SunOS Reference Manual

ll\J/Igﬂltain View, CA 94;043 . @ Sun SO ﬁ

Copyright 1997 Sun Microsystems, Inc. 2550 Garcia Avenue, Mountain View, California 94043-1100 U.S.A. All rights reserved.

This product or document is protected by copyright and distributed under licenses restricting its use, copying, distribution, and
decompilation. No part of this product or document may be reproduced in any form by any means without prior written authorization of
Sun and its licensors, if any. Third-party software, including font technology, is copyrighted and licensed from Sun suppliers.

Parts of the product may be derived from Berkeley BSD systems, licensed from the University of California. UNIX is a registered trademark
in the U.S. and other countries, exclusively licensed through X/Open Company, Ltd.

Sun, Sun Microsystems, the Sun logo, SunSoft, Solaris, SunOS, OpenWindows, DeskSet, ONC, ONC+, and NFS are trademarks, or
registered trademarks of Sun Microsystems, Inc. in the U.S. and other countries. All SPARC trademarks are used under license and are
trademarks or registered trademarks of SPARC International, Inc. in the U.S. and other countries. Products bearing SPARC trademarks are
based upon an architecture developed by Sun Microsystems, Inc.

The OPEN LOOK and Sun[] Graphical User Interface was developed by Sun Microsystems, Inc. for its users and licensees. Sun
acknowledges the pioneering efforts of Xerox in researching and developing the concept of visual or graphical user interfaces for the
computer industry. Sun holds a non-exclusive license from Xerox to the Xerox Graphical User Interface, which license also covers Sun’s
licensees who implement OPEN LOOK GUIs and otherwise comply with Sun’s written license agreements.

RESTRICTED RIGHTS : Use, duplication, or disclosure by the U.S. Government is subject to restrictions of FAR 52.227-14(g)(2)(6/87) and
FAR 52.227-19(6/87), or DFAR 252.227-7015(b)(6/95) and DFAR 227.7202-3(a).

DOCUMENTATION IS PROVIDED "AS IS" AND ALL EXPRESS OR IMPLIED CONDITIONS, REPRESENTATIONS AND WARRANTIES,
INCLUDING ANY IMPLIED WARRANTY OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-
INFRINGEMENT, ARE DISCLAIMED, EXCEPT TO THE EXTENT THAT SUCH DISCLAIMERS ARE HELD TO BE LEGALLY INVALID.

Copyright 1997 Sun Microsystems, Inc., 2550 Garcia Avenue, Mountain View, Californie 94043-1100 Etats-Unis. Tous droits réservés.

Ce produit ou document est protégé par un copyright et distribué avec des licences qui en restreignent I'utilisation, la copie, la distribution,
et la décompilation. Aucune partie de ce produit ou document ne peut étre reproduite sous aucune forme, par quelque moyen que ce soit,
sans l'autorisation préalable et écrite de Sun et de ses bailleurs de licence, s’il y en a. Le logiciel détenu par des tiers, et qui comprend la
technologie relative aux polices de caractéres, est protégé par un copyright et licencié par des fournisseurs de Sun.

Des parties de ce produit pourront étre dérivées des systémes Berkeley BSD licenciés par I’Université de Californie. UNIX est une marque
déposée aux Etats-Unis et dans d’autres pays et licenciée exclusivement par X/Open Company, Ltd.

Sun, Sun Microsystems, le logo Sun, SunSoft, Solaris, SunOS, OpenWindows, DeskSet, ONC, ONC+, et NFS sont des marques de fabrique
ou des marques déposées, de Sun Microsystems, Inc. aux Etats-Unis et dans d’autres pays. Toutes les marques SPARC sont utilisées sous
licence et sont des marques de fabrique ou des marques déposées de SPARC International, Inc. aux Etats-Unis et dans d’autres pays. Les
produits portant les marques SPARC sont basés sur une architecture développée par Sun Microsystems, Inc.

L’interface d’utilisation graphique OPEN LOOK et Sun(l a été développée par Sun Microsystems, Inc. pour ses utilisateurs et licenciés. Sun
reconnait les efforts de pionniers de Xerox pour la recherche et le développement du concept des interfaces d’utilisation visuelle ou
graphique pour I'industrie de I'informatique. Sun détient une licence non exclusive de Xerox sur I'interface d’utilisation graphique Xerox,
cette licence couvrant également les licenciés de Sun qui mettent en place I'interface d’utilisation graphique OPEN LOOK et qui en outre se
conforment aux licences écrites de Sun.

CETTE PUBLICATION EST FOURNIE "EN L’ETAT" ET AUCUNE GARANTIE, EXPRESSE OU IMPLICITE, N'EST ACCORDEE, Y
COMPRIS DES GARANTIES CONCERNANT LA VALEUR MARCHANDE, L’APTITUDE DE LA PUBLICATION A REPONDRE A UNE
UTILISATION PARTICULIERE, OU LE FAIT QU’ELLE NE SOIT PAS CONTREFAISANTE DE PRODUIT DE TIERS. CE DENI DE
GARANTIE NE S’APPLIQUERAIT PAS, DANS LA MESURE OU IL SERAIT TENU JURIDIQUEMENT NUL ET NON AVENU.

o
Pleﬁsz ‘<‘ ’
Recycle Adobe PostScript

OVERVIEW

Preface

A man page is provided for both the naive user, and sophisticated user who is
familiar with the SunOS operating system and is in need of on-line information.
A man page is intended to answer concisely the question “What does it do?”
The man pages in general comprise a reference manual. They are not intended
to be a tutorial.

The following contains a brief description of each section in the man pages and
the information it references:

e Section 1 describes, in alphabetical order, commands available with the
operating system.

e Section 1M describes, in alphabetical order, commands that are used chiefly
for system maintenance and administration purposes.

e Section 2 describes all of the system calls. Most of these calls have one or
more error returns. An error condition is indicated by an otherwise
impossible returned value.

e Section 3 describes functions found in various libraries, other than those
functions that directly invoke UNIX system primitives, which are described in
Section 2 of this volume.

NAME

SYNOPSIS

e Section 4 outlines the formats of various files. The C structure declarations
for the file formats are given where applicable.

e Section 5 contains miscellaneous documentation such as character set tables,
etc.

e Section 6 contains available games and demaos.

e Section 7 describes various special files that refer to specific hardware
peripherals, and device drivers. STREAMS software drivers, modules and the
STREAMS-generic set of system calls are also described.

e Section 9 provides reference information needed to write device drivers in
the kernel operating systems environment. It describes two device driver
interface specifications: the Device Driver Interface (DDI) and the
Driver—-Kernel Interface (DKI).

e Section 9E describes the DDI/DKI, DDI-only, and DKI-only entry-point
routines a developer may include in a device driver.

e Section 9F describes the kernel functions available for use by device drivers.

e Section 9S describes the data structures used by drivers to share
information between the driver and the kernel.

Below is a generic format for man pages. The man pages of each manual
section generally follow this order, but include only needed headings. For
example, if there are no bugs to report, there is no BUGS section. See the intro
pages for more information and detail about each section, and man(1) for more
information about man pages in general.

This section gives the names of the commands or functions documented,
followed by a brief description of what they do.

This section shows the syntax of commands or functions. When a command or
file does not exist in the standard path, its full pathname is shown. Literal
characters (commands and options) are in bold font and variables (arguments,
parameters and substitution characters) are in italic font. Options and

PROTOCOL

DESCRIPTION

IOCTL

arguments are alphabetized, with single letter arguments first, and options with
arguments next, unless a different argument order is required.

The following special characters are used in this section:

[1 The option or argument enclosed in these brackets is optional. If the
brackets are omitted, the argument must be specified.

Ellipses. Several values may be provided for the previous argument, or
the previous argument can be specified multiple times, for example,
‘filename ...".

| Separator. Only one of the arguments separated by this character can
be specified at time.

{} Braces. The options and/or arguments enclosed within braces are
interdependent, such that everything enclosed must be treated as a
unit.

This section occurs only in subsection 3R to indicate the protocol description
file. The protocol specification pathname is always listed in bold font.

This section defines the functionality and behavior of the service. Thus it
describes concisely what the command does. It does not discuss OPTIONS or
cite EXAMPLES. Interactive commands, subcommands, requests, macros,
functions and such, are described under USAGE.

This section appears on pages in Section 7 only. Only the device class which
supplies appropriate parameters to the ioctl(2) system call is called ioctl and
generates its own heading. ioctl calls for a specific device are listed
alphabetically (on the man page for that specific device). ioctl calls are used for
a particular class of devices all of which have an io ending, such as mtio(7).

Preface iii

OPTIONS

OPERANDS

OUTPUT

RETURN VALUES

ERRORS

This lists the command options with a concise summary of what each option
does. The options are listed literally and in the order they appear in the
SYNOPSIS section. Possible arguments to options are discussed under the
option, and where appropriate, default values are supplied.

This section lists the command operands and describes how they affect the
actions of the command.

This section describes the output - standard output, standard error, or output
files - generated by the command.

If the man page documents functions that return values, this section lists these
values and describes the conditions under which they are returned. If a
function can return only constant values, such as 0 or —1, these values are listed
in tagged paragraphs. Otherwise, a single paragraph describes the return
values of each function. Functions declared as void do not return values, so
they are not discussed in RETURN VALUES.

On failure, most functions place an error code in the global variable errno
indicating why they failed. This section lists alphabetically all error codes a
function can generate and describes the conditions that cause each error. When
more than one condition can cause the same error, each condition is described
in a separate paragraph under the error code.

USAGE

EXAMPLES

ENVIRONMENT

EXIT STATUS

FILES

This section is provided as a guidance on use. This section lists special rules,
features and commands that require in-depth explanations. The subsections
listed below are used to explain built-in functionality:

Commands

Modifiers

Variables

Expressions

Input Grammar

This section provides examples of usage or of how to use a command or
function. Wherever possible a complete example including command line entry
and machine response is shown. Whenever an example is given, the prompt is
shown as

example%
or if the user must be super-user,
example#

Examples are followed by explanations, variable substitution rules, or returned
values. Most examples illustrate concepts from the SYNOPSIS, DESCRIPTION,
OPTIONS and USAGE sections.

This section lists any environment variables that the command or function
affects, followed by a brief description of the effect.

This section lists the values the command returns to the calling program or shell
and the conditions that cause these values to be returned. Usually, zero is
returned for successful completion and values other than zero for various error
conditions.

Preface \Y;

ATTRIBUTES

SEE ALSO

DIAGNOSTICS

WARNINGS

NOTES

BUGS

Vi

This section lists all filenames referred to by the man page, files of interest, and
files created or required by commands. Each is followed by a descriptive
summary or explanation.

This section lists characteristics of commands, utilities, and device drivers by
defining the attribute type and its corresponding value. (See attributes(5) for
more information.)

This section lists references to other man pages, in-house documentation and
outside publications.

This section lists diagnostic messages with a brief explanation of the condition
causing the error. Messages appear in bold font with the exception of variables,
which are in italic font.

This section lists warnings about special conditions which could seriously affect
your working conditions — this is not a list of diagnostics.

This section lists additional information that does not belong anywhere else on
the page. It takes the form of an aside to the user, covering points of special
interest. Critical information is never covered here.

This section describes known bugs and wherever possible suggests
workarounds.

File Formats

NAME

DESCRIPTION

INTERFACES

modified 16 Feb 1996

Intro(4)

Intro, intro — introduction to file formats

This section outlines the formats of various files. The C structure declarations for the file
formats are given where applicable. Usually, the headers containing these structure
declarations can be found in the directories /usr/include or /usr/include/sys. For inclu-
sion in C language programs, however, the syntax #include <filename.h> or #include
<sys/filename.h> should be used.

Because the operating system now allows the existence of multiple file system types,
there are several instances of multiple manual pages with the same name. These pages
all display the name of the FSType to which they pertain, in the form name_ fstype at the
top of the page. For example, fs_ufs(4).

Descriptions of shared objects may include a definition of the global symbols that define
the shared objects’ public interface, for example SUNW _1.1. Other interfaces may exist
within the shared object, for example SUNW _private.1.1. The public interface provides a
stable, committed set of symbols for application development. The private interfaces are
for internal use only, and may change at any time.

For many shared objects, an archive library is provided for backward compatibility. Use

of these libraries may restrict an applications ability to migrate between different Solaris
releases. As dynamic linking is the preferred compilation method on Solaris, the use of

these libraries is discouraged.

Name

acct(4)
addresses(4)
admin(4)
aliases(4)
a.out(4)

ar(4)
archives(4)
asetenv(4)
asetmasters(4)
audit_class(4)
audit_control(4)
audit_data(4)
audit_event(4)
audit.log(4)
audit_user(4)

Description

per-process accounting file format

See aliases(4)

installation defaults file

addresses and aliases for sendmail
Executable and Linking Format (ELF) files
archive file format

device header

ASET environment file

ASET master files

audit class definitions

control information for system audit daemon
current information on audit daemon
audit event definition and class mapping
audit trail file

per-user auditing data file

SunOS 5.6 4-5

Intro (4)

bootparams(4)
cdtoc(4)
cklist.high(4)
cklist.low(4)
cklist. med(4)
clustertoc(4)
compver(4)
copyright(4)
core(4)
default_fs(4)

defaultrouter(4)

depend(4)

device_allocate(4)
device.cfinfo(4)
device_maps(4)

dfstab(4)

dhcp(4)

dhcp_network(4)

dhcptab(4)
dhcptags(4)
dialups(4)
dir(4)
dirent(4)
dir_ufs(4)
d_passwd(4)
driver.conf(4)
dumpdates(4)
eisa(4)
environ(4)
ethers(4)
fbtab(4)

fd(4)
filehdr(4)

File Formats

boot parameter data base

CD-ROM table of contents file

See asetmasters(4)

See asetmasters(4)

See asetmasters(4)

cluster table of contents description file
compatible versions file

copyright information file

core image file

specify the default file system type for local or remote
file systems

configuration file for default router(s)
software dependencies file
device_allocate file

devconfig configuration files
device_maps file

file containing commands for sharing resources across
a network

file containing default parameter values for the location
and type of the databases used by the DHCP service

dhcp network DHCP database

DHCP configuration parameter table

DHCP option mnemonic mapping table

list of terminal devices requiring a dial-up password
See dir_ufs(4)

file system independent directory entry

format of ufs directories

dial-up password file

driver configuration files

See ufsdump(4)

See sysbus(4)

user-preference variables files for AT&T FACE
Ethernet address to hostname database or domain
See logindevperm(4)

file descriptor files

file header for common object files

Sun0S 5.6 modified 16 Feb 1996

File Formats

modified 16 Feb 1996

format.dat(4)
forward(4)
fs(4)

fspec(4)
fstypes(4)
fs_ufs(4)
group(4)
holidays(4)
hosts(4)

hosts.equiv(4)

inetd.conf(4)
init.d(4)

inittab(4)
inode(4)
inode_ufs(4)
isa(4)
issue(4)
keytables(4)

krb.conf(4)
krb.realms(4)
libadm(4)
libaio(4)
libbsm(4)
libc(4)
libci(4)

libdevid(4)
libd1(4)
libdmi(4)
libdmimi(4)

libelf(4)
libintl(4)
libkrb(4)

Intro(4)

disk drive configuration for the format command
See aliases(4)

See default_fs(4)

format specification in text files

file that registers distributed file system packages
format of a ufs file system volume

group file

prime/nonprime table for the accounting system
host name database

trusted remote hosts and users

Internet servers database

initialization and termination scripts for changing init
states

script for init

See fs_ufs(4)

See fs_ufs(4)

See sysbus(4)

issue identification file

keyboard table descriptions for loadkeys and dump-
keys

Kerberos configuration file

host to Kerberos realm translation file
general administrative library

the asynchronous I/0 library

basic security library

the C library

Sun Solstice Enterprise Agent Component Interface
Library

device id library
the dynamic linking interface library
Sun Solstice Enterprise Agent DMI Library

Sun Solstice Enterprise Agent Management Interface
Library

ELF access library
internationalization library
Kerberos library

SunOS 5.6 4-7

Intro (4)

libkstat(4)
libkvm(4)
libmapmalloc(4)
libmp(4)
libnisdb(4)
libnsl(4)
libpam(4)

libposix4(4)
libpthread(4)
librac(4)
libresolv(4)
librpcsoc(4)
librpcsvc(4)
libsec(4)
libsocket(4)
libssagent(4)
libssasnmp(4)
libsys(4)
libthread(4)
libthread_db(4)
libtnfctl(4)

libucb(4)
libvolmgt(4)
libw(4)
libxfn(4)
libxnet(4)
limits(4)
loadfont(4)
logindevperm(4)
loginlog(4)
magic(4)
mca(4)
mnttab(4)
netconfig(4)

File Formats

kernel statistics library

Kernel Virtual Memory access library
an alternative memory allocator library
multiple precision library

NIS+ Database access library

the network services library

interface library for PAM (Pluggable Authentication
Module)

POSIX.1b Realtime Extensions library
POSIX threads library

remote asynchronous calls library
resolver library

obsolete RPC library

miscellaneous RPC services library
File Access Control List library

the sockets library

Sun Solstice Enterprise Agent Library
Sun Solstice Enterprise SNMP Library
the system library

the threads library

threads debugging library

library of TNF probe control routines for use by
processes and the kernel

the UCB compatibility library

volume management library

the wide character library

the XFN interface library

X/0pen Networking Interfaces library
header for implementation-specific constants
format of a font file used as input to the loadfont utility
login-based device permissions

log of failed login attempts

file command’s magic number file

See sysbus(4)

mounted file system table

network configuration database

Sun0S 5.6 modified 16 Feb 1996

File Formats

modified 16 Feb 1996

netgroup(4)
netid(4)
netmasks(4)
netrc(4)
networks(4)
nisfiles(4)
nologin(4)

note(4)
nscd.conf(4)
nsswitch.conf(4)
order(4)

ott(4)
packagetoc(4)
packingrules(4)
pam.conf(4)
passwd(4)
pathalias(4)
path_to_inst(4)
pci(4)
pcmcia(4)
phones(4)
pkginfo(4)
pkgmap(4)
platform(4)
plot(4B)
power.conf(4)
pref(4)
printers(4)
printers.conf(4)
proc(4)
profile(4)
protocols(4)
prototype(4)
pseudo(4)

Intro(4)

list of network groups

netname database

network mask database

file for ftp remote login data

network name database

NIS+ database files and directory structure

message displayed to users attempting to log on in the
process of a system shutdown

specify legal annotations

name service cache daemon configuration
configuration file for the name service switch
package installation order description file

FACE object architecture information

package table of contents description file
packing rules file for cachefs and filesync
configuration file for pluggable authentication modules
password file

alias file for FACE

device instance number file

configuration files for PCI device drivers
PCMCIA nexus driver

remote host phone number database

package characteristics file

package contents description file

directory of files specifying supported platforms
graphics interface

power management configuration information file
See environ(4)

user-configurable printer alias database

system printing configuration database

/proc, the process file system

setting up an environment for user at login time
protocol name database

package information file

configuration files for pseudo device drivers

SunOS 5.6 4-9

Intro (4)

4-10

publickey(4)
queuedefs(4)
remote(4)
resolv.conf(4)
rhosts(4)
rmmount.conf(4)
rmtab(4)
route(4)
routing(4)
rpc(4)
rpld.conf(4)
rt_dptbl(4)
sbus(4)
sccsfile(4)
scsi(4)
securenets(4)
services(4)
shadow(4)
sharetab(4)
shells(4)
sock2path(4)
space(4)
sulog(4)
sysbus(4)

sysidcfg(4)
syslog.conf(4)
system(4)

telnetrc(4)

term(4)

terminfo(4)
timezone(4)
TIMEZONE(4)
tnf_kernel_probes(4)
ts_dptbl(4)

public key database
gueue description file for at, batch,
remote host description file

File Formats

and cron

configuration file for name server routines

See hosts.equiv(4)

removable media mounter configu
remote mounted file system table
kernel packet forwarding database

ration file

system support for packet network routing

rpc program number data base

Remote Program Load (RPL) server configuration file

real-time dispatcher parameter tab
configuration files for SBus device
format of an SCCS history file

le
drivers

configuration files for SCSI target drivers

configuration file for NIS security
Internet services and aliases
shadow password file

shared file system table

shell database

file that maps sockets to transport providers

disk space requirement file
su command log file

device tree properties for ISA, EISA, and MCA bus

device drivers

system identification configuration file

configuration file for syslogd system log daemon

system configuration information file

file for telnet default options
format of compiled term file
terminal and printer capability dat
default timezone data base

abase

set default system time zone and locale

TNF kernel probes

time-sharing dispatcher parameter table

SunOS 5.6

modified 16 Feb 1996

File Formats

modified 16 Feb 1996

ttydefs(4)

ttysrch(4)
tune.high(4)
tune.low(4)
tune.med(4)
ufsdump(4)

uid_aliases(4)

unistd(4)
updaters(4)
utmp(4)
utmpx(4)
variables(4)
vfstab(4)
vme(4)
vold.conf(4)
wtmp(4)
wtmpx(4)
ypfiles(4)

Intro(4)

file contains terminal line settings information for
ttymon

directory search list for ttyname

See asetmasters(4)

See asetmasters(4)

See asetmasters(4)

incremental dump format

See asetmasters(4)

header for symbolic constants
configuration file for NIS updating
utmp and wtmp entry formats

utmpx and wtmpx entry formats

See environ(4)

table of file system defaults
configuration files for VMEbus device drivers
Volume Management configuration file
See utmp(4)

See utmpx(4)

Network Information Service Version 2, formerly
knows as YP

SunOS 5.6 4-11

acct(4) File Formats

NAME acct — per-process accounting file format

SYNOPSIS | #include <sys/types.h>
#include <sys/acct.h>

DESCRIPTION Files produced as a result of calling acct(2) have records in the form defined by
<sys/acct.h>, whose contents are:

typedef ushort comp_t; /Opseudo "floating point” representation [J
/03 bit base-8 exponent in the high I
/Oorder bits, and a 13-bit fraction [
/Oin the low order bits.

struct acct

{
char ac_flag; /OAccounting flag
char ac_stat; /OEXit status
uid_t ac_uid; /OAccounting user ID O
gid_t ac_gid; /O0Accounting group ID [
dev_t ac_tty; /Ocontrol tty O
time_t ac_btime; /O0Beginning time [
comp_t ac_utime; /Oaccounting user time in clock O
/Oticks O
comp_t ac_stime; /Oaccounting system time in clock O
/Oticks O
comp_t ac_etime; /Oaccounting total elapsed time in clock [
/Oticks O
comp_t ac_mem; /Omemory usage in clicks (pages) [
comp_t ac_io; /Ochars transferred by read/write I
comp_t ac_rw; /Onumber of block reads/writes [
char ac_comm|[8]; /Ocommand name [0
I3
/0
OAccounting Flags
i
#define AFORK 01 /Ohas executed fork, but no exec [1
#define ASU 02 /Oused super-user privileges [
#define ACCTF 0300 /Orecord type O
#define AEXPND 040 /OExpanded Record Type — default J

In ac_flag, the AFORK flag is turned on by each fork and turned off by an exec. The
ac_comm field is inherited from the parent process and is reset by any exec. Each time
the system charges the process with a clock tick, it also adds to ac_mem the current pro-
cess size, computed as follows:

(data size) + (text size) / (number of in-core processes using text)

4-12 SunOS 5.6 modified 19 May 1994

File Formats

FILES

SEE ALSO

NOTES

modified 19 May 1994

acct(4)

The value of ac_mem/(ac_stime +ac_utime) can be viewed as an approximation to the
mean process size, as modified by text sharing.

The structure tacct, (which resides with the source files of the accounting commands),
represents a summary of accounting statistics for the user id ta_uid. This structure is
used by the accounting commands to report statistics based on user id.
/0

O total accounting (for acct period), also for day

a
struct tacct {
uid_t ta_uid,; /Ouser id OO
char ta_name[8]; /Ologin name [
float ta_cpu[2]; /Ocum. cpu time in minutes, [
/Op/np (prime/non-prime time) O
float ta_kcore[2]; /Ocum. kcore-minutes, p/np O
float ta_con[2]; /Ocum. connect time in minutes, O
/Qp/np O
float ta_du; /Ocum. disk usage (blocks)
long ta_pc; /Ocount of processes [
unsigned short ta_sc; /Ocount of login sessions [
unsigned short ta_dc; /Ocount of disk samples O
unsigned short ta_fee; /Ofee for special services I
3

ta_cpu, ta_kcore, and ta_con contain usage information pertaining to prime time and
non-prime time hours. The first element in each array represents the time the resource
was used during prime time hours. The second element in each array represents the time
the resource was used during non-prime time hours. Prime time and non-prime time
hours may be set in the holidays file (see holidays(4)).

ta_kcore is a cumulative measure of the amount of memory used over the accounting
period by processes owned by the user with uid ta_uid. The amount shown represents
kilobyte segments of memory used, per minute.

ta_con represents the amount of time the user was logged in to the system.
/etc/acct/holidays prime/non-prime time table

acctcom(1), acct(1M), acctcon(1M), acctmerg(1M), acctprc(1M), acctsh(1M), prtacct(1M),
runacct(1M), shutacct(1M), acct(2), exec(2), fork(2)

The ac_mem value for a short-lived command gives little information about the actual

size of the command, because ac_mem may be incremented while a different command
(for example, the shell) is being executed by the process.

SunOS 5.6 4-13

admin(4)

NAME

DESCRIPTION

4-14

File Formats

admin - installation defaults file

admin is a generic name for an ASCII file that defines default installation actions by assign-
ing values to installation parameters. For example, it allows administrators to define
how to proceed when the package being installed already exists on the system.

/var/sadm/install/admin/default is the default admin file delivered with this release. The
default file is not writable, so to assign values different from this file, create a new admin
file. There are no naming restrictions for admin files. Name the file when installing a
package with the —a option of pkgadd(1M). If the —a option is not used, the default admin
file is used.

Each entry in the admin file is a line that establishes the value of a parameter in the follow-
ing form:

param=value

Eleven parameters can be defined in an admin file, but it is not required to assign values
to all eleven parameters. If a value is not assigned, pkgadd(1M) asks the installer how to
proceed.

The eleven parameters and their possible values are shown below except as noted. They
may be specified in any order. Any of these parameters (except the mail parameter) can

be assigned the value ask, which means that if the situation occurs the installer is notified
and asked to supply instructions at that time (see NOTES).

basedir Indicates the base directory where relocatable packages are to be
installed. If there is no basedir entry in the file, the installer will be
prompted for a path name, as if the file contained the entry basedir=ask.
This parameter can also be set to default (entry is basedir=default). In
this instance, the package is installed into the base directory specified by
the BASEDIR parameter in the pkginfo(4) file.

mail Defines a list of users to whom mail should be sent following installa-
tion of a package. If the list is empty, no mail is sent. If the parameter is
not present in the admin file, the default value of root is used. The ask
value cannot be used with this parameter.

runlevel Indicates resolution if the run level is not correct for the installation or
removal of a package. Options are:

nocheck Do not check for run level.
quit Abort installation if run level is not met.

conflict Specifies what to do if an installation expects to overwrite a previously
installed file, thus creating a conflict between packages. Options are:

nocheck Do not check for conflict; files in conflict will be
overwritten.

quit Abort installation if conflict is detected.
nochange Override installation of conflicting files; they will not

Sun0S 5.6 modified 7 Feb 1997

File Formats

modified 7 Feb 1997

setuid

action

partial

instance

idepend

admin(4)

be installed.

Checks for executables which will have setuid or setgid bits enabled
after installation. Options are:

nocheck Do not check for setuid executables.
quit Abort installation if setuid processes are detected.

nochange Override installation of setuid processes; processes
will be installed without setuid bits enabled.

Determines if action scripts provided by package developers contain
possible security impact. Options are:

nocheck Ignore security impact of action scripts.

quit Abort installation if action scripts may have a nega-
tive security impact.

Checks to see if a version of the package is already partially installed on
the system. Options are:

nocheck Do not check for a partially installed package.

quit Abort installation if a partially installed package
exists.

Determines how to handle installation if a previous version of the pack-
age (including a partially installed instance) already exists. Options are:

quit Exit without installing if an instance of the package
already exists (does not overwrite existing packages).

overwrite Overwrite an existing package if only one instance
exists. If there is more than one instance, but only
one has the same architecture, it overwrites that
instance. Otherwise, the installer is prompted with
existing instances and asked which to overwrite.

unique Do not overwrite an existing instance of a package.
Instead, a new instance of the package is created.
The new instance will be assigned the next available
instance identifier.

Controls resolution if other packages depend on the one to be installed.
Options are:

nocheck Do not check package dependencies.
quit Abort installation if package dependencies are not
met.
SunOS 5.6 4-15

admin(4) File Formats

rdepend Controls resolution if other packages depend on the one to be removed.
Options are:
nocheck Do not check package dependencies.
quit Abort removal if package dependencies are not met.
space Controls resolution if disk space requirements for package are not met.
Options are:
nocheck Do not check space requirements (installation fails if
it runs out of space).
quit Abort installation if space requirements are not met.

EXAMPLES Below is a sample admin file.
basedir=default
runlevel=quit
conflict=quit
setuid=quit
action=quit
partial=quit
instance=unique
idepend=quit
rdepend=quit
space=quit

SEE ALSO pkgadd(1M), pkginfo(4)

NOTES | The value ask should not be defined in an admin file that will be used for non-interactive
installation (since by definition, there is no installer interaction). Doing so causes installa-
tion to fail when input is needed.

4-16 Sun0S 5.6 modified 7 Feb 1997

File Formats

NAME

SYNOPSIS

DESCRIPTION

Addresses

Local Usernames

Local Filenames

Commands

DARPA-standard
Addresses

modified 31 Dec 1996

aliases (4)

aliases, addresses, forward — addresses and aliases for sendmail

/etc/mail/aliases

/etc/mail/aliases.dir

ﬁtc/mail/al iases.pag
/.forward

These files contain mail addresses or aliases, recognized by sendmail(1M) for the local
host:

/etc/passwd Mail addresses (usernames) of local users.

/etc/mail/aliases Aliases for the local host, in ASCII format. This file can be edited to
add, update, or delete local mail aliases.

/etc/mail/aliases. {dir , pag}
The aliasing information from /etc/mail/aliases, in binary, dbm
format for use by sendmail(1M). The program newaliases(1),
which is invoked automatically by sendmail(1M), maintains these
files.

D/.forward Addresses to which a user’s mail is forwarded (see Automatic For-
warding, below).

In addition, the NIS name services aliases map mail.aliases, and the NIS+ mail_aliases table,
both contain addresses and aliases available for use across the network.

As distributed, sendmail(1M) supports the following types of addresses:

username
Each local username is listed in the local host’s /etc/passwd file.

pathname
Messages addressed to the absolute pathname of a file are appended to that file.

| command

If the first character of the address is a vertical bar (]), sendmail(1M) pipes the message
to the standard input of the command the bar precedes.

username@domain

If domain does not contain any ‘.’ (dots), then it is interpreted as the name of a host in the
current domain. Otherwise, the message is passed to a mailhost that determines how to
get to the specified domain. Domains are divided into subdomains separated by dots,
with the top-level domain on the right. Top-level domains include;

.COM Commercial organizations.
.EDU Educational organizations.
.GOV Government organizations.

SunOS 5.6 4-17

aliases (4)

uucp Addresses

Aliases
Local Aliases

Special Aliases

NIS/NIS+ Domain
Aliases

4-18

File Formats

.MIL Military organizations.

For example, the full address of John Smith could be:
js@jsmachine.Podunk-U.EDU

if he uses the machine named jsmachine at Podunk University.

... [host!]host!username

These are sometimes mistakenly referred to as ““Usenet’” addresses. uucp(1C) provides
links to numerous sites throughout the world for the remote copying of files.

Other site-specific forms of addressing can be added by customizing the sendmail.cf
configuration file. See sendmail(1M) for details. Standard addresses are recommended.

/etc/mail/aliases is formatted as a series of lines of the form
aliasname:address[, address]

aliasname is the name of the alias or alias group, and address is the address of a recipient in
the group. Aliases can be nested. That is, an address can be the name of another alias
group. Because of the way sendmail(1M) performs mapping from upper-case to lower-
case, an address that is the name of another alias group must not contain any upper-case
letters.

Lines beginning with white space are treated as continuation lines for the preceding alias.
Lines beginning with # are comments.

An alias of the form:
owner-aliasname : address

directs error-messages resulting from mail to aliasname to address, instead of back to the
person who sent the message.

An alias of the form:
aliasname: :include:pathname

with colons as shown, adds the recipients listed in the file pathname to the aliasname alias.
This allows a private list to be maintained separately from the aliases file.

The aliases file on the master NIS server is used for the mail.aliases NIS map, which can be
made available to every NIS client. The mail_aliases table serves the same purpose on a
NIS+ server. Thus, the /etc/mail/aliasesOfiles on the various hosts in a network will one
day be obsolete. Domain-wide aliases should ultimately be resolved into usernames on
specific hosts. For example, if the following were in the domain-wide alias file:

jsmith:js@jsmachine
then any NIS/NIS+ client could just mail to jsmith and not have to remember the machine
and username for John Smith. If a NIS/NIS+ alias does not resolve to an address with a

specific host, then the name of the NIS/NIS+ domain is used. There should be an alias of
the domain name for a host in this case.

Sun0S 5.6 modified 31 Dec 1996

File Formats

Automatic
Forwarding

FILES

ATTRIBUTES

SEE ALSO

NOTES

modified 31 Dec 1996

aliases (4)

For example, the alias:
jsmith:root

sends mail on a NIS/NIS+ client to root@podunk-u if the name of the NIS/NIS+ domain is
podunk-u.

When an alias (or address) B resolved to the name of a user on the local host,
sendmail(1M) checks for a ~/.forward file, owned by the intended recipient, in that user’s
home directory, and with universal read access. This file can contain one or more
addresses or aliases as described above, each of which is sent a copy of the user’s mail.

Care must be taken to avoid creating addressing loops in the D/.forward file. When for-
warding mail between machines, be sure that the destination machine does not return the
mail to the sender through the operation of any NIS aliases. Otherwise, copies of the mes-
sage may "bounce." Usually, the solution is to change the NIS alias to direct mail to the
proper destination.

A backslash before a username Hmibits further aliasing. For instance, to invoke the vaca-
tion program, user js creates a /.forward file that contains the line:

\js, "|/usr/ucb/vacation js"

so that one copy of the message is sent to the user, and another is piped into the vacation
program.

/etc/passwd

letc/nisswitch.conf

/etc/mail/aliases

/ﬁtc/mai I/sendmail.cf
/.forward

password file

workstation server definition
workstation aliases

sendmail configuration file
forwarding information file

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE
Availability

ATTRIBUTE VALUE
SUNWEcsr

newaliases(1), passwd(1), uucp(1C), vacation(1), sendmail(1M), dbm(3B), passwd(4),
attributes(5)

Because of restrictions in dbm(3B), a single alias cannot contain more than about 1000
characters. Nested aliases can be used to circumvent this limit.

SunOS 5.6 4-19

a.ou

4-20

t(4)

NAME
SYNOPSIS

DESCRIPTION

File Formats

a.out — Executable and Linking Format (ELF) files
#include <elf.h>

The file name a.out is the default output file name from the link editor, 1d(1). The link
editor will make an a.out executable if there were no errors in linking. The output file of
the assembler, as(1), also follows the format of the a.out file although its default file name
is different.

Programs that manipulate ELF files may use the library that elf(3E) describes. An over-
view of the file format follows. For more complete information, see the references given
below.

Linking View Execution View
ELF header ELF header
Program header table Program header table

optional
Section 1
— Segment 1
Section n
— Segment 2
Section header table Section header table
optional

An ELF header resides at the beginning and holds a ‘‘road map’’ describing the file’s
organization. Sections hold the bulk of object file information for the linking view:
instructions, data, symbol table, relocation information, and so on. Segments hold the
object file information for the program execution view. As shown, a segment may con-
tain one or more sections.

A program header table, if present, tells the system how to create a process image. Files
used to build a process image (execute a program) must have a program header table;
relocatable files do not need one. A section header table contains information describing
the file’s sections. Every section has an entry in the table; each entry gives information
such as the section name, the section size, etc. Files used during linking must have a sec-
tion header table; other object files may or may not have one.

Although the figure shows the program header table immediately after the ELF header,
and the section header table following the sections, actual files may differ. Moreover,
sections and segments have no specified order. Only the ELF header has a fixed position
in the file.

When an a.out file is loaded into memory for execution, three logical segments are set up:
the text segment, the data segment (initialized data followed by uninitialized, the latter
actually being initialized to all 0’s), and a stack. The text segment is not writable by the
program; if other processes are executing the same a.out file, the processes will share a
single text segment.

Sun0S 5.6 modified 3 Jul 1990

File Formats

SEE ALSO

modified 3 Jul 1990

a.out(4)

The data segment starts at the next maximal page boundary past the last text address. If
the system supports more than one page size, the “‘maximal page” is the largest sup-
ported size. When the process image is created, the part of the file holding the end of text
and the beginning of data may appear twice. The duplicated chunk of text that appears
at the beginning of data is never executed,; it is duplicated so that the operating system
may bring in pieces of the file in multiples of the actual page size without having to
realign the beginning of the data section to a page boundary. Therefore, the first data
address is the sum of the next maximal page boundary past the end of text plus the
remainder of the last text address divided by the maximal page size. If the last text
address is a multiple of the maximal page size, no duplication is necessary. The stack is
automatically extended as required. The data segment is extended as requested by the
brk(2) system call.

as(1), cc(1B), 1d(1), brk(2), elf(3E)
ANSI C Programmer’s Guide

SunOS 5.6 4-21

ar(4)

4-22

NAME

SYNOPSIS

DESCRIPTION

File Formats

ar — archive file format
#include <ar.h>

The archive command ar is used to combine several files into one. Archives are used
mainly as libraries to be searched by the link editor Id.

Each archive begins with the archive magic string.

#define ARMAG "!<arch>\n" /Omagic string O
#define SARMAG 8 /Olength of magic string I

Following the archive magic string are the archive file members. Each file member is pre-
ceded by a file member header which is of the following format:

#define ARFMAG ""\n" /Oheader trailer string [

struct ar_hdr /Ofile member header O

{
char ar_name[16]; /O°F terminated file member name [0
char ar_date[12]; /Ofile member date [
char ar_uid[6]; /Ofile member user identification I
char ar_gid[6]; /Ofile member group identification [J
char ar_mode[8]; /Ofile member mode (octal) O
char ar_size[10]; /Ofile member size O
char ar_fmag[2]; /Oheader trailer string [

I3

All information in the file member headers is in printable ASCII. The numeric information
contained in the headers is stored as decimal numbers (except for ar_mode which is in
octal). Thus, if the archive contains printable files, the archive itself is printable.

If the file member name fits, the ar_name field contains the name directly, and is ter-
minated by a slash (/) and padded with blanks on the right. If the member’s name does
not fit, ar_name contains a slash (/) followed by a decimal representation of the name’s
offset in the archive string table described below.

The ar_date field is the modification date of the file at the time of its insertion into the
archive. Common format archives can be moved from system to system as long as the
portable archive command ar is used.

Each archive file member begins on an even byte boundary; a newline is inserted between
files if necessary. Nevertheless, the size given reflects the actual size of the file exclusive
of padding.

Notice there is no provision for empty areas in an archive file.

Sun0S 5.6 modified 3 Jul 1990

File Formats

Example Symbol
Table

modified 3 Jul 1990

ar(4)

Each archive that contains object files (see a.out(4)) includes an archive symbol table.

This symbol table is used by the link editor Id to determine which archive members must
be loaded during the link edit process. The archive symbol table (if it exists) is always the
first file in the archive (but is never listed) and is automatically created and/or updated
by ar.

The archive symbol table has a zero length name (that is, ar_name[0] is '/"),
ar_name[l]=="", etc.). All “words” in this symbol table have four bytes, using the
machine-independent encoding shown below. All machines use the encoding described
here for the symbol table, even if the machine’s “natural’ byte order is different.

0x01020304 01 02 03 04

The contents of this file are as follows:

1. The number of symbols. Length: 4 bytes.

2. The array of offsets into the archive file. Length: 4 bytes (0*‘the number of sym-
bols™.

3. The name string table. Length: ar_size — 4 bytes [((*‘the number of symbols’ + 1).

As an example, the following symbol table defines 4 symbols. The archive member at file
offset 114 defines name and object. The archive member at file offset 426 defines function
and a second version of name.

Offset +0 +1 +2 +3

0 4 4 offset entries
4 114 name
8 114 object
12 426 function
16 426 name
20 n a m e
24 \0 | o b j
28 e c t \0
32 f u n c
36 i 0 n
40 \0 n a m
44 e \O

The string table contains exactly as many null terminated strings as there are elements in
the offsets array. Each offset from the array is associated with the corresponding name
from the string table (in order). The names in the string table are all the defined global
symbols found in the common object files in the archive. Each offset is the location of the
archive header for the associated symbol.

SunOS 5.6 4-23

ar(4)

4-24

SEE ALSO

NOTES

File Formats

If some archive member’s name is more than 15 bytes long, a special archive member
contains a table of file names, each followed by a slash and a new-line. This string table
member, if present, will precede all ““normal’” archive members. The special archive
symbol table is not a ““normal’”” member, and must be first if it exists. The ar_name entry
of the string table’s member header holds a zero length name ar_name[0]=="/", followed
by one trailing slash (ar_name[1]=="/"), followed by blanks (ar_name[2]=="", etc.).
Offsets into the string table begin at zero. Example ar_name values for short and long file
names appear below.

Offset +0 +1 +2 +3 +4 +5 +6 +7 +8 +9

0 f i | e _ n a m e _
10 S a m p | e / \n | o]
20 n g e r f i I n a
30 m e X a m p I / \n
Member Name ar_name
short-name short-name/ Not in string table
file_name_sample /0 Offset 0 in string table
longerfilenamexample /18 Offset 18 in string table

ar(1), Id(2), strip(1), a.out(4)
strip will remove all archive symbol entries from the header. The archive symbol entries

must be restored via the —ts options of the ar command before the archive can be used
with the link editor Id.

Sun0S 5.6 modified 3 Jul 1990

File Formats

NAME

DESCRIPTION

modified 3 Jul 1990

archives — device header

/OMagic numbers [0

#define CMIN_ASC
#define CMN_BIN
#define CMN_BBS
#define CMN_CRC
#define CMS_ASC
#define CMS_CHR
#define CMS_CRC
#define CMS_LEN

0x070701
070707
0143561
0x070702
"070701"
"070707"
"070702"
6

archives (4)

/OCpio Magic Number for —c header [

/O0Cpio Magic Number for Binary header [0
/OCpio Magic Number for Byte-Swap header [
/0Cpio Magic Number for CRC header [0
/OCpio Magic String for —c header O

/OCpio Magic String for odc header [

/OCpio Magic String for CRC header [J

/OCpio Magic String length I

/OVarious header and field lengths [

#define CHRSZ
#define ASCSZ
#define TARSZ

76
110
512

#define HNAMLEN 256

#define EXPNLEN

#define HTIMLEN
#define HSIZLEN

1024

2
2

/00-H odc size minus filename field [J
/0-c and CRC hdr size minus filename field [
/OTAR hdr size

/Omaximum filename length for binary and
odc headers

/Omaximum filename length for —c and
CRC headers O

/Olength of modification time field OO0
/Olength of file size field O

/Ocpio binary header definition [1

struct hdr_cpio {

short h_magic, /Omagic number field O
h_dev; /Ofile system of file I

ushort h_ino, /Oinode of file O
h_mode, /Omodes of file 0
h_uid, /Ouid of file 0
h_gid; /Ogid of file I

short h_nlink, /Onumber of links to file O
h_rdev, /Omaj/min numbers for special files I
h_mtime[HTIMLEN], /Omodification time of file 0
h_namesize, /Olength of filename [0
h_filesize[HSIZLEN]; /Osize of file O

char h_name[HNAMLEN]; /Ofilename O

}s

/Ocpio —H odc header format [

struct ¢_hdr {
char

c_magic[CMS_LEN],
c_dev[6],

c_ino[6],

c_mode[6],

c_uid[6],

c_gid[6],

c_nlink[6],

SunOS 5.6

4-25

archives (4)

4-26

File Formats
c_rdev[6],
c_mtime[11],
¢_namesz[6],
c_filesz[11],
c_name[HNAMLEN];
b
/0-c and CRC header format [1
struct Exp_cpio_hdr {
char E_magic[CMS_LEN],
E_ino[8],
E_mode][8],
E_uid[8],
E_gid[8],
E_nlink[8],
E_mtime[8],
E_filesize[8],
E_maj[8],
E_min[8],
E_rmaj[8],
E_rmin[8],
E_namesize[8],
E_chksum|8],
E_name[EXPNLEN];
b
/OTar header structure and format [J
#define TBLOCK 512 /Olength of tar header and data blocks O
#define TNAMLEN 100 /Omaximum length for tar file names [0
#define TMODLEN 8 /Olength of mode field I
#define TUIDLEN 8 /Olength of uid field O
#define TGIDLEN 8 /Olength of gid field OO
#define TSIZLEN 12 /Olength of size field O
#define TTIMLEN 12 /Olength of modification time field OO
#define TCRCLEN 8 /Olength of header checksum field I
/Otar header definition [J
union tblock {
char dummy[TBLOCK];
struct header {
char t_name[TNAMLEN]; /Oname of file O
char t_mode[TMODLEN]; /Omode of file I
char t uid[TUIDLEN]; /Cuid of file O
char t_gid[TGIDLEN]; /Ogid of file 0
char t_size[TSIZLEN]; /Osize of file in bytes [0
char t_mtime[TTIMLEN]; /Omodification time of file (I
char t_chksum[TCRCLEN(]; /Ochecksum of header [
char t_typeflag; /Oflag to indicate type of file
char t_linkname[TNAMLEN]; /Ofile this file is linked with OJ
char t_magic[6]; /Omagic string always "ustar" O
SunOS 5.6 modified 3 Jul 1990

File Formats

modified 3 Jul 1990

char t_version[2];
char t_uname[32];
char t_gname[32];

archives (4)

/Oversion strings always "00" [
/Oowner of file in ASCII OO
/Ogroup of file in ASCII O

char t_devmajor[8]; /Omajor number for special files O
char t_devminorl8]; /Ominor number for special files O
char t_prefix[155]; /Opathname prefix O
} tbuf;

I3

/Ovolcopy tape label format and structure I

#define VMAGLENS

#define VVOLLENG6

#define VFILLEN 464

struct volcopy_label {

char v_magic[VMAGLEN],
v_volume[VVOLLEN],

v_reels,
v_reel;
long v_time,
v_length,
v_dens,
v_reelblks,
v_blksize,
v_nblocks;
char v_fill[VFILLEN];
long v_offset;
int v_type;

/0u370 added field O
/Ou370 added field I
/O0u370 added field OO

/Oused with -e and -reel options [
/Odoes tape have nblocks field? [0

SunOS 5.6 4-27

asetenv (4)

NAME
SYNOPSIS

DESCRIPTION

4-28

File Formats

asetenv — ASET environment file
/usr/aset/asetenv

The asetenv file is located in /usr/aset, the default operating directory of the Automated
Security Enhancement Tool (ASET). An alternative working directory can be specified by
the administrators through the aset -d command or the ASETDIR environment variable.
See aset(1M). asetenv contains definitions of environment variables for ASET.

There are 2 sections in this file. The first section is labeled User Configurable Parameters. It
contains, as the label indicates, environment variables that the administrators can modify
to customize ASET behavior to suit their specific needs. The second section is labeled
ASET Internal Environment Variables and should not be changed. The configurable param-
eters are explained as follows:

TASK This variable defines the list of tasks that aset will execute the next time it
runs. The available tasks are:

tune Tighten system files.

usrgrp Check user/group.

sysconf Check system configuration file.
env Check environment.

cklist Compare system files checklist.
eeprom Check eeprom(1M) parameters.
firewall Disable forwarding of IP packets.

CKLISTPATH_LOW

CKLISTPATH_MED

CKLISTPATH_HIGH
These variables define the list of directories to be used by aset to create a
checklist file at the low, medium, and high security levels, respectively.
Attributes of all the files in the directories defined by these variables will
be checked periodically and any changes will be reported by aset.
Checks performed on these directories are not recursive. aset only
checks directories explicitly listed in these variables and does not check
subdirectories of them.

YPCHECK
This variable is a boolean parameter. It specifies whether aset should
extend checking (when applicable) on system tables to their NIS
equivalents or not. The value true enables it while the value false dis-
ables it.

SunOS 5.6 modified 13 Sep 1991

File Formats

EXAMPLES

SEE ALSO

modified 13 Sep 1991

asetenv (4)

UID_ALIASES
This variable specifies an alias file for user 1D sharing. Normally, aset
warns about multiple user accounts sharing the same user ID because it
is not advisable for accountability reason. Exceptions can be created
using an alias file. User ID sharing allowed by the alias file will not be
reported by aset. See asetmasters(4) for the format of the alias file.

PERIODIC_SCHEDULE
This variable specifies the schedule for periodic execution of ASET. It
uses the format of crontab(1) entries. Briefly speaking, the variable is
assigned a string of the following format:
minutes hours day-of-month month day-of-week

Setting this variable does not activate the periodic schedule of ASET. To
execute ASET periodically, aset(1M) must be run with the —p option. See
aset(1M). For example, if PERIODIC_SCHEDULE is set to the following,
and aset(1M) was started with the —p option, aset will run at 12:00 mid-
night every day:

00000

The following is a sample asetenv file, showing the settings of the ASET configurable
parameters:
CKLISTPATH_LOW=/etc:/
CKLISTPATH_MED=$CHECKLISTPATH_LOW:/usr/bin:/usr/ucb
CKLISTPATH_HIGH=$CHECKLISTPATH_MED:/usr/lib:/usr/sbin
YPCHECK=false
UID_ALIASES=/usr/aset/masters/uid_aliases
PERIODIC_SCHEDULE="00 OO
TASKS="env sysconf usrgrp"

When aset —p is run with this file, aset is executed at midnight of every day. The /and
/etc directories are checked at the low security level; the /, /etc, /usr/bin, and /usr/ucb
directories are checked at the medium security level; and the /, /etc, /usr/bin, /usr/lib, and
/usr/sbin directories are checked at the high security level. Checking of NIS system files
is disabled. The /usr/aset/masters/uid_aliases file specifies the used IDs available for
sharing. The env, sysconf, and usrgrp tasks will be performed, checking the environ-
ment variables, various system tables, and the local passwd and group files.

crontab(1), aset(1M), asetmasters(4)
ASET Administrator Manual

SunOS 5.6 4-29

asetmasters (4)

NAME

SYNOPSIS

DESCRIPTION

4-30

File Formats

asetmasters, tune.low, tune.med, tune.high, uid_aliases, cklist.low, cklist.med, cklist.high
— ASET master files

/usr/aset/masters/tune.low
/usr/aset/masters/tune.med
/usr/aset/masters/tune.high
/usr/aset/masters/uid_aliases
/usr/aset/masters/cklist.low
/usr/aset/masters/cklist.med
/usr/aset/masters/cklist.high

The /usr/aset/masters directory contains several files used by the Automated Security
Enhancement Tool (ASET). /usr/aset is the default operating directory for ASET. An
alternative working directory can be specified by the administrators through the aset —d
command or the ASETDIR environment variable. See aset(1M).

These files are provided by default to meet the need of most environments. The adminis-
trators, however, can edit these files to meet their specific needs. The format and usage of
these files are described below.

All the master files allow comments and blank lines to improve readability. Comment
lines must start with a leading "#" character.

tune.low
tune.med
tune.high These files are used by the tune task (see aset(1M)) to restrict the permis-
sion settings for system objects. Each file is used by ASET at the security
level indicated by the suffix. Each entry in the files is of the form:
pathname mode owner group type

where

pathname is the full pathname

mode is the permission setting

owner is the owner of the object

group is the group of the object

type is the type of the object It can be symlink for a sym-
bolic link, directory for a directory, or file for every-
thing else.

Regular shell wildcard ("', "?", ...) characters can be used in the pathname
for multiple references. See sh(1). The mode is a five-digit number that
represents the permission setting. Note that this setting represents a least
restrictive value. If the current setting is already more restrictive than the
specified value, ASET does not loosen the permission settings.

SunOS 5.6 modified 13 Sep 1991

File Formats

EXAMPLES

SEE ALSO

modified 13 Sep 1991

asetmasters (4)

For example, if mode is 00777, the permission will not be changed, since it is always less
restrictive than the current setting.

Names must be used for owner and group instead of numeric ID’s. ? can be used
as a “don’t care” character in place of owner, group, and type to prevent ASET
from changing the existing values of these parameters.
uid_alias

This file allows user 1D’s to be shared by multiple user accounts. Normally,
ASET discourages such sharing for accountability reason and reports user ID’s
that are shared. The administrators can, however, define permissible sharing by
adding entries to the file. Each entry is of the form:

uid=aliasl=alias2=alias3= ...
where

uid is the shared user id

alias? is the user accounts sharing the user ID

For example, if sync and daemon share the user ID 1, the corresponding entry is:
1=sync=daemon

cklist.low

cklist.med

cklist.high
These files are used by the cklist task (see aset(1M)), and are created the first time
the task is run at the low, medium, and high levels. When the cklist task is run, it
compares the specified directory’s contents with the appropriate cklist.level file
and reports any discrepancies.

