
SunOS Reference Manual

Sun Microsystems, Inc.
2550 Garcia Avenue
Mountain View, CA 94043
U.S.A.

Copyright 1997 Sun Microsystems, Inc. 2550 Garcia Avenue, Mountain View, California 94043-1100 U.S.A. All rights reserved.

This product or document is protected by copyright and distributed under licenses restricting its use, copying, distribution, and
decompilation. No part of this product or document may be reproduced in any form by any means without prior written authorization of
Sun and its licensors, if any. Third-party software, including font technology, is copyrighted and licensed from Sun suppliers.

Parts of the product may be derived from Berkeley BSD systems, licensed from the University of California. UNIX is a registered trademark
in the U.S. and other countries, exclusively licensed through X/Open Company, Ltd.

Sun, Sun Microsystems, the Sun logo, SunSoft, Solaris, SunOS, OpenWindows, DeskSet, ONC, ONC+, and NFS are trademarks, or
registered trademarks of Sun Microsystems, Inc. in the U.S. and other countries. All SPARC trademarks are used under license and are
trademarks or registered trademarks of SPARC International, Inc. in the U.S. and other countries. Products bearing SPARC trademarks are
based upon an architecture developed by Sun Microsystems, Inc.

The OPEN LOOK and Sun Graphical User Interface was developed by Sun Microsystems, Inc. for its users and licensees. Sun
acknowledges the pioneering efforts of Xerox in researching and developing the concept of visual or graphical user interfaces for the
computer industry. Sun holds a non-exclusive license from Xerox to the Xerox Graphical User Interface, which license also covers Sun’s
licensees who implement OPEN LOOK GUIs and otherwise comply with Sun’s written license agreements.

RESTRICTED RIGHTS : Use, duplication, or disclosure by the U.S. Government is subject to restrictions of FAR 52.227-14(g)(2)(6/87) and
FAR 52.227-19(6/87), or DFAR 252.227-7015(b)(6/95) and DFAR 227.7202-3(a).

DOCUMENTATION IS PROVIDED "AS IS" AND ALL EXPRESS OR IMPLIED CONDITIONS, REPRESENTATIONS AND WARRANTIES,
INCLUDING ANY IMPLIED WARRANTY OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-
INFRINGEMENT, ARE DISCLAIMED, EXCEPT TO THE EXTENT THAT SUCH DISCLAIMERS ARE HELD TO BE LEGALLY INVALID.
��

Copyright 1997 Sun Microsystems, Inc., 2550 Garcia Avenue, Mountain View, Californie 94043-1100 Etats-Unis. Tous droits réservés.

Ce produit ou document est protégé par un copyright et distribué avec des licences qui en restreignent l’utilisation, la copie, la distribution,
et la décompilation. Aucune partie de ce produit ou document ne peut être reproduite sous aucune forme, par quelque moyen que ce soit,
sans l’autorisation préalable et écrite de Sun et de ses bailleurs de licence, s’il y en a. Le logiciel détenu par des tiers, et qui comprend la
technologie relative aux polices de caractères, est protégé par un copyright et licencié par des fournisseurs de Sun.

Des parties de ce produit pourront être dérivées des systèmes Berkeley BSD licenciés par l’Université de Californie. UNIX est une marque
déposée aux Etats-Unis et dans d’autres pays et licenciée exclusivement par X/Open Company, Ltd.

Sun, Sun Microsystems, le logo Sun, SunSoft, Solaris, SunOS, OpenWindows, DeskSet, ONC, ONC+, et NFS sont des marques de fabrique
ou des marques déposées, de Sun Microsystems, Inc. aux Etats-Unis et dans d’autres pays. Toutes les marques SPARC sont utilisées sous
licence et sont des marques de fabrique ou des marques déposées de SPARC International, Inc. aux Etats-Unis et dans d’autres pays. Les
produits portant les marques SPARC sont basés sur une architecture développée par Sun Microsystems, Inc.

L’interface d’utilisation graphique OPEN LOOK et Sun a été développée par Sun Microsystems, Inc. pour ses utilisateurs et licenciés. Sun
reconnaît les efforts de pionniers de Xerox pour la recherche et le développement du concept des interfaces d’utilisation visuelle ou
graphique pour l’industrie de l’informatique. Sun détient une licence non exclusive de Xerox sur l’interface d’utilisation graphique Xerox,
cette licence couvrant également les licenciés de Sun qui mettent en place l’interface d’utilisation graphique OPEN LOOK et qui en outre se
conforment aux licences écrites de Sun.

CETTE PUBLICATION EST FOURNIE "EN L’ETAT" ET AUCUNE GARANTIE, EXPRESSE OU IMPLICITE, N’EST ACCORDEE, Y
COMPRIS DES GARANTIES CONCERNANT LA VALEUR MARCHANDE, L’APTITUDE DE LA PUBLICATION A REPONDRE A UNE
UTILISATION PARTICULIERE, OU LE FAIT QU’ELLE NE SOIT PAS CONTREFAISANTE DE PRODUIT DE TIERS. CE DENI DE
GARANTIE NE S’APPLIQUERAIT PAS, DANS LA MESURE OU IL SERAIT TENU JURIDIQUEMENT NUL ET NON AVENU.

Please
Recycle

Preface

OVERVIEW
A man page is provided for both the naive user, and sophisticated user who is
familiar with the SunOS operating system and is in need of on-line information.
A man page is intended to answer concisely the question “What does it do?”
The man pages in general comprise a reference manual. They are not intended
to be a tutorial.

The following contains a brief description of each section in the man pages and
the information it references:

· Section 1 describes, in alphabetical order, commands available with the
operating system.

· Section 1M describes, in alphabetical order, commands that are used chiefly
for system maintenance and administration purposes.

· Section 2 describes all of the system calls. Most of these calls have one or
more error returns. An error condition is indicated by an otherwise
impossible returned value.

· Section 3 describes functions found in various libraries, other than those
functions that directly invoke UNIX system primitives, which are described in
Section 2 of this volume.

i

· Section 4 outlines the formats of various files. The C structure declarations
for the file formats are given where applicable.

· Section 5 contains miscellaneous documentation such as character set tables,
etc.

· Section 6 contains available games and demos.

· Section 7 describes various special files that refer to specific hardware
peripherals, and device drivers. STREAMS software drivers, modules and the
STREAMS-generic set of system calls are also described.

· Section 9 provides reference information needed to write device drivers in
the kernel operating systems environment. It describes two device driver
interface specifications: the Device Driver Interface (DDI) and the
Driver–Kernel Interface (DKI).

· Section 9E describes the DDI/DKI, DDI-only, and DKI-only entry-point
routines a developer may include in a device driver.

· Section 9F describes the kernel functions available for use by device drivers.

· Section 9S describes the data structures used by drivers to share
information between the driver and the kernel.

Below is a generic format for man pages. The man pages of each manual
section generally follow this order, but include only needed headings. For
example, if there are no bugs to report, there is no BUGS section. See the intro
pages for more information and detail about each section, and man(1) for more
information about man pages in general.

NAME
This section gives the names of the commands or functions documented,
followed by a brief description of what they do.

SYNOPSIS
This section shows the syntax of commands or functions. When a command or
file does not exist in the standard path, its full pathname is shown. Literal
characters (commands and options) are in bold font and variables (arguments,
parameters and substitution characters) are in italic font. Options and

ii

arguments are alphabetized, with single letter arguments first, and options with
arguments next, unless a different argument order is required.

The following special characters are used in this section:

[] The option or argument enclosed in these brackets is optional. If the
brackets are omitted, the argument must be specified.

. . . Ellipses. Several values may be provided for the previous argument, or
the previous argument can be specified multiple times, for example,
‘filename . . .’.

| Separator. Only one of the arguments separated by this character can
be specified at time.

{ } Braces. The options and/or arguments enclosed within braces are
interdependent, such that everything enclosed must be treated as a
unit.

PROTOCOL
This section occurs only in subsection 3R to indicate the protocol description
file. The protocol specification pathname is always listed in bold font.

DESCRIPTION
This section defines the functionality and behavior of the service. Thus it
describes concisely what the command does. It does not discuss OPTIONS or
cite EXAMPLES. Interactive commands, subcommands, requests, macros,
functions and such, are described under USAGE.

IOCTL
This section appears on pages in Section 7 only. Only the device class which
supplies appropriate parameters to the ioctl(2) system call is called ioctl and
generates its own heading. ioctl calls for a specific device are listed
alphabetically (on the man page for that specific device). ioctl calls are used for
a particular class of devices all of which have an io ending, such as mtio(7).

Preface iii

OPTIONS
This lists the command options with a concise summary of what each option
does. The options are listed literally and in the order they appear in the
SYNOPSIS section. Possible arguments to options are discussed under the
option, and where appropriate, default values are supplied.

OPERANDS
This section lists the command operands and describes how they affect the
actions of the command.

OUTPUT
This section describes the output - standard output, standard error, or output
files - generated by the command.

RETURN VALUES
If the man page documents functions that return values, this section lists these
values and describes the conditions under which they are returned. If a
function can return only constant values, such as 0 or −1, these values are listed
in tagged paragraphs. Otherwise, a single paragraph describes the return
values of each function. Functions declared as void do not return values, so
they are not discussed in RETURN VALUES.

ERRORS
On failure, most functions place an error code in the global variable errno
indicating why they failed. This section lists alphabetically all error codes a
function can generate and describes the conditions that cause each error. When
more than one condition can cause the same error, each condition is described
in a separate paragraph under the error code.

iv

USAGE
This section is provided as a guidance on use. This section lists special rules,
features and commands that require in-depth explanations. The subsections
listed below are used to explain built-in functionality:

Commands
Modifiers
Variables
Expressions
Input Grammar

EXAMPLES
This section provides examples of usage or of how to use a command or
function. Wherever possible a complete example including command line entry
and machine response is shown. Whenever an example is given, the prompt is
shown as

example%

or if the user must be super-user,

example#

Examples are followed by explanations, variable substitution rules, or returned
values. Most examples illustrate concepts from the SYNOPSIS, DESCRIPTION,
OPTIONS and USAGE sections.

ENVIRONMENT
This section lists any environment variables that the command or function
affects, followed by a brief description of the effect.

EXIT STATUS
This section lists the values the command returns to the calling program or shell
and the conditions that cause these values to be returned. Usually, zero is
returned for successful completion and values other than zero for various error
conditions.

FILES

Preface v

This section lists all filenames referred to by the man page, files of interest, and
files created or required by commands. Each is followed by a descriptive
summary or explanation.

ATTRIBUTES
This section lists characteristics of commands, utilities, and device drivers by
defining the attribute type and its corresponding value. (See attributes(5) for
more information.)

SEE ALSO
This section lists references to other man pages, in-house documentation and
outside publications.

DIAGNOSTICS
This section lists diagnostic messages with a brief explanation of the condition
causing the error. Messages appear in bold font with the exception of variables,
which are in italic font.

WARNINGS
This section lists warnings about special conditions which could seriously affect
your working conditions — this is not a list of diagnostics.

NOTES
This section lists additional information that does not belong anywhere else on
the page. It takes the form of an aside to the user, covering points of special
interest. Critical information is never covered here.

BUGS
This section describes known bugs and wherever possible suggests
workarounds.

vi

Kernel Functions for Drivers Intro (9F)

NAME Intro, intro − introduction to DDI/DKI functions

DESCRIPTION Section 9F describes the kernel functions available for use by device drivers.

In this section, the information for each driver function is organized under the following
headings:

· NAME summarizes the function’s purpose.

· SYNOPSIS shows the syntax of the function’s entry point in the source code.
#include directives are shown for required headers.

· INTERFACE LEVEL describes any architecture dependencies.

· ARGUMENTS describes any arguments required to invoke the function.

· DESCRIPTION describes general information about the function.

· RETURN VALUES describes the return values and messages that can result
from invoking the function.

· CONTEXT indicates from which driver context (user, kernel, interrupt, or
high-level interrupt) the function can be called.

A driver function has user context if it was directly invoked because of a user
thread. The read(9E) entry point of the driver, invoked by a read(2) system call,
has user context.

A driver function has kernel context if was invoked by some other part of the ker-
nel. In a block device driver, the strategy(9E) entry point may be called by the
page daemon to write pages to the device. The page daemon has no relation to
the current user thread, so in this case strategy(9E) has kernel context.

Interrupt context is kernel context, but also has an interrupt level associated with
it. Driver interrupt routines have interrupt context.

High-level interrupt context is a more restricted form of interrupt context. If
ddi_intr_hilevel(9F) indicates that an interrupt is high-level, driver interrupt
routines added for that interrupt with ddi_add_intr(9F) run in high-level inter-
rupt context. These interrupt routines are only allowed to call
ddi_trigger_softintr(9F), mutex_enter(9F) and mutex_exit(9F). Furthermore,
mutex_enter(9F) and mutex_exit(9F) may only be called on mutexes initialized
with the ddi_iblock_cookie returned by ddi_get_iblock_cookie(9F).

· SEE ALSO indicates functions that are related by usage and sources, and which
can be referred to for further information.

· EXAMPLES shows how the function can be used in driver code.

Every driver MUST include <sys/ddi.h> and <sys/sunddi.h>, in that order, and as the
last files the driver includes.

modified 22 Jan 1997 SunOS 5.6 9F-5

Intro (9F) Kernel Functions for Drivers

STREAMS Kernel
Function Summary

The following table summarizes the STREAMS functions described in this section.

Routine Type

adjmsg DDI/DKI
allocb DDI/DKI
backq DDI/DKI
bcanput DDI/DKI
bcanputnext DDI/DKI
bufcall DDI/DKI
canput DDI/DKI
canputnext DDI/DKI
clrbuf DDI/DKI
copyb DDI/DKI
copymsg DDI/DKI
datamsg DDI/DKI
dupb DDI/DKI
dupmsg DDI/DKI
enableok DDI/DKI
esballoc DDI/DKI
esbbcall DDI/DKI
flushband DDI/DKI
flushq DDI/DKI
freeb DDI/DKI
freemsg DDI/DKI
freezestr DDI/DKI
getq DDI/DKI
insq DDI/DKI
linkb DDI/DKI
msgdsize DDI/DKI
msgpullup DDI/DKI
mt-streams Solaris DDI
noenable DDI/DKI
OTHERQ DDI/DKI
pullupmsg DDI/DKI
put DDI/DKI
putbq DDI/DKI
putctl DDI/DKI
putctl1 DDI/DKI
putnext DDI/DKI
putnextctl DDI/DKI
putq DDI/DKI
qbufcall Solaris DDI
qenable DDI/DKI
qprocson DDI/DKI

9F-6 SunOS 5.6 modified 22 Jan 1997

Kernel Functions for Drivers Intro (9F)

qprocsoff DDI/DKI
qreply DDI/DKI
qsize DDI/DKI
qtimeout Solaris DDI
qunbufcall Solaris DDI
quntimeout Solaris DDI
qwait Solaris DDI
qwait_sig Solaris DDI
qwriter Solaris DDI
RD DDI/DKI
rmvb DDI/DKI
rmvq DDI/DKI
SAMESTR DDI/DKI
strlog DDI/DKI
strqget DDI/DKI
strqset DDI/DKI
testb DDI/DKI
unbufcall DDI/DKI
unfreezestr DDI/DKI
unlinkb DDI/DKI
WR DDI/DKI

The following table summarizes the functions not specific to STREAMS.

Routine Type

ASSERT DDI/DKI
anocancel Solaris DDI
aphysio Solaris DDI
bcmp DDI/DKI
bcopy DDI/DKI
biodone DDI/DKI
bioclone Solaris DDI
biofini Solaris DDI
bioinit Solaris DDI
biomodified Solaris DDI
biosize Solaris DDI
bioerror Solaris DDI
bioreset Solaris DDI
biowait DDI/DKI
bp_mapin DDI/DKI
bp_mapout DDI/DKI
btop DDI/DKI
btopr DDI/DKI
bzero DDI/DKI
cmn_err DDI/DKI
copyin DDI/DKI

modified 22 Jan 1997 SunOS 5.6 9F-7

Intro (9F) Kernel Functions for Drivers

copyout DDI/DKI
cv_broadcast Solaris DDI
cv_destroy Solaris DDI
cv_init Solaris DDI
cv_signal Solaris DDI
cv_timedwait Solaris DDI
cv_wait Solaris DDI
cv_wait_sig Solaris DDI
ddi_add_intr Solaris DDI
ddi_add_softintr Solaris DDI
ddi_btop Solaris DDI
ddi_btopr Solaris DDI
ddi_copyin Solaris DDI
ddi_copyout Solaris DDI
ddi_create_minor_node Solaris DDI
ddi_dev_is_sid Solaris DDI
ddi_dev_nintrs Solaris DDI
ddi_dev_nregs Solaris DDI
ddi_dev_regsize Solaris DDI
ddi_device_copy Solaris DDI
ddi_device_zero Solaris DDI
ddi_devmap_segmap Solaris DDI
ddi_dma_addr_bind_handle Solaris DDI
ddi_dma_addr_setup Solaris DDI
ddi_dma_alloc_handle Solaris DDI
ddi_dma_buf_bind_handle Solaris DDI
ddi_dma_buf_setup Solaris DDI
ddi_dma_burstsizes Solaris DDI
ddi_dma_coff Solaris SPARC DDI
ddi_dma_curwin Solaris SPARC DDI
ddi_dma_devalign Solaris DDI
ddi_dma_free Solaris DDI
ddi_dma_free_handle Solaris DDI
ddi_dma_getwin Solaris DDI
ddi_dma_htoc Solaris SPARC DDI
ddi_dma_mem_alloc Solaris DDI
ddi_dma_mem_free Solaris DDI
ddi_dma_movwin Solaris SPARC DDI
ddi_dma_nextcookie Solaris DDI
ddi_dma_nextseg Solaris DDI
ddi_dma_nextwin Solaris DDI
ddi_dma_numwin Solaris DDI
ddi_dma_segtocookie Solaris DDI
ddi_dma_set_sbus64 Solaris DDI
ddi_dma_setup Solaris DDI

9F-8 SunOS 5.6 modified 22 Jan 1997

Kernel Functions for Drivers Intro (9F)

ddi_dma_sync Solaris DDI
ddi_dma_unbind_handle Solaris DDI
ddi_dmae Solaris x86 DDI
ddi_dmae_1stparty Solaris x86 DDI
ddi_dmae_alloc Solaris x86 DDI
ddi_dmae_disable Solaris x86 DDI
ddi_dmae_enable Solaris x86 DDI
ddi_dmae_getattr Solaris x86 DDI
ddi_dmae_getcnt Solaris x86 DDI
ddi_dmae_getlim Solaris x86 DDI
ddi_dmae_prog Solaris x86 DDI
ddi_dmae_release Solaris x86 DDI
ddi_dmae_stop Solaris x86 DDI
ddi_enter_critical Solaris DDI
ddi_exit_critical Solaris DDI
ddi_ffs Solaris DDI
ddi_fls Solaris DDI
ddi_get16 Solaris DDI
ddi_get32 Solaris DDI
ddi_get64 Solaris DDI
ddi_get8 Solaris DDI
ddi_get_cred Solaris DDI
ddi_get_driver_private Solaris DDI
ddi_get_iblock_cookie Solaris DDI
ddi_get_instance Solaris DDI
ddi_get_name Solaris DDI
ddi_get_parent Solaris DDI
ddi_get_soft_iblock_cookie Solaris DDI
ddi_get_soft_state Solaris DDI
ddi_getb Solaris DDI
ddi_getl Solaris DDI
ddi_getll Solaris DDI
ddi_getlongprop Solaris DDI
ddi_getlongprop_buf Solaris DDI
ddi_getprop Solaris DDI
ddi_getproplen Solaris DDI
ddi_getw Solaris DDI
ddi_intr_hilevel Solaris DDI
ddi_io_get16 Solaris DDI
ddi_io_get32 Solaris DDI
ddi_io_get8 Solaris DDI
ddi_io_getb Solaris DDI
ddi_io_getl Solaris DDI
ddi_io_getw Solaris DDI
ddi_io_put16 Solaris DDI

modified 22 Jan 1997 SunOS 5.6 9F-9

Intro (9F) Kernel Functions for Drivers

ddi_io_put32 Solaris DDI
ddi_io_put8 Solaris DDI
ddi_io_putb Solaris DDI
ddi_io_putl Solaris DDI
ddi_io_putw Solaris DDI
ddi_io_rep_get16 Solaris DDI
ddi_io_rep_get32 Solaris DDI
ddi_io_rep_get8 Solaris DDI
ddi_io_rep_getb Solaris DDI
ddi_io_rep_getl Solaris DDI
ddi_io_rep_getw Solaris DDI
ddi_io_rep_put16 Solaris DDI
ddi_io_rep_put32 Solaris DDI
ddi_io_rep_put8 Solaris DDI
ddi_io_rep_putb Solaris DDI
ddi_io_rep_putl Solaris DDI
ddi_io_rep_putw Solaris DDI
ddi_iomin Solaris DDI
ddi_iopb_alloc Solaris DDI
ddi_iopb_free Solaris DDI
ddi_map_regs Solaris DDI
ddi_mapdev Solaris DDI
ddi_mapdev_intercept Solaris DDI
ddi_mapdev_nointercept Solaris DDI
ddi_mapdev_set_device_acc_attr Solaris DDI
ddi_mem_alloc Solaris DDI
ddi_mem_free Solaris DDI
ddi_mem_get16 Solaris DDI
ddi_mem_get32 Solaris DDI
ddi_mem_get64 Solaris DDI
ddi_mem_get8 Solaris DDI
ddi_mem_getb Solaris DDI
ddi_mem_getl Solaris DDI
ddi_mem_getll Solaris DDI
ddi_mem_getw Solaris DDI
ddi_mem_put16 Solaris DDI
ddi_mem_put32 Solaris DDI
ddi_mem_put64 Solaris DDI
ddi_mem_put8 Solaris DDI
ddi_mem_putb Solaris DDI
ddi_mem_putl Solaris DDI
ddi_mem_putll Solaris DDI
ddi_mem_putw Solaris DDI
ddi_mem_rep_get16 Solaris DDI
ddi_mem_rep_get32 Solaris DDI

9F-10 SunOS 5.6 modified 22 Jan 1997

Kernel Functions for Drivers Intro (9F)

ddi_mem_rep_get64 Solaris DDI
ddi_mem_rep_get8 Solaris DDI
ddi_mem_rep_getb Solaris DDI
ddi_mem_rep_getl Solaris DDI
ddi_mem_rep_getll Solaris DDI
ddi_mem_rep_getw Solaris DDI
ddi_mem_rep_put16 Solaris DDI
ddi_mem_rep_put32 Solaris DDI
ddi_mem_rep_put64 Solaris DDI
ddi_mem_rep_put8 Solaris DDI
ddi_mem_rep_putb Solaris DDI
ddi_mem_rep_putl Solaris DDI
ddi_mem_rep_putll Solaris DDI
ddi_mem_rep_putw Solaris DDI
ddi_mmap_get_model Solaris DDI
ddi_model_convert_from Solaris DDI
ddi_node_name Solaris DDI
ddi_peek16 Solaris DDI
ddi_peek32 Solaris DDI
ddi_peek64 Solaris DDI
ddi_peek8 Solaris DDI
ddi_peekc Solaris DDI
ddi_peekd Solaris DDI
ddi_peekl Solaris DDI
ddi_peeks Solaris DDI
ddi_poke16 Solaris DDI
ddi_poke32 Solaris DDI
ddi_poke64 Solaris DDI
ddi_poke8 Solaris DDI
ddi_pokec Solaris DDI
ddi_poked Solaris DDI
ddi_pokel Solaris DDI
ddi_pokes Solaris DDI
ddi_prop_create Solaris DDI
ddi_prop_exists Solaris DDI
ddi_prop_free Solaris DDI
ddi_prop_get_int Solaris DDI
ddi_prop_lookup Solaris DDI
ddi_prop_lookup_byte_array Solaris DDI
ddi_prop_lookup_int_array Solaris DDI
ddi_prop_lookup_string Solaris DDI
ddi_prop_lookup_string_array Solaris DDI
ddi_prop_modify Solaris DDI
ddi_prop_op Solaris DDI
ddi_prop_remove Solaris DDI

modified 22 Jan 1997 SunOS 5.6 9F-11

Intro (9F) Kernel Functions for Drivers

ddi_prop_remove_all Solaris DDI
ddi_prop_undefine Solaris DDI
ddi_prop_update Solaris DDI
ddi_prop_update_byte_array Solaris DDI
ddi_prop_update_int Solaris DDI
ddi_prop_update_int_array Solaris DDI
ddi_prop_update_string Solaris DDI
ddi_prop_update_string_array Solaris DDI
ddi_ptob Solaris DDI
ddi_put16 Solaris DDI
ddi_put32 Solaris DDI
ddi_put64 Solaris DDI
ddi_put8 Solaris DDI
ddi_putb Solaris DDI
ddi_putl Solaris DDI
ddi_putll Solaris DDI
ddi_putw Solaris DDI
ddi_regs_map_free Solaris DDI
ddi_regs_map_setup Solaris DDI
ddi_remove_intr Solaris DDI
ddi_remove_minor_node Solaris DDI
ddi_remove_softintr Solaris DDI
ddi_rep_get16 Solaris DDI
ddi_rep_get32 Solaris DDI
ddi_rep_get64 Solaris DDI
ddi_rep_get8 Solaris DDI
ddi_rep_getb Solaris DDI
ddi_rep_getl Solaris DDI
ddi_rep_getll Solaris DDI
ddi_rep_getw Solaris DDI
ddi_rep_put16 Solaris DDI
ddi_rep_put32 Solaris DDI
ddi_rep_put64 Solaris DDI
ddi_rep_put8 Solaris DDI
ddi_rep_putb Solaris DDI
ddi_rep_putl Solaris DDI
ddi_rep_putll Solaris DDI
ddi_rep_putw Solaris DDI
ddi_report_dev Solaris DDI
ddi_root_node Solaris DDI
ddi_segmap Solaris DDI
ddi_segmap_setup Solaris DDI
ddi_set_driver_private Solaris DDI
ddi_slaveonly Solaris DDI
ddi_soft_state Solaris DDI

9F-12 SunOS 5.6 modified 22 Jan 1997

Kernel Functions for Drivers Intro (9F)

ddi_soft_state_fini Solaris DDI
ddi_soft_state_free Solaris DDI
ddi_soft_state_init Solaris DDI
ddi_soft_state_zalloc Solaris DDI
ddi_trigger_softintr Solaris DDI
ddi_umem_alloc Solaris DDI
ddi_umem_free Solaris DDI
ddi_unmap_regs Solaris DDI
delay DDI/DKI
devmap_default_access Solaris DDI
devmap_devmem_setup Solaris DDI
devmap_do_ctxmgt Solaris DDI
devmap_load Solaris DDI
devmap_set_ctx_timeout Solaris DDI
devmap_setup Solaris DDI
devmap_umem_setup Solaris DDI
devmap_unload Solaris DDI
disksort Solaris DDI
drv_getparm DDI/DKI
drv_hztousec DDI/DKI
drv_priv DDI/DKI
drv_usectohz DDI/DKI
drv_usecwait DDI/DKI
free_pktiopb Solaris DDI
freerbuf DDI/DKI
get_pktiopb Solaris DDI
geterror DDI/DKI
getmajor DDI/DKI
getminor DDI/DKI
getrbuf DDI/DKI
hat_getkpfnum DKI only
inb Solaris x86 DDI
inl Solaris x86 DDI
inw Solaris x86 DDI
kmem_alloc DDI/DKI
kmem_free DDI/DKI
kmem_zalloc DDI/DKI
kstat_create Solaris DDI
kstat_delete Solaris DDI
kstat_install Solaris DDI
kstat_named_init Solaris DDI
kstat_queue Solaris DDI
kstat_runq_back_to_waitq Solaris DDI
kstat_runq_enter Solaris DDI
kstat_runq_exit Solaris DDI

modified 22 Jan 1997 SunOS 5.6 9F-13

Intro (9F) Kernel Functions for Drivers

kstat_waitq_enter Solaris DDI
kstat_waitq_exit Solaris DDI
kstat_waitq_to_runq Solaris DDI
makecom_g0 Solaris DDI
makecom_g0_s Solaris DDI
makecom_g1 Solaris DDI
makecom_g5 Solaris DDI
makedevice DDI/DKI
max DDI/DKI
min DDI/DKI
minphys Solaris DDI
mod_info Solaris DDI
mod_install Solaris DDI
mod_remove Solaris DDI
mutex_destroy Solaris DDI
mutex_enter Solaris DDI
mutex_exit Solaris DDI
mutex_init Solaris DDI
mutex_owned Solaris DDI
mutex_tryenter Solaris DDI
nochpoll Solaris DDI
nodev DDI/DKI
nulldev DDI/DKI
numtos Solaris DDI
outb Solaris x86 DDI
outl Solaris x86 DDI
outw Solaris x86 DDI
pci_config_get16 Solaris DDI
pci_config_get32 Solaris DDI
pci_config_get64 Solaris DDI
pci_config_get8 Solaris DDI
pci_config_getb Solaris DDI
pci_config_getl Solaris DDI
pci_config_getw Solaris DDI
pci_config_put16 Solaris DDI
pci_config_put32 Solaris DDI
pci_config_put64 Solaris DDI
pci_config_put8 Solaris DDI
pci_config_putb Solaris DDI
pci_config_putl Solaris DDI
pci_config_putw Solaris DDI
pci_config_setup Solaris DDI
pci_config_teardown Solaris DDI
physio Solaris DDI
pollwakeup DDI/DKI

9F-14 SunOS 5.6 modified 22 Jan 1997

Kernel Functions for Drivers Intro (9F)

proc_ref Solaris DDI
proc_signal Solaris DDI
proc_unref Solaris DDI
ptob DDI/DKI
repinsb Solaris x86 DDI
repinsd Solaris x86 DDI
repinsw Solaris x86 DDI
repoutsb Solaris x86 DDI
repoutsd Solaris x86 DDI
repoutsw Solaris x86 DDI
rmalloc DDI/DKI
rmalloc_wait DDI/DKI
rmallocmap DDI/DKI
rmallocmap_wait DDI/DKI
rmfree DDI/DKI
rmfreemap DDI/DKI
rw_destroy Solaris DDI
rw_downgrade Solaris DDI
rw_enter Solaris DDI
rw_exit Solaris DDI
rw_init Solaris DDI
rw_read_locked Solaris DDI
rw_tryenter Solaris DDI
rw_tryupgrade Solaris DDI
scsi_abort Solaris DDI
scsi_alloc_consistent_buf Solaris DDI
scsi_cname Solaris DDI
scsi_destroy_pkt Solaris DDI
scsi_dmafree Solaris DDI
scsi_dmaget Solaris DDI
scsi_dname Solaris DDI
scsi_errmsg Solaris DDI
scsi_free_consistent_buf Solaris DDI
scsi_hba_attach Solaris DDI
scsi_hba_attach_setup Solaris DDI
scsi_hba_detach Solaris DDI
scsi_hba_fini Solaris DDI
scsi_hba_init Solaris DDI
scsi_hba_lookup_capstr Solaris DDI
scsi_hba_pkt_alloc Solaris DDI
scsi_hba_pkt_free Solaris DDI
scsi_hba_probe Solaris DDI
scsi_hba_tran_alloc Solaris DDI
scsi_hba_tran_free Solaris DDI
scsi_ifgetcap Solaris DDI

modified 22 Jan 1997 SunOS 5.6 9F-15

Intro (9F) Kernel Functions for Drivers

scsi_ifsetcap Solaris DDI
scsi_init_pkt Solaris DDI
scsi_log Solaris DDI
scsi_mname Solaris DDI
scsi_pktalloc Solaris DDI
scsi_pktfree Solaris DDI
scsi_poll Solaris DDI
scsi_probe Solaris DDI
scsi_resalloc Solaris DDI
scsi_reset Solaris DDI
scsi_reset_notify Solaris DDI
scsi_resfree Solaris DDI
scsi_rname Solaris DDI
scsi_slave Solaris DDI
scsi_sname Solaris DDI
scsi_sync_pkt Solaris DDI
scsi_transport Solaris DDI
scsi_unprobe Solaris DDI
scsi_unslave Solaris DDI
sema_destroy Solaris DDI
sema_init Solaris DDI
sema_p Solaris DDI
sema_p_sig Solaris DDI
sema_tryp Solaris DDI
sema_v Solaris DDI
sprintf Solaris DDI
stoi Solaris DDI
strchr Solaris DDI
strcmp Solaris DDI
strcpy Solaris DDI
strlen Solaris DDI
strncmp Solaris DDI
strncpy Solaris DDI
swab DDI/DKI
timeout DDI/DKI
uiomove DDI/DKI
untimeout DDI/DKI
ureadc DDI/DKI
uwritec DDI/DKI
va_arg Solaris DDI
va_end Solaris DDI
va_start Solaris DDI
vcmn_err DDI/DKI
vsprintf Solaris DDI

9F-16 SunOS 5.6 modified 22 Jan 1997

Kernel Functions for Drivers Intro (9F)

Name Description

adjmsg(9F) trim bytes from a message

allocb(9F) allocate a message block

anocancel(9F) prevent cancellation of asynchronous I/O
request

aphysio(9F) perform asynchronous physical I/O

ASSERT(9F) expression verification

assert(9F) See ASSERT(9F)

backq(9F) get pointer to the queue behind the current
queue

bcanput(9F) test for flow control in specified priority
band

bcanputnext(9F) See canputnext(9F)

bcmp(9F) compare two byte arrays

bcopy(9F) copy data between address locations in the
kernel

bioclone(9F) clone another buffer

biodone(9F) release buffer after buffer I/O transfer and
notify blocked threads

bioerror(9F) indicate error in buffer header

biofini(9F) uninitialize a buffer structure

bioinit(9F) initialize a buffer structure

biomodified(9F) check if a buffer is modified

bioreset(9F) reuse a private buffer header after I/O is
complete

biosize(9F) returns size of a buffer structure

biowait(9F) suspend processes pending completion of
block I/O

bp_mapin(9F) allocate virtual address space

bp_mapout(9F) deallocate virtual address space

btop(9F) convert size in bytes to size in pages (round
down)

btopr(9F) convert size in bytes to size in pages (round
up)

bufcall(9F) call a function when a buffer becomes avail-
able

bzero(9F) clear memory for a given number of bytes

modified 22 Jan 1997 SunOS 5.6 9F-17

Intro (9F) Kernel Functions for Drivers

canput(9F) test for room in a message queue

canputnext(9F) test for room in next module’s message
queue

clrbuf(9F) erase the contents of a buffer

cmn_err(9F) display an error message or panic the sys-
tem

condvar(9F) condition variable routines

copyb(9F) copy a message block

copyin(9F) copy data from a user program to a driver
buffer

copymsg(9F) copy a message

copyout(9F) copy data from a driver to a user program

csx_AccessConfigurationRegister(9F) read or write a PC Card Configuration
Register

csx_ConvertSize(9F) convert device sizes

csx_ConvertSpeed(9F) convert device speeds

csx_CS_DDI_Info(9F) obtain DDI information

csx_DeregisterClient(9F) remove client from Card Services list

csx_DupHandle(9F) duplicate access handle

csx_Error2Text(9F) convert error return codes to text strings

csx_Event2Text(9F) convert events to text strings

csx_FreeHandle(9F) free access handle

csx_Get16(9F) See csx_Get8(9F)

csx_Get32(9F) See csx_Get8(9F)

csx_Get64(9F) See csx_Get8(9F)

csx_Get8(9F) read data from device address

csx_GetEventMask(9F) See csx_SetEventMask(9F)

csx_GetFirstClient(9F) return first or next client

csx_GetFirstTuple(9F) return Card Information Structure tuple

csx_GetHandleOffset(9F) return current access handle offset

csx_GetMappedAddr(9F) return mapped virtual address

csx_GetNextClient(9F) See csx_GetFirstClient(9F)

csx_GetNextTuple(9F) See csx_GetFirstTuple(9F)

csx_GetStatus(9F) return the current status of a PC Card and
its socket

csx_GetTupleData(9F) return the data portion of a tuple

9F-18 SunOS 5.6 modified 22 Jan 1997

Kernel Functions for Drivers Intro (9F)

csx_MakeDeviceNode(9F) create and remove minor nodes on behalf of
the client

csx_MapLogSocket(9F) return the physical socket number associ-
ated with the client handle

csx_MapMemPage(9F) map the memory area on a PC Card

csx_ModifyConfiguration(9F) modify socket and PC Card Configuration
Register

csx_ModifyWindow(9F) modify window attributes

csx_Parse_CISTPL_BATTERY(9F) parse the Battery Replacement Date tuple

csx_Parse_CISTPL_BYTEORDER(9F) parse the Byte Order tuple

csx_Parse_CISTPL_CFTABLE_ENTRY(9F) parse 16-bit Card Configuration Table Entry
tuple

csx_Parse_CISTPL_CONFIG(9F) parse Configuration tuple

csx_Parse_CISTPL_DATE(9F) parse the Card Initialization Date tuple

csx_Parse_CISTPL_DEVICE(9F) parse Device Information tuples

csx_Parse_CISTPL_DEVICE_A(9F) See csx_Parse_CISTPL_DEVICE(9F)

csx_Parse_CISTPL_DEVICEGEO(9F) parse the Device Geo tuple

csx_Parse_CISTPL_DEVICEGEO_A(9F) parse the Device Geo A tuple

csx_Parse_CISTPL_DEVICE_OA(9F) See csx_Parse_CISTPL_DEVICE(9F)

csx_Parse_CISTPL_DEVICE_OC(9F) See csx_Parse_CISTPL_DEVICE(9F)

csx_Parse_CISTPL_FORMAT(9F) parse the Data Recording Format tuple

csx_Parse_CISTPL_FUNCE(9F) parse Function Extension tuple

csx_Parse_CISTPL_FUNCID(9F) parse Function Identification tuple

csx_Parse_CISTPL_GEOMETRY(9F) parse the Geometry tuple

csx_Parse_CISTPL_JEDEC_A(9F) See csx_Parse_CISTPL_JEDEC_C(9F)

csx_Parse_CISTPL_JEDEC_C(9F) parse JEDEC Identifier tuples

csx_Parse_CISTPL_LINKTARGET(9F) parse the Link Target tuple

csx_Parse_CISTPL_LONGLINK_A(9F) parse the Long Link A and C tuples

csx_Parse_CISTPL_LONGLINK_C(9F) See csx_Parse_CISTPL_LONGLINK_A(9F)

csx_Parse_CISTPL_LONGLINK_MFC(9F) parse the Multi-Function tuple

csx_Parse_CISTPL_MANFID(9F) parse Manufacturer Identification tuple

csx_Parse_CISTPL_ORG(9F) parse the Data Organization tuple

csx_Parse_CISTPL_SPCL(9F) parse the Special Purpose tuple

csx_Parse_CISTPL_SWIL(9F) parse the Software Interleaving tuple

csx_Parse_CISTPL_VERS_1(9F) parse Level-1 Version/Product Information
tuple

modified 22 Jan 1997 SunOS 5.6 9F-19

Intro (9F) Kernel Functions for Drivers

csx_Parse_CISTPL_VERS_2(9F) parse Level-2 Version and Information
tuple

csx_ParseTuple(9F) generic tuple parser

csx_Put16(9F) See csx_Put8(9F)

csx_Put32(9F) See csx_Put8(9F)

csx_Put64(9F) See csx_Put8(9F)

csx_Put8(9F) write to device register

csx_RegisterClient(9F) register a client

csx_ReleaseConfiguration(9F) release PC Card and socket configuration

csx_ReleaseIO(9F) See csx_RequestIO(9F)

csx_ReleaseIRQ(9F) See csx_RequestIRQ(9F)

csx_ReleaseSocketMask(9F) See csx_RequestSocketMask(9F)

csx_ReleaseWindow(9F) See csx_RequestWindow(9F)

csx_RemoveDeviceNode(9F) See csx_MakeDeviceNode(9F)

csx_RepGet16(9F) See csx_RepGet8(9F)

csx_RepGet32(9F) See csx_RepGet8(9F)

csx_RepGet64(9F) See csx_RepGet8(9F)

csx_RepGet8(9F) read repetitively from the device register

csx_RepPut16(9F) See csx_RepPut8(9F)

csx_RepPut32(9F) See csx_RepPut8(9F)

csx_RepPut64(9F) See csx_RepPut8(9F)

csx_RepPut8(9F) write repetitively to the device register

csx_RequestConfiguration(9F) configure the PC Card and socket

csx_RequestIO(9F) request or release I/O resources for the
client

csx_RequestIRQ(9F) request or release IRQ resource

csx_RequestSocketMask(9F) set or clear the client’s client event mask

csx_RequestWindow(9F) request or release window resources

csx_ResetFunction(9F) reset a function on a PC card

csx_SetEventMask(9F) set or return the client event mask for the
client

csx_SetHandleOffset(9F) set current access handle offset

csx_ValidateCIS(9F) validate the Card Information Structure
(CIS)

cv_broadcast(9F) See condvar(9F)

cv_destroy(9F) See condvar(9F)

9F-20 SunOS 5.6 modified 22 Jan 1997

Kernel Functions for Drivers Intro (9F)

cv_init(9F) See condvar(9F)

cv_signal(9F) See condvar(9F)

cv_timedwait(9F) See condvar(9F)

cv_timedwait_sig(9F) See condvar(9F)

cv_wait(9F) See condvar(9F)

cv_wait_sig(9F) See condvar(9F)

datamsg(9F) test whether a message is a data message

ddi_add_intr(9F) hardware interrupt handling routines

ddi_add_softintr(9F) software interrupt handling routines

ddi_binding_name(9F) return driver binding name

ddi_btop(9F) page size conversions

ddi_btopr(9F) See ddi_btop(9F)

ddi_copyin(9F) copy data to a driver buffer

ddi_copyout(9F) copy data from a driver

ddi_create_minor_node(9F) create a minor node for this device

ddi_device_copy(9F) copy data from one device register to
another device register

ddi_device_zero(9F) zero fill the device

ddi_devid_compare(9F) Kernel interfaces for device ids

ddi_devid_free(9F) See ddi_devid_compare(9F)

ddi_devid_init(9F) See ddi_devid_compare(9F)

ddi_devid_register(9F) See ddi_devid_compare(9F)

ddi_devid_sizeof(9F) See ddi_devid_compare(9F)

ddi_devid_unregister(9F) See ddi_devid_compare(9F)

ddi_devid_valid(9F) See ddi_devid_compare(9F)

ddi_dev_is_needed(9F) inform the system that a device’s com-
ponent is required

ddi_dev_is_sid(9F) tell whether a device is self-identifying

ddi_devmap_segmap(9F) See devmap_setup(9F)

ddi_dev_nintrs(9F) return the number of interrupt
specifications a device has

ddi_dev_nregs(9F) return the number of register sets a device
has

ddi_dev_regsize(9F) return the size of a device’s register

ddi_dma_addr_bind_handle(9F) binds an address to a DMA handle

ddi_dma_addr_setup(9F) easier DMA setup for use with virtual

modified 22 Jan 1997 SunOS 5.6 9F-21

Intro (9F) Kernel Functions for Drivers

addresses

ddi_dma_alloc_handle(9F) allocate DMA handle

ddi_dma_buf_bind_handle(9F) binds a system buffer to a DMA handle

ddi_dma_buf_setup(9F) easier DMA setup for use with buffer struc-
tures

ddi_dma_burstsizes(9F) find out the allowed burst sizes for a DMA
mapping

ddi_dma_coff(9F) convert a DMA cookie to an offset within a
DMA handle

ddi_dma_curwin(9F) report current DMA window offset and size

ddi_dma_devalign(9F) find DMA mapping alignment and
minimum transfer size

ddi_dmae(9F) system DMA engine functions

ddi_dmae_1stparty(9F) See ddi_dmae(9F)

ddi_dmae_alloc(9F) See ddi_dmae(9F)

ddi_dmae_disable(9F) See ddi_dmae(9F)

ddi_dmae_enable(9F) See ddi_dmae(9F)

ddi_dmae_getattr(9F) See ddi_dmae(9F)

ddi_dmae_getcnt(9F) See ddi_dmae(9F)

ddi_dmae_getlim(9F) See ddi_dmae(9F)

ddi_dmae_prog(9F) See ddi_dmae(9F)

ddi_dmae_release(9F) See ddi_dmae(9F)

ddi_dmae_stop(9F) See ddi_dmae(9F)

ddi_dma_free(9F) release system DMA resources

ddi_dma_free_handle(9F) free DMA handle

ddi_dma_getwin(9F) activate a new DMA window

ddi_dma_htoc(9F) convert a DMA handle to a DMA address
cookie

ddi_dma_mem_alloc(9F) allocate memory for DMA transfer

ddi_dma_mem_free(9F) free previously allocated memory

ddi_dma_movwin(9F) shift current DMA window

ddi_dma_nextcookie(9F) retrieve subsequent DMA cookie

ddi_dma_nextseg(9F) get next DMA segment

ddi_dma_nextwin(9F) get next DMA window

ddi_dma_numwin(9F) retrieve number of DMA windows

ddi_dma_segtocookie(9F) convert a DMA segment to a DMA address

9F-22 SunOS 5.6 modified 22 Jan 1997

Kernel Functions for Drivers Intro (9F)

cookie

ddi_dma_set_sbus64(9F) allow 64 bit transfers on SBus

ddi_dma_setup(9F) setup DMA resources

ddi_dma_sync(9F) synchronize CPU and I/O views of memory

ddi_dma_unbind_handle(9F) unbinds the address in a DMA handle

ddi_enter_critical(9F) enter and exit a critical region of control

ddi_exit_critical(9F) See ddi_enter_critical(9F)

ddi_ffs(9F) find first (last) bit set in a long integer

ddi_fls(9F) See ddi_ffs(9F)

ddi_get16(9F) See ddi_get8(9F)

ddi_get32(9F) See ddi_get8(9F)

ddi_get64(9F) See ddi_get8(9F)

ddi_get8(9F) read data from the mapped memory
address, device register or allocated DMA
memory address

ddi_getb(9F) See ddi_get8(9F)

ddi_get_cred(9F) returns a pointer to the credential structure
of the caller

ddi_get_driver_private(9F) get or set the address of the device’s private
data area

ddi_get_iblock_cookie(9F) See ddi_add_intr(9F)

ddi_get_instance(9F) get device instance number

ddi_getl(9F) See ddi_get8(9F)

ddi_getll(9F) See ddi_get8(9F)

ddi_getlongprop(9F) See ddi_prop_op(9F)

ddi_getlongprop_buf(9F) See ddi_prop_op(9F)

ddi_get_name(9F) See ddi_binding_name(9F)

ddi_get_parent(9F) find the parent of a device information
structure

ddi_getprop(9F) See ddi_prop_op(9F)

ddi_getproplen(9F) See ddi_prop_op(9F)

ddi_get_soft_iblock_cookie(9F) See ddi_add_softintr(9F)

ddi_get_soft_state(9F) See ddi_soft_state(9F)

ddi_getw(9F) See ddi_get8(9F)

ddi_intr_hilevel(9F) indicate interrupt handler type

ddi_io_get16(9F) See ddi_io_get8(9F)

modified 22 Jan 1997 SunOS 5.6 9F-23

Intro (9F) Kernel Functions for Drivers

ddi_io_get32(9F) See ddi_io_get8(9F)

ddi_io_get8(9F) read data from the mapped device register
in I/O space

ddi_io_getb(9F) See ddi_io_get8(9F)

ddi_io_getl(9F) See ddi_io_get8(9F)

ddi_io_getw(9F) See ddi_io_get8(9F)

ddi_iomin(9F) find minimum alignment and transfer size
for DMA

ddi_iopb_alloc(9F) allocate and free non-sequentially accessed
memory

ddi_iopb_free(9F) See ddi_iopb_alloc(9F)

ddi_io_put16(9F) See ddi_io_put8(9F)

ddi_io_put32(9F) See ddi_io_put8(9F)

ddi_io_put8(9F) write data to the mapped device register in
I/O space

ddi_io_putb(9F) See ddi_io_put8(9F)

ddi_io_putl(9F) See ddi_io_put8(9F)

ddi_io_putw(9F) See ddi_io_put8(9F)

ddi_io_rep_get16(9F) See ddi_io_rep_get8(9F)

ddi_io_rep_get32(9F) See ddi_io_rep_get8(9F)

ddi_io_rep_get8(9F) read multiple data from the mapped device
register in I/O space

ddi_io_rep_getb(9F) See ddi_io_rep_get8(9F)

ddi_io_rep_getl(9F) See ddi_io_rep_get8(9F)

ddi_io_rep_getw(9F) See ddi_io_rep_get8(9F)

ddi_io_rep_put16(9F) See ddi_io_rep_put8(9F)

ddi_io_rep_put32(9F) See ddi_io_rep_put8(9F)

ddi_io_rep_put8(9F) write multiple data to the mapped device
register in I/O space

ddi_io_rep_putb(9F) See ddi_io_rep_put8(9F)

ddi_io_rep_putl(9F) See ddi_io_rep_put8(9F)

ddi_io_rep_putw(9F) See ddi_io_rep_put8(9F)

ddi_mapdev(9F) create driver-controlled mapping of device

ddi_mapdev_intercept(9F) control driver notification of user accesses

ddi_mapdev_nointercept(9F) See ddi_mapdev_intercept(9F)

ddi_mapdev_set_device_acc_attr(9F) set the device attributes for the mapping

9F-24 SunOS 5.6 modified 22 Jan 1997

Kernel Functions for Drivers Intro (9F)

ddi_map_regs(9F) map or unmap registers

ddi_mem_alloc(9F) allocate and free sequentially accessed
memory

ddi_mem_free(9F) See ddi_mem_alloc(9F)

ddi_mem_get16(9F) See ddi_mem_get8(9F)

ddi_mem_get32(9F) See ddi_mem_get8(9F)

ddi_mem_get64(9F) See ddi_mem_get8(9F)

ddi_mem_get8(9F) read data from mapped device in the
memory space or allocated DMA memory

ddi_mem_getb(9F) See ddi_mem_get8(9F)

ddi_mem_getl(9F) See ddi_mem_get8(9F)

ddi_mem_getll(9F) See ddi_mem_get8(9F)

ddi_mem_getw(9F) See ddi_mem_get8(9F)

ddi_mem_put16(9F) See ddi_mem_put8(9F)

ddi_mem_put32(9F) See ddi_mem_put8(9F)

ddi_mem_put64(9F) See ddi_mem_put8(9F)

ddi_mem_put8(9F) write data to mapped device in the memory
space or allocated DMA memory

ddi_mem_putb(9F) See ddi_mem_put8(9F)

ddi_mem_putl(9F) See ddi_mem_put8(9F)

ddi_mem_putll(9F) See ddi_mem_put8(9F)

ddi_mem_putw(9F) See ddi_mem_put8(9F)

ddi_mem_rep_get16(9F) See ddi_mem_rep_get8(9F)

ddi_mem_rep_get32(9F) See ddi_mem_rep_get8(9F)

ddi_mem_rep_get64(9F) See ddi_mem_rep_get8(9F)

ddi_mem_rep_get8(9F) read multiple data from mapped device in
the memory space or allocated DMA
memory

ddi_mem_rep_getb(9F) See ddi_mem_rep_get8(9F)

ddi_mem_rep_getl(9F) See ddi_mem_rep_get8(9F)

ddi_mem_rep_getll(9F) See ddi_mem_rep_get8(9F)

ddi_mem_rep_getw(9F) See ddi_mem_rep_get8(9F)

ddi_mem_rep_put16(9F) See ddi_mem_rep_put8(9F)

ddi_mem_rep_put32(9F) See ddi_mem_rep_put8(9F)

ddi_mem_rep_put64(9F) See ddi_mem_rep_put8(9F)

ddi_mem_rep_put8(9F) write multiple data to mapped device in the

modified 22 Jan 1997 SunOS 5.6 9F-25

Intro (9F) Kernel Functions for Drivers

memory space or allocated DMA memory

ddi_mem_rep_putb(9F) See ddi_mem_rep_put8(9F)

ddi_mem_rep_putl(9F) See ddi_mem_rep_put8(9F)

ddi_mem_rep_putll(9F) See ddi_mem_rep_put8(9F)

ddi_mem_rep_putw(9F) See ddi_mem_rep_put8(9F)

ddi_mmap_get_model(9F) return data model type of current thread

ddi_model_convert_from(9F) determine data model type mismatch

ddi_node_name(9F) return the devinfo node name

ddi_peek(9F) read a value from a location

ddi_peek16(9F) See ddi_peek(9F)

ddi_peek32(9F) See ddi_peek(9F)

ddi_peek64(9F) See ddi_peek(9F)

ddi_peek8(9F) See ddi_peek(9F)

ddi_peekc(9F) See ddi_peek(9F)

ddi_peekd(9F) See ddi_peek(9F)

ddi_peekl(9F) See ddi_peek(9F)

ddi_peeks(9F) See ddi_peek(9F)

ddi_poke(9F) write a value to a location

ddi_poke16(9F) See ddi_poke(9F)

ddi_poke32(9F) See ddi_poke(9F)

ddi_poke64(9F) See ddi_poke(9F)

ddi_poke8(9F) See ddi_poke(9F)

ddi_pokec(9F) See ddi_poke(9F)

ddi_poked(9F) See ddi_poke(9F)

ddi_pokel(9F) See ddi_poke(9F)

ddi_pokes(9F) See ddi_poke(9F)

ddi_prop_create(9F) create, remove, or modify properties for leaf
device drivers

ddi_prop_exists(9F) check for the existence of a property

ddi_prop_free(9F) See ddi_prop_lookup(9F)

ddi_prop_get_int(9F) lookup integer property

ddi_prop_lookup(9F) look up property information

ddi_prop_lookup_byte_array(9F) See ddi_prop_lookup(9F)

ddi_prop_lookup_int_array(9F) See ddi_prop_lookup(9F)

ddi_prop_lookup_string(9F) See ddi_prop_lookup(9F)

9F-26 SunOS 5.6 modified 22 Jan 1997

Kernel Functions for Drivers Intro (9F)

ddi_prop_lookup_string_array(9F) See ddi_prop_lookup(9F)

ddi_prop_modify(9F) See ddi_prop_create(9F)

ddi_prop_op(9F) get property information for leaf device
drivers

ddi_prop_remove(9F) See ddi_prop_create(9F)

ddi_prop_remove_all(9F) See ddi_prop_create(9F)

ddi_prop_undefine(9F) See ddi_prop_create(9F)

ddi_prop_update(9F) update properties

ddi_prop_update_byte_array(9F) See ddi_prop_update(9F)

ddi_prop_update_int(9F) See ddi_prop_update(9F)

ddi_prop_update_int_array(9F) See ddi_prop_update(9F)

ddi_prop_update_string(9F) See ddi_prop_update(9F)

ddi_prop_update_string_array(9F) See ddi_prop_update(9F)

ddi_ptob(9F) See ddi_btop(9F)

ddi_put16(9F) See ddi_put8(9F)

ddi_put32(9F) See ddi_put8(9F)

ddi_put64(9F) See ddi_put8(9F)

ddi_put8(9F) write data to the mapped memory address,
device register or allocated DMA memory
address

ddi_putb(9F) See ddi_put8(9F)

ddi_putl(9F) See ddi_put8(9F)

ddi_putll(9F) See ddi_put8(9F)

ddi_putw(9F) See ddi_put8(9F)

ddi_regs_map_free(9F) free a previously mapped register address
space

ddi_regs_map_setup(9F) set up a mapping for a register address
space

ddi_remove_intr(9F) See ddi_add_intr(9F)

ddi_remove_minor_node(9F) remove a minor node for this dev_info

ddi_remove_softintr(9F) See ddi_add_softintr(9F)

ddi_rep_get16(9F) See ddi_rep_get8(9F)

ddi_rep_get32(9F) See ddi_rep_get8(9F)

ddi_rep_get64(9F) See ddi_rep_get8(9F)

ddi_rep_get8(9F) read data from the mapped memory
address, device register or allocated DMA
memory address

modified 22 Jan 1997 SunOS 5.6 9F-27

Intro (9F) Kernel Functions for Drivers

ddi_rep_getb(9F) See ddi_rep_get8(9F)

ddi_rep_getl(9F) See ddi_rep_get8(9F)

ddi_rep_getll(9F) See ddi_rep_get8(9F)

ddi_rep_getw(9F) See ddi_rep_get8(9F)

ddi_report_dev(9F) announce a device

ddi_rep_put16(9F) See ddi_rep_put8(9F)

ddi_rep_put32(9F) See ddi_rep_put8(9F)

ddi_rep_put64(9F) See ddi_rep_put8(9F)

ddi_rep_put8(9F) write data to the mapped memory address,
device register or allocated DMA memory
address

ddi_rep_putb(9F) See ddi_rep_put8(9F)

ddi_rep_putl(9F) See ddi_rep_put8(9F)

ddi_rep_putll(9F) See ddi_rep_put8(9F)

ddi_rep_putw(9F) See ddi_rep_put8(9F)

ddi_root_node(9F) get the root of the dev_info tree

ddi_segmap(9F) set up a user mapping using seg_dev

ddi_segmap_setup(9F) See ddi_segmap(9F)

ddi_set_driver_private(9F) See ddi_get_driver_private(9F)

ddi_slaveonly(9F) tell if a device is installed in a slave access
only location

ddi_soft_state(9F) driver soft state utility routines

ddi_soft_state_fini(9F) See ddi_soft_state(9F)

ddi_soft_state_free(9F) See ddi_soft_state(9F)

ddi_soft_state_init(9F) See ddi_soft_state(9F)

ddi_soft_state_zalloc(9F) See ddi_soft_state(9F)

ddi_trigger_softintr(9F) See ddi_add_softintr(9F)

ddi_umem_alloc(9F) allocate and free page-aligned kernel
memory

ddi_umem_free(9F) See ddi_umem_alloc(9F)

ddi_unmap_regs(9F) See ddi_map_regs(9F)

delay(9F) delay execution for a specified number of
clock ticks

devmap_default_access(9F) default driver memory access function

devmap_devmem_setup(9F) set driver memory mapping parameters

devmap_do_ctxmgt(9F) perform device context switching on a

9F-28 SunOS 5.6 modified 22 Jan 1997

Kernel Functions for Drivers Intro (9F)

mapping

devmap_load(9F) See devmap_unload(9F)

devmap_set_ctx_timeout(9F) set the timeout value for the context
management callback

devmap_setup(9F) set up a user mapping to device memory
using the devmap framework

devmap_umem_setup(9F) See devmap_devmem_setup(9F)

devmap_unload(9F) control validation of memory address trans-
lations

disksort(9F) single direction elevator seek sort for
buffers

drv_getparm(9F) retrieve kernel state information

drv_hztousec(9F) convert clock ticks to microseconds

drv_priv(9F) determine driver privilege

drv_usectohz(9F) convert microseconds to clock ticks

drv_usecwait(9F) busy-wait for specified interval

dupb(9F) duplicate a message block descriptor

dupmsg(9F) duplicate a message

enableok(9F) reschedule a queue for service

esballoc(9F) allocate a message block using a caller-
supplied buffer

esbbcall(9F) call function when buffer is available

flushband(9F) flush messages for a specified priority band

flushq(9F) remove messages from a queue

freeb(9F) free a message block

freemsg(9F) free all message blocks in a message

free_pktiopb(9F) See get_pktiopb(9F)

freerbuf(9F) free a raw buffer header

freezestr(9F) freeze, thaw the state of a stream

geterror(9F) return I/O error

getmajor(9F) get major device number

getminor(9F) get minor device number

get_pktiopb(9F) allocate/free a SCSI packet in the iopb map

getq(9F) get the next message from a queue

getrbuf(9F) get a raw buffer header

hat_getkpfnum(9F) get page frame number for kernel address

modified 22 Jan 1997 SunOS 5.6 9F-29

Intro (9F) Kernel Functions for Drivers

inb(9F) read from an I/O port

inl(9F) See inb(9F)

insq(9F) insert a message into a queue

inw(9F) See inb(9F)

IOC_CONVERT_FROM(9F) determine if there is a need to translate
M_IOCTL contents.

kmem_alloc(9F) allocate kernel memory

kmem_free(9F) See kmem_alloc(9F)

kmem_zalloc(9F) See kmem_alloc(9F)

kstat_create(9F) create and initialize a new kstat

kstat_delete(9F) remove a kstat from the system

kstat_install(9F) add a fully initialized kstat to the system

kstat_named_init(9F) initialize a named kstat

kstat_queue(9F) update I/O kstat statistics

kstat_runq_back_to_waitq(9F) See kstat_queue(9F)

kstat_runq_enter(9F) See kstat_queue(9F)

kstat_runq_exit(9F) See kstat_queue(9F)

kstat_waitq_enter(9F) See kstat_queue(9F)

kstat_waitq_exit(9F) See kstat_queue(9F)

kstat_waitq_to_runq(9F) See kstat_queue(9F)

linkb(9F) concatenate two message blocks

makecom(9F) make a packet for SCSI commands

makecom_g0(9F) See makecom(9F)

makecom_g0_s(9F) See makecom(9F)

makecom_g1(9F) See makecom(9F)

makecom_g5(9F) See makecom(9F)

makedevice(9F) make device number from major and minor
numbers

max(9F) return the larger of two integers

min(9F) return the lesser of two integers

minphys(9F) See physio(9F)

mkiocb(9F) allocates a STREAMS ioctl block for
M_IOCTL messages in the kernel.

mod_info(9F) See mod_install(9F)

mod_install(9F) add, remove or query a loadable module

mod_remove(9F) See mod_install(9F)

9F-30 SunOS 5.6 modified 22 Jan 1997

Kernel Functions for Drivers Intro (9F)

msgdsize(9F) return the number of bytes in a message

msgpullup(9F) concatenate bytes in a message

mt-streams(9F) STREAMS multithreading

mutex(9F) mutual exclusion lock routines

mutex_destroy(9F) See mutex(9F)

mutex_enter(9F) See mutex(9F)

mutex_exit(9F) See mutex(9F)

mutex_init(9F) See mutex(9F)

mutex_owned(9F) See mutex(9F)

mutex_tryenter(9F) See mutex(9F)

nochpoll(9F) error return function for non-pollable dev-
ices

nodev(9F) error return function

noenable(9F) prevent a queue from being scheduled

nulldev(9F) zero return function

numtos(9F) See stoi(9F)

OTHERQ(9F) get pointer to queue’s partner queue

otherq(9F) See OTHERQ(9F)

outb(9F) write to an I/O port

outl(9F) See outb(9F)

outw(9F) See outb(9F)

pci_config_get16(9F) See pci_config_get8(9F)

pci_config_get32(9F) See pci_config_get8(9F)

pci_config_get64(9F) See pci_config_get8(9F)

pci_config_get8(9F) read or write single datum of various sizes
to the PCI Local Bus Configuration space

pci_config_getb(9F) See pci_config_get8(9F)

pci_config_getl(9F) See pci_config_get8(9F)

pci_config_getll(9F) See pci_config_get8(9F)

pci_config_getw(9F) See pci_config_get8(9F)

pci_config_put16(9F) See pci_config_get8(9F)

pci_config_put32(9F) See pci_config_get8(9F)

pci_config_put64(9F) See pci_config_get8(9F)

pci_config_put8(9F) See pci_config_get8(9F)

pci_config_putb(9F) See pci_config_get8(9F)

pci_config_putl(9F) See pci_config_get8(9F)

modified 22 Jan 1997 SunOS 5.6 9F-31

Intro (9F) Kernel Functions for Drivers

pci_config_putll(9F) See pci_config_get8(9F)

pci_config_putw(9F) See pci_config_get8(9F)

pci_config_setup(9F) setup or tear down the resources for ena-
bling accesses to the PCI Local Bus
Configuration space

pci_config_teardown(9F) See pci_config_setup(9F)

physio(9F) perform physical I/O

pm_busy_component(9F) control device components’ availability for
power management

pm_create_components(9F) create or destroy power-manageable com-
ponents

pm_destroy_components(9F) See pm_create_components(9F)

pm_get_normal_power(9F) get or set a device component’s normal
power level

pm_idle_component(9F) See pm_busy_component(9F)

pm_set_normal_power(9F) See pm_get_normal_power(9F)

pollwakeup(9F) inform a process that an event has occurred

proc_ref(9F) See proc_signal(9F)

proc_signal(9F) send a signal to a process

proc_unref(9F) See proc_signal(9F)

ptob(9F) convert size in pages to size in bytes

pullupmsg(9F) concatenate bytes in a message

put(9F) call a STREAMS put procedure

putbq(9F) place a message at the head of a queue

putctl(9F) send a control message to a queue

putctl1(9F) send a control message with a one-byte
parameter to a queue

putnext(9F) send a message to the next queue

putnextctl(9F) send a control message to a queue

putnextctl1(9F) send a control message with a one-byte
parameter to a queue

putq(9F) put a message on a queue

qbufcall(9F) call a function when a buffer becomes avail-
able

qenable(9F) enable a queue

qprocsoff(9F) See qprocson(9F)

qprocson(9F) enable, disable put and service routines

9F-32 SunOS 5.6 modified 22 Jan 1997

Kernel Functions for Drivers Intro (9F)

qreply(9F) send a message on a stream in the reverse
direction

qsize(9F) find the number of messages on a queue

qtimeout(9F) execute a function after a specified length of
time

qunbufcall(9F) cancel a pending qbufcall request

quntimeout(9F) cancel previous qtimeout function call

qwait(9F) STREAMS wait routines

qwait_sig(9F) See qwait(9F)

qwriter(9F) asynchronous STREAMS perimeter
upgrade

RD(9F) get pointer to the read queue

rd(9F) See RD(9F)

repinsb(9F) See inb(9F)

repinsd(9F) See inb(9F)

repinsw(9F) See inb(9F)

repoutsb(9F) See outb(9F)

repoutsd(9F) See outb(9F)

repoutsw(9F) See outb(9F)

rmalloc(9F) allocate space from a resource map

rmallocmap(9F) allocate and free resource maps

rmallocmap_wait(9F) See rmallocmap(9F)

rmalloc_wait(9F) allocate space from a resource map, wait if
necessary

rmfree(9F) free space back into a resource map

rmfreemap(9F) See rmallocmap(9F)

rmvb(9F) remove a message block from a message

rmvq(9F) remove a message from a queue

rw_destroy(9F) See rwlock(9F)

rw_downgrade(9F) See rwlock(9F)

rw_enter(9F) See rwlock(9F)

rw_exit(9F) See rwlock(9F)

rw_init(9F) See rwlock(9F)

rwlock(9F) readers/writer lock functions

rw_read_locked(9F) See rwlock(9F)

rw_tryenter(9F) See rwlock(9F)

modified 22 Jan 1997 SunOS 5.6 9F-33

Intro (9F) Kernel Functions for Drivers

rw_tryupgrade(9F) See rwlock(9F)

samestr(9F) See SAMESTR(9F)

SAMESTR(9F) test if next queue is in the same stream

scsi_abort(9F) abort a SCSI command

scsi_alloc_consistent_buf(9F) allocate an I/O buffer for SCSI DMA

scsi_cname(9F) decode a SCSI name

scsi_destroy_pkt(9F) free an allocated SCSI packet and its DMA
resource

scsi_dmafree(9F) See scsi_dmaget(9F)

scsi_dmaget(9F) SCSI dma utility routines

scsi_dname(9F) See scsi_cname(9F)

scsi_errmsg(9F) display a SCSI request sense message

scsi_free_consistent_buf(9F) free a previously allocated SCSI DMA I/O
buffer

scsi_hba_attach(9F) See scsi_hba_attach_setup(9F)

scsi_hba_attach_setup(9F) SCSI HBA attach and detach routines

scsi_hba_detach(9F) See scsi_hba_attach_setup(9F)

scsi_hba_fini(9F) See scsi_hba_init(9F)

scsi_hba_init(9F) SCSI Host Bus Adapter system initialization
and completion routines

scsi_hba_lookup_capstr(9F) return index matching capability string

scsi_hba_pkt_alloc(9F) allocate and free a scsi_pkt structure

scsi_hba_pkt_free(9F) See scsi_hba_pkt_alloc(9F)

scsi_hba_probe(9F) default SCSI HBA probe function

scsi_hba_tran_alloc(9F) allocate and free transport structures

scsi_hba_tran_free(9F) See scsi_hba_tran_alloc(9F)

scsi_ifgetcap(9F) get/set SCSI transport capability

scsi_ifsetcap(9F) See scsi_ifgetcap(9F)

scsi_init_pkt(9F) prepare a complete SCSI packet

scsi_log(9F) display a SCSI-device-related message

scsi_mname(9F) See scsi_cname(9F)

scsi_pktalloc(9F) SCSI packet utility routines

scsi_pktfree(9F) See scsi_pktalloc(9F)

scsi_poll(9F) run a polled SCSI command on behalf of a
target driver

scsi_probe(9F) utility for probing a scsi device

9F-34 SunOS 5.6 modified 22 Jan 1997

Kernel Functions for Drivers Intro (9F)

scsi_resalloc(9F) See scsi_pktalloc(9F)

scsi_reset(9F) reset a SCSI bus or target

scsi_reset_notify(9F) notify target driver of bus resets

scsi_resfree(9F) See scsi_pktalloc(9F)

scsi_rname(9F) See scsi_cname(9F)

scsi_slave(9F) utility for SCSI target drivers to establish
the presence of a target

scsi_sname(9F) See scsi_cname(9F)

scsi_sync_pkt(9F) synchronize CPU and I/O views of memory

scsi_transport(9F) request by a SCSI target driver to start a
command

scsi_unprobe(9F) free resources allocated during initial prob-
ing

scsi_unslave(9F) See scsi_unprobe(9F)

sema_destroy(9F) See semaphore(9F)

sema_init(9F) See semaphore(9F)

sema_p(9F) See semaphore(9F)

semaphore(9F) semaphore functions

sema_p_sig(9F) See semaphore(9F)

sema_tryp(9F) See semaphore(9F)

sema_v(9F) See semaphore(9F)

sprintf(9F) format characters in memory

stoi(9F) convert between an integer and a decimal
string

strchr(9F) find a character in a string

strcmp(9F) compare two null terminated strings.

strcpy(9F) copy a string from one location to another.

strlen(9F) determine the number of non-null bytes in a
string

strlog(9F) submit messages to the log driver

strncmp(9F) See strcmp(9F)

strncpy(9F) See strcpy(9F)

strqget(9F) get information about a queue or band of
the queue

strqset(9F) change information about a queue or band
of the queue

swab(9F) swap bytes in 16-bit halfwords

modified 22 Jan 1997 SunOS 5.6 9F-35

Intro (9F) Kernel Functions for Drivers

testb(9F) check for an available buffer

timeout(9F) execute a function after a specified length of
time

uiomove(9F) copy kernel data using uio structure

unbufcall(9F) cancel a pending bufcall request

unfreezestr(9F) See freezestr(9F)

unlinkb(9F) remove a message block from the head of a
message

untimeout(9F) cancel previous timeout function call

ureadc(9F) add character to a uio structure

uwritec(9F) remove a character from a uio structure

va_arg(9F) handle variable argument list

va_copy(9F) See va_arg(9F)

va_end(9F) See va_arg(9F)

va_start(9F) See va_arg(9F)

vcmn_err(9F) See cmn_err(9F)

vsprintf(9F) format characters in memory

WR(9F) get pointer to the write queue for this
module or driver

wr(9F) See WR(9F)

9F-36 SunOS 5.6 modified 22 Jan 1997

Kernel Functions for Drivers adjmsg (9F)

NAME adjmsg − trim bytes from a message

SYNOPSIS #include <sys/stream.h>

int adjmsg(mblk_t ∗mp, ssize_t len);

INTERFACE
LEVEL

Architecture independent level 1 (DDI/DKI).

ARGUMENTS mp Pointer to the message to be trimmed.

len The number of bytes to be removed.

DESCRIPTION The adjmsg() function removes bytes from a message. |len| (the absolute value of len)
specifies the number of bytes to be removed. The adjmsg() function only trims bytes
across message blocks of the same type.

The adjmsg() function finds the maximal leading sequence of message blocks of the same
type as that of mp and starts removing bytes either from the head of that sequence or
from the tail of that sequence. If len is greater than 0, adjmsg() removes bytes from the
start of the first message block in that sequence. If len is less than 0, it removes bytes from
the end of the last message block in that sequence.

The adjmsg() function fails if |len| is greater than the number of bytes in the maximal
leading sequence it finds.

The adjmsg() function may remove any except the first zero-length message block
created during adjusting. It may also remove any zero-length message blocks that occur
within the scope of |len|.

RETURN VALUES The adjmsg() function returns:

1 Successful completion.

0 An error occurred.

CONTEXT The adjmsg() function can be called from user or interrupt context.

SEE ALSO STREAMS Programming Guide

modified 20 Nov 1996 SunOS 5.6 9F-37

allocb (9F) Kernel Functions for Drivers

NAME allocb − allocate a message block

SYNOPSIS #include <sys/stream.h>

mblk_t ∗allocb(size_t size, uint pri);

INTERFACE
LEVEL

Architecture independent level 1 (DDI/DKI).

ARGUMENTS size The number of bytes in the message block.

pri Priority of the request (no longer used).

DESCRIPTION allocb() tries to allocate a STREAMS message block. Buffer allocation fails only when the
system is out of memory. If no buffer is available, the bufcall(9F) function can help a
module recover from an allocation failure.

A STREAMS message block is composed of three structures. The first structure is a mes-
sage block (mblk_t). See msgb(9S). The mblk_t structure points to a data block struc-
ture (dblk_t). See datab(9S). Together these two structures describe the message type (if
applicable) and the size and location of the third structure, the data buffer. The data
buffer contains the data for this message block.

The fields in the mblk_t structure are initialized as follows:

b_cont set to NULL

b_rptr points to the beginning of the data buffer

b_wptr points to the beginning of the data buffer

b_datap points to the dblk_t structure

The fields in the dblk_t structure are initialized as follows:

db_base points to the first byte of the data buffer

db_lim points to the last byte + 1 of the buffer

db_type set to M_DATA

The following figure identifies the data structure members that are affected when a mes-
sage block is allocated.

b_cont (0)
b_rptr
b_wptr
b_datap

message block
(mblk_t)

data block
(dblk_t)

data buffer

.

.

db_base
db_lim
db_type (M_DATA)

9F-38 SunOS 5.6 modified 07 Nov 1996

Kernel Functions for Drivers allocb (9F)

RETURN VALUES A pointer to the allocated message block of type M_DATA on success.

A NULL pointer on failure.

CONTEXT allocb() can be called from user or interrupt context.

EXAMPLES Given a pointer to a queue (q) and an error number (err), the send_error() routine sends
an M_ERROR type message to the stream head.

If a message cannot be allocated, NULL is returned, indicating an allocation failure (line
8). Otherwise, the message type is set to M_ERROR (line 10). Line 11 increments the
write pointer (bp->b_wptr) by the size (one byte) of the data in the message.

A message must be sent up the read side of the stream to arrive at the stream head. To
determine whether q points to a read queue or to a write queue, the q->q_flag member is
tested to see if QREADR is set (line 13). If it is not set, q points to a write queue, and in
line 14 the RD(9F) function is used to find the corresponding read queue. In line 15, the
putnext(9F) function is used to send the message upstream, returning 1 if successful.

1 send_error(q,err)
2 queue_t ∗q;
3 unsigned char err;
4 {
5 mblk_t ∗bp;
6
7 if ((bp = allocb(1, BPRI_HI)) == NULL) /∗ allocate msg. block ∗/
8 return(0);
9
10 bp->b_datap->db_type = M_ERROR; /∗ set msg type to M_ERROR ∗/
11 ∗bp->b_wptr++ = err; /∗ increment write pointer ∗/
12
13 if (!(q->q_flag & QREADR)) /∗ if not read queue ∗/
14 q = RD(q); /∗ get read queue ∗/
15 putnext(q,bp); /∗ send message upstream ∗/
16 return(1);
17 }

SEE ALSO RD(9F), bufcall(9F), esballoc(9F), esbbcall(9F), putnext(9F), testb(9F), datab(9S),
msgb(9S)

Writing Device Drivers
STREAMS Programming Guide

NOTES The pri argument is no longer used, but is retained for compatibility with existing drivers.

modified 07 Nov 1996 SunOS 5.6 9F-39

anocancel (9F) Kernel Functions for Drivers

NAME anocancel − prevent cancellation of asynchronous I/O request

SYNOPSIS #include <sys/ddi.h>
#include <sys/sunddi.h>

int anocancel();

INTERFACE
LEVEL

Solaris DDI specific (Solaris DDI).

DESCRIPTION anocancel() should be used by drivers that do not support canceling asynchronous I/O
requests. anocancel() is passed as the driver cancel routine parameter to aphysio(9F).

RETURN VALUES anocancel() returns ENXIO.

SEE ALSO aread(9E), awrite(9E), aphysio(9F)

Writing Device Drivers

9F-40 SunOS 5.6 modified 9 Nov 1994

Kernel Functions for Drivers aphysio (9F)

NAME aphysio − perform asynchronous physical I/O

SYNOPSIS #include <sys/types.h>
#include <sys/buf.h>
#include <sys/uio.h>
#include <sys/aio_req.h>
#include <sys/ddi.h>
#include <sys/sunddi.h>

int aphysio(int (∗strat)(struct buf ∗), int (∗cancel)(struct buf ∗), dev_t dev, int rw ,
void (∗mincnt)(struct buf ∗), struct aio_req ∗aio_reqp);

ARGUMENTS strat Pointer to device strategy routine.

cancel Pointer to driver cancel routine. Used to cancel a submitted request.
The driver must pass the address of the function anocancel(9F) because
cancellation is not supported.

dev The device number.

rw Read/write flag. This is either B_READ when reading from the device,
or B_WRITE when writing to the device.

mincnt Routine which bounds the maximum transfer unit size.

aio_reqp Pointer to the aio_req(9S) structure which describes the user I/O
request.

INTERFACE
LEVEL

Solaris DDI specific (Solaris DDI).

DESCRIPTION aphysio() performs asynchronous I/O operations between the device and the address
space described by aio_reqp→aio_uio .

Prior to the start of the transfer, aphysio() verifies the requested operation is valid. It
then locks the pages involved in the I/O transfer so they can not be paged out. The dev-
ice strategy routine, strat , is then called one or more times to perform the physical I/O
operations. aphysio() does not wait for each transfer to complete, but returns as soon as
the necessary requests have been made.

aphysio() calls mincnt to bound the maximum transfer unit size to a sensible default for
the device and the system. Drivers which do not provide their own local mincnt routine
should call aphysio() with minphys(9F). minphys(9F) is the system mincnt routine.
minphys(9F) ensures the transfer size does not exceed any system limits.

If a driver supplies a local mincnt routine, this routine should perform the following
actions:

· If bp→b_bcount exceeds a device limit, set bp→b_bcount to a value supported
by the device.

· Call minphys(9F) to ensure that the driver does not circumvent additional
system limits.

modified 9 Nov 1994 SunOS 5.6 9F-41

aphysio (9F) Kernel Functions for Drivers

RETURN VALUES aphysio() returns:

0 on success.

error number on failure.

CONTEXT aphysio() can be called from user context only.

SEE ALSO aread(9E), awrite(9E), strategy(9E), anocancel(9F), biodone(9F), biowait(9F),
minphys(9F), physio(9F), aio_req(9S), buf(9S), uio(9S)

Writing Device Drivers

WARNINGS It is the driver’s responsibility to call biodone(9F) when the transfer is complete.

BUGS Cancellation is not supported in this release. The address of the function anocancel(9F)
must be used as the cancel argument.

9F-42 SunOS 5.6 modified 9 Nov 1994

Kernel Functions for Drivers ASSERT (9F)

NAME ASSERT, assert − expression verification

SYNOPSIS #include <sys/debug.h>

void ASSERT(EX);

INTERFACE
LEVEL

Architecture independent level 1 (DDI/DKI).

ARGUMENTS EX boolean expression.

DESCRIPTION ASSERT() is a macro which checks to see if the expression EX is true. If it is not then
ASSERT() causes an error message to be logged to the console and the system to panic.
ASSERT() works only if the preprocessor symbol DEBUG is defined.

CONTEXT ASSERT() can be used from user or interrupt context.

SEE ALSO Writing Device Drivers

modified 11 Apr 1991 SunOS 5.6 9F-43

backq (9F) Kernel Functions for Drivers

NAME backq − get pointer to the queue behind the current queue

SYNOPSIS #include <sys/stream.h>

queue_t ∗backq(queue_t ∗cq);

INTERFACE
LEVEL

Architecture independent level 1 (DDI/DKI).

ARGUMENTS cq The pointer to the current queue. queue_t is an alias for the queue(9S) struc-
ture.

DESCRIPTION backq() returns a pointer to the queue preceding cq (the current queue). If cq is a read
queue, backq() returns a pointer to the queue downstream from cq, unless it is the
stream end. If cq is a write queue, backq() returns a pointer to the next queue upstream
from cq, unless it is the stream head.

RETURN VALUES If successful, backq() returns a pointer to the queue preceding the current queue. Other-
wise, it returns NULL.

CONTEXT backq() can be called from user or interrupt context.

SEE ALSO queue(9S)
Writing Device Drivers
STREAMS Programming Guide

9F-44 SunOS 5.6 modified 11 Apr 1991

Kernel Functions for Drivers bcanput (9F)

NAME bcanput − test for flow control in specified priority band

SYNOPSIS #include <sys/stream.h>

int bcanput(queue_t ∗q, unsigned char pri);

INTERFACE
LEVEL

Architecture independent level 1 (DDI/DKI).

ARGUMENTS q Pointer to the message queue.

pri Message priority.

DESCRIPTION bcanput() searches through the stream (starting at q) until it finds a queue containing a
service routine where the message can be enqueued, or until it reaches the end of the
stream. If found, the queue containing the service routine is tested to see if there is room
for a message of priority pri in the queue.

If pri is 0, bcanput() is equivalent to a call with canput(9F).

canputnext(q) and bcanputnext(q, pri) should always be used in preference to
canput(q→q_next) and bcanput(q→q_next, pri) respectively.

RETURN VALUES 1 If a message of priority pri can be placed on the queue.

0 If the priority band is full.

CONTEXT bcanput() can be called from user or interrupt context.

SEE ALSO bcanputnext(9F), canput(9F), canputnext(9F), putbq(9F), putnext(9F)

Writing Device Drivers
STREAMS Programming Guide

WARNINGS Drivers are responsible for both testing a queue with bcanput() and refraining from plac-
ing a message on the queue if bcanput() fails.

modified 11 Apr 1991 SunOS 5.6 9F-45

bcmp (9F) Kernel Functions for Drivers

NAME bcmp − compare two byte arrays

SYNOPSIS #include <sys/types.h>
#include <sys/ddi.h>

int bcmp(const void ∗s1, const void ∗s2, size_t len);

INTERFACE
LEVEL

Architecture independent level 1 (DDI/DKI).

ARGUMENTS s1 Pointer to the first character string.

s2 Pointer to the second character string.

len Number of bytes to be compared.

DESCRIPTION bcmp() compares two byte arrays of length len.

RETURN VALUES bcmp() returns 0 if the arrays are identical, or 1 if they are not.

CONTEXT bcmp() can be called from user or interrupt context.

SEE ALSO strcmp(9F)

Writing Device Drivers

NOTES Unlike strcmp(9F), bcmp() does not terminate when it encounters a null byte.

9F-46 SunOS 5.6 modified 1 May 1996

Kernel Functions for Drivers bcopy (9F)

NAME bcopy − copy data between address locations in the kernel

SYNOPSIS #include <sys/types.h>

void bcopy(const void ∗from, void ∗to , size_t bcount);

INTERFACE
LEVEL

Architecture independent level 1 (DDI/DKI).

ARGUMENTS from Source address from which the copy is made.

to Destination address to which copy is made.

bcount The number of bytes moved.

DESCRIPTION bcopy() copies bcount bytes from one kernel address to another. If the input and output
addresses overlap, the command executes, but the results may not be as expected.

Note that bcopy() should never be used to move data in or out of a user buffer, because it
has no provision for handling page faults. The user address space can be swapped out at
any time, and bcopy() always assumes that there will be no paging faults. If bcopy()
attempts to access the user buffer when it is swapped out, the system will panic. It is safe
to use bcopy() to move data within kernel space, since kernel space is never swapped
out.

CONTEXT bcopy() can be called from user or interrupt context.

EXAMPLES An I/O request is made for data stored in a RAM disk. If the I/O operation is a read
request, the data is copied from the RAM disk to a buffer (line 8). If it is a write request,
the data is copied from a buffer to the RAM disk (line 15). bcopy() is used since both the
RAM disk and the buffer are part of the kernel address space.

1 #define RAMDNBLK 1000 /∗ blocks in the RAM disk ∗/
2 #define RAMDBSIZ 512 /∗ bytes per block ∗/
3 char ramdblks[RAMDNBLK][RAMDBSIZ]; /∗ blocks forming RAM ∗/

/∗ disk ∗/
...

4
5 if (bp->b_flags & B_READ) /∗ if read request, copy data ∗/
6 /∗ from RAM disk data block ∗/
7 /∗ to system buffer ∗/
8 bcopy(&ramdblks[bp->b_blkno][0], bp->b_un.b_addr,
9 bp->b_bcount);
10
11 else /∗ else write request, ∗/
12 /∗ copy data from a ∗/
13 /∗ system buffer to RAM disk ∗/
14 /∗ data block ∗/

modified 1 May 1996 SunOS 5.6 9F-47

bcopy (9F) Kernel Functions for Drivers

15 bcopy(bp->b_un.b_addr, &ramdblks[bp->b_blkno][0],
16 bp->b_bcount);

SEE ALSO copyin(9F), copyout(9F)

Writing Device Drivers

WARNINGS The from and to addresses must be within the kernel space. No range checking is done. If
an address outside of the kernel space is selected, the driver may corrupt the system in an
unpredictable way.

9F-48 SunOS 5.6 modified 1 May 1996

Kernel Functions for Drivers bioclone (9F)

NAME bioclone − clone another buffer

SYNOPSIS #include <sys/ddi.h>
#include <sys/sunddi.h>

struct buf ∗bioclone(struct buf ∗bp, off_t off, size_t len, dev_t dev, daddr_t blkno ,
int (∗iodone) (struct buf ∗), struct buf ∗bp_mem, int sleepflag);

INTERFACE
LEVEL

Solaris DDI specific (Solaris DDI).

ARGUMENTS bp Pointer to the buf(9S) structure describing the original I/O request.

off Offset within original I/O request where new I/O request should start.

len Length of the I/O request.

dev Device number.

blkno Block number on device.

iodone Specific biodone(9F) routine.

bp_mem Pointer to a buffer structure to be filled in or NULL.

sleepflag Determines whether caller can sleep for memory. Possible flags are
KM_SLEEP to allow sleeping until memory is available, or KM_NOSLEEP
to return NULL immediately if memory is not available.

DESCRIPTION bioclone() returns an initialized buffer to perform I/O to a portion of another buffer. The
new buffer will be set up to perform I/O to the range within the original I/O request
specified by the parameters off and len. An offset 0 starts the new I/O request at the same
address as the original request. off + len must not exceed b_bcount, the length of the origi-
nal request. The device number dev specifies the device to which the buffer is to perform
I/O. blkno is the block number on device. It will be assigned to the b_blkno field of the
cloned buffer structure. iodone lets the driver identify a specific biodone(9F) routine to be
called by the driver when the I/O is complete. bp_mem determines from where the space
for the buffer should be allocated. If bp_mem is NULL, bioclone() will allocate a new
buffer using getrbuf(9F). If sleepflag is set to KM_SLEEP, the driver may sleep until space
is freed up. If sleepflag is set to KM_NOSLEEP, the driver will not sleep. In either case, a
pointer to the allocated space is returned or NULL to indicate that no space was available.
After the transfer is completed, the buffer has to be freed using freerbuf(9F). If bp_mem is
not NULL, it will be used as the space for the buffer structure. The driver has to ensure
that bp_mem is initialized properly either using getrbuf(9F) or bioinit(9F).

If the original buffer is mapped into the kernel virtual address space using bp_mapin(9F)
before calling bp_clone(), a clone buffer will share the kernel mapping of the original
buffer. An additional bp_mapin() to get a kernel mapping for the clone buffer is not
necessary.

The driver has to ensure that the original buffer is not freed while any of the clone buffers
is still performing I/O. The biodone() function has to be called on all clone buffers before
it is called on the original buffer.

modified 20 Nov 1996 SunOS 5.6 9F-49

bioclone (9F) Kernel Functions for Drivers

RETURN VALUES The bioclone() function returns a pointer to the initialized buffer header, or NULL if no
space is available.

CONTEXT bioclone() can be called from user or interrupt context. Drivers must not allow
bioclone() to sleep if called from an interrupt routine.

EXAMPLES A device driver can use bioclone() for disk striping. For each disk in the stripe, a clone
buffer is created which performs I/O to a portion of the original buffer.

static int
stripe_strategy(struct buf ∗bp)
{

...
bp_orig = bp;
bp_1 = bioclone(bp_orig, 0, size_1, dev_1, blkno_1,

stripe_done, NULL, KM_SLEEP);
fragment++;
...
bp_n = bioclone(bp_orig, offset_n, size_n, dev_n,

blkno_n, stripe_done, NULL, KM_SLEEP);
fragment++;
/∗ submit bp_1 ... bp_n to device ∗/
xxstrategy(bp_x);
return (0);

}

static u_int
xxintr(caddr_t arg)
{

...
/∗
∗ get bp of completed subrequest. biodone(9F) will
∗ call stripe_done()
∗/
biodone(bp);
return (0);

}

static int
stripe_done(struct buf ∗bp)
{

...
freerbuf(bp);
fragment--;
if (fragment == 0) {

9F-50 SunOS 5.6 modified 20 Nov 1996

Kernel Functions for Drivers bioclone (9F)

/∗ get bp_orig ∗/
biodone(bp_orig);

}
return (0);

}

SEE ALSO biodone(9F), bp_mapin(9F), freerbuf(9F), getrbuf(9F), buf(9S)

Writing Device Drivers

modified 20 Nov 1996 SunOS 5.6 9F-51

biodone (9F) Kernel Functions for Drivers

NAME biodone − release buffer after buffer I/O transfer and notify blocked threads

SYNOPSIS #include <sys/types.h>
#include <sys/buf.h>

void biodone(struct buf ∗bp);

INTERFACE
LEVEL

Architecture independent level 1 (DDI/DKI).

ARGUMENTS bp Pointer to a buf(9S) structure.

DESCRIPTION biodone() notifies blocked processes waiting for the I/O to complete, sets the B_DONE
flag in the b_flags field of the buf(9S) structure, and releases the buffer if the I/O is asyn-
chronous. biodone() is called by either the driver interrupt or strategy(9E) routines
when a buffer I/O request is complete.

biodone() provides the capability to call a completion routine if bp describes a kernel
buffer. The address of the routine is specified in the b_iodone field of the buf(9S) struc-
ture. If such a routine is specified, biodone() calls it and returns without performing any
other actions. Otherwise, it performs the steps above.

CONTEXT biodone() can be called from user or interrupt context.

EXAMPLES Generally, the first validation test performed by any block device strategy(9E) routine is a
check for an end-of-file (EOF) condition. The strategy(9E) routine is responsible for
determining an EOF condition when the device is accessed directly. If a read(2) request
is made for one block beyond the limits of the device (line 10), it will report an EOF con-
dition. Otherwise, if the request is outside the limits of the device, the routine will report
an error condition. In either case, report the I/O operation as complete (line 27).

1 #define RAMDNBLK 1000 /∗ Number of blocks in RAM disk ∗/
2 #define RAMDBSIZ 512 /∗ Number of bytes per block ∗/
3 char ramdblks[RAMDNBLK][RAMDBSIZ]; /∗ Array containing RAM disk ∗/
4
5 static int
6 ramdstrategy(struct buf ∗bp)
7 {
8 daddr_t blkno = bp->b_blkno; /∗ get block number ∗/
9
10 if ((blkno < 0) || (blkno >= RAMDNBLK)) {
11 /∗
12 ∗ If requested block is outside RAM disk
13 ∗ limits, test for EOF which could result
14 ∗ from a direct (physio) request.
15 ∗/
16 if ((blkno == RAMDNBLK) && (bp->b_flags & B_READ)) {
17 /∗

9F-52 SunOS 5.6 modified 23 Apr 1996

Kernel Functions for Drivers biodone (9F)

18 ∗ If read is for block beyond RAM disk
19 ∗ limits, mark EOF condition.
20 ∗/
21 bp->b_resid = bp->b_bcount; /∗ compute return value ∗/
22
23 } else { /∗ I/O attempt is beyond ∗/
24 bp->b_error = ENXIO; /∗ limits of RAM disk ∗/
25 bp->b_flags |= B_ERROR; /∗ return error ∗/
26 }
27 biodone(bp); /∗ mark I/O complete (B_DONE) ∗/
28 /∗
29 ∗ Wake any processes awaiting this I/O
30 ∗ or release buffer for asynchronous
31 ∗ (B_ASYNC) request.
32 ∗/
33 return (0);
34 }

. . .

SEE ALSO read(2), strategy(9E), biowait(9F), ddi_add_intr(9F), delay(9F), timeout(9F),
untimeout(9F), buf(9S)

Writing Device Drivers

WARNINGS After calling biodone(), bp is no longer available to be referred to by the driver. If the
driver makes any reference to bp after calling biodone(), a panic may result.

NOTES Drivers that use the b_iodone field of the buf(9S) structure to specify a substitute com-
pletion routine should save the value of b_iodone before changing it, and then restore the
old value before calling biodone() to release the buffer.

modified 23 Apr 1996 SunOS 5.6 9F-53

bioerror (9F) Kernel Functions for Drivers

NAME bioerror − indicate error in buffer header

SYNOPSIS #include <sys/types.h>
#include <sys/buf.h>
#include <sys/ddi.h>

void bioerror(struct buf ∗bp, int error);

INTERFACE
LEVEL

Solaris DDI specific (Solaris DDI)

ARGUMENTS bp Pointer to the buf(9S) structure describing the transfer.

error Error number to be set, or zero to clear an error indication.

DESCRIPTION If error is non-zero, bioerror() indicates an error has occured in the buf(9S) structure. A
subsequent call to geterror(9F) will return error.

If error is 0, the error indication is cleared and a subsequent call to geterror(9F) will return
0.

CONTEXT bioerror() can be called from any context.

SEE ALSO strategy(9E), geterror(9F), getrbuf(9F), buf(9S)

9F-54 SunOS 5.6 modified 26 May 1994

Kernel Functions for Drivers biofini (9F)

NAME biofini − uninitialize a buffer structure

SYNOPSIS #include <sys/ddi.h>
#include <sys/sunddi.h>

void biofini(struct buf ∗bp);

INTERFACE
LEVEL

Solaris DDI specific (Solaris DDI).

ARGUMENTS bp Pointer to the buffer header structure.

DESCRIPTION The biofini() function uninitializes a buf(9S) structure. If a buffer structure has been allo-
cated and initialized using kmem_alloc(9F) and bioinit(9F) it needs to be uninitialized
using biofini() before calling kmem_free(9F). It is not necessary to call biofini() before
freeing a buffer structure using freerbuf(9F) because freerbuf() will call biofini()
directly.

CONTEXT The biofini() function can be called from any context.

EXAMPLES struct buf ∗bp = kmem_alloc(biosize(), KM_SLEEP);
bioinit(bp);
/∗ use buffer ∗/
biofini(bp);
kmem_free(bp, biosize());

SEE ALSO bioinit(9F), bioreset(9F), biosize(9F), freerbuf(9F), kmem_alloc(9F), kmem_free(9F),
buf(9S)

Writing Device Drivers

modified 20 Nov 1996 SunOS 5.6 9F-55

bioinit (9F) Kernel Functions for Drivers

NAME bioinit − initialize a buffer structure

SYNOPSIS #include <sys/ddi.h>
#include <sys/sunddi.h>

void bioinit(struct buf ∗bp);

INTERFACE
LEVEL

Solaris DDI specific (Solaris DDI).

ARGUMENTS bp Pointer to the buffer header structure.

DESCRIPTION The bioinit() function initializes a buf(9S) structure. A buffer structure contains state
information which has to be initialized if the memory for the buffer was allocated using
kmem_alloc(9F). This is not necessary for a buffer allocated using getrbuf(9F) because
getrbuf() will call bioinit() directly.

CONTEXT The bioinit() function can be called from any context.

EXAMPLES struct buf ∗bp = kmem_alloc(biosize(), KM_SLEEP);
bioinit(bp);
/∗ use buffer ∗/

SEE ALSO biofini(9F), bioreset(9F), biosize(9F), getrbuf(9F), kmem_alloc(9F), buf(9S)

Writing Device Drivers

9F-56 SunOS 5.6 modified 20 Nov 1996

Kernel Functions for Drivers biomodified (9F)

NAME biomodified − check if a buffer is modified

SYNOPSIS #include <sys/ddi.h>
#include <sys/sunddi.h>

int biomodified(struct buf ∗bp);

INTERFACE
LEVEL

Solaris DDI specific (Solaris DDI).

ARGUMENTS bp Pointer to the buffer header structure.

DESCRIPTION The biomodified() function returns status to indicate if the buffer is modified. The
biomodified() function is only supported for paged-I/O request, that is the B_PAGEIO
flag must be set in the b_flags field of the buf(9S) structure. The biomodified() function
will check the memory pages associated with this buffer whether the Virtual Memory
system’s modification bit is set. If at least one of these pages is modified, the buffer is
indicated as modified. A filesystem will mark the pages unmodified when it writes the
pages to the backing store. The biomodified() function can be used to detect any
modifications to the memory pages while I/O is in progress.

RETURN VALUES The biomodified() function returns the following values:

1 Buffer is modified.

0 Buffer is not modified.

-1 Buffer is not used for paged I/O request.

CONTEXT biomodified() can be called from any context.

EXAMPLES A device driver can use biomodified() for disk mirroring. An application is allowed to
mmap a file which can reside on a disk which is mirrored by multiple submirrors. If the
file system writes the file to the backing store, it is written to all submirrors in parallel. It
must be ensured that the copies on all submirrors are identical. The biomodified() func-
tion can be used in the device driver to detect any modifications to the buffer by the user
program during the time the buffer is written to multiple submirrors.

SEE ALSO bp_mapin(9F), buf(9S)

Writing Device Drivers

modified 20 Nov 1996 SunOS 5.6 9F-57

bioreset (9F) Kernel Functions for Drivers

NAME bioreset − reuse a private buffer header after I/O is complete

SYNOPSIS #include <sys/buf.h>
#include <sys/ddi.h>

void bioreset(struct buf ∗bp);

INTERFACE
LEVEL

Solaris DDI specific (Solaris DDI)

ARGUMENTS bp Pointer to the buf (9S) structure.

DESCRIPTION bioreset() is used by drivers that allocate private buffers with getrbuf(9F) or
kmem_alloc(9F) and want to reuse them in multiple transfers before freeing them with
freerbuf(9F) or kmem_free(9F). bioreset() resets the buffer header to the state it had
when initially allocated by getrbuf() or initialized by bioinit(9F).

CONTEXT bioreset() can be called from any context.

SEE ALSO strategy(9E), bioinit(9F), biofini(9F), freerbuf(9F), getrbuf(9F), kmem_alloc(9F),
kmem_free(9F), buf(9S)

NOTES bp must not describe a transfer in progress.

9F-58 SunOS 5.6 modified 15 Nov 1996

Kernel Functions for Drivers biosize (9F)

NAME biosize − returns size of a buffer structure

SYNOPSIS #include <sys/ddi.h>
#include <sys/sunddi.h>

size_t biosize(void);

INTERFACE
LEVEL

Solaris DDI specific (Solaris DDI).

DESCRIPTION The biosize() function returns the size in bytes of the buf(9S) structure. The biosize()
function is used by drivers in combination with kmem_alloc(9F) and bionit(9F) to allo-
cate buffer structures embedded in other data structures.

CONTEXT The biosize() function can be called from any context.

SEE ALSO biofini(9F), bioinit(9F), getrbuf(9F), kmem_alloc(9F), buf(9S)

Writing Device Drivers

modified 20 Nov 1996 SunOS 5.6 9F-59

biowait (9F) Kernel Functions for Drivers

NAME biowait − suspend processes pending completion of block I/O

SYNOPSIS #include <sys/types.h>
#include <sys/buf.h>

int biowait(struct buf ∗bp);

INTERFACE
LEVEL

Architecture independent level 1 (DDI/DKI).

ARGUMENTS bp Pointer to the buf structure describing the transfer.

DESCRIPTION Drivers allocating their own buf structures with getrbuf(9F) can use the biowait() func-
tion to suspend the current thread and wait for completion of the transfer.

Drivers must call biodone(9F) when the transfer is complete to notify the thread blocked
by biowait(). biodone() is usually called in the interrupt routine.

RETURN VALUES 0 on success

non-0 on I/O failure. biowait() calls geterror(9F) to retrieve the error number which
it returns.

CONTEXT biowait() can be called from user context only.

SEE ALSO biodone(9F), geterror(9F), getrbuf(9F), buf(9S)

Writing Device Drivers

9F-60 SunOS 5.6 modified 11 Apr 1991

Kernel Functions for Drivers bp_mapin (9F)

NAME bp_mapin − allocate virtual address space

SYNOPSIS #include <sys/types.h>
#include <sys/buf.h>

void bp_mapin(struct buf ∗bp);

INTERFACE
LEVEL

Architecture independent level 1 (DDI/DKI).

ARGUMENTS bp Pointer to the buffer header structure.

DESCRIPTION bp_mapin() is used to map virtual address space to a page list maintained by the buffer
header during a paged-I/O request. bp_mapin() allocates system virtual address space,
maps that space to the page list, and returns the starting address of the space in the bp-
>b_un.b_addr field of the buf(9S) structure. Virtual address space is then deallocated
using the bp_mapout(9F) function.

If a null page list is encountered, bp_mapin() returns without allocating space and no
mapping is performed.

CONTEXT bp_mapin() can be called from user context only.

SEE ALSO bp_mapout(9F), buf(9S)

Writing Device Drivers

modified 13 Sep 1992 SunOS 5.6 9F-61

bp_mapout (9F) Kernel Functions for Drivers

NAME bp_mapout − deallocate virtual address space

SYNOPSIS #include <sys/types.h>
#include <sys/buf.h>

void bp_mapout(struct buf ∗bp);

INTERFACE
LEVEL

Architecture independent level 1 (DDI/DKI).

ARGUMENTS bp Pointer to the buffer header structure.

DESCRIPTION bp_mapout() deallocates system virtual address space allocated by a previous call to
bp_mapin(9F). bp_mapout() should only be called on buffers which have been allocated
and are owned by the device driver. It must not be called on buffers passed to the driver
through the strategy(9E) entry point (for example a filesystem). Because bp_mapin(9F)
does not keep a reference count, bp_mapout() will wipe out any kernel mapping that a
layer above the device driver might rely on.

CONTEXT bp_mapout() can be called from user context only.

SEE ALSO strategy(9E), bp_mapin(9F), buf(9S)

Writing Device Drivers

9F-62 SunOS 5.6 modified 15 Nov 1996

Kernel Functions for Drivers btop (9F)

NAME btop − convert size in bytes to size in pages (round down)

SYNOPSIS #include <sys/ddi.h>

unsigned long btop(unsigned long numbytes);

INTERFACE
LEVEL

Architecture independent level 1 (DDI/DKI).

ARGUMENTS numbytes Number of bytes.

DESCRIPTION btop() returns the number of memory pages that are contained in the specified number
of bytes, with downward rounding in the case that the byte count is not a page multiple.
For example, if the page size is 2048, then btop(4096) returns 2, and btop(4097) returns 2
as well. btop(0) returns 0.

RETURN VALUES The return value is always the number of pages. There are no invalid input values, and
therefore no error return values.

CONTEXT btop() can be called from user or interrupt context.

SEE ALSO btopr(9F), ddi_btop(9F), ptob(9F)

Writing Device Drivers

modified 11 Apr 1991 SunOS 5.6 9F-63

btopr (9F) Kernel Functions for Drivers

NAME btopr − convert size in bytes to size in pages (round up)

SYNOPSIS #include <sys/ddi.h>

unsigned long btopr(unsigned long numbytes);

INTERFACE
LEVEL

Architecture independent level 1 (DDI/DKI).

ARGUMENTS numbytes Number of bytes.

DESCRIPTION btopr() returns the number of memory pages contained in the specified number of bytes
memory, rounded up to the next whole page. For example, if the page size is 2048, then
btopr(4096) returns 2, and btopr(4097) returns 3.

RETURN VALUES The return value is always the number of pages. There are no invalid input values, and
therefore no error return values.

CONTEXT btopr() can be called from user or interrupt context.

SEE ALSO btop(9F), ddi_btopr(9F), ptob(9F)

Writing Device Drivers

9F-64 SunOS 5.6 modified 11 Apr 1991

Kernel Functions for Drivers bufcall (9F)

NAME bufcall − call a function when a buffer becomes available

SYNOPSIS #include <sys/types.h>
#include <sys/stream.h>

int bufcall (size_t size, uint pri, void (∗func) (intptr_t), intptr_t arg);

INTERFACE
LEVEL

Architecture independent level 1 (DDI/DKI).

ARGUMENTS size Number of bytes required for the buffer.

pri Priority of the allocb(9F) allocation request (not used).

func Function or driver routine to be called when a buffer becomes available.

arg Argument to the function to be called when a buffer becomes available.

DESCRIPTION bufcall() serves as a timeout(9F) call of indeterminate length. When a buffer allocation
request fails, bufcall() can be used to schedule the routine func, to be called with the
argument arg when a buffer becomes available. func may call allocb() or it may do some-
thing else.

RETURN VALUES If successful, bufcall() returns a bufcall id that can be used in a call to unbufcall() to
cancel the request. If the bufcall() scheduling fails, func is never called and 0 is returned.

CONTEXT bufcall() can be called from user or interrupt context.

EXAMPLES The purpose of this srv(9E) service routine is to add a header to all M_DATA messages.
Service routines must process all messages on their queues before returning, or arrange
to be rescheduled.

While there are messages to be processed (line 13), check to see if it is a high priority mes-
sage or a normal priority message that can be sent on (line 14). Normal priority message
that cannot be sent are put back on the message queue (line 34). If the message was a
high priority one, or if it was normal priority and canputnext(9F) succeeded, then send
all but M_DATA messages to the next module with putnext(9F) (line 16).

For M_DATA messages, try to allocate a buffer large enough to hold the header (line 18).
If no such buffer is available, the service routine must be rescheduled for a time when a
buffer is available. The original message is put back on the queue (line 20) and bufcall
(line 21) is used to attempt the rescheduling. It will succeed if the rescheduling succeeds,
indicating that qenable will be called subsequently with the argument q once a buffer of
the specified size (sizeof (struct hdr)) becomes available. If it does, qenable(9F) will put
q on the list of queues to have their service routines called. If bufcall() fails, timeout(9F)
(line 22) is used to try again in about a half second.

If the buffer allocation was successful, initialize the header (lines 25−28), make the mes-
sage type M_PROTO (line 29), link the M_DATA message to it (line 30), and pass it on (line
31).

modified 07 Nov 1996 SunOS 5.6 9F-65

bufcall (9F) Kernel Functions for Drivers

Note that this example ignores the bookkeeping needed to handle bufcall() and
timeout(9F) cancellation for ones that are still outstanding at close time.

1 struct hdr {
2 unsigned int h_size;
3 int h_version;
4 };
5
6 void xxxsrv(q)
7 queue_t ∗q;
8 {
9 mblk_t ∗bp;
10 mblk_t ∗mp;
11 struct hdr ∗hp;
12
13 while ((mp = getq(q)) != NULL) { /∗ get next message ∗/
14 if (mp->b_datap->db_type >= QPCTL || /∗ if high priority ∗/

canputnext(q)) { /∗ normal & can be passed ∗/
15 if (mp->b_datap->db_type != M_DATA)
16 putnext(q, mp); /∗ send all but M_DATA ∗/
17 else {
18 bp = allocb(sizeof(struct hdr), BPRI_LO);
19 if (bp == NULL) { /∗ if unsuccessful ∗/
20 putbq(q, mp); /∗ put it back ∗/
21 if (!bufcall(sizeof(struct hdr), BPRI_LO,

qenable, (long)q)) /∗ try to reschedule ∗/
22 timeout(qenable, (caddr_t)q, drv_usectohz(500000));
23 return (0);
24 }
25 hp = (struct hdr ∗)bp->b_wptr;
26 hp->h_size = msgdsize(mp); /∗ initialize header ∗/
27 hp->h_version = 1;
28 bp->b_wptr += sizeof(struct hdr);
29 bp->b_datap->db_type = M_PROTO; /∗ make M_PROTO ∗/
30 bp->b_cont = mp; /∗ link it ∗/
31 putnext(q, bp); /∗ pass it on ∗/
32 }
33 } else { /∗ normal priority, canputnext failed ∗/
34 putbq(q, mp); /∗ put back on the message queue ∗/
35 return (0);
36 }
37 }

return (0);
38 }

9F-66 SunOS 5.6 modified 07 Nov 1996

Kernel Functions for Drivers bufcall (9F)

SEE ALSO srv(9E), allocb(9F), canputnext(9F), esballoc(9F), esbbcall(9F), putnext(9F), qenable(9F),
testb(9F), timeout(9F), unbufcall(9F)

Writing Device Drivers
STREAMS Programming Guide

WARNINGS Even when func is called by bufcall(), allocb(9F) can fail if another module or driver had
allocated the memory before func was able to call allocb(9F).

modified 07 Nov 1996 SunOS 5.6 9F-67

bzero (9F) Kernel Functions for Drivers

NAME bzero − clear memory for a given number of bytes

SYNOPSIS #include <sys/types.h>
#include <sys/ddi.h>

void bzero(void ∗addr , size_t bytes);

INTERFACE
LEVEL

Architecture independent level 1 (DDI/DKI).

ARGUMENTS addr Starting virtual address of memory to be cleared.

bytes The number of bytes to clear starting at addr .

DESCRIPTION bzero() clears a contiguous portion of memory by filling it with zeros.

CONTEXT bzero() can be called from user or interrupt context.

SEE ALSO bcopy(9F), clrbuf(9F), kmem_zalloc(9F)

Writing Device Drivers

WARNINGS The address range specified must be within the kernel space. No range checking is done.
If an address outside of the kernel space is selected, the driver may corrupt the system in
an unpredictable way.

9F-68 SunOS 5.6 modified 1 May 1996

Kernel Functions for Drivers canput (9F)

NAME canput − test for room in a message queue

SYNOPSIS #include <sys/stream.h>

int canput(queue_t ∗q);

INTERFACE
LEVEL

Architecture independent level 1 (DDI/DKI).

ARGUMENTS q Pointer to the message queue.

DESCRIPTION canput() searches through the stream (starting at q) until it finds a queue containing a
service routine where the message can be enqueued, or until it reaches the end of the
stream. If found, the queue containing the service routine is tested to see if there is room
for a message in the queue.

canputnext(q) and bcanputnext(q, pri) should always be used in preference to
canput(q→q_next) and bcanput(q→q_next, pri) respectively.

RETURN VALUES 1 If the message queue is not full.

0 If the queue is full.

CONTEXT canput() can be called from user or interrupt context.

SEE ALSO bcanput(9F), bcanputnext(9F), canputnext(9F), putbq(9F), putnext(9F)

Writing Device Drivers
STREAMS Programming Guide

WARNINGS Drivers are responsible for both testing a queue with canput() and refraining from plac-
ing a message on the queue if canput() fails.

modified 11 Apr 1991 SunOS 5.6 9F-69

canputnext (9F) Kernel Functions for Drivers

NAME canputnext, bcanputnext − test for room in next module’s message queue

SYNOPSIS #include <sys/stream.h>

int canputnext(queue_t ∗q);

int bcanputnext(queue_t ∗q, unsigned char pri);

INTERFACE
LEVEL

Architecture independent level 1 (DDI/DKI).

ARGUMENTS q Pointer to a message queue belonging to the invoking module.

pri Minimum priority level.

DESCRIPTION The invocation canputnext(q); is an atomic equivalent of the canput(q→q_next); routine.
That is, the STREAMS framework provides whatever mutual exclusion is necessary to
insure that dereferencing q through its q_next field and then invoking canput(9F)
proceeds without interference from other threads.

bcanputnext(q, pri); is the equivalent of the bcanput(q→q_next, pri); routine.

canputnext(q); and bcanputnext(q, pri); should always be used in preference to
canput(q→q_next); and bcanput(q→q_next, pri); respectively.

See canput(9F) and bcanput(9F) for further details.

RETURN VALUES 1 If the message queue is not full.

0 If the queue is full.

CONTEXT canputnext() and bcanputnext() can be called from user or interrupt context.

WARNINGS Drivers are responsible for both testing a queue with canputnext() or bcanputnext() and
refraining from placing a message on the queue if the queue is full.

SEE ALSO bcanput(9F), canput(9F)

Writing Device Drivers
STREAMS Programming Guide

9F-70 SunOS 5.6 modified 31 Jan 1993

Kernel Functions for Drivers clrbuf (9F)

NAME clrbuf − erase the contents of a buffer

SYNOPSIS #include <sys/types.h>
#include <sys/buf.h>

void clrbuf(struct buf ∗bp);

INTERFACE
LEVEL

Architecture independent level 1 (DDI/DKI).

ARGUMENTS bp Pointer to the buf(9S) structure.

DESCRIPTION clrbuf() zeros a buffer and sets the b_resid member of the buf(9S) structure to 0. Zeros
are placed in the buffer starting at bp->b_un.b_addr for a length of bp->b_bcount bytes.
b_un.b_addr and b_bcount are members of the buf(9S) data structure.

CONTEXT clrbuf() can be called from user or interrupt context.

SEE ALSO getrbuf(9F), buf(9S)

Writing Device Drivers

modified 27 Jan 1993 SunOS 5.6 9F-71

cmn_err (9F) Kernel Functions for Drivers

NAME cmn_err, vcmn_err − display an error message or panic the system

SYNOPSIS #include <sys/cmn_err.h>
#include <sys/ddi.h>
#include <sys/sunddi.h>

void cmn_err(int level, char ∗format , ...);

#include <sys/varargs.h>

void vcmn_err(int level, char ∗format , va_list ap);

INTERFACE
LEVEL

Architecture independent level 1 (DDI/DKI).

ARGUMENTS
cmn_err() level A constant indicating the severity of the error condition.

format The message to be displayed.

vcmn_err() vcmn_err() takes level and format as described for cmn_err(), but its third argument is
different:

ap The variable argument list passed to the function.

