
XIL Reference Manual

Sun Microsystems, Inc.
2550 Garcia Avenue
Mountain View, CA 94043
U.S.A.

A Sun Microsystems, Inc. Business

 1997 Sun Microsystems, Inc. − Printed in the United States of America.
2550 Garcia Avenue, Mountain View, California 94043-1100 U.S.A.

All rights reserved. This product or document is protected by copyright and distributed under licenses restricting its use,
copying, distribution, and decompilation. No part of this product or document may be reproduced in any form by any
means without prior written authorization of Sun and its licensors, if any.

Portions of this product may be derived from the UNIX. system, licensed from Novell, Inc., and from the Berkeley 4.3 BSD
system, licensed from the University of California. UNIX is a registered trademark in the United States and other countries
and is exclusively licensed by X/Open Company Ltd. Third-party software, including font technology in this product, is
protected by copyright and licensed from Sun’s suppliers.

RESTRICTED RIGHTS: Use, duplication, or disclosure by the U.S. Government is subject to restrictions of FAR 52.227-
14(g)(2)(6/87) and FAR 52.227-19(6/87), or DFAR 252.227-7015(b)(6/95) and DFAR 227.7202-3(a).

Sun, Sun Microsystems, the Sun logo, SunSoft, SunDocs, SunExpress, and Solaris are trademarks or registered trademarks of
Sun Microsystems, Inc. in the United States and other countries. All SPARC trademarks are used under license and are
trademarks or registered trademarks of SPARC International, Inc. in the United States and other countries. Products bearing
SPARC trademarks are based upon an architecture developed by Sun Microsystems, Inc.

The OPEN LOOK and Sun  Graphical User Interfaces were developed by Sun Microsystems, Inc. for its users and
licensees. Sun acknowledges the pioneering efforts of Xerox in researching and developing the concept of visual or
graphical user interfaces for the computer industry. Sun holds a non-exclusive license from Xerox to the Xerox Graphical
User Interface, which license also covers Sun’s licensees who implement OPEN LOOK GUIs and otherwise comply with
Sun’s written license agreements.

THIS PUBLICATION IS PROVIDED "AS IS" WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR IMPLIED,
INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A
PARTICULAR PURPOSE, OR NON-INFRINGEMENT.

SunOS 5.6 intro (3)

NAME XIL intro − introduction to the XIL library

DESCRIPTION These XIL reference manual pages describe the syntax for using the functions contained
in the XIL Imaging Library. The library follows a standard "operator" imaging model.
References to images (image handles) are passed to operators, which act on the image
data. Each operator allows you to specify one or more source images and a single
destination image, along with the parameters necessary to perform the operation.
General information on how the library handles certain concepts is provided as follows:

Topic Reference Manual Page

Images xil_create(3)

Image Storage Storage(3)

Regions of interest xil_roi_create(3)

Color spaces xil_set_colorspace(3)

Origins xil_get_origin(3)

Kernels xil_kernel_create(3)

Overview on compressors xil_compress(3)

Specific information on XIL compressors Consult the man page for the
specific compressor.

ERRORS Error handling is asynchronous in the XIL library. Because operations are deferred to
optimize groups of operations, errors may not be reported after the function call that
produces the error is made in the application program. Instead, the error is reported
when the set of operations that contains the error is executed.

The XIL library uses the following categories of errors:
User (or usage) errors
CIS data errors
Resource errors
Configuration errors
System errors
Arithmetic errors
Internal errors
Other errors

User Errors Errors in this category are generated when a user passes invalid parameters to XIL
functions or uses the library incorrectly in some other way.

CIS Data Errors These errors occur when a bitstream does not conform to the specification of the specified
compression type.

Resource Errors The primary finite resource that the XIL library depends on is memory. If the XIL library
runs out of memory, an error message to that effect will be generated. Then, depending
on what the library was doing when the request for more memory occurred, a number of

modified 13 April 1994 1

intro (3) SunOS 5.6

secondary error messages may also be generated, indicating the failure of the library to
create objects, perform operations, or complete various other tasks. Some of these errors
may be System errors (see below).

Configuration Errors Errors in this category can occur if the XIL library is improperly installed.

System Errors System errors occur when the XIL library detects a problem with its ongoing operation.
These are often secondary errors caused by other failures in the system.

Internal Errors XIL performs a number of internal checks on its operation. A failure of one of these
checks is called an internal error. Internal errors should not occur. If such errors do
occur (in the absence of an out-of-memory error), contact customer support and give as
much information as possible about the error and the situation that caused it.

Arithmetic Errors These errors occur when XIL detects an arithmetic error in an operation (for example,
dividing by zero).

For More Information Appendix B of the XIL Programmer’s Guide provides a list of error messages by number.
It also lists which XIL functions may generate a given error message. This section lists all
the functions in the XIL Imaging Library. If the function does not appear on a man page
bearing its name (in other words, it is grouped with other functions on a man page
bearing the name of one of those other functions), then the function whose page it
appears on is printed in parentheses to the right of it.

Cell(3)
Cell compressor/decompressor for compressed image sequences (CISs)

CellB(3)
XIL driver for CellB video compression/decompression

faxG3(3)
CCITT Group 3 compressor/decompressor for CISs

faxG4(3) (faxG3(3))
CCITT Group 4 compressor/decompressor for CISs

H261(3)
H.261 decompressor for CISs

Jpeg(3)
JPEG compressor/decompressor for CISs

JpegLL(3)
JPEG Lossless compressor/decompressor for CISs

Mpeg1(3)
MPEG decompressor for CISs

2 modified 13 April 1994

SunOS 5.6 intro (3)

PhotoCD(3)
Reader for Kodak Photo CD(tm) format

Storage(3)
Storage types and formats for XIL images

xil_absolute(3)
finds the absolute value of pixels of an image

xil_add(3)
adds two images

xil_add_const(3) (xil_add(3))
adds a constant to each band of an image

xil_affine(3)
affine-transforms an image

xil_and(3)
bitwise logical AND operation

xil_and_const(3) (xil_and(3))
bitwise logical AND operation with constants

xil_band_combine(3)
interband linear combination operation

xil_black_generation(3)
adjusts amount of black in a CMYK image

xil_blend(3)
blends two images according to an alpha image

xil_call_next_error_handler(3) (xil_install_error_handler(3))
allows error handler further down the chain to handle the error

xil_cast(3)
casts an image from one data type into another

xil_choose_colormap(3)
chooses a reasonable colormap

xil_cis_attempt_recovery(3)
attempts recovery after an error occurs in a CIS

modified 13 April 1994 3

intro (3) SunOS 5.6

xil_cis_create(3)
creates a new CIS

xil_cis_destroy(3)
destroys a CIS

xil_cis_flush(3)
completes pending operations for a CIS

xil_cis_get_attribute(3)
gets a compressor attribute

xil_cis_get_autorecover(3)
indicates whether a decompressor will recover automatically from a recoverable
datastream error

xil_cis_get_bits_ptr(3)
gets a pointer to compressed data

xil_cis_get_by_name(3)
returns a handle to the CIS object with the specified name

xil_cis_get_compression_type(3)
returns the name of the type of the compressor

xil_cis_get_compressor(3)
returns the name of a specific compressor

xil_cis_get_input_type(3)
returns the type of image that a CIS will accept for compression

xil_cis_get_keep_frames(3) (xil_cis_get_max_frames(3))
gets maximum number of previously decompressed frames in buffer

xil_cis_get_max_frames(3)
gets maximum number of compressed frames in buffer

xil_cis_get_name(3) (xil_cis_get_by_name(3))
returns a copy of the specified CIS object’s name

xil_cis_get_output_type(3)
returns the XilImageType produced by a compressor

xil_cis_get_random_access(3)
shows whether a compressor supports random accessing of a CIS

4 modified 13 April 1994

SunOS 5.6 intro (3)

xil_cis_get_read_frame(3) (xil_cis_get_start_frame(3))
returns index to the current frame

xil_cis_get_read_invalid(3)
determines whether a CIS is able to be decompressed

xil_cis_get_start_frame(3)
returns index to the first compressed image in the CIS

xil_cis_get_state(3) (xil_get_state(3))
get the XilSystemState associated with an XIL object

xil_cis_get_write_frame(3) (xil_cis_get_start_frame(3))
returns index to the last frame +1 of the CIS

xil_cis_get_write_invalid(3)
determines whether a CIS is able to continue to be compressed

xil_cis_has_data(3)
returns the number of bytes from the current frame to the end of the CIS

xil_cis_has_frame(3) (xil_cis_has_data(3))
returns TRUE if a complete frame exists at the read frame position

xil_cis_number_of_frames(3) (xil_cis_has_data(3))
determines number of complete unread frames of compressed data in the CIS

xil_cis_put_bits(3)
puts compressed data into a CIS

xil_cis_put_bits_ptr(3) (xil_cis_put_bits(3))
supplies a pointer to compressed data to a CIS

xil_cis_reset(3)
clears data in a CIS

xil_cis_seek(3)
finds a given frame of compressed data in a CIS

xil_cis_set_attribute(3) (xil_cis_get_attribute(3))
sets a compressor attribute

xil_cis_set_autorecover(3) (xil_cis_get_autorecover(3))
sets permission to attempt recovery if autorecoverable bitstream errors occur

modified 13 April 1994 5

intro (3) SunOS 5.6

xil_cis_set_keep_frames(3) (xil_cis_get_max_frames(3))
sets the number of frames prior to the current read frame to be kept in the buffer

xil_cis_set_max_frames(3) (xil_cis_get_max_frames(3))
sets the maximum number of frames or images in the buffer

xil_cis_set_name(3) (xil_cis_get_by_name(3))
sets the name of the specified CIS object to the one provided

xil_cis_sync(3)
forces any outstanding call to xil_compress(3) to complete when it would other-
wise have been deferred

xil_close(3) (xil_open(3))
ends an XIL session

xil_color_convert(3)
converts an image from one color space to another

xil_color_correct(3)
color corrects an XilImage given an XilColorspaceList of color spaces using
KCMS (TM) color management

xil_colorcube_create(3)
creates a lookup table that represents a colorcube

xil_colorspace_create(3)
create name of an XilColorspace object

xil_colorspace_destroy(3) (xil_colorspace_create(3))
destroy name of an XilColorspace object

xil_colorspace_get_by_name(3)
gets a color space object by its name

xil_colorspace_get_name(3) (xil_colorspace_create(3))
get name of an XilColorspace object

xil_colorspace_get_state(3) (xil_get_state(3))
get the XilSystemState associated with an XIL object

xil_colorspace_get_type(3) (xil_colorspace_create(3))
get type of an XilColorspace object

xil_colorspace_set_name(3) (xil_colorspace_create(3))

6 modified 13 April 1994

SunOS 5.6 intro (3)

set the name of an XilColorspace object

xil_colorspacelist_create(3)
create an XilColorspaceList object

xil_colorspacelist_destroy(3) (xil_colorspacelist_create(3))
destroy an XilColorspaceList object

xil_colorspacelist_get_by_name(3) (xil_colorspacelist_create(3))
get by name an XilColorspaceList object

xil_colorspacelist_get_name(3) (xil_colorspacelist_create(3))
get name of an XilColorspaceList object

xil_colorspacelist_get_state(3) (xil_get_state(3))
get the XilSystemState associated with an XIL object

xil_colorspacelist_set_name(3) (xil_colorspacelist_create(3))
set name of an XilColorspaceList object

xil_compress(3)
compresses an image into a CIS

xil_convolve(3)
convolves an image with a specified kernel

xil_copy(3)
copies an image

xil_copy_pattern(3)
replicates the source image into the destination image

xil_copy_with_planemask(3)
use a plane mask to copy a source image into a destination image

xil_create(3)
creates an image

xil_create_child(3)
creates a child image

xil_create_copy(3)
creates a new image with a copy of the source’s data

xil_create_double_buffered_window(3) (xil_create_from_window(3))

modified 13 April 1994 7

intro (3) SunOS 5.6

create device images

xil_create_from_device(3) (xil_create_from_window(3))
creates an image associated with the specified device

xil_create_from_type(3)
creates an image from an XilImageType object

xil_create_from_window(3)
creates an image associated with the specified X window

xil_create_temporary(3)
create a temporary image

xil_create_temporary_from_type(3) (xil_create_temporary(3))
create a temporary image

xil_decompress(3)
decompresses a CIS

xil_default_error_handler (3) (xil_install_error_handler(3))
prints error messages to the standard error output

xil_destroy(3)
destroys an image

xil_device_create(3)
creates a device object

xil_device_destroy(3) (xil_device_create(3))
destroys a device object

xil_device_set_attribute(3)
stores device appropriate attributes in a device object

xil_device_set_value(3)
stores device-initialization values in a device object

xil_dilate(3) (xil_erode(3))
dilates an image

xil_dithermask_create(3)
creates a dither mask

xil_dithermask_create_copy(3) (xil_dithermask_create(3))

8 modified 13 April 1994

SunOS 5.6 intro (3)

creates and returns a copy of the specified dither mask

xil_dithermask_destroy(3) (xil_dithermask_create(3))
destroys the specified dither mask

xil_dithermask_get_by_name(3)
returns a handle to the dither mask with the specified name

xil_dithermask_get_height(3)
gets the height of the specified dither mask

xil_dithermask_get_name(3) (xil_dithermask_get_by_name(3))
returns a copy of the specified dither mask’s name

xil_dithermask_get_nbands(3) (xil_dithermask_get_height(3))
gets the number of bands in the specified dither mask

xil_dithermask_get_state(3) (xil_get_state(3))
get the XilSystemState associated with an XIL object

xil_dithermask_get_values(3)
returns a copy of the internal values in a dithermask

xil_dithermask_get_width(3) (xil_dithermask_get_height(3))
gets the width of the specified dither mask

xil_dithermask_set_name(3) (xil_dithermask_get_by_name(3))
sets the name of the specified dither mask to the one provided

xil_divide(3)
divides one image by another

xil_divide_by_const(3) (xil_divide(3))
divides a constant into each band of an image

xil_divide_into_const(3) (xil_divide(3))
divides each band of an image into constants

xil_edge_detection(3)
detects edges within an image

xil_erode(3)
erodes an image

xil_edge_detection(3)

modified 13 April 1994 9

intro (3) SunOS 5.6

detects edges within an image

xil_error_diffusion(3)
converts an image into a single-band image with a lookup table by error-
diffusion dithering

xil_error_get_category(3) (xil_error_get_string(3))
returns the general category of the error

xil_error_get_category_string(3) (xil_error_get_string(3))
returns a character string that identifies the error category

xil_error_get_id(3) (xil_error_get_string(3))
returns a character string that uniquely identifies the error

xil_error_get_location(3) (xil_error_get_string(3))
returns an encrypted error location code

xil_error_get_object(3) (xil_error_get_string(3))
returns the XIL object that an error occurred on

xil_error_get_primary(3) (xil_error_get_string(3))
returns TRUE if the currently reported error is the primary cause of the error

xil_error_get_string(3)
returns an error string in the currently configured language

xil_export(3)
exports an image from XIL to application space

xil_extrema(3)
finds minimum and maximum values of an image

xil_fill(3)
performs boundary fill from a specified start point in an image

xil_get_active_buffer(3)
get or set the active buffer on a double-buffered device image

xil_get_attribute(3)
gets the values of client attributes of images

xil_get_by_name(3)
returns a handle to the image with the specified name

10 modified 13 April 1994

SunOS 5.6 intro (3)

xil_get_child_offsets(3)
gets the values of the offsets into a parent image

xil_get_datatype(3)
gets an image’s data type

xil_get_device_attribute(3)
gets the values of attributes of device images

xil_get_exported(3) (xil_export(3))
gets the export status of an image

xil_get_height(3) (xil_get_width(3))
gets the height of an image

xil_get_imagetype(3)
gets the type of an image

xil_get_info(3)
gets information about the parameters of an image

xil_get_memory_storage(3)
gets an image’s memory storage

xil_get_name (3) (xil_get_by_name(3))
returns a copy of the specified image’s name

xil_get_nbands(3) (xil_get_width(3))
gets the number of bands in an image

xil_get_origin(3)
gets the coordinates of the origin of an image

xil_get_origin_x(3) (xil_get_origin(3))
gets the x coordinate of the origin of an image

xil_get_origin_y(3) (xil_get_origin(3))
gets the y coordinate of the origin of an image

xil_get_parent(3)
gets a parent image

xil_get_pixel(3) (xil_set_pixel(3))
gets the value of a single pixel in an image

modified 13 April 1994 11

intro (3) SunOS 5.6

xil_get_readable(3)
returns TRUE if an image can be used as a source

xil_get_roi(3)
gets the region of interest (ROI) attached to an image

xil_get_size(3) (xil_get_width(3))
gets the size of an image

xil_get_state(3)
get the XilSystemState associated with an XIL object

xil_get_storage_movement(3)
get and set the storage movement flag on an image

xil_get_storage_with_copy(3)
get and set the image’s storage through a copy to or from contiguous memory

xil_get_synchronize(3) (xil_sync(3))
returns status of synchronization of an image

xil_get_tile_storage(3)
get and set the storage associated with an image on a per tile basis

xil_get_tilesize(3)
get and set the tile size of an image

xil_get_width(3)
gets the width of an image

xil_get_writable(3) (xil_get_readable(3))
returns TRUE if an image can be used as a destination

xil_histogram(3)
generates histogram data from an image

xil_histogram_create(3)
creates a histogram object

xil_histogram_create_copy(3) (xil_histogram_create(3))
create and return a copy of histogram

xil_histogram_destroy(3) (xil_histogram_create(3))
destroys a histogram object

12 modified 13 April 1994

SunOS 5.6 intro (3)

xil_histogram_get_by_name(3)
returns a handle to the histogram object with the specified name

xil_histogram_get_info(3) (xil_histogram_get_nbands(3))
gets values of histogram attributes

xil_histogram_get_limits(3) (xil_histogram_get_nbands(3))
gets values of arrays that represent values of the first and last bin in each band

xil_histogram_get_name(3) (xil_histogram_get_by_name(3))
returns a copy of the specified histogram object’s name

xil_histogram_get_nbands(3)
gets the number of bands represented by the histogram

xil_histogram_get_nbins(3) (xil_histogram_get_nbands(3))
gets the array of values representing the number of histogram bins for each band

xil_histogram_get_state(3) (xil_get_state(3))
get the XilSystemState associated with an XIL object

xil_histogram_get_values(3) (xil_histogram_get_nbands(3))
gets the array of values for the data attribute

xil_histogram_set_name(3) (xil_histogram_get_by_name(3))
sets the name of the specified histogram object to the one provided

xil_imagetype_get_by_name(3)
returns a handle to the image type object with the specified name

xil_imagetype_get_datatype(3)
gets an image type object’s data type

xil_imagetype_get_height(3) (xil_imagetype_get_width(3))
gets the height of an image type object

xil_imagetype_get_info(3)
gets information about the parameters of an image type object

xil_imagetype_get_name(3) (xil_imagetype_get_by_name(3))
returns a copy of the specified image type object’s name

xil_imagetype_get_nbands(3) (xil_imagetype_get_width(3))
gets the number of bands of an image type object

modified 13 April 1994 13

intro (3) SunOS 5.6

xil_imagetype_get_size(3) (xil_imagetype_get_width(3))
gets the size of an image type object

xil_imagetype_get_state(3) (xil_get_state(3))
get the XilSystemState associated with an XIL object

xil_imagetype_get_width(3)
gets the width of an image type object

xil_imagetype_set_name(3) (xil_imagetype_get_by_name(3))
sets the name of the specified image type object to the one provided

xil_import(3) (xil_export(3))
imports an image from application space to XIL space

xil_install_error_handler(3)
installs a customized error handler

xil_interpolation_table_create(3)
creates an interpolation table object

xil_interpolation_table_create_copy(3) (xil_interpolation_table_create(3))
creates copy of an interpolation table object

xil_interpolation_table_destroy(3) (xil_interpolation_table_create(3))
destroys an interpolation table object

xil_interpolation_table_get_data(3)
gets the data of an interpolation table object

xil_interpolation_table_get_kernel_size(3)
gets the kernel size of the subsample kernels in an interpolation table object

xil_interpolation_table_get_subsamples(3)
gets the number of subsamples in an interpolation table object

xil_interpolation_table_get_values(3)
get the values stored in an XilInterpolationTable object

xil_kernel_create(3)
creates a kernel

xil_kernel_create_copy(3) (xil_kernel_create(3))
creates and returns a copy of the specified kernel

14 modified 13 April 1994

SunOS 5.6 intro (3)

xil_kernel_create_separable(3) (xil_kernel_create(3))
create separable kernels

xil_kernel_destroy(3) (xil_kernel_create(3))
destroys the specified kernel

xil_kernel_get_by_name(3)
returns a handle to the kernel object with the specified name

xil_kernel_get_height(3)
gets the height of a kernel

xil_kernel_get_key_x(3) (xil_kernel_get_height(3))
gets the x coordinate of the key value of a kernel

xil_kernel_get_key_y(3) (xil_kernel_get_height(3))
gets the y coordinate of the key value of a kernel

xil_kernel_get_name(3) (xil_kernel_get_by_name(3))
returns a copy of the specified kernel object’s name

xil_kernel_get_state(3) (xil_get_state(3))
get the XilSystemState associated with an XIL object

xil_kernel_get_values(3)
get the values stored internally in and XilKernel object

xil_kernel_get_width(3) (xil_kernel_get_height(3))
gets the width of a kernel

xil_kernel_set_name(3) (xil_kernel_get_by_name(3))
sets the name of the specified kernel object to the one provided

xil_lookup(3)
passes an image through a lookup table

xil_lookup_convert(3)
calculates a lookup table that converts between source and destination lookup
tables

xil_lookup_create(3)
creates a single lookup table

xil_lookup_create_combined(3)
creates a combined lookup table

modified 13 April 1994 15

intro (3) SunOS 5.6

xil_lookup_create_copy(3) (xil_lookup_create(3))
creates and returns a copy of the specified lookup table

xil_lookup_destroy(3) (xil_lookup_create(3))
destroys a lookup table

xil_lookup_get_band_lookup(3)
gets a single lookup table out of a combined lookup

xil_lookup_get_by_name(3)
returns a handle to the lookup table with the specified name

xil_lookup_get_colorcube (3) (xil_colorcube_create(3))
returns TRUE if a lookup table is formatted as a colorcube

xil_lookup_get_colorcube_info(3) (xil_colorcube_create(3))
returns formatting information about a lookup table used as a colorcube

xil_lookup_get_input_datatype(3)
gets the data type of the input to a lookup table

xil_lookup_get_input_nbands(3) (xil_lookup_get_output_nbands(3))
gets the number of bands in the input from a lookup table

xil_lookup_get_name(3) (xil_lookup_get_by_name(3))
returns a copy of the specified lookup table’s name

xil_lookup_get_num_entries(3) (xil_lookup_get_input_datatype(3))
gets the number of entries in a lookup table

xil_lookup_get_offset(3) (xil_lookup_get_input_datatype(3))
gets the offset value of a lookup table

xil_lookup_get_output_datatype(3) (xil_lookup_get_input_datatype(3))
gets the data type of the output from a lookup table

xil_lookup_get_output_nbands(3) (xil_lookup_get_input_datatype(3))
gets the number of bands in the output from a lookup table

xil_lookup_get_state(3) (xil_get_state(3))
get the XilSystemState associated with an XIL object

xil_lookup_get_values(3) (xil_lookup_set_values(3))
gets the values in a lookup table

16 modified 13 April 1994

SunOS 5.6 intro (3)

xil_lookup_get_version(3)
gets the unique version number of a lookup table

xil_lookup_set_name(3) (xil_lookup_get_by_name(3))
sets the name of the specified lookup table to the one provided

xil_lookup_set_offset(3) (xil_lookup_get_input_datatype(3))
sets the offset value of a lookup table

xil_lookup_set_values(3)
sets the values in a lookup table

xil_max(3)
finds the larger of pixels in two images

xil_min(3)
finds the lesser of pixels in two images

xil_multiply(3)
multiplies two images

xil_multiply_const(3) (xil_multiply(3))
multiplies each band of an image by a floating point constant

xil_nearest_color(3)
converts an image into a single-band image by mapping pixels to the nearest
entries in a lookup table

xil_not(3)
bitwise logical NOT operation

xil_object_get_error_string(3) (xil_error_get_string(3))
creates a string with additional information about the object involved in the error

xil_object_get_type(3) (xil_error_get_string(3))
returns the XilObjectType of an object

xil_open(3)
opens the XIL library for use

xil_or(3)
bitwise logical OR operation

xil_or_const(3) (xil_or(3))
bitwise logical OR operation with constants

modified 13 April 1994 17

intro (3) SunOS 5.6

xil_ordered_dither(3)
uses ordered dithering to convert an image into a single-band image with a
lookup table

xil_paint(3)
blends portions of an image with a single color using a 2-D brush

xil_remove_error_handler(3) (xil_install_error_handler(3))
removes an error function from the error handler chain

xil_rescale(3)
rescales an image

xil_roi_add_image(3)
adds a binary image to an ROI

xil_roi_add_rect(3)
adds a rectangle to an ROI

xil_roi_add_region(3)
adds an X region to an ROI

xil_roi_create(3)
creates an ROI

xil_roi_create_copy(3) (xil_roi_create(3))
creates and returns a copy of an ROI

xil_roi_destroy(3) (xil_roi_create(3))
destroys an ROI

xil_roi_get_as_image(3)
gets an image version of an ROI

xil_roi_get_as_region(3)
returns a handle to an X region

xil_roi_get_by_name(3)
returns a handle to the ROI with the specified name

xil_roi_get_name(3) (xil_roi_get_by_name(3))
returns a copy of the specified ROI’s name

xil_roi_get_state(3) (xil_get_state(3))
get the XilSystemState associated with an XIL object

18 modified 13 April 1994

SunOS 5.6 intro (3)

xil_roi_intersect(3)
finds the intersection of two ROIs

xil_roi_set_name(3) (xil_roi_get_by_name(3))
sets the name of the specified ROI to the one provided

xil_roi_subtract_rect(3)
subtracts a rectangle from an ROI

xil_roi_translate(3)
translates an ROI

xil_roi_unite(3)
finds the union of two ROIs

xil_rotate(3)
rotates an image

xil_scale(3)
scales an image

xil_sel_create(3)
creates a structuring element (SEL)

xil_sel_create_copy(3) (xil_sel_create(3))
creates and returns a copy of a SEL

xil_sel_destroy(3) (xil_sel_create(3))
destroys a SEL

xil_sel_get_by_name(3)
returns a handle to the SEL with the specified name

xil_sel_get_height(3)
gets the height of a SEL

xil_sel_get_key_x(3) (xil_sel_get_height(3))
gets the x coordinate of the key value of a SEL

xil_sel_get_key_y(3) (xil_sel_get_height(3))
gets the y coordinate of the key value of a SEL

xil_sel_get_name(3) (xil_sel_get_by_name(3))
returns a copy of the specified SEL’s name

modified 13 April 1994 19

intro (3) SunOS 5.6

xil_sel_get_state(3) (xil_get_state(3))
get the XilSystemState associated with an XIL object

xil_sel_get_values(3)
get the values stored internally for a structuring element object

xil_sel_get_width(3) (xil_sel_get_height(3))
gets the width of a SEL

xil_sel_set_name(3) (xil_sel_get_by_name(3))
sets the name of the specified SEL to the one provided

xil_set_active_buffer(3) (xil_get_active_buffer(3))
set the active buffer on a double-buffered device image

xil_set_attribute(3) (xil_get_attribute(3))
sets the values of client attributes of images

xil_set_colorspace(3)
sets an image’s color space

xil_set_data_supply_routine(3)
set the routine that will be used to fill in the storage for an image

xil_set_device_attribute(3) (xil_get_device_attribute(3))
sets the values of attributes of device images

xil_set_memory_storage(3) (xil_get_memory_storage(3))
sets an exported image’s memory storage

xil_set_name(3) (xil_get_by_name(3))
sets the name of the specified image to the one provided

xil_set_origin(3) (xil_get_origin(3))
sets the coordinates of the origin of an image

xil_set_pixel(3)
sets the value of a single pixel in an image

xil_set_roi(3) (xil_get_roi(3))
sets an image’s ROI

xil_set_storage_movement(3) (xil_get_storage_movement(3))
set the storage movement flag on an image

20 modified 13 April 1994

SunOS 5.6 intro (3)

xil_set_storage_with_copy(3) (xil_get_storageWITHcopy(3))
set the image’s storage through a copy to or from contiguous memory

xil_set_synchronize(3) (xil_sync(3))
sets synchronization of an image

xil_set_tile_storage(3) (xil_get_title_storage(3))
set the storage associated with an image on a per tile basis

xil_set_tilesize(3) (xil_get_tilesize(3))
set the tile size of an image

xil_set_value(3)
sets pixels of an image to constant values

xil_soft_fill(3)
performs a soft fill from a specified starting point in an image

xil_squeeze_range(3)
produces a lookup table that will map an image into contiguous entries

xil_state_get_default_tilesize(3)
get the default tilesize for all images created with a particular XilSystemState

xil_state_get_default_tiling_mode(3)
get the default tiling mode for all images created with a particular XilSystemState

xil_state_get_interpolation_tables(3)
gets interpolation tables from the XilSystemState object

xil_state_get_show_action(3)
gets the current value of the SHOW_ACTION attribute of a system-state object

xil_state_get_synchronize(3) (xil_sync(3))
returns synchronization status of an XIL State

xil_state_set_default_tilesize(3) (xil_state_get_default_tilesize(3))
set the default tilesize for all images created with a particular XilSystemState

xil_state_set_default_tiling_mode(3) (xil_state_get_default_tiling_mode(3))
set the default tiling mode for all images created with a particular XilSystemState

xil_state_set_interpolation_tables(3) (xil_state_get_interpolation_tables(3))
sets interpolation tables on the XilSystemState object

modified 13 April 1994 21

intro (3) SunOS 5.6

xil_state_set_show_action(3) (xil_state_get_show_action(3))
sets the current value of the SHOW_ACTION attribute of a system-state object

xil_state_set_synchronize(3) (xil_sync(3))
sets synchronization status for an XIL State

xil_storage_create(3)
create XilStorage object

xil_storage_destroy(3) (xil_storage_create(3))
destroy XilStorage object

xil_storage_get_band_stride(3)
get the values set on an XilStorage object

xil_storage_get_by_name(3)
get a handle to a storage object by specifying a name

xil_storage_get_coordinates(3)
get the position of a storage tile within an image

xil_storage_get_data(3) (xil_storage_get_band_stride(3))
get the values set on an XilStorage object

xil_storage_get_image(3)
get the image associated with a storage object

xil_storage_get_name(3) (xil_storage_get_by_name(3))
get a storage object name

xil_storage_get_offset(3) (xil_storage_get_band_stride(3))
get the values set on an XilStorage object

xil_storage_get_pixel_stride(3) (xil_storage_get_band_stride(3))
get the values set on an XilStorage object

xil_storage_get_scanline_stride(3) (xil_storage_get_band_stride(3))
get the values set on an XilStorage object

xil_storage_get_state(3) (xil_get_state(3))
get the XilSystemState associated with an XIL object

xil_storage_is_type(3)
returns the XilStorageType of the data in the XilStorage object

22 modified 13 April 1994

SunOS 5.6 intro (3)

xil_storage_set_band_stride(3)
set values on an XilStorage object

xil_storage_set_coordinates(3) (xil_storage_get_coordinates(3))
set the position of a storage tile within an image

xil_storage_set_data(3) (xil_storage_set_band_stride(3))
set values on an XilStorage object

xil_storage_set_data_release(3) (xil_storage_set_band_stride(3))
set values on an XilStorage object

xil_storage_set_name(3) (xil_storage_get_by_name(3))
set a storage object name

xil_storage_set_offset(3) (xil_storage_set_band_stride(3))
set values on an XilStorage object

xil_storage_set_pixel_stride(3) (xil_storage_set_band_stride(3))
set values on an XilStorage object

xil_storage_set_scanline_stride(3) (xil_storage_set_band_stride(3))
set values on an XilStorage object

xil_subsample_adaptive(3)
adaptively subsamples an image

xil_subsample_binary_to_gray(3)
subsamples a binary image and produces a grayscale image

xil_subtract(3)
subtracts one image from another

xil_subtract_const(3) (xil_subtract(3))
subtracts a constant from each band of an image

xil_subtract_from_const(3) (xil_subtract(3))
subtracts each band of an image from a constant

xil_swap_buffers(3)
move the contents of the back buffer to the front buffer for a double-buffered
device image

xil_sync(3)
forces computation of the value of an image when it would have otherwise been

modified 13 April 1994 23

intro (3) SunOS 5.6

deferred

xil_tablewarp(3)
warps an image in both the horizontal and vertical directions

xil_tablewarp_horizontal(3) (xil_tablewarp(3))
warps an image in the horizontal direction

xil_tablewarp_vertical(3) (xil_tablewarp(3))
warps an image in the vertical direction

xil_threshold(3)
sets value of image pixel bands within a specified range

xil_toss(3)
throws away the contents of an image without destroying it

xil_translate(3)
translates an image

xil_transpose(3)
rotates or transposes an image

xil_xor(3)
bitwise logical XOR operation

xil_xor_const(3) (xil_xor(3))
bitwise logical XOR operation with constants

24 modified 13 April 1994

SunOS 5.6 Cell (3)

NAME Cell − Cell compressor/decompressor for compressed image sequences

DESCRIPTION The Cell image compression technology, which was developed by Sun, has been
optimized for rapid decompression and display on simple hardware. Cell compression
is able to achieve reasonable display quality on indexed color frame buffers. The initial
focus of the Cell technology is for Sun-to-Sun communications, where the benefits of fast
decode performance outweigh the benefits of standards.

The Cell encoding process transforms individual video frames into a bytestream that can
be displayed with the Cell decompressor. In the first step of the encoding process, the
synthetic (or filtered) video images are analyzed to produce an appropriate colormap to
represent the frames to be encoded. This step allows the specification of the colormap
size, in order to leave colors unused. This enhances cooperation with the window
manager and other applications. Cell also provides a dynamic colormap strategy in
which a new colormap is generated after each frame is compressed. This map can be
used in subsequent frames.

Choosing a Colormap The compressor chooses the colormap to be used for encoding the current image in one
of three ways. If Adaptive Colormap Selection (ACS) is enabled, and a new colormap
has not been associated with the compressor since the last call to xil_compress(3), the
adapted colormap is used. When ACS is disabled, the compressor always uses the
colormap given by the COMPRESSOR_COLORMAP attribute, if it has been set. If the
compressor does not have a colormap, either via the COMPRESSOR_COLORMAP attribute
or ACS, the compressor calls xil_choose_colormap(3) to generate an optimal colormap
for the image. To reset ACS, give the compressor a new colormap via the
COMPRESSOR_COLORMAP attribute.

Image Types The Cell compressor and decompressor, respectively, accept and produce 3-band images
in RGB color space. The width and height of the images must be divisible by 4.

Creating a Cell CIS To compress a compressed image sequence (CIS) with the XIL Cell compressor, specify
"Cell" for the compressorname argument in xil_cis_create(3).

Getting and Setting
Cell Attributes

Use xil_cis_get_attribute(3) and xil_cis_set_attribute(3) to get and set Cell CIS attributes.
These attributes are described in the following sections. Refer to the example section for
additional information.

Cell Compression
Attributes

The following paragraphs describe the Cell CIS attributes available with the XIL library.
All structures and enumerations are defined via xil.h. Note that some attributes are "set-
only" and others are "get-only." This is noted under the Access heading for each attribute.

Note that if you are setting an attribute and that attribute is a structure, you must pass the
address of that structure. If you are getting an attribute, you must always pass its
address.

modified 14 April 1993 25

Cell (3) SunOS 5.6

ENCODING_TYPE

Description Specifies encoding algorithm

Access get and set

Type typedef enum {
BTC, DITHER

} XilCellEncodingType;

Values DITHER: Use the dither encoding technique, which chooses two colors
and a mask that produces the least amount of error when dithered
across the 4x4 region. By selecting dither encoding, Adaptive Colormap
Selection (ACS) is disabled. The current value of the
COLORMAP_ADAPTION attribute is ignored.

BTC: Use Block Truncation Coding to selection the two colors and the
mask. This is much faster than dither encoding and produces good
results.

Default BTC

TEMPORAL_FILTERING

Description Turns on or off a form of temporal filtering that helps with compression
interframe encoding.

Access get and set

Type Xil_boolean

Values TRUE: Filtering turned on

FALSE: Filtering turned off

Default TRUE

COMPRESSOR_COLORMAP

Description Associates a colormap with the compressor for encoding images.

Access set-only

Type XilLookup

Default NULL

COLORMAP_ADAPTION

Description Enables or disables Adaptive Colormap Selection (ACS). ACS selects a
colormap for the next frame so that there is minimal visual change in the
colors displayed in current frame. Thus, ACS continually adapts the
colormap so that color changes between frames are minimized, even
when there is a scene change.

26 modified 14 April 1993

SunOS 5.6 Cell (3)

ACS detects when an adapted colormap has too much error, such as
after a scene change, and encodes new colormaps until the colormaps
closely match the optimal colormap for the image. So, when ACS is
enabled, every frame may have a new colormap associated with it.

Access get and set

Type Xil_boolean

Values TRUE/FALSE

Default TRUE

Notes ACS is disabled when using dither encoding.

KEYFRAME_INTERVAL

Description Specifies the interval for encoding key frames in the bytestream. A key
frame has a bytestream information header, a repeated colormap, and
uses no interframe escape codes. If KEYFRAME_INTERVAL is set to 0,
then no key frames are encoded in the resulting Cell bytestream, and
bit-rate control is disabled.

Access get and set

Type int

Default 6

BITS_PER_SECOND

Description The bit rate of the resulting Cell bytestream. The rate is guaranteed over
a single frame group. If BITS_PER_SECOND is set to 0, then bit rate
control is disabled; this is the default. If BITS_PER_SECOND is set to a
rate lower than the compressor can produce, then an error is generated,
and bit rate control is disabled.

Access get and set

Type int

Default 0

COMPRESSOR_MAX_CMAP_SIZE

Description Sets the maximum colormap size that will be encoded in the Cell
bytestream. If COLORMAP_ADAPTION is enabled, this attribute limits
the size of the colormaps produced by the compressor. If
COLORMAP_ADAPTION is disabled, this attribute limits the size of the
colormaps with the COMPRESSOR_COLORMAP attribute. If the
compressor is given a colormap that is larger than
COMPRESSOR_MAX_CMAP_SIZE , it will be truncated to this length.

modified 14 April 1993 27

Cell (3) SunOS 5.6

The value of this attribute is passed in the Cell bytestream for retrieval
with the DECOMPRESSOR_MAX_CMAP_SIZE attribute as an aid to X
colormap management.

This attribute can only be set before the first xil_compress(3) call. After
xil_compress(3) has been called or COMPRESSOR_MAX_CMAP_SIZE has
been set, it cannot be changed for the life of the XilCis.

Access get and set

Type int

Default 256

COMPRESSOR_FRAME_RATE

Description Set the frame rate, in microseconds per frame, at which the images were
captured. This value is passed in the Cell bytestream for retrieval with
the DECOMPRESSOR_FRAME_RATE attribute. It is permissible to change
this attribute in between calls to xil_compress(3).

Access set-only

Type Xil_unsigned32

Default 33333 (30 frames/second)

COMPRESSOR_USER_DATA

Description Set the user data to be encoded with the next frame. This attribute clears
itself after every call to xil_compress(3), so it only affects the very next
call to xil_compress (). A copy of the data is made when setting this
attribute, so no assumptions are made about the validity of the data
pointer after the attribute is set. The given data is encoded into the Cell
bytestream, making the data available to a decompressor via the
DECOMPRESSOR_USER_DATA attribute. The attribute accepts a pointer
to XilCellUserData, which is a structure containing a pointer to the data
and the length of the data. The length of the data is limited to 8K (8192
bytes) per frame. It is permissible to change this attribute in between
calls to xil_compress(3).

Access set-only

Type typedef struct {
Xil_unsigned8∗ data;
Xil_unsigned32 length;

} XilCellUserData;

Default Not set

28 modified 14 April 1993

SunOS 5.6 Cell (3)

Cell Decompression
Attributes

DECOMPRESSOR_COLORMAP

Description In the case of set, give the Cell decompressor a look-up table with which
to perform accelerated 8-bit display of the decompressed image when
using xil_nearest_color(3). All colormap indices are assumed to be
read-only by the decompressor (see RDWR_INDICES). In the case of get,
it returns the look-up table associated with the Cell decompressor. This
table could possibly have been modified by a call to xil_decompress(3).
If this attribute has not been set, then it returns NULL.

Access get and set

Type XilLookup

Default Not set

RDWR_INDICES

Description Set the list of colormap indices in the DECOMPRESSOR_COLORMAP
look-up table that the Cell decompressor can change for optimum
display of decompressed images. The
DECOMPRESSOR_MAX_CMAP_SIZE attribute can be used to determine
the number of colormap entries needed for optimum display. Setting
the list is not cumulative; the list from any previously set attribute call is
discarded. Any indices outside the range of the
DECOMPRESSOR_COLORMAP look-up table are discarded. Entries in
the lookup are only changed on a call to xil_decompress(3).

If you set this attribute, the Cell decompressor assumes that after each
call to xil_decompress(3), you will check to see if the XilLookup has
been changed via xil_lookup_get_version(3), and if so, that you will
install the changed colormap before calling xil_nearest_color(3) with the
XilLookup. Refer to the XIL Programmer’s Guide. for more details.

Access set-only

Type typedef struct {
Xil_unsigned32∗ pixels;
Xil_unsigned16 ncolors;

} XilIndexList;

Default Not set

modified 14 April 1993 29

Cell (3) SunOS 5.6

DECOMPRESSOR_MAX_CMAP_SIZE

Description Get the maximum size of a colormap for this Cell bytestream. This
assists in X colormap management when decompressing the bytestream.
Refer to the example in the XIL Programmer’s Guide. for more
information.

Access get-only

Type int

Default 256

DECOMPRESSOR_FRAME_RATE

Description Get the frame rate, in microseconds per frame, at which the images were
captured. This value is stored in the Cell bytestream via the
COMPRESSOR_FRAME_RATE attribute, and is useful only when the
compressed image sequence represents a movie. This attribute may
have different values at various points in the Cell bytestream if the
COMPRESSOR_FRAME_RATE attribute was changed during the creation
of the compressed image sequence. If the Cell bytestream does not
contain a frame rate, the default value (33333) is returned.

Access get-only

Type Xil_unsigned32

Default 33333 (30 frames/second)

DECOMPRESSOR_USER_DATA

Description Get the user data that may be encoded with the most-recently
decompressed frame. This attribute clears itself after every call to
xil_decompress(3), so the returned data is only valid until the next call
to xil_decompress (). The data decoded from the Cell bytestream was
encoded via the COMPRESSOR_USER_DATA attribute. A pointer to
XilCellUserData is returned.

Access get-only

Type XilCellUserData∗
Default Not set

30 modified 14 April 1993

SunOS 5.6 Cell (3)

EXAMPLES The following example opens and closes a Cell CIS using the XIL library:

XilSystemState State;
XilCis cis;
State = xil_open();
cis = xil_cis_create(State, "Cell");

-- calls to Cell-specific compression routines --

xil_cis_destroy(cis);
xil_close(State);

The following example sets a Cell CIS attribute called TEMPORAL_FILTERING to TRUE.
Note that because this attribute is not a structure, it is not necessary to pass the address of
TEMPORAL_FILTERING when setting it.

XilCis cis;

xil_cis_set_attribute(cis,"TEMPORAL_FILTERING", (void ∗) TRUE);

The following example returns the value of a Cell CIS attribute called
TEMPORAL_FILTERING. Note that when getting an attribute it is always necessary to
pass the address.

Xil_boolean encode_type;
XilCis cis;

xil_cis_get_attribute(cis, "TEMPORAL_FILTERING", (void ∗∗) &encode_type);

NOTES The xil_cis_set_attribute () and xil_cis_get_attribute () calls are used to modify the
default behavior of a specific compressor. Generic attributes of compressors are set by
individual function calls.

SEE ALSO xil_cis_create(3), xil_cis_get_attribute(3), xil_cis_get_bits_ptr(3), xil_compress(3),
xil_decompress(3), xil_choose_colormap(3), xil_lookup_get_version(3),
xil_nearest_color(3).

modified 14 April 1993 31

CellB (3) SunOS 5.6

NAME CellB − XIL driver for CellB video compression/decompression

DESCRIPTION CellB is a video compression format based on the techniques of block truncation coding
and vector quantization. It is well suited for video conferencing, providing fast encoding
as well as decoding. Even though it uses interframe compression, it guarantees that all
cells are intraframe encoded periodically, allowing for dropped frames.

Creating a CellB CIS To compress a compressed image sequence (CIS) with the XIL CellB compressor, specify
"CellB" for the compressorname argument in xil_cis_create(3).

Getting and Setting
CellB Attributes

Use xil_cis_get_attribute(3) and xil_cis_set_attribute(3) to get and set CellB CIS
attributes. These attributes are as described in the following sections. Refer to the
example section for additional information.

CellB Attributes The following paragraphs describe the CellB CIS attributes available with the XIL library.
All structures and enumerations are defined via xil.h. Note that some attributes are "set-
only" and others are "get-only." This is noted under the Access heading for each attribute.

Note that if you are setting an attribute and that attribute is a structure, you must pass the
address of that structure. If you are getting an attribute, you must always pass its
address.

WIDTH

Description Sets the frame width of the encoded bitstream. It is only necessary to set
this attribute to decompress a bitstream that has been input via a call to
xil_cis_put_bits(3) or xil_cis_put_bits_ptr(3).

Access set

Type integer

HEIGHT

Description Sets the frame height of the encoded bitstream. It is only necessary to
set this attribute to decompress a bitstream that has been input via a call
to xil_cis_put_bits(3) or xil_cis_put_bits_ptr(3).

Access set

Type integer

IGNORE_HISTORY

Description CellB bitstreams do not contain "key" frames, i.e. frames which can be
reconstructed without reference to other frames in the CIS. In general,
this means that these bitstreams are not randomly seekable, because it is
expensive to back up far enough so that all cells/macroblocks can be
properly decoded for the frame you want to seek to.

32 modified 03 June 1993

SunOS 5.6 CellB (3)

By setting IGNORE_HISTORY to TRUE, you inform the decoder that it
should reconstruct frames after a seek, without decoding the
intermediate frames. This will, of course produce invalid results for
some cells. The results will eventually self-correct after several frames as
new values for the cells are calculated. Setting this attribute to TRUE
allows applications to trade some temporary decoding errors to achieve
fast seeks.

Values FALSE: the decoder sets the RandomAccess attribute of such CISs to
FALSE (i.e., xil_cis_get_random_access(3) returns FALSE), and it
becomes impossible to seek backwards. Also, seeks forward will
actually decode all intermediate frames, instead of just jumping to the
appropriate location and decoding the sought frame.

TRUE: (i.e., xil_cis_get_random_access(3) returns TRUE), seeking
backwards is possible, and forward seeks may not decode the
intermediate frames. After an IGNORE_HISTORY seek, the decoded
picture may have some bad cells (macroblocks). As these are encoded in
subsequent frames, these will "twinkle" in.

Type Boolean

Access set/get

Default FALSE

ERRORS For a complete list of XIL error messages by number, consult Appendix B of the XIL
Programmer’s Guide.

EXAMPLES The following example opens and closes a CellB CIS using the XIL library:

XilSystemState State;
XilCis cis;
State = xil_open();
cis = xil_cis_create(State, "CellB");

-- calls to CellB-specific compression routines --

xil_cis_destroy(cis);
xil_close(State);

NOTE The CellB bitstream definition (unlike the one for H261(3)) does not define a maximum
number of frames before a cell must be encoded in the bitstream. However, the encoder
that comes with the XIL library does enforce this behavior.

SEE ALSO xil_cis_get_attribute(3), xil_cis_create(3), xil_cis_put_bits(3), xil_cis_put_bits_ptr(3),
xil_cis_get_bits_ptr(3), xil_compress(3), xil_decompress(3).

modified 03 June 1993 33

CellB (3) SunOS 5.6

34 modified 03 June 1993

SunOS 5.6 faxG3 (3)

NAME faxG3, faxG4 − CCITT Group 3 and Group 4 compressors for compressed image
sequences

DESCRIPTION The XIL library provides compressors that conform to the specifications developed by the
Consultative Committee of International Telegraph and Telephone (CCITT) for Group 3
and Group 4 facsimile devices. These standards are supported in the XIL library as
defined in recommendations T.4 and T.6 of Fascicle VII.3 (blue book) with the following
exceptions: 2-dimensional coding and decoding for Group 3 devices is not currently
supported, and no optional extension modes for group 4 coding and decoding are
supported. Support for these modes may occur in future releases.

These compression techniques, originally formulated for facsimile devices, are now
heavily used by makers of general document storage and retrieval systems. The XIL
library’s CCITT Group 3 compressor (faxG3) uses a run-length encoding technique; the
Group 4 (faxG4) compressor relies almost entirely on a two-dimensional technique. On
standard text, the XIL library’s Group 3 compressor achieves a compression ratio of
about 5:1, while the Group 4 compressor achieves a ratio of about 10:1. For more
information on these compressors, consult the XIL Programmer’s Guide.

Creating a CIS To compress a compressed image sequence (CIS) with an XIL fax compressor, specify
either "faxG3" or "faxG4" for the compressorname argument in xil_cis_create(3).

Getting and Setting
Fax Attributes

Although other compression standards encode size information (the image width, height,
and number of bands) within the bitstream, the fax standards do not. Thus, if you put
compressed data into your CIS using xil_cis_put_bits(3) or xil_cis_put_bits_ptr(3) you
must set the decompressor attributes for width, height, and number of bands; otherwise a
call to xil_decompress(3) generates an error.

Use xil_cis_get_attribute(3) and xil_cis_set_attribute(3) to get and set the fax
decompression attributes.

Fax Decompression
Attributes

The following paragraphs describe the faxG3 and faxG4 CIS attributes available with the
XIL library. All structures and enumerations are defined in xil.h. These attributes are
"set-only," as indicated under the Access heading for each attribute.

To set an attribute that is a structure, you must pass that structure’s address. To get an
attribute, you always pass its address.

modified 08 June 1994 35

faxG3 (3) SunOS 5.6

WIDTH

Description defines width of image for fax decompressor

Access set-only

Type short

Values 0 - 32767

Default 0

Notes Set the value of this attribute to the width in pixels of the images to be
decompressed. If you do not set it, its value is 0 and an error occurs
when you call xil_decompress(3), as discussed above in "Getting and
Setting Fax Attributes."

HEIGHT

Description defines height of image for fax decompressor

Access set-only

Type short

Values 0 - 32767

Default 0

Notes Set the value of this attribute to the height in pixels of the images to be
decompressed. If you do not set it, its value is 0 and an error occurs
when you call xil_decompress(3), as discussed above in "Getting and
Setting Fax Attributes."

BANDS

Description defines number of bands in image for fax decompressor

Access set-only

Type short

Values 0 - 32767

Default 0

Notes Set the value of this attribute to the number of bands in the images to be
decompressed. If you do not set it, its value is 0 and an error occurs
when you call xil_decompress(3), as discussed above in "Getting and
Setting Fax Attributes."

36 modified 08 June 1994

SunOS 5.6 faxG3 (3)

EXAMPLES The following example opens and closes a faxG3 CIS using the XIL library:

XilSystemState State;
XilCis cis;
State = xil_open();
cis = xil_cis_create(State, "faxG3");

-- calls to faxG3-specific compression routines --

xil_cis_destroy(cis);
xil_close(State);

NOTES The xil_cis_set_attribute () and xil_cis_get_attribute () calls are used to modify the
default behavior of a specific compressor. Generic attributes of compressors are set by
individual function calls.

SEE ALSO xil_cis_create(3), xil_cis_get_attribute(3), xil_cis_get_bits_ptr(3), xil_compress(3),
xil_decompress(3), xil_cis_put_bits(3), xil_cis_put_bits_ptr(3).

modified 08 June 1994 37

H261 (3) SunOS 5.6

NAME H261 − H.261 decompressor for compressed image sequences

DESCRIPTION CCITT Recommendation H.261, Video Codec for Audiovisual Services at p x 64 kbit/s, is
an international standard for videophone and videoconferencing. It describes the
moving picture component of audiovisual services at the rates of p x 64 kbit/s, where p is
in the range 1 to 30.

The XIL H261 codec implements the H.261 standard without the transmission
coder/decoder; i.e., the XIL bitstream does not contain any Error Correction Framing
bits.

The current release of the XIL library does not contain an implementation of an H.261
compressor. Calls to xil_compress(3) will produce an error unless a third party H.261
compressor has been installed.

Image Types The H261 decompressor produces 3-band, XIL_BYTE images in the XIL library’s "ycc601"
color space (The XIL image color space will not be examined or set by the H261 codec,
but the codec assumes its input image has the proper color space). The width and height
of the images must be either Common Intermediate Format (CIF), which is 352 wide by
288 high, or Quarter CIF (QCIF), which is 176 wide by 144 high.

Creating a CIS To create an H.261 compressed image sequence (CIS), specify "H261" for the
compressorname argument in xil_cis_create(3).

Getting and Setting
H261 Attributes

Use xil_cis_get_attribute(3) and xil_cis_set_attribute(3) to get and set H261 CIS
attributes. These attributes are as described in the following sections. Refer to the
example section for additional information.

H261 Compression
Attributes

The following paragraphs describe the H.261 CIS attributes available with the XIL library.
All structures and enumerations are defined via xil.h. Note that if you are setting an
attribute and that attribute is a structure, you must pass the address of that structure. If
you are getting an attribute, you must always pass the address of the attribute. If you are
getting a structure attribute, you must pass a pointer to a pointer to the structure and XIL
will set the pointer to the structure. You must free the memory for this structure (using
free(3C)) when it is no longer needed.

COMPRESSOR_BITS_PER_IMAGE

Description Encode images with this number of bits per image. This is normally
bits_per_second/frames_per_second.

Access get and set

Type Integer

Values value must be greater than or equal to 0

Default 5069 (0.2 bits/pixel at QCIF resolution)

38 modified 3 August 1993

SunOS 5.6 H261 (3)

COMPRESSOR_IMAGE_SKIP

Description Number of images that the application is skipping between encoded
frames. Controls the Temporal Reference counter in the bitstream.
(Temporal Reference is incremented by 1 +
COMPRESSOR_IMAGE_SKIP)

Access get and set

Type Integer

Values 0-31

Default 0

COMPRESSOR_MV_SEARCH_RANGE

Description Set motion vector search range. Value 15 is the maximum H.261 search
range. Value 0 means that the search range is limited to the spatially
corresponding block in the previous picture. This attribute is only a
suggestion and may be ignored by the compressor. It may be used to
speed up compression at the expense of compression quality.

Access get and set

Type typedef struct {
int x; /∗ horizontal search limit ∗/
int y; /∗ vertical search limit ∗/

} XilH261MVSearchRange;

Values x: Can have a value in the range of 0-15

y: Can have a value in the range of 0-15

Default 15 for both x and y

COMPRESSOR_LOOP_FILTER

Description Allow encoder to use loop filtering. This attribute is only a suggestion
and may be ignored by the compressor. It may be used to minimize the
bitstream size (at the expense of image quality) by reducing inter-frame
differences.

Access get and set

Type Xil_boolean

Values TRUE: Loop filtering turned on

FALSE: Loop filtering turned off

Default TRUE

modified 3 August 1993 39

H261 (3) SunOS 5.6

COMPRESSOR_ENCODE_INTRA

Description Cause encoder to encode pictures in INTRA mode with coding
parameters to avoid buffer overflow. (This attribute can be used by the
application in response to a Fast Update signal sent via H.221).

Access get and set

Type Xil_boolean

Values TRUE: Intra-only coding turned on

FALSE: Intra-only coding turned off

Default FALSE

COMPRESSOR_FREEZE_RELEASE

Description Set the Freeze Picture Release bit in each picture in the bitstream,
starting with the next compressed picture.

Access get and set

Type Xil_boolean

Values TRUE: Set the Freeze Picture Release bit in the bitstream.

FALSE: Do not set the Freeze Picture Release bit in the bitstream.

Default FALSE

COMPRESSOR_SPLIT_SCREEN

Description Set the Split Screen Indicator bit in each picture in the bitstream, starting
with the next compressed picture.

Access get and set

Type Xil_boolean

Values TRUE: Set the Split Screen Indicator bit in the bitstream.

FALSE: Do not set the Split Screen Indicator bit in the bitstream.

Default FALSE

COMPRESSOR_DOC_CAMERA

Description Set the Document Camera Indicator bit in each picture in the bitstream,
starting with the next compressed picture.

Access get and set

Type Xil_boolean

Values TRUE: Set the Document Camera Indicator bit in the bitstream.

FALSE: Do not set the Document Camera Indicator bit in the bitstream.

40 modified 3 August 1993

SunOS 5.6 H261 (3)

Default FALSE

H261 Decompression
Attributes

IGNORE_HISTORY

Description If TRUE, perform forward seeks without updating the decoding history
and allow backward seeking (decompression after these seeks may yield
incomplete results). If FALSE, maintain proper decoding history during
forward seeks and disallow backward seeking.
xil_cis_get_random_access(3) will return TRUE if IGNORE_HISTORY is
TRUE, and will return FALSE if IGNORE_HISTORY is FALSE.

Access get and set

Type Xil_boolean

Values TRUE: Allow backward seeks and perform fast forward seeks.

FALSE: Perform correct seeking.

Default FALSE

DECOMPRESSOR_FREEZE_RELEASE

Description Return value of the Freeze Picture Release bit from the picture header of
the most recently decompressed picture. Value is available immediately
after executing an xil_decompress(3) call and may be "gotten" and
tested without compromising the execution of a decompression
molecule.

Access get

Type Xil_boolean

Values TRUE: Freeze Picture Release bit is set.

FALSE: Freeze Picture Release bit is not set.

Default Value is undefined if no pictures have been decompressed.

DECOMPRESSOR_SPLIT_SCREEN

Description Return value of the Split Screen Indicator bit from the picture header of
the most recently decompressed picture. Value is available immediately
after executing an xil_decompress(3) call and may be "gotten" and
tested without compromising the execution of a decompression
molecule.

Access get

Type Xil_boolean

Values TRUE: Split Screen Indicator bit is set.

