-operations
(NO-OPs).

The default value is FALSE.

This attribute is not pushed by xgl_context_push(3).

SEE ALSO xgl_object_set(3)
xgl_object_get(3)
xgl_pick_clear(3)
xgl_pick_get_identifiers(3)

XGL_CTX_PICK_APERTURE(3)
XGL_CTX_PICK_BUFFER_SIZE(3)
XGL_CTX_PICK_ID_1(3)
XGL_CTX_PICK_ID_2(3)
XGL_CTX_PICK_STYLE(3)

222 modified August 1994

XGL Graphics Library XGL_CTX_PICK_ID_1 (3)

NAME XGL_CTX_PICK_ID_1,
XGL_CTX_PICK_ID_2 − define the pick identifiers used to identify primitives that have
been picked

SYNOPSIS #include <xgl/xgl.h>

Xgl_ctx ctx;

xgl_object_set(ctx, XGL_CTX_PICK_ID_1, Xgl_usgn32, 0);
xgl_object_set(ctx, XGL_CTX_PICK_ID_2, Xgl_usgn32, 0);

xgl_object_get(ctx, XGL_CTX_PICK_ID_1, Xgl_usgn32 ∗);
xgl_object_get(ctx, XGL_CTX_PICK_ID_2, Xgl_usgn32 ∗);

DESCRIPTION These two attributes define XGL’s pick identifiers, and they are used to identify primitives
that are picked. When the picking part of the graphics pipeline is enabled (using the attri-
bute XGL_CTX_PICK_ENABLE(3)), any primitive sent down the pipeline to be rendered will
be checked to see if any part of it is inside the pick aperture. If it is, a pick event is gen-
erated. Note that you can only pick without changing the contents of the display. That
is, by setting XGL_CTX_PICK_ENABLE(3) to TRUE, XGL will disable the rendering engine.
XGL stores picking information into the Context pick buffer. This information includes the
current values of XGL_CTX_PICK_ID_1(3) and XGL_CTX_PICK_ID_2(3). Thus, the application
can identify which primitives were picked depending on how the pick IDs have been set
before each primitive rendering operation.

The operator xgl_pick_get_identifiers(3) is used to retrieve pick IDs of picked primitives.
The Context attribute XGL_CTX_PICK_STYLE(3) controls how the pick IDs are stored in the
pick buffer and the order in which the IDs are returned to the application by subsequent
calls to xgl_pick_get_identifiers.

XGL_CTX_PICK_ID_1 and XGL_CTX_PICK_ID_2 are independent of each other; each can be set
separately.

The default value for the pick ID attributes is 0.

The pick ID attributes are pushed by xgl_context_push(3).

SEE ALSO xgl_object_set(3)
xgl_object_get(3)
xgl_context_push(3)
xgl_pick_clear(3)
xgl_pick_get_identifiers(3)

XGL_CTX_PICK_APERTURE(3)
XGL_CTX_PICK_BUFFER_SIZE(3)
XGL_CTX_PICK_ENABLE(3)
XGL_CTX_PICK_STYLE(3)

modified August 1994 223

XGL_CTX_PICK_STYLE (3) XGL Graphics Library

NAME XGL_CTX_PICK_STYLE − defines how pick IDs are added to the pick buffer when a
primitive is picked

SYNOPSIS #include <xgl/xgl.h>

Xgl_ctx ctx;

xgl_object_set(ctx, XGL_CTX_PICK_STYLE, Xgl_pick_style, 0);
xgl_object_get(ctx, XGL_CTX_PICK_STYLE, Xgl_pick_style ∗);

DESCRIPTION This attribute controls how information associated with pick events is stored into the Con-
text pick buffer when the buffer becomes full. It also controls how pick events are
returned to the application when xgl_pick_get_identifiers(3) is invoked. Two options
are available for this attribute:

XGL_PICK_FIRST_N
The first N pick events (where N is the pick buffer size specified by XGL_CTX_-

PICK_BUFFER_SIZE(3)) are stored in the buffer; subsequent pick events are not buf-
fered. When using xgl_pick_get_identifiers, the events are returned in the order
in which they were stored. The first event is returned as the first element of the
return list.

XGL_PICK_LAST_N
The pick events are stored in a first-in, first-out manner. The first event is
removed to make room for the N+1st event. When using xgl_pick_get_-
identifiers, the events are returned in the reverse order to that in which they were
stored. The last event in the buffer is the first one returned.

The attribute XGL_CTX_PICK_ENABLE(3) must be TRUE for picking to occur. XGL_CTX_PICK_-

STYLE(3) can only be changed when XGL_CTX_PICK_ENABLE is FALSE.

The default value is XGL_PICK_LAST_N.

This attribute is not pushed by xgl_context_push(3).

SEE ALSO xgl_object_set(3)
xgl_object_get(3)
xgl_pick_clear(3)
xgl_pick_get_identifiers(3)

XGL_CTX_PICK_APERTURE(3)
XGL_CTX_PICK_BUFFER_SIZE(3)
XGL_CTX_PICK_ENABLE(3)
XGL_CTX_PICK_ID_1(3)
XGL_CTX_PICK_ID_2(3)

224 modified August 1994

XGL Graphics Library XGL_CTX_PICK_SURF_STYLE (3)

NAME XGL_CTX_PICK_SURF_STYLE − controls how polygon picking occurs

SYNOPSIS #include <xgl/xgl.h>

Xgl_ctx ctx;

xgl_object_set(ctx, XGL_CTX_PICK_SURF_STYLE, Xgl_pick_surf_style, 0);
xgl_object_get(ctx, XGL_CTX_PICK_SURF_STYLE, Xgl_pick_surf_style ∗);

DESCRIPTION This attribute controls how polygon picking occurs. The alternatives for this attribute are
specified by the enumerated data type Xgl_pick_surf_style and are described below:

XGL_PICK_SURF_AS_SOLID
The polygon is picked as a solid polygon, regardless of the current setting of
XGL_CTX_SURF_FRONT_FILL_STYLE or XGL_3D_CTX_SURF_BACK_FILL_STYLE.

XGL_PICK_SURF_AS_FILL_STYLE
The polygon is picked as it is rendered, in accordance with the XGL picking
semantics.

For a description of picking in XGL, see the attribute XGL_CTX_PICK_APERTURE(3). For a
description of polygon fill styles, see the attribute XGL_CTX_SURF_FRONT_FILL_STYLE(3).

The default value is XGL_PICK_SURF_AS_SOLID.

This attribute is not pushed by xgl_context_push(3).

SEE ALSO xgl_object_set(3)
xgl_object_get(3)
xgl_pick_clear(3)
xgl_pick_get_identifiers(3)

XGL_3D_CTX_SURF_BACK_FILL_STYLE(3)
XGL_CTX_PICK_APERTURE(3)
XGL_CTX_PICK_BUFFER_SIZE(3)
XGL_CTX_PICK_ID_1(3)
XGL_CTX_PICK_ID_2(3)
XGL_CTX_PICK_STYLE(3)
XGL_CTX_SURF_FRONT_FILL_STYLE(3)

modified August 1994 225

XGL_CTX_PLANE_MASK (3) XGL Graphics Library

NAME XGL_CTX_PLANE_MASK − defines the pixel plane mask

SYNOPSIS #include <xgl/xgl.h>

Xgl_ctx ctx;

xgl_object_set(ctx, XGL_CTX_PLANE_MASK, Xgl_usgn32, 0);
xgl_object_get(ctx, XGL_CTX_PLANE_MASK, Xgl_usgn32 ∗);

DESCRIPTION This attribute specifies the enable mask for writing to pixel bit planes. Each bit in the
mask corresponds to a bit plane of the pixel. For example, an 8-bit-deep frame buffer
would have 8 bit planes and 8 corresponding bits in XGL_CTX_PLANE_MASK. If a bit is 0 in
the plane mask, writing to that plane is disabled. If a bit is 1, writing to the plane is typi-
cally enabled, although contingent upon the restrictions described below.

Using a plane mask is well defined for indexed Rasters on indexed hardware. With other
combinations, the plane mask may not work as expected (see NOTES below). In general,
the hardware raster pixel values are masked with the source pixel in the hardware
format.

For each bit in each pixel of the Destination Raster, the following expression defines how
the pixel color is computed using the plane mask and the color map:

((rop(src,dst) AND (plane_mask AND plane_mask_mask)) OR (dst AND (NOT
(plane_mask AND plane_mask_mask)))

where:
src is the source pixel to be rendered
dst is the pixel value in the frame buffer
plane_mask is the value of XGL_CTX_PLANE_MASK
rop is the ROP defined by XGL_CTX_ROP
plane_mask_mask is one of the following cases:

· If the device is NOT a window raster, or if the application manages itself the X
colormap (i.e. it has set XGL_CMAP_NAME(3) of the Color Map object associated
with the device that is associated with the context), then the value used for
plane_mask_mask is -1.

· If the device is a window raster, and XGL manipulates the X colormap on
behalf of the application (ie: the application has NOT set XGL_CMAP_NAME(3) of
the Color Map object associated with the device that is associated with the
context), then plane_mask_mask is the set of X pixel bits that XGL has allocated
from X.

This is done in hardware for accelerated window rasters.

The default value is (Xgl_usgn32)-1 (all bits set to 1).

This attribute is pushed by xgl_context_push(3).

SEE ALSO xgl_object_set(3)
xgl_object_get(3)
xgl_context_push(3)

226 modified August 1994

XGL Graphics Library XGL_CTX_PLANE_MASK (3)

XGL_CMAP_NAME(3)
XGL_CTX_ROP(3)

NOTE XGL_CTX_PLANE_MASK(3) is not supported for the following configurations:

RGB on 8-bit rasters
RGB on memory rasters

For accelerated RGB devices, refer to your accelerator guide.

modified August 1994 227

XGL_CTX_RASTER_FILL_STYLE (3) XGL Graphics Library

NAME XGL_CTX_RASTER_FILL_STYLE − defines the fill style used when xgl_context_copy_-
buffer is invoked

SYNOPSIS #include <xgl/xgl.h>

Xgl_ctx ctx;

xgl_object_set(ctx, XGL_CTX_RASTER_FILL_STYLE, Xgl_raster_fill_style, 0);
xgl_object_get(ctx, XGL_CTX_RASTER_FILL_STYLE, Xgl_raster_fill_style ∗);

DESCRIPTION This attribute sets the fill style used when xgl_context_copy_buffer(3) and in certain cases
of xgl_image(3) are invoked. The fill style specifies whether to copy the source Raster
directly to the destination Raster, or whether to perform stippling during the copy. Three
options are currently available for this attribute as defined in the enumerated type
Xgl_raster_fill_style. The options are:

XGL_RAS_FILL_COPY
The source Raster is copied directly to the destination Raster. The arguments to
the xgl_context_copy_buffer call define the rectangular block of pixels that will
be copied.

XGL_RAS_FILL_STENCIL
The copy of the source Raster to the destination Raster is modified by examining
the bit values in the source Raster. If the Pixel value in the source Raster is 1, the
pixel copy operation is done; otherwise, there is no copy and the destination pixel
remains unchanged.

Note: For now, this option only affects 1-bit deep source Raster. If the source
Raster depth is greater than one, the redering results are undefined.

XGL_RAS_FILL_STIPPLE
The copy of the source Raster to the destination Raster is modified by examining
the bit values in the 1-bit-deep XGL Memory Raster specified by XGL_CTX_-

RASTER_FPAT(3). This Memory Raster is mapped to the destination Raster by
using the position specified by the XGL_CTX_RASTER_FPAT_POSITION(3) attribute.
If the XGL_CTX_RASTER_FPAT Memory Raster is smaller than the source Raster, it
will be replicated by tiling, as needed. When a pixel is to be copied from the
source to the destination Raster, the corresponding pixel in the XGL_CTX_RASTER_-
FPAT Memory Raster is checked. If that pixel is 1, the pixel copy operation is
done. Otherwise, there is no copy and the destination pixel remains unchanged.

XGL_RAS_FILL_OPAQUE_STIPPLE
This mode is similar to XGL_RAS_FILL_STIPPLE, except that when the pixel in the
XGL_CTX_RASTER_FPAT Memory Raster is 0, the color defined by the attribute
XGL_CTX_RASTER_STIPPLE_COLOR(3) is copied to the destination Raster.

The copy operation is also affected by the Context attributes XGL_CTX_ROP(3) and XGL_-

CTX_PLANE_MASK(3).

228 modified February 1995

XGL Graphics Library XGL_CTX_RASTER_FILL_STYLE (3)

The default value is XGL_RAS_FILL_COPY.

This attribute is pushed by xgl_context_push(3).

SEE ALSO xgl_object_set(3)
xgl_object_get(3)
xgl_context_push(3)
xgl_context_copy_buffer(3)

XGL_CTX_PLANE_MASK(3)
XGL_CTX_RASTER_FPAT(3)
XGL_CTX_RASTER_FPAT_POSITION(3)
XGL_CTX_RASTER_STIPPLE_COLOR(3)
XGL_CTX_ROP(3)

modified February 1995 229

XGL_CTX_RASTER_FPAT (3) XGL Graphics Library

NAME XGL_CTX_RASTER_FPAT − defines the Memory Raster fill pattern used when xgl_-
context_copy_buffer is invoked using a stipple fill

SYNOPSIS #include <xgl/xgl.h>

Xgl_ctx ctx;

xgl_object_set(ctx, XGL_CTX_RASTER_FPAT, Xgl_mem_ras, 0);
xgl_object_get(ctx, XGL_CTX_RASTER_FPAT, Xgl_mem_ras ∗);

DESCRIPTION This attribute specifies the Memory Raster that contains the pattern used when perform-
ing a stipple fill Raster-to-Raster copy. The operator xgl_context_copy_buffer(3) is used
to do the copy. The XGL_CTX_RASTER_FPAT(3) Memory Raster must be 1-bit deep.

If the Context attribute XGL_CTX_RASTER_FILL_STYLE(3) is set to XGL_RAS_FILL_COPY, then
XGL_CTX_RASTER_FPAT is ignored, and may be NULL.

The following fill patterns are predefined in XGL. They are 1-bit-deep Memory Rasters
that are created when an XGL session begins.

xgl_fpat_hatch_horiz
xgl_fpat_hatch_vert
xgl_fpat_hatch_diag_45
xgl_fpat_hatch_diag_135
xgl_fpat_hatch_grid_r
xgl_fpat_hatch_grid_d
xgl_fpat_hatch_horiz_dbl
xgl_fpat_hatch_vert_dbl
xgl_fpat_hatch_diag_45_dbl
xgl_fpat_hatch_diag_135_dbl
xgl_fpat_hatch_grid_r_dbl
xgl_fpat_hatch_grid_d_dbl

If the Context attribute XGL_CTX_RASTER_FILL_STYLE(3) is set to either XGL_RAS_FILL_STIPPLE
or XGL_RAS_FILL_OPAQUE_STIPPLE, then xgl_context_copy_buffer examines the XGL_CTX_-
RASTER_FPAT Raster and uses it for stippling. The Raster is mapped to the destination
Raster by the Context attribute XGL_CTX_RASTER_FPAT_POSITION(3). When copying to the
destination Raster, the xgl_context_copy_buffer routine checks the bit value of the pixel
corresponding to the position of the destination pixel to determine stippling action. If the
bit is 1, the source pixel is copied directly to the destination pixel. If the bit is 0, and the
XGL_CTX_RASTER_FILL_STYLE is XGL_RAS_FILL_STIPPLE, the destination pixel is left
untouched. Otherwise, if the bit is 0, and the XGL_CTX_RASTER_FILL_STYLE is XGL_RAS_-
FILL_OPAQUE_STIPPLE, the color defined by the Context attribute XGL_CTX_RASTER_-

STIPPLE_COLOR(3) is copied to the destination pixel.

The copy operation is also affected by the Context attributes XGL_CTX_ROP(3) and XGL_-

CTX_PLANE_MASK(3).

230 modified August 1994

XGL Graphics Library XGL_CTX_RASTER_FPAT (3)

The default value is NULL.

This attribute is pushed by xgl_context_push(3).

SEE ALSO xgl_object_set(3)
xgl_object_get(3)
xgl_context_push(3)
xgl_context_copy_buffer(3)

XGL_CTX_PLANE_MASK(3)
XGL_CTX_RASTER_FILL_STYLE(3)
XGL_CTX_RASTER_FPAT_POSITION(3)
XGL_CTX_RASTER_STIPPLE_COLOR(3)
XGL_CTX_ROP(3)

modified August 1994 231

XGL_CTX_RASTER_FPAT_POSITION (3) XGL Graphics Library

NAME XGL_CTX_RASTER_FPAT_POSITION − defines the mapping of the fill pattern Raster
used when xgl_context_copy_buffer is invoked using a stipple fill

SYNOPSIS #include <xgl/xgl.h>

Xgl_ctx ctx;

xgl_object_set(ctx, XGL_CTX_RASTER_FPAT_POSITION, Xgl_pt_i2d ∗, 0);
xgl_object_get(ctx, XGL_CTX_RASTER_FPAT_POSITION, Xgl_pt_i2d ∗);

DESCRIPTION This attribute defines a point, in device coordinates (DC), of the destination Raster that
specifies the origin of the stipple fill pattern Memory Raster used by xgl_context_copy_-
buffer(3).

This attribute; the Raster fill attributes XGL_CTX_RASTER_FPAT(3), XGL_CTX_RASTER_FILL_-

STYLE(3), and XGL_CTX_RASTER_STIPPLE_COLOR(3); and the general Context attributes XGL_-

CTX_ROP(3) and XGL_CTX_PLANE_MASK(3), are all used by xgl_context_copy_buffer.

The default value is (0, 0).

This attribute is pushed by xgl_context_push(3).

SEE ALSO xgl_object_set(3)
xgl_object_get(3)
xgl_context_push(3)
xgl_context_copy_buffer(3)

XGL_CTX_PLANE_MASK(3)
XGL_CTX_RASTER_FILL_STYLE(3)
XGL_CTX_RASTER_FPAT(3)
XGL_CTX_RASTER_STIPPLE_COLOR(3)
XGL_CTX_ROP(3)

232 modified August 1994

XGL Graphics Library XGL_CTX_RASTER_STIPPLE_COLOR (3)

NAME XGL_CTX_RASTER_STIPPLE_COLOR − defines the background color used when xgl_-
context_copy_buffer is invoked using an opaque stipple fill

SYNOPSIS #include <xgl/xgl.h>

Xgl_ctx ctx;

xgl_object_set(ctx, XGL_CTX_RASTER_STIPPLE_COLOR, Xgl_color ∗, 0);
xgl_object_get(ctx, XGL_CTX_RASTER_STIPPLE_COLOR, Xgl_color ∗);

DESCRIPTION This attribute specifies the color to be used as the background color when the Context
attribute XGL_CTX_RASTER_FILL_STYLE(3) is set to XGL_RAS_FILL_OPAQUE_STIPPLE during an
xgl_context_copy_buffer(3) operation. For more information on opaque stipples, see
XGL_CTX_RASTER_FILL_STYLE(3).

The copy operation is also affected by the Context attributes XGL_CTX_ROP(3) and XGL_-

CTX_PLANE_MASK(3).

The color must be set according to the XGL_DEV_COLOR_TYPE(3) attribute of the Raster
associated with the Context. If the Device color type is XGL_COLOR_INDEX, the type of the
color should be XGL_COLOR_INDEX. Likewise, if the Device color type is XGL_COLOR_RGB,
the color passed to the Context should also be XGL_COLOR_RGB.

When specifying a color of type XGL_COLOR_INDEX, the value given as the index should be
consistent with the size of the color table within the Device Color Map object associated
with the Context (see XGL_DEV_COLOR_MAP(3)).

The default value is: INDEX 1 or RGB (green).

This attribute is pushed by xgl_context_push(3).

SEE ALSO xgl_object_set(3)
xgl_object_get(3)
xgl_context_push(3)
xgl_context_copy_buffer(3)

XGL_CTX_PLANE_MASK(3)
XGL_CTX_RASTER_FILL_STYLE(3)
XGL_CTX_RASTER_FPAT(3)
XGL_CTX_RASTER_FPAT_POSITION(3)
XGL_CTX_ROP(3)

modified August 1994 233

XGL_CTX_RENDER_BUFFER (3) XGL Graphics Library

NAME XGL_CTX_RENDER_BUFFER − controls where rendering is done

SYNOPSIS #include <xgl/xgl.h>

Xgl_ctx ctx;

xgl_object_set(ctx, XGL_CTX_RENDER_BUFFER, Xgl_render_mode, 0);
xgl_object_get(ctx, XGL_CTX_RENDER_BUFFER, Xgl_render_mode ∗);

DESCRIPTION This attribute controls where primitives are to be rendered on the Device associated with
the Context ctx.

The value of this attribute is the logical OR’ing of the buffer options listed below. The
available buffer options are specified by the data type Xgl_render_mode. The possible
values are:

XGL_RENDER_DRAW_BUFFER
The primitive operations are rendered onto the draw buffer of the raster.

XGL_RENDER_DISPLAY_BUFFER
The primitive operations are rendered onto the display buffer of the raster. This
option is ignored for memory rasters and single buffered window rasters. Thus,
this option has an impact only on double buffered window rasters. Also, the use
of XGL_RENDER_DISPLAY_BUFFER for anything other than
xgl_context_copy_buffer(3) is not recommended. See the frame buffer accelera-
tor guide for your hardware.

XGL_RENDER_Z_BUFFER
The XGL primitive operators are treated as non-operations (NO-OPs). This attri-
bute value is used only during raster operations, xgl_context_copy_buffer(3),
xgl_context_set_multi_pixel(3), xgl_context_set_pixel(3), and xgl_context_set_-
pixel_row(3). In order for this attribute value to be effective, the attribute XGL_-

3D_CTX_HLHSR_MODE(3) should be XGL_HLHSR_Z_BUFFER during the raster opera-
tions.

The default value is XGL_RENDER_DRAW_BUFFER.

This attribute is not pushed by xgl_context_push(3).

SEE ALSO xgl_object_set(3)
xgl_object_get(3)
xgl_context_push(3)
xgl_context_copy_buffer(3)
xgl_context_set_multi_pixel(3)
xgl_context_set_pixel(3)
xgl_context_set_pixel_row(3)

XGL_3D_CTX_HLHSR_MODE(3)

234 modified August 1995

XGL Graphics Library XGL_CTX_RENDERING_ORDER (3)

NAME XGL_CTX_RENDERING_ORDER − allows a device to alter the rendering order of primi-
tives

SYNOPSIS #include <xgl/xgl.h>

Xgl_ctx ctx;

xgl_object_set(ctx, XGL_CTX_RENDERING_ORDER, Xgl_rendering_order, 0);
xgl_object_get(ctx, XGL_CTX_RENDERING_ORDER, Xgl_rendering_order ∗);

DESCRIPTION This attribute is used to allow hardware devices to batch primitives in a more efficient
way to yield faster rendering performance. This attribute may have no effect if your
hardware platform does not support rendering order.

Suppose an application draws a polyline, then a polygon and then another polyline. On
some hardware accelerators, this could mean swapping in the line attributes, drawing a
polyline, swapping in the polygon attributes, drawing a polygon and finally swapping in
the polyline attributes again to draw the final polyline. Rendering performance could be
increased on such a device if the device were allowed to render both polylines together
and then render the polygon, resulting in less attribute swapping.

The possible values for this attribute are as follows:

XGL_RENDERING_ORDER_GIVEN
Rendering is done in the same order as the XGL calls. No reordering of the primi-
tives is allowed.

XGL_RENDERING_ORDER_HLHSR
The hardware accelerator can alter the rendering order only if XGL_3D_CTX_-

HLHSR_MODE(3) is set to XGL_HLHSR_Z_BUFFER. If XGL_3D_CTX_HLHSR_MODE(3) is
set to XGL_HLHSR_NONE then no reordering of the primitives is allowed. For 2D
Contexts, this value performs the same as XGL_RENDERING_ORDER_GIVEN.

XGL_RENDERING_ORDER_ANY
The hardware accelerator is free to alter the rendering order. If XGL_3D_CTX_-

HLHSR_MODE(3) is set to XGL_HLHSR_NONE or the Context is 2D, and the accelerator
reorders the primitives, the image may not appear as the user expects.

The default value is XGL_RENDERING_ORDER_GIVEN

This attribute is not pushed by xgl_context_push(3).

SEE ALSO xgl_object_set(3)
xgl_object_get(3)

XGL_3D_CTX_HLHSR_MODE(3)

modified August 1994 235

XGL_CTX_ROP (3) XGL Graphics Library

NAME XGL_CTX_ROP − defines the Raster operation (ROP)

SYNOPSIS #include <xgl/xgl.h>

Xgl_ctx ctx;

xgl_object_set(ctx, XGL_CTX_ROP, Xgl_rop_mode, 0);
xgl_object_get(ctx, XGL_CTX_ROP, Xgl_rop_mode ∗);

DESCRIPTION This attribute defines the Raster operation (ROP) for the Context ctx. A ROP specifies how
the source and destination pixels are logically combined to produce the result written to
the Destination Raster. All XGL graphics primitives are rendered using this logical opera-
tion to combine the source and destination information. For primitive operations, the
source is the set of pixels comprising the graphics primitive (for example, the pixels along
a line produced by the xgl_multipolyline(3) call), and the destination is the Raster associ-
ated with the current Context.

The source, destination, and plane_mask are combined, using the algorithm shown
below, to yield the new destination pixel values. For each bit in each pixel of the destina-
tion drawable, the following expression defines whether that bit is set.

((rop(src,dst) AND (plane_mask AND plane_mask_mask)) OR (dst AND (NOT
(plane_mask AND plane_mask_mask)))

where:
src is the source pixel to be rendered
dst is the pixel value in the frame buffer
plane_mask is the value of XGL_CTX_PLANE_MASK
rop is the ROP defined by XGL_CTX_ROP
plane_mask_mask is one of the following cases:

· If the device is NOT a window raster, or if the application manages itself the X
colormap (i.e. it has set XGL_CMAP_NAME(3) of the Color Map object associated
with the device that is associated with the context), then the value used for
plane_mask_mask is -1.

· If the device is a window raster, and XGL manipulates the X colormap on
behalf of the application (ie: the application has NOT set XGL_CMAP_NAME(3) of
the Color Map object associated with the device that is associated with the
context), then plane_mask_mask is the set of X pixel bits that XGL has allocated
from X.

This is done in hardware for accelerated window rasters.

The options available for this attribute are shown below along with the corresponding
logical operation:

XGL_ROP_CLEAR
Clear destination − result = 0 (i.e. all bits are reset to 0)

XGL_ROP_SET
Set destination − result = -1 (i.e. all bits are set to 1)

236 modified August 1994

XGL Graphics Library XGL_CTX_ROP (3)

XGL_ROP_COPY
Copy source to destination − result = source

XGL_ROP_COPY_INVERTED
Copy 1’s complement of source to destination − result = !source

XGL_ROP_INVERT
Invert destination − result = !dest

XGL_ROP_AND
AND source and destination − result = source & dest

XGL_ROP_AND_REVERSE
For each bit set in the destination, clear the source and write the source to the
destination − result = source & (!dest)

XGL_ROP_AND_INVERTED
For each bit set in the source, erase destination − result = (!source) & dest

XGL_ROP_NAND
NAND source with destination − result = !(source & dest)

XGL_ROP_OR
OR source with destination − result = source | dest

XGL_ROP_OR_REVERSE
Replace the destination with the OR of the source and the 1’s complement of the
destination − result = source | (!dest)

XGL_ROP_OR_INVERTED
OR of the destination with the 1’s complement of the source −
result = !(source) | dest

XGL_ROP_NOR
NOR source with destination − result = !(source | dest)

XGL_ROP_XOR
Exclusive OR source with destination − result = source ˆ dest

XGL_ROP_EQUIV
For each bit in source and destination that are equivalent, set the bit in the desti-
nation. For those that are not equivalent, clear the destination −
result = !(source ˆ dest)

XGL_ROP_NOOP
Do nothing − result = dest

The default value is XGL_ROP_COPY.

This attribute is pushed by xgl_context_push(3).

SEE ALSO xgl_object_set(3)
xgl_object_get(3)
xgl_context_push(3)

modified August 1994 237

XGL_CTX_ROP (3) XGL Graphics Library

XGL_CMAP_NAME(3)
XGL_CTX_PLANE_MASK(3)

NOTE For accelerated RGB devices, refer to your accelerator guide.

238 modified August 1994

XGL Graphics Library XGL_CTX_SFONT_0 (3)

NAME XGL_CTX_SFONT_0,
XGL_CTX_SFONT_1,
XGL_CTX_SFONT_2,
XGL_CTX_SFONT_3 − specify which Stroke Font objects are used within the current
Context

SYNOPSIS #include <xgl/xgl.h>

Xgl_ctx ctx;

xgl_object_set(ctx, XGL_CTX_SFONT_x, Xgl_sfont, 0);
xgl_object_get(ctx, XGL_CTX_SFONT_x, Xgl_sfont ∗);
where x can be any of 0, 1, 2, or 3

DESCRIPTION These attributes select the Stroke Font objects in use in the Context ctx for all subsequent
stroke text rendering operations using either xgl_stroke_text(3), xgl_annotation_text(3),
or xgl_stroke_text_extent(3).

Character set 0 applies for both ISO or MBY/multi-byte encodings. Character sets 1, 2,
and 3 only apply in the case of Extended UNIX Code/Multi-Byte (MBY) encoding. ISO or
MBY encoding can be selected with the context attribute XGL_CTX_STEXT_CHAR_-

ENCODING(3).

Before a Stroke Font can be selected with one of these attributes, it must first be ‘‘created’’
using the xgl_object_create(3) operator. xgl_object_create returns a handle to the
requested Stroke Font object, which can then be used to set the XGL_CTX_SFONT_x attri-
butes.

Stroke text is drawn as a series of vectors (or strokes), and can be clipped with a max-
imum of precision when rendering onto the Device attached to the Context. As a bound-
ing box is computed for the text before rendering, the XGL_CTX_THRESHOLD(3) attribute
applies for stroke text.

XGL supports different Stroke Fonts. For a complete list of the supported fonts, see the
XGL_SFONT_NAME(3) Stroke Font attribute.

For a description of the ISO or MBY schemes, see the Context attribute XGL_CTX_STEXT_-

CHAR_ENCODING(3).

Because MBY uses the most significant bit (MSB) of characters to determine the codeset,
applications should not use this bit for purposes other than controlling the codeset of the
character. Applications can use full 8 bit characters when ISO encoding is selected.

The default value is a Stroke Font of name Roman_M for character set 0. The three other
character sets are not used by default.

These attributes are pushed by xgl_context_push(3).

modified August 1994 239

XGL_CTX_SFONT_0 (3) XGL Graphics Library

SEE ALSO xgl_object_set(3)
xgl_object_get(3)
xgl_context_push(3)
xgl_object_create(3)
xgl_annotation_text(3)
xgl_stroke_text(3)
xgl_stroke_text_extent(3)

XGL_CTX_STEXT_CHAR_ENCODING(3)
XGL_CTX_THRESHOLD(3)
XGL_SFONT_NAME(3)

240 modified August 1994

XGL Graphics Library XGL_CTX_STEXT_AA_BLEND_EQ (3)

NAME XGL_CTX_STEXT_AA_BLEND_EQ,
XGL_CTX_STEXT_AA_FILTER_WIDTH,
XGL_CTX_STEXT_AA_FILTER_SHAPE − controls if and how text are antialiased

SYNOPSIS #include <xgl/xgl.h>

Xgl_ctx ctx;

xgl_object_set(ctx, XGL_CTX_STEXT_AA_BLEND_EQ, Xgl_blend_eq, 0);
xgl_object_set(ctx, XGL_CTX_STEXT_AA_FILTER_WIDTH, Xgl_usgn32, 0);
xgl_object_set(ctx, XGL_CTX_STEXT_AA_FILTER_SHAPE, Xgl_filter_shape, 0);

xgl_object_get(ctx, XGL_CTX_STEXT_AA_BLEND_EQ, Xgl_blend_eq ∗);
xgl_object_get(ctx, XGL_CTX_STEXT_AA_FILTER_WIDTH, Xgl_usgn32 ∗);
xgl_object_get(ctx, XGL_CTX_STEXT_AA_FILTER_SHAPE, Xgl_filter_shape ∗);

DESCRIPTION These attributes control if and how text are antialiased. Antialiasing smooths out single-
pixel-wide text by spreading out the spectral energy of the stroke over 2 or more adjacent
pixels. The result is that the sides of the stroke are slightly blurred and, as seen from a
normal viewing distance, smoother than non-antialiased text.

The blurring of the text is done by filtering the stroke onto neighboring pixels. The shape
and size of this filter controls how the antialiased text will look. Currently, XGL_FILTER_-
GAUSSIAN is the only possible value for the XGL_CTX_STEXT_AA_FILTER_SHAPE(3) attribute.

The width of the filter is controlled by the attribute XGL_CTX_STEXT_AA_FILTER_WIDTH(3).
This is the number of pixels touched by the filter. A Device will use the largest filter
width it supports which is less than or equal to the specified filter width. A width of 0 is
not an error and is treated as if the width was 1.

The attribute XGL_CTX_STEXT_AA_BLEND_EQ(3) controls how the pixel values in the
antialiased text are blended with the existing pixel values in the Device. The data type
Xgl_blend_eq has these values:

typedef enum {
XGL_BLEND_NONE,
XGL_BLEND_ARBITRARY_BG,
XGL_BLEND_CONST_BG,
XGL_BLEND_ADD_TO_BG

} Xgl_blend_eq;

The equations used are:

NONE d = s
ARBITRARY_BG d = (s ∗ alpha) + (d ∗ (1 - alpha))
CONST_BG d = ((s - ctx_bg) ∗ alpha) + d
ADD_TO_BG d = (s ∗ alpha) + d

modified August 1994 241

XGL_CTX_STEXT_AA_BLEND_EQ (3) XGL Graphics Library

where:
s = source pixel value
d = destination pixel value
alpha = weight of source pixel
ctx_bg = Context background color

We strongly recommend that antialiasing use XGL_BLEND_ARBITRARY_BG or XGL_BLEND_-
CONST_BG.

All three attributes must have consistent settings in order to achieve visually pleasing
results. Some notes on using these attributes:

· Both the XGL_CTX_STEXT_AA_BLEND_EQ and the XGL_CTX_STEXT_AA_FILTER_-
WIDTH must be set to something other than defaults to achieve antialiasing.

· Setting the XGL_CTX_STEXT_AA_BLEND_EQ to XGL_BLEND_NONE and the XGL_-
CTX_STEXT_AA_FILTER_WIDTH to greater than 1 is a way to undraw antialiased
stroke text. The color used for undrawing is the color that the text would
have been drawn in if antialiasing was off.

· Setting the XGL_CTX_STEXT_AA_BLEND_EQ to other than NONE and the XGL_CTX_-
STEXT_AA_FILTER_WIDTH to 1 is undefined and should not be used. The results
will be device dependent.

The default value for XGL_CTX_STEXT_AA_BLEND_EQ is XGL_BLEND_NONE.

The default value for XGL_CTX_STEXT_AA_FILTER_WIDTH is 1.

The default value for XGL_CTX_STEXT_AA_FILTER_SHAPE is XGL_FILTER_GAUSSIAN.

All these attributes are pushed by xgl_context_push(3).

SEE ALSO xgl_object_set(3)
xgl_object_get(3)
xgl_context_push(3)

NOTES Antialiasing support on 2D Contexts is device dependent.

242 modified August 1994

XGL Graphics Library XGL_CTX_STEXT_ALIGN_HORIZ (3)

NAME XGL_CTX_STEXT_ALIGN_HORIZ − defines the horizontal alignment used for stroke
text characters

SYNOPSIS #include <xgl/xgl.h>

Xgl_ctx ctx;

xgl_object_set(ctx, XGL_CTX_STEXT_ALIGN_HORIZ, Xgl_stext_align_horiz, 0);
xgl_object_get(ctx, XGL_CTX_STEXT_ALIGN_HORIZ, Xgl_stext_align_horiz ∗);

DESCRIPTION This attribute specifies the horizontal alignment used when rendering stroke text charac-
ters in the Context ctx. In XGL, stroke text can be rendered using four different horizontal
alignments with respect to the text position. The following values are allowed:

XGL_STEXT_ALIGN_HORIZ_RIGHT
XGL_STEXT_ALIGN_HORIZ_NORMAL

These values specify a text rendered at the right side of the position of the string.

XGL_STEXT_ALIGN_HORIZ_LEFT
This value should be used each time an application wants the text to be on the
left side of the position given for the stroke text operator.

XGL_STEXT_ALIGN_HORIZ_CENTER
This value centers the text on the position given for the stroke text operator.

The application can use this attribute to specify how the text string should be aligned
with respect to the position of the text. When rendering stroke text using the xgl_-
stroke_text(3) operator, the characters are interpreted from the stroke text file in text local
coordinates (TLC). This coordinate system is independent of the application’s coordinate
system, and the stroke characters are transformed to match the given size value in the
application’s model coordinate (MC) system.

The default value is XGL_STEXT_ALIGN_HORIZ_NORMAL.

This attribute is pushed by xgl_context_push(3).

SEE ALSO xgl_object_set(3)
xgl_object_get(3)
xgl_context_push(3)
xgl_stroke_text(3)

modified August 1994 243

XGL_CTX_STEXT_ALIGN_VERT (3) XGL Graphics Library

NAME XGL_CTX_STEXT_ALIGN_VERT − defines the vertical alignment used for stroke text

SYNOPSIS #include <xgl/xgl.h>

Xgl_ctx ctx;

xgl_object_set(ctx, XGL_CTX_STEXT_ALIGN_VERT, Xgl_stext_align_vert, 0);
xgl_object_get(ctx, XGL_CTX_STEXT_ALIGN_VERT, Xgl_stext_align_vert ∗);

DESCRIPTION This attribute specifies the vertical alignment used when rendering stroke text characters
in the Context ctx. In XGL, stroke text can be rendered using six different vertical align-
ments with respect to the text position. The following values are allowed:

XGL_STEXT_ALIGN_VERT_BASE
XGL_STEXT_ALIGN_VERT_NORMAL

Indicates that the base line of the character cells must map on the position
specified for the string.

XGL_STEXT_ALIGN_VERT_BOTTOM
XGL_STEXT_ALIGN_VERT_TOP

Used each time an application wants the position given for stroke text operators
to match the bottom line or the top line, respectively, of the character cells used
in the current font.

XGL_STEXT_ALIGN_VERT_HALF
Ensures that the text will be vertically centered on the position given to the stroke
text operators.

XGL_STEXT_ALIGN_VERT_CAP
Maps the cap line of character cells to the position given for the stroke text opera-
tors.

The application can use this attribute to specify how the text string should be aligned
with respect to the position of the text. When rendering stroke text using the xgl_-
stroke_text(3) operator, the characters are interpreted from stroke text file in text local
coordinates (TLC). This coordinate system is independent of the application’s coordinate
system, and the stroke characters are transformed to match the given size value in the
application’s model coordinate (MC) system.

The default value is XGL_STEXT_ALIGN_VERT_NORMAL.

This attribute is pushed by xgl_context_push(3).

SEE ALSO xgl_object_set(3)
xgl_object_get(3)
xgl_context_push(3)
xgl_stroke_text(3)

244 modified August 1994

XGL Graphics Library XGL_CTX_STEXT_CHAR_ENCODING (3)

NAME XGL_CTX_STEXT_CHAR_ENCODING − specifies which character encoding scheme is
used with stroke text

SYNOPSIS #include <xgl/xgl.h>

Xgl_ctx ctx;

xgl_object_set(ctx, XGL_CTX_STEXT_CHAR_ENCODING, Xgl_char_encoding, 0);
xgl_object_get(ctx, XGL_CTX_STEXT_CHAR_ENCODING, Xgl_char_encoding ∗);

DESCRIPTION
Purpose This attribute specifies which encoding scheme is used when passing text to the following

XGL stroke text primitives:
xgl_stroke_text(3)
xgl_annotation_text(3)
xgl_stroke_text_extent(3)

Encoding Values The current version of XGL supports several text encoding schemes:
Extended Unix Code, or multi-byte (MBY) encoding with single or multiple strings,
ISO encoding with single or multiple strings.

These schemes can be selected by changing the Context attribute XGL_CTX_STEXT_CHAR_-
ENCODING by or-ing together two of the following values:

XGL_CHAR_MBY, XGL_CHAR_ISO
XGL_CHAR_MBY selects EUC/multi-byte encoding. XGL accepts up to four different
fonts per Context object to support internationalization extensions. XGL provides
the ability to switch between different languages or character sets, and can
display characters from very large character sets. XGL_CHAR_ISO selects ISO
encoding. In that case, the 256 entries of a single font can be used.

XGL_SINGLE_STR, XGL_MULTI_STR
XGL_SINGLE_STR selects the font(s) from the context, and the string of characters to
render is a normal C string. XGL_MULTI_STR selects multiple strings encoding.
XGL accepts texts composed of sets of (font, string) elements. Each string in a
particular set is rendered using the Font object associated with it. There is no
limit to the number of sets accepted in this coding scheme.

EUC encoding EUC defines an encoding for character-encoding that allows multibyte characters as well
as the mixing of different character sets within a string. EUC encoding uses bit patterns
and control characters to select the different character sets in the string. XGL supports up
to four character-encoding sequences, also called codesets. Codesets are numbered 0 to 3.
EUC encoding uses the most significant bit (MSB) of the character byte and two special
characters, SS2 and SS3, to map the characters in the input string into the codesets.

Codeset 0 is defined as characters with MSB set to 0. This is normal 7-bit ASCII character
encoding.

modified August 1994 245

XGL_CTX_STEXT_CHAR_ENCODING (3) XGL Graphics Library

Codeset 1 is defined as characters with MSB set to 1. This is equivalent to a logical OR of
the character with octal value ‘200. ASCII A (‘101) encoded in codeset 1 is octal ‘301.

Codeset 2 is defined as characters with MSB set to 1 and preceded by a single shift byte,
called SS2. SS2 has the value 0x8E (octal ‘216). ASCII A (‘101) encoded in codeset 2 is
‘216‘301.

Codeset 3 is also defined as characters with MSB set to 1, but preceded by a single shift
byte, called SS3. SS3 has the value 0x8F (octal ‘217). ASCII A (‘101) encoded in codeset 3 is
‘217‘301.

Because MBY uses the MSB of characters to determine the codeset, applications should not
use this bit for purposes other than controlling the codeset of the character.

Some character sets, such as Japanese Kanji require two bytes to display one character. In
these cases, the two bytes are encoded the same way. For example, if a Kanji character is
‘101‘102 in codeset 0, it will be ‘217‘301‘302 in codeset 3.

Example

Many Japanese applications use EUC to encode English, Kanji, and Katakana (phonetic
Japanese) characters within a single string. The codesets are often associated with charac-
ter sets as follows:

Codeset 0 - ASCII
Codeset 1 - Kanji characters, each pair of input bytes specifies one Kanji character
Codeset 2 - Katakana characters
Codeset 3 - Implementation-dependent

Codeset 3 could be used for an additional character set, such as one for special symbols.

ISO encoding ISO defines 256 entries character sets that contain accentuation and character symbols fre-
quently used. When this attribute is selected, XGL complies with the ISO 8859 normaliza-
tion. XGL-3.0 fonts comply to this standard.

Single string
encoding

Single string encoding is the simplest way of handing text to XGL. A single C-like (NULL-
terminated) text string is passed to the text functions.

Multiple string
encoding

Multiple string encoding represents strings as an array of (font, string) elements, using a
structure of type Xgl_mono_text_list as defined in xgl_struct(3). When using this encod-
ing scheme, the application provides text as an array of Xgl_mono_text structures. XGL
scans each structure, loading the corresponding font and extracting the characters from
the string to be rendered. Each sub-string is concatenated to the previous one, forming a
single string of text when rendered.

The default value for this attribute is XGL_SINGLE_STR | XGL_CHAR_MBY. In the next major
release of XGL, the default value for this attribute will change to XGL_SINGLE_STR |
XGL_CHAR_ISO.

This attribute is pushed by xgl_context_push(3).

246 modified August 1994

XGL Graphics Library XGL_CTX_STEXT_CHAR_ENCODING (3)

SEE ALSO xgl_object_set(3)
xgl_object_get(3)
xgl_context_push(3)
xgl_annotation_text(3)
xgl_stroke_text(3)
xgl_stroke_text_extent(3)

modified August 1994 247

XGL_CTX_STEXT_CHAR_EXPANSION_FACTOR (3) XGL Graphics Library

NAME XGL_CTX_STEXT_CHAR_EXPANSION_FACTOR − defines the horizontal expansion
applied to stroke text characters

SYNOPSIS #include <xgl/xgl.h>

Xgl_ctx ctx;

xgl_object_set(ctx, XGL_CTX_STEXT_CHAR_EXPANSION_FACTOR, float, 0);
xgl_object_get(ctx, XGL_CTX_STEXT_CHAR_EXPANSION_FACTOR, float ∗);

DESCRIPTION This attribute specifies the horizontal expansion factor of stroke text characters within the
Context ctx. It is expressed as a positive factor of the nominal character height, as
specified by the XGL_CTX_STEXT_CHAR_HEIGHT(3) attribute.

When rendering stroke text using xgl_stroke_text(3), the characters are interpreted from
stroke text file in text local coordinates (TLC). This coordinate system is independent of
the application’s coordinate system, and the stroke characters are transformed to match
the given size value in the application’s model coordinate (MC) system.

XGL_CTX_STEXT_CHAR_EXPANSION_FACTOR is used to modify the width of the characters
without changing the character height or the spacing between characters. The resultant
character width becomes:

H × E

where H = character height − XGL_CTX_STEXT_CHAR_HEIGHT(3)

E = character expansion factor − XGL_CTX_STEXT_CHAR_EXPANSION_FACTOR(3)

The space between characters can be modified by using the XGL_CTX_STEXT_CHAR_-

SPACING(3) attribute.

The default value is 1.0.

This attribute is pushed by xgl_context_push(3).

SEE ALSO xgl_object_set(3)
xgl_object_get(3)
xgl_context_push(3)
xgl_stroke_text(3)

XGL_CTX_STEXT_CHAR_HEIGHT(3)
XGL_CTX_STEXT_CHAR_SPACING(3)

248 modified August 1994

XGL Graphics Library XGL_CTX_STEXT_CHAR_HEIGHT (3)

NAME XGL_CTX_STEXT_CHAR_HEIGHT − defines the nominal size of stroke text characters

SYNOPSIS #include <xgl/xgl.h>

Xgl_ctx ctx;

xgl_object_set(ctx, XGL_CTX_STEXT_CHAR_HEIGHT, float, 0);
xgl_object_get(ctx, XGL_CTX_STEXT_CHAR_HEIGHT, float ∗);

DESCRIPTION This attribute specifies the nominal height of stroke text characters, expressed in the
application’s local model coordinates (LMC). (See XGL_CTX_LOCAL_MODEL_TRANS(3).)

When rendering stroke text using xgl_stroke_text(3), the characters are interpreted from
the stroke text data file in text local coordinates (TLC). This coordinate system is indepen-
dent of the application’s coordinate system, and the stroke characters are transformed to
match the given size value in the application’s model coordinate (MC) system.

This attribute affects the size of XGL characters globally. Not only does it affect the char-
acter height, but it also affects the character width and the spacing between characters
(see XGL_CTX_STEXT_CHAR_SPACING(3) and XGL_CTX_STEXT_CHAR_EXPANSION_FACTOR(3)).

The default value is 100.0.

This attribute is pushed by xgl_context_push(3).

SEE ALSO xgl_object_set(3)
xgl_object_get(3)
xgl_context_push(3)
xgl_stroke_text(3)

XGL_CTX_LOCAL_MODEL_TRANS(3)
XGL_CTX_STEXT_CHAR_EXPANSION_FACTOR(3)
XGL_CTX_STEXT_CHAR_SPACING(3)

modified August 1994 249

XGL_CTX_STEXT_CHAR_SLANT_ANGLE (3) XGL Graphics Library

NAME XGL_CTX_STEXT_CHAR_SLANT_ANGLE − defines the angle that stroke text makes
with the upright direction

SYNOPSIS #include <xgl/xgl.h>

Xgl_ctx ctx;

xgl_object_set(ctx, XGL_CTX_STEXT_CHAR_SLANT_ANGLE, float, 0);
xgl_object_get(ctx, XGL_CTX_STEXT_CHAR_SLANT_ANGLE, float ∗);

DESCRIPTION This attribute specifies the angle of inclination of stroke text characters, expressed as an
angle (in radians) with respect to the upright direction.

When rendering stroke text using xgl_stroke_text(3), the characters are interpreted from
the stroke text file in text local coordinates (TLC). This coordinate system is independent
of the user’s coordinates, and the stroke characters are transformed to match the given
size value in the user’s model coordinates (MC) system.

This attribute is used to modify the appearance of the characters without changing their
spacing, height, and width. It can take values between −π/2 and +π/2. A slant angle
between −π/2 and 0 slants the characters in the backward direction. A slant angle
between 0 and +π/2 slants the characters in the forward direction.

This attribute does not affect the text alignment, as specified by the attributes XGL_CTX_-

STEXT_ALIGN_HORIZ(3) and XGL_CTX_STEXT_ALIGN_VERT(3).

The default value is 0.0.

This attribute is pushed by xgl_context_push(3).

SEE ALSO xgl_object_set(3)
xgl_object_get(3)
xgl_context_push(3)
xgl_stroke_text(3)

XGL_CTX_STEXT_ALIGN_HORIZ(3)
XGL_CTX_STEXT_ALIGN_VERT(3)

250 modified August 1994

XGL Graphics Library XGL_CTX_STEXT_CHAR_SPACING (3)

NAME XGL_CTX_STEXT_CHAR_SPACING − defines the size of the gap between characters

SYNOPSIS #include <xgl/xgl.h>

Xgl_ctx ctx;

xgl_object_set(ctx, XGL_CTX_STEXT_CHAR_SPACING, float, 0);
xgl_object_get(ctx, XGL_CTX_STEXT_CHAR_SPACING, float ∗);

DESCRIPTION This attribute specifies the space provided between two consecutive stroke text characters
drawn in the Context ctx. It is expressed as a fraction of the character height specified by
the XGL_CTX_STEXT_CHAR_HEIGHT(3) attribute.

When rendering stroke text using xgl_stroke_text(3), the characters are interpreted from
the stroke text file in text local coordinates (TLC). This coordinate system is independent
of the application’s coordinate system, and the stroke characters are transformed to
match the given size value in the application’s coordinate system.

XGL_CTX_STEXT_CHAR_SPACING is used to modify the spacing of stroke text characters
without changing their height and width. The actual space between characters is defined
as:

O + (S × H)

where O = the original character spacing defined in the font file (usually 0)

S = the character spacing (the value of XGL_CTX_STEXT_CHAR_SPACING)

H = the character height (the value of XGL_CTX_STEXT_CHAR_HEIGHT)

For example, a value of 0.0 for XGL_CTX_STEXT_CHAR_SPACING adds no more additional
spacing between characters than what is initially defined in the font file; a value of 1.0
adds space equal to one unit of nominal character height.

The default value is 0.0.

This attribute is pushed by xgl_context_push(3).

SEE ALSO xgl_object_set(3)
xgl_object_get(3)
xgl_context_push(3)
xgl_stroke_text(3)

XGL_CTX_STEXT_CHAR_HEIGHT(3)

modified August 1994 251

XGL_CTX_STEXT_CHAR_UP_VECTOR (3) XGL Graphics Library

NAME XGL_CTX_STEXT_CHAR_UP_VECTOR − defines the up vector for stroke characters

SYNOPSIS #include <xgl/xgl.h>

Xgl_ctx ctx;

xgl_object_set(ctx, XGL_CTX_STEXT_CHAR_UP_VECTOR, Xgl_pt_f2d ∗, 0);
xgl_object_get(ctx, XGL_CTX_STEXT_CHAR_UP_VECTOR, Xgl_pt_f2d ∗);

DESCRIPTION This attribute specifies the up vector for stroke characters within the Context ctx. The up
vector gives the up direction of characters in text local coordinates (TLC).

Changing the up vector is equivalent to defining a rotation for the characters when text is
rendered using the xgl_stroke_text(3) operator. This vector is independent of the orien-
tation of the virtual device coordinates (VDC) set by the application with the XGL_CTX_-

VDC_ORIENTATION(3) attribute.

With the VDC orientation set to either XGL_Y_UP_Z_TOWARD or XGL_Y_DOWN_Z_AWAY, an
up vector of (0.0, 1.0) renders the text normally. XGL automatically sets the correct inter-
nal values to the transformation of the TLC so that the VDC orientation does not have any
effect on the text to display.

The character up vector is ignored when computing the text extent rectangle bounding
the string (see xgl_stroke_text_extent(3)).

The default value is (0.0, 1.0).

This attribute is pushed by xgl_context_push(3).

SEE ALSO xgl_object_set(3)
xgl_object_get(3)
xgl_context_push(3)
xgl_stroke_text(3)
xgl_stroke_text_extent(3)

XGL_CTX_VDC_ORIENTATION(3)

252 modified August 1994

XGL Graphics Library XGL_CTX_STEXT_COLOR (3)

NAME XGL_CTX_STEXT_COLOR − defines the color used when rendering stroke text charac-
ters

SYNOPSIS #include <xgl/xgl.h>

Xgl_ctx ctx;

xgl_object_set(ctx, XGL_CTX_STEXT_COLOR, Xgl_color ∗, 0);
xgl_object_get(ctx, XGL_CTX_STEXT_COLOR, Xgl_color ∗);

DESCRIPTION This attribute is used to set the color in which stroke text characters are drawn within the
Context ctx, when using the xgl_stroke_text(3) operator.

This color applies only to stroke text rendering.

The color must be set according to the XGL_DEV_COLOR_TYPE(3) attribute of the Raster
associated with the Context. If the Device color type is XGL_COLOR_INDEX, the type of the
color should be XGL_COLOR_INDEX. Likewise, if the Device color type is XGL_COLOR_RGB,
the color passed to the Context should also be XGL_COLOR_RGB.

When specifying a color of type XGL_COLOR_INDEX, the value given as the index should be
consistent with the size of the color table within the Device Color Map object associated
with the Context (see XGL_DEV_COLOR_MAP(3)).

When a Device of color type XGL_COLOR_INDEX is attached to a 3D Context, with depth-
cueing enabled (see XGL_3D_CTX_DEPTH_CUE_MODE(3)), the color table of the Color Map
object associated with the Raster attached to the Context should have consistent ramps to
enable a correct rendering.

The default value is: INDEX 1 or RGB (green).

This attribute is pushed by xgl_context_push(3).

SEE ALSO xgl_object_set(3)
xgl_object_get(3)
xgl_context_push(3)
xgl_stroke_text(3)

XGL_3D_CTX_DEPTH_CUE_MODE(3)
XGL_CMAP_RAMP_LIST(3)
XGL_DEV_COLOR_TYPE(3)
XGL_DEV_COLOR_MAP(3)

modified August 1994 253

XGL_CTX_STEXT_PATH (3) XGL Graphics Library

NAME XGL_CTX_STEXT_PATH − defines the path used when rendering stroke text characters

SYNOPSIS #include <xgl/xgl.h>

Xgl_ctx ctx;

xgl_object_set(ctx, XGL_CTX_STEXT_PATH, Xgl_stext_path, 0);
xgl_object_get(ctx, XGL_CTX_STEXT_PATH, Xgl_stext_path ∗);

DESCRIPTION This attribute specifies the path used when rendering stroke text characters within the
Context ctx. In XGL, stroke text can be rendered in four different directions from the text
position. The following values are allowed to define the text path:

XGL_STEXT_PATH_RIGHT
XGL_STEXT_PATH_LEFT
XGL_STEXT_PATH_UP
XGL_STEXT_PATH_DOWN

The application can use this attribute to specify the direction in which the text should be
rendered. When rendering stroke text using the xgl_stroke_text(3) operator, the charac-
ters are interpreted from the stroke text font file, using the path specified by the applica-
tion, to generate the correct data in text local coordinates (TLC). This coordinate system is
independent of the application’s coordinate system, and the stroke characters are
transformed to match the given size value in the application’s model coordinate (MC)
system.

The default value is XGL_STEXT_PATH_RIGHT.

This attribute is pushed by xgl_context_push(3).

SEE ALSO xgl_object_set(3)
xgl_object_get(3)
xgl_context_push(3)
xgl_stroke_text(3)

254 modified August 1994

XGL Graphics Library XGL_CTX_STEXT_PRECISION (3)

NAME XGL_CTX_STEXT_PRECISION − defines the precision used when rendering stroke text
characters

SYNOPSIS #include <xgl/xgl.h>

Xgl_ctx ctx;

xgl_object_set(ctx, XGL_CTX_STEXT_PRECISION, Xgl_stext_precision, 0);
xgl_object_get(ctx, XGL_CTX_STEXT_PRECISION, Xgl_stext_precision ∗);

DESCRIPTION This attribute specifies the minimum precision used when rendering stroke text charac-
ters within the Context ctx. When using the XGL stroke text operator xgl_stroke_text(3),
an application can ask for a given level of precision. This attribute ensures that a preci-
sion better than or equal to the precision requested by the application will be used to
render stroke text.

Text precision is related to the way a string of text is clipped when falling outside the
clipping boundaries. The following values are allowed to define the text precision:

XGL_STEXT_PRECISION_STROKE
Gives the best results, making sure that the stroke text is clipped with pixel
precision.

XGL_STEXT_PRECISION_CHAR (not currently supported)
May render text faster, but any character partially outside the clipping boun-
daries is completely clipped.

XGL_STEXT_PRECISION_STRING (not currently supported)
Means that if any character of a given string is even partially outside the clipping
boundaries, the entire string is ignored.

The default value is XGL_STEXT_PRECISION_STROKE.

This attribute is pushed by xgl_context_push(3).

SEE ALSO xgl_object_set(3)
xgl_object_get(3)
xgl_context_push(3)
xgl_stroke_text(3)

NOTES XGL_STEXT_PRECISION_CHAR and XGL_STEXT_PRECISION_STRING text precision clipping
modes are not currently supported by XGL.

modified August 1994 255

XGL_CTX_SURF_AA_BLEND_EQ (3) XGL Graphics Library

NAME XGL_CTX_SURF_AA_BLEND_EQ,
XGL_CTX_SURF_AA_FILTER_WIDTH,
XGL_CTX_SURF_AA_FILTER_SHAPE − controls if and how surfaces are antialiased

SYNOPSIS #include <xgl/xgl.h>

Xgl_ctx ctx;

xgl_object_set(ctx, XGL_CTX_SURF_AA_BLEND_EQ, Xgl_blend_eq, 0);
xgl_object_set(ctx, XGL_CTX_SURF_AA_FILTER_WIDTH, Xgl_usgn32, 0);
xgl_object_set(ctx, XGL_CTX_SURF_AA_FILTER_SHAPE, Xgl_filter_shape, 0);

xgl_object_get(ctx, XGL_CTX_SURF_AA_BLEND_EQ, Xgl_blend_eq ∗);
xgl_object_get(ctx, XGL_CTX_SURF_AA_FILTER_WIDTH, Xgl_usgn32 ∗);
xgl_object_get(ctx, XGL_CTX_SURF_AA_FILTER_SHAPE, Xgl_filter_shape ∗);

DESCRIPTION These attributes control if and how surfaces are antialiased. Antialiasing smooths out
only hollow filled surfaces (other fill styles are not antialiased) by spreading out the spec-
tral energy of the stroke over 2 or more adjacent pixels. The result is that the sides of the
stroke are slightly blurred and, as seen from a normal viewing distance, smoother than
non-antialiased surfaces.

The blurring of the surface is done by filtering the stroke onto neighboring pixels. The
shape and size of this filter controls how the antialiased surface will look. Currently,
XGL_FILTER_GAUSSIAN is the only possible value for the XGL_CTX_SURF_AA_FILTER_SHAPE(3)
attribute.

The width of the filter is controlled by the attribute XGL_CTX_SURF_AA_FILTER_WIDTH(3).
This is the number of pixels touched by the filter. A Device will use the largest filter
width it supports which is less than or equal to the specified filter width. A width of 0 is
not an error and is treated as if the width was 1.

The attribute XGL_CTX_SURF_AA_BLEND_EQ(3) controls how the pixel values in the
antialiased surface are blended with the existing pixel values in the Device. The data type
Xgl_blend_eq has these values:

typedef enum {
XGL_BLEND_NONE,
XGL_BLEND_ARBITRARY_BG,
XGL_BLEND_CONST_BG,
XGL_BLEND_ADD_TO_BG

} Xgl_blend_eq;

The equations used are:

NONE d = s
ARBITRARY_BG d = (s ∗ alpha) + (d ∗ (1 - alpha))
CONST_BG d = ((s - ctx_bg) ∗ alpha) + d
ADD_TO_BG d = (s ∗ alpha) + d

256 modified August 1994

XGL Graphics Library XGL_CTX_SURF_AA_BLEND_EQ (3)

where:
s = source pixel value
d = destination pixel value
alpha = weight of source pixel
ctx_bg = Context background color

We strongly recommend that antialiasing use XGL_BLEND_ARBITRARY_BG or XGL_BLEND_-
CONST_BG.

All three attributes must have consistent settings in order to achieve visually pleasing
results. Some notes on using these attributes:

· Both the XGL_CTX_SURF_AA_BLEND_EQ and the XGL_CTX_SURF_AA_FILTER_WIDTH
must be set to something other than defaults to achieve antialiasing.

· Setting the XGL_CTX_SURF_AA_BLEND_EQ to XGL_BLEND_NONE and the XGL_CTX_-
SURF_AA_FILTER_WIDTH to greater than 1 is a way to undraw antialiased sur-
faces. The color used for undrawing is the color that the surface would have
been drawn in if antialiasing was off.

· Setting the XGL_CTX_SURF_AA_BLEND_EQ to other than NONE and the XGL_CTX_-
SURF_AA_FILTER_WIDTH to 1 is undefined and should not be used. The results
will be device dependent.

The default value for XGL_CTX_SURF_AA_BLEND_EQ is XGL_BLEND_NONE.

The default value for XGL_CTX_SURF_AA_FILTER_WIDTH is 1.

The default value for XGL_CTX_SURF_AA_FILTER_SHAPE is XGL_FILTER_GAUSSIAN.

All these attributes are pushed by xgl_context_push(3).

SEE ALSO xgl_object_set(3)
xgl_object_get(3)
xgl_context_push(3)

XGL_3D_CTX_SURF_TRANSP_BLEND_EQ(3)

NOTES Antialiasing support on 2D Contexts is device dependent.

If both XGL_3D_CTX_SURF_TRANSP_BLEND_EQ(3) and XGL_CTX_SURF_AA_BLEND_EQ(3) are
other than XGL_BLEND_NONE, and a hollow antialiased transparent surface is being drawn,
then the blending equation used will be the value of either the XGL_3D_CTX_SURF_-

TRANSP_BLEND_EQ(3) or the XGL_CTX_SURF_AA_BLEND_EQ(3) attribute, and the choice is
device dependent.

modified August 1994 257

XGL_CTX_SURF_EDGE_FLAG (3) XGL Graphics Library

NAME XGL_CTX_SURF_EDGE_FLAG − controls the drawing of edges around a surface

SYNOPSIS #include <xgl/xgl.h>

Xgl_ctx ctx;

xgl_object_set(ctx, XGL_CTX_SURF_EDGE_FLAG, Xgl_boolean, 0);
xgl_object_get(ctx, XGL_CTX_SURF_EDGE_FLAG, Xgl_boolean ∗);

DESCRIPTION This attribute controls whether edges are drawn around a surface. Drawing edges
around surfaces enhances the perimeter of polygons. Edges are not drawn when the side
of a polygon corresponds to a clipping boundary.

This attribute is a global edge-enabling flag in that it controls edges for all rendered sur-
faces. However, the input point-list data, which describes the surfaces to be rendered,
may also contain an edge flag as part of the data at each vertex (call this a vertex edge flag).
The vertex edge flag is a local flag because if it is set for the jth vertex, it only controls the
edge from the j-1th to the jth vertex. Thus, if vertex edge flag information is provided as
part of the input data, both the vertex edge flag and the XGL_CTX_SURF_EDGE_FLAG(3) attri-
bute must be set for an edge to be drawn. If no vertex edge flags are provided, setting
XGL_CTX_SURF_EDGE_FLAG to TRUE will cause edges to be drawn around all rendered
surfaces.

This attribute is independent of XGL_3D_CTX_SURF_SILHOUETTE_EDGE_FLAG(3), which con-
trols the display of silhouette edges — or the horizons — where solids modeled with sur-
faces change from front-facing to back-facing. Although an application can display both
highlighting edges and silhouette edges simultaneously, a user probably would prefer to
see only one type at any given time.

Edges can be colored, patterned, and depth-cued using the XGL_CTX_EDGE_COLOR(3),
XGL_CTX_EDGE_STYLE(3), and XGL_3D_CTX_DEPTH_CUE_MODE(3) attributes, respectively.
The Pattern object chosen for patterned edges is selected with the XGL_CTX_EDGE_-

PATTERN(3) attribute. Edges can be given a width using the XGL_CTX_EDGE_WIDTH_-

SCALE_FACTOR(3) attribute. The application programmer should be aware that drawing
wide edges can reduce drawing performance.

In a 3D Context, the application programmer can use XGL_CTX_SURF_EDGE_FLAG to pro-
duce a fast hidden−line-removal technique. To do this, first set this attribute to ON.
Then, set the front and back surface colors to the background color (see XGL_3D_CTX_-

SURF_BACK_COLOR(3), XGL_CTX_SURF_FRONT_COLOR(3), and XGL_CTX_BACKGROUND_-

COLOR(3)). Finally, set shading and depth-cueing to XGL_ILLUM_NONE and XGL_DEPTH_-
CUE_OFF, respectively (see XGL_3D_CTX_SURF_BACK_ILLUMINATION(3), XGL_3D_CTX_SURF_-

FRONT_ILLUMINATION(3), and XGL_3D_CTX_DEPTH_CUE_MODE(3)). The rendering will be
equivalent to a fast hidden−line-removal technique.

The default value is FALSE.

This attribute is pushed by xgl_context_push(3).

258 modified August 1994

XGL Graphics Library XGL_CTX_SURF_EDGE_FLAG (3)

SEE ALSO xgl_object_set(3)
xgl_object_get(3)
xgl_context_push(3)

XGL_3D_CTX_DEPTH_CUE_MODE(3)
XGL_3D_CTX_SURF_BACK_COLOR(3)
XGL_3D_CTX_SURF_FRONT_ILLUMINATION(3)
XGL_3D_CTX_SURF_BACK_ILLUMINATION(3)
XGL_3D_CTX_SURF_SILHOUETTE_EDGE_FLAG(3)
XGL_CTX_BACKGROUND_COLOR(3)
XGL_CTX_EDGE_COLOR(3)
XGL_CTX_EDGE_PATTERN(3)
XGL_CTX_EDGE_STYLE(3)
XGL_CTX_EDGE_WIDTH_SCALE_FACTOR(3)
XGL_CTX_SURF_FRONT_COLOR(3)

modified August 1994 259

XGL_CTX_SURF_FRONT_COLOR (3) XGL Graphics Library

NAME XGL_CTX_SURF_FRONT_COLOR,
XGL_3D_CTX_SURF_BACK_COLOR − define the color used to fill surfaces

SYNOPSIS #include <xgl/xgl.h>

Xgl_ctx ctx;

xgl_object_set(ctx, XGL_CTX_SURF_FRONT_COLOR, Xgl_color ∗ , 0);
xgl_object_set(ctx, XGL_3D_CTX_SURF_BACK_COLOR, Xgl_color ∗ , 0);

xgl_object_get(ctx, XGL_CTX_SURF_FRONT_COLOR, Xgl_color ∗);
xgl_object_get(ctx, XGL_3D_CTX_SURF_BACK_COLOR, Xgl_color ∗);

DESCRIPTION These attributes (called the surface color attributes below) specify the front-facing and
back-facing colors used to fill the interior of surfaces under the following conditions:

1. The surface fill style (see attributes XGL_CTX_SURF_FRONT_FILL_STYLE(3) and XGL_3D_-

CTX_SURF_BACK_FILL_STYLE(3)) must be set to one of the following:
XGL_SURF_FILL_SOLID
XGL_SURF_FILL_STIPPLE
XGL_SURF_FILL_HOLLOW
XGL_SURF_FILL_OPAQUE_STIPPLE

2. The surface color selectors (see attributes XGL_CTX_SURF_FRONT_COLOR_SELECTOR(3)
and XGL_3D_CTX_SURF_BACK_COLOR_SELECTOR(3)) and the absence of colors specified
with the facets and/or vertices of the primitive establish that the surface color attri-
butes have precedence. In this case, the surface color attributes specify the colors of
the primitive at the beginning of the rendering pipeline, which may alter the final
rendered surface colors via illumination, shading, and/or depth-cueing.

The differentiation between front- and back-facing surface attributes occurs only if the
attribute XGL_3D_CTX_SURF_FACE_DISTINGUISH(3) is TRUE. Otherwise, front-facing attri-
butes are used for both front- and back-facing surfaces. Also, all surfaces in 2D Contexts
use XGL_CTX_SURF_FRONT_COLOR(3) because there are no back-facing surfaces in 2D Con-
texts.

The color must be set according to the XGL_DEV_COLOR_TYPE(3) attribute of the Raster
associated with the Context. If the Device color type is XGL_COLOR_INDEX, the type of the
color should be XGL_COLOR_INDEX. Likewise, if the Device color type is XGL_COLOR_RGB,
the color passed to the Context should also be XGL_COLOR_RGB.

When specifying a color of type XGL_COLOR_INDEX, the value given as the index should be
consistent with the size of the color table within the Device Color Map object associated
with the Context (see XGL_DEV_COLOR_MAP(3)).

When a Device of color type XGL_COLOR_INDEX is attached to a 3D Context, with depth-
cueing enabled (see XGL_3D_CTX_DEPTH_CUE_MODE(3)), the color table of the Color Map
object associated with the Raster attached to the Context should have consistent ramps to
enable a correct rendering.

260 modified August 1994

XGL Graphics Library XGL_CTX_SURF_FRONT_COLOR (3)

The default value is: INDEX 1 or RGB (green).

This attribute is pushed by xgl_context_push(3).

SEE ALSO xgl_object_set(3)
xgl_object_get(3)
xgl_context_push(3)

XGL_3D_CTX_SURF_BACK_FILL_STYLE(3)
XGL_3D_CTX_SURF_BACK_COLOR_SELECTOR(3)
XGL_3D_CTX_SURF_BACK_ILLUMINATION(3)
XGL_3D_CTX_DEPTH_CUE_MODE(3)
XGL_3D_CTX_SURF_FACE_DISTINGUISH(3)
XGL_3D_CTX_SURF_FRONT_ILLUMINATION(3)
XGL_CTX_SURF_FRONT_COLOR_SELECTOR(3)
XGL_CTX_SURF_FRONT_FILL_STYLE(3)
XGL_DEV_COLOR_TYPE(3)
XGL_DEV_COLOR_MAP(3)

modified August 1994 261

XGL_CTX_SURF_FRONT_COLOR_SELECTOR (3) XGL Graphics Library

NAME XGL_CTX_SURF_FRONT_COLOR_SELECTOR,
XGL_3D_CTX_SURF_BACK_COLOR_SELECTOR − select the source of a surface’s color
from the vertex, facet, or Context

SYNOPSIS #include <xgl/xgl.h>

Xgl_ctx ctx;

xgl_object_set(ctx, XGL_CTX_SURF_FRONT_COLOR_SELECTOR, Xgl_surf_color_sel, 0);
xgl_object_set(ctx, XGL_3D_CTX_SURF_BACK_COLOR_SELECTOR, Xgl_surf_color_sel, 0);

xgl_object_get(ctx, XGL_CTX_SURF_FRONT_COLOR_SELECTOR, Xgl_surf_color_sel ∗);
xgl_object_get(ctx, XGL_3D_CTX_SURF_BACK_COLOR_SELECTOR, Xgl_surf_color_sel ∗);

DESCRIPTION These attributes select the source of a surface’s color from the Context or from the facet or
vertex data provided with a primitive.

When front and back faces are distinguished with XGL_3D_CTX_SURF_FACE_-

DISTINGUISH(3), XGL_CTX_SURF_FRONT_COLOR_SELECTOR(3) specifies the color selection
used for front-facing surfaces in the 2D or 3D Context ctx, and XGL_3D_CTX_SURF_BACK_-

COLOR_SELECTOR(3) specifies the color selection for back-facing surfaces in the 3D Context
ctx. When front and back faces are not distinguished, XGL_CTX_SURF_FRONT_COLOR_-

SELECTOR(3) specifies the color selection for both front- and back-facing surfaces. Four
options are available for this attribute:

XGL_SURF_COLOR_CONTEXT
XGL takes the surface color from the context attributes XGL_CTX_SURF_FRONT_-

COLOR(3) or XGL_3D_CTX_SURF_BACK_COLOR(3) when the surface is back-facing
and face-distinguishing is enabled (XGL_3D_CTX_SURF_FACE_DISTINGUISH(3) is
TRUE). This is the color of the surface at the beginning of the rendering pipeline.
Illumination, shading, and depth-cueing affect the final appearance of the sur-
face.

XGL_SURF_COLOR_FACET
If the data supplied with a surface primitive has colors for the individual facets,
XGL applies these colors to the facets upon entry to the rendering pipeline.
Illumination, shading, and depth-cueing affect the final appearance of the facets.
If the surface primitive does not have facet colors, XGL uses the context surface
colors as described above.

XGL_SURF_COLOR_VERTEX_ILLUM_DEP
This mode applies only to 3D surfaces. In 2D, it gives the same result as XGL_-
SURF_COLOR_FACET.

In 3D, color selection for this mode depends on the illumination/shading model.
If the data supplied with a surface primitive has colors for the individual vertices
and the illumination/shading model requires interpolation of vertex colors (
XGL_3D_CTX_SURF_FRONT_ILLUMINATION(3) is XGL_ILLUM_NONE_INTERP_COLOR or
XGL_ILLUM_PER_VERTEX, or XGL_3D_CTX_SURF_BACK_ILLUMINATION(3) is either of
these two values when the surface is back-facing and face distinguishing is

262 modified August 1994

XGL Graphics Library XGL_CTX_SURF_FRONT_COLOR_SELECTOR (3)

enabled), XGL applies these vertex colors to the vertices upon entry to the render-
ing pipeline. Illumination, shading, and depth-cueing affect the final appearance
of the surface. If the surface primitive does not have colors for the individual
vertices, or the illumination/shading model does not require interpolation of ver-
tex colors, XGL applies the facet colors to the facets when facet colors are sup-
plied with the primitive. If no facet colors are available, XGL uses the Context
colors.

XGL_SURF_COLOR_VERTEX_ILLUM_INDEP
This mode applies only to 3D surfaces. In 2D, it gives the same result as XGL_-
SURF_COLOR_FACET.

In 3D, color selection for this mode is independent of the illumination/shading
model in the sense that XGL always uses the vertex colors when vertex colors are
available.

If the data supplied with a surface primitive has colors for the individual vertices
and the illumination/shading model requires interpolation of vertex colors (
XGL_3D_CTX_SURF_FRONT_ILLUMINATION(3) is XGL_ILLUM_NONE_INTERP_COLOR or
XGL_ILLUM_PER_VERTEX, or XGL_3D_CTX_SURF_BACK_ILLUMINATION(3) is either of
these two values when the surface is back-facing and face distinguishing is
enabled), XGL applies these vertex colors to the vertices upon entry to the render-
ing pipeline. Illumination, shading, and depth-cueing affect the final appearance
of the surface.

If the data supplied with a surface primitive has colors for the individual vertices
and the illumination/shading model does not require interpolation of vertex
colors (XGL_3D_CTX_SURF_FRONT_ILLUMINATION(3) is XGL_ILLUM_NONE or XGL_-
ILLUM_PER_FACET, or XGL_3D_CTX_SURF_BACK_ILLUMINATION(3) is either of these
two values when the surface is back-facing and face distinguishing is enabled),
XGL treats the color stored with the first vertex of a facet as the facet color at the
beginning of the rendering pipeline. For example, in a quadrilateral mesh, a qua-
drilateral formed by the vertices with indices (2, 5), (2, 6), (3, 5), and (3, 6) would
have facet color equivalent to the color stored with vertex (2, 5). In a polygon
with multiple boundaries, the color stored with the first vertex of the first boun-
dary would be the facet color.

If illumination is performed per facet, XGL obtains the normal in the following
way. If each vertex holds both a color and a normal, XGL treats the color and
normal stored with the first vertex of a facet as the facet color and normal at the
beginning of the rendering pipeline. If each vertex holds only a color, XGL
attempts to use the normal stored with the facet data; if one is not available, XGL
calculates a facet normal (see XGL_3D_CTX_SURF_GEOM_NORMAL(3)). The attribute
XGL_3D_CTX_SURF_NORMAL_FLIP(3) applies to the normal when it comes from the
vertex or facet, but not when XGL calculates it.

If the first vertex of a facet is removed by clipping, XGL may select the color and
normal stored at a newly generated vertex on the clipping boundary. The color
and normal there are calculated by interpolating the values stored at the vertices

modified August 1994 263

XGL_CTX_SURF_FRONT_COLOR_SELECTOR (3) XGL Graphics Library

of the original facet’s edge (before clipping).

If the surface primitive does not have colors for the individual vertices, XGL
applies the facet colors to the facets when facet colors are supplied with the prim-
itive. If no facet colors are available, XGL uses the Context colors.

The default value for each attribute is XGL_SURF_COLOR_VERTEX_ILLUM_DEP.

These attributes are pushed by xgl_context_push(3).

SEE ALSO xgl_object_set(3)
xgl_object_get(3)
xgl_context_push(3)

XGL_3D_CTX_SURF_BACK_COLOR(3)
XGL_CTX_SURF_FRONT_COLOR(3)
XGL_3D_CTX_SURF_FACE_DISTINGUISH(3)
XGL_3D_CTX_SURF_BACK_ILLUMINATION(3)
XGL_3D_CTX_SURF_FRONT_ILLUMINATION(3)
XGL_3D_CTX_SURF_GEOM_NORMAL(3)
XGL_3D_CTX_SURF_NORMAL_FLIP(3)

264 modified August 1994

XGL Graphics Library XGL_CTX_SURF_FRONT_FILL_STYLE (3)

NAME XGL_CTX_SURF_FRONT_FILL_STYLE,
XGL_3D_CTX_SURF_BACK_FILL_STYLE − define the method by which surfaces are
filled

SYNOPSIS #include <xgl/xgl.h>

Xgl_ctx ctx;

xgl_object_set(ctx, XGL_CTX_SURF_FRONT_FILL_STYLE, Xgl_surf_fill_style, 0);
xgl_object_set(ctx, XGL_3D_CTX_SURF_BACK_FILL_STYLE, Xgl_surf_fill_style, 0);

xgl_object_get(ctx, XGL_CTX_SURF_FRONT_FILL_STYLE, Xgl_surf_fill_style ∗);
xgl_object_get(ctx, XGL_3D_CTX_SURF_BACK_FILL_STYLE, Xgl_surf_fill_style ∗);

DESCRIPTION These attributes define how a surface is filled. For front-facing surfaces in 3D Contexts
and all surfaces in a 2D Context, XGL_CTX_SURF_FRONT_FILL_STYLE(3) determines the fill
style. For back-facing surfaces in a 3D Context, XGL_3D_CTX_SURF_BACK_FILL_STYLE(3)
determines the fill style when back faces are distinguished from front faces with XGL_3D_-

CTX_SURF_FACE_DISTINGUISH(3); otherwise, XGL_CTX_SURF_FRONT_FILL_STYLE(3) applies to
back-facing surfaces.

Note that for front-facing 3D surfaces and all 2D surfaces, the default surface color is
defined by XGL_CTX_SURF_FRONT_COLOR(3). For back-facing 3D surfaces, the default sur-
face color is defined by XGL_3D_CTX_SURF_BACK_COLOR(3) when back faces are dis-
tinguished from front faces. The surface color selectors (see XGL_CTX_SURF_FRONT_-

COLOR_SELECTOR(3) and XGL_3D_CTX_SURF_BACK_COLOR_SELECTOR(3)) and the availability
or absence of colors specified with the facets and/or vertices of a surface primitive deter-
mine the surface colors that enter the rendering pipeline. The final rendered colors or 3D
surfaces may be altered by lighting, shading, and depth-cueing.

The fill style can have any one of the following values as specified by the data type Xgl_-
surf_fill_style:

XGL_SURF_FILL_SOLID
The interior is filled entirely.

XGL_SURF_FILL_HOLLOW
A line is drawn around the interior of the surface in the surface color; the rest of
the interior is not filled. The width of the line is device-dependent; however, on
Raster devices, the line is 1-pixel wide. Clipping a surface can produce new
boundaries for a surface. In that case, no line is drawn for these new boundaries.
An XGL_SURF_FILL_HOLLOW filled surface can also be drawn with edges (see XGL_-

CTX_SURF_EDGE_FLAG(3)); in this case, the edges overwrite the line that comprises
the hollow surface.

XGL_SURF_FILL_EMPTY
Nothing is drawn for the interior. If edges are requested, however, they will be
drawn around the bounds of the ‘‘invisible’’ surface.

XGL_SURF_FILL_OPAQUE_STIPPLE
Opaque stippling or hatch styles work only with 1-bit-deep fill Rasters (which are

modified August 1994 265

XGL_CTX_SURF_FRONT_FILL_STYLE (3) XGL Graphics Library

Memory Rasters). Depending on the polygon orientation in 3D, each pixel in the
fill Raster, specified by XGL_CTX_SURF_FRONT_FPAT(3) and aligned at the XGL_-

CTX_SURF_FRONT_FPAT_POSITION(3), or XGL_3D_CTX_SURF_BACK_FPAT(3) and
aligned at the XGL_3D_CTX_SURF_BACK_FPAT_POSITION(3), is examined. If the fill
Raster pixel is set, the corresponding pixel in the destination Raster is set to the
surface color. If the fill Raster pixel is not set, the corresponding pixel in the desti-
nation Raster is set to the background color as specified by the attribute XGL_CTX_-

BACKGROUND_COLOR(3). Only those planes enabled by XGL_CTX_PLANE_MASK(3)
are modified in the destination Raster.

XGL_SURF_FILL_STIPPLE
Stippling or transparent hatch styles work only with 1-bit-deep fill Rasters
(which are Memory Rasters). Depending on the polygon orientation in 3D, each
pixel in the fill Raster, specified by XGL_CTX_SURF_FRONT_FPAT and aligned at the
XGL_CTX_SURF_FRONT_FPAT_POSITION, or XGL_3D_CTX_SURF_BACK_FPAT and aligned
at the XGL_3D_CTX_SURF_BACK_FPAT_POSITION, is examined. If the fill Raster pixel
is set, the corresponding pixel in the destination Raster is set to the surface color.
If the fill Raster pixel is not set, the corresponding pixel in the destination Raster
is unchanged. Only those planes enabled by XGL_CTX_PLANE_MASK are modified
in the destination Raster.

XGL_SURF_FILL_PATTERN
Pattern styles work only with fill Rasters (which are Memory Rasters) that have
the same depth as the destination Raster attached to the Context. Depending on
the polygon orientation in 3D, each pixel in the fill Raster, specified by XGL_CTX_-
SURF_FRONT_FPAT and aligned at the XGL_CTX_SURF_FRONT_FPAT_POSITION, or
XGL_3D_CTX_SURF_BACK_FPAT and aligned at the XGL_3D_CTX_SURF_BACK_FPAT_-
POSITION, is copied. The fill Raster pixel is copied onto the corresponding pixel in
the destination Raster with a replication of the fill Raster if necessary. Only those
planes enabled by XGL_CTX_PLANE_MASK are modified in the destination Raster.

For details about how the surface color used for filling is determined, see XGL_CTX_SURF_-

FRONT_COLOR_SELECTOR(3) and XGL_3D_CTX_SURF_BACK_COLOR_SELECTOR(3).

The default value for each attribute is XGL_SURF_FILL_SOLID for Raster Devices.

These attributes are pushed by xgl_context_push(3).

SEE ALSO xgl_object_set(3)
xgl_object_get(3)
xgl_context_push(3)

XGL_3D_CTX_SURF_BACK_COLOR_SELECTOR(3)
XGL_3D_CTX_SURF_BACK_FPAT(3)
XGL_3D_CTX_SURF_BACK_FPAT_POSITION(3)
XGL_3D_CTX_SURF_BACK_COLOR(3)
XGL_3D_CTX_SURF_FACE_DISTINGUISH(3)
XGL_CTX_BACKGROUND_COLOR(3)
XGL_CTX_PLANE_MASK(3)
XGL_CTX_SURF_EDGE_FLAG(3)

266 modified August 1994

XGL Graphics Library XGL_CTX_SURF_FRONT_FILL_STYLE (3)

XGL_CTX_SURF_FRONT_COLOR_SELECTOR(3)
XGL_CTX_SURF_FRONT_FPAT(3)
XGL_CTX_SURF_FRONT_FPAT_POSITION(3)
XGL_CTX_SURF_FRONT_COLOR(3)

modified August 1994 267

XGL_CTX_SURF_FRONT_FPAT (3) XGL Graphics Library

NAME XGL_CTX_SURF_FRONT_FPAT,
XGL_3D_CTX_SURF_BACK_FPAT − define fill pattern Raster used for stipple fill and
pattern fill during primitive rendering

SYNOPSIS #include <xgl/xgl.h>

Xgl_ctx ctx;

xgl_object_set(ctx, XGL_CTX_SURF_FRONT_FPAT, Xgl_mem_ras, 0);
xgl_object_set(ctx, XGL_3D_CTX_SURF_BACK_FPAT, Xgl_mem_ras, 0);

xgl_object_get(ctx, XGL_CTX_SURF_FRONT_FPAT, Xgl_mem_ras ∗);
xgl_object_get(ctx, XGL_3D_CTX_SURF_BACK_FPAT, Xgl_mem_ras ∗);

DESCRIPTION These attributes specify the Memory Raster that contains the pattern used when perform-
ing a stipple fill or a pattern fill during any primitive-rendering operation within the Con-
text ctx. The XGL_CTX_SURF_FRONT_FPAT(3) and XGL_3D_CTX_SURF_BACK_FPAT(3) fill Ras-
ters (which are Memory Rasters) must be 1-bit deep for stipple fill. For pattern fill, the fill
Rasters (which are Memory Rasters) must have the same depth as the destination Raster
attached to the Context.

If the Context fill style attributes XGL_CTX_SURF_FRONT_FILL_STYLE(3) or XGL_3D_CTX_-

SURF_BACK_FILL_STYLE(3) are set to XGL_SURF_FILL_STIPPLE, XGL_SURF_FILL_OPAQUE_STIPPLE,
or XGL_SURF_FILL_PATTERN, the front or back Memory Rasters are examined and used for
rendering. If the fill style is set to something else, however, the XGL_CTX_SURF_FRONT_FPAT
and XGL_3D_CTX_SURF_BACK_FPAT Rasters are not read and may be NULL.

The following 1-bit-deep fill patterns are predefined in XGL and can be used for generat-
ing ‘‘hatch’’ styled fills:

xgl_fpat_hatch_horiz
xgl_fpat_hatch_vert
xgl_fpat_hatch_diag_45
xgl_fpat_hatch_diag_135
xgl_fpat_hatch_grid_r
xgl_fpat_hatch_grid_d
xgl_fpat_hatch_horiz_dbl
xgl_fpat_hatch_vert_dbl
xgl_fpat_hatch_diag_45_dbl
xgl_fpat_hatch_diag_135_dbl
xgl_fpat_hatch_grid_r_dbl
xgl_fpat_hatch_grid_d_dbl

When rendering into the destination Raster with a rendering style of type stipple, to deter-
mine stippling action, XGL checks the bit value of the pixel that corresponds to the posi-
tion of the destination pixel. If the bit is 1, the corresponding pixel in the destination Ras-
ter is set to the surface color. If the bit is 0, and the fill style is XGL_SURF_FILL_STIPPLE, the
destination pixel is left untouched. Otherwise, if the bit is 0, and the fill style is XGL_RAS_-
FILL_OPAQUE_STIPPLE, the color in the Context attribute XGL_CTX_BACKGROUND_COLOR(3)
is copied to the destination pixel. For pattern fill, the fill Raster pixel is copied onto the

268 modified September 1995

XGL Graphics Library XGL_CTX_SURF_FRONT_FPAT (3)

corresponding pixel in the destination Raster with a replication of the fill Raster if neces-
sary. Only those planes enabled by XGL_CTX_PLANE_MASK are modified in the destination
Raster.

XGL reads fill patterns starting at the most significant bit (MSB) first, while Xlib reads fill
patterns starting at the least significant bit (LSB). When using user-defined fill patterns
with XGL, be aware that patterns defined for use with Xlib may need to be redefined for
use with XGL.

The XGL_CTX_SURF_FRONT_FPAT Raster is mapped to the destination Raster by the Context
attribute XGL_CTX_SURF_FRONT_FPAT_POSITION(3).

The XGL_3D_CTX_SURF_BACK_FPAT Raster is mapped to the destination Raster by the Con-
text attribute XGL_3D_CTX_SURF_BACK_FPAT_POSITION(3).

The default value is NULL.

These attributes are pushed by xgl_context_push(3).