DESCRIPTION
cmn_err() cmn_err() displays a specified message on the console. cmn_err() can also panic the sys-

tem. When the system panics, it attempts to save recent changes to data, display a “panic
message” on the console, attempt to write a core file, and halt system processing. See the
CE_PANIC level below.

level is a constant indicating the severity of the error condition. The four severity levels
are:

CE_CONT Used to continue another message or to display an informative
message not associated with an error. Note that multiple
CE_CONT messages without a newline may or may not appear
on the system console or in the system buffer as a single line
message. A single line message may be produced by construct-
ing the message with sprintf(9F) or vsprintf(9F) before calling
cmn_err().

CE_NOTE Used to display a message preceded with NOTICE. This mes-
sage is used to report system events that do not necessarily
require user action, but may interest the system administrator.
For example, a message saying that a sector on a disk needs to
be accessed repeatedly before it can be accessed correctly might
be noteworthy.

CE_WARN Used to display a message preceded with WARNING. This mes-
sage is used to report system events that require immediate
attention, such as those where if an action is not taken, the

9F-72 SunOS 5.6 modified 7 Jun 1996

Kernel Functions for Drivers cmn_err (9F)

system may panic. For example, when a peripheral device does
not initialize correctly, this level should be used.

CE_PANIC Used to display a message preceded with “panic”, and to panic
the system. Drivers should specify this level only under the
most severe conditions or when debugging a driver. A valid
use of this level is when the system cannot continue to function.
If the error is recoverable, or not essential to continued system
operation, do not panic the system.

format is the message to be displayed. It is a character string which may contain plain
characters and conversion specifications. By default, the message is sent both to the sys-
tem console and to the system buffer.

Each conversion specification in format is introduced by the % character, after which the
following appear in sequence:

An optional decimal digit specifying a minimum field width for numeric conver-
sion. The converted value will be right-justified and padded with leading zeroes
if it has fewer characters than the minimum.

An optional l (ll) specifying that a following d, D, o, O, x, X, or u conversion
character applies to a long (long long) integer argument. An l (ll) before any
other conversion character is ignored.

A character indicating the type of conversion to be applied:

d,D,o,O,x,X,u
The integer argument is converted to signed decimal (d, D), unsigned
octal (o, O), unsigned hexadecimal (x, X), or unsigned decimal (u),
respectively, and displayed. The letters abcdef are used for x and X
conversion.

c The character value of the argument is displayed.

b The %b conversion specification allows bit values to be displayed mean-
ingfully. Each %b takes an integer value and a format string from the
argument list. The first character of the format string should be the out-
put base encoded as a control character. This base is used to display the
integer argument. The remaining groups of characters in the format
string consist of a bit number (between 1 and 32, also encoded as a con-
trol character) and the next characters (up to the next control character or
’\0’) give the name of the bit field. The string corresponding to the bit
fields set in the integer argument is displayed after the numerical value.
See the EXAMPLES section.

s The argument is taken to be a string (character pointer), and characters
from the string are displayed until a null character is encountered. If the
character pointer is NULL, the string <null string> is used in its place.

% Copy a %; no argument is converted.

modified 7 Jun 1996 SunOS 5.6 9F-73

cmn_err (9F) Kernel Functions for Drivers

The first character in format affects where the message will be written:

! the message goes only to the system buffer.

ˆ the message goes only to the console.

? If level is also CE_CONT, the message is always sent to the system buffer, but is
only written to the console when the system has been booted in verbose mode.
See kernel(1M). If neither condition is met, the ’? ’ character has no effect and is
simply ignored.

To display the contents of the system buffer, use the dmesg(1M) command.

cmn_err() appends a \n to each format , except when level is CE_CONT.

vcmn_err() vcmn_err() is identical to cmn_err() except that its last argument, ap , is a pointer to a
variable list of arguments. ap contains the list of arguments used by the conversion
specifications in format . ap must be initialized by calling va_start(9F). va_end(9F) is used
to clean up and must be called after each traversal of the list. Multiple traversals of the
argument list, each bracketed by va_start(9F) and va_end(9F), are possible.

RETURN VALUES None. However, if an unknown level is passed to cmn_err(), the following panic error
message is displayed:

panic: unknown level in cmn_err (level= level , msg= format)

CONTEXT cmn_err() can be called from user or kernel context.

EXAMPLES This first example shows how cmn_err() can record tracing and debugging information
only in the system buffer (lines 17); display problems with a device only on the system
console (line 23); or display problems with the device on both the system console and in
the system buffer (line 28).

1 struct reg {
2 uchar_t data;
3 uchar_t csr;
4 };
5
6 struct xxstate {
7 . . .
8 dev_info_t ∗dip;
9 struct reg ∗regp;
10 . . .
11 };
12
13 dev_t dev;
14 struct xxstate ∗xsp;
15 . . .
16 #ifdef DEBUG /∗ in debugging mode, log function call ∗/
17 cmn_err(CE_CONT, "!%s%d: xxopen function called.",
18 ddi_binding_name(xsp->dip), getminor(dev));

9F-74 SunOS 5.6 modified 7 Jun 1996

Kernel Functions for Drivers cmn_err (9F)

19 #endif /∗ end DEBUG ∗/
20 . . .
21 /∗ display device power failure on system console ∗/
22 if ((xsp->regp->csr & POWER) == OFF)
23 cmn_err(CE_NOTE, "ˆ%s%d: xxopen: Power is OFF.",
24 ddi_binding_name(xsp->dip), getminor(dev));
25 . . .
26 /∗ display warning if device has bad VTOC ∗/
27 if (xsp->regp->csr & BADVTOC)
28 cmn_err(CE_WARN, "%s%d: xxopen: Bad VTOC.",
29 ddi_binding_name(xsp->dip), getminor(dev));

The second example shows how to use the %b conversion specification. Because of the
leading ’? ’ character in the format string, this message will always be logged, but it will
only be displayed when the kernel is booted in verbose mode.

cmn_err(CE_CONT, "?reg=0x%b\n", regval, "\020\3Intr\2Err\1Enable");

When regval is set to (decimal) 13, the following message would be displayed:

reg=0xd<Intr,,Enable>

The third example is an error reporting routine which accepts a variable number of argu-
ments and displays a single line error message both in the system buffer and on the sys-
tem console. Note the use of vsprintf() to construct the error message before calling
cmn_err().

#include <sys/varargs.h>
#include <sys/ddi.h>
#include <sys/sunddi.h>

#define MAX_MSG 256

void
xxerror(dev_info_t ∗dip, int level, const char ∗fmt, . . .)
{

va_list ap;
int instance;
char buf[MAX_MSG],

∗name;

instance = ddi_get_instance(dip);
name = ddi_binding_name(dip);

/∗ format buf using fmt and arguments contained in ap ∗/
va_start(ap, fmt);
vsprintf(buf, fmt, ap);
va_end(ap);

modified 7 Jun 1996 SunOS 5.6 9F-75

cmn_err (9F) Kernel Functions for Drivers

/∗ pass formatted string to cmn_err(9F) ∗/
cmn_err(level, "%s%d: %s", name, instance, buf);

}

SEE ALSO dmesg(1M), kernel(1M), printf(3S), ddi_binding_name(9F), sprintf(9F), va_arg(9F),
va_end(9F), va_start(9F), vsprintf(9F)

Writing Device Drivers

WARNINGS cmn_err() with the CE_CONT argument can be used by driver developers as a driver
code debugging tool. However, using cmn_err() in this capacity can change system tim-
ing characteristics.

NOTES At times, a driver may encounter error conditions requiring the attention of a primary or
secondary system console monitor. These conditions may mean halting multiuser pro-
cessing; however, this must be done with caution. Except during the debugging stage, a
driver should never stop the system.

See the “Debugging” chapter in Writing Device Drivers.

BUGS cmn_err() does not provide all of the functionality provided by printf(3S).

9F-76 SunOS 5.6 modified 7 Jun 1996

Kernel Functions for Drivers condvar (9F)

NAME condvar, cv_init, cv_destroy, cv_wait, cv_signal, cv_broadcast, cv_wait_sig,
cv_timedwait, cv_timedwait_sig − condition variable routines

SYNOPSIS #include <sys/ksynch.h>

void cv_init(kcondvar_t ∗cvp, char ∗name, kcv_type_t type , void ∗arg);

void cv_destroy(kcondvar_t ∗cvp);

void cv_wait(kcondvar_t ∗cvp, kmutex_t ∗mp);

void cv_signal(kcondvar_t ∗cvp);

void cv_broadcast(kcondvar_t ∗cvp);

int cv_wait_sig(kcondvar_t ∗cvp, kmutex_t ∗mp);

int cv_timedwait(kcondvar_t ∗cvp, kmutex_t ∗mp, clock_t timeout);

int cv_timedwait_sig(kcondvar_t ∗cvp, kmutex_t ∗mp, clock_t timeout);

INTERFACE
LEVEL

Solaris DDI specific (Solaris DDI).

ARGUMENTS cvp A pointer to an abstract data type kcondvar_t.

mp A pointer to a mutual exclusion lock (kmutex_t), initialized by mutex_init(9F)
and held by the caller.

name Descriptive string. This is obsolete and should be NULL. (Non-NULL strings
are legal, but they’re a waste of kernel memory.)

type The constant CV_DRIVER.

arg A type-specific argument, drivers should pass arg as NULL.

timeout A time, in absolute ticks since boot, when cv_timedwait() or
cv_timedwait_sig() should return.

DESCRIPTION Condition variables are a standard form of thread synchronization. They are designed to
be used with mutual exclusion locks (mutexes). The associated mutex is used to ensure
that a condition can be checked atomically and that the thread can block on the associated
condition variable without missing either a change to the condition or a signal that the
condition has changed. Condition variables must be initialized by calling cv_init(), and
must be deallocated by calling cv_destroy().

The usual use of condition variables is to check a condition (for example, device state,
data structure reference count, etc.) while holding a mutex which keeps other threads
from changing the condition. If the condition is such that the thread should block,
cv_wait() is called with a related condition variable and the mutex. At some later point
in time, another thread would acquire the mutex, set the condition such that the previous
thread can be unblocked, unblock the previous thread with cv_signal() or
cv_broadcast(), and then release the mutex.

modified 7 May 1997 SunOS 5.6 9F-77

condvar (9F) Kernel Functions for Drivers

cv_wait() suspends the calling thread and exits the mutex atomically so that another
thread which holds the mutex cannot signal on the condition variable until the blocking
thread is blocked. Before returning, the mutex is reacquired.

cv_signal() signals the condition and wakes one blocked thread. All blocked threads can
be unblocked by calling cv_broadcast(). You must acquire the mutex passed into
cv_wait() before calling cv_signal() or cv_broadcast().

The function cv_wait_sig() is similar to cv_wait() but returns 0 if a signal (for example,
by kill(2)) is sent to the thread. In any case, the mutex is reacquired before returning.

The function cv_timedwait() is similar to cv_wait(), except that it returns −1 without the
condition being signaled after the timeout time has been reached.

The function cv_timedwait_sig() is similar to cv_timedwait(), and cv_wait_sig(), except
that it returns −1 without the condition being signaled after the timeout time has been
reached, or 0 if a signal (for example, by kill(2)) is sent to the thread.

For both cv_timedwait() and cv_timedwait_sig(), time is in absolute clock ticks since the
last system reboot. The current time may be found by calling drv_getparm(9F) with the
argument LBOLT.

RETURN VALUES 0 For cv_wait_sig() and cv_timedwait_sig() indicates that the condition
was not necessarily signaled and the function returned because a signal
(as in kill(2)) was pending.

-1 For cv_timedwait() and cv_timedwait_sig() indicates that the condition
was not necessarily signaled and the function returned because the
timeout time was reached.

> 0 For cv_wait_sig(), cv_timedwait() or cv_timedwait_sig() indicates that
the condition was met and the function returned due to a call to
cv_signal() or cv_broadcast().

CONTEXT These functions can be called from user, kernel or interrupt context. In most cases, how-
ever, cv_wait(), cv_timedwait(), cv_wait_sig(), and cv_timedwait_sig() should not be
called from interrupt context, and cannot be called from a high-level interrupt context.

If cv_wait(), cv_timedwait(), cv_wait_sig(), or cv_timedwait_sig() are used from inter-
rupt context, lower-priority interrupts will not be serviced during the wait. This means
that if the thread that will eventually perform the wakeup becomes blocked on anything
that requires the lower-priority interrupt, the system will hang.

For example, the thread that will perform the wakeup may need to first allocate memory.
This memory allocation may require waiting for paging I/O to complete, which may
require a lower-priority disk or network interrupt to be serviced. In general, situations
like this are hard to predict, so it is advisable to avoid waiting on condition variables or
semaphores in an interrupt context.

EXAMPLES Here the condition being waited for is a flag value in a driver’s unit structure. The condi-
tion variable is also in the unit structure, and the flag word is protected by a mutex in the
unit structure.

9F-78 SunOS 5.6 modified 7 May 1997

Kernel Functions for Drivers condvar (9F)

mutex_enter(&un->un_lock);
while (un->un_flag & UNIT_BUSY)

cv_wait(&un->un_cv, &un->un_lock);
un->un_flag |= UNIT_BUSY;
mutex_exit(&un->un_lock);

At some later point in time, another thread would execute the following to unblock any
threads blocked by the above code.

mutex_enter(&un->un_lock);
un->un_flag &= ˜UNIT_BUSY;
cv_broadcast(&un->un_cv);
mutex_exit(&un->un_lock);

SEE ALSO kill(2), drv_getparm(9F), mutex(9F), mutex_init(9F)

Writing Device Drivers

modified 7 May 1997 SunOS 5.6 9F-79

copyb (9F) Kernel Functions for Drivers

NAME copyb − copy a message block

SYNOPSIS #include <sys/stream.h>

mblk_t ∗copyb(mblk_t ∗bp);

INTERFACE
LEVEL

Architecture independent level 1 (DDI/DKI).

ARGUMENTS bp Pointer to the message block from which data is copied.

DESCRIPTION copyb() allocates a new message block, and copies into it the data from the block that bp
denotes. The new block will be at least as large as the block being copied. copyb() uses
the b_rptr and b_wptr members of bp to determine how many bytes to copy.

RETURN VALUES If successful, copyb() returns a pointer to the newly allocated message block containing
the copied data. Otherwise, it returns a NULL pointer.

CONTEXT copyb() can be called from user or interrupt context.

EXAMPLES For each message in the list, test to see if the downstream queue is full with the
canputnext(9F) function (line 21). If it is not full, use copyb to copy a header message
block, and dupmsg(9F) to duplicate the data to be retransmitted. If either operation fails,
reschedule a timeout at the next valid interval.

Update the new header block with the correct destination address (line 34), link the mes-
sage to it (line 35), and send it downstream (line 36). At the end of the list, reschedule
this routine.

1 struct retrans {
2 mblk_t ∗r_mp;
3 int r_address;
4 queue_t ∗r_outq;
5 struct retrans ∗r_next;
6 };
7
8 struct protoheader {

. . .
9 int h_address;

. . .
10 };
11
12 mblk_t ∗header;
13
14 void
15 retransmit(struct retrans ∗ret)
16 {
17 mblk_t ∗bp, ∗mp;

9F-80 SunOS 5.6 modified 07 Nov 1996

Kernel Functions for Drivers copyb (9F)

18 struct protoheader ∗php;
19
20 while (ret) {
21 if (!canputnext(ret->r_outq)) { /∗ no room ∗/
22 ret = ret->r_next;
23 continue;
24 }
25 bp = copyb(header); /∗ copy header msg. block ∗/
26 if (bp == NULL)
27 break;
28 mp = dupmsg(ret->r_mp); /∗ duplicate data ∗/
29 if (mp == NULL) { /∗ if unsuccessful ∗/
30 freeb(bp); /∗ free the block ∗/
31 break;
32 }
33 php = (struct protoheader ∗)bp->b_rptr;
34 php->h_address = ret->r_address; /∗ new header ∗/
35 bp->bp_cont = mp; /∗ link the message ∗/
36 putnext(ret->r_outq, bp); /∗ send downstream ∗/
37 ret = ret->r_next;
38 }
39 /∗ reschedule ∗/
40 (void) timeout(retransmit, (caddr_t)ret, RETRANS_TIME);
41 }

SEE ALSO allocb(9F), canputnext(9F), dupmsg(9F)

Writing Device Drivers
STREAMS Programming Guide

modified 07 Nov 1996 SunOS 5.6 9F-81

copyin (9F) Kernel Functions for Drivers

NAME copyin − copy data from a user program to a driver buffer

SYNOPSIS #include <sys/types.h>
#include <sys/ddi.h>

int copyin(const void ∗userbuf, void ∗driverbuf, size_t cn);

INTERFACE
LEVEL

Architecture independent level 1 (DDI/DKI).

ARGUMENTS userbuf User program source address from which data is transferred.

driverbuf Driver destination address to which data is transferred.

cn Number of bytes transferred.

DESCRIPTION copyin() copies data from a user program source address to a driver buffer. The driver
developer must ensure that adequate space is allocated for the destination address.

Addresses that are word-aligned are moved most efficiently. However, the driver
developer is not obligated to ensure alignment. This function automatically finds the
most efficient move according to address alignment.

RETURN VALUES Under normal conditions a 0 is returned indicating a successful copy. Otherwise, a -1 is
returned if one of the following occurs:

· paging fault; the driver tried to access a page of memory for which it did
not have read or write access

· invalid user address, such as a user area or stack area

· invalid address that would have resulted in data being copied into the user
block

If a -1 is returned to the caller, driver entry point routines should return EFAULT.

CONTEXT copyin() can be called from user context only.

EXAMPLES A driver ioctl(9E) routine (line 10) can be used to get or set device attributes or registers.
In the XX_GETREGS condition (line 17), the driver copies the current device register
values to a user data area (line 18). If the specified argument contains an invalid address,
an error code is returned.

1 struct device { /∗ layout of physical device registers ∗/
2 int control; /∗ physical device control word ∗/
3 int status; /∗ physical device status word ∗/
4 short recv_char; /∗ receive character from device ∗/
5 short xmit_char; /∗ transmit character to device ∗/
6 };
7
8 extern struct device xx_addr[]; /∗ phys. device regs. location ∗/
9 . . .

9F-82 SunOS 5.6 modified 1 May 1996

Kernel Functions for Drivers copyin (9F)

10 xx_ioctl(dev_t dev, int cmd, int arg, int mode,
11 cred_t ∗cred_p, int ∗rval_p)
12 ...
13 {
14 register struct device ∗rp = &xx_addr[getminor(dev) >> 4];
15 switch (cmd) {
16
17 case XX_SETREGS: /∗ copy device regs. to user program ∗/
18 if (copyin(arg, rp, sizeof(struct device)))
19 return(EFAULT);
20 break;
21 ...
22 }
23 ...
24 }

SEE ALSO ioctl(9E), bcopy(9F), copyout(9F), ddi_copyin(9F), ddi_copyout(9F), uiomove(9F).

Writing Device Drivers

NOTES Driver writers who intend to support layered ioctls in their ioctl(9E) routines should use
ddi_copyin(9F) instead.

Driver defined locks should not be held across calls to this function.

modified 1 May 1996 SunOS 5.6 9F-83

copymsg (9F) Kernel Functions for Drivers

NAME copymsg − copy a message

SYNOPSIS #include <sys/stream.h>

mblk_t ∗copymsg(mblk_t ∗mp);

INTERFACE
LEVEL

Architecture independent level 1 (DDI/DKI).

ARGUMENTS mp Pointer to the message to be copied.

DESCRIPTION copymsg() forms a new message by allocating new message blocks, and copying the con-
tents of the message referred to by mp (using the copyb(9F) function). It returns a pointer
to the new message.

RETURN VALUES If the copy is successful, copymsg() returns a pointer to the new message. Otherwise, it
returns a NULL pointer.

CONTEXT copymsg() can be called from user or interrupt context.

EXAMPLES The routine lctouc() converts all the lowercase ASCII characters in the message to upper-
case. If the reference count is greater than one (line 8), then the message is shared, and
must be copied before changing the contents of the data buffer. If the call to the
copymsg() function fails (line 9), return NULL (line 10), otherwise, free the original mes-
sage (line 11). If the reference count was equal to 1, the message can be modified. For
each character (line 16) in each message block (line 15), if it is a lowercase letter, convert it
to an uppercase letter (line 18). A pointer to the converted message is returned (line 21).

1 mblk_t ∗lctouc(mp)
2 mblk_t ∗mp;
3 {
4 mblk_t ∗cmp;
5 mblk_t ∗tmp;
6 unsigned char ∗cp;
7
8 if (mp->b_datap->db_ref > 1) {
9 if ((cmp = copymsg(mp)) == NULL)
10 return (NULL);
11 freemsg(mp);
12 } else {
13 cmp = mp;
14 }
15 for (tmp = cmp; tmp; tmp = tmp->b_cont) {
16 for (cp = tmp->b_rptr; cp < tmp->b_wptr; cp++) {
17 if ((∗cp <= ’z’) && (∗cp >= ’a’))
18 ∗cp -= 0x20;
19 }
20 }

9F-84 SunOS 5.6 modified 27 Jun 1995

Kernel Functions for Drivers copymsg (9F)

21 return(cmp);
22 }

SEE ALSO allocb(9F), copyb(9F), msgb(9S)

Writing Device Drivers
STREAMS Programming Guide

modified 27 Jun 1995 SunOS 5.6 9F-85

copyout (9F) Kernel Functions for Drivers

NAME copyout − copy data from a driver to a user program

SYNOPSIS #include <sys/types.h>
#include <sys/ddi.h>

int copyout(const void ∗driverbuf, void ∗userbuf, size_t cn);

INTERFACE
LEVEL

Architecture independent level 1 (DDI/DKI).

ARGUMENTS driverbuf Source address in the driver from which the data is transferred.

userbuf Destination address in the user program to which the data is transferred.

cn Number of bytes moved.

DESCRIPTION copyout() copies data from driver buffers to user data space.

Addresses that are word-aligned are moved most efficiently. However, the driver
developer is not obligated to ensure alignment. This function automatically finds the
most efficient move algorithm according to address alignment.

RETURN VALUES Under normal conditions a 0 is returned to indicate a successful copy. Otherwise, a -1 is
returned if one of the following occurs:

· paging fault; the driver tried to access a page of memory for which it did
not have read or write access

· invalid user address, such as a user area or stack area

· invalid address that would have resulted in data being copied into the user
block

If a -1 is returned to the caller, driver entry point routines should return EFAULT.

CONTEXT copyout() can be called from user context only.

EXAMPLES A driver ioctl(9E) routine (line 10) can be used to get or set device attributes or registers.
In the XX_GETREGS condition (line 17), the driver copies the current device register
values to a user data area (line 18). If the specified argument contains an invalid address,
an error code is returned.

1 struct device { /∗ layout of physical device registers ∗/
2 int control; /∗ physical device control word ∗/
3 int status; /∗ physical device status word ∗/
4 short recv_char; /∗ receive character from device ∗/
5 short xmit_char; /∗ transmit character to device ∗/
6 };
7
8 extern struct device xx_addr[]; /∗ phys. device regs. location ∗/
9 . . .
10 xx_ioctl(dev_t dev, int cmd, int arg, int mode,
11 cred_t ∗cred_p, int ∗rval_p)

9F-86 SunOS 5.6 modified 1 May 1996

Kernel Functions for Drivers copyout (9F)

12 ...
13 {
14 register struct device ∗rp = &xx_addr[getminor(dev) >> 4];
15 switch (cmd) {
16
17 case XX_GETREGS: /∗ copy device regs. to user program ∗/
18 if (copyout(rp, arg, sizeof(struct device)))
19 return(EFAULT);
20 break;
21 ...
22 }
23 ...
24 }

SEE ALSO ioctl(9E), bcopy(9F), copyin(9F), ddi_copyin(9F), ddi_copyout(9F), uiomove(9F)

Writing Device Drivers

NOTES Driver writers who intend to support layered ioctls in their ioctl(9E) routines should use
ddi_copyout(9F) instead.

Driver defined locks should not be held across calls to this function.

modified 1 May 1996 SunOS 5.6 9F-87

csx_AccessConfigurationRegister (9F) Kernel Functions for Drivers

NAME csx_AccessConfigurationRegister − read or write a PC Card Configuration Register

SYNOPSIS #include <sys/pccard.h>

int32_t csx_AccessConfigurationRegister(client_handle_t ch, access_config_reg_t ∗acr);

INTERFACE
LEVEL

Solaris DDI Specific (Solaris DDI)

ARGUMENTS ch Client handle returned from csx_RegisterClient(9F).

acr Pointer to an access_config_reg_t structure.

DESCRIPTION This function allows a client to read or write a PC Card Configuration Register.

STRUCTURE
MEMBERS

The structure members of access_config_reg_t are:

uint32_t Socket; /∗ socket number ∗/
uint32_t Action; /∗ register access operation ∗/
uint32_t Offset; /∗ config register offset ∗/
uint32_t Value; /∗ value read or written ∗/

The fields are defined as follows:

Socket Not used in Solaris, but for portability with other Card Services implementa-
tions, it should be set to the logical socket number.

Action May be set to CONFIG_REG_READ or CONFIG_REG_WRITE. All other values
in the Action field are reserved for future use. If the Action field is set to
CONFIG_REG_WRITE, the Value field is written to the specified configuration
register. Card Services does not read the configuration register after a write
operation. For that reason, the Value field is only updated by a
CONFIG_REG_READ request.

Offset Specifies the byte offset for the desired configuration register from the PC
Card configuration register base specified in csx_RequestConfiguration(9F).

Value Contains the value read from the PC Card Configuration Register for a read
operation. For a write operation, the Value field contains the value to write to
the configuration register. As noted above, on return from a write request, the
Value field is the value written to the PC Card and not any changed value that
may have resulted from the write request (that is, no read after write is per-
formed).

A client must be very careful when writing to the COR (Configuration Option Register) at
offset 0. This has the potential to change the type of interrupt request generated by the
PC Card or place the card in the reset state. Either request may have undefined results.
The client should read the register to determine the appropriate setting for the interrupt
mode (Bit 6) before writing to the register.

9F-88 SunOS 5.6 modified 19 Jul 1996

Kernel Functions for Drivers csx_AccessConfigurationRegister (9F)

If a client wants to reset a PC Card, the csx_ResetFunction(9F) function should be used.
Unlike csx_AccessConfigurationRegister(), the csx_ResetFunction(9F) function gen-
erates a series of event notifications to all clients using the PC Card, so they can re-
establish the appropriate card state after the reset operation is complete.

RETURN VALUES CS_SUCCESS Successful operation.

CS_BAD_ARGS Specified arguments are invalid. Client specifies an
Offset that is out of range or neither
CONFIG_REG_READ or CONFIG_REG_WRITE is set.

CS_UNSUPPORTED_MODE Client has not called csx_RequestConfiguration(9F)
before calling this function.

CS_BAD_HANDLE Client handle is invalid.

CS_NO_CARD No PC card in socket.

CS_UNSUPPORTED_FUNCTION No PCMCIA hardware installed.

CONTEXT This function may be called from user or kernel context.

SEE ALSO csx_ParseTuple(9F), csx_RegisterClient(9F), csx_RequestConfiguration(9F),
csx_ResetFunction(9F)

PC Card 95 Standard, PCMCIA/JEIDA

modified 19 Jul 1996 SunOS 5.6 9F-89

csx_ConvertSize (9F) Kernel Functions for Drivers

NAME csx_ConvertSize − convert device sizes

SYNOPSIS #include <sys/pccard.h>

int32_t csx_ConvertSize(convert_size_t ∗cs);

INTERFACE
LEVEL

Solaris DDI Specific (Solaris DDI)

ARGUMENTS cs Pointer to a convert_size_t structure.

DESCRIPTION csx_ConvertSize() is a Solaris-specific extension that provides a method for clients to
convert from one type of device size representation to another, that is, from devsize for-
mat to bytes and vice versa.

STRUCTURE
MEMBERS

The structure members of convert_size_t are:

uint32_t Attributes;
uint32_t bytes;
uint32_t devsize;

The fields are defined as follows:

Attributes This is a bit-mapped field that identifies the type of size conversion to be
performed. The field is defined as follows:

CONVERT_BYTES_TO_DEVSIZE Converts bytes to devsize format

CONVERT_DEVSIZE_TO_BYTES Converts devsize format to bytes

bytes If CONVERT_BYTES_TO_DEVSIZE is set, the value in the bytes field is con-
verted to a devsize format and returned in the devsize field.

devsize If CONVERT_DEVSIZE_TO_BYTES is set, the value in the devsize field is
converted to a bytes value and returned in the bytes field.

RETURN VALUES CS_SUCCESS Successful operation.

CS_BAD_SIZE Invalid bytes or devsize.

CS_UNSUPPORTED_FUNCTION No PCMCIA hardware installed.

CONTEXT This function may be called from user or kernel context.

SEE ALSO csx_ModifyWindow(9F), csx_RequestWindow(9F)

PC Card 95 Standard, PCMCIA/JEIDA

9F-90 SunOS 5.6 modified 19 Jul 1996

Kernel Functions for Drivers csx_ConvertSpeed (9F)

NAME csx_ConvertSpeed − convert device speeds

SYNOPSIS #include <sys/pccard.h>

int32_t csx_ConvertSpeed(convert_speed_t ∗cs);

INTERFACE
LEVEL

Solaris DDI Specific (Solaris DDI)

ARGUMENTS cs Pointer to a convert_speed_t structure.

DESCRIPTION This function is a Solaris-specific extension that provides a method for clients to convert
from one type of device speed representation to another, that is, from devspeed format to
nS and vice versa.

STRUCTURE
MEMBERS

The structure members of convert_speed_t are:

uint32_t Attributes;
uint32_t nS;
uint32_t devspeed;

The fields are defined as follows:

Attributes This is a bit-mapped field that identifies the type of speed conversion to be
performed. The field is defined as follows:

CONVERT_NS_TO_DEVSPEED Converts nS to devspeed format

CONVERT_DEVSPEED_TO_NS Converts devspeed format to nS

nS If CONVERT_NS_TO_DEVSPEED is set, the value in the nS field is con-
verted to a devspeed format and returned in the devspeed field.

devspeed If CONVERT_DEVSPEED_TO_NS is set, the value in the devspeed field is
converted to an nS value and returned in the nS field.

RETURN VALUES CS_SUCCESS Successful operation.

CS_BAD_SPEED Invalid nS or devspeed.

CS_BAD_ATTRIBUTE Bad Attributes value.

CS_UNSUPPORTED_FUNCTION No PCMCIA hardware installed.

CONTEXT This function may be called from user or kernel context.

SEE ALSO csx_ModifyWindow(9F), csx_RequestWindow(9F)

PC Card 95 Standard, PCMCIA/JEIDA

modified 19 Jul 1996 SunOS 5.6 9F-91

csx_CS_DDI_Info (9F) Kernel Functions for Drivers

NAME csx_CS_DDI_Info − obtain DDI information

SYNOPSIS #include <sys/pccard.h>

int32_t csx_CS_DDI_Info(cs_ddi_info_t ∗cdi);

INTERFACE
LEVEL

Solaris DDI Specific (Solaris DDI)

ARGUMENTS cdi Pointer to a cs_ddi_info_t structure.

DESCRIPTION This function is a Solaris-specific extension that is used by clients that need to provide the
xx_getinfo driver entry point (see getinfo(9E)). It provides a method for clients to obtain
DDI information based on their socket number and client driver name.

STRUCTURE
MEMBERS

The structure members of cs_ddi_info_t are:

uint32_t Socket; /∗ socket number ∗/
char ∗driver_name; /∗ unique driver name ∗/
dev_info_t ∗dip; /∗ dip ∗/
int32_t instance; /∗ instance ∗/

The fields are defined as follows:

Socket This field must be set to the physical socket number that the client is
interested in getting information about.

driver_name This field must be set to a string containing the name of the client driver
to get information about.

If csx_CS_DDI_Info() is used in a client’s xx_getinfo function, then the client will typi-
cally extract the Socket value from the ∗arg argument and it must set the driver_name
field to the same string used with csx_RegisterClient(9F).

If the driver_name is found on the Socket, the csx_CS_DDI_Info() function returns both
the dev_info pointer and the instance fields for the requested driver instance.

RETURN VALUES CS_SUCCESS Successful operation.

CS_BAD_SOCKET Client not found on Socket.

CS_UNSUPPORTED_FUNCTION No PCMCIA hardware installed.

CONTEXT This function may be called from user or kernel context.

EXAMPLES The following example shows how a client might call csx_CS_DDI_Info() in the client’s
xx_getinfo function to return the dip or the instance number:

9F-92 SunOS 5.6 modified 19 Jul 1996

Kernel Functions for Drivers csx_CS_DDI_Info (9F)

static int
pcepp_getinfo(dev_info_t ∗dip, ddi_info_cmd_t cmd, void ∗arg,

void ∗∗result)
{

int error = DDI_SUCCESS;
pcepp_state_t ∗pps;
cs_ddi_info_t cs_ddi_info;

switch (cmd) {

case DDI_INFO_DEVT2DEVINFO:
cs_ddi_info.Socket = getminor((dev_t)arg) & 0x3f;
cs_ddi_info.driver_name = pcepp_name;
if (csx_CS_DDI_Info(&cs_ddi_info) != CS_SUCCESS)

return (DDI_FAILURE);
if (!(pps = ddi_get_soft_state(pcepp_soft_state_p,

cs_ddi_info.instance))) {
∗result = NULL;

} else {
∗result = pps->dip;

}
break;

case DDI_INFO_DEVT2INSTANCE:
cs_ddi_info.Socket = getminor((dev_t)arg) & 0x3f;
cs_ddi_info.driver_name = pcepp_name;
if (csx_CS_DDI_Info(&cs_ddi_info) != CS_SUCCESS)

return (DDI_FAILURE);
∗result = (void ∗)cs_ddi_info.instance;
break;

default:
error = DDI_FAILURE;
break;

}

return (error);
}

SEE ALSO getinfo(9E), csx_RegisterClient(9F), ddi_get_instance(9F)

PC Card 95 Standard, PCMCIA/JEIDA

modified 19 Jul 1996 SunOS 5.6 9F-93

csx_DeregisterClient (9F) Kernel Functions for Drivers

NAME csx_DeregisterClient − remove client from Card Services list

SYNOPSIS #include <sys/pccard.h>

int32_t csx_DeregisterClient(client_handle_t ch);

INTERFACE
LEVEL

Solaris DDI Specific (Solaris DDI)

ARGUMENTS ch Client handle returned from csx_RegisterClient(9F).

DESCRIPTION This function removes a client from the list of registered clients maintained by Card Ser-
vices. The Client Handle returned by csx_RegisterClient(9F) is passed in the
client_handle_t argument.

The client must have returned all requested resources before this function is called. If
any resources have not been released, CS_IN_USE is returned.

RETURN VALUES CS_SUCCESS Successful operation.

CS_BAD_HANDLE Client handle is invalid.

CS_IN_USE Resources not released by this client.

CS_UNSUPPORTED_FUNCTION No PCMCIA hardware installed.

CONTEXT This function may be called from user or kernel context.

SEE ALSO csx_RegisterClient(9F)

PC Card 95 Standard, PCMCIA/JEIDA

WARNINGS Clients should be prepared to receive callbacks until Card Services returns from this
request successfully.

9F-94 SunOS 5.6 modified 19 Jul 1996

Kernel Functions for Drivers csx_DupHandle (9F)

NAME csx_DupHandle − duplicate access handle

SYNOPSIS #include <sys/pccard.h>

int32_t csx_DupHandle(acc_handle_t handle1, acc_handle_t ∗handle2, uint32_t flags);

INTERFACE
LEVEL

Solaris DDI Specific (Solaris DDI)

ARGUMENTS handle1 The access handle returned from csx_RequestIO(9F) or
csx_RequestWindow(9F) that is to be duplicated.

handle2 A pointer to the newly-created duplicated data access handle.

flags The access attributes that will be applied to the new handle.

DESCRIPTION This function duplicates the handle, handle1, into a new handle, handle2, that has the
access attributes specified in the flags argument. Both the original handle and the new
handle are active and can be used with the common access functions.

Both handles must be explicitly freed when they are no longer necessary.

The flags argument is bit-mapped. The following bits are defined:

WIN_ACC_NEVER_SWAP Host endian byte ordering

WIN_ACC_BIG_ENDIAN Big endian byte ordering

WIN_ACC_LITTLE_ENDIAN Little endian byte ordering

WIN_ACC_STRICT_ORDER Program ordering references

WIN_ACC_UNORDERED_OK May re-order references

WIN_ACC_MERGING_OK Merge stores to consecutive locations

WIN_ACC_LOADCACHING_OK May cache load operations

WIN_ACC_STORECACHING_OK May cache store operations

WIN_ACC_BIG_ENDIAN and WIN_ACC_LITTLE_ENDIAN describe the endian charac-
teristics of the device as big endian or little endian, respectively. Even though most of the
devices will have the same endian characteristics as their busses, there are examples of
devices with an I/O processor that has opposite endian characteristics of the busses.
When WIN_ACC_BIG_ENDIAN or WIN_ACC_LITTLE_ENDIAN is set, byte swapping will
automatically be performed by the system if the host machine and the device data for-
mats have opposite endian characteristics. The implementation may take advantage of
hardware platform byte swapping capabilities.

When WIN_ACC_NEVER_SWAP is specified, byte swapping will not be invoked in the
data access functions.

modified 19 Jul 1996 SunOS 5.6 9F-95

csx_DupHandle (9F) Kernel Functions for Drivers

The ability to specify the order in which the CPU will reference data is provided by the
following flags bits. Only one of the following bits may be specified:

WIN_ACC_STRICT_ORDER
The data references must be issued by a CPU in program order. Strict order-
ing is the default behavior.

WIN_ACC_UNORDERED_OK
The CPU may re-order the data references. This includes all kinds of re-
ordering (that is, a load followed by a store may be replaced by a store fol-
lowed by a load).

WIN_ACC_MERGING_OK
The CPU may merge individual stores to consecutive locations. For example,
the CPU may turn two consecutive byte stores into one halfword store. It may
also batch individual loads. For example, the CPU may turn two consecutive
byte loads into one halfword load. Setting this bit also implies re-ordering.

WIN_ACC_LOADCACHING_OK
The CPU may cache the data it fetches and reuse it until another store occurs.
The default behavior is to fetch new data on every load. Setting this bit also
implies merging and re-ordering.

WIN_ACC_STORECACHING_OK
The CPU may keep the data in the cache and push it to the device (perhaps
with other data) at a later time. The default behavior is to push the data right
away. Setting this bit also implies load caching, merging, and re-ordering.

These values are advisory, not mandatory. For example, data can be ordered
without being merged or cached, even though a driver requests unordered, merged
and cached together.

RETURN VALUES CS_SUCCESS Successful operation.

CS_FAILURE Error in flags argument or handle could not be dupli-
cated for some reason.

CS_UNSUPPORTED_FUNCTION No PCMCIA hardware installed.

CONTEXT This function may be called from user or kernel context.

SEE ALSO csx_Get8(9F), csx_GetMappedAddr(9F), csx_Put8(9F), csx_RepGet8(9F),
csx_RepPut8(9F), csx_RequestIO(9F), csx_RequestWindow(9F)

PC Card 95 Standard, PCMCIA/JEIDA

9F-96 SunOS 5.6 modified 19 Jul 1996

Kernel Functions for Drivers csx_Error2Text (9F)

NAME csx_Error2Text − convert error return codes to text strings

SYNOPSIS #include <sys/pccard.h>

int32_t csx_Error2Text(error2text_t ∗er);

INTERFACE
LEVEL

Solaris DDI Specific (Solaris DDI)

ARGUMENTS er Pointer to an error2text_t structure.

DESCRIPTION This function is a Solaris-specific extension that provides a method for clients to convert
Card Services error return codes to text strings.

STRUCTURE
MEMBERS

The structure members of error2text_t are:

uint32_t item; /∗ the error code ∗/
char text[CS_ERROR_MAX_BUFSIZE]; /∗ the error text ∗/

A pointer to the text for the Card Services error return code in the item field is returned
in the text field if the error return code is found. The client is not responsible for allocat-
ing a buffer to hold the text. If the Card Services error return code specified in the item
field is not found, the text field will be set to a string of the form:

"{unknown Card Services return code}"

RETURN VALUES CS_SUCCESS Successful operation.

CS_UNSUPPORTED_FUNCTION No PCMCIA hardware installed.

CONTEXT This function may be called from user or kernel context.

EXAMPLES Sample code illustrating the usage of this function:

if ((ret = csx_RegisterClient(&client_handle, &client_reg)) != CS_SUCCESS) {

error2text_t error2text;

error2text.item = ret;
csx_Error2Text(&error2text);
cmn_err(CE_CONT, "RegisterClient failed %s (0x%x)", error2text.text, ret);

}

SEE ALSO csx_Event2Text(9F)

PC Card 95 Standard, PCMCIA/JEIDA

modified 19 Jul 1996 SunOS 5.6 9F-97

csx_Event2Text (9F) Kernel Functions for Drivers

NAME csx_Event2Text − convert events to text strings

SYNOPSIS #include <sys/pccard.h>

int32_t csx_Event2Text(event2text_t ∗ev);

INTERFACE
LEVEL

Solaris DDI Specific (Solaris DDI)

ARGUMENTS ev Pointer to an event2text_t structure.

DESCRIPTION This function is a Solaris-specific extension that provides a method for clients to convert
Card Services events to text strings.

STRUCTURE
MEMBERS

The structure members of event2text_t are:

event_t event; /∗ the event code ∗/
char text[CS_EVENT_MAX_BUFSIZE] /∗ the event text ∗/

The fields are defined as follows:

event The text for the event code in the event field is returned in the text field.

text The text string describing the name of the event.

RETURN VALUES CS_SUCCESS Successful operation.

CS_UNSUPPORTED_FUNCTION No PCMCIA hardware installed.

CONTEXT This function may be called from user or kernel context.

EXAMPLES xx_event(event_t event, int priority, event_callback_args_t ∗eca)
{

event2text_t event2text;

event2text.event = event;
csx_Event2Text(&event2text);
cmn_err(CE_CONT, "event %s (0x%x)", event2text.text, (int)event);

}

SEE ALSO csx_event_handler(9E), csx_Error2Text(9F)

PC Card 95 Standard, PCMCIA/JEIDA

9F-98 SunOS 5.6 modified 19 Jul 1996

Kernel Functions for Drivers csx_FreeHandle (9F)

NAME csx_FreeHandle − free access handle

SYNOPSIS #include <sys/pccard.h>

int32_t csx_FreeHandle(acc_handle_t ∗handle);

INTERFACE
LEVEL

Solaris DDI Specific (Solaris DDI)

ARGUMENTS handle The access handle returned from csx_RequestIO(9F),
csx_RequestWindow(9F), or csx_DupHandle(9F).

DESCRIPTION This function frees the handle, handle. If the handle was created by the
csx_DupHandle(9F) function, this function will free the storage associated with this han-
dle, but will not modify any resources that the original handle refers to. If the handle was
created by a common access setup function, this function will release the resources asso-
ciated with this handle.

RETURN VALUES CS_SUCCESS Successful operation.

CS_UNSUPPORTED_FUNCTION No PCMCIA hardware installed.

CONTEXT This function may be called from user or kernel context.

SEE ALSO csx_DupHandle(9F), csx_RequestIO(9F), csx_RequestWindow(9F)

PC Card 95 Standard, PCMCIA/JEIDA

modified 19 Jul 1996 SunOS 5.6 9F-99

csx_Get8 (9F) Kernel Functions for Drivers

NAME csx_Get8, csx_Get16, csx_Get32, csx_Get64 − read data from device address

SYNOPSIS #include <sys/pccard.h>

uint8_t csx_Get8(acc_handle_t handle, uint32_t offset);

uint16_t csx_Get16(acc_handle_t handle, uint32_t offset);

uint32_t csx_Get32(acc_handle_t handle, uint32_t offset);

uint64_t csx_Get64(acc_handle_t handle, uint64_t offset);

INTERFACE
LEVEL

Solaris DDI Specific (Solaris DDI)

ARGUMENTS handle The access handle returned from csx_RequestIO(9F),
csx_RequestWindow(9F), or csx_DupHandle(9F).

offset The offset in bytes from the base of the mapped resource.

DESCRIPTION These functions generate a read of various sizes from the mapped memory or device
register.

The csx_Get8(), csx_Get16(), csx_Get32(), and csx_Get64() functions read 8 bits, 16 bits,
32 bits, and 64 bits of data, respectively, from the device address represented by the han-
dle, handle, at an offset in bytes represented by the offset, offset .

Data that consists of more than one byte will automatically be translated to maintain a
consistent view between the host and the device based on the encoded information in the
data access handle. The translation may involve byte swapping if the host and the device
have incompatible endian characteristics.

RETURN VALUES These functions return the value read from the mapped address.

CONTEXT These functions may be called from user, kernel, or interrupt context.

SEE ALSO csx_DupHandle(9F), csx_GetMappedAddr(9F), csx_Put8(9F), csx_RepGet8(9F),
csx_RepPut8(9F), csx_RequestIO(9F), csx_RequestWindow(9F)

PC Card 95 Standard, PCMCIA/JEIDA

9F-100 SunOS 5.6 modified 19 Jul 1996

Kernel Functions for Drivers csx_GetFirstClient (9F)

NAME csx_GetFirstClient, csx_GetNextClient − return first or next client

SYNOPSIS #include <sys/pccard.h>

int32_t csx_GetFirstClient(get_firstnext_client_t ∗fnc);

int32_t csx_GetNextClient(get_firstnext_client_t ∗fnc);

INTERFACE
LEVEL

Solaris DDI Specific (Solaris DDI)

ARGUMENTS fnc Pointer to a get_firstnext_client_t structure.

DESCRIPTION The functions csx_GetFirstClient() and csx_GetNextClient() return information about
the first or subsequent PC cards, respectively, that are installed in the system.

STRUCTURE
MEMBERS

The structure members of get_firstnext_client_t are:

uint32_t Socket; /∗ socket number ∗/
uint32_t Attributes; /∗ attributes ∗/
client_handle_t client_handle; /∗ client handle ∗/
uint32_t num_clients; /∗ number of clients ∗/

The fields are defined as follows:

Socket If the CS_GET_FIRSTNEXT_CLIENT_SOCKET_ONLY attribute is set,
return information only on the PC card installed in this socket.

Attributes This field indicates the type of client. The field is bit-mapped; the fol-
lowing bits are defined:

CS_GET_FIRSTNEXT_CLIENT_ALL_CLIENTS Return information on all clients

CS_GET_FIRSTNEXT_CLIENT_SOCKET_ONLY Return client information
for the specified socket only

client_handle The client handle of the PC card driver is returned in this field.

num_clients The number of clients is returned in this field.

RETURN VALUES CS_SUCCESS Successful operation.
CS_BAD_HANDLE Client handle is invalid.
CS_BAD_SOCKET Socket number is invalid.
CS_NO_CARD No PC Card in socket.
CS_NO_MORE_ITEMS PC Card driver does not handle the

CS_EVENT_CLIENT_INFO event.
CS_UNSUPPORTED_FUNCTION No PCMCIA hardware installed.

CONTEXT This function may be called from user or kernel context.

modified 16 May 1997 SunOS 5.6 9F-101

csx_GetFirstClient (9F) Kernel Functions for Drivers

SEE ALSO csx_event_handler(9E)

PC Card 95 Standard, PCMCIA/JEIDA

9F-102 SunOS 5.6 modified 16 May 1997

Kernel Functions for Drivers csx_GetFirstTuple (9F)

NAME csx_GetFirstTuple, csx_GetNextTuple − return Card Information Structure tuple

SYNOPSIS #include <sys/pccard.h>

int32_t csx_GetFirstTuple(client_handle_t ch, tuple_t ∗tu);

int32_t csx_GetNextTuple(client_handle_t ch, tuple_t ∗tu);

INTERFACE
LEVEL

Solaris DDI Specific (Solaris DDI)

ARGUMENTS ch Client handle returned from csx_RegisterClient(9F).

tu Pointer to a tuple_t structure.

DESCRIPTION The functions csx_GetFirstTuple() and csx_GetNextTuple() return the first and next
tuple, respectively, of the specified type in the Card Information Structure (CIS) for the
specified socket.

STRUCTURE
MEMBERS

The structure members of tuple_t are:

uint32_t Socket; /∗ socket number ∗/
uint32_t Attributes; /∗ Attributes ∗/
cisdata_t DesiredTuple; /∗ tuple to search for or flags ∗/
cisdata_t TupleCode; /∗ tuple type code ∗/
cisdata_t TupleLink; /∗ tuple data body size ∗/

The fields are defined as follows:

Socket Not used in Solaris, but for portability with other Card Services imple-
mentations, it should be set to the logical socket number.

Attributes This field is bit-mapped. The following bits are defined:

TUPLE_RETURN_LINK Return link tuples if set

TUPLE_RETURN_IGNORED_TUPLES Return ignored tuples if set

The following are link tuples and will not be returned by this function
unless the TUPLE_RETURN_LINK bit in the Attributes field is set:

CISTPL_NULL CISTPL_LONGLINK_MFC
CISTPL_LONGLINK_A CISTPL_LINKTARGET
CISTPL_LONGLINK_C CISTPL_NO_LINK
CISTPL_LONGLINK_CB CISTPL_END

Ignored tuples will not be returned by this function unless the
TUPLE_RETURN_IGNORED_TUPLES bit in the Attributes field is set (see
tuple(9S)).

The CIS is parsed from the location setup by the previous
csx_GetFirstTuple() or csx_GetNextTuple() request.

modified 20 Dec 1996 SunOS 5.6 9F-103

csx_GetFirstTuple (9F) Kernel Functions for Drivers

DesiredTuple This field is the tuple value desired. If it is RETURN_FIRST_TUPLE, the
very first tuple of the CIS is returned (if it exists). If this field is set to
RETURN_NEXT_TUPLE, the very next tuple of the CIS is returned (if it
exists). If the DesiredTuple field is any other value on entry, the CIS is
searched in an attempt to locate a tuple which matches.

TupleCode
TupleLink These fields are the values returned from the tuple found. If there are

no tuples on the card, CS_NO_MORE_ITEMS is returned.

Since the csx_GetFirstTuple(), csx_GetNextTuple(), and csx_GetTupleData(9F) func-
tions all share the same tuple_t structure, some fields in the tuple_t structure are unused
or reserved when calling this function and these fields must not be initialized by the
client.

RETURN VALUES CS_SUCCESS Successful operation.

CS_BAD_HANDLE Client handle is invalid.

CS_NO_CARD No PC Card in socket.

CS_NO_CIS No Card Information Structure (CIS) on PC card.

CS_NO_MORE_ITEMS Desired tuple not found.

CS_UNSUPPORTED_FUNCTION No PCMCIA hardware installed.

CONTEXT These functions may be called from user or kernel context.

SEE ALSO csx_GetTupleData(9F), csx_ParseTuple(9F), csx_RegisterClient(9F),
csx_ValidateCIS(9F), tuple(9S)

PC Card 95 Standard, PCMCIA/JEIDA

9F-104 SunOS 5.6 modified 20 Dec 1996

Kernel Functions for Drivers csx_GetHandleOffset (9F)

NAME csx_GetHandleOffset − return current access handle offset

SYNOPSIS #include <sys/pccard.h>

int32_t csx_GetHandleOffset(acc_handle_t handle, uint32_t ∗offset);

INTERFACE
LEVEL

Solaris DDI Specific (Solaris DDI)

ARGUMENTS handle Access handle returned by csx_RequestIRQ(9F) or csx_RequestIO(9F).

offset Pointer to a uint32_t in which the current access handle offset is returned.

DESCRIPTION This function returns the current offset for the access handle, handle, in offset .

RETURN VALUES CS_SUCCESS Successful operation.

CONTEXT This function may be called from user or kernel context.

SEE ALSO csx_RequestIO(9F), csx_RequestIRQ(9F), csx_SetHandleOffset(9F)

PC Card 95 Standard, PCMCIA/JEIDA

modified 16 May 1997 SunOS 5.6 9F-105

csx_GetMappedAddr (9F) Kernel Functions for Drivers

NAME csx_GetMappedAddr − return mapped virtual address

SYNOPSIS #include <sys/pccard.h>

int32_t csx_GetMappedAddr(acc_handle_t handle, void ∗∗addr);

INTERFACE
LEVEL

Solaris DDI Specific (Solaris DDI)

ARGUMENTS handle The access handle returned from csx_RequestIO(9F),
csx_RequestWindow(9F), or csx_DupHandle(9F).

addr The virtual or I/O port number represented by the handle.

DESCRIPTION This function returns the mapped virtual address or the mapped I/O port number
represented by the handle, handle.

RETURN VALUES CS_SUCCESS The resulting address or I/O port number can be
directly accessed by the caller.

CS_FAILURE The resulting address or I/O port number can not be
directly accessed by the caller; the caller must make
all accesses to the mapped area via the common
access functions.

CS_UNSUPPORTED_FUNCTION No PCMCIA hardware installed.

CONTEXT This function may be called from user, kernel, or interrupt context.

SEE ALSO csx_DupHandle(9F), csx_Get8(9F), csx_Put8(9F), csx_RepGet8(9F), csx_RepPut8(9F),
csx_RequestIO(9F), csx_RequestWindow(9F)

PC Card 95 Standard, PCMCIA/JEIDA

9F-106 SunOS 5.6 modified 19 Jul 1996

Kernel Functions for Drivers csx_GetStatus (9F)

NAME csx_GetStatus − return the current status of a PC Card and its socket

SYNOPSIS #include <sys/pccard.h>

int32_t csx_GetStatus(client_handle_t ch, get_status_t ∗gs);

INTERFACE
LEVEL

Solaris DDI Specific (Solaris DDI)

ARGUMENTS ch Client handle returned from csx_RegisterClient(9F).

gs Pointer to a get_status_t structure.

DESCRIPTION This function returns the current status of a PC Card and its socket.

STRUCTURE
MEMBERS

The structure members of get_status_t are:

uint32_t Socket; /∗ socket number ∗/
uint32_t CardState; /∗ "live" card status for this client ∗/
uint32_t SocketState; /∗ latched socket values ∗/
uint32_t raw_CardState; /∗ raw live card status ∗/

The fields are defined as follows:

Socket Not used in Solaris, but for portability with other Card Services imple-
mentations, it should be set to the logical socket number.

CardState The CardState field is the bit-mapped output data returned from Card
Services. The bits identify what Card Services thinks the current state of
the installed PC Card is. The bits are:

CS_STATUS_WRITE_PROTECTED Card is write protected

CS_STATUS_CARD_LOCKED Card is locked

CS_STATUS_EJECTION_REQUEST Ejection request in progress

CS_STATUS_INSERTION_REQUEST Insertion request in progress

CS_STATUS_BATTERY_DEAD Card battery is dead (BVD1)

CS_STATUS_BATTERY_LOW Card battery is low (BVD2)

CS_STATUS_CARD_READY Card is READY

CS_STATUS_CARD_INSERTED Card is inserted

CS_STATUS_REQ_ATTN Extended status
attention request

CS_STATUS_RES_EVT1
CS_STATUS_RES_EVT2
CS_STATUS_RES_EVT3

Extended status reserved
event status

modified 19 Jul 1996 SunOS 5.6 9F-107

csx_GetStatus (9F) Kernel Functions for Drivers

CS_STATUS_VCC_50 5.0 Volts Vcc Indicated

CS_STATUS_VCC_33 3.3 Volts Vcc Indicated

CS_STATUS_VCC_XX X.X Volts Vcc Indicated

Note: the state of the CS_STATUS_CARD_INSERTED bit indicates
whether the PC Card associated with this driver instance, not just any
card, is inserted in the socket.

If an I/O card is installed in the specified socket, card state is returned
from the PRR (Pin Replacement Register) and the ESR (Extended Status
Register) (if present). If certain state bits are not present in the PRR or
ESR, a simulated state bit value is returned as defined below:

CS_STATUS_WRITE_PROTECTED Not write protected

CS_STATUS_BATTERY_DEAD Power Good

CS_STATUS_BATTERY_LOW Power Good

CS_STATUS_CARD_READY Ready

CS_STATUS_REQ_ATTN Not set

CS_STATUS_RES_EVT1 Not set

CS_STATUS_RES_EVT2 Not set

CS_STATUS_RES_EVT3 Not set

SocketState The SocketState field is a bit-map of the current card and socket state.
The bits are:

CS_SOCK_STATUS_WRITE_PROTECT_CHANGE Write Protect

CS_SOCK_STATUS_CARD_LOCK_CHANGE Card Lock Change

CS_SOCK_STATUS_EJECTION_PENDING Ejection Request

CS_SOCK_STATUS_INSERTION_PENDING Insertion Request

CS_SOCK_STATUS_BATTERY_DEAD_CHANGE Battery Dead

CS_SOCK_STATUS_BATTERY_LOW_CHANGE Battery Low

CS_SOCK_STATUS_CARD_READY_CHANGE Ready Change

CS_SOCK_STATUS_CARD_INSERTION_CHANGE Card is inserted

The state reported in the SocketState field may be different from the
state reported in the CardState field.

Clients should normally depend only on the state reported in the Card-
State field.

9F-108 SunOS 5.6 modified 19 Jul 1996

Kernel Functions for Drivers csx_GetStatus (9F)

raw_CardState The raw_CardState field is a Solaris-specific extension that allows the
client to determine if any card is inserted in the socket. The bit
definitions in the raw_CardState field are identical to those in the Card-
State field with the exception that the CS_STATUS_CARD_INSERTED bit
in the raw_CardState field is set whenever any card is inserted into the
socket.

RETURN VALUES CS_SUCCESS Successful operation.

CS_BAD_HANDLE Client handle is invalid.

CS_BAD_SOCKET Error getting socket state.

CS_UNSUPPORTED_FUNCTION No PCMCIA hardware installed.

Note that CS_NO_CARD will not be returned if there is no PC Card present in the socket.

CONTEXT This function may be called from user or kernel context.

SEE ALSO csx_RegisterClient(9F)

PC Card 95 Standard, PCMCIA/JEIDA

modified 19 Jul 1996 SunOS 5.6 9F-109

csx_GetTupleData (9F) Kernel Functions for Drivers

NAME csx_GetTupleData − return the data portion of a tuple

SYNOPSIS #include <sys/pccard.h>

int32_t csx_GetTupleData(client_handle_t ch, tuple_t ∗tu);

INTERFACE
LEVEL

Solaris DDI Specific (Solaris DDI)

ARGUMENTS ch Client handle returned from csx_RegisterClient(9F).

tu Pointer to a tuple_t structure.

DESCRIPTION This function returns the data portion of a tuple, as returned by the
csx_GetFirstTuple(9F) and csx_GetNextTuple(9F) functions.

STRUCTURE
MEMBERS

The structure members of tuple_t are:

uint32_t Socket; /∗ socket number ∗/
uint32_t Attributes; /∗ tuple attributes ∗/
cisdata_t DesiredTuple; /∗ tuple to search for ∗/
cisdata_t TupleOffset; /∗ tuple data offset ∗/
cisdata_t TupleDataMax; /∗ max tuple data size ∗/
cisdata_t TupleDataLen; /∗ actual tuple data length ∗/
cisdata_t TupleData[CIS_MAX_TUPLE_DATA_LEN];

/∗ tuple body data buffer ∗/
cisdata_t TupleCode; /∗ tuple type code ∗/
cisdata_t TupleLink; /∗ tuple link ∗/

The fields are defined as follows:

Socket Not used in Solaris, but for portability with other Card Services
implementations, it should be set to the logical socket number.

Attributes Initialized by csx_GetFirstTuple(9F) or csx_GetNextTuple(9F); the
client must not modify the value in this field.

DesiredTuple Initialized by csx_GetFirstTuple(9F) or csx_GetNextTuple(9F); the
client must not modify the value in this field.

TupleOffset This field allows partial tuple information to be retrieved, starting
anywhere within the tuple.

TupleDataMax This field is the size of the tuple data buffer that Card Services uses to
return raw tuple data from csx_GetTupleData(9F). It can be larger
than the number of bytes in the tuple data body. Card Services
ignores any value placed here by the client.

9F-110 SunOS 5.6 modified 20 Dec 1996

Kernel Functions for Drivers csx_GetTupleData (9F)

TupleDataLen This field is the actual size of the tuple data body. It represents the
number of tuple data body bytes returned.

TupleData This field is an array of bytes containing the raw tuple data body con-
tents.

TupleCode Initialized by csx_GetFirstTuple(9F) or csx_GetNextTuple(9F); the
client must not modify the value in this field.

TupleLink Initialized by csx_GetFirstTuple(9F) or csx_GetNextTuple(9F); the
client must not modify the value in this field.

RETURN VALUES CS_SUCCESS Successful operation.

CS_BAD_HANDLE Client handle is invalid.

CS_BAD_ARGS Data from prior csx_GetFirstTuple(9F) or
csx_GetNextTuple(9F) is corrupt.

CS_NO_CARD No PC Card in socket.

CS_NO_CIS No Card Information Structure (CIS) on PC Card.

CS_NO_MORE_ITEMS Card Services was not able to read the tuple from the
PC Card.

CS_UNSUPPORTED_FUNCTION No PCMCIA hardware installed.

CONTEXT This function may be called from user or kernel context.

SEE ALSO csx_GetFirstTuple(9F), csx_ParseTuple(9F), csx_RegisterClient(9F),
csx_ValidateCIS(9F), tuple(9S)

PC Card 95 Standard, PCMCIA/JEIDA

modified 20 Dec 1996 SunOS 5.6 9F-111

csx_MakeDeviceNode (9F) Kernel Functions for Drivers

NAME csx_MakeDeviceNode, csx_RemoveDeviceNode − create and remove minor nodes on
behalf of the client

SYNOPSIS #include <sys/pccard.h>

int32_t csx_MakeDeviceNode(client_handle_t ch, make_device_node_t ∗dn);

int32_t csx_RemoveDeviceNode(client_handle_t ch, remove_device_node_t ∗dn);

INTERFACE
LEVEL

Solaris DDI Specific (Solaris DDI)

ARGUMENTS ch Client handle returned from csx_RegisterClient(9F).

dn Pointer to a make_device_node_t or remove_device_node_t structure.

DESCRIPTION csx_MakeDeviceNode() and csx_RemoveDeviceNode() are Solaris-specific extensions
to allow the client to request that device nodes in the filesystem are created or removed,
respectively, on its behalf.

STRUCTURE
MEMBERS

The structure members of make_device_node_t are:

uint32_t Action; /∗ device operation ∗/
uint32_t NumDevNodes; /∗ number of nodes to create ∗/
devnode_desc_t ∗devnode_desc; /∗ description of device nodes ∗/

The structure members of remove_device_node_t are:

uint32_t Action; /∗ device operation ∗/
uint32_t NumDevNodes; /∗ number of nodes to remove ∗/
devnode_desc_t ∗devnode_desc; /∗ description of device nodes ∗/

The structure members of devnode_desc_t are:

char ∗name; /∗ device node path and name ∗/
int32_t spec_type; /∗ device special type (block or char) ∗/
int32_t minor_num; /∗ device node minor number ∗/
char ∗node_type; /∗ device node type ∗/

The Action field is used to specify the operation that csx_MakeDeviceNode() and
csx_RemoveDeviceNode() should perform.

The following Action values are defined for csx_MakeDeviceNode():

CREATE_DEVICE_NODE Create NumDevNodes minor nodes

The following Action values are defined for csx_RemoveDeviceNode():

REMOVE_DEVICE_NODE Remove NumDevNodes minor nodes

REMOVE_ALL_DEVICE_NODES Remove all minor nodes for this client

9F-112 SunOS 5.6 modified 19 Jul 1996

Kernel Functions for Drivers csx_MakeDeviceNode (9F)

For csx_MakeDeviceNode(), if the Action field is:

CREATE_DEVICE_NODE
The NumDevNodes field must be set to the number of minor devices to
create, and the client must allocate the quantity of devnode_desc_t
structures specified by NumDevNodes and fill out the fields in the
devnode_desc_t structure with the appropriate minor node informa-
tion.

The meanings of the fields in the devnode_desc_t structure are identical
to the parameters of the same name to the ddi_create_minor_node(9F)
DDI function.

For csx_RemoveDeviceNode(), if the Action field is:

REMOVE_DEVICE_NODE
The NumDevNodes field must be set to the number of minor devices to
remove, and the client must allocate the quantity of devnode_desc_t
structures specified by NumDevNodes and fill out the fields in the
devnode_desc_t structure with the appropriate minor node informa-
tion.

The meanings of the fields in the devnode_desc_t structure are identical
to the parameters of the same name to the ddi_remove_minor_node(9F)
DDI function.

REMOVE_ALL_DEVICE_NODES
The NumDevNodes field must be set to 0 and the devnode_desc_t
structure pointer must be set to NULL. All device nodes for this client
will be removed from the filesystem.

RETURN VALUES CS_SUCCESS Successful operation.

CS_BAD_HANDLE Client handle is invalid.

CS_BAD_ATTRIBUTE The value of one or more arguments is invalid.

CS_BAD_ARGS Action is invalid.

CS_OUT_OF_RESOURCE Unable to create or remove device node.

CS_UNSUPPORTED_FUNCTION No PCMCIA hardware installed.

CONTEXT These functions may be called from user or kernel context.

SEE ALSO csx_RegisterClient(9F), ddi_create_minor_node(9F), ddi_remove_minor_node(9F)

PC Card 95 Standard, PCMCIA/JEIDA

modified 19 Jul 1996 SunOS 5.6 9F-113

csx_MapLogSocket (9F) Kernel Functions for Drivers

NAME csx_MapLogSocket − return the physical socket number associated with the client handle

SYNOPSIS #include <sys/pccard.h>

int32_t csx_MapLogSocket(client_handle_t ch, map_log_socket_t ∗ls);

INTERFACE
LEVEL

Solaris DDI Specific (Solaris DDI)

ARGUMENTS ch Client handle returned from csx_RegisterClient(9F).

ls Pointer to a map_log_socket_t structure.

DESCRIPTION This function returns the physical socket number associated with the client handle.

STRUCTURE
MEMBERS

The structure members of map_log_socket_t are:

uint32_t LogSocket; /∗ logical socket number ∗/
uint32_t PhyAdapter; /∗ physical adapter number ∗/
uint32_t PhySocket; /∗ physical socket number ∗/

The fields are defined as follows:

LogSocket Not used by this implementation of Card Services and can be set to any
arbitrary value.

PhyAdapter Returns the physical adapter number, which is always 0 in the Solaris
implementation of Card Services.

PhySocket Returns the physical socket number associated with the client handle. The
physical socket number is typically used as part of an error or message
string or if the client creates minor nodes based on the physical socket
number.

RETURN VALUES CS_SUCCESS Successful operation.

CS_BAD_HANDLE Client handle is invalid.

CS_UNSUPPORTED_FUNCTION No PCMCIA hardware installed.

CONTEXT This function may be called from user or kernel context.

SEE ALSO csx_RegisterClient(9F)

PC Card 95 Standard, PCMCIA/JEIDA

9F-114 SunOS 5.6 modified 19 Jul 1996

Kernel Functions for Drivers csx_MapMemPage (9F)

NAME csx_MapMemPage − map the memory area on a PC Card

SYNOPSIS #include <sys/pccard.h>

int32_t csx_MapMemPage(window_handle_t wh, map_mem_page_t ∗mp);

INTERFACE
LEVEL

Solaris DDI Specific (Solaris DDI)

ARGUMENTS wh Window handle returned from csx_RequestWindow(9F).

mp Pointer to a map_mem_page_t structure.

DESCRIPTION This function maps the memory area on a PC Card into a page of a window allocated
with the csx_RequestWindow(9F) function.

STRUCTURE
MEMBERS

The structure members of map_mem_page_t are:

uint32_t CardOffset; /∗ card offset ∗/
uint32_t Page; /∗ page number ∗/

The fields are defined as follows:

CardOffset The absolute offset in bytes from the beginning of the PC Card to map into
system memory.

Page Used internally by Card Services; clients must set this field to 0 before cal-
ling this function.

RETURN VALUES CS_SUCCESS Successful operation.

CS_BAD_HANDLE Client handle is invalid.

CS_BAD_OFFSET Offset is invalid.

CS_BAD_PAGE Page is not zero.

CS_NO_CARD No PC Card in socket.

CS_UNSUPPORTED_FUNCTION No PCMCIA hardware installed.

CONTEXT This function may be called from user or kernel context.

SEE ALSO csx_ModifyWindow(9F), csx_ReleaseWindow(9F), csx_RequestWindow(9F)

PC Card 95 Standard, PCMCIA/JEIDA

modified 19 Jul 1996 SunOS 5.6 9F-115

csx_ModifyConfiguration (9F) Kernel Functions for Drivers

NAME csx_ModifyConfiguration − modify socket and PC Card Configuration Register

SYNOPSIS #include <sys/pccard.h>

int32_t csx_ModifyConfiguration(client_handle_t ch, modify_config_t ∗mc);

INTERFACE
LEVEL

Solaris DDI Specific (Solaris DDI)

ARGUMENTS ch Client handle returned from csx_RegisterClient(9F).

mc Pointer to a modify_config_t structure.

DESCRIPTION This function allows a socket and PC Card configuration to be modified. This function
can only modify a configuration requested via csx_RequestConfiguration(9F).

STRUCTURE
MEMBERS

The structure members of modify_config_t are:

uint32_t Socket; /∗ socket number ∗/
uint32_t Attributes; /∗ attributes to modify ∗/
uint32_t Vpp1; /∗ Vpp1 value ∗/
uint32_t Vpp2; /∗ Vpp2 value ∗/

The fields are defined as follows:

Socket Not used in Solaris, but for portability with other Card Services imple-
mentations, it should be set to the logical socket number.

Attributes This field is bit-mapped. The following bits are defined:

CONF_ENABLE_IRQ_STEERING Enable IRQ Steering

CONF_IRQ_CHANGE_VALID IRQ change valid

CONF_VPP1_CHANGE_VALID Vpp1 change valid

CONF_VPP2_CHANGE_VALID Vpp2 change valid

CONF_VSOVERRIDE Override VS pins

CONF_ENABLE_IRQ_STEERING
Set to connect the PC Card IREQ line to a previously selected system
interrupt.

CONF_IRQ_CHANGE_VALID
Set to request the IRQ steering enable to be changed.

CONF_VPP1 CHANGE_VALID
CONF_VPP2 CHANGE_VALID

These bits are set to request a change to the corresponding voltage
level for the PC Card.

9F-116 SunOS 5.6 modified 19 Jul 1996

Kernel Functions for Drivers csx_ModifyConfiguration (9F)

CONF_VSOVERRIDE
For Low Voltage keyed cards, must be set if a client desires to apply
a voltage inappropriate for this card to any pin. After card insertion
and prior to the first csx_RequestConfiguration(9F) call for this
client, the voltage levels applied to the card will be those specified
by the Card Interface Specification. (See WARNINGS.)

Vpp1, Vpp2 These fields all represent voltages expressed in tenths of a volt. Values
from 0 to 25.5 volts may be set. To be valid, the exact voltage must be
available from the system. To be compliant with the PC Card 95 Standard,
systems must always support 5.0 volts for both Vcc and Vpp. (See
WARNINGS.)

RETURN VALUES CS_SUCCESS Successful operation.

CS_BAD_HANDLE Client handle is invalid or
csx_RequestConfiguration(9F) not done.

CS_BAD_SOCKET Error getting/setting socket hardware parameters.

CS_BAD_VPP Requested Vpp is not available on socket.

CS_NO_CARD No PC Card in socket.

CS_UNSUPPORTED_FUNCTION No PCMCIA hardware installed.

CONTEXT This function may be called from user or kernel context.

SEE ALSO csx_RegisterClient(9F), csx_ReleaseConfiguration(9F), csx_ReleaseIO(9F),
csx_ReleaseIRQ(9F), csx_RequestConfiguration(9F), csx_RequestIO(9F),
csx_RequestIRQ(9F)

PC Card 95 Standard, PCMCIA/JEIDA

WARNINGS 1. CONF_VSOVERRIDE is provided for clients that have a need to override the informa-
tion provided in the CIS. The client must excercise caution when setting this as it
overrides any voltage level protection provided by Card Services.

2. Using csx_ModifyConfiguration() to set Vpp to 0 volts may result in the loss of a PC
Card’s state. Any client setting Vpp to 0 volts is responsible for insuring that the PC
Card’s state is restored when power is re-applied to the card.

NOTES Mapped IO addresses can only be changed by first releasing the current configuration
and IO resources with csx_ReleaseConfiguration(9F) and csx_ReleaseIO(9F), requesting
new IO resources and a new configuration with csx_RequestIO(9F), followed by
csx_RequestConfiguration(9F).

IRQ priority can only be changed by first releasing the current configuration and IRQ
resources with csx_ReleaseConfiguration(9F) and csx_ReleaseIRQ(9F), requesting new
IRQ resources and a new configuration with csx_RequestIRQ(9F), followed by
csx_RequestConfiguration(9F).

modified 19 Jul 1996 SunOS 5.6 9F-117

csx_ModifyConfiguration (9F) Kernel Functions for Drivers

Vcc can not be changed using csx_ModifyConfiguration(). Vcc may be changed by first
invoking csx_ReleaseConfiguration(9F), followed by csx_RequestConfiguration(9F)
with a new Vcc value.

9F-118 SunOS 5.6 modified 19 Jul 1996

Kernel Functions for Drivers csx_ModifyWindow (9F)

NAME csx_ModifyWindow − modify window attributes

SYNOPSIS #include <sys/pccard.h>

int32_t csx_ModifyWindow(window_handle_t wh, modify_win_t ∗mw);

INTERFACE
LEVEL

Solaris DDI Specific (Solaris DDI)

ARGUMENTS wh Window handle returned from csx_RequestWindow(9F).

mw Pointer to a modify_win_t structure.

DESCRIPTION This function modifies the attributes of a window allocated by the
csx_RequestWindow(9F) function.

Only some of the window attributes or the access speed field may be modified by this
request. The csx_MapMemPage(9F) function is also used to set the offset into PC Card
memory to be mapped into system memory for paged windows. The
csx_RequestWindow(9F) and csx_ReleaseWindow(9F) functions must be used to change
the window base or size.

STRUCTURE
MEMBERS

The structure members of modify_win_t are:

uint32_t Attributes; /∗ window flags ∗/
uint32_t AccessSpeed; /∗ window access speed ∗/

The fields are defined as follows:

Attributes This field is bit-mapped and defined as follows:

WIN_MEMORY_TYPE_CM Window points to Common Memory area

WIN_MEMORY_TYPE_AM Window points to Attribute Memory area

WIN_ENABLE Enable Window

WIN_ACCESS_SPEED_VALID AccessSpeed valid

WIN_MEMORY_TYPE_CM
Set this to map the window to Common Memory.

WIN_MEMORY_TYPE_AM
Set this to map the window to Attribute Memory.

WIN_ENABLE
The client must set this to enable the window.

WIN_ACCESS_SPEED_VALID
The client must set this when the AccessSpeed field has a value that
the client wants set for the window.

modified 19 Jul 1996 SunOS 5.6 9F-119

csx_ModifyWindow (9F) Kernel Functions for Drivers

AccessSpeed
The bit definitions for this field use the format of the extended speed byte of
the Device ID tuple. If the mantissa is 0 (noted as reserved in the PC Card 95
Standard), the lower bits are a binary code representing a speed from the
following table:

Code Speed

0 (Reserved - do not use)

1 250 nsec

2 200 nsec

3 150 nsec

4 100 nsec

5 - 7 (Reserved - do not use)

It is recommended that clients use the csx_ConvertSpeed(9F) function to
generate the appropriate AccessSpeed values rather than manually per-
turbing the AccessSpeed field.

RETURN VALUES CS_SUCCESS Successful operation.

CS_BAD_HANDLE Window handle is invalid.

CS_NO_CARD No PC Card in socket.

CS_BAD_OFFSET Error getting/setting window hardware parameters.

CS_BAD_WINDOW Error getting/setting window hardware parameters.

CS_BAD_SPEED AccessSpeed is invalid.

CS_UNSUPPORTED_FUNCTION No PCMCIA hardware installed.

CONTEXT This function may be called from user or kernel context.

SEE ALSO csx_ConvertSpeed(9F), csx_MapMemPage(9F), csx_ReleaseWindow(9F),
csx_RequestWindow(9F)

PC Card 95 Standard, PCMCIA/JEIDA

9F-120 SunOS 5.6 modified 19 Jul 1996

Kernel Functions for Drivers csx_Parse_CISTPL_BATTERY (9F)

NAME csx_Parse_CISTPL_BATTERY − parse the Battery Replacement Date tuple

SYNOPSIS #include <sys/pccard.h>

int32_t csx_Parse_CISTPL_BATTERY(client_handle_t ch, tuple_t ∗tu,
cistpl_date_t ∗cb);

INTERFACE
LEVEL

Solaris DDI Specific (Solaris DDI)

ARGUMENTS ch Client handle returned from csx_RegisterClient(9F).

tu Pointer to a tuple_t structure (see tuple(9S)) returned by a call to
csx_GetFirstTuple(9F) or csx_GetNextTuple(9F).

cb Pointer to a cistpl_battery_t structure which contains the parsed
CISTPL_BATTERY tuple information upon return from this function.

DESCRIPTION This function parses the Battery Replacement Date tuple, CISTPL_BATTERY, into a form
usable by PC Card drivers.

The CISTPL_BATTERY tuple is an optional tuple which shall be present only in PC Cards
with battery-backed storage. It indicates the date on which the battery was replaced, and
the date on which the battery is expected to need replacement. Only one
CISTPL_BATTERY tuple is allowed per PC Card.

STRUCTURE
MEMBERS

The structure members of cistpl_date_t are:

uint32_t rday; /∗ date battery last replaced ∗/
uint32_t xday; /∗ date battery due for replacement ∗/

The fields are defined as follows:

rday This field indicates the date on which the battery was last replaced.

xday This field indicates the date on which the battery should be replaced.

RETURN VALUES CS_SUCCESS Successful operation.
CS_BAD_HANDLE Client handle is invalid.
CS_UNKNOWN_TUPLE Parser does not know how to parse tuple.
CS_NO_CARD No PC Card in socket.
CS_NO_CIS No Card Information Structure (CIS) on PC Card.
CS_UNSUPPORTED_FUNCTION No PCMCIA hardware installed.

CONTEXT This function may be called from user or kernel context.

SEE ALSO csx_GetFirstTuple(9F), csx_GetTupleData(9F), csx_RegisterClient(9F),
csx_ValidateCIS(9F), tuple(9S)

PC Card 95 Standard, PCMCIA/JEIDA

modified 20 Dec 1996 SunOS 5.6 9F-121

csx_Parse_CISTPL_BYTEORDER (9F) Kernel Functions for Drivers

NAME csx_Parse_CISTPL_BYTEORDER − parse the Byte Order tuple

SYNOPSIS #include <sys/pccard.h>

int32_t csx_Parse_CISTPL_BYTEORDER(client_handle_t ch, tuple_t ∗tu,
cistpl_byteorder_t ∗cbo);

INTERFACE
LEVEL

Solaris DDI Specific (Solaris DDI)

ARGUMENTS ch Client handle returned from csx_RegisterClient(9F).

tu Pointer to a tuple_t structure (see tuple(9S)) returned by a call to
csx_GetFirstTuple(9F) or csx_GetNextTuple(9F).

cbo Pointer to a cistpl_byteorder_t structure which contains the parsed
CISTPL_BYTEORDER tuple information upon return from this function.

DESCRIPTION This function parses the Byte Order tuple, CISTPL_BYTEORDER, into a form usable by PC
Card drivers.

The CISTPL_BYTEORDER tuple shall only appear in a partition tuple set for a memory-
like partition. It specifies two parameters: the order for multi-byte data, and the order in
which bytes map into words for 16-bit cards.

STRUCTURE
MEMBERS

The structure members of cistpl_byteorder_t are:

uint32_t order; /∗ byte order code ∗/
uint32_t map; /∗ byte mapping code ∗/

The fields are defined as follows:

order This field specifies the byte order for multi-byte numeric data.

TPLBYTEORD_LOW Little endian order

TPLBYTEORD_HIGH Big endian order

TPLBYTEORD_VS Vendor specific

map This field specifies the byte mapping for 16-bit or wider cards.

TPLBYTEMAP_LOW Byte zero is least significant byte

TPLBYTEMAP_HIGH Byte zero is most significant byte

TPLBYTEMAP_VS Vendor specific mapping

RETURN VALUES CS_SUCCESS Successful operation.
CS_BAD_HANDLE Client handle is invalid.
CS_UNKNOWN_TUPLE Parser does not know how to parse tuple.
CS_NO_CARD No PC Card in socket.
CS_NO_CIS No Card Information Structure (CIS) on PC Card.

9F-122 SunOS 5.6 modified 20 Dec 1996

Kernel Functions for Drivers csx_Parse_CISTPL_BYTEORDER (9F)

CS_UNSUPPORTED_FUNCTION No PCMCIA hardware installed.

CONTEXT This function may be called from user or kernel context.

SEE ALSO csx_GetFirstTuple(9F), csx_GetTupleData(9F), csx_RegisterClient(9F),
csx_ValidateCIS(9F), tuple(9S)

PC Card 95 Standard, PCMCIA/JEIDA

modified 20 Dec 1996 SunOS 5.6 9F-123

csx_Parse_CISTPL_CFTABLE_ENTRY (9F) Kernel Functions for Drivers

NAME csx_Parse_CISTPL_CFTABLE_ENTRY − parse 16-bit Card Configuration Table Entry
tuple

SYNOPSIS #include <sys/pccard.h>

int32_t csx_Parse_CISTPL_CFTABLE_ENTRY(client_handle_t ch, tuple_t ∗tu,
cistpl_cftable_entry_t ∗cft);

INTERFACE
LEVEL

Solaris DDI Specific (Solaris DDI)

ARGUMENTS ch Client handle returned from csx_RegisterClient(9F).

tu Pointer to a tuple_t structure (see tuple(9S)) returned by a call to
csx_GetFirstTuple(9F) or csx_GetNextTuple(9F).

cft Pointer to a cistpl_cftable_entry_t structure which contains the parsed
CISTPL_CFTABLE_ENTRY tuple information upon return from this function.

DESCRIPTION This function parses the 16 bit Card Configuration Table Entry tuple,
CISTPL_CFTABLE_ENTRY, into a form usable by PC Card drivers.

The CISTPL_CFTABLE_ENTRY tuple is used to describe each possible configuration of a
PC Card and to distinguish among the permitted configurations. The CISTPL_CONFIG
tuple must precede all CISTPL_CFTABLE_ENTRY tuples.

STRUCTURE
MEMBERS

The structure members of cistpl_cftable_entry_t are:

uint32_t flags; /∗ which descriptions are valid ∗/
uint32_t ifc; /∗ interface description information ∗/
uint32_t pin; /∗ values for PRR ∗/
uint32_t index; /∗ configuration index number ∗/
cistpl_cftable_entry_pd_t pd; /∗ power requirements description ∗/
cistpl_cftable_entry_speed_t speed; /∗ device speed description ∗/
cistpl_cftable_entry_io_t io; /∗ device I/O map ∗/
cistpl_cftable_entry_irq_t irq; /∗ device IRQ utilization ∗/
cistpl_cftable_entry_mem_t mem; /∗ device memory space ∗/
cistpl_cftable_entry_misc_t misc; /∗ miscellaneous device features ∗/

The fields are defined as follows:

flags This field is bit-mapped and defined as follows:

CISTPL_CFTABLE_TPCE_DEFAULT This is a default configuration

CISTPL_CFTABLE_TPCE_IF If configuration byte exists

CISTPL_CFTABLE_TPCE_FS_PWR Power information exists

9F-124 SunOS 5.6 modified 20 Dec 1996

Kernel Functions for Drivers csx_Parse_CISTPL_CFTABLE_ENTRY (9F)

CISTPL_CFTABLE_TPCE_FS_TD Timing information exists

CISTPL_CFTABLE_TPCE_FS_IO I/O information exists

CISTPL_CFTABLE_TPCE_FS_IRQ IRQ information exists

CISTPL_CFTABLE_TPCE_FS_MEM MEM space information exists

CISTPL_CFTABLE_TPCE_FS_MISC MISC information exists

CISTPL_CFTABLE_TPCE_FS_STCE_EV STCE_EV exists

CISTPL_CFTABLE_TPCE_FS_STCE_PD STCE_PD exists

ifc When the CISTPL_CFTABLE_TPCE_IF flag is set, this field is bit-mapped and
defined as follows:

CISTPL_CFTABLE_TPCE_IF_MEMORY Memory interface

CISTPL_CFTABLE_TPCE_IF_IO_MEM IO and memory

CISTPL_CFTABLE_TPCE_IF_CUSTOM_0 Custom interface 0

CISTPL_CFTABLE_TPCE_IF_CUSTOM_1 Custom interface 1

CISTPL_CFTABLE_TPCE_IF_CUSTOM_2 Custom interface 2

CISTPL_CFTABLE_TPCE_IF_CUSTOM_3 Custom interface 3

CISTPL_CFTABLE_TPCE_IF_MASK Interface type mask

CISTPL_CFTABLE_TPCE_IF_BVD BVD active in PRR

CISTPL_CFTABLE_TPCE_IF_WP WP active in PRR

CISTPL_CFTABLE_TPCE_IF_RDY RDY active in PRR

CISTPL_CFTABLE_TPCE_IF_MWAIT WAIT - mem cycles

pin This is a value for the Pin Replacement Register.

index This is a configuration index number.

The structure members of cistpl_cftable_entry_pd_t are:

uint32_t flags; /∗ which descriptions are valid ∗/
cistpl_cftable_entry_pwr_t pd_vcc; /∗ VCC power description ∗/
cistpl_cftable_entry_pwr_t pd_vpp1; /∗ Vpp1 power description ∗/
cistpl_cftable_entry_pwr_t pd_vpp2; /∗ Vpp2 power description ∗/

The fields are defined as follows:

flags This field is bit-mapped and defined as follows:

CISTPL_CFTABLE_TPCE_FS_PWR_VCC Vcc description valid

CISTPL_CFTABLE_TPCE_FS_PWR_VPP1 Vpp1 description valid

CISTPL_CFTABLE_TPCE_FS_PWR_VPP2 Vpp2 description valid

modified 20 Dec 1996 SunOS 5.6 9F-125

csx_Parse_CISTPL_CFTABLE_ENTRY (9F) Kernel Functions for Drivers

The structure members of cistpl_cftable_entry_pwr_t are:

uint32_t nomV; /∗ nominal supply voltage ∗/
uint32_t nomV_flags;
uint32_t minV; /∗ minimum supply voltage ∗/
uint32_t minV_flags;
uint32_t maxV; /∗ maximum supply voltage ∗/
uint32_t maxV_flags;
uint32_t staticI; /∗ continuous supply current ∗/
uint32_t staticI_flags;
uint32_t avgI; /∗ max current required averaged over 1 sec. ∗/
uint32_t avgI_flags;
uint32_t peakI; /∗ max current required averaged over 10mS ∗/
uint32_t peakI_flags;
uint32_t pdownI; /∗ power down supply current required ∗/
uint32_t pdownI_flags;

The fields are defined as follows:

nomV, minV_flags, maxV_flags,
staticI_flags, avgI, peakI_flags, pdownI_flags

These fields are bit-mapped and defined as follows:

CISTPL_CFTABLE_PD_NOMV Nominal supply voltage

CISTPL_CFTABLE_PD_MINV Minimum supply voltage

CISTPL_CFTABLE_PD_MAXV Maximum supply voltage

CISTPL_CFTABLE_PD_STATICI Continuous supply current

CISTPL_CFTABLE_PD_AVGI Maximum current required averaged
over 1 second

CISTPL_CFTABLE_PD_PEAKI Maximum current required averaged
over 10mS

CISTPL_CFTABLE_PD_PDOWNI Power down supply current required

nomV_flags, minV_flags, maxV_flags,
staticI_flags, avgI_flags, peakI_flags, pdownI_flags

These fields are bit-mapped and defined as follows:

CISTPL_CFTABLE_PD_EXISTS This parameter exists

CISTPL_CFTABLE_PD_MUL10 Multiply return value by 10

CISTPL_CFTABLE_PD_NC_SLEEP No connection on sleep/power down

CISTPL_CFTABLE_PD_ZERO Zero value required

CISTPL_CFTABLE_PD_NC No connection ever

9F-126 SunOS 5.6 modified 20 Dec 1996

Kernel Functions for Drivers csx_Parse_CISTPL_CFTABLE_ENTRY (9F)

The structure members of cistpl_cftable_entry_speed_t are:

uint32_t flags; /∗ which timing information is present ∗/
uint32_t wait; /∗ max WAIT time in device speed format ∗/
uint32_t nS_wait; /∗ max WAIT time in nS ∗/
uint32_t rdybsy; /∗ max RDY/BSY time in device speed format ∗/
uint32_t nS_rdybsy; /∗ max RDY/BSY time in nS ∗/
uint32_t rsvd; /∗ max RSVD time in device speed format ∗/
uint32_t nS_rsvd; /∗ max RSVD time in nS ∗/

The fields are defined as follows:

flags This field is bit-mapped and defined as follows:

CISTPL_CFTABLE_TPCE_FS_TD_WAIT WAIT timing exists

CISTPL_CFTABLE_TPCE_FS_TD_RDY RDY/BSY timing exists

CISTPL_CFTABLE_TPCE_FS_TD_RSVD RSVD timing exists

The structure members of cistpl_cftable_entry_io_t are:

uint32_t flags; /∗ direct copy of TPCE_IO byte in tuple ∗/
uint32_t addr_lines; /∗ number of decoded I/O address lines ∗/
uint32_t ranges; /∗ number of I/O ranges ∗/
cistpl_cftable_entry_io_range_t

range[CISTPL_CFTABLE_ENTRY_MAX_IO_RANGES];

The fields are defined as follows:

flags This field is bit-mapped and defined as follows:

CISTPL_CFTABLE_TPCE_FS_IO_BUS Bus width mask

CISTPL_CFTABLE_TPCE_FS_IO_BUS8 8-bit flag

CISTPL_CFTABLE_TPCE_FS_IO_BUS16 16-bit flag

CISTPL_CFTABLE_TPCE_FS_IO_RANGE IO address ranges exist

The structure members of cistpl_cftable_entry_io_range_t are:

uint32_t addr; /∗ I/O start address ∗/
uint32_t length; /∗ I/O register length ∗/

The structure members of cistpl_cftable_entry_irq_t are:

uint32_t flags; /∗ direct copy of TPCE_IR byte in tuple ∗/
uint32_t irqs; /∗ bit mask for each allowed IRQ ∗/

The structure members of cistpl_cftable_entry_mem_t are:

uint32_t flags; /∗ memory descriptor type and host addr info ∗/
uint32_t windows; /∗ number of memory space descriptors ∗/
cistpl_cftable_entry_mem_window_t

window[CISTPL_CFTABLE_ENTRY_MAX_MEM_WINDOWS];

modified 20 Dec 1996 SunOS 5.6 9F-127

csx_Parse_CISTPL_CFTABLE_ENTRY (9F) Kernel Functions for Drivers

The fields are defined as follows:

flags This field is bit-mapped and defined as follows:

CISTPL_CFTABLE_TPCE_FS_MEM3 Space descriptors

CISTPL_CFTABLE_TPCE_FS_MEM2 host_addr=card_addr

CISTPL_CFTABLE_TPCE_FS_MEM1 Card address=0,
any host address

CISTPL_CFTABLE_TPCE_FS_MEM_HOST If host address is present
in MEM3

The structure members of cistpl_cftable_entry_mem_window_t are:

uint32_t length; /∗ length of this window ∗/
uint32_t card_addr; /∗ card address ∗/
uint32_t host_addr; /∗ host address ∗/

The structure members of cistpl_cftable_entry_misc_t are:

uint32_t flags; /∗ miscellaneous features flags ∗/

The fields are defined as follows:

flags This field is bit-mapped and defined as follows:

CISTPL_CFTABLE_TPCE_MI_MTC_MASK Max twin cards mask

CISTPL_CFTABLE_TPCE_MI_AUDIO Audio on BVD2

CISTPL_CFTABLE_TPCE_MI_READONLY R/O storage

CISTPL_CFTABLE_TPCE_MI_PWRDOWN Powerdown capable

CISTPL_CFTABLE_TPCE_MI_DRQ_MASK DMAREQ mask

CISTPL_CFTABLE_TPCE_MI_DRQ_SPK DMAREQ on SPKR

CISTPL_CFTABLE_TPCE_MI_DRQ_IOIS DMAREQ on IOIS16

CISTPL_CFTABLE_TPCE_MI_DRQ_INP DMAREQ on INPACK

CISTPL_CFTABLE_TPCE_MI_DMA_8 DMA width 8 bits

CISTPL_CFTABLE_TPCE_MI_DMA_16 DMA width 16 bits

RETURN VALUES CS_SUCCESS Successful operation.
CS_BAD_HANDLE Client handle is invalid.
CS_UNKNOWN_TUPLE Parser does not know how to parse tuple.
CS_NO_CARD No PC Card in socket.
CS_NO_CIS No Card Information Structure (CIS) on PC Card.
CS_UNSUPPORTED_FUNCTION No PCMCIA hardware installed.

CONTEXT This function may be called from user or kernel context.

9F-128 SunOS 5.6 modified 20 Dec 1996

Kernel Functions for Drivers csx_Parse_CISTPL_CFTABLE_ENTRY (9F)

SEE ALSO csx_GetFirstTuple(9F), csx_GetTupleData(9F), csx_Parse_CISTPL_CONFIG(9F),
csx_RegisterClient(9F), csx_ValidateCIS(9F), tuple(9S)

PC Card 95 Standard, PCMCIA/JEIDA

modified 20 Dec 1996 SunOS 5.6 9F-129

csx_Parse_CISTPL_CONFIG (9F) Kernel Functions for Drivers

NAME csx_Parse_CISTPL_CONFIG − parse Configuration tuple

SYNOPSIS #include <sys/pccard.h>

int32_t csx_Parse_CISTPL_CONFIG(client_handle_t ch, tuple_t ∗tu,
cistpl_config_t ∗cc);

INTERFACE
LEVEL

Solaris DDI Specific (Solaris DDI)

ARGUMENTS ch Client handle returned from csx_RegisterClient(9F).

tu Pointer to a tuple_t structure (see tuple(9S)) returned by a call to
csx_GetFirstTuple(9F) or csx_GetNextTuple(9F).

cc Pointer to a cistpl_config_t structure which contains the parsed CISTPL_CONFIG
tuple information upon return from this function.

DESCRIPTION This function parses the Configuration tuple, CISTPL_CONFIG, into a form usable by PC
Card drivers. The CISTPL_CONFIG tuple is used to describe the general characteristics of
16-bit PC Cards containing I/O devices or using custom interfaces. It may also describe
PC Cards, including Memory Only cards, which exceed nominal power supply
specifications, or which need descriptions of their power requirements or other informa-
tion.

STRUCTURE
MEMBERS

The structure members of cistpl_config_t are:

uint32_t present; /∗ register present flags ∗/
uint32_t nr; /∗ number of config registers found ∗/
uint32_t hr; /∗ highest config register index found ∗/
uint32_t regs[CISTPL_CONFIG_MAX_CONFIG_REGS]; /∗ reg offsets ∗/
uint32_t base; /∗ base offset of config registers ∗/
uint32_t last; /∗ last config index ∗/

The fields are defined as follows:

present This field indicates which configuration registers are present on the PC
Card.

CONFIG_OPTION_REG_PRESENT Configuration Option Register present

CONFIG_STATUS_REG_PRESENT Configuration Status Register present

CONFIG_PINREPL_REG_PRESENT Pin Replacement Register present

CONFIG_COPY_REG_PRESENT Copy Register present

CONFIG_EXSTAT_REG_PRESENT Extended Status Register present

CONFIG_IOBASE0_REG_PRESENT IO Base 0 Register present

9F-130 SunOS 5.6 modified 20 Dec 1996

Kernel Functions for Drivers csx_Parse_CISTPL_CONFIG (9F)

CONFIG_IOBASE1_REG_PRESENT IO Base 1 Register present

CONFIG_IOBASE2_REG_PRESENT IO Base2 Register present

CONFIG_IOBASE3_REG_PRESENT IO Base3 Register present

CONFIG_IOLIMIT_REG_PRESENT IO Limit Register present

nr This field specifies the number of configuration registers that are present on
the PC Card.

hr This field specifies the highest configuration register number that is present
on the PC Card.

regs This array contains the offset from the start of Attribute Memory space for
each configuration register that is present on the PC Card. If a configuration
register is not present on the PC Card, the value in the corresponding entry
in the regs array is undefined.

base This field contains the offset from the start of Attribute Memory space to
the base of the PC Card configuration register space.

last This field contains the value of the last valid configuration index for this PC
Card.

RETURN VALUES CS_SUCCESS Successful operation.
CS_BAD_HANDLE Client handle is invalid.
CS_UNKNOWN_TUPLE Parser does not know how to parse tuple.
CS_NO_CARD No PC Card in socket.
CS_NO_CIS No Card Information Structure (CIS) on PC Card.
CS_UNSUPPORTED_FUNCTION No PCMCIA hardware installed.

CONTEXT This function may be called from user or kernel context.

SEE ALSO csx_GetFirstTuple(9F), csx_GetTupleData(9F),
csx_Parse_CISTPL_CFTABLE_ENTRY(9F), csx_RegisterClient(9F),
csx_ValidateCIS(9F), tuple(9S)

PC Card 95 Standard, PCMCIA/JEIDA

NOTES PC Card drivers should not attempt to use configurations beyond the "last" member in
the cistpl_config_t structure.

modified 20 Dec 1996 SunOS 5.6 9F-131

csx_Parse_CISTPL_DATE (9F) Kernel Functions for Drivers

NAME csx_Parse_CISTPL_DATE − parse the Card Initialization Date tuple

SYNOPSIS #include <sys/pccard.h>

int32_t csx_Parse_CISTPL_DATE(client_handle_t ch, tuple_t ∗tu,
cistpl_date_t ∗cd);

INTERFACE
LEVEL

Solaris DDI Specific (Solaris DDI)

ARGUMENTS ch Client handle returned from csx_RegisterClient(9F).

tu Pointer to a tuple_t structure (see tuple(9S)) returned by a call to
csx_GetFirstTuple(9F) or csx_GetNextTuple(9F).

cd Pointer to a cistpl_date_t structure which contains the parsed CISTPL_DATE
tuple information upon return from this function.

DESCRIPTION This function parses the Card Initialization Date tuple, CISTPL_DATE, into a form usable
by PC Card drivers.

The CISTPL_DATE tuple is an optional tuple. It indicates the date and time at which the
card was formatted. Only one CISTPL_DATE tuple is allowed per PC Card.

STRUCTURE
MEMBERS

The structure members of cistpl_date_t are:

uint32_t time;
uint32_t day;

The fields are defined as follows:

time This field indicates the time at which the PC Card was initialized.

day This field indicates the date the PC Card was initialized.

RETURN VALUES CS_SUCCESS Successful operation.
CS_BAD_HANDLE Client handle is invalid.
CS_UNKNOWN_TUPLE Parser does not know how to parse tuple.
CS_NO_CARD No PC Card in socket.
CS_NO_CIS No Card Information Structure (CIS) on PC Card.
CS_UNSUPPORTED_FUNCTION No PCMCIA hardware installed.

CONTEXT This function may be called from user or kernel context.

SEE ALSO csx_GetFirstTuple(9F), csx_GetTupleData(9F), csx_RegisterClient(9F),
csx_ValidateCIS(9F), tuple(9S)

PC Card 95 Standard, PCMCIA/JEIDA

9F-132 SunOS 5.6 modified 20 Dec 1996

Kernel Functions for Drivers csx_Parse_CISTPL_DEVICE (9F)

NAME csx_Parse_CISTPL_DEVICE, csx_Parse_CISTPL_DEVICE_A,
csx_Parse_CISTPL_DEVICE_OC, csx_Parse_CISTPL_DEVICE_OA − parse Device
Information tuples

SYNOPSIS #include <sys/pccard.h>

int32_t csx_Parse_CISTPL_DEVICE(client_handle_t ch, tuple_t ∗tu,
cistpl_device_t ∗cd);

int32_t csx_Parse_CISTPL_DEVICE_A(client_handle_t ch, tuple_t ∗tu,
cistpl_device_t ∗cd);

int32_t csx_Parse_CISTPL_DEVICE_OC(client_handle_t ch, tuple_t ∗tu,
cistpl_device_t ∗cd);

int32_t csx_Parse_CISTPL_DEVICE_OA(client_handle_t ch, tuple_t ∗tu,
cistpl_device_t ∗cd);

INTERFACE
LEVEL

Solaris DDI Specific (Solaris DDI)

ARGUMENTS ch Client handle returned from csx_RegisterClient(9F).

tu Pointer to a tuple_t structure (see tuple(9S)) returned by a call to
csx_GetFirstTuple(9F) or csx_GetNextTuple(9F).

cd Pointer to a cistpl_device_t structure which contains the parsed CISTPL_DEVICE,
CISTPL_DEVICE_A, CISTPL_DEVICE_OC, or CISTPL_DEVICE_OA tuple
information upon return from these functions, respectively.

DESCRIPTION csx_Parse_CISTPL_DEVICE() and csx_Parse_CISTPL_DEVICE_A() parse the 5 volt
Device Information tuples, CISTPL_DEVICE and CISTPL_DEVICE_A, respectively, into a
form usable by PC Card drivers.

csx_Parse_CISTPL_DEVICE_OC() and csx_Parse_CISTPL_DEVICE_OA() parse the
Other Condition Device Information tuples, CISTPL_DEVICE_OC and
CISTPL_DEVICE_OA, respectively, into a form usable by PC Card drivers.

The CISTPL_DEVICE and CISTPL_DEVICE_A tuples are used to describe the card’s device
information, such as device speed, device size, device type, and address space layout
information for Common Memory or Attribute Memory space, respectively.

The CISTPL_DEVICE_OC and CISTPL_DEVICE_OA tuples are used to describe the
information about the card’s device under a set of operating conditions for Common
Memory or Attribute Memory space, respectively.

STRUCTURE
MEMBERS

The structure members of cistpl_device_t are:

uint32_t num_devices; /∗ number of devices found ∗/
cistpl_device_node_t devnode[CISTPL_DEVICE_MAX_DEVICES];

modified 20 Dec 1996 SunOS 5.6 9F-133

csx_Parse_CISTPL_DEVICE (9F) Kernel Functions for Drivers

The structure members of cistpl_device_node_t are:

uint32_t flags; /∗ flags specific to this device ∗/
uint32_t speed; /∗ device speed in device speed code format ∗/
uint32_t nS_speed; /∗ device speed in nS ∗/
uint32_t type; /∗ device type ∗/
uint32_t size; /∗ device size ∗/
uint32_t size_in_bytes; /∗ device size in bytes ∗/

The fields are defined as follows:

flags This field indicates whether or not the device is writable, and describes a
Vcc voltage at which the PC Card can be operated.

CISTPL_DEVICE_WPS Write Protect Switch bit is set

Bits which are applicable only for CISTPL_DEVICE_OC and
CISTPL_DEVICE_OA are:

CISTPL_DEVICE_OC_MWAIT Use MWAIT

CISTPL_DEVICE_OC_Vcc_MASK Mask for Vcc value

CISTPL_DEVICE_OC_Vcc5 5.0 volt operation

CISTPL_DEVICE_OC_Vcc33 3.3 volt operation

CISTPL_DEVICE_OC_VccXX X.X volt operation

CISTPL_DEVICE_OC_VccYY Y.Y volt operation

speed The device speed value described in the device speed code unit. If this
field is set to CISTPL_DEVICE_SPEED_SIZE_IGNORE, then the speed
information will be ignored.

nS_speed The device speed value described in nanosecond units.

size The device size value described in the device size code unit. If this field
is set to CISTPL_DEVICE_SPEED_SIZE_IGNORE, then the size
information will be ignored.

size_in_bytes The device size value described in byte units.

type This is the device type code field which is defined as follows:

CISTPL_DEVICE_DTYPE_NULL No device
CISTPL_DEVICE_DTYPE_ROM Masked ROM

CISTPL_DEVICE_DTYPE_OTPROM One Time Programmable ROM

CISTPL_DEVICE_DTYPE_EPROM UV EPROM

CISTPL_DEVICE_DTYPE_EEPROM EEPROM

CISTPL_DEVICE_DTYPE_FLASH FLASH

CISTPL_DEVICE_DTYPE_SRAM Static RAM

9F-134 SunOS 5.6 modified 20 Dec 1996

Kernel Functions for Drivers csx_Parse_CISTPL_DEVICE (9F)

CISTPL_DEVICE_DTYPE_DRAM Dynamic RAM

CISTPL_DEVICE_DTYPE_FUNCSPEC Function-specific memory
address range

CISTPL_DEVICE_DTYPE_EXTEND Extended type follows

RETURN VALUES CS_SUCCESS Successful operation.
CS_BAD_HANDLE Client handle is invalid.
CS_UNKNOWN_TUPLE Parser does not know how to parse tuple.
CS_NO_CARD No PC Card in socket.
CS_NO_CIS No Card Information Structure (CIS) on PC Card.
CS_UNSUPPORTED_FUNCTION No PCMCIA hardware installed.

CONTEXT These functions may be called from user or kernel context.

SEE ALSO csx_GetFirstTuple(9F), csx_GetTupleData(9F), csx_Parse_CISTPL_JEDEC_C(9F),
csx_RegisterClient(9F), csx_ValidateCIS(9F), tuple(9S)

PC Card 95 Standard, PCMCIA/JEIDA

modified 20 Dec 1996 SunOS 5.6 9F-135

csx_Parse_CISTPL_DEVICEGEO (9F) Kernel Functions for Drivers

NAME csx_Parse_CISTPL_DEVICEGEO − parse the Device Geo tuple

SYNOPSIS #include <sys/pccard.h>

int32_t csx_Parse_CISTPL_DEVICEGEO(client_handle_t ch, tuple_t ∗tp,
cistpl_devicegeo_t ∗pt);

INTERFACE
LEVEL

Solaris DDI Specific (Solaris DDI)

ARGUMENTS ch Client handle returned from csx_RegisterClient(9F).

tp Pointer to a tuple_t structure (see tuple(9S)) returned by a call to
csx_GetFirstTuple(9F) or csx_GetNextTuple(9F).

pt Pointer to a cistpl_devicegeo_t structure which contains the parsed Device Geo
tuple information upon return from this function.

DESCRIPTION This function parses the Device Geo tuple, CISTPL_DEVICEGEO, into a form usable by PC
Card drivers.

The CISTPL_DEVICEGEO tuple describes the device geometry of common memory parti-
tions.

STRUCTURE
MEMBERS

The structure members of cistpl_devicegeo_t are:

uint32_t info[CISTPL_DEVICEGEO_MAX_PARTITIONS].bus;
uint32_t info[CISTPL_DEVICEGEO_MAX_PARTITIONS].ebs;
uint32_t info[CISTPL_DEVICEGEO_MAX_PARTITIONS].rbs;
uint32_t info[CISTPL_DEVICEGEO_MAX_PARTITIONS].wbs;
uint32_t info[CISTPL_DEVICEGEO_MAX_PARTITIONS].part;
uint32_t info[CISTPL_DEVICEGEO_MAX_PARTITIONS].hwil;

The fields are defined as follows:

info[CISTPL_DEVICEGEO_MAX_PARTITIONS].bus
This field indicates the card interface width in bytes for the given partition.

info[CISTPL_DEVICEGEO_MAX_PARTITIONS].ebs
This field indicates the minimum erase block size for the given partition.

info[CISTPL_DEVICEGEO_MAX_PARTITIONS].rbs
This field indicates the minimum read block size for the given partition.

info[CISTPL_DEVICEGEO_MAX_PARTITIONS].wbs
This field indicates the minimum write block size for the given partition.

info[CISTPL_DEVICEGEO_MAX_PARTITIONS].part
This field indicates the segment partition subdivisions for the given partition.

info[CISTPL_DEVICEGEO_MAX_PARTITIONS].hwil
This field indicates the hardware interleave

9F-136 SunOS 5.6 modified 16 May 1997

Kernel Functions for Drivers csx_Parse_CISTPL_DEVICEGEO (9F)

RETURN VALUES CS_SUCCESS Successful operation.
CS_BAD_HANDLE Client handle is invalid.
CS_UNKNOWN_TUPLE Parser does not know how to parse tuple.
CS_NO_CARD No PC Card in socket.
CS_NO_CIS No Card Information Structure (CIS) on PC Card.
CS_UNSUPPORTED_FUNCTION No PCMCIA hardware installed.

CONTEXT This function may be called from user or kernel context.

SEE ALSO csx_GetFirstTuple(9F), csx_GetNextTuple(9F), csx_GetTupleData(9F),
csx_Parse_CISTPL_DEVICEGEO_A(9F), csx_RegisterClient(9F), tuple(9S)

PC Card 95 Standard, PCMCIA/JEIDA

modified 16 May 1997 SunOS 5.6 9F-137

csx_Parse_CISTPL_DEVICEGEO_A (9F) Kernel Functions for Drivers

NAME csx_Parse_CISTPL_DEVICEGEO_A − parse the Device Geo A tuple

SYNOPSIS #include <sys/pccard.h>

int32_t csx_Parse_CISTPL_DEVICEGEO_A(client_handle_t ch, tuple_t ∗tp,
cistpl_devicegeo_t ∗pt);

INTERFACE
LEVEL

Solaris DDI Specific (Solaris DDI)

ARGUMENTS ch Client handle returned from csx_RegisterClient(9F).

tp Pointer to a tuple_t structure (see tuple(9S)) returned by a call to
csx_GetFirstTuple(9F) or csx_GetNextTuple(9F).

pt Pointer to a cistpl_devicegeo_t structure which contains the parsed Device Geo
A tuple information upon return from this function.

DESCRIPTION This function parses the Device Geo A tuple, CISTPL_DEVICEGEO_A, into a form usable
by PC Card drivers.

The CISTPL_DEVICEGEO_A tuple describes the device geometry of attribute memory
partitions.

STRUCTURE
MEMBERS

The structure members of cistpl_devicegeo_t are:

uint32_t info[CISTPL_DEVICEGEO_MAX_PARTITIONS].bus;
uint32_t info[CISTPL_DEVICEGEO_MAX_PARTITIONS].ebs;
uint32_t info[CISTPL_DEVICEGEO_MAX_PARTITIONS].rbs;
uint32_t info[CISTPL_DEVICEGEO_MAX_PARTITIONS].wbs;
uint32_t info[CISTPL_DEVICEGEO_MAX_PARTITIONS].part;
uint32_t info[CISTPL_DEVICEGEO_MAX_PARTITIONS].hwil;

The fields are defined as follows:

info[CISTPL_DEVICEGEO_MAX_PARTITIONS].bus
This field indicates the card interface width in bytes for the given partition.

info[CISTPL_DEVICEGEO_MAX_PARTITIONS].ebs
This field indicates the minimum erase block size for the given partition.

info[CISTPL_DEVICEGEO_MAX_PARTITIONS].rbs
This field indicates the minimum read block size for the given partition.

info[CISTPL_DEVICEGEO_MAX_PARTITIONS].wbs
This field indicates the minimum write block size for the given partition.

info[CISTPL_DEVICEGEO_MAX_PARTITIONS].part
This field indicates the segment partition subdivisions for the given partition.

info[CISTPL_DEVICEGEO_MAX_PARTITIONS].hwil
This field indicates the hardware interleave for the given partition.

9F-138 SunOS 5.6 modified 16 May 1997

Kernel Functions for Drivers csx_Parse_CISTPL_DEVICEGEO_A (9F)

RETURN VALUES CS_SUCCESS Successful operation.
CS_BAD_HANDLE Client handle is invalid.
CS_UNKNOWN_TUPLE Parser does not know how to parse tuple.
CS_NO_CARD No PC Card in socket.
CS_NO_CIS No Card Information Structure (CIS) on PC Card.
CS_UNSUPPORTED_FUNCTION No PCMCIA hardware installed.

CONTEXT This function may be called from user or kernel context.

SEE ALSO csx_GetFirstTuple(9F), csx_GetNextTuple(9F), csx_GetTupleData(9F),
csx_Parse_CISTPL_DEVICEGEO(9F), csx_RegisterClient(9F), tuple(9S)

PC Card 95 Standard, PCMCIA/JEIDA

modified 16 May 1997 SunOS 5.6 9F-139

csx_Parse_CISTPL_FORMAT (9F) Kernel Functions for Drivers

NAME csx_Parse_CISTPL_FORMAT − parse the Data Recording Format tuple

SYNOPSIS #include <sys/pccard.h>

int32_t csx_Parse_CISTPL_FORMAT(client_handle_t ch, tuple_t ∗tu,
cistpl_format_t ∗pt);

INTERFACE
LEVEL

Solaris DDI Specific (Solaris DDI)

ARGUMENTS ch Client handle returned from csx_RegisterClient(9F).

tu Pointer to a tuple_t structure (see tuple(9S)) returned by a call to
csx_GetFirstTuple(9F) or csx_GetNextTuple(9F).

pt Pointer to a cistpl_format_t structure which contains the parsed
CISTPL_FORMAT tuple information upon return from this function.

DESCRIPTION This function parses the Data Recording Format tuple, CISTPL_FORMAT, into a form
usable by PC Card drivers.

The CISTPL_FORMAT tuple indicates the data recording format for a device partition.

STRUCTURE
MEMBERS

The structure members of cistpl_format_t are:

uint32_t type;
uint32_t edc_length;
uint32_t edc_type;
uint32_t offset;
uint32_t nbytes;
uint32_t dev.disk.bksize;
uint32_t dev.disk.nblocks;
uint32_t dev.disk.edcloc;
uint32_t dev.mem.flags;
uint32_t dev.mem.reserved;
caddr_t dev.mem.address;
uint32_t dev.mem.edcloc;

The fields are defined as follows:

type This field indicates the type of device:

TPLFMTTYPE_DISK disk-like device
TPLFMTTYPE_MEM memory-like device
TPLFMTTYPE_VS vendor-specific device

edc_length
This field indicates the error detection code length.

edc_type This field indicates the error detection code type.

offset This field indicates the offset of the first byte of data in this partition.

nbytes This field indicates the number of bytes of data in this partition

9F-140 SunOS 5.6 modified 24 Jan 1997

Kernel Functions for Drivers csx_Parse_CISTPL_FORMAT (9F)

dev.disk.bksize
This field indicates the block size, for disk devices.

dev.disk.nblocks
This field indicates the number of blocks, for disk devices.

dev.disk.edcloc
This field indicates the location of the error detection code, for disk devices.

dev.mem.flags
This field provides flags, for memory devices. Valid flags are:

TPLFMTFLAGS_ADDR address is valid
TPLFMTFLAGS_AUTO automatically map memory region

dev.mem.reserved
This field is reserved.

dev.mem.address
This field indicates the physical address, for memory devices.

dev.mem.edcloc
This field indicates the location of the error detection code, for memory dev-
ices.