FALSE: Split Screen Indicator bit is not set.

modified 3 August 1993 41

H261 (3) SunOS 5.6

Default Value is undefined if no pictures have been decompressed.

DECOMPRESSOR_DOC_CAMERA

Description Return value of the Document Camera Indicator bit from the picture
header of the most recently decompressed picture. Value is available
immediately after executing an xil_decompress(3) call and may be
"gotten" and tested without compromising the execution of a
decompression molecule.

Access get

Type Xil_boolean

Values TRUE: Document Camera Indicator bit is set.

FALSE: Document Camera Indicator bit is not set.

Default Value is undefined if no pictures have been decompressed.

DECOMPRESSOR_SOURCE_FORMAT

Description Return value of the Source Format bit from the picture header of the
most recently decompressed picture. Value is available immediately
after executing an xil_decompress(3) call and may be "gotten" and
tested without compromising the execution of a decompression
molecule.

Access get

Type typedef enum {
QCIF, CIF

} XilH261SourceFormat;

Values CIF: Source Format (picture size) is Common Intermediate Format (CIF)

QCIF: Source Format (picture size) is Quarter Common Intermediate
Format (QCIF)

Default Value is undefined if no pictures have been decompressed.

DECOMPRESSOR_TEMPORAL_REFERENCE

Description Return value of the Temporal Reference from the picture header of the
most recently decompressed picture. Temporal Reference is formed by
incrementing its value in the previously transmitted picture header by
one plus the number of non-transmitted pictures (at 29.97 Hz) since the
last transmitted one. Arithmetic is performed modulo 32. Value is
available immediately after executing an xil_decompress(3) call and
may be "gotten" and tested without compromising the execution of a
decompression molecule.

Access get

42 modified 3 August 1993

SunOS 5.6 H261 (3)

Type Integer

Values value can be an integer from 0 to 31.

Default Value is undefined if no pictures have been decompressed.

EXAMPLES The following example opens and closes an H.261 CIS using the XIL library:

XilSystemState State;
XilCis cis;
State = xil_open();
cis = xil_cis_create(State, "H261");

-- calls to H261-specific compression routines --

xil_cis_destroy(cis);
xil_close(State);

The following example sets an H.261 CIS attribute called COMPRESSOR_LOOP_FILTER
to TRUE. Note that because this attribute is not a structure, it is not necessary to pass the
address of COMPRESSOR_LOOP_FILTER when setting it.

XilCis cis;

xil_cis_set_attribute(cis,"COMPRESSOR_LOOP_FILTER", (void ∗) TRUE);

The following example returns the value of an H.261 CIS attribute called
DECOMPRESSOR_DOC_CAMERA. Note that when getting an attribute it is always
necessary to pass the address.

Xil_boolean on;
XilCis cis;

xil_cis_get_attribute(cis, "DECOMPRESSOR_DOC_CAMERA", (void ∗∗) &on);

NOTES The xil_cis_set_attribute () and xil_cis_get_attribute () calls are used to modify the
default behavior of a specific compressor. Generic attributes of compressors are set by
individual function calls.

SEE ALSO xil_cis_create(3), xil_cis_get_attribute(3), xil_cis_get_bits_ptr(3), xil_compress(3),
xil_decompress(3).

modified 3 August 1993 43

Jpeg (3) SunOS 5.6

NAME Jpeg − JPEG compressor/decompressor for compressed image sequences

DESCRIPTION The Joint Photographic Experts Group (JPEG) is a joint ISO/CCITT technical committee.
JPEG has developed a general-purpose international standard for the compression of
continuous tone (grayscale or color) still images. The standard has three categories:

The baseline specification for lossy compression.
An extended features specification, and
A lossless compression specification.

XIL currently supports the baseline lossy Jpeg codec and the Jpeg Lossless codec (See
JpegLL(3)). The baseline codec uses the Discrete Cosine Transform (DCT) and uniform
quantization in combination with statistical Huffman coding techniques for 8-bit image
components.

Certain combinations of XIL operations are accelerated. These combinations should be
used for the highest performance in JPEG decompression. For more information and
example programs, see the XIL Programmer’s Guide.

Creating a CIS To compress a compressed image sequence (CIS) with the XIL JPEG compressor, specify
"Jpeg" for the compressorname argument in xil_cis_create(3).

Getting and Setting
JPEG Attributes

Use xil_cis_get_attribute(3) and xil_cis_set_attribute(3) to get and set JPEG CIS
attributes. These attributes are as described in the following sections. Refer to the
example section for additional information.

JPEG Compression
Attributes

The following paragraphs describe the JPEG CIS attributes available with the XIL library.
All structures and enumerations are defined via xil.h. Note that some attributes are "set-
only" and others are "get-only." This is noted under the Access heading for each attribute.

Note that if you are setting an attribute and that attribute is a structure, you must pass the
address of that structure. If you are getting an attribute, you must always pass its
address.

BAND_HUFFMAN_TABLE

Description Instructs the encoder to use a specific Huffman table number for a given
band.

Access set-only

Type typedef struct {
int band;
int table;
XilJpegHTableType type;

} XilJpegBandHTable;

Values band: Can have a value in the range 0-255.

table: For Baseline JPEG, legal values are 0 and 1.

44 modified 29 July 1993

SunOS 5.6 Jpeg (3)

type: For Baseline JPEG, you can have a value DC or AC.

Default band 0’s DC component is associated to table 0, type DC and band 0’s AC
component is associated to table 0, type AC. All other bands’ DC
component is associated to table 1, type DC, and their AC component is
associated to table 1, type AC.

Notes This attribute assigns a band to a specific table number. Bands may be
associated to tables that have not yet been set. However, the tables must
be set before a call to compress is made or an error occurs. Note that to
set both the DC and AC Huffman tables for a band, two
xil_set_attribute(3) calls must be made, one to set the DC and one to set
the AC table.

BAND_QUANTIZER

Description Instructs the encoder to use a specific quantization table for a given
band.

Access set-only

Type typedef struct {
int band;
int table;

} XilJpegBandQTable;

Values band: Can have a value in the range 0-255.

table: Can have a value in the range 0-3.

Default band 0 is associated to table 0. All other bands are associated to table 1.
This default assignment generally assumes that the first band contains
luminance data and the other bands contain chrominance data.

Notes Bands may be associated to tables that have not yet been set. However,
the tables must be set before a call to compress is made or an error
occurs.

BYTES_PER_FRAME

Description Number of bytes in the last frame compressed by a CIS. This value can
be used to assist in selecting a COMPRESSION_QUALITY to achieve a
desired bit rate.

Access get-only

Type int

Default Not applicable. Value is undefined for a CIS that has not compressed
any frames.

modified 29 July 1993 45

Jpeg (3) SunOS 5.6

COMPRESSED_DATA_FORMAT

Description defines output format for JPEG compressor

Access set

Type typedef enum{
INTERCHANGE, ABBREVIATED_FORMAT

} XilJpegCompressedDataFormat;

Values INTERCHANGE: Use JPEG interchange format. All quantization and
entropy-coding table specifications needed by the decoding process are
included in each compressed frame.

ABBREVIATED_FORMAT: Use JPEG abbreviated format for
compressed images. Quantization and entropy-coding table
specifications are not included in a compressed frame if the
specifications are defined in a previous frame in the compressed
sequence. If any table values change after they are defined in the
compressed sequence, a new table definition is included in the first
compressed frame that uses the new table values.

Default ABBREVIATED_FORMAT

Notes This does not include the third type: ABBREVIATED_TABLE, in which a
frame contains only table specifications. However, the decoder will
accept this format.

COMPRESSION_QUALITY

Description Provide a hint to the compressor, enabling it to increase the compression
ratio by reducing the compressed image quality.

Access set-only

Type int value

Values value can be an integer from 1 to 100. Setting value to 100 requests the
highest quality achievable by the compressor. A value equal to 1 sets the
compression ratio to the maximum achievable while substantially
reducing quality. This attribute applies a scaling factor to all elements of
the currently selected quantization tables for all bands. The
compression ratio may also be affected by modifying the actual
quantization tables themselves using the QUANTIZATION_TABLE
attribute.

Default 50

ENCODE_INTERLEAVED

Description If the image to compress is composed of 4 bands or less, having this
attribute set to TRUE will generate an interleaved JPEG-compliant

46 modified 29 July 1993

SunOS 5.6 Jpeg (3)

bitstream ENCODE_411_INTERLEAVED attribute takes precedence
over ENCODE_INTERLEAVED for Baseline JPEG.

Note: Interleaved bitstreams are far more common than non-
interleaved. In fact some (non-compliant) JPEG decoders do
not even support non-interleaved bitstreams.

Access set-only

Type Xil_boolean

Values TRUE: For images of 4 bands or less, produce an interleaved JPEG-
compliant bitstream.

FALSE: Produce a noninterleaved JPEG-compliant bitstream.

Default TRUE

ENCODE_411_INTERLEAVED

Description For Baseline JPEG, if the image to compress is a 3-banded image, setting
this attribute to TRUE generates a JPEG-compliant bitstream in which
the second and third components are subsampled by two in both axes,
while the first component is at full resolution. This is useful to gain
additional compression for YCbCr images and is mandatory for most
decompression molecules. It is not appropriate for RGB images. If an
image is not 3-banded, then the ENCODE_411_INTERLEAVED attribute
is treated as if it were false, and therefore the ENCODE_INTERLEAVED
attribute controls the interleaved format of the bitstream.

Otherwise, the ENCODE_411_INTERLEAVED attribute takes
precedence over ENCODE_INTERLEAVED. Because some
decompressor molecules require the bitstream image size to be a
multiple of 16 in both width and height, source images should be
clipped (for example, by using a child image) before compression, if the
highest decompression speed is desired.

Access set-only

Type Xil_boolean

Values TRUE: Generate a 2x2:1:1 macroblock, JPEG-compliant bitstream if the
input image is a 3-banded image.

FALSE: Do not generate a 2x2:1:1 macroblock, JPEG-compliant
bitstream.

Default FALSE

modified 29 July 1993 47

Jpeg (3) SunOS 5.6

HUFFMAN_TABLE

Description Set values in specified Huffman table

Access set-only

Type typedef struct {
int table;
XilJpegHTableType type;
XilJpegHTableValue ∗value;

} XilJpegHTable;

typedef enum {
DC, AC

} XilJpegHTableType;

typedef struct {
int bits;
int pattern;

} XilJpegHTableValue;

Values table: For Baseline JPEG, you can have a value in the range from 0-1.

type: For Baseline JPEG, you can have a value DC or AC. It also specifies
how many entries are in the value array: 16 if type is DC; 256 if type is
AC.

value: A pointer to an array of data pairs, each pair representing a
Huffman code. The first element ‘bits’ indicates the length of the
Huffman code word. The second element ‘pattern’ contains the actual
value of the Huffman code in its least significant ‘bits’ bits. For DC
Huffman tables, entry value[k], k=0,15, represents the code for a
quantized DC coefficient of size category k=ssss. For AC Huffman tables
entry value[k], k=0,255 represents the code for run length/size category
k=rrrrssss. See sections F.1.2.1.1 and F.1.2.2.1 of the Jpeg Specification
(ITU Recommendation T.81 - 09/92), for more detail on Jpeg Huffman
table specification.

Default By default, the values in each of the tables are pre-initialized to the
example values given in Annex K of the ANSI JPEG specification.

Default values for table 0, type DC are given in Table K.3 and are useful
for the DC coefficients of the luminance band of 8-bit Y,Cb,Cr images.
Default values for table 1, type DC are given in Table K.4 and are useful
for the DC coefficients of the chrominance bands of 8-bit Y,Cb,Cr
images.

48 modified 29 July 1993

SunOS 5.6 Jpeg (3)

Default values for table 0, type AC are given in Table K.5 and are useful
for the AC coefficients of the luminance band of 8-bit Y,Cb,Cr images.
Default values for table 1, type AC are given in Table K.6 and are useful
for the AC coefficients of the chrominance bands of 8-bit Y,Cb,Cr
images.

OPTIMIZE_HUFFMAN_TABLES

Description Provide a hint to the compressor, enabling it to generate optimal
Huffman tables instead of using the default example values specified in
the ANSI specification. Note that setting this attribute can increase the
time required to compress a frame, since the compresor must make two
passes through the image, one to gather statistics to build the optimal
tables and a second pass to actually encode the data. This is only a hint;
the compressor is free to ignore the hint.

Access set-only

Type Xil_boolean

Values TRUE: Huffman tables may vary from image to image to achieve higher
compression.

FALSE: Use fixed Huffman tables for each image in the sequence.

Default FALSE

QUANTIZATION_TABLE

Description Set the values in a specific quantization table

Access set-only

Type typedef struct {
int table;
int (∗value)[8];

} XilJpegQTable;

Values table: Can have a value in the range 0-3.

value: For Baseline JPEG, the 64 quantization table elements are defined
to be 8-bit values; the compressor uses the least significant 8 bits of the
input table value. This precision assumption may vary according to the
compressor/decompressor configuration. The quantization operation
for a DCT coefficient uses the corresponding element from the input
quantization table.

Default Default values for table 0 are given in Table K.1 of Annex K of the ANSI
JPEG specification, and are useful for the luminance band of 8-bit
Y,Cb,Cr images. The default values for table 1 are given in Table K.2 of
Annex K of the ANSI JPEG specification, and are useful for the

modified 29 July 1993 49

Jpeg (3) SunOS 5.6

chrominance bands of 8 bit Y,Cb,Cr images. tables 2 and table 3 are not
loaded with any values.

Notes A table that is to be used to compress an image must be set before the
call to compress. The compressor issues an error if a band has been set
to use a particular quantization table that has not yet been set.

TEMPORAL_FILTERING

Description Turns on or off a form of temporal filtering that may reduce noise in
video sequences. The filtering may also introduce undesirable artifacts
in sequences containing motion. Filtering is only performed on 3-
banded images.

Access get and set

Type Xil_boolean

Values TRUE: Filtering turned on

FALSE: Filtering turned off

Default FALSE

JPEG Decompression
Attributes

DECOMPRESSION_QUALITY

Description Provide a suggestion to the decompressor, enabling it to trade off
reconstruction quality in exchange for an increase in decoding speed.

Access set

Type int value

Values value can be between 1 and 100. A value of 100 sets the quality to
maximum. A value of 1 sets the speed to its maximum and allows the
quality to decrease to the minimum allowed by the decompressor. The
decompressor is free to ignore this hint.

Default 100

Notes The JPEG decompressor will increase speed by decreasing the number
of quantized coefficients that it uses in reconstruction.

IGNORE_HISTORY

Description Some JPEG bitstreams contain images that define tables (Huffman
and/or Quantization) and images that use tables defined in previous
images. These bitstreams are not, in general, randomly seekable,
because it is possible to backup to a point where the required tables for
decoding the next image have not been loaded into the decoder. The
JPEG decoder detects such bitstreams.

Access set-only

50 modified 29 July 1993

SunOS 5.6 Jpeg (3)

Type Xil_boolean

Values FALSE: The decoder will set the RandomAccess attribute of such CISs to
FALSE (i.e., xil_cis_get_random_access(3) returns FALSE), and it is
impossible to seek backwards.

TRUE: The function xil_cis_get_random_access(3) returns TRUE,
regardless of the type of bitstream, and it is always possible to seek
backwards. If IGNORE_HISTORY is set to TRUE, the application
should not seek forward beyond frames that contain table definitions if
those definitions are needed for subsequent decoding; the decoder will
not ensure that these table definitions are loaded.

Default FALSE

Notes If this attribute is set to TRUE, it is the responsibility of the application
to seek to a spot in the bitstream that will decode correctly (either the
image defines its own tables, or it depends on tables that have been most
recently loaded into the decoder).

If you have a CIS that is randomly seekable and you never back up, you
can seek forward to any frame and get the correct answer, regardless of
the setting of IGNORE_HISTORY.

If you have a CIS that is randomly seekable and if IGNORE_HISTORY is
FALSE, you can seek forward to any frame and get the correct answer
(regardless of whether you have ever backed up).

If you have a CIS that is randomly seekable and if the attribute is TRUE,
and if you have ever backed up, you need to control the loading of Q
tables yourself by explicitly decompressing the frames that contain the
tables. This is only practical if (1) you are decompressing every frame,
or (2) you know the location of the Q tables because you glued together
two CISs so that you know the location of the boundary.

EXAMPLES The following example opens and closes a JPEG CIS using the XIL library:

XilSystemState State;
XilCis cis;
State = xil_open();
cis = xil_cis_create(State, "Jpeg");

-- calls to Jpeg-specific compression routines --

xil_cis_destroy(cis);
xil_close(State);

modified 29 July 1993 51

Jpeg (3) SunOS 5.6

The following example sets a JPEG CIS attribute called ENCODE_INTERLEAVED to
TRUE. Note that because this attribute is not a structure, it is not necessary to pass the
address of ENCODE_INTERLEAVED when setting it.

XilCis cis;

xil_cis_set_attribute(cis,"ENCODE_INTERLEAVED", (void ∗) TRUE);

The following example returns the value of a JPEG CIS attribute called
ENCODE_INTERLEAVED. Note that when getting an attribute it is always necessary to
pass the address.

Xil_boolean encode_type;
XilCis cis;

xil_cis_get_attribute(cis, "ENCODE_INTERLEAVED", (void ∗∗) &encode_type);

NOTES Note that although Jpeg is primarily a standard for still image compression, it is still
perfectly permissible to encode sequences of Jpeg compressed images into a CIS. While
this is commonly referred to as "motion Jpeg", no explicit standard exists to describe the
syntax of a motion Jpeg bitstream.

The xil_cis_set_attribute() and xil_cis_get_attribute() calls are used to modify the
default behavior of a specific compressor. Generic attributes of compressors are set by
individual function calls.

SEE ALSO xil_cis_create(3), xil_cis_get_attribute(3), xil_cis_get_bits_ptr(3), xil_compress(3),
xil_decompress(3).

52 modified 29 July 1993

SunOS 5.6 JpegLL (3)

NAME JPEG Lossless compressor/decompressor − JPEG Lossless compressor/decompressor for
compressed image sequences

DESCRIPTION The JPEG Lossless compresor/decompressor is the lossless variant of the Jpeg series of
codecs (see Jpeg(3)). The lossless compression technique uses Differential Pulse Code
Modulation (DPCM) with two-dimensional prediction and Huffman coding. It is the
only codec in the current XIL compression suite which can operate on pixel data with
greater than 8 bit precision. This compressor will accept input data of type XIL_BYTE or
XIL_SHORT.

For more information and example programs, see the XIL Programmer’s Guide.

Creating a CIS To compress a compressed image sequence (CIS) with the XIL JPEG Lossless compressor,
specify "JpegLL" for the compressorname argument in xil_cis_create(3).

Getting and Setting
Attributes

Use xil_cis_get_attribute(3) and xil_cis_set_attribute(3) to get and set JPEG Lossless CIS
attributes. These attributes are described in the following sections. Refer to the example
section for additional information.

JpegLL Compression
Attributes

The following paragraphs describe the JPEG Lossless CIS attributes available with the
XIL library. All structures and enumerations are defined via xil.h. Note that some
attributes are "set-only" and others are "get-only." This is noted under the Access heading
for each attribute.

Note that if you are setting an attribute and that attribute is a structure, you must pass the
address of that structure. If you are getting an attribute, you must always pass its
address.

COMPRESSED_DATA_FORMAT

Description defines output format for JPEG Lossless compressor

Access set

Type typedef enum{
INTERCHANGE, ABBREVIATED_FORMAT

} XilJpegCompressedDataFormat;

Values INTERCHANGE: Use JPEG interchange format. All quantization and
entropy-coding table specifications needed by the decoding process are
included in each compressed frame.

modified 14 April 1993 53

JpegLL (3) SunOS 5.6

ABBREVIATED_IMAGE: Use JPEG abbreviated format for compressed
images. Quantization and entropy-coding table specifications are not
included in a compressed frame if the specifications are defined in a
previous frame in the compressed sequence. If any table values change
after they are defined in the compressed sequence, a new table definition
is included in the first compressed frame that uses the new table values.

Default ABBREVIATED_IMAGE

Notes This does not include the third type: ABBREVIATED_TABLE, in which a
frame contains only table specifications. However, the decoder will
accept this format.

ENCODE_INTERLEAVED

Description If the image to compress is composed of 4 bands or less, having this
attribute set to TRUE will generate an interleaved JPEG-compliant
bitstream. In this form, encoded pixels are interleaved by band. If the
number of bands exceeds 4 or if this attribute is set to FALSE, a
noninterleaved JPEG-compliant bitstream is generated. With non-
interleaved format, all encoded pixels of one band precede all encoded
pixels of the following band.

Access set-only

Type Xil_boolean

Values TRUE: For images of 4 bands or less, produce an interleaved JPEG-
compliant bitstream.

FALSE: Produce a noninterleaved JPEG-compliant bitstream.

Default TRUE

HUFFMAN_TABLE

Description Set values in specified Huffman table

Access set-only

Type typedef struct {
int table;
XilJpegHTableType type;
XilJpegHTableValue ∗value;

} XilJpegHTable;

typedef enum {
DC, AC

} XilJpegHTableType;

54 modified 14 April 1993

SunOS 5.6 JpegLL (3)

typedef struct {
int bits;
int pattern;

} XilJpegHTableValue;

Values table: A value in the range 0-3.

type: The only valid value is DC.

value: A pointer to an array of 17 data pairs, each pair representing a
Huffman code. The first element ‘bits’ indicates the length of the
Huffman code word. The second element ‘pattern’ contains the actual
value of the Huffman code in its least significant ‘bits’ bits. Entry
value[k],k=0,16, represents the code for a difference (prediction error) of
size category k. See section H.1.2.2 of the Jpeg Specification (ITU
Recommendation T.81 - 09/92), for more detail on JpegLL Huffman
table specification.

Default By default, the values in each of the tables are pre-initialized to the
example values given in Annex K of the ANSI JPEG specification. Tables
0 and 2 contains the same values used to encode DC differences on Jpeg
luminance components. Tables 1 and 3 contain the same values used to
encode DC differences in Jpeg chrominance components. Both sets of
tables are extended to accomodate 16 bit pixel values.

BAND_HUFFMAN_TABLE

Description Instructs the encoder to use a specific Huffman table for a given band.

Access set-only

Type typedef struct {
int band;
int table;
XilJpegHTableType type;

} XilJpegBandHTable;

Values band: Can have a value in the range 0-255.

table: A value in the range 0-3.

type: The only valid value is DC.

modified 14 April 1993 55

JpegLL (3) SunOS 5.6

Default Band 0 is encoded with table 0. All other bands are encoded using table 1.

Notes Bands may be assigned to tables that have not yet been set. However,
the tables must be set before a call to compress is made or an error
occurs.

OPTIMIZE_HUFFMAN_TABLES

Description Provide a hint to the compressor, enabling it to generate optimal
Huffman tables instead of using the default example values specified in
the ANSI specification. This is only a hint; the compressor is free to
ignore the hint. For Lossless JPEG, setting this option attribute on or off
keeps the current tables loaded. No optimal Huffman tables are
provided for Lossless JPEG.

Access set-only

Type Xil_boolean

Values TRUE: Huffman tables may vary from image to image to achieve higher
compression.

FALSE: Use fixed Huffman tables for each image in the sequence.

Default FALSE

LOSSLESS_BAND_SELECTOR

Description Associates a band of an image to a predictor selection for the Lossless
JPEG compressor. In the following discussion under the Values heading,
Px = prediction for pixel "x", A = pixel left, B = pixel above, C = pixel
diagonally above and left.

C B
A x

Access set-only

Type typedef struct {
int band;
XilJpegLLBandSelectorType selector;

} XilJpegLLBandSelector;

typedef enum {
ONE_D1,ONE_D2,ONE_D3,TWO_D1,TWO_D2,

TWO_D3,TWO_D4
} XilJpegLLBandSelectorType;

56 modified 14 April 1993

SunOS 5.6 JpegLL (3)

Values band: Can have a value in the range 0-255.

NO_PRED: Invalid selection for Lossless JPEG.

ONE_D1: Px = A

ONE_D2: Px = B

ONE_D3: Px = C

TWO_D1: Px = A + B - C

TWO_D2: Px = A + ((B - C)/2)

TWO_D3: Px = B + ((A - C)/2)

TWO_D4: Px = (A + B)/2

Default All bands default to selector ONE_D1.

LOSSLESS_BAND_PT_TRANSFORM

Description Associates a band of an image with a point transform, PtTransform, for
the Lossless JPEG compressor. If PtTransform is non-zero, the input
image band is divided by 2∗∗PtTransform before lossless encoding.

Access set-only

Type typedef struct {
int band;
int PtTransform;

} XilJpegLLBandPtTransform;

Values band: Can have a value in the range 0-255.

PtTransform: Can have a value in the range 0-15.

Default All bands default to PtTransform = 0.

EXAMPLES The following example opens and closes a JPEG Lossless CIS using the XIL library:

XilSystemState State;
XilCis cis;
State = xil_open();
cis = xil_cis_create(State, "JpegLL");

-- calls to JpegLL-specific compression routines --

xil_cis_destroy(cis);
xil_close(State);

modified 14 April 1993 57

JpegLL (3) SunOS 5.6

The following example sets a JPEG Lossless CIS attribute called
ENCODE_INTERLEAVED to TRUE. Note that because this attribute is not a structure, it
is not necessary to pass the address of ENCODE_INTERLEAVED when setting it.

XilCis cis;

xil_cis_set_attribute(cis,"ENCODE_INTERLEAVED", (void ∗) TRUE);

The following example returns the value of a JPEG Lossless CIS attribute called
ENCODE_INTERLEAVED. Note that when getting an attribute it is always necessary to
pass the address.

Xil_boolean encode_type;
XilCis cis;

xil_cis_get_attribute(cis, "ENCODE_INTERLEAVED",
(void ∗∗) &encode_type);

NOTES The xil_cis_set_attribute () and xil_cis_get_attribute () calls are used to modify the
default behavior of a specific compressor. Generic attributes of compressors are set by
individual function calls.

SEE ALSO xil_cis_create(3), xil_cis_get_attribute(3), xil_cis_get_bits_ptr(3), xil_compress(3),
xil_decompress(3).

58 modified 14 April 1993

SunOS 5.6 Mpeg1 (3)

NAME Mpeg1 − MPEG decompressor for compressed image sequences

DESCRIPTION The Moving Picture Experts Group (MPEG), an ISO technical committee, has developed a
general-purpose international standard for the compression of full motion video to a bit
rate of 1.5 Mbits/second. The method employs transform coding, specifically the Discrete
Cosine Transform (DCT), to obtain intraframe compression by reducing spatial
redundancy, and motion compensation to obtain interframe compression by reducing
temporal redundancy.

The XIL implementation supports the basic MPEG specification for video compression,
but does not address audio and synchronization issues. Certain combinations of XIL
operations are accelerated. These combinations should be used for the highest
performance in MPEG decompression. For more information and example programs,
see the XIL Programmer’s Guide.

For a bitstream with B frames, the behavior of the xil_cis_get_bits_ptr(3) function differs
from its usual behavior. For more information, see the discussion of B pictures in the XIL
Programmer’s Guide.

The current release of the XIL library does not contain an implementation of an MPEG
compressor. Calls to xil_compress(3) will produce an error unless a third-party MPEG
compressor has been installed. Also, streams with D frames will not be decompressed.

Creating a CIS To decompress a compressed image sequence (CIS) with the XIL MPEG decompressor,
specify "Mpeg1" for the compressorname argument in xil_cis_create(3).

Getting and Setting
MPEG Attributes

Use xil_cis_get_attribute(3) and xil_cis_set_attribute(3) to get and set MPEG CIS
attributes. These attributes are as described in the following sections. Refer to the
example section for additional information.

MPEG Compression
Attributes

The following paragraphs describe the MPEG CIS attributes available with the XIL
library. All structures and enumerations are defined in xil.h. Note that all compression
attributes are "settable" and "gettable."

Note that if you are setting an attribute and that attribute is a structure, you must pass the
address of that structure. If you are getting an attribute, you must always pass the
address of the attribute. If you are getting a structure attribute, you must pass a pointer to
a pointer to the structure, and XIL will set the pointer to the structure. You are
responsible for freeing the memory for this structure (using free (3C)) when it is no
longer needed.

Many of these attributes employ a "null default" (ND) convention under which setting an
attribute to zero/null signifies that the compressor is allowed (required) to use a value
that is optimal for its purposes. In all cases, the zero/null value would not otherwise be
legal. ND attributes are "gettable" in the sense that they will return null/zero if they are
so set, but are opaque with regard to the actual default value used by the compressor. In
addition, all ND attributes have null/zero as the default.

modified 21 April 1994 59

Mpeg1 (3) SunOS 5.6

COMPRESSOR_BITS_PER_SECOND

Description Controls the output data rate of the MPEG bitstream in bits/second.

Access set/get

Type int value

Values 1 - 104,856,800, rounded upward to the nearest multiple of 400.

Default 1,152,000

Notes Cannot be changed after the first frame is compressed. Should be set to
no more than 1,856,000 if a Constrained Parameter bitstream is desired.

COMPRESSOR_INSERT_VIDEO_SEQUENCE_END

Description Causes a Video Sequence End code to be inserted into the bitstream.

Access set/get

Type Xil_boolean

Values FALSE - no end code inserted. TRUE - end code inserted after each
subsequent call to xil_cis_flush(3), assuming this attribute value
remains TRUE. Inserting the code is done in addition to the normal
actions of the flush routine. When set to FALSE, this attribute doesn’t
affect the normal actions of the flush routine. The library prevents
multiple end codes from being written to the same frame.

Default FALSE

Notes An MPEG-1 sequence isn’t valid without the end code; therefore, the last
frame in the sequence must be followed by the code. Since it cannot
predict when an application will end a sequence, the MPEG-1 codec
reserves the last frame or subgroup of frames in the CIS so the
application can write the end code to that reserved frame. The frame or
subgroup must be released before it can be retrieved with
xil_cis_get_bits_ptr(3) or xil_decompress(3). This affects the logic used
when making these calls, and also affects the logic used with loop
continuation conditions that call xil_cis_has_frame(3) to control CIS
decompression. A frame or subgroup is released under either of two
conditions: when it’s followed by an end code, or when it’s followed by
another frame or subgroup. See the Xil Programmer’s Guide for more
information on releasing reserved frames.

There can be multiple video-sequence headers associated with one end
code, since the header information changes as certain CIS attributes
change (within the XIL limitations that there are no width/height
changes). In addition, there may be multiple sequences within a
bitstream.

If frames are compressed into the CIS after the call to xil_cis_flush (3),

60 modified 21 April 1994

SunOS 5.6 Mpeg1 (3)

it’s the compressor’s responsibility to provide the video-sequence
header information per sequence. Before the application changes an
attribute that would result in a new sequence header, it must first output
an end code for the current sequence.

COMPRESSOR_INTRA_QUANTIZATION_TABLE

Description Set quantization matrix for I-frame compression.

Access set/get

Type Xil_unsigned8[64]

Values 1 - 255

Default ND = null

Notes Set by passing a pointer to an 8x8 matrix containing the desired
quantization values. The first element in the array must be an 8. A null
pointer sets the null default. Get returns a pointer to a matrix containing
the quantization values. A null pointer indicates the null default.

COMPRESSOR_NON_INTRA_QUANTIZATION_TABLE

Description Set quantization matrix for non-I-frame compression.

Access set/get

Type Xil_unsigned8[64]

Values 1 - 255

Default ND = null

Notes Set by passing a pointer to an 8x8 matrix containing the desired
quantization values. A null pointer sets the null default. Get returns a
pointer to a matrix containing the quantization values. A null pointer
indicates the null default.

COMPRESSOR_PATTERN

Description A structure containing a string of length greater than 0 and an integer
repeat count. The string sets the pattern of picture types (in display
order) which will be employed by the compressor in all subsequent
groups of pictures (GOPs). The repeat count determines the number of
times this pattern occurs in a GOP; i.e., the number of pictures in a GOP
is the length of the pattern string multiplied by the repeat count.
However, if the COMPRESSOR_PATTERN attribute is reset, if a new
quantization table is loaded via the
COMPRESSOR_INTRA_QUANTIZATION_TABLE attribute or the
COMPRESSOR_NON_INTRA_QUANTIZATION_TABLE attribute, or
if the COMPRESSOR_INSERT_VIDEO_SEQUENCE_END attribute is
set, the current GOP is terminated, and a new GOP is started on the next
frame with a picture pattern that is synchronized with the beginning of

modified 21 April 1994 61

Mpeg1 (3) SunOS 5.6

the current pattern string.

Access set/get

Type typedef struct __XilMpeg1Pattern {
char∗ pattern;
Xil_unsigned32 repeat_count; } XilMpeg1Pattern;

Values The pattern string must contain only the characters ’I’, ’B’, ’P’, and ’D’,
which indicate Intra, Predicted, Bidirectional, and DC pictures. The
repeat count must be greater than zero.

Default ND = null

Notes Set by passing a pointer to the pattern structure. A null string sets the
null default. Get returns a pointer to the structure. If this is null, the null
default is indicated. After a get which does not return null, it is the
application’s responsibility to free the pattern string and the structure
storage.

COMPRESSOR_PEL_ASPECT_RATIO

Description Describes the pixel aspect ratio of the compressed image.

Access set/get

Type
typedef enum {

NullDefault,
Ratio_1_0, /∗ 1.0 ∗/
Ratio_0_6735, /∗ 0.6735 ∗/
Ratio_0_7031, /∗ 0.7031 ∗/
Ratio_0_7615, /∗ 0.7615 ∗/
Ratio_0_8055, /∗ 0.8055 ∗/
Ratio_0_8437, /∗ 0.8437 ∗/
Ratio_0_8935, /∗ 0.8935 ∗/
Ratio_0_9157, /∗ 0.9157 ∗/
Ratio_0_9815, /∗ 0.9815 ∗/
Ratio_1_0255, /∗ 1.0255 ∗/
Ratio_1_0695, /∗ 1.0695 ∗/
Ratio_1_0950, /∗ 1.0950 ∗/
Ratio_1_1575, /∗ 1.1575 ∗/
Ratio_1_2015 /∗ 1.2015 ∗/

} XilMpeg1PelAspectRatio;

Values The enumeration forms a discrete set of "likely" possibilities defined in
the MPEG specification; they vary from .6375 to 1.2015.

Default ND = NullDefault

62 modified 21 April 1994

SunOS 5.6 Mpeg1 (3)

COMPRESSOR_PICTURE_RATE

Description Describes the picture rate in frames per second of the image sequence to
be compressed.

Access set/get

Type
typedef enum {

NullDefault,
Rate_23_976, /∗ 23.976 ∗/
Rate_24, /∗ 24.0 ∗/
Rate_25, /∗ 25.0 ∗/
Rate_29_97, /∗ 29.97 ∗/
Rate_30, /∗ 30.0 ∗/
Rate_50, /∗ 50.0 ∗/
Rate_59_94, /∗ 59.94 ∗/
Rate_60 /∗ 60.0 ∗/

} XilMpeg1PictureRate;

Values The enumeration forms a discrete set corresponding to commonly
available sources of digital or analog video, varying from 23.96 to 60.0.

Default ND = NullDefault

COMPRESSOR_SLICES_PER_PICTURE

Description Provide a suggestion to the compressor on how many slices to use in
each picture.

Access set/get

Type int value

Values 1 - number of macroblocks in the picture

Default ND = 0

modified 21 April 1994 63

Mpeg1 (3) SunOS 5.6

Notes Although the compressor is free to ignore this suggestion, setting this
attribute to a high value may result in an inefficient use of the available
bit rate.

COMPRESSOR_TIME_CODE

Description A time code that applies to the first picture (in display order) in the
group of pictures (GOP) to be encoded. It is included to provide video
time identification to applications.

Access set/get

Type
typedef struct __XilMpeg1TimeCode {

Xil_boolean drop_frame_flag;
Xil_unsigned32 hours;
Xil_unsigned32 minutes;
Xil_unsigned32 seconds;
Xil_unsigned32 pictures;

} XilMpeg1TimeCode;

Values The time code structure contains fields with integer values: hours (0-23),
minutes (0-59), seconds (0-59), and picture number (0-59).

Default ND = null

Notes Set by passing a pointer to the time code structure. A null pointer sets
the null default. Get returns a pointer to a structure containing the time
information or null if the null default is set.

MPEG
Decompression

Attributes

DECOMPRESSOR_QUALITY

Description Provide a suggestion to the decompressor, enabling it to trade off
reconstruction quality in exchange for an increase in decoding speed.

Access set/get

Type int value

Values Value can be between 1 and 100. A value of 100 sets the quality to
maximum. A value of 1 sets the speed to its maximum and allows the
quality to decrease to the minimum allowed by the decompressor. The
decompressor is free to ignore this suggestion.

Default 100

Notes The MPEG decompressor may increase speed by such devices as
decreasing the number of quantized coefficients that it uses in
reconstruction, rounding motion vectors to integer values, etc.

64 modified 21 April 1994

SunOS 5.6 Mpeg1 (3)

DECOMPRESSOR_BROKEN_LINK

Description Describes whether the B-pictures that precede the first I-picture in the
GOP can be correctly decoded.

Access get

Type Xil_boolean

Values FALSE - can be correctly decoded; TRUE - cannot be correctly decoded.

Default FALSE

Notes If this attribute is set to TRUE, it implies that the I or P picture from the
previous group required to form the predictions is not available
(presumably because it was removed as part of an editing process).

DECOMPRESSOR_CLOSED_GOP

Description Describes whether the group of pictures is open or closed.

Access get

Type Xil_boolean

Values FALSE - open group; TRUE - closed group.

Default None

Notes Closed groups can be decoded without using decoded pictures of the
previous group for motion compensation. Open groups require such
pictures to be available.

DECOMPRESSOR_FRAME_TYPE

Description Gives the picture type of the current picture in the group.

Access get

Type
typedef enum {

I, P, B, D
}XilMpeg1FrameType

Values Values of the enumerated type are I, P, B, and D.

Default None

Notes The values ’I’, ’B’, ’P’,and ’D’ indicate Intra, Predicted, Bidirectional, and
DC pictures.

DECOMPRESSOR_PEL_ASPECT_RATIO_VALUE

Description Describes the pixel aspect ratio of the decompressed image.

Access get

modified 21 April 1994 65

Mpeg1 (3) SunOS 5.6

Type float value

Values The set of possible values forms a discrete set of "likely" possibilities
defined in the MPEG specification; they vary from .6375 to 1.2015.

Default 1.0

DECOMPRESSOR_PICTURE_RATE_VALUE

Description Describes the picture rate of the MPEG encoded image sequence in
frames per second.

Access get

Type float value

Values The set of possible values forms a discrete set corresponding to
commonly available sources of digital or analog video, varying from
23.96 to 60.0.

Default None

DECOMPRESSOR_TEMPORAL_REFERENCE

Description Gives the number in the temporal reference field of the current picture
in the group.

Access get

Type int value

Values Between 0 and 1023

Default None

Notes This may be useful, because MPEG pictures are not transmitted in
display order, but rather in the order in which the decoder needs to
decode them.

DECOMPRESSOR_TIME_CODE

Description A time code that applies to the first picture (in display order) in a group
of pictures (GOP). It is included to provide video time identification to
applications.

Access get

Type
typedef struct __XilMpeg1TimeCode {

Xil_boolean drop_frame_flag;
Xil_unsigned32 hours;
Xil_unsigned32 minutes;
Xil_unsigned32 seconds;
Xil_unsigned32 pictures;

} XilMpeg1TimeCode;

66 modified 21 April 1994

SunOS 5.6 Mpeg1 (3)

Values The time code structure contains fields with integer values: hours (0-23),
minutes (0-59), seconds (0-59), and picture number (0-59).

Default None

EXAMPLES The following example opens and closes an MPEG CIS using the XIL library.

XilSystemState State;
XilCis cis;
State = xil_open();
cis = xil_cis_create(State, "Mpeg1");

-- calls to MPEG-specific compression routines --

xil_cis_destroy(cis);
xil_close(State);

The following example sets an MPEG CIS attribute called
COMPRESSOR_SLICES_PER_PICTURE to 3. Note that because this attribute is not a
structure, it is not necessary to pass the address of this attribute when setting it.

XilCis cis;

xil_cis_set_attribute(cis,"COMPRESSOR_SLICES_PER_PICTURE", (void ∗) 3);

The following example returns the value of an MPEG CIS attribute called
COMPRESSOR_SLICES_PER_PICTURE. Note that when getting an attribute, it is always
necessary to pass the address.

Xil_unsigned32 slices;
XilCis cis;

xil_cis_get_attribute(cis, "COMPRESSOR_SLICES_PER_PICTURE", (void ∗∗) &slices);

NOTES The xil_cis_set_attribute(3) and xil_cis_get_attribute(3) calls are used to modify the
default behavior of a specific compressor. Generic attributes of compressors are set by
individual function calls.

SEE ALSO xil_cis_create(3), xil_cis_get_attribute(3), xil_cis_get_bits_ptr(3), xil_compress(3),
xil_decompress(3), xil_cis_has_frame(3).

modified 21 April 1994 67

PhotoCD (3) SunOS 5.6

NAME PhotoCD − Reader for Kodak(tm) PhotoCD(tm) format

DESCRIPTION Kodak PhotoCD allows digital data generated by scanning 35-mm film to be encoded and
stored on a compact disc. The XIL library supports the following PhotoCD image
resolutions:

BASE/16 192 x 128 pixels
BASE/4 384 x 256
BASE 768 x 512
4BASE 1536 x 1024
16BASE 3072 x 2048
64BASE 6144 x 4096

Images on Kodak PhotoCD are stored in the XIL library’s "photoycc" color space. The
PhotoCD reader returns images in this color space. To display or further process the
images, you normally convert the images to an RGB color space, such as "rgb709," by
calling xil_color_convert(3) or xil_color_correct(3). Grayscale or "Black and White"
versions of the images may be obtained by converting to "y709" or "ylinear."

Using the PhotoCD
Reader

To access images from PhotoCD files, supply "SUNWPhotoCD" for the devicename
argument in xil_create_from_device(3), and specify NULL for the deviceObj argument.
After creating the device image, it may be used as a source to any XIL image operation.
Because PhotoCD is a read-only device, the device image created by this device handler
is read-only (see xil_is_readable(3) and xil_is_writable(3)). Trying to use the device
image as a destination will generate an error.

Use xil_get_device_attribute(3) and xil_set_device_attribute(3) to get and set the
PhotoCD reader attributes, as described below. The PhotoCD reader also recognizes
XilDevice objects so you can initialize attributes when the device image is createed. See
xil_device_create(3) for more details on XilDevice objects.

PhotoCD Reader
Attributes

The following paragraphs describe the attributes of the XIL PhotoCD reader. Note that
some attributes are "set/get" and others are "get-only." This is noted under the Access
heading for each attribute.

FILEPATH

Description Pathname to a PhotoCD image pack. Setting this attribute directs the
library to use the image pack with the given pathname when the device
image is used as a source to an operation. This attribute does not need
to be reset for each use of the image as a source, only when a different
image is desired. There is no default pathname; trying to use the
created device image before setting this attribute will cause an error to
be generated.

Access set/get

Type char ∗

68 modified 07 April 1994

SunOS 5.6 PhotoCD (3)

RESOLUTION

Description Describes the size of the image to be obtained from the PhotoCD. The
default value is XIL_PHOTOCD_BASE, or 768 x 512 pixels. After the
value has been set, the FILEPATH attribute may be changed without
changing the desired resolution. Conversely, the resolution may be
changed without resetting the path attribute to get different size of the
same image from the same image pack.

Access set/get

Type typedef enum{
XIL_PHOTOCD_16TH_BASE,
XIL_PHOTOCD_4TH_BASE,
XIL_PHOTOCD_BASE,
XIL_PHOTOCD_4X_BASE,
XIL_PHOTOCD_16X_BASE
XIL_PHOTOCD_64X_BASE

} XilPhotoCDResolution;

MAX_RESOLUTION

Description Describes the maximum size obtainable from this image pack. Not all
image sizes are available within an image pack (This is sometimes done
for pre-recorded PhotoCDs). This attribute returns the maximum size
which may be asked for using the RESOLUTION attribute. The value
returned is one of the sizes described by XilPhotoCDResolution.

Access get-only

Type XilPhotoCDResolution

ROTATION

Description Describes the amount of rotation required to display the image in its
proper orientation. The value returned is one of the enumeration
constants shown below.

Access get-only

Type typedef enum{
XIL_PHOTOCD_CCW0,
XIL_PHOTOCD_CCW90,
XIL_PHOTOCD_CCW180,
XIL_PHOTOCD_CCW270

} XilPhotoCDRotate;

modified 07 April 1994 69

PhotoCD (3) SunOS 5.6

ERRORS For a complete list of XIL error messages by number, consult Appendix B of the XIL
Programmer’s Guide.

EXAMPLES The following example opens a PhotoCD image, checking the image’s ROTATION
attribute so it can rotate the image, if necessary, before displaying it, and so the display
window has the appropriate dimensions. The example also converts the image to the
RGB 709 color space for display.

XilSystemState state;
XilImage ycc_photocd_image;
XilImage rgb_photocd_image;
XilImage rotated_photocd_image;
XilImage display;
XilPhotoCDRotate rotation;
unsigned int width;
unsigned int height;
unsigned int nbands;
unsigned int datatype;
char∗ pathname = "my_photocd_image";

/∗
∗ Open the XIL Library
∗/
state = xil_open();

if (state == NULL) {
fprintf(stderr, "Failed to open XIL library.0);
return 1;

}

/∗
∗ Create the PhotoCD device image.
∗/
ycc_photocd_image =

xil_create_from_device(state, "SUNWPhotoCD", NULL);

if (ycc_photocd_image == NULL) {
fprintf(stderr, "Failed to construct SUNWPhotoCD device image.0);
return 1;

}

/∗
∗ Set the file name. The default resolution is XIL_PHOTOCD_BASE.
∗/
xil_set_device_attribute(ycc_photocd_image, "FILEPATH", pathname);

70 modified 07 April 1994

SunOS 5.6 PhotoCD (3)

/∗
∗ Get the rotation attribute and image’s width and height.
∗/
xil_get_device_attribute(ycc_photocd_image,

"ROTATION", (void∗∗)&rotation);

xil_get_info(ycc_photocd_image, &width, &height, &nbands, &datatype);

/∗
∗ Transpose (rotate) the image based on the rotation angle.
∗ Depending upon the rotation angle, construct an image to store
∗ the transpose results.
∗/
switch (rotation) {
case XIL_PHOTOCD_CCW0:
rotated_photocd_image = ycc_photocd_image;
break;

case XIL_PHOTOCD_CCW90:
/∗
∗ Flip the image’s width and the height.
∗/
rotated_photocd_image =

xil_create(state, height, width, nbands, datatype);
xil_transpose(ycc_photocd_image,

rotated_photocd_image, XIL_FLIP_90);
xil_get_info(rotated_photocd_image, &width, &height, NULL, NULL);
break;

case XIL_PHOTOCD_CCW180:
rotated_photocd_image =

xil_create(state, width, height, nbands, datatype);
xil_transpose(ycc_photocd_image,

rotated_photocd_image, XIL_FLIP_180);
break;

case XIL_PHOTOCD_CCW270:
/∗
∗ Flip the image’s width and the height.
∗/
rotated_photocd_image =

xil_create(state, height, width, nbands, datatype);
xil_transpose(ycc_photocd_image,

rotated_photocd_image, XIL_FLIP_270);
xil_get_info(rotated_photocd_image, &width, &height, NULL, NULL);

modified 07 April 1994 71

PhotoCD (3) SunOS 5.6

break;
}

/∗
∗ Perform a color space conversion to rgb709.
∗/
rgb_photocd_image =

xil_create(state, width, height, nbands, datatype);

/∗
∗ Set color spaces to for color space conversion
∗/
xil_set_colorspace(rotated_photocd_image,

xil_colorspace_get_by_name(state, "photoycc"));
xil_set_colorspace(rgb_photocd_image,

xil_colorspace_get_by_name(state, "rgb709"));

/∗
∗ Convert the image’s color space so it can be displayed
∗/
xil_color_convert(rotated_photocd_image, rgb_photocd_image);

/∗
∗ ...code to open an X window of correct depth...
∗/
display = xil_create_from_window(state, xdisplay, xwindow);

if (display == NULL) {
fprintf(stderr, "Failed to construct display device0);
return 1;

}

/∗
∗ Copy the RGB image to the display and continue to
∗ redisplay on Expose events.
∗/
xil_copy(rgb_photocd_image, display);

while (1) {
XNextEvent(xdisplay, &event);
if (event.xany.type == Expose) {

xil_copy(rgb_photocd_image, display);
} else if (event.xany.type == ButtonPress)

break;
}

72 modified 07 April 1994

SunOS 5.6 PhotoCD (3)

}

/∗
∗ Destroy images.
∗/
xil_destroy(display);
xil_destroy(rgb_photocd_image);

if(rotated_photocd_image != ycc_photocd_image) {
xil_destroy(rotated_photocd_image);

}

xil_destroy(ycc_photocd_image);

NOTES The xil_set_device_attribute(3) and xil_get_device_attribute(3) calls are used to modify
the default behavior of specific device images. Generic attributes of images are set by
individual function calls.

SEE ALSO xil_color_convert(3), xil_create_from_device(3), xil_open(3).

modified 07 April 1994 73

Storage (3) SunOS 5.6

NAME Storage − Storage types and formats for XIL images

DESCRIPTION Storage is the term used to describe the actual data of an XIL image. Although it is
possible to write applications that use XIL without accessing the image data directly, XIL
allows the user to access the data when necessary. The method used for accessing storage
has changed in XIL1.3, although the previous XIL storage API has been maintained for
backwards compatability.

Storage Formats In XIL1.3, it is possible to store an image in non-contiguous tiles. A tile represents all of
the storage for its spatial region of the image. If there are three bands in an image, each
tile represents three bands of storage, although each of the tiles may be stored as a
different storage type. In XIL1.3, there are three possible types of storage
(XilStorageType).

XIL Storage Types XIL_PIXEL_SEQUENTIAL indicates each band is one data size away from the next band.
The pixel stride can be arbitrary, but all of the storage of all of the bands for a tile must be
in a single memory buffer. Each subsequent band can be accessed from the first band’s
data pointer, since each subsequent data pointer is guaranteed to increase monotonically.
Neither the scanline nor the pixel stride can change per-band. This storage format is
supported for non-BIT images.

XIL_BAND_SEQUENTIAL indicates that all bands of data for a tile are stored in a single
memory buffer. The pixel stride must be 1. Because each band follows the previous
band, there is a predictable band stride. This format is supported for image types.

XIL_GENERAL indicates that each band of the data storage can be in a different location
and that there is not necessarily a correlation between the data pointers. Thus, the pixel
stride can be greater than 1, and the data pointers are not required to increase monotoni-
cally starting with the first data pointer. The data for each band is accessed through a
separate data pointer. Another important feature of this storage type is the capability for
the scanline stride and pixel stride to be different for each band. The band stride is
undefined.

XIL_BIT images may only be stored as XIL_BAND_SEQUENTIAL or XIL_GENERAL. All
other XIL1.3 image types (XIL_BYTE, XIL_SHORT, and XIL_FLOAT) may be stored in
any of the three supported formats.

Xil1.3 VS XIL1.2 Previous versions of XIL provided access to image storage solely via the
xil_get_memory_storage call and the xil_set_memory_storage call. These calls are still
supported, but when used with images whose storage is tiled, or is not
XIL_PIXEL_SEQUENTIAL (except for XIL_BIT images which expects
XIL_BAND_SEQUENTIAL storage), the data will first be copied into a contiguous buffer
of the appropriate storage type before returning. This reformatting can be expensive. In
addition, the new storage API may not be mixed with the previous
xil_get_memory_storage() and xil_set_memory_storage() calls in the same program.

74 modified 01 January 1997

SunOS 5.6 Storage (3)

Using the new
Storage API

There are two basic approaches for getting and setting storage through the storage API.
The xil_get_tile_storage() and xil_set_tile_storage() calls allow access to each tile of an
image individually and the data pointers for the tiles are references into the actual image
data. The xil_get_storage_with_copy() and xil_set_storage_with_copy() calls allow
access to the whole image as a contiguous buffer, but the data is a copy of the XIL image,
and changes made through the data pointers will not affect the internal image storage.

In previous versions of XIL and as a default in this version, explicitly setting storage lay-
out information does not guarantee that the image data format or location will not
change after the data is imported back into XIL. A flag has been added to the XilImage
object to instruct XIL on what may be done with the supplied storage when xil_import is
called. The storage movement flag takes one of three values: XIL_ALLOW_MOVE,
XIL_KEEP_STATIONARY, and XIL_REPLACE.

Storage Movement
Flags

XIL_ALLOW_MOVE is the default and mimics the behavior of previous versions of XIL
(that is, XIL is free to move the data to a different location or to reformat it). Upon a
subsequent call to xil_export, there is no guarantee that storage is in the same place or
format, and the user must reacquire storage information before processing. This
flexibility allows XIL to provide the maximum acceleration.

XIL_KEEP_STATIONARY instructs XIL to leave the storage in exactly the same location
and in the same format even after xil_import is called. This setting would typically be
used when the caller expects to export the image again after one of a very few operations,
and wants to avoid the cost of any data copying or reformatting which might occur. By
activating this flag, some storage devices may refuse to operate on the image and there-
fore the image will not be available for acceleration by the device’s imaging routines. This
may have a negative effect on the application’s performance. In this case, the user can
continue to use the previously acquired data pointers and data layout information for
processing.

XIL_REPLACE instructs XIL to return the storage to the same location and format on
subsequent image exports. This allows XIL to move the storage if an accelerator is avail-
able to speed processing operations, but ensures that the caller gets the data back in the
same location and format. XIL_REPLACE may also have drastic negative effects on
application performance due to repeated copying of the data from one format to another,
but the user can continue to use the previously acquired data pointers and data layout
information for processing.

NOTES In order to access XIL_FLOAT data or to use the XIL_GENERAL storage type, it is
necessary to use only the new storage API.

SEE ALSO xil_storage_create(3), xil_get_memory_storage(3), xil_get_storage_with_copy(3),
xil_get_tile_storage(3) il_get_tile_storage (3)

modified 01 January 1997 75

xil_absolute (3) SunOS 5.6

NAME xil_absolute − find the absolute value of pixels of an image

SYNOPSIS #include <xil/xil.h>

void xil_absolute (XilImage src,
XilImage dst);

DESCRIPTION xil_absolute () performs a pixel-by-pixel abs() operation on src image and stores the
result in the dst (destination) image.

ERRORS For a complete list of XIL error messages by number, consult Appendix B of the XIL
Programmer’s Guide.

EXAMPLES Find the absolute value of pixels in image1 and store the result in dst :

XilImage image1, dst;

xil_absolute(image1, dst);

NOTES Source and destination images must be of the same data type and have the same number
of bands. In-place operations are supported.

76 modified 04 March 1994

SunOS 5.6 xil_add (3)

NAME xil_add, xil_add_const − image addition operations

SYNOPSIS #include <xil/xil.h>

void xil_add (XilImage src1,
XilImage src2,
XilImage dst);

void xil_add_const (XilImage src1,
float ∗constants,
XilImage dst);

DESCRIPTION xil_add () performs a pixel-by-pixel addition of the src2 image to the src1 image and
stores the result in the dst (destination) image. If the result of the operation is out of
range for a particular data type, the result is clamped to the minimum or maximum value
for the data type. Results for XIL_BYTE operations, for example, are clamped to 0 if they
are less than 0 and 255 if they are greater than 255.

xil_add_const () performs a pixel-by-pixel addition of the constants values to the src1
image and stores the result in the dst (destination) image. For an n-band image, n float
values must be provided, one per band. Pixel values are rounded and clipped according
to the image data type.

ERRORS For a complete list of XIL error messages by number, consult Appendix B of the XIL
Programmer’s Guide.

EXAMPLES Add image2 to image1 and store the result in dst :

XilImage image1, image2, dst;

xil_add(image1, image2, dst);

Add constants to 4-band image1 and store the result in dst :

XilImage image1, dst;
float constants[4];

constants[0] = 1.0;
constants[1] = 1.0;
constants[2] = 1.0;
constants[3] = 0.0;
xil_add_const(image1, constants, dst);

NOTES Source and destination images must be of the same data type and have the same number
of bands. In-place operations are supported.

modified 3 August 1993 77

xil_affine (3) SunOS 5.6

NAME xil_affine − perform an affine transform on an image

SYNOPSIS #include <xil/xil.h>

void xil_affine (XilImage src,
XilImage dst ,
char ∗interpolation ,
float ∗matrix);

DESCRIPTION This function performs an affine transform on an image. src is the source image handle.
dst is the destination image handle. interpolation is a string that specifies the type of
interpolation to be used. The supported interpolation types are nearest (nearest
neighbor), bilinear, bicubic, and general. general interpolation type allows user to specify a
separable function of the pixels in a rectangular region surrounding the src pixel when
computing the destintation pixel. matrix is a six-entry floating point array that defines an
arbitrary affine transform on a source image. This transform combines a scale, rotation,
translation and shearing. The order of the entries in the matrix is: a, b, c, d, tx, ty. The
affine transform equations are as follows:

xd = a∗xs + c∗ys + tx
yd = b∗xs + d∗ys + ty

where xs and ys are coordinates in the source image, and xd and yd are coordinates in the
destination image.

ROI Behavior If an ROI (region of interest) is attached to the source image, it is used as a read mask and
is transformed into the destination image’s space, where it is intersected with the
destination ROI (if there is one).

ERRORS For a complete list of XIL error messages by number, consult Appendix B of the XIL
Programmer’s Guide.

EXAMPLES Transform an image using nearest neighbor interpolation and the following affine
transform matrix: {2.0, 0.0, 0.0, 2.0, 10.0, 10.0}. This transform matrix scales an image by
2.0 in width and height) and translates it by 10 pixels in both the x and y directions.

XilImage src, dst;
float matrix[6] = {2.0, 0.0, 0.0, 2.0, 10.0, 10.0};

xil_affine(src, dst, "nearest", matrix);

NOTES The source and destination images to be transformed must have the same data type and
number of bands. This operation cannot be performed in place.

SEE ALSO xil_translate(3), xil_rotate(3), xil_scale(3), xil_transpose(3), xil_tablewarp(3),
xil_subsample_adaptive(3).