The following is an example of valid entries for the tune.low, tune.med, and tune.high
files:

/bin 00777 root staff symlink
letc 02755 root staff directory
/dev/sd] 00640 root operator file

aset(1M), asetenv(4)
ASET Administrator Manual

SunOS 5.6 4-31

audit_class (4)

NAME
SYNOPSIS

DESCRIPTION

EXAMPLES

FILES
SEE ALSO

NOTES

4-32

File Formats

audit_class — audit class definitions
letc/security/audit_class

letc/security/audit_class is an ASCII system file that stores class definitions. Programs
use the getauclassent(3) routines to access this information.

The fields for each class entry are separated by colons. Each class entry is a bitmap and is
separated from each other by a newline.

Each entry in the audit_class file has the form:
mask:name:description
The fields are defined as follows:

mask The class mask.
name The class name.
description The description of the class.

The classes are now user-configurable. Each class is represented as a bit in the class mask
which is an unsigned integer. Thus, there are 32 different classes available, plus two
meta-classes -- all and no.

all represents a conjunction of all allowed classes, and is provided as a shorthand
method of specifying all classes.

no is the "invalid" class, and any event mapped solely to this class will not be
audited. (Turning auditing on to the all meta class will NOT cause events
mapped solely to the no class to be written to the audit trail.)

Here is a sample of an audit_class file:

0x00000000:no:invalid class
0x00000001:fr:file read
0x00000002:fw:file write
0x00000004:fa:file attribute access
0x00000008:fm:file attribute modify
0x00000010:fc:file create
0x00000020:fd:file delete
0x00000040:cl:file close
Oxffffffff.all:all classes

letc/security/audit_class
bsmconv(1M), getauclassent(3), audit_event(4)

It is possible to deliberately turn on the no class in the kernel, in which case the audit trail
will be flooded with records for the audit event AUE_NULL.

Sun0S 5.6 modified 31 Dec 1996

File Formats audit_class (4)

The functionality described in this man page is available only if the Basic Security
Module (BSM) has been enabled. See bsmconv(1M) for more information.

modified 31 Dec 1996 Sun0S 5.6 4-33

audit_control (4)

4-34

NAME

SYNOPSIS

DESCRIPTION

File Formats

audit_control - control information for system audit daemon
letc/security/audit_control

The audit_control file contains audit control information used by auditd(1M). Each line
consists of a title and a string, separated by a colon. There are no restrictions on the order
of lines in the file, although some lines must appear only once. A line beginning with ‘#
is a comment.

Directory definition lines list the directories to be used when creating audit files, in the
order in which they are to be used. The format of a directory line is:

dir: directory-name
directory-name is where the audit files will be created. Any valid writable directory can be
specified.
The following configuration is recommended:

letc/security/audit/server/files
where server is the name of a central machine, since audit files belonging to different
servers are usually stored in separate subdirectories of a single audit directory. The nam-
ing convention normally has server be a directory on a server machine, and all clients
mount /etc/security/audit/server at the same location in their local file systems. If the

same server exports several different file systems for auditing, their server names will, of
course, be different.

There are several other ways for audit data to be arranged: some sites may have needs
more in line with storing each host’s audit data in separate subdirectories. The audit
structure used will depend on each individual site.

The audit threshold line specifies the percentage of free space that must be present in the
file system containing the current audit file. The format of the threshold line is:

minfree: percentage

where percentage is indicates the amount of free space required. If free space falls below
this threshold, the audit daemon auditd(1M) invokes the shell script audit_warn(1M). If
no threshold is specified, the default is 0%.

The audit flags line specifies the default system audit value. This value is combined with
the user audit value read from audit_user(4) to form the process audit state. The user
audit value overrides the system audit value. The format of a flags line is:

flags:audit-flags

Sun0S 5.6 modified 31 Dec 1996

File Formats

modified 31 Dec 1996

audit_control (4)

where audit-flags specifies which event classes are to be audited. The character string
representation of audit-flags contains a series of flag names, each one identifying a single
audit class, separated by commas. A name preceded by ‘=’ means that the class should
be audited for failure only; successful attempts are not audited. A name preceded by ‘+’
means that the class should be audited for success only; failing attempts are not audited.
Without a prefix, the name indicates that the class is to be audited for both successes and
failures. The special string all indicates that all events should be audited; —all indicates
that all failed attempts are to be audited, and +all all successful attempts. The prefixes ",
“—, and "+ turn off flags specified earlier in the string ("— and "+ for failing and successful
attempts, ~ for both). They are typically used to reset flags.

The non-attributable flags line is similar to the flags line, but this one contain the audit
flags that define what classes of events are audited when an action cannot be attributed to
a specific user. The format of a naflags line is:

naflags: audit-flags
The flags are separated by commas, with no spaces.
The following table lists the predefined audit classes:

short name long name short description

no no_class null value for turning off event preselection
fr file_read Read of data, open for reading, etc.

fw file_write Write of data, open for writing, etc.

fa file_attr_acc Access of object attributes: stat, pathconf, etc.
fm file_attr mod Change of object attributes: chown, flock, etc.
fc file_creation Creation of object

fd file_deletion Deletion of object

cl file_close close(2) system call

pc process Process operations: fork, exec, exit, etc.

nt network Network events: bind, connect, accept, etc.

ip ipc System V IPC operations

na non_attrib non-attributable events

ad administrative administrative actions: mount, exportfs, etc.
lo login_logout Login and logout events

ap application Application auditing

io ioctl ioctl(2) system call

ex exec exec(2) system call

ot other Everything else

all all All flags set

Note that the classes are configurable, see audit_class(4).

SunOS 5.6 4-35

audit_control (4)

EXAMPLES

FILES

SEE ALSO

NOTES

4-36

File Formats

Here is a sample /etc/security/audit_control file for the machine eggplant:

dir: /etc/security/jedgar/eggplant

dir: /etc/security/jedgar.aux/eggplant

#

Last-ditch audit file system when jedgar fills up.
#

dir: /etc/security/global/eggplant

minfree: 20

flags: lo,ad,-all,”-fm

naflags: lo,ad

This identifies server jedgar with two file systems normally used for audit data, another
server global used only when jedgar fills up or breaks, and specifies that the warning
script is run when the file systems are 80% filled. It also specifies that all logins, adminis-
trative operations are to be audited (whether or not they succeed), and that failures of all
types except failures to access object attributes are to be audited.

letc/security/audit_control
/etc/security/audit_warn
letc/security/audit/IO0O
/etc/security/audit_user

audit(1M), audit_warn(1M), auditd(1M), bsmconv(1M), audit(2), getfauditflags(3),
audit.log(4), audit_class(4), audit_user(4)

The functionality described in this man page is available only if the Basic Security
Module (BSM) has been enabled. See bsmconv(1M) for more information.

Sun0S 5.6 modified 31 Dec 1996

File Formats

NAME

SYNOPSIS

DESCRIPTION

EXAMPLES

FILES

SEE ALSO

NOTES

modified 31 Dec 1996

audit_data(4)

audit_data - current information on audit daemon
letc/security/audit_data

The audit_data file contains information about the audit daemon. The file contains the
process ID of the audit daemon, and the pathname of the current audit log file. The for-
mat of the file is:

<pid>:<pathname>

Where pid is the process ID for the audit daemon, and pathname is the full pathname for
the current audit log file.

64:/etc/security/audit/server1/19930506081249.19930506230945.bongos
letc/security/audit_data
audit(1M), auditd(1M), bsmconv(1M), audit(2), audit.log(4)

The functionality described in this man page is available only if the Basic Security
Module (BSM) has been enabled. See bsmconv(1M) for more information.

SunOS 5.6 4-37

audit_event(4)

NAME
SYNOPSIS

DESCRIPTION

EXAMPLES

FILES
SEE ALSO

NOTES

4-38

File Formats

audit_event — audit event definition and class mapping
letc/security/audit_event

letc/security/audit_event is an ASCII system file that stores event definitions and specifies
the event to class mappings. Programs use the getauevent(3) routines to access this
information.

The fields for each event entry are separated by colons. Each event is separated from the
next by a newline.

Each entry in the audit_event file has the form:
number:name:description:flags
The fields are defined as follows:

number The event number.

name The event name.

description The description of the event.

flags Flags specifying classes to which the event is mapped.

Here is a sample of the audit_event file entries:
7:AUE_EXEC:exec(2):pc,ex
79:AUE_OPEN_WTC:open(2) - write,creat,trunc:fc,fd,fw
6152:AUE_login:login - success or failure:lo
6153:AUE_logout:logout:lo
6154.AUE_telnet:login - through telnet:lo
6155:AUE_rlogin:login - through rlogin:lo

letc/security/audit_event
bsmconv(1M), getauevent(3), audit_control(4)

The functionality described in this man page is available only if the Basic Security
Module (BSM) has been enabled. See bsmconv(1M) for more information.

Sun0S 5.6 modified 31 Dec 1996

File Formats

NAME

SYNOPSIS

DESCRIPTION

modified 30 Apr 1997

audit.log (4)

audit.log — audit trail file

#include <bsm/audit.h>
#include <bsm/audit_record.h>

audit.log files are the depository for audit records stored locally or on an audit server.
These files are kept in directories named in the file audit_control(4). They are named to
reflect the time they are created and are, when possible, renamed to reflect the time they
are closed as well. The name takes the form

yyyymmddhhmmss.not_terminated.hostname
when open or if the auditd(1M) terminated ungracefully, and the form
yyyymmddhhmmess.yyyymmddhhmmss.hostname

when properly closed. yyyy is the year, mm the month, dd day in the month, hh hour in
the day, mm minute in the hour, and ss second in the minute. All fields are of fixed
width.

The audit.log file begins with a standalone file token and typically ends with one also.
The beginning file token records the pathname of the previous audit file, while the end-
ing file token records the pathname of the next audit file. If the file name is NULL the
appropriate path was unavailable.

The audit.log files contains audit records. Each audit record is made up of audit tokens.
Each record contains a header token followed by various data tokens. Depending on the
audit policy in place by auditon(2), optional other tokens such as trailers or sequences

may be included.
The tokens are defined as follows:
The file token consists of:

token ID char

seconds of time u_int
milliseconds of time u_int
file name length short

file pathname
The header token consists of:

null terminated string

token ID char
record byte count u_long
version # char (D)
event type u_short
event modifier u_short
seconds of time u_int
milliseconds of time u_int
The trailer token consists of:
token ID char
trailer magic number u_short
record byte count u_long

SunOS 5.6

4-39

audit.log (4)

4-40

The arbitrary data token is defined:
token ID
how to print
basic unit
unit count
data items

The in_addr token consists of:
token ID
internet address

The ip token consists of:
token ID
version and ihl
type of service
length
id
offset
ttl
protocol
checksum
source address
destination address

The iport token consists of:
token ID
port address

The opaque token consists of:
token ID
size
data

The path token consists of:
token ID
path length
path

The process token consists of:
token ID
auid
euid
egid
ruid
rgid
pid
sid
terminal ID

SunOS 5.6

File Formats

char
char
char
char
depends on basic unit

char
char

char
char
char
short
u_short
u_short
char
char
u_short
long
long

char
short

char
short
char, size chars

char
short
null terminated string

char

u_long

u_long

u_long

u_long

u_long

u_long

u_long

u_long (port ID)
u_long (machine ID)

modified 30 Apr 1997

File Formats

modified 30 Apr 1997

audit.log (4)

The return token consists of:

token ID char

error number char

return value long
The subject token consists of:

token ID char

auid u_long

euid u_long

egid u_long

ruid u_long

rgid u_long

pid u_long

sid u_long

terminal ID u_long (portID)

u_long (machine ID)

The System V IPC token consists of:

token ID char

object ID type char

object ID long
The text token consists of:

token ID char

text length short

text null terminated string
The attribute token consists of:

token ID char

mode u_long

uid u_long

gid u_long

file system id long

node id long

device u_long
The groups token consists of:

token ID char

number short

group list long, size chars
The System V IPC permission token consists of;

token ID char

uid u_long

gid u_long

cuid u_long

cgid u_long

mode u_long

seq u_long

Sun0S 5.6 4-41

audit.log (4)

4-42

SEE ALSO

NOTES

key

The arg token consists of:
token ID
argument #
argument value
string length
text

The exec_args token consists of:

token ID
count
text

The exec_env token consists of:
token ID
count
text

The exit token consists of:
token ID
status
return value

The socket token consists of:
token ID
socket type
local port

local Internet address

remote port

remote Internet address

The seq token consists of;
token ID
sequence number

long

char
char
long
short
null terminated string

char
long
count null terminated string(s)

char
long
count null terminated string(s)

char
long
long

char
short
short
char
short
char

char
long

File Formats

audit(1M), auditd(1M), bsmconv(1M), audit(2), auditon(2), au_to(3), audit_control(4)

Each token is generally written using the au_to(3) family of function calls.

The functionality described in this man page is available only if the Basic Security
Module (BSM) has been enabled. See bsmconv(1M) for more information.

SunOS 5.6

modified 30 Apr 1997

File Formats

NAME

SYNOPSIS

DESCRIPTION

EXAMPLES

FILES

SEE ALSO

NOTES

modified 31 Dec 1996

audit_user(4)

audit_user — per-user auditing data file
letc/security/audit_user

audit_user is an access-restricted ASCII system file that stores per-user auditing preselec-
tion data. Programs use the getauusernam(3) routines to access this information.

The fields for each user entry are separated by colons. Each user is separated from the
next by a newline. audit_user does not have general read permission.

Each entry in the audit_user file has the form:
username:always-audit-flags :never-audit-flags
The fields are defined as follows:

username The user’s login name.
always-audit-flags Flags specifying event classes to always audit.
never-audit-flags Flags specifying event classes to never audit.

Here is a sample audit_user file:

other:lo,ad:io,cl
fred:lo,ex,+fc,-fr,-fa:io,cl
ethyl:lo,ex,nt:io,cl

letc/security/audit_user
/etc/passwd

bsmconv(1M), getauusernam(3), audit_control(4), passwd(4),

The functionality described in this man page is available only if the Basic Security
Module (BSM) has been enabled. See bsmconv(1M) for more information.

SunOS 5.6 4-43

bootparams (4)

4-44

NAME

SYNOPSIS

DESCRIPTION

File Formats

bootparams — boot parameter data base
/etc/bootparams

The bootparams file contains a list of client entries that diskless clients use for booting.
Diskless booting clients retrieve this information by issuing requests to a server running
the rpc.bootparamd(1M) program. The bootparams file may be used in conjunction with
or in place of other sources for the bootparams information. See nsswitch.conf(4).

For each client the file contains an entry with the client’s name and a list of boot parame-
ter values for that client. Each entry should have the form:

clientname identifier-specifier ...

The first item of each entry is the host name of the diskless client. The asterisk ('0) char-
acter may be used as a "wildcard" in place of the client name in a single entry. That entry
will apply to all clients for whom there is not an entry that specifically names them.

This is followed by one or more whitespace characters and a series of identifier-specifiers
separated by whitespace characters.

Each identifier-specifier has the form:
identifier=server:pathname

or
identifier=domain-name

The first form is used for file-specific identifiers. A file-specific identifier is a key that is
used by diskless clients to identify a file or filesystem. server is the name of the server that
will provide the file or filesystem to the diskless client, and pathname is the path to the
exported file or filesystem on the specified server. The equal sign ('=") and colon (’:")
characters are used in the indicated positions. There should not be any whitespace
within an identifier-specifier.

Non-file-specific identifiers use the second form of identifier-specifier. One non-file-
specific value for identifier is supported: the assignment of the client’s domain name. In
this case, the value used for identifier is domain. domain-name must be the client’s domain
name. The algorithm for determining a client’s domain name is to first check for a
domain identifier in the client-specific entry and then in "wildcard" entry. If none is
found, the server’s domain name is used.

An entry may be split across multiple lines of the file. The backslash ("\") character
should be used as the last character of a line to signify that the entry continues on the next
line. The line may only be split in places where whitespace is allowed in the entry.

A variation of the first form (identifier=server:pathname) is used for the ns key which forces
sysidtool(1M) to use a specific name service. By default, sysidtool uses NIS+ in prefer-
ence to NIS if it can find a NIS+ server for the system’s domain on the subnet. This key
may be necessary if you are trying to set up a hands-off installation, or if the name server
is on a different subnet, which is common with NIS+.

Sun0S 5.6 modified 13 Jan 1995

File Formats

EXAMPLES

FILES

SEE ALSO
x86 only

NOTES

modified 13 Jan 1995

bootparams (4)

If this key is not used, sysidtool uses broadcast to attempt to bind to either a NIS+ or NIS
server; if a name server is not on the local subnet, which is possible for NIS+, the bind will
fail, automatic configuration of the name service will fail, and an interactive screen is
displayed, prompting the user to specify the name service.

The ns entry has the form;
ns=[server] : [nameservice] [(netmask)]

where:

server the name of a server that will provide a name service to bind to
nameservice the name service (nis, nisplus, or none);

netmask a series of four numbers separated by periods that specifies which por-

tion of an IP address is the network part, and which is the host part.
The ns keyword can be set in add_install_client or by Host Manager.

Here is an example of an entry in the bootparams file:

clientl root=serverl:/export/clientl/root \
swap=serverl:/export/clientl/swap \
domain=bldgl.workco.com
root=server2:/export/client2/root ns=:nis
root=server2:/export/client2/root ns=watson:
root=server2:/export/client2/root ns=mach:nisplus(255.255.255.0)

/etc/bootparams

rpc.bootparamd(1M), sysidtool(1M), nsswitch.conf(4)
rpld(1M)

Solaris diskless clients use the identifiers "root", "swap", and "dump" to look up the path-
names for the root filesystem, a swap area, and a dump area, respectively. These are the
only identifiers meaningful for SPARC diskless booting clients.

For x86 booting clients, the additional keyword identifiers "numbootfiles,” "bootfile," and
"bootaddr" are used (see rpld(1M)).

SunOS 5.6 4-45

cdtoc (4)

4-46

NAME

DESCRIPTION

File Formats

cdtoc — CD-ROM table of contents file

The table of contents file, .cdtoc, is an ASCII file that describes the contents of a CD-ROM
or other software distribution media. It resides in the top-level directory of the file sys-
tem on a slice of a CD-ROM. It is independent of file system format, that is, the file system
on the slice can be either UFS or HSFS.

Each entry in the .cdtoc file is a line that establishes the value of a parameter in the fol-
lowing form:

PARAM=value

Blank lines and comments (lines preceded by a pound-sign, “#’") are also allowed in the
file. Parameters are grouped by product, with the beginning of a product defined by a
line of the form:

PRODNAME=value

Each product is expected to consist of one or more software packages that are stored
together in a subdirectory on the distribution media. There can be any number of pro-
ducts described within the file. There is no required order in which the parameters must
be specified, except that the parameters must be grouped by product and the PROD-
NAME parameter must appear first in the list of parameters for each product specified.
Each parameter is described below. All of the parameters are required for each product.

PRODNAME The full name of the product. This must be unique within the .cdtoc
file and is preferably unique across all possible products. This value
may contain white space. The length of this value is limited to 256
ASCII characters; other restrictions may apply (see below).

PRODVERS The version of the product. The value can contain any combination of
letters, numbers, or other characters. This value may contain white
space. The length of this value is limited to 256 ASCII characters; other
restrictions may apply (see below).

PRODDIR The name of the top-level directory containing the product. This name
should be relative to the top-level directory of the distribution media,
for example, Solaris_2.6/Product. The number of path components in
the name is limited only by the system’s maximum path name length,
which is 1024 ASCII characters. Any single component is limited to 256
ASCII characters. This value cannot contain white space.

The lengths of the values of PRODNAME and PRODVERS are further constrained by the
fact that the initial install programs and swmtool(1M) concatenate these values to pro-
duce the full product name. swmtool(1M) concatenates the two values (inserting a
space) to produce the name displayed in its software selection menu, for example, Solaris
2.6. For unbundled products the combined length of the values of PRODNAME and
PRODVERS must not exceed 256 ASCII characters.

When you install OS services with Solstice Host Manager, directories for diskless clients
and Autoclient systems are created by constructing names derived from a concatenation
of the values of PRODNAME, PRODVERS, and client architecture, for example,

Sun0S 5.6 modified 4 Oct 1996

File Formats

EXAMPLES

modified 4 Oct 1996

cdtoc (4)

/export/exec/Solaris_2.x_sparc.all/usr/platform. The length of the component containing
the product name and version must not exceed 256 ASCII characters. Thus, for products
corresponding to bundled OS releases (for example, Solaris 2.4), the values of PROD-
NAME and PRODVERS are effectively restricted to lengths much less than 256.

The initial install programs and swmtool(1M) use the value of the PRODDIR macro in
the .cdtoc file to indicate where packages can be found.

Here is a sample .cdtoc file:

#

.cdtoc file -- Online product family CD
#

PRODNAME=0nline DiskSuite
PRODVERS=2.0
PRODDIR=0nline_DiskSuite 2.0

#

PRODNAME=0nline Backup
PRODVERS=2.0
PRODDIR=0Online_Backup_2.0

This example corresponds to the following directory layout on a CD-ROM partition:

/.cdtoc
/Online_DiskSuite_2.0
JSUNWmMddr.c
JSUNWmMddr.m
JSUNWmMddu
/Online_Backup_2.0
JSUNWhsm
The bundled release of Solaris 2.6 includes the following .cdtoc file:
PRODNAME=Solaris
PRODVERS=2.6
PRODDIR=Solaris_2.6/Product
This file corresponds to the following directory layout on slice 0 of the Solaris 2.6 product
CD:
/.cdtoc
/Solaris_2.6/Product
JSUNWaccr

JSUNWaccu
JSUNWadmap

JSUNW.utool

SunOS 5.6 4-47

cdtoc (4) File Formats

SEE ALSO | swmtool(1M), clustertoc(4), packagetoc(4), pkginfo(4)

4-48 Sun0S 5.6 modified 4 Oct 1996

File Formats

NAME

DESCRIPTION

modified 6 Sep 1995

clustertoc (4)

clustertoc - cluster table of contents description file

The cluster table of contents file, .clustertoc, is an ASCII file that describes a hierarchical
view of a software product. A .clustertoc file is required for the base OS product. The file
resides in the top-level directory containing the product.

The hierarchy described by .clustertoc can be of arbitrary depth, although the initial sys-
tem installation programs assume that it has three levels. The hierarchy is described
bottom-up, with the packages described in .packagetoc at the lowest layer. The next
layer is the cluster layer which collects packages into functional units. The highest layer is
the meta-cluster layer which collects packages and clusters together into typical
configurations.

The hierarchy exists to facilitate the selection or deselection of software for installation at
varying levels of granularity. Interacting at the package level gives the finest level of con-
trol over what software is to be installed.

Each entry in the .clustertoc file is a line that establishes the value of a parameter in the
following form:

PARAM=value
A line starting with a pound-sign, “#”, is considered a comment and is ignored.

Parameters are grouped by cluster or meta-cluster. The start of a cluster description is
defined by a line of the form:

CLUSTER=value

The start of a meta-cluster description is defined by a line of the form:
METACLUSTER=value

There is no order implied or assumed for specifying the parameters for a (meta-)cluster

with the exception of the CLUSTER or METACLUSTER parameter, which must appear
first and the END parameter which must appear last.

Each parameter is described below. All of the parameters are mandatory.

CLUSTER The cluster identifier (for example, SUNWCacc). The identifier
specified must be unique within the package and cluster identifier
namespace defined by a product’s .packagetoc and .clustertoc files.
The identifiers used are subject to the same constraints as those for
package identifiers. These constraints are (from pkginfo(4)):

“All characters in the abbreviation must be alphanumeric and the first
may not be numeric. The abbreviation is limited to a maximum length
of nine characters. install, new, and all are reserved abbreviations.”

A cluster must be described before another cluster or meta-cluster may
refer to it.

SunOS 5.6 4-49

clustertoc (4)

4-50

METACLUSTER

NAME

VENDOR

VERSION

DESC

File Formats

The metacluster identifier (for example, SUNWCprog). The identifier
specified must be unique within the package and cluster identifier
namespace defined by a product’s .packagetoc and .clustertoc files.
The identifiers used are subject to the same constraints as those for
package identifiers. These constraints are (from pkginfo(4)):

“All characters in the abbreviation must be alphanumeric and the first
may not be numeric. The abbreviation is limited to a maximum length
of nine characters. install, new, and all are reserved abbreviations.”

Meta-clusters cannot contain references to other meta-clusters.

The full name of the (meta-)cluster. The length of the name string sup-
plied may not exceed 256 characters.

The name of the (meta-)cluster’s vendor. The length of the vendor
string supplied may not exceed 256 characters.

The version of the (meta-)cluster. The length of the version string sup-
plied may not exceed 256 characters.

An informative textual description of the (meta-)cluster’s contents. The
length of the description supplied may not exceed 256 characters. The
text should contain no newlines.

SUNW_CSRMEMBER

Indicates that the package or cluster is a part of the (meta-) cluster
currently being described. The value specified is the identifier of the
package or cluster. There may be an arbitrary number of
SUNW_CSRMEMBER parameters per (meta-)cluster.

SUNW_CSRMBRIFF

Indicates that the package is to be included dynamically in the (meta-
)cluster currently being described. The value of this parameter must
follow the following format:

SUNW_CSRMBRIFF=(<test> <test_arc>)<package>

This line will be converted into a SUNW_CSRMEMBER entry at media
installation time if the test provided matches the platform on which the
media is being installed. There may be zero or more SUN_CSRMBRIFF
parameters per (meta-)cluster.

SUNW_CSRMBRIFF=(<test> <value>)<package>

where the the <test> is either the builtin test of "platform" or a shell
script which returns shell true (0) or shell false (1) depending on the
tests being performed in the script. <value> is passed to the test as the
first argument and can be used to create a script that tests for multiple
hardware objects. Finally <package> is the package that will be
included in the final .clustertoc file as a SUNW_CSRMEMBER. See
parse_dynamic_clustertoc(1M) for more information about the scripts.

SunOS 5.6 modified 6 Sep 1995

File Formats

EXAMPLES

SEE ALSO

modified 6 Sep 1995

clustertoc (4)

The following is an example of a cluster description in a .clustertoc file.

CLUSTER=SUNWCacc
NAME=System Accounting
DESC=System accounting utilities
VENDOR=Sun Microsystems, Inc.
VERSION=7.2
SUNW_CSRMEMBER=SUNWaccr
SUNW_CSRMEMBER=SUNWaccu
END

The following is an example of a meta-cluster description in a .clustertoc file.

METACLUSTER=SUNWCreq

NAME=Core System Support

DESC=A pre-defined software configuration consisting of the minimum
required software for a standalone, non-networked workstation.
VENDOR=Sun Microsystems, Inc.

VERSION=2.x

SUNW_CSRMEMBER=SUNWadmr
SUNW_CSRMEMBER=SUNWcar
SUNW_CSRMEMBER=SUNW(Ccs
SUNW_CSRMEMBER=SUNW(Ccg6
SUNW_CSRMEMBER=SUNWCdfb
SUNW_CSRMEMBER=SUNWkvm
SUNW_CSRMEMBER=SUNWCnis
SUNW_CSRMEMBER=SUNWowdv
SUNW_CSRMEMBER=SUNW!ter

END

The following is an example of a meta-cluster description with a dynamic cluster entry as
indicated by the use of the SUNW_CSRMBRIFF parameter entries.

METACLUSTER=SUNWCprog

NAME=Developer System Support

DESC=A pre-defined software configuration consisting of the
typical software used by software developers.
VENDOR=Sun Microsystems, Inc.

VERSION=2.5

SUNW_CSRMEMBER=SUNWCadm
SUNW_CSRMBRIFF=(smcc.dctoc tcx)SUNWCtcx
SUNW_CSRMBRIFF=(smcc.dctoc leo)SUNWClIeo
SUNW_CSRMBRIFF=(smcc.dctoc sx)SUNWCsx

END

parse_dynamic_clustertoc(1M), cdtoc(4), order(4), packagetoc(4), pkginfo(4)

SunOS 5.6 4-51

clustertoc (4) File Formats

NOTES | The current implementation of the initial system installation programs depend on the
.clustertoc describing three required meta-clusters for the base OS product:

SUNWCall contains all of the software packages in the OS distribution.

SUNWCuser contains the typical software packages for an end-user of the OS dis-
tribution.

SUNWCreq contains the bare-minimum packages required to boot and configure
the OS to the point of running a multi-user shell.

4-52 SunOS 5.6 modified 6 Sep 1995

File Formats

NAME

DESCRIPTION

EXAMPLES

SEE ALSO

NOTES

modified 4 Oct 1996

compver (4)

compver — compatible versions file

compver is an ASCII file used to specify previous versions of the associated package
which are upward compatible. It is created by a package developer.

Each line of the file specifies a previous version of the associated package with which the
current version is backward compatible.

Since some packages may require installation of a specific version of another software
package, compatibility information is extremely crucial. Consider, for example, a pack-
age called "A" which requires version "1.0" of application "B" as a prerequisite for installa-
tion. If the customer installing "A" has a newer version of "B" (version 1.3), the compver
file for "B" must indicate that "1.3" is compatible with version "1.0" in order for the custo-
mer to install package "A".

A sample compver file is shown below:

Version 1.3
Version 1.0

pkginfo(4)
Application Packaging Developer’s Guide

The comparison of the version string disregards white space and tabs. It is performed on
a word-by-word basis. Thus, "Version 1.3" and "Version 1.3" would be considered the
same.

The entries in the compver file must match the values assigned to the VERSION parame-
ter in the pkginfo(4) files.

SunOS 5.6 4-53

copyright(4) File Formats

NAME copyright — copyright information file

DESCRIPTION copyright is an ASCII file used to provide a copyright notice for a package. The text may
be in any format. The full file contents (including comment lines) are displayed on the
terminal at the time of package installation.

SEE ALSO | Application Packaging Developer’s Guide

4-54 Sun0S 5.6 modified 7 Feb 1997

File Formats

NAME

DESCRIPTION

modified 17 Jul 1996

core (4)

core — core image file

The operating system writes out a core image of a process when it is terminated due to
the receipt of some signals. The core image is called core and is written in the process’s
working directory (provided it can be; normal access controls apply). A process with an
effective user ID different from the real user ID will not produce a core image.

The core file contains all the process information pertinent to debugging: contents of
hardware registers, process status, and process data. The format of a core file is object
file specific.

For ELF executable programs (see a.out(4)), the core file generated is also an ELF file, con-
taining ELF program and file headers. The e_type field in the file header has type
ET_CORE. The program header contains an entry for every segment that was part of the
process address space, including shared library segments. The contents of the writable
segments are also part of the core image.

The program header of an ELF core file also contains entries for two NOTE segments, each
containing several note entries as described below. The note entry header and core file
note type (n_type) definitions are contained in <sys/elf.h>. The first NOTE segment
exists for binary compatibility with old programs that deal with core files. It contains
structures defined in <sys/old_procfs.h>. New programs should recognize and skip this
NOTE segment, advancing instead to the new NOTE segment. The old NOTE segment
will be deleted from core files in a future release.

The old NOTE segment contains the following entries. Each has entry name "CORE" and

presents the contents of a system structure:

prpsinfo_t
n_type: NT_PRPSINFO. This entry contains information of interest to the ps(1)
command, such as process status, CPU usage, "nice" value, controlling terminal,
user-1D, process-1D, the name of the executable, and so forth. The prpsinfo_t
structure is defined in <sys/old_procfs.h>.

char array
n_type: NT_PLATFORM. This entry contains a string describing the specific
model of the hardware platform on which this core file was created. This infor-
mation is the same as provided by sysinfo(2) when invoked with the command
SI_PLATFORM.

auxv_t array
n_type: NT_AUXV. This entry contains the array of auxv_t structures that was
passed by the operating system as startup information to the dynamic linker.
Auxiliary vector information is defined in <sys/auxv.h>.

Following these entries, for each light-weight process (LWP) in the process, the old NOTE
segment contains an entry with a prstatus_t structure, plus other optionally-present
entries describing the LWP, as follows:

SunOS 5.6 4-55

core(4)

4-56

File Formats

prstatus_t
n_type: NT_PRSTATUS. This structure contains things of interest to a debugger
from the operating system, such as the general registers, signal dispositions,
state, reason for stopping, process-ID, and so forth. The prstatus_t structure is
defined in <sys/old_procfs.h>.

prfpregset t
n_type: NT_PRFPREG. This entry is present only if the LWP used the floating-

point hardware. It contains the floating-point registers. The prfpregset_t struc-
ture is defined in <sys/old_procfs.h>.

gwindows_t
n_type: NT_GWINDOWS. This entry is present only on a SPARC machine and
only if the system was unable to flush all of the register windows to the stack. It
contains all of the unspilled register windows. The gwindows_t structure is
defined in <sys/regset.h>.

prxregset_t
n_type: NT_PRXREG. This entry is present only if the machine has extra register

state associated with it. It contains the extra register state. The prxregset_t struc-
ture is defined in <sys/old_procfs.h>.

The new NOTE segment contains the following entries. Each has entry name "CORE" and
presents the contents of a system structure:
psinfo_t
n_type: NT_PSINFO. This structure contains information of interest to the ps(1)
command, such as process status, CPU usage, "nice" value, controlling terminal,

user-1D, process-ID, the name of the executable, and so forth. The psinfo_t struc-
ture is defined in <sys/procfs.h>.

pstatus_t
n_type: NT_PSTATUS. This structure contains things of interest to a debugger
from the operating system, such as pending signals, state, process-ID, and so
forth. The pstatus_t structure is defined in <sys/procfs.h>.

char array
n_type: NT_PLATFORM. This entry contains a string describing the specific
model of the hardware platform on which this core file was created. This infor-
mation is the same as provided by sysinfo(2) when invoked with the command
SI_PLATFORM.

auxv_t array
n_type: NT_AUXV. This entry contains the array of auxv_t structures that was

passed by the operating system as startup information to the dynamic linker.
Auxiliary vector information is defined in <sys/auxv.h>.

Following these entries, for each LWP in the process, the new NOTE segment contains an
entry with an Iwpsinfo_t structure plus an entry with an lwpstatus_t structure, plus
other optionally-present entries describing the LWP, as follows:

Sun0S 5.6 modified 17 Jul 1996

File Formats

SEE ALSO

modified 17 Jul 1996

core (4)

lwpsinfo_t
n_type: NT_LWPSINFO. This structure contains information of interest to the
ps(1) command, such as LWP status, CPU usage, "nice" value, LWP-I1D, and so
forth. The Iwpsinfo_t structure is defined in <sys/procfs.h>.

lwpstatus_t
n_type: NT_LWPSTATUS. This structure contains things of interest to a debugger
from the operating system, such as the general registers, the floating point regis-
ters, state, reason for stopping, LWP-ID, and so forth. The lwpstatus_t structure
is defined in <sys/procfs.h>.

gwindows_t
n_type: NT_GWINDOWS. This entry is present only on a SPARC machine and
only if the system was unable to flush all of the register windows to the stack. It
contains all of the unspilled register windows. The gwindows_t structure is
defined in <sys/regset.h>.

prxregset_t
n_type: NT_PRXREG. This entry is present only if the machine has extra register
state associated with it. It contains the extra register state. The prxregset_t struc-
ture is defined in <sys/old_procfs.h>.

The size of the core file created by a process may be controlled by the user (see
getrlimit(2)).

adb(1), gcore(1), ps(1), crash(1M), getrlimit(2), setuid(2), sysinfo(2), elf(3E), a.out(4),
proc(4), signal(5)

ANSI C Programmer’s Guide

SunOS 5.6 4-57

default fs(4)

NAME

DESCRIPTION

FILES

SEE ALSO

4-58

File Formats

default_fs, fs — specify the default file system type for local or remote file systems

When file system administration commands have both specific and generic components
(for example, fsck(1M)), the file system type must be specified. If it is not explicitly
specified using the —F FSType command line option, the generic command looks in
/etc/vfstab in order to determine the file system type, using the supplied raw or block
device or mount point. If the file system type can not be determined by searching
letc/vfstab, the command will use the default file system type specified in either
letc/default/fs or /etc/dfs/dfstypes, depending on whether the file system is local or
remote.

The default local file system type is specified in /etc/default/fs by a line of the form
LOCAL=fstype (for example, LOCAL=ufs). The default remote file system type is deter-
mined by the first entry in the /etc/dfs/fstypes file.

File system administration commands will determine whether the file system is local or
remote by examining the specified device name. If the device name starts with *“/”’
(slash), it is considered to be local; otherwise it is remote.

The default file system types can be changed by editing the default files with a text editor.

/etc/vfstab list of default parameters for each file system
/etc/default/fs the default local file system type
/etc/dfs/fstypes the default remote file system type

fsck(1M), fstypes(4), vfstab(4)

Sun0S 5.6 modified 20 Mar 1992

File Formats

NAME
SYNOPSIS

DESCRIPTION

FILES

SEE ALSO

modified 7 Mar 1997

defaultrouter (4)

defaultrouter — configuration file for default router(s)
/etc/defaultrouter

The /etc/defaultrouter file defines the default routers the system will use.
The format of the file is as follows:

The /etc/defaultrouter file can contain the hostnames or IP addresses of one or more
default routers, separated by white space. If you use hostnames, each hostname must
also be listed in the local /etc/hosts file, because no hame services are running at the time
that this script is run.

Lines beginning with the *#”’ character are treated as comments.

The default routes listed in this file replace those added by the kernel during diskless
booting. An empty /etc/defaultrouter file will cause the default route added by the ker-
nel to be deleted.

/etc/defaultrouter Configuration file containing the hostnames or IP addresses
of one or more default routers.

hosts(4)

SunOS 5.6 4-59

depend (4)

4-60

NAME

DESCRIPTION

EXAMPLES

SEE ALSO

File Formats

depend - software dependencies file

depend is an ASCII file used to specify information concerning software dependencies for
a particular package. The file is created by a software developer.

Each entry in the depend file describes a single software package. The instance of the
package is described after the entry line by giving the package architecture and/or ver-
sion. The format of each entry and subsequent instance definition is:

type pkg name
(arch)version
(arch)version

The fields are:
type Defines the dependency type. Must be one of the following characters:

P Indicates a prerequisite for installation; for example, the referenced
package or versions must be installed.

I Implies that the existence of the indicated package or version is
incompatible.

R Indicates a reverse dependency. Instead of defining the package’s
own dependencies, this designates that another package depends
on this one. This type should be used only when an old package
does not have a depend file, but relies on the newer package
nonetheless. Therefore, the present package should not be removed
if the designated old package is still on the system since, if it is
removed, the old package will no longer work.

pkg Indicates the package abbreviation.
name Specifies the full package name.

(arch)version Specifies a particular instance of the software. A version name cannot
begin with a left parenthesis. The instance specifications, both (arch) and
version, are completely optional, but each (arch)version pair must begin on
a new line that begins with white space. A null version set equates to any
version of the indicated package.

Here is a sample depend file:
#ident "@(#)pkg.compat:.depend 1.1"

P nsu Networking Support Utilities
P inet Internet Utilities
P sys System Header Files

P src_compat Source Compatibility Files

Application Packaging Developer’s Guide

Sun0S 5.6 modified 4 Oct 1996

File Formats

NAME

SYNOPSIS

DESCRIPTION

modified 31 Dec 1996

device_allocate (4)

device_allocate — device_allocate file
letc/security/device_allocate

The device_allocate file contains mandatory access control information about each physi-
cal device. Each device is represented by a one line entry of the form:

device-name;device-type;reserved;reserved;alloc;device-exec
where

device-name This is an arbitrary ASCII string naming the physical dev-
ice. This field contains no embedded white space or non-
printable characters.

device-type This is an arbitrary ASCII string naming the generic device
type. This field identifies and groups together devices of
like type. This field contains no embedded white space or
non-printable characters.

reserved This field is reserved for future use.
reserved This field is reserved for future use.
alloc This field contains an arbitrary string which controls

whether or not a device is allocatable. If the field contains
only an asterisk (0, the device is not allocatable. Other-
wise, the device may be allocated and deallocated in the
normal fashion.

device-exec This is the physical device’s data purge program to be run
any time the device is acted on by allocate(1M). This is to
ensure that all usable data is purged from the physical
device before it is reused. This field contains the filename
of a program in /etc/security/lib or the full pathname of a
cleanup script provided by the system administrator.

The device_allocate file is an ASCII file that resides in the /etc/security directory.
Lines in device_allocate can end with a “\’ to continue an entry on the next line.

Comments may also be included. A ‘# makes a comment of all further text until the next
NEWLINE not immediately preceded by a ‘\".

Leading and trailing blanks are allowed in any of the fields.

The device_allocate file must be created by the system administrator before device allo-
cation is enabled.

The device_allocate file is owned by root, with a group of sys, and a mode of 0644.

SunOS 5.6 4-61

device_allocate (4) File Formats

EXAMPLES Declare that physical device st0 is a type st. st is allocatable, and the script used to clean
the device after running deallocate(1M) is named /etc/security/lib/st_clean.

scsi tape
stO;)\
st;\
reserved;\
reserved;\
alloc,\
letc/security/lib/st_clean;\

Declare that physical device fdO is of type fd. fd is allocatable, and the script used to
clean the device after running deallocate(1M) is named /etc/security/lib/fd_clean.

floppy drive
fdo;\
fd;\
reserved;\
reserved;\
alloc,\
letc/security/lib/fd_clean;\

Note that making a device allocatable means that you need to allocate and deallocate
them to use them (with allocate(1M) and deallocate(1M)). If a device is allocatable, there
will be an asterisk (0 in the alloc field, and one can use the device without allocating and
deallocating it.

FILES | /etc/security/device_allocate Contains list of allocatable devices
SEE ALSO allocate(1M), bsmconv(1M), deallocate(1M), list_devices(1M)

NOTES | The functionality described in this man page is available only if the Basic Security
Module (BSM) has been enabled. See bsmconv(1M) for more information.

4-62 Sun0S 5.6 modified 31 Dec 1996

File Formats

NAME

SYNOPSIS

DESCRIPTION

modified 31 Dec 1996

device.cfinfo — devconfig configuration files

device.cfinfo

device.cfinfo (4)

device.cfinfo files pass information about device configuration to the devconfig(1M) pro-
gram. They allow devconfig(1M) to provide the user with valid ranges for device attri-

butes.

devconfig(1M) associates a device with its cfinfo file by name. For example, the device
logi for the Logitec Bus Mouse has the devconfig(1M) configuration file logi.cfinfo asso-

ciated with it in the DEVCONFIGHOME directory. DEVCONFIGHOME is
/usr/lib/devconfig by default and may be set in the user’s environment.

Below is a yaccish grammar of a cfinfo file:

cfinfo_file:

cfinfo_devspec:

cfinfo_spec_list:

cfinfo_spec:

comment:

attr_value_pair:

value_spec_string:

cfinfo_devspec EOF

cfinfo_spec_list SEMICOLON

cfinfo_spec |
cfinfo_spec_list cfinfo_spec

comment |
attr_value_pair NEWLINE

POUNDSIGN |
POUNDSIGN STRING

ATTR_NAME EQUALS STRING |
ATTR_OWNAME EQUALS STRING
ATTR_TITLE EQUALS STRING |
ATTR_CATEGORY EQUALS STRING |
ATTR_INSTANCE EQUALS STRING |
ATTR_CLASS EQUALS STRING |
ATTR_TYPE EQUALS STRING |
ATTR_REAL EQUALS STRING |
ATTR_AUTO EQUALS STRING |
NAME EQUALS value_spec_string

QUOTE value_spec QUOTE

SunOS 5.6

4-63

device.cfinfo(4)

4-64

value_spec:

value_type:

value_list:

integer_value_list:

string_value_list:

ATTR_NAME
ATTR_CLASS
ATTR_TYPE
ATTR_OWNAME
ATTR_TITLE
ATTR_CATEGORY
ATTR_INSTANCE
ATTR_REAL
ATTR_AUTO
TYPE_NUMERIC
TYPE_STRING
TYPE_VAR

value_type COMMA value_list

| /DEMPTY O

TYPE_NUMERIC |

TYPE_STRING |

TYPE_VAR

1

integer_value_list |

string_value_list

1

INTEGER |

INTEGER COLON INTEGER |
INTEGER COMMA integer_value_list

1

STRING |

STRING COMMA string_value_list

1

name
class

type

__owname__

_ title_
__category__
__instance__
__real
__auto__
numeric
string

var

device name specified in driver.conf
device class specified in driver.conf
device type specified in OWconfig
device name specified in OWconfig
device title displayed by devconfig
device category

device unit

attributes to write to driver.conf

self-identifying device attribute

precedes an integer value list

precedes a string values list

precedes a variable specification

File Formats

The first value in a value_list is the default value picked by devconfig(1M) for the attri-
bute. An attribute name of the form __name__is used internally by devconfig(1M).
Number ranges are specified as n1:n2. An internal attribute of the type var specifies a
configurable portion of a real attribute. (See examples below.) Certain internal attributes
have an expanded form when displayed. These attributes are listed in the file abbrevia-
tions in DEVCONFIGHOME. The file abbreviations also includes a list of name map-
pings for certain category names. Ifthe _real _ attribute is present, only the attribute
names it specifies are written to a driver.conf file. Otherwise, all non-internal attributes

are written.

SunOS 5.6

modified 31 Dec 1996

File Formats

EXAMPLES

modified 31 Dec 1996

device.cfinfo (4)

Here is the device configuration file logi.cfinfo for the LOGITECH bus mouse. The
driver configuration file for this device is called logi.conf.

name="logi"
__owname__="pointer:0"
__title_ ="Logitec bus mouse"

__category__="pointer"

class="sysbus"
type="LOGI-B"
buttons="var, nbuttons__
__nbuttons__="numeric,2:3"
dev="/dev/logi"

intr="numeric,1","var,__irq__
__irg__="numeric,2:5"

__real__="name",

class","intr"

The driver name for the LOGITECH Bus Mouse is logi. The device name in OWconfig
(see the OpenWindows Desktop Reference Manual) is pointer:0. The device category is
pointer; the device category is displayed as pointing devices, however, since there is a
category mapping for pointer in the abbreviations file. The device class is sysbus as
specified in the file Zkernel/drv/classes. A device of class owin does not have a device
driver associated with it. The device IPL is 1. The device IRQ is substituted by the vari-
able _irg__and has arange of 2to 5. A name mapping for __irq__ exists in abbrevia-
tionsand so __irq__ is displayed as Interrupt (IRQ):. The device attributes written to
logi.conf are name, class, and intr as specified by the __real " entry.

The resulting entry in logi.conf is:
name="logi" class="sysbus" intr=1,2;

The resulting entry in OWconfig is:
type="LOGI-B" buttons=3 dev="/dev/logi" class="owin" name="pointer:0";

Here is an example of a self-identifying device.
name="Ip"
_ title_ ="Parallel printer port"
__category__="Ip"
class="sysbus"

__auto__="string,true"

The driver for the parallel port automatically identifies it, and devconfig(1M) treats this
device as self-identifying.

SunOS 5.6 4-65

device.cfinfo(4)

4-66

FILES

ATTRIBUTES

SEE ALSO

abbreviations

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE

ATTRIBUTE VALUE

Architecture

x86

devconfig(1M), driver.conf(4), attributes(5)

OpenWindows Desktop Reference Manual

SunOS 5.6

File Formats

modified 31 Dec 1996

File Formats

NAME

SYNOPSIS

DESCRIPTION

EXAMPLES

FILES
SEE ALSO

NOTES

modified 31 Dec 1996

device_maps(4)

device_maps — device_maps file
/etc/security/device_maps

The device_maps file contains access control information about each physical device.
Each device is represented by a one line entry of the form:

device-name : device-type : device-list :
where

device-name This is an arbitrary ASCII string naming the physical dev-

ice. This field contains no embedded white space or non-
printable characters.

device-type This is an arbitrary ASCII string naming the generic device
type. This field identifies and groups together devices of
like type. This field contains no embedded white space or
non-printable characters.

device-list This is a list of the device special files associated with the
physical device. This field contains valid device special
file path names separated by white space.

The device_maps file is an ASCII file that resides in the /etc/security directory.
Lines in device_maps can end with a “\’ to continue an entry on the next line.

Comments may also be included. A ‘# makes a comment of all further text until the next
NEWLINE not immediately preceded by a ‘\.

Leading and trailing blanks are allowed in any of the fields.

The device_maps file must be created by the system administrator before device alloca-
tion is enabled.

This file is owned by root, with a group of sys, and a mode of 0644.

scsi tape

stl:\

rmt:\

/dev/rst21 /dev/nrst21 /dev/rst5 /dev/nrst5 /dev/rst13 \

/dev/nrst13 /dev/rst29 /dev/nrst29 /dev/rmt/1l /dev/rmt/Im \
/dev/irmt/1 /dev/rmt/1h /dev/rmt/1u /dev/rmt/1lIn /dev/rmt/Imn \
/dev/irmt/1n /dev/rmt/1hn /dev/rmt/lun /dev/rmt/1b /dev/rmt/1bn:\

letc/security/device_maps
allocate(1M), bsmconv(1M), deallocate(1M), dminfo(1M), list_devices(1M)

The functionality described in this man page is available only if the Basic Security
Module (BSM) has been enabled. See bsmconv(1M) for more information.

SunOS 5.6 4-67

dfstab (4) File Formats

NAME dfstab - file containing commands for sharing resources across a network

DESCRIPTION dfstab resides in directory /etc/dfs and contains commands for sharing resources across a
network. dfstab gives a system administrator a uniform method of controlling the
automatic sharing of local resources.

Each line of the dfstab file consists of a share(1M) command. The dfstab file can be read
by the shell to share all resources. System administrators can also prepare their own shell
scripts to execute particular lines from dfstab.

The contents of dfstab are executed automatically when the system enters run-level 3.

SEE ALSO | share(1M), shareall(1M)

4-68 Sun0S 5.6 modified 3 Jul 1990

File Formats

NAME

DESCRIPTION

SEE ALSO

modified 30 Sep 1996

dhcp (4)

dhcp - file containing default parameter values for the location and type of the databases
used by the DHCP service

The dhcp file resides in directory /etc/default and contains parameters for specifying the
type and location of DHCP service databases.

The dhcp file format is ASCII; comment lines begin with the crosshatch (#) character.
Parameters consist of a keyword followed by an equals (=) sign followed by the parame-
ter value, of the form:

Keyword=Value
Two parameters are currently supported:

Keyword Value
RESOURCE | Can be either nisplus or files
PATH Path to data files

The value of the PATH keyword is specified as an absolute path for the files resource, or a
fully-qualified directory for the nisplus resource. The preferred method of modifying
the dhcp file is through use of the dhcpconfig(1M) command.

dhcpconfig(1M), in.dhcpd(1M)

SunOS 5.6 4-69

dhcp_network (4)

4-70

NAME

DESCRIPTION

File Formats

dhcp_network — dhcp network DHCP database

The dhcp network database is used to map a Dynamic Host Configuration Protocol
(DHCP) client’s client identifier to an IP address and the associated configuration parame-
ters of that address. This database is located by the DHCP server at runtime upon receipt
of aBOOTP request.

The dhcp network databases can exist as NS+ tables or ASCII files. Since the format of
the file could change, the preferred method of managing the dhcp network databases is
through the use of the pntadm(1M) command.

Each entry in a dhcp network database has the form:

Client_ID ‘ Flags ‘ Client_IP ‘ Server_IP ‘ Lease ‘ Macro ‘ #Comment

The fields are defined as follows:

Client_ID The client identifier field, Client_ID, is an ASCII hexadecimal representation
of the unique octet string which identifies the DHCP client. The number of
characters in this field must be an even number, with a maximum length of
64 characters. Valid characters are 0 - 9 and A-F. Entries with values of 00
are freely available for dynamic allocation to requesting clients.

BOOTP clients are identified by the concatenation of the network’s
hardware type (as defined by RFC 1340, titled "Assigned Numbers") and the
client’s hardware address. For example, the following BOOTP client has a
hardware type of 01’ (10mb ethernet) and a hardware address of
8:0:20:11:12:b7, so its client identifier would be:

010800201112B7
Flags The Flags field is a numeric bit field which can have a combination of the
following values:
0 (DYNAMIC) Evaluation of the Lease field is turned on.
1 (PERMANENT) Evaluation of the Lease field is turned off (lease is per-
manent).
2 (MANUAL) This entry has a manual client ID binding (cannot be

reclaimed by DHCP server). Client will not be allocated
another address.

4 (UNUSABLE) When set, this value means that either through ICMP
echo or client DECLINE, this address has been found to
be unusable. Can also be used by the network adminis-
trator to prevent a certain client from booting, if used in
conjunction with the MANUAL flag.

8 (BOOTP) This entry is reserved for allocation to BOOTP clients
only.