RETURN VALUES CS_SUCCESS Successful operation.
CS_BAD_HANDLE Client handle is invalid.
CS_UNKNOWN_TUPLE Parser does not know how to parse tuple.
CS_NO_CARD No PC Card in socket.
CS_NO_CIS No Card Information Structure (CIS) on PC Card.
CS_UNSUPPORTED_FUNCTION No PCMCIA hardware installed.

CONTEXT This function may be called from user or kernel context.

SEE ALSO csx_GetFirstTuple(9F), csx_GetTupleData(9F), csx_RegisterClient(9F),
csx_ValidateCIS(9F), tuple(9S)

PC Card 95 Standard, PCMCIA/JEIDA

modified 24 Jan 1997 SunOS 5.6 9F-141

csx_Parse_CISTPL_FUNCE (9F) Kernel Functions for Drivers

NAME csx_Parse_CISTPL_FUNCE − parse Function Extension tuple

SYNOPSIS #include <sys/pccard.h>

int32_t csx_Parse_CISTPL_FUNCE(client_handle_t ch, tuple_t ∗tu,
cistpl_funce_t ∗cf, uint32_t fid);

INTERFACE
LEVEL

Solaris DDI Specific (Solaris DDI)

ARGUMENTS ch Client handle returned from csx_RegisterClient(9F).

tu Pointer to a tuple_t structure (see tuple(9S)) returned by a call to
csx_GetFirstTuple(9F) or csx_GetNextTuple(9F).

cf Pointer to a cistpl_funce_t structure which contains the parsed CISTPL_FUNCE
tuple information upon return from this function.

fid The function ID code to which this CISTPL_FUNCE tuple refers. See
csx_Parse_CISTPL_FUNCID(9F).

DESCRIPTION This function parses the Function Extension tuple, CISTPL_FUNCE, into a form usable by
PC Card drivers.

The CISTPL_FUNCE tuple is used to describe information about a specific PC Card func-
tion. The information provided is determined by the Function Identification tuple,
CISTPL_FUNCID, that is being extended. Each function has a defined set of extension
tuples.

STRUCTURE
MEMBERS

The structure members of cistpl_funce_t are:

uint32_t function; /∗ type of extended data ∗/
uint32_t subfunction;
union {

struct serial {
uint32_t ua; /∗ UART in use ∗/
uint32_t uc; /∗ UART capabilities ∗/

} serial;
struct modem {

uint32_t fc; /∗ supported flow control methods ∗/
uint32_t cb; /∗ size of DCE command buffer ∗/
uint32_t eb; /∗ size of DCE to DCE buffer ∗/
uint32_t tb; /∗ size of DTE to DCE buffer ∗/

} modem;
struct data_modem {

uint32_t ud; /∗ highest data rate ∗/
uint32_t ms; /∗ modulation standards ∗/
uint32_t em; /∗ err correct proto and non-CCITT modulation ∗/
uint32_t dc; /∗ data compression protocols ∗/

9F-142 SunOS 5.6 modified 20 Dec 1996

Kernel Functions for Drivers csx_Parse_CISTPL_FUNCE (9F)

uint32_t cm; /∗ command protocols ∗/
uint32_t ex; /∗ escape mechanisms ∗/
uint32_t dy; /∗ standardized data encryption ∗/
uint32_t ef; /∗ miscellaneous end user features ∗/
uint32_t ncd; /∗ number of country codes ∗/
uchar_t cd[16]; /∗ CCITT country code ∗/

} data_modem;
struct fax {

uint32_t uf; /∗ highest data rate in DTE/UART ∗/
uint32_t fm; /∗ CCITT modulation standards ∗/
uint32_t fy; /∗ standardized data encryption ∗/
uint32_t fs; /∗ feature selection ∗/
uint32_t ncf; /∗ number of country codes ∗/
uchar_t cf[16]; /∗ CCITT country codes ∗/

} fax;
struct voice {

uint32_t uv; /∗ highest data rate ∗/
uint32_t nsr;
uint32_t sr[16]; /∗ voice sampling rates (∗100) ∗/
uint32_t nss;
uint32_t ss[16]; /∗ voice sample sizes (∗10) ∗/
uint32_t nsc;
uint32_t sc[16]; /∗ voice compression methods ∗/

} voice;
struct lan {

uint32_t tech; /∗ network technology ∗/
uint32_t speed; /∗ media bit or baud rate ∗/
uint32_t media; /∗ network media supported ∗/
uint32_t con; /∗ open/closed connector standard ∗/
uint32_t id_sz; /∗ length of lan station id ∗/
uchar_t id[16]; /∗ station ID ∗/

} lan;
} data;

The fields are defined as follows:

function This field identifies the type of extended information provided about a
function by the CISTPL_FUNCE tuple. This field is defined as follows:

TPLFE_SUB_SERIAL Serial port interface

TPLFE_SUB_MODEM_COMMON Common modem interface

TPLFE_SUB_MODEM_DATA Data modem services

TPLFE_SUB_MODEM_FAX Fax modem services

TPLFE_SUB_VOICE Voice services

modified 20 Dec 1996 SunOS 5.6 9F-143

csx_Parse_CISTPL_FUNCE (9F) Kernel Functions for Drivers

TPLFE_CAP_MODEM_DATA Capabilities of the data modem interface

TPLFE_CAP_MODEM_FAX Capabilities of the fax modem interface

TPLFE_CAP_MODEM_VOICE Capabilities of the voice modem interface

TPLFE_CAP_SERIAL_DATA Serial port interface for data modem services

TPLFE_CAP_SERIAL_FAX Serial port interface for fax modem services

TPLFE_CAP_SERIAL_VOICE Serial port interface for voice modem services

subfunction This is for identifying a sub-category of services provided by a function
in the CISTPL_FUNCE tuple.

The numeric value of the code is in the range of 1 to 15.

ua This is the serial port UART identification and is defined as follows:

TPLFE_UA_8250 Intel 8250

TPLFE_UA_16450 NS 16450

TPLFE_UA_16550 NS 16550

uc This identifies the serial port UART capabilities and is defined as follows:

TPLFE_UC_PARITY_SPACE Space parity supported

TPLFE_UC_PARITY_MARK Mark parity supported

TPLFE_UC_PARITY_ODD Odd parity supported

TPLFE_UC_PARITY_EVEN Even parity supported

TPLFE_UC_CS5 5 bit characters supported

TPLFE_UC_CS6 6 bit characters supported

TPLFE_UC_CS7 7 bit characters supported

TPLFE_UC_CS8 8 bit characters supported

TPLFE_UC_STOP_1 1 stop bit supported

TPLFE_UC_STOP_15 1.5 stop bits supported

TPLFE_UC_STOP_2 2 stop bits supported

fc This identifies the modem flow control methods and is defined as follows:

TPLFE_FC_TX_XONOFF Transmit XON/XOFF

TPLFE_FC_RX_XONOFF Receiver XON/XOFF

TPLFE_FC_TX_HW Transmit hardware flow control (CTS)

TPLFE_FC_RX_HW Receiver hardware flow control (RTS)

TPLFE_FC_TRANS Tranparent flow control

9F-144 SunOS 5.6 modified 20 Dec 1996

Kernel Functions for Drivers csx_Parse_CISTPL_FUNCE (9F)

ms This identifies the modem modulation standards and is defined as follows:

TPLFE_MS_BELL103 300bps

TPLFE_MS_V21 300bps (V.21)

TPLFE_MS_V23 600/1200bps (V.23)

TPLFE_MS_V22AB 1200bps (V.22A V.22B)

TPLFE_MS_BELL212 2400bsp (US Bell 212)

TPLFE_MS_V22BIS 2400bps (V.22bis)

TPLFE_MS_V26 2400bps leased line (V.26)

TPLFE_MS_V26BIS 2400bps (V.26bis)

TPLFE_MS_V27BIS 4800/2400bps leased line (V.27bis)

TPLFE_MS_V29 9600/7200/4800 leased line (V.29)

TPLFE_MS_V32 Up to 9600bps (V.32)

TPLFE_MS_V32BIS Up to 14400bps (V.32bis)

TPLFE_MS_VFAST Up to 28800 V.FAST

em This identifies modem error correction/detection protocols and is defined
as follows:

TPLFE_EM_MNP MNP levels 2-4

TPLFE_EM_V42 CCITT LAPM (V.42)

dc This identifies modem data compression protocols and is defined
as follows:

TPLFE_DC_V42BI CCITT compression V.42

TPLFE_DC_MNP5 MNP compression (uses MNP 2, 3 or 4)

cm This identifies modem command protocols and is defined as follows:

TPLFE_CM_AT1 ANSI/EIA/TIA 602 "Action" commands

TPLFE_CM_AT2 ANSI/EIA/TIA 602 "ACE/DCE IF Params"

TPLFE_CM_AT3 ANSI/EIA/TIA 602 "Ace Parameters"

TPLFE_CM_MNP_AT MNP specification AT commands

TPLFE_CM_V25BIS V.25bis calling commands

TPLFE_CM_V25A V.25bis test procedures

TPLFE_CM_DMCL DMCL command mode

ex This identifies the modem escape mechanism and is defined as follows:

modified 20 Dec 1996 SunOS 5.6 9F-145

csx_Parse_CISTPL_FUNCE (9F) Kernel Functions for Drivers

TPLFE_EX_BREAK BREAK support standardized

TPLFE_EX_PLUS +++ returns to command mode

TPLFE_EX_UD User defined escape character

dy This identifies modem standardized data encryption and is a reserved field
for future use and must be set to 0.

ef This identifies modem miscellaneous features and is defined as follows:

TPLFE_EF_CALLERID Caller ID is supported

fm This identifies fax modulation standards and is defined as follows:

TPLFE_FM_V21C2 300bps (V.21-C2)

TPLFE_FM_V27TER 4800/2400bps (V.27ter)

TPLFE_FM_V29 9600/7200/4800 leased line (V.29)

TPLFE_FM_V17 14.4K/12K/9600/7200bps (V.17)

TPLFE_FM_V33 14.4K/12K/9600/7200 leased
line (V.33)

fs This identifies the fax feature selection and is defined as follows:

TPLFE_FS_T3 Group 2 (T.3) service class

TPLFE_FS_T4 Group 3 (T.4) service class

TPLFE_FS_T6 Group 4 (T.6) service class

TPLFE_FS_ECM Error Correction Mode

TPLFE_FS_VOICEREQ Voice requests allowed

TPLFE_FS_POLLING Polling support

TPLFE_FS_FTP File transfer support

TPLFE_FS_PASSWORD Password support

tech This identifies the LAN technology type and is defined as follows:

TPLFE_LAN_TECH_ARCNET Arcnet

TPLFE_LAN_TECH_ETHERNET Ethernet

TPLFE_LAN_TECH_TOKENRING Token Ring

TPLFE_LAN_TECH_LOCALTALK Local Talk

9F-146 SunOS 5.6 modified 20 Dec 1996

Kernel Functions for Drivers csx_Parse_CISTPL_FUNCE (9F)

TPLFE_LAN_TECH_FDDI FDDI/CDDI

TPLFE_LAN_TECH_ATM ATM

TPLFE_LAN_TECH_WIRELESS Wireless

media This identifies the LAN media type and is defined as follows:

TPLFE_LAN_MEDIA_INHERENT Generic interface

TPLFE_LAN_MEDIA_UTP Unshielded twisted pair

TPLFE_LAN_MEDIA_STP Shielded twisted pair

TPLFE_LAN_MEDIA_THIN_COAX Thin coax

TPLFE_LAN_MEDIA_THICK_COAX Thick coax

TPLFE_LAN_MEDIA_FIBER Fiber

TPLFE_LAN_MEDIA_SSR_902 Spread spectrum radio 902-928 MHz

TPLFE_LAN_MEDIA_SSR_2_4 Spread spectrum radio 2.4 GHz

TPLFE_LAN_MEDIA_SSR_5_4 Spread spectrum radio 5.4 GHz

TPLFE_LAN_MEDIA_DIFFUSE_IR Diffuse infra red

TPLFE_LAN_MEDIA_PTP_IR Point to point infra red

RETURN VALUES CS_SUCCESS Successful operation.
CS_BAD_HANDLE Client handle is invalid.
CS_UNKNOWN_TUPLE Parser does not know how to parse tuple.
CS_NO_CARD No PC Card in socket.
CS_NO_CIS No Card Information Structure (CIS) on PC Card.
CS_UNSUPPORTED_FUNCTION No PCMCIA hardware installed.

CONTEXT This function may be called from user or kernel context.

SEE ALSO csx_GetFirstTuple(9F), csx_GetTupleData(9F), csx_Parse_CISTPL_FUNCID(9F),
csx_RegisterClient(9F), csx_ValidateCIS(9F), tuple(9S)

PC Card 95 Standard, PCMCIA/JEIDA

modified 20 Dec 1996 SunOS 5.6 9F-147

csx_Parse_CISTPL_FUNCID (9F) Kernel Functions for Drivers

NAME csx_Parse_CISTPL_FUNCID − parse Function Identification tuple

SYNOPSIS #include <sys/pccard.h>

int32_t csx_Parse_CISTPL_FUNCID(client_handle_t ch, tuple_t ∗tu,
cistpl_funcid_t ∗cf);

INTERFACE
LEVEL

Solaris DDI Specific (Solaris DDI)

ARGUMENTS ch Client handle returned from csx_RegisterClient(9F).

tu Pointer to a tuple_t structure (see tuple(9S)) returned by a call to
csx_GetFirstTuple(9F) or csx_GetNextTuple(9F).

cf Pointer to a cistpl_funcid_t structure which contains the parsed CISTPL_FUNCID
tuple information upon return from this function.

DESCRIPTION This function parses the Function Identification tuple, CISTPL_FUNCID, into a form
usable by PC Card drivers.

The CISTPL_FUNCID tuple is used to describe information about the functionality pro-
vided by a PC Card. Information is also provided to enable system utilities to decide if
the PC Card should be configured during system initialization. If additional function
specific information is available, one or more function extension tuples of type
CISTPL_FUNCE follow this tuple (see csx_Parse_CISTPL_FUNCE(9F)).

STRUCTURE
MEMBERS

The structure members of cistpl_funcid_t are:

uint32_t function; /∗ PC Card function code ∗/
uint32_t sysinit; /∗ system initialization mask ∗/

The fields are defined as follows:

function This is the function type for CISTPL_FUNCID:

TPLFUNC_MULTI Vendor-specific multifunction card

TPLFUNC_MEMORY Memory card

TPLFUNC_SERIAL Serial I/O port

TPLFUNC_PARALLEL Parallel printer port

TPLFUNC_FIXED Fixed disk, silicon or removable

TPLFUNC_VIDEO Video interface

TPLFUNC_LAN Local Area Network adapter

TPLFUNC_AIMS Auto Incrementing Mass Storage

TPLFUNC_SCSI SCSI bridge

9F-148 SunOS 5.6 modified 20 Dec 1996

Kernel Functions for Drivers csx_Parse_CISTPL_FUNCID (9F)

TPLFUNC_SECURITY Security cards

TPLFUNC_VENDOR_SPECIFIC Vendor specific

TPLFUNC_UNKNOWN Unknown function(s)

sysinit This field is bit-mapped and defined as follows:

TPLINIT_POST POST should attempt configure

TPLINIT_ROM Map ROM during sys init

RETURN VALUES CS_SUCCESS Successful operation.
CS_BAD_HANDLE Client handle is invalid.
CS_UNKNOWN_TUPLE Parser does not know how to parse tuple.
CS_NO_CARD No PC Card in socket.
CS_NO_CIS No Card Information Structure (CIS) on PC Card.
CS_UNSUPPORTED_FUNCTION No PCMCIA hardware installed.

CONTEXT This function may be called from user or kernel context.

SEE ALSO csx_GetFirstTuple(9F), csx_GetTupleData(9F), csx_Parse_CISTPL_FUNCE(9F),
csx_RegisterClient(9F), csx_ValidateCIS(9F), tuple(9S)

PC Card 95 Standard, PCMCIA/JEIDA

modified 20 Dec 1996 SunOS 5.6 9F-149

csx_Parse_CISTPL_GEOMETRY (9F) Kernel Functions for Drivers

NAME csx_Parse_CISTPL_GEOMETRY − parse the Geometry tuple

SYNOPSIS #include <sys/pccard.h>

int32_t csx_Parse_CISTPL_GEOMETRY(client_handle_t ch, tuple_t ∗tu,
cistpl_geometry_t ∗pt);

INTERFACE
LEVEL

Solaris DDI Specific (Solaris DDI)

ARGUMENTS ch Client handle returned from csx_RegisterClient(9F).

tu Pointer to a tuple_t structure (see tuple(9S)) returned by a call to
csx_GetFirstTuple(9F) or csx_GetNextTuple(9F).

pt Pointer to a cistpl_geometry_t structure which contains the parsed
CISTPL_GEOMETRY tuple information upon return from this function.

DESCRIPTION This function parses the Geometry tuple, CISTPL_GEOMETRY, into a form usable by PC
Card drivers.

The CISTPL_GEOMETRY tuple indicates the geometry of a disk-like device.

STRUCTURE
MEMBERS

The structure members of cistpl_geometry_t are:

uint32_t spt;
uint32_t tpc;
uint32_t ncyl;

The fields are defined as follows:

spt This field indicates the number of sectors per track.

tpc This field indicates the number of tracks per cylinder.

ncyl This field indicates the number of cylinders.

RETURN VALUES CS_SUCCESS Successful operation.
CS_BAD_HANDLE Client handle is invalid.
CS_UNKNOWN_TUPLE Parser does not know how to parse tuple.
CS_NO_CARD No PC Card in socket.
CS_NO_CIS No Card Information Structure (CIS) on PC Card.
CS_UNSUPPORTED_FUNCTION No PCMCIA hardware installed.

CONTEXT This function may be called from user or kernel context.

SEE ALSO csx_GetFirstTuple(9F), csx_GetTupleData(9F), csx_RegisterClient(9F),
csx_ValidateCIS(9F), tuple(9S)

PC Card 95 Standard, PCMCIA/JEIDA

9F-150 SunOS 5.6 modified 24 Jan 1997

Kernel Functions for Drivers csx_Parse_CISTPL_JEDEC_C (9F)

NAME csx_Parse_CISTPL_JEDEC_C, csx_Parse_CISTPL_JEDEC_A − parse JEDEC Identifier
tuples

SYNOPSIS #include <sys/pccard.h>

int32_t csx_Parse_CISTPL_JEDEC_C(client_handle_t ch, tuple_t ∗tu,
cistpl_jedec_t ∗cj);

int32_t csx_Parse_CISTPL_JEDEC_A(client_handle_t ch, tuple_t ∗tu,
cistpl_jedec_t ∗cj);

INTERFACE
LEVEL

Solaris DDI Specific (Solaris DDI)

ARGUMENTS ch Client handle returned from csx_RegisterClient(9F).

tu Pointer to a tuple_t structure (see tuple(9S)) returned by a call to
csx_GetFirstTuple(9F) or csx_GetNextTuple(9F).

cj Pointer to a cistpl_jedec_t structure which contains the parsed CISTPL_JEDEC_C
or CISTPL_JEDEC_A tuple information upon return from these functions, respec-
tively.

DESCRIPTION csx_Parse_CISTPL_JEDEC_C() and csx_Parse_CISTPL_JEDEC_A() parse the JEDEC
Identifier tuples, CISTPL_JEDEC_C and CISTPL_JEDEC_A, respectively, into a form usable
by PC Card drivers.

The CISTPL_JEDEC_C and CISTPL_JEDEC_A tuples are optional tuples provided for cards
containing programmable devices. They describe information for Common Memory or
Attribute Memory space, respectively.

STRUCTURE
MEMBERS

The structure members of cistpl_jedec_t are:

uint32_t nid; /∗ # of JEDEC identifiers present ∗/
jedec_ident_t jid[CISTPL_JEDEC_MAX_IDENTIFIERS];

The structure members of jedec_ident_t are:

uint32_t id; /∗ manufacturer id ∗/
uint32_t info; /∗ manufacturer specific info ∗/

RETURN VALUES CS_SUCCESS Successful operation.
CS_BAD_HANDLE Client handle is invalid.
CS_UNKNOWN_TUPLE Parser does not know how to parse tuple.
CS_NO_CARD No PC Card in socket.
CS_NO_CIS No Card Information Structure (CIS) on PC Card.
CS_UNSUPPORTED_FUNCTION No PCMCIA hardware installed.

CONTEXT These functions may be called from user or kernel context.

modified 20 Dec 1996 SunOS 5.6 9F-151

csx_Parse_CISTPL_JEDEC_C (9F) Kernel Functions for Drivers

SEE ALSO csx_GetFirstTuple(9F), csx_GetTupleData(9F), csx_Parse_CISTPL_DEVICE(9F),
csx_RegisterClient(9F), csx_ValidateCIS(9F), tuple(9S)

PC Card 95 Standard, PCMCIA/JEIDA

9F-152 SunOS 5.6 modified 20 Dec 1996

Kernel Functions for Drivers csx_Parse_CISTPL_LINKTARGET (9F)

NAME csx_Parse_CISTPL_LINKTARGET − parse the Link Target tuple

SYNOPSIS #include <sys/pccard.h>

int32_t csx_Parse_CISTPL_LINKTARGET(client_handle_t ch, tuple_t ∗tu,
cistpl_linktarget_t ∗pt);

INTERFACE
LEVEL

Solaris DDI Specific (Solaris DDI)

ARGUMENTS ch Client handle returned from csx_RegisterClient(9F).

tu Pointer to a tuple_t structure (see tuple(9S)) returned by a call to
csx_GetFirstTuple(9F) or csx_GetNextTuple(9F).

pt Pointer to a cistpl_linktarget_t structure which contains the parsed
CISTPL_LINKTARGET tuple information upon return from this function.

DESCRIPTION This function parses the Link Target tuple, CISTPL_LINKTARGET, into a form usable by
PC Card drivers.

The CISTPL_LINKTARGET tuple is used to verify that tuple chains other than the primary
chain are valid. All secondary tuple chains are required to contain this tuple as the first
tuple of the chain.

STRUCTURE
MEMBERS

The structure members of cistpl_linktarget_t are:

uint32_t length;
char tpltg_tag[CIS_MAX_TUPLE_DATA_LEN];

The fields are defined as follows:

length This field indicates the number of bytes in tpltg_tag.

tpltg_tag This field provides the Link Target tuple information.

RETURN VALUES CS_SUCCESS Successful operation.
CS_BAD_HANDLE Client handle is invalid.
CS_UNKNOWN_TUPLE Parser does not know how to parse tuple.
CS_NO_CARD No PC Card in socket.
CS_NO_CIS No Card Information Structure (CIS) on PC Card.
CS_UNSUPPORTED_FUNCTION No PCMCIA hardware installed.

CONTEXT This function may be called from user or kernel context.

SEE ALSO csx_GetFirstTuple(9F), csx_GetTupleData(9F), csx_RegisterClient(9F),
csx_ValidateCIS(9F), tuple(9S)

PC Card 95 Standard, PCMCIA/JEIDA

modified 24 Jan 1997 SunOS 5.6 9F-153

csx_Parse_CISTPL_LONGLINK_A (9F) Kernel Functions for Drivers

NAME csx_Parse_CISTPL_LONGLINK_A, csx_Parse_CISTPL_LONGLINK_C − parse the Long
Link A and C tuples

SYNOPSIS #include <sys/pccard.h>

int32_t csx_Parse_CISTPL_LONGLINK_A(client_handle_t ch, tuple_t ∗tu,
cistpl_longlink_ac_t ∗pt);

int32_t csx_Parse_CISTPL_LONGLINK_C(client_handle_t ch, tuple_t ∗tu,
cistpl_longlink_ac_t ∗pt);

INTERFACE
LEVEL

Solaris DDI Specific (Solaris DDI)

ARGUMENTS ch Client handle returned from csx_RegisterClient(9F).

tu Pointer to a tuple_t structure (see tuple(9S)) returned by a call to
csx_GetFirstTuple(9F) or csx_GetNextTuple(9F).

pt Pointer to a cistpl_longlink_ac_t structure which contains the parsed
CISTPL_LONGLINK_A or CISTPL_LONGLINK_C tuple information upon return
from this function.

DESCRIPTION This function parses the Long Link A and C tuples, CISTPL_LONGLINK_A and
CISTPL_LONGLINK_A, into a form usable by PC Card drivers.

The CISTPL_LONGLINK_A and CISTPL_LONGLINK_C tuples provide links to Attribute
and Common Memory.

STRUCTURE
MEMBERS

The structure members of cistpl_longlink_ac_t are:

uint32_t flags;
uint32_t tpll_addr;

The fields are defined as follows:

flags This field indicates the type of memory:

CISTPL_LONGLINK_AC_AM long link to Attribute Memory
CISTPL_LONGLINK_AC_CM long link to Common Memory

tpll_addr This field provides the offset from the beginning of the specified address
space.

RETURN VALUES CS_SUCCESS Successful operation.
CS_BAD_HANDLE Client handle is invalid.
CS_UNKNOWN_TUPLE Parser does not know how to parse tuple.
CS_NO_CARD No PC Card in socket.
CS_NO_CIS No Card Information Structure (CIS) on PC Card.
CS_UNSUPPORTED_FUNCTION No PCMCIA hardware installed.

9F-154 SunOS 5.6 modified 24 Jan 1997

Kernel Functions for Drivers csx_Parse_CISTPL_LONGLINK_A (9F)

CONTEXT This function may be called from user or kernel context.

SEE ALSO csx_GetFirstTuple(9F), csx_GetTupleData(9F), csx_RegisterClient(9F),
csx_ValidateCIS(9F), tuple(9S)

PC Card 95 Standard, PCMCIA/JEIDA

modified 24 Jan 1997 SunOS 5.6 9F-155

csx_Parse_CISTPL_LONGLINK_MFC (9F) Kernel Functions for Drivers

NAME csx_Parse_CISTPL_LONGLINK_MFC − parse the Multi-Function tuple

SYNOPSIS #include <sys/pccard.h>

int32_t csx_Parse_CISTPL_LONGLINK_MFC(client_handle_t ch, tuple_t ∗tu,
cistpl_longlink_mfc_t ∗pt);

INTERFACE
LEVEL

Solaris DDI Specific (Solaris DDI)

ARGUMENTS ch Client handle returned from csx_RegisterClient(9F).

tu Pointer to a tuple_t structure (see tuple(9S)) returned by a call to
csx_GetFirstTuple(9F) or csx_GetNextTuple(9F).

pt Pointer to a cistpl_longlink_mfc_t structure which contains the parsed
CISTPL_LONGLINK_MFC tuple information upon return from this function.

DESCRIPTION This function parses the Multi-Function tuple, CISTPL_LONGLINK_MFC, into a form
usable by PC Card drivers.

The CISTPL_LONGLINK_MFC tuple describes the start of the function-specific CIS for
each function on a multi-function card.

STRUCTURE
MEMBERS

The structure members of cistpl_longlink_mfc_t are:

uint32_t nfuncs;
uint32_t nregs;
uint32_t function[CIS_MAX_FUNCTIONS].tas
uint32_t function[CIS_MAX_FUNCTIONS].addr

The fields are defined as follows:

nfuncs This field indicates the number of functions on the PC card.

nregs This field indicates the number of configuration register sets.

function[CIS_MAX_FUNCTIONS].tas
This field provides the target address space for each function on the PC card.
This field can be one of:

CISTPL_LONGLINK_MFC_TAS_AM CIS in attribute memory
CISTPL_LONGLINK_MFC_TAS_CM CIS in common memory

function[CIS_MAX_FUNCTIONS].addr
This field provides the target address offset for each function on the PC card.

RETURN VALUES CS_SUCCESS Successful operation.
CS_BAD_HANDLE Client handle is invalid.
CS_UNKNOWN_TUPLE Parser does not know how to parse tuple.
CS_NO_CARD No PC Card in socket.
CS_NO_CIS No Card Information Structure (CIS) on PC Card.
CS_UNSUPPORTED_FUNCTION No PCMCIA hardware installed.

9F-156 SunOS 5.6 modified 24 Jan 1997

Kernel Functions for Drivers csx_Parse_CISTPL_LONGLINK_MFC (9F)

CONTEXT This function may be called from user or kernel context.

SEE ALSO csx_GetFirstTuple(9F), csx_GetTupleData(9F), csx_RegisterClient(9F),
csx_ValidateCIS(9F), tuple(9S)

PC Card 95 Standard, PCMCIA/JEIDA

modified 24 Jan 1997 SunOS 5.6 9F-157

csx_Parse_CISTPL_MANFID (9F) Kernel Functions for Drivers

NAME csx_Parse_CISTPL_MANFID − parse Manufacturer Identification tuple

SYNOPSIS #include <sys/pccard.h>

int32_t csx_Parse_CISTPL_MANFID(client_handle_t ch, tuple_t ∗tu,
cistpl_manfid_t ∗cm);

INTERFACE
LEVEL

Solaris DDI Specific (Solaris DDI)

ARGUMENTS ch Client handle returned from csx_RegisterClient(9F).

tu Pointer to a tuple_t structure (see tuple(9S)) returned by a call to
csx_GetFirstTuple(9F) or csx_GetNextTuple(9F).

cm Pointer to a cistpl_manfid_t structure which contains the parsed
CISTPL_MANFID tuple information upon return from this function.

DESCRIPTION This function parses the Manufacturer Identification tuple, CISTPL_MANFID, into a form
usable by PC Card drivers.

The CISTPL_MANFID tuple is used to describe the information about the manufacturer of
a PC Card. There are two types of information, the PC Card’s manufacturer and a
manufacturer card number.

STRUCTURE
MEMBERS

The structure members of cistpl_manfid_t are:

uint32_t manf; /∗ PCMCIA assigned manufacturer code ∗/
uint32_t card; /∗ manufacturer information

(part number and/or revision) ∗/

RETURN VALUES CS_SUCCESS Successful operation.
CS_BAD_HANDLE Client handle is invalid.
CS_UNKNOWN_TUPLE Parser does not know how to parse tuple.
CS_NO_CARD No PC Card in socket.
CS_NO_CIS No Card Information Structure (CIS) on PC card.
CS_UNSUPPORTED_FUNCTION No PCMCIA hardware installed.

CONTEXT This function may be called from user or kernel context.

SEE ALSO csx_GetFirstTuple(9F), csx_GetTupleData(9F), csx_RegisterClient(9F),
csx_ValidateCIS(9F), tuple(9S)

PC Card 95 Standard, PCMCIA/JEIDA

9F-158 SunOS 5.6 modified 20 Dec 1996

Kernel Functions for Drivers csx_Parse_CISTPL_ORG (9F)

NAME csx_Parse_CISTPL_ORG − parse the Data Organization tuple

SYNOPSIS #include <sys/pccard.h>

int32_t csx_Parse_CISTPL_ORG(client_handle_t ch, tuple_t ∗tu, cistpl_org_t ∗pt);

INTERFACE
LEVEL

Solaris DDI Specific (Solaris DDI)

ARGUMENTS ch Client handle returned from csx_RegisterClient(9F).

tu Pointer to a tuple_t structure (see tuple(9S)) returned by a call to
csx_GetFirstTuple(9F) or csx_GetNextTuple(9F).

pt Pointer to a cistpl_org_t structure which contains the parsed CISTPL_ORG tuple
information upon return from this function.

DESCRIPTION This function parses the Data Organization tuple, CISTPL_ORG, into a form usable by PC
Card drivers.

The CISTPL_ORG tuple provides a text description of the organization.

STRUCTURE
MEMBERS

The structure members of cistpl_org_t are:

uint32_t type;
char desc[CIS_MAX_TUPLE_DATA_LEN];

The fields are defined as follows:

type This field indicates type of data organization.

desc[CIS_MAX_TUPLE_DATA_LEN]
This field provides the text description of this organization.

RETURN VALUES CS_SUCCESS Successful operation.
CS_BAD_HANDLE Client handle is invalid.
CS_UNKNOWN_TUPLE Parser does not know how to parse tuple.
CS_NO_CARD No PC Card in socket.
CS_NO_CIS No Card Information Structure (CIS) on PC Card.
CS_UNSUPPORTED_FUNCTION No PCMCIA hardware installed.

CONTEXT This function may be called from user or kernel context.

SEE ALSO csx_GetFirstTuple(9F), csx_GetTupleData(9F), csx_RegisterClient(9F),
csx_ValidateCIS(9F), tuple(9S)

PC Card 95 Standard, PCMCIA/JEIDA

modified 24 Jan 1997 SunOS 5.6 9F-159

csx_Parse_CISTPL_SPCL (9F) Kernel Functions for Drivers

NAME csx_Parse_CISTPL_SPCL − parse the Special Purpose tuple

SYNOPSIS #include <sys/pccard.h>

int32_t csx_Parse_CISTPL_SPCL(client_handle_t ch, tuple_t ∗tu,
cistpl_spcl_t ∗csp);

INTERFACE
LEVEL

Solaris DDI Specific (Solaris DDI)

ARGUMENTS ch Client handle returned from csx_RegisterClient(9F).

tu Pointer to a tuple_t structure (see tuple(9S)) returned by a call to
csx_GetFirstTuple(9F) or csx_GetNextTuple(9F).

csp Pointer to a cistpl_spcl_t structure which contains the parsed CISTPL_SPCL tuple
information upon return from this function.

DESCRIPTION This function parses the Special Purpose tuple, CISTPL_SPCL, into a form usable by PC
Card drivers.

The CISTPL_SPCL tuple is identified by an identification field that is assigned by PCMCIA
or JEIDA. A sequence field allows a series of CISTPL_SPCL tuples to be used when the
data exceeds the size that can be stored in a single tuple; the maximum data area of a
series of CISTPL_SPCL tuples is unlimited. Another field gives the number of bytes in the
data field in this tuple.

STRUCTURE
MEMBERS

The structure members of cistpl_date_t are:

uint32_t id; /∗ tuple contents identification ∗/
uint32_t seq; /∗ data sequence number ∗/
uint32_t bytes; /∗ number of bytes following ∗/
uchar_t data[CIS_MAX_TUPLE_DATA_LEN];

The fields are defined as follows:

id This field contains a PCMCIA or JEIDA assigned value that identifies this series
of one or more CISTPL_SPCL tuples. These field values are assigned by con-
tacting either PCMCIA or JEIDA.

seq This field contains a data sequence number.

CISTPL_SPCL_SEQ_END Last tuple in sequence

bytes This field contains the number of data bytes in the
data[CIS_MAX_TUPLE_DATA_LEN].

data The data component of this tuple.

9F-160 SunOS 5.6 modified 20 Dec 1996

Kernel Functions for Drivers csx_Parse_CISTPL_SPCL (9F)

RETURN VALUES CS_SUCCESS Successful operation.
CS_BAD_HANDLE Client handle is invalid.
CS_UNKNOWN_TUPLE Parser does not know how to parse tuple.
CS_NO_CARD No PC Card in socket.
CS_NO_CIS No Card Information Structure (CIS) on PC Card.
CS_UNSUPPORTED_FUNCTION No PCMCIA hardware installed.

CONTEXT This function may be called from user or kernel context.

SEE ALSO csx_GetFirstTuple(9F), csx_GetTupleData(9F), csx_RegisterClient(9F),
csx_ValidateCIS(9F), tuple(9S)

PC Card 95 Standard, PCMCIA/JEIDA

modified 20 Dec 1996 SunOS 5.6 9F-161

csx_Parse_CISTPL_SWIL (9F) Kernel Functions for Drivers

NAME csx_Parse_CISTPL_SWIL − parse the Software Interleaving tuple

SYNOPSIS #include <sys/pccard.h>

int32_t csx_Parse_CISTPL_SWIL(client_handle_t ch, tuple_t ∗tu, cistpl_swil_t ∗pt);

INTERFACE
LEVEL

Solaris DDI Specific (Solaris DDI)

ARGUMENTS ch Client handle returned from csx_RegisterClient(9F).

tu Pointer to a tuple_t structure (see tuple(9S)) returned by a call to
csx_GetFirstTuple(9F) or csx_GetNextTuple(9F).

pt Pointer to a cistpl_swil_t structure which contains the parsed CISTPL_SWIL
tuple information upon return from this function.

DESCRIPTION This function parses the Software Interleaving tuple, CISTPL_SWIL, into a form usable by
PC Card drivers.

The CISTPL_SWIL tuple provides the software interleaving of data within a partition on
the card.

STRUCTURE
MEMBERS

The structure members of cistpl_swil_t are:

uint32_t intrlv;

The fields are defined as follows:

intrlv This field provides the software interleaving for a partition.

RETURN VALUES CS_SUCCESS Successful operation.
CS_BAD_HANDLE Client handle is invalid.
CS_UNKNOWN_TUPLE Parser does not know how to parse tuple.
CS_NO_CARD No PC Card in socket.
CS_NO_CIS No Card Information Structure (CIS) on PC Card.
CS_UNSUPPORTED_FUNCTION No PCMCIA hardware installed.

CONTEXT This function may be called from user or kernel context.

SEE ALSO csx_GetFirstTuple(9F), csx_GetTupleData(9F), csx_RegisterClient(9F),
csx_ValidateCIS(9F), tuple(9S)

PC Card 95 Standard, PCMCIA/JEIDA

9F-162 SunOS 5.6 modified 24 Jan 1997

Kernel Functions for Drivers csx_Parse_CISTPL_VERS_1 (9F)

NAME csx_Parse_CISTPL_VERS_1 − parse Level-1 Version/Product Information tuple

SYNOPSIS #include <sys/pccard.h>

int32_t csx_Parse_CISTPL_VERS_1(client_handle_t ch, tuple_t ∗tu,
cistpl_vers_1_t ∗cv1);

INTERFACE
LEVEL

Solaris DDI Specific (Solaris DDI)

ARGUMENTS ch Client handle returned from csx_RegisterClient(9F).

tu Pointer to a tuple_t structure (see tuple(9S)) returned by a call to
csx_GetFirstTuple(9F) or csx_GetNextTuple(9F).

cv1 Pointer to a cistpl_vers_1_t structure which contains the parsed CISTPL_VERS_1
tuple information upon return from this function.

DESCRIPTION This function parses the Level-1 Version/Product Information tuple, CISTPL_VERS_1,
into a form usable by PC Card drivers.

The CISTPL_VERS_1 tuple is used to describe the card Level-1 version compliance and
card manufacturer information.

STRUCTURE
MEMBERS

The structure members of cistpl_vers_1_t are:

uint32_t major; /∗ major version number ∗/
uint32_t minor; /∗ minor version number ∗/
uint32_t ns; /∗ number of information strings ∗/
char pi[CISTPL_VERS_1_MAX_PROD_STRINGS] /∗ pointers to product

[CIS_MAX_TUPLE_DATA_LEN]; information strings ∗/

RETURN VALUES CS_SUCCESS Successful operation.
CS_BAD_HANDLE Client handle is invalid.
CS_UNKNOWN_TUPLE Parser does not know how to parse tuple.
CS_NO_CARD No PC Card in socket.
CS_NO_CIS No Card Information Structure (CIS) on PC Card.
CS_UNSUPPORTED_FUNCTION No PCMCIA hardware installed.

CONTEXT This function may be called from user or kernel context.

SEE ALSO csx_GetFirstTuple(9F), csx_GetTupleData(9F), csx_RegisterClient(9F),
csx_ValidateCIS(9F), tuple(9S)

PC Card 95 Standard, PCMCIA/JEIDA

modified 20 Dec 1996 SunOS 5.6 9F-163

csx_Parse_CISTPL_VERS_2 (9F) Kernel Functions for Drivers

NAME csx_Parse_CISTPL_VERS_2 − parse Level-2 Version and Information tuple

SYNOPSIS #include <sys/pccard.h>

int32_t csx_Parse_CISTPL_VERS_2(client_handle_t ch, tuple_t ∗tu,
cistpl_vers_2_t ∗cv2);

INTERFACE
LEVEL

Solaris DDI Specific (Solaris DDI)

ARGUMENTS ch Client handle returned from csx_RegisterClient(9F).

tu Pointer to a tuple_t structure (see tuple(9S)) returned by a call to
csx_GetFirstTuple(9F) or csx_GetNextTuple(9F).

cv2 Pointer to a cistpl_vers_2_t structure which contains the parsed CISTPL_VERS_2
tuple information upon return from this function.

DESCRIPTION This function parses the Level-2 Version and Information tuple, CISTPL_VERS_2, into a
form usable by PC Card drivers.

The CISTPL_VERS_2 tuple is used to describe the card Level-2 information which has the
logical organization of the card’s data.

STRUCTURE
MEMBERS

The structure members of cistpl_vers_2_t are:

uint32_t vers; /∗ version number ∗/
uint32_t comply; /∗ level of compliance ∗/
uint32_t dindex; /∗ byte address of first data byte in card ∗/
uint32_t vspec8; /∗ vendor specific (byte 8) ∗/
uint32_t vspec9; /∗ vendor specific (byte 9) ∗/
uint32_t nhdr; /∗ number of copies of CIS present on device ∗/
char oem[CIS_MAX_TUPLE_DATA_LEN]; /∗ Vendor of software that

formatted card ∗/
char info[CIS_MAX_TUPLE_DATA_LEN]; /∗ Informational message

about card ∗/

RETURN VALUES CS_SUCCESS Successful operation.
CS_BAD_HANDLE Client handle is invalid.
CS_UNKNOWN_TUPLE Parser does not know how to parse tuple.
CS_NO_CARD No PC Card in socket.
CS_NO_CIS No Card Information Structure (CIS) on PC Card.
CS_UNSUPPORTED_FUNCTION No PCMCIA hardware installed.

CONTEXT This function may be called from user or kernel context.

9F-164 SunOS 5.6 modified 20 Dec 1996

Kernel Functions for Drivers csx_Parse_CISTPL_VERS_2 (9F)

SEE ALSO csx_GetFirstTuple(9F), csx_GetTupleData(9F), csx_RegisterClient(9F),
csx_ValidateCIS(9F), tuple(9S)

PC Card 95 Standard, PCMCIA/JEIDA

modified 20 Dec 1996 SunOS 5.6 9F-165

csx_ParseTuple (9F) Kernel Functions for Drivers

NAME csx_ParseTuple − generic tuple parser

SYNOPSIS #include <sys/pccard.h>

int32 csx_ParseTuple(client_handle_t ch, tuple_t ∗tu, cisparse_t ∗cp, cisdata_t cd);

INTERFACE
LEVEL

Solaris DDI Specific (Solaris DDI)

ARGUMENTS ch Client handle returned from csx_RegisterClient(9F).

tu Pointer to a tuple_t structure (see tuple(9S)) returned by a call to
csx_GetFirstTuple(9F) or csx_GetNextTuple(9F).

cp Pointer to a cisparse_t structure that unifies all tuple parsing structures.

cd Extended tuple data for some tuples.

DESCRIPTION This function is the generic tuple parser entry point.

STRUCTURE
MEMBERS

The structure members of cisparse_t are:

typedef union cisparse_t {
cistpl_config_t cistpl_config;
cistpl_device_t cistpl_device;
cistpl_vers_1_t cistpl_vers_1;
cistpl_vers_2_t cistpl_vers_2;
cistpl_jedec_t cistpl_jedec;
cistpl_format_t cistpl_format;
cistpl_geometry_t cistpl_geometry;
cistpl_byteorder_t cistpl_byteorder;
cistpl_date_t cistpl_date;
cistpl_battery_t cistpl_battery;
cistpl_org_t cistpl_org;
cistpl_manfid_t cistpl_manfid;
cistpl_funcid_t cistpl_funcid;
cistpl_funce_t cistpl_funce;
cistpl_cftable_entry_t cistpl_cftable_entry;
cistpl_linktarget_t cistpl_linktarget;
cistpl_longlink_ac_t cistpl_longlink_ac;
cistpl_longlink_mfc_t cistpl_longlink_mfc;
cistpl_spcl_t cistpl_spcl;
cistpl_swil_t cistpl_swil;
cistpl_bar_t cistpl_bar;
cistpl_devicegeo_t cistpl_devicegeo;
cistpl_longlink_cb_t cistpl_longlink_cb;
cistpl_get_tuple_name_t cistpl_get_tuple_name;

} cisparse_t;

9F-166 SunOS 5.6 modified 20 Dec 1996

Kernel Functions for Drivers csx_ParseTuple (9F)

RETURN VALUES CS_SUCCESS Successful operation.
CS_BAD_HANDLE Client handle is invalid.
CS_UNKNOWN_TUPLE Parser does not know how to parse tuple.
CS_NO_CARD No PC Card in socket.
CS_BAD_CIS Generic parser error.
CS_NO_CIS No Card Information Structure (CIS) on PC Card.
CS_UNSUPPORTED_FUNCTION No PCMCIA hardware installed.

CONTEXT This function may be called from user or kernel context.

SEE ALSO csx_GetFirstTuple(9F), csx_GetTupleData(9F), csx_Parse_CISTPL_BATTERY(9F),
csx_Parse_CISTPL_BYTEORDER(9F), csx_Parse_CISTPL_CFTABLE_ENTRY(9F),
csx_Parse_CISTPL_CONFIG(9F), csx_Parse_CISTPL_DATE(9F),
csx_Parse_CISTPL_DEVICE(9F), csx_Parse_CISTPL_FUNCE(9F),
csx_Parse_CISTPL_FUNCID(9F), csx_Parse_CISTPL_JEDEC_C(9F),
csx_Parse_CISTPL_MANFID(9F), csx_Parse_CISTPL_SPCL(9F),
csx_Parse_CISTPL_VERS_1(9F), csx_Parse_CISTPL_VERS_2(9F),
csx_RegisterClient(9F), csx_ValidateCIS(9F), tuple(9S)

PC Card 95 Standard, PCMCIA/JEIDA

modified 20 Dec 1996 SunOS 5.6 9F-167

csx_Put8 (9F) Kernel Functions for Drivers

NAME csx_Put8, csx_Put16, csx_Put32, csx_Put64 − write to device register

SYNOPSIS #include <sys/pccard.h>

void csx_Put8(acc_handle_t handle, uint32_t offset, uint8_t value);

void csx_Put16(acc_handle_t handle, uint32_t offset, uint16_t value);

void csx_Put32(acc_handle_t handle, uint32_t offset, uint32_t value);

void csx_Put64(acc_handle_t handle, uint32_t offset, uint64_t value);

INTERFACE
LEVEL

Solaris DDI Specific (Solaris DDI)

ARGUMENTS handle The access handle returned from csx_RequestIO(9F),
csx_RequestWindow(9F), or csx_DupHandle(9F).

offset The offset in bytes from the base of the mapped resource.

value The data to be written to the device.

DESCRIPTION These functions generate a write of various sizes to the mapped memory or device regis-
ter.

The csx_Put8(), csx_Put16(), csx_Put32(), and csx_Put64() functions write 8 bits, 16 bits,
32 bits, and 64 bits of data, respectively, to the device address represented by the handle,
handle, at an offset in bytes represented by the offset, offset .

Data that consists of more than one byte will automatically be translated to maintain a
consistent view between the host and the device based on the encoded information in the
data access handle. The translation may involve byte swapping if the host and the device
have incompatible endian characteristics.

CONTEXT These functions may be called from user, kernel, or interrupt context.

SEE ALSO csx_DupHandle(9F), csx_Get8(9F), csx_GetMappedAddr(9F), csx_RepGet8(9F),
csx_RepPut8(9F), csx_RequestIO(9F), csx_RequestWindow(9F)

PC Card 95 Standard, PCMCIA/JEIDA

9F-168 SunOS 5.6 modified 19 Jul 1996

Kernel Functions for Drivers csx_RegisterClient (9F)

NAME csx_RegisterClient − register a client

SYNOPSIS #include <sys/pccard.h>

int32_t csx_RegisterClient(client_handle_t ∗ch, client_reg_t ∗cr);

INTERFACE
LEVEL

Solaris DDI Specific (Solaris DDI)

ARGUMENTS ch Pointer to a client_handle_t structure.

mc Pointer to a client_reg_t structure.

DESCRIPTION This function registers a client with Card Services and returns a unique client handle for
the client. The client handle must be passed to csx_DeregisterClient(9F) when the client
terminates.

STRUCTURE
MEMBERS

The structure members of client_reg_t are:

uint32_t Attributes;
uint32_t EventMask;
event_callback_args_t event_callback_args;
uint32_t Version; /∗ CS version to expect ∗/
csfunction_t ∗event_handler;
ddi_iblock_cookie_t ∗iblk_cookie; /∗ event iblk cookie ∗/
ddi_idevice_cookie_t ∗idev_cookie; /∗ event idev cookie ∗/
dev_info_t ∗dip; /∗ client’s dip ∗/
char driver_name[MODMAXNAMELEN];

The fields are defined as follows:

Attributes This field is bit-mapped and defined as follows:

INFO_MEM_CLIENT Memory client device driver

INFO_MTD_CLIENT Memory Technology Driver client

INFO_IO_CLIENT IO client device driver

INFO_CARD_SHARE Generate artificial
CS_EVENT_CARD_INSERTION and
CS_EVENT_REGISTRATION_COMPLETE
events

INFO_CARD_EXCL Generate artificial
CS_EVENT_CARD_INSERTION and
CS_EVENT_REGISTRATION_COMPLETE
events

modified 19 Jul 1996 SunOS 5.6 9F-169

csx_RegisterClient (9F) Kernel Functions for Drivers

INFO_MEM_CLIENT
INFO_MTD_CLIENT
INFO_IO_CLIENT

These bits are mutually exclusive (that is, only one bit may be
set), but one of the bits must be set.

INFO_CARD_SHARE
INFO_CARD_EXCL

If either of these bits is set, the client will receive a
CS_EVENT_REGISTRATION_COMPLETE event when Card Ser-
vices has completed its internal client registration processing and
after a sucessful call to csx_RequestSocketMask(9F).

Also, if either of these bits is set, and if a card of the type that the
client can control is currently inserted in the socket (and after a
successful call to csx_RequestSocketMask(9F)), the client will
receive an artificial CS_EVENT_CARD_INSERTION event.

Event Mask This field is bit-mapped and specifies the client’s global event mask.
Card Services performs event notification based on this field. See
csx_event_handler(9E) for valid event definitions and for additional
information about handling events.

event_callback_args
The event_callback_args_t structure members are:

void ∗client_data;

The client_data field may be used to provide data available to the
event handler (see csx_event_handler(9E)). Typically, this is the client
driver’s soft state pointer.

Version This field contains the specific Card Services version number that the
client expects to use. Typically, the client will use the CS_VERSION
macro to specify to Card Services which version of Card Services the
client expects.

event_handler The client event callback handler entry point is passed in the
event_handler field.

iblk_cookie
idev_cookie These fields must be used by the client to set up mutexes that are used

in the client’s event callback handler when handling high priority
events.

dip The client must set this field with a pointer to the client’s dip.

driver_name The client must copy a driver-unique name into this member. This
name must be identical across all instances of the driver.

9F-170 SunOS 5.6 modified 19 Jul 1996

Kernel Functions for Drivers csx_RegisterClient (9F)

RETURN VALUES CS_SUCCESS Successful operation.

CS_BAD_ATTRIBUTE No client type or more than one client type specified.

CS_OUT_OF_RESOURCE Card Services is unable to register client.

CS_BAD_VERSION Card Services version is incompatable with client.

CS_BAD_HANDLE Client has already registered for this socket.

CS_UNSUPPORTED_FUNCTION No PCMCIA hardware installed.

CONTEXT This function may be called from user or kernel context.

SEE ALSO csx_DeregisterClient(9F), csx_RequestSocketMask(9F)

PC Card 95 Standard, PCMCIA/JEIDA

modified 19 Jul 1996 SunOS 5.6 9F-171

csx_ReleaseConfiguration (9F) Kernel Functions for Drivers

NAME csx_ReleaseConfiguration − release PC Card and socket configuration

SYNOPSIS #include <sys/pccard.h>

int32_t csx_ReleaseConfiguration(client_handle_t ch, release_config_t ∗rc);

INTERFACE
LEVEL

Solaris DDI Specific (Solaris DDI)

ARGUMENTS ch Client handle returned from csx_RegisterClient(9F).

rc Pointer to a release_config_t structure.

DESCRIPTION This function returns a PC Card and socket to a simple memory only interface and sets
the card to configuration zero by writing a 0 to the PC card’s COR (Configuration Option
Register).

Card Services may remove power from the socket if no clients have indicated their usage
of the socket by an active csx_RequestConfiguration(9F) or csx_RequestWindow(9F).

Card Services is prohibited from resetting the PC Card and is not required to cycle power
through zero (0) volts.

After calling csx_ReleaseConfiguration(), any resources requested via the request func-
tions csx_RequestIO(9F), csx_RequestIRQ(9F), or csx_RequestWindow(9F) that are no
longer needed should be returned to Card Services via the corresponding
csx_ReleaseIO(9F), csx_ReleaseIRQ(9F), or csx_ReleaseWindow(9F) functions.
csx_ReleaseConfiguration() must be called to release the current card and socket
configuration before releasing any resources requested by the driver via the request func-
tions named above.

STRUCTURE
MEMBERS

The structure members of release_config_t are:

uint32_t Socket; /∗ socket number ∗/

The Socket field is not used in Solaris, but for portability with other Card Services imple-
mentations, it should be set to the logical socket number.

RETURN VALUES CS_SUCCESS Successful operation.

CS_BAD_HANDLE Client handle is invalid or
csx_RequestConfiguration(9F) not done.

CS_BAD_SOCKET Error getting or setting socket hardware parameters.

CS_NO_CARD No PC card in socket.

CS_UNSUPPORTED_FUNCTION No PCMCIA hardware installed.

CONTEXT This function may be called from user or kernel context.

9F-172 SunOS 5.6 modified 19 Jul 1996

Kernel Functions for Drivers csx_ReleaseConfiguration (9F)

SEE ALSO csx_RegisterClient(9F), csx_RequestConfiguration(9F), csx_RequestIO(9F),
csx_RequestIRQ(9F), csx_RequestWindow(9F)

PC Card 95 Standard, PCMCIA/JEIDA

modified 19 Jul 1996 SunOS 5.6 9F-173

csx_RepGet8 (9F) Kernel Functions for Drivers

NAME csx_RepGet8, csx_RepGet16, csx_RepGet32, csx_RepGet64 − read repetitively from the
device register

SYNOPSIS #include <sys/pccard.h>

void csx_RepGet8(acc_handle_t handle, uint8_t ∗hostaddr, uint32_t offset,
uint32_t repcount, uint32_t flags);

void csx_RepGet16(acc_handle_t handle, uint16_t ∗hostaddr, uint32_t offset,
uint32_t repcount, uint32_t flags);

void csx_RepGet32(acc_handle_t handle, uint32_t ∗hostaddr, uint32_t offset,
uint32_t repcount, uint32_t flags);

void csx_RepGet64(acc_handle_t handle, uint64_t ∗hostaddr, uint32_t offset,
uint32_t repcount, uint32_t flags);

INTERFACE
LEVEL

Solaris DDI Specific (Solaris DDI)

ARGUMENTS handle The access handle returned from csx_RequestIO(9F),
csx_RequestWindow(9F), or csx_DupHandle(9F).

hostaddr Source host address.

offset The offset in bytes from the base of the mapped resource.

repcount Number of data accesses to perform.

flags Device address flags.

DESCRIPTION These functions generate multiple reads of various sizes from the mapped memory or
device register.

The csx_RepGet8(), csx_RepGet16(), csx_RepGet32(), and csx_RepGet64() functions
generate repcount reads of 8 bits, 16 bits, 32 bits, and 64 bits of data, respectively, from the
device address represented by the handle, handle, at an offset in bytes represented by the
offset, offset . The data read is stored consecutively into the buffer pointed to by the host
address pointer, hostaddr .

Data that consists of more than one byte will automatically be translated to maintain a
consistent view between the host and the device based on the encoded information in the
data access handle. The translation may involve byte swapping if the host and the device
have incompatible endian characteristics.

When the flags argument is set to CS_DEV_AUTOINCR, these functions increment the
device offset, offset , after each datum read operation. However, when the flags argument
is set to CS_DEV_NO_AUTOINCR, the same device offset will be used for every datum
access. For example, this flag may be useful when reading from a data register.

9F-174 SunOS 5.6 modified 19 Jul 1996

Kernel Functions for Drivers csx_RepGet8 (9F)

CONTEXT These functions may be called from user, kernel, or interrupt context.

SEE ALSO csx_DupHandle(9F), csx_Get8(9F), csx_GetMappedAddr(9F), csx_Put8(9F),
csx_RepPut8(9F), csx_RequestIO(9F), csx_RequestWindow(9F)

PC Card 95 Standard, PCMCIA/JEIDA

modified 19 Jul 1996 SunOS 5.6 9F-175

csx_RepPut8 (9F) Kernel Functions for Drivers

NAME csx_RepPut8, csx_RepPut16, csx_RepPut32, csx_RepPut64 − write repetitively to the dev-
ice register

SYNOPSIS #include <sys/pccard.h>

void csx_RepPut8(acc_handle_t handle, uint8_t ∗hostaddr, uint32_t offset,
uint32_t repcount, uint32_t flags);

void csx_RepPut16(acc_handle_t handle, uint16_t ∗hostaddr, uint32_t offset,
uint32_t repcount, uint32_t flags);

void csx_RepPut32(acc_handle_t handle, uint32_t ∗hostaddr, uint32_t offset,
uint32_t repcount, uint32_t flags);

void csx_RepPut64(acc_handle_t handle, uint64_t ∗hostaddr, uint32_t offset,
uint32_t repcount, uint32_t flags);

INTERFACE
LEVEL

Solaris DDI Specific (Solaris DDI)

ARGUMENTS handle The access handle returned from csx_RequestIO(9F),
csx_RequestWindow(9F), or csx_DupHandle(9F).

hostaddr Source host address.

offset The offset in bytes from the base of the mapped resource.

repcount Number of data accesses to perform.

flags Device address flags.

DESCRIPTION These functions generate multiple writes of various sizes to the mapped memory or dev-
ice register.

The csx_RepPut8(), csx_RepPut16(), csx_RepPut32(), and csx_RepPut64() functions
generate repcount writes of 8 bits, 16 bits, 32 bits, and 64 bits of data, respectively, to the
device address represented by the handle, handle, at an offset in bytes represented by the
offset, offset . The data written is read consecutively from the buffer pointed to by the host
address pointer, hostaddr .

Data that consists of more than one byte will automatically be translated to maintain a
consistent view between the host and the device based on the encoded information in the
data access handle. The translation may involve byte swapping if the host and the device
have incompatible endian characteristics.

When the flags argument is set to CS_DEV_AUTOINCR, these functions increment the
device offset, offset , after each datum write operation. However, when the flags argument
is set to CS_DEV_NO_AUTOINCR, the same device offset will be used for every datum
access. For example, this flag may be useful when writing to a data register.

9F-176 SunOS 5.6 modified 19 Jul 1996

Kernel Functions for Drivers csx_RepPut8 (9F)

CONTEXT These functions may be called from user, kernel, or interrupt context.

SEE ALSO csx_DupHandle(9F), csx_Get8(9F), csx_GetMappedAddr(9F), csx_Put8(9F),
csx_RepGet8(9F), csx_RequestIO(9F), csx_RequestWindow(9F)

PC Card 95 Standard, PCMCIA/JEIDA

modified 19 Jul 1996 SunOS 5.6 9F-177

csx_RequestConfiguration (9F) Kernel Functions for Drivers

NAME csx_RequestConfiguration − configure the PC Card and socket

SYNOPSIS #include <sys/pccard.h>

int32_t csx_RequestConfiguration(client_handle_t ch, config_req_t ∗cr);

INTERFACE
LEVEL

Solaris DDI Specific (Solaris DDI)

ARGUMENTS ch Client handle returned from csx_RegisterClient(9F).

cr Pointer to a config_req_t structure.

DESCRIPTION This function configures the PC Card and socket. It must be used by clients that require
I/O or IRQ resources for their PC Card.

csx_RequestIO(9F) and csx_RequestIRQ(9F) must be used before calling this function to
specify the I/O and IRQ requirements for the PC Card and socket if necessary.
csx_RequestConfiguration() establishes the configuration in the socket adapter and PC
Card, and it programs the Base and Limit registers of multi-function PC Cards if these
registers exist. The values programmed into these registers depend on the IO require-
ments of this configuration.

STRUCTURE
MEMBERS

The structure members of config_req_t are:

uint32_t Socket; /∗ socket number ∗/
uint32_t Attributes; /∗ configuration attributes ∗/
uint32_t Vcc; /∗ Vcc value ∗/
uint32_t Vpp1; /∗ Vpp1 value ∗/
uint32_t Vpp2; /∗ Vpp2 value ∗/
uint32_t IntType; /∗ socket interface type - mem or IO ∗/
uint32_t ConfigBase; /∗ offset from start of AM space ∗/
uint32_t Status; /∗ value to write to STATUS register ∗/
uint32_t Pin; /∗ value to write to PRR ∗/
uint32_t Copy; /∗ value to write to COPY register ∗/
uint32_t ConfigIndex; /∗ value to write to COR ∗/
uint32_t Present; /∗ which config registers present ∗/
uint32_t ExtendedStatus; /∗ value to write to EXSTAT register ∗/

The fields are defined as follows:

Socket Not used in Solaris, but for portability with other Card Services implemen-
tations, it should be set to the logical socket number.

Attributes This field is bit-mapped. It indicates whether the client wishes the IRQ
resources to be enabled and whether Card Services should ignore the VS
bits on the socket interface. The following bits are defined:

9F-178 SunOS 5.6 modified 19 Jul 1996

Kernel Functions for Drivers csx_RequestConfiguration (9F)

CONF_ENABLE_IRQ_STEERING Enable IRQ Steering

CONF_VSOVERRIDE Override VS pins

CONF_ENABLE_IRQ_STEERING
Set to connect the PC Card IREQ line to a system interrupt previously
selected by a call to csx_RequestIRQ(9F).

If CONF_ENABLE_IRQ_STEERING is set, once
csx_RequestConfiguration() has successfully returned, the client may
start receiving IRQ callbacks at the IRQ callback handler established in
the call to csx_RequestIRQ(9F).

CONF_VSOVERRIDE
After card insertion and prior to the first successful
csx_RequestConfiguration(), the voltage levels applied to the card
shall be those indicated by the card’s physical key and/or the VS[2:1]
voltage sense pins. For Low Voltage capable host systems (hosts
which are capable of VS pin decoding), if a client desires to apply a
voltage not indicated by the VS pin decoding, then
CONF_VSOVERRIDE must be set in the Attributes field; otherwise,
CS_BAD_VCC shall be returned.

Vcc, Vpp1, Vpp2
These fields all represent voltages expressed in tenths of a volt. Values
from zero (0) to 25.5 volts may be set. To be valid, the exact voltage must be
available from the system.

PC Cards indicate multiple Vcc voltage capability in their CIS via the
CISTPL_CFTABLE_ENTRY tuple. After card insertion, Card Services
processes the CIS, and when multiple Vcc voltage capability is indicated,
Card Services will allow the client to apply Vcc voltage levels which are
contrary to the VS pin decoding without requiring the client to set
CONF_VSOVERRIDE.

IntType This field is bit-mapped. It indicates how the socket should be configured.
The following bits are defined:

SOCKET_INTERFACE_MEMORY Memory only interface

SOCKET_INTERFACE_MEMORY_AND_IO Memory and I/O interface

ConfigBase This field is the offset in bytes from the beginning of attribute memory of
the configuration registers.

modified 19 Jul 1996 SunOS 5.6 9F-179

csx_RequestConfiguration (9F) Kernel Functions for Drivers

Present This field identifies which of the configuration registers are present. If
present, the corresponding bit is set. This field is bit-mapped as follows:

CONFIG_OPTION_REG_PRESENT Configuration Option
Register (COR) present

CONFIG_STATUS_REG_PRESENT Configuration Status
Register (CCSR) present

CONFIG_PINREPL_REG_PRESENT Pin Replacement
Register (PRR) present

CONFIG_COPY_REG_PRESENT Socket and Copy
Register (SCR) present

CONFIG_ESR_REG_PRESENT Extended Status
Register (ESR) present

Status, Pin,
Copy, ExtendedStatus

These fields represent the initial values that should be written to those
registers if they are present, as indicated by the Present field.

The Pin field is also used to inform Card Services which pins in the PC
Card’s PRR (Pin Replacement Register) are valid. Only those bits which are
set are considered valid. This affects how status is returned by the
csx_GetStatus(9F) function. If a particular signal is valid in the PRR, both
the mask (STATUS) bit and the change (EVENT) bit must be set in the Pin
field. The following PRR bit definitions are provided for client use:

PRR_WP_STATUS WRITE PROTECT mask

PRR_READY_STATUS READY mask

PRR_BVD2_STATUS BVD2 mask

PRR_BVD1_STATUS BVD1 mask

PRR_WP_EVENT WRITE PROTECT changed

PRR_READY_EVENT READY changed

PRR_BVD2_EVENT BVD2 changed

PRR_BVD1_EVENT BVD1 changed

ConfigIndex This field is the value written to the COR (Configuration Option Register)
for the configuration index required by the PC Card. Only the least
significant six bits of the ConfigIndex field are significant; the upper two (2)
bits are ignored. The interrupt type in the COR is always set to level mode
by Card Services.

9F-180 SunOS 5.6 modified 19 Jul 1996

Kernel Functions for Drivers csx_RequestConfiguration (9F)

RETURN VALUES CS_SUCCESS Successful operation.

CS_BAD_HANDLE Client handle is invalid or
csx_RequestConfiguration() not done.

CS_BAD_SOCKET Error in getting or setting socket hardware parame-
ters.

CS_BAD_VCC Requested Vcc is not available on socket.

CS_BAD_VPP Requested Vpp is not available on socket.

CS_NO_CARD No PC Card in socket.

CS_BAD_TYPE I/O and memory interface not supported on socket.

CS_CONFIGURATION_LOCKED csx_RequestConfiguration() already done.

CS_UNSUPPORTED_FUNCTION No PCMCIA hardware installed.

CONTEXT This function may be called from user or kernel context.

SEE ALSO csx_AccessConfigurationRegister(9F), csx_GetStatus(9F), csx_RegisterClient(9F),
csx_ReleaseConfiguration(9F), csx_RequestIO(9F), csx_RequestIRQ(9F)

PC Card 95 Standard, PCMCIA/JEIDA

modified 19 Jul 1996 SunOS 5.6 9F-181

csx_RequestIO (9F) Kernel Functions for Drivers

NAME csx_RequestIO, csx_ReleaseIO − request or release I/O resources for the client

SYNOPSIS #include <sys/pccard.h>

int32_t csx_RequestIO(client_handle_t ch, io_req_t ∗ir);

int32_t csx_ReleaseIO(client_handle_t ch, io_req_t ∗ir);

INTERFACE
LEVEL

Solaris DDI Specific (Solaris DDI)

ARGUMENTS ch Client handle returned from csx_RegisterClient(9F).

ir Pointer to an io_req_t structure.

DESCRIPTION The functions csx_RequestIO() and csx_ReleaseIO() request or release, respectively, I/O
resources for the client.

If a client requires I/O resources, csx_RequestIO() must be called to request I/O
resources from Card Services; then csx_RequestConfiguration(9F) must be used to estab-
lish the configuration. csx_RequestIO() can be called multiple times until a successful
set of I/O resources is found. csx_RequestConfiguration(9F) only uses the last
configuration specified.

csx_RequestIO() fails if it has already been called without a corresponding
csx_ReleaseIO().

csx_ReleaseIO() releases previously requested I/O resources. The Card Services win-
dow resource list is adjusted by this function. Depending on the adapter hardware, the
I/O window might also be disabled.

STRUCTURE
MEMBERS

The structure members of io_req_t are:

uint32_t Socket; /∗ socket number ∗/

uint32_t Baseport1.base; /∗ IO range base port address ∗/
acc_handle_t Baseport1.handle; /∗ IO range base address or port num ∗/
uint32_t NumPorts1; /∗ first IO range number contiguous ports ∗/
uint32_t Attributes1; /∗ first IO range attributes ∗/

uint32_t Baseport2.base; /∗ IO range base port address ∗/
acc_handle_t Baseport2.handle; /∗ IO range base address or port num ∗/
uint32_t NumPorts2; /∗ second IO range number contiguous ports ∗/
uint32_t Attributes2; /∗ second IO range attributes ∗/

uint32_t IOAddrLines; /∗ number of IO address lines decoded ∗/

9F-182 SunOS 5.6 modified 19 Jul 1996

Kernel Functions for Drivers csx_RequestIO (9F)

The fields are defined as follows:

Socket Not used in Solaris, but for portability with other Card Services imple-
mentations, it should be set to the logical socket number.

BasePort1.base
BasePort1.handle
BasePort2.base
BasePort2.handle

Two I/O address ranges can be requested by csx_RequestIO(). Each
I/O address range is specified by the BasePort, NumPorts, and Attri-
butes fields. If only a single I/O range is being requested, the Num-
Ports2 field must be reset to 0.

When calling csx_RequestIO(), the BasePort.base field specifies the
first port address requested. Upon successful return from
csx_RequestIO(), the BasePort.handle field contains an access handle,
corresponding to the first byte of the allocated I/O window, which the
client must use when accessing the PC Card’s I/O space via the com-
mon access functions. A client must not make any assumptions as to
the format of the returned BasePort.handle field value.

If the BasePort.base field is set to 0, Card Services returns an I/O
resource based on the available I/O resources and the number of con-
tiguous ports requested. When BasePort.base is 0, Card Services aligns
the returned resource in the host system’s I/O address space on a boun-
dary that is a multiple of the number of contiguous ports requested,
rounded up to the nearest power of two. For example, if a client
requests two I/O ports, the resource returned will be a multiple of two.
If a client requests five contiguous I/O ports, the resource returned will
be a multiple of eight.

If multiple ranges are being requested, at least one of the BasePort.base
fields must be non-zero.

NumPorts This field is the number of contiguous ports being requested.

Attributes This field is bit-mapped. The following bits are defined:

IO_DATA_WIDTH_8 I/O resource uses 8-bit data path

IO_DATA_WIDTH_16 I/O resource uses 16-bit data path

WIN_ACC_NEVER_SWAP Host endian byte ordering

WIN_ACC_BIG_ENDIAN Big endian byte ordering

WIN_ACC_LITTLE_ENDIAN Little endian byte ordering

WIN_ACC_STRICT_ORDER Program ordering references

modified 19 Jul 1996 SunOS 5.6 9F-183

csx_RequestIO (9F) Kernel Functions for Drivers

WIN_ACC_UNORDERED_OK May re-order references

WIN_ACC_MERGING_OK Merge stores to consecutive locations

WIN_ACC_LOADCACHING_OK May cache load operations

WIN_ACC_STORECACHING_OK May cache store operations

For some combinations of host system busses and adapter hardware,
the width of an I/O resource can not be set via RequestIO(); on those
systems, the host bus cycle access type determines the I/O resource
data path width on a per-cycle basis.

WIN_ACC_BIG_ENDIAN and WIN_ACC_LITTLE ENDIAN describe the
endian characteristics of the device as big endian or little endian,
respectively. Even though most of the devices will have the same
endian characteristics as their busses, there are examples of devices
with an I/O processor that has opposite endian characteristics of the
busses. When WIN_ACC_BIG_ENDIAN or WIN_ACC_LITTLE ENDIAN
is set, byte swapping will automatically be performed by the system if
the host machine and the device data formats have opposite endian
characteristics. The implementation may take advantage of hardware
platform byte swapping capabilities.

When WIN_ACC_NEVER_SWAP is specified, byte swapping will not be
invoked in the data access functions.

The ability to specify the order in which the CPU will reference data is
provided by the following Attributes bits. Only one of the following
bits may be specified:

WIN_ACC_STRICT_ORDER
The data references must be issued by a CPU in program order.
Strict ordering is the default behavior.

WIN_ACC_UNORDERED_OK
The CPU may re-order the data references. This includes all
kinds of re-ordering (that is, a load followed by a store may be
replaced by a store followed by a load).

WIN_ACC_MERGING_OK
The CPU may merge individual stores to consecutive locations.
For example, the CPU may turn two consecutive byte stores into
one halfword store. It may also batch individual loads. For
example, the CPU may turn two consecutive byte loads into one
halfword load. IO_MERGING_OK_ACC also implies re-ordering.

WIN_ACC_LOADCACHING_OK
The CPU may cache the data it fetches and reuse it until another
store occurs. The default behavior is to fetch new data on every
load. WIN_ACC_LOADCACHING_OK also implies merging and

9F-184 SunOS 5.6 modified 19 Jul 1996

Kernel Functions for Drivers csx_RequestIO (9F)

re-ordering.

WIN_ACC_STORECACHING_OK
The CPU may keep the data in the cache and push it to the device
(perhaps with other data) at a later time. The default behavior is
to push the data right away. WIN_ACC_STORECACHING_OK
also implies load caching, merging, and re-ordering.

These values are advisory, not mandatory. For example, data can be
ordered without being merged or cached, even though a driver
requests unordered, merged and cached together.

All other bits in the Attributes field must be set to 0.

IOAddrLines This field is the number of I/O address lines decoded by the PC Card in
the specified socket.

On some systems, multiple calls to csx_RequestIO() with different BasePort, NumPorts,
and/or IOAddrLines values will have to be made to find an acceptable combination of
parameters that can be used by Card Services to allocate I/O resources for the client. (See
NOTES).

RETURN VALUES CS_SUCCESS Successful operation.
CS_BAD_ATTRIBUTE Invalid Attributes specified.
CS_BAD_BASE BasePort value is invalid.
CS_BAD_HANDLE Client handle is invalid.
CS_CONFIGURATION_LOCKED csx_RequestConfiguration(9F) has already been

done.
CS_IN_USE csx_RequestIO() has already been done without a

corresponding csx_ReleaseIO().
CS_NO_CARD No PC Card in socket.
CS_BAD_WINDOW Unable to allocate I/O resources.
CS_OUT_OF_RESOURCE Unable to allocate I/O resources.
CS_UNSUPPORTED_FUNCTION No PCMCIA hardware installed.

CONTEXT These functions may be called from user or kernel context.
SEE ALSO csx_RegisterClient(9F), csx_RequestConfiguration(9F)

PC Card 95 Standard, PCMCIA/JEIDA

NOTES It is important for clients to try to use the minimum amount of I/O resources necessary.
One way to do this is for the client to parse the CIS of the PC Card and call
csx_RequestIO() first with any IOAddrLines values that are 0 or that specify a
minimum number of address lines necessary to decode the I/O space on the PC Card.
Also, if no convenient minimum number of address lines can be used to decode the I/O
space on the PC Card, it is important to try to avoid system conflicts with well-known
architectural hardware features.

modified 19 Jul 1996 SunOS 5.6 9F-185

csx_RequestIRQ (9F) Kernel Functions for Drivers

NAME csx_RequestIRQ, csx_ReleaseIRQ − request or release IRQ resource

SYNOPSIS #include <sys/pccard.h>

int32_t csx_RequestIRQ(client_handle_t ch, irq_req_t ∗ir);

int32_t csx_ReleaseIRQ(client_handle_t ch, irq_req_t ∗ir);

INTERFACE
LEVEL

Solaris DDI Specific (Solaris DDI)

ARGUMENTS ch Client handle returned from csx_RegisterClient(9F).

ir Pointer to an irq_req_t structure.

DESCRIPTION The function csx_RequestIRQ() requests an IRQ resource and registers the client’s IRQ
handler with Card Services.

If a client requires an IRQ, csx_RequestIRQ() must be called to request an IRQ resource
as well as to register the client’s IRQ handler with Card Services. The client will not
receive callbacks at the IRQ callback handler until csx_RequestConfiguration(9F) or
csx_ModifyConfiguration(9F) has successfully returned when either of these functions
are called with the CONF_ENABLE_IRQ_STEERING bit set.

The function csx_ReleaseIRQ() releases a previously requested IRQ resource.

The Card Services IRQ resource list is adjusted by csx_ReleaseIRQ(). Depending on the
adapter hardware, the host bus IRQ connection might also be disabled. Client IRQ
handlers always run above lock level and so should take care to perform only Solaris
operations that are appropriate for an above-lock-level IRQ handler.

csx_RequestIRQ() fails if it has already been called without a corresponding
csx_ReleaseIRQ().

STRUCTURE
MEMBERS

The structure members of irq_req_t are:

uint32_t Socket; /∗ socket number ∗/
uint32_t Attributes; /∗ IRQ attribute flags ∗/
csfunction_t ∗irq_handler; /∗ IRQ handler ∗/
caddr_t irq_handler_arg; /∗ IRQ handler argument ∗/
ddi_iblock_cookie_t ∗iblk_cookie; /∗ IRQ interrupt block cookie ∗/
ddi_idevice_cookie_t ∗idev_cookie; /∗ IRQ interrupt device cookie ∗/

The fields are defined as follows:

Socket Not used in Solaris, but for portability with other Card Services imple-
mentations, it should be set to the logical socket number.

Attributes This field is bit-mapped. It specifies details about the type of IRQ
desired by the client. The following bits are defined:

9F-186 SunOS 5.6 modified 19 Jul 1996

Kernel Functions for Drivers csx_RequestIRQ (9F)

IRQ_TYPE_EXCLUSIVE IRQ is exclusive to this socket

IRQ_ISR_ADDRESS_PROVIDED IRQ handler address provided

IRQ_TYPE_EXCLUSIVE
This bit must be set. It indicates that the system IRQ is dedicated
to this PC Card.

IRQ_ISR_ADDRESS_PROVIDED
This bit must be set. It indicates that the irq_handler field con-
tains the address of the client’s IRQ handler.

irq_handler The client IRQ callback handler entry point is passed in the irq_handler
field.

irq_handler_arg The client can use the irq_handler_arg field to pass client-specific data
to the client IRQ callback handler.

iblk_cookie
idev_cookie These fields must be used by the client to set up mutexes that are used

in the client’s IRQ callback handler.

For a specific csx_ReleaseIRQ() call, the values in the irq_req_t structure must be the
same as those returned from the previous csx_RequestIRQ() call; otherwise,
CS_BAD_ARGS is returned and no changes are made to Card Services resources or the
socket and adapter hardware.

RETURN VALUES CS_SUCCESS Successful operation.

CS_BAD_ARGS IRQ description does not match allocation.

CS_BAD_ATTRIBUTE IRQ_TYPE_EXCLUSIVE and
IRQ_ISR_ADDRESS_PROVIDED not set.

CS_BAD_HANDLE Client handle is invalid or
csx_RequestConfiguration(9F) not done.

CS_BAD_IRQ Unable to allocate IRQ resources.

CS_IN_USE csx_RequestIRQ() already done or a previous
csx_RequestIRQ() has not been done for a
corresponding csx_ReleaseIRQ().

CS_CONFIGURATION_LOCKED csx_RequestConfiguration(9F) already done or
csx_ReleaseConfiguration(9F) has not been done.

CS_NO_CARD No PC Card in socket.

CS_UNSUPPORTED_FUNCTION No PCMCIA hardware installed.

CONTEXT These functions may be called from user or kernel context.

SEE ALSO csx_ReleaseConfiguration(9F), csx_RequestConfiguration(9F)

PC Card 95 Standard, PCMCIA/JEIDA

modified 19 Jul 1996 SunOS 5.6 9F-187

csx_RequestSocketMask (9F) Kernel Functions for Drivers

NAME csx_RequestSocketMask, csx_ReleaseSocketMask − set or clear the client’s client event
mask

SYNOPSIS #include <sys/pccard.h>

int32_t csx_RequestSocketMask(client_handle_t ch, request_socket_mask_t ∗sm);

int32_t csx_ReleaseSocketMask(client_handle_t ch, release_socket_mask_t ∗rm);

INTERFACE
LEVEL

Solaris DDI Specific (Solaris DDI)

ARGUMENTS ch Client handle returned from csx_RegisterClient(9F).

sm Pointer to a request_socket_mask_t structure.

rm Pointer to a release_socket_mask_t structure.

DESCRIPTION The function csx_RequestSocketMask() sets the client’s client event mask and enables
the client to start receiving events at its event callback handler. Once this function returns
successfully, the client can start receiving events at its event callback handler. Any pend-
ing events generated from the call to csx_RegisterClient(9F) will be delivered to the
client after this call as well. This allows the client to set up the event handler mutexes
before the event handler gets called.

csx_RequestSocketMask() must be used before calling csx_GetEventMask(9F) or
csx_SetEventMask(9F) for the client event mask for this socket.

The function csx_ReleaseSocketMask() clears the client’s client event mask.

STRUCTURE
MEMBERS

The structure members of request_socket_mask_t are:

uint32_t Socket; /∗ socket number ∗/
uint32_t EventMask; /∗ event mask to set or return ∗/

The structure members of release_socket_mask_t are:

uint32_t Socket; /∗ socket number ∗/

The fields are defined as follows:

Socket Not used in Solaris, but for portability with other Card Services imple-
mentations, it should be set to the logical socket number.

EventMask This field is bit-mapped. Card Services performs event notification
based on this field. See csx_event_handler(9E) for valid event
definitions and for additional information about handling events.

9F-188 SunOS 5.6 modified 19 Jul 1996

Kernel Functions for Drivers csx_RequestSocketMask (9F)

RETURN VALUES CS_SUCCESS Successful operation.

CS_BAD_HANDLE Client handle is invalid.

CS_IN_USE csx_ReleaseSocketMask() has not been done.

CS_BAD_SOCKET csx_RequestSocketMask() has not been done.

CS_UNSUPPORTED_FUNCTION No PCMCIA hardware installed.

CONTEXT These functions may be called from user or kernel context.

SEE ALSO csx_event_handler(9E), csx_GetEventMask(9F), csx_RegisterClient(9F),
csx_SetEventMask(9F)

PC Card 95 Standard, PCMCIA/JEIDA

modified 19 Jul 1996 SunOS 5.6 9F-189

csx_RequestWindow (9F) Kernel Functions for Drivers

NAME csx_RequestWindow, csx_ReleaseWindow − request or release window resources

SYNOPSIS #include <sys/pccard.h>

int32_t csx_RequestWindow(client_handle_t ch, window_handle_t ∗wh,
win_req_t ∗wr);

int32_t csx_ReleaseWindow(window_handle_t wh);

INTERFACE
LEVEL

Solaris DDI Specific (Solaris DDI)

ARGUMENTS ch Client handle returned from csx_RegisterClient(9F).

wh Pointer to a window_handle_t structure.

wr Pointer to a win_req_t structure.

DESCRIPTION The function csx_RequestWindow() requests a block of system address space be
assigned to a PC Card in a socket.

The function csx_ReleaseWindow() releases window resources which were obtained by
a call to csx_RequestWindow(). No adapter or socket hardware is modified by this
function.

The csx_MapMemPage(9F) and csx_ModifyWindow(9F) functions use the window han-
dle returned by csx_RequestWindow(). This window handle must be freed by calling
csx_ReleaseWindow() when the client is done using this window.

The PC Card Attribute or Common Memory offset for this window is set by
csx_MapMemPage(9F).

STRUCTURE
MEMBERS

The structure members of win_req_t are:

uint32_t Socket; /∗ socket number ∗/
uint32_t Attributes; /∗ window flags ∗/

uint32_t Base.base; /∗ requested window base address ∗/
acc_handle_t Base.handle; /∗ returned handle for base of window ∗/

uint32_t win_params.AccessSpeed; /∗ window access speed ∗/
uint32_t win_params.IOAddrLines; /∗ IO address lines decoded ∗/

uint32_t ReqOffset; /∗ required window offest ∗/

The fields are defined as follows:

Socket Not used in Solaris, but for portability with other Card Services imple-
mentations, it should be set to the logical socket number.

Attributes This field is bit-mapped. It is defined as follows:

9F-190 SunOS 5.6 modified 19 Jul 1996

Kernel Functions for Drivers csx_RequestWindow (9F)

WIN_MEMORY_TYPE_IO Window points to I/O space

WIN_MEMORY_TYPE_CM Window points to Common Memory space

WIN_MEMORY_TYPE_AM Window points to Attribute Memory space

WIN_ENABLE Enable window

WIN_DATA_WIDTH_8 Set window to 8-bit data path

WIN_DATA_WIDTH_16 Set window to 16-bit data path

WIN_ACC_NEVER_SWAP Host endian byte ordering

WIN_ACC_BIG_ENDIAN Big endian byte ordering

WIN_ACC_LITTLE_ENDIAN Little endian byte ordering

WIN_ACC_STRICT_ORDER Program ordering references

WIN_ACC_UNORDERED_OK May re-order references

WIN_ACC_MERGING_OK Merge stores to consecutive locations

WIN_ACC_LOADCACHING_OK May cache load operations

WIN_ACC_STORECACHING_OK May cache store operations

WIN_MEMORY_TYPE_IO
WIN_MEMORY_TYPE_CM
WIN_MEMORY_TYPE_AM

These bits select which type of window is being requested. One
of these bits must be set.

WIN_ENABLE
The client must set this bit to enable the window.

WIN_ACC_BIG_ENDIAN
WIN_ACC_LITTLE_ENDIAN

These bits describe the endian characteristics of the device as big
endian or little endian, respectively. Even though most of the
devices will have the same endian characteristics as their busses,
there are examples of devices with an I/O processor that has
opposite endian characteristics of the busses. When either of
these bits are set, byte swapping will automatically be performed
by the system if the host machine and the device data formats
have opposite endian characteristics. The implementation may
take advantage of hardware platform byte swapping capabilities.

WIN_ACC_NEVER_SWAP
When this is specified, byte swapping will not be invoked in the
data access functions.

The ability to specify the order in which the CPU will reference data is
provided by the following Attributes bits, only one of which may be
specified:

modified 19 Jul 1996 SunOS 5.6 9F-191

csx_RequestWindow (9F) Kernel Functions for Drivers

WIN_ACC_STRICT_ORDER
The data references must be issued by a CPU in program order.
Strict ordering is the default behavior.

WIN_ACC_UNORDERED_OK
The CPU may re-order the data references. This includes all kinds
of re-ordering (that is, a load followed by a store may be replaced
by a store followed by a load).

WIN_ACC_MERGING_OK
The CPU may merge individual stores to consecutive locations.
For example, the CPU may turn two consecutive byte stores into
one halfword store. It may also batch individual loads. For
example, the CPU may turn two consecutive byte loads into one
halfword load. This bit also implies re-ordering.

WIN_ACC_LOADCACHING_OK
The CPU may cache the data it fetches and reuse it until another
store occurs. The default behavior is to fetch new data on every
load. This bit also implies merging and re-ordering.

WIN_ACC_STORECACHING_OK
The CPU may keep the data in the cache and push it to the device
(perhaps with other data) at a later time. The default behavior is
to push the data right away. This bit also implies load caching,
merging, and re-ordering.

These values are advisory, not mandatory. For example, data can be
ordered without being merged or cached, even though a driver
requests unordered, merged and cached together.

All other bits in the Attributes field must be set to 0.

On successful return from csx_RequestWindow(), WIN_OFFSET_SIZE
is set in the Attributes field when the client must specify card offsets to
csx_MapMemPage(9F) that are a multiple of the window size.

Base.base This field must be set to 0 on calling csx_RequestWindow().

Base.handle On successful return from csx_RequestWindow(), the Base.handle
field contains an access handle corresponding to the first byte of the
allocated memory window which the client must use when accessing
the PC Card’s memory space via the common access functions. A client
must not make any assumptions as to the format of the returned
Base.handle field value.

Size On calling csx_RequestWindow(), the Size field is the size in bytes of
the memory window requested. Size may be zero to indicate that Card
Services should provide the smallest sized window available. On suc-
cessful return from csx_RequestWindow(), the Size field contains the
actual size of the window allocated.

win_params.AccessSpeed

9F-192 SunOS 5.6 modified 19 Jul 1996

Kernel Functions for Drivers csx_RequestWindow (9F)

This field specifies the access speed of the window if the client is
requesting a memory window. The AccessSpeed field bit definitions
use the format of the extended speed byte of the Device ID tuple. If the
mantissa is 0 (noted as reserved in the PC Card 95 Standard), the lower
bits are a binary code representing a speed from the following table:

Code Speed

0 (Reserved - do not use)

1 250 nsec

2 200 nsec

3 150 nsec

4 100 nsec

5 - 7 (Reserved - do not use)

To request a window that supports the WAIT signal, OR-in the
WIN_USE_WAIT bit to the AccessSpeed value before calling this func-
tion.

It is recommended that clients use the csx_ConvertSpeed(9F) function
to generate the appropriate AccessSpeed values rather than manually
perturbing the AccessSpeed field.

win_params.IOAddrLines
If the client is requesting an I/O window, the IOAddrLines field is the
number of I/O address lines decoded by the PC Card in the specified
socket. Access to the I/O window is not enabled until
csx_RequestConfiguration(9F) has been invoked successfully.

ReqOffset This field is a Solaris-specific extension that can be used by clients to
generate optimum window offsets passed to csx_MapMemPage(9F).

RETURN VALUES CS_SUCCESS Successful operation.

CS_BAD_ATTRIBUTE Attributes are invalid.

CS_BAD_SPEED Speed is invalid.

CS_BAD_HANDLE Client handle is invalid.

CS_BAD_SIZE Window size is invalid.

CS_NO_CARD No PC Card in socket.

CS_OUT_OF_RESOURCE Unable to allocate window.

CS_UNSUPPORTED_FUNCTION No PCMCIA hardware installed.

CONTEXT These functions may be called from user or kernel context.

modified 19 Jul 1996 SunOS 5.6 9F-193

csx_RequestWindow (9F) Kernel Functions for Drivers

SEE ALSO csx_ConvertSpeed(9F), csx_MapMemPage(9F), csx_ModifyWindow(9F),
csx_RegisterClient(9F), csx_RequestConfiguration(9F)

PC Card 95 Standard, PCMCIA/JEIDA

9F-194 SunOS 5.6 modified 19 Jul 1996

Kernel Functions for Drivers csx_ResetFunction (9F)

NAME csx_ResetFunction − reset a function on a PC card

SYNOPSIS #include <sys/pccard.h>

int32_t csx_ResetFunction(client_handle_t ch, reset_function_t ∗rf);

INTERFACE
LEVEL

Solaris DDI Specific (Solaris DDI)

ARGUMENTS ch Client handle returned from csx_RegisterClient(9F).

rf Pointer to a reset_function_t structure.

DESCRIPTION csx_ResetFunction() requests that the specified function on the PC card initiate a reset
operation.

STRUCTURE
MEMBERS

The structure members of reset_function_t are:

uint32_t Socket; /∗ socket number ∗/
uint32_t Attributes; /∗ reset attributes ∗/

The fields are defined as follows:

Socket Not used in Solaris, but for portability with other Card Services imple-
mentations, it should be set to the logical socket number.

Attributes Must be 0.

RETURN VALUES CS_SUCCESS Card Services has noted the reset request.

CS_IN_USE This Card Services implementation does not permit
configured cards to be reset.

CS_BAD_HANDLE Client handle is invalid.

CS_NO_CARD No PC card in socket.

CS_BAD_SOCKET Specified socket or function number is invalid.

CS_UNSUPPORTED_FUNCTION No PCMCIA hardware installed.

CONTEXT This function may be called from user or kernel context.

SEE ALSO csx_event_handler(9E), csx_RegisterClient(9F)

PC Card 95 Standard, PCMCIA/JEIDA

NOTES csx_ResetFunction() has not been implemented in this release and always returns
CS_IN_USE.

modified 19 Jul 1996 SunOS 5.6 9F-195

csx_SetEventMask (9F) Kernel Functions for Drivers

NAME csx_SetEventMask, csx_GetEventMask − set or return the client event mask for the client

SYNOPSIS #include <sys/pccard.h>

int32_t csx_SetEventMask(client_handle_t ch, sockevent_t ∗se);

int32_t csx_GetEventMask(client_handle_t ch, sockevent_t ∗se);

INTERFACE
LEVEL

Solaris DDI Specific (Solaris DDI)

ARGUMENTS ch Client handle returned from csx_RegisterClient(9F).

se Pointer to a sockevent_t structure.

DESCRIPTION The function csx_SetEventMask() sets the client or global event mask for the client.

The function csx_GetEventMask() returns the client or global event mask for the client.

csx_RequestSocketMask(9F) must be called before calling csx_SetEventMask() for the
client event mask for this socket.

STRUCTURE
MEMBERS

The structure members of sockevent_t are:

uint32_t Attributes; /∗ attribute flags for call ∗/
uint32_t EventMask; /∗ event mask to set or return ∗/
uint32_t Socket; /∗ socket number if necessary ∗/

The fields are defined as follows:

Attributes This is a bit-mapped field that identifies the type of event mask to be
returned. The field is defined as follows:

CONF_EVENT_MASK_GLOBAL Client’s global event mask

CONF_EVENT_MASK_CLIENT Client’s local event mask

CONF_EVENT_MASK_GLOBAL
If set, the client’s global event mask is returned.

CONF_EVENT_MASK_CLIENT
If set, the client’s local event mask is returned.

EventMask This field is bit-mapped. Card Services performs event notification based
on this field. See csx_event_handler(9E) for valid event definitions and for
additional information about handling events.

Socket Not used in Solaris, but for portability with other Card Services implemen-
tations, it should be set to the logical socket number.

9F-196 SunOS 5.6 modified 19 Jul 1996

Kernel Functions for Drivers csx_SetEventMask (9F)

RETURN VALUES CS_SUCCESS Successful operation.

CS_BAD_HANDLE Client handle is invalid.

CS_BAD_SOCKET csx_RequestSocketMask(9F) not called for
CONF_EVENT_MASK_CLIENT.

CS_UNSUPPORTED_FUNCTION No PCMCIA hardware installed.

CONTEXT These functions may be called from user or kernel context.

SEE ALSO csx_event_handler(9E), csx_RegisterClient(9F), csx_ReleaseSocketMask(9F),
csx_RequestSocketMask(9F)

PC Card 95 Standard, PCMCIA/JEIDA

modified 19 Jul 1996 SunOS 5.6 9F-197

csx_SetHandleOffset (9F) Kernel Functions for Drivers

NAME csx_SetHandleOffset − set current access handle offset

SYNOPSIS #include <sys/pccard.h>

int32_t csx_SetHandleOffset(acc_handle_t handle, uint32_t offset);

INTERFACE
LEVEL

Solaris DDI Specific (Solaris DDI)

ARGUMENTS handle Access handle returned by csx_RequestIRQ(9F) or csx_RequestIO(9F).

offset New access handle offset.

DESCRIPTION This function sets the current offset for the access handle, handle, to offset .

RETURN VALUES CS_SUCCESS Successful operation.

CONTEXT This function may be called from user or kernel context.

SEE ALSO csx_GetHandleOffset(9F), csx_RequestIO(9F), csx_RequestIRQ(9F)

PC Card 95 Standard, PCMCIA/JEIDA

9F-198 SunOS 5.6 modified 16 May 1997

Kernel Functions for Drivers csx_ValidateCIS (9F)

NAME csx_ValidateCIS − validate the Card Information Structure (CIS)

SYNOPSIS #include <sys/pccard.h>

int32_t csx_ValidateCIS(client_handle_t ch, cisinfo_t ∗ci);

INTERFACE
LEVEL

Solaris DDI Specific (Solaris DDI)

ARGUMENTS ch Client handle returned from csx_RegisterClient(9F).

ci Pointer to a cisinfo_t structure.

DESCRIPTION This function validates the Card Information Structure (CIS) on the PC Card in the
specified socket.

STRUCTURE
MEMBERS

The structure members of cisinfo_t are:

uint32_t Socket; /∗ socket number to validate CIS on ∗/
uint32_t Chains; /∗ number of tuple chains in CIS ∗/
uint32_t Tuples; /∗ total number of tuples in CIS ∗/

The fields are defined as follows:

Socket Not used in Solaris, but for portability with other Card Services implementa-
tions, it should be set to the logical socket number.

Chains This field returns the number of valid tuple chains located in the CIS. If 0 is
returned, the CIS is not valid.

Tuples This field is a Solaris-specific extension and it returns the total number of
tuples on all the chains in the PC Card’s CIS.

RETURN VALUES CS_SUCCESS Successful operation.

CS_NO_CIS No CIS on PC Card or CIS is invalid.

CS_NO_CARD No PC Card in socket.

CS_UNSUPPORTED_FUNCTION No PCMCIA hardware installed.

CONTEXT This function may be called from user or kernel context.

SEE ALSO csx_GetFirstTuple(9F), csx_GetTupleData(9F), csx_ParseTuple(9F),
csx_RegisterClient(9F)

PC Card 95 Standard, PCMCIA/JEIDA

modified 19 Jul 1996 SunOS 5.6 9F-199

datamsg (9F) Kernel Functions for Drivers

NAME datamsg − test whether a message is a data message

SYNOPSIS #include <sys/stream.h>
#include <sys/ddi.h>

int datamsg(unsigned char type);

INTERFACE
LEVEL

Architecture independent level 1 (DDI/DKI).

ARGUMENTS type The type of message to be tested. The db_type field of the datab(9S) structure
contains the message type. This field may be accessed through the message block
using mp->b_datap->db_type.

DESCRIPTION datamsg() tests the type of message to determine if it is a data message type (M_DATA,
M_DELAY, M_PROTO, or M_PCPROTO).

RETURN VALUES datamsg returns

1 if the message is a data message

0 otherwise.

CONTEXT datamsg() can be called from user or interrupt context.

EXAMPLES The put(9E) routine enqueues all data messages for handling by the srv(9E) (service) rou-
tine. All non-data messages are handled in the put(9E) routine.

1 xxxput(q, mp)
2 queue_t ∗q;
3 mblk_t ∗mp;
4 {
5 if (datamsg(mp->b_datap->db_type)) {
6 putq(q, mp);
7 return;
8 }
9 switch (mp->b_datap->db_type) {
10 case M_FLUSH:

. . .
11 }
12 }

SEE ALSO put(9E), srv(9E), allocb(9F), datab(9S), msgb(9S)

Writing Device Drivers
STREAMS Programming Guide

9F-200 SunOS 5.6 modified 11 Apr 1991

Kernel Functions for Drivers ddi_add_intr (9F)

NAME ddi_add_intr, ddi_get_iblock_cookie, ddi_remove_intr − hardware interrupt handling
routines

SYNOPSIS #include <sys/types.h>
#include <sys/conf.h>
#include <sys/ddi.h>
#include <sys/sunddi.h>

int ddi_get_iblock_cookie(dev_info_t ∗dip, u_int inumber,
ddi_iblock_cookie_t ∗iblock_cookiep);

int ddi_add_intr(dev_info_t ∗dip, u_int inumber, ddi_iblock_cookie_t ∗iblock_cookiep ,
ddi_idevice_cookie_t ∗idevice_cookiep, u_int (∗int_handler)(caddr_t),
caddr_t int_handler_arg);

void ddi_remove_intr(dev_info_t ∗dip, u_int inumber,
ddi_iblock_cookie_t iblock_cookie);

INTERFACE
LEVEL

Solaris DDI specific (Solaris DDI).

ARGUMENTS
ddi_get_iblock_cookie() dip Pointer to dev_info structure.

inumber Interrupt number.

iblock_cookiep Pointer to an interrupt block cookie.

ddi_add_intr() dip Pointer to dev_info structure.

inumber Interrupt number.

iblock_cookiep Optional pointer to an interrupt block cookie where a returned interrupt
block cookie is stored.

idevice_cookiep Optional pointer to an interrupt device cookie where a returned inter-
rupt device cookie is stored.

int_handler Pointer to interrupt handler.

int_handler_arg Argument for interrupt handler.

ddi_remove_intr() dip Pointer to dev_info structure.

inumber Interrupt number.

iblock_cookie Block cookie which identifies the interrupt handler to be removed.

DESCRIPTION
ddi_get_iblock_cookie() ddi_get_iblock_cookie() retrieves the interrupt block cookie associated with a particular

interrupt specification. This routine should be called before ddi_add_intr() to retrieve
the interrupt block cookie needed to initialize locks (mutex(9F), rwlock(9F)) used by the
interrupt routine. The interrupt number inumber determines which interrupt
specification to retrieve the cookie for. inumber is associated with information provided
either by the device (see sbus(4)) or the hardware configuration file (see vme(4),

modified 4 Oct 1996 SunOS 5.6 9F-201

ddi_add_intr (9F) Kernel Functions for Drivers

sysbus(4), isa(4), eisa(4), mca(4), and driver.conf(4)). If only one interrupt is associated
with the device, inumber should be 0.

On a successful return, ∗iblock_cookiep contains information needed for initializing locks
associated with the interrupt specification corresponding to inumber (see mutex_init(9F)
and rw_init(9F)). The driver can then initialize locks acquired by the interrupt routine
before calling ddi_add_intr() which prevents a possible race condition where the driver’s
interrupt handler is called immediately after the driver has called ddi_add_intr() but
before the driver has initialized the locks. This may happen when an interrupt for a dif-
ferent device occurs on the same interrupt level. If the interrupt routine acquires the lock
before the lock has been initialized, undefined behavior may result.

ddi_add_intr() ddi_add_intr() adds an interrupt handler to the system. The interrupt number inumber
determines which interrupt the handler will be associated with. (Refer to
ddi_get_iblock_cookie() above.)

On a successful return, iblock_cookiep contains information used for initializing locks asso-
ciated with this interrupt specification (see mutex_init(9F) and rw_init(9F)). Note that
the interrupt block cookie is usually obtained using ddi_get_iblock_cookie() to avoid the
race conditions described above (refer to ddi_get_iblock_cookie() above). For this rea-
son, iblock_cookiep is no longer useful and should be set to NULL.

On a successful return, idevice_cookiep contains a pointer to a ddi_idevice_cookie_t struc-
ture (see ddi_idevice_cookie(9S)) containing information useful for some devices that
have programmable interrupts. If idevice_cookiep is set to NULL, no value is returned.

The routine intr_handler, with its argument int_handler_arg, is called upon receipt of the
appropriate interrupt. The interrupt handler should return DDI_INTR_CLAIMED if the
interrupt was claimed, DDI_INTR_UNCLAIMED otherwise.

If successful, ddi_add_intr() will return DDI_SUCCESS; if the interrupt information can-
not be found, it will return DDI_INTR_NOTFOUND.

ddi_remove_intr() ddi_remove_intr() removes an interrupt handler from the system. Unloadable drivers
should call this routine during their detach(9E) routine to remove their interrupt handler
from the system.

The device interrupt routine for this instance of the device will not execute after
ddi_remove_intr() returns. ddi_remove_intr() may need to wait for the device interrupt
routine to complete before returning. Therefore, locks acquired by the interrupt handler
should not be held across the call to ddi_remove_intr() or deadlock may result.

RETURN VALUES ddi_add_intr() and ddi_get_iblock_cookie() return:

DDI_SUCCESS on success.

DDI_INTR_NOTFOUND on failure to find the interrupt.

CONTEXT ddi_add_intr(), ddi_remove_intr(), and ddi_get_iblock_cookie() can be called from
user or kernel context.

9F-202 SunOS 5.6 modified 4 Oct 1996

Kernel Functions for Drivers ddi_add_intr (9F)

SEE ALSO driver.conf(4), eisa(4), isa(4), mca(4), sbus(4), sysbus(4), vme(4), attach(9E), detach(9E),
ddi_intr_hilevel(9F), mutex(9F), mutex_init(9F), rw_init(9F), rwlock(9F),
ddi_idevice_cookie(9S)

Writing Device Drivers

NOTES ddi_get_iblock_cookie() must not be called after the driver adds an interrupt handler for
the interrupt specification corresponding to inumber.

BUGS The idevice_cookiep should really point to a data structure that is specific to the bus archi-
tecture that the device operates on. Currently only VMEbus and SBus are supported and
a single data structure is used to describe both.

modified 4 Oct 1996 SunOS 5.6 9F-203

ddi_add_softintr (9F) Kernel Functions for Drivers

NAME ddi_add_softintr, ddi_get_soft_iblock_cookie, ddi_remove_softintr, ddi_trigger_softintr
− software interrupt handling routines

SYNOPSIS #include <sys/types.h>
#include <sys/conf.h>
#include <sys/ddi.h>
#include <sys/sunddi.h>

int ddi_get_soft_iblock_cookie(dev_info_t ∗dip, int preference,
ddi_iblock_cookie_t ∗iblock_cookiep);

int ddi_add_softintr(dev_info_t ∗dip, int preference, ddi_softintr_t ∗idp,
ddi_iblock_cookie_t ∗iblock_cookiep , ddi_idevice_cookie_t ∗idevice_cookiep,
u_int(∗int_handler)(caddr_t int_handler_arg), caddr_t int_handler_arg);

void ddi_remove_softintr(ddi_softintr_t id);

void ddi_trigger_softintr(ddi_softintr_t id);

INTERFACE
LEVEL

Solaris DDI specific (Solaris DDI).

ARGUMENTS
ddi_get_soft_iblock_cookie() dip Pointer to a dev_info structure.

preference The type of soft interrupt to retrieve the cookie for.

iblock_cookiep Pointer to a location to store the interrupt block cookie.

ddi_add_softintr() dip Pointer to dev_info structure.

preference A hint value describing the type of soft interrupt to generate.

idp Pointer to a soft interrupt identifier where a returned soft interrupt
identifier is stored.

iblock_cookiep Optional pointer to an interrupt block cookie where a returned interrupt
block cookie is stored.

idevice_cookiep Optional pointer to an interrupt device cookie where a returned inter-
rupt device cookie is stored (not used).

int_handler Pointer to interrupt handler.

int_handler_arg Argument for interrupt handler.

ddi_remove_softintr() id The identifier specifying which soft interrupt handler to remove.

ddi_trigger_softintr() id The identifier specifying which soft interrupt to trigger and which soft
interrupt handler will be called.

DESCRIPTION
ddi_get_soft_iblock_cookie() ddi_get_soft_iblock_cookie() retrieves the interrupt block cookie associated with a par-

ticular soft interrupt preference level. This routine should be called before
ddi_add_softintr() to retrieve the interrupt block cookie needed to initialize locks

9F-204 SunOS 5.6 modified 13 Oct 1994

Kernel Functions for Drivers ddi_add_softintr (9F)

(mutex(9F), rwlock(9F)) used by the software interrupt routine. preference determines
which type of soft interrupt to retrieve the cookie for. The possible values for preference
are:

DDI_SOFTINT_LOW Low priority soft interrupt
DDI_SOFTINT_MED Medium priority soft interrupt
DDI_SOFTINT_HIGH High priority soft interrupt

On a successful return, iblock_cookiep contains information needed for initializing locks
associated with this soft interrupt (see mutex_init(9F) and rw_init(9F)). The driver can
then initialize mutexes acquired by the interrupt routine before calling
ddi_add_softintr() which prevents a possible race condition where the driver’s soft inter-
rupt handler is called immediately after the driver has called ddi_add_softintr() but
before the driver has initialized the mutexes. This can happen when a soft interrupt for a
different device occurs on the same soft interrupt priority level. If the soft interrupt rou-
tine acquires the mutex before it has been initialized, undefined behavior may result.

ddi_add_softintr() ddi_add_softintr() adds a soft interrupt to the system. The user specified hint preference
identifies three suggested levels for the system to attempt to allocate the soft interrupt
priority at. The value for preference should be the same as that used in the corresponding
call to ddi_get_soft_iblock_cookie(). Refer to the description of
ddi_get_soft_iblock_cookie() above.

The value returned in the location pointed at by idp is the soft interrupt identifier. This
value is used in later calls to ddi_remove_softintr() and ddi_trigger_softintr() to iden-
tify the soft interrupt and the soft interrupt handler.

The value returned in the location pointed at by iblock_cookiep is an interrupt block cookie
which contains information used for initializing mutexes associated with this soft inter-
rupt (see mutex_init(9F) and rw_init(9F)). Note that the interrupt block cookie is nor-
mally obtained using ddi_get_soft_iblock_cookie() to avoid the race conditions
described above (refer to the description of ddi_get_soft_iblock_cookie() above). For
this reason, iblock_cookiep is no longer useful and should be set to NULL.

idevice_cookiep is not used and should be set to NULL.

The routine int_handler, with its argument int_handler_arg, is called upon receipt of a
software interrupt. Software interrupt handlers must not assume that they have work to
do when they run, since (like hardware interrupt handlers) they may run because a soft
interrupt occurred for some other reason. For example, another driver may have trig-
gered a soft interrupt at the same level. For this reason, before triggering the soft inter-
rupt, the driver must indicate to its soft interrupt handler that it should do work. This is
usually done by setting a flag in the state structure. The routine int_handler checks this
flag, reachable through int_handler_arg, to determine if it should claim the interrupt and
do its work.

The interrupt handler must return DDI_INTR_CLAIMED if the interrupt was claimed,
DDI_INTR_UNCLAIMED otherwise.

modified 13 Oct 1994 SunOS 5.6 9F-205

ddi_add_softintr (9F) Kernel Functions for Drivers

If successful, ddi_add_softintr() will return DDI_SUCCESS; if the interrupt information
cannot be found, it will return DDI_FAILURE.

ddi_remove_softintr() ddi_remove_softintr() removes a soft interrupt from the system. The soft interrupt
identifier id, which was returned from a call to ddi_add_softintr(), is used to determine
which soft interrupt and which soft interrupt handler to remove. Drivers must remove
any soft interrupt handlers before allowing the system to unload the driver.

ddi_trigger_softintr() ddi_trigger_softintr() triggers a soft interrupt. The soft interrupt identifier id is used to
determine which soft interrupt to trigger. This function is used by device drivers when
they wish to trigger a soft interrupt which has been set up using ddi_add_softintr().

RETURN VALUES ddi_add_softintr() and ddi_get_soft_iblock_cookie() return:

DDI_SUCCESS on success

DDI_FAILURE on failure

CONTEXT These functions can be called from user or kernel context. ddi_trigger_softintr() may be
called from high-level interrupt context as well.

EXAMPLES In the following example, the device uses high level interrupts. High level interrupts are
those that interrupt at the level of the scheduler and above. High level interrupts must be
handled without using system services that manipulate thread or process states,
because these interrupts are not blocked by the scheduler. In addition, high level inter-
rupt handlers must take care to do a minimum of work because they are not preempt-
able. See ddi_intr_hilevel(9F).

In the example, the high-level interrupt routine minimally services the device, and
enqueues the data for later processing by the soft interrupt handler. If the soft interrupt
handler is not currently running, the high-level interrupt routine triggers a soft interrupt
so the soft interrupt handler can process the data. Once running, the soft interrupt
handler processes all the enqueued data before returning.

The state structure contains two mutexes. The high-level mutex is used to protect data
shared between the high-level interrupt handler and the soft interrupt handler. The low-
level mutex is used to protect the rest of the driver from the soft interrupt handler.

struct xxstate {
. . .
ddi_softintr_t id;
ddi_iblock_cookie_t high_iblock_cookie;
kmutex_t high_mutex;
ddi_iblock_cookie_t low_iblock_cookie;
kmutex_t low_mutex;
int softint_running;
. . .

};

9F-206 SunOS 5.6 modified 13 Oct 1994

Kernel Functions for Drivers ddi_add_softintr (9F)

struct xxstate ∗xsp;
static u_int xxsoftintr(caddr_t);
static u_int xxhighintr(caddr_t);
. . .

The following code fragment would usually appear in the driver’s attach(9E) routine.
ddi_add_intr(9F) is used to add the high-level interrupt handler and ddi_add_softintr()
is used to add the low-level interrupt routine.

static u_int
xxattach(dev_info_t ∗dip, ddi_attach_cmd_t cmd)
{

struct xxstate ∗xsp;
. . .
/∗ get high-level iblock cookie ∗/
if (ddi_get_iblock_cookie(dip, inumber,

&xsp->high_iblock_cookie) != DDI_SUCCESS) {
/∗ clean up ∗/
return (DDI_FAILURE); /∗ fail attach ∗/

}

/∗ initialize high-level mutex ∗/
mutex_init(&xsp->high_mutex, "xx high mutex", MUTEX_DRIVER,

(void ∗)xsp->high_iblock_cookie);

/∗ add high-level routine - xxhighintr() ∗/
if (ddi_add_intr(dip, inumber, NULL, NULL,

xxhighintr, (caddr_t) xsp) != DDI_SUCCESS) {
/∗ cleanup ∗/
return (DDI_FAILURE); /∗ fail attach ∗/

}

/∗ get soft iblock cookie ∗/
if (ddi_get_soft_iblock_cookie(dip, DDI_SOFTINT_MED,

&xsp->low_iblock_cookie) != DDI_SUCCESS) {
/∗ clean up ∗/
return (DDI_FAILURE); /∗ fail attach ∗/

}

/∗ initialize low-level mutex ∗/
mutex_init(&xsp->low_mutex, "xx low mutex", MUTEX_DRIVER,

(void ∗)xsp->low_iblock_cookie);

/∗ add low level routine - xxsoftintr() ∗/
if (ddi_add_softintr(dip, DDI_SOFTINT_MED, &xsp->id,

NULL, NULL, xxsoftintr, (caddr_t) xsp) != DDI_SUCCESS) {
/∗ cleanup ∗/

modified 13 Oct 1994 SunOS 5.6 9F-207

ddi_add_softintr (9F) Kernel Functions for Drivers

return (DDI_FAILURE); /∗ fail attach ∗/
}

. . .
}

The next code fragment represents the high-level interrupt routine. The high-level inter-
rupt routine minimally services the device, and enqueues the data for later processing by
the soft interrupt routine. If the soft interrupt routine is not already running,
ddi_trigger_softintr() is called to start the routine. The soft interrupt routine will run
until there is no more data on the queue.

static u_int
xxhighintr(caddr_t arg)
{

struct xxstate ∗xsp = (struct xxstate ∗) arg;
int need_softint;
. . .
mutex_enter(&xsp->high_mutex);

/∗
∗ Verify this device generated the interrupt
∗ and disable the device interrupt.
∗ Enqueue data for xxsoftintr() processing.
∗/

/∗ is xxsoftintr() already running ? ∗/
if (xsp->softint_running)

need_softint = 0;
else

need_softint = 1;
mutex_exit(&xsp->high_mutex);

/∗ read-only access to xsp->id, no mutex needed ∗/
if (need_softint)

ddi_trigger_softintr(xsp->id);
. . .
return (DDI_INTR_CLAIMED);

}

static u_int
xxsoftintr(caddr_t arg)
{

struct xxstate ∗xsp = (struct xxstate ∗) arg;
. . .
mutex_enter(&xsp->low_mutex);
mutex_enter(&xsp->high_mutex);

9F-208 SunOS 5.6 modified 13 Oct 1994

Kernel Functions for Drivers ddi_add_softintr (9F)

/∗ verify there is work to do ∗/
if (work queue empty || xsp->softint_running) {

mutex_exit(&xsp->high_mutex);
mutex_exit(&xsp->low_mutex);
return (DDI_INTR_UNCLAIMED);

}

xsp->softint_running = 1;

while (data on queue) {
ASSERT(mutex_owned(&xsp->high_mutex));

/∗ de-queue data ∗/

mutex_exit(&xsp->high_mutex);

/∗ Process data on queue ∗/

mutex_enter(&xsp->high_mutex);
}

xsp->softint_running = 0;
mutex_exit(&xsp->high_mutex);
mutex_exit(&xsp->low_mutex);

return (DDI_INTR_CLAIMED);
}

SEE ALSO ddi_add_intr(9F), ddi_intr_hilevel(9F), ddi_remove_intr(9F), mutex_init(9F)

Writing Device Drivers

NOTES ddi_add_softintr() may not be used to add the same software interrupt handler more
than once. This is true even if a different value is used for int_handler_arg in each of the
calls to ddi_add_softintr(). Instead, the argument passed to the interrupt handler should
indicate what service(s) the interrupt handler should perform. For example, the argu-
ment could be a pointer to the device’s soft state structure, which could contain a
’which_service’ field that the handler examines. The driver must set this field to the
appropriate value before calling ddi_trigger_softintr().

modified 13 Oct 1994 SunOS 5.6 9F-209

ddi_binding_name (9F) Kernel Functions for Drivers

NAME ddi_binding_name, ddi_get_name − return driver binding name

SYNOPSIS #include <sys/ddi.h>
#include <sys/sunddi.h>

char ∗ddi_binding_name(dev_info_t ∗dip);

char ∗ddi_get_name(dev_info_t ∗dip);

INTERFACE
LEVEL

Solaris DDI specific (Solaris DDI).