78 modified 10 September 1996

SunOS 5.6 xil_affine (3)

modified 10 September 1996 79

xil_and (3) SunOS 5.6

NAME xil_and, xil_and_const − bitwise logical AND operations

SYNOPSIS #include <xil/xil.h>

void xil_and (XilImage src1,
XilImage src2,
XilImage dst);

void xil_and_const (XilImage src1,
unsigned int ∗constants,
XilImage dst);

DESCRIPTION xil_and () performs a bitwise logical AND operation on each pixel of the src2 (source)
image with the src1 and stores the results in the dst (destination) image.

xil_and_const () performs a bitwise logical AND operation on each pixel of the src1
(source) image with the constants values and stores the results in the dst (destination)
image. For an n-band image, n unsigned integers must be provided, one per band.

ERRORS For a complete list of XIL error messages by number, consult Appendix B of the XIL
Programmer’s Guide.

EXAMPLES Bitwise logical AND image2 and image1 and store the result in dst :

XilImage image1, image2, dst;

xil_and(image1, image2, dst);

Bitwise logical AND 4-band image1 and 4 constants and store the result in dst:

XilImage image, dst;
unsigned int constants[4];

constants[0] = 1;
constants[1] = 0;
constants[2] = 0;
constants[3] = 0;
xil_and_const(image, constants, dst);

NOTES Source and destination images must be the same data type and have the same number of
bands. In-place operations are supported. Logical operations (AND, OR, XOR, NOT, and
so on) are not supported for XIL_FLOAT data type.

80 modified 03 August 1993

SunOS 5.6 xil_band_combine (3)

NAME xil_band_combine − interband linear combination operation

SYNOPSIS #include <xil/xil.h>

void xil_band_combine (XilImage src,
XilImage dst ,
XilKernel matrix);

DESCRIPTION This function performs the arbitrary interband linear combination of an image using the
specified matrix. src is the source image handle. dst is the destination image handle.
matrix is the floating point matrix used to perform the linear combination. The width of
the matrix must be one larger than the number of bands in the source image. The height
of the matrix must be equal to the number of bands in the destination image. Because the
matrix can be of arbitrary size, this function can be used to produce a destination image
with a different number of bands from the source image.

The destination image is formed by performing a matrix-multiply operation between the
bands of the source image and the specified matrix. The extra column of values is a
constant that is added after the matrix-multiply operation takes place. The matrix is
implemented as an XilKernel. For a source pixel with N bands represented by
(s0,s1,s2,...,sN-1), and a destination pixel with M bands represented by (d0,d1,d2,...,
dM-1), the corresponding (N+1) x M matrix:

a00 a10 a20 ... aN0
a01 a11 a21 ... aN1
...
a0(M-1) a1(M-1) a2(M-1) ... aN(M-1)

would give for the first element in the destination pixel:

d0 = a00s0 + a10s1 + a20s2 + ... + a(N-1)0s(N-1) + aN0

For example, the following 4x3 matrix would give a destination image equal to the source
image:

1.0 0.0 0.0 0.0
0.0 1.0 0.0 0.0
0.0 0.0 1.0 0.0

This 5x1 matrix would select the second band of a 4 band image:

0.0 1.0 0.0 0.0 0.0

This 4x1 matrix would generate a single-band luminance image from an RGB image with
the standard bgr memory format:

0.114 0.587 0.299 0.0

modified 15 June 1993 81

xil_band_combine (3) SunOS 5.6

This 4x3 matrix would invert the second band of a 3-band image:

1.0 0.0 0.0 0.0
0.0 -1.0 0.0 255.0
0.0 0.0 1.0 0.0

Notice that the fourth column of this last matrix corresponds to the "constant" that is
added after the multiply-add steps. It should be in the range appropriate for the source
and destination data types.

ERRORS For a complete list of XIL error messages by number, consult Appendix B of the XIL
Programmer’s Guide.

EXAMPLES The following example generates a single-band image that is the normalized sum of all
the bands of a three-band source image.

#include <xil/xil.h>
XilSystemState State;
XilImage src, dst;
XilKernel matrix;
unsigned int width = 4, height = 1;
float ∗matrix_values = {0.333, 0.333, 0.333, 0.0}

State = xil_open();

matrix = xil_kernel_create(State, width, height, 0, 0, matrix_values);

/∗ create a dst image the same type as source, but only 1 band ∗/
dst = xil_create(State, xil_get_width(src), xil_get_height(src),

1, xil_get_datatype(src));

xil_band_combine(src, dst, matrix);

NOTES The key pixel values for the XilKernel object are not used by xil_band_combine (), and
are ignored.

SEE ALSO xil_kernel_create(3)

82 modified 15 June 1993

SunOS 5.6 xil_black_generation (3)

NAME xil_black_generation − adjust the amount of black to be added to or removed from a
CMYK image

SYNOPSIS #include <xil/xil.h>

void xil_black_generation (XilImage src,
XilImage dst ,
float black,
float undercolor);

DESCRIPTION This function adjusts the amount of black to be added to and removed from an image.
Both src and dst are image handles to a 4-band CMYK image. black is the fraction of color
that forms the K channel. undercolor represents the fraction of color taken away from
each of the C, M, and Y channels.

Channels for each pixel are defined as follows:

black channnel = black ∗ (minimum of C, M, Y)
cyan channel = C - (undercolor ∗ (minimum of C, M, Y))
magenta channel = M - (undercolor ∗ (minimum of C, M, Y))
yellow channel = Y - (undercolor ∗ (minimum of C, M, Y))

ERRORS For a complete list of XIL error messages by number, consult Appendix B of the XIL
Programmer’s Guide.

EXAMPLES Adjust a CMYK image:

XilImage src, dst;

xil_black_generation(src, dst, 0.7, 0.5);

NOTES It is assumed that all imported CMYK images are generated by using the same function
for black generation and undercolor removal. Regions of interest are ignored when you
perform undercolor removal. In-place operations are supported.

SEE ALSO xil_color_convert(3), xil_set_colorspace(3).

modified 16 September 1993 83

xil_blend (3) SunOS 5.6

NAME xil_blend − blend two images according to an alpha image

SYNOPSIS #include <xil/xil.h>

void xil_blend (XilImage src1,
XilImage src2,
XilImage dst ,
XilImage alpha);

DESCRIPTION This function blends two images according to an alpha image. For each pixel in the
sources, the corresponding pixel in the alpha image provides a value that determines a
linear combination of the source pixel values. The destination value is determined by this
equation:

dst = (1.0 - normalize(alpha)) ∗ src1 + normalize(alpha) ∗ src2

src1 and src2 are the source image handles. dst is the destination image handle. alpha is
the alpha image handle.

ERRORS For a complete list of XIL error messages by number, consult Appendix B of the XIL
Programmer’s Guide.

EXAMPLES Blend src1 and src2 according to alpha and put the result in dst:

XilImage src1, src2, dst, alpha;

xil_blend(src1, src2, dst, alpha);

NOTES The source images and destination images must be the same type and have the same
number of bands. The alpha image must be a single-band image and can be any of the
supported data types. In-place operations are supported.

84 modified 10 June 1993

SunOS 5.6 xil_cast (3)

NAME xil_cast − cast an image from one data type into another

SYNOPSIS #include <xil/xil.h>

void xil_cast (XilImage src,
XilImage dst);

DESCRIPTION This routine casts an image of one data type into the data type specified by the dst
(destination) image. When a data type with a lesser number of bits is cast into a data type
with a greater number of bits, the destination pixel values are the src (source) image’s
pixel values padded with zeroes in the most significant bits. When a data type with a
greater number of bits is cast into a data type with a lesser number of bits, the
destination image’s pixel values are a mask of the appropriate number of least significant
bits of the source image’s pixel values. To control the indices in the output image, pass
the image through a lookup table rather than casting it.

ERRORS For a complete list of XIL error messages by number, consult Appendix B of the XIL
Programmer’s Guide.

EXAMPLES Cast byte image image1 into a bit image and store the result in image2 :

XilSystemState state;
XilImage image1, image2;

image1 = xil_create(state, 512, 512, 3, XIL_BYTE);
image2 = xil_create(state, 512, 512, 3, XIL_BIT);

.

.

.
xil_cast(image1, image2);

NOTES Source and destination images must have the same width, height, and number of bands.

SEE ALSO xil_lookup_create(3).

modified 16 September 1996 85

xil_choose_colormap (3) SunOS 5.6

NAME xil_choose_colormap − choose a best-fit colormap for a 24 bit 3-band image

SYNOPSIS #include <xil/xil.h>

XilLookup xil_choose_colormap (XilImage src,
unsigned int size);

DESCRIPTION This function creates and returns an XilLookup colormap with size entries to represent the
full-color (usually 24 bit) src (source) image. size specifies the number of colormap entries
in the resulting XilLookup object. xil_choose_colormap () accepts only 3 banded
XIL_BYTE source images. The colormap which is produced will also have 3 output
bands.

The colormap selection algorithm attempts to produce a set of size color triplets which
produce the minimum amount of error when used to represent the 24 bit image. The
normal use for this function is to produce a colormap which can be used on an 8 bit
indexed-color framebuffer to display 24 bit color images. It would be used in conjunction
with xil_nearest_color(3), which would map the color triplets in the image to the closest
entry in the colormap.

The user is responsible for destroying the lookup table when it is no longer required,
using xil_lookup_destroy(3).

RETURN VALUES The desired XilLookup object, or NULL (could not generate XilLookup).

ERRORS For a complete list of XIL error messages by number, consult Appendix B of the XIL
Programmer’s Guide.

EXAMPLES Create a reasonable XilLookup with 216 colormap entries to represent the full-color source
image:

XilImage src; /∗ 3 band XIL_BYTE source image ∗/
XilImage dst; /∗ 1 band XIL_BYTE destination image ∗/
XilLookup cmap;

/∗ Leave some free colors for the window system ∗/
unsigned int cmap_size = 216;

/∗ Generate the best colormap ∗/
cmap = xil_choose_colormap(src, cmap_size);

/∗ Assign the closest colormap entries ∗/
xil_nearest_color(src, dst, cmap);

86 modified 17 September 1996

SunOS 5.6 xil_cis_attempt_recovery (3)

NAME xil_cis_attempt_recovery − attempt recovery after an error occurs in a compressed image
sequence

SYNOPSIS #include <xil/xil.h>

void xil_cis_attempt_recovery (XilCis cis,
unsigned int nframes,
unsigned int nbytes);

DESCRIPTION This function is used to attempt recovery from a non-autorecoverable error that occurs
during the playback of a compressed image sequence (CIS). An non-autorecoverable
error is an error from which the decompressor cannot automatically recover, such as a
bitstream decoding error.

cis is the input CIS in which an error occurred.

nframes is the maximum number of frames after the current read frame which will be
parsed to attempt recovery from a non-autorecoverable error.

nbytes is the maximum number of bytes past the read point which will be parsed to
attempt recovery from an error.

If both of these values are zero, then the attempt at recovery will search forward as many
bytes or frames as necessary. If nframes is non-zero and nbytes is zero, then the error
recovery mechanism will attempt to search nframes ahead with its best approximation of
exactly how many bytes that should be. If nbytes is non-zero and nframes is zero, the
search will go through nbytes, regardless of the number of frames.

xil_cis_attempt_recovery () only needs to be called for non-autorecoverable errors.
Consult xil_cis_get_autorecover(3) for details.

Both autorecoverable and non-autorecoverable errors are reported to the user through
the error handling mechanism. The user decides whether to attempt recovery of a non-
autorecoverable error.

If the error is auto-recoverable, after reporting the error, the attribute AUTO_RECOVER
(see xil_cis_get_autorecover(3)) is checked to determine whether to attempt recovery. If
the attribute is set to TRUE, recovery is attempted.

Non-autorecoverable errors are handled similarly, except that the AUTO_RECOVER
attribute has no effect on how these errors are handled. When a non-autorecoverable
error is detected, the CIS is marked invalid before the user is notified of the error. The
CIS is marked CIS_READ_INVALID for decompression and CIS_WRITE_INVALID for
compression (see xil_cis_get_read_invalid(3) and xil_cis_get_write_invalid(3)). Thus,
if an error occurs in one of the decompression routines, then compression routines or
xil_cis_put_bits(3) can still write into the CIS.

After a non-autorecoverable error has occurred, the user can validate the CIS in one of
three ways: by calling xil_cis_reset(3), seeking to a valid frame, or asking XIL to attempt
recovery using xil_cis_attempt_recovery (). If the user attempts to seek to a valid frame
and the CIS cannot successfully complete the request, a seek error is generated.

modified 12 August 1993 87

xil_cis_attempt_recovery (3) SunOS 5.6

To find out where the CIS is located after the call to xil_cis_attempt_recovery (), use
xil_cis_get_read_frame(3) to get the best approximation of the current read_frame, and
xil_cis_has_data(3) to get the exact number of bytes left in the CIS. By checking and
comparing the values returned by xil_cis_has_data () before and after calls to
xil_cis_attempt_recovery (), you can determine the exact number of bytes that were
searched through. It is also possible to determine the approximate number of frames that
were skipped by checking and comparing the values returned by
xil_cis_get_read_frame(3) before and after calls to xil_cis_attempt_recovery (). If
xil_cis_attempt_recovery () succeeds, the CIS is returned to a VALID state. You can
determine whether this function was successful by testing the state of the CIS with a call
to xil_get_read_invalid(3) or xil_get_write_invalid(). If you set the number of bytes or
number of frames to check through to a low value, multiple calls to this function may be
necessary.

CIS error recovery has been implemented so that xil_cis_attempt_recovery () can be
called from the error handling function itself. If this function is called during the error
handling function, the current decompress call will fail regardless of whether recovery
was successful, the CIS will be marked VALID, and the next decompress call will succeed
(unless another error is encountered).

ERRORS For a complete list of XIL error messages by number, consult Appendix B of the XIL
Programmer’s Guide.

EXAMPLES In this example, when an error occurs, the error handler is called and the user gives the
CIS permission to search indefinitely in an attempt to recover. If the attempt is
unsuccessful, then xil_cis_has_data(3) fails, and the decompression loop is halted as if
the video concluded.

/∗
∗ Example Error Recovery
∗/

Xil_boolean
my_error_handler(XilError error)

{

XilCis cis;
XilObject obj;

/∗ If an XIL-CIS error occurred ∗/
if ((xil_error_get_category(error) == XIL_ERROR_CIS_DATA) &&

((obj = xil_error_get_object(error)) != NULL) &&
(xil_object_get_type(obj) == XIL_CIS)) {

cis = (XilCis)obj;

/∗ Has an error occurred that we can attempt to

88 modified 12 August 1993

SunOS 5.6 xil_cis_attempt_recovery (3)

∗ recover from? If so, attempt recovery.
∗/
if (xil_cis_get_read_invalid(cis)) {

xil_cis_attempt_recovery(cis, 0, 0);

/∗ If the CIS is now OK, we’ve handled it correctly. ∗/
if (!xil_cis_get_read_invalid(cis))

return TRUE;
}

}
return xil_call_next_error_handler(error);

}

main() {

XilCis cis;
XilSystemState state;
XilImage image;
XilImage displayimage;
XilLookup lookup;

if ((state = xil_open()) == NULL) {
printf(" Couldn’t initialize XIL\n");
exit(1);

}

/∗ install error handler ∗/
xil_install_error_handler(state, my_error_handler);

while(xil_cis_has_data(cis)) {
xil_decompress(cis, image);
xil_nearest_color(image, displayimage, lookup);

}
}

NOTES Occasionally, it is possible that error recovery may revalidate the CIS, but be off-sync
from the number of frames that would have been in the CIS if the data had been correct.
This can cause another error later, when the CIS reaches the end of the data inserted
through the xil_cis_put_bits(3) call. It may then find that the number of frames that it
decoded from the data chunk is different than what the user said was in it.

modified 12 August 1993 89

xil_cis_attempt_recovery (3) SunOS 5.6

SEE ALSO xil_cis_get_autorecover(3), xil_cis_get_read_invalid(3), xil_cis_get_write_invalid(3),
xil_cis_get_read_frame(3), xil_cis_put_bits(3), xil_call_next_error_handler(3),
xil_cis_reset(3).

90 modified 12 August 1993

SunOS 5.6 xil_cis_create (3)

NAME xil_cis_create − create a new compressed image sequence

SYNOPSIS #include <xil/xil.h>

XilCis xil_cis_create (XilSystemState system_state ,
char ∗compressorname);

DESCRIPTION This function creates a new compressed image sequence (CIS). A CIS is a container that
holds compressed images. On creation, it is associated with a particular type of
compressor and will then hold only frames of that type.

system_state is a handle to the object returned by xil_open(3) when it is invoked.

compressorname is a string that provides the name of a compressor recognized by the XIL
library. XIL currently supports the following set of compression types.

"Jpeg"
"JpegLL"
"Cell"
"CellB"
"faxG3"
"faxG4"
"Mpeg1"
"H261"

Consult the man page of the same name for details about the individual compression
types.

If this function is successful, then a handle to an XilCis object is returned, which may be
used in subsequent calls to xil_cis-routines. When the XilCis object is no longer needed,
release the resources associated with the CIS by passing its handle to xil_cis_destroy(3).

ERRORS If the xil_cis_create() call fails, a value of NULL is returned. For a complete list of XIL
error messages by number, consult Appendix B of the XIL Programmer’s Guide.

EXAMPLES Open and close a JPEG CIS using the XIL library:

XilSystemState State;
XilCis cis;
State = xil_open();
cis = xil_cis_create(State, "Jpeg");

-- calls to JPEG-specific compression routines --

xil_cis_destroy(cis);
xil_close(State);

SEE ALSO xil_open(3), xil_close(3), xil_cis_destroy(3), xil_cis_flush(3), xil_cis_get_state(3),
xil_cis_put_bits(3), xil_cis_reset(3), xil_cis_seek(3), xil_compress(3), xil_decompress(3).

modified 18 August 1993 91

xil_cis_destroy (3) SunOS 5.6

NAME xil_cis_destroy − destroy a compressed image sequence

SYNOPSIS #include <xil/xil.h>

void xil_cis_destroy (XilCis cis);

DESCRIPTION This function destroys a compressed image sequence, freeing resources associated with
the XilCis structure. Any data that was inserted into the XilCis with
xil_cis_put_bits_ptr(3) is not automatically freed, but the user-supplied callback function
done_with_data is called, if present and non-NULL.

ERRORS For a complete list of XIL error messages by number, consult Appendix B of the XIL
Programmer’s Guide.

EXAMPLES Deallocate storage associated with a compressed image sequence:

XilCis cis;

xil_cis_destroy (cis);

SEE ALSO xil_cis_create(3), xil_cis_put_bits_ptr(3).

92 modified 10 June 1993

SunOS 5.6 xil_cis_flush (3)

NAME xil_cis_flush − complete pending operations for a compressed image sequence

SYNOPSIS #include <xil/xil.h>

void xil_cis_flush (XilCis cis);

DESCRIPTION This function instructs the compressor to complete any pending write (xil_compress)
operations for the compressed image sequence cis.

ERRORS For a complete list of XIL error messages by number, consult Appendix B of the XIL
Programmer’s Guide.

EXAMPLES Flush a compressed image sequence:

XilCis cis;

xil_cis_flush(cis);

SEE ALSO xil_compress(3)

modified 10 June 1993 93

xil_cis_get_attribute (3) SunOS 5.6

NAME xil_cis_get_attribute, xil_cis_set_attribute − get and set a compressor attribute

SYNOPSIS #include <xil/xil.h>

int xil_cis_get_attribute (XilCis cis,
char ∗attribute ,
void ∗∗value);

int xil_cis_set_attribute (XilCis cis,
char ∗attribute,
void ∗data);

DESCRIPTION xil_cis_get_attribute () returns the value of the attribute of the cis (the specified
compressed image sequence).

xil_cis_set_attribute () sets attribute of cis to data, a generic pointer to the attribute value.

Available attributes are described on the specific man pages for the compressors and
decompressors available with the XIL library. See xil_cis_create(3) for the list of XIL
supported codecs.

ERRORS For a complete list of XIL error messages by number, consult Appendix B of the XIL
Programmer’s Guide.

EXAMPLES This example sets a JPEG CIS attribute called ENCODE_INTERLEAVED to TRUE.

XilCis cis;

xil_cis_set_attribute(cis,"ENCODE_INTERLEAVED", (void ∗) TRUE);

This example returns the value of a JPEG CIS attribute called ENCODE_INTERLEAVED.

Xil_boolean encode_type;
XilCis cis;

xil_cis_get_attribute(cis, "ENCODE_INTERLEAVED", (void ∗∗) &encode_type);

NOTES The xil_cis_set_attribute () and xil_cis_get_attribute () calls are used to modify the
default behavior of a specific compressor. Generic attributes of compressors are set by
individual function calls.

94 modified 18 August 1993

SunOS 5.6 xil_cis_get_attribute (3)

SEE ALSO xil_compress(3), xil_cis_create(3), xil_choose_colormap(3), xil_decompress(3),
xil_open(3), xil_cis_get_bits_ptr(3), xil_cis_get_compression_type(3),
xil_cis_get_compressor(3), xil_cis_get_input_type(3), xil_cis_get_max_frames(3),
xil_cis_get_output_type(3), xil_cis_get_start_frame(3), xil_cis_has_data(3),
xil_cis_put_bits(3), xil_cis_reset(3), Jpeg(3), JpegLL(3), Cell(3), CellB(3), faxG3(3),
faxG4(3), Mpeg1(3), H261(3).

modified 18 August 1993 95

xil_cis_get_autorecover (3) SunOS 5.6

NAME xil_cis_get_autorecover, xil_cis_set_autorecover − allow autorecovery after a CIS error
occurs

SYNOPSIS #include <xil/xil.h>

Xil_boolean xil_cis_get_autorecover (XilCis cis);

void xil_cis_set_autorecover (XilCis cis,
Xil_boolean on_off);

DESCRIPTION This function gives permission to the XIL CIS compression and decompression functions
to attempt recovery if an autorecoverable bitstream error occurs.

cis is the compressed image sequence (CIS) that is being compressed or decompressed.

on_off is a boolean value use in xil_cis_set_autorecover(3) to set the autorecover state.

The default value returned by xil_cis_get_autorecover () is FALSE (or OFF), which indi-
cates that autorecovery will not be attempted after a bitstream error occurs unless
xil_cis_set_autorecover () is called to turn it ON.

Two types of bitstream errors can occur during decompression of a CIS: autorecoverable
and non-autorecoverable. An autorecoverable error is one with a predefined method of
recovery. A non-autorecoverable error requires user intervention for recovery. When a
non-autorecoverable error is detected, the CIS is marked invalid before the user is
notified of the error. If a CIS is marked CIS_READ_INVALID for decompression, no
further operations can be performed on this CIS until it has been marked valid again. A
bitstream error in CIS compression and decompression can occur in any action on a CIS
that requires the CIS to decode the bitstream or change the current read frame.

Calling this routine for codecs that do not have autorecoverable errors (for example, Cell)
will have no effect.

After a non-autorecoverable error occurs, the user can revalidate the CIS in one of three
ways: by calling xil_cis_reset(3) to remove any compressed data currently stored in the
CIS, by calling xil_cis_seek(3) to seek to a valid frame, or by attempting recovery using
xil_cis_attempt_recovery(3). If the user attempts to seek to a valid frame and the CIS
cannot successfully complete the request, a seek error is generated.

See xil_cis_attempt_recovery(3) for further information on CIS error recovery.

ERRORS For a complete list of XIL error messages by number, consult Appendix B of the XIL
Programmer’s Guide.

EXAMPLES This example turns on auto-recovery:

XilCis cis;

xil_cis_set_autorecover(cis TRUE);

96 modified 12 August 1993

SunOS 5.6 xil_cis_get_autorecover (3)

SEE ALSO xil_cis_get_write_invalid(3), xil_cis_attempt_recovery(3), xil_cis_seek(3),
xil_cis_reset(3).

modified 12 August 1993 97

xil_cis_get_bits_ptr (3) SunOS 5.6

NAME xil_cis_get_bits_ptr − get compressed data from a compressed image sequence

SYNOPSIS #include <xil/xil.h>

void∗ xil_cis_get_bits_ptr (XilCis cis,
int ∗nbytes,
int ∗nframes);

DESCRIPTION This function returns a generic pointer to data in a compressed image sequence.

cis is the compressed image sequence that contains the compressed data for which a
pointer is needed.

nbytes is an output parameter indicating the number of bytes of data to which the generic
pointer is pointing.

nframes is an output parameter indicating the number of frames the compressed data
represents.

The data pointed to is valid until one of the following routines is called,
xil_cis_get_bits_ptr (), xil_cis_reset(3), xil_compress(3), or until the compressed image
sequence is destroyed.

ERRORS For a complete list of XIL error messages by number, consult Appendix B of the XIL
Programmer’s Guide.

EXAMPLES Extract the current information from a CIS and put it in a file.
XilCis cis;
char ∗data;
int nframes;
int nbytes;
FILE ∗f;

while (xil_cis_has_frame(cis)) {
data = (char∗)xil_cis_get_bits_ptr(cis, &nbytes, &nframes);
fwrite(data, nbytes, 1, f);

}

SEE ALSO xil_cis_create(3), xil_cis_reset(3), xil_cis_put_bits_ptr(3), xil_compress(3),
xil_cis_has_data(3), xil_cis_has_frame(3).

98 modified 16 August 1993

SunOS 5.6 xil_cis_get_by_name (3)

NAME xil_cis_get_by_name, xil_cis_get_name, xil_cis_set_name − get and set a compressed
image sequence (CIS) object name

SYNOPSIS #include <xil/xil.h>

XilCis xil_cis_get_by_name (XilSystemState State ,
char ∗name);

char∗ xil_cis_get_name (XilCis cis);

void xil_cis_set_name (XilCis cis,
char ∗name);

DESCRIPTION Use these functions to assign names to CIS objects, and to retrieve CIS objects by name.

xil_cis_get_by_name () returns the handle to the CIS object with the specified name
name. If such an object does not exist, NULL is returned. xil_cis_get_by_name () does
not make a copy of the CIS object.

xil_cis_get_name () returns a copy of the specified CIS object’s name. A call to free (3)
should be used to free the space allocated by xil_cis_get_name (). If the specified CIS
object has no name, NULL is returned.

xil_cis_set_name () sets the name of the specified CIS object to the one provided.

ERRORS For a complete list of XIL error messages by number, consult Appendix B of the XIL
Programmer’s Guide.

EXAMPLES Allow a user to add images to a named CIS:

void add_image_to_cis(XilSystemState State, char∗ name, XilImage image);
{

XilCis cis;

cis = xil_cis_get_by_name (State, name);
if (cis == NULL) {

cis = xil_cis_create (State, "faxG3");
xil_cis_set_name (cis, name);

}
xil_compress (image, cis);
return;

}

NOTES If you give two CIS objects the same name, it is not defined which CIS object will be
retrieved by a call to xil_cis_get_by_name ().

modified 10 June 1993 99

xil_cis_get_compression_type (3) SunOS 5.6

NAME xil_cis_get_compression_type, xil_cis_get_compressor − return the generic or specific
name of a codec.

SYNOPSIS #include <xil/xil.h>

char ∗xil_cis_get_compression_type (XilCis cis);

char ∗xil_cis_get_compressor (XilCis cis);

DESCRIPTION xil_cis_get_compression_type returns a character string giving the generic class name of a
compressor or decompressor. For example, any Jpeg CIS would return the string "JPEG".
All capital letters are used in these codec class names.

xil_cis_get_compressor returns a character string giving the name of the specific compres-
sor implementation. For example, the default XIL library Jpeg compressor would return
the string "Jpeg", while the implementation using the Visual Instruction Set (VIS) on
UltraSparc systems would return the string "JpegVIS".

ERRORS For a complete list of XIL error messages by number, consult Appendix B of the XIL
Programmer’s Guide.

EXAMPLES XilCis cis;
char ∗compression_type;
char ∗compressor

compression_type = xil_cis_get_compression_type(cis);
compressor = xil_cis_get_compressor(cis);

SEE ALSO xil_compress(3), xil_cis_get_compressor(3).

100 modified 17 June 1993

SunOS 5.6 xil_cis_get_input_type (3)

NAME xil_cis_get_input_type − return the XilImageType that the CIS will accept for compres-
sion

SYNOPSIS #include <xil/xil.h>

XilImageType xil_cis_get_input_type (XilCis cis);

DESCRIPTION This function returns the preferred image type that the cis (the specified compressed
image sequence) will accept for compression. Unless a cis is documented as handling
multiple input types, this is the only type that the cis will accept. If xsize, ysize, or nbands
are 0, then cis will currently accept images that vary in these dimensions.

Information about the image type that is not available when you first create a CIS may
become available after your first call to the xil_compress(3) function. In other words, the
values of xsize and ysize will never be zero after you call xil_compress(3).

ERRORS For a complete list of XIL error messages by number, consult Appendix B of the XIL
Programmer’s Guide.

EXAMPLES XilCis cis;
XilImageType pref_type;
XilDataType cis_datatype;
unsigned int cis_xsize, cis_ysize, cis_nbands;

pref_type = xil_cis_get_input_type(cis);
xil_imagetype_get_info(pref_type, &cis_xsize, &cis_ysize,

&cis_nbands, &cis_datatype);

printf("Preferred CIS has width=%d height=%d nbands=%d datatype=%d\n",
cis_xsize, cis_ysize, cis_nbands, cis_datatype);

SEE ALSO xil_compress(3), xil_cis_create(3).

modified 07 June 1993 101

xil_cis_get_max_frames (3) SunOS 5.6

NAME xil_cis_get_max_frames, xil_cis_set_max_frames, xil_cis_get_keep_frames,
xil_cis_set_keep_frames − get or set the upper limit on the number of compressed frames
that a CIS should buffer

SYNOPSIS #include <xil/xil.h>

int xil_cis_get_max_frames (XilCis cis);

void xil_cis_set_max_frames (XilCis cis,
int max_frames_to_buffer);

int xil_cis_get_keep_frames (XilCis cis);

void xil_cis_set_keep_frames (XilCis cis,
int frames_to_keep);

DESCRIPTION xil_cis_set_max_frames () sets the upper limit on the number of compressed frames that
the compressed image sequence (CIS) should buffer. A value of -1 means no limit. The
default size depends on the compressor. The setting is a suggestion rather than a
requirement, because some compression algorithms may not be able to function
reasonably on an arbitrarily small buffer. An error occurs if a call to xil_compress(3),
xil_cis_put_bits(3), or xil_cis_put_bits_ptr(3) results in more than max_frames_to_buffer
frames in the CIS.

xil_cis_get_max_frames() retrieves the value set as the maximum number of compressed
frames that the CIS will buffer at one time.

xil_cis_set_keep_frames() sets the number of frames before the read frame that the CIS
should try to retain. A value of -1 means no limit. In general, the number of keep frames
should be smaller than the number of max frames.

XIL assigns higher priority to maintaining max_frames than to maintaining keep_frames.
Like xil_cis_set_max_frames(), the setting of the maximum number of keep frames is
only a suggestion, because some decompression algorithms may not be able to function
reasonably unless some set of previously read frames (such as key frames) exists in the
CIS.

An error occurs when the number of frames between the start of the CIS and the read
position falls below the set number of keep frames due to the addition of frames to the
CIS and the CIS’s attempt to keep the maximum number of frames in the entire CIS less
than or equal to max_frames.

Seeking backward such that the number of frames before the read position becomes less
than the desired keep frame value is not an error.

xil_cis_get_keep_frames() retrieves the value set as the maximum number of frames that
the CIS should attempt to keep around.

ERRORS For a complete list of XIL error messages by number, consult Appendix B of the XIL
Programmer’s Guide.

102 modified 07 June 1993

SunOS 5.6 xil_cis_get_max_frames (3)

EXAMPLES XilCis cis;
int mframes, kframes;
xil_cis_set_max_frames(cis , -1);
xil_cis_set_keep_frames(cis , 10);

mframes = xil_cis_get_max_frames(cis);

kframes = xil_cis_get_keep_frames(cis);

SEE ALSO xil_compress(3)

modified 07 June 1993 103

xil_cis_get_output_type (3) SunOS 5.6

NAME xil_cis_get_output_type − return the XilImageType produced by a compressor

SYNOPSIS #include <xil/xil.h>

XilImageType xil_cis_get_output_type (XilCis cis);

DESCRIPTION This function returns the image type that the cis (the specified compressed image
sequence) will produce upon decompression.

ERROR For a complete list of XIL error messages by number, consult Appendix B of the XIL
Programmer’s Guide.

EXAMPLES XilCis cis;
XilImageType type;
int width;

type = xil_cis_get_output_type(cis);
width = xil_imagetype_get_width(type);

SEE ALSO xil_decompress(3), xil_imagetype_get_info(3), xil_get_imagetype(3),
xil_cis_get_input_type(3).

104 modified 09 June 1993

SunOS 5.6 xil_cis_get_random_access (3)

NAME xil_cis_get_random_access − indicate whether a compressor supports random accessing
of a CIS

SYNOPSIS #include <xil/xil.h>

int xil_cis_get_random_access (XilCis cis);

DESCRIPTION This function returns a value that indicates whether a specified compressor supports
random accessing of a compressed image sequence (CIS). If random accessing is
supported, then xil_cis_seek(3) will be able to work for backwards seeks (forward seeks
are always possible).

RETURN VALUES TRUE If the compressor supports random accessing of individual frames of the
sequence

FALSE If the compressor does not support random accessing of a CIS

ERRORS For a complete list of XIL error messages by number, consult Appendix B of the XIL
Programmer’s Guide.

EXAMPLES XilCis cis;
...

if(xil_cis_get_random_access(cis) == TRUE) {
printf("backwards seeks are enabled");

}

SEE ALSO xil_compress(3), xil_cis_seek(3).

modified 09 June 1993 105

xil_cis_get_read_invalid (3) SunOS 5.6

NAME xil_cis_get_read_invalid − determine whether a CIS is able to be decompressed

SYNOPSIS #include <xil/xil.h>

Xil_boolean xil_cis_get_read_invalid (XilCis cis);

DESCRIPTION This function determines whether a compressed image sequence (CIS) is able to be
decompressed. cis is the CIS that is being decompressed. The default value returned by
this routine is FALSE, which indicates that the CIS is valid and able to be decompressed.
If a bitstream error occurs during decompression, this routine returns TRUE, indicating
that the CIS was marked CIS_READ_INVALID.

Two types of bitstream errors can occur during decompression of a CIS: autorecoverable
and non-autorecoverable. An autorecoverable error is one with a predefined method of
recovery. A non-autorecoverable error requires user intervention for recovery. When a
non-autorecoverable error is detected, the CIS is marked invalid before the user is
notified of the error. If a CIS is marked CIS_READ_INVALID for decompression, no
further operations can be performed on this CIS until it has been marked valid again.

After a non-autorecoverable error occurs, the user can revalidate the CIS in one of three
ways: by calling xil_cis_reset(3) to remove any compressed data currently stored in the
CIS, by calling xil_cis_seek(3) to seek to a valid frame, or by attempting recovery using
xil_cis_attempt_recovery(3). If the user attempts to seek to a valid frame and the CIS
cannot successfully complete the request, a seek error is generated.

ERRORS For a complete list of XIL error messages by number, consult Appendix B of the XIL
Programmer’s Guide.

EXAMPLES Note that xil_cis_get_read_invalid() is not called until after the molecule runs. For
information on molecules and deferred execution, consult the XIL Programmer’s Guide.

XilCis cis;
XilImage image;
XilImage displayimage;
XilLookup lookup;

while(xil_cis_has_frame(cis)) {
xil_decompress(cis, image);
xil_nearest_color(image, displayimage, lookup);

if (xil_cis_get_read_invalid(cis) == TRUE)
printf(" There is a problem with this CIS.\n");

}

SEE ALSO xil_cis_get_autorecover(3), xil_cis_get_write_invalid(3), xil_cis_attempt_recovery(3),
xil_cis_seek(3), xil_cis_reset(3).

106 modified 09 June 1993

SunOS 5.6 xil_cis_get_start_frame (3)

NAME xil_cis_get_start_frame, xil_cis_get_read_frame, xil_cis_get_write_frame − obtain frame
status attributes.

SYNOPSIS #include <xil/xil.h>

int xil_cis_get_start_frame (XilCis cis);

int xil_cis_get_read_frame (XilCis cis);

int xil_cis_get_write_frame (XilCis cis);

DESCRIPTION In each of these routines, cis is the input compressed image sequence (CIS). Every frame
in a CIS has a frame number associated with it. The beginning of the CIS is frame
number zero. A CIS may have one or more frames buffered in memory. The start_frame
is the index of the earliest buffered frame that still resides in the CIS. The read_frame is the
index of the next frame that will be read by routines such as xil_cis_get_bits_ptr(3) or
xil_decompress(3). The write_frame is the next frame that will be written. Routines such
as xil_cis_put_bits_ptr(3) or xil_compress(3) add new frames immediately at this frame
and increment the write_frame index each time they write a frame.

xil_cis_get_start_frame() returns the index, relative to the beginning of the CIS, of the
first compressed image still buffered in the CIS.

xil_cis_get_read_frame() returns the index of the current read frame, i.e. the one that will
be decompressed next.

xil_cis_get_write_frame() returns the index of the next frame to be written. Thus,
write_frame - 1 is the last complete frame in the CIS. If a partial or an unknown number of
frames exist in the CIS because calls to xil_cis_put_bits()
or xil_cis_put_bits_ptr() have not yet been resolved, then the decompressor must parse
the data to determine how many frames are in the CIS. This can make
xil_cis_get_write_frame() potentially expensive.

ERRORS For a complete list of XIL error messages by number, consult Appendix B of the XIL
Programmer’s Guide.

EXAMPLES XilCis cis;

printf("Current Read Frame is %d\n",
xil_cis_get_read_frame(cis));

SEE ALSO xil_compress(3), xil_decompress(3), xil_cis_seek(3), xil_cis_get_bits_ptr(3),
xil_cis_put_bits_ptr(3).

modified 09 June 1993 107

xil_cis_get_write_invalid (3) SunOS 5.6

NAME xil_cis_get_write_invalid − determine whether a CIS is able to continue to be compressed

SYNOPSIS #include <xil/xil.h>

Xil_boolean xil_cis_get_write_invalid (XilCis cis);

DESCRIPTION This function determines whether compression is able to continue for a compressed
image sequence (CIS). cis is the CIS that is being compressed. The default value returned
by this routine is FALSE, which indicates that the CIS is valid and compression can
continue. If a bitstream error occurs during compression, this routine returns TRUE,
indicating that the CIS was marked CIS_WRITE_INVALID.

Two types of bitstream errors can occur during compression of a CIS: autorecoverable
and non-autorecoverable. An autorecoverable error is one with a predefined method of
recovery. A non-autorecoverable error requires user intervention for recovery. When a
non-autorecoverable error is detected, the CIS is marked invalid before the user is
notified of the error. If a CIS is marked CIS_WRITE_INVALID for compression, no
further operations can be performed on this CIS until it is marked valid again.

After a non-autorecoverable error occurs, the user can revalidate the CIS in one of two
ways: by calling xil_cis_reset(3) to remove any compressed data currently stored in the
CIS, or attempting recovery using xil_cis_attempt_recovery(3).

ERRORS For a complete list of XIL error messages by number, consult Appendix B of the XIL
Programmer’s Guide.

EXAMPLES Determine if an error has occurred in the compression of a CIS:

XilCis cis;
XilImage src;

xil_compress(src, cis);

/∗ check to see if the cis is still valid. ∗/
if (xil_cis_get_write_invalid(cis) == TRUE) {

printf(" There is a problem with this CIS.\n");
}

SEE ALSO xil_cis_get_autorecover(3), xil_cis_get_read_invalid(3), xil_cis_attempt_recovery(3),
xil_cis_reset(3).

108 modified 09 June 1993

SunOS 5.6 xil_cis_has_data (3)

NAME xil_cis_has_data, xil_cis_has_frame, xil_cis_number_of_frames − determine number of
bytes or frames in a compressed image sequence

SYNOPSIS #include <xil/xil.h>

int xil_cis_has_data (XilCis cis);

Xil_boolean xil_cis_has_frame (XilCis cis);

int xil_cis_number_of_frames (XilCis cis);

DESCRIPTION xil_cis_has_data () determines how many bytes of compressed data the compressed
image sequence cis contains. This number reflects the number of bytes from the current
read frame in the compressed image sequence (CIS) to the end of the CIS.

The number includes any bytes in an uncompleted frame at the end of a CIS. If the
number of bytes is greater than zero, you can get a pointer to the data in the CIS by
calling xil_cis_get_bits_ptr(3). However, you may not be able to read all of the data from
the CIS at one time, because that data may not be in one contiguous buffer.

Also note that if all data has been retrieved from the CIS except for an incomplete frame
at the CIS’s end, xil_cis_has_data() returns a value greater than zero even though
xil_cis_get_bits_ptr(3) will not be able to retrieve the data, because the last frame is not
complete.

xil_cis_has_frame() returns TRUE if a complete frame exists at the read frame position,
and returns FALSE otherwise. This routine can be used before calls such as
xil_decompress(3) and xil_cis_get_bits_ptr(3) to test whether data is available for the
desired operation. It is generally a better test than xil_cis_has_data() or
xil_cis_number_of_frames() for determining the existence of data at the read frame
position.

xil_cis_number_of_frames() determines how many complete frames of compressed data
the compressed image sequence cis contains. This number reflects the number of frames
from the current read position in the CIS to the last complete frame in the CIS. If a user
inserts an unknown or partial number of frames in an XilCis, then the decompresser must
parse the data to determine how many frames are in the XilCis. This can make
xil_cis_number_of_frames() potentially expensive if called after either
xil_cis_put_bits(3) or xil_cis_put_bits_ptr(3) have supplied a partial frame or an
unknown number of frames.

RETURN VALUES xil_cis_has_data() returns the number of bytes from the current read frame in the CIS to
end of the CIS.

xil_cis_has_frame() returns TRUE if a complete frame exists at the read position;
otherwise, FALSE.

xil_cis_number_of_frames() returns the number of frames from the current read frame
in the CIS to end of the CIS.

modified 09 June 1993 109

xil_cis_has_data (3) SunOS 5.6

ERRORS For a complete list of XIL error messages by number, consult Appendix B of the XIL
Programmer’s Guide.

EXAMPLES This example demonstrates that you can use any of three routines to determine if there
are any frames in the CIS. Note that if all you are trying to do is determine if any frames
are left in a CIS, then xil_cis_has_frame() is the preferred routine for accomplishing this.

The following loops extract all the bits between (and including) the read frame and the
end of the CIS. In this example, nothing is done with the bits that are extracted. As it
stands, if a partial frame exists at the end of the CIS, the xil_cis_has_data() loop never
terminates.

XilCis cis;
char∗ data;
int nframes;
int nbytes;

while (xil_cis_number_of_frames(cis))
data = (char ∗)xil_cis_get_bits_ptr(cis, &nbytes, &nframes);

while (xil_cis_has_data(cis))
data = (char ∗)xil_cis_get_bits_ptr(cis, &nbytes, &nframes);

while (xil_cis_has_frame(cis))
data = (char ∗)xil_cis_get_bits_ptr(cis, &nbytes, &nframes);

SEE ALSO xil_cis_get_bits_ptr(3), xil_cis_create(3).

110 modified 09 June 1993

SunOS 5.6 xil_cis_put_bits (3)

NAME xil_cis_put_bits, xil_cis_put_bits_ptr − put compressed data into a compressed image
sequence

SYNOPSIS #include <xil/xil.h>

void xil_cis_put_bits (XilCis cis,
int nbytes,
int nframes,
void ∗data);

void xil_cis_put_bits_ptr (XilCis cis,
int nbytes,
int nframes,
void ∗data ,
XIL_FUNCPTR_DONE_WITH_DATA done_with_data);

typedef void (∗XIL_FUNCPTR_DONE_WITH_DATA)(void ∗);

DESCRIPTION xil_cis_put_bits() copies nbytes of compressed data representing nframes frames of
uncompressed data into the compressed image sequence cis. Parameter data is a generic
pointer to the data being copied into the compressed image sequence (CIS).

xil_cis_put_bits_ptr() puts nbytes of compressed data representing nframes frames of
uncompressed data into the compressed image sequence cis. Parameter data is a generic
pointer to the data being put into the CIS.

Unlike xil_cis_put_bits(), xil_cis_put_bits_ptr() does not copy data into the CIS; instead,
the CIS directly references the data pointed to by data. In this case, the application is
responsible for ensuring that the data remains valid. The application may supply a
routine done_with_data() that is called when the particular buffer is no longer needed by
the CIS. The done_with_data() routine will also be called if the CIS is destroyed explicitly
with xil_cis_destroy(3) or implicitly with xil_close(3). The application may supply
NULL for the callback; in this case, the application is responsible for determining when
particular buffers are no longer needed.

The nframes parameter is used to specify how many frames of uncompressed data the
nbytes of compressed data represents. Used in this way, nframes must be an integer
greater than zero. If the exact number of complete frames is not known, then nframes
should be set to -1. This informs the CIS that the data being placed into it contains one or
more complete frames.

If the data being put into the CIS may not represent an integer number of frames, then
nframes should be set to 0. This informs the CIS that the data being placed into it may
contain 0 or more frames, and that the last frame and/or the first frame represented in
this data may not be complete.

ERRORS For a complete list of XIL error messages by number, consult Appendix B of the XIL
Programmer’s Guide.

modified 13 August 1993 111

xil_cis_put_bits (3) SunOS 5.6

EXAMPLES Copy bitstream data that contains frame_count frames into an XilCis:
XilCis cis;
xil_cis_put_bits(cis, bytes, frame_count, data);

Copy bitstream data that contains an unknown number of complete frames (greater than
or equal to 1 frame) into an XilCis:

XilCis cis;
xil_cis_put_bits(cis, bytes, -1, data);

Insert into an XilCis bitstream data that contains some number of frames in which the last
and/or the first frame may or may not be complete:

XilCis cis;
xil_cis_put_bits_ptr(cis, bytes, 0, data, NULL);

NOTES If error messages indicate that there is no more available free memory, try increasing
swap space.

SEE ALSO xil_cis_create(3)

112 modified 13 August 1993

SunOS 5.6 xil_cis_reset (3)

NAME xil_cis_reset − clears data in a compressed image sequence

SYNOPSIS #include <xil/xil.h>

void xil_cis_reset (XilCis cis);

DESCRIPTION This function removes any compressed data currently stored in the specified compressed
image sequence and sets the cis state parameters to their intitial values. cis is the
compressed image sequence that contains the data to be cleared.

ERRORS For a complete list of XIL error messages by number, consult Appendix B of the XIL
Programmer’s Guide.

EXAMPLES XilCis cis;

xil_cis_reset(cis);

SEE ALSO xil_compress(3)

modified 13 August 1993 113

xil_cis_seek (3) SunOS 5.6

NAME xil_cis_seek − find a particular frame of compressed data in a compressed image
sequence

SYNOPSIS #include <xil/xil.h>

void xil_cis_seek (XilCis cis,
int framenumber,
int relative_to);

DESCRIPTION This function sets the read frame of the compressed image sequence (CIS) to a user-
specified value.

cis is the input compressed image sequence (CIS) to which the seek applies.

framenumber is the frame offset of the frame, as interpreted by the relative_to argument.

relative_to takes values 0, 1 or 2 depending on whether the offset mentioned above is rela-
tive to frame zero of the CIS (0), the current frame (1), or the end of the CIS (2).

Every frame in a CIS has a frame number associated with it; these frame numbers start at
zero. Seeking from the beginning of the CIS implies that you are seeking relative to frame
number zero and not necessarily the start_frame (the earliest buffered frame that still
resides in the CIS). For more information see xil_cis_get_start_frame(3).

If the CIS you are looking in cannot be accessed randomly (see
xil_cis_get_random_access(3)) and you are seeking a frame previous to the current
read_frame, an error is generated.

ERRORS For a complete list of XIL error messages by number, consult Appendix B of the XIL
Programmer’s Guide.

EXAMPLES Go to the 12th frame (from the beginning) of a compressed image sequence:

XilCis cis;

xil_cis_seek(cis, 12, 0);

NOTES The framenumber you are seeking must be within the CIS. Use the functions
xil_cis_get_start_frame(3) and xil_cis_get_write_frame(3) to determine the legal range
of frame numbers.

You cannot use this function to perform random insertions of frames into a CIS. Frames
can only be inserted at the end of the CIS, i.e at the write frame.

SEE ALSO xil_cis_get_attribute(3), xil_cis_get_start_frame(3), xil_cis_get_write_frame(3),
xil_cis_get_random_access(3).

114 modified 09 June 1993

SunOS 5.6 xil_cis_sync (3)

NAME xil_cis_sync − force any outstanding call to xil_compress(3) to complete when it would
otherwise have been deferred

SYNOPSIS #include <xil/xil.h>

void xil_cis_sync (XilCis cis);

DESCRIPTION xil_cis_sync() forces any outstanding calls to xil_compress(3) to complete.

In order to execute multiple operations as a molecule, XIL defers the operations until a
results must be produced. Thus, if a call to xil_compress() is part of a molecule, the
compression occurs when the deferred molecule is executed, not at the time that the
xil_compress() function is called. Calling xil_cis_sync() ensures that the compression
operation executes when it is called. Of course, this prevents the execution of any
molecule of which the xil_compress() operation may have been a part.

ERRORS For a complete list of XIL error messages by number, consult Appendix B of the XIL
Programmer’s Guide.

EXAMPLES Measure the performance of a compress operation:

starttime= gmtime(NULL); /∗ get the start time ∗/
xil_compress(src,cis); /∗ compress the image ∗/
xil_cis_sync(cis); /∗ force the compress to actually happen ∗/
endtime= gmtime(NULL); /∗ get the finish time ∗/

NOTES This function does not produce any semantic differences in the execution of the program.

modified 09 June 1993 115

xil_color_convert (3) SunOS 5.6

NAME xil_color_convert − converts an image from one color space to another

SYNOPSIS #include <xil/xil.h>

void xil_color_convert (XilImage src,
XilImage dst);

DESCRIPTION This function converts the data in the source image from the source image’s color space
to the destination image’s color space. The color space is an attribute of each image. src is
the source image’s handle. dst is the destination image’s handle. Neither the source nor
the destination image can be a NULL image or have a NULL color space. This function
does not support the XIL_FLOAT data type.

ERRORS For a complete list of XIL error messages by number, consult Appendix B of the XIL
Programmer’s Guide.

EXAMPLES Converts the data in src from ycc601 colorspace to data in dst in rgblinear colorspace:

XilSystemState State;
XilColorspace cspace1, cspace2;
XilImage src, dst;

cspace1 = xil_colorspace_get_by_name(State, "ycc601");
xil_set_colorspace(src, cspace1);

cspace2 = xil_colorspace_get_by_name(State, "rgblinear");
xil_set_colorspace(dst, cspace2);

xil_color_convert(src, dst);

NOTES The source and destination images must be the same data type. The number of bands in
an image must match its color space. In-place operations can be done by creating a child
image consisting of the whole image and then assigning a different color space to the
child image.

SEE ALSO xil_colorspace_get_by_name(3), xil_set_colorspace(3), xil_black_generation(3).

116 modified 09 June 1993

SunOS 5.6 xil_color_correct (3)

NAME xil_color_correct - color corrects an XilImage given an XilColorspaceList of color
spaces using KCMS (TM) color management

SYNOPSIS #include <xil/xil.h>

void xil_color_correct (XilImage src,
XilImage dst,
XilColorspaceList∗ colorspacelist);

DESCRIPTION This function color corrects the data of the source image into the destination image using
the color spaces listed in colorspacelist. The correction is accomplished using KCMS color
management. src is the source image’s handle. dst is the destination image’s handle.
colorspacelist is a handle to a list of one or more color spaces.

Color spaces can be of three types: XIL_COLORSPACE_NAME,
XIL_COLORSPACE_FILENAME, and XIL_COLORSPACE_KCS_ID.

If xil_color_correct () is called with two color spaces and these color spaces are of type
XIL_COLORSPACE_NAME, xil_color_convert(3) is executed internally in the library.

Color spaces attached to the images will be ignored. Only the color spaces in the list will
be used in this operation.

ERRORS For a complete list of XIL error messages by number, consult Appendix B of the XIL
Programmer’s Guide.

EXAMPLES This example color corrects an image using two color spaces that are in files in the current
directory.

#define SRC_PROFILE "kcmsEKphcdcn.inp"
#define DST_PROFILE "kcmsEKsony20.mon"

XilSystemState State;
XilImage src, dst;
XilColorspace cspaces[2];
XilColorspaceList cspaceList;

/∗
∗ Create the color space using a filename
∗/
cspaces[0] = xil_colorspace_create(state,

XIL_COLORSPACE_FILENAME, SRC_PROFILE);
cspaces[1] = xil_colorspace_create(state,

XIL_COLORSPACE_FILENAME, DST_PROFILE);

/∗ create the color space list ∗/
cspaceList = xil_colorspacelist_create(state, cspaces, 2);

modified 5 May 1997 117

xil_color_correct (3) SunOS 5.6

/∗ color correct the image ∗/
xil_color_correct(src, dst, cspaceList);

/∗ Destroy the color space list, then the color spaces ∗/
xil_colorspacelist_destroy(cspaceList);
xil_colorspace_destroy(cspaces[0]);
xil_colorspace_destroy(cspaces[1]);

NOTES The source and destination images must be of XIL_BYTE data type and have the same
number of bands. This restriction is placed by KCMS and not by the XIL library. The only
time this restriction is lifted is if xil_color_convert(3) is called (refer to DESCRIPTION).
An application must destroy any created color spaces and color space lists. It should not
destroy any color spaces in the list until after destroying the XilColorspaceList object. The
XilColorspaceList object contains pointers to the color spaces in it.

SEE ALSO xil_color_convert(3), xil_colorspace_create(3), xil_colorspacelist_create(3),
xil_colorspacelist_destroy(3), xil_colorspace_destroy(3).

118 modified 5 May 1997

SunOS 5.6 xil_colorcube_create (3)

NAME xil_colorcube_create, xil_lookup_get_colorcube, xil_lookup_get_colorcube_info − opera-
tions on lookup tables used as colormap attributes of images

SYNOPSIS #include <xil/xil.h>

XilLookup xil_colorcube_create (XilSystemState State ,
XilDataType input_type,
XilDataType output_type ,
unsigned int nbands,
short offset ,
int multipliers[],
unsigned int dimensions[]);

Xil_boolean xil_lookup_get_colorcube (XilLookup lookup);

Xil_boolean xil_lookup_get_colorcube_info (XilLookup lookup ,
int ∗multipliers,
unsigned int ∗dimensions,
short ∗origin);

DESCRIPTION xil_colorcube_create () creates a lookup table that represents a colorcube. input_type is
the data type of the input (either XIL_BIT, XIL_BYTE, or XIL_SHORT). output_type is the
data type of the output (either XIL_BIT, XIL_BYTE, XIL_SHORT or XIL_FLOAT). nbands
is the number of bands of the colorcube. offset is the index of the first entry of the
colorcube. multipliers is the distance between each color level in each dimension of the
colorcube. These can be negative numbers to indicate decreasing color ramps rather than
increasing color ramps. dimensions is a list of the sizes of each side of the colorcube.

xil_lookup_get_colorcube () returns TRUE or FALSE, depending on whether the
specified lookup table was created as a colorcube.

xil_lookup_get_colorcube_info () returns TRUE or FALSE, depending on whether the
specified lookup table was created as a colorcube. It also returns the multipliers ,
dimensions and origin for the colorcube. The dimension of the arrays multipliers and
dimensions is nbands . The arrays must be allocated by the user/application. The pointers
to multipliers , dimensions and origin may be NULL if the information is not needed.

origin is the index of the origin of the colorcube. In most cases, this should be the black
pixel. If the origin is used as the starting index, then the multipliers can be used whether
they have positive or negative values. The pointer may be NULL if the origin is not
needed.

ERRORS For a complete list of XIL error messages by number, consult Appendix B of the XIL
Programmer’s Guide.

modified 04 August 1993 119

xil_colorcube_create (3) SunOS 5.6

EXAMPLES Create an RGB colorcube with 4 shades of blue, 9 shades of green, and 6 shades of red
that starts at index 16. When incrementing through the colors, blue changes most
quickly, followed by greens, and then red.

static unsigned int dimensions[3] = { 4, 9, 6 };
static int multipliers[3] = { 1, 4, 36 };

xil_create_colorcube(State, XIL_BYTE, XIL_BYTE,
3, 16, multipliers, dimensions);

NOTES A colorcube does not have to be three dimensional. It can have any number of
dimensions. This makes it possible to have a colorcube for any color space.

Because the functions xil_ordered_dither(3), xil_nearest_color(3), and
xil_error_diffusion(3) effectively push data backwards through a lookup table, the
output of the colorcube must match the input to these functions, and the input of the
colorcube must match the output of these functions.

XIL also supplies some "common" colorcubes via xil_lookup_get_by_name(3).

SEE ALSO xil_lookup_convert(3), xil_lookup_create(3), xil_lookup_create_copy(3),
xil_lookup_destroy(3), xil_lookup_get_by_name(3), xil_lookup_set_values(3).

120 modified 04 August 1993

SunOS 5.6 xil_colorspace_create (3)

NAME xil_colorspace_create, xil_colorspace_destroy, xil_colorspace_get_type,
xil_colorspace_get_name, xil_colorspace_set_name − create, destroy, get the type, get or
set the name of an XilColorspace object

SYNOPSIS #include <xil/xil.h>

XilColorspace∗ xil_colorspace_create(XilSystemState∗ system_state ,
XilColorspaceType type ,
void∗ data);

void xil_colorspace_destroy(XilColorspace∗ colorspace);

void xil_colorspace_get_type(XilColorspace∗ colorspace);

char∗ xil_colorspace_get_name(XilColorspace∗ colorspace);

void xil_colorspace_set_name(XilColorspace∗ colorspace,
char∗ name);

DESCRIPTION These functions create, destroy, get the type, and set and get a name for an
XilColorspace object.

xil_colorspace_create() creates an XilColorspace object of the type specified by
XilColorspaceType and stores the data specified by data. XilColorspaceType can be any of
3 types: XIL_COLORSPACE_NAME, XIL_COLORSPACE_FILENAME, or
XIL_COLORSPACE_KCS_ID. XIL_COLORSPACE_KCS_ID corresponds to a name
(default color spaces created by XIL), filename, or a KCMS id.

xil_colorspace_destroy() destroys the specified colorspace.

xil_colorspace_get_type() gets the type of colorspace and associated data.

xil_colorspace_set_name() sets the name on colorspace with name.

xil_colorspace_get_name() gets any associated name of colorspace. If no name is set on
colorspace, it returns NULL.