SEE ALSO xgl_object_set(3)
xgl_object_get(3)
xgl_context_push(3)

XGL_3D_CTX_SURF_BACK_FILL_STYLE(3)
XGL_3D_CTX_SURF_BACK_FPAT_POSITION(3)
XGL_CTX_BACKGROUND_COLOR(3)
XGL_CTX_SURF_FRONT_FILL_STYLE(3)
XGL_CTX_SURF_FRONT_FPAT_POSITION(3)

modified September 1995 269

XGL_CTX_SURF_FRONT_FPAT_POSITION (3) XGL Graphics Library

NAME XGL_CTX_SURF_FRONT_FPAT_POSITION,
XGL_3D_CTX_SURF_BACK_FPAT_POSITION − define the origin of the fill pattern Ras-
ter used when rendering a primitive while using a stipple fill or pattern fill

SYNOPSIS #include <xgl/xgl.h>

Xgl_ctx ctx;

xgl_object_set(ctx, XGL_CTX_SURF_FRONT_FPAT_POSITION, Xgl_pt_i2d ∗, 0);
xgl_object_set(ctx, XGL_3D_CTX_SURF_BACK_FPAT_POSITION, Xgl_pt_i2d ∗, 0);

xgl_object_get(ctx, XGL_CTX_SURF_FRONT_FPAT_POSITION, Xgl_pt_i2d ∗);
xgl_object_get(ctx, XGL_3D_CTX_SURF_BACK_FPAT_POSITION, Xgl_pt_i2d ∗);

DESCRIPTION These attributes define a point in device coordinates (DC) that specifies the origin of the
stipple fill pattern Raster (front and back) used when a surface is filled with a pattern.
The fill occurs during the rendering of a primitive. The origin is defined as an offset into
the destination Raster.

To request stipple, opaque-stipple, pattern, or hatch fills, use the Context attributes XGL_-

3D_CTX_SURF_BACK_FILL_STYLE(3) and XGL_CTX_SURF_FRONT_FILL_STYLE(3). The Context
attributes XGL_CTX_SURF_FRONT_FPAT(3) and XGL_3D_CTX_SURF_BACK_FPAT(3) define the fill
pattern Memory Raster.

The default value is (0, 0).

These attributes are pushed by xgl_context_push(3).

SEE ALSO xgl_object_set(3)
xgl_object_get(3)
xgl_context_push(3)

XGL_3D_CTX_SURF_BACK_FILL_STYLE(3)
XGL_3D_CTX_SURF_BACK_FPAT(3)
XGL_CTX_SURF_FRONT_FILL_STYLE(3)
XGL_CTX_SURF_FRONT_FPAT(3)

270 modified August 1994

XGL Graphics Library XGL_CTX_SURF_INTERIOR_RULE (3)

NAME XGL_CTX_SURF_INTERIOR_RULE − defines how the interior of a polygon is
determined

SYNOPSIS #include <xgl/xgl.h>

Xgl_ctx ctx;

xgl_object_set(ctx, XGL_CTX_SURF_INTERIOR_RULE, Xgl_interior_rule, 0);
xgl_object_get(ctx, XGL_CTX_SURF_INTERIOR_RULE, Xgl_interior_rule ∗);

DESCRIPTION This attribute determines the pixels that are inside and those that are outside of a polygon
with multiple bounds. Single boundary polygons without overlapping edges are not
affected by the setting of this attribute. This attribute affects only those polygons that
have multiple boundaries or overlapping edges.

The value for this attribute is specified by the enumerated data type Xgl_interior_rule and
is described below:

XGL_EVEN_ODD
A point is considered inside the polygon if, when an arbitrary line is drawn from
the outside of the polygon to the point, the count of edge crossings is odd. In this
case, the direction of the edges is not considered.

The default value is XGL_EVEN_ODD.

This attribute is pushed by xgl_context_push(3).

SEE ALSO xgl_object_set(3)
xgl_object_get(3)
xgl_context_push(3)

modified August 1994 271

XGL_CTX_THRESHOLD (3) XGL Graphics Library

NAME XGL_CTX_THRESHOLD − defines a threshold value for a primitive’s size, below which
the primitive is simplified before rendering

SYNOPSIS #include <xgl/xgl.h>

Xgl_ctx ctx;

xgl_object_set(ctx, XGL_CTX_THRESHOLD, Xgl_threshold ∗, 0);
xgl_object_get(ctx, XGL_CTX_THRESHOLD, Xgl_threshold ∗);

DESCRIPTION This Context attribute is used to indicate when a primitive, or set of primitives, will be
simplified before being rendered on the Device. It sets a size limit (in pixels). If the size
of the current primitive is equal to or smaller than the size specified by the attribute, the
primitive is simplified (using the rules described below) before the rendering. This is use-
ful when the application has many small objects to render and it wants to render them as
quickly as possible.

XGL_CTX_THRESHOLD is defined as a C structure of type Xgl_threshold that accepts three
different Xgl_usgn32 threshold values for three different rendering types — vectors,
circles, and polygons. The table below shows which drawing operator is associated with
which rendering type:

vectors circles polygons

Markers Circles Rectangles
Stroke Text Arcs Polygons
Polylines Ellipses Multi_simple_polygons
Curves Triangle strips

Quadrilateral meshes

Each XGL primitive is provided with a bounding box. This bounding box information,
after transformation to device coordinates, can be mapped to a portion of the device
space and its area in pixels calculated.

If this area exceeds the corresponding threshold value, or if no bounding box is specified,
the primitive is rendered normally.

If this area is less than or equal to the corresponding threshold value for the rendering
type of the primitive, the primitive is simplified before being rendered. The
simplification occurs as follows:

vectors are simplified by displaying only the edge between the first two vertices
found by the primitive. Simplified vectors paint at least one pixel. The rules
that apply for coloring lines created with xgl_multipolyline(3) also apply for
coloring this simplified line.

circles are simplified by displaying a single pixel the same color as the conic, at a
point as close to the conic center as possible.

polygons are simplified by converting them into triangles. The vertices of each triangle
are the first three vertices in each polygon. If the simplified triangle is small
enough, it will disappear because polygons do not overlap in XGL. The rules

272 modified August 1994

XGL Graphics Library XGL_CTX_THRESHOLD (3)

that apply for coloring polygons also apply for coloring this simplified
triangle.

The default value is {1, 1, 1}, so all primitives whose bounding boxes have an area of one
pixel or less are simplified.

This attribute is pushed by xgl_context_push(3).

SEE ALSO xgl_object_set(3)
xgl_object_get(3)
xgl_context_push(3)
xgl_multi_simple_polygon(3)
xgl_multiarc(3)
xgl_multicircle(3)
xgl_multi_elliptical_arc(3)
xgl_multimarker(3)
xgl_multipolyline(3)
xgl_multirectangle(3)
xgl_nurbs_curve(3)
xgl_polygon(3)
xgl_quadrilateral_mesh(3)
xgl_stroke_text(3)
xgl_triangle_strip(3)

NOTES In a 3D environment, only the x-y projection of the bounding box is used to compare with
the threshold level.

The threshold attribute can be ignored in certain circumstances. For example, the bound-
ing box can be ignored by a particular accelerator, since it may be faster to render the
primitive rather than to transform the bounding box and then test the covered area. Also,
some accelerators may not implement the threshold attribute for any or all of the three
rendering types.

The threshold is active only for the primitives that are completely inside the drawing area
— that is, not clipped.

Each of the three threshold values is an integer.

modified August 1994 273

XGL_CTX_VDC_MAP (3) XGL Graphics Library

NAME XGL_CTX_VDC_MAP,
XGL_CTX_VDC_WINDOW,
XGL_CTX_DC_VIEWPORT − control mapping from Virtual Device Coordinates (VDC) to
Device Coordinates (DC)

SYNOPSIS #include <xgl/xgl.h>

Xgl_ctx ctx;

xgl_object_set(ctx, XGL_CTX_VDC_MAP, Xgl_vdc_map, 0);
xgl_object_get(ctx, XGL_CTX_VDC_MAP, Xgl_vdc_map ∗);

For a 2D Context:
xgl_object_set(ctx, XGL_CTX_VDC_WINDOW, Xgl_bounds_d2d ∗, 0);
xgl_object_set(ctx, XGL_CTX_DC_VIEWPORT, Xgl_bounds_d2d ∗, 0);

xgl_object_get(ctx, XGL_CTX_VDC_WINDOW, Xgl_bounds_d2d ∗);
xgl_object_get(ctx, XGL_CTX_DC_VIEWPORT, Xgl_bounds_d2d ∗);

For a 3D Context:
xgl_object_set(ctx, XGL_CTX_VDC_WINDOW, Xgl_bounds_d3d ∗, 0);
xgl_object_set(ctx, XGL_CTX_DC_VIEWPORT, Xgl_bounds_d3d ∗, 0);

xgl_object_get(ctx, XGL_CTX_VDC_WINDOW, Xgl_bounds_d3d ∗);
xgl_object_get(ctx, XGL_CTX_DC_VIEWPORT, Xgl_bounds_d3d ∗);

DESCRIPTION These attributes control the mapping of the primitives’ geometrical data from virtual
device coordinates (VDC) to device coordinates (DC). The mapping transforms a rec-
tangular region (an area for 2D Contexts and a volume for 3D Contexts), aligned with the
axes, from VDC to DC. It cannot represent rotations or the perspective transform; these
types of transformations are handled by the XGL Transform objects specified by the XGL_-

CTX_LOCAL_MODEL_TRANS(3), XGL_CTX_GLOBAL_MODEL_TRANS(3), and XGL_CTX_VIEW_-

TRANS(3) attributes.

The attribute XGL_CTX_VDC_MAP(3) specifies whether the application provides the map-
ping from VDC to DC, or whether XGL provides part of the mapping. Another Context
attribute, XGL_CTX_VDC_ORIENTATION(3) controls the interpretation of coordinates in the
VDC system.

XGL_CTX_VDC_MAP can take on one of four values as specified by the enumerated type
Xgl_vdc_map:

XGL_VDC_MAP_OFF
The application specifies the VDC mapping by specifying both XGL_CTX_VDC_-
WINDOW and XGL_CTX_DC_VIEWPORT. In this case, to supply the correct regions
for the mapping, the application must know the size limits of the Device and the
value of XGL_CTX_VDC_ORIENTATION.

If the XGL_CTX_VDC_ORIENTATION is XGL_Y_DOWN_Z_AWAY, the VDC window
points are mapped to the DC viewport points as follows:

VDC DC
(xmin, ymin [, zmin]) → (xmin, ymin [, zmin])

274 modified February 1995

XGL Graphics Library XGL_CTX_VDC_MAP (3)

(xmax, ymax [, zmax]) → (xmax, ymax [, zmax])

If the XGL_CTX_VDC_ORIENTATION is XGL_Y_UP_Z_TOWARD, the VDC window points
are mapped to the DC viewport points as follows:

VDC DC
(xmin, ymin [, zmin]) → (xmin, ymax [, zmax])
(xmax, ymax [, zmax]) → (xmax, ymin [, zmin])

If you specify the VDC window or DC viewport bounds, XGL always requires that
xmin < xmax, ymin < ymax, and, for 3D, zmin < zmax.

If the application tries to set the value of XGL_CTX_DC_VIEWPORT so that the DC
viewport extends partly or entirely outside of the Device’s boundaries, XGL will
not accept this value. Instead, XGL will set XGL_CTX_DC_VIEWPORT to the entire
extent of the Device. This is usually not the desired effect, so applications should
detect this condition and act accordingly. If the DC viewport is partially outside
the Device’s boundaries, the application should reduce the size of the DC
viewport so that it is entirely inside the Device, and it should reduce the VDC
window by a proportional amount. If the DC viewport is entirely outside of the
Device’s boundaries, the application can set the value of XGL_CTX_RENDERING to
FALSE so that primitives will not draw into the Device.

XGL_VDC_MAP_ALL
The application supplies the XGL_CTX_VDC_WINDOW and XGL sets the XGL_CTX_-
DC_VIEWPORT to use the full range of the Device’s coordinate space. This may
result in the image being scaled differently along the x-axis and y-axis.

XGL_VDC_MAP_ASPECT
Similar to XGL_VDC_MAP_ALL, except that the aspect ratio (ratio of the width to the
height) of the XGL_CTX_VDC_WINDOW is preserved in the transformation to DC.
The VDC window is scaled so that it uses as much of the DC space as possible
while maintaining its aspect ratio. Thus, not all of the DC space may be used.
The top left corner of the XGL_CTX_VDC_WINDOW is mapped to the top left corner
(0, 0) of the Device.

XGL_VDC_MAP_DEVICE
XGL_CTX_VDC_WINDOW is ignored. XGL sets the XGL_CTX_DC_VIEWPORT to use the
full range of the Device’s coordinate space, and sets the DC mapping so that VDC
maps directly to DC; one unit in VDC is equal to one unit in DC.

In the case of a Raster Device, this allows the application to access pixels directly.

If the Device is a Window Raster Device, its size can be changed by the operator; this
affects the VDC-to-DC mapping. When the window is resized, the application must
adjust the VDC-to-DC map itself if the XGL_CTX_VDC_MAP is XGL_VDC_MAP_OFF. If the
XGL_CTX_VDC_MAP is some other value, the application needs to call xgl_window_raster_-
resize(3).

The default value for XGL_CTX_VDC_MAP is XGL_VDC_MAP_DEVICE.

modified February 1995 275

XGL_CTX_VDC_MAP (3) XGL Graphics Library

The default value for XGL_CTX_VDC_WINDOW is [-1, 1]×[-1, 1] for 2D Contexts and
[-1, 1]×[-1, 1]×[0, 1] for 3D Contexts.

The default value for XGL_CTX_DC_VIEWPORT is [-1, 1]×[-1, 1] for 2D Contexts and [-1, 1]×[-
1, 1]×[0, 1] for 3D Contexts. However, as long as XGL_CTX_VDC_MAP is different from XGL_-
VDC_MAP_OFF, each time the XGL_CTX_DEVICE is changed, XGL_CTX_DC_VIEWPORT is reset to
[0, Mx]×[0, My] for 2D Contexts and [0, Mx]×[0, My]×[0, Mz] for 3D Contexts where (Mx, My,
Mz) are a function of both XGL_CTX_VDC_MAP and the maximum dimensions of the device
XGL_DEV_MAXIMUM_COORDINATES(3) (see the rules above).

These attributes are pushed by xgl_context_push(3).

SEE ALSO xgl_object_set(3)
xgl_object_get(3)
xgl_context_push(3)
xgl_window_raster_resize(3)

XGL_CTX_CLIP_PLANES(3)
XGL_CTX_GLOBAL_MODEL_TRANS(3)
XGL_CTX_LOCAL_MODEL_TRANS(3)
XGL_CTX_VDC_ORIENTATION(3)
XGL_CTX_VIEW_CLIP_BOUNDS(3)
XGL_CTX_VIEW_TRANS(3)
XGL_DEV_MAXIMUM_COORDINATES(3)

276 modified February 1995

XGL Graphics Library XGL_CTX_VDC_ORIENTATION (3)

NAME XGL_CTX_VDC_ORIENTATION − defines the orientation of Virtual Device Coordinate
(VDC) space

SYNOPSIS #include <xgl/xgl.h>

Xgl_ctx ctx;

xgl_object_set(ctx, XGL_CTX_VDC_ORIENTATION, Xgl_vdc_orientation, 0);
xgl_object_get(ctx, XGL_CTX_VDC_ORIENTATION, Xgl_vdc_orientation ∗);

DESCRIPTION This attribute defines how virtual device coordinate (VDC) space is related to device coor-
dinate (DC) space. DC space is the final coordinate space in the XGL pipeline. Essentially,
the operator of the application program views DC space on the workstation screen. It is a
right-handed coordinate space with the positive x-axis going from left to right, the posi-
tive y-axis going from top to bottom, and, for 3D, the positive z-axis going into the screen.

Since the VDC mapping (described in XGL_CTX_VDC_MAP(3)) only maps a rectangular
region of VDC space to a rectangular region in DC, the orientation of VDC is the same as
DC. Some applications, however, prefer to have a VDC space with the y-axis going from
bottom to top. The attribute XGL_CTX_VDC_ORIENTATION(3) provides XGL the capability
to change the orientation of VDC space.

VDC space is always right-handed; it can have the following orientations:

XGL_Y_DOWN_Z_AWAY
The x-axis points to the right, the y-axis goes down, and the z-axis points away
from the operator.

XGL_Y_UP_Z_TOWARD
The x-axis points to the right, the y-axis goes up, and the z-axis points toward the
operator.

The XGL_CTX_VDC_ORIENTATION attribute controls the interpretation of up, down, near, and
far for other XGL attributes. The application must set the following attributes in accor-
dance with the XGL_CTX_VDC_ORIENTATION to control what the operator sees:

XGL_CTX_GLOBAL_MODEL_TRANS
XGL_CTX_LOCAL_MODEL_TRANS
XGL_CTX_VIEW_TRANS
XGL_CTX_VIEW_CLIP_BOUNDS
XGL_CTX_VDC_MAP
XGL_CTX_VDC_WINDOW

The default value is XGL_Y_DOWN_Z_AWAY.

This attribute is not pushed by xgl_context_push(3).

modified August 1994 277

XGL_CTX_VDC_ORIENTATION (3) XGL Graphics Library

SEE ALSO xgl_object_set(3)
xgl_object_get(3)

XGL_CTX_GLOBAL_MODEL_TRANS(3)
XGL_CTX_LOCAL_MODEL_TRANS(3)
XGL_CTX_VDC_MAP(3)
XGL_CTX_VDC_WINDOW(3)
XGL_CTX_VIEW_TRANS(3)
XGL_CTX_VIEW_CLIP_BOUNDS(3)

278 modified August 1994

XGL Graphics Library XGL_CTX_VIEW_CLIP_BOUNDS (3)

NAME XGL_CTX_VIEW_CLIP_BOUNDS − defines the Virtual Device Coordinate (VDC) clip-
ping bounds

SYNOPSIS #include <xgl/xgl.h>

Xgl_ctx ctx;

For a 2D Context:
xgl_object_set(ctx, XGL_CTX_VIEW_CLIP_BOUNDS, Xgl_bounds_d2d ∗, 0);
xgl_object_get(ctx, XGL_CTX_VIEW_CLIP_BOUNDS, Xgl_bounds_d2d ∗);

For a 3D Context:
xgl_object_set(ctx, XGL_CTX_VIEW_CLIP_BOUNDS, Xgl_bounds_d3d ∗, 0);
xgl_object_get(ctx, XGL_CTX_VIEW_CLIP_BOUNDS, Xgl_bounds_d3d ∗);

DESCRIPTION This attribute defines the clipping area (for 2D Contexts) or volume (for 3D Contexts) in
ordinary virtual device coordinates (VDC). XGL converts the clipping area/volume to
homogeneous VDC.

The attribute XGL_CTX_VDC_ORIENTATION(3) determines how the clipping bounds are
oriented—that is, what is up, down, near, and far, with respect to the operator.

The values given for XGL_CTX_VIEW_CLIP_BOUNDS(3) are defined in VDC space and should
be consistent with the values given for the XGL_CTX_VDC_WINDOW attribute. The clipping
planes defined by XGL_CTX_VIEW_CLIP_BOUNDS can be individually controlled by the XGL_-

CTX_CLIP_PLANES(3) attribute.

The default value is [-1,1]x[-1,1] for 2D and [-1,1]x[-1,1]x[0,1] for 3D.

This attribute is pushed by xgl_context_push(3).

SEE ALSO xgl_object_set(3)
xgl_object_get(3)
xgl_context_push(3)

XGL_CTX_CLIP_PLANES(3)
XGL_CTX_VDC_ORIENTATION(3)
XGL_CTX_VDC_WINDOW(3)

modified February 1995 279

XGL_CTX_VIEW_TRANS (3) XGL Graphics Library

NAME XGL_CTX_VIEW_TRANS − defines the View Transform object

SYNOPSIS #include <xgl/xgl.h>

Xgl_ctx ctx;

xgl_object_set(ctx, XGL_CTX_VIEW_TRANS, Xgl_trans, 0);
xgl_object_get(ctx, XGL_CTX_VIEW_TRANS, Xgl_trans ∗);

DESCRIPTION This attribute defines the Transform object used for the View Transform, which
transforms geometry data from world coordinates (WC) to virtual device coordinates
(VDC).

For 3D, the View Transform may include the perspective transformation that would
change the implicit w component of the geometric data from 1.0 to some other value. The
geometry is projected into ordinary 3D space after the view clipping (specified by the
attributes XGL_CTX_VIEW_CLIP_BOUNDS(3) and XGL_CTX_CLIP_PLANES(3)). This means that
XGL treats VDC as both a homogeneous space (x, y, z, w) and an ordinary space
(x, y, z).

The View Transform should be defined by the application in accordance with clipping
bounds specified by XGL_CTX_VIEW_CLIP_BOUNDS and the orientation of VDC space defined
by XGL_CTX_VDC_ORIENTATION(3).

If you set this Context attribute to a Transform whose handle is obtained from the same
or a different Context, the original attribute and this attribute use the same Transform.
Changing the Transform of one Context attribute has the same effect on the other Context
attribute. Be careful of this consequence when you share a Transform in this manner. Do
not attempt to set this Context attribute to a handle to a Transform obtained from XGL_-

CTX_MODEL_TRANS(3), XGL_CTX_MC_TO_DC_TRANS(3), or XGL_3D_CTX_NORMAL_TRANS(3)
because these Transforms are read-only.

The default value is the Identity Transform.

This attribute is pushed by xgl_context_push(3).

SEE ALSO xgl_object_set(3)
xgl_object_get(3)
xgl_context_push(3)

XGL_3D_CTX_NORMAL_TRANS(3)
XGL_CTX_CLIP_PLANES(3)
XGL_CTX_MC_TO_DC_TRANS(3)
XGL_CTX_MODEL_TRANS(3)
XGL_CTX_VDC_ORIENTATION(3)
XGL_CTX_VIEW_CLIP_BOUNDS(3)

280 modified August 1994

XGL Graphics Library XGL_DEV_COLOR_MAP (3)

NAME XGL_DEV_COLOR_MAP − specifies the Color Map object associated with an XGL Dev-
ice.

SYNOPSIS #include <xgl/xgl.h>

Xgl_dev dev;

xgl_object_set(dev, XGL_DEV_COLOR_MAP, Xgl_cmap, 0);
xgl_object_get(dev, XGL_DEV_COLOR_MAP, Xgl_cmap ∗);

DESCRIPTION This attribute permits the application to set its own Color Map into a Device. The Color
Map is used to specify the colors rendered into the Device. The attribute specifies the
handle to the Color Map object associated with the Device dev. For more information
about the utility of Color Map objects, see the operator xgl_object_create(3) and the
Color Map attributes.

Once a Color Map object has been created, it is attached to the specified device using
xgl_object_set(3) and this attribute.

The default value is a handle to a Color Map object with all default attributes.

SEE ALSO xgl_object_set(3)
xgl_object_get(3)
xgl_object_create(3)

modified August 1994 281

XGL_DEV_COLOR_TYPE (3) XGL Graphics Library

NAME XGL_DEV_COLOR_TYPE − color type of data used at the Device level

SYNOPSIS #include <xgl/xgl.h>

Xgl_dev dev;

xgl_object_get(dev, XGL_DEV_COLOR_TYPE, Xgl_color_type ∗);

DESCRIPTION This attribute defines the color space used to render and store pixels in an XGL Device. It
can be set only once — when the Device object is created via a call to xgl_object_-
create(3), and it must be the first attribute in the attribute-list. After it is set, this attribute
becomes read-only.

Two color spaces are currently supported in XGL as defined by the data type
Xgl_color_type.

The two color spaces are defined as follows:

XGL_COLOR_RGB
Color is specified as a fractional component of each of the three primary colors,
red, green, and blue. Each component is a floating-point number between 0 and
1, and represents the additive weight that the primary color contributes to the
final color. If the underlying hardware is indexed (see XGL_COLOR_INDEX below),
a color cube is used to transform the RGB Device colors to what the hardware
requires. In this case, the color cube is stored in the color table that is part of the
XGL Color Map object. (For more information on color cubes, see XGL_CMAP_-

COLOR_CUBE_SIZE(3) and XGL_CMAP_COLOR_CUBE_BSIZE(3)).

XGL_COLOR_INDEX
Color is specified as an unsigned integer index into a color table. The color table
(see XGL_CMAP_COLOR_TABLE(3)) is part of an XGL Color Map object, and it maps
a color index into an RGB color value.

The default value varies depending on whether the Device is a Memory Raster or Win-
dow Raster.

For Memory Rasters:
XGL_DEV_COLOR_TYPE defaults to XGL_COLOR_INDEX.

For Window Rasters:
XGL_DEV_COLOR_TYPE defaults to the hardware (display device) color type.

SEE ALSO xgl_object_set(3)
xgl_object_create(3)

XGL_CMAP_COLOR_CUBE_BSIZE(3)
XGL_CMAP_COLOR_CUBE_SIZE(3)

282 modified August 1994

XGL Graphics Library XGL_DEV_COLOR_TYPE (3)

XGL_CMAP_COLOR_TABLE(3)
XGL_RAS_DEPTH(3)

modified August 1994 283

XGL_DEV_CONTEXTS (3) XGL Graphics Library

NAME XGL_DEV_CONTEXTS,
XGL_DEV_CONTEXTS_NUM − return the Context objects associated with a Device

SYNOPSIS #include <xgl/xgl.h>

Xgl_dev dev;

xgl_object_get(dev, XGL_DEV_CONTEXTS, Xgl_ctx []);
xgl_object_get(dev, XGL_DEV_CONTEXTS_NUM, Xgl_usgn32 ∗);

DESCRIPTION Both of these attributes are read-only. They are used by the application to get a list of the
Context object handles associated with the Device dev. The Context attribute XGL_CTX_-

DEVICE(3) is used to associate a Device with a Context.

To use these attributes, the application should first get XGL_DEV_CONTEXTS_NUM, which is
the number of Context objects associated with the Device. Then, it should allocate
enough memory to hold this number of Context object handles (where each object handle
is sizeof(Xgl_ctx) in size). Finally, the application can get XGL_DEV_CONTEXTS(3), which
returns the list of Context handles in the array provided by the application.

For XGL_DEV_CONTEXTS_NUM, the default is 0.
For XGL_DEV_CONTEXTS, the default is NULL.

SEE ALSO xgl_object_get(3)

XGL_CTX_DEVICE(3)

284 modified August 1994

XGL Graphics Library XGL_DEV_MAXIMUM_COORDINATES (3)

NAME XGL_DEV_MAXIMUM_COORDINATES − returns the maximum coordinate values for
the specified Device

SYNOPSIS #include <xgl/xgl.h>

Xgl_dev dev;

xgl_object_get(dev, XGL_DEV_MAXIMUM_COORDINATES, Xgl_pt_d3d ∗);

DESCRIPTION This read-only attribute is used to interrogate the Device dev to get its maximum x- and
y-coordinate values. Also, it’s maximum z-buffer value, if applicable, is written into the
z position of the Xgl_pt_d3d point that is returned by the xgl_object_get(3) operation. For
example, assume that the application is using an XGL Window Raster that is associated
with a 500 × 600 window created by the window system. A call to xgl_object_get on
XGL_DEV_MAXIMUM_COORDINATES would produce a point containing: (499, 599, max-Z).
max-Z would contain the largest z-buffer value allowed by the Device.

The default value is device-dependent.

SEE ALSO xgl_object_get(3)

XGL_CTX_DEVICE(3)

modified August 1994 285

XGL_DEV_REAL_COLOR_TYPE (3) XGL Graphics Library

NAME XGL_DEV_REAL_COLOR_TYPE − color type of the underlying device

SYNOPSIS #include <xgl/xgl.h>
Xgl_dev dev;
xgl_object_get(dev, XGL_DEV_REAL_COLOR_TYPE, Xgl_color_type ∗);

DESCRIPTION This read-only attribute indicates the real color space used to store pixels in an XGL Dev-
ice, in other words, the kind of information that is contained in an actual pixel. The exact
way a pixel is defined is device dependent.

Two color spaces are currently supported in XGL as defined by the data type
Xgl_color_type.

The two color spaces are defined as follows:

XGL_COLOR_RGB
The color stored in the device includes a component for each of the three primary
colors - red, green, and blue.

XGL_COLOR_INDEX
The color stored in the device is an index into a color table.

For Memory Rasters:
If XGL_RAS_DEPTH = 4 or 8, then XGL_DEV_REAL_COLOR_TYPE = XGL_COLOR_INDEX.
If XGL_RAS_DEPTH = 32, then XGL_DEV_REAL_COLOR_TYPE = XGL_COLOR_RGB (see
XGL_RAS_DEPTH(3)).

For Window Rasters:
XGL_DEV_REAL_COLOR_TYPE is device dependent. Most often it matches the
underlying X Visual Class of the X window used to create the XGL Window Ras-
ter.

SEE ALSO xgl_object_set(3)

XGL_RAS_DEPTH(3)

286 modified August 1994

XGL Graphics Library XGL_DMAP_TEXTURE (3)

NAME XGL_DMAP_TEXTURE − a Data Map Texture object

OVERVIEW XGL_DMAP_TEXTURE is the type of an object representing an XGL Data Map Texture object.
It is used in texturing of surfaces (polygons, triangle strips, etc.) rendered through a 3D
Context.

When a Data Map Texture object is no longer needed in an application, it can be explicitly
destroyed by calling the xgl_object_destroy(3) operator to free the resources associated
with it.

After creating the Data Map Texture object, using xgl_object_create(3), an application
can inquire about the value of its attributes by using the xgl_object_get(3) operator.

A System State object must have been created with the xgl_open(3) operator before any
Data Map Texture object can be created.

A brief overview of all of the attributes follows. For more information, see the man page
for each attribute.

XGL_DMAP_TEXTURE_DESCRIPTORS(3)
Defines a list of texture descriptors.

XGL_DMAP_TEXTURE_NUM_DESCRIPTORS(3)
Defines the number of texture descriptors in the object.

XGL_DMAP_TEXTURE_ORIENTATION_MATRIX(3)
Defines a 3×2 matrix by which textures can be rotated and/or translated before
applying it to a 3D surface.

XGL_DMAP_TEXTURE_PARAM_TYPE(3)
Defines different parameterization methods of mapping texture onto a 3D sur-
face.

XGL_DMAP_TEXTURE_U_INDEX(3)
XGL_DMAP_TEXTURE_V_INDEX(3)

These attributes are indices into the vertex data array (specified in the point list),
and they indicate which of the data values to use in texture mapping.

XGL_OBJ_APPLICATION_DATA(3)
This attribute allows the application program to store its own data with an object.

XGL_OBJ_SYS_STATE(3)
This read-only attribute returns the System State that was used to create the
object.

XGL_OBJ_TYPE(3)
This read-only attribute defines the type of an XGL object.

NOTES At this release, a new object, Texture Map, has been provided for texture mapping. The
Data Map Texture object is retained for backward compatibility, but will be removed
from the XGL library in a future release. Because of this, we recommend that application
programs use the Texture Map object for texture mapping.

modified August 1994 287

XGL_DMAP_TEXTURE_DESCRIPTORS (3) XGL Graphics Library

NAME XGL_DMAP_TEXTURE_DESCRIPTORS − specifies list of textures in a Data Map Texture
object

SYNOPSIS #include <xgl/xgl.h>

Xgl_dmap_texture dmap_texture;

xgl_object_set(dmap_texture, XGL_DMAP_TEXTURE_DESCRIPTORS, Xgl_texture_desc, 0);
xgl_object_get(dmap_texture, XGL_DMAP_TEXTURE_DESCRIPTORS, Xgl_texture_desc ∗);

DESCRIPTION This attribute specifies the list of textures associated with this Data Map Texture object.
The textures are used when rendering XGL 3D surface primitives. When a data map tex-
ture has multiple texture descriptions, they are applied sequentially and are cumulative.

The application uses this attribute in conjunction with the attribute XGL_DMAP_TEXTURE_-

NUM_DESCRIPTORS(3) to specify how many textures should be considered when rendering
XGL primitives.

Setting a new list of textures replaces the previous (if any) list of textures. The application
is also responsible for making sure that enough memory is available when getting the list
of textures from XGL.

XGL_DMAP_TEXTURE_DESCRIPTORS is a pointer to a C structure of type Xgl_texture_desc,
which is defined as follows:

typedef struct {
Xgl_texture_type texture_type
Xgl_texture_color_comp_info comp_info;
Xgl_texture_interp_info interp_info; /∗ filter to use ∗/
union {

Xgl_texture_mipmap_desc mipmap;
} info;

} Xgl_texture_desc;

Parameters texture_type
Each texture descriptor has a texture_type. Currently, XGL_TEXTURE_TYPE_MIPMAP
is the only possible value for this attribute.

comp_info
This parameter explains how different channels in the texture map are used to
affect the rendering. The Xgl_texture_color_comp_info structure is defined as:
typedef struct {

Xgl_usgn32 num_render_comp_desc;
Xgl_render_component_desc render_component_desc[2];
Xgl_usgn32 num_channels[2];
Xgl_usgn32 channel_number[2];

} Xgl_texture_color_comp_info;

This structure can have a maximum of 2 render components. The num_render_-
comp_desc parameter gives the number of render components used by this

288 modified August 1994

XGL Graphics Library XGL_DMAP_TEXTURE_DESCRIPTORS (3)

particular Texture Map object. Note that in the current release of XGL, only
num_render_comp_desc of 1 is supported. The num_channels[2] parameter gives
the number of channel used to do color composition. The channel_number[2]
indicates the channel number used when num_channel is 1. The Xgl_render_-
component_desc structure is defined as:

typedef struct {
Xgl_render_component comp;
Xgl_texture_op texture_op;
union Xgl_op_info {

Xgl_texture_blend_op blend;
Xgl_texture_decal_op decal;
Xgl_texture_blend_intrinsic_op blend_int;

} op;
} Xgl_render_component_desc;

The comp parameter determines which lighting component in the rendering pipe-
line (diffuse, reflected, and final-after depth cueing) is affected by this particular
texture description. The texture_op parameter specifies how the current color
value is combined with the value obtained from the texture map. The table
below lists the valid combinations:

Texture Operations

of Decal Blend

Channel
Replace Modulate Decal Blend

Intrinsic Intrinsic

Cf =Ck 1∗ (1-St) Cf =Ci ∗ (1-St)
1 Cf =St Ci

+ Ck 2 ∗ St +Ck 1∗St

Cf =Ck 1∗ (1-St) Cf =Ci ∗ (1-St)
2 Cf =St Ci

+Ck 2 ∗ St +Ck 1∗St

Cf =Ck 1∗ (1-Ct) Cf =Ci ∗ (1-Ct)
3 Cf =Ct Cf =Ct Ci

+ Ck 2 ∗ Ct +Ck 1∗Ct

Cf = (1-αt)∗ Cf =Ck 1∗ (1-Ct) Cf =Ci ∗ (1-Ct) Cf =Ci ∗ (1-Ct)
4 Cf =Ct Cf =Ct Ci Ck 1+αt ∗Ct + Ck 2 ∗ Ct +αt ∗Ct +Ck 1∗Ct

Where: Ck 1 = Constant color 1
Ck 2 = Constant color 2
Ci = Incoming color
Cf = Final color
St = Single channel texture image
Ct = First three channels of a 4 channel texture image
αt = Second channel of a 2 channel texture image or

Fourth channel of a 4 channel texture image

Note: Blank fields indicate undefined values. The values from the texture image
are in the range [01]. Currently in XGL, a 3 channel texture image is specified as a
32-bit value. The upper byte is ignored for 3 channel texture operations.

modified August 1994 289

XGL_DMAP_TEXTURE_DESCRIPTORS (3) XGL Graphics Library

In the Xgl_op_info union, the texture operations blend, decal, and blend_int use
values defined in the structures Xgl_texture_blend_op, Xgl_texture_decal_op, and
Xgl_texture_blend_intrinsic_op, respectively. The blending operation gets the con-
stant colors C

k1
and C

k2
from the structure Xgl_texture_blend_op. The decal and

blend_int operations get the constant color C
k1

from the structures Xgl_texture_-
decal_op and Xgl_texture_blend_intrinsic_op, respectively.

interp_info
This parameter gives information on the nature of sampling desired by the appli-
cation. The Xgl_texture_interp_info structure is defined as:

typedef struct {
Xgl_texture_interp_method filter1;
Xgl_texture_interp_method filter2;

} Xgl_texture_interp_info;

During the texturing process, the data from the texture mipmap can be sampled
or interpolated in a number of ways in order to come up with a value to apply to
the pixel. The available methods of sampling and interpolating the mipmap are
specified by the Xgl_texture_interp_method structure. The possible values are:

Note: The word texel used below refers to one element stored in a texture map.

XGL_TEXTURE_INTERP_POINT
Sample one texel point from the base (top or first) mipmap level at the
closest u and v to the pixel.

XGL_TEXTURE_INTERP_BILINEAR
Sample the four texels closest to the center of the pixel from the base
mipmap level and average them.

XGL_TEXTURE_INTERP_MIPMAP_POINT
Sample one texel point from the nearest mipmap level at the closest u
and v to the pixel.

XGL_TEXTURE_INTERP_MIPMAP_BILINEAR
Sample the four texels closest to the center of the pixel from the nearest
mipmap level and average them.

XGL_TEXTURE_INTERP_MIPMAP_TRILINEAR
Sample the four texels closest to the center of the pixel from the nearest
mipmap level above the depth d and the four texels closest from the mip-
map level below the depth d and average all 8 of them.

XGL_TEXTURE_INTERP_MIPMAP_PT_LINEAR
Chose the two mipmaps that most closely match the size fo the pixel
being textured and find the nearest to the center of the pixel to produce a
texture value from each mipmap. The final texture value is an average of
those two values.

filter1 is used if the textured pixel maps to an area greater than one texel. filter2 is
used if the textured pixel maps to an area less than or equal to one texel. We

290 modified August 1994

XGL Graphics Library XGL_DMAP_TEXTURE_DESCRIPTORS (3)

strongly recommend that filter2 only use XGL_TEXTURE_INTERP_POINT or XGL_-
TEXTURE_INTERP_BILINEAR.

mipmap This parameter defines the mipmap specific fields. The Xgl_texture_mipmap_desc
structure is defined as:

typedef struct {
Xgl_texture texture_map;
float max_u_freq;
float max_v_freq;
Xgl_texture_boundary u_boundary;
Xgl_texture_boundary v_boundary;
Xgl_usgn8 boundary_values[4];
float depth_interp_factor;

} Xgl_texture_mipmap_desc;

The texture_map parameter gives a pointer to the texture map object. A texture
map object is created using xgl_object_create(3) with XGL_MIPMAP_TEXTURE as the
object type.

Note: At this release, the fields max_u_freq and max_v_freq are not implemented.

The parameters u_boundary and v_boundary specify the boundary condition to
apply when texture bounds are exceeded. The available boundary options are
specified by the Xgl_texture_boundary structure. The possible values are:

XGL_TEXTURE_BOUNDARY_CLAMP
Finish texturing using a constant value.

XGL_TEXTURE_BOUNDARY_WRAP
Repeat the texture.

XGL_TEXTURE_BOUNDARY_TRANSPARENT
Finish rendering as though texturing were not being performed.

XGL_TEXTURE_BOUNDARY_MIRROR
Reverse texel sampling creating a mirrored alternating pattern.

XGL_TEXTURE_BOUNDARY_CLAMP_BOUNDARY
Use a color specified by the closest boundary texel.

Note that if u and v boundary conditions are not identical, and if both values of u
and v exceed the texture boundary in both directions, the boundary methods will
be used in the following order:

(1) XGL_TEXTURE_BOUNDARY_TRANSPARENT

(2) XGL_TEXTURE_BOUNDARY_CLAMP

(3) XGL_TEXTURE_BOUNDARY_WRAP

(4) XGL_TEXTURE_BOUNDARY_MIRROR

(5) XGL_TEXTURE_BOUNDARY_CLAMP_BOUNDARY

The boundary_values parameter specifies the value to clamp to when either u or v
value exceeds bounds. The depth_interp_factor parameter is a floating point

modified August 1994 291

XGL_DMAP_TEXTURE_DESCRIPTORS (3) XGL Graphics Library

number that allows the application to adjust the sample level in either direction
to obtain a more or less aliased textured surface. A value of 1.0 moves the depth
away from the mipmap base creating a blurry event. A value of -1.0 moves the
depth towards the mipmap pyramid base for a more detailed picture.

The default value is NULL.

SEE ALSO xgl_object_set(3)
xgl_object_get(3)
xgl_object_create(3)

XGL_DMAP_TEXTURE_NUM_DESCRIPTORS(3)

NOTES Texturing is only supported when the color type of the raster attached to a 3D Context is
XGL_COLOR_RGB.

At this release, a new object, Texture Map, has been provided for texture mapping. The
Data Map Texture object is retained for backward compatibility, but will be removed
from the XGL library in a future release. Because of this, we recommend that application
programs use the Texture Map object for texture mapping.

292 modified August 1994

XGL Graphics Library XGL_DMAP_TEXTURE_NUM_DESCRIPTORS (3)

NAME XGL_DMAP_TEXTURE_NUM_DESCRIPTORS − specifies the number of textures in a
Data Map Texture object

SYNOPSIS #include <xgl/xgl.h>

Xgl_dmap_texture dmap_texture;

xgl_object_set(dmap_texture, XGL_DMAP_TEXTURE_NUM_DESCRIPTORS, Xgl_usgn32, 0);
xgl_object_get(dmap_texture, XGL_DMAP_TEXTURE_NUM_DESCRIPTORS, Xgl_usgn32 ∗);

DESCRIPTION This attribute specifies the number of textures to apply to the surface and the number of
texture descriptor structures that follow within the Data Map Texture object.

The application uses this attribute in conjunction with the attribute XGL_DMAP_TEXTURE_-

DESCRIPTORS(3) to specify which and how many textures should be considered when
rendering XGL primitives.

When additional texture descriptors must be defined, the application must provide both
the number of textures and the list of texture descriptors. To use only the first n textures
of those already defined, the application need only set the new number of textures.

The default value is 0.

SEE ALSO xgl_object_set(3)
xgl_object_get(3)

XGL_DMAP_TEXTURE_DESCRIPTORS(3)

NOTES At this release, a new object, Texture Map, has been provided for texture mapping. The
Data Map Texture object is retained for backward compatibility, but will be removed
from the XGL library in a future release. Because of this, we recommend that application
programs use the Texture Map object for texture mapping.

modified August 1994 293

XGL_DMAP_TEXTURE_ORIENTATION_MATRIX (3) XGL Graphics Library

NAME XGL_DMAP_TEXTURE_ORIENTATION_MATRIX − defines a matrix by which textures
can be translated and/or rotated

SYNOPSIS #include <xgl/xgl.h>

Xgl_dmap_texture dmap_texture;

xgl_object_set(dmap_texture, XGL_DMAP_TEXTURE_ORIENTATION_MATRIX,
Xgl_matrix_f2d ∗, 0);

xgl_object_get(dmap_texture, XGL_DMAP_TEXTURE_ORIENTATION_MATRIX,
Xgl_matrix_f2d ∗);

DESCRIPTION This attribute specifies a 3×2 matrix by which textures can be rotated or translated across
the face of the polygon by transforming the u and v values through the matrix. The u and
v values are specified as data values in the point list of a surface primitive (e.g. xgl_-
multi_simple_polygon, xgl_triangle_strip, e.g.). The u, v values defined in the point list
are subject to the XGL_DMAP_TEXTURE_U_INDEX(3) and XGL_DMAP_TEXTURE_V_INDEX(3)
attributes before the orientation matrix is applied.

The default value is the Identity Matrix.

SEE ALSO xgl_object_set(3)
xgl_object_get(3)
xgl_multi_simple_polygon(3)
xgl_polygon(3)
xgl_quadrilateral_mesh(3)
xgl_triangle_list(3)
xgl_triangle_strip(3)

XGL_DMAP_TEXTURE_U_INDEX(3)
XGL_DMAP_TEXTURE_V_INDEX(3)

NOTES At this release, a new object, Texture Map, has been provided for texture mapping. The
Data Map Texture object is retained for backward compatibility, but will be removed
from the XGL library in a future release. Because of this, we recommend that application
programs use the Texture Map object for texture mapping.

294 modified August 1994

XGL Graphics Library XGL_DMAP_TEXTURE_PARAM_TYPE (3)

NAME XGL_DMAP_TEXTURE_PARAM_TYPE − defines the parameterization method for tex-
ture mapping

SYNOPSIS #include <xgl/xgl.h>

Xgl_dmap_texture dmap_texture;

xgl_object_set(dmap_texture, XGL_DMAP_TEXTURE_PARAM_TYPE,
Xgl_texture_param_type ∗, 0);

xgl_object_get(dmap_texture, XGL_DMAP_TEXTURE_PARAM_TYPE,
Xgl_texture_param_type ∗);

DESCRIPTION This attribute defines the parameterization method to use in mapping the texture to a 3D
surface. XGL accepts the following value for Xgl_texture_param_type:

XGL_TEXTURE_PARAM_EXPLICIT
This attribute value requires the application to provide the values of u and v as
part of the vertex information in the point list of 3D surface primitives.

The default value is XGL_TEXTURE_PARAM_EXPLICIT.

SEE ALSO xgl_object_set(3)
xgl_object_get(3)

NOTES At this release, a new object, Texture Map, has been provided for texture mapping. The
Data Map Texture object is retained for backward compatibility, but will be removed
from the XGL library in a future release. Because of this, we recommend that application
programs use the Texture Map object for texture mapping.

modified August 1994 295

XGL_DMAP_TEXTURE_U_INDEX (3) XGL Graphics Library

NAME XGL_DMAP_TEXTURE_U_INDEX,
XGL_DMAP_TEXTURE_V_INDEX − define the indices into the vertex data array

SYNOPSIS #include <xgl/xgl.h>

Xgl_dmap_texture dmap_texture;

xgl_object_set(dmap_texture, XGL_DMAP_TEXTURE_U_INDEX, Xgl_usgn32, 0);
xgl_object_set(dmap_texture, XGL_DMAP_TEXTURE_U_INDEX, Xgl_usgn32, 0);

xgl_object_get(dmap_texture, XGL_DMAP_TEXTURE_V_INDEX, Xgl_usgn32 ∗);
xgl_object_get(dmap_texture, XGL_DMAP_TEXTURE_V_INDEX, Xgl_usgn32 ∗);

DESCRIPTION These attributes are indices into the vertex data array, and they indicate which of the data
values to use as u and v texture coordinates.

The values of u and v are specified as real numbers in the vertex array. The coordinate
space of the texture map that u values correspond to is a space that places 0.0 at the left
edge of the texture and 1.0 at the right edge of the texture. Similarly for v, the coordinate
space of the texture map that v values use is a space that places 0.0 at the bottom edge of
the texture and 1.0 at the top edge of the texture.

If u and v values are not assigned to polygon vertices in a linear way, that is, if there is no
linear transformation that maps u,v coordinates to the polygon’s vertices, then a textured
polygon may look different when rendered on different graphics accelerators. This is
because some graphics hardware devices break up more complex polygons into triangles,
and if the mapping is non-linear, the triangles won’t all be textured the same from device
to device.

The default value for XGL_DMAP_TEXTURE_U_INDEX is 0.

The default value for XGL_DMAP_TEXTURE_V_INDEX is 1.

SEE ALSO xgl_object_set(3)
xgl_object_get(3)

NOTES At this release, a new object, Texture Map, has been provided for texture mapping. The
Data Map Texture object is retained for backward compatibility, but will be removed
from the XGL library in a future release. Because of this, we recommend that application
programs use the Texture Map object for texture mapping.

296 modified August 1994

XGL Graphics Library XGL_GCACHE (3)

NAME XGL_GCACHE − a Geometry Cache (Gcache) object

OVERVIEW XGL_GCACHE is the type parameter value for a Geometry Cache object.

A Geometry Cache (Gcache) is an XGL object that stores a simplified version of an appli-
cation primitive. In addition, the Gcache stores the values of the attributes on which the
simplification is based. Further, for 3D primitives, if facet normals are not provided with
the primitive, they will be calculated and stored in the Gcache facet list structure. For a
complete description of XGL_GCACHE and its use, see the XGL Programmer’s Guide.

When the Gcache is displayed, the application can validate the Gcache using the current
values of the Context attributes. If the simplification is still valid (the attribute values are
still the same), the simplified form of the primitive is rendered.

Geometry Cache (Gcache) uses the following attributes:

XGL_GCACHE_BYPASS_MODEL_CLIP(3)
Controls whether model clipping is used when a Gcache is displayed with the
test parameter to xgl_context_display_gcache indicated as FALSE.

XGL_GCACHE_DISPLAY_PRIM_TYPE(3)
Returns the type of primitive used when the Gcache is displayed.

XGL_GCACHE_DO_POLYGON_DECOMP(3)
Controls whether polygon decomposition is performed when xgl_gcache_-
polygon(3) is called.

XGL_GCACHE_FACET_LIST_LIST(3)
Returns the list of facet lists used when the Gcache is displayed.

XGL_GCACHE_IS_EMPTY(3)
Controls whether the Gcache is empty. When set to TRUE, the attribute causes the
Gcache to be emptied.

XGL_GCACHE_NURBS_CURVE_MODE(3)
Defines the mode of Gcache for NURBS curves.

XGL_GCACHE_NURBS_SURF_MODE(3)
Defines the mode of Gcache for NURBS surfaces.

XGL_GCACHE_ORIG_PRIM_TYPE(3)
Returns the type of the original primitive stored in the Gcache.

XGL_GCACHE_POLYGON_TYPE(3)
Controls which decomposition algorithm is used if polygon decomposition is
performed when xgl_gcache_polygon(3) is called.

XGL_GCACHE_PT_LIST_LIST(3)
Returns the list of point lists used when the Gcache is displayed.

XGL_GCACHE_SHOW_DECOMP_EDGES(3)
Controls whether decomposition edges are shown when xgl_gcache_polygon(3)
or xgl_gcache_multi_simple_polygon(3) is displayed.

XGL_GCACHE_USE_APPL_GEOM(3)

modified August 1994 297

XGL_GCACHE (3) XGL Graphics Library

Controls whether the Gcache references the application’s geometry (the parame-
ters to the Gcache operators, such as the list of points, bounding box, and facet
information).

XGL_OBJ_APPLICATION_DATA(3)
This attribute allows the application program to store its own data with an object.

XGL_OBJ_SYS_STATE(3)
This read-only attribute returns the System State that was used to create the
object.

XGL_OBJ_TYPE(3)
This read-only attribute defines the type of an XGL object.

298 modified August 1994

XGL Graphics Library XGL_GCACHE_BYPASS_MODEL_CLIP (3)

NAME XGL_GCACHE_BYPASS_MODEL_CLIP − controls whether model clipping is used
when a Gcache is displayed

SYNOPSIS #include <xgl/xgl.h>

Xgl_gcache gcache;

xgl_object_set(gcache, XGL_GCACHE_BYPASS_MODEL_CLIP, Xgl_boolean, 0);
xgl_object_get(gcache, XGL_GCACHE_BYPASS_MODEL_CLIP, Xgl_boolean ∗);

DESCRIPTION A Gcache stores the geometry in model coordinates (MC). When the Gcache is displayed,
the stored geometry is potentially subject to model clipping. This attribute controls
whether model clipping is bypassed (not used) when a Gcache is displayed with the test
parameter to xgl_context_display_gcache as FALSE. Since the test parameter is FALSE, in a
sense the application is indicating that it does not care about the state of the Context for
display versus the state of the Context when the Gcache was created. If this attribute is
FALSE, model clipping is applied to the display of the cached geometry. If it is TRUE,
model clipping is not applied.

The default value is FALSE.

SEE ALSO xgl_object_set(3)
xgl_object_get(3)
xgl_context_display_gcache(3)

modified August 1994 299

XGL_GCACHE_DISPLAY_PRIM_TYPE (3) XGL Graphics Library

NAME XGL_GCACHE_DISPLAY_PRIM_TYPE − returns the type of primitive used when
Gcache is displayed

SYNOPSIS #include <xgl/xgl.h>

Xgl_gcache gcache;

xgl_object_get(gcache, XGL_GCACHE_DISPLAY_PRIM_TYPE, Xgl_primitive_type ∗);

DESCRIPTION This read-only attribute returns the type of primitive used when the Gcache is displayed.
xgl_gcache_stroke_text(3) is called, The display primitive is used internally to display the
Gcache data. If XGL_GCACHE_DISPLAY_PRIM_TYPE is not the original primitive type, some
sort of optimization or simplification was performed on the data by XGL. This can hap-
pen, for instance, when a complex polygon is tessellated (broken down) into triangles, in
which case xgl_multi_simple_polygon is used for rendering. For a complete description
of how various primitives are handled by Gcaches, see the Man page for the Gcache ver-
sion of the primitive.

SEE ALSO xgl_object_set(3)
xgl_object_get(3)
xgl_context_display_gcache(3)
xgl_enum_types(3)

300 modified August 1994

XGL Graphics Library XGL_GCACHE_DO_POLYGON_DECOMP (3)

NAME XGL_GCACHE_DO_POLYGON_DECOMP − controls polygon decomposition when
xgl_gcache_polygon or xgl_gcache_multi_simple_polygon is called

SYNOPSIS #include <xgl/xgl.h>

Xgl_gcache gcache;

xgl_object_set(gcache, XGL_GCACHE_DO_POLYGON_DECOMP, Xgl_boolean, 0);
xgl_object_get(gcache, XGL_GCACHE_DO_POLYGON_DECOMP, Xgl_boolean ∗);

DESCRIPTION This attribute controls whether polygon decomposition is performed when xgl_gcache_-
polygon(3) or xgl_gcache_multi_simple_polygon(3) is called. If XGL_GCACHE_DO_-

POLYGON_DECOMP(3) is set to TRUE, any subsequent polygons that are cached will be
stored as a decomposed list of triangles. If set to FALSE, decomposition will not be per-
formed. For more information about polygon decomposition, see xgl_gcache_-
polygon(3) and xgl_gcache_multi_simple_polygon(3).

The default value is FALSE.

SEE ALSO xgl_gcache_polygon(3)
xgl_gcache_multi_simple_polygon(3)

NOTE When nonplanar polygons are decomposed, the results are undefined.

modified August 1995 301

XGL_GCACHE_FACET_LIST_LIST (3) XGL Graphics Library

NAME XGL_GCACHE_FACET_LIST_LIST − returns the list of facet lists used when the Gcache
is displayed

SYNOPSIS #include <xgl/xgl.h>

Xgl_gcache gcache;

xgl_object_get(gcache, XGL_GCACHE_FACET_LIST_LIST, Xgl_facet_list_list ∗);

DESCRIPTION This read-only attribute returns the list of facet lists used when the Gcache is displayed.
The Xgl_facet_list_list will be in the format required for rendering, using the primitive
returned by XGL_GCACHE_DISPLAY_PRIM_TYPE. For a detailed description of this list, see
the page for the specific XGL primitive in this manual.

SEE ALSO XGL_GCACHE_DISPLAY_PRIM_TYPE(3)

302 modified August 1994

XGL Graphics Library XGL_GCACHE_IS_EMPTY (3)

NAME XGL_GCACHE_IS_EMPTY − controls whether the Gcache is empty

SYNOPSIS #include <xgl/xgl.h>

Xgl_gcache gcache;

xgl_object_set(gcache, XGL_GCACHE_IS_EMPTY, Xgl_boolean, 0);
xgl_object_get(gcache, XGL_GCACHE_IS_EMPTY, Xgl_boolean ∗);

DESCRIPTION When set to TRUE, this attribute causes the Gcache to be emptied. When an empty Gcache
is displayed, nothing is drawn. Emptying a Gcache does not free the resources of the
Gcache. To do that, the Gcache must be destroyed. Setting this attribute to FALSE does
not affect the Gcache. It is a NO-OP.

This attribute returns TRUE if the Gcache is empty (has no geometry stored in it). A value
of FALSE means that the Gcache has some geometry in it.

The default value is TRUE.

SEE ALSO xgl_object_set(3)
xgl_object_get(3)
xgl_object_destroy(3)
xgl_context_display_gcache(3)

modified August 1994 303

XGL_GCACHE_NURBS_CURVE_MODE (3) XGL Graphics Library

NAME XGL_GCACHE_NURBS_CURVE_MODE − defines the mode of Gcache for NURBS curves

SYNOPSIS #include <xgl/xgl.h>

Xgl_gcache gcache;

xgl_object_set(gcache, XGL_GCACHE_NURBS_CURVE_MODE, Xgl_gcache_nurbs_mode, 0);
xgl_object_get(gcache, XGL_GCACHE_NURBS_CURVE_MODE, Xgl_gcache_nurbs_mode ∗);

DESCRIPTION This attribute controls the Gcache mode when xgl_gcache_nurbs_curve(3) or xgl_-
gcache_multi_elliptical_arc(3) operators are called.

The alternatives for this attribute are specified by the enumerated data type Xgl_gcache_-
nurbs_mode and are described below:

XGL_GCACHE_NURBS_DYNAMIC
A tessellation-independent Gcache is created. At each frame, the curve is
retessellated according to the current context. Memory consumption in this case
is minimal.

XGL_GCACHE_NURBS_STATIC
At Gcache creation time, the curve is tessellated, and the result is stored in the
tessellation Gcache in the form of polylines. Dynamic modification of the curve
appearance according to NURBS-specific context attributes is not possible.
Memory consumption in this case could be considerable.

XGL_GCACHE_NURBS_COMBINED
Both tessellation-independent and tessellation gcaches are created. Portions of
the curve are retessellated only if it is necessary according to the current context,
else the tessellation Gcache is used. Thus, dynamic modification of the curve
appearance is possible. Memory consumption in this case could be considerable.

The default value is XGL_GCACHE_NURBS_DYNAMIC.

SEE ALSO xgl_object_set(3)
xgl_object_get(3)
xgl_gcache_multi_elliptical_arc(3)
xgl_gcache_nurbs_curve(3)

304 modified August 1994

XGL Graphics Library XGL_GCACHE_NURBS_SURF_MODE (3)

NAME XGL_GCACHE_NURBS_SURF_MODE − defines the mode of Gcache for NURBS surfaces

SYNOPSIS #include <xgl/xgl.h>

Xgl_gcache gcache;

xgl_object_set(gcache, XGL_GCACHE_NURBS_SURF_MODE, Xgl_gcache_nurbs_mode, 0);
xgl_object_get(gcache, XGL_GCACHE_NURBS_SURF_MODE, Xgl_gcache_nurbs_mode ∗);

DESCRIPTION This attribute controls the Gcache mode when xgl_gcache_nurbs_surface(3) operator is
called.

The alternatives for this attribute are specified by the enumerated data type Xgl_gcache_-
nurbs_mode and are described below:

XGL_GCACHE_NURBS_DYNAMIC
A tessellation-independent Gcache is created. At each frame, the surface is
retessellated according to the current context. Memory consumption in this case
is minimal.

XGL_GCACHE_NURBS_STATIC
At Gcache creation time, the surface is tessellated, and the result is stored in the
tessellation Gcache in the form of polygons (quadrilateral meshes, triangle strips,
and/or polylines). Dynamic modification of the surface appearance according to
NURBS-specific context attributes is not possible. Memory consumption in this
case could be considerable.

XGL_GCACHE_NURBS_COMBINED
Both tessellation-independent and tessellation gcaches are created. Portions of
the surface are retessellated only if it is necessary according to the current con-
text, else the tessellation Gcache is used. Thus, dynamic modification of the sur-
face appearance is possible. Memory consumption in this case could be consider-
able.

The default value is XGL_GCACHE_NURBS_DYNAMIC.

SEE ALSO xgl_object_set(3)
xgl_object_get(3)
xgl_gcache_nurbs_surface(3)

modified August 1994 305

XGL_GCACHE_ORIG_PRIM_TYPE (3) XGL Graphics Library

NAME XGL_GCACHE_ORIG_PRIM_TYPE − returns the type of original primitive stored in the
Gcache

SYNOPSIS #include <xgl/xgl.h>

Xgl_gcache gcache;

xgl_object_get(gcache, XGL_GCACHE_ORIG_PRIM_TYPE, Xgl_primitive_type ∗);

DESCRIPTION This read-only attribute returns the type of the original primitive stored in the Gcache.
For example, if xgl_gcache_stroke_text(3) is called, this attribute returns XGL_PRIM_-
STROKE_TEXT.

SEE ALSO xgl_object_set(3)
xgl_object_get(3)
xgl_context_display_gcache(3)
xgl_enum_types(3)

306 modified August 1994

XGL Graphics Library XGL_GCACHE_POLYGON_TYPE (3)

NAME XGL_GCACHE_POLYGON_TYPE − controls which decomposition algorithm is used
when xgl_gcache_polygon is called

SYNOPSIS #include <xgl/xgl.h>

Xgl_gcache gcache;

xgl_object_set(gcache, XGL_GCACHE_POLYGON_TYPE, Xgl_polygon_type, 0);
xgl_object_get(gcache, XGL_GCACHE_POLYGON_TYPE, Xgl_polygon_type ∗);

DESCRIPTION This attribute controls which decomposition algorithm is used if polygon decomposition
is performed when xgl_gcache_polygon(3) is called. The Xgl_polygon_type value of XGL_-
POLYGON_NSI means the polygon is non−self-intersecting. The value XGL_POLYGON_-
COMPLEX means the polygon can be arbitrarily complex in shape. For more information
about polygon decomposition, see xgl_gcache_polygon(3).

The default value is XGL_POLYGON_COMPLEX.

SEE ALSO xgl_enum_types(3)
xgl_gcache_polygon(3)

XGL_GCACHE_DO_POLYGON_DECOMP(3)

modified August 1994 307

XGL_GCACHE_PT_LIST_LIST (3) XGL Graphics Library

NAME XGL_GCACHE_PT_LIST_LIST − returns the list of point lists used when the Gcache is
displayed

SYNOPSIS #include <xgl/xgl.h>

Xgl_gcache gcache;

xgl_object_get(gcache, XGL_GCACHE_PT_LIST_LIST, Xgl_pt_list_list ∗);

DESCRIPTION This read-only attribute returns the list of point lists used when the Gcache is displayed.
The Xgl_pt_list_list will be in the format required for rendering, using the primitive
returned by XGL_GCACHE_DISPLAY_PRIM_TYPE(3). For a detailed description of this list, see
the page for the specific XGL primitive in this manual.

SEE ALSO xgl_struct(3)

XGL_GCACHE_DISPLAY_PRIM_TYPE(3)

308 modified August 1994

XGL Graphics Library XGL_GCACHE_SHOW_DECOMP_EDGES (3)

NAME XGL_GCACHE_SHOW_DECOMP_EDGES − controls whether decomposition edges are
shown when xgl_gcache_polygon(3) or xgl_gcache_multi_simple_polygon(3) is
displayed

SYNOPSIS #include <xgl/xgl.h>

Xgl_gcache gcache;

xgl_object_set(gcache, XGL_GCACHE_SHOW_DECOMP_EDGES, Xgl_boolean, 0);
xgl_object_get(gcache, XGL_GCACHE_SHOW_DECOMP_EDGES, Xgl_boolean ∗);

DESCRIPTION If both this attribute and XGL_CTX_SURF_EDGE_FLAG(3) are TRUE, and the xgl_gcache_-
polygon(3) or xgl_gcache_multi_simple_polygon(3) being displayed was decomposed,
the edges outlining the decomposition are shown. The color is determined by the attri-
bute XGL_CTX_EDGE_COLOR(3). If XGL_GCACHE_SHOW_DECOMP_EDGES is FALSE, the decom-
position edges are not shown.

The default value is FALSE.

SEE ALSO xgl_object_set(3)
xgl_object_get(3)
xgl_gcache_polygon(3)
xgl_gcache_multi_simple_polygon(3)

XGL_CTX_EDGE_COLOR(3)
XGL_GCACHE_DO_POLYGON_DECOMP(3)

modified August 1994 309

XGL_GCACHE_USE_APPL_GEOM (3) XGL Graphics Library

NAME XGL_GCACHE_USE_APPL_GEOM − controls whether the application’s geometry is
referenced

SYNOPSIS #include <xgl/xgl.h>

Xgl_gcache gcache;

xgl_object_set(gcache, XGL_GCACHE_USE_APPL_GEOM, Xgl_boolean, 0);
xgl_object_get(gcache, XGL_GCACHE_USE_APPL_GEOM, Xgl_boolean ∗);

DESCRIPTION When set to TRUE, this attribute causes the Gcache to try to reference the application’s
geometry (the parameters to the Gcache operators, such as the list of points, bounding
box, and facet information) in the Gcache. When it is FALSE, the Gcache copies the
application’s geometry into the Gcache.

If this attribute is TRUE, it is the application’s responsibility to keep the geometry allo-
cated. The application’s geometry must not be freed until after the contents of the Gcache
have been either emptied or replaced by another geometry, or the Gcache has been
destroyed.

The default value is FALSE.

SEE ALSO xgl_object_set(3)
xgl_object_get(3)
xgl_object_destroy(3)

310 modified August 1994

XGL Graphics Library XGL_LIGHT (3)

NAME XGL_LIGHT − a Light object

OVERVIEW XGL_LIGHT is the type of an object representing an XGL Light object. It is used as the type
parameter value for xgl_object_create(3).

A Light object is an abstraction of a physical light source. It is used to illuminate surfaces
(polygons, triangle strips, and so on) rendered by a 3D Context. A Light object can simu-
late different types of light sources; the more realistic the model of the light source, the
more computation is needed.

When a Light is no longer needed in an application, it can be explicitly destroyed by cal-
ling the xgl_object_destroy(3) operator to free the resources associated with it.

After creating the Light, using xgl_object_create(3), the application can inquire about the
values of its attributes by using the xgl_object_get(3) operator.

A System State object must have been created with the xgl_open(3) operator before any
Light can be created.

A brief overview of all of the attributes follows. For more information, see the man page
for each attribute.

XGL_LIGHT_ATTENUATION_1(3)
XGL_LIGHT_ATTENUATION_2(3)

Define the light attenuation coefficients for positional or spot lights.

XGL_LIGHT_COLOR(3)
Defines the color of a light.

XGL_LIGHT_DIRECTION(3)
Defines the direction of light propagation for a spot or directional light.

XGL_LIGHT_POSITION(3)
Defines the position in World Coordinates of a positional or spot light.

XGL_LIGHT_SPOT_ANGLE(3)
XGL_LIGHT_SPOT_EXPONENT(3)

Define the intensity profile for a spot light.

XGL_LIGHT_TYPE(3)
Defines the type of the Light object. A light can be an ambient, a directional, a
positional, or a spot light.

XGL_OBJ_APPLICATION_DATA(3)
This attribute allows the application program to store its own data with an object.

XGL_OBJ_SYS_STATE(3)
This read-only attribute returns the System State that was used to create the
object.

XGL_OBJ_TYPE(3)
This read-only attribute defines the type of an XGL object.

modified August 1994 311

XGL_LIGHT_ATTENUATION_1 (3) XGL Graphics Library

NAME XGL_LIGHT_ATTENUATION_1,
XGL_LIGHT_ATTENUATION_2 − define the light attenuation coefficients of a Light

SYNOPSIS #include <xgl/xgl.h>

Xgl_light light;

xgl_object_set(light, XGL_LIGHT_ATTENUATION_1, float, 0);
xgl_object_set(light, XGL_LIGHT_ATTENUATION_2, float, 0);

xgl_object_get(light, XGL_LIGHT_ATTENUATION_1, float ∗);
xgl_object_get(light, XGL_LIGHT_ATTENUATION_2, float ∗);

DESCRIPTION These attributes define the Light attenuation coefficients. These attributes apply to Lights
whose XGL_LIGHT_TYPE(3) is either XGL_LIGHT_POSITIONAL or XGL_LIGHT_SPOT.

The light attenuation factor for a specific Light can be computed from the light attenuation
coefficients as follows:

Let La be the light attenuation factor.
Let C1 be the value of XGL_LIGHT_ATTENUATION_1.
Let C2 be the value of XGL_LIGHT_ATTENUATION_2.
Let Op be the object position.
Let Lp be the light position.

Then La = 1 / (C1 + C2(norm(Op - Lp))) .

The default value for XGL_LIGHT_ATTENUATION_1 is 1.0.

The default value for XGL_LIGHT_ATTENUATION_2 is 0.0.

SEE ALSO xgl_object_set(3)
xgl_object_get(3)
xgl_object_create(3)

XGL_LIGHT_TYPE(3)

312 modified August 1994

XGL Graphics Library XGL_LIGHT_COLOR (3)

NAME XGL_LIGHT_COLOR − defines the color of a Light

SYNOPSIS #include <xgl/xgl.h>

Xgl_light light;

xgl_object_set(light, XGL_LIGHT_COLOR, Xgl_color ∗, 0);
xgl_object_get(light, XGL_LIGHT_COLOR, Xgl_color ∗);

DESCRIPTION This attribute defines the color of a Light. Lights of all types (see XGL_LIGHT_TYPE(3)) have
a color associated with them.

When the Device color type (see XGL_DEV_COLOR_TYPE(3)) is indexed (XGL_COLOR_INDEX),
the Light color type is gray (XGL_COLOR_GRAY), with a value ranging between 0.0 and 1.0.
The lighting calculation determines the index for the reflected light color; the material
color is given by an index. XGL determines the color ramp (see XGL_CMAP_RAMP_LIST(3))
where the material color resides within the color table of the Raster’s Color Map and con-
verts this to a floating-point value. The lighting calculation proceeds in floating point. The
final reflected color index comes from scaling the floating-point reflected color by the size
of the material color’s ramp and adding the offset of the ramp’s first index.

When the Device color type is RGB (XGL_COLOR_RGB), the lighting calculation applies to
each of the red, green, and blue channels. The range on each of the red, green, and blue
channels is 0.0 to 1.0.

The default value for the index color model is a gray value of 1.0; the default value for the
rgb color model is white.

SEE ALSO xgl_object_set(3)
xgl_object_get(3)
xgl_object_create(3)

XGL_3D_CTX_SURF_BACK_COLOR(3)
XGL_3D_CTX_SURF_FRONT_SPECULAR_COLOR(3)
XGL_3D_CTX_SURF_BACK_SPECULAR_COLOR(3)
XGL_CMAP_COLOR_TABLE(3)
XGL_CMAP_RAMP_NUM(3)
XGL_CMAP_RAMP_LIST(3)
XGL_CTX_SURF_FRONT_COLOR(3)
XGL_LIGHT_TYPE(3)
XGL_DEV_COLOR_TYPE(3)

modified August 1994 313

XGL_LIGHT_DIRECTION (3) XGL Graphics Library

NAME XGL_LIGHT_DIRECTION − defines the direction of a Light

SYNOPSIS #include <xgl/xgl.h>

Xgl_light light;

xgl_object_set(light, XGL_LIGHT_DIRECTION, Xgl_pt_f3d ∗, 0);
xgl_object_get(light, XGL_LIGHT_DIRECTION, Xgl_pt_f3d ∗);

DESCRIPTION This attribute defines the direction of Light propagation in world coordinates (WC). The
attribute applies to Lights whose XGL_LIGHT_TYPE(3) is either XGL_LIGHT_DIRECTIONAL or
XGL_LIGHT_SPOT. XGL normalizes the length of the lighting vector given by the
application.

The light rays for Directional Lights are parallel, propagating in the direction given by
this attribute.

A Spot Light radiates light rays from a single point. The ray with the maximum intensity
propagates in the direction given by this attribute. Rays lying off this principal axis fall
off in intensity with the angle away from the axis when the Light spot exponent is greater
than 1.0.

The default value is the vector (0.0, 0.0, 1.0).

SEE ALSO xgl_object_set(3)
xgl_object_get(3)
xgl_object_create(3)

XGL_LIGHT_SPOT_ANGLE(3)
XGL_LIGHT_SPOT_EXPONENT(3)
XGL_LIGHT_TYPE(3)

314 modified August 1994

XGL Graphics Library XGL_LIGHT_POSITION (3)

NAME XGL_LIGHT_POSITION − defines the position of a Light

SYNOPSIS #include <xgl/xgl.h>

Xgl_light light;

xgl_object_set(light, XGL_LIGHT_POSITION, Xgl_pt_d3d ∗, 0);
xgl_object_get(light, XGL_LIGHT_POSITION, Xgl_pt_d3d ∗);

DESCRIPTION This attribute defines the position of a Light in world coordinates (WC). The attribute
applies to Lights whose XGL_LIGHT_TYPE(3) is either XGL_LIGHT_POSITIONAL or XGL_LIGHT_-
SPOT.

The default value is the point (0.0, 0.0, 0.0).

SEE ALSO xgl_object_set(3)
xgl_object_get(3)
xgl_object_create(3)

XGL_LIGHT_TYPE(3)

modified August 1994 315

XGL_LIGHT_SPOT_ANGLE (3) XGL Graphics Library

NAME XGL_LIGHT_SPOT_ANGLE,
XGL_LIGHT_SPOT_EXPONENT − define the intensity profile of a Spot Light

SYNOPSIS #include <xgl/xgl.h>

Xgl_light light;

xgl_object_set(light, XGL_LIGHT_SPOT_ANGLE, float, 0);
xgl_object_set(light, XGL_LIGHT_SPOT_EXPONENT, float, 0);

xgl_object_get(light, XGL_LIGHT_SPOT_ANGLE, float ∗);
xgl_object_get(light, XGL_LIGHT_SPOT_EXPONENT, float ∗);

DESCRIPTION These attributes define the intensity profile of a Spot Light (for a description of Spot
Lights, see XGL_LIGHT_TYPE(3)). The intensity is at its maximum along the light ray point-
ing in the direction given by XGL_LIGHT_DIRECTION(3), radiating from the Spot Light posi-
tion given by XGL_LIGHT_POSITION(3).

XGL_LIGHT_SPOT_ANGLE gives the illumination angle of influence for the Spot Light. The
angle is specified in radians. For example, a value of pi for this attribute would result in a
Spot Light that illuminates a hemisphere.

XGL_LIGHT_SPOT_EXPONENT gives the light source concentration exponent. A larger value
causes the intensity to fall off faster as the angle increases between the Spot Light direc-
tion given by XGL_LIGHT_DIRECTION and the direction that points from the light position to
the object position. This angle is raised to the power of this attribute’s value, which
should be greater than or equal to 1.0.

The default value for XGL_LIGHT_SPOT_ANGLE is π.

The default value for XGL_LIGHT_SPOT_EXPONENT is 1.0.

SEE ALSO xgl_object_set(3)
xgl_object_get(3)
xgl_object_create(3)

XGL_LIGHT_DIRECTION(3)
XGL_LIGHT_POSITION(3)
XGL_LIGHT_TYPE(3)

316 modified August 1994

XGL Graphics Library XGL_LIGHT_TYPE (3)

NAME XGL_LIGHT_TYPE − defines the type of a Light object

SYNOPSIS #include <xgl/xgl.h>

Xgl_light light;

xgl_object_set(light, XGL_LIGHT_TYPE, Xgl_light_type, 0);
xgl_object_get(light, XGL_LIGHT_TYPE, Xgl_light_type ∗);

DESCRIPTION This attribute specifies the Light type, which determines the properties of a Light. Lights
of all types have a color associated with them (see XGL_LIGHT_COLOR(3)). XGL accepts the
following values for Xgl_light_type:

XGL_LIGHT_AMBIENT
An Ambient Light adds a uniform brightness to the light reflected from surfaces. It
simulates light reflected from multiple surfaces. Ambient Light does not come
from any single direction or position; instead, Ambient Light models light com-
ing from all directions uniformly. Ambient reflections do not depend on the
orientation or position of a surface. An Ambient Light does not contribute to dif-
fuse and specular reflections. An Ambient Light has only a color, as specified
with XGL_LIGHT_COLOR.

XGL_LIGHT_DIRECTIONAL
A Directional Light has parallel light rays. It contributes to diffuse and specular
reflections, which in turn depend on the orientation of a surface, but not its posi-
tion. A Directional Light does not contribute to ambient reflections. A Directional
Light has a color specified with XGL_LIGHT_COLOR, and a direction specified with
XGL_LIGHT_DIRECTION(3).

XGL_LIGHT_POSITIONAL
A Positional Light radiates light rays uniformly from a single point in all direc-
tions. It contributes to diffuse and specular reflections, which in turn depend on
the orientation and position of a surface. A Positional Light does not contribute
to ambient reflections. The intensity profile of a Positional Light depends on the
distance of the Light from the surface. A Positional Light has a color specified
with XGL_LIGHT_COLOR(3), a position specified with XGL_LIGHT_POSITION(3), and
an attenuation profile specified with XGL_LIGHT_ATTENUATION_1(3) and XGL_-

LIGHT_ATTENUATION_2(3).

XGL_LIGHT_SPOT
A Spot Light radiates light rays from a single point. A Spot Light has both a posi-
tion and a direction. The ray with the maximum intensity propagates in this
direction. Rays lying off this principal axis fall off in intensity with the angle
away from the axis. The light from a Spot Light affects surfaces lying within the
Light’s cone of illumination. The intensity profile of a Spot Light depends on the
distance of the Light from the surface. A Spot Light contributes to diffuse and
specular reflections, which in turn depend on the orientation and position of a
surface. A Spot Light has a color specified with XGL_LIGHT_COLOR, a direction
specified with XGL_LIGHT_DIRECTION, a position specified with XGL_LIGHT_-

modified August 1994 317

XGL_LIGHT_TYPE (3) XGL Graphics Library

POSITION, a spot profile specified with XGL_LIGHT_SPOT_ANGLE(3) and XGL_-

LIGHT_SPOT_EXPONENT(3), and an attenuation profile specified with XGL_LIGHT_-
ATTENUATION_1 and XGL_LIGHT_ATTENUATION_2.

The default value is XGL_LIGHT_AMBIENT.

SEE ALSO xgl_object_set(3)
xgl_object_get(3)
xgl_object_create(3)

XGL_3D_CTX_SURF_FRONT_LIGHT_TYPE(3)
XGL_3D_CTX_SURF_BACK_LIGHT_TYPE(3)
XGL_3D_CTX_SURF_FRONT_LIGHT_COMPONENT(3)
XGL_3D_CTX_SURF_BACK_LIGHT_COMPONENT(3)
XGL_LIGHT_ATTENUATION_1(3)
XGL_LIGHT_ATTENUATION_2(3)
XGL_LIGHT_COLOR(3)
XGL_LIGHT_DIRECTION(3)
XGL_LIGHT_POSITION(3)
XGL_LIGHT_SPOT_ANGLE(3)
XGL_LIGHT_SPOT_EXPONENT(3)

318 modified August 1994

XGL Graphics Library XGL_LPAT (3)

NAME XGL_LPAT − a Line Pattern object

OVERVIEW XGL_LPAT is the type parameter value for a Line Pattern.

A Line Pattern object can be used to draw patterned lines and edges. To use the Line Pat-
tern, it must first be attached to a Context by setting the attribute XGL_CTX_LINE_-

PATTERN(3) to the handle of the pattern object returned by the operator xgl_object_-
create(3). If the Line Pattern is to be used for edges, the attribute XGL_CTX_EDGE_-

PATTERN(3) should be set.

To draw patterned lines, set the Context attribute XGL_CTX_LINE_STYLE(3) to XGL_LINE_-
PATTERNED or XGL_LINE_ALT_PATTERNED.

To draw patterned edges, set the Context attribute XGL_CTX_EDGE_STYLE(3) to XGL_LINE_-
PATTERNED or XGL_LINE_ALT_PATTERNED.

The Context attribute XGL_CTX_LINE_COLOR(3) determines what the color of the line will
be. If XGL_CTX_LINE_STYLE is set to XGL_LINE_ALT_PATTERNED, the line is patterned alter-
nately with dashes of XGL_CTX_LINE_ALT_COLOR(3) and XGL_CTX_LINE_COLOR (edge colors
are handled in an analogous fashion using the attributes XGL_CTX_EDGE_COLOR(3) and
XGL_CTX_EDGE_ALT_COLOR(3)).

The application can either create its own Line Pattern object to be used for lines, or it can
use one of the predefined Line Patterns (see XGL_CTX_LINE_PATTERN(3)).

After creating the Line Pattern, using xgl_object_create(3), the application can inquire
about the values of its attributes by using the xgl_object_get(3) operator.

The following is a brief description of the attributes associated with Line Pattern objects.
For more information, see the man page for each attribute.

XGL_LPAT_BALANCED_DASH(3)
The attribute to set to define the Line Pattern balance.

XGL_LPAT_DATA(3)
The array that defines the on/off segment lengths of the Line Pattern.

XGL_LPAT_DATA_SIZE(3)
The length of the XGL_LPAT_DATA data array.

XGL_LPAT_DATA_TYPE(3)
The data type of the elements within the XGL_LPAT_DATA data array.

XGL_LPAT_OFFSET(3)
The location within the XGL_LPAT_DATA data array where XGL will begin using
the Line Pattern data.

XGL_LPAT_STYLE(3)
The attribute to set to define the Line Pattern style.

XGL_OBJ_APPLICATION_DATA(3)
This attribute allows the application program to store its own data with an object.

XGL_OBJ_SYS_STATE(3)
This read-only attribute returns the System State that was used to create the

modified August 1994 319

XGL_LPAT (3) XGL Graphics Library

object.

XGL_OBJ_TYPE(3)
This read-only attribute defines the type of an XGL object.

320 modified August 1994

XGL Graphics Library XGL_LPAT_DATA (3)

NAME XGL_LPAT_DATA − specifies the line segments, stored in an array, that comprise a Line
Pattern

SYNOPSIS #include <xgl/xgl.h>

Xgl_lpat lpat;

xgl_object_set(lpat, XGL_LPAT_DATA, Xgl_sgn32|float [], 0);
xgl_object_get(lpat, XGL_LPAT_DATA, Xgl_sgn32|float∗);

DESCRIPTION This attribute defines the on and off segment lengths of a Line Pattern, which are stored
as an array. The attribute is used with the operator xgl_object_create(3) to create a Line
Pattern object. Once created, the application can attach it to the current Context by using
one or both Context attributes, XGL_CTX_LINE_PATTERN(3) and XGL_CTX_EDGE_PATTERN(3).
Then, the pattern will be used if XGL_CTX_LINE_STYLE(3) or XGL_CTX_EDGE_STYLE(3) is set to
patterned lines.

The on and off line segment data is an array of positive, non-zero, 32-bit integers or float-
ing point numbers. The data type used is specified by the Line Pattern attribute XGL_-

LPAT_DATA_TYPE(3). It should be set before passing the data.

The length of the line segment data array is set with the Line Pattern attribute XGL_LPAT_-

DATA_SIZE(3). It should also be set before passing the data.

The line segment data array stores line segment lengths of alternating on and off pattern
segments. The first segment is assumed to be an on segment. The lengths are specified in
the coordinate system defined by the Line Pattern attribute XGL_LPAT_COORD_SYS(3).

The segments are used cyclically; when the end of the pattern is reached (that is, when
the end of the array is reached), the pattern is started over from the beginning. For pat-
terns containing an even number of segments, the cyclical replication occurs in a straight-
forward manner. A pattern such as 1 (on), 3 (off), 10 (on), 5 (off) repeats as 1 (on), 3 (off), 10
(on), 5 (off), 1 (on), 3 (off), 10 (on), 5 (off), and so on. For an odd number of segments, how-
ever, the pattern is first concatenated with itself to produce a list of even length. This list
is then used as the data array. For example, a pattern such as 1 (on), 3 (off), 10 (on)
becomes 1 (on), 3 (off), 10 (on), 1 (off), 3 (on), 10 (off), which repeats as 1 (on), 3 (off), 10 (on),
1 (off), 3 (on), 10 (off), 1 (on), 3 (off), 10 (on), 1 (off), 3 (on), 10 (off), and so on.

The attribute XGL_LPAT_OFFSET(3) defines an offset into the Line Pattern where the pattern
will begin. Its data type is always float.

When using xgl_object_get to get the Line Pattern data, the application must pass a
pointer to an array large enough to hold the XGL_LPAT_DATA_SIZE number of data items.

No default value is defined.

modified August 1994 321

XGL_LPAT_DATA (3) XGL Graphics Library

SEE ALSO xgl_object_set(3)
xgl_object_get(3)
xgl_object_create(3)

XGL_CTX_EDGE_PATTERN(3)
XGL_CTX_LINE_PATTERN(3)
XGL_CTX_EDGE_STYLE(3)
XGL_CTX_LINE_STYLE(3)
XGL_LPAT_COORD_SYS(3)
XGL_LPAT_DATA_SIZE(3)
XGL_LPAT_DATA_TYPE(3)
XGL_LPAT_OFFSET(3)
XGL_LPAT_STYLE(3)

322 modified August 1994

XGL Graphics Library XGL_LPAT_DATA_SIZE (3)

NAME XGL_LPAT_DATA_SIZE − defines the size of the Line Pattern data array

SYNOPSIS #include <xgl/xgl.h>

Xgl_lpat lpat;

xgl_object_set(lpat, XGL_LPAT_DATA_SIZE, Xgl_usgn32, 0);
xgl_object_get(lpat, XGL_LPAT_DATA_SIZE, Xgl_usgn32 ∗);

DESCRIPTION This attribute defines the size (number of elements) of the data array that stores the
lengths of on and off segments describing a Line Pattern. The data array is specified (that
is, attached to the Context) by setting the attribute XGL_LPAT_DATA(3).

XGL_LPAT_DATA_SIZE should be set before setting the data with XGL_LPAT_DATA. Line Pat-
tern objects are created by using the operator xgl_object_create(3).

The default value is 0.

SEE ALSO xgl_object_set(3)
xgl_object_get(3)
xgl_object_create(3)

XGL_LPAT_DATA(3)

modified August 1994 323

XGL_LPAT_DATA_TYPE (3) XGL Graphics Library

NAME XGL_LPAT_DATA_TYPE − defines the data type of line segment lengths stored in the
Line Pattern data array

SYNOPSIS #include <xgl/xgl.h>

Xgl_lpat lpat;

xgl_object_set(lpat, XGL_LPAT_DATA_TYPE, Xgl_data_type, 0);
xgl_object_get(lpat, XGL_LPAT_DATA_TYPE, Xgl_data_type ∗);

DESCRIPTION This attribute specifies the data type of the line segment lengths stored in the Line Pattern
data array. The Line Pattern data array is specified by the attribute XGL_LPAT_DATA(3),
and Line Patterns are created with the operator xgl_object_create(3). The line segment
data can be either an array of 32-bit-integer or floating-point values. Thus, this attribute
can be specified as either XGL_DATA_INT or XGL_DATA_FLT.

The Line Pattern array length, which is specified by the attribute XGL_LPAT_DATA_SIZE(3),
and the Line Pattern data type should be set before setting the Line Pattern data with the
attribute XGL_LPAT_DATA.

The default value is XGL_DATA_FLT.

SEE ALSO xgl_object_set(3)
xgl_object_get(3)
xgl_object_create(3)

XGL_LPAT_DATA(3)
XGL_LPAT_DATA_SIZE(3)

324 modified August 1994

XGL Graphics Library XGL_LPAT_OFFSET (3)

NAME XGL_LPAT_OFFSET − defines an offset into the Line Pattern data array where the Line
Pattern will begin

SYNOPSIS #include <xgl/xgl.h>

Xgl_lpat lpat;

xgl_object_set(lpat, XGL_LPAT_OFFSET, float, 0);
xgl_object_get(lpat, XGL_LPAT_OFFSET, float ∗);

DESCRIPTION This attribute is used to specify the location within a Line Pattern object where XGL will
begin using the pattern to render a patterned line. It is defined as an offset into a Line Pat-
tern specified by a Line Pattern data array (see XGL_LPAT_DATA(3)).

The offset into the Line Pattern is used only at the beginning of the patterned line that is
being rendered. It is interpreted as a distance into the Line Pattern (measured in Line
Pattern coordinate system space as specified by the attribute XGL_LPAT_COORD_SYS(3)) at
which the pattern should be started. Before beginning to draw a line, XGL searches
through the elements of the XGL_LPAT_DATA array, adding up distances in the array
without rendering the line. When XGL has traveled the XGL_LPAT_OFFSET(3) distance into
the pattern, it starts rendering the patterned line as it normally would — that is, drawing
the line when the corresponding segment defined in the array is on and not drawing it
when the segment is off. (For more information, see XGL_LPAT_DATA.) If, while drawing
the patterned line, the end of the pattern (the Line Pattern data array) is reached, the pat-
tern is started over from the beginning of the array.

XGL_LPAT_OFFSET must be greater than or equal to 0.0.

The default value is 0.0.

SEE ALSO xgl_object_set(3)
xgl_object_get(3)
xgl_object_create(3)

XGL_LPAT_DATA(3)
XGL_LPAT_DATA_SIZE(3)
XGL_LPAT_STYLE(3)

NOTES This attribute applies only when the value of XGL_LPAT_STYLE is XGL_LPAT_FIXED_OFFSET.

modified August 1994 325

XGL_LPAT_STYLE (3) XGL Graphics Library

NAME XGL_LPAT_STYLE,
XGL_LPAT_BALANCED_DASH − define Line Pattern style and Line Pattern balancing

SYNOPSIS #include <xgl/xgl.h>

Xgl_lpat lpat;

xgl_object_set(lpat, XGL_LPAT_STYLE, Xgl_lpat_style, 0);
xgl_object_set(lpat, XGL_LPAT_BALANCED_DASH, Xgl_lpat_bal_dash, 0);

xgl_object_get(lpat, XGL_LPAT_STYLE, Xgl_lpat_style ∗);
xgl_object_get(lpat, XGL_LPAT_BALANCED_DASH, Xgl_lpat_bal_dash ∗);

DESCRIPTION XGL_LPAT_STYLE(3) specifies the Line Pattern style. The following enumerated values of
Xgl_lpat_style define the options:

XGL_LPAT_FIXED_OFFSET
XGL applies the fixed Line Pattern offset of lpat given by XGL_LPAT_OFFSET(3)
when rendering polylines, open arcs, NURBS curves, or polygon edges. For each
line segment, the Line Pattern carries over from the segment to the next adjacent
segment.

XGL_LPAT_BALANCED_SEGMENT
For each segment of a polyline, XGL balances the Line Pattern with respect to the
midpoint of the segment before clipping. The balancing is independent of a
segment’s adjacent segments. This line pattern style is applicable only to poly-
lines and not other primitives. If an application tries to use this line pattern style
with open arcs, NURBS curves, or polygon edges, XGL will render them with the
value XGL_LPAT_FIXED_OFFSET.