ARGUMENTS dip A pointer to the device’s dev_info structure.

DESCRIPTION ddi_binding_name() and ddi_get_name() return the driver binding name. This is the
name used to select a driver for the device. This name is typically derived from the dev-
ice name property or the device compatible property. The name returned may be a
driver alias or the driver name.

RETURN VALUES ddi_binding_name() and ddi_get_name() return the name used to bind a driver to a
device.

CONTEXT ddi_binding_name() and ddi_get_name() can be called from user, kernel, or interrupt
context.

SEE ALSO ddi_node_name(9F)

Writing Device Drivers

WARNINGS The name returned by ddi_binding_name() and ddi_get_name(9F) is read-only.

9F-210 SunOS 5.6 modified 3 May 1996

Kernel Functions for Drivers ddi_btop (9F)

NAME ddi_btop, ddi_btopr, ddi_ptob − page size conversions

SYNOPSIS #include <sys/ddi.h>
#include <sys/sunddi.h>

unsigned long ddi_btop(dev_info_t ∗dip, unsigned long bytes);

unsigned long ddi_btopr(dev_info_t ∗dip, unsigned long bytes);

unsigned long ddi_ptob(dev_info_t ∗dip, unsigned long pages);

INTERFACE
LEVEL

Solaris DDI specific (Solaris DDI).

DESCRIPTION This set of routines use the parent nexus driver to perform conversions in page size units.

ddi_btop() converts the given number of bytes to the number of memory pages that it
corresponds to, rounding down in the case that the byte count is not a page multiple.

ddi_btopr() converts the given number of bytes to the number of memory pages that it
corresponds to, rounding up in the case that the byte count is not a page multiple.

ddi_ptob() converts the given number of pages to the number of bytes that it
corresponds to.

Because bus nexus may possess their own hardware address translation facilities, these
routines should be used in preference to the corresponding DDI/DKI routines btop(9F),
btopr(9F), and ptob(9F), which only deal in terms of the pagesize of the main system
MMU.

RETURN VALUES ddi_btop() and ddi_btopr() return the number of corresponding pages. ddi_ptob()
returns the corresponding number of bytes. There are no error return values.

CONTEXT This function can be called from user or interrupt context.

EXAMPLES This example finds the size (in bytes) of one page:

pagesize = ddi_ptob(dip, 1L);

SEE ALSO btop(9F), btopr(9F), ptob(9F)

Writing Device Drivers

modified 11 Sep 1991 SunOS 5.6 9F-211

ddi_copyin (9F) Kernel Functions for Drivers

NAME ddi_copyin − copy data to a driver buffer

SYNOPSIS #include <sys/types.h>
#include <sys/ddi.h>
#include <sys/sunddi.h>

int ddi_copyin(const void ∗buf, void ∗driverbuf, size_t cn, int flags);

INTERFACE
LEVEL

Solaris DDI specific (Solaris DDI).

ARGUMENTS buf Source address from which data is transferred.

driverbuf Driver destination address to which data is transferred.

cn Number of bytes transferred.

flags Set of flag bits that provide address space information about buf.

DESCRIPTION This routine is designed for use in driver ioctl(9E) routines for drivers that support lay-
ered ioctls. ddi_copyin() copies data from a source address to a driver buffer. The
driver developer must ensure that adequate space is allocated for the destination address.

The flags argument is used to determine the address space information about buf. If the
FKIOCTL flag is set, this indicates that buf is a kernel address, and ddi_copyin() behaves
like bcopy(9F). Otherwise buf is interpreted as a user buffer address, and ddi_copyin()
behaves like copyin(9F).

Addresses that are word-aligned are moved most efficiently. However, the driver
developer is not obliged to ensure alignment. This function automatically finds the most
efficient move according to address alignment.

RETURN VALUES ddi_copyin() returns 0, indicating a successful copy. It returns −1 if one of the following
occurs:

· paging fault; the driver tried to access a page of memory for which it did not
have read or write access

· invalid user address, such as a user area or stack area

· invalid address that would have resulted in data being copied into the user
block

If a −1 is returned to the caller, driver entry point routines should return EFAULT.

CONTEXT ddi_copyin() can be called from user or kernel context only.

EXAMPLES A driver ioctl(9E) routine (line 12) can be used to get or set device attributes or registers.
For the XX_SETREGS condition (line 25), the driver copies the user data in arg to the dev-
ice registers. If the specified argument contains an invalid address, an error code is
returned.

9F-212 SunOS 5.6 modified 1 May 1996

Kernel Functions for Drivers ddi_copyin (9F)

1 struct device { /∗ layout of physical device registers ∗/
2 int control; /∗ physical device control word ∗/
3 int status; /∗ physical device status word ∗/
4 short recv_char; /∗ receive character from device ∗/
5 short xmit_char; /∗ transmit character to device ∗/
6 };

7 struct device_state {
8 volatile struct device ∗regsp; /∗ pointer to device registers ∗/
9 kmutex_t reg_mutex; /∗ protect device registers ∗/

. . .
10 };

11 static void ∗statep; /∗ for soft state routines ∗/

12 xxioctl(dev_t dev, int cmd, int arg, int mode,
13 cred_t ∗cred_p, int ∗rval_p)
14 {
15 struct device_state ∗sp;
16 volatile struct device ∗rp;
17 struct device reg_buf; /∗ temporary buffer for registers ∗/
18 int instance;

19 instance = getminor(dev);
20 sp = ddi_get_soft_state(statep, instance);
21 if (sp == NULL)
22 return (ENXIO);
23 rp = sp->regsp;

. . .
24 switch (cmd) {

25 case XX_SETREGS: /∗ copy data to temp. regs. buf ∗/
26 if (ddi_copyin(arg, ®_buf,
27 sizeof (struct device), mode) != 0) {
28 return (EFAULT);
29 }

30 mutex_enter(&sp->reg_mutex);
31 /∗
32 ∗ Copy data from temporary device register
33 ∗ buffer to device registers.
34 ∗ e.g. rp->control = reg_buf.control;
35 ∗/
36 mutex_exit(&sp->reg_mutex);

modified 1 May 1996 SunOS 5.6 9F-213

ddi_copyin (9F) Kernel Functions for Drivers

37 break;
38 }
39 }

SEE ALSO ioctl(9E), bcopy(9F), copyin(9F), copyout(9F), ddi_copyout(9F), uiomove(9F)

Writing Device Drivers

NOTES The value of the flags argument to ddi_copyin() should be passed through directly from
the mode argument of ioctl() untranslated.

Driver defined locks should not be held across calls to this function.

9F-214 SunOS 5.6 modified 1 May 1996

Kernel Functions for Drivers ddi_copyout (9F)

NAME ddi_copyout − copy data from a driver

SYNOPSIS #include <sys/types.h>
#include <sys/ddi.h>
#include <sys/sunddi.h>

int ddi_copyout(const void ∗driverbuf, void ∗buf, size_t cn, int flags);

INTERFACE
LEVEL

Solaris DDI specific (Solaris DDI).

ARGUMENTS driverbuf Source address in the driver from which the data is transferred.

buf Destination address to which the data is transferred.

cn Number of bytes to copy.

flags Set of flag bits that provide address space information about buf.

DESCRIPTION This routine is designed for use in driver ioctl(9E) routines for drivers that support lay-
ered ioctls. ddi_copyout() copies data from a driver buffer to a destination address, buf.

The flags argument is used to determine the address space information about buf. If the
FKIOCTL flag is set, this indicates that buf is a kernel address, and ddi_copyout() behaves
like bcopy(9F). Otherwise buf is interpreted as a user buffer address, and ddi_copyout()
behaves like copyout(9F).

Addresses that are word-aligned are moved most efficiently. However, the driver
developer is not obliged to ensure alignment. This function automatically finds the most
efficient move algorithm according to address alignment.

RETURN VALUES Under normal conditions a 0 is returned to indicate a successful copy. Otherwise, a -1 is
returned if one of the following occurs:

· paging fault; the driver tried to access a page of memory for which it did
not have read or write access

· invalid user address, such as a user area or stack area

· invalid address that would have resulted in data being copied into the user
block

If a -1 is returned to the caller, driver entry point routines should return EFAULT.

CONTEXT ddi_copyout() can be called from user or kernel context only.

EXAMPLES A driver ioctl(9E) routine (line 12) can be used to get or set device attributes or registers.
In the XX_GETREGS condition (line 25), the driver copies the current device register
values to another data area. If the specified argument contains an invalid address, an
error code is returned.

1 struct device { /∗ layout of physical device registers ∗/
2 int control; /∗ physical device control word ∗/
3 int status; /∗ physical device status word ∗/

modified 1 May 1996 SunOS 5.6 9F-215

ddi_copyout (9F) Kernel Functions for Drivers

4 short recv_char; /∗ receive character from device ∗/
5 short xmit_char; /∗ transmit character to device ∗/
6 };

7 struct device_state {
8 volatile struct device ∗regsp; /∗ pointer to device registers ∗/
9 kmutex_t reg_mutex; /∗ protect device registers ∗/

. . .
10 };

11 static void ∗statep; /∗ for soft state routines ∗/

12 xxioctl(dev_t dev, int cmd, int arg, int mode,
13 cred_t ∗cred_p, int ∗rval_p)
14 {
15 struct device_state ∗sp;
16 volatile struct device ∗rp;
17 struct device reg_buf; /∗ temporary buffer for registers ∗/
18 int instance;

19 instance = getminor(dev);
20 sp = ddi_get_soft_state(statep, instance);
21 if (sp == NULL)
22 return (ENXIO);
23 rp = sp->regsp;

. . .
24 switch (cmd) {

25 case XX_GETREGS: /∗ copy registers to arg ∗/
26 mutex_enter(&sp->reg_mutex);
27 /∗
28 ∗ Copy data from device registers to
29 ∗ temporary device register buffer
30 ∗ e.g. reg_buf.control = rp->control;
31 ∗/
32 mutex_exit(&sp->reg_mutex);

33 if (ddi_copyout(®_buf, arg,
34 sizeof (struct device), mode) != 0) {
35 return (EFAULT);
36 }

37 break;
38 }
39 }

9F-216 SunOS 5.6 modified 1 May 1996

Kernel Functions for Drivers ddi_copyout (9F)

SEE ALSO ioctl(9E), bcopy(9F), copyin(9F), copyout(9F), ddi_copyin(9F), uiomove(9F)

Writing Device Drivers

NOTES The value of the flags argument to ddi_copyout() should be passed through directly from
the mode argument of ioctl() untranslated.

Driver defined locks should not be held across calls to this function.

modified 1 May 1996 SunOS 5.6 9F-217

ddi_create_minor_node (9F) Kernel Functions for Drivers

NAME ddi_create_minor_node − create a minor node for this device

SYNOPSIS #include <sys/stat.h>
#include <sys/sunddi.h>

int ddi_create_minor_node(dev_info_t ∗dip, char ∗name, int spec_type, int minor_num,
char ∗node_type , int is_clone);

INTERFACE
LEVEL

Solaris DDI specific (Solaris DDI).

ARGUMENTS dip A pointer to the device’s dev_info structure.

name The name of this particular minor device.

spec_type S_IFCHR or S_IFBLK for character or block minor devices respectively.

minor_num The minor number for this particular minor device.

node_type Any string that uniquely identifies the type of node. The following
predefined node types are provided with this release:

DDI_NT_SERIAL For serial ports

DDI_NT_SERIAL_MB For on board serial ports

DDI_NT_SERIAL_DO For dial out ports

DDI_NT_SERIAL_MB_DO For on board dial out ports

DDI_NT_BLOCK For hard disks

DDI_NT_BLOCK_CHAN For hard disks with channel or target
numbers

DDI_NT_CD For CDROM drives

DDI_NT_CD_CHAN For CDROM drives with channel or target
numbers

DDI_NT_FD For floppy disks

DDI_NT_TAPE For tape drives

DDI_NT_NET For network devices

DDI_NT_DISPLAY For display devices

DDI_PSEUDO For pseudo devices

is_clone If the device is a clone device then this flag is set to CLONE_DEV else it is
set to 0.

DESCRIPTION ddi_create_minor_node() provides the necessary information to enable the system to
create the /dev and /devices hierarchies. The name is used to create the minor name of
the block or character special file under the /devices hierarchy. At sign (@), slash (/), and
space are not allowed. The spec_type specifies whether this is a block or character device.
The minor_num is the minor number for the device.
The node_type is used to create the names in the /dev hierarchy that refers to the names in

9F-218 SunOS 5.6 modified 13 Apr 1993

Kernel Functions for Drivers ddi_create_minor_node (9F)

the /devices hierarchy. See disks(1M), ports(1M), tapes(1M), devlinks(1M). Finally
is_clone determines if this is a clone device or not.

RETURN VALUES ddi_create_minor_node() returns:

DDI_SUCCESS if it was able to allocate memory, create the minor data structure, and
place it into the linked list of minor devices for this driver.

DDI_FAILURE if minor node creation failed.

EXAMPLES The following example creates a data structure describing a minor device called foo
which has a minor number of 0. It is of type DDI_NT_BLOCK (a block device) and it is
not a clone device.

ddi_create_minor_node(dip, "foo", S_IFBLK, 0, DDI_NT_BLOCK, 0);

SEE ALSO add_drv(1M), devlinks(1M), disks(1M), drvconfig(1M), ports(1M), tapes(1M),
attach(9E), ddi_remove_minor_node(9F)

Writing Device Drivers

modified 13 Apr 1993 SunOS 5.6 9F-219

ddi_device_copy (9F) Kernel Functions for Drivers

NAME ddi_device_copy − copy data from one device register to another device register

SYNOPSIS #include <sys/ddi.h>
#include <sys/sunddi.h>

int ddi_device_copy(ddi_acc_handle_t src_handle, caddr_t src_addr, ssize_t src_advcnt,
ddi_acc_handle_t dest_handle, caddr_t dest_addr , ssize_t dest_advcnt,
size_t bytecount, uint_t dev_datasz);

INTERFACE
LEVEL

Solaris DDI specific (Solaris DDI).

ARGUMENTS src_handle The data access handle of the source device.

src_addr Base data source address.

src_advcnt Number of dev_datasz units to advance on every access.

dest_handle The data access handle of the destination device.

dest_addr Base data destination address.

dest_advcnt Number of dev_datasz units to advance on every access.

bytecount Number of bytes to transfer.

dev_datasz The size of each data word. Possible values are defined as:

DDI_DATA_SZ01_ACC
1 byte data size

DDI_DATA_SZ02_ACC
2 bytes data size

DDI_DATA_SZ04_ACC
4 bytes data size

DDI_DATA_SZ08_ACC
8 bytes data size

DESCRIPTION ddi_device_copy() copies bytecount bytes from the source address, src_addr, to the desti-
nation address, dest_addr . The attributes encoded in the access handles, src_handle and
dest_handle, govern how data is actually copied from the source to the destination. Only
matching data sizes between the source and destination are supported.

Data will automatically be translated to maintain a consistent view between the source
and the destination. The translation may involve byte-swapping if the source and the des-
tination devices have incompatible endian characteristics.

The src_advcnt and dest_advcnt arguments specifies the number of dev_datasz units to
advance with each access to the device addresses. A value of 0 will use the same source
and destination device address on every access. A positive value increments the
corresponding device address by certain number of data size units in the next access. On
the other hand, a negative value decrements the device address.

9F-220 SunOS 5.6 modified 15 Nov 1996

Kernel Functions for Drivers ddi_device_copy (9F)

The dev_datasz argument determines the size of the data word on each access. The data
size must be the same between the source and destination.

RETURN VALUES ddi_device_copy() returns:

DDI_SUCCESS Successfully transferred the data.

DDI_FAILURE The byte count is not a multiple dev_datasz .

CONTEXT ddi_device_copy() can be called from user, kernel, or interrupt context.

SEE ALSO ddi_regs_map_free(9F), ddi_regs_map_setup(9F)

Writing Device Drivers

modified 15 Nov 1996 SunOS 5.6 9F-221

ddi_device_zero (9F) Kernel Functions for Drivers

NAME ddi_device_zero − zero fill the device

SYNOPSIS #include <sys/ddi.h>
#include <sys/sunddi.h>

int ddi_device_zero(ddi_acc_handle_t handle, caddr_t dev_addr , size_t bytecount,
ssize_t dev_advcnt, uint_t dev_datasz);

INTERFACE
LEVEL

Solaris DDI specific (Solaris DDI).

ARGUMENTS handle The data access handle returned from setup calls, such as
ddi_regs_map_setup(9F).

dev_addr Beginning of the device address.

bytecount Number of bytes to zero.

dev_advcnt Number of dev_datasz units to advance on every access.

dev_datasz The size of each data word. Possible values are defined as:

DDI_DATA_SZ01_ACC 1 byte data size

DDI_DATA_SZ02_ACC 2 bytes data size

DDI_DATA_SZ04_ACC 4 bytes data size

DDI_DATA_SZ08_ACC 8 bytes data size

DESCRIPTION ddi_device_zero() function fills the given, bytecount, number of byte of zeroes to the dev-
ice register or memory.

The dev_advcnt argument determines the value of the device address, dev_addr , on each
access. A value of 0 will use the same device address, dev_addr , on every access. A posi-
tive value increments the device address in the next access while a negative value decre-
ments the address. The device address is incremented and decremented in dev_datasz
units.

The dev_datasz argument determines the size of data word on each access.

RETURN VALUES ddi_device_zero() returns:

DDI_SUCCESS Successfully zeroed the data.

DDI_FAILURE The byte count is not a multiple of dev_datasz .

CONTEXT ddi_device_zero() can be called from user, kernel, or interrupt context.

SEE ALSO ddi_regs_map_free(9F), ddi_regs_map_setup(9F)

Writing Device Drivers

9F-222 SunOS 5.6 modified 25 Sep 1996

Kernel Functions for Drivers ddi_devid_compare (9F)

NAME ddi_devid_compare, ddi_devid_free, ddi_devid_init, ddi_devid_register,
ddi_devid_sizeof, ddi_devid_unregister, ddi_devid_valid − Kernel interfaces for device
ids

SYNOPSIS int ddi_devid_compare(ddi_devid_t devid1, ddi_devid_t devid2);

size_t ddi_devid_sizeof(ddi_devid_t devid);

int ddi_devid_init(dev_info_t ∗dip, u_short devid_type, u_short nbytes,
void ∗id, ddi_devid_t ∗retdevid);

void ddi_devid_free(ddi_devid_t devid);

int ddi_devid_register(dev_info_t ∗dip, ddi_devid_t devid);

void ddi_devid_unregister(dev_info_t ∗dip);

int ddi_devid_valid(ddi_devid_t devid);

ARGUMENTS devid The device id address.

devid1 The first of two device id addresses to be compared calling
ddi_devid_compare().

devid2 The second of two device id addresses to be compared calling
ddi_devid_compare().

dip A dev_info pointer, which identifies the device.

devid_type The following device id types may be accepted by the ddi_devid_init()
function:

DEVID_SCSI3_WWN World Wide Name associated with SCSI-3 dev-
ices.

DEVID_SCSI_SERIAL Vendor ID and serial number associated with a
SCSI device. Note: This may only be used if
known to be unique; otherwise a fabricated dev-
ice id must be used.

DEVID_ENCAP Device id of another device. This is for layered
device driver usage.

DEVID_FAB Fabricated device id.

nbytes The length in bytes of device id.

retdevid The return address of the device id created by ddi_devid_init().

DESCRIPTION The following routines are used to provide unique identifiers, device ids, for devices.
Specifically, kernel modules use these interfaces to identify and locate devices, indepen-
dent of the device’s physical connection or its logical device name or number.

ddi_devid_compare() compares two device ids byte-by-byte and determines both equal-
ity and sort order.

modified 26 Nov 1996 SunOS 5.6 9F-223

ddi_devid_compare (9F) Kernel Functions for Drivers

ddi_devid_sizeof() returns the number of bytes allocated for the passed in device id
(devid).

ddi_devid_init() allocates memory and initializes the opaque device id structure. This
function does not store the devid. If the device id is not derived from the device’s
firmware, it is the driver’s responsibility to store the devid on some reliable store. When a
devid_type of either DEVID_SCSI3_WWN, DEVID_SCSI_SERIAL, or DEVID_ENCAP is
accepted, an array of bytes (id) must be passed in (nbytes).

When the devid_type DEVID_FAB is used, the array of bytes (id) must be NULL and the
length (nbytes) must be zero. The fabricated device ids, DEVID_FAB will be initialized
with the machine’s host id and a timestamp.

Drivers must free the memory allocated by this function, using the ddi_devid_free()
function.

ddi_devid_free() frees the memory allocated by the ddi_devid_init() function.

ddi_devid_register() registers the device id address (devid) with the DDI framework,
associating it with the dev_info passed in (dip). The drivers must register device ids at
attach time. See attach(9E).

ddi_devid_unregister() removes the device id address from the dev_info passed in (dip).
Drivers must use this function to unregister the device id when devices are being
detached. This function does not free the space allocated for the device id. The driver
must free the space allocated for the device id, using the ddi_devid_free() function. See
detach(9E).

ddi_devid_valid() validates the device id (devid) passed in. The driver must use this
function to validate any fabricated device id that has been stored on a device.

RETURN VALUES ddi_devid_init() returns the following values:

DDI_SUCCESS Success.

DDI_FAILURE Out of memory. An invalid devid_type was passed in.

ddi_devid_valid() returns the following values:

DDI_SUCCESS Valid device id.

DDI_FAILURE Invalid device id.

ddi_devid_register() returns the following values:

DDI_SUCCESS Success.

DDI_FAILURE Failure. The device id is already registered or the dev-
ice id is invalid.

ddi_devid_valid() returns the following values:

DDI_SUCCESS Valid device id.

DDI_FAILURE Invalid device id.

9F-224 SunOS 5.6 modified 26 Nov 1996

Kernel Functions for Drivers ddi_devid_compare (9F)

ddi_devid_compare returns the following values:

−1 The device id pointed to by devid1 is less than the device id
pointed to by devid2.

0 The device id pointed to by devid1 is equal to the device id
pointed to by devid2.

1 The device id pointed to by devid1 is greater than the device
id pointed to by devid2.

ddi_devid_sizeof() returns the size of the devid in numbers of bytes.

CONTEXT These functions can be called from a user context only.

ATTRIBUTES See attributes(5) for a description of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE
MT-Level Safe

SEE ALSO devid_compare(3), devid_deviceid_to_nmlist(3), devid_free(3), devid_free_nmlist(3),
devid_get(3), devid_get_minor_name(3), devid_sizeof(3), libdevid(4), attributes(5),
attach(9E), detach(9E)

Writing Device Drivers

modified 26 Nov 1996 SunOS 5.6 9F-225

ddi_dev_is_needed (9F) Kernel Functions for Drivers

NAME ddi_dev_is_needed − inform the system that a device’s component is required

SYNOPSIS #include <sys/ddi.h>
#include <sys/sunddi.h>

int ddi_dev_is_needed(dev_info_t ∗dip, int component, int level)

INTERFACE
LEVEL

Solaris DDI specific (Solaris DDI).

ARGUMENTS dip A pointer to the device’s dev_info structure.

component The component of the driver which is needed

level The power level at which the component is needed

DESCRIPTION The ddi_dev_is_needed() function informs the system that a device component is
needed at the specified power level. The level argument must be non-zero.

This function sets a component to the required level and sets all of the devices on which it
depends (see pm(7D)) to their normal power levels. If component 0 of the device is at
power level 0, the ddi_dev_is_needed() call will result in component 0 being returned to
normal power and the device being resumed via attach(9E) before di_dev_is_needed()
returns.

The state of the device should be examined before each physical access. The
ddi_dev_is_needed() function should be called to set a component to the required power
level if the operation to be performed requires the component to be at a power level other
than its current level.

The ddi_dev_is_needed() may cause re-entry of the driver. Deadlock may result if
driver locks are held across the call to ddi_dev_is_needed().

RETURN VALUES The ddi_dev_is_needed() function returns:

DDI_SUCCESS Power successfully set to the requested level.

DDI_FAILURE An error occurred.

EXAMPLES A hypothetical disk driver might include this code:

static int
xxdisk_spun_down(struct xxstate ∗xsp)
{

return (xsp->power_level[DISK_COMPONENT] < POWER_SPUN_UP);
}

static int
xxdisk_strategy(struct buf ∗bp)
{

. . .

9F-226 SunOS 5.6 modified 28 Oct 1996

Kernel Functions for Drivers ddi_dev_is_needed (9F)

mutex_enter(&xxstate_lock);
/∗
∗ Since we have to drop the mutex, we have to do this in a loop
∗ in case we get preempted and the device gets taken away from
∗ us again
∗/
while (device_spun_down(sp)) {

mutex_exit(&xxstate_lock);
if (ddi_dev_is_needed(xsp->mydip,

XXDISK_COMPONENT, XXPOWER_SPUN_UP) != DDI_SUCCESS) {
bioerror(bp,EIO);
biodone(bp);
return (0);

}
mutex_enter(&xxstate_lock);

}
xsp->device_busy++;
mutex_exit(&xxstate_lock);

. . .

}

CONTEXT This function can be called from user or kernel context.

SEE ALSO pm(7D), attach(9E), detach(9E), power(9E), pm_busy_compnent(9F),
pm_create_components(9F), pm_destroy_components(9F), pm_idle_component(9F)

Writing Device Drivers

modified 28 Oct 1996 SunOS 5.6 9F-227

ddi_dev_is_sid (9F) Kernel Functions for Drivers

NAME ddi_dev_is_sid − tell whether a device is self-identifying

SYNOPSIS #include <sys/conf.h>
#include <sys/ddi.h>
#include <sys/sunddi.h>

int ddi_dev_is_sid(dev_info_t ∗dip);

INTERFACE
LEVEL

Solaris DDI specific (Solaris DDI).

ARGUMENTS dip A pointer to the device’s dev_info structure.

DESCRIPTION ddi_dev_is_sid() tells the caller whether the device described by dip is self-identifying,
that is, a device that can unequivocally tell the system that it exists. This is useful for
drivers that support both a self-identifying as well as a non-self-identifying variants of a
device (and therefore must be probed).

RETURN VALUES DDI_SUCCESS Device is self-identifying.

DDI_FAILURE Device is not self-identifying.

CONTEXT ddi_dev_is_sid() can be called from user or interrupt context.

EXAMPLES 1 ...
2 int
3 bz_probe(dev_info_t ∗dip)
4 {
5 ...
6 if (ddi_dev_is_sid(dip) == DDI_SUCCESS) {
7 /∗
8 ∗ This is the self-identifying version (OpenBoot).
9 ∗ No need to probe for it because we know it is there.
10 ∗ The existence of dip && ddi_dev_is_sid() proves this.
11 ∗/
12 return (DDI_PROBE_DONTCARE);
13 }
14 /∗
15 ∗ Not a self-identifying variant of the device. Now we have to
16 ∗ do some work to see whether it is really attached to the
17 ∗ system.
18 ∗/
19 ...

SEE ALSO probe(9E)
Writing Device Drivers

9F-228 SunOS 5.6 modified 24 Oct 1991

Kernel Functions for Drivers ddi_dev_nintrs (9F)

NAME ddi_dev_nintrs − return the number of interrupt specifications a device has

SYNOPSIS #include <sys/conf.h>
#include <sys/ddi.h>
#include <sys/sunddi.h>

int ddi_dev_nintrs(dev_info_t ∗dip, int ∗resultp);

INTERFACE
LEVEL

Solaris DDI specific (Solaris DDI).

DESCRIPTION ddi_dev_nintrs() returns the number of interrupt specifications a device has in ∗resultp.

RETURN VALUES ddi_dev_nintrs() returns:

DDI_SUCCESS A successful return. The number of interrupt specifications that the dev-
ice has is set in resultp.

DDI_FAILURE The device has no interrupt specifications.

CONTEXT ddi_dev_nintrs() can be called from user or interrupt context.

SEE ALSO isa(4), sbus(4), vme(4), ddi_add_intr(9F), ddi_dev_nregs(9F), ddi_dev_regsize(9F)

Writing Device Drivers

modified 2 Dec 1993 SunOS 5.6 9F-229

ddi_dev_nregs (9F) Kernel Functions for Drivers

NAME ddi_dev_nregs − return the number of register sets a device has

SYNOPSIS #include <sys/conf.h>
#include <sys/ddi.h>
#include <sys/sunddi.h>

int ddi_dev_nregs(dev_info_t ∗dip, int ∗resultp);

INTERFACE
LEVEL

Solaris DDI specific (Solaris DDI).

ARGUMENTS dip A pointer to the device’s dev_info structure.

resultp Pointer to an integer that holds the number of register sets on return.

DESCRIPTION The function ddi_dev_nregs() returns the number of sets of registers the device has.

RETURN VALUES ddi_dev_nregs() returns:

DDI_SUCCESS A successful return. The number of register sets is returned in resultp.

DDI_FAILURE The device has no registers.

CONTEXT ddi_dev_nregs() can be called from user or interrupt context.

SEE ALSO ddi_dev_nintrs(9F), ddi_dev_regsize(9F)

Writing Device Drivers

9F-230 SunOS 5.6 modified 24 Oct 1991

Kernel Functions for Drivers ddi_dev_regsize (9F)

NAME ddi_dev_regsize − return the size of a device’s register

SYNOPSIS #include <sys/conf.h>
#include <sys/ddi.h>
#include <sys/sunddi.h>

int ddi_dev_regsize(dev_info_t ∗dip, u_int rnumber, off_t ∗resultp);

INTERFACE
LEVEL

Solaris DDI specific (Solaris DDI).

ARGUMENTS dip A pointer to the device’s dev_info structure.

rnumber The ordinal register number. Device registers are associated with a dev_info
and are enumerated in arbitrary sets from 0 on up. The number of registers a
device has can be determined from a call to ddi_dev_nregs(9F).

resultp Pointer to an integer that holds the size, in bytes, of the described register (if it
exists).

DESCRIPTION ddi_dev_regsize() returns the size, in bytes, of the device register specified by dip and
rnumber. This is useful when, for example, one of the registers is a frame buffer with a
varying size known only to its proms.

RETURN VALUES ddi_dev_regsize() returns:

DDI_SUCCESS A successful return. The size, in bytes, of the specified register, is set in
resultp.

DDI_FAILURE An invalid (nonexistent) register number was specified.

CONTEXT ddi_dev_regsize() can be called from user or interrupt context.

SEE ALSO ddi_dev_nintrs(9F), ddi_dev_nregs(9F)

Writing Device Drivers

modified 24 Oct 1991 SunOS 5.6 9F-231

ddi_dma_addr_bind_handle (9F) Kernel Functions for Drivers

NAME ddi_dma_addr_bind_handle − binds an address to a DMA handle

SYNOPSIS #include <sys/ddi.h>
#include <sys/sunddi.h>

int ddi_dma_addr_bind_handle(ddi_dma_handle_t handle, struct as ∗as , caddr_t addr ,
size_t len, uint_t flags , int (∗callback) (caddr_t), caddr_t arg ,
ddi_dma_cookie_t ∗cookiep , uint_t ∗ccountp);

INTERFACE
LEVEL

Solaris DDI specific (Solaris DDI).

ARGUMENTS handle The DMA handle previously allocated by a call to
ddi_dma_alloc_handle(9F).

as A pointer to an address space structure. This parameter should be set to
NULL, which implies kernel address space.

addr Virtual address of the memory object.

len Length of the memory object in bytes.

flags Valid flags include:

DDI_DMA_WRITE Transfer direction is from memory to I/O.

DDI_DMA_READ Transfer direction is from I/O to memory.

DDI_DMA_RDWR Both read and write.

DDI_DMA_REDZONE
Establish an MMU redzone at end of the object.

DDI_DMA_PARTIAL Partial resource allocation.

DDI_DMA_CONSISTENT
Nonsequential, random, and small block
transfers.

DDI_DMA_STREAMING
Sequential, unidirectional, block-sized, and
block-aligned transfers.

callback The address of a function to call back later if resources are not currently
available. The following special function addresses may also be used.

DDI_DMA_SLEEP Wait until resources are available.

DDI_DMA_DONTWAIT
Do not wait until resources are available and do
not schedule a callback.

arg Argument to be passed to the callback function, callback, if such a func-
tion is specified.

cookiep A pointer to the first ddi_dma_cookie(9S) structure.

ccountp Upon a successful return, ccountp points to a value representing the

9F-232 SunOS 5.6 modified 26 Jul 1996

Kernel Functions for Drivers ddi_dma_addr_bind_handle (9F)

number of cookies for this DMA object.

DESCRIPTION ddi_dma_addr_bind_handle() allocates DMA resources for a memory object such that a
device can perform DMA to or from the object. DMA resources are allocated considering
the device’s DMA attributes as expressed by ddi_dma_attr(9S) (see
ddi_dma_alloc_handle(9F)).

ddi_dma_addr_bind_handle() fills in the first DMA cookie pointed to by cookiep with the
appropriate address, length, and bus type. ∗ccountp is set to the number of DMA cookies
representing this DMA object. Subsequent DMA cookies must be retrieved by calling
ddi_dma_nextcookie(9F) the number of times specified by ∗countp - 1.

When a DMA transfer completes, the driver frees up system DMA resources by calling
ddi_dma_unbind_handle(9F).

The flags argument contains information for mapping routines.
DDI_DMA_WRITE
DDI_DMA_READ
DDI_DMA_RDWR

These flags describe the intended direction of the DMA transfer.

DDI_DMA_STREAMING
This flag should be set if the device is doing sequential, unidirectional,
block-sized, and block-aligned transfers to or from memory. The
alignment and padding constraints specified by the minxfer and burst-
sizes fields in the DMA attribute structure, ddi_dma_attr(9S) (see
ddi_dma_alloc_handle(9F)) is used to allocate the most effective
hardware support for large transfers.

DDI_DMA_CONSISTENT
This flag should be set if the device accesses memory randomly, or if
synchronization steps using ddi_dma_sync(9F) need to be as efficient
as possible. I/O parameter blocks used for communication between a
device and a driver should be allocated using
DDI_DMA_CONSISTENT.

DDI_DMA_REDZONE
If this flag is set, the system attempts to establish a protected red zone
after the object. The DMA resource allocation functions do not guaran-
tee the success of this request as some implementations may not have
the hardware ability to support a red zone.

DDI_DMA_PARTIAL
Setting this flag indicates the caller can accept resources for part of the
object. That is, if the size of the object exceeds the resources available,
only resources for a portion of the object are allocated. The system
indicates this condition by returning status
DDI_DMA_PARTIAL_MAP. At a later point, the caller can use
ddi_dma_getwin(9F) to change the valid portion of the object for
which resources are allocated. If resources were allocated for only

modified 26 Jul 1996 SunOS 5.6 9F-233

ddi_dma_addr_bind_handle (9F) Kernel Functions for Drivers

part of the object, ddi_dma_addr_bind_handle() returns resources
for the first DMA window. Even when DDI_DMA_PARTIAL is set, the
system may decide to allocate resources for the entire object (less
overhead) in which case DDI_DMA_MAPPED is returned.

The callback function callback indicates how a caller wants to handle the possibility of
resources not being available. If callback is set to DDI_DMA_DONTWAIT, the caller does
not care if the allocation fails, and can handle an allocation failure appropriately. If call-
back is set to DDI_DMA_SLEEP, the caller wishes to have the allocation routines wait for
resources to become available. If any other value is set and a DMA resource allocation
fails, this value is assumed to be the address of a function to be called when resources
become available. When the specified function is called, arg is passed to it as an argu-
ment. The specified callback function must return either
DDI_DMA_CALLBACK_RUNOUT or DDI_DMA_CALLBACK_DONE.
DDI_DMA_CALLBACK_RUNOUT indicates that the callback function attempted to allo-
cate DMA resources but failed. In this case, the callback function is put back on a list to be
called again later. DDI_DMA_CALLBACK_DONE indicates that either the allocation of
DMA resources was successful or the driver no longer wishes to retry.

The callback function is called in interrupt context. Therefore, only system functions
accessible from interrupt context are be available. The callback function must take what-
ever steps are necessary to protect its critical resources, data structures, queues, and so
on.

RETURN VALUES ddi_dma_addr_bind_handle() returns:

DDI_DMA_MAPPED Successfully allocated resources for the entire object.

DDI_DMA_PARTIAL_MAP
Successfully allocated resources for a part of the object.
This is acceptable when partial transfers are permitted by
setting the DDI_DMA_PARTIAL flag in flags .

DDI_DMA_INUSE Another I/O transaction is using the DMA handle.

DDI_DMA_NORESOURCES
No resources are available at the present time.

DDI_DMA_NOMAPPING
The object cannot be reached by the device requesting the
resources.

DDI_DMA_TOOBIG The object is too big. A request of this size can never be
satisfied on this particular system. The maximum size
varies depending on machine and configuration.

CONTEXT ddi_dma_addr_bind_handle() can be called from user, kernel, or interrupt context,
except when callback is set to DDI_DMA_SLEEP, in which case it can only be called from
user or kernel context.

9F-234 SunOS 5.6 modified 26 Jul 1996

Kernel Functions for Drivers ddi_dma_addr_bind_handle (9F)

SEE ALSO ddi_dma_alloc_handle(9F), ddi_dma_free_handle(9F), ddi_dma_getwin(9F),
ddi_dma_mem_alloc(9F), ddi_dma_mem_free(9F), ddi_dma_nextcookie(9F),
ddi_dma_sync(9F), ddi_dma_unbind_handle(9F), ddi_dma_attr(9S),
ddi_dma_cookie(9S)

Writing Device Drivers

NOTES If the driver permits partial mapping with the DDI_DMA_PARTIAL flag, the number of
cookies in each window may exceed the size of the device’s scatter/gather list as
specified in the dma_attr_sgllen field in the ddi_dma_attr(9S) structure. In this case,
each set of cookies comprising a DMA window will satisfy the DMA attributes as
described in the ddi_dma_attr(9S) structure in all aspects. The driver should set up its
DMA engine and perform one transfer for each set of cookies sufficient for its
scatter/gather list, up to the number of cookies for this window, before advancing to the
next window using ddi_dma_getwin(9F).

modified 26 Jul 1996 SunOS 5.6 9F-235

ddi_dma_addr_setup (9F) Kernel Functions for Drivers

NAME ddi_dma_addr_setup − easier DMA setup for use with virtual addresses

SYNOPSIS #include <sys/ddi.h>
#include <sys/sunddi.h>

int ddi_dma_addr_setup (dev_info_t ∗dip, struct as ∗as , caddr_t addr , size_t len,
u_int flags , int (∗waitfp) (caddr_t), caddr_t arg, ddi_dma_lim_t ∗ lim,
ddi_dma_handle_t ∗handlep);

INTERFACE
LEVEL

Solaris DDI specific (Solaris DDI).

ARGUMENTS dip A pointer to the device’s dev_info structure.

as A pointer to an address space structure. Should be set to NULL, which implies
kernel address space.

addr Virtual address of the memory object.

len Length of the memory object in bytes.

flags Flags that would go into the ddi_dma_req structure (see ddi_dma_req(9S)).

waitfp The address of a function to call back later if resources aren’t available now.
The special function addresses DDI_DMA_SLEEP and DDI_DMA_DONTWAIT
(see ddi_dma_req(9S)) are taken to mean, respectively, wait until resources
are available or, do not wait at all and do not schedule a callback.

arg Argument to be passed to a callback function, if such a function is specified.

lim A pointer to a DMA limits structure for this device (see
ddi_dma_lim_sparc(9S) or ddi_dma_lim_x86(9S)). If this pointer is NULL, a
default set of DMA limits is assumed.

handlep Pointer to a DMA handle. See ddi_dma_setup(9F) for a discussion of handle.

DESCRIPTION ddi_dma_addr_setup() is an interface to ddi_dma_setup(9F). It uses its arguments to
construct an appropriate ddi_dma_req structure and calls ddi_dma_setup() with it.

RETURN VALUES See ddi_dma_setup(9F) for the possible return values for this function.

CONTEXT ddi_dma_addr_setup() can be called from user or interrupt context, except when waitfp
is set to DDI_DMA_SLEEP, in which case it can be called from user context only.

SEE ALSO ddi_dma_buf_setup(9F), ddi_dma_free(9F), ddi_dma_htoc(9F), ddi_dma_setup(9F),
ddi_dma_sync(9F), ddi_iopb_alloc(9F), ddi_dma_lim_sparc(9S), ddi_dma_lim_x86(9S),
ddi_dma_req(9S)

Writing Device Drivers

9F-236 SunOS 5.6 modified 15 Nov 1996

Kernel Functions for Drivers ddi_dma_alloc_handle (9F)

NAME ddi_dma_alloc_handle − allocate DMA handle

SYNOPSIS #include <sys/ddi.h>
#include <sys/sunddi.h>

int ddi_dma_alloc_handle(dev_info_t ∗dip, ddi_dma_attr_t ∗attr ,
int (∗callback) (caddr_t), caddr_t arg , ddi_dma_handle_t ∗handlep);

INTERFACE
LEVEL

Solaris DDI specific (Solaris DDI).

ARGUMENTS dip Pointer to the device’s dev_info structure.

attr Pointer to a DMA attribute structure for this device (see
ddi_dma_attr(9S)).

callback The address of a function to call back later if resources aren’t available
now. The following special function addresses may also be used.

DDI_DMA_SLEEP Wait until resources are available.

DDI_DMA_DONTWAIT
Do not wait until resources are available and do
not schedule a callback.

arg Argument to be passed to a callback function, if such a function is
specified.

handlep Pointer to the DMA handle to be initialized.

DESCRIPTION ddi_dma_alloc_handle() allocates a new DMA handle. A DMA handle is an opaque
object used as a reference to subsequently allocated DMA resources.
ddi_dma_alloc_handle() accepts as parameters the device information referred to by dip
and the device’s DMA attributes described by a ddi_dma_attr(9S) structure. A successful
call to ddi_dma_alloc_handle() fills in the value pointed to by handlep. A DMA handle
must only be used by the device for which it was allocated and is only valid for one I/O
transaction at a time.

The callback function, callback, indicates how a caller wants to handle the possibility of
resources not being available. If callback is set to DDI_DMA_DONTWAIT, then the caller
does not care if the allocation fails, and can handle an allocation failure appropriately. If
callback is set to DDI_DMA_SLEEP, then the caller wishes to have the the allocation rou-
tines wait for resources to become available. If any other value is set, and a DMA
resource allocation fails, this value is assumed to be a function to call at a later time when
resources may become available. When the specified function is called, it is passed arg as
an argument. The specified callback function must return either
DDI_DMA_CALLBACK_RUNOUT or DDI_DMA_CALLBACK_DONE.
DDI_DMA_CALLBACK_RUNOUT indicates that the callback routine attempted to allocate
DMA resources but failed to do so, in which case the callback function is put back on a
list to be called again later. DDI_DMA_CALLBACK_DONE indicates either success at allo-
cating DMA resources or the driver no longer wishes to retry.

modified 22 Sep 1996 SunOS 5.6 9F-237

ddi_dma_alloc_handle (9F) Kernel Functions for Drivers

The callback function is called in interrupt context. Therefore, only system functions that
are accessible from interrupt context is available. The callback function must take what-
ever steps necessary to protect its critical resources, data structures, queues, so forth.

When a DMA handle is no longer needed, ddi_dma_free_handle(9F) must be called to
free the handle.

RETURN VALUES ddi_dma_alloc_handle() returns:

DDI_SUCCESS Successfully allocated a new DMA handle.

DDI_DMA_BADATTR The attributes specified in the ddi_dma_attr(9S) struc-
ture make it impossible for the system to allocate poten-
tial DMA resources.

DDI_DMA_NORESOURCES
No resources are available.

CONTEXT ddi_dma_alloc_handle() can be called from user, kernel, or interrupt context, except
when callback is set to DDI_DMA_SLEEP, in which case it can be called from user or kernel
context only.

SEE ALSO ddi_dma_addr_bind_handle(9F), ddi_dma_buf_bind_handle(9F),
ddi_dma_burstsizes(9F), ddi_dma_free_handle(9F), ddi_dma_unbind_handle(9F),
ddi_dma_attr(9S)

Writing Device Drivers

9F-238 SunOS 5.6 modified 22 Sep 1996

Kernel Functions for Drivers ddi_dma_buf_bind_handle (9F)

NAME ddi_dma_buf_bind_handle − binds a system buffer to a DMA handle

SYNOPSIS #include <sys/ddi.h>
#include <sys/sunddi.h>

int ddi_dma_buf_bind_handle(ddi_dma_handle_t handle, struct buf ∗bp, uint_t flags ,
int (∗callback)(caddr_t), caddr_t arg , ddi_dma_cookie_t ∗cookiep ,
uint_t ∗ccountp);

INTERFACE
LEVEL

Solaris DDI specific (Solaris DDI).

ARGUMENTS handle The DMA handle previously allocated by a call to
ddi_dma_alloc_handle(9F).

bp A pointer to a system buffer structure (see buf(9S)).

flags Valid flags include:

DDI_DMA_WRITE Transfer direction is from memory to I/O

DDI_DMA_READ Transfer direction is from I/O to memory

DDI_DMA_RDWR Both read and write

DDI_DMA_REDZONE
Establish an MMU redzone at end of the object.

DDI_DMA_PARTIAL Partial resource allocation

DDI_DMA_CONSISTENT
Nonsequential, random, and small block
transfers.

DDI_DMA_STREAMING
Sequential, unidirectional, block-sized, and
block-aligned transfers.

callback The address of a function to call back later if resources are not available
now. The following special function addresses may also be used.

DDI_DMA_SLEEP wait until resources are available

DDI_DMA_DONTWAIT
do not wait until resources are available and do
not schedule a callback.

arg Argument to be passed to the callback function, callback, if such a func-
tion is specified.

cookiep A pointer to the first ddi_dma_cookie(9S) structure.

ccountp Upon a successful return, ccountp points to a value representing the
number of cookies for this DMA object.

modified 27 Jul 1996 SunOS 5.6 9F-239

ddi_dma_buf_bind_handle (9F) Kernel Functions for Drivers

DESCRIPTION ddi_dma_buf_bind_handle() allocates DMA resources for a system buffer such that a
device can perform DMA to or from the buffer. DMA resources are allocated considering
the device’s DMA attributes as expressed by ddi_dma_attr(9S) (see
ddi_dma_alloc_handle(9F)).

ddi_dma_buf_bind_handle() fills in the first DMA cookie pointed to by cookiep with the
appropriate address, length, and bus type. ∗ccountp is set to the number of DMA cookies
representing this DMA object. Subsequent DMA cookies must be retrieved by calling
ddi_dma_nextcookie(9F) ∗countp - 1 times.

When a DMA transfer completes, the driver should free up system DMA resources by cal-
ling ddi_dma_unbind_handle(9F).

The flags argument contains information for mapping routines.
DDI_DMA_WRITE
DDI_DMA_READ
DDI_DMA_RDWR

These flags describe the intended direction of the DMA transfer.

DDI_DMA_STREAMING
This flag should be set if the device is doing sequential, unidirectional,
block-sized, and block-aligned transfers to or from memory. The
alignment and padding constraints specified by the minxfer and burst-
sizes fields in the DMA attribute structure, ddi_dma_attr(9S) (see
ddi_dma_alloc_handle(9F)) is used to allocate the most effective
hardware support for large transfers.

DDI_DMA_CONSISTENT
This flag should be set if the device accesses memory randomly, or if
synchronization steps using ddi_dma_sync(9F) need to be as efficient
as possible. I/O parameter blocks used for communication between a
device and a driver should be allocated using
DDI_DMA_CONSISTENT.

DDI_DMA_REDZONE
If this flag is set, the system attempts to establish a protected red zone
after the object. The DMA resource allocation functions do not guaran-
tee the success of this request as some implementations may not have
the hardware ability to support a red zone.

DDI_DMA_PARTIAL
Setting this flag indicates the caller can accept resources for part of the
object. That is, if the size of the object exceeds the resources available,
only resources for a portion of the object are allocated. The system
indicates this condition returning status DDI_DMA_PARTIAL_MAP.
At a later point, the caller can use ddi_dma_getwin(9F) to change the
valid portion of the object for which resources are allocated. If
resources were allocated for only part of the object,
ddi_dma_addr_bind_handle() returns resources for the first DMA
window. Even when DDI_DMA_PARTIAL is set, the system may

9F-240 SunOS 5.6 modified 27 Jul 1996

Kernel Functions for Drivers ddi_dma_buf_bind_handle (9F)

decide to allocate resources for the entire object (less overhead) in
which case DDI_DMA_MAPPED is returned.

The callback function, callback, indicates how a caller wants to handle the possibility of
resources not being available. If callback is set to DDI_DMA_DONTWAIT, the caller does
not care if the allocation fails, and can handle an allocation failure appropriately. If call-
back is set to DDI_DMA_SLEEP, the caller wishes to have the allocation routines wait for
resources to become available. If any other value is set, and a DMA resource allocation
fails, this value is assumed to be the address of a function to call at a later time when
resources may become available. When the specified function is called, it is passed arg as
an argument. The specified callback function must return either
DDI_DMA_CALLBACK_RUNOUT or DDI_DMA_CALLBACK_DONE.
DDI_DMA_CALLBACK_RUNOUT indicates that the callback function attempted to allo-
cate DMA resources but failed to do so. In this case the callback function is put back on a
list to be called again later. DDI_DMA_CALLBACK_DONE indicates either a successful
allocation of DMA resources or that the driver no longer wishes to retry.

The callback function is called in interrupt context. Therefore, only system functions
accessible from interrupt context are be available. The callback function must take what-
ever steps necessary to protect its critical resources, data structures, queues, etc.

RETURN VALUES ddi_dma_buf_bind_handle() returns:

DDI_DMA_MAPPED Successfully allocated resources for the entire object.

DDI_DMA_PARTIAL_MAP
Successfully allocated resources for a part of the object. This is
acceptable when partial transfers are permitted by setting the
DDI_DMA_PARTIAL flag in flags .

DDI_DMA_INUSE Another I/O transaction is using the DMA handle.

DDI_DMA_NORESOURCES
No resources are available at the present time.

DDI_DMA_NOMAPPING
The object cannot be reached by the device requesting the
resources.

DDI_DMA_TOOBIG The object is too big. A request of this size can never be satisfied
on this particular system. The maximum size varies depending on
machine and configuration.

CONTEXT ddi_dma_buf_bind_handle() can be called from user, kernel, or interrupt context, except
when callback is set to DDI_DMA_SLEEP, in which case it can be called from user or kernel
context only.

modified 27 Jul 1996 SunOS 5.6 9F-241

ddi_dma_buf_bind_handle (9F) Kernel Functions for Drivers

SEE ALSO ddi_dma_addr_bind_handle(9F), ddi_dma_alloc_handle(9F),
ddi_dma_free_handle(9F), ddi_dma_getwin(9F), ddi_dma_nextcookie(9F),
ddi_dma_sync(9F), ddi_dma_unbind_handle(9F), buf(9S), ddi_dma_attr(9S),
ddi_dma_cookie(9S)

Writing Device Drivers

NOTES If the driver permits partial mapping with the DDI_DMA_PARTIAL flag, the number of
cookies in each window may exceed the size of the device’s scatter/gather list as
specified in the dma_attr_sgllen field in the ddi_dma_attr(9S) structure. In this case,
each set of cookies comprising a DMA window will satisfy the DMA attributes as
described in the ddi_dma_attr(9S) structure in all aspects. The driver should set up its
DMA engine and perform one transfer for each set of cookies sufficient for its
scatter/gather list, up to the number of cookies for this window, before advancing to the
next window using ddi_dma_getwin(9F).

9F-242 SunOS 5.6 modified 27 Jul 1996

Kernel Functions for Drivers ddi_dma_buf_setup (9F)

NAME ddi_dma_buf_setup − easier DMA setup for use with buffer structures

SYNOPSIS #include <sys/ddi.h>
#include <sys/sunddi.h>

int ddi_dma_buf_setup(dev_info_t ∗dip, struct buf ∗bp, u_int flags ,
int (∗waitfp)(caddr_t), caddr_t arg , ddi_dma_lim_t ∗lim,
ddi_dma_handle_t ∗handlep);

INTERFACE
LEVEL

Solaris DDI specific (Solaris DDI).

ARGUMENTS dip A pointer to the device’s dev_info structure.

bp A pointer to a system buffer structure (see buf(9S)).

flags Flags that go into a ddi_dma_req structure (see ddi_dma_req(9S)).

waitfp The address of a function to call back later if resources aren’t available now.
The special function addresses DDI_DMA_SLEEP and DDI_DMA_DONTWAIT
(see ddi_dma_req(9S)) are taken to mean, respectively, wait until resources
are available, or do not wait at all and do not schedule a callback.

arg Argument to be passed to a callback function, if such a function is specified.

lim A pointer to a DMA limits structure for this device (see
ddi_dma_lim_sparc(9S) or ddi_dma_lim_x86(9S)). If this pointer is NULL, a
default set of DMA limits is assumed.

handlep Pointer to a DMA handle. See ddi_dma_setup(9F) for a discussion of handle.

DESCRIPTION ddi_dma_buf_setup() is an interface to ddi_dma_setup(9F). It uses its arguments to
construct an appropriate ddi_dma_req structure and calls ddi_dma_setup() with it.

RETURN VALUES See ddi_dma_setup(9F) for the possible return values for this function.

CONTEXT ddi_dma_buf_setup() can be called from user or interrupt context, except when waitfp is
set to DDI_DMA_SLEEP, in which case it can be called from user context only.

SEE ALSO ddi_dma_addr_setup(9F), ddi_dma_free(9F), ddi_dma_htoc(9F), ddi_dma_setup(9F),
ddi_dma_sync(9F), physio(9F), buf(9S), ddi_dma_lim_sparc(9S), ddi_dma_lim_x86(9S),
ddi_dma_req(9S)

Writing Device Drivers

modified 1 Feb 1994 SunOS 5.6 9F-243

ddi_dma_burstsizes (9F) Kernel Functions for Drivers

NAME ddi_dma_burstsizes − find out the allowed burst sizes for a DMA mapping

SYNOPSIS #include <sys/conf.h>
#include <sys/ddi.h>
#include <sys/sunddi.h>

int ddi_dma_burstsizes(ddi_dma_handle_t handle);

INTERFACE
LEVEL

Solaris DDI specific (Solaris DDI).

ARGUMENTS handle A DMA handle that was filled in by a successful call to
ddi_dma_setup(9F).

DESCRIPTION ddi_dma_burstsizes() returns the allowed burst sizes for a DMA mapping. This value is
derived from the dlim_burstsizes member of the ddi_dma_lim_sparc(9S) structure, but
it shows the allowable burstsizes after imposing on it the limitations of other device layers
in addition to device’s own limitations.

RETURN VALUES ddi_dma_burstsizes() returns a binary encoded value of the allowable DMA burst sizes.
See ddi_dma_lim_sparc(9S) for a discussion of DMA burst sizes.

CONTEXT This function can be called from user or interrupt context.

SEE ALSO ddi_dma_devalign(9F), ddi_dma_setup(9F), ddi_dma_lim_sparc(9S), ddi_dma_req(9S)

Writing Device Drivers

9F-244 SunOS 5.6 modified 1 Feb 1994

Kernel Functions for Drivers ddi_dma_coff (9F)

NAME ddi_dma_coff − convert a DMA cookie to an offset within a DMA handle

SYNOPSIS #include <sys/conf.h>
#include <sys/ddi.h>
#include <sys/sunddi.h>

int ddi_dma_coff(ddi_dma_handle_t handle, ddi_dma_cookie_t ∗cookiep , off_t ∗offp);

INTERFACE
LEVEL

Solaris SPARC DDI (Solaris SPARC DDI).

ARGUMENTS handle The handle filled in by a call to ddi_dma_setup(9F).

cookiep A pointer to a DMA cookie (see ddi_dma_cookie(9S)) that contains the
appropriate address, length and bus type to be used in programming
the DMA engine.

offp A pointer to an offset to be filled in.

DESCRIPTION ddi_dma_coff() converts the values in DMA cookie pointed to by cookiep to an offset (in
bytes) from the beginning of the object that the DMA handle has mapped.

ddi_dma_coff() allows a driver to update a DMA cookie with values it reads from its
device’s DMA engine after a transfer completes and convert that value into an offset into
the object that is mapped for DMA.

RETURN VALUES ddi_dma_coff() returns:

DDI_SUCCESS Successfully filled in offp.

DDI_FAILURE Failed to successfully fill in offp.

CONTEXT ddi_dma_coff() can be called from user or interrupt context.

SEE ALSO ddi_dma_setup(9F), ddi_dma_sync(9F), ddi_dma_cookie(9S)

Writing Device Drivers

modified 4 Nov 1991 SunOS 5.6 9F-245

ddi_dma_curwin (9F) Kernel Functions for Drivers

NAME ddi_dma_curwin − report current DMA window offset and size

SYNOPSIS #include <sys/conf.h>
#include <sys/ddi.h>
#include <sys/sunddi.h>

int ddi_dma_curwin(ddi_dma_handle_t handle, off_t ∗offp,
u_int ∗lenp);

INTERFACE
LEVEL

Solaris SPARC DDI specific (Solaris SPARC DDI).

ARGUMENTS handle The DMA handle filled in by a call to ddi_dma_setup(9F).

offp A pointer to a value which will be filled in with the current offset from
the beginning of the object that is mapped for DMA.

lenp A pointer to a value which will be filled in with the size, in bytes, of the
current window onto the object that is mapped for DMA.

DESCRIPTION ddi_dma_curwin() reports the current DMA window offset and size. If a DMA mapping
allows partial mapping, that is if the DDI_DMA_PARTIAL flag in the ddi_dma_req(9S)
structure is set, its current (effective) DMA window offset and size can be obtained by a
call to ddi_dma_curwin().

RETURN VALUES ddi_dma_curwin() returns:

DDI_SUCCESS The current length and offset can be established.

DDI_FAILURE Otherwise.

CONTEXT ddi_dma_curwin() can be called from user or interrupt context.

SEE ALSO ddi_dma_movwin(9F), ddi_dma_setup(9F), ddi_dma_req(9S)

Writing Device Drivers

9F-246 SunOS 5.6 modified 7 Nov 1991

Kernel Functions for Drivers ddi_dma_devalign (9F)

NAME ddi_dma_devalign − find DMA mapping alignment and minimum transfer size

SYNOPSIS #include <sys/conf.h>
#include <sys/ddi.h>
#include <sys/sunddi.h>

int ddi_dma_devalign(ddi_dma_handle_t handle, u_int ∗alignment, u_int ∗minxfr);

INTERFACE
LEVEL

Solaris DDI specific (Solaris DDI).

ARGUMENTS handle The DMA handle filled in by a successful call to ddi_dma_setup(9F).

alignment A pointer to an unsigned integer to be filled in with the minimum
required alignment for DMA. The alignment is guaranteed to be a power
of two.

minxfr A pointer to an unsigned integer to be filled in with the minimum effec-
tive transfer size (see ddi_iomin(9F), ddi_dma_lim_sparc(9S) and
ddi_dma_lim_x86(9S)). This also is guaranteed to be a power of two.

DESCRIPTION ddi_dma_devalign() determines (after a successful DMA mapping (see
ddi_dma_setup(9F)) the minimum required data alignment and minimum DMA transfer
size.

RETURN VALUES ddi_dma_devalign() returns:

DDI_SUCCESS The alignment and minxfr values have been filled.

DDI_FAILURE The handle was illegal.

CONTEXT ddi_dma_devalign() can be called from user or interrupt context.

SEE ALSO ddi_dma_setup(9F), ddi_iomin(9F), ddi_dma_lim_sparc(9S), ddi_dma_lim_x86(9S),
ddi_dma_req(9S)

Writing Device Drivers

modified 1 Feb 1994 SunOS 5.6 9F-247

ddi_dmae (9F) Kernel Functions for Drivers

NAME ddi_dmae, ddi_dmae_alloc, ddi_dmae_release, ddi_dmae_prog, ddi_dmae_disable,
ddi_dmae_enable, ddi_dmae_stop, ddi_dmae_getcnt, ddi_dmae_1stparty,
ddi_dmae_getlim, ddi_dmae_getattr − system DMA engine functions

SYNOPSIS int ddi_dmae_alloc(dev_info_t ∗dip, int chnl, int (∗callback) (caddr_t) , caddr_t arg);

int ddi_dmae_release(dev_info_t ∗dip, int chnl);

int ddi_dmae_prog(dev_info_t ∗dip, struct ddi_dmae_req ∗dmaereqp,
ddi_dma_cookie_t ∗cookiep, int chnl);

int ddi_dmae_disable(dev_info_t ∗dip, int chnl);

int ddi_dmae_enable(dev_info_t ∗dip, int chnl);

int ddi_dmae_stop(dev_info_t ∗dip, int chnl);

int ddi_dmae_getcnt(dev_info_t ∗dip, int chnl, int ∗countp);

int ddi_dmae_1stparty(dev_info_t ∗dip, int chnl);

int ddi_dmae_getlim(dev_info_t ∗dip, ddi_dma_lim_t ∗limitsp);

int ddi_dmae_getattr(dev_info_t ∗dip, ddi_dma_attr_t ∗attrp);

INTERFACE
LEVEL

Solaris DDI specific (Solaris DDI).

ARGUMENTS dip A dev_info pointer, which identifies the device.

chnl A DMA channel number, or an MCA bus arbitration level. On ISA or
EISA buses this number must be 0, 1, 2, 3, 5, 6, or 7. On MCA buses this
number must be in the range 0 to 14.

callback The address of a function to call back later if resources are not currently
available. The following special function addresses may also be used:

DDI_DMA_SLEEP Wait until resources are available.

DDI_DMA_DONTWAIT Do not wait until resources are available and
do not schedule a callback.

arg Argument to be passed to the callback function, if specified.

dmaereqp A pointer to a DMA engine request structure. See ddi_dmae_req(9S).

cookiep A pointer to a ddi_dma_cookie(9S) object, obtained from
ddi_dma_segtocookie(9F), which contains the address and count.

countp A pointer to an integer that will receive the count of the number of bytes
not yet transferred upon completion of a DMA operation.

limitsp A pointer to a DMA limit structure. See ddi_dma_lim_x86(9S).

attrp A pointer to a DMA attribute structure. See ddi_dma_attr(9S).

DESCRIPTION There are three possible ways that a device can perform DMA engine functions:

"Bus master DMA" If the device is capable of acting as a true bus master, then the
driver should program the device’s DMA registers directly and not

9F-248 SunOS 5.6 modified 1 Jan 1997

Kernel Functions for Drivers ddi_dmae (9F)

make use of the DMA engine functions described here. The driver
should obtain the DMA address and count from
ddi_dma_segtocookie(9F). See ddi_dma_cookie(9S) for a descrip-
tion of a DMA cookie.

"Third-party DMA" This method uses the system DMA engine that is resident on the
main system board. In this model, the device cooperates with the
system’s DMA engine to effect the data transfers between the dev-
ice and memory. The driver uses the functions documented here,
except ddi_dmae_1stparty(), to initialize and program the DMA
engine. For each DMA data transfer, the driver programs the DMA
engine and then gives the device a command to initiate the transfer
in cooperation with that engine.

"First-party DMA" Using this method, the device uses its own DMA bus cycles, but
requires a channel from the system’s DMA engine. After allocating
the DMA channel, the ddi_dmae_1stparty() function may be used
to perform whatever configuration is necessary to enable this
mode.

ddi_dmae_alloc() The ddi_dmae_alloc() function is used to acquire a DMA channel of the system DMA
engine. ddi_dmae_alloc() allows only one device at a time to have a particular DMA
channel allocated. It must be called prior to any other system DMA engine function on a
channel. If the device allows the channel to be shared with other devices, it must be freed
using ddi_dmae_release() after completion of the DMA operation. In any case, the chan-
nel must be released before the driver successfully detaches. See detach(9E). No other
driver may acquire the DMA channel until it is released.

If the requested channel is not immediately available, the value of callback determines
what action will be taken. If the value of callback is DDI_DMA_DONTWAIT,
ddi_dmae_alloc() will return immediately. The value DDI_DMA_SLEEP will cause the
thread to sleep and not return until the channel has been acquired. Any other value is
assumed to be a callback function address. In that case, ddi_dmae_alloc() returns
immediately, and when resources might have become available, the callback function is
called (with the argument arg) from interrupt context.

When the callback function is called, it should attempt to allocate the DMA channel again.
If it succeeds or no longer needs the channel, it must return the value
DDI_DMA_CALLBACK_DONE. If it tries to allocate the channel but fails to do so, it must
return the value DDI_DMA_CALLBACK_RUNOUT. In this case, the callback funtion is
put back on a list to be called again later.

ddi_dmae_prog() The ddi_dmae_prog() function programs the DMA channel for a DMA transfer. The
ddi_dmae_req structure contains all the information necessary to set up the channel,
except for the memory address and count. Once the channel has been programmed, sub-
sequent calls to ddi_dmae_prog() may specify a value of NULL for dmaereqp if no changes
to the programming are required other than the address and count values. It disables the
channel prior to setup, and enables the channel before returning. The DMA address and

modified 1 Jan 1997 SunOS 5.6 9F-249

ddi_dmae (9F) Kernel Functions for Drivers

count are specified by passing ddi_dmae_prog() a cookie obtained from
ddi_dma_segtocookie(9F). Other DMA engine parameters are specified by the DMA
engine request structure passed in through dmaereqp. The fields of that structure are
documented in ddi_dmae_req(9S).

Before using ddi_dmae_prog(), you must allocate system DMA resources using DMA
setup functions such as ddi_dma_buf_setup(9F). ddi_dma_segtocookie(9F) can then be
used to retrieve a cookie which contains the address and count. Then this cookie is
passed to ddi_dmae_prog().

ddi_dmae_disable() The ddi_dmae_disable() function disables the DMA channel so that it no longer responds
to a device’s DMA service requests.

ddi_dmae_enable() The ddi_dmae_enable() function enables the DMA channel for operation. This may be
used to re-enable the channel after a call to ddi_dmae_disable(). The channel is
automatically enabled after successful programming by ddi_dmae_prog().

ddi_dmae_stop() The ddi_dmae_stop() function disables the channel and terminates any active operation.

ddi_dmae_getcnt() The ddi_dmae_getcnt() function examines the count register of the DMA channel and
sets ∗countp to the number of bytes remaining to be transferred. The channel is assumed
to be stopped.

ddi_dmae_1stparty() In the case of ISA and EISA buses, ddi_dmae_1stparty() configures a channel in the
system’s DMA engine to operate in a ‘‘slave’’ (‘‘cascade’’) mode.

In the case of the MCA bus, a call to ddi_dmae_1stparty() should still be made, regardless
of whether the channel number specifies one of the DMA arbitration levels or a non-DMA
arbitration level.

When operating in ddi_dmae_1stparty() mode, the DMA channel must first be allocated
using ddi_dmae_alloc() and then configured using ddi_dmae_1stparty(). The driver
then programs the device to perform the I/O, including the necessary DMA address and
count values obtained from ddi_dma_segtocookie(9F).

ddi_dmae_getlim() The ddi_dmae_getlim() function fills in the DMA limit structure, pointed to by limitsp,
with the DMA limits of the system DMA engine. Drivers for devices that perform their
own bus mastering or use first-party DMA must create and initialize their own DMA limit
structures; they should not use ddi_dmae_getlim(). The DMA limit structure must be
passed to the DMA setup routines so that they will know how to break the DMA request
into windows and segments (see ddi_dma_nextseg(9F) and ddi_dma_nextwin(9F)). If
the device has any particular restrictions on transfer size or granularity (such as the size
of disk sector), the driver should further restrict the values in the structure members
before passing them to the DMA setup routines. The driver must not relax any of the res-
trictions embodied in the structure after it is filled in by ddi_dmae_getlim(). After cal-
ling ddi_dmae_getlim(), a driver must examine, and possibly set, the size of the DMA
engine’s scatter/gather list to determine whether DMA chaining will be used. See
ddi_dma_lim_x86(9S) and ddi_dmae_req(9S) for additional information on

9F-250 SunOS 5.6 modified 1 Jan 1997

Kernel Functions for Drivers ddi_dmae (9F)

scatter/gather DMA.

ddi_dmae_getattr The ddi_dmae_getattr() function fills in the DMA attribute structure, pointed to by attrp ,
with the DMA attributes of the system DMA engine. Drivers for devices that perform their
own bus mastering or use first-party DMA must create and initialize their own DMA attri-
bute structures; they should not use ddi_dmae_getattr(). The DMA attribute structure
must be passed to the DMA resource allocation functions to provide the information
necessary to break the DMA request into DMA windows and DMA cookies. See
ddi_dma_nextcookie(9F) and ddi_dma_getwin(9F).

RETURN VALUES DDI_SUCCESS Upon success, for all of these routines.

DDI_FAILURE May be returned due to invalid arguments.

DDI_DMA_NORESOURCES
May be returned by ddi_dmae_alloc() if the requested resources are not
available and the value of dmae_waitfp is not DDI_DMA_SLEEP.

CONTEXT If ddi_dmae_alloc() is called from interrupt context, then its dmae_waitfp argument and
the callback function must not have the value DDI_DMA_SLEEP. Otherwise, all these
routines may be called from user or interrupt context.

ATTRIBUTES See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Architecture x86

SEE ALSO eisa(4), isa(4), mca(4), attributes(5), ddi_dma_buf_setup(9F), ddi_dma_getwin(9F),
ddi_dma_nextcookie(9F), ddi_dma_nextseg(9F), ddi_dma_nextwin(9F),
ddi_dma_segtocookie(9F), ddi_dma_setup(9F), ddi_dma_attr(9S), ddi_dma_cookie(9S),
ddi_dma_lim_x86(9S), ddi_dma_req(9S), ddi_dmae_req(9S)

modified 1 Jan 1997 SunOS 5.6 9F-251

ddi_dma_free (9F) Kernel Functions for Drivers

NAME ddi_dma_free − release system DMA resources

SYNOPSIS #include <sys/ddi.h>
#include <sys/sunddi.h>

int ddi_dma_free(ddi_dma_handle_t handle);

INTERFACE
LEVEL

Solaris DDI specific (Solaris DDI).

ARGUMENTS handle The handle filled in by a call to ddi_dma_setup(9F).

DESCRIPTION ddi_dma_free() releases system DMA resources set up by ddi_dma_setup(9F). When a
DMA transfer completes, the driver should free up system DMA resources established by
a call to ddi_dma_setup(9F). This is done by a call to ddi_dma_free(). ddi_dma_free()
does an implicit ddi_dma_sync(9F) for you so any further synchronization steps are not
necessary.

RETURN VALUES ddi_dma_free() returns:

DDI_SUCCESS Successfully released resources

DDI_FAILURE Failed to free resources

CONTEXT ddi_dma_free() can be called from user or interrupt context.

SEE ALSO ddi_dma_addr_setup(9F), ddi_dma_buf_setup(9F), ddi_dma_htoc(9F),
ddi_dma_sync(9F), ddi_dma_req(9S)

Writing Device Drivers

9F-252 SunOS 5.6 modified 13 Sep 1992

Kernel Functions for Drivers ddi_dma_free_handle (9F)

NAME ddi_dma_free_handle − free DMA handle

SYNOPSIS #include <sys/ddi.h>
#include <sys/sunddi.h>

void ddi_dma_free_handle(ddi_dma_handle_t ∗handle);

ARGUMENTS handle A pointer to the DMA handle previously allocated by a call to
ddi_dma_alloc_handle(9F).

INTERFACE
LEVEL

Solaris DDI specific (Solaris DDI).

DESCRIPTION ddi_dma_free_handle() destroys the DMA handle pointed to by handle. Any further
references to the DMA handle will have undefined results. Note that
ddi_dma_unbind_handle(9F) must be called prior to ddi_dma_free_handle() to free
any resources the system may be caching on the handle.

CONTEXT ddi_dma_free_handle() can be called from user, kernel, or interrupt context.

SEE ALSO ddi_dma_alloc_handle(9F), ddi_dma_unbind_handle(9F)

Writing Device Drivers

modified 26 Sep 1994 SunOS 5.6 9F-253

ddi_dma_getwin (9F) Kernel Functions for Drivers

NAME ddi_dma_getwin − activate a new DMA window

SYNOPSIS #include <sys/ddi.h>
#include <sys/sunddi.h>

int ddi_dma_getwin(ddi_dma_handle_t handle, uint_t win,
off_t ∗offp, size_t ∗lenp, ddi_dma_cookie_t ∗cookiep , uint_t ∗ccountp);

INTERFACE
LEVEL

Solaris DDI specific (Solaris DDI).

ARGUMENTS handle The DMA handle previously allocated by a call to
ddi_dma_alloc_handle(9F).

win Number of the window to activate.

offp Pointer to an offset. Upon a successful return, offp will contain the new
offset indicating the beginning of the window within the object.

lenp Upon a successful return, lenp will contain the size, in bytes, of the
current window.

cookiep A pointer to the first ddi_dma_cookie(9S) structure.

ccountp Upon a successful return, ccountp will contain the number of cookies for
this DMA window.

DESCRIPTION ddi_dma_getwin() activates a new DMA window. If a DMA resource allocation request
returns DDI_DMA_PARTIAL_MAP indicating that resources for less than the entire object
were allocated, the current DMA window can be changed by a call to ddi_dma_getwin().

The caller must first determine the number of DMA windows, N, using
ddi_dma_numwin(9F). ddi_dma_getwin() takes a DMA window number from the
range [0..N-1] as the parameter win and makes it the current DMA window.

ddi_dma_getwin() fills in the first DMA cookie pointed to by cookiep with the appropriate
address, length, and bus type. ∗ccountp is set to the number of DMA cookies representing
this DMA object. Subsequent DMA cookies must be retrieved using
ddi_dma_nextcookie(9F).

ddi_dma_getwin() takes care of underlying resource synchronizations required to shift
the window. However accessing the data prior to or after moving the window requires
further synchronization steps using ddi_dma_sync(9F).

ddi_dma_getwin() is normally called from an interrupt routine. The first invocation of
the DMA engine is done from the driver. All subsequent invocations of the DMA engine
are done from the interrupt routine. The interrupt routine checks to see if the request has
been completed. If it has, the interrupt routine returns without invoking another DMA
transfer. Otherwise, it calls ddi_dma_getwin() to shift the current window and start
another DMA transfer.

9F-254 SunOS 5.6 modified 15 Nov 1996

Kernel Functions for Drivers ddi_dma_getwin (9F)

RETURN VALUES ddi_dma_getwin() returns:

DDI_SUCCESS Resources for the specified DMA window are allocated.

DDI_FAILURE win is not a valid window index.

CONTEXT ddi_dma_getwin() can be called from user, kernel, or interrupt context.

SEE ALSO ddi_dma_addr_bind_handle(9F), ddi_dma_alloc_handle(9F),
ddi_dma_buf_bind_handle(9F), ddi_dma_nextcookie(9F), ddi_dma_numwin(9F),
ddi_dma_sync(9F), ddi_dma_unbind_handle(9F), ddi_dma_cookie(9S)

Writing Device Drivers

modified 15 Nov 1996 SunOS 5.6 9F-255

ddi_dma_htoc (9F) Kernel Functions for Drivers

NAME ddi_dma_htoc − convert a DMA handle to a DMA address cookie

SYNOPSIS #include <sys/conf.h>
#include <sys/ddi.h>
#include <sys/sunddi.h>

int ddi_dma_htoc(ddi_dma_handle_t handle, off_t off, ddi_dma_cookie_t ∗cookiep);

INTERFACE
LEVEL

Solaris SPARC DDI specific (Solaris SPARC DDI).

ARGUMENTS handle The handle filled in by a call to ddi_dma_setup(9F).

off An offset into the object that handle maps.

cookiep A pointer to a ddi_dma_cookie(9S) structure.

DESCRIPTION ddi_dma_htoc() takes a DMA handle (established by ddi_dma_setup(9F)), and fills in the
cookie pointed to by cookiep with the appropriate address, length, and bus type to be used
to program the DMA engine.

RETURN VALUES ddi_dma_htoc() returns:

DDI_SUCCESS Successfully filled in the cookie pointed to by cookiep .

DDI_FAILURE Failed to successfully fill in the cookie.

CONTEXT ddi_dma_htoc() can be called from user or interrupt context.

SEE ALSO ddi_dma_addr_setup(9F), ddi_dma_buf_setup(9F), ddi_dma_setup(9F),
ddi_dma_sync(9F), ddi_dma_cookie(9S)

Writing Device Drivers

9F-256 SunOS 5.6 modified 11 Apr 1991

Kernel Functions for Drivers ddi_dma_mem_alloc (9F)

NAME ddi_dma_mem_alloc − allocate memory for DMA transfer

SYNOPSIS #include <sys/ddi.h>
#include <sys/sunddi.h>

int ddi_dma_mem_alloc(ddi_dma_handle_t handle, size_t length,
ddi_device_acc_attr_t ∗accattrp , uint_t flags ,
int (∗waitfp)(caddr_t), caddr_t arg , caddr_t ∗kaddrp ,
size_t ∗real_length, ddi_acc_handle_t ∗handlep);

INTERFACE
LEVEL

Solaris DDI specific (Solaris DDI).

ARGUMENTS handle The DMA handle previously allocated by a call to
ddi_dma_alloc_handle(9F).

length The length in bytes of the desired allocation.

accattrp Pointer to a device access attribute structure of this device (see
ddi_device_acc_attr(9S)).

flags Data transfer mode flags. Possible values are:

DDI_DMA_STREAMING Sequential, unidirectional, block-sized, and
block-aligned transfers.

DDI_DMA_CONSISTENT Nonsequential transfers of small objects.

waitfp The address of a function to call back later if resources are not available
now. The special function addresses DDI_DMA_SLEEP and
DDI_DMA_DONTWAIT are taken to mean, respectively, wait until
resources are available or, do not wait and do not schedule a callback.

arg Argument to be passed to the callback function, if such a function is
specified.

kaddrp On successful return, ∗kaddrp points to the allocated memory.

∗real_length The amount of memory, in bytes, allocated. Alignment and padding
requirements may require ddi_dma_mem_alloc() to allocate more
memory than requested in length.

handlep Pointer to a data access handle.

DESCRIPTION ddi_dma_mem_alloc() allocates memory for DMA transfers to or from a device. The
allocation will obey the alignment, padding constraints and device granularity as
specified by the DMA attributes (see ddi_dma_attr(9S)) passed to
ddi_dma_alloc_handle(9F) and the more restrictive attributes imposed by the system.

flags should be set to DDI_DMA_STREAMING if the device is doing sequential, unidirec-
tional, block-sized, and block-aligned transfers to or from memory. The alignment and
padding constraints specified by the minxfer and burstsizes fields in the DMA attribute
structure, ddi_dma_attr(9S) (see ddi_dma_alloc_handle(9F)) will be used to allocate the
most effective hardware support for large transfers. For example, if an I/O transfer can be

modified 15 Nov 1996 SunOS 5.6 9F-257

ddi_dma_mem_alloc (9F) Kernel Functions for Drivers

sped up by using an I/O cache, which has a minimum transfer of one cache line,
ddi_dma_mem_alloc() will align the memory at a cache line boundary and it will round
up ∗real_length to a multiple of the cache line size.

flags should be set to DDI_DMA_CONSISTENT if the device accesses memory randomly,
or if synchronization steps using ddi_dma_sync(9F) need to be as efficient as possible.
I/O parameter blocks used for communication between a device and a driver should be
allocated using DDI_DMA_CONSISTENT.

The device access attributes are specified in the location pointed by the accattrp argument
(see ddi_device_acc_attr(9S)).

The data access handle is returned in handlep. handlep is opaque − drivers may not
attempt to interpret its value. To access the data content, the driver must invoke
ddi_get8(9F) or ddi_put8(9F) (depending on the data transfer direction) with the data
access handle.

DMA resources must be established before performing a DMA transfer by passing kaddrp
and ∗real_length as returned from ddi_dma_mem_alloc() and the flag
DDI_DMA_STREAMING or DDI_DMA_CONSISTENT to
ddi_dma_addr_bind_handle(9F). In addition, to ensure the consistency of a memory
object shared between the CPU and the device after a DMA transfer, explicit synchroniza-
tion steps using ddi_dma_sync(9F) or ddi_dma_unbind_handle(9F) are required.

RETURN VALUES ddi_dma_mem_alloc() returns:

DDI_SUCCESS Memory successfully allocated.

DDI_FAILURE Memory allocation failed.

CONTEXT ddi_dma_mem_alloc() can be called from user or interrupt context, except when waitfp is
set to DDI_DMA_SLEEP, in which case it can be called from user context only.

SEE ALSO ddi_dma_addr_bind_handle(9F), ddi_dma_alloc_handle(9F), ddi_dma_mem_free(9F),
ddi_dma_sync(9F), ddi_dma_unbind_handle(9F), ddi_get8(9F), ddi_put8(9F),
ddi_device_acc_attr(9S), ddi_dma_attr(9S)

Writing Device Drivers

9F-258 SunOS 5.6 modified 15 Nov 1996

Kernel Functions for Drivers ddi_dma_mem_free (9F)

NAME ddi_dma_mem_free − free previously allocated memory

SYNOPSIS #include <sys/ddi.h>
#include <sys/sunddi.h>

void ddi_dma_mem_free(ddi_acc_handle_t ∗handlep);

ARGUMENTS handlep Pointer to the data access handle previously allocated by a call to
ddi_dma_mem_alloc(9F).

INTERFACE
LEVEL

Solaris DDI specific (Solaris DDI).

DESCRIPTION ddi_dma_mem_free() deallocates the memory acquired by ddi_dma_mem_alloc(9F). In
addition, it destroys the data access handle handlep associated with the memory.

CONTEXT ddi_dma_mem_free() can be called from user, kernel, or interrupt context.

SEE ALSO ddi_dma_mem_alloc(9F)

Writing Device Drivers

modified 26 Sep 1994 SunOS 5.6 9F-259

ddi_dma_movwin (9F) Kernel Functions for Drivers

NAME ddi_dma_movwin − shift current DMA window

SYNOPSIS #include <sys/ddi.h>
#include <sys/sunddi.h>

int ddi_dma_movwin(ddi_dma_handle_t handle, off_t ∗offp, u_int ∗lenp,
ddi_dma_cookie_t ∗cookiep);

INTERFACE
LEVEL

Solaris SPARC DDI specific (Solaris SPARC DDI).

ARGUMENTS handle The DMA handle filled in by a call to ddi_dma_setup(9F).

offp A pointer to an offset to set the DMA window to. Upon a successful
return, it will be filled in with the new offset from the beginning of the
object resources are allocated for.

lenp A pointer to a value which must either be the current size of the DMA
window (as known from a call to ddi_dma_curwin(9F) or from a previ-
ous call to ddi_dma_movwin()). Upon a successful return, it will be
filled in with the size, in bytes, of the current window.

cookiep A pointer to a DMA cookie (see ddi_dma_cookie(9S)). Upon a success-
ful return, cookiep is filled in just as if an implicit ddi_dma_htoc(9F) had
been made.

DESCRIPTION ddi_dma_movwin() shifts the current DMA window. If a DMA request allows the sytem
to allocate resources for less than the entire object by setting the DDI_DMA_PARTIAL flag
in the ddi_dma_req(9S) structure, the current DMA window can be shifted by a call to
ddi_dma_movwin().

The caller must first determine the current DMA window size by a call to
ddi_dma_curwin(9F). Using the current offset and size of the window thus retrieved, the
caller of ddi_dma_movwin() may change the window onto the object by changing the
offset by a value which is some multiple of the size of the DMA window.

ddi_dma_movwin() takes care of underlying resource synchronizations required to shift
the window. However if you want to access the data prior or after moving the window,
further synchronizations using ddi_dma_sync(9F) are required,

This function is normally called from an interrupt routine. The first invocation of the
DMA engine is done from the driver. All subsequent invocations of the DMA engine are
done from the interrupt routine. The interrupt routine checks to see if the request has
been completed. If it has, it returns without invoking another DMA transfer. Otherwise it
calls ddi_dma_movwin() to shift the current window and starts another DMA transfer.

RETURN VALUES ddi_dma_movwin() returns:

DDI_SUCCESS The current length and offset are legal and have been set.

DDI_FAILURE Otherwise.

9F-260 SunOS 5.6 modified 13 Sep 1992

Kernel Functions for Drivers ddi_dma_movwin (9F)

CONTEXT ddi_dma_movwin() can be called from user or interrupt context.

SEE ALSO ddi_dma_curwin(9F), ddi_dma_htoc(9F), ddi_dma_setup(9F), ddi_dma_sync(9F),
ddi_dma_cookie(9S), ddi_dma_req(9S)

Writing Device Drivers

WARNINGS The caller must guarantee that the resources used by the object are inactive prior to cal-
ling this function.

modified 13 Sep 1992 SunOS 5.6 9F-261

ddi_dma_nextcookie (9F) Kernel Functions for Drivers

NAME ddi_dma_nextcookie − retrieve subsequent DMA cookie

SYNOPSIS #include <sys/ddi.h>
#include <sys/sunddi.h>

void ddi_dma_nextcookie(ddi_dma_handle_t handle, ddi_dma_cookie_t ∗cookiep);

ARGUMENTS handle The handle previously allocated by a call to ddi_dma_alloc_handle(9F).

cookiep A pointer to a ddi_dma_cookie(9S) structure.

INTERFACE
LEVEL

Solaris DDI specific (Solaris DDI).

DESCRIPTION ddi_dma_nextcookie() retrieves subsequent DMA cookies for a DMA object.
ddi_dma_nextcookie() fills in the ddi_dma_cookie(9S) structure pointed to by cookiep .
The ddi_dma_cookie(9S) structure must be allocated prior to calling
ddi_dma_nextcookie().

The DMA cookie count returned by ddi_dma_buf_bind_handle(9F),
ddi_dma_addr_bind_handle(9F), or ddi_dma_getwin(9F) indicates the number of DMA
cookies a DMA object consists of. If the resulting cookie count, N, is larger than 1,
ddi_dma_nextcookie() must be called N-1 times to retrieve all DMA cookies.

CONTEXT ddi_dma_nextcookie() can be called from user, kernel, or interrupt context.

EXAMPLES This example demonstrates the use of ddi_dma_nextcookie() to process a scatter-gather
list of I/O requests.

/∗ setup scatter-gather list with multiple DMA cookies ∗/

ddi_dma_cookie_t dmacookie;
uint_t ccount;
. . .

status = ddi_dma_buf_bind_handle(handle, bp, DDI_DMA_READ,
NULL, NULL, &dmacookie, &ccount);

if (status == DDI_DMA_MAPPED) {

/∗ program DMA engine with first cookie ∗/

while (--ccount > 0) {
ddi_dma_nextcookie(handle, &dmacookie);
/∗ program DMA engine with next cookie ∗/

}
}
. . .

9F-262 SunOS 5.6 modified 26 Sep 1994

Kernel Functions for Drivers ddi_dma_nextcookie (9F)

SEE ALSO ddi_dma_addr_bind_handle(9F), ddi_dma_alloc_handle(9F),
ddi_dma_buf_bind_handle(9F), ddi_dma_unbind_handle(9F), ddi_dma_cookie(9S)

Writing Device Drivers

modified 26 Sep 1994 SunOS 5.6 9F-263

ddi_dma_nextseg (9F) Kernel Functions for Drivers

NAME ddi_dma_nextseg − get next DMA segment

SYNOPSIS #include <sys/ddi.h>
#include <sys/sunddi.h>

int ddi_dma_nextseg(ddi_dma_win_t win, ddi_dma_seg_t seg, ddi_dma_seg_t ∗nseg);

INTERFACE
LEVEL

Solaris DDI specific (Solaris DDI).

ARGUMENTS win A DMA window .

seg The current DMA segment or NULL.

nseg A pointer to the next DMA segment to be filled in. If seg is NULL, a
pointer to the first segment within the specified window is returned.

DESCRIPTION ddi_dma_nextseg() gets the next DMA segment within the specified window win. If the
current segment is NULL, the first DMA segment within the window is returned.

A DMA segment is always required for a DMA window. A DMA segment is a contiguous
portion of a DMA window (see ddi_dma_nextwin(9F)) which is entirely addressable by
the device for a data transfer operation.

An example where multiple DMA segments are allocated is where the system does not
contain DVMA capabilities and the object may be non-contiguous. In this example the
object will be broken into smaller contiguous DMA segments. Another example is where
the device has an upper limit on its transfer size (for example an 8-bit address register)
and has expressed this in the DMA limit structure (see ddi_dma_lim_sparc(9S) or
ddi_dma_lim_x86(9S)). In this example the object will be broken into smaller address-
able DMA segments.

RETURN VALUES ddi_dma_nextseg() returns:

DDI_SUCCESS Successfully filled in the next segment pointer.

DDI_DMA_DONE There is no next segment. The current segment is the final segment
within the specified window.

DDI_DMA_STALE win does not refer to the currently active window.

CONTEXT ddi_dma_nextseg() can be called from user or interrupt context.

EXAMPLES For an example see ddi_dma_segtocookie(9F).

SEE ALSO ddi_dma_addr_setup(9F), ddi_dma_buf_setup(9F), ddi_dma_nextwin(9F),
ddi_dma_segtocookie(9F), ddi_dma_sync(9F), ddi_dma_lim_sparc(9S),
ddi_dma_lim_x86(9S), ddi_dma_req(9S)

Writing Device Drivers

9F-264 SunOS 5.6 modified 1 Feb 1994

Kernel Functions for Drivers ddi_dma_nextwin (9F)

NAME ddi_dma_nextwin − get next DMA window

SYNOPSIS #include <sys/ddi.h>
#include <sys/sunddi.h>

int ddi_dma_nextwin(ddi_dma_handle_t handle, ddi_dma_win_t win,
ddi_dma_win_t ∗nwin);

INTERFACE
LEVEL

Solaris DDI specific (Solaris DDI).

ARGUMENTS handle A DMA handle.

win The current DMA window or NULL.

nwin A pointer to the next DMA window to be filled in. If win is NULL, a
pointer to the first window within the object is returned.

DESCRIPTION ddi_dma_nextwin() shifts the current DMA window win within the object referred to by
handle to the next DMA window nwin. If the current window is NULL, the first window
within the object is returned. A DMA window is a portion of a DMA object or might be the
entire object. A DMA window has system resources allocated to it and is prepared to
accept data transfers. Examples of system resources are DVMA mapping resources and
intermediate transfer buffer resources.

All DMA objects require a window. If the DMA window represents the whole DMA object
it has system resources allocated for the entire data transfer. However, if the system is
unable to setup the entire DMA object due to system resource limitations, the driver
writer may allow the system to allocate system resources for less than the entire DMA
object. This can be accomplished by specifying the DDI_DMA_PARTIAL flag as a parame-
ter to ddi_dma_buf_setup(9F) or ddi_dma_addr_setup(9F) or as part of a
ddi_dma_req(9S) structure in a call to ddi_dma_setup(9F).

Only the window that has resources allocated is valid per object at any one time. The
currently valid window is the one that was most recently returned from
ddi_dma_nextwin(). Furthermore, because a call to ddi_dma_nextwin() will reallocate
system resources to the new window, the previous window will become invalid. Note: It
is a severe error to call ddi_dma_nextwin() before any transfers into the current window
are complete.

ddi_dma_nextwin() takes care of underlying memory synchronizations required to shift
the window. However, if you want to access the data before or after moving the window,
further synchronizations using ddi_dma_sync(9F) are required.

RETURN VALUES ddi_dma_nextwin() returns:

DDI_SUCCESS Successfully filled in the next window pointer.

DDI_DMA_DONE There is no next window. The current window is the final window
within the specified object.

DDI_DMA_STALE win does not refer to the currently active window.

modified 12 Oct 1992 SunOS 5.6 9F-265

ddi_dma_nextwin (9F) Kernel Functions for Drivers

CONTEXT ddi_dma_nextwin() can be called from user or interrupt context.

EXAMPLES For an example see ddi_dma_segtocookie(9F).

SEE ALSO ddi_dma_addr_setup(9F), ddi_dma_buf_setup(9F), ddi_dma_nextseg(9F),
ddi_dma_segtocookie(9F), ddi_dma_sync(9F), ddi_dma_req(9S)

Writing Device Drivers

9F-266 SunOS 5.6 modified 12 Oct 1992

Kernel Functions for Drivers ddi_dma_numwin (9F)

NAME ddi_dma_numwin − retrieve number of DMA windows

SYNOPSIS #include <sys/ddi.h>
#include <sys/sunddi.h>

int ddi_dma_numwin(ddi_dma_handle_t handle, uint_t ∗nwinp);

ARGUMENTS handle The DMA handle previously allocated by a call to
ddi_dma_alloc_handle(9F).

nwinp Upon a successful return, nwinp will contain the number of DMA win-
dows for this object.

INTERFACE
LEVEL

Solaris DDI specific (Solaris DDI).

DESCRIPTION ddi_dma_numwin() returns the number of DMA windows for a DMA object if partial
resource allocation was permitted.

RETURN VALUES ddi_dma_numwin() returns:

DDI_SUCCESS Successfully filled in the number of DMA windows.

DDI_FAILURE DMA windows are not activated.

CONTEXT ddi_dma_numwin() can be called from user, kernel, or interrupt context.

SEE ALSO ddi_dma_addr_bind_handle(9F), ddi_dma_alloc_handle(9F),
ddi_dma_buf_bind_handle(9F), ddi_dma_unbind_handle(9F)

Writing Device Drivers

modified 29 Sep 1994 SunOS 5.6 9F-267

ddi_dma_segtocookie (9F) Kernel Functions for Drivers

NAME ddi_dma_segtocookie − convert a DMA segment to a DMA address cookie

SYNOPSIS #include <sys/ddi.h>
#include <sys/sunddi.h>

int ddi_dma_segtocookie(ddi_dma_seg_t seg, off_t ∗offp, off_t ∗lenp,
ddi_dma_cookie_t ∗cookiep);

ARGUMENTS seg A DMA segment.

offp A pointer to an off_t . Upon a successful return, it is filled in with the
offset. This segment is addressing within the object.

lenp The byte length. This segment is addressing within the object.

cookiep A pointer to a DMA cookie (see ddi_dma_cookie(9S)).

INTERFACE
LEVEL

Solaris DDI specific (Solaris DDI).

DESCRIPTION ddi_dma_segtocookie() takes a DMA segment and fills in the cookie pointed to by cookiep
with the appropriate address, length, and bus type to be used to program the DMA
engine. ddi_dma_segtocookie() also fills in ∗offp and ∗lenp, which specify the range
within the object.

RETURN VALUES ddi_dma_segtocookie() returns:

DDI_SUCCESS Successfully filled in all values.

DDI_FAILURE Failed to successfully fill in all values.

CONTEXT ddi_dma_segtocookie() can be called from user or interrupt context.

EXAMPLE for (win = NULL; (retw = ddi_dma_nextwin(handle, win, &nwin)) !=
DDI_DMA_DONE; win = nwin) {

if (retw != DDI_SUCCESS) {

/∗ do error handling ∗/
} else {

for (seg = NULL; (rets = ddi_dma_nextseg(nwin, seg, &nseg)) !=
DDI_DMA_DONE; seg = nseg) {

if (rets != DDI_SUCCESS) {

/∗ do error handling ∗/
} else {

ddi_dma_segtocookie(nseg, &off, &len, &cookie);

/∗ program DMA engine ∗/
}

}

9F-268 SunOS 5.6 modified 12 Oct 1992

Kernel Functions for Drivers ddi_dma_segtocookie (9F)

}
}

SEE ALSO ddi_dma_nextseg(9F), ddi_dma_nextwin(9F), ddi_dma_sync(9F), ddi_dma_cookie(9S)

Writing Device Drivers

modified 12 Oct 1992 SunOS 5.6 9F-269

ddi_dma_set_sbus64 (9F) Kernel Functions for Drivers

NAME ddi_dma_set_sbus64 − allow 64 bit transfers on SBus

SYNOPSIS #include <sys/ddi.h>
#include <sys/sunddi.h>

int ddi_dma_set_sbus64(ddi_dma_handle_t handle, uint_t burstsizes);

INTERFACE
LEVEL

Solaris DDI specific (Solaris DDI).

ARGUMENTS handle The handle filled in by a call to ddi_dma_alloc_handle(9F).

burstsizes The possible burst sizes the device’s DMA engine can accept in 64 bit
mode.

DESCRIPTION ddi_dma_set_sbus64() informs the system that the device wishes to perform 64 bit data
transfers on the SBus. The driver must first allocate a DMA handle using
ddi_dma_alloc_handle(9F) with a ddi_dma_attr(9S) structure describing the DMA attri-
butes for a 32 bit transfer mode.

burstsizes describes the possible burst sizes the device’s DMA engine can accept in 64 bit
mode. It may be distinct from the burst sizes for 32 bit mode set in the ddi_dma_attr(9S)
structure. The system will activate 64 bit SBus transfers if the SBus supports them. Other-
wise, the SBus will operate in 32 bit mode.

After DMA resources have been allocated (see ddi_dma_addr_bind_handle(9F) or
ddi_dma_buf_bind_handle(9F)), the driver should retrieve the available burst sizes by
calling ddi_dma_burstsizes(9F). This function will return the burst sizes in 64 bit mode
if the system was able to activate 64 bit transfers. Otherwise burst sizes will be returned
in 32 bit mode.

RETURN VALUES ddi_dma_set_sbus64() returns:

DDI_SUCCESS Successfully set the SBus to 64 bit mode.

DDI_FAILURE 64 bit mode could not be set.

CONTEXT ddi_dma_set_sbus64() can be called from user, kernel, or interrupt context.

NOTES 64 bit SBus mode is activated on a per SBus slot basis. If there are multiple SBus cards in
one slot, they all must operate in 64 bit mode or they all must operate in 32 bit mode.

ATTRIBUTES See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Architecture SBus

SEE ALSO attributes(5), ddi_dma_addr_bind_handle(9F), ddi_dma_alloc_handle(9F),
ddi_dma_buf_bind_handle(9F), ddi_dma_burstsizes(9F), ddi_dma_attr(9S)

9F-270 SunOS 5.6 modified 1 Jan 1997

Kernel Functions for Drivers ddi_dma_setup (9F)

NAME ddi_dma_setup − setup DMA resources

SYNOPSIS #include <sys/ddi.h>
#include <sys/sunddi.h>

int ddi_dma_setup(dev_info_t ∗dip, ddi_dma_req_t ∗dmareqp,
ddi_dma_handle_t ∗handlep);

INTERFACE
LEVEL

Solaris DDI specific (Solaris DDI).

ARGUMENTS dip A pointer to the device’s dev_info structure.

dmareqp A pointer to a DMA request structure (see ddi_dma_req(9S)).

handlep A pointer to a DMA handle to be filled in. See below for a discussion of a
handle. If handlep is NULL, the call to ddi_dma_setup() is considered an
advisory call, in which case no resources are allocated, but a value indi-
cating the legality and the feasibility of the request is returned.

DESCRIPTION ddi_dma_setup() allocates resources for a memory object such that a device can perform
DMA to or from that object.

A call to ddi_dma_setup() informs the system that device referred to by dip wishes to
perform DMA to or from a memory object. The memory object, the device’s DMA capabil-
ities, the device driver’s policy on whether to wait for resources, are all specified in the
ddi_dma_req structure pointed to by dmareqp.

A successful call to ddi_dma_setup() fills in the value pointed to by handlep. This is an
opaque object called a DMA handle. This handle is then used in subsequent DMA calls,
until ddi_dma_free(9F) is called.

Again a DMA handle is opaque—drivers may not attempt to interpret its value. When a
driver wants to enable its DMA engine, it must retrieve the appropriate address to supply
to its DMA engine using a call to ddi_dma_htoc(9F), which takes a pointer to a DMA han-
dle and returns the appropriate DMA address.

When DMA transfer completes, the driver should free up the the allocated DMA resources
by calling ddi_dma_free().

RETURN VALUES ddi_dma_setup() returns:

DDI_DMA_MAPPED Successfully allocated resources for the object.
In the case of an advisory call, this indicates that
the request is legal.

DDI_DMA_PARTIAL_MAP Successfully allocated resources for a part of
the object. This is acceptable when partial
transfers are allowed using a flag setting in the
ddi_dma_req structure (see ddi_dma_req(9S)
and ddi_dma_movwin(9F)).

DDI_DMA_NORESOURCES When no resources are available.

modified 7 Jun 1993 SunOS 5.6 9F-271

ddi_dma_setup (9F) Kernel Functions for Drivers

DDI_DMA_NOMAPPING The object cannot be reached by the device
requesting the resources.

DDI_DMA_TOOBIG The object is too big and exceeds the available
resources. The maximum size varies depend-
ing on machine and configuration.

CONTEXT ddi_dma_setup() can be called from user or interrupt context, except when the dmar_fp
member of the ddi_dma_req structure pointed to by dmareqp is set to DDI_DMA_SLEEP,
in which case it can be called from user context only.

SEE ALSO ddi_dma_addr_setup(9F), ddi_dma_buf_setup(9F), ddi_dma_free(9F),
ddi_dma_htoc(9F), ddi_dma_movwin(9F), ddi_dma_sync(9F), ddi_dma_req(9S)

Writing Device Drivers

NOTES The construction of the ddi_dma_req structure is complicated. Use of the provided inter-
face functions such as ddi_dma_buf_setup(9F) simplifies this task.

9F-272 SunOS 5.6 modified 7 Jun 1993

Kernel Functions for Drivers ddi_dma_sync (9F)

NAME ddi_dma_sync − synchronize CPU and I/O views of memory

SYNOPSIS #include <sys/ddi.h>
#include <sys/sunddi.h>

int ddi_dma_sync(ddi_dma_handle_t handle, off_t offset , size_t length, u_int type);

INTERFACE
LEVEL

Solaris DDI specific (Solaris DDI).

ARGUMENTS handle The handle filled in by a call to ddi_dma_alloc_handle(9F).

offset The offset into the object described by the handle.

length The length, in bytes, of the area to synchronize. When length is zero, the
entire range starting from offset to the end of the object has the requested
operation applied to it.

type Indicates the caller’s desire about what view of the memory object to
synchronize. The possible values are DDI_DMA_SYNC_FORDEV,
DDI_DMA_SYNC_FORCPU and DDI_DMA_SYNC_FORKERNEL.

DESCRIPTION ddi_dma_sync() is used to selectively synchronize either a DMA device’s or a CPU’s view
of a memory object that has DMA resources allocated for I/O . This may involve opera-
tions such as flushes of CPU or I/O caches, as well as other more complex operations such
as stalling until hardware write buffers have drained.

This function need only be called under certain circumstances. When resources are allo-
cated for DMA using ddi_dma_addr_bind_handle() or ddi_dma_buf_bind_handle() an
implicit ddi_dma_sync() is done. When DMA resources are deallocated using
ddi_dma_unbind_handle(9F), an implicit ddi_dma_sync() is done. However, at any
time between DMA resource allocation and deallocation, if the memory object has been
modified by either the DMA device or a CPU and you wish to ensure that the change is
noticed by the party that didn’t do the modifying, a call to ddi_dma_sync() is required.
This is true independent of any attributes of the memory object including, but not limited
to, whether or not the memory was allocated for consistent mode I/O (see
ddi_dma_mem_alloc(9F)) or whether or not DMA resources have been allocated for con-
sistent mode I/O (see ddi_dma_addr_bind_handle(9F) or
ddi_dma_buf_bind_handle(9F)).

This cannot be stated too strongly. If a consistent view of the memory object must be
ensured between the time DMA resources are allocated for the object and the time they
are deallocated, you must call ddi_dma_sync() to ensure that either a CPU or a DMA dev-
ice has such a consistent view.

What to set type to depends on the view you are trying to ensure consistency for. If the
memory object is modified by a CPU , and the object is going to be read by the DMA
engine of the device, use DDI_DMA_SYNC_FORDEV. This ensures that the device’s DMA
engine sees any changes that a CPU has made to the memory object. If the DMA engine for
the device has written to the memory object, and you are going to read (with a CPU) the

modified 20 Nov 1996 SunOS 5.6 9F-273

ddi_dma_sync (9F) Kernel Functions for Drivers

object (using an extant virtual address mapping that you have to the memory object), use
DDI_DMA_SYNC_FORCPU. This ensures that a CPU’s view of the memory object
includes any changes made to the object by the device’s DMA engine. If you are only
interested in the kernel’s view (kernel-space part of the CPU’s view) you may use
DDI_DMA_SYNC_FORKERNEL. This gives a hint to the system—that is, if it is more
economical to synchronize the kernel’s view only, then do so; otherwise, synchronize for
CPU.

RETURN VALUES ddi_dma_sync() returns:

DDI_SUCCESS Caches are successfully flushed.

DDI_FAILURE The address range to be flushed is out of the address range esta-
blished by ddi_dma_addr_bind_handle(9F) or
ddi_dma_buf_bind_handle(9F).

CONTEXT ddi_dma_sync() can be called from user or interrupt context.

SEE ALSO ddi_dma_addr_bind_handle(9F), ddi_dma_alloc_handle(9F),
ddi_dma_buf_bind_handle(9F), ddi_dma_mem_alloc(9F),
ddi_dma_unbind_handle(9F)

Writing Device Drivers

9F-274 SunOS 5.6 modified 20 Nov 1996

Kernel Functions for Drivers ddi_dma_unbind_handle (9F)

NAME ddi_dma_unbind_handle − unbinds the address in a DMA handle

SYNOPSIS #include <sys/ddi.h>
#include <sys/sunddi.h>

int ddi_dma_unbind_handle(ddi_dma_handle_t handle);

ARGUMENTS handle The DMA handle previously allocated by a call to
ddi_dma_alloc_handle(9F).

INTERFACE
LEVEL

Solaris DDI specific (Solaris DDI).

DESCRIPTION ddi_dma_unbind_handle() frees all DMA resources associated with an existing DMA
handle. When a DMA transfer completes, the driver should call
ddi_dma_unbind_handle() to free system DMA resources established by a call to
ddi_dma_buf_bind_handle(9F) or ddi_dma_addr_bind_handle(9F).
ddi_dma_unbind_handle() does an implicit ddi_dma_sync(9F) making further syn-
chronization steps unnecessary.

RETURN VALUES DDI_SUCCESS on success

DDI_FAILURE on failure

CONTEXT ddi_dma_unbind_handle() can be called from user, kernel, or interrupt context.

SEE ALSO ddi_dma_addr_bind_handle(9F), ddi_dma_alloc_handle(9F),
ddi_dma_buf_bind_handle(9F), ddi_dma_free_handle(9F), ddi_dma_sync(9F)

Writing Device Drivers

modified 26 Sep 1994 SunOS 5.6 9F-275

ddi_enter_critical (9F) Kernel Functions for Drivers

NAME ddi_enter_critical, ddi_exit_critical − enter and exit a critical region of control

SYNOPSIS #include <sys/conf.h>
#include <sys/ddi.h>
#include <sys/sunddi.h>

unsigned int ddi_enter_critical(void);

void ddi_exit_critical(unsigned int ddic);

INTERFACE
LEVEL

Solaris DDI specific (Solaris DDI).

ARGUMENTS ddic The returned value from the call to ddi_enter_critical() must be passed to
ddi_exit_critical().

DESCRIPTION Nearly all driver operations can be done without any special synchronization and protec-
tion mechanisms beyond those provided by, e.g., mutexes (see mutex(9F)). However, for
certain devices there can exist a very short critical region of code which must be allowed
to run uninterrupted. The function ddi_enter_critical() provides a mechanism by which
a driver can ask the system to guarantee to the best of its ability that the current thread of
execution will neither be preempted nor interrupted. This stays in effect until a bracket-
ing call to ddi_exit_critical() is made (with an argument which was the returned value
from ddi_enter_critical()).

The driver may not call any functions external to itself in between the time it calls
ddi_enter_critical() and the time it calls ddi_exit_critical().

RETURN VALUES ddi_enter_critical() returns an opaque unsigned integer which must be used in the sub-
sequent call to ddi_exit_critical().

CONTEXT This function can be called from user or interrupt context.

WARNINGS Driver writers should note that in a multiple processor system this function does not tem-
porarily suspend other processors from executing. This function also cannot guarantee to
actually block the hardware from doing such things as interrupt acknowledge cycles.
What it can do is guarantee that the currently executing thread will not be preempted.

Do not write code bracketed by ddi_enter_critical() and ddi_exit_critical() that can get
caught in an infinite loop, as the machine may crash if you do.

SEE ALSO mutex(9F)

Writing Device Drivers

9F-276 SunOS 5.6 modified 4 Nov 1991

Kernel Functions for Drivers ddi_ffs (9F)

NAME ddi_ffs, ddi_fls − find first (last) bit set in a long integer

SYNOPSIS #include <sys/conf.h>
#include <sys/ddi.h>
#include <sys/sunddi.h>

int ddi_ffs(long mask);

int ddi_fls(long mask);

INTERFACE
LEVEL

Solaris DDI specific (Solaris DDI).

ARGUMENTS mask A 32-bit argument value to search through.

DESCRIPTION The function ddi_ffs() takes its argument and returns the shift count that the first (least
significant) bit set in the argument corresponds to. The function ddi_fls() does the same,
only it returns the shift count for the last (most significant) bit set in the argument.

RETURN VALUES 0 No bits are set in mask.

N Bit N is the least significant (ddi_ffs) or most significant (ddi_fls) bit set in
mask. Bits are numbered from 1 to 32, with bit 1 being the least significant bit
position and bit 32 the most significant position.

CONTEXT This function can be called from user or interrupt context.

SEE ALSO Writing Device Drivers

modified 20 Dec 1995 SunOS 5.6 9F-277

ddi_get8 (9F) Kernel Functions for Drivers

NAME ddi_get8, ddi_get16, ddi_get32, ddi_get64, ddi_getb, ddi_getw, ddi_getl, ddi_getll − read
data from the mapped memory address, device register or allocated DMA memory
address

SYNOPSIS #include <sys/ddi.h>
#include <sys/sunddi.h>

uint8_t ddi_get8(ddi_acc_handle_t handle, uint8_t ∗dev_addr);

uint16_t ddi_get16(ddi_acc_handle_t handle, uint16_t ∗dev_addr);

uint32_t ddi_get32(ddi_acc_handle_t handle, uint32_t ∗dev_addr);

uint64_t ddi_get64(ddi_acc_handle_t handle, uint64_t ∗dev_addr);

INTERFACE
LEVEL

Solaris DDI specific (Solaris DDI).

ARGUMENTS handle The data access handle returned from setup calls, such as
ddi_regs_map_setup(9F).

dev_addr Base device address.

DESCRIPTION The ddi_get8(), ddi_get16(), ddi_get32(), and ddi_get64() functions read 8 bits, 16 bits,
32 bits and 64 bits of data, respectively, from the device address, dev_addr .

Each individual datum will automatically be translated to maintain a consistent view
between the host and the device based on the encoded information in the data access
handle. The translation may involve byte-swapping if the host and the device have
incompatible endian characteristics.

RETURN VALUES These functions return the value read from the mapped address.

CONTEXT These functions can be called from user, kernel, or interrupt context.

SEE ALSO ddi_put8(9F), ddi_regs_map_free(9F), ddi_regs_map_setup(9F), ddi_rep_get8(9F),
ddi_rep_put8(9F)

NOTES The functions described in this manual page previously used symbolic names which
specified their data access size; the function names have been changed so they now
specify a fixed-width data size. See the following table for the new name equivalents:

Previous Name New Name
ddi_getb ddi_get8
ddi_getw ddi_get16
ddi_getl ddi_get32
ddi_getll ddi_get64

9F-278 SunOS 5.6 modified 22 Nov 1996

Kernel Functions for Drivers ddi_get_cred (9F)

NAME ddi_get_cred − returns a pointer to the credential structure of the caller

SYNOPSIS #include <sys/types.h>
#include <sys/ddi.h>
#include <sys/sunddi.h>

cred_t ∗ddi_get_cred();

INTERFACE
LEVEL

Solaris DDI specific (Solaris DDI).

DESCRIPTION ddi_get_cred() returns a pointer to the user credential structure of the caller.

RETURN VALUES ddi_get_cred() returns a pointer to the caller’s credential structure.

CONTEXT ddi_get_cred() can be called from user context only.

SEE ALSO Writing Device Drivers

modified 11 Apr 1991 SunOS 5.6 9F-279

ddi_get_driver_private (9F) Kernel Functions for Drivers

NAME ddi_get_driver_private, ddi_set_driver_private − get or set the address of the device’s
private data area

SYNOPSIS #include <sys/conf.h>
#include <sys/ddi.h>
#include <sys/sunddi.h>

void ddi_set_driver_private(dev_info_t ∗dip, caddr_t data);

caddr_t ddi_get_driver_private(dev_info_t ∗dip);

INTERFACE
LEVEL

Solaris DDI specific (Solaris DDI).

ARGUMENTS
ddi_get_driver_private() dip Pointer to device information structure to get from.

ddi_set_driver_private() dip Pointer to device information structure to set.

data Data area address to set.

DESCRIPTION ddi_get_driver_private() returns the address of the device’s private data area from the
device information structure pointed to by dip.

ddi_set_driver_private() sets the address of the device’s private data area in the device
information structure pointed to by dip with the value of data .

RETURN VALUES ddi_get_driver_private() returns the contents of devi_driver_data. If
ddi_set_driver_private() has not been previously called with dip, an unpredictable value
is returned.