ERRORS For a complete list of XIL error messages by number, consult Appendix B of the XIL
Programmer’s Guide.

EXAMPLES This example sets a name on an existing color space.

/∗
∗ Set a name on a color space
∗/
xil_colorspace_set_name(colorspace, "myname");

SEE ALSO xil_set_colorspace(3), xil_color_convert(3), xil_color_correct(3).

modified 6 May 1997 121

xil_colorspace_get_by_name (3) SunOS 5.6

NAME xil_colorspace_get_by_name − get a XilColorspace object by its name

#include <xil/xil.h>

XilColorspace xil_colorspace_get_by_name (XilSystemState State ,
char ∗name);

DESCRIPTION This function retrieves color space objects by name. A number of predefined color spaces
are created at the time of an xil_open(3) call. These color spaces can be retrieved by
xil_colorspace_get_by_name().

Standard Color
Spaces Provided

The XIL library creates a number of predefined colorspaces at the time of an xil_open(3)
call. These color spaces include:

Color Space Name Description

"rgb709" Nonlinear RGB primaries as defined by CCIR Rec 709

"rgblinear" Linearized RGB using primaries from CCIR Rec 709

"ycc709" YCC as defined by CCIR Rec 709

"y709" Luminance (black and white) from "ycc709"

"ylinear" Linearized version of "y709"

"photoycc" YCC color space defined by Kodak for PhotoCD

"ycc601" YCC as defined by CCIR Rec 601

"y601" Luminance from "ycc601"

"cmy" Linear CMY, derived from "rgblinear"

"cmyk" Linear CMYK, derived from "cmy" through undercolor removal

If an unsupported color space name is passed, xil_colorspace_get_by_name() returns
NULL. Otherwise, a handle to the specified color space object is returned.

ERRORS For a complete list of XIL error messages by number, consult Appendix B of the XIL
Programmer’s Guide.

EXAMPLES XilSystemState State;
XilColorspace cspace;

State = xil_open();
cspace = xil_colorspace_get_by_name(State, "rgblinear");

NOTES The set of standard objects is generated for each instantiation of an XilSystemState. If these
standard objects are deleted, they become unavailable for the duration of the current XIL
session.

122 modified 09 June 1993

SunOS 5.6 xil_colorspace_get_by_name (3)

If you give two color spaces the same name, it is not defined which color space will be
retrieved by a call to xil_colorspace_get_by_name().

SEE ALSO xil_color_convert(3), xil_set_colorspace(3), xil_black_generation(3), xil_open(3).

modified 09 June 1993 123

xil_colorspacelist_create (3) SunOS 5.6

NAME xil_colorspacelist_create, xil_colorspacelist_destroy, xil_colorspacelist_get_name,
xil_colorspacelist_set_name, xil_colorspacelist_get_by_name − create, destroy, get name,
set name, get by name an XilColorspaceList object

SYNOPSIS #include <xil/xil.h>

XilColorspaceList∗ xil_colorspacelist_create(XilSystemState∗ system_state ,
XilColorspaceType colorspace_array ,
unsigned int num_colorspaces);

void xil_colorspacelist_destroy(XilColorspaceList∗ colorspacelist);

void xil_colorspacelist_set_name(XilColorspaceList colorspacelist,
char∗ name);

char∗ xil_colorspacelist_get_name(XilColorspaceList∗ colorspacelist);

XilColorspaceList∗ xil_colorspacelist_get_by_name(XilSystemState∗ state ,
char∗ name);

DESCRIPTION These functions create, destroy, set and get a name, and get a color-space list given a
name, for an XilColorspaceList object.

xil_colorspacelist_create() creates an XilColorspaceList object as specified by the list in
colorspace_array. num_colorspaces should be less than or equal to the number of color
spaces in the list.

xil_colorspacelist_destroy() destroys the specified colorspacelist.

xil_colorspacelist_set_name() sets the name of colorspacelist with name.

xil_colorspacelist_get_name() gets any associated name of colorspacelist. If no name is set
on colorspacelist, it returns NULL.

xil_colorspacelist_get_by_name() returns an XilColorspaceList object associated with
name. If there is no associated XilColorspaceList object, it returns NULL.

ERRORS For a complete list of XIL error messages by number, consult Appendix B of the XIL
Programmer’s Guide.

EXAMPLES This example sets a name on an existing color-space list.

/∗
∗ Set a name on a color-space list
∗/
xil_colorspacelist_set_name(colorspacelist, "myname");

SEE ALSO xil_color_correct(3).

124 modified 6 May 1997

SunOS 5.6 xil_compress (3)

NAME xil_compress − compress an image and write it to a compressed image sequence

SYNOPSIS #include <xil/xil.h>

void xil_compress (XilImage src,
XilCis cis);

DESCRIPTION This function compresses an image and writes the compressed data to a compressed
image sequence (CIS).

src is the image (possibly a device image) containing the uncompressed data to be
compressed.

cis is the compressed image sequence into which the compressed data will be written.
The compressor to be used is established when the CIS is created with the xil_cis_create
(3) call.

This function appends the compressed image at the CIS’s current write_frame location,
and then increments write_frame. Frame insertions at random points in the cis are not
supported. Note that even after the xil_compress () operation occurs, the data for that
frame is not guaranteed to be retrievable by an xil_cis_get_bits_ptr(3) function, nor to be
detectable by an xil_cis_has_data(3) operation, until xil_cis_flush(3) is called.

Unless the CIS is reset, with a call to xil_cis_reset(3), all frames written to a CIS must
have the same width, height, number of bands and datatype.

XIL Compressors The XIL library provides the functions necessary to compress an image or sequence of
images. A standard XIL compressor provides functions to:

Compress data and place it in a CIS (xil_compress(3)).

Take user-supplied compressed data and copy it into a cis (xil_cis_put_bits(3)).

Take a pointer to user-supplied compressed data and treat it as compressed
frames by reference, eliminating the need to copy (xil_cis_put_bits_ptr(3)).

Determine how much data a CIS contains.

Empty a CIS.

The standard XIL library currently supports compression for the following set of
compression formats.

Cell
CellB
Jpeg
Jpeg Lossless
CCITT G3 Fax
CCITT G4 Fax

In addition, support is provided for third parties to develop compression implementa-
tions for the Mpeg-1 and H.261 standards.

modified 04 August 1993 125

xil_compress (3) SunOS 5.6

ROI Behavior This function does not support source image ROIs.

ERRORS For a complete list of XIL error messages by number, consult Appendix B of the XIL
Programmer’s Guide.

EXAMPLES Compress an image into a compressed image sequence:

XilImage src;
XilCis cis;
XilImageType type;
XilSystemState State;

type = xil_cis_get_input_type(cis);
src = xil_create_from_type(State, type);
/∗ generate the src image... ∗/
xil_compress(src, cis);

NOTES The XilImageType of the source image must match the input XilImageType of the CIS. Use
xil_cis_get_input_type(3) to determine the required type.

SEE ALSO xil_decompress(3), xil_cis_get_bits_ptr(3), xil_cis_get_input_type(3), xil_cis_create(3),
xil_cis_number_of_frames(3), xil_cis_flush(3), xil_cis_put_bits(3),
xil_cis_put_bits_ptr(3).

126 modified 04 August 1993

SunOS 5.6 xil_convolve (3)

NAME xil_convolve − convolve an image with a user-specified kernel

SYNOPSIS #include <xil/xil.h>

void xil_convolve (XilImage src,
XilImage dst ,
XilKernel kernel,
XilEdgeCondition edge_condition);

DESCRIPTION This function convolves an image with the user specified kernel. src is the source image
handle. dst is the destination image handle. kernel is a handle to an XilKernel structure
that contains floating-point values.

edge_condition is an enumeration type that controls what happens when the convolution
encounters the edge of an image. The three possible edge conditions are as follows:

XIL_EDGE_NO_WRITE The edge of the destination image is not touched; that is, the
destination image edges will contain whatever values were
present before xil_convolve() was touched.

XIL_EDGE_ZERO_FILL The edge of the destination image is set to zero.

XIL_EDGE_EXTEND The edge of the source image is replicated to fill the
destination edge.

ROI Behavior An ROI (region of interest) is used as a read mask for key pixels in the source image and
as a write mask in the destination image. The convolve operation may access data outside
a source ROI as long as the key pixel remains inside.

ERRORS For a complete list of XIL error messages by number, consult Appendix B of the XIL
Programmer’s Guide.

EXAMPLES For this example, a 2 x 2 kernel is created, and the key pixel is set to the lower right-hand
corner of the kernel. Convolve the src image using the kernel, with the edge condition set
to XIL_EDGE_ZERO_FILL.

XilSystemState State;
XilImage src, dst;
XilKernel kernel;
float data[4];

data[0] = data[1] = 0.5;
data[2] = data[3] = 0.0;
kernel = xil_kernel_create(State, 2, 2, 1, 1, data);

xil_convolve(src, dst, kernel, XIL_EDGE_ZERO_FILL);

modified 09 June 1993 127

xil_convolve (3) SunOS 5.6

NOTES Source and destination images must be the same data type and have the same number of
bands. The images need not have the same width and height. This operation cannot be
performed in place. Separable kernels are supported.

SEE ALSO xil_kernel_create(3), xil_kernel_create_separable(3), xil_kernel_destroy(3).

128 modified 09 June 1993

SunOS 5.6 xil_copy (3)

NAME xil_copy − copy an image

SYNOPSIS #include <xil/xil.h>

void xil_copy (XilImage src,
XilImage dst);

DESCRIPTION This routine copies a src (source) image into a specified dst (destination) image. The
source and destination images must be the same data type and have the same number of
bands.

ERRORS For a complete list of XIL error messages by number, consult Appendix B of the XIL
Programmer’s Guide.

EXAMPLES Copy image1 into tmp_image :

XilImage image1, tmp_image;

xil_copy(image1, tmp_image);

NOTES If overlapping but not coincident sibling images (children of the same parent) are
specified as the source and destination, xil_copy() detects the overlap and correctly
generates the destination image. All other operations generate a warning message under
these conditions and have undefined results, as discussed in xil_create_child(3).

SEE ALSO xil_copy_pattern(3), xil_copy_with_planemask(3).

modified 08 February 1994 129

xil_copy_pattern (3) SunOS 5.6

NAME xil_copy_pattern − replicate the source image into the destination image

SYNOPSIS #include <xil/xil.h>

void xil_copy_pattern (XilImage src,
XilImage dst);

DESCRIPTION This routine replicates the source image into the destination image. src is the source
image handle. dst is the destination image handle.

For example, if the the size of the source image is 64 x 64 and the size of the destination
image is 256 x 128, then the destination image will have (256 / 64) ∗ (128 / 64) = 8 copies
of the source image. The size of the destination image does not have to be an even
multiple of the size of the source image.

ROI Behavior The source image ROI is repeated to be the same size as the destination image before
intersection with the destination ROI.

ERRORS For a complete list of XIL error messages by number, consult Appendix B of the XIL
Programmer’s Guide.

EXAMPLES Replicate the source image into the destination image:

XilImage src, dst;
xil_copy_pattern(src, dst);

NOTES Source and destination images must be the same data type and have the same number of
bands. In-place operations are not supported.

SEE ALSO xil_copy(3)

130 modified 09 June 1993

SunOS 5.6 xil_copy_with_planemask (3)

NAME xil_copy_with_planemask − using a plane mask, copy a source image into a destination
image

SYNOPSIS #include <xil/xil.h>

void xil_copy_with_planemask (XilImage src,
XilImage dst ,
unsigned int planemask[]);

DESCRIPTION xil_copy_with_planemask () copies a src (source) image into a specified dst (destination)
image, using a plane mask to specify which source-image planes (bits) are copied.

Each pixel in the destination image is defined by the following operation:

dst = (dst & ˜mask) | (src & mask)

Here, dst is the destination image, mask is the plane mask, and src is the source image.
Thus, if the plane-mask bit is "on," the copy overwrites the corresponding bit in the
destination image; otherwise, the bit in the destination image is unchanged.

ERRORS For a complete list of XIL error messages by number, consult Appendix B of the XIL
Programmer’s Guide.

EXAMPLES Copy the low order bit of src1 into the dst low order bit. Copy the high order seven bits of
src2 into the dst high order seven bits:

XilImage src1;
XilImage src2;
XilImage dst;
unsigned int planemask1 = 0x1;
unsigned int planemask2 = 0xfe;

xil_copy_with_planemask(src1, dst, &planemask1);
xil_copy_with_planemask(src2, dst, &planemask2);

NOTES The plane mask is an array of unsigned integers. The number of array elements must
match the number of image bands; each array element specifies the plane mask for the
corresponding band in the destination. Both the source and destination images must
have the same type and number of bands. Standard ROI and in-place operations are
supported.

When using a plane mask for copying an image to the display, the window’s depth is the
upper limit on the number of meaningful bits you can set in the plane mask, and you
must manipulate the colormap to get a reasonable display.

modified 03 February 1994 131

xil_copy_with_planemask (3) SunOS 5.6

SEE ALSO xil_copy(3), xil_copy_pattern(3).

132 modified 03 February 1994

SunOS 5.6 xil_create (3)

NAME xil_create − create an image

SYNOPSIS #include <xil/xil.h>

XilImage xil_create(XilSystemState State,
unsigned int width,
unsigned int height,
unsigned int nbands,
XilDataType datatype);

DESCRIPTION This routine creates an image with the specified dimensions and data type. width is the
width (extent in x) of the image. height is the height (extent in y) of the image. nbands is
the number of bands in the image. datatype is the data type of the image, which can be
one of the following enumeration constants of type XilDataType:

XIL_BIT 1-bit

XIL_BYTE unsigned 8-bit

XIL_SHORT signed 16-bit

XIL_FLOAT 32-bit IEEE floating point

If the function is successful, an opaque handle to the image is returned. Access to the
image’s data is available through the storage interfaces described by xil_storage_create
(3).

The data associated with the image is not automatically zeroed. Use xil_set_value(3) to
do this.

Images contain no data until they are used in an operation, their storage is requested by
the application or their storage is set by the application. At creation time, XilImages are
structures describing attributes of the image.

ROI Behavior The default ROI is NULL. If an ROI is NULL, operations are performed on the entire
image.

XIL Images The primary objects in the XIL world are images. Each dimension of an image - width,
height, or number of bands - may be as great as 2ˆ32 (4,294,967,296), except that the
overall size of an image is limited by available resources and the addressing capabilities
of the computer’s architecture.

Four data precisions are supported: 1-bit, 8-bit unsigned, 16-bit signed and 32-bit floating
point per data element.

The exposed attributes associated with images are width, height, nbands (number of bands
-- number of distinct data elements per pixel), datatype (sample type -- precision of a
single data element), color space, and image origin. You can get width, height, nbands, and
datatype with xil_get_info(3) amd xil_get_origin(3). Note that the origin at creation time
is the upper left corner of the image (0.0, 0.0). Also note that an image’s color space is
NULL upon creation.

modified 12 August 1993 133

xil_create (3) SunOS 5.6

The XIL library currently has no provision for direct operation on images with bands of
different data types or different dimensions. This implies no direct support for 4:1:1 or
4:2:2 data.

ERRORS For a complete list of XIL error messages by number, consult Appendix B of the XIL
Programmer’s Guide.

EXAMPLES Create a 640x480 8-bit image with 3 bands, which can contain 8-bit unsigned data:

XilSystemState state;
XilImage image;
image = xil_create(state, 640, 480, 3, XIL_BYTE);

if(image == NULL) {
fprintf(stderr, "Image creation failed.\n");
return XIL_FAILURE;

}

SEE ALSO xil_create_child(3), xil_create_copy(3), xil_create_from_device(3),
xil_create_from_type(3), xil_create_from_window(3), xil_create_temporary(3),
xil_create_temporary_from_type(3), xil_destroy(3), xil_set_roi(3), xil_get_roi(3),
xil_get_info(3), xil_get_state(3), xil_set_value(3), xil_get_origin(3), xil_set_origin(3),
xil_set_colorspace(3).

134 modified 12 August 1993

SunOS 5.6 xil_create_child (3)

NAME xil_create_child − create a child image

SYNOPSIS #include <xil/xil.h>

XilImage xil_create_child (XilImage parent ,
unsigned int xstart ,
unsigned int ystart ,
unsigned int width ,
unsigned int height,
unsigned int startband ,
unsigned int numbands);

DESCRIPTION This routine creates a new (child) reference to the existing image. Modifications to the
child image affect the parent’s data. xstart is the horizontal offset in pixels from the
upper-left corner of the source image to the upper-left corner of the subimage. ystart is
the vertical offset in pixels from the upper-left corner of the source image to the upper-
left corner of the subimage. width is the width of the subimage in pixels. height is the
height of the subimage in pixels. startband is the offset in bands, starting from the first
band, to the first band in the subimage. numbands is the number of bands in the
subimage.

The color space of the child image is set to that of the parent image if the number of
bands in the child is the same as that of the parent. Otherwise, the color space is set to
NULL. The origin of the child image is initialized to (0.0, 0.0).

Note that this function does not create a copy of the data, only a reference to it.

ROI Behavior The default ROI is NULL. If an ROI is NULL, operations are performed on the entire
(child) image. The parent image’s ROI and origin are ignored by the child.

ERRORS For a complete list of XIL error messages by number, consult Appendix B of the XIL
Programmer’s Guide.

EXAMPLES Create a 512 x 512 5-band, 16-bit image. Then create a 100 x 100 child image that begins at
offset (200, 250) comprising the middle 3 bands:

XilImage image, child_image;

image = xil_create(512, 512, 5, XIL_SHORT);
child_image = xil_create_child(image, 200, 250, 100, 100, 1, 3);

modified 08 February 1994 135

xil_create_child (3) SunOS 5.6

NOTES If overlapping but not coincident sibling images (children of the same parent) are
specified as the source and destination for an operation, the operation is performed.
However, the library generates a warning message, and the results of such an operation
are undefined. For an exception to this behavior, see xil_copy(3).

It is important to note that child images are true images and are not equivalent to setting
an ROI on the parent image. If an XIL operation has certain edge behavior along an
image boundary, the child image boundry is treated as an image boundary even if there
is data available outside the child in the parent image. An example would be the
XIL_EDGE_EXTEND case of xil_convolve(3) which duplicates the edge of the source
image to provide information necessary for the convolution operation. This will be the
case along a child image edge even if there is sufficient data in the parent to provide the
necessary information for the convolution operation.

SEE ALSO xil_create(3), xil_create_copy(3), xil_create_from_device(3), xil_create_from_type(3),
xil_create_from_window(3), xil_destroy(3), xil_set_origin(3), xil_get_origin(3),
xil_set_roi(3), xil_get_roi(3), xil_get_parent(3).

136 modified 08 February 1994

SunOS 5.6 xil_create_copy (3)

NAME xil_create_copy − create a new image with a copy of the source’s data

SYNOPSIS #include <xil/xil.h>

XilImage xil_create_copy (XilImage src,
unsigned int xstart ,
unsigned int ystart ,
unsigned int width ,
unsigned int height,
unsigned int startband ,
unsigned int numbands);

DESCRIPTION This routine creates a new image with its own copy of the source’s data. xstart is the
horizontal offset in pixels from the upper-left corner of the source image to the upper-left
corner of the subimage. ystart is the vertical offset in pixels from the upper-left corner of
the source image to the upper-left corner of the subimage. width is the width of the
subimage in pixels. height is the height of the subimage in pixels. startband is the offset in
bands, starting from the first band, to the first band in the subimage. numbands is the
number of bands in the subimage.

Copies of images have the same XilVersion number as the original image. The name of a
copy is initially empty (NULL).

ROI Behavior The default ROI is NULL. If an ROI is NULL, operations are performed on the entire
image. The ROI and the origin of the source image are ignored in the copy operation and
are therefore set to the default value. The color space will be that of the source image.

ERRORS For a complete list of XIL error messages by number, consult Appendix B of the XIL
Programmer’s Guide.

EXAMPLES Create a 512 x 512 5-band, 16-bit image. Then copy a 100 x 100 image that begins at offset
(200, 250) comprising the middle 3 bands into a new image:

XilImage image1, image2;

image1 = xil_create(512, 512, 5, XIL_SHORT);
image2 = xil_create_copy (image1, 200, 250, 100, 100, 1, 3);

SEE ALSO xil_create(3), xil_create_child(3), xil_create_from_device(3), xil_create_from_type(3),
xil_create_from_window(3), xil_destroy(3), xil_set_roi(3), xil_get_roi(3).

modified 09 June 1993 137

xil_create_from_type (3) SunOS 5.6

NAME xil_create_from_type − create an image from an XilImageType object

SYNOPSIS #include <xil/xil.h>

XilImage xil_create_from_type (XilSystemState State ,
XilImageType imagetype);

DESCRIPTION This routine creates an image from an XilImageType object. All the parameters needed to
create the image are contained within the XilImageType object. An XilImageType object is
often used to describe the characteristics of an image that will be generated (or expected)
by a particular device (for example, a frame grabber or an output device). It can also be
used as a shortcut for creating new images equivalent to an existing image or imagetype
without having to query the image or imagetype for its individual characteristics. The
characteristics of an XilImageType object are xsize, ysize, nbands, datatype, and colorspace.
You can obtain an XilImageType object from a call to xil_get_imagetype(3),
xil_imagetype_create(3), xil_cis_get_output_type(3) or xil_cis_get_input_type(3). The
origin of the returned image is initialized to (0.0, 0.0).

ROI Behavior The default ROI is NULL. If an ROI is NULL, operations are performed on the entire
image.

ERRORS For a complete list of XIL error messages by number, consult Appendix B of the XIL
Programmer’s Guide.

EXAMPLES Create an image of the appropriate type to decompress a CIS into:

XilSystemState state;
XilImageType imagetype;
XilImage image;
XilCis cis;

imagetype = xil_cis_get_output_type (cis);
image = xil_create_from_type (state, imagetype);

NOTES The data associated with the image is not automatically zeroed. Use xil_set_value(3) to
do this.

SEE ALSO xil_get_imagetype(3), xil_create(3), xil_create_copy(3), xil_create_from_device(3),
xil_create_from_window(3), xil_create_temporary_from_type(3), xil_destroy(3),
xil_get_origin(3), xil_set_origin(3), xil_get_roi(3), xil_set_roi(3),
xil_cis_get_output_type(3), xil_cis_get_input_type(3).

138 modified 12 August 1993

SunOS 5.6 xil_create_from_window (3)

NAME xil_create_from_window, xil_create_from_device, xil_create_double_buffered_window −
create device images

SYNOPSIS #include <xil/xil.h>

XilImage xil_create_from_window (XilSystemState State ,
Display ∗display,
Window window);

XilImage xil_create_from_device (XilSystemState State ,
char ∗devicename,
XilDevice deviceObj);

XilImage xil_create_double_buffered_window (XilSystemState system_state ,
Display∗display,
Window window);

DESCRIPTION These routines create images that are tied to particular devices. They allow X windows
and various image input and output devices to be treated as if they were ordinary XIL
images. After an image is created with the routines, the image can be read from the
device or written to it by using the device as the source or destination of an image
processing operation.

xil_create_from_window () creates an image associated with the specified X window.
Images can then be copied to this image for display. The default origin for images created
with this function is (0.0, 0.0), and the default region of interest (ROI) is NULL.

xil_create_from_device () creates an image associated with the device named devicename.
The parameter deviceObj is the handle to the device object associated with this device
type. The device object is created with the xil_device_create(3) function and is used to
store device-initialization values. If the device doesn’t require attribute initialization, you
may pass NULL for the deviceObj parameter. The supplier of the device handler should
indicate whether the device requires attribute initialization.

xil_create_double_buffered_window () creates an image associated with the specified X
window in the same way that xil_create_from_window () does, except that it attempts to
establish hardware double-buffering. If hardware double-buffering is not supported for
the device, xil_create_double_buffered_window () returns NULL, and the developer
must catch the failure and call xil_create_from_window () instead. At construction time
the back buffer is the active buffer.

ERRORS For a complete list of XIL error messages by number, consult Appendix B of the XIL
Programmer’s Guide.

EXAMPLES Create an XIL display image and copy it to a display image.

XilSystemState State;
XilImage display_image;

modified 24 February 1997 139

xil_create_from_window (3) SunOS 5.6

XilImage image0;
Display∗ display;
Window window;

/∗ Create an XIL display image from existing X display and window ∗/
display_image = xil_create_from_window(State, display, window);

/∗ Copy image0 to the display ∗/
xil_copy(image0, display_image);

Attempt to create a double-buffered window:

XilSystemState State;
XilImage display_image;
XilImage image0;
Display∗ display;
Window window;
Xil_boolean is_double_buffered = TRUE;

/∗ Create an XIL display image from existing X display and window ∗/
if(display_image = xil_create_double_buffered_window(State,

display,window) == NULL) {

is_double_buffered = FALSE;
display_image = xil_create_from_window(State, display, window);

}

/∗ Copy image0 to the display ∗/
xil_copy(image0, display_image);

if(is_double_buffered) {
/∗ Move the back buffers contents to the front buffer ∗/
xil_swap_buffers(display_image);

}

NOTES As with standard images, device images can have origins, color spaces, and so on.
Subsets of device images can be referenced or written using ROIs or child images.

To resize a window that contains an XilImage, destroy the XilImage attached to the
window, resize the window, wait for a ConfigureNotify event to ensure the
XResizeWindow(3) is complete, and then call xil_create_from_window () to recreate the
image in the new window size. Detaching and attaching an XIL image to a window is a
very lightweight process.

XIL does not support using an X window’s backing_store attribute to maintain an image in

140 modified 24 February 1997

SunOS 5.6 xil_create_from_window (3)

the window when the window is obscured or unmapped (see the Xlib Programming
Manual). Your code should always check for an Expose event and take the appropriate
measures for displaying the image again when the window is exposed.

You cannot attach an XIL image to an unmapped window. The application should wait
for the first Expose event and then attach the XIL image to the window.

SEE ALSO xil_get_device_attribute(3), xil_set_device_attribute(3), xil_get_readable(3),
xil_get_writable(3), xil_device_create(3), xil_device_set_attribute(3),
xil_device_destroy(3), xil_swap_buffers(3), xil_get_active_buffer(3),
xil_set_active_buffer(3).

modified 24 February 1997 141

xil_create_temporary (3) SunOS 5.6

NAME xil_create_temporary, xil_create_temporary_from_type - create a temporary image

SYNOPSIS #include <xil/xil.h>

XilImage xil_create_temporary(XilSystemState system_state,
unsigned int width,
unsigned int height,
unsigned int nbands,
XilDataType datatype);

XilImage xil_create_temporary_from_type(XilSystemState system_state,
XilImageType imagetype);

DESCRIPTION Temporary images share all the properties of standard XIL images except that they can
only be written into once and read from once. You use temporary images as interim
images when performing a sequence of XIL functions on a source image to produce a
particular destination image.

Temporary images provide a significant benefit with tiling. In addition, they help the
deferred execution mechanism recognize when images are no longer needed. It is
strongly recommended that you create temporary images for all interim images that you
know you won’t be processing again.

xil_create_temporary () creates an image with the specified dimensions and data type.
width is the width (extent in x) of the image. height is the height (extent in y) of the image.
nbands is the number of bands in the image. datatype is the data type of the image, which
can be one of the following enumeration constants of type XilDataType:

XIL_BIT 1-bit

XIL_BYTE unsigned 8-bit

XIL_SHORT signed 16-bit

XIL_FLOAT 32-bit IEEE floating point

xil_create_temporary_from_type () creates an image from an XilImageType object. All
the parameters needed to create the image are contained within the XilImageType object.
An XilImageType object is often used as a shortcut for creating new images equivalent to
an existing image without having to query the image or image type for its individual
characteristics. The characteristics of an XilImageType object are xsize, ysize, nbands, data-
type, and colorspace.

ERRORS For a complete list of XIL error messages by number, consult Appendix B of the XIL
Programmer’s Guide.

EXAMPLES Take a particular source image and perform a series of operations before displaying the
final image.

XilSystemState state;

142 modified 10 February 1997

SunOS 5.6 xil_create_temporary (3)

XilImage filesrc;
XilImage display;
XilImage tmp1, tmp2;
unsigned int width, height, nbands;
XilDataType datatype;
Display∗ xdisplay;
Window xwindow;

filesrc = xil_create(state, width, height, nbands, datatype);
display = xil_create_from_window(state, xdisplay, xwindow);
tmp1 = xil_create_temporary(state, width, height, nbands,datatype);

/∗ process filesrc into the display ∗/

xil_lookup(filesrc, tmp1);
tmp2 = xil_create_temporary(state, width, height, nbands,datatype);
xil_convolve(tmp1, tmp2);
xil_ordered_dither (tmp2, display);

/∗ wait ∗/

xil_destroy(filesrc);
xil_destroy(display);

NOTES A temporary image may only be modified up until the point that it has been written in to.
That is, the origin, ROI, and colorspace may be modified until the temporary image has
been used as a destination.

As soon as the temporary image has been used as a source to an operation, it no longer
exists.

If a temporary image has not been used as a source to an operation, it still exists and the
user would be responsible for destroying the temporary image before exiting XIL. A tem-
porary image may not be exported.

SEE ALSO xil_create(3), xil_create_from_type(3).

modified 10 February 1997 143

xil_decompress (3) SunOS 5.6

NAME xil_decompress − decompress an image from a compressed image sequence

SYNOPSIS #include <xil/xil.h>

void xil_decompress (XilCis cis,
XilImage dst);

DESCRIPTION This function decompresses the current read frame in a compressed image sequence
(CIS) and puts its output into an image object. It also increments the CIS’s current read
frame. cis is the input compressed image sequence. dst is the output XilImage. If the
function is successful, an image from the CIS will be decompressed into the destination.

The XIL library supports a number of compression formats, including CCITT G3/G4,
JPEG, MPEG-1, H.261, Cell, and CellB.

ROI Behavior If the destination image has had an ROI set on it (with xil_set_roi(3)) the ROI functions as
a "write mask" for the destination image. Note that, in general, decompression to
destination images with ROIs will not be accelerated by decompression molecules or by
device-specific acceleration libraries.

Origin Behavior Images stored in a CIS inherently have origins of (0.0,0.0). If a CIS image is
decompressed into an image with a non-zero origin, the normal origin handling
procedures will be invoked. See xil_set_origin(3) for more detail.

XIL Decompressors The XIL library provides the functions necessary to decompress an image or sequence of
images from a CIS. The compressed data may have been stored into the CIS either by
using calls to xil_compress(3) or by inserting data into the CIS with xil_cis_put_bits(3) or
xil_cis_put_bits_ptr(3). A standard XIL decompressor provides functions to:

Decompress data from a single frame of a CIS to an XilImage.

Provide a pointer to compressed data in a CIS. This can be used by applications
to write the data out to a file, for example.

Seek to a new position in a CIS.

Determine the number of frames remaining in the CIS.

ERRORS For a complete list of XIL error messages by number, consult Appendix B of the XIL
Programmer’s Guide.

EXAMPLES Decompress the current read frame of a compressed image sequence:

XilCis cis;
XilImage dst;
XilImageType type;
XilSystemState State;
type = xil_cis_get_output_type(cis);
dst = xil_create_from_type(State, type);
while (xil_cis_has_frame(cis))

144 modified 09 June 1993

SunOS 5.6 xil_decompress (3)

xil_decompress(cis, dst);

NOTES The data type and number of bands of the destination image must match the attributes of
the images that are stored in the compressed image sequence. Use
xil_cis_get_output_type(3) to get a CIS’s image type. It is, however, permissible to
decompress from a CIS into an image with larger or smaller dimensions than that of the
CIS frame. In that case, the origins will be aligned and clipping calculations performed to
find the intersected region.

SEE ALSO xil_compress(3), xil_cis_has_frame(3), xil_cis_put_bits(3), xil_cis_put_bits_ptr(3),
xil_cis_get_output_type(3).

modified 09 June 1993 145

xil_destroy (3) SunOS 5.6

NAME xil_destroy − destroy an image

SYNOPSIS #include <xil/xil.h>

void xil_destroy(XilImage image);

DESCRIPTION This routine destroys an image, freeing the resources associated with the image structure.
It also deallocates the memory used to store image data if that memory was allocated by
XIL. If the image has child images allocated with it, they are also destroyed.

ERRORS For a complete list of XIL error messages by number, consult Appendix B of the XIL
Programmer’s Guide.

EXAMPLES Destroy an image:

XilImage image;

xil_destroy (image);

NOTES The user is responsible for freeing memory that has been assigned to an image via an
xil_set_memory_storage(3) call.

Referencing an image after it has been destroyed (including any children that have been
automatically destroyed) is an error that may cause problems potentially severe enough
to cause a core dump.

If you create an XIL display image on an X display, you must destroy that image before
calling XCloseDisplay(). Calling XCloseDisplay() before calling xil_destroy() will make
xil_destroy() work improperly.

SEE ALSO xil_create(3), xil_create_child(3), xil_create_from_type(3), xil_create_copy(3),
xil_create_from_window(3), xil_create_from_device(3), xil_set_memory_storage(3).

146 modified 16 August 1993

SunOS 5.6 xil_device_create (3)

NAME xil_device_create, xil_device_destroy − create or destroy a device object

SYNOPSIS #include <xil/xil.h>

XilDevice xil_device_create (XilSystemState State ,
char ∗device);

void xil_device_destroy (XilDevice deviceObj);

DESCRIPTION xil_device_create () creates a device object and associates it with a particular device type;
the object is used to store initialization attributes for its associated device. State is the XIL
system state, and device is the name of the associated device type. The device name must
be provided by the group that writes the device handler.

A device object is associated with a particular device type and cannot be associated with
a different device type. Its only use is to initialize device attributes when you call the
xil_create_from_device(3) function to create the device image. Device objects are particu-
larly useful for storing interdependent attributes that must be simultaneously set for a
device, or for setting attributes that require a substantial memory allocation.

xil_device_destroy () destroys the specified device object. Its only parameter is the han-
dle to the device object.

ERRORS For a complete list of XIL error messages by number, consult Appendix B of the XIL
Programmer’s Guide.

EXAMPLES Create a device object associated with the device "my_device":

XilSystemState State;
XilDevice deviceObj;

deviceObj = xil_device_create (State, "my_device");

NOTES A device object cannot be used to adjust a device image’s attributes after the image is
created; xil_set_device_attribute(3) does that. However, after using the device object to
create one device image, you can use the same object to store different initialization attri-
butes, then use the modified device object when you create another device image of the
same type.

Devices that don’t require attribute initialization typically don’t recognize or support
device objects. For these devices, you can’t use a device object to set attributes.

SEE ALSO xil_device_set_value(3), xil_create_from_device(3), xil_set_device_attribute(3).

modified 31 March 1994 147

xil_device_set_attribute (3) SunOS 5.6

NAME xil_device_set_attribute − stores device appropriate attributes in a device object

SYNOPSIS #include <xil/xil.h>

void xil_device_set_attribute (XilDevice deviceObj,
char ∗attribute ,
void ∗value);

DESCRIPTION xil_device_set_attribute () stores attribute and value in the device object deviceObj.
attribute is the name of the attribute you want to set and value is the attribute’s value.
Attribute names and their possible values are defined by the group that writes the device
handler. Only attributes the device understands should be set on the device object;
otherwise an error is generated.

You can store in the object as many attributes and values as needed to derive all required
initialization attributes for the device. You must make a separate function call for each
attribute.

ERRORS For a complete list of XIL error messages by number, consult Appendix B of the XIL
Programmer’s Guide.

EXAMPLES Create a device object and pass it as an argument on the function call that creates its asso-
ciated device image:

XilSystemState State;
XilDevice deviceObj;
XilImage dev_image;
int new_value = 255;

deviceObj = xil_device_create (State, "device");

xil_device_set_attribute (deviceObj, "ATTRIBUTE_1",
(void∗) new_value);

xil_device_set_attribute (deviceObj, "ATTRIBUTE_2",
(void∗) new_value);

dev_image = xil_create_from_device (State, "device", deviceObj);

NOTES Because attributes and their associated values may reference data in the application’s
data space, any data associated with an XilDevice object must remain valid while the
device object references it.

SEE ALSO xil_device_create(3), xil_create_from_device(3), xil_set_device_attribute(3).

148 modified 01 January 1997

SunOS 5.6 xil_device_set_value (3)

NAME xil_device_set_value − stores device-initialization values in a device object

SYNOPSIS #include <xil/xil.h>

void xil_device_set_value (XilDevice deviceObj,
char ∗ attribute ,
void ∗value);

DESCRIPTION xil_device_set_value () stores attribute and value in the device object deviceObj. attribute is
the name of the attribute you want to set and value is the attribute’s value. Attribute
names and their possible values are defined by the group that writes the device handler.
Only attributes the device understands should be set on the device object; otherwise an
error is generated.

You can store in the object as many attributes and values as needed to derive all required
initialization attributes for the device. Make a separate function call for each attribute.

ERRORS For a complete list of XIL error messages by number, consult Appendix B of the XIL
Programmer’s Guide.

EXAMPLES Create a device object and pass it as an argument on the function call that creates its asso-
ciated device image:

XilSystemState State;
XilDevice deviceObj;
XilImage dev_image;
int new_value = 255;

deviceObj = xil_device_create (State, "device");

xil_device_set_value (deviceObj, "ATTRIBUTE_1",
(void∗) new_value);

xil_device_set_value (deviceObj, "ATTRIBUTE_2",
(void∗) new_value);

dev_image = xil_create_from_device (State, "device", deviceObj);

NOTES Because attributes and their associated values may reference data in the application’s
data space, any data associated with an XilDevice object must remain valid while the
device object references it.

SEE ALSO xil_device_create(3), xil_create_from_device(3), xil_set_device_attribute(3).

modified 28 January 1994 149

xil_dithermask_create (3) SunOS 5.6

NAME xil_dithermask_create, xil_dithermask_create_copy, xil_dithermask_destroy − create and
destroy dither mask objects

SYNOPSIS #include <xil/xil.h>

XilDitherMask xil_dithermask_create (XilSystemState State ,
unsigned int width ,
unsigned int height,
unsigned int nbands,
float ∗data);

XilDitherMask xil_dithermask_create_copy (XilDitherMask mask);

void xil_dithermask_destroy (XilDitherMask mask);

DESCRIPTION These routines create and destroy the XilDitherMask objects used in the
xil_ordered_dither(3) operation.

xil_dithermask_create() creates an XilDitherMask object of the specified size with the
specified data. width is the width of the dither mask in pixels. height is the height of the
dither mask in pixels. nbands is the number of bands in the dither mask. data is a pointer
to the data to be stored in the dither mask.

xil_dithermask_create_copy() creates and returns a copy of the specified dither mask.
The name of a copy is initially empty (NULL).

xil_dithermask_destroy() destroys the specified dither mask.

ERRORS For a complete list of XIL error messages by number, consult Appendix B of the XIL
Programmer’s Guide.

EXAMPLES Create a 4x4 1-band dither mask:

XilSystemState State;
unsigned int width=4, height=4, nbands=1;
XilDithermask dithermask;
float data[] = {

0.0, 0.5, 0.125, 0.625,
0.75, 0.25, 0.875, 0.375,
0.1875, 0.6875, 0.0625, 0.5625,
0.9375, 0.4375, 0.8125, 0.3125

};

dithermask = xil_dithermask_create (State, width, height, nbands, data);
Note - For multiband dither masks (nbands > 1), the data in the array are not interleaved.
Instead, append the data for each additional band to the data for the previous band. If the
example above were a 2-band dither mask, add another 4 rows by 4 columns of floating
point values to the array for band 1.

150 modified 16 August 1993

SunOS 5.6 xil_dithermask_create (3)

SEE ALSO xil_dithermask_get_height(3), xil_dithermask_get_by_name(3),
xil_dithermask_get_values(3), xil_dithermask_get_state(3), xil_ordered_dither(3).

modified 16 August 1993 151

xil_dithermask_get_by_name (3) SunOS 5.6

NAME xil_dithermask_get_by_name, xil_dithermask_get_name, xil_dithermask_set_name − get
and set a dither mask object name and get the handle of a dither mask

SYNOPSIS #include <xil/xil.h>

XilDitherMask xil_dithermask_get_by_name (XilSystemState State ,
char ∗name);

char∗ xil_dithermask_get_name (XilDitherMask dithermask);

void xil_dithermask_set_name (XilDitherMask dithermask ,
char ∗name);

DESCRIPTION Use these functions to assign names to dither mask objects, to retrieve dither mask objects
by name, and to read the names of dither masks. For example, some predefined dither
masks are created by an xil_open(3) call. These dither masks can be retrieved by
xil_dithermask_get_by_name().

xil_dithermask_get_by_name() returns the handle to the dither mask with the specified
name name. If such a dither mask does not exist, NULL is returned.
xil_dithermask_get_by_name() does not make a copy of the dither mask.

xil_dithermask_get_name() returns a copy of the specified dither mask’s name. A call to
free (3) should be used to free the space allocated by xil_dithermask_get_name(). If the
specified dither mask has no name, NULL is returned.

xil_dithermask_set_name() sets the name of the specified dither mask to the one
provided.

Standard Dither
Masks Provided

The XIL library creates several predefined dither masks at the time of an xil_open(3) call.
The names of these dither masks and their suggested uses follow.

Dither Mask Name Suggested Use

"dm883" 8x8x3 mask for dithering 24-bit color images to 8-bit pseudocolor
images

"dm881" 8x8x1 mask for dithering 8-bit grayscale images to 1-bit images

"dm443" 4x4x3 mask for dithering 24-bit color images to 8-bit pseudocolor
images

"dm441" 4x4x1 mask for dithering 8-bit grayscale images to 1-bit images

ERRORS For a complete list of XIL error messages by number, consult Appendix B of the XIL
Programmer’s Guide.

152 modified 16 August 1993

SunOS 5.6 xil_dithermask_get_by_name (3)

EXAMPLES Create and name a 2x2 single-banded dither mask:

XilSystemState State;
XilDitherMask dithermask;
float data[] = { 0.0, 0.75,

0.25, 0.5 };

xil_dithermask_create(State, 2, 2, 1, data);
xil_dithermask_set_name(dithermask, "small_mask");

Perform a dither operation on a 1-banded image using "small_mask":

XilSystemState State;
XilDitherMask dithermask;
XilLookup cc_2color_bit; /∗ 2-entry cube; black /white ∗/
XilImage byte_image, bit_image;

dithermask = xil_dithermask_get_by_name(State, "small_mask");
xil_ordered_dither(byte_image, bit_image, cc_2color_bit, dithermask);

NOTES The set of standard objects is generated for each instantiation of an XilSystemState. If these
standard objects are deleted, they become unavailable for the duration of the current XIL
session.

If you give two dither masks the same name, it is not defined which dither mask will be
retrieved by a call to xil_dithermask_get_by_name().

SEE ALSO xil_dithermask_create(3), xil_dithermask_get_height(3), xil_open(3).

modified 16 August 1993 153

xil_dithermask_get_height (3) SunOS 5.6

NAME xil_dithermask_get_height, xil_dithermask_get_width, xil_dithermask_get_nbands −
read attributes of dither mask objects

SYNOPSIS #include <xil/xil.h>

unsigned int xil_dithermask_get_height (XilDitherMask mask);

unsigned int xil_dithermask_get_width (XilDitherMask mask);

unsigned int xil_dithermask_get_nbands (XilDitherMask mask);

DESCRIPTION These routines control access to the dither mask object used in the xil_ordered_dither(3)
operation. In each routine, mask is a handle to a dither mask.

xil_dithermask_get_width() gets the width of the specified dither mask.

xil_dithermask_get_height() gets the height of the specified dither mask.

xil_dithermask_get_nbands() gets the number of bands in the specified dither mask.

ERRORS For a complete list of XIL error messages by number, consult Appendix B of the XIL
Programmer’s Guide.

EXAMPLES Get the dimensions of a dither mask:

XilDithermask dithermask;
unsigned int width, height, nbands;

width = xil_dithermask_get_width (dithermask);
height = xil_dithermask_get_height (dithermask);
nbands = xil_dithermask_get_nbands (dithermask);

SEE ALSO xil_dithermask_create(3), xil_dithermask_get_by_name(3).

154 modified 16 August 1993

SunOS 5.6 xil_dithermask_get_values (3)

NAME xil_dithermask_get_values - returns a copy of the internal values in a dither mask

SYNOPSIS #include <xil/xil.h>

void xil_dithermask_get_values(XilDitherMask mask,
float∗ data);

DESCRIPTION xil_dithermask_get_values () returns the internal values stored in mask. (See
xil_dithermask_create(3) man page for a description of how the values are arranged. The
user must allocate the array of float data to hold the values of the dither mask. The size of
the data array will be the width of mask ∗ height of mask ∗ number of bands in mask.
The width, height, and number of bands can be retrieved by calling
xil_dithermask_get_width(3), xil_dithermask_get_height(3), and
xil_dithermask_get_nbands(3).

ERRORS For a complete list of XIL error messages by number, consult Appendix B of the XIL
Programmer’s Guide.

EXAMPLES Get the values of a dither mask object:

XilDithermask mask;
float∗ data;
unsigned int width;
unsigned int height;
unsigned int nbands;

/∗ process filesrc into the display ∗/

xil_lookup(filesrc, tmp1);
tmp2 = xil_create_temporary(State, width, height, nbands,datatype);
xil_convolve(tmp1, tmp2);
xil_ordered_dither (tmp2, display);

width = xil_dithermask_get_width(mask);
height = xil_dithermask_get_height(mask);
nbands = xil_dithermask_get_nbands(mask);

data = malloc(width∗height∗nbands∗sizeof(float));
if(data == NULL)

/∗ cleanup and exit ∗/

}
xil_dithermask_get_values(mask, data);

modified 10 February 1997 155

xil_dithermask_get_values (3) SunOS 5.6

NOTES The values returned in data are copies of the internal values. The only way to alter the
internal values are to create a new mask.

SEE ALSO xil_dithermask_create(3), xil_dithermask_get_width(3), xil_dithermask_get_height(3),
xil_dithermask_get_nbands(3).

156 modified 10 February 1997

SunOS 5.6 xil_divide (3)

NAME xil_divide, xil_divide_by_const, xil_divide_into_const − image division operations

SYNOPSIS #include <xil/xil.h>

void xil_divide (XilImage src1,
XilImage src2,
XilImage dst);

void xil_divide_by_const (XilImage src1,
float ∗constants,
XilImage dst);

void xil_divide_into_const (float ∗constants,
XilImage src1,
XilImage dst);

DESCRIPTION xil_divide() performs a pixel-by-pixel division of image src2 into image src1 and stores
the result in the dst (destination) image.

xil_divide_by_const() performs a pixel-by-pixel division of image constants values into
image src1 and stores the result in the dst (destination) image.

xil_divide_into_const() performs a pixel-by-pixel division of image src1 into constants
values and stores the result in the dst (destination) image.

For division operations with constants and an n-band image, n float values must be
provided, one per band. If the result of the operation is out of range for a particular data
type, the result is clamped to the minimum or maximum value for the data type. Results
for XIL_BYTE operations, for example, are clamped to 0 if they are less than 0 and 255 if
they are greater than 255.

If division of a non-zero value by zero occurs, the destination value is set to the max-
imum value for the pixel data type. If division of zero by zero occurs, the destination
value is zero. For all division cases (image into image, constant into image, image into
constant), an exception is raised once for any number of occurences of division by zero.

ERRORS For a complete list of XIL error messages by number, consult Appendix B of the XIL
Programmer’s Guide.

EXAMPLES Divide image2 into image1 and store the result in dst :

XilImage image1, image2, dst;

xil_divide(image1, image2, dst);

modified 03 August 1993 157

xil_divide (3) SunOS 5.6

Divide constants into 4-band image1 and store the result in dst :

XilImage image1, dst;
float constants[4];

constants[0] = 1.0;
constants[1] = 2.0;
constants[2] = 2.0;
constants[3] = 2.0;
xil_divide_by_const(image1, constants, dst);

Divide 4-band image1 into constants and store the result in dst :

XilImage image1, dst;
float constants[4];

constants[0] = 1.0;
constants[1] = 1.0;
constants[2] = 1.0;
constants[3] = 1.0;
xil_divide_into_const(constants, image1, dst);

NOTES Source and destination images must be the same data type and have the same number of
bands. In-place operations are supported.

158 modified 03 August 1993

SunOS 5.6 xil_edge_detection (3)

NAME xil_edge_detection − detect edges within an image

SYNOPSIS #include <xil/xil.h>

void xil_edge_detection (XilImage src,
XilImage dst ,
XilEdgeDetection edge_detection_method);

DESCRIPTION This function detects edges within an image using the method specified by the
edge_detection_method parameter. src is the source image handle. dst is the destination
image handle.

edge_detection_method is an enumeration type that specifies the edge detection algorithm
to be used in the operation. Currently, the only available method is
XIL_EDGE_DETECT_SOBEL, which uses the following masks:

Vertical Horizontal

-0.5 0.0 0.5 -0.5 -1.0 -0.5
-1.0 0.0 1.0 0.0 0.0 0.0
-0.5 0.0 0.5 0.5 1.0 0.5

The XIL_EDGE_DETECT_SOBEL method performs two correlation operations on the
source image, using the vertical filter to detect vertical edges and the horizontal filter to
detect horizontal edges. This yields the intermediate images a and b. It then squares pixel
values in a and b, yielding intermediate images c and d. To form the final destination
image, it takes the square root of c + d. The correlation operations duplicate the source-
image edges during the correlation, similar to using the XIL_EDGE_EXTEND edge detec-
tion method on the xil_convolve(3) function.

ROI Behavior An ROI (region of interest) is used as a read mask for key pixels in the source image and
as a write mask in the destination image. The edge detection operation may access data
outside a source ROI as long as the key pixel remains inside.

ERRORS For a complete list of XIL error messages by number, consult Appendix B of the XIL
Programmer’s Guide.

EXAMPLES This example performs edge detection operation on src image using Sobel algorithm, and
writes the result into dst.

XilImage src, dst;

xil_edge_detection(src, dst, XIL_EDGE_DETECT_SOBEL);

modified 04 March 1994 159

xil_edge_detection (3) SunOS 5.6

NOTES Source and destination images must be the same data type and have the same number of
bands. The images need not have the same width and height. This operation cannot be
performed in place.

SEE ALSO xil_convolve(3))

160 modified 04 March 1994

SunOS 5.6 xil_erode (3)

NAME xil_erode, xil_dilate − erode or dilate an image

SYNOPSIS #include <xil/xil.h>

void xil_erode (XilImage src,
XilImage dst ,
XilSel sel);

void xil_dilate (XilImage src,
XilImage dst ,
XilSel sel);

DESCRIPTION xil_erode() erodes an image.

xil_dilate() dilates an image.

src is the source image handle. dst is the destination image handle. sel is a structuring
element that describes which of a source pixel’s neighbors will be used as input to the
operation.

ROI Behavior An ROI (region of interest) is used as a read mask for key pixels in the source image and
as a write mask in the destination image. The key pixel aligns with the output pixel and
constrains which input pixels are used to generate the output. The erode and dialate
operation may access data outside a source ROI as long as the key pixel remains inside.

ERRORS For a complete list of XIL error messages by number, consult Appendix B of the XIL
Programmer’s Guide.

EXAMPLES Erode an image using a 3 x 3 "cross-shaped" structuring element with the key pixel in the
center (1,1).

XilSystemState State;
XilImage src, dst;
XilSel sel;
unsigned int sel_data[] = { 0, 1, 0,

1, 1, 1,
0, 1, 0 };

sel=xil_sel_create (State, 3, 3, 1, 1, sel_data);

xil_erode(src, dst, sel);

modified 15 June 1993 161

xil_erode (3) SunOS 5.6

Dilate an image using a 3 x 3 "X-shaped" structuring element with the key pixel in the
upper left-hand corner (0,0).

XilSystemState State;
XilImage src, dst;
XilSel sel;
unsigned int sel_data[] = { 1, 0, 1,

0, 1, 0,
1, 0, 1 };

sel=xil_sel_create (State, 3, 3, 0, 0, sel_data);

xil_dilate(src, dst, sel);

NOTES Source and destination images must be the same type and have the same number of
bands. This operation cannot be performed in place.

SEE ALSO xil_sel_create(3)

162 modified 15 June 1993

SunOS 5.6 xil_error_diffusion (3)

NAME xil_error_diffusion − use error-diffusion dithering to convert an image into a single-band
image with a colormap

SYNOPSIS #include <xil/xil.h>

void xil_error_diffusion (XilImage src,
XilImage dst ,
XilLookup cmap,
XilKernel distribution);

DESCRIPTION This routine performs error-diffusion dithering of a src (source) image with a distribution
matrix. It produces a single-band dst (destination) image. cmap is a lookup table with the
number of output bands equal to the number of bands in the source image. distribution is
a kernel with values between 0.0 and 1.0. This distribution matrix specifies the amount of
error to distribute to the neighbors of the current pixel.

This function assumes that the entire error is distributed to the right and below the
current pixel. That is, the values in the distribution kernel sum to 1.0. The only entries
that can be non-zero are those to the right of and on the same row as the key entry, and
those entries below the row of the key entry.

ERRORS For a complete list of XIL error messages by number, consult Appendix B of the XIL
Programmer’s Guide.

EXAMPLES Error-diffusion dither a 3-band image into a single-band image:

XilImage src; /∗ 3-band source image ∗/
XilImage dst; /∗ 1-band destination image ∗/
XilLookup colormap; /∗ colormap ∗/
XilKernel distribution; /∗ error distribution matrix ∗/
float data[]={ 0.0, 0.0, 0.0,

0.0, 0.0, 7.0/16.0,
3.0/16.0, 5.0/16.0, 1.0/16.0};

distribution = xil_kernel_create(State, 3, 3, 1, 1, data);

xil_error_diffusion(src, dst, colormap, distribution);

NOTES For a discussion of error diffusion in the XIL library, consult the XIL Programmer’s Guide.

SEE ALSO xil_kernel_create(3), xil_kernel_get_by_name(3), xil_lookup_create(3),
xil_lookup_get_by_name(3), xil_kernel_get_height(3), xil_kernel_get_width(3),
xil_kernel_get_values(3).

modified 15 June 1993 163

xil_error_get_string (3) SunOS 5.6

NAME xil_error_get_string, xil_error_get_id, xil_error_get_category,
xil_error_get_category_string, xil_error_get_location, xil_error_get_primary,
xil_error_get_object, xil_object_get_error_string, xil_object_get_type − get information
about errors and the objects affected by errors

SYNOPSIS #include <xil/xil.h>

char ∗xil_error_get_string (XilError error);

char ∗xil_error_get_id (XilError error);

XilErrorCategory xil_error_get_category (XilError error);

char ∗xil_error_get_category_string (XilError error);

char ∗xil_error_get_location (XilError error);

Xil_boolean xil_error_get_primary (XilError error);

XilObject xil_error_get_object (XilError error);

void xil_object_get_error_string (XilObject object,
char ∗string,
int string_size);

XilObjectType xil_object_get_type (XilObject object);

DESCRIPTION These functions can be used by an error handler (installed with
xil_install_error_handler(3)) to retrieve information about an error when it occurs.

xil_error_get_string () returns an error string in the currently configured language.

xil_error_get_id () returns a character string that uniquely identifies the error.

xil_error_get_category () returns the general category of the error. See XilErrorDefines.h
for the list of categories.

xil_error_get_category_string () returns a character string that identifies the category of
the error.

xil_error_get_location () returns information that indicates where the error occurred in
the XIL library. By reporting this information to support personnel, you can help
pinpoint the source of the problem.

xil_error_get_primary () returns TRUE if the currently reported error is the primary
cause of the error. For instance, if memory runs out and an image cannot be created, then
the primary error would be an XIL_ERROR_RESOURCE error at image creation.
Secondary errors might also be generated as the NULL image is used internally in the XIL
library.

xil_error_get_object () returns the XIL object that an error occurred on. This object can
then be used in the error handler to query for additional information about the object,
either through xil_object_get_error_string () or through direct calls to the object.

164 modified 15 June 1993

SunOS 5.6 xil_error_get_string (3)

xil_object_get_error_string () creates a string with additional information about the
object involved in the error. This string may then be used in the error handler to provide
additional information about the error.

xil_object_get_type () returns the an enumeration constant that indicates the type of an
object. This enumeration constant can be used in an error handler to take an XilObject
and cast it to the appropriate type of XilObject. For example, after the object has been cast
to XilImage, then additional information about the object is available. The following
excerpt from XilDefines.h lists the possible XilObjects:

typedef enum {
XIL_IMAGE,
XIL_IMAGE_TYPE,
XIL_LOOKUP,
XIL_CIS,
XIL_DITHER_MASK,
XIL_KERNEL,
XIL_SEL,
XIL_ROI,
XIL_ROI_LIST,
XIL_HISTOGRAM,
XIL_COLORSPACE

} XilObjectType;

ERRORS For a complete list of XIL error messages by number, consult Appendix B of the XIL
Programmer’s Guide.

EXAMPLES Create an error handler that puts out information about the category,
the error, the id, and any additional object information. Also output
the width of the image if the error object is an image.

Xil_boolean my_error_func(XilError error)
{
#define MAX 1024

XilObject obj;
char buffer[MAX];

printf("XIL Error category: %s\n", xil_error_get_category_string(error));
printf("XIL Error string: %s\n", xil_error_get_string(error));
printf("XIL Error id: %s\n", xil_error_get_id(error));
obj = xil_error_get_object(error);
if (obj) {

xil_object_get_error_string(obj,buffer,MAX);
if (buffer[0] != 0)

printf("XIL Object info: %s\n", buffer);

modified 15 June 1993 165

xil_error_get_string (3) SunOS 5.6

if (xil_object_get_type(obj) == XIL_IMAGE)
printf("Image Width: %d\n", xil_get_width((XilImage)obj));

}
return TRUE;

}

NOTES The character pointer returned from xil_error_get_string () points to data internal to the
error object and should not be freed or modified.

SEE ALSO xil_default_error_handler(3), xil_install_error_handler(3).