XGL_LPAT_BALANCED_DASH takes effect only when XGL_LPAT_STYLE has the value XGL_-
LPAT_BALANCED_SEGMENT. It allows an application to select the first or second dash in the
Line Pattern around which to balance the Line Pattern. In the following descriptions, let
the Line Pattern data consist of the dashes with lengths D[0], D[1], ..., D[n-1].

The enumerated values of Xgl_lpat_bal_dash define the following options:

XGL_LPAT_BAL_DASH_0
The center of the first dash with length D[0] coincides with the midpoint of the
segment. The Line Pattern will be symmetric with respect to this midpoint if n is
even and one of the following two conditions holds: (1) n = 2, or (2) n > 2 and
D[1] = D[n-1], D[2] = D[n-2], ..., and D[(n/2)-1] = D[(n/2)+1].

XGL_LPAT_BAL_DASH_1
The center of the second dash with length D[1] coincides with the midpoint of the
segment. The Line Pattern will be symmetric with respect to this midpoint if n is
even and one of the following two conditions holds: (1) n = 2, or (2) n > 2 and
D[0] = D[2], D[n-1] = D[3], ..., and D[(n/2)+2] = D[n/2].

Note that if n is odd, XGL replicates the Line Pattern data once, producing an array of
dash lengths twice the size of the specified array (see XGL_LPAT_DATA(3)). XGL ignores
the value of XGL_LPAT_OFFSET(3) when XGL_LPAT_STYLE has the value XGL_LPAT_-

326 modified August 1994

XGL Graphics Library XGL_LPAT_STYLE (3)

BALANCED_SEGMENT.

The default value of XGL_LPAT_STYLE is XGL_LPAT_FIXED_OFFSET.

The default value of XGL_LPAT_BALANCED_DASH is XGL_LPAT_BAL_DASH_0.

SEE ALSO xgl_object_set(3)
xgl_object_get(3)
xgl_object_create(3)

XGL_LPAT_OFFSET(3)
XGL_LPAT_DATA(3)

modified August 1994 327

XGL_MARKER (3) XGL Graphics Library

NAME XGL_MARKER − a Marker object

OVERVIEW XGL_MARKER is the type of an object representing an XGL Marker object. It is used as the
type parameter value for xgl_object_create(3).

A Marker is a symbol that is rendered at each of the points in the xgl_multimarker(3)
primitive. The application can define its own Marker symbols by creating a Marker
object and defining its geometry.

Marker uses the following attribute:

XGL_MARKER_DESCRIPTION(3)
Specifies the geometry of the Marker symbol.

XGL_OBJ_APPLICATION_DATA(3)
This attribute allows the application program to store its own data with an object.

XGL_OBJ_SYS_STATE(3)
This read-only attribute returns the System State that was used to create the
object.

XGL_OBJ_TYPE(3)
This read-only attribute defines the type of an XGL object.

328 modified August 1994

XGL Graphics Library XGL_MARKER_DESCRIPTION (3)

NAME XGL_MARKER_DESCRIPTION − geometric points defining a Marker object

SYNOPSIS #include <xgl/xgl.h>

Xgl_marker marker;

xgl_object_set(marker, XGL_MARKER_DESCRIPTION, Xgl_pt_list_list ∗, 0);
xgl_object_get(marker, XGL_MARKER_DESCRIPTION, Xgl_pt_list_list ∗);

DESCRIPTION This attribute is the description for a Marker object. All Marker objects consist of a list of
2D float coordinates that define one or more polylines that comprise the marker. The
application can get and set the coordinates that define a Marker for application-created
Markers. But the Xgl default Marker objects are read-only, and the application cannot set
the geometry associated with them.

When setting a Marker description, the application should fill in an Xgl_pt_list_list data
structure and set the Marker object description to this data structure.

When getting a Marker description, the application need only declare the Xgl_pt_list_list
variable and pass XGL a pointer to it. XGL assumes that the application will not know the
size of the point lists and thus will not be able to allocate memory to hold the point list
information; therefore, XGL allocates the memory for the Xgl_pt_list_list data structure on
behalf of the application. Once the memory is allocated, however, it is the responsibility
of the application to free the memory with a free system call. The following lines of code
show how to free the memory for an Xgl_pt_list_list data structure:

free (point_list_list.pt_lists->pts.f2d);

free (point_list_list.pt_lists);

Marker object descriptions are limited to float 2D coordinates only. Thus, the application
must use either XGL_PT_F2D, XGL_PT_COLOR_F2D or XGL_PT_FLAG_F2D when specifying a
Marker description. If any other point types are used, the results may by incorrect.
Marker object descriptions are limited to 128 2D float coordinates.

For the application to define its own Marker objects, it: 1) creates a Marker object using
xgl_object_create(3), 2) attaches an application-defined Marker description to that object
using XGL_MARKER_DESCRIPTION, and 3) uses the Context attribute XGL_CTX_MARKER(3) to
attach the application-defined marker to the current Context. Then a call to xgl_-
multimarker(3) renders the application-defined markers into an XGL Raster.

If the XGL_CTX_MARKER attribute is set to an application-defined Marker that doesn’t have
a description, a call to xgl_multimarker(3) results in nothing being rendered.

If the application data associated with this Marker object is a pointer to a floating point
scale factor, when rendering through the CGM stream pipeline, the marker will be
stroked out and scaled by a factor equal to the product of XGL_CTX_MARKER_SCALE_-

FACTOR(3) and the float pointed to by XGL_OBJ_APPLICATION_DATA(3). If there is no object
application data associated with the marker, then a marker other than one of the
predefined markers will be rendered by the CGM stream pipeline as a dot marker. Note
that the XGL_OBJ_APPLICATION_DATA(3) scale factor only applies to the CGM stream pipe-
line. See the XGL Programmer’s Guide for an example.

modified February 1995 329

XGL_MARKER_DESCRIPTION (3) XGL Graphics Library

The default value depends on the Marker object. The default value for application-
defined Markers is NULL — no geometry.

SEE ALSO xgl_object_create(3)
xgl_object_get(3)
xgl_object_set(3)
xgl_multimarker(3)

XGL_CTX_MARKER(3)

NOTE The marker description is in device coordinates (DC).

330 modified February 1995

XGL Graphics Library XGL_MEM_RAS (3)

NAME XGL_MEM_RAS − a Memory Raster Device object

OVERVIEW XGL_MEM_RAS is the type of an object representing a Memory Raster Device. It is used as
the type parameter value for xgl_object_create(3).

XGL graphics are rendered on a Device object. A specific Device object is the Memory
Raster Device that draws into pixels, which are stored in the application’s memory space.
Because these pixels are not on a frame buffer, they are not visible to the operator. In
contrast, a Window Raster Device object (see xgl_object_create(3) and XGL_WIN_RAS),
which represents a hardware display device with a frame buffer, can display visible
images.

After creating the Memory Raster Device, using xgl_object_create(3), the application can
inquire about the values of its attributes by using the xgl_object_get(3) operator.

A Memory Raster Device object shares many attributes with the Window Raster Device
object. These attributes have the common prefix XGL_RAS_. Attributes specific only to the
Memory Raster Device have the prefix XGL_MEM_RAS_.

A brief overview of all of the attributes follows. For more information, see the man page
for each attribute.

XGL_DEV_COLOR_MAP(3)
Specifies the Color Map Object used by the Memory Raster Device object.

XGL_DEV_COLOR_TYPE(3)
Specifies the color type (that is, the color model) of the Raster. It can be set only
once, when the Memory Raster Device object is created. The two alternatives are:
XGL_COLOR_INDEX and XGL_COLOR_RGB.

XGL_DEV_CONTEXTS(3)
XGL_DEV_CONTEXTS_NUM(3)

These attributes return the Context object handles used by the Memory Raster
Device object.

XGL_DEV_MAXIMUM_COORDINATES(3)
Returns the maximum coordinate values for the Memory Raster Device object.

XGL_DEV_PICK_BUFFER_SIZE(3)
Returns the maximum pick buffer size that a Memory Raster Device object can
support efficiently.

XGL_DEV_REAL_COLOR_TYPE(3)
Specifies the real color space used by the Memory Raster Device object.

XGL_MEM_RAS_IMAGE_BUFFER_ADDR(3)
Returns the starting address of the block of memory set used by the Memory
Raster Device.

XGL_MEM_RAS_Z_BUFFER_ADDR(3)
Returns the starting address of the block of memory set used by the Z buffer of a
memory raster.

modified August 1994 331

XGL_MEM_RAS (3) XGL Graphics Library

XGL_OBJ_APPLICATION_DATA(3)
This attribute allows the application program to store its own data with an object.

XGL_OBJ_SYS_STATE(3)
This read-only attribute returns the System State that was used to create the
object.

XGL_OBJ_TYPE(3)
This read-only attribute defines the type of an XGL object.

XGL_RAS_DEPTH(3)
XGL_RAS_HEIGHT(3)
XGL_RAS_WIDTH(3)

These attributes give the size of the Memory Raster Device. They can be set at
any time, however. If any of them are changed after the Raster has been created,
all pixel data currently stored in the Raster is lost. The depth of a Memory Raster
Device can be 1, 4, 8, or 32, which is the number of bit-planes in the Raster (that is,
the number of bits that are used to specify the color of one pixel).

XGL_RAS_RECT_LIST(3)
XGL_RAS_RECT_NUM(3)

These attributes define the number and list of clip rectangles in the application-
specified clip list.

XGL_RAS_SOURCE_BUFFER(3)
This attribute specifies the buffer to be used as source during raster operations.

XGL does not render into 1-bit-deep Memory Rasters. This means that you cannot use a
1-bit Memory Raster as the device for a Context. The 1-bit Memory Rasters are used for
stipple-filled polygons and for the xgl_context_copy_raster function, where the source
Raster is a 1-bit Memory Raster, and the device for the destination context is either a 4-
bit, 8-bit or 32-bit Raster.

NOTES 32-bit Memory Rasters with an XGL_DEV_COLOR_TYPE of XGL_COLOR_INDEX are not sup-
ported. When creating a 32-bit Memory Raster, the application should set XGL_DEV_-
COLOR_TYPE to XGL_COLOR_RGB.

4-bit and 8-bit Indexed (that is, XGL_DEV_COLOR_TYPE is XGL_COLOR_INDEX) Memory Ras-
ters store their pixel values as application-defined color values (that is, the indices are
exactly those specified, either explicitly or implicitly, by the application).

332 modified August 1994

XGL Graphics Library XGL_MEM_RAS_IMAGE_BUFFER_ADDR (3)

NAME XGL_MEM_RAS_IMAGE_BUFFER_ADDR − the address of the array of pixels used in a
Memory Raster

SYNOPSIS #include <xgl/xgl.h>
Xgl_mem_ras ras;
xgl_object_set(ras, XGL_MEM_RAS_IMAGE_BUFFER_ADDR, Xgl_usgn32 ∗, 0);
xgl_object_get(ras, XGL_MEM_RAS_IMAGE_BUFFER_ADDR, Xgl_usgn32 ∗∗);

DESCRIPTION This attribute allows the application to set or get the starting address of the block of
memory set aside for an XGL Memory Raster. It also allows the application to read and
write pixel data directly. Currently 1-, 4-, 8-, and 32-bit deep Memory Rasters are sup-
ported (see XGL_RAS_DEPTH(3)).

XGL always allocates memory when creating a Memory Raster (a Memory Raster is
created using xgl_object_create(3)). Applications should try to avoid allocating their
own memory for the Memory Raster and setting the memory address pointer in order to
limit the number of memory allocation calls. It is important to note that the application
programmer must know the depth (XGL_RAS_DEPTH(3)), width (XGL_RAS_WIDTH(3)), and
height (XGL_RAS_HEIGHT(3)) of the Raster before accessing its pixel values.

XGL Memory Rasters are built as a collection of pixel rows. Each row begins at a short
(16-bit) boundary; padding can be added to the least significant bits of the word at the
end of a row. An application allocating its own memory to pass later to a Memory Raster
must follow this rule to obtain correct rendering.

The allocation scheme for memory rasters is as follows:

Xgl_sgn32 linebytes;
Xgl_usgn32 ∗mem32;
Xgl_usgn16 ∗mem16;
Xgl_usgn8 ∗mem8;

linebytes = ((((width ∗ depth) + 15) >> 3) & ˜1);
mem32 = (Xgl_usgn32 ∗)malloc(height ∗ linebytes);

if (depth == 1)
mem16 = (Xgl_usgn16 ∗)mem32;

else if (depth == 4 || depth == 8)
mem8 = (Xgl_usgn8 ∗)mem32;

Once the memory is allocated, you can point to it with a character or short pointer
depending on how your application accesses the actual data in the memory raster. If the
depth is 1, XGL accesses the memory as an unsigned short (Xgl_usgn16). If the depth is 4
or 8, XGL accesses the memory as an unsigned char (Xgl_usgn8). If the depth is 32, XGL
accesses the memory as an unsigned long (Xgl_usgn32).

modified August 1994 333

XGL_MEM_RAS_IMAGE_BUFFER_ADDR (3) XGL Graphics Library

The color values are stored in xRGB format — that is, the uppermost byte is unused, fol-
lowed by one byte each of blue, green, and red intensity values.

The size of the raster, in bytes, is:
4 ∗ raster_height ∗ raster_width

The x,y pixel is stored in the word offset from the memory address:
(Xgl_usgn32∗)(mem_addr + y ∗ raster_width + x)

The default value is the address of the memory allocated at the creation of the Memory
Raster.

SEE ALSO xgl_object_get(3)
xgl_object_set(3)
xgl_object_create(3)

XGL_RAS_DEPTH(3)
XGL_RAS_WIDTH(3)
XGL_RAS_HEIGHT(3)

NOTE When creating a Memory Raster, the XGL_MEM_RAS_IMAGE_BUFFER_ADDR(3) attribute
must be the last attribute in the xgl_object_create(3) call.

In order to write machine independent code, it is necessary for the application to write
the raster the same way as XGL reads (accesses) it. For example, 32-bit deep rasters
should be written as words and not as 4 individual characters.

334 modified August 1994

XGL Graphics Library XGL_MEM_RAS_Z_BUFFER_ADDR (3)

NAME XGL_MEM_RAS_Z_BUFFER_ADDR − the address of the array of values used in the Z
buffer of a memory raster

SYNOPSIS #include <xgl/xgl.h>

Xgl_mem_ras ras;

xgl_object_set(ras, XGL_MEM_RAS_Z_BUFFER_ADDR, Xgl_usgn32 ∗, 0);
xgl_object_get(ras, XGL_MEM_RAS_Z_BUFFER_ADDR, Xgl_usgn32∗∗);

DESCRIPTION This attribute allows the application to set or get the starting address of the block of
memory set aside for the Z buffer of a memory raster. It allows the application to read
and write Z buffer values directly.

The Z buffer is allocated when the memory raster is attached to a 3D context and the attri-
bute XGL_3D_CTX_HLHSR_MODE(3) is set to XGL_HLHSR_Z_BUFFER. Applications should
avoid allocating their own memory for the Z buffer and setting the memory address
pointer in order to limit the number of memory allocation calls.

The Z buffer of a memory raster has 24 bit planes and hence has a depth of (224 - 1). The
height of the Z buffer is based on the raster height XGL_RAS_HEIGHT(3) and the width of
the Z buffer is based on the raster width XGL_RAS_WIDTH(3). The Z buffer is a collection of
Z values. Each Z value occupies 32 bits and XGL accesses the least significant three bytes
of the 32 bit word during Z buffer operations. Thus, each row begins at a 32 bit word
boundary.

The allocation scheme for the memory rasters is as follows:

Xgl_usgn32 line_bytes;
Xgl_usgn32 ∗mem32;
where line_bytes = width × 4
mem32 = (Xgl_usgn32 ∗) malloc(height × line_bytes)

The default value is NULL

SEE ALSO xgl_object_set(3)
xgl_object_get(3)

XGL_RAS_HEIGHT(3)
XGL_RAS_WIDTH(3)
XGL_3D_CTX_HLHSR_MODE(3)

modified August 1994 335

XGL_MIPMAP_TEXTURE (3) XGL Graphics Library

NAME XGL_MIPMAP_TEXTURE − a MipMap Texture object

OVERVIEW XGL_MIPMAP_TEXTURE is the type of an object representing an XGL MipMap Texture object.
A texturing image to be applied to 3D surface primitives is encapsulated in this object. In
addition, this object also provides filtering capabilities to generate a MipMap.

After creating the MipMap Texture object, using xgl_object_create(3), an application can
inquire about the value of its attributes by using the xgl_object_get(3) operator.

A brief overview of all of the attributes follows. For more information, see the man page
for each attribute.

XGL_MIPMAP_TEXTURE_DEPTH(3)
XGL_MIPMAP_TEXTURE_HEIGHT(3)
XGL_MIPMAP_TEXTURE_WIDTH(3)

These attributes give the size of the base texture image. They are read-only attri-
butes. The values are set indirectly when an application sets the attribute XGL_-

MIPMAP_TEXTURE_MEM_RAS_LIST(3), or uses the operator xgl_mipmap_texture_-
build(3) to build a MipMap from a memory raster.

XGL_MIPMAP_TEXTURE_LEVELS(3)
Defines the number of levels of mipmap in the MipMap Texture object.

XGL_MIPMAP_TEXTURE_MEM_RAS_LIST(3)
Specifies a list of memory rasters that form a MipMap.

XGL_OBJ_APPLICATION_DATA(3)
This attribute allows the application program to store its own data with an object.

XGL_OBJ_SYS_STATE(3)
This read-only attribute returns the System State that was used to create the
object.

XGL_OBJ_TYPE(3)
This read-only attribute defines the type of an XGL object.

336 modified August 1994

XGL Graphics Library XGL_MIPMAP_TEXTURE_DEPTH (3)

NAME XGL_MIPMAP_TEXTURE_DEPTH − specifies the number of bits required to store one
texture element

SYNOPSIS #include <xgl/xgl.h>

Xgl_mipmap_texture mipmap_texture;

xgl_object_get(mipmap_texture, XGL_MIPMAP_TEXTURE_DEPTH, Xgl_usgn32 ∗);

DESCRIPTION This read-only attribute defines the number of bits that are used to specify one texture
element. The number of channels per texture element is obtained by dividing the depth
by 8.

This attribute is set indirectly when an application sets the attribute XGL_MIPMAP_-

TEXTURE_MEM_RAS_LIST(3) or uses the operator xgl_mipmap_texture_build(3).

Supported depths are 8 and 32.

The default value is 0.

SEE ALSO xgl_object_get(3)
xgl_mipmap_texture_build(3)

XGL_MIPMAP_TEXTURE_MEM_RAS_LIST(3)

modified August 1994 337

XGL_MIPMAP_TEXTURE_HEIGHT (3) XGL Graphics Library

NAME XGL_MIPMAP_TEXTURE_HEIGHT − specifies the height of a texture map

SYNOPSIS #include <xgl/xgl.h>

Xgl_mipmap_texture mipmap_texture;

xgl_object_get(mipmap_texture, XGL_MIPMAP_TEXTURE_HEIGHT, Xgl_usgn32 ∗);

DESCRIPTION This read-only attribute specifies the height of an XGL texture image. In case of a mip-
map, the height corresponds to the base texture image. The height of the next level of
mipmap is reduced by a factor of 2 from the previous level.

This attribute is set indirectly when an application sets the attribute XGL_MIPMAP_-

TEXTURE_MEM_RAS_LIST(3) or uses the operator xgl_mipmap_texture_build(3).

The default value is 0.

SEE ALSO xgl_object_get(3)
xgl_mipmap_texture_build(3)

XGL_MIPMAP_TEXTURE_MEM_RAS_LIST(3)

338 modified August 1994

XGL Graphics Library XGL_MIPMAP_TEXTURE_LEVELS (3)

NAME XGL_MIPMAP_TEXTURE_LEVELS − specifies the number of mipmap levels

SYNOPSIS #include <xgl/xgl.h>

Xgl_mipmap_texture mipmap_texture;

xgl_object_set(mipmap_texture, XGL_MIPMAP_TEXTURE_LEVELS, Xgl_usgn32, 0);

xgl_object_get(mipmap_texture, XGL_MIPMAP_TEXTURE_LEVELS, Xgl_usgn32 ∗);

DESCRIPTION This attribute specifies the number of mipmap levels when an application sets the attri-
bute XGL_MIPMAP_TEXTURE_MEM_RAS_LIST(3). The number of memory rasters in the list
should be equal to the number of levels. This attribute is also used by the operator
xgl_mipmap_texture_build(3) to generate a MipMap.

Note that once a mipmap is created, changing the number of levels destroys the current
mipmap. Thus, after setting this attribute, the application should also set the attribute
XGL_MIPMAP_TEXTURE_MEM_RAS_LIST(3) or the operator xgl_mipmap_texture_build(3).

The default value is 0.

SEE ALSO xgl_object_set(3)
xgl_object_get(3)
xgl_mipmap_texture_build(3)

XGL_MIPMAP_TEXTURE_MEM_RAS_LIST(3)

modified August 1994 339

XGL_MIPMAP_TEXTURE_MEM_RAS_LIST (3) XGL Graphics Library

NAME XGL_MIPMAP_TEXTURE_MEM_RAS_LIST − specifies a list of memory rasters that
form a mipmap

SYNOPSIS #include <xgl/xgl.h>

Xgl_mipmap_texture mipmap_texture;

xgl_object_set(mipmap_texture, XGL_MIPMAP_TEXTURE_MEM_RAS_LIST, Xgl_mem_ras [], 0);
xgl_object_get(mipmap_texture, XGL_MIPMAP_TEXTURE_MEM_RAS_LIST, Xgl_mem_ras []);

DESCRIPTION This attribute specifies an array of memory rasters that form a mipmap pyramid. Each
level of the pyramid has dimensions that are half as large as the previous level.

When setting this attribute, the number of elements in the array should be equal to the
number of levels (specified by XGL_MIPMAP_TEXTURE_LEVELS(3)). XGL copies the mipmap
to its internal format, thus an application can destroy the memory raster list after it
finishes setting the attribute. During an xgl_object_get(3) of this attribute, the applica-
tion is responsible for providing XGL an array of memory rasters (corresponding to XGL_-

MIPMAP_TEXTURE_LEVELS(3)) with correct dimensions. (The base dimension of the mip-
map is specified by XGL_MIPMAP_TEXTURE_WIDTH(3), XGL_MIPMAP_TEXTURE_HEIGHT(3)
and XGL_MIPMAP_TEXTURE_DEPTH(3).) XGL simply copies the mipmap to the address
specified by memory raster objects. For details of memory raster creation and represen-
tation format, see XGL_MEM_RAS(3) and XGL_MEM_RAS_IMAGE_BUFFER_ADDR(3).

The default value is NULL.

SEE ALSO xgl_object_set(3)
xgl_object_get(3)

XGL_MEM_RAS(3)
XGL_MEM_RAS_IMAGE_BUFFER_ADDR(3)
XGL_MIPMAP_TEXTURE_DEPTH(3)
XGL_MIPMAP_TEXTURE_HEIGHT(3)
XGL_MIPMAP_TEXTURE_LEVELS(3)
XGL_MIPMAP_TEXTURE_WIDTH(3)

340 modified August 1994

XGL Graphics Library XGL_MIPMAP_TEXTURE_WIDTH (3)

NAME XGL_MIPMAP_TEXTURE_WIDTH − specifies the width of a texture map

SYNOPSIS #include <xgl/xgl.h>

Xgl_mipmap_texture mipmap_texture;

xgl_object_get(mipmap_texture, XGL_MIPMAP_TEXTURE_WIDTH, Xgl_usgn32 ∗);

DESCRIPTION This read-only attribute specifies the width of an XGL texture image. In case of a mip-
map, the width corresponds to the base texture image. The width of the next level of
mipmap is reduced by a factor of 2 from the previous level.

This attribute is set indirectly when an application sets the attribute XGL_MIPMAP_-

TEXTURE_MEM_RAS_LIST(3) or uses the operator xgl_mipmap_texture_build(3).

The default value is 0.

SEE ALSO xgl_object_get(3)
xgl_mipmap_texture_build(3)

XGL_MIPMAP_TEXTURE_MEM_RAS_LIST(3)

modified August 1994 341

XGL_OBJ_APPLICATION_DATA (3) XGL Graphics Library

NAME XGL_OBJ_APPLICATION_DATA − a pointer to application-dependent data associated
with an XGL object

SYNOPSIS #include <xgl/xgl.h>

Xgl_object obj;

xgl_object_set(obj, XGL_OBJ_APPLICATION_DATA, void ∗, 0);
xgl_object_get(obj, XGL_OBJ_APPLICATION_DATA, void ∗∗);

DESCRIPTION This attribute allows the application program to store its own data with an object. For
example, a pointer to an application data structure could be stored here.

XGL only stores the void ∗ pointer. When the object obj is destroyed, XGL does not assume
that XGL_OBJ_APPLICATION_DATA is a pointer and free it. If XGL_OBJ_APPLICATION_DATA is a
pointer, the application must explicitly free what it points to.

The default value is NULL.

SEE ALSO xgl_object_set(3)
xgl_object_get(3)

NOTES See XGL_CTX_MARKER_SCALE_FACTOR(3) and the XGL Programmer’s Guide for a description
of using markers with CGM stream devices.

342 modified August 1994

XGL Graphics Library XGL_OBJ_SYS_STATE (3)

NAME XGL_OBJ_SYS_STATE − returns the System State of an XGL object

SYNOPSIS #include <xgl/xgl.h>

Xgl_object object;

xgl_object_get(object, XGL_OBJ_SYS_STATE, Xgl_sys_state ∗);

DESCRIPTION This read-only attribute returns the System State that was used to create the object. The
System State is a parameter to xgl_object_create(3).

SEE ALSO xgl_object_create(3)
xgl_object_get(3)
xgl_open(3)

modified August 1994 343

XGL_OBJ_TYPE (3) XGL Graphics Library

NAME XGL_OBJ_TYPE − defines the type of an XGL object

SYNOPSIS #include <xgl/xgl.h>

Xgl_object object;

xgl_object_get(object, XGL_OBJ_TYPE, Xgl_obj_type ∗);

DESCRIPTION This read-only attribute defines the type associated with an XGL object. It can be used to
inquire about the object type when only a generic Xgl_object handle to that object is
known. XGL currently defines the following values for an object type Xgl_obj_type:

XGL_OBJ
A Generic object used to store all the attributes associated with an XGL object.

XGL_2D_CTX
A Context object used to store all the attributes of a 2D Context.

XGL_3D_CTX
A Context object used to store all the attributes of a 3D Context.

XGL_CGM_DEV
A CGM Metafile object used to store all the attributes of a metafile output Device.

XGL_CMAP
A Color Map object used to store all the attributes needed to define color infor-
mation in XGL.

XGL_DMAP_TEXTURE
A Data Map Texture object used to store all the attributes needed to define data
map texture information in XGL.

XGL_GCACHE
A Gcache (geometry cache) stores a simpler form of geometry (such as the tessel-
lation of a NURB curve).

XGL_LIGHT
A Light object used to store all the attributes of the Lights used in the lighting
and shading computations.

XGL_LPAT
A Line Pattern object used to store all the attributes used in defining a new pat-
tern for a line. XGL has the following predefined Line Patterns:

xgl_lpat_dashed
xgl_lpat_dotted
xgl_lpat_dashed_dotted
xgl_lpat_dash_dot_dotted
xgl_lpat_long_dashed
xgl_lpat_cgm_dotted
xgl_lpat_cgm_dashed
xgl_lpat_dash_dot

XGL_MARKER

344 modified August 1994

XGL Graphics Library XGL_OBJ_TYPE (3)

A Marker object used to store all the attributes associated with Markers. XGL has
the following predefined markers:

xgl_marker_dot
xgl_marker_plus
xgl_marker_asterisk
xgl_marker_circle
xgl_marker_cross
xgl_marker_square
xgl_marker_bowtie_ne
xgl_marker_bowtie_nw

XGL_MEM_RAS
A Memory Raster Device object used to store all the attributes of an off-screen
rendering Device. XGL has the following predefined fill patterns:

xgl_fpat_hatch_horiz
xgl_fpat_hatch_vert
xgl_fpat_hatch_diag_45
xgl_fpat_hatch_diag_135
xgl_fpat_hatch_grid_r
xgl_fpat_hatch_grid_d
xgl_fpat_hatch_horiz_dbl
xgl_fpat_hatch_vert_dbl
xgl_fpat_hatch_diag_45_dbl
xgl_fpat_hatch_diag_135_dbl
xgl_fpat_hatch_grid_r_dbl
xgl_fpat_hatch_grid_d_dbl

XGL_MIPMAP_TEXTURE
A MipMap Texture object used to store all the attributes needed to define mip-
map texture information in XGL.

XGL_PCACHE
A Primitive Cache (Pcache) object used to store a sequence of zero or more XGL
primitives and/or attribute settings.

XGL_SFONT
A Stroke Font object used to store all the attributes associated with a font of
stroke characters.

XGL_STREAM
A Stream Device object used to store all the attributes of a stream Device.

XGL_SYS_STATE
The XGL System State object is used to store all information relevant to the gen-
eral level of an application.

XGL_TMAP
A Texture Map object used to store all the attributes needed to define texture
map information in XGL.

XGL_TRANS

modified August 1994 345

XGL_OBJ_TYPE (3) XGL Graphics Library

A Transform object used to store all the attributes of 2D or 3D Transforms.

XGL_WIN_RAS
A Window Raster Device object used to store all the attributes of an on-screen
rendering Device.

The object type is associated by XGL at the creation of the object. It cannot be modified
later. Users cannot define their own objects.

SEE ALSO xgl_object_create(3)
xgl_object_get(3)
xgl_open(3)

346 modified August 1994

XGL Graphics Library XGL_PCACHE (3)

NAME XGL_PCACHE − a Primitive Cache (Pcache) object

OVERVIEW XGL_PCACHE is a type parameter value for an XGL Primitive Cache object.

A Primitive Cache (Pcache) is an XGL object that stores a sequence of zero or more XGL
primitives and/or attribute settings. A Pcache can be rendered with greater speed, in
general, than its individual components can. Pcache contents are stored in a device
dependent format in order to maximize display speed.

A Pcache must be bound to an XGL context and its device in order to be used. At creation
time, a Pcache is not bound to any context. The application must do this by setting the
XGL_PCACHE_CONTEXT(3) attribute in the Pcache.

Once a pcache is created and bound (to a context and its device), it may be used in place
of the context object for the following XGL operators and attributes:

xgl_multimarker(3)
xgl_multipolyline(3)
xgl_stroke_text(3)
xgl_multi_simple_polygon(3)
xgl_triangle_list(3)
xgl_quadrilateral_mesh(3)
xgl_object_set(3)
XGL_CTX_LINE_COLOR(3)
XGL_CTX_LINE_STYLE(3)
XGL_CTX_LINE_WIDTH_SCALE_FACTOR(3)
XGL_CTX_LINE_COLOR_SELECTOR(3)
XGL_CTX_MARKER_COLOR_SELECTOR(3)
XGL_CTX_SURF_FRONT_COLOR(3)
XGL_CTX_SURF_FRONT_COLOR_SELECTOR(3)
XGL_3D_CTX_SURF_FACE_CULL(3)
XGL_3D_CTX_SURF_FRONT_ILLUMINATION(3)
XGL_3D_CTX_SURF_BACK_COLOR(3)
XGL_3D_CTX_SURF_BACK_COLOR_SELECTOR(3)
XGL_3D_CTX_SURF_BACK_ILLUMINATION(3)
XGL_3D_CTX_SURF_GEOM_NORMAL(3)
XGL_CTX_PICK_ID_1(3)
XGL_CTX_PICK_ID_2(3)

When these operators are applied to a Pcache, they (the operators) are recorded in a dev-
ice specific format for display at a later time with xgl_pcache_display(3). After
xgl_pcache_display(3) is called, the pcache is closed, and the operators listed above may
no longer be applied.

An application can empty (and re-open) a Pcache by applying the operator
xgl_context_new_frame(3). A Pcache is also emptied whenever it is associated with
another context or its context is associated with another device. It is an error to use the
Pcache (except to destroy or re-associate it) if either its context or device has been

modified August 1994 347

XGL_PCACHE (3) XGL Graphics Library

destroyed.

When a Pcache is built, it may make assumptions about the state of the context to which
it is attached. At display time, the application may test these assumptions to verify that
they are still valid. If so, the Pcache is rendered. If not, the application is informed that
the Pcache needs to be rebuilt.

The contents of the Pcache may be picked.

A brief overview of all of the attributes follows. For more information, see the man page
for each attribute.

XGL_OBJ_APPLICATION_DATA(3)
This attribute allows the application program to store its own data with an object.

XGL_OBJ_SYS_STATE(3)
This read-only attribute returns the System State that was used to create the
object.

XGL_OBJ_TYPE(3)
This read-only attribute defines the type of an XGL object.

XGL_PCACHE_CONTEXT(3)
This attribute defines the XGL Context object associated with the Primitive Cache
pcache.

348 modified August 1994

XGL Graphics Library XGL_PCACHE_CONTEXT (3)

NAME XGL_PCACHE_CONTEXT − defines the context associated with a Pcache

SYNOPSIS #include <xgl/xgl.h>

Xgl_pcache pcache;

xgl_object_set(pcache, XGL_PCACHE_CONTEXT,Xgl_ctx, 0);
xgl_object_get(pcache, XGL_PCACHE_CONTEXT,Xgl_ctx ∗);

DESCRIPTION This attribute defines the XGL Context object associated with the Primitive Cache pcache.
The context object specifies the rendering state to be used when rendering pcache, and
may be either 2D or 3D. After the context is associated with the pcache, the pcache may be
used in place of the context to cache certain primitives and attributes. See XGL_PCACHE(3).

When this attribute is set, the pcache is emptied, even if the setting is redundant. This
attribute may be set to NULL.

The default value is NULL.

SEE ALSO xgl_object_set(3)
xgl_object_get(3)
xgl_object_create(3)

XGL_PCACHE(3)

modified August 1994 349

XGL_RAS_DEPTH (3) XGL Graphics Library

NAME XGL_RAS_DEPTH − specifies the number of bits required to store the color of one pixel
in a Raster

SYNOPSIS #include <xgl/xgl.h>

Xgl_ras ras;

For XGL Memory Rasters only:
xgl_object_set(ras, XGL_RAS_DEPTH, Xgl_usgn32, 0);

For XGL Window and Memory Rasters:
xgl_object_get(ras, XGL_RAS_DEPTH, Xgl_usgn32 ∗);

DESCRIPTION This attribute defines the number of bits that are used to specify the color of one pixel in
an XGL Raster.

For XGL Window Rasters, XGL_RAS_DEPTH(3) is read-only.

For Memory Rasters, XGL_RAS_DEPTH is read-write and can be changed at any time. How-
ever, only four depths are currently supported — 1, 4, 8, and 32. Of these four, the 1-bit
depth can be used only for creating stipple patterns. The 1-bit Memory Rasters as stipple
fills are used to fill surface primitives (see XGL_3D_CTX_SURF_BACK_FILL_STYLE(3) and
XGL_CTX_SURF_FRONT_FILL_STYLE(3)) or raster primitives (see XGL_CTX_RASTER_FPAT(3)).

The 1-bit Memory Rasters can be used as the source Raster in the xgl_context_copy_-
raster(3) operator, where the Destination Context can have either a 1-bit, 4-bit, 8-bit, or
32-bit Memory Raster Device.

The 4-bit, 8-bit and 32-bit depths can be used to create Memory Rasters that the XGL
application will render into.

Note that changing the depth of a Memory Raster results in the loss of all pixel data
within the Raster.

Note also that 32-bit Memory Rasters do not use the Context ROP mode or plane mask
when rendering. If a 32-bit Memory Raster is dithered into an 8-bit Memory Raster or an
8-bit frame buffer, the ROP mode and plane mask are not used.

For Memory Rasters, the default value is 8. For Window Rasters, the default value is
device-dependent.

SEE ALSO xgl_object_set(3)
xgl_object_get(3)
xgl_context_copy_raster(3)
xgl_object_create(3)

XGL_3D_CTX_SURF_BACK_FILL_STYLE(3)
XGL_CTX_RASTER_FPAT(3)
XGL_CTX_SURF_FRONT_FILL_STYLE(3)

350 modified August 1994

XGL Graphics Library XGL_RAS_DEPTH (3)

NOTES 32-bit deep Memory Rasters use just 24 bits to store color information. The remaining 8
bits are reserved for future use.

modified August 1994 351

XGL_RAS_HEIGHT (3) XGL Graphics Library

NAME XGL_RAS_HEIGHT,
XGL_RAS_WIDTH − specify the height and width of a Raster Device

SYNOPSIS #include <xgl/xgl.h>

Xgl_ras ras;

For XGL Memory Rasters only:
xgl_object_set(ras, XGL_RAS_HEIGHT, Xgl_usgn32, 0);
xgl_object_set(ras, XGL_RAS_WIDTH, Xgl_usgn32, 0);

For XGL Window and Memory Rasters:
xgl_object_get(ras, XGL_RAS_HEIGHT, Xgl_usgn32 ∗);
xgl_object_get(ras, XGL_RAS_WIDTH, Xgl_usgn32 ∗);

DESCRIPTION These two attributes specify the height and width of an XGL Raster.

When using a Window Raster, the attributes are read-only and cannot be set. The width
and height may change if the operator changes the size of the window using the window
system.

When using a Memory Raster, these attributes may be set or reset at any time. The width
and height cannot be larger than 4K × 4K.

Note that changing the height or width of a Memory Raster results in the loss of all pixel
data within the Raster.

For Memory Rasters, the default value for both attributes is 256. For Window Rasters,
the initial value is application and window system dependent.

SEE ALSO xgl_object_set(3)
xgl_object_get(3)
xgl_object_create(3)

352 modified August 1994

XGL Graphics Library XGL_RAS_RECT_NUM (3)

NAME XGL_RAS_RECT_NUM,
XGL_RAS_RECT_LIST − define the application clip region for a Raster

SYNOPSIS #include <xgl/xgl.h>

Xgl_ras ras;

xgl_object_set(ras, XGL_RAS_RECT_NUM, Xgl_sgn32, 0);
xgl_object_set(ras, XGL_RAS_RECT_LIST, Xgl_irect ∗, 0);

xgl_object_get(ras, XGL_RAS_RECT_NUM, Xgl_sgn32 ∗);
xgl_object_get(ras, XGL_RAS_RECT_LIST, Xgl_irect ∗);

DESCRIPTION These attributes define the number and list of clip rectangles in the application-specified
clip list. The clip list is an array of rectangles that defines the device coordinate clipping
imposed at rendering time on all primitives. The application specifies the list of clip rec-
tangles by first specifying the number of rectangles in their list using XGL_RAS_RECT_NUM,
and then specifying the actual list of rectangles that define the clip region using XGL_RAS_-
RECT_LIST.

One clip rectangle is defined by the following data structure:
typedef struct {

Xgl_usgn32 xmin;
Xgl_usgn32 xmax;
Xgl_usgn32 ymin;
Xgl_usgn32 ymax;

} Xgl_irect;

In the case of a window raster, the application clip list is merged with the window system
clip list. The result is a list of rectangles XGL uses to determine the actual visible portion
of the raster.

When getting the list of rectangles, the application must allocate all the memory neces-
sary to store the rectangle clip list. Use XGL_RAS_RECT_NUM to determine exactly how
many rectangles to allocate.

The default value for XGL_RAS_RECT_NUM is 0.

The default value for XGL_RAS_RECT_LIST is NULL.

SEE ALSO xgl_object_set(3)
xgl_object_get(3)

modified August 1994 353

XGL_RAS_SOURCE_BUFFER (3) XGL Graphics Library

NAME XGL_RAS_SOURCE_BUFFER − specifies the buffer to be used as source during raster
operations

SYNOPSIS #include <xgl/xgl.h>

Xgl_ras ras;

xgl_object_set(ras, XGL_RAS_SOURCE_BUFFER, Xgl_buffer_sel, 0);
xgl_object_get(ras, XGL_RAS_SOURCE_BUFFER, Xgl_buffer_sel∗, 0);

DESCRIPTION This attribute specifies the source buffer during raster operations xgl_context_copy_-
buffer(3) and xgl_context_get_pixel(3).

The possible values for this attribute are:

XGL_BUFFER_SEL_Z
The buffer to be used as source is the Z buffer.

XGL_BUFFER_SEL_DRAW
The buffer to be used as source is the draw buffer. Setting this option for a
memory raster implies buffer 0.

A Value between 0 to N-1.
For a window raster, N is the number of buffers allocated using attributes XGL_-

WIN_RAS_BUFFERS_ALLOCATED(3) and XGL_WIN_RAS_BUFFERS_REQUESTED(3). For a
memory raster, only buffer value of 0 is meaningful.

The default value is XGL_BUFFER_SEL_DRAW.

SEE ALSO xgl_object_set(3)
xgl_object_get(3)
xgl_context_copy_buffer(3)
xgl_context_get_pixel(3)

354 modified August 1994

XGL Graphics Library XGL_SFONT (3)

NAME XGL_SFONT − a Stroke Font object

OVERVIEW XGL_SFONT is the type of an object representing a Stroke Font Object. It is used as the type
parameter value for xgl_object_create(3).

The Stroke Font object specifies the font used to render the text string in the xgl_stroke_-
text(3) operator. A single Stroke Font handle can be shared between different Contexts.

The following is a brief description of the attributes associated with Stroke Font objects.
For more information, see the man page for each attribute.

XGL_OBJ_APPLICATION_DATA(3)
This attribute allows the application program to store its own data with an object.

XGL_OBJ_SYS_STATE(3)
This read-only attribute returns the System State that was used to create the
object.

XGL_OBJ_TYPE(3)
This read-only attribute defines the type of an XGL object.

XGL_SFONT_COMMENT(3)
Returns the comment string available with the Stroke Font Object, if one is avail-
able.

XGL_SFONT_DEFAULT_CHARACTER(3)
Specifies a default character that will be used to replace undefined glyphs in the
font.

XGL_SFONT_IS_MONO_SPACED(3)
Returns if the font is monospaced. All the characters in a monospaced font are the
same width.

XGL_SFONT_NAME(3)
Returns the name of the font the Stroke Font object represents. This is the name
that was given to xgl_object_create(3) when the Stroke Font Object was created.

When creating a font, using xgl_object_create(3), XGL searches in the current Stroke Font
directory. The Stroke Font directory can be set to an application-dependent value by
using the XGL_SYS_ST_SFONT_DIRECTORY(3) attribute. The name of the font, needed at
creation time, is the full name (including extension) of the file which stores the font.

modified August 1994 355

XGL_SFONT_COMMENT (3) XGL Graphics Library

NAME XGL_SFONT_COMMENT − returns the comment associated with a font

SYNOPSIS #include <xgl/xgl.h>

Xgl_sfont sfont;

xgl_object_get(sfont, XGL_SFONT_COMMENT, char ∗∗);

DESCRIPTION This is a read-only Stroke Font object attribute, which returns the comment text associ-
ated with the font. In the current implementation of XGL, the name of the font is returned
(which is the same result as if the Stroke Font attribute XGL_SFONT_NAME(3) was used).

SEE ALSO xgl_object_get(3)
xgl_object_create(3)

XGL_SFONT_NAME(3)

356 modified August 1994

XGL Graphics Library XGL_SFONT_DEFAULT_CHARACTER (3)

NAME XGL_SFONT_DEFAULT_CHARACTER − defines character used in place of undefined
characters when rendering stroke text

SYNOPSIS #include <xgl/xgl.h>

Xgl_sfont sfont;

xgl_object_set(sfont, XGL_SFONT_DEFAULT_CHARACTER, Xgl_usgn32, 0);
xgl_object_get(sfont, XGL_SFONT_DEFAULT_CHARACTER, Xgl_usgn32 ∗);

DESCRIPTION This attribute defines the default character for a Stroke Font. It is the character that is ren-
dered, when using stroke text, if no glyph is assigned within the requested font for the
character value selected. Stroke text is rendered using the operator xgl_stroke_text(3).

A Stroke Font object must be created before stroke text can be rendered using the stroke
text operators. (For more information, see xgl_object_create(3).) It is a good idea to
specify a default character when creating the font with the xgl_object_create operator.
Specify a character that is likely to exist, such as a blank space.

The default value is dependent on the font used.

SEE ALSO xgl_object_set(3)
xgl_object_get(3)
xgl_object_create(3)
xgl_stroke_text(3)

modified August 1994 357

XGL_SFONT_IS_MONO_SPACED (3) XGL Graphics Library

NAME XGL_SFONT_IS_MONO_SPACED − indicates whether the specified Stroke Font is
monospaced

SYNOPSIS #include <xgl/xgl.h>

Xgl_sfont sfont;

xgl_object_get(sfont, XGL_SFONT_IS_MONO_SPACED, Xgl_boolean ∗);

DESCRIPTION This attribute is a read-only attribute. When used in an xgl_object_get call for a given
Stroke Font object, it will return TRUE if the font is a monospaced font, and FALSE otherwise.

A monospaced Stroke Font is one in which all the characters of the font have the same
width. This makes it easier to compute the graphic area covered by a string of characters.
With non-monospaced fonts, the application has to call the operator xgl_stroke_text_-
extent(3) each time it needs to know the width of a particular text string. With
monospaced fonts, however, the application can easily determine the text string from the
character attribute width because all characters in the font will have this same width.

SEE ALSO xgl_object_get(3)
xgl_stroke_text_extent(3)

358 modified August 1994

XGL Graphics Library XGL_SFONT_NAME (3)

NAME XGL_SFONT_NAME − specifies the name of a Stroke Font font family

SYNOPSIS #include <xgl/xgl.h>

Xgl_sfont sfont;

xgl_object_get(sfont, XGL_SFONT_NAME, char ∗∗);

DESCRIPTION This is a read-only attribute that can be used to get the name of a Stroke Font associated
with the Stroke Font object sfont.

Stroke Font objects are created with the operator xgl_object_create(3). Here create means
to get the handle of the Stroke Font information that is stored in the Stroke Font directory.
(The directory is specified by the System State attribute XGL_SYS_ST_SFONT_DIRECTORY(3).
) In a given process, a Stroke Font object for a particular font name needs to be created
only once. The object handle returned by the creation operator, xgl_object_create, can be
used and shared simultaneously by different Contexts.

The list below shows the different Stroke Fonts XGL currently implements:

Cartographic
Cartographic_M
English_G
Greek
Greek_C
Greek_M
Headline
Italic_C
Italic_T
Miscellaneous
Miscellaneous_M
Roman
Roman_C
Roman_D
Roman_M
Roman_T
Script
Script_C

These fonts are stored in the XGL_SYS_ST_SFONT_DIRECTORY directory. The current fonts
are stored with a .font extension. Obsolete font files (those which have the .phont exten-
sion) have been removed and replaced with symbolic links.

Note that not all of the fonts need to be present in the Stroke Font directory. Some of the
fonts are very large, and, if they are not used by XGL applications on a particular system,
they can be removed from the directory to save disk space.

The default value is Roman_M.

modified August 1994 359

XGL_SFONT_NAME (3) XGL Graphics Library

SEE ALSO xgl_object_get(3)
xgl_object_create(3)

XGL_SYS_ST_SFONT_DIRECTORY(3)

360 modified August 1994

XGL Graphics Library XGL_STREAM (3)

NAME XGL_STREAM − a Stream Device object

OVERVIEW XGL_STREAM is the type of an object representing a Stream. It is used as the type parame-
ter value for xgl_object_create(3).

The XGL Stream device provides protocol-independent stream pipelines, for creating for-
matted output such as Computer Graphics Metafile (CGM). The XGL Stream Device
maintains no protocol itself, but instead relies on an instantiated third-party device pipe-
line to implement the appropriate output protocol data format.

A Stream Device object is created using the xgl_object_create(3) operator. The applica-
tion must specify XGL_STREAM as the value of the type parameter to xgl_object_create(3).
In addition, the application must also supply the desc parameter, which is a pointer to an
Xgl_obj_desc union. The application needs to supply the information in the stream field of
the Xgl_obj_desc union. The stream structure consists of two fields: name, which is the
name identifying the specific device pipeline, and desc, which is a pointer to device
specific information that may be required by this particular device pipeline.

After creating the Stream Device, using xgl_object_create(3), the application can inquire
about the values of its attributes by using the xgl_object_get(3) operator.

A Stream Device object has all the Device attributes and possibly additional attributes
provided by the specific device pipeline.

A brief overview of the generic Stream Device attributes follows. For more information,
see the man page for each attribute.

XGL_DEV_COLOR_MAP(3)
Specifies the Color Map Object used by the Stream Device object.

XGL_DEV_COLOR_TYPE(3)
Specifies the color type (that is, the color model) of the Device. It can be set only
once, when the Stream Device object is created. The two alternatives are: XGL_-
COLOR_INDEX and XGL_COLOR_RGB.

XGL_DEV_CONTEXTS(3)
XGL_DEV_CONTEXTS_NUM(3)

These attributes return the Context object handles used by the Stream Device
object.

XGL_DEV_MAXIMUM_COORDINATES(3)
Returns the maximum coordinate values for the Stream Device object.

XGL_DEV_PICK_BUFFER_SIZE(3)
Returns the maximum pick buffer size that a Stream Device object can support
efficiently.

XGL_DEV_REAL_COLOR_TYPE(3)
Specifies the real color space used by the Stream Device object.

XGL_OBJ_APPLICATION_DATA(3)
This attribute allows the application program to store its own data with an object.

modified August 1995 361

XGL_STREAM (3) XGL Graphics Library

XGL_OBJ_SYS_STATE(3)
This read-only attribute returns the System State that was used to create the
object.

XGL_OBJ_TYPE(3)
This read-only attribute defines the type of an XGL object.

SEE ALSO XGL_CGM(3)

362 modified August 1995

XGL Graphics Library XGL_SYS_STATE (3)

NAME XGL_SYS_STATE − a System State object

OVERVIEW XGL_SYS_STATE is the type of an object representing information relevant to the general
level of an application. The operator xgl_open(3) creates and initializes a System State
object and xgl_close(3) ends an XGL session.

The System State object acts as a repository for critical information that XGL requires for
managing an XGL session. It keeps track of all other objects created by the application or
by XGL itself.

Only one XGL System State per process is permitted at any given time. The application
programmer can create a System State and set its attributes in the same call by providing
the correct arguments in the list of attributes for xgl_open(3).

The following is a brief description of the attributes associated with System State objects.
For more information, see the man page for each attribute.

XGL_OBJ_APPLICATION_DATA(3)
This attribute allows the application program to store its own data with an object.

XGL_OBJ_SYS_STATE(3)
This read-only attribute returns the System State that was used to create the
object.

XGL_OBJ_TYPE(3)
This read-only attribute defines the type of an XGL object.

XGL_SYS_ST_ERROR_DETECTION(3)
Controls errors that are generated during an XGL session.

XGL_SYS_ST_ERROR_INFO(3)
Returns a structure containing information about the most recent error that was
detected within the XGL library during the execution of an XGL application.

XGL_SYS_ST_ERROR_NOTIFICATION_FUNCTION(3)
Defines its own error-handling function to filter errors that are generated during
an XGL session.

XGL_SYS_ST_SFONT_DIRECTORY(3)
Specifies the directory path used by XGL when accessing Stroke Fonts used in the
text primitives.

XGL_SYS_ST_VERSION(3)
Returns the version number of the current XGL release.

modified August 1994 363

XGL_SYS_ST_ERROR_DETECTION (3) XGL Graphics Library

NAME XGL_SYS_ST_ERROR_DETECTION − controls optional error detection

SYNOPSIS #include <xgl/xgl.h>

Xgl_sys_state sys_st;

xgl_object_set(sys_st, XGL_SYS_ST_ERROR_DETECTION, Xgl_boolean, 0);
xgl_object_get(sys_st, XGL_SYS_ST_ERROR_DETECTION, Xgl_boolean ∗);

DESCRIPTION This attribute controls whether optional error checking is executed as part of an XGL
application.

The error-detection feature can be either TRUE or FALSE. When the flag is TRUE, additional
error-checking tests are executed as part of any XGL call. For the most part, these addi-
tional tests check for USER, ARITHMETIC, and CONFIGURATION errors. When the flag is
FALSE, XGL does not do these optional checks, but still checks for RESOURCE or SYSTEM
errors and reports them.

The application can filter XGL errors by specifying its own error-reporting function with
the XGL_SYS_ST_ERROR_NOTIFICATION_FUNCTION(3) attribute of the System State.

In XGL, errors are classified by the following five error categories:

SYSTEM:
Internal errors, unsupported features, and errors that, generally, cannot be fixed
by changing the application.

CONFIGURATION:
Errors caused by improper installation or configuration of XGL (such as a .so not
found).

RESOURCE:
Unavailable resource errors including both hardware and software resources
(such as memory, shared memory, window ID, frame buffer, etc.)

ARITHMETIC:
Arithmetic exceptions (divide by 0, square root of -1, etc.)

USER: Errors caused by invalid function parameters, non-existent user files, or situa-
tions that are probably caused by application program logic errors.

XGL also includes the notion of RECOVERABLE vs. NONRECOVERABLE errors. These are
known as error types.

A RECOVERABLE error is one where XGL can make reasonable assumptions about what the
application intended to do and then continues processing. In most cases, the library uses
the default value for an incorrect parameter and then continues the application.

A NONRECOVERABLE error is one where XGL, upon detection, immediately aborts further
processing and returns control back to the caller. Errors of this type may cause a core
dump if the application is allowed to continue execution because they leave XGL in an
inconsistent state.

364 modified August 1994

XGL Graphics Library XGL_SYS_ST_ERROR_DETECTION (3)

Error categories and types are related as follows:

Type Category

NONRECOVERABLE All SYSTEM and CONFIGURATION errors, most
RESOURCE errors, some ARITHMETIC errors.

RECOVERABLE Some RESOURCE errors, most ARITHMETIC errors,
all USER errors.

Errors are identified by a code xx-##, where xx specifies an error file where the localized
error message is stored (di is the device-independent error file, xgl.mo. Other values
specify device-dependent files) and ## is an error number. NONRECOVERABLE errors are
reported with error numbers between 0 and 99. RECOVERABLE errors have error numbers
greater than 99.

For a list of XGL error messages, see the XGL Programmer’s Guide. The default value is
FALSE.

SEE ALSO xgl_object_set(3)
xgl_object_get(3)

XGL_SYS_ST_ERROR_INFO(3)
XGL_SYS_ST_ERROR_NOTIFICATION_FUNCTION(3)

modified August 1994 365

XGL_SYS_ST_ERROR_INFO (3) XGL Graphics Library

NAME XGL_SYS_ST_ERROR_INFO − error information that describes the current error state

SYNOPSIS #include <xgl/xgl.h>

Xgl_sys_state sys_st;

xgl_object_get(sys_st, XGL_SYS_ST_ERROR_INFO,Xgl_error_info ∗);

DESCRIPTION This read-only System State attribute returns a structure containing information about
the most recent error that was detected within the XGL library during the execution of an
XGL application. This information can be used by a user-specified error notification func-
tion (see XGL_SYS_ST_ERROR_NOTIFICATION_FUNCTION(3)). The function would get the
value of this attribute, examine the contents of the Xgl_error_info structure, and perform
actions based on those contents.

The Xgl_error_info structure is defined as follows:
typedef struct {

Xgl_error_type type;
Xgl_error_category category;
char∗ id;
char∗ msg;
char∗ cur_op;
char∗ cur_obj;
char∗ operand1;
char∗ operand2;

} Xgl_error_info;

where the different member types are defined as:

type Two values: RECOVERABLE and NONRECOVERABLE. A RECOVERABLE error is one
where the XGL library can make reasonable assumptions about what the applica-
tion intended to do and then continues processing. A NONRECOVERABLE error is
one where, upon detection, the XGL library immediately aborts further process-
ing and returns control back to the caller.

category
Five values: SYSTEM, CONFIGURATION, RESOURCE, ARITHMETIC, and USER. See XGL_-

SYS_ST_ERROR_DETECTION(3) for more information.

id Identification code associated with the error. They are of the form xx-##, where
xx specifies an error file where the localized error message is stored (di is the
device-independent error file, xgl.mo. Other values specify device-dependent
error files), and ## is an error number. NONRECOVERABLE errors are reported with
error numbers between 0 and 99. RECOVERABLE errors have error numbers
greater than 99.

msg The localized error message string associated with the error.

cur_op The current XGL operator that was being executed when the error occurred.

cur_obj The current XGL object being used when the error occurred.

366 modified August 1994

XGL Graphics Library XGL_SYS_ST_ERROR_INFO (3)

operand1, operand2
Operands that give optional additional information about the error.

SEE ALSO xgl_object_get(3)

XGL_SYS_ST_ERROR_DETECTION(3)
XGL_SYS_ST_ERROR_NOTIFICATION_FUNCTION(3)

modified August 1994 367

XGL_SYS_ST_ERROR_NOTIFICATION_FUNCTION (3) XGL Graphics Library

NAME XGL_SYS_ST_ERROR_NOTIFICATION_FUNCTION − defines the function that is called
in case of an error

SYNOPSIS #include <xgl/xgl.h>

Xgl_sys_state sys_st;

xgl_object_set(sys_st, XGL_SYS_ST_ERROR_NOTIFICATION_FUNCTION, void (∗) (), 0);
xgl_object_get(sys_st, XGL_SYS_ST_ERROR_NOTIFICATION_FUNCTION, void (∗(∗)) ());

DESCRIPTION This attribute gives the application the ability to provide its own error-handling function
instead of using the XGL default function.

When an error is detected within an XGL application, the default function prints to stderr
an XGL error code, a brief message describing the error, the name of the XGL operator
that is currently being executed, the name of the current XGL object, and other (optional)
information. By providing its own error-reporting function, the application can choose to
filter some errors or choose its own method for alerting the user about an error.

The application can control the level of error detection by using the XGL_SYS_ST_ERROR_-

DETECTION(3) attribute of the System State.

The following is the interface (the call syntax and parameter list) for an application-
provided error function.

(void)my_error_function(Xgl_sys_state sys_state;)

Within the error notification function, the application may get the structure containing
current error state information (see XGL_SYS_ST_ERROR_INFO(3)) and handle the error
based on the contents of this structure. For example, the following is a simple error
notification function:

#include <xgl/xgl.h>

static Xgl_sgn32 newNotify(system_state)

Xgl_sys_state system_state;

{

Xgl_error_info info;

xgl_object_get (system_state, XGL_SYS_ST_ERROR_INFO, &info);

printf ("id = %s\n", info.id);

printf ("msg = %s\n", info.msg);

printf ("cur_op = %s\n", info.cur_op);

printf ("cur_obj = %s\n", info.cur_obj);

if (info.id < 100) {

printf ("Non-Recoverable Error!0);

} else {

printf ("Recoverable Error!0);

}

return(1);

}

368 modified August 1994

XGL Graphics Library XGL_SYS_ST_ERROR_NOTIFICATION_FUNCTION (3)

For further details, see XGL_SYS_ST_ERROR_DETECTION(3) and XGL_SYS_ST_ERROR_INFO(3).

The default value is a pointer to the internal XGL error-reporting function.

SEE ALSO xgl_object_set(3)
xgl_object_get(3)

XGL_SYS_ST_ERROR_DETECTION(3)
XGL_SYS_ST_ERROR_INFO(3)

modified August 1994 369

XGL_SYS_ST_SFONT_DIRECTORY (3) XGL Graphics Library

NAME XGL_SYS_ST_SFONT_DIRECTORY − specifies the directory where XGL looks for Stroke
Font files

SYNOPSIS #include <xgl/xgl.h>

Xgl_sys_state sys_st;

xgl_object_set(sys_st, XGL_SYS_ST_SFONT_DIRECTORY, char ∗, 0);
xgl_object_get(sys_st, XGL_SYS_ST_SFONT_DIRECTORY, char ∗∗);

DESCRIPTION This attribute is used to specify the directory path used by XGL when accessing Stroke
Fonts used in the text primitives (see xgl_stroke_text(3)). If XGL does not find the Stroke
Font data before creating the Stroke Font object (see below), an error message is returned
to the application, and the operation is cancelled.

The path name for the Stroke Font directory can also be modified without setting an XGL
attribute, by using the $XGLHOME environment variable. If $XGLHOME has been set, the
default value for XGL_SYS_ST_SFONT_DIRECTORY is $XGLHOME/lib/xglfonts/stroke. If it has
not been set, the default is /opt/SUNWits/Graphics-sw/xgl/lib/xglfonts/stroke.

SEE ALSO xgl_object_set(3)
xgl_object_get(3)
xgl_object_create(3)
xgl_stroke_text(3)

XGL_CTX_SFONT_0(3)

370 modified August 1994

XGL Graphics Library XGL_SYS_ST_VERSION (3)

NAME XGL_SYS_ST_VERSION − returns the version number of the XGL release being used

SYNOPSIS #include <xgl/xgl.h>

Xgl_sys_state sys_st;

xgl_object_get(sys_st, XGL_SYS_ST_VERSION, char ∗∗);

DESCRIPTION This attribute is read-only and is provided for applications that need to inquire about the
current version number (release number) of the XGL software.

The current default value is XGL 3.2.

SEE ALSO xgl_object_get(3)

modified May 1995 371

XGL_TMAP (3) XGL Graphics Library

NAME XGL_TMAP − a Texture Map object

OVERVIEW XGL_TMAP is the type of an object representing an XGL Texture Map object. It is used in
texturing of surfaces (polygons, triangle strips, etc.) rendered through a 3D Context.

When a Texture Map object is no longer needed in an application, it can be explicitly des-
troyed by calling the xgl_object_destroy(3) operator to free the resources associated with
it.

After creating the Texture Map object, using xgl_object_create(3), an application can
inquire about the value of its attributes by using the xgl_object_get(3) operator.

A System State object must have been created with the xgl_open(3) operator before any
Texture Map object can be created.

A brief overview of the attributes follows. For more information, see the man page for
each attribute.

XGL_TMAP_COORD_SOURCE(3)
Defines the coordinate source for mapping texture onto a 3D surface.

XGL_TMAP_DESCRIPTOR(3)
Defines a texture descriptor.

XGL_TMAP_DOMAIN(3)
Defines the domain to use in texture mapping.

XGL_TMAP_PARAM_TYPE(3)
Defines different parameterization methods for mapping texture onto a 3D sur-
face.

XGL_TMAP_T0_INDEX(3)
XGL_TMAP_T1_INDEX(3)

These attributes are indices into the vertex data array (specified in the point list),
and they indicate which of the data values to use in texture mapping.

XGL_OBJ_APPLICATION_DATA(3)
This attribute allows the application program to store its own data with an object.

XGL_OBJ_SYS_STATE(3)
This read-only attribute returns the System State that was used to create the
object.

XGL_OBJ_TYPE(3)
This read-only attribute defines the type of an XGL object.

372 modified August 1994

XGL Graphics Library XGL_TMAP_COORD_SOURCE (3)

NAME XGL_TMAP_COORD_SOURCE − specifies method used to compute texture coordinate
values

SYNOPSIS #include <xgl/xgl.h>

Xgl_tmap tmap;

xgl_object_set(tmap, XGL_TMAP_COORD_SOURCE, Xgl_texture_coord_source ∗, 0);
xgl_object_get(tmap, XGL_TMAP_COORD_SOURCE, Xgl_texture_coord_source ∗);

DESCRIPTION This attribute specifies the initial source of the texture coordinate. Depending on a texture
map’s parameterization method, this may or may not be the final texture coordinate (this
initial source may be processed into the final texture coordinate).

XGL accepts the following values for Xgl_texture_coord_source:

XGL_TEXTURE_COORD_VERTEX
The source texture value is the vertex coordinate value, transformed to World
Coordinates (WC).

XGL_TEXTURE_COORD_NORMAL
The source texture coordinate value is the vertex normal value, transformed to
WC. If a vertex normal is not explicitly defined with the primitive, the calculated
vertex normal is used instead.

XGL_TEXTURE_COORD_DATA
The source texture coordinate’s source is a member of the vertex’s floating point
data. A separate index indicates the member of the list. If the primitive does not
include the floating point data list for each vertex, this texture coordinate value
will be set to 0.

The default value is XGL_TEXTURE_COORD_DATA .

SEE ALSO xgl_object_set(3)
xgl_object_get(3)

modified August 1994 373

XGL_TMAP_DESCRIPTOR (3) XGL Graphics Library

NAME XGL_TMAP_DESCRIPTOR − specifies the properties of the texture map image

SYNOPSIS #include <xgl/xgl.h>

Xgl_tmap tmap;

xgl_object_set(tmap, XGL_TMAP_DESCRIPTOR, Xgl_texture_general_desc, 0);
xgl_object_get(tmap, XGL_TMAP_DESCRIPTOR, Xgl_texture_general_desc ∗);

DESCRIPTION This attribute specifies the list of textures associated with this Texture Map object. The tex-
tures are used when rendering XGL 3D surface primitives.

XGL_TMAP_DESCRIPTOR is a pointer to a C structure of type Xgl_texture_general_desc, which
is defined as follows:

typedef struct {
Xgl_texture_type texture_type;
Xgl_texture_comp_info comp_info;
union {

Xgl_texture_general_mipmap_desc mipmap;
} texture_info;

} Xgl_texture_general_desc;

Parameters texture_type
Each texture descriptor has a texture_type. Currently, Xgl_texture_type defines
XGL_TEXTURE_TYPE_MIPMAP as the only possible value.

comp_info
This parameter explains how different channels in the texture map are used to
affect the rendering. The Xgl_texture_comp_info structure is defined as:

typedef union {
Xgl_texture_color_comp_info color_info;

} Xgl_texture_comp_info;

The Xgl_texture_color_comp_info structure is defined as:
typedef struct {

Xgl_usgn32 num_render_comp_desc;
Xgl_render_component_desc render_component_desc[2];
Xgl_usgn32 num_channels[2];
Xgl_usgn32 channel_number[2];

} Xgl_texture_color_comp_info;

This structure can have a maximum of 2 render components corresponding to
color and alpha. The num_render_comp_desc parameter gives the number of
render components used by this particular Texture Map object. The first element
of the array for render_component_desc, num_channels and channel_number
correspond to values for color component, and the second element of the three
arrays correspond to the alpha component. The value of the num_channels[0]
element can either be 1 or 3. If the value of the num_channels[0] element is 1,

374 modified September 1995

XGL Graphics Library XGL_TMAP_DESCRIPTOR (3)

then the corresponding value in channel_number[0] determines the channel
number in the texture image used in composing color; since alpha can use only 1
channel, num_channel[1] is always 1 and channel_number[1] determines the
channel number in the texture image used in composing alpha. For example, if
num_channels[0] is 1 and if channel_number[0] is 0, then it implies that channel
number 0 is of the texture image used in composing the color.

The Xgl_render_component_desc structure is defined as:
typedef struct {

Xgl_render_component comp;
Xgl_texture_op texture_op;
union Xgl_op_info {

Xgl_texture_blend_op blend;
Xgl_texture_decal_op decal;
Xgl_texture_blend_intrinsic_op blend_int;

} op;
} Xgl_render_component_desc;

The comp parameter determines which lighting component in the rendering pipe-
line (diffuse, reflected, and final-after depth cueing) is affected by this particular
texture description. The comp field is only valid while composing color since
alpha values are unaffected by lighting or depth cueing. Therefore, this field is
ignored for render_component_desc[1]. The texture_op parameter specifies how the
current color and alpha values are combined with the value obtained from the
texture map. The table below lists the valid combinations:

Texture Operations num_channel 1 num_channel 3

Replace αf =αt Cf =Ct

Modulate Cf =St Ci Cf =Ct Ci
αf =αt ∗ αi

Decal αf =αi Cf = (1-αt′)∗
Ck 1 + αt′ ∗ Ct′

Blend Cf =Ck 1∗ (1-St)+Ck 2∗St Cf =Ck 1∗ (1-Ct)+Ck 2∗Ct
αf =αt ∗ αi

Decal αf =αi Cf =Ci ∗ (1-αt′)+
Intrinsic αt′ ∗Ct′

Blend Cf =Ci ∗ (1-St)+ Cf =Ci ∗ (1-Ct)+
Intrinsic Ck 1∗St Ck 1∗Ct

αf =αt ∗ αi

Where: Ck 1 = Constant color 1
Ck 2 = Constant color 2
Ci = Incoming color
Cf = Final color
St = A single channel texture image as specified by channel_number[0]

modified September 1995 375

XGL_TMAP_DESCRIPTOR (3) XGL Graphics Library

Ct = Three channels of a texture image
αt = A single channel from texture image as specified by channel_number[1]
αf = Final alpha
αi = Incoming alpha
Ct′ = First 3 channels of a 4 channel texture image
αt′ = Fourth channel of a 4 channel texture image

When texture_op is "decal" and if 4 channels are present in the texture image, the
decal operation is performed. If only 3 channels are present in the texture image,
then a replace is performed.

Note: Blank fields indicate undefined values. The values from the texture image
are in the range [01]. Currently in XGL, a 3 channel texture image is specified as a
32-bit value. The upper byte is ignored for 3 channel texture operations.

Texture operations Blend, Decal, and Blend_intrinsic use values defined in the
Xgl_op_info union. The blending operation gets the constant colors C

k1
and C

k2
from the structure Xgl_texture_blend_op. The decal and blend_int operations get
the constant color C

k1
from the structures Xgl_texture_decal_op and Xgl_texture_-

blend_intrinsic_op, respectively.

mipmap This parameter defines the mipmap specific fields. The Xgl_texture_general_-
mipmap_desc structure is defined as:

typedef struct {
Xgl_texture texture_map;
float max_u_freq;
float max_v_freq;
Xgl_texture_boundary u_boundary;
Xgl_texture_boundary v_boundary;
Xgl_usgn8 boundary_values[4];
float depth_interp_factor;
Xgl_texture_interp_info interp_info;
Xgl_matrix_f2d orientation matrix;

} Xgl_texture_general_mipmap_desc;

The texture_map parameter gives a pointer to the texture map object. A texture
map object is created using xgl_object_create(3) with XGL_MIPMAP_TEXTURE as the
object type.

Note: At this release, the fields max_u_freq and max_v_freq are not implemented.

The parameters u_boundary and v_boundary specify the boundary condition to
apply when texture bounds are exceeded. The available boundary options are
specified by the Xgl_texture_boundary structure. The possible values are:

XGL_TEXTURE_BOUNDARY_CLAMP
Finish texturing using a constant value.

XGL_TEXTURE_BOUNDARY_WRAP
Repeat the texture.

376 modified September 1995

XGL Graphics Library XGL_TMAP_DESCRIPTOR (3)

XGL_TEXTURE_BOUNDARY_TRANSPARENT
Finish rendering as though texturing were not being performed.

XGL_TEXTURE_BOUNDARY_MIRROR
Reverse texel sampling creating a mirrored alternating pattern.

XGL_TEXTURE_BOUNDARY_CLAMP_BOUNDARY
Use a color specified by the closest boundary texel.

Note that if u and v boundary conditions are not identical, and if both values of u
and v exceed the texture boundary in both directions, the boundary methods will
be used in the following order:

(1) XGL_TEXTURE_BOUNDARY_TRANSPARENT

(2) XGL_TEXTURE_BOUNDARY_CLAMP

(3) XGL_TEXTURE_BOUNDARY_WRAP

(4) XGL_TEXTURE_BOUNDARY_MIRROR

(5) XGL_TEXTURE_BOUNDARY_CLAMP_BOUNDARY

The boundary_values parameter specifies the value to clamp to when either u or v
value exceeds bounds and when the boundary condition is XGL_TEXTURE_-
BOUNDARY_CLAMP. The depth_interp_factor parameter is a floating point number
that allows the application to adjust the sample level in either direction to obtain
a more or less aliased textured surface. A value of 1.0 moves the depth away
from the mipmap base creating a blurry event. A value of -1.0 moves the depth
towards the mipmap pyramid base for a more detailed picture.

The interp_info parameter gives information on the nature of sampling desired by
the application. The Xgl_texture_interp_info structure is defined as:

typedef struct {
Xgl_texture_interp_method filter1;
Xgl_texture_interp_method filter2;

} Xgl_texture_interp_info;

During the texturing process, the data from the texture mipmap can be sampled
or interpolated in a number of ways in order to come up with a value to apply to
the pixel. The available methods of sampling and interpolating the mipmap are
specified by the Xgl_texture_interp_method structure. The possible values are:

Note: The word texel used below refers to one element stored in a texture map.

XGL_TEXTURE_INTERP_POINT
Sample one texel point from the base (top or first) mipmap level at the
closest u and v to the pixel.

XGL_TEXTURE_INTERP_BILINEAR
Sample the four texels closest to the center of the pixel from the base
mipmap level and average them.

XGL_TEXTURE_INTERP_MIPMAP_POINT
Sample one texel point from the nearest mipmap level at the closest u

modified September 1995 377

XGL_TMAP_DESCRIPTOR (3) XGL Graphics Library

and v to the pixel.

XGL_TEXTURE_INTERP_MIPMAP_BILINEAR
Sample the four texels closest to the center of the pixel from the nearest
mipmap level and average them.

XGL_TEXTURE_INTERP_MIPMAP_TRILINEAR
Sample the four texels closest to the center of the pixel from the nearest
mipmap level above the depth d and the four texels closest from the mip-
map level below the depth d and average all 8 of them.

XGL_TEXTURE_INTERP_MIPMAP_PT_LINEAR
Chose the two mipmaps that most closely match the size fo the pixel
being textured and find the nearest to the center of the pixel to produce a
texture value from each mipmap. The final texture value is an average of
those two values.

filter1 is used if the textured pixel maps to an area greater than one texel. filter2 is
used if the textured pixel maps to an area less than or equal to one texel. We
strongly recommend that filter2 only use XGL_TEXTURE_INTERP_POINT or XGL_-
TEXTURE_INTERP_BILINEAR.

The orientation_matrix parameter defines a matrix by which textures can be
translated and/or rotated. This parameter specifies a 3×2 matrix by which tex-
tures can be rotated or translated across the face of the polygon by transforming
the u and v values through the matrix. The u and v values are specified as data
values in the point list of a surface primitive (for example, xgl_multi_simple_-
polygon(3), xgl_triangle_strip(3), etc.) if XGL_TMAP_COORD_SOURCE(3) is set to
XGL_TEXTURE_COORD_DATA. The u, v values defined in the point list are subject to
the XGL_TMAP_T0_INDEX(3) and XGL_TMAP_T1_INDEX(3) attributes before the orien-
tation matrix is applied.

The default value is NULL.

SEE ALSO xgl_object_set(3)
xgl_object_get(3)
xgl_object_create(3)
xgl_multi_simple_polygon(3)
xgl_polygon(3)
xgl_quadrilateral_mesh(3)
xgl_triangle_list(3)
xgl_triangle_strip(3)

XGL_TMAP_COORD_SOURCE(3)
XGL_TMAP_T0_INDEX(3)
XGL_TMAP_T1_INDEX(3)

NOTES Texturing is only supported when the color type of the raster attached to a 3D Context is
XGL_COLOR_RGB.

378 modified September 1995

XGL Graphics Library XGL_TMAP_DOMAIN (3)

NAME XGL_TMAP_DOMAIN − specifies that the texture is to be applied to color domain

SYNOPSIS #include <xgl/xgl.h>

Xgl_tmap tmap;

xgl_object_set(tmap, XGL_TMAP_DOMAIN, Xgl_texture_domain, 0);
xgl_object_get(tmap, XGL_TMAP_DOMAIN, Xgl_texture_domain);

DESCRIPTION This attribute specifies that the texture is to be applied to color domain. XGL accepts the
following value for Xgl_texture_domain:

XGL_TEXTURE_COLOR
Texture value (texel) obtained from the texture map is used to modify the
primitive’s color according to the color composition method.

The default value is XGL_TEXTURE_COLOR.

SEE ALSO xgl_object_set(3)
xgl_object_get(3)

modified August 1994 379

XGL_TMAP_PARAM_INFO (3) XGL Graphics Library

NAME XGL_TMAP_PARAM_INFO − specifies additional information used in texture parame-
terization

SYNOPSIS #include <xgl/xgl.h>

Xgl_tmap tmap;

xgl_object_set(tmap, XGL_TMAP_PARAM_INFO, Xgl_texture_param_info, 0);
xgl_object_get(tmap, XGL_TMAP_PARAM_INFO, Xgl_texture_param_info ∗);

DESCRIPTION This attribute is used when the attribute value of XGL_TMAP_PARAM_TYPE(3) is other than
XGL_TEXTURE_PARAM_EXPLICIT.

The field project of type Xgl_texture_projection in the Xgl_texture_param_info structure is
used in generating the texture coordinates.

If XGL_TMAP_PARAM_TYPE(3) is XGL_TEXTURE_PARAM_REFLECT_SPHERE_EC or XGL_TEXTURE_-
PARAM_REFLECT_SPHERE_WC, then the reflection matrix as specified by the field
geom_orient_matrix of type Xgl_matrix_f3d in the Xgl_texture_projection structure is used
in the texture generation.

XGL_TEXTURE_PARAM_REFLECT_SPHERE_EC
The reflection vector { s 0,s 1,s 2 } is calculated as follows:

s = i − 2n(n dot i)

where s is the reflection vector, i is the unit vector, and n is the vertex normal
from the eyepoint to the vertex. This calculation is performed after the vertex
and its normal have been transformed to the Eye Coordinate space. The
reflection vector is then transformed by the reflection matrix. After this, the tex-
ture coordinates are derived as follows:

t 0= m

s 0���+
2
1��

t 1= m

s 1���+
2
1��

where: m =2×√`̀ ````````s 0
2 +s 1

2 +(s 2+1)2

XGL_TEXTURE_PARAM_REFLECT_SPHERE_WC
The reflection vector is calculated as:

s = −(i − 2n(n ∗ i))

where s is the reflection vector, n is the vertex normal and i is the unit vector
from the eyepoint to the vertex. The calculation is performed in WC space, after
the vertex and its normal have been transformed to WC space. After the
reflection vector is calculated, the vector is transformed by the reflection matrix.
After this, the texture coordinates are derived as follows:

380 modified September 1995

XGL Graphics Library XGL_TMAP_PARAM_INFO (3)

t 0=0.75:s 0=0.0,s 2>0.0

=0.25:s 0=0.0,s 2≤0.0

=
2π

−atan
�
�
� s 0

s 2���
�
�
������������+0.5:s 0<0.0

=
2π

−atan
�
�
� s 0

s 2���
�
�
������������+1.0:s 0>0.0,s 2>0.0

=
2π

−atan
�
�
� s 0

s 2���
�
�
������������+0.0:s 0>0.0,s 2≤0.0

t 1= π+0.5

asin (s 1)��������

where:
�
�
� 2

−π���≤ atan (r)≤
2
π��

�
�
�
and

�
�
� 2

−π���≤ asin (r)≤
2
π��

�
�
�

If XGL_TMAP_PARAM_TYPE(3) is XGL_TEXTURE_PARAM_LINEAR_EC, then the projection values
as specified by the field linear of Xgl_texture_projection is used.

XGL_TEXTURE_PARAM_LINEAR_EC
The vertex { Vx ,Vy ,Vz } is transformed into the Eye Coordinate space and the tex-
ture coordinates are derived as follows:

t 0=Vx ∗P 0
′∗x +Vy ∗P 0

′∗y +Vz ∗P 0
′∗z +P 0

′∗w

t 0=Vx ∗P 1
′∗x +Vy ∗P 1

′∗y +Vz ∗P 1
′∗z +P 1

′∗w

where P 0
′ and P 1

′ are derived by transforming the values specified in
Xgl_texture_param_info by the Eye Coordinate to Model Coordinate matrix.

The default value is NULL.

SEE ALSO xgl_object_set(3)
xgl_object_get(3)

XGL_TMAP_PARAM_TYPE(3)

modified September 1995 381

XGL_TMAP_PARAM_TYPE (3) XGL Graphics Library

NAME XGL_TMAP_PARAM_TYPE − defines the parameterization method for texture mapping

SYNOPSIS #include <xgl/xgl.h>

Xgl_tmap tmap;

xgl_object_set(tmap, XGL_TMAP_PARAM_TYPE, Xgl_texture_param_type ∗, 0);
xgl_object_get(tmap, XGL_TMAP_PARAM_TYPE, Xgl_texture_param_type ∗);

DESCRIPTION This attribute defines the parameterization method to use in mapping the texture to a 3D
surface. XGL accepts the following values for Xgl_texture_param_type:

XGL_TEXTURE_PARAM_EXPLICIT
This attribute value requires the application to provide the values of u and v as
part of the vertex information in the point list of 3D surface primitives.

XGL_TEXTURE_PARAM_REFLECT_SPHERE_EC
The u,v texture coordinates are derived by transforming vertex and its normal to
Eye Coordinates. Eye Coordinates are obtained by transforming World Coordi-
nates by view orientation, which is an orthogonal portion of the viewing
transformation. The u,v values are then determined by computing a reflection of
eye-to-vertex vector with respect to vertex normal, and transforming this vector
by a reflection matrix. Reflection matrix is specified in the Xgl_texture_projection
structure.

XGL_TEXTURE_PARAM_REFLECT_SPHERE_WC
The u,v texture coordinates are derived by transforming vertex and its normal to
World Coordinates. The u,v values are then determined by computing a
reflection of eye-to-vertex vector with respect to vertex normal, and transforming
this vector by a reflection matrix. Reflection matrix is specified in the Xgl_-
texture_projection structure.

XGL_TEXTURE_PARAM_LINEAR_EC
The vertex is transformed to Eye Coordinates (see above), and its coordinates are
linearly transformed by projection values specified in the Xgl_texture_projection
structure (after the projection values have been transformed from eye coordi-
nates to model coordinates) to obtain the u,v values.

The default value is XGL_TEXTURE_PARAM_EXPLICIT.

SEE ALSO xgl_object_set(3)
xgl_object_get(3)

382 modified September 1995

XGL Graphics Library XGL_TMAP_T0_INDEX (3)

NAME XGL_TMAP_T0_INDEX,
XGL_TMAP_T1_INDEX − define the indices into the vertex data array

SYNOPSIS #include <xgl/xgl.h>

Xgl_tmap tmap;

xgl_object_set(tmap, XGL_TMAP_T0_INDEX, Xgl_usgn32, 0);
xgl_object_set(tmap, XGL_TMAP_T1_INDEX, Xgl_usgn32, 1);

xgl_object_get(tmap, XGL_TMAP_T0_INDEX, Xgl_usgn32 ∗);
xgl_object_get(tmap, XGL_TMAP_T1_INDEX, Xgl_usgn32 ∗);

DESCRIPTION If XGL_TMAP_COORD_SOURCE(3) is set to XGL_TEXTURE_COORD_DATA, these attributes are
pointers to the list of data values to use as u, and v texture coordinates. t0 is equal to the u
value, and t1 is equal to the v value.

The values of u, and v are specified as real numbers in the vertex array. The coordinate
space of the texture map that t0 values correspond to is a space that places 0.0 at the left
edge of the texture and 1.0 at the right edge of the texture. For t1, the coordinate space of
the texture map that v values use is a space that places 0.0 at the bottom edge of the tex-
ture and 1.0 at the top edge of the texture.

If u and v values are not assigned to polygon vertices in a linear way, that is, if there is no
linear transformation that maps u,v coordinates to the polygon’s vertices, then a textured
polygon may look different when rendered on different graphics accelerators. This is
because some graphics hardware devices break up more complex polygons into triangles,
and if the mapping is non-linear, the triangles won’t all be textured the same from device
to device.

The default value for XGL_TMAP_T0_INDEX is 0.

The default value for XGL_TMAP_T1_INDEX is 1.

SEE ALSO xgl_object_set(3)
xgl_object_get(3)

XGL_TMAP_COORD_SOURCE(3)

modified August 1994 383

XGL_TRANS (3) XGL Graphics Library

NAME XGL_TRANS − a Transform object

OVERVIEW XGL_TRANS is the type of an object representing a Transform object. It is used as the type
parameter value for xgl_object_create(3).

When a Transform is no longer needed in an application, it can be explicitly destroyed by
calling the xgl_object_destroy(3) operator to free the resources associated with it.

After creating the Transform, using xgl_object_create(3), the application can inquire
about the values of its attributes by using the xgl_object_get(3) operator.

A brief overview of all of the attributes follows. For more information, see the man page
for each attribute.

XGL_OBJ_APPLICATION_DATA(3)
This attribute allows the application program to store its own data with an object.

XGL_OBJ_SYS_STATE(3)
This read-only attribute returns the System State that was used to create the
object.

XGL_OBJ_TYPE(3)
This read-only attribute defines the type of an XGL object.

XGL_TRANS_DATA_TYPE(3)
Specifies the data type (integer, single-precision floating point, or fixed point) of
the matrix in the Transform object.

XGL_TRANS_DIMENSION(3)
Specifies the dimension (2D or 3D) of the Transform object.

384 modified August 1994

XGL Graphics Library XGL_TRANS_DATA_TYPE (3)

NAME XGL_TRANS_DATA_TYPE − defines the data type of a Transform

SYNOPSIS #include <xgl/xgl.h>

Xgl_trans trans;

xgl_object_set(trans, XGL_TRANS_DATA_TYPE, Xgl_data_type, 0);
xgl_object_get(trans, XGL_TRANS_DATA_TYPE, Xgl_data_type ∗);

DESCRIPTION This attribute defines the data type of a matrix associated with a Transform object. XGL
accepts the following enumerated values for Xgl_data_type:

XGL_DATA_INT
The Transform’s matrix is stored as a 32-bit signed integer. This value is permit-
ted only when the value of XGL_TRANS_DIMENSION(3) is XGL_TRANS_2D.

XGL_DATA_FLT
The Transform’s matrix is stored as single-precision floating point.

XGL_DATA_DBL
The Transform’s matrix is stored as double precision floating point.

The default value is XGL_DATA_FLT.

SEE ALSO xgl_object_set(3)
xgl_object_get(3)
xgl_object_create(3)

XGL_TRANS_DIMENSION(3)

modified August 1994 385

XGL_TRANS_DIMENSION (3) XGL Graphics Library

NAME XGL_TRANS_DIMENSION − defines the space (2D or 3D) in which a Transform operates

SYNOPSIS #include <xgl/xgl.h>

Xgl_trans trans;

xgl_object_set(trans, XGL_TRANS_DIMENSION, Xgl_trans_dimension, 0);
xgl_object_get(trans, XGL_TRANS_DIMENSION, Xgl_trans_dimension ∗);

DESCRIPTION This attribute defines the dimension of the space in which the Transform operates. XGL
accepts the following enumerated values for Xgl_trans_dimension:

XGL_TRANS_2D
The Transform operates in two-dimensional space, making it suitable for 2D
Contexts.

XGL_TRANS_3D
The Transform operates in three-dimensional space, making it suitable for 3D
Contexts.

The default value is XGL_TRANS_3D.

SEE ALSO xgl_object_set(3)
xgl_object_get(3)
xgl_object_create(3)

386 modified August 1994

XGL Graphics Library XGL_WIN_RAS (3)

NAME XGL_WIN_RAS − a Window Raster Device object

OVERVIEW XGL_WIN_RAS is the type of an object representing a Window Raster Device. It is used as
the type parameter value for xgl_object_create(3).

A specific Device object is the Window Raster Device, which draws into pixels that are
stored in a window on a graphics frame buffer managed by a window system. These pixels
are visible to the operator. In contrast, the Memory Raster Device object (see xgl_object_-
create(3) and XGL_MEM_RAS(3)) stores images in memory where they are not visible. The
application must create the window before creating an XGL Window Raster Device on it.

A window can have only one Window Raster Device associated with it.

A Window Raster Device object is created using the xgl_object_create(3) operator. The
application must specify XGL_WIN_RAS as the value of the type parameter to xgl_object_-
create(3). In addition, the application must also supply the desc parameter, which is a
pointer to an Xgl_obj_desc union. The application needs to supply the information in the
win_ras field of the Xgl_obj_desc union. The win_ras structure consists of two fields: type,
which is the window type, and desc, which is a pointer to descriptor information that
identifies the window of the given type. The possible values for the window type are
(currently, there is only one value):

XGL_WIN_X
The Window Raster Device is associated with an X11 window that may have
been obtained from an XView Canvas or created by other means. The value of
desc is a pointer to an Xgl_X_window structure. This example shows how to create
an XGL_WIN_RAS on an X window:

#include <xgl/xgl.h>

Xgl_X_window xgl_x; /∗ X window descriptor ∗/
Xgl_obj_desc obj_desc; /∗ XGL object descriptor ∗/
Xgl_win_ras ras; /∗ newly created window raster ∗/
Xgl_sys_state sys_state; /∗ XGL system state ∗/

xgl_x.X_display = /∗ the X display identifier ∗/
xgl_x.X_screen = /∗ the X screen identifier ∗/
xgl_x.X_window = /∗ the X window identifier ∗/

obj_desc.win_ras.type = XGL_WIN_X;

obj_desc.win_ras.desc = &xgl_x;

ras = xgl_object_create(sys_state, XGL_WIN_RAS, &obj_desc, 0);

The window system type can be modified to indicate which protocol XGL uses to
communicate with the graphics device. XGL supports three protocols for the X
window system: Xlib, PEX, and DGA (Direct Graphics Access). The protocol is
selected by OR’ing in the name of the protocol with the constant XGL_WIN_X.
The constants for the names of the protocol are:

modified August 1994 387

XGL_WIN_RAS (3) XGL Graphics Library

/∗ WIN_X protocols ∗/
#define XGL_WIN_X_PROTO_DEFAULT (0x000)

#define XGL_WIN_X_PROTO_XLIB (0x100)

#define XGL_WIN_X_PROTO_PEX (0x200)

#define XGL_WIN_X_PROTO_DGA (0x400)

Only one protocol can be specified. If a protocol is specified, XGL tries to use that
protocol to communicate with the graphics device. If it is not available, an error
is issued and the Window Raster is not created. If no protocol is specified (or
XGL_WIN_X_PROTO_DEFAULT is used), XGL tries to use the best protocol for the par-
ticular device. If that is not available, XGL will try a backup protocol. In practical
terms, XGL tries to use DGA, but if that is not available, it will attempt to use PEX,
and if that fails, then it will use Xlib.