CONTEXT These functions can be called from user or interrupt context.

SEE ALSO Writing Device Drivers

9F-280 SunOS 5.6 modified 6 Feb 1995

Kernel Functions for Drivers ddi_get_instance (9F)

NAME ddi_get_instance − get device instance number

SYNOPSIS #include <sys/ddi.h>
#include <sys/sunddi.h>

int ddi_get_instance(dev_info_t ∗dip);

INTERFACE
LEVEL

Solaris DDI specific (Solaris DDI).

ARGUMENTS dip Pointer to dev_info structure.

DESCRIPTION ddi_get_instance() returns the instance number of the device corresponding to dip.

The system assigns an instance number to every device. Instance numbers for devices
attached to the same driver are unique. This provides a way for the system and the
driver to uniquely identify one or more devices of the same type. The instance number is
derived by the system from different properties for different device types in an imple-
mentation specific manner.

Once an instance number has been assigned to a device, it will remain the same even
across reconfigurations and reboots. Therefore, instance numbers seen by a driver may
not appear to be in consecutive order. For example, if device foo0 has been assigned an
instance number of 0 and device foo1 has been assigned an instance number of 1, if foo0
is removed, foo1 will continue to be associated with instance number 1 (even though
foo1 is now the only device of its type on the system).

RETURN VALUES ddi_get_instance() returns the instance number of the device corresponding to dip.

CONTEXT ddi_get_instance() can be called from user or interrupt context.

SEE ALSO path_to_inst(4)

Writing Device Drivers

modified 20 Jul 1994 SunOS 5.6 9F-281

ddi_get_parent (9F) Kernel Functions for Drivers

NAME ddi_get_parent − find the parent of a device information structure

SYNOPSIS #include <sys/ddi.h>
#include <sys/sunddi.h>

dev_info_t ∗ddi_get_parent(dev_info_t ∗dip);

INTERFACE
LEVEL

Solaris DDI specific (Solaris DDI).

ARGUMENTS dip Pointer to a device information structure.

DESCRIPTION ddi_get_parent() returns a pointer to the device information structure which is the
parent of the one pointed to by dip.

RETURN VALUES ddi_get_parent() returns a pointer to a device information structure.

CONTEXT ddi_get_parent() can be called from user or interrupt context.

SEE ALSO Writing Device Drivers

9F-282 SunOS 5.6 modified 5 Oct 1991

Kernel Functions for Drivers ddi_intr_hilevel (9F)

NAME ddi_intr_hilevel − indicate interrupt handler type

SYNOPSIS #include <sys/ddi.h>
#include <sys/sunddi.h>

int ddi_intr_hilevel(dev_info_t ∗dip, u_int inumber);

INTERFACE
LEVEL

Solaris DDI specific (Solaris DDI).

ARGUMENTS dip Pointer to dev_info structure.

inumber Interrupt number.

DESCRIPTION ddi_intr_hilevel() returns non-zero if the specified interrupt is a "high level" interrupt.

High level interrupts must be handled without using system services that manipulate
thread or process states, because these interrupts are not blocked by the scheduler.

In addition, high level interrupt handlers must take care to do a minimum of work
because they are not preemptable.

A typical high level interrupt handler would put data into a circular buffer and schedule
a soft interrupt by calling ddi_trigger_softintr(). The circular buffer could be protected
by using a mutex that was properly initialized for the interrupt handler.

ddi_intr_hilevel() can be used before calling ddi_add_intr() to decide which type of
interrupt handler should be used. Most device drivers are designed with the knowledge
that the devices they support will always generate low level interrupts, however some
devices, for example those using SBus or VME bus level 6 or 7 interrupts must use this
test because on some machines those interrupts are high level (above the scheduler level)
and on other machines they are not.

RETURN VALUES non-zero indicates a high-level interrupt.

CONTEXT These functions can be called from user or interrupt context.

SEE ALSO ddi_add_intr(9F), mutex(9F)

Writing Device Drivers

modified 7 Jan 1992 SunOS 5.6 9F-283

ddi_io_get8 (9F) Kernel Functions for Drivers

NAME ddi_io_get8, ddi_io_get16, ddi_io_get32, ddi_io_getb, ddi_io_getw, ddi_io_getl − read
data from the mapped device register in I/O space

SYNOPSIS #include <sys/ddi.h>
#include <sys/sunddi.h>

uint8_t ddi_io_get8(ddi_acc_handle_t handle, int dev_port);

uint16_t ddi_io_get16(ddi_acc_handle_t handle, int dev_port);

uint32_t ddi_io_get32(ddi_acc_handle_t handle, int dev_port);

INTERFACE
LEVEL

Solaris DDI specific (Solaris DDI).

ARGUMENTS handle The data access handle returned from setup calls, such as
ddi_regs_map_setup(9F).

dev_port The device port.

DESCRIPTION These routines generate a read of various sizes from the device port, dev_port , in I/O
space. The ddi_io_get8(), ddi_io_get16(), and ddi_io_get32() functions read 8 bits, 16
bits, and 32 bits of data, respectively, from the device port, dev_port .

Each individual datum will automatically be translated to maintain a consistent view
between the host and the device based on the encoded information in the data access
handle. The translation may involve byte-swapping if the host and the device have
incompatible endian characteristics.

CONTEXT These functions can be called from user, kernel, or interrupt context.

SEE ALSO isa(4), ddi_io_put8(9F), ddi_io_rep_get8(9F), ddi_io_rep_put8(9F),
ddi_regs_map_free(9F), ddi_regs_map_setup(9F), ddi_device_acc_attr(9S)

NOTES For drivers using these functions, it may not be easy to maintain a single source to sup-
port devices with multiple bus versions. For example, devices may offer I/O space in ISA
bus (see isa(4)) but memory space only in PCI local bus. This is especially true in instruc-
tion set architectures such as x86 where accesses to the memory and I/O space are dif-
ferent.

The functions described in this manual page previously used symbolic names which
specified their data access size; the function names have been changed so they now
specify a fixed-width data size. See the following table for the new name equivalents:

Previous Name New Name
ddi_io_getb ddi_io_get8
ddi_io_getw ddi_io_get16
ddi_io_getl ddi_io_get32

9F-284 SunOS 5.6 modified 30 Sep 1996

Kernel Functions for Drivers ddi_iomin (9F)

NAME ddi_iomin − find minimum alignment and transfer size for DMA

SYNOPSIS #include <sys/conf.h>
#include <sys/ddi.h>
#include <sys/sunddi.h>

int ddi_iomin(dev_info_t ∗dip, int initial, int streaming);

INTERFACE
LEVEL

Solaris DDI specific (Solaris DDI).

ARGUMENTS dip A pointer to the device’s dev_info structure.

initial The initial minimum DMA transfer size in bytes. This may be zero or an
appropriate dlim_minxfer value for device’s ddi_dma_lim structure
(see ddi_dma_lim_sparc(9S) or ddi_dma_lim_x86(9S)). This value
must be a power of two.

streaming This argument, if non-zero, indicates that the returned value should be
modified to account for streaming mode accesses (see ddi_dma_req(9S)
for a discussion of streaming versus non-streaming access mode).

DESCRIPTION ddi_iomin(), finds out the minimum DMA transfer size for the device pointed to by dip.
This provides a mechanism by which a driver can determine the effects of underlying
caches as well as intervening bus adapters on the granularity of a DMA transfer.

RETURN VALUES ddi_iomin() returns the minimum DMA transfer size for the calling device, or it returns
zero, which means that you cannot get there from here.

CONTEXT This function can be called from user or interrupt context.

SEE ALSO ddi_dma_devalign(9F), ddi_dma_setup(9F), ddi_dma_sync(9F),
ddi_dma_lim_sparc(9S), ddi_dma_lim_x86(9S), ddi_dma_req(9S)

Writing Device Drivers

modified 1 Feb 1994 SunOS 5.6 9F-285

ddi_iopb_alloc (9F) Kernel Functions for Drivers

NAME ddi_iopb_alloc, ddi_iopb_free − allocate and free non-sequentially accessed memory

SYNOPSIS #include <sys/ddi.h>
#include <sys/sunddi.h>

int ddi_iopb_alloc(dev_info_t ∗dip, ddi_dma_lim_t ∗limits, u_int length,
caddr_t ∗iopbp);

void ddi_iopb_free(caddr_t iopb);

INTERFACE
LEVEL

Solaris DDI specific (Solaris DDI).

ARGUMENTS
ddi_iopb_alloc() dip A pointer to the device’s dev_info structure.

limits A pointer to a DMA limits structure for this device (see
ddi_dma_lim_sparc(9S) or ddi_dma_lim_x86(9S)). If this pointer is
NULL, a default set of DMA limits is assumed.

length The length in bytes of the desired allocation.

iopbp A pointer to a caddr_t. On a successful return, ∗iopbp points to the allo-
cated storage.

ddi_iopb_free() iopb The iopb returned from a successful call to ddi_iopb_alloc().

DESCRIPTION ddi_iopb_alloc() allocates memory for DMA transfers and should be used if the device
accesses memory in a non-sequential fashion, or if synchronization steps using
ddi_dma_sync(9F) should be as lightweight as possible, due to frequent use on small
objects. This type of access is commonly known as consistent access. The allocation will
obey the alignment and padding constraints as specified in the limits argument and other
limits imposed by the system.

Note that you still must use DMA resource allocation functions (see ddi_dma_setup(9F))
to establish DMA resources for the memory allocated using ddi_iopb_alloc().

In order to make the view of a memory object shared between a CPU and a DMA device
consistent, explicit synchronization steps using ddi_dma_sync(9F) or ddi_dma_free(9F)
are still required. The DMA resources will be allocated so that these synchronization steps
are as efficient as possible.

ddi_iopb_free() frees up memory allocated by ddi_iopb_alloc().

RETURN VALUES ddi_iopb_alloc() returns:

DDI_SUCCESS Memory successfully allocated.

DDI_FAILURE Allocation failed.

CONTEXT These functions can be called from user or interrupt context.

9F-286 SunOS 5.6 modified 17 May 1994

Kernel Functions for Drivers ddi_iopb_alloc (9F)

SEE ALSO ddi_dma_free(9F), ddi_dma_setup(9F), ddi_dma_sync(9F), ddi_mem_alloc(9F),
ddi_dma_lim_sparc(9S), ddi_dma_lim_x86(9S), ddi_dma_req(9S)

Writing Device Drivers

NOTES This function uses scarce system resources. Use it selectively.

modified 17 May 1994 SunOS 5.6 9F-287

ddi_io_put8 (9F) Kernel Functions for Drivers

NAME ddi_io_put8, ddi_io_put16, ddi_io_put32, ddi_io_putw, ddi_io_putl, ddi_io_putb − write
data to the mapped device register in I/O space

SYNOPSIS #include <sys/ddi.h>
#include <sys/sunddi.h>

void ddi_io_put8(ddi_acc_handle_t handle, int dev_port , uint8_t value);

void ddi_io_put16(ddi_acc_handle_t handle, int dev_port , uint16_t value);

void ddi_io_put32(ddi_acc_handle_t handle, int dev_port , uint32_t value);

INTERFACE
LEVEL

Solaris DDI specific (Solaris DDI).

ARGUMENTS handle The data access handle returned from setup calls, such as
ddi_regs_map_setup(9F).

dev_port The device port.

value The data to be written to the device.

DESCRIPTION These routines generate a write of various sizes to the device port, dev_port , in I/O space.
The ddi_io_put8(), ddi_io_put16(), and ddi_io_put32() functions write 8 bits, 16 bits,
and 32 bits of data, respectively, to the device port, dev_port .

Each individual datum will automatically be translated to maintain a consistent view
between the host and the device based on the encoded information in the data access
handle. The translation may involve byte-swapping if the host and the device have
incompatible endian characteristics.

CONTEXT These functions can be called from user, kernel, or interrupt context.

SEE ALSO isa(4), ddi_io_get8(9F), ddi_io_rep_get8(9F), ddi_io_rep_put8(9F),
ddi_regs_map_setup(9F), ddi_device_acc_attr(9S)

NOTES For drivers using these functions, it may not be easy to maintain a single source to sup-
port devices with multiple bus versions. For example, devices may offer I/O space in ISA
bus (see isa(4)) but memory space only in PCI local bus. This is especially true in instruc-
tion set architectures such as x86 where accesses to the memory and I/O space are dif-
ferent.

The functions described in this manual page previously used symbolic names which
specified their data access size; the function names have been changed so they now
specify a fixed-width data size. See the following table for the new name equivalents:

9F-288 SunOS 5.6 modified 31 Aug 1996

Kernel Functions for Drivers ddi_io_put8 (9F)

Previous Name New Name
ddi_io_putb ddi_io_put8
ddi_io_putw ddi_io_put16
ddi_io_putl ddi_io_put32

modified 31 Aug 1996 SunOS 5.6 9F-289

ddi_io_rep_get8 (9F) Kernel Functions for Drivers

NAME ddi_io_rep_get8, ddi_io_rep_get16, ddi_io_rep_get32, ddi_io_rep_getw, ddi_io_rep_getb,
ddi_io_rep_getl − read multiple data from the mapped device register in I/O space

SYNOPSIS #include <sys/ddi.h>
#include <sys/sunddi.h>

void ddi_io_rep_get8(ddi_acc_handle_t handle, uint8_t ∗host_addr , int dev_port ,
size_t repcount);

void ddi_io_rep_get16(ddi_acc_handle_t handle, uint16_t ∗host_addr , int dev_port ,
size_t repcount);

void ddi_io_rep_get32(ddi_acc_handle_t handle, uint32_t ∗host_addr , int dev_port ,
size_t repcount);

INTERFACE
LEVEL

Solaris DDI specific (Solaris DDI).

ARGUMENTS handle The data access handle returned from setup calls, such as
ddi_regs_map_setup(9F).

host_addr Base host address.

dev_port The device port.

repcount Number of data accesses to perform.

DESCRIPTION These routines generate multiple reads from the device port, dev_port , in I/O space. rep-
count data is copied from the device port, dev_port , to the host address, host_addr . For
each input datum, the ddi_io_rep_get8(), ddi_io_rep_get16(), and ddi_io_rep_get32()
functions read 8 bits, 16 bits, and 32 bits of data, respectively, from the device port.
host_addr must be aligned to the datum boundary described by the function.

Each individual datum will automatically be translated to maintain a consistent view
between the host and the device based on the encoded information in the data access
handle. The translation may involve byte-swapping if the host and the device have
incompatible endian characteristics.

CONTEXT These functions can be called from user, kernel, or interrupt context.

SEE ALSO isa(4), ddi_io_get8(9F), ddi_io_put8(9F), ddi_io_rep_put8(9F), ddi_regs_map_free(9F),
ddi_regs_map_setup(9F), ddi_device_acc_attr(9S)

NOTES For drivers using these functions, it may not be easy to maintain a single source to sup-
port devices with multiple bus versions. For example, devices may offer I/O space in ISA
bus (see isa(4)) but memory space only in PCI local bus. This is especially true in instruc-
tion set architectures such as x86 where accesses to the memory and I/O space are dif-
ferent.

9F-290 SunOS 5.6 modified 31 Oct 1996

Kernel Functions for Drivers ddi_io_rep_get8 (9F)

The functions described in this manual page previously used symbolic names which
specified their data access size; the function names have been changed so they now
specify a fixed-width data size. See the following table for the new name equivalents:

Previous Name New Name
ddi_io_rep_getb ddi_io_rep_get8
ddi_io_rep_getw ddi_io_rep_get16
ddi_io_rep_getl ddi_io_rep_get32

modified 31 Oct 1996 SunOS 5.6 9F-291

ddi_io_rep_put8 (9F) Kernel Functions for Drivers

NAME ddi_io_rep_put8, ddi_io_rep_put16, ddi_io_rep_put32, ddi_io_rep_putw,
ddi_io_rep_putl, ddi_io_rep_putb − write multiple data to the mapped device register in
I/O space

SYNOPSIS #include <sys/ddi.h>
#include <sys/sunddi.h>

void ddi_io_rep_put8(ddi_acc_handle_t handle, uint8_t ∗host_addr , int dev_port ,
size_t repcount);

void ddi_io_rep_put16(ddi_acc_handle_t handle, uint16_t ∗host_addr , int dev_port ,
size_t repcount);

void ddi_io_rep_put32(ddi_acc_handle_t handle, uint32_t ∗host_addr , int dev_port ,
size_t repcount);

INTERFACE
LEVEL

Solaris DDI specific (Solaris DDI).

ARGUMENTS handle The data access handle returned from setup calls, such as
ddi_regs_map_setup(9F).

host_addr Base host address.

dev_port The device port.

repcount Number of data accesses to perform.

DESCRIPTION These routines generate multiple writes to the device port, dev_port , in I/O space.
repcount data is copied from the host address, host_addr , to the device port, dev_port . For
each input datum, the ddi_io_rep_put8(), ddi_io_rep_put16(), and ddi_io_rep_put32()
functions write 8 bits, 16 bits, and 32 bits of data, respectively, to the device port.
host_addr must be aligned to the datum boundary described by the function.

Each individual datum will automatically be translated to maintain a consistent view
between the host and the device based on the encoded information in the data access
handle. The translation may involve byte-swapping if the host and the device have
incompatible endian characteristics.

CONTEXT These functions can be called from user, kernel, or interrupt context.

SEE ALSO isa(4), ddi_io_get8(9F), ddi_io_put8(9F), ddi_io_rep_get8(9F), ddi_regs_map_setup(9F),
ddi_device_acc_attr(9S)

NOTES For drivers using these functions, it may not be easy to maintain a single source to sup-
port devices with multiple bus versions. For example, devices may offer I/O space in ISA
bus (see isa(4)) but memory space only in PCI local bus. This is especially true in instruc-
tion set architectures such as x86 where accesses to the memory and I/O space are dif-
ferent.

9F-292 SunOS 5.6 modified 30 Sep 1996

Kernel Functions for Drivers ddi_io_rep_put8 (9F)

The functions described in this manual page previously used symbolic names which
specified their data access size; the function names have been changed so they now
specify a fixed-width data size. See the following table for the new name equivalents:

Previous Name New Name
ddi_io_rep_putb ddi_io_rep_put8
ddi_io_rep_putw ddi_io_rep_put16
ddi_io_rep_putl ddi_io_rep_put32

modified 30 Sep 1996 SunOS 5.6 9F-293

ddi_mapdev (9F) Kernel Functions for Drivers

NAME ddi_mapdev − create driver-controlled mapping of device

SYNOPSIS #include <sys/ddi.h>
#include <sys/sunddi.h>

int ddi_mapdev(dev_t dev, off_t offset , struct as ∗asp, caddr_t ∗addrp , off_t len,
u_int prot , u_int maxprot, u_int flags , cred_t ∗cred, struct ddi_mapdev_ctl ∗ctl,
ddi_mapdev_handle_t ∗handlep, void ∗devprivate);

INTERFACE
LEVEL

Solaris DDI specific (Solaris DDI).

ARGUMENTS dev The device whose memory is to be mapped.

offset The offset within device memory at which the mapping begins.

as An opaque pointer to the user address space into which the device
memory should be mapped.

addrp Pointer to the starting address within the user address space to which
the device memory should be mapped.

len Length (in bytes) of the memory to be mapped.

prot A bit field that specifies the protections.

maxprot Maximum protection flag possible for attempted mapping.

flags Flags indicating type of mapping.

cred Pointer to the user credentials structure.

ctl A pointer to a ddi_mapdev_ctl(9S) structure. The structure contains
pointers to device driver-supplied functions that manage events on the
device mapping.

handlep An opaque pointer to a device mapping handle. A handle to the new
device mapping is generated and placed into the location pointed to by
∗handlep. If the call fails, the value of ∗handlep is undefined.

devprivate Driver private mapping data. This value is passed into each mapping
call back routine.

DESCRIPTION Future releases of Solaris will provide this function for binary and source compatibility.
However, for increased functionality, use devmap_setup(9F) instead. See
devmap_setup(9F) for deatils.

ddi_mapdev() sets up user mappings to device space. The driver is notified of user
events on the mappings via the entry points defined by ctl.

The user events that the driver is notified of are:

access User has accessed an address in the mapping that has no trans-
lations.

duplication User has duplicated the mapping. Mappings are duplicated
when the process calls fork(2).

9F-294 SunOS 5.6 modified 17 Jan 1997

Kernel Functions for Drivers ddi_mapdev (9F)

unmapping User has called munmap(2) on the mapping or is exiting.

See mapdev_access(9E), mapdev_dup(9E), and mapdev_free(9E) for details on these
entry points.

The range to be mapped, defined by offset and len must be valid.

The arguments dev, asp , addrp , len, prot , maxprot , flags , and cred are provided by the
segmap(9E) entry point and should not be modified. See segmap(9E) for a description of
these arguments. Unlike ddi_segmap(9F), the drivers mmap(9E) entry point is not called
to verify the range to be mapped.

With the handle, device drivers can use ddi_mapdev_intercept(9F) and
ddi_mapdev_nointercept(9F) to inform the system of whether or not they are interested
in being notified when the user process accesses the mapping. By default, user accesses to
newly created mappings will generate a call to the mapdev_access() entry point. The
driver is always notified of duplications and unmaps.

The device may also use the handle to assign certain characteristics to the mapping. See
ddi_mapdev_set_device_acc_attr(9F) for details.

The device driver can use these interfaces to implement a device context and control user
accesses to the device space. ddi_mapdev() is typically called from the segmap(9E) entry
point.

RETURN VALUES ddi_mapdev() returns zero on success and non-zero on failure. The return value from
ddi_mapdev() should be used as the return value for the drivers segmap() entry point.

CONTEXT This routine can be called from user or kernel context only.

SEE ALSO fork(2), mmap(2), munmap(2), mapdev_access(9E), mapdev_dup(9E), mapdev_free(9E),
mmap(9E), segmap(9E), ddi_mapdev_intercept(9F), ddi_mapdev_nointercept(9F),
ddi_mapdev_set_device_acc_attr(9F), ddi_segmap(9F), ddi_mapdev_ctl(9S)

Writing Device Drivers

NOTES Only mappings of type MAP_PRIVATE should be used with ddi_mapdev().

modified 17 Jan 1997 SunOS 5.6 9F-295

ddi_mapdev_intercept (9F) Kernel Functions for Drivers

NAME ddi_mapdev_intercept, ddi_mapdev_nointercept − control driver notification of user
accesses

SYNOPSIS #include <sys/sunddi.h>

int ddi_mapdev_intercept(ddi_mapdev_handle_t handle, off_t offset , off_t len);

int ddi_mapdev_nointercept(ddi_mapdev_handle_t handle, off_t offset , off_t len);

INTERFACE
LEVEL

Solaris DDI specific (Solaris DDI).

ARGUMENTS handle An opaque pointer to a device mapping handle.

offset An offset in bytes within device memory.

len Length in bytes.

DESCRIPTION Future releases of Solaris will provide these functions for binary and source compatibil-
ity. However, for increased functionality, use devmap_load(9F) or devmap_unload(9F)
instead. See devmap_load(9F) and devmap_unload(9F) for details.

The ddi_mapdev_intercept() and ddi_mapdev_nointercept() functions control whether
or not user accesses to device mappings created by ddi_mapdev(9F) in the specified
range will generate calls to the mapdev_access(9E) entry point. ddi_mapdev_intercept()
tells the system to intercept the user access and notify the driver to invalidate the map-
ping translations. ddi_mapdev_nointercept() tells the system to not intercept the user
access and allow it to proceed by validating the mapping translations.

For both routines, the range to be affected is defined by the offset and len arguments.
Requests affect the entire page containing the offset and all pages up to and including the
page containing the last byte as indicated by offset + len.

Supplying a value of 0 for the len argument affects all addresses from the offset to the end
of the mapping. Supplying a value of 0 for the offset argument and a value of 0 for len
argument affect all addresses in the mapping.

To manage a device context, a device driver would call ddi_mapdev_intercept() on the
context about to be switched out, switch contexts, and then call
ddi_mapdev_nointercept() on the context switched in.

RETURN VALUES ddi_mapdev_intercept() and ddi_mapdev_nointercept() return the following values:

zero Successful completion.

Non-zero An error occurred.

EXAMPLES The following shows an example of managing a device context that is one page in length.

ddi_mapdev_handle_t cur_hdl;

static int
xxmapdev_access(ddi_mapdev_handle_t handle, void ∗devprivate,

off_t offset)

9F-296 SunOS 5.6 modified 21 Jan 1997

Kernel Functions for Drivers ddi_mapdev_intercept (9F)

{
int err;

/∗ enable access callbacks for the current mapping ∗/
if (cur_hdl != NULL) {

if ((err = ddi_mapdev_intercept(cur_hdl, offset, 0)) != 0)
return (err);

}

/∗ Switch device context - device dependent∗/
...

/∗ Make handle the new current mapping ∗/
cur_hdl = handle;

/∗
∗ Disable callbacks and complete the access for the
∗ mapping that generated this callback.
∗/

return (ddi_mapdev_nointercept(handle, offset, 0));
}

CONTEXT These routines can be called from user or kernel context only.

SEE ALSO mapdev_access(9E), ddi_mapdev(9F)

Writing Device Drivers

modified 21 Jan 1997 SunOS 5.6 9F-297

ddi_mapdev_set_device_acc_attr (9F) Kernel Functions for Drivers

NAME ddi_mapdev_set_device_acc_attr − set the device attributes for the mapping

SYNOPSIS #include <sys/ddi.h>
#include <sys/sunddi.h>

int ddi_mapdev_set_device_acc_attr(ddi_mapdev_handle_t mapping_handle,
off_t offset , off_t len, ddi_device_acc_attr_t ∗accattrp , uint_t rnumber);

INTERFACE
LEVEL

Solaris DDI specific (Solaris DDI).

ARGUMENTS mapping_handle A pointer to a device mapping handle.

offset The offset within device memory to which the device access attri-
butes structure applies.

len Length (in bytes) of the memory to which the device access attributes
structure applies.

∗accattrp Pointer to a ddi_device_acc_attr(9S) structure. Contains the device
access attributes to be applied to this range of memory.

rnumber Index number to the register address space set.

DESCRIPTION Future releases of Solaris will provide this function for binary and source compatibility.
However, for increased functionality, use devmap(9E) instead. See devmap(9E) for
details.

The ddi_mapdev_set_device_acc_attr() function assigns device access attributes to a
range of device memory in the register set given by rnumber.

∗accattrp defines the device access attributes. See ddi_device_acc_attr(9S) for more
details.

mapping_handle is a mapping handle returned from a call to ddi_mapdev(9F).

The range to be affected is defined by the offset and len arguments. Requests affect the
entire page containing the offset and all pages up to and including the page containing the
last byte as indicated by offset+len. Supplying a value of 0 for the len argument affects all
addresses from the offset to the end of the mapping. Supplying a value of 0 for the offset
argument and a value of 0 for the len argument affect all addresses in the mapping.

RETURN VALUES The ddi_mapdev_set_device_acc_attr() function returns the following values:

DDI_SUCCESS The attributes were successfully set.

DDI_FAILURE It is not possible to set these attributes for this mapping handle.

CONTEXT This routine can be called from user or kernel context only.

SEE ALSO segmap(9E), ddi_mapdev(9F), ddi_segmap_setup(9F), ddi_device_acc_attr(9S)

9F-298 SunOS 5.6 modified 13 Jan 1997

Kernel Functions for Drivers ddi_mapdev_set_device_acc_attr (9F)

Writing Device Drivers

modified 13 Jan 1997 SunOS 5.6 9F-299

ddi_map_regs (9F) Kernel Functions for Drivers

NAME ddi_map_regs, ddi_unmap_regs − map or unmap registers

SYNOPSIS #include <sys/conf.h>
#include <sys/ddi.h>
#include <sys/sunddi.h>

int ddi_map_regs(dev_info_t ∗dip, u_int rnumber, caddr_t ∗kaddrp,
off_t offset , off_t len);

void ddi_unmap_regs(dev_info_t ∗dip, u_int rnumber, caddr_t ∗kaddrp,
off_t offset , off_t len);

ARGUMENTS
ddi_map_regs() dip Pointer to the device’s dev_info structure.

rnumber Register set number.

kaddrp Pointer to the base kernel address of the mapped region (set on return).

offset Offset into register space.

len Length to be mapped.

ddi_unmap_regs() dip Pointer to the device’s dev_info structure.

rnumber Register set number.

kaddrp Pointer to the base kernel address of the region to be unmapped.

offset Offset into register space.

len Length to be unmapped.

INTERFACE
LEVEL

Solaris DDI specific (Solaris DDI).

DESCRIPTION ddi_map_regs() maps in the register set given by rnumber. The register number deter-
mines which register set will be mapped if more than one exists. The base kernel virtual
address of the mapped register set is returned in kaddrp . offset specifies an offset into the
register space to start from and len indicates the size of the area to be mapped. If len is
non-zero, it overrides the length given in the register set description. See the discussion of
the reg property in sbus(4) and vme(4) for more information on register set descriptions.
If len and offset are 0, the entire space is mapped.

ddi_unmap_regs() undoes mappings set up by ddi_map_regs(). This is provided for
drivers preparing to detach themselves from the system, allowing them to release allo-
cated mappings. Mappings must be released in the same way they were mapped (a call
to ddi_unmap_regs() must correspond to a previous call to ddi_map_regs()). Releasing
portions of previous mappings is not allowed. rnumber determines which register set will
be unmapped if more than one exists. The kaddrp , offset and len specify the area to be
unmapped. kaddrp is a pointer to the address returned from ddi_map_regs(); offset and
len should match what ddi_map_regs() was called with.

9F-300 SunOS 5.6 modified 27 Jan 1993

Kernel Functions for Drivers ddi_map_regs (9F)

RETURN VALUES ddi_map_regs() returns:

DDI_SUCCESS on success.

CONTEXT These functions can be called from user or interrupt context.

SEE ALSO sbus(4), vme(4)

Writing Device Drivers

modified 27 Jan 1993 SunOS 5.6 9F-301

ddi_mem_alloc (9F) Kernel Functions for Drivers

NAME ddi_mem_alloc, ddi_mem_free − allocate and free sequentially accessed memory

SYNOPSIS #include <sys/ddi.h>
#include <sys/sunddi.h>

int ddi_mem_alloc(dev_info_t ∗dip, ddi_dma_lim_t ∗limits, u_int length, u_int flags ,
caddr_t ∗kaddrp , u_int ∗real_length);

void ddi_mem_free(caddr_t kaddr);

INTERFACE
LEVEL

Solaris DDI specific (Solaris DDI).

ARGUMENTS
ddi_mem_alloc() dip A pointer to the device’s dev_info structure.

limits A pointer to a DMA limits structure for this device (see
ddi_dma_lim_sparc(9S) or ddi_dma_lim_x86(9S)). If this pointer is
NULL, a default set of DMA limits is assumed.

length The length in bytes of the desired allocation.

flags The possible flags 1 and 0 are taken to mean, respectively, wait until
memory is available, or do not wait.

kaddrp On a successful return, ∗kaddrp points to the allocated memory.

real_length The length in bytes that was allocated. Alignment and padding require-
ments may cause ddi_mem_alloc() to allocate more memory than
requested in length.

ddi_mem_free() kaddr The memory returned from a successful call to ddi_mem_alloc().

DESCRIPTION ddi_mem_alloc() allocates memory for DMA transfers and should be used if the device is
performing sequential, unidirectional, block-sized and block-aligned transfers to or from
memory. This type of access is commonly known as streaming access. The allocation will
obey the alignment and padding constraints as specified by the limits argument and other
limits imposed by the system.

Note that you must still use DMA resource allocation functions (see ddi_dma_setup(9F))
to establish DMA resources for the memory allocated using ddi_mem_alloc().
ddi_mem_alloc() returns the actual size of the allocated memory object. Because of pad-
ding and alignment requirements, the actual size might be larger than the requested size.
ddi_dma_setup(9F) requires the actual length.

In order to make the view of a memory object shared between a CPU and a DMA device
consistent, explicit synchronization steps using ddi_dma_sync(9F) or ddi_dma_free(9F)
are required.

ddi_mem_free() frees up memory allocated by ddi_mem_alloc().

9F-302 SunOS 5.6 modified 4 Apr 1996

Kernel Functions for Drivers ddi_mem_alloc (9F)

RETURN VALUES ddi_mem_alloc() returns:

DDI_SUCCESS Memory successfully allocated.

DDI_FAILURE Allocation failed.

CONTEXT ddi_mem_alloc() can be called from user or interrupt context, except when flags is set to
1, in which case it can be called from user context only.

SEE ALSO ddi_dma_free(9F), ddi_dma_setup(9F), ddi_dma_sync(9F), ddi_iopb_alloc(9F),
ddi_dma_lim_sparc(9S), ddi_dma_lim_x86(9S), ddi_dma_req(9S)

Writing Device Drivers

modified 4 Apr 1996 SunOS 5.6 9F-303

ddi_mem_get8 (9F) Kernel Functions for Drivers

NAME ddi_mem_get8, ddi_mem_get16, ddi_mem_get32, ddi_mem_get64, ddi_mem_getw,
ddi_mem_getl, ddi_mem_getll, ddi_mem_getb − read data from mapped device in the
memory space or allocated DMA memory

SYNOPSIS #include <sys/ddi.h>
#include <sys/sunddi.h>

uint8_t ddi_mem_get8(ddi_acc_handle_t handle, uint8_t ∗dev_addr);

uint16_t ddi_mem_get16(ddi_acc_handle_t handle, uint16_t ∗dev_addr);

uint32_t ddi_mem_get32(ddi_acc_handle_t handle, uint32_t ∗dev_addr);

uint64_t ddi_mem_get64(ddi_acc_handle_t handle, uint64_t ∗dev_addr);

INTERFACE
LEVEL

Solaris DDI specific (Solaris DDI).

ARGUMENTS handle The data access handle returned from setup calls, such as
ddi_regs_map_setup(9F).

dev_addr Base device address.

DESCRIPTION These routines generate a read of various sizes from memory space or allocated DMA
memory. The ddi_mem_get8(), ddi_mem_get16(), ddi_mem_get32(), and
ddi_mem_get64() functions read 8 bits, 16 bits, 32 bits and 64 bits of data, respectively,
from the device address, dev_addr , in memory space.

Each individual datum will automatically be translated to maintain a consistent view
between the host and the device based on the encoded information in the data access
handle. The translation may involve byte-swapping if the host and the device have
incompatible endian characteristics.

CONTEXT These functions can be called from user, kernel, or interrupt context.

SEE ALSO ddi_mem_put8(9F), ddi_mem_rep_get8(9F), ddi_mem_rep_put8(9F),
ddi_regs_map_setup(9F), ddi_device_acc_attr(9S)

NOTES The functions described in this manual page previously used symbolic names which
specified their data access size; the function names have been changed so they now
specify a fixed-width data size. See the following table for the new name equivalents:

Previous Name New Name
ddi_mem_getb ddi_mem_get8
ddi_mem_getw ddi_mem_get16
ddi_mem_getl ddi_mem_get32
ddi_mem_getll ddi_mem_get64

9F-304 SunOS 5.6 modified 30 Sep 1996

Kernel Functions for Drivers ddi_mem_put8 (9F)

NAME ddi_mem_put8, ddi_mem_put16, ddi_mem_put32, ddi_mem_put64, ddi_mem_putb,
ddi_mem_putw, ddi_mem_putl, ddi_mem_putll − write data to mapped device in the
memory space or allocated DMA memory

SYNOPSIS #include <sys/ddi.h>
#include <sys/sunddi.h>

void ddi_mem_put8(ddi_acc_handle_t handle, uint8_t ∗dev_addr , uint8_t value);

void ddi_mem_put16(ddi_acc_handle_t handle, uint16_t ∗dev_addr , uint16_t value);

void ddi_mem_put32(ddi_acc_handle_t handle, uint32_t ∗dev_addr , uint32_t value);

void ddi_mem_put64(ddi_acc_handle_t handle, uint64_t ∗dev_addr , uint64_t value);

ARGUMENTS handle The data access handle returned from setup calls, such as
ddi_regs_map_setup(9F).

dev_addr Base device address.

value The data to be written to the device.

INTERFACE
LEVEL

Solaris DDI specific (Solaris DDI).

DESCRIPTION These routines generate a write of various sizes to memory space or allocated DMA
memory. The ddi_mem_put8(), ddi_mem_put16(), ddi_mem_put32(), and
ddi_mem_put64() functions write 8 bits, 16 bits, 32 bits and 64 bits of data, respectively,
to the device address, dev_addr , in memory space.

Each individual datum will automatically be translated to maintain a consistent view
between the host and the device based on the encoded information in the data access
handle. The translation may involve byte-swapping if the host and the device have
incompatible endian characteristics.

CONTEXT These functions can be called from user, kernel, or interrupt context.

SEE ALSO ddi_mem_get8(9F), ddi_mem_rep_get8(9F), ddi_regs_map_setup(9F),
ddi_device_acc_attr(9S)

NOTES The functions described in this manual page previously used symbolic names which
specified their data access size; the function names have been changed so they now
specify a fixed-width data size. See the following table for the new name equivalents:

Previous Name New Name
ddi_mem_putb ddi_mem_put8
ddi_mem_putw ddi_mem_put16
ddi_mem_putl ddi_mem_put32
ddi_mem_putll ddi_mem_put64

modified 28 Sep 1996 SunOS 5.6 9F-305

ddi_mem_rep_get8 (9F) Kernel Functions for Drivers

NAME ddi_mem_rep_get8, ddi_mem_rep_get16, ddi_mem_rep_get32, ddi_mem_rep_get64,
ddi_mem_rep_getw, ddi_mem_rep_getl, ddi_mem_rep_getll, ddi_mem_rep_getb − read
multiple data from mapped device in the memory space or allocated DMA memory

SYNOPSIS #include <sys/ddi.h>
#include <sys/sunddi.h>

void ddi_mem_rep_get8(ddi_acc_handle_t handle, uint8_t ∗host_addr ,
uint8_t ∗dev_addr , size_t repcount, uint_t flags);

void ddi_mem_rep_get16(ddi_acc_handle_t handle, uint16_t ∗host_addr ,
uint16_t ∗dev_addr , size_t repcount, uint_t flags);

void ddi_mem_rep_get32(ddi_acc_handle_t handle, uint32_t ∗host_addr ,
uint32_t ∗dev_addr , size_t repcount, uint_t flags);

void ddi_mem_rep_get64(ddi_acc_handle_t handle, uint64_t ∗host_addr ,
uint64_t ∗dev_addr , size_t repcount, uint_t flags);

INTERFACE
LEVEL

Solaris DDI specific (Solaris DDI).

ARGUMENTS handle The data access handle returned from setup calls, such as
ddi_regs_map_setup(9F).

host_addr Base host address.

dev_addr Base device address.

repcount Number of data accesses to perform.

flags Device address flags:

DDI_DEV_AUTOINCR
Automatically increment the device address, dev_addr , during
data accesses.

DDI_DEV_NO_AUTOINCR
Do not advance the device address, dev_addr , during data
accesses.

DESCRIPTION These routines generate multiple reads from memory space or allocated DMA memory.
repcount data is copied from the device address, dev_addr , in memory space to the host
address, host_addr . For each input datum, the ddi_mem_rep_get8(),
ddi_mem_rep_get16(), ddi_mem_rep_get32(), and ddi_mem_rep_get64() functions
read 8 bits, 16 bits, 32 bits and 64 bits of data, respectively, from the device address,
dev_addr . dev_addr and host_addr must be aligned to the datum boundary described by
the function.

Each individual datum will automatically be translated to maintain a consistent view
between the host and the device based on the encoded information in the data access
handle. The translation may involve byte-swapping if the host and the device have
incompatible endian characteristics.

9F-306 SunOS 5.6 modified 28 Aug 1996

Kernel Functions for Drivers ddi_mem_rep_get8 (9F)

When the flags argument is set to DDI_DEV_AUTOINCR, these functions will treat the
device address, dev_addr , as a memory buffer location on the device and increments its
address on the next input datum. However, when the flags argument is set to
DDI_DEV_NO_AUTOINCR, the same device address will be used for every datum access.
For example, this flag may be useful when reading from a data register.

CONTEXT These functions can be called from user, kernel, or interrupt context.

SEE ALSO ddi_mem_get8(9F), ddi_mem_put8(9F), ddi_mem_rep_put8(9F),
ddi_regs_map_setup(9F), ddi_device_acc_attr(9S)

NOTES The functions described in this manual page previously used symbolic names which
specified their data access size; the function names have been changed so they now
specify a fixed-width data size. See the following table for the new name equivalents:

Previous Name New Name
ddi_mem_rep_getb ddi_mem_rep_get8
ddi_mem_rep_getw ddi_mem_rep_get16
ddi_mem_rep_getl ddi_mem_rep_get32
ddi_mem_rep_getll ddi_mem_rep_get64

modified 28 Aug 1996 SunOS 5.6 9F-307

ddi_mem_rep_put8 (9F) Kernel Functions for Drivers

NAME ddi_mem_rep_put8, ddi_mem_rep_put16, ddi_mem_rep_put32, ddi_mem_rep_put64,
ddi_mem_rep_putw, ddi_mem_rep_putl, ddi_mem_rep_putll, ddi_mem_rep_putb −
write multiple data to mapped device in the memory space or allocated DMA memory

SYNOPSIS #include <sys/ddi.h>
#include <sys/sunddi.h>

void ddi_mem_rep_put8(ddi_acc_handle_t handle, uint8_t ∗host_addr ,
uint8_t ∗dev_addr , size_t repcount, uint_t flags);

void ddi_mem_rep_put16(ddi_acc_handle_t handle, uint16_t ∗host_addr ,
uint16_t ∗dev_addr , size_t repcount, uint_t flags);

void ddi_mem_rep_put32(ddi_acc_handle_t handle, uint32_t ∗host_addr ,
uint32_t ∗dev_addr , size_t repcount, uint_t flags);

void ddi_mem_rep_put64(ddi_acc_handle_t handle, uint64_t ∗host_addr ,
uint64_t ∗dev_addr , size_t repcount, uint_t flags);

INTERFACE
LEVEL

Solaris DDI specific (Solaris DDI).

ARGUMENTS handle The data access handle returned from setup calls, such as
ddi_regs_map_setup(9F).

host_addr Base host address.

dev_addr Base device address.

repcount Number of data accesses to perform.

flags Device address flags:

DDI_DEV_AUTOINCR
Automatically increment the device address, dev_addr , dur-
ing data accesses.

DDI_DEV_NO_AUTOINCR
Do not advance the device address, dev_addr , during data
accesses.

DESCRIPTION These routines generate multiple writes to memory space or allocated DMA memory. rep-
count data is copied from the host address, host_addr , to the device address, dev_addr , in
memory space. For each input datum, the ddi_mem_rep_put8(),
ddi_mem_rep_put16(), ddi_mem_rep_put32(), and ddi_mem_rep_put64() functions
write 8 bits, 16 bits, 32 bits and 64 bits of data, respectively, to the device address.
dev_addr and host_addr must be aligned to the datum boundary described by the function.

Each individual datum will automatically be translated to maintain a consistent view
between the host and the device based on the encoded information in the data access
handle. The translation may involve byte-swapping if the host and the device have
incompatible endian characteristics.

9F-308 SunOS 5.6 modified 28 Oct 1996

Kernel Functions for Drivers ddi_mem_rep_put8 (9F)

When the flags argument is set to DDI_DEV_AUTOINCR, these functions will treat the
device address, dev_addr , as a memory buffer location on the device and increments its
address on the next input datum. However, when the flags argument is set to
DDI_DEV_NO_AUTOINCR, the same device address will be used for every datum access.
For example, this flag may be useful when writing from a data register.

CONTEXT These functions can be called from user, kernel, or interrupt context.

SEE ALSO ddi_mem_get8(9F), ddi_mem_put8(9F), ddi_mem_rep_get8(9F),
ddi_regs_map_setup(9F), ddi_device_acc_attr(9S)

NOTES The functions described in this manual page previously used symbolic names which
specified their data access size; the function names have been changed so they now
specify a fixed-width data size. See the following table for the new name equivalents:

Previous Name New Name
ddi_mem_rep_putb ddi_mem_rep_put8
ddi_mem_rep_putw ddi_mem_rep_put16
ddi_mem_rep_putl ddi_mem_rep_put32
ddi_mem_rep_putll ddi_mem_rep_put64

modified 28 Oct 1996 SunOS 5.6 9F-309

ddi_mmap_get_model (9F) Kernel Functions for Drivers

NAME ddi_mmap_get_model − return data model type of current thread

SYNOPSIS #include <sys/ddi.h>
#include <sys/sunddi.h>

uint_t ddi_mmap_get_model(void);

INTERFACE
LEVEL

Solaris DDI specific (Solaris DDI).

DESCRIPTION ddi_mmap_get_model() returns the C Language Type Model which the current thread
expects. ddi_mmap_get_model() is used in combination with
ddi_model_convert_from(9F) in the mmap(9E) driver entry point to determine whether
there is a data model mismatch between the current thread and the device driver. The
device driver might have to adjust the shape of data structures before exporting them to a
user thread which supports a different data model.

RETURN VALUES DDI_MODEL_ILP32 Current thread expects 32-bit (ILP32) semantics.

DDI_MODEL_LP64 Current thread expects 64-bit (LP64) semantics.

DDI_FAILURE The ddi_mmap_get_model() function was not called from the
mmap(9E) entry point.

CONTEXT The ddi_mmap_get_model() function can only be called from the mmap(9E) driver entry
point.

EXAMPLES The following is an example of the mmap(9E) entry point and how to support 32-bit and
64-bit applications with the same device driver.

struct data32 {
int len;
caddr32_t addr;

};

struct data {
int len;
caddr_t addr;

};

xxmmap(dev_t dev, off_t off, int prot) {
struct data dtc; /∗ a local copy for clash resolution ∗/
struct data ∗dp = (struct data ∗)shared_area;

#ifdef _MULTI_DATAMODEL
switch (ddi_model_convert_from(ddi_mmap_get_model())) {
case DDI_MODEL_ILP32:
{

struct data32 ∗da32p;

9F-310 SunOS 5.6 modified 20 Oct 1996

Kernel Functions for Drivers ddi_mmap_get_model (9F)

da32p = (struct data32 ∗)shared_area;
dp = &dtc;
dp->len = da32p->len;
dp->address = da32->address;
break;

}
case DDI_MODEL_NONE:

break;
}

#endif /∗ _MULTI_DATAMODEL ∗/
/∗ continues along using dp ∗/
. . . .

}

SEE ALSO mmap(9E), ddi_model_convert_from(9F)

Writing Device Drivers

modified 20 Oct 1996 SunOS 5.6 9F-311

ddi_model_convert_from (9F) Kernel Functions for Drivers

NAME ddi_model_convert_from − determine data model type mismatch

SYNOPSIS #include <sys/ddi.h>
#include <sys/sunddi.h>

uint_t ddi_model_convert_from(uint_t model);

INTERFACE
LEVEL

Solaris DDI specific (Solaris DDI).

ARGUMENTS model The data model type of the current thread.

DESCRIPTION ddi_model_convert_from() is used to determine if the current thread uses a different C
Language Type Model than the device driver. The 64-bit version of Solaris will require a
64-bit kernel to support both 64-bit and 32-bit user mode programs. The difference
between a 32-bit program and a 64-bit program is in its C Language Type Model: a 32-bit
program is ILP32 (integer, longs, and pointers are 32-bit) and a 64-bit program is LP64
(longs and pointers are 64-bit). There are a number of driver entry points such as
ioctl(9E) and mmap(9E) where it is necessary to identify the C Language Type Model of
the user-mode originator of an kernel event. For example any data which flows between
programs and the device driver or vice versa need to be identical in format. A 64-bit dev-
ice driver may need to modify the format of the data before sending it to a 32-bit applica-
tion. ddi_model_convert_from() is used to determine if data that is passed between the
device driver and the application requires reformatting to any non-native data model.

RETURN VALUES DDI_MODEL_ILP32 A conversion to/from ILP32 is necessary.

DDI_MODEL_NONE No conversion is necessary. Current thread and driver use
the same data model.

CONTEXT ddi_model_convert_from() can be called from any context.

EXAMPLES The following is an example how to use ddi_model_convert_from() in the ioctl() entry
point to support both 32-bit and 64-bit applications.

struct passargs32 {
int len;
caddr32_t addr;

};

struct passargs {
int len;
caddr_t addr;

};

xxioctl(dev_t dev, int cmd, intptr_t arg, int mode,
cred_t ∗credp, int ∗rvalp) {

struct passargs pa;

9F-312 SunOS 5.6 modified 20 Sep 1996

Kernel Functions for Drivers ddi_model_convert_from (9F)

#ifdef _MULTI_DATAMODEL
switch (ddi_model_convert_from(mode & FMODELS)) {

case DDI_MODEL_ILP32:
{

struct passargs32 pa32;

ddi_copyin(arg, &pa32, sizeof (struct passargs32), mode);
pa.len = pa32.len;
pa.address = pa32.address;
break;

}
case DDI_MODEL_NONE:

ddi_copyin(arg, &pa, sizeof (struct passargs), mode);
break;

}
#else /∗ _MULTI_DATAMODEL ∗/

ddi_copyin(arg, &pa, sizeof (struct passargs), mode);
#endif /∗ _MULTI_DATAMODEL ∗/

do_ioctl(&pa);
. . . .

}

SEE ALSO ioctl(9E), mmap(9E), ddi_mmap_get_model(9F)

Writing Device Drivers

modified 20 Sep 1996 SunOS 5.6 9F-313

ddi_node_name (9F) Kernel Functions for Drivers

NAME ddi_node_name − return the devinfo node name

SYNOPSIS #include <sys/ddi.h>
#include <sys/sunddi.h>

char ∗ddi_node_name(dev_info_t ∗dip);

INTERFACE
LEVEL

Solaris DDI specific (Solaris DDI).

ARGUMENTS dip A pointer the device’s dev_info structure.

DESCRIPTION ddi_node_name() returns the device node name contained in the dev_info node pointed
to by dip.

RETURN VALUES ddi_node_name() returns the device node name contained in the dev_info structure.

CONTEXT ddi_node_name() can be called from user or interrupt context.

SEE ALSO ddi_binding_name(9F)

Writing Device Drivers

9F-314 SunOS 5.6 modified 3 May 1996

Kernel Functions for Drivers ddi_peek (9F)

NAME ddi_peek, ddi_peek8, ddi_peek16, ddi_peek32, ddi_peek64, ddi_peekc, ddi_peeks,
ddi_peekl, ddi_peekd − read a value from a location

SYNOPSIS #include <sys/ddi.h>
#include <sys/sunddi.h>

int ddi_peek8(dev_info_t ∗dip, int8_t ∗addr , int8_t ∗valuep);

int ddi_peek16(dev_info_t ∗dip, int16_t ∗addr , int16_t ∗valuep);

int ddi_peek32(dev_info_t ∗dip, int32_t ∗addr , int32_t ∗valuep);

int ddi_peek64(dev_info_t ∗dip, int64_t ∗addr , int64_t ∗valuep);

INTERFACE
LEVEL

Solaris DDI specific (Solaris DDI).

ARGUMENTS dip A pointer to the device’s dev_info structure.

addr Virtual address of the location to be examined.

valuep Pointer to a location to hold the result. If a null pointer is specified, then the
value read from the location will simply be discarded.

DESCRIPTION These routines cautiously attempt to read a value from a specified virtual address, and
return the value to the caller, using the parent nexus driver to assist in the process where
necessary.

If the address is not valid, or the value cannot be read without an error occurring, an
error code is returned.

The routines are most useful when first trying to establish the presence of a device on the
system in a driver’s probe(9E) or attach(9E) routines.

RETURN VALUES DDI_SUCCESS The value at the given virtual address was successfully read, and if
valuep is non-null, ∗valuep will have been updated.

DDI_FAILURE An error occurred while trying to read the location. ∗valuep is
unchanged.

CONTEXT These functions can be called from user or interrupt context.

EXAMPLES Check to see that the status register of a device is mapped into the kernel address space:

if (ddi_peek8(dip, csr, (int8_t ∗)0) != DDI_SUCCESS) {
cmn_err(CE_WARN, "Status register not mapped");
return (DDI_FAILURE);

}

modified 20 Nov 1996 SunOS 5.6 9F-315

ddi_peek (9F) Kernel Functions for Drivers

Read and log the device type of a particular device:

int
xx_attach(dev_info_t ∗dip, ddi_attach_cmd_t cmd)
{

...
/∗ map device registers ∗/
...

if (ddi_peek32(dip, id_addr, &id_value) != DDI_SUCCESS) {
cmn_err(CE_WARN, "%s%d: cannot read device identifier",

ddi_get_name(dip), ddi_get_instance(dip));
goto failure;

} else
cmn_err(CE_CONT, "!%s%d: device type 0x%x\n",

ddi_get_name(dip), ddi_get_instance(dip), id_value);
...
...

ddi_report_dev(dip);
return (DDI_SUCCESS);

failure:
/∗ free any resources allocated ∗/
...
return (DDI_FAILURE);

}

SEE ALSO attach(9E), probe(9E), ddi_poke(9F)

Writing Device Drivers

NOTES The functions described in this manual page previously used symbolic names which
specified their data access size; the function names have been changed so they now
specify a fixed-width data size. See the following table for the new name equivalents:

Previous Name New Name
ddi_peekc ddi_peek8
ddi_peeks ddi_peek16
ddi_peekl ddi_peek32
ddi_peekd ddi_peek64

9F-316 SunOS 5.6 modified 20 Nov 1996

Kernel Functions for Drivers ddi_poke (9F)

NAME ddi_poke, ddi_poke8, ddi_poke16, ddi_poke32, ddi_poke64, ddi_pokec, ddi_pokes,
ddi_pokel, ddi_poked − write a value to a location

SYNOPSIS #include <sys/ddi.h>
#include <sys/sunddi.h>

int ddi_poke8(dev_info_t ∗dip, int8_t ∗addr , int8_t value);

int ddi_poke16(dev_info_t ∗dip, int16_t ∗addr , int16_t value);

int ddi_poke32(dev_info_t ∗dip, int32_t ∗addr , int32_t value);

int ddi_poke64(dev_info_t ∗dip, int64_t ∗addr , int64_t value);

INTERFACE
LEVEL

Solaris DDI specific (Solaris DDI).

ARGUMENTS dip A pointer to the device’s dev_info structure.

addr Virtual address of the location to be written to.

value Value to be written to the location.

DESCRIPTION These routines cautiously attempt to write a value to a specified virtual address, using
the parent nexus driver to assist in the process where necessary.

If the address is not valid, or the value cannot be written without an error occurring, an
error code is returned.

These routines are most useful when first trying to establish the presence of a given dev-
ice on the system in a driver’s probe(9E) or attach(9E) routines.

On multiprocessing machines these routines can be extremely heavy-weight, so use the
ddi_peek(9F) routines instead if possible.

RETURN VALUES DDI_SUCCESS The value was successfully written to the given virtual address.

DDI_FAILURE An error occurred while trying to write to the location.

CONTEXT These functions can be called from user or interrupt context.

SEE ALSO attach(9E), probe(9E), ddi_peek(9F)

Writing Device Drivers

NOTES The functions described in this manual page previously used symbolic names which
specified their data access size; the function names have been changed so they now
specify a fixed-width data size. See the following table for the new name equivalents:

modified 20 Nov 1996 SunOS 5.6 9F-317

ddi_poke (9F) Kernel Functions for Drivers

Previous Name New Name
ddi_pokec ddi_poke8
ddi_pokes ddi_poke16
ddi_pokel ddi_poke32
ddi_poked ddi_poke64

9F-318 SunOS 5.6 modified 20 Nov 1996

Kernel Functions for Drivers ddi_prop_create (9F)

NAME ddi_prop_create, ddi_prop_modify, ddi_prop_remove, ddi_prop_remove_all,
ddi_prop_undefine − create, remove, or modify properties for leaf device drivers

SYNOPSIS #include <sys/conf.h>
#include <sys/ddi.h>
#include <sys/sunddi.h>

int ddi_prop_create(dev_t dev, dev_info_t ∗dip, int flags , char ∗name, caddr_t valuep,
int length);

int ddi_prop_undefine(dev_t dev, dev_info_t ∗dip, int flags , char ∗name);

int ddi_prop_modify(dev_t dev, dev_info_t ∗dip, int flags , char ∗name, caddr_t valuep,
int length);

int ddi_prop_remove(dev_t dev, dev_info_t ∗dip, char ∗name);

void ddi_prop_remove_all(dev_info_t ∗dip);

INTERFACE
LEVEL

Solaris DDI specific (Solaris DDI).

ARGUMENTS
ddi_prop_create() dev dev_t of the device.

dip dev_info_t pointer of the device.

flags flag modifiers. The only possible flag value is
DDI_PROP_CANSLEEP: Memory allocation may sleep.

name name of property.

valuep pointer to property value.

length property length.

ddi_prop_undefine() dev dev_t of the device.

dip dev_info_t pointer of the device.

flags flag modifiers. The only possible flag value is
DDI_PROP_CANSLEEP: Memory allocation may sleep.

name name of property.

ddi_prop_modify() dev dev_t of the device.

dip dev_info_t pointer of the device.

flags flag modifiers. The only possible flag value is
DDI_PROP_CANSLEEP: Memory allocation may sleep.

name name of property.

valuep pointer to property value.

length property length.

modified 18 Sep 1992 SunOS 5.6 9F-319

ddi_prop_create (9F) Kernel Functions for Drivers

ddi_prop_remove() dev dev_t of the device.

dip dev_info_t pointer of the device.

name name of property.

ddi_prop_remove_all() dip dev_info_t pointer of the device.

DESCRIPTION Device drivers have the ability to create and manage their own properties as well as gain
access to properties that the system creates on behalf of the driver. A driver uses
ddi_getproplen(9F) to query whether or not a specific property exists.

Property creation is done by creating a new property definition in the driver’s property
list associated with dip.

Property definitions are stacked; they are added to the beginning of the driver’s property
list when created. Thus, when searched for, the most recent matching property definition
will be found and its value will be return to the caller.

ddi_prop_create() ddi_prop_create() adds a property to the device’s property list. If the property is not
associated with any particular dev but is associated with the physical device itself, then
the argument dev should be the special device DDI_DEV_T_NONE. If you do not have a
dev for your device (for example during attach(9E) time), you can create one using
makedevice(9F) with a major number of DDI_MAJOR_T_UNKNOWN. ddi_prop_create()
will then make the correct dev for your device.

For boolean properties, you must set length to 0. For all other properties, the length argu-
ment must be set to the number of bytes used by the data structure representing the pro-
perty being created.

Note that creating a property involves allocating memory for the property list, the pro-
perty name and the property value. If flags does not contain DDI_PROP_CANSLEEP,
ddi_prop_create() returns DDI_PROP_NO_MEMORY on memory allocation failure or
DDI_SUCCESS if the allocation succeeded. If DDI_PROP_CANSLEEP was set, the caller
may sleep until memory becomes available.

ddi_prop_undefine() ddi_prop_undefine() is a special case of property creation where the value of the pro-
perty is set to undefined. This property has the effect of terminating a property search at
the current devinfo node, rather than allowing the search to proceed up to ancestor
devinfo nodes. See ddi_prop_op(9F).

Note that undefining properties does involve memory allocation, and therefore, is subject
to the same memory allocation constraints as ddi_prop_create().

ddi_prop_modify() ddi_prop_modify() modifies the length and the value of a property. If
ddi_prop_modify() finds the property in the driver’s property list, allocates memory for
the property value and returns DDI_PROP_SUCCESS. If the property was not found, the
function returns DDI_PROP_NOT_FOUND.

Note that modifying properties does involve memory allocation, and therefore, is subject
to the same memory allocation constraints as ddi_prop_create().

9F-320 SunOS 5.6 modified 18 Sep 1992

Kernel Functions for Drivers ddi_prop_create (9F)

ddi_prop_remove() ddi_prop_remove() unlinks a property from the device’s property list. If
ddi_prop_remove() finds the property (an exact match of both nameand dev), it unlinks
the property, frees its memory, and returns DDI_PROP_SUCCESS, otherwise, it returns
DDI_PROP_NOT_FOUND.

ddi_prop_remove_all() ddi_prop_remove_all() removes the properties of all the dev_t’s associated with the dip.
It is called before unloading a driver.

RETURN VALUES
ddi_prop_create() DDI_PROP_SUCCESS on success.

DDI_PROP_NO_MEMORY on memory allocation failure.

DDI_PROP_INVAL_ARG if an attempt is made to create a property with dev
equal to DDI_DEV_T_ANY or if name is NULL or name is
the NULL string.

ddi_prop_undefine() DDI_PROP_SUCCESS on success.

DDI_PROP_NO_MEMORY on memory allocation failure.

DDI_PROP_INVAL_ARG if an attempt is made to create a property with dev
DDI_DEV_T_ANY or if name is NULL or name is the
NULL string.

ddi_prop_modify() DDI_PROP_SUCCESS on success.

DDI_PROP_NO_MEMORY on memory allocation failure.

DDI_PROP_INVAL_ARG if an attempt is made to create a property with dev
equal to DDI_DEV_T_ANY or if name is NULL or name is
the NULL string.

DDI_PROP_NOT_FOUND on property search failure.

ddi_prop_remove() DDI_PROP_SUCCESS on success.

DDI_PROP_INVAL_ARG if an attempt is made to create a property with dev
equal to DDI_DEV_T_ANY or if name is NULL or name is
the NULL string.

DDI_PROP_NOT_FOUND on property search failure.

CONTEXT If DDI_PROP_CANSLEEP is set, these functions can only be called from user context; oth-
erwise, they can be called from interrupt or user context.

modified 18 Sep 1992 SunOS 5.6 9F-321

ddi_prop_create (9F) Kernel Functions for Drivers

EXAMPLES Create a property called nblocks for each partition on a disk.

for (minor = 0; minor < 8; minor ++) {
(void) ddi_prop_create(makedevice(DDI_MAJOR_T_UNKNOWN, minor),

dev, DDI_PROP_CANSLEEP, "nblocks", 8192, sizeof (int));
...

}

SEE ALSO driver.conf(4), attach(9E), ddi_getproplen(9F), ddi_prop_op(9F), makedevice(9F)

Writing Device Drivers

9F-322 SunOS 5.6 modified 18 Sep 1992

Kernel Functions for Drivers ddi_prop_exists (9F)

NAME ddi_prop_exists − check for the existence of a property

SYNOPSIS #include <sys/ddi.h>
#include <sys/sunddi.h>

int ddi_prop_exists(dev_t match_dev, dev_info_t ∗dip, u_int flags , char ∗name);

INTERFACE
LEVEL

Solaris DDI specific (Solaris DDI).

ARGUMENTS match_dev Device number associated with property or DDI_DEV_T_ANY.

dip Pointer to the device info node of device whose property list should be
searched.

flags Possible flag values are some combination of:

DDI_PROP_DONTPASS
Do not pass request to parent device information node if the
property is not found.

DDI_PROP_NOTPROM
Do not look at PROM properties (ignored on platforms that
do not support PROM properties).

name String containing the name of the property.

DESCRIPTION ddi_prop_exists() checks for the existence of a property regardless of the property value
data type.

Properties are searched for based on the dip, name, and match_dev. The property search
order is as follows:

1. Search software properties created by the driver.

2. Search the software properties created by the system (or nexus nodes in the
device info tree).

3. Search the driver global properties list.

4. If DDI_PROP_NOTPROM is not set, search the PROM properties (if they exist).

5. If DDI_PROP_DONTPASS is not set, pass this request to the parent device
information node.

6. Return 0 if not found and 1 if found.

Usually, the match_dev argument should be set to the actual device number that this pro-
perty is associated with. However, if the match_dev argument is DDI_DEV_T_ANY, then
ddi_prop_exists() will match the request regardless of the match_dev the property was
created with. That is the first property whose name matches name will be returned. If a
property was created with match_dev set to DDI_DEV_T_NONE then the only way to look
up this property is with a match_dev set to DDI_DEV_T_ANY. PROM properties are always
created with match_dev set to DDI_DEV_T_NONE.

modified 22 May 1995 SunOS 5.6 9F-323

ddi_prop_exists (9F) Kernel Functions for Drivers

name must always be set to the name of the property being looked up.

RETURN VALUES ddi_prop_exists() returns 1 if the property exists and 0 otherwise.

CONTEXT These functions can be called from user or kernel context.

EXAMPLES The following example demonstrates the use of ddi_prop_exists().

/∗
∗ Enable "whizzy" mode if the "whizzy-mode" property exists
∗/
if (ddi_prop_exists(xx_dev, xx_dip, DDI_PROP_NOTPROM,

"whizzy-mode") == 1) {
xx_enable_whizzy_mode(xx_dip);

} else {
xx_disable_whizzy_mode(xx_dip);

}

SEE ALSO ddi_prop_get_int(9F), ddi_prop_lookup(9F), ddi_prop_remove(9F),
ddi_prop_update(9F)

Writing Device Drivers

9F-324 SunOS 5.6 modified 22 May 1995

Kernel Functions for Drivers ddi_prop_get_int (9F)

NAME ddi_prop_get_int − lookup integer property

SYNOPSIS #include <sys/ddi.h>
#include <sys/sunddi.h>

int ddi_prop_get_int(dev_t match_dev, dev_info_t ∗dip,
u_int flags , char ∗name, int defvalue);

ARGUMENTS match_dev Device number associated with property or DDI_DEV_T_ANY.

dip Pointer to the device info node of device whose property list should be
searched.

flags Possible flag values are some combination of:

DDI_PROP_DONTPASS
Do not pass request to parent device information node if pro-
perty not found.

DDI_PROP_NOTPROM
Do not look at PROM properties (ignored on platforms that
do not support PROM properties).

name String containing the name of the property.

defvalue An integer value that is returned if the property cannot be found.

INTERFACE
LEVEL

Solaris DDI specific (Solaris DDI).

DESCRIPTION ddi_prop_get_int() searches for an integer property and, if found, returns the value of
the property.

Properties are searched for based on the dip, name, match_dev, and the type of the data
(integer). The property search order is as follows:

1. Search software properties created by the driver.

2. Search the software properties created by the system (or nexus nodes in the
device info tree).

3. Search the driver global properties list.

4. If DDI_PROP_NOTPROM is not set, search the PROM properties (if they exist).

5. If DDI_PROP_DONTPASS is not set, pass this request to the parent device
information node.

6. Return DDI_PROP_NOT_FOUND.

Usually, the match_dev argument should be set to the actual device number that this pro-
perty is associated with. However, if the match_dev argument is DDI_DEV_T_ANY, then
ddi_prop_get_int() will match the request regardless of the match_dev the property was
created with. If a property was created with match_dev set to DDI_DEV_T_NONE, then the
only way to look up this property is with a match_dev set to DDI_DEV_T_ANY. PROM pro-
perties are always created with match_dev set to DDI_DEV_T_NONE.

modified 17 Nov 1994 SunOS 5.6 9F-325

ddi_prop_get_int (9F) Kernel Functions for Drivers

name must always be set to the name of the property being looked up.

The return value of the routine is the value of the property. If the property is not found,
the argument defvalue is returned as the value of the property.

RETURN VALUES ddi_prop_get_int() returns the value of the property. If the property is not found, the
argument defvalue is returned.

CONTEXT ddi_prop_get_int() can be called from user or kernel context.

EXAMPLES The following example demonstrates the use of ddi_prop_get_int().

/∗
∗ Get the value of the integer "width" property, using
∗ our own default if no such property exists
∗/
width = ddi_prop_get_int(xx_dev, xx_dip, 0, "width",

XX_DEFAULT_WIDTH);

SEE ALSO ddi_prop_exists(9F), ddi_prop_lookup(9F), ddi_prop_remove(9F),
ddi_prop_update(9F)

Writing Device Drivers

9F-326 SunOS 5.6 modified 17 Nov 1994

Kernel Functions for Drivers ddi_prop_lookup (9F)

NAME ddi_prop_lookup, ddi_prop_lookup_int_array, ddi_prop_lookup_string_array,
ddi_prop_lookup_string, ddi_prop_lookup_byte_array, ddi_prop_free − look up pro-
perty information

SYNOPSIS #include <sys/ddi.h>
#include <sys/sunddi.h>

int ddi_prop_lookup_int_array(dev_t match_dev, dev_info_t ∗dip,
u_int flags , char ∗name, int ∗∗datap , u_int ∗nelementsp);

int ddi_prop_lookup_string_array(dev_t match_dev, dev_info_t ∗dip,
u_int flags , char ∗name, char ∗∗∗datap , u_int ∗nelementsp);

int ddi_prop_lookup_string(dev_t match_dev, dev_info_t ∗dip,
u_int flags , char ∗name, char ∗∗datap);

int ddi_prop_lookup_byte_array(dev_t match_dev, dev_info_t ∗dip,
u_int flags , char ∗name, u_char ∗∗datap , u_int ∗nelementsp);

void ddi_prop_free(void ∗data);

ARGUMENTS match_dev Device number associated with property or DDI_DEV_T_ANY.

dip Pointer to the device info node of device whose property list should be
searched.

flags Possible flag values are some combination of:

DDI_PROP_DONTPASS
Do not pass request to parent device information node if the
property is not found.

DDI_PROP_NOTPROM
Do not look at PROM properties (ignored on platforms that
do not support PROM properties).

name String containing the name of the property.

nelementsp The address of an unsigned integer which, upon successful return, will
contain the number of elements accounted for in the memory pointed at
by datap . The elements are either integers, strings or bytes depending on
the interface used.

ddi_prop_lookup_int_array() datap The address of a pointer to an array of integers which, upon successful
return, will point to memory containing the integer array property
value.

ddi_prop_lookup_string_array() datap The address of a pointer to an array of strings which, upon successful
return, will point to memory containing the array of strings. The array
of strings is formatted as an array of pointers to NULL terminated
strings, much like the argv argument to execve(2).

modified 17 Nov 1994 SunOS 5.6 9F-327

ddi_prop_lookup (9F) Kernel Functions for Drivers

ddi_prop_lookup_string() datap The address of a pointer to a string which, upon successful return, will
point to memory containing the NULL terminated string value of the
property.

ddi_prop_lookup_byte_array() datap The address of pointer to an array of bytes which, upon successful
return, will point to memory containing the byte array value of the pro-
perty.

INTERFACE
LEVEL

Solaris DDI specific (Solaris DDI).

DESCRIPTION The property look up routines search for and, if found, return the value of a given pro-
perty. Properties are searched for based on the dip, name, match_dev, and the type of the
data (integer, string or byte). The property search order is as follows:

1. Search software properties created by the driver.

2. Search the software properties created by the system (or nexus nodes in the
device info tree).

3. Search the driver global properties list.

4. If DDI_PROP_NOTPROM is not set, search the PROM properties (if they exist).

5. If DDI_PROP_DONTPASS is not set, pass this request to the parent device
information node.

6. Return DDI_PROP_NOT_FOUND.

Usually, the match_dev argument should be set to the actual device number that this pro-
perty is associated with. However, if the match_dev argument is DDI_DEV_T_ANY, the
property look up routines will match the request regardless of the actual match_dev the
property was created with. If a property was created with match_dev set to
DDI_DEV_T_NONE, then the only way to look up this property is with a match_dev set to
DDI_DEV_T_ANY. PROM properties are always created with match_dev set to
DDI_DEV_T_NONE.

name must always be set to the name of the property being looked up.

For the routines ddi_prop_lookup_int_array(), ddi_prop_lookup_string_array(),
ddi_prop_lookup_string(), and ddi_prop_lookup_byte_array(), datap is the address of a
pointer which, upon successful return, will point to memory containing the value of the
property. In each case ∗datap points to a different type of property value. See the indivi-
dual descriptions of the routines below for details on the different return values.
nelementsp is the address of an unsigned integer which, upon successful return, will con-
tain the number of integer, string or byte elements accounted for in the memory pointed
at by ∗datap .

All of the property look up routines may block to allocate memory needed to hold the
value of the property.

When a driver has obtained a property with any look up routine and is finished with that
property, it must be freed by calling ddi_prop_free(). ddi_prop_free() must be called
with the address of the allocated property. For instance, if one called

9F-328 SunOS 5.6 modified 17 Nov 1994

Kernel Functions for Drivers ddi_prop_lookup (9F)

ddi_prop_lookup_int_array() with datap set to the address of a pointer to an integer,
&my_int_ptr, then the companion free call would be ddi_prop_free(my_int_ptr).

ddi_prop_lookup_int_array() This routine searches for and returns an array of integer property values. An array of
integers is defined to ∗nelementsp number of 4 byte long integer elements. datap should be
set to the address of a pointer to an array of integers which, upon successful return, will
point to memory containing the integer array value of the property.

ddi_prop_lookup_string_array() This routine searches for and returns a property that is an array of strings. datap should
be set to address of a pointer to an array of strings which, upon successful return, will
point to memory containing the array of strings. The array of strings is formatted as an
array of pointers to NULL terminated strings, much like the argv argument to execve(2).

ddi_prop_lookup_string() This routine searches for and returns a property that is a NULL terminated string. datap
should be set to the address of a pointer to string which, upon successful return, will
point to memory containing the string value of the property.

ddi_prop_lookup_byte_array() This routine searches for and returns a property that is an array of bytes. datap should be
set to the address of a pointer to an array of bytes which, upon successful return, will
point to memory containing the byte array value of the property.

ddi_prop_free() Frees the resources associated with a property previously allocated using
ddi_prop_lookup_int_array(), ddi_prop_lookup_string_array(),
ddi_prop_lookup_string(), or ddi_prop_lookup_byte_array().

RETURN VALUES
ddi_prop_lookup_int_array()

ddi_prop_lookup_string_array()
ddi_prop_lookup_string()

ddi_prop_lookup_byte_array() DDI_PROP_SUCCESS On success.

DDI_PROP_INVAL_ARG If an attempt is made to look up a property with
match_dev equal to DDI_DEV_T_NONE, name is NULL or
name is the null string.

DDI_PROP_NOT_FOUND Property not found.

DDI_PROP_UNDEFINED Property explicitly not defined (see
ddi_prop_undefine(9F)).

DDI_PROP_CANNOT_DECODE The value of the property cannot be decoded.

CONTEXT These functions can be called from user or kernel context.

EXAMPLES The following example demonstrates the use of ddi_prop_lookup().

int ∗options;
int noptions;

/∗

modified 17 Nov 1994 SunOS 5.6 9F-329

ddi_prop_lookup (9F) Kernel Functions for Drivers

∗ Get the data associated with the integer "options" property
∗ array, along with the number of option integers
∗/
if (ddi_prop_lookup_int_array(DDI_DEV_T_ANY, xx_dip, 0,

"options", &options, &noptions) == DDI_PROP_SUCCESS) {
/∗
∗ Do "our thing" with the options data from the property
∗/
xx_process_options(options, noptions);

/∗
∗ Free the memory allocated for the property data
∗/
ddi_prop_free(options);

}

SEE ALSO execve(2), ddi_prop_exists(9F), ddi_prop_get_int(9F), ddi_prop_remove(9F),
ddi_prop_undefine(9F), ddi_prop_update(9F)

Writing Device Drivers

9F-330 SunOS 5.6 modified 17 Nov 1994

Kernel Functions for Drivers ddi_prop_op (9F)

NAME ddi_prop_op, ddi_getprop, ddi_getlongprop, ddi_getlongprop_buf, ddi_getproplen − get
property information for leaf device drivers

SYNOPSIS #include <sys/types.h>
#include <sys/ddi.h>
#include <sys/sunddi.h>

int ddi_prop_op(dev_t dev, dev_info_t ∗dip, ddi_prop_op_t prop_op, int flags ,
char ∗name, caddr_t valuep, int ∗lengthp);

int ddi_getprop(dev_t dev, dev_info_t ∗dip, int flags , char ∗name, int defvalue);

int ddi_getlongprop(dev_t dev, dev_info_t ∗dip, int flags , char ∗name, caddr_t valuep,
int ∗lengthp);

int ddi_getlongprop_buf(dev_t dev, dev_info_t ∗dip, int flags , char ∗name,
caddr_t valuep, int ∗lengthp);

int ddi_getproplen(dev_t dev, dev_info_t ∗dip, int flags , char ∗name, int ∗lengthp);

INTERFACE
LEVEL

Solaris DDI specific (Solaris DDI).

ARGUMENTS dev Device number associated with property or DDI_DEV_T_ANY as the
wildcard device number.

dip Pointer to a device info node.

prop_op Property operator.

flags Possible flag values are some combination of:

DDI_PROP_DONTPASS
do not pass request to parent device information node if pro-
perty not found

DDI_PROP_CANSLEEP
the routine may sleep while allocating memory

DDI_PROP_NOTPROM
do not look at PROM properties (ignored on architectures
that do not support PROM properties).

name String containing the name of the property.

valuep If prop_op is PROP_LEN_AND_VAL_BUF, this should be a pointer to the
users buffer. If prop_op is PROP_LEN_AND_VAL_ALLOC, this should be
the address of a pointer.

lengthp On exit, ∗lengthp will contain the property length. If prop_op is
PROP_LEN_AND_VAL_BUF then before calling ddi_prop_op(), lengthp
should point to an int that contains the length of callers buffer.

defvalue The value that ddi_getprop() returns if the property is not found.

modified 7 Jun 1993 SunOS 5.6 9F-331

ddi_prop_op (9F) Kernel Functions for Drivers

DESCRIPTION ddi_prop_op() gets arbitrary-size properties for leaf devices. The routine searches the
device’s property list. If it does not find the property at the device level, it examines the
flags argument, and if DDI_PROP_DONTPASS is set, then ddi_prop_op() returns
DDI_PROP_NOT_FOUND. Otherwise, it passes the request to the next level of the device
info tree. If it does find the property, but the property has been explicitly undefined, it
returns DDI_PROP_UNDEFINED. Otherwise it returns either the property length, or both
the length and value of the property to the caller via the valuep and lengthp pointers,
depending on the value of prop_op , as described below, and returns
DDI_PROP_SUCCESS. If a property cannot be found at all, DDI_PROP_NOT_FOUND is
returned.

Usually, the dev argument should be set to the actual device number that this property
applies to. However, if the dev argument is DDI_DEV_T_ANY, the wildcard dev, then
ddi_prop_op() will match the request based on name only (regardless of the actual dev
the property was created with). This property/dev match is done according to the pro-
perty search order which is to first search software properties created by the driver in
last-in, first-out (LIFO) order, next search software properties created by the system in LIFO
order, then search PROM properties if they exist in the system architecture.

Property operations are specified by the prop_op argument. If prop_op is PROP_LEN, then
ddi_prop_op() just sets the callers length, ∗lengthp, to the property length and returns the
value DDI_PROP_SUCCESS to the caller. The valuep argument is not used in this case.
Property lengths are 0 for boolean properties, sizeof (int) for integer properties, and size
in bytes for long (variable size) properties.

If prop_op is PROP_LEN_AND_VAL_BUF, then valuep should be a pointer to a user-
supplied buffer whose length should be given in ∗lengthp by the caller. If the requested
property exists, ddi_prop_op() first sets ∗lengthp to the property length. It then examines
the size of the buffer supplied by the caller, and if it is large enough, copies the property
value into that buffer, and returns DDI_PROP_SUCCESS. If the named property exists but
the buffer supplied is too small to hold it, it returns DDI_PROP_BUF_TOO_SMALL.

If prop_op is PROP_LEN_AND_VAL_ALLOC, and the property is found, ddi_prop_op()
sets ∗lengthp to the property length. It then attempts to allocate a buffer to return to the
caller using the kmem_alloc(9F) routine, so that memory can be later recycled using
kmem_free(9F). The driver is expected to call kmem_free() with the returned address
and size when it is done using the allocated buffer. If the allocation is successful, it sets
∗valuep to point to the allocated buffer, copies the property value into the buffer and
returns DDI_PROP_SUCCESS. Otherwise, it returns DDI_PROP_NO_MEMORY. Note that
the flags argument may affect the behavior of memory allocation in ddi_prop_op(). In
particular, if DDI_PROP_CANSLEEP is set, then the routine will wait until memory is
available to copy the requested property.

ddi_getprop() returns boolean and integer-size properties. It is a convenience wrapper
for ddi_prop_op() with prop_op set to PROP_LEN_AND_VAL_BUF, and the buffer is pro-
vided by the wrapper. By convention, this function returns a 1 for boolean (zero-length)
properties.

9F-332 SunOS 5.6 modified 7 Jun 1993

Kernel Functions for Drivers ddi_prop_op (9F)

ddi_getlongprop() returns arbitrary-size properties. It is a convenience wrapper for
ddi_prop_op() with prop_op set to PROP_LEN_AND_VAL_ALLOC, so that the routine will
allocate space to hold the buffer that will be returned to the caller via ∗valuep.

ddi_getlongprop_buf() returns arbitrary-size properties. It is a convenience wrapper for
ddi_prop_op() with prop_op set to PROP_LEN_AND_VAL_BUF so the user must supply a
buffer.

ddi_getproplen() returns the length of a given property. It is a convenience wrapper for
ddi_prop_op() with prop_op set to PROP_LEN.

RETURN VALUES ddi_prop_op()
ddi_getlongprop()
ddi_getlongprop_buf()
ddi_getproplen() return:

DDI_PROP_SUCCESS Property found and returned.

DDI_PROP_NOT_FOUND Property not found.

DDI_PROP_UNDEFINED Property already explicitly undefined.

DDI_PROP_NO_MEMORY Property found, but unable to allocate memory.
lengthp points to the correct property length.

DDI_PROP_BUF_TOO_SMALL Property found, but the supplied buffer is too
small. lengthp points to the correct property
length.

ddi_getprop() returns:

The value of the property or the value passed into the routine as defvalue if the
property is not found. By convention, the value of zero length properties
(boolean properties) are returned as the integer value 1.

CONTEXT These functions can be called from user or interrupt context, provided
DDI_PROP_CANSLEEP is not set; if it is set, they can be called from user context only.

SEE ALSO ddi_prop_create(9F), kmem_alloc(9F), kmem_free(9F)

Writing Device Drivers

modified 7 Jun 1993 SunOS 5.6 9F-333

ddi_prop_update (9F) Kernel Functions for Drivers

NAME ddi_prop_update, ddi_prop_update_int_array, ddi_prop_update_int,
ddi_prop_update_string_array, ddi_prop_update_string, ddi_prop_update_byte_array −
update properties

SYNOPSIS #include <sys/ddi.h>
#include <sys/sunddi.h>

int ddi_prop_update_int_array(dev_t dev, dev_info_t ∗dip,
char ∗name, int ∗data , u_int nelements);

int ddi_prop_update_int(dev_t dev, dev_info_t ∗dip,
char ∗name, int data);

int ddi_prop_update_string_array(dev_t dev, dev_info_t ∗dip,
char ∗name, char ∗∗data , u_int nelements);

int ddi_prop_update_string(dev_t dev, dev_info_t ∗dip,
char ∗name, char ∗data);

int ddi_prop_update_byte_array(dev_t dev, dev_info_t ∗dip,
char ∗name, u_char ∗data , u_int nelements);

ARGUMENTS dev Device number associated with the device.

dip Pointer to the device info node of device whose property list should be
updated.

name String containing the name of the property to be updated.

nelements The number of elements contained in the memory pointed at by data .

ddi_prop_update_int_array() data A pointer an integer array with which to update the property.

ddi_prop_update_int() data An integer value with which to update the property.

ddi_prop_update_string_array() data A pointer to a string array with which to update the property. The array
of strings is formatted as an array of pointers to NULL terminated
strings, much like the argv argument to execve(2).

ddi_prop_update_string() data A pointer to a string value with which to update the property.

ddi_prop_update_byte_array() data A pointer to a byte array with which to update the property.

INTERFACE
LEVEL

Solaris DDI specific (Solaris DDI).

DESCRIPTION The property update routines search for and, if found, modify the value of a given pro-
perty. Properties are searched for based on the dip, name, dev, and the type of the data
(integer, string or byte). The driver software properties list is searched. If the property is
found, it is updated with the supplied value. If the property is not found on this list, a
new property is created with the value supplied. For example, if a driver attempts to

9F-334 SunOS 5.6 modified 17 Nov 1994

Kernel Functions for Drivers ddi_prop_update (9F)

update the "foo" property, a property named "foo" is searched for on the driver’s
software property list. If "foo" is found, the value is updated. If "foo" is not found, a new
property named "foo" is created on the driver’s software property list with the supplied
value even if a "foo" property exists on another property list (such as a PROM property
list).

Every property value has a data type associated with it: byte, integer, or string. A pro-
perty should be updated using a function with the same corresponding data type as the
property value. For example, an integer property must be updated using either
ddi_prop_update_int_array() or ddi_prop_update_int(). Attempts to update a property
with a function that does correspond to the property value data type will result in the
creation of another property with the same name. However, the data type of the new
property value will correspond to the data type called out in the function name.

Usually, the dev argument should be set to the actual device number that this property is
associated with. If the property is not associated with any particular dev, then the argu-
ment dev should be set to DDI_DEV_T_NONE. This property will then match a look up
request (see ddi_prop_lookup(9F)) with the match_dev argument set to DDI_DEV_T_ANY.
If no dev is available for the device (for example during attach(9E) time), one can be
created using makedevice(9F) with a major number of DDI_MAJOR_T_UNKNOWN. The
update routines will then generate the correct dev when creating or updating the pro-
perty.

name must always be set to the name of the property being updated.

For the routines ddi_prop_update_int_array(), ddi_prop_update_string_array(),
ddi_prop_update_string(), and ddi_prop_update_byte_array() data is a pointer which
points to memory containing the value of the property. In each case ∗data points to a dif-
ferent type of property value. See the individual descriptions of the routines below for
details concerning the different values. nelements is an unsigned integer which contains
the number of integer, string, or byte elements accounted for in the memory pointed at by
∗data .

For the routine ddi_prop_update_int(), data is the new value of the property.

ddi_prop_update_int_array() Updates or creates an array of integer property values. An array of integers is defined to
be nelements of 4 byte long integer elements. data must be a pointer to an integer array
with which to update the property.

ddi_prop_update_int() Update or creates a single integer value of a property. data must be an integer value with
which to update the property.

ddi_prop_update_string_array() Updates or creates a property that is an array of strings. data must be a pointer to a string
array with which to update the property. The array of strings is formatted as an array of
pointers to NULL terminated strings, much like the argv argument to execve(2).

ddi_prop_update_string() Updates or creates a property that is a single string value. data must be a pointer to a
string with which to update the property.

modified 17 Nov 1994 SunOS 5.6 9F-335

ddi_prop_update (9F) Kernel Functions for Drivers

ddi_prop_update_byte_array() Updates or creates a property that is an array of bytes. data should be a pointer to a byte
array with which to update the property.

The property update routines may block to allocate memory needed to hold the value of
the property.

RETURN VALUES All of the property update routines return:

DDI_PROP_SUCCESS on success.

DDI_PROP_INVAL_ARG if an attempt is made to update a property with name
set to NULL or name set to the null string.

DDI_PROP_CANNOT_ENCODE If the bytes of the property cannot be encoded.

CONTEXT These functions can only be called from user or kernel context.

EXAMPLES The following example demonstrates the use of ddi_prop_update().

int options[4];

/∗
∗ Create the "options" integer array with
∗ our default values for these parameters
∗/
options[0] = XX_OPTIONS0;
options[1] = XX_OPTIONS1;
options[2] = XX_OPTIONS2;
options[3] = XX_OPTIONS3;
i = ddi_prop_update_int_array(xx_dev, xx_dip, "options",

&options, sizeof (options) / sizeof (int));

SEE ALSO execve(2), attach(9E), ddi_prop_lookup(9F), ddi_prop_remove(9F), makedevice(9F)

Writing Device Drivers

9F-336 SunOS 5.6 modified 17 Nov 1994

Kernel Functions for Drivers ddi_put8 (9F)

NAME ddi_put8, ddi_put16, ddi_put32, ddi_put64, ddi_putb, ddi_putl, ddi_putll, ddi_putw −
write data to the mapped memory address, device register or allocated DMA memory
address

SYNOPSIS #include <sys/ddi.h>
#include <sys/sunddi.h>

void ddi_put8(ddi_acc_handle_t handle, uint8_t ∗dev_addr , uint8_t value);

void ddi_put16(ddi_acc_handle_t handle, uint16_t ∗dev_addr , uint16_t value);

void ddi_put32(ddi_acc_handle_t handle, uint32_t ∗dev_addr , uint32_t value);

void ddi_put64(ddi_acc_handle_t handle, uint64_t ∗dev_addr , uint64_t value);

INTERFACE
LEVEL

Solaris DDI specific (Solaris DDI).

ARGUMENTS handle The data access handle returned from setup calls, such as
ddi_regs_map_setup(9F).

value The data to be written to the device.

dev_addr Base device address.

DESCRIPTION These routines generate a write of various sizes to the mapped memory or device regis-
ter. The ddi_put8(), ddi_put16(), ddi_put32(), and ddi_put64() functions write 8 bits, 16
bits, 32 bits and 64 bits of data, respectively, to the device address, dev_addr .

Each individual datum will automatically be translated to maintain a consistent view
between the host and the device based on the encoded information in the data access
handle. The translation may involve byte-swapping if the host and the device have
incompatible endian characteristics.

CONTEXT These functions can be called from user, kernel, or interrupt context.

SEE ALSO ddi_get8(9F), ddi_regs_map_free(9F), ddi_regs_map_setup(9F), ddi_rep_get8(9F),
ddi_rep_put8(9F), ddi_device_acc_attr(9S)

NOTES The functions described in this manual page previously used symbolic names which
specified their data access size; the function names have been changed so they now
specify a fixed-width data size. See the following table for the new name equivalents:

Previous Name New Name
ddi_putb ddi_put8
ddi_putw ddi_put16
ddi_putl ddi_put32
ddi_putll ddi_put64

modified 30 Sep 1996 SunOS 5.6 9F-337

ddi_regs_map_free (9F) Kernel Functions for Drivers

NAME ddi_regs_map_free − free a previously mapped register address space

SYNOPSIS #include <sys/ddi.h>
#include <sys/sunddi.h>

void ddi_regs_map_free(ddi_acc_handle_t ∗handle);

INTERFACE
LEVEL

Solaris DDI specific (Solaris DDI).

ARGUMENTS handle Pointer to a data access handle previously allocated by a call to a setup
routine such as ddi_regs_map_setup(9F).

DESCRIPTION ddi_regs_map_free() frees the mapping represented by the data access handle handle.
This function is provided for drivers preparing to detach themselves from the system,
allowing them to release allocated system resources represented in the handle.

CONTEXT ddi_regs_map_free() must be called from user or kernel context.

ATTRIBUTES See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Architecture PCI Local Bus, SBus, ISA, EISA, MCA

SEE ALSO attributes(5), ddi_regs_map_setup(9F)

Writing Device Drivers

9F-338 SunOS 5.6 modified 1 Jan 1997

Kernel Functions for Drivers ddi_regs_map_setup (9F)

NAME ddi_regs_map_setup − set up a mapping for a register address space

SYNOPSIS #include <sys/ddi.h>
#include <sys/sunddi.h>

int ddi_regs_map_setup(dev_info_t ∗dip, uint_t rnumber, caddr_t ∗addrp ,
offset_t offset , offset_t len, ddi_device_acc_attr_t ∗accattrp ,
ddi_acc_handle_t ∗handlep);

INTERFACE
LEVEL

Solaris DDI specific (Solaris DDI).

ARGUMENTS dip Pointer to the device’s dev_info structure.

rnumber Index number to the register address space set.

addrp Pointer to the mapping address base.

offset Offset into the register address space.

len Length to be mapped.

accattrp Pointer to a device access attribute structure of this device (see
ddi_device_acc_attr(9S)).

handlep Pointer to a data access handle.

DESCRIPTION ddi_regs_map_setup() maps in the register set given by rnumber. The register number
determines which register set is mapped if more than one exists.

offset specifies the starting location within the register space and len indicates the size of
the area to be mapped. If len is non-zero, it overrides the length given in the register set
description. If both len and offset are 0, the entire space is mapped. The base of the
mapped register space is returned in addrp .

The device access attributes are specified in the location pointed by the accattrp argument
(see ddi_device_acc_attr(9S) for details).

The data access handle is returned in handlep. handlep is opaque − drivers should not
attempt to interpret its value. The handle is used by the system to encode information for
subsequent data access function calls to maintain a consistent view between the host and
the device.

RETURN VALUES ddi_regs_map_setup() returns:

DDI_SUCCESS Successfully set up the mapping for data access.

DDI_FAILURE Invalid register number rnumber, offset offset , or length len.

DDI_REGS_ACC_CONFLICT
Cannot enable the register mapping due to access conflicts with
other enabled mappings.

modified 1 Jan 1997 SunOS 5.6 9F-339

ddi_regs_map_setup (9F) Kernel Functions for Drivers

CONTEXT ddi_regs_map_setup() must be called from user or kernel context.

ATTRIBUTES See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Architecture PCI Local Bus, SBus, ISA, EISA, MCA

SEE ALSO attributes(5), ddi_regs_map_free(9F), ddi_device_acc_attr(9S)

Writing Device Drivers

9F-340 SunOS 5.6 modified 1 Jan 1997

Kernel Functions for Drivers ddi_remove_minor_node (9F)

NAME ddi_remove_minor_node − remove a minor node for this dev_info

SYNOPSIS void ddi_remove_minor_node(dev_info_t ∗dip, char ∗name);

INTERFACE
LEVEL

Solaris DDI specific (Solaris DDI).

ARGUMENTS dip A pointer to the device’s dev_info structure.

name The name of this minor device. If name is NULL then remove all minor data
structures from this dev_info.

DESCRIPTION ddi_remove_minor_node() removes a data structure from the linked list of minor data
structures that is pointed to by the dev_info structure for this driver.

EXAMPLES This will remove a data structure describing a minor device called foo which is linked
into the dev_info structure pointed to by dip.

ddi_remove_minor_node(dip, "foo");

SEE ALSO attach(9E), detach(9E), ddi_create_minor_node(9F)

Writing Device Drivers

modified 10 Mar 1992 SunOS 5.6 9F-341

ddi_rep_get8 (9F) Kernel Functions for Drivers

NAME ddi_rep_get8, ddi_rep_get16, ddi_rep_get32, ddi_rep_get64, ddi_rep_getw, ddi_rep_getl,
ddi_rep_getll, ddi_rep_getb − read data from the mapped memory address, device regis-
ter or allocated DMA memory address

SYNOPSIS #include <sys/ddi.h>
#include <sys/sunddi.h>

void ddi_rep_get8(ddi_acc_handle_t handle, uint8_t ∗host_addr , uint8_t ∗dev_addr ,
size_t repcount, uint_t flags);

void ddi_rep_get16(ddi_acc_handle_t handle, uint16_t ∗host_addr , uint16_t ∗dev_addr ,
size_t repcount, uint_t flags);

void ddi_rep_get32(ddi_acc_handle_t handle, uint32_t ∗host_addr , uint32_t ∗dev_addr ,
size_t repcount, uint_t flags);

void ddi_rep_get64(ddi_acc_handle_t handle, uint64_t ∗host_addr , uint64_t ∗dev_addr ,
size_t repcount, uint_t flags);

INTERFACE
LEVEL

Solaris DDI specific (Solaris DDI).

ARGUMENTS handle The data access handle returned from setup calls, such as
ddi_regs_map_setup(9F).

host_addr Base host address.

dev_addr Base device address.

repcount Number of data accesses to perform.

flags Device address flags:

DDI_DEV_AUTOINCR
Automatically increment the device address, dev_addr , dur-
ing data accesses.

DDI_DEV_NO_AUTOINCR
Do not advance the device address, dev_addr , during data
accesses.

DESCRIPTION These routines generate multiple reads from the mapped memory or device register. rep-
count data is copied from the device address, dev_addr , to the host address, host_addr . For
each input datum, the ddi_rep_get8(), ddi_rep_get16(), ddi_rep_get32(), and
ddi_rep_get64() functions read 8 bits, 16 bits, 32 bits and 64 bits of data, respectively,
from the device address, dev_addr . dev_addr and host_addr must be aligned to the datum
boundary described by the function.

Each individual datum will automatically be translated to maintain a consistent view
between the host and the device based on the encoded information in the data access
handle. The translation may involve byte-swapping if the host and the device have
incompatible endian characteristics.

9F-342 SunOS 5.6 modified 10 Aug 1996

Kernel Functions for Drivers ddi_rep_get8 (9F)

When the flags argument is set to DDI_DEV_AUTOINCR, these functions treat the device
address, dev_addr , as a memory buffer location on the device and increment its address
on the next input datum. However, when the flags argument is to
DDI_DEV_NO_AUTOINCR, the same device address will be used for every datum access.
For example, this flag may be useful when reading from a data register.

RETURN VALUES These functions return the value read from the mapped address.

CONTEXT These functions can be called from user, kernel, or interrupt context.

SEE ALSO ddi_get8(9F), ddi_put8(9F), ddi_regs_map_free(9F), ddi_regs_map_setup(9F),
ddi_rep_put8(9F)

NOTES The functions described in this manual page previously used symbolic names which
specified their data access size; the function names have been changed so they now
specify a fixed-width data size. See the following table for the new name equivalents:

Previous Name New Name
ddi_rep_getb ddi_rep_get8
ddi_rep_getw ddi_rep_get16
ddi_rep_getl ddi_rep_get32
ddi_rep_getll ddi_rep_get64

modified 10 Aug 1996 SunOS 5.6 9F-343

ddi_report_dev (9F) Kernel Functions for Drivers

NAME ddi_report_dev − announce a device

SYNOPSIS #include <sys/conf.h>
#include <sys/ddi.h>
#include <sys/sunddi.h>

void ddi_report_dev(dev_info_t ∗dip);

INTERFACE
LEVEL

Solaris DDI specific (Solaris DDI).

ARGUMENTS dip a pointer the device’s dev_info structure.

DESCRIPTION ddi_report_dev() prints a banner at boot time, announcing the device pointed to by dip.
The banner is always placed in the system logfile (displayed by dmesg(1M)), but is only
displayed on the console if the system was booted with the verbose (−v) argument.

CONTEXT ddi_report_dev() can be called from user or interrupt context.

SEE ALSO dmesg(1M), kernel(1M)

Writing Device Drivers

9F-344 SunOS 5.6 modified 7 Jun 1993

Kernel Functions for Drivers ddi_rep_put8 (9F)

NAME ddi_rep_put8, ddi_rep_put16, ddi_rep_put32, ddi_rep_put64, ddi_rep_putb,
ddi_rep_putw, ddi_rep_putl, ddi_rep_putll − write data to the mapped memory address,
device register or allocated DMA memory address

SYNOPSIS #include <sys/ddi.h>
#include <sys/sunddi.h>

void ddi_rep_put8(ddi_acc_handle_t handle, uint8_t ∗host_addr , uint8_t ∗dev_addr ,
size_t repcount, uint_t flags);

void ddi_rep_put16(ddi_acc_handle_t handle, uint16_t ∗host_addr , uint16_t ∗dev_addr ,
size_t repcount, uint_t flags);

void ddi_rep_put32(ddi_acc_handle_t handle, uint32_t ∗host_addr , uint32_t ∗dev_addr ,
size_t repcount, uint_t flags);

void ddi_rep_put64(ddi_acc_handle_t handle, uint64_t ∗host_addr , uint64_t ∗dev_addr ,
size_t repcount, uint_t flags);

INTERFACE
LEVEL

Solaris DDI specific (Solaris DDI).

ARGUMENTS handle The data access handle returned from setup calls, such as
ddi_regs_map_setup(9F).

host_addr Base host address.

dev_addr Base device address.

repcount Number of data accesses to perform.

flags Device address flags:

DDI_DEV_AUTOINCR
Automatically increment the device address, dev_addr , dur-
ing data accesses.

DDI_DEV_NO_AUTOINCR
Do not advance the device address, dev_addr , during data
accesses.

DESCRIPTION These routines generate multiple writes to the mapped memory or device register.
repcount data is copied from the host address, host_addr , to the device address, dev_addr .
For each input datum, the ddi_rep_put8(), ddi_rep_put16(), ddi_rep_put32(), and
ddi_rep_put64() functions write 8 bits, 16 bits, 32 bits and 64 bits of data, respectively, to
the device address, dev_addr . dev_addr and host_addr must be aligned to the datum boun-
dary described by the function.

Each individual datum will automatically be translated to maintain a consistent view
between the host and the device based on the encoded information in the data access
handle. The translation may involve byte-swapping if the host and the device have
incompatible endian characteristics.

modified 10 Sep 1996 SunOS 5.6 9F-345

ddi_rep_put8 (9F) Kernel Functions for Drivers

When the flags argument is set to DDI_DEV_AUTOINCR, these functions treat the device
address, dev_addr , as a memory buffer location on the device and increment its address
on the next input datum. However, when the flags argument is to
DDI_DEV_NO_AUTOINCR, the same device address will be used for every datum access.
For example, this flag may be useful when writing to a data register.

CONTEXT These functions can be called from user, kernel, or interrupt context.

SEE ALSO ddi_get8(9F), ddi_put8(9F), ddi_regs_map_free(9F), ddi_regs_map_setup(9F),
ddi_rep_get8(9F), ddi_device_acc_attr(9S)

NOTES The functions described in this manual page previously used symbolic names which
specified their data access size; the function names have been changed so they now
specify a fixed-width data size. See the following table for the new name equivalents:

Previous Name New Name
ddi_rep_putb ddi_rep_put8
ddi_rep_putw ddi_rep_put16
ddi_rep_putl ddi_rep_put32
ddi_rep_putll ddi_rep_put64

9F-346 SunOS 5.6 modified 10 Sep 1996

Kernel Functions for Drivers ddi_root_node (9F)

NAME ddi_root_node − get the root of the dev_info tree

SYNOPSIS #include <sys/conf.h>
#include <sys/ddi.h>
#include <sys/sunddi.h>

dev_info_t ∗ddi_root_node(void);

INTERFACE
LEVEL

Solaris DDI specific (Solaris DDI).

DESCRIPTION ddi_root_node() returns a pointer to the root node of the device information tree.

RETURN VALUES ddi_root_node() returns a pointer to a device information structure.

CONTEXT ddi_root_node() can be called from user or interrupt context.

SEE ALSO Writing Device Drivers

modified 19 Nov 1992 SunOS 5.6 9F-347

ddi_segmap (9F) Kernel Functions for Drivers

NAME ddi_segmap, ddi_segmap_setup − set up a user mapping using seg_dev

SYNOPSIS #include <sys/conf.h>
#include <sys/ddi.h>
#include <sys/sunddi.h>

int ddi_segmap(dev_t dev, off_t offset , struct as ∗asp , caddr_t ∗addrp , off_t len,
u_int prot , u_int maxprot , u_int flags , cred_t ∗credp);

int ddi_segmap_setup(dev_t dev, off_t offset , struct as ∗asp , caddr_t ∗addrp , off_t len,
u_int prot , u_int maxprot , u_int flags , cred_t ∗credp,
ddi_device_acc_attr_t ∗accattrp , u_int rnumber);

INTERFACE
LEVEL

Solaris DDI specific (Solaris DDI).

ARGUMENTS dev The device whose memory is to be mapped.

offset The offset within device memory at which the mapping begins.

asp An opaque pointer to the user address space into which the device
memory should be mapped.

addrp Pointer to the starting address within the user address space to
which the device memory should be mapped.

len Length (in bytes) of the memory to be mapped.

prot A bit field that specifies the protections. Some combinations of pos-
sible settings are:

PROT_READ Read access is desired.

PROT_WRITE Write access is desired.

PROT_EXEC Execute access is desired.

PROT_USER User-level access is desired (the mapping is being
done as a result of a mmap(2) system call).

PROT_ALL All access is desired.

maxprot maxprot Maximum protection flag possible for attempted mapping
(the PROT_WRITE bit may be masked out if the user opened the spe-
cial file read-only). If (maxprot & prot) != prot then there is an access
violation.

flags Flags indicating type of mapping. Possible values are (other bits
may be set):

MAP_PRIVATE Changes are private.

MAP_SHARED Changes should be shared.

MAP_FIXED The user specified an address in ∗addrp rather than
letting the system pick and address.

credp Pointer to user credential structure.

9F-348 SunOS 5.6 modified 14 Jan 1997

Kernel Functions for Drivers ddi_segmap (9F)

ddi_segmap_setup() dev_acc_attr Pointer to a ddi_device_acc_attr(9S) structure which contains the
device access attributes to apply to this mapping.

rnumber Index number to the register address space set.

DESCRIPTION Future releases of Solaris will provide this function for binary and source compatibility.
However, for increased functionality, use ddi_devmap_segmap(9F) instead. See
ddi_devmap_segmap(9F) for details.

ddi_segmap() and ddi_segmap_setup() set up user mappings to device space. When
setting up the mapping, the ddi_segmap() and ddi_segmap_setup() routines call the
mmap(9E) entry point to validate the range to be mapped. When a user process accesses
the mapping, the drivers mmap(9E) entry point is again called to retrieve the page frame
number that needs to be loaded. The mapping translations for that page are then loaded
on behalf of the driver by the DDI framework.

ddi_segmap() is typically used as the segmap(9E) entry in the cb_ops(9S) structure for
those devices that do not choose to provide their own segmap(9E) entry point. However,
some drivers may have their own segmap(9E) entry point to do some initial processing
on the parameters and then call ddi_segmap() to establish the default memory mapping.

ddi_segmap_setup() is used in the drivers segmap(9E) entry point to set up the mapping
and assign device access attributes to that mapping. rnumber specifies the register set
representing the range of device memory being mapped. See ddi_device_acc_attr(9S) for
details regarding what device access attributes are available.

ddi_segmap_setup() cannot be used directly in the cb_ops(9S) structure and requires a
driver to have a segmap(9E) entry point.

RETURN VALUES ddi_segmap() and ddi_segmap_setup() return the following values:

0 Successful completion.

Non-zero An error occurred. In particular, they return ENXIO if the range to be mapped
is invalid.

CONTEXT ddi_segmap() and ddi_segmap_setup() can be called from user or kernel context only.

SEE ALSO mmap(2), mmap(9E), segmap(9E), ddi_mapdev(9F), cb_ops(9S), ddi_device_acc_attr(9S)

Writing Device Drivers

NOTES If driver notification of user accesses to the mappings is required, the driver should use
ddi_mapdev(9F) instead.

modified 14 Jan 1997 SunOS 5.6 9F-349

ddi_slaveonly (9F) Kernel Functions for Drivers

NAME ddi_slaveonly − tell if a device is installed in a slave access only location

SYNOPSIS #include <sys/conf.h>
#include <sys/ddi.h>
#include <sys/sunddi.h>

int ddi_slaveonly(dev_info_t ∗dip);

INTERFACE
LEVEL

Solaris DDI specific (Solaris DDI).

ARGUMENTS dip A pointer to the device’s dev_info structure.

DESCRIPTION ddi_slaveonly() tells the caller if the bus, or part of the bus that the device is installed on,
does not permit the device to become a DMA master, that is, whether the device has been
installed in a slave access only slot.

RETURN VALUES DDI_SUCCESS The device has been installed in a slave access only location.

DDI_FAILURE The device has not been installed in a slave access only location.

CONTEXT ddi_slaveonly() can be called from user or interrupt context.

SEE ALSO Writing Device Drivers

9F-350 SunOS 5.6 modified 24 Oct 1991

Kernel Functions for Drivers ddi_soft_state (9F)

NAME ddi_soft_state, ddi_get_soft_state, ddi_soft_state_fini, ddi_soft_state_free,
ddi_soft_state_init, ddi_soft_state_zalloc − driver soft state utility routines

SYNOPSIS #include <sys/ddi.h>
#include <sys/sunddi.h>

void ∗ddi_get_soft_state(void ∗state , int item);

void ddi_soft_state_fini(void ∗∗state_p);

void ddi_soft_state_free(void ∗state , int item);

int ddi_soft_state_init(void ∗∗state_p , size_t size, size_t n_items);

int ddi_soft_state_zalloc(void ∗state , int item);

INTERFACE
LEVEL

Solaris DDI specific (Solaris DDI).

ARGUMENTS state_p Address of the opaque state pointer which will be initialized by
ddi_soft_state_init() to point to implementation dependent data.

size Size of the item which will be allocated by subsequent calls to
ddi_soft_state_zalloc().

n_items A hint of the number of items which will be preallocated; zero is
allowed.

state An opaque pointer to implementation-dependent data that describes the
soft state.

item The item number for the state structure; usually the instance number of
the associated devinfo node.

DESCRIPTION Most device drivers maintain state information with each instance of the device they con-
trol; for example, a soft copy of a device control register, a mutex that must be held while
accessing a piece of hardware, a partition table, or a unit structure. These utility routines
are intended to help device drivers manage the space used by the driver to hold such
state information.

For example, if the driver holds the state of each instance in a single state structure, these
routines can be used to dynamically allocate and deallocate a separate structure for each
instance of the driver as the instance is attached and detached.

To use the routines, the driver writer needs to declare a state pointer, state_p , which the
implementation uses as a place to hang a set of per-driver structures; everything else is
managed by these routines.

The routine ddi_soft_state_init() is usually called in the drivers _init(9E) routine to ini-
tialize the state pointer, set the size of the soft state structure, and to allow the driver to
pre-allocate a given number of such structures if required.

The routine ddi_soft_state_zalloc() is usually called in the drivers attach(9E) routine.
The routine is passed an item number which is used to refer to the structure in subse-
quent calls to ddi_get_soft_state() and ddi_soft_state_free(). The item number is

modified 7 Jun 1993 SunOS 5.6 9F-351

ddi_soft_state (9F) Kernel Functions for Drivers

usually just the instance number of the devinfo node, obtained with
ddi_get_instance(9F). The routine attempts to allocate space for the new structure, and if
the space allocation was successful, DDI_SUCCESS is returned to the caller.

A pointer to the space previously allocated for a soft state structure can be obtained by
calling ddi_get_soft_state() with the appropriate item number.

The space used by a given soft state structure can be returned to the system using
ddi_soft_state_free(). This routine is usually called from the drivers detach(9E) entry
point.

The space used by all the soft state structures allocated on a given state pointer, together
with the housekeeping information used by the implementation can be returned to the
system using ddi_soft_state_fini(). This routine can be called from the drivers _fini(9E)
routine.

The ddi_soft_state_zalloc(), ddi_soft_state_free() and ddi_get_soft_state() routines
coordinate access to the underlying data structures in an MT-safe fashion, thus no addi-
tional locks should be necessary.

RETURN VALUES ddi_get_soft_state():

NULL The requested state structure was not allocated at the time of the call.

pointer The pointer to the state structure.

ddi_soft_state_init():

0 The allocation was successful.

EINVAL Either the size parameter was zero, or the state_p parameter was invalid.

ddi_soft_state_zalloc():

DDI_SUCCESS The allocation was successful.

DDI_FAILURE The routine failed to allocate the storage required; either the state param-
eter was invalid, the item number was negative, or an attempt was made
to allocate an item number that was already allocated.

CONTEXT ddi_soft_state_init(), and ddi_soft_state_alloc() can be called from user context only,
since they may internally call kmem_zalloc(9F) with the KM_SLEEP flag.

The ddi_soft_state_fini(), ddi_soft_state_free() and ddi_get_soft_state() routines can be
called from any driver context.

EXAMPLE The following example shows how the routines described above can be used in terms of
the driver entry points of a character-only driver. The example concentrates on the por-
tions of the code that deal with creating and removing the drivers data structures.

typedef struct {
volatile caddr_t ∗csr; /∗ device registers ∗/
kmutex_t csr_mutex; /∗ protects ’csr’ field ∗/
unsigned int state;
dev_info_t ∗dip; /∗ back pointer to devinfo ∗/

} devstate_t;

9F-352 SunOS 5.6 modified 7 Jun 1993

Kernel Functions for Drivers ddi_soft_state (9F)

static void ∗statep;

int
_init(void)
{

int error;

error = ddi_soft_state_init(&statep, sizeof (devstate_t), 0);
if (error != 0)

return (error);
if ((error = mod_install(&modlinkage)) != 0)

ddi_soft_state_fini(&statep);
return (error);

}

int
_fini(void)
{

int error;

if ((error = mod_remove(&modlinkage)) != 0)
return (error);

ddi_soft_state_fini(&statep);
return (0);

}

static int
xxattach(dev_info_t ∗dip, ddi_attach_cmd_t cmd)
{

int instance;
devstate_t ∗softc;

switch (cmd) {
case DDI_ATTACH:

instance = ddi_get_instance(dip);
if (ddi_soft_state_zalloc(statep, instance) != DDI_SUCCESS)

return (DDI_FAILURE);
softc = ddi_get_soft_state(statep, instance);
softc->dip = dip;
...
return (DDI_SUCCESS);

default:
return (DDI_FAILURE);

}
}

modified 7 Jun 1993 SunOS 5.6 9F-353

ddi_soft_state (9F) Kernel Functions for Drivers

static int
xxdetach(dev_info_t ∗dip, ddi_detach_cmd_t cmd)
{

int instance;

switch (cmd) {

case DDI_DETACH:
instance = ddi_get_instance(dip);
...
ddi_soft_state_free(statep, instance);
return (DDI_SUCCESS);

default:
return (DDI_FAILURE);

}
}

static int
xxopen(dev_t ∗devp, int flag, int otyp, cred_t ∗cred_p)
{

devstate_t ∗softc;
int instance;

instance = getminor(∗devp);
if ((softc = ddi_get_soft_state(statep, instance)) == NULL)

return (ENXIO);
...
softc->state |= XX_IN_USE;
...
return (0);

}

SEE ALSO _fini(9E), _init(9E), attach(9E), detach(9E), ddi_get_instance(9F), getminor(9F),
kmem_zalloc(9F)

Writing Device Drivers

WARNINGS There is no attempt to validate the item parameter given to ddi_soft_state_zalloc(); other
than it must be a positive signed integer. Therefore very large item numbers may cause
the driver to hang forever waiting for virtual memory resources that can never be
satisfied.

NOTES If necessary, a hierarchy of state structures can be constructed by embedding state
pointers in higher order state structures.

9F-354 SunOS 5.6 modified 7 Jun 1993

Kernel Functions for Drivers ddi_soft_state (9F)

DIAGNOSTICS All of the messages described below usually indicate bugs in the driver and should not
appear in normal operation of the system.

WARNING: ddi_soft_state_zalloc: bad handle
WARNING: ddi_soft_state_free: bad handle
WARNING: ddi_soft_state_fini: bad handle

The implementation-dependent information kept in the state variable is corrupt.

WARNING: ddi_soft_state_free: null handle
WARNING: ddi_soft_state_fini: null handle

The routine has been passed a null or corrupt state pointer. Check that
ddi_soft_state_init() has been called.