SunOS 5.6 modified 30 Sep 1996

File Formats

TREATISE ON
LEASES

EXAMPLES

modified 30 Sep 1996

dhcp_network (4)

Client_IP The Client_IP field holds the IP address for this entry. This value must be
unique in the database.

Server_IP This field holds the IP address of the DHCP server which owns this client IP
address, and thus is responsible for initial allocation to a requesting client.

Lease This numeric field holds the entry’s absolute lease expiration time, and is in
seconds since January 1, 1970. It can be decimal, or hexadecimal (if 0x
prefixes number). The special value -1 is used to denote a permanent lease.

Macro This ASCII text field contains the dhcptab macro name used to look up this
entry’s configuration parameters in the dhcptab(4) database.

Comment This ASCII text field contains an optional comment.

This section describes how the DHCP/BOOTP server calculates a client’s configuration
lease using information contained in the dhcptab(4) and dhcp network databases. The
server consults the LeaseTim and LeaseNeg symbols in the dhcptab, and the Flags and
Lease fields of the chosen dhcp network database record.

The server first examines the Flags field for the identified dhcp network record. If the
PERMANENT flag is on, then the client’s lease is considered permanent.

If the PERMANENT flag is not on, then the server checks if the client’s lease as
represented by the Lease field in the dhcp network record has expired. If not, then the
server checks if the client has requested a new lease. If the LeaseNeg symbol has not
been included in the client’s dhcptab parameters, then the client’s requested lease exten-
sion is ignored, and the lease is set to be the time remaining as shown by the Lease field.
If the LeaseNeg symbol has been included, then the server will extend the client’s lease to
the value it requested if this requested lease is less than or equal to the current time plus
the value of the client’s LeaseTim dhcptab parameter.

If the client’s requested lease is greater than policy allows (value of LeaseTim), then the
client is given a lease equal to the current time plus the value of LeaseTim. If LeaseTim
is not set, then the default LeaseTim value is one hour.

For more information about the dhcptab symbols discussed in this section, see
dhcptab(4).

1) The following dhcp network database entry is free for dynamic allocation. The IP
address for this entry is 10.0.0.5, the IP address of the DHCP server that can initially
allocate this address is 10.0.0.1, the lease expires 754012553, or Mon Nov 22 18:55:53
1993, and the dhctab macro associated with this entry is called 10netnis:

00 0 10.0.05 10.0.0.1 754012553 10netnis

SunOS 5.6 4-71

dhcp_network (4)

4-72

FILES

SEE ALSO

File Formats

2) The following entry shows a manually administered entry for client ID
010000COEFA4A, which has a permanent lease (that is, MANUAL | PERMANENT ==
3):

010000COEFA4A 3 10.0.0.25 10.0.0.1 -1 10netnis
3) The following entry shows a MANUAL entry which has been marked as UNUSABLE
(that is, MANUAL | UNUSABLE == 6):
0408072097C9F 6 10.0.0.26 10.0.0.1 764258362 10netdns
4) The following entry for IP address 10.0.0.27 shows a previously unused, DYNAMIC
entry which uses dhcptab macro 10netnis and is owned by DHCP server 10.0.0.2:
00 0 10.0.0.27 10.0.0.2 0 10netnis

5) The following entry is reserved for BOOTP clients:
00 08 10.0.0.27 10.0.0.3 0 10netnis

/var/dhcp/NNN_NNN_NNN_NNN
Where NNN_NNN_NNN_NNN are database file(s) or NIS+
tables(s).

/var/dhcp/dhcptab file or NIS+ table

dhcpconfig(1M), dhtadm(1M), in.dhcpd(1M), pntadm(1M), dhcptab(4)

Reynolds, J. and J. Postel, Assigned Numbers, STD 2, RFC 1340, USC/Information Sciences
Institute, July 1992,

SunOS 5.6 modified 30 Sep 1996

File Formats

NAME

DESCRIPTION

Syntax of the dhcptab
Table

Symbol
Characteristics

modified 9 May 1997

dhcptab (4)

dhcptab — DHCP configuration parameter table

The dhcptab macro table allows network administrators to organize groups of
configuration parameters as macro definitions, which can then be further used in the
definition of other useful macros. These macros can be configured such that the DHCP
server will return their values to DHCP and BOOTP clients.

The preferred method of managing the dhcptab macro table is through the use of the
dhtadm(1M) utility. The syntax described in the balance of this manual page is intended
for informational purposes.

The syntax of the dhcptab table is as follows:

Comments begin with the cross-hatch (#) character in the first position on the line and
end with a carriage return. Lines can be continued by escaping the carriage return char-
acter with a backslash (\) character.

dhcptab records contain three (3) fields:

| Name | Type | Value |

The fields are defined as follows:

Name This field identifies the record and is used as the search key into the dhcptab
table. A Name must consist of ASCII characters. If the record is of type
Macro, then the length is limited to 64 characters. If the record is of type
Symbol, then the length is limited to 8 characters.

Type This field specifies the type of record. Currently, there are only two legal
values for Type:

m (Macro) This record is a DHCP macro definition.

s (Symbol) This record is a DHCP symbol definition. It is used to define
vendor and site-specific options.

Value This field contains the value for the specified type of record. For the macro
type, the value will consist of a series of symbol=value pairs, separated by the
colon () character. For the symbol type, the value will consist of a series of
fields, separated by a comma (,), which define a symbol’s characteristics.
Once defined, a symbol can be used in macro definitions.

The fields describing the characteristics of a symbol are as follows:

Context ‘ Code ‘ Type ‘ Granularity | Maximum

These fields are defined as follows:

Context This field defines the context in which the symbol definition is to be used. It
can have three values:

Extend This symbol defines a standard option, codes from 77-127.
The use of this symbol type is for adding new standard
options added since the release of the dhcp server.

SunOS 5.6 4-73

dhcptab (4) File Formats

Site This symbol defines a site-specific option, codes 128-254.

Vendor=Client Class ...
This symbol defines a vendor-specific option, codes 1-254.
The Vendor context takes ASCII string arguments which iden-
tify the client class that this vendor option is associated with.
Multiple client class names can be specified, separated by
white space. Only those clients whose client class matches
one of these values will see this option.

Code This field specifies the option code number associated with this symbol.
Valid values are 128-254 for site-specific options, and 1-254 for vendor-
specific options.

Type This field defines the type of data expected as a value for this symbol. Legal
values are:
ASCII NVT ASCII text. Value is enclosed in double-quotes ().
BOOLEAN No value is associated with this data type. Presence of

symbols of this type denote boolean TRUE, whereas
absence denotes FALSE.

IP Dotted decimal form of an Internet address.

NUMBER An unsigned number with a supported granularity of 1, 2,
4, and 8 octets.

OCTET Uninterpreted ASCII representation of binary data. The

client identifier is one example of an octet string.

Granularity This value specifies how many objects of Type define a single instance of
the symbol value. For example, the static route option is defined to be a
variable list of routes. Each route consists of two IP addresses, so the Type
is defined to be IP, and the data’s granularity is defined to be 2 IP addresses.

Maximum This value specifies the maximum items of Granularity which are permissi-
ble in a definition using this symbol. For example, there can only be one IP
address specified for a subnet mask, so the Maximum number of items in
this case is one (1). A Maximum value of zero (0) means that a variable
number of items is permitted.

The following example defines a site-specific option called MystatRt, of code 130, type IP,
and granularity 2, and a Maximum of 0. This definition corresponds to the internal
definition of the static route option (StaticRt).

MystatRt s Site,130,1P,2,0

4-74 SunOS 5.6 modified 9 May 1997

File Formats

Macro Definitions

modified 9 May 1997

dhcptab (4)

The following example illustrates a macro defined using the MystatRt site option symbol
just defined:

10netnis m :MystatRt=3.0.0.0 10.0.0.30:

Macro records can be specified in the Macro field in dhcp network databases (see
dhcp_network(4)), which will bind particular macro definitions to specific IP addresses.

If present, four macro definitions are consulted by the DHCP server to determine the
options that are returned to the requesting client:

‘Client Class ‘ Network | IP Address | Client Identifier

These macros are processed as follows:

Client Class A macro called by the ASCII representation of the client class is
searched for in the dhcptab. If found, then its symbol/value pairs
will be selected for delivery to the client. This mechanism permits the
network administrator to select configuration parameters to be
returned to all clients of the same class.

Network A macro named by the dotted Internet form of the network address of
the client’s network (for example, 10.0.0.0) is searched for in the
dhcptab. If found, then its symbol/value pairs will be combined with
those of the Client Class macro. If a symbol exists in both macros,
then the Network macro value overrides the value defined in the
Client Class macro. This mechanism permits the network adminis-
trator to select configuration parameters to be returned to all clients
on the same network.

IP Address This macro is specified in the dhcp network database for the record
assigned to the requesting client. If this macro is found in the
dhcptab, then its symbol/value pairs will be combined with those of
the Client Class macro and the Network macro. This mechanism
permits the network administrator to select configuration parameters
to be returned to clients using a particular IP address. It can also be
used to deliver a macro defined to include "server-specific" informa-
tion by including this macro definition in all dhcp network database
entries owned by a specific server.

Client Identifier A macro called by the ASCII representation of the client’s client
identifier is searched for in the dhcptab. If found, its symbol/value
pairs are combined to the sum of the Client Class, Network, and IP
Address macros. Any symbol collisions are replaced with those
specified in the client identifier macro. This mechanism permits the
network administrator to select configuration parameters to be
returned to a particular client, regardless of what network that client
is connected to.

SunOS 5.6 4-75

dhcptab (4)

Internal Symbol

4-76

Names

Symbol

Subnet
UTCoffst
Router
Timeserv
IEN116ns
DNSserv
Logserv
Cookie
Lprserv
Impress
Resource
Hostname
Bootsize
Dumpfile
DNSdmain
Swapserv
Rootpath
ExtendP
IpFwdF
NLrouteF
PFilter
MaxIpSiz
IpTTL
PathTO
PathThbl
MTU
SameMtuF
Broadcst
MaskDscF
MaskSupF
RDiscvyF
RSolictS
StaticRt
TrailerF
ArpTimeO
EthEncap
TcpTTL
TcpKalnt
TcpKaGbF
NISdmain
NISservs
NTPservs
NetBNms

Code

O~NO O WN PR

File Formats

The following table maps the available internal symbol names to RFC-2132 options:

Description

Subnet Mask, dotted Internet address (IP).
Coordinated Universal time offset (seconds).
List of Routers, IP.

List of RFC-868 servers, IP.

List of IEN 116 name servers, IP.

List of DNS name servers, IP.

List of MIT-LCS UDP log servers, IP.

List of RFC-865 cookie servers, IP.

List of RFC-1179 line printer servers, IP.

List of Imagen Impress servers, IP.

List of RFC-887 resource location servers, IP.
Client’s hostname, value from hosts database.
Number of 512 octet blocks in boot image, NUMBER.
Path where core image should be dumped, ASCII.
DNS domain name, ASCII.

Client’s swap server, IP.

Client’s Root path, ASCII.

Extensions path, ASCII.

IP Forwarding Enable/Disable, NUMBER.
Non-local Source Routing, NUMBER.

Policy Filter, IP,IP.

Maximum datagram Reassembly Size, NUMBER.
Default IP Time to Live, (1=<x<=255), NUMBER.
RFC-1191 Path MTU Aging Timeout, NUMBER.
RFC-1191 Path MTU Plateau Table, NUMBER.
Interface MTU, x>=68, NUMBER.

All Subnets are Local, NUMBER.

Broadcast Address, IP.

Perform Mask Discovery, NUMBER.

Mask Supplier, NUMBER.

Perform Router Discovery, NUMBER.

Router Solicitation Address, IP.

Static Route, Double IP (network router).
Trailer Encapsulation, NUMBER.

ARP Cache Time out, NUMBER.

Ethernet Encapsulation, NUMBER.

TCP Default Time to Live, NUMBER.

TCP Keepalive Interval, NUMBER.

TCP Keepalive Garbage, NUMBER.

NIS Domain name, ASCII.

List of NIS servers, IP.

List of NTP servers, IP.

List of NetBIOS Name servers, IP.

SunOS 5.6 modified 9 May 1997

File Formats

EXAMPLES

modified 9 May 1997

dhcptab (4)
NetBDsts 45 List of NetBIOS Distribution servers, IP.
NetBNdT 46 NetBIOS Node type (1=B-node, 2=P, 4=M, 8=H)
NetBScop 47 NetBIOS scope, ASCII.
XFontSrv 48 List of X Window Font servers, IP.
XDispMgr 49 List of X Window Display managers, IP.
LeaseTim 51 Lease Time Policy, (-1 = PERM), NUMBER.
Message 56 Message to be displayed on client, ASCII.
T1Time 58 Renewal (T1) time, NUMBER.
T2Time 59 Rebinding (T2) time, NUMBER.

NW_dmain 62
NWIPOpts 63

NetWare/IP Domain Name, ASCII.
NetWare/IP Options, OCTET (unknown type).

NIS+dom 64 NIS+ Domain name, ASCII.

NIS+serv 65 NIS+ servers, IP.

TFTPsrvN 66 TFTP server hostname, ASCII.

OptBootF 67 Optional Bootfile path, ASCII.

MblIPAgt 68 Mobile IP Home Agent, IP.

SMTPserv 69 Simple Mail Transport Protocol Server, IP.
POP3serv 70 Post Office Protocol (POP3) Server, IP.
NNTPserv 71 Network News Transport Proto. (NNTP) Server, IP.
WWWservs 72 Default WorldWideWeb Server, IP.
Fingersv 73 Default Finger Server, IP.

IRCservs 74 Internet Relay Chat Server, IP.

STservs 75 StreetTalk Server, IP.

STDAservs 76 StreetTalk Directory Assist. Server, IP.
BootFile N/A File to Boot, ASCII.

BootSrvA N/A Boot Server, IP.

BootSrvN N/A Boot Server Hostname, ASCII.

LeaseNeg N/A Lease is Negotiable Flag, (Present=TRUE)
Include N/A Include listed macro values in this macro.

Below is an example dhcptab file, illustrating the concepts described above:
#

PCNFS vendor options. First define them, then use them in

our Client Class macro definition to establish proper context.

#

SolarNet framework servers. Note that this symbol is valid for two
client classes, "SUNW.PCNFS.5.1" and "SUNW.PCNFSPRO.1.1".
SNadmfw s Vendor=SUNW.PCNFS.5.1.1 SUNW.PCNFSPRO.1.1,1,ASCII,1,0

PCNFS servers. Note that two client classes are specified for
this symbol.
Pcnfsd s Vendor=SUNW.PCNFS.5.1.1 SUNW.PCNFSPRO.1.1,2,I1P,1,0

NFS Read and Write sizes. Unsigned shorts.

SunOS 5.6 4-77

dhcptab (4) File Formats

SNnfsRd s Vendor=SUNW.PCNFS.5.1.1 SUNW.PCNFSPRO.1.1,4NUMBER,2,1
SNnfswWr s Vendor=SUNW.PCNFS.5.1.1 SUNW.PCNFSPRO.1.1,5NUMBER,2,1

NFS Timout in 1/10’s of a second. An unsigned short.
SNnfsTim s Vendor=SUNW.PCNFS.5.1.1 SUNW.PCNFSPRO.1.1,6, NUMBER,2,1

NFS Retries, an unsigned short.
SNnfsTry s Vendor=SUNW.PCNFS.5.1.1 SUNW.PCNFSPRO.1.1,7,NUMBER,2,1

PC-Admin login script file.
SNClogin s Vendor=SUNW.PCNFS.5.1.1 SUNW.PCNFSPRO.1.1,8,ASCII,1,0

PC-Admin logout script file.
SNClgout s Vendor=SUNW.PCNFS.5.1.1 SUNW.PCNFSPRO.1.1,9,ASCII1,1,0

PC-Admin script server.
SNCserv s Vendor=SUNW.PCNFS.5.1.1 SUNW.PCNFSPRO.1.1,10,IP,1,0

Path to PC-Admin scripts on server.
SNCpath s Vendor=SUNW.PCNFS.5.1.1 SUNW.PCNFSPRO.1.1,11,ASCII,1,0

PC-Admin Boot script file.
SNCboot s Vendor=SUNW.PCNFS.5.1.1 SUNW.PCNFSPRO.1.1,12,ASCII,1,0

Timezone (TZ2)
SN_TZ s Vendor=SUNW.PCNFS.5.1.1 SUNW.PCNFSPRO.1.1,13,ASCII,1,0

Site specific option.
SiteTest s Site,128,1P,1,1

PCNEFS client class. This option will automatically be returned
to clients specifying "SUNW.PCNFS.5.1.1" as their Client Class.
Predefined, Site, or vendor symbols can be used in this definition.
However, note that vendor symbols used here whose Client Class does not
match will be omitted in the response to the client.
SUNW.PCNFS.5.1.1 m\
:SNadmfw="doppelbock pilsner": \
:Pcnfsd=10.0.5.26 10.0.5.5 10.0.4.1: \
:SNnfsRd=1024:SNnfsWr=8192: \
:SNNfsTim=56:SNnfsTry=6: \
:Impress=10.0.0.254:

Set the locale. EST’s offset is 18000 seconds. Note also the use
of the SN_TZ (which will overwrite UTCoffst for SUNW.PCNFS.5.1.1 and
SUNW.PCNFSPRO.1.1 clients).

4-78 SunOS 5.6 modified 9 May 1997

File Formats

modified 9 May 1997

dhcptab (4)

Locale m \
:UTCoffst=18000:SN_TZ="EST5EDT":

Netbios node type is broadcast (1).

NetBIOS m \
:NetBNms=10.0.5.1 10.0.4.1:NetBNdT=0x1: \
:NetBDsts=10.0.5.5 10.0.5.6 10.0.4.2: \
:NetBScop="NB.This.Is.A.Nis.DOMAIN":

This macro includes the definitions for Locale and NetBIOS.

Lease is renegotiable, and the maximum lease a client can request

#is 2 hours (7200 seconds)

#

Note that this macro definition includes the SUNW.PCNFS.5.1.1 and

SUNW.PCNFSPRO.1.1 Vendor symbol for SolarNet login script file name.

Only those clients whose Client Class is SUNW.PCNFS.5.1.1 will see

this value.

5netnis m \
:Subnet=255.255.255.0:Router=10.0.5.26 10.0.5.27: \
:Include=Locale:SNCpath="/opt/SUNWpcnet/1.5/site/pcnfs™: \
:SNCboot="boot.snc":SNCserv=10.0.5.26:Timeserv=10.0.5.5: \
:NISdmain="This.Is.A.Nis.DOMAIN":NISservs=10.0.5.210: \
:Message="NIS client, Welcome to the 5 net.": \
:SiteTest=1.0.0.0:LeaseTim=7200:LeaseNeg:Include=NetBIOS: \
:SNClogin="login.snc™:

This macro defines a short lease - only 5 minutes! Note the use

of the pcnfsd vendor option here. Note also that the server will

return the client’s hostname by consulting the hosts database for

the value.

15netnis m \
:Subnet=255.255.255.0:Router=10.0.15.226: \
:Include=Locale:SNCpath="/opt/solarnet":SNCboot="site.snc": \
:SNCserv=10.0.15.226:Timeserv=10.0.5.5: \
:NISdmain="Another.Nis.Domain.COM":NISservs=10.0.15.6: \
:Message="NIS client, Welcome to the 15 net.": \
:‘LeaseTim=300:LeaseNeg:Pcnfsd=10.0.15.226:Hostname:

5netdns m \
:Subnet=255.255.255.0:Router=10.0.5.26 10.0.5.26: \
:SNCserv=10.0.5.26:SNCpath="/opt/SUNWpcnet/site/pcnfs": \
:SNCboot="boot.snc":Include=Locale:Timeserv=10.0.5.5: \
:DNSdmain="East.Sun.COM":DNSserv=10.0.15.6 15.0.1.15: \
:Message="DNS client, Welcome to the 5 net.":LeaseNeg:

SunOS 5.6 4-79

dhcptab (4)

4-80

FILES

SEE ALSO

File Formats

This macro is named by a client’s client identifier. Its options
will be combined with those of the Client Class macro
and per network macro, if defined. Regardless of where this client
boots, these options will follow it!
010800COEEOE4C m \
:Impress=10.0.20.55:

/var/dhcp/dhcptab file or NIS+ table.

dhcpconfig(1M), dhtadm(1M), in.dhcpd(1M), dhcp_network(4)

Alexander, S., and R. Droms, DHCP Options and BOOTP Vendor Extensions, RFC 2132, Sil-
icon Graphics, Inc., Bucknell University, March 1997.

Droms, R., Interoperation Between DHCP and BOOTP, RFC 1534, Bucknell University,
October 1993.

Droms, R., Dynamic Host Configuration Protocol, RFC 2131, Bucknell University, March
1997.

Wimer, W., Clarifications and Extensions for the Bootstrap Protocol, RFC 1542, Carnegie Mel-
lon University, October 1993.

SunOS 5.6 modified 9 May 1997

File Formats

NAME

DESCRIPTION

OPTIONS
General Options

Pseudo Options

USAGE

modified 9 May 1997

dhcptags (4)

dhcptags — DHCP option mnemonic mapping table

For the most part, parameters (henceforth referred to as options) returned to the client by
the DHCP/BOOTP protocol are encoded in the so-called vendor field of the BOOTP packet.
Each option is identified numerically, and also carries a length specifier. The purpose of
dhcptags is to indentify the type of each option, to label each with a short mnemonic text
string for use by dhcpinfo(1), and to give a longer textual description.

Options defined by DHCP are of three general types:

Standard All client and server DHCP implementations agree on the seman-
tics. These are administered by the Internet Naming Authority
(IANA). These options are numbered from 1 to 127.

Site-specific Within a specific site, all client and server implementations agree
as to the semantics. However, at another site the type and mean-
ing of the option may be quite different. These options are num-
bered from 128 to 254.

Vendor-specific Each vendor may define 256 options unique to that vendor. The
vendor is identified within a DHCP packet by the "Vendor Class"
option (#60). An option with a specific numeric identifier belong-
ing to one vendor will, in general, have a type and semantics dif-
ferent from that of a different vendor. Vendor options are "super-
encapsulated” into the vendor field (#43); within a specific DHCP
packet there may be several instances of option #43.

As well as the three general types, the Solaris DHCP implementation defines certain
"pseudo” options, numbered from 512 upward. These are a convenient method for refer-
ring to items which either correspond to fixed fields in the BOOTP packet (such as the
siaddr field) or which, though not options themselves, are used in constructing valid
options (for example, the home directory used in constructing the exact path to a boot
image).

In general, the agent (see dhcpagent(1M)) knows little if anything about the semantics of
any of the first three kinds of option, except for the subnet mask and broadcast address.
Its only duty is to acquire and store this data and to make it available to other interested
parties (see dhcpinfo(1)). The responsibility for understanding and using the data rests
with these third parties. Pseudo tags, on the contrary, have a specific meaning to
dhcpagent(1M), and consequently it is meaningless to add to this list. The only useful
edit that can be performed on the pseudo tags is to change the textual description or the
mnemonic.

Blank lines and those whose first non-whitespace character is '#’ are ignored. Data

entries are written one per line and have five fields. An individual entry cannot be con-
tinued onto another line.

SunOS 5.6 4-81

dhcptags (4)

Standard Option List

4-82

The fields are (in order):

e Long name

File Formats

A printable character string

An array of 1-byte values

e Tag number
e Mnemonic identifier
e Vendor class
e Datatype
(One from the following case insensitive values):
byte
octet
intl A 1-byte value
int2 A 2-byte value
int4 A 4-byte value
string
ip An IP address
iplist A list of IP addresses
int2list A list of 2-byte values
opaque
boolean Either true or false

Table of Standard Tags
Tag Number Identifier Data Type Description
1 NetMask ip Subnet mask
2 UTCoffst time Time offset from GMT
3 Router iplist IP addresses of routers
4 Timesrv iplist IP addresses of time servers
5 IEN116ns iplist IP addresses of IEN=116 name servers
6 DNSserv iplist IP addresses of domain name servers
7 Logserv iplist IP addresses of remote logging servers
8 Cookie iplist IP address list of fortune cookie servers
9 Lprserv iplist IP address list of print servers
10 Impress iplist IP address list of impress servers
11 Resource iplist IP address list of RLP servers
12 Hostname string hostname (or nodename) of client
13 Bootsize int16 size (in 512 blocks) of client boot file
14 Dumpfile string path name of Merit dump file
15 DNSdmain string DNS domain name
16 Swapserv ip ip address of swap file server
17 Rootpath ip
18 ExtendP string
19 IPFwdF boolean Enable IP forwarding
20 NLrouteF boolean
21 PFilter iplist IP address list of policy filter servers
22 MaxIpSiz intl6 Maximum reassembly size of IP datagram
23 IpTTL byte IP time-to-live field
24 PathTO time PMTU timeout
25 PathTbl int16list PMTU plateaus
26 MTU int16 Maximum transmission unit
SunOS 5.6 modified 9 May 1997

File Formats

modified 9 May 1997

dhcptags (4)

Table of Standard Tags

Tag Number Identifier Data Type Description
27 SameMtuF boolean Subnets are local
28 Broadcst ip IP broadcast address of interface
29 MaskDscf boolean When true perform mask discovery
30 MaskSupF boolean When true supply subnet masks
31 RDiscvyF boolean Perform route discovery
32 RsolictS ip IP address for router solicitation
33 StaticRt iplist Pairs of IP addresses for all static routes
34 TrailerF boolean Perform trailer encapsulation
35 ArpTimeO time Timeout interval for entry in ARP cache
36 EthEncap boolean Perform Ethernet encapsulation
37 TcpTTL byte TCP time-to-live
38 TcpKalnt time TCP keep alive interval
39 TcpKaGbF boolean Send TCP keep alive garbage octet
40 NISdmain string NIS domain name
41 NISservs iplist IP address list
42 NTPservs iplist IP address list of NTP servers
44 NetBNms iplist IP address list of NetBios hame servers
45 NetBDsts iplist IP address list of NetBios DG servers
46 NetBNdT byte NetBios node type
47 NetBScop string NetBios scope
48 XFontSrv iplist IP address list of X font servers
49 XDispMgr iplist IP address list of X display managers
50 RequestIP ip IP address requested by client
51 LeaseTim time Lease duration (secs)
52 Overload byte File and/or sname fields overloaded
53 MsgType byte DHCP message type
54 Serverlp ip IP address of DHCP server selected by client
55 rv opaque DHCP options requested by client
56 Message string Message from DHCP server to client
57 MaxMsgSz byte Maximum BOOTP message size acceptable
58 T1Time time DHCP renewal interval
59 T2Time time DHCP rebind interval
60 Vendor string Client’s vendor class
61 ClientlD opaque Client identifier
62 NW_domain | string Netware domain
63 NWIPopts string Netware options
64 NIS+dom string NIS+ domain name
65 NIS+serv iplist IP address list of NIS+ servers
66 TFTPsrvN string Boot file server name
67 OptBootF string Path to boot file on boot file server
68 MblIPAgt iplist IP address list of mobile IP home agents
69 SMTPserv iplist IP address list of SMTP servers
70 POP3serv iplist IP address list of POP servers
71 NNTPserv iplist IP address list of NNTP servers
72 WWWsertvs | iplist IP address list of WWW servers
73 Finfgersv iplist IP address list of Finger servers
74 IRCservs iplist IP address list of IRC servers
Sun0S 5.6 4-83

dhcptags (4)

4-84

FILES

ATTRIBUTES

SEE ALSO

File Formats
Table of Standard Tags
Tag Number Identifier Data Type Description
75 STservs iplist IP address list of StreetTalk servers
76 STDAservs iplist IP address list of STDA servers
77 UserClass string Client’s user class
/etc/dhcp/dhceptags

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE

ATTRIBUTE VALUE

Availability

SUNWCcsr

dhcpinfo(l), dhcpagent(1M), attributes(5)

Alexander, S., and R. Droms, DHCP Options and BOOTP Vendor Extensions, RFC 2132, Sil-
icon Graphics, Inc., Bucknell University, March 1997.

Droms, R., Dynamic Host Configuration Protocol, RFC 2131, Bucknell University, March

1997.

SunOS 5.6

modified 9 May 1997

File Formats

NAME
SYNOPSIS

DESCRIPTION

EXAMPLES

FILES

SEE ALSO

modified 4 May 1994

dialups(4)

dialups - list of terminal devices requiring a dial-up password
letc/dialups

dialups is an ASCII file which contains a list of terminal devices that require a dial-up
password. A dial-up password is an additional password required of users who access
the computer through a modem or dial-up port. The correct password must be entered
before the user is granted access to the computer. The set of ports that require a dial-up
password are listed in the dialups file.

Each entry in the dialups file is a single line of the form:

terminal-device

where

terminal-device The full path name of the terminal device that will require a dial-
up password for users accessing the computer through a modem
or dial-up port.

The dialups file should be owned by the root user and the root group. The file should
have read and write permissions for the owner (root) only.

Here is a sample dialups file:

/dev/term/a
/dev/term/b
/dev/term/c
/etc/d_passwd dial-up password file
/etc/dialups list of dial-up ports requiring dial-up passwords

d_passwd(4)

SunOS 5.6 4-85

dirent(4)

NAME

SYNOPSIS

DESCRIPTION

4-86

SEE ALSO

File Formats

dirent - file system independent directory entry
#include <dirent.h>

Different file system types may have different directory entries. The dirent structure
defines a file system independent directory entry, which contains information common to
directory entries in different file system types. A set of these structures is returned by the
getdents(2) system call.

The dirent structure is defined:
struct dirent {

ino_t d_ino;
off_t d_off;
unsigned short d_reclen;
char d_name[1];

3
The d_ino is a number which is unique for each file in the file system. The field d_off is
the byte offset of the next, non-empty directory entry in the actual file system directory.
The field d_name is the beginning of the character array giving the name of the directory
entry. This name is null terminated and may have at most MAXNAMLEN characters.
This results in file system independent directory entries being variable length entities.
The value of d_reclen is the record length of this entry. This length is defined to be the
number of bytes between the current entry and the next one, so that the next structure
will be suitably aligned.

getdents(2)

SunOS 5.6 modified 3 May 1994

File Formats

NAME

SYNOPSIS

DESCRIPTION

ATTRIBUTES

SEE ALSO

modified 3 Jul 1990

dir_ufs(4)

dir_ufs, dir — format of ufs directories

#include <sys/param.h>
#include <sys/types.h>
#include <sys/fs/ufs_fsdir.h>

A directory consists of some number of blocks of DIRBLKSIZ bytes, where DIRBLKSIZ is
chosen such that it can be transferred to disk in a single atomic operation (for example,
512 bytes on most machines).

Each DIRBLKSIZ-byte block contains some number of directory entry structures, which
are of variable length. Each directory entry has a struct direct at the front of it, contain-
ing its inode number, the length of the entry, and the length of the name contained in the
entry. These entries are followed by the name padded to a 4 byte boundary with null
bytes. All names are guaranteed null-terminated. The maximum length of a name in a
directory is MAXNAMLEN.

#define DIRBLKSIZ DEV_BSIZE
#define MAXNAMLEN 256
struct direct {

u_long d_ino;

u_short d_reclen;

u_short d_namlen;

char d_name[MAXNAMLEN + 1];

/Oinode number of entry [

/Olength of this record O

/Olength of string in d_name O
/Oname must be no longer than this [1

h

See attributes(5) for a description of the following attributes:

ATTRIBUTE VALUE
Unstable

ATTRIBUTE TYPE
Stability Level

fs_ufs(4), attributes(5)

SunOS 5.6 4-87

d_passwd (4)

4-88

NAME

SYNOPSIS

DESCRIPTION

EXAMPLES

File Formats

d_passwd - dial-up password file
letc/d_passwd

A dial-up password is an additional password required of users who access the com-
puter through a modem or dial-up port. The correct password must be entered before
the user is granted access to the computer.

d_passwd is an ASCII file which contains a list of executable programs (typically shells)
that require a dial-up password and the associated encrypted passwords. When a user
attempts to log in on any of the ports listed in the dialups file (see dialups(4)), the login
program looks at the user’s login entry stored in the passwd file (see passwd(4)), and
compares the login shell field to the entries in d_passwd. These entries determine
whether the user will be required to supply a dial-up password.

Each entry in d_passwd is a single line of the form:

login-shell:password:

where
login-shell The name of the login program that will require an additional
dial-up password.
password A 13-character encrypted password. Users accessing the computer

through a dial-up port or modem using login-shell will be required
to enter this password before gaining access to the computer.

d_passwd should be owned by the root user and the root group. The file should have
read and write permissions for the owner (root) only.

If the user’s login program in the passwd file is not found in d_passwd or if the login
shell field in passwd is empty, the user must supply the default password. The default
password is the entry for /usr/bin/sh. If d_passwd has no entry for /usr/bin/sh, then
those users whose login shell field in passwd is empty or does not match any entry in
d_passwd will not be prompted for a dial-up password.

Dial-up logins are disabled if d_passwd has only the following entry:
/usr/bin/sh:0O

Here is a sample d_passwd file:
/usr/lib/uucp/uucico:q.mJzTnu8icFO0:
/usr/bin/csh:6k/7TKCFRPNVXg:

lusr/bin/ksh:9df/FDf.4jkRt:
fusr/bin/sh:41FuGVzGcDJlw:

SunOS 5.6 modified 4 May 1994

File Formats

Generating An
Encrypted Password

FILES

SEE ALSO

WARNINGS

modified 4 May 1994

d_passwd (4)

The passwd (see passwd(1)) utility can be used to generate the encrypted password for
each login program. passwd generates encrypted passwords for users and places the
password in the shadow (see shadow(4)) file. Passwords for the d_passwd file will need
to be generated by first adding a temporary user id using useradd (see useradd(1M)),
and then using passwd(1) to generate the desired password in the shadow file. Once the
encrypted version of the password has been created, it can be copied to the d_passwd
file.

For example:
1. Type useradd tempuser and press Return. This creates a user named
tempuser.

2. Type passwd tempuser and press Return. This creates an encrypted pass-
word for tempuser and places it in the shadowv file.

3. Find the entry for tempuser in the shadow file and copy the encrypted pass-
word to the desired entry in the d_passwd file.

4. Type userdel tempuser and press Return to delete tempuser.
These steps must be executed as the root user.

/etc/d_passwd dial-up password file

/etc/dialups list of dial-up ports requiring dial-up passwords
/etc/passwd password file

/etc/shadow shadow password file

passwd(1), useradd(1M), dialups(4), passwd(4), shadow(4)
When creating a new dial-up password, be sure to remain logged in on at least one termi-

nal while testing the new password. This ensures that there is an available terminal from
which you can correct any mistakes that were made when the new password was added.

SunOS 5.6 4-89

driver.conf(4)

4-90

NAME

SYNOPSIS

DESCRIPTION

File Formats

driver.conf — driver configuration files
driver.conf

Driver configuration files pass information about device drivers and their configuration
to the system. Most device drivers do not have to have configuration files. Drivers for
devices that are self-identifying, such as the SBus devices on many systems, can usually
obtain all the information they need from the FCode PROM on the SBus card using the
DDI property interfaces. See ddi_prop_get_int(9F) and ddi_prop_lookup(9F) for details.

The system associates a driver with its configuration file by name. For example, a driver
in /usr/kernel/drv called wombat has the driver configuration file wombat.conf associ-
ated with it. By convention, the driver configuration file lives in the same directory as the
driver.

The syntax of a single entry in a driver configuration file takes one of three forms:
name="node name" parent="parent name" [property-name=value ...];

In this form, the parent name can be either a simple nexus driver name to match all
instances of that parent/node, or the parent name can be a specific full pathname, begin-
ning with a slash (/) character, identifying a specific instance of a parent bus.

Alternatively, the parent can be specified by the type of interface it presents to its chil-
dren.

name="node name" class="class name" [property-name=value ...];

For example, the driver for the SCSI host adapter may have different names on different
platforms, but the target drivers can use class scsi to insulate themselves from these
differences.

Entries of either form above correspond to a device information (devinfo) node in the
kernel device tree. Each node has a name which is usually the name of the driver, and a
parent name which is the name of the parent devinfo node it will be connected to. Any
number of name-value pairs may be specified to create properties on the prototype
devinfo node. These properties can be retrieved using the DDI property interfaces (for
example, ddi_prop_get_int(9F) and ddi_ddi_prop_lookup(9F)). The prototype devinfo
node specification must be terminated with a semicolon ().

The third form of an entry is simply a list of properties.
[property-name=value ...];

A property created in this way is treated as global to the driver. It can be overridden by a
property with the same name on a particular devinfo node, either by creating one expli-
citly on the prototype node in the driver.conf file or by the driver.

Items are separated by any number of newlines, SPACE or TAB characters.

The configuration file may contain several entries to specify different device
configurations and parent nodes. The system may call the driver for each possible proto-
type devinfo node, and it is generally the responsibility of the drivers probe(9E) routine
to determine if the hardware described by the prototype devinfo node is really present.

Sun0S 5.6 modified 4 Mar 1997

File Formats

EXAMPLES

modified 4 Mar 1997

driver.conf(4)

Property names should obey the same naming convention as Open Boot PROM proper-
ties, in particular they should not contain at-sign (@), or slash (/) characters. Property
values can be decimal integers or strings delimited by double quotes (). Hexadecimal
integers can be constructed by prefixing the digits with Ox.

A comma separated list of integers can be used to construct properties whose value is an
integer array. The value of such properties can be retrieved inside the driver using
ddi_prop_lookup_int_array(9F).

Comments are specified by placing a # character at the beginning of the comment string,
the comment string extends for the rest of the line.

Here is a configuration file called ACME,simple.conf for a VMEbus frame buffer called
ACME,simple.

#

Copyright (c) 1993, by ACME Fictitious Devices, Inc.
#

#ident "@#)ACME,simple.conf 1.3 93/09/09"

name="ACME,simple" class="vme"
reg=0x7d,0x400000,0x110600;

This example creates a prototype devinfo node called ACME,simple under all parent
nodes of class vme. It specifies a property called reg that consists of an array of three
integers. The reg property is interpreted by the parent node, see vme(4) for further
details.

Here is a configuration file called ACME,example.conf for a pseudo device driver called
ACME,example.

#

Copyright (c) 1993, ACME Fictitious Devices, Inc.

#

#ident "@#)ACME,example.conf 1.2 93/09/09"

name="ACME,example" parent="pseudo" instance=0
debug-level=1;

name="ACME,example" parent="pseudo" instance=1,

whizzy-mode="on";

debug-level=3;
This example creates two devinfo nodes called ACME,example which will attach below
the pseudo node in the kernel device tree. The instance property is only interpreted by
the pseudo node, see pseudo(4) for further details. A property called debug-level will be
created on the first devinfo node which will have the value 1. The example driver will be
able to fetch the value of this property using ddi_prop_get_int(9F).

SunOS 5.6 4-91

driver.conf(4)

4-92

SEE ALSO

WARNINGS

File Formats

Two global driver properties are created, whizzy-mode (which will have the string value
"on") and debug-level (which will have the value 3). If the driver looks up the property
whizzy-mode on either node, it will retrieve the value of the global whizzy-mode pro-
perty ("on"). If the driver looks up the debug-level property on the first node, it will
retrieve the value of the debug-level property on that node (1). Looking up the same pro-
perty on the second node will retrieve the value of the global debug-level property (3).

pci(4), pseudo(4), sbus(4), scsi(4), vme(4), probe(9E), ddi_getlongprop(9F),
ddi_getprop(9F), ddi_getproplen(9F), ddi_prop_op(9F)

Writing Device Drivers
To avoid namespace collisions between multiple driver vendors, it is strongly recom-

mended that the name property of the driver should begin with a vendor-unique string.
A reasonably compact and unique choice is the vendor over-the-counter stock symbol.

Sun0S 5.6 modified 4 Mar 1997

File Formats

NAME

SYNOPSIS

DESCRIPTION

.environ Variables

modified 3 Jul 1990

environ(4)

environ, pref, variables — user-preference variables files for AT&T FACE

$HOME/pref/.environ
$HOME/pref/.variables
SHOME/FILECABINET/.pref
$SHOME/WASTEBASKET/.pref

The .environ, .pref, and .variables files contain variables that indicate user preferences
for a variety of operations. The .environ and .variables files are located under the user’s
$HOME/pref directory. The .pref files are found under SHOME/FILECABINET,
$HOME/WASTEBASKET, and any directory where preferences were set via the organ-
ize command. Names and descriptions for each variable are presented below. Variables
are listed one per line and are of the form variable=value.

Variables found in .environ include:

LOGINWIN[1-4] Windows that are opened when FACE is initialized
SORTMODE Sort mode for file folder listings. Values include the following
hexadecimal digits:
1 sorted alphabetically by name
2 files most recently modified first

800 sorted alphabetically by object type

The values above may be listed in reverse order by ORing the fol-
lowing value:

1000 list objects in reverse order. For example, a value of 1002
will produce a folder listing with files LEAST recently
modified displayed first. A value of 1001 would produce
a "reverse" alphabetical by name listing of the folder

DISPLAYMODE Display mode for file folders. Values include the following hexa-
decimal digits:
0 file names only
4 file names and brief description
8 file names, description, plus additional information
WASTEPROMPT Prompt before emptying wastebasket (yes/no)?
WASTEDAYS Number of days before emptying wastebasket
PRINCMD[1-3] Print command defined to print files.
UMASK Holds default permissions that files will be created with.

SunOS 5.6 4-93

environ(4) File Formats

.pref Variables | Variables found in .pref are the following:

SORTMODE which has the same values as the SORTMODE variable described
in .environ above.
DISPMODE which has the same values as the DISPLAYMODE variable

described in .environ above.

.variable Variables Variables found in .variables include:
EDITOR Default editor
PS1 shell prompt

4-94 Sun0S 5.6 modified 3 Jul 1990

File Formats

NAME

DESCRIPTION

FILES

SEE ALSO

modified 10 Dec 1991

ethers(4)

ethers — Ethernet address to hostname database or domain

The ethers file is a local source of information about the (48 bit) Ethernet addresses of
hosts on the Internet. The ethers file can be used in conjunction with or instead of other
ethers sources, including the NIS maps ethers.byname and ethers.byaddr and the NIS+
table ethers. Programs use the ethers(3N) routines to access this information.

The ethers file has one line for each host on an Ethernet. The line has the following for-
mat:

Ethernet-address official-host-name

Items are separated by any number of SPACE and/or TAB characters. A ‘# indicates the
beginning of a comment extending to the end of line.

The standard form for Ethernet addresses is “x:x:x:x:x:x”” where x is a hexadecimal
number between 0 and ff, representing one byte. The address bytes are always in net-
work order. Host names may contain any printable character other than SPACE, TAB,
NEWLINE, or comment character.

letc/ethers

ethers(3N), hosts(4), nsswitch.conf(4)

SunOS 5.6 4-95

fd(4) File Formats

NAME | fd —file descriptor files

DESCRIPTION These files, conventionally called /dev/fd/0, /dev/fd/1, /dev/fd/2, and so on, refer to files
accessible through file descriptors. If file descriptor n is open, these two system calls
have the same effect:

fd = open("/dev/fd/n",mode);
fd = dup(n);

On these files creat(2) is equivalent to open, and mode is ignored. As with dup, subse-
guent reads or writes on fd fail unless the original file descriptor allows the operations.

For convenience in referring to standard input, standard output, and standard error, an
additional set of names is provided: /dev/stdin is a synonym for /dev/fd/0, /dev/stdout
for /dev/fd/1, and /dev/stderr for /dev/fd/2.

SEE ALSO creat(2), dup(2), open(2)

DIAGNOSTICS open(2) returns —1 and EBADF if the associated file descriptor is not open.

4-96 Sun0S 5.6 modified 3 Jul 1990

File Formats

NAME

SYNOPSIS

DESCRIPTION

modified 3 Jul 1990

filehdr (4)

filehdr - file header for common obiject files

#include <filehdr.h>

Every common object file begins with a 20-byte header. The following C struct declara-

tion is used:

struct filehdr

{

unsigned short f_magic; /Omagic number
unsigned short f_nscns; /Onumber of sections [

long
long
long

f_timdat; /Otime & date stamp [
f_symptr ; /Ofile ptr to symtab [
f nsyms; /Onumber of symtab entries [J

unsigned short f_opthdr; /Osizeof(opt and header) OJ
unsigned short f flags; /Oflags ™0

h

f_symptr is the byte offset into the file at which the symbol table can be found. Its value
can be used as the offset in fseek(3S) to position an 1/0 stream to the symbol table. The
UNIX system optional header is 28 bytes. The valid magic numbers are given below:

#define
#define
#define
#define

#define
#define

I386MAGIC 0514 /0Oi386 Computer IO
WE32MAGIC 0560 /0O3B2, 3B5, and 3B15 computers I
N3BMAGIC 0550 /0O03B20 computer [
NTVMAGIC 0551 /0O03B20 computer [

VAXWRMAGIC 0570 /OVAX writable text segments [0
VAXROMAGIC 0575 /OVAX read only sharable
text segments [0

The value in f_timdat is obtained from the time(2) system call. Flag bits currently

defined are:

#define
#define
#define
#define
#define
#define
#define
#define

F_RELFLG 0000001 /Orelocation entries stripped O
F_EXEC 0000002 /Ofile is executable OO

F_LNNO 0000004 /Oline numbers stripped [
F_LSYMS 0000010 /Olocal symbols stripped [
F_AR16WR 0000200 /016-bit DEC host [

F_ AR32WR 0000400 /032-bit DEC host [
F_AR32W 0001000 /Onon-DEC host [

F BM32ID 0160000 /OWE32000 family ID field ¥

SunOS 5.6 4-97

filehdr(4) File Formats

#define F_BM32B 0020000 /Ofile contains WE 32100 code O

#define F_BM32MAU 0040000 /Ofile regs MAU to execute [0

#define F_BM32RST 0010000 /Othis object file contains restore
work around [3B5/3B2 only] (I

SEE ALSO | time(2), fseek(3S), a.out(4)

4-98 Sun0S 5.6 modified 3 Jul 1990

File Formats

NAME

DESCRIPTION

Syntax

Keywords

modified 4 Apr 1994

format.dat (4)

format.dat - disk drive configuration for the format command

format.dat enables you to use your specific disk drives with format(1M). On Solaris 2.3
and later systems, format will automatically configure and label SCSI drives, so that they
need not be defined in format.dat. Three things can be defined in the data file:

e search paths

e disk types

e partition tables.

The following syntax rules apply to the data file:

e The pound # sign is the comment character. Any text on a line after a pound sign is not
interpreted by format.

e Each definition in the format.dat file appears on a single logical line. If the definition is
more than one line long, all but the last line of the definition must end with a backslash
M)

o A definition consists of a series of assignments that have an identifier on the left side
and one or more values on the right side. The assignment operator is the equal sign
(=). Assignments within a definition must be separated by a colon (:).

e White space is ignored by format(1M). If you want an assigned value to contain white
space, enclose the entire value in double quotes (). This will cause the white space
within quotes to be preserved as part of the assignment value.

e Some assignments can have multiple values on the right hand side. Separate values by
acomma (,).

The data file contains disk definitions that are read in by format(1M) when it starts up.
Each definition starts with one of the following keywords: search_path, disk_type, and
partition.

search_path 4.x: Tells format which disks it should search for when it starts up. The
list in the default data file contains all the disks in the GENERIC
configuration file. If your system has disks that are not in the GENERIC
configuration file, add them to the search_path definition in your data
file. The data file can contain only one search_path definition. How-
ever, this single definition lets you specify all the disks you have in your
system.

5.x: By default, format(1M) understands all the logical devices that are
of the form /dev/rdsk/cntndnsn; hence search_path is not normally
defined on a 5.x system.

disk_type Defines the controller and disk model. Each disk_type definition con-
tains information concerning the physical geometry of the disk. The
default data file contains definitions for the controllers and disks that the
Solaris operating system supports. You need to add a new disk_type
only if you have an unsupported disk. You can add as many disk_type

SunOS 5.6 4-99

format.dat (4)

4-100

File Formats

definitions to the data file as you want.

The following controller types are supported by format(1M):

XY450 Xylogics 450 controller (SMD)

XD7053 Xylogics 7053 controller (SMD)

MD21 SCSI, but using ESDI devices (also known as shoebox)
SCSI True SCSI (CCS or SCSI-2)

ISP-80 IPI panther controller

Note: The disk_type and partition definition entries must have “ctlr =
MD21” for scsi disk devices for 4.1.1 release. But for 4.1.2, 4.1.3 and 5.x
releases, the entries should say “ctlr=SCSI.”

The keyword itself is assigned the name of the disk type. This name
appears in the disk’s label and is used to identify the disk type whenever
format(1M) is run. Enclose the name in double quotes to preserve any
white space in the name.

Below are lists of identifiers for supported controllers. Note that an
asterisk ('00) indicates the identifier is mandatory for that controller -- it
is not part of the keyword name.

The following identifiers are assigned values in all disk_type
definitions:

acyld alternate cylinders

asect alternate sectors per track

atrks alternate tracks

fmt_time formatting time per cylinder
ncylO number of logical cylinders
nheadl number of logical heads

nsectl] number of logical sectors per track
peyld number of physical cylinders
phead number of physical heads

psect number of physical sectors per track
rpm0 drive RPM

These identifiers are for SCSI and MD-21 Controllers
read_retries page 1 byte 3 (read retries)
write_retries page 1 byte 8 (write retries)

cyl_skew page 3 bytes 18-19 (cylinder skew)
trk_skew page 3 bytes 16-17 (track skew)
trks_zone page 3 bytes 2-3 (tracks per zone)
cache page 38 byte 2 (cache parameter)
prefetch page 38 byte 3 (prefetch parameter)

max_prefetch page 38 byte 4 (minimum prefetch)
min_prefetch page 38 byte 6 (maximum prefetch)

Note: The Page 38 values are device-specific. Refer the user to the par-
ticular disk’s manual for these values.

SunOS 5.6 modified 4 Apr 1994

File Formats

EXAMPLES

FILES

SEE ALSO

modified 4 Apr 1994

format.dat (4)

For SCSI disks, the following geometry specifiers may cause a mode
select on the byte(s) indicated:

asect page 3 bytes 4-5 (alternate sectors per zone)
atrks page 3 bytes 8-9 (alt. tracks per logical unit)
phead page 4 byte 5 (number of heads)

psect page 3 bytes 10-11 (sectors per track)

And these identifiers are for SMD Controllers Only

bpsd bytes per sector (SMD)

bptd bytes per track (SMD)

Note: under SunOS 5.x, bpt is only required for SMD disks. Under
SunOS 4.x, bpt was required for all disk types, even though it was only
used for SMD disks.

And this identifier is for XY450 SMD Controllers Only
drive_typel drive type (SMD) (just call this "xy450 drive type")

partition Defines a partition table for a specific disk type. The partition table con-
tains the partitioning information, plus a name that lets you refer to it in
format(1M). The default data file contains default partition definitions
for several kinds of disk drives. Add a partition definition if you repar-
titioned any of the disks on your system. Add as many partition
definitions to the data file as you need.

Partition naming conventions differ in SunOS 4.x and in SunOS 5.x.
4.x: the partitions are named as a, b, ¢, d, e, f, g, h.

5.x: the partitions are referred to by numbers 0, 1, 2, 3, 4,5, 6, 7.

Following is a sample disk_type and partition definition in format.dat file for SUNO0535
disk device.
disk_type ="SUNO0535" \

:ctlr =SCSI : fmt_time =4\

:neyl = 1866 : acyl =2 : pcyl = 2500 : nhead =7 : nsect =80 \

:rpm = 5400

partition = "SUNO0535" \
:disk = "SUNO0535" : ctlr = SCSI \
:0=0,64400:1=115,103600:2 =0, 1044960 : 6 = 300, 876960

/etc/format.dat default data file if format —x is not specified, nor is
there a format.dat file in the current directory.

format(1M)
System Administration Guide

SunOS 5.6 4-101

fspec(4)

NAME

DESCRIPTION

4-102

SEE ALSO

File Formats

fspec — format specification in text files

It is sometimes convenient to maintain text files on the system with non-standard tabs,
(tabs that are not set at every eighth column). Such files must generally be converted to a
standard format, frequently by replacing all tabs with the appropriate number of spaces,
before they can be processed by system commands. A format specification occurring in
the first line of a text file specifies how tabs are to be expanded in the remainder of the
file.

A format specification consists of a sequence of parameters separated by blanks and sur-
rounded by the brackets <: and :>. Each parameter consists of a keyletter, possibly fol-
lowed immediately by a value. The following parameters are recognized:

ttabs The t parameter specifies the tab settings for the file. The value of tabs must
be one of the following:

A list of column numbers separated by commas,
indicating tabs set at the specified columns

A’ followed immediately by an integer
n, indicating tabs at intervals of n columns

A ’-’ followed by the name of a ““‘canned” tab specification

Standard tabs are specified by t-8, or equivalently, t1,9,17,25, etc. The
canned tabs that are recognized are defined by the tabs(1) command.

ssize The s parameter specifies a maximum line size. The value of size must be an
integer. Size checking is performed after tabs have been expanded, but
before the margin is prepended.

mmargin The m parameter specifies a number of spaces to be prepended to each line.
The value of margin must be an integer.

d The d parameter takes no value. Its presence indicates that the line contain-
ing the format specification is to be deleted from the converted file.

e The e parameter takes no value. Its presence indicates that the current for-
mat is to prevail only until another format specification is encountered in the
file.