In most cases, an XGL application does not need to be concerned with selecting a
protocol. However, this facility is available to aid applications that want to make
the best use of the graphics resources, and this usually means part of the applica-
tion that is device-dependent.

After creating the Window Raster Device, using xgl_object_create(3), the application can
inquire about the values of its attributes by using the xgl_object_get(3) operator.

A Window Raster Device object shares many attributes with a Memory Raster Device
object. These attributes have the common prefix XGL_RAS_. The attributes that are specific
to the Window Raster Device have the prefix XGL_WIN_RAS_.

A brief overview of all of the attributes follows. For more information, see the man page
for each attribute.

XGL_DEV_COLOR_MAP(3)
Specifies the Color Map Object used by the Window Raster Device object.

XGL_DEV_COLOR_TYPE(3)
Specifies the color type (that is, the color model) of the Raster. It can be set only
once, when the Window Raster Device object is created. The two alternatives are:
XGL_COLOR_INDEX and XGL_COLOR_RGB.

XGL_DEV_CONTEXTS(3)
XGL_DEV_CONTEXTS_NUM(3)

These attributes return the Context object handles used by the Window Raster
Device object.

XGL_DEV_MAXIMUM_COORDINATES(3)
Returns the maximum coordinate values for the Window Raster Device object.

XGL_DEV_PICK_BUFFER_SIZE(3)
Returns the maximum pick buffer size that a Window Raster Device object can
support efficiently.

XGL_DEV_REAL_COLOR_TYPE(3)
Specifies the real color space used by the Window Raster Device object.

388 modified August 1994

XGL Graphics Library XGL_WIN_RAS (3)

XGL_OBJ_APPLICATION_DATA(3)
This attribute allows the application program to store its own data with an object.

XGL_OBJ_SYS_STATE(3)
This read-only attribute returns the System State that was used to create the
object.

XGL_OBJ_TYPE(3)
This read-only attribute defines the type of an XGL object.

XGL_RAS_DEPTH(3)
XGL_RAS_HEIGHT(3)
XGL_RAS_WIDTH(3)

These attributes give the size of the Window Raster Device. They are read-only
and cannot be set for a Window Raster Device. The width and height may
change, however, if the operator changes the size of the window using the win-
dow system.

XGL_RAS_RECT_LIST(3)
XGL_RAS_RECT_NUM(3)

These attributes define the number and list of clip rectangles in the application-
specified clip list.

XGL_RAS_SOURCE_BUFFER(3)
This attribute specifies the buffer to be used as source during raster operations.

XGL_WIN_RAS_BACKING_STORE(3)
This attribute provides backing store support for a Window Raster.

XGL_WIN_RAS_BUF_DISPLAY(3)
XGL_WIN_RAS_BUF_DRAW(3)
XGL_WIN_RAS_BUF_MIN_DELAY(3)
XGL_WIN_RAS_BUFFERS_ALLOCATED(3)
XGL_WIN_RAS_BUFFERS_REQUESTED(3)

These attributes control double buffering. XGL_WIN_RAS_BUF_DISPLAY specifies the
current display buffer. XGL_WIN_RAS_BUF_DRAW specifies the current read/write
buffer. XGL_WIN_RAS_BUF_MIN_DELAY specifies the minimum time delay between
buffer switches. XGL_WIN_RAS_BUFFERS_ALLOCATED reflects the number of buffers
that are available to the application for use. XGL_WIN_RAS_BUFFERS_REQUESTED
specifies the number of hardware buffers requested by the application.

XGL_WIN_RAS_DESCRIPTOR(3)
Returns the window descriptor associated with the Window Raster Device. This
is the value of the win_ras_desc field in the Xgl_obj_desc union.

XGL_WIN_RAS_PIXEL_MAPPING(3)
The pixel mapping array that maps the application’s color indices to hardware
color indices.

XGL_WIN_RAS_POSITION(3)
Specifies the position of the Window Raster object.

modified August 1994 389

XGL_WIN_RAS (3) XGL Graphics Library

XGL_WIN_RAS_TYPE(3)
Returns the window type set via the type parameter to the create call.

XGL_WIN_RAS_STEREO_MODE(3)
Specifies whether the window being rendered into is a stereo window or a mono
window.

NOTE The current implementation of XGL, using Direct Graphics Access (DGA), does not sup-
port using fork() or vfork() if there is an active XGL Window Raster.

390 modified August 1994

XGL Graphics Library XGL_WIN_RAS_BACKING_STORE (3)

NAME XGL_WIN_RAS_BACKING_STORE − backing store support for a Window Raster

SYNOPSIS #include <xgl/xgl.h>

Xgl_win_ras ras;

void xgl_object_set(ras, XGL_WIN_RAS_BACKING_STORE, Xgl_boolean, 0);
void xgl_object_get(ras, XGL_WIN_RAS_BACKING_STORE, Xgl_boolean ∗);

DESCRIPTION This attribute is set by the application to request backing store support from XGL for a
Window Raster after backing store support is requested through Xlib call XChangeWin-
dowAttributes().

This request is only a hint and it is up to the server to decide whether to actually support
backing store. No expose event will be issued when backing store is on. Even when
backing store is supported, the server may decide to withdraw the support due to
resource constraints and other reasons, so the application should always deal with an
expose event (say by redrawing) by itself.

When XGL_WIN_RAS_BACKING_STORE is set to FALSE, XGL will drop backing store support
from the XGL side. It is then the application’s responsibility to request the server to drop
the backing store support through Xlib call XChangeWindowAttributes().

Since backing store and double-buffering cannot be supported at the same time, XGL will
grant the request for backing store or double-buffering depending on which is requested
first. If a request for backing store is made through setting XGL_WIN_RAS_BACKING_STORE
to TRUE, XGL will check the value of XGL_WIN_RAS_BUFFERS_ALLOCATED. If the value of
XGL_WIN_RAS_BUFFERS_ALLOCATED is greater than 1, XGL will not initiate the backing store
request and in turn set the value of XGL_WIN_RAS_BACKING_STORE to FALSE, which can be
retrieved through xgl_object_get.

If the backing store memory as allocated by the server is from the system, then only the
inverse clipped-list will be used for all backing store operations.

Since the X server is not handling back copy of Z Buffer and Accumulation Buffer for
backing store, support for Z Buffer and Accumulation Buffer in backing store is specified
as follows:

When neither Z Buffer nor Accumulation Buffer is used:

No differences in backing store support when hardware or software, Z Buffer and/or
Accumulation Buffer is used.

When Z Buffer and/or Accumulation Buffer is used, and:

The display device uses software Z Buffer and/or Accumulation Buffer.

The backing store will share the same software buffers with the display window,
so the contents will always be in-sync without copying.

The display device uses hardware Z Buffer and/or Accumulation Buffer.

The buffers cannot be shared with the backing store. The device-pipeline for the
backing store will use a separate Z Buffer for rendering and/or a separate Accu-
mulation Buffer to accumulate. The resulting image after damage repair will

modified August 1994 391

XGL_WIN_RAS_BACKING_STORE (3) XGL Graphics Library

likely be inaccurate especially if the clipped-list has changed. Thus, backing store
should not be used when accumulation is needed or HLHSR mode is on for 3D
context.

The default value is FALSE.

SEE ALSO xgl_object_set(3)
xgl_object_get(3)

XGL_WIN_RAS_BUFFERS_ALLOCATED(3)

392 modified August 1994

XGL Graphics Library XGL_WIN_RAS_BUF_DISPLAY (3)

NAME XGL_WIN_RAS_BUF_DISPLAY − current display buffer

SYNOPSIS #include <xgl/xgl.h>

Xgl_win_ras ras;

xgl_object_set(ras, XGL_WIN_RAS_BUF_DISPLAY, Xgl_usgn32, 0);
xgl_object_get(ras, XGL_WIN_RAS_BUF_DISPLAY, Xgl_usgn32 ∗);

DESCRIPTION This attribute specifies the current display buffer, which is displayed in the application
window.

The valid values for this attribute are those between 0 and XGL_WIN_RAS_BUFFERS_-
ALLOCATED − 1.

This attribute is changed implicitly by the primitive xgl_context_new_frame(3) if:

· The context flag XGL_CTX_NEW_FRAME_SWITCH_BUFFER is set in the attribute XGL_-

CTX_NEW_FRAME_ACTION(3).

· The value of XGL_WIN_RAS_BUF_DISPLAY differs from XGL_WIN_RAS_BUF_DRAW.

The default value is 0.

SEE ALSO xgl_context_new_frame(3)
xgl_object_get(3)
xgl_object_set(3)

XGL_CTX_NEW_FRAME_ACTION(3)
XGL_WIN_RAS_BUF_DRAW(3)
XGL_WIN_RAS_BUFFERS_ALLOCATED(3)

modified August 1994 393

XGL_WIN_RAS_BUF_DRAW (3) XGL Graphics Library

NAME XGL_WIN_RAS_BUF_DRAW − current read/write buffer

SYNOPSIS #include <xgl/xgl.h>

Xgl_win_ras ras;

xgl_object_set(ras, XGL_WIN_RAS_BUF_DRAW, Xgl_usgn32, 0);
xgl_object_get(ras, XGL_WIN_RAS_BUF_DRAW, Xgl_usgn32 ∗);

DESCRIPTION This attribute specifies, for all XGL drawing primitives, the buffer to read and write pixels
into.

The valid values for this attribute are those between 0 and XGL_WIN_RAS_BUFFERS_-
ALLOCATED − 1.

This attribute is changed implicitly by the primitive xgl_context_new_frame(3) if:

· The context flag XGL_CTX_NEW_FRAME_SWITCH_BUFFER is set in the attribute XGL_-

CTX_NEW_FRAME_ACTION(3).

· The value of XGL_WIN_RAS_BUF_DISPLAY differs from XGL_WIN_RAS_BUF_DRAW.

If XGL_WIN_RAS_BUF_DRAW equals XGL_WIN_RAS_BUF_DISPLAY, and then XGL_WIN_RAS_BUF_-
DRAW is reset so that it no longer equals XGL_WIN_RAS_BUF_DISPLAY, the contents of XGL_-
WIN_RAS_BUF_DRAW are undefined.

The default value is 0.

SEE ALSO xgl_context_new_frame(3)
xgl_object_get(3)
xgl_object_set(3)

XGL_CTX_NEW_FRAME_ACTION(3)
XGL_WIN_RAS_BUF_DISPLAY(3)
XGL_WIN_RAS_BUFFERS_ALLOCATED(3)

394 modified October 1996

XGL Graphics Library XGL_WIN_RAS_BUF_MIN_DELAY (3)

NAME XGL_WIN_RAS_BUF_MIN_DELAY − minimum time delay between buffer switches

SYNOPSIS #include <xgl/xgl.h>

Xgl_win_ras ras;

xgl_object_set(ras, XGL_WIN_RAS_BUF_MIN_DELAY, Xgl_usgn32, 0);
xgl_object_get(ras, XGL_WIN_RAS_BUF_MIN_DELAY, Xgl_usgn32 ∗);

DESCRIPTION This attribute specifies the minimum milliseconds to wait between switches of the
display and draw buffers. Minimum delay allows the application to tell XGL to slow
down the animation loop so that it appears synchronized at a rate that the application
rendering can support.

The default value is 0.

SEE ALSO xgl_object_get(3)
xgl_object_set(3)

modified August 1994 395

XGL_WIN_RAS_BUFFERS_ALLOCATED (3) XGL Graphics Library

NAME XGL_WIN_RAS_BUFFERS_ALLOCATED − number of buffers allocated in hardware
underlying a Window Raster

SYNOPSIS #include <xgl/xgl.h>

Xgl_win_ras ras;

xgl_object_get(ras, XGL_WIN_RAS_BUFFERS_ALLOCATED, Xgl_usgn32 ∗);

DESCRIPTION This attribute is the number of buffers allocated in the hardware underlying a Window
Raster. It is a read-only attribute.

To change the number of buffers allocated, the application must use XGL_WIN_RAS_-

BUFFERS_REQUESTED(3). This attribute is the number of buffers granted after setting XGL_-

WIN_RAS_BUFFERS_REQUESTED(3).

A value of 1 indicates the hardware has only a single buffer and the application might do
color map double buffering, if possible. A value of 2 indicates that the hardware is double
buffered.

The value of this attribute determines the valid values for the attributes XGL_WIN_RAS_-

BUF_DISPLAY(3) and XGL_WIN_RAS_BUF_DRAW(3).

The default value is 1 (single buffered).

SEE ALSO xgl_object_get(3)

XGL_WIN_RAS_BUF_DISPLAY(3)
XGL_WIN_RAS_BUF_DRAW(3)
XGL_WIN_RAS_BUFFERS_REQUESTED(3)

396 modified August 1994

XGL Graphics Library XGL_WIN_RAS_BUFFERS_REQUESTED (3)

NAME XGL_WIN_RAS_BUFFERS_REQUESTED − number of buffers requested by the applica-
tion

SYNOPSIS #include <xgl/xgl.h>

Xgl_win_ras ras;

xgl_object_set(ras, XGL_WIN_RAS_BUFFERS_REQUESTED, Xgl_usgn32, 0);
xgl_object_get(ras, XGL_WIN_RAS_BUFFERS_REQUESTED, Xgl_usgn32 ∗);

DESCRIPTION This attribute is set by the application to request that XGL allocate a number of hardware
buffers. If the application sets this to a value of 1, XGL will do single buffering. If the
application sets this to a value of 2, XGL will do double buffering, if it is supported by the
hardware underlying the Window Raster. The application should get the XGL_WIN_RAS_-

BUFFERS_ALLOCATED(3) attribute value immediately after setting this attribute to see how
many buffers were allocated in the hardware.

The allocation does not provide the requested number of buffers if any of the following
are true:

· The hardware does not support the number of requested buffers. Determine via
xgl_inquire(3).

· Although the hardware does support the requested number of buffers, the
resource is not available.

· Setting XGL_WIN_RAS_BUFFERS_ALLOCATED(3) to the requested value would cause
the current values of XGL_WIN_RAS_BUF_DRAW or XGL_WIN_RAS_BUF_DISPLAY to be
invalid. The latter two must be greater than or equal to 0 and less than XGL_WIN_-
RAS_BUFFERS_ALLOCATED.

· The current value of XGL_RAS_ACCUM_SRC must be greater than or equal to 0 and
less than XGL_WIN_RAS_BUFFERS_ALLOCATED.

· Backing store is on (XGL_WIN_RAS_BACKING_STORE(3) is TRUE) and XGL_WIN_RAS_-
BUFFERS_REQUESTED is greater than 1.

After setting this attribute, if the XGL_WIN_RAS_BUFFERS_ALLOCATED(3) value is 1, the
hardware has only a single buffer, and the application might do color map double buffer-
ing, if possible.

After setting this attribute, if the XGL_WIN_RAS_BUFFERS_ALLOCATED(3) value is 2, the
hardware supports double buffering in which the initial content of the newly created buffer
is undefined.

The value of this attribute determines the valid values for the attributes XGL_WIN_RAS_-

BUF_DISPLAY(3) and XGL_WIN_RAS_BUF_DRAW(3).

The default value is 1 (single buffered).

modified August 1994 397

XGL_WIN_RAS_BUFFERS_REQUESTED (3) XGL Graphics Library

SEE ALSO xgl_inquire(3)
xgl_object_get(3)
xgl_object_set(3)

XGL_WIN_RAS_BACKING_STORE(3)
XGL_WIN_RAS_BUF_DISPLAY(3)
XGL_WIN_RAS_BUF_DRAW(3)
XGL_WIN_RAS_BUFFERS_ALLOCATED(3)

398 modified August 1994

XGL Graphics Library XGL_WIN_RAS_DESCRIPTOR (3)

NAME XGL_WIN_RAS_DESCRIPTOR − the window descriptor for the Window Raster

SYNOPSIS #include <xgl/xgl.h>

Xgl_win_ras ras;

xgl_object_get(ras, XGL_WIN_RAS_DESCRIPTOR, void ∗);

DESCRIPTION This read-only attribute is the window descriptor passed to XGL on the creation of the Win-
dow Raster. It is the window descriptor for the window that XGL draws into. The appli-
cation receives it from the window system upon window creation.

The value of this attribute is the same as the value of the win_ras→desc parameter, a
member of the Xgl_obj_desc union, that the application passes to XGL upon Window Ras-
ter creation (with the operator xgl_object_create(3)).

When xgl_object_get(3) is used to inquire about this variable, the data type of the
returned window descriptor depends on the window system as shown below:

X11, OpenWindows
Data type is Xgl_X_window ∗, a pointer to a structure containing X11 window or
XView canvas information.

SEE ALSO xgl_object_get(3)
xgl_object_create(3)

XGL_WIN_RAS_TYPE(3)

modified August 1994 399

XGL_WIN_RAS_MBUF_DRAW (3) XGL Graphics Library

NAME XGL_WIN_RAS_MBUF_DRAW − current MBX read/write buffer

SYNOPSIS #include <xgl/xgl.h>

Xgl_win_ras ras;

xgl_object_set(win_ras, XGL_WIN_RAS_MBUF_DRAW, Xgl_sgn32, 0);
xgl_object_get(win_ras, XGL_WIN_RAS_MBUF_DRAW, Xgl_sgn32 ∗);

DESCRIPTION This is an obsolete attribute. We do not recommend the use of this attribute for this
release or any future releases.

400 modified August 1994

XGL Graphics Library XGL_WIN_RAS_MULTIBUFFER (3)

NAME XGL_WIN_RAS_MULTIBUFFER − enables MBX for window raster

SYNOPSIS #include <xgl/xgl.h>

Xgl_win_ras ras;

void xgl_object_set(win_ras, XGL_WIN_RAS_MULTIBUFFER, Xgl_boolean, 0);
void xgl_object_get(win_ras, XGL_WIN_RAS_MULTIBUFFER, Xgl_boolean ∗);

DESCRIPTION This is an obsolete attribute. We do not recommend the use of this attribute for this
release or any future releases.

modified September 1995 401

XGL_WIN_RAS_PIXEL_MAPPING (3) XGL Graphics Library

NAME XGL_WIN_RAS_PIXEL_MAPPING − pixel mapping from user index colors to window
system index colors

SYNOPSIS #include <xgl/xgl.h>

Xgl_win_ras ras;

xgl_object_set(ras, XGL_WIN_RAS_PIXEL_MAPPING, Xgl_usgn32 ∗, 0);
xgl_object_get(ras, XGL_WIN_RAS_PIXEL_MAPPING, Xgl_usgn32 ∗);

DESCRIPTION This attribute is the pixel mapping array, which maps the application’s color indices to
hardware color indices. This additional mapping (level of indirection) is required to per-
mit an XGL application to use color maps created by the OpenWindows and X window
systems.

This attribute should only be used if the visual type of the raster device’s window is
PseudoColor. This attribute has no meaning on Xlib windows created from TrueColor or
DirectColor visuals.

This pixel mapping is called contiguous if the mapping of indices from the application’s
color table to the hardware color table is consecutive and monotonically increasing. The
mapping may begin at some offset into the hardware color table, but there can be no
‘‘holes’’ in the mapping from application to hardware. For example, if the application
creates a color table array containing four RGB values in locations 0-3 of the array, the
pixel mapping is contiguous if these four indices are mapped to four consecutive indices
within the hardware color table (such as 5-8). This example produces the following con-
tiguous mapping:

application index 0 → hardware index 5
application index 1 → hardware index 6
application index 2 → hardware index 7
application index 3 → hardware index 8

The offset in this case is 5.

A contiguous mapping is guaranteed by XGL if an application creates its own color table
array (see XGL_CMAP_COLOR_TABLE(3)) and attaches it to a Color Map object. However, if
an application creates an X color map (an X color map is analogous to an XGL color table)
through Xlib function calls, the pixel mapping may or may not be contiguous. In this
case, the application is responsible for ensuring contiguity of the pixel mapping if the
application requires it.

If an application sets the XGL_CMAP_NAME(3) attribute in the Color Map object associated
with the Window Raster, then XGL_WIN_RAS_PIXEL_MAPPING must be set immediately
afterward. This guarantees that the application’s indexed colors are properly mapped to
the hardware indices. To do this, when creating an OpenWindows (X) color map, the
application should save the pixel array returned by the window system and hand it to
XGL through XGL_WIN_RAS_PIXEL_MAPPING(3). (For more information about how to do
this, see XGL_CMAP_NAME.)

402 modified August 1994

XGL Graphics Library XGL_WIN_RAS_PIXEL_MAPPING (3)

When XGL is managing the X Colormap; in other words, when the application has not set
XGL_CMAP_NAME(3), some color map attributes can potentially change the pixel mapping
array. These color map attributes are as follows:

XGL_CMAP_COLOR_CUBE_SIZE(3)
XGL_CMAP_COLOR_TABLE(3)

SEE ALSO xgl_object_get(3)
xgl_object_set(3)
xgl_object_create(3)

XGL_CMAP_COLOR_CUBE_SIZE(3)
XGL_CMAP_COLOR_TABLE(3)
XGL_CMAP_NAME(3)

NOTES Non-contiguous pixel mapping, when used with XGL primitives requiring interpolated
colors, produces undefined results on various graphics hardware and may degrade
rendering performance. To ensure correct results for interpolated color rendering, the
application should use a contiguous pixel mapping. (See discussion above for a
definition of contiguous pixel mapping.)

If the application sets the XGL_CMAP_NAME attribute, the XGL_WIN_RAS_PIXEL_MAPPING
should be set immediately afterward. This guarantees that the application’s indexed
colors are properly mapped to the hardware indices.

modified August 1994 403

XGL_WIN_RAS_POSITION (3) XGL Graphics Library

NAME XGL_WIN_RAS_POSITION − position of Window Raster object

SYNOPSIS #include <xgl/xgl.h>

Xgl_win_ras ras;

xgl_object_get(ras, XGL_WIN_RAS_POSITION, Xgl_pt_i2d ∗);

DESCRIPTION This read-only attribute specifies the position of the Window Raster object. It is the posi-
tion of the window (in device coordinates) relative to the upper left corner of the display
screen.

SEE ALSO xgl_object_get(3)
xgl_object_create(3)

404 modified August 1994

XGL Graphics Library XGL_WIN_RAS_STEREO_MODE (3)

NAME XGL_WIN_RAS_STEREO_MODE − specifies whether the window being rendered into is
a stereo window or a mono window

SYNOPSIS #include <xgl/xgl.h>

Xgl_win_ras ras;

xgl_object_set(ras, XGL_WIN_RAS_STEREO_MODE, Xgl_stereo_mode, 0);
xgl_object_get(ras, XGL_WIN_RAS_STEREO_MODE, Xgl_stereo_mode ∗);

DESCRIPTION This attribute specifies whether the window being rendered into is a stereo window or a
mono window. XGL accepts the following enumerated values for Xgl_stereo_mode:

XGL_STEREO_NONE
This value specifies that the window is a monocular (non-stereo) window. In this
mode, if the frame buffer is in stereo mode, all graphics will be rendered into
both the right and left eye buffers. This value must be specified when the frame
buffer is not in stereo mode.

XGL_STEREO_LEFT
This value specifies that the window is a stereo window, and that the image for
the left eye buffer is being rendered. This is only legal if the frame buffer is in
stereo mode.

XGL_STEREO_RIGHT
This value specifies that the window is a stereo window, and that the image for
the right eye buffer is being rendered. This is only legal if the frame buffer is in
stereo mode.

Note that undefined results may occur if stereo is used when rendering through a 2D
Context.

The default value is XGL_STEREO_NONE.

SEE ALSO xgl_object_set(3)
xgl_object_get(3)
xgl_inquire(3)

modified August 1994 405

XGL_WIN_RAS_TYPE (3) XGL Graphics Library

NAME XGL_WIN_RAS_TYPE − the type of Window Raster Device

SYNOPSIS #include <xgl/xgl.h>

Xgl_win_ras ras;

xgl_object_get(ras, XGL_WIN_RAS_TYPE, Xgl_window_type ∗);

DESCRIPTION This attribute gives the type of the Window Raster Device. It is a read-only attribute
describing the window system controlling the Window Raster. The value of this attribute
is the same as the value that the application passed to XGL with the operator xgl_object_-
create(3).

XGL will return the following value of Xgl_window_type:

XGL_WIN_X
The Window Raster is an X11 window or XView canvas. Note that the window
type can have a protocol encoded in it. (For a discussion of how to specify a pro-
tocol, see XGL_WIN_RAS(3).) The masks XGL_WIN_MASK and XGL_WIN_PROTO_MASK
can be used to get the window system type or protocol, respectively, from the
returned value.

This attribute has no default value.

SEE ALSO xgl_object_get(3)
xgl_object_set(3)
xgl_object_create(3)

XGL_WIN_RAS_DESCRIPTOR(3)

406 modified August 1994

XGL Graphics Library xgl_annotation_text (3)

NAME xgl_annotation_text − renders 2D and 3D annotation text

SYNOPSIS #include <xgl/xgl.h>

void xgl_annotation_text (
Xgl_ctx ctx,
void ∗str,
Xgl_pt_f{2,3}d ∗ref_pos,
Xgl_pt_f{2,3}d ∗ann_pos);

/∗ f2d for 2D Context, f3d for 3D Context ∗/

DESCRIPTION This Context operator renders the text indexed by the characters in str using the Context
attributes within ctx.

Annotation text primitives differ from text primitives in that the plane upon which char-
acters are generated is always parallel to the display surface. Annotation text primitives
are planar primitives. The depth at which annotation text is located is dependent on the z
coordinate of the annotation point, defined below.

Depending on the character-encoding scheme defined by the Context attribute XGL_CTX_-

STEXT_CHAR_ENCODING(3), the str parameter represents a NULL-terminated C-style string of
characters, or a pointer on a structure of type Xgl_mono_text_list defined in xgl_struct(3).
ref_pos is the reference point for the rendered string. This point is transformed through
the XGL transformation pipeline. An annotation point is derived from the reference point
by adding the values stored in ann_pos to the transformed reference point. ann_pos
values are specified in virtual device coordinates (VDC).

If the string-encoding scheme used is of type XGL_SINGLE_STR, at least one font can be
selected to render the characters in ISO or MBY character-encoding schemes:

XGL_CTX_SFONT_0(3)

When the character-encoding scheme used is of type XGL_CHAR_MBY, the fonts used to
render the string are selected depending on the character code adding the following Con-
text attributes:

XGL_CTX_SFONT_1(3)
XGL_CTX_SFONT_2(3)
XGL_CTX_SFONT_3(3)

If the string-encoding scheme used is of type XGL_MULTI_STR, the structure passed in
parameter contains the XGL font Object used to render the characters. Both character-
encodings ISO or MBY can be used.

The application can control the geometrical characteristics of the text using the following
attributes:

XGL_CTX_ATEXT_CHAR_HEIGHT(3)
XGL_CTX_STEXT_CHAR_SPACING(3)
XGL_CTX_STEXT_CHAR_EXPANSION_FACTOR(3)

modified August 1994 407

xgl_annotation_text (3) XGL Graphics Library

The text orientation is controlled by changing the components of the XGL_CTX_ATEXT_-

CHAR_UP_VECTOR(3) attribute. An inclination can be added to the orientation by using the
XGL_CTX_ATEXT_CHAR_SLANT_ANGLE(3) attribute.

The text presentation, with respect to the position given by the parameter ref_pos, is
managed by the following attributes:

XGL_CTX_ATEXT_ALIGN_HORIZ(3)
XGL_CTX_ATEXT_ALIGN_VERT(3)
XGL_CTX_ATEXT_PATH(3)

The color of the text can be modified with the XGL_CTX_STEXT_COLOR(3) attribute.

Annotation text is clipped differently than normal stroke text is. It will be visible if the
reference point is within the clipping region or volume in 3D. Otherwise, the complete
text is rejected. If the reference point implies a visible text, the text is further clipped to
the limits of the clipping region or volume.

An additional attribute, XGL_CTX_ATEXT_STYLE(3), controls whether the reference point is
visually connected to the annotation point. A visible connection is represented by a sin-
gle line, using the multipolyline current non-geometric attributes, between the reference
point and the annotation point. For a list of non-geometric attributes, see xgl_-
multipolyline(3).

XGL annotation text is rendered as a set of polylines. The width is fixed and there cannot
be any pattern applied to the rendering of the text. The ROP and plane mask apply, as for
any other rendering primitive, and can be modified with the XGL_CTX_ROP(3) and XGL_-

CTX_PLANE_MASK(3) attributes, respectively.

RETURN VALUE Nothing is returned.

SEE ALSO xgl_multipolyline(3)

XGL_CTX_PLANE_MASK(3)
XGL_CTX_ROP(3)
XGL_CTX_STEXT_CHAR_ENCODING(3)
XGL_CTX_STEXT_CHAR_EXPANSION_FACTOR(3)
XGL_CTX_ATEXT_CHAR_HEIGHT(3)
XGL_CTX_ATEXT_CHAR_SLANT_ANGLE(3)
XGL_CTX_ATEXT_CHAR_UP_VECTOR(3)
XGL_CTX_ATEXT_STYLE(3)
XGL_CTX_ATEXT_ALIGN_HORIZ(3)
XGL_CTX_ATEXT_ALIGN_VERT(3)
XGL_CTX_ATEXT_PATH(3)
XGL_CTX_SFONT_0(3)
XGL_CTX_SFONT_1(3)
XGL_CTX_SFONT_2(3)
XGL_CTX_SFONT_3(3)
XGL_CTX_STEXT_CHAR_SPACING(3)
XGL_CTX_STEXT_COLOR(3)

408 modified August 1994

XGL Graphics Library xgl_annotation_text (3)

NOTES For XGL annotation text, the character up vector, defined by the XGL_CTX_ATEXT_CHAR_-

UP_VECTOR(3) attribute is independent of the VDC orientation (defined by XGL_CTX_VDC_-

ORIENTATION(3)) and should always be interpreted as if the Y axis was ALWAYS pointing
up.

modified August 1994 409

xgl_close (3) XGL Graphics Library

NAME xgl_close − ends an XGL session

SYNOPSIS #include <xgl/xgl.h>

void xgl_close (
Xgl_sys_state system_state);

DESCRIPTION This operator ends an XGL session. The application invokes the operator by passing to it
the handle of the XGL System State object, created by a previous call to xgl_open(3),
which began the XGL session. When xgl_close is executed, the System State object and all
associated resources that have been allocated during the current XGL session are des-
troyed, and then XGL is terminated.

An XGL session can have only one System State object present at a given time. It is possi-
ble to create and delete a System State object several times within a single application by
using multiple, paired xgl_open and xgl_close calls. Other XGL operators must be
invoked between a pair of xgl_open and xgl_close calls to ensure correct management of
XGL library resources.

RETURN VALUE Nothing is returned.

SEE ALSO xgl_object_destroy(3)
xgl_open(3)

410 modified August 1994

XGL Graphics Library xgl_context_accumulate (3)

NAME xgl_context_accumulate − accumulates from the draw buffer of the raster attached to the
context to the destination buffer

SYNOPSIS #include <xgl/xgl.h>

void xgl_context_accumulate (
Xgl_ctx ctx,
Xgl_bounds_i2d∗ rectangle,
Xgl_pt_f2d∗ pos,
float src_wt,
float accum_wt,
Xgl_buffer_sel buf);

DESCRIPTION This operator accumulates from the draw buffer of the raster attached to the Context ctx
to the destination buffer specified by the attribute XGL_3D_CTX_ACCUM_OP_DEST(3). The
accumulated area is copied to the buffer specified by buf. The area in the draw buffer of
the raster that is to be accumulated is specified by the rectangular region rectangle. The
accumulation is done starting from position pos in the destination buffer. The rectangular
region that is used as source is not clipped to DC viewport. It is clipped by the maximum
dimension of the draw buffer as defined by XGL_DEV_MAXIMUM_COORDINATES(3). If the
rectangle is a NULL pointer, the maximum area from the draw buffer of the raster is used
as source. If position is NULL, the top and left corner of the destination buffer is used.

After accumulation, the accumulated area is copied to the buffer buf. The rectangle start-
ing from position pos and width and height up to a maximum of width and height of the
rectangle is the source area for copy. The destination area starts at (xmin,ymin) of the rec-
tangle up to a maximum width and height specified by rectangle.

The accumulation calculation occurs as follows:

DEST_BUFFER = SRC_BUFFER ∗ SRC_WEIGHT + DEST_BUFFER ∗ ACCUM_WEIGHT

Parameters ctx Specifies the context to which source raster is attached and whose draw buffer is
used as the source in the accumulation process. The destination buffer (specified
by the attribute XGL_3D_CTX_ACCUM_OP_DEST(3)) of the ctx is used as the destina-
tion buffer in the accumulation operation.

rectangle
Specifies the source area of the draw buffer of the raster attached to the ctx with
xmin, xmax, ymin, ymax.

pos Specifies the position in the destination buffer (specified by the attribute XGL_3D_-

CTX_ACCUM_OP_DEST(3)) to be used as the starting position. The width and height
up to a maximum of width and height of the rectangle is accumulated. If any
region exceeds the bounds of the raster, all are correspondingly clipped.

src_wt The weight to be used as SRC_WEIGHT in the accumulation calculation given
above.

accum_wt

modified February 1995 411

xgl_context_accumulate (3) XGL Graphics Library

The weight to be used as ACCUM_WEIGHT in the accumulation calculation given
above.

buf Specifies the buffer to copy the accumulated image to. It takes on values:

XGL_BUFFER_SEL_NONE
No copy back to the image buffers once it is done.

XGL_BUFFER_SEL_DISPLAY
The contents of the destination buffer is always copied to the display
buffer.

A value of 0 to N-1
N is the number of buffers allocated in the raster attached to the Context
ctx.

RETURN VALUE Nothing is returned.

SEE ALSO xgl_object_set(3)
xgl_object_get(3)

XGL_3D_CTX_ACCUM_OP_DEST(3)
XGL_DEV_MAXIMUM_COORDINATES(3)

NOTE This primitive is only supported when XGL_DEV_REAL_COLOR_TYPE(3) is XGL_COLOR_RGB.

412 modified February 1995

XGL Graphics Library xgl_context_check_bbox (3)

NAME xgl_context_check_bbox − calculates the geometry status of a bounding box

SYNOPSIS #include <xgl/xgl.h>

void xgl_context_check_bbox (
Xgl_ctx ctx,
Xgl_primitive_type prim_type,
Xgl_bbox ∗bbox,
Xgl_geom_status ∗geom_status);

DESCRIPTION
Purpose This operator calculates the geometry status of the bounding box bbox, using the transfor-

mations in the Context ctx. A geometry status can be used by XGL to optimize the clip-
ping operations when rendering primitives.

Parameters ctx The XGL Context containing the graphics state used when processing xgl_-
context_check_bbox.

prim_type
The bounding box primitive type.

bbox A pointer to a bounding box which can be one of the following structures (see
xgl_struct(3) for a complete description of the possible data structures).

Xgl_bbox_i2d
Xgl_bbox_f2d
Xgl_bbox_d2d
Xgl_bbox_f3d
Xgl_bbox_d3d

geom_status
A pointer to Xgl_geom_status in which the calculated geometry status is stored.
The calculated geometry status is a combination of the following flags:

XGL_GEOM_STATUS_VIEW_ACCEPT
This flag is set if the bounding box is completely inside the view clip
planes - that is, not clipped.

XGL_GEOM_STATUS_VIEW_REJECT
This flag is set if the bounding box is completely outside the view clip
planes - that is, totally clipped.

XGL_GEOM_STATUS_VIEW_SMALL
This flag is set if the bounding box is completely inside the view clip
planes, and the area occupied by the bounding box after transformation
to device coordinates is less than or equal to the context threshold value
for the primitive type prim_type. The XGL_GEOM_STATUS_VIEW_ACCEPT
flag is set when this flag is set. See XGL_CTX_THRESHOLD(3) for more
information about the usage of the context threshold values.

modified August 1994 413

xgl_context_check_bbox (3) XGL Graphics Library

XGL_GEOM_STATUS_MODEL_ACCEPT
This flag is set if model clip planes exist and the bounding box is com-
pletely inside the model clip planes - that is, not clipped. If no model
clip planes exist, this flag is always set.

XGL_GEOM_STATUS_MODEL_REJECT
This flag is set if model clip planes exist and the bounding box is com-
pletely outside the model clip planes - that is, totally clipped.

If none of the above flags are set (e.g. the geometry status is zero), the bounding
box will be partially clipped by the view clip planes and the model clip planes.

Most XGL drawing primitives accept bounding box information. For these primitives, the
application can either pass the bounding box or its geometry status to XGL. If the appli-
cation wants to pass the geometry status to XGL, it can first call xgl_context_check_bbox
to find out the geometry status of the bounding box and then pass the status to XGL using
the Xgl_bbox_status structure. The following is an example of how to use xgl_context_-
check_bbox to calculate the geometry status of a bounding box and pass the status to an
XGL primitive:

{

Xgl_ctx ctx;

Xgl_primitive_type prim_type;

Xgl_bbox_f2d bbox_f2d;

Xgl_bbox_status bbox_status;

Xgl_geom_status geom_status;

Xgl_pt_list pl;

prim_type = XGL_PRIM_MULTIMARKER;

/∗ set up the bounding box for the 2d markers ∗/
bbox_f2d.bbox_type = XGL_BBOX_F2D;

bbox_f2d.box.f2d.xmin = bbox_f2d.box.f2d.ymin = 100.0;

bbox_f2d.box.f2d.xmax = bbox_f2d.box.f2d.ymax = 200.0;

xgl_context_check_bbox(ctx, prim_type, (Xgl_bbox ∗)(&bbox_f2d),
&geom_status);

/∗ set up the Xgl_bbox_status structure ∗/
bbox_status.bbox_type = XGL_BBOX_STATUS;

bbox_status.box.status = geom_status;

pl.bbox = (Xgl_bbox ∗)(&bbox_status);
xgl_multimarker(ctx, &pl);

}

The geometry status calculated by xgl_context_check_bbox only applies to XGL non-
gcache primitives such as xgl_multimarker(3). For XGL gcache operators, such as xgl_-
gcache_multimarker(3), applications should use one of the following bounding box
structures, instead of Xgl_bbox_status, to pass bounding box information to XGL:

414 modified August 1994

XGL Graphics Library xgl_context_check_bbox (3)

Xgl_bbox_i2d
Xgl_bbox_f2d
Xgl_bbox_d2d
Xgl_bbox_f3d
Xgl_bbox_d3d

For polygonal primitives, if the application knows that the primitives contained in the
bounding box are all front facing (or back facing), it can give this hint to XGL by logically
OR’ing the flag XGL_GEOM_STATUS_FACING_FRONT (or XGL_GEOM_STATUS_FACING_BACK)
with the geometry status calculated by xgl_context_check_bbox, before the application
passes the geometry status to XGL non-gcache drawing operators using the
Xgl_bbox_status structure.

It is the application’s responsibility to ensure that all geometry statuses it passes to XGL
operators are correct. Thus, if any of the XGL context attributes affecting the MC to DC
transformation and clipping (or affecting the front/back facing status) is modified, the
geometry status needs to be re-calculated.

If the application does not want to take advantage of the optimization provided by the
geometry status feature, it can always set the geometry status to zero.

RETURN VALUE Nothing is returned.

SEE ALSO xgl_struct(3)
XGL_CTX_THRESHOLD(3)

modified August 1994 415

xgl_context_clear_accumulation (3) XGL Graphics Library

NAME xgl_context_clear_accumulation − clears the buffer specified by the attribute XGL_3D_CTX_-
ACCUM_OP_DEST to a certain value

SYNOPSIS #include <xgl/xgl.h>

void xgl_context_clear_accumulation (
Xgl_ctx ctx,
Xgl_color∗ value);

DESCRIPTION This operator clears the buffer specified by the attribute XGL_3D_CTX_ACCUM_OP_DEST(3)
to a value value. The accumulation is done using xgl_context_accumulate(3).

RETURN VALUE Nothing is returned.

SEE ALSO xgl_context_accumulate(3)

XGL_3D_CTX_ACCUM_OP_DEST(3)

NOTE This primitive is only supported when XGL_DEV_REAL_COLOR_TYPE(3) is XGL_COLOR_RGB.

416 modified February 1995

XGL Graphics Library xgl_context_copy_buffer (3)

NAME xgl_context_copy_buffer − copies a block of pixels from one buffer to another

SYNOPSIS #include <xgl/xgl.h>

void xgl_context_copy_buffer (
Xgl_ctx dest_ctx,
Xgl_bounds_i2d ∗rectangle,
Xgl_pt_i2d ∗position,
Xgl_ras src_ras);

DESCRIPTION This operator copies a rectangular block of pixels from a buffer in the source Raster to one
or more of the Raster buffers associated with the destination Context.

For the simple case of copying from a memory raster with 1 buffer to a non-multi buf-
fered window raster, the pixels are copied from the draw buffer of a source raster to a
draw buffer of a raster associated with a destination Context.

For more complicated cases with multiple buffers, the application program must set attri-
butes to specify the buffers to be used as the source buffer and the destination buffer.
The buffer to be used as source in the source Raster src_ras is specified by the source
raster’s attribute XGL_RAS_SOURCE_BUFFER(3). The buffer(s) to be used as destination in
the Raster associated to the destination Context dest_ctx is determined by the destination
context attribute XGL_CTX_RENDER_BUFFER(3).

The area that is copied is specified by a rectangular region, rectangle, in the source buffer.
It is copied into the destination buffer starting at the specified position. The rectangular
region that is copied is not clipped to DC viewport. It is clipped by the maximum dimen-
sion of the draw buffer as defined by XGL_DEV_MAXIMUM_COORDINATES(3). If the position
is a NULL pointer, the top and left corner position is used. If the rectangle is a NULL
pointer, the maximum area from the source buffer is copied.

Copying is only supported between buffers of the same type. That is, copying can be
between image buffers or between Z buffers. The attribute XGL_RAS_SOURCE_BUFFER(3) of
the source raster src_ras takes on values:

XGL_BUFFER_SEL_Z
For this attribute value, if the destination context attribute value for XGL_CTX_-

RENDER_BUFFER(3) has XGL_RENDER_Z_BUFFER as one of the render buffers, then
the destination buffer is the Z buffer of the raster associated with the destination
Context dest_ctx. Thus, copying takes place from the source raster’s Z buffer to
the destination raster’s Z buffer.

XGL_BUFFER_SEL_DRAW
For this attribute value, if the destination context attribute value for XGL_CTX_-

RENDER_BUFFER(3) has XGL_RENDER_DRAW_BUFFER and/or XGL_RENDER_DISPLAY_-
BUFFER, then copying takes place from the draw buffer to the image buffer(s)
specified by attribute XGL_CTX_RENDER_BUFFER(3).

A Value between 0 to N-1
If the destination context attribute value for XGL_CTX_RENDER_BUFFER(3) has XGL_-

modified October 1996 417

xgl_context_copy_buffer (3) XGL Graphics Library

RENDER_DRAW_BUFFER and/or XGL_RENDER_DISPLAY_BUFFER, then copying takes
place from the buffer specified by attribute XGL_RAS_SOURCE_BUFFER(3) to the
image buffer(s) specified by attribute XGL_CTX_RENDER_BUFFER(3).

Copy from a Z Buffer to another Z Buffer

When copying takes place between Z buffers, the Z mask (specified by XGL_3D_CTX_Z_-

BUFFER_WRITE_MASK(3)) and the Z comparison function (specified by XGL_3D_CTX_Z_-

BUFFER_COMP_METHOD(3)) are applied. The destination Z buffer is set to the value con-
tained in the source Z buffer, given the precision limitations described below. In addi-
tion, the attribute XGL_3D_CTX_HLHSR_MODE(3) should be set to XGL_HLHSR_Z_BUFFER in
the Context dest_ctx. If the application wants the Z values to be copied as-is, it can set the
Z buffer comparison method in XGL_3D_CTX_Z_BUFFER_COMP_METHOD (3) to XGL_Z_COMP_-
ALWAYS.

The Z buffers are assumed to have a depth up to a maximum of 24 bits or (224 - 1).

(a) Copying is possible between memory Raster’s Z buffers. (All memory Rasters have a
Z buffer depth of 24).

(b) Copying is possible from a window Raster’s Z buffer to another window Raster’s Z
buffer only if they are from the same physical frame buffer (which implicitly means
they are of the same depth).

(c) When copying from a window raster to a memory raster, if the window raster’s Z
depth is less than 224 - 1, then the window raster’s Z buffers are copied into the least
significant bits of the memory Raster’s Z buffer.

(d) When copying from a memory raster to a window raster, if the window raster’s Z
depth is less than 224 - 1, then the least significant bits of memory Raster’s Z buffer
are copied into the window Raster’s Z buffer.

Copy from an Image Buffer to another Image Buffer

When copying takes place between image buffers, then the ROP mode, plane mask, and
the fill rule defined in the destination Context with XGL_CTX_ROP(3), XGL_CTX_PLANE_-

MASK(3) and XGL_CTX_RASTER_FILL_STYLE(3) attributes are enforced during this operation.

When copying to and from a memory raster, be sure that the memory raster has a Color
Map which corresponds to its color type.

If the source raster of a copy operation is from a partially obscured window, the results
of copying the obscured part is device dependent. This is true even if backing store is
enabled. The application is responsible for repairing these areas if necessary.

Unobscured windows, on the other hand, will be properly clipped, even if the source rec-
tangle extends beyond the window boundaries.

The following table specifies the supported configurations for copying between Raster
Devices’ image buffers.

418 modified October 1996

XGL Graphics Library xgl_context_copy_buffer (3)

From Source → To Destination

S o u r c e
D
e
s M1 M4i M8i Mrgb W4i W8i Wrgb
t M1 X X X X X X X
i M4i Y Y X X Y X X
n M8i Y Y Y X Y Y X
a Mrgb Y X Y Y X Y Y
t W4i Y Y X X Y∗ X X
i W8i Y Y Y X X Y∗ X
o Wrgb Y X Y Y X X Y∗
n

Where: M1 = 1 bit deep memory raster
M4i = 4 bit deep memory raster whose color type is XGL_COLOR_INDEX
M8i = 8 bit deep memory raster whose color type is XGL_COLOR_INDEX
Mrgb = a memory raster whose color type is XGL_COLOR_RGB
W4i = 4 bit deep window raster whose color type is XGL_COLOR_INDEX
W8i = 8 bit deep window raster whose color type is XGL_COLOR_INDEX
Wrgb = a window raster whose color type is XGL_COLOR_RGB

Key: X : not supported
Y : supported
Y∗ : only supported if the src and dest window raster are the same.

When the source raster is a 1 bit memory raster, and depending on the fill style used, the
following applies:

· When a pixel in the source raster is 1 and XGL_CTX_RASTER_FILL_STYLE(3) is
XGL_RAS_FILL_COPY or XGL_RAS_FILL_STENCIL, the XGL_CTX_SURF_FRONT_COLOR(3) is
written to the destination raster.

· When a source pixel is 0, and XGL_CTX_RASTER_FILL_STYLE(3) is XGL_RAS_FILL_COPY, the
XGL_CTX_BACKGROUND_COLOR(3) is written. However, if the fill style is
XGL_RAS_FILL_STENCIL, then the background color is unchanged.

The color type refers to XGL_DEV_COLOR_TYPE(3) of the corresponding devices.

SEE ALSO XGL_3D_CTX_HLHSR_MODE(3)
XGL_3D_CTX_Z_BUFFER_COMP_METHOD(3)
XGL_3D_CTX_Z_BUFFER_WRITE_MASK(3)
XGL_CTX_BACKGROUND_COLOR(3)
XGL_CTX_PLANE_MASK(3)
XGL_CTX_RASTER_FILL_STYLE(3)
XGL_CTX_RENDER_BUFFER(3)
XGL_CTX_ROP(3)
XGL_CTX_SURF_FRONT_COLOR(3)
XGL_DEV_COLOR_TYPE(3)

modified October 1996 419

xgl_context_copy_buffer (3) XGL Graphics Library

XGL_DEV_MAXIMUM_COORDINATES(3)
XGL_RAS_SOURCE_BUFFER(3)

NOTES Copying on a Z buffer is supported on a 3D Context only. During this operation, XGL_-

3D_CTX_HLHSR_MODE(3) should be set to XGL_HLHSR_Z_BUFFER. The Z buffer is created
when the XGL_3D_CTX_HLHSR_MODE(3) is set to XGL_HLHSR_Z_BUFFER for the first time.

XGL_CTX_RENDER_BUFFER(3) is a logical OR of XGL_RENDER_DRAW_BUFFER, XGL_RENDER_-
DISPLAY_BUFFER, and XGL_RENDER_Z_BUFFER. In order for the operation to be performed
on a Z-buffer, the application should only use XGL_RENDER_Z_BUFFER. This results in
operation on the selected image buffer and the ignoring of the Z-buffer.

420 modified October 1996

XGL Graphics Library xgl_context_display_gcache (3)

NAME xgl_context_display_gcache − displays a Gcache on a Context

SYNOPSIS #include <xgl/xgl.h>

Xgl_cache_display xgl_context_display_gcache (
Xgl_ctx ctx,
Xgl_gcache gcache,
Xgl_boolean test,
Xgl_boolean display);

DESCRIPTION
Purpose This operator performs two tasks. It can display the Gcache gcache on the Device associ-

ated with the Context ctx. It can also compare the state (that is, the attribute values) of the
Gcache with the current state in the Context and return the result of that comparison.

Parameters test Controls whether the state in Gcache is validated, by comparing the saved attri-
bute values in the Gcache with values in the Context. If test is TRUE, the com-
parison is done, and the return value is one of XGL_CACHE_DISPLAY_OK or XGL_-
CACHE_ATTR_STATE_DIFFERENT. If test is FALSE, the return value is XGL_CACHE_-
NOT_CHECKED.

display Controls whether the Gcache is rendered on the Device associated with the Con-
text. If display is FALSE, the Gcache is not rendered. If it is TRUE and test is FALSE,
the Gcache is rendered. If display is TRUE and test is TRUE, Gcache is rendered only
if the validity test is TRUE.

The Gcache attribute XGL_GCACHE_BYPASS_MODEL_CLIP is used when the following condi-
tions exist:

When test is FALSE, display is TRUE, and the geometry in the Gcache was Model Clipped
when it was placed in the Gcache. In such a case, if the attribute is TRUE, cached
geometry is not processed by the current Model Clipping settings. If it is FALSE, the
cached geometry is processed by the current Model Clipping settings.

RETURN VALUE Returns the status of the validity test:

XGL_CACHE_DISPLAY_OK
The state in Gcache matches the state in the Context.

XGL_CACHE_ATTR_STATE_DIFFERENT
The state in Gcache does not match the state in the Context.

XGL_CACHE_NOT_CHECKED
The state in Gcache is not checked against the state in the Context.

SEE ALSO xgl_object_create(3)

XGL_GCACHE_BYPASS_MODEL_CLIP(3)

modified August 1994 421

xgl_context_flush (3) XGL Graphics Library

NAME xgl_context_flush − causes pending or asynchronous processing to complete

SYNOPSIS #include <xgl/xgl.h>

void xgl_context_flush (
Xgl_ctx ctx,
Xgl_flush_action flush_action);

DESCRIPTION
Purpose This operator allows some rendering devices to render by directly processing the

application’s data. While the devices are processing that data, it is possible for the
rendering routine to return to the application’s code to gain a degree of parallelism, thus
improving the overall performance (see XGL_CTX_GEOM_DATA_IS_VOLATILE(3)).

Further, some devices can buffer XGL commands and require explicit flushing to post
their buffers. A return from any XGL operator call does not guarantee that all actions
have been completed (see XGL_CTX_DEFERRAL_MODE(3)).

The xgl_context_flush(3) operator is used to flush one or both of XGL’s use of
application’s data and XGL internal buffers. In the case of XGL’s buffers, the application
might want XGL to block until all posted buffers have been processed by the rendering
device.

Parameters ctx The XGL 2D or 3D Context containing the graphics state used when processing
xgl_context_flush(3).

flush_action
The types of flushing to be performed based on any OR’ed combination of the
following values:

XGL_FLUSH_GEOM_DATA
Ensures that this context is not using any application data. If XGL_CTX_-

GEOM_DATA_IS_VOLATILE(3) is set to TRUE, XGL_FLUSH_GEOM_DATA does
nothing.

XGL_FLUSH_BUFFERS
Causes any pending graphics primitives for this context to be sent to the
rendering device. If XGL_CTX_DEFERRAL_MODE(3) is set to XGL_DEFER_-
ASAP, XGL_FLUSH_BUFFERS does nothing.

XGL_FLUSH_SYNCHRONIZE
Causes XGL to block until the rendering device has finished processing
all of the graphics primitives for this context. If this flag is not set, XGL
may return control to the application before the rendering device has
finished processing the geometry data, allowing XGL and the application
to run asynchronously. Specifying XGL_FLUSH_SYNCHRONIZE also implies
the setting of XGL_FLUSH_GEOM_DATA and XGL_FLUSH_BUFFERS.

422 modified August 1994

XGL Graphics Library xgl_context_flush (3)

This operator is device-dependent in that a given action might be irrelevant on Devices
that do not support the corresponding parallelism. In this case, the given action is a NO-
OP. Consult your accelerator guide for details.

RETURN VALUE Nothing is returned.

SEE ALSO XGL_CTX_DEFERRAL_MODE(3)
XGL_CTX_GEOM_DATA_IS_VOLATILE(3)

NOTES When mixing XGL with Xlib function calls on the same Window, and if the rendering
order is important, xgl_context_flush(3) (ctx, XGL_FLUSH_SYNCHRONIZE) should be called
at the end of a block of XGL calls that is followed by Xlib commands. Inversely, the Xlib
calls should be flushed with XSync before further XGL commands be issued.

modified August 1994 423

xgl_context_get_pixel (3) XGL Graphics Library

NAME xgl_context_get_pixel − gets the color value of a specified pixel

SYNOPSIS #include <xgl/xgl.h>

Xgl_boolean xgl_context_get_pixel (
Xgl_ctx ctx,
Xgl_pt_i2d ∗position,
Xgl_color ∗value);

DESCRIPTION This operator gets the color value of a pixel located at position in the specified buffer of
the Raster associated with the Context ctx. The buffer to be read from is specified by the
attribute XGL_RAS_SOURCE_BUFFER(3) of the raster attached to the context. The retrieved
color is stored in the location pointed to by the parameter value.

When reading from an image buffer, depending on the color type of the Device attached
to the Context, as specified by XGL_DEV_COLOR_TYPE(3), the color returned is either an
index or a true RGB color (that is, of type XGL_COLOR_INDEX or XGL_COLOR_RGB).

When reading from a Z buffer, if the depth of the Z buffer is less than 32 bits, then the
most significant bits are zeroed out in the returned values.

If the pixel position occurs at an obscured location (as may happen in the case of overlap-
ping windows), the value of the hardware pixel cannot be guaranteed and the function
returns TRUE. Otherwise it returns FALSE.

RETURN VALUE Returns a boolean that indicates whether the pixel is obscured by an overlapping win-
dow.

SEE ALSO XGL_3D_CTX_HLHSR_MODE(3)
XGL_DEV_COLOR_TYPE(3)
XGL_RAS_SOURCE_BUFFER(3)

NOTES When reading from an image buffer, 4-bit and 8-bit Indexed (XGL_DEV_COLOR_TYPE(3) is
XGL_COLOR_INDEX) Memory Rasters store their pixel values as application-defined color
values (that is, the index stored in the Memory Raster is in the application-defined color
space).

This operation on a Z buffer is supported on a 3D Context only. During this operation,
XGL_3D_CTX_HLHSR_MODE(3) should be set to XGL_HLHSR_Z_BUFFER. The Z buffer is
created when XGL_3D_CTX_HLHSR_MODE(3) is set to XGL_HLHSR_Z_BUFFER for the first time.

424 modified August 1994

XGL Graphics Library xgl_context_new_frame (3)

NAME xgl_context_new_frame − clears the Device Coordinate (DC) viewport and possibly the
z-buffer of the specified Context

SYNOPSIS #include <xgl/xgl.h>

void xgl_context_new_frame (
Xgl_ctx ctx);

DESCRIPTION This operator is used to clear the Device associated with the current Context ctx, to the
background color specified by the attribute XGL_CTX_BACKGROUND_COLOR(3).

The actions taken by the call to xgl_context_new_frame(3) are controlled by the attribute
XGL_CTX_NEW_FRAME_ACTION(3). This attribute is the logical OR of possible new frame
actions defined by the enumerated data type Xgl_ctx_new_frame_action. The Device is
cleared only if one of the actions specified by XGL_CTX_NEW_FRAME_ACTION(3) is XGL_-
CTX_NEW_FRAME_CLEAR. In this case, the clearing operation depends on the value of the
attribute XGL_CTX_VDC_MAP(3). When XGL_CTX_VDC_MAP is XGL_VDC_MAP_ALL, XGL_VDC_-
MAP_ASPECT, or XGL_VDC_MAP_DEVICE, xgl_context_new_frame clears the entire drawing
area associated with the Device. When XGL_CTX_VDC_MAP is XGL_VDC_MAP_OFF, it clears
only the DC viewport (see XGL_CTX_DC_VIEWPORT(3)) portion of the Device.

The plane mask enable bits defined by the attribute XGL_CTX_PLANE_MASK(3) are used to
determine which pixel planes on the Device are cleared. The ROP mode, as specified by
the attribute XGL_CTX_ROP(3), is not used during the clear operation.

When using a 3D Context, this operator can also be used to clear the z-buffer, to switch
buffers in a multiple buffer configuration, or to synchronize to the Device’s vertical
retrace. When clearing the z-buffer, all z-values within the buffer are reset to the value
given by the attribute XGL_3D_CTX_HLHSR_DATA(3). (For more information, see XGL_3D_-

CTX_HLHSR_DATA(3) and XGL_3D_CTX_HLHSR_MODE(3).)

RETURN VALUE Nothing is returned.

SEE ALSO XGL_3D_CTX_HLHSR_DATA(3)
XGL_3D_CTX_HLHSR_MODE(3)
XGL_CTX_BACKGROUND_COLOR(3)
XGL_CTX_DC_VIEWPORT(3)
XGL_CTX_NEW_FRAME_ACTION(3)
XGL_CTX_PLANE_MASK(3)
XGL_CTX_VDC_MAP(3)

modified August 1994 425

xgl_context_pop (3) XGL Graphics Library

NAME xgl_context_pop − restores the most recently pushed Context state from XGL’s internal
stack to the current Context

SYNOPSIS #include <xgl/xgl.h>

void xgl_context_pop (
Xgl_ctx ctx);

DESCRIPTION This operator restores the most recent Context state, from Context ctx, pushed onto XGL’s
graphics context stack. All of the Context attributes pushed onto the stack by the most
recent call to the xgl_context_push operator are restored in the Context.

For a list of pushable attributes, see xgl_context_push(3).

Special cases If the application only wants to pop (and later push) the model transforms (XGL_CTX_-

LOCAL_MODEL_TRANS(3) or XGL_CTX_GLOBAL_MODEL_TRANS(3)), the Context operator
xgl_context_update_model_trans(3) should be used instead of xgl_context_pop(3) and
xgl_context_push(3).

RETURN VALUE Nothing is returned.

SEE ALSO xgl_context_push(3)
xgl_context_update_model_trans(3)

NOTES For all the attributes of a context that reference other XGL objects (such as XGL_CTX_LINE_-
PATTERN, for example), popping the attribute is equivalent to popping the object handle.
There is one exception to this rule — when the attribute represents a Transform object. In
such a case, the contents of the object are popped, not the object handle.

426 modified August 1994

XGL Graphics Library xgl_context_push (3)

NAME xgl_context_push − saves the current state of the Context on a stack

SYNOPSIS #include <xgl/xgl.h>

void xgl_context_push (
Xgl_ctx ctx,
Xgl_attribute attr_list[]);

DESCRIPTION
Purpose This operator saves the current state of the Context onto XGL’s graphics context stack.

Each Context has its own independent stack.

Parameters attr_list A pointer to a list of attributes to be pushed on the stack. The end of the list is
indicated by a NULL value. If the attribute list is NULL, all pushable attributes
associated with the Context are saved.

The following is a list of all the pushable attributes. Some attributes listed here
may not be present or implemented in the current version of XGL.

XGL_3D_CTX_BLEND_DRAW_MODE
XGL_3D_CTX_BLEND_FREEZE_Z_BUFFER
XGL_3D_CTX_DEPTH_CUE_COLOR
XGL_3D_CTX_DEPTH_CUE_INTERP
XGL_3D_CTX_DEPTH_CUE_MODE
XGL_3D_CTX_DEPTH_CUE_REF_PLANES
XGL_3D_CTX_DEPTH_CUE_SCALE_FACTORS
XGL_3D_CTX_HLHSR_DATA
XGL_3D_CTX_HLHSR_MODE
XGL_3D_CTX_JITTER_OFFSET
XGL_3D_CTX_LIGHT_SWITCHES
XGL_3D_CTX_LINE_COLOR_INTERP
XGL_3D_CTX_MODEL_CLIP_PLANE_NUM
XGL_3D_CTX_MODEL_CLIP_PLANES
XGL_3D_CTX_SURF_BACK_AMBIENT
XGL_3D_CTX_SURF_BACK_COLOR
XGL_3D_CTX_SURF_BACK_COLOR_SELECTOR
XGL_3D_CTX_SURF_BACK_DIFFUSE
XGL_3D_CTX_SURF_BACK_DMAP_SWITCHES
XGL_3D_CTX_SURF_BACK_FILL_STYLE
XGL_3D_CTX_SURF_BACK_FPAT
XGL_3D_CTX_SURF_BACK_FPAT_POSITION
XGL_3D_CTX_SURF_BACK_ILLUMINATION
XGL_3D_CTX_SURF_BACK_LIGHT_COMPONENT
XGL_3D_CTX_SURF_BACK_SPECULAR
XGL_3D_CTX_SURF_BACK_SPECULAR_COLOR
XGL_3D_CTX_SURF_BACK_SPECULAR_POWER
XGL_3D_CTX_SURF_BACK_TMAP_SWITCHES

modified August 1994 427

xgl_context_push (3) XGL Graphics Library

XGL_3D_CTX_SURF_BACK_TRANSP
XGL_3D_CTX_SURF_DC_OFFSET
XGL_3D_CTX_SURF_FACE_CULL
XGL_3D_CTX_SURF_FACE_DISTINGUISH
XGL_3D_CTX_SURF_FRONT_AMBIENT
XGL_3D_CTX_SURF_FRONT_DIFFUSE
XGL_3D_CTX_SURF_FRONT_DMAP_SWITCHES
XGL_3D_CTX_SURF_FRONT_ILLUMINATION
XGL_3D_CTX_SURF_FRONT_LIGHT_COMPONENT
XGL_3D_CTX_SURF_FRONT_SPECULAR
XGL_3D_CTX_SURF_FRONT_SPECULAR_COLOR
XGL_3D_CTX_SURF_FRONT_SPECULAR_POWER
XGL_3D_CTX_SURF_FRONT_TMAP_SWITCHES
XGL_3D_CTX_SURF_FRONT_TRANSP
XGL_3D_CTX_SURF_GEOM_NORMAL
XGL_3D_CTX_SURF_LIGHTING_NORMAL_FLIP
XGL_3D_CTX_SURF_NORMAL_FLIP
XGL_3D_CTX_SURF_SILHOUETTE_EDGE_FLAG
XGL_3D_CTX_SURF_TRANSP_BLEND_EQ
XGL_3D_CTX_SURF_TRANSP_METHOD
XGL_3D_CTX_VIEW_CLIP_PLUS_W_ONLY
XGL_3D_CTX_Z_BUFFER_COMP_METHOD
XGL_3D_CTX_Z_BUFFER_WRITE_MASK
XGL_CTX_ARC_FILL_STYLE
XGL_CTX_ATEXT_CHAR_HEIGHT
XGL_CTX_ATEXT_CHAR_SLANT_ANGLE
XGL_CTX_ATEXT_CHAR_UP_VECTOR
XGL_CTX_ATEXT_STYLE
XGL_CTX_ATEXT_ALIGN_HORIZ
XGL_CTX_ATEXT_ALIGN_VERT
XGL_CTX_ATEXT_PATH
XGL_CTX_BACKGROUND_COLOR
XGL_CTX_CLIP_PLANES
XGL_CTX_DC_VIEWPORT
XGL_CTX_EDGE_AA_BLEND_EQ
XGL_CTX_EDGE_AA_FILTER_SHAPE
XGL_CTX_EDGE_AA_FILTER_WIDTH
XGL_CTX_EDGE_ALT_COLOR
XGL_CTX_EDGE_CAP
XGL_CTX_EDGE_COLOR
XGL_CTX_EDGE_JOIN
XGL_CTX_EDGE_MITER_LIMIT
XGL_CTX_EDGE_PATTERN
XGL_CTX_EDGE_STYLE
XGL_CTX_EDGE_WIDTH_SCALE_FACTOR

428 modified August 1994

XGL Graphics Library xgl_context_push (3)

XGL_CTX_GLOBAL_MODEL_TRANS
XGL_CTX_LINE_AA_BLEND_EQ
XGL_CTX_LINE_AA_FILTER_SHAPE
XGL_CTX_LINE_AA_FILTER_WIDTH
XGL_CTX_LINE_ALT_COLOR
XGL_CTX_LINE_CAP
XGL_CTX_LINE_COLOR
XGL_CTX_LINE_COLOR_SELECTOR
XGL_CTX_LINE_JOIN
XGL_CTX_LINE_MITER_LIMIT
XGL_CTX_LINE_PATTERN
XGL_CTX_LINE_STYLE
XGL_CTX_LINE_WIDTH_SCALE_FACTOR
XGL_CTX_LOCAL_MODEL_TRANS
XGL_CTX_MARKER
XGL_CTX_MARKER_AA_BLEND_EQ
XGL_CTX_MARKER_AA_FILTER_SHAPE
XGL_CTX_MARKER_AA_FILTER_WIDTH
XGL_CTX_MARKER_COLOR
XGL_CTX_MARKER_COLOR_SELECTOR
XGL_CTX_MARKER_SCALE_FACTOR
XGL_CTX_MAX_TESSELLATION
XGL_CTX_MIN_TESSELLATION
XGL_CTX_NEW_FRAME_ACTION
XGL_CTX_NURBS_CURVE_APPROX
XGL_CTX_NURBS_CURVE_APPROX_VAL
XGL_CTX_NURBS_SURF_APPROX
XGL_CTX_NURBS_SURF_APPROX_VAL_U
XGL_CTX_NURBS_SURF_APPROX_VAL_V
XGL_CTX_NURBS_SURF_ISO_CURVE_PLACEMENT
XGL_CTX_NURBS_SURF_ISO_CURVE_U_NUM
XGL_CTX_NURBS_SURF_ISO_CURVE_V_NUM
XGL_CTX_NURBS_SURF_PARAM_STYLE
XGL_CTX_PICK_ID_1
XGL_CTX_PICK_ID_2
XGL_CTX_PLANE_MASK
XGL_CTX_RASTER_FILL_STYLE
XGL_CTX_RASTER_FPAT
XGL_CTX_RASTER_FPAT_POSITION
XGL_CTX_RASTER_STIPPLE_COLOR
XGL_CTX_ROP
XGL_CTX_SFONT_0
XGL_CTX_SFONT_1
XGL_CTX_SFONT_2
XGL_CTX_SFONT_3

modified August 1994 429

xgl_context_push (3) XGL Graphics Library

XGL_CTX_STEXT_AA_BLEND_EQ
XGL_CTX_STEXT_AA_FILTER_SHAPE
XGL_CTX_STEXT_AA_FILTER_WIDTH
XGL_CTX_STEXT_ALIGN_HORIZ
XGL_CTX_STEXT_ALIGN_VERT
XGL_CTX_STEXT_CHAR_ENCODING
XGL_CTX_STEXT_CHAR_EXPANSION_FACTOR
XGL_CTX_STEXT_CHAR_HEIGHT
XGL_CTX_STEXT_CHAR_SLANT_ANGLE
XGL_CTX_STEXT_CHAR_SPACING
XGL_CTX_STEXT_CHAR_UP_VECTOR
XGL_CTX_STEXT_COLOR
XGL_CTX_STEXT_PATH
XGL_CTX_STEXT_PRECISION
XGL_CTX_SURF_AA_BLEND_EQ
XGL_CTX_SURF_AA_FILTER_SHAPE
XGL_CTX_SURF_AA_FILTER_WIDTH
XGL_CTX_SURF_EDGE_FLAG
XGL_CTX_SURF_FRONT_COLOR
XGL_CTX_SURF_FRONT_COLOR_SELECTOR
XGL_CTX_SURF_FRONT_FILL_STYLE
XGL_CTX_SURF_FRONT_FPAT
XGL_CTX_SURF_FRONT_FPAT_POSITION
XGL_CTX_SURF_INTERIOR_RULE
XGL_CTX_THRESHOLD
XGL_CTX_VDC_MAP
XGL_CTX_VDC_WINDOW
XGL_CTX_VIEW_CLIP_BOUNDS
XGL_CTX_VIEW_TRANS

Special cases If the application only wants to push (and later pop) the model transforms (XGL_CTX_-

LOCAL_MODEL_TRANS(3) or XGL_CTX_GLOBAL_MODEL_TRANS(3)), the Context operator
xgl_context_update_model_trans(3) should be used instead of xgl_context_push(3) and
xgl_context_pop(3).

RETURN VALUE Nothing is returned.

SEE ALSO xgl_context_pop(3)
xgl_context_update_model_trans(3)

XGL_CTX_GLOBAL_MODEL_TRANS(3)
XGL_CTX_LOCAL_MODEL_TRANS(3)

NOTES For all the attributes of a context that reference other XGL objects (such as XGL_CTX_LINE_-
PATTERN, for example), pushing the attribute is equivalent to pushing the object handle.
There is one exception to this rule — when the attribute represents a Transform object. In

430 modified August 1994

XGL Graphics Library xgl_context_push (3)

such a case, the contents of the object are pushed, not the object handle.

modified August 1994 431

xgl_context_set_multi_pixel (3) XGL Graphics Library

NAME xgl_context_set_multi_pixel − sets the color values for a list of pixel locations

SYNOPSIS #include <xgl/xgl.h>

void xgl_context_set_multi_pixel (
Xgl_ctx ctx,
Xgl_usgn32 count,
Xgl_pt_i2d ∗position,
Xgl_color ∗value);

DESCRIPTION This operator sets the color values for a list of pixels at the positions given by the position
parameter in the specified buffer of the Raster associated with the Context ctx. The buffer
is specified by the Context attribute XGL_CTX_RENDER_BUFFER(3). The value parameter
specifies the color values that are set.

The parameter position is an array of x, y integers that contain pixel locations on screen.
The parameter value is an array of colors that correspond to the position array. The length
of these parameters is specified by the count parameter. Count pixels will be set in the
Raster.

The Context attributes XGL_CTX_ROP(3) and XGL_CTX_PLANE_MASK(3) control the ROP
operation realized when writing the pixel to the image buffer, and the plane mask limits
the drawing operation to a given number of planes.

When setting a pixel to a Z Buffer, the value is set at position. Specifically, the Z mask
(specified by XGL_3D_CTX_Z_BUFFER_WRITE_MASK(3)) and the Z comparison function
(specified by XGL_3D_CTX_Z_BUFFER_COMP_METHOD(3)) are ignored.

When writing to an image buffer, if the color types of the Raster associated with the Con-
text and underlying hardware match, no color conversion is done. If they don’t match, a
color conversion is done, using the Color Map object associated with the Device attached
to the Context, so that the actual information written into the Device matches the
hardware capabilities. The Color Map object associated with the Device can be con-
trolled by the attribute XGL_DEV_COLOR_MAP(3).

It is important to note that to have accurate comparisons, an application willing to com-
pare pixel values written to an image buffer using xgl_context_set_pixel(3) with values
obtained by reading the pixels from the image buffer using xgl_context_get_pixel(3),
should avoid any color conversion.

RETURN VALUE Nothing is returned.

SEE ALSO xgl_context_get_pixel(3)
xgl_context_set_pixel(3)
xgl_context_set_pixel_row(3)

XGL_3D_CTX_HLHSR_MODE(3)
XGL_3D_CTX_Z_BUFFER_COMP_METHOD(3)
XGL_3D_CTX_Z_BUFFER_WRITE_MASK(3)
XGL_CTX_PLANE_MASK(3)

432 modified August 1994

XGL Graphics Library xgl_context_set_multi_pixel (3)

XGL_CTX_RENDER_BUFFER(3)
XGL_CTX_ROP(3)
XGL_DEV_COLOR_MAP(3)
XGL_DEV_COLOR_TYPE(3)

NOTES When the destination buffer is an image buffer, 4-bit and 8-bit Indexed (XGL_DEV_-

COLOR_TYPE(3) is XGL_COLOR_INDEX) Memory Rasters store their pixel values as
application-defined color values (that is, the index stored in the Memory Raster is exactly
that specified by the value parameter of the function call).

This operation on a Z buffer is supported on a 3D Context only. During this operation,
XGL_3D_CTX_HLHSR_MODE(3) should be set to XGL_HLHSR_Z_BUFFER. The Z buffer is
created when the XGL_3D_CTX_HLHSR_MODE is set to XGL_HLHSR_Z_BUFFER for the first
time.

XGL_CTX_RENDER_BUFFER(3) is a logical OR of XGL_RENDER_DRAW_BUFFER, XGL_RENDER_-
DISPLAY_BUFFER, and XGL_RENDER_Z_BUFFER. In order for the operation to be performed
on a Z-buffer, the application should only use XGL_RENDER_Z_BUFFER. This results in
operation on the selected image buffer and the ignoring of the Z-buffer.

modified August 1994 433

xgl_context_set_pixel (3) XGL Graphics Library

NAME xgl_context_set_pixel − sets the color value of a specified pixel

SYNOPSIS #include <xgl/xgl.h>

void xgl_context_set_pixel (
Xgl_ctx ctx,
Xgl_pt_i2d ∗position,
Xgl_color ∗value);

DESCRIPTION This operator sets the color value of a pixel located at the position given by position in a
specified buffer of the Raster associated with the Context ctx. The buffer is specified by
the Context attribute XGL_CTX_RENDER_BUFFER(3). The color value that is set is specified
by the parameter value.

The Context attributes XGL_CTX_ROP(3) and XGL_CTX_PLANE_MASK(3) are used to control
the ROP operation realized when writing the pixel to the image buffer, and the plane mask
is used to limit the drawing operation to a given number of planes.

When setting a pixel to a Z Buffer, the value is set at position. Specifically, the Z mask
(specified by XGL_3D_CTX_Z_BUFFER_WRITE_MASK(3)) and the Z comparison function
(specified by XGL_3D_CTX_Z_BUFFER_COMP_METHOD(3)) are ignored.

When writing to an image buffer, if the color types of the Raster associated with the Con-
text and underlying hardware match, no color conversion is done. If they don’t match, a
color conversion is done, using the Color Map object associated with the Device attached
to the Context, so that the actual information written into the Device matches the
hardware capabilities. The Color Map object associated with the Device can be con-
trolled by the Raster attribute XGL_DEV_COLOR_MAP(3).

Note that to have accurate comparisons, an application willing to compare pixel values
written to an image buffer using xgl_context_set_pixel with values obtained by reading
the pixels from the image buffer using xgl_context_get_pixel(3), should avoid any color
conversion.

RETURN VALUE Nothing is returned.

SEE ALSO xgl_context_set_multi_pixel(3)
xgl_context_get_pixel(3)
xgl_context_set_pixel_row(3)

XGL_3D_CTX_HLHSR_MODE(3)
XGL_3D_CTX_Z_BUFFER_COMP_METHOD(3)
XGL_3D_CTX_Z_BUFFER_WRITE_MASK(3)
XGL_CTX_PLANE_MASK(3)
XGL_CTX_RENDER_BUFFER(3)
XGL_CTX_ROP(3)
XGL_DEV_COLOR_MAP(3)
XGL_DEV_COLOR_TYPE(3)

434 modified August 1994

XGL Graphics Library xgl_context_set_pixel (3)

NOTES When writing into an image buffer, 4-bit and 8-bit Indexed (XGL_DEV_COLOR_TYPE(3) is
XGL_COLOR_INDEX) Memory Rasters store their pixel values as application-defined color
values (that is, the index stored in the Memory Raster is exactly that specified by the value
parameter of the function call).

This operation on a Z buffer is supported on a 3D Context only. During this operation,
XGL_3D_CTX_HLHSR_MODE(3) should be set to XGL_HLHSR_Z_BUFFER. The Z buffer is
created when the XGL_3D_CTX_HLHSR_MODE is set to XGL_HLHSR_Z_BUFFER for the first time.

XGL_CTX_RENDER_BUFFER(3) is a logical OR of XGL_RENDER_DRAW_BUFFER, XGL_RENDER_-
DISPLAY_BUFFER, and XGL_RENDER_Z_BUFFER. In order for the operation to be performed
on a Z-buffer, the application should only use XGL_RENDER_Z_BUFFER. This results in
operation on the selected image buffer and the ignoring of the Z-buffer.

modified August 1994 435

xgl_context_set_pixel_row (3) XGL Graphics Library

NAME xgl_context_set_pixel_row − sets the color values for a row of pixel locations

SYNOPSIS #include <xgl/xgl.h>

void xgl_context_set_pixel_row (
Xgl_ctx ctx,
Xgl_usgn32 stcol,
Xgl_usgn32 row,
Xgl_usgn32 count,
Xgl_color ∗value);

DESCRIPTION This operator sets the color values for a row of pixel locations. The stcol parameter
specifies the starting column in the specified buffer of the Raster to begin setting pixels.
The row in the buffer where pixels will be set is specified in the row parameter. The
buffer is specified by the Context attribute XGL_CTX_RENDER_BUFFER(3).

The parameter count specifies the number of pixels to be set, and it is the length of the
value array. The color of the pixels in the specified row is determined by the array of
colors in the parameter value.

The Context attributes XGL_CTX_ROP(3) and XGL_CTX_PLANE_MASK(3) control the ROP
operation realized when writing the pixel to the image buffer, and the plane mask limits
the drawing operation to a given number of planes.

When setting a pixel to a Z Buffer, the value is set at position. Specifically, the Z mask
(specified by XGL_3D_CTX_Z_BUFFER_WRITE_MASK(3)) and the Z comparison function
(specified by XGL_3D_CTX_Z_BUFFER_COMP_METHOD(3)) are ignored.

When writing to an image buffer, if the color types of the Raster associated with the Con-
text and underlying hardware match, no color conversion is done. If they don’t match, a
color conversion is done, using the Color Map object associated with the Device attached
to the Context, so that the actual information written into the Device matches the
hardware capabilities. The Color Map object associated with the Device can be con-
trolled by the Raster attribute XGL_DEV_COLOR_MAP(3).

It is important to note that, to have accurate comparisons, an application willing to com-
pare pixel values written to an image buffer using xgl_context_set_pixel_row with values
obtained by reading the pixels from the image buffer using xgl_context_get_pixel(3),
should avoid any color conversion.

RETURN VALUE Nothing is returned.

SEE ALSO xgl_context_get_pixel(3)
xgl_context_set_pixel(3)
xgl_context_set_multi_pixel(3)

XGL_3D_CTX_HLHSR_MODE(3)
XGL_3D_CTX_Z_BUFFER_COMP_METHOD(3)
XGL_3D_CTX_Z_BUFFER_WRITE_MASK(3)
XGL_CTX_PLANE_MASK(3)

436 modified August 1994

XGL Graphics Library xgl_context_set_pixel_row (3)

XGL_CTX_RENDER_BUFFER(3)
XGL_CTX_ROP(3)
XGL_DEV_COLOR_MAP(3)
XGL_DEV_COLOR_TYPE(3)

NOTES When writing into an image buffer, 4-bit and 8-bit Indexed (XGL_DEV_COLOR_TYPE(3) is
XGL_COLOR_INDEX) Memory Rasters store their pixel values as application-defined color
values (that is, the index stored in the Memory Raster is exactly that specified by the value
parameter of the function call).

This operation on a Z buffer is supported on a 3D Context only. During this operation,
XGL_3D_CTX_HLHSR_MODE(3) should be set to XGL_HLHSR_Z_BUFFER. The Z buffer is
created when the XGL_3D_CTX_HLHSR_MODE is set to XGL_HLHSR_Z_BUFFER for the first time.

XGL_CTX_RENDER_BUFFER(3) is a logical OR of XGL_RENDER_DRAW_BUFFER, XGL_RENDER_-
DISPLAY_BUFFER, and XGL_RENDER_Z_BUFFER. In order for the operation to be performed
on a Z-buffer, the application should only use XGL_RENDER_Z_BUFFER. This results in
operation on the selected image buffer and the ignoring of the Z-buffer.

modified August 1994 437

xgl_context_update_model_trans (3) XGL Graphics Library

NAME xgl_context_update_model_trans − performs specific operations with the Context’s
Model Transforms

SYNOPSIS #include <xgl/xgl.h>

void xgl_context_update_model_trans (
Xgl_ctx ctx,
Xgl_model_trans_request request);

DESCRIPTION This operator is used to perform specific operations related to the Model Transform stack
of the Context ctx, and the Context’s Model Transforms. Some operations described here
can be performed by using the xgl_context_push(3) and xgl_context_pop(3) operators,
but using xgl_context_update_model_trans gives much better performance.

The actions taken by the call to xgl_context_update_model_trans are controlled by the
parameter request. This parameter is the logical OR of possible Model Transforms actions
defined by the enumerated data type Xgl_model_trans_request.

When building a request by OR-ing XGL_MTR_PUSH with XGL_MTR_LOCAL_TRANS or XGL_-
MTR_GLOBAL_TRANS, the xgl_context_update_model_trans operator pushes the contents of
the Local Model Transform, or the contents of the Global Model Transform, respectively,
onto the Model Transform stack associated with the Context. The maximum depth of the
stack is controlled by the XGL_CTX_MODEL_TRANS_STACK_SIZE(3) attribute of the Context.
It is possible to push both the Local and the Global Model Transforms in a single call to
xgl_context_update_model_trans. In this case, the Local Model Transform is pushed
first, followed by the Global Model Transform.

When building a request by OR-ing XGL_MTR_POP with XGL_MTR_LOCAL_TRANS or XGL_-
MTR_GLOBAL_TRANS, the xgl_context_update_model_trans operator will pop from the
Model Transform stack associated with the Context to the contents of the Local Model
Transform or the contents of the Global Model Transform, respectively. It is possible to
pop both the Local and the Global Model Transforms in a single call to xgl_context_-
update_model_trans. In this case, the first Transform available on the stack is popped
into the Global Model Transform, and the next available Transform is popped into the
Local Model Transform.

A request with the XGL_MTR_NEW_LEVEL field set performs the following operations in the
Context:

The Global Model Transform gets the contents of the Model Transform.

The Local Model Transform is reset to Identity.

This is a useful combination of operations when implementing a hierarchical display list
in XGL. It ensures the best performance when traversing hierarchy levels.

RETURN VALUE Nothing is returned.

438 modified August 1994

XGL Graphics Library xgl_context_update_model_trans (3)

SEE ALSO xgl_context_push(3)
xgl_context_pop(3)

XGL_CTX_MODEL_TRANS_STACK_SIZE(3)

NOTES The request parameter is processed in the following order: xgl_context_update_model_-
trans checks first for Transforms to pop, then for Transforms to push. Then, xgl_-
context_update_model_trans checks for a new level flag.

modified August 1994 439

xgl_gcache_multi_elliptical_arc (3) XGL Graphics Library

NAME xgl_gcache_multi_elliptical_arc − builds a Gcache of 3D elliptical arcs

SYNOPSIS #include <xgl/xgl.h>

void xgl_gcache_multi_elliptical_arc (
Xgl_gcache gcache,
Xgl_ctx ctx,
Xgl_ell_list ∗ell_list);

DESCRIPTION This operator caches the elliptical arcs in the Gcache gcache. If Model Clipping is enabled
(that is, if XGL_3D_CTX_MODEL_CLIP_PLANE_NUM is greater than zero), the arcs are clipped
against the model clipping planes, and the result is stored in the Gcache.

This Gcache can contain only 3D data, so the Context ctx must be a 3D Context. Also, a
Gcache cannot be used with an annotation ellipse. The attribute XGL_GCACHE_USE_APPL_-
GEOM is not used for arcs. The value of XGL_CTX_ARC_FILL_STYLE controls how the arcs are
model clipped and rendered. If the fill style is XGL_ARC_OPEN, the arcs are model clipped
and rendered as polylines; otherwise, they are treated as simple polygons.

The following attribute values are saved in the Gcache for later validation:
XGL_CTX_MIN_TESSELLATION,
XGL_CTX_MAX_TESSELLATION,
XGL_CTX_CURVE_APPROX,
XGL_CTX_CURVE_APPROX_VALUE,
XGL_CTX_ARC_FILL_STYLE,
XGL_3D_CTX_MODEL_CLIP_PLANE_NUM,
XGL_3D_CTX_MODEL_CLIP_PLANES, /∗ if MODEL_CLIP_PLANE_NUM > 0 ∗/

The Gcache contains the arcs in model coordinates (MC). Therefore, the display of the
Gcache is affected by the full transformation and clipping pipeline.

RETURN VALUE Nothing is returned.

SEE ALSO xgl_object_create(3)
xgl_context_display_gcache(3)
xgl_multi_elliptical_arc(3)

XGL_GCACHE_USE_APPL_GEOM(3)

440 modified August 1994

XGL Graphics Library xgl_gcache_multi_simple_polygon (3)

NAME xgl_gcache_multi_simple_polygon − builds a Gcache of simple polygons

SYNOPSIS #include <xgl/xgl.h>

void xgl_gcache_multi_simple_polygon (
Xgl_gcache gcache,
Xgl_ctx ctx,
Xgl_facet_flags flags,
Xgl_facet_list ∗facets,
Xgl_bbox ∗bbox,
Xgl_usgn32 num_pt_lists,
Xgl_pt_list pl[]);

DESCRIPTION This operator caches the simple polygons in the Gcache gcache. If Model Clipping is
enabled (that is, if XGL_3D_CTX_MODEL_CLIP_PLANE_NUM is greater than zero), the polygons
are clipped against the model clipping planes, and the result is stored in the Gcache.

This Gcache can contain only 3D data, so the Context ctx must be a 3D Context. If the
attribute XGL_GCACHE_USE_APPL_GEOM is TRUE and Model Clipping is not enabled, the
Gcache does not copy the geometry. Instead, the Gcache keeps a pointer to it. It is the
application’s responsibility to ensure that the geometry passed as parameters to this func-
tion not be released to the system (freed) before xgl_context_display_gcache(3) is called.

A Gcache can also decompose a polygon into a set of triangles. The triangles are stored
in model coordinates (MC), so the decomposed polygon can be treated by the same
transformations as the original polygon. The attribute XGL_GCACHE_DO_POLYGON_-

DECOMP(3) controls whether decomposition is done. Decomposition is useful when using
hardware graphics accelerators that specialize in triangles. Such an accelerator can draw
the set of triangles in the decomposition faster than it can draw the polygon. However,
the decomposition process can be time-consuming; it varies with the complexity of the
polygon and the number of vertices that it contains.

The Gcache has two decomposition algorithms, one for complex polygons and one for
non−self-intersecting (NSI) polygons. An NSI polygon can have any number of bounds,
but the bounds cannot cross each other. A complex polygon does not have this restric-
tion. An NSI polygon can be decomposed more quickly than a complex polygon. The
Gcache uses the attribute XGL_GCACHE_POLYGON_TYPE to determine which decomposition
algorithm to use.

Decomposition has a few limitations:

· The original polygon vertices are stored in the Gcache or referenced by it (if XGL_-
GCACHE_USE_APPL_GEOM is TRUE) even when the polygon is decomposed.

· The original polygon is used to draw the edges for the polygon or when the fill
style is HOLLOW.

· Only polygons with floating point vertices can be decomposed.

modified August 1994 441

xgl_gcache_multi_simple_polygon (3) XGL Graphics Library

The following attribute values are saved in the Gcache for later validation:
XGL_3D_CTX_MODEL_CLIP_PLANE_NUM,
XGL_3D_CTX_MODEL_CLIP_PLANES, /∗ if MODEL_CLIP_PLANE_NUM > 0 ∗/

The Gcache contains the polygons in model coordinates (MC). Therefore, the display of
the Gcache is affected by the full transformation and clipping pipeline.

RETURN VALUE Nothing is returned.

SEE ALSO xgl_object_create(3)
xgl_context_display_gcache(3)
xgl_multi_simple_polygon(3)

XGL_GCACHE_USE_APPL_GEOM(3)

NOTES All pts in the point list pl[] must have the same Xgl_pt_type.

442 modified August 1994

XGL Graphics Library xgl_gcache_multimarker (3)

NAME xgl_gcache_multimarker − builds a Gcache of Markers

SYNOPSIS #include <xgl/xgl.h>

void xgl_gcache_multimarker (
Xgl_gcache gcache,
Xgl_ctx ctx,
Xgl_pt_list ∗pl);

DESCRIPTION This operator caches the Markers in the Gcache gcache. If Model Clipping is enabled
(that is, if XGL_3D_CTX_MODEL_CLIP_PLANE_NUM is greater than zero), the Markers are
clipped against the Model Clipping planes, and the result is stored in the Gcache.

A Gcache can only contain 3D data, so the Context ctx must be a 3D Context. If the attri-
bute XGL_GCACHE_USE_APPL_GEOM is TRUE and Model Clipping is not enabled, the Gcache
does not copy the geometry. Instead, the Gcache keeps a pointer to it. It is the
application’s responsibility to ensure that the geometry passed as parameters to this func-
tion not be released to the system (freed) before xgl_context_display_gcache(3) is called.

The following attribute values are saved in the Gcache for later validation:
XGL_3D_CTX_MODEL_CLIP_PLANE_NUM,
XGL_3D_CTX_MODEL_CLIP_PLANES, /∗ if MODEL_CLIP_PLANE_NUM > 0 ∗/

The Gcache contains the Markers in model coordinates (MC). Therefore, the display of
the Gcache is affected by the full transformation and clipping pipeline.