WARNING: ddi_soft_state_free: item %d not in range [0..%d]

The routine has been asked to free an item which was never allocated. The message
prints out the invalid item number and the acceptable range.

modified 7 Jun 1993 SunOS 5.6 9F-355

ddi_umem_alloc (9F) Kernel Functions for Drivers

NAME ddi_umem_alloc, ddi_umem_free − allocate and free page-aligned kernel memory

SYNOPSIS #include <sys/types.h>
#include <sys/sunddi.h>

void ∗ddi_umem_alloc(size_t size, int flag , ddi_umem_cookie_t ∗cookiep)

void ddi_umem_free(ddi_umem_cookie_t cookie)

INTERFACE
LEVEL

Solaris DDI specific (Solaris DDI).

ARGUMENTS
ddi_umem_alloc() size Number of bytes to allocate.

flag Used to determine the sleep and pageable conditions.
Possible sleep flags are DDI_UMEM_SLEEP which allows sleeping until
memory is available, and DDI_UMEM_NOSLEEP which returns NULL
immediately if memory is not available.

The default condition is to allocate locked memory; this can be changed
to allocate pageable memory using the DDI_UMEM_PAGEABLE flag.

cookiep Pointer to a kernel memory cookie.

ddi_umem_free() cookie A kernel memory cookie allocated in ddi_umem_alloc().

DESCRIPTION ddi_umem_alloc() allocates page-aligned kernel memory and returns a pointer to the
allocated memory. The number of bytes allocated is a multiple of the system page size
(roundup of size). The allocated memory can be used in the kernel and can be exported
to user space. See devmap(9E) and devmap_umem_setup(9F) for further information.

flag determines whether the caller can sleep for memory and whether the allocated
memory is locked or not. DDI_UMEM_SLEEP allocations may sleep but are guaranteed to
succeed. DDI_UMEM_NOSLEEP allocations do not sleep but may fail (return NULL) if
memory is currently unavailable. If DDI_UMEM_PAGEABLE is set, pageable memory
will be allocated. These pages can be swapped out to secondary memory devices. The
initial contents of memory allocated using ddi_umem_alloc() is zero-filled.

∗cookiep is a pointer to the kernel memory cookie that describes the kernel memory being
allocated. A typical use of cookiep is in devmap_umem_setup(9F) when the drivers want
to export the kernel memory to a user application.

To free the allocated memory, a driver calls ddi_umem_free() with the cookie obtained
from ddi_umem_alloc(). ddi_umem_free() releases the entire buffer.

RETURN VALUES Non-null Successful completion. ddi_umem_alloc() returns a pointer to the allo-
cated memory.

NULL Memory cannot be allocated by ddi_umem_alloc() because
DDI_UMEM_NOSLEEP is set and the system is out of resources.

9F-356 SunOS 5.6 modified 14 Jan 1997

Kernel Functions for Drivers ddi_umem_alloc (9F)

CONTEXT ddi_umem_alloc() can be called from any context if flag is set to DDI_UMEM_NOSLEEP.
If DDI_UMEM_SLEEP is set, ddi_umem_alloc() can be called from user and kernel con-
text only. ddi_umem_free() can be called from any context.

SEE ALSO devmap(9E), condvar(9F), devmap_umem_setup(9F), kmem_alloc(9F), mutex(9F),
rwlock(9F), semaphore(9F)

Writing Device Drivers

WARNINGS Setting the DDI_UMEM_PAGEABLE flag in ddi_umem_alloc() will result in an allocation
of pageable memory. Because these pages can be swapped out to secondary memory
devices, drivers should use this flag with care. This memory should not be used for syn-
chronization objects such as locks and condition variables. See mutex(9F),
semaphore(9F), rwlock(9F), and condvar(9F). This memory also should not be accessed
in the driver interrupt routines.

Memory allocated using ddi_umem_alloc() without setting DDI_UMEM_PAGEABLE flag
cannot be paged. Available memory is therefore limited by the total physical memory on
the system. It is also limited by the available kernel virtual address space, which is often
the more restrictive constraint on large-memory configurations.

Excessive use of kernel memory is likely to effect overall system performance. Over-
commitment of kernel memory may cause unpredictable consequences.

Misuse of the kernel memory allocator, such as writing past the end of a buffer, using a
buffer after freeing it, freeing a buffer twice, or freeing an invalid pointer, will cause the
system to corrupt data or panic.

NOTES ddi_umem_alloc(0, flag , cookiep) always returns NULL. ddi_umem_free(NULL) has no
effects on system.

modified 14 Jan 1997 SunOS 5.6 9F-357

delay (9F) Kernel Functions for Drivers

NAME delay − delay execution for a specified number of clock ticks

SYNOPSIS #include <sys/ddi.h>

void delay(clock_t ticks);

INTERFACE
LEVEL

Architecture independent level 1 (DDI/DKI).

ARGUMENTS ticks The number of clock cycles to delay.

DESCRIPTION delay() provides a mechanism for a driver to delay its execution for a given period of
time. Since the speed of the clock varies among systems, drivers should base their time
values on microseconds and use drv_usectohz(9F) to convert microseconds into clock
ticks.

delay() uses timeout(9F) to schedule an internal function to be called after the specified
amount of time has elapsed. delay() then waits until the function is called.

delay() does not busy-wait. If busy-waiting is required, use drv_usecwait(9F).

CONTEXT delay() can be called from user context only.

EXAMPLES Before a driver I/O routine allocates buffers and stores any user data in them, it checks
the status of the device (line 12). If the device needs manual intervention (such as, need-
ing to be refilled with paper), a message is displayed on the system console (line 14). The
driver waits an allotted time (line 17) before repeating the procedure.

1 struct device { /∗ layout of physical device registers ∗/
2 int control; /∗ physical device control word ∗/
3 int status; /∗ physical device status word ∗/
4 short xmit_char; /∗ transmit character to device ∗/
5 };
6
7

. . .
9 /∗ get device registers ∗/
10 register struct device ∗rp = ...
11
12 while (rp->status & NOPAPER) { /∗ while printer is out of paper ∗/
13 /∗ display message and ring bell ∗/

/∗ on system console ∗/
14 cmn_err(CE_WARN, "ˆxx_write: NO PAPER in printer %d\007",
15 (getminor(dev) & 0xf));
16 /∗ wait one minute and try again ∗/
17 delay(60 ∗ drv_usectohz(1000000));
18 }

9F-358 SunOS 5.6 modified 20 Sep 1996

Kernel Functions for Drivers delay (9F)

SEE ALSO biodone(9F), biowait(9F), drv_hztousec(9F), drv_usectohz(9F), drv_usecwait(9F),
timeout(9F), untimeout(9F)

Writing Device Drivers

modified 20 Sep 1996 SunOS 5.6 9F-359

devmap_default_access (9F) Kernel Functions for Drivers

NAME devmap_default_access − default driver memory access function

SYNOPSIS #include <sys/ddi.h>
#include <sys/sunddi.h>

int devmap_default_access(devmap_cookie_t dhp, void ∗pvtp , offset_t off, size_t len,
u_int type , u_int rw)

INTERFACE
LEVEL

Solaris DDI specific (Solaris DDI).

ARGUMENTS dhp An opaque mapping handle that the system uses to describe the map-
ping.

pvtp Driver private mapping data.

off User offset within the logical device memory at which the access begins.

len Length (in bytes) of the memory being accessed.

type Type of access operation.

rw Type of access.

DESCRIPTION devmap_default_access() is a function providing the semantics of devmap_access(9E).
The drivers call devmap_default_access() to handle the mappings that do not support
context switching. The drivers should call devmap_do_ctxmgt(9F) for the mappings that
support context management.

devmap_default_access() can either be called from devmap_access(9E) or be used as the
devmap_access(9E) entry point. The arguments dhp, pvtp , off, len, type , and rw are pro-
vided by the devmap_access(9E) entry point and must not be modified.

RETURN VALUES 0 Successful completion.

Non-zero An error occurred.

CONTEXT devmap_default_access() must be called from the driver’s devmap_access(9E) entry
point.

EXAMPLES The following shows an example of using devmap_default_access() in the
devmap_access(9E) entry point.

. . .

#define OFF_DO_CTXMGT 0x40000000
#define OFF_NORMAL 0x40100000
#define CTXMGT_SIZE 0x100000
#define NORMAL_SIZE 0x100000

/∗
∗ Driver devmap_contextmgt(9E) callback function.

9F-360 SunOS 5.6 modified 14 Jan 1997

Kernel Functions for Drivers devmap_default_access (9F)

∗/
static int
xx_context_mgt(devmap_cookie_t dhp, void ∗pvtp, offset_t offset,

size_t length, u_int type, u_int rw)
{

......
/∗
∗ see devmap_contextmgt(9E) for an example
∗/

}

/∗
∗ Driver devmap_access(9E) entry point
∗/
static int
xxdevmap_access(devmap_cookie_t dhp, void ∗pvtp, offset_t off,

size_t len, u_int type, u_int rw)
{

offset_t diff;
int err;

/∗
∗ check if off is within the range that supports
∗ context management.
∗/
if ((diff = off - OFF_DO_CTXMG) >= 0 && diff < CTXMGT_SIZE) {

/∗
∗ calculates the length for context switching
∗/
if ((len + off) > (OFF_DO_CTXMGT + CTXMGT_SIZE))

return (-1);

/∗
∗ perform context switching
∗/
err = devmap_do_ctxmgt(dhp, pvtp, off, len, type,

rw, xx_context_mgt);
/∗
∗ check if off is within the range that does normal
∗ memory mapping.
∗/
} else if ((diff = off - OFF_NORMAL) >= 0 && diff < NORMAL_SIZE) {

if ((len + off) > (OFF_NORMAL + NORMAL_SIZE))
return (-1);

err = devmap_default_access(dhp, pvtp, off, len, type, rw);

modified 14 Jan 1997 SunOS 5.6 9F-361

devmap_default_access (9F) Kernel Functions for Drivers

} else
return (-1);

return (err);
}

SEE ALSO devmap_access(9E), devmap_do_ctxmgt(9F), devmap_callback_ctl(9S)

Writing Device Drivers

9F-362 SunOS 5.6 modified 14 Jan 1997

Kernel Functions for Drivers devmap_devmem_setup (9F)

NAME devmap_devmem_setup, devmap_umem_setup − set driver memory mapping parame-
ters

SYNOPSIS #include <sys/ddi.h>
#include <sys/sunddi.h>

int devmap_devmem_setup(devmap_cookie_t dhp, dev_info_t ∗dip,
struct devmap_callback_ctl ∗callbackops , u_int rnumber, offset_t roff,
size_t len, u_int maxprot , u_int flags, ddi_device_acc_attr_t ∗accattrp)

int devmap_umem_setup(devmap_cookie_t dhp, dev_info_t ∗dip,
struct devmap_callback_ctl ∗ callbackops , ddi_umem_cookie_t cookie , offset_t koff ,
size_t len, u_int maxprot , u_int flags, ddi_device_acc_attr_t ∗accattrp)

INTERFACE
LEVEL

Solaris DDI specific (Solaris DDI).

ARGUMENTS
devmap_devmem_setup() dhp An opaque mapping handle that the system uses to describe the

mapping.

dip Pointer to the device’s dev_info structure.

callbackops Pointer to a devmap_callback_ctl(9S) structure. The structure con-
tains pointers to device driver-supplied functions that manage
events on the device mapping. The framework will copy the struc-
ture to the system private memory.

rnumber Index number to the register address space set.

roff Offset into the register address space.

len Length (in bytes) of the mapping to be mapped.

maxprot Maximum protection flag possible for attempted mapping. Some
combinations of possible settings are:

PROT_READ Read access is allowed.

PROT_WRITE Write access is allowed.

PROT_EXEC Execute access is allowed.

PROT_USER User-level access is allowed (the mapping is
being done as a result of a mmap(2) system call).

PROT_ALL All access is allowed.

flags Must be set to 0.

accattrp Pointer to a ddi_device_acc_attr(9S) structure. The structure con-
tains the device access attributes to be applied to this range of
memory.

modified 22 Jan 1997 SunOS 5.6 9F-363

devmap_devmem_setup (9F) Kernel Functions for Drivers

devmap_umem_setup() dhp An opaque data structure that the system uses to describe the map-
ping.

dip Pointer to the device’s dev_info structure.

callbackops Pointer to a devmap_callback_ctl(9S) structure. The structure con-
tains pointers to device driver-supplied functions that manage
events on the device mapping.

cookie A kernel memory cookie (see ddi_umem_alloc(9F)).

koff Offset into the kernel memory defined by cookie .

len Length (in bytes) of the mapping to be mapped.

maxprot Maximum protection flag possible for attempted mapping. Some
combinations of possible settings are:

PROT_READ Read access is allowed.

PROT_WRITE Write access is allowed.

PROT_EXEC Execute access is allowed.

PROT_USER User-level access is allowed (the mapping is
being done as a result of a mmap(2) system call).

PROT_ALL All access is allowed.

flags Must be set to 0.

accattrp Pointer to a ddi_device_acc_attr(9S) structure. The structure con-
tains the device access attributes to be applied to this range of
memory.

DESCRIPTION devmap_devmem_setup() and devmap_umem_setup() are used in the devmap(9E)
entry point to pass mapping parameters from the driver to the system.

dhp is a device mapping handle that the system uses to store all mapping parameters of a
physical contiguous memory. The system copies the data pointed to by callbackops to a
system private memory. This allows the driver to free the data after returning from
either devmap_devmem_setup() or devmap_umem_setup(). The driver is notified of
user events on the mappings via the entry points defined by devmap_callback_ctl(9S).
The driver is notified of the following user events:

Mapping Setup User has called mmap(2) to create a mapping to the device
memory.

Access User has accessed an address in the mapping that has no
translations.

Duplication User has duplicated the mapping. Mappings are duplicated
when the process calls fork(2).

Unmapping User has called munmap(2) on the mapping or is exiting,
exit(2).

9F-364 SunOS 5.6 modified 22 Jan 1997

Kernel Functions for Drivers devmap_devmem_setup (9F)

See devmap_map(9E), devmap_access(9E), devmap_dup(9E), and devmap_unmap(9E)
for details on these entry points.

By specifying a valid callbackops to the system, device drivers can manage events on a
device mapping. For example, the devmap_access(9E) entry point allows the drivers to
perform context switching by unloading the mappings of other processes and to load the
mapping of the calling process. Device drivers may specify NULL to callbackops which
means the drivers do not want to be notified by the system.

The maximum protection allowed for the mapping is specified in maxprot . accattrp
defines the device access attributes. See ddi_device_acc_attr(9S) for more details.

devmap_devmem_setup() is used for device memory to map in the register set given by
rnumber and the offset into the register address space given by roff. The system uses
rnumber and roff to go up the device tree to get the physical address that corresponds to
roff. The range to be affected is defined by len and roff. The range from roff to roff + len
must be a physical contiguous memory and page aligned.

Drivers use devmap_umem_setup() for kernel memory to map in the kernel memory
described by cookie and the offset into the kernel memory space given by koff . cookie is a
kernel memory pointer obtained from ddi_umem_alloc(9F). If cookie is NULL,
devmap_umem_setup() returns -1. The range to be affected is defined by len and koff .
The range from koff to koff + len must be within the limits of the kernel memory described
by koff + len and must be page aligned.

Drivers use devmap_umem_setup() to export the kernel memory allocated by
ddi_umem_alloc(9F) to user space. The system selects a user virtual address that is
aligned with the kernel virtual address being mapped to avoid cache incoherence if the
mapping is not MAP_FIXED.

RETURN VALUES 0 Successful completion.

-1 An error occurred.

CONTEXT devmap_devmem_setup() and devmap_umem_setup() can be called from user, kernel,
and interrupt context.

SEE ALSO exit(2), fork(2), mmap(2), munmap(2), devmap(9E), ddi_umem_alloc(9F),
ddi_device_acc_attr(9S), devmap_callback_ctl(9S)

Writing Device Drivers

modified 22 Jan 1997 SunOS 5.6 9F-365

devmap_do_ctxmgt (9F) Kernel Functions for Drivers

NAME devmap_do_ctxmgt − perform device context switching on a mapping

SYNOPSIS #include <sys/ddi.h>
#include <sys/sunddi.h>

int devmap_do_ctxmgt(devmap_cookie_t, dhp, void ∗pvtp , offset_t off, size_t len,
u_int type , u_int rw , int (∗devmap_contextmgt)(devmap_cookie_t,
void ∗, offset_t, size_t, u_int, u_int));

INTERFACE
LEVEL

Solaris DDI specific (Solaris DDI).

ARGUMENTS dhp An opaque mapping handle that the system uses to describe the map-
ping.

pvtp Driver private mapping data.

off User offset within the logical device memory at which the access begins.

len Length (in bytes) of the memory being accessed.

devmap_contextmgt
The address of driver function that the system will call to perform con-
text switching on a mapping. See devmap_contextmgt(9E) for details.

type Type of access operation. Provided by devmap_access(9E). Should not
be modified.

rw Direction of access. Provided by devmap_access(9E). Should not be
modified.

DESCRIPTION Device drivers call devmap_do_ctxmgt() in the devmap_access(9E) entry point to per-
form device context switching on a mapping. devmap_do_ctxmgt() passes a pointer to a
driver supplied callback function, devmap_contextmgt(9E), to the system that will per-
form the actual device context switching. If devmap_contextmgt(9E) is not a valid driver
callback function, the system will fail the memory access operation which will result in a
SIGSEGV or SIGBUS signal being delivered to the process.

devmap_do_ctxmgt() performs context switching on the mapping object identified by
dhp and pvtp in the range specified by off and len. The arguments dhp, pvtp , type , and rw
are provided by the devmap_access(9E) entry point and must not be modified. The
range from off to off+len must support context switching.

The system will pass through dhp, pvtp , off, len, type , and rw to devmap_contextmgt(9E)
in order to perform the actual device context switching. The return value from
devmap_contextmgt(9E) will be returned directly to devmap_do_ctxmgt().

RETURN VALUES 0 Successful completion.

Non-zero An error occurred.

9F-366 SunOS 5.6 modified 22 Jan 1997

Kernel Functions for Drivers devmap_do_ctxmgt (9F)

CONTEXT devmap_do_ctxmgt() must be called from the driver’s devmap_access(9E) entry point.

EXAMPLES The following shows an example of using devmap_do_ctxmgt() in the
devmap_access(9E) entry point.

. . .

#define OFF_DO_CTXMGT 0x40000000
#define OFF_NORMAL 0x40100000
#define CTXMGT_SIZE 0x100000
#define NORMAL_SIZE 0x100000

/∗
∗ Driver devmap_contextmgt(9E) callback function.
∗/
static int
xx_context_mgt(devmap_cookie_t dhp, void ∗pvtp, offset_t offset,

size_t length, u_int type, u_int rw)
{

......
/∗
∗ see devmap_contextmgt(9E) for an example
∗/

}

/∗
∗ Driver devmap_access(9E) entry point
∗/
static int
xxdevmap_access(devmap_cookie_t dhp, void ∗pvtp, offset_t off,

size_t len, u_int type, u_int rw)
{

offset_t diff;
int err;

/∗
∗ check if off is within the range that supports
∗ context management.
∗/
if ((diff = off - OFF_DO_CTXMG) >= 0 && diff < CTXMGT_SIZE) {

/∗
∗ calculates the length for context switching
∗/
if ((len + off) > (OFF_DO_CTXMGT + CTXMGT_SIZE))

return (-1);

modified 22 Jan 1997 SunOS 5.6 9F-367

devmap_do_ctxmgt (9F) Kernel Functions for Drivers

/∗
∗ perform context switching
∗/
err = devmap_do_ctxmgt(dhp, pvtp, off, len, type,

rw, xx_context_mgt);
/∗
∗ check if off is within the range that does normal
∗ memory mapping.
∗/
} else if ((diff = off - OFF_NORMAL) >= 0 && diff < NORMAL_SIZE) {

if ((len + off) > (OFF_NORMAL + NORMAL_SIZE))
return (-1);

err = devmap_default_access(dhp, pvtp, off, len, type, rw);
} else

return (-1);

return (err);
}

SEE ALSO devmap_access(9E), devmap_contextmgt(9E), devmap_default_access(9F)

Writing Device Drivers

9F-368 SunOS 5.6 modified 22 Jan 1997

Kernel Functions for Drivers devmap_set_ctx_timeout (9F)

NAME devmap_set_ctx_timeout − set the timeout value for the context management callback

SYNOPSIS #include <sys/ddi.h>
#include <sys/sunddi.h>

void devmap_set_ctx_timeout(devmap_cookie_t dhp, clock_t ticks)

INTERFACE
LEVEL

Solaris DDI specific (Solaris DDI).

ARGUMENTS dhp An opaque mapping handle that the system uses to describe the map-
ping.

ticks Number of clock ticks to wait between successive calls to the context
management callback function.

DESCRIPTION devmap_set_ctx_timeout() specifies the time interval for the system to wait between suc-
cessive calls to the driver’s context management callback function,
devmap_contextmgt(9E).

Device drivers typically call devmap_set_ctx_timeout() in the devmap_map(9E) routine.
If the drivers do not call devmap_set_ctx_timeout() to set the timeout value, the default
timeout value of 0 will result in no delay between successive calls to the driver’s
devmap_contextmgt(9E) callback function.

CONTEXT devmap_set_ctx_timeout() can be called from user or interrupt context.

SEE ALSO devmap_contextmgt(9E), devmap_map(9E), timeout(9F)

modified 22 Jan 1997 SunOS 5.6 9F-369

devmap_setup (9F) Kernel Functions for Drivers

NAME devmap_setup, ddi_devmap_segmap − set up a user mapping to device memory using
the devmap framework

SYNOPSIS #include <sys/ddi.h>
#include <sys/sunddi.h>

int devmap_setup(dev_t dev, offset_t off, ddi_as_handle_t as , caddr_t ∗addrp ,
size_t len, u_int prot , u_int maxprot , u_int flags , cred_t ∗cred)

int ddi_devmap_segmap(dev_t dev, off_t off, ddi_as_handle_t as , caddr_t ∗addrp ,
off_t len, u_int prot , u_int maxprot , u_int flags , cred_t ∗cred)

INTERFACE
LEVEL

Solaris DDI specific (Solaris DDI).

ARGUMENTS dev Device whose memory is to be mapped.

off User offset within the logical device memory at which the mapping begins.

as An opaque data structure that describes the address space into which the
device memory should be mapped.

addrp Pointer to the starting address in the address space into which the device
memory should be mapped.

len Length (in bytes) of the memory to be mapped.

prot A bit field that specifies the protections. Some possible settings combina-
tions are:

PROT_READ Read access is desired.

PROT_WRITE Write access is desired.

PROT_EXEC Execute access is desired.

PROT_USER User-level access is desired (the mapping is being done
as a result of a mmap(2) system call).

PROT_ALL All access is desired.

maxprot Maximum protection flag possible for attempted mapping; the
PROT_WRITE bit may be masked out if the user opened the special file
read-only.

flags Flags indicating type of mapping. The following flags can be specified:

MAP_PRIVATE Changes are private.

MAP_SHARED Changes should be shared.

MAP_FIXED The user specified an address in ∗addrp rather than let-
ting the system choose an address.

cred Pointer to the user credential structure.

9F-370 SunOS 5.6 modified 22 Jan 1997

Kernel Functions for Drivers devmap_setup (9F)

DESCRIPTION devmap_setup() and ddi_devmap_segmap() allow device drivers to use the devmap
framework to set up user mappings to device memory. The devmap framework pro-
vides several advantages over the default device mapping framework that is used by
ddi_segmap(9F) or ddi_segmap_setup(9F). Device drivers should use the devmap
framework, if the driver wants to:

· use an optimal MMU pagesize to minimize address translations,

· conserve kernel resources,

· receive callbacks to manage events on the mapping,

· export kernel memory to applications,

· set up device contexts for the user mapping if the device requires context
switching,

· assign device access attributes to the user mapping, or

· change the maximum protection for the mapping.

devmap_setup() must be called in the segmap(9E) entry point to establish the mapping
for the application. ddi_devmap_segmap() can be called in, or be used as, the
segmap(9E) entry point. The differences between devmap_setup() and
ddi_devmap_segmap() are in the data type used for off and len.

When setting up the mapping, devmap_setup() and ddi_devmap_segmap() call the
devmap(9E) entry point to validate the range to be mapped. The devmap(9E) entry point
also translates the logical offset (as seen by the application) to the corresponding physical
offset within the device address space. If the driver does not provide its own
devmap(9E) entry point, EINVAL will be returned to the mmap(2) system call.

RETURN VALUES 0 Successful completion.

Non-zero An error occurred. The return value of devmap_setup() and
ddi_devmap_segmap() should be used directly in the segmap(9E) entry
point.

CONTEXT devmap_setup() and ddi_devmap_segmap() can be called from user or kernel context
only.

SEE ALSO mmap(2), devmap(9E), segmap(9E), ddi_segmap(9F), ddi_segmap_setup(9F),
cb_ops(9S)

Writing Device Drivers

modified 22 Jan 1997 SunOS 5.6 9F-371

devmap_unload (9F) Kernel Functions for Drivers

NAME devmap_load, devmap_unload − control validation of memory address translations

SYNOPSIS #include <sys/ddi.h>
#include <sys/sunddi.h>

int devmap_load(devmap_cookie_t dhp, offset_t off, size_t len, u_int type, u_int rw)

int devmap_unload(devmap_cookie_t dhp, offset_t off, size_t len)

INTERFACE
LEVEL

Solaris DDI specific (Solaris DDI).

ARGUMENTS dhp An opaque mapping handle that the system uses to describe the mapping.

off User offset within the logical device memory at which the loading or unload-
ing of the address translations begins.

len Length (in bytes) of the range being affected.

devmap_load() only type Type of access operation.

rw Direction of access.

DESCRIPTION devmap_unload() and devmap_load() are used to control the validation of the memory
mapping described by dhp in the specified range. devmap_unload() invalidates the map-
ping translations and will generate calls to the devmap_access(9E) entry point next time
the mapping is accessed. The drivers use devmap_load() to validate the mapping trans-
lations during memory access.

A typical use of devmap_unload() and devmap_load() is in the driver’s context manage-
ment callback function, devmap_contextmgt(9E). To manage a device context, a device
driver calls devmap_unload() on the context about to be switched out. It switches con-
texts, and then calls devmap_load() on the context switched in. devmap_unload() can be
used to unload the mappings of other processes as well as the mappings of the calling
process, but devmap_load() can only be used to load the mappings of the calling process.
Attempting to load another process’s mappings with devmap_load() will result in a sys-
tem panic.

For both routines, the range to be affected is defined by the off and len arguments.
Requests affect the entire page containing the off and all pages up to and including the
page containing the last byte as indicated by off + len. The arguments type and rw are pro-
vided by the system to the calling function (for example, devmap_contextmgt(9E)) and
should not be modified.

Supplying a value of 0 for the len argument affects all addresses from the off to the end of
the mapping. Supplying a value of 0 for the off argument and a value of 0 for len argu-
ment affect all addresses in the mapping.

A non-zero return value from either devmap_unload() or devmap_load() will cause the
corresponding operation to fail. The failure may result in a SIGSEGV or SIGBUS signal
being delivered to the process.

9F-372 SunOS 5.6 modified 22 Jan 1997

Kernel Functions for Drivers devmap_unload (9F)

RETURN VALUES 0 Successful completion.

Non-zero An error occurred.

CONTEXT These routines can be called from user or kernel context only.

EXAMPLES The following shows an example of managing a device context that is one page in length.

struct xx_context cur_ctx;

static int
xxdevmap_contextmgt(devmap_cookie_t dhp, void ∗pvtp, offset_t off,

size_t len, u_int type, u_int rw)
{

int err;
devmap_cookie_t cur_dhp;
struct xx_pvt ∗p;
struct xx_pvt ∗pvp = (struct xx_pvt ∗)pvtp;

/∗ enable access callbacks for the current mapping ∗/
if (cur_ctx != NULL && cur_ctx != pvp->ctx) {

p = cur_ctx->pvt;
/∗
∗ unload the region from off to the end of the mapping.
∗/
cur_dhp = p->dhp;
if ((err = devmap_unload(cur_dhp, off, len)) != 0)

return (err);
}

/∗ Switch device context - device dependent∗/
...

/∗ Make handle the new current mapping ∗/
cur_ctx = pvp->ctx;

/∗
∗ Disable callbacks and complete the access for the
∗ mapping that generated this callback.
∗/

return (devmap_load(pvp->dhp, off, len, type, rw));
}

SEE ALSO devmap_access(9E), devmap_contextmgt(9E)

Writing Device Drivers

modified 22 Jan 1997 SunOS 5.6 9F-373

disksort (9F) Kernel Functions for Drivers

NAME disksort − single direction elevator seek sort for buffers

SYNOPSIS #include <sys/conf.h>
#include <sys/ddi.h>
#include <sys/sunddi.h>

void disksort(struct diskhd ∗dp, struct buf ∗bp);

INTERFACE
LEVEL

Solaris DDI specific (Solaris DDI).

ARGUMENTS dp A pointer to a diskhd structure. A diskhd structure is essentially identi-
cal to head of a buffer structure (see buf(9S)). The only defined items of
interest for this structure are the av_forw and av_back structure ele-
ments which are used to maintain the front and tail pointers of the for-
ward linked I/O request queue.

bp A pointer to a buffer structure. Typically this is the I/O request that the
driver receives in its strategy routine (see strategy(9E)). The driver is
responsible for initializing the b_resid structure element to a meaningful
sort key value prior to calling disksort().

DESCRIPTION The function disksort() sorts a pointer to a buffer into a single forward linked list headed
by the av_forw element of the argument ∗dp.

It uses a one-way elevator algorithm that sorts buffers into the queue in ascending order
based upon a key value held in the argument buffer structure element b_resid.

This value can either be the driver calculated cylinder number for the I/O request
described by the buffer argument, or simply the absolute logical block for the I/O
request, depending on how fine grained the sort is desired to be or how applicable either
quantity is to the device in question.

The head of the linked list is found by use of the av_forw structure element of the argu-
ment ∗dp. The tail of the linked list is found by use of the av_back structure element of
the argument ∗dp. The av_forw element of the ∗bp argument is used by disksort() to
maintain the forward linkage. The value at the head of the list presumably indicates the
currently active disk area.

CONTEXT This function can be called from user or interrupt context.

SEE ALSO strategy(9E), buf(9S)

Writing Device Drivers

WARNINGS disksort() does no locking. Therefore, any locking is completely the responsibility of the
caller.

9F-374 SunOS 5.6 modified 30 Jul 1993

Kernel Functions for Drivers drv_getparm (9F)

NAME drv_getparm − retrieve kernel state information

SYNOPSIS #include <sys/ddi.h>

int drv_getparm(unsigned int parm , void ∗value_p);

INTERFACE
LEVEL

Architecture independent level 1 (DDI/DKI).

ARGUMENTS parm The kernel parameter to be obtained. Possible values are:

LBOLT Read the value of lbolt. (lbolt is an integer that represents the
number of clock ticks since the last system reboot. This value is
used as a counter or timer inside the system kernel.)

PPGRP Read the process group identification number. This number
determines which processes should receive a HANGUP or BREAK
signal when detected by a driver.

UPROCP Read the process table token value.

PPID Read process identification number.

PSID Read process session identification number.

TIME Read time in seconds.

UCRED Return a pointer to the caller’s credential structure.

value_p A pointer to the data space in which the value of the parameter is to be
copied.

DESCRIPTION drv_getparm() function verifies that parm corresponds to a kernel parameter that may be
read. If the value of parm does not correspond to a parameter or corresponds to a param-
eter that may not be read, -1 is returned. Otherwise, the value of the parameter is stored
in the data space pointed to by value_p.

drv_getparm() does not explicitly check to see whether the device has the appropriate
context when the function is called and the function does not check for correct alignment
in the data space pointed to by value_p. It is the responsibility of the driver writer to use
this function only when it is appropriate to do so and to correctly declare the data space
needed by the driver.

RETURN VALUES drv_getparm() returns 0 to indicate success, −1 to indicate failure. The value stored in
the space pointed to by value_p is the value of the parameter if 0 is returned, or undefined
if −1 is returned. −1 is returned if you specify a value other than LBOLT, PPGRP, PPID,
PSID, TIME, UCRED, or UPROCP. Always check the return code when using this func-
tion.

modified 30 Aug 1996 SunOS 5.6 9F-375

drv_getparm (9F) Kernel Functions for Drivers

CONTEXT drv_getparm() can be called from user context only when using PPGRP, PPID, PSID,
UCRED, or UPROCP. It can be called from user or interrupt context when using the
LBOLT or TIME argument.

SEE ALSO buf(9S)

Writing Device Drivers

9F-376 SunOS 5.6 modified 30 Aug 1996

Kernel Functions for Drivers drv_hztousec (9F)

NAME drv_hztousec − convert clock ticks to microseconds

SYNOPSIS #include <sys/types.h>
#include <sys/ddi.h>

clock_t drv_hztousec(clock_t hertz);

INTERFACE
LEVEL

Architecture independent level 1 (DDI/DKI).

ARGUMENTS hertz The number of clock ticks to convert.

DESCRIPTION drv_hztousec() converts into microseconds the time expressed by hertz , which is in sys-
tem clock ticks.

The kernel variable lbolt, which is (only) readable through drv_getparm(9F), is the length
of time the system has been up since boot and is expressed in clock ticks. Drivers often
use the value of lbolt before and after an I/O request to measure the amount of time it
took the device to process the request. drv_hztousec() can be used by the driver to con-
vert the reading from clock ticks to a known unit of time.

RETURN VALUES The number of microseconds equivalent to the hertz argument.
No error value is returned. If the microsecond equivalent to hertz is too large to be
represented as a clock_t , then the maximum clock_t value will be returned.

CONTEXT drv_hztousec() can be called from user or interrupt context.

SEE ALSO drv_getparm(9F), drv_usectohz(9F), drv_usecwait(9F)

Writing Device Drivers

modified 12 Nov 1992 SunOS 5.6 9F-377

drv_priv (9F) Kernel Functions for Drivers

NAME drv_priv − determine driver privilege

SYNOPSIS #include <sys/types.h>
#include <sys/cred.h>
#include <sys/ddi.h>

int drv_priv(cred_t ∗cr);

INTERFACE
LEVEL

Architecture independent level 1 (DDI/DKI).

ARGUMENTS cr Pointer to the user credential structure.

DESCRIPTION drv_priv() provides a general interface to the system privilege policy. It determines
whether the credentials supplied by the user credential structure pointed to by cr identify
a privileged process. This function should only be used when file access modes and spe-
cial minor device numbers are insufficient to provide protection for the requested driver
function. It is intended to replace all calls to suser() and any explicit checks for effective
user ID = 0 in driver code.

RETURN VALUES This routine returns 0 if it succeeds, EPERM if it fails.

CONTEXT drv_priv() can be called from user or interrupt context.

SEE ALSO Writing Device Drivers

9F-378 SunOS 5.6 modified 11 Apr 1991

Kernel Functions for Drivers drv_usectohz (9F)

NAME drv_usectohz − convert microseconds to clock ticks

SYNOPSIS #include <sys/types.h>
#include <sys/ddi.h>

clock_t drv_usectohz(clock_t microsecs);

INTERFACE
LEVEL

Architecture independent level 1 (DDI/DKI).

ARGUMENTS microsecs The number of microseconds to convert.

DESCRIPTION drv_usectohz() converts a length of time expressed in microseconds to a number of sys-
tem clock ticks. The time arguments to timeout(9F) and delay(9F) are expressed in clock
ticks.

drv_usectohz() is a portable interface for drivers to make calls to timeout(9F) and
delay(9F) and remain binary compatible should the driver object file be used on a system
with a different clock speed (a different number of ticks in a second).

RETURN VALUES The value returned is the number of system clock ticks equivalent to the microsecs argu-
ment. No error value is returned. If the clock tick equivalent to microsecs is too large to be
represented as a clock_t, then the maximum clock_t value will be returned.

CONTEXT drv_usectohz() can be called from user or interrupt context.

SEE ALSO delay(9F), drv_hztousec(9F), timeout(9F)

Writing Device Drivers

modified 12 Nov 1992 SunOS 5.6 9F-379

drv_usecwait (9F) Kernel Functions for Drivers

NAME drv_usecwait − busy-wait for specified interval

SYNOPSIS #include <sys/types.h>
#include <sys/ddi.h>

void drv_usecwait(clock_t microsecs);

INTERFACE
LEVEL

Architecture independent level 1 (DDI/DKI).

ARGUMENTS microsecs The number of microseconds to busy-wait.

DESCRIPTION drv_usecwait() gives drivers a means of busy-waiting for a specified microsecond count.
The amount of time spent busy-waiting may be greater than the microsecond count but
will minimally be the number of microseconds specified.

delay(9F) can be used by a driver to delay for a specified number of system ticks, but it
has two limitations. First, the granularity of the wait time is limited to one clock tick,
which may be more time than is needed for the delay. Second, delay(9F) may only be
invoked from user context and hence cannot be used at interrupt time or system initiali-
zation.

Often, drivers need to delay for only a few microseconds, waiting for a write to a device
register to be picked up by the device. In this case, even in user context, delay(9F) pro-
duces too long a wait period.

CONTEXT drv_usecwait() can be called from user or interrupt context.

SEE ALSO delay(9F), timeout(9F), untimeout(9F)

Writing Device Drivers

NOTES The driver wastes processor time by making this call since drv_usecwait() does not block
but simply busy-waits. The driver should only make calls to drv_usecwait() as needed,
and only for as much time as needed. drv_usecwait() does not mask out interrupts.

9F-380 SunOS 5.6 modified 12 Nov 1992

Kernel Functions for Drivers dupb (9F)

NAME dupb − duplicate a message block descriptor

SYNOPSIS #include <sys/stream.h>

mblk_t ∗dupb(mblk_t ∗bp);

INTERFACE
LEVEL

Architecture independent level 1 (DDI/DKI).

ARGUMENTS bp Pointer to the message block to be duplicated. mblk_t is an instance of the
msgb(9S) structure.

DESCRIPTION dupb() creates a new mblk_t structure (see msgb(9S)) to reference the message block
pointed to by bp.

Unlike copyb(9F), dupb() does not copy the information in the dblk_t structure (see
datab(9S)), but creates a new mblk_t structure to point to it. The reference count in the
dblk_t structure (db_ref) is incremented. The new mblk_t structure contains the same
information as the original. Note that b_rptr and b_wptr are copied from the bp.

.

.

.

.

nbp=dupb(bp);

Before After

db_base
db_ref (2)

db_base
db_ref (1)

bp

b_datap

b_rptr
b_wptr

b_datap

b_rptr
b_wptr

b_datap

b_rptr
b_wptr

nbpbp

RETURN VALUES If successful, dupb() returns a pointer to the new message block. A NULL pointer is
returned if dupb() cannot allocate a new message block descriptor or if the db_ref field
of the data block structure (see datab(9S)) has reached a maximum value (255).

CONTEXT dupb() can be called from user, kernel, or interrupt context.

EXAMPLES This srv(9E) (service) routine adds a header to all M_DATA messages before passing them
along. dupb is used instead of copyb(9F) because the contents of the header block are not
changed.

modified 07 Nov 1996 SunOS 5.6 9F-381

dupb (9F) Kernel Functions for Drivers

For each message on the queue, if it is a priority message, pass it along immediately (lines
10−11). Otherwise, if it is anything other than an M_DATA message (line 12), and if it can
be sent along (line 13), then do so (line 14). Otherwise, put the message back on the
queue and return (lines 16−17). For all M_DATA messages, first check to see if the stream
is flow-controlled (line 20). If it is, put the message back on the queue and return (lines
37−38). If it is not, the header block is duplicated (line 21).

dupb() can fail either due to lack of resources or because the message block has already
been duplicated 255 times. In order to handle the latter case, the example calls copyb(9F)
(line 22). If copyb(9F) fails, it is due to buffer allocation failure. In this case, qbufcall(9F)
is used to initiate a callback (lines 30-31) if one is not already pending (lines 26-27).

The callback function, xxxcallback(), clears the recorded qbufcall(9F) callback id and
schedules the service procedure (lines 49-50). Note that the close routine, xxxclose(),
must cancel any outstanding qbufcall(9F) callback requests (lines 58-59).

If dupb() or copyb(9F) succeed, link the M_DATA message to the new message block
(line 34) and pass it along (line 35).

1 xxxsrv(q)
2 queue_t ∗q;
3 {
4 struct xx ∗xx = (struct xx ∗)q->q_ptr;
5 mblk_t ∗mp;
6 mblk_t ∗bp;
7 extern mblk_t ∗hdr;
8
9 while ((mp = getq(q)) != NULL) {

10 if (mp->b_datap->db_type >= QPCTL) {
11 putnext(q, mp);
12 } else if (mp->b_datap->db_type != M_DATA) {
13 if (canputnext(q))
14 putnext(q, mp);
15 else {
16 putbq(q, mp);
17 return;
18 }
19 } else { /∗ M_DATA ∗/
20 if (canputnext(q)) {
21 if ((bp = dupb(hdr)) == NULL)
22 bp = copyb(hdr);
23 if (bp == NULL) {
24 size_t size = msgdsize(mp);
25 putbq(q, mp);
26 if (xx->xx_qbufcall_id) {
27 /∗ qbufcall pending ∗/
28 return;
29 }

9F-382 SunOS 5.6 modified 07 Nov 1996

Kernel Functions for Drivers dupb (9F)

30 xx->xx_qbufcall_id = qbufcall(q, size,
31 BPRI_MED, xxxcallback, (intptr_t)q);
32 return;
33 }
34 linkb(bp, mp);
35 putnext(q, bp);
36 } else {
37 putbq(q, mp);
38 return;
39 }
40 }
41 }
42 }

43 void
44 xxxcallback(q)
45 queue_t ∗q;
46 {
47 struct xx ∗xx = (struct xx ∗)q->q_ptr;
48
49 xx->xx_qbufcall_id = 0;
50 qenable(q);
51 }

52 xxxclose(q, cflag, crp)
53 queue_t ∗q;
54 int cflag;
55 cred_t ∗crp;
56 {
57 struct xx ∗xx = (struct xx ∗)q->q_ptr;

. . .
58 if (xx->xx_qbufcall_id)
59 qunbufcall(q, xx->xx_qbufcall_id);

. . .
60 }

SEE ALSO srv(9E), copyb(9F), qbufcall(9F), datab(9S), msgb(9S)

Writing Device Drivers
STREAMS Programming Guide

modified 07 Nov 1996 SunOS 5.6 9F-383

dupmsg (9F) Kernel Functions for Drivers

NAME dupmsg − duplicate a message

SYNOPSIS #include <sys/stream.h>

mblk_t ∗dupmsg(mblk_t ∗mp);

INTERFACE
LEVEL

Architecture independent level 1 (DDI/DKI).

ARGUMENTS mp Pointer to the message.

DESCRIPTION dupmsg() forms a new message by copying the message block descriptors pointed to by
mp and linking them. dupb(9F) is called for each message block. The data blocks them-
selves are not duplicated.

RETURN VALUES If successful, dupmsg() returns a pointer to the new message block. Otherwise, it returns
a NULL pointer. A return value of NULL indicates either memory depletion or the data
block reference count, db_ref (see datab(9S)), has reached a limit (255). See dupb(9F).

CONTEXT dupmsg() can be called from user, kernel, or interrupt context.

EXAMPLES See copyb(9F) for an example using dupmsg().

SEE ALSO copyb(9F), copymsg(9F), dupb(9F), datab(9S)

Writing Device Drivers
STREAMS Programming Guide

9F-384 SunOS 5.6 modified 11 Apr 1991

Kernel Functions for Drivers enableok (9F)

NAME enableok − reschedule a queue for service

SYNOPSIS #include <sys/stream.h>
#include <sys/ddi.h>

void enableok(queue_t ∗q);

INTERFACE
LEVEL

Architecture independent level 1 (DDI/DKI).

ARGUMENTS q A pointer to the queue to be rescheduled.

DESCRIPTION enableok() enables queue q to be rescheduled for service. It reverses the effect of a previ-
ous call to noenable(9F) on q by turning off the QNOENB flag in the queue.

CONTEXT enableok() can be called from user or interrupt context.

EXAMPLES The qrestart() routine uses two STREAMS functions to restart a queue that has been dis-
abled. The enableok() function turns off the QNOENB flag, allowing the qenable(9F) to
schedule the queue for immediate processing.

1 void
2 qrestart(rdwr_q)
3 register queue_t ∗rdwr_q;
4 {
5 enableok(rdwr_q);
6 /∗ re-enable a queue that has been disabled ∗/
7 (void) qenable(rdwr_q);
8 }

SEE ALSO noenable(9F), qenable(9F)

Writing Device Drivers
STREAMS Programming Guide

modified 11 Apr 1991 SunOS 5.6 9F-385

esballoc (9F) Kernel Functions for Drivers

NAME esballoc − allocate a message block using a caller-supplied buffer

SYNOPSIS #include <sys/stream.h>

mblk_t ∗esballoc(uchar ∗base, size_t size, uint pri, frtn_t ∗fr_rtnp);

INTERFACE
LEVEL

Architecture independent level 1 (DDI/DKI).

ARGUMENTS base Address of user supplied data buffer.

size Number of bytes in data buffer.

pri Priority of allocation request (to be used by allocb(9F) function, called
by esballoc()).

fr_rtnp Free routine data structure.

DESCRIPTION esballoc() creates a STREAMS message and attaches a user-supplied data buffer in place
of a STREAMS data buffer. It calls allocb(9F) to get a message and data block header
only. The user-supplied data buffer, pointed to by base , is used as the data buffer for the
message.

When freeb(9F) is called to free the message, the driver’s message freeing routine (refer-
enced through the free_rtn structure) is called, with appropriate arguments, to free the
data buffer.

The free_rtn structure includes the following members:

void (∗free_func)(); /∗ user’s freeing routine ∗/
char ∗free_arg; /∗ arguments to free_func() ∗/

Instead of requiring a specific number of arguments, the free_arg field is defined of type
char ∗. This way, the driver can pass a pointer to a structure if more than one argument
is needed.

The method by which free_func is called is implementation-specific. The module writer
must not assume that free_func will or will not be called directly from STREAMS utility
routines like freeb(9F) which free a message block.

free_func must not call another modules put procedure nor attempt to acquire a private
module lock which may be held by another thread across a call to a STREAMS utility
routine which could free a message block. Otherwise, the possibility for lock recursion
and/or deadlock exists.

free_func must not access any dynamically allocated data structure that might no longer
exist when it runs.

RETURN VALUES On success, a pointer to the newly allocated message block is returned. On failure, NULL
is returned.

CONTEXT esballoc() can be called from user or interrupt context.

9F-386 SunOS 5.6 modified 07 Nov 1996

Kernel Functions for Drivers esballoc (9F)

SEE ALSO allocb(9F), freeb(9F), datab(9S), free_rtn(9S)

Writing Device Drivers
STREAMS Programming Guide

WARNINGS The free_func must be defined in kernel space, should be declared void and accept one
argument. It has no user context and must not sleep.

modified 07 Nov 1996 SunOS 5.6 9F-387

esbbcall (9F) Kernel Functions for Drivers

NAME esbbcall − call function when buffer is available

SYNOPSIS #include <sys/stream.h>

int esbbcall(uint pri, void (∗func) (intptr_t arg), intptr_t arg);

INTERFACE
LEVEL

Architecture independent level 1 (DDI/DKI).

ARGUMENTS pri Priority of allocation request (to be used by allocb(9F) function, called by esbb-
call())

func Function to be called when buffer becomes available.

arg Argument to func.

DESCRIPTION esbbcall(), like bufcall(9F), serves as a timeout(9F) call of indeterminate length. If
esballoc(9F) is unable to allocate a message and data block header to go with its exter-
nally supplied data buffer, esbbcall() can be used to schedule the routine func, to be
called with the argument arg when a buffer becomes available. func may be a routine that
calls esballoc (9F) or it may be another kernel function.

RETURN VALUES On success, a non-zero integer is returned. On failure, 0 is returned.
The value returned from a successful call should be saved for possible future use with
unbufcall() should it become necessary to cancel the esbbcall() request (as at driver
close time).

CONTEXT esbbcall() can be called from user or interrupt context.

SEE ALSO allocb(9F), bufcall(9F), esballoc(9F), timeout(9F), datab(9S), unbufcall(9F)

Writing Device Drivers
STREAMS Programming Guide

9F-388 SunOS 5.6 modified 11 Nov 1996

Kernel Functions for Drivers flushband (9F)

NAME flushband − flush messages for a specified priority band

SYNOPSIS #include <sys/stream.h>

void flushband(queue_t ∗q, unsigned char pri, int flag);

INTERFACE
LEVEL

Architecture independent level 1 (DDI/DKI).

ARGUMENTS q Pointer to the queue.

pri Priority of messages to be flushed.

flag Valid flag values are:

FLUSHDATA Flush only data messages (types M_DATA, M_DELAY,
M_PROTO, and M_PCPROTO).

FLUSHALL Flush all messages.

DESCRIPTION flushband() flushes messages associated with the priority band specified by pri. If pri is
0, only normal and high priority messages are flushed. Otherwise, messages are flushed
from the band pri according to the value of flag .

CONTEXT flushband() can be called from user or interrupt context.

SEE ALSO flushq(9F)

Writing Device Drivers
STREAMS Programming Guide

modified 11 Apr 1991 SunOS 5.6 9F-389

flushq (9F) Kernel Functions for Drivers

NAME flushq − remove messages from a queue

SYNOPSIS #include <sys/stream.h>

void flushq(queue_t ∗q, int flag);

INTERFACE
LEVEL

Architecture independent level 1 (DDI/DKI).

ARGUMENTS q Pointer to the queue to be flushed.

flag Valid flag values are:

FLUSHDATA Flush only data messages (types M_DATA M_DELAY M_PROTO
and M_PCPROTO).

FLUSHALL Flush all messages.

DESCRIPTION flushq() frees messages and their associated data structures by calling freemsg(9F). If
the queue’s count falls below the low water mark and the queue was blocking an
upstream service procedure, the nearest upstream service procedure is enabled.

CONTEXT flushq() can be called from user or interrupt context.

EXAMPLES This example depicts the canonical flushing code for STREAMS modules. The module
has a write service procedure and potentially has messages on the queue. If it receives an
M_FLUSH message, and if the FLUSHR bit is on in the first byte of the message (line 10),
then the read queue is flushed (line 11). If the FLUSHW bit is on (line 12), then the write
queue is flushed (line 13). Then the message is passed along to the next entity in the
stream (line 14). See the example for qreply(9F) for the canonical flushing code for
drivers.

1 /∗
2 ∗ Module write-side put procedure.
3 ∗/
4 xxxwput(q, mp)
5 queue_t ∗q;
6 mblk_t ∗mp;
7 {
8 switch(mp->b_datap->db_type) {
9 case M_FLUSH:

9F-390 SunOS 5.6 modified 11 Apr 1991

Kernel Functions for Drivers flushq (9F)

10 if (∗mp->b_rptr & FLUSHR)
11 flushq(RD(q), FLUSHALL);
12 if (∗mp->b_rptr & FLUSHW)
13 flushq(q, FLUSHALL);
14 putnext(q, mp);
15 break;

. . .
16 }
17 }

SEE ALSO flushband(9F), freemsg(9F), putq(9F), qreply(9F)

Writing Device Drivers
STREAMS Programming Guide

modified 11 Apr 1991 SunOS 5.6 9F-391

freeb (9F) Kernel Functions for Drivers

NAME freeb − free a message block

SYNOPSIS #include <sys/stream.h>

void freeb(mblk_t ∗bp);

ARGUMENTS bp Pointer to the message block to be deallocated. mblk_t is an instance of the
msgb(9S) structure.

INTERFACE
LEVEL

Architecture independent level 1 (DDI/DKI).

DESCRIPTION freeb() deallocates a message block. If the reference count of the db_ref member of the
datab(9S) structure is greater than 1, freeb() decrements the count. If db_ref equals 1, it
deallocates the message block and the corresponding data block and buffer.

If the data buffer to be freed was allocated with the esballoc(9F), the buffer may be a
non-STREAMS resource. In that case, the driver must be notified that the attached data
buffer needs to be freed, and run its own freeing routine. To make this process indepen-
dent of the driver used in the stream, freeb() finds the free_rtn(9S) structure associated
with the buffer. The free_rtn structure contains a pointer to the driver-dependent rou-
tine, which releases the buffer. Once this is accomplished, freeb() releases the STREAMS
resources associated with the buffer.

CONTEXT freeb() can be called from user or interrupt context.

EXAMPLE See copyb(9F) for an example of using freeb().

SEE ALSO allocb(9F), copyb(9F), dupb(9F), esballoc(9F), free_rtn(9S)

Writing Device Drivers
STREAMS Programming Guide

9F-392 SunOS 5.6 modified 11 Apr 1991

Kernel Functions for Drivers freemsg (9F)

NAME freemsg − free all message blocks in a message

SYNOPSIS #include <sys/stream.h>

void freemsg(mblk_t ∗mp);

INTERFACE
LEVEL

Architecture independent level 1 (DDI/DKI).

ARGUMENTS mp Pointer to the message blocks to be deallocated. mblk_t is an instance of the
msgb(9S) structure.

DESCRIPTION freemsg() calls freeb(9F) to free all message and data blocks associated with the message
pointed to by mp.

CONTEXT freemsg() can be called from user or interrupt context.

EXAMPLE See copymsg(9F).

SEE ALSO copymsg(9F), freeb(9F), msgb(9S)

Writing Device Drivers
STREAMS Programming Guide

modified 11 Apr 1991 SunOS 5.6 9F-393

freerbuf (9F) Kernel Functions for Drivers

NAME freerbuf − free a raw buffer header

SYNOPSIS #include <sys/buf.h>
#include <sys/ddi.h>

void freerbuf(struct buf ∗bp);

INTERFACE
LEVEL

Architecture independent level 1 (DDI/DKI).

ARGUMENTS bp Pointer to a previously allocated buffer header structure.

DESCRIPTION freerbuf() frees a raw buffer header previously allocated by getrbuf(9F). This function
does not sleep and so may be called from an interrupt routine.

CONTEXT freerbuf() can be called from user or interrupt context.

SEE ALSO getrbuf(9F), kmem_alloc(9F), kmem_free(9F), kmem_zalloc(9F)

9F-394 SunOS 5.6 modified 11 Apr 1991

Kernel Functions for Drivers freezestr (9F)

NAME freezestr, unfreezestr − freeze, thaw the state of a stream

SYNOPSIS #include <sys/stream.h>
#include <sys/ddi.h>

void freezestr(queue_t ∗q);

void unfreezestr(queue_t ∗q);

INTERFACE
LEVEL

Architecture independent level 1 (DDI/DKI).

ARGUMENTS q Pointer to the message queue to freeze/unfreeze.

DESCRIPTION freezestr() freezes the state of the entire stream containing the queue pair q. A frozen
stream blocks any thread attempting to enter any open, close, put or service routine
belonging to any queue instance in the stream, and blocks any thread currently within the
stream if it attempts to put messages onto or take messages off of any queue within the
stream (with the sole exception of the caller). Threads blocked by this mechanism remain
so until the stream is thawed by a call to unfreezestr().

Drivers and modules must freeze the stream before manipulating the queues directly (as
opposed to manipulating them through programmatic interfaces such as getq(9F),
putq(9F), putbq(9F), etc.)

CONTEXT These routines may be called from any stream open, close, put or service routine as well
as interrupt handlers, callouts and call-backs.

SEE ALSO getq(9F), insq(9F), putbq(9F), putq(9F), rmvq(9F), strqget(9F), strqset(9F)

Writing Device Drivers
STREAMS Programming Guide

NOTES Calling freezestr() to freeze a stream that is already frozen by the caller will result in a
single-party deadlock.

The caller of unfreezestr() must be the thread who called freezestr().

There are usually better ways to accomplish things than by freezing the stream.

STREAMS utility functions such as getq(9F), putq(9F), putbq(9F), etc. may not be called
by the caller of freezestr() while the stream is still frozen, as they indirectly freeze the
stream to ensure atomicity of queue manipulation.

modified 8 Aug 1995 SunOS 5.6 9F-395

geterror (9F) Kernel Functions for Drivers

NAME geterror − return I/O error

SYNOPSIS #include <sys/types.h>
#include <sys/buf.h>
#include <sys/ddi.h>

int geterror(struct buf ∗bp);

INTERFACE
LEVEL

Architecture independent level 1 (DDI/DKI).

ARGUMENTS bp Pointer to a buf(9S) structure.

DESCRIPTION geterror() returns the error number from the error field of the buffer header structure.

RETURN VALUES An error number indicating the error condition of the I/O request is returned. If the I/O
request completes successfully, 0 is returned.

CONTEXT geterror() can be called from user or interrupt context.

SEE ALSO buf(9S)

Writing Device Drivers

9F-396 SunOS 5.6 modified 11 Apr 1991

Kernel Functions for Drivers getmajor (9F)

NAME getmajor − get major device number

SYNOPSIS #include <sys/types.h>
#include <sys/mkdev.h>
#include <sys/ddi.h>

major_t getmajor(dev_t dev);

INTERFACE
LEVEL

Architecture independent level 1 (DDI/DKI).

ARGUMENTS dev Device number.

DESCRIPTION getmajor() extracts the major number from a device number.

RETURN VALUES The major number.

CONTEXT getmajor() can be called from user or interrupt context.

EXAMPLE The following example shows both the getmajor() and getminor(9F) functions used in a
debug cmn_err(9F) statement to return the major and minor numbers for the device sup-
ported by the driver.

dev_t dev;

#ifdef DEBUG
cmn_err(CE_NOTE,"Driver Started. Major# = %d,

Minor# = %d", getmajor(dev), getminor(dev));
#endif

SEE ALSO cmn_err(9F), getminor(9F), makedevice(9F)

Writing Device Drivers

WARNINGS No validity checking is performed. If dev is invalid, an invalid number is returned.

modified 11 Apr 1991 SunOS 5.6 9F-397

getminor (9F) Kernel Functions for Drivers

NAME getminor − get minor device number

SYNOPSIS #include <sys/types.h>
#include <sys/mkdev.h>
#include <sys/ddi.h>

minor_t getminor(dev_t dev);

INTERFACE
LEVEL

Architecture independent level 1 (DDI/DKI).

ARGUMENTS dev Device number.

DESCRIPTION getminor() extracts the minor number from a device number.

RETURN VALUES The minor number.

CONTEXT getminor() can be called from user or interrupt context.

EXAMPLE See the getmajor(9F) manual page for an example of how to use getminor.

SEE ALSO getmajor(9F), makedevice(9F)

Writing Device Drivers

WARNINGS No validity checking is performed. If dev is invalid, an invalid number is returned.

9F-398 SunOS 5.6 modified 11 Apr 1991

Kernel Functions for Drivers get_pktiopb (9F)

NAME get_pktiopb, free_pktiopb − allocate/free a SCSI packet in the iopb map

SYNOPSIS #include <sys/scsi/scsi.h>

struct scsi_pkt ∗get_pktiopb(struct scsi_address ∗ap , caddr_t ∗datap , int cdblen,
int statuslen, int datalen , int readflag , int (∗callback)(void));

void free_pktiopb(struct scsi_pkt ∗pkt , caddr_t datap , int datalen);

INTERFACE
LEVEL

Solaris DDI specific (Solaris DDI).

ARGUMENTS ap Pointer to the target’s scsi_address structure.

datap Pointer to the address of the packet, set by this function.

cdblen Number of bytes required for the SCSI command descriptor block (CDB).

statuslen Number of bytes required for the SCSI status area.

datalen Number of bytes required for the data area of the SCSI command.

readflag If non-zero, data will be transferred from the SCSI target.

callback Pointer to a callback function, or NULL_FUNC or SLEEP_FUNC

pkt Pointer to a scsi_pkt(9S) structure.

DESCRIPTION get_pktiopb() allocates a scsi_pkt structure that has a small data area allocated. It is used
by some SCSI commands such as REQUEST_SENSE, which involve a small amount of data
and require cache-consistent memory for proper operation. It uses ddi_iopb_alloc(9F)
for allocating the data area and scsi_resalloc(9F) to allocate the packet and DMA
resources.

callback indicates what get_pktiopb() should do when resources are not available:

NULL_FUNC Do not wait for resources. Return a NULL pointer.

SLEEP_FUNC Wait indefinitely for resources.

Other Values callback points to a function which is called when resources may have
become available. callback must return either 0 (indicating that it
attempted to allocate resources but failed to do so again), in which
case it is put back on a list to be called again later, or 1 indicating
either success in allocating resources or indicating that it no longer
cares for a retry.

free_pktiopb() is used for freeing the packet and its associated resources.

RETURN VALUES get_pktiopb() returns a pointer to the newly allocated scsi_pkt or a NULL pointer.

modified 21 Dec 1992 SunOS 5.6 9F-399

get_pktiopb (9F) Kernel Functions for Drivers

CONTEXT If callback is SLEEP_FUNC, then this routine may only be called from user-level code. Oth-
erwise, it may be called from either user or interrupt level. The callback function may not
block or call routines that block.

free_pktiopb() can be called from user or interrupt context.

SEE ALSO ddi_iopb_alloc(9F), scsi_alloc_consistent_buf(9F), scsi_free_consistent_buf(9F),
scsi_pktalloc(9F), scsi_resalloc(9F), scsi_pkt(9S)

Writing Device Drivers

NOTES get_pktiopb() and free_pktiopb() are old functions and should be replaced with
scsi_alloc_consistent_buf(9F) and scsi_free_consistent_buf(9F). get_pktiopb() uses
scarce resources. Use it selectively.

9F-400 SunOS 5.6 modified 21 Dec 1992

Kernel Functions for Drivers getq (9F)

NAME getq − get the next message from a queue

SYNOPSIS #include <sys/stream.h>

mblk_t ∗getq(queue_t ∗q);

INTERFACE
LEVEL

Architecture independent level 1 (DDI/DKI).

ARGUMENTS q Pointer to the queue from which the message is to be retrieved.

DESCRIPTION getq() is used by a service (srv(9E)) routine to retrieve its enqueued messages.

A module or driver may include a service routine to process enqueued messages. Once
the STREAMS scheduler calls srv() it must process all enqueued messages, unless
prevented by flow control. getq() obtains the next available message from the top of the
queue pointed to by q. It should be called in a while loop that is exited only when there
are no more messages or flow control prevents further processing.

If an attempt was made to write to the queue while it was blocked by flow control, getq()
back-enables (restarts) the service routine once it falls below the low water mark.

RETURN VALUES If there is a message to retrieve, getq() returns a pointer to it. If no message is queued,
getq() returns a NULL pointer.

CONTEXT getq() can be called from user or interrupt context.

EXAMPLE See dupb(9F).

SEE ALSO srv(9E), bcanput(9F), canput(9F), dupb(9F), putbq(9F), putq(9F), qenable(9F)

Writing Device Drivers
STREAMS Programming Guide

modified 12 Nov 1992 SunOS 5.6 9F-401

getrbuf (9F) Kernel Functions for Drivers

NAME getrbuf − get a raw buffer header

SYNOPSIS #include <sys/buf.h>
#include <sys/kmem.h>
#include <sys/ddi.h>

struct buf ∗getrbuf(int sleepflag);

INTERFACE
LEVEL

Architecture independent level 1 (DDI/DKI).

ARGUMENTS sleepflag Indicates whether driver should sleep for free space.

DESCRIPTION getrbuf() allocates the space for a buffer header to the caller. It is used in cases where a
block driver is performing raw (character interface) I/O and needs to set up a buffer
header that is not associated with the buffer cache.

getrbuf() calls kmem_alloc(9F) to perform the memory allocation. kmem_alloc()
requires the information included in the sleepflag argument. If sleepflag is set to
KM_SLEEP, the driver may sleep until the space is freed up. If sleepflag is set to
KM_NOSLEEP, the driver will not sleep. In either case, a pointer to the allocated space is
returned or NULL to indicate that no space was available.

RETURN VALUES getrbuf() returns a pointer to the allocated buffer header, or NULL if no space is avail-
able.

CONTEXT getrbuf() can be called from user or interrupt context. (Drivers must not allow getrbuf()
to sleep if called from an interrupt routine.)

SEE ALSO bioinit(9F), freerbuf(9F), kmem_alloc(9F), kmem_free(9F)

Writing Device Drivers

9F-402 SunOS 5.6 modified 20 Nov 1996

Kernel Functions for Drivers hat_getkpfnum (9F)

NAME hat_getkpfnum − get page frame number for kernel address

SYNOPSIS #include <sys/types.h>
#include <sys/ddi.h>
#include <sys/sunddi.h>

u_int hat_getkpfnum(caddr_t addr);

INTERFACE
LEVEL

Architecture independent level 2 (DKI only).

ARGUMENTS addr The kernel virtual address for which the page frame number is to be returned.

DESCRIPTION hat_getkpfnum() returns the page frame number corresponding to the kernel virtual
address, addr .

addr must be a kernel virtual address which maps to device memory. ddi_map_regs(9F)
can be used to obtain this address. For example, ddi_map_regs(9F) can be called in the
driver’s attach(9E) routine. The resulting kernel virtual address can be saved by the
driver (see ddi_soft_state(9F)) and used in mmap(9E). The corresponding
ddi_unmap_regs(9F) call can be made in the driver’s detach(9E) routine. Refer to
mmap(9E) for more information.

RETURN VALUES The page frame number corresponding to the valid virtual address addr . Otherwise the
return value is undefined.

CONTEXT hat_getkpfnum() can be called only from user or kernel context.

SEE ALSO attach(9E), detach(9E), mmap(9E), ddi_map_regs(9F), ddi_soft_state(9F),
ddi_unmap_regs(9F)

Writing Device Drivers

NOTES For some devices, mapping device memory in the driver’s attach(9E) routine and unmap-
ping device memory in the driver’s detach(9E) routine is a sizeable drain on system
resources. This is especially true for devices with a large amount of physical address
space. Refer to mmap(9E) for alternative methods.

modified 02 Sep 1994 SunOS 5.6 9F-403

inb (9F) Kernel Functions for Drivers

NAME inb, inw, inl, repinsb, repinsw, repinsd − read from an I/O port

SYNOPSIS #include <sys/ddi.h>

#include <sys/sunddi.h>

unsigned char inb(int port);

unsigned short inw(int port);

unsigned long inl(int port);

void repinsb(int port , unsigned char ∗addr , int count);

void repinsw(int port , unsigned short ∗addr , int count);

void repinsd(int port , unsigned long ∗addr , int count);

INTERFACE
LEVEL

Solaris x86 DDI specific (Solaris x86 DDI).

ARGUMENTS port A valid I/O port address.

addr The address of a buffer where the values will be stored.

count The number of values to be read from the I/O port.

DESCRIPTION These routines read data of various sizes from the I/O port with the address specified by
port .

The inb(), inw(), and inl() functions read 8 bits, 16 bits, and 32 bits of data respectively,
returning the resulting values.

The repinsb(), repinsw(), and repinsd() functions read multiple 8-bit, 16-bit, and 32-bit
values, respectively. count specifies the number of values to be read. A a pointer to a
buffer will receive the input data; the buffer must be long enough to hold count values of
the requested size.

RETURN VALUES inb(), inw(), and inl() return the value that was read from the I/O port.

CONTEXT These functions may be called from user or interrupt context.

ATTRIBUTES See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Architecture x86

SEE ALSO eisa(4), isa(4), mca(4), attributes(5), outb(9F)

Writing Device Drivers

9F-404 SunOS 5.6 modified 1 Jan 1997

Kernel Functions for Drivers insq (9F)

NAME insq − insert a message into a queue

SYNOPSIS #include <sys/stream.h>

int insq(queue_t ∗q, mblk_t ∗emp, mblk_t ∗nmp);

INTERFACE
LEVEL

Architecture independent level 1 (DDI/DKI).

ARGUMENTS q Pointer to the queue containing message emp.

emp Enqueued message before which the new message is to be inserted. mblk_t is an
instance of the msgb(9S) structure.

nmp Message to be inserted.

DESCRIPTION insq() inserts a message into a queue. The message to be inserted, nmp, is placed in q
immediately before the message emp. If emp is NULL, the new message is placed at the
end of the queue. The queue class of the new message is ignored. All flow control
parameters are updated. The service procedure is enabled unless QNOENB is set.

RETURN VALUES insq() returns 1 on success, and 0 on failure.

CONTEXT insq() can be called from user or interrupt context.

EXAMPLE This routine illustrates the steps a transport provider may take to place expedited data
ahead of normal data on a queue (assume all M_DATA messages are converted into
M_PROTO T_DATA_REQ messages). Normal T_DATA_REQ messages are just placed on
the end of the queue (line 16). However, expedited T_EXDATA_REQ messages are
inserted before any normal messages already on the queue (line 25). If there are no nor-
mal messages on the queue, bp will be NULL and we fall out of the for loop (line 21).
insq acts like putq(9F) in this case.

1 #include <sys/tihdr.h>
2 #include <sys/stream.h>
3
4 static int
5 xxxwput(queue_t ∗q, mblk_t ∗mp)
6 {
7 union T_primitives ∗tp;
8 mblk_t ∗bp;
9 union T_primitives ∗ntp;
10
11 switch (mp->b_datap->db_type) {
12 case M_PROTO:
13 tp = (union T_primitives ∗)mp->b_rptr;
14 switch (tp->type) {
15 case T_DATA_REQ:
16 putq(q, mp);

modified 28 Jan 1993 SunOS 5.6 9F-405

insq (9F) Kernel Functions for Drivers

17 break;
18
19 case T_EXDATA_REQ:
20 freezestr(q);
21 for (bp = q->q_first; bp; bp = bp->b_next) {
22 if (bp->b_datap->db_type == M_PROTO) {
23 ntp = (union T_primitives ∗)bp->b_rptr;
24 if (ntp->type != T_EXDATA_REQ)
25 break;
26 }
27 }
28 (void) insq(q, bp, mp);
29 unfreezestr(q);
30 break;

. . .
31 }
32 }
33 }

SEE ALSO freezestr(9F), putq(9F), rmvq(9F), unfreezestr(9F), msgb(9S)

Writing Device Drivers
STREAMS Programming Guide

WARNINGS If emp is non-NULL, it must point to a message on q or a system panic could result.

NOTES The stream must be frozen using freezestr(9F) before calling insq().

9F-406 SunOS 5.6 modified 28 Jan 1993

Kernel Functions for Drivers IOC_CONVERT_FROM (9F)

NAME IOC_CONVERT_FROM − determine if there is a need to translate M_IOCTL contents.

SYNOPSIS #include <sys/stream.h>

uint IOC_CONVERT_FROM(struct iocblk ∗iocp);

INTERFACE
LEVEL

Solaris DDI Specific (Solaris DDI)

ARGUMENTS iocp A pointer to the M_IOCTL control structure.

DESCRIPTION The IOC_CONVERT_FROM() macro is used to see if the contents of the current M_IOCTL
message had its origin in a different C Language Type Model.

RETURN VALUES IOC_CONVERT_FROM() returns the following values:

IOC_ILP32 This is an LP64 kernel and the M_IOCTL originated in an ILP32 user pro-
cess.

IOC_NONE The M_IOCTL message uses the same C Language Type Model as this
calling module or driver.

CONTEXT IOC_CONVERT_FROM() can be called from user or interrupt context.

SEE ALSO ddi_model_convert_from(9F)

Writing Device Drivers
STREAMS Programming Guide

modified 11 Nov 1996 SunOS 5.6 9F-407

kmem_alloc (9F) Kernel Functions for Drivers

NAME kmem_alloc, kmem_zalloc, kmem_free − allocate kernel memory

SYNOPSIS #include <sys/types.h>
#include <sys/kmem.h>

void ∗kmem_alloc(size_t size, int flag);

void ∗kmem_zalloc(size_t size, int flag);

void kmem_free(void ∗buf, size_t size);

INTERFACE
LEVEL

Architecture independent level 1 (DDI/DKI).

ARGUMENTS size Number of bytes to allocate.

flag Determines whether caller can sleep for memory. Possible flags are
KM_SLEEP to allow sleeping until memory is available, or KM_NOSLEEP
to return NULL immediately if memory is not available.

buf Pointer to allocated memory.

DESCRIPTION kmem_alloc() allocates size bytes of kernel memory and returns a pointer to the allocated
memory. The allocated memory is at least double-word aligned, so it can hold any C
data structure. No greater alignment can be assumed. flag determines whether the caller
can sleep for memory. KM_SLEEP allocations may sleep but are guaranteed to succeed.
KM_NOSLEEP allocations are guaranteed not to sleep but may fail (return NULL) if no
memory is currently available. The initial contents of memory allocated using
kmem_alloc() are random garbage.

kmem_zalloc() is like kmem_alloc() but returns zero-filled memory.

kmem_free() frees previously allocated kernel memory. The buffer address and size
must exactly match the original allocation. Memory cannot be returned piecemeal.

RETURN VALUES If successful, kmem_alloc() and kmem_zalloc() return a pointer to the allocated
memory. If KM_NOSLEEP is set and memory cannot be allocated without sleeping,
kmem_alloc() and kmem_zalloc() return NULL.

CONTEXT kmem_alloc() and kmem_zalloc() can be called from interrupt context only if the
KM_NOSLEEP flag is set. They can be called from user context with any valid flag .
kmem_free() can be called from user or interrupt context.

SEE ALSO copyout(9F), freerbuf(9F), getrbuf(9F)

Writing Device Drivers

WARNINGS Memory allocated using kmem_alloc() is not paged. Available memory is therefore lim-
ited by the total physical memory on the system. It is also limited by the available kernel
virtual address space, which is often the more restrictive constraint on large-memory
configurations.

9F-408 SunOS 5.6 modified 20 Jul 1994

Kernel Functions for Drivers kmem_alloc (9F)

Excessive use of kernel memory is likely to affect overall system performance. Overcom-
mitment of kernel memory will cause the system to hang or panic.

Misuse of the kernel memory allocator, such as writing past the end of a buffer, using a
buffer after freeing it, freeing a buffer twice, or freeing a null or invalid pointer, will cor-
rupt the kernel heap and may cause the system to corrupt data and/or panic.

The initial contents of memory allocated using kmem_alloc() are random garbage. This
random garbage may include secure kernel data. Therefore, uninitialized kernel memory
should be handled carefully. For example, never copyout(9F) a potentially uninitialized
buffer.

NOTES kmem_alloc(0, flag) always returns NULL. kmem_free(NULL, 0) is legal.

modified 20 Jul 1994 SunOS 5.6 9F-409

kstat_create (9F) Kernel Functions for Drivers

NAME kstat_create − create and initialize a new kstat

SYNOPSIS #include <sys/types.h>
#include <sys/kstat.h>

kstat_t ∗kstat_create(char ∗module, int instance, char ∗name, char ∗class, uchar_t type ,
ulong_t ndata , uchar_t ks_flag);

INTERFACE
LEVEL

Solaris DDI specific (Solaris DDI)

ARGUMENTS module The name of the provider’s module (such as "sd", "esp", ...). The "core" kernel
uses the name "unix".

instance The provider’s instance number, as from ddi_get_instance(9F). Modules
which don’t have a meaningful instance number should use 0.

name A pointer to a string that uniquely identifies this structure. Only
KSTAT_STRLEN - 1 characters are significant.

class The general class that this kstat belongs to. The following classes are currently
in use: disk, tape, net, controller, vm, kvm, hat, streams, kstat, and misc.

type The type of kstat to allocate. Valid types are:

KSTAT_TYPE_NAMED named - allows more than one data record per
kstat

KSTAT_TYPE_INTR interrupt - only one data record per kstat

KSTAT_TYPE_IO I/O - only one data record per kstat

ndata The number of type-specific data records to allocate.

flag A bit-field of various flags for this kstat. flag is some combination of:

KSTAT_FLAG_VIRTUAL Tells kstat_create() not to allocate memory for
the kstat data section; instead, the driver will set
the ks_data field to point to the data it wishes to
export. This provides a convenient way to export
existing data structures.

KSTAT_FLAG_WRITABLE Makes the kstat’s data section writable by root.

KSTAT_FLAG_PERSISTENT
Indicates that this kstat is to be persistent over
time. For persistent kstats, kstat_delete(9F) sim-
ply marks the kstat as dormant; a subsequent
kstat_create() reactivates the kstat. This feature
is provided so that statistics are not lost across
driver close/open (such as raw disk I/O on a
disk with no mounted partitions.)

Note: Persistent kstats cannot be virtual, since
ks_data points to garbage as soon as the driver
goes away.

9F-410 SunOS 5.6 modified 10 Sep 1994

Kernel Functions for Drivers kstat_create (9F)

DESCRIPTION kstat_create() is used in conjunction with kstat_install(9F) to allocate and initialize a
kstat(9S) structure. The method is generally as follows:

kstat_t ∗ksp;

ksp = kstat_create(module, instance, name, class, type, ndata, flags);
if (ksp) {

/∗ ... provider initialization, if necessary ∗/
kstat_install(ksp);

}

kstat_create() allocates and performs necessary system initialization of a kstat(9S) struc-
ture. kstat_create() allocates memory for the entire kstat (header plus data), initializes all
header fields, initializes the data section to all zeroes, assigns a unique kstat ID (KID), and
puts the kstat onto the system’s kstat chain. The returned kstat is marked invalid because
the provider (caller) has not yet had a chance to initialize the data section.

After a successful call to kstat_create() the driver must perform any necessary initializa-
tion of the data section (such as setting the name fields in a kstat of type
KSTAT_TYPE_NAMED). Virtual kstats must have the ks_data field set at this time. The
provider may also set the ks_update, ks_private, and ks_lock fields if necessary.

Once the kstat is completely initialized, kstat_install(9F) is used to make the kstat acces-
sible to the outside world.

RETURN VALUES If successful, kstat_create() returns a pointer to the allocated kstat. NULL is returned on
failure.

CONTEXT kstat_create() can be called from user or kernel context.

SEE ALSO kstat(3K), ddi_get_instance(9F), kstat_delete(9F), kstat_install(9F),
kstat_named_init(9F), kstat(9S), kstat_named(9S)

Writing Device Drivers

modified 10 Sep 1994 SunOS 5.6 9F-411

kstat_delete (9F) Kernel Functions for Drivers

NAME kstat_delete − remove a kstat from the system

SYNOPSIS #include <sys/types.h>
#include <sys/kstat.h>

void kstat_delete(kstat_t ∗ksp);

INTERFACE
LEVEL

Solaris DDI specific (Solaris DDI)

ARGUMENTS ksp Pointer to a currently installed kstat(9S) structure.

DESCRIPTION kstat_delete() removes ksp from the kstat chain and frees all associated system
resources.

RETURN VALUES None.

CONTEXT kstat_delete() can be called from any context.

SEE ALSO kstat_create(9F), kstat_install(9F), kstat_named_init(9F), kstat(9S)

Writing Device Drivers

NOTES When calling kstat_delete(), the driver must not be holding that kstat’s ks_lock. Other-
wise, it may deadlock with a kstat reader.

9F-412 SunOS 5.6 modified 4 Apr 1994

Kernel Functions for Drivers kstat_install (9F)

NAME kstat_install − add a fully initialized kstat to the system

SYNOPSIS #include <sys/types.h>
#include <sys/kstat.h>

void kstat_install(kstat_t ∗ksp);

INTERFACE
LEVEL

Solaris DDI specific (Solaris DDI)

ARGUMENTS ksp Pointer to a fully initialized kstat(9S) structure.

DESCRIPTION kstat_install() is used in conjunction with kstat_create(9F) to allocate and initialize a
kstat(9S) structure. The method is generally as follows:

kstat_t ∗ksp;

ksp = kstat_create(module, instance, name, class, type, ndata, flags);
if (ksp) {

/∗ ... provider initialization, if necessary ∗/
kstat_install(ksp);

}

After a successful call to kstat_create() the driver must perform any necessary initializa-
tion of the data section (such as setting the name fields in a kstat of type
KSTAT_TYPE_NAMED). Virtual kstats must have the ks_data field set at this time. The
provider may also set the ks_update, ks_private, and ks_lock fields if necessary.

Once the kstat is completely initialized, kstat_install is used to make the kstat accessible
to the outside world.

RETURN VALUES None.

CONTEXT kstat_install() can be called from user or kernel context.

SEE ALSO kstat_create(9F), kstat_delete(9F), kstat_named_init(9F), kstat(9S)

Writing Device Drivers

modified 26 May 1994 SunOS 5.6 9F-413

kstat_named_init (9F) Kernel Functions for Drivers

NAME kstat_named_init − initialize a named kstat

SYNOPSIS #include <sys/types.h>
#include <sys/kstat.h>

void kstat_named_init(kstat_named_t ∗knp, char ∗name, uchar_t data_type);

INTERFACE
LEVEL

Solaris DDI specific (Solaris DDI)

ARGUMENTS knp Pointer to a kstat_named(9S) structure.

name The name of the statistic.

data_type The type of value. This indicates which field of the kstat_named(9S)
structure should be used. Valid values are:

KSTAT_DATA_CHAR the "char" field.

KSTAT_DATA_LONG the "long" field.

KSTAT_DATA_ULONG the "unsigned long" field.

KSTAT_DATA_LONGLONG the "long long" field.

KSTAT_DATA_ULONGLONG the "unsigned long long" field.

DESCRIPTION kstat_named_init() associates a name and a type with a kstat_named(9S) structure.

RETURN VALUES None.

CONTEXT kstat_named_init() can be called from user or kernel context.

SEE ALSO kstat_create(9F), kstat_install(9F), kstat(9S), kstat_named(9S)

Writing Device Drivers

9F-414 SunOS 5.6 modified 4 Apr 1994

Kernel Functions for Drivers kstat_queue (9F)

NAME kstat_queue, kstat_waitq_enter, kstat_waitq_exit, kstat_runq_enter, kstat_runq_exit,
kstat_waitq_to_runq, kstat_runq_back_to_waitq − update I/O kstat statistics

SYNOPSIS #include <sys/types.h>
#include <sys/kstat.h>

void kstat_waitq_enter(kstat_io_t ∗kiop);

void kstat_waitq_exit(kstat_io_t ∗kiop);

void kstat_runq_enter(kstat_io_t ∗kiop);

void kstat_runq_exit(kstat_io_t ∗kiop);

void kstat_waitq_to_runq(kstat_io_t ∗kiop);

void kstat_runq_back_to_waitq(kstat_io_t ∗kiop);

INTERFACE
LEVEL

Solaris DDI specific (Solaris DDI)

ARGUMENTS kiop Pointer to a kstat_io(9S) structure.

DESCRIPTION A large number of I/O subsystems have at least two basic "lists" (or queues) of transac-
tions they manage: one for transactions that have been accepted for processing but for
which processing has yet to begin, and one for transactions which are actively being pro-
cessed (but not done). For this reason, two cumulative time statistics are kept: wait (pre-
service) time, and run (service) time.

The kstat_queue() family of functions manage these times based on the transitions
between the driver wait queue and run queue.

kstat_waitq_enter() kstat_waitq_enter() should be called when a request arrives and is placed into a pre-
service state (such as just prior to calling disksort(9F)).

kstat_waitq_exit() kstat_waitq_exit() should be used when a request is removed from its pre-service state.
(such as just prior to calling the driver’s start routine).

kstat_runq_enter() kstat_runq_enter() is also called when a request is placed in its service state (just prior to
calling the driver’s start routine, but after kstat_waitq_exit()).

kstat_runq_exit() kstat_runq_exit() is used when a request is removed from its service state (just prior to
calling biodone(9F)).

kstat_waitq_to_runq() kstat_waitq_to_runq() transitions a request from the wait queue to the run queue. This
is useful wherever the driver would have normally done a kstat_waitq_exit() followed
by a call to kstat_runq_enter().

kstat_runq_back_to_waitq() kstat_runq_back_to_waitq() transitions a request from the run queue back to the wait
queue. This may be necessary in some cases (write throttling is an example).

modified 4 Apr 1994 SunOS 5.6 9F-415

kstat_queue (9F) Kernel Functions for Drivers

RETURN VALUES None.

CONTEXT kstat_create() can be called from user or kernel context.

WARNINGS These transitions must be protected by holding the kstat’s ks_lock, and must be com-
pletely accurate (all transitions are recorded). Forgetting a transition may, for example,
make an idle disk appear 100% busy.

SEE ALSO biodone(9F), disksort(9F), kstat_create(9F), kstat_delete(9F), kstat_named_init(9F),
kstat(9S), kstat_io(9S)

Writing Device Drivers

9F-416 SunOS 5.6 modified 4 Apr 1994

Kernel Functions for Drivers linkb (9F)

NAME linkb − concatenate two message blocks

SYNOPSIS #include <sys/stream.h>

void linkb(mblk_t ∗mp1, mblk_t ∗mp2);

INTERFACE
LEVEL

Architecture independent level 1 (DDI/DKI).

ARGUMENTS mp1 The message to which mp2 is to be added. mblk_t is an instance of the msgb(9S)
structure.

mp2 The message to be added.

DESCRIPTION linkb() creates a new message by adding mp2 to the tail of mp1. The continuation
pointer, b_cont, of mp1 is set to point to mp2.

mp1

linkb(mp1, mp2);

mp2

data
buffer

data
bufferdb_base

db_baseb_datap

b_cont

b_datap

b_cont (0)

CONTEXT linkb() can be called from user or interrupt context.

EXAMPLE See dupb(9F) for an example of using linkb().

SEE ALSO dupb(9F), unlinkb(9F), msgb(9S)

Writing Device Drivers
STREAMS Programming Guide

modified 20 Jul 1994 SunOS 5.6 9F-417

makecom (9F) Kernel Functions for Drivers

NAME makecom, makecom_g0, makecom_g0_s, makecom_g1, makecom_g5 − make a packet for
SCSI commands

SYNOPSIS #include <sys/scsi/scsi.h>

void makecom_g0(struct scsi_pkt ∗pkt, struct scsi_device ∗devp, int flag, int cmd,
int addr, int cnt);

void makecom_g0_s(struct scsi_pkt ∗pkt, struct scsi_device ∗devp, int flag, int cmd,
int cnt, int fixbit);

void makecom_g1(struct scsi_pkt ∗pkt, struct scsi_device ∗devp, int flag, int cmd,
int addr, int cnt);

void makecom_g5(struct scsi_pkt ∗pkt, struct scsi_device ∗devp, int flag, int cmd,
int addr, int cnt);

INTERFACE
LEVEL

Solaris DDI specific (Solaris DDI).

ARGUMENTS pkt Pointer to an allocated scsi_pkt(9S) structure.

devp Pointer to the target’s scsi_device(9S) structure.

flag Flags for the pkt_flags member.

cmd First byte of a group 0 or 1 or 5 SCSI CDB.

addr Pointer to the location of the data.

cnt Number of bytes to transfer.

fixbit Fixed bit in sequential access device commands.

DESCRIPTION makecom functions initialize a packet with the specified command descriptor block, devp
and transport flags. The pkt_address, pkt_flags, and the command descriptor block
pointed to by pkt_cdbp are initialized using the remaining arguments. Target drivers
may use makecom_g0() for Group 0 commands (except for sequential access devices), or
makecom_g0_s() for Group 0 commands for sequential access devices, or makecom_g1()
for Group 1 commands, or makecom_g5() for Group 5 commands. fixbit is used by
sequential access devices for accessing fixed block sizes and sets the the tag portion of the
SCSI CDB.

CONTEXT These functions can be called from user or interrupt context.

EXAMPLE if (blkno >= (1<<20)) {
makecom_g1(pkt, SD_SCSI_DEVP, pflag, SCMD_WRITE_G1,

(int) blkno, nblk);
} else {

makecom_g0(pkt, SD_SCSI_DEVP, pflag, SCMD_WRITE,
(int) blkno, nblk);

}

9F-418 SunOS 5.6 modified 30 Aug 1995

Kernel Functions for Drivers makecom (9F)

SEE ALSO scsi_device(9S), scsi_pkt(9S)

ANSI Small Computer System Interface-2 (SCSI-2)

Writing Device Drivers

modified 30 Aug 1995 SunOS 5.6 9F-419

makedevice (9F) Kernel Functions for Drivers

NAME makedevice − make device number from major and minor numbers

SYNOPSIS #include <sys/types.h>
#include <sys/mkdev.h>
#include <sys/ddi.h>

dev_t makedevice(major_t majnum, minor_t minnum);

INTERFACE
LEVEL

Architecture independent level 1 (DDI/DKI).

ARGUMENTS majnum Major device number.

minnum Minor device number.

DESCRIPTION makedevice() creates a device number from a major and minor device number. mak-
edevice() should be used to create device numbers so the driver will port easily to
releases that treat device numbers differently.

RETURN VALUES The device number, containing both the major number and the minor number, is
returned. No validation of the major or minor numbers is performed.

CONTEXT makedevice() can be called from user or interrupt context.

SEE ALSO getmajor(9F), getminor(9F)

9F-420 SunOS 5.6 modified 11 Apr 1991

Kernel Functions for Drivers max (9F)

NAME max − return the larger of two integers

SYNOPSIS #include <sys/ddi.h>

int max(int int1, int int2);

INTERFACE
LEVEL

Architecture independent level 1 (DDI/DKI).

ARGUMENTS int1 The first integer.

int2 The second integer.

DESCRIPTION max() compares two signed integers and returns the larger of the two.

RETURN VALUES The larger of the two numbers.

CONTEXT max() can be called from user or interrupt context.

SEE ALSO min(9F)

Writing Device Drivers

modified 11 Apr 1991 SunOS 5.6 9F-421

min (9F) Kernel Functions for Drivers

NAME min − return the lesser of two integers

SYNOPSIS #include <sys/ddi.h>

int min(int int1, int int2);

INTERFACE
LEVEL

Architecture independent level 1 (DDI/DKI).

ARGUMENTS int1 The first integer.

int2 The second integer.

DESCRIPTION min() compares two signed integers and returns the lesser of the two.

RETURN VALUES The lesser of the two integers.

CONTEXT min() can be called from user or interrupt context.

SEE ALSO max(9F)

Writing Device Drivers

9F-422 SunOS 5.6 modified 11 Apr 1991

Kernel Functions for Drivers mkiocb (9F)

NAME mkiocb − allocates a STREAMS ioctl block for M_IOCTL messages in the kernel.

SYNOPSIS #include <sys/stream.h>

mblk_t ∗mkiocb (uint command);

INTERFACE
LEVEL

Solaris DDI specific (Solaris DDI).

ARGUMENTS command The ioctl command for the ioc_cmd field.

DESCRIPTION STREAMS modules or drivers might need to issue an ioctl to a lower module or driver.
The mkiocb() function tries to allocate (using allocb(9F)) a STREAMS M_IOCTL message
block (iocblk(9S)). Buffer allocation fails only when the system is out of memory. If no
buffer is available, the qbufcall(9F) function can help a module recover from an alloca-
tion failure.

The mkiocb function returns a mblk_t structure which is large enough to hold any of the
ioctl messages (iocblk(9S), copyreq(9S) or copyresp(9S)), and has the following special
properties:

b_wptr set to b_rptr + sizeof (struct iocblk)

b_cont set to NULL.

b_datap->db_type set to M_IOCTL

The fields in the iocblk structure are initialized as follows:

ioc_cmd set to the command value passed in

ioc_id set to a unique identifier

ioc_cr set to point to a credential structure encoding the maximum
system privilege and which does not need to be freed in any
fashion

ioc_count set to 0

ioc_rval set to 0

ioc_error set to 0

ioc_flags is set to IOC_NATIVE to reflect that this is native to the run-
ning kernel

RETURN VALUES Upon success, the mkiocb function returns a pointer to the allocated mblk_t of type
M_IOCTL.

On failure, it returns a null pointer.

CONTEXT The mkiocb() function can be called from user or interrupt context.

modified 13 Nov 1996 SunOS 5.6 9F-423

mkiocb (9F) Kernel Functions for Drivers

EXAMPLES The first example shows an M_IOCTL allocation with the ioctl command TEST_CMD. If
the iocblk(9S) cannot be allocated, NULL is returned, indicating an allocation failure (line
5). In line 11, the putnext(9F) function is used to send the message downstream.

1 test_function(queue_t ∗q, test_info_t ∗testinfo)
2 {
3 mblk_t ∗mp;
4
5 if ((mp = mkiocb(TEST_CMD)) == NULL)
6 return (0);
7
8 /∗ save off ioctl ID value ∗/
9 testinfo->xx_iocid = ((struct iocblk ∗)mp->b_rptr)->ioc_id;
10
11 putnext(q, mp); /∗ send message downstream ∗/
12 return (1);
13 }

During the read service routine, the ioctl ID value for M_IOCACK or M_IOCNACK should
equal the ioctl that was previously sent by this module before processing.

1 test_lrsrv(queue_t ∗q)
2 {
3 ...
4
5 switch (DB_TYPE(mp)) {
6 case M_IOCACK:
7 case M_IOCNACK:
8 /∗ Does this match the ioctl that this module sent ∗/
9 ioc = (struct iocblk∗)mp->b_rptr;
10 if (ioc->ioc_id == testinfo->xx_iocid) {
11 /∗ matches, so process the message ∗/
12 ...
13 freemsg(mp);
14 }
15 break;
16 }
17 ...
18 }

The next example shows a iocblk allocation which fails. Since the open routine is in user
context, the caller may block using qbufcall(9F) until memory is available.

1 test_open(queue_t ∗q, dev_t devp, int oflag, int sflag, cred_t ∗credp)
2 {
3 while ((mp = mkiocb(TEST_IOCTL)) == NULL) {
4 int id;
5

9F-424 SunOS 5.6 modified 13 Nov 1996

Kernel Functions for Drivers mkiocb (9F)

6 id = qbufcall(q, sizeof (union ioctypes), BPRI_HI,
7 dummy_callback, 0);
8 /∗ Handle interrupts ∗/
9 if (!qwait_sig(q)) {
10 qunbufcall(q, id);
11 return (EINTR);
12 }
13 }
14 putnext(q, mp);
15 }

SEE ALSO allocb(9F), putnext(9F), qbufcall(9F), qwait_sig(9F), copyreq(9S), copyresp(9S),
iocblk(9S)

Writing Device Drivers
STREAMS Programming Guide

WARNINGS It is the module’s responsibility to remember the ID value of the M_IOCTL that was allo-
cated. This will ensure proper cleanup and ID matching when the M_IOCACK or
M_IOCNACK is received.

modified 13 Nov 1996 SunOS 5.6 9F-425

mod_install (9F) Kernel Functions for Drivers

NAME mod_install, mod_remove, mod_info − add, remove or query a loadable module

SYNOPSIS #include <sys/modctl.h>

int mod_install(struct modlinkage ∗modlinkage);

int mod_remove(struct modlinkage ∗modlinkage);

int mod_info(struct modlinkage ∗modlinkage , struct modinfo ∗modinfo);

INTERFACE
LEVEL

Solaris DDI specific (Solaris DDI).

ARGUMENTS modlinkage Pointer to the loadable module’s modlinkage structure which describes
what type(s) of module elements are included in this loadable module.

modinfo Pointer to the modinfo structure passed to _info(9E).

DESCRIPTION mod_install() must be called from a module’s _init(9E) routine.

mod_remove() must be called from a module’s _fini(9E) routine.

mod_info() must be called from a module’s _info(9E) routine.

RETURN VALUES mod_install() and mod_remove() return 0 on success and non-zero on failure.
mod_info() returns a non-zero value on success and 0 on failure.

EXAMPLES See _init(9E) for an example describing the usage of these functions.

SEE ALSO _fini(9E), _info(9E), _init(9E), modldrv(9S), modlinkage(9S), modlstrmod(9S)

Writing Device Drivers

9F-426 SunOS 5.6 modified 19 Sep 1994

Kernel Functions for Drivers msgdsize (9F)

NAME msgdsize − return the number of bytes in a message

SYNOPSIS #include <sys/stream.h>

size_t msgdsize(mblk_t ∗mp);

INTERFACE
LEVEL

Architecture independent level 1 (DDI/DKI).

ARGUMENTS mp Message to be evaluated.

DESCRIPTION msgdsize() counts the number of bytes in a data message. Only bytes included in the
data blocks of type M_DATA are included in the count.

RETURN VALUES The number of data bytes in a message, expressed as an integer.

CONTEXT msgdsize() can be called from user or interrupt context.

EXAMPLES See bufcall(9F) for an example of using msgdsize().

SEE ALSO bufcall(9F)

Writing Device Drivers
STREAMS Programming Guide

modified 11 Nov 1996 SunOS 5.6 9F-427

msgpullup (9F) Kernel Functions for Drivers

NAME msgpullup − concatenate bytes in a message

SYNOPSIS #include <sys/stream.h>

mblk_t ∗msgpullup (mblk_t ∗mp, ssize_t len);

INTERFACE
LEVEL

Architecture independent level 1 (DDI/DKI).

ARGUMENTS mp Pointer to the message whose blocks are to be concatenated.

len Number of bytes to concatenate.

DESCRIPTION msgpullup() concatenates and aligns the first len data bytes of the message pointed to by
mp, copying the data into a new message. Any remaining bytes in the remaining mes-
sage blocks will be copied and linked onto the new message. The original message is
unaltered. If len equals −1, all data are concatenated. If len bytes of the same message
type cannot be found, msgpullup() fails and returns NULL.

RETURN VALUES msgpullup returns the following values:

Non-null Successful completion. A pointer to the new message is returned.

NULL An error occurred.

CONTEXT msgpullup() can be called from user or interrupt context.

SEE ALSO srv(9E), allocb(9F), pullupmsg(9F), msgb(9S)

Writing Device Drivers
STREAMS Programming Guide

NOTES msgpullup() is a DKI-complaint replacement for the older pullupmsg(9F) routine. Users
are strongly encouraged to use msgpullup() instead of of pullupmsg(9F).

9F-428 SunOS 5.6 modified 11 Nov 1996

Kernel Functions for Drivers mt-streams (9F)

NAME mt-streams − STREAMS multithreading

SYNOPSIS #include <sys/conf.h>

INTERFACE
LEVEL

Solaris DDI specific (Solaris DDI).

DESCRIPTION STREAMS drivers configures the degree of concurrency using the cb_flag field in the
cb_ops structure (see cb_ops(9S)). The corresponding field for STREAMS modules is the
f_flag in the fmodsw structure.

For the purpose of restricting and controlling the concurrency in drivers/modules, we
define the concepts of inner and outer perimeters. A driver/module can be configured
either to have no perimeters, to have only an inner or an outer perimeter, or to have both
an inner and an outer perimeter. Each perimeter acts as a readers-writers lock, that is,
there can be multiple concurrent readers or a single writer. Thus, each perimeter can be
entered in two modes: shared (reader) or exclusive (writer). The mode depends on the
perimeter configuration and can be different for the different STREAMS entry points
(open(9E), close(9E), put(9E), or srv(9E)).

The concurrency for the different entry points is (unless specified otherwise) to enter with
exclusive access at the inner perimeter (if present) and shared access at the outer perime-
ter (if present).

The perimeter configuration consists of flags that define the presence and scope of the
inner perimeter, the presence of the outer perimeter (which can only have one scope),
and flags that modify the default concurrency for the different entry points.

All MT safe modules/drivers specify the D_MP flag.

Inner Perimeter Flags The inner perimeter presence and scope are controlled by the mutually exclusive flags:

D_MTPERQ The module/driver has an inner perimeter around each queue.

D_MTQPAIR The module/driver has an inner perimeter around each
read/write pair of queues.

D_MTPERMOD The module/driver has an inner perimeter that encloses all the
module’s/driver’s queues.

None of the above The module/driver has no inner perimeter.

Outer Perimeter Flags The outer perimeter presence is configured using:

D_MTOUTPERIM In addition to any inner perimeter, the module/driver has an outer
perimeter that encloses all the module’s/driver’s queues. This can
be combined with all the inner perimeter options except
D_MTPERMOD.

The default concurrency can be modified using:

D_MTPUTSHARED This flag modifies the default behavior when put(9E) procedure
are invoked so that the inner perimeter is entered shared instead of
exclusively.

modified 2 Mar 1993 SunOS 5.6 9F-429

mt-streams (9F) Kernel Functions for Drivers

D_MTOCEXCL This flag modifies the default behavior when open(9E) and
close(9E) procedures are invoked so the the outer perimeter is
entered exclusively instead of shared.

The module/driver can use qwait(9F) or qwait_sig() in the open(9E) and close(9E) pro-
cedures if it needs to wait "outside" the perimeters.

The module/driver can use qwriter(9F) to upgrade the access at the inner or outer perim-
eter from shared to exclusive.

The use and semantics of qprocson() and qprocsoff(9F) is independent of the inner and
outer perimeters.

SEE ALSO close(9E), open(9E), put(9E), srv(9E), qprocsoff(9F), qprocson(9F), qwait(9F),
qwriter(9F), cb_ops(9S)

STREAMS Programming Guide

Writing Device Drivers

9F-430 SunOS 5.6 modified 2 Mar 1993

Kernel Functions for Drivers mutex (9F)

NAME mutex, mutex_enter, mutex_exit, mutex_init, mutex_destroy, mutex_owned,
mutex_tryenter − mutual exclusion lock routines

SYNOPSIS #include <sys/ksynch.h>

void mutex_init(kmutex_t ∗mp, char ∗name, kmutex_type_t type , void ∗arg);

void mutex_destroy(kmutex_t ∗mp);

void mutex_enter(kmutex_t ∗mp);

void mutex_exit(kmutex_t ∗mp);

int mutex_owned(kmutex_t ∗mp);

int mutex_tryenter(kmutex_t ∗mp);

INTERFACE
LEVEL

Solaris DDI specific (Solaris DDI).

ARGUMENTS mp Pointer to a kernel mutex lock (kmutex_t).

name Descriptive string. This is obsolete and should be NULL. (Non-NULL
strings are legal, but they’re a waste of kernel memory.)

type Type of mutex lock.

arg Type-specific argument for initialization routine.

DESCRIPTION A mutex enforces a policy of mutual exclusion. Only one thread at a time may hold a
particular mutex. Threads trying to lock a held mutex will block until the mutex is
unlocked.

Mutexes are strictly bracketing and may not be recursively locked. That is to say,
mutexes should be exited in the opposite order they were entered, and cannot be reen-
tered before exiting.

mutex_init() initializes a mutex. It is an error to initialize a mutex more than once. The
type argument should be set to MUTEX_DRIVER.

arg provides type-specific information for a given variant type of mutex. When
mutex_init() is called for driver mutexes, if the mutex is used by the interrupt handler,
the arg should be the ddi_iblock_cookie returned from ddi_get_iblock_cookie(9F) or
ddi_get_soft_iblock_cookie(9F). If the mutex is never used inside an interrupt handler,
the argument should be NULL.

mutex_enter() is used to acquire a mutex. If the mutex is already held, then the caller
blocks. After returning, the calling thread is the owner of the mutex. If the mutex is
already held by the calling thread, a panic will ensue.

mutex_owned() should only be used in ASSERT()s, and may be enforced by not being
defined unless the preprocessor symbol DEBUG is defined. Its return value is non-zero if
the current thread (or, if that cannot be determined, at least some thread) holds the mutex
pointed to by mp.

modified 7 May 1997 SunOS 5.6 9F-431

mutex (9F) Kernel Functions for Drivers

mutex_tryenter() is very similar to mutex_enter() except that it doesn’t block when the
mutex is already held. mutex_tryenter() returns non-zero when it acquired the mutex
and 0 when the mutex is already held.

mutex_exit() releases a mutex and will unblock another thread if any are blocked on the
mutex.

mutex_destroy() releases any resources that might have been allocated by mutex_init().
mutex_destroy() must be called before freeing the memory containing the mutex, and
should be called with the mutex unheld (not owned by any thread). The caller must
somehow be sure that no other thread will attempt to use the mutex.

RETURN VALUES mutex_tryenter() returns non-zero on success and zero of failure.

mutex_owned() returns non-zero if the calling thread currently holds the mutex pointed
to by mp, or when that cannot be determined, if any thread holds the mutex.
mutex_owned() returns zero otherwise.

CONTEXT These functions can be called from user, kernel, or high-level interrupt context, except for
mutex_init() and mutex_destroy(), which can be called from user or kernel context only.

EXAMPLES
Initialization A driver might do this to initialize a mutex that is part of its unit structure and used in its

interrupt routine:

ddi_get_iblock_cookie(dip, 0, &iblock);
mutex_init(&un->un_lock, NULL, MUTEX_DRIVER,

(void ∗)iblock);
ddi_add_intr(dip, 0, NULL, &dev_cookie, xxintr,

(caddr_t)un);

Also, a routine that expects to be called with a certain lock held might have the following
ASSERT:

xxstart(struct xxunit ∗un)
{

ASSERT(mutex_owned(&un->un_lock));
...

SEE ALSO condvar(9F), ddi_add_intr(9F), ddi_get_iblock_cookie(9F),
ddi_get_soft_iblock_cookie(9F), rwlock(9F), semaphore(9F)

Writing Device Drivers

NOTES Compiling with _LOCKTEST or _MPSTATS defined no longer has any effect. To gather
lock statistics, see lockstat(1M).

9F-432 SunOS 5.6 modified 7 May 1997

Kernel Functions for Drivers nochpoll (9F)

NAME nochpoll − error return function for non-pollable devices

SYNOPSIS #include <sys/ddi.h>
#include <sys/sunddi.h>

int nochpoll(dev_t dev, short events, int anyyet, short ∗reventsp,
struct pollhead ∗∗pollhdrp);

INTERFACE
LEVEL

Solaris DDI specific (Solaris DDI).

ARGUMENTS dev Device number.

events Event flags.

anyyet Check current events only.

reventsp Event flag pointer.

pollhdrp Poll head pointer.

DESCRIPTION nochpoll() is a routine that simply returns the value ENXIO. It is intended to be used in
the cb_ops(9S) structure of a device driver for devices that do not support the poll(2) sys-
tem call.

RETURN VALUES nochpoll() returns ENXIO.

CONTEXT nochpoll() can be called from user or interrupt context.

SEE ALSO poll(2), chpoll(9E), cb_ops(9S)

Writing Device Drivers

modified 11 Oct 1995 SunOS 5.6 9F-433

nodev (9F) Kernel Functions for Drivers

NAME nodev − error return function

SYNOPSIS #include <sys/conf.h>
#include <sys/ddi.h>

int nodev();

INTERFACE
LEVEL

Architecture independent level 1 (DDI/DKI).

DESCRIPTION nodev() returns ENXIO. It is intended to be used in the cb_ops(9S) data structure of a
device driver for device entry points which are not supported by the driver. That is, it is
an error to attempt to call such an entry point.

RETURN VALUES nodev() returns ENXIO.

CONTEXT nodev() can be only called from user context.

SEE ALSO nulldev(9F), cb_ops(9S)

Writing Device Drivers

9F-434 SunOS 5.6 modified 27 Jan 1993

Kernel Functions for Drivers noenable (9F)

NAME noenable − prevent a queue from being scheduled

SYNOPSIS #include <sys/stream.h>
#include <sys/ddi.h>

void noenable(queue_t ∗q);

INTERFACE
LEVEL

Architecture independent level 1 (DDI/DKI).

ARGUMENTS q Pointer to the queue.

DESCRIPTION noenable() prevents the queue q from being scheduled for service by insq(9F), putq(9F)
or putbq(9F) when enqueuing an ordinary priority message. The queue can be re-
enabled with the enableok(9F) function.

CONTEXT noenable() can be called from user or interrupt context.

SEE ALSO enableok(9F), insq(9F), putbq(9F), putq(9F), qenable(9F)

Writing Device Drivers
STREAMS Programming Guide

modified 11 Apr 1991 SunOS 5.6 9F-435

nulldev (9F) Kernel Functions for Drivers

NAME nulldev − zero return function

SYNOPSIS #include <sys/conf.h>
#include <sys/ddi.h>

int nulldev();

INTERFACE
LEVEL

Architecture independent level 1 (DDI/DKI).

DESCRIPTION nulldev() returns 0. It is intended to be used in the cb_ops(9S) data structure of a device
driver for device entry points that do nothing.

RETURN VALUES nulldev() returns a 0.

CONTEXT nulldev() can be called from any context.

SEE ALSO nodev(9F), cb_ops(9S)

Writing Device Drivers

9F-436 SunOS 5.6 modified 11 Apr 1991

Kernel Functions for Drivers OTHERQ (9F)

NAME OTHERQ, otherq − get pointer to queue’s partner queue

SYNOPSIS #include <sys/stream.h>
#include <sys/ddi.h>

queue_t ∗OTHERQ(queue_t ∗q);

INTERFACE
LEVEL

Architecture independent level 1 (DDI/DKI).

ARGUMENTS q Pointer to the queue.

DESCRIPTION The OTHERQ() function returns a pointer to the other of the two queue() structures that
make up a STREAMS module or driver. If q points to the read queue the write queue will
be returned, and vice versa.

RETURN VALUES OTHERQ returns a pointer to a queue’s partner.

CONTEXT OTHERQ() can be called from user or interrupt context.

EXAMPLES This routine sets the minimum packet size, the maximum packet size, the high water
mark, and the low water mark for the read and write queues of a given module or driver.
It is passed either one of the queues. This could be used if a module or driver wished to
update its queue parameters dynamically.

1 void
2 set_q_params(q, min, max, hi, lo)
3 queue_t ∗q;
4 short min;
5 short max;
6 ushort hi;
7 ushort lo;
8 {
9 q->q_minpsz = min;
10 q->q_maxpsz = max;
11 q->q_hiwat = hi;
12 q->q_lowat = lo;
13 OTHERQ(q)->q_minpsz = min;
14 OTHERQ(q)->q_maxpsz = max;
15 OTHERQ(q)->q_hiwat = hi;
16 OTHERQ(q)->q_lowat = lo;
17 }

SEE ALSO Writing Device Drivers
STREAMS Programming Guide

modified 11 Apr 1991 SunOS 5.6 9F-437

outb (9F) Kernel Functions for Drivers

NAME outb, outw, outl, repoutsb, repoutsw, repoutsd − write to an I/O port

SYNOPSIS #include <sys/ddi.h>

#include <sys/sunddi.h>

void outb(int port , unsigned char value);

void outw(int port , unsigned short value);

void outl(int port , unsigned long value);

void repoutsb(int port , unsigned char ∗addr , int count);

void repoutsw(int port , unsigned short ∗addr , int count);

void repoutsd(int port , unsigned long ∗addr , int count);

INTERFACE
LEVEL

Solaris x86 DDI specific (Solaris x86 DDI).

ARGUMENTS port A valid I/O port address.

value The data to be written to the I/O port.

addr The address of a buffer from which the values will be fetched.

count The number of values to be written to the I/O port.

DESCRIPTION These routines write data of various sizes to the I/O port with the address specified by
port .

The outb(), outw(), and outl() functions write 8 bits, 16 bits, and 32 bits of data respec-
tively, writing the data specified by value.

The repoutsb(), repoutsw(), and repoutsd() functions write multiple 8-bit, 16-bit, and
32-bit values, respectively. count specifies the number of values to be written. addr is a
pointer to a buffer from which the output values are fetched.

CONTEXT These functions may be called from user or interrupt context.

ATTRIBUTES See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Architecture x86

SEE ALSO eisa(4), isa(4), mca(4), attributes(5), inb(9F)

Writing Device Drivers

9F-438 SunOS 5.6 modified 1 Jan 1997

Kernel Functions for Drivers pci_config_get8 (9F)

NAME pci_config_get8, pci_config_get16, pci_config_get32, pci_config_get64, pci_config_put8,
pci_config_put16, pci_config_put32, pci_config_put64, pci_config_getb, pci_config_getl,
pci_config_getll, pci_config_getw, pci_config_putb, pci_config_putl, pci_config_putll,
pci_config_putw − read or write single datum of various sizes to the PCI Local Bus
Configuration space

SYNOPSIS #include <sys/ddi.h>
#include <sys/sunddi.h>

uint8_t pci_config_get8(ddi_acc_handle_t handle, off_t offset);

uint16_t pci_config_get16(ddi_acc_handle_t handle, off_t offset);

uint32_t pci_config_get32(ddi_acc_handle_t handle, off_t offset);

uint64_t pci_config_get64(ddi_acc_handle_t handle, off_t offset);

void pci_config_put8(ddi_acc_handle_t handle, off_t offset , uint8_t value);

void pci_config_put16(ddi_acc_handle_t handle, off_t offset , uint16_t value);

void pci_config_put32(ddi_acc_handle_t handle, off_t offset , uint32_t value);

void pci_config_put64(ddi_acc_handle_t handle, off_t offset , uint64_t value);

INTERFACE
LEVEL

Solaris DDI specific (Solaris DDI).

ARGUMENTS handle The data access handle returned from pci_config_setup(9F).

offset Byte offset from the beginning of the PCI Configuration space.

value Output data.

DESCRIPTION These routines read or write a single datum of various sizes from or to the PCI Local Bus
Configuration space. The pci_config_get8(), pci_config_get16(), pci_config_get32(), and
pci_config_get64() functions read 8 bits, 16 bits, 32 bits, and 64 bits of data, respectively.
The pci_config_put8(), pci_config_put16(), pci_config_put32(), and pci_config_put64()
functions write 8 bits, 16 bits, 32 bits, and 64 bits of data, respectively. The offset argu-
ment must be a multiple of the datum size.

Since the PCI Local Bus Configuration space is represented in little endian data format,
these functions translate the data from or to native host format to or from little endian
format.

pci_config_setup(9F) must be called before invoking these functions.

RETURN VALUES pci_config_get8(), pci_config_get16(), pci_config_get32(), and pci_config_get64() return
the value read from the PCI Local Bus Configuration space.

CONTEXT These routines can be called from user, kernel, or interrupt context.

modified 1 Jan 1997 SunOS 5.6 9F-439

pci_config_get8 (9F) Kernel Functions for Drivers

ATTRIBUTES See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Architecture PCI Local Bus

SEE ALSO attributes(5), pci_config_setup(9F), pci_config_teardown(9F)

NOTES These functions are specific to PCI bus device drivers. For drivers using these functions, a
single source to support devices with multiple bus versions may not be easy to maintain.

NOTES The functions described in this manual page previously used symbolic names which
specified their data access size; the function names have been changed so they now
specify a fixed-width data size. See the following table for the new name equivalents:

Previous Name New Name
pci_config_getb pci_config_get8
pci_config_getw pci_config_get16
pci_config_getl pci_config_get32
pci_config_getll pci_config_get64
pci_config_putb pci_config_put8
pci_config_putw pci_config_put16
pci_config_putl pci_config_put32
pci_config_putll pci_config_put64

9F-440 SunOS 5.6 modified 1 Jan 1997

Kernel Functions for Drivers pci_config_setup (9F)

NAME pci_config_setup, pci_config_teardown − setup or tear down the resources for enabling
accesses to the PCI Local Bus Configuration space

SYNOPSIS #include <sys/ddi.h>
#include <sys/sunddi.h>

int pci_config_setup(dev_info_t ∗dip, ddi_acc_handle_t ∗handle);

void pci_config_teardown(ddi_acc_handle_t ∗handle);

INTERFACE
LEVEL

Solaris DDI specific (Solaris DDI).