166 modified 15 June 1993

SunOS 5.6 xil_export (3)

NAME xil_export, xil_import, xil_get_exported − move an image from XIL to application space,
or from application to XIL space, or determine whether an image is exported

SYNOPSIS #include <xil/xil.h>

int xil_export (XilImage image);

void xil_import (XilImage image,
Xil_boolean change_flag);

int xil_get_exported (XilImage image);

DESCRIPTION xil_export(3) switches an image from XIL library control to application control. This
function returns XIL_SUCCESS if the export succeeds, and XIL_FAILURE if the export
fails.

By calling xil_export(3) to switch an image from XIL library control to application
control, the application is now able to access information about how image data is stored
in memory. The actual switch of control simply switches a bit in the image indicating the
application has control.

The exported image’s data is accessed by calling xil_get_tile_storage(3),
xil_get_storage_with_copy(3) or the old (and not recommended for new applications)
xil_get_memory_storage(3). xil_export(3) can also be used to ensure that the image’s
data storage remains in main memory. This prevents the image from being moved to
another image processing device other than those which can process the image as they
exist in main memory. Although, for controlling the movement of storage,
xil_set_storage_movement(3) may be used instead.

Exported images can be operated on by all XIL operations. But, doing so may limit the
movement of image data to image processing accelerators which in turn may reduce the
performance of the operations. Furthermore, operating on an exported image means the
operation cannot be deferred for acceleration by molecules. Using
xil_set_storage_movement(3) may be a better choice when performing operations on
stationary data.

xil_import(3) switches an image from application control to XIL library control. An
image exported for read-only purposes may be re-imported in the most efficient way if
the parameter change_flag is set to FALSE (in other words, if the image data was not
modified). You must set the change flag to TRUE when you import an image if you make
any modifications to its data while it is exported.

When an application calls xil_import(3), the XIL library is free to move the image’s data
to another address space and to another format; therefore, importing an image invali-
dates the information returned by a previous storage aquisition. If the image is exported
again, the image data is unlikely to appear in the same memory location as the last time it
was exported, and it’s unlikely to have the same format as the last time. Therefore,
storage information aquisition must done called after each xil_export(3) in order to
obtain the current memory location and format for the image data.

modified 8 April 1994 167

xil_export (3) SunOS 5.6

To ensure that image data is not moved and is not reformatted, an application could
export the image but never import it again. However, this prevents the XIL library from
moving the image to an accelerator, if one exists, and it prevents the library from imple-
menting its deferred execution scheme; thus, application performance is significantly
degraded. After manipulating an exported image’s data, it’s usually best for an applica-
tion to take advantage of available acceleration by importing the image; then, when it
needs to manipulate data again, it can export the image and get new pointers to the data
and new format information by using one of the storage aquisition methods. See
xil_set_storage_movement(3) as a mechanism to limit how the XIL library can move data
while the image is imported.

xil_get_exported(3) returns the export status of an image. One of three possible values is
returned:

0 if the image is not exported

1 if the image is exported

-1 if the image is not exportable

ERRORS For a complete list of XIL error messages by number, consult Appendix B of the XIL
Programmer’s Guide.

NOTES Images created from a window with xil_create_from_window(3) or from a device with
xil_create_from_device(3) cannot be exported. A description of the storage of the image
cannot be requested if the image is not exported. Temporary images (created by
xil_create_temporary(3) or xil_create_temporary_from_type(3)) can not be exported.

SEE ALSO xil_set_tile_storage(3), xil_get_tile_storage(3), xil_set_storage_with_copy(3),
xil_get_storage_with_copy(3), xil_set_storage_movement(3),
xil_get_storage_movement(3), xil_set_memory_storage(3), xil_get_memory_storage(3).

168 modified 8 April 1994

SunOS 5.6 xil_extrema (3)

NAME xil_extrema − find maximum and minimum values of an image

SYNOPSIS #include <xil/xil.h>

void xil_extrema (XilImage src,
float ∗max ,
float ∗min);

DESCRIPTION This function finds the maximum and minimum pixel values in each band of an image.
src is the source image handle. max is a pointer to the floating-point array that holds the
maximum value [0...nbands]. min is a pointer to the floating-point array that holds the
minimum value [0...nbands].

ERRORS For a complete list of XIL error messages by number, consult Appendix B of the XIL
Programmer’s Guide.

EXAMPLES Find the maximum and minimum pixel values in a 2-banded image:

XilImage src;
float max[2];
float min[2];
xil_extrema(src, max, min);

NOTES For an n-band image, the arrays of floats for min, max must each be of size n, because
each band is independently evaluated. If the maximum pointer is NULL, only the
minimum is computed. If the minimum pointer is NULL, only the maximum is
computed.

SEE ALSO xil_create(3).

modified 15 June 1993 169

xil_fill (3) SunOS 5.6

NAME xil_fill − perform boundary fill from specified start point

SYNOPSIS #include <xil/xil.h>

void xil_fill (XilImage src,
XilImage dst ,
float xseed,
float yseed,
float ∗boundary,
float ∗fill_color);

DESCRIPTION This function performs a boundary fill. Given the starting coordinates, the routine fills
every 4-connected pixel with the specified color until it encounters the boundary. src is
the source image handle. dst is the destination image handle. xseed is a float that specifies
the x start coordinate. yseed is a float that specifies the y start coordinate. boundary is a
pointer to the floating-point array that specifies the boundary value [0...(nbands-1)] for
each pixel. fill_color is a pointer to the floating-point array that specifies the fill color
[0...(nbands-1)] for each pixel.

ROI Behavior This function performs the fill operation on the entire source image. The filled pixels
within the ROI (region of interest) are output to the destination image.

ERRORS For a complete list of XIL error messages by number, consult Appendix B of the XIL
Programmer’s Guide.

EXAMPLES For this example, the source and destination images contain 2 bands. Perform boundary
fill starting at (x,y) = (7,3).

XilImage src;
XilImage dst;
float xseed = 7.0;
float yseed = 3.0;
float boundary[2] = {255.0, 0.0};
float fill_color [2] = {0.0,255.0};
xil_fill(src, dst, xseed, yseed, boundary, fill_color);

NOTES Source and destination images must be the same data type, and have the same number of
bands. For an n-band image, the array of floats for boundary and fill_color must be of size
n. A pixel that matches each band in the specified boundary value is a boundary pixel.
Only pixels that are changed to the fill color are output to the destination image. In-place
operations are supported.

SEE ALSO xil_create(3), xil_roi_create(3).

170 modified 15 June 1993

SunOS 5.6 xil_get_active_buffer (3)

NAME xil_get_active_buffer, xil_set_active_buffer - get or set the active buffer on a double-
buffered device image

SYNOPSIS #include <xil/xil.h>

XilBufferId xil_get_active_buffer (XilImage image);

void xil_set_active_buffer (XilImage image,
XilBufferId id);

DESCRIPTION The active buffer of a double-buffered device image represents the buffer that will be
affected when an operation uses the double-buffered image. At creation of a double-
buffered image, the back buffer is the active buffer.

xil_get_active_buffer () returns the current XilBufferId for the active buffer of a double-
buffered device image. The XilBufferId is an enumeration type that can be one of the fol-
lowing enumeration constants :

XIL_FRONT_BUFFER
XIL_BACK_BUFFER

If this function is called on an image that is either not a device image or not a double-
buffered image, an error is generated and the value XIL_BACK_BUFFER is returned to
the user.

xil_set_active_buffer () sets the active buffer for the double-buffered device image to
either XIL_FRONT_BUFFER or XIL_BACK_BUFFER. If this function is called on an
image that is either not a device image or not a double-buffered device image, an error is
generated.

EXAMPLES XilSystemState State;
XilImage display_image;
XilImage image0, image1;
Display∗ display;
Window window;

/∗ Create an XIL display image from existing X display and window ∗/
if(display_image = xil_create_double_buffered_window(State,

display,window) == NULL) {

/∗ return with error ∗/
}

/∗ We know that this device image is double buffered ∗/

/∗ Copy image0 to the back buffer of display ∗/
xil_copy(image0, display_image);

modified 24 February 1997 171

xil_get_active_buffer (3) SunOS 5.6

/∗ Move the back buffers contents to the front buffer ∗/
xil_swap_buffers(display_image);

/∗ Set the active buffer of the display image to the front buffer ∗/
xil_set_active_buffer(display_image, XIL_FRONT_BUFFER);

/∗ overwrite the contents of the front buffer directly ∗/
xil_copy(image1, display_image);

ERRORS For a complete list of XIL error messages by number, consult Appendix B of the XIL
Programmer’s Guide.

NOTES Changing the active buffer to the XIL_FRONT_BUFFER does not change the fact that
xil_swap_buffers(3) swaps the contents of the back buffer to the front buffer.

SEE ALSO xil_create_double_buffered_window(3), xil_swap_buffers(3).

172 modified 24 February 1997

SunOS 5.6 xil_get_attribute (3)

NAME xil_get_attribute, xil_set_attribute − get and set the client attributes of images

SYNOPSIS #include <xil/xil.h>

int xil_get_attribute (XilImage image,
char ∗attribute ,
void ∗∗value);

int xil_set_attribute (XilImage image,
char ∗attribute ,
void ∗value);

DESCRIPTION These routines get and set values of client attributes of images. Names of the attributes
can be arbitrarily assigned and are simply saved for later retrieval. attribute is the name
of the attribute whose value is to be retrieved or set. value is the status of the specified
attribute.

xil_get_attribute() returns XIL_SUCCESS if the attribute is available, and XIL_FAILURE
if the specified attribute is not available.

xil_set_attribute() returns XIL_SUCCESS if the attribute is successfully set, and
XIL_FAILURE otherwise.

ERRORS For a complete list of XIL error messages by number, consult Appendix B of the XIL
Programmer’s Guide.

EXAMPLES Set the date that a photograph was taken:

XilImage image;
char ∗attribute;

status = xil_set_attribute (image, "DATE", (void ∗)date);
if(status==XIL_FAILURE)

fprintf(stderr,"Failed to set DATE attribute");

Get the favorite ice cream flavor of the person in the photograph:

XilImage image;
char ∗attribute;

status = xil_get_attribute (image, "favorite flavor", (void ∗∗)&(flavor));
if(status==XIL_FAILURE)

fprintf(stderr,"Failed to get flavor attribute");

NOTES These functions are not intended to to be used as a database interface. If the image does
not contain the specified attribute, the parent is searched for the attribute, then the
parent’s parent is searched, and so on, until there are no more parents.

modified 17 August 1993 173

xil_get_attribute (3) SunOS 5.6

SEE ALSO xil_get_device_attribute(3), xil_set_device_attribute(3), xil_cis_get_attribute(3),
xil_cis_set_attribute(3). 3).

174 modified 17 August 1993

SunOS 5.6 xil_get_by_name (3)

NAME xil_get_by_name, xil_get_name, xil_set_name − get and set an image object name and get
a handle to an image by specifying a name

SYNOPSIS #include <xil/xil.h>

XilImage xil_get_by_name (XilSystemState State ,
char ∗name);

char∗ xil_get_name (XilImage image);

void xil_set_name (XilImage image,
char ∗name);

DESCRIPTION Use these functions to assign names to image objects, to read an image’s name, and to
retrieve image objects by name.

xil_get_by_name() returns the handle to the image with the specified name name. If such
an image does not exist, NULL is returned. xil_get_by_name () does not make a copy of
the image.

xil_get_name() returns a copy of the specified image’s name. A call to free (3) should be
used to free the space allocated by xil_get_name()
If the specified image has no name, NULL is returned.

xil_set_name() sets the name of the specified image to the one provided.

ERRORS For a complete list of XIL error messages by number, consult Appendix B of the XIL
Programmer’s Guide.

EXAMPLES Create a 5x5 3-band blank test image called "empty5x5x3":

XilSystemState State;
XilImage image;
float values[] = { 0.0, 0.0, 0.0 };

image = xil_create(State,5,5,3,XIL_BYTE);
xil_set_value(image, values);
xil_set_name(image, "empty5x5x3");

Use an image named "empty5x5x3" to zero a portion of another image:

XilSystemState State;
XilImage zero_image, src, src_child;

zero_image = xil_get_by_name (State,"empty5x5x3");
src_child = xil_create_child (src, 100, 100, 5, 5, 1, 3);
xil_multiply (src_child, zero_image, src_child);

modified 17 August 1993 175

xil_get_by_name (3) SunOS 5.6

NOTES If you give two images the same name, it is not defined which image will be retrieved by
a call to xil_get_by_name().

SEE ALSO xil_create_child(3).

176 modified 17 August 1993

SunOS 5.6 xil_get_child_offsets (3)

NAME xil_get_child_offsets − get values of the offsets into a parent image

SYNOPSIS #include <xil/xil.h>

void xil_get_child_offsets (XilImage image,
unsigned int ∗offsetX ,
unsigned int ∗offsetY,
unsigned int ∗offsetBand);

DESCRIPTION This function gets the values of the offsets into a parent image that were used in the
xil_create_child(3) call that created the specified child image. offsetX is the horizontal
offset in pixels from the upper-left corner of the parent image to the upper-left corner of
the child image. offsetY is the vertical offset in pixels from the upper-left corner of the
parent image to the upper-left corner of the child image. offsetBand is the offset in bands,
starting from the first band of the parent image to the first band in the child image.

ERRORS For a complete list of XIL error messages by number, consult Appendix B of the XIL
Programmer’s Guide.

EXAMPLES Get the offsets used to create a child image:

XilImage image;
unsigned int x_offset, y_offset, band_offset;

xil_get_child_offsets(image, &x_offset, &y_offset, &band_offset);

SEE ALSO xil_create_child(3), xil_get_width(3), xil_get_height(3), xil_get_nbands(3).

modified 15 June 1993 177

xil_get_datatype (3) SunOS 5.6

NAME xil_get_datatype − get an image’s data type

SYNOPSIS #include <xil/xil.h>

XilDataType xil_get_datatype (XilImage image);

DESCRIPTION This function gets the data type of an image. The possible types returned are XIL_BIT,
XIL_BYTE, XIL_SHORT and XIL_FLOAT. This function may be called on all images.

ERRORS For a complete list of XIL error messages by number, consult Appendix B of the XIL
Programmer’s Guide.

EXAMPLES Get the datatype of an image:

XilImage image;
XilDataType datatype;

datatype = xil_get_datatype (image);

SEE ALSO xil_get_imagetype(3), xil_get_info(3), xil_get_width(3), xil_get_height(3),
xil_get_nbands(3), xil_get_size(3).

178 modified 17 August 1993

SunOS 5.6 xil_get_device_attribute (3)

NAME xil_get_device_attribute, xil_set_device_attribute − get and set the values of attributes of
device images

SYNOPSIS #include <xil/xil.h>

int xil_get_device_attribute (XilImage image,
char ∗attribute ,
void ∗∗value);

int xil_set_device_attribute (XilImage image,
char ∗attribute ,
void ∗value);

DESCRIPTION These routines get and set the values of attributes of device images. image is a handle to a
device image. attribute is the name of an attribute, and value is the attribute’s value.
Attribute names and their possible values are defined by the group that writes the device
handler.

xil_get_device_attribute() gets a device-specific attribute. It returns XIL_SUCCESS if the
attribute is available, and XIL_FAILURE if the specified attribute is not available.

xil_set_device_attribute() sets a device-specific attribute. It returns XIL_SUCCESS if the
attribute is successfully set, and XIL_FAILURE otherwise.

ERRORS For a complete list of XIL error messages by number, consult Appendix B of the XIL
Programmer’s Guide.

EXAMPLES Set the brightness of a frame-grabber input image:

int brightness;
brightness = 100;
XilImage framegrabber_image;

status = xil_set_device_attribute(framegrabber_image, "BRIGHTNESS",
(void ∗)brightness);

if(status==XIL_FAILURE)
fprintf(stderr,"Setting BRIGHTNESS attribute failed");

Get the contrast of a frame-grabber input image:

int contrast;
XilImage framegrabber_image;

status = xil_get_device_attribute(framegrabber_image, "CONTRAST",
(void ∗∗)&contrast);

if(status==XIL_FAILURE)
fprintf(stderr,"Getting CONTRAST attribute failed");

modified 01 April 1994 179

xil_get_device_attribute (3) SunOS 5.6

NOTES xil_set_device_attribute() is used to set the attributes of an existing device image; it can-
not be used to initialize attribute values before creating the device image. To initialize
device attributes, use xil_device_set_value().

SEE ALSO xil_create_from_window(3), xil_create_from_device(3), xil_get_attribute(3),
xil_get_readable(3), xil_get_writable(3), xil_device_create(3), xil_device_set_value(3).
3).

180 modified 01 April 1994

SunOS 5.6 xil_get_imagetype (3)

NAME xil_get_imagetype − get an XilImageType object

SYNOPSIS #include <xil/xil.h>

XilImageType xil_get_imagetype (XilImage image);

DESCRIPTION This function returns an XilImageType object that contains information about the size,
data type, and color space of an image. This function may be called on all images. An
XilImageType object describes the characteristics of an image that will be generated (or
expected) by a particular device (for example, a frame grabber or an output device). The
characteristics of an XilImageType object are xsize, ysize, nbands, datatype, and colorspace.
You obtain an XilImageType object from a call to xil_cis_get_output_type(3) or
xil_cis_get_input_type(3). You use an XilImageType object to create images (via an
xil_create_from_type(3) call) that will be compatible with a given device, compressor,
and so on.

ERRORS For a complete list of XIL error messages by number, consult Appendix B of the XIL
Programmer’s Guide.

EXAMPLES Get the imagetype of a particular image:

XilImage image;
XilImageType imagetype;

imagetype = xil_get_imagetype (image);

NOTES After image is destroyed, the handle to the XilImageType object is no longer valid.

SEE ALSO xil_create_from_type(3), xil_cis_get_output_type(3), xil_cis_get_input_type(3),
xil_create_temporary_from_type(3).

modified 17 August 1993 181

xil_get_info (3) SunOS 5.6

NAME xil_get_info − get information about the parameters of an image

SYNOPSIS #include <xil/xil.h>

void xil_get_info (XilImage image,
unsigned int ∗width ,
unsigned int ∗height,
unsigned int ∗nbands,
XilDataType ∗datatype);

DESCRIPTION This function gets the following image parameters: width, height, nbands (number of
bands), and datatype. This function may be called on all images. Use xil_get_imagetype(3)
to get a handle to an object with the same characteristics as a given image; this handle can
then be used in xil_create_from_type(3) calls.

ERRORS For a complete list of XIL error messages by number, consult Appendix B of the XIL
Programmer’s Guide.

EXAMPLES Get all the parameters that describe a particular image:

XilImage image;
unsigned int width, height, nbands;
XilDataType datatype;

xil_get_info (image, &width, &height, &nbands, &datatype);

SEE ALSO xil_get_datatype(3), xil_get_imagetype(3), xil_get_width(3), xil_get_height(3),
xil_get_nbands(3), xil_get_size(3), xil_create_from_type(3),
xil_create_temporary_from_type(3).

182 modified 17 August 1993

SunOS 5.6 xil_get_memory_storage (3)

NAME xil_get_memory_storage, xil_set_memory_storage − get and set memory storage

SYNOPSIS #include <xil/xil.h>

Xil_boolean xil_get_memory_storage (XilImage image,
XilMemoryStorage ∗storage);

void xil_set_memory_storage (XilImage image,
XilMemoryStorage ∗storage);

DESCRIPTION Use these functions when you want to get or set the data in an image.

xil_get_memory_storage () returns a description of how an exported image is stored in
system memory. Storage for this description must be allocated by the user.
xil_get_memory_storage () returns TRUE if the memory storage could be obtained, and
FALSE otherwise. This can be used before calls such as fread(3S) to test whether the data
is available for the desired operation.

The information returned by xil_get_memory_storage () is valid only while the image
remains exported. After the image is imported, both the address at which the image’s
pixel values are located and the pixel layout in memory is likely to change. Thus, the
information that was returned by xil_get_memory_storage () prior to the import is no
longer valid. Trying to access pixel values using invalid pointers to the data or using
invalid information about the pixel layout can cause serious problems in an application.

In the XIL library, multibanded images - except for 1-bit images - are stored in a pixel-
sequential format. The following attributes are only exposed to the application if the
image is exported:

Distance to the same pixel on the next horizontal scanline (the vertical stride)
Distance to the next pixel on the same scanline (the pixel stride)
Starting address of the image

For 1-bit multibanded images, the data is stored in a band-sequential manner. The export
of 1-bit images exposes four private attributes that define the image storage:

Distance in bytes to the byte of the same pixel in the next scanline
Distance in bytes to the same pixel of the next band
Number of bits to offset to the first pixel
Byte starting address of the image data

User data may be imported after image creation if it meets the layout and data type
criteria described.

XilMemoryStorage is defined as follows:

modified 8 April 1994 183

xil_get_memory_storage (3) SunOS 5.6

typedef union XilMemoryStorageBit {
struct {

Xil_unsigned8∗ data; /∗ pointer to first byte of image ∗/
unsigned short scanline_stride; /∗ the number of bytes between scanlines ∗/
unsigned long band_stride; /∗ the number of bytes between bands ∗/
unsigned char offset; /∗ the number of bits to the first pixel ∗/

} bit;

struct XilMemoryStorageByte {
Xil_unsigned8∗ data; /∗ pointer to the first byte of the image ∗/
unsigned long scanline_stride; /∗ the number of bytes between scanlines ∗/
unsigned short pixel_stride; /∗ the number of bytes between pixels ∗/

} byte;

struct XilMemoryStorageShort {
Xil_signed16∗ data; /∗ pointer to the first word of the image ∗/
unsigned long scanline_stride; /∗ the number of 16 bit words between scanlines ∗/
unsigned short pixel_stride; /∗ the number of 16 bit words between pixels ∗/

} shrt;
struct XilMemoryStorageFloat32 {

Xil_float32∗ data;
unsigned long scanline_stride;
unsigned short pixel_stride;

}
}XilMemoryStorage;

When manipulating the data, it’s important to use the scanline_stride and pixel_stride
information returned by xil_get_memory_storage (); you cannot make assumptions
about the image’s format in memory storage. For example, some accelerators may not
handle 3-banded RGB images while they do handle 4-banded (RGBA) images. For these
accelerators, the memory storage code converts 3-banded images into 4-banded images
when the first accelerator function is called on the image data. If the image is then
exported, the XIL library returns a 3-banded child of a 4-banded image as the data layout
for the 3-banded image that was imported. This means that the code written on the
exported data cannot assume a 3-pixel layout and cannot skip to the beginning of the next
pixel by simply doing a ∗src++.

xil_set_memory_storage () allows an application to specify the memory used for an
image. This storage is specified with the same XilMemoryStorage structure that
xil_get_memory_storage () uses. The memory must be both readable and writable.
After xil_set_memory_storage () has been called, the image resides in the specified
memory only while the image remains exported.

ERRORS For a complete list of XIL error messages by number, consult Appendix B of the XIL
Programmer’s Guide.

184 modified 8 April 1994

SunOS 5.6 xil_get_memory_storage (3)

EXAMPLES Fill an image with the contents of a file. Note that you must export the image before you
can call xil_get_memory_storage(). Likewise, you must import it when you are done
using the data.

XilImage image;
int width, height, nbands;
XilDataType datatype;
XilMemoryStorage storage;
Xil_boolean status;
char ∗infile = "input_image";

xil_export(image);
status = xil_get_memory_storage(image, &storage);
if(status == FALSE) {
/∗ XIL’s error handler will print an error msg to stderr ∗/
exit(1);

}
int h, w;
Xil_unsigned8∗ scanline = storage.byte.data;
xil_get_info(image, &width, &height, &nbands, &datatype);
/∗
∗ The following loop uses fread to read from an infile. The same
∗ loop could be used to write to an outfile by replacing fread with
∗ fwrite and replacing the infile with an outfile
∗/
for(h=0; h<height; h++) {

Xil_unsigned8∗ row = scanline;
for(w=0; w<width; w++) {

fread((char∗)row, nbands, sizeof(Xil_unsigned8), infile);
row += storage.byte.pixel_stride;

}
scanline += storage.byte.scanline_stride;

}
xil_import(image);

NOTES The information returned from xil_get_memory_storage () or set by
xil_set_memory_storage () is valid only as long as the image is exported. Memory
resources allocated by the XIL library are freed by the XIL library. Memory resources
allocated by an application are not freed by the XIL library.

SEE ALSO xil_import(3), xil_export(3).

modified 8 April 1994 185

xil_get_origin (3) SunOS 5.6

NAME xil_get_origin, xil_get_origin_x, xil_get_origin_y, xil_set_origin − get and set the origin of
an image

SYNOPSIS #include <xil/xil.h>

void xil_get_origin (XilImage image,
float ∗x,
float ∗y);

float xil_get_origin_x (XilImage image);

float xil_get_origin_y (XilImage image);

void xil_set_origin (XilImage image,
float x,
float y);

DESCRIPTION These functions get and set the conceptual origin of an image. In the XIL library, each
image has a pair of floating-point numbers that represents a conceptual origin. The
default origin for an image when it is created is the upper left corner of the image (0.0,
0.0). When an operation is performed, the origins of the source and destination images
are aligned. The floating-point origin values are rounded to integers for this purpose.

For all nongeometric operators, the following semantics are used to determine the extent
of the processing. The source image or images and the destination image are
conceptually moved so that their origins are coincident. The intersection of the source
and destination images then forms the destination bounds. Only the area of intersection
is modified in the destination image, and only the area of intersection in the source is
used by the operator. This is very similar to the way in which regions of interest (ROIs)
are handled.

Geometric operations behave a little differently, in that after the source and destination
origins have been lined up, the bounds of the source image are geometrically
transformed and then interesected with the bounds of the destination image. Note that
as a result of the transform, the intersection may result in a nonrectangular region in the
destination where modification can occur. ROIs are also handled in the same manner.

If the semantic described above does not produce any overlap, no pixels in the
destination are touched.

xil_get_origin() gets the x and y coordinates of the origin of an image.

xil_get_origin_x() gets the x coordinate of the origin of an image.

xil_get_origin_y() gets the y coordinate of the origin of an image.

xil_set_origin() sets the x and y coordinates of the origin of an image.

ERRORS For a complete list of XIL error messages by number, consult Appendix B of the XIL
Programmer’s Guide.

186 modified 17 August 1993

SunOS 5.6 xil_get_origin (3)

EXAMPLES Move the origin of an image +20.0 in x and -30.0 in y :

XilImage image;
float x, y;

xil_get_origin (image, &x, &y);
x += 20.0;
y -= 30.0;
xil_set_origin (image, x, y);

NOTES The origin is not constrained to lie within the boundaries of the image.

modified 17 August 1993 187

xil_get_parent (3) SunOS 5.6

NAME xil_get_parent − get a parent image

SYNOPSIS #include <xil/xil.h>

XilImage xil_get_parent (XilImage image);

DESCRIPTION This function returns a handle to the parent of a child image. If the image is not a child
image, then NULL is returned.

ERRORS For a complete list of XIL error messages by number, consult Appendix B of the XIL
Programmer’s Guide.

EXAMPLES Get the parent of a child image:

XilImage base_image, child_image;

base_image = xil_get_parent (child_image);

NOTES Child images are not hierarchical.

SEE ALSO xil_create_child(3) s be a parent image.

SEE ALSO xil_create_child(3)

188 modified 17 August 1993

SunOS 5.6 xil_get_readable (3)

NAME xil_get_readable, xil_get_writable − return TRUE if an image can be used as a source or
destination

SYNOPSIS #include <xil/xil.h>

Xil_boolean xil_get_readable (XilImage image);

Xil_boolean xil_get_writable (XilImage image);

DESCRIPTION xil_get_readable() returns TRUE if an image can be used as a source. Some device images
cannot be used as source images.

xil_get_writable() returns TRUE if an image can be used as a destination. Some device
images cannot be used as destination images.

ERRORS For a complete list of XIL error messages by number, consult Appendix B of the XIL
Programmer’s Guide.

EXAMPLES Determine whether a particular image can be used as a source:

XilImage image, src;
Xil_boolean isreadable;

isreadable = xil_get_readable(image);
if(isreadable)

src = image;

Determine whether a particular image can be used as a destination:

XilImage image, dst;
Xil_boolean iswritable;

iswritable = xil_get_writable(dst);
if(iswritable)

dst = image;

SEE ALSO xil_create_from_device(3), xil_create_from_window(3).

modified 17 August 1993 189

xil_get_roi (3) SunOS 5.6

NAME xil_get_roi, xil_set_roi − get or set an image’s ROI

SYNOPSIS #include <xil/xil.h>

XilRoi xil_get_roi (XilImage image);

void xil_set_roi (XilImage image,
XilRoi roi);

DESCRIPTION These functions get and set the region of interest (ROI) associated with an image.

xil_get_roi() returns a copy of the ROI associated with the specified image.

xil_set_roi() sets the ROI associated with the specified image to the one supplied.

ROI Behavior An efficient way to specify an ROI that encompasses an entire image is to set the image’s
ROI to NULL.

ERRORS For a complete list of XIL error messages by number, consult Appendix B of the XIL
Programmer’s Guide.

EXAMPLES Get the ROI associated with an image, remove a rectangular region from the ROI, and
replace the image’s ROI with the modified one. Then destroy the ROI:

XilSystemState State;
XilImage image;
XilRoi roi;

roi = xil_get_roi (image);
if (roi == NULL) {

/∗ The image had no ROI associated with it,
create one that encompasses the whole image ∗/

roi = xil_roi_create (State);
xil_roi_add_rect (roi, 0, 0, xil_get_width(image), xil_get_height(image));

}
xil_roi_subtract_rect (roi, 10, 10, 20, 20);
xil_set_roi (image, roi);
xil_roi_destroy (roi);

SEE ALSO xil_roi_add_rect(3), xil_roi_create(3), xil_roi_create_copy(3), xil_roi_destroy(3),
xil_roi_intersect(3), xil_roi_translate(3) xil_roi_add_image(3), xil_roi_add_region(3),
xil_roi_get_as_image(3), xil_roi_get_as_region(3), xil_roi_subtract_rect(3),
xil_roi_unite(3).

190 modified 17 August 1993

SunOS 5.6 xil_get_state (3)

NAME xil_get_state, xil_imagetype_get_state, xil_colorspace_get_state,
xil_colorspacelist_get_state, xil_cis_get_state, xil_dithermask_get_state,
xil_histogram_get_state, xil_kernel_get_state, xil_lookup_get_state, xil_roi_get_state,
xil_sel_get_state, xil_storage_get_state − get the XilSystemState associated with an XIL
object

SYNOPSIS #include <xil/xil.h>

XilSystemState xil_get_state (XilImage image);

XilSystemState xil_imagetype_get_state (XilImageType imagetype);

XilSystemState xil_colorspace_get_state (XilColorspace colorspace);

XilSystemState xil_colorspacelist_get_state (XilColorspaceList colorspacelist);

XilSystemState xil_cis_get_state (XilCis cis);

XilSystemState xil_dithermask_get_state (XilDitherMask dithermask);

XilSystemState xil_histogram_get_state (XilHistogram histogram);

XilSystemState xil_kernel_get_state (XilKernel kernel);

XilSystemState xil_lookup_get_state (XilLookup lookup);

XilSystemState xil_roi_get_state (XilRoi roi);

XilSystemState xil_sel_get_state (XilSel sel);

XilSystemState xil_storage_get_state (XilStorage storage);

DESCRIPTION XIL provides a way to retrieve the XilSystemState that was used to create any XIL object.
The application writer may need to get the state of an object in order to create another
object later in the program. An object cannot be created without an XilSystemState.

xil_get_state () returns the XilSystemState used to create an XilImage object.

xil_imagetype_get_state () returns the XilSystemState used to create an XilImageType
object.

xil_colorspace_get_state () returns the XilSystemState used to create an XilColorspace
object.

xil_colorspacelist_get_state () returns the XilSystemState used to create an XilColorspa-
ceList object.

xil_cis_get_state () returns the XilSystemState used to create an XilCis object.

xil_dithermask_get_state () returns the XilSystemState used to create an XilDithermask
object.

xil_histogram_get_state () returns the XilSystemState used to create an XilHistogram
object.

xil_kernel_get_state () returns the XilSystemState used to create an XilKernel object.

modified 10 February 1997 191

xil_get_state (3) SunOS 5.6

xil_lookup_get_state () returns the XilSystemState used to create an XilLookup object.

xil_roi_get_state () returns the XilSystemState used to create an XilRoi object.

xil_sel_get_state () returns the XilSystemState used to create an XilSel object.

xil_storage_get_state () returns the XilSystemState used to create an XilStorage object.

EXAMPLES
NOTES

SEE ALSO xil_open(3), xil_create(3), xil_iamgetype_create(3), xil_colorspace_create(3),
xil_colorspacelist_create(3), xil_cis_create(3), xil_dithermask_create(3),
xil_histogram_create(3), xil_kernel_create(3), xil_lookup_create(3), xil_roi_create(3),
xil_sel_create(3), xil_storage_create(3).

192 modified 10 February 1997

SunOS 5.6 xil_get_storage_movement (3)

NAME xil_get_storage_movement, xil_set_storage_movement − get and set the storage move-
ment flag on an image.

SYNOPSIS #include <xil/xil.h>

XilStorageMovement xil_get_storage_movement (XilImage image);

void xil_set_storage_movement (XilImage image,
XilStorageMovement move_flag);

DESCRIPTION The storage movement flag is described as an enumerated type with one of three values:
XIL_ALLOW_MOVE, XIL_KEEP_STATIONARY and XIL_REPLACE. The values have
the following meaning:

XIL_ALLOW_MOVE - Allows XIL to move the data to a different storage device or to
reformat it after the image has been imported, in order to take advantage of acceleration.
On the next call to xil_export(), the user has no guarantee as to the location or format of
the image’s memory storage and must call XIL functions to get storage information. By
activating this flag, some storage devices may refuse to operate on the image and there-
fore the image will not be available for acceleration by the device’s imaging routines
which may have a negative effect on the application’s performance.

XIL_KEEP_STATIONARY - Instructs XIL to leave the storage in exactly the same place
and in the same format even after the xil_import() function has been called. This setting
typically would be used when the user expects to export the image again after one or a
very few operations, and wants to avoid the cost of any data copying or reformatting that
may occur.

XIL_REPLACE - Instructs XIL to return the storage to the same location and format on
subsequent calls to xil_export(). This allows XIL to move the storage if an accelerator is
available to speed processing operations, but ensures that the caller gets the data back in
the same location and format when the image is again exported. XIL_REPLACE may also
have drastic negative effects on application performance due to repeated copying of the
data from one format to another.

xil_get_storage_movement() returns the value currently associated with the image’s
movement flag. The default value is XIL_ALLOW_MOVE.

xil_set_storage_movement() allows the user to change the image’s movement flag from
the default.

ERRORS For a complete list of XIL error messages by number, consult Appendix B of the XIL
Programmer’s Guide.

SEE ALSO Storage(3), xil_import(3), xil_export(3).

modified 01 January 1997 193

xil_get_storage_with_copy (3) SunOS 5.6

NAME xil_get_storage_with_copy, xil_set_storage_with_copy − get and set the image’s storage
through a copy to or from contiguous memory

SYNOPSIS #include <xil/xil.h>

XilStorage xil_get_storage_with_copy (XilImage image);

int xil_set_storage_with_copy (XilImage image,
XilStorage storage);

DESCRIPTION Use these calls as a convenient way of copying a contiguous memory buffer into an
image or accessing a copy of an image’s storage as a contiguous memory buffer.

xil_get_storage_with_copy() provides a convenient way of retrieving storage for the
image without having to loop over tiles. The returned XilStorage object has been filled in
with the appropriate data layout information and a valid data pointer. The type of the
storage can be ascertained through the xil_storage_is_type(3) call. The storage data
pointer is to a copy of image’s storage and therefore no changes made to the storage will
propogate to the image.

If the image is very large there will be a peformance penalty caused by a copy of the
image data. This call returns a created and filled XilStorage object. It is not necessary to
call xil_storage_create(3) before using this call, although the user is still expected to des-
troy the XilStorage object after use with a call to xil_storage_destroy(3).

xil_set_storage_with_copy() provides a convenient way to set the storage associated
with image without having to loop over tiles. The data described by storage will be copied
into the various storage tiles of the image and subsequent changes to the original data
pointer will not affect image’s data. Before calling xil_set_storage_with_copy(), the user is
expected to fill in the appropriate data layout fields for the storage type.

ERRORS For a complete list of XIL error messages by number, consult Appendix B of the XIL
Programmer’s Guide.

EXAMPLES Retrieve a copy of the data associated with an XIL image. Copy the data to a file.

XilImage image;
int width, height, nbands;
XilDataType datatype;
XilStorage storage;
Xil_unsigned8∗ data;
unsigned int pstride;
unsigned int sstride;
Xil_unsigned8∗ scanline;
Xil_unsigned8∗ pixel;

/∗
∗ This is assuming a byte image

194 modified 01 January 1997

SunOS 5.6 xil_get_storage_with_copy (3)

∗/

xil_get_info(image,&width,&height,&nbands,&datatype);
xil_export(image);

storage = xil_get_storage_with_copy(image);
/∗
∗ Optimize for the PIXEL_SEQUENTIAL case with packed
∗ data
∗/
if((xil_storage_is_type(XIL_PIXEL_SEQUENTIAL)) &&

(xil_storage_get_pixel_stride(storage, 0) == nbands) &&
(xil_storage_get_scanline_stride(storage, 0) == width∗nbands)) {
/∗
∗ You only need to pick up the 0 band data ptr
∗ because information is consistent across all bands
∗/
data = xil_storage_get_data(storage,0);
/∗
∗ Copy from the data ptr to the file for
∗ nbands∗width∗height bytes
∗/

} else {
/∗
∗ A general case to handle any type of storage
∗/

for(h=0; h<height; h++) {
for(w=0; w<width; w++) {

for(b=0; b<nbands; b++) {
/∗
∗ Get the information for this band.
∗/
Xil_unsigned8∗ data =

(Xil_unsigned8∗)xil_storage_get_data(storage, b);
unsigned int sstride =

xil_storage_get_scanline_stride(storage, b);
unsigned int pstride =

xil_storage_get_pixel_stride(storage, b);

/∗
∗ Get the byte we’re expected to write for
∗ this band.
∗/
Xil_unsigned8 val = ∗(data + h∗sstride + w∗pstride);

modified 01 January 1997 195

xil_get_storage_with_copy (3) SunOS 5.6

/∗ write the byte to the output file ∗/
}

}
}

}
xil_storage_destroy(storage);
xil_import(image,FALSE);

Copy data from a file on disk into an XilImage.

XilImage image;
XilStorage storage;

/∗
∗ Gain access to input file via mmap....
∗ Then create a storage object.
∗/

storage = xil_storage_create(state,image);
/∗
∗ Describe the storage to XIL.
∗ In this case it’s an XIL_PIXEL_SEQUENTIAL, XIL_BYTE image
∗/
xil_storage_set_pixel_stride(storage, 0, nbands);
xil_storage_set_scanline_stride(storage, 0, nbands∗width);
xil_storage_set_data(storage, 0, mmap_ptr, NULL);
/∗
∗ Export the image to gain control of storage
∗/
xil_export(image);
xil_set_storage_with_copy(image, storage);
/∗
∗ Cleanup by destroying the storage object and unmapping the file.
∗/
xil_storage_destroy(storage);
xil_import(image, TRUE);

SEE ALSO Storage(3), xil_get_memory_storage(3), xil_set_memory_storage(3),
xil_get_tile_storage(3), xil_set_tile_storage(3).

196 modified 01 January 1997

SunOS 5.6 xil_get_tile_storage (3)

NAME xil_get_tile_storage, xil_set_tile_storage - get and set the storage associated with an image
on a per tile basis

SYNOPSIS #include <xil/xil.h>

void xil_get_tile_storage(XilImage image,
int x,
int y,
XilStorage storage);

void xil_set_tile_storage(XilImage image,
XilStorage storage);

DESCRIPTION Use these routines to get or set the data of image on a per-tile basis. This is the only way to
get or set individual tiles of data. The application is responsible for accessing the tiles one
by one by requesting the image’s tile size with the xil_get_tile_size () call. An image’s
storage is only accessible while the image is exported.

xil_get_tile_storage () will fill in storage with the appropriate information and data
pointer for the image’s storage for a given tile. X and Y represent the coordinate falling
within the desired tile, usually the upper left corner coordinate. On a single-tiled image,
the storage returned will be that of the whole image. When the application is in the
default tiling mode, XIL_WHOLE_IMAGE, the image will consist of one tile.

xil_set_tile_storage () sets one tile of image’s storage. Before calling this routine, the user
must set all of the fields in storage as appropriate for the storage type. This is the only way
to set an image from storage buffers that are themselves tiled or non-contiguous. The
application can set the image’s tile size with the xil_set_tilesize(3) call but is only able to
set the image to more than one tile if the tiling mode is XIL_TILING. Use the
xil_storage_set_coordinates(3) to indicate which tile the storage represents.

EXAMPLES Acquire and process an XIL_BYTE Xil image’s data on a tile basis. This example assumes
that the storage is XIL_PIXEL_SEQUENTIAL so that only band 0 needs to be queried to
describe the storage layout of the tile.

XilImage image;
XilStorage storage;
XilDatatype datatype;
XilStorageType storage_type;
XilSystemState state;

unsigned int width, height, nbands;
Xil_unsigned8∗ data_ptr;

unsigned int tile_xsize, tile_ysize;

/∗
∗ Assuming the byte image already exists with data in it...

modified 10 February 1997 197

xil_get_tile_storage (3) SunOS 5.6

∗/
xil_get_info(image, &width, &height, &nbands, datatype);
xil_export(image);
xil_get_tile_size(image, &tile_xsize, &tile_ysize);
storage = xil_storage_create(state, image);

/∗ Get storage and process a tile at a time ∗/
for(y=0; y< height; y+=tile_ysize) {

for(x=0; x<width; x+=tile_xsize) {

Xil_unsigned8∗ image_data;
unsigned int image_scanline_stride;
unsigned int image_pixel_stride;

if(xil_get_tile_storage(image, x, y, storage) == FALSE) {
fprintf(stderr,

"ERROR: Failed to aquire storage for tile (%d, %d)",
x, y);

/∗ Any other error related cleanup ∗/
return;

}
if(!(storage_is_type(storage,XIL_PIXEL_SEQUENTIAL))) {

fprintf(stderr,
"ERROR: Can’t process this type of image");

/∗ Any other error related cleanup ∗/
}

/∗
∗ This is a PIXEL_SEQUENTIAL_IMAGE
∗ By definition, the band stride is 1.
∗ Pick the information from band 0; it will be the same for all bands
∗/
image_start = (Xil_unsigned8∗)xil_storage_get_data(storage, 0);
image_scanline_stride = xil_storage_get_scanline_stride(storage, 0);
image_pixel_stride = xil_storage_get_pixel_stride(storage, 0);

/∗ Using the data pointer, image_start and incrementing using ∗/
/∗ the image_scanline_stride and image_pixel_stride ∗/
/∗ process this tile of the image as desired ∗/

}
}

/∗

198 modified 10 February 1997

SunOS 5.6 xil_get_tile_storage (3)

∗ Cleanup by destroying the storage object
∗/
xil_storage_destroy(storage);

/∗
∗ Give control of the image back to XIL making it available for the
∗ maximum available XIL processing performance. Indicate the image was
∗ modified while it was exported.
∗/
xil_import(image, TRUE);

Set an XIL image to use the data storage in four non-contiguous buffers of XIL_BYTE pixel sequential
data. Each buffer represents a 64 x 64 region.

/∗
∗ Assuming the file data is already memory mapped and
∗ referenced by a pointer to each buffer of data.
∗/
XilSystemState state;
XilImage image;
/∗
∗ Each of the mmap ptrs is stored in an array for
∗ easy access in the loop.
∗/
void∗ buffer_mmap_ptrs[4];
int tile_counter = 0;

xil_state_set_Default_tiling_mode(state,XIL_TILING);
image = xil_create(state, 256, 256, 3, XIL_BYTE);
xil_export(image);
xil_set_tilesize(image, 64, 64);
storage = xil_storage_create(state, image);

/∗
∗ Set up tile-processing loop
∗/
for(y=0; y<256; y+=64) {

for(x=0; x< 256; x+=64) {
xil_storage_set_band_stride(storage, 3);

/∗
∗ For pixel sequential data, only set the information
∗ for the 0 band
∗/
xil_storage_set_scanline_stride(storage, 0, 64∗3);

modified 10 February 1997 199

xil_get_tile_storage (3) SunOS 5.6

xil_storage_set_data(storage, 0,
buffer_mmap_ptrs[tile_counter], NULL);

/∗
∗ Indicate which tile this storage represents
∗/
xil_storage_set_coordinates(storage, x, y);

/∗
∗ Set the storage on the image
∗/
xil_set_tile_storage(image, storage);

/∗
∗ Increment the tile counter accessing the mmap ptrs
∗/
tile_counter += 1;

}
}
xil_storage_destroy(storage);
/∗
∗ Import the image telling XIL that the data has changed
∗/
xil_import(image,TRUE);

NOTES This routine may not be used in conjunction with the backwards compatible routines
xil_set_memory_storage(3) and xil_get_memory_storage(3).

SEE ALSO xil_export(3), xil_get_tile_size(3), xil_set_tile_size(3), xil_storage_create(3),
xil_state_set_default_tiling_mode(3), xil_storage_set_coordinates(3),
xil_storage_get_coordinates(3), xil_storage_get_data(3), xil_storage_set_data(3)

200 modified 10 February 1997

SunOS 5.6 xil_get_tilesize (3)

NAME xil_get_tilesize, xil_set_tilesize − get and set the tile size of an image

SYNOPSIS #include <xil/xil.h>

void xil_get_tilesize (XilImage image,
unsigned int ∗tile_xsize,
unsigned int ∗tile_ysize);

void xil_set_tilesize (XilImage image,
unsigned int tile_xsize,
unsigned int tile_ysize);

DESCRIPTION xil_get_tilesize() returns the current tile size of the image’s data. The image must first be
exported via the xil_export() call, as the tile size is subject to change while under XIL’s
control. The tile size can be used to access the image’s storage on a tile basis to avoid the
costly overhead of cobbling the image into one contiguous memory buffer. If the tiling
mode is the default XIL_WHOLE_IMAGE, then the tile_xsize and tile_ysize returned are
the image’s width and height respectively.

xil_set_tilesize() allows the user to set a new tile size on the image. The image must be
exported via xil_export(3) before the user can change the tile size. If the image already
has data associated with it, changing the tile size will cause a potentially expensive inter-
nal reformatting of the existing data. In cases where the existing data is not needed, the
user should use a different image or destroy and recreate the image using xil_destroy(3)
and xil_create(3). If the tiling mode is the default XIL_WHOLE_IMAGE, then tile_xsize
and tile_ysize can only be set to greater than or equal to the image’s width and height
respectively.

NOTES While an image is imported the tile size may change. Therefore it is necessary that the
user re-obtain the tile size after every xil_import(3) and subsequent xil_export(3).

Care should be taken in changing the tile size for an image. Operations between images
with different tile sizes are slower than operations between images with the same tile
size. XIL chooses a default tile size for all images according to the configuration. Impru-
dent tile sizes can cause significant performance penalties.

ERRORS For a complete list of XIL error messages by number, consult Appendix B of the XIL
Programmer’s Guide.

SEE ALSO xil_get_tile_storage(3), xil_set_tile_storage(3), xil_state_get_default_tiling_mode(3),
xil_state_get_default_tile_size(3)

modified 01 January 1997 201

xil_get_width (3) SunOS 5.6

NAME xil_get_width, xil_get_height, xil_get_nbands, xil_get_size − get width, height, number of
bands, or size of image

SYNOPSIS #include <xil/xil.h>

unsigned int xil_get_width (XilImage image);

unsigned int xil_get_height (XilImage image);

unsigned int xil_get_nbands (XilImage image);

void xil_get_size (XilImage image,
unsigned int ∗width ,
unsigned int ∗height);

DESCRIPTION xil_get_width() gets the width of image.

xil_get_height() gets the height of image.

xil_get_nbands() gets the number of bands in image.

xil_get_size() gets the width and height of image.

These functions may be called on all images.

ERRORS For a complete list of XIL error messages by number, consult Appendix B of the XIL
Programmer’s Guide.

EXAMPLES Get the width and height of an image:

unsigned int width, height;
XilImage image;

width = xil_get_width (image);
height = xil_get_height (image);

Or alternatively:

xil_get_size (image, &width, &height);

SEE ALSO xil_get_imagetype(3), xil_get_datatype(3), xil_get_info(3). info (3).

202 modified 17 August 1993

SunOS 5.6 xil_histogram (3)

NAME xil_histogram − generate histogram data from an image

SYNOPSIS #include <xil/xil.h>

void xil_histogram (XilImage src,
XilHistogram histogram ,
unsigned int skip_x ,
unsigned int skip_y);

DESCRIPTION This routine accumulates histogram information from the source image into a histogram
object that was created with the xil_histogram_create() function.

src is the source image handle. histogram is the handle for the histogram object that holds
the histogram data. skip_x and skip_y indicate the frequency with which pixels will be
counted. If skip_x is set to 1, xil_histogram() counts every pixel on a scanline; if it is set to
2, the function counts every other pixel; and so on. The value of skip_y has an analogous
effect on how xil_histogram() counts pixels in the vertical direction. Using skip values
greater than 1 allows a faster construction of a histogram by considering fewer pixels.

ERRORS For a complete list of XIL error messages by number, consult Appendix B of the XIL
Programmer’s Guide.

EXAMPLES Generate the histogram of an image, only counting every third pixel on every third scan-
line:

XilImage src;
XilHistogram histogram;

xil_histogram(src, histogram, 3, 3);

NOTES The number of bands in the histogram must match the number of bands in the source
image. The data values in the histogram are not initialized to zero at the beginning of this
operation, thereby allowing the generation of multi-image histograms.

SEE ALSO xil_histogram_create(3)

modified 15 June 1993 203

xil_histogram_create (3) SunOS 5.6

NAME xil_histogram_create, xil_histogram_create_copy, xil_histogram_destroy − create, create
and return a copy, or destroy histogram

SYNOPSIS #include <xil/xil.h>

XilHistogram xil_histogram_create (XilSystemState State ,
unsigned int nbands,
unsigned int ∗nbins,
float ∗low_value ,
float ∗high_value);

XilHistogram xil_histogram_create_copy (XilHistogram histogram);

void xil_histogram_destroy (XilHistogram histogram);

DESCRIPTION These routines create and destroy histogram objects. Histograms are used to accumulate
level information from images. XIL histograms can have an arbitrary numbers of bands,
but the number of bands must match the number of bands in the image that is to be
histogrammed. A histogram of a 3-band RGB image for example, contains a cube of
information that reflects the number of pixels found in each of the bins, as in the three-
dimensional array pixel_count[red_bin][green_bin][blue_bin].

State is the XIL system state.

nbands is the number of independent bands in the histogram.

nbins is a pointer to an array that contains the number of bins for each band. These bins
are used to hold information about gray or color levels.

CAUTION: The total number of bins in the histogram is the product of the nbins
value for all bands. Specifying too many bins for multi-band images may con-
sume large quantities of memory and lead to significantly degraded perfor-
mance. For example, specifying 256 bins for each band of a 3 band images
would require a histogram data array of approximately 16 million bins (64
Mbytes).

low_value is a pointer to an array of floats that defines the central value of the first bin for
each band.

high_value is a pointer to an array of floats that defines the central value of the last bin for
each band.

For each of the arrays nbins, low_value, and high_value, the number of elements in the
array must match the number of bands in the image.

xil_histogram_create_copy () creates and returns a copy of the specified histogram. The
name of a copy is initially empty (NULL). xil_histogram_destroy() destroys the
specified histogram object.

ERRORS For a complete list of XIL error messages by number, consult Appendix B of the XIL
Programmer’s Guide.

204 modified 15 June 1993

SunOS 5.6 xil_histogram_create (3)

EXAMPLES Create a histogram structure appropriate for calculating the histogram of a 3-band
XIL_BYTE image. Note the use of the first and last bin central values for low_value and
high_value:

XilSystemState State;
XilHistogram histogram;
unsigned int nbins[3] = {32,32,32}; /∗ Total bins = 32768 ∗/
float low_value[3] = {4.0, 4.0, 4.0};
float high_value[3] = {252.0, 252.0, 252.0};

histogram = xil_histogram_create (State, 3, nbins, low_value, high_value);

SEE ALSO xil_histogram(3), xil_histogram_get_nbands(3), xil_histogram_get_nbins(3),
xil_histogram_get_values(3), xil_histogram_get_info(3), xil_histogram_get_state(3),
xil_choose_colormap(3).

modified 15 June 1993 205

xil_histogram_get_by_name (3) SunOS 5.6

NAME xil_histogram_get_by_name, xil_histogram_get_name, xil_histogram_set_name − get and
set a histogram object name and get a handle to a histogram by specifying a name

SYNOPSIS #include <xil/xil.h>

XilHistogram xil_histogram_get_by_name (XilSystemState State ,
char ∗name);

char∗ xil_histogram_get_name (XilHistogram histogram);

void xil_histogram_set_name (XilHistogram histogram ,
char ∗name);

DESCRIPTION Use these functions to assign names to histogram objects, set a histogram’s name, and to
retrieve histogram objects by name.

xil_histogram_get_by_name() returns the handle to the histogram with the specified
name name. If such a histogram does not exist, NULL is returned.
xil_histogram_get_by_name() does not make a copy of the histogram.

xil_histogram_get_name() returns a copy of the specified histogram’s name. A call to free
(3) should be used to free the space allocated by xil_histogram_get_name(). If the
specified histogram has no name, NULL is returned.

xil_histogram_set_name() sets the name of the specified histogram to the one provided.

ERRORS For a complete list of XIL error messages by number, consult Appendix B of the XIL
Programmer’s Guide.

EXAMPLES Create and name a histogram from a single-band byte reference image:

XilSystemState State;
XilImage ref_image;
XilHistogram histogram;

histogram = xil_histogram_create(State, 1, 256, 0.0, 255.0);
xil_histogram(ref_image, histogram, 1, 1);
xil_histogram_set_name(histogram, "reference");

Get a histogram named "reference" for comparison:

XilSystemState State;
XilHistogram histogram;

histogram = xil_histogram_get_by_name(State, "reference");

NOTES If you give two histograms the same name, it is not defined which histogram will be
retrieved by a call to xil_get_by_name().

206 modified 17 August 1993

SunOS 5.6 xil_histogram_get_by_name (3)

SEE ALSO xil_histogram_create(3), xil_histogram(3).

modified 17 August 1993 207

xil_histogram_get_nbands (3) SunOS 5.6

NAME xil_histogram_get_nbands, xil_histogram_get_nbins, xil_histogram_get_limits,
xil_histogram_get_values, xil_histogram_get_info − histogram attributes

SYNOPSIS #include <xil/xil.h>

unsigned int xil_histogram_get_nbands (XilHistogram histogram);

void xil_histogram_get_nbins (XilHistogram histogram ,
unsigned int ∗nbins);

void xil_histogram_get_limits (XilHistogram histogram ,
float ∗low_value,
float ∗high_value);

void xil_histogram_get_values (XilHistogram histogram ,
unsigned int ∗data);

void xil_histogram_get_info (XilHistogram histogram ,
unsigned int ∗nbands,
unsigned int ∗nbins,
float ∗low_value,
float ∗high_value);

DESCRIPTION These routines read the values of histogram attributes and the intensity-level information
stored in the histograms. Histograms are used to obtain information about the
distribution of pixel values in an image. Create histograms with xil_histogram_create(3).

xil_histogram_get_nbands() returns the number of bands represented by the histogram.
For example, a histogram with three bands can be thought of as a cube of data, with each
axis representing a single band.

xil_histogram_get_nbins() fills in a user-supplied array, nbins, with values representing
the number of histogram bins for each histogram band.

xil_histogram_get_limits() fills in user-supplied arrays, low_value and high_value, with
floating point numbers that represent the central value of the first bin and last bin in each
band.

xil_histogram_get_values() fills in the user-supplied array, data, with the unsigned
integer values that make up the histogram data. The data are aligned so that values along
the last band’s axis are contiguous. For example, for a 3 band image, the resulting array
would be indexed as

data[band1_bin][band2_bin][band3_bin].

The user is responsible for allocating sufficient space to hold the histogram data, bearing
in mind that each histgram element is an unsigned int and that the number of elements is
the product of nbins for each band.

xil_histogram_get_info() combines the function of other attribute functions. nbands is
filled with the number of bands in the histogram; nbins is filled with the number of bins
per band, one for each band. low_value and high_value are arrays that contain the low and
high values for each band.

208 modified 17 August 1993

SunOS 5.6 xil_histogram_get_nbands (3)

ERRORS For a complete list of XIL error messages by number, consult Appendix B of the XIL
Programmer’s Guide.

EXAMPLES Create an array to hold the histogram data and retrieve the data:

XilHistogram histogram;
unsigned int nbands;
unsigned int ∗bins, ∗data;
int i, total_entries;

nbands = xil_histogram_get_nbands (histogram);
bins = (unsigned int∗) malloc(nbands ∗ sizeof(unsigned int));
xil_histogram_get_nbins (histogram, bins);
total_entries = 1;
for (i=0; i<nbands; i++)

total_entries ∗= bins[i];
data = (unsigned int∗) malloc(total_entries ∗ sizeof(unsigned int));
xil_histogram_get_values(histogram, data);

SEE ALSO xil_histogram(3), xil_histogram_create(3), xil_histogram_destroy(3).

modified 17 August 1993 209

xil_imagetype_get_by_name (3) SunOS 5.6

NAME xil_imagetype_get_by_name, xil_imagetype_get_name, xil_imagetype_set_name − get
and set an image-type object name and get a handle to an image type by specifying its
name

SYNOPSIS #include <xil/xil.h>

XilImageType xil_imagetype_get_by_name (XilSystemState State ,
char ∗name);

char∗ xil_imagetype_get_name (XilImageType imagetype);

void xil_imagetype_set_name (XilImageType imagetype ,
char ∗name);

DESCRIPTION Use these functions to assign names to image type objects, to read the names of image
types, and to retrieve image type objects by name.

xil_imagetype_get_by_name() returns the handle to the image type object with the
specified name name. If such an image type object does not exist, NULL is returned.
xil_get_by_name() does not make a copy of the image type object.

xil_imagetype_get_name() returns a copy of the specified image type object’s name. A
call to free (3) should be used to free the space allocated by xil_imagetype_get_name().
If the specified image type object has no name, NULL is returned.

xil_imagetype_set_name() sets the name of the specified image type object to the one
provided.