RETURN VALUE Nothing is returned.

SEE ALSO xgl_object_create(3)
xgl_context_display_gcache(3)
xgl_multimarker(3)

XGL_GCACHE_USE_APPL_GEOM(3)

modified August 1994 443

xgl_gcache_multipolyline (3) XGL Graphics Library

NAME xgl_gcache_multipolyline − builds a Gcache of multipolylines

SYNOPSIS #include <xgl/xgl.h>

void xgl_gcache_multipolyline (
Xgl_gcache gcache,
Xgl_ctx ctx,
Xgl_bbox ∗bbox,
Xgl_usgn32 num_pt_lists,
Xgl_pt_list pl[]);

DESCRIPTION This operator caches the polylines and their bounding boxes in the Gcache gcache. If
Model Clipping is enabled (that is, if XGL_3D_CTX_MODEL_CLIP_PLANE_NUM is greater than
zero), the polylines are clipped against the model clipping planes, and the result is stored
in the Gcache.

A Gcache can only contain 3D data, so the Context ctx must be a 3D Context. If the attri-
bute XGL_GCACHE_USE_APPL_GEOM is TRUE and Model Clipping is not enabled, the Gcache
does not copy the geometry. Instead, the Gcache keeps a pointer to it. It is the
application’s responsibility to ensure that the geometry passed as parameters to this func-
tion not be released to the system (freed) before xgl_context_display_gcache(3) is called.

The following attribute values are saved in the Gcache for later validation:
XGL_3D_CTX_MODEL_CLIP_PLANE_NUM,
XGL_3D_CTX_MODEL_CLIP_PLANES, /∗ if MODEL_CLIP_PLANE_NUM > 0 ∗/

The Gcache contains the polylines in model coordinates (MC). Therefore, the display of
the Gcache is affected by the full transformation and clipping pipeline.

RETURN VALUE Nothing is returned.

SEE ALSO xgl_object_create(3)
xgl_context_display_gcache(3)
xgl_multipolyline(3)

XGL_GCACHE_USE_APPL_GEOM(3)

NOTES All pts in the point list pl[] must have the same Xgl_pt_type.

444 modified August 1994

XGL Graphics Library xgl_gcache_nurbs_curve (3)

NAME xgl_gcache_nurbs_curve − builds a Gcache of a NURBS curve

SYNOPSIS #include <xgl/xgl.h>

void xgl_gcache_nurbs_curve (
Xgl_gcache gcache,
Xgl_ctx ctx,
Xgl_nurbs_curve ∗curve,
Xgl_bounds_f1d ∗range, /∗ optional ∗/
Xgl_curve_color_spline ∗color_spline); /∗ optional ∗/

DESCRIPTION This operator caches the NURBS curve defined by curve, range, and color spline parame-
ters in the Gcache gcache. Depending on the value of XGL_GCACHE_NURBS_CURVE_-

MODE(3) attribute, tessellation-independent and/or polyline representations are created.

The parameters curve, range, and color_spline have the same meaning as they do in xgl_-
nurbs_curve(3).

A Gcache of a curve can contain 2D or 3D data, so the Context ctx can be either a 2D or a
3D context. The attribute XGL_GCACHE_USE_APPL_GEOM(3) is ignored. The Xgl_gcache_-
nurbs_mode structure is defined as follows:

typedef enum {
XGL_GCACHE_NURBS_DYNAMIC,
XGL_GCACHE_NURBS_COMBINED,
XGL_GCACHE_NURBS_STATIC

} Xgl_gcache_nurbs_mode;

If the value of XGL_GCACHE_NURBS_CURVE_MODE(3) attribute is XGL_GCACHE_NURBS_-
STATIC, the following attributes are used to compute the polyline representation of the
curve and are also saved in the Gcache for later validation:

XGL_CTX_MIN_TESSELLATION(3)
XGL_CTX_MAX_TESSELLATION(3)
XGL_CTX_NURBS_CURVE_APPROX(3)
XGL_CTX_NURBS_CURVE_APPROX_VAL(3)
XGL_3D_CTX_MODEL_CLIP_PLANE_NUM(3)
XGL_3D_CTX_MODEL_CLIP_PLANES(3)
/∗ if MODEL_CLIP_PLANE_NUM > 0 ∗/

For Gcache mode XGL_GCACHE_NURBS_STATIC, the Gcache contains the polyline version of
the curve in model coordinates (MC).

For Gcache modes XGL_GCACHE_NURBS_DYNAMIC and XGL_GCACHE_NURBS_COMBINED, no
context attributes are saved for validation. For XGL_GCACHE_NURBS_DYNAMIC mode, only
tessellation-independent form is stored in the Gcache. For XGL_GCACHE_NURBS_COMBINED
mode, both tessellation-independent and polyline representations are stored. Also, in
these cases, model clipping according to the Context ctx is not performed at Gcache crea-
tion time.

modified August 1994 445

xgl_gcache_nurbs_curve (3) XGL Graphics Library

The display of Gcache is affected by the full transformation and clipping pipeline. The
Gcache does not save the value of the parameters curve, range, and color_spline. The
application is responsible for building a new Gcache with the new value of these parame-
ters.

RETURN VALUE Nothing is returned.

SEE ALSO xgl_object_create(3)
xgl_context_display_gcache(3)
xgl_nurbs_curve(3)

XGL_3D_CTX_MODEL_CLIP_PLANES(3)
XGL_3D_CTX_MODEL_CLIP_PLANE_NUM(3)
XGL_CTX_MAX_TESSELLATION(3)
XGL_CTX_MIN_TESSELLATION(3)
XGL_CTX_NURBS_CURVE_APPROX(3)
XGL_CTX_NURBS_CURVE_APPROX_VAL(3)
XGL_GCACHE_NURBS_CURVE_MODE(3)
XGL_GCACHE_USE_APPL_GEOM(3)

446 modified August 1994

XGL Graphics Library xgl_gcache_nurbs_surface (3)

NAME xgl_gcache_nurbs_surface − builds a Gcache of a NURBS surface

SYNOPSIS #include <xgl/xgl.h>

void xgl_gcache_nurbs_surface (
Xgl_gcache gcache,
Xgl_ctx ctx,
Xgl_nurbs_surf ∗surface,
Xgl_trim_loop_list ∗trimming,
Xgl_nurbs_surf_simple_geom ∗hints, /∗ optional ∗/
Xgl_surf_color_spline ∗color_spline, /∗ optional ∗/
Xgl_surf_data_spline_list ∗data_splines); /∗ not supported ∗/

DESCRIPTION This operator caches the NURBS surface defined by surface, trimming, hints, color spline,
and data splines parameters in the Gcache gcache. Depending on the value of XGL_-

GCACHE_NURBS_SURF_MODE(3) attribute, tessellation-independent and/or polygon
representations (quadrilateral meshes, triangle strips, and/or polylines) are created.

The parameters surface, trimming, hints, color_spline, and data_splines have the same mean-
ing as they do in xgl_nurbs_surface(3).

A Gcache of a surface can contain 3D data only, so the Context ctx has to be a 3D context.
The attribute XGL_GCACHE_USE_APPL_GEOM(3) is ignored. The Xgl_gcache_nurbs_mode
structure is defined as follows:

typedef enum {
XGL_GCACHE_NURBS_DYNAMIC,
XGL_GCACHE_NURBS_COMBINED,
XGL_GCACHE_NURBS_STATIC

} Xgl_gcache_nurbs_mode;

If the value of XGL_GCACHE_NURBS_SURF_MODE(3) attribute is XGL_GCACHE_NURBS_STATIC,
the following attribute values are used to compute the tessellated representation of the
surface and are also saved in the Gcache for later validation:

XGL_CTX_MIN_TESSELLATION(3)
XGL_CTX_MAX_TESSELLATION(3)
XGL_CTX_NURBS_SURF_APPROX(3)
XGL_CTX_NURBS_SURF_APPROX_VAL_U(3)
XGL_CTX_NURBS_SURF_APPROX_VAL_V(3)
XGL_CTX_NURBS_SURF_ISO_CURVE_U_NUM(3)
XGL_CTX_NURBS_SURF_ISO_CURVE_V_NUM(3)
XGL_CTX_NURBS_SURF_ISO_CURVE_PLACEMENT(3)
XGL_CTX_NURBS_SURF_PARAM_STYLE(3)
XGL_3D_CTX_MODEL_CLIP_PLANE_NUM(3)
XGL_3D_CTX_MODEL_CLIP_PLANES(3)
/∗ if MODEL_CLIP_PLANE_NUM > 0 ∗/

modified August 1994 447

xgl_gcache_nurbs_surface (3) XGL Graphics Library

For Gcache mode XGL_GCACHE_NURBS_STATIC, the Gcache contains the tessellated version
of the surface in model coordinates (MC).

For Gcache modes XGL_GCACHE_NURBS_DYNAMIC and XGL_GCACHE_NURBS_COMBINED, no
context attributes are saved for validation. For XGL_GCACHE_NURBS_DYNAMIC mode, only
tessellation-independent form is stored in the Gcache. For XGL_GCACHE_NURBS_COMBINED
mode, both tessellation-independent and polygon representations are stored. Also, in
these cases, model clipping according to the Context ctx is not performed at Gcache crea-
tion time.

The display of Gcache is affected by the full transformation and clipping pipeline. The
Gcache does not save the value of the parameters surface, trimming, hints, color_spline, and
data_splines. The application is responsible for building a new Gcache with the new value
of these parameters.

RETURN VALUE Nothing is returned.

SEE ALSO xgl_object_create(3)
xgl_context_display_gcache(3)
xgl_nurbs_surface(3)

XGL_3D_CTX_MODEL_CLIP_PLANES(3)
XGL_3D_CTX_MODEL_CLIP_PLANE_NUM(3)
XGL_CTX_MAX_TESSELLATION(3)
XGL_CTX_MIN_TESSELLATION(3)
XGL_CTX_NURBS_SURF_APPROX(3)
XGL_CTX_NURBS_SURF_APPROX_VAL_U(3)
XGL_CTX_NURBS_SURF_APPROX_VAL_V(3)
XGL_CTX_NURBS_SURF_ISO_CURVE_U_NUM(3)
XGL_CTX_NURBS_SURF_ISO_CURVE_V_NUM(3)
XGL_CTX_NURBS_SURF_ISO_CURVE_PLACEMENT(3)
XGL_CTX_NURBS_SURF_PARAM_STYLE(3)
XGL_GCACHE_NURBS_SURF_MODE(3)
XGL_GCACHE_USE_APPL_GEOM(3)

448 modified August 1994

XGL Graphics Library xgl_gcache_polygon (3)

NAME xgl_gcache_polygon − builds a Gcache of a general polygon

SYNOPSIS #include <xgl/xgl.h>

void xgl_gcache_polygon (
Xgl_gcache gcache,
Xgl_ctx ctx,
Xgl_facet_type facet_type,
Xgl_facet ∗facet,
Xgl_bbox ∗bbox,
Xgl_usgn32 num_pt_lists,
Xgl_pt_list pl[]);

DESCRIPTION This operator caches a polygon in the Gcache gcache. If Model Clipping is enabled (that
is, if XGL_3D_CTX_MODEL_CLIP_PLANE_NUM is greater than zero), the polygon is clipped
against the model clipping planes, and the result is stored in the Gcache.

This Gcache can contain only 3D data, so the Context ctx must be a 3D Context. If the
attribute XGL_GCACHE_USE_APPL_GEOM is TRUE and Model Clipping is not enabled, the
Gcache does not copy the geometry. Instead, the Gcache keeps a pointer to it. It is the
application’s responsibility to ensure that the geometry passed as parameters to this func-
tion not be released to the system (freed) before xgl_context_display_gcache(3) is called.

A Gcache can also decompose a polygon into a set of triangles. The triangles are stored
in model coordinates (MC), so the decomposed polygon can be treated by the same
transformations as the original polygon. The attribute XGL_GCACHE_DO_POLYGON_-

DECOMP(3) controls whether decomposition is done. Decomposition is useful when using
hardware graphics accelerators that specialize in triangles. Such an accelerator can draw
the set of triangles in the decomposition faster than it can draw the polygon. However,
the decomposition process can be time-consuming; it varies with the complexity of the
polygon and the number of vertices that it contains.

The Gcache has two decomposition algorithms, one for complex polygons and one for
non−self-intersecting (NSI) polygons. An NSI polygon can have any number of bounds,
but the bounds cannot cross each other. A complex polygon does not have this restric-
tion. An NSI polygon can be decomposed more quickly than a complex polygon. The
Gcache uses the attribute XGL_GCACHE_POLYGON_TYPE to determine which decomposition
algorithm to use.

Decomposition has a few limitations:

· The original polygon vertices are stored in the Gcache or referenced by it (if XGL_-
GCACHE_USE_APPL_GEOM is TRUE) even when the polygon is decomposed.

· The original polygon is used to draw the edges for the polygon or when the fill
style is HOLLOW.

· Only polygons with floating point vertices can be decomposed.

XGL Graphics Library 3-449

xgl_gcache_polygon (3) XGL Graphics Library

The following attribute values are saved in the Gcache for later validation:
XGL_3D_CTX_MODEL_CLIP_PLANE_NUM,
XGL_3D_CTX_MODEL_CLIP_PLANES, /∗ if MODEL_CLIP_PLANE_NUM > 0 ∗/

The Gcache contains the polygon in model coordinates (MC). Therefore, the display of
the Gcache is affected by the full transformation and clipping pipeline.

RETURN VALUE Nothing is returned.

SEE ALSO xgl_object_create(3)
xgl_context_display_gcache(3)
xgl_polygon(3)

XGL_GCACHE_DO_POLYGON_DECOMP(3)
XGL_GCACHE_POLYGON_TYPE(3)
XGL_GCACHE_USE_APPL_GEOM(3)

NOTES All pts in the point list pl[] must have the same Xgl_pt_type.

3-450 XGL Graphics Library

XGL Graphics Library xgl_gcache_stroke_text (3)

NAME xgl_gcache_stroke_text − builds a Gcache of a text string

SYNOPSIS #include <xgl/xgl.h>

void xgl_gcache_stroke_text (
Xgl_gcache gcache,
Xgl_ctx ctx,
void ∗str,
Xgl_pt_f{2,3}d ∗pos,
Xgl_pt_f3d dir[]);

DESCRIPTION This operator caches the polyline representation of the text string str in the Gcache gcache.
The text attributes in the Context ctx are used when building the cached representation of
the text string. The parameters str, pos, and dir have the same meaning as they do in xgl_-
stroke_text(3).

A Gcache of stroke text can contain 2D or 3D data, so the Context ctx can be either a 2D or
3D Context. The attribute XGL_GCACHE_USE_APPL_GEOM is ignored for stroke text. The
dimension of the context used to write text to the gcache must match the dimension of
the context used to display it. For example, if you write 2d stroke text (using a 2d con-
text), you must use a 2d context (although it doesn’t have to be the same one).

The following attribute values are used to compute the polyline representation of the text
string and are also saved in the Gcache for later validation:

XGL_CTX_SFONT_0
XGL_CTX_SFONT_1
XGL_CTX_SFONT_2
XGL_CTX_SFONT_3
XGL_CTX_STEXT_ALIGN_HORIZ
XGL_CTX_STEXT_ALIGN_VERT
XGL_CTX_STEXT_CHAR_EXPANSION_FACTOR
XGL_CTX_STEXT_CHAR_HEIGHT
XGL_CTX_STEXT_CHAR_SLANT_ANGLE
XGL_CTX_STEXT_CHAR_SPACING
XGL_CTX_STEXT_CHAR_UP_VECTOR
XGL_CTX_STEXT_PATH
XGL_CTX_STEXT_PRECISION
XGL_3D_CTX_MODEL_CLIP_PLANE_NUM
XGL_3D_CTX_MODEL_CLIP_PLANES /∗ if MODEL_CLIP_PLANE_NUM > 0 ∗/

The Gcache contains the polyline version of the text in model coordinates (MC). There-
fore, the display of the Gcache is affected by the full transformation and clipping pipe-
line. The Gcache does not save the value of the parameters (str, pos, and dir), however.
The application is responsible for building a new Gcache with the new values of these
parameters.

modified August 1994 451

xgl_gcache_stroke_text (3) XGL Graphics Library

RETURN VALUE Nothing is returned.

SEE ALSO xgl_object_create(3)
xgl_context_display_gcache(3)
xgl_stroke_text(3)

XGL_GCACHE_USE_APPL_GEOM(3)

452 modified August 1994

XGL Graphics Library xgl_gcache_triangle_list (3)

NAME xgl_gcache_triangle_list − builds a Gcache of a triangle list

SYNOPSIS #include <xgl/xgl.h>

void xgl_gcache_triangle_list (
Xgl_gcache gcache,
Xgl_ctx ctx,
Xgl_facet_list ∗facets,
Xgl_pt_list ∗pl,
Xgl_tlist_flags flags);

DESCRIPTION This operator caches a triangle list in the Gcache gcache. If Model Clipping is enabled (that
is, if XGL_3D_CTX_MODEL_CLIP_PLANE_NUM is greater than zero), the triangle list is clipped
against the model clipping planes, and the result is stored in the Gcache.

This Gcache can contain only 3D data, so the Context ctx must be a 3D Context. If the
attribute XGL_GCACHE_USE_APPL_GEOM is TRUE and Model Clipping is not enabled, the
Gcache does not copy the geometry. Instead, the Gcache keeps a pointer to it. It is the
application’s responsibility to ensure that the geometry passed as parameters to this func-
tion not be released to system (freed) before xgl_context_display_gcache(3) is called.

The following attribute values are saved in the Gcache for later validation:
XGL_3D_CTX_MODEL_CLIP_PLANE_NUM,
XGL_3D_CTX_MODEL_CLIP_PLANES, /∗ if MODEL_CLIP_PLANE_NUM > 0 ∗/

The Gcache contains the triangle list in model coordinates (MC). Therefore, the display of
the Gcache is affected by the full transformation and clipping pipeline.

RETURN VALUE Nothing is returned.

SEE ALSO xgl_object_create(3)
xgl_context_display_gcache(3)
xgl_triangle_list(3)

XGL_GCACHE_USE_APPL_GEOM(3)

modified January 1995 453

xgl_gcache_triangle_strip (3) XGL Graphics Library

NAME xgl_gcache_triangle_strip − builds a Gcache of a triangle strip

SYNOPSIS #include <xgl/xgl.h>

void xgl_gcache_triangle_strip (
Xgl_gcache gcache,
Xgl_ctx ctx,
Xgl_facet_list ∗facets,
Xgl_pt_list ∗pl);

DESCRIPTION This operator caches a triangle strip in the Gcache gcache. If Model Clipping is enabled
(that is, if XGL_3D_CTX_MODEL_CLIP_PLANE_NUM is greater than zero), the triangle strip is
clipped against the model clipping planes, and the result is stored in the Gcache.

This Gcache can contain only 3D data, so the Context ctx must be a 3D Context. If the
attribute XGL_GCACHE_USE_APPL_GEOM is TRUE and Model Clipping is not enabled, the
Gcache does not copy the geometry. Instead, the Gcache keeps a pointer to it. It is the
application’s responsibility to ensure that the geometry passed as parameters to this func-
tion not be released to system (freed) before xgl_context_display_gcache(3) is called.

The following attribute values are saved in the Gcache for later validation:
XGL_3D_CTX_MODEL_CLIP_PLANE_NUM,
XGL_3D_CTX_MODEL_CLIP_PLANES, /∗ if MODEL_CLIP_PLANE_NUM > 0 ∗/

The Gcache contains the triangle strip in model coordinates (MC). Therefore, the display
of the Gcache is affected by the full transformation and clipping pipeline.

RETURN VALUE Nothing is returned.

SEE ALSO xgl_object_create(3)
xgl_context_display_gcache(3)
xgl_triangle_strip(3)

XGL_GCACHE_USE_APPL_GEOM(3)

454 modified August 1994

XGL Graphics Library xgl_image (3)

NAME xgl_image − displays a block of pixels from an XGL Raster

SYNOPSIS #include <xgl/xgl.h>

void xgl_image (
Xgl_ctx dest_ctx,
Xgl_pt_f{2,3}d ∗position,
/∗ f2d for 2D context, f3d for 3D context ∗/
Xgl_bounds_i2d ∗rectangle,
Xgl_ras src_ras);

DESCRIPTION This operator copies a rectangular block of pixels from the source Memory Raster src_ras
to the Raster associated with the destination Context dest_ctx, which can either be a
Memory Raster or a Window Raster. The area to be copied is specified by a rectangular
region, rectangle, in the source Raster. The copy starts at a position specified by position in
the destination Context.

The position must be a valid point in the Context’s model space, and it is transformed
according to the Context state. Nothing is copied if the position is clipped by model or
view clipping. Otherwise, the source rectangle is copied into the Raster, after clipping to
the intersection of Context DC viewport limits and active VDC clipping bounds
(transformed into DC coordinates).

This operator performs the copy, taking into account the HLHSR state of the Context.
Depending on the state of the Context attribute XGL_3D_CTX_HLHSR_MODE(3), z compare
and z update may take place at the time of the copy, offering the application programmer
the possibility of mixing raster images with 3D geometry. In this case, the Z value of the
transformed position will be used for Z buffering the image.

If the rectangle is a NULL pointer, the maximum area from the source Raster is taken for
the copy operation.

The ROP mode, plane mask, and the fill rule defined in the destination Context with the
XGL_CTX_ROP(3), XGL_CTX_PLANE_MASK(3) and XGL_CTX_RASTER_FILL_STYLE(3) attributes
are enforced during this operation. This operator is unaffected by the XGL_CTX_RENDER_-

BUFFER(3) and XGL_RAS_SOURCE_BUFFER(3) attributes. The source and destination buffers
are always draw buffer.

This operator enables copying from any source Memory Raster to the device attached to
the Context. If the destination Raster attached to the Context and the source Raster have
different depths, XGL performs a conversion.

This operator behaves similarly to the xgl_context_copy_buffer(3) operator with the fol-
lowing exceptions:

· it restricts src_ras to be an XGL Memory Raster,

· its position is in model coordinates,

· the fill rule (XGL_CTX_RASTER_FILL_STYLE(3)) only support XGL_RAS_FILL_COPY
(default) and XGL_RAS_FILL_STENCIL. The effect of other raster fill styles on this primi-
tive is undefined.

modified February 1995 455

xgl_image (3) XGL Graphics Library

· it accounts for the HLHSR state of the Context,

· the source and destination buffers are always draw buffer, and

· nothing is drawn when the position is clipped.

See xgl_context_copy_buffer(3) for more information.

RETURN VALUE Nothing is returned.

SEE ALSO xgl_context_copy_buffer(3)

XGL_3D_CTX_HLHSR_MODE(3)
XGL_CTX_PLANE_MASK(3)
XGL_CTX_RASTER_FILL_STYLE(3)
XGL_CTX_RENDER_BUFFER(3)
XGL_CTX_ROP(3)
XGL_RAS_SOURCE_BUFFER(3)

456 modified February 1995

XGL Graphics Library xgl_inquire (3)

NAME xgl_inquire − inquires the acceleration features underlying a window

SYNOPSIS #include <xgl/xgl.h>

Xgl_inquire∗ xgl_inquire (
Xgl_sys_state sys_state,
Xgl_obj_desc ∗desc);

DESCRIPTION
Purpose This operator inquires into the acceleration features underlying a particular window.

XGL accelerates a primitive if some portion of the geometry that defines the primitive is
processed by accelerating hardware. Acceleration includes geometric transformations
and clipping as well as actual rendering. The xgl_open(3) operator must be called prior
to calling this operator.

Parameters sys_state
The handle to system state information for this XGL session. Use the value
returned by the call to xgl_open(3).

For more detailed information about this value, see XGL_SYS_STATE(3) and its
corresponding man pages.

desc The application must fill in this parameter with the appropriate window infor-
mation before calling this function.

Returned
Information

The function returns a pointer to a structure of type Xgl_inquire, allocated by XGL. It is
the responsibility of the application program to free the memory allocated by this func-
tion call when the returned information is no longer needed. The structure returned con-
tains, in the following fields, information about the frame buffer underlying the window:

name The XGL name of the frame buffer underlying the window.

dga_flag (direct graphics access)
If this field is TRUE, XGL does direct graphics access to render pixels into
the frame buffer underlying the window. If it is FALSE, XGL uses either
the PEX or Xlib protocol to render pixels.

color_type
A structure with 2 bit fields that specify the color type accelerated by the
frame buffer underlying the window. If index is TRUE, the frame buffer
accelerates the XGL_COLOR_INDEX color model. If rgb is TRUE, the frame
buffer accelerates the XGL_COLOR_RGB color model.

depth The depth of the frame buffer underlying the window.

width and height
The width and height of the frame buffer in pixel coordinates.

maximum_buffer
The maximum number of buffers available from the frame buffer under-
lying the window. A value of 2 means the application might be able to do

modified October 1996 457

xgl_inquire (3) XGL Graphics Library

double buffering.

db_buffer_is_copy
If this field is TRUE, the underlying hardware device performs double
buffering by copying pixels from the draw (hidden) buffer to the display
buffer.

pt_type A structure of bit fields whose values are the pt_types supported by the
frame buffer. The bit fields are:
pt_dim_2d, if TRUE means the frame buffer can accelerate 2D coordinates
pt_dim_3d, if TRUE means the frame buffer can accelerate 3D coordinates
pt_type_int, if TRUE means the frame buffer can accelerate integer coordinates
pt_type_float, if TRUE means the frame buffer can accelerate float coordinates
point types.

hlhsr_mode
Indicates whether the frame buffer underlying the window directly sup-
ports a z-buffer and z-buffer rendering. If this value is XGL_HLHSR_Z_-
BUFFER, the frame buffer accelerates z-buffer rendering. If this value is
XGL_HLHSR_NONE, the frame buffer does not support accelerated z-buffer
rendering, and the z-buffer is supported in the host.

picking
double_buffer
indexed_color
true_color
depth_cueing
lighting
shading
hlhsr
antialiasing

Depending on the underlying hardware accelerator, if any, these fields
will be set to XGL_INQ_NOT_SUPPORTED if the functionality is not sup-
ported, XGL_INQ_SOFTWARE if the support is done through software emu-
lation, and XGL_INQ_HARDWARE if hardware acceleration is provided.

stereo This boolean indicates whether or not the device underlying the window
has hardware support for stereo. Please refer to XGL_WIN_RAS_STEREO_-

MODE(3) for more information on hardware stereo support.

extns This bitmask indicates the extensions supported by the frame buffer
underlying the window. Currently, only the ability to query for multi-
buffer extension to X(MBX) is provided. The logical AND of this field
with bitmask XGL_INQ_MULTI_BUFFERING determines whether MBX is sup-
ported. If the result is non-zero, the frame buffer supports MBX.

transparency
Depending on the underlying hardware accelerator, if any, this field will
be set to XGL_INQ_NOT_SUPPORTED if the functionality is not supported,
XGL_INQ_SOFTWARE if the support is done through software emulation,

458 modified October 1996

XGL Graphics Library xgl_inquire (3)

and XGL_INQ_HARDWARE if hardware acceleration is provided.

SEE ALSO xgl_object_create(3)
xgl_open(3)

XGL_3D_CTX_HLHSR_MODE(3)
XGL_SYS_STATE(3)
XGL_WIN_RAS_BUFFERS_ALLOCATED(3)
XGL_WIN_RAS_BUFFERS_REQUESTED(3)
XGL_WIN_RAS_STEREO_MODE(3)

modified October 1996 459

xgl_light_copy (3) XGL Graphics Library

NAME xgl_light_copy − makes a copy of a Light

SYNOPSIS #include <xgl/xgl.h>

void xgl_light_copy (
Xgl_light dest_light,
Xgl_light src_light);

DESCRIPTION
Purpose This operator makes a copy of a Light. All the state information of a Source Light is

transferred to a Destination Light. The state information consists of the values of all
attributes.

Parameters dest_light
The Destination Light to which the state information is stored. It must have been
created previously with xgl_object_create(3). Any state information previously
stored in dest_light is lost.

src_light
The Source Light from which the state information is taken. It must have been
created previously with xgl_object_create.

RETURN VALUE Nothing is returned.

SEE ALSO xgl_object_create(3)

460 modified August 1994

XGL Graphics Library xgl_mipmap_texture_build (3)

NAME xgl_mipmap_texture_build − generates a mipmap pyramid

SYNOPSIS #include <xgl/xgl.h>

void xgl_mipmap_texture_build (
Xgl_mipmap_texture texture_obj,
Xgl_mem_ras in_mem_ras,
Xgl_texture_boundary u_bound,
Xgl_texture_boundary v_bound);

DESCRIPTION
Purpose This operator creates a mipmap pyramid using the in_mem_ras as the base of the

pyramid. The number of levels generated in the mipmap is dependent on the attribute
XGL_MIPMAP_TEXTURE_LEVELS(3).

Parameters texture_obj
The already created texture object.

in_mem_ras
The memory raster that the application wants to turn into a mipmap within the
texture object.

u{v}_bound
These input fields are used as hints during the mipmap generation. Using these
fields, an application provides information on how texture borders are treated
for wrapping or clamping. XGL accepts the following values for Xgl_texture_-
boundary:

XGL_TEXTURE_BOUNDARY_CLAMP
Finish texturing using a constant value.

XGL_TEXTURE_BOUNDARY_WRAP
Repeat the texture.

XGL_TEXTURE_BOUNDARY_TRANSPARENT
Finish rendering as though texturing were not being performed.

XGL_TEXTURE_BOUNDARY_MIRROR
Reverse texel sampling creating a mirrored alternating pattern.

XGL_TEXTURE_BOUNDARY_CLAMP_BOUNDARY
Use a color specified by the closest boundary texel.

RETURN VALUE Nothing is returned.

SEE ALSO xgl_object_get(3)
xgl_object_set(3)

XGL_MIPMAP_TEXTURE_LEVELS(3)

modified February 1995 461

xgl_multi_elliptical_arc (3) XGL Graphics Library

NAME xgl_multi_elliptical_arc − draws a list of 3D elliptical arcs

SYNOPSIS #include <xgl/xgl.h>

void xgl_multi_elliptical_arc (
Xgl_ctx ctx,
Xgl_ell_list ∗ell_list);

DESCRIPTION
Purpose This operator draws a list of elliptical arcs according to the graphics state described in the

3D Context ctx. Each elliptical arc in the list is transformed by the current transformation
matrix (see XGL_CTX_VIEW_TRANS(3) and XGL_CTX_MODEL_TRANS(3)). The elliptical arcs
are rendered in the plane described by the two direction vectors provided with each arc.
The result is then projected using the current set of Transforms, so that all of the standard
3D pipeline applies. The elliptical arcs are approximated as polygons, using the following
context attributes:

XGL_CTX_NURBS_CURVE_APPROX(3)
XGL_CTX_NURBS_CURVE_APPROX_VAL(3)
XGL_CTX_MAX_TESSELLATION(3)
XGL_CTX_MIN_TESSELLATION(3)

Parameters ctx The XGL 3D Context containing the graphics state used when processing xgl_-
multi_elliptical_arc(3).

ell_list A pointer to the list of arcs to draw. It is a structure defined as:
typedef struct {

Xgl_usgn32 num_ells; /∗ number of elliptical arcs ∗/
Xgl_multiell_type type; /∗ data type of multiell ∗/
Xgl_bbox ∗bbox; /∗ optional box containing all

elliptical arcs, NULL means no box ∗/
union { /∗ union of pointers to ells ∗/

Xgl_ell_f3d ∗f3d;
Xgl_ell_af3d ∗af3d;
Xgl_ell_d3d ∗d3d;
Xgl_ell_ad3d ∗ad3d;

} ells;
} Xgl_ell_list;

ell_list→num_ells is the number of arcs in the list.

ell_list→type is the data type of the center point and radius used to define each arc
in the list. Xgl_multiell_type currently defines the following enumerated values as
possible multiell data types:

462 modified August 1994

XGL Graphics Library xgl_multi_elliptical_arc (3)

XGL_MULTIELLARC_F3D
XGL_MULTIELLARC_AF3D
XGL_MULTIELLARC_D3D
XGL_MULTIELLARC_AD3D

Ultimately, this determines which member of the union ell_list→ells (see below)
points to the elliptical arc data.

ell_list→bbox points to a structure describing a bounding box for all of the arcs in
the list. This may be NULL to indicate that no bounding box information is
available.

ell_list→ells is a union of pointers, one of which points to the array of structures
that defines each elliptical arc in the list. The ell_list→ells structure for elliptical
arcs of type XGL_MULTIELLARC_F3D looks as follows:

typedef struct {
Xgl_pt_flag_f3d center; /∗ center point ∗/
Xgl_pt_f3d dir[3]; /∗ dir. vectors and normal vector ∗/
Xgl_boolean dir_normalized; /∗ TRUE when dir[] are unit vectors ∗/
Xgl_boolean dir_normal; /∗ TRUE if dir[2] is a valid vector ∗/
float major_axis, /∗ major and minor axis ∗/

minor_axis;
float rot_angle; /∗ ellipse rotation angle ∗/
float start_angle, /∗ start and stop angles ∗/

stop_angle;
} Xgl_ell_f3d;

See xgl_struct(3) for structures defining other elliptical arcs in the list.

center and major/minor axis members of the structure are Xgl_pt_flag_f3d and float,
respectively.

The first two elements of the field dir[3] contain the two orthogonal vectors in
model coordinates (MC) used to define the plane on which the elliptical arc is
going to be built. The third element is used to specify a normal vector for the arc.

dir_normalized should be set to TRUE when the vectors are normalized (that is, unit
vectors). dir_normal should be set to TRUE when the third element of dir is set to a
valid vector. Otherwise, XGL will compute a normal vector to the elliptical arc,
using the two vectors specified for the arc plane.

When specifying type XGL_MULTIELLARC_AF3D for elliptical arcs, XGL generates
annotation elliptical arcs. In other words, the elliptical arcs XGL generates are
guaranteed to be in a plane parallel to the projection plane. In this particular
case, the center of each arc represents the reference point and is specified in
model coordinates. The major and minor axes are specified in virtual device
coordinates (VDC). There is no need to specify any direction vectors, and the
primitive is always front-facing.

modified August 1994 463

xgl_multi_elliptical_arc (3) XGL Graphics Library

As shown in the Xgl_ell_f3d structure, each elliptical arc is specified by an
application-defined center point, major/minor axes, rotation angle, and start and
stop angle. The center and major/minor axes are specified in the application’s coor-
dinate system, unless the application chooses to render annotation ellipses, as
defined earlier. The rotation angle is the angle that specifies the rotation of the
ellipse, measured between the axis defined by dir[0] in the plane of the ellipse
and the major axis.

The start_angle is the angle from the axis defined by dir[0] in the plane of the
ellipse to the start point of the arc. The stop_angle is the angle from the axis
defined by dir[0] in the plane of the ellipse to the end point. All angles are
specified in radians.

Elliptical arcs can be displayed in one of three ‘‘styles’’ depending on the current
setting for the attribute XGL_CTX_ARC_FILL_STYLE(3). If the arc is closed (that is, if
XGL_CTX_ARC_FILL_STYLE is set to either XGL_ARC_SECTOR or XGL_ARC_CHORD), the
following surface fill attributes control the appearance of the enclosed area of
each arc:

XGL_CTX_SURF_FRONT_FILL_STYLE(3)
XGL_CTX_SURF_FRONT_FPAT(3)
XGL_CTX_SURF_FRONT_FPAT_POSITION(3)
XGL_CTX_SURF_FRONT_COLOR(3)

The following equivalent attributes for back-facing polygons also apply.
XGL_3D_CTX_SURF_BACK_FILL_STYLE(3)
XGL_3D_CTX_SURF_BACK_FPAT(3)
XGL_3D_CTX_SURF_BACK_FPAT_POSITION(3)
XGL_3D_CTX_SURF_BACK_COLOR(3)

The lighting and shading attributes are also in effect.

Edges can be drawn around closed arcs. To do so, first set the attribute XGL_CTX_-

SURF_EDGE_FLAG(3) to TRUE. Edges will be drawn around each elliptical arc
within the arc list that has the flag associated with its center point set. Note that
the center point of each arc always has a flag associated with it. XGL assumes the
application will initialize these flags (to either 0 or 1) before calling
xgl_multi_elliptical_arc. If the flags are not initialized, unpredictable results may
occur.

For open arcs (that is, arcs drawn when XGL_CTX_ARC_FILL_STYLE is set to XGL_-
ARC_OPEN) the line attributes control how the arc is drawn on the Raster. The fol-
lowing attributes are used:

XGL_CTX_LINE_STYLE(3)
XGL_CTX_LINE_PATTERN(3)
XGL_CTX_LINE_WIDTH_SCALE_FACTOR(3)
XGL_CTX_LINE_CAP(3)
XGL_CTX_LINE_JOIN(3)
XGL_CTX_LINE_MITER_LIMIT(3)
XGL_CTX_LINE_COLOR(3)

464 modified August 1994

XGL Graphics Library xgl_multi_elliptical_arc (3)

XGL_CTX_LINE_ALT_COLOR(3)

For a more complete summary of these attributes, see xgl_multipolyline(3).

RETURN VALUE Nothing is returned.

SEE ALSO xgl_multipolyline(3)
xgl_object_get(3)
xgl_object_set(3)

XGL_CTX_ARC_FILL_STYLE(3)
XGL_CTX_NURBS_CURVE_APPROX(3)
XGL_CTX_NURBS_CURVE_APPROX_VAL(3)
XGL_CTX_MAX_TESSELLATION(3)
XGL_CTX_MIN_TESSELLATION(3)
XGL_3D_CTX_SURF_BACK_AMBIENT(3)
XGL_3D_CTX_SURF_BACK_COLOR(3)
XGL_3D_CTX_SURF_BACK_COLOR_SELECTOR(3)
XGL_3D_CTX_SURF_BACK_DIFFUSE(3)
XGL_3D_CTX_SURF_BACK_DMAP(3)
XGL_3D_CTX_SURF_BACK_DMAP_NUM(3)
XGL_3D_CTX_SURF_BACK_DMAP_SWITCHES(3)
XGL_3D_CTX_SURF_BACK_FILL_STYLE(3)
XGL_3D_CTX_SURF_BACK_FPAT(3)
XGL_3D_CTX_SURF_BACK_FPAT_POSITION(3)
XGL_3D_CTX_SURF_BACK_ILLUMINATION(3)
XGL_3D_CTX_SURF_BACK_LIGHT_COMPONENT(3)
XGL_3D_CTX_SURF_BACK_SPECULAR(3)
XGL_3D_CTX_SURF_BACK_SPECULAR_COLOR(3)
XGL_3D_CTX_SURF_BACK_SPECULAR_POWER(3)
XGL_3D_CTX_SURF_BACK_TRANSP(3)
XGL_3D_CTX_SURF_DC_OFFSET(3)
XGL_3D_CTX_SURF_FACE_CULL(3)
XGL_3D_CTX_SURF_FACE_DISTINGUISH(3)
XGL_3D_CTX_SURF_FRONT_AMBIENT(3)
XGL_3D_CTX_SURF_FRONT_DIFFUSE(3)
XGL_3D_CTX_SURF_FRONT_DMAP(3)
XGL_3D_CTX_SURF_FRONT_DMAP_NUM(3)
XGL_3D_CTX_SURF_FRONT_DMAP_SWITCHES(3)
XGL_3D_CTX_SURF_FRONT_ILLUMINATION(3)
XGL_3D_CTX_SURF_FRONT_LIGHT_COMPONENT(3)
XGL_3D_CTX_SURF_FRONT_SPECULAR(3)
XGL_3D_CTX_SURF_FRONT_SPECULAR_COLOR(3)
XGL_3D_CTX_SURF_FRONT_SPECULAR_POWER(3)
XGL_3D_CTX_SURF_FRONT_TRANSP(3)
XGL_3D_CTX_SURF_GEOM_NORMAL(3)
XGL_3D_CTX_SURF_NORMAL_FLIP(3)

modified August 1994 465

xgl_multi_elliptical_arc (3) XGL Graphics Library

XGL_3D_CTX_SURF_SILHOUETTE_EDGE_FLAG(3)
XGL_3D_CTX_SURF_TRANSP_BLEND_EQ(3)
XGL_3D_CTX_SURF_TRANSP_METHOD(3)
XGL_CTX_SURF_EDGE_FLAG(3)
XGL_CTX_SURF_FRONT_COLOR(3)
XGL_CTX_SURF_FRONT_COLOR_SELECTOR(3)
XGL_CTX_SURF_FRONT_FILL_STYLE(3)
XGL_CTX_SURF_FRONT_FPAT(3)
XGL_CTX_SURF_FRONT_FPAT_POSITION(3)
XGL_CTX_SURF_INTERIOR_RULE(3)
XGL_CTX_LINE_AA_BLEND_EQ(3)
XGL_CTX_LINE_AA_FILTER_SHAPE(3)
XGL_CTX_LINE_AA_FILTER_WIDTH(3)
XGL_CTX_LINE_ALT_COLOR(3)
XGL_CTX_LINE_CAP(3)
XGL_CTX_LINE_COLOR(3)
XGL_CTX_LINE_COLOR_SELECTOR(3)
XGL_CTX_LINE_JOIN(3)
XGL_CTX_LINE_MITER_LIMIT(3)
XGL_CTX_LINE_PATTERN(3)
XGL_CTX_LINE_STYLE(3)
XGL_CTX_LINE_WIDTH_SCALE_FACTOR(3)

NOTES xgl_multi_elliptical_arc is available only for 3D Contexts.

The center point of each arc must have the flag associated with it set to either 0 or 1 (to
turn the arc’s edge either Off or On). If the flag is not set by the application, unpredictable
results may occur.

If the difference between the start_angle and stop_angle of an arc is greater than 2π radi-
ans, then an arc is drawn instead of an ellipse. For example, if start_angle is 0.0 radians
and stop_angle is (5∗π/2) radians, then an arc is drawn as if the stop_angle were π/2 radi-
ans.

466 modified August 1994

XGL Graphics Library xgl_multi_simple_polygon (3)

NAME xgl_multi_simple_polygon − draws simple polygons from a list of data

SYNOPSIS #include <xgl/xgl.h>

void xgl_multi_simple_polygon (
Xgl_ctx ctx,
Xgl_facet_flags flags,
Xgl_facet_list ∗facets,
Xgl_bbox ∗bbox,
Xgl_usgn32 num_pt_lists,
Xgl_pt_list pl[]);

DESCRIPTION
Purpose This operator draws a set of simple polygons according to the parameter list and the

graphics state described in the Context ctx, which may be either a 2D or 3D Context. All
of the Context attributes that directly affect the display of polygons are listed in the SEE

ALSO section below.

A simple polygon is a polygon that is described by a single list of n vertices v(0), v(1), ...,
v(n-1). These vertices form the edges v(0) to v(1), v(1) to v(2), ..., v(n-2) to v(n-1), and v(n-1)
to v(0). The resulting polygon can be self-intersecting or non-planar. Each polygon
described by pl[] is drawn separately, starting at pl[0] and ending at pl[num_pt_lists-1].
This order of drawing is guaranteed.

Parameters ctx The XGL 2D or 3D Context containing the graphics state used when processing
xgl_multi_simple_polygon.

flags Contains bits that specify the kind of polygons being drawn. Xgl_facet_flags is
specified as an enumerated type, but it actually contains several values OR’d
together. The bits in flags apply to all polygons in pl[].

Here are the available Xgl_facet_flags:

Bits for number of sides
XGL_FACET_FLAG_SIDES_ARE_3
XGL_FACET_FLAG_SIDES_ARE_4
XGL_FACET_FLAG_SIDES_UNSPECIFIED

At most, one of these can be set. If either XGL_FACET_FLAG_SIDES_ARE_3 or
XGL_FACET_FLAG_SIDES_ARE_4 is set, each contour in pl[] is assumed to
represent a triangle or quadrilateral, respectively. Specifically, if XGL_-
FACET_FLAG_SIDES_ARE_3 is set, the first three points of each pl[] element
are used to draw the polygon. Similarly, if XGL_FACET_FLAG_SIDES_ARE_4
is set, the first four points are used. If XGL_FACET_FLAG_SIDES_-
UNSPECIFIED is set, no assumption is made regarding the number of sides.

It is not an error for either the triangles or quadrilaterals to be degen-
erate. It is an error if there are fewer points in pl[i] than specified by this
flag. The default value is XGL_FACET_FLAG_SIDES_UNSPECIFIED. To select
these bits, use flags and XGL_FACET_FLAG_SIDES_MASK.

modified February 1995 467

xgl_multi_simple_polygon (3) XGL Graphics Library

Bits for convexity
XGL_FACET_FLAG_SHAPE_CONVEX
XGL_FACET_FLAG_SHAPE_NONCONVEX
XGL_FACET_FLAG_SHAPE_UNKNOWN

At most, one of these can be set. In the 3D case, a non-planar polygon is
generally not convex when projected to the viewing plane; therefore, it
must have XGL_FACET_FLAG_SHAPE_NONCONVEX set. If no information is
known about the polygon, XGL_FACET_FLAG_SHAPE_UNKNOWN must be
set. The default value is XGL_FACET_FLAG_SHAPE_UNKNOWN. To test
these bits, use flags and XGL_FACET_FLAG_SHAPE_MASK.

Bits for facet normal and vertex order
XGL_FACET_FLAG_FN_CONSISTENT
XGL_FACET_FLAG_FN_NOT_CONSISTENT

Setting the XGL_FACET_FLAT_FN_CONSISTENT flag indicates whether the
direction of facet normal and the order in which the points are given are
consistent for all multisimple polygons.

In a right-handed coordinate system, the order of the points implies a
facet normal that is calculated as follows:

implied facet normal = v1v2 × v1v3

A user-provided facet normal indicates the front face of a polygon. Call
a group of polygons XGL_FACET_FLAG_FN_CONSISTENT if either of the fol-
lowing is true:

· The front of the polygon chosen by the user-provided facet nor-
mal always agrees with the front chosen by the implied facet nor-
mal.

· The front chosen by the user-provided facet normal always
disagrees with that chosen by the implied facet normal.

Call a group of polygons XGL_FACET_FLAG_FN_NOT_CONSISTENT if neither
of the above conditions holds. That is, for some polygons, there is agree-
ment; for others, there is disagreement.

The default is XGL_FACET_FLAG_FN_NOT_CONSISTENT.

Setting this flag with XGL_FACET_FLAG_FN_CONSISTENT gives better perfor-
mance on some devices. Consult your accelerator guide for details.

Bits for geometry data memory allocation
XGL_FACET_FLAG_DATA_CONTIG
XGL_FACET_FLAG_DATA_NOT_CONTIG

Setting the XGL_FACET_FLAG_DATA_CONTIG indicates that the geometry
data being sent is contiguous in memory. With this information some
rendering devices will be able to process the geometry data more
efficiently.

When this attribute is set, the application guarantees that all geometry

468 modified February 1995

XGL Graphics Library xgl_multi_simple_polygon (3)

data is stored in one contiguous memory location. Setting XGL_FACET_-
FLAG_DATA_NOT_CONTIG means the application cannot guarantee that the
geometry data is contiguous in memory, resulting in slower performance
on some rendering devices. To determine if your rendering device can
take advantage of XGL_FACET_FLAG_DATA_CONTIG, consult the accelerator
guide for your device.

The default is XGL_FACET_FLAG_DATA_NOT_CONTIG. To test this bit, use
flags and XGL_FACET_FLAG_DATA_NOT_CONTIG.

facets A pointer to an Xgl_facet_list structure, which is defined as:
typedef struct {

Xgl_facet_type facet_type; /∗ type of facet ∗/
Xgl_usgn32 num_facets; /∗ number of facets ∗/
union { /∗ pointers to array o

Xgl_color_facet ∗color_facets;
Xgl_normal_facet ∗normal_facets;
Xgl_color_normal_facet ∗color_normal_facets;

} facets;
} Xgl_facet_list;

facets→facet_type is the data type used to define each facet in the list.
Xgl_facet_type defines four enumerated values as possible facet data types:

XGL_FACET_NONE,
XGL_FACET_COLOR,
XGL_FACET_NORMAL,
XGL_FACET_COLOR_NORMAL,

The value of this field determines the interpretation of the union facets→facets,
which points to the first element of an array of facet information. For example, if
facets→facet_type is XGL_FACET_COLOR, then facets→facets.color[i] should be the
data for the i’th Xgl_color_facet.

This array of facet data is assumed to be facets→num_facets elements long.

The facets information is not used to draw the polygons if either facets is NULL,
facets→facet_type is XGL_FACET_NONE, or facets→num_facets is less than
num_pt_lists. Otherwise, the data in the i’th facet is used for the simple polygon
whose boundary is described by pl[i]. Normal information supplied to 2D Con-
texts is ignored.

bbox Is either NULL or is the bounding box around all of the points in pl[]. The bound-
ing box information is used to optimize clipping and also to simplify rendering
when its projection on the view surface is small. (See XGL_CTX_THRESHOLD(3).)

If the application does not want to provide bounding box information, bbox can
be NULL. If the bounding box is given, it is the application’s responsibility to
ensure it is correct.

In releases of XGL before 3.0, if an application provided a bounding box, then
bbox was a pointer to a structure of type Xgl_bbox. In XGL 3.0 and subsequent

modified February 1995 469

xgl_multi_simple_polygon (3) XGL Graphics Library

releases, this approach is still supported for backward compatibility, but applica-
tions now can store bounding box information in any of six new structures,
which are similar to Xgl_bbox:

Xgl_bbox_i2d
Xgl_bbox_f2d
Xgl_bbox_f3d
Xgl_bbox_status
Xgl_bbox_d2d
Xgl_bbox_d3d

In place of a structure of type Xgl_bbox, an application can use one of the above
structures. For example, if an application uses a variable called bbox_f2d of type
Xgl_bbox_f2d, it needs to cast the pointer to this structure using (Xgl_bbox ∗)
(&bbox_f2d) before passing the information to XGL.

num_pt_lists
The number of elements in pl[].

pl A pointer to the first element of an array of Xgl_pt_list structures, which are
defined as

typedef struct {
Xgl_pt_type pt_type; /∗ type of point ∗/
Xgl_bbox ∗bbox; /∗ optional box containing

all points ∗/
Xgl_usgn32 num_pts; /∗ number of points ∗/
Xgl_usgn32 num_data_values; /∗ number of data values at

each point ∗/
Xgl_pt_ptr_union pts; /∗ union of pointers to array

of points ∗/
} Xgl_pt_list;

Each pl[i] specifies the vertices of a simple polygon.

pl[i].pt_type specifies the type of the points in pl[i].pts. Note that all points in pl[]
must have the same Xgl_pt_type.

pl[i].bbox specifies a bounding box for the i’th polygon. If XGL_FACET_FLAG_-
SIDES_ARE_3 or XGL_FACET_FLAG_SIDES_ARE_4 are set, this bounding box is ignored,
since it takes longer to process the bounding box data than to clip the triangle or
quadrilateral directly.

pl[i].num_pts is the number of points in the array pts. Specifically, it is the number
of vertices in the i’th simple polygon. If XGL_FACET_FLAG_SIDES_ARE_3 or XGL_-
FACET_FLAG_SIDES_ARE_4 are set, the number of vertices in each polygon is known.
In that case, the value of pl[i].num_pts is ignored.

pl[i].num_data_values specifies the number of data values. Specifically, it is the
number of data values per vertex in the i’th simple polygon. This value is looked
into only if the pl[i].pt_type is specified as having data values. For more informa-
tion on how the data values are used, see xgl_polygon(3).

470 modified February 1995

XGL Graphics Library xgl_multi_simple_polygon (3)

pl[i].pts is a union of pointers, one of which points to the array of points that
make up the vertices of the i’th simple polygon. The value of pl[i].pt_type deter-
mines the interpretation of this union.

For further details about this union of pointers and the effect of pl[i].pt_type and
facets→facet_type on how facets are colored, see xgl_polygon(3). These details
are the same for all primitives that draw polygons.

If vertices with flag information are used, the flag bits are interpreted as specified
in xgl_polygon(3).

FACET
COLORING

Generally, a facet refers to a single polygon, which might be either a general or simple
polygon. The Context attributes specify how this facet is to be colored. The vertex point
type pl[i].pt_type and the facet type facet_type also interact to affect the color of the
polygon. The model is simple: The point and facet types determine how the normal and
base colors of each vertex are obtained. Then the Context attributes are applied to color
the facet. For more information about facet coloring, see xgl_polygon(3).

RETURN VALUE Nothing is returned.

SEE ALSO xgl_polygon(3)

XGL_3D_CTX_DEPTH_CUE_COLOR(3)
XGL_3D_CTX_DEPTH_CUE_INTERP(3)
XGL_3D_CTX_DEPTH_CUE_MODE(3)
XGL_3D_CTX_DEPTH_CUE_REF_PLANES(3)
XGL_3D_CTX_DEPTH_CUE_SCALE_FACTORS(3)
XGL_3D_CTX_LIGHTS(3)
XGL_3D_CTX_LIGHT_NUM(3)
XGL_3D_CTX_LIGHT_SWITCHES(3)
XGL_3D_CTX_SURF_BACK_AMBIENT(3)
XGL_3D_CTX_SURF_BACK_COLOR(3)
XGL_3D_CTX_SURF_BACK_COLOR_SELECTOR(3)
XGL_3D_CTX_SURF_BACK_DIFFUSE(3)
XGL_3D_CTX_SURF_BACK_DMAP(3)
XGL_3D_CTX_SURF_BACK_DMAP_NUM(3)
XGL_3D_CTX_SURF_BACK_DMAP_SWITCHES(3)
XGL_3D_CTX_SURF_BACK_FILL_STYLE(3)
XGL_3D_CTX_SURF_BACK_FPAT(3)
XGL_3D_CTX_SURF_BACK_FPAT_POSITION(3)
XGL_3D_CTX_SURF_BACK_ILLUMINATION(3)
XGL_3D_CTX_SURF_BACK_LIGHT_COMPONENT(3)
XGL_3D_CTX_SURF_BACK_SPECULAR(3)
XGL_3D_CTX_SURF_BACK_SPECULAR_COLOR(3)
XGL_3D_CTX_SURF_BACK_SPECULAR_POWER(3)
XGL_3D_CTX_SURF_BACK_TRANSP(3)
XGL_3D_CTX_SURF_FACE_CULL(3)

modified February 1995 471

xgl_multi_simple_polygon (3) XGL Graphics Library

XGL_3D_CTX_SURF_FACE_DISTINGUISH(3)
XGL_3D_CTX_SURF_FRONT_AMBIENT(3)
XGL_3D_CTX_SURF_FRONT_DIFFUSE(3)
XGL_3D_CTX_SURF_FRONT_DMAP(3)
XGL_3D_CTX_SURF_FRONT_DMAP_NUM(3)
XGL_3D_CTX_SURF_FRONT_DMAP_SWITCHES(3)
XGL_3D_CTX_SURF_FRONT_ILLUMINATION(3)
XGL_3D_CTX_SURF_FRONT_LIGHT_COMPONENT(3)
XGL_3D_CTX_SURF_FRONT_SPECULAR(3)
XGL_3D_CTX_SURF_FRONT_SPECULAR_COLOR(3)
XGL_3D_CTX_SURF_FRONT_SPECULAR_POWER(3)
XGL_3D_CTX_SURF_FRONT_TRANSP(3)
XGL_3D_CTX_SURF_GEOM_NORMAL(3)
XGL_3D_CTX_SURF_NORMAL_FLIP(3)
XGL_3D_CTX_SURF_SILHOUETTE_EDGE_FLAG(3)
XGL_3D_CTX_SURF_TRANSP_BLEND_EQ(3)
XGL_3D_CTX_SURF_TRANSP_METHOD(3)
XGL_CTX_EDGE_AA_BLEND_EQ(3)
XGL_CTX_EDGE_AA_FILTER_SHAPE(3)
XGL_CTX_EDGE_AA_FILTER_WIDTH(3)
XGL_CTX_EDGE_ALT_COLOR(3)
XGL_CTX_EDGE_CAP(3)
XGL_CTX_EDGE_COLOR(3)
XGL_CTX_EDGE_JOIN(3)
XGL_CTX_EDGE_MITER_LIMIT(3)
XGL_CTX_EDGE_PATTERN(3)
XGL_CTX_EDGE_STYLE(3)
XGL_CTX_EDGE_WIDTH_SCALE_FACTOR(3)
XGL_CTX_PLANE_MASK(3)
XGL_CTX_ROP(3)
XGL_CTX_SURF_AA_BLEND_EQ(3)
XGL_CTX_SURF_AA_FILTER_SHAPE(3)
XGL_CTX_SURF_AA_FILTER_WIDTH(3)
XGL_CTX_SURF_EDGE_FLAG(3)
XGL_CTX_SURF_FRONT_COLOR(3)
XGL_CTX_SURF_FRONT_COLOR_SELECTOR(3)
XGL_CTX_SURF_FRONT_FILL_STYLE(3)
XGL_CTX_SURF_FRONT_FPAT(3)
XGL_CTX_SURF_FRONT_FPAT_POSITION(3)
XGL_CTX_SURF_INTERIOR_RULE(3)
XGL_CTX_THRESHOLD(3)

NOTES All points in pl[] must have the same Xgl_pt_type.

472 modified February 1995

XGL Graphics Library xgl_multi_simple_polygon (3)

2D point types will not work with a 3D Context, and vice versa.

Only XGL_FACET_NONE or XGL_FACET_COLOR should be used in facets→facet_type for 2D
Contexts.

The exact appearance of non-planar polygons when projected on the viewing surface is
hardware-dependent.

The results of rendering degenerate polygons is hardware-dependent.

modified February 1995 473

xgl_multiarc (3) XGL Graphics Library

NAME xgl_multiarc − draws a list of arcs

SYNOPSIS #include <xgl/xgl.h>

void xgl_multiarc (
Xgl_ctx ctx,
Xgl_arc_list ∗arc_list);

DESCRIPTION
Purpose This operator draws a list of arcs of a circle according to the graphics state described in

the Context ctx. Each arc in the list is transformed by the current transformation matrix
(see XGL_CTX_VIEW_TRANS(3) and XGL_CTX_MODEL_TRANS(3)) and drawn in the plane of
the view surface in the case of 2D Contexts. When calling xgl_multiarc with a 3D Context,
the arcs are rendered in the plane described by the two direction vectors provided with
each arc. The result is then projected using the current set of Transforms, so that all of
the standard 3D pipeline applies. In the case of 3D arcs, the arcs are approximated as
polygons, using the following context attributes:

XGL_CTX_NURBS_CURVE_APPROX(3)
XGL_CTX_NURBS_CURVE_APPROX_VAL(3)
XGL_CTX_MAX_TESSELLATION(3)
XGL_CTX_MIN_TESSELLATION(3)

Parameters ctx The XGL 2D or 3D Context containing the graphics state used when processing
xgl_multiarc(3).

arc_list A pointer to the list of arcs to draw. It is a structure defined as:
typedef struct {

Xgl_usgn32 num_arcs; /∗ number of arcs ∗/
Xgl_multiarc_type type; /∗ data type of multiarc ∗/
Xgl_bbox ∗bbox; /∗ optional box containing all arcs ∗/
union { /∗ union of pointers to arcs ∗/

Xgl_arc_i2d ∗i2d;
Xgl_arc_f2d ∗f2d;
Xgl_arc_d2d ∗d2d;
Xgl_arc_f3d ∗f3d;
Xgl_arc_af3d ∗af3d;
Xgl_arc_d3d ∗d3d;
Xgl_arc_ad3d ∗ad3d;

} arcs;
} Xgl_arc_list;

arc_list→num_arcs is the number of arcs in the list.

arc_list→type is the data type of the center point and radius used to define each
arc in the list. Xgl_multiarc_type defines the following enumerated values as
possible multiarc data types:

XGL_MULTIARC_I2D

474 modified August 1994

XGL Graphics Library xgl_multiarc (3)

XGL_MULTIARC_F2D
XGL_MULTIARC_D2D
XGL_MULTIARC_F3D
XGL_MULTIARC_AF3D.
XGL_MULTIARC_D3D
XGL_MULTIARC_AD3D.

Ultimately, this determines which member of the union arc_list→arcs (see below)
points to the arc data.

arc_list→bbox points to a structure describing a bounding box for all of the arcs in
the list. This may be NULL to indicate that no bounding box information is avail-
able.

arc_list→arcs is a union of pointers, one of which points to the array of structures
that defines each arc in the list. For example, the arc_list→arcs structure for mul-
tiarcs of type XGL_MULTIARC_I2D looks as follows:

typedef struct {
Xgl_pt_flag_i2d center; /∗ center point ∗/
Xgl_usgn32 radius; /∗ radius of curvature ∗/
float start_angle, /∗ start and stop angles ∗/

stop_angle;
} Xgl_arc_i2d;

The structure for multiarcs of type XGL_MULTIARC_F2D is similar except that the
data types of the center and radius members of the structure become
Xgl_pt_flag_f2d and float, respectively.

The arc_list→arcs structure for multiarcs of type XGL_MULTIARC_F3D looks as fol-
lows:

typedef struct {
Xgl_pt_flag_f3d center; /∗ center point ∗/
Xgl_pt_f3d dir[3]; /∗ dir. vectors and normal vector ∗/
Xgl_boolean dir_normalized; /∗ TRUE when dir[] are unit vectors ∗/
Xgl_boolean dir_normal; /∗ TRUE if dir[2] is a valid vector ∗/
float radius; /∗ radius of curvature ∗/
float start_angle, /∗ start and stop angles ∗/

stop_angle;
} Xgl_arc_f3d;

See xgl_struct(3) for structures defining other multiarcs in the list.

The first two elements of the field dir[3] contain the two orthogonal vectors in
model coordinates (MC) used to define the plane on which the arc is going to be
built. The third element is used to specify a normal vector for the arc.

dir_normalized should be set to TRUE when the vectors are normalized (that is, unit
vectors). dir_normal should be set to TRUE when the third element of dir is set to a

modified August 1994 475

xgl_multiarc (3) XGL Graphics Library

valid vector. Otherwise, XGL computes a normal vector to the arc, using the two
vectors specified for the arc plane.

When specifying type XGL_MULTIARC_AF3D for multiarcs, XGL generates annotation
arcs. In other words, the arcs generated by XGL are guaranteed to be in a plane
parallel to the projection plane. In this particular case, the center of the arc
represents the reference point and is specified in model coordinates. The radius
is specified in virtual device coordinates (VDC). There is no need to specify any
direction vectors, and the primitive is always front-facing.

Execution As shown above, each arc is specified by an application-defined center point, radius, and
start and stop angle. The center and radius are specified in the application’s coordinate
system (except in the case of annotation arcs, as shown before). The start_angle is the
angle from the positive x-axis in the plane of the circle to the start point of the arc. The
stop_angle is the angle from the positive x-axis in the plane of the circle to the end point.
The angles are specified in radians. The arc traverses a counterclockwise (CCW) path
from start angle to stop angle when the x-axis points right and the y-axis points up. This
path is clockwise (CW) when the x-axis points right and the y-axis points down. The start
and stop angles are defined with these senses, CCW or CW, respectively.

The arcs can be displayed in one of three ‘‘styles,’’ depending on the current setting for
the attribute XGL_CTX_ARC_FILL_STYLE(3). If the arc is closed (that is, if XGL_CTX_ARC_FILL_-
STYLE is set to either XGL_ARC_SECTOR or XGL_ARC_CHORD), the following surface-fill attri-
butes control the appearance of the enclosed area of each arc:

XGL_CTX_SURF_FRONT_FILL_STYLE(3)
XGL_CTX_SURF_FRONT_FPAT(3)
XGL_CTX_SURF_FRONT_FPAT_POSITION(3)
XGL_CTX_SURF_FRONT_COLOR(3)

In 3D, the following equivalent attributes for back-facing polygons also apply:
XGL_3D_CTX_SURF_BACK_FILL_STYLE(3)
XGL_3D_CTX_SURF_BACK_FPAT(3)
XGL_3D_CTX_SURF_BACK_FPAT_POSITION(3)
XGL_3D_CTX_SURF_BACK_COLOR(3)

The lighting and shading attributes are also in effect.

In addition, edges can be drawn around closed arcs. To enable edge drawing, first set the
attribute XGL_CTX_SURF_EDGE_FLAG(3) to TRUE. Then, edges will be drawn around each arc
within the arc list that has set the flag associated with its center point. Note that the center
point of each arc always has a flag associated with it. XGL assumes the application will
initialize these flags (to either 0 or 1) before calling xgl_multiarc. If the flags are not ini-
tialized, unpredictable results may occur.

For open arcs (arcs drawn when XGL_CTX_ARC_FILL_STYLE is set to XGL_ARC_OPEN), the line
attributes control how the arc is drawn on the Raster. The following attributes are used:

XGL_CTX_LINE_STYLE(3)
XGL_CTX_LINE_PATTERN(3)
XGL_CTX_LINE_WIDTH_SCALE_FACTOR(3)
XGL_CTX_LINE_CAP(3)

476 modified August 1994

XGL Graphics Library xgl_multiarc (3)

XGL_CTX_LINE_JOIN(3)
XGL_CTX_LINE_MITER_LIMIT(3)
XGL_CTX_LINE_COLOR(3)
XGL_CTX_LINE_ALT_COLOR(3)

For a more complete summary of these attributes, see the description for xgl_-
multipolyline(3).

RETURN VALUE Nothing is returned.

SEE ALSO xgl_multipolyline(3)
xgl_object_get(3)
xgl_object_set(3)

XGL_CTX_ARC_FILL_STYLE(3)
XGL_CTX_NURBS_CURVE_APPROX(3)
XGL_CTX_NURBS_CURVE_APPROX_VAL(3)
XGL_CTX_MAX_TESSELLATION(3)
XGL_CTX_MIN_TESSELLATION(3)
XGL_3D_CTX_SURF_BACK_AMBIENT(3)
XGL_3D_CTX_SURF_BACK_COLOR(3)
XGL_3D_CTX_SURF_BACK_COLOR_SELECTOR(3)
XGL_3D_CTX_SURF_BACK_DIFFUSE(3)
XGL_3D_CTX_SURF_BACK_DMAP(3)
XGL_3D_CTX_SURF_BACK_DMAP_NUM(3)
XGL_3D_CTX_SURF_BACK_DMAP_SWITCHES(3)
XGL_3D_CTX_SURF_BACK_FILL_STYLE(3)
XGL_3D_CTX_SURF_BACK_FPAT(3)
XGL_3D_CTX_SURF_BACK_FPAT_POSITION(3)
XGL_3D_CTX_SURF_BACK_ILLUMINATION(3)
XGL_3D_CTX_SURF_BACK_LIGHT_COMPONENT(3)
XGL_3D_CTX_SURF_BACK_SPECULAR(3)
XGL_3D_CTX_SURF_BACK_SPECULAR_COLOR(3)
XGL_3D_CTX_SURF_BACK_SPECULAR_POWER(3)
XGL_3D_CTX_SURF_BACK_TRANSP(3)
XGL_3D_CTX_SURF_DC_OFFSET(3)
XGL_3D_CTX_SURF_FACE_CULL(3)
XGL_3D_CTX_SURF_FACE_DISTINGUISH(3)
XGL_3D_CTX_SURF_FRONT_AMBIENT(3)
XGL_3D_CTX_SURF_FRONT_DIFFUSE(3)
XGL_3D_CTX_SURF_FRONT_DMAP(3)
XGL_3D_CTX_SURF_FRONT_DMAP_NUM(3)
XGL_3D_CTX_SURF_FRONT_DMAP_SWITCHES(3)
XGL_3D_CTX_SURF_FRONT_ILLUMINATION(3)
XGL_3D_CTX_SURF_FRONT_LIGHT_COMPONENT(3)
XGL_3D_CTX_SURF_FRONT_SPECULAR(3)
XGL_3D_CTX_SURF_FRONT_SPECULAR_COLOR(3)

modified August 1994 477

xgl_multiarc (3) XGL Graphics Library

XGL_3D_CTX_SURF_FRONT_SPECULAR_POWER(3)
XGL_3D_CTX_SURF_FRONT_TRANSP(3)
XGL_3D_CTX_SURF_GEOM_NORMAL(3)
XGL_3D_CTX_SURF_NORMAL_FLIP(3)
XGL_3D_CTX_SURF_SILHOUETTE_EDGE_FLAG(3)
XGL_3D_CTX_SURF_TRANSP_BLEND_EQ(3)
XGL_3D_CTX_SURF_TRANSP_METHOD(3)
XGL_CTX_SURF_EDGE_FLAG(3)
XGL_CTX_SURF_FRONT_COLOR(3)
XGL_CTX_SURF_FRONT_COLOR_SELECTOR(3)
XGL_CTX_SURF_FRONT_FILL_STYLE(3)
XGL_CTX_SURF_FRONT_FPAT(3)
XGL_CTX_SURF_FRONT_FPAT_POSITION(3)
XGL_CTX_SURF_INTERIOR_RULE(3)
XGL_CTX_LINE_AA_BLEND_EQ(3)
XGL_CTX_LINE_AA_FILTER_SHAPE(3)
XGL_CTX_LINE_AA_FILTER_WIDTH(3)
XGL_CTX_LINE_ALT_COLOR(3)
XGL_CTX_LINE_CAP(3)
XGL_CTX_LINE_COLOR(3)
XGL_CTX_LINE_COLOR_SELECTOR(3)
XGL_CTX_LINE_JOIN(3)
XGL_CTX_LINE_MITER_LIMIT(3)
XGL_CTX_LINE_PATTERN(3)
XGL_CTX_LINE_STYLE(3)
XGL_CTX_LINE_WIDTH_SCALE_FACTOR(3)

NOTES The center point of each arc must have the flag associated with it set to either 0 or 1 (to
turn the arc’s edge either Off or On). If the flag is not set by the application, unpredictable
results may occur.

If the difference between the start_angle and stop_angle of an arc is greater than 2π radi-
ans, then an arc is drawn instead of a circle. For example, if start_angle is 0.0 radians and
stop_angle is (5∗π/2) radians, then an arc is drawn as if the stop_angle were π/2 radians.

478 modified August 1994

XGL Graphics Library xgl_multicircle (3)

NAME xgl_multicircle − draws a list of circles

SYNOPSIS #include <xgl/xgl.h>

void xgl_multicircle (
Xgl_ctx ctx,
Xgl_circle_list ∗circle_list);

DESCRIPTION
Purpose This operator draws a list of circles according to the graphics state described in the Con-

text ctx. The center and radius of each circle in the list are transformed by the current
transformation matrix (see XGL_CTX_VIEW_TRANS(3) and XGL_CTX_MODEL_TRANS(3)) and
drawn in the plane of the view surface.

If the composite view transformation has unequal scaling along the x and y axes, each cir-
cle is drawn as an ellipse, in the case of 2D Contexts. When calling xgl_multicircle with a
3D Context, the circles are ‘‘drawn’’ in the plane described by the two direction vectors
provided with each circle. The result is then projected using the current set of
Transforms, so that all the standard 3D pipeline applies. In the case of 3D circles, the cir-
cles are approximated as polygons, using the following context attributes:

XGL_CTX_NURBS_CURVE_APPROX(3)
XGL_CTX_NURBS_CURVE_APPROX_VAL(3)
XGL_CTX_MAX_TESSELLATION(3)
XGL_CTX_MIN_TESSELLATION(3)

Parameters ctx The XGL 2D or 3D Context containing the graphics state used when processing
xgl_multicircle(3).

circle_list
A pointer to the list of circles to draw. It is a structure defined as:

typedef struct {
Xgl_usgn32 num_circles; /∗ number of circles ∗/
Xgl_multicircle_type type; /∗ data type of multicircle ∗/
Xgl_bbox ∗bbox; /∗ optional box contain. all circles ∗/
union { /∗ union of pointers to circles ∗/

Xgl_circle_i2d ∗i2d;
Xgl_circle_f2d ∗f2d;
Xgl_circle_d2d ∗d2d;
Xgl_circle_f3d ∗f3d;
Xgl_circle_af3d ∗af3d;
Xgl_circle_d3d ∗d3d;
Xgl_circle_ad3d ∗ad3d;

} circles;
} Xgl_circle_list;

circle_list→num_circles is the number of circles in the list.

circle_list→type is the data type of the points used to specify the center and radius

modified September 1995 479

xgl_multicircle (3) XGL Graphics Library

of each circle in the list. Xgl_multicircle_type defines the following enumerated
values as possible multicircle data types:

XGL_MULTICIRCLE_I2D
XGL_MULTICIRCLE_F2D
XGL_MULTICIRCLE_D2D
XGL_MULTICIRCLE_F3D
XGL_MULTICIRCLE_AF3D
XGL_MULTICIRCLE_D3D
XGL_MULTICIRCLE_AD3D

Ultimately, this determines which member of the union circle_list→circles (see
below) points to the circle data.

circle_list→bbox points to a structure describing a bounding box for all of the cir-
cles in the list. This may be NULL to indicate that no bounding box information is
available.

circle_list→circles is a union of pointers, one of which points to the array of struc-
tures that define each circle in the list. For example, the circle_list→circles struc-
ture for multicircles of type XGL_MULTICIRCLE_I2D looks as follows:

typedef struct {
Xgl_pt_flag_i2d center; /∗ center point of circle ∗/
Xgl_usgn32 radius; /∗ radius of circle ∗/

} Xgl_circle_i2d;

The structure for multicircles of type XGL_MULTICIRCLE_F2D is similar except that
the data types of the center and radius members of the structure become
Xgl_pt_flag_f2d and float, respectively.

The circle_list→circles structure for multicircles of type XGL_MULTICIRCLE_F3D
looks as follows:

typedef struct {
Xgl_pt_flag_f3d center; /∗ center point of circle ∗/
Xgl_pt_f3d dir[3]; /∗ dir. vectors and normal vector ∗/
Xgl_boolean dir_normalized; /∗ TRUE when dir[] are unit vectors ∗/
Xgl_boolean dir_normal; /∗ TRUE if dir[2] is a valid vector ∗/
Xgl_usgn32 radius; /∗ radius of circle ∗/

} Xgl_circle_f3d;

See xgl_struct(3) for structures defining other multicircles in the list.

The first two elements of the field dir[3] contain the two orthogonal vectors in
model coordinates (MC), used to define the plane on which the circle is going to
be built. The third element is used to specify a normal vector for the circle.

dir_normalized should be set to TRUE when the vectors are normalized (that is, unit
vectors). dir_normal should be set to TRUE when the third element of dir is set to a
valid vector. Otherwise, XGL computes a normal vector to the circle, using the
two vectors specified for the circle plane.

480 modified September 1995

XGL Graphics Library xgl_multicircle (3)

When specifying type XGL_MULTICIRCLE_AF3D for multicircles, XGL generates
annotation circles. In other words, the circles generated by XGL are guaranteed to
be in a plane parallel to the projection plane. In this case, the center of each circle
represents the reference point and is specified in model coordinates. The radius is
specified in virtual device coordinates (VDC). There is no need to specify any
direction vectors, and the primitive is always front-facing.

In all other cases, the center and radius are specified in the application’s coordi-
nate system.

Execution Edges can be drawn around the circles. To do so, first set the attribute XGL_CTX_SURF_-

EDGE_FLAG(3) to TRUE. Edges are drawn around each circle within the circle list that has
the flag associated with its center point set. Note that the center point of each circle always
has a flag associated with it. XGL assumes the application will initialize these flags (to
either 0 or 1) before calling xgl_multicircle. If the flags are not initialized, unpredictable
results may occur.

Circles act like 2D or 3D polygons (see xgl_polygon(3)) in that the following surface-fill
attributes control the appearance of the enclosed area of each circle:

XGL_CTX_SURF_FRONT_FILL_STYLE(3)
XGL_CTX_SURF_FRONT_FPAT(3)
XGL_CTX_SURF_FRONT_FPAT_POSITION(3)
XGL_CTX_SURF_FRONT_COLOR(3)

In 3D, the following equivalent attributes for back-facing polygons also apply:
XGL_3D_CTX_SURF_BACK_FILL_STYLE(3)
XGL_3D_CTX_SURF_BACK_FPAT(3)
XGL_3D_CTX_SURF_BACK_FPAT_POSITION(3)
XGL_3D_CTX_SURF_BACK_COLOR(3)

The lighting and shading attributes are also in effect.

RETURN VALUE Nothing is returned.

SEE ALSO xgl_object_get(3)
xgl_object_set(3)

XGL_CTX_NURBS_CURVE_APPROX(3)
XGL_CTX_NURBS_CURVE_APPROX_VAL(3)
XGL_CTX_MAX_TESSELLATION(3)
XGL_CTX_MIN_TESSELLATION(3)
XGL_3D_CTX_SURF_BACK_AMBIENT(3)
XGL_3D_CTX_SURF_BACK_COLOR(3)
XGL_3D_CTX_SURF_BACK_COLOR_SELECTOR(3)
XGL_3D_CTX_SURF_BACK_DIFFUSE(3)
XGL_3D_CTX_SURF_BACK_DMAP(3)
XGL_3D_CTX_SURF_BACK_DMAP_NUM(3)
XGL_3D_CTX_SURF_BACK_DMAP_SWITCHES(3)
XGL_3D_CTX_SURF_BACK_FILL_STYLE(3)

modified September 1995 481

xgl_multicircle (3) XGL Graphics Library

XGL_3D_CTX_SURF_BACK_FPAT(3)
XGL_3D_CTX_SURF_BACK_FPAT_POSITION(3)
XGL_3D_CTX_SURF_BACK_ILLUMINATION(3)
XGL_3D_CTX_SURF_BACK_LIGHT_COMPONENT(3)
XGL_3D_CTX_SURF_BACK_SPECULAR(3)
XGL_3D_CTX_SURF_BACK_SPECULAR_COLOR(3)
XGL_3D_CTX_SURF_BACK_SPECULAR_POWER(3)
XGL_3D_CTX_SURF_BACK_TRANSP(3)
XGL_3D_CTX_SURF_DC_OFFSET(3)
XGL_3D_CTX_SURF_FACE_CULL(3)
XGL_3D_CTX_SURF_FACE_DISTINGUISH(3)
XGL_3D_CTX_SURF_FRONT_AMBIENT(3)
XGL_3D_CTX_SURF_FRONT_DIFFUSE(3)
XGL_3D_CTX_SURF_FRONT_DMAP(3)
XGL_3D_CTX_SURF_FRONT_DMAP_NUM(3)
XGL_3D_CTX_SURF_FRONT_DMAP_SWITCHES(3)
XGL_3D_CTX_SURF_FRONT_ILLUMINATION(3)
XGL_3D_CTX_SURF_FRONT_LIGHT_COMPONENT(3)
XGL_3D_CTX_SURF_FRONT_SPECULAR(3)
XGL_3D_CTX_SURF_FRONT_SPECULAR_COLOR(3)
XGL_3D_CTX_SURF_FRONT_SPECULAR_POWER(3)
XGL_3D_CTX_SURF_FRONT_TRANSP(3)
XGL_3D_CTX_SURF_GEOM_NORMAL(3)
XGL_3D_CTX_SURF_NORMAL_FLIP(3)
XGL_3D_CTX_SURF_SILHOUETTE_EDGE_FLAG(3)
XGL_3D_CTX_SURF_TRANSP_BLEND_EQ(3)
XGL_3D_CTX_SURF_TRANSP_METHOD(3)
XGL_CTX_SURF_EDGE_FLAG(3)
XGL_CTX_SURF_FRONT_COLOR(3)
XGL_CTX_SURF_FRONT_COLOR_SELECTOR(3)
XGL_CTX_SURF_FRONT_FILL_STYLE(3)
XGL_CTX_SURF_FRONT_FPAT(3)
XGL_CTX_SURF_FRONT_FPAT_POSITION(3)
XGL_CTX_SURF_INTERIOR_RULE(3)

NOTES The center point of each circle must have the flag associated with it set to either 0 or 1 (to
turn the circle’s edge either Off or On). If the flag is not initialized by the application,
unpredictable results can occur.

482 modified September 1995

XGL Graphics Library xgl_multimarker (3)

NAME xgl_multimarker − draws a list of Markers

SYNOPSIS #include <xgl/xgl.h>

void xgl_multimarker (
Xgl_ctx ctx,
Xgl_pt_list ∗pl);

DESCRIPTION
Purpose This operator draws a Marker (a symbol specified by the XGL_CTX_MARKER(3) attribute) at

each control point in pl→pts. The control points in pl→pts are transformed and clipped.
If a control point is outside the clipping bounds, no Marker is drawn. If the control point
is inside the clipping bounds, a Marker is drawn; however, the symbol is clipped at the
clipping bounds.

The Marker is drawn in a plane parallel to the plane of the front of the Device. For 3D
Contexts, this means its size is not affected by the perspective transformation — Markers
at different z values have the same size. The size of the Marker is controlled by the attri-
bute XGL_CTX_MARKER_SCALE_FACTOR(3). The size (width or height) is the result of the
XGL_CTX_MARKER_SCALE_FACTOR multiplied by the nominal Marker size, which is 1 pixel.

The attribute XGL_CTX_MARKER_COLOR(3) sets the color of all the Markers in the primitive.
If a color is supplied at each point (see the discussion of valid point types below), how-
ever, the point color is used instead.

Other attributes that affect the appearance of a Marker are:
XGL_CTX_PLANE_MASK(3)
XGL_CTX_ROP(3)
XGL_3D_CTX_DEPTH_CUE_MODE(3)
XGL_3D_CTX_DEPTH_CUE_COLOR(3)

Marker Definitions The application can use Markers that it has created (see XGL_MARKER_DESCRIPTION(3) for
a description of application-defined Markers) or it can use pre-defined Markers. (For a
list of pre-defined Markers, see XGL_CTX_MARKER(3).)

The Markers are drawn on the Device associated with the Context ctx. The Context may
be 2D or 3D, and it determines the types of points that can be given to xgl_multimarker.

If the application data associated with this Marker object is a pointer to a floating point
scale factor, when rendering through the CGM stream pipeline, the marker will be
stroked out and scaled by a factor equal to the product of XGL_CTX_MARKER_SCALE_-

FACTOR(3) and the float pointed to by XGL_OBJ_APPLICATION_DATA(3). If there is no object
application data associated with the marker, then a marker other than one of the
predefined markers will be rendered by the CGM stream pipeline as a dot marker. Note
that the XGL_OBJ_APPLICATION_DATA(3) scale factor only applies to the CGM stream pipe-
line. See the XGL Programmer’s Guide for an example.

modified August 1994 483

xgl_multimarker (3) XGL Graphics Library

Parameters ctx The XGL 2D or 3D Context containing the graphics state used when processing
xgl_multimarker(3).

pl A pointer to an Xgl_pt_list structure that is defined as:
typedef struct {

Xgl_pt_type pt_type; /∗ type of point ∗/
Xgl_bbox ∗bbox; /∗ optional box containing

all points ∗/
Xgl_usgn32 num_pts; /∗ number of points ∗/
Xgl_usgn32 num_data_values; /∗ number of data values at

each point ∗/
Xgl_pt_ptr_union pts; /∗ union of pointers to array

of points ∗/
} Xgl_pt_list;

A Marker is drawn at each point specified in the array pl→pts.

For a complete description of the possible structures, see xgl_pt_list(3) and xgl_struct(3).

RETURN VALUE Nothing is returned.

SEE ALSO xgl_object_get(3)
xgl_object_set(3)

XGL_CTX_PLANE_MASK(3)
XGL_CTX_ROP(3)
XGL_3D_CTX_DEPTH_CUE_MODE(3)
XGL_3D_CTX_DEPTH_CUE_COLOR(3)
XGL_CTX_MARKER(3)
XGL_CTX_MARKER_AA_BLEND_EQ(3)
XGL_CTX_MARKER_AA_FILTER_SHAPE(3)
XGL_CTX_MARKER_AA_FILTER_WIDTH(3)
XGL_CTX_MARKER_COLOR(3)
XGL_CTX_MARKER_COLOR_SELECTOR(3)
XGL_CTX_MARKER_SCALE_FACTOR(3)

484 modified August 1994

XGL Graphics Library xgl_multipolyline (3)

NAME xgl_multipolyline − draws a list of unconnected polylines

SYNOPSIS #include <xgl/xgl.h>

void xgl_multipolyline (
Xgl_ctx ctx,
Xgl_bbox ∗bounding_box,
Xgl_usgn32 num_pt_lists,
Xgl_pt_list pl[]);

DESCRIPTION
Purpose This operator draws a list of unconnected polylines according to the graphics state

described in the Context ctx. A polyline is defined by a list of n vertices v(0), v(1), ...,
v(n-1). The vertices form a series of connected line segments where a line segment is
defined by vertex v(i) and v(i+1), for i = 0 to (n-1).

Attributes The line segments are drawn in the style defined by the attribute XGL_CTX_LINE_STYLE(3).
XGL_CTX_LINE_PATTERN(3) is the attribute used to specify a pattern, if the line style needs
one. The width of a line is controlled by XGL_CTX_LINE_WIDTH_SCALE_FACTOR(3). The
scale factor is multiplied by the nominal line width (which is 1 pixel) to arrive at the
width of a line segment in device coordinates (DC).

The appearance of the end of a polyline is controlled by XGL_CTX_LINE_CAP(3). The attri-
butes XGL_CTX_LINE_JOIN(3) and XGL_CTX_LINE_MITER_LIMIT(3) control the appearance of
the joint between line segments within a polyline.

XGL_CTX_LINE_COLOR(3) controls the color of the polyline, and XGL_CTX_LINE_ALT_-

COLOR(3) specifies the color used in some patterned lines. If color information is supplied
at each vertex of the polyline, however, the line segment from vertex v(i) to v(i+1) for i = 0
to (n-1) is drawn in the color of vertex v(i+1). For 3D polylines, the attribute XGL_3D_CTX_-

LINE_COLOR_INTERP(3) controls whether the vertex colors are interpolated. If the polyline
has the vertex colors and XGL_3D_CTX_LINE_COLOR_INTERP is FALSE, the line segments are
drawn in constant colors as described above. If XGL_3D_CTX_LINE_COLOR_INTERP is TRUE,
the color is interpolated from vertex v(i) to v(i+1).

Other attributes that affect the appearance of this primitive are:
XGL_CTX_PLANE_MASK(3)
XGL_CTX_ROP(3)
XGL_3D_CTX_DEPTH_CUE_MODE(3)
XGL_3D_CTX_DEPTH_CUE_COLOR(3)

Parameters ctx The XGL 2D or 3D Context containing the graphics state used when processing
xgl_multipolyline(3).

bounding_box
A pointer to a bounding box structure that defines a bounding box for all the
points in each polyline. Put another way, this is the bounding box of all the indi-
vidual bounding boxes for each polyline. A bounding box can be used by XGL to

modified August 1994 485

xgl_multipolyline (3) XGL Graphics Library

optimize the clipping operations when rendering the primitive. For more infor-
mation about bounding box usage in XGL, see XGL_CTX_THRESHOLD(3). If the
application does not want to provide bounding box information, bounding_box
must be NULL. If the bounding box is given, it is the application’s responsibility
to ensure that it is correct.

In releases of XGL before 3.0, if an application provided a bounding box, then
bbox was a pointer to a structure of type Xgl_bbox. In XGL 3.0 and subsequent
releases, this approach is still supported for backward compatibility, but applica-
tions now can store bounding box information in any of six new structures,
which are similar to Xgl_bbox:

Xgl_bbox_i2d
Xgl_bbox_f2d
Xgl_bbox_f3d
Xgl_bbox_status
Xgl_bbox_d2d
Xgl_bbox_d3d

In place of a structure of type Xgl_bbox, an application can use one of the above
structures. For example, if an application uses a variable called bbox_f2d of type
Xgl_bbox_f2d, it needs to cast the pointer to this structure using (Xgl_bbox ∗)
(&bbox_f2d) before passing the information to XGL.

num_pt_lists
The number of point lists passed to xgl_multipolyline(3). The pl element is the
first element of an array of Xgl_pt_list structures. num_pt_lists is the size of the
array.

pl[i] An Xgl_pt_list structure, which is defined as:
typedef struct {

Xgl_pt_type pt_type; /∗ type of point ∗/
Xgl_bbox ∗bbox; /∗ optional box containing

all points ∗/
Xgl_usgn32 num_pts; /∗ number of points ∗/
Xgl_usgn32 num_data_values; /∗ number of data values at

each point ∗/
Xgl_pt_ptr_union pts; /∗ union of pointers to array

of points ∗/
} Xgl_pt_list;

Note that all points in pl[] must have the same Xgl_pt_type.

For a complete description of the possible data structures, see xgl_pt_list(3) and xgl_-
struct(3).

If normals are specified as part of the point list, xgl_multipolyline(3) ignores this infor-
mation.

486 modified August 1994

XGL Graphics Library xgl_multipolyline (3)

If points with flag information are used, a bit within the flag word at each point deter-
mines if specific line segments within the polyline are drawn (1 means draw it). The bit
can be manipulated using macros defined in the header file xgl.h. XGL_DRAW_EDGE
corresponds with the flag bit (0x1 in the flag word). The macro XGL_SET_EDGE_FLAG(PT)
can be used to set the flag when given a pointer to a point containing flag information.
Likewise, a macro is available to clear the flag bit. For more information, see the include
file xgl.h. The line segment draw flag is interpreted as follows:

The line segment from v(i) to v(i+1) is drawn if the XGL_DRAW_EDGE bit (0x1) of the flag
v(i+1) is set to 1, for i = 0 to n-1. The other bits of the flag word are reserved for XGL use
and future extensions.

RETURN VALUE Nothing is returned.