ARGUMENTS dip Pointer to the device’s dev_info structure.

handle Pointer to a data access handle.

DESCRIPTION pci_config_setup() sets up the necessary resources for enabling subsequent data accesses
to the PCI Local Bus Configuration space. pci_config_teardown() reclaims and removes
those resources represented by the data access handle returned from pci_config_setup().

RETURN VALUES pci_config_setup() returns:

DDI_SUCCESS Successfully setup the resources.

DDI_FAILURE Unable to allocate resources for setup.

CONTEXT pci_config_setup() must be called from user or kernel context. pci_config_teardown()
can be called from any context.

NOTES These functions are specific to PCI bus device drivers. For drivers using these functions, a
single source to support devices with multiple bus versions may not be easy to maintain.

ATTRIBUTES See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Architecture PCI Local Bus

SEE ALSO attributes(5)

IEEE 1275 PCI Bus Binding

modified 1 Jan 1997 SunOS 5.6 9F-441

physio (9F) Kernel Functions for Drivers

NAME physio, minphys − perform physical I/O

SYNOPSIS #include <sys/types.h>
#include <sys/buf.h>
#include <sys/uio.h>

int physio(int (∗strat)(struct buf ∗), struct buf ∗bp, dev_t dev, int rw ,
void (∗mincnt)(struct buf ∗), struct uio ∗uio);

void minphys(struct buf ∗bp);

INTERFACE
LEVEL

Solaris DDI specific (Solaris DDI).

ARGUMENTS
physio() strat Pointer to device strategy routine.

bp Pointer to a buf(9S) structure describing the transfer. If bp is set to NULL then
physio() allocates one which is automatically released upon completion.

dev The device number.

rw Read/write flag. This is either B_READ when reading from the device, or
B_WRITE when writing to the device.

mincnt Routine which bounds the maximum transfer unit size.

uio Pointer to the uio structure which describes the user I/O request.

minphys() bp Pointer to a buf structure.

DESCRIPTION physio() performs unbuffered I/O operations between the device dev and the address
space described in the uio structure.

Prior to the start of the transfer physio() verifies the requested operation is valid by
checking the protection of the address space specified in the uio structure. It then locks
the pages involved in the I/O transfer so they can not be paged out. The device strategy
routine, strat(), is then called one or more times to perform the physical I/O operations.
physio() uses biowait(9F) to block until strat() has completed each transfer. Upon com-
pletion, or detection of an error, physio() unlocks the pages and returns the error status.

physio() uses mincnt() to bound the maximum transfer unit size to the system, or dev-
ice, maximum length. minphys() is the system mincnt() routine for use with physio()
operations. Drivers which do not provide their own local mincnt() routines should call
physio() with minphys().

minphys() limits the value of bp->b_bcount to a sensible default for the capabilities of the sys-
tem. Drivers that provide their own mincnt() routine should also call minphys() to make
sure they do not exceed the system limit.

9F-442 SunOS 5.6 modified 2 Apr 1993

Kernel Functions for Drivers physio (9F)

RETURN VALUES physio() returns:

0 on success.

non-zero on failure.

CONTEXT physio() can be called from user context only.

SEE ALSO strategy(9E), biodone(9F), biowait(9F), buf(9S), uio(9S)

Writing Device Drivers

WARNINGS Since physio() calls biowait() to block until each buf transfer is complete, it is the drivers
responsibility to call biodone(9F) when the transfer is complete, or physio() will block
forever.

modified 2 Apr 1993 SunOS 5.6 9F-443

pm_busy_component (9F) Kernel Functions for Drivers

NAME pm_busy_component, pm_idle_component − control device components’ availability for
power management

SYNOPSIS #include <sys/ddi.h>
#include <sys/sunddi.h>

int pm_busy_component(dev_info_t ∗dip, int component);

int pm_idle_component(dev_info_t ∗dip, int component);

INTERFACE
LEVEL

Solaris DDI specific (Solaris DDI).

ARGUMENTS
pm_busy_component() dip Pointer to the device’s dev_info structure.

component The number of the component to be power-managed.

pm_idle_component() dip Pointer to the device’s dev_info structure.

component The number of the component to be power-managed.

DESCRIPTION The pm_busy_component() function sets component of dip to be busy. Calls to
pm_busy_component() are stacked, requiring a corresponding number of calls to
pm_idle_component() to make the component idle again. When a device is busy it will
not be power-managed by the system.

The pm_idle_component() function marks component idle, recording the time that com-
ponent went idle. This function must be called once for each call to
pm_busy_component(). A component which is idle is available to be power-managed
by the system. The pm_idle_component() function has no effect if the component is
already idle, except to update the system’s notion of when the device went idle.

RETURN VALUES The pm_busy_component() and pm_idle_component() functions return:

DDI_SUCCESS Successfully set the indicated component busy or idle.

DDI_FAILURE Invalid component number component or the device has no components.

CONTEXT These functions can be called from user or kernel context.

SEE ALSO power.conf(4), pm(7D), pm(9E), pm_create_components(9F),
pm_destroy_components(9F)

Writing Device Drivers

9F-444 SunOS 5.6 modified 28 Oct 1996

Kernel Functions for Drivers pm_create_components (9F)

NAME pm_create_components, pm_destroy_components − create or destroy power-manageable
components

SYNOPSIS #include <sys/ddi.h>
#include <sys/sunddi.h>

int pm_create_components(dev_info_t ∗dip, int components);

void pm_destroy_components(dev_info_t ∗dip);

INTERFACE
LEVEL

Solaris DDI specific (Solaris DDI).

ARGUMENTS
pm_create_components() dip Pointer to the device’s dev_info structure.

components The number of components to create.

pm_destroy_components() dip Pointer to the device’s dev_info structure.

DESCRIPTION The pm_create_components() function creates power-manageable components for a
device. It should be called from the driver’s attach(9E) entry point if the device has
power-manageable components.

The correspondence of components to parts of the physical device controlled by the
driver are the responsibility of the driver. Component 0 must represent the entire device.
Components 1-n are driver-defined.

The pm_destroy_components() function removes all components from the device. It
should be called from the driver’s detach(9E) entry point.

RETURN VALUES The pm_create_components() function returns:

DDI_SUCCESS Components are successfully created.

DDI_FAILURE The device already has components.

CONTEXT These functions may be called from user or kernel context.

SEE ALSO power.conf(4), pm(7D), attach(9E), detach(9E), pm(9E), pm_busy_component(9F),
pm_idle_component(9F)

Writing Device Drivers

modified 28 Oct 1996 SunOS 5.6 9F-445

pm_get_normal_power (9F) Kernel Functions for Drivers

NAME pm_get_normal_power, pm_set_normal_power − get or set a device component’s normal
power level

SYNOPSIS #include <sys/ddi.h>
#include <sys/sunddi.h>

int pm_get_normal_power(dev_info_t ∗dip, int component);

void pm_set_normal_power(dev_info_t ∗dip, int component, int level);

INTERFACE
LEVEL

Solaris DDI specific (Solaris DDI).

ARGUMENTS
pm_get_normal_power() dip Pointer to the device’s dev_info structure.

component Number of component to get normal power level of.

pm_set_normal_power() dip Pointer to the device’s dev_info structure.

component Number of component to set normal power level for.

level Power level to become the component’s new normal power level.

DESCRIPTION The pm_get_normal_power() function returns the normal power level of component of
the device dip.

The pm_set_normal_power() function sets the normal power level of component of the
device dip to level.

When a device has been power-managed by pm(7D) and is being returned to a state to be
used by the system, it will be brought to its normal power level. Except for a power level
of 0, which is defined by the system to mean “powered off”, or a power level in the range
1-15, which are reserved, the interpretation of the meaning of the power level is entirely
up to the driver.

RETURN VALUES The pm_get_normal_power() function returns:

level The normal power level of the specified component (a postive integer).

DDI_FAILURE Invalid component number component or the device has no components.

CONTEXT These functions can be called from user or kernel context.

SEE ALSO power.conf(4), pm(7D), pm(9E), power(9E), pm_busy_component(9F),
pm_create_components(9F), pm_destroy_components(9F), pm_idle_component(9F)

Writing Device Drivers

9F-446 SunOS 5.6 modified 28 Oct 1996

Kernel Functions for Drivers pollwakeup (9F)

NAME pollwakeup − inform a process that an event has occurred

SYNOPSIS #include <sys/poll.h>

void pollwakeup(struct pollhead ∗php, short event);

INTERFACE
LEVEL

Architecture independent level 1 (DDI/DKI).

ARGUMENTS php Pointer to a pollhead structure.

event Event to notify the process about.

DESCRIPTION pollwakeup() wakes a process waiting on the occurrence of an event. It should be called
from a driver for each occurrence of an event. The pollhead structure will usually be
associated with the driver’s private data structure associated with the particular minor
device where the event has occurred. See chpoll(9E) and poll(2) for more detail.

CONTEXT pollwakeup() can be called from user or interrupt context.

SEE ALSO poll(2), chpoll(9E)

Writing Device Drivers

NOTES Driver defined locks should not be held across calls to this function.

modified 11 Apr 1991 SunOS 5.6 9F-447

proc_signal (9F) Kernel Functions for Drivers

NAME proc_signal, proc_ref, proc_unref − send a signal to a process

SYNOPSIS #include <sys/ddi.h>
#include <sys/sunddi.h>
#include <sys/signal.h>

void ∗proc_ref(void);

void proc_unref(void ∗pref);

int proc_signal(void ∗pref, int sig);

INTERFACE
LEVEL

Solaris DDI specific (Solaris DDI).

ARGUMENTS pref A handle for the process to be signalled.

sig Signal number to be sent to the process.

DESCRIPTION This set of routines allows a driver to send a signal to a process. The routine proc_ref() is
used to retrieve an unambiguous reference to the process for signalling purposes. The
return value can be used as a unique handle on the process, even if the process dies.
Because system resources are committed to a process reference, proc_unref() should be
used to remove it as soon as it is no longer needed.

proc_signal() is used to send signal sig to the referenced process. The following set of
signals may be sent to a process from a driver:

SIGHUP The device has been disconnected

SIGINT The interrupt character has been received

SIGQUIT The quit character has been received

SIGPOLL A pollable event has occurred.

SIGKILL Kill the process (cannot be caught or ignored)

SIGWINCH Window size change.

SIGURG Urgent data are available.

See signal(5) for more details on the meaning of these signals.

If the process has exited at the time the signal was sent, proc_signal() returns an error
code; the caller should remove the reference on the process by calling proc_unref().

The driver writer must ensure that for each call made to proc_ref(), there is exactly one
corresponding call to proc_unref().

RETURN VALUES proc_ref()

pref An opaque handle used to refer to the current process.

proc_signal()

0 The process existed before the signal was sent.

−1 The process no longer exists; no signal was sent.

9F-448 SunOS 5.6 modified 7 Feb 1994

Kernel Functions for Drivers proc_signal (9F)

CONTEXT proc_unref() and proc_signal() can be called from user or interrupt context. proc_ref()
should only be called from user context.

SEE ALSO signal(5), putnextctl1(9F)

Writing Device Drivers

modified 7 Feb 1994 SunOS 5.6 9F-449

ptob (9F) Kernel Functions for Drivers

NAME ptob − convert size in pages to size in bytes

SYNOPSIS #include <sys/ddi.h>

unsigned long ptob(unsigned long numpages);

INTERFACE
LEVEL

Architecture independent level 1 (DDI/DKI).

ARGUMENTS numpages Size in number of pages to convert to size in bytes.

DESCRIPTION This function returns the number of bytes that are contained in the specified number of
pages. For example, if the page size is 2048, then ptob(2) returns 4096. ptob(0) returns 0.

RETURN VALUES The return value is always the number of bytes in the specified number of pages. There
are no invalid input values, and no checking will be performed for overflow in the case of
a page count whose corresponding byte count cannot be represented by an unsigned
long. Rather, the higher order bits will be ignored.

CONTEXT ptob() can be called from user or interrupt context.

SEE ALSO btop(9F), btopr(9F), ddi_ptob(9F)

Writing Device Drivers

9F-450 SunOS 5.6 modified 11 Apr 1991

Kernel Functions for Drivers pullupmsg (9F)

NAME pullupmsg − concatenate bytes in a message

SYNOPSIS #include <sys/stream.h>

int pullupmsg(mblk_t ∗mp, ssize_t len);

INTERFACE
LEVEL

Architecture independent level 1 (DDI/DKI).

ARGUMENTS mp Pointer to the message whose blocks are to be concatenated. mblk_t is an
instance of the msgb(9S) structure.

len Number of bytes to concatenate.

DESCRIPTION pullupmsg() tries to combine multiple data blocks into a single block. pullupmsg() con-
catenates and aligns the first len data bytes of the message pointed to by mp. If len equals
-1, all data are concatenated. If len bytes of the same message type cannot be found, pul-
lupmsg() fails and returns 0.

RETURN VALUES On success, 1 is returned; on failure, 0 is returned.

CONTEXT pullupmsg() can be called from user or interrupt context.

EXAMPLES This is a driver write srv(9E) (service) routine for a device that does not support
scatter/gather DMA. For all M_DATA messages, the data will be transferred to the device
with DMA.

First, try to pull up the message into one message block with the pullupmsg() function
(line 12). If successful, the transfer can be accomplished in one DMA job. Otherwise, it
must be done one message block at a time (lines 19−22). After the data has been
transferred to the device, free the message and continue processing messages on the
queue.

1 xxxwsrv(q)
2 queue_t ∗q;
3 {
4 mblk_t ∗mp;
5 mblk_t ∗tmp;
6 caddr_t dma_addr;
7 ssize_t dma_len;
8
9 while ((mp = getq(q)) != NULL) {
10 switch (mp->b_datap->db_type) {
11 case M_DATA:
12 if (pullupmsg(mp, -1)) {
13 dma_addr = vtop(mp->b_rptr);
14 dma_len = mp->b_wptr - mp->b_rptr;
15 xxx_do_dma(dma_addr, dma_len);
16 freemsg(mp);

modified 11 Nov 1996 SunOS 5.6 9F-451

pullupmsg (9F) Kernel Functions for Drivers

17 break;
18 }
19 for (tmp = mp; tmp; tmp = tmp->b_cont) {
20 dma_addr = vtop(tmp->b_rptr);
21 dma_len = tmp->b_wptr - tmp->b_rptr;
22 xxx_do_dma(dma_addr, dma_len);
23 }
24 freemsg(mp);
25 break;

. . .
26 }
27 }
28 }

SEE ALSO srv(9E), allocb(9F), msgpullup(9F), msgb(9S)

Writing Device Drivers
STREAMS Programming Guide

NOTES pullupmsg() is not included in the DKI and will be removed from the system in a future
release. Device driver writers are strongly encouraged to use msgpullup(9F) instead of
pullupmsg().

9F-452 SunOS 5.6 modified 11 Nov 1996

Kernel Functions for Drivers put (9F)

NAME put − call a STREAMS put procedure

SYNOPSIS #include <sys/stream.h>
#include <sys/ddi.h>

void put(queue_t ∗q, mblk_t ∗mp);

INTERFACE
LEVEL

Architecture independent level 1 (DDI/DKI).

ARGUMENTS q Pointer to a STREAMS queue.

mp Pointer to message block being passed into queue.

DESCRIPTION put calls the put procedure (put(9E) entry point) for the STREAMS queue specified by q,
passing it the message block referred to by mp. It is typically used by a driver or module
to call its own put procedure.

CONTEXT put can be called from a STREAMS module or driver put or service routine, or from an
associated interrupt handler, timeout, bufcall, or esballoc call-back. In the latter cases the
calling code must guarantee the validity of the q argument.

Since put may cause re-entry of the module (as it is intended to do), mutexes or other
locks should not be held across calls to it, due to the risk of single-party deadlock.
put(9E), putnext(9F), putctl(9F), qreply(9F), etc). This function is provided as a DDI/DKI
conforming replacement for a direct call to a put procedure.

SEE ALSO put(9E), freezestr(9F), putctl(9F), putctl1(9F), putnext(9F), putnextctl(9F),
putnextctl1(9F), qreply(9F)

Writing Device Drivers
STREAMS Programming Guide

NOTES The caller cannot have the stream frozen (see freezestr(9F)) when calling this function.

DDI/DKI conforming modules and drivers are no longer permitted to call put pro-
cedures directly, but must call through the appropriate STREAMS utility function (e.g.
put(9E), putnext(9F), putctl(9F), qreply(9F), etc). This function is provided as a
DDI/DKI conforming replacement for a direct call to a put procedure.

modified 28 Apr 1992 SunOS 5.6 9F-453

putbq (9F) Kernel Functions for Drivers

NAME putbq − place a message at the head of a queue

SYNOPSIS #include <sys/stream.h>

int putbq(queue_t ∗q, mblk_t ∗bp);

INTERFACE
LEVEL

Architecture independent level 1 (DDI/DKI).

ARGUMENTS q Pointer to the queue.

bp Pointer to the message block.

DESCRIPTION putbq() places a message at the beginning of the appropriate section of the message
queue. There are always sections for high priority and ordinary messages. If other prior-
ity bands are used, each will have its own section of the queue, in priority band order,
after high priority messages and before ordinary messages. putbq() can be used for
ordinary, priority band, and high priority messages. However, unless precautions are
taken, using putbq() with a high priority message is likely to lead to an infinite loop of
putting the message back on the queue, being rescheduled, pulling it off, and putting it
back on.

This function is usually called when bcanput(9F) or canput(9F) determines that the mes-
sage cannot be passed on to the next stream component. The flow control parameters are
updated to reflect the change in the queue’s status. If QNOENB is not set, the service rou-
tine is enabled.

RETURN VALUES putbq() returns 1 on success and 0 on failure.

CONTEXT putbq() can be called from user or interrupt context.

EXAMPLE See the bufcall(9F) function page for an example of putbq().

SEE ALSO bcanput(9F), bufcall(9F), canput(9F), getq(9F), putq(9F)

Writing Device Drivers
STREAMS Programming Guide

9F-454 SunOS 5.6 modified 11 Apr 1991

Kernel Functions for Drivers putctl1 (9F)

NAME putctl1 − send a control message with a one-byte parameter to a queue

SYNOPSIS #include <sys/stream.h>

int putctl1(queue_t ∗q, int type , int p);

INTERFACE
LEVEL

Architecture independent level 1 (DDI/DKI).

ARGUMENTS q Queue to which the message is to be sent.

type Type of message.

p One-byte parameter.

DESCRIPTION putctl1(), like putctl(9F), tests the type argument to make sure a data type has not been
specified, and attempts to allocate a message block. The p parameter can be used, for
example, to specify how long the delay will be when an M_DELAY message is being sent.
putctl1() fails if type is M_DATA, M_PROTO, or M_PCPROTO, or if a mesage block cannot
be allocated. If successful, putctl1() calls the put(9E) routine of the queue pointed to by q
with the newly allocated and initialized message.

RETURN VALUES On success, 1 is returned. 0 is returned if type is a data type, or if a message block cannot
be allocated.

CONTEXT putctl1() can be called from user or interrupt context.

EXAMPLE See the putctl(9F) function page for an example of putctl1().

SEE ALSO put(9E), allocb(9F), datamsg(9F), putctl(9F), putnextctl1(9F)

Writing Device Drivers
STREAMS Programming Guide

modified 11 Apr 1991 SunOS 5.6 9F-455

putctl (9F) Kernel Functions for Drivers

NAME putctl − send a control message to a queue

SYNOPSIS #include <sys/stream.h>

int putctl(queue_t ∗q, int type);

INTERFACE
LEVEL

Architecture independent level 1 (DDI/DKI).

ARGUMENTS q Queue to which the message is to be sent.

type Message type (must be control, not data type).

DESCRIPTION putctl() tests the type argument to make sure a data type has not been specified, and then
attempts to allocate a message block. putctl fails if type is M_DATA, M_PROTO, or
M_PCPROTO, or if a message block cannot be allocated. If successful, putctl() calls the
put(9E) routine of the queue pointed to by q with the newly allocated and initialized mes-
sages.

RETURN VALUES On success, 1 is returned. If type is a data type, or if a message block cannot be allocated,
0 is returned.

CONTEXT putctl() can be called from user or interrupt context.

EXAMPLE The send_ctl routine is used to pass control messages downstream. M_BREAK messages
are handled with putctl() (line 11). putctl1(9F) (line 16) is used for M_DELAY messages,
so that parm can be used to specify the length of the delay. In either case, if a message
block cannot be allocated a variable recording the number of allocation failures is incre-
mented (lines 12, 17). If an invalid message type is detected, cmn_err(9F) panics the sys-
tem (line 21).

1 void
2 send_ctl(wrq, type, parm)
3 queue_t ∗wrq;
4 unchar type;
5 unchar parm;
6 {
7 extern int num_alloc_fail;
8
9 switch (type) {
10 case M_BREAK:
11 if (!putctl(wrq->q_next, M_BREAK))
12 num_alloc_fail++;
13 break;
14
15 case M_DELAY:
16 if (!putctl1(wrq->q_next, M_DELAY, parm))
17 num_alloc_fail++;

9F-456 SunOS 5.6 modified 11 Apr 1991

Kernel Functions for Drivers putctl (9F)

18 break;
19
20 default:
21 cmn_err(CE_PANIC, "send_ctl: bad message type passed");
22 break;
23 }
24 }

SEE ALSO put(9E), cmn_err(9F), datamsg(9F), putctl1(9F), putnextctl(9F)

Writing Device Drivers
STREAMS Programming Guide

modified 11 Apr 1991 SunOS 5.6 9F-457

putnext (9F) Kernel Functions for Drivers

NAME putnext − send a message to the next queue

SYNOPSIS #include <sys/stream.h>
#include <sys/ddi.h>

int putnext(queue_t ∗q, mblk_t ∗mp);

INTERFACE
LEVEL

Architecture independent level 1 (DDI/DKI).

ARGUMENTS q Pointer to the queue from which the message mp will be sent.

mp Message to be passed.

DESCRIPTION putnext() is used to pass a message to the put(9E) routine of the next queue in the
stream.

RETURN VALUES None.

CONTEXT putnext() can be called from user or interrupt context.

EXAMPLE See allocb(9F) for an example of using putnext().

SEE ALSO put(9E), allocb(9F)

Writing Device Drivers
STREAMS Programming Guide

9F-458 SunOS 5.6 modified 11 Apr 1991

Kernel Functions for Drivers putnextctl1 (9F)

NAME putnextctl1 − send a control message with a one-byte parameter to a queue

SYNOPSIS #include <sys/stream.h>

int putnextctl1(queue_t ∗q, int type , int p);

INTERFACE
LEVEL

Architecture independent level 1 (DDI/DKI).

ARGUMENTS q Queue to which the message is to be sent.

type Type of message.

p One-byte parameter.

DESCRIPTION putnextctl1(), like putctl1(9F), tests the type argument to make sure a data type has not
been specified, and attempts to allocate a message block. The p parameter can be used,
for example, to specify how long the delay will be when an M_DELAY message is being
sent. putnextctl1() fails if type is M_DATA, M_PROTO, or M_PCPROTO, or if a message
block cannot be allocated. If successful, putnextctl1() calls the put(9E) routine of the
queue pointed to by q with the newly allocated and initialized message.

A call to putnextctl1(q, type, p) is an atomic equivalent of putctl1(q->q_next, type, p). The
STREAMS framework provides whatever mutual exclusion is necessary to insure that
dereferencing q through its q_next field and then invoking putctl1(9F) proceeds without
interference from other threads.

putnextctl1() should always be used in preference to putctl1(9F).

RETURN VALUES On success, 1 is returned. 0 is returned if type is a data type, or if a message block cannot
be allocated.

CONTEXT putnextctl1() can be called from user or interrupt context.

EXAMPLE See the putnextctl(9F) function page for an example of putnextctl1().

SEE ALSO put(9E), allocb(9F), datamsg(9F), putctl1(9F), putnextctl(9F)

Writing Device Drivers
STREAMS Programming Guide

modified 29 Mar 1993 SunOS 5.6 9F-459

putnextctl (9F) Kernel Functions for Drivers

NAME putnextctl − send a control message to a queue

SYNOPSIS #include <sys/stream.h>

int putnextctl(queue_t ∗q, int type);

INTERFACE
LEVEL

Architecture independent level 1 (DDI/DKI).

ARGUMENTS q Queue to which the message is to be sent.

type Message type (must be control, not data type).

DESCRIPTION putnextctl() tests the type argument to make sure a data type has not been specified, and
then attempts to allocate a message block. putnextctl() fails if type is M_DATA,
M_PROTO, or M_PCPROTO, or if a message block cannot be allocated. If successful, put-
nextctl() calls the put(9E) routine of the queue pointed to by q with the newly allocated
and initialized messages.

A call to putnextctl(q,type) is an atomic equivalent of putctl(q->q_next,type). The
STREAMS framework provides whatever mutual exclusion is necessary to insure that
dereferencing q through its q_next field and then invoking putctl(9F) proceeds without
interference from other threads.

putnextctl() should always be used in preference to putctl(9F).

RETURN VALUES On success, 1 is returned. If type is a data type, or if a message block cannot be allocated,
0 is returned.

CONTEXT putnextctl() can be called from user or interrupt context.

EXAMPLE The send_ctl routine is used to pass control messages downstream. M_BREAK messages
are handled with putnextctl() (line 8). putnextctl1(9F) (line 13) is used for M_DELAY
messages, so that parm can be used to specify the length of the delay. In either case, if a
message block cannot be allocated a variable recording the number of allocation failures
is incremented (lines 9, 14). If an invalid message type is detected, cmn_err(9F) panics
the system (line 18).

1 void
2 send_ctl(queue_t ∗wrq, u_char type, u_char parm)
3 {
4 extern int num_alloc_fail;
5
6 switch (type) {
7 case M_BREAK:
8 if (!putnextctl(wrq, M_BREAK))
9 num_alloc_fail++;
10 break;
11
12 case M_DELAY:

9F-460 SunOS 5.6 modified 29 Mar 1993

Kernel Functions for Drivers putnextctl (9F)

13 if (!putnextctl1(wrq, M_DELAY, parm))
14 num_alloc_fail++;
15 break;
16
17 default:
18 cmn_err(CE_PANIC, "send_ctl: bad message type passed");
19 break;
20 }
21 }

SEE ALSO put(9E), cmn_err(9F), datamsg(9F), putctl(9F), putnextctl1(9F)

Writing Device Drivers
STREAMS Programming Guide

modified 29 Mar 1993 SunOS 5.6 9F-461

putq (9F) Kernel Functions for Drivers

NAME putq − put a message on a queue

SYNOPSIS #include <sys/stream.h>

int putq(queue_t ∗q, mblk_t ∗bp);

INTERFACE
LEVEL

Architecture independent level 1 (DDI/DKI).

ARGUMENTS q Pointer to the queue to which the message is to be added.

bp Message to be put on the queue.

DESCRIPTION putq() is used to put messages on a driver’s queue after the module’s put routine has
finished processing the message. The message is placed after any other messages of the
same priority, and flow control parameters are updated. If QNOENB is not set, the ser-
vice routine is enabled. If no other processing is done, putq can be used as the module’s
put routine.

RETURN VALUES putq() returns 1 on success and 0 on failure.

CONTEXT putq() can be called from user or interrupt context.

EXAMPLE See the datamsg(9F) function page for an example of putq().

SEE ALSO datamsg(9F), putbq(9F), qenable(9F), rmvq(9F)

Writing Device Drivers
STREAMS Programming Guide

9F-462 SunOS 5.6 modified 11 Apr 1991

Kernel Functions for Drivers qbufcall (9F)

NAME qbufcall − call a function when a buffer becomes available

SYNOPSIS #include <sys/stream.h>
#include <sys/ddi.h>

int qbufcall (queue_t ∗q, size_t size, uint pri, void (∗func) (intptr_t arg), intptr_t arg);

INTERFACE
LEVEL

Solaris DDI specific (Solaris DDI).

ARGUMENTS q Pointer to STREAMS queue structure.

size Number of bytes required for the buffer.

pri Priority of the allocb(9F) allocation request (not used).

func Function or driver routine to be called when a buffer becomes available.

arg Argument to the function to be called when a buffer becomes available.

DESCRIPTION qbufcall() serves as a qtimeout(9F) call of indeterminate length. When a buffer alloca-
tion request fails, qbufcall() can be used to schedule the routine func to be called with the
argument arg when a buffer becomes available. func may call allocb() or it may do some-
thing else.

The qbufcall() function is tailored to be used with the enhanced STREAMS framework
interface, which is based on the concept of perimeters. (See mt-streams(9F).) qbufcall()
schedules the specified function to execute after entering the perimeters associated with
the queue passed in as the first parameter to qbufcall(). All outstanding bufcalls should
be cancelled before the close of a driver or module returns.

qprocson(9F) must be called before calling either qbufcall() or qtimeout(9F).

RETURN VALUES If successful, qbufcall() returns a qbufcall id that can be used in a call to qunbufcall(9F)
to cancel the request. If the qbufcall() scheduling fails, func is never called and 0 is
returned.

CONTEXT qbufcall() can be called from user or interrupt context.

SEE ALSO allocb(9F), mt-streams(9F), qprocson(9F), qtimeout(9F), qunbufcall(9F), quntimeout(9F)

Writing Device Drivers
STREAMS Programming Guide

WARNINGS Even when func is called by qbufcall(), allocb(9F) can fail if another module or driver
had allocated the memory before func was able to call allocb(9F).

modified 11 Nov 1996 SunOS 5.6 9F-463

qenable (9F) Kernel Functions for Drivers

NAME qenable − enable a queue

SYNOPSIS #include <sys/stream.h>
#include <sys/ddi.h>

void qenable(queue_t ∗q);

INTERFACE
LEVEL

Architecture independent level 1 (DDI/DKI).

ARGUMENTS q Pointer to the queue to be enabled.

DESCRIPTION qenable() adds the queue pointed to by q to the list of queues whose service routines are
ready to be called by the STREAMS scheduler.

CONTEXT qenable() can be called from user or interrupt context.

EXAMPLE See the dupb(9F) function page for an example of the qenable().

SEE ALSO dupb(9F)

Writing Device Drivers
STREAMS Programming Guide

9F-464 SunOS 5.6 modified 11 Apr 1991

Kernel Functions for Drivers qprocson (9F)

NAME qprocson, qprocsoff − enable, disable put and service routines

SYNOPSIS #include <sys/stream.h>
#include <sys/ddi.h>

void qprocson(queue_t ∗q);

void qprocsoff(queue_t ∗q);

INTERFACE
LEVEL

Architecture independent level 1 (DDI/DKI).

ARGUMENTS q Pointer to the RD side of a STREAMS queue pair.

DESCRIPTION qprocson() enables the put and service routines of the driver or module whose read
queue is pointed to by q. Threads cannot enter the module instance through the put and
service routines while they are disabled.

qprocson() must be called by the open routine of a driver or module before returning,
and after any initialization necessary for the proper functioning of the put and service
routines.

qprocson() must be called before calling qbufcall(9F), qtimeout(9F), qwait(9F), or
qwait_sig(9F),

qprocsoff() must be called by the close routine of a driver or module before returning,
and before deallocating any resources necessary for the proper functioning of the put and
service routines. It also removes the queue’s service routines from the service queue, and
blocks until any pending service processing completes.

The module or driver instance is guaranteed to be single-threaded before qprocson() is
called and after qprocsoff() is called, except for threads executing asynchronous events
such as interrupt handlers and callbacks, which must be handled separately.

CONTEXT These routines can be called from user or interrupt context.

SEE ALSO close(9E), open(9E), put(9E), srv(9E), qbufcall(9F), qtimeout(9F), qwait(9F),
qwait_sig(9F)

Writing Device Drivers
STREAMS Programming Guide

NOTES The caller may not have the STREAM frozen during either of these calls.

modified 11 Nov 1992 SunOS 5.6 9F-465

qreply (9F) Kernel Functions for Drivers

NAME qreply − send a message on a stream in the reverse direction

SYNOPSIS #include <sys/stream.h>

void qreply(queue_t ∗q, mblk_t ∗mp);

INTERFACE
LEVEL

Architecture independent level 1 (DDI/DKI).

ARGUMENTS q Pointer to the queue.

mp Pointer to the message to be sent in the opposite direction.

DESCRIPTION qreply() sends messages in the reverse direction of normal flow. That is, qreply(q, mp) is
equivalent to putnext(OTHERQ(q), mp).

CONTEXT qreply() can be called from user or interrupt context.

EXAMPLE This example depicts the canonical flushing code for STREAMS drivers. Assume that the
driver has service procedures (see srv(9E)), so that there may be messages on its queues.
Its write-side put procedure (see put(9E)) handles M_FLUSH messages by first checking
the FLUSHW bit in the first byte of the message, then the write queue is flushed (line 8)
and the FLUSHW bit is turned off (line 9). If the FLUSHR bit is on, then the read queue is
flushed (line 12) and the message is sent back up the read side of the stream with the
qreply(9F) function (line 13). If the FLUSHR bit is off, then the message is freed (line 15).
See the example for flushq(9F) for the canonical flushing code for modules.

1 xxxwput(q, mp)
2 queue_t ∗q;
3 mblk_t ∗mp;
4 {
5 switch(mp->b_datap->db_type) {
6 case M_FLUSH:
7 if (∗mp->b_rptr & FLUSHW) {
8 flushq(q, FLUSHALL);
9 ∗mp->b_rptr &= ˜FLUSHW;
10 }
11 if (∗mp->b_rptr & FLUSHR) {
12 flushq(RD(q), FLUSHALL);
13 qreply(q, mp);
14 } else {
15 freemsg(mp);
16 }
17 break;

. . .
18 }
19 }

9F-466 SunOS 5.6 modified 11 Apr 1991

Kernel Functions for Drivers qreply (9F)

SEE ALSO put(9E), srv(9E), flushq(9F), OTHERQ(9F), putnext(9F)

Writing Device Drivers
STREAMS Programming Guide

modified 11 Apr 1991 SunOS 5.6 9F-467

qsize (9F) Kernel Functions for Drivers

NAME qsize − find the number of messages on a queue

SYNOPSIS #include <sys/stream.h>

int qsize(queue_t ∗q);

INTERFACE
LEVEL

Architecture independent level 1 (DDI/DKI).

ARGUMENTS q Queue to be evaluated.

DESCRIPTION qsize() evaluates the queue q and returns the number of messages it contains.

RETURN VALUES If there are no message on the queue, qsize() returns 0. Otherwise, it returns the integer
representing the number of messages on the queue.

CONTEXT qsize() can be called from user or interrupt context.

SEE ALSO Writing Device Drivers
STREAMS Programming Guide

9F-468 SunOS 5.6 modified 11 Apr 1991

Kernel Functions for Drivers qtimeout (9F)

NAME qtimeout − execute a function after a specified length of time

SYNOPSIS #include <sys/stream.h>
#include <sys/ddi.h>

int qtimeout (queue_t ∗q, void (∗ftn) (intptr_t), intptr_t arg, clock_t ticks);

INTERFACE
LEVEL

Solaris DDI specific (Solaris DDI).

ARGUMENTS q Pointer to STREAMS queue structure.

ftn Kernel function to invoke when the time increment expires.

arg Argument to the function.

ticks Number of clock ticks to wait before the function is called.

DESCRIPTION The qtimeout() function schedules the specified function ftn to be called after a specified
time interval. ftn is called with arg as a parameter. Control is immediately returned to
the caller. This is useful when an event is known to occur within a specific time frame, or
when you want to wait for I/O processes when an interrupt is not available or might
cause problems. The exact time interval over which the timeout takes effect cannot be
guaranteed, but the value given is a close approximation.

The qtimeout() function is tailored to be used with the enhanced STREAMS framework
interface which is based on the concept of perimeters. (See mt-streams(9F).) qtimeout()
schedules the specified function to execute after entering the perimeters associated with
the queue passed in as the first parameter to qtimeout(). All outstanding timeouts
should be cancelled before a driver closes or module returns.

qprocson(9F) must be called before calling qtimeout().

RETURN VALUES Under normal conditions, an integer timeout identifier is returned.

The qtimeout() function returns an identifier that may be passed to the quntimeout(9F)
function to cancel a pending request. Note: No value is returned from the called func-
tion.

CONTEXT qtimeout() can be called from user or interrupt context.

SEE ALSO mt-streams(9F), qbufcall(9F), qprocson(9F), qunbufcall(9F), quntimeout(9F)

Writing Device Drivers
STREAMS Programming Guide

modified 11 Nov 1996 SunOS 5.6 9F-469

qunbufcall (9F) Kernel Functions for Drivers

NAME qunbufcall − cancel a pending qbufcall request

SYNOPSIS #include <sys/stream.h>
#include <sys/ddi.h>

void qunbufcall(queue_t ∗q, int id);

INTERFACE
LEVEL

Solaris DDI specific (Solaris DDI).

ARGUMENTS q Pointer to STREAMS queue_t structure.

id Identifier returned from qbufcall(9F)

DESCRIPTION qunbufcall cancels a pending qbufcall() request. The argument id is a non-zero
identifier of the request to be cancelled. id is returned from the qbufcall() function used
to issue the cancel request.

The qunbufcall() function is tailored to be used with the enhanced STREAMS framework
interface which is based on the concept of perimeters. (See mt-streams(9F).) qunbuf-
call() returns when the bufcall has been cancelled or finished executing. The bufcall will
be cancelled even if it is blocked at the perimeters associated with the queue. All out-
standing bufcalls should be cancelled before the driver closes or module returns.

CONTEXT qunbufcall() can be called from user or interrupt context.

SEE ALSO mt-streams(9F), qbufcall(9F), qtimeout(9F), quntimeout(9F)

Writing Device Drivers
STREAMS Programming Guide

9F-470 SunOS 5.6 modified 10 Jan 1993

Kernel Functions for Drivers quntimeout (9F)

NAME quntimeout − cancel previous qtimeout function call

SYNOPSIS #include <sys/stream.h>
#include <sys/ddi.h>

int quntimeout(queue_t ∗q, int id);

INTERFACE
LEVEL

Solaris DDI specific (Solaris DDI).

ARGUMENTS q Pointer to a STREAMS queue structure.

id Identification value generated by a previous qtimeout(9F) function call.

DESCRIPTION quntimeout() cancels a pending qtimeout(9F) request. The quntimeout() function is
tailored to be used with the enhanced STREAMS framework interface, which is based on
the concept of perimeters. (See mt-streams(9F).) quntimeout() returns when the
timeout has been cancelled or finished executing. The timeout will be cancelled even if it
is blocked at the perimeters associated with the queue. quntimeout() should be executed
for all outstanding timeouts before a driver or module close returns.

RETURN VALUES quntimeout() returns -1 if the id is not found. Otherwise, quntimeout() returns a zero or
positive value.

CONTEXT quntimeout() can be called from user or interrupt context.

SEE ALSO mt-streams(9F), qbufcall(9F), qtimeout(9F), qunbufcall(9F)

Writing Device Drivers
STREAMS Programming Guide

modified 10 Jan 1993 SunOS 5.6 9F-471

qwait (9F) Kernel Functions for Drivers

NAME qwait, qwait_sig − STREAMS wait routines

SYNOPSIS #include <sys/stream.h>
#include <sys/ddi.h>

void qwait(queue_t ∗q);

int qwait_sig(queue_t ∗q);

INTERFACE
LEVEL

Solaris DDI specific (Solaris DDI).

ARGUMENTS qp Pointer to the queue that is being opened or closed.

DESCRIPTION qwait() and qwait_sig() are used to wait for a message to arrive to the put(9E) or srv(9E)
procedures. qwait() and qwait_sig() can also be used to wait for qbufcall(9F) or
qtimeout(9F) callback procedures to execute. These routines can be used in the open(9E)
and close(9E) procedures in a STREAMS driver or module. qwait() and qwait_sig()
atomically exit the inner and outer perimeters associated with the queue, and wait for a
thread to leave the module’s put(9E), srv(9E), or qbufcall(9F) / qtimeout(9F) callback
procedures. Upon return they re-enter the inner and outer perimeters.

This can be viewed as there being an implicit wakeup when a thread leaves a put(9E) or
srv(9E) procedure or after a qtimeout(9F) or qbufcall(9F) callback procedure has been
run in the same perimeter.

qprocson(9F) must be called before calling qwait() or qwait_sig().

qwait() is not interrupted by a signal, whereas qwait_sig() is interrupted by a signal.
qwait_sig() normally returns non-zero, and returns zero when the waiting was inter-
rupted by a signal.

qwait() and qwait_sig() are similar to cv_wait() and cv_wait_sig() (see condvar(9F)),
except that the mutex is replaced by the inner and outer perimeters and the signalling is
implicit when a thread leaves the inner perimeter.

RETURN VALUES 0 For qwait_sig(), indicates that the condition was not necessarily signaled and the
function returned because a signal was pending.

CONTEXT These functions can only be called from an open(9E) or close(9E) routine.

EXAMPLES The open routine sends down a T_INFO_REQ message and waits for the T_INFO_ACK.
The arrival of the T_INFO_ACK is recorded by resetting a flag in the unit structure
(WAIT_INFO_ACK).

The example assumes that the module is D_MTQPAIR or D_MTPERMOD.

xxopen(qp, . . .)
queue_t ∗qp;

{
struct xxdata ∗xx;

9F-472 SunOS 5.6 modified 1 Mar 1993

Kernel Functions for Drivers qwait (9F)

/∗ Allocate xxdata structure ∗/
qprocson(qp);
/∗ Format T_INFO_ACK in mp ∗/
putnext(qp, mp);
xx->xx_flags |= WAIT_INFO_ACK;
while (xx->xx_flags & WAIT_INFO_ACK)

qwait(qp);
return (0);

}

xxrput(qp, mp)
queue_t ∗qp;
mblk_t ∗mp;

{
struct xxdata ∗xx = (struct xxdata ∗)q->q_ptr;

...

case T_INFO_ACK:
if (xx->xx_flags & WAIT_INFO_ACK) {

/∗ Record information from info ack ∗/
xx->xx_flags &= ˜WAIT_INFO_ACK;
freemsg(mp);
return;

}

...
}

SEE ALSO close(9E), open(9E), put(9E), srv(9E) condvar(9F), mt-streams(9F), qbufcall(9F),
qprocson(9F), qtimeout(9F)

STREAMS Programming Guide

Writing Device Drivers

modified 1 Mar 1993 SunOS 5.6 9F-473

qwriter (9F) Kernel Functions for Drivers

NAME qwriter − asynchronous STREAMS perimeter upgrade

SYNOPSIS #include <sys/stream.h>
#include <sys/ddi.h>

void qwriter(queue_t ∗qp, mblk_t ∗mp, void (∗func)(), int perimeter);

INTERFACE
LEVEL

Solaris DDI specific (Solaris DDI).

ARGUMENTS qp Pointer to the queue.

mp Pointer to a message that will be passed in to the callback function.

func A function that will be called when exclusive (writer) access has been
acquired at the specified perimeter.

perimeter Either PERIM_INNER or PERIM_OUTER.

DESCRIPTION qwriter() is used to upgrade the access at either the inner or the outer perimeter from
shared to exclusive (see mt-streams(9F) man page), and call the specified callback func-
tion when the upgrade has succeeded. The callback function is called as:

(∗func)(queue_t ∗qp, mblk_t ∗mp);

qwriter() will acquire exclusive access immediately if possible, in which case the
specified callback function will be executed before qwriter() returns. If this is not possi-
ble, qwriter() will defer the upgrade until later and return before the callback function
has been executed. Modules should not assume that the callback function has been exe-
cuted when qwriter() returns. One way to avoid dependencies on the execution of the
callback function is to immediately return after calling qwriter() and let the callback
function finish the processing of the message.

When qwriter() defers calling the callback function, the STREAMS framework will
prevent other messages from entering the inner perimeter associated with the queue until
the upgrade has completed and the callback function has finished executing.

CONTEXT qwriter() can only be called from an put(9E) or srv(9E) routine, or from a qwriter(),
qtimeout(9F), or qbufcall(9F) callback function.

SEE ALSO put(9E), srv(9E), mt-streams(9F), qbufcall(9F), qtimeout(9F)

STREAMS Programming Guide
Writing Device Drivers

9F-474 SunOS 5.6 modified 1 Mar 1993

Kernel Functions for Drivers RD (9F)

NAME RD, rd − get pointer to the read queue

SYNOPSIS #include <sys/stream.h>
#include <sys/ddi.h>

queue_t ∗RD(queue_t ∗q);

INTERFACE
LEVEL

Architecture independent level 1 (DDI/DKI).

ARGUMENTS q Pointer to the write queue whose read queue is to be returned.

DESCRIPTION The RD() function accepts a write queue pointer as an argument and returns a pointer to
the read queue of the same module.

CAUTION: Make sure the argument to this function is a pointer to a write queue. RD()
will not check for queue type, and a system panic could result if it is not the right type.

RETURN VALUES The pointer to the read queue.

CONTEXT RD() can be called from user or interrupt context.

EXAMPLES See the qreply(9F) function page for an example of RD().

SEE ALSO qreply(9F), WR(9F)

Writing Device Drivers
STREAMS Programming Guide

modified 15 Nov 1991 SunOS 5.6 9F-475

rmalloc (9F) Kernel Functions for Drivers

NAME rmalloc − allocate space from a resource map

SYNOPSIS #include <sys/map.h>
#include <sys/ddi.h>

unsigned long rmalloc(struct map ∗mp, size_t size);

INTERFACE
LEVEL

Architecture independent level 1 (DDI/DKI).

ARGUMENTS mp Resource map from where the resource is drawn.

size Number of units of the resource.

DESCRIPTION rmalloc() is used by a driver to allocate space from a previously defined and initialized
resource map. The map itself is allocated by calling the function rmallocmap(9F). rmal-
loc() is one of five functions used for resource map management. The other functions
include:

rmalloc_wait(9F) Allocate space from a resource map, wait if necessary.
rmfree(9F) Return previously allocated space to a map.
rmallocmap(9F) Allocate a resource map and initialize it.
rmfreemap(9F) Deallocate a resource map.

rmalloc() allocates space from a resource map in terms of arbitrary units. The system
maintains the resource map by size and index, computed in units appropriate for the
resource. For example, units may be byte addresses, pages of memory, or blocks. The
normal return value is an unsigned long set to the value of the index where sufficient
free space in the resource was found.

RETURN VALUES Under normal conditions, rmalloc() returns the base index of the allocated space. Other-
wise, rmalloc() returns a 0 if all resource map entries are already allocated.

CONTEXT rmalloc() can be called from user or interrupt context.

EXAMPLES The following example is a simple memory map, but it illustrates the principles of map
management. A driver allocates and initializes the map by calling both the
rmallocmap(9F) and rmfree(9F) functions. rmallocmap(9F) is called to establish the
number of slots or entries in the map, and rmfree(9F) to initialize the resource area the
map is to manage. The following example is a fragment from a hypothetical start routine
and illustrates the following procedures:

Panics the system if the required amount of memory can not be allocated (lines
11−15).

Uses rmallocmap(9F) to configure the total number of entries in the map, and
rmfree(9F) to initialize the total resource area.

9F-476 SunOS 5.6 modified 19 Nov 1992

Kernel Functions for Drivers rmalloc (9F)

1 #define XX_MAPSIZE 12
2 #define XX_BUFSIZE 2560
3 static struct map ∗xx_mp; /∗ Private buffer space map ∗/

. . .
4 xxstart()
5 /∗
6 ∗ Allocate private buffer. If insufficient memory,
7 ∗ display message and halt system.
8 ∗/
9 {
10 register caddr_t bp;

. . .
11 if ((bp = kmem_alloc(XX_BUFSIZE, KM_NOSLEEP) == 0) {
12
13 cmn_err(CE_PANIC, "xxstart: kmem_alloc failed before %d buffer"
14 "allocation", XX_BUFSIZE);
15 }
16
17 /∗
18 ∗ Initialize the resource map with number
19 ∗ of slots in map.
20 ∗/
21 xx_mp = rmallocmap(XX_MAPSIZE);
22
24 /∗
25 ∗ Initialize space management map with total
26 ∗ buffer area it is to manage.
27 ∗/
28 rmfree(xx_mp, XX_BUFSIZE, bp);

. . .

The rmalloc() function is then used by the driver’s read or write routine to allocate
buffers for specific data transfers. The uiomove(9F) function is used to move the data
between user space and local driver memory. The device then moves data between itself
and local driver memory through DMA.

The next example illustrates the following procedures:

The size of the I/O request is calculated and stored in the size variable (line 10).

Buffers are allocated through the rmalloc function using the size value (line 15).
If the allocation fails the system will panic.

The uiomove(9F) function is used to move data to the allocated buffer (line 23).

If the address passed to uiomove(9F) is invalid, rmfree(9F) is called to release the
previously allocated buffer, and an EFAULT error is returned.

modified 19 Nov 1992 SunOS 5.6 9F-477

rmalloc (9F) Kernel Functions for Drivers

1 #define XX_BUFSIZE 2560
2 #define XX_MAXSIZE (XX_BUFSIZE / 4)
3
4 static struct map ∗xx_mp; /∗ Private buffer space map ∗/

...
5 xxread(dev_t dev, uio_t ∗uiop, cred_t ∗credp)
6 {
7
8 register caddr_t addr;
9 register int size;
10 size = min(COUNT, XX_MAXSIZE); /∗ Break large I/O request ∗/
11 /∗ into small ones ∗/
12 /∗
13 ∗ Get buffer.
14 ∗/
15 if ((addr = (caddr_t)rmalloc(xx_mp, size)) == 0)
16 cmn_err(CE_PANIC, "read: rmalloc failed allocation of size %d",
17 size);
18
19 /∗
20 ∗ Move data to buffer. If invalid address is found,
21 ∗ return buffer to map and return error code.
22 ∗/
23 if (uiomove(addr, size, UIO_READ, uiop) == −1) {
24 rmfree(xx_mp, size, addr);
25 return(EFAULT);
26 }
27 }

SEE ALSO kmem_alloc(9F), rmalloc_wait(9F), rmallocmap(9F), rmfree(9F), rmfreemap(9F),
uiomove(9F)

Writing Device Drivers

9F-478 SunOS 5.6 modified 19 Nov 1992

Kernel Functions for Drivers rmallocmap (9F)

NAME rmallocmap, rmallocmap_wait, rmfreemap − allocate and free resource maps

SYNOPSIS #include <sys/ddi.h>
#include <sys/sunddi.h>

struct map ∗rmallocmap(size_t mapsize);

struct map ∗rmallocmap_wait(size_t mapsize);

void rmfreemap(struct map ∗mp);

INTERFACE
LEVEL

Architecture independent level 1 (DDI/DKI).

ARGUMENTS mapsize Number of entries for the map.

mp A pointer to the map structure to be deallocated.

DESCRIPTION rmallocmap() dynamically allocates a resource map structure. The argument mapsize
defines the total number of entries in the map. In particular it is the total number alloca-
tions that can be outstanding at any one time.

rmallocmap() initializes the map but does not associate it with the actual resource. In
order to associate the map with the actual resource a call to rmfree(9F) is used to make
the entirety of the actual resource available for allocation starting from the first index into
the resource. Typically the call to rmallocmap() is followed by a call to rmfree(9F), pass-
ing the address of the map returned from rmallocmap(), the total size of the resource,
and the first index into actual resource.

The resource map allocated by rmallocmap() can be used to describe an arbitrary
resource in whatever allocation units are appropriate such blocks, pages, or data struc-
tures. This resource can then be managed by the system by subsequent calls to
rmalloc(9F), rmalloc_wait(9F), and rmfree(9F).

rmallocmap_wait() is similar to rmallocmap(), with the exception that it will wait for
space to become available if necessary.

rmfreemap() deallocates a resource map structure previously allocated by rmallocmap()
or rmallocmap_wait(). The argument mp is a pointer to the map structure to be deallo-
cated.

RETURN VALUES Upon successful completion, rmallocmap() and rmallocmap_wait() return a pointer to
the newly allocated map structure. Upon failure, rmallocmap() returns a NULL pointer.

CONTEXT rmallocmap() and rmfreemap() can be called from user, kernel or interrupt context.

rmallocmap_wait() can only be called from user or kernel context.

modified 20 Nov 1996 SunOS 5.6 9F-479

rmallocmap (9F) Kernel Functions for Drivers

SEE ALSO rmalloc(9F), rmalloc_wait(9F), rmfree(9F)

Writing Device Drivers

9F-480 SunOS 5.6 modified 20 Nov 1996

Kernel Functions for Drivers rmalloc_wait (9F)

NAME rmalloc_wait − allocate space from a resource map, wait if necessary

SYNOPSIS #include <sys/map.h>
#include <sys/ddi.h>

unsigned long rmalloc_wait(struct map ∗mp, size_t size);

INTERFACE
LEVEL

Architecture independent level 1 (DDI/DKI).

ARGUMENTS mp Pointer to the resource map from which space is to be allocated.

size Number of units of space to allocate.

DESCRIPTION rmalloc_wait() requests an allocation of space from a resource map. rmalloc_wait() is
similar to the rmalloc(9F) function with the exception that it will wait for space to become
available if necessary.

RETURN VALUES rmalloc_wait() returns the base of the allocated space.

CONTEXT This functions can be called from user or interrupt context. However in most cases
rmalloc_wait() should be called from user context only.

SEE ALSO rmalloc(9F), rmallocmap(9F), rmfree(9F), rmfreemap(9F)

Writing Device Drivers

modified 28 Apr 1992 SunOS 5.6 9F-481

rmfree (9F) Kernel Functions for Drivers

NAME rmfree − free space back into a resource map

SYNOPSIS #include <sys/map.h>
#include <sys/ddi.h>

void rmfree(struct map ∗mp, size_t size, ulong_t index);

INTERFACE
LEVEL

Architecture independent level 1 (DDI/DKI).

ARGUMENTS mp Pointer to the map structure.

size Number of units being freed.

index Index of the first unit of the allocated resource.

DESCRIPTION rmfree() releases space back into a resource map. It is the opposite of rmalloc(9F), which
allocates space that is controlled by a resource map structure.

Drivers may define resource maps for resource allocation, in terms of arbitrary units,
using the rmallocmap(9F) function. The system maintains the resource map structure by
size and index, computed in units appropriate for the resource. For example, units may
be byte addresses, pages of memory, or blocks. rmfree() frees up unallocated space for
re-use.

CONTEXT rmfree() can be called from user or interrupt context.

SEE ALSO rmalloc(9F), rmalloc_wait(9F), rmallocmap(9F), rmfreemap(9F)

Writing Device Drivers

9F-482 SunOS 5.6 modified 19 Nov 1992

Kernel Functions for Drivers rmvb (9F)

NAME rmvb − remove a message block from a message

SYNOPSIS #include <sys/stream.h>

mblk_t ∗rmvb(mblk_t ∗mp, mblk_t ∗bp);

INTERFACE
LEVEL

Architecture independent level 1 (DDI/DKI).

ARGUMENTS mp Message from which a block is to be removed. mblk_t is an instance of the
msgb(9S) structure.

bp Message block to be removed.

DESCRIPTION rmvb() removes a message block (bp) from a message (mp), and returns a pointer to the
altered message. The message block is not freed, merely removed from the message. It is
the module or driver’s responsibility to free the message block.

RETURN VALUES If successful, a pointer to the message (minus the removed block) is returned. The
pointer is NULL if bp was the only block of the message before rmvb() was called. If the
designated message block (bp) does not exist, -1 is returned.

CONTEXT rmvb() can be called from user or interrupt context.

EXAMPLE This routine removes all zero-length M_DATA message blocks from the given message.
For each message block in the message, save the next message block (line 10). If the
current message block is of type M_DATA and has no data in its buffer (line 11), then
remove it from the message (line 12) and free it (line 13). In either case, continue with the
next message block in the message (line 16).

1 void
2 xxclean(mp)
3 mblk_t ∗mp;
4 {
5 mblk_t ∗tmp;
6 mblk_t ∗nmp;
7
8 tmp = mp;
9 while (tmp) {
10 nmp = tmp->b_cont;
11 if ((tmp->b_datap->db_type == M_DATA) &&

(tmp->b_rptr == tmp->b_wptr)) {
12 (void) rmvb(mp, tmp);
13 freeb(tmp);
14 }
15 tmp = nmp;
16 }
17 }

modified 11 Apr 1991 SunOS 5.6 9F-483

rmvb (9F) Kernel Functions for Drivers

SEE ALSO freeb(9F), msgb(9S)

Writing Device Drivers
STREAMS Programming Guide

9F-484 SunOS 5.6 modified 11 Apr 1991

Kernel Functions for Drivers rmvq (9F)

NAME rmvq − remove a message from a queue

SYNOPSIS #include <sys/stream.h>

void rmvq(queue_t ∗q, mblk_t ∗mp);

INTERFACE
LEVEL

Architecture independent level 1 (DDI/DKI).

ARGUMENTS q Queue containing the message to be removed.

mp Message to remove.

DESCRIPTION rmvq() removes a message from a queue. A message can be removed from anywhere on
a queue. To prevent modules and drivers from having to deal with the internals of mes-
sage linkage on a queue, either rmvq() or getq(9F) should be used to remove a message
from a queue.

CONTEXT rmvq() can be called from user or interrupt context.

EXAMPLE This code fragment illustrates how one may flush one type of message from a queue. In
this case, only M_PROTO T_DATA_IND messages are flushed. For each message on the
queue, if it is an M_PROTO message (line 8) of type T_DATA_IND (line 10), save a pointer
to the next message (line 11), remove the T_DATA_IND message (line 12) and free it (line
13). Continue with the next message in the list (line 19).

1 mblk_t ∗mp, ∗nmp;
2 queue_t ∗q;
3 union T_primitives ∗tp;
4
5 freezestr(q);
6 mp = q->q_first;
7 while (mp) {
8 if (mp->b_datap->db_type == M_PROTO) {
9 tp = (union T_primitives ∗)mp->b_rptr;
10 if (tp->type == T_DATA_IND) {
11 nmp = mp->b_next;
12 rmvq(q, mp);
13 freemsg(mp);
14 mp = nmp;
15 } else {
16 mp = mp->b_next;
17 }
18 } else {
19 mp = mp->b_next;
20 }
21 }
22 unfreezestr(q);

modified 28 Jan 1993 SunOS 5.6 9F-485

rmvq (9F) Kernel Functions for Drivers

SEE ALSO freemsg(9F), freezestr(9F), getq(9F), insq(9F), unfreezestr(9F)

Writing Device Drivers
STREAMS Programming Guide

WARNINGS Make sure that the message mp is linked onto q to avoid a possible system panic.

NOTES The stream must be frozen using freezestr(9F) before calling rmvq().

9F-486 SunOS 5.6 modified 28 Jan 1993

Kernel Functions for Drivers rwlock (9F)

NAME rwlock, rw_init, rw_destroy, rw_enter, rw_exit, rw_tryenter, rw_downgrade,
rw_tryupgrade, rw_read_locked − readers/writer lock functions

SYNOPSIS #include <sys/ksynch.h>

void rw_init(krwlock_t ∗rwlp, char ∗name, krw_type_t type, void ∗arg);

void rw_destroy(krwlock_t ∗rwlp);

void rw_enter(krwlock_t ∗rwlp, krw_t enter_type);

void rw_exit(krwlock_t ∗rwlp);

int rw_tryenter(krwlock_t ∗rwlp, krw_t enter_type);

void rw_downgrade(krwlock_t ∗rwlp);

int rw_tryupgrade(krwlock_t ∗rwlp);

int rw_read_locked(krwlock_t ∗rwlp);

INTERFACE
LEVEL

Solaris DDI specific (Solaris DDI).

ARGUMENTS rwlp Pointer to a krwlock_t readers/writer lock.

name Descriptive string. This is obsolete and should be NULL. (Non-NULL
strings are legal, but they’re a waste of kernel memory.)

type Type of readers/writer lock.

arg Type-specific argument for initialization function.

enter_type Indication of whether the lock is to be acquired non-exclusively or
exclusively RW_READER or RW_WRITER.

DESCRIPTION A multiple-readers, single-writer lock is represented by the krwlock_t data type. This
type of lock will allow many threads to have simultaneous read-only access to an object.
Only one thread may have write access at any one time. An object which is searched
more frequently than it is changed is a good candidate for a readers/writer lock.

Readers/writer locks are slightly more expensive than mutex locks, and the advantage of
multiple read access may not occur if the lock will only be held for a short time.

rw_init() initializes a readers/writer lock. It is an error to initialize a lock more than
once. The type argument should be set to RW_DRIVER. If the lock is used by the inter-
rupt handler, the type-specific argument, arg, should be the ddi_iblock_cookie returned
from ddi_get_iblock_cookie(9F) or ddi_get_soft_iblock_cookie(9F). If the lock is not
used by any interrupt handler, the argument should be NULL.

rw_destroy() releases any resources that might have been allocated by rw_init(). It
should be called before freeing the memory containing the lock.

rw_enter() acquires the lock, and blocks if necessary. If enter_type is RW_READER, the
caller blocks if there is a writer or a thread attempting to enter for writing. If enter_type is
RW_WRITER, the caller blocks if any thread holds the lock.

modified 7 May 1997 SunOS 5.6 9F-487

rwlock (9F) Kernel Functions for Drivers

NOTE: it is a programming error for any thread to acquire an rwlock it already holds,
even as a reader. Doing so can deadlock the system: if thread R acquires the lock as a
reader, then thread W tries to acquire the lock as a writer, W will set write-wanted and
block. When R tries to get its second read hold on the lock, it will honor the write-
wanted bit and block waiting for W; but W cannot run until R drops the lock. Thus
threads R and W deadlock.

rw_exit() releases the lock and may wake up one or more threads waiting on the lock.

rw_tryenter() attempts to enter the lock, like rw_enter(), but never blocks. It returns a
non-zero value if the lock was successfully entered, and zero otherwise.

A thread which holds the lock exclusively (entered with RW_WRITER), may call
rw_downgrade() to convert to holding the lock non-exclusively (as if entered with
RW_READER). One or more waiting readers may be unblocked.

rw_tryupgrade() can be called by a thread which holds the lock for reading to attempt to
convert to holding it for writing. This upgrade can only succeed if no other thread is
holding the lock and no other thread is blocked waiting to acquire the lock for writing.

rw_read_locked() returns non-zero if the calling thread holds the lock for read, and zero
if the caller holds the lock for write. The caller must hold the lock. The system may panic
if rw_read_locked() is called for a lock that isn’t held by the caller.

RETURN VALUES 0 rw_tryenter() could not obtain the lock without blocking.

0 rw_tryupgrade() was unable to perform the upgrade because of other
threads holding or waiting to hold the lock.

0 rw_read_locked() returns 0 if the lock is held by the caller for write.

non-zero from rw_read_locked() if the lock is held by the caller for read.

non-zero successful return from rw_tryenter() or rw_tryupgrade().

CONTEXT These functions can be called from user or interrupt context, except for rw_init() and
rw_destroy(), which can be called from user context only.

SEE ALSO condvar(9F), ddi_add_intr(9F), ddi_get_iblock_cookie(9F),
ddi_get_soft_iblock_cookie(9F), mutex(9F), semaphore(9F)

Writing Device Drivers

NOTES Compiling with _LOCKTEST or _MPSTATS defined no longer has any effect. To gather
lock statistics, see lockstat(1M).

9F-488 SunOS 5.6 modified 7 May 1997

Kernel Functions for Drivers SAMESTR (9F)

NAME SAMESTR, samestr − test if next queue is in the same stream

SYNOPSIS #include <sys/stream.h>

int SAMESTR(queue_t ∗q);

INTERFACE
LEVEL

Architecture independent level 1 (DDI/DKI).

ARGUMENTS q Pointer to the queue.

DESCRIPTION The SAMESTR() function is used to see if the next queue in a stream (if it exists) is the
same type as the current queue (that is, both are read queues or both are write queues).
This function accounts for the twisted queue connections that occur in a STREAMS pipe
and should be used in preference to direct examination of the q_next field of queue(9S)
to see if the stream continues beyond q.

RETURN VALUES SAMESTR() returns 1 if the next queue is the same type as the current queue. It returns
0 if the next queue does not exist or if it is not the same type.

CONTEXT SAMESTR() can be called from user or interrupt context.

SEE ALSO OTHERQ(9F)

Writing Device Drivers
STREAMS Programming Guide

modified 11 Apr 1991 SunOS 5.6 9F-489

scsi_abort (9F) Kernel Functions for Drivers

NAME scsi_abort − abort a SCSI command

SYNOPSIS #include <sys/scsi/scsi.h>

int scsi_abort(struct scsi_address ∗ap, struct scsi_pkt ∗pkt);

INTERFACE
LEVEL

Solaris DDI specific (Solaris DDI).

ARGUMENTS ap Pointer to a scsi_address structure.

pkt Pointer to a scsi_pkt(9S) structure.

DESCRIPTION scsi_abort() terminates a command that has been transported to the host adapter driver.
A NULL pkt causes all outstanding packets to be aborted. On a successful abort, the
pkt_reason is set to CMD_ABORTED and pkt_statistics is OR’ed with STAT_ABORTED.

RETURN VALUES scsi_abort() returns:

1 on success.

0 on failure.

CONTEXT scsi_abort() can be called from user or interrupt context.

EXAMPLE if (scsi_abort(&devp->sd_address, pkt) == 0) {
(void) scsi_reset(&devp->sd_address, RESET_ALL);

}

SEE ALSO tran_abort(9E), scsi_reset(9F), scsi_pkt(9S)

Writing Device Drivers

9F-490 SunOS 5.6 modified 30 Aug 1995

Kernel Functions for Drivers scsi_alloc_consistent_buf (9F)

NAME scsi_alloc_consistent_buf − allocate an I/O buffer for SCSI DMA

SYNOPSIS #include <sys/scsi/scsi.h>

struct buf ∗scsi_alloc_consistent_buf(struct scsi_address ∗ap , struct buf ∗bp,
size_t datalen , u_int bflags , int (∗callback) (caddr_t), caddr_t arg);

INTERFACE
LEVEL

Solaris DDI specific (Solaris DDI).

ARGUMENTS ap Pointer to the scsi_address(9S) structure.

bp Pointer to the buf(9S) structure.

datalen Number of bytes for the data buffer.

bflags Flags setting for the allocated buffer header.

callback A pointer to a callback function, NULL_FUNC or SLEEP_FUNC.

arg The callback function argument.

DESCRIPTION scsi_alloc_consistent_buf() allocates a buffer header and the associated data buffer for
direct memory access (DMA) transfer. This buffer is allocated from the iobp space, which
is considered consistent memory. For more details, see ddi_dma_mem_alloc(9F) and
ddi_dma_sync(9F).

For buffers allocated via scsi_alloc_consistent_buf(), and marked with the
PKT_CONSISTENT flag via scsi_init_pkt(9F), the HBA driver must ensure that the data
transfer for the command is correctly synchronized before the target driver’s command
completion callback is performed.

If bp is NULL, a new buffer header will be allocated using getrbuf(9F). In addition, if
datalen is non-zero, a new buffer will be allocated using ddi_dma_mem_alloc(9F).

callback indicates what the allocator routines should do when direct memory access
(DMA) resources are not available; the valid values are:

NULL_FUNC Do not wait for resources. Return a NULL pointer.

SLEEP_FUNC Wait indefinitely for resources.

Other Values callback points to a function that is called when resources may
become available. callback must return either 0 (indicating that it
attempted to allocate resources but failed to do so), in which case it is
put back on a list to be called again later, or 1 indicating either suc-
cess in allocating resources or indicating that it no longer cares for a
retry. The last argument arg is supplied to the callback function when
it is invoked.

RETURN VALUES scsi_alloc_consistent_buf() returns a pointer to a buf(9S) structure on success. It returns
NULL if resources are not available and waitfunc was not SLEEP_FUNC.

modified 20 Nov 1996 SunOS 5.6 9F-491

scsi_alloc_consistent_buf (9F) Kernel Functions for Drivers

CONTEXT If callback is SLEEP_FUNC, then this routine may be called only from user-level code. Oth-
erwise, it may be called from either user or interrupt level. The callback function may not
block or call routines that block.

EXAMPLES Allocate a request sense packet with consistent DMA resources
attached.

bp = scsi_alloc_consistent_buf(&devp->sd_address, NULL,
SENSE_LENGTH, B_READ, SLEEP_FUNC, NULL);

rqpkt = scsi_init_pkt(&devp->sd_address,
NULL, bp, CDB_GROUP0, 1, 0,
PKT_CONSISTENT, SLEEP_FUNC, NULL);

Allocate an inquiry packet with consistent DMA resources
attached.

bp = scsi_alloc_consistent_buf(&devp->sd_address, NULL,
SUN_INQSIZE, B_READ, canwait, NULL);

if (bp) {
pkt = scsi_init_pkt(devp->sd_address, NULL, bp,
CDB_GROUP0, 1, PP_LEN, PKT_CONSISTENT,

canwait, NULL);
}

SEE ALSO ddi_dma_mem_alloc(9F), ddi_dma_sync(9F), getrbuf(9F), scsi_destroy_pkt(9F),
scsi_init_pkt(9F), scsi_free_consistent_buf(9F), buf(9S), scsi_address(9S)

Writing Device Drivers

9F-492 SunOS 5.6 modified 20 Nov 1996

Kernel Functions for Drivers scsi_cname (9F)

NAME scsi_cname, scsi_dname, scsi_mname, scsi_rname, scsi_sname − decode a SCSI name

SYNOPSIS #include <sys/scsi/scsi.h>

char ∗scsi_cname(u_char cmd, char ∗∗cmdvec);

char ∗scsi_dname(int dtype);

char ∗scsi_mname(u_char msg);

char ∗scsi_rname(u_char reason);

char ∗scsi_sname(u_char sense_key);

INTERFACE
LEVEL

Solaris DDI specific (Solaris DDI).

ARGUMENTS cmd A SCSI command value.

cmdvec Pointer to an array of command strings.

dtype Device type.

msg A message value.

reason A packet reason value.

sense_key A SCSI sense key value.

DESCRIPTION scsi_cname() decodes SCSI commands. cmdvec is a pointer to an array of strings. The
first byte of the string is the command value, and the remainder is the name of the com-
mand.

scsi_dname() decodes the peripheral device type (for example, direct access or sequen-
tial access) in the inquiry data.

scsi_mname() decodes SCSI messages.

scsi_rname() decodes packet completion reasons.

scsi_sname() decodes SCSI sense keys.

RETURN VALUES These functions return a pointer to a string. If an argument is invalid, they return a string
to that effect.

CONTEXT These functions can be called from user or interrupt context.

modified 21 Dec 1992 SunOS 5.6 9F-493

scsi_cname (9F) Kernel Functions for Drivers

EXAMPLES scsi_cname() decodes SCSI tape commands as follows:

static char ∗st_cmds[] = {
"\000test unit ready",
"\001rewind",
"\003request sense",
"\010read",
"\012write",
"\020write file mark",
"\021space",
"\022inquiry",
"\025mode select",
"\031erase tape",
"\032mode sense",
"\033load tape",
NULL

};
..
cmn_err(CE_CONT, "st: cmd=%s", scsi_cname(cmd, st_cmds));
..

SEE ALSO Writing Device Drivers

9F-494 SunOS 5.6 modified 21 Dec 1992

Kernel Functions for Drivers scsi_destroy_pkt (9F)

NAME scsi_destroy_pkt − free an allocated SCSI packet and its DMA resource

SYNOPSIS #include <sys/scsi/scsi.h>

void scsi_destroy_pkt(struct scsi_pkt ∗pktp);

INTERFACE
LEVEL

Solaris DDI specific (Solaris DDI).

ARGUMENTS pktp Pointer to a scsi_pkt(9S) structure.

DESCRIPTION scsi_destroy_pkt() releases all necessary resources, typically at the end of an I/O
transfer. The data is synchronized to memory, then the DMA resources are deallocated
and pktp is freed.

CONTEXT scsi_destroy_pkt() may be called from user or interrupt context.

EXAMPLE scsi_destroy_pkt(un->un_rqs);

SEE ALSO tran_destroy_pkt(9E), scsi_init_pkt(9F), scsi_pkt(9S)

Writing Device Drivers

modified 30 Aug 1995 SunOS 5.6 9F-495

scsi_dmaget (9F) Kernel Functions for Drivers

NAME scsi_dmaget, scsi_dmafree − SCSI dma utility routines

SYNOPSIS #include <sys/scsi/scsi.h>

struct scsi_pkt ∗scsi_dmaget(struct scsi_pkt ∗pkt , opaque_t dmatoken ,
int (∗callback)(void));

void scsi_dmafree(struct scsi_pkt ∗pkt);

INTERFACE
LEVEL

Solaris DDI specific (Solaris DDI).

ARGUMENTS pkt A pointer to a scsi_pkt(9S) structure.

dmatoken Pointer to an implementation dependent object

callback Pointer to a callback function, or NULL_FUNC or SLEEP_FUNC.

DESCRIPTION scsi_dmaget() allocates DMA resources for an already allocated SCSI packet. pkt is a
pointer to the previously allocated SCSI packet (see scsi_pktalloc(9F)).

dmatoken is a pointer to an implementation dependent object which defines the length,
direction, and address of the data transfer associated with this SCSI packet (command).
The dmatoken must be a pointer to a buf(9S) structure. If dmatoken is NULL, no resources
are allocated.

callback indicates what scsi_dmaget() should do when resources are not available:

NULL_FUNC Do not wait for resources. Return a NULL pointer.

SLEEP_FUNC Wait indefinitely for resources.

Other Values callback points to a function which is called when resources may have
become available. callback must return either 0 (indicating that it
attempted to allocate resouces but failed to do so again), in which
case it is put back on a list to be called again later, or 1 indicating
either success in allocating resources or indicating that it no longer
cares for a retry.

scsi_dmafree() frees the DMA resources associated with the SCSI packet. The packet itself
remains allocated.

RETURN VALUES scsi_dmaget() returns a pointer to a scsi_pkt on success. It returns NULL if resources are
not available.

CONTEXT If callback is SLEEP_FUNC, then this routine may only be called from user-level code. Oth-
erwise, it may be called from either user or interrupt level. The callback function may not
block or call routines that block.

scsi_dmafree() can be called from user or interrupt context.

9F-496 SunOS 5.6 modified 21 Dec 1992

Kernel Functions for Drivers scsi_dmaget (9F)

SEE ALSO scsi_pktalloc(9F), scsi_pktfree(9F), scsi_resalloc(9F), scsi_resfree(9F), buf(9S),
scsi_pkt(9S)

Writing Device Drivers

modified 21 Dec 1992 SunOS 5.6 9F-497

scsi_errmsg (9F) Kernel Functions for Drivers

NAME scsi_errmsg − display a SCSI request sense message

SYNOPSIS #include <sys/scsi/scsi.h>

void scsi_errmsg(struct scsi_device ∗devp, struct scsi_pkt ∗pktp , char ∗drv_name,
int severity, int blkno , int err_blkno, struct scsi_key_strings ∗cmdlist,
struct scsi_extended_sense ∗sensep);

INTERFACE
LEVEL

Solaris DDI specific (Solaris DDI).

ARGUMENTS devp Pointer to the scsi_device(9S) structure.

pktp Pointer to a scsi_pkt(9S) structure.

drv_name String used by scsi_log(9F).

severity Error severity level, maps to severity strings below.

blkno Requested block number.

err_blkno Error block number.

cmdlist An array of SCSI command description strings.

sensep A pointer to a scsi_extended_sense(9S) structure.

DESCRIPTION scsi_errmsg() interprets the request sense information in the sensep pointer and generates
a standard message that is displayed using scsi_log(9F). The first line of the message is
always a CE_WARN, with the continuation lines being CE_CONT. sensep may be NULL, in
which case no sense key or vendor information is displayed.

The driver should make the determination as to when to call this function based on the
severity of the failure and the severity level that the driver wants to report.

The scsi_device(9S) structure denoted by devp supplies the identification of the device
that requested the display. severity selects which string is used in the "Error Level:"
reporting, according to the table below:

Severity Value: String:
SCSI_ERR_ALL All
SCSI_ERR_UNKNOWN Unknown
SCSI_ERR_INFO Informational
SCSI_ERR_RECOVERED Recovered
SCSI_ERR_RETRYABLE Retryable
SCSI_ERR_FATAL Fatal

blkno is the block number of the original request that generated the error. err_blkno is the
block number where the error occurred. cmdlist is a mapping table for translating the
SCSI command code in pktp to the actual command string.

9F-498 SunOS 5.6 modified 19 Feb 1993

Kernel Functions for Drivers scsi_errmsg (9F)

The cmdlist is described in the structure below:

struct scsi_key_strings {
int key;
char ∗message;

};

For a basic SCSI disk, the following list is appropriate:

static struct scsi_key_strings scsi_cmds[] = {
0x00, "test unit ready",
0x01, "rezero/rewind",
0x03, "request sense",
0x04, "format",
0x07, "reassign",
0x08, "read",
0x0a, "write",
0x0b, "seek",
0x12, "inquiry",
0x15, "mode select",
0x16, "reserve",
0x17, "release",
0x18, "copy",
0x1a, "mode sense",
0x1b, "start/stop",
0x1e, "door lock",
0x28, "read(10)",
0x2a, "write(10)",
0x2f, "verify",
0x37, "read defect data",
0x3b, "write buffer",
−1, NULL

};

CONTEXT scsi_errmsg() may be called from user or interrupt context.

EXAMPLES This entry: scsi_errmsg(devp, pkt, "sd", SCSI_ERR_INFO, bp->b_blkno,
err_blkno, sd_cmds, rqsense);

Generates:

WARNING: /sbus@1,f8000000/esp@0,800000/sd@1,0 (sd1):
Error for Command: read Error Level: Informational
Requested Block: 23936 Error Block: 23936
Vendor: QUANTUM Serial Number: 123456
Sense Key: Unit Attention
ASC: 0x29 (reset), ASCQ: 0x0, FRU: 0x0

modified 19 Feb 1993 SunOS 5.6 9F-499

scsi_errmsg (9F) Kernel Functions for Drivers

SEE ALSO cmn_err(9F), scsi_log(9F), scsi_device(9S), scsi_extended_sense(9S), scsi_pkt(9S)

Writing Device Drivers

9F-500 SunOS 5.6 modified 19 Feb 1993

Kernel Functions for Drivers scsi_free_consistent_buf (9F)

NAME scsi_free_consistent_buf − free a previously allocated SCSI DMA I/O buffer

SYNOPSIS #include <sys/scsi/scsi.h>

void scsi_free_consistent_buf(struct buf ∗bp);

INTERFACE
LEVEL

Solaris DDI specific (Solaris DDI).

ARGUMENTS bp Pointer to the buf(9S) structure.

DESCRIPTION scsi_free_consistent_buf() frees a buffer header and consistent data buffer that was pre-
viously allocated using scsi_alloc_consistent_buf(9F).

CONTEXT scsi_free_consistent_buf() may be called from either the user or the interrupt levels.

SEE ALSO freerbuf(9F), scsi_alloc_consistent_buf(9F), buf(9S)

Writing Device Drivers

WARNING scsi_free_consistent_buf() will call freerbuf(9F) to free the buf(9S) that was allocated
before or during the call to scsi_alloc_consistent_buf(9F).

modified 21 Dec 1992 SunOS 5.6 9F-501

scsi_hba_attach_setup (9F) Kernel Functions for Drivers

NAME scsi_hba_attach_setup, scsi_hba_attach, scsi_hba_detach − SCSI HBA attach and detach
routines

SYNOPSIS #include <sys/scsi/scsi.h>

int scsi_hba_attach_setup(dev_info_t ∗dip, ddi_dma_attr_t ∗hba_dma_attr ,
scsi_hba_tran_t ∗hba_tran , int hba_flags);

int scsi_hba_attach(dev_info_t ∗dip, ddi_dma_lim_t ∗hba_lim,
scsi_hba_tran_t ∗hba_tran , int hba_flags , void ∗hba_options);

int scsi_hba_detach(dev_info_t ∗dip);

INTERFACE
LEVEL

Solaris architecture specific (Solaris DDI).

ARGUMENTS dip A pointer to the dev_info_t structure, referring to the instance of the
HBA device.

hba_lim A pointer to a ddi_dma_lim(9S) structure.

hba_tran A pointer to a scsi_hba_tran(9S) structure.

hba_flags Flag modifiers. The only defined flag value is SCSI_HBA_TRAN_CLONE.

hba_options Optional features provided by the HBA driver for future extensions;
must be NULL.

hba_dma_attr A pointer to a ddi_dma_attr(9S) structure.

DESCRIPTION scsi_hba_attach_setup() is the recommended interface over scsi_hba_attach().

scsi_hba_attach_setup()
scsi_hba_attach()

scsi_hba_attach() registers the DMA limits hba_lim and the transport vectors hba_tran of
each instance of the HBA device defined by dip. scsi_hba_attach_setup() registers the
DMA attributes hba_dma_attr and the transport vectors hba_tran of each instance of the
HBA device defined by dip. The HBA driver can pass different DMA limits or DMA attri-
butes, and transport vectors for each instance of the device, as necessary, to support any
constraints imposed by the HBA itself.

scsi_hba_attach() and scsi_hba_attach_setup() use the dev_bus_ops field in the
dev_ops(9S) structure. The HBA driver should initialize this field to NULL before calling
scsi_hba_attach() or scsi_hba_attach_setup().

If SCSI_HBA_TRAN_CLONE is requested in hba_flags , the hba_tran structure will be cloned
once for each target attached to the HBA. The cloning of the structure will occur before
the tran_tgt_init(9E) entry point is called to initialize a target. At all subsequent HBA
entry points, including tran_tgt_init(9E), the scsi_hba_tran_t structure passed as an
argument or found in a scsi_address structure will be the ’cloned’ scsi_hba_tran_t struc-
ture, thus allowing the HBA to use the tran_tgt_private field in the scsi_hba_tran_t struc-
ture to point to per-target data. The HBA must take care to free only the same
scsi_hba_tran_t structure it allocated when detaching; all ’cloned’ scsi_hba_tran_t struc-
tures allocated by the system will be freed by the system.

9F-502 SunOS 5.6 modified 30 Aug 1995

Kernel Functions for Drivers scsi_hba_attach_setup (9F)

scsi_hba_attach() and scsi_hba_attach_setup() attach a number of integer-valued pro-
perties to dip, unless properties of the same name are already attached to the node. An
HBA driver should retrieve these configuration parameters via ddi_prop_get_int(9F), and
respect any settings for features provided the HBA.

scsi-options optional SCSI configuration bits

SCSI_OPTIONS_DR
if not set, the HBA should not grant Disconnect
privileges to target devices.

SCSI_OPTIONS_LINK
if not set, the HBA should not enable Linked Com-
mands.

SCSI_OPTIONS_TAG
if not set, the HBA should not operate in Command
Tagged Queueing mode.

SCSI_OPTIONS_FAST
if not set, the HBA should not operate the bus in FAST
SCSI mode.

SCSI_OPTIONS_FAST20
if not set, the HBA should not operate the bus in
FAST20 SCSI mode.

SCSI_OPTIONS_WIDE
if not set, the HBA should not operate the bus in WIDE
SCSI mode.

SCSI_OPTIONS_SYNC
if not set, the HBA should not operate the bus in syn-
chronous transfer mode.

scsi-reset-delay SCSI bus or device reset recovery time, in milliseconds.

scsi_hba_detach() scsi_hba_detach() removes the reference to the DMA limits or attributes structure and
the transport vector for the given instance of an HBA driver.

RETURN VALUES scsi_hba_attach(), scsi_hba_attach_setup(), and scsi_hba_detach() return
DDI_SUCCESS if the function call succeeds, and return DDI_FAILURE on failure.

CONTEXT scsi_hba_attach() and scsi_hba_attach_setup() should be called from attach(9E).
scsi_hba_detach() should be called from detach(9E).

SEE ALSO attach(9E), detach(9E), tran_tgt_init(9E), ddi_prop_get_int(9F), ddi_dma_attr(9S),
ddi_dma_lim(9S), dev_ops(9S), scsi_address(9S), scsi_hba_tran(9S)

Writing Device Drivers

modified 30 Aug 1995 SunOS 5.6 9F-503

scsi_hba_attach_setup (9F) Kernel Functions for Drivers

NOTES It is the HBA driver’s responsibility to ensure that no more transport requests will be
taken on behalf of any SCSI target device driver after scsi_hba_detach() is called.

9F-504 SunOS 5.6 modified 30 Aug 1995

Kernel Functions for Drivers scsi_hba_init (9F)

NAME scsi_hba_init, scsi_hba_fini − SCSI Host Bus Adapter system initialization and completion
routines

SYNOPSIS #include <sys/scsi/scsi.h>

int scsi_hba_init(struct modlinkage ∗modlp);

void scsi_hba_fini(struct modlinkage ∗modlp);

INTERFACE
LEVEL

Solaris architecture specific (Solaris DDI).

ARGUMENTS modlp Pointer to the Host Bus Adapters module linkage structure.

DESCRIPTION
scsi_hba_init() scsi_hba_init() is the system-provided initialization routine for SCSI HBA drivers. The

scsi_hba_init() function registers the HBA in the system and allows the driver to accept
configuration requests on behalf of SCSI target drivers. The scsi_hba_init() routine must
be called in the HBA’s _init(9E) routine before mod_install(9F) is called. If
mod_install(9F) fails, the HBA’s _init(9E) should call scsi_hba_fini() before returning
failure.

scsi_hba_fini() scsi_hba_fini() is the system provided completion routine for SCSI HBA drivers.
scsi_hba_fini() removes all of the system references for the HBA that were created in
scsi_hba_init(). The scsi_hba_fini() routine should be called in the HBA’s _fini(9E) rou-
tine if mod_remove(9F) is successful.

RETURN VALUES scsi_hba_init() returns 0 if successful, and a non-zero value otherwise. If
scsi_hba_init() fails, the HBA’s _init() entry point should return the value returned by
scsi_hba_init().

CONTEXT scsi_hba_init() and scsi_hba_fini() should be called from _init(9E) or _fini(9E), respec-
tively.

SEE ALSO _fini(9E), _init(9E), mod_install(9F), mod_remove(9F), scsi_pktalloc(9F),
scsi_pktfree(9F), scsi_hba_tran(9S)

Writing Device Drivers

NOTES The HBA is responsible for ensuring that no DDI request routines are called on behalf of
its SCSI target drivers once scsi_hba_fini() is called.

modified 1 Nov 1993 SunOS 5.6 9F-505

scsi_hba_lookup_capstr (9F) Kernel Functions for Drivers

NAME scsi_hba_lookup_capstr − return index matching capability string

SYNOPSIS #include <sys/scsi/scsi.h>

int scsi_hba_lookup_capstr(char ∗capstr);

INTERFACE
LEVEL

Solaris architecture specific (Solaris DDI).

ARGUMENTS capstr Pointer to a string.

DESCRIPTION scsi_hba_lookup_capstr() attempts to match capstr against a known set of capability
strings, and returns the defined index for the matched capability, if found.

The set of indices and capability strings is:

SCSI_CAP_DMA_MAX "dma-max" or "dma_max"

SCSI_CAP_MSG_OUT "msg-out" or "msg_out"

SCSI_CAP_DISCONNECT "disconnect"

SCSI_CAP_SYNCHRONOUS "synchronous"

SCSI_CAP_WIDE_XFER "wide-xfer" or "wide_xfer"

SCSI_CAP_PARITY "parity"

SCSI_CAP_INITIATOR_ID "initiator-id"

SCSI_CAP_UNTAGGED_QING "untagged-qing"

SCSI_CAP_TAGGED_QING "tagged-qing"

SCSI_CAP_ARQ "auto-rqsense"

SCSI_CAP_LINKED_CMDS "linked-cmds"

SCSI_CAP_SECTOR_SIZE "sector-size"

SCSI_CAP_TOTAL_SECTORS "total-sectors"

SCSI_CAP_GEOMETRY "geometry"

SCSI_CAP_RESET_NOTIFICATION "reset-notification"

SCSI_CAP_QFULL_RETRIES "qfull-retries"

SCSI_CAP_QFULL_RETRY_INTERVAL "qfull-retry-interval"

RETURN VALUES scsi_hba_lookup_capstr() returns a non-negative index value corresponding to the capa-
bility string, or −1 if the string does not match any known capability.

CONTEXT scsi_hba_lookup_capstr() can be called from user or interrupt context.

SEE ALSO tran_getcap(9E), tran_setcap(9E), scsi_ifgetcap(9F), scsi_ifsetcap(9F),
scsi_reset_notify(9F)
Writing Device Drivers

9F-506 SunOS 5.6 modified 30 Aug 1995

Kernel Functions for Drivers scsi_hba_pkt_alloc (9F)

NAME scsi_hba_pkt_alloc, scsi_hba_pkt_free − allocate and free a scsi_pkt structure

SYNOPSIS #include <sys/scsi/scsi.h>

struct scsi_pkt ∗scsi_hba_pkt_alloc(dev_info_t ∗dip, struct scsi_address ∗ap ,
int cmdlen, int statuslen, int tgtlen, int hbalen, int (∗callback)(caddr_t arg),
caddr_t arg);

void scsi_hba_pkt_free(struct scsi_address ∗ap , struct scsi_pkt ∗pkt);

INTERFACE
LEVEL

Solaris architecture specific (Solaris DDI).

ARGUMENTS dip Pointer to a dev_info_t structure, defining the HBA driver instance.

ap Pointer to a scsi_address(9S) structure, defining the target instance.

cmdlen Length in bytes to be allocated for the SCSI command descriptor block
(CDB).

statuslen Length in bytes to be allocated for the SCSI status completion block
(SCB).

tgtlen Length in bytes to be allocated for a private data area for the target
driver’s exclusive use.

hbalen Length in bytes to be allocated for a private data area for the HBA
driver’s exclusive use.

callback indicates what scsi_hba_pkt_alloc() should do when resources are not
available:

NULL_FUNC Do not wait for resources. Return a NULL pointer.

SLEEP_FUNC Wait indefinitely for resources.

arg Must be NULL.

pkt A pointer to a scsi_pkt(9S) structure.

DESCRIPTION
scsi_hba_pkt_alloc() scsi_hba_pkt_alloc() allocates space for a scsi_pkt structure. HBA drivers should use

this interface when allocating a scsi_pkt from their tran_init_pkt(9E) entry point.

If callback is NULL_FUNC, scsi_hba_pkt_alloc() may not sleep when allocating resources,
and callers should be prepared to deal with allocation failures.

scsi_hba_pkt_alloc() copies the scsi_address(9S) structure pointed to by ap to the
pkt_address field in the scsi_pkt(9S).

modified 1 Nov 1993 SunOS 5.6 9F-507

scsi_hba_pkt_alloc (9F) Kernel Functions for Drivers

scsi_hba_pkt_alloc() also allocates memory for these scsi_pkt(9S) data areas, and sets
these fields to point to the allocated memory:

pkt_ha_private HBA private data area

pkt_private target driver private data area

pkt_scbp SCSI status completion block

pkt_cdbp SCSI command descriptor block

scsi_hba_pkt_free() scsi_hba_pkt_free() frees the space allocated for the scsi_pkt(9S) structure.

RETURN VALUES scsi_hba_pkt_alloc() returns a pointer to the scsi_pkt structure, or NULL if no space is
available.

CONTEXT scsi_hba_pkt_alloc() can be called from user or interrupt context. Drivers must not
allow scsi_hba_pkt_alloc() to sleep if called from an interrupt routine.

scsi_hba_pkt_free() can be called from user or interrupt context.

SEE ALSO tran_init_pkt(9E), scsi_address(9S), scsi_pkt(9S)

Writing Device Drivers

9F-508 SunOS 5.6 modified 1 Nov 1993

Kernel Functions for Drivers scsi_hba_probe (9F)

NAME scsi_hba_probe − default SCSI HBA probe function

SYNOPSIS #include <sys/scsi/scsi.h>

int scsi_hba_probe(struct scsi_device ∗sd, int (∗waitfunc)(void));

INTERFACE
LEVEL

Solaris architecture specific (Solaris DDI).

ARGUMENTS sd Pointer to a scsi_device(9S) structure describing the target.

waitfunc NULL_FUNC or SLEEP_FUNC.

DESCRIPTION scsi_hba_probe() is a function providing the semantics of scsi_probe(9F). An HBA
driver may call scsi_hba_probe() from its tran_tgt_probe(9E) entry point, to probe for
the existence of a target on the SCSI bus, or the HBA may set tran_tgt_probe(9E) to point
to scsi_hba_probe directly.

RETURN VALUES See scsi_probe(9F) for the return values from scsi_hba_probe().

CONTEXT scsi_hba_probe() should only be called from the HBA’s tran_tgt_probe(9E) entry point.

SEE ALSO tran_tgt_probe(9E), scsi_probe(9F), scsi_device(9S)

Writing Device Drivers

modified 30 Aug 1995 SunOS 5.6 9F-509

scsi_hba_tran_alloc (9F) Kernel Functions for Drivers

NAME scsi_hba_tran_alloc, scsi_hba_tran_free − allocate and free transport structures

SYNOPSIS #include <sys/scsi/scsi.h>

scsi_hba_tran_t ∗scsi_hba_tran_alloc(dev_info_t ∗dip, int flags);

void scsi_hba_tran_free(scsi_hba_tran_t ∗hba_tran);

INTERFACE
LEVEL

Solaris architecture specific (Solaris DDI).

ARGUMENTS dip Pointer to a dev_info structure, defining the HBA driver instance.

flag Flag modifiers. The only possible flag value is SCSI_HBA_CANSLEEP
(memory allocation may sleep).

hba_tran Pointer to a scsi_hba_tran(9S) structure.

DESCRIPTION
scsi_hba_tran_alloc() scsi_hba_tran_alloc() allocates a scsi_hba_tran(9S) structure for a HBA driver. The

HBA must use this structure to register its transport vectors with the system by using
scsi_hba_attach_setup(9F).

If the flag SCSI_HBA_CANSLEEP is set in flags , scsi_hba_tran_alloc() may sleep when
allocating resources; otherwise it may not sleep, and callers should be prepared to deal
with allocation failures.

scsi_hba_tran_free() scsi_hba_tran_free() is used to free the scsi_hba_tran(9S) structure allocated by
scsi_hba_tran_alloc().

RETURN VALUES scsi_hba_tran_alloc() returns a pointer to the allocated transport structure, or NULL if no
space is available.

CONTEXT scsi_hba_tran_alloc() can be called from user or interrupt context. Drivers must not
allow scsi_hba_tran_alloc() to sleep if called from an interrupt routine.

scsi_hba_tran_free() can be called from user or interrupt context.

SEE ALSO scsi_hba_attach_setup(9F), scsi_hba_tran(9S)

Writing Device Drivers

9F-510 SunOS 5.6 modified 30 Aug 1995

Kernel Functions for Drivers scsi_ifgetcap (9F)

NAME scsi_ifgetcap, scsi_ifsetcap − get/set SCSI transport capability

SYNOPSIS #include <sys/scsi/scsi.h>

int scsi_ifgetcap(struct scsi_address ∗ap, char ∗cap, int whom);

int scsi_ifsetcap(struct scsi_address ∗ap, char ∗cap, int value, int whom);

INTERFACE
LEVEL

Solaris DDI specific (Solaris DDI).

ARGUMENTS ap Pointer to the scsi_address structure.

cap Pointer to the string capability identifier.

value Defines the new state of the capability.

whom Determines if all targets or only the specified target is affected.

DESCRIPTION The target drivers use scsi_ifsetcap() to set the capabilities of the host adapter driver. A
cap is a name-value pair whose name is a null terminated character string and whose
value is an integer. The current value of a capability can be retrieved using
scsi_ifgetcap(). If whom is 0 all targets are affected, else the target specified by the
scsi_address structure pointed to by ap is affected.

A device may support only a subset of the capabilities listed below. It is the responsibil-
ity of the driver to make sure that these functions are called with a cap supported by the
device.

The following capabilities have been defined:

dma-max Maximum dma transfer size supported by host adapter.

msg-out Message out capability supported by host adapter: 0 disables, 1
enables.

disconnect Disconnect capability supported by host adapter: 0 disables, 1
enables.

synchronous Synchronous data transfer capability supported by host adapter: 0
disables, 1 enables.

wide-xfer Wide transfer capability supported by host adapter: 0 disables, 1
enables.

parity Parity checking by host adapter: 0 disables, 1 enables.

initiator-id The host’s bus address is returned.

untagged-qing The host adapter’s capability to support internal queueing of com-
mands without tagged queueing: 0 disables, 1 enables.

tagged-qing The host adapter’s capability to support tagged queuing: 0 dis-
ables, 1 enables.

auto-rqsense The host adapter’s capability to support auto request sense on
check conditions: 0 disables, 1 enables.

sector-size The target driver sets this capability to inform the HBA of the

modified 30 Aug 1995 SunOS 5.6 9F-511

scsi_ifgetcap (9F) Kernel Functions for Drivers

granularity, in bytes, of DMA breakup; the HBA’s DMA limit struc-
ture will be set to reflect this limit (see ddi_dma_lim_sparc(9S) or
ddi_dma_lim_x86(9S)). It should be set to the physical disk sector
size. This capability defaults to 512.

total-sectors The target driver sets this capability to inform the HBA of the total
number of sectors on the device, as returned from the SCSI get
capacity command. This capability must be set before the target
driver ‘‘gets’’ the geometry capability.

geometry This capability returns the HBA geometry of a target disk. The tar-
get driver must set the total-sectors capability before ‘‘getting’’ the
geometry capability. The geometry is returned as a 32-bit value:
the upper 16 bits represent the number of heads per cylinder; the
lower 16 bits represent the number of sectors per track. The
geometry capability cannot be ‘‘set.’’

reset-notification The host adapter’s capability to support bus reset notification: 0
disables, 1 enables. Refer to scsi_reset_notify(9F).

linked -cmds The host adapter’s capability to support linked commands: 0 dis-
ables, 1 enables.

qfull-retries This capability enables/disables QUEUE FULL handling. If 0, the
HBA will not retry a command when a QUEUE FULL status is
returned. If greater than 0, then the HBA driver will retry the com-
mand at specified number of times at an interval determined by
the "qfull-retry-interval". The range for qfull-retries is 0-255.

qfull-retry-interval This capability sets the retry interval (in ms) for commands that
were completed with a QUEUE FULL status. The range for qfull-
retry-intervals is 0-1000 ms.

RETURN VALUES scsi_ifsetcap() returns:

1 if the capability was successfully set to the new value,

0 if the capability is not variable, and

−1 if the capability was not defined, or setting the capability to a new value failed.

scsi_ifgetcap() returns:

the current value of a capability

−1 if the capability was not defined.

CONTEXT These functions can be called from user or interrupt context.

EXAMPLES un->un_arq_enabled =
((scsi_ifsetcap(&devp->sd_address, "auto-rqsense", 1, 1) == 1)? 1: 0);

if (scsi_ifsetcap(&devp->sd_address, "tagged-qing", 1, 1) == 1) {
un->un_dp->options |= SD_QUEUEING;
un->un_throttle = MAX_THROTTLE;

9F-512 SunOS 5.6 modified 30 Aug 1995

Kernel Functions for Drivers scsi_ifgetcap (9F)

} else if (scsi_ifgetcap(&devp->sd_address, "untagged-qing", 0) == 1) {
un->un_dp->options |= SD_QUEUEING;
un->un_throttle = 3;

} else {
un->un_dp->options &= ˜SD_QUEUEING;
un->un_throttle = 1;

}

SEE ALSO scsi_reset_notify(9F), ddi_dma_lim_sparc(9S), ddi_dma_lim_x86(9S), scsi_address(9S),
scsi_arq_status(9S)

Writing Device Drivers

modified 30 Aug 1995 SunOS 5.6 9F-513

scsi_init_pkt (9F) Kernel Functions for Drivers

NAME scsi_init_pkt − prepare a complete SCSI packet

SYNOPSIS #include <sys/scsi/scsi.h>

struct scsi_pkt ∗scsi_init_pkt(struct scsi_address ∗ap , struct scsi_pkt ∗pktp ,
struct buf ∗bp, int cmdlen, int statuslen, int privatelen, int flags ,
int (∗callback)(caddr_t), caddr_t arg);

INTERFACE
LEVEL

Solaris DDI specific (Solaris DDI).

ARGUMENTS ap Pointer to a scsi_address(9S) structure.

pktp A pointer to a scsi_pkt(9S) structure.

bp Pointer to a buf(9S) structure.

cmdlen The required length for the SCSI command descriptor block (CDB) in
bytes.

statuslen The required length for the SCSI status completion block (SCB) in bytes.

privatelen The required length for the pkt_private area.

flags Flags modifier.

callback A pointer to a callback function, NULL_FUNC, or SLEEP_FUNC.

arg The callback function argument.

DESCRIPTION Target drivers use scsi_init_pkt() to request the transport layer to allocate and initialize a
packet for a SCSI command which possibly includes a data transfer. If pktp is NULL, a
new scsi_pkt(9S) is allocated using the HBA driver’s packet allocator. The bp is a pointer
to a buf(9S) structure. If bp is non-NULL and contains a valid byte count, the buf(9S)
structure is also set up for DMA transfer using the HBA driver DMA resources allocator.
When bp is allocated by scsi_alloc_consistent_buf(9F), the PKT_CONSISTENT bit must
be set in the flags argument to ensure proper operation. If privatelen is non-zero then addi-
tional space is allocated for the pkt_private area of the scsi_pkt(9S). On return pkt_private
points to this additional space. Otherwise pkt_private is a pointer that is typically used to
store the bp during execution of the command. In this case pkt_private is NULL on return.

The flags argument is a set of bit flags. Possible bits include:

PKT_CONSISTENT This must be set if the DMA buffer was allocated using
scsi_alloc_consistent_buf(9F). In this case, the HBA driver will
guarantee that the data transfer is properly synchronized before
performing the target driver’s command completion callback.

PKT_DMA_PARTIAL This may be set if the driver can accept a partial DMA mapping. If
set, scsi_init_pkt() will allocate DMA resources with the
DDI_DMA_PARTIAL bit set in the dmar_flag element of the
ddi_dma_req(9S) structure. The pkt_resid field of the
scsi_pkt(9S) structure may be returned with a non-zero value,
which indicates the number of bytes for which scsi_init_pkt() was

9F-514 SunOS 5.6 modified 30 Aug 1995

Kernel Functions for Drivers scsi_init_pkt (9F)

unable to allocate DMA resources. In this case, a subsequent call
to scsi_init_pkt() may be made for the same pktp and bp to adjust
the DMA resources to the next portion of the transfer. This
sequence should be repeated until the pkt_resid field is returned
with a zero value, which indicates that with transport of this final
portion the entire original request will have been satisfied.

When calling scsi_init_pkt() to move already-allocated DMA resources, the cmdlen, sta-
tuslen and privatelen fields are ignored.

The last argument arg is supplied to the callback function when it is invoked.

callback indicates what the allocator routines should do when resources are not available:

NULL_FUNC Do not wait for resources. Return a NULL pointer.

SLEEP_FUNC Wait indefinitely for resources.

Other Values callback points to a function which is called when resources may have
become available. callback must return either 0 (indicating that it
attempted to allocate resources but again failed to do so), in which
case it is put back on a list to be called again later, or 1 indicating
either success in allocating resources or indicating that it no longer
cares for a retry.

When allocating DMA resources, scsi_init_pkt() returns the scsi_pkt field pkt_resid as
the number of residual bytes for which the system was unable to allocate DMA resources.
A pkt_resid of 0 means that all necessary DMA resources were allocated.

RETURN VALUES scsi_init_pkt() returns NULL if the packet or dma resources could not be allocated. Oth-
erwise, it returns a pointer to an initialized scsi_pkt(9S). If pktp was not NULL the return
value will be pktp on successful initialization of the packet.

CONTEXT If callback is SLEEP_FUNC, then this routine may only be called from user-level code. Oth-
erwise, it may be called from either user or interrupt level. The callback function may not
block or call routines that block.

EXAMPLES To allocate a packet without DMA resources attached, use:

pkt = scsi_init_pkt(&devp->sd_address, NULL, NULL, CDB_GROUP1,
STATUS_LEN, sizeof (struct my_pkt_private ∗), 0,
sd_runout, sd_unit);

To allocate a packet with DMA resources attached use:

pkt = scsi_init_pkt(&devp->sd_address, NULL, bp, CDB_GROUP1,
STATUS_LEN, 0, 0, NULL_FUNC, NULL);

To attach DMA resources to a preallocated packet, use:

pkt = scsi_init_pkt(&devp->sd_address, old_pkt, bp, 0,
0, 0, 0, sd_runout, (caddr_t) sd_unit);

modified 30 Aug 1995 SunOS 5.6 9F-515

scsi_init_pkt (9F) Kernel Functions for Drivers

Since the packet is already allocated the cmdlen, statuslen and privatelen are 0.

To allocate a packet with consistent DMA resources attached, use:

bp = scsi_alloc_consistent_buf(&devp->sd_address, NULL,
SENSE_LENGTH, B_READ, SLEEP_FUNC, NULL);

pkt = scsi_init_pkt(&devp->sd_address, NULL, bp, CDB_GROUP0,
STATUS_LEN, sizeof (struct my_pkt_private ∗), PKT_CONSISTENT,
SLEEP_FUNC, NULL);

To allocate a packet with partial DMA resources attached, use:

my_pkt = scsi_init_pkt(&devp->sd_address, NULL, bp, CDB_GROUP0,
STATUS_LEN, sizeof (struct buf ∗), PKT_DMA_PARTIAL,
SLEEP_FUNC, NULL);

SEE ALSO scsi_alloc_consistent_buf(9F), scsi_destroy_pkt(9F), scsi_dmaget(9F), scsi_pktalloc(9F),
buf(9S), ddi_dma_req(9S), scsi_address(9S), scsi_pkt(9S)

Writing Device Drivers

NOTES If a DMA allocation request fails with DDI_DMA_NOMAPPING, the B_ERROR flag will be
set in bp, and the b_error field will be set to EFAULT.

If a DMA allocation request fails with DDI_DMA_TOOBIG, the B_ERROR flag will be set
in bp, and the b_error field will be set to EINVAL.

9F-516 SunOS 5.6 modified 30 Aug 1995

Kernel Functions for Drivers scsi_log (9F)

NAME scsi_log − display a SCSI-device-related message

SYNOPSIS #include <sys/scsi/scsi.h> #include <sys/cmn_err.h>

void scsi_log(dev_info_t ∗dip, char ∗drv_name, u_int level, const char ∗fmt, . . .);

INTERFACE
LEVEL

Solaris DDI specific (Solaris DDI).

ARGUMENTS dip Pointer to the dev_info structure.

drv_name String naming the device.

level Error level.

fmt Display format.

DESCRIPTION scsi_log() is a utility function that displays a message via the cmn_err(9F) routine. The
error levels that can be passed in to this function are CE_PANIC, CE_WARN, CE_NOTE,
CE_CONT, and SCSI_DEBUG. The last level is used to assist in displaying debug mes-
sages to the console only. drv_name is the short name by which this device is known;
example disk driver names are sd and cmdk. If the dev_info_t pointer is NULL, then the
drv_name will be used with no unit or long name.

If the first character in format is an ’!’ (exclamation point), the message goes only to
the system buffer. If the first character in format is a ’ˆ’ (circumflex), the message goes
only to the console. If the first character is a ’?’ (question mark), and level is CE_CONT,
the message is always sent to the system buffer, but is only written to the console when
the system has been booted in verbose mode. See kernel(1M). If neither condition is
met, the ’?’ character has no effect and is simply ignored.

All formatting conversions in use by cmn_err() also work with scsi_log().

CONTEXT scsi_log() may be called from user or interrupt context.

EXAMPLES a. scsi_log(dev, "Disk Unit ", CE_PANIC, "Bad Value %d\n", foo);

Generates:
PANIC: /eisa/aha@330,0/cmdk@0,0 (Disk Unit 0): Bad Value 5

This is followed by a PANIC.

b. scsi_log(dev, "sd", CE_WARN, "Label Bad\n");

Generates:
WARNING: /sbus@1,f8000000/esp@0,8000000/sd@1,0 (sd1): Label Bad

c. scsi_log((dev_info_t ∗) NULL, "Disk Unit ", CE_NOTE, "Disk Ejected\n");

Generates:
Disk Unit: Disk Ejected

modified 7 Jun 1993 SunOS 5.6 9F-517

scsi_log (9F) Kernel Functions for Drivers

d. scsi_log(cmdk_unit, "Disk Unit ", CE_CONT, "Disk Inserted\n");

Generates:
Disk Inserted

e. scsi_log(sd_unit, "sd", SCSI_DEBUG, "We really got here\n");

Generates (only to the console):
DEBUG: sd1: We really got here

SEE ALSO kernel(1M), sd(7D), cmn_err(9F), scsi_errmsg(9F)

Writing Device Drivers

9F-518 SunOS 5.6 modified 7 Jun 1993

Kernel Functions for Drivers scsi_pktalloc (9F)

NAME scsi_pktalloc, scsi_resalloc, scsi_pktfree, scsi_resfree − SCSI packet utility routines

SYNOPSIS #include <sys/scsi/scsi.h>

struct scsi_pkt ∗scsi_pktalloc(struct scsi_address ∗ap , int cmdlen, int statuslen,
int (∗callback)(void));

struct scsi_pkt ∗scsi_resalloc(struct scsi_address ∗ap , int cmdlen, int statuslen,
opaque_t dmatoken , int (∗callback)(void));

void scsi_pktfree(struct scsi_pkt ∗pkt);

void scsi_resfree(struct scsi_pkt ∗pkt);

INTERFACE
LEVEL

Solaris DDI specific (Solaris DDI).

ARGUMENTS ap Pointer to a scsi_address structure.

cmdlen The required length for the SCSI command descriptor block (CDB) in bytes.

statuslen The required length for the SCSI status completion block (SCB) in bytes.

dmatoken Pointer to an implementation-dependent object.

callback A pointer to a callback function, or NULL_FUNC or SLEEP_FUNC.

pkt Pointer to a scsi_pkt(9S) structure.

DESCRIPTION scsi_pktalloc() requests the host adapter driver to allocate a command packet. For com-
mands that have a data transfer associated with them, scsi_resalloc() should be used.

ap is a pointer to a scsi_address structure. Allocator routines use it to determine the asso-
ciated host adapter.

cmdlen is the required length for the SCSI command descriptor block. This block is allo-
cated such that a kernel virtual address is established in the pkt_cdbp field of the allo-
cated scsi_pkt structure.

statuslen is the required length for the SCSI status completion block. The address of the
allocated block is placed into the pkt_scbp field of the scsi_pkt structure.

dmatoken is a pointer to an implementation dependent object which defines the length,
direction, and address of the data transfer associated with this SCSI packet (command).
The dmatoken must be a pointer to a buf(9S) structure. If dmatoken is NULL, no DMA
resources are required by this SCSI command, so none are allocated. Only one transfer
direction is allowed per command. If there is an unexpected data transfer phase (either
no data transfer phase expected, or the wrong direction encountered), the command is
terminated with the pkt_reason set to CMD_DMA_DERR. dmatoken provides the informa-
tion to determine if the transfer count is correct.

modified 21 Dec 1992 SunOS 5.6 9F-519

scsi_pktalloc (9F) Kernel Functions for Drivers

callback indicates what the allocator routines should do when resources are not available:

NULL_FUNC Do not wait for resources. Return a NULL pointer.

SLEEP_FUNC Wait indefinitely for resources.

Other Values callback points to a function which is called when resources may have
become available. callback must return either 0 (indicating that it
attempted to allocate resources but again failed to do so), in which
case it is put back on a list to be called again later, or 1 indicating
either success in allocating resources or indicating that it no longer
cares for a retry.

scsi_pktfree() frees the packet.

scsi_resfree() free all resources held by the packet and the packet itself.

RETURN VALUES Both allocation routines return a pointer to a scsi_pkt structure on success, or NULL on
failure.

CONTEXT If callback is SLEEP_FUNC, then this routine may only be called from user-level code. Oth-
erwise, it may be called from either user or interrupt level. The callback function may not
block or call routines that block. Both deallocation routines can be called from user or
interrupt context.

SEE ALSO scsi_dmafree(9F), scsi_dmaget(9F), buf(9S), scsi_pkt(9S)

Writing Device Drivers

9F-520 SunOS 5.6 modified 21 Dec 1992

Kernel Functions for Drivers scsi_poll (9F)

NAME scsi_poll − run a polled SCSI command on behalf of a target driver

SYNOPSIS #include <sys/scsi/scsi.h>

int scsi_poll(struct scsi_pkt ∗pkt);

INTERFACE
LEVEL

Solaris DDI specific (Solaris DDI).

ARGUMENTS pkt Pointer to the scsi_pkt(9S) structure.

DESCRIPTION scsi_poll() requests the host adapter driver to run a polled command. Unlike
scsi_transport(9F) which runs commands asynchronously, scsi_poll() runs commands to
completion before returning. If the pkt_time member of pkt is 0, the value of pkt_time is
defaulted to SCSI_POLL_TIMEOUT to prevent an indefinite hang of the system.

RETURN VALUES scsi_poll() returns:

0 command completed successfully.

-1 command failed.

CONTEXT scsi_poll() can be called from user or interrupt level.

SEE ALSO makecom(9F), scsi_transport(9F), scsi_pkt(9S)

Writing Device Drivers

WARNINGS Since scsi_poll() runs commands to completion before returning, it may require more
time than is desirable when called from interrupt context. Therefore, calling scsi_poll
from interrupt context is not recommended.

modified 30 Aug 1995 SunOS 5.6 9F-521

scsi_probe (9F) Kernel Functions for Drivers

NAME scsi_probe − utility for probing a scsi device

SYNOPSIS #include <sys/scsi/scsi.h>

int scsi_probe(struct scsi_device ∗devp, int (∗waitfunc)());

INTERFACE
LEVEL

Solaris DDI specific (Solaris DDI).

ARGUMENTS devp Pointer to a scsi_device(9S) structure

waitfunc NULL_FUNC or SLEEP_FUNC

DESCRIPTION scsi_probe() determines whether a target/lun is present and sets up the scsi_device struc-
ture with inquiry data.

scsi_probe() uses the SCSI Inquiry command to test if the device exists. It may retry the
Inquiry command as appropriate. If scsi_probe() is successful, it will allocate space for
the scsi_inquiry structure and assign the address to the sd_inq member of the
scsi_device(9S) structure. scsi_probe() will then fill in this scsi_inquiry(9S) structure and
return SCSIPROBE_EXISTS.

scsi_unprobe(9F) is used to undo the effect of scsi_probe().

If the target is a non-CCS device, SCSIPROBE_NONCCS will be returned.

waitfunc indicates what the allocator routines should do when resources are not available;
the valid values are:

NULL_FUNC Do not wait for resources. Return SCSIPROBE_NOMEM or
SCSIPROBE_FAILURE

SLEEP_FUNC Wait indefinitely for resources.