Default values, which are assumed for parameters not supplied, are t-8 and mO0. If the s
parameter is not specified, no size checking is performed. If the first line of a file does not
contain a format specification, the above defaults are assumed for the entire file. The fol-
lowing is an example of a line containing a format specification:

0<:t5,10,15s72:> 0

If a format specification can be disguised as a comment, it is not necessary to code the d
parameter.

ed(1), newform(1), tabs(1)

Sun0S 5.6 modified 3 Jul 1990

File Formats

NAME

DESCRIPTION

SEE ALSO

modified 18 Dec 1991

fstypes(4)

fstypes — file that registers distributed file system packages

fstypes resides in directory /etc/dfs and lists distributed file system utilities packages
installed on the system. For each installed distributed file system type, there is a line that
begins with the file system type name (for example, “‘nfs’"), followed by white space and
descriptive text.

The file system indicated in the first line of the file is the default file system; when Distri-
buted File System (DFS) Administration commands are entered without the option —-F
fstypes, the system takes the file system type from the first line of the fstypes file.

The default file system can be changed by editing the fstypes file with any supported text
editor.

dfmounts(1M), dfshares(1M), share(1M), shareall(1M), unshare(1M)

SunOS 5.6 4-103

fs ufs(4)

NAME

SYNOPSIS

DESCRIPTION

fs_clean

4-104

File Formats

fs_ufs, inode_ufs, inode — format of a ufs file system volume

#include <sys/param.h>
#include <sys/types.h>
#include <sys/fs/ufs_fs.h>
#include <sys/fs/ufs_inode.h>

Standard UFS file system storage volumes have a common format for certain vital infor-
mation. Every volume is divided into a certain number of blocks. The block size is a
parameter of the file system. Sectors 0 to 15 contain primary and secondary bootstrap-
ping programs.

The actual file system begins at sector 16 with the super-block. The layout of the super-
block is defined by the header <sys/fs/ufs_fs.h>.

Each disk drive contains some number of file systems. A file system consists of a number
of cylinder groups. Each cylinder group has inodes and data.

A file system is described by its super-block, and by the information in the cylinder group
blocks. The super-block is critical data and is replicated before each cylinder group block
to protect against catastrophic loss. This is done at file system creation time and the criti-
cal super-block data does not change, so the copies need not be referenced.

fs_clean indicates the state of the file system. The FSCLEAN state indicates an undam-
aged, cleanly unmounted file system. The FSACTIVE state indicates a mounted file sys-
tem that has been updated. The FSSTABLE state indicates an idle mounted file system.
The FSFIX state indicates that this fs is mounted, contains inconsistent file system data
and is being repaired by fsck. The FSBAD state indicates that this file system contains
inconsistent file system data. It is not necessary to run fsck on any unmounted file sys-
tems with a state of FSCLEAN or FSSTABLE. mount(2) will return ENOSPC if a UFS file
system with a state of FSACTIVE is being mounted for read-write.

To provide additional safeguard, fs_clean could be trusted only if fs_state contains a
value equal to FSOKAY - fs_time, where FSOKAY is a constant integer. Otherwise,
fs_clean is treated as though it contains the value of FSACTIVE.

Addresses stored in inodes are capable of addressing fragments of “blocks.” File system
blocks of at most, size MAXBSIZE can be optionally broken into 2, 4, or 8 pieces, each of
which is addressable; these pieces may be DEV_BSIZE or some multiple of a DEV_BSIZE
unit.

Large files consist exclusively of large data blocks. To avoid undue wasted disk space,
the last data block of a small file is allocated only as many fragments of a large block as
are necessary. The file system format retains only a single pointer to such a fragment,
which is a piece of a single large block that has been divided. The size of such a fragment
is determinable from information in the inode, using the blksize(fs, ip, Ibn) macro.

Sun0S 5.6 modified 17 Nov 1994

File Formats

fs_minfree

fs_optim

fs_rotdelay

fs_maxcontig

modified 17 Nov 1994

fs_ufs(4)

The file system records space availability at the fragment level; aligned fragments are
examined to determine block availability.

The root inode is the root of the file system. Inode 0 cannot be used for normal purposes
and historically, bad blocks were linked to inode 1. Thus the root inode is 2 (inode 1 is no
longer used for this purpose; however numerous dump tapes make this assumption, so
we are stuck with it). The lost+found directory is given the next available inode when it is
initially created by mkfs(1M).

fs_minfree gives the minimum acceptable percentage of file system blocks which may be
free. If the freelist drops below this level only the super-user may continue to allocate
blocks. fs_minfree may be set to 0 if no reserve of free blocks is deemed necessary, how-
ever severe performance degradations will be observed if the file system is run at greater
than 90% full; thus the default value of fs_minfree is 10%.

Empirically the best trade-off between block fragmentation and overall disk utilization at
a loading of 90% comes with a fragmentation of 8; thus the default fragment size is an
eighth of the block size.

fs_optim specifies whether the file system should try to minimize the time spent allocat-
ing blocks, or if it should attempt to minimize the space fragmentation on the disk. If the
value of fs_minfree is less than 10%, then the file system defaults to optimizing for space
to avoid running out of full sized blocks. If the value of fs_minfree is greater than or
equal to 10%, fragmentation is unlikely to be problematical, and the file system defaults
to optimizing for time.

Cylinder group related limits: Each cylinder keeps track of the availability of blocks at dif-
ferent rotational positions, so that sequential blocks can be laid out with minimum rota-
tional latency. fs_nrpos is the number of rotational positions which are distinguished.
With the default fs_nrpos of 8, the resolution of the summary information is 2ms for a
typical 3600 rpm drive.

fs_rotdelay gives the minimum number of milliseconds to initiate another disk transfer
on the same cylinder. It is used in determining the rotationally optimal layout for disk
blocks within a file; the default value for fs_rotdelay varies from drive to drive (see
tunefs(1M)).

fs_maxcontig gives the maximum number of blocks, belonging to one file, that will be
allocated contiguously before inserting a rotational delay.

Each file system has a statically allocated number of inodes. An inode is allocated for
each NBPI bytes of disk space. The inode allocation strategy is extremely conservative.

MINBSIZE is the smallest allowable block size. With a MINBSIZE of 4096 it is possible to
create files of size 2°32 with only two levels of indirection. MINBSIZE must be large
enough to hold a cylinder group block, thus changes to (struct cg) must keep its size
within MINBSIZE. Note: super-blocks are never more than size SBSIZE.

SunOS 5.6 4-105

fs ufs(4)

4-106

ATTRIBUTES

SEE ALSO

File Formats

The path name on which the file system is mounted is maintained in fs_fsmnt.
MAXMNTLEN defines the amount of space allocated in the super-block for this name.

The limit on the amount of summary information per file system is defined by
MAXCSBUFS. It is currently parameterized for a maximum of two million cylinders.

Per cylinder group information is summarized in blocks allocated from the first cylinder
group’s data blocks. These blocks are read in from fs_csaddr (size fs_cssize) in addition
to the super-block.

Note: sizeof (struct csum) must be a power of two in order for the fs_cs macro to work.

The inode is the focus of all file activity in the file system. There is a unique inode allo-
cated for each active file, each current directory, each mounted-on file, text file, and the
root. Aninode is “named” by its device/Zi-number pair. For further information, see the
header <sys/fs/ufs_inode.h>.

See attributes(5) for a description of the following attributes:

ATTRIBUTETYPE | ATTRIBUTE VALUE

Stability Level Unstable

fsck_ufs(1M), mkfs_ufs(1M), tunefs(1M), mount(2), attributes(5)

Sun0S 5.6 modified 17 Nov 1994

File Formats

NAME

DESCRIPTION

EXAMPLES

modified 27 Nov 1995

group(4)

group — group file

The group file is a local source of group information. The group file can be used in con-
junction with other group sources, including the NIS maps group.byname and
group.bygid and the NIS+ table group. Programs use the getgrnam(3C) routines to
access this information.

The group file contains a one-line entry for each group recognized by the system, of the
form:

groupname:password: gid:user-list
where
groupname The name of the group.
gid The group’s unique numerical ID (GID) within the system.
user-list A comma-separated list of users allowed in the group.

The maximum value of the gid field is 2137483647. To maximize interoperability and
compatibility, administrators are recommended to assign groups using the range of GIDs
below 60000 where possible.

If the password field is empty, no password is demanded. During user identification and
authentication, the supplementary group access list is initialized sequentially from infor-
mation in this file. If a user is in more groups than the system is configured for,
{NGROUPS_MAX}, a warning will be given and subsequent group specifications will be
ignored.

Malformed entries cause routines that read this file to halt, in which case group assign-
ments specified further along are never made. To prevent this from happening, use
grpck(1B) to check the /etc/group database from time to time.

Previous releases used a group entry beginning with a ‘+’ (plus sign) or ‘=’ (minus sign)
to selectively incorporate entries from NIS maps for group. If still required, this is sup-
ported by specifying group:compat in nsswitch.conf(4). The “‘compat’ source may not
be supported in future releases. The preferred sources are, “‘files” followed by ““nisplus”.
This has the effect of incorporating the entire contents of the NIS+ group table after the
group file.

Here is a sample group file:
root::0:root
stooges:q.mJzTnu8icF.:10:1arry,moe,curly

and the sample group entry from nsswitch.conf:
group: files nisplus

With these entries, the group stooges will have members larry, moe, and curly, and all
groups listed in the NIS+ group table are effectively incorporated after the entry for
stooges.

SunOS 5.6 4-107

group(4) File Formats

If the group file was:

root::0:root
stooges:q.mJzTnu8icF.:10:1arry,moe,curly
+:

and the group entry from nsswitch.conf:

group: compat
all the groups listed in the NIS group.bygid and group.byname maps would be effec-
tively incorporated after the entry for stooges.

SEE ALSO groups(1), grpck(1B), newgrp(1), getgrnam(3C), initgroups(3C), nsswitch.conf(4),
unistd(4)
System Administration Guide

4-108 Sun0S 5.6 modified 27 Nov 1995

File Formats

NAME

SYNOPSIS

DESCRIPTION

EXAMPLES

SEE ALSO

modified 28 Mar 1991

holidays (4)

holidays — prime/nonprime table for the accounting system
/etc/acct/holidays

The /etc/acct/holidays file describes which hours are considered prime time and which
days are holidays. Holidays and weekends are considered non-prime time hours.
/etc/acct/holidays is used by the accounting system.

All lines beginning with an " are comments.

The /etc/acct/holidays file consists of two sections. The first non-comment line defines
the current year and the start time of prime and non-prime time hours, in the form:

current_year prime_start non_prime_start
The remaining non-comment lines define the holidays in the form:
month/day company_holiday

Of these two fields, only the month/day is actually used by the accounting system pro-
grams.

The /etc/acct/holidays file must be updated each year.

The following is an example of the /etc/acct/holidays file:

OPrime/Nonprime Table for the accounting system
O

OCurr Prime Non-Prime

OYear Start Start

O
1991 0830 1800

O

Oonly the first column (month/day) is significant.

O

Omonth/day Company

O Holiday

O

1/1 New Years Day

5/30 Memorial Day

7/4 Indep. Day

9/5 Labor Day

11/24 Thanksgiving Day

11/25 day after Thanksgiving

12/25 Christmas

12/26 day after Christmas
acct(1M)

SunOS 5.6 4-109

hosts (4)

NAME

SYNOPSIS

DESCRIPTION

4-110

File Formats

hosts — host name database

/etc/inet/hosts
/etc/hosts

The hosts file is a local database that associates the names of hosts with their Internet Pro-
tocol (IP) addresses. The hosts file can be used in conjunction with, or instead of, other
hosts databases, including the Domain Name System (DNS), the NIS hosts map and the
NIS+ hosts table. Programs use library interfaces to access information in the hosts file.

The hosts file has one entry for each IP address of each host. If a host has more than one
IP address, it will have one entry for each, on consecutive lines. The format of each line
is:

IP-address official-host-name nicknames. . .

Items are separated by any number of SPACE and/or TAB characters. The first item on a
line is the host’s IP address. The second entry is the host’s official name. Subsequent
entries on the same line are alternative names for the same machine, or “nicknames.”
Nicknames are optional.

For a host with more than one IP address, consecutive entries for these addresses may
contain the same or differing nicknames. Different nicknames are useful for assigning
distinct names to different addresses.

A call to gethostbyname(3N) returns a hostent structure containing the union of all
addresses and nicknames from each line containing a matching official name or nick-
name.

A ‘# indicates the beginning of a comment; characters up to the end of the line are not
interpreted by routines that search the file.

Network addresses are written in the conventional “decimal dot” notation and inter-
preted using the inet_addr routine from the Internet address manipulation library,
inet(3N).

This interface supports host names as defined in Internet RFC 952 which states:

A “name” (Net, Host, Gateway, or Domain name) is a text string up to 24 characters
drawn from the alphabet (A-Z), digits (0-9), minus sign (-), and period (.). Note that
periods are only allowed when they serve to delimit components of “domain style
names”. (See RFC 921, “Domain Name System Implementation Schedule,” for back-
ground). No blank or space characters are permitted as part of a name. No distinction is
made between upper and lower case. The first character must be an alpha character. The
last character must not be a minus sign or period.

Although the interface accepts host names longer than 24 characters for the host portion
(exclusive of the domain component), choosing names for hosts that adhere to the 24
character restriction will insure maximum interoperability on the Internet.

Sun0S 5.6 modified 21 Mar 1995

File Formats

EXAMPLES

SEE ALSO

NOTES

modified 21 Mar 1995

hosts (4)

A host which serves as a GATEWAY should have “-GATEWAY* or “-GW” as part of its
name. Hosts which do not serve as Internet gateways should not use “-GATEWAY” and
“-GW?” as part of their names. A host which is a TAC should have “-TAC” as the last part
of its host name, if it is a DoD host. Single character names or nicknames are not allowed.

RFC 952 has been modified by RFC 1123 to relax the restriction on the first character
being a digit.

Here is a typical line from the hosts file:
192.9.1.20 gaia # John Smith

in.named(1M), gethostbyname(3N), inet(3N), nsswitch.conf(4), resolv.conf(4)

letc/inet/hosts is the official SVR4 name of the hosts file. The symbolic link /etc/hosts
exists for BSD compatibility.

SunOS 5.6 4-111

hosts.equiv (4)

NAME

DESCRIPTION

4-112

Positive Entries

File Formats

hosts.equiv, rhosts — trusted remote hosts and users

The /etc/hosts.equiv and .rhosts files provide the ‘““‘remote authentication’ database for
rlogin(1), rsh(1), rcp(1), and remd(3N). The files specify remote hosts and users that are
considered trusted. Trusted users are allowed to access the local system without supplying
a password. The library routine ruserok() (see rcmd(3N)) performs the authentication
procedure for programs by using the /etc/hosts.equiv and .rhosts files. The
/etc/hosts.equiv file applies to the entire system, while individual users can maintain
their own .rhosts files in their home directories.

These files bypass the standard password-based user authentication mechanism. To
maintain system security, care must be taken in creating and maintaining these files.

The remote authentication procedure determines whether a user from a remote host
should be allowed to access the local system with the identity of a local user. This pro-
cedure first checks the /etc/hosts.equiv file and then checks the .rhosts file in the home
directory of the local user who is requesting access. Entries in these files can be of two
forms. Positive entries allow access, while negative entries deny access. The authentication
succeeds when a matching positive entry is found. The procedure fails when the first
matching negative entry is found, or if no matching entries are found in either file. Thus,
the order of entries is important; If the files contain positive and negative entries, the
entry that appears first will prevail. The rsh(1) and rcp(1) programs fail if the remote
authentication procedure fails. The rlogin program falls back to the standard password-
based login procedure if the remote authentication fails.

Both files are formatted as a list of one-line entries. Each entry has the form:
hostname [username]

Negative entries are differentiated from positive entries by a ‘=’ character preceding
either the hostname or username field.

If the form:
hostname

is used, then users from the named host are trusted. That is, they may access the system
with the same user name as they have on the remote system. This form may be used in
both the /etc/hosts.equiv and .rhosts files.

If the line is in the form:
hostname username

then the named user from the named host can access the system. This form may be used
in individual .rhosts files to allow remote users to access the system as a different local
user. If this form is used in the /etc/hosts.equiv file, the named remote user will be
allowed to access the system as any local user.

netgroup(4) can be used in either the hostname or username fields to match a number of
hosts or users in one entry. The form:

+@netgroup

Sun0S 5.6 modified 17 Jan 1992

File Formats

Negative Entries

FILES

SEE ALSO

NOTES

modified 17 Jan 1992

hosts.equiv (4)

allows access from all hosts in the named netgroup. When used in the username field, net-
groups allow a group of remote users to access the system as a particular local user. The
form:

hostname +@netgroup

allows all of the users in the named netgroup from the named host to access the system
as the local user. The form:

+@netgroupl +@netgroup2

allows the users in netgroup2 from the hosts in netgroupl to access the system as the local
user.

The special character ‘+’ can be used in place of either hostname or username to match any
host or user. For example, the entry

+

will allow a user from any remote host to access the system with the same username. The
entry

+ username

will allow the named user from any remote host to access the system. The entry
hostname +

will allow any user from the named host to access the system as the local user.

Negative entries are preceded by a /-’ sign. The form:
—hostname

will disallow all access from the named host. The form:
—@netgroup

means that access is explicitly disallowed from all hosts in the named netgroup. The
form:

hostname —username

disallows access by the named user only from the named host, while the form:
+ —@netgroup

will disallow access by all of the users in the named netgroup from all hosts.

/etc/hosts.equiv
“/.rhosts

rcp(1), rlogin(l), rsh(1), rcmd(3N), hosts(4), netgroup(4), passwd(4)

Hostnames in /etc/hosts.equiv and .rhosts files must be the official name of the host, not
one of its nicknames.

Root access is handled as a special case. Only the .rhosts file is checked when access is
being attempted for root. To help maintain system security, the /etc/hosts.equiv file is
not checked.

SunOS 5.6 4-113

hosts.equiv (4)

4-114

File Formats

As a security feature, the .rhosts file must be owned by the user who is attempting access.

Positive entries in /etc/hosts.equiv that include a username field (either an individual
named user, a netgroup, or ‘+’ sign) should be used with extreme caution. Because
/etc/hosts.equiv applies system-wide, these entries allow one, or a group of, remote users
to access the system as any local user. This can be a security hole.

Sun0S 5.6 modified 17 Jan 1992

File Formats

NAME

SYNOPSIS

DESCRIPTION

modified 22 Feb 1994

inetd.conf(4)

inetd.conf — Internet servers database

letc/inet/inetd.conf
/etc/inetd.conf

The inetd.conf file contains the list of servers that inetd(1M) invokes when it receives an
Internet request over a socket. Each server entry is composed of a single line of the form:

service-name endpoint-type protocol wait-status uid server-program server-arguments

Fields are separated by either SPACE or TAB characters. A ‘#’ (number sign) indicates the
beginning of a comment; characters up to the end of the line are not interpreted by rou-
tines that search this file.

service-name

endpoint-type

protocol

wait-status

uid

server-program

The name of a valid service listed in the services file. For RPC ser-
vices, the value of the service-name field consists of the RPC service
name or program number, followed by a ’/’ (slash) and either a
version number or a range of version numbers (for example,
rstatd/2-4).

Can be one of:

stream for a stream socket,

dgram for a datagram socket,

raw for a raw socket,

segpacket for a sequenced packet socket
tli for all tli endpoints

Must be a recognized protocol listed in the file /etc/inet/protocols.
For RPC services, the field consists of the string rpc followed by a
'/’ (slash) and either a "0 (asterisk), one or more nettypes, one or
more netids, or a combination of nettypes and netids. Whatever
the value, it is first treated as a nettype. If it is not a valid nettype,
then it is treated as a netid. For example, rpc/Cfor an RPC service
using all the transports supported by the system (the list can be
found in the /etc/netconfig file), equivalent to saying rpc/visible
rpc/ticots for an RPC service using the Connection-Oriented Tran-
sport Service.

nowait for all but “single-threaded” datagram servers — servers
which do not release the socket until a timeout occurs. These must
have the status wait. Do not configure udp services as nowait.
This will cause a race condition where the inetd program selects
on the socket and the server program reads from the socket. Many
server programs will be forked and performance will be severly
compromised.

The user ID under which the server should run. This allows
servers to run with access privileges other than those for root.

Either the pathname of a server program to be invoked by inetd to

SunOS 5.6 4-115

inetd.conf(4)

4-116

FILES

SEE ALSO

NOTES

server-arguments

/etc/netconfig
/etc/inet/protocols
letc/inet/services

File Formats

perform the requested service, or the value internal if inetd itself
provides the service.

If a server must be invoked with command line arguments, the
entire command line (including argument 0) must appear in this
field (which consists of all remaining words in the entry). If the
server expects inetd to pass it the address of its peer (for compati-
bility with 4.2BSD executable daemons), then the first argument to
the command should be specified as ‘%A’. No more than five
arguments are allowed in this field.

network configuration file
Internet protocols
Internet network services

rlogin(1), rsh(1), in.tftpd(1M), inetd(1M), services(4)

letc/inet/inetd.conf is the official SVR4 name of the inetd.conf file. The symbolic link
/etc/inetd.conf exists for BSD compatibility.

Sun0S 5.6 modified 22 Feb 1994

File Formats

NAME

SYNOPSIS

DESCRIPTION

EXAMPLES

SEE ALSO

NOTES

modified 23 Feb 1994

init.d (4)

init.d — initialization and termination scripts for changing init states
/etc/init.d

/etc/init.d is a directory containing initialization and termination scripts for changing init
states. These scripts are linked when appropriate to files in the rc?.d directories, where ‘?’
is a single character corresponding to the init state. See init(1M) for definitions of the
states.

File names in rc?.d directories are of the form [SK]nn<init.d filename>, where S means
start this job, K means Kill this job, and nn is the relative sequence number for killing or
starting the job. When entering a state (init S,0,2,3,etc.) the rc[S0-6] script executes those
scripts in /etc/rc[S0-6].d that are prefixed with K followed by those scripts prefixed with
S. When executing each script in one of the /etc/rc[S0-6] directories, the /sbin/rc[S0-6]
script passes a single argument. It passes the argument ’stop’ for scripts prefixed with K
and the argument ’start’ for scripts prefixed with S. There is no harm in applying the
same sequence number to multiple scripts. In this case the order of execution is deter-
ministic but unspecified.

Guidelines for selecting sequence numbers are provided in README files located in the
directory associated with that target state. For example, /etc/rc[S0-6].d/README.
Absence of a README file indicates that there are currently no established guidelines.

When changing to init state 2 (multi-user mode, network resources not exported),
/sbin/rc2 is initiated by the init process. The following steps are performed by /sbin/rc2.

1. Inthe directory /etc/rc2.d are files used to stop processes that should not be run-
ning in state 2. The filenames are prefixed with K. Each K file in the directory is
executed (by /sbin/rc2) in alpha-numeric order when the system enters init state
2. See example below.

2. Alsoin the rc2.d directory are files used to start processes that should be run-
ning in state 2. Asin the Step 1, each S file is executed.

Assume the file /etc/netdaemon is a script that will initiate networking daemons when
given the argument ’start’, and will terminate the daemons if given the argument ’stop’.
It is linked to /etc/rc2.d/S68netdaemon, and to /etc/rc0.d/K67netdaemon. The file is exe-
cuted by /etc/rc2.d/S68netdaemon start when init state 2 is entered and by
/etc/rc0.d/S67netdaemon stop when shutting the system down.

init(1M)

/sbin/rc2 has references to the obsolescent rc.d directory. These references are for compa-
tibility with old INSTALL scripts. New INSTALL scripts should use the init.d directory
for related executables. The same is true for the shutdown.d directory.

SunOS 5.6 4-117

inittab (4)

NAME

DESCRIPTION

4-118

File Formats

inittab — script for init

The file /etc/inittab controls process dispatching by init. The processes most typically
dispatched by init are daemons.

The inittab file is composed of entries that are position dependent and have the following
format:

id:rstate:action;process

Each entry is delimited by a newline; however, a backslash (\) preceding a newline indi-
cates a continuation of the entry. Up to 512 characters for each entry are permitted. Com-
ments may be inserted in the process field using the convention for comments described in
sh(1). There are no limits (other than maximum entry size) imposed on the number of
entries in the inittab file. The entry fields are:

id One or two characters used to uniquely identify an entry.

rstate. Define the run level in which this entry is to be processed. Run-levels effectively
correspond to a configuration of processes in the system. That is, each process
spawned by init is assigned a run level(s) in which it is allowed to exist. The
run levels are represented by a number ranging from 0 through 6. For example,
if the system is in run level 1, only those entries having a 1 in the rstate field are
processed.

When init is requested to change run levels, all processes that do not have an
entry in the rstate field for the target run level are sent the warning signal
SIGTERM and allowed a 5-second grace period before being forcibly terminated
by the kill signal SIGKILL. The rstate field can define multiple run levels for a
process by selecting more than one run level in any combination from 0 through
6. If no run level is specified, then the process is assumed to be valid at all run
levels 0 through 6.

There are three other values, a, b and ¢, which can appear in the rstate field, even
though they are not true run levels. Entries which have these characters in the
rstate field are processed only when an init or telinit process requests them to
be run (regardless of the current run level of the system). See init(1M). These
differ from run levels in that init can never enter run level a, b or c. Also, a
request for the execution of any of these processes does not change the current
run level. Furthermore, a process started by an a, b or c command is not killed
when init changes levels. They are killed only if their line in inittab is marked
off in the action field, their line is deleted entirely from inittab, or init goes into
single-user state.

action Key words in this field tell init how to treat the process specified in the process
field. The actions recognized by init are as follows:

respawn If the process does not exist, then start the process; do not wait for
its termination (continue scanning the inittab file), and when the
process dies, restart the process. If the process currently exists, do
nothing and continue scanning the inittab file.

Sun0S 5.6 modified 3 Jul 1990

File Formats

modified 3 Jul 1990

wait

once

boot

bootwait

powerfail

powerwait

off

ondemand

initdefault

inittab (4)

When init enters the run level that matches the entry’s rstate, start
the process and wait for its termination. All subsequent reads of
the inittab file while init is in the same run level cause init to
ignore this entry.

When init enters a run level that matches the entry’s rstate, start the
process, do not wait for its termination. When it dies, do not res-
tart the process. If init enters a new run level and the process is
still running from a previous run level change, the program is not
restarted.

The entry is to be processed only at init’s boot-time read of the
inittab file. init is to start the process and not wait for its termina-
tion; when it dies, it does not restart the process. In order for this
instruction to be meaningful, the rstate should be the default or it
must match init’s run level at boot time. This action is useful for
an initialization function following a hardware reboot of the sys-
tem.

The entry is to be processed the first time init goes from single-user
to multi-user state after the system is booted. (If initdefault is set
to 2, the process runs right after the boot.) init starts the process,
waits for its termination and, when it dies, does not restart the pro-
cess.

Execute the process associated with this entry only when init
receives a power fail signal, SIGPWR (see signal(3C)).

Execute the process associated with this entry only when init
receives a power fail signal, SIGPWR, and wait until it terminates
before continuing any processing of inittab.

If the process associated with this entry is currently running, send
the warning signal SIGTERM and wait 5 seconds before forcibly
terminating the process with the kill signal SIGKILL. If the process
is nonexistent, ignore the entry.

This instruction is really a synonym for the respawn action. It is
functionally identical to respawn but is given a different keyword
in order to divorce its association with run levels. This instruction
is used only with the a, b or ¢ values described in the rstate field.

An entry with this action is scanned only when init is initially
invoked. init uses this entry to determine which run level to enter
initially. It does this by taking the highest run level specified in the
rstate field and using that as its initial state. If the rstate field is
empty, this is interpreted as 0123456 and init will enter run level 6.
This will cause the system to loop (it will go to firmware and
reboot continuously). Additionally, if init does not find an initde-
fault entry in inittab, it requests an initial run level from the user at
reboot time.

SunOS 5.6 4-119

inittab (4) File Formats

sysinit Entries of this type are executed before init tries to access the con-
sole (that is, before the Console Login: prompt). It is expected that
this entry will be used only to initialize devices that init might try
to ask the run level question. These entries are executed and init
waits for their completion before continuing.

process Specify a command to be executed. The entire process field is prefixed with
exec and passed to a forked sh as sh —c 'exec command’. For this reason, any
legal sh syntax can appear in the process field.

SEE ALSO | sh(1), who(1), init(1M), ttymon(1M), exec(2), open(2), signal(3C)

4-120 Sun0S 5.6 modified 3 Jul 1990

File Formats issue (4)
NAME issue — issue identification file

DESCRIPTION The file /etc/issue contains the issue or project identification to be printed as a login
prompt. issue is an ASCII file that is read by program getty and then written to any ter-
minal spawned or respawned from the lines file.

FILES [etc/issue

SEE ALSO | login(l)

modified 3 Jul 1990 Sun0S 5.6 4-121

keytables(4)

NAME

DESCRIPTION

4-122

File Formats

keytables — keyboard table descriptions for loadkeys and dumpkeys

These files are used by loadkeys(1) to modify the translation tables used by the keyboard
streams module and generated by (see loadkeys(1)) from those translation tables.

Any line in the file beginning with # is a comment, and is ignored. # is treated specially
only at the beginning of a line.

Other lines specify the values to load into the tables for a particular keystation. The for-
mat is either:

key number list_of entries
or

swap humberl with number2
or

key numberl same as number2
or a blank line, which is ignored.

key number list_of entries

sets the entries for keystation number from the list given. An entry in that list is of the
form

tablename code

where tablename is the name of a particular translation table, or all. The translation tables
are:

base entry when no shifts are active
shift entry when "Shift" key is down
caps entry when "Caps Lock" is in effect
ctrl entry when "Control" is down

altg entry when "Alt Graph" is down
numl entry when "Num Lock" is in effect
up entry when a key goes up

All tables other than up refer to the action generated when a key goes down. Entries in
the up table are used only for shift keys, since the shift in question goes away when the
key goes up, except for keys such as "Caps Lock" or "Num Lock"; the keyboard streams
module makes the key look as if it were a latching key.

A table name of all indicates that the entry for all tables should be set to the specified
value, with the following exception: for entries with a value other than hole, the entry for
the numl table should be set to nonl, and the entry for the up table should be set to nop.

Sun0S 5.6 modified 12 Feb 1997

File Formats

modified 12 Feb 1997

keytables(4)

The code specifies the effect of the key in question when the specified shift key is down. A
code consists of either:

A character, which indicates that the key should generate the given character.
The character can either be a single character, a single character preceded by ~
which refers to a "control character" (for instance, “c is control-C), or a C-style
character constant enclosed in single quote characters ('), which can be
expressed with C-style escape sequences such as \r for RETURN or \000 for
the null character. Note that the single character may be any character in an
8-bit character set, such as 1SO 8859/1.

A string, consisting of a list of characters enclosed in double quote characters
(™). Note that the use of the double quote character means that a code of dou-
ble quote must be enclosed in single quotes.

One of the following expressions:

shiftkeys+leftshift
the key is to be the left-hand "Shift" key
shiftkeys+rightshift
the key is to be the right-hand "Shift" key
shiftkeys+leftctrl
the key is to be the left-hand "Control" key
shiftkeys+rightctrl
the key is to be the right-hand "Control" key
shiftkeys+alt
the key is to be the "Alt" shift key
shiftkeys+altgraph
the key is to be the "Alt Graph" shift key
shiftkeys+capslock
the key is to be the "Caps Lock" key
shiftkeys+shiftlock
the key is to be the "Shift Lock" key
shiftkeys+numlock
the key is to be the "Num Lock" key
buckybits+systembit
the key is to be the "Stop" key in SunView; this is normally the L1 key,
or the SETUP key on the VT100 keyboard
buckybits+metabit
the key is to be the "meta" key. That is, the "Left" or "Right" key on a
Sun-2 or Sun-3 keyboard or the "diamond" key on a Sun-4 keyboard
compose
the key is to be the "Compose" key
ctrlg onthe "VT100" keyboard, the key is to transmit the control-Q charac-
ter (this would be the entry for the "Q" key in the ctrl table)

SunOS 5.6 4-123

keytables(4)

4-124

File Formats

ctrls onthe "VT100" keyboard, the key is to transmit the control-S charac-
ter (this would be the entry for the "S" key in the ctrl table)

noscroll
on the "VT100" keyboard, the key is to be the "No Scroll" key

string+uparrow
the key is to be the "up arrow" key

string+downarrow
the key is to be the "down arrow" key

string+leftarrow
the key is to be the "left arrow" key

string+rightarrow
the key is to be the "right arrow" key

string+homearrow
the key is to be the "home" key

fa_acute
the key is to be the acute accent "floating accent” key

fa_cedilla
the key is to be the cedilla "floating accent” key

fa_cflex
the key is to be the circumflex "floating accent” key

fa_grave
the key is to be the grave accent "floating accent" key

fa_tilde
the key is to be the tilde "floating accent" key

fa_umlaut
the key is to be the umlaut "floating accent” key

nonl thisis used only in the Num Lock table; the key is not to be affected
by the state of Num Lock

pad0 the key is to be the "0" key on the numeric keypad
padl the key is to be the "1" key on the numeric keypad
pad2 the key is to be the "2" key on the numeric keypad
pad3 the key is to be the "3" key on the numeric keypad
pad4 the key is to be the "4" key on the numeric keypad
pad5 the key is to be the "5" key on the numeric keypad
pad6 the key is to be the "6" key on the numeric keypad
pad7 the key is to be the "7" key on the numeric keypad
pad8 the key is to be the "8" key on the numeric keypad
pad9 the key is to be the "9" key on the numeric keypad

Sun0S 5.6 modified 12 Feb 1997

File Formats

EXAMPLES

modified 12 Feb 1997

keytables(4)

paddot the key is to be the "." key on the numeric keypad

padenter

the key is to be the "Enter" key on the numeric keypad
padplus

the key is to be the "+" key on the numeric keypad
padminus

the key is to be the "-" key on the numeric keypad
padstar

the key is to be the "[0' key on the numeric keypad
padslash

the key is to be the "/" key on the numeric keypad
padequal

the key is to be the "=" key on the numeric keypad

padsep the key is to be the "," (separator) key on the numeric keypad
If(n) the key is to be the left-hand function key n

rf(n) the key is to be the right-hand function key n

tf(n) the key is to be the top function key n

bf(n) the key is to be the "bottom" function key n

nop thekey is to do nothing

error this code indicates an internal error; to be used only for keystation
126, and must be used there

idle this code indicates that the keyboard is idle (that is, has no keys
down); to be used only for all entries other than the numl and up
table entries for keystation 127, and must be used there

oops this key exists, but its action is not defined; it has the same effect as
nop

reset this code indicates that the keyboard has just been reset; to be used
only for the up table entry for keystation 127, and must be used there.

swap numberl with number2
exchanges the entries for keystations numberl and number2.

key numberl same as number2
sets the entries for keystation numberl to be the same as those for
keystation number2. If the file does not specify entries for keystation
number2, the entries currently in the translation table are used; if the
file does specify entries for keystation number2, those entries are used.

The following entry sets keystation 15 to be a “hole” (that is, an entry indicating that there
is no keystation 15); sets keystation 30 to do nothing when Alt Graph is down, generate
"I" when Shift is down, and generate "1" under all other circumstances; and sets keysta-
tion 76 to be the left-hand Control key.

SunOS 5.6 4-125

keytables(4)

4-126

key 15
key 30
key 76

File Formats

all hole
base 1 shift ! caps 1 ctrl 1 altg nop
all shiftkeys+leftctrl up shiftkeys+leftctrl

The following entry exchanges the Delete and Back Space keys on the Type 4 keyboard:
swap 43 with 66
Keystation 43 is normally the Back Space key, and keystation 66 is normally the Delete

key.

The following entry disables the Caps Lock key on the Type 3 and U.S. Type 4 keyboards:
key 119 all nop
The following specifies the standard translation tables for the U.S. Type 4 keyboard:

key 0
key 1
key 2
key 3
key 4
key 5
key 6
key 7
key 8
key 9
key 10
key 11
key 12
key 13
key 14
key 15
key 16
key 17
key 18
key 19
key 20
key 21
key 22
key 23
key 24
key 25
key 26
key 27
key 28
key 29
key 30
key 31
key 32

all hole

all buckybits+systembit up buckybits+systembit
all hole

all If(2)

all hole

all tf(1)

all tf(2)

all tf(10)

all tf(3)

all tf(11)

all tf(4)

all tf(12)

all tf(5)

all shiftkeys+altgraph up shiftkeys+altgraph
all tf(6)

all hole

all tf(7)

all tf(8)

all tf(9)

all shiftkeys+alt up shiftkeys+alt
all hole

all rf(2)

all rf(2)

all rf(3)

all hole

all If(3)

all If(4)

all hole

all hole

all [

base 1 shift ! caps 1 ctrl 1 altg nop
base 2 shift @ caps 2 ctrl @ altg nop
base 3 shift # caps 3 ctrl 3 altg nop

Sun0S 5.6 modified 12 Feb 1997

File Formats

modified 12 Feb 1997

key 33
key 34
key 35
key 36
key 37
key 38
key 39
key 40
key 41
key 42
key 43
key 44
key 45
key 46
key 47
key 48
key 49
key 50
key 51
key 52
key 53
key 54
key 55
key 56
key 57
key 58
key 59
key 60
key 61
key 62
key 63
key 64
key 65
key 66
key 67
key 68
key 69
key 70
key 71
key 72
key 73
key 74
key 75
key 76
key 77

keytables(4)

base 4 shift $ caps 4 ctrl 4 altg nop
base 5 shift % caps 5 ctrl 5 altg nop
base 6 shift ~ caps 6 ctrl ™" altg nop
base 7 shift & caps 7 ctrl 7 altg nop
base 8 shift Ocaps 8 ctrl 8 altg nop
base 9 shift (caps 9 ctrl 9 altg nop
base 0 shift) caps 0 ctrl 0 altg nop
base - shift _ caps - ctrl *_altg nop
base = shift + caps = ctrl = altg nop
base ‘ shift ~ caps * ctrl ™" altg nop

all "\b’

all hole

all rf(4) numl padequal

all rf(5) numl padslash

all rf(6) numl padstar

all bf(13)

all If(5)

all bf(10) numl padequal

all If(6)

all hole

all "\t’

base g shift Q caps Q ctrl “Q altg nop
base w shift W caps W ctrl "W altg nop
base e shift E caps E ctrl "E altg nop
base r shift R caps R ctrl "R altg nop
base t shift T caps T ctrl " T altg nop
base y shift Y caps Y ctrl "Y altg nop
base u shift U caps U ctrl "U altg nop
base i shift | caps I ctrl "\t’ altg nop
base o shift O caps O ctrl "O altg nop
base p shift P caps P ctrl "P altg nop
base [shift { caps [ctrl [altg hop
base] shift } caps] ctrl 7] altg nop

all \177’

all compose

all rf(7) numl pad7

all rf(8) numl pad8

all rf(9) numl pad9

all bf(15) numl padminus

all If(7)

all If(8)

all hole

all hole

all shiftkeys+leftctrl up shiftkeys+leftctrl
base a shift A caps A ctrl A altg nop

SunOS 5.6 4-127

keytables(4)

4-128

key 78
key 79
key 80
key 81
key 82
key 83
key 84
key 85
key 86
key 87
key 88
key 89
key 90
key 91
key 92
key 93
key 94
key 95
key 96
key 97
key 98
key 99
key 100
key 101
key 102
key 103
key 104
key 105
key 106
key 107
key 108
key 109
key 110
key 111
key 112
key 113
key 114
key 115
key 116
key 117
key 118
key 119
key 120
key 121

File Formats

base s shift S caps S ctrl S altg nop
base d shift D caps D ctrl "D altg nop
base f shift F caps F ctrl °F altg nop
base g shift G caps G ctrl G altg nop
base h shift H caps H ctrl "\b’ altg nop
base j shift J caps J ctrl "\n’ altg nop
base k shift K caps K ctrl "\\v’ altg nop
base I shift L caps L ctrl "L altg nop
base ; shift : caps ; ctrl ; altg nop
base "\’ shift ™ caps "\’ ctrl "\’ altg nop
base "\’ shift | caps "\\' ctrl "\ altg nop
all \r’
all bf(11) numl padenter
all rf(10) numl pad4
all rf(11) numl pad5
all rf(12) numl pad6
all bf(8) numl pado0
all If(9)
all hole
all If(10)
all shiftkeys+numlock
all shiftkeys+leftshift up shiftkeys+leftshift
base z shift Z caps Z ctrl “Z altg nop
base x shift X caps X ctrl "X altg nop
base c shift C caps C ctrl “C altg nop
base v shift VV caps V ctrl "V altg nop
base b shift B caps B ctrl "B altg nop
base n shift N caps N ctrl "N altg nop
base m shift M caps M ctrl "\r’ altg nop
base , shift < caps, ctrl, altg nop
base . shift > caps . ctrl . altg nop
base / shift ? caps / ctrl °_altg nop
all shiftkeys+rightshift up shiftkeys+rightshift
all "\n’
all rf(13) numl pad1
all rf(14) numl pad?2
all rf(15) numl pad3
all hole
all hole
all hole
all If(16)
all shiftkeys+capslock
all buckybits+metabit up buckybits+metabit
base ’ ’ shift’ ’ caps’ ’ ctrl "@ altg ’’

Sun0OS 5.6 modified 12 Feb 1997

File Formats

ATTRIBUTES

SEE ALSO

modified 12 Feb 1997

key 122 all buckybits+metabit up buckybits+metabit
key 123 all hole

key 124 all hole

key 125 all bf(14) numl padplus

key 126 all error numl error up hole

key 127 all idle numl idle up reset

See attributes(5) for descriptions of the following attributes:

ATTRIBUTETYPE | ATTRIBUTE VALUE

Architecture SPARC

loadkeys(1), attributes(5)

SunOS 5.6

keytables(4)

4-129

krb.conf(4)

NAME
SYNOPSIS

DESCRIPTION

SEE ALSO

BUGS

4-130

File Formats

krb.conf — Kerberos configuration file
fletc/krb.conf

krb.conf contains configuration information describing the Kerberos realm and the Ker-
beros key distribution center (KDC) servers for known realms.

krb.conf contains the name of the local realm in the first line, followed by lines indicating
realm/host entries. The first token is a realm name, and the second is the hostname of a
host running a KDC for that realm. There can be multiple lines for a given realm; the
servers are tried in order until an active one is found. The words admin server following
the hostname indicate that the host also provides an administrative database server. For
example:

ATHENA.MIT.EDU

ATHENA.MIT.EDU kerberos-1.mit.edu admin server
ATHENA.MIT.EDU kerberos-2.mit.edu
LCS.MIT.EDU kerberos.lcs.mit.edu admin server

The Kerberos configuration information can also be supplied using the krb.conf NIS
map. If /etc/krb.conf is not found (or the requested information is not found in it), and
the system is running NIS, then the information will be obtained from the NIS map. If
neither the file nor the NIS map are found, then the Kerberos library will use the domain-
name (as returned by domainname(1M)) as the Kerberos realm, and the host kerberos as
the location of the KDC. There is no default for the admin server.

Note that every time krb.conf is modified, kerbd(1M) needs to be restarted.
domainname(1M), kerbd(1M), ypmake(1M), krb.realms(4)

There is no NIS+ support yet for the krb.conf map.

Sun0S 5.6 modified 6 Jan 1992

File Formats

NAME

SYNOPSIS

DESCRIPTION

SEE ALSO

BUGS

modified 6 Jan 1992

krb.realms (4)

krb.realms — host to Kerberos realm translation file
letc/krb.realms

krb.realms provides a translation from a hostname to the Kerberos realm name for the
services provided by that host.

Each line of the translation file is in one of the following forms:

host_name kerberos_realm
domain_name kerberos_realm

domain_name should be of the form .XXX.YYY, for example, .LCS.MIT.EDU.

If a hostname exactly matches the host_name field in a line of the first form, the
corresponding kerberos_realm is used as the realm of the host. If a hosthame does not
match any host_name in the file, but its domain exactly matches the domain_name field in a
line of the second form, the corresponding kerberos_realm is used as the realm of the host.

If no translation entry applies, the host’s realm is considered to be the hostname’s domain
portion converted to upper case.

krb_realmofhost(3N)

There is no NIS or NIS+ support for this information.

SunOS 5.6 4-131

libadm (4)

NAME

SYNOPSIS

DESCRIPTION

INTERFACES

FILES

ATTRIBUTES

SEE ALSO

4-132

File Formats

libadm - general administrative library

cc[flag ...]file ... —ladm [library ...]

Functions in this library provide Device management, VTOC handling, regular expres-
sions and Packaging routines.

The shared object libadm.so.1 provides the public interfaces defined below.
For additional information on shared object interfaces, see intro(4).

SUNW_1.1 (generic):

advance asysmem circf
compile devattr devfree
devreserv getdev getdgrp
getvol listdev listdgrp
locl loc2 locs

nbra pkagdir pkginfo
pkgnmchk pkgparam read_vtoc
reservdev sed step
sysmem write_vtoc

/usr/lib/libadm.so.1
fusr/lib/libadm.a

shared object
archive library

See attributes(5) for descriptions of the following attributes:

ATTRIBUTETYPE | ATTRIBUTE VALUE

MT-Level Unsafe

pvs(1), read_vtoc(3X), sysmem(3), intro(4), attributes(5), regexp(5)

Sun0S 5.6 modified 31 Dec 1996

File Formats

NAME

SYNOPSIS

DESCRIPTION

INTERFACES

FILES

ATTRIBUTES

SEE ALSO

modified 14 Feb 1997

libaio (4)

libaio — the asynchronous 170 library
cc[flag ...]file ... —laio [library ...]

Functions in this library provide routines for asynchronous 170.
The shared object libaio.so.1 provides the public interfaces defined below.
For additional information on shared object interfaces, see intro(4).

SISCD_2.3 (SPARC only) - The SPARC Compliance Definition, revision 2.3:

aiocancel aioread aiowait
aiowrite

SUNW _1.1 (generic):
aio_close aio_fork aioread64
aiowrite64 assfail close
fork sigaction sigignore
signal sigset

SUNW_1.1 (SPARC) - This interface inherits all definitions from the generic

SUNW_1.1 and the SISCD_2.3.

SUNW _1.1 (i386) - This interface contains all definitions from SISCD_2.3, and

inherits all definitions from the generic SUNW _1.1.

/usr/lib/libaio.so.1 shared object

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE
MT-Level

ATTRIBUTE VALUE
Safe

pvs(1), intro(2), intro(3), aiocancel(3), aioread(3), aiowait(3), aiowrite(3), intro(4), attri-
butes(5)

SunOS 5.6 4-133

libbsm (4)

NAME

SYNOPSIS

DESCRIPTION

INTERFACES

FILES

ATTRIBUTES

SEE ALSO

4-134

libbsm - basic security library

cc[flag ...]file ..

. —lbsm [library ...]

File Formats

Functions in this library provide basic security, library object reuse and auditing.
The shared object libbsm.so.1 provides the public interfaces defined below.
For additional information on shared object interfaces, see intro(4).

SUNW_1.1 (generic):

au_close
auditsvc
au_to_arg
au_to_data
au_to_ipc
au_to_newgroups
au_to_process
au_to_subject
au_write
endauevent
getacflg
getauclassent
getauclassnam_r
getauditflagschar
getauevnam
getauevnum
getauuserent
getauusernam_r
setauclass
setauevent
setauuser

fusr/lib/libbsm.so.1
fusr/lib/libbsm.a

audit

au_open
au_to_attr
au_to_groups
au_to_iport
au_to_opaque
au_to_return
au_to_text
endac
endauuser
getacmin
getauclassent_r
getaudit
getauevent
getauevnam_r
getauevnum_r
getauuserent_r
getfauditflags
setauclassfile
setaueventfile
setauuserfile

shared object
archive library

auditon
au_preselect
au_to cmd
au_to_in_addr
au_to_me
au_to_path
au_to_socket
au_user_mask
endauclass
getacdir
getacna
getauclassnam
getauditflagsbin
getauevent _r
getauevnonam
getauid
getauusernam
setac

setaudit
setauid

testac

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE

ATTRIBUTE VALUE

MT-Level

See individual man page for each function.

pvs(l), intro(4), attributes(5)

SunOS 5.6

modified 31 Dec 1996

File Formats

NAME
SYNOPSIS

DESCRIPTION

INTERFACES

modified 29 Apr 1997

libc (4)

libc - the C library
cc[flag ...]file ... —lc

Functions in this library provide various facilities defined by System V, ANSI C, POSIX,
and so on. See standards(5). In addition, those facilities previously defined in the inter-

nationalization and the wide character libraries are now defined in this library.
The shared object libc.so.1 provides the public interfaces defined below.

For additional information on shared object interfaces, see intro(4). Many features in this
library are implemented upon dynamic linking. Some of these features are not imple-
mented in the archive version.