SEE ALSO xgl_object_get(3)
xgl_object_set(3)

XGL_CTX_PLANE_MASK(3)
XGL_CTX_ROP(3)
XGL_3D_CTX_DEPTH_CUE_MODE(3)
XGL_3D_CTX_DEPTH_CUE_COLOR(3)
XGL_CTX_LINE_AA_BLEND_EQ(3)
XGL_CTX_LINE_AA_FILTER_SHAPE(3)
XGL_CTX_LINE_AA_FILTER_WIDTH(3)
XGL_CTX_LINE_ALT_COLOR(3)
XGL_CTX_LINE_CAP(3)
XGL_CTX_LINE_COLOR(3)
XGL_CTX_LINE_COLOR_SELECTOR(3)
XGL_CTX_LINE_JOIN(3)
XGL_CTX_LINE_MITER_LIMIT(3)
XGL_CTX_LINE_PATTERN(3)
XGL_CTX_LINE_STYLE(3)
XGL_CTX_LINE_WIDTH_SCALE_FACTOR(3)
XGL_3D_CTX_LINE_COLOR_INTERP(3)
XGL_CTX_THRESHOLD(3)

NOTES All the vertices, in all of the polylines, must be of the same point type.

modified August 1994 487

xgl_multirectangle (3) XGL Graphics Library

NAME xgl_multirectangle − draws a list of rectangles

SYNOPSIS #include <xgl/xgl.h>

void xgl_multirectangle (
Xgl_ctx ctx,
Xgl_rect_list ∗rect_list);

DESCRIPTION
Purpose This operator draws a list of rectangles according to the graphics state described in the

Context ctx. Each rectangle in the list is transformed by the current transformation matrix
(see XGL_CTX_VIEW_TRANS(3) and XGL_CTX_MODEL_TRANS(3)) and drawn in the plane of
the view surface.

Parameters ctx The XGL 2D or 3D Context containing the graphics state used when processing
xgl_multirectangle(3).

rect_list A pointer to the list of rectangles to draw. It is a structure defined as:
typedef struct {

Xgl_usgn32 num_rects; /∗ number of rectangles ∗/
Xgl_multirect_type rect_type; /∗ data type of multirectangle ∗/
Xgl_bbox ∗bbox; /∗ optional box contain. all rectangles ∗/
union { /∗ union of pointers to rectangles ∗/

Xgl_rect_i2d ∗i2d;
Xgl_rect_f2d ∗f2d;
Xgl_rect_d2d ∗d2d;
Xgl_rect_f3d ∗f3d;
Xgl_rect_af3d ∗af3d;
Xgl_rect_d3d ∗d3d;
Xgl_rect_ad3d ∗ad3d;

} rects;
} Xgl_rect_list;

rect_list→num_rects is the number of rectangles in the list.

rect_list→type is the data type of the points used to specify two diagonal corners
for each rectangle in the list. Xgl_multirect_type defines the following
enumerated values as possible multirectangle data types:

XGL_MULTIRECT_I2D
XGL_MULTIRECT_F2D
XGL_MULTIRECT_D2D
XGL_MULTIRECT_F3D
XGL_MULTIRECT_AF3D
XGL_MULTIRECT_D3D
XGL_MULTIRECT_AD3D

Ultimately, this determines which member of the union rect_list→rects (see
below) points to the rectangle data.

488 modified September 1995

XGL Graphics Library xgl_multirectangle (3)

rect_list→bbox points to a structure describing a bounding box for all of the rec-
tangles in the list. This may be NULL to indicate that no bounding box information
is available.

rect_list→rects is a union of pointers, one of which points to the array of struc-
tures that defines each rectangle in the list. For example, the rect_list→rects
structure for multirectangles of type XGL_MULTIRECT_I2D looks as follows:

typedef struct {
Xgl_pt_flag_i2d corner_min; /∗ diagonal corners of rectangle ∗/
Xgl_pt_i2d corner_max;

} Xgl_rect_i2d;

The structure for multirectangles of type XGL_MULTIRECT_F2D is similar, except
that the data types of the two corner points become Xgl_pt_flag_f2d and
Xgl_pt_f2d, respectively.

The rect_list→rects structure for multirectangles of type XGL_MULTIRECT_F3D looks
as follows:

typedef struct {
Xgl_pt_flag_f3d corner_min; /∗ reference corner of rectangle ∗/
Xgl_pt_f2d corner_max; /∗ width and height in MC ∗/
Xgl_pt_f3d dir[3]; /∗ dir. vectors and normal vector ∗/
Xgl_boolean dir_normalized; /∗ TRUE when dir[] are unit vectors ∗/
Xgl_boolean dir_normal; /∗ TRUE if dir[2] is a valid vector ∗/

} Xgl_rect_f3d;

The first two elements of the field dir contain the two orthogonal vectors in
model coordinates (MC), used to define the plane on which the rectangle is going
to be built, using corner_min as a reference point. The third element is used to
specify a normal vector for the rectangle.

Unlike the 2D case, corner_max represents the width and height of the rectangle in
MC.

dir_normalized should be set to TRUE when the vectors are normalized (that is, unit
vectors).

dir_normal should be set to TRUE when the third element of dir is set to a valid
vector. Otherwise, XGL computes a normal vector to the rectangle, using the two
vectors specified for the rectangle plane.

When specifying type XGL_MULTIRECT_AF3D for multirectangles, XGL generates
annotation rectangles. In other words, the rectangles generated by XGL are
guaranteed to be in a plane that is parallel to the projection plane. In this particu-
lar case, the reference corner of each rectangle is specified in model coordinates,
and the other corner represents the virtual device coordinates (VDC) dimensions
in x and y of the rectangle. There is no need to specify any direction vectors, and
the primitive is always front-facing.

Except when rendering annotation rectangles, both corner points are specified in
the application’s coordinate system with the corner_min point defining the corner

modified September 1995 489

xgl_multirectangle (3) XGL Graphics Library

at (x-min, y-min) and the corner_max point the one at (x-max, y-max). For exam-
ple, in a standard Cartesian coordinate system (x increasing to the right and y
increasing upward), corner_min would be the lower left corner of the rectangle,
and corner_max would be the upper right corner.

Execution Edges can be drawn around the rectangles. To enable edge drawing, first set the attribute
XGL_CTX_SURF_EDGE_FLAG(3) to TRUE. Edges will be drawn around each rectangle within
the rectangle list that has the flag associated with its corner_min point set. Note that the
corner_min point of each rectangle always has a flag associated with it. XGL assumes the
application will initialize these flags (to either 0 or 1) before calling xgl_multirectangle. If
the flags are not initialized, unpredictable results may occur.

Rectangles act like 2D polygons or 3D polygons (see xgl_polygon(3)) in that the following
surface fill attributes control the appearance of the enclosed area of each rectangle:

XGL_CTX_SURF_FRONT_FILL_STYLE(3)
XGL_CTX_SURF_FRONT_FPAT(3)
XGL_CTX_SURF_FRONT_FPAT_POSITION(3)
XGL_CTX_SURF_FRONT_COLOR(3)

In 3D, the following equivalent attributes for back-facing polygons also apply:
XGL_3D_CTX_SURF_BACK_FILL_STYLE(3)
XGL_3D_CTX_SURF_BACK_FPAT(3)
XGL_3D_CTX_SURF_BACK_FPAT_POSITION(3)
XGL_3D_CTX_SURF_BACK_COLOR(3)

The lighting and shading attributes are also in effect.

RETURN VALUE Nothing is returned.

SEE ALSO xgl_object_get(3)
xgl_object_set(3)

XGL_3D_CTX_SURF_BACK_AMBIENT(3)
XGL_3D_CTX_SURF_BACK_COLOR(3)
XGL_3D_CTX_SURF_BACK_COLOR_SELECTOR(3)
XGL_3D_CTX_SURF_BACK_DIFFUSE(3)
XGL_3D_CTX_SURF_BACK_DMAP(3)
XGL_3D_CTX_SURF_BACK_DMAP_NUM(3)
XGL_3D_CTX_SURF_BACK_DMAP_SWITCHES(3)
XGL_3D_CTX_SURF_BACK_FILL_STYLE(3)
XGL_3D_CTX_SURF_BACK_FPAT(3)
XGL_3D_CTX_SURF_BACK_FPAT_POSITION(3)
XGL_3D_CTX_SURF_BACK_ILLUMINATION(3)
XGL_3D_CTX_SURF_BACK_LIGHT_COMPONENT(3)
XGL_3D_CTX_SURF_BACK_SPECULAR(3)
XGL_3D_CTX_SURF_BACK_SPECULAR_COLOR(3)
XGL_3D_CTX_SURF_BACK_SPECULAR_POWER(3)
XGL_3D_CTX_SURF_BACK_TRANSP(3)

490 modified September 1995

XGL Graphics Library xgl_multirectangle (3)

XGL_3D_CTX_SURF_DC_OFFSET(3)
XGL_3D_CTX_SURF_FACE_CULL(3)
XGL_3D_CTX_SURF_FACE_DISTINGUISH(3)
XGL_3D_CTX_SURF_FRONT_AMBIENT(3)
XGL_3D_CTX_SURF_FRONT_DIFFUSE(3)
XGL_3D_CTX_SURF_FRONT_DMAP(3)
XGL_3D_CTX_SURF_FRONT_DMAP_NUM(3)
XGL_3D_CTX_SURF_FRONT_DMAP_SWITCHES(3)
XGL_3D_CTX_SURF_FRONT_ILLUMINATION(3)
XGL_3D_CTX_SURF_FRONT_LIGHT_COMPONENT(3)
XGL_3D_CTX_SURF_FRONT_SPECULAR(3)
XGL_3D_CTX_SURF_FRONT_SPECULAR_COLOR(3)
XGL_3D_CTX_SURF_FRONT_SPECULAR_POWER(3)
XGL_3D_CTX_SURF_FRONT_TRANSP(3)
XGL_3D_CTX_SURF_GEOM_NORMAL(3)
XGL_3D_CTX_SURF_NORMAL_FLIP(3)
XGL_3D_CTX_SURF_SILHOUETTE_EDGE_FLAG(3)
XGL_3D_CTX_SURF_TRANSP_BLEND_EQ(3)
XGL_3D_CTX_SURF_TRANSP_METHOD(3)
XGL_CTX_SURF_EDGE_FLAG(3)
XGL_CTX_SURF_FRONT_COLOR(3)
XGL_CTX_SURF_FRONT_COLOR_SELECTOR(3)
XGL_CTX_SURF_FRONT_FILL_STYLE(3)
XGL_CTX_SURF_FRONT_FPAT(3)
XGL_CTX_SURF_FRONT_FPAT_POSITION(3)
XGL_CTX_SURF_INTERIOR_RULE(3)

NOTES The corner_min point of each rectangle must have the flag associated with it set to either 0
or 1 (to turn the rectangle’s edge either Off or On). If the flag is not initialized by the
application, unpredictable results can occur.

This operator fills rectangles in an X11-compliant fashion where for filled rectangles, the
lower-right row of pixels within the rectangle will not be rendered.

modified September 1995 491

xgl_nurbs_curve (3) XGL Graphics Library

NAME xgl_nurbs_curve − draws a NURBS curve

SYNOPSIS #include <xgl/xgl.h>

void xgl_nurbs_curve (
Xgl_ctx ctx,
Xgl_nurbs_curve ∗curve,
Xgl_bounds_f1d ∗range, /∗ optional ∗/
Xgl_curve_color_spline ∗color_spline); /∗ optional ∗/

DESCRIPTION This operator generates a NURBS curve of specified order based on the list of knots in the
parameter space, list of control points, and the parametric range. Either rational or non-
rational curve is selected, depending on the point type.

Parameters ctx The XGL 2D and 3D Context containing the graphics state used when processing
xgl_nurbs_curve(3).

curve A pointer to an Xgl_nurbs_curve structure that is defined as follows:
typedef struct {

Xgl_usgn32 order; /∗ Order of curve ∗/
Xgl_usgn32 num_knots; /∗ Number of knots ∗/
float ∗knot_vector; /∗ Knot vector ∗/
Xgl_pt_list ctrl_pts; /∗ List of control points ∗/

} Xgl_nurbs_curve;

curve→order must be a positive integer.

curve→num_knots is the number of knots and it must be equal to the number of
control points plus the order of the spline.

curve→knot_vector is an array of floats which must form a non-decreasing
sequence.

curve→ctrl_pts is an array of points. The weight of a rational control point cannot
be less than or equal to zero.

range The range parameters define the parametric limits of the displayed curve.

The Xgl_bounds_f1d structure is defined as follows:
typedef struct {

float bmin;
float bmax;

} Xgl_bounds_f1d;

The minimum value should not be greater than the maximum value, and both
values should lie between curve→knot_vector[order-1] and
curve→knot_vector[curve→num_knots-order]. If the range parameter is NULL, the
whole curve is displayed.

492 modified August 1994

XGL Graphics Library xgl_nurbs_curve (3)

color_spline
A NURBS curve which describes the color distribution over the curve’s geometry.
Color spline is supported only in 3D and the parameter is ignored in 2D. It is a
pointer to an Xgl_curve_color_spline structure that is defined as follows:

typedef struct {
Xgl_usgn32 order;
Xgl_usgn32 num_knots;
float ∗knot_vector;
Xgl_color_homogeneous ∗colors;

} Xgl_curve_color_spline;

The order, num_knots, and knot_vector elements should meet the same require-
ment as structure Xgl_nurbs_curve above. Color splines need not have the same
order, rationality or knot sequence as the geometry spline.

The control points of this color spline are color coordinates. The color coordi-
nates can be in 3D (non-rational) or 3D+w (rational). The values of the color
spline control point coordinates may be outside the range normally associated
with the color value. The vertex color for any point on the mapped geometry of
the curve can be determined by evaluating the color spline at the corresponding
parameter value.

The Xgl_color_homogeneous union is defined as follows:
typedef union {

Xgl_color_rgbw rgbw;
} Xgl_color_homogeneous;

It is a union of all color types (except index) with w coordinate.

The Xgl_color_rgbw structure is defined as follows:
typedef struct {

float r, g, b;
float w;

} Xgl_color_rgbw;

If the non-rational color is used, w should be set to 1. The color type has to be
consistent with the device color type and should not be indexed.

All attributes that affect line-rendering primitives also apply to this primitive.

The quality of smoothness of the curve can be controlled with the XGL_CTX_NURBS_-

CURVE_APPROX(3) and XGL_CTX_NURBS_CURVE_APPROX_VAL(3) attributes. The former
selects the approximation method, and the latter selects the reference measure used in the
approximation of the curve. The minimum and the maximum number of segments used
to display the curve can be controlled with XGL_CTX_MIN_TESSELLATION(3) and XGL_CTX_-

MAX_TESSELLATION(3) attributes.

RETURN VALUE Nothing is returned.

modified August 1994 493

xgl_nurbs_curve (3) XGL Graphics Library

SEE ALSO XGL_CTX_NURBS_CURVE_APPROX(3)
XGL_CTX_NURBS_CURVE_APPROX_VAL(3)
XGL_CTX_MAX_TESSELLATION(3)
XGL_CTX_MIN_TESSELLATION(3)
XGL_CTX_LINE_AA_BLEND_EQ(3)
XGL_CTX_LINE_AA_FILTER_SHAPE(3)
XGL_CTX_LINE_AA_FILTER_WIDTH(3)
XGL_CTX_LINE_ALT_COLOR(3)
XGL_CTX_LINE_CAP(3)
XGL_CTX_LINE_COLOR(3)
XGL_CTX_LINE_COLOR_SELECTOR(3)
XGL_CTX_LINE_JOIN(3)
XGL_CTX_LINE_MITER_LIMIT(3)
XGL_CTX_LINE_PATTERN(3)
XGL_CTX_LINE_STYLE(3)
XGL_CTX_LINE_WIDTH_SCALE_FACTOR(3)

NOTES The relationship between supported orders and curve approximation methods for non-
rational curves is as follows:

Order Supported Approximation Method

1-15 All methods supported
16-25 XGL_CURVE_CONST_PARAM_SUBDIV_BETWEEN_KNOTS only

The relationship between supported orders and curve approximation methods for
rational curves is as follows:

Order Supported Approximation Method

1-8 All methods supported
9-25 XGL_CURVE_CONST_PARAM_SUBDIV_BETWEEN_KNOTS only

Curves of order greater than 25 are not supported. Also, rendering of curves of high
order (greater than 6) is likely to be very slow.

XGL currently supports the following point types in xgl_nurbs_curve operator:

Xgl_pt_i2d, Xgl_pt_f2d, Xgl_pt_i2h, Xgl_pt_f2h, Xgl_pt_f3d, Xgl_pt_f3h.

494 modified August 1994

XGL Graphics Library xgl_nurbs_surface (3)

NAME xgl_nurbs_surface − draws a NURBS surface

SYNOPSIS #include <xgl/xgl.h>

void xgl_nurbs_surface (
Xgl_ctx ctx,
Xgl_nurbs_surf ∗surface,
Xgl_trim_loop_list ∗trimming,
Xgl_nurbs_surf_simple_geom ∗hints, /∗ optional ∗/
Xgl_surf_color_spline ∗color_spline, /∗ optional ∗/
Xgl_surf_data_spline_list ∗data_splines); /∗ not supported ∗/

DESCRIPTION This operator generates a NURBS surface of specified order based on the list of knots in the
parameter space, list of control points, and the trimming information. Either rational or
non-rational surface is selected, depending on the point type.

Parameters ctx The XGL 3D Context containing the graphics state used when processing xgl_-
nurbs_surface(3).

surface A pointer to an Xgl_nurbs_surf structure that is defined as follows:
typedef struct {

Xgl_usgn32 order_u; /∗ Order of surface in u ∗/
Xgl_usgn32 order_v; /∗ Order of surface in v ∗/
Xgl_usgn32 num_knots_u; /∗ Number of knots in u ∗/
float ∗knot_vector_u; /∗ Knot vector in u ∗/
Xgl_usgn32 num_knots_v; /∗ Number of knots in v ∗/
float ∗knot_vector_v; /∗ Knot vector in v ∗/
Xgl_pt_list ctrl_pts; /∗ Row-ordered list of control

points (index changes faster
in u direction than v). ∗/

} Xgl_nurbs_surf;

surface→order must be a positive integer.

surface→num_knots is the number of knots. In both U and V, the number of knots
must be equal to the corresponding number of control points plus the order of
the spline. For example, the number of knots in U is calculated as follows:

ctrl_pts_u + order_u

surface→knot_vector is an array of floats. In both U and V, the knot vector must
form a non-decreasing sequence.

surface→ctrl_pts is an array of points. The weight of a rational control point can-
not be less than or equal to zero. The number of control points is the product of
the number of points in U and the number of points in V.

(num_knots_u - order_u) ∗ (num_knots_v - order_v)

modified October 1996 495

xgl_nurbs_surface (3) XGL Graphics Library

trimming
The trimming parameters define the trimmed portion of the displayed surface. If
trimming is NULL, the whole surface between its U and V parametric ranges is
displayed. Note that the NURBS code cannot trim surfaces with an order above
9 in either the U or V direction.

Trimming information consists of a list of trim loops. Each trim loop consists of
a list of trim curves, connected to each other in a head to tail fashion.

Xgl_trim_loop_list structure is defined as follows:
typedef struct {

Xgl_usgn32 num_loops;
Xgl_trim_loop ∗trim_loops;

} Xgl_trim_loop_list;

list→num_loops is the number of trim loops.

list→trim_loops is a list of trim curves. It is a structure defined as:
typedef struct {

Xgl_usgn32 num_curves;
Xgl_trim_curve ∗curves;

} Xgl_trim_loop;

loop→num_curves is the number of trim curves in a loop.

loop→curves is an array of 2D NURBS curves, defined in the parameter space of
the surface.

Each trim loop must be closed, continuous and should not intersect itself or
another trim loop. Moreover, valid trim loops must satisfy the odd winding rule
and curve orientation rule. For more information about trimming, please refer to
the XGL Programmer’s Guide.

Xgl_trim_curve structure is defined as follows:
typedef struct {

Xgl_usgn32 order; /∗ Order of curve ∗/
Xgl_usgn32 num_knots; /∗ Number of knots ∗/
float ∗knot_vector; /∗ Knot vector ∗/
Xgl_bounds_f1d range; /∗ Range of parameter ∗/
Xgl_pt_list ctrl_pts; /∗ List of control points ∗/

/∗
∗ Trim curve structure fields (applicable only to trim curves)
∗/

Xgl_boolean trim_curve_vis; /∗ Highlight trim curve ∗/
Xgl_trim_curve_approx trim_curve_approx; /∗ Approx type ∗/
float trim_curve_approx_value; /∗ Approx value ∗/

} Xgl_trim_curve;

curve→order must be greater than or equal to 2.

496 modified October 1996

XGL Graphics Library xgl_nurbs_surface (3)

curve→num_knots is the number of knots which must be equal to the correspond-
ing number of control points plus the order of the trim curve.

curve→knot_vector is an array of floats. The knots must form a non-decreasing
sequence.

curve→range is the range parameters defining the parametric limits of the trim
curve.

Xgl_bounds_f1d structure is defined as follows:
typedef struct {

float bmin;
float bmax;

} Xgl_bounds_f1d;

The minimum value should not be greater than the maximum value, and both
values should lie between curve→knot_vector[order-1] and curve→knot_vector-
[curve→num_knots-order].

curve→ctrl_pts is an array of points. Trim curve can be rational or non-rational,
depending on the point type. The weight of a rational control point cannot be
less than or equal to zero.

curve→trim_curve_vis controls the highlighting of the trim curve. If set, the trim
curve will be highlighted using current edge attributes.

curve→trim_curve_approx and trim_curve_approx_value controls the quality of
smoothness of a trim curve. The former selects the approximation method, and
the latter selects the reference measure used in the approximation of the curve. If
the Xgl_trim_curve_approx is XGL_TRIM_CURVE_CONST_PARAM_SUBDIV_BETWEEN_-
KNOTS, trim curve is rendered with specified (by trim_curve_approx_value)
number of segments between each adjacent pair of knots. If the Xgl_trim_-
curve_approx is XGL_TRIM_CURVE_VIEW_DEPENDENT, trim curve tessellation is con-
trolled by the tessellation of the surface. In this case, a value of curve→trim_-
curve_approx_value between 0 and 1 indicates the relative quality of the trim
curves compared to surface quality. Higher values mean better relative quality.

Xgl_trim_curve_approx structure is defined as:
typedef enum {

XGL_TRIM_CURVE_CONST_PARAM_SUBDIV_BETWEEN_KNOTS, /∗ static tessellation ∗/
XGL_TRIM_CURVE_VIEW_DEPENDENT /∗ dynamic tessellation ∗/

} Xgl_trim_curve_approx;

hints An application may optionally supply hints about the shape of the surface. If the
surface is planar, spherical, cylindrical, or conical, XGL can optimize the render-
ing. Xgl_nurbs_surf_simple_geom structure is defined as:

typedef struct {
Xgl_nurbs_surf_type surf_type;
Xgl_nurbs_surf_geom_desc geom_desc;

} Xgl_nurbs_surf_simple_geom;

modified October 1996 497

xgl_nurbs_surface (3) XGL Graphics Library

The geom→surf_type structure for different nurbs surfaces is as follows:
typedef enum {

XGL_SURF_NURBS, /∗ default, no optimization ∗/
XGL_SURF_PLANAR, /∗ surface is planar ∗/
XGL_SURF_CYLINDRICAL, /∗ surface is cylindrical ∗/
XGL_SURF_CONICAL, /∗ surface is conical ∗/
XGL_SURF_SPHERICAL, /∗ surface is spherical ∗/

} Xgl_nurbs_surf_type;

The geom→geom_desc structure for nurbs surface geometry is as follows:
typedef union {

Xgl_plane planar;
struct {

Xgl_pt_f3d axial_pt;
Xgl_pt_f3d axis_dir;
float radius;
Xgl_boolean norm_flag;

} cylindrical;
struct {

Xgl_pt_f3d apex;
Xgl_pt_f3d axis_dir;
float cone_angle; /∗ 0 = zero width cone (lin
Xgl_boolean norm_flag;

} conical;
struct {

Xgl_pt_f3d center;
float radius;
Xgl_boolean norm_flag;

} spherical;
} Xgl_nurbs_surf_geom_desc;

A planar surface is defined by a point on it and the normal. A cylindrical surface
is defined by an axis, a point on the axis, and a radius. A conical surface is
defined by its apex, axis, and an angle between the axis and the side. Finally, a
spherical surface is defined by its center and a radius. The norm_flag for cylindr-
ical, conical, and spherical surfaces indicates whether normals to the surface
point outwards (TRUE) or inwards (FALSE).

All the NURBS parameters to xgl_nurbs_surface operator must always be pro-
vided even though simple geometry hints is specified. It is the application’s
responsibility to ensure that provided hint does not conflict with the geometry
defined by the NURBS parameters. If this is not the case, lighting may be incorrect.

498 modified October 1996

XGL Graphics Library xgl_nurbs_surface (3)

color_spline
The color_spline is a nurbs surface which describes the color distribution over
the primitive’s geometry. It is a pointer to an Xgl_surf_color_spline structure that
is defined as follows:

typedef struct {
Xgl_usgn32 order_u;
Xgl_usgn32 order_v;
Xgl_usgn32 num_knots_u;
float ∗knot_vector_u;
Xgl_usgn32 num_knots_v;
float ∗knot_vector_v;
Xgl_color_homogeneous ∗colors;

} Xgl_surf_color_spline;

The order, num_knots, and knot_vector elements should meet the same require-
ment as structure Xgl_nurbs_surface above. Color splines need not have the same
order, rationality or knot sequence as the geometry spline.

spline→colors is an array of control points of the color spline. The number of con-
trol points is calculated in the same way as the number of control points
(surface→ctrl_pts) discussed above.

The control points of the color spline are color coordinates. The color coordi-
nates could be in 3D (non-rational) or 3D+w (rational). The values of the color
spline control point coordinates may be outside the range normally associated
with the color value. The vertex color for any point on the mapped geometry of
the surface can be determined by evaluating the color spline at the corresponding
parameter value.

Xgl_color_homogeneous union is defined as follows:
typedef union {

Xgl_color_rgbw rgbw;
} Xgl_color_homogeneous;

It is a union of all color types (except index) with w coordinate.

Xgl_color_rgbw structure is defined as follows:
typedef struct {

float r, g, b;
float w;

} Xgl_color_rgbw;

If the non-rational color is used, w should be set to 1. The color type has to be
consistent with the device color type and should not be indexed.

modified October 1996 499

xgl_nurbs_surface (3) XGL Graphics Library

Attributes The quality of smoothness of the surface can be controlled with the XGL_CTX_NURBS_-

SURF_APPROX(3), XGL_CTX_NURBS_SURF_APPROX_VAL_U(3) and XGL_CTX_NURBS_SURF_-

APPROX_VAL_V(3) attributes. The first selects the approximation method, and the remain-
ing two selects the reference measures used in the approximation of the surface. The
minimum and the maximum number of segments used to display the surface can be con-
trolled with XGL_CTX_MIN_TESSELLATION(3) and XGL_CTX_MAX_TESSELLATION(3) attributes.

The trim loops constitute the edges of the B-spline. If the B-spline is untrimmed, the
parametric boundaries constitute the edges. Edges are rendered using current edge attri-
butes. Individual trim curves may be turned on or off by using the curve→trim_curve_vis
flag.

The XGL_CTX_SURF_FRONT_FILL_STYLE(3) and the XGL_3D_CTX_SURF_BACK_FILL_STYLE(3)
attributes control the appearance of the interior surface. If it is XGL_SURF_FILL_SOLID, the
interior is filled entirely. If it is XGL_SURF_FILL_HOLLOW, the surface is rendered as lines
along the edges. These lines have the surface color and may be shaded. If it is XGL_SURF_-
FILL_EMPTY, then the interior is not drawn.

Optionally, iso-parametric curves and level curves (currently not implemented) may be
rendered on top of the surface. Curves are rendered using current line attributes. Also,
edges of approximating facets may be displayed using current edge attributes. The XGL_-

CTX_NURBS_SURF_PARAM_STYLE(3) attribute controls the appearance of the surface.

RETURN VALUE Nothing is returned.

SEE ALSO XGL_CTX_NURBS_SURF_APPROX(3)
XGL_CTX_NURBS_SURF_APPROX_VAL_U(3)
XGL_CTX_NURBS_SURF_APPROX_VAL_V(3)
XGL_CTX_NURBS_SURF_PARAM_STYLE(3)
XGL_CTX_NURBS_SURF_ISO_CURVE_PLACEMENT(3)
XGL_CTX_NURBS_SURF_ISO_CURVE_U_NUM(3)
XGL_CTX_NURBS_SURF_ISO_CURVE_V_NUM(3)
XGL_CTX_MAX_TESSELLATION(3)
XGL_CTX_MIN_TESSELLATION(3)
XGL_CTX_EDGE_AA_BLEND_EQ(3)
XGL_CTX_EDGE_AA_FILTER_SHAPE(3)
XGL_CTX_EDGE_AA_FILTER_WIDTH(3)
XGL_CTX_EDGE_ALT_COLOR(3)
XGL_CTX_EDGE_CAP(3)
XGL_CTX_EDGE_COLOR(3)
XGL_CTX_EDGE_JOIN(3)
XGL_CTX_EDGE_MITER_LIMIT(3)
XGL_CTX_EDGE_PATTERN(3)
XGL_CTX_EDGE_STYLE(3)
XGL_CTX_EDGE_WIDTH_SCALE_FACTOR(3)
XGL_CTX_LINE_AA_BLEND_EQ(3)

500 modified October 1996

XGL Graphics Library xgl_nurbs_surface (3)

XGL_CTX_LINE_AA_FILTER_SHAPE(3)
XGL_CTX_LINE_AA_FILTER_WIDTH(3)
XGL_CTX_LINE_ALT_COLOR(3)
XGL_CTX_LINE_CAP(3)
XGL_CTX_LINE_COLOR(3)
XGL_CTX_LINE_COLOR_SELECTOR(3)
XGL_CTX_LINE_JOIN(3)
XGL_CTX_LINE_MITER_LIMIT(3)
XGL_CTX_LINE_PATTERN(3)
XGL_CTX_LINE_STYLE(3)
XGL_CTX_LINE_WIDTH_SCALE_FACTOR(3)
XGL_3D_CTX_LINE_COLOR_INTERP(3)
XGL_3D_CTX_SURF_BACK_AMBIENT(3)
XGL_3D_CTX_SURF_BACK_COLOR(3)
XGL_3D_CTX_SURF_BACK_COLOR_SELECTOR(3)
XGL_3D_CTX_SURF_BACK_DIFFUSE(3)
XGL_3D_CTX_SURF_BACK_DMAP(3)
XGL_3D_CTX_SURF_BACK_DMAP_NUM(3)
XGL_3D_CTX_SURF_BACK_DMAP_SWITCHES(3)
XGL_3D_CTX_SURF_BACK_FILL_STYLE(3)
XGL_3D_CTX_SURF_BACK_FPAT(3)
XGL_3D_CTX_SURF_BACK_FPAT_POSITION(3)
XGL_3D_CTX_SURF_BACK_ILLUMINATION(3)
XGL_3D_CTX_SURF_BACK_LIGHT_COMPONENT(3)
XGL_3D_CTX_SURF_BACK_SPECULAR(3)
XGL_3D_CTX_SURF_BACK_SPECULAR_COLOR(3)
XGL_3D_CTX_SURF_BACK_SPECULAR_POWER(3)
XGL_3D_CTX_SURF_BACK_TRANSP(3)
XGL_3D_CTX_SURF_DC_OFFSET(3)
XGL_3D_CTX_SURF_FACE_CULL(3)
XGL_3D_CTX_SURF_FACE_DISTINGUISH(3)
XGL_3D_CTX_SURF_FRONT_AMBIENT(3)
XGL_3D_CTX_SURF_FRONT_DIFFUSE(3)
XGL_3D_CTX_SURF_FRONT_DMAP(3)
XGL_3D_CTX_SURF_FRONT_DMAP_NUM(3)
XGL_3D_CTX_SURF_FRONT_DMAP_SWITCHES(3)
XGL_3D_CTX_SURF_FRONT_ILLUMINATION(3)
XGL_3D_CTX_SURF_FRONT_LIGHT_COMPONENT(3)
XGL_3D_CTX_SURF_FRONT_SPECULAR(3)
XGL_3D_CTX_SURF_FRONT_SPECULAR_COLOR(3)
XGL_3D_CTX_SURF_FRONT_SPECULAR_POWER(3)
XGL_3D_CTX_SURF_FRONT_TRANSP(3)
XGL_3D_CTX_SURF_GEOM_NORMAL(3)
XGL_3D_CTX_SURF_NORMAL_FLIP(3)
XGL_3D_CTX_SURF_SILHOUETTE_EDGE_FLAG(3)

modified October 1996 501

xgl_nurbs_surface (3) XGL Graphics Library

XGL_3D_CTX_SURF_TRANSP_BLEND_EQ(3)
XGL_3D_CTX_SURF_TRANSP_METHOD(3)
XGL_CTX_SURF_EDGE_FLAG(3)
XGL_CTX_SURF_FRONT_COLOR(3)
XGL_CTX_SURF_FRONT_COLOR_SELECTOR(3)
XGL_CTX_SURF_FRONT_FILL_STYLE(3)
XGL_CTX_SURF_FRONT_FPAT(3)
XGL_CTX_SURF_FRONT_FPAT_POSITION(3)
XGL_CTX_SURF_INTERIOR_RULE(3)

NOTES The relationship between supported orders and surface approximation methods for non-
rational surfaces is as follows:

Order Supported Approximation Method

1-10 All methods supported
11-25 XGL_SURF_CONST_PARAM_SUBDIV_BETWEEN_KNOTS only

Non-rational surfaces of order greater than 25 are not supported.

The relationship between supported orders and surface approximation methods for
rational surfaces is as follows:

Order Supported Approximation Method

1-6 All methods supported
7-10 XGL_SURF_CONST_PARAM_SUBDIV_BETWEEN_KNOTS only

Rational surfaces of order greater than 10 are not supported.

The relationship between supported orders and trim curve approximation methods for
non-rational trim curves is as follows:

Order Supported Approximation Method

2-10 All methods supported
11-15 XGL_TRIM_CURVE_CONST_PARAM_SUBDIV_BETWEEN_KNOTS only

The relationship between supported orders and trim curve approximation methods for
rational trim curves is as follows:

Order Supported Approximation Method

2-6 All methods supported
7-15 XGL_TRIM_CURVE_CONST_PARAM_SUBDIV_BETWEEN_KNOTS only

Trim curves of order greater than 15 are not supported.

Rendering of surfaces of high U, V, or trim curve orders (greater than 6) is likely to be
very slow.

XGL currently supports the following point types in xgl_nurbs_surface operator:

Xgl_pt_f3d, Xgl_pt_f3h.

502 modified October 1996

XGL Graphics Library xgl_object_create (3)

NAME xgl_object_create − creates an XGL Object

SYNOPSIS #include <xgl/xgl.h>

Xgl_object xgl_object_create (
Xgl_sys_state sys_state,
Xgl_obj_type type,
Xgl_obj_desc ∗desc,
<attribute-list> attributes);

DESCRIPTION
Purpose This operator creates a new XGL Object of type defined by type and initializes it with the

settings given by the specified attributes in the attributes list. xgl_object_create(3) is used
to create any XGL Object, except the system state, which must be created using xgl_-
open(3).

When an Object is no longer needed in an application, it can be explicitly destroyed by
calling the xgl_object_destroy(3) operator to free the resources associated with it.

Parameters sys_state
The handle to system state information for this XGL session. Use the value
returned by the call to xgl_open(3).

For more detailed information about this value, see XGL_SYS_STATE(3) and its
corresponding man pages.

type,desc
type specifies the type of Object to create, and desc is a descriptor pointing to
additional information required at Object creation time. desc is needed only in a
few instances as specified below. When it is not needed, the application should
pass NULL as the value for it. Xgl_obj_desc is a union defined as:

typedef union {
struct {
Xgl_window_type type; /∗ window type ∗/
void ∗desc;

} win_ras;
char ∗sfont_name;
struct {
Xgl_object raster;

} accum_buf;
struct {
char ∗name;
void ∗desc;

} stream;
} Xgl_obj_desc;

modified August 1994 503

xgl_object_create (3) XGL Graphics Library

type can take the following values. For more detailed information about these
values, see their corresponding man pages.

XGL_2D_CTX(3)
Creates a 2D Context object. The parameter desc is ignored.

XGL_3D_CTX(3)
Creates a 3D Context object. The parameter desc is ignored.

XGL_CGM_DEV(3)
Creates a CGM Metafile Device object. The parameter desc is ignored.

XGL_CMAP(3)
Creates a Color Map object. The parameter desc is ignored.

XGL_DMAP_TEXTURE(3)
Creates a Data Map Texture object. The parameter desc is ignored.

XGL_GCACHE(3)
Creates a Geometry Cache (Gcache) object. The parameter desc is
ignored.

XGL_LIGHT(3)
Creates a Light object. The parameter desc is ignored.

XGL_LPAT(3)
Creates a Line Pattern object. The parameter desc is ignored.

XGL_MARKER(3)
Creates a user defined Marker object. The parameter desc is ignored.

XGL_MEM_RAS(3)
Creates a Memory Raster Device object. The parameter desc is ignored.

XGL_MIPMAP_TEXTURE(3)
Creates a MipMap Texture object. The parameter desc is ignored.

XGL_PCACHE(3)
Creates a Primitive Cache (Pcache) object. The parameter desc is
ignored.

XGL_SFONT(3)
Creates a Stroke Font object. The sfont_name field of the desc parameter
is set to point to the name of the font.

XGL_STREAM(3)
Creates a Stream Device object. The desc parameter is a pointer to an
Xgl_obj_desc union. The application needs to supply the information in
the stream field of the Xgl_obj_desc union. The stream structure consists
of two fields: name, which is the name identifying the specific device
pipeline, and desc, which is a pointer to device specific information that
may be required by this particular device pipeline.

XGL_TMAP(3)
Creates a Texture Map object. The parameter desc is ignored.

XGL_TRANS(3)

504 modified August 1994

XGL Graphics Library xgl_object_create (3)

Creates a Transform object. The parameter desc is ignored.

XGL_WIN_RAS(3)
Creates a Window Raster Device object. The parameter desc contains a
window type, which can be one of the Xgl_window_type enumerated
types (see xgl_enum_types(3)), and a window descriptor whose con-
tents depend on the window type.

attributes
A NULL-terminated list of attribute-value pairs that describe the initial state of the
Object. For each pair, the attribute name is followed by a value. For example,

xgl_object_create(sys_state, type, desc, att1, v1, att2, v2, NULL);

sets att1 to v1 and att2 to v2 as part of the Object creation process. Those Object
attributes not specified as parameters to the create operator are initialized to
default values.

After creating the Object, the values of its attributes can be inquired by the appli-
cation using the xgl_object_get(3) operator.

RETURN VALUE Xgl_object − A handle to an XGL Object, if successful.
NULL − If unsuccessful.

SEE ALSO xgl_object_destroy(3)
xgl_object_get(3)
xgl_object_set(3)
xgl_open(3)
xgl_enum_types(3)

XGL_2D_CTX(3)
XGL_3D_CTX(3)
XGL_CGM_DEV(3)
XGL_CMAP(3)
XGL_DMAP_TEXTURE(3)
XGL_GCACHE(3)
XGL_LIGHT(3)
XGL_LPAT(3)
XGL_MARKER(3)
XGL_MEM_RAS(3)
XGL_MIPMAP_TEXTURE(3)
XGL_PCACHE(3)
XGL_SFONT(3)
XGL_SYS_STATE(3)
XGL_STREAM(3)
XGL_TMAP(3)
XGL_TRANS(3)
XGL_WIN_RAS(3)

modified August 1994 505

xgl_object_create (3) XGL Graphics Library

NOTES A System State object must have been created with the xgl_open(3) operator before any
other XGL Object can be created.

506 modified August 1994

XGL Graphics Library xgl_object_destroy (3)

NAME xgl_object_destroy − destroys an XGL Object

SYNOPSIS #include <xgl/xgl.h>

void xgl_object_destroy (
Xgl_object handle);

DESCRIPTION This operator destroys the specified XGL Object by freeing all resources associated with it.
The Object is identified by the Object handle, which is passed to this operator as a param-
eter. The application can destroy only Objects that it has specifically created.

XGL may delay the actual destruction of an Object if it is still referenced by other Objects.

It is a good idea to destroy XGL Objects no longer used in a given application. This gives
the system an opportunity to reutilize all freed resources (mainly memory) for new
Objects. It also keeps the different internal lists used by XGL to a minimum size, thus
improving performance in referencing Objects.

RETURN VALUE Nothing is returned.

SEE ALSO xgl_object_create(3)

modified August 1994 507

xgl_object_get (3) XGL Graphics Library

NAME xgl_object_get − returns the value of an attribute

SYNOPSIS #include <xgl/xgl.h>

void xgl_object_get (
Xgl_object obj,
Xgl_attribute attr,
void ∗val);

DESCRIPTION This operator returns the value of the attribute attr associated with the XGL Object obj.
The parameter val is a pointer to a memory location into which XGL stores the retrieved
attribute’s value. The application program is responsible for ensuring that val points to a
memory area that is large enough to store the attribute’s value. The application also must
allocate the memory area. The man page for each attribute describes the data type that
should be passed to xgl_object_get to get each attribute.

The operator xgl_object_set(3) is used to assign a new value to an attribute.

RETURN VALUE Nothing is returned.

SEE ALSO xgl_object_set(3)

508 modified August 1994

XGL Graphics Library xgl_object_set (3)

NAME xgl_object_set − assigns a new value to an attribute

SYNOPSIS #include <xgl/xgl.h>

void xgl_object_set (
Xgl_object obj,
<attribute-list> attributes);

DESCRIPTION This operator assigns a given value to an attribute (or list of attributes) in the XGL Object
obj. Multiple attributes can be updated with a single call to xgl_object_set.

The parameter type <attribute-list> is used to indicate a NULL-terminated list of attribute-
value pairs. For each pair, the attribute name is followed by the given value. For exam-
ple,

xgl_object_set(obj, attribute1, value1, attribute2, value2, NULL);

sets attribute1 to value1 and attribute2 to value2 for the object obj.

The man page for each attribute describes the data type of the attribute value that is
passed to the xgl_object_set operator.

If XGL_SYS_ST_ERROR_DETECTION(3) is TRUE, the attribute-value list is scanned for invalid
values. If an error is found, it is reported and none of the attributes is set to the new
value. The application must ensure that all attributes have valid values.

The operator xgl_object_get(3) stores the value of a single attribute into an application-
specified block of memory.

RETURN VALUE Nothing is returned.

SEE ALSO xgl_object_get(3)

XGL_SYS_ST_ERROR_DETECTION(3)

modified August 1994 509

xgl_open (3) XGL Graphics Library

NAME xgl_open − opens XGL for use

SYNOPSIS #include <xgl/xgl.h>

Xgl_sys_state xgl_open (
<attribute-list> attributes);

DESCRIPTION This operator is used to begin an XGL session. A single System State object is created and
initialized when xgl_open(3) is invoked. If successful, a handle to the System State object
is returned. This object can only be destroyed by a subsequent call to xgl_close(3) using
the specified handle.

Only one XGL System State per process is permitted at any given time.

The application programmer can create a System State and set its attributes in the same
call by providing the correct arguments in the list of attributes for xgl_open. The attri-
butes of the System State are as follows:

The application program can set the error detection flag and the error notification function to
control and filter errors that are generated during an XGL session. For more details, see
the attributes XGL_SYS_ST_ERROR_DETECTION(3), and XGL_SYS_ST_ERROR_NOTIFICATION_-

FUNCTION(3).

The XGL_SYS_ST_SFONT_DIRECTORY(3) attribute gives the user the ability to specify a dif-
ferent path for the stroke fonts directory if the stroke fonts are not installed as specified by
the default procedures.

Finally, the read-only attribute XGL_SYS_ST_VERSION(3) can be used to determine which
version of XGL the application is currently using. This is useful for applications that use
different versions of XGL.

The xgl_open operator must be called before creating any other XGL object with xgl_-
object_create(3).

RETURN VALUE Xgl_sys_state − A handle to the System State object, if successful.
NULL − If unsuccessful.

SEE ALSO xgl_close(3)
xgl_object_create(3)
xgl_object_destroy(3)
xgl_object_get(3)
xgl_object_set(3)

XGL_SYS_ST_ERROR_DETECTION(3)
XGL_SYS_ST_ERROR_NOTIFICATION_FUNCTION(3)
XGL_SYS_ST_SFONT_DIRECTORY(3)
XGL_SYS_ST_VERSION(3)

510 modified August 1994

XGL Graphics Library xgl_pcache_display (3)

NAME xgl_pcache_display − displays a Primitive Cache

SYNOPSIS #include <xgl/xgl.h>

Xgl_cache_display xgl_pcache_display (
Xgl_pcache pcache,
Xgl_boolean test,
Xgl_boolean display,
Xgl_boolean restore);

DESCRIPTION This operator performs the following tasks: 1) it closes the pcache, 2) it compares pcache
and context states, 3) if the comparison is OK, it displays the pcache, and 4) it returns the
result of the comparison.

Parameters pcache Specifies the pcache to operate upon. The XGL_PCACHE_CONTEXT(3) attribute of the
pcache specifies the context to be used for comparison and display.

test Controls the validation of the pcache and context states. If test is FALSE, the con-
text state is not validated and the return value is XGL_CACHE_NOT_CHECKED. If test
is TRUE, the context state is compared with that of the pcache; if the state is com-
patible, the return value is XGL_CACHE_DISPLAY_OK, otherwise it is XGL_CACHE_-
ATTR_STATE_DIFFERENT.

display Controls the display of the pcache. If display is FALSE, the pcache is not rendered.
If display is TRUE, the pcache is rendered only if test is FALSE or the context state
is compatible.

restore Controls whether or not context attributes can be altered by displaying pcache. If
restore is TRUE, displaying a pcache will not change any of the context attributes.
If restore is FALSE and the pcache contains attributes, the attributes of the context
are changed to reflect those stored in the pcache.

RETURN VALUE Returns the status of the validity test:

XGL_CACHE_DISPLAY_OK

The states in Pcache and Context are compatible.

XGL_CACHE_ATTR_STATE_DIFFERENT

The states in Pcache and Context are not compatible.

XGL_CACHE_NOT_CHECKED

The state in Pcache is not checked against the state in the Context.

SEE ALSO xgl_object_create(3)

XGL_PCACHE(3)
XGL_PCACHE_CONTEXT(3)

modified August 1994 511

xgl_pcache_display (3) XGL Graphics Library

NOTES In the special case of an unclosed, empty Pcache, xgl_pcache_display(3) will return XGL_-
CACHE_ATTR_STATE_DIFFERENT if called with test = TRUE. This feature allows an applica-
tion to omit the initial build of a Pcache object, since it can be (re)built the first time the
application attempts to display it.

512 modified August 1994

XGL Graphics Library xgl_pick_clear (3)

NAME xgl_pick_clear − clears the pick buffer that stores pick events

SYNOPSIS #include <xgl/xgl.h>

void xgl_pick_clear (
Xgl_ctx ctx);

DESCRIPTION This operator clears the pick buffer associated with the Context ctx to the nothing-picked
state. The Context pick buffer stores information about pick events. Its size is determined
by the attribute XGL_CTX_PICK_BUFFER_SIZE(3). Each time a primitive, or any part of it, is
rendered into the pick aperture specified by the attribute XGL_CTX_PICK_APERTURE(3),
information about the pick event is stored in the buffer. The operator xgl_pick_get_-
identifiers(3) is used to retrieve this information about the picked primitives. (For more
information, see XGL_CTX_PICK_ID_1(3), XGL_CTX_PICK_ID_2(3), and XGL_CTX_PICK_STYLE(3).)

The attribute XGL_CTX_PICK_ENABLE(3) must be TRUE for picking to occur.

RETURN VALUE Nothing is returned.

SEE ALSO xgl_pick_get_identifiers(3)

XGL_CTX_PICK_APERTURE(3)
XGL_CTX_PICK_BUFFER_SIZE(3)
XGL_CTX_PICK_ENABLE(3)
XGL_CTX_PICK_ID_1(3)
XGL_CTX_PICK_ID_2(3)
XGL_CTX_PICK_STYLE(3)

modified August 1994 513

xgl_pick_get_identifiers (3) XGL Graphics Library

NAME xgl_pick_get_identifiers − returns the identifiers of picked primitives and clears the pick
buffer

SYNOPSIS #include <xgl/xgl.h>

void xgl_pick_get_identifiers (
Xgl_ctx ctx,
Xgl_usgn32 ∗count,
Xgl_pick_info pick_id_list[]);

DESCRIPTION This operator returns the identifiers (IDs) of picked primitives for the Context ctx and
clears the pick buffer that stores pick events for this context.

The returned pick IDs are stored in the array pick_id_list. The number of pick IDs returned
is stored at address count. The application must allocate pick_id_list to hold as many
Xgl_pick_info structures as are in the Context pick buffer. Use the attribute XGL_CTX_-

PICK_BUFFER_SIZE(3) to both specify and inquire the size of the pick buffer.

The order in which XGL stores the pick IDs in the pick_id_list depends on XGL_CTX_PICK_-

STYLE(3). If it is XGL_PICK_FIRST_N, XGL stores the first pick event at pick_id_list[0] and the
last pick event recorded at pick_id_list[∗count −1]. If it is XGL_PICK_LAST_N, XGL stores the
last pick event at pick_id_list[0] and the earliest recorded pick event at pick_id_list[∗count
−1]. The number of pick events that occur may exceed the number of pick events
recorded in the pick_id_list.

The value of the field vertex_flag returned in the Xgl_pick_info structure is undefined.

The attribute XGL_CTX_PICK_ENABLE(3) must be TRUE for picking to occur (that is, for any-
thing to be stored in the pick buffer).

RETURN VALUE Nothing is returned.

SEE ALSO xgl_pick_clear(3)

XGL_CTX_PICK_APERTURE(3)
XGL_CTX_PICK_BUFFER_SIZE(3)
XGL_CTX_PICK_ENABLE(3)
XGL_CTX_PICK_ID_1(3)
XGL_CTX_PICK_ID_2(3)
XGL_CTX_PICK_STYLE(3)

514 modified August 1994

XGL Graphics Library xgl_polygon (3)

NAME xgl_polygon − draws a general-case polygon

SYNOPSIS #include <xgl/xgl.h>

void xgl_polygon (
Xgl_ctx ctx,
Xgl_facet_type facet_type,
Xgl_facet ∗facet,
Xgl_bbox ∗bbox,
Xgl_usgn32 num_pt_lists,
Xgl_pt_list pl[]);

DESCRIPTION
Purpose This operator draws a single polygon according to the parameter list and the graphics

state described in the Context ctx, which can be either a 2D or 3D Context.

A general polygon is defined by one or more point lists. Each point list defines a
sequence of connected edges that together form an individual boundary. These boun-
daries, along with the filling rule specified by the XGL_CTX_SURF_INTERIOR_RULE(3) attri-
bute, define the interior of the polygon.

For the boundary consisting of the n vertices v(0), v(1), ..., v(n-1), the edges defined are
those between vertices v(0) to v(1), v(1) to v(2), ..., v(n-2) to v(n-1), and v(n-1) to v(0). The
resulting boundary can be self-intersecting or non-planar. The exact appearance of non-
planar polygons when projected on the viewing surface is hardware-dependent.

Parameters ctx The XGL 2D or 3D Context containing the graphics state used when processing
xgl_polygon(3).

facet_type
Is the data type used to define each facet in the list. Xgl_facet_type defines four
enumerated values as possible facet data types:

XGL_FACET_NONE
XGL_FACET_COLOR
XGL_FACET_NORMAL
XGL_FACET_COLOR_NORMAL

facet A pointer to an Xgl_facet structure, which is defined as:
typedef union {

Xgl_color_facet color_facet;
Xgl_normal_facet normal_facet;
Xgl_color_normal_facet color_normal_facet;

} Xgl_facet;

The value of facet_type determines the interpretation of the union pointed to by
facet. For example, if facet_type is XGL_FACET_COLOR_NORMAL,
facet→color_normal_facet will contain the facet data for the polygon. If facet_type
is XGL_FACET_NONE, facet can be NULL.

modified August 1994 515

xgl_polygon (3) XGL Graphics Library

bbox Either NULL or is the bounding box around all of the points in pl[]. The bounding
box information can be used to optimize clipping and also to simplify rendering
when its projection on the view surface is small. (See XGL_CTX_THRESHOLD(3).)

If the application does not want to provide bounding box information, bbox must
be NULL. If the bounding box is given, it is the application’s responsibility to
ensure that it is correct.

In releases of XGL before 3.0, if an application provided a bounding box, then
bbox was a pointer to a structure of type Xgl_bbox. In XGL 3.0 and subsequent
releases, this approach is still supported for backward compatibility, but applica-
tions now can store bounding box information in any of six new structures,
which are similar to Xgl_bbox:

Xgl_bbox_i2d
Xgl_bbox_f2d
Xgl_bbox_f3d
Xgl_bbox_status
Xgl_bbox_d2d
Xgl_bbox_d3d

In place of a structure of type Xgl_bbox, an application can use one of the above
structures. For example, if an application uses a variable called bbox_f2d of type
Xgl_bbox_f2d, it needs to cast the pointer to this structure using (Xgl_bbox ∗)
(&bbox_f2d) before passing the information to XGL.

num_pt_lists
The number of elements in pl[].

pl A pointer to the first element of an array of Xgl_pt_list structures, which is
defined as:

typedef struct {
Xgl_pt_type pt_type; /∗ type of point ∗/
Xgl_bbox ∗bbox; /∗ optional box containing

all points ∗/
Xgl_usgn32 num_pts; /∗ number of points ∗/
Xgl_usgn32 num_data_values; /∗ number of data values at

each point ∗/
Xgl_pt_ptr_union pts; /∗ union of pointers to array

of points ∗/
} Xgl_pt_list;

Each pl[i] specifies the vertices of a single boundary of the polygon.

pl[i].pt_type specifies the type of the points in pl[i].pts. Note that all of the types in
the list pointed to by pts must be of this type.

pl[i].bbox specifies a bounding box for the i’th boundary. This bounding box is
handled in the same way as bbox (above) is handled.

pl[i].num_pts is the number of points in the array pts. Specifically, it is the number
of vertices in the i’th polygon boundary.

516 modified August 1994

XGL Graphics Library xgl_polygon (3)

pl[i].num_data_values specifies the number of data values. Specifically, it is the
number of data values per vertex in the i’th polygon boundary. This value is
looked into only if the pl[i].pt_type is specified as having data values.

Texture mapping can be done by using vertices with data values. The data
values, also known as u and v values for texturing, specify how the texture map
should be mapped on a polygon. The coordinate space of the texture map that u
values correspond to is a space that places 0.0 at left edge of the texture and 1.0 at
the right edge of the texture. Similarly for v, the coordinate space of the texture
map that v values use is a space that places 0.0 at the bottom edge of the texture
and 1.0 at the top edge of the texture. An application can give several data values
and can choose the specific data values to be used from the array by using the
attributes XGL_DMAP_TEXTURE_U_INDEX(3) and XGL_DMAP_TEXTURE_V_INDEX(3).

The data values are used only if the attributes XGL_3D_CTX_SURF_FRONT_DMAP_-

SWITCHES(3) and XGL_3D_CTX_SURF_BACK_DMAP_SWITCHES(3) have at least one
switch set to TRUE.

pl[i].pts is a union of pointers, one of which points to the array of points that
make up the vertices of the i’th boundary. The value of pl[i].pt_type determines
the interpretation of this union. Refer to the xgl_pt_list(3) man page for the valid
point types.

If vertices with flag information are used, a bit within the flag word at each point
determines if specific polygon boundary edges are drawn (1 means draw it). The
bit can be manipulated using macros defined in the header file xgl.h. XGL_DRAW_-
EDGE corresponds with the flag bit (0x1 in the flag word). The macro XGL_SET_-
EDGE_FLAG(PT) can be used to set the flag when given a pointer to a point contain-
ing flag information. Likewise, a macro is available to clear the flag bit. For more
information, see the include file xgl.h.

The edge flag bit is used only if the attribute XGL_CTX_SURF_EDGE_FLAG(3) is TRUE. It is
interpreted as follows:

The XGL_DRAW_EDGE bit (0x1) is used to determine whether particular boundary
edges are drawn. For the boundary vertices v(0), v(1), ..., v(n), the flag on vertex
v(i) determines whether the edge between vertices v(i-1) and v(i) is drawn. The
flag on vertex v(0) applies to the edge between vertices v(n) and v(0).

FACET
RENDERING

Generally, a facet refers to a single polygon, which might be either a general or simple
polygon. Several Context attributes specify how this facet is to be rendered. The vertex
point type pl[i].pt_type and the facet type facet_type can provide sources of color in addi-
tion to the surface color Context attributes XGL_CTX_SURF_FRONT_COLOR(3) and XGL_3D_-

CTX_SURF_BACK_COLOR(3).

When an application supplies more than one source of colors for a polygon, it can select
the source — Context, facet, or vertex — to be chosen for rendering by setting the Context
attributes XGL_CTX_SURF_FRONT_COLOR_SELECTOR(3) and XGL_3D_CTX_SURF_BACK_-

COLOR_SELECTOR(3). In 3D, the final appearance of the surface depends on the illumina-
tion model specified with the attributes XGL_3D_CTX_SURF_FRONT_ILLUMINATION(3) and

modified August 1994 517

xgl_polygon (3) XGL Graphics Library

XGL_3D_CTX_SURF_BACK_ILLUMINATION(3), as well as the depth-cue mode given by the
attribute XGL_3D_CTX_DEPTH_CUE_MODE(3).

As part of the processing of a facet, XGL may need to determine the orientation of a facet:
either front- or back-facing. These situations include enabling illumination, face culling,
or face distinguishing. For these cases, an application benefits by supplying a unit nor-
mal vector with the facet data, which points in the direction of the front face of the
polygon. This saves XGL from calculating it from the vertices with the method given by
XGL_3D_CTX_SURF_GEOM_NORMAL(3).

RETURN VALUE Nothing is returned.

SEE ALSO XGL_3D_CTX_DEPTH_CUE_COLOR(3)
XGL_3D_CTX_DEPTH_CUE_INTERP(3)
XGL_3D_CTX_DEPTH_CUE_MODE(3)
XGL_3D_CTX_DEPTH_CUE_REF_PLANES(3)
XGL_3D_CTX_DEPTH_CUE_SCALE_FACTORS(3)
XGL_3D_CTX_LIGHTS(3)
XGL_3D_CTX_LIGHT_NUM(3)
XGL_3D_CTX_LIGHT_SWITCHES(3)
XGL_3D_CTX_SURF_BACK_AMBIENT(3)
XGL_3D_CTX_SURF_BACK_COLOR(3)
XGL_3D_CTX_SURF_BACK_COLOR_SELECTOR(3)
XGL_3D_CTX_SURF_BACK_DIFFUSE(3)
XGL_3D_CTX_SURF_BACK_DMAP(3)
XGL_3D_CTX_SURF_BACK_DMAP_NUM(3)
XGL_3D_CTX_SURF_BACK_DMAP_SWITCHES(3)
XGL_3D_CTX_SURF_BACK_FILL_STYLE(3)
XGL_3D_CTX_SURF_BACK_FPAT(3)
XGL_3D_CTX_SURF_BACK_FPAT_POSITION(3)
XGL_3D_CTX_SURF_BACK_ILLUMINATION(3)
XGL_3D_CTX_SURF_BACK_LIGHT_COMPONENT(3)
XGL_3D_CTX_SURF_BACK_SPECULAR(3)
XGL_3D_CTX_SURF_BACK_SPECULAR_COLOR(3)
XGL_3D_CTX_SURF_BACK_SPECULAR_POWER(3)
XGL_3D_CTX_SURF_BACK_TRANSP(3)
XGL_3D_CTX_SURF_FACE_CULL(3)
XGL_3D_CTX_SURF_FACE_DISTINGUISH(3)
XGL_3D_CTX_SURF_FRONT_AMBIENT(3)
XGL_3D_CTX_SURF_FRONT_DIFFUSE(3)
XGL_3D_CTX_SURF_FRONT_DMAP(3)
XGL_3D_CTX_SURF_FRONT_DMAP_NUM(3)
XGL_3D_CTX_SURF_FRONT_DMAP_SWITCHES(3)
XGL_3D_CTX_SURF_FRONT_ILLUMINATION(3)
XGL_3D_CTX_SURF_FRONT_LIGHT_COMPONENT(3)
XGL_3D_CTX_SURF_FRONT_SPECULAR(3)

518 modified August 1994

XGL Graphics Library xgl_polygon (3)

XGL_3D_CTX_SURF_FRONT_SPECULAR_COLOR(3)
XGL_3D_CTX_SURF_FRONT_SPECULAR_POWER(3)
XGL_3D_CTX_SURF_FRONT_TRANSP(3)
XGL_3D_CTX_SURF_GEOM_NORMAL(3)
XGL_3D_CTX_SURF_NORMAL_FLIP(3)
XGL_3D_CTX_SURF_SILHOUETTE_EDGE_FLAG(3)
XGL_3D_CTX_SURF_TRANSP_BLEND_EQ(3)
XGL_3D_CTX_SURF_TRANSP_METHOD(3)
XGL_CTX_EDGE_AA_BLEND_EQ(3)
XGL_CTX_EDGE_AA_FILTER_SHAPE(3)
XGL_CTX_EDGE_AA_FILTER_WIDTH(3)
XGL_CTX_EDGE_ALT_COLOR(3)
XGL_CTX_EDGE_CAP(3)
XGL_CTX_EDGE_COLOR(3)
XGL_CTX_EDGE_JOIN(3)
XGL_CTX_EDGE_MITER_LIMIT(3)
XGL_CTX_EDGE_PATTERN(3)
XGL_CTX_EDGE_STYLE(3)
XGL_CTX_EDGE_WIDTH_SCALE_FACTOR(3)
XGL_CTX_PLANE_MASK(3)
XGL_CTX_ROP(3)
XGL_CTX_SURF_AA_BLEND_EQ(3)
XGL_CTX_SURF_AA_FILTER_SHAPE(3)
XGL_CTX_SURF_AA_FILTER_WIDTH(3)
XGL_CTX_SURF_EDGE_FLAG(3)
XGL_CTX_SURF_FRONT_COLOR(3)
XGL_CTX_SURF_FRONT_COLOR_SELECTOR(3)
XGL_CTX_SURF_FRONT_FILL_STYLE(3)
XGL_CTX_SURF_FRONT_FPAT(3)
XGL_CTX_SURF_FRONT_FPAT_POSITION(3)
XGL_CTX_SURF_INTERIOR_RULE(3)
XGL_CTX_THRESHOLD(3)

NOTES All points in pl[] must have the same Xgl_pt_type.

2D point types do not work with a 3D Context, and vice versa.

When filling the interior of polygons, XGL uses a technique that ensures adjoining
polygons do not overlap. XGL assumes that pixels along the top and left edges of a
polygon are inside the polygon, and those along the right and bottom edges are outside.
Using this scheme, pixels along the common edge of two adjoining polygons are not
drawn twice. However, it also prevents pixels from being drawn along the right and bot-
tom edges of the clipping window. (Note that this is true only for polygons, triangle
strips, triangle lists, NURB surfaces, and quadrilateral meshes. It is not true for lines,
edges, stroke text, curves, and markers.)

modified August 1994 519

xgl_polygon (3) XGL Graphics Library

Use xgl_polygon(3) to draw self-intersecting or multibounded polygons. For polygons
with a simpler definition, use xgl_multi_simple_polygon(3).

520 modified August 1994

XGL Graphics Library xgl_quadrilateral_mesh (3)

NAME xgl_quadrilateral_mesh − draws a quadrilateral mesh

SYNOPSIS #include <xgl/xgl.h>

void xgl_quadrilateral_mesh (
Xgl_ctx ctx,
Xgl_usgn32 row_dim, col_dim,
Xgl_facet_list ∗facets,
Xgl_pt_list ∗pl);

DESCRIPTION
Purpose This operator draws a quadrilateral (quad) mesh according to the parameter list and the

graphics state described in the Context ctx, which can only be a 3D Context.

A quad mesh is defined by a single point list containing at least four vertices. Four ver-
tices define a quad, and additional vertices define additional quads. Each quad should be
planar.

More precisely, a quad mesh consists of a matrix of m rows and n columns (m, n > 2) of
vertices

v
0,0

v
0,1

. . . v
0, n−1

v
1,0

v
1,1

. . . v
1, n−1

. . . .

. . . .

. . . .

v
m−1,0

v
m−1,1

. . . v
m−1, n−1

stored as an ordered list of m×n vertices

{v
0,0

,v
0,1

, . . . , v
0, n−1

, v
1,0

, v
1,1

, . . . , v
1, n−1

, . . . , v
m−1,0

, v
m−1,1

, ... , v
m−1, n−1

} .

The quad mesh above defines (m−1)×(n−1) quads q
k

(k=0, 1,..., (m−1)(n −1)−1) formed from
each square of adjacent vertices

v
i, j

v
i, j+1

v
i+1, j

v
i+1, j+1

where i = �k/(m-1) � and j = k mod (n-1). The quads are drawn in the order q
k
(k=0, 1,...,

(m−1)(n−1) −1).

Parameters ctx The XGL 3D Context containing the graphics state used when processing xgl_-
quadrilateral_mesh(3).

row_dim
The number of vertex rows in the quad mesh; equal to m in the above discussion.

col_dim The number of vertex columns in the mesh; equal to n in the above discussion.

modified August 1994 521

xgl_quadrilateral_mesh (3) XGL Graphics Library

facets A pointer to an Xgl_facet_list structure, which is defined as:
typedef struct {

Xgl_facet_type facet_type; /∗ type of facet ∗/
Xgl_usgn32 num_facets; /∗ number of facets ∗/
union { /∗ pointers to array o

Xgl_color_facet ∗color_facets;
Xgl_normal_facet ∗normal_facets;
Xgl_color_normal_facet ∗color_normal_facets;

} facets;
} Xgl_facet_list;

facets→facet_type is the data type used to define each facet in the list. Xgl_facet_-
type defines four enumerated values as possible facet data types:

XGL_FACET_NONE,
XGL_FACET_COLOR,
XGL_FACET_NORMAL,
XGL_FACET_COLOR_NORMAL,

The value of this field determines the interpretation of the union facets→facets,
which points to the first element of an array of facet information. For example, if
facets→facet_type is XGL_FACET_COLOR, facets→facets.color[i] should be the data for
the i+1’th Xgl_color_facet.

This array of facet data is assumed to be facets→num_facets elements long.

The facets information is not used to draw the quads if facets is NULL, if
facets→facet_type is XGL_FACET_NONE, or if facets→num_facets is less than
(row_dim−1)×(col_dim−1). Otherwise, the data in the i’th facet is used for quad qi .

pl A pointer to an Xgl_pt_list structure, which is defined as
typedef struct {

Xgl_pt_type pt_type; /∗ type of point ∗/
Xgl_bbox ∗bbox; /∗ optional box containing

all points ∗/
Xgl_usgn32 num_pts; /∗ number of points ∗/
Xgl_usgn32 num_data_values; /∗ number of data values at

each point ∗/
Xgl_pt_ptr_union pts; /∗ union of pointers to array

of points ∗/
} Xgl_pt_list;

pl→pt_type specifies the type of the points in pl→pts.

pl→bbox specifies a bounding box for the quad mesh. This parameter is either
NULL, or is the bounding box around all of the points in pl→pts. The bounding
box information can be used to optimize clipping and also to simplify rendering
when its projection on the view surface is small. (See XGL_CTX_THRESHOLD(3).)

If the application does not want to provide bounding box information, bbox must
be NULL. If the bounding box is given, it is the application’s responsibility to

522 modified August 1994

XGL Graphics Library xgl_quadrilateral_mesh (3)

ensure that it is correct.

In releases of XGL before 3.0, if an application provided a bounding box, then
bbox was a pointer to a structure of type Xgl_bbox. In XGL 3.0 and subsequent
releases, this approach is still supported for backward compatibility, but applica-
tions now can store bounding box information in any of six new structures,
which are similar to Xgl_bbox:

Xgl_bbox_i2d
Xgl_bbox_f2d
Xgl_bbox_f3d
Xgl_bbox_status
Xgl_bbox_d2d
Xgl_bbox_d3d

In place of a structure of type Xgl_bbox, an application can use one of the above
structures. For example, if an application uses a variable called bbox_f2d of type
Xgl_bbox_f2d, it needs to cast the pointer to this structure using (Xgl_bbox ∗)
(&bbox_f2d) before passing the information to XGL.

pl→num_pts is ignored.

pl→num_data_values specifies the number of data values. Specifically, it is the
number of data values per vertex in the quadrilateral mesh.

Texture mapping can be done by using vertices with data values. The data
values, also known as u and v values for texturing, specify how the texture map
should be mapped onto quads of a quadrilateral mesh. For more information on
texturing, see xgl_polygon(3).

pl→pts is a union of pointers, one of which points to the array of points that make
up the vertices of the quads in the mesh. The value of pl→pt_type determines the
interpretation of this union.

For further details about this union of pointers and the effect of pl→pt_type and
facets→facet_type on how facets are colored, see xgl_polygon(3). These details
are the same for all primitives that draw polygons.

If vertices with flag information are used, two bits within the flag determine if
particular quadrilateral edges are drawn (1 means draw it). The bits can be
manipulated using macros defined in the header file xgl.h. XGL_DRAW_EDGE and
XGL_DRAW_PREV_EDGE specify the two edge flag bits (corresponding to 0x1 and
0x2, respectively). The macros XGL_SET_EDGE_FLAG(PT) and XGL_SET_PREV_EDGE_-
FLAG(PT) can be used to set the flags when given a pointer to a point containing
flag information. Likewise, macros are available to clear the flag bits. For more
information, see the include file xgl.h.

The edge flag bits are used only if the attribute XGL_CTX_SURF_EDGE_FLAG(3) is TRUE. They
are interpreted as follows:

The flag bits for vertex v
0,0

are ignored.

For vertices v
i, 0

, i > 0, the flag bit XGL_DRAW_EDGE (0x1) controls the edge

modified August 1994 523

xgl_quadrilateral_mesh (3) XGL Graphics Library

[v
i−1, 0

, v
i, 0

] ; bit XGL_DRAW_PREV_EDGE (0x2) is ignored.

For vertices v
0, j

, j > 0, the flag bit XGL_DRAW_PREV_EDGE (0x2) controls the edge

[v
0, j−1

, v
0, j

] ; bit XGL_DRAW_EDGE (0x1) is ignored.

For vertices v
i, j

, i, j > 0, the flag bit XGL_DRAW_EDGE (0x1) controls the edge

[v
i−1, j

, v
i, j

] , and the flag bit XGL_DRAW_PREV_EDGE (0x2) controls the edge

[v
i, j−1

, v
i, j

] .

FACET
COLORING

Generally, a facet refers to a single polygon, which might be either a general or simple
polygon. The Context attributes specify how this facet is to be colored. The vertex point
type pl[i].pt_type and the facet type facet_type also interact to affect the color of the
polygon. The model is simple: The point and facet types determine how the normal and
base colors of each vertex are obtained. Then the Context attributes are applied to color
the facet. For more information about facet coloring, see xgl_polygon(3).

RETURN VALUE Nothing is returned.

SEE ALSO xgl_multi_simple_polygon(3)
xgl_polygon(3)
xgl_triangle_list(3)
xgl_triangle_strip(3)

XGL_3D_CTX_DEPTH_CUE_COLOR(3)
XGL_3D_CTX_DEPTH_CUE_INTERP(3)
XGL_3D_CTX_DEPTH_CUE_MODE(3)
XGL_3D_CTX_DEPTH_CUE_REF_PLANES(3)
XGL_3D_CTX_DEPTH_CUE_SCALE_FACTORS(3)
XGL_3D_CTX_LIGHTS(3)
XGL_3D_CTX_LIGHT_NUM(3)
XGL_3D_CTX_LIGHT_SWITCHES(3)
XGL_3D_CTX_SURF_BACK_AMBIENT(3)
XGL_3D_CTX_SURF_BACK_COLOR(3)
XGL_3D_CTX_SURF_BACK_COLOR_SELECTOR(3)
XGL_3D_CTX_SURF_BACK_DIFFUSE(3)
XGL_3D_CTX_SURF_BACK_DMAP(3)
XGL_3D_CTX_SURF_BACK_DMAP_NUM(3)
XGL_3D_CTX_SURF_BACK_DMAP_SWITCHES(3)
XGL_3D_CTX_SURF_BACK_FILL_STYLE(3)
XGL_3D_CTX_SURF_BACK_FPAT(3)
XGL_3D_CTX_SURF_BACK_FPAT_POSITION(3)
XGL_3D_CTX_SURF_BACK_ILLUMINATION(3)
XGL_3D_CTX_SURF_BACK_LIGHT_COMPONENT(3)
XGL_3D_CTX_SURF_BACK_SPECULAR(3)

524 modified August 1994

XGL Graphics Library xgl_quadrilateral_mesh (3)

XGL_3D_CTX_SURF_BACK_SPECULAR_COLOR(3)
XGL_3D_CTX_SURF_BACK_SPECULAR_POWER(3)
XGL_3D_CTX_SURF_BACK_TRANSP(3)
XGL_3D_CTX_SURF_FACE_CULL(3)
XGL_3D_CTX_SURF_FACE_DISTINGUISH(3)
XGL_3D_CTX_SURF_FRONT_AMBIENT(3)
XGL_3D_CTX_SURF_FRONT_DIFFUSE(3)
XGL_3D_CTX_SURF_FRONT_DMAP(3)
XGL_3D_CTX_SURF_FRONT_DMAP_NUM(3)
XGL_3D_CTX_SURF_FRONT_DMAP_SWITCHES(3)
XGL_3D_CTX_SURF_FRONT_ILLUMINATION(3)
XGL_3D_CTX_SURF_FRONT_LIGHT_COMPONENT(3)
XGL_3D_CTX_SURF_FRONT_SPECULAR(3)
XGL_3D_CTX_SURF_FRONT_SPECULAR_COLOR(3)
XGL_3D_CTX_SURF_FRONT_SPECULAR_POWER(3)
XGL_3D_CTX_SURF_FRONT_TRANSP(3)
XGL_3D_CTX_SURF_GEOM_NORMAL(3)
XGL_3D_CTX_SURF_NORMAL_FLIP(3)
XGL_3D_CTX_SURF_SILHOUETTE_EDGE_FLAG(3)
XGL_3D_CTX_SURF_TRANSP_BLEND_EQ(3)
XGL_3D_CTX_SURF_TRANSP_METHOD(3)
XGL_CTX_EDGE_AA_BLEND_EQ(3)
XGL_CTX_EDGE_AA_FILTER_SHAPE(3)
XGL_CTX_EDGE_AA_FILTER_WIDTH(3)
XGL_CTX_EDGE_ALT_COLOR(3)
XGL_CTX_EDGE_CAP(3)
XGL_CTX_EDGE_COLOR(3)
XGL_CTX_EDGE_JOIN(3)
XGL_CTX_EDGE_MITER_LIMIT(3)
XGL_CTX_EDGE_PATTERN(3)
XGL_CTX_EDGE_STYLE(3)
XGL_CTX_EDGE_WIDTH_SCALE_FACTOR(3)
XGL_CTX_PLANE_MASK(3)
XGL_CTX_ROP(3)
XGL_CTX_SURF_AA_BLEND_EQ(3)
XGL_CTX_SURF_AA_FILTER_SHAPE(3)
XGL_CTX_SURF_AA_FILTER_WIDTH(3)
XGL_CTX_SURF_EDGE_FLAG(3)
XGL_CTX_SURF_FRONT_COLOR(3)
XGL_CTX_SURF_FRONT_COLOR_SELECTOR(3)
XGL_CTX_SURF_FRONT_FILL_STYLE(3)
XGL_CTX_SURF_FRONT_FPAT(3)
XGL_CTX_SURF_FRONT_FPAT_POSITION(3)
XGL_CTX_SURF_INTERIOR_RULE(3)
XGL_CTX_THRESHOLD(3)

modified August 1994 525

xgl_quadrilateral_mesh (3) XGL Graphics Library

NOTES All points in pl[] must have the same Xgl_pt_type.

2D point types do not work with a 3D Context.

The XGL drawing primitives xgl_quadrilateral_mesh(3), xgl_triangle_strip(3), and xgl_-
triangle_list(3) may not draw edges of adjoining facets when z-buffering is not enabled.
This problem occurs on certain devices or when using XGL to render across a network.
To avoid this problem applications using these operators should either enable z-buffering
or convert the quadrilateral mesh, triangle strip, or triangle list data into individual
polygon data and call a polygon primitive (xgl_multi_simple_polygon(3) or xgl_-
polygon(3)) with z-buffering disabled. Both approaches will render each facet of the
mesh, strip, or list individually and with correct edges.

The XGL drawing primitives xgl_quadrilateral_mesh, xgl_triangle_strip(3), and xgl_-
triangle_list(3) may produce inconsistent results when used with an RGB Raster (XGL_-

DEV_COLOR_TYPE(3) is XGL_COLOR_RGB) on the GX graphics accelerator. This will occur
when there is no clipping of the object, depth cueing is off, and z-buffering is disabled. In
this case, XGL fully accelerates its rendering and does not dither the RGB colors before
rendering them on the device. To avoid this problem, either use an Indexed Raster or
enable z-buffering.

Non-planar quadrilaterals within a quadrilateral mesh may not be rendered properly on
some devices.

526 modified August 1994

XGL Graphics Library xgl_stroke_text (3)

NAME xgl_stroke_text − renders 2D and 3D stroke text

SYNOPSIS #include <xgl/xgl.h>

void xgl_stroke_text (
Xgl_ctx ctx,
void ∗str,
Xgl_pt_f{2,3}d ∗pos,
/∗ f2d for 2D text, f3d for 3D text ∗/
Xgl_pt_f3d dir[]);
/∗ Ignored for 2D text ∗/

DESCRIPTION
Purpose This Context operator renders the text indexed by str, using the Context attributes within

ctx.

Parameters pos is the 2D or 3D reference point for the rendered text. When using this operator in a 3D
environment, dir defines the two vectors used for the orientation of the 2D plane on which
the text sits. The first vector defines a logical horizontal direction that supports the text,
and the second vector gives a logical vertical direction to define an orientation for the
text. Each point within the stroke character is transformed through the XGL transforma-
tion pipeline. Depending on the character-encoding scheme defined by the Context attri-
bute XGL_CTX_STEXT_CHAR_ENCODING(3), the str parameter will represent a NULL-
terminated C-style string of characters, or a pointer on a structure of type
Xgl_mono_text_list.

If the string-encoding scheme used is of type XGL_SINGLE_STR, at least one font can be
selected to render the characters in ISO or EUC/multi-byte character-encoding schemes:

XGL_CTX_SFONT_0(3)
When the character-encoding scheme used is of type XGL_CHAR_MBY, the fonts used to
render the string are selected depending on the character code adding the following Con-
text attributes:

XGL_CTX_SFONT_1(3)
XGL_CTX_SFONT_2(3)
XGL_CTX_SFONT_3(3)

If the string-encoding scheme used is of type XGL_MULTI_STR, the structure passed in
parameter contains the XGL font Object used to render the characters. Both character-
encodings ISO or MBY can be used.

The application can control the geometrical characteristics of the text using the following
attributes:

XGL_CTX_STEXT_CHAR_HEIGHT(3)
XGL_CTX_STEXT_CHAR_SPACING(3)
XGL_CTX_STEXT_CHAR_EXPANSION_FACTOR(3)

The text orientation is controlled by changing the components of the XGL_CTX_STEXT_-

CHAR_UP_VECTOR(3) attribute. An inclination can be added to the orientation by using the
XGL_CTX_STEXT_CHAR_SLANT_ANGLE(3) attribute.

modified August 1994 527

xgl_stroke_text (3) XGL Graphics Library

The text presentation, with respect to the position given by the parameters dir and pos, is
managed by the following attributes:

XGL_CTX_STEXT_ALIGN_HORIZ(3)
XGL_CTX_STEXT_ALIGN_VERT(3)
XGL_CTX_STEXT_PATH(3)

The color of the text can be modified with the XGL_CTX_STEXT_COLOR(3) attribute. The
way that stroke text is clipped on the Device is controlled by the XGL_CTX_STEXT_-

PRECISION(3) attribute.

XGL stroke text is rendered as a set of polylines. The width of the lines is fixed, and no
pattern can be applied to the rendering of stroke text. The ROP, plane mask, and depth-
cueing apply, as for any other rendering primitive, and can be modified with the follow-
ing attributes, respectively:

XGL_CTX_ROP(3)
XGL_CTX_PLANE_MASK(3)
XGL_3D_CTX_DEPTH_CUE_MODE(3)

RETURN VALUE Nothing is returned.

SEE ALSO XGL_3D_CTX_DEPTH_CUE_MODE(3)
XGL_CTX_PLANE_MASK(3)
XGL_CTX_ROP(3)
XGL_CTX_SFONT_0(3)
XGL_CTX_SFONT_1(3)
XGL_CTX_SFONT_2(3)
XGL_CTX_SFONT_3(3)
XGL_CTX_STEXT_CHAR_ENCODING(3)
XGL_CTX_STEXT_CHAR_EXPANSION_FACTOR(3)
XGL_CTX_STEXT_CHAR_HEIGHT(3)
XGL_CTX_STEXT_CHAR_SLANT_ANGLE(3)
XGL_CTX_STEXT_CHAR_SPACING(3)
XGL_CTX_STEXT_CHAR_UP_VECTOR(3)
XGL_CTX_STEXT_ALIGN_HORIZ(3)
XGL_CTX_STEXT_ALIGN_VERT(3)
XGL_CTX_STEXT_COLOR(3)
XGL_CTX_STEXT_PATH(3)
XGL_CTX_STEXT_PRECISION(3)

NOTES For XGL stroke text, the character up vector, defined by the XGL_CTX_STEXT_CHAR_UP_-

VECTOR(3) attribute is independent of the VDC orientation (defined by XGL_CTX_VDC_-

ORIENTATION(3)) and should always be interpreted as if the Y axis was ALWAYS pointing
up.

528 modified August 1994

XGL Graphics Library xgl_stroke_text_extent (3)

NAME xgl_stroke_text_extent − computes the text-extent rectangle bounding a stroke-text string

SYNOPSIS #include <xgl/xgl.h>

void xgl_stroke_text_extent (
Xgl_ctx ctx,
void ∗text,
Xgl_bounds_f2d ∗rect,
Xgl_pt_f2d ∗cat_pt);

DESCRIPTION This operator computes the minimum-sized rectangle, in text local coordinates, that com-
pletely encompasses the text string specified by the parameter text. The parameter ctx is
an XGL Context being used by the application. It contains the stroke text attributes neces-
sary to compute the rectangular box returned in the parameter rect.

Depending on the character-encoding scheme defined by the Context attribute XGL_CTX_-

STEXT_CHAR_ENCODING(3), the text parameter will represent a NULL−terminated C-style
string of characters or a pointer on a structure of type Xgl_mono_text_list.

The parameter cat_pt is also computed. It contains the concatenation point, which is
where the string ends, in text local coordinates. This information can be used to append a
new string after a previously rendered one.

Because rect is returned as an Xgl_bounds_f2d structure for both 2D and 3D stroke text, rect
is computed considering a character up vector (see XGL_CTX_STEXT_CHAR_UP_VECTOR(3))
of (0.0, 1.0), and an inclination angle (see XGL_CTX_STEXT_CHAR_SLANT_ANGLE(3)) of 0.0,
so that its sides are parallel to the unrotated coordinate axes. In other words, the text-
extent rectangle is computed independently of the character up vector.

This operator uses all of the geometric stroke text attributes to compute the elements
returned to the caller. For a list of these attributes and their effects, see the xgl_stroke_-
text(3) and xgl_annotation_text(3) operators.

RETURN VALUE Nothing is returned.

SEE ALSO xgl_annotation_text(3)
xgl_stroke_text(3)

XGL_CTX_STEXT_CHAR_ENCODING(3)
XGL_CTX_STEXT_CHAR_SLANT_ANGLE(3)
XGL_CTX_STEXT_CHAR_UP_VECTOR(3)

modified August 1994 529

xgl_transform_copy (3) XGL Graphics Library

NAME xgl_transform_copy − makes a copy of a Transform

SYNOPSIS #include <xgl/xgl.h>

void xgl_transform_copy (
Xgl_trans dest_trans,
Xgl_trans src_trans);

DESCRIPTION
Purpose This operator copies the contents of the matrix associated with a Source Transform to the

matrix associated with a Destination Transform. The Destination Transform retains its
original data type and dimension, even if they differ from those of the Source Transform.
Thus, this operator provides a means of converting a Transform of one type and dimen-
sion to another.

If the Source and Destination Transforms differ in type, a data conversion, possibly with
round-off errors, is necessary.

If the two Transforms differ in dimension, the z coordinate is ignored. Three-dimensional
homogeneous coordinates are treated as row vectors of the form [x, y, z, w]. If the Source
Transform is 2D and the Destination Transform is 3D, xgl_transform_copy(3) fills the
third row and third column of the Destination with the vector [0, 0, 1, 0], and the contents
of the Source fill the remaining entries in the Destination Transform’s matrix. If the
Source Transform is 3D and the Destination is 2D, xgl_transform_copy strikes out the
third row and third column of the Source and copies the remaining entries to the Destina-
tion Transform.

Parameters dest_trans
The Destination Transform with the matrix to which the data is stored. It must
have been created previously with xgl_object_create. Any information previ-
ously stored in the matrix of dest_trans is lost.

src_trans
The Source Transform with the matrix from which the data is taken. It must have
been created previously with xgl_object_create(3).

RETURN VALUE Nothing is returned.

SEE ALSO xgl_object_create(3)

530 modified August 1994

XGL Graphics Library xgl_transform_identity (3)

NAME xgl_transform_identity − sets a Transform to the identity

SYNOPSIS #include <xgl/xgl.h>

void xgl_transform_identity (
Xgl_trans trans);

DESCRIPTION This operator sets a Transform’s matrix to the identity. The data type and dimension of
this matrix are given by the values of the Transform’s attributes XGL_TRANS_DATA_TYPE(3)
and XGL_TRANS_DIMENSION(3).

The parameter trans is the Transform whose matrix is set to the identity. It must have
been created previously with xgl_object_create(3).

RETURN VALUE Nothing is returned.

SEE ALSO xgl_object_create(3)

XGL_TRANS_DATA_TYPE(3)
XGL_TRANS_DIMENSION(3)

modified August 1994 531

xgl_transform_invert (3) XGL Graphics Library

NAME xgl_transform_invert − inverts a Transform

SYNOPSIS #include <xgl/xgl.h>

Xgl_trans xgl_transform_invert (
Xgl_trans dest_trans,
Xgl_trans src_trans);

DESCRIPTION
Purpose This operator inverts a Transform’s matrix. The numerical accuracy depends on the

Transform’s data type as given by the attribute XGL_TRANS_DATA_TYPE(3).

Parameters dest_trans
The Destination Transform to which the inverse is stored. It must have been
created previously with xgl_object_create(3). dest_trans can be the same as
src_trans if the application wants the original matrix to be overwritten by the
inverse. If dest_trans differs from src_trans, however, they must have the same
dimension as given by XGL_TRANS_DIMENSION(3).

src_trans
The Source Transform whose matrix is inverted. It must have been created previ-
ously with xgl_object_create.

Execution A Transform may be singular; in other words, it has no unique inverse. xgl_transform_-
invert(3) normally returns dest_trans, but it will return NULL if the Transform is singular.

RETURN VALUE Returns dest_trans or NULL if src_trans has no inverse.

SEE ALSO xgl_object_create(3)

XGL_TRANS_DATA_TYPE(3)
XGL_TRANS_DIMENSION(3)

NOTES Do not mix 2D and 3D Transforms with this call.

532 modified August 1994

XGL Graphics Library xgl_transform_multiply (3)

NAME xgl_transform_multiply − multiplies two Transforms

SYNOPSIS #include <xgl/xgl.h>

void xgl_transform_multiply (
Xgl_trans dest_trans,

left_src_trans,
right_src_trans);

DESCRIPTION
Purpose This operator multiplies two Transforms. All Transforms passed to this operator must

have the same dimension as given by XGL_TRANS_DIMENSION(3). However, the
Transforms need not have the same data type as given by XGL_TRANS_DATA_TYPE(3). If
necessary, the Source Transforms are converted to floating point before being multiplied,
and the resulting Transform is converted to the type of the Destination Transform.

Parameters dest_trans
The Destination Transform.

left_src_trans
The Left Source Transform.

right_src_trans
The Right Source Transform.

All of the parameters must have been created previously with xgl_object_create(3). left-
_src_trans can be the same as right_src_trans, and dest_trans can be the same as either left_-
src_trans and right_src_trans.

RETURN VALUE Nothing is returned.

SEE ALSO xgl_object_create(3)

XGL_TRANS_DATA_TYPE(3)
XGL_TRANS_DIMENSION(3)

NOTES Do not mix 2D and 3D Transforms with this call.

modified August 1994 533

xgl_transform_point (3) XGL Graphics Library

NAME xgl_transform_point − transforms a single point in place

SYNOPSIS #include <xgl/xgl.h>

void xgl_transform_point (
Xgl_trans trans,
Xgl_pt ∗point);

DESCRIPTION
Purpose This operator transforms a single point. The operator treats the point as a row vector and

multiplies it by a Transform’s matrix. The result is stored back in the memory allocated
for the point, overwriting the untransformed point. If the transformation results in a
point with a homogeneous w coordinate not equal to 1, the x, y, and z (for 3D) coordinates
are normalized by w to produce an ordinary point with w = 1. The dimension of the
Transform as given by XGL_TRANS_DIMENSION(3) must match the dimension of the point.
A 2D point must be given with a 2D Transform. Similarly, a 3D point must be given with
a 3D Transform. The data type of the Transform as given by XGL_TRANS_DATA_TYPE(3),
however, can be different from that of the point.