RETURN VALUES scsi_probe() returns:

SCSIPROBE_BUSY Device exists but is currently busy.

SCSIPROBE_EXISTS Device exists and inquiry data is valid.

SCSIPROBE_FAILURE Polled command failure.

SCSIPROBE_NOMEM No space available for structures.

SCSIPROBE_NONCCS Device exists but inquiry data is not valid.

SCSIPROBE_NORESP Device does not respond to an INQUIRY.

CONTEXT scsi_probe() is normally called from the target driver’s probe(9E) or attach(9E) routine.
If waitfunc is SLEEP_FUNC, then this routine may only be called from user-level code.
Otherwise, it may be called from either user or interrupt level.

9F-522 SunOS 5.6 modified 24 Feb 1994

Kernel Functions for Drivers scsi_probe (9F)

EXAMPLE switch (scsi_probe(devp, NULL_FUNC)) {
default:
case SCSIPROBE_NORESP:
case SCSIPROBE_NONCCS:
case SCSIPROBE_NOMEM:
case SCSIPROBE_FAILURE:
case SCSIPROBE_BUSY:

break;

case SCSIPROBE_EXISTS:
switch (devp->sd_inq->inq_dtype) {
case DTYPE_DIRECT:

rval = DDI_PROBE_SUCCESS;
break;

case DTYPE_RODIRECT:
rval = DDI_PROBE_SUCCESS;
break;

case DTYPE_NOTPRESENT:
default:

break;
}

}
scsi_unprobe(devp);

SEE ALSO attach(9E), probe(9E), scsi_slave(9F), scsi_unprobe(9F), scsi_unslave(9F),
scsi_device(9S), scsi_inquiry(9S)

ANSI Small Computer System Interface-2 (SCSI-2)

Writing Device Drivers

NOTES A waitfunc function other than NULL_FUNC or SLEEP_FUNC is not supported and may
have unexpected results.

modified 24 Feb 1994 SunOS 5.6 9F-523

scsi_reset (9F) Kernel Functions for Drivers

NAME scsi_reset − reset a SCSI bus or target

SYNOPSIS #include <sys/scsi/scsi.h>

int scsi_reset(struct scsi_address ∗ap , int level);

INTERFACE
LEVEL

Solaris DDI specific (Solaris DDI).

ARGUMENTS ap Pointer to the scsi_address structure.

level The level of reset required.

DESCRIPTION scsi_reset() asks the host adapter driver to reset the SCSI bus or a SCSI target as specified
by level. If level equals RESET_ALL, the SCSI bus is reset. If it equals RESET_TARGET, ap is
used to determine the target to be reset.

On a successful reset, the pkt_reason is set to CMD_RESET and pkt_statistics is OR’ed
with STAT_BUS_RESET or STAT_DEV_RESET.

RETURN VALUES scsi_reset() returns:

1 on success.

0 on failure.

CONTEXT scsi_reset() can be called from user or interrupt context.

SEE ALSO tran_reset(9E), tran_reset_notify(9E), scsi_abort(9F)

Writing Device Drivers

9F-524 SunOS 5.6 modified 30 Aug 1995

Kernel Functions for Drivers scsi_reset_notify (9F)

NAME scsi_reset_notify − notify target driver of bus resets

SYNOPSIS #include <sys/scsi/scsi.h>

void scsi_reset_notify(struct scsi_address ∗ap , int flag ,
void (∗callback)(caddr_t), caddr_t arg);

INTERFACE
LEVEL

Solaris DDI specific (Solaris DDI).

ARGUMENTS ap Pointer to the scsi_address structure.

flag A flag indicating registration or cancellation of the notification request.

callback A pointer to the target driver’s reset notification function.

arg The callback function argument.

DESCRIPTION scsi_reset_notify() is used by a target driver when it needs to be notified of a bus reset.
The bus reset could be issued by the transport layer (e.g. the host bus adapter (HBA)
driver or controller) or by another initiator.

The argument flag is used to register or cancel the notification. The supported values for
flag are as follows:

SCSI_RESET_NOTIFY Register callback as the reset notification function for
the target driver.

SCSI_RESET_CANCEL Cancel the reset notification request.

Target drivers can find out whether the HBA driver and controller support reset
notification by checking the reset-notification capability using the scsi_ifgetcap(9F) func-
tion.

RETURN VALUES If flag is SCSI_RESET_NOTIFY, scsi_reset_notify() returns:

DDI_SUCCESS the notification request has been accepted.

DDI_FAILURE the transport layer does not support reset notification or could not
accept this request.

If flag is SCSI_RESET_CANCEL, scsi_reset_notify() returns:

DDI_SUCCESS the notification request has been canceled.

DDI_FAILURE no notification request was registered.

CONTEXT scsi_reset_notify() can be called from user or interrupt context.

SEE ALSO scsi_address(9S), scsi_ifgetcap(9F)

Writing Device Drivers

modified 8 Sep 1994 SunOS 5.6 9F-525

scsi_slave (9F) Kernel Functions for Drivers

NAME scsi_slave − utility for SCSI target drivers to establish the presence of a target

SYNOPSIS #include <sys/scsi/scsi.h>

int scsi_slave(struct scsi_device ∗devp, int (∗callback)(void));

INTERFACE
LEVEL

Solaris DDI specific (Solaris DDI).

ARGUMENTS devp Pointer to a scsi_device(9S) structure.

callback Pointer to a callback function, NULL_FUNC or SLEEP_FUNC.

DESCRIPTION scsi_slave() checks for the presence of a SCSI device. Target drivers may use this func-
tion in their probe(9E) routines. scsi_slave() determines if the device is present by using
a Test Unit Ready command followed by an Inquiry command. If scsi_slave() is success-
ful, it will fill in the scsi_inquiry structure, which is the sd_inq member of the
scsi_device(9S) structure, and return SCSI_PROBE_EXISTS. This information can be used
to determine if the target driver has probed the correct SCSI device type. callback indi-
cates what the allocator routines should do when DMA resources are not available:

NULL_FUNC Do not wait for resources. Return a NULL pointer.

SLEEP_FUNC Wait indefinitely for resources.

Other Values callback points to a function which is called when resources may have
become available. callback must return either 0 (indicating that it
attempted to allocate resources but again failed to do so), in which
case it is put back on a list to be called again later, or 1 indicating
either success in allocating resources or indicating that it no longer
cares for a retry.

RETURN VALUES scsi_slave() returns:

SCSIPROBE_NOMEM No space available for structures.

SCSIPROBE_EXISTS Device exists and inquiry data is valid.

SCSIPROBE_NONCCS Device exists but inquiry data is not valid.

SCSIPROBE_FAILURE Polled command failure.

SCSIPROBE_NORESP No response to TEST UNIT READY.

CONTEXT scsi_slave() is normally called from the target driver’s probe(9E) or attach(9E) routine. If
callback is SLEEP_FUNC, then this routine may only be called from user-level code. Other-
wise, it may be called from either user or interrupt level. The callback function may not
block or call routines that block.

SEE ALSO attach(9E), probe(9E), ddi_iopb_alloc(9F), makecom(9F), scsi_dmaget(9F),
scsi_ifgetcap(9F), scsi_pktalloc(9F), scsi_poll(9F), scsi_probe(9F), scsi_device(9S)
ANSI Small Computer System Interface-2 (SCSI-2)
Writing Device Drivers

9F-526 SunOS 5.6 modified 21 Dec 1992

Kernel Functions for Drivers scsi_sync_pkt (9F)

NAME scsi_sync_pkt − synchronize CPU and I/O views of memory

SYNOPSIS #include <sys/scsi/scsi.h>

void scsi_sync_pkt(struct scsi_pkt ∗pktp);

INTERFACE
LEVEL

Solaris DDI specific (Solaris DDI).

ARGUMENTS pktp pointer to a scsi_pkt(9S) structure.

DESCRIPTION scsi_sync_pkt() is used to selectively synchronize a CPU’s or device’s view of the data
associated with the SCSI packet that has been mapped for I/O. This may involve opera-
tions such as flushes of CPU or I/O caches, as well as other more complex operations
such as stalling until hardware write buffers have drained.

This function need only be called under certain circumstances. When a SCSI packet is
mapped for I/O using scsi_init_pkt(9F) and destroyed using scsi_destroy_pkt(9F), then
an implicit scsi_sync_pkt() will be performed. However, if the memory object has been
modified by either the device or a CPU after the mapping by scsi_init_pkt(9F), then a call
to scsi_sync_pkt() is required.

CONTEXT scsi_sync_pkt() may be called from user or interrupt context.

EXAMPLES If the same scsi_pkt is reused for a data transfer from memory to a device, then
scsi_sync_pkt() must be called before calling scsi_transport(9F). If the same packet is
reused for a data transfer from a device to memory scsi_sync_pkt() must be called after
the completion of the packet but before accessing the data in memory.

SEE ALSO tran_sync_pkt(9E), ddi_dma_sync(9F), scsi_destroy_pkt(9F), scsi_init_pkt(9F),
scsi_transport(9F), scsi_pkt(9S)

Writing Device Drivers

modified 25 Feb 1994 SunOS 5.6 9F-527

scsi_transport (9F) Kernel Functions for Drivers

NAME scsi_transport − request by a SCSI target driver to start a command

SYNOPSIS #include <sys/scsi/scsi.h>

int scsi_transport(struct scsi_pkt ∗pkt);

INTERFACE
LEVEL

Solaris DDI specific (Solaris DDI).

ARGUMENTS pkt Pointer to a scsi_pkt(9S) structure.

DESCRIPTION Target drivers use scsi_transport() to request the host adapter driver to transport a com-
mand to the SCSI target device specified by pkt . The target driver must obtain resources
for the packet using scsi_init_pkt(9F) prior to calling this function. The packet may be
initialized using one of the makecom(9F) functions. scsi_transport() does not wait for
the SCSI command to complete. See scsi_poll(9F) for a description of polled SCSI com-
mands. Upon completion of the SCSI command the host adapter calls the completion
routine provided by the target driver in the pkt_comp member of the scsi_pkt pointed to
by pkt .

RETURN VALUES scsi_transport() returns:

TRAN_ACCEPT The packet was accepted by the transport layer.

TRAN_BUSY The packet could not be accepted because there was already
a packet in progress for this target/lun, the host adapter
queue was full, or the target device queue was full.

TRAN_BADPKT The DMA count in the packet exceeded the DMA engine’s
maximum DMA size.

TRAN_FATAL_ERROR A fatal error has occurred in the transport layer.

CONTEXT scsi_transport() can be called from user or interrupt context.

EXAMPLE if ((status = scsi_transport(rqpkt)) != TRAN_ACCEPT) {
scsi_log(devp, sd_label, CE_WARN,

"transport of request sense pkt fails (0x%x)\n", status);
}

SEE ALSO tran_start(9E), makecom(9F), scsi_init_pkt(9F), scsi_pktalloc(9F), scsi_poll(9F),
scsi_pkt(9S)

Writing Device Drivers

9F-528 SunOS 5.6 modified 30 Aug 1995

Kernel Functions for Drivers scsi_unprobe (9F)

NAME scsi_unprobe, scsi_unslave − free resources allocated during initial probing

SYNOPSIS #include <sys/scsi/scsi.h>

void scsi_unslave(struct scsi_device ∗devp);

void scsi_unprobe(struct scsi_device ∗devp);

INTERFACE
LEVEL

Solaris DDI specific (Solaris DDI).

ARGUMENTS devp Pointer to a scsi_device(9S) structure.

DESCRIPTION scsi_unprobe() and scsi_unslave() are used to free any resources that were allocated on
the driver’s behalf during scsi_slave(9F) and scsi_probe(9F) activity.

CONTEXT scsi_unprobe() and scsi_unslave() may be called from either the user or the interrupt
levels.

SEE ALSO scsi_probe(9F), scsi_slave(9F), scsi_device(9S)

Writing Device Drivers

modified 21 Dec 1992 SunOS 5.6 9F-529

semaphore (9F) Kernel Functions for Drivers

NAME semaphore, sema_init, sema_destroy, sema_p, sema_p_sig, sema_v, sema_tryp − sema-
phore functions

SYNOPSIS #include <sys/ksynch.h>

void sema_init(ksema_t ∗sp, u_int val , char ∗name, ksema_type_t type , void ∗arg);

void sema_destroy(ksema_t ∗sp);

void sema_p(ksema_t ∗sp);

void sema_v(ksema_t ∗sp);

int sema_p_sig(ksema_t ∗sp);

int sema_tryp(ksema_t ∗sp);

INTERFACE
LEVEL

Solaris DDI specific (Solaris DDI).

ARGUMENTS sp A pointer to a semaphore, type ksema_t.

val Initial value for semaphore.

name Descriptive string. This is obsolete and should be NULL. (Non-NULL
strings are legal, but they’re a waste of kernel memory.)

type Variant type of the semaphore. Currently only SEMA_DRIVER is sup-
ported.

arg Type-specific argument, should be NULL.

DESCRIPTION These functions implement counting semaphores as described by Dijkstra. A semaphore
has a value which is atomicly decremented by sema_p() and atomicly incremented by
sema_v(). The value must always be greater than or equal to zero. If sema_p() is called
and the value is zero, the calling thread is blocked until another thread performs a
sema_v() operation on the semaphore.

Semaphores are initialized by calling sema_init(). The argument, val , gives the initial
value for the semaphore. The semaphore storage is provided by the caller but more may
be dynamicly allocated, if necessary, by sema_init(). For this reason, sema_destroy()
should be called before deallocating the storage containing the semaphore.

sema_p_sig() decrements the semaphore, as does sema_p(), however, if the semaphore
value is zero, sema_p_sig() will return without decrementing the value if a signal (e.g.
from kill(2)) is pending for the thread.

sema_tryp() will decrement the semaphore value only if it is greater than zero, and will
not block.

RETURN VALUES 0 sema_tryp() could not decrement the semaphore value because it was zero.

1 sema_p_sig() was not able to decrement the semaphore value and detected a
pending signal.

9F-530 SunOS 5.6 modified 7 May 199y

Kernel Functions for Drivers semaphore (9F)

CONTEXT These functions can be called from user or interrupt context, except for sema_init() and
sema_destroy(), which can be called from user context only. None of these functions can
be called from a high-level interrupt context. In most cases, sema_v() and sema_p()
should not be called from any interrupt context.

If sema_p() is used from interrupt context, lower-priority interrupts will not be serviced
during the wait. This means that if the thread that will eventually perform the sema_v()
becomes blocked on anything that requires the lower-priority interrupt, the system will
hang.

For example, the thread that will perform the sema_v() may need to first allocate
memory. This memory allocation may require waiting for paging I/O to complete, which
may require a lower-priority disk or network interrupt to be serviced. In general, situa-
tions like this are hard to predict, so it is advisable to avoid waiting on semaphores or
condition variables in an interrupt context.

SEE ALSO kill(2), condvar(9F), mutex(9F)

Writing Device Drivers

modified 7 May 199y SunOS 5.6 9F-531

sprintf (9F) Kernel Functions for Drivers

NAME sprintf − format characters in memory

SYNOPSIS #include <sys/ddi.h>

char ∗sprintf(char ∗buf, const char ∗fmt, . . .);

INTERFACE
LEVEL

Solaris DDI specific (Solaris DDI).

ARGUMENTS buf Pointer to a character string.

fmt Pointer to a character string.

DESCRIPTION sprintf() builds a string in buf under the control of the format fmt. The format is a char-
acter string with either plain characters, which are simply copied into buf, or conversion
specifications, each of which converts zero or more arguments, again copied into buf.
The results are unpredictable if there are insufficient arguments for the format; excess
arguments are simply ignored. It is the user’s responsibility to ensure that enough
storage is available for buf.

Each conversion specification is introduced by the % character, after which the following
appear in sequence:

An optional decimal digit specifying a minimum field width for numeric conver-
sion. The converted value will be right-justified and padded with leading zeroes
if it has fewer characters than the minimum.

An optional l (ll) specifying that a following d, D, o, O, x, X, or u conversion
character applies to a long (long long) integer argument. An l (ll) before any
other conversion character is ignored.

A character indicating the type of conversion to be applied:

d,D,o,O,x,X,u
The integer argument is converted to signed decimal (d, D), unsigned
octal (o, O), unsigned hexadecimal (x, X) or unsigned decimal (u),
respectively, and copied. The letters abcdef are used for x and X conver-
sion.

c The character value of argument is copied.

b This conversion uses two additional arguments. The first is an integer,
and is converted according to the base specified in the second argument.
The second argument is a character string in the form <base>[<arg> . . .].
The base supplies the conversion base for the first argument as a binary
value; \10 gives octal, \20 gives hexadecimal. Each subsequent <arg> is
a sequence of characters, the first of which is the bit number to be tested,
and subsequent characters, up to the next bit number or terminating null,
supply the name of the bit.

9F-532 SunOS 5.6 modified 27 Sep 1991

Kernel Functions for Drivers sprintf (9F)

A bit number is a binary-valued character in the range 1-32. For each bit
set in the first argument, and named in the second argument, the bit
names are copied, separated by commas, and bracketed by < and >.
Thus, the following function call would generate
reg=3<BitTwo,BitOne>\n in buf.

sprintf(buf, "reg=%b\n", 3, "\10\2BitTwo\1BitOne")

s The argument is taken to be a string (character pointer), and characters
from the string are copied until a null character is encountered. If the
character pointer is NULL, the string <null string> is used in its place.

% Copy a %; no argument is converted.

RETURN VALUES sprintf() returns its first argument, buf.

CONTEXT sprintf() can be called from user or interrupt context.

SEE ALSO Writing Device Drivers

modified 27 Sep 1991 SunOS 5.6 9F-533

stoi (9F) Kernel Functions for Drivers

NAME stoi, numtos − convert between an integer and a decimal string

SYNOPSIS #include <sys/ddi.h>

int stoi(char ∗∗str);

void numtos(unsigned long num, char ∗s);

INTERFACE
LEVEL

Solaris DDI specific (Solaris DDI).

ARGUMENTS str Pointer to a character string to be converted.

num Decimal number to be converted to a character string.

s Character buffer to hold converted decimal number.

DESCRIPTION
stoi() stoi() returns the integer value of a string of decimal numeric characters beginning at

∗∗str . No overflow checking is done. ∗str is updated to point at the last character exam-
ined.

numtos () numtos() converts a long into a null-terminated character string. No bounds checking is
done. The caller must ensure there is enough space to hold the result.

RETURN VALUES stoi() returns the integer value of the string str.

CONTEXT stoi() can be called from user or interrupt context.

SEE ALSO Writing Device Drivers

NOTES stoi() handles only positive integers; it does not handle leading minus signs.

9F-534 SunOS 5.6 modified 3 Mar 1994

Kernel Functions for Drivers strchr (9F)

NAME strchr − find a character in a string

SYNOPSIS #include <sys/ddi.h>
#include <sys/sunddi.h>

char ∗strchr(const char ∗str , int chr);

INTERFACE
LEVEL

Solaris DDI specific (Solaris DDI).

ARGUMENTS str Pointer to a string to be searched.

chr The character to search for.

DESCRIPTION strchr() returns a pointer to the first occurrence of chr in the string pointed to by str .

RETURN VALUES strchr() returns a pointer to a character, or NULL, if the search fails.

CONTEXT This function can be called from user or interrupt context.

SEE ALSO strcmp(9F)

Writing Device Drivers

modified 27 Mar 1992 SunOS 5.6 9F-535

strcmp (9F) Kernel Functions for Drivers

NAME strcmp, strncmp − compare two null terminated strings.

SYNOPSIS #include <sys/ddi.h>

int strcmp(const char ∗s1, const char ∗s2);

int strncmp(const char ∗s1, const char ∗s2, size_t n);

INTERFACE
LEVEL

Solaris DDI specific (Solaris DDI).

ARGUMENTS s1, s2 Pointers to character strings.

n Count of characters to be compared.

DESCRIPTION
strcmp() strcmp() returns 0 if the strings are the same, or the integer value of the expression (∗s1 -

∗s2) for the last characters compared if they differ.

strncmp() strncmp() returns 0 if the first n characters of s1 and s2 are the same, or (∗s1 - ∗s2) for the
last characters compared if they differ.

RETURN VALUES strcmp() returns 0 if the strings are the same, or (∗s1 - ∗s2) for the last characters com-
pared if they differ.

strncmp() returns 0 if the first n characters of strings are the same, or (∗s1 - ∗s2) for the
last characters compared if they differ.

CONTEXT These functions can be called from user or interrupt context.

SEE ALSO Writing Device Drivers

9F-536 SunOS 5.6 modified 1 Apr 1994

Kernel Functions for Drivers strcpy (9F)

NAME strcpy, strncpy − copy a string from one location to another.

SYNOPSIS #include <sys/ddi.h>

char ∗strcpy(char ∗dst , char ∗srs);

char ∗strncpy(char ∗dst , char ∗srs, size_t n);

INTERFACE
LEVEL

Solaris DDI specific (Solaris DDI).

ARGUMENTS dst, srs Pointers to character strings.

n Count of characters to be copied.

DESCRIPTION
strcpy() strcpy() copies characters in the string srs to dst , terminating at the first null character in

srs, and returns dst to the caller. No bounds checking is done.

strncpy() strncpy() copies srs to dst , null-padding or truncating at n bytes, and returns dst . No
bounds checking is done.

RETURN VALUES strcpy(), and strncpy() return dst.

CONTEXT strcpy() can be called from user or interrupt context.

SEE ALSO Writing Device Drivers

modified 11 Apr 1991 SunOS 5.6 9F-537

strlen (9F) Kernel Functions for Drivers

NAME strlen − determine the number of non-null bytes in a string

SYNOPSIS #include <sys/ddi.h>

size_t strlen(const char ∗s);

INTERFACE
LEVEL

Solaris DDI specific (Solaris DDI).

ARGUMENTS s Pointer to a character string.

DESCRIPTION strlen() returns the number of non-null bytes in the string argument s.

RETURN VALUES strlen() returns the number of non-null bytes in s.

CONTEXT strlen() can be called from user or interrupt context.

SEE ALSO Writing Device Drivers

9F-538 SunOS 5.6 modified 11 Apr 1991

Kernel Functions for Drivers strlog (9F)

NAME strlog − submit messages to the log driver

SYNOPSIS #include <sys/stream.h>
#include <sys/strlog.h>
#include <sys/log.h>

int strlog(short mid, short sid, char level, unsigned short flags , char ∗fmt, . . .);

INTERFACE
LEVEL

Architecture independent level 1 (DDI/DKI).

ARGUMENTS mid Identification number of the module or driver submitting the message (in the
case of a module, its mi_idnum value from module_info(9S)).

sid Identification number for a particular minor device.

level Tracing level for selective screening of low priority messages. Larger values
imply less important information.

flags Valid flag values are:

SL_ERROR Message is for error logger.
SL_TRACE Message is for trace.
SL_NOTIFY Mail copy of message to system administrator.
SL_CONSOLE Log message to console.
SL_FATAL Error is fatal.
SL_WARN Error is a warning.
SL_NOTE Error is a notice.

fmt printf(3S) style format string. %s, %e, %g, and %G formats are not allowed.

DESCRIPTION strlog() submits formatted messages to the log(7D) driver. The messages can be
retrieved with the getmsg(2) system call. The flags argument specifies the type of the
message and where it is to be sent. strace(1M) receives messages from the log driver and
sends them to the standard output. strerr(1M) receives error messages from the log
driver and appends them to a file called /var/adm/streams/error.mm-dd, where mm-dd
identifies the date of the error message.

RETURN VALUES strlog() returns 0 if the message is not seen by all the readers, 1 otherwise.

CONTEXT strlog() can be called from user or interrupt context.

FILES /var/adm/streams/error.mm-dd
Error messages dated mm-dd appended by strerr(1M) from the log
driver

SEE ALSO strace(1M), strerr(1M), getmsg(2), log(7D), module_info(9S)

Writing Device Drivers
STREAMS Programming Guide

modified 11 Apr 1991 SunOS 5.6 9F-539

strqget (9F) Kernel Functions for Drivers

NAME strqget − get information about a queue or band of the queue

SYNOPSIS #include <sys/stream.h>

int strqget (queue_t ∗q, qfields_t what , unsigned char pri, void ∗valp);

INTERFACE
LEVEL

Architecture independent level 1 (DDI/DKI).

ARGUMENTS q Pointer to the queue.

what Field of the queue structure for (or the specified priority band) to return infor-
mation about. Valid values are one of:

QHIWAT High water mark.

QLOWAT Low water mark.

QMAXPSZ Largest packet accepted.

QMINPSZ Smallest packet accepted.

QCOUNT Approximate size (in bytes) of data.

QFIRST First message.

QLAST Last message.

QFLAG Status.

pri Priority band of interest.

valp The address of where to store the value of the requested field.

DESCRIPTION strqget() gives drivers and modules a way to get information about a queue or a particu-
lar band of a queue without directly accessing STREAMS data structures, thus insulating
them from changes in the implementation of these data structures from release to release.

RETURN VALUES On success, 0 is returned and the value of the requested field is stored in the location
pointed to by valp . An error number is returned on failure.

CONTEXT strqget() can be called from user or interrupt context.

SEE ALSO freezestr(9F), strqset(9F), unfreezestr(9F), queue(9S)

Writing Device Drivers
STREAMS Programming Guide

NOTES The stream must be frozen using freezestr(9F) before calling strqget().

9F-540 SunOS 5.6 modified 12 Nov 1996

Kernel Functions for Drivers strqset (9F)

NAME strqset − change information about a queue or band of the queue

SYNOPSIS #include <sys/stream.h>

int strqset(queue_t ∗q, qfields_t what , unsigned char pri, intptr_t val);

INTERFACE
LEVEL

Architecture independent level 1 (DDI/DKI).

ARGUMENTS q Pointer to the queue.

what Field of the queue structure (or the specified priority band) to return informa-
tion about. Valid values are one of:

QHIWAT High water mark.

QLOWAT Low water mark.

QMAXPSZ Largest packet accepted.

QMINPSZ Smallest packet accepted.

pri Priority band of interest.

val The value for the field to be changed.

DESCRIPTION strqset() gives drivers and modules a way to change information about a queue or a par-
ticular band of a queue without directly accessing STREAMS data structures.

RETURN VALUES On success, 0 is returned. EINVAL is returned if an undefined attribute is specified.

CONTEXT strqset() can be called from user or interrupt context.

SEE ALSO freezestr(9F), strqget(9F), unfreezestr(9F), queue(9S)

Writing Device Drivers
STREAMS Programming Guide

NOTES The stream must be frozen using freezestr(9F) before calling strqset().

To set the values of QMINPSZ and QMAXPSZ from within a single call to freezestr(9F)
and unfreezestr(9F): when lowering the existing values, set QMINPSZ before setting
QMAXPSZ; when raising the existing values, set QMAXPSZ before setting QMINPSZ.

modified 11 Nov 1996 SunOS 5.6 9F-541

swab (9F) Kernel Functions for Drivers

NAME swab − swap bytes in 16-bit halfwords

SYNOPSIS #include <sys/sunddi.h>

void swab (void ∗src, void ∗dst , size_t nbytes);

INTERFACE
LEVEL

Architecture independent level 1 (DDI/DKI).

ARGUMENTS src A pointer to the buffer containing the bytes to be swapped.

dst A pointer to the destination buffer where the swapped bytes will be written. If
dst is the same as src the buffer will be swapped in place.

nbytes Number of bytes to be swapped, rounded down to the nearest half-word.

DESCRIPTION swab() copies the bytes in the buffer pointed to by src to the buffer pointer to by dst ,
swapping the order of adjacent bytes in half-word pairs as the copy proceeds. A total of
nbytes bytes are copied, rounded down to the nearest half-word.

CONTEXT swab() can be called from user or interrupt context.

SEE ALSO Writing Device Drivers

NOTES Since swab() operates byte-by-byte, it can be used on non-aligned buffers.

9F-542 SunOS 5.6 modified 1 Feb 1991

Kernel Functions for Drivers testb (9F)

NAME testb − check for an available buffer

SYNOPSIS #include <sys/stream.h>

int testb(size_t size, uint pri);

INTERFACE
LEVEL

Architecture independent level 1 (DDI/DKI).

ARGUMENTS size Size of the requested buffer.

pri Priority of the allocb request.

DESCRIPTION testb() checks to see if an allocb(9F) call is likely to succeed if a buffer of size bytes at
priority pri is requested. Even if testb() returns successfully, the call to allocb (9F) can
fail. The pri argument is no longer used, but is retained for compatibility.

RETURN VALUES Returns 1 if a buffer of the requested size is available, and 0 if one is not.

CONTEXT testb() can be called from user or interrupt context.

EXAMPLES In a service routine, if copymsg(9F) fails (line 6), the message is put back on the queue
(line 7) and a routine, tryagain, is scheduled to be run in one tenth of a second. Then the
service routine returns.

When the timeout(9F) function runs, if there is no message on the front of the queue, it
just returns. Otherwise, for each message block in the first message, check to see if an
allocation would succeed. If the number of message blocks equals the number we can
allocate, then enable the service procedure. Otherwise, reschedule tryagain to run again
in another tenth of a second. Note that tryagain is merely an approximation. Its account-
ing may be faulty. Consider the case of a message comprised of two 1024-byte message
blocks. If there is only one free 1024-byte message block and no free 2048-byte message
blocks, then testb() will still succeed twice. If no message blocks are freed of these sizes
before the service procedure runs again, then the copymsg(9F) will still fail. The reason
testb() is used here is because it is significantly faster than calling copymsg. We must
minimize the amount of time spent in a timeout routine.

1 xxxsrv(q)
2 queue_t ∗q;
3 {
4 mblk_t ∗mp;
5 mblk_t ∗nmp;

. . .
6 if ((nmp = copymsg(mp)) == NULL) {
7 putbq(q, mp);
8 timeout(tryagain, (intptr_t)q, drv_usectohz(100000));
9 return;
10 }

. . .

modified 11 Nov 1996 SunOS 5.6 9F-543

testb (9F) Kernel Functions for Drivers

11 }
12
13 tryagain(q)
14 queue_t ∗q;
15 {
16 register int can_alloc = 0;
17 register int num_blks = 0;
18 register mblk_t ∗mp;
19
20 if (!q->q_first)
21 return;
22 for (mp = q->q_first; mp; mp = mp->b_cont) {
23 num_blks++;
24 can_alloc += testb((mp->b_datap->db_lim -
25 mp->b_datap->db_base), BPRI_MED);
26 }
27 if (num_blks == can_alloc)
28 qenable(q);
29 else
30 timeout(tryagain, (intptr_t)q, drv_usectohz(100000));
31 }

SEE ALSO allocb(9F), bufcall(9F), copymsg(9F), timeout(9F)

Writing Device Drivers
STREAMS Programming Guide

NOTES The pri argument is provided for compatibility only. Its value is ignored.

9F-544 SunOS 5.6 modified 11 Nov 1996

Kernel Functions for Drivers timeout (9F)

NAME timeout − execute a function after a specified length of time

SYNOPSIS #include <sys/types.h>
#include <sys/conf.h>

int timeout(void (∗func) (), caddr_t arg , clock_t ticks);

INTERFACE
LEVEL

Architecture independent level 1 (DDI/DKI).

ARGUMENTS func Kernel function to invoke when the time increment expires.

arg Argument to the function.

ticks Number of clock ticks to wait before the function is called.

DESCRIPTION The timeout() function schedules the specified function to be called after a specified time
interval. The exact time interval over which the timeout takes effect cannot be
guaranteed, but the value given is a close approximation.

The function called by timeout() must adhere to the same restrictions as a driver soft
interrupt handler.

The timeout() function returns an identifier that may be passed to the untimeout(9F)
function to cancel a pending request.

timeout() can be called from user or interrupt context.

The function called by timeout() is run in interrupt context and must not sleep or call
other functions which may sleep.

RETURN VALUES Under normal conditions, timeout() returns an integer timeout identifier not equal to
zero. If, however, the timeout table is full, the system will panic with the following panic
message:

PANIC: Timeout table overflow

CONTEXT timeout() can be called from user or interrupt context.

EXAMPLES In the following example, the device driver has issued an IO request and is waiting for
the device to respond. If the device does not respond within 5 seconds, the device driver
will print out an error message to the console.

static void
xxtimeout_handler(caddr_t arg)
{

struct xxstate ∗xsp = (struct xxstate ∗)arg;

mutex_enter(&xsp->lock);
cv_signal(&xsp->cv);
xsp->flags |= TIMED_OUT;
mutex_exit(&xsp->lock);

modified 19 Sep 1996 SunOS 5.6 9F-545

timeout (9F) Kernel Functions for Drivers

xsp->timeout_id = 0;

}
static u_int
xxintr(caddr_t arg)
{

struct xxstate ∗xsp = (struct xxstate ∗)arg;
.
.
.
mutex_enter(&xsp->lock);

/∗ Service interrupt ∗/

cv_signal(&xsp->cv);
mutex_exit(&xsp->lock);

if (xsp->timeout_id != 0) {
(void) untimeout(xsp->timeout_id);
xsp->timeout_id = 0;

}

return(DDI_INTR_CLAIMED);
}

static void
xxcheckcond(struct xxstate ∗xsp)
{

.

.

.
xsp->timeout_id = timeout(xxtimeout_handler,

(caddr_t)xsp, 5 ∗ drv_usectohz(1000000));

mutex_enter(&xsp->lock);
while (/∗ Waiting for interrupt or timeout∗/)

cv_wait(&xsp->cv, &xsp->lock);

if (xsp->flags & TIMED_OUT)
cmn_err(CE_WARN, "Device not responding");

.

.

.
mutex_exit(&xsp->lock);
.
.
.

}

9F-546 SunOS 5.6 modified 19 Sep 1996

Kernel Functions for Drivers timeout (9F)

SEE ALSO bufcall(9F), delay(9F), untimeout(9F)

Writing Device Drivers

modified 19 Sep 1996 SunOS 5.6 9F-547

uiomove (9F) Kernel Functions for Drivers

NAME uiomove − copy kernel data using uio structure

SYNOPSIS #include <sys/types.h>
#include <sys/uio.h>

int uiomove(caddr_t address, size_t nbytes, enum uio_rw rwflag, uio_t ∗uio_p);

INTERFACE
LEVEL

Architecture independent level 1 (DDI/DKI).

ARGUMENTS address Source/destination kernel address of the copy.

nbytes Number of bytes to copy.

rwflag Flag indicating read or write operation. Possible values are UIO_READ and
UIO_WRITE.

uio_p Pointer to the uio structure for the copy.

DESCRIPTION The uiomove() function copies nbytes of data to or from the space defined by the uio
structure (described in uio(9S)) and the driver.

The uio_segflg member of the uio(9S) structure determines the type of space to or from
which the transfer is being made. If it is set to UIO_SYSSPACE, the data transfer is
between addresses in the kernel. If it is set to UIO_USERSPACE, the transfer is between a
user program and kernel space.

rwflag indicates the direction of the transfer. If UIO_READ is set, the data will be
transferred from address to the buffer(s) described by uio_p. If UIO_WRITE is set, the data
will be transferred from the buffer(s) described by uio_p to address.

In addition to moving the data, uiomove() adds the number of bytes moved to the
iov_base member of the iovec(9S) structure, decreases the iov_len member, increases the
uio_offset member of the uio(9S) structure, and decreases the uio_resid member.

This function automatically handles page faults. nbytes does not have to be word-
aligned.

RETURN VALUES uiomove() returns 0 upon success or EFAULT on failure.

CONTEXT User context only, if uio_segflg is set to UIO_USERSPACE. User or interrupt context, if
uio_segflg is set to UIO_SYSSPACE.

SEE ALSO ureadc(9F), uwritec(9F), iovec(9S), uio(9S)

Writing Device Drivers

WARNINGS If uio_segflg is set to UIO_SYSSPACE and address is selected from user space, the system
may panic.

9F-548 SunOS 5.6 modified 20 Sep 1996

Kernel Functions for Drivers unbufcall (9F)

NAME unbufcall − cancel a pending bufcall request

SYNOPSIS #include <sys/stream.h>

void unbufcall(int id);

INTERFACE
LEVEL

Architecture independent level 1 (DDI/DKI).

ARGUMENTS id Identifier returned from bufcall(9F) or esbbcall(9F)

DESCRIPTION unbufcall cancels a pending bufcall() or esbbcall() request. The argument id is a non-
zero identifier for the request to be cancelled. id is returned from the bufcall() or esbb-
call() function used to issue the request.

unbufcall() will not return until the pending callback is cancelled or has run. Because of
this, locks acquired by the callback routine should not be held across the call to unbuf-
call() or deadlock may result.

RETURN VALUES None.

CONTEXT unbufcall() can be called from user or interrupt context.

SEE ALSO bufcall(9F), esbbcall(9F)

Writing Device Drivers
STREAMS Programming Guide

modified 19 Nov 1992 SunOS 5.6 9F-549

unlinkb (9F) Kernel Functions for Drivers

NAME unlinkb − remove a message block from the head of a message

SYNOPSIS #include <sys/stream.h>

mblk_t ∗unlinkb(mblk_t ∗mp);

INTERFACE
LEVEL

Architecture independent level 1 (DDI/DKI).

ARGUMENTS mp Pointer to the message.

DESCRIPTION unlinkb() removes the first message block from the message pointed to by mp. A new
message, minus the removed message block, is returned.

RETURN VALUES If successful, unlinkb() returns a pointer to the message with the first message block
removed. If there is only one message block in the message, NULL is returned.

CONTEXT unlinkb() can be called from user or interrupt context.

EXAMPLE The routine expects to get passed an M_PROTO T_DATA_IND message. It will remove
and free the M_PROTO header and return the remaining M_DATA portion of the mes-
sage.

1 mblk_t ∗
2 makedata(mp)
3 mblk_t ∗mp;
4 {
5 mblk_t ∗nmp;
6
7 nmp = unlinkb(mp);
8 freeb(mp);
9 return(nmp);
10 }

SEE ALSO linkb(9F)

Writing Device Drivers
STREAMS Programming Guide

9F-550 SunOS 5.6 modified 11 Apr 1991

Kernel Functions for Drivers untimeout (9F)

NAME untimeout − cancel previous timeout function call

SYNOPSIS #include <sys/types.h>
#include <sys/conf.h>

int untimeout(int id);

INTERFACE
LEVEL

Architecture independent level 1 (DDI/DKI).

ARGUMENTS id Identification value generated by a previous timeout(9F) function call.

DESCRIPTION untimeout() cancels a pending timeout(9F) request. untimeout() will not return until
the pending callback is cancelled or has run. Because of this, locks acquired by the call-
back routine should not be held across the call to untimeout() or a deadlock may result.

Since no mutex should be held across the call to untimeout(), there is a race condition
between the occurrence of an expected event and the execution of the timeout handler. In
particular, it should be noted that no problems will result from calling untimeout() for a
timeout which is either running on another CPU, or has already completed. Drivers
should be structured with the understanding that the arrival of both an interrupt and a
timeout for that interrupt can occasionally occur, in either order.

RETURN VALUES untimeout() returns -1 if the id is not found. Otherwise, it returns an integer value
greater than or equal to 0.

CONTEXT untimeout() can be called from user or interrupt context.

EXAMPLES In the following example, the device driver has issued an IO request and is waiting for
the device to respond. If the device does not respond within 5 seconds, the device driver
will print out an error message to the console.

static void
xxtimeout_handler(caddr_t arg)
{

struct xxstate ∗xsp = (struct xxstate ∗)arg;

mutex_enter(&xsp->lock);
cv_signal(&xsp->cv);
xsp->flags |= TIMED_OUT;
mutex_exit(&xsp->lock);

xsp->timeout_id = 0;

}
static u_int
xxintr(caddr_t arg)
{

struct xxstate ∗xsp = (struct xxstate ∗)arg;

modified 19 Jul 1996 SunOS 5.6 9F-551

untimeout (9F) Kernel Functions for Drivers

.

.

.
mutex_enter(&xsp->lock);

/∗ Service interrupt ∗/

cv_signal(&xsp->cv);
mutex_exit(&xsp->lock);

if (xsp->timeout_id != 0) {
(void) untimeout(xsp->timeout_id);
xsp->timeout_id = 0;

}

return(DDI_INTR_CLAIMED);
}

static void
xxcheckcond(struct xxstate ∗xsp)
{

.

.

.
xsp->timeout_id = timeout(xxtimeout_handler,

(caddr_t)xsp, (5 ∗ drv_usectohz(1000000)));

mutex_enter(&xsp->lock);
while (/∗ Waiting for interrupt or timeout∗/)

cv_wait(&xsp->cv, &xsp->lock);

if (xsp->flags & TIMED_OUT)
cmn_err(CE_WARN, "Device not responding");

.

.

.
mutex_exit(&xsp->lock);
.
.
.

}

SEE ALSO open(9E), cv_signal(9F), cv_wait_sig(9F), delay(9F), timeout(9F)

Writing Device Drivers

9F-552 SunOS 5.6 modified 19 Jul 1996

Kernel Functions for Drivers ureadc (9F)

NAME ureadc − add character to a uio structure

SYNOPSIS #include <sys/uio.h>
#include <sys/types.h>

int ureadc(int c, uio_t ∗uio_p);

INTERFACE
LEVEL

Architecture independent level 1 (DDI/DKI).

ARGUMENTS c The character added to the uio (9S) structure.

uio_p Pointer to the uio(9S) structure.

DESCRIPTION ureadc() transfers the character c into the address space of the uio(9S) structure pointed
to by uio_p, and updates the uio structure as for uiomove(9F).

RETURN VALUES 0 is returned on success and EFAULT on failure.

CONTEXT ureadc() can be called from user or interrupt context.

SEE ALSO uiomove(9F), uwritec(9F), iovec(9S), uio(9S)

Writing Device Drivers

modified 11 Apr 1991 SunOS 5.6 9F-553

uwritec (9F) Kernel Functions for Drivers

NAME uwritec − remove a character from a uio structure

SYNOPSIS #include <sys/uio.h>

int uwritec (uio_t ∗uio_p);

INTERFACE
LEVEL

Architecture independent level 1 (DDI/DKI).

ARGUMENTS uio_p Pointer to the uio(9S) structure.

DESCRIPTION uwritec() returns a character from the uio structure pointed to by uio_p, and updates the
uio structure as for uiomove(9F).

RETURN VALUES The next character for processing is returned on success, and -1 is returned if uio is
empty or there is an error.

CONTEXT uwritec() can be called from user or interrupt context.

SEE ALSO uiomove(9F), ureadc(9F), iovec(9S), uio(9S)

Writing Device Drivers

9F-554 SunOS 5.6 modified 11 Apr 1991

Kernel Functions for Drivers va_arg (9F)

NAME va_arg, va_start, va_copy, va_end − handle variable argument list

SYNOPSIS #include <sys/varargs.h>

void va_start(va_list pvar, void parmN);

(type ∗) va_arg(va_list pvar, type);

void va_copy(va_list dest, va_list src);

void va_end(va_list pvar);

INTERFACE
LEVEL

Solaris DDI specific (Solaris DDI).

ARGUMENTS
va_start() pvar Pointer to variable argument list.

name Identifier of rightmost parameter in the function definition.

va_arg() pvar Pointer to variable argument list.

type Type name of the next argument to be returned.

va_copy() dest Destination variable argument list.

src Source variable argument list.

va_end() pvar Pointer to variable argument list.

DESCRIPTION This set of macros allows portable procedures that accept variable argument lists to be
written. Routines that have variable argument lists but do not use the varargs macros are
inherently non-portable, as different machines use different argument-passing conven-
tions. Routines that accept a variable argument list can use these macros to traverse the
list.

va_list is the type defined for the variable used to traverse the list of arguments.

va_start() is called to initialize pvar to the beginning of the variable argument list.
va_start() must be invoked before any access to the unnamed arguments. The parameter
name is the identifier of the rightmost parameter in the variable parameter list in the func-
tion definition (the one just before the “, . . . ”). If this parameter is declared with the
register storage class or with a function or array type, or with a type that is not compati-
ble with the type that results after application of the default argument promotions, the
behavior is undefined.

va_arg() expands to an expression that has the type and value of the next argument in the
call. The parameter pvar must be initialized by va_start(). Each invocation of va_arg()
modifies pvar so that the values of successive arguments are returned in turn. The
parameter type is the type name of the next argument to be returned. The type name must
be specified in such a way so that the type of a pointer to an object that has the specified
type can be obtained simply by postfixing a ∗ to type . If there is no actual next argument,
or if type is not compatible with the type of the actual next argument (as promoted

modified 21 Feb 1996 SunOS 5.6 9F-555

va_arg (9F) Kernel Functions for Drivers

according to the default argument promotions), the behavior is undefined.

The va_copy() macro saves the state represented by the va_list src in the va_list dest . The
va_list passed as dest should not be initialized by a previous call to va_start(), and must
be passed to va_end() before being reused as a parameter to va_start() or as the dest
parameter of a subsequent call to va_copy(). The behavior is undefined should any of
these restrictions not be met.

The va_end() macro is used to clean up. It invalidates pvar for use (unless va_start() is
invoked again).

Multiple traversals, each bracketed by a call to va_start() and va_end(), are possible.

EXAMPLES The following example uses these routines to create a variable length command. This
may be useful for a device which provides for a variable length command set.

ncmdbytes is the number of bytes in the command. The new command is written to
cmdp.

static void
xx_write_cmd(u_char ∗cmdp, int ncmdbytes, ...)
{

va_list ap;
int i;

/∗
∗ Write variable-length command to destination
∗/
va_start(ap, ncmdbytes);
for (i = 0; i < ncmdbytes; i++) {

∗cmdp++ = va_arg(ap, u_char);
}
va_end(ap);

}

SEE ALSO vcmn_err(9F), vsprintf(9F)

NOTES It is up to the calling routine to specify in some manner how many arguments there are,
since it is not always possible to determine the number of arguments from the stack
frame.

It is non-portable to specify a second argument of char or short to va_arg, because argu-
ments seen by the called function are not char or short. C converts char and short argu-
ments to int before passing them to a function.

9F-556 SunOS 5.6 modified 21 Feb 1996

Kernel Functions for Drivers vsprintf (9F)

NAME vsprintf − format characters in memory

SYNOPSIS #include <sys/varargs.h>
#include <sys/ddi.h>
#include <sys/sunddi.h>

char ∗vsprintf(char ∗buf, const char ∗fmt, va_list ap);

INTERFACE
LEVEL

Solaris DDI specific (Solaris DDI).

ARGUMENTS buf Pointer to a character string.

fmt Pointer to a character string.

ap Pointer to a variable argument list.

DESCRIPTION vsprintf() builds a string in buf under the control of the format fmt. The format is a char-
acter string with either plain characters, which are simply copied into buf, or conversion
specifications, each of which converts zero or more arguments, again copied into buf.
The results are unpredictable if there are insufficient arguments for the format; excess
arguments are simply ignored. It is the user’s responsibility to ensure that enough
storage is available for buf.

ap contains the list of arguments used by the conversion specifications in fmt. ap is a vari-
able argument list and must be initialized by calling va_start(9F). va_end(9F) is used to
clean up and must be called after each traversal of the list. Multiple traversals of the
argument list, each bracketed by va_start(9F) and va_end(9F), are possible.

Each conversion specification is introduced by the % character, after which the following
appear in sequence:

An optional decimal digit specifying a minimum field width for numeric conver-
sion. The converted value will be right-justified and padded with leading zeroes
if it has fewer characters than the minimum.

An optional l (ll) specifying that a following d, D, o, O, x, X, or u conversion
character applies to a long (long long) integer argument. An l (ll) before any
other conversion character is ignored.

A character indicating the type of conversion to be applied:

d,D,o,O,x,X,u
The integer argument is converted to signed decimal (d, D), unsigned
octal (o, O), unsigned hexadecimal (x, X) or unsigned decimal (u),
respectively, and copied. The letters abcdef are used for x and X conver-
sion.

c The character value of the argument is copied.

b This conversion uses two additional arguments. The first is an integer,
and is converted according to the base specified in the second argument.
The second argument is a character string in the form <base>[<arg> . . .].
The base supplies the conversion base for the first argument as a binary

modified 6 May 1996 SunOS 5.6 9F-557

vsprintf (9F) Kernel Functions for Drivers

value; \10 gives octal, \20 gives hexadecimal. Each subsequent <arg> is
a sequence of characters, the first of which is the bit number to be tested,
and subsequent characters, up to the next bit number or terminating null,
supply the name of the bit.

A bit number is a binary-valued character in the range 1-32. For each bit
set in the first argument, and named in the second argument, the bit
names are copied, separated by commas, and bracketed by < and >.
Thus, the following function call would generate
reg=3<BitTwo,BitOne>\n in buf.

vsprintf(buf, "reg=%b\n", 3, "\10\2BitTwo\1BitOne")

s The argument is taken to be a string (character pointer), and characters
from the string are copied until a null character is encountered. If the
character pointer is NULL, the string <null string> is used in its place.

% Copy a %; no argument is converted.

RETURN VALUES vsprintf() returns its first argument, buf.

CONTEXT vsprintf() can be called from user, kernel, or interrupt context.

EXAMPLES In this example, xxerror() accepts a pointer to a dev_info_t structure dip, an error level
level, a format fmt, and a variable number of arguments. The routine uses vsprintf() to
format the error message in buf. Note that va_start(9F) and va_end(9F) bracket the call
to vsprintf(). instance, level, name, and buf are then passed to cmn_err(9F).

#include <sys/varargs.h>
#include <sys/ddi.h>
#include <sys/sunddi.h>

#define MAX_MSG 256

void
xxerror(dev_info_t ∗dip, int level, const char ∗fmt, . . .)
{

va_list ap;
int instance;
char buf[MAX_MSG],

∗name;

instance = ddi_get_instance(dip);
name = ddi_binding_name(dip);

/∗ format buf using fmt and arguments contained in ap ∗/
va_start(ap, fmt);
vsprintf(buf, fmt, ap);
va_end(ap);

9F-558 SunOS 5.6 modified 6 May 1996

Kernel Functions for Drivers vsprintf (9F)

/∗ pass formatted string to cmn_err(9F) ∗/
cmn_err(level, "%s%d: %s", name, instance, buf);

}

SEE ALSO cmn_err(9F), ddi_binding_name(9F), ddi_get_instance(9F), va_arg(9F)

Writing Device Drivers

modified 6 May 1996 SunOS 5.6 9F-559

WR (9F) Kernel Functions for Drivers

NAME WR, wr − get pointer to the write queue for this module or driver

SYNOPSIS #include <sys/stream.h>
#include <sys/ddi.h>

queue_t ∗WR(queue_t ∗q);

INTERFACE
LEVEL

Architecture independent level 1 (DDI/DKI).

ARGUMENTS q Pointer to the read queue whose write queue is to be returned.

DESCRIPTION The WR() function accepts a read queue pointer as an argument and returns a pointer to
the write queue of the same module.

CAUTION: Make sure the argument to this function is a pointer to a read queue. WR()
will not check for queue type, and a system panic could result if the pointer is not to a
read queue.

RETURN VALUES The pointer to the write queue.

CONTEXT WR() can be called from user or interrupt context.

EXAMPLES In a STREAMS close(9E) routine, the driver or module is passed a pointer to the read
queue. These usually are set to the address of the module-specific data structure for the
minor device.

1 xxxclose(q, flag)
2 queue_t ∗q;
3 int flag;
4 {
5 q->q_ptr = NULL;
6 WR(q)->q_ptr = NULL;

. . .
7 }

SEE ALSO close(9E), OTHERQ(9F), RD(9F)

Writing Device Drivers
STREAMS Programming Guide

9F-560 SunOS 5.6 modified 15 Nov 1991

Index

A
activate a new DMA window —

ddi_dma_getwin, 9F-254
add a fully initialized kstat to the system —

kstat_install, 9F-413
add a soft interrupt

— ddi_add_softintr, 9F-204
add an interrupt handler

— ddi_add_intr, 9F-201
address

return mapped virtual address —
csx_GetMappedAddr, 9F-106

adjmsg — trim bytes from a message, 9F-37
allocate and free a scsi_pkt structure —

scsi_hba_pkt_alloc, 9F-507
scsi_hba_pkt_free, 9F-507

allocate and free non-sequentially accessed memory
— ddi_iopb_alloc, 9F-286
— ddi_iopb_free, 9F-286

allocate and free transport structures —
scsi_hba_tran_alloc, 9F-510
scsi_hba_tran_free, 9F-510

allocate DMA handle —
ddi_dma_alloc_handle, 9F-237

allocate kernel memory
— ddi_umem_alloc, 9F-356
— ddi_umem_free, 9F-356

allocate kernel memory, continued
— ddi_umem_zalloc, 9F-356
— kmem_alloc, 9F-408
— kmem_free, 9F-408
— kmem_zalloc, 9F-408

allocate memory for DMA transfer —
ddi_dma_mem_alloc, 9F-257

allocate space — rmalloc, 9F-476
allocate space from a resource map —

rmalloc_wait, 9F-481
allow 64 bit transfers on SBus —

ddi_dma_set_sbus64, 9F-270
anocancel — prevent cancellation of asynchro-

nous I/O request, 9F-40
aphysio — perform asynchronous physical I/O,

9F-41
assert — expression verification, 9F-43
asynchronous physical I/O — aphysio, 9F-41
asynchronous STREAMS perimeter upgrade —

qwriter, 9F-474

B
bcopy — copy data between address locations in

kernel, 9F-47
binds a system buffer to a DMA handle —

ddi_dma_buf_bind_handle, 9F-240
binds an address to a DMA handle —

Index−1

ddi_dma_addr_bind_handle, 9F-233
bioclone — clone another buffer, 9F-49
bioerror — indicate error in buffer header, 9F-54
biofini — uninitialize a buffer structure, 9F-55
bioinit — initialize a buffer structure, 9F-56
biomodified — check if a buffer is modified,

9F-57
bioreset — reuse a private buffer header after

I/O is complete, 9F-58
biosize — returns size of a buffer structure, 9F-59
bufcall — call a function when a buffer becomes

available, 9F-549, 9F-65
buffer header

indicate error — bioerror, 9F-54
reuse a private buffer header after I/O is com-

plete — bioreset, 9F-58
busy-wait for specified interval — drv_usecwait,

9F-380
byte streams

compare two — bcmp, 9F-46
bytes, size

convert size in pages — ptob, 9F-450
convert to size in memory pages (round down)

— btop, 9F-63
convert to size in memory pages (round up) —

btopr, 9F-64

C
call a function when a buffer becomes available —

qbufcall, 9F-463
call a STREAMS put procedure — put, 9F-453
cancel a pending qbufcall request — qunbufcall,

9F-470
cancel previous timeout function call — qun-

timeout, 9F-471
cancellation of asynchronous I/O — anocancel,

9F-40
character strings

compare two null terminated strings —
strcmp, strncmp, 9F-536

convert between an integer and a decimal
string — stoi, numtos, 9F-534

copy a string from one location to another —

strcpy,
character strings, continued

strncpy, 9F-537
determine the number of non-null bytes in a

string — strlen, 9F-538
find a character in a string — strchr, 9F-535
format in memory — sprintf, 9F-532

check for an available buffer — testb, 9F-543
check for the existence of a property —

ddi_prop_exists, 9F-323
check if a buffer is modified — biomodified,

9F-57
CIS tuple

first tuple — csx_GetFirstTuple, 9F-103
next tuple — csx_GetNextTuple, 9F-103

clear client event mask —
csx_ReleaseSocketMask, 9F-188

client
register client — csx_RegisterClient,

9F-169
client event mask

return client event mask —
csx_GetEventMask, 9F-196

set client event mask — csx_SetEventMask,
9F-196

client return
— csx_GetFirstClient, 9F-101
— csx_GetNextClient, 9F-101

clone another buffer — bioclone, 9F-49
condition variable routines, driver

— condvar, 9F-77
— cv_broadcast, 9F-77
— cv_init, 9F-77
— cv_signal, 9F-77
— cv_timedwait, 9F-77
— cv_timedwait_sig, 9F-77
— cv_wait, 9F-77
— cv_wait_sig, 9F-77

configure PC Card and socket —
csx_RequestConfiguration, 9F-178

control device components’ availability for power
management
— pm_busy_component, 9F-444
— pm_idle_component, 9F-444

Index−2

control driver notification of user accesses —
ddi_mapdev_intercept, 9F-296
ddi_mapdev_nointercept, 9F-296

control the validation of memory address transla-
tions
— devmap_load, 9F-372
— devmap_unload, 9F-372

convert a DMA segment to a DMA address cookie
— ddi_dma_segtocookie, 9F-268

convert clock ticks to microseconds —
drv_hztousec, 9F-377

convert device sizes — csx_ConvertSize, 9F-90
convert device speeds — csx_ConvertSpeed,

9F-91
convert error return codes to text strings —

csx_Error2Text, 9F-97
convert events to text strings — csx_Event2Text,

9F-98
convert microseconds to clock ticks —

drv_usectohz, 9F-379
copy data from one device register to another dev-

ice register — ddi_device_copy, 9F-220
create a minor node for this device —

ddi_create_minor_node, 9F-218
create and initialize a new kstat — kstat_create,

9F-411
create driver-controlled mapping of device —

ddi_mapdev, 9F-294
create minor nodes for client —

csx_MakeDeviceNode, 9F-112
csx_AccessConfigurationRegister — read or

write a PC Card Configuration Register, 9F-88
csx_ConvertSize — convert device sizes, 9F-90
csx_ConvertSpeed — convert device speeds,

9F-91
csx_CS_DDI_Info — obtain DDI information,

9F-92
csx_DeregisterClient — remove client from

Card Services list, 9F-94
csx_DupHandle — duplicate access handle, 9F-95
csx_Error2Text — convert error return codes to

text strings, 9F-97

csx_Event2Text — convert events to text strings,
9F-98

csx_FreeHandle — free access handle, 9F-99
csx_Get16 — read from device register, 9F-100
csx_Get32 — read from device register, 9F-100
csx_Get64 — read from device register, 9F-100
csx_Get8 — read from device register, 9F-100
csx_GetEventMask — return client event mask,

9F-196
csx_GetFirstClient — return first client, 9F-101
csx_GetFirstTuple — return first CIS tuple,

9F-103
csx_GetHandleOffset — return current access

handle offset, 9F-105
csx_GetMappedAddr — return mapped virtual

address, 9F-106
csx_GetNextClient — return next client, 9F-101
csx_GetNextTuple — return next CIS tuple,

9F-103
csx_GetStatus — return status of PC Card and

socket, 9F-107
csx_GetTupleData — return data portion of

tuple, 9F-110
csx_MakeDeviceNode — create minor nodes for

client, 9F-112
csx_MapLogSocket — return physical socket

number, 9F-114
csx_MapMemPage — map memory area on PC

Card, 9F-115
csx_ModifyConfiguration — modify PC Card

configuration, 9F-116
csx_ModifyWindow — modify window attributes,

9F-119
csx_Parse_CISTPL_BATTERY — parse Battery

Replacement Date tuple, 9F-121
csx_Parse_CISTPL_BYTEORDER — parse Byte

Order tuple, 9F-122
csx_Parse_CISTPL_CFTABLE_ENTRY — parse

Card Configuration Table tuple, 9F-124
csx_Parse_CISTPL_CONFIG — parse

Configuration tuple, 9F-130
csx_Parse_CISTPL_DATE — parse Card Initiali-

Index−3

zation Date tuple, 9F-132
csx_Parse_CISTPL_DEVICE — parse Device

Information tuple for Common Memory, 9F-133
csx_Parse_CISTPL_DEVICE_A — parse Device

Information tuple for Attribute Memory, 9F-133
csx_Parse_CISTPL_DEVICE_OA — parse Other

Condition Device Information tuple for Attri-
bute Memory, 9F-133

csx_Parse_CISTPL_DEVICE_OC — parse Other
Condition Device Information tuple for Com-
mon Memory, 9F-133

csx_Parse_CISTPL_DEVICEGEO — parse Device
Geo tuple, 9F-136

csx_Parse_CISTPL_DEVICEGEO_A — parse Dev-
ice Geo A tuple, 9F-138

csx_Parse_CISTPL_FORMAT — parse Data
Recording Format tuple, 9F-140

csx_Parse_CISTPL_FUNCE — parse Function
Extension tuple, 9F-142

csx_Parse_CISTPL_FUNCID — parse Function
Identification tuple, 9F-148

csx_Parse_CISTPL_GEOMETRY — parse
Geometry tuple, 9F-150

csx_Parse_CISTPL_JEDEC_A — parse JEDEC
Identifier tuple for Attribute Memory, 9F-151

csx_Parse_CISTPL_JEDEC_C — parse JEDEC
Identifier tuple for Common Memory, 9F-151

csx_Parse_CISTPL_LINKTARGET — parse Link
Target tuple, 9F-153

csx_Parse_CISTPL_LONGLINK_A — parse Long
Link A tuple, 9F-154

csx_Parse_CISTPL_LONGLINK_C — parse Long
Link C tuple, 9F-154

csx_Parse_CISTPL_LONGLINK_MFC — parse
Multi-Function tuple, 9F-156

csx_Parse_CISTPL_MANFID — parse Manufac-
turer Identification tuple, 9F-158

csx_Parse_CISTPL_ORG — parse Data Organiza-
tion tuple, 9F-159

csx_Parse_CISTPL_SPCL — parse Special Pur-
pose tuple, 9F-160

csx_Parse_CISTPL_SWIL — parse Software

Interleaving tuple, 9F-162
csx_Parse_CISTPL_VERS_1 — parse Level-1

Version/Product Information tuple, 9F-163
csx_Parse_CISTPL_VERS_2 — parse Level-2

Version and Information tuple, 9F-164
csx_ParseTuple — generic tuple parser, 9F-166
csx_Put16 — write to device register, 9F-168
csx_Put32 — write to device register, 9F-168
csx_Put64 — write to device register, 9F-168
csx_Put8 — write to device register, 9F-168
csx_RegisterClient — register client, 9F-169
csx_ReleaseConfiguration — release

configuration on PC Card, 9F-172
csx_ReleaseIO — release I/O resources, 9F-182
csx_ReleaseIRQ — release IRQ resource, 9F-186
csx_ReleaseSocketMask — clear client event

mask, 9F-188
csx_ReleaseWindow — release window

resources, 9F-190
csx_RepGet16 — read repetitively from device

register, 9F-174
csx_RepGet32 — read repetitively from device

register, 9F-174
csx_RepGet64 — read repetitively from device

register, 9F-174
csx_RepGet8 — read repetitively from device

register, 9F-174
csx_RepPut16 — write repetitively to device

register, 9F-176
csx_RepPut32 — write repetitively to device

register, 9F-176
csx_RepPut64 — write repetitively to device

register, 9F-176
csx_RepPut8 — write repetitively to device regis-

ter, 9F-176
csx_RequestConfiguration — configure PC

Card and socket, 9F-178
csx_RequestIO — request I/O resources, 9F-182
csx_RequestIRQ — request IRQ resource, 9F-186
csx_RequestSocketMask — request client event

mask, 9F-188
csx_RequestWindow — request window

Index−4

resources, 9F-190
csx_ResetFunction — reset a function on a PC

card, 9F-195
csx_SetEventMask — set client event mask,

9F-196
csx_SetHandleOffset — set current access han-

dle offset, 9F-198
csx_ValidateCIS — validate Card Information

Structure (CIS), 9F-199

D
datamsg — test whether a message is a data mes-

sage, 9F-200
DDI access credential structure

— ddi_get_cred, 9F-279
DDI announce a device

— ddi_report_dev, 9F-344
DDI device access

slave access only — ddi_slaveonly, 9F-350
DDI device critical region of control

enter — ddi_enter_critical, 9F-276
exit — ddi_exit_critical, 9F-276

DDI device information structure
find parent — ddi_get_parent, 9F-282
get the root of the dev_info tree —

ddi_root_node, 9F-347
remove a minor node for this devinfo —

ddi_remove_minor_node, 9F-341
DDI device instance number

get — ddi_get_instance, 9F-281
DDI device mapping

ddi_mapdev — create driver-controlled map-
ping of device, 9F-294

ddi_mapdev_intercept — control driver
notification of user accesses, 9F-296

ddi_mapdev_nointercept — control driver
notification of user accesses, 9F-296

devmap_default_access — device mapping
access entry point, 9F-360

DDI device registers
map — ddi_map_regs, 9F-300
return the number of register sets —

ddi_dev_nregs, 9F-230

DDI device registers, continued
return the size — ddi_dev_regsize, 9F-231
unmap — ddi_unmap_regs, 9F-300

DDI device virtual address
read 16 bit — ddi_peek16, 9F-315
read 32 bit — ddi_peek32, 9F-315
read 64 bit— ddi_peek64, 9F-315
read 8 bit — ddi_peek8, 9F-315
read a value — ddi_peek, 9F-315
write 16 bit — ddi_poke16, 9F-317
write 32 bit — ddi_poke32, 9F-317
write 64 bit — ddi_poke64, 9F-317
write 8 bit — ddi_poke8, 9F-317
write a value — ddi_poke, 9F-317

DDI device’s private data area
get the address —

ddi_get_driver_private, 9F-280
set the address —

ddi_set_driver_private, 9F-280
DDI devinfo node name

return — ddi_binding_name, 9F-210, 9F-314
DDI direct memory access

convert DMA handle to DMA addressing
cookie — ddi_dma_htoc, 9F-256

DDI direct memory access services
allocate consistent memory—

ddi_iopb_alloc, 9F-302
convert a DMA cookie — ddi_dma_coff,

9F-245
easier DMA setup — ddi_dma_addr_setup,

9F-236, 9F-243
find minimum alignment and transfer size for

device — ddi_iomin, 9F-285
find post DMA mapping alignment and

minimum effect properties —
ddi_dma_devalign, 9F-247

free consistent memory — ddi_iopb_free,
9F-302

report current DMA window offset and size —
ddi_dma_curwin, 9F-246

setup DMA mapping — ddi_dma_setup,
9F-264, 9F-265, 9F-268

setup DMA resources — ddi_dma_setup,
9F-271

shift current DMA window —

Index−5

ddi_dma_movwin,
DDI direct memory access services, continued

9F-260
tear down DMA mapping — ddi_dma_free,

9F-252
DDI information — csx_CS_DDI_Info, 9F-92
DDI interrupt handling

add an interrupt — ddi_add_intr, 9F-201
get interrupt block cookie —

ddi_get_iblock_cookie, 9F-201
indicate interrupt handler type —

ddi_intr_hilevel, 9F-283
remove an interrupt — ddi_remove_intr,

9F-201
return the number of interrupt specifications —

ddi_dev_nintrs, 9F-229
DDI memory mapping

map a segment — ddi_segmap, 9F-349,
9F-371

DDI page size conversions
— ddi_btop, 9F-211
— ddi_btopr, 9F-211
— ddi_ptob, 9F-211

DDI property management
create properties for leaf device drivers —

ddi_prop_create, 9F-320
— ddi_getlongprop, 9F-332
— ddi_getlongprop_buf, 9F-332
— ddi_getprop, 9F-332
— ddi_getproplen, 9F-332
— ddi_prop_op, 9F-332
modify properties for leaf device drivers —

ddi_prop_modify, 9F-320
remove all properties for leaf device drivers —

ddi_prop_remove_all, 9F-320
remove properties for leaf device drivers —

ddi_prop_remove, 9F-320
DDI self identifying devices

tell whether a device is self-identifying —
ddi_dev_is_sid, 9F-228

DDI soft interrupt handling
add a soft interrupt — ddi_add_softintr,

9F-204
get soft interrupt block cookie —

ddi_get_soft_iblock_cookie,

9F-204
DDI soft interrupt handling, continued

remove a soft interrupt —
ddi_remove_softintr, 9F-204

DDI soft state utility routines
allocate state structure —

ddi_soft_state_zalloc, 9F-351
free soft state entry —

ddi_soft_state_free, 9F-351
get pointer to soft state —

ddi_get_soft_state, 9F-351
initialize state — ddi_soft_state_init,

9F-351
remove all state info —

ddi_soft_state_fini, 9F-351
ddi_add_intr — add an interrupt handler, 9F-201
ddi_add_softintr — add a soft interrupt, 9F-204
ddi_binding_name — return driver binding

name, 9F-210
ddi_create_minor_node — create a minor node

for this device, 9F-218
ddi_dev_is_needed — inform the system that a

device’s component is required, 9F-226
ddi_device_copy — copy data from one device

register to another device register, 9F-220
ddi_device_zero — zero fill the device register,

9F-222
ddi_devid_compare — Kernel interfaces for dev-

ice ids , 9F-223
ddi_devid_free — Kernel interfaces for device

ids , 9F-223
ddi_devid_init — Kernel interfaces for device

ids , 9F-223
ddi_devid_register — Kernel interfaces for

device ids , 9F-223
ddi_devid_sizeof — Kernel interfaces for device

ids , 9F-223
ddi_devid_unregister — Kernel interfaces for

device ids , 9F-223
ddi_devid_valid — Kernel interfaces for device

ids , 9F-223
ddi_dma_addr_bind_handle — binds an

address to a DMA handle, 9F-233

Index−6

ddi_dma_alloc_handle — allocate DMA handle,
9F-237

ddi_dma_buf_bind_handle — binds a system
buffer to a DMA handle, 9F-240

ddi_dma_burstsizes — find out the allowed
burst sizes for a DMA mapping, 9F-244

ddi_dma_free_handle — free DMA handle,
9F-253

ddi_dma_getwin — activate a new DMA window,
9F-254

ddi_dma_mem_alloc — allocate memory for
DMA transfer, 9F-257

ddi_dma_mem_free — free previously allocated
memory, 9F-259

ddi_dma_nextcookie — retrieve subsequent
DMA cookie, 9F-262

ddi_dma_nextseg — get next DMA segment,
9F-264

ddi_dma_nextwin — get next DMA window,
9F-265

ddi_dma_numwin — retrieve number of DMA win-
dows, 9F-267

ddi_dma_segtocookie — convert a DMA seg-
ment to a DMA address cookie, 9F-268

ddi_dma_set_sbus64 — allow 64 bit transfers on
SBus, 9F-270

ddi_dma_sync — synchronize CPU and I/O views
of memory, 9F-273

ddi_dma_unbind_handle — unbinds the address
in a DMA handle, 9F-275

ddi_dmae — system DMA engine functions, 9F-248
ddi_dmae_1stparty — system DMA engine

functions, 9F-248
ddi_dmae_alloc — system DMA engine func-

tions, 9F-248
ddi_dmae_disable — system DMA engine func-

tions, 9F-248
ddi_dmae_enable — system DMA engine func-

tions, 9F-248
ddi_dmae_getattr — system DMA engine func-

tions, 9F-248
ddi_dmae_getcnt — system DMA engine func-

tions, 9F-248
ddi_dmae_getlim — system DMA engine func-

tions, 9F-248
ddi_dmae_prog — system DMA engine functions,

9F-248
ddi_dmae_release — system DMA engine func-

tions, 9F-248
ddi_dmae_stop — system DMA engine functions,

9F-248
ddi_ffs — find first (last) bit set in a long integer,

9F-277
ddi_fls — find first (last) bit set in a long integer,

9F-277
ddi_get_iblock_cookie — get interrupt block

cookie, 9F-201
ddi_get_name — return driver binding name,

9F-210
ddi_get_soft_iblock_cookie — get soft inter-

rupt block cookie, 9F-204
ddi_get16 — read data from the device, 9F-278
ddi_get32 — read data from the device, 9F-278
ddi_get64 — read data from the device, 9F-278
ddi_get8 — read data from the device, 9F-278
ddi_io_get16 — read data from the mapped dev-

ice register in I/O space, 9F-284
ddi_io_get32 — read data from the mapped dev-

ice register in I/O space, 9F-284
ddi_io_get8 — read data from the mapped dev-

ice register in I/O space, 9F-284
ddi_io_getb — read data from the mapped dev-

ice register in I/O space, 9F-284
ddi_io_getl — read data from the mapped dev-

ice register in I/O space, 9F-284
ddi_io_getw — read data from the mapped dev-

ice register in I/O space, 9F-284
ddi_io_put16 — write data to the mapped device

register in I/O space, 9F-288
ddi_io_put32 — write data to the mapped device

register in I/O space, 9F-288
ddi_io_put8 — write data to the mapped device

register in I/O space, 9F-288
ddi_io_putb — write data to the mapped device

Index−7

register in I/O space, 9F-288
ddi_io_putl — write data to the mapped device

register in I/O space, 9F-288
ddi_io_putw — write data to the mapped device

register in I/O space, 9F-288
ddi_io_rep_get16 — read multiple data from

the mapped device register in I/O space,
9F-290

ddi_io_rep_get32 — read multiple data from
the mapped device register in I/O space,
9F-290

ddi_io_rep_get8 — read multiple data from the
mapped device register in I/O space, 9F-290

ddi_io_rep_getb — read multiple data from the
mapped device register in I/O space, 9F-290

ddi_io_rep_getl — read multiple data from the
mapped device register in I/O space, 9F-290

ddi_io_rep_getw — read multiple data from the
mapped device register in I/O space, 9F-290

ddi_io_rep_put16 — write multiple data to the
mapped device register in I/O space, 9F-292

ddi_io_rep_put32 — write multiple data to the
mapped device register in I/O space, 9F-292

ddi_io_rep_put8 — write multiple data to the
mapped device register in I/O space, 9F-292

ddi_io_rep_putb — write multiple data to the
mapped device register in I/O space, 9F-292

ddi_io_rep_putl — write multiple data to the
mapped device register in I/O space, 9F-292

ddi_io_rep_putw — write multiple data to the
mapped device register in I/O space, 9F-292

ddi_iopb_alloc — allocate and free non-
sequentially accessed memory, 9F-286

ddi_iopb_free — allocate and free non-
sequentially accessed memory, 9F-286

ddi_mapdev — create driver-controlled mapping
of device, 9F-294

ddi_mapdev_intercept — control driver
notification of user accesses, 9F-296

ddi_mapdev_intercept — control driver
notification of user accesses, 9F-296

ddi_mapdev_set_device_acc_attr — Set the

device attributes for the mapping, 9F-298
ddi_mem_get16 — read data from mapped device

in the memory space or allocated DMA
memory, 9F-304

ddi_mem_get32 — read data from mapped device
in the memory space or allocated DMA
memory, 9F-304

ddi_mem_get64 — read data from mapped device
in the memory space or allocated DMA
memory, 9F-304

ddi_mem_put16 — write data to mapped device in
the memory space or allocated DMA memory,
9F-305

ddi_mem_put32 — write data to mapped device in
the memory space or allocated DMA memory,
9F-305

ddi_mem_put64 — write data to mapped device in
the memory space or allocated DMA memory,
9F-305

ddi_mem_rep_get16 — read data from mapped
device in the memory space or allocated DMA
memory, 9F-306

ddi_mem_rep_get32 — read data from mapped
device in the memory space or allocated DMA
memory, 9F-306

ddi_mem_rep_get64 — read data from mapped
device in the memory space or allocated DMA
memory, 9F-306

ddi_mem_rep_get8 — read data from mapped
device in the memory space or allocated DMA
memory, 9F-306

ddi_mem_rep_put16 — write data to mapped
device in the memory space or allocated DMA
memory, 9F-308

ddi_mem_rep_put32 — write data to mapped
device in the memory space or allocated DMA
memory, 9F-308

ddi_mem_rep_put64 — write data to mapped
device in the memory space or allocated DMA
memory, 9F-308

ddi_mem_rep_put8 — write data to mapped dev-
ice in the memory space or allocated DMA

Index−8

memory, 9F-308
ddi_mmap_get_model — return data model type

of current thread, 9F-310
ddi_model_convert_from — Determine if there

is a need to translate shared data structure con-
tents, 9F-312

ddi_node_name — return the devinfo node name,
9F-314

ddi_prop_exists — check for the existence of a
property, 9F-323

ddi_prop_get_int — look up integer property,
9F-325

ddi_prop_lookup — lookup property informa-
tion, 9F-328

ddi_prop_lookup_byte_array — lookup pro-
perty information, 9F-328

ddi_prop_lookup_int_array — lookup pro-
perty information, 9F-328

ddi_prop_lookup_string — lookup property
information, 9F-328

ddi_prop_lookup_string_array — lookup
property information, 9F-328

ddi_prop_update — update property informa-
tion., 9F-334

ddi_prop_update_byte_array — update pro-
perty information., 9F-334

ddi_prop_update_int — update property infor-
mation., 9F-334

ddi_prop_update_int_array — update pro-
perty information., 9F-334

ddi_prop_update_string — update property
information., 9F-334

ddi_prop_update_string_array — update
property information., 9F-334

ddi_put16 — write data to the device, 9F-337
ddi_put32 — write data to the device, 9F-337
ddi_put64 — write data to the device, 9F-337
ddi_put8 — write data to the device, 9F-337
ddi_regs_map_free — free mapped register

address space, 9F-338
ddi_regs_map_setup — set up a mapping for a

register address space, 9F-339

ddi_remove_intr — remove an interrupt
handler, 9F-201

ddi_remove_softintr — remove a soft inter-
rupt, 9F-204

ddi_rep_get16 — read data from the mapped
memory address, device register or allocated
DMA memory address, 9F-342

ddi_rep_get32 — read data from the mapped
memory address, device register or allocated
DMA memory address, 9F-342

ddi_rep_get64 — read data from the mapped
memory address, device register or allocated
DMA memory address, 9F-342

ddi_rep_get8 — read data from the mapped
memory address, device register or allocated
DMA memory address, 9F-342

ddi_rep_getb — read data from the mapped
memory address, device register or allocated
DMA memory address, 9F-342

ddi_rep_getl — read data from the mapped
memory address, device register or allocated
DMA memory address, 9F-342

ddi_rep_getll — read data from the mapped
memory address, device register or allocated
DMA memory address, 9F-342

ddi_rep_getw — read data from the mapped
memory address, device register or allocated
DMA memory address, 9F-342

ddi_rep_put16 — write data to the mapped
memory address, device register or allocated
DMA memory address, 9F-345

ddi_rep_put32 — write data to the mapped
memory address, device register or allocated
DMA memory address, 9F-345

ddi_rep_put64 — write data to the mapped
memory address, device register or allocated
DMA memory address, 9F-345

ddi_rep_put8 — write data to the mapped
memory address, device register or allocated
DMA memory address, 9F-345

ddi_rep_putb — write data to the mapped
memory address, device register or allocated

Index−9

DMA memory address, 9F-345
ddi_rep_putl — write data to the mapped

memory address, device register or allocated
DMA memory address, 9F-345

ddi_rep_putll — write data to the mapped
memory address, device register or allocated
DMA memory address, 9F-345

ddi_rep_putw — write data to the mapped
memory address, device register or allocated
DMA memory address, 9F-345

ddi_trigger_softintr — trigger a soft inter-
rupt, 9F-204

ddi_umem_alloc — allocate kernel memory,
9F-356

ddi_umem_free — allocate kernel memory, 9F-356
ddi_umem_zalloc — allocate kernel memory,

9F-356
default SCSI HBA probe function —

scsi_hba_probe, 9F-509
delay — delay process execution for a specified

number of clock ticks, 9F-358
deregister client from Card Services list —

csx_DeregisterClient, 9F-94
determine data model type mismatch —

ddi_model_convert_from, 9F-312
Device Driver Interface, See DDI
device mapping access entry point —

devmap_default_access, 9F-360
device switch tables

return function for insignificant entries —
nulldev, 9F-436

devices
get major device number — getmajor, 9F-397
get minor device number — getminor, 9F-398
make device number from major and minor

numbers — makedevice, 9F-420
devices, non-pollable

error return function — nochpoll, 9F-433
devmap_default_access — device mapping

access entry point, 9F-360
devmap_devmem_setup — Set driver memory

mapping parameters , 9F-364

devmap_devmem_setup — Set driver memory
mapping parameters , continued

devmap_devmem_setup(), 9F-363
devmap_umem_setup(), 9F-364

devmap_do_ctxmgt — perform device context
switching on a mapping, 9F-366

devmap_load — control the validation of memory
address translations, 9F-372

devmap_set_ctx_timeout — set context
management timeout value, 9F-369

devmap_umem_setup — Set driver memory map-
ping parameters , 9F-364

devmap_unload — control the validation of
memory address translations, 9F-372

disksort — single direction elevator seek sort for
buffers, 9F-374

DMA mapping, the allowed burst sizes for —
ddi_dma_burstsizes, 9F-244

driver buffers
copy data— ddi_copyin, 9F-212
copy data from driver — ddi_copyout,

9F-215
copy data from driver to user program —

copyout, 9F-86
copy data from user program — copyin,

9F-82
driver error messages

display an error message or panic the system
— cmn_err, 9F-72

driver privilege — drv_priv, 9F-378
drv_getparm — retrieve kernel state information,

9F-375
drv_hztousec — convert clock ticks to

microseconds, 9F-377
drv_priv — determine driver privilege, 9F-378
drv_usectohz — convert microseconds to clock

ticks, 9F-379
drv_usecwait — busy-wait for specified interval,

9F-380
dupb — duplicate a message block descriptor,

9F-381
duplicate a message — dupmsg, 9F-384
duplicate a message block descriptor — dupb,

Index−10

9F-381
duplicate access handle — csx_DupHandle, 9F-95
dupmsg — duplicate a message, 9F-384

E
enable/disable accesses to the PCI Local Bus

Configuration space.
— pci_config_setup, 9F-441
— pci_config_teardown, 9F-441

error return codes converted to text strings —
csx_Error2Text, 9F-97

error return function for illegal entries — nodev,
9F-434

event mask
return client event mask —

csx_GetEventMask, 9F-196
set client event mask — csx_SetEventMask,

9F-196
events converted to text strings —

csx_Event2Text, 9F-98
expression verification

— assert, 9F-43

F
find first (last) bit set in a long integer — ddi_ffs,

9F-277
ddi_fls, 9F-277

first CIS tuple — csx_GetFirstTuple, 9F-103
flushband — flush messages for specified priority

band, 9F-389
free access handle — csx_FreeHandle, 9F-99
free DMA handle

— ddi_dma_free_handle, 9F-253
free mapped register address space —

ddi_regs_map_free, 9F-338
free previously allocated memory —

ddi_dma_mem_free, 9F-259
free space — rmfree, 9F-482
freerbuf — free a raw buffer header, 9F-394
freeze, thaw the state of a stream — freezestr,

9F-395
unfreezestr, 9F-395

freezestr — freeze, thaw the state of a stream,

9F-395

G
generic tuple parser — csx_ParseTuple, 9F-166
get interrupt block cookie

— ddi_get_iblock_cookie, 9F-201
get next DMA segment — ddi_dma_nextseg,

9F-264
get next DMA window — ddi_dma_nextwin,

9F-265
get soft interrupt block cookie

— ddi_get_soft_iblock_cookie, 9F-204
getmajor — get major device number, 9F-397
getminor — get minor device number, 9F-398
getrbuf — get a raw buffer header, 9F-402

H
handle variable argument list

— va_arg, 9F-555
— va_copy, 9F-555
— va_end, 9F-555
— va_start, 9F-555

I
I/O error

return — geterror, 9F-396
I/O resources

release I/O resources — csx_ReleaseIO,
9F-182

request I/O resources — csx_RequestIO,
9F-182

I/O, block
suspend processes pending completion —

biowait, 9F-60
I/O, buffer

release buffer and notify processes —
biodone, 9F-52

I/O, paged request
allocate virtual address space — bp_mapin,

9F-61
deallocate virtual address space —

bp_mapout, 9F-62
I/O, physical

Index−11

I/O, physical, continued
— minphys, 9F-442
— physio, 9F-442

inb — read from an I/O port, 9F-404
inform the system that a device’s component is

required. — ddi_dev_is_needed, 9F-226
initialize a buffer structure — bioinit, 9F-56
initialize a named kstat — kstat_named_init,

9F-414
inl — read from an I/O port, 9F-404
interrupt handling

add an interrupt — ddi_add_intr, 9F-201
get interrupt block cookie —

ddi_get_iblock_cookie, 9F-201
remove an interrupt — ddi_remove_intr,

9F-201
inw — read from an I/O port, 9F-404
IOC_CONVERT_FROM — Determine if there is a

need to translate M_IOCTL contents, 9F-407
IRQ resource

release IRQ resource — csx_ReleaseIRQ,
9F-186

request IRQ resource — csx_RequestIRQ,
9F-186

K
kernel address locations

between locations — bcopy, 9F-47
kernel addresses

get page frame number — hat_getkpfnum,
9F-403

Kernel interfaces for device ids
— ddi_devid_compare, 9F-223
— ddi_devid_free, 9F-223
— ddi_devid_init, 9F-223
— ddi_devid_register, 9F-223
— ddi_devid_sizeof, 9F-223
— ddi_devid_unregister, 9F-223
— ddi_devid_valid, 9F-223

kernel modules, dynamic loading
add loadable module — mod_install, 9F-426
query loadable module — mod_info, 9F-426
remove loadable module — mod_remove,

9F-426

kmem_alloc — allocate kernel memory, 9F-408
kmem_free — allocate kernel memory, 9F-408
kmem_zalloc — allocate kernel memory, 9F-408
kstat_create — create and initialize a new kstat,

9F-411
kstat_delete — remove a kstat from the system,

9F-412
kstat_install — add a fully initialized kstat to

the system, 9F-413
kstat_named_init — initialize a named kstat,

9F-414
kstat_queue — update I/O kstat statistics, 9F-415
kstat_runq_back_to_waitq — update I/O

kstat statistics, 9F-415
kstat_runq_enter — update I/O kstat statistics,

9F-415
kstat_runq_exit — update I/O kstat statistics,

9F-415
kstat_waitq_enter — update I/O kstat statis-

tics, 9F-415
kstat_waitq_exit — update I/O kstat statistics,

9F-415
kstat_waitq_to_runq — update I/O kstat statis-

tics, 9F-415

L
look up integer property — ddi_prop_get_int,

9F-325
lookup property information

— ddi_prop_lookup, 9F-328
— ddi_prop_lookup_byte_array, 9F-328
— ddi_prop_lookup_int_array, 9F-328
— ddi_prop_lookup_string, 9F-328
— ddi_prop_lookup_string_array,

9F-328

M
makedevice — make device number from major

and minor numbers, 9F-420
map memory area on PC Card —

csx_MapMemPage, 9F-115
max — return the larger of two integers, 9F-421

Index−12

memory
clear for a given number of bytes — bzero,

9F-68
min — return the lesser of two integers, 9F-422
minor node for device

create — ddi_create_minor_node, 9F-218
modify PC Card configuration —

csx_ModifyConfiguration, 9F-116
modify window attributes — csx_ModifyWindow,

9F-119
mt-streams — STREAMS multithreading, 9F-429
mutex routines

— mutex, 9F-431
— mutex_destroy, 9F-431
— mutex_enter, 9F-431
— mutex_exit, 9F-431
— mutex_init, 9F-431
— mutex_owned, 9F-431
— mutex_tryenter, 9F-431

mutual exclusion lock, See mutex

N
next CIS tuple — csx_GetNextTuple, 9F-103
nodes

create minor nodes for client —
csx_MakeDeviceNode, 9F-112

notify target driver of bus resets —
scsi_reset_notify, 9F-525

O
obtain DDI information — csx_CS_DDI_Info,

9F-92
OTHERQ — get pointer to queue’s partner queue,

9F-437
outb — write to an I/O port, 9F-438
outl — write to an I/O port, 9F-438
outw — write to an I/O port, 9F-438

P
parse Battery Replacement Date tuple —

csx_Parse_CISTPL_BATTERY, 9F-121
parse Byte Order tuple —

csx_Parse_CISTPL_BYTEORDER, 9F-122

parse Card Configuration Table tuple —
csx_Parse_CISTPL_CFTABLE_ENTRY, 9F-124

parse Card Initialization Date tuple —
csx_Parse_CISTPL_DATE, 9F-132

parse Configuration tuple —
csx_Parse_CISTPL_CONFIG, 9F-130

parse Data Organization tuple —
csx_Parse_CISTPL_ORG, 9F-159

parse Data Recording Format tuple —
csx_Parse_CISTPL_FORMAT, 9F-140

parse Device Geo A tuple —
csx_Parse_CISTPL_DEVICEGEO_A, 9F-138

parse Device Geo tuple —
csx_Parse_CISTPL_DEVICEGEO, 9F-136

parse Device Information tuple
for Attribute Memory —

csx_Parse_CISTPL_DEVICE_A,
9F-133

for Common Memory —
csx_Parse_CISTPL_DEVICE, 9F-133

parse Function Extension tuple —
csx_Parse_CISTPL_FUNCE, 9F-142

parse Function Identification tuple —
csx_Parse_CISTPL_FUNCID, 9F-148

parse Geometry tuple —
csx_Parse_CISTPL_GEOMETRY, 9F-150

parse JEDEC Identifier tuple
for Attribute Memory —

csx_Parse_CISTPL_JEDEC_A,
9F-151

for Common Memory —
csx_Parse_CISTPL_JEDEC_C,
9F-151

parse Level-1 Version/Product Information tuple —
csx_Parse_CISTPL_VERS_1, 9F-163

parse Level-2 Version and Information tuple —
csx_Parse_CISTPL_VERS_2, 9F-164

parse Link Target tuple —
csx_Parse_CISTPL_LINKTARGET, 9F-153

parse Long Link A tuple
— csx_Parse_CISTPL_LONGLINK_A, 9F-154

parse Long Link C tuple
— csx_Parse_CISTPL_LONGLINK_C, 9F-154

Index−13

parse Manufacturer Identification tuple —
csx_Parse_CISTPL_MANFID, 9F-158

parse Multi-Function tuple —
csx_Parse_CISTPL_LONGLINK_MFC, 9F-156

parse Other Condition Device Information tuple
for Attribute Memory —

csx_Parse_CISTPL_DEVICE_OA,
9F-133

for Common Memory —
csx_Parse_CISTPL_DEVICE_OC,
9F-133

parse Software Interleaving tuple —
csx_Parse_CISTPL_SWIL, 9F-162

parse Special Purpose tuple —
csx_Parse_CISTPL_SPCL, 9F-160

parser, for tuples (generic) — csx_ParseTuple,
9F-166

pci_config_get16 — read or write single datum
of various sizes to the PCI Local Bus
Configuration space, 9F-439

pci_config_get32 — read or write single datum
of various sizes to the PCI Local Bus
Configuration space, 9F-439

pci_config_get64 — read or write single datum
of various sizes to the PCI Local Bus
Configuration space, 9F-439

pci_config_get8 — read or write single datum
of various sizes to the PCI Local Bus
Configuration space, 9F-439

pci_config_getb — read or write single datum
of various sizes to the PCI Local Bus
Configuration space, 9F-439

pci_config_getl — read or write single datum
of various sizes to the PCI Local Bus
Configuration space, 9F-439

pci_config_getll — read or write single datum
of various sizes to the PCI Local Bus
Configuration space, 9F-439

pci_config_getw — read or write single datum
of various sizes to the PCI Local Bus
Configuration space, 9F-439

pci_config_put16 — read or write single datum

of various sizes to the PCI Local Bus
Configuration space, 9F-439

pci_config_put32 — read or write single datum
of various sizes to the PCI Local Bus
Configuration space, 9F-439

pci_config_put64 — read or write single datum
of various sizes to the PCI Local Bus
Configuration space, 9F-439

pci_config_put8 — read or write single datum
of various sizes to the PCI Local Bus
Configuration space, 9F-439

pci_config_putb — read or write single datum
of various sizes to the PCI Local Bus
Configuration space, 9F-439

pci_config_putl — read or write single datum
of various sizes to the PCI Local Bus
Configuration space, 9F-439

pci_config_putll — read or write single datum
of various sizes to the PCI Local Bus
Configuration space, 9F-439

pci_config_putw — read or write single datum
of various sizes to the PCI Local Bus
Configuration space, 9F-439

pci_config_setup — enable/disable accesses to
the PCI Local Bus Configuration space., 9F-441

pci_config_teardown — enable/disable
accesses to the PCI Local Bus Configuration
space., 9F-441

perform device context switching on a mapping —
devmap_do_ctxmgt, 9F-366

pm_busy_component — control device com-
ponents’ availability for power management,
9F-444

pm_idle_component — control device com-
ponents’ availability for power management,
9F-444

pollwakeup — inform a process that an event has
occurred, 9F-447

proc_ref — send a signal to a process, 9F-448
proc_signal — send a signal to a process, 9F-448
proc_unref — send a signal to a process, 9F-448
put — call a STREAMS put procedure, 9F-453

Index−14

Q
qbufcall — call a function when a buffer becomes

available, 9F-463
qtimeout — execute a function after a specified

length of time, 9F-469
qunbufcall — cancel a pending qbufcall request,

9F-470
quntimeout — cancel previous timeout function

call, 9F-471
qwait — STREAMS wait routines, 9F-472
qwait_sig — STREAMS wait routines, 9F-472
qwriter — asynchronous STREAMS perimeter

upgrade, 9F-474

R
raw buffer

free a raw buffer header — freerbuf, 9F-394
get a raw buffer header — getrbuf, 9F-402

RD — get pointer to the read queue, 9F-475
read data from mapped device in the memory space

or allocated DMA memory
— ddi_mem_get16, 9F-304
— ddi_mem_get32, 9F-304
— ddi_mem_get64, 9F-304
— ddi_mem_get8, 9F-304
— ddi_mem_rep_get16, 9F-306
— ddi_mem_rep_get32, 9F-306
— ddi_mem_rep_get64, 9F-306
— ddi_mem_rep_get8, 9F-306

read data from the device
— ddi_get16, 9F-278
— ddi_get32, 9F-278
— ddi_get64, 9F-278
— ddi_get8, 9F-278

read data from the mapped device register in I/O
space
— ddi_io_get16, 9F-284
— ddi_io_get32, 9F-284
— ddi_io_get8, 9F-284
— ddi_io_getb, 9F-284
— ddi_io_getl, 9F-284
— ddi_io_getw, 9F-284

read data from the mapped memory address, dev-

ice register or allocated DMA memory address
— ddi_rep_get16, 9F-342
— ddi_rep_get32, 9F-342
— ddi_rep_get64, 9F-342
— ddi_rep_get8, 9F-342
— ddi_rep_getb, 9F-342
— ddi_rep_getl, 9F-342
— ddi_rep_getll, 9F-342
— ddi_rep_getw, 9F-342

read from an I/O port — inb, 9F-404
inl, 9F-404
inw, 9F-404
repinsb, 9F-404
repinsd, 9F-404
repinsw, 9F-404

read from device register
— csx_Get16, 9F-100
— csx_Get32, 9F-100
— csx_Get64, 9F-100
— csx_Get8, 9F-100

read multiple data from the mapped device register
in I/O space
— ddi_io_rep_get16, 9F-290
— ddi_io_rep_get32, 9F-290
— ddi_io_rep_get8, 9F-290
— ddi_io_rep_getb, 9F-290
— ddi_io_rep_getl, 9F-290
— ddi_io_rep_getw, 9F-290

read or write a PC Card Configuration Register —
csx_AccessConfigurationRegister,
9F-88

read or write single datum of various sizes to the
PCI Local Bus Configuration space
— pci_config_get16, 9F-439
— pci_config_get32, 9F-439
— pci_config_get64, 9F-439
— pci_config_get8, 9F-439
— pci_config_getb, 9F-439
— pci_config_getl, 9F-439
— pci_config_getll, 9F-439
— pci_config_getw, 9F-439
— pci_config_put16, 9F-439
— pci_config_put32, 9F-439
— pci_config_put64, 9F-439

Index−15

read or write single datum of various sizes to the
PCI Local Bus Configuration space,
continued

— pci_config_put8, 9F-439
— pci_config_putb, 9F-439
— pci_config_putl, 9F-439
— pci_config_putll, 9F-439
— pci_config_putw, 9F-439

read repetitively from device register
— csx_RepGet16, 9F-174
— csx_RepGet32, 9F-174
— csx_RepGet64, 9F-174
— csx_RepGet8, 9F-174

readers/writer lock functions
— rw_destroy, 9F-487
— rw_downgrade, 9F-487
— rw_enter, 9F-487
— rw_exit, 9F-487
— rw_init, 9F-487
— rw_read_locked, 9F-487
— rw_tryenter, 9F-487
— rw_tryupgrade, 9F-487
— rwlock, 9F-487

register client — csx_RegisterClient, 9F-169
release client event mask —

csx_ReleaseSocketMask, 9F-188
release configuration on PC Card —

csx_ReleaseConfiguration, 9F-172
release I/O resources — csx_ReleaseIO, 9F-182
release IRQ resource — csx_ReleaseIRQ, 9F-186
release window resources —

csx_ReleaseWindow, 9F-190
remove a kstat from the system — kstat_delete,

9F-412
remove a soft interrupt

— ddi_remove_softintr, 9F-204
remove an interrupt handler

— ddi_remove_intr, 9F-201
remove client from Card Services list —

csx_DeregisterClient, 9F-94
repinsb — read from an I/O port, 9F-404
repinsd — read from an I/O port, 9F-404
repinsw — read from an I/O port, 9F-404
repoutsb — write to an I/O port, 9F-438

repoutsd — write to an I/O port, 9F-438
repoutsw — write to an I/O port, 9F-438
request client event mask —

csx_RequestSocketMask, 9F-188
request I/O resources — csx_RequestIO, 9F-182
request IRQ resource — csx_RequestIRQ, 9F-186
request window resources —

csx_RequestWindow, 9F-190
reset a function on a PC card —

csx_ResetFunction, 9F-195
resource map

allocate resource maps — rmallocmap, 9F-479
free resource maps — rmallocmap, 9F-479

retrieve kernel state information — drv_getparm,
9F-375

retrieve number of DMA windows —
ddi_dma_numwin, 9F-267

retrieve subsequent DMA cookie —
ddi_dma_nextcookie, 9F-262

return client
— csx_GetFirstClient, 9F-101
— csx_GetNextClient, 9F-101

return client event mask — csx_GetEventMask,
9F-196

return current access handle offset —
csx_GetHandleOffset, 9F-105

return data model type of current thread —
ddi_mmap_get_model, 9F-310

return data portion of tuple —
csx_GetTupleData, 9F-110

return driver binding name
— ddi_binding_name, 9F-210
— ddi_get_name, 9F-210

return index matching capability string —
scsi_hba_lookup_capstr, 9F-506

return physical socket number —
csx_MapLogSocket, 9F-114

return status of PC Card and socket —
csx_GetStatus, 9F-107

return the devinfo node name — ddi_node_name,
9F-314

return the larger of two integers — max, 9F-421

Index−16

return the lesser of two integers — min, 9F-422
return tuple

first CIS tuple — csx_GetFirstTuple,
9F-103

next CIS tuple — csx_GetNextTuple, 9F-103
returns size of a buffer structure — biosize, 9F-59
rmalloc — allocate space from a resource map,

9F-476
rmalloc_wait — allocate space from a resource

map, 9F-481
rmfree — free space back into a resource map,

9F-482

S
SAMESTR — test if next queue is in the same stream,

9F-489
SCSI commands, make packet

— makecom, 9F-418
— makecom_g0, 9F-418
— makecom_g0_s, 9F-418
— makecom_g1, 9F-418
— makecom_g5, 9F-418

SCSI dma utility routines
— scsi_dmafree, 9F-496
— scsi_dmaget, 9F-496

SCSI HBA attach and detach routines
— scsi_hba_attach, 9F-502
— scsi_hba_attach_setup, 9F-502
— scsi_hba_detach, 9F-502

SCSI Host Bus Adapter system initialization and
completion routines
— scsi_hba_init, 9F-505
— scsi_hba_init, 9F-505

SCSI packet
allocate a SCSI packet in iopb map —

get_pktiopb, 9F-399
free a packet in iopb map — free_pktiopb,

9F-399
free an allocated SCSI packet and its DMA

resource — scsi_destroy_pkt,
9F-495

SCSI packet utility routines
— scsi_pktalloc, 9F-519
— scsi_pktfree, 9F-519

SCSI packet utility routines, continued
— scsi_resalloc, 9F-519
— scsi_resfree, 9F-519

scsi_abort — abort a SCSI command, 9F-490
scsi_alloc_consistent_buf — scsi dma utility

for allocating an I/O buffer for SCSI DMA,
9F-491

scsi_cname — decode SCSI commands, 9F-493
scsi_destroy_pkt — free an allocated SCSI

packet and its DMA resource, 9F-495
scsi_dname — decode SCSI peripheral device

type, 9F-493
scsi_errmsg — display a SCSI request sense mes-

sage, 9F-498
scsi_free_consistent_buf — free a previ-

ously allocated SCSI DMA I/O buffer, 9F-501
scsi_hba_attach — SCSI HBA attach and detach

routines, 9F-502
scsi_hba_attach_setup — SCSI HBA attach

and detach routines, 9F-502
scsi_hba_detach — SCSI HBA attach and detach

routines, 9F-502
scsi_hba_fini — SCSI Host Bus Adapter system

completion routines, 9F-505
scsi_hba_init — SCSI Host Bus Adapter system

initialization routines, 9F-505
scsi_hba_lookup_capstr — return index

matching capability string, 9F-506
scsi_hba_pkt_alloc — allocate and free a

scsi_pkt structure, 9F-507
scsi_hba_pkt_free — allocate and free a

scsi_pkt structure, 9F-507
scsi_hba_probe — default SCSI HBA probe

function, 9F-509
scsi_hba_tran_alloc — allocate and free tran-

sport structures, 9F-510
scsi_hba_tran_free — allocate and free tran-

sport structures, 9F-510
scsi_ifgetcap — get SCSI transport capability,

9F-511
scsi_ifsetcap — set SCSI transport capability,

9F-511

Index−17

scsi_init_pkt — prepare a complete SCSI
packet, 9F-514

scsi_log — display a SCSI-device-related mes-
sage, 9F-517

scsi_mname — decode SCSI messages, 9F-493
scsi_poll — run a polled SCSI command on

behalf of a target driver, 9F-521
scsi_probe — utility for probing a scsi device,

9F-522
scsi_reset — reset a SCSI bus or target, 9F-524
scsi_reset_notify — notify target driver of bus

resets, 9F-525
scsi_rname — decode SCSI packet completion

reasons, 9F-493
scsi_slave — utility for SCSI target drivers to

establish the presence of a target, 9F-526
scsi_sname — decode SCSI sense keys, 9F-493
scsi_sync_pkt — synchronize CPU and I/O

views of memory, 9F-527
scsi_transport — request by a target driver to

start a SCSI command, 9F-528
scsi_unprobe — free resources allocated during

initial probing, 9F-529
scsi_unslave — free resources allocated during

initial probing, 9F-529
semaphore functions

— sema_destroy, 9F-530
— sema_init, 9F-530
— sema_p, 9F-530
— sema_p_sig, 9F-530
— sema_tryp, 9F-530
— sema_v, 9F-530
— semaphore, 9F-530

send a signal to a process
— proc_ref, 9F-448
— proc_signal, 9F-448
— proc_unref, 9F-448

set client event mask —
csx_RequestSocketMask, 9F-188, 9F-196

set current access handle offset —
csx_SetHandleOffset, 9F-198

Set driver memory mapping parameters

Set driver memory mapping parameters , continued
— devmap_devmem_setup, 9F-364
— devmap_umem_setup, 9F-364

Set the device attributes for the mapping —
ddi_mapdev_set_device_acc_attr, 9F-298

set up a mapping for a register address space —
ddi_regs_map_setup, 9F-339

single direction elevator seek sort for buffers —
disksort, 9F-374

size in bytes
convert size in pages — ptob, 9F-450
convert to size in memory pages (round down)

— btop, 9F-63
convert to size in memory pages (round up) —

btopr, 9F-64
socket number

return physical socket number —
csx_MapLogSocket, 9F-114

soft interrupt handling
add a soft interrupt — ddi_add_softintr,

9F-204
get soft interrupt block cookie —

ddi_get_soft_iblock_cookie,
9F-204

remove a soft interrupt —
ddi_remove_softintr, 9F-204

trigger a soft interrupt —
ddi_trigger_softintr, 9F-204

sprintf — format characters in memory, 9F-532
status of PC Card and socket — csx_GetStatus,

9F-107
STREAMS ioctl blocks

allocate — mkiocb, 9F-423
STREAMS message blocks

allocate — allocb, 9F-38
attach a user-supplied data buffer in place —

esballoc, 9F-386
call a function when a buffer becomes available

— bufcall, 9F-549, 9F-65, 9F-463,
9F-470

call function when buffer is available — esbb-
call, 9F-388

concatenate bytes in a message — msgpullup,
9F-428, 9F-451

Index−18

STREAMS message blocks, continued
concatenate two — linkb, 9F-417
copy — copyb, 9F-80
erase the contents of a buffer — clrbuf, 9F-71
free all message blocks in a message —

freemsg, 9F-393
free one — freeb, 9F-392
remove from head of message — unlinkb,

9F-550
remove one form a message — rmvb, 9F-483

STREAMS message queue
insert a message into a queue — insq, 9F-405

STREAMS message queues, 9F-44
STREAMS Message queues

get next message — getq, 9F-401
STREAMS message queues

reschedule a queue for service — enableok,
9F-385

test for room — canput, 9F-69, 9F-70
STREAMS messages

copy a message — copymsg, 9F-84
flush for specified priority band — flush-

band, 9F-389
remove form queue — flushq, 9F-390, 9F-485
return the number of bytes in a message —

msgdsize, 9F-427
submit messages to the log driver — strlog,

9F-539
test whether a message is a data message —

datamsg, 9F-200
trim bytes — adjmsg, 9F-37

STREAMS multithreading
— mt-streams, 9F-429
qbufcall — call a function when a buffer

becomes available, 9F-463
qtimeout — execute a function after a

specified length of time, 9F-469
qunbufcall — cancel a pending qbufcall

request, 9F-470
quntimeout — cancel previous timeout func-

tion call, 9F-471
qwait, qwait_sig — STREAMS wait rou-

tines, 9F-472
qwriter — asynchronous STREAMS perime-

ter upgrade, 9F-474

STREAMS put and service procedures
disable — qprocsoff, 9F-465
enable — qprocson, 9F-465

STREAMS queues
change information about a queue or band of

the queue — strqset, 9F-541
enable a queue — qenable, 9F-464
get information about a queue or band of the

queue — strqget, 9F-540
get pointer to queue’s partner queue — OTH-

ERQ, 9F-437
get pointer to the read queue — RD, 9F-475
number of messages on a queue — qsize,

9F-468
place a message at the head of a queue —

putbq, 9F-454
prevent a queue from being scheduled —

noenable, 9F-435
put a message on a queue — putq, 9F-462
send a control message to a queue — putctl,

9F-456, 9F-460
send a control message with a one-byte param-

eter to a queue — putctl1, 9F-455,
9F-459

send a message on a stream in the reverse
direction — qreply, 9F-466

send a message to the next queue — putnext,
9F-458

test for flow control in specified priority band
— bcanput, 9F-45

test if next queue is in the same stream —
SAMESTR, 9F-489

STREAMS wait routines — qwait, qwait_sig,
9F-472

STREAMS write queues
get pointer for this module or driver — WR,

9F-560
swab — swap bytes in 16-bit halfwords, 9F-542
synchronize CPU and I/O views of memory —

ddi_dma_sync, 9F-273, 9F-527
system DMA engine functions

— ddi_dmae, 9F-248
— ddi_dmae_1stparty, 9F-248
— ddi_dmae_alloc, 9F-248
— ddi_dmae_disable, 9F-248

Index−19

system DMA engine functions, continued
— ddi_dmae_enable, 9F-248
— ddi_dmae_getattr, 9F-248
— ddi_dmae_getcnt, 9F-248
— ddi_dmae_getlim, 9F-248
— ddi_dmae_prog, 9F-248
— ddi_dmae_release, 9F-248
— ddi_dmae_stop, 9F-248

T
testb — check for an available buffer, 9F-543
timeout — execute a function after a specified

length of time, 9F-545
cancel previous timeout function call —

untimeout, 9F-551
trigger a soft interrupt

— ddi_trigger_softintr, 9F-204
tuple

first CIS tuple — csx_GetFirstTuple,
9F-103

next CIS tuple — csx_GetNextTuple, 9F-103
return data portion of tuple —

csx_GetTupleData, 9F-110
tuple entry

generic tuple parser — csx_ParseTuple,
9F-166

parse Battery Replacement Date tuple —
csx_Parse_CISTPL_BATTERY,
9F-121

parse Byte Order tuple —
csx_Parse_CISTPL_BYTEORDER,
9F-122

parse Card Configuration Table tuple —
csx_Parse_CISTPL_CFTABLE_ENTRY,
9F-124

parse Card Initialization Date tuple —
csx_Parse_CISTPL_DATE, 9F-132

parse Configuration tuple —
csx_Parse_CISTPL_CONFIG, 9F-130

parse Data Organization tuple —
csx_Parse_CISTPL_ORG, 9F-159

parse Data Recording Format tuple —
csx_Parse_CISTPL_FORMAT, 9F-140

parse Device Geo A tuple —
csx_Parse_CISTPL_DEVICE_A,

9F-138
tuple entry, continued

parse Device Geo tuple —
csx_Parse_CISTPL_DEVICEGEO,
9F-136

parse Device Information tuple for Attribute
Memory —
csx_Parse_CISTPL_DEVICE_A,
9F-133

parse Device Information tuple for Common
Memory —
csx_Parse_CISTPL_DEVICE, 9F-133

parse Function Extension tuple —
csx_Parse_CISTPL_FUNCE, 9F-142

parse Function Identification tuple —
csx_Parse_CISTPL_FUNCID, 9F-148

parse Geometry tuple —
csx_Parse_CISTPL_GEOMETRY,
9F-150

parse JEDEC Identifier tuple for Attribute
Memory —
csx_Parse_CISTPL_JEDEC_A,
9F-151

parse JEDEC Identifier tuple for Common
Memory —
csx_Parse_CISTPL_JEDEC_C,
9F-151

parse Level-1 Version/Product Information
tuple —
csx_Parse_CISTPL_VERS_1, 9F-163

parse Level-2 Version and Information tuple —
csx_Parse_CISTPL_VERS_2, 9F-164

parse Link Target tuple —
csx_Parse_CISTPL_LINKTARGET,
9F-153

parse Long Link A tuple —
csx_Parse_CISTPL_LONGLINK_A,
9F-154

parse Long Link C tuple —
csx_Parse_CISTPL_LONGLINK_C,
9F-154

parse Manufacturer Identification tuple —
csx_Parse_CISTPL_MANFID, 9F-158

parse Multi-Function tuple —
csx_Parse_CISTPL_LONGLINK_MFC,

Index−20

tuple entry, continued
9F-156
parse Other Condition Device Information

tuple for Attribute Memory —
csx_Parse_CISTPL_DEVICE_OA,
9F-133

parse Other Condition Device Information
tuple for Common Memory —
csx_Parse_CISTPL_DEVICE_OC,
9F-133

parse Software Interleaving tuple —
csx_Parse_CISTPL_SWIL, 9F-162

parse Special Purpose tuple —
csx_Parse_CISTPL_SPCL, 9F-160

U
uio structure

add character — ureadc, 9F-553
remove a character — uwritec, 9F-554

uiomove — copy kernel data using uio structure,
9F-548

unbinds the address in a DMA handle —
ddi_dma_unbind_handle, 9F-275

unfreezestr — freeze, thaw the state of a stream,
9F-395

uninitialize a buffer structure — biofini, 9F-55
update I/O kstat statistics

— kstat_queue, 9F-415
— kstat_runq_back_to_waitq, 9F-415
— kstat_runq_enter, 9F-415
— kstat_runq_exit, 9F-415
— kstat_waitq_enter, 9F-415
— kstat_waitq_exit, 9F-415
— kstat_waitq_to_runq, 9F-415

update property information.
— ddi_prop_update, 9F-334
— ddi_prop_update_byte_array, 9F-334
— ddi_prop_update_int, 9F-334
— ddi_prop_update_int_array, 9F-334
— ddi_prop_update_string, 9F-334
— ddi_prop_update_string_array,

9F-334

V
va_arg — handle variable argument list, 9F-555
va_copy — handle variable argument list, 9F-555
va_end — handle variable argument list, 9F-555
va_start — handle variable argument list, 9F-555
validate Card Information Structure (CIS) —

csx_ValidateCIS, 9F-199
virtual address

return mapped virtual address —
csx_GetMappedAddr, 9F-106

vsprintf — format characters in memory, 9F-557

W
window resources

release window resources —
csx_ReleaseWindow, 9F-190

request window resources —
csx_RequestWindow, 9F-190

write data to mapped device in the memory space
or allocated DMA memory
— ddi_mem_put16, 9F-305
— ddi_mem_put32, 9F-305
— ddi_mem_put64, 9F-305
— ddi_mem_put8, 9F-305
— ddi_mem_rep_put16, 9F-308
— ddi_mem_rep_put32, 9F-308
— ddi_mem_rep_put64, 9F-308
— ddi_mem_rep_put8, 9F-308

write data to the device
— ddi_put16, 9F-337
— ddi_put32, 9F-337
— ddi_put64, 9F-337
— ddi_put8, 9F-337

write data to the mapped device register in I/O
space
— ddi_io_put16, 9F-288
— ddi_io_put32, 9F-288
— ddi_io_put8, 9F-288
— ddi_io_putb, 9F-288
— ddi_io_putl, 9F-288
— ddi_io_putw, 9F-288

write data to the mapped memory address, device
register or allocated DMA memory address
— ddi_rep_put16, 9F-345

Index−21

write data to the mapped memory address, device
register or allocated DMA memory
address, continued

— ddi_rep_put32, 9F-345
— ddi_rep_put64, 9F-345
— ddi_rep_put8, 9F-345
— ddi_rep_putb, 9F-345
— ddi_rep_putl, 9F-345
— ddi_rep_putll, 9F-345
— ddi_rep_putw, 9F-345

write multiple data to the mapped device register in
I/O space
— ddi_io_rep_put16, 9F-292
— ddi_io_rep_put32, 9F-292
— ddi_io_rep_put8, 9F-292
— ddi_io_rep_putb, 9F-292
— ddi_io_rep_putl, 9F-292
— ddi_io_rep_putw, 9F-292

write or read a PC Card Configuration Register —
csx_AccessConfigurationRegister,
9F-88

write repetitively to device register
— csx_RepPut16, 9F-176
— csx_RepPut32, 9F-176
— csx_RepPut64, 9F-176
— csx_RepPut8, 9F-176

write to an I/O port
— outb, 9F-438
— outl, 9F-438
— outw, 9F-438
— repoutsb, 9F-438
— repoutsd, 9F-438
— repoutsw, 9F-438

write to device register
— csx_Put16, 9F-168
— csx_Put32, 9F-168
— csx_Put64, 9F-168
— csx_Put8, 9F-168

Z
zero fill the device register — ddi_device_zero,

9F-222

Index−22