SYSVABI_1.3 (generic) -

The System V Application Binary Interface, Third Edition:

abort abs _access
access _acct acct
_alarm alarm _altzone
asctime __assert atexit
atof atoi atol
bsearch calloc _catclose
catclose _catgets catgets
_catopen catopen _cfgetispeed
cfgetispeed _cfgetospeed cfgetospeed
_cfsetispeed cfsetispeed _cfsetospeed
cfsetospeed _chdir chdir
_chmod chmod _chown
chown _chroot chroot
_cleanup clearerr clock
_close close _closedir
closedir _creat creat
_ctermid ctermid ctime
__ctype _cuserid cuserid
_daylight daylight difftime
div _dup dup
_dup2 dup2 _environ
environ _execl execl
_execle execle _execlp
execlp _execv execv
_execve execve _execvp
execvp _exit exit
_fattach fattach _fchdir
fchdir _fchmod fchmod
_fchown fchown fclose
_fentl fentl _fdetach
fdetach _fdopen fdopen
Sun0S 5.6 4-135

libc (4)

4-136

feof

fgetc

_ filbuf
__flsbuf
fopen
_fpathconf
fputc

free

fscanf
_fstat
fstatvfs
ftell

fwrite
_getcontext
getcwd
_Qetdate_err
getegid
geteuid
_getgrgid
getgrnam
_getlogin
getmsg
_getpass
getpgid
_getpid
getpmsg
_getpwnam
getpwuid
gets
_getsubopt
gettxt
_getw
_grantpt
hcreate
_hsearch
initgroups
ioctl
_lisascii
isastream
iscntrl
islower
_isnand
ispunct
isxdigit
labs

ferror
fgetpos
_fileno
_fmtmsg
_fork
fpathconf
fputs
freopen
fseek
fstat
_fsync
_ftok

getc
getcontext
_getdate
getdate_err
getenv
_getgid
getgrgid
_getgroups
getlogin
_getopt
getpass
_getpgrp
getpid
_getppid
getpwnam
_getrlimit
_getsid
getsubopt
_getuid
getw
grantpt
_hdestroy
hsearch
__iob
isalnum
isascii
_isatty
isdigit
_isnan
isnand
isspace
_kill
_Ichown

SunOS 5.6

File Formats

fflush
fgets
fileno
fmtmsg
fork
fprintf
fread
frexp
fsetpos
_fstatvfs
fsync
ftok
getchar
_getewd
getdate
_getegid
_geteuid
getgid
_getgrnam
getgroups
_getmsg
getopt
_getpgid
getpgrp
_getpmsg
getppid
_getpwuid
getrlimit
getsid
_gettxt
getuid
gmtime
_hcreate
hdestroy
_initgroups
_ioctl
isalpha
_isastream
isatty
isgraph
isnan
isprint
isupper
kill
Ichown

modified 29 Apr 1997

File Formats

modified 29 Apr 1997

Idexp

Ifind
localeconv
lockf
_lIsearch
Iseek

makecontext

mblen
_memccpy
memcmp
memcpy
_mkdir
mkfifo
_mktemp
_mlock
mmap
_monitor
mount
_msgctl
msgget
_msgsnd
msync
_munmap
nextafter
_nice
nl_langinfo
open
optarg
optopt
_pause
pclose
pipe
_popen
_profil
ptrace
putc
putenv
_butpmsg
_butw
raise

read
_readlink
readv
_rename
_rewinddir

Idiv
_link
localtime
logb
Isearch
Istat

makecontext

mbstowcs
memccpy
_memcntl
memmove
mkdir
_mknod
mktemp
mlock
_modf
monitor
_mprotect
msgctl
_msgrcv
msgsnd
_munlock
munmap
_nftw
nice
_numeric
_opendir
opterr
_pathconf
pause
perror
_poll
popen
profil
_ptsname
putchar
_putmsg
putpmsg
putw
rand
_readdir
readlink
realloc
rename
rewinddir

SunOS 5.6

_Ifind
link
_lockf
longjmp
_lIseek
Istat
malloc
mbtowc
memchr
memcntl
memset
_mkfifo
mknod
mktime
_mmap
modf
_mount
mprotect
_msgget
msgrcv
_msync
munlock
_nextafter
nftw

_nl_langinfo

_open
opendir
optind
pathconf
_pclose
_pipe
poll
printf
_ptrace
ptsname
_putenv
putmsg
puts
gsort
_read
readdir
_readv
remove
rewind
_rmdir

libc(4)

4-137

libc (4)

4-138

rmdir

scanf
_semctl
semget
setbuf
_setgid
setgroups
setlocale
_setpgrp
setrlimit
_setuid
_shmat
shmctl
_shmget
sigaction
_sigaltstack
sigdelset
_sigfillset
sighold
_sigismember
siglongjmp
sigpause
_sigprocmask
sigrelse
_sigsendset
sigset
_sigsuspend
sleep
sscanf
_statvfs
stime
strcmp
strcspn
strerror
strncat
strpbrk
strstr

strtol
_swab
swapcontext
_sync
sysconf
tcdrain
_tcflush
tcgetattr

_scalb
_seekdir
semctl
_semop
_setcontext
setgid
setjmp
_setpgid
setpgrp
_setsid
setuid
shmat
_shmdt
shmget
_sigaddset
sigaltstack
_sigemptyset
sigfillset
_sigignore
sigismember
signal
_sigpending
sigprocmask
_sigsend
sigsendset
_sigsetjmp
sigsuspend
sprintf
_stat
statvfs
strcat
strcoll
_strdup
strftime
strncmp
strrchr
strtod
strtoul
swab
_symlink
sync
system
_tcflow
tcflush

_tegetpgrp

SunOS 5.6

scalb
seekdir
_semget
semop
setcontext
_setgroups
setlabel
setpgid
_setrlimit
setsid
setvbuf
_shmctl
shmdt
_sigaction
sigaddset
_sigdelset
sigemptyset
_sighold
sigignore
_siglongjmp
_sigpause
sigpending
_sigrelse
sigsend
_sigset
sigsetjmp
_sleep
srand

stat

_stime
strchr
strcpy
strdup
strlen
strncpy
strspn
strtok
strxfrm
_Swapcontext
symlink
_sysconf
_tcdrain
tcflow
_tcgetattr

tcgetpgrp

File Formats

modified 29 Apr 1997

File Formats

modified 29 Apr 1997

_tcgetsid
tcsendbreak
_tcsetpgrp
tdelete
_telldir
tempnam
_time
times
tmpfile
toascii
_toupper
tsearch
_twalk
tzname
_ulimit
umask
_uname
_unlink
unlockpt
viprintf
_wait
waitid
wcstombs
write
_xftw

SYSVABI_1.3 (SPARC) -

_Q_add
_Q_div
_Q_fge
_Q flt
_Q_mul
_Q_qtoi
_Q_sqgrt
_Q_utoq
__ftou

.rem
.Stret4
.umul

tcgetsid
_tcsetattr
tcsetpgrp
_tell
telldir
_tfind
time
_timezone
tmpnam
_tolower
toupper
_ttyname
twalk
_tzset
ulimit
_umount
uname
unlink
_utime
vprintf
wait
_waitpid
wctomb
_writev

_tcsendbreak
tcsetattr
_tdelete
tell
_tempnam
tfind
_times
timezone
_toascii
tolower
_tsearch
ttyname
_tzname
tzset
_umask
umount
ungetc
_unlockpt
utime
vsprintf
_waitid
waitpid
_write
writev

libc (4)

The SPARC Processor Supplement. This interface con-

tains all of the generic SYSVABI_1.3, and defines:

_Q_cmp
_Q_dtoq
_Q_fgt
_Q _fne
_Q_neg
_Q_qtos
_Q_stoq
div
__huge_val
.Stretl
.stret8
.urem

SunOS 5.6

_Q_cmpe
_Q_feq
_Q fle
_Q_itoq
_Q_qtod

_Q_qgtou
_Q_sub

__dtou
.mul
.stret2
.udiv

4-139

libc (4)

4-140

SYSVABI_1.3 (i386) -

__flt rounds
_fpstart
_Ixstat
_shrk

_Xxstat

SISCD_2.3 (SPARC only) -

_addseverity
_crypt

_ dive4
_encrypt
endpwent
fgetgrent
fgetpwent_r
__ ftoull
getc_unlocked
getgrgid_r
getitimer
getpwent_r
_gettimeofday
_iob
putchar_unlocked
readdir_r
sbrk

setitimer
setpwent
sysinfo
__umul64

SUNW_1.1 (generic):

a64l

addsev

altzone

_assert

bcmp

brk
__builtin_alloca
cfree

closelog
cond_destroy

File Formats

The Intel386 Processor Supplement. This interface con-
tains all of the generic SYSVABI_1.3, and defines:

_fp_hw
_fxstat
_nuname
sbrk

_ fpstart
__huge_val
nuname
_xmknod

The SPARC Compliance Definition, revison 2.3. This
interface inherits all definitions from SYSVABI_1.3, and

defines:
addseverity asctime_r
crypt ctime_r
__dtoll __dtoull
encrypt endgrent
__errno errno
fgetgrent_r fgetpwent
flockfile __ftoll
funlockfile getchar_unlocked
getgrent getgrent_r
getgrnam_r _getitimer
getlogin_r getpwent
getpwnam_r getpwuid_r
gettimeofday gmtime_r
localtime_r __mulé4
putc_unlocked rand_r
__rem64 _sbrk
setgrent _setitimer
_setkey setkey
strtok_r _sysinfo
ttyname_r __udive4
__urem64

acl

adjtime

ascftime

atoll

bcopy

_bufendtab

bzero

cftime

cond_broadcast

cond_init

SunOS 5.6 modified 29 Apr 1997

File Formats

modified 29 Apr 1997

cond_signal
cond_wait
csetcol
ctermid_r
dbm_close
dbm_fetch
dbm_nextkey
dbm_store

decimal_to_extended
decimal_to_single

drand48
ecvt
endspent
endutent
erand48
euclen
_exithandle

extended_to_decimal

fchroot
fevt
fgetspent
_filbuf
finite
fnmatch
fpclass
fpgetround
fpsetmask
fpsetsticky
ftime

ftw
gconvert

_getdate_err_addr

getdtablesize
gethostname
gethrvtime
getmntent
getnetgrent_r
getpriority
getrusage
getspent_r
getspnam_r
getutent
getutline
getutmpx
getutxid

SunOS 5.6

cond_timedwait
confstr

csetlen

_cCtype
dbm_delete
dbm_firstkey
dbm_open

decimal_to_double
decimal_to_quadruple
double_to_decimal

econvert
endnetgrent
endusershell
endutxent
euccol
eucscol
exportfs

facl
fconvert

ffs
fgetspent_r
file_to_decimal
_flsbuf
forkl
fpgetmask
fpgetsticky
fpsetround
fstatfs
ftruncate
func_to_decimal
gevt
getdents
gethostid
gethrtime
getmntany
getnetgrent
getpagesize
getpw
getspent
getspnam
getusershell
getutid
getutmp
getutxent
getutxline

libc (4)

4-141

libc (4)

4-142

getvfsany
getvfsfile
getwd
glob
gsignal
iconv
iconv_open
initstate
_insque
isnanf
killpg
ladd
Ickpwdf
Idivide
Ifmt

ldiv
llseek
Imul
Irand48
Isub
_lwp_cond_broadcast

_lwp_cond_timedwait

_lwp_continue
_lwp_exit
_lwp_info
_lwp_makecontext
_lwp_mutex_trylock
_lwp_self
_lwp_sema_post
_lwp_setprivate
_lwp_wait
madvise
__makedev
memalign
__minor

modctl

modutx
munlockall
_mutex_held
_mutex_lock
mutex_trylock
nfs_getfh
_nsc_trydoorcall
_nss_XbyY_buf_free
nss_delete

SunOS 5.6

getvfsent
getvfsspec
getwidth
globfree
hasmntopt
iconv_close

index

innetgr

insque

jrand48

164a

_lastbuf

lcong48

lexp10

llabs

llog10

lltostr

lone

Ishiftl

Iten
_lwp_cond_signal
_lwp_cond_wait
_lwp_create
_lwp_getprivate
_lwp_kill
_lwp_mutex_lock
_lwp_mutex_unlock
_lwp_sema_init
_lwp_sema_wait
_lwp_suspend
Izero

__major

makeutx

mincore

mlockall

modff

mrand48
mutex_destroy
mutex_init
mutex_lock
mutex_unlock
nrand48
_nss_XbyY_buf _alloc
nss_default finders
nss_endent

File Formats

modified 29 Apr 1997

File Formats

modified 29 Apr 1997

nss_getent

nss_search
__nsw_extended_action
__hsw_getconfig

pfmt

p_online

__posix_ctime_r
__posix_getgrnam_r
__posix_getpwnam_r
__posix_readdir_r
__posix_ttyname_r
__priocntl

processor_bind

psiginfo
pthread_condattr_destroy
pthread_condattr_init
pthread_cond_broadcast
pthread_cond_init
pthread_cond_timedwait
pthread_mutexattr_destroy
pthread_mutexattr_getprotocol
pthread_mutexattr_init
pthread_mutexattr_setprotocol
pthread_mutex_destroy
pthread_mutex_init
pthread_mutex_setprioceiling
pthread_mutex_unlock
putspent

pututxline

geconvert

gfconvert

ggconvert
quadruple_to_decimal
realpath

re_comp

regcomp

regexec

_remque

rindex

rw_rdlock

rw_read_held
rw_trywrlock
_rw_write_held
rw_wrlock

seed48

SunOS 5.6

_nss_netdb_aliases

nss_setent

__nsw_freeconfig

openlog

plock

__posix_asctime_r
__posix_getgrgid_r
__posix_getlogin_r
__posix_getpwuid_r
__posix_sigwait

pread

__priocntlset

processor_info

psignal
pthread_condattr_getpshared
pthread_condattr_setpshared
pthread_cond_destroy
pthread_cond_signal
pthread_cond_wait
pthread_mutexattr_getprioceiling
pthread_mutexattr_getpshared
pthread_mutexattr_setprioceiling
pthread_mutexattr_setpshared
pthread_mutex_getprioceiling
pthread_mutex_lock
pthread_mutex_trylock
putpwent

pututline

pwrite

gecvt

gfcvt

qgevt

random

reboot

re_exec

regerror

regfree

remque

rwlock_init

_rw_read_held

rw_tryrdlock

rw_unlock

rw_write_held

seconvert

select

libc (4)

4-143

libc (4)

4-144

_sema_held
sema_init
sema_trywait
setbuffer
setegid
sethostname
setlogmask
setpriority
setreuid
setstate
setusershell
setutxent
sgconvert
sig2str
sigwait
_sobuf
srandom
statfs
strcasecmp
string_to_decimal
strptime
strtoll
swapctl
_sys_buslist
syscall
_sys_fpelist
_sys_illlist
syslog
_sys_segvlist
_sys siglist
_sys_siglistp
thr_continue
thr_exit
thr_getprio
thr_join
thr_kill
thr_self
thr_setprio
thr_sigsetmask
thr_suspend
tmpnam_r
ttyslot
ualarm
ulltostr
updwtmp

SunOS 5.6

File Formats

sema_held
sema_post
sema_wait

setcat

seteuid
setlinebuf
setnetgrent
setregid

setspent
settimeofday
setutent
sfconvert

_sibuf

sigfpe
single_to_decimal
srand48

ssignal

str2sig

strfmon
strncasecmp
strsignal

strtoull
sync_instruction_memory
_syscall
_sys_cldlist
sysfs

_syslog
_Sys_nsig
_sys_siginfolistp
_sys_siglistn
_sys_traplist
thr_create
thr_getconcurrency
thr_getspecific
thr_keycreate
thr_min_stack
thr_setconcurrency
thr_setspecific
thr_stksegment
thr_yield
truncate

uadmin
ulckpwdf
unordered
updwtmpx

modified 29 Apr 1997

File Formats

modified 29 Apr 1997

usleep
utimes
utmpxname
vfork

vifmt
vsyslog
wait4
wordfree
yield

SUNW._1.1 (SPARC) -

libc (4)

ustat
utmpname
valloc
vhangup
vpfmt
wait3
wordexp

__Xpg4

This interface inherits all definitions from the generic

SUNW_1.1 and the SISCD_2.3, and defines:

__flt_rounds
SUNW _1.1 (i386) -

This interface contains all definitions from SISCD_2.3,

inherits all definitions from the generic SUNW _1.1 and
the SYSVABI_1.3, and defines:

_thr_errno_addr

SUNW_1.2 - SUNW_1.16 (generic) -

These interfaces inherit all definitions from the generic
SUNW_1.1, and define:

basename
bsd_signal
creat64
dbm_error
dgettext
dirname
fgetwc
fopen64
fputws
fseeko
fsetpos64
fstat64
fstatvfs64
ftello64
ftruncate64
ftw64
getdents64
getexecname
_getrlimit64
gettext
getwchar
isenglish
isnumber

Sun0OS 5.6

bindtextdomain
_Creat64
dbm_clearerr
dcgettext
directio
fgetpos64
fgetws
fputwec
freopen64
fseeko64
_fstat64
_fstatvfs64
ftello
_ftruncate64
_ftw64
_getdents64
_getexecname
getpassphrase
getrlimit64
getwec

getws
isideogram
isphonogram

4-145

libc (4)

4-146

isspecial
iswalpha
iswctype
iswgraph
iswprint
iswspace
iswxdigit
_lockf64
_longjmp
Iseek64
Istat64
_mkstemp64
_mmap64
_nftw64
_ntp_adjtime
_ntp_gettime
_open64
_pread64
pset_assign
pset_create
pset_info
pthread_attr_destroy

pthread_attr_getinheritsched
pthread_attr_getschedpolicy
pthread_attr_getstackaddr

pthread_attr_init

pthread_attr_setinheritsched
pthread_attr_setschedpolicy
pthread_attr_setstackaddr

pthread_cancel
__pthread_cleanup_push
pthread_detach
pthread_exit
pthread_getspecific
pthread_key create
pthread_Kkill
pthread_self
pthread_setcanceltype
pthread_setspecific
pthread_testcancel
putwchar

_pwrite64

_readdir64
_readdir64 _r

regcmp

SunOS 5.6

iswalnum
iswentrl
iswdigit
iswlower
iswpunct
iswupper
__locl
lockf64
_lseek64
_lIstat64
_lwp_sema_trywait
mkstemp64
mmap64
nftwé4
ntp_adjtime
ntp_gettime
open64
pread64
pset_bind
pset_destroy
pthread_atfork

File Formats

pthread_attr_getdetachstate
pthread_attr_getschedparam

pthread_attr_getscope

pthread_attr_getstacksize
pthread_attr_setdetachstate

pthread_attr_setschedparam

pthread_attr_setscope

pthread_attr_setstacksize

__pthread_cleanup_pop
pthread_create
pthread_equal
pthread_getschedparam
pthread_join
pthread_key_delete
pthread_once
pthread_setcancelstate
pthread_setschedparam
pthread_sigmask

putwc

putws

pwrite64

readdir64

readdir64 r

regex

modified 29 Apr 1997

File Formats

FILES

modified 29 Apr 1997

_resolvepath
_rwlock_destroy
_sema_destroy
_setjmp
setrlimit64
s_fentl
sigstack
snprintf
stat64
statvfs64
textdomain
towctrans
towupper
truncate64
vsnprintf
wcscat
wcesemp
wcescpy
wecsftime
wcsncat
wcesnepy
wecesrchr
wcstod
wecstol
WCSWCS
wesxfrm
wctype
wscasecmp
wschr

wscol

wscpy
wsdup
wsncasecmp
wsncmp
wspbrk
wsrchr
wsspn
wstok
wstoll
wsxfrm
__Xpg4_putmsg

fusr/lib/libc.so.1
lusr/lib/libc.a

libc (4)

resolvepath
rwlock_destroy
sema_destroy
_setrlimit64
_s_fentl
siginterrupt
s _ioctl
_stat64
_statvfs64
strtows
tmpfile64
towlower
_truncate64
ungetwc
watoll
weceschr
wecscoll
wcescspn
wecslen
wcesnemp
wcespbrk
wcesspn
wcestok
wecstoul
wcswidth
wctrans
wcwidth
wscat
wscmp
wscoll
wscspn
wslen
wsncat
wsncpy
wsprintf
wsscanf
wstod
wstol
wstostr
_xftw64

__Xpg4_putpmsg

shared object
archive library

4-147

libc (4)

4-148

ATTRIBUTES

SEE ALSO

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE

ATTRIBUTE VALUE

Availability
MT-Level

SUNW?csu
Safe

File Formats

pvs(1), intro(2), intro(3), intro(4), attributes(5), interface64(5), standards(5)

SunOS 5.6

modified 29 Apr 1997

File Formats

NAME

SYNOPSIS

DESCRIPTION

INTERFACES

ATTRIBUTES

SEE ALSO

modified 17 Dec 1996

libci — Sun Solstice Enterprise Agent Component Interface Library
cc[flag ...]file ... —lIci =ldmi —Insl —Irwtool [library ..]

The libci library provides Component Interface API functions.

DmiRegisterCi

See attributes(5) for descriptions of the following attributes:

DmiUnRegisterCi

DmiOriginateEvent

ATTRIBUTE TYPE

ATTRIBUTE VALUE

MT-Level

Unsafe

libdmi(4), attributes(5)

SunOS 5.6

libci (4)

4-149

libdevid (4)

NAME

SYNOPSIS

DESCRIPTION

INTERFACES

FILES

ATTRIBUTES

SEE ALSO

4-150

File Formats

libdevid - device id library

cc[flag ...]file ... —ldevid [library ...]
#include <devid.h>

Functions in this library provide unique device ids for identifying a device, independent
of the device’s name or device number.

The shared object libdevid.so.1 provides the public interfaces defined below.
For additional information on shared object interfaces, see intro(4).

SUNW_1.1 (global):

devid_compare
devid_free
devid_get
devid_sizeof

devid_deviceid_to_nmlist
devid_free_nmlist
devid_get_minor_name

/usr/lib/libdevid.so.1
/usr/lib/libdevid.so

The location of the device id library interfaces.
A symlink to /usr/lib/libdevid.so.1.

See attributes(5) for description of the following attributes:

ATTRIBUTE TYPE
MT Level

ATTRIBUTE VALUE
MT-Safe

pvs(1), intro(4), attributes(5)

Sun0S 5.6 modified 10 Feb 1997

File Formats

NAME

SYNOPSIS

DESCRIPTION

INTERFACES

FILES

ATTRIBUTES

SEE ALSO

modified 4 Mar 1997

libdl (4)

libdl - the dynamic linking interface library

cc[flag ...]file ... —Idl [library ...]

Functions in this library provide direct access to the dynamic linking facilities. This
library is implemented as a filter on the runtime linker (see 1d.so0.1(1)).

The shared object libdl.so.1 provides the public interfaces defined below.
For additional information on shared object interfaces, see intro(4).

SISCD_2.3 (SPARC only) - The SPARC Compliance Definition, revision 2.3:

diclose dlerror dlopen disym

SUNW_1.1 (generic) -

dladdr
SUNW _1.2 (generic) - This interface inherits all definitions from SUNW _1.1 and
defines:
dldump
SUNW_1.3 (generic) - This interface inherits all definitions from SUNW _1.2 and
defines:
dlinfo dimopen

SUNW _1.1 (SPARC) - This interface inherits all definitions from SISCD_2.3.

SUNW_1.1 (i386) - This interface contains all SISCD_2.3 definitions.

/usr/lib/libdl.so.1
fetc/lib/libdl.so.1

shared object
shared object (copy)

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE
MT Level

ATTRIBUTE VALUE
Safe

Id.s0.1(1), pvs(1), intro(4), attributes(5)

SunOS 5.6 4-151

libdmi (4) File Formats

NAME libdmi - Sun Solstice Enterprise Agent DMI Library

DESCRIPTION The libdmi library is a Solstice Enterprise Agent DMI generic library. It supports the
DMl service provider, management application, and component instrumentation with
data encoding, RPC communication, and other functionalities. This library is linked with
management application and component instrumentation programs.

SEE ALSO | libci(4), libdmimi(4)

4-152 Sun0S 5.6 modified 17 Dec 1996

File Formats

NAME

SYNOPSIS

DESCRIPTION

INTERFACES

ATTRIBUTES

SEE ALSO

modified 17 Dec 1996

libdmimi (4)

libdmimi — Sun Solstice Enterprise Agent Management Interface Library
cc[flag ...]file ... =ldmimi —ldmi —Insl —lrwtool [library ..]
The libdmimi library provides Management Interface API functions.

Initialization functions:

DmiGetConfig DmiGetVersion DmiRegister
DmiSetConfig DmiUnregister
Listing functions:
DmiListAttributes DmiListClassNames DmiListComponents
DmiListComponentsByClass DmiListGroups DmiListLanguages
Operation functions:
DmiAddRow DmiDeleteRow DmiGetAttributes
DmiGetMultiple DmiSetAttributes DmiSetMultiple
Data administration functions:
DmiAddComponent DmiAddGroup DmiAddLanguage
DmiDeleteComponent DmiDeleteGroup DmiDeleteLanguage

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE
MT-Level Unsafe

libdmi(4), attributes(5)

SunOS 5.6 4-153

libelf (4)

NAME

SYNOPSIS

DESCRIPTION

INTERFACES

FILES

ATTRIBUTES

SEE ALSO

4-154

libelf — ELF access library

cc[flag ...]file ..
#include <libelf.h>

. —lelf [library ...]

File Formats

Functions in this library let a program manipulate ELF (Executable and Linking Format)
object files, archive files, and archive members. The header provides type and function
declarations for all library services.

The shared object libelf.so.1 provides the public interfaces defined below.

For additional information on shared object interfaces, see intro(4).

SUNW_1.1 (generic):

elf32_fsize
elf32_getshdr
elf32_xlatetof
elf_cntl
elf_errno
elf_flagehdr
elf_flagscn
elf_getarsym
elf_getident
elf_kind
elf_newdata
elf_nextscn
elf_rawfile
elf_version

fusr/lib/libelf.so.1
fusr/lib/libelf.a

elf32_getehdr
elf32_newehdr
elf32_xlatetom
elf_end

elf_fill
elf_flagelf
elf_flagshdr
elf_getbase
elf_getscn
elf_memory
elf_newscn
elf_rand
elf_strptr

nlist

shared object
archive library

elf32_getphdr
elf32_newphdr
elf_begin
elf_errmsg
elf_flagdata
elf_flagphdr
elf_getarhdr
elf_getdata
elf_hash
elf_ndxscn
elf_next
elf_rawdata
elf_update

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE

ATTRIBUTE VALUE

MT-Level

Safe

pvs(1), elf(3E), intro(4), attributes(5)

SunOS 5.6

modified 31 Dec 1996

File Formats

NAME

SYNOPSIS

DESCRIPTION

INTERFACES

FILES

ATTRIBUTES

fusr/lib/libintl.so.1TT

SEE ALSO

modified 31 Dec 1996

libintl (4)

libintl - internationalization library

cc[flag ...]file ... —lintl [library ...]

#include <libintl.h>
#include <locale.h> /0Oneeded for dcgettext() only [/

Historically, functions in this library provided wide character translations. This func-
tionality now resides in libc(4).

This library is maintained to provide backward compatibility for both runtime and com-
pilation environments. The shared object version is implemented as a filter on
libintl.so.1, and the archive version is implemented as a null archive. New application
development need not reference either version of libintl.

The shared object libintl.so.1 provides the public interfaces defined below.
For additional information on shared object interfaces, see intro(4).

SUNW _1.1 (generic):

bindtextdomain
gettext

dcgettext dgettext

textdomain

a filter on libc.so.1
a link to /usr/lib/null.a

{usr/lib/libintl.so.1
fusr/lib/libintl.a

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE
Availability
MT-Level

ATTRIBUTE VALUE

SUNWCcsu
Safe with exceptions

pvs(1), gettext(3C), intro(4), libc(4), attributes(5)

SunOS 5.6 4-155

libkrb (4)

NAME

SYNOPSIS

DESCRIPTION

INTERFACES

FILES

ATTRIBUTES

SEE ALSO

4-156

File Formats

libkrb — Kerberos library

cc[flag ...]file ... —lkrb [library ...]

#include <kerberos/krb.h>
#include <netinet/in.h>

Functions in this library provide Kerberos utility routines.
The shared object libkrb.so.1 provides the public interfaces defined below.
For additional information on shared object interfaces, see intro(4).

SUNW_1.1 (generic):

ErrorMsg LineNbr authkerb_create
authkerb_getucred authkerb_seccreate create_auth_reply
error_table_name _et _list kerb_error
kerb_get_session_cred kerb_get session_key klog

_kmsgout krbONE krb_err_txt

krb_get_admbhst
krb_get_krbhst

krb_get _cred
krb_get_Irealm

krb_get_default_realm
krb_get_phost

krb_kntoln krb_mk_err krb_mk_req
krb_mk_safe krb_net_read krb_net_write
krb_rd_err krb_rd_req krb_rd_safe
krb_realmofhost krb_recvauth krb_sendauth
krb_set_key krb_set_tkt_string log

pkt_cipher _svcauth_kerb svc_kerb_reg
tkt_string xdr_authkerb_cred xdr_authkerb_verf

{usr/lib/libkrb.so.1
{usr/lib/libkrb.a

shared object
archive library

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE
MT-Level

ATTRIBUTE VALUE
Unsafe

pvs(1), kerberos(3N), intro(4), attributes(5)

Sun0S 5.6 modified 31 Dec 1996

File Formats

NAME

SYNOPSIS

DESCRIPTION

INTERFACES

FILES

ATTRIBUTES

SEE ALSO

modified 31 Dec 1996

libkstat (4)

libkstat — kernel statistics library

cc[flag ...]file ... —lkstat [library ...]
#include <kstat.h>

Functions in this library provide a general-purpose mechanism for providing kernel
statistics to users.

The shared object libkstat.so.1 provides the public interfaces defined below.
For additional information on shared object interfaces, see intro(4).

SUNW_1.1 (generic):

kstat_chain_update
kstat_lookup
kstat_write

kstat_close
kstat_open

kstat_data_lookup
kstat_read

/usr/lib/libkstat.so.1 shared object

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE
MT-Level

ATTRIBUTE VALUE
Unsafe

pvs(1), kstat(3K), intro(4), attributes(5)

SunOS 5.6 4-157

libkvm (4)

NAME

SYNOPSIS

DESCRIPTION

INTERFACES

FILES
ATTRIBUTES

/usr/lib/libkvm.so.1

SEE ALSO

4-158

File Formats

libkvm — Kernel Virtual Memory access library

cc[flag ...]file ... —=Ilkvm [library ...]
#include <kvm.h>

Functions in this library provide application access to kernel symbols, addresses and
values. The individual routines are documented in Section 3K of the reference manuals.

All of the libkvm routines are UNCOMMITTED. The UNCOMMITTED classification is
due to the fact that there is almost nothing which can be put as a symbol in a namelist
which has release-to-release stability. The syntax of these routines is historically stable
release-to-release, but being UNCOMMITTED, the door is always open for change.

The shared object libkvm.so.1 provides the public interfaces defined below.
For additional information on shared object interfaces, see intro(4).

SUNW_1.1 (generic):

kvm_close kvm_getcmd kvm_getproc
kvm_getu kvm_kread kvm_kwrite
kvm_nextproc kvm_nlist kvm_open
kvm_read kvm_setproc kvm_uread
kvm_uwrite kvm_write

/usr/lib/libkvm.so.1 shared object

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE

Availability
MT-Level

ATTRIBUTE VALUE

SUNWkvm
Unsafe

pvs(1), intro(4), attributes(5)

Sun0S 5.6 modified 31 Dec 1996

File Formats

NAME

SYNOPSIS

DESCRIPTION

INTERFACES

FILES

ATTRIBUTES

SEE ALSO

modified 31 Dec 1996

libmapmalloc (4)

libmapmalloc - an alternative memory allocator library

cc[flag ...]file ... -Imapmalloc [library ...]
#include <stdlib.h>

Functions in this library provide a collection of malloc routines that use mmap(2) instead
of sbrk(2) for acquiring heap space.

The shared object libmapmalloc.so.1 provides the public interfaces defined below.
For additional information on shared object interfaces, see intro(4).

SUNW_1.1 (generic):

calloc cfree free
mallinfo malloc mallopt
memalign realloc valloc

/usr/lib/libmapmalloc.so.1
/usr/lib/libmapmalloc.a

shared object
archive library.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE
MT-Level

ATTRIBUTE VALUE
Safe

pvs(1), mmap(2), sbrk(2), malloc(3C), malloc(3X), mapmalloc(3X), intro(4), attributes(5)

SunOS 5.6 4-159

libmp (4)

NAME

SYNOPSIS

DESCRIPTION

INTERFACES

FILES

ATTRIBUTES

SEE ALSO

4-160

File Formats

libmp — multiple precision library

cc[flag ...]file ... =Imp[library ...]
#include <mp.h>

Functions in this library provide various multiple precision routines.

The shared object libmp.so.2 provides the public interfaces defined below. See INTER-
FACES.

The shared object libmp.so.1 is available for backwards compatibility purposes and pro-
vides the older versions of these interfaces without the mp_ prepended to them.

Care should be taken in using the static version of this library libmp.a because it contains
both the current and old interfaces.

For additional information on shared object interfaces, see intro(4).

SUNW_1.1 (generic):

mp_gcd mp_itom mp_madd
mp_mcmp mp_mdiv mp_mfree
mp_min mp_mout mp_msqgrt
mp_msub mp_mtox mp_mult
mp_pow mp_rpow mp_sdiv
mp_xtom

/usr/lib/libmp.so.1
/usr/lib/libmp.so.2
/usr/lib/libmp.so

shared object file available for backwards compatibility purposes

shared object file
archive library

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE

ATTRIBUTE VALUE

MT-Level

Unsafe

pvs(1), exp(3M), mp(3M), intro(4), attributes(5)

SunOS 5.6

modified 31 Dec 1996

File Formats

NAME

SYNOPSIS

DESCRIPTION

INTERFACES

FILES

ATTRIBUTES

SEE ALSO

modified 31 Dec 1996

libnisdb (4)

libnisdb — NIS+ Database access library

cc[flag ...]file ... —Inisdb —Insl [library ...]

#include <rpcsvc/nis.h>
#include <rpcsvc/nis_db.h>

Functions in this library describe the interface between the NIS+ server and the underly-
ing database.

The shared object libnisdb.so.2 provides the public interfaces defined below.
For additional information on shared object interfaces, see intro(4).

SUNW_2.1 (generic):

db_create_table db_destroy_table db_first_entry

db_initialize db_list_entries db_massage_dict
db_next_entry db_remove_entry db_reset_next_entry
db_standby db_table_exists db_unload_table

/usr/lib/libnisdb.so.2
lusr/lib/libnisdb.a

shared object
archive library

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE
MT-Level

ATTRIBUTE VALUE
Unsafe

pvs(1), nis_db(3N), intro(4), attributes(5)

SunOS 5.6 4-161

libnsl (4)

NAME

SYNOPSIS

DESCRIPTION

INTERFACES

4-162

File Formats

libnsl - the network services library

cc[flag ...]file ... —=Insl[library ...]

Functions in this library provide routines that provide a transport-level interface to net-
working services for applications, facilities for machine-independent data representation,
a remote procedure call mechanism, and other networking services useful for application
programs.

The shared object libnsl.so.1 provides the public interfaces defined below.
For additional information on shared object interfaces, see intro(4).
Many features in this library are implemented upon dynamic linking.

SYSVABI_1.3(generic) -

authdes_getucred
authnone_create

The System V Application Binary Interface, Third Edition:

authdes_seccreate
authsys_create

authsys_create_default clnt_create
clnt_dg_create clnt_pcreateerror
clnt_perrno clnt_perror

clnt_raw_create
clnt_sperrno
cInt_tli_create
cIlnt_vc_create

cInt_spcreateerror
clnt_sperror
cInt_tp_create
endnetconfig

endnetpath freenetconfigent
getnetconfig getnetconfigent
getnetname getnetpath
getpublickey getsecretkey
host2netname key_decryptsession
key_encryptsession key gendes
key_setsecret nc_perror

_nderror netdir_free
netdir_getbyaddr netdir_getbyname
netdir_options netname2host

netname2user rpcb_getaddr
rpcb_getmaps rpcb_gettime
rpcb_rmtcall rpc_broadcast
rpcb_set rpcb_unset
rpc_call rpc_createerr
rpc_reg setnetconfig
setnetpath svc_create

svc_dg_create
svcerr_decode
svcerr_noprog
svcerr_systemerr

svcerr_auth
svcerr_noproc
svcerr_progvers
svcerr_weakauth

Sun0S 5.6 modified 14 Feb 1997

File Formats

modified 14 Feb 1997

svc_fd_create
svc_getreqset
svc_reg
svc_sendreply
svc_tp_create
SVC_vc_create
taddr2uaddr
t_bind

t_connect

t_error

t_getinfo

t listen

t_open

t_rcv

t rcvdis

t rcvudata

t snd

t sndrel

t_sync
uaddr2taddr
xdr_accepted_reply
xdr_authsys_parms
xdr_bytes
xdr_callmsg
xdr_double
xdr_float

xdr_int
xdrmem_create
xdr_opaque_auth
xdrrec_create
xdrrec_skiprecord
xdr_rejected_reply
xdr_short
xdr_string
xdr_u_long
xdr_u_short
xdr_void
Xprt_register

SISCD_2.3 (SPARC only) -

gethostbyaddr
inet_addr
inet_ntoa
rpc_broadcast_exp

svc_fds
SVC_raw_create
svC_run
svc_tli_create
svc_unreg
t_accept

t alloc

t close

t_errno

t free
t_getstate
t_look
t_optmgmt
t_rcvconnect
t_revrel
t_rcvuderr
t_snddis

t sndudata
t_unbind
user2netname
xdr_array
xdr_bool
xdr_callhdr
xdr_char
xdr_enum
xdr_free
xdr_long
xdr_opaque
xdr_pointer
xdrrec_eof
xdr_reference
xdr_replymsg
xdrstdio_create
xdr_u_char
xdr_union
xdr_vector
xdr_wrapstring
Xprt_unregister

libnsl (4)

The SPARC Compliance Definition, revision 2.3. This

interface inherits all definitions from SYSVABI_1.3, and

defines:

SunOS 5.6

gethostbyname
inet_netof
_null_auth
svc_fdset

4-163

libnsl (4)

4-164

SUNW _1.1 (generic):

authdes_create
auth_destroy
cIlnt_broadcast
clnt_control
clnt_create_vers
cint_freeres
clntraw_create
cIlnt_tp_create_timed
clntudp_create
dbminit
des_setparity
doconfig
endrpcent
firstkey
gethostbyname _r
gethostent_r
getrpcbyname
getrpcbynumber
getrpcent
getrpcport
inet_ntoa r
maxbno
netdir_perror
nextkey
nis_add_entry
nis_cache_add_entry 1
nis_cache_refresh_entry 1
nis_checkpoint
nis_creategroup
nis_destroygroup
nis_dir_cmp
nis_dump
nis_finddirectory
nis_first_entry
nis_free_request
nis_freeservlist
nis_getnames
nis_getservlist
nis_insert_item
nis_in_table
nis_leaf of
nis_lerror
nis_local_directory
nis_local_host

SunOS 5.6

authdes_lock
callrpc

cint_call
clnt_create_timed
clnt_destroy
clnt_geterr
clnttcp_create
clntudp_bufcreate
dbmclose

delete

dial

endhostent

fetch
gethostbyaddr_r
gethostent
get_myaddress
getrpcbyname_r
getrpcbynumber_r
getrpcent_r
h_errno

key secretkey is_set
nc_sperror
netdir_sperror
nis_add
nis_addmember
nis_cache_read_coldstart_1
nis_cache_remove _entry 1
nis_clone_object
nis_data
nis_destroy_object
nis_domain_of
nis_dumplog
nis_find_item
nis_freenames
nis_freeresult
nis_freetags
nis_get_request
nis_get_static_storage
nis_insert_name
nis_ismember
nis_leaf of r
nis_list
nis_local_group
nis_local_principal

File Formats

modified 14 Feb 1997

File Formats libnsl (4)

nis_lookup nis_make_error
nis_make_rpchandle nis_mkdir
nis_modify nis_modify_entry
nis_name_of nis_next_entry
nis_perror nis_ping
nis_print_directory nis_print_entry
nis_print_group nis_print_group_entry
nis_print_link nis_print_object
nis_print_rights nis_print_table
nis_read_obj nis_remove
nis_remove_entry nis_remove_item
nis_removemember nis_remove_name
nis_rmdir nis_servstate
nis_sperrno nis_sperror
nis_sperror_r nis_stats
nis_verifygroup nis_write_obj
pmap_getmaps pmap_getport
pmap_rmtcall pmap_set
pmap_unset registerrpc
rpc_control sethostent
setrpcent store
svc_auth_reg svc_control
svc_destroy svc_dg_enablecache
svc_done svC_exit
svcfd_create svc_freeargs
svc_getargs svc_getreq
svc_getreq_common svc_getreq_poll
svc_getrpccaller svcraw_create
SvC_register svctcp_create
svcudp_bufcreate svcudp_create
svC_unregister __t errno
t_getname t_nerr

t_strerror undial
xdr_destroy xdr_getpos
xdr_hyper xdr_inline
xdr_longlong_t xdr_quadruple
xdrrec_endofrecord xdrrec_readbytes
xdr_setpos xdr_sizeof
xdr_u_hyper xdr_u_int
xdr_u_longlong_t yp_all

yp_bind yperr_string
yp_first yp_get_default_domain
yp_master yp_match
yp_next yp_order
ypprot_err yp_unbind

modified 14 Feb 1997 SunOS 5.6 4-165

libnsl (4)

FILES

ATTRIBUTES

fusr/lib/libnsl.so.1

SEE ALSO

4-166

yp_update

SUNW._1.1 (SPARC)

SUNW._1.1 (i386) -

/usr/lib/libnsl.so.1
fusr/lib/libnsl.a

File Formats

- This interface inherits all definitions from the generic
SUNW_1.1 and the SISCD_2.3.

This interface contains all definitions from SISCD_2.3, and
inherits all definitions from the generic SUNW _1.1 and the
SYSVABI_1.3.

shared object
archive library

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE

ATTRIBUTE VALUE

Availability

MT-Level

SUNWCcsu
Safe with exceptions

pvs(1), intro(2), intro(3), intro(4), attributes(5)

Sun0S 5.6 modified 14 Feb 1997

File Formats

NAME

SYNOPSIS

DESCRIPTION

INTERFACES

FILES

ATTRIBUTES

SEE ALSO

NOTES

modified 26 Nov 1996

libpam (4)

libpam - interface library for PAM (Pluggable Authentication Module)

cc[flag ...]file ... —lpam [library ...]
#include <security/pam_appl.h>

The shared object libpam.so.1 provides the public interfaces defined below.
For additional information on shared object interfaces, see intro(4).

SUNW _1.1 (generic):

pam_acct_mgm pam_authenticate
pam_chauthtok pam_close_session
pam_end pam_get_data
pam_get_item pam_get_user
pam_open_session pam_setcred
pam_set_data pam_set_item
pam_start pam_strerror

SUNW_1.2 (generic):

pam_getenv pam_getenvlist
pam_putenv
{usr/lib/libpam.so.1 File that implements the PAM framework
library.
/etc/pam.conf Configuration file.
/usr/lib/security/pam_dial_auth.so.1 Authentication management PAM module for
dialups.

/usr/lib/security/pam_rhosts_auth.so.1 Authentication management PAM modules that
use ruserok().

/usr/lib/security/pam_sample.so.1 Sample PAM module.

/usr/lib/security/pam_unix.so.1 Authentication, account, session and password
management PAM module.

See attributes(5) for description of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE
MT Level MT-Safe with exceptions

pvs(1), pam(3), intro(4), pam.conf(4), attributes(5), pam_dial_auth(5),
pam_rhosts_auth(5), pam_sample(5), pam_unix(5)

The interfaces in libpam() are MT-Safe only if each thread within the multi-threaded
application uses its own PAM handle.

SunOS 5.6 4-167

libposix4 (4)

NAME

SYNOPSIS

DESCRIPTION

INTERFACES

FILES

ATTRIBUTES

SEE ALSO

4-168

libposix4 — POSIX.1b Realtime Extensions library

cc[flag ...]file ..

. —lposix4 [library ...]

File Formats

See the man pages for the individual interfaces in section 3R for information on required

headers.

Functions in this library provide most of the interfaces specified by the POSIX.1b Real-
time Extension. See standards(5). Specifically, this includes the interfaces defined under
the Asynchronous 1/0, Message Passing, Process Scheduling, Realtime Signals Exten-
sion, Semaphores, Shared Memory Objects, Synchronized I/0, and Timers options. The
interfaces defined under the Memory Mapped Files, Process Memory Locking, and

Range Memory Locking options are provided in libc(4).

The shared object libposix4.s0.1 provides the public interfaces defined below.
For additional information on shared object interfaces, see intro(4).

SUNW_1.1 (generic):

aio_cancel

aio_read

aio_write
clock_settime
mq_close

mq_open
mq_setattr
sched_getparam
sched_getscheduler
sched_setscheduler
sem_destroy
sem_open
sem_unlink
shm_unlink
sigwaitinfo
timer_getoverrun

lusr/lib/libposix4.s0.1

aio_error

aio_return
clock_getres
fdatasync

mq_getattr
mq_receive
mqg_unlink
sched_get_priority_max
sched_rr_get_interval
sched_yield
sem_getvalue
sem_post

sem_wait

sigqueue
timer_create
timer_gettime

shared object

aio_fsync
aio_suspend
clock_gettime
lio_listio
mq_notify
mqg_send
nanosleep
sched_get_priority_min
sched_setparam
sem_close
sem_init
sem_trywait
shm_open
sigtimedwait
timer_delete
timer_settime

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE

ATTRIBUTE VALUE

MT-Level

Safe

pvs(1), intro(4), libc(4), attributes(5), standards(5)

SunOS 5.6

modified 21 Mar 1997

File Formats

NAME

SYNOPSIS

DESCRIPTION

INTERFACES

modified 21 Mar 1997

libpthread — POSIX threads library

cc[flag ...]file ..

libpthread (4)

. —Ipthread [library ...]

Functions in this library provide the POSIX threads. See standards(5). This library is
implemented as a filter on the threads library (see libthread(4)).

The shared object libpthread.so.1 provides the public interfaces defined below.
For additional information on shared object interfaces, see intro(4).

SUNW _1.1 (generic):

alarm
cond_broadcast
cond_init
cond_timedwait
creat

fork

fsync

msync
mutex_init
mutex_lock
mutex_unlock
pause

pthread_attr_destroy
pthread_attr_getinheritsched
pthread_attr_getschedpolicy
pthread_attr_getstackaddr
pthread_attr_init
pthread_attr_setinheritsched
pthread_attr_setschedpolicy
pthread_attr_setstackaddr
pthread_cancel
__pthread_cleanup_push
pthread_condattr_getpshared
pthread_condattr_setpshared
pthread_cond_destroy
pthread_cond_signal
pthread_cond_wait
pthread_detach

pthread_exit
pthread_getspecific
pthread_key create
pthread_kill
pthread_mutexattr_getprioceiling
pthread_mutexattr_getpshared

SunOS 5.6

close

cond_destroy

cond_signal

cond_wait

fentl

forkl

_getfp

mutex_destroy
_mutex_lock

mutex_trylock

open

pthread_atfork
pthread_attr_getdetachstate
pthread_attr_getschedparam
pthread_attr_getscope
pthread_attr_getstacksize
pthread_attr_setdetachstate
pthread_attr_setschedparam
pthread_attr_setscope
pthread_attr_setstacksize
__pthread_cleanup_pop
pthread_condattr_destroy
pthread_condattr_init
pthread_cond_broadcast
pthread_cond_init
pthread_cond_timedwait
pthread_create
pthread_equal
pthread_getschedparam
pthread_join

pthread_key delete
pthread_mutexattr_destroy
pthread_mutexattr_getprotocol
pthread_mutexattr_init

4-169

libpthread (4)

FILES
ATTRIBUTES

/usr/lib/libpthread.so.1

SEE ALSO

4-170

pthread_mutexattr_setprioceiling
pthread_mutexattr_setpshared
pthread_mutex_getprioceiling
pthread_mutex_lock
pthread_mutex_trylock
pthread_once
pthread_setcancelstate
pthread_setschedparam
pthread_sigmask

read

rw_rdlock
rw_trywrlock
rw_wrlock

sema_init

sema_trywait

setitimer

siglongjmp

sigsetjmp

sigwait

tcdrain

thr_create
thr_getconcurrency
thr_getspecific
thr_keycreate

thr_main

thr_self

thr_setprio
thr_sigsetmask
thr_suspend

wait

write

/usr/lib/libpthread.so.1

File Formats

pthread_mutexattr_setprotocol
pthread_mutex_destroy
pthread_mutex_init
pthread_mutex_setprioceiling
pthread_mutex_unlock
pthread_self
pthread_setcanceltype
pthread_setspecific
pthread_testcancel
rwlock_init
rw_tryrdlock
rw_unlock
sema_destroy
sema_post

sema_wait

sigaction

sigprocmask
sigsuspend

sleep

thr_continue

thr_exit

thr_getprio

thr_join

thr_kill

thr_min_stack
thr_setconcurrency
thr_setspecific
thr_stksegment
thr_yield

waitpid

shared object

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE

ATTRIBUTE VALUE

Availability
MT-Level

SUNW?csu
Safe

pvs(1), libpthread(3T), libthread(3T), libthread_db(3T), threads(3T), intro(4),

libthread(4), libthread_db(4), attributes(5), standards(5)

SunOS 5.6

modified 21 Mar 1997

File Formats

NAME

SYNOPSIS

DESCRIPTION

INTERFACES

FILES

ATTRIBUTES

SEE ALSO

modified 31 Dec 1996

librac(4)

librac — remote asynchronous calls library

cc[flag ...]file ... —lIrac —=Insl [library ...]

#include <rpc/rpc.h>
#include <rpc/rac.h>

Functions in this library provide a remote asynchronous call interface to the RPC library.
The shared object librac.so.1 provides the public interfaces defined below.
For additional information on shared object interfaces, see intro(4).

SUNW_1.1 (generic):

clnt_create
cint_tli_create

clnt_create_vers
clnt_tp_create

clnt_dg_create
clnt_vc_create

rac_drop rac_poll rac_recv

rac_send rac_senderr rpcb_getaddr
rpcb_getmaps rpcb_gettime rpcb_rmtcall
rpcb_set rpcb_taddr2uaddr rpcb_uaddr2taddr
rpcb_unset xdrrec_create xdrrec_endofrecord
xdrrec_eof xdrrec_readbytes xdrrec_skiprecord

fusr/lib/librac.so.1
lusr/lib/librac.a

shared object
archive library

See attributes(5) for descriptions of the following attributes:

ATTRIBUTETYPE | ATTRIBUTE VALUE

MT-Level Unsafe

pvs(l), rpc_rac(3N), intro(4), attributes(5)

SunOS 5.6 4-171

libresolv (4)

NAME

SYNOPSIS

DESCRIPTION

Interfaces

4-172

File Formats

libresolv - resolver library

cc[flag ...]file ... —Iresolv —Isocket —Insl [library ...]

#include <sys/types.h>
#include <netinet/in.h>
#include <arpa/nameser.h>
#include <resolv.h>

Functions in this library provide for creating, sending, and interpreting packets to the
Internet domain name servers.

By convention, libresolv.so is a link to one of the shared object files for the resolver, typi-
cally the most recent one.

For additional information on shared object interfaces, see intro(4).

The resolver(3N) manual page, and the system include files, describe the behavior of the
functions in libresolv.so.2.

The shared object libresolv.so.2 provides the public interfaces defined below.
SUNW_2.1 (generic):

_getlong _getshort _res
__dn_skipname __fp_query __hostalias
__p_cdname __p_class __p_query
_p_rr __p_time __p_type
__putlong dn_comp dn_expand
h_errno res_init res_mkquery
res_send res_search res_query

res_querydomain

Programs are expected to use the aliases defined in <resolv.h> rather than calling the *__
prefixed procedures, as indicated in the following table. Use of the routines in the first
column is discouraged.

FUNCTION REFERENCED ALIAS TO USE

__dn_skipname dn_skipname
__fp_query fp_query
__putlong putlong
__p_cdname p_cdname
__p_class p_class
__p_query p_query
_p.rr p_rr
__p_time p_time
__b_type _type

Sun0S 5.6 modified 31 Dec 1996

File Formats

FILES

ATTRIBUTES

SEE ALSO

modified 31 Dec 1996

libresolv (4)

libresolv.so.1 is an earlier shared library file that provides the public interfaces defined
below. This file is provided for the purpose of backwards compatibility. There is no plan
to fix any of its defects.

The original and complete reference documentation for these routines can only be found

in earlier releases.
SUNW_1.1 (generic):
dn_comp
fp_query
h_errno
p_class
p_time
_res
res_query
res_send

lusr/lib/libresolv.so
fusr/lib/libresolv.so.1
fusr/lib/libresolv.so.2

dn_expand
_getlong
hostalias
p_query

p_type

res_init
res_querydomain
strcasecmp

dn_skipname
_getshort
p_cdname
p_rr

putlong
res_mkquery
res_search
strncasecmp

symbolic link to most recent shared object file
shared object file for backward compatibility

shared object file

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE

ATTRIBUTE VALUE

MT-Level

Unsafe

pvs(1), resolver(3N), intro(4), attributes(5)

SunOS 5.6

4-173

librpcsoc (4)

NAME

SYNOPSIS

DESCRIPTION

INTERFACES

FILES

ATTRIBUTES

SEE ALSO

4-174

File Formats

librpcsoc — obsolete RPC library

cc[flag ...]file ... —L/usr/ucblib -lIrpcsoc [library ...]
#include <rpc/rpc.h>

Functions in this library implement socket based RPC calls (using socket calls, not TLI).
Applications that require this library should link it before libnsl, which implements the
same calls over TLI.

This library is provided for compatibility only; new applications should not link in this
library.

The shared object librpcsoc.so.1 provides the public interfaces defined below.
For additional information on shared object interfaces, see intro(4).

SUNW_1.1 (generic):

cInttcp_create
get_myaddress
svcfd_create
svcudp_create

cintudp_bufcreate
getrpcport
svctcp_create
svcudp_enablecache

cIntudp_create
rtime
svcudp_bufcreate

/usr/ucblib/librpcsoc.so.1 shared object

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE
MT-Level

ATTRIBUTE VALUE
Unsafe

pvs(1), rpc_soc(3N), intro(4), libnsl(4), attributes(5)

Sun0S 5.6 modified 31 Dec 1996

File Formats

NAME

SYNOPSIS

DESCRIPTION

INTERFACES

FILES

ATTRIBUTES

SEE ALSO

modified 31 Dec 1996

librpcsve (4)

librpcsve — miscellaneous RPC services library

cc[flag ...]file ... —Irpcsve [library ...]

#include <rpc/rpc.h>
#include <rpcsvc/rstat.n>

Functions in this library provide miscellaneous RPC services. See the man pages in Sec-
tion 3N for the individual functions.

The shared object librpcsvc.so.1 provides the public interfaces defined below.
For additional information on shared object interfaces, see intro(4).

SUNW_1.1 (generic):

havedisk
rusers
xdr_statsvar

rstat
xdr_statstime

rnusers
rwall
xdr_utmpidlearr

lusr/lib/librpcsve.so.1
/usr/lib/librpcsvc.a

shared object
archive library

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE
MT-Level

ATTRIBUTE VALUE
Safe

pvs(l), rstat(3N), intro(4), attributes(5)

SunOS 5.6 4-175

libsec(4)

NAME

SYNOPSIS

DESCRIPTION

INTERFACES

FILES

ATTRIBUTES

fusr/lib/libsec.so0.1

SEE ALSO

4-176

File Formats

libsec — File Access Control List library

cc[flag ...]file ... —Isec[library ...]
#include <sys/acl.h>

Functions in this library provide comparison and manipulation of File Access Control
Lists.

The shared object libsec.so.1 provides the public interfaces defined below.
For additional information on shared object interfaces, see intro(4).

SUNW_1.1 (generic):

aclcheck
aclsort

aclfromtext
acltotext

aclfrommode
acltomode

/usr/lib/libsec.so.1
lusr/lib/libsec.a

shared object
archive library

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE

Availability
MT-Level

ATTRIBUTE VALUE

SUNWcsu
Unsafe

pvs(1), intro(4), attributes(5)

Sun0S 5.6 modified 31 Dec 1996

File Formats

NAME

SYNOPSIS

DESCRIPTION

INTERFACES

FILES

modified 14 Feb 1997

libsocket (4)

libsocket — the sockets library

cc[flag ...]file ... —Isocket [library ...]

Functions in this library provide routines that provide the socket internetworking inter-

face, primarily used with the TCP/IP protocol suite.

The shared object libsocket.so.1 provides the public interfaces defined below.
For additional information on shared object interfaces, see intro(4).