Parameters trans The Transform whose matrix is applied in transforming the point. It must have
been created previously with xgl_object_create(3).

point A pointer to a structure of type Xgl_pt defined as follows:
typedef struct {

Xgl_pt_type pt_type; /∗ type of point ∗/
Xgl_pt_position pt; /∗ union of pointers to one point ∗/

} Xgl_pt;

point→pt_type is the type of the point in point→pt. The table below gives the valid
point types.

point→pt is a union of pointers. The appropriate pointer, as determined by
point→pt_type, gives the address of a point structure containing coordinates. The
valid members of this union are as follows:

Field Name Type Point Type
���������������������������������������
pt.i2d Xgl_pt_i2d ∗ XGL_PT_I2D
pt.f2d Xgl_pt_f2d ∗ XGL_PT_F2D
pt.d2d Xgl_pt_d2d ∗ XGL_PT_D2D
pt.f3d Xgl_pt_f3d ∗ XGL_PT_F3D
pt.d3d Xgl_pt_d3d ∗ XGL_PT_D3D

534 modified August 1994

XGL Graphics Library xgl_transform_point (3)

RETURN VALUE Nothing is returned.

SEE ALSO xgl_object_create(3)

XGL_TRANS_DATA_TYPE(3)
XGL_TRANS_DIMENSION(3)

NOTES The dimensions of the point and the Transform must be the same, either 2D or 3D.

modified August 1994 535

xgl_transform_point_list (3) XGL Graphics Library

NAME xgl_transform_point_list − transforms a list of points

SYNOPSIS #include <xgl/xgl.h>

void xgl_transform_point_list (
Xgl_trans trans,
Xgl_pt_list ∗src_pt_list,
void ∗dest_pts);

DESCRIPTION
Purpose This operator transforms a list of points. The operator treats each point as a row vector

and multiplies it by a Transform’s matrix. If the transformation results in a point with a
homogeneous w coordinate not equal to 1, and the destination point list has no storage
for the w coordinate, the x, y, and z (for 3D) coordinates are normalized by w to produce
an ordinary point with w = 1. The dimension of the Transform as given by XGL_TRANS_-

DIMENSION(3) must match the dimension of the points in the list. A list of 2D points must
be given with a 2D Transform. Similarly, a list of 3D points must be given with a 3D
Transform. The data type of the Transform as given by XGL_TRANS_DATA_TYPE(3), how-
ever, can be different from that of the points in the list.

Parameters trans
The Transform whose matrix is applied in transforming the list of points. It must have
been created previously with xgl_object_create(3).

src_pt_list
A pointer to a structure of type Xgl_pt_list defined as follows:

typedef struct {
Xgl_pt_type pt_type; /∗ type of point ∗/
Xgl_bbox ∗bbox; /∗ optional box containing

all points ∗/
Xgl_usgn32 num_pts; /∗ number of points ∗/
Xgl_usgn32 num_data_values; /∗ number of data values at

each point ∗/
Xgl_pt_ptr_union pts; /∗ union of pointers to array

of points ∗/
} Xgl_pt_list;

This parameter specifies the source list of points, which this operator transforms.

src_pt_list→pt_type is the type of the points in src_pt_list→pts. The tables below give the
valid point types.

src_pt_list→bbox is ignored.

src_pt_list→num_pts is the number of points in the list.

src_pt_list→pts is a union of pointers. The appropriate pointer, as determined by
point→pt_type gives the address of a block of memory where the list of source points is
stored. The valid members of this union for a 2D Transform are as follows:

536 modified August 1994

XGL Graphics Library xgl_transform_point_list (3)

Field Name Type Point Type
��
pts.i2d Xgl_pt_i2d ∗ XGL_PT_I2D

pts.color_i2d Xgl_pt_color_i2d ∗ XGL_PT_COLOR_I2D

pts.flag_i2d Xgl_pt_flag_i2d ∗ XGL_PT_FLAG_I2D

pts.i2h Xgl_pt_i2h ∗ XGL_PT_I2H

pts.f2d Xgl_pt_f2d ∗ XGL_PT_F2D

pts.color_f2d Xgl_pt_color_f2d ∗ XGL_PT_COLOR_F2D

pts.flag_f2d Xgl_pt_flag_f2d ∗ XGL_PT_FLAG_F2D

pts.f2h Xgl_pt_f2h ∗ XGL_PT_F2H

pts.d2d Xgl_pt_d2d ∗ XGL_PT_D2D

pts.color_d2d Xgl_pt_color_d2d ∗ XGL_PT_COLOR_D2D

pts.flag_d2d Xgl_pt_flag_d2d ∗ XGL_PT_FLAG_D2D

pts.d2h Xgl_pt_d2h ∗ XGL_PT_D2H

The valid members of this union for a 3D Transform are as follows:
Field Name Type Point Type
��
pts.f3d Xgl_pt_f3d ∗ XGL_PT_F3D

pts.color_f3d Xgl_pt_color_f3d ∗ XGL_PT_COLOR_F3D

pts.normal_f3d Xgl_pt_normal_f3d ∗ XGL_PT_NORMAL_F3D

pts.color_normal_f3d Xgl_pt_color_normal_f3d ∗ XGL_PT_COLOR_NORMAL_F3D

pts.flag_f3d Xgl_pt_flag_f3d ∗ XGL_PT_FLAG_F3D

pts.color_flag_f3d Xgl_pt_color_flag_f3d ∗ XGL_PT_COLOR_FLAG_F3D

pts.normal_flag_f3d Xgl_pt_normal_flag_f3d ∗ XGL_PT_NORMAL_FLAG_F3D

pts.color_normal_flag_f3d Xgl_pt_color_normal_flag_f3d ∗ XGL_PT_COLOR_NORMAL_FLAG_F3D

pts.f3h Xgl_pt_f3h ∗ XGL_PT_F3H

pts.data_f3d Xgl_pt_data_f3d ∗ XGL_PT_DATA_F3D

pts.color_data_f3d Xgl_pt_color_data_f3d ∗ XGL_PT_COLOR_DATA_F3D

pts.normal_data_f3d Xgl_pt_normal_data_f3d ∗ XGL_PT_NORMAL_DATA_F3D

pts.color_normal_data_f3d Xgl_pt_color_normal_data_f3d ∗ XGL_PT_COLOR_NORMAL_DATA_F3D

pts.flag_data_f3d Xgl_pt_flag_data_f3d ∗ XGL_PT_FLAG_DATA_F3D

pts.color_flag_data_f3d Xgl_pt_color_flag_data_f3d ∗ XGL_PT_COLOR_FLAG_DATA_F3D

pts.normal_flag_data_f3d Xgl_pt_normal_flag_data_f3d ∗ XGL_PT_NORMAL_FLAG_DATA_F3D

pts.color_normal_flag_data_f3d Xgl_pt_color_normal_flag_data_f3d ∗ XGL_PT_COLOR_NORMAL_FLAG_DATA_F3D

pts.d3d Xgl_pt_d3d ∗ XGL_PT_D3D

pts.color_d3d Xgl_pt_color_d3d ∗ XGL_PT_COLOR_D3D

pts.normal_d3d Xgl_pt_normal_d3d ∗ XGL_PT_NORMAL_D3D

pts.color_normal_d3d Xgl_pt_color_normal_d3d ∗ XGL_PT_COLOR_NORMAL_D3D

pts.flag_d3d Xgl_pt_flag_d3d ∗ XGL_PT_FLAG_D3D

pts.color_flag_d3d Xgl_pt_color_flag_d3d ∗ XGL_PT_COLOR_FLAG_D3D

pts.normal_flag_d3d Xgl_pt_normal_flag_d3d ∗ XGL_PT_NORMAL_FLAG_D3D

pts.color_normal_flag_d3d Xgl_pt_color_normal_flag_d3d ∗ XGL_PT_COLOR_NORMAL_FLAG_D3D

pts.d3h Xgl_pt_d3h ∗ XGL_PT_D3H

modified August 1994 537

xgl_transform_point_list (3) XGL Graphics Library

dest_pts
A pointer to a block of storage for the transformed points, which have the same type as
the untransformed points. This block must be at least as large as the block allocated for
points that are not transformed. It can point to the same location as the source point list
if the application wants to transform the points in-place, overwriting the original points.

If the source points contain information other than coordinates (such as normals, colors,
or flags), this extra information is not transferred to the destination list of points.

RETURN VALUE Nothing is returned.

SEE ALSO xgl_object_create(3)

XGL_TRANS_DATA_TYPE(3)
XGL_TRANS_DIMENSION(3)

NOTES The dimensions of the points and the Transform must be the same, either 2D or 3D.

538 modified August 1994

XGL Graphics Library xgl_transform_read (3)

NAME xgl_transform_read − reads a Transform’s matrix into an array

SYNOPSIS #include <xgl/xgl.h>

void xgl_transform_read (
Xgl_trans src_trans,
void ∗matrix);

DESCRIPTION
Purpose This operator reads a Transform’s matrix into an array supplied by the application.

Parameters src_trans
The Transform whose matrix is read. It must have been created previously with
xgl_object_create(3).

matrix One of the following types of array:

typedef Xgl_sgn32 Xgl_matrix_i2d [3][2]; /∗ 2D integer matrix ∗/
typedef float Xgl_matrix_f2d [3][2]; /∗ 2D 32-bit floating-point matrix ∗/
typedef double Xgl_matrix_d2d [3][2]; /∗ 2D 64-bit floating-point matrix ∗/
typedef float Xgl_matrix_f3d [4][4]; /∗ 3D 32-bit floating-point matrix ∗/
typedef double Xgl_matrix_d3d [4][4]; /∗ 3D 64-bit floating-point matrix ∗/

Execution The Transform’s data type given by XGL_TRANS_DATA_TYPE(3) and its dimension given by
XGL_TRANS_DIMENSION(3) determine which array must be passed by the application.
Only one type of array is valid at any given time. No conversion takes place, so the
Transform’s data type and dimension must match those of the array.

RETURN VALUE Nothing is returned.

SEE ALSO xgl_object_create(3)

XGL_TRANS_DATA_TYPE(3)
XGL_TRANS_DIMENSION(3)

modified August 1994 539

xgl_transform_rotate (3) XGL Graphics Library

NAME xgl_transform_rotate − combines a Transform with a Rotation Transform

SYNOPSIS #include <xgl/xgl.h>

void xgl_transform_rotate (
Xgl_trans trans,
double angle,
Xgl_axis axis,
Xgl_trans_update update);

DESCRIPTION
Purpose This operator combines a given Transform with a Rotation Transform constructed with

the given parameters. The Rotation Transform can replace the given Transform, or it can
be preconcatenated or postconcatenated with the given Transform.

Parameters trans The Transform to be updated with a Rotation Transform. It must have been
created previously with xgl_object_create(3).

angle The angle of rotation in radians. For 2D Transforms, the angle is positive, in the
counterclockwise sense, when the x-axis points right and the y-axis points up.
The angle is positive, in the clockwise sense, when the x-axis points right and the
y-axis points down. For 3D Transforms, the angle is positive in the right-handed
sense.

axis Refers to the x, y, or z-axis, corresponding to the axis of rotation for 3D
Transforms. XGL accepts the following values for Xgl_axis:

XGL_AXIS_X
The axis of rotation is the x-axis

XGL_AXIS_Y
The axis of rotation is the y-axis

XGL_AXIS_Z
The axis of rotation is the z-axis

axis is ignored for 2D Transforms.

update Establishes the method of combining the Rotation Transform with the target
Transform. XGL accepts the following values for Xgl_trans_update:

XGL_TRANS_REPLACE
The Rotation Transform replaces the target Transform trans.

XGL_TRANS_PRECONCAT
The Rotation Transform is preconcatenated to the target Transform trans,
and the result is stored in trans. XGL treats coordinates as row vectors,
which means that the matrix of the Rotation Transform on the left, multi-
plied by the matrix of trans on the right, replaces the matrix of trans.

XGL_TRANS_POSTCONCAT
The Rotation Transform is postconcatenated to the target Transform

540 modified August 1994

XGL Graphics Library xgl_transform_rotate (3)

trans, and the result is stored in trans. XGL treats coordinates as row vec-
tors, which means that the matrix of trans on the left, multiplied by the
matrix of the Rotation Transform on the right, replaces the matrix of
trans.

RETURN VALUE Nothing is returned.

SEE ALSO xgl_object_create(3)

XGL_TRANS_DATA_TYPE(3)
XGL_TRANS_DIMENSION(3)

NOTES Integer Transforms only allow rotations by angles of pi / 2 and its multiples.

modified August 1994 541

xgl_transform_scale (3) XGL Graphics Library

NAME xgl_transform_scale − combines a Transform with a Scale Transform

SYNOPSIS #include <xgl/xgl.h>

void xgl_transform_scale (
Xgl_trans trans,
Xgl_pt ∗scale_factors,
Xgl_trans_update update);

DESCRIPTION
Purpose This operator combines a given Transform with a Scale Transform constructed with the

given parameters. The Scale Transform can replace the given Transform, or it can be
preconcatenated or postconcatenated with the given Transform.

Parameters trans The Transform to be updated with a Scale Transform. It must have been created
previously with xgl_object_create(3).

scale_factors
Contains the scale factors used to construct a Scale Transform. scale_factors is a
pointer to a structure of type Xgl_pt defined as follows:

typedef struct {
Xgl_pt_type pt_type; /∗ type of point ∗/
Xgl_pt_position pt; /∗ union of pointers to one point ∗/

} Xgl_pt;

scale_factors→pt_type is the type of the point in scale_factors→pt. The table below
gives the valid point types.

scale_factors→pt is a union of pointers. The appropriate pointer, which is deter-
mined by scale_factors→pt_type, gives the address of a point structure containing
coordinates. The valid members of this union are as follows:

Field Name Type Point Type
���������������������������������������
pt.i2d Xgl_pt_i2d ∗ XGL_PT_I2D
pt.f2d Xgl_pt_f2d ∗ XGL_PT_F2D
pt.d2d Xgl_pt_d2d ∗ XGL_PT_D2D
pt.f3d Xgl_pt_f3d ∗ XGL_PT_F3D
pt.d3d Xgl_pt_d3d ∗ XGL_PT_D3D

The dimension of trans, as given by XGL_TRANS_DIMENSION(3), and the data type,
as given by XGL_TRANS_DATA_TYPE(3), do not need to match those of scale_factors.
If trans is 3D and scale_factors is 2D, the z scale factor of the Scale Transform is set
to 0. If trans is 2D and scale_factors is 3D, the z scale factor is ignored.

542 modified August 1994

XGL Graphics Library xgl_transform_scale (3)

update Establishes the method of combining the Scale Transform with the target
Transform. XGL accepts the following values for Xgl_trans_update:

XGL_TRANS_REPLACE
The Scale Transform replaces the target Transform trans.

XGL_TRANS_PRECONCAT
The Scale Transform is preconcatenated to the target Transform trans,
and the result is stored in trans. XGL treats coordinates as row vectors,
which means that the matrix of the Scale Transform on the left, multi-
plied by the matrix of trans on the right, replaces the matrix of trans.

XGL_TRANS_POSTCONCAT
The Scale Transform is postconcatenated to the target Transform trans,
and the result is stored in trans. XGL treats coordinates as row vectors,
which means that the matrix of trans on the left, multiplied by the matrix
of the Scale Transform on the right, replaces the matrix of trans.

RETURN VALUE Nothing is returned.

SEE ALSO xgl_object_create(3)

XGL_TRANS_DATA_TYPE(3)
XGL_TRANS_DIMENSION(3)

modified August 1994 543

xgl_transform_translate (3) XGL Graphics Library

NAME xgl_transform_translate − combines a Transform with a Translation Transform

SYNOPSIS #include <xgl/xgl.h>

void xgl_transform_translate (
Xgl_trans trans,
Xgl_pt ∗offset,
Xgl_trans_update update);

DESCRIPTION
Purpose This operator combines a given Transform with a Translation Transform that is con-

structed with the given parameters. The Translation Transform can replace the given
Transform, or it can be preconcatenated or postconcatenated with the given Transform.

Parameters trans The Transform to be updated with a Translation Transform. It must have been
created previously with xgl_object_create(3).

offset Contains the offset used to construct a Translation Transform. offset is a pointer
to a structure of type Xgl_pt defined as follows:

typedef struct {
Xgl_pt_type pt_type; /∗ type of point ∗/
Xgl_pt_position pt; /∗ union of pointers to one point ∗/

} Xgl_pt;

offset→pt_type is the type of the point in offset→pt. The table below gives the valid
point types.

offset→pt is a union of pointers. The appropriate pointer, as determined by
offset→pt_type, gives the address of a point structure containing coordinates. The
valid members of this union are as follows:

Field Name Type Point Type
���������������������������������������
pt.i2d Xgl_pt_i2d ∗ XGL_PT_I2D
pt.f2d Xgl_pt_f2d ∗ XGL_PT_F2D
pt.d2d Xgl_pt_d2d ∗ XGL_PT_D2D
pt.f3d Xgl_pt_f3d ∗ XGL_PT_F3D
pt.d3d Xgl_pt_d3d ∗ XGL_PT_D3D

The dimension of trans, as given by XGL_TRANS_DIMENSION(3), and the data type,
as given by XGL_TRANS_DATA_TYPE(3), do not need to match those of offset. If
trans is 3D and offset is 2D, the z offset value of the Translation Transform is set to
0. If trans is 2D and offset is 3D, the z offset value is ignored.

544 modified August 1994

XGL Graphics Library xgl_transform_translate (3)

update Establishes the method of combining the Translation Transform with the target
Transform. XGL accepts the following values for Xgl_trans_update:

XGL_TRANS_REPLACE
The Translation Transform replaces the target Transform trans.

XGL_TRANS_PRECONCAT
The Translation Transform is preconcatenated to the target Transform
trans, and the result is stored in trans. XGL treats coordinates as row vec-
tors, which means that the matrix of the Translation Transform on the
left, multiplied by the matrix of trans on the right, replaces the matrix of
trans.

XGL_TRANS_POSTCONCAT
The Translation Transform is postconcatenated to the target Transform
trans, and the result is stored in trans. XGL treats coordinates as row vec-
tors, which means that the matrix of trans on the left, multiplied by the
matrix of the Translation Transform on the right, replaces the matrix of
trans.

RETURN VALUE Nothing is returned.

SEE ALSO xgl_object_create(3)

XGL_TRANS_DATA_TYPE(3)
XGL_TRANS_DIMENSION(3)

modified August 1994 545

xgl_transform_transpose (3) XGL Graphics Library

NAME xgl_transform_transpose − transposes a Transform

SYNOPSIS #include <xgl/xgl.h>

void xgl_transform_transpose (
Xgl_trans dest_trans,
Xgl_trans src_trans);

DESCRIPTION
Purpose This operator transposes a Transform’s matrix.

Parameters dest_trans
The Destination Transform into which the transpose is stored. It must have been
created previously with xgl_object_create(3). dest_trans can be the same as
src_trans if the application wants the original matrix to be overwritten by the
transpose. The dimensions and data types of dest_trans and src_trans may differ.
When they do, the conversions are similar to those performed by xgl_-
transform_copy(3).

src_trans
The Source Transform whose matrix is transposed. It must have been created
previously with xgl_object_create(3).

RETURN VALUE Nothing is returned.

SEE ALSO xgl_transform_copy(3)
xgl_object_create(3)

XGL_TRANS_DATA_TYPE(3)
XGL_TRANS_DIMENSION(3)

546 modified August 1994

XGL Graphics Library xgl_transform_write_specific (3)

NAME xgl_transform_write_specific − writes an array into a Transform’s matrix along with a
description of its membership to matrix groups

SYNOPSIS #include <xgl/xgl.h>

void xgl_transform_write_specific (
Xgl_trans dest_trans,
void∗ matrix,
Xgl_trans_member membership);

DESCRIPTION
Purpose This operator writes an array supplied by the application into a Transform’s matrix. An

application can specify the matrix groups to which the matrix is a member. This
membership information can significantly improve the performance of most operations
involving Transforms.

Parameters dest_trans
The Transform whose matrix is written. It must have been created previously
with xgl_object_create(3).

matrix One of the following types of array:

typedef Xgl_sgn32 Xgl_matrix_i2d [3][2]; /∗ 2D integer matrix ∗/
typedef float Xgl_matrix_f2d [3][2]; /∗ 2D 32-bit floating-point matrix ∗/
typedef double Xgl_matrix_d2d [3][2]; /∗ 2D 64-bit floating-point matrix ∗/
typedef float Xgl_matrix_f3d [4][4]; /∗ 3D 32-bit floating-point matrix ∗/
typedef double Xgl_matrix_d3d [4][4]; /∗ 3D 64-bit floating-point matrix ∗/

The Transform’s data type, as given by XGL_TRANS_DATA_TYPE(3), and its dimen-
sion, as given by XGL_TRANS_DIMENSION(3), determine which array must be
passed by the application. Only one type of array is valid at any given time. No
data conversion takes place, so the Transform’s data type and dimension must
match those of the array.

membership
The membership of matrix to matrix groups. If matrix has the form described
with one of the values below, then an application can specify that value for the
membership parameter for increased performance in most operations involving
Transforms. This parameter can be NULL, effectively the same as xgl_transform_-
write(3), but performance in most cases will be lower than specifying the applica-
ble value. However, if an application specifies a value that does not apply to the
matrix written into the Transform, then unexpected results can occur such as
geometry in the wrong location or incorrect lighting.

Let M be a 4×4 matrix for 3D transformations. M has the following form:

modified August 1994 547

xgl_transform_write_specific (3) XGL Graphics Library

M =

�
�
�
�
�∗
∗
∗
∗

∗
∗
∗
∗

∗
∗
∗
∗

∗
∗
∗
∗ �
�
�
�
�

The analogous 2D matrix can be obtained by striking out the third row and third
column (corresponding to z). The array written into a 2D Transform is 3×2
because the last column is always [0 0 1]T so it is implicit.

XGL treats points as row vectors and normal vectors as column vectors.

p = �
�x y z w �

�

n = �
�nx ny nz

�
�

T

An affine transformation is a geometric mapping that preserves the straightness
of lines and the parallelism of parallel lines but possibly alters the distance
between points and/or the angle between lines. Perspective transformations are
not affine.

Since affine transformations frequently occur in graphics, we can benefit from
identifying specific categories. In modern algebra, these are called groups.

If M is affine, it has the following form:

M =
�
�
�C
A

1
0 �
�
�

where A is the upper-left 3×3 submatrix of M,
C is the lower-left 1×3 submatrix of M,
0 is a 3×1 column vectors of zeros,
1 is the lower-right 1×1 submatrix of M.

This notation is called block matrix because the elements are matrices.

The values for membership are as follows:

XGL_TRANS_MEMBER_IDENTITY
Matrices of this type have the following form:

For 2D For 3D

M =
�
�
�
�0
0
1

0
1
0

1
0
0 �
�
�
�

M =

�
�
�
�
�
�0
0
0
1

0
0
1
0

0
1
0
0

1
0
0
0 �
�
�
�
�
�

548 modified August 1994

XGL Graphics Library xgl_transform_write_specific (3)

XGL_TRANS_MEMBER_TRANSLATION
Matrices of this type have the following form:

For 2D For 3D

M =

�
�
�
�
�tx

0
1

ty

1
0

1
0
0 �
�
�
�
�

M =

�
�
�
�
�
�tx

0
0
1

ty

0
1
0

tz

1
0
0

1
0
0
0 �
�
�
�
�
�

XGL_TRANS_MEMBER_SCALE
Matrices of this type have the following form:

For 2D For 3D

M =

�
�
�
�
�0
0

sx

0

sy

0

1
0
0 �
�
�
�
�

M =

�
�
�
�
�
�0
0
0

sx

0
0

sy

0

0

sz

0
0

1
0
0
0 �
�
�
�
�
�

If any scale factor is zero, the matrix is singular.

XGL_TRANS_MEMBER_ROTATION
Matrices of this type have the following form:

M =
�
�
�0
A

1
0 �
�
�

where A is orthogonal meaning that A-1 = AT. For 2D, A is 2×2; for 3D,
A is 3×3.

XGL_TRANS_MEMBER_WINDOW
Matrices of this type have the following form:

For 2D For 3D

M =

�
�
�
�
�tx

0

sx

ty

sy

0

1
0
0 �
�
�
�
�

M =

�
�
�
�
�
�tx

0
0

sx

ty

0

sy

0

tz

sz

0
0

1
0
0
0 �
�
�
�
�
�

A window matrix can scale and translate.

modified August 1994 549

xgl_transform_write_specific (3) XGL Graphics Library

XGL_TRANS_MEMBER_SHEAR_SCALE
Matrices of this type have the following form:

For 3D

M =

�
�
�
�
�
�0

hx

0

sx

0

hy

sy

0

0

sz

0
0

1
0
0
0 �
�
�
�
�
�

This shear/scale matrix type does not apply to 2D.

XGL_TRANS_MEMBER_LENGTH_PRESERV
Matrices of this type have the following form:

M =
�
�
�C
A

1
0 �
�
�

where A is orthogonal meaning that A-1 = AT. For 2D, A is 2×2; for 3D,
A is 3×3. C is any 1×2 submatrix for 2D or 1×3 submatrix for 3D.

A length-preserving matrix can translate, rotate, and reflect about an
axis; these operations preserve the distance between any two points
and the angle between any two intersecting lines.

XGL_TRANS_MEMBER_ANGLE_PRESERV
Matrices of this type have the following form:

M =
�
�
�C
A

1
0 �
�
�

where A has the form A = sQ and s is a positive scalar and Q is
orthogonal or Q-1 = QT. For 2D, A and Q are 2×2; for 3D, A and Q are
3×3. C is any 1×2 submatrix for 2D or 1×3 submatrix for 3D.

An angle-preserving matrix can translate, rotate, reflect about an axis,
and scale by an amount which is uniform in all directions; these
operations preserve the angle between any two intersecting lines.

XGL_TRANS_MEMBER_AFFINE
Matrices of this type have the following form:

M =
�
�
�C
A

1
0 �
�
�

where A is any nonsingular 2×2 matrix for 2D or 3×3 matrix for 3D. C
is any 1×2 submatrix for 2D or 1×3 submatrix for 3D.

550 modified August 1994

XGL Graphics Library xgl_transform_write_specific (3)

An affine matrix can translate, rotate, reflect, scale anisotropically,
and shear; lines remain straight and parallel lines remain parallel but
the angle between intersecting lines can change.

XGL_TRANS_MEMBER_LIM_PERSPECTIVE
Matrices of this type have the following form:

For 3D

M =

�
�
�
�
�
�∗
∗
0
∗

∗
∗
∗
0

∗
∗
0
0

∗
∗
0
0 �
�
�
�
�
�

This limited perspective matrix type does not apply to 2D.

RETURN VALUE Nothing is returned.

SEE ALSO xgl_object_create(3)
xgl_transform_write(3)

XGL_TRANS_DATA_TYPE(3)
XGL_TRANS_DIMENSION(3)

modified August 1994 551

xgl_triangle_list (3) XGL Graphics Library

NAME xgl_triangle_list − draws a triangle list

SYNOPSIS #include <xgl/xgl.h>

void xgl_triangle_list (
Xgl_ctx ctx,
Xgl_facet_list ∗facets,
Xgl_pt_list ∗pl,
Xgl_tlist_flags flags);

DESCRIPTION
Purpose This operator draws a triangle list according to the parameter list and the graphics state

described in the 3D Context ctx. Only 3D Contexts can be used with this operator. All of
the Context attributes that directly affect the display of triangle lists are listed in the SEE

ALSO section below.

A triangle list is defined by a single point list containing at least three vertices. It may be
composed of a series of connected triangles arranged as a triangle strip, or a series of con-
nected triangles arranged as a triangle star, or a series of unconnected independent trian-
gles.

The first three vertices from the point list define a triangle. To produce a triangle strip,
each additional vertex replaces the oldest vertex from the previous triangle thus defining a
new adjoining triangle. To produce a triangle star, the new vertex replaces the second old-
est vertex, again defining an adjoining triangle. Finally, to produce independent triangles,
each set of three vertices define a new triangle which (probably) will not be adjoining
with the previous one. Flags, either passed to this primitive via the flags parameter or
supplied in the flag word within the vertex data, determine whether the geometry pro-
duces a strip, star, independent triangles, or a combination of the three.

More precisely, a triangle list consists of an ordered list of (n+2) vertices, {v
0

, v
1

, ... , v
n+1

},
n > 1. The edges for the first triangle lie between the vertices [v

0
, v

1
], [v

1
, v

2
], and [v

0
, v

2
],

respectively. For triangle stars and strips and for i = 3, 4, ... , n+1, each vertex v
i
replaces

one vertex from the previous triangle. This new vertex forms two new edges with the two
vertices remaining from the previous triangle. They are used to form a new triangle that
adjoins the previous one. In these two cases, XGL allows each new vertex v

i
to replace

one of two different vertices from the previous triangle — the oldest vertex from that tri-
angle, v

i−2
, or the second oldest vertex, v

i−1
. The first case produces a triangle strip that is

identical to that produced by the primitive xgl_triangle_strip(3). The second case pro-
duces a triangle star. For independent triangles and for i = 3, 6, 9, 12, ... , n−1, each set of
three vertices {v

i
, v

i+1
, v

i+2
} produces a new triangle.

Assuming that there is no intermixing of strips, stars, and independent triangles within
the same triangle_list, and assuming there are n+2 vertices, {v

0
, v

1
, ... , v

n+1
}, the follow-

ing triangles will be produced in the three different cases:

Triangle Strip (replace oldest) −
n triangles, t

0
, t

1
, ... , t

n−1
composed of the following vertices:

{v
0

, v
1

, v
2

}, {v
1

, v
2

, v
3

}, {v
2

, v
3

, v
4

}, ... , {v
n−1

, v
n

, v
n+1

} .

552 modified September 1995

XGL Graphics Library xgl_triangle_list (3)

Triangle Star (replace second oldest) −
n triangles, t

0
, t

1
, ... , t

n−1
composed of the following vertices:

{v
0

, v
1

, v
2

}, {v
0

, v
2

, v
3

}, {v
0

, v
3

, v
4

}, ... , {v
0

, v
n

, v
n+1

} .

Independent Triangles (restart every third vertex) −
(n+2)/3 triangles, t

0
, t

1
, ... , t

(n+2)/3
composed of the following vertices:

{v
0

, v
1

, v
2

}, {v
3

, v
4

, v
5

}, {v
6

, v
7

, v
8

}, ... , {v
n−1

, v
n

, v
n+1

} .

Bits within the flag associated with each vertex or within the global flag word, flags,
passed as a parameter determine how the vertices are used to create triangles (see discus-
sion of vertex flags in Execution section or discussion about flags parameter below). Tri-
angle strips, stars and independent triangles may be intermixed within the same strip. To
do this, the application must set the per-vertex flags appropriately (again, see Execution
section below).

Parameters facets A pointer to an Xgl_facet_list structure, which is defined as:
typedef struct {

Xgl_facet_type facet_type; /∗ type of facet ∗/
Xgl_usgn32 num_facets; /∗ number of facets ∗/
union { /∗ pointers to array o

Xgl_color_facet ∗color_facets;
Xgl_normal_facet ∗normal_facets;
Xgl_color_normal_facet ∗color_normal_facets;

} facets;
} Xgl_facet_list;

facets→facet_type is any one of XGL_FACET_NONE, XGL_FACET_COLOR, XGL_FACET_-
NORMAL, or XGL_FACET_COLOR_NORMAL. The value of this field determines the
interpretation of the union facets→facets, which points to the first element of an
array of facet information. For example, if facets→facet_type is XGL_FACET_COLOR,
facets→facets.color[i] should be the data for the i’th Xgl_color_facet.

The array of facet data is assumed to be facets→num_facets elements long with the
data in the i’th facet corresponding to triangle t

i
. However, if the parameter flags

has the XGL_TLIST_FLAG_IS_PLANAR flag set, then only the first facet in the facet list
will be used to specify the facet characteristics for all of the triangles − the
remainder of the facet list (if it exists) will be ignored.

The facets information is not used to draw the triangles if either facets is NULL or
facets→facet_type is XGL_FACET_NONE. Also, if XGL_TLIST_FLAG_IS_PLANAR is not
set, the facet information is ignored if facets→num_facets is less than pl→num_pts −
2, and if it is set, the facet information is ignored if facets→num_facets is less than
1.

If facets->facet_type is XGL_FACET_NORMAL or XGL_FACET_COLOR_NORMAL, the nor-
mals specified in the facets are used for the culling and lighting calculations. The
XGL_TLIST_FLAG_FN_CONSISTENT_CW and XGL_TLIST_FLAG_FN_CONSISTENT_CCW bit
of Xgl_tlist_flag and XGL_FACE_IS_CCW bit of the per vertex flag are ignored.

modified September 1995 553

xgl_triangle_list (3) XGL Graphics Library

pl A pointer to an Xgl_pt_list structure, which is defined as:
typedef struct {

Xgl_pt_type pt_type; /∗ type of point ∗/
Xgl_bbox ∗bbox; /∗ optional box containing

all points ∗/
Xgl_usgn32 num_pts; /∗ number of points ∗/
Xgl_usgn32 num_data_values; /∗ number of data values at

each point ∗/
Xgl_pt_ptr_union pts; /∗ union of pointers to array

of points ∗/
} Xgl_pt_list;

pl→pt_type specifies the type of the points in pl→pts.

pl→bbox specifies a bounding box for the triangle list. This parameter is either
NULL, or it is the bounding box around all of the points in pl→pts. The bounding
box information is used to optimize clipping and also to simplify rendering when
its projection on the view surface is small. (See XGL_CTX_THRESHOLD(3).)

If the application does not want to provide bounding box information, bbox can
be NULL. If the bounding box is given, it is the application’s responsibility to
ensure that it is correct.

In releases of XGL before 3.0, if an application provided a bounding box, then
bbox was a pointer to a structure of type Xgl_bbox. In XGL 3.0 and subsequent
releases, this approach is still supported for backward compatibility, but applica-
tions now can store bounding box information in any of six new structures,
which are similar to Xgl_bbox:

Xgl_bbox_i2d
Xgl_bbox_f2d
Xgl_bbox_f3d
Xgl_bbox_status
Xgl_bbox_d2d
Xgl_bbox_d3d

In place of a structure of type Xgl_bbox, an application can use one of the above
structures. For example, if an application uses a variable called bbox_f2d of type
Xgl_bbox_f2d, it needs to cast the pointer to this structure using (Xgl_bbox ∗)
(&bbox_f2d) before passing the information to XGL.

pl→num_pts is the number of points in the array pts. Specifically, it is the number
of vertices in the triangle list. Note that it is not the number of triangles.

pl→num_data_values specifies the number of data values. Specifically, it is the
number of data values per vertex in the triangle list.

Texture mapping can be done by using vertices with data values. The data
values, also known as u and v values for texturing, specify how the texture map
should be mapped onto triangles of a triangle list. For more information on tex-
turing, see xgl_polygon(3).

554 modified September 1995

XGL Graphics Library xgl_triangle_list (3)

pl→pts is a union of pointers, one of which points to the array of vertex data that
make up the triangle(s). The value of pl→pt_type determines the interpretation of
this union.

For further details on this union of pointers and the effect of pl→pt_type and
facets→facet_type on how facets are colored, see xgl_polygon(3). These details
are the same for all primitives that draw polygonal surfaces.

flags A flag word of type Xgl_tlist_flags containing bits specifying the global charac-
teristics of the triangle list. Global characteristics are those that are common to
the entire point list passed to the primitive.

Information in this flag word overrides any conflicting information provided by
per-vertex flags (if available − see discussion about vertex flags in Execution sec-
tion below).

Xgl_tlist_flags is specified as an enumerated type, but it actually contains some
mutually exclusive values and some non-mutually exclusive values that may be
OR’d together.

The mutually exclusive flags are:

XGL_TLIST_FLAG_USE_VTX_FLAGS
No global information is given about how the triangles are formed from the
point list. Instead, per-vertex flags are used to define how each triangle is
composed.

a. If this flag is set, then the vertex data must contain flag information (i.e.
the ordering of the vertices in each triangle will be determined on a
per-triangle basis). In order to use per-vertex flags with the
xgl_triangle_list, this flag must be set.

b. If this flag is not set, then per-vertex flags are not required and either
XGL_TLIST_FLAG_TRI_STRIP, XGL_TLIST_FLAG_TRI_STAR, or XGL_TLIST_FLAG_-
TRI_RESTART will be set. In fact, if this flag is not set and per-vertex flags
are present, the per-vertex bits controlling the triangle type will be
ignored (the edge flag bits can still be used, however).

XGL_TLIST_FLAG_TRI_STRIP
All points in the point list are used to create a triangle strip (replace oldest
vertex).

XGL_TLIST_FLAG_TRI_STAR
All points in the point list are used to create a triangle star (replace second-
oldest vertex).

XGL_TLIST_FLAG_TRI_RESTART
Every third vertex in the point list is a restart vertex for a new triangle (this
produces a batch of independent triangles).

The non-mutually exclusive flags are:

XGL_TLIST_FLAG_EDGES_ON
When set, and when per-vertex edge flags exist, causes all edges within the

modified September 1995 555

xgl_triangle_list (3) XGL Graphics Library

triangle list to be drawn if the Context edge flag, XGL_CTX_SURF_EDGE_-

FLAG(3) is also set. Both internal and non-internal edges will be drawn
where "internal" edges are those marked with either the XGL_EDGE_IS_-
INTERNAL or the XGL_PREV_EDGE_IS_INTERNAL flag bit.

If this bit is not set, then edges will be drawn if the per-vertex edge flag bits
are set, the per-vertex internal edge flag bits are cleared, and the Context
edge flag, XGL_CTX_SURF_EDGE_FLAG(3) is set.

XGL_TLIST_FLAG_IS_PLANAR
All triangles defined by the point list are assumed to be co-planar. This is a
hint to, perhaps, allow for optimizations within XGL’s lighting calculations.

If this flag is set, then only the first facet in the facet list will be used for
facet information − the remainder of the facet list (if it exists) will be
ignored.

XGL_TLIST_FLAG_FN_CONSISTENT
XGL_TLIST_FLAG_FN_NOT_CONSISTENT

Setting the XGL_TLIST_FLAT_FN_CONSISTENT flag indicates whether the direc-
tion of facet normal and the order in which the points are given are con-
sistent for all triangles within the list.

In a right-handed coordinate system, the order of the points implies a facet
normal that is calculated as follows:

implied facet normal = v1v2 × v1v3

A user-provided facet normal indicates the front face of a triangle. Call a
group of triangles XGL_TLIST_FLAG_FN_CONSISTENT if either of the following
is true:

· The front of the triangle chosen by the user-provided facet normal
always agrees with the front chosen by the implied facet normal.

· The front chosen by the user-provided facet normal always
disagrees with that chosen by the implied facet normal.

Call a group of triangles XGL_TLIST_FLAG_FN_NOT_CONSISTENT if neither of
the above conditions holds. That is, for some triangles, there is agreement;
for others, there is disagreement.

The default is XGL_TLIST_FLAG_FN_NOT_CONSISTENT.

Setting this flag with XGL_TLIST_FLAG_FN_CONSISTENT gives better perfor-
mance on some devices. Consult your accelerator guide for details.

If the parameter flags is NULL, then the following defaults apply:

1. The triangle list is composed of a chain of independent triangles (restart every
third vertex) whose per-vertex flag bits controlling triangle type are ignored.

2. The per-vertex edge flag bits, if available, can still be used. An edge will be
drawn if its corresponding edge flag bit is set, the corresponding internal
edge flag bit is cleared, and the Context edge flag, XGL_CTX_SURF_EDGE_-

556 modified September 1995

XGL Graphics Library xgl_triangle_list (3)

FLAG(3), is set.

3. The triangles are not assumed to be co-planar.

Execution If points with per-vertex flag information are used and the flag XGL_TLIST_FLAG_USE_VTX_-
FLAGS within the flags parameter is set, several bits within the per-vertex flag determine
rendering characteristics on a per-triangle basis.

XGL_DRAW_EDGE (0x1)
XGL_DRAW_PREV_EDGE (0x2)

These bits control edge drawing as shown below. They will be used to turn on
specifically marked edges when the Context edge flag, XGL_CTX_SURF_EDGE_-

FLAG(3), is also set.

For vertex v
0

, the edge flag bits are ignored.

For vertex v
1

, the edge flag bit XGL_DRAW_EDGE (0x1) controls the edge [v
0

, v
1

],
while the bit XGL_DRAW_PREV_EDGE (0x2) is ignored.

For vertices v
i
, i = 2 to n+1, both edge flag bits are used for the case of triangle

strip and triangle star rendering. For a triangle strip, the flag bit XGL_DRAW_EDGE
controls the edge [v

i−1
, v

i
] while the bit XGL_DRAW_PREV_EDGE controls the edge

[v
i−2

, v
i
]. For a triangle star, the flag bit XGL_DRAW_EDGE (0x1) controls the edge

[v
i−1

, v
i
] as before. However, the bit XGL_DRAW_PREV_EDGE (0x2) controls the

edge [v
oldest

, v
i
]. v

oldest
is the oldest vertex retained from the previous triangle in

creating the ith triangle.

For vertices v
i
, i = 2 to n+1, with a set of independent triangles the edge bits are

used as they are with triangle strips with the following exception:

· Every time a triangle is restarted, the first vertex is treated as v
0

(i.e. its per-
vertex flags are ignored, see above), the second vertex is treated as v

1
(i.e.

only the XGL_DRAW_EDGE bit is used), and the third vertex is treated as
v

2
(see above).

XGL_TRIANGLE_STRIP (0x4)
XGL_TRIANGLE_STAR (0x8)
XGL_TRIANGLE_RESTART (0x0)

These bits control the type of triangles created by the list. They allow for the
intermixing of triangle strips, stars, and independent triangles within the same
point list. They specify, on a per-vertex basis, which vertex from the previous tri-
angle will be replaced by the current vertex:

XGL_TRIANGLE_STRIP − current vertex replaces oldest vertex from previous trian-
gle.

XGL_TRIANGLE_STAR − current vertex replaces second-oldest vertex from previous
triangle.

XGL_TRIANGLE_RESTART − current vertex is the first vertex of a new triangle. No
information from the previous triangle is retained.

modified September 1995 557

xgl_triangle_list (3) XGL Graphics Library

NOTE: The triangle type flags for the first three vertices in a point list are ignored
(i.e. the first triangle is always a "RESTART" triangle). Thereafter, the triangle type
flags will be checked at each vertex with the exception that when an XGL_-
TRIANGLE_RESTART flag is encountered, the triangle type flags in the following
two vertices will be ignored.

XGL_FACE_IS_CCW (0x10)
This bit specifies the ordering of the vertices for determining face orientation.
CCW = counter-clockwise. This flag is only used at restart vertices (see XGL_-
TRIANGLE_RESTART); elsewhere, it is ignored.

If XGL_3D_CTX_SURF_GEOM_NORMAL(3) is set to XGL_GEOM_NORMAL_LAST_POINTS,
the calculated face normals are flipped.

XGL_EDGE_IS_INTERNAL (0x20)
XGL_PREV_EDGE_IS_INTERNAL (0x40)

These bits are similar to the bits XGL_DRAW_EDGE and XGL_DRAW_PREV_EDGE
because they control edge drawing. They are used to mark specific edges as
internal edges. An application developer who is performing some kind of tri-
angular tessellation may want to mark some edges as being internal because they
were not part of the non-tessellated surface. Internal edges will never be ren-
dered no matter what the state of the other flags. The semantics defining which
edges that these bits correspond to is identical to that shown for XGL_DRAW_EDGE
and XGL_DRAW_PREV_EDGE (see above).

The per-vertex bits can be manipulated using macros defined in the header file xgl.h. For
instance, the macros XGL_SET_EDGE_FLAG(PT) and XGL_SET_PREV_EDGE_FLAG(PT) can be used
to set the per-vertex edge flag bits when given a pointer to a point containing flag infor-
mation. Also, five macros in xgl.h are to be used specifically for manipulating the per-
vertex flag bits, XGL_TRIANGLE_STRIP, XGL_TRIANGLE_STAR, and XGL_TRIANGLE_RESTART,
which xgl_triangle_list uses to define the type of triangles specified in the point list.
These macros are: XGL_SET_TRI_STAR_FLAG(PT), XGL_SET_TRI_STRIP_FLAG(PT), XGL_CLR_TRI_-
STAR_FLAG(PT), XGL_CLR_TRI_STRIP_FLAG(PT), and XGL_RESTART_TRIANGLE(PT). There is no
separate set and clear macro for the RESTART flag because RESTART is implied when both
the XGL_TRIANGLE_STAR and XGL_TRIANGLE_STRIP flags are cleared. The XGL_RESTART_-
TRIANGLE(PT) clears these two bits. For more information, see xgl.h.

FACET
COLORING

Generally, a facet refers to a single triangle within the triangle list. The Context attributes
specify how this facet is to be colored. The vertex point type pl[i].pt_type and the facet
type facet_type also interact to affect the color of the triangle. The model is simple: The
point and facet types determine how the normal and base colors of each vertex are
obtained. Then the Context attributes are applied to color the facet. For more informa-
tion about facet coloring, see xgl_polygon(3).

RETURN VALUE Nothing is returned.

558 modified September 1995

XGL Graphics Library xgl_triangle_list (3)

SEE ALSO xgl_multi_simple_polygon(3)
xgl_polygon(3)
xgl_quadrilateral_mesh(3)
xgl_triangle_strip(3)

XGL_3D_CTX_DEPTH_CUE_COLOR(3)
XGL_3D_CTX_DEPTH_CUE_INTERP(3)
XGL_3D_CTX_DEPTH_CUE_MODE(3)
XGL_3D_CTX_DEPTH_CUE_REF_PLANES(3)
XGL_3D_CTX_DEPTH_CUE_SCALE_FACTORS(3)
XGL_3D_CTX_LIGHTS(3)
XGL_3D_CTX_LIGHT_NUM(3)
XGL_3D_CTX_LIGHT_SWITCHES(3)
XGL_3D_CTX_SURF_BACK_AMBIENT(3)
XGL_3D_CTX_SURF_BACK_COLOR(3)
XGL_3D_CTX_SURF_BACK_COLOR_SELECTOR(3)
XGL_3D_CTX_SURF_BACK_DIFFUSE(3)
XGL_3D_CTX_SURF_BACK_DMAP(3)
XGL_3D_CTX_SURF_BACK_DMAP_NUM(3)
XGL_3D_CTX_SURF_BACK_DMAP_SWITCHES(3)
XGL_3D_CTX_SURF_BACK_FILL_STYLE(3)
XGL_3D_CTX_SURF_BACK_FPAT(3)
XGL_3D_CTX_SURF_BACK_FPAT_POSITION(3)
XGL_3D_CTX_SURF_BACK_ILLUMINATION(3)
XGL_3D_CTX_SURF_BACK_LIGHT_COMPONENT(3)
XGL_3D_CTX_SURF_BACK_SPECULAR(3)
XGL_3D_CTX_SURF_BACK_SPECULAR_COLOR(3)
XGL_3D_CTX_SURF_BACK_SPECULAR_POWER(3)
XGL_3D_CTX_SURF_BACK_TRANSP(3)
XGL_3D_CTX_SURF_FACE_CULL(3)
XGL_3D_CTX_SURF_FACE_DISTINGUISH(3)
XGL_3D_CTX_SURF_FRONT_AMBIENT(3)
XGL_3D_CTX_SURF_FRONT_DIFFUSE(3)
XGL_3D_CTX_SURF_FRONT_DMAP(3)
XGL_3D_CTX_SURF_FRONT_DMAP_NUM(3)
XGL_3D_CTX_SURF_FRONT_DMAP_SWITCHES(3)
XGL_3D_CTX_SURF_FRONT_ILLUMINATION(3)
XGL_3D_CTX_SURF_FRONT_LIGHT_COMPONENT(3)
XGL_3D_CTX_SURF_FRONT_SPECULAR(3)
XGL_3D_CTX_SURF_FRONT_SPECULAR_COLOR(3)
XGL_3D_CTX_SURF_FRONT_SPECULAR_POWER(3)
XGL_3D_CTX_SURF_FRONT_TRANSP(3)
XGL_3D_CTX_SURF_GEOM_NORMAL(3)
XGL_3D_CTX_SURF_NORMAL_FLIP(3)
XGL_3D_CTX_SURF_SILHOUETTE_EDGE_FLAG(3)
XGL_3D_CTX_SURF_TRANSP_BLEND_EQ(3)

modified September 1995 559

xgl_triangle_list (3) XGL Graphics Library

XGL_3D_CTX_SURF_TRANSP_METHOD(3)
XGL_CTX_EDGE_AA_BLEND_EQ(3)
XGL_CTX_EDGE_AA_FILTER_SHAPE(3)
XGL_CTX_EDGE_AA_FILTER_WIDTH(3)
XGL_CTX_EDGE_ALT_COLOR(3)
XGL_CTX_EDGE_CAP(3)
XGL_CTX_EDGE_COLOR(3)
XGL_CTX_EDGE_JOIN(3)
XGL_CTX_EDGE_MITER_LIMIT(3)
XGL_CTX_EDGE_PATTERN(3)
XGL_CTX_EDGE_STYLE(3)
XGL_CTX_EDGE_WIDTH_SCALE_FACTOR(3)
XGL_CTX_PLANE_MASK(3)
XGL_CTX_ROP(3)
XGL_CTX_SURF_AA_BLEND_EQ(3)
XGL_CTX_SURF_AA_FILTER_SHAPE(3)
XGL_CTX_SURF_AA_FILTER_WIDTH(3)
XGL_CTX_SURF_EDGE_FLAG(3)
XGL_CTX_SURF_FRONT_COLOR(3)
XGL_CTX_SURF_FRONT_COLOR_SELECTOR(3)
XGL_CTX_SURF_FRONT_FILL_STYLE(3)
XGL_CTX_SURF_FRONT_FPAT(3)
XGL_CTX_SURF_FRONT_FPAT_POSITION(3)
XGL_CTX_SURF_INTERIOR_RULE(3)
XGL_CTX_THRESHOLD(3)

NOTES All points in pl[] must have the same Xgl_pt_type.

2D point types do not work with a 3D Context.

The XGL drawing primitives xgl_quadrilateral_mesh(3), xgl_triangle_strip(3), and xgl_-
triangle_list(3) may not draw edges of adjoining facets when z-buffering is not enabled.
This problem occurs on certain devices or when using XGL to render across a network.
To avoid this problem applications using these operators should either enable z-buffering
or convert the quadrilateral mesh, triangle strip, or triangle list data into individual
polygon data and call a polygon primitive (xgl_multi_simple_polygon(3) or xgl_-
polygon(3)) with z-buffering disabled. Both approaches will render each facet of the
mesh, strip, or list individually and with correct edges.

The XGL drawing primitives xgl_quadrilateral_mesh(3), xgl_triangle_strip(3), and xgl_-
triangle_list(3) may produce inconsistent results when used with an RGB Raster (XGL_-

DEV_COLOR_TYPE(3) is XGL_COLOR_RGB) on the GX graphics accelerator. This will occur
when there is no clipping of the object, depth cueing is off, and z-buffering is disabled. In
this case, XGL fully accelerates its rendering and does not dither the RGB colors before
rendering them on the device. To avoid this problem, either use an Indexed Raster or
enable z-buffering.

560 modified September 1995

XGL Graphics Library xgl_triangle_strip (3)

NAME xgl_triangle_strip − draws a triangle strip

SYNOPSIS #include <xgl/xgl.h>

void xgl_triangle_strip (
Xgl_ctx ctx,
Xgl_facet_list ∗facets,
Xgl_pt_list ∗pl);

DESCRIPTION
Purpose This operator draws a triangle strip according to the parameter list and the graphics state

described in the Context ctx. Only 3D Contexts can be used with this operator.

A triangle strip is defined by a single point list containing at least three vertices. The first
three vertices define a triangle, and each additional vertex defines an adjacent triangle.

More precisely, a triangle strip consists of an ordered list of (n+2) vertices {v
0

, v
1

, ... ,
v

n+1
}, n > 0. The first edge lies between the vertices [v

0
, v

1
]. For i = 2, 3, ... , n+1, each ver-

tex v
i
results in two new edges: [v

i−2
, v

i
], and [v

i−1
, v

i
]. Thus, there are n triangles, t

0
, t

1
,

... , t
n−1

, containing the vertices {v
0

, v
1

, v
2

}, {v
1

, v
2

, v
3

}, {v
2

, v
3

, v
4

}, ... , {v
n−1

, v
n

, v
n+1

} .

The triangles are drawn in the order t
0

, t
1

, ... , t
n−1

.

Parameters ctx The XGL 3D Context containing the graphics state used when processing xgl_-
triangle_strip(3).

facets A pointer to an Xgl_facet_list structure, which is defined as:
typedef struct {

Xgl_facet_type facet_type; /∗ type of facet ∗/
Xgl_usgn32 num_facets; /∗ number of facets ∗/
union { /∗ pointers to array o

Xgl_color_facet ∗color_facets;
Xgl_normal_facet ∗normal_facets;
Xgl_color_normal_facet ∗color_normal_facets;

} facets;
} Xgl_facet_list;

facets→facet_type is the data type used to define each facet in the list. Xgl_facet_-
type defines four enumerated values as possible facet data types:

XGL_FACET_NONE,
XGL_FACET_COLOR,
XGL_FACET_NORMAL,
XGL_FACET_COLOR_NORMAL,

The value of this field determines the interpretation of the union facets→facets,
which points to the first element of an array of facet information. For example, if
facets→facet_type is XGL_FACET_COLOR, facets→facets.color[i] should be the data for
the i+1’th Xgl_color_facet.

This array of facet data is assumed to be facets→num_facets elements long.

modified August 1994 561

xgl_triangle_strip (3) XGL Graphics Library

The facets information is not used to draw the triangles if either facets is NULL,
facets→facet_type is XGL_FACET_NONE, or facets→num_facets is less than
pl→num_pts − 2. Otherwise, the data in the i’th facet is used for triangle t

i
.

pl A pointer to an Xgl_pt_list structure, which is defined as
typedef struct {

Xgl_pt_type pt_type; /∗ type of point ∗/
Xgl_bbox ∗bbox; /∗ optional box containing

all points ∗/
Xgl_usgn32 num_pts; /∗ number of points ∗/
Xgl_usgn32 num_data_values; /∗ number of data values at

each point ∗/
Xgl_pt_ptr_union pts; /∗ union of pointers to array

of points ∗/
} Xgl_pt_list;

pl→pt_type specifies the type of the points in pl→pts.

pl→bbox specifies a bounding box for the triangle strip. This parameter is either
NULL, or it is the bounding box around all of the points in pl→pts. The bounding
box information can be used to optimize clipping and also to simplify rendering
when its projection on the view surface is small. (See XGL_CTX_THRESHOLD(3).)

If the application does not want to provide bounding box information, bbox must
be NULL. If the bounding box is given, it is the application’s responsibility to
ensure that it is correct.

In releases of XGL before 3.0, if an application provided a bounding box, then
bbox was a pointer to a structure of type Xgl_bbox. In XGL 3.0 and subsequent
releases, this approach is still supported for backward compatibility, but applica-
tions now can store bounding box information in any of six new structures,
which are similar to Xgl_bbox:

Xgl_bbox_i2d
Xgl_bbox_f2d
Xgl_bbox_f3d
Xgl_bbox_status
Xgl_bbox_d2d
Xgl_bbox_d3d

In place of a structure of type Xgl_bbox, an application can use one of the above
structures. For example, if an application uses a variable called bbox_f2d of type
Xgl_bbox_f2d, it needs to cast the pointer to this structure using (Xgl_bbox ∗)
(&bbox_f2d) before passing the information to XGL.

pl→num_pts is the number of points in the array pts. Specifically, it is the number
of vertices in the triangle strip. Note that it is not the number of triangles.

pl→num_data_values specifies the number of data values. Specifically, it is the
number of data values per vertex in the triangle strip.

Texture mapping can be done by using vertices with data values. The data

562 modified August 1994

XGL Graphics Library xgl_triangle_strip (3)

values, also known as u and v values for texturing, specify how the texture map
should be mapped onto triangles of a triangle strip. For more information on
texturing, see xgl_polygon(3).

pl→pts is a union of pointers, one of which points to the array of points that make
up the vertices of the (i-2)th triangle in the triangle strip. The value of pl→pt_type
determines the interpretation of this union.

See xgl_polygon(3) for further details on this union of pointers, and the effect of
pl→pt_type and facets→facet_type on how facets are colored. These details are the
same for all primitives that draw polygonal surfaces.

Execution If points with per-vertex flag information are used, several bits within the per-vertex flag
determine rendering characteristics on a per-triangle basis.

XGL_DRAW_EDGE (0x1)
XGL_DRAW_PREV_EDGE (0x2)

These bits control edge drawing as shown below. They will be used to turn on
specifically marked edges when the Context edge flag, XGL_CTX_SURF_EDGE_-

FLAG(3), is also set.

For vertex v
0

, the edge flag bits are ignored.

For vertex v
1

, the edge flag bit XGL_DRAW_EDGE (0x1) controls the edge [v
0

, v
1

],
while the bit XGL_DRAW_PREV_EDGE (0x2) is ignored.

For vertices v
i
, i = 2 to n+1, both edge flag bits are used. The flag bit XGL_DRAW_-

EDGE controls the edge [v
i−1

, v
i
] while the bit XGL_DRAW_PREV_EDGE controls the

edge [v
i−2

, v
i
].

XGL_EDGE_IS_INTERNAL (0x20)
XGL_PREV_EDGE_IS_INTERNAL (0x40)

These bits are similar to the bits XGL_DRAW_EDGE and XGL_DRAW_PREV_EDGE
because they control edge drawing. They are used to mark specific edges as
internal edges. An application developer who is performing some kind of tri-
angular tessellation may want to mark some edges as being internal because they
were not part of the non-tessellated surface. Internal edges will never be ren-
dered no matter what the state of the other flags. The semantics defining which
edges that these bits correspond to is identical to that shown for XGL_DRAW_EDGE
and XGL_DRAW_PREV_EDGE (see above).

The per-vertex bits can be manipulated using macros defined in the header file xgl.h. For
instance, the macros XGL_SET_EDGE_FLAG(PT) and XGL_SET_PREV_EDGE_FLAG(PT) can be used
to set the per-vertex edge flag bits when given a pointer to a point containing flag infor-
mation. Likewise, macros are available to clear the flag bits. For more information, see
xgl.h.

FACET
COLORING

Generally, a facet refers to a single triangle within the triangle strip. The Context attri-
butes specify how this facet is to be colored. The vertex point type pl[i].pt_type and the
facet type facet_type also interact to affect the color of the triangle. The model is simple:

modified August 1994 563

xgl_triangle_strip (3) XGL Graphics Library

The point and facet types determine how the normal and base colors of each vertex are
obtained. Then the Context attributes are applied to color the facet. For more informa-
tion about facet coloring, see xgl_polygon(3).

RETURN VALUE Nothing is returned.

SEE ALSO xgl_multi_simple_polygon(3)
xgl_polygon(3)
xgl_quadrilateral_mesh(3)
xgl_triangle_list(3)

XGL_3D_CTX_DEPTH_CUE_COLOR(3)
XGL_3D_CTX_DEPTH_CUE_INTERP(3)
XGL_3D_CTX_DEPTH_CUE_MODE(3)
XGL_3D_CTX_DEPTH_CUE_REF_PLANES(3)
XGL_3D_CTX_DEPTH_CUE_SCALE_FACTORS(3)
XGL_3D_CTX_LIGHTS(3)
XGL_3D_CTX_LIGHT_NUM(3)
XGL_3D_CTX_LIGHT_SWITCHES(3)
XGL_3D_CTX_SURF_BACK_AMBIENT(3)
XGL_3D_CTX_SURF_BACK_COLOR(3)
XGL_3D_CTX_SURF_BACK_COLOR_SELECTOR(3)
XGL_3D_CTX_SURF_BACK_DIFFUSE(3)
XGL_3D_CTX_SURF_BACK_DMAP(3)
XGL_3D_CTX_SURF_BACK_DMAP_NUM(3)
XGL_3D_CTX_SURF_BACK_DMAP_SWITCHES(3)
XGL_3D_CTX_SURF_BACK_FILL_STYLE(3)
XGL_3D_CTX_SURF_BACK_FPAT(3)
XGL_3D_CTX_SURF_BACK_FPAT_POSITION(3)
XGL_3D_CTX_SURF_BACK_ILLUMINATION(3)
XGL_3D_CTX_SURF_BACK_LIGHT_COMPONENT(3)
XGL_3D_CTX_SURF_BACK_SPECULAR(3)
XGL_3D_CTX_SURF_BACK_SPECULAR_COLOR(3)
XGL_3D_CTX_SURF_BACK_SPECULAR_POWER(3)
XGL_3D_CTX_SURF_BACK_TRANSP(3)
XGL_3D_CTX_SURF_FACE_CULL(3)
XGL_3D_CTX_SURF_FACE_DISTINGUISH(3)
XGL_3D_CTX_SURF_FRONT_AMBIENT(3)
XGL_3D_CTX_SURF_FRONT_DIFFUSE(3)
XGL_3D_CTX_SURF_FRONT_DMAP(3)
XGL_3D_CTX_SURF_FRONT_DMAP_NUM(3)
XGL_3D_CTX_SURF_FRONT_DMAP_SWITCHES(3)
XGL_3D_CTX_SURF_FRONT_ILLUMINATION(3)
XGL_3D_CTX_SURF_FRONT_LIGHT_COMPONENT(3)
XGL_3D_CTX_SURF_FRONT_SPECULAR(3)
XGL_3D_CTX_SURF_FRONT_SPECULAR_COLOR(3)

564 modified August 1994

XGL Graphics Library xgl_triangle_strip (3)

XGL_3D_CTX_SURF_FRONT_SPECULAR_POWER(3)
XGL_3D_CTX_SURF_FRONT_TRANSP(3)
XGL_3D_CTX_SURF_GEOM_NORMAL(3)
XGL_3D_CTX_SURF_NORMAL_FLIP(3)
XGL_3D_CTX_SURF_SILHOUETTE_EDGE_FLAG(3)
XGL_3D_CTX_SURF_TRANSP_BLEND_EQ(3)
XGL_3D_CTX_SURF_TRANSP_METHOD(3)
XGL_CTX_EDGE_AA_BLEND_EQ(3)
XGL_CTX_EDGE_AA_FILTER_SHAPE(3)
XGL_CTX_EDGE_AA_FILTER_WIDTH(3)
XGL_CTX_EDGE_ALT_COLOR(3)
XGL_CTX_EDGE_CAP(3)
XGL_CTX_EDGE_COLOR(3)
XGL_CTX_EDGE_JOIN(3)
XGL_CTX_EDGE_MITER_LIMIT(3)
XGL_CTX_EDGE_PATTERN(3)
XGL_CTX_EDGE_STYLE(3)
XGL_CTX_EDGE_WIDTH_SCALE_FACTOR(3)
XGL_CTX_PLANE_MASK(3)
XGL_CTX_ROP(3)
XGL_CTX_SURF_AA_BLEND_EQ(3)
XGL_CTX_SURF_AA_FILTER_SHAPE(3)
XGL_CTX_SURF_AA_FILTER_WIDTH(3)
XGL_CTX_SURF_EDGE_FLAG(3)
XGL_CTX_SURF_FRONT_COLOR(3)
XGL_CTX_SURF_FRONT_COLOR_SELECTOR(3)
XGL_CTX_SURF_FRONT_FILL_STYLE(3)
XGL_CTX_SURF_FRONT_FPAT(3)
XGL_CTX_SURF_FRONT_FPAT_POSITION(3)
XGL_CTX_SURF_INTERIOR_RULE(3)
XGL_CTX_THRESHOLD(3)

NOTES All points in pl[] must have the same Xgl_pt_type.

2D point types will not work with a 3D Context.

The XGL drawing primitives xgl_quadrilateral_mesh(3), xgl_triangle_strip(3), and xgl_-
triangle_list(3) may not draw edges of adjoining facets when z-buffering is not enabled.
This problem occurs on certain devices or when using XGL to render across a network.
To avoid this problem applications using these operators should either enable z-buffering
or convert the quadrilateral mesh, triangle strip, or triangle list data into individual
polygon data and call a polygon primitive (xgl_multi_simple_polygon(3) or xgl_-
polygon(3)) with z-buffering disabled. Both approaches will render each facet of the
mesh, strip, or list individually and with correct edges.

modified August 1994 565

xgl_triangle_strip (3) XGL Graphics Library

The XGL drawing primitives xgl_quadrilateral_mesh(3), xgl_triangle_strip(3), and xgl_-
triangle_list(3) may produce inconsistent results when used with an RGB Raster (XGL_-

DEV_COLOR_TYPE(3) is XGL_COLOR_RGB) on the GX graphics accelerator. This will occur
when there is no clipping of the object, depth cueing is off, and z-buffering is disabled. In
this case, XGL fully accelerates its rendering and does not dither the RGB colors before
rendering them on the device. To avoid this problem, either use an Indexed Raster or
enable z-buffering.

566 modified August 1994

XGL Graphics Library xgl_window_raster_resize (3)

NAME xgl_window_raster_resize − informs XGL of a window resize event

SYNOPSIS #include <xgl/xgl.h>

void xgl_window_raster_resize (
Xgl_win_ras ras);

DESCRIPTION This operator is called by the application after every window resize event is reported by the
window system. When xgl_window_raster_resize(3) is called, it causes XGL to update
the size of the device (XGL_DEV_MAXIMUM_COORDINATES(3)) and the size of the DC
viewport (XGL_CTX_DC_VIEWPORT(3)) unless the attribute XGL_CTX_VDC_MAP(3) is set to
XGL_VDC_MAP_OFF, in which case the DC viewport must be explicitly set by the applica-
tion and, for 3D Contexts, the software z-buffer updated.

For performance and toolkit-independence reasons, XGL does not trap window resize
events. Therefore, this operator is required so that XGL can be aware of these events. The
application must call xgl_window_raster_resize as part of its window resize handler.
Otherwise XGL may produce unexpected results.

The parameter ras is the object handle of the Window Raster Device associated with the
window that has been resized.

RETURN VALUE Nothing is returned.

SEE ALSO XGL_CTX_DC_VIEWPORT(3)
XGL_CTX_VDC_MAP(3)
XGL_DEV_MAXIMUM_COORDINATES(3)

modified August 1994 567

xgl_window_raster_resize (3) XGL Graphics Library

568 modified August 1994

Index

A
Abstract

XGL_CGM_SCALE_FACTOR, 134
XGL_CGM_SCALE_MODE, 135

Accumulation Buffer
XGL_3D_CTX_ACCUM_OP_DEST, 66
XGL_3D_CTX_JITTER_OFFSET, 81
xgl_context_accumulate, 411
xgl_context_clear_accumulation, 416

Annotation Primitive
xgl_annotation_text, 407
XGL_CTX_ATEXT_ALIGN_HORIZ, 152
XGL_CTX_ATEXT_ALIGN_VERT, 153
XGL_CTX_ATEXT_CHAR_HEIGHT, 154
XGL_CTX_ATEXT_CHAR_SLANT_ANGLE,

155
XGL_CTX_ATEXT_CHAR_UP_VECTOR, 156
XGL_CTX_ATEXT_PATH, 157
XGL_CTX_ATEXT_STYLE, 158
xgl_multi_elliptical_arc, 462
xgl_multiarc, 474
xgl_multicircle, 479
xgl_multirectangle, 488
xgl_stroke_text_extent, 529

Antialiasing
XGL_CTX_EDGE_AA_BLEND_EQ, 163
XGL_CTX_EDGE_AA_FILTER_SHAPE, 163
XGL_CTX_EDGE_AA_FILTER_WIDTH, 163
XGL_CTX_LINE_AA_BLEND_EQ, 176

Antialiasing, continued
XGL_CTX_LINE_AA_FILTER_SHAPE, 176
XGL_CTX_LINE_AA_FILTER_WIDTH, 176
XGL_CTX_MARKER_AA_BLEND_EQ, 191
XGL_CTX_MARKER_AA_FILTER_SHAPE, 191
XGL_CTX_MARKER_AA_FILTER_WIDTH, 191
XGL_CTX_STEXT_AA_BLEND_EQ, 241
XGL_CTX_STEXT_AA_FILTER_SHAPE, 241
XGL_CTX_STEXT_AA_FILTER_WIDTH, 241
XGL_CTX_SURF_AA_BLEND_EQ, 256
XGL_CTX_SURF_AA_FILTER_SHAPE, 256
XGL_CTX_SURF_AA_FILTER_WIDTH, 256

Arc
XGL_CTX_ARC_FILL_STYLE, 151
xgl_multi_elliptical_arc, 462
xgl_multiarc, 474

Attribute
XGL_3D_CTX_ACCUM_OP_DEST, 66
XGL_3D_CTX_BLEND_DRAW_MODE, 67
XGL_3D_CTX_BLEND_FREEZE_Z_BUFFER, 68
XGL_3D_CTX_DEPTH_CUE_COLOR, 69
XGL_3D_CTX_DEPTH_CUE_INTERP, 70
XGL_3D_CTX_DEPTH_CUE_MODE, 71
XGL_3D_CTX_DEPTH_CUE_REF_PLANES, 74
XGL_3D_CTX_DEPTH_CUE_SCALE_FACTORS,

75
XGL_3D_CTX_EDGE_Z_OFFSET, 77
XGL_3D_CTX_HLHSR_DATA, 78
XGL_3D_CTX_HLHSR_MODE, 79

Index−1

Attribute, continued
XGL_3D_CTX_JITTER_OFFSET, 81
XGL_3D_CTX_LIGHT_NUM, 83
XGL_3D_CTX_LIGHT_SWITCHES, 84
XGL_3D_CTX_LIGHTS, 82
XGL_3D_CTX_LINE_COLOR_INTERP, 85
XGL_3D_CTX_MODEL_CLIP_PLANE_NUM,

88
XGL_3D_CTX_MODEL_CLIP_PLANES, 86
XGL_3D_CTX_NORMAL_TRANS, 89
XGL_3D_CTX_SURF_BACK_AMBIENT, 94
XGL_3D_CTX_SURF_BACK_COLOR, 260
XGL_3D_CTX_SURF_BACK_COLOR_SELECTOR,

262
XGL_3D_CTX_SURF_BACK_DIFFUSE, 95
XGL_3D_CTX_SURF_BACK_DMAP, 96
XGL_3D_CTX_SURF_BACK_DMAP_NUM, 98
XGL_3D_CTX_SURF_BACK_DMAP_SWITCHES,

100
XGL_3D_CTX_SURF_BACK_FILL_STYLE, 265
XGL_3D_CTX_SURF_BACK_FPAT, 268
XGL_3D_CTX_SURF_BACK_FPAT_POSITION,

270
XGL_3D_CTX_SURF_BACK_ILLUMINATION,

101
XGL_3D_CTX_SURF_BACK_LIGHT_COMPONENT,

103
XGL_3D_CTX_SURF_BACK_SPECULAR, 104
XGL_3D_CTX_SURF_BACK_SPECULAR_COLOR,

104
XGL_3D_CTX_SURF_BACK_SPECULAR_POWER,

104
XGL_3D_CTX_SURF_BACK_TMAP, 106
XGL_3D_CTX_SURF_BACK_TMAP_NUM, 108
XGL_3D_CTX_SURF_BACK_TMAP_SWITCHES,

109
XGL_3D_CTX_SURF_BACK_TRANSP, 110
XGL_3D_CTX_SURF_DC_OFFSET, 90
XGL_3D_CTX_SURF_FACE_CULL, 91
XGL_3D_CTX_SURF_FACE_DISTINGUISH, 92
XGL_3D_CTX_SURF_FRONT_AMBIENT, 94
XGL_3D_CTX_SURF_FRONT_DIFFUSE, 95
XGL_3D_CTX_SURF_FRONT_DMAP, 96
XGL_3D_CTX_SURF_FRONT_DMAP_NUM, 98
XGL_3D_CTX_SURF_FRONT_DMAP_SWITCHES,

Attribute, continued
100
XGL_3D_CTX_SURF_FRONT_ILLUMINATION,

101
XGL_3D_CTX_SURF_FRONT_LIGHT_COMPONENT,

103
XGL_3D_CTX_SURF_FRONT_SPECULAR, 104
XGL_3D_CTX_SURF_FRONT_SPECULAR_COLOR,

104
XGL_3D_CTX_SURF_FRONT_SPECULAR_POWER,

104
XGL_3D_CTX_SURF_FRONT_TMAP, 106
XGL_3D_CTX_SURF_FRONT_TMAP_NUM,

108
XGL_3D_CTX_SURF_FRONT_TMAP_SWITCHES,

109
XGL_3D_CTX_SURF_FRONT_TRANSP, 110
XGL_3D_CTX_SURF_GEOM_NORMAL, 111
XGL_3D_CTX_SURF_LIGHTING_NORMAL_FLIP,

114
XGL_3D_CTX_SURF_NORMAL_FLIP, 115
XGL_3D_CTX_SURF_SILHOUETTE_EDGE_FLAG,

116
XGL_3D_CTX_SURF_TMAP_PERSP_CORRECTION,

118
XGL_3D_CTX_SURF_TRANSP_BLEND_EQ,

119
XGL_3D_CTX_SURF_TRANSP_METHOD, 121
XGL_3D_CTX_VIEW_CLIP_PLUS_W_ONLY,

123
XGL_3D_CTX_Z_BUFFER_COMP_METHOD,

124
XGL_3D_CTX_Z_BUFFER_WRITE_MASK, 126
XGL_CGM_DESCRIPTION, 129
XGL_CGM_ENCODING, 132
XGL_CGM_PICTURE_DESCRIPTION, 133
XGL_CGM_SCALE_FACTOR, 134
XGL_CGM_SCALE_MODE, 135
XGL_CGM_TYPE, 136
XGL_CGM_VDC_EXTENT, 137
XGL_CMAP_COLOR_CUBE_SIZE, 140
XGL_CMAP_COLOR_MAPPER, 141
XGL_CMAP_COLOR_TABLE, 143
XGL_CMAP_COLOR_TABLE_SIZE, 144
XGL_CMAP_DITHER_MASK, 145

Index−2

Attribute, continued
XGL_CMAP_DITHER_MASK_N, 146
XGL_CMAP_INVERSE_COLOR_MAPPER, 141
XGL_CMAP_MAX_COLOR_TABLE_SIZE, 144
XGL_CMAP_NAME, 147
XGL_CMAP_RAMP_LIST, 149
XGL_CMAP_RAMP_NUM, 149
XGL_CTX_ARC_FILL_STYLE, 151, 462, 474
XGL_CTX_ATEXT_ALIGN_HORIZ, 152
XGL_CTX_ATEXT_ALIGN_VERT, 153
XGL_CTX_ATEXT_CHAR_HEIGHT, 154
XGL_CTX_ATEXT_CHAR_SLANT_ANGLE,

155
XGL_CTX_ATEXT_CHAR_UP_VECTOR, 156
XGL_CTX_ATEXT_PATH, 157
XGL_CTX_ATEXT_STYLE, 158
XGL_CTX_BACKGROUND_COLOR, 159
XGL_CTX_CLIP_PLANES, 160
XGL_CTX_DC_VIEWPORT, 274
XGL_CTX_DEFERRAL_MODE, 161
XGL_CTX_DEVICE, 162
XGL_CTX_EDGE_AA_BLEND_EQ, 163
XGL_CTX_EDGE_AA_FILTER_SHAPE, 163
XGL_CTX_EDGE_AA_FILTER_WIDTH, 163
XGL_CTX_EDGE_ALT_COLOR, 165
XGL_CTX_EDGE_CAP, 166
XGL_CTX_EDGE_COLOR, 167
XGL_CTX_EDGE_JOIN, 168
XGL_CTX_EDGE_MITER_LIMIT, 169
XGL_CTX_EDGE_PATTERN, 170
XGL_CTX_EDGE_STYLE, 172
XGL_CTX_EDGE_WIDTH_SCALE_FACTOR,

173
XGL_CTX_GEOM_DATA_IS_VOLATILE, 174
XGL_CTX_GLOBAL_MODEL_TRANS, 175
XGL_CTX_LINE_AA_BLEND_EQ, 176
XGL_CTX_LINE_AA_FILTER_SHAPE, 176
XGL_CTX_LINE_AA_FILTER_WIDTH, 176
XGL_CTX_LINE_ALT_COLOR, 178
XGL_CTX_LINE_CAP, 179
XGL_CTX_LINE_COLOR, 180
XGL_CTX_LINE_COLOR_SELECTOR, 181
XGL_CTX_LINE_JOIN, 182
XGL_CTX_LINE_MITER_LIMIT, 183
XGL_CTX_LINE_PATTERN, 184

Attribute, continued
XGL_CTX_LINE_STYLE, 186
XGL_CTX_LINE_WIDTH_SCALE_FACTOR,

187
XGL_CTX_LOCAL_MODEL_TRANS, 188
XGL_CTX_MARKER, 189
XGL_CTX_MARKER_AA_BLEND_EQ, 191
XGL_CTX_MARKER_AA_FILTER_SHAPE, 191
XGL_CTX_MARKER_AA_FILTER_WIDTH, 191
XGL_CTX_MARKER_COLOR, 193
XGL_CTX_MARKER_COLOR_SELECTOR, 194
XGL_CTX_MARKER_SCALE_FACTOR, 195
XGL_CTX_MAX_TESSELLATION, 196
XGL_CTX_MC_TO_DC_TRANS, 198
XGL_CTX_MIN_TESSELLATION, 200
XGL_CTX_MODEL_TRANS, 202
XGL_CTX_MODEL_TRANS_STACK_SIZE, 203
XGL_CTX_NEW_FRAME_ACTION, 204
XGL_CTX_NEW_FRAME_PAINT_TYPE, 206
XGL_CTX_NURBS_CURVE_APPROX, 207
XGL_CTX_NURBS_CURVE_APPROX_VAL,

209
XGL_CTX_NURBS_SURF_APPROX, 210
XGL_CTX_NURBS_SURF_APPROX_VAL_U,

212
XGL_CTX_NURBS_SURF_APPROX_VAL_V,

212
XGL_CTX_NURBS_SURF_ISO_CURVE_PLACEMENT,

213
XGL_CTX_NURBS_SURF_ISO_CURVE_U_NUM,

214
XGL_CTX_NURBS_SURF_ISO_CURVE_V_NUM,

214
XGL_CTX_NURBS_SURF_PARAM_STYLE, 215
XGL_CTX_PAINT_TYPE, 217
XGL_CTX_PICK_APERTURE, 218
XGL_CTX_PICK_BUFFER_SIZE, 221
XGL_CTX_PICK_ENABLE, 222
XGL_CTX_PICK_ID_1, 223
XGL_CTX_PICK_ID_2, 223
XGL_CTX_PICK_STYLE, 224
XGL_CTX_PICK_SURF_STYLE, 225
XGL_CTX_PLANE_MASK, 226
XGL_CTX_RASTER_FILL_STYLE, 228
XGL_CTX_RASTER_FPAT, 230

Index−3

Attribute, continued
XGL_CTX_RASTER_FPAT_POSITION, 232
XGL_CTX_RASTER_STIPPLE_COLOR, 233
XGL_CTX_RENDER_BUFFER, 234
XGL_CTX_RENDERING_ORDER, 235
XGL_CTX_ROP, 236
XGL_CTX_SFONT_0, 239
XGL_CTX_SFONT_1, 239
XGL_CTX_SFONT_2, 239
XGL_CTX_SFONT_3, 239
XGL_CTX_STEXT_AA_BLEND_EQ, 241
XGL_CTX_STEXT_AA_FILTER_SHAPE, 241
XGL_CTX_STEXT_AA_FILTER_WIDTH, 241
XGL_CTX_STEXT_ALIGN_HORIZ, 243
XGL_CTX_STEXT_ALIGN_VERT, 244
XGL_CTX_STEXT_CHAR_ENCODING, 245
XGL_CTX_STEXT_CHAR_EXPANSION_FACTOR,

248
XGL_CTX_STEXT_CHAR_HEIGHT, 249
XGL_CTX_STEXT_CHAR_SLANT_ANGLE,

250
XGL_CTX_STEXT_CHAR_SPACING, 251
XGL_CTX_STEXT_CHAR_UP_VECTOR, 252
XGL_CTX_STEXT_COLOR, 253
XGL_CTX_STEXT_PATH, 254
XGL_CTX_STEXT_PRECISION, 255
XGL_CTX_SURF_AA_BLEND_EQ, 256
XGL_CTX_SURF_AA_FILTER_SHAPE, 256
XGL_CTX_SURF_AA_FILTER_WIDTH, 256
XGL_CTX_SURF_EDGE_FLAG, 258
XGL_CTX_SURF_FRONT_COLOR, 260
XGL_CTX_SURF_FRONT_COLOR_SELECTOR,

262
XGL_CTX_SURF_FRONT_FILL_STYLE, 265
XGL_CTX_SURF_FRONT_FPAT, 268
XGL_CTX_SURF_FRONT_FPAT_POSITION,

270
XGL_CTX_SURF_INTERIOR_RULE, 271
XGL_CTX_THRESHOLD, 272
XGL_CTX_VDC_MAP, 274
XGL_CTX_VDC_ORIENTATION, 277
XGL_CTX_VDC_WINDOW, 274
XGL_CTX_VIEW_CLIP_BOUNDS, 279
XGL_CTX_VIEW_TRANS, 280
XGL_DEV_COLOR_MAP, 281

Attribute, continued
XGL_DEV_COLOR_TYPE, 282
XGL_DEV_CONTEXTS, 284
XGL_DEV_CONTEXTS_NUM, 284
XGL_DEV_MAXIMUM_COORDINATES, 285
XGL_DEV_REAL_COLOR_TYPE, 286
XGL_DMAP_TEXTURE_DESCRIPTORS, 288
XGL_DMAP_TEXTURE_NUM_DESCRIPTORS,

293
XGL_DMAP_TEXTURE_ORIENTATION_MATRIX,

294
XGL_DMAP_TEXTURE_PARAM_TYPE, 295
XGL_DMAP_TEXTURE_U_INDEX, 296
XGL_DMAP_TEXTURE_V_INDEX, 296
XGL_GCACHE_BYPASS_MODEL_CLIP, 299
XGL_GCACHE_DISPLAY_PRIM_TYPE, 300
XGL_GCACHE_DO_POLYGON_DECOMP,

301
XGL_GCACHE_FACET_LIST_LIST, 302
XGL_GCACHE_IS_EMPTY, 303
XGL_GCACHE_NURBS_CURVE_MODE, 304
XGL_GCACHE_NURBS_SURF_MODE, 305
XGL_GCACHE_ORIG_PRIM_TYPE, 306
XGL_GCACHE_POLYGON_TYPE, 307
XGL_GCACHE_PT_LIST_LIST, 308
XGL_GCACHE_SHOW_DECOMP_EDGES, 309
XGL_GCACHE_USE_APPL_GEOM, 310
XGL_LIGHT_ATTENUATION_1, 312
XGL_LIGHT_ATTENUATION_2, 312
XGL_LIGHT_COLOR, 313
XGL_LIGHT_DIRECTION, 314
XGL_LIGHT_POSITION, 315
XGL_LIGHT_SPOT_ANGLE, 316
XGL_LIGHT_SPOT_EXPONENT, 316
XGL_LIGHT_TYPE, 317
XGL_LPAT_BALANCED_DASH, 326
XGL_LPAT_DATA, 321
XGL_LPAT_DATA_SIZE, 323
XGL_LPAT_DATA_TYPE, 324
XGL_LPAT_OFFSET, 325
XGL_LPAT_STYLE, 326
XGL_MARKER_DESCRIPTION, 329
XGL_MEM_RAS_IMAGE_BUFFER_ADDR, 333
XGL_MEM_RAS_Z_BUFFER_ADDR, 335
XGL_MIPMAP_TEXTURE_DEPTH, 337

Index−4

Attribute, continued
XGL_MIPMAP_TEXTURE_HEIGHT, 338
XGL_MIPMAP_TEXTURE_LEVELS, 339
XGL_MIPMAP_TEXTURE_MEM_RAS_LIST,

340
XGL_MIPMAP_TEXTURE_WIDTH, 341
XGL_OBJ_APPLICATION_DATA, 342
XGL_OBJ_SYS_STATE, 343
XGL_OBJ_TYPE, 344
xgl_object_get, 508
xgl_object_set, 509
XGL_PCACHE_CONTEXT, 349
XGL_RAS_DEPTH, 350
XGL_RAS_HEIGHT, 352
XGL_RAS_RECT_LIST, 353
XGL_RAS_RECT_NUM, 353
XGL_RAS_SOURCE_BUFFER, 354
XGL_RAS_WIDTH, 352
XGL_SFONT_COMMENT, 356
XGL_SFONT_DEFAULT_CHARACTER, 357
XGL_SFONT_IS_MONO_SPACED, 358
XGL_SFONT_NAME, 359
XGL_SYS_ST_ERROR_DETECTION, 364
XGL_SYS_ST_ERROR_INFO, 366
XGL_SYS_ST_ERROR_NOTIFICATION_FUNCTION,

368
XGL_SYS_ST_SFONT_DIRECTORY, 370
XGL_SYS_ST_VERSION, 371
XGL_TMAP_COORD_SOURCE, 373
XGL_TMAP_DESCRIPTOR, 374
XGL_TMAP_DOMAIN, 379
XGL_TMAP_PARAM_INFO, 380
XGL_TMAP_PARAM_TYPE, 382
XGL_TMAP_T0_INDEX, 383
XGL_TMAP_T1_INDEX, 383
XGL_TRANS_DATA_TYPE, 385
XGL_TRANS_DIMENSION, 386
XGL_WIN_RAS_BACKING_STORE, 391
XGL_WIN_RAS_BUF_DISPLAY, 393
XGL_WIN_RAS_BUF_DRAW, 394
XGL_WIN_RAS_BUF_MIN_DELAY, 395
XGL_WIN_RAS_BUFFERS_ALLOCATED, 396
XGL_WIN_RAS_BUFFERS_REQUESTED, 397
XGL_WIN_RAS_DESCRIPTOR, 399
XGL_WIN_RAS_MBUF_DRAW, 400

Attribute, continued
XGL_WIN_RAS_MULTIBUFFER, 401
XGL_WIN_RAS_PIXEL_MAPPING, 402
XGL_WIN_RAS_POSITION, 404
XGL_WIN_RAS_STEREO_MODE, 405
XGL_WIN_RAS_TYPE, 406

B
Begin

xgl_open, 510
Buffering

xgl_context_flush, 422
XGL_CTX_DEFERRAL_MODE, 161

C
CGM

XGL_CGM, 127
XGL_CGM_DESCRIPTION, 129
XGL_CGM_DEV, 130
XGL_CGM_ENCODING, 132
XGL_CGM_PICTURE_DESCRIPTION, 133
XGL_CGM_SCALE_FACTOR, 134
XGL_CGM_SCALE_MODE, 135
XGL_CGM_TYPE, 136
XGL_CGM_VDC_EXTENT, 137

Circle
xgl_multicircle, 479

Clipping
XGL_3D_CTX_MODEL_CLIP_PLANE_NUM,

88
XGL_3D_CTX_MODEL_CLIP_PLANES, 86
XGL_3D_CTX_VIEW_CLIP_PLUS_W_ONLY,

123
XGL_CTX_CLIP_PLANES, 160
XGL_CTX_VIEW_CLIP_BOUNDS, 279

Color
XGL_3D_CTX_DEPTH_CUE_COLOR, 69
XGL_3D_CTX_DEPTH_CUE_INTERP, 70
XGL_3D_CTX_DEPTH_CUE_MODE, 71
XGL_3D_CTX_DEPTH_CUE_REF_PLANES, 74
XGL_3D_CTX_DEPTH_CUE_SCALE_FACTORS,

75
XGL_3D_CTX_LINE_COLOR_INTERP, 85
XGL_3D_CTX_SURF_BACK_COLOR, 260
XGL_CGM_ENCODING, 132

Index−5

Color, continued
XGL_CMAP, 138
XGL_CMAP_COLOR_CUBE_SIZE, 140
XGL_CMAP_COLOR_MAPPER, 141
XGL_CMAP_COLOR_TABLE, 143
XGL_CMAP_COLOR_TABLE_SIZE, 144
XGL_CMAP_DITHER_MASK, 145
XGL_CMAP_DITHER_MASK_N, 146
XGL_CMAP_INVERSE_COLOR_MAPPER, 141
XGL_CMAP_MAX_COLOR_TABLE_SIZE, 144
XGL_CMAP_NAME, 147
XGL_CMAP_RAMP_LIST, 149
XGL_CMAP_RAMP_NUM, 149
XGL_CTX_BACKGROUND_COLOR, 159
XGL_CTX_EDGE_ALT_COLOR, 165
XGL_CTX_EDGE_COLOR, 167
XGL_CTX_EDGE_STYLE, 172
XGL_CTX_LINE_ALT_COLOR, 178
XGL_CTX_LINE_COLOR, 180
XGL_CTX_LINE_STYLE, 186
XGL_CTX_MARKER_COLOR, 193
XGL_CTX_RASTER_STIPPLE_COLOR, 233
XGL_CTX_STEXT_COLOR, 253
XGL_CTX_SURF_FRONT_COLOR, 260
XGL_DEV_COLOR_MAP, 281
XGL_DEV_COLOR_TYPE, 282
XGL_DEV_REAL_COLOR_TYPE, 286
XGL_LIGHT_COLOR, 313
XGL_WIN_RAS_PIXEL_MAPPING, 402

Color Map
XGL_CMAP, 138
XGL_CMAP_COLOR_CUBE_SIZE, 140
XGL_CMAP_COLOR_MAPPER, 141
XGL_CMAP_COLOR_TABLE, 143
XGL_CMAP_COLOR_TABLE_SIZE, 144
XGL_CMAP_DITHER_MASK, 145
XGL_CMAP_DITHER_MASK_N, 146
XGL_CMAP_INVERSE_COLOR_MAPPER, 141
XGL_CMAP_MAX_COLOR_TABLE_SIZE, 144
XGL_CMAP_NAME, 147
XGL_CMAP_RAMP_LIST, 149
XGL_CMAP_RAMP_NUM, 149
XGL_DEV_COLOR_MAP, 281
XGL_DEV_COLOR_TYPE, 282