ERRORS For a complete list of XIL error messages by number, consult Appendix B of the XIL
Programmer’s Guide.

EXAMPLES Create an image type object that characterizes a particular display and call it
"Sun_bw2_hires":

XilSystemState State;
XilImage image;
XilImageType imagetype;
unsigned int height, width, nbands;

width = 1600;
height = 1280;
nbands = 1;
image = xil_create(State, width, height, nbands, XIL_BIT);
imagetype = xil_get_imagetype(image);
xil_imagetype_set_name(imagetype, "Sun_bw2_hires");

210 modified 15 June 1993

SunOS 5.6 xil_imagetype_get_by_name (3)

Use an image type object named "Sun_bw2_hires" to create an image appropriate for
display on a particular frame buffer:

XilSystemState State;
XilImageType imagetype;
XilImage display_image;

imagetype = xil_imagetype_get_by_name(State,"Sun_bw2_hires");
display_image = xil_create_from_type(State, imagetype);

NOTES If you give two image type objects the same name, it is not defined which image type
object will be retrieved by a call to xil_imagetype_get_by_name().

modified 15 June 1993 211

xil_imagetype_get_datatype (3) SunOS 5.6

NAME xil_imagetype_get_datatype − get data type of an image type object

SYNOPSIS #include <xil/xil.h>

XilDataType xil_imagetype_get_datatype (XilImageType imagetype);

DESCRIPTION xil_imagetype_get_datatype() gets the data type of an image type object. XilDataType is
an enumerated type. Its possible values are XIL_BIT, XIL_BYTE, XIL_SHORT and
XIL_FLOAT.

ERRORS For a complete list of XIL error messages by number, consult Appendix B of the XIL
Programmer’s Guide.

EXAMPLES Get the data type of an image type object:

XilImageType imagetype;
XilDataType datatype;

datatype = xil_imagetype_get_datatype (imagetype);

SEE ALSO xil_get_imagetype(3), xil_imagetype_get_info(3), xil_imagetype_get_width(3),
xil_imagetype_get_height(3), xil_imagetype_get_nbands(3), xil_imagetype_get_size(3).

212 modified 16 June 1993

SunOS 5.6 xil_imagetype_get_info (3)

NAME xil_imagetype_get_info − get information about the parameters of an image type object

SYNOPSIS #include <xil/xil.h>

void xil_imagetype_get_info (XilImageType imagetype ,
unsigned int ∗width ,
unsigned int ∗height,
unsigned int ∗nbands,
XilDataType ∗datatype);

DESCRIPTION xil_imagetype_get_info() gets the following image type object parameters: width, height,
nbands (number of bands), and datatype.

ERRORS For a complete list of XIL error messages by number, consult Appendix B of the XIL
Programmer’s Guide.

EXAMPLES Get all the parameters that describe a particular image type object:

XilImageType imagetype;
unsigned int width, height, nbands;
XilDataType datatype;

xil_imagetype_get_info (imagetype, &width, &height, &nbands, &datatype);

SEE ALSO xil_get_imagetype(3), xil_imagetype_get_datatype(3), xil_imagetype_get_width(3),
xil_imagetype_get_height(3), xil_imagetype_get_nbands(3), xil_imagetype_get_size(3).

modified 16 June 1993 213

xil_imagetype_get_width (3) SunOS 5.6

NAME xil_imagetype_get_width, xil_imagetype_get_height, xil_imagetype_get_nbands,
xil_imagetype_get_size − get width, height, number of bands, or size of image type
objects

SYNOPSIS #include <xil/xil.h>

unsigned int xil_imagetype_get_width (XilImageType imagetype);

unsigned int xil_imagetype_get_height (XilImageType imagetype);

unsigned int xil_imagetype_get_nbands (XilImageType imagetype);

void xil_imagetype_get_size (XilImageType imagetype ,
unsigned int ∗width ,
unsigned int ∗height);

DESCRIPTION xil_imagetype_get_width() returns the width of an image type object.

xil_imagetype_get_height() returns the height of an image type object.

xil_imagetype_get_nbands() returns the number of bands in an image type object.

xil_imagetype_get_size() returns the size of an image type object, returning its width
and height.

ERRORS For a complete list of XIL error messages by number, consult Appendix B of the XIL
Programmer’s Guide.

EXAMPLES Get the width and height of an image type object:

unsigned int width, height;
XilImageType imagetype;

width = xil_imagetype_get_width (imagetype);
height = xil_imagetype_get_height (imagetype);

Or alternatively:

xil_imagetype_get_size (imagetype, &width, &height);

SEE ALSO xil_get_imagetype(3), xil_imagetype_get_datatype(3), xil_imagetype_get_info(3).

214 modified 17 August 1993

SunOS 5.6 xil_install_error_handler (3)

NAME xil_install_error_handler, xil_default_error_handler, xil_remove_error_handler,
xil_call_next_error_handler − install or remove a customized error handler, or use the
default version

SYNOPSIS #include <xil/xil.h>

int xil_install_error_handler (XilSystemState State ,
XilErrorFunc func);

void xil_remove_error_handler (XilSystemState State ,
XilErrorFunc func);

Xil_boolean xil_call_next_error_handler (XilError error);

Xil_boolean xil_default_error_handler (XilError error);

DESCRIPTION Errors and warnings in the XIL library are dispatched through an error handling routine.
Users can provide their own customized error function or use the XIL default routine.
Users can also chain error handlers to allow individual error handlers to handle only a
certain type of error.

xil_install_error_handler() installs a user-provided customized error function. Inside
this function, calls can be made to the various xil_error_get_∗ routines to get information
about the error. The return value from this error handler can be used by any error
handlers further up the chain to determine whether the error has been successfully
handled. The most recently installed error handler is called first, then the next most
recently installed error handler, and so on, so that the last error handler to be installed is
the first to be called.

xil_remove_error_handler() removes an error function from the error handler chain. It
can be used to remove the default error handler from the error handler chain.

xil_call_next_error_handler() can be called from within an error handler to allow an
error handler further down the chain to handle the error.

xil_default_error_handler() prints an informative message about errors and warnings to
the standard error output. The default error handler always returns TRUE and is always
the last error handler on the error handler chain.

ERRORS For a complete list of XIL error messages by number, consult Appendix B of the XIL
Programmer’s Guide.

modified 17 August 1993 215

xil_install_error_handler (3) SunOS 5.6

EXAMPLES /∗ Print the standard error message.
∗ If the error is a RESOURCE error, then quit.
∗/
Xil_boolean resource_errors(XilError error)
{

int ret_val;
ret_val = xil_call_next_error_handler(error);
if (xil_error_get_category(error) == XIL_ERROR_RESOURCE)

exit(1);
return ret_val;

}

main()
{

XilSystemState State;

State=xil_open();
if (State==NULL) {

printf("Couldn’t initialize XIL\n");
exit(1);

}
xil_install_error_handler(State,resource_errors);

}

NOTES Only certain XIL functions can be called from within an error handler. For more informa-
tion, see the XIL Programmer’s Guide.

SEE ALSO xil_error_get_string(3).

216 modified 17 August 1993

SunOS 5.6 xil_interpolation_table_create (3)

NAME xil_interpolation_table_create, xil_interpolation_table_create_copy,
xil_interpolation_table_destroy − create, create and return copy, or destroy an interpola-
tion table object

SYNOPSIS #include <xil/xil.h>

XilInterpolationTable xil_interpolation_table_create (XilSystemState State ,
unsigned int kernel_size,
unsigned int subsamples,
float ∗data);

XilInterpolationTable xil_interpolation_table_create_copy(XilInterpolationTable
table);

void xil_interpolation_table_destroy (XilInterpolationTable table);

DESCRIPTION These routines create and destroy interpolation table objects. An XilInterpolationTable
object is an array of 1xn kernels which represents the interpolation filter in either the
horizontal or vertical direction. The datatype of the table is XIL_FLOAT.

The parameter State is the XIL system state, kernel_size is the size of the kernel, subsamples
is the number of subsamples between pixels, and data is the data of the interpolation
table. There is no limit or restriction on the kernel size or the number of subsamples.

Each subsample requires a separate set of kernel data. Thus, n subsamples require n ∗
kernel_size data elements. For example, a horizontal interpolation table with a kernel size
of 7 elements and a pixel subsampling of 3 requires 21 data elements; the first subsample
uses the first 7 data elements, the second subsample uses the next 7 data elements, and
the third subsample uses the last 7 data elements. If both the horizontal and vertical
interpolation tables are NULL, nearest neighbor interpolation is performed.

xil_interpolation table_create_copy () creates and returns a copy of the specified inter-
polation table. The name of a copy is initially empty (NULL).

xil_interpolation_table_destroy () destroys the specified interpolation table object.

ERRORS For a complete list of XIL error messages by number, consult Appendix B of the XIL
Programmer’s Guide.

EXAMPLES Create a horizontal interpolation table with seven kernel elements and two subsamples
between pixels:

XilSystemState State;
XilInterpolationTable horiz_table;
float ∗data;

horiz_table = xil_interpolation_table_create (State, 7, 2, data);

modified 18 March 1994 217

xil_interpolation_table_create (3) SunOS 5.6

NOTES The key element in a kernel is the center element; for even-sized kernels, the key elements
is the first of the two center elements. Thus, for an 8-element kernel, the key value is the
fourth element, which has the array index 3. The key element’s array index can be com-
puted as an integer calculation:

int array_index = (kernel_size - 1) / 2

To preserve the source image’s intensity in the destination, an individual kernel’s values
should sum to one.

SEE ALSO xil_interpolation_table_get_subsamples(3), xil_interpolation_table_get_kernel_size(3),
xil_interpolation_table_get_data(3), xil_state_get_interpolation_tables(3).

218 modified 18 March 1994

SunOS 5.6 xil_interpolation_table_get_data (3)

NAME xil_interpolation_table_get_data − get the data of an interpolation table object

SYNOPSIS #include <xil/xil.h>

float ∗ xil_interpolation_table_get_data (XilInterpolationTable table);

DESCRIPTION xil_interpolation_table_get_data () gets the data from an interpolation table object table.
This function allocates enough memory to hold subsamples∗kernel_size floating point
data elements and returns the address of the floating point array. The user is
subsequently responsible for deallocating the array memory.

Note that new applications should use xil_interpolation_table_get_values(3) rather than
this function. Unlike xil_interpolation_table_get_data (),
xil_interpolation_table_get_values(3) requires that the user allocate memory for, and
provide the address of, the floating point array.

ERRORS For a complete list of XIL error messages by number, consult Appendix B of the XIL
Programmer’s Guide.

EXAMPLES Get data of an interpolation table object:

XilInterpolationTable table;
float∗ data;

data = xil_interpolation_table_get_data(table);

SEE ALSO xil_interpolation_table_create(3), xil_interpolation_table_destroy(3),
xil_interpolation_table_get_values(3), xil_interpolation_table_get_subsamples(3),
xil_interpolation_table_get_kernel_size(3), xil_state_get_interpolation_tables(3).

modified 18 March 1994 219

xil_interpolation_table_get_kernel_size (3) SunOS 5.6

NAME xil_interpolation_table_get_kernel_size − get the kernel size of the subsample kernels in
an interpolation table object

SYNOPSIS #include <xil/xil.h>

unsigned int xil_interpolation_table_get_kernel_size (XilInterpolationTable table);

DESCRIPTION xil_interpolation_table_get_kernel_size () gets kernel size from the interpolation table
object table.

ERRORS For a complete list of XIL error messages by number, consult Appendix B of the XIL
Programmer’s Guide.

EXAMPLES Get kernel size of an interpolation table object:

XilInterpolationTable table;
unsigned int kernel_size;

kernel_size = xil_interpolation_table_get_kernel_size(table);

SEE ALSO xil_interpolation_table_create(3), xil_interpolation_table_destroy(3),
xil_interpolation_table_get_subsamples(3), xil_interpolation_table_get_data(3),
xil_state_get_interpolation_tables(3).

220 modified 03 March 1994

SunOS 5.6 xil_interpolation_table_get_subsamples (3)

NAME xil_interpolation_table_get_subsamples − get the number of subsamples in an interpola-
tion table object

SYNOPSIS #include <xil/xil.h>

unsigned int xil_interpolation_table_get_subsamples (XilInterpolationTable table);

DESCRIPTION xil_interpolation_table_get_subsamples () gets subsamples from the interpolation table
object table. Subsamples refer to the number of divisions between pixels in the source
image. Subsampling is used when the reverse mapping from destination pixel to source
pixel falls between two source pixels.

ERRORS For a complete list of XIL error messages by number, consult Appendix B of the XIL
Programmer’s Guide.

EXAMPLES Get subsamples of an interpolation table object:

XilInterpolationTable table;
unsigned int subsamples;

subsamples = xil_interpolation_table_get_subsamples(table);

SEE ALSO xil_interpolation_table_create(3), xil_interpolation_table_destroy(3),
xil_interpolation_table_get_kernel_size(3), xil_interpolation_table_get_data(3),
xil_state_get_interpolation_tables(3).

modified 18 March 1993 221

xil_interpolation_table_get_values (3) SunOS 5.6

NAME xil_interpolation_table_get_values - get the values stored in an XilInterpolationTable
object.

SYNOPSIS #include <xil/xil.h>

void xil_interpolation_table_get_values(XilInterpolationTable table,
float∗ data);

DESCRIPTION xil_interpolation_table_get_values () gets the values from an interpolation table object
table. The user is responsible for allocating the float array, data. Enough memory must be
allocated to hold the subsamples ∗ kernel_size floating point data elements.

ERRORS For a complete list of XIL error messages by number, consult Appendix B of the XIL
Programmer’s Guide.

EXAMPLES Get the values of an interpolation table object:

XilInterpolationTable table;
float∗ data;
unsigned int kernel_size;
unsigned int subsamples;

subsamples = xil_interpolation_table_get_subsamples(table);
kernel_size = xil_interpolation_table_get_kernel_size(table);

data = malloc(subsamples∗kernel_size∗sizeof(float));
if(data == NULL)

/∗ cleanup and exit ∗/

}
xil_interpolation_table_get_values(table, data);

NOTES
SEE ALSO xil_interpolation_table_get_data(3), xil_interpolation_table_create(3),

xil_interpolation_table_destroy(3), xil_interpolation_table_get_subsamples(3),
xil_interpolation_table_get_kernel_size(3), xil_state_get_interpolation_tables(3).

222 modified 10 February 1997

SunOS 5.6 xil_kernel_create (3)

NAME xil_kernel_create, xil_kernel_create_copy, xil_kernel_create_separable,
xil_kernel_destroy − create and destroy kernels

SYNOPSIS #include <xil/xil.h>

XilKernel xil_kernel_create (XilSystemState State ,
unsigned int width ,
unsigned int height,
unsigned int key_x ,
unsigned int key_y ,
float ∗data);

XilKernel xil_kernel_create_copy (XilKernel kernel);

XilKernel xil_kernel_create_separable (XilSystemState State ,
unsigned int width ,
unsigned int height,
unsigned int keyx ,
unsigned int keyy ,
float ∗x_data , float ∗y_data);

void xil_kernel_destroy (XilKernel kernel);

DESCRIPTION These routines create and destroy XilKernel objects. Kernels are used in image
convolution, error diffusion, painting, and band combine operations. The key values
specify the key pixel position - a position relative to the upper left corner of the kernel.
The key pixel aligns with the output pixel and constrains which input pixels are used to
generate the output. Kernel data is single-precision floating point.

xil_kernel_create() creates an XilKernel object of the specified size and with the specified
data.

xil_kernel_create_copy() creates and returns a copy of the specified kernel. The name of
a copy is initially empty (NULL).

xil_kernel_create_separable() creates an XilKernel object that represents a separable ker-
nel of the specified size and with the specified horizontal and vertical data. Separable ker-
nels may provide much better performance than standard combined kernals. In addition
the user does not have to allocate as much memory as would be needed to represent the
equivalent combined kernel.

xil_kernel_destroy() destroys the specified kernel.

ERRORS For a complete list of XIL error messages by number, consult Appendix B of the XIL
Programmer’s Guide.

EXAMPLES Create a 3x3 kernel for edge-sharpening, with the key value located at the center of the
kernel:

modified 04 August 1993 223

xil_kernel_create (3) SunOS 5.6

XilSystemState State;
unsigned int width=3, height=3, key_x=1, key_y=1;
XilKernel kernel;
float data[]={ 0., -1., 0.,

-1., 5., -1.,
0., -1., 0. };

kernel = xil_kernel_create (State, width, height, key_x, key_y, data);

NOTES The key pixel must lie within the boundaries of the kernel.

SEE ALSO xil_convolve(3), xil_kernel_get_height(3), xil_kernel_get_width(3),
xil_kernel_get_key_x(3), xil_kernel_get_key_y(3), xil_kernel_get_state(3),
xil_error_diffusion(3), xil_paint(3), xil_band_combine(3).

224 modified 04 August 1993

SunOS 5.6 xil_kernel_get_by_name (3)

NAME xil_kernel_get_by_name, xil_kernel_get_name, xil_kernel_set_name − get and set a kernel
object name and get a handle to a kernel by specifying its name

SYNOPSIS #include <xil/xil.h>

XilKernel xil_kernel_get_by_name (XilSystemState State ,
char ∗name);

char∗ xil_kernel_get_name (XilKernel kernel);

void xil_kernel_set_name (XilKernel kernel,
char ∗name);

DESCRIPTION Use these functions to assign names to kernel objects, to read kernel names, and to
retrieve kernel objects by name. A predefined kernel is created at the time of an
xil_open(3) call. This kernel can be retrieved by xil_kernel_get_by_name().

xil_kernel_get_by_name() returns the handle to the kernel with the specified name name.
If such a kernel does not exist, NULL is returned. xil_kernel_get_by_name() does not
make a copy of the kernel.

xil_kernel_get_name() returns a copy of the specified kernel’s name. A call to free (3)
should be used to free the space allocated by xil_kernel_get_name(). If the specified
kernel has no name, NULL is returned.

xil_kernel_set_name() sets the name of the specified kernel to the one provided.

Standard Kernel
Provided

The XIL library creates a predefined kernel at the time of an xil_open(3) call. This kernel,
"floyd-steinberg", can be used with error diffusion operations.

ERRORS For a complete list of XIL error messages by number, consult Appendix B of the XIL
Programmer’s Guide.

EXAMPLES Create an edge-sharpening kernel named "sharp1":

XilSystemState State;
XilKernel kernel;
float data[] = { 0.0 -1.0 0.0

-1.0 5.0 -1.0
0.0 -1.0 0.0 };

kernel = xil_kernel_create(State,3,3,1,1,data);
xil_kernel_set_name(kernel, "sharp1");

modified 04 August 1993 225

xil_kernel_get_by_name (3) SunOS 5.6

Use a kernel named "sharp1" to filter an image:

XilSystemState State;
XilImage src, dst;
XilKernel kernel;

kernel = xil_kernel_get_by_name(State,"sharp1");
xil_convolve(src, dst, kernel, XIL_EDGE_ZERO_FILL);

NOTES The set of standard objects is generated for each instantiation of an XilSystemState. If these
standard objects are deleted, they become unavailable for the duration of the current XIL
session.

If you give two kernels the same name, it is not defined which kernel will be retrieved by
a call to xil_kernel_get_by_name().

SEE ALSO xil_open(3), xil_kernel_create(3).

226 modified 04 August 1993

SunOS 5.6 xil_kernel_get_height (3)

NAME xil_kernel_get_height, xil_kernel_get_width, xil_kernel_get_key_x, xil_kernel_get_key_y
− read attributes of kernels

SYNOPSIS #include <xil/xil.h>

unsigned int xil_kernel_get_height (XilKernel kernel);

unsigned int xil_kernel_get_width (XilKernel kernel);

unsigned int xil_kernel_get_key_x (XilKernel kernel);

unsigned int xil_kernel_get_key_y (XilKernel kernel);

DESCRIPTION These routines read the attributes of XilKernel kernel objects. Kernels are used in image
convolution, error diffusion, painting, and band combine operations. The key values
specify the key pixel position - a position relative to the upper left corner of the kernel.
The key pixel aligns with the output pixel and constrains which input pixels are used to
generate the output.

xil_kernel_get_height() gets the height of a kernel.

xil_kernel_get_width() gets the width of a kernel.

xil_kernel_get_key_x() gets the x coordinate of the key value of the specified kernel.

xil_kernel_get_key_y() gets the y coordinate of the key value of the specified kernel.

ERRORS For a complete list of XIL error messages by number, consult Appendix B of the XIL
Programmer’s Guide.

EXAMPLES Get the coordinates of a kernel’s key value:

XilKernel kernel;
unsigned int key_x, key_y;

key_x = xil_kernel_get_key_x (kernel);
key_y = xil_kernel_get_key_y (kernel);

SEE ALSO xil_convolve(3), xil_kernel_create(3), xil_kernel_create_copy(3), xil_kernel_destroy(3),
xil_error_diffusion(3), xil_paint(3), xil_band_combine(3).

modified 04 August 1993 227

xil_kernel_get_values (3) SunOS 5.6

NAME xil_kernel_get_values - get the values stored internally in and XilKernel object.

SYNOPSIS #include <xil/xil.h>

void xil_kernel_get_values(XilKernel kernel,
float∗ data);

DESCRIPTION xil_kernel_get_values () returns the values stored in kernel. The user must allocate the
array of float data to hold the values of the kernel. The size of the data array will be the
width of kernel ∗ height of kernel. The width and height can be retrieved by calling
xil_kernel_get_width (3) and xil_kernel_get_height (3).

ERRORS For a complete list of XIL error messages by number, consult Appendix B of the XIL
Programmer’s Guide.

EXAMPLES Get the values of a kernel object:

XilKernel kernel;
float∗ data;
unsigned int width;
unsigned int height;

width = xil_kernel_get_width(kernel);
height = xil_kernel_get_height(kernel);

data = malloc(width∗height∗sizeof(float));
if(data == NULL)

/∗ cleanup and exit ∗/

}
xil_kernel_get_values(kernel, data);

NOTES If the XilKernel object represents a separable kernel, the horizontal and vertical kernels
will be combined and returned as a two dimensional kernel.

SEE ALSO xil_kernel_create(3), xil_kernel_get_width(3), xil_kernel_get_height(3),
xil_kernel_get_key_x(3), xil_kernel_get_key_y(3).

228 modified 10 February 1997

SunOS 5.6 xil_lookup (3)

NAME xil_lookup − pass an image through a lookup table.

SYNOPSIS #include <xil/xil.h>

void xil_lookup (XilImage src,
XilImage dst ,
XilLookup lookup);

DESCRIPTION This routine passes the source image through a lookup table and writes the result into the
destination image. The parameters src and dst are handles to the source and destination
images. The source and destination can be of different data types. lookup is the lookup
table.

ERRORS For a complete list of XIL error messages by number, consult Appendix B of the XIL
Programmer’s Guide.

EXAMPLES Pass an image through a lookup table:

#define BITSIZE 0x2

XilImage image, retained_image;
XilLookup lookup;
Xil_unsigned8 lookupdata[] = {0, 0, 0, 255, 255, 255};

retained_image = xil_create(state, width, height, 3, XIL_BYTE);
lookup = xil_lookup_create(state, XIL_BIT, XIL_BYTE, 3,

BITSIZE, 0, lookupdata);
xil_lookup(image, retained_image, lookup);

NOTES Input and output of the entries in the lookup table must be the same data types as the
source and destination images, respectively.

SEE ALSO xil_lookup_create(3), xil_lookup_create_combined(3), xil_lookup_destroy(3).

modified 29 March 1994 229

xil_lookup_convert (3) SunOS 5.6

NAME xil_lookup_convert − calculate a conversion lookup table between a source and destina-
tion lookup table

SYNOPSIS #include <xil/xil.h>

XilLookup xil_lookup_convert (XilLookup lut1,
XilLookup lut2);

DESCRIPTION This function calculates a lookup table that converts between the two lookup tables lut1
and lut2. The resulting lookup table’s input data type will be the input data type of lut1,
and its output data type will be the input data type of lut2. The lookup table’s offset and
number of entries are the same as those for lut1. Index N of the resulting lookup table
contains the index of the nearest color in lut2 to the color at index N in lut1. Nearest color
is determined by Euclidean distance. Source and destination lookup tables must have the
same input data types, output data types, and number of bands.

This function can be useful when you have an image with a lookup table (and colormap)
that contains a relatively small number of values over a wide range. You would first
compress the values in the lookup table into a smaller range by using
xil_squeeze_range(3). Then, to create a colormap that matched your newly compressed
lookup table, you would use xil_lookup_convert().

RETURN VALUES Returns NULL; Function fails.

ERRORS For a complete list of XIL error messages by number, consult Appendix B of the XIL
Programmer’s Guide.

EXAMPLES Calculate a lookup table to convert between two lookup tables:

XilLookup lut1, lut2, lut3;

lut3 = xil_lookup_convert(lut1, lut2);

NOTES This function cannot be used on combined lookup tables.

SEE ALSO xil_lookup_create(3), xil_squeeze_range(3).

230 modified 29 March 1994

SunOS 5.6 xil_lookup_create (3)

NAME xil_lookup_create, xil_lookup_create_copy, xil_lookup_destroy − create or destroy
lookup tables

SYNOPSIS #include <xil/xil.h>

XilLookup xil_lookup_create (XilSystemState State ,
XilDataType input_datatype ,
XilDataType output_datatype ,
unsigned int output_nbands,
unsigned int num_entries,
short first_entry_offset,
void ∗data);

XilLookup xil_lookup_create_copy (XilLookup lookup);

void xil_lookup_destroy (XilLookup lookup);

DESCRIPTION These routines create and destroy lookup tables. Lookup tables are used in transforming
data, and specialized lookup tables are used as colormap attributes of images.

xil_lookup_create () creates a lookup table for one band of input data. It can be used to
create a single lookup table for converting a single-band input image to a single-band or
multiband destination image. Or it can be used to create n single lookup tables for a
multiband input image with n bands; when used for multiband input images, the single
lookups created for the input bands must be combined into a combined lookup table by
calling the xil_lookup_create_combined(3) function.

When used to convert a single-band input image to a multiband image, the lookup table
must have multiple output data elements per input value; the number of elements must
match the number of output_nbands specified. When used for converting a single band of
input data, the lookup table can have only one output data element per input value, and
the destination output_nbands must equal 1.

Regardless of whether it is created for single-band or multiband input data, a lookup
table allows an offset that describes the input value corresponding to the first table value.
Table data can represent any of the allowed image data types, but 1-bit data is stored in
an unpacked format as the least significant bit in an 8-bit entry. The tables created for
multiband input data can use different offsets, but they must all use the same data types.

The maximum number of entries allowed in the lookup table is determined by the input
data type and by the first_entry_offset, as specified in the xil_lookup_create () call. This
ensures that inaccessible lookup table entries are not created. Lookup tables with a
first_entry_offset of 0 and an input data type of XIL_BYTE may have at most 256 entries.
Lookup tables with a first_entry_offset of -32768 and an input data type of XIL_SHORT may
have at most 65536 entries. Lookup tables with a first_entry_offset of 0 and a data type of
XIL_SHORT may have at most 32768 entries. This function accepts NULL as a valid value
for any of its arguments. XIL lookups cannot have XIL_FLOAT as an input datatype.

modified 17 March 1994 231

xil_lookup_create (3) SunOS 5.6

xil_lookup_create_copy () returns a copy of the specified lookup table. Copies of
lookup objects have the same XilVersion number as the original lookup object. The name
of a copy is initially empty (NULL).

xil_lookup_destroy () destroys the specified lookup table. For multiband input data, the
tables created for each input band must be destroyed individually; the combined table
must also be destroyed.

ERRORS For a complete list of XIL error messages by number, consult Appendix B of the XIL
Programmer’s Guide.

EXAMPLES Create a lookup table for converting an 8-bit pseudocolor image to a 24-bit color image
given the colormap components red, green, blue:

XilSystemState State;
XilLookup lookup_table;
Xil_unsigned8 red[256]; /∗ red component of colormap ∗/
Xil_unsigned8 green[256]; /∗ green component of colormap ∗/
Xil_unsigned8 blue[256]; /∗ blue component of colormap ∗/
Xil_unsigned8 data[256∗3]; /∗ lookup table data ∗/
int i, j;

for(j=0,i=0; i<256; i++, j+=3) {
data[j] = blue[i];
data[j+1] = green[i];
data[j+2] = red[i];

}
lookup_table = xil_lookup_create (State, XIL_BYTE, XIL_BYTE, 3, 256, 0, data);

SEE ALSO xil_lookup(3), xil_lookup_convert(3), xil_lookup_create_combined(3),
xil_lookup_get_input_datatype(3), xil_lookup_get_num_entries(3),
xil_lookup_get_offset(3), xil_lookup_get_band_lookup(3),
xil_lookup_get_output_datatype(3), xil_lookup_get_input_nbands(3),
xil_lookup_get_output_nbands(3), xil_lookup_get_colorcube(3),
xil_lookup_set_offset(3), xil_lookup_get_colorcube_info(3), xil_lookup_get_state(3),
xil_lookup_set_values(3).

232 modified 17 March 1994

SunOS 5.6 xil_lookup_create_combined (3)

NAME xil_lookup_create_combined − create combined lookup tables

SYNOPSIS #include <xil/xil.h>

XilLookup xil_lookup_create_combined (XilSystemState State ,
XilLookup lookup_list[] ,
unsigned int num_lookups)

DESCRIPTION xil_lookup_create_combined () creates a combined lookup table. A combined lookup
table is used for transforming multiband data to multiband data. Compare this function
with xil_lookup_create(3), which converts single-band data to single-band or multiband
data.

Combined lookups are a combination of n single lookup tables, where n is the number of
bands in the input image you want to convert. Each single lookup must be a 1-band to
1-band lookup table; the tables must all have the same data type, but each can use a
different offset.

To create a lookup table for a multiband input image, you call xil_lookup_create (3) once
for each band in the input image, then combine the single lookup tables into a combined
lookup table by calling xil_lookup_create_combined ().

xil_lookup_create_combined () returns a handle to a data structure of type XilLookup,
which is the combined lookup. The parameter State is a handle to the system-state data
structure created when you initialize the XIL library, lookup_list[] is an array of type
XilLookup that stores the single lookup tables created for each of the input image’s bands,
and num_lookups indicates how many lookup tables are stored in the lookup_list[] array.

ERRORS For a complete list of XIL error messages by number, consult Appendix B of the XIL
Programmer’s Guide.

EXAMPLES Create a combined lookup table for converting a 24-bit color image to another 24-bit color
image whose green band is accented but whose red and blue bands are subdued:

XilSystemState State;
XilLookup lookup_tables[3];
XilLookup combined_lookup_table;
Xil_unsigned8 red[256]; /∗ red component of lookup ∗/
Xil_unsigned8 green[256]; /∗ green component of lookup ∗/
Xil_unsigned8 blue[256]; /∗ blue component of lookup ∗/
int i;

for(i=0; i<256; i++) {
green[i] = (i + 20) < 255 ? i + 20 : 255;
blue[i] = red[i] = (i - 10) < 0 ? 0 : i - 10;

}
lookup_tables[0] = xil_lookup_create(State, XIL_BYTE, XIL_BYTE,

modified 16 March 1994 233

xil_lookup_create_combined (3) SunOS 5.6

1, 256, 0, red);
lookup_tables[1] = xil_lookup_create(State, XIL_BYTE, XIL_BYTE,

1, 256, 0, green);
lookup_tables[2] = xil_lookup_create(State, XIL_BYTE, XIL_BYTE,

1, 256, 0, blue);
combined_lookup_table = xil_lookup_create_combined(State,

lookup_tables, 3);

SEE ALSO xil_lookup(3), xil_lookup_create(3), xil_lookup_convert(3),
xil_lookup_get_band_lookup(3), xil_lookup_get_input_nbands(3),
xil_lookup_get_input_datatype(3), xil_lookup_get_num_entries(3),
xil_lookup_get_offset(3), xil_lookup_get_output_datatype(3),
xil_lookup_get_output_nbands(3), xil_lookup_get_colorcube(3),
xil_lookup_set_offset(3), xil_lookup_get_colorcube_info(3), xil_lookup_set_values(3).

234 modified 16 March 1994

SunOS 5.6 xil_lookup_get_band_lookup (3)

NAME xil_lookup_get_band_lookup − get a single lookup table out of a combined lookup

SYNOPSIS #include <xil/xil.h>

XilLookup xil_lookup_get_band_lookup (XilLookup lookup ,
unsigned int band_num)

DESCRIPTION This function creates a copy of the lookup for the specified band in a combined lookup
table. lookup is the handle to the combined lookup table, and band_num is the band
number to be copied.

The lookup table that is returned is a single lookup table with one output element per
input value. It can be used to convert a single-band input image to another single-band
input image, or it can be used as the lookup table for one band of a multiband input
image. It cannot be used to convert single-band data to multiband data.

ERRORS For a complete list of XIL error messages by number, consult Appendix B of the XIL
Programmer’s Guide.

EXAMPLES Get a copy of the lookup table in the first band of a combined lookup table built for con-
verting a 24-bit color image to another 24-bit color image:

XilLookup band1_lookup;
XilLookup combined_lookup_table;

band1_lookup = xil_lookup_get_band_lookup(combined_lookup_table, 0);

SEE ALSO xil_lookup(3), xil_lookup_create(3), xil_lookup_create_combined(3),
xil_lookup_convert(3), xil_lookup_get_input_nbands(3),
xil_lookup_get_input_datatype(3), xil_lookup_get_num_entries(3),
xil_lookup_get_offset(3), xil_lookup_get_output_datatype(3),
xil_lookup_get_output_nbands(3), xil_lookup_get_colorcube(3),
xil_lookup_set_offset(3), xil_lookup_get_colorcube_info(3), xil_lookup_set_values(3).

modified 17 March 1994 235

xil_lookup_get_by_name (3) SunOS 5.6

NAME xil_lookup_get_by_name, xil_lookup_get_name, xil_lookup_set_name − get and set a
lookup table name and get a handle to a lookup table by specifying its name

SYNOPSIS #include <xil/xil.h>

XilLookup xil_lookup_get_by_name (XilSystemState State ,
char ∗name);

char∗ xil_lookup_get_name (XilLookup lookup);

void xil_lookup_set_name (XilLookup lookup ,
char ∗name);

DESCRIPTION Use these functions to assign names to lookup tables, retrieve lookup tables by name, and
get the handle of a lookup table by specifying its name. Some predefined lookup tables
are created at the time of an xil_open(3) call. These lookup tables can be retrieved by
xil_lookup_get_by_name ().

xil_lookup_get_by_name () returns the handle to the lookup table with the specified
name name. If such a lookup table does not exist, NULL is returned.
xil_lookup_get_by_name () does not make a copy of the lookup table.

xil_lookup_get_name () returns a copy of the specified lookup table’s name. A call to
free (3) should be used to free the space allocated by xil_lookup_get_name (). If the
specified lookup table has no name, NULL is returned.

xil_lookup_set_name () sets the name of the specified lookup table name.

Standard Lookup
Tables Provided

The XIL library creates several predefined lookup tables at the time of an xil_open(3) call.
The names of these lookup tables and their suggested uses follow.

Lookup Table Name Suggested Use

"yuv_to_rgb" RGB lookup table for displaying 8:5:5 dithered YCC data

"cc855" A good colorcube for dithering YCC data into 200 colors. This
lookup table is created with an offset of 54.

"cc496" A good colorcube for dithering RGB data into 216 colors. This
lookup table is created with an offset of 38.

ERRORS For a complete list of XIL error messages by number, consult Appendix B of the XIL
Programmer’s Guide.

236 modified 29 March 1994

SunOS 5.6 xil_lookup_get_by_name (3)

EXAMPLES Create an inverse 8-bit lookup table named "invert":

XilSystemState State;
XilLookup lookup;
int i;
unsigned char data[256];

for (i=0; i<256; i++) data[i] = 255 - i;
lookup = xil_lookup_create(State,XIL_BYTE,XIL_BYTE,1,256,0,data);
xil_lookup_set_name(lookup,"invert");

Use a lookup table named "invert" to remap an image:

XilSystemState State;
XilImage src, dst;
XilLookup lookup;

lookup = xil_lookup_get_by_name(State,"invert");
xil_lookup(src, dst, lookup);

NOTES The set of standard objects is generated for each instantiation of an XilSystemState. If these
standard objects are deleted, they become unavailable for the duration of the current XIL
session.

If you give two lookup tables the same name, it is not defined which lookup table will be
retrieved by a call to xil_lookup_get_by_name ().

SEE ALSO xil_open(3), xil_lookup_create(3), xil_lookup_create_combined(3).

modified 29 March 1994 237

xil_lookup_get_input_datatype (3) SunOS 5.6

NAME xil_lookup_get_input_datatype, xil_lookup_get_num_entries, xil_lookup_get_offset,
xil_lookup_get_output_datatype, xil_lookup_get_input_nbands,
xil_lookup_get_output_nbands, xil_lookup_set_offset − operations on lookup tables

SYNOPSIS #include <xil/xil.h>

XilDataType xil_lookup_get_input_datatype (XilLookup lookup);

unsigned int xil_lookup_get_num_entries (XilLookup lookup);

short xil_lookup_get_offset (XilLookup lookup);

XilDataType xil_lookup_get_output_datatype (XilLookup lookup);

unsigned int xil_lookup_get_input_nbands (XilLookup lookup);

unsigned int xil_lookup_get_output_nbands (XilLookup lookup);

void xil_lookup_set_offset (XilLookup lookup ,
short offset);

DESCRIPTION These routines read and set the values of lookup table attributes. Lookup tables are used
in transforming data. Lookup tables used for single-band input images can have multi-
ple output data per input value. Lookup tables allow an offset that describes the input
value corresponding to the first table value.

Table data can represent any of the allowed image data types, but 1-bit data is stored in
an unpacked format as the least significant bit in an 8-bit entry.

xil_lookup_get_input_datatype () gets the data type of the expected input to the lookup
table. XIL lookups cannot have XIL_FLOAT as an input datatype.

xil_lookup_get_num_entries () gets the number of entries in the lookup table. This func-
tion cannot be used on combined lookup tables.

xil_lookup_get_offset () returns the offset value used to map the lookup table index to a
pixel value of a particular data type. The offset value is added to a lookup table index to
return a pixel value, and subtracted from a pixel value to return an index into the lookup
table. This function cannot be used on combined lookup tables.

For example, if a lookup table has an offset of 16, then entry 0 in the lookup table maps to
an actual value of 16, entry 1 maps to 17, and so on. Therefore, if you wanted to find the
RGB value for pixel 36, you would take lookup table entry 20 (pixel value 36 minus offset
value 16).

xil_lookup_get_output_datatype () gets the data type of the expected output from the
lookup table.

xil_lookup_get_input_nbands () gets the number of bands expected in the input.

xil_lookup_get_output_nbands () gets the number of bands expected in the output.

xil_lookup_set_offset () sets the offset value to the one specified. This function cannot
be used on combined lookup tables.

238 modified 29 March 1994

SunOS 5.6 xil_lookup_get_input_datatype (3)

ERRORS For a complete list of XIL error messages by number, consult Appendix B of the XIL
Programmer’s Guide.

EXAMPLES Calculate the buffer size (in bytes) necessary to hold all the values in a lookup table:

XilLookup lookup_table;
unsigned int nbands;
XilDataType datatype;
unsigned int num_entries;
long buffer_size;

nbands = xil_lookup_get_output_nbands (lookup_table);
datatype = xil_lookup_get_output_datatype (lookup_table);
num_entries = xil_lookup_get_num_entries (lookup_table);

switch (datatype) {
case XIL_BIT:
case XIL_BYTE:

buffer_size = nbands ∗ num_entries ∗ sizeof(Xil_unsigned8);
break;

case XIL_SHORT:
buffer_size = nbands ∗ num_entries ∗ sizeof(Xil_signed16);
break;

case XIL_FLOAT:
buffer_size = nbands ∗ num_entries ∗ sizeof(Xil_float32);
break;

}

SEE ALSO xil_lookup_create(3), xil_lookup_create_combined(3), xil_lookup_create_copy(3),
xil_lookup_destroy(3), xil_lookup_convert(3), xil_lookup_get_band_lookup(3),
xil_lookup_set_values(3).

modified 29 March 1994 239

xil_lookup_get_version (3) SunOS 5.6

NAME xil_lookup_get_version − get a unique version number for a lookup table

SYNOPSIS #include <xil/xil.h>

XilVersionNumber xil_lookup_get_version (XilLookup lookup);

DESCRIPTION This function gets a unique identifier associated with a lookup table. This identifier
changes whenever the lookup table values change. Unchanged copies created with
xil_lookup_create_copy(3) will have the same version number as the original.

ERRORS For a complete list of XIL error messages by number, consult Appendix B of the XIL
Programmer’s Guide.

EXAMPLES Get a version number for a lookup table:

XilVersionNumber version1, version2;
XilLookup table1, table2;

version1=xil_lookup_get_version(table1);
table2=xil_lookup_create_copy(table1);
version2=xil_lookup_get_version(table2);
if (version1!=version2)

printf("Error in lookup copy, different verson numbers.\n");

SEE ALSO xil_lookup_create(3), xil_lookup_create_combined(3), xil_lookup_create_copy(3),
xil_lookup_destroy(3), xil_lookup_get_input_datatype(3),
xil_lookup_get_num_entries(3), xil_lookup_get_offset(3),
xil_lookup_get_output_datatype(3), xil_lookup_get_input_nbands(3),
xil_lookup_get_output_nbands(3), xil_lookup_get_band_lookup(3),
xil_lookup_set_offset(3), xil_lookup_convert(3), xil_lookup_get_values(3),
xil_lookup_set_values(3).

240 modified 29 March 1994

SunOS 5.6 xil_lookup_set_values (3)

NAME xil_lookup_set_values, xil_lookup_get_values − set and get values in a lookup table

SYNOPSIS #include <xil/xil.h>

void xil_lookup_set_values (XilLookup lookup ,
short start ,
unsigned int num_values,
void ∗data);

void xil_lookup_get_values (XilLookup lookup ,
short start ,
unsigned int num_values,
void ∗data);

DESCRIPTION xil_lookup_set_values () sets the specified values in the lookup table to those in data. The
version number of the lookup table is updated whenever this is done.

xil_lookup_get_values () copies num_values lookup table values into the user-supplied
buffer data. start is the table entry position at which to begin reading values. The user is
responsible for allocating and freeing the buffer. The example below shows how big to
make the buffer.

ERRORS For a complete list of XIL error messages by number, consult Appendix B of the XIL
Programmer’s Guide.

EXAMPLES Get a sequence of data values out of a lookup table containing XIL_SHORT data values,
and add 1 to each entry:

XilLookup table;
unsigned int count, buf_size, i, j, output_nbands;
short start;
void∗ buffer;
xil_signed_16∗ pixel_ptr;
/∗ extract 100 entries starting at the 42nd value in the table /∗

/∗ (assumes a table offset of 0)∗/
count = 100; start = 42;

/∗ determine how big to make the values buffer (assume XIL_SHORT datatype) ∗/
output_nbands = xil_lookup_get_output_nbands (table);
buf_size = output_nbands ∗ count ∗ sizeof(Xil_signed16);

/∗ allocate the values buffer ∗/
buffer = (void ∗) malloc (buf_size);

/∗ get the current values in the lookup table ∗/
xil_lookup_get_values (table, start, count, buffer);

modified 29 March 1994 241

xil_lookup_set_values (3) SunOS 5.6

/∗ increment all the extracted values by 1 ∗/
pixel_ptr = (Xil_signed16 ∗) buffer;
for (i = 0; i < count; i++)

for (j = 0; j < output_nbands; j++) {
∗pixel_ptr += 1;
pixel_ptr++;

}

/∗ replace the values in the lookup table ∗/
xil_lookup_set_values (table, start, count, buffer);

NOTES These functions cannot be used on combined lookup tables.

SEE ALSO xil_lookup_create(3), xil_lookup_create_copy(3), xil_lookup_destroy(3),
xil_lookup_get_input_datatype(3), xil_lookup_get_num_entries(3),
xil_lookup_get_offset(3), xil_lookup_get_output_datatype(3),
xil_lookup_get_output_nbands(3), xil_lookup_set_offset(3), xil_lookup_convert(3),
xil_lookup_get_version(3).

242 modified 29 March 1994

SunOS 5.6 xil_max (3)

NAME xil_max − find the larger of pixels in two images

SYNOPSIS #include <xil/xil.h>

void xil_max (XilImage src1,
XilImage src2,
XilImage dst);

DESCRIPTION xil_max () performs a pixel-by-pixel max() operation of the src1 and src2 images and
stores the result in the dst (destination) image.

ERRORS For a complete list of XIL error messages by number, consult Appendix B of the XIL
Programmer’s Guide.

EXAMPLES Find the larger of image1 and image2 and store the result in dst :

XilImage image1, image2, dst;

xil_max(image1, image2, dst);

NOTES Source and destination images must be of the same data type and have the same number
of bands. In-place operations are supported.

SEE ALSO xil_extrema(3)

modified 04 March 1994 243

xil_min (3) SunOS 5.6

NAME xil_min − find the lesser of pixels in two images

SYNOPSIS #include <xil/xil.h>

void xil_min (XilImage src1,
XilImage src2,
XilImage dst);

DESCRIPTION xil_min () performs a pixel-by-pixel min() operation of the src1 and src2 images and
stores the result in the dst (destination) image.

ERRORS For a complete list of XIL error messages by number, consult Appendix B of the XIL
Programmer’s Guide.

EXAMPLES Find the lesser of image1 and image2 and store the result in dst :

XilImage image1, image2, dst;

xil_min(image1, image2, dst);

NOTES Source and destination images must be of the same data type and have the same number
of bands. In-place operations are supported.

SEE ALSO xil_extrema(3)

244 modified 04 March 1994

SunOS 5.6 xil_multiply (3)

NAME xil_multiply, xil_multiply_const − image multiplication operations.

SYNOPSIS #include <xil/xil.h>

void xil_multiply (XilImage src1,
XilImage src2,
XilImage dst);

void xil_multiply_const (XilImage src1,
float ∗constants,
XilImage dst);

DESCRIPTION xil_multiply () performs a pixel-by-pixel multiplication of the src1 image by the src2
image and stores the result in the dst (destination) image. If the result of the operation is
out of range for a particular data type, the result is clamped to the minimum or
maximum value for the data type. Results for XIL_BYTE operations, for example, are
clamped to 0 if they are less than 0 and 255 if they are greater than 255.

xil_multiply_const () performs a pixel-by-pixel multiplication of the src1 image by the
constants values and stores the result in the dst (destination) image. For an n-band image,
n float values must be provided, one per band. The values in band 0 are multiplied by
the value the first element of the constants array, and so on. Pixel values are rounded and
clipped according to image data type.

ERRORS For a complete list of XIL error messages by number, consult Appendix B of the XIL
Programmer’s Guide.

EXAMPLES Multiply image2 by image1 and store the result in dst :

XilImage image1, image2, dst;

xil_multiply(image1, image2, dst);

Multiply 4-band image1 by constants and store the result in dst :

XilImage image1, dst;
float constants[4];

constants[0] = 1.0;
constants[1] = 2.0;
constants[2] = 0.5;
constants[3] = 2.0;
xil_multiply_const(image1, constants, dst);

NOTES Source and destination images must be the same data type and have the same number of
bands. In-place operations are supported.

modified 03 August 1993 245

xil_nearest_color (3) SunOS 5.6

NAME xil_nearest_color − find nearest match of pixel values to entries in colormap

SYNOPSIS #include <xil/xil.h>

void xil_nearest_color (XilImage src,
XilImage dst ,
XilLookup cmap);

DESCRIPTION This routine performs a pixel-by-pixel search for the nearest matching color in the
supplied lookup table and sets the destination image pixel value to the appropriate
colormap index. Nearest color is determined by calculating Euclidean distance for n-
bands. src is the source image. dst is the destination image. cmap is a lookup table with
the number of output bands equal to the number of bands in the source image.

ERRORS For a complete list of XIL error messages by number, consult Appendix B of the XIL
Programmer’s Guide.

EXAMPLES Match nearest color for a 3-band image:

XilImage src; /∗ 3-band source image ∗/
XilImage dst; /∗ 1-band destination image ∗/
XilLookup colormap; /∗ colormap ∗/

xil_nearest_color(src, dst, colormap);

NOTES The source image must have the same data type and the same number of bands as the
lookup table. The destination image must have the same data type as the lookup table’s
input data type.

A performance improvement is available for colorcube lookup tables. In this case,
xil_ordered_dither(3) with a mask containing all values of 0.5 can be used to get
essentially the same results as nearest color.

SEE ALSO xil_colorcube_create(3), xil_lookup_create(3), xil_lookup_get_by_name(3),
xil_ordered_dither(3).

246 modified 23 September 1996

SunOS 5.6 xil_not (3)

NAME xil_not − bitwise logical NOT operation.

SYNOPSIS #include <xil/xil.h>

void xil_not (XilImage src,
XilImage dst);

DESCRIPTION This function performs a bitwise logical NOT operation on each pixel of the src (source)
image and stores the results in the dst (destination) image.

ERRORS For a complete list of XIL error messages by number, consult Appendix B of the XIL
Programmer’s Guide.

EXAMPLES Bitwise logical NOT image1 and store the result in dst :

XilImage image1, dst;

xil_not(image1 dst);

NOTES Source and destination images must be the same data type and have the same number of
bands. In-place operations are supported.

modified 16 June 1993 247

xil_open (3) SunOS 5.6

NAME xil_open, xil_close − open and close an XIL session

SYNOPSIS #include <xil/xil.h>

XilSystemState xil_open ();

void xil_close (XilSystemState State);

DESCRIPTION xil_open(3) is used to begin an XIL session. It must be called before any other XIL
routine. A single XilSystemState object is created and returned when xil_open(3) is
invoked. If the function is successful, a handle to the XilSystemState object is returned.
This object can only be destroyed by a subsequent call to xil_close(3) using the specified
handle.

When xil_open(3) is called, the XIL library attempts to open and load all of the compute
pipelines specified in the machine’s XIL configuration files. All of the XIL library’s
capabilities are enabled after this call.

xil_close (3) is used to end XilSystemState object describing the session to be terminated
is passed to the function. The XilSystemState system state object and all internal resources
associated with the given XIL session are destroyed. XIL objects created during the
session at the application’s request must be released by the appliction using the
appropriate XIL destroy calls. Application writers are expected to destroy the XIL objects
they create.

ERRORS For a complete list of XIL error messages by number, consult Appendix B of the XIL
Programmer’s Guide.

EXAMPLES Open and close the XIL Library:

XilSystemState State;
State = xil_open();
xil_close(State);

NOTES Multiple calls to xil_open() produce completely separate system states that provide
completely separate XIL environments. Objects created in one environment can be used
by other environments. This feature is intended to allow layered software that uses the
XIL library to be independent from other layered software using the XIL library.

If your program creates a display image and you do not destroy the image with
xil_destroy(), you must close the XIL library (with xil_close()) before you disconnect
your program from the X server.

SEE ALSO xil_create(3), xil_cis_create(3), xil_kernel_create(3), xil_lookup_create(3),
xil_roi_create(3), xil_sel_create(3), xil_kernel_get_by_name(3),
xil_lookup_get_by_name(3), xil_dithermask_get_by_name(3),
xil_colorspace_get_by_name(3).

248 modified 16 June 1993

SunOS 5.6 xil_or (3)

NAME xil_or, xil_or_const − bitwise logical OR operations

SYNOPSIS #include <xil/xil.h>

void xil_or (XilImage src1,
XilImage src2,
XilImage dst);

void xil_or_const (XilImage src1,
unsigned int ∗constants,
XilImage dst);

DESCRIPTION xil_or () performs a bitwise logical OR operation on each pixel of the src2 (source) image
with the corresponding pixel in the src1 image and stores the result in the dst
(destination) image.

xil_or_const () performs a bitwise logical OR operation on each pixel of the src1 (source)
image with the constants values and stores the results in the dst (destination) image. For a
n-band image, n unsigned integers must be provided, one per band. The values in band 0
ar ORed with the value in constants[0], and so on.

ERRORS For a complete list of XIL error messages by number, consult Appendix B of the XIL
Programmer’s Guide.

EXAMPLES Bitwise logical OR image2 with image1 and store the result in dst:

XilImage image1, image2, dst;

xil_or(image1, image2, dst);

Bitwise logical OR a 4-band image1 with 4 different constants and store the result in dst:

XilImage image, dst;
unsigned int constants[4];

constants[0] = 1;
constants[1] = 1;
constants[2] = 1;
constants[3] = 0;
xil_or_const(image, constants, dst);

NOTES Source and destination images must be the same data type and have the same number of
bands. In-place operations are supported.

modified 03 August 1993 249

xil_ordered_dither (3) SunOS 5.6

NAME xil_ordered_dither − use ordered dithering to convert a multiband or single-band image
into a single-band image with a colormap

SYNOPSIS #include <xil/xil.h>

void xil_ordered_dither(XilImage src,
XilImage dst,
XilLookup cmap,
XilDitherMask mask)

DESCRIPTION This routine performs an ordered dithering of a src (source) image with dither matrices
and produces a single-band dst (destination) image. cmap is a lookup table and must be a
colorcube. mask is a dither mask and must contain n matrices for an n-band source
image. These matrices must have the same dimensions and contain floating point values
between 0.0 and 1.0.

ERRORS For a complete list of XIL error messages by number, consult Appendix B of the XIL
Programmer’s Guide.

EXAMPLES Ordered-dither a 3-band image into a single-band image using a 4x4 dither mask:

XilImage src; /∗ 3-band source image ∗/
XilImage dst; /∗ 1-band destination image ∗/
XilLookup colormap; /∗ colorcube ∗/
XilDitherMask dithermask; /∗ 3 dither matrices ∗/
float data[]= { 0.0, 0.5, 0.125, 0.625,

0.75, 0.25, 0.875, 0.375,
0.1875, 0.6875, 0.0625, 0.5625,
0.9375, 0.4375, 0.8125, 0.3125,
0.0, 0.5, 0.125, 0.625,
0.75, 0.25, 0.875, 0.375,
0.1875, 0.6875, 0.0625, 0.5625,
0.9375, 0.4375, 0.8125, 0.3125,
0.0, 0.5, 0.125, 0.625,
0.75, 0.25, 0.875, 0.375,
0.1875, 0.6875, 0.0625, 0.5625,
0.9375, 0.4375, 0.8125, 0.3125};

dithermask = xil_dithermask_create(State, 4, 4, 3, data);

xil_ordered_dither(src, dst, colormap, dithermask);

NOTES In-place operations can occur when converting a single-band image into a single-band
image of the same data type with a colormap.

250 modified 16 August 1993

SunOS 5.6 xil_ordered_dither (3)

SEE ALSO xil_dithermask_create(3), xil_lookup_create_copy(3), xil_lookup_destroy(3),
xil_lookup_get_input_datatype(3), xil_lookup_get_num_entries(3),
xil_lookup_get_offset(3), xil_lookup_get_output_datatype(3),
xil_lookup_get_output_nbands(3), xil_lookup_set_offset(3), xil_lookup_convert(3),
xil_colorcube_create(3), xil_lookup_get_colorcube(3),
xil_lookup_get_colorcube_info(3).

modified 16 August 1993 251

xil_paint (3) SunOS 5.6

NAME xil_paint − perform paint on specified point list

SYNOPSIS #include <xil/xil.h>

void xil_paint (XilImage src,
XilImage dst ,
float ∗color ,
XilKernel brush,
unsigned int count,
float ∗coord_list);

DESCRIPTION This function blends portions of an image with a single color using a 2-D brush. The
brush is applied for each point in a list of coordinates. For each entry in the brush, the
associated pixel in the image is colored. src is the source image handle. dst is the
destination image handle. color is a pointer to the floating-point array that specifies the
brush color [0...(nbands-1)] for each pixel. brush is a kernel with values between 0.0 and
1.0.

The destination value is determined by this equation:

dst_pixel = (brush_value ∗ color) + ((1.0 - brush_value) ∗ src_pixel)

Where the brush value is 0.0, the destination value is the source value. Where the brush
value is 1.0, the destination value is the paint color.

count is the count of x,y coordinate pairs. coord_list is a pointer to the floating-point array
that specifies the x,y coordinate pairs.

ROI Behavior This function performs the paint operation in the source image on each point in the
coordinate list. The painted pixels within the ROI (region of interest) are output to the
destination image.

ERRORS For a complete list of XIL error messages by number, consult Appendix B of the XIL
Programmer’s Guide.

252 modified 16 June 1993

SunOS 5.6 xil_paint (3)

EXAMPLES For this example, the source and destination images contain 2 bands. Create a 2 x 2 brush
with the key pixel at the upper left corner of the kernel. Perform paint at pixel (x,y) =
(100,75).

XilImage src;
XilImage dst;
float paint_color[2] = {127.0, 255.0};
XilKernel brush;
float brush_data[4] = {1.0, 0.5, 0.5, 0.0};
unsigned int count = 1;
float coord_list[2] = {100.0, 75.0};

brush = xil_kernel_create(system_state,2,2,0,0,brush_data);

xil_paint(src, dst, paint_color, brush, count, coord_list);

NOTES Source and destination images must be the same data type and have the same number of
bands. For an n-band image, the array of floating point numbers for color must be of size
n. Only pixels that are blended with the paint color are output to the destination image.
In-place operations are supported.

SEE ALSO xil_kernel_create(3), xil_kernel_destroy(3), xil_blend(3).

modified 16 June 1993 253

xil_rescale (3) SunOS 5.6

NAME xil_rescale − rescale the data in an image

SYNOPSIS #include <xil/xil.h>

void xil_rescale (XilImage src,
XilImage dst ,
float ∗scale,
float ∗offset);

DESCRIPTION This routine performs a pixel-by-pixel rescaling of the data in a src (source) image by first
multiplying each pixel value by a scale factor and then adding an offset. The result is
stored in the dst (destination) image. For an n-band image, each array of constants must
contain n floats The values in band 0 are scaled by scale[0] and added to offset[0], and so
on.

Pixel values are clipped according to image data type. In this function, a floating point
intermediate value is calculated, so clipping/rounding is done after both the multiplica-
tion and the addition have occurred.

ERRORS For a complete list of XIL error messages by number, consult Appendix B of the XIL
Programmer’s Guide.