SISCD_2.3 (SPARC only) -

accept
getpeername
getprotoent
getsockname
inet_makeaddr
recv

send
setsockopt

SUNW_1.1 (generic):

bindresvport
endservent
ether_line
fentl
getnetbyname
getnetent_r
getprotoent_r
getservent
htons

ntohs
rresvport
setprotoent

SUNW_1.1 (SPARC) -

SUNW._1.1 (i386) -

{usr/lib/libsocket.so.1
lusr/lib/libsocket.a

bind
getprotobyname
getservbyname
getsockopt
inet_network
recvfrom
sendmsg
shutdown

endnetent
ether_aton
ether_ntoa
getnetbyaddr
getnetbyname_r
getprotobyname_r
getservbyname_r
getservent_r

ioctl

remd

ruserok
setservent

The SPARC Compliance Definition, revision 2.3:

connect
getprotobynumber
getservbyport
inet_Inaof

listen

recvmsg

sendto

socket

endprotoent
ether_hostton
ether_ntohost
getnetbyaddr _r
getnetent
getprotobynumber _r
getservbyport_r
htonl

ntohl

rexec

setnetent
socketpair

This interface inherits all definitions from the generic

SUNW_1.1 and the SISCD_2.3.

This interface contains all definitions from SISCD_2.3, and
inherits all definitions from the generic SUNW _1.1.

shared object
archive library

SunOS 5.6

4-177

libsocket (4)

ATTRIBUTES

fusr/lib/libsocket.so.1

4-178

SEE ALSO

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE

ATTRIBUTE VALUE

Availability
MT-Level

SUNWcsu
Safe

pvs(1), intro(2), intro(3), intro(4), attributes(5)

SunOS 5.6

File Formats

modified 14 Feb 1997

File Formats

NAME

SYNOPSIS

DESCRIPTION

INTERFACES

ATTRIBUTES

SEE ALSO

modified 17 Dec 1996

libssagent — Sun Solstice Enterprise Agent Library

cc[flag ...]file ... —Issagent [library ..]

libssagent(4)

The libssagent is a high level API library. The libssagent is dependent on libssasnmp.
This library contains the starting point of the request-driven engine, that always runs in
the background within the subagent. It receives SNMP requests, evaluates variables, calls

the appropriate functions, and sends the correct responses.

Object Identifier(OID) helper functions:

SSAQiIdCmp
SSAOidNew
SSAQidString

SSAOQidCpy
SSAQidFree
SSAQIidStrToOid

String helper functions:

SSAStringCpy
SSAStringZero

SSAStringlnit

SSAQidDup
SSAOidInit
SSAQidZero

SSAStringToChar

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE

ATTRIBUTE VALUE

MT-Level

Unsafe

libssasnmp(4), attributes(5)

SunOS 5.6

4-179

libssasnmp (4)

NAME
SYNOPSIS

DESCRIPTION

INTERFACES

ATTRIBUTES

SEE ALSO

4-180

File Formats

libssasnmp — Sun Solstice Enterprise SNMP Library
cc[flag ...]file ... —Issasnmp [library ..]

The libssasnmp library provides low-level SNMP API functions.
e ASN.1 serialization (encoding/decoding) module

e SNMP PDU development routines

e SNIMP session module

Low level SNMP based API functions

Error-handling module

e Trace (debugging) module

SSAAgentisAlive SSAGetTrapPort SSARegSubagent
SSARegSubtree SSARegSubtable SSASendTrap
SSASubagentOpen

See attributes(5) for descriptions of the following attributes:

ATTRIBUTETYPE | ATTRIBUTE VALUE

MT-Level Unsafe

libssagent(4), attributes(5)

Sun0S 5.6 modified 17 Dec 1996

File Formats

NAME

SYNOPSIS

DESCRIPTION

INTERFACES

modified 13 Feb 1997

libsys — the system library

cc[flag ...]file ..

. —Isys [library ...]

libsys(4)

Functions in this library provide basic system services. This library is implemented as a
filter on the C library (see libc(4)).

The shared object libsys.so.1 provides the public interfaces defined below.
For additional information on shared object interfaces, see intro(4).

SYSVABI_1.3 (generic) -

_access
acct
_altzone
_catclose
catgets
_chdir
chmod
_chroot
close
_creat
_daylight
dup
_execl
execle
_execv
execve
_exit
fattach
_fchmod
fchown
_fdetach
fork

free
_fstatvfs
fsync
_getcontext
getcwd
_geteuid
getgid
_getgrnam
getgroups
_getmsg
getpgid
_getpid

The System V Application Binary Interface, Third Edition:

access
_alarm
atexit
catclose
_catopen
chdir
_chown
chroot
_closedir
creat
daylight
_environ
execl
_execlp
execv
_execvp
exit
_fehdir
fchmod
_fentl
fdetach
_fpathconf
_fstat
fstatvfs
_ftok
getcontext
_getegid
geteuid
_getgrgid
getgrnam
_getlogin
getmsg
_getpgrp
getpid

SunOS 5.6

_acct
alarm
calloc
_catgets
catopen
_chmod
chown
_close
closedir
__Cctype
_dup
environ
_execle
execlp
_execve
execvp
_fattach
fchdir
_fchown
fentl
_fork
fpathconf
fstat
_fsync
ftok
_getcwd
getegid
_getgid
getgrgid
_getgroups
getlogin
_getpgid
getpgrp
_getpmsg

4-181

libsys (4) File Formats

getpmsg _getppid getppid
_getpwnam getpwnam _getpwuid
getpwuid _getrlimit getrlimit
_getsid getsid _gettxt
gettxt _getuid getuid
_grantpt grantpt _initgroups
initgroups _ioctl ioctl
_lisastream isastream _kill

kill _Ichown Ichown
_link link localeconv
_lIseek Iseek _lstat
Istat _makecontext makecontext
malloc _memcntl memcntl
_mkdir mkdir _mknod
mknod _mlock mlock
_mmap mmap _mount
mount _mprotect mprotect
_msgctl msgctl _msgget
msgget _msgrev msgrcv
_msgsnd msgsnd _msync
msync _munlock munlock
_munmap munmap _nice
nice _numeric _open
open _opendir opendir
_pathconf pathconf _pause
pause _pipe pipe
_poll poll _profil
profil _ptrace ptrace
_ptsname ptsname _putmsg
putmsg _putpmsg putpmsg
_read read _readdir
readdir _readlink readlink
_readv readv realloc
remove _rename rename
_rewinddir rewinddir _rmdir
rmdir _seekdir seekdir
_semctl semctl _semget
semget _semop semop
_setcontext setcontext _setgid
setgid _setgroups setgroups
setlocale _setpgid setpgid
_setpgrp setpgrp _setrlimit
setrlimit _setsid setsid
_setuid setuid _shmat
shmat _shmctl shmctl

4-182 SunOS 5.6 modified 13 Feb 1997

File Formats

modified 13 Feb 1997

_shmdt
shmget
_sigaddset
sigaltstack
_sigemptyset
sigfillset
_sigignore
sigismember
signal
_sigpending
sigprocmask
_sigsend
sigsendset
_sigsetjmp
sigsuspend
_statvfs
stime
strftime
swapcontext
_sync
sysconf
telldir
_times
timezone
_tzname
ulimit
_umount
uname
_unlockpt
utime
_waitid
waitpid
_writev

SYSVABI_1.3 (SPARC) -

_Q_add
_Q_div
_Q_fge
_Q flt
_Q _mul
_Q_qtoi
_Q sqgrt
_Q_utoq
__ftou

shmdt
_sigaction
sigaddset
_sigdelset
sigemptyset
_sighold
sigignore
_siglongjmp
_sigpause
sigpending
_sigrelse
sigsend
_sigset
sigsetjmp
_stat
statvfs
strcoll
strxfrm
_symlink
sync
system
_time
times
_ttyname
tzname
_umask
umount
_unlink
unlockpt
_wait
waitid
_write
writev

libsys(4)

_shmget
sigaction
_sigaltstack
sigdelset
_sigfillset
sighold
_sigismember
siglongjmp
sigpause
_sigprocmask
sigrelse
_sigsendset
sigset
_sigsuspend
stat

_stime
strerror
_Swapcontext
symlink
_sysconf
_telldir

time
_timezone
ttyname
_ulimit
umask
_uname
unlink
_utime

wait
_waitpid
write

The SPARC Processor Supplement. This interface contains
all of the generic SYSVABI_1.3, and defines:

_Q_cmp
_Q _dtoq
_Q_fgt
_Q _fne
_Q_neg
_Q_qtos
_Q_stoq

div

__huge_val

SunOS 5.6

_Q_cmpe
_Q_feq
_Q fle
_Q_itoq
_Q_qtod

_Q _qtou
_Q _sub

__dtou
.mul

4-183

libsys (4)

FILES
ATTRIBUTES

/usr/lib/libc.so.1

SEE ALSO

4-184

File Formats
.rem .Stretl .Stret2
.stret4 .stret8 .udiv
.umul .urem
SYSVABI_1.3(i386) - The Intel386 Processor Supplement. This interface contains all
of the generic SYSVABI_1.3, and defines:
__flt_rounds _fp_hw _fpstart
_fxstat __huge_val _Ixstat
_nuname nuname _sbrk
sbrk _xmknod _Xstat

SISCD_2.3 (SPARConly) - The SPARC Compliance Definition, revision 2.3. This
interface inherits all definitions from SYSVABI_1.3.

{usr/lib/libsys.so.1 shared object

See attributes(5) for descriptions of the following attributes:

ATTRIBUTETYPE | ATTRIBUTE VALUE

Availability SUNWCcsu

MT-Level Safe

pvs(1), intro(2), intro(3), intro(4), libc(4), attributes(5)

Sun0S 5.6 modified 13 Feb 1997

File Formats

NAME

SYNOPSIS

DESCRIPTION

INTERFACES

modified 14 Feb 1997

libthread - the threads library

cc[flag ...]file ..

. —Ithread [library .

libthread (4)

1

Functions in this library provide routines that provide threading support.
The shared object libthread.so.1 provides the public interfaces defined below.
For additional information on shared object interfaces, see intro(4).

SISCD_2.3 (SPARC only) -

cond_broadcast
cond_init
cond_timedwait
mutex_destroy
mutex_lock
mutex_unlock
rwlock_init
rw_tryrdlock
rw_unlock
sema_destroy
sema_post
sema_wait
thr_continue
thr_exit
thr_getprio
thr_join
thr_kill
thr_min_stack
thr_setconcurrency
thr_setspecific
thr_stksegment
thr_yield

SUNW _1.1 (generic):

alarm

creat

fork

_getfp

msync

_mutex_lock

pause

pthread_attr_destroy
pthread_attr_getinheritsched
pthread_attr_getschedpolicy

SunOS 5.6

The SPARC Compliance Definition, revision 2.3:

cond_destroy
cond_signal
forkl
mutex_init
mutex_trylock
rwlock_destroy
rw_rdlock
rw_trywrlock
rw_wrlock
sema_init
sema_trywait
sigwait
thr_create
thr_getconcurrency
thr_getspecific
thr_keycreate
thr_main
thr_self
thr_setprio
thr_sigsetmask
thr_suspend

close

fentl

fsync

lwp_self

_mutex_held

open

pthread_atfork
pthread_attr_getdetachstate
pthread_attr_getschedparam
pthread_attr_getscope

4-185

libthread (4)

4-186

pthread_attr_getstackaddr
pthread_attr_init
pthread_attr_setinheritsched
pthread_attr_setschedpolicy
pthread_attr_setstackaddr
pthread_cancel
__pthread_cleanup_push
pthread_condattr_getpshared
pthread_condattr_setpshared
pthread_cond_destroy
pthread_cond_signal
pthread_cond_wait
pthread_detach

pthread_exit
pthread_getspecific
pthread_key create
pthread_Kkill
pthread_mutexattr_getprioceiling
pthread_mutexattr_getpshared
pthread_mutexattr_setprioceiling
pthread_mutexattr_setpshared
pthread_mutex_getprioceiling
pthread_mutex_lock
pthread_mutex_trylock
pthread_once
pthread_setcancelstate
pthread_setschedparam
pthread_sigmask

read

_rw_write_held

setcontext

sigaction

sigprocmask

sleep

wait

write

SunOS 5.6

pthread_attr_getstacksize
pthread_attr_setdetachstate
pthread_attr_setschedparam
pthread_attr_setscope
pthread_attr_setstacksize
__pthread_cleanup_pop
pthread_condattr_destroy
pthread_condattr_init
pthread_cond_broadcast
pthread_cond_init
pthread_cond_timedwait
pthread_create
pthread_equal
pthread_getschedparam
pthread_join

pthread_key_ delete
pthread_mutexattr_destroy
pthread_mutexattr_getprotocol
pthread_mutexattr_init
pthread_mutexattr_setprotocol
pthread_mutex_destroy
pthread_mutex_init
pthread_mutex_setprioceiling
pthread_mutex_unlock
pthread_self
pthread_setcanceltype
pthread_setspecific
pthread_testcancel
_rw_read_held

_sema_held

setitimer

sigpending

sigsuspend

tcdrain

waitpid

File Formats

modified 14 Feb 1997

File Formats

FILES

ATTRIBUTES

fusr/lib/libthread.so.1

SEE ALSO

modified 14 Feb 1997

libthread (4)

SUNW _1.1 (SPARC) - This interface inherits all definitions from the generic
SUNW _1.1 and the SISCD_2.3, and defines:

siglongjmp sigsetjmp
SUNW _1.1 (i386) - This interface contains all definitions from SISCD_2.3, inherits all
definitions from the generic SUNW_1.1, and defines:
siglongjmp sigsetjmp
{usr/lib/libthread.so.1 shared object

See attributes(5) for descriptions of the following attributes:

ATTRIBUTETYPE | ATTRIBUTE VALUE

Availability SUNWCcsu
MT-Level Safe

pvs(1), intro(2), libpthread(3T), libthread(3T), libthread_db(3T), threads(3T), intro(4),
libpthread(4), libthread_db(4), attributes(5)

SunOS 5.6 4-187

libthread_db (4)

NAME

SYNOPSIS

AVAILABILITY
lusr/lib/libthread_db.so.1

MT-LEVEL

DESCRIPTION

INTERFACES

FILES

SEE ALSO

4-188

libthread_db - threads debugging library

cc[flag ...]file ..

#include <thread_db.h>

SUNWcsu

Safe

File Formats

. lusr/lib/libthread_db.so.1 [library ...]
#include <proc_service.h>

Functions is this library are useful for building debuggers for multi-threaded programs.
The shared object libthread_db.so.1 provides the public interfaces defined below.
For additional information on shared object interfaces, see intro(4).

SUNW _1.1 (generic):
td_init
td_ta_get_nthreads
td_ta_map_lwp2thr
td_ta_tsd_iter
td_thr_getgregs
td_thr_setfpregs
td_thr_setsigpending
td_thr_tsd

SUNW_1.2 (generic):

ta_event_addr
td_sync_waiters
td_ta_event_getmsg
td_ta reset stats
td_ta_sync _iter
td_thr_dbsuspend
td_thr_lockowner

lusr/lib/libthread_db.so.1

td_log
td_ta_get_ph
td_ta_new
td_thr_get_info
td_thr_getxregs
td_thr_setgregs
td_thr_setxregs
td_thr_validate

td_sync_get_info
td_ta_clear_event
td_ta_get_stats
td_ta_set _event
td_thr_clear_event$
td_thr_event_enable$
td_thr_set_event

shared object

td_ta_delete
td_ta_map_id2thr
td_ta_thr_iter
td_thr_getfpregs
td_thr_getxregsize
td_thr_setprio
td_thr_sigsetmask

td_sync_setstate$
td_ta_enable_stats
td_ta_map_addr2sync$
td_ta_setconcurrency
td_thr_dbresume
td_thr_event_getmsg
td_thr_sleepinfo$

pvs(1), libpthread(3T), libthread(3T), libthread_db(3T), threads(3T), intro(4), lib-

thread(4)

SunOS 5.6

modified 25 Feb 1997

File Formats

NAME

SYNOPSIS

DESCRIPTION

INTERFACES

FILES

ATTRIBUTES

SEE ALSO

NOTES

modified 4 Mar 1997

libtnfctl (4)

libtnfctl — library of TNF probe control routines for use by processes and the kernel

cc[flag ...]file ..
#include <tnf/tnfctl.h>

. —Itnfctl [library ...]

Functions in this library provide TNF probe control routines for use by processes and the

kernel.

The shared object libtnfctl.so.1 provides the public interfaces defined below.

For additional information on shared object interfaces, see intro(4).

SUNW_1.1 (generic):

tnfctl_buffer_alloc
tnfctl_check_libs
tnfctl_continue
tnfctl_filter_list_add
tnfctl_filter_list_get
tnfctl_indirect_open
tnfctl_kernel_open
tnfctl_probe_apply
tnfctl_probe_connect
tnfctl_probe_disconnect_all
tnfctl_probe_state get
tnfctl_probe_untrace
tnfctl_strerror
tnfctl_trace_state set

/usr/lib/libtnfctl.so.1

tnfctl_buffer_dealloc
tnfctl_close
tnfctl_exec_open
tnfctl_filter_list_delete
tnfctl_filter_state set
tnfctl_internal_open
tnfctl_pid_open
tnfctl_probe_apply_ids
tnfctl_probe_disable
tnfctl_probe_enable
tnfctl_probe_trace
tnfctl_register_funcs
tnfctl_trace_attrs_get

shared object

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE

ATTRIBUTE VALUE

MT Level

MT-Safe with exceptions

pvs(1), libtnfctl(3X), tracing(3X), intro(4), attributes(5)

This API is MT-Safe. Multiple threads may concurrently operate on independent tnfctl
handles, which is the typical behavior expected. libtnfctl does not support multiple

threads operating on the same tnfctl handle. If this is desired, it is the client’s responsi-
bility to implement locking to ensure that two threads that use the same tnfctl handle are
not simultaneously present in a libtnfctl interface.

SunOS 5.6 4-189

libuch (4)

NAME
SYNOPSIS

DESCRIPTION

INTERFACES

FILES

ATTRIBUTES

4-190

libucb - the UCB compatibility library

cc[flag ...]file ..

. —lucb [library ...]

File Formats

Functions in this library provide BSD semantics that were removed from the System V

definition.

The shared object libucb.so.1 provides the public interfaces defined below.
For additional information on shared object interfaces, see intro(4).

SUNW _1.1 (generic):

alphasort
bzero
fprintf
ftime
gethostname
getrusage
index
mctl
printf
readdir
re_exec
setbuffer
setlinebuf
setregid
sigblock
sigpause
sigvec
sprintf
sys_siglist
usignal
vfprintf
wait3

fusr/ucblib/libucb.so.1

fusr/ucblib/libucb.a

bcmp

flock

freopen
getdtablesize
getpagesize
gettimeofday
killpg

nice

psignal
reboot
rindex
sethostname
setpgrp
setreuid
siginterrupt
sigsetmask
sigvechandler
srand

times
usigpause
vprintf
wait4

shared object
archive library

bcopy
fopen
fstatfs
gethostid
getpriority
getwd
longjmp
nlist

rand
re_comp
scandir
setjmp
setpriority
settimeofday
signal
sigstack
sleep
statfs
ualarm
usleep
vsprintf

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE

ATTRIBUTE VALUE

MT-Level

Safe with exceptions

SunOS 5.6

modified 31 Dec 1996

File Formats libucb (4)

SEE ALSO pvs(1), intro(4), attributes(5)

modified 31 Dec 1996 Sun0S 5.6 4-191

libvolmgt(4)

NAME

SYNOPSIS

DESCRIPTION

INTERFACES

FILES

ATTRIBUTES

SEE ALSO

NOTES

4-192

File Formats

libvolmgt — volume management library

cc[flag ...]file ... =lvolmgt[library ...]
#include <volmgt.h>

Functions in this library provide access to the volume management services.
The shared object libvolmgt.so.1 provides the public interfaces defined below.
For additional information on shared object interfaces, see intro(4).

SUNW_1.1 (generic):

media_findname media_getattr media_getid
media_setattr volmgt_check volmgt_inuse
volmgt_ownspath volmgt_root volmgt_running
volmgt_symdev volmgt_symname

SUNW _1.2 (generic):
volmgt_acquire volmgt_release

SUNW_1.3 (generic):
volmgt_feature_enabled

/usr/lib/libvolmgt.so.1 shared object
/usr/lib/libvolmgt.a archive library

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE | ATTRIBUTE VALUE
MT-Level Safe with exceptions

pvs(1), media_findname(3X), intro(4), attributes(5)

The MT-Level for this library of interfaces is Safe, except for media_findname(3X), which
is Unsafe.

Sun0S 5.6 modified 31 Dec 1996

File Formats

NAME

SYNOPSIS

DESCRIPTION

INTERFACES

modified 31 Dec 1996

libw (4)

libw - the wide character library

cc[flag ...]file ... [library ...]
#include <wchar.h>

Historically, functions in this library provided wide character translations. This func-
tionality now resides in libc(4).

This library is maintained to provide backward compatibility for both runtime and com-
pilation environments. The shared object version is implemented as a filter on libw.so.1,
and the archive version is implemented as a null archive. New application development
need not reference either version of libw.

The shared object libw.so.1 provides the public interfaces defined below.
For additional information on shared object interfaces, see intro(4).

SUNW_1.1 (generic):

fgetwc fgetws fputwc
fputws getwc getwchar
getws isenglish isideogram
isnumber isphonogram isspecial
iswalnum iswalpha iswentrl
iswctype iswdigit iswgraph
iswlower iswprint iswpunct
iswspace iswupper iswxdigit
putwc putwchar putws
strtows towlower towupper
ungetwc watoll wcscat
wcschr wcesemp wecscoll
wcescpy wcesespn wcsftime
wcslen wcsncat wesnecmp
wcesnepy wcespbrk wecsrchr
wcesspn wcstod wcstok
wcstol westoul WCSWCS
wceswidth wesxfrm wctype
wcwidth wscasecmp wscat
wschr wscmp wscol
wscoll wscpy wscspn
wsdup wslen wsncasecmp
wsncat wsncmp wsncpy
wspbrk wsprintf wsrchr
wsscanf wsspn wstod
wstok wstol wstoll
wstostr wsxfrm

Sun0S 5.6 4-193

libw (4) File Formats

FILES fusr/lib/libw.so.1 a filter on libc.so.1
lusr/lib/libw.a a link to /usr/lib/null.a

ATTRIBUTES | See attributes(5) for descriptions of the following attributes:

{usr/lib/libw.so.1 ATTRIBUTE TYPE | ATTRIBUTE VALUE

Availability SUNWCcsu
MT-Level Safe

SEE ALSO pvs(1), intro(3), intro(4), libc(4), attributes(5)

4-194 Sun0S 5.6 modified 31 Dec 1996

File Formats

NAME

SYNOPSIS

DESCRIPTION

INTERFACES

modified 31 Dec 1996

libxfn — the XFN interface library

cc[flag ...]file ... =Ixfn[library ...]

#include <xfn/xfn.h>

libxfn (4)

This library provides the implementation of XFN, the X/Open Federated Naming

specification (see xfn(3N) and fns(5)).

The shared object libxfn.so.1 provides the public interfaces defined below.
For additional information on shared object interfaces, see intro(4).

SUNW_1.1 (generic):

fn_attr_get

fn_attr_get values
fn_attribute_assign
fn_attribute_create
fn_attribute_first
fn_attribute_next
fn_attribute_syntax
fn_attr_modify
fn_attrmodlist_assign
fn_attrmodlist_count
fn_attrmodlist_destroy
fn_attrmodlist_next
fn_attr_multi_modify
fn_attrset_assign
fn_attrset_count
fn_attrset_destroy

fn_attrset_get

fn_attrset_remove
fn_bindinglist_next
fn_bindingset_assign
fn_bindingset_count
fn_bindingset_destroy
fn_bindingset_get ref
fn_bindingset_remove
fn_composite_name_append_name
fn_composite_name_assign_string
fn_composite_name_count
fn_composite_name_delete_comp
fn_composite_name_first
fn_composite_name_from_string
fn_composite_name_insert_name
fn_composite_name_is_equal

SunOS 5.6

fn_attr_get_ids
fn_attribute_add
fn_attribute_copy
fn_attribute_destroy
fn_attribute_identifier
fn_attribute_remove
fn_attribute_valuecount
fn_attrmodlist_add
fn_attrmodlist_copy
fn_attrmodlist_create
fn_attrmodlist_first
fn_attr_multi_get
fn_attrset_add
fn_attrset_copy
fn_attrset_create
fn_attrset_first
fn_attrset_next
fn_bindinglist_destroy
fn_bindingset_add
fn_bindingset_copy
fn_bindingset_create
fn_bindingset_first
fn_bindingset_next
fn_composite_name_append_comp
fn_composite_name_assign
fn_composite_name_copy
fn_composite_name_create
fn_composite_name_destroy
fn_composite_name_from_str
fn_composite_name_insert_comp
fn_composite_name_is_empty
fn_composite_name_is_prefix

4-195

libxfn (4)

4-196

fn_composite_name_is_suffix
fn_composite_name_next
fn_composite_name_prepend_comp
fn_composite_name_prev
fn_compound_name_append_comp
fn_compound_name_copy
fn_compound_name_delete_all
fn_compound_name_destroy
fn_compound_name_from_syntax_attrs
fn_compound_name_insert_comp
fn_compound_name_is_equal
fn_compound_name_is_suffix
fn_compound_name_next
fn_compound_name_prepend_comp
fn_compound_name_suffix
fn_ctx_create_subcontext
fn_ctx_get_ref
fn_ctx_handle_destroy
fn_ctx_handle_from_ref
fn_ctx_list_names
fn_ctx_lookup_link

fn_ctx_unbind

fn_multigetlist_next
fn_namelist_next
fn_nameset_assign
fn_nameset_count
fn_nameset_destroy
fn_nameset_next
fn_ref_addr_assign

fn_ref addrcount

fn_ref_addr_data
fn_ref_addr_destroy
fn_ref_addr_type

fn_ref_assign

fn_ref create

fn_ref _delete_addr
fn_ref_description

fn_ref first

fn_ref_is_link

fn_ref_next

fn_ref_type
fn_status_append_remaining_name
fn_status_assign

fn_status_copy
fn_status_description

SunOS 5.6

File Formats

fn_composite_name_last
fn_composite_name_prefix
fn_composite_name_prepend_name
fn_composite_name_suffix
fn_compound_name_assign
fn_compound_name_count
fn_compound_name_delete_comp
fn_compound_name_first
fn_compound_name_get syntax_attrs
fn_compound_name_is_empty
fn_compound_name_is_prefix
fn_compound_name_last
fn_compound_name_prefix
fn_compound_name_prev
fn_ctx_bind
fn_ctx_destroy_subcontext
fn_ctx_get_syntax_attrs
fn_ctx_handle_from_initial
fn_ctx_list_bindings
fn_ctx_lookup

fn_ctx_rename
fn_multigetlist_destroy
fn_namelist_destroy
fn_nameset_add
fn_nameset_copy
fn_nameset_create
fn_nameset_first
fn_nameset_remove
fn_ref_addr_copy
fn_ref_addr_create

fn_ref _addr_description
fn_ref_addr_length
fn_ref_append_addr
fn_ref_copy

fn_ref create link
fn_ref_delete_all
fn_ref_destroy
fn_ref_insert_addr

fn_ref _link_name

fn_ref _prepend_addr
fn_status_advance_by name
fn_status_append_resolved_name
fn_status_code
fn_status_create
fn_status_destroy

modified 31 Dec 1996

File Formats

FILES

ATTRIBUTES

fusr/lib/libxfn.so.1

SEE ALSO

modified 31 Dec 1996

lusr/lib/libxfn.so.1

fn_status_diagnostic_message
fn_status_link_code
fn_status_link_remaining_name
fn_status_link_resolved_ref
fn_status_resolved_name
fn_status_set
fn_status_set_diagnostic_message
fn_status_set_link_diagnostic_message
fn_status_set link_resolved _name
fn_status_set_remaining_name
fn_status_set resolved_ref
fn_string_assign
fn_string_charcount
fn_string_compare
fn_string_contents
fn_string_create
fn_string_from_composite_name
fn_string_from_contents
fn_string_from_strings
fn_string_from_substring
fn_string_next_substring
fn_string_str

fn_valuelist_next

shared object

ATTRIBUTETYPE | ATTRIBUTE VALUE

SUNWfns
Safe

Availability
MT-Level

SunOS 5.6

libxfn (4)

fn_status_is_success
fn_status_link_diagnostic_message
fn_status_link_resolved_name
fn_status_remaining_name
fn_status_resolved_ref
fn_status_set _code
fn_status_set _link _code
fn_status_set_link_remaining_name
fn_status_set link _resolved_ref
fn_status_set_resolved_name
fn_status_set success
fn_string_bytecount
fn_string_code_set
fn_string_compare_substring
fn_string_copy

fn_string_destroy
fn_string_from_compound_name
fn_string_from_str
fn_string_from_str_n
fn_string_is_empty
fn_string_prev_substring
fn_valuelist_destroy

See attributes(5) for descriptions of the following attributes:

pvs(1), intro(3), xfn(3N), intro(4), attributes(5), fns(5)

libxnet(4)

NAME
SYNOPSIS

DESCRIPTION

INTERFACES

FILES

4-198

libxnet — X/Open Networking Interfaces library

cc[flag ...]file ... —=Ixnet[library ...]

File Formats

Functions in this library provide networking interfaces which comply with the X/Open
CAE Specification, Networking Services, Issue 4.

The shared object libxnet.so.1 and its dependants provide the public interfaces defined

below.

For additional information on shared object interfaces, see intro(4).

SUNW _1.1 (generic):

accept
endhostent
endservent
gethostent
getnetbyname
getprotobyname
getservbyname
getsockname
htonl
inet_Inaof
inet_network
ntohl
recvfrom
sendmsg
setnetent
setsockopt
socketpair
t_bind

t_errno
t_getinfo
t_listen
t_optmgmt
t_rcvdis
t_rcvuderr
t_sndrel
t_sync

/usr/lib/libxnet.so.1

bind
endnetent
gethostbyaddr
gethostname
getnetent
getprotobynumber
getservbyport
getsockopt
htons
inet_makeaddr
inet_ntoa
ntohs

recvmsg
sendto
setprotoent
shutdown
t_accept
t_close

t_error
t_getprotaddr
t_look

t rcv

t_rcvrel

t snd
t_sndudata
t_unbind

shared object

SunOS 5.6

connect
endprotoent
gethostbyname
getnetbyaddr
getpeername
getprotoent
getservent
h_errno
inet_addr
inet_netof
listen

recv

send
sethostent
setservent
socket
t_alloc
t_connect
t_free
t_getstate
t_open
t_rcvconnect
t_rcvudata
t_snddis
t_strerror

modified 16 Apr 1997

File Formats

ATTRIBUTES

SEE ALSO

modified 16 Apr 1997

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE

ATTRIBUTE VALUE

MT-Level

Safe

intro(3), attributes(5), standards(5)

SunOS 5.6

libxnet(4)

4-199

limits (4)

NAME

SYNOPSIS

DESCRIPTION

4-200

File Formats

limits — header for implementation-specific constants

#include <limits.h>

The header <limits.h> is a list of minimal magnitude limitations imposed by a specific
implementation of the operating system.

ARG_MAX
CHAR BIT
CHAR_MAX
CHAR_MIN
CHILD_MAX
CLK_TCK
DBL_DIG
DBL_MAX
DBL_MIN
FCHR_MAX
FLT DIG
FLT_MAX
FLT_MIN
INT_MAX
INT_MIN
LINK_MAX
LOGNAME_MAX
LONG_BIT
LONG_MAX
LONG_MIN
MAX_CANON

MAX_INPUT
MB_LEN_MAX

NAME_MAX
NGROUPS_MAX
NL_ARGMAX

NL_LANGMAX
NL_MSGMAX
NL_NMAX

NL_SETMAX
NL_TEXTMAX
NZERO
OPEN_MAX

PASS_MAX
PATH_MAX
PID_MAX

1048320

8

255

0

25
_sysconf(3)
15

1.7976931348623157E+308
2.2250738585072014E-308

1048576

6
3.40282347e+38F
1.17549435E-38F
2147483647
(-2147483647-1)
1000

8

32

2147483647
(-2147483647-1)
256

512
5

14
16
9

14
32767
1

255
255
20
20

1024
30000

SunOS 5.6

/Omax length of arguments to exec [
/Omax # of bits in a "char" OO0

/Omax value of a "char" O

/Omin value of a "char" ¥

/Omax # of processes per user id [
/Oclock ticks per second [

/Odigits of precision of a "double" [
/Omax decimal value of a "double"
/O0min decimal value of a "double"
/Ohistorical default file size limit in bytes O
/Odigits of precision of a "float" O
/Omax decimal value of a "float" OO
/Omin decimal value of a "float" [
/Omax value of an "int" [

/Omin value of an "int" OO

/Omax # of links to a single file 0/
/Omax # of characters in a login name OO
/O0# of bitsina"long" 0

/Omax value of a "long int" OO0

/Omin value of a "long int" I

/Omax bytes in a line for canonical
processing I

/Omax size of a char input buffer 0
/Omax # of bytes in a multibyte
character I

/Omax # of characters in a file name 0
/Omax # of groups for a user [

/Omax value of "digit" in calls to the
NLS printf() and scanf() ¥

/Omax # of bytes in a LANG name [0
/Omax message number 0

/Omax # of bytes in N-to-1 mapping
characters [0

/Omax set number OO

/Omax # of bytes in a message string
/Odefault process priority [0

/Omax # of files a process can have
open O

/Omax # of characters in a password [J
/Omax # of characters in a path name [
/Omax value for a process ID OO

modified 21 Mar 1997

File Formats

SEE ALSO

modified 21 Mar 1997

PIPE_BUF
PIPE_MAX

SCHAR_MAX
SCHAR_MIN
SHRT_MAX
SHRT_MIN
STD_BLK
SYS_NMLN

SYSPID_MAX
TMP_MAX

UCHAR_MAX
UID_MAX
UINT_MAX
ULONG_MAX
USHRT_MAX
USI_MAX
WORD _BIT

5120
5120

127
(-128)
32767
(-32768)
1024
257

1
17576

255
2147483647
4294967295
4294967295
65535
4294967295
32

limits (4)

/Omax # bytes atomic in write to a pipe O
/Omax # bytes written to a pipe

inawrite [

/Omax value of a "signed char" [0

/Omin value of a "signed char" [

/Omax value of a "short int" I

/Omin value of a "short int" O

/0# bytes in a physical 1/0 block O

/04.0 size of utsname elements O

/Oalso defined in sys/utsname.h 1
/Omax pid of system processes [I

/Omax # of unique names generated

by tmpnam OO0

/Omax value of an "unsigned char" [0
/Omax value for a user or group ID OO
/Omax value of an "unsigned int" [0
/Omax value of an "unsigned long int" 0
/Omax value of an "unsigned short int" [
/Omax decimal value of an "unsigned” O
/0# of bits in a "word" or "int" O

The following POSIX definitions are the most restrictive values to be used by a POSIX-
conforming application (see standards(5)). Conforming implementations shall provide
values at least this large.

_POSIX_ARG_MAX

4096

/Omax length of arguments to exec [1

_POSIX_CHILD_MAX 6 /Omax # of processes per user ID [
_POSIX_LINK_MAX 8 /Omax # of links to a single file O
_POSIX_MAX_CANON 255 /Omax # of bytes in a line of input [
_POSIX_MAX_INPUT 255 /Omax # of bytes in terminal

input queue [0
_POSIX_NAME_MAX 14 /0# of bytes in a filename OO
_POSIX_NGROUPS_MAX 0 /Omax # of groups in a process [
_POSIX_OPEN_MAX 16 /Omax # of files a process can have open [0
_POSIX_PATH_MAX 255 /Omax # of characters in a pathname O
_POSIX_PIPE_BUF 512 /Omax # of bytes atomic in write

to a pipe O
standards(5)

Sun0S 5.6 4-201

loadfont (4)

NAME

DESCRIPTION

4-202

File Format

File Formats

loadfont — format of a font file used as input to the loadfont utility

This section describes the format of files that can be used to change the font used by the
console when using the loadfont(1) utility with the —f option.

The format is compatible with the Binary Distribution Format version 2.1 as developed
by Adobe Systems, Inc.; however, certain restrictions apply. Video cards, when used
with the Solaris for x86 system in text mode, only accept constant width and constant
height fonts in certain sizes.

The loadfont utility also requires that there is a description of all 256 characters of the
codeset used specified in the fontfile. Certain attributes are not used by loadfont but are
maintained for compatibility purposes.

A loadfont input file is a plain ASCII file containing only printable characters (octal 40
through 176) and a carriage return at the end of each line.

The information about a particular font should be contained in a single file. The file
begins with information on the font in general, followed by the information and bitmaps
for the individual characters. The file should contain bitmaps for all 256 characters, and
each character should be of the same size.

A font bitmap description file has the following general form, where each item is con-
tained on a separate line of text in the file. Items on a line are separated by spaces:

One or more lines beginning with the word COMMENT. These lines can be used
to add comments to the file and will be ignored by the loadfont program.

The word STARTFONT followed by the version number 2.1.

The word FONT followed by the full name of the font. The name may continue
all the way to the end of the line, and may contain spaces.

The word SI1ZE followed by the point size of the characters, the x resolution, and
the y resolution of the font. This line is not used by loadfont but it needs to be
there for compatibility purposes.

The word FONTBOUNDINGBOX followed by the width in x, height in y, and the
x and y displacement of the lower left-hand corner from the origin. Again, this
line is not used by loadfont but it must be there for compatibility purposes.

Optionally, the word STARTPROPERTIES followed by the number of properties
that follow. If present, the number needs to match the number of lines following
this one before the occurrence of a line beginning with ENDPROPERTIES These
lines consist of a word for the property name followed by either an integer or
string surrounded by double quotes. Properties named FONT_ASCENT
FONT_DESCENT and DEFAULT_CHAR are typically present in BDF files to define
the logical font-ascent and font-descent and the default-char for the font.

As mentioned above, this section, if it exists, must be terminated by ENDPRO-
PERTIES.

Sun0S 5.6 modified 31 Dec 1996

File Formats

Example

modified 31 Dec 1996

loadfont (4)

The word CHARS followed by the number of characters that follow. This
number should always be 256.

This terminates the part of the loadfont input file describing features of the font in gen-
eral. The rest of the file contains descriptions of the individual characters. They consist
of the following parts:

The word STARTCHAR followed by up to 14 characters (no blanks) describing
the character. This can either be something like C0041, which indicates the hex
value of the character or uppercaseA, which describes the character.

The word ENCODING followed by a positive integer representing value by
which this character is represented internally in the codeset for which this font is
used. The integer needs to be specified in decimal.

The word SWIDTH followed by the scalable width in x and y of character. Scal-
able widths are in units of 1/1000th of the size of the character. The y value
should always be 0; the x value is typically 666 for the type of characters used
with loadfont. The values are not checked by the loadfont utility, but this line
needs to be there for compatibility purposes.

The word DWIDTH followed by two numbers, which in a BDF file would mean
the width in x and y of the character in device units. The y value is always zero.
The x value is typically 8. loadfont checks only for the presence of the DWIDTH
keyword.

The word BBX followed by the width in x, heightin y and x and y displacement
of the lower left-hand corner from the origin of the character.

Most fonts used by video cards will not use the bottom 4 rows of pixels, which
basically means a vertical (y) displacement of —4. The only width allowed by
loadfont is 8; heights supported are 8, 14, and 16. All BBX lines of the subsequent
characters should list the same height and width as the first one (because only
fixed size fonts are supported).

The optional word ATTRIBUTES followed by the attributes as 4 hex-encoded
characters. The loadfont utility will accept this line, if present, but there is no
meaning attached to it.

The word BITMAP, which indicates the beginning of the bitmap representation of
the character. This line should be followed by height number of lines (height as
specified in the BBX line) representing a hex-encoded bitmap of the character, one
byte per line.

The word ENDCHAR indicating the end of the bitmap for this character.
After all the bitmaps, the end of the file is indicated by the ENDFONT keyword.

The following example lists the beginning of the loadfont input file for an 8 by 16 font,

supporting the IBM 437 codeset, as well as the bitmap representation of the character
uppercase A.

SunOS 5.6 4-203

loadfont (4) File Formats

STARTFONT 2.1
FONT 8x16

SIZE 16 7575
FONTBOUNDINGBOX 816 0 -4
STARTPROPERTIES 3
FONT_DESCENT 4
FONT_ASCENT 12
DEFAULT_CHARO
ENDPROPERTIES
CHARS 256
STARTCHAR C0000
ENCODING 0

Bitmap for uppercase A character:

STARTCHAR C0041
ENCODING 65
SWIDTH 666 0
DWIDTH 80
BBX 8160 -4
BITMAP

00

00

10

38

6¢c

c6

c6

fe

c6

c6

c6

c6

00

00

00

00

ENDCHAR

FILES fusr/share/lib/Obdf

ATTRIBUTES | See attributes(5) for descriptions of the following attributes:

4-204 Sun0S 5.6 modified 31 Dec 1996

File Formats

SEE ALSO

modified 31 Dec 1996

ATTRIBUTE TYPE

ATTRIBUTE VALUE

Architecture

Xx86

loadfont(1), attributes(5)

SunOS 5.6

loadfont (4)

4-205

logindevperm (4) File Formats

NAME logindevperm, fbtab - login-based device permissions
SYNOPSIS | /etc/logindevperm

DESCRIPTION The /etc/logindevperm file contains information that is used by login(1) and ttymon(1M)
to change the owner, group, and permissions of devices upon logging into or out of a
console device. By default, this file contains lines for the keyboard, mouse, audio, and
frame buffer devices.

The owner of the devices listed in /etc/logindevperm is set to the owner of the console by
login(1). The group of the devices is set to the owner’s group specified in /etc/passwd.
The permissions are set as specified in /etc/logindevperm.

Fields are separated by TAB and/or SPACE characters. Blank lines and comments can
appear anywhere in the file; comments start with a hashmark, ‘ #°, and continue to the
end of the line.

The first field specifies the name of a console device (for example, /dev/console). The
second field specifies the permissions to which the devices in the device_list field (third
field) will be set. A device_list is a colon-separated list of device names. A device entry
that is a directory name and ends with "/ specifies all entries in the directory (except "."
and ".."). For example, "/dev/fbs/' specifies all frame buffer devices.

Once the devices are owned by the user, their permissions and ownership can be changed
using chmod(1) and chown(1), as with any other user-owned file.

Upon logout the owner and group of these devices will be reset by ttymon(1M) to owner
root and root’s group as specified in /etc/passwd (typically other). The permissions are
set as specified in the /etc/logindevperm file.

FILES | /etc/passwd File that contains user group information.
SEE ALSO chmod(1), chown(1), login(1), ttymon(1M), passwd(4)

NOTES | /etc/logindevperm provides a superset of the functionality provided by /etc/fbtab in
SunOS 4.x releases.

4-206 SunOS 5.6 modified 16 August 1993

File Formats

NAME

DESCRIPTION

FILES

SEE ALSO

modified 3 Jul 1990

loginlog (4)

loginlog - log of failed login attempts

After five unsuccessful login attempts, all the attempts are logged in the file
/varfadm/loginlog. This file contains one record for each failed attempt. Each record
contains the login name, tty specification, and time.

This is an ASCII file. Each field within each entry is separated from the next by a colon.
Each entry is separated from the next by a new-line.

By default, loginlog does not exist, so no logging is done. To enable logging, the log file
must be created with read and write permission for owner only. Owner must be root
and group must be sys.

/var/fadm/loginlog

login(1), passwd(1)

SunOS 5.6 4-207

magic (4)

NAME
SYNOPSIS

DESCRIPTION

4-208

File Formats

magic - file command’s magic number file
/etc/magic

The file(1) command identifies the type of a file using, among other tests, a test for
whether the file begins with a certain magic number. The /etc/magic file specifies what
magic numbers are to be tested for, what message to print if a particular magic number is
found, and additional information to extract from the file.

Each line of the file specifies a test to perform. A test compares the data starting at a par-
ticular offset in the file with a 1-byte, 2-byte, or 4-byte numeric value or a string. If the
test succeeds, a message is printed. The line consists of the following fields (separated by
tabs):

offset type value message

offset A number specifying the offset, in bytes, into the file of the data which is to be
tested.
type The type of the data to be tested. The possible values are:

byte A one-byte value.
short A two-byte value.
long A four-byte value.
string A string of bytes.

The types byte, short, and long may optionally be followed by a mask
specifier of the form &number. If a mask specifier is given, the value is
AND’ed with the number before any comparisons are done. The number is
specified in C form. For instance, 13 is decimal, 013 is octal, and 0x13 is hexa-
decimal.

value The value to be compared with the value from the file. If the type is numeric,
this value is specified in C form. If it is a string, it is specified as a C string
with the usual escapes permitted (for instance, \n for NEWLINE).

Numeric values may be preceded by a character indicating the operation to be
performed. It may be ‘=’, to specify that the value from the file must equal the
specified value, ‘<’, to specify that the value from the file must be less than the
specified value, >’, to specify that the value from the file must be greater than
the specified value, ‘&’, to specify that all the bits in the specified value must
be set in the value from the file, “’, to specify that at least one of the bits in the
specified value must not be set in the value from the file, or x to specify that
any value will match. If the character is omitted, it is assumed to be ‘=’.

For string values, the byte string from the file must match the specified byte
string. The byte string from the file which is matched is the same length as the
specified byte string.

message The message to be printed if the comparison succeeds. If the string contains a
printf(3S) format specification, the value from the file (with any specified

SunOS 5.6 modified 8 May 1995

File Formats magic (4)

masking performed) is printed using the message as the format string.

Some file formats contain additional information which is to be printed along with the
file type. A line which begins with the character ‘>’ indicates additional tests and mes-
sages to be printed. If the test on the line preceding the first line with a ‘>’ succeeds, the
tests specified in all the subsequent lines beginning with ‘>’ are performed, and the mes-
sages printed if the tests succeed. The next line which does not begin with a >’ ter-
minates this.

FILES | /etc/magic
SEE ALSO | file(1), file(1B), printf(3S)

BUGS There should be more than one level of subtests, with the level indicated by the number
of >’ at the beginning of the line.

modified 8 May 1995 SunOS 5.6 4-209

mnttab (4) File Formats

NAME mnttab — mounted file system table

DESCRIPTION The file mnttab resides in /etc and contains information about devices that are currently
mounted. mnttab is read by programs using the routines described in getmntent(3C).
mount(1M) adds entries to this file. umount removes entries from this file. Each entry is
a line of fields separated by spaces in the form:

special mount_point fstype options time

where
special The name of the resource to be mounted.
mount_point The pathname of the directory on which the filesystem is mounted.
fstype The file system type of the mounted file system.
options The mount options. (See repective mount file system man page
below in SEE ALSO.)
time The time at which the file system was mounted.

Examples of entries for the special field include the pathname of a block-special device,
the name of a remote filesystem in host:pathname form, or the name of a “swap file’’ (for
instance, a file made with mkfile(1M)).

FILES letc/mnttab

SEE ALSO mkfile(1M), mount_cachefs(1M), mount_hsfs(1M), mount_nfs(1M), mount_pcfs(1M),
mount_ufs(1M), mount(1M), setmnt(1M), getmntent(3C)

4-210 Sun0S 5.6 modified 6 Oct 1994

File Formats

NAME
SYNOPSIS

DESCRIPTION

modified 22 May 1994

netconfig (4)

netconfig — network configuration database
/etc/netconfig

The network configuration database, /etc/netconfig, is a system file used to store informa-
tion about networks that are connected to the system. The netconfig database and the
routines that access it (see getnetconfig(3N)) are part of the Network Selection com-
ponent. The Network Selection component also includes getnetpath(3N) routines to pro-
vide application-specific network search paths. These routines access the netconfig data-
base based on the environment variable NETPATH (see environ(5)).

netconfig contains an entry for each network available on the system. Entries are
separated by newlines. Fields are separated by whitespace and occur in the order in
which they are described below. Whitespace can be embedded as “\blank’ or *“\tab”.
Backslashes may be embedded as “\\”’. Lines in /etc/netconfig that begin with a # (hash)
in column 1 are treated as comments.

Each of the valid lines in the netconfig database correspond to an available transport.
Each entry is of the form:

network ID semantics flag protocol-family protocol-name network-device translation-libraries

network ID A string used to uniquely identify a network. network ID consists of hon-
null characters, and has a length of at least 1. No maximum length is
specified. This namespace is locally significant and the local system
administrator is the naming authority. All network IDs on a system must be
unique.

semantics The semantics field is a string identifying the ““‘semantics’ of the network,
that is, the set of services it supports, by identifying the service interface it
provides. The semantics field is mandatory. The following semantics are

recognized.
tpi_clts Transport Provider Interface, connectionless
tpi_cots Transport Provider Interface, connection oriented

tpi_cots_ord Transport Provider Interface, connection oriented, sup-
ports orderly release.

flag The flag field records certain two-valued (‘‘true’” and ‘‘false’’) attributes of
networks. flag is a string composed of a combination of characters, each of
which indicates the value of the corresponding attribute. If the character is
present, the attribute is “true.” If the character is absent, the attribute is

“false.” **-”" indicates that none of the attributes are present. Only one char-
acter is currently recognized:
\Y Visible (*‘default’) network. Used when the environment

variable NETPATH is unset.

SunOS 5.6 4-211

netconfig (4)

4-212

File Formats

protocol family
The protocol family and protocol name fields are provided for protocol-specific
applications.

The protocol family field contains a string that identifies a protocol family.
The protocol family identifier follows the same rules as those for network IDs;
the string consists of non-null characters, it has a length of at least 1, and
there is no maximum length specified. A **=" in the protocol family field
indicates that no protocol family identifier applies (the network is experi-
mental). The following are examples:

loopback Loopback (local to host).

inet Internetwork: UDP, TCP, etc.

implink ARPANET imp addresses

pup PUP protocols: for example, BSP

chaos MIT CHAOQOS protocols

ns XEROX NS protocols

nbs NBS protocols

ecma European Computer Manufacturers Association

datakit DATAKIT protocols

ccitt CCITT protocols, X.25, etc.

sna IBM SNA

decnet DECNET

dli Direct data link interface

lat LAT

hylink NSC Hyperchannel

appletalk Apple Talk

nit Network Interface Tap

ieee802 IEEE 802.2; also ISO 8802

osi Umbrella for all families used by OSI (for example, pro-
tosw lookup)

x25 CCITT X.25 in particular

osinet AFI =47, 1Dl =4

gosip U.S. Government OSI

protocol name The protocol name field contains a string that identifies a protocol. The proto-
col name identifier follows the same rules as those for network IDs; that is,
the string consists of non-NULL characters, it has a length of at least 1, and
there is no maximum length specified. A **="" indicates that none of the
names listed apply. The following protocol names are recognized.

tcp Transmission Control Protocol
udp User Datagram Protocol
icmp Internet Control Message Protocol

SunOS 5.6 modified 22 May 1994

File Formats

modified 22 May 1994

netconfig (4)

network device
The network device is the full pathname of the device used to connect to the
transport provider. Typically, this device will be in the /dev directory. The
network device must be specified.

translation libraries
The name-to-address translation libraries support a ““directory service” (a
name-to-address mapping service) for the network. A =" in this field indi-
cates the absence of any translation libraries. This has a special meaning for
networks of the protocol family inet : its name-to-address mapping is pro-
vided by the name service switch based on the entries for hosts and ser-
vices in nsswitch.conf(4). For networks of other families, a ““‘~"" indicates
non-functional name-to-address mapping. Otherwise, this field consists of
a comma-separated list of pathnames to dynamically linked libraries. The
pathname of the library can be either absolute or relative. See dlopen(3X).

Each field corresponds to an element in the struct netconfig structure. struct netconfig
and the identifiers described on this manual page are defined in <netconfig.h>. This
structure includes the following members:

char Chc_netid Network ID, including NULL terminator.

unsigned long nc_semantics Semantics.

unsigned long nc_flag Flags.

char Chc_protofmly Protocol family.

char Chc_proto Protocol name.

char Chc_device Full pathname of the network device.

unsigned long nc_nlookups Number of directory lookup libraries.

char Thc_lookups Names of the name-to-address translation
libraries.

unsigned long nc_unused[9] Reserved for future expansion.

The nc_semantics field takes the following values, corresponding to the semantics
identified above:

NC_TPI_CLTS
NC_TPI_COTS
NC_TPI_COTS_ORD

The nc_flag field is a bitfield. The following bit, corresponding to the attribute identified
above, is currently recognized. NC_NOFLAG indicates the absence of any attributes.

NC_VISIBLE

SunOS 5.6 4-213

netconfig (4)

4-214

EXAMPLES

FILES

SEE ALSO

File Formats

Below is a sample netconfig file:

#

The "Network Configuration" File.