Context

Context, continued
XGL_2D_CTX, 61
XGL_3D_CTX, 61

Coordinates
XGL_CGM_VDC_EXTENT, 137

Culling
XGL_3D_CTX_SURF_FACE_CULL, 91

Curve
XGL_CTX_MAX_TESSELLATION, 196
XGL_CTX_MIN_TESSELLATION, 200
XGL_CTX_NURBS_CURVE_APPROX, 207
XGL_CTX_NURBS_CURVE_APPROX_VAL,

209
xgl_gcache_nurbs_curve, 445
XGL_GCACHE_NURBS_CURVE_MODE, 304
xgl_nurbs_curve, 492

D
Data Map

XGL_3D_CTX_SURF_BACK_DMAP, 96
XGL_3D_CTX_SURF_BACK_DMAP_NUM, 98
XGL_3D_CTX_SURF_BACK_DMAP_SWITCHES,

100
XGL_3D_CTX_SURF_FRONT_DMAP, 96
XGL_3D_CTX_SURF_FRONT_DMAP_NUM, 98
XGL_3D_CTX_SURF_FRONT_DMAP_SWITCHES,

100
XGL_DMAP_TEXTURE, 287
XGL_DMAP_TEXTURE_DESCRIPTORS, 288
XGL_DMAP_TEXTURE_NUM_DESCRIPTORS,

293
XGL_DMAP_TEXTURE_ORIENTATION_MATRIX,

294
XGL_DMAP_TEXTURE_PARAM_TYPE, 295
XGL_DMAP_TEXTURE_U_INDEX, 296
XGL_DMAP_TEXTURE_V_INDEX, 296

Data Structures, 31
Xgl_arc_ad3d, 31
Xgl_arc_af3d, 31
Xgl_arc_d2d, 31
Xgl_arc_d3d, 31
Xgl_arc_f2d, 31
Xgl_arc_f3d, 31
Xgl_arc_i2d, 31
Xgl_arc_list, 32

Index−6

Data Structures, continued
Xgl_bbox, 33
Xgl_bbox_d2d, 33
Xgl_bbox_d3d, 33
Xgl_bbox_f2d, 33
Xgl_bbox_f3d, 33
Xgl_bbox_i2d, 33
Xgl_bbox_status, 33
Xgl_bounds_d1d, 34
Xgl_bounds_d2d, 34
Xgl_bounds_d3d, 34
Xgl_bounds_f1d, 34
Xgl_bounds_f2d, 34
Xgl_bounds_f3d, 34
Xgl_bounds_i2d, 34
Xgl_circle_ad3d, 35
Xgl_circle_af3d, 35
Xgl_circle_d2d, 35
Xgl_circle_d3d, 35
Xgl_circle_f2d, 35
Xgl_circle_f3d, 35
Xgl_circle_i2d, 35
Xgl_circle_list, 36
Xgl_color, 37
Xgl_color_facet, 40
Xgl_color_gray, 37
Xgl_color_homogeneous, 37
Xgl_color_index, 37
Xgl_color_list, 38
Xgl_color_normal_facet, 40
Xgl_color_rgb, 37
Xgl_color_rgbw, 37
Xgl_color_type_supported, 38
Xgl_curve_color_spline, 38
Xgl_ell_ad3d, 38
Xgl_ell_af3d, 38
Xgl_ell_d3d, 38
Xgl_ell_f3d, 38
Xgl_ell_list, 39
Xgl_error_info, 40
Xgl_facet, 41
Xgl_facet_list, 41
Xgl_facet_list_list, 41
Xgl_hlhsr_data, 41
Xgl_inquire, 41

Data Structures, continued
Xgl_irect, 42
Xgl_irect_list, 42
Xgl_mono_text, 42
Xgl_mono_text_list, 42
Xgl_normal_facet, 40
Xgl_nu_bspline_curve, 43
Xgl_nurbs_curve, 43
Xgl_nurbs_surf, 43
Xgl_nurbs_surf_geom_desc, 44
Xgl_nurbs_surf_simple_geom, 44
Xgl_obj_desc, 44
Xgl_pick_info, 45
Xgl_plane, 45
Xgl_plane_list, 45
Xgl_pt, 45
Xgl_pt_color_d2d, 49
Xgl_pt_color_d3d, 49
Xgl_pt_color_data_f3d, 46
Xgl_pt_color_f2d, 46
Xgl_pt_color_f3d, 46
Xgl_pt_color_flag_d3d, 49
Xgl_pt_color_flag_data_f3d, 46
Xgl_pt_color_flag_f3d, 46
Xgl_pt_color_i2d, 51
Xgl_pt_color_normal_d3d, 49
Xgl_pt_color_normal_data_f3d, 46
Xgl_pt_color_normal_f3d, 46
Xgl_pt_color_normal_flag_d3d, 49
Xgl_pt_color_normal_flag_data_f3d, 46
Xgl_pt_color_normal_flag_f3d, 46
Xgl_pt_d2d, 49
Xgl_pt_d2h, 49
Xgl_pt_d3d, 49
Xgl_pt_d3h, 49
Xgl_pt_data_f3d, 46
Xgl_pt_f2d, 46
Xgl_pt_f2h, 46
Xgl_pt_f3d, 46
Xgl_pt_f3h, 46
Xgl_pt_flag_d2d, 49
Xgl_pt_flag_d3d, 49
Xgl_pt_flag_data_f3d, 46
Xgl_pt_flag_f2d, 46
Xgl_pt_flag_f3d, 46

Index−7

Data Structures, continued
Xgl_pt_flag_i2d, 51
Xgl_pt_i2d, 51
Xgl_pt_i2h, 51
Xgl_pt_list, 52
Xgl_pt_list_list, 52
Xgl_pt_normal_d3d, 49
Xgl_pt_normal_data_f3d, 46
Xgl_pt_normal_f3d, 46
Xgl_pt_normal_flag_d3d, 49
Xgl_pt_normal_flag_data_f3d, 46
Xgl_pt_normal_flag_f3d, 46
Xgl_pt_position, 54
Xgl_pt_ptr_union, 53
Xgl_pt_type_supported, 54
Xgl_rect_ad3d, 54
Xgl_rect_af3d, 54
Xgl_rect_d2d, 54
Xgl_rect_d3d, 54
Xgl_rect_f2d, 54
Xgl_rect_f3d, 54
Xgl_rect_i2d, 54
Xgl_rect_list, 55
Xgl_render_component_desc, 56
Xgl_segment, 56
Xgl_surf_color_spline, 56
Xgl_texture_blend_intrinsic_op, 56
Xgl_texture_blend_intrinsic_rgb, 56
Xgl_texture_blend_op, 56
Xgl_texture_blend_rgb, 56
Xgl_texture_comp_info, 57
Xgl_texture_decal_op, 56
Xgl_texture_decal_rgb, 56
Xgl_texture_desc, 57
Xgl_texture_general_desc, 57
Xgl_texture_general_mipmap_desc, 58
Xgl_texture_interp_info, 57
Xgl_texture_mipmap_desc, 58
Xgl_threshold, 58
Xgl_trim_curve, 59
Xgl_trim_loop, 59
Xgl_trim_loop_list, 59
Xgl_X_window, 59

Depth Cueing
XGL_3D_CTX_DEPTH_CUE_COLOR, 69

Depth Cueing, continued
XGL_3D_CTX_DEPTH_CUE_INTERP, 70
XGL_3D_CTX_DEPTH_CUE_MODE, 71
XGL_3D_CTX_DEPTH_CUE_REF_PLANES, 74
XGL_3D_CTX_DEPTH_CUE_SCALE_FACTORS,

75
Description

XGL_CGM_DESCRIPTION, 129
XGL_CGM_PICTURE_DESCRIPTION, 133

Device
XGL_CGM, 127
XGL_CGM_DESCRIPTION, 129
XGL_CGM_DEV, 130
XGL_CGM_ENCODING, 132
XGL_CGM_PICTURE_DESCRIPTION, 133
XGL_CGM_SCALE_FACTOR, 134
XGL_CGM_SCALE_MODE, 135
XGL_CGM_VDC_EXTENT, 137
xgl_context_new_frame, 425
XGL_CTX_DEVICE, 162
XGL_CTX_NEW_FRAME_ACTION, 204
XGL_DEV_COLOR_MAP, 281
XGL_DEV_COLOR_TYPE, 282
XGL_DEV_CONTEXTS, 284
XGL_DEV_CONTEXTS_NUM, 284
XGL_DEV_MAXIMUM_COORDINATES, 285
XGL_MEM_RAS, 331
XGL_RAS_RECT_LIST, 353
XGL_RAS_RECT_NUM, 353
XGL_STREAM, 361
XGL_WIN_RAS, 387
XGL_WIN_RAS_BUF_DISPLAY, 393
XGL_WIN_RAS_BUF_DRAW, 394
XGL_WIN_RAS_BUF_MIN_DELAY, 395
XGL_WIN_RAS_BUFFERS_ALLOCATED, 396
XGL_WIN_RAS_BUFFERS_REQUESTED, 397
XGL_WIN_RAS_DESCRIPTOR, 399
XGL_WIN_RAS_MBUF_DRAW, 400
XGL_WIN_RAS_MULTIBUFFER, 401
XGL_WIN_RAS_PIXEL_MAPPING, 402
XGL_WIN_RAS_POSITION, 404
XGL_WIN_RAS_STEREO_MODE, 405
XGL_WIN_RAS_TYPE, 406
xgl_window_raster_resize, 567

Dithering

Index−8

Dithering, continued
XGL_CMAP_DITHER_MASK, 145
XGL_CMAP_DITHER_MASK_N, 146

Double Buffering
XGL_WIN_RAS, 389
XGL_WIN_RAS_BUF_DISPLAY, 393
XGL_WIN_RAS_BUF_DRAW, 394
XGL_WIN_RAS_BUF_MIN_DELAY, 395
XGL_WIN_RAS_BUFFERS_ALLOCATED, 396
XGL_WIN_RAS_BUFFERS_REQUESTED, 397

E
Edge

XGL_3D_CTX_EDGE_Z_OFFSET, 77
XGL_3D_CTX_SURF_SILHOUETTE_EDGE_FLAG,

116
XGL_CTX_EDGE_AA_BLEND_EQ, 163
XGL_CTX_EDGE_AA_FILTER_SHAPE, 163
XGL_CTX_EDGE_AA_FILTER_WIDTH, 163
XGL_CTX_EDGE_ALT_COLOR, 165
XGL_CTX_EDGE_CAP, 166
XGL_CTX_EDGE_COLOR, 167
XGL_CTX_EDGE_JOIN, 168
XGL_CTX_EDGE_MITER_LIMIT, 169
XGL_CTX_EDGE_PATTERN, 170
XGL_CTX_EDGE_STYLE, 172
XGL_CTX_EDGE_WIDTH_SCALE_FACTOR,

173
XGL_CTX_SURF_EDGE_FLAG, 258
XGL_GCACHE_SHOW_DECOMP_EDGES, 309

Encoding
XGL_CGM_ENCODING, 132

End
xgl_close, 410

Enumerated Types, 4
Xgl_accum_depth, 4
Xgl_arc_fill_style, 4
Xgl_atext_style, 15
Xgl_axis, 4
Xgl_bbox_type, 4
Xgl_blend_draw_mode, 5
Xgl_blend_eq, 4
Xgl_cache_display, 5
Xgl_color_homogeneous_type, 5
Xgl_color_type, 5

Enumerated Types, continued
Xgl_curve_approx, 5
Xgl_data_type, 6
Xgl_deferral_mode, 6
Xgl_depth_cue_mode, 6
Xgl_error_category, 6
Xgl_error_type, 6
Xgl_facet_type, 7
Xgl_filter_shape, 7
Xgl_gcache_nurbs_mode, 7
Xgl_geom_normal, 7
Xgl_hlhsr_mode, 7
Xgl_inq_support_level, 7
Xgl_interior_rule, 8
Xgl_iso_curve_placement, 8
Xgl_light_type, 8
Xgl_line_cap, 8
Xgl_line_color_sel, 8
Xgl_line_join, 9
Xgl_line_style, 9
Xgl_lpat_bal_dash, 9
Xgl_lpat_coord_sys, 9
Xgl_lpat_style, 9
Xgl_marker_color_sel, 9
Xgl_multiarc_type, 10
Xgl_multicircle_type, 10
Xgl_multiell_type, 10
Xgl_multirect_type, 10
Xgl_nurbs_surf_type, 11
Xgl_obj_type, 11
Xgl_paint_type, 11
Xgl_pick_style, 11
Xgl_pick_surf_style, 12
Xgl_primitive_type, 12
Xgl_pt_type, 12
Xgl_raster_fill_style, 13
Xgl_render_component, 14
Xgl_rendering_order, 14
Xgl_stereo_mode, 14
Xgl_stext_align_horiz, 15
Xgl_stext_align_vert, 16
Xgl_stext_path, 16
Xgl_stext_precision, 16
Xgl_surf_approx, 14
Xgl_surf_color_sel, 14

Index−9

Enumerated Types, continued
Xgl_surf_cull_mode, 15
Xgl_surf_fill_style, 15
Xgl_surf_illumination, 15
Xgl_texture_boundary, 16
Xgl_texture_coord_source, 16
Xgl_texture_domain, 17
Xgl_texture_interp_method, 17
Xgl_texture_op, 17
Xgl_texture_param_type, 17
Xgl_texture_persp_correction, 17
Xgl_texture_type, 17
Xgl_trans_dimension, 18
Xgl_trans_update, 18
Xgl_transp_method, 18
Xgl_trim_curve_approx, 18
Xgl_vdc_map, 18
Xgl_vdc_orientation, 18
Xgl_z_comp_method, 19

Errors
XGL_SYS_ST_ERROR_DETECTION, 364
XGL_SYS_ST_ERROR_INFO, 366
XGL_SYS_ST_ERROR_NOTIFICATION_FUNCTION,

368
Extent

XGL_CGM_VDC_EXTENT, 137

F
Fill Pattern

XGL_3D_CTX_SURF_BACK_FPAT, 268
XGL_3D_CTX_SURF_BACK_FPAT_POSITION,

270
XGL_CTX_RASTER_FPAT, 230
XGL_CTX_RASTER_FPAT_POSITION, 232
XGL_CTX_SURF_FRONT_FPAT, 268
XGL_CTX_SURF_FRONT_FPAT_POSITION,

270
Fill Style

XGL_3D_CTX_SURF_BACK_FPAT, 268
XGL_3D_CTX_SURF_BACK_FPAT_POSITION,

270
XGL_CTX_RASTER_FILL_STYLE, 228
XGL_CTX_RASTER_FPAT, 230
XGL_CTX_RASTER_FPAT_POSITION, 232
XGL_CTX_RASTER_STIPPLE_COLOR, 233

Fill Style, continued
XGL_CTX_SURF_FRONT_FPAT, 268
XGL_CTX_SURF_FRONT_FPAT_POSITION,

270

G
Gcache

xgl_context_display_gcache, 421
XGL_GCACHE, 297
XGL_GCACHE_BYPASS_MODEL_CLIP, 299
XGL_GCACHE_DISPLAY_PRIM_TYPE, 300
XGL_GCACHE_DO_POLYGON_DECOMP,

301
XGL_GCACHE_FACET_LIST_LIST, 302
XGL_GCACHE_IS_EMPTY, 303
xgl_gcache_multi_elliptical_arc, 440
xgl_gcache_multi_simple_polygon, 441
xgl_gcache_multimarker, 443
xgl_gcache_multipolyline, 444
xgl_gcache_nurbs_curve, 445
XGL_GCACHE_NURBS_CURVE_MODE, 304
XGL_GCACHE_NURBS_SURF_MODE, 305
xgl_gcache_nurbs_surface, 447
XGL_GCACHE_ORIG_PRIM_TYPE, 306
xgl_gcache_polygon, 3-449
XGL_GCACHE_POLYGON_TYPE, 307
XGL_GCACHE_PT_LIST_LIST, 308
XGL_GCACHE_SHOW_DECOMP_EDGES, 309
xgl_gcache_stroke_text, 451
xgl_gcache_triangle_list, 453
xgl_gcache_triangle_strip, 454
XGL_GCACHE_USE_APPL_GEOM, 310

H
Hidden Line/Hidden Surface Removal

XGL_3D_CTX_HLHSR_DATA, 78
XGL_3D_CTX_HLHSR_MODE, 79

I
Introduction, 1

L
Light

XGL_3D_CTX_LIGHT_NUM, 83
XGL_3D_CTX_LIGHT_SWITCHES, 84

Index−10

Light, continued
XGL_3D_CTX_LIGHTS, 82
XGL_LIGHT, 311
XGL_LIGHT_ATTENUATION_1, 312
XGL_LIGHT_ATTENUATION_2, 312
XGL_LIGHT_COLOR, 313
xgl_light_copy, 460
XGL_LIGHT_DIRECTION, 314
XGL_LIGHT_POSITION, 315
XGL_LIGHT_SPOT_ANGLE, 316
XGL_LIGHT_SPOT_EXPONENT, 316
XGL_LIGHT_TYPE, 317

Lighting
XGL_3D_CTX_SURF_BACK_AMBIENT, 94
XGL_3D_CTX_SURF_BACK_COLOR_SELECTOR,

262
XGL_3D_CTX_SURF_BACK_DIFFUSE, 95
XGL_3D_CTX_SURF_BACK_ILLUMINATION,

101
XGL_3D_CTX_SURF_BACK_LIGHT_COMPONENT,

103
XGL_3D_CTX_SURF_BACK_SPECULAR, 104
XGL_3D_CTX_SURF_BACK_SPECULAR_COLOR,

104
XGL_3D_CTX_SURF_BACK_SPECULAR_POWER,

104
XGL_3D_CTX_SURF_FRONT_AMBIENT, 94
XGL_3D_CTX_SURF_FRONT_DIFFUSE, 95
XGL_3D_CTX_SURF_FRONT_ILLUMINATION,

101
XGL_3D_CTX_SURF_FRONT_LIGHT_COMPONENT,

103
XGL_3D_CTX_SURF_FRONT_SPECULAR, 104
XGL_3D_CTX_SURF_FRONT_SPECULAR_COLOR,

104
XGL_3D_CTX_SURF_FRONT_SPECULAR_POWER,

104
XGL_3D_CTX_SURF_LIGHTING_NORMAL_FLIP,

114
XGL_CTX_SURF_FRONT_COLOR_SELECTOR,

262
Line

width, 173, 187
XGL_3D_CTX_LINE_COLOR_INTERP, 85
XGL_CTX_EDGE_ALT_COLOR, 165

Line, continued
XGL_CTX_EDGE_COLOR, 167
XGL_CTX_EDGE_PATTERN, 170
XGL_CTX_EDGE_WIDTH_SCALE_FACTOR,

173
XGL_CTX_LINE_AA_BLEND_EQ, 176
XGL_CTX_LINE_AA_FILTER_SHAPE, 176
XGL_CTX_LINE_AA_FILTER_WIDTH, 176
XGL_CTX_LINE_ALT_COLOR, 178
XGL_CTX_LINE_CAP, 179
XGL_CTX_LINE_COLOR, 180
XGL_CTX_LINE_COLOR_SELECTOR, 181
XGL_CTX_LINE_JOIN, 182
XGL_CTX_LINE_MITER_LIMIT, 183
XGL_CTX_LINE_PATTERN, 184
XGL_CTX_LINE_STYLE, 186
XGL_CTX_LINE_WIDTH_SCALE_FACTOR,

187
xgl_multipolyline, 485

Line Pattern
XGL_CTX_EDGE_ALT_COLOR, 165
XGL_CTX_EDGE_PATTERN, 170
XGL_CTX_EDGE_STYLE, 172
XGL_CTX_LINE_ALT_COLOR, 178
XGL_CTX_LINE_PATTERN, 184
XGL_CTX_LINE_STYLE, 186
XGL_LPAT, 319
XGL_LPAT_BALANCED_DASH, 326
XGL_LPAT_DATA, 321
XGL_LPAT_DATA_SIZE, 323
XGL_LPAT_DATA_TYPE, 324
XGL_LPAT_OFFSET, 325
XGL_LPAT_STYLE, 326

M
Macro Values, 21
Marker

application-defined, 189, 329, 483
pre-defined, 189, 483
XGL_CTX_MARKER, 189, 329, 483
XGL_CTX_MARKER_AA_BLEND_EQ, 191
XGL_CTX_MARKER_AA_FILTER_SHAPE, 191
XGL_CTX_MARKER_AA_FILTER_WIDTH, 191
XGL_CTX_MARKER_COLOR, 193
XGL_CTX_MARKER_COLOR_SELECTOR, 194

Index−11

Marker, continued
XGL_CTX_MARKER_SCALE_FACTOR, 195
XGL_MARKER, 328
xgl_marker_asterisk, 189
xgl_marker_bowtie_ne, 189
xgl_marker_bowtie_nw, 189
xgl_marker_circle, 189
xgl_marker_cross, 189
XGL_MARKER_DESCRIPTION, 189, 329, 483
xgl_marker_dot, 189
xgl_marker_plus, 189
xgl_marker_square, 189
xgl_multimarker, 189, 329, 483

MBX
XGL_WIN_RAS_MBUF_DRAW, 400
XGL_WIN_RAS_MULTIBUFFER, 401

Metafile
XGL_CGM, 127
XGL_CGM_DESCRIPTION, 129
XGL_CGM_DEV, 130
XGL_CGM_ENCODING, 132
XGL_CGM_PICTURE_DESCRIPTION, 133
XGL_CGM_SCALE_FACTOR, 134
XGL_CGM_SCALE_MODE, 135
XGL_CGM_VDC_EXTENT, 137

Metric
XGL_CGM_SCALE_FACTOR, 134
XGL_CGM_SCALE_MODE, 135

MipMap Texture
XGL_MIPMAP_TEXTURE, 336
xgl_mipmap_texture_build, 461
XGL_MIPMAP_TEXTURE_DEPTH, 337
XGL_MIPMAP_TEXTURE_HEIGHT, 338
XGL_MIPMAP_TEXTURE_LEVELS, 339
XGL_MIPMAP_TEXTURE_MEM_RAS_LIST,

340
XGL_MIPMAP_TEXTURE_WIDTH, 341

Multi Buffering
XGL_WIN_RAS_MBUF_DRAW, 400
XGL_WIN_RAS_MULTIBUFFER, 401

N
Nurbs

XGL_CTX_NURBS_CURVE_APPROX, 207
XGL_CTX_NURBS_CURVE_APPROX_VAL,

209
Nurbs, continued

XGL_CTX_NURBS_SURF_APPROX, 210
XGL_CTX_NURBS_SURF_APPROX_VAL_U,

212
XGL_CTX_NURBS_SURF_APPROX_VAL_V,

212
XGL_CTX_NURBS_SURF_ISO_CURVE_PLACEMENT,

213
XGL_CTX_NURBS_SURF_ISO_CURVE_U_NUM,

214
XGL_CTX_NURBS_SURF_ISO_CURVE_V_NUM,

214
XGL_CTX_NURBS_SURF_PARAM_STYLE, 215
xgl_gcache_nurbs_curve, 445
XGL_GCACHE_NURBS_CURVE_MODE, 304
XGL_GCACHE_NURBS_SURF_MODE, 305
xgl_gcache_nurbs_surface, 447
xgl_nurbs_curve, 492
xgl_nurbs_surface, 495

O
Object

XGL_2D_CTX, 61
XGL_3D_CTX, 61
XGL_CGM, 127
XGL_CGM_DEV, 130
XGL_CGM_TYPE, 136
XGL_CMAP, 138
XGL_DMAP_TEXTURE, 287
XGL_GCACHE, 297
xgl_inquire, 457
XGL_LIGHT, 311
XGL_LPAT, 319
XGL_MARKER, 328
XGL_MEM_RAS, 331
XGL_MIPMAP_TEXTURE, 336
XGL_OBJ_APPLICATION_DATA, 342
XGL_OBJ_SYS_STATE, 343
XGL_OBJ_TYPE, 344
xgl_object_create, 503
xgl_object_get, 508
xgl_object_set, 509
XGL_PCACHE, 347
XGL_SFONT, 355

Index−12

Object, continued
XGL_STREAM, 361
XGL_SYS_STATE, 363
XGL_TMAP, 372
XGL_TRANS, 384
XGL_WIN_RAS, 387

Open XGL
xgl_open, 510

Operator
xgl_annotation_text, 407
xgl_close, 363, 410
xgl_context_accumulate, 411
xgl_context_check_bbox, 413
xgl_context_clear_accumulation, 416
xgl_context_copy_buffer, 417
xgl_context_display_gcache, 421
xgl_context_flush, 422
xgl_context_get_pixel, 424
xgl_context_new_frame, 425
xgl_context_pop, 426
xgl_context_push, 427
xgl_context_set_multi_pixel, 432
xgl_context_set_pixel, 434
xgl_context_set_pixel_row, 436
xgl_context_update_model_trans, 438
xgl_gcache_multi_elliptical_arc, 440
xgl_gcache_multi_simple_polygon, 441
xgl_gcache_multimarker, 443
xgl_gcache_multipolyline, 444
xgl_gcache_nurbs_curve, 445
xgl_gcache_nurbs_surface, 447
xgl_gcache_polygon, 3-449
xgl_gcache_stroke_text, 451
xgl_gcache_triangle_list, 453
xgl_gcache_triangle_strip, 454
xgl_image, 455
xgl_inquire, 457
xgl_light_copy, 460
xgl_mipmap_texture_build, 461
xgl_multi_elliptical_arc, 462
xgl_multi_simple_polygon, 467
xgl_multiarc, 474
xgl_multicircle, 479
xgl_multimarker, 483
xgl_multipolyline, 485

Operator, continued
xgl_multirectangle, 488
xgl_nurbs_curve, 492
xgl_nurbs_surface, 495
xgl_object_create, 127, 130, 287, 297, 319, 328,

331, 336, 347, 355, 361, 372, 384, 387,
503, 61

xgl_object_destroy, 507
xgl_object_get, 508
xgl_object_set, 509
xgl_open, 363, 510
xgl_pcache_display, 511
xgl_pick_clear, 513
xgl_pick_get_identifiers, 514
xgl_polygon, 515
xgl_quadrilateral_mesh, 521
xgl_stroke_text, 527
xgl_stroke_text_extent, 529
xgl_transform_copy, 530
xgl_transform_identity, 531
xgl_transform_invert, 532
xgl_transform_multiply, 533
xgl_transform_point, 534
xgl_transform_point_list, 536
xgl_transform_read, 539
xgl_transform_rotate, 540
xgl_transform_scale, 542
xgl_transform_translate, 544
xgl_transform_transpose, 546
xgl_transform_write_specific, 547
xgl_triangle_list, 552
xgl_triangle_strip, 561
xgl_window_raster_resize, 567

P
Pcache

XGL_PCACHE, 347
XGL_PCACHE_CONTEXT, 349
xgl_pcache_display, 511

Picking
XGL_CTX_PICK_APERTURE, 218
XGL_CTX_PICK_BUFFER_SIZE, 221
XGL_CTX_PICK_ENABLE, 222
XGL_CTX_PICK_ID_1, 223
XGL_CTX_PICK_ID_2, 223

Index−13

Picking, continued
XGL_CTX_PICK_STYLE, 224
XGL_CTX_PICK_SURF_STYLE, 225
xgl_pick_clear, 513
xgl_pick_get_identifiers, 514

Plane Mask
XGL_CTX_PLANE_MASK, 226

point list, 27
point types, 27
Polygon

XGL_CTX_SURF_INTERIOR_RULE, 271
xgl_multi_simple_polygon, 467
xgl_polygon, 515

Primitive
xgl_annotation_text, 407
xgl_multi_elliptical_arc, 462
xgl_multi_simple_polygon, 467
xgl_multiarc, 474
xgl_multicircle, 479
xgl_multimarker, 483
xgl_multipolyline, 485
xgl_multirectangle, 488
xgl_nurbs_curve, 492
xgl_nurbs_surface, 495
xgl_polygon, 515
xgl_quadrilateral_mesh, 521
xgl_stroke_text, 527
xgl_stroke_text_extent, 529
xgl_triangle_list, 552
xgl_triangle_strip, 561

Primitive Cache
XGL_PCACHE, 347
XGL_PCACHE_CONTEXT, 349
xgl_pcache_display, 511

Q
Quadrilateral

xgl_multi_simple_polygon, 467
xgl_quadrilateral_mesh, 521

Quit
xgl_close, 410

R
Raster

xgl_context_copy_buffer, 417
XGL_CTX_DEVICE, 162
XGL_CTX_MODEL_TRANS_STACK_SIZE, 203
XGL_CTX_RASTER_FILL_STYLE, 228
XGL_CTX_RASTER_FPAT, 230
XGL_CTX_RASTER_FPAT_POSITION, 232
XGL_CTX_RASTER_STIPPLE_COLOR, 233
XGL_CTX_ROP, 236
XGL_DEV_COLOR_TYPE, 282
xgl_image, 455
XGL_MEM_RAS, 331
XGL_MEM_RAS_IMAGE_BUFFER_ADDR, 333
XGL_RAS_DEPTH, 350
XGL_RAS_HEIGHT, 352
XGL_RAS_RECT_LIST, 353
XGL_RAS_RECT_NUM, 353
XGL_RAS_SOURCE_BUFFER, 354
XGL_RAS_WIDTH, 352
XGL_WIN_RAS, 387
XGL_WIN_RAS_DESCRIPTOR, 399
XGL_WIN_RAS_POSITION, 404
XGL_WIN_RAS_TYPE, 406
xgl_window_raster_resize, 567

Rectangle
xgl_multirectangle, 488

Rendering
XGL_CTX_MODEL_TRANS_STACK_SIZE, 203
XGL_CTX_RENDER_BUFFER, 234
XGL_CTX_RENDERING_ORDER, 235
XGL_CTX_ROP, 236

S
Scale Factor

XGL_CGM_SCALE_FACTOR, 134
Scaling Mode

XGL_CGM_SCALE_MODE, 135
Shading

XGL_3D_CTX_SURF_BACK_COLOR_SELECTOR,
262

XGL_3D_CTX_SURF_BACK_ILLUMINATION,
101

XGL_3D_CTX_SURF_BACK_LIGHT_COMPONENT,
103

Index−14

Shading, continued
XGL_3D_CTX_SURF_FRONT_ILLUMINATION,

101
XGL_3D_CTX_SURF_FRONT_LIGHT_COMPONENT,

103
XGL_CTX_SURF_FRONT_COLOR_SELECTOR,

262
Stroke Text

xgl_annotation_text, 407
XGL_CTX_ATEXT_ALIGN_HORIZ, 152
XGL_CTX_ATEXT_ALIGN_VERT, 153
XGL_CTX_ATEXT_CHAR_HEIGHT, 154
XGL_CTX_ATEXT_CHAR_SLANT_ANGLE,

155
XGL_CTX_ATEXT_CHAR_UP_VECTOR, 156
XGL_CTX_ATEXT_PATH, 157
XGL_CTX_ATEXT_STYLE, 158
XGL_CTX_SFONT_0, 239
XGL_CTX_SFONT_1, 239
XGL_CTX_SFONT_2, 239
XGL_CTX_SFONT_3, 239
XGL_CTX_STEXT_AA_BLEND_EQ, 241
XGL_CTX_STEXT_AA_FILTER_SHAPE, 241
XGL_CTX_STEXT_AA_FILTER_WIDTH, 241
XGL_CTX_STEXT_ALIGN_HORIZ, 243
XGL_CTX_STEXT_ALIGN_VERT, 244
XGL_CTX_STEXT_CHAR_ENCODING, 245
XGL_CTX_STEXT_CHAR_EXPANSION_FACTOR,

248
XGL_CTX_STEXT_CHAR_HEIGHT, 249
XGL_CTX_STEXT_CHAR_SLANT_ANGLE,

250
XGL_CTX_STEXT_CHAR_SPACING, 251
XGL_CTX_STEXT_CHAR_UP_VECTOR, 252
XGL_CTX_STEXT_COLOR, 253
XGL_CTX_STEXT_PATH, 254
XGL_CTX_STEXT_PRECISION, 255
XGL_SFONT, 355
XGL_SFONT_COMMENT, 356
XGL_SFONT_DEFAULT_CHARACTER, 357
XGL_SFONT_IS_MONO_SPACED, 358
XGL_SFONT_NAME, 359
xgl_stroke_text, 527
xgl_stroke_text_extent, 529
XGL_SYS_ST_SFONT_DIRECTORY, 370

Surface
XGL_3D_CTX_DEPTH_CUE_COLOR, 69
XGL_3D_CTX_DEPTH_CUE_INTERP, 70
XGL_3D_CTX_DEPTH_CUE_MODE, 71
XGL_3D_CTX_DEPTH_CUE_REF_PLANES, 74
XGL_3D_CTX_DEPTH_CUE_SCALE_FACTORS,

75
XGL_3D_CTX_SURF_BACK_AMBIENT, 94
XGL_3D_CTX_SURF_BACK_COLOR, 260
XGL_3D_CTX_SURF_BACK_COLOR_SELECTOR,

262
XGL_3D_CTX_SURF_BACK_DIFFUSE, 95
XGL_3D_CTX_SURF_BACK_DMAP, 96
XGL_3D_CTX_SURF_BACK_DMAP_NUM, 98
XGL_3D_CTX_SURF_BACK_DMAP_SWITCHES,

100
XGL_3D_CTX_SURF_BACK_FILL_STYLE, 265
XGL_3D_CTX_SURF_BACK_FPAT, 268
XGL_3D_CTX_SURF_BACK_FPAT_POSITION,

270
XGL_3D_CTX_SURF_BACK_ILLUMINATION,

101
XGL_3D_CTX_SURF_BACK_LIGHT_COMPONENT,

103
XGL_3D_CTX_SURF_BACK_SPECULAR, 104
XGL_3D_CTX_SURF_BACK_SPECULAR_COLOR,

104
XGL_3D_CTX_SURF_BACK_SPECULAR_POWER,

104
XGL_3D_CTX_SURF_BACK_TMAP, 106
XGL_3D_CTX_SURF_BACK_TMAP_NUM, 108
XGL_3D_CTX_SURF_BACK_TMAP_SWITCHES,

109
XGL_3D_CTX_SURF_BACK_TRANSP, 110
XGL_3D_CTX_SURF_DC_OFFSET, 90
XGL_3D_CTX_SURF_FACE_CULL, 91
XGL_3D_CTX_SURF_FACE_DISTINGUISH, 92
XGL_3D_CTX_SURF_FRONT_AMBIENT, 94
XGL_3D_CTX_SURF_FRONT_DIFFUSE, 95
XGL_3D_CTX_SURF_FRONT_DMAP, 96
XGL_3D_CTX_SURF_FRONT_DMAP_NUM, 98
XGL_3D_CTX_SURF_FRONT_DMAP_SWITCHES,

100
XGL_3D_CTX_SURF_FRONT_ILLUMINATION,

101

Index−15

Surface, continued
XGL_3D_CTX_SURF_FRONT_LIGHT_COMPONENT,

103
XGL_3D_CTX_SURF_FRONT_SPECULAR, 104
XGL_3D_CTX_SURF_FRONT_SPECULAR_COLOR,

104
XGL_3D_CTX_SURF_FRONT_SPECULAR_POWER,

104
XGL_3D_CTX_SURF_FRONT_TMAP, 106
XGL_3D_CTX_SURF_FRONT_TMAP_NUM,

108
XGL_3D_CTX_SURF_FRONT_TMAP_SWITCHES,

109
XGL_3D_CTX_SURF_FRONT_TRANSP, 110
XGL_3D_CTX_SURF_GEOM_NORMAL, 111
XGL_3D_CTX_SURF_LIGHTING_NORMAL_FLIP,

114
XGL_3D_CTX_SURF_NORMAL_FLIP, 115
XGL_3D_CTX_SURF_SILHOUETTE_EDGE_FLAG,

116
XGL_3D_CTX_SURF_TMAP_PERSP_CORRECTION,

118
XGL_3D_CTX_SURF_TRANSP_BLEND_EQ,

119
XGL_3D_CTX_SURF_TRANSP_METHOD, 121
XGL_CTX_EDGE_ALT_COLOR, 165
XGL_CTX_EDGE_COLOR, 167
XGL_CTX_MAX_TESSELLATION, 196
XGL_CTX_MIN_TESSELLATION, 200
XGL_CTX_NURBS_SURF_APPROX, 210
XGL_CTX_NURBS_SURF_APPROX_VAL_U,

212
XGL_CTX_NURBS_SURF_APPROX_VAL_V,

212
XGL_CTX_NURBS_SURF_ISO_CURVE_PLACEMENT,

213
XGL_CTX_NURBS_SURF_ISO_CURVE_U_NUM,

214
XGL_CTX_NURBS_SURF_ISO_CURVE_V_NUM,

214
XGL_CTX_NURBS_SURF_PARAM_STYLE, 215
XGL_CTX_SURF_AA_BLEND_EQ, 256
XGL_CTX_SURF_AA_FILTER_SHAPE, 256
XGL_CTX_SURF_AA_FILTER_WIDTH, 256
XGL_CTX_SURF_EDGE_FLAG, 258

Surface, continued
XGL_CTX_SURF_FRONT_COLOR, 260
XGL_CTX_SURF_FRONT_COLOR_SELECTOR,

262
XGL_CTX_SURF_FRONT_FILL_STYLE, 265
XGL_CTX_SURF_FRONT_FPAT, 268
XGL_CTX_SURF_FRONT_FPAT_POSITION,

270
XGL_CTX_SURF_INTERIOR_RULE, 271
XGL_GCACHE_NURBS_SURF_MODE, 305
xgl_gcache_nurbs_surface, 447
xgl_nurbs_surface, 495

Surface Normal
XGL_3D_CTX_SURF_GEOM_NORMAL, 111
XGL_3D_CTX_SURF_LIGHTING_NORMAL_FLIP,

114
XGL_3D_CTX_SURF_NORMAL_FLIP, 115

System State
xgl_close, 410
xgl_open, 510
XGL_SYS_ST_ERROR_DETECTION, 364
XGL_SYS_ST_ERROR_INFO, 366
XGL_SYS_ST_ERROR_NOTIFICATION_FUNCTION,

368
XGL_SYS_ST_SFONT_DIRECTORY, 370
XGL_SYS_ST_VERSION, 371
XGL_SYS_STATE, 363

T
Text

xgl_annotation_text, 407
XGL_CTX_ATEXT_ALIGN_HORIZ, 152
XGL_CTX_ATEXT_ALIGN_VERT, 153
XGL_CTX_ATEXT_CHAR_HEIGHT, 154
XGL_CTX_ATEXT_CHAR_SLANT_ANGLE,

155
XGL_CTX_ATEXT_CHAR_UP_VECTOR, 156
XGL_CTX_ATEXT_PATH, 157
XGL_CTX_ATEXT_STYLE, 158
XGL_CTX_SFONT_0, 239
XGL_CTX_SFONT_1, 239
XGL_CTX_SFONT_2, 239
XGL_CTX_SFONT_3, 239
XGL_CTX_STEXT_ALIGN_HORIZ, 243
XGL_CTX_STEXT_ALIGN_VERT, 244

Index−16

Text, continued
XGL_CTX_STEXT_CHAR_ENCODING, 245
XGL_CTX_STEXT_CHAR_EXPANSION_FACTOR,

248
XGL_CTX_STEXT_CHAR_HEIGHT, 249
XGL_CTX_STEXT_CHAR_SLANT_ANGLE,

250
XGL_CTX_STEXT_CHAR_SPACING, 251
XGL_CTX_STEXT_CHAR_UP_VECTOR, 252
XGL_CTX_STEXT_COLOR, 253
XGL_CTX_STEXT_PATH, 254
XGL_CTX_STEXT_PRECISION, 255
XGL_SFONT, 355
XGL_SFONT_COMMENT, 356
XGL_SFONT_DEFAULT_CHARACTER, 357
XGL_SFONT_IS_MONO_SPACED, 358
XGL_SFONT_NAME, 359
xgl_stroke_text, 527
xgl_stroke_text_extent, 529
XGL_SYS_ST_SFONT_DIRECTORY, 370

Texture Map
XGL_3D_CTX_SURF_BACK_TMAP, 106
XGL_3D_CTX_SURF_BACK_TMAP_NUM, 108
XGL_3D_CTX_SURF_BACK_TMAP_SWITCHES,

109
XGL_3D_CTX_SURF_FRONT_TMAP, 106
XGL_3D_CTX_SURF_FRONT_TMAP_NUM,

108
XGL_3D_CTX_SURF_FRONT_TMAP_SWITCHES,

109
XGL_3D_CTX_SURF_TMAP_PERSP_CORRECTION,

118
XGL_TMAP, 372
XGL_TMAP_COORD_SOURCE, 373
XGL_TMAP_DESCRIPTOR, 374
XGL_TMAP_DOMAIN, 379
XGL_TMAP_PARAM_INFO, 380
XGL_TMAP_PARAM_TYPE, 382
XGL_TMAP_T0_INDEX, 383
XGL_TMAP_T1_INDEX, 383

Texturing
XGL_3D_CTX_SURF_BACK_DMAP, 96
XGL_3D_CTX_SURF_BACK_DMAP_NUM, 98
XGL_3D_CTX_SURF_BACK_DMAP_SWITCHES,

100

Texturing, continued
XGL_3D_CTX_SURF_BACK_TMAP, 106
XGL_3D_CTX_SURF_BACK_TMAP_NUM, 108
XGL_3D_CTX_SURF_BACK_TMAP_SWITCHES,

109
XGL_3D_CTX_SURF_FRONT_DMAP, 96
XGL_3D_CTX_SURF_FRONT_DMAP_NUM, 98
XGL_3D_CTX_SURF_FRONT_DMAP_SWITCHES,

100
XGL_3D_CTX_SURF_FRONT_TMAP, 106
XGL_3D_CTX_SURF_FRONT_TMAP_NUM,

108
XGL_3D_CTX_SURF_FRONT_TMAP_SWITCHES,

109
XGL_3D_CTX_SURF_TMAP_PERSP_CORRECTION,

118
XGL_DMAP_TEXTURE, 287
XGL_DMAP_TEXTURE_DESCRIPTORS, 288
XGL_DMAP_TEXTURE_NUM_DESCRIPTORS,

293
XGL_DMAP_TEXTURE_ORIENTATION_MATRIX,

294
XGL_DMAP_TEXTURE_PARAM_TYPE, 295
XGL_DMAP_TEXTURE_U_INDEX, 296
XGL_DMAP_TEXTURE_V_INDEX, 296
XGL_MIPMAP_TEXTURE, 336
xgl_mipmap_texture_build, 461
XGL_MIPMAP_TEXTURE_DEPTH, 337
XGL_MIPMAP_TEXTURE_HEIGHT, 338
XGL_MIPMAP_TEXTURE_LEVELS, 339
XGL_MIPMAP_TEXTURE_MEM_RAS_LIST,

340
XGL_MIPMAP_TEXTURE_WIDTH, 341
XGL_TMAP, 372
XGL_TMAP_COORD_SOURCE, 373
XGL_TMAP_DESCRIPTOR, 374
XGL_TMAP_DOMAIN, 379
XGL_TMAP_PARAM_INFO, 380
XGL_TMAP_PARAM_TYPE, 382
XGL_TMAP_T0_INDEX, 383
XGL_TMAP_T1_INDEX, 383

Transform
XGL_3D_CTX_NORMAL_TRANS, 89
xgl_context_update_model_trans, 438
XGL_CTX_GLOBAL_MODEL_TRANS, 175

Index−17

Transform, continued
XGL_CTX_LOCAL_MODEL_TRANS, 188
XGL_CTX_MC_TO_DC_TRANS, 198
XGL_CTX_MODEL_TRANS, 202
XGL_CTX_VIEW_TRANS, 280
XGL_TRANS, 384
XGL_TRANS_DATA_TYPE, 385
XGL_TRANS_DIMENSION, 386
xgl_transform_copy, 530
xgl_transform_identity, 531
xgl_transform_invert, 532
xgl_transform_multiply, 533
xgl_transform_point, 534
xgl_transform_point_list, 536
xgl_transform_read, 539
xgl_transform_rotate, 540
xgl_transform_scale, 542
xgl_transform_transpose, 546
xgl_transform_write_specific, 547

Translate
xgl_transform_translate, 544

Transparency
XGL_3D_CTX_SURF_BACK_TRANSP, 110
XGL_3D_CTX_SURF_FRONT_TRANSP, 110
XGL_3D_CTX_SURF_TRANSP_BLEND_EQ,

119
XGL_3D_CTX_SURF_TRANSP_METHOD, 121

Triangle
xgl_multi_simple_polygon, 467
xgl_triangle_strip, 561

Triangle Star
xgl_triangle_list, 552

Triangle Strip
xgl_triangle_list, 552
xgl_triangle_strip, 561

Triangles, independent list
xgl_triangle_list, 552

V
VDC Extent

XGL_CGM_VDC_EXTENT, 137
Viewing

XGL_3D_CTX_MODEL_CLIP_PLANE_NUM,
88

XGL_3D_CTX_MODEL_CLIP_PLANES, 86

Viewing, continued
XGL_3D_CTX_NORMAL_TRANS, 89
XGL_3D_CTX_VIEW_CLIP_PLUS_W_ONLY,

123
XGL_CTX_CLIP_PLANES, 160
XGL_CTX_DC_VIEWPORT, 274
XGL_CTX_GLOBAL_MODEL_TRANS, 175
XGL_CTX_LOCAL_MODEL_TRANS, 188
XGL_CTX_MODEL_TRANS, 202
XGL_CTX_VDC_MAP, 274
XGL_CTX_VDC_ORIENTATION, 277
XGL_CTX_VDC_WINDOW, 274
XGL_CTX_VIEW_CLIP_BOUNDS, 279
XGL_CTX_VIEW_TRANS, 280

X
XGL Data Structures, 31
XGL Enumerated Types, 4
XGL Macro Values, 21
XGL_2D_CTX, 11, 61

xgl_object_create, 503
XGL_3D_CTX, 11, 61

xgl_object_create, 503
XGL_3D_CTX_ACCUM_OP_DEST, 66
XGL_3D_CTX_BLEND_DRAW_MODE, 67
XGL_3D_CTX_BLEND_FREEZE_Z_BUFFER, 68
XGL_3D_CTX_DEPTH_CUE_COLOR, 69
XGL_3D_CTX_DEPTH_CUE_INTERP, 70
XGL_3D_CTX_DEPTH_CUE_MODE, 71
XGL_3D_CTX_DEPTH_CUE_REF_PLANES, 74
XGL_3D_CTX_DEPTH_CUE_SCALE_FACTORS, 75
XGL_3D_CTX_EDGE_Z_OFFSET, 77
XGL_3D_CTX_HLHSR_DATA, 78
XGL_3D_CTX_HLHSR_MODE, 79
XGL_3D_CTX_JITTER_OFFSET, 81
XGL_3D_CTX_LIGHT_NUM, 83
XGL_3D_CTX_LIGHT_SWITCHES, 84
XGL_3D_CTX_LIGHTS, 82
XGL_3D_CTX_LINE_COLOR_INTERP, 85
XGL_3D_CTX_MODEL_CLIP_PLANE_NUM, 88
XGL_3D_CTX_MODEL_CLIP_PLANES, 86
XGL_3D_CTX_NORMAL_TRANS, 89
XGL_3D_CTX_SURF_BACK_AMBIENT, 94

Index−18

XGL_3D_CTX_SURF_BACK_COLOR, 260
XGL_3D_CTX_SURF_BACK_COLOR_SELECTOR,

262
XGL_3D_CTX_SURF_BACK_DIFFUSE, 95
XGL_3D_CTX_SURF_BACK_DMAP, 96
XGL_3D_CTX_SURF_BACK_DMAP_NUM, 98
XGL_3D_CTX_SURF_BACK_DMAP_SWITCHES,

100
XGL_3D_CTX_SURF_BACK_FILL_STYLE, 265
XGL_3D_CTX_SURF_BACK_FPAT, 268
XGL_3D_CTX_SURF_BACK_FPAT_POSITION, 270
XGL_3D_CTX_SURF_BACK_ILLUMINATION, 101
XGL_3D_CTX_SURF_BACK_LIGHT_COMPONENT,

103
XGL_3D_CTX_SURF_BACK_SPECULAR, 104
XGL_3D_CTX_SURF_BACK_SPECULAR_COLOR,

104
XGL_3D_CTX_SURF_BACK_SPECULAR_POWER,

104
XGL_3D_CTX_SURF_BACK_TMAP, 106
XGL_3D_CTX_SURF_BACK_TMAP_NUM, 108
XGL_3D_CTX_SURF_BACK_TMAP_SWITCHES,

109
XGL_3D_CTX_SURF_BACK_TRANSP, 110
XGL_3D_CTX_SURF_DC_OFFSET, 90
XGL_3D_CTX_SURF_FACE_CULL, 91
XGL_3D_CTX_SURF_FACE_DISTINGUISH, 92
XGL_3D_CTX_SURF_FRONT_AMBIENT, 94
XGL_3D_CTX_SURF_FRONT_DIFFUSE, 95
XGL_3D_CTX_SURF_FRONT_DMAP, 96
XGL_3D_CTX_SURF_FRONT_DMAP_NUM, 98
XGL_3D_CTX_SURF_FRONT_DMAP_SWITCHES,

100
XGL_3D_CTX_SURF_FRONT_ILLUMINATION,

101
XGL_3D_CTX_SURF_FRONT_LIGHT_COMPONENT,

103
XGL_3D_CTX_SURF_FRONT_SPECULAR, 104
XGL_3D_CTX_SURF_FRONT_SPECULAR_COLOR,

104
XGL_3D_CTX_SURF_FRONT_SPECULAR_POWER,

104

XGL_3D_CTX_SURF_FRONT_TMAP, 106
XGL_3D_CTX_SURF_FRONT_TMAP_NUM, 108
XGL_3D_CTX_SURF_FRONT_TMAP_SWITCHES,

109
XGL_3D_CTX_SURF_FRONT_TRANSP, 110
XGL_3D_CTX_SURF_GEOM_NORMAL, 111
XGL_3D_CTX_SURF_LIGHTING_NORMAL_FLIP,

114
XGL_3D_CTX_SURF_NORMAL_FLIP, 115
XGL_3D_CTX_SURF_SILHOUETTE_EDGE_FLAG,

116
XGL_3D_CTX_SURF_TMAP_PERSP_CORRECTION,

118
XGL_3D_CTX_SURF_TRANSP_BLEND_EQ, 119
XGL_3D_CTX_SURF_TRANSP_METHOD, 121
XGL_3D_CTX_VIEW_CLIP_PLUS_W_ONLY, 123
XGL_3D_CTX_Z_BUFFER_COMP_METHOD, 124
XGL_3D_CTX_Z_BUFFER_WRITE_MASK, 126
Xgl_accum_depth, 4
XGL_ACCUM_DEPTH_1X, 4
XGL_ACCUM_DEPTH_2X, 4
xgl_annotation_text, 407
Xgl_arc_ad3d, 31
Xgl_arc_af3d, 31
XGL_ARC_CHORD, 4
Xgl_arc_d2d, 31
Xgl_arc_d3d, 31
Xgl_arc_f2d, 31
Xgl_arc_f3d, 31
Xgl_arc_fill_style, 4
Xgl_arc_i2d, 31
Xgl_arc_list, 32
XGL_ARC_OPEN, 4
XGL_ARC_SECTOR, 4
Xgl_atext_style, 15
XGL_ATEXT_STYLE_LINE, 15
XGL_ATEXT_STYLE_NORMAL, 15
Xgl_axis, 4
XGL_AXIS_X, 4
XGL_AXIS_Y, 4
XGL_AXIS_Z, 4
Xgl_bbox, 27, 33

Index−19

XGL_BBOX_D2D, 4, 33
XGL_BBOX_D3D, 4, 33
XGL_BBOX_F2D, 4, 33
XGL_BBOX_F3D, 4, 33
XGL_BBOX_I2D, 4, 33
XGL_BBOX_STATUS, 4, 33
Xgl_bbox_type, 4
XGL_BLEND_ADD_TO_BG, 4
XGL_BLEND_ARBITRARY_BG, 4
XGL_BLEND_CONST_BG, 4
XGL_BLEND_DRAW_ALL, 5
XGL_BLEND_DRAW_BLENDED, 5
Xgl_blend_draw_mode, 5
XGL_BLEND_DRAW_NOT_BLENDED, 5
Xgl_blend_eq, 4
XGL_BLEND_NONE, 4
Xgl_bounds_d1d, 34
Xgl_bounds_d2d, 34
Xgl_bounds_d3d, 34
Xgl_bounds_f1d, 34
Xgl_bounds_f2d, 34
Xgl_bounds_f3d, 34
Xgl_bounds_i2d, 34
Xgl_buffer_sel, 21
XGL_CACHE_ATTR_STATE_DIFFERENT, 5
Xgl_cache_display, 5
XGL_CACHE_DISPLAY_OK, 5
XGL_CACHE_NOT_CHECKED, 5
XGL_CAP_BUTT, 8
XGL_CAP_ROUND, 8
XGL_CAP_SQUARE, 8
XGL_CGM, 127
XGL_CGM_DESCRIPTION, 129
XGL_CGM_DEV, 130

xgl_object_create, 503
XGL_CGM_ENCODING, 132
XGL_CGM_PICTURE_DESCRIPTION, 133
XGL_CGM_SCALE_FACTOR, 134
XGL_CGM_SCALE_MODE, 135
XGL_CGM_TYPE, 136
XGL_CGM_VDC_EXTENT, 137
Xgl_char_encoding, 21

Xgl_circle_ad3d, 35
Xgl_circle_af3d, 35
Xgl_circle_d2d, 35
Xgl_circle_d3d, 35
Xgl_circle_f2d, 35
Xgl_circle_f3d, 35
Xgl_circle_i2d, 35
Xgl_circle_list, 36
Xgl_clip_planes, 21
xgl_close, 363, 410
XGL_CMAP, 11, 138

xgl_object_create, 503
XGL_CMAP_COLOR_CUBE_SIZE, 140
XGL_CMAP_COLOR_MAPPER, 141
XGL_CMAP_COLOR_TABLE, 143
XGL_CMAP_COLOR_TABLE_SIZE, 144
XGL_CMAP_DITHER_MASK, 145
XGL_CMAP_DITHER_MASK_N, 146
XGL_CMAP_INVERSE_COLOR_MAPPER, 141
XGL_CMAP_MAX_COLOR_TABLE_SIZE, 144
XGL_CMAP_NAME, 147
XGL_CMAP_RAMP_LIST, 149
XGL_CMAP_RAMP_NUM, 149
Xgl_color, 37
Xgl_color_facet, 40
XGL_COLOR_GRAY, 5, 37
Xgl_color_homogeneous, 37
Xgl_color_homogeneous_type, 5
XGL_COLOR_INDEX, 5, 37
Xgl_color_list, 38
Xgl_color_normal_facet, 40
XGL_COLOR_RGB, 5, 37
XGL_COLOR_RGBW, 5, 37
Xgl_color_type, 5
Xgl_color_type_supported, 38
XGL_COLOR_Z, 5
xgl_context_accumulate, 411
xgl_context_check_bbox, 413
xgl_context_clear_accumulation, 416
xgl_context_copy_buffer, 417
xgl_context_display_gcache, 421
xgl_context_flush, 422

Index−20

xgl_context_get_pixel, 424
xgl_context_new_frame, 425
xgl_context_pop, 426
xgl_context_push, 427
xgl_context_set_multi_pixel, 432
xgl_context_set_pixel, 434
xgl_context_set_pixel_row, 436
xgl_context_update_model_trans, 438
XGL_CTX_ARC_FILL_STYLE, 151
XGL_CTX_ATEXT_ALIGN_HORIZ, 152
XGL_CTX_ATEXT_ALIGN_VERT, 153
XGL_CTX_ATEXT_CHAR_HEIGHT, 154
XGL_CTX_ATEXT_CHAR_SLANT_ANGLE, 155
XGL_CTX_ATEXT_CHAR_UP_VECTOR, 156
XGL_CTX_ATEXT_PATH, 157
XGL_CTX_ATEXT_STYLE, 158
XGL_CTX_BACKGROUND_COLOR, 159
XGL_CTX_CLIP_PLANES, 160
XGL_CTX_DC_VIEWPORT, 274
XGL_CTX_DEFERRAL_MODE, 161
XGL_CTX_DEVICE, 162
XGL_CTX_EDGE_AA_BLEND_EQ, 163
XGL_CTX_EDGE_AA_FILTER_SHAPE, 163
XGL_CTX_EDGE_AA_FILTER_WIDTH, 163
XGL_CTX_EDGE_ALT_COLOR, 165
XGL_CTX_EDGE_CAP, 166
XGL_CTX_EDGE_COLOR, 167
XGL_CTX_EDGE_JOIN, 168
XGL_CTX_EDGE_MITER_LIMIT, 169
XGL_CTX_EDGE_PATTERN, 170
XGL_CTX_EDGE_STYLE, 172
XGL_CTX_EDGE_WIDTH_SCALE_FACTOR, 173
XGL_CTX_GEOM_DATA_IS_VOLATILE, 174
XGL_CTX_GLOBAL_MODEL_TRANS, 175
XGL_CTX_LINE_AA_BLEND_EQ, 176
XGL_CTX_LINE_AA_FILTER_SHAPE, 176
XGL_CTX_LINE_AA_FILTER_WIDTH, 176
XGL_CTX_LINE_ALT_COLOR, 178
XGL_CTX_LINE_CAP, 179
XGL_CTX_LINE_COLOR, 180
XGL_CTX_LINE_COLOR_SELECTOR, 181
XGL_CTX_LINE_JOIN, 182

XGL_CTX_LINE_MITER_LIMIT, 183
XGL_CTX_LINE_PATTERN, 184
XGL_CTX_LINE_STYLE, 186
XGL_CTX_LINE_WIDTH_SCALE_FACTOR, 187
XGL_CTX_LOCAL_MODEL_TRANS, 188
XGL_CTX_MARKER, 189
XGL_CTX_MARKER_AA_BLEND_EQ, 191
XGL_CTX_MARKER_AA_FILTER_SHAPE, 191
XGL_CTX_MARKER_AA_FILTER_WIDTH, 191
XGL_CTX_MARKER_COLOR, 193
XGL_CTX_MARKER_COLOR_SELECTOR, 194
XGL_CTX_MARKER_SCALE_FACTOR, 195
XGL_CTX_MAX_TESSELLATION, 196
XGL_CTX_MC_TO_DC_TRANS, 198
XGL_CTX_MIN_TESSELLATION, 200
XGL_CTX_MODEL_TRANS, 202
XGL_CTX_MODEL_TRANS_STACK_SIZE, 203
XGL_CTX_NEW_FRAME_ACTION, 204, 21
XGL_CTX_NEW_FRAME_PAINT_TYPE, 206
XGL_CTX_NURBS_CURVE_APPROX, 207
XGL_CTX_NURBS_CURVE_APPROX_VAL, 209
XGL_CTX_NURBS_SURF_APPROX, 210
XGL_CTX_NURBS_SURF_APPROX_VAL_U, 212
XGL_CTX_NURBS_SURF_APPROX_VAL_V, 212
XGL_CTX_NURBS_SURF_ISO_CURVE_PLACEMENT,

213
XGL_CTX_NURBS_SURF_ISO_CURVE_U_NUM,

214
XGL_CTX_NURBS_SURF_ISO_CURVE_V_NUM,

214
XGL_CTX_NURBS_SURF_PARAM_STYLE, 215
XGL_CTX_PAINT_TYPE, 217
XGL_CTX_PICK_APERTURE, 218
XGL_CTX_PICK_BUFFER_SIZE, 221
XGL_CTX_PICK_ENABLE, 222
XGL_CTX_PICK_ID_1, 223
XGL_CTX_PICK_ID_2, 223
XGL_CTX_PICK_STYLE, 224
XGL_CTX_PICK_SURF_STYLE, 225
XGL_CTX_PLANE_MASK, 226
XGL_CTX_RASTER_FILL_STYLE, 228
XGL_CTX_RASTER_FPAT, 230

Index−21

XGL_CTX_RASTER_FPAT_POSITION, 232
XGL_CTX_RASTER_STIPPLE_COLOR, 233
XGL_CTX_RENDER_BUFFER, 234
XGL_CTX_RENDERING_ORDER, 235
XGL_CTX_ROP, 236
XGL_CTX_SFONT_0, 239
XGL_CTX_SFONT_1, 239
XGL_CTX_SFONT_2, 239
XGL_CTX_SFONT_3, 239
XGL_CTX_STEXT_AA_BLEND_EQ, 241
XGL_CTX_STEXT_AA_FILTER_SHAPE, 241
XGL_CTX_STEXT_AA_FILTER_WIDTH, 241
XGL_CTX_STEXT_ALIGN_HORIZ, 243
XGL_CTX_STEXT_ALIGN_VERT, 244
XGL_CTX_STEXT_CHAR_ENCODING, 245
XGL_CTX_STEXT_CHAR_EXPANSION_FACTOR,

248
XGL_CTX_STEXT_CHAR_HEIGHT, 249
XGL_CTX_STEXT_CHAR_SLANT_ANGLE, 250
XGL_CTX_STEXT_CHAR_SPACING, 251
XGL_CTX_STEXT_CHAR_UP_VECTOR, 252
XGL_CTX_STEXT_COLOR, 253
XGL_CTX_STEXT_PATH, 254
XGL_CTX_STEXT_PRECISION, 255
XGL_CTX_SURF_AA_BLEND_EQ, 256
XGL_CTX_SURF_AA_FILTER_SHAPE, 256
XGL_CTX_SURF_AA_FILTER_WIDTH, 256
XGL_CTX_SURF_EDGE_FLAG, 258
XGL_CTX_SURF_FRONT_COLOR, 260
XGL_CTX_SURF_FRONT_COLOR_SELECTOR, 262
XGL_CTX_SURF_FRONT_FILL_STYLE, 265
XGL_CTX_SURF_FRONT_FPAT, 268
XGL_CTX_SURF_FRONT_FPAT_POSITION, 270
XGL_CTX_SURF_INTERIOR_RULE, 271
XGL_CTX_THRESHOLD, 272
XGL_CTX_VDC_MAP, 274
XGL_CTX_VDC_ORIENTATION, 277
XGL_CTX_VDC_WINDOW, 274
XGL_CTX_VIEW_CLIP_BOUNDS, 279
XGL_CTX_VIEW_TRANS, 280
XGL_CULL_BACK, 15
XGL_CULL_FRONT, 15

XGL_CULL_OFF, 15
Xgl_curve_approx, 5
XGL_CURVE_CHORDAL_DEVIATION_DC, 5
XGL_CURVE_CHORDAL_DEVIATION_VDC, 5
XGL_CURVE_CHORDAL_DEVIATION_WC, 5
Xgl_curve_color_spline, 38
XGL_CURVE_CONST_PARAM_SUBDIV_-

BETWEEN_KNOTS, 5
XGL_CURVE_METRIC_VDC, 5
XGL_CURVE_METRIC_WC, 5
XGL_CURVE_RELATIVE_DC, 5
XGL_CURVE_RELATIVE_VDC, 5
XGL_CURVE_RELATIVE_WC, 5
XGL_CURVE_UNUSED, 5
XGL_DATA_DBL, 6
XGL_DATA_FLT, 6
XGL_DATA_INT, 6
Xgl_data_type, 6
XGL_DEFER_ASAP, 6
XGL_DEFER_ASTI, 6
Xgl_deferral_mode, 6
XGL_DEPTH_CUE_LINEAR, 6
Xgl_depth_cue_mode, 6
XGL_DEPTH_CUE_OFF, 6
XGL_DEPTH_CUE_SCALED, 6
XGL_DEV_COLOR_MAP, 281
XGL_DEV_COLOR_TYPE, 282
XGL_DEV_CONTEXTS, 284
XGL_DEV_CONTEXTS_NUM, 284
XGL_DEV_MAXIMUM_COORDINATES, 285
XGL_DEV_REAL_COLOR_TYPE, 286
XGL_DMAP_TEXTURE, 11, 287

xgl_object_create, 503
XGL_DMAP_TEXTURE_DESCRIPTORS, 288
XGL_DMAP_TEXTURE_NUM_DESCRIPTORS, 293
XGL_DMAP_TEXTURE_ORIENTATION_MATRIX,

294
XGL_DMAP_TEXTURE_PARAM_TYPE, 295
XGL_DMAP_TEXTURE_U_INDEX, 296
XGL_DMAP_TEXTURE_V_INDEX, 296
Xgl_ell_ad3d, 38
Xgl_ell_af3d, 38

Index−22

Xgl_ell_d3d, 38
Xgl_ell_f3d, 38
Xgl_ell_list, 39
xgl_enum_types, 4
XGL_ERROR_ARITHMETIC, 6
Xgl_error_category, 6
XGL_ERROR_CONFIGURATION, 6
Xgl_error_info, 40
XGL_ERROR_NONRECOVERABLE, 6
XGL_ERROR_RECOVERABLE, 6
XGL_ERROR_RESOURCE, 6
XGL_ERROR_SYSTEM, 6
Xgl_error_type, 6
XGL_ERROR_USER, 6
XGL_EVEN_ODD, 8
Xgl_facet, 41
XGL_FACET_COLOR, 7
XGL_FACET_COLOR_NORMAL, 7
Xgl_facet_flags, 21
Xgl_facet_list, 41
Xgl_facet_list_list, 41
XGL_FACET_NONE, 7
XGL_FACET_NORMAL, 7
Xgl_facet_type, 7
XGL_FILTER_GAUSSIAN, 7
Xgl_filter_shape, 7
Xgl_flush_action, 22
XGL_GCACHE, 11, 297

xgl_object_create, 503
XGL_GCACHE_BYPASS_MODEL_CLIP, 299
XGL_GCACHE_DISPLAY_PRIM_TYPE, 300
XGL_GCACHE_DO_POLYGON_DECOMP, 301
XGL_GCACHE_FACET_LIST_LIST, 302
XGL_GCACHE_IS_EMPTY, 303
xgl_gcache_multi_elliptical_arc, 440
xgl_gcache_multi_simple_polygon, 441
xgl_gcache_multimarker, 443
xgl_gcache_multipolyline, 444
xgl_gcache_nurbs_curve, 445
XGL_GCACHE_NURBS_CURVE_MODE, 304
Xgl_gcache_nurbs_mode, 7
XGL_GCACHE_NURBS_SURF_MODE, 305

xgl_gcache_nurbs_surface, 447
XGL_GCACHE_ORIG_PRIM_TYPE, 306
xgl_gcache_polygon, 3-449
XGL_GCACHE_POLYGON_TYPE, 307
XGL_GCACHE_PT_LIST_LIST, 308
XGL_GCACHE_SHOW_DECOMP_EDGES, 309
xgl_gcache_stroke_text, 451
xgl_gcache_triangle_list, 453
xgl_gcache_triangle_strip, 454
XGL_GCACHE_USE_APPL_GEOM, 310
Xgl_geom_normal, 7
XGL_GEOM_NORMAL_FIRST_POINTS, 7
XGL_GEOM_NORMAL_LAST_POINTS, 7
Xgl_geom_status, 22
Xgl_hlhsr_data, 41
Xgl_hlhsr_mode, 7
XGL_HLHSR_NONE, 7
XGL_HLHSR_Z_BUFFER, 7
XGL_ILLUM_NONE, 15
XGL_ILLUM_NONE_INTERP_COLOR, 15
XGL_ILLUM_PER_FACET, 15
XGL_ILLUM_PER_VERTEX, 15
xgl_image, 455
XGL_INQ_HARDWARE, 7
XGL_INQ_NOT_SUPPORTED, 7
XGL_INQ_SOFTWARE, 7
Xgl_inq_support_level, 7
Xgl_inquire, 41, 457
Xgl_interior_rule, 8
Xgl_irect, 42
Xgl_irect_list, 42
XGL_ISO_CURVE_BETWEEN_KNOTS, 8
XGL_ISO_CURVE_BETWEEN_LIMITS, 8
Xgl_iso_curve_placement, 8
XGL_JOIN_BEVEL, 9
XGL_JOIN_MITER, 9
XGL_JOIN_ROUND, 9
XGL_LIGHT, 11, 311

xgl_object_create, 503
XGL_LIGHT_AMBIENT, 8
XGL_LIGHT_ATTENUATION_1, 312
XGL_LIGHT_ATTENUATION_2, 312

Index−23

XGL_LIGHT_COLOR, 313
xgl_light_copy, 460
XGL_LIGHT_DIRECTION, 314
XGL_LIGHT_DIRECTIONAL, 8
Xgl_light_enable_component, 22
XGL_LIGHT_POSITION, 315
XGL_LIGHT_POSITIONAL, 8
XGL_LIGHT_SPOT, 8
XGL_LIGHT_SPOT_ANGLE, 316
XGL_LIGHT_SPOT_EXPONENT, 316
XGL_LIGHT_TYPE, 317, 8
XGL_LINE_ALT_PATTERNED, 9
Xgl_line_cap, 8
XGL_LINE_COLOR_CONTEXT, 8
Xgl_line_color_sel, 8
XGL_LINE_COLOR_VERTEX, 8
Xgl_line_join, 9
XGL_LINE_PATTERNED, 9
XGL_LINE_SOLID, 9
Xgl_line_style, 9
XGL_LPAT, 11, 319
Xgl_lpat_bal_dash, 9
XGL_LPAT_BAL_DASH_0, 9
XGL_LPAT_BAL_DASH_1, 9
XGL_LPAT_BALANCED_DASH, 326
Xgl_lpat_coord_sys, 9
XGL_LPAT_DATA, 321
XGL_LPAT_DATA_SIZE, 323
XGL_LPAT_DATA_TYPE, 324
XGL_LPAT_DC, 9
XGL_LPAT_FIXED_OFFSET, 9
XGL_LPAT_OFFSET, 325
XGL_LPAT_STYLE, 326, 9
xgl_macro_values, 21
XGL_MARKER, 11, 328

xgl_object_create, 503
xgl_marker_asterisk, 189
xgl_marker_bowtie_ne, 189
xgl_marker_bowtie_nw, 189
xgl_marker_circle, 189
XGL_MARKER_COLOR_CONTEXT, 9
XGL_MARKER_COLOR_POINT, 9

Xgl_marker_color_sel, 9
xgl_marker_cross, 189
XGL_MARKER_DESCRIPTION, 329
xgl_marker_dot, 189
xgl_marker_plus, 189
xgl_marker_square, 189
XGL_MEM_RAS, 11, 331

xgl_object_create, 503
XGL_MEM_RAS_IMAGE_BUFFER_ADDR, 333
XGL_MEM_RAS_Z_BUFFER_ADDR, 335
XGL_MIPMAP_TEXTURE, 11, 336

xgl_object_create, 503
xgl_mipmap_texture_build, 461
XGL_MIPMAP_TEXTURE_DEPTH, 337
XGL_MIPMAP_TEXTURE_HEIGHT, 338
XGL_MIPMAP_TEXTURE_LEVELS, 339
XGL_MIPMAP_TEXTURE_MEM_RAS_LIST, 340
XGL_MIPMAP_TEXTURE_WIDTH, 341
Xgl_model_trans_request, 23
Xgl_mono_text, 42
Xgl_mono_text_list, 42
xgl_multi_elliptical_arc, 462
xgl_multi_simple_polygon, 467
xgl_multiarc, 474
XGL_MULTIARC_AD3D, 10
XGL_MULTIARC_AF3D, 10
XGL_MULTIARC_D2D, 10
XGL_MULTIARC_D3D, 10
XGL_MULTIARC_F2D, 10
XGL_MULTIARC_F3D, 10
XGL_MULTIARC_I2D, 10
Xgl_multiarc_type, 10
xgl_multicircle, 479
XGL_MULTICIRCLE_AD3D, 10
XGL_MULTICIRCLE_AF3D, 10
XGL_MULTICIRCLE_D2D, 10
XGL_MULTICIRCLE_D3D, 10
XGL_MULTICIRCLE_F2D, 10
XGL_MULTICIRCLE_F3D, 10
XGL_MULTICIRCLE_I2D, 10
Xgl_multicircle_type, 10
Xgl_multiell_type, 10

Index−24

XGL_MULTIELLARC_AD3D, 10
XGL_MULTIELLARC_AF3D, 10
XGL_MULTIELLARC_D3D, 10
XGL_MULTIELLARC_F3D, 10
xgl_multimarker, 483
xgl_multipolyline, 485
XGL_MULTIRECT_AD3D, 10
XGL_MULTIRECT_AF3D, 10
XGL_MULTIRECT_D2D, 10
XGL_MULTIRECT_D3D, 10
XGL_MULTIRECT_F2D, 10
XGL_MULTIRECT_F3D, 10
XGL_MULTIRECT_I2D, 10
Xgl_multirect_type, 10
xgl_multirectangle, 488
Xgl_normal_facet, 40
Xgl_nu_bspline_curve, 43
Xgl_nurbs_curve, 43, 492
Xgl_nurbs_surf, 43, 495
Xgl_nurbs_surf_geom_desc, 44
Xgl_nurbs_surf_param_style, 23
Xgl_nurbs_surf_simple_geom, 44
Xgl_nurbs_surf_type, 11
XGL_OBJ, 11
XGL_OBJ_APPLICATION_DATA, 342
Xgl_obj_desc, 44
XGL_OBJ_SYS_STATE, 343
XGL_OBJ_TYPE, 344, 11
xgl_object_create, 127, 130, 287, 297, 319, 328, 331,

336, 347, 355, 361, 372, 384, 387, 503, 61
xgl_object_destroy, 507
xgl_object_get, 508
xgl_object_set, 509
xgl_open, 363, 510
XGL_PAINT_OPAQUE, 11
XGL_PAINT_TRANSPARENT, 11
Xgl_paint_type, 11
XGL_PCACHE, 347
XGL_PCACHE_CONTEXT, 349
xgl_pcache_display, 511
xgl_pick_clear, 513
XGL_PICK_FIRST_N, 11

xgl_pick_get_identifiers, 514
Xgl_pick_info, 45
XGL_PICK_LAST_N, 11
Xgl_pick_style, 11
XGL_PICK_SURF_AS_FILL_STYLE, 12
XGL_PICK_SURF_AS_SOLID, 12
Xgl_pick_surf_style, 12
Xgl_plane, 45
Xgl_plane_list, 45
xgl_polygon, 515
XGL_POLYGON_COMPLEX, 12
XGL_POLYGON_NSI, 12
Xgl_polygon_type, 12
XGL_PRIM_ANNOTATION_TEXT, 12
XGL_PRIM_ELLIPTICAL_ARC, 12
XGL_PRIM_IMAGE, 12
XGL_PRIM_MULTI_SIMPLE_POLYGON, 12
XGL_PRIM_MULTIARC, 12
XGL_PRIM_MULTICIRCLE, 12
XGL_PRIM_MULTIMARKER, 12
XGL_PRIM_MULTIPOLYLINE, 12
XGL_PRIM_MULTIRECTANGLE, 12
XGL_PRIM_NONE, 12
XGL_PRIM_NURBS_CURVE, 12
XGL_PRIM_NURBS_SURFACE, 12
XGL_PRIM_POLYGON, 12
XGL_PRIM_QUADRILATERAL_MESH, 12
XGL_PRIM_STROKE_TEXT, 12
XGL_PRIM_TRIANGLE_LIST, 12
XGL_PRIM_TRIANGLE_STRIP, 12
Xgl_primitive_type, 12
Xgl_pt, 45
XGL_PT_COLOR_D2D, 12, 49
XGL_PT_COLOR_D3D, 12, 49
XGL_PT_COLOR_DATA_F3D, 12, 46
XGL_PT_COLOR_F2D, 12, 46
XGL_PT_COLOR_F3D, 12, 46
XGL_PT_COLOR_FLAG_D3D, 12, 49
XGL_PT_COLOR_FLAG_DATA_F3D, 12, 46
XGL_PT_COLOR_FLAG_F3D, 12, 46
XGL_PT_COLOR_I2D, 12, 51
XGL_PT_COLOR_NORMAL_D3D, 12, 49

Index−25

XGL_PT_COLOR_NORMAL_DATA_F3D, 12, 46
XGL_PT_COLOR_NORMAL_F3D, 12, 46
XGL_PT_COLOR_NORMAL_FLAG_D3D, 12, 49
XGL_PT_COLOR_NORMAL_FLAG_DATA_F3D,

12, 46
XGL_PT_COLOR_NORMAL_FLAG_F3D, 12, 46
XGL_PT_D2D, 12, 49
XGL_PT_D2H, 12, 49
XGL_PT_D3D, 12, 49
XGL_PT_D3H, 12, 49
XGL_PT_DATA_F3D, 12, 46
XGL_PT_F2D, 12, 46
XGL_PT_F2H, 12, 46
XGL_PT_F3D, 12, 46
XGL_PT_F3H, 12, 46
XGL_PT_FLAG_D2D, 12, 49
XGL_PT_FLAG_D3D, 12, 49
XGL_PT_FLAG_DATA_F3D, 12, 46
XGL_PT_FLAG_F2D, 12, 46
XGL_PT_FLAG_F3D, 12, 46
XGL_PT_FLAG_I2D, 12, 51
XGL_PT_I2D, 12, 51
XGL_PT_I2H, 12, 51
Xgl_pt_list, 52, 27
Xgl_pt_list_list, 52
XGL_PT_NORMAL_D3D, 12, 49
XGL_PT_NORMAL_DATA_F3D, 12, 46
XGL_PT_NORMAL_F3D, 12, 46
XGL_PT_NORMAL_FLAG_D3D, 12, 49
XGL_PT_NORMAL_FLAG_DATA_F3D, 12, 46
XGL_PT_NORMAL_FLAG_F3D, 12, 46
Xgl_pt_position, 54
Xgl_pt_ptr_union, 27, 53
Xgl_pt_type, 12, 27
Xgl_pt_type_supported, 54
xgl_quadrilateral_mesh, 521
XGL_RAS_DEPTH, 350
XGL_RAS_FILL_COPY, 13
XGL_RAS_FILL_OPAQUE_STIPPLE, 13
XGL_RAS_FILL_STENCIL, 13
XGL_RAS_FILL_STIPPLE, 13
XGL_RAS_HEIGHT, 352

XGL_RAS_RECT_LIST, 353
XGL_RAS_RECT_NUM, 353
XGL_RAS_SOURCE_BUFFER, 354
XGL_RAS_WIDTH, 352
Xgl_raster_fill_style, 13
Xgl_rect_ad3d, 54
Xgl_rect_af3d, 54
Xgl_rect_d2d, 54
Xgl_rect_d3d, 54
Xgl_rect_f2d, 54
Xgl_rect_f3d, 54
Xgl_rect_i2d, 54
Xgl_rect_list, 55
XGL_RENDER_COMP_DIFFUSE_COLOR, 14
XGL_RENDER_COMP_FINAL_COLOR, 14
XGL_RENDER_COMP_REFLECTED_COLOR, 14
Xgl_render_component, 14
Xgl_render_component_desc, 56
Xgl_render_mode, 23
Xgl_rendering_order, 14
XGL_RENDERING_ORDER_ANY, 14
XGL_RENDERING_ORDER_GIVEN, 14
XGL_RENDERING_ORDER_HLHSR, 14
Xgl_rop_mode, 23
Xgl_segment, 56
XGL_SFONT, 11, 355

xgl_object_create, 503
XGL_SFONT_COMMENT, 356
XGL_SFONT_DEFAULT_CHARACTER, 357
XGL_SFONT_IS_MONO_SPACED, 358
XGL_SFONT_NAME, 359
XGL_STEREO_LEFT, 14
Xgl_stereo_mode, 14
XGL_STEREO_NONE, 14
XGL_STEREO_RIGHT, 14
Xgl_stext_align_horiz, 15
XGL_STEXT_ALIGN_HORIZ_CENTER, 15
XGL_STEXT_ALIGN_HORIZ_LEFT, 15
XGL_STEXT_ALIGN_HORIZ_NORMAL, 15
XGL_STEXT_ALIGN_HORIZ_RIGHT, 15
Xgl_stext_align_vert, 16
XGL_STEXT_ALIGN_VERT_BASE, 16

Index−26

XGL_STEXT_ALIGN_VERT_BOTTOM, 16
XGL_STEXT_ALIGN_VERT_CAP, 16
XGL_STEXT_ALIGN_VERT_HALF, 16
XGL_STEXT_ALIGN_VERT_NORMAL, 16
XGL_STEXT_ALIGN_VERT_TOP, 16
Xgl_stext_path, 16
XGL_STEXT_PATH_DOWN, 16
XGL_STEXT_PATH_LEFT, 16
XGL_STEXT_PATH_RIGHT, 16
XGL_STEXT_PATH_UP, 16
Xgl_stext_precision, 16
XGL_STEXT_PRECISION_CHAR, 16
XGL_STEXT_PRECISION_STRING, 16
XGL_STEXT_PRECISION_STROKE, 16
XGL_STREAM, 11, 361

xgl_object_create, 503
xgl_stroke_text, 527
xgl_stroke_text_extent, 529
xgl_struct, 31
Xgl_surf_approx, 14
XGL_SURF_COLOR_CONTEXT, 14
XGL_SURF_COLOR_FACET, 14
Xgl_surf_color_sel, 14
Xgl_surf_color_spline, 56
XGL_SURF_COLOR_VERTEX_ILLUM_DEP, 14
XGL_SURF_COLOR_VERTEX_ILLUM_INDEP, 14
XGL_SURF_CONICAL, 11
XGL_SURF_CONST_PARAM_SUBDIV_-

BETWEEN_KNOTS, 14
Xgl_surf_cull_mode, 15
XGL_SURF_CYLINDRICAL, 11
XGL_SURF_FILL_EMPTY, 15
XGL_SURF_FILL_HOLLOW, 15
XGL_SURF_FILL_OPAQUE_STIPPLE, 15
XGL_SURF_FILL_SOLID, 15
XGL_SURF_FILL_STIPPLE, 15
Xgl_surf_fill_style, 15
Xgl_surf_illumination, 15
XGL_SURF_METRIC_DC, 14
XGL_SURF_METRIC_VDC, 14
XGL_SURF_METRIC_WC, 14
XGL_SURF_NURBS, 11

XGL_SURF_PLANAR, 11
XGL_SURF_PLANAR_DEVIATION_DC, 14
XGL_SURF_PLANAR_DEVIATION_VDC, 14
XGL_SURF_PLANAR_DEVIATION_WC, 14
XGL_SURF_RELATIVE_DC, 14
XGL_SURF_RELATIVE_VDC, 14
XGL_SURF_RELATIVE_WC, 14
XGL_SURF_SPHERICAL, 11
XGL_SURF_UNUSED, 14
XGL_SYS_ST_ERROR_DETECTION, 364
XGL_SYS_ST_ERROR_INFO, 366
XGL_SYS_ST_ERROR_NOTIFICATION_FUNCTION,

368
XGL_SYS_ST_SFONT_DIRECTORY, 370
XGL_SYS_ST_VERSION, 371
XGL_SYS_STATE, 11, 363

xgl_open, 510
Xgl_texture_blend_intrinsic_op, 56
Xgl_texture_blend_intrinsic_rgb, 56
Xgl_texture_blend_op, 56
Xgl_texture_blend_rgb, 56
Xgl_texture_boundary, 16
XGL_TEXTURE_BOUNDARY_CLAMP, 16
XGL_TEXTURE_BOUNDARY_CLAMP_BOUNDARY,

16
XGL_TEXTURE_BOUNDARY_MIRROR, 16
XGL_TEXTURE_BOUNDARY_TRANSPARENT, 16
XGL_TEXTURE_BOUNDARY_WRAP, 16
XGL_TEXTURE_COLOR, 17
Xgl_texture_comp_info, 57
XGL_TEXTURE_COORD_DATA, 16
XGL_TEXTURE_COORD_NORMAL, 16
Xgl_texture_coord_source, 16
XGL_TEXTURE_COORD_VERTEX, 16
Xgl_texture_decal_op, 56
Xgl_texture_decal_rgb, 56
Xgl_texture_desc, 57
Xgl_texture_domain, 17
Xgl_texture_general_desc, 57
Xgl_texture_general_mipmap_desc, 58
XGL_TEXTURE_INTERP_BILINEAR, 17
Xgl_texture_interp_info, 57

Index−27

Xgl_texture_interp_method, 17
XGL_TEXTURE_INTERP_MIPMAP_BILINEAR, 17
XGL_TEXTURE_INTERP_MIPMAP_POINT, 17
XGL_TEXTURE_INTERP_MIPMAP_PT_LINEAR,

17
XGL_TEXTURE_INTERP_MIPMAP_TRILINEAR, 17
XGL_TEXTURE_INTERP_POINT, 17
Xgl_texture_mipmap_desc, 58
Xgl_texture_op, 17
XGL_TEXTURE_OP_BLEND, 17
XGL_TEXTURE_OP_BLEND_INTRINSIC, 17
XGL_TEXTURE_OP_DECAL, 17
XGL_TEXTURE_OP_DECAL_INTRINSIC, 17
XGL_TEXTURE_OP_MODULATE, 17
XGL_TEXTURE_OP_NONE, 17
XGL_TEXTURE_OP_REPLACE, 17
XGL_TEXTURE_PARAM_EXPLICIT, 17
XGL_TEXTURE_PARAM_LINEAR_EC, 17
XGL_TEXTURE_PARAM_REFLECT_SPHERE_EC,

17
XGL_TEXTURE_PARAM_REFLECT_SPHERE_WC,

17
Xgl_texture_param_type, 17
Xgl_texture_persp_correction, 17
XGL_TEXTURE_PERSP_NO_INTERP, 17
XGL_TEXTURE_PERSP_NONE, 17
XGL_TEXTURE_PERSP_PIXEL, 17
Xgl_texture_type, 17
XGL_TEXTURE_TYPE_MIPMAP, 17
Xgl_threshold, 58
Xgl_tlist_flags, 24
XGL_TMAP, 372
XGL_TMAP_COORD_SOURCE, 373
XGL_TMAP_DESCRIPTOR, 374
XGL_TMAP_DOMAIN, 379
XGL_TMAP_PARAM_INFO, 380
XGL_TMAP_PARAM_TYPE, 382
XGL_TMAP_T0_INDEX, 383
XGL_TMAP_T1_INDEX, 383
XGL_TRANS, 11, 384

xgl_object_create, 503
XGL_TRANS_2D, 18

XGL_TRANS_3D, 18
XGL_TRANS_DATA_TYPE, 385
XGL_TRANS_DIMENSION, 386, 18
Xgl_trans_member, 24
XGL_TRANS_POSTCONCAT, 18
XGL_TRANS_PRECONCAT, 18
XGL_TRANS_REPLACE, 18
Xgl_trans_update, 18
xgl_transform_copy, 530
xgl_transform_identity, 531
xgl_transform_invert, 532
xgl_transform_multiply, 533
xgl_transform_point, 534
xgl_transform_point_list, 536
xgl_transform_read, 539
xgl_transform_rotate, 540
xgl_transform_scale, 542
xgl_transform_translate, 544
xgl_transform_transpose, 546
xgl_transform_write_specific, 547
XGL_TRANSP_BLENDED, 18
Xgl_transp_method, 18
XGL_TRANSP_NONE, 18
XGL_TRANSP_SCREEN_DOOR, 18
xgl_triangle_list, 552
xgl_triangle_strip, 561
Xgl_trim_curve, 59
Xgl_trim_curve_approx, 18
XGL_TRIM_CURVE_CONST_PARAM_SUBDIV_-

BETWEEN_KNOTS, 18
XGL_TRIM_CURVE_VIEW_DEPENDENT, 18
Xgl_trim_loop, 59
Xgl_trim_loop_list, 59
Xgl_vdc_map, 18
XGL_VDC_MAP_ALL, 18
XGL_VDC_MAP_ASPECT, 18
XGL_VDC_MAP_DEVICE, 18
XGL_VDC_MAP_OFF, 18
Xgl_vdc_orientation, 18
XGL_WIN_RAS, 11, 387

xgl_object_create, 503
XGL_WIN_RAS_BACKING_STORE, 391

Index−28

XGL_WIN_RAS_BUF_DISPLAY, 393
XGL_WIN_RAS_BUF_DRAW, 394
XGL_WIN_RAS_BUF_MIN_DELAY, 395
XGL_WIN_RAS_BUFFERS_ALLOCATED, 396
XGL_WIN_RAS_BUFFERS_REQUESTED, 397
XGL_WIN_RAS_DESCRIPTOR, 399
XGL_WIN_RAS_MBUF_DRAW, 400
XGL_WIN_RAS_MULTIBUFFER, 401
XGL_WIN_RAS_PIXEL_MAPPING, 402
XGL_WIN_RAS_POSITION, 404
XGL_WIN_RAS_STEREO_MODE, 405
XGL_WIN_RAS_TYPE, 406
xgl_window_raster_resize, 567
Xgl_window_type, 26
Xgl_X_window, 59
XGL_Y_DOWN_Z_AWAY, 18
XGL_Y_UP_Z_TOWARD, 18
XGL_Z_COMP_ALWAYS, 19
XGL_Z_COMP_EQUAL, 19
XGL_Z_COMP_GREATER_THAN, 19
XGL_Z_COMP_GREATER_THAN_OR_EQUAL, 19
XGL_Z_COMP_LESS_THAN, 19
XGL_Z_COMP_LESS_THAN_OR_EQUAL, 19
Xgl_z_comp_method, 19
XGL_Z_COMP_NEVER, 19
XGL_Z_COMP_NOT_EQUAL, 19
XGLHOME

XGL_SYS_ST_SFONT_DIRECTORY, 370

Z
Z-Buffer

XGL_3D_CTX_HLHSR_DATA, 78
XGL_3D_CTX_HLHSR_MODE, 79
XGL_3D_CTX_Z_BUFFER_COMP_METHOD,

124
XGL_3D_CTX_Z_BUFFER_WRITE_MASK, 126
xgl_context_new_frame, 425
XGL_CTX_NEW_FRAME_ACTION, 204
XGL_MEM_RAS_Z_BUFFER_ADDR, 335
XGL_RAS_SOURCE_BUFFER, 354

Index−29