EXAMPLES Rescale a 4-band short src image into the range of XIL_BYTE, and store the result in dst:

XilImage src, dst;
float scale_values[4], offset_values[4];

src=xil_create(State, 512, 512, 3, XIL_SHORT);
dst=xil_create(State, 512, 512, 3, XIL_SHORT);

/∗ scale factors for each band ∗/
scale_values[0] = 127.5/32767.0;
scale_values[1] = 127.5/32767.0;
scale_values[2] = 127.5/32767.0;
scale_values[3] = 127.5/32767.0;

/∗ offset factors for each band ∗/
offset_values[0] = 127.5;
offset_values[1] = 127.5;
offset_values[2] = 127.5;
offset_values[3] = 127.5;

xil_rescale(src, dst, scale_values, offset_values);

254 modified 03 August 1993

SunOS 5.6 xil_rescale (3)

NOTES Source and destination images must be the same data type and have the same number of
bands. In-place operations are supported.

modified 03 August 1993 255

xil_roi_add_image (3) SunOS 5.6

NAME xil_roi_add_image − add a binary image to an ROI

SYNOPSIS #include <xil/xil.h>

void xil_roi_add_image (XilRoi roi ,
XilImage image);

DESCRIPTION This function adds the specified XIL_BIT image to the specified region of interest (ROI).
Bits that are set in the image are added to the region of interest. The image’s origin is
used to position the image pixels with respect to the ROI. The origin of the ROI is always
(0.0, 0.0), corresponding to the upper left corner. The image must be of type XIL_BIT and
consist of only one band.

ERRORS For a complete list of XIL error messages by number, consult Appendix B of the XIL
Programmer’s Guide.

EXAMPLES Do a logical AND of two binary images, and add the result to ae region of interest:

XilRoi roi;
XilImage image1, image2, image3;

xil_and (image1, image2, image3);
xil_roi_add_image (roi, image3);

SEE ALSO xil_get_roi(3), xil_set_roi(3), xil_roi_add_rect(3), xil_roi_add_region(3),
xil_roi_create(3), xil_roi_create_copy(3), xil_roi_destroy(3), xil_roi_get_as_image(3),
xil_roi_get_as_region(3), xil_roi_intersect(3), xil_roi_subtract_rect(3),
xil_roi_translate(3), xil_roi_unite(3).

256 modified 16 June 1993

SunOS 5.6 xil_roi_add_rect (3)

NAME xil_roi_add_rect − add a rectangle to an ROI

SYNOPSIS #include <xil/xil.h>

void xil_roi_add_rect (XilRoi roi ,
long x,
long y,
long width ,
long height);

DESCRIPTION This function adds the specified rectangle to the specified region of interest (ROI).

The coordinates of the rectangle are with respect to the storage of the image. That is, an
ROI coordinate of (0.0, 0.0) always refers to the upper left pixel in an image, regardless of
the image’s origin.

ERRORS For a complete list of XIL error messages by number, consult Appendix B of the XIL
Programmer’s Guide.

EXAMPLES Add two rectangles to an ROI object, one beginning at (0,0) and ending at (34,94), the
other beginning at (10,20) and ending at (109,69):

XilRoi roi = xil_roi_create(state);
long xstart, ystart, width, height;

xstart=0; ystart=0; width=35; height=95;
xil_roi_add_rect (roi, xstart, ystart, width, height);
xstart=10; ystart=20; width=100; height=50;
xil_roi_add_rect (roi, xstart, ystart, width, height);

SEE ALSO xil_get_roi(3), xil_set_roi(3), xil_roi_add_image(3), xil_roi_add_region(3),
xil_roi_create(3), xil_roi_create_copy(3), xil_roi_destroy(3), xil_roi_get_as_image(3),
xil_roi_get_as_region(3), xil_roi_intersect(3), xil_roi_subtract_rect(3),
xil_roi_translate(3), xil_roi_unite(3).

modified 16 June 1993 257

xil_roi_add_region (3) SunOS 5.6

NAME xil_roi_add_region − add an X region to an ROI

SYNOPSIS #include <xil/xil.h>

void xil_roi_add_region (XilRoi roi ,
Region region);

DESCRIPTION This function adds a specified X region to a specified region of interest (ROI).

ERRORS For a complete list of XIL error messages by number, consult Appendix B of the XIL
Programmer’s Guide.

EXAMPLES Add an X region to an ROI:

XilRoi roi;
Region region;

xil_roi_add_region (roi, region);

SEE ALSO xil_get_roi(3), xil_set_roi(3), xil_roi_add_image(3), xil_roi_add_rect(3),
xil_roi_create(3), xil_roi_create_copy(3), xil_roi_destroy(3), xil_roi_get_as_image(3),
xil_roi_get_as_region(3), xil_roi_intersect(3), xil_roi_subtract_rect(3),
xil_roi_translate(3), xil_roi_unite(3).

258 modified 16 June 1993

SunOS 5.6 xil_roi_create (3)

NAME xil_roi_create, xil_roi_create_copy, xil_roi_destroy − create or destroy ROIs

SYNOPSIS #include <xil/xil.h>

XilRoi xil_roi_create (XilSystemState State);

XilRoi xil_roi_create_copy (XilRoi roi);

void xil_roi_destroy (XilRoi roi);

DESCRIPTION These routines create and destroy region of interest (ROI) objects.

xil_roi_create () creates an XilRoi object. It is initially empty. You can use
xil_roi_add_rect(3), xil_roi_add_region(3), or xil_roi_add_image(3) to add rectangles to
an ROI. ROIs exist in the coordinate system of the image storage. That is, an ROI
coordinate of (0.0, 0.0) always refers to the upper left pixel in an image, regardless of the
image’s origin.

xil_roi_create_copy () returns a copy of the specified ROI. The name of a copy is initially
empty (NULL).

xil_roi_destroy () destroys the specified ROI.

XIL and Regions of
Interest

ROIs provide a way to limit operations to a specific part of image data. ROIs are
attributes of images; they specify what part of an image may be used.

As a destination attribute, the ROI functions as a "write mask" for the destination image.
If the ROI is valid (non-zero) for a particular pixel, that pixel may be modified by the
operation; otherwise, the pixel is not written.

For a source image, the ROI defines what part of the source image may go toward
modifying the destination. In the case of some of the geometric operators, this means a
rectangular ROI in the source maps to a nonrectangular area of modification in the
destination.

Area operations, such as interpolated geometric zooms, convolution, and erosion, may
use data outside the source ROI in creating their output pixel. In the case of geometric
operators, the source pixel is generated if the backward-mapped subpixel position lies in
the ROI; pixels used in the interpolation may be outside the ROI. For convolution and
erosion/dilation, the source pixel is used if it is inside the source ROI; the surrounding
pixels used in generating the convolution may be outside the ROI. In the destination,
only the output pixel is tested against the destination ROI for writability.

If more than one image in an operation has an ROI attribute, the intersection of all the
ROIs (with source ROIs transformed into the destination space) is used to mask the
destination.

modified 09 August 1993 259

xil_roi_create (3) SunOS 5.6

Although they are image attributes, ROIs attached to an image are not modified along
with the image. Destination images retain their own ROIs and do not adopt the ROI of
the source image. Copying an image does not copy the ROI attribute; it must be copied
explicitly. In addition, creating a child image from an image with an ROI does not cause
the child to inherit the portion of the parent’s ROI covering it. Installation of an ROI on a
child image must be performed explicitly.

The coordinate space of the ROI is conceptually tied to the image storage. That is, the
location of the ROI with respect to image data is not changed by changing the image
origin.

Operations on ROIs may be performed by retrieving the ROI as a 1-bit image, passing the
image to the appropriate XIL operator, then reinstalling the image as an ROI. Several
functions exist to operate directly on ROIs without having to first convert them into an
external format. This probably provides better performance for these supported
operators. A list of ROI operations and their corresponding man pages is given below.

Get an ROI xil_get_roi(3)

Set an ROI xil_set_roi(3)

Add a binary image to an ROI xil_roi_add_image(3)

Add a rectangle to an ROI xil_roi_add_rect(3)

Add an X region to an ROI xil_roi_add_region(3)

Create and return a copy of an ROI xil_roi_create_copy(3)

Destroy an ROI xil_roi_destroy(3)

Get an image version of an ROI xil_roi_get_as_image(3)

Get an X region version of an ROI xil_roi_get_as_region(3)

Find the intersection of two ROIs xil_roi_intersect(3)

Subtract a rectangle from an ROI xil_roi_subtract_rect(3)

Translate an ROI xil_roi_translate(3)

Find the union of two ROIs xil_roi_unite(3)

ERRORS For a complete list of XIL error messages by number, consult Appendix B of the XIL
Programmer’s Guide.

260 modified 09 August 1993

SunOS 5.6 xil_roi_create (3)

EXAMPLES Create an ROI, add a rectangle to it (beginning at (10,20) and ending at (109,69), associate
it with an image, and then destroy it:

XilSystemState State;
XilImage image;
XilRoi roi;
long xstart=10, ystart=20, width=100, height=50;

roi = xil_roi_create (State);
xil_roi_add_rect (roi, xstart, ystart, width, height);
xil_set_roi (image, roi);
xil_roi_destroy (roi);

SEE ALSO xil_roi_add_image(3), xil_roi_add_rect(3), xil_roi_add_region(3),
xil_roi_get_as_image(3), xil_roi_get_as_region(3), xil_roi_intersect(3),
xil_roi_subtract_rect(3), xil_roi_translate(3), xil_roi_unite(3), xil_get_roi(3),
xil_roi_get_state(3), xil_set_roi(3).

modified 09 August 1993 261

xil_roi_get_as_image (3) SunOS 5.6

NAME xil_roi_get_as_image − get an image version of an ROI

SYNOPSIS #include <xil/xil.h>

XilImage xil_roi_get_as_image (XilRoi roi);

DESCRIPTION This function returns a handle to a new binary (XIL_BIT) image that is an image
representation of the supplied ROI. The image returned will be just large enough to
contain all of the regions of interest; in other words, a bounding box image is generated.
The beginning x and y values for the upper-leftmost ROI are encoded as -(x) and -(y) in
the returned image’s origin. For example, if the upper-left ROI pixel in the source image
is at location (50,50), it is encoded to (-50, -50) in the returned image’s origin. If a pixel in
the image is contained within the ROI, it is set to 1; otherwise, it is set to 0.

ERRORS For a complete list of XIL error messages by number, consult Appendix B of the XIL
Programmer’s Guide.

EXAMPLES Get the ROI associated with an image. Then create an image mask that corresponds to the
ROI returned:

XilSystemState State;
XilImage image, image_mask;
XilRoi roi;

roi = xil_get_roi (image);
if (roi == NULL) {

/∗ The image had no ROI associated with it,
create one that encompasses the whole image ∗/

roi = xil_roi_create (State);
xil_roi_add_rect (roi, 0, 0, xil_get_width(image), xil_get_height(image));

}
image_mask = xil_roi_get_as_image (roi);

SEE ALSO xil_get_roi(3), xil_set_roi(3), xil_roi_add_image(3), xil_roi_add_rect(3),
xil_roi_add_region(3), xil_roi_create(3), xil_roi_create_copy(3), xil_roi_destroy(3),
xil_roi_get_as_region(3), xil_roi_intersect(3), xil_roi_subtract_rect(3),
xil_roi_translate(3), xil_roi_unite(3).

262 modified 04 March 1994

SunOS 5.6 xil_roi_get_as_region (3)

NAME xil_roi_get_as_region − get an X region version of an ROI

SYNOPSIS #include <xil/xil.h>

Region xil_roi_get_as_region (XilRoi roi);

DESCRIPTION This function returns a handle to an X region that corresponds to the supplied ROI.

ERRORS For a complete list of XIL error messages by number, consult Appendix B of the XIL
Programmer’s Guide.

EXAMPLES Get the ROI associated with an image. Then create an X region that corresponds to the
ROI returned:

XilSystemState State;
XilImage image;
XilRoi roi;
Region region;

roi = xil_get_roi (image);
if (roi == NULL) {

/∗ The image had no ROI associated with it,
create one that encompasses the whole image ∗/

roi = xil_roi_create (State);
xil_roi_add_rect (roi, 0, 0, xil_get_width(image), xil_get_height(image));

}
region = xil_roi_get_as_region (roi);

SEE ALSO xil_get_roi(3), xil_set_roi(3), xil_roi_add_image(3), xil_roi_add_rect(3),
xil_roi_add_region(3), xil_roi_create(3), xil_roi_create_copy(3), xil_roi_destroy(3),
xil_roi_get_as_image(3), xil_roi_intersect(3), xil_roi_subtract_rect(3),
xil_roi_translate(3), xil_roi_unite(3), XCreateRegion (3), XPolygonRegion (3).

modified 16 June 1993 263

xil_roi_get_by_name (3) SunOS 5.6

NAME xil_roi_get_by_name, xil_roi_get_name, xil_roi_set_name − get and set a region of
interest (ROI) object name and get a handle to a ROI by specify a name

SYNOPSIS #include <xil/xil.h>

XilRoi xil_roi_get_by_name (XilSystemState State ,
char ∗name);

char∗ xil_roi_get_name (XilRoi roi);

void xil_roi_set_name (XilRoi roi ,
char ∗name);

DESCRIPTION Use these functions to assign names to ROI objects, get the name of ROIs, and retrieve
ROI objects by name.

xil_roi_get_by_name () returns the handle to the ROI object with the specified name
name. If such an object does not exist, NULL is returned. xil_roi_get_by_name () does not
make a copy of the ROI object.

xil_roi_get_name () returns a copy of the specified ROI object’s name. A call to free (3)
should be used to free the space allocated by xil_roi_get_name (). If the specified ROI
object has no name, NULL is returned.

xil_roi_set_name () sets the name of the specified ROI object to the one provided.

ERRORS For a complete list of XIL error messages by number, consult Appendix B of the XIL
Programmer’s Guide.

EXAMPLES Create an ROI named "image1_mask" from an image:

XilSystemState State;
XilImage image1;
XilRoi roi;
roi = xil_roi_create(State);
xil_roi_add_image(roi,image1);
xil_roi_set_name(roi, "image1_mask");

Use an ROI named "image1_mask" to selectively copy an image:

XilSystemState State;
XilImage src, dst;
XilRoi image_mask_roi;
image_mask_roi = xil_roi_get_by_name(State,"image1_mask");
xil_set_roi(dst, image_mask_roi);
xil_copy(src, dst);

264 modified 16 June 1993

SunOS 5.6 xil_roi_get_by_name (3)

NOTES If you give two ROI objects the same name, it is not defined which ROI object will be
retrieved by a call to xil_roi_get_by_name ().

modified 16 June 1993 265

xil_roi_intersect (3) SunOS 5.6

NAME xil_roi_intersect − find the intersection of two ROIs

SYNOPSIS #include <xil/xil.h>

XilRoi xil_roi_intersect (XilRoi roi1 ,
XilRoi roi2);

DESCRIPTION This function returns a ROI by taking the intersection of two existing ROIs.

ERRORS For a complete list of XIL error messages by number, consult Appendix B of the XIL
Programmer’s Guide.

EXAMPLES Get the intersection of the ROIs associated with two images:

XilImage src, dst;
XilRoi roi_src, roi_dst, roi_intersected;

roi_src = xil_get_roi (src);
roi_dst = xil_get_roi (dst);
roi_intersected = xil_roi_intersect (roi_src, roi_dst);

SEE ALSO xil_get_roi(3), xil_set_roi(3), xil_roi_add_image(3), xil_roi_add_rect(3),
xil_roi_add_region(3), xil_roi_create(3), xil_roi_create_copy(3), xil_roi_destroy(3),
xil_roi_get_as_image(3), xil_roi_get_as_region(3), xil_roi_subtract_rect(3),
xil_roi_translate(3), xil_roi_unite(3).

266 modified 16 June 1993

SunOS 5.6 xil_roi_subtract_rect (3)

NAME xil_roi_subtract_rect − subtract a rectangle from an ROI

SYNOPSIS #include <xil/xil.h>

void xil_roi_subtract_rect (XilRoi roi ,
long x,
long y,
long width ,
long height);

DESCRIPTION This function subtracts the specified rectangle from the specified region of interest (ROI).
The coordinates of the rectangle are with respect to the storage of the image. That is, an
ROI coordinate of (0.0, 0.0) always refers to the upper left pixel in an image, regardless of
the image’s origin.

ERRORS For a complete list of XIL error messages by number, consult Appendix B of the XIL
Programmer’s Guide.

EXAMPLES Subtract two rectangles from an ROI object, one beginning at (0,0) and ending at (34,94),
the other beginning at (10,20) and ending at (109,69):

XilRoi roi;
long xstart, ystart, width, height;

xstart=0; ystart=0; width=35; height=95;
xil_roi_subtract_rect (roi, xstart, ystart, width, height);
xstart=10; ystart=20; width=100; height=50;
xil_roi_subtract_rect (roi, xstart, ystart, width, height);

SEE ALSO xil_get_roi(3), xil_set_roi(3), xil_roi_add_image(3), xil_roi_add_rect(3),
xil_roi_add_region(3), xil_roi_create(3), xil_roi_create_copy(3), xil_roi_destroy(3),
xil_roi_get_as_image(3), xil_roi_get_as_region(3), xil_roi_intersect(3),
xil_roi_translate(3), xil_roi_unite(3).

modified 16 June 1993 267

xil_roi_translate (3) SunOS 5.6

NAME xil_roi_translate − translate an ROI up and down or left and right

SYNOPSIS #include <xil/xil.h>

XilRoi xil_roi_translate (XilRoi roi ,
int xoffset ,
int yoffset);

DESCRIPTION This function returns a region of interest (ROI) that is translated (moved) (xoffset, yoffset)
from the specified ROI. The coordinates of the translation are with respect to the storage
of the image. That is, an ROI coordinate of (0.0, 0.0) always refers to the upper left pixel in
an image, regardless of the image’s origin. Positive offsets for xoffset, yoffset move the
ROI to the right and down. Negative offsets move the ROI left and up.

ERRORS For a complete list of XIL error messages by number, consult Appendix B of the XIL
Programmer’s Guide.

EXAMPLES Move all of the regions comprising an ROI +20 in x and -50 in y :

XilRoi roi, translated_roi;
translated_roi = xil_roi_translate (roi, 20, -50);

SEE ALSO xil_get_roi(3), xil_set_roi(3), xil_roi_add_image(3), xil_roi_add_rect(3),
xil_roi_add_region(3), xil_roi_create(3), xil_roi_create_copy(3), xil_roi_destroy(3),
xil_roi_get_as_image(3), xil_roi_get_as_region(3), xil_roi_intersect(3),
xil_roi_subtract_rect(3), xil_roi_unite(3).

268 modified 16 June 1993

SunOS 5.6 xil_roi_unite (3)

NAME xil_roi_unite − find the union of two ROIs

SYNOPSIS #include <xil/xil.h>

XilRoi xil_roi_unite (XilRoi roi1 ,
XilRoi roi2);

DESCRIPTION This function returns a new ROI created by taking the union of two existing ROIs.

ERRORS For a complete list of XIL error messages by number, consult Appendix B of the XIL
Programmer’s Guide.

EXAMPLES Get the union of the ROIs associated with two images:

XilImage src, dst;
XilRoi roi_src, roi_dst, roi_union;

roi_src = xil_get_roi (src);
roi_dst = xil_get_roi (dst);
roi_union = xil_roi_unite (roi_src, roi_dst);

SEE ALSO xil_get_roi(3), xil_set_roi(3), xil_roi_add_image(3), xil_roi_add_rect(3),
xil_roi_add_region(3), xil_roi_create(3), xil_roi_create_copy(3), xil_roi_destroy(3),
xil_roi_get_as_image(3), xil_roi_get_as_region(3), xil_roi_intersect(3),
xil_roi_subtract_rect(3), xil_roi_translate(3).

modified 16 June 1993 269

xil_rotate (3) SunOS 5.6

NAME xil_rotate − rotate an image

SYNOPSIS #include <xil/xil.h>

void xil_rotate (XilImage src,
XilImage dst ,
char ∗interpolation ,
float angle);

DESCRIPTION This function rotates an image about its origin. By default, an image’s origin is its upper-
left corner (0.0, 0.0). You can change the origin with the xil_set_origin() function.

src is the source image handle. dst is the destination image handle. interpolation is a
string that specifies the type of interpolation to be used. The supported interpolation
types are nearest (nearest neighbor), bilinear, bicubic, and general. angle is the angle of rota-
tion in radians. A positive angle indicates counterclockwise rotation; a negative angle
indicates clockwise rotation.

ROI Behavior If an ROI (region of interest) is attached to the source image, it is used as a read mask and
is rotated into the destination image’s space, where it is intersected with the destination
ROI (if there is one).

ERRORS For a complete list of XIL error messages by number, consult Appendix B of the XIL
Programmer’s Guide.

EXAMPLES Rotate an image clockwise by 45 degrees (0.7854 radians) using bilinear interpolation:

XilImage src, dst;
xil_rotate(src, dst, "bilinear", -0.7854);

NOTES The source and destination images to be rotated must be the same type and number of
bands. This operation cannot be performed in place.

SEE ALSO xil_affine(3), xil_scale(3), xil_set_origin(3), xil_transpose(3).

270 modified 11 September 1996

SunOS 5.6 xil_scale (3)

NAME xil_scale − scale an image

SYNOPSIS #include <xil/xil.h>

void xil_scale (XilImage src,
XilImage dst ,
char ∗interpolation ,
float xscale,
float yscale);

DESCRIPTION This function scales an image about its origin. By default, an image’s origin is its upper-
left corner (0.0, 0.0). You can change the origin with the xil_set_origin() function.

src is the source image handle. dst is the destination image handle. interpolation is a
string that specifies the type of interpolation to be used. The supported interpolation
types are nearest (nearest neighbor), bilinear, bicubic, and general. xscale and yscale are the x
and y scale factors. Scale factors of less than 1.0 reduce the size of an image in x and y.

ROI Behavior If an ROI (region of interest) is attached to the source image, it is used as a read mask and
is scaled into the destination image’s space, where it is intersected with the destination
ROI (if there is one).

ERRORS For a complete list of XIL error messages by number, consult Appendix B of the XIL
Programmer’s Guide.

EXAMPLES Scale an image by 2.3 in the x direction and 4.3 in the y direction using bicubic
interpolation.

XilImage src, dst;
xil_scale(src, dst, "bicubic", 2.3, 4.3);

NOTES The source and destination images to be scaled must be the same type and number of
bands. This operation cannot be performed in place.

SEE ALSO xil_affine(3).

modified 16 June 1993 271

xil_sel_create (3) SunOS 5.6

NAME xil_sel_create, xil_sel_create_copy, xil_sel_destroy − create and destroy structuring ele-
ment objects

SYNOPSIS #include <xil/xil.h>

XilSel xil_sel_create (XilSystemState State ,
unsigned int width ,
unsigned int height,
unsigned int keyx ,
unsigned int keyy ,
unsigned int ∗data);

XilSel xil_sel_create_copy (XilSel sel);

void xil_sel_destroy (XilSel sel);

DESCRIPTION These routines create and control access to the structuring element (SEL) objects used in
the XIL erosion and dilation imaging operations. Structuring elements are similar to
convolution kernels, except that the member values are Boolean (unsigned int).

width and height are the width of the structuring element in pixels. Common sizes for
structuring elements are 3-by-3 and 5-by-5. keyx and keyy are the coordinates of the key
value in the kernel. The coordinates are specified with respect to the upper-left value in
the structuring element (0,0). data is a pointer to the Boolean values that will be written to
the kernel.

Key values specify the key pixel position - a position relative to the upper left corner of
the SEL. The key pixel aligns with the output pixel and constrains which input pixels are
used to generate the output.

xil_sel_create () creates a SEL of the specified size with the specified data.

xil_sel_create_copy () returns a copy of the specified SEL. The name of a copy is initially
empty (NULL).

xil_sel_destroy () destroys the specified SEL.

ERRORS For a complete list of XIL error messages by number, consult Appendix B of the XIL
Programmer’s Guide.

272 modified 16 June 1993

SunOS 5.6 xil_sel_create (3)

EXAMPLES Create a 3x3, cross-shaped structuring element, with the key value located at the center of
the SEL:

XilSystemState State;
unsigned int width=3, height=3, key_x=1, key_y=1;
XilSel sel;
unsigned int data[] = {

0, 1, 0,
1, 1, 1,
0, 1, 0

};

sel = xil_sel_create (State, width, height, key_x, key_y, data);

NOTES The key pixel must lie within the boundaries of the SEL.

SEE ALSO xil_erode(3), xil_dilate(3), xil_sel_get_height(3), xil_sel_get_width(3),
xil_sel_get_key_x(3), xil_sel_get_key_y(3), xil_sel_get_state(3).

modified 16 June 1993 273

xil_sel_get_by_name (3) SunOS 5.6

NAME xil_sel_get_by_name, xil_sel_get_name, xil_sel_set_name − get and set a structuring ele-
ment (SEL) object name and get a handle to a SEL by specifying its name

SYNOPSIS #include <xil/xil.h>

XilSel xil_sel_get_by_name (XilSystemState State ,
char ∗name);

char∗ xil_sel_get_name (XilSel sel);

void xil_sel_set_name (XilSel sel,
char ∗name);

DESCRIPTION Use these functions to assign names to SEL objects, get the name of a SEL, and to retrieve
SEL objects by name.

xil_sel_get_by_name () returns the handle to the SEL object with the specified name
name. If such a SEL object does not exist, NULL is returned. xil_sel_get_by_name () does
not make a copy of the SEL object.

xil_sel_get_name () returns a copy of the specified SEL object’s name. A call to free (3)
should be used to free the space allocated by xil_sel_get_name (). If the specified SEL
object has no name, NULL is returned.

xil_sel_set_name () sets the name of the specified SEL object to the one provided.

ERRORS For a complete list of XIL error messages by number, consult Appendix B of the XIL
Programmer’s Guide.

EXAMPLES Create a structuring element named "rect3x3":

XilSystemState State;
XilSel sel;
unsigned int data[] = {

1 1 1
1 1 1
1 1 1

};

sel = xil_sel_create(State, 3, 3, 0, 0, data);
xil_sel_set_name(sel, "rect3x3");

Use a structuring element named "rect3x3" to erode an image:

XilSystemState State;
XilImage src, dst;
XilSel sel;

sel = xil_sel_get_by_name(State, "rect3x3");
xil_erode(src, dst, sel);

274 modified 16 June 1993

SunOS 5.6 xil_sel_get_by_name (3)

SEE ALSO xil_sel_create(3), xil_sel_destroy(3), xil_sel_get_name(3), xil_sel_set_name(3).

modified 16 June 1993 275

xil_sel_get_height (3) SunOS 5.6

NAME xil_sel_get_height, xil_sel_get_width, xil_sel_get_key_x, xil_sel_get_key_y − read the
values of structuring element attributes

SYNOPSIS #include <xil/xil.h>

unsigned int xil_sel_get_height (XilSel sel);

unsigned int xil_sel_get_width (XilSel sel);

unsigned int xil_sel_get_key_x (XilSel sel);

unsigned int xil_sel_get_key_y (XilSel sel);

DESCRIPTION These routines read the values of structuring element (SEL) objects used in erosion and
dilation imaging operations. Key values specify the key pixel position - a position relative
to the upper left corner of the SEL. The key pixel aligns with the output pixel and
constrains which input pixels are used to generate the output.

xil_sel_get_height () gets the height of the specified SEL.

xil_sel_get_width () gets the width of the specified SEL.

xil_sel_get_key_x () gets the x coordinate of the key value of the specified SEL.

xil_sel_get_key_y () gets the y coordinate of the key value of the specified SEL.

ERRORS For a complete list of XIL error messages by number, consult Appendix B of the XIL
Programmer’s Guide.

EXAMPLES Get the coordinates of a SEL’s key value:

XilSel sel;
unsigned int key_x, key_y;

key_x = xil_sel_get_key_x (sel);
key_y = xil_sel_get_key_y (sel);

SEE ALSO xil_erode(3), xil_dilate(3), xil_sel_create(3), xil_sel_create_copy(3), xil_sel_destroy(3).

276 modified 16 June 1993

SunOS 5.6 xil_sel_get_values (3)

NAME xil_sel_get_values - get the values stored internally for a structuring element.

SYNOPSIS #include <xil/xil.h>

void xil_sel_get_values(XilSel sel,
unsigned int ∗data);

DESCRIPTION xil_sel_get_values () returns the internal values stored in sel. The user must allocate the
array of unsigned int data to hold the values of the structruing element object. The size of
the data array will be the width of the XilSel object ∗ height of the XilSel object. These
values can be retrieved by calling xil_sel_get_width (3) and xil_sel_get_height (3).

ERRORS For a complete list of XIL error messages by number, consult Appendix B of the XIL
Programmer’s Guide.

EXAMPLES Get the values of an structuring element object:

XilSel sel;
unsigned int∗ data;
unsigned int width;
unsigned int height;

width = xil_sel_get_width(sel);
height = xil_sel_get_height(sel);

data = malloc(width∗height);
if(data == NULL)

/∗ cleanup and exit ∗/

}
xil_sel_get_values(sel, data);

NOTES
SEE ALSO xil_sel_create(3), xil_sel_get_width(3), xil_sel_get_height(3), xil_sel_get_key_x(3),

xil_sel_get_key_y(3).

modified 10 February 1997 277

xil_set_colorspace (3) SunOS 5.6

NAME xil_set_colorspace − set an image’s color space

#include <xil/xil.h>

void xil_set_colorspace (XilImage image,
XilColorspace cspace);

DESCRIPTION This function specifies the XilColorspace object associated with the image. The default
value of this attribute is NULL, which means the image has no color space attached to it.

Images can be supplied in any of the supported color spaces. The following table
indicates the character string used to identify the supported color spaces and describes
the source of each color space definition:

"rgb709" Nonlinear RGB primaries as defined by CCIR Rec 709

"rgblinear" Linearized RGB using primaries from CCIR Rec 709

"ycc709" YCC as defined by CCIR Rec 709

"y709" Luminance (black and white) from "ycc709"

"ylinear" Linearized version of "y709"

"photoycc" YCC color space defined by Kodak for PhotoCD

"ycc601" YCC as defined by CCIR Rec 601

"y601" Luminance from "ycc601"

"cmy" Linear CMY, derived from "rgblinear"

"cmyk" Linear CMYK, derived from "cmy" through undercolor removal

These color spaces are created by the XIL library at the time of a call to xil_open(3).
Handles to these color space objects can be obtained by calling
xil_colorspace_get_by_name(3).

XIL Color Spaces The XIL library supports specification of the color spaces of images and the conversion of
images between supported color spaces. Color space conversion is useful for a number
of reasons.

Some operations are more easily performed on certain color spaces. JPEG compression,
for example, produces better results on color data when the input is supplied as YCC
instead of RGB. Extracting luminance information from color data allows the simple use
of monochrome output devices. The library supports conversion between a variety of
these spaces, and treats luminance as a separate color space.

In most cases for 16-bit image data, there is little concern with artifacts due to limited
precision. For 8-bit data, using nonlinear or gamma-corrected color spaces (such as YCC
or nonlinear RGB) can prevent the contouring in low-intensity regions of the image that
occurs with 8-bit linear data storage. The library supports both linear and nonlinear color
spaces in both 8 and 16 bits.

278 modified 19 July 1993

SunOS 5.6 xil_set_colorspace (3)

Color separations produce images for output on subtractive color printers. The XIL
library supports both CMY and CMYK spaces. Some flexibility in the generation of black
color (K) and the associated undercolor removal is provided. The library also provides
the ability to separate images into a specified group of process colors by dithering to a
user-defined colormap. Sophisticated separations (nonlinear black mappings, for
example) are not currently supported by the XIL library. Currently, the library only
supports certain standard, or objective, color spaces.

ERRORS For a complete list of XIL error messages by number, consult Appendix B of the XIL
Programmer’s Guide.

EXAMPLES XilSystemState State;
XilImage image;
XilColorspace cspace;

/∗ get handle to the predefined "rgblinear" colorspace ∗/
/∗ and specify this colorspace for image ∗/
State = xil_open();
image = xil_create(State);
cspace = xil_colorspace_get_by_name(State, "rgblinear");
xil_set_colorspace(image, cspace);

SEE ALSO xil_colorspace_get_by_name(3), xil_color_convert(3), xil_black_generation(3),
xil_open(3).

modified 19 July 1993 279

xil_set_data_supply_routine (3) SunOS 5.6

NAME xil_set_data_supply_routine - Set the routine that will be used to fill in the storage for an
image

SYNOPSIS #include <xil/xil.h>

void xil_set_data_supply_routine(XilImage image,
XilDataSupplyFuncPtr supply_ptr,
void∗ user_args);

DESCRIPTION It is not always possible to provide a description of the entire image’s storage. For
example, tiles may be located across the network or in a file whose data cannot be
memory mapped (for example, a compressed image file). In these cases, it is more
efficient to provide the tile data to XIL on demand. So, only one tile is loaded into
memory at a time. An additional benefit is that only those tiles that are actually needed
get loaded.

XIL supports this demand-based supply by allowing the application to specify a "data
supply routine" for an image. When an XIL operation needs data for a tile of the image,
XIL calls the routine to obtain the data. The routine is only called when there is no data
associated with a tile. The first time a tile from the image is needed, the application’s rou-
tine is called to provide data. From that point on, the data remains under XIL control as if
the storage had been set.

To set the "data supply routine" for an image, the application calls
xil_set_data_supply_routine ().

The prototype for the "data supply routine" is:

int app_data_supply_routine(XilImage image,
XilStorage storage,
unsigned int x,
unsigned int y,
unsigned int xsize,
unsigned int ysize,
void∗ user_args);

The image is included as an argument in the event that the same data supply routine is
used for multiple images. The image should only be used as an identifier.

The user provides the data to the image through the storage object argument. The routine
must call the appropriate storage functions, such as xil_storage_set_data (3),
xil_storage_set_pixel_stride (3), and xil_storage_set_scanline_stride (3) in order to set
the image data.

The x and y arguments indicate the upper left coordinate of the data portion required.

The xsize and ysize will most likely be the tile xsize and tile ysize, but as the image may
have been re-imported, the programmer will have no way to access the tile size at the
time of the callback.

280 modified 10 February 1997

SunOS 5.6 xil_set_data_supply_routine (3)

user_args are available to provide any specific data that the routine may require, and will
match the user_args provided in the xil_set_data_supply_routine () for the image.

EXAMPLES A program that uses a data supply routine to provide data to an XIL image for
processing. The supply data is stored in a contiguous buffer, 256 x 256. The image tile size
is initially set to 64 x 64, but may change before the data supply routine is called. The
supply data is a a buffer of 4 banded (RGBA) BYTE data that represents an RGB image.

struct arg_info {
unsigned int width;
unsigned int height;
unsigned int nbands;
};

XilSystemState state;
XilImage tile_image;
struct arg_info myarg_info;

state = xil_open();
xil_state_set_default_tiling_mode(state, XIL_TILING);
tile_image = xil_create(state, 256, 256, nbands, XIL_BYTE);
xil_export(tile_image);
xil_set_tilesize(tile_image, 64, 64);
xil_import(tile_image,TRUE);

/∗
∗ myarg_info holds the image information
∗/
myarg_info.width = width;
myarg_info.height = height;
myarg_info.nbands = nbands;

xil_set_data_supply_routine(tile_image, myapp_supply_routine,
(void∗)&myarg_info);

/∗
∗ Run program that uses tile_image as it would any other image
∗/

xil_destroy(tile_image);
xil_close(state);
}

/∗
∗ The XilDataSupplyFuncPtr

modified 10 February 1997 281

xil_set_data_supply_routine (3) SunOS 5.6

∗ used in a callback to fill in image tiles
∗ We’re assuming that the source data is already memory
∗ mapped and referenced by a pointer global_mmap_ptr
∗/
int
myapp_supply_routine(XilImage image,

XilStorage storage,
unsigned int x,
unsigned int y,
unsigned int xsize,
unsigned int ysize,
void ∗myArgs)

{
struct arg_info∗ argptr;
unsigned int width;
unsigned int height;
unsigned int bands;
Xil_unsigned8∗ dataptr;
unsigned int scanline_stride;
unsigned int pixel_stride;

/∗
∗ Remember - you can’t call any XIL functions on the
∗ image in this routine. It is purely for identification!
∗ So pick up the passed in image particulars
∗/
argptr = (struct arg_info∗)myArgs;
width = argptr->width;
height = argptr->height;
bands = argptr->nbands;

/∗
∗ Example file data is pixel sequential, so
∗ band stride is always 1 and you only need to
∗ set storage for the 0th band.
∗ In this example our data is RGBARGBARGBA...
∗ with the A an unused band of a 3 band BYTE image
∗ The image is a contiguous 256x256 memory buffer,
∗ but we’re filling in for requested blocks.
∗/
pixel_stride = 4;
xil_storage_set_pixel_stride(storage,0,pixel_stride);

scanline_stride = pixel_stride ∗ 256;
xil_storage_set_scanline_stride(storage,0, scanline_stride);

282 modified 10 February 1997

SunOS 5.6 xil_set_data_supply_routine (3)

/∗
∗ Now go mmap the data for this image starting at x,y
∗ and of size xsize, ysize
∗/
dataptr = go_mmap_data(image, x, y, xsize, ysize);
xil_storage_set_data(storage, 0, dataptr);
return XIL_SUCCESS;

}

NOTES The user must not call any other XIL operations on the image while in the callback in
order to avoid deadlock.

After the callback has been called for a particular part of the image, the user may not
access that data again without calling xil_export(3) and one of the other storage access
routines such as xil_get_tile_storage(3).

SEE ALSO Storage(3), xil_get_tile_storage(3).

modified 10 February 1997 283

xil_set_pixel (3) SunOS 5.6

NAME xil_set_pixel, xil_get_pixel − set or get the value of a particular pixel in an image

SYNOPSIS #include <xil/xil.h>

void xil_set_pixel (XilImage image,
unsigned int x,
unsigned int y,
float ∗pixel_values);

void xil_get_pixel (XilImage image,
unsigned int x,
unsigned int y,
float ∗pixel_values);

DESCRIPTION xil_set_pixel () sets the value of a particular pixel in an image. x and y indicate the
position of the pixel to be set or read, and pixel_values is an array of floats specifying the
value to set for each band of the image. Note that the user must allocate and free the
space for this array. Pixel coordinates are located with respect to the upper left corner of
the image (0,0) whether it is a parent or a child image.

For XIL_BIT images, values below 0.5 cause the pixel to be set to 0, and values 0.5 and
above cause the pixel to be set to 1. For XIL_BYTE images, values below 0.5 cause the
pixel to be set to 0, values of 254.5 and above cause the pixel to be set to 255, and all
values in between are rounded to the nearest integer. For XIL_SHORT images, values
below -32768.5 cause the pixel to be set to -32768, values of 32766.5 and above cause the
pixel to be set to 32767, and all values in between are rounded to the nearest signed
integer.

xil_get_pixel () gets the value of a particular pixel in an image, and writes a vector of the
pixel band values into the user-supplied buffer pixel_values. The pixel values are cast from
whatever data type they may be into floats.

ROI Behavior The image ROI is ignored for these operations.

ERRORS For a complete list of XIL error messages by number, consult Appendix B of the XIL
Programmer’s Guide.

EXAMPLES Get the vector of data values out of a 5-banded XIL_BYTE image for the pixel located at
(100,42), and add 1.0 to each value:

XilImage image;
unsigned int i;
float∗ pixel_values;

pixel_values = (float ∗) malloc (5 ∗ sizeof(float)); /∗ allocate pixel values buffer ∗/
xil_get_pixel (image, 100, 42, pixel_values); /∗ get current values of the pixel ∗/
for (i = 0; i < 5; i++) /∗ increment values by 1 ∗/

pixel_values[i] = pixel_values[i] + 1.0;

284 modified 03 March 1994

SunOS 5.6 xil_set_pixel (3)

xil_set_pixel (image, 100, 42, pixel_values); /∗ replace values in the pixel ∗/

SEE ALSO xil_set_value(3)

modified 03 March 1994 285

xil_set_value (3) SunOS 5.6

NAME xil_set_value − set pixels of an image to constant values

SYNOPSIS #include <xil/xil.h>

void xil_set_value (XilImage dst ,
float ∗constants);

DESCRIPTION This routine assigns floating point constant values on a pixel-by-pixel basis to the dst
(destination) image. For an n-band image, the array of constants must contain n floating
point values. Pixel values are clipped according to image data type.

For XIL_BIT images, values below 0.5 cause the pixel to be set to 0, and values 0.5 and
above cause the pixel to be set to 1. For XIL_BYTE images, values below 0.5 cause the
pixel to be set to 0, values above 254.5 cause the pixel to be set to 255, and all values in
between are rounded to the nearest integer. For XIL_SHORT images, values below
-32768.5 cause the pixel to be set to -32768, values above 32766.5 cause the pixel to be set
to 32767, and all values in between are rounded to the nearest signed integer.

ERRORS For a complete list of XIL error messages by number, consult Appendix B of the XIL
Programmer’s Guide.

EXAMPLES Assign pixel values of a 4-band image and store the result in dst:

XilImage dst;
float values[4];

values[0] = 1.0;
values[1] = 127.5;
values[2] = 256.0;
values[3] = 0.0;

xil_set_value(dst, values);

SEE ALSO xil_set_pixel(3)

286 modified 17 August 1993

SunOS 5.6 xil_soft_fill (3)

NAME xil_soft_fill − perform soft fill from specified starting point

SYNOPSIS #include <xil/xil.h>

void xil_soft_fill (XilImage src,
XilImage dst,
float xseed,
float yseed,
float ∗foregnd_color,
unsigned int num_backgnd_color,
float ∗backgnd_color,
float ∗fill_color);

DESCRIPTION This function performs a soft fill on a region composed of the foreground color and a
number of background colors. From the starting coordinates, every 4-connected pixel
containing a percentage of foreground color is filled with the corresponding percentage
of fill color. If a pixel does not contain the foreground color, it forms part of the
boundary of the region.

src is the source image handle. dst is the destination image handle. xseed is a float that
specifies the x start coordinate. yseed is a float that specifies the y start coordinate.
foregnd_color is a pointer to the floating-point array that specifies the foreground color
[0...(nbands-1)] for each pixel in the soft fill region.

num_backgnd_color is the number of background colors in the background color list.
backgnd_color is a pointer to the floating-point array that specifies the list of background
colors [num_backgnd_color][0...(nbands-1)] for each pixel in the soft fill region. fill_color
is a pointer to the floating-point array that specifies the fill color [0...(nbands-1)] for each
pixel in the soft fill region.

ROI Behavior This function performs the fill operation on the entire source image. The filled pixels
within the ROI (region of interest) are output to the destination image.

ERRORS For a complete list of XIL error messages by number, consult Appendix B of the XIL
Programmer’s Guide.

modified 16 June 1993 287

xil_soft_fill (3) SunOS 5.6

EXAMPLES For this example, the source and destination images contain 3 bands. The foreground
color and 2 background colors form the soft fill region. Perform soft fill starting at (x,y) =
(7,3).

XilImage src;
XilImage dst;
float xseed = 7.0;
float yseed = 3.0;
float foregnd_color[3] = {255.0, 0.0, 0.0};
unsigned int num_backgnd_color = 2;
float backgnd_color[6] = {0.0, 0.0, 0.0, 0.0, 0.0, 255.0};
float fill_color [3] = {0.0, 255.0, 0.0};

xil_soft_fill(src, dst, xseed, yseed, foregnd_color,
num_backgnd_color, backgnd_color, fill_color);

NOTES Source and destination images must be the same data type, and have the same number of
bands. For an n-band image, the array of floats for foregnd_color and fill_color must be of
size n, and backgnd_color must be of size n∗ num_backgnd_color.

The set of basis colors, the foreground and background colors, must not be coplanar, or
the algorithm will fail to determine the correct percentage for fill color. Only pixels that
are changed to the fill color are output to the destination image.

In-place operations are supported.

SEE ALSO xil_fill(3)

288 modified 16 June 1993

SunOS 5.6 xil_squeeze_range (3)

NAME xil_squeeze_range − produce a lookup table that will map an image into contiguous
entries

SYNOPSIS #include <xil/xil.h>

XilLookup xil_squeeze_range (XilImage src);

DESCRIPTION This function examines the source image, src, and produces a lookup table that will map
src into an image with contiguous entries. src must be a single-banded image. Both src
and the image’s colormap must be passed through the resulting lookup table for it to be
displayed correctly.

RETURN VALUES NULL if function fails

ERRORS For a complete list of XIL error messages by number, consult Appendix B of the XIL
Programmer’s Guide.

EXAMPLES Produce a lookup table that will map an image into continuous entries:

XilLookup result_lut;
XilImage src;
result_lut = xil_squeeze_range(src);

SEE ALSO xil_lookup(3)

modified 16 June 1993 289

xil_state_get_default_tilesize (3) SunOS 5.6

NAME xil_state_get_default_tilesize, xil_state_set_default_tilesize − get and set the default tile
size for all images created with a particular XilSystemState

SYNOPSIS #include <xil/xil.h>

int xil_state_get_default_tilesize (XilSystemState State ,
unsigned int∗ txsize ,
unsigned int∗ tysize);

int xil_state_set_default_tilesize (XilSystemState State ,
unsigned int txsize);
unsigned int tysize);

DESCRIPTION xil_state_get_default_tilesize() returns the tile size that will be used for all images
created under State. Unless modified by a call to xil_state_set_default_tilesize () the
values returned by this call are 0,0. These values indicate that the default tile size is
calculated by XIL according to the amount of physical memory on the machine running
the program and the default tiling mode.

xil_state_set_default_tilesize () sets the tile size that will be used for all images created
under State. If not set by the user, the default tile size is calculated by XIL in an optimal
way according to the amount of physical memory on the machine running the program.
Although the user can set the default tilesize at any time, the values are only examined
when the default tiling mode is other than XIL_WHOLE_IMAGE.

ERRORS For a complete list of XIL error messages by number, consult Appendix B of the XIL
Programmer’s Guide.

NOTES Changing the default tile size through a call to xil_state_set_default_tilesize() can have
serious performance implications.

It is possible to override the default tile size for any given image through a call to
xil_set_tilesize() after first exporting the image.

SEE ALSO xil_set_tilesize(3).

290 modified 01 January 1997

SunOS 5.6 xil_state_get_default_tiling_mode (3)

NAME xil_state_get_default_tiling_mode, xil_state_set_default_tiling_mode - get and set the
default tiling mode for all images created with a particular XilSystemState

SYNOPSIS #include <xil/xil.h>

XilTilingMode xil_state_get_default_tiling_mode (XilSystemState State);

int xil_state_set_default_tilesize (XilSystemState State,
XilTilingMode tiling_mode);

DESCRIPTION tiling mode is the tiling mode of the images, which can be one of the following enumera-
tion constants of type XilTiling mode:

XIL_WHOLE_IMAGE
The default setting. Each image is stored as a contiguous memory
buffer.

XIL_TILING Very large images are stored in separate buffers of contiguous
memory. Each of the buffers is the tile_xsize by the tile_ysize.

XIL_STRIPPING Images are stored in a contiguous memory buffer, but accessed as
separate "strips". Each strip is the width of the image by the tile_ysize.

xil_state_get_default_tiling_mode () returns the tiling mode to be used for all images
created under State. Unless modified by a call to xil_state_set_default_tiling_mode () ,
the default tiling mode is always XIL_WHOLE_IMAGE.

xil_state_set_default_tiling_mode () sets the tiling mode to be used for all images
created under State. If not set by the user, the default tiling mode is
XIL_WHOLE_IMAGE.

ERRORS For a complete list of XIL error messages by number, consult Appendix B of the XIL
Programmer’s Guide.

NOTES When the tiling mode is set to XIL_WHOLE_IMAGE, the user can only call
xil_set_tilesize(3) on an image with a tile_xsize greater than or equal to the image width,
and tile_ysize greater than or equal to the image height.

When the tiling mode of an image is set to XIL_STRIPPING, the user can only explicitly
set the tile_xsize to 0 or to a value greater than or equal to the width of the image.

SEE ALSO xil_get_tilesize(3), xil_set_tilesize(3), xil_state_get_default_tilesize(3),
xil_state_set_default_tilesize(3).

modified 27 May 1997 291

xil_state_get_interpolation_tables (3) SunOS 5.6

NAME xil_state_get_interpolation_tables, xil_state_set_interpolation_tables − set or get interpo-
lation tables to or from the XilSystemState object.

SYNOPSIS #include <xil/xil.h>

void xil_state_get_interpolation_tables (XilSystemState State ,
XilInterpolationTable∗ horiz ,
XilInterpolationTable∗ vertical);

void xil_state_set_interpolation_tables (XilSystemState State ,
XilInterpolationTable horiz);
XilInterpolationTable vertical);

DESCRIPTION XIL supports general interpolation. These tables affect all general interpolation
operations using images created from this XilSystemState. The horiz and vertical tables
define the values in the subsamplng kernels.

xil_state_get_interpolation_tables () gets the interpolation tables of State. The horiz argu-
ment returns a pointer to the horizontal table, and the vertical argument returns a pointer
to the vertical table. Either table’s pointer lets you access that table’s kernel size, number
of subsamples, and kernel data.

xil_state_set_interpolation_tables () sets the interpolation tables of State.

ERRORS For a complete list of XIL error messages by number, consult Appendix B of the XIL
Programmer’s Guide.

EXAMPLES Set interpolation tables on an XilSystemState object.

XilSystemState State;
XilInterpolationTable horiz, vertical;
float ∗horiz_data, ∗vertical_data;

horiz = xil_interpolation_table_create(State, 9, 32, horiz_data);
vertical = xil_interpolation_table_create(State, 9, 32, vertical_data);

xil_state_set_interpolation_tables(State, horiz, vertical);

SEE ALSO xil_interpolation_table_create(3), xil_interpolation_table_destroy(3),
xil_interpolation_table_get_subsamples(3), xil_interpolation_table_get_kernel_size(3),
xil_interpolation_table_get_data(3), xil_state_get_interpolation_tables(3).

292 modified 18 March 1994

SunOS 5.6 xil_state_get_show_action (3)

NAME xil_state_get_show_action, xil_state_set_show_action − show information about when
deferred actions are taken and which actions have been put together into molecules

SYNOPSIS #include <xil/xil.h>

int xil_state_get_show_action (XilSystemState State);

void xil_state_set_show_action (XilSystemState State ,
int env_on_off);

DESCRIPTION XIL provides a deferred execution facility that automatically recognizes certain sequences
of XIL functions (atoms) and executes the sequences as a single high-performance
molecule. An example is a sequence of XIL functions that scales (implicitly capturing)
and compresses an image. XIL defers execution of the scale function to see if a
compression function follows. If it does, the two functions are executed together as a
high-performance molecule. XIL defines a set of general-purpose molecules that perform
sequences of operations such as color conversion and decompression.

To determine if XIL functions are executing within molecules, set the SHOW_ACTION
attribute of XilSystemState. This causes the XIL library to print a message to stderr when-
ever an operation that affects an XIL image or compressed image sequence is executed.

xil_state_get_show_action () gets the current value of the SHOW_ACTION attribute of
State.

xil_state_set_show_action () sets the current value of the SHOW_ACTION attribute of
State.

When SHOW_ACTION is set to -1, the XIL library checks the value of the environment
variable XIL_DEBUG, and it sets the attribute SHOW_ACTION to 0 if the environment
variable XIL_DEBUG does not contain the string "show_action"; it sets the attribute to 1 if
XIL_DEBUG contains the string "show_action".

The default value for SHOW_ACTION is -1. When SHOW_ACTION is 1, the library prints
information to stderr about when deferred actions happen and when they are combined
into molecules. When SHOW_ACTION is 0, no information is printed.

ERRORS For a complete list of XIL error messages by number, consult Appendix B of the XIL
Programmer’s Guide.

EXAMPLES Show the output of XIL_SHOW_ACTION in a segment of code, but only if the XIL_DEBUG
environment variable is set to "show_action".

XilSystemState State;
State = xil_open();
xil_state_set_show_action(State, 0); /∗ turn off default behavior ∗/
/∗ ... set up code ... ∗/
xil_state_set_show_action(State, -1); /∗ turn on output (only if environment ∗/

/∗ variable is set) ∗/
/∗ ... area of interest ... ∗/

modified 16 June 1993 293

xil_state_get_show_action (3) SunOS 5.6

xil_state_set_show_action(State, 0); /∗ turn off output ∗/

NOTES These functions do not produce any semantic differences in the execution of the program.
They are only useful for debugging and performance tuning. Consult the XIL
Programmer’s Guide for information on performance tuning.

294 modified 16 June 1993

SunOS 5.6 xil_storage_create (3)

NAME xil_storage_create, xil_storage_destroy − create and destroy XilStorage object

SYNOPSIS #include <xil/xil.h>

XilStorage xil_storage_create (XilSystemState State,
XilImage∗ image);

void xil_storage_destroy (XilStorage storage);

DESCRIPTION xil_storage_create () creates an XilStorage object. At creation, all attributes of the storage
object are intitialized to zero or NULL, with the exception of the storage type, which is
initialized to XIL_GENERAL. All setting and getting of storage description parameters is
accomplished using a set of API bindings for accessing the XilStorage object. Although
the XilImage is associated with the storage at creation, the XilStorage object does not
contain information about the image’s storage until storage parameters are explicitly set
with xil_get_tile_storage(), or by the application. xil_storage_create() does not need to
be called in order to use the xil_get_storage_with_copy() call.

xil_storage_destroy () destroys the specified XilStorage object.

EXAMPLES Create storage associated with an image and then access the storage located at the upper
left corner of the image.

XilImage image;
XilStorage storage;

/∗
∗ load the image from elsewhere...
∗/

storage = xil_storage_create(image);
xil_export(image);
xil_get_tile_storage(image, 0, 0, storage);

/∗
∗ access the information and data in the storage object....
∗/

/∗
∗ After use, destroy the storage object.
∗/
xil_storage_destroy(storage);

modified 01 January 1997 295

xil_storage_create (3) SunOS 5.6

ERRORS For a complete list of XIL error messages by number, consult Appendix B of the XIL
Programmer’s Guide.

NOTES The use of the XilStorage object is mutually exclusive with the xil_get_memory_storage()
and xil_set_memory_storage() calls.

SEE ALSO Storage(3), xil_set_storage_with_copy(3), xil_get_tile_storage(3), xil_set_tile_storage(3),
xil_storage_set_scanline_stride(3), xil_storage_set_pixel_stride(3),
xil_storage_set_band_stride(3), xil_storage_set_offset(3), xil_storage_set_data(3),
xil_storage_is_type(3).

296 modified 01 January 1997

SunOS 5.6 xil_storage_get_band_stride (3)

NAME xil_storage_get_band_stride, xil_storage_get_pixel_stride,
xil_storage_get_scanline_stride, xil_storage_get_offset, xil_storage_get_data − get the
values set on an XilStorage object

SYNOPSIS #include <xil/xil.h>

unsigned int xil_storage_get_band_stride (XilStorage storage);

unsigned int xil_storage_get_pixel_stride (XilStorage storage,
unsigned int band);

unsigned int xil_storage_get_scanline_stride (XilStorage storage,
unsigned int band);

unsigned int xil_storage_get_offset (XilStorage storage,
unsigned int band);

void ∗ xil_storage_get_data (XilStorage storage ,
unsigned int band);

DESCRIPTION Use these functions to get information about an XilStorage object. When an XilStorage
object is first created, the band stride, pixel stride, and scanline stride attributes are set to
zero and the pointer to the image data is set to NULL. This information is filled in when
the XilStorage object is used with xil_get_storage_with_copy(3) or
xil_get_tile_storage(3), or when set explicitly by the user.

xil_storage_get_band_stride () returns the band stride of storage. Band stride represents
the distance to the same pixel in the next band. For XIL_PIXEL_SEQUENTIAL storage,
the band stride is always 1. Band stride is undefined for XIL_GENERAL storage as there
is no band correlation for XIL_GENERAL storage.

xil_storage_get_pixel_stride () returns the pixel stride of the storage for band. Pixel stride
represents the distance to the next pixel on the same scanline. For
XIL_BAND_SEQUENTIAL, pixel stride is always 1. It is only necessary to query for
bands other than 0 for XIL_GENERAL storage.

xil_storage_get_scanline_stride () returns the scanline stride of the storage for band.
Scanline stride represents the distance to the same pixel on the next horizontal scanline
(the vertical stride). It is only necessary to query for bands other than 0 for
XIL_GENERAL storage.

xil_storage_get_offset () returns the offset for the data in storage for band. The offset
represents the number of bits to offset to the first pixel. This call is valid only for XIL_BIT
images. It is only necessary to query for bands other than 0 for XIL_GENERAL storage.

xil_storage_get_data () returns the data pointer for the data in storage for band. The data
pointer is the starting address of the storage with data units of the appropriate type for
the image. It is only necessary to query for bands other than 0 for XIL_GENERAL
storage.

modified 01 January 1997 297

xil_storage_get_band_stride (3) SunOS 5.6

ERRORS For a complete list of XIL error messages by number, consult Appendix B of the XIL
Programmer’s Guide.

SEE ALSO Storage(3), xil_storage_is_type(3), xil_get_tile_storage(3), xil_get_storage_with_copy(3)

298 modified 01 January 1997

SunOS 5.6 xil_storage_get_by_name(3)

NAME xil_storage_get_by_name, xil_storage_get_name, xil_storage_set_name − get and set a
storage object name and get a handle to a storage object by specifying a name

SYNOPSIS #include <xil/xil.h>

XilStorage xil_storage_get_by_name (XilSystemState State ,
char ∗name);

char∗ xil_storage_get_name (XilStorage storage);

void xil_storage_set_name (XilStorage storage ,
char ∗name);

DESCRIPTION Use these functions to assign names to storage objects, to read a storage object’s name,
and to retrieve storage objects by name.

xil_storage_get_by_name() returns the handle to the storage object with the specified
name. If such a storage object does not exist, NULL is returned. xil_storage_get_by_name
() does not make a copy of the storage object.

xil_storage_get_name() returns a copy of the specified storage object’s name. A call to
free (3) should be used to free the space allocated by xil_storage_get_name() If the
specified storage object has no name, NULL is returned.

xil_storage_set_name() sets the name of the specified storage object to the one provided.

ERRORS For a complete list of XIL error messages by number, consult Appendix B of the XIL
Programmer’s Guide.