#

Each entry is of the form:

#

<network id> <semantics> <flags> <protofamily> <protoname> <device> \
<nametoaddr_libs>

#

The "-" in <nametoaddr_libs> for inet family transports indicates

redirection to the name service switch policies for "hosts" and

"services". The "-" may be replaced by nametoaddr libraries that

comply with the SVr4 specs, in which case the name service switch

will not be used for netdir_getbyname, netdir_getbyaddr,

gethostbyname, gethostbyaddr, getservbyname, and getservbyport.
There are no nametoaddr_libs for the inet family in Solaris anymore.
#

udp tpi_clts VvV inet udp /dev/udp -
tcp tpi_cots ord v inet tcp /dev/tcp -
rawip tpi_raw - inet - /dev/rawip -
ticlts tpi_clts v loopback - /deviticlts straddr.so
ticotsord tpi_cots ord v loopback - /devfticotsord straddr.so
ticots tpi_cots v loopback - /dev/ticots straddr.so

<netconfig.h>

dlopen(3X), getnetconfig(3N), getnetpath(3N), nsswitch.conf(4)

NFS Administration Guide
Transport Interfaces Programming Guide

SunOS 5.6 modified 22 May 1994

File Formats

NAME
SYNOPSIS

DESCRIPTION

modified 4 Aug 1994

netgroup (4)

netgroup - list of network groups
/etc/netgroup

A netgroup defines a network-wide group of hosts and users.

Netgroups may be used to restrict access to shared NFS filesystems and for restricting
remote login and shell access.

Network groups are stored in one of the Network Information Services, either NIS or
NIS+, not in a local file.

This manual page describes the format for a file that may be used to supply input to the
makedbm(1M) or nisaddent(1M) programs that are use to build the NIS map or NIS+
table, respectively.

Each line of the file defines the name and membership of network group. The line
should have the format:

groupname member ...
The items on a line may be separated by a combination of one or more spaces or tabs.

The groupname is the name of the group being defined. This is followed by a list of
members of the group. Each member is either another group name, all of whose members
are to be included in the group being defined, or a triple of the form:

(hostname,username,domainname)

In each triple, any of the three fields hostname, username, and domainname, can be empty.
An empty field signifies a "wildcard" matching any value in that field. Thus:

everything (, ,this.domain)

defines a group named "everything" for the domain "this.domain" to which every host
and user belongs.

The domainname field refers to the domain in which the triple is valid, not the domain
containing the host or user.

Netgroups can be used to control NFS mount access (see share_nfs(1M)) and to control
remote login and shell access (see hosts.equiv(4)). They can also be used to control local
login access (see passwd(4), shadow(4), and "compat” in nsswitch.conf(4)).

When used for these purposes, a host is considered a member of a netgroup if the net-
group contains any triple in which the hostname field matches the name of the host
requesting access and the domainname field matches the domain of the host controlling
access.

Similarly, a user is considered a member of a netgroup if the netgroup contains any triple
in which the username field matches the name of the user requesting access and the

SunOS 5.6 4-215

netgroup (4) File Formats

domainname field matches the domain of the host controlling access.

Note that when netgroups are used to control NFS mount access, access is granted
depending only on whether the requesting host is a member of the netgroup. Remote
login and shell access can be controlled both on the basis of host and user membership in
separate netgroups.

FILES | /etc/netgroup used by /var/yp/Makefile on NIS masters to build the NIS net-
group map

Note that the netgroup information must always be stored in a network information ser-
vice, either NIS or NIS+. The local file is only used to construct the netgroup NIS maps or
NIS+ table; it is never consulted directly.

SEE ALSO nis+(1), makedbm(1M), nisaddent(1M), share_nfs(1M), innetgr(3N), hosts(4),
hosts.equiv(4), nsswitch.conf(4), passwd(4), shadow(4)

NOTES netgroup requires NIS or NIS+.

Applications may make general membership tests using the innetgr() function (see
innetgr(3N)).

Because the "-" character will not match any specific username or hostname, it is com-
monly used as a placeholder that will match only wildcarded membership queries. So,

for example:
onlyhosts (hostl,-,our.domain) (host2,-,our.domain)
onlyusers (-,john,our.domain) (-,linda,our.domain)

effectively define netgroups containing only hosts and only users, respectively. Any
other string that is guaranteed not to be a legal username or hostname will also suffice for
this purpose.

When a machine with multiple interfaces and multiple names is defined as a member of a
netgroup, one must list all of the names (see hosts(4)). A manageable way to do this is to
define a netgroup containing all of the machine names. For example, for a host "gateway"
that has names "gateway-subnetl" and "gateway-subnet2" one may define the netgroup:

gateway (gateway-subnetl, ,our.domain) (gateway-subnet2, ,our.domain)
and use this netgroup gateway whenever the host is to be included in another netgroup.

4-216 SunOS 5.6 modified 4 Aug 1994

File Formats

NAME
SYNOPSIS

DESCRIPTION

EXAMPLES

modified 23 May 1994

netid (4)

netid — netname database
/etc/netid

The netid file is a local source of information on mappings between netnames (see
secure_rpc(3N)) and user ids or hostnames in the local domain. The netid file can be
used in conjunction with, or instead of, the network source: NIS or NIS+. The publickey
entry in the nsswitch.conf (see nsswitch.conf(4)) file determines which of these sources
will be queried by the system to translate netnames to local user ids or hostnames.

Each entry in the netid file is a single line of the form:
netname uid:gid, gid, gid....

or
netname 0:hostname

The first entry associates a local user id with a netname. The second entry associates a
hostname with a netname.

The netid file field descriptions are as follows:

netname The operating system independent network name for the user or
host. netname has one of two formats. The format used to specify
a host is of the form:

unix.hostname @domain

where hostname is the name of the host and domain is the network
domain name.

The format used to specify a user id is of the form:
unix.uid@domain

where uid is the numerical id of the user and domain is the network
domain name.

uid The numerical id of the user (see passwd(4)). When specifying a
host name, uid is always zero.

group The numerical id of the group the user belongs to (see group(4)).
Several groups, separated by commas, may be listed for a single
uid.

hostname The local hosthame (see hosts(4)).

Blank lines are ignored. Any part of a line to the right of a ‘#’ symbol is treated as a com-
ment.

Here is a sample netid file:

unix.789@West.Sun.COM 789:30,65
unix.123@Bldg_xy.Sun.COM 123:20,1521
unix.candlestick@campusl.bayarea.EDU O:candlestick

SunOS 5.6 4-217

netid (4) File Formats

FILES | /etc/group groups file
/etc/hosts hosts database
/etc/netid netname database
/etc/passwd password file
/etc/publickey public key database

SEE ALSO netname2user(3N), secure_rpc(3N), group(4), hosts(4), nsswitch.conf(4), passwd(4),
publickey(4)

4-218 SunOS 5.6 modified 23 May 1994

File Formats

NAME

SYNOPSIS

DESCRIPTION

netmasks (4)

netmasks — network mask database

/etc/inet/netmasks
/etc/netmasks

The netmasks file contains network masks used to implement IP subnetting. It supports
both standard subnetting as specified in RFC-950 and variable length subnetting as
specified in RFC-1519. When using standard subnetting there should be a single line for
each network that is subnetted in this file with the network number, any number of
SPACE or TAB characters, and the network mask to use on that network. Network
numbers and masks may be specified in the conventional IP °.” (dot) notation (like IP host
addresses, but with zeroes for the host part). For example,

128.32.0.0 255.255.255.0

can be used to specify that the Class B network 128.32.0.0 should have eight bits of subnet
field and eight bits of host field, in addition to the standard sixteen bits in the network
field.

When using variable length subnetting, the format is identical. However, there should be
a line for each subnet with the first field being the subnet and the second field being the
netmask that applies to that subnet. The users of the database, such as ifconfig(1M), per-
form a lookup to find the longest possible matching mask. It is possible to combine the
RFC-950 and RFC-1519 form of subnet masks in the netmasks file. For example,

128.32.0.0 255.255.255.0

128.32.27.0 255.255.255.240
128.32.27.16 255.255.255.240
128.32.27.32 255.255.255.240
128.32.27.48 255.255.255.240
128.32.27.64 255.255.255.240
128.32.27.80 255.255.255.240
128.32.27.96 255.255.255.240
128.32.27.112 255.255.255.240
128.32.27.128 255.255.255.240
128.32.27.144 255.255.255.240
128.32.27.160 255.255.255.240
128.32.27.176 255.255.255.240
128.32.27.192 255.255.255.240
128.32.27.208 255.255.255.240
128.32.27.224 255.255.255.240
128.32.27.240 255.255.255.240
128.32.64.0 255.255.255.192

modified 7 Jan 1997

can be used to specify different netmasks in different parts of the 128.32.0.0 Class B net-
work number. Addresses 128.32.27.0 through 128.32.27.255 have a subnet mask with 28
bits in the combined network and subnet fields (often referred to as the subnet field) and

SunOS 5.6 4-219

netmasks (4)

4-220

SEE ALSO

NOTES

File Formats

4 bits in the host field. Furthermore, addresses 128.32.64.0 through 128.32.64.63 have a 26
bits in the subnet field. Finally, all other addresses in the range 128.32.0.0 through
128.32.255.255 have a 24 bit subnet field.

Invalid entries are ignored.

ifconfig(1M), inet(7P)
Postel, Jon, and Mogul, Jeff, Internet Standard Subnetting Procedure, RFC 950, Network
Information Center, SRI International, Menlo Park, Calif., August 1985.

V. Fuller, T. Li, J. Yu, K. Varadhan, Classless Inter-Domain Routing (CIDR): an Address
Assignment and Aggregation Strategy, RFC 1519, Network Information Center, SRI Interna-
tional, Menlo Park, Calif., September 1993.

T. Pummill, B. Manning, Variable Length Subnet Table For IPv4, RFC 1878, Network Infor-
mation Center, SRI International, Menlo Park, Calif., December 1995.

letc/inet/netmasks is the official SVr4 name of the netmasks file. The symbolic link
/etc/netmasks exists for BSD compatibility.

Sun0S 5.6 modified 7 Jan 1997

File Formats

NAME

DESCRIPTION

EXAMPLES

modified 3 Jul 1990

netrc(4)

netrc — file for ftp remote login data

The .netrc file contains data for logging in to a remote host over the network for file
transfers by ftp(1). This file resides in the user’s home directory on the machine initiating
the file transfer. Its permissions should be set to disallow read access by group and oth-
ers (see chmod(1)).

The following tokens are recognized; they may be separated by SPACE, TAB, or NEWLINE
characters:

machine name
Identify a remote machine name. The auto-login process searches the .netrc file
for a machine token that matches the remote machine specified on the ftp com-
mand line or as an open command argument. Once a match is made, the subse-
guent .netrc tokens are processed, stopping when the EOF is reached or another
machine token is encountered.

login name
Identify a user on the remote machine. If this token is present, the auto-login
process will initiate a login using the specified name.

password string
Supply a password. If this token is present, the auto-login process will supply
the specified string if the remote server requires a password as part of the login
process. Note: if this token is present in the .netrc file, ftp will abort the auto-
login process if the .netrc is readable by anyone besides the user.

account string
Supply an additional account password. If this token is present, the auto-login
process will supply the specified string if the remote server requires an addi-
tional account password, or the auto-login process will initiate an ACCT com-
mand if it does not.

macdef name
Define a macro. This token functions the same as ftp macdef. A macro is
defined with the specified name; its contents begin with the next .netrc line and
continue until a null line (consecutive NEWLINE characters) is encountered. If a
macro named init is defined, it is automatically executed as the last step in the
auto-login process.

A .netrc file containing the following line:
machine ray login demo password mypassword

allows an autologin to the machine ray using the login name demo with password
mypassword.

SunOS 5.6 4-221

netrc(4) File Formats

FILES “/.netrc

SEE ALSO chmod(2), ftp(2), in.ftpd(1M)

4-222 Sun0S 5.6 modified 3 Jul 1990

File Formats

NAME

DESCRIPTION

SEE ALSO

NOTES

modified 22 Feb 1994

networks (4)

networks — network name database

letc/inet/networks
letc/networks

The networks file is a local source of information regarding the networks which comprise
the Internet. The networks file can be used in conjunction with, or instead of, other net-
works sources, including the NIS maps networks.byname and networks.byaddr and the
NIS+ table networks. Programs use the getnetbyname(3N) routines to access this infor-
mation.

The network file has a single line for each network, with the following information:
official-network-name network-number aliases

Items are separated by any number of SPACE and/or TAB characters. A ‘#" indicates the
beginning of a comment; characters up to the end of the line are not interpreted by rou-
tines which search the file. This file is normally created from the official network data-
base maintained at the Network Information Control Center (NIC), though local changes
may be required to bring it up to date regarding unofficial aliases and/or unknown net-
works.

Network numbers may be specified in the conventional dot (*.”) notation using the
inet_network routine from the Internet address manipulation library, inet(7P). Network
names may contain any printable character other than a field delimiter, NEWLINE, or
comment character.

getnetbyname(3N), inet(3N), nsswitch.conf(4), inet(7P)

/etc/inet/networks is the official SVR4 name of the networks file. The symbolic link
/etc/networks exists for BSD compatibility.

SunOS 5.6 4-223

nisfiles (4)

NAME
SYNOPSIS

DESCRIPTION

4-224

File Formats

nisfiles — NIS+ database files and directory structure
Ivar/nis

The Network Information Service Plus (NIS+) uses a memory based, replicated database.
This database uses a set of files in the /var/nis directory for checkpointing to table storage
and for maintaining a transaction log. Additionally, the NIS+ server and client use files in
this directory to store binding and state information.

The NIS+ service implements an authentication and authorization system that is built
upon Secure RPC. In this implementation, the service uses a table named
cred.org_dir.domain-name to store the public and private keys of principals that are
authorized to access the NIS+ namespace. It stores group access information in the sub-
domain groups_dir.domain-name as group objects. These two tables appear as files in the
/var/nis/data directory on the NIS+ server.

Unlike the previous versions of the network information service, in NIS+, the information
in the tables is initially loaded into the service from the ASCII files on the server and then
updated using NIS+ utilities (see nistbladm(1)). Some sites may wish to periodically
regenerate the ASCII files for archival purposes. To do this, a script should be added in
the crontab(1) of the server that lists these tables and creates the ASCII file from the result.

Note: Except for the NIS_COLDSTART and NIS_SHARED_DIRCACHE file, no other files
should be manipulated by commands such as cp(1), mv(1) or rm(1). The transaction log
file keeps logs of all changes made, and hence the files cannot be manipulated indepen-
dently.

The files described below are stored in the /var/nis directory:

NIS_COLDSTART Contains NIS+ directory objects that are to be preloaded into the
NIS+ cache at startup time. This file is usually created at NIS+ ins-
tallation time. See nisinit(1M) or nisclient(1M).

NIS_SHARED_DIRCACHE
Contains the current cache of NIS+ bindings being maintained by
the cache manager. The contents can be viewed with
nisshowcache(1M).

client_info Contains configuration information (preferred servers, options,
etc.) for nis_cachemgr(1M) and (potentially) other NIS+ clients on
the system. It is manipulated by the nisprefadm(1M) command.

.pref_servers A cached copy of preferred server information. It is maintained by
nis_cachemgr. Do not edit this file manually.

trans.log Contains a transaction log that is maintained by the NIS+ service.
It can be viewed using the nislog(1M) command. This file con-
tains holes. Its apparent size may be a lot higher than its actual
size. There is only one transaction log per server.

data.dict A dictionary that is used by the NIS+ database to locate its files. It
is created by the default NIS+ database package.

Sun0S 5.6 modified 7 Jan 1997

File Formats

data.dict.log

data
data/root.object

data/parent.object

data/table_name

data/table_name.log

data/root_dir

data/cred.org_dir
data/groups_dir

data/serving_list

nisfiles (4)

The log file for the database dictionary. When the server is check-
pointed (see the —C option of nisping(1M)), this file will be
deleted.

Contains databases that the server uses.

On root servers, this file contains a directory object that describes
the root of the name space.

On root servers, this file contains a directory object that describes
the parent namespace. This file is created by the nisinit(1M) com-
mand.

For each table in the directory there is a file with the same name
that stores the information about that table. If there are subdirec-
tories within this directory, the database for the table is stored in
the file, table_name.subdirectory.

Contains the database log for the table table_name. The log file
maintains the state of individual transactions to each database.
When a database has been checkpointed (that is, all changes have
been made to the data/table_name stable storage), this log file will
be deleted.

Currently, N1S+ does not automatically do checkpointing. The sys-
tem administrator may want to do nisping—C operations periodi-
cally (such as, once a day) to checkpoint the log file. This can be
done either through a cron(1M) job, or manually.

On root servers, this file stores the database associated with the
root directory. It is similar to other table databases. The
corresponding log file is called root_dir.log.

Table containing the credentials of principals in this NIS+ domain.

Table containing the group authorization objects needed by NIS+
to authorize group access.

Contains a list of all NIS+ directories that are being served by the
NIS+ server on this server. When this server is added or deleted
from any NIS+ directory object, this file is updated by the server.

SEE ALSO cp(1), crontab(1), mv(1), nis(1), nis_cachemgr(1M), niscat(1), nismatch(1), nistbladm(1),

modified 7 Jan 1997

rm(1), cron(1M), nisclient(1M), nisinit(1M), nislog(1M), nisping(1M), nisprefadm(1M),
nisshowcache(1M), nis_db(3N), nis_objects(3N)

SunOS 5.6 4-225

nologin(4)

NAME

SYNOPSIS

DESCRIPTION

SEE ALSO

4-226

File Formats

nologin — message displayed to users attempting to log on in the process of a system
shutdown

/etc/nologin

The /etc/nologin file contains the message displayed to users attempting to log on to a
machine in the process of being shutdown. After displaying the contents of the nologin
file, the login procedure terminates, preventing the user from logging onto the machine.

This procedure is preferable to terminating a user’s session by shutdown shortly after the
user has logged on.

Logins by super-user are not affected by this procedure.

The message contained in the nologin file is editable by super-user. A typical nologin
file contains a message similar to:

NO LOGINS: System going down in 10 minutes.

login(1), rlogin(1), telnet(1), shutdown(1M)

Sun0S 5.6 modified 21 Dec 1995

File Formats note (4)

NAME note - specify legal annotations
SYNOPSIS | /usr/lib/note

DESCRIPTION Each file in this directory contains the NOTE (also _NOTE) annotations legal for a single
tool. The name of the file, by convention, should be the tool vendor’s stock name, fol-
lowed by a hyphen, followed by the tool name. For example, for Sun’s lock_lint tool the
filename should be SUNW-lock_lint.

The file should contain the names of the annotations understood by the tool, one per line.
For example, if a tool understands the following annotations:

NOTE(NOT_REACHED)
NOTE(MUTEX_PROTECTS_DATA(list_lock, list_head))

then its file in /usr/lib/note should contain the entries:

NOT_REACHED
MUTEX_PROTECTS_DATA

Blank lines, and lines beginning with a pound (#), are ignored.

While /usr/lib/note is the default directory tools search for such files, they can be made to
search other directories instead simply by setting environment variable NOTEPATH to
contain the paths, separated by colons, of directories to be searched, e.g.,
/usr/mytool/note:/usr/lib/note.

USAGE | These files are used by such tools whenever they encounter NOTESs they do not under-
stand. If afile in /usr/lib/note contains the annotation, then it is valid. If no such file con-
tains the annotation, then the tool should issue a warning complaining that it might be
invalid.

ENVIRONMENT NOTEPATH specify paths to be searched for annotation files. Paths are separated by
colons (*).

SEE ALSO NOTE(3X)

modified 17 Jan 1995 Sun0S 5.6 4-227

nscd.conf(4)

NAME
SYNOPSIS

DESCRIPTION

4-228

File Formats

nscd.conf — name service cache daemon configuration
/etc/nscd.conf

The nscd.conf file contains the configuration information for nscd(1M). Each line
specifies either an attribute and a value, or an attribute, cachename, and a value. Fields are
separated either by SPACE or TAB characters. A ‘# (number sign) indicates the beginning
of a comment; characters up to the end of the line are not interpreted by nscd.

cachename is represented by hosts, passwd, or groups.
attribute supports the following:

logfile debug-file-name Specifies name of the file to which debug info should be written.
Use /dev/tty for standard output.

debug-level value
Sets the debug level desired. value may range from 0 (the default)
to 10. Use of this option causes nscd(1M) to run in the foreground
and not become a daemon. Note that the output of the debugging
command is not likely to remain the same from release-to-release;
scripts should not rely on its format.

enable-cache cachename value
Enables or disables the specified cache. value may be either yes or
no.

positive-time-to-live cachename value
Sets the time-to-live for positive entries (successful queries) in the
specified cache. value is in integer seconds. Larger values increase
cache hit rates and reduce mean response times, but increase prob-
lems with cache coherence. Note that sites that push (update) NIS
maps nightly can set the value to be the equivalent of 12 hours or
more with very good performance implications.

negative-time-to-live cachename value
Sets the time-to-live for negative entries (unsuccessful queries) in
the specified cache. value is in integer seconds. Can resultin
significant performance improvements if there are several files
owned by uids (user IDs) not in system databases; should be kept
small to reduce cache coherency problems.

suggested-size cachename value
Sets the suggested number of hash buckets in the specified cache.
This parameter should be changed only if the number of entries in
the cache exceeds the suggested size by more than a factor of four
or five. Since this is the internal hash table size, value should
remain a prime number for optimum efficiency.

keep-hot-count cachename value
This attribute allows the administrator to set the number of entries

Sun0S 5.6 modified 6 Mar 1995

File Formats nscd.conf(4)

nscd(1M) is to keep current in the specified cache. value is an
integer number which should approximate the number of entries
frequently used during the day.

check-files cachename value
Enables or disables checking the file belonging to the specified
cachename for changes. If enabled (which is the default), changes in
the corresponding file cause the cache to be invalidated within 10
seconds. Can be disabled if files are never modified for a slight
performance boost, particularly over NFS. value may be either yes
or no.

SEE ALSO nscd(1M), group(4), hosts(4), passwd(4)

WARNINGS | The nscd.conf interface is included in this release on an uncommitted basis only, and is
subject to change or removal in a future minor release.

modified 6 Mar 1995 Sun0S 5.6 4-229

nsswitch.conf(4)

NAME
SYNOPSIS

DESCRIPTION

4-230

File Formats

nsswitch.conf — configuration file for the name service switch
letc/nsswitch.conf

The operating system uses a number of "databases" of information about hosts, users
(passwd/shadow), groups and so forth. Data for these can come from a variety of
sources: host-names and host-addresses, for example, may be found in /etc/hosts, NIS,
NIS+, or DNS. Zero or more sources may be used for each database; the sources and their
lookup order are specified in the /etc/nsswitch.conf file.

The following databases use the switch file:

Database Used by
aliases sendmail(1M)
automount automount(1M)
bootparams rpc.bootparamd(1M)
ethers ethers(3N)
group getgrnam(3C)
hosts gethostbyname(3N)
(See "Interaction with netconfig" below.)
netgroup innetgr(3N)
netmasks ifconfig(1M)
networks getnetbyname(3N)
passwd getpwnam(3C), getspnam(3C)
protocols getprotobyname(3N)
publickey getpublickey(3N), secure_rpc(3N)
rpc getrpcbyname(3N)
sendmailvars sendmail(1M)
services getservbyname(3N)

(See "Interaction with netconfig" below.)
The following sources may be used:

Source Uses

files letc/hosts, /etc/passwd, /etc/shadow and so forth

nis NIS (YP)

nisplus NIS+

dns Valid only for hosts; uses the Internet Domain Name Service.
compat Valid only for passwd and group; implements "+" and "-".

(See "Interaction with +/- syntax" below.) The compat source
may not be supported in future releases.

There is an entry in /etc/nsswitch.conf for each database. Typically these entries will be
simple, such as "protocols: files" or "networks: files nisplus”. However, when multiple
sources are specified, it is sometimes necessary to define precisely the circumstances
under which each source will be tried. A source can return one of the following codes:

SunOS 5.6 modified 28 Apr 1997

File Formats

Interaction with
netconfig

Interaction with FNS

modified 28 Apr 1997

nsswitch.conf(4)

Status Meaning

SUCCESS Requested database entry was found

UNAVAIL Source is not responding or corrupted

NOTFOUND Source responded "no such entry"

TRYAGAIN Source is busy, might respond to retries
For each status code, two actions are possible:

Action Meaning

continue Try the next source in the list

return Return now

The complete syntax of an entry is

<entry> :=<database>":" [<source> [<criteria>]]0]
<criteria> = "[" <criterion>+"]"

<criterion> ::= <status> "=" <action>

<status> :="success" | "notfound" | "unavail" | "tryagain"
<action> :="return" | "continue"

Each entry occupies a single line in the file. Lines that are blank, or that start with white
space, are ignored. Everything on a line following a # character is also ignored; the #
character can begin anywhere in a line, to be used to begin comments. The <database>
and <source> names are case-sensitive, but <action> and <status> names are case-
insensitive.

The library functions contain compiled-in default entries that are used if the appropriate
entry in nsswitch.conf is absent or syntactically incorrect.

The default criteria are to continue on anything except SUCCESS; in other words,
[SUCCESS=return NOTFOUND=continue UNAVAIL=continue TRYAGAIN=continue].

The default, or explicitly specified, criteria are meaningless following the last source in an
entry; and they are ignored, since the action is always to return to the caller irrespective
of the status code the source returns.

In order to ensure that they all return consistent results, gethostbyname(3N),
getservbyname(3N), and netdir_getbyname(3N) functions are all implemented in terms
of the same internal library function. This function obtains the system-wide source
lookup policy for hosts and services based on the inet family entries in netconfig(4) and
uses the switch entries only if the netconfig entries have a "-" in the last column for name-
toaddr libraries. See the NOTES section in gethostbyname(3N) and getservbyname(3N)
for details.

When gethostbyname(3N), gethostbyname_r(3N), or netdir_getbyname(3N) are given a
slash-separated FNS host name to look up (see fns(5) and fns_policies(5)), then the host
is looked up using FNS directly and nsswitch.conf is not consulted.

SunOS 5.6 4-231

nsswitch.conf(4)

Interaction with
NIS+ NIS/YP-
compatibility Mode

Interaction with
server in DNS-
forwarding Mode

Interaction with
Password Aging

Interaction with +/-
syntax

4-232

File Formats

The NIS+ server can be run in "YP-compatibility mode", where it handles NIS (YP)
requests as well as NIS+ requests. In this case, the clients get much the same results
(except for getspnam(3C)) from the "nis" source as from "nisplus”; however, "nisplus" is
recommended instead of "nis".

The NIS (YP) server can be run in "DNS-forwarding mode", where it forwards lookup
requests to DNS for host-names and -addresses that do not exist in its database. In this
case, specifying "nis" as a source for "hosts" is sufficient to get DNS lookups; "dns" need
not be specified explicitly as a source.

Since SunOS 5.3 (Solaris 2.3), the NIS+ server in "NIS/YP-compatibility mode" can also be
run in "DNS-forwarding mode" (see rpc.nisd(1M)). Forwarding is effective only for
requests originating from its YP clients; "hosts" policy on these clients should be
configured appropriately.

When password aging is turned on, only a limited set of possible name services are per-
mitted for the passwd: database in the /etc/nsswitch.conf file:

passwd: files
passwd: files nis
passwd: files nisplus
passwd: compat
passwd: compat

passwd_compat: nisplus

Any other settings will cause the passwd(1) command to fail when it attempts to change
the password after expiration and will prevent the user from logging in. These are the
only permitted settings when password aging has been turned on. Otherwise, you can
work around incorrect passwd: lines by using the -r repository argument to the
passwd(1) command and using passwd -r repository to override the nsswitch.conf set-
tings and specify in which name service you want to modify your password.

Releases prior to SUnOS 5.0 did not have the name service switch but did allow the user
some policy control. In/etc/passwd one could have entries of the form +user (include the
specified user from NIS passwd.byname), -user (exclude the specified user) and + (include
everything, except excluded users, from NIS passwd.byname). The desired behavior was
often "everything in the file followed by everything in NI1S", expressed by a solitary + at
the end of /etc/passwd. The switch provides an alternative for this case ("passwd: files
nis") that does not require + entries in /etc/passwd and /etc/shadow (the latter is a new
addition to SunOS 5.0, see shadow(4)).

If this is not sufficient, the N1S/YP compatibility source provides full +/- semantics. It
reads /etc/passwd for getpwnam(3C) functions and /etc/shadow for getspnam(3C) func-
tions and, if it finds +/- entries, invokes an appropriate source. By default, the source is
"nis", but this may be overridden by specifying "nisplus" as the source for the pseudo-
database passwd_compat.

SunOS 5.6 modified 28 Apr 1997

File Formats

Useful
Configurations

modified 28 Apr 1997

nsswitch.conf(4)

Note that for every /etc/passwd entry, there should be a corresponding entry in the
/etc/shadow file.

The NIS/YP compatibility source also provides full +/- semantics for group; the relevant
pseudo-database is group_compat.

The compiled-in default entries for all databases use NIS (YP) as the enterprise level name
service and are identical to those in the default configuration of this file:

passwd: files nis

group: files nis

hosts: nis [NOTFOUND-=return] files
networks: nis [NOTFOUND-=return] files
protocols: nis [NOTFOUND-=return] files
rpc: nis [NOTFOUND-=return] files
ethers: nis [NOTFOUND-=return] files
netmasks: nis [NOTFOUND-=return] files
bootparams: nis [NOTFOUND-=return] files
publickey: nis [NOTFOUND-=return] files
netgroup: nis

automount: files nis

aliases: files nis

services: files nis

sendmailvars: files

The policy "nis [NOTFOUND-=return] files" implies "if nis is UNAVAIL, continue on to
files, and if nis returns NOTFOUND, return to the caller; in other words, treat nis as the
authoritative source of information and try files only if nis is down." This, and other pol-
icies listed in the default configuration above, are identical to the hard-wired policies in
SunOS releases prior to 5.0.

If compatibility with the +/- syntax for passwd and group is required, simply modify the
entries for passwd and group to:

passwd: compat

group: compat
If NIS+ is the enterprise level name service, the default configuration should be modified
to use nisplus instead of nis for every database on client machines. The file
/etc/nsswitch.nisplus contains a sample configuration that can be copied to
/etc/nsswitch.conf to set this policy.

If the use of +/- syntax is desired in conjunction with nisplus, use the following four
entries:

passwd: compat
passwd_compat: nisplus
group: compat

group_compat: nisplus

SunOS 5.6 4-233

nsswitch.conf(4)

Enumeration --
getXXXent()

FILES

SEE ALSO

4-234

File Formats

In order to get information from the Internet Domain Name Service for hosts that are not
listed in the enterprise level name service, NI1S+, use the following configuration and set
up the /etc/resolv.conf file (see resolv.conf(4) for more details):

hosts: nisplus dns [NOTFOUND-=return] files

Many of the databases have enumeration functions: passwd has getpwent(), hosts has
gethostent(), and so on. These were reasonable when the only source was files but often
make little sense for hierarchically structured sources that contain large numbers of
entries, much less for multiple sources. The interfaces are still provided and the imple-
mentations strive to provide reasonable results, but the data returned may be incomplete
(enumeration for hosts is simply not supported by the dns source), inconsistent (if multi-
ple sources are used), formatted in an unexpected fashion (for a host with a canonical
name and three aliases, the nisplus source will return four hostents, and they may not be
consecutive), or very expensive (enumerating a passwd database of 5,000 users is prob-
ably a bad idea). Furthermore, multiple threads in the same process using the same reen-
trant enumeration function (getXXXent_r() are supported beginning with SunOS 5.3)
share the same enumeration position; if they interleave calls, they will enumerate disjoint
subsets of the same database.

In general, the use of the enumeration functions is deprecated. In the case of passwd,

shadow, and group, it may sometimes be appropriate to use fgetgrent(), fgetpwent(),
and fgetspent() (see getgrnam(3C), getpwnam(3C), and getspnam(3C), respectively),
which use only the files source.

A source named SSS is implemented by a shared object named nss_SSS.so.1 that resides
in /usr/lib.

/etc/nsswitch.conf configuration file

/usr/lib/nss_compat.so.1 implements "compat” source

/usr/lib/nss_dns.so.1 implements "dns" source

/usr/lib/nss_files.so.1 implements "files” source

/usr/lib/nss_nis.so.1 implements "nis" source

/usr/lib/nss_nisplus.so.1 implements "nisplus” source

/etc/netconfig configuration file for netdir(3N) functions that redirects
hosts/devices policy to the switch

/etc/nsswitch.files sample configuration file that uses "files" only

/etc/nsswitch.nis sample configuration file that uses "files" and "nis"

/etc/nsswitch.nisplus sample configuration file that uses "files" and "nisplus”

nis+(1), passwd(1), automount(1M), ifconfig(1M), rpc.bootparamd(1M), rpc.nisd(1M),
sendmail(1M), ethers(3N), getgrnam(3C), gethostbyname(3N), getnetbyname(3N),
getnetgrent(3N), getprotobyname(3N), getpublickey(3N), getpwnam(3C),
getrpcbyname(3N), getservbyname(3N), getspnam(3C), netdir(3N), secure_rpc(3N),
netconfig(4), resolv.conf(4), ypfiles(4), fns(5), fns_policies(5)

SunOS 5.6 modified 28 Apr 1997

File Formats

NOTES

modified 28 Apr 1997

nsswitch.conf(4)

Within each process that uses nsswitch.conf, the entire file is read only once; if the file is
later changed, the process will continue using the old configuration.

Programs that use the getXXbyYY/() functions cannot be linked statically since the imple-
mentation of these functions requires dynamic linker functionality to access the shared
objects /usr/lib/nss_SSS.so.1 at run time.

The use of both nis and nisplus as sources for the same database is strongly discouraged
since both the name services are expected to store similar information and the lookups on
the database may yield different results depending on which name service is operational

at the time of the request.

The compat source may not be supported in future releases.

Misspelled hames of sources and databases will be treated as legitimate names of (most
likely nonexistent) sources and databases.

The following functions do not use the switch: fgetgrent(3C), fgetpwent(3C),
fgetspent(3C), getpw(3C), putpwent(3C), shadow(4).

SunOS 5.6 4-235

order (4)

NAME

DESCRIPTION

NOTES

SEE ALSO

4-236

File Formats

order — package installation order description file

The package installation order file, .order, is an ASCII file specifying the order in which
packages must be installed based on their prerequisite dependencies. Any package with
prerequisite dependencies must be installed after any packages it lists as a prerequisite
dependency in its depend file.

A .order file is required for the OS product. The .order file must reside in the top-level
directory containing the product.

The ordering is specified as a list of package identifiers, from the first package to be
installed to the last, one package identifier per line.

The depend file supports incompatible and reverse dependencies. These dependency types
are not recognized in the order file.

cdtoc(4), clustertoc(4), depend(4), packagetoc(4), pkginfo(4)

Sun0S 5.6 modified 24 Feb 1993

File Formats

NAME

DESCRIPTION

FILES

modified 3 Jul 1990

ott(4)

ott — FACE object architecture information

The FACE object architecture stores information about object-types in an ASCII file named
.ott (object type table) that is contained in each directory. This file describes all of the
objects in that directory. Each line of the .ott file contains information about one object in
pipe-separated fields. The fields are (in order):

name
dname

description
object-type
flags

mod time

object information

the name of the actual system file.

the name that should be displayed to the user, or a dot if it is the
same as the name of the file.

the description of the object, or a dot if the description is the default
(the same as object-type).

the FACE internal object type name.
object specific flags.

the time that FACE last modified the object. The time is given as
number of seconds since 1/1/1970, and is in hexadecimal notation.

an optional field, contains a set of semi-colon separated name=value
fields that can be used by FACE to store any other information neces-
sary to describe this object.

.ott is created in any directory opened by FACE.

SunOS 5.6 4-237

packagetoc (4)

NAME

DESCRIPTION

4-238

File Formats

packagetoc — package table of contents description file

The package table of contents file, .packagetoc, is an ASCII file containing all of the infor-
mation necessary for installing a product release distributed in package form. It central-
izes and summarizes all of the relevant information about each package in the product.
This allows the install software to quickly read one file to obtain all of the relevant infor-
mation about each package instead of having to examine each package at run time to
obtain this information. The .packagetoc file resides in the top-level directory containing
the product.

If a .packagetoc file exists for a product, there must also be a .order file.

Each entry in the .packagetoc file is a line that establishes the value of a parameter in the
following form:

PARAM=value
A line starting with a pound-sign, **#”, is considered a comment and is ignored.

Parameters are grouped by package. The start of a package description is defined by a
line of the form;

PKG=value

There is no order implied or assumed for specifying the parameters for a package with
the exception of the PKG parameter, which must appear first. Only one occurrence of a
parameter is permitted per package.

The parameters recognized are described below. Those marked with an asterisk are
mandatory.

PKGO The package identifier (for example, SUNWaccu). The maximum
length of the identifier is nine characters. All the characters must be
alphanumeric. The first character must be alphabetic. install, new,
and all are reserved identifiers.

PKGDIRO The name of the directory containing the package. This directory is
relative to the directory containing the product.

NAMED The full name of the package.

VENDOR The name of the package’s vendor.

VERSION The version of the package.

PRODNAME The name of the product to which this package belongs.

PRODVERS The version of the product to which this package belongs.

SUNW_PKGTYPE The package type. Valid values are:

root indicates that the package will be installed in the / file system.
The root packages are the only packages installed during
dataless client installations. The root packages are spooled
during a server installation to allow the later installation of
diskless clients.

usr indicates that the package will be installed in the /usr file

Sun0S 5.6 modified 14 Mar 1997

File Formats

modified 14 Mar 1997

ARCHO

DESC
BASEDIR[O
SUNW_PDEPEND

SUNW_IDEPEND

SUNW_RDEPEND

CATEGORY
SUNW_LOC

SUNW_PKGLIST

ROOTSIZED
USRSIZEO
VARSIZEDO
OPTSIZEDO
EXPORTSIZEDO

USROWNSIZED

packagetoc (4)

system.

kvm indicates that the package will be installed in the
/usr/platform file system.

ow indicates a package that is part of the bundled OpenWindows
product release. If no SUNW_PKGTYPE macro is present, the
package is assumed to be of type usr.

The architecture(s) supported by the package. This macro is taken
from the package’s pkginfo(4) file and is subject to the same length
and formatting constraints.

The install program currently assumes that exactly one architecture
token is specified for a package. For example, ARCH=sparc.sun4c is
acceptable, but ARCH=sparc.sun4c, sparc.sun4m is not.

A detailed textual description of the package.
The default installation base directory of the package.

A dependency specification for a prerequisite package. Each prere-
quisite dependency must appear as a separate macro. See depend(4)
for more information on dependencies and instance specifications.

A dependency specification for an incompatible package. Each
incompatible dependency should appear as a separate macro. See
depend(4) for more information on dependencies and instance
specifications.

A dependency specification for a reversed package dependency.
Each reverse dependency should appear as a separate macro. See
depend(4) for more information on dependencies and instance
specifications.

The category of the package.

Indicates that this package contains localizations for other packages.
Such localization packages are treated as special case packages. Each
package which has a SUNW_LOC macro must have a corresponding
SUNW_PKGLIST macro. The value specified by this macro should be
a valid locale.

A comma separated list of package identifiers. Currently this macro
is used to indicate which packages are localized by a localization
package.

The space used by the package in the / file system.

The space used by the package in the /usr subtree of the file system.
The space used by the package in the /var subtree of the file system.
The space used by the package in the /opt subtree of the file system.

The space used by the package in the /export subtree of the file sys-
tem.

The space used by the package in the /usr/openwin subtree of the file

SunOS 5.6 4-239

packagetoc (4)

4-240

EXAMPLES

SEE ALSO

NOTES

File Formats

system.

SPOOLEDSIZEO The space used by the spooled version of this package. This is used
during the setup of a server by the initial system installation pro-
grams.

All sizes are specified in bytes. Default disk partitions and file system sizes are derived
from the values provided: accuracy is important.

The following is an example package entry in a .packagetoc file.

#ident "@(#)packagetoc.4 1.2 92/04/28"
PKG=SUNWaccr
PKGDIR=SUNWaccr
NAME=System Accounting, (Root)
VENDOR=Sun Microsystems, Inc.
VERSION=8.1
PRODNAME=SunOS
PRODVERS=5.0beta2
SUNW_PKGTYPE=root
ARCH=sparc

DESC=System Accounting, (Root)
BASEDIR=/

CATEGORY=system
ROOTSIZE=11264

VARSIZE= 15360

OPTSIZE=0

EXPORTSIZE=0

USRSIZE=0

USROWNSIZE=0

cdtoc(4), clustertoc(4), depend(4), order(4), pkginfo(4), pkgmap(4)

The parameters NAME, VENDOR, VERSION, PRODNAME, PRODVERS, SUNW_PKGTYPE,
SUNW_LOC, SUNW_PKGLIST, ARCH, DESC, BASEDIR, and CATEGORY are assumed to
have been taken directly from the package’s pkginfo(4) file. The length and formatting
restrictions placed on the values for these parameters are identical to those for the
corresponding entries in the pkginfo(4) file.

The value specified for the parameter PKGDIR should not exceed 255 characters.

The value specified for the parameters ROOTSIZE, VARSIZE, OPTSIZE, EXPORTSIZE,
USRSIZE and USROWNSIZE must be a single integer value. The values can be derived
from the package’s pkgmap file by counting all space consumed by any files installed in
the applicable file system. The space includes that used for directory entries and any UFS
overhead that exists because of the way the files are represented (directory allocation
scheme; direct, indirect, double indirect blocks; fragments; etc.)

Sun0S 5.6 modified 14 Mar 1997

File Formats packagetoc (4)

The following kinds of entries in the pkgmap(4) file should be included in the space
derivation:

f regular file
character special file
block special file
pipe

hard link

symbolic link

,d directory

packaging installation script or information file (copyright, depend, postinstall,
postremove)

- X0 —5T oo

modified 14 Mar 1997 Sun0S 5.6 4-241

packingrules(4)

NAME
SYNOPSIS

DESCRIPTION

4-242

File Formats

packingrules — packing rules file for cachefs and filesync
$HOME/.packingrules

$HOME/.packingrules is a packing rules file for filesync and cachefspack.
$HOME/.packingrules contains a list of directories and files that are to be packed and
synchronized. It also contains a list of directories and files that are to be specifically
excluded from packing and synchronization. See filesync(1) and cachefspack(1M).

The $HOME/.packingrules file is automatically created if users invoke filesync with
filename arguments. By using filesync options, users can augment the packing rules in
$HOME/.packingrules.

Many users choose to manually create the packing rules file and edit it by hand. Users
can edit SHOME/.packingrules (using any editor) to permanently change the
$HOME/.packingrules file, or to gain access to more powerful options that are not avail-
able from the command line (such as IGNORE commands). It is much easier to enter
complex wildcard expressions by editing the $SHOME/.packingrules file.

Blank lines and lines that begin with a pound sign (‘#’) are ignored.
Any line can be continued by placing a backslash (‘\") immediately before the NEWLINE.
All other lines in the $HOME/.packingrules file have one of the following formats:

PACKINGRULES major. minor. This line is not actually required,
but it should be the first line of every packing
rules file. This line identifies the packing rules
file for the file(1) command and specifies a for-
mat version number. The current version
number is 1.1. See file(1).

BASE directory-1 [directory-2] This line identifies a directory (or pair of direc-
tories) under which files should be packed and
synchronized. At least one directory name must
be specified. For rules that are to be used by
filesync a second directory name (where the
copies are to be kept) must also be specified. The
arguments must be fully qualified path names,
and may include environment variables.

LIST name ... This line enumerates a list of files and sub-
directories (beneath the current BASE) that are to
be kept synchronized. This specification is recur-
sive, in that specifying the name of a directory
automatically includes all files and subdirectories
it contains. Regular expressions (as described in
glob and gmatch) are permitted. See glob(1) and
gmatch(3).

Sun0S 5.6 modified 23 Dec 1996

File Formats

EXAMPLES

modified 23 Dec 1996

packingrules(4)

IGNORE name ... This line enumerates a list of files that are not to
be kept synchronized. Regular expressions
(using glob and gmatch) are permitted.

There are important differences between the arguments to LIST and IGNORE statements.
The arguments to a LIST statement can contain slashes and are interpreted as file names
relative to the BASE directories. The arguments to an IGNORE statement are simpler
names or expressions that cannot contain slashes. An IGNORE statement will not over-
ride a LIST statement. IGNORE statements only exclude files that are found beneath
LISTed directories.

If the first name argument to a LIST statement begins with an exclamation point (‘!"), the
remainder of the statement will be executed as a command. The command will be run in
the current BASE directory. The output of the command will be treated as a list of new-
line separated file names to be packed/synchronized. The resulting file names will be
interpreted relative to the enclosing BASE directory.

If the first name argument to an IGNORE statement begins with an exclamation point (‘!"),
the remainder of the statement will be executed as a command. The command will be
run in the current BASE directory. The command will be expected to figure out which
names should not be synchronized. The output of the command will be treated as a list
of newline separated file names that should be excluded from the packing and synchroni-
zation list.

Commands will be broken into distinct arguments and run directly with sh —c. Blanks
can be embedded in an argument by escaping them with a backslash (“\’) or enclosing the
argument in double quotes (* "). Double quotes can be passed in arguments by escaping
the double quotes with a backslash (*\").

LIST lines only apply to the BASE statement that precedes them. IGNORE lines can
appear before any BASE statement (in which case they apply to all BASES) or after a BASE
statement (in which case they only apply to the BASE that precedes them). Any number
of these statements can occur in any combination. The order is not important.

The use of these statements is illustrated in the following $SHOME.packingrules file.

#

junk files, not worth copying
#

IGNORE core o Obak [

#

most of the stuff | want to keep in sync is in my $HOME
#

BASE /net/bigserver/export/home/myname $HOME

everything in my work sub-directory should be maintained
LIST work

SunOS 5.6 4-243

packingrules(4)

4-244

SEE ALSO

File Formats

a few of my favorite mail boxes should be replicated
LIST m/incoming

LIST m/action

LIST m/pending

#

1 like to carry around a couple of project directories
but skip all the postscript output

#

BASE /net/bigserver/export/projects $HOME/projects
LIST poindexter epiphany

IGNORE [ps

#

the foonly package should always be kept on every machine
#

BASE /net/bigserver/opt/foonly /opt/foonly

LIST !cat .packinglist

#

and the latest executables for the standard build environment
#

BASE /net/bigserver/export/buildenv $HOME/buildenv

LIST !find . -type f -a -perm -111 -a -print

file(1), filesync(1), cachefspack(1M)

Sun0S 5.6 modified 23 Dec 1996

File Formats

NAME
SYNOPSIS

DESCRIPTION

Simplified
PAM.CONF
configuration file

modified 10 Mar 1997

pam.conf(4)

pam.conf — configuration file for pluggable authentication modules
/etc/pam.conf

pam.conf is the configuration file for the Pluggable Authentication Module architecture,
or PAM. A PAM module provides functionality for one or more of four possible services:
authentication, account management, session management, and password management.
An authentication service module provides functionality to authenticate a user and set up
user credentials. A account management module provides functionality to determine if
the current user’s account is valid. This includes checking for password and account
expiration, as well as verifying access hour restrictions. A session management module
provides functionality to set up and terminate login sessions. A password management
module provides functionality to change a user’s authentication token or password. Each
of the four service modules can be implemented as a shared library object which can be
referenced in the pam.conf configuration file.

The pam.conf file contains a listing of services. Each service is paired with a correspond-
ing service module. When a service is requested, its associated module is invoked. Each
entry has the following format:

<service_name> <module_type> <control_flag> <module_path> <options>

Below is an example of the pam.conf configuration file with support for authentication,
account management, and session management modules.

login auth required /usr/lib/security/pam_unix.so.1 debug
login session required /usr/lib/security/pam_unix.so.1l
login account required /usr/lib/security/pam_unix.so.1l
telnet session required /usr/lib/security/pam_unix.so.1
other auth required /usr/lib/security/pam_unix.so.1
other passwd required /usr/lib/security/pam_unix.so.1

The service_name denotes the service (for example, login, dtlogin, or rlogin). The key-
word, other, indicates the module all other applications which have not been specified
should use. The other keyword can also be used if all services of the same module_type
have the same requirements. In the example above, since all of the services use the same
session module, they could have been replace by a single other line.

module_type denotes the service module type: authentication (auth), account management
(account), session management (session), or password management (password).

The control_flag field determines the behavior of stacking, and will be discussed in more
detail below.

The module_path field specifies the pathname to a shared library object which implements
the service functionality. If the pathname is not absolute, it is assumed to be relative to
/usr/lib/security.

SunOS 5.6 4-245

pam.conf(4)

Integrating Multiple
Authentication
Services With
Stacking

4-246

File Formats

The options field is used by the PAM framework layer to pass module specific options to
the modules. It is up to the module to parse and interpret the options. This field can be
used by the modules to turn on debugging or to pass any module specific parameters
such as a TIMEOUT value. It can also be used to support unified login. The options sup-
ported by the modules are documented in their respective manual pages. For example,
pam_unix(5) lists the options accepted by the UNIX module.

When a service_name of the same module_type is defined more than once, the service is
said to be stacked. Each module referenced in the module_path for that service is then pro-
cessed in the order that it occurs in the configuration file. The control_flag field specifies
the continuation and failure semantics of the modules, and may be requisite, required,
optional, or sufficient.

The PAM framework processes each service module in the stack. If all requisite and
required modules in the stack succeed, then success is returned, and optional and sufficient
error values are ignored. If one or more requisite or required modules fail, then the error
value from the first requisite or required module that failed is returned.

If none of the service modules in the stack are designated as requisite or required, then the
PAM framework requires that at least one optional or sufficient module succeed. If all fail
then the error value from the first service module in the stack is returned.

The requisite and sufficient flags cause two exceptions to the above semantics. If a service
module that is designated as requisite fails, then the PAM framework immediately returns
an error to the application, and all subsequent service modules in the stack are ignored.
If a prior required service module has failed, then that error is returned. If no prior
required service module failed, then the error from the failed requisite service module is
returned.

If a service module that is designated as sufficient succeeds, then the PAM framework
immediately returns success to the application, and all subsequent services modules in
the stack, even requisite and required ones, are ignored, given that all prior requisite and
required modules have also succeeded. If a prior required module has failed, then the error
value from that module is returned.

If any entry in pam.conf is incorrect, or if a module does not exist or cannot be opened,
then all PAM services will fail and users will not be permitted access to the system. An
error will be logged through syslog(3) at the LOG_CRIT level. To fix incorrect entries in
pam.conf, a system administrator may boot the system in maintenance mode (single
user) to edit the file. Below is a sample configuration file that stacks the su, login, and
rlogin services.

su auth requisite /usr/lib/security/pam_inhouse.so.1
su auth required /usr/lib/security/pam_unix.so.1 debug
login auth required /usr/lib/security/pam_unix.so.1l debug

login auth optional /usr/lib/security/pam_inhouse.so.1
rlogin auth sufficient /usr/lib/security/pam_rhosts_auth.so.1l
rlogin auth required /usr/lib/security/pam_unix.so.1l

Sun0S 5.6 modified 10 Mar 1997

File Formats

Utilities and Files

EXAMPLES

modified 10 Mar 1997

pam.conf(4)

In the case of su, the user is authenticated by the Inhouse and UNIX authentication
modules. Because the Inhouse and UNIX authentication modules are requisite and
required, respectively, an error is returned back to the application if either module fails.

In addition, if the requisite authentication (Inhouse authentication) fails, the UNIX authen-
tication module is never invoked, and the error is returned immediately back to the
application.

In the case of login, the required keyword for control_flag requires that the user be allowed
to login only if the user is authenticated by the UNIX service module. If UNIX authenti-
cation fails, control continues to proceed down the stack, and the Inhouse authentication
module is invoked. Inhouse authentication is optional by virtue of the optional keyword
in the control_flag field. The user can still log in even if Inhouse authentication fails,
assuming the UNIX authentication succeeded.

In the case of rlogin, the sufficient keyword for control_flag specifies that if the rhosts
authentication check succeeds, then PAM should return success to rlogin and rlogin
should not prompt the user for a password. The UNIX authentication module, which is
the next module in the stack, will only be invoked if the rhosts check fails. This gives the
system administrator the flexibility to determine if rhosts alone is sufficient enough to
authenticate a remote user.

Some modules may return PAM_IGNORE in certain situations. In these cases the PAM

framework ignores the entire entry in pam.conf regardless of whether or not it is
requisite, required, optional or sufficient.

A following is a list of the utilities that are known to use PAM: include: login, passwd, su,
rlogind, rshd, telnetd, ftpd, rpc.rexd, uucpd, init, sac, and ttymon.

The utility dtlogin also uses PAM. Note however that dtlogin is the login service utility
for the Common Desktop Environment (CDE).

The PAM configuration file does not dictate either the name or the location of the service
specific modules. The convention, however, is the following:

/usr/lib/security/pam_<module_name>.s0.x
Implements various function of specific authentication services.

/etc/pam.conf Configuration file.
/usr/lib/libpam.so.1 Implements the PAM framework library.

The following is a sample pam.conf configuration file. Lines that begin with the # symbol
are treated as comments, and therefore ignored.