EXAMPLES Create a storage object associated with my_image and call it "my_image’s storage". Then
create a storage object associated with your_image and call it "your image’s storage" :

XilSystemState State;
XilImage my_image;
XilImage your_image;
XilStorage storage1;
XilStorage storage2;

my_image = xil_create(State,64,64,3,XIL_BYTE);
your_image = xil_create(State,64,64,3,XIL_BYTE);

.... load data into my_image and your_image......

storage1 = xil_storage_create(State,my_image);
storage2 = xil_storage_create(State,your_image);
xil_storage_set_name(storage1, "my_image’s storage");
xil_storage_set_name(storage2, "your_image’s storage");

modified 01 January 1997 299

xil_storage_get_by_name(3) SunOS 5.6

NOTES If you give two storage objects the same name, it is not defined which storage object will
be retrieved by a call to xil_storage_get_by_name().

SEE ALSO xil_storage_create(3).

300 modified 01 January 1997

SunOS 5.6 xil_storage_get_coordinates (3)

NAME xil_storage_get_coordinates, xil_storage_set_coordinates − get and set the position of a
storage tile within an image

SYNOPSIS #include <xil/xil.h>

void xil_storage_get_coordinates (XilStorage storage ,
unsigned int ∗x,
unsigned int ∗y);

void xil_storage_set_coordinates (XilStorage storage,
unsigned int x,
unsigned int y);

DESCRIPTION xil_storage_get_coordinates() returns the x and y pixel coordinates of the upper, left
corner of the tile represented by storage within the image. When an XilStorage object is
first created, these values are initialized to zero. The values are set by XIL through a call
to xil_get_tile_storage(3) or xil_get_storage_with_copy(3). If set by
xil_get_storage_with_copy(3) the values will always be zero, as the storage represents
the whole image.

xil_storage_set_coordinates() sets the upper, left corner of the tile in order to position the
tile represented by storage within the image. This must be done prior to calling
xil_set_tile_storage(3). If the values are set to other than zero before a call to
xil_set_storage_with_copy(3) they are ignored.

ERRORS For a complete list of XIL error messages by number, consult Appendix B of the XIL
Programmer’s Guide.

SEE ALSO xil_storage_create(3), xil_get_tile_storage(3), xil_set_tile_storage(3). storage (3).

modified 01 January 1997 301

xil_storage_get_image (3) SunOS 5.6

NAME xil_storage_get_image − get the image associated with a storage object

SYNOPSIS #include <xil/xil.h>

XilImage xil_storage_get_image (XilStorage storage);

DESCRIPTION This function returns a handle to the image that was associated with storage when the
storage object was created through a call to xil_storage_create().

ERRORS For a complete list of XIL error messages by number, consult Appendix B of the XIL
Programmer’s Guide.

SEE ALSO xil_storage_create(3), xil_storage_set_data_supply_routine(3).

302 modified 01 January 1997

SunOS 5.6 xil_storage_is_type (3)

NAME xil_storage_is_type − returns TRUE if the XilStorageType of the data in the XilStorage
object matches the target type

SYNOPSIS #include <xil/xil.h>

Xil_boolean xil_storage_is_type (XilStorage storage ,
XilStorage storage ,
XilStorageType target_type);

DESCRIPTION Returns TRUE if the data associated with storage is of the target_type, and FALSE if the
data is of any other XilStorageType.

Possible storage types are XIL_PIXEL_SEQUENTIAL, XIL_BAND_SEQUENTIAL, and
XIL_GENERAL.

ERRORS For a complete list of XIL error messages by number, consult Appendix B of the XIL
Programmer’s Guide.

EXAMPLES Test for storage type in order to optimize image processing:

XilImage image;
XilStorageType storage_type;
XilDataType data_type;
XilStorage storage;

...load the image from elsewhere...

datatype = xil_get_datatype(image);
xil_export(image);
storage = xil_get_storage_with_copy(image);
if((datatype == XIL_BYTE) &&
(xil_storage_is_type(storage,XIL_PIXEL_SEQUENTIAL)) {

...process optimally for pixel sequential byte data...

} else {
...slower more general data processing code...

}

modified 01 January 1997 303

xil_storage_is_type (3) SunOS 5.6

NOTES No data is associated with a storage object until after a call to xil_get_tile_storage(3), or
xil_get_storage_with_copy(3) is made or until the XilStorage information is explicitly set
by the user.

SEE ALSO Storage(3), xil_storage_set_band_stride(3), xil_get_tile_storage(3),
xil_get_storage_with_copy(3)

304 modified 01 January 1997

SunOS 5.6 xil_storage_set_band_stride (3)

NAME xil_storage_set_band_stride, xil_storage_set_pixel_stride, xil_storage_set_scanline_stride,
xil_storage_set_offset and xil_storage_set_data, xil_storage_set_data_release − set values
on an XilStorage object

SYNOPSIS #include <xil/xil.h>

void xil_storage_set_band_stride (XilStorage storage,
unsigned int band_stride);

void xil_storage_set_pixel_stride (XilStorage storage,
unsigned int band,
unsigned int pixel_stride);

void xil_storage_set_scanline_stride (XilStorage storage,
unsigned int band,
unsigned int scanline_stride);

void xil_storage_set_offset (XilStorage storage,
unsigned int band,
unsigned int offset);

void xil_storage_set_data (XilStorage storage ,
unsigned int band,
void ∗data);

void xil_storage_set_data_release (XilStorage storage ,
XilDataReleaseFuncPtr release_func,
void∗ user_args);

DESCRIPTION Use these functions to set information on an XilStorage object. When an XilStorage object
is first created, the band stride, pixel stride, and scanline stride attributes are set to zero
and the pointer to the image data is set to NULL. This information is filled in by the user
prior to calling either xil_set_storage_with_copy(3) or xil_set_tile_storage(3).

xil_storage_set_band_stride () sets the band stride of storage. Band stride represents the
distance to the same pixel in the next band. Band stride is only valid for
XIL_BAND_SEQUENTIAL and therefore does not take a band argument (which is of use
only to XIL_GENERAL type storage).

xil_storage_set_pixel_stride () sets the pixel stride of storage. Pixel stride represents the
distance to the next pixel on the same scanline. For XIL_BAND_SEQUENTIAL, pixel
stride is always 1. The band argument is for use with XIL_GENERAL storage since each
band may have a different pixel stride. For XIL_PIXEL_SEQUENTIAL images, it is only
necessary to set the pixel stride for band 0.

xil_storage_set_scanline_stride () sets the scanline stride of storage. Scanline stride
represents the distance to the same pixel on the next horizontal scanline (the vertical
stride). The band argument is for use with XIL_GENERAL storage since each band may
have a different scanline stride. For XIL_PIXEL_SEQUENTIAL and
XIL_BAND_SEQUENTIAL images, it is only necessary to set the scanline stride for band
0.

modified 01 January 1997 305

xil_storage_set_band_stride (3) SunOS 5.6

xil_storage_set_offset () sets the offset into the first byte storage. The offset represents the
number of bits to offset to the first pixel. This call is valid only for XIL_BIT images. The
band argument is for use with XIL_GENERAL storage since each band may have a dif-
ferent offset. For XIL_BAND_SEQUENTIAL images, it is only necessary to set the offset
for band 0.

xil_storage_set_data () sets the data pointer. The data pointer is the starting address of
the storage with data units of the appropriate type for the image. The band argument is
for use with XIL_GENERAL storage since each band may have a different data pointer.
For XIL_PIXEL_SEQUENTIAL or XIL_BAND_SEQUENTIAL storage, it is only necessary
to set the data pointer for band 0.

The user may choose to add a data release function pointer to the storage object. If this
function pointer is set, XIL will call back to the user when it is done with the data. If the
function pointer is not set, no action is taken when XIL is done with the data. The proto-
type for the XilDataReleaseFuncPtr is:

typedef void (∗XilDataReleaseFuncPtr)(void∗, void∗);

The first argument is the data pointer that is no longer used. The second argument is for
the arguments provided as user_args in xil_storage_set_data_release ().

ERRORS For a complete list of XIL error messages by number, consult Appendix B of the XIL
Programmer’s Guide.

SEE ALSO Storage(3), xil_set_tile_storage(3), xil_set_storage_with_copy(3).

306 modified 01 January 1997

SunOS 5.6 xil_subsample_adaptive (3)

NAME xil_subsample_adaptive − adaptively subsample an image

SYNOPSIS #include <xil/xil.h>

void xil_subsample_adaptive (XilImage src,
XilImage dst ,
float xscale,
float yscale);

DESCRIPTION This function adaptively subsamples an image about its origin.
By default, an image’s origin is its upper-left corner (0.0, 0.0). You can change the origin
with the xil_set_origin() function. The subsampling algorithm used minimizes
information loss from skipped pixels in the source image. src is the source image handle.
dst is the destination image handle. xscale and yscale are the x and y scale factors, which
must be less than or equal to 1.0 and greater than 0.0.

ROI Behavior If an ROI (region of interest) is attached to the source image, it is used as a read mask and
is scaled into the destination image’s space, where it is intersected with the destination
ROI (if there is one).

ERRORS For a complete list of XIL error messages by number, consult Appendix B of the XIL
Programmer’s Guide.

EXAMPLES Adaptively subsample an image by .3 in the x direction and .4 in the y direction:

XilImage src, dst;
xil_subsample_adaptive(src, dst, .3, .4);

NOTES This operation cannot be performed in place.

SEE ALSO xil_subsample_binary_to_gray(3), xil_set_origin(3), xil_scale(3).

modified 16 June 1993 307

xil_subsample_binary_to_gray (3) SunOS 5.6

NAME xil_subsample_binary_to_gray − subsample a binary image and produce a grayscale
(byte) image

SYNOPSIS #include <xil/xil.h>

void xil_subsample_binary_to_gray (XilImage src,
XilImage dst ,
float xscale,
float yscale);

DESCRIPTION This function subsamples a binary image and produces a grayscale (byte) image. src is
the source image handle. dst is the destination image handle. xscale and yscale are the x
and y scale factors, which must be less than or equal to 1.0 and greater than 0.0.

The subsampling algorithm performs the scaling operation by accumulating all the bits in
the source image that correspond to the destination pixel and, based on the x and y
scaling factors, reserving consecutive indexes in the colormap for the maximum number
of gray levels possible in the destination image. You must modify your colormap to
define a gray level for each resulting index.

For representing the source block of pixels that is used to determine destination pixel
values, the index 0 represents a block with no 1’s (all 0’s), the index 1 represents a block
with a single 1, and so on. If the scaling factors require a fractional block of source pixels
to determine the destination pixel values, the block size is rounded up. For example, if a
2.2-by-2.2 block of source pixels would be required to determine destination pixel values,
a 3-by-3 block is used, resulting in 10 possible gray levels and therefore 10 colormap
indexes, whose values are 0 through 9.

ROI Behavior If an ROI (region of interest) is attached to the source image, it is used as a read mask and
is scaled into the destination image’s space, where it is intersected with the destination
ROI (if there is one).

ERRORS For a complete list of XIL error messages by number, consult Appendix B of the XIL
Programmer’s Guide.

EXAMPLES Subsample a binary image by .3 in the x direction and .4 in the y direction to produce a
byte image:

XilImage src, dst;
xil_subsample_binary_to_gray(src, dst, .3, .4);

NOTES This operation cannot be performed in place.

SEE ALSO xil_subsample_adaptive(3), xil_scale(3).

308 modified 10 June 1994

SunOS 5.6 xil_subtract (3)

NAME xil_subtract, xil_subtract_const, xil_subtract_from_const − image subtraction operations

SYNOPSIS #include <xil/xil.h>

void xil_subtract (XilImage src1,
XilImage src2,
XilImage dst);

void xil_subtract_const (XilImage src1,
float ∗constants,
XilImage dst);

void xil_subtract_from_const (float ∗constants,
XilImage src1,
XilImage dst);

DESCRIPTION xil_subtract () performs a pixel-by-pixel subtraction of the src2 image from the src1 image
and stores the result in the dst (destination) image. If the result of the operation is out of
range for a particular data type, the result is clamped to the minimum or maximum value
for the data type. Results for XIL_BYTE operations, for example, are clamped to 0 if they
are less than 0 and 255 if they are greater than 255.

xil_subtract_const () performs a pixel-by-pixel subtraction of the constants values from
the src1 image and stores the result in the dst (destination) image. For an n-band image, n
float values must be provided, one per band. The value in constants[0] is subtracted from
the values in band 0 of src and so on. If the result of the operation is out of range for a
particular data type, the result is clamped to the minimum or maximum value for the
data type. Results for XIL_BYTE operations, for example, are clamped to 0 if they are less
than 0 and 255 if they are greater than 255.

xil_subtract_from_const () performs a pixel-by-pixel subtraction of the src1 image from
the constants values and stores the result in the dst (destination) image. For an n-band
image, n float values must be provided, one per band. The values in band 0 of src are
subtracted from the value in constants[0] and so on. Resulting pixel values are rounded
and clipped according to image data type.

ERRORS For a complete list of XIL error messages by number, consult Appendix B of the XIL
Programmer’s Guide.

EXAMPLES Subtract image2 from image1 and store the result in dst :

XilImage image1, image2, dst;

xil_subtract(image1, image2, dst);

Subtract constants values from 4-band image1 and store the result in dst :

XilImage image1, dst;
float constants[4];

modified 03 August 1993 309

xil_subtract (3) SunOS 5.6

constants[0] = 1.0;
constants[1] = 1.0;
constants[2] = 1.0;
constants[3] = 0.0;
xil_subtract_const(image1, constants, dst);

Subtract 4-band image1 from constants values and store the result in dst :

XilImage image1, dst;
float constants[4];

constants[0] = 255.0;
constants[1] = 255.0;
constants[2] = 255.0;
constants[3] = 255.0;
xil_subtract_from_const(constants, image1, dst);

NOTES Source and destination images must be the same data type and have the same number of
bands. In-place operations are supported.

SEE ALSO xil_add(3), xil_add_const(3).

310 modified 03 August 1993

SunOS 5.6 xil_swap_buffers (3)

NAME xil_swap_buffers - move the contents of the back buffer to the front buffer for a double-
buffered device image

SYNOPSIS #include <xil/xil.h>

void xil_swap_buffers (XilImage image);

DESCRIPTION This function moves the contents of the back buffer of a double-buffered device image to
the front buffer. After the swap, the contents of the back buffer are undefined and must
set before the next call to xil_swap_buffers (). If the image does not represent a double-
buffered device, an error is generated.

ERRORS For a complete list of XIL error messages by number, consult Appendix B of the XIL
Programmer’s Guide.

EXAMPLES XilSystemState State;
XilImage display_image;
XilImage image0, image1;
Display∗ display;
Window window;

/∗ Create an XIL display image from existing X display and window ∗/
if(display_image = xil_create_double_buffered_window(State,

display,window) == NULL) {

/∗ return with error ∗/
}

/∗ We know that this device image is double buffered ∗/

/∗ Copy image0 to the back buffer of display ∗/
xil_copy(image0, display_image);

/∗ Move the back buffers contents to the front buffer ∗/
xil_swap_buffers(display_image);

/∗ refill the back buffer with a new image ∗/
xil_copy(image1, display_image);

NOTES xil_swap_buffers () always moves the contents of the back buffer to the front buffer.
There is no way to swap the contents of the front buffer to the back buffer.

SEE ALSO xil_create_double_buffered_window(3), xil_get_active_buffer(3),
xil_set_active_buffer(3).

modified 24 February 1997 311

xil_sync (3) SunOS 5.6

NAME xil_sync, xil_get_synchronize, xil_set_synchronize, xil_state_get_synchronize,
xil_state_set_synchronize − force computation of image values when it would otherwise
defer

SYNOPSIS #include <xil/xil.h>

void xil_sync(XilImage image);

Xil_boolean xil_get_synchronize(XilImage image);

void xil_set_synchronize(XilImage image, Xil_boolean onoff);

Xil_boolean xil_state_get_synchronize(XilSystemState State);

void xil_state_set_synchronize(XilSystemState State,
Xil_boolean onoff);

DESCRIPTION xil_sync(3) forces the computation of the value of an image in cases in which that
operation might otherwise have been deferred. This prevents deferred execution from
attempting to optimize beyond the point at which the xil_sync(3) call is made.

xil_get_synchronize(3) and xil_set_synchronize(3) set and get the synchronization status
of an image. If an image is synchronous, operations on that image are never deferred.

xil_state_get_synchronize (3) and xil_state_set_synchronize (3) turn synchronization on
or off for all operations using an object created from State as its destination. The default
synchronization for State is FALSE, which means that deferred execution is used. If the
synchronization status of State is set to TRUE, then any pending operations writing into
objects created from State are executed immediately and no further deferral occurs.

ERRORS For a complete list of XIL error messages by number, consult Appendix B of the XIL
Programmer’s Guide.

EXAMPLES Measure the performance of an image rotate operation with bilinear interpolation:

#include <sys/time.h>
#include <math.h>

XilImage src;
XilImage dst;
hrtime_t start_time;
hrtime_t end_time;

/∗
∗ Store the starting time.
∗/
start_time = gethrtime();

/∗
∗ Rotate an image by 45 degrees (PI/2)

312 modified 17 August 1993

SunOS 5.6 xil_sync (3)

∗/
xil_rotate(src, dst, "bilinear", M_PI_2);

/∗
∗ Force the rotate to execute
∗/
xil_sync(dst);

/∗
∗ Store the ending time.
∗/
end_time = gethrtime();

/∗
∗ Print out the number of nanoseconds rotate took to execute.
∗/
printf("xil_rotate() took %lld nanoseconds",

end_time - start_time);

NOTES None of these functions produces a semantic difference in the execution of the program.
These functions are only useful for debugging, performance measurement, and
performance tuning.

SEE ALSO xil_cis_sync(3)

modified 17 August 1993 313

xil_tablewarp (3) SunOS 5.6

NAME xil_tablewarp, xil_tablewarp_horizontal, xil_tablewarp_vertical − warp an image with a
user-specified warp table

SYNOPSIS #include <xil/xil.h>

void xil_tablewarp (XilImage src,
XilImage dst ,
char∗ interpolation ,
XilImage warp_table);

void xil_tablewarp_horizontal (XilImage src,
XilImage dst ,
char∗ interpolation ,
XilImage warp_table);

void xil_tablewarp_vertical (XilImage src,
XilImage dst ,
char∗ interpolation ,
XilImage warp_table);

DESCRIPTION These functions warp an image with the specified warp table. src is the source image
handle. dst is the destination image handle. interpolation is a string that specifies the
interpolation to be used. The supported interpolation types are nearest (nearest
neighbor), bilinear, bicubic, and general. warp_table is a handle to an XilImage structure
that describes the backward mapping from a pixel in the destination to a pixel in the
source.

A warp table is an XIL image whose pixel values define the backward mapping from a
pixel in the destination to a pixel in the source. The warp table is applied at the origin of
the destination image. The source origin is then added to the backward mapping position
specified by the warp table. A warp table must have either datatype XIL_SHORT or
XIL_FLOAT, though it can be used to warp images of any data type. The XIL_SHORT
value is interpreted as fixed point wth 12 bits value and 4 bits of precision.

The warp table for xil_tablewarp () is a 2-banded image where the bands specify the dis-
placement in x and the displacement in y. The warp table for xil_tablewarp_horizontal ()
and xil_tablewarp_vertical () is 1-banded and specifies the displacement in the x and y
directions, respectively.

ROI Behavior Because a warp table is technically an XIL image, it can have a defined region of interest
(ROI). However, an ROI is meaningless in a warp table and is therefore ignored.

ERRORS For a complete list of XIL error messages by number, consult Appendix B of the XIL
Programmer’s Guide.

EXAMPLES For this example, a warp table is created to produce the same effect as translation. This
example translates a 100 x 120 block from src origin to the right and down with offset
(26.0, 37.0) using bilinear interpolation.

314 modified 29 March 1994

SunOS 5.6 xil_tablewarp (3)

XilSystemState State;
XilImage src, dst, warp_table;
float values[2];

warp_table = xil_create(State, 100, 120, 2, XIL_SHORT);
/∗ multiply offsets by 16 because of 12 bit values with 4 bit precision ∗/
values[0] = 26.0 ∗ 16;
values[1] = 37.0 ∗ 16;
xil_set_value(warp_table, values);

xil_tablewarp(src, dst, "bilinear", warp_table);

NOTES Source and destination images must be the same data type and have the same number of
bands. The images need not have the same width and height. This operation cannot be
performed in place.

SEE ALSO xil_set_origin(3), xil_set_pixel(3), xil_set_value(3).

modified 29 March 1994 315

xil_threshold (3) SunOS 5.6

NAME xil_threshold − set value of image pixel bands within a specified range

SYNOPSIS #include <xil/xil.h>

void xil_threshold (XilImage src,
XilImage dst ,
float ∗low ,
float ∗high,
float ∗map);

DESCRIPTION For each band of an image, this function maps to a constant all the values that fall
between a low value and a high value. src is the source image handle. dst is the
destination image handle. low is a pointer to the floating-point array that specifies the
low value of the range for band [0...(nbands-1)]. low[0] is the low value for band 0, and so
forth. high is a pointer to the floating-point array that specifies the high value of the range
for band [0...(nbands-1)]. high[0] is the high value for band 0, and so forth. map is a
pointer to the floating-point array that specifies the map value for each pixel band within
the range [low:high].

For an n-band image, the array of floats for low, high, and map must be of size n. Each
band is independently evaluated for its range. Values outside the range are passed
through without change.

ERRORS For a complete list of XIL error messages by number, consult Appendix B of the XIL
Programmer’s Guide.

EXAMPLES For this example, the source and destination images contain 2 bands. Force each pixel in
band[0] between [192:255] to value 191. Force each pixel in band[1] between [0:63] to
value 64.

XilImage src;
XilImage dst;
float low[2] = {192.0, 0.0};
float high[2] = {255.0, 63.0};
float map[2] = {191.0, 64.0};
xil_threshold(src, dst, low, high, map);

NOTES Source and destination images must be the same data type and have the same number of
bands. In-place operations are supported.

316 modified 17 June 1993

SunOS 5.6 xil_toss (3)

NAME xil_toss − throw away the contents of an image without destroying it

SYNOPSIS #include <xil/xil.h>

void xil_toss (XilImage image);

DESCRIPTION This function throws away the contents of an image without destroying it. This function
provides a way to inform the XIL library that the user is no longer concerned about the
contents of an image. After xil_toss(3) is called, the contents of the image is undefined.

This function can sometimes be useful for code optimization. Sometimes the XIL library
will perform more optimally if xil_toss (3) is called when the results of an intermediate
operation are no longer needed. When used properly, this function will not change the
results of operations.

xil_toss(3) will set the image’s state to "invalid". Invalid images cannot be used as the
source for an operation without first being used as a destination or having their storage
set.

ERRORS For a complete list of XIL error messages by number, consult Appendix B of the XIL
Programmer’s Guide.

modified 17 August 1993 317

xil_translate (3) SunOS 5.6

NAME xil_translate − translate an image

SYNOPSIS #include <xil/xil.h>

void xil_translate (XilImage src,
XilImage dst ,
char ∗interpolation ,
float xoffset ,
float yoffset);

DESCRIPTION This function translates an image. src is the source image handle. dst is the destination
image handle. interpolation is a string that specifies the type of interpolation to be used.
The supported interpolation types are nearest (nearest neighbor), bilinear, bicubic, and
general. xoffset and yoffset are the number of pixels to translate or shift the image in the
horizontal or vertical directions, respectively. Postive values for xoffset and yoffset shift an
image to the right and down, respectively. Negative values shift to left and up.

ROI Behavior If an ROI (region of interest) is attached to the source image, it is used as a read mask and
is translated into the destination image’s space, where it is intersected with the
destination ROI (if there is one).

ERRORS For a complete list of XIL error messages by number, consult Appendix B of the XIL
Programmer’s Guide.

EXAMPLES Translate an image by 12.3 pixels horizontally and 43.2 pixels vertically using nearest
neighbor interpolation.

XilImage src, dst;
xil_translate(src, dst, "nearest", 12.3, 43.2);

NOTES The source and destination images must be the same data type and number of bands.
This operation cannot be performed in place.

SEE ALSO xil_affine(3)

318 modified 17 June 1993

SunOS 5.6 xil_transpose (3)

NAME xil_transpose − rotate or transpose an image

SYNOPSIS #include <xil/xil.h>

void xil_transpose (XilImage src,
XilImage dst ,
XilFlipType fliptype);

DESCRIPTION This function reflects an image in some direction or rotates an image in multiples of 90
degrees. src is the source image handle. dst is the destination image handle. fliptype is an
enumeration constant that represents the direction of reflection as follows:

fliptype Reflection Direction

XIL_FLIP_Y_AXIS rotate horizontal, across the y axis
XIL_FLIP_X_AXIS rotate vertical, across the x axis
XIL_FLIP_MAIN_DIAGONAL rotate transpose across the main diagonal
XIL_FLIP_ANTIDIAGONAL rotate transpose across the anti-diagonal
XIL_FLIP_90 rotate counterclockwise 90 degrees
XIL_FLIP_180 rotate counterclockwise 180 degrees
XIL_FLIP_270 rotate counterclockwise 270 degrees

ROI Behavior If an ROI (region of interest) is attached to the source image, it is used as a read mask and
is also "flipped" into the destination image’s space, where it is intersected with the
destination ROI (if there is one).

ERRORS For a complete list of XIL error messages by number, consult Appendix B of the XIL
Programmer’s Guide.

EXAMPLES Reflect an image vertically across the X axis:

XilImage src, dst;
xil_transpose(src, dst, XIL_FLIP_X_AXIS);

NOTES Source and destination images must be the same data type and number of bands. This
operation cannot be performed in place. This operation ignores the location of an
image’s origin.

modified 17 June 1993 319

xil_xor (3) SunOS 5.6

NAME xil_xor, xil_xor_const − bitwise logical XOR operations

SYNOPSIS #include <xil/xil.h>

void xil_xor (XilImage src1,
XilImage src2,
XilImage dst);

void xil_xor_const (XilImage src1,
unsigned int ∗constants,
XilImage dst);

DESCRIPTION xil_xor () performs a bitwise logical XOR operation on each pixel of the src2 (source)
image with the src1 image and stores the result in the dst (destination) image.

xil_xor_const () performs a bitwise logical XOR operation on each pixel of the src1
(source) image with a specified constant and stores the results in the dst (destination)
image. For a n-band image, n unsigned integers must be provided, one per band. The
value of constants[0] is XORed with the values in band 0, and so on.

ERRORS For a complete list of XIL error messages by number, consult Appendix B of the XIL
Programmer’s Guide.

EXAMPLES Bitwise logical XOR image2 with image1 and store the result in dst:

XilImage image1, image2, dst;

xil_xor(image1, image2, dst);

Bitwise logical XOR a 4-band image1 with 4 constants and store the result in dst:

XilImage image, dst;
unsigned int constants[4];

constants[0] = 1;
constants[1] = 0;
constants[2] = 0;
constants[3] = 0;
xil_xor_const(image, constants, dst);

NOTES Source and destination images must be the same data type and have the same number of
bands. In-place operations are supported.

320 modified 03 August 1993

Index

A
Arithmetic and Logical Operations

xil_absolute, 76
xil_add, 77
xil_add_const, 77
xil_and, 80
xil_and_const, 80
xil_divide, 157
xil_divide_by_const, 157
xil_divide_into_const, 157
xil_max, 243
xil_min, 244
xil_multiply, 245
xil_multiply_const, 245
xil_not, 247
xil_or, 249
xil_or_const, 249
xil_subtract, 309
xil_subtract_const, 309
xil_subtract_from_const, 309
xil_xor, 320
xil_xor_const, 320

Attribute Functions
xil_device_create, 147
xil_device_destroy, 147
xil_device_set_attribute, 148
xil_device_set_value, 149

C
CCITT Group 3 and Group 4 compressors

decompression attributes, 35
faxG3, 35
faxG4, 35
overview, 35

Cell, 25
compression attributes, 25
decompression attributes, 29
overview, 25

CellB, 32
attributes, 32
overview, 32

CIS Functions
xil_cis_create, 91
xil_cis_destroy, 92
xil_cis_get_attribute, 94
xil_cis_get_by_name, 99
xil_cis_get_compression_type, 100
xil_cis_get_input_type, 101
xil_cis_get_keep_frames, 102
xil_cis_get_max_frames, 102
xil_cis_get_name, 99
xil_cis_get_output_type, 104
xil_cis_get_random_access, 105
xil_cis_get_read_frame, 107
xil_cis_get_start_frame, 107
xil_cis_get_state, 191
xil_cis_get_write_frame, 107

Index−1

CIS Functions, continued
xil_cis_set_attribute, 94
xil_cis_set_keep_frames, 102
xil_cis_set_max_frames, 102
xil_cis_set_name, 99
xil_cis_sync, 115

Color Functions
xil_color_correct, 117

Color Operations
xil_black_generation, 83
xil_color_convert, 116

D
Dither Mask

xil_dithermask_get_name, 152
xil_dithermask_set_name, 152

Dither Mask Functions
xil_dithermask_create, 150
xil_dithermask_create_copy, 150
xil_dithermask_destroy, 150
xil_dithermask_get_by_name, 152
xil_dithermask_get_height, 154
xil_dithermask_get_nbands, 154
xil_dithermask_get_state, 191
xil_dithermask_get_width, 154

E
Error Handling Functions

xil_call_next_error_handler, 215
xil_default_error_handler, 215
xil_error_get_category, 164
xil_error_get_category_string, 164
xil_error_get_id, 164
xil_error_get_location, 164
xil_error_get_object, 164
xil_error_get_primary, 164
xil_error_get_string, 164
xil_install_error_handler, 215
xil_object_get_error_string, 165
xil_object_get_type, 165
xil_remove_error_handler, 215

F
Fax

decompression attributes, 35
faxG3, 35
faxG4, 35
overview, 35

Functions
Cell, 25
CellB, 32
faxG3, 35
faxG4, 35
H.261, 38
Jpeg, 44
JpegLL, 53
Mpeg1, 59
PhotoCD, 68
Storage, 74
xil_absolute, 76
xil_add, 77
xil_add_const, 77
xil_affine, 78
xil_and, 80
xil_and_const, 80
xil_band_combine, 81
xil_black_generation, 83
xil_blend, 84
xil_call_next_error_handler, 215
xil_cast, 85
xil_choose_colormap, 86
xil_cis_attempt_recovery, 87
xil_cis_create, 91
xil_cis_destroy, 92
xil_cis_flush, 93
xil_cis_get_attribute, 94
xil_cis_get_autorecover, 96
xil_cis_get_bits_ptr, 98
xil_cis_get_by_name, 99
xil_cis_get_compression_type, 100
xil_cis_get_input_type, 101
xil_cis_get_keep_frames, 102
xil_cis_get_max_frames, 102
xil_cis_get_name, 99
xil_cis_get_output_type, 104
xil_cis_get_random_access, 105
xil_cis_get_read_frame, 107

Index−2

Functions, continued
xil_cis_get_read_invalid, 106
xil_cis_get_start_frame, 107
xil_cis_get_state, 191
xil_cis_get_write_frame, 107
xil_cis_get_write_invalid, 108
xil_cis_has_data, 109
xil_cis_has_frame, 109
xil_cis_number_of_frames, 109
xil_cis_put_bits, 111
xil_cis_put_bits_ptr, 111
xil_cis_reset, 113
xil_cis_seek, 114
xil_cis_set_attribute, 94
xil_cis_set_autorecover, 96
xil_cis_set_keep_frames, 102
xil_cis_set_max_frames, 102
xil_cis_set_name, 99
xil_cis_sync, 115
xil_close, 248
xil_color_convert, 116
xil_color_correct, 117
xil_colorcube_create, 119
xil_colorspace_create, 121
xil_colorspace_destroy, 121
xil_colorspace_get_by_name, 122
xil_colorspace_get_name, 121
xil_colorspace_get_type, 121
xil_colorspace_set_name, 121
xil_colorspacelist_create, 124
xil_colorspacelist_destroy, 124
xil_colorspacelist_get_by_name, 124
xil_colorspacelist_get_name, 124
xil_colorspacelist_set_name, 124
xil_compress, 125
xil_convolve, 127
xil_copy, 129
xil_copy_pattern, 130
xil_copy_with_planemask, 131
xil_create, 133
xil_create_child, 135
xil_create_copy, 137
xil_create_double_buffered_window, 139
xil_create_from_device, 139
xil_create_from_type, 138

Functions, continued
xil_create_from_window, 139
xil_decompress, 144
xil_default_error_handler, 215
xil_destroy, 146
xil_device_create, 147
xil_device_destroy, 147
xil_device_set_attribute, 148
xil_device_set_value, 149
xil_dilate, 161
xil_dithermask_create, 150
xil_dithermask_create_copy, 150
xil_dithermask_destroy, 150
xil_dithermask_get_by_name, 152
xil_dithermask_get_height, 154
xil_dithermask_get_name, 152
xil_dithermask_get_nbands, 154
xil_dithermask_get_state, 191
xil_dithermask_get_width, 154
xil_dithermask_set_name, 152
xil_divide, 157
xil_divide_by_const, 157
xil_divide_into_const, 157
xil_edge_detection, 159
xil_erode, 161
xil_error_diffusion, 163
xil_error_get_category, 164
xil_error_get_category_string, 164
xil_error_get_id, 164
xil_error_get_location, 164
xil_error_get_object, 164
xil_error_get_primary, 164
xil_error_get_string, 164
xil_export, 167
xil_extrema, 169
xil_fill, 170
xil_get_active_buffer, 171
xil_get_attribute, 173
xil_get_by_name, 175
xil_get_child_offsets, 177
xil_get_datatype, 178
xil_get_device_attribute, 179
xil_get_exported, 168
xil_get_height, 202
xil_get_imagetype, 181

Index−3

Functions, continued
xil_get_info, 182
xil_get_memory_storage, 183
xil_get_name, 175
xil_get_nbands, 202
xil_get_origin, 186
xil_get_origin_x, 186
xil_get_origin_y, 186
xil_get_parent, 188
xil_get_pixel, 284
xil_get_readable, 189
xil_get_roi, 190
xil_get_size, 202
xil_get_state, 191
xil_get_storage_movement, 193
xil_get_storage_with_copy, 194
xil_get_synchronize, 312
xil_get_tile_storage, 197
xil_get_tilesize, 201
xil_get_width, 202
xil_get_writable, 189
xil_histogram, 203
xil_histogram_create, 204
xil_histogram_create_copy, 204
xil_histogram_destroy, 204
xil_histogram_get_by_name, 206
xil_histogram_get_info, 208
xil_histogram_get_limits, 208
xil_histogram_get_name, 206
xil_histogram_get_nbands, 208
xil_histogram_get_nbins, 208
xil_histogram_get_state, 191
xil_histogram_get_values, 208
xil_histogram_set_name, 206
xil_imagetype_get_by_name, 210
xil_imagetype_get_datatype, 212
xil_imagetype_get_height, 214
xil_imagetype_get_info, 213
xil_imagetype_get_name, 210
xil_imagetype_get_nbands, 214
xil_imagetype_get_size, 214
xil_imagetype_get_state, 191
xil_imagetype_get_width, 214
xil_imagetype_set_name, 210
xil_import, 167

Functions, continued
xil_install_error_handler, 215
xil_interpolation, 217
xil_interpolation_table_create, 217
xil_interpolation_table_destroy, 217
xil_interpolation_table_get_data, 219
xil_interpolation_table_get_kernel_size, 220
xil_interpolation_table_get_subsamples, 221
xil_interpolation_table_get_values, 222
xil_kernel_create, 223
xil_kernel_create_copy, 223
xil_kernel_create_separable, 223
xil_kernel_destroy, 223
xil_kernel_get_by_name, 225
xil_kernel_get_height, 227
xil_kernel_get_key_x, 227
xil_kernel_get_key_y, 227
xil_kernel_get_name, 225
xil_kernel_get_state, 191
xil_kernel_get_width, 227
xil_kernel_set_name, 225
xil_lookup, 229
xil_lookup_convert, 230
xil_lookup_create, 231
xil_lookup_create_combined, 233
xil_lookup_create_copy, 232
xil_lookup_destroy, 232
xil_lookup_get_by_name, 236
xil_lookup_get_colorcube, 119
xil_lookup_get_colorcube_info, 119
xil_lookup_get_input_datatype, 238
xil_lookup_get_input_nbands, 238
xil_lookup_get_name, 236
xil_lookup_get_num_entries, 238
xil_lookup_get_offset, 238
xil_lookup_get_output_datatype, 238
xil_lookup_get_output_nbands, 238
xil_lookup_get_state, 191
xil_lookup_get_values, 241
xil_lookup_get_version, 240
xil_lookup_set_name, 236
xil_lookup_set_offset, 238
xil_lookup_set_values, 241
xil_max, 243
xil_min, 244

Index−4

Functions, continued
xil_multiply, 245
xil_multiply_const, 245
xil_nearest_color, 246
xil_not, 247
xil_object_get_error_string, 165
xil_object_get_type, 165
xil_open, 248
xil_or, 249
xil_or_const, 249
xil_ordered_dither, 250
xil_paint, 252
xil_remove_error_handler, 215
xil_rescale, 254
xil_roi_add_image, 256
xil_roi_add_rect, 257
xil_roi_add_region, 258
xil_roi_create, 259
xil_roi_create_copy, 259
xil_roi_get_as_image, 262
xil_roi_get_as_region, 263
xil_roi_get_by_name, 264
xil_roi_get_name, 264
xil_roi_get_state, 191
xil_roi_intersect, 266
xil_roi_set_name, 264
xil_roi_subtract_rect, 267
xil_roi_translate, 268
xil_roi_unite, 269
xil_rotate, 270
xil_scale, 271
xil_sel_create, 272
xil_sel_create_copy, 272
xil_sel_destroy, 272
xil_sel_get_by_name, 274
xil_sel_get_height, 276
xil_sel_get_key_x, 276
xil_sel_get_key_y, 276
xil_sel_get_name, 274
xil_sel_get_state, 191
xil_sel_get_values, 277
xil_sel_get_width, 276
xil_sel_set_name, 274
xil_set_active_buffer, 171
xil_set_attribute, 173

Functions, continued
xil_set_colorspace, 278
xil_set_device_attribute, 179
xil_set_memory_storage, 184
xil_set_name, 175
xil_set_origin, 186
xil_set_pixel, 284
xil_set_roi, 190
xil_set_storage_movement, 193
xil_set_storage_with_copy, 194
xil_set_synchronize, 312
xil_set_tile_storage, 197
xil_set_tilesize, 201
xil_set_value, 286
xil_soft_fill, 287
xil_squeeze_range, 289
xil_state_get_default_tilesize, 290
xil_state_get_default_tiling_mode, 291
xil_state_get_interpolation_tables, 292
xil_state_get_show_action, 293
xil_state_get_synchronize, 312
xil_state_set_default_tilesize, 290
xil_state_set_default_tiling_mode, 291
xil_state_set_interpolation_tables, 292
xil_state_set_show_action, 293
xil_state_set_synchronize, 312
xil_storage_create, 295
xil_storage_get_band_stride, 297
xil_storage_get_by_name, 299
xil_storage_get_coordinates, 301
xil_storage_get_data, 297
xil_storage_get_image, 302
xil_storage_get_name, 299
xil_storage_get_offset, 297
xil_storage_get_pixel_stride, 297
xil_storage_get_scanline_stride, 297
xil_storage_get_state, 191
xil_storage_set_band_stride, 305
xil_storage_set_coordinates, 301
xil_storage_set_data, 306
xil_storage_set_data_release, 306
xil_storage_set_name, 299
xil_storage_set_offset, 306
xil_storage_set_pixel_stride, 305
xil_storage_set_scanline_stride, 305

Index−5

Functions, continued
xil_subsample_adaptive, 307
xil_subsample_binary_to_gray, 308
xil_subtract, 309
xil_subtract_const, 309
xil_subtract_from_const, 309
xil_sync, 312
xil_tablewarp, 314
xil_threshold, 316
xil_toss, 317
xil_translate, 318
xil_transpose, 319
xil_xor, 320
xil_xor_const, 320

G
General Utility Functions

xil_close, 248
xil_open, 248

Geometric Operations
xil_affine, 78
xil_rotate, 270
xil_scale, 271
xil_subsample_adaptive, 307
xil_subsample_binary_to_gray, 308
xil_tablewarp, 314
xil_translate, 318
xil_transpose, 319

H
H.261, 38

compression attributes, 38
decompression attributes, 41
overview, 38

Histogram Functions
xil_histogram_create, 204
xil_histogram_create_copy, 204
xil_histogram_destroy, 204
xil_histogram_get_by_name, 206
xil_histogram_get_info, 208
xil_histogram_get_limits, 208
xil_histogram_get_name, 206
xil_histogram_get_nbands, 208
xil_histogram_get_nbins, 208
xil_histogram_get_state, 191

Histogram Functions, continued
xil_histogram_get_values, 208
xil_histogram_set_name, 206

I
Image Functions

colorspace overview, 278
image overview, 133
origin overview, 186
xil_colorspace_get_by_name, 122
xil_create, 133
xil_create_child, 135
xil_create_copy, 137
xil_create_double_buffered_window, 139
xil_create_from_device, 139
xil_create_from_type, 138
xil_create_from_window, 139
xil_destroy, 146
xil_export, 167
xil_get_active_buffer, 171
xil_get_attribute, 173
xil_get_by_name, 175
xil_get_child_offsets, 177
xil_get_datatype, 178
xil_get_device_attribute, 179
xil_get_device_readable, 189
xil_get_exported, 168
xil_get_height, 202
xil_get_imagetype, 181
xil_get_info, 182
xil_get_memory_storage, 183
xil_get_name, 175
xil_get_nbands, 202
xil_get_origin, 186
xil_get_origin_x, 186
xil_get_origin_y, 186
xil_get_parent, 188
xil_get_roi, 190
xil_get_size, 202
xil_get_storage_movement, 193
xil_get_synchronize, 312
xil_get_tile_storage, 197
xil_get_tilesize, 201
xil_get_width, 202
xil_get_writable, 189

Index−6

Image Functions, continued
xil_import, 167
xil_sel_get_state, 191
xil_set_active_buffer, 171
xil_set_attribute, 173
xil_set_colorspace, 278
xil_set_device_attribute, 179
xil_set_memory_storage, 184
xil_set_name, 175
xil_set_origin, 186
xil_set_roi, 190
xil_set_storage_movement, 193
xil_set_synchronize, 312
xil_set_tile_storage, 197
xil_set_tilesize, 201
xil_state_get_default_tilesize, 290
xil_state_get_default_tiling_mode, 291
xil_state_get_interpolation_tables, 292
xil_state_get_show_action, 293
xil_state_get_synchronize, 312
xil_state_set_default_tilesize, 290
xil_state_set_default_tiling_mode, 291
xil_state_set_interpolation_tables, 292
xil_state_set_show_action, 293
xil_state_set_synchronize, 312
xil_sync, 312
xil_toss, 317

Image Processing Operations
xil_band_combine, 81
xil_blend, 84
xil_cast, 85
xil_convolve, 127
xil_copy, 129
xil_copy_pattern, 130
xil_copy_with_planemask, 131
xil_dilate, 161
xil_edge_detection, 159
xil_erode, 161
xil_extrema, 169
xil_get_pixel, 284
xil_histogram, 203
xil_lookup, 229
xil_rescale, 254
xil_set_pixel, 284
xil_set_value, 286

Image Processing Operations, continued
xil_tablewarp, 314
xil_threshold, 316

Image Type Functions
xil_imagetype_get_by_name, 210
xil_imagetype_get_datatype, 212
xil_imagetype_get_height, 214
xil_imagetype_get_info, 213
xil_imagetype_get_name, 210
xil_imagetype_get_nbands, 214
xil_imagetype_get_size, 214
xil_imagetype_get_state, 191
xil_imagetype_get_width, 214
xil_imagetype_set_name, 210

Interpolation Table Functions
xil_interpolation table_create_copy, 217
xil_interpolation_table_create, 217
xil_interpolation_table_destroy, 217
xil_interpolation_table_get_data, 219
xil_interpolation_table_get_kernel_size, 220
xil_interpolation_table_get_subsamples, 221
xil_interpolation_table_get_values, 222

J
Jpeg, 44

compression attributes, 44
decompression attributes, 50
overview, 44

JPEG Lossless
compression attributes, 53

JpegLL, 53
overview, 53

K
Kernel Functions

kernel overview, 223
xil_kernel_create, 223
xil_kernel_create_copy, 223
xil_kernel_create_separable, 223
xil_kernel_destroy, 223
xil_kernel_get_by_name, 225
xil_kernel_get_height, 227
xil_kernel_get_key_x, 227
xil_kernel_get_key_y, 227
xil_kernel_get_name, 225

Index−7

Kernel Functions, continued
xil_kernel_get_state, 191
xil_kernel_get_width, 227
xil_kernel_set_name, 225

L
Lookup Table Functions

xil_colorcube_create, 119
xil_lookup_create, 231
xil_lookup_create_combined, 233
xil_lookup_create_copy, 232
xil_lookup_destroy, 232
xil_lookup_get_by_name, 236
xil_lookup_get_colorcube, 119
xil_lookup_get_colorcube_info, 119
xil_lookup_get_input_datatype, 238
xil_lookup_get_input_nbands, 238
xil_lookup_get_name, 236
xil_lookup_get_num_entries, 238
xil_lookup_get_offset, 238
xil_lookup_get_output_datatype, 238
xil_lookup_get_output_nbands, 238
xil_lookup_get_state, 191
xil_lookup_get_values, 241
xil_lookup_get_version, 240
xil_lookup_set_name, 236
xil_lookup_set_offset, 238
xil_lookup_set_values, 241

M
Mpeg1, 59

compression attributes, 59
decompression, 64
overview, 59

P
PhotoCD, 68

attributes, 68
overview, 68

Planemask Operations
xil_copy_with_planemask, 131

Presentation Functions
xil_choose_colormap, 86
xil_error_diffusion, 163
xil_fill, 170

Presentation Functions, continued
xil_lookup_convert, 230
xil_nearest_color, 246
xil_ordered_dither, 250
xil_paint, 252
xil_soft_fill, 287
xil_squeeze_range, 289

R
ROI Functions

ROI overview, 259
xil_roi_add_image, 256
xil_roi_add_rect, 257
xil_roi_add_region, 258
xil_roi_create, 259
xil_roi_create_copy, 259
xil_roi_get_as_image, 262
xil_roi_get_as_region, 263
xil_roi_get_by_name, 264
xil_roi_get_name, 264
xil_roi_get_state, 191
xil_roi_intersect, 266
xil_roi_set_name, 264
xil_roi_subtract_rect, 267
xil_roi_translate, 268
xil_roi_unite, 269

S
SEL Functions

xil_sel_create, 272
xil_sel_create_copy, 272
xil_sel_destroy, 272
xil_sel_get_by_name, 274
xil_sel_get_height, 276
xil_sel_get_key_x, 276
xil_sel_get_key_y, 276
xil_sel_get_name, 274
xil_sel_get_state, 191
xil_sel_get_values, 277
xil_sel_get_width, 276
xil_sel_set_name, 274

Storage, 74
overview, 74

Storage Functions
xil_get_storage_with_copy, 194

Index−8

Storage Functions, continued
xil_set_storage_with_copy, 194
xil_storage_create, 295
xil_storage_get_band_stride, 297
xil_storage_get_by_name, 299
xil_storage_get_coordinates, 301
xil_storage_get_data, 297
xil_storage_get_image, 302
xil_storage_get_name, 299
xil_storage_get_offset, 297
xil_storage_get_pixel_stride, 297
xil_storage_get_scanline_stride, 297
xil_storage_get_state, 191
xil_storage_set_band_stride, 305
xil_storage_set_coordinates, 301
xil_storage_set_data, 306
xil_storage_set_data_release, 306
xil_storage_set_name, 299
xil_storage_set_offset, 306
xil_storage_set_pixel_stride, 305
xil_storage_set_scanline_stride, 305

V
Video Compression Functions

xil_cis_attempt_recovery, 87
xil_cis_flush, 93
xil_cis_get_autorecover, 96
xil_cis_get_bits_ptr, 98
xil_cis_get_read_invalid, 106
xil_cis_get_write_invalid, 108
xil_cis_has_data, 109
xil_cis_has_frame, 109
xil_cis_number_of_frames, 109
xil_cis_put_bits, 111
xil_cis_put_bits_ptr, 111
xil_cis_reset, 113
xil_cis_seek, 114
xil_cis_set_autorecover, 96
xil_compress, 125
xil_decompress, 144

X
xil_absolute, 76
xil_add, 77
xil_add_const, 77

xil_affine, 78
xil_and, 80
xil_and_const, 80
xil_band_combine, 81
xil_black_generation, 83
xil_blend, 84
xil_call_next_error_handler, 215
xil_cast, 85
xil_choose_colormap, 86
xil_cis_attempt_recovery, 87
xil_cis_create, 91
xil_cis_destroy, 92
xil_cis_flush, 93
xil_cis_get_attribute, 94
xil_cis_get_autorecover, 96
xil_cis_get_bits_ptr, 98
xil_cis_get_by_name, 99
xil_cis_get_compression_type, 100
xil_cis_get_input_type, 101
xil_cis_get_keep_frames, 102
xil_cis_get_max_frames, 102
xil_cis_get_name, 99
xil_cis_get_output_type, 104
xil_cis_get_random_access, 105
xil_cis_get_read_frame, 107
xil_cis_get_read_invalid, 106
xil_cis_get_start_frame, 107
xil_cis_get_state, 191
xil_cis_get_write_frame, 107
xil_cis_get_write_invalid, 108
xil_cis_has_data, 109
xil_cis_has_frame, 109
xil_cis_number_of_frames, 109
xil_cis_put_bits, 111
xil_cis_put_bits_ptr, 111
xil_cis_reset, 113
xil_cis_seek, 114
xil_cis_set_attribute, 94
xil_cis_set_autorecover, 96
xil_cis_set_keep_frames, 102
xil_cis_set_max_frames, 102
xil_cis_set_name, 99

Index−9

xil_cis_sync, 115
xil_close, 248
xil_color_convert, 116
xil_color_correct, 117
xil_colorcube_create, 119
xil_colorspace_create, 121
xil_colorspace_destroy, 121
xil_colorspace_get_by_name, 122
xil_colorspace_get_name, 121
xil_colorspace_get_type, 121
xil_colorspace_set_name, 121
xil_colorspacelist_create, 124
xil_colorspacelist_destroy, 124
xil_colorspacelist_get_by_name, 124
xil_colorspacelist_get_name, 124
xil_colorspacelist_set_name, 124
xil_compress, 125
xil_convolve, 127
xil_copy, 129
xil_copy_pattern, 130
xil_copy_with_planemask, 131
xil_create, 133
xil_create_child, 135
xil_create_copy, 137
xil_create_double_buffered_window, 139
xil_create_from_device, 139
xil_create_from_type, 138
xil_create_from_window, 139
xil_decompress, 144
xil_default_error_handler, 215
xil_destroy, 146
xil_device_create, 147
xil_device_destroy, 147
xil_device_set_attribute, 148
xil_device_set_value, 149
xil_dilate, 161
xil_dithermask_create, 150
xil_dithermask_create_copy, 150
xil_dithermask_destroy, 150
xil_dithermask_get_by_name, 152
xil_dithermask_get_height, 154
xil_dithermask_get_name, 152

xil_dithermask_get_nbands, 154
xil_dithermask_get_state, 191
xil_dithermask_get_width, 154
xil_dithermask_set_name, 152
xil_divide, 157
xil_divide_by_const, 157
xil_divide_into_const, 157
xil_edge_detection, 159
xil_erode, 161
xil_error_diffusion, 163
xil_error_get_category, 164
xil_error_get_category_string, 164
xil_error_get_id, 164
xil_error_get_location, 164
xil_error_get_object, 164
xil_error_get_primary, 164
xil_error_get_string, 164
xil_export, 167
xil_extrema, 169
xil_fill, 170
xil_get_active_buffer, 171
xil_get_attribute, 173
xil_get_by_name, 175
xil_get_child_offsets, 177
xil_get_datatype, 178
xil_get_device_attribute, 179
xil_get_exported, 168
xil_get_height, 202
xil_get_imagetype, 181
xil_get_info, 182
xil_get_memory_storage, 183
xil_get_name, 175
xil_get_nbands, 202
xil_get_origin, 186
xil_get_origin_x, 186
xil_get_origin_y, 186
xil_get_parent, 188
xil_get_pixel, 284
xil_get_readable, 189
xil_get_roi, 190
xil_get_size, 202
xil_get_state, 191

Index−10

xil_get_storage_movement, 193
xil_get_storage_with_copy, 194
xil_get_synchronize, 312
xil_get_tile_storage, 197
xil_get_tilesize, 201
xil_get_width, 202
xil_get_writable, 189
xil_histogram, 203
xil_histogram_create, 204
xil_histogram_create_copy, 204
xil_histogram_create_destroy, 204
xil_histogram_destroy, 204
xil_histogram_get_by_name, 206
xil_histogram_get_info, 208
xil_histogram_get_limits, 208
xil_histogram_get_name, 206
xil_histogram_get_nbands, 208
xil_histogram_get_nbins, 208
xil_histogram_get_state, 191
xil_histogram_get_values, 208
xil_histogram_set_name, 206
xil_imagetype_get_by_name, 210
xil_imagetype_get_datatype, 212
xil_imagetype_get_height, 214
xil_imagetype_get_info, 213
xil_imagetype_get_name, 210
xil_imagetype_get_nbands, 214
xil_imagetype_get_size, 214
xil_imagetype_get_state, 191
xil_imagetype_get_width, 214
xil_imagetype_set_name, 210
xil_import, 167
xil_install_error_handler, 215
xil_interpolation

table_create_copy, 217
xil_interpolation_table_create, 217
xil_interpolation_table_destroy, 217
xil_interpolation_table_get_data, 219
xil_interpolation_table_get_kernel_size, 220
xil_interpolation_table_get_subsamples, 221
xil_interpolation_table_get_values, 222
xil_kernel_create, 223

xil_kernel_create_copy, 223
xil_kernel_create_separable, 223
xil_kernel_destroy, 223
xil_kernel_get_by_name, 225
xil_kernel_get_height, 227
xil_kernel_get_key_x, 227
xil_kernel_get_key_y, 227
xil_kernel_get_name, 225
xil_kernel_get_state, 191
xil_kernel_get_width, 227
xil_kernel_set_name, 225
xil_lookup, 229
xil_lookup_convert, 230
xil_lookup_create, 231
xil_lookup_create_combined, 233
xil_lookup_create_copy, 232
xil_lookup_destroy, 232
xil_lookup_get_by_name, 236
xil_lookup_get_colorcube, 119
xil_lookup_get_colorcube_info, 119
xil_lookup_get_input_datatype, 238
xil_lookup_get_input_nbands, 238
xil_lookup_get_name, 236
xil_lookup_get_num_entries, 238
xil_lookup_get_offset, 238
xil_lookup_get_output_datatype, 238
xil_lookup_get_output_nbands, 238
xil_lookup_get_state, 191
xil_lookup_get_values, 241
xil_lookup_get_version, 240
xil_lookup_set_name, 236
xil_lookup_set_offset, 238
xil_lookup_set_values, 241
xil_max, 243
xil_min, 244
xil_multiply, 245
xil_multiply_const, 245
xil_nearest_color, 246
xil_not, 247
xil_object_get_error_string, 165
xil_object_get_type, 165
xil_open, 248

Index−11

xil_or, 249
xil_or_const, 249
xil_ordered_dither, 250
xil_paint, 252
xil_remove_error_handler, 215
xil_rescale, 254
xil_roi_add_image, 256
xil_roi_add_rect, 257
xil_roi_add_region, 258
xil_roi_create, 259
xil_roi_create_copy, 259
xil_roi_get_as_image, 262
xil_roi_get_as_region, 263
xil_roi_get_by_name, 264
xil_roi_get_name, 264
xil_roi_get_state, 191
xil_roi_intersect, 266
xil_roi_set_name, 264
xil_roi_subtract_rect, 267
xil_roi_translate, 268
xil_roi_unite, 269
xil_rotate, 270
xil_scale, 271
xil_sel_create, 272
xil_sel_create_copy, 272
xil_sel_destroy, 272
xil_sel_get_by_name, 274
xil_sel_get_height, 276
xil_sel_get_key_x, 276
xil_sel_get_key_y, 276
xil_sel_get_name, 274
xil_sel_get_state, 191
xil_sel_get_values, 277
xil_sel_get_width, 276
xil_sel_set_name, 274
xil_set_active_buffer, 171
xil_set_attribute, 173
xil_set_colorspace, 278
xil_set_device_attribute, 179
xil_set_memory_storage, 184
xil_set_name, 175
xil_set_origin, 186

xil_set_pixel, 284
xil_set_roi, 190
xil_set_storage_movement, 193
xil_set_storage_with_copy, 194
xil_set_synchronize, 312
xil_set_tile_storage, 197
xil_set_tilesize, 201
xil_set_value, 286
xil_soft_fill, 287
xil_squeeze_range, 289
xil_state_get_default_tilesize, 290
xil_state_get_default_tiling_mode, 291
xil_state_get_interpolation_tables, 292
xil_state_get_show_action, 293
xil_state_get_synchronize, 312
xil_state_set_default_tilesize, 290
xil_state_set_default_tiling_mode, 291
xil_state_set_interpolation_tables, 292
xil_state_set_show_action, 293
xil_state_set_synchronize, 312
xil_storage_create, 295
xil_storage_get_band_stride, 297
xil_storage_get_by_name, 299
xil_storage_get_coordinates, 301
xil_storage_get_data, 297
xil_storage_get_image, 302
xil_storage_get_name, 299
xil_storage_get_offset, 297
xil_storage_get_pixel_stride, 297
xil_storage_get_scanline_stride, 297
xil_storage_get_state, 191
xil_storage_set_band_stride, 305
xil_storage_set_coordinates, 301
xil_storage_set_data, 306
xil_storage_set_data_release, 306
xil_storage_set_name, 299
xil_storage_set_offset, 306
xil_storage_set_pixel_stride, 305
xil_storage_set_scanline_stride, 305
xil_subsample_adaptive, 307
xil_subsample_binary_to_gray, 308
xil_subtract, 309

Index−12

xil_subtract_const, 309
xil_subtract_from_const, 309
xil_sync, 312
xil_tablewarp, 314
xil_threshold, 316
xil_toss, 317
xil_translate, 318
xil_transpose, 319
xil_xor, 320
xil_xor_const, 320

Index−13