#

PAM configuration

#

Authentication management for login service is stacked.

Both UNIX and inhouse authentication functions are invoked.

login auth required /usr/lib/security/pam_unix.so.1
login auth required /usr/lib/security/pam_inhouse.so.1 try first_pass
dtlogin auth required /usr/lib/security/pam_unix.so.1

SunOS 5.6 4-247

pam.conf(4) File Formats

dtlogin auth required /usr/lib/security/pam_inhouse.so.1 try first_pass

#
Authentication management for rlogin service is stacked.
If the rhost check succeeds, do not continue

rlogin auth sufficient /usr/lib/security/pam_rhosts_auth.so.l
rlogin auth required /usr/lib/security/pam_unix.so.1

#

Other services use UNIX authentication

other auth required /usr/lib/security/pam_unix.so.1

#

Account management for login service is stacked.

UNIX account management is required

Inhouse account management is optional

login account required /usr/lib/security/pam_unix.so.1
login account optional /usr/lib/security/pam_inhouse.so.1
dtlogin account required /usr/lib/security/pam_unix.so.1l
dtlogin account optional /usr/lib/security/pam_inhouse.so.1
other account required /usr/lib/security/pam_unix.so.1
#

Session management

other session required /usr/lib/security/pam_unix.so.1

#

Password management

other password required /usr/lib/security/pam_unix.so.1

ATTRIBUTES | See attributes(5) for description of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE
MT Level MT-Safe with exceptions

SEE ALSO login(1), passwd(1), in.ftpd(1M), in.rlogind(1M), in.rshd(1M), in.telnetd(1M),
in.uucpd(1M), init(1M), rpc.rexd(1M), sac(1M), su(1M), ttymon(1M), pam(3), syslog(3),
libpam(4), attributes(5), pam_unix(5)

NOTES | The interfaces in libpam() are MT-Safe only if each thread within the multi-threaded
application uses its own PAM handle.

4-248 Sun0S 5.6 modified 10 Mar 1997

File Formats

NAME

SYNOPSIS

DESCRIPTION

modified 27 Nov 1995

passwd (4)

passwd — password file
/etc/passwd

/etc/passwd is a local source of information about users’ accounts. The password file can
be used in conjunction with other password sources, including the NIS maps
passwd.byname and passwd.bygid and the NIS+ table passwd. Programs use the
getpwnam(3C) routines to access this information.

Each passwd entry is a single line of the form:
username:password:uid:gid:gcos-field :home-dir:login-shell

where

username is the user’s login name. It is recommended that this field conform to
the checks performed by pwck(1M).

password is an empty field. The encrypted password for the user is in the
corresponding entry in the /etc/shadow file. pwconv(1M) relies on a
special value of 'x’ in the password field of /etc/passwd. If this value
of "X’ exists in the password field of /etc/passwd, this indicates that the
password for the user is already in /etc/shadow and should not be
modified.

uid is the user’s unique numerical 1D for the system.
gid is the unique numerical ID of the group that the user belongs to.

gcos-field is the user’s real name, along with information to pass along in a
mail-message heading. (It is called the gcos-field for historical rea-
sons.) An “&’ (ampersand) in this field stands for the login name (in
cases where the login name appears in a user’s real name).

home-dir is the pathname to the directory in which the user is initially posi-
tioned upon logging in.

login-shell is the user’s initial shell program. If this field is empty, the default
shell is /usr/bin/sh.

The maximum value of the uid and gid fields is 2147483647. To maximize interoperability
and compatibility, administrators are recommended to assign users a range of UIDs and
GIDs below 60000 where possible.

The password file is an ASCII file. Because the encrypted passwords are always kept in
the shadowv file, /etc/passwd has general read permission on all systems and can be used
by routines that map between numerical user IDs and user hames.

Previous releases used a password entry beginning with a ‘+’ (plus sign) or ‘=’ (minus
sign) to selectively incorporate entries from NIS maps for password. If still required, this
is supported by specifying “passwd : compat’ in nsswitch.conf(4). The "compat" source
may not be supported in future releases. The preferred sources are, "files" followed by
"nisplus”. This has the effect of incorporating the entire contents of the NIS+ passwd

SunOS 5.6 4-249

passwd (4) File Formats

table after the password file.

EXAMPLES Here is a sample passwd file:

root:q.mJzTnu8icF.:0:10:God:/:/bin/csh
fred:6k/7TKCFRPNVXQ:508:10:% Fredericks:/usr2/fred:/bin/csh

and the sample password entry from nsswitch.conf:

passwd: files nisplus

In this example, there are specific entries for users root and fred to assure that they can
login even when the system is running single-user. In addition, anyone in the NIS+ table
passwd will be able to login with their usual password, shell and home directory.

If the password file is:

root:q.mJzTnu8icF.:0:10:God:/:/bin/csh
fred:6k/7TKCFRPNVXQ:508:10:% Fredericks:/usr2/fred:/bin/csh
+

and the password entry from nsswitch.conf is:

passwd: compat

then all the entries listed in the NIS passwd.byuid and passwd.byname maps will be
effectively incorporated after the entries for root and fred.

FILES /etc/nsswitch.conf
/etc/passwd
letc/shadow

SEE ALSO chgrp(1), chown(1), groups(1), login(1), makekey(1), newgrp(1), nispasswd(1),
passwd(1), sh(1), sort(1), chown(1M), domainname(1M), getent(1M), in.ftpd(1M),
passmgmt(1M), pwck(1M), pwconv(1M), su(1M), useradd(1M), userdel(1M),
usermod(1M), a641(3C), crypt(3C), getpw(3C), getpwnam(3C), getspnam(3C),
putpwent(3C), group(4), hosts.equiv(4), nsswitch.conf(4), shadow(4), unistd(4),
environ(5)

System Administration Guide

4-250 Sun0S 5.6 modified 27 Nov 1995

File Formats

NAME

SYNOPSIS

DESCRIPTION

FILES

SEE ALSO

NOTES

modified 3 Jul 1990

pathalias (4)

pathalias — alias file for FACE
/usr/vmsys/pathalias

The pathalias files contain lines of the form alias=path where path can be one or more
colon-separated directories. Whenever a FACE (Framed Access Command Environment,
see face(1)) user references a path not beginning with a *“/”’, this file is checked. If the first
component of the pathname matches the left-hand side of the equals sign, the right-hand
side is searched much like $PATH variable in the system. This allows users to reference
the folder SHOME/FILECABINET by typing filecabinet.

There is a system-wide pathalias file called $YMSYS/pathalias, and each user can also
have local alias file called $HOME/pref/pathalias. Settings in the user alias file override
settings in the system-wide file. The system-wide file is shipped with several standard
FACE aliases, such as filecabinet, wastebasket, preferences, other_users, etc.

$HOME/pref/pathalias
$VMSYS/pathalias

face(1)

Unlike command keywords, partial matching of a path alias is not permitted, however,
path aliases are case insensitive. The name of an alias should be alphabetic, and in no
case can it contain special characters like **/””, *“\"’, or **="". There is no particular limit on
the number of aliases allowed. Alias files are read once, at login, and are held in core
until logout. Thus, if an alias file is modified during a session, the change will not take
effect until the next session.

SunOS 5.6 4-251

path_to_inst(4)

NAME
SYNOPSIS

DESCRIPTION

EXAMPLES

FILES
SEE ALSO

WARNINGS

4-252

File Formats

path_to_inst — device instance number file
/etc/path_to_inst

/etc/path_to_inst records mappings of physical device names to instance numbers.

The instance number of a device is encoded in its minor number, and is the way that a
device driver determines which of the possible devices that it may drive is referred to by
a given special file.

In order to keep instance numbers persistent across reboots, the system records them in
/etc/path_to_inst.

This file is read only at boot time, and is updated by add_drv(1M) and drvconfig(1M).

Note that it is generally not necessary for the system administrator to change this file, as
the system will maintain it.

The system administrator can change the assignment of instance numbers by editing this
file and doing a reconfiguration reboot. However, any changes made in this file will be
lost if add_drv(1M) or drvconfig(1M) is run before the system is rebooted.

Each instance entry is a single line of the form:
"physical name" instance number "driver binding name"

where
physical name is the absolute physical pathname of a device. This path-
name must be enclosed in double quotes.
instance number is a decimal or hexadecimal number.

driver binding name is the name used to determine the driver for the device.
This name may be a driver alias or a driver name. The
driver binding name must be enclosed in double quotes.

Here are some sample path_to_inst entries:
"liommu@f,e0000000" 0 "iommu"
"liommu@f,e0000000/sbus@f,e0001000" 0 "sbus"
"liommu@f,e0000000/sbus@f,e0001000/sbusmem@e,0" 14 "sbusmem"
"liommu@f,e0000000/sbus@f,e0001000/sbusmem@f,0" 15 "sbusmem"
"liommu@f,e0000000/sbus@f,e0001000/ledma@f,400010" 0 "ledma"
"/obio/serial@0,100000" 0 "zs"
"/SUNW,sx@f,80000000" 0 "SUNW,sx"

letc/path_to_inst
add_drv(1M), boot(1M), drvconfig(1M), mknod(1M)
If the file is removed the system may not be bootable (as it may rely on information found

in this file to find the root, usr or swap device). If it does successfully boot, it will regen-
erate the file, but after rebooting devices may end up having different minor numbers

Sun0S 5.6 modified 2 Nov 1995

File Formats

NOTES

modified 2 Nov 1995

path_to_inst(4)

than they did before, and special files created via mknod(1M) may refer to different dev-
ices than expected.

For the same reasons, changes should not be made to this file without careful considera-
tion.

This document does not constitute an API. path_to_inst may not exist or may have a dif-
ferent content or interpretation in a future release. The existence of this notice does not
imply that any other documentation that lacks this notice constitutes an API.

SunOS 5.6 4-253

pci(4)

NAME

DESCRIPTION

4-254

File Formats

pci — configuration files for PCI device drivers

The Peripheral Component Interconnect (PCI) bus is a little endian bus. PCI devices are
self-identifying — that is to say the PCI device provides configuration parameters to the
system which allows the system to identify the device and its driver. The configuration
parameters are represented in the form of name-value pairs that can be retrieved using
the DDI property interfaces. See ddi_prop_lookup(9F) for details.

The PCI bus properties are derived from PCI Configuration Space, or supplied by the
Fcode PROM if it exists. Therefore, driver configuration files are not necessary for these
devices.

However, on some occasions, drivers for PCI devices may use driver configuration files to
provide driver private properties. This can be done through global property mechanism.
See driver.conf(4) for further details. Driver configuration files can also be used to aug-
ment or override properties for a specific instance of a driver.

All bus drivers of class pci recognize the following properties:

reg An arbitrary length array where each element of the array consists of a
5-tuple of 32-bit values. Each array element describes a logically con-
tiguous mappable resource on the PCI bus.

The first 3 values in the 5-tuple describe the PCI address of the mappable
resource. The first tuple contains the following information:

Bits0-7 8-bit Register number

Bits 8- 10 3-bit Function number

Bits11-15 5-bit Device number

Bits 16 -23 8-bit Bus number

Bits 24-25 2-bit Address Space type identifier

The Address Space type identifier may be interpreted as follows:
0x0 Configuration Space

0x1 1/O Space

0x2 32-bit Memory Space address

0x3 64-bit Memory Space address

The Bus number is a unique identifying number assigned to each PCI
bus within a PCI domain.

The Device number is a unique identifying number assigned to each PCI
device on a PCI bus. Note that a Device number is only unique within
the set of Device numbers for a particular bus.

Each PCI device can have 1 to 8 logically independent functions, each
with its own independent set of configuration registers. Each function
on a device is assigned a Function number. For a PCI device with only
one function, the Function number must be 0.

The Register number field selects a particular register within the set of
configuration registers corresponding to the selected function.

Sun0S 5.6 modified 4 Mar 1997

File Formats

EXAMPLES

modified 4 Mar 1997

pci(4)

The second and third values in the reg property 5-tuple specify the 64-
bit address of the mappable resource within the PCI address domain.
The second 32-bit tuple corresponds to the high order 4 bytes of the 64-
bit address. The third 32-bit tuple corresponds to the low order bytes.

The fourth and fifth 32-bit values in the 5-tuple reg property specify the
size of the mappable resource. The size is a 64-bit value where the
fourth tuple corresponds to the high order bytes of the 64-bit size and
the fifth corresponds to the low order.

The driver can refer to the elements of this array by index, and construct
kernel mappings to these addresses using ddi_regs_map_setup(9F).
The index into the array is passed as the rnumber argument of
ddi_regs_map_setup(9F).

interrupts This property consists of a single integer element array. Valid interrupt
property values are 1, 2, 3, and 4. This value is derived directly from the
contents of the device’s Configuration Interrupt Pin register.

A driver should use an index value of 0 when registering its interrupt
handler with ddi_add_intr(9F).
All PCI devices support the reg property. The Device number and Function number as

derived from the reg property are used to construct the address part of the device name
under /devices.

Only devices that generate interrupts support an interrupts property.

Occasionally it may be necessary to override or augment the configuration information
supplied by a PCI device. This can be achieved by writing a driver configuration file that
describes a prototype device node specification containing the additional properties
required.

For the system to merge the prototype node specification into an actual device node, cer-
tain conditions must be met. First, the name property must be identical. Second, the
parent property must identify the PCI bus. Third, the unit-address property must iden-
tify the card. The format of the unit-address property is

DD[,F]

where DD is the device number and F is the function number. If the function number is
0, only DD is specified.

An example configuration file called ACME,scsi-hba.conf for a PCI driver called

ACME,scsi-hba follows:

#
Copyright (c) 1995, ACME SCSI Host Bus Adaptor
#ident "@(#)ACME,scsi-hba.conf 1.1 96/02/04"

name="ACME,scsi-hba" parent="/pci@1,0/pci@1f,4000"
unit-address="3" scsi-initiator-id=6;

hba-advanced-mode="on";

SunOS 5.6 4-255

pci(4)

4-256

ATTRIBUTES

SEE ALSO

File Formats

hba-dma-speed=10;

In this example, we provide a property scsi-initiator-id to specify the SCSI bus initiator id
that the adapter should use, for just one particular instance of adapter installed in the
machine. We use the name property to identify the driver and the parent property to
identify the particular bus the card is plugged into. This example uses the parent’s full
path name to identify the bus. The unit-address property identifies the card itself, with
device number of 3 and function number of 0.

Two global driver properties are also created: hba-advanced-mode (which has the string
value on) and hba-dma-speed (which has the value 10 M bit/s). These properties apply

to all device nodes of the ACME,scsi-hba. The following is an example configuration file
called ACME,foo.conf for a PCI driver called ACME,foo;

#
Copyright (c) 1996, ACME Foo driver
#ident "@#)ACME,foo.conf 1.1 95/11/14"

name="ACME,foo" class="pci" unit-address="3,1"
debug-mode=12;

In this example, we provide a property debug-mode for all instances of the ACME,foo
driver with parents of class pci and device and function numbers of 3 and 1, respectively.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE
Architecture SPARC, x86

driver.conf(4), attributes(5), ddi_add_intr(9F), ddi_prop_lookup(9F),
ddi_regs_map_setup(9F)

Writing Device Drivers
IEEE 1275 PCI Bus Binding

Sun0S 5.6 modified 4 Mar 1997

File Formats pcmcia(4)

NAME pcmcia - PCMCIA nexus driver

DESCRIPTION The PCMCIA nexus driver supports PCMCIA card client device drivers. There are no
user-configurable options for this driver.

FILES | /kernel/misc/pcmcia pcmcia driver

SEE ALSO pcmciad(1M)

modified 19 Jul 1996 SunOS 5.6 4-257

phones(4)

NAME
SYNOPSIS

DESCRIPTION

FILES

SEE ALSO

4-258

File Formats

phones — remote host phone number database
/etc/phones

The file /etc/phones contains the system-wide private phone numbers for the tip(1) pro-
gram. /etc/phones is normally unreadable, and so may contain privileged information.
The format of /etc/phones is a series of lines of the form:

<system-name>[\t]Ckphone-number>.

The system name is one of those defined in the remote(4) file and the phone number is
constructed from [0123456789—-=[%%]. The ‘=" and ‘0 characters are indicators to the auto
call units to pause and wait for a second dial tone (when going through an exchange).
The ‘=" is required by the DF02-AC and the ‘0 is required by the BIZzCOMP 1030.

Comment lines are lines containing a ‘#’ sign in the first column of the line.

Only one phone number per line is permitted. However, if more than one line in the file
contains the same system name tip(1) will attempt to dial each one in turn, until it estab-
lishes a connection.

/etc/phones

tip(1), remote(4)

Sun0S 5.6 modified 14 Jan 1992

File Formats

NAME

DESCRIPTION

modified 7 Feb 1997

pkginfo(4)

pkginfo — package characteristics file

pkginfo is an ASCII file that describes the characteristics of the package along with infor-
mation that helps control the flow of installation. It is created by the software package

developer.

Each entry in the pkginfo file is a line that establishes the value of a parameter in the fol-

lowing form:

PARAM="value"

There is no required order in which the parameters must be specified within the file.
Each parameter is described below. Only fields marked with an asterisk are mandatory.

PKGO

NAMED

ARCHO

VERSIONDO

CATEGORYUO

DESC

VENDOR

HOTLINE

Abbreviation for the package being installed. All characters in the
abbreviation must be alphanumeric and the first may not be numeric.
The abbreviation is limited to a maximum length of nine characters.
install, new, and all are reserved abbreviations. It is customary to
make the first four letters unique to your company, such as the
company’s stock symbol.

Text that specifies the package hame (maximum length of 256 ASCII
characters).

A comma-separated list of alphanumeric tokens that indicate the archi-
tecture associated with the package. The pkgmk(1) tool may be used
to create or modify this value when actually building the package. The
maximum length of a token is 16 characters and it cannot include a
comma.

Text that specifies the current version associated with the software
package. The maximum length is 256 ASCII characters and the first
character cannot be a left parenthesis. The pkgmk(1) tool may be used
to create or modify this value when actually building the package.

A comma-separated list of categories under which a package may be
displayed. A package must at least belong to the system or application
category. Categories are case-insensitive and may contain only
alphanumerics. Each category is limited in length to 16 characters.

Text that describes the package (maximum length of 256 ASCII charac-
ters).

Used to identify the vendor that holds the software copyright (max-
imum length of 256 ASCII characters).

Phone number and/or mailing address where further information may
be received or bugs may be reported (maximum length of 256 ASCII
characters).

SunOS 5.6 4-259

pkginfo(4)

EMAIL

VSTOCK

CLASSES

ISTATES
RSTATES

BASEDIR

ULIMIT

ORDER

MAXINST

PSTAMP

INTONLY

4-260

File Formats

An electronic address where further information is available or bugs
may be reported (maximum length of 256 ASCII characters).

The vendor stock number, if any, that identifies this product (max-
imum length of 256 ASCII characters).

A space-separated list of classes defined for a package. The order of
the list determines the order in which the classes are installed. Classes
listed first will be installed first (on a media by media basis). This
parameter may be modified by the request script.

A list of allowable run states for package installation (for example, "S's
1!!).

A list of allowable run states for package removal (for example, 'S s
1!!).

The pathname to a default directory where ““relocatable’ files may be
installed. If blank, the package is not relocatable and any files that have
relative pathnames will not be installed. An administrator can override
the default directory.

If set, this parameter is passed as an argument to the ulimit(1) com-
mand (see limit(1)), which establishes the maximum size of a file dur-
ing installation.

A list of classes defining the order in which they should be put on the
medium. Used by pkgmk(1) in creating the package. Classes not
defined in this field are placed on the medium using the standard ord-
ering procedures.

The maximum number of package instances that should be allowed on
a machine at the same time. By default, only one instance of a package
is allowed. This parameter must be set in order to have multiple
instances of a package.

Production stamp used to mark the pkgmap(4) file on the output
volumes. Provides a means for distinguishing between production
copies of a version if more than one is in use at a time. If PSTAMP is
not defined, the default is used. The default consists of the UNIX sys-
tem machine name followed by the string "YYMMDDHHMM" (year,
month, date, hour, minutes).

Indicates that the package should only be installed interactively when
set to any non-NULL value.

Sun0S 5.6 modified 7 Feb 1997

File Formats pkginfo(4)

EXAMPLES Here is a sample pkginfo file:
PKG="oam"

NAME="OAM Installation Utilities"
VERSION="3"
VENDOR="AT&T"
HOTLINE="1-800-ATT-BUGS"
EMAIL="attunix!olsen"
VSTOCK="0122c3f5566"
CATEGORY="system.essential"
ISTATES="S 2"

RSTATES="S 2"

SEE ALSO limit(1), pkgmk(1), pkgmap(4)
Application Packaging Developer’s Guide

NOTES Developers may define their own installation parameters by adding a definition to this
file. A developer-defined parameter must begin with a capital letter.

Trailing white space after any parameter value is ignored. For example,
VENDOR="AT&T" is the same as VENDOR="AT&T ".

modified 7 Feb 1997 Sun0S 5.6 4-261

pkgmap (4)

NAME

DESCRIPTION

4-262

File Formats

pkgmap — package contents description file

pkgmap is an ASCII file that provides a complete listing of the package contents. It is
automatically generated by pkgmk(1) using the information in the prototype(4) file.

Each entry in pkgmap describes a single ‘‘deliverable object file.”” A deliverable object
file includes shell scripts, executable objects, data files, directories, and so forth. The
entry consists of several fields of information, each field separated by a space. The fields
are described below and must appear in the order shown.

part An optional field designating the part number in which the object resides. A
part is a collection of files and is the atomic unit by which a package is pro-
cessed. A developer can choose the criteria for grouping files into a part (for
example, based on class). If no value is defined in this field, part 1 is assumed.

ftype A one-character field that indicates the file type. Valid values are:

b block special device

character special device

directory

a file to be edited upon installation or removal (may be
shared by several packages)

a standard executable or data file

installation script or information file

linked file

named pipe

symbolic link

volatile file (one whose contents are expected to change,
like a log file)

an exclusive directory accessible only by this package

D O O

< vwg = = =

class The installation class to which the file belongs. This name must contain only
alphanumeric characters and be no longer than 12 characters. It is not
specified if the ftype is i (information file).

pathname pathname may contain variables of the form $variable that support install-time
configuration of the file. variable may be embedded in the pathname struc-
ture. (See prototype(4) for definitions of variable specifications.)

Do not use the following reserved words in pathname, since they are applied
by pkgadd(1M) using a different mechanism:

PKG_INSTALL_ROOT
BASEDIR
CLIENT_BASEDIR

major The major device number. The field is only specified for block or character
special devices.

Sun0S 5.6 modified 4 Oct 1996

File Formats

modified 4 Oct 1996

minor

mode

owner

group

size

cksum

modtime

pkgmap (4)

The minor device number. The field is only specified for block or character
special devices.

The octal mode of the file (for example, 0664). A question mark (?) indicates
that the mode will be left unchanged, implying that the file already exists on
the target machine. This field is not used for linked files, packaging informa-
tion files, or non-installable files.

The mode can contain a variable specification. (See prototype(4) for
definitions of variable specifications.)

The owner of the file (for example, bin or root). The field is limited to 14 char-
acters in length. A question mark (?) indicates that the owner will be left
unchanged, implying that the file already exists on the target machine. This
field is not used for linked files or non-installable files. It is used optionally
with a package information file. If used, it indicates with what owner an ins-
tallation script will be executed.

The owner can contain a variable specification. (See prototype(4) for
definitions of variable specifications.)

The group to which the file belongs (for example, "bin" or "sys"). The field is
limited to 14 characters in length. A question mark (?) indicates that the
group will be left unchanged, implying that the file already exists on the target
machine. This field is not used for linked files or non-installable files. Itis
used optionally with a package information file. If used, it indicates with
what group an installation script will be executed.

The group can contain a variable specification. (See prototype(4) for
definitions of variable specifications.)

The actual size of the file in bytes. This field is not specified for named pipes,
special devices, directories or linked files.

The checksum of the file contents. This field is not specified for named pipes,
special devices, directories, or linked files.

The time of last modification, as reported by the stat(2) function call. This
field is not specified for named pipes, special devices, directories, or linked
files.

Each pkgmap file must have one line that provides information about the number of
parts and maximum size (in 512-byte blocks) of parts that make up the package. This line
is in the following format:

:number_of_parts maximum_part_size

Lines that begin with “#’ are comment lines and are ignored.

When files are saved during installation before they are overwritten, they are normally
just copied to a temporary pathname. However, for files whose mode includes execute
permission (but which are not editable), the existing version is linked to a temporary
pathname and the original file is removed. This allows processes which are executing
during installation to be overwritten.

SunOS 5.6 4-263

pkgmap (4)

4-264

EXAMPLES

SEE ALSO

NOTES

The following is an example of a pkgmap file:

:2 500

1i pkginfo 237 1179 541296672

1 b classl /dev/diskette 17 134 0644 root other
1 c classl /dev/rdiskette 17 134 0644 root other
1 d none bin 0755 root bin

File Formats

1 f none bin/INSTALL 0755 root bin 11103 17954 541295535
1 f none bin/REMOVE 0755 root bin 3214 50237 541295541

1 1 none bin/UNINSTALL=bin/REMOVE

1 f none bin/cmda 0755 root bin 3580 60325 541295567

1 f none bin/cmdb 0755 root bin 49107 51255 541438368
1 f classl bin/cmdc 0755 root bin 45599 26048 541295599
1 fclassl bin/cmdd 0755 root bin 4648 8473 541461238

1 f none bin/cmde 0755 root bin 40501 1264 541295622

1 f class2 bin/cmdf 0755 root bin 2345 35889 541295574
1 f none bin/cmdg 0755 root bin 41185 47653 541461242
2 d class2 data 0755 root bin

2 p classl data/apipe 0755 root other

2 d none log 0755 root bin

2 v none log/logfile 0755 root bin 41815 47563 541461333
2 d none save 0755 root bin

2 d none spool 0755 root bin

2 d none tmp 0755 root bin

pkgmk(1), pkgadd(1M), stat(2), pkginfo(4), prototype(4)
Application Packaging Developer’s Guide

The pkgmap file may contain only one entry per unique pathname.

SunOS 5.6

modified 4 Oct 1996

File Formats

NAME
SYNOPSIS

DESCRIPTION

modified 30 Aug 1995

platform (4)

platform — directory of files specifying supported platforms
.platform

The Solaris 2.5 release includes the .platform directory, a new directory on the Solaris CD
image. This directory contains files (created by SunSoft and Solaris OEMSs) that define
platform support. These files are generically referred to as platform definition files. They
provide a means to map different platform types into a platform group.

Platform definition files in the .platform directory are used by the installation software to
ensure that software appropriate for the architecture of the system will be installed.
SunSoft provides a platform definition file named .platform/Solaris . This file is the only
one that can define platform groups to which other platform definition files can refer. For
example, an OEM platform definition file can refer to any platform group specified in the
Solaris platform definition file.

Other platform definition files are delivered by OEMs. To avoid name conflicts, OEMs
will name their platform definition file with an OEM-unique string. OEM’s should use
whatever string they use to make their package names unique. This unique string is often
the OEM’s stock symbol.

Comments are allowed in a platform definition file. A "#" begins a comment and can be
placed anywhere on a line.

Platform definition files are composed of keyword-value pairs, and there are two kinds of
stanzas in the file: platform group definitions and platform identifications.

e Platform group definitions:
The keywords in a platform group definition stanza are:

PLATFORM_GROUP
The PLATFORM_GROUP keyword must be the first keyword in the platform
group definition stanza. The value assigned to this keyword is the name of the
platform group, for example:

PLATFORM_GROUP=sun4c

The PLATFORM_GROUP name is an arbitrary name assigned to a group of
platforms. However, PLATFORM_GROUP typically equals the output of the
uname -m command. PLATFORM_GROUP value cannot have white space
and is limited to 256 ASCII characters.

INST_ARCH
The instruction set architecture of all platforms in the platform group, for
example:

INST_ARCH=sparc

The INST_ARCH keyword value must be the value returned by the uname -p
command on all platforms in the platform group.

SunOS 5.6 4-265

platform (4)

4-266

File Formats

e Platform identifications:
The keywords in a platform identification stanza are:

PLATFORM_NAME
The PLATFORM_NAME keyword must be the first keyword in the platform
identification stanza. The PLATFORM_NAME is the name assigned to the
platform, for example:

PLATFORM_NAME=SUNW,SPARCstation-5

Typically, this name is the same as the value returned by the uname -i com-
mand on the machine, but it need not be the same.

The PLATFORM_NAME value cannot have white space and is limited to 256
ASCII characters. If it contains parentheses, it must contain only balanced
parentheses. For example. the string "foo(bar)foo" is a valid value for this
keyword, but "foo(bar" is not.

The other keywords in the platform identification stanza can be in any order,
as long as the PLATFORM_NAME keyword is first.

PLATFORM_ID
The value returned by the uname -i command on the machine, for example:

PLATFORM_ID=SUNW,SPARCstation-5

MACHINE_TYPE
The value returned by the uname -m command on the machine, for example:
MACHINE_TYPE=sun4c

IN_PLATFORM_GROUP
The platform group of which the platform is a member, for example:
IN_PLATFORM_GROUP=sun4c

The platform group name must be specified in the same file as the platform
identification stanza or in the platform definition file with the name
.platform/Solaris .

The IN_PLATFORM_GROUP keyword is optional. A platform doesn’t have
to belong to a platform group. If a platform isn’t explicitly assigned to a plat-
form group, it essentially forms its own platform group, where the platform
group name is the PLATFORM_NAME value.

The IN_PLATFORM_GROUP value typically equals the output of the uname
-m command. IN_PLATFORM_GROUP value cannot have white space and
is limited to 256 ASCII characters.

INST_ARCH
The instruction set architecture of the platform, for example:

INST_ARCH=sparc
This field is only required if the platform does not belong to a platform group.

SunOS 5.6 modified 30 Aug 1995

File Formats

COMPATIBILITY

EXAMPLES

FILES

modified 30 Aug 1995

platform (4)

The INST_ARCH keyword value must be the value returned by the uname -p
command on all platforms in the platform group.

The installation program will remain compatible with the old Solaris CD format. If a
Solaris CD image does not contain any platform definition files, the installation and
upgrade programs will select the packages to be installed based on machine type (i.e., the
value returned by the uname -m command).

1. The following example shows platform group definitions from the .platform/Solaris
platform definition file.

#
PLATFORM_GROUP=sun4c
INST_ARCH=sparc
#
PLATFORM_GROUP=sun4d
INST_ARCH=sparc
#
PLATFORM_GROUP=sun4m
INST_ARCH=sparc
#
PLATFORM_GROUP=sun4u
INST_ARCH=sparc

2. The following example shows platform identification stanzas, which define systems
that belong in a platform group, from the .platform/Solaris platform definition file.
#
PLATFORM_NAME=SUNW,Sun_4_20
PLATFORM_ID=SUNW,Sun_4 20
IN_PLATFORM_GROUP=sun4c
PLATFORM_NAME=SUNW,Sun_4_25
PLATFORM_ID=SUNW,Sun_4 25
IN_PLATFORM_GROUP=sun4c
#
PLATFORM_NAME=SUNW,SPARCstation-5
PLATFORM_ID=SUNW,SPARCstation-5
IN_PLATFORM_GROUP=sun4m
#
PLATFORM_NAME=SUNW,SPARCstation-10
PLATFORM_ID=SUNW,SPARCstation-10
IN_PLATFORM_GROUP=sun4m

The .platform directory must reside as / cd_image/Solaris_vers/.platform, where
cd_image
Is the path to the mounted Solaris CD (/cdrom/cdrom0/s0 by default) or the path to
a copy of the Solaris CD on a disk.

Solaris_vers

SunOS 5.6 4-267

platform (4) File Formats

Is the version of Solaris: e.g., Solaris_2.5.

NOTES | Typically, a platform identification stanza contains either a PLATFORM_ID or a
MACHINE_TYPE stanza, but not both. If both are specified, both must match for a plat-
form to be identified as this platform type. Each platform identification stanza must con-
tain either a PLATFORM_ID value or a MACHINE_TYPE value.

If a platform matches two different platform identification stanzas—one which matched
on the value of PLATFORM_ID and one which matched on the value of
MACHINE_TYPE , the one that matched on PLATFORM_ID will take precedence.

The .platform directory is part of the Solaris CD image, whether that be the Solaris CD or
a copy of the Solaris CD on a system’s hard disk.

4-268 SunOS 5.6 modified 30 Aug 1995

SunOS/BSD Compatibility Package File Formats plot(4B)

NAME plot — graphics interface

DESCRIPTION Files of this format are interpreted for various devices by commands described in

n

modified 9 Feb 1992

plot(1B). A graphics file is a stream of plotting instructions. Each instruction consists of
an ASCII letter usually followed by bytes of binary information. The instructions are exe-
cuted in order. A point is designated by four bytes representing the x and y values; each
value is a signed integer. The last designated pointin an I, m, n, or p instruction becomes
the “current point” for the next instruction.

m Move: the next four bytes give a new current point.

Cont: draw a line from the current point to the point given by the next four
bytes. See plot(1B).

Point: plot the point given by the next four bytes.

Line: draw a line from the point given by the next four bytes to the point given
by the following four bytes.

Label: place the following ASCII string so that its first character falls on the
current point. The string is terminated by a NEWLINE.

Arc: the first four bytes give the center, the next four give the starting point, and
the last four give the end point of a circular arc. The least significant coordinate
of the end point is used only to determine the quadrant. The arc is drawn
counter-clockwise.

Circle: the first four bytes give the center of the circle, the next two the radius.
Erase: start another frame of output.

Linemod: take the following string, up to a NEWLINE, as the style for drawing
further lines. The styles are “‘dotted,” “‘solid,” “‘longdashed,” “‘shortdashed,”
and “‘dotdashed.” Effective only in plot 4014 and plot ver.

Space: the next four bytes give the lower left corner of the plotting area; the fol-
lowing four give the upper right corner. The plot will be magnified or reduced
to fit the device as closely as possible.

Space settings that exactly fill the plotting area with unity scaling appear below
for devices supported by the filters of plot(1B). The upper limit is just outside
the plotting area.

SunOS 5.6 4B-269

plot(4B) SunOS/BSD Compatibility Package File Formats

In every case the plotting area is taken to be square; points outside may be display-
able on devices whose face is not square.

4014 space(0, 0, 3120, 3120);
ver space(0, 0, 2048, 2048);
300, 300s space(0, 0, 4096, 4096);
450 space(0, 0, 4096, 4096);

SEE ALSO graph(1), plot(1B)

4B-270 SunOS 5.6 modified 9 Feb 1992

File Formats

NAME
SYNOPSIS

DESCRIPTION

Device Management

modified 31 Dec 1996

power.conf(4)

power.conf — power management configuration information file
/etc/power.conf

The power.conf file is used by the power management configuration program,
pmconfig(1M), to initialize the settings for power management of the system.

There are two types of entries in the power.conf file: device management entries and
system management entries.

Devices not appearing in this file will not be power managed without explicit
configuration using the power management pseudo driver. See pm(7D). You should
fully understand the power management framework before modifying device manage-
ment entries in this file. Although inappropriate settings will not cause system damage,
severe performance reduction may result. An entry in power.conf will be effective only
if the driver for the device supports device power management.

Device management entries consist of line by line listings of the devices to be configured.
Each line is of the form:

device_name threshold ... dependents . ..

The fields must be in this order. Each line must contain a device_name field and a threshold
field; it may also contain a dependents field. Fields and sub-fields are separated by white
space (tabs or spaces). A line may be more than 80 characters. If a newline character is
preceded by a backslash ("\’) it will be treated as white space. Comment lines must begin
with a hash character ('#).

The device_name field specifies the device to be configured. device_name is either a path-
name specifying the device special file or a relative pathname containing the name of the
device special file. When using the latter format, instead of using the full pathname, it is
possible to omit the portion of the pathname specifying the parent devices. This includes
the leading ’/’. Using this "relative" pathname format, the first device found with a full
pathname containing device_name as its tail is matched. In either case, the leading /dev-
ices component of the pathname does not need to be specified.

For example, a SCSI disk target with the following full path name:
/liommu@f,e000/sbus@f,e001/espdma@f,4000/esp@f,8000/sd@1,0
may also be specified as:

sbus@f,e000/espdma@f,4000/esp@f,8000/sd@1,0
or

esp@f,8000/sd@1,0
or

sd@1,0

The threshold field is used to configure the power manageable components of a device.
These components represent entities within a device that may be power-managed
separately. This field may contain as many integer values as the device has components.
Each threshold time specifies the idle time in seconds before the respective component

SunOS 5.6 4-271

power.conf(4)

System Management

4-272

File Formats

may be powered down. If there are fewer component threshold times than device com-
ponents, the remaining components are not power managed. Use a value of -1 to expli-
citly disable power-down for a component. At least one component threshold must be
specified per device (in the file).

The dependents field may contain a list of logical dependents for this device. A logical
dependent is a selected device that is not physically connected to the power managed
device (for example, the display and the keyboard). A dependent device is one that must
be idle and powered-down before the managed device can be powered down. The depen-
dents field entries use the same format as the first field and are separated by white spaces.
A device must previously have been configured before it can be used as a dependent.

Device power management entries for frame buffers are only effective when the X win-
dow system is not running. If either the Open Window or Common Desktop Environ-
ment window system is running, it takes over power management of the display devices
that it is using.

The system management entries control power management for the entire system. They
are distinguished by the use of the special device names listed below.

Note that the following autoshutdown entry is not intended to be hand edited, but to be
maintained by dtpower.

If the device_name field contains the special device name autoshutdown, the threshold
value specifies the system idle time (measured as discussed below) before the system may
be shut down by powerd(1M). The threshold value is followed by start and finish times
(each in the format hh:mm) which specify the time period during which the system may
be automatically shut down (see powerd(1M)). Following the start and finish times is the
behavior field, consisting of one of the words shutdown, noshutdown, autowakeup,
default, or unconfigured.

If the behavior field is shutdown, the system will be shut down automatically when it has
been idle for the number of minutes specified in the threshold value and the time of day
falls between the start and finish values.

If the behavior field is noshutdown, the system is never shut down automatically.

If the behavior field is autowakeup and the hardware has the capability to do
autowakeup, the system is shut down as if the value were shutdown and the system will
be restarted automatically the next time the time of day equals the finish time.

If the behavior field is default, the behavior of the system will depend upon its model.
Desktop models that were first put into production after October 1, 1995 will behave as if
the behavior field were set to shutdown. Desktop models first put into production before
this date and server models will act as if the behavior field were set to noshutdown. The
behavior is determine by a root node property named energystar-v2.

If the behavior field is unconfigured, the system will not be shut down automatically. If
the system has just been installed or upgraded, the value of this field will be changed
upon the next reboot. If the power management package has been added by hand, the
dtpower utility must be run to set the correct autoshutdown behavior.

Sun0S 5.6 modified 31 Dec 1996

File Formats

modified 31 Dec 1996

power.conf(4)

If the device_name field contains the special device name statefile, the threshold value
specifies the location of the file used by cpr(7). The cpr module uses this file to record the
state of the system prior to powering it down.

This entry has the following format:
statefile pathname

where pathname is the absolute pathname of a local ufs file. The pathname in the statefile
entry must be the path to a local ufs file. It cannot be a symbolic link. If the file does not
exist when it is time for a checkpoint to be taken, cpr will create it. All the directory com-
ponents of the path must already exist.

The actual size required by cpr to checkpoint the system state at any given time depends
on a variety of factors, including the size of the system’s memory, the number of loadable
drivers/modules in use, the number and type of processes running, and the amount of
user memory that has been “locked down”.

If cpr fails to complete a checkpoint due to insufficient space on the file system specified
for the statefile, an explanatory message will be displayed on the console and written to
the system log, and the system will be returned to its state prior to the checkpoint
attempt.

It is recommended that the statefile be placed on a file system with at least 10 Mbytes of
free space. In order that a newly installed system will have a statefile path which meets
this requirement, a script run at boot time checks for the existence of the power.conf file.
If the file exists but lacks a statefile entry, the script will create one using a simple method
to determine the pathname. It first examines the free space in the root file system, and if
there is sufficient space, an appropriate entry is added to power.conf. It then applies the
same test to /usr, if it is a separate file system. If this also fails, it checks the file system of
those remaining (if any) that has the largest number of free blocks. If all three of these
checks fail, a message is be displayed warning the user of the failure. If the pathname
entry is created by the system, the final component of the name will be .CPR.

To further reduce the possibility of a checkpoint failure, the file system should have free
space equivalent to at least one half of the system’s memory (RAM). To modify the
statefile location, edit the statefile entry in power.conf, replacing the existing path with
the new one. After saving the file and exiting the editor, run the pmconfig(1M) command
with no arguments.

Some types of application, such as proprietary data base packages, achieve higher perfor-
mance by using Solaris system calls that lock a large number of user pages into memory.
In such cases, the amount of space required for the cpr statefile should be increased by
the total space of such locked down memory.

If the device_name field contains the special device name ttychars, the threshold field will
be interpreted as the maximum number of tty characters that can pass through the
Idterm module with the system still considered to be idle. This value defaults to 0 if no
entry is provided.

SunOS 5.6 4-273

power.conf(4)

4-274

EXAMPLES
power.conf file

File Formats

If the device_name field contains the special device name loadaverage, the (floating point)
threshold field will be interpreted as the maximum load average that can be seen with the
system still considered to be idle. This value defaults to 0.04 if no entry is provided.

If the device_name field contains the special device name diskreads, the threshold field will
be interpreted as the maximum number of disk reads that can be perform by the system
with the system still be considered to be idle. This value defaults to 0 if no entry is pro-
vided.

If the device_name field contains the special device name nfsreqgs, the threshold field will be
interpreted as the maximum number of NFS requests that can be sent or received by the
system with the system still considered to be idle. Null requests, access requests, and get-
tattr requests are excluded from this count. This value defaults to 0 if no entry is pro-
vided.

The values for tty characters, disk reads and NFS requests are determined by periodic
sampling of the kstat(3K) interface. The thresholds for these events apply to a period
extending into the past for system idle time minutes as specified in the autoshutdown
entry described above.

The value for load average is also determined by periodic sampling of the kstat interface.
The threshold for this value is an instantaneous one. The system will not be considered
idle with respect to load average until system idle time minutes have passed with the sam-
pled load average value not exceeding the threshold.

If the device_name field contains the special device name idlecheck, the device_name field
must be followed by the pathname of a program to be executed to determine if the sys-
tem is idle. If autoshutdown is enabled and the console keyboard, mouse, tty, CPU (as
indicated by load average), network (as measured by NFS requests) and disk (as meas-
ured by read activity) have been idle for the amount of time specified in the autoshutdown
entry specified above, and the time of day falls between the start and finish times, then
this program will be executed to check for other idleness criteria. The value of the idle
time specified in the above autoshutdown entry will be passed to the program in the
environment variable PM_IDLETIME. The process must terminate with an exit code that
represents the number of minutes that the process considers the system to have been idle.

There is no default idlecheck entry. The default behavior is to consider only mouse, key-
board, tty, load average, NFS requests, and disk reads as indicators of non-idleness. To
extend the definition of non-idleness, a shell script can be created that must exit with the
number of minutes it considers the system to have been idle, according to its criteria. The
path to this new script can then be stored in the idlecheck entry in power.conf.

The following is a sample power.conf file.

This is a sample power management configuration file
Fields must be separated by white space.

#
Name Threshold(s) Logical Dependent(s)
/dev/kbd 1800

Sun0S 5.6 modified 31 Dec 1996

File Formats

idlecheck script

ATTRIBUTES

SEE ALSO

modified 31 Dec 1996

power.conf(4)

/dev/mouse 1800
/dev/tb 00 /dev/kbd /dev/mouse

#Example of a second display
/dev/fbl 00 /dev/kbd /dev/mouse

This entry is maintained by dtpower

This (default as of SunOS 5.5) entry causes the system to be

shut down after 30 minutes of idle time if it is a model first

shipped after Oct 1, 1995. Older models default to noshutdown.

#

autoshutdown in effect

Auto-Shutdown Idle(min) Start/Finish(hh:mm) Behavior
autoshutdown 30 9:00 9:00 default

Statefile Path

statefile /export/home/.CPR

The idlecheck program is passed the autoshutdown idle time entry in

the environment variable $PM_IDLETIME and it must return the number of
minutes the system has been idle (by its criteria) in its exit code.

idlecheck /home/critical/idlecheck

The following is a sample idlecheck script.

#/bin/sh
This is a sample idlecheck script which considers the system
not idle if user "critical" is logged in

critical="who | grep -w critical’

if ["Scritical"] #if "$critical" is not null string
then

exit 0 # not idle because critical logged in
else

exit SPM_IDLETIME # idle long enough
fi

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE | ATTRIBUTE VALUE
Auvailability SUNWpmr

pmconfig(1M), powerd(1M), sys-unconfig(1M), kstat(3K), attributes(5), cpr(7),
Idterm(7M), pm(7D)

SunOS 5.6 4-275

power.conf(4)

4-276

NOTES

File Formats

Writing Device Drivers

The default behavior for desktop models introduced after October 1, 1995 is to shut down
after 30 minutes of idleness any time of day. The dtpower utility can be used to change
the default.

The default behavior is mandated by the U.S. Government Environmental Protection
Agency as a requirement for EnergyStar compliance. The user will be prompted to
confirm this default at system installation reboot, or during the first boot after the system
is unconfigured by sys-unconfig(1M).

The user may wish to use dtpower to set the autoshutdown start time to the end of the
normal work day, and to set the autoshutdown finish time to the start of the normal work
day.

The physical dependents are automatically included by the power manager and need not
be specified.

The default power.conf file supports the standard hardware configuration. For each
additional power manageable device (such as a second display), a new entry must be
manually added to the power.conf file and pmconfig(1M) must be executed to activate
the new change.

Frequently powering devices up and down may reduce device reliability, especially for
devices not designed for power management. Do not place additional devices under
power management unless the hardware documentation permits it. At this time most,
Scsl hard disks are not power-manageable.

Sun0S 5.6 modified 31 Dec 1996

File Formats

NAME

SYNOPSIS

DESCRIPTION

Entries

modified 21 Mar 1997

printers(4)

printers — user-configurable printer alias database
$HOME/.printers

The $SHOME/.printers file is a simplified version of the system /etc/printers.conf file (see
printers.conf(4)). Users create the $SHOME/.printers file in their home directory. This
optional file is customizable by the user.

The $HOME/.printers file performs the following functions:
1. Sets personal aliases for all print commands.

2. Sets the interest list for the Ipget, Ipstat and cancel commands. See Ipget(1M),
Ipstat(1) and cancel(1).

3. Sets the default printer for the Ip, Ipr, Ipq, and Iprm commands. See Ip(1),
Ipr(1B), Ipq(1B), and Iprm(1B).

Use a line or full screen editor to create or modify the $SHOME/.printers file.

Each entry in $SHOME/.printers describes one destination. Entries are one line consisting
of two fields separated by either BLANKS or TABs and terminated by a NEWLINE. Format
for an entry in $HOME/.printers varies according to the purpose of the entry.

Empty lines can be included for readability. Entries may continue on to multiple lines by
adding a backslash (‘\) as the last character in the line. The $HOME/.printers file can
include comments. Comments have a pound sign (‘#') as the first character in the line,
and are terminated by a NEWLINE.

Setting Personal Aliases

Specify the alias or aliases in the first field. Separate multiple aliases by a pipe sign (‘]").
Specify the destination in the second field. A destination names a printer or class of
printers (see Ipadmin(1M)). Specify the destination using atomic, POSIX-style
(server:destination), or Federated Naming Service (FNS) (.../service/printer/...) names.
See printers.conf(4) for information regarding the naming conventions for atomic and
FNS names, and standards(5) for information regarding POSIX.

Setting the Interest List for Ipget, Ipstat and cancel

Specify _all in the first field. Specify the list of destinations for the interest list in the
second field. Separate each destinations by a comma (*,’). Specify destinations using
atomic, POSIX-style (server:destination), or FNS names (.../service/printer/...). See
printers.conf(4) for information regarding the naming conventions for atomic and FNS
names. This list of destinations may refer to an alias defined in SHOME/.printers.

Setting the Default Destination

Specify _default in the first field. Specify the default destination in the second field.
Specify the default destination using atomic, POSIX-style (server:destination), or FNS
names (.../service/printer/...). See printers.conf(4) for information regarding the naming
conventions for atomic and FNS names. The default destination may refer to an alias
defined in $HOME/.printers.

SunOS 5.6 4-277

printers(4)

Locating Destination

4-278

Information

EXAMPLES

File Formats

The print client commands locate destination information in a very specific order.

Locating Destinations
The print client commands locate destinations in the following order:

1. POSIX-style names.
2. Aliases in SHOME/.printers.
3. Destinations in FNS.

Locating the Interest List for Ipstat, Ipget and cancel
The Ipget, Ipstat and cancel commands locate the interest list in the following order:

1. _all list in $SHOME/.printers.
2. _all listin /etc/printers.conf.
3. _alllistin FNS.

Locating the Personal Default Destination
The default destination is located differently depending on the command.

The Ip command locates the default destination in the following order:
1. Ip command’s —d destination option.
2. LPDEST environment variable.
3. PRINTER environment variable.
4. _default destination in $HOME/.printers.
5. _default destination in /etc/printers.conf.
6. _default destination in FNS.
The lpr, Ipq, and Iprm commands locate the default destination in the following order:
1. lpr command’s —P destination option.
2. PRINTER environment variable.
3. LPDEST environment variable.
4. _default destination in $HOME/.printers.
5. _default destination in /etc/printers.conf.
6. _default destination in FNS.

The following entry sets the interest list to destinations ps, secure, and dog at server west
and finance_ps at site bldg2.

_all ps,secure,west.dog,site/bldg2/service/printer/finance_ps

The following entry sets the aliases ps, Ip, and lw to sparc_printer.
pslip|iw sparc_printer

Sun0S 5.6 modified 21 Mar 1997

File Formats

FILES

ATTRIBUTES

SEE ALSO

NOTES

modified 21 Mar 1997

printers(4)

The following entry sets the alias pcl to hplj and sets it as the default destination.
pcl]_default hplj

The following entry sets the alias secure to destination catalpa at server tabloid.

secure tabloid:catalpa

The following entry sets the alias insecure to destination legal_ps at site bldg2.

insecure site/bldg2/service/printer/legal_ps
$HOME/.printers User-configurable printer database.
/etc/printers.conf System printer configuration database.
printers.conf.byname NIS version of /etc/printers.conf.
fns.ctx_dir.domain NIS+ version of /etc/printers.conf.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTETYPE | ATTRIBUTE VALUE
Availability SUNWYpcu

cancel(1), Ip(2), Ipq(1B), Ipr(1B), Iprm(1B), Ipstat(1), Ipadmin(1M), Ipget(1M),
printers.conf(4), attributes(5), fns(5), standards(5)

System Administration Guide

$HOME/.printers is referenced by the printing commands before further name resolution
is made in /etc/printers.conf or the name service. If the alias references a destination
defined in /etc/printers.conf, it is possible that the destination is defined differently on
different systems. This could cause output to be sent to an unintended destination if the
user is logged in to a different system.

SunOS 5.6 4-279

printers.conf(4)

NAME
SYNOPSIS
NIS

NIS+

DESCRIPTION

Entries

Specifying
Configuration
Options

4-280

File Formats

printers.conf — system printing configuration database
/etc/printers.conf

printers.conf.byname

fns.ctx_dir.domain

The printers.conf file is the system printing configuration database. System administra-
tors use printers.conf to describe destinations for the print client commands and the
print protocol adaptor. A destination names a printer or class of printers (see
Ipadmin(1M)). The LP print spooler uses private LP configuration data for represented in
the printers.conf database.

Each entry in printers.conf describes one destination. Entries are one line consisting of
any number of fields separated by colons (“:’) and terminated by a NEWLINE. The first
field of each entry specifies the name of the destination and aliases to which the entry
describes. Specify one or more names or aliases of the destination in this first field.
Specify the destination using atomic names. POSIX-style names are not acceptable. See
standards(5). Separate destination names by pipe signs (‘]’).

Two destination names are reserved for special use in the first entry. Use _all to specify
the interest list for Ipget, Ipstat and cancel. Use _default to specify the default destina-
tion.

The remaining fields in an entry are key=value pairs. See Specifying Configuration
Options for details regarding key=value pairs.

Empty lines can be included for readability. Entries may continue on to multiple lines by
adding a backslash (‘\) as the last character in the line. printers.conf can include com-
ments. Comments have a pound sign (‘#’) as the first character in the line, and are ter-
minated by a NEWLINE. Use the Ipset command to create or modify printers.conf (see
Ipset(1M)). Do not make changes in printers.conf using an editor.

key=value pairs are configuration options defined by the system administrator. key and
value may be of arbitrary length. Separate key and value by the equal (‘=") character.

Client/Server Configuration Options

The following client/server configuration options (represented as key=value pairs) are
supported:

bsdaddr=server,destination[,Solaris]
Sets the server and destination name. Sets if the
client generates protocol extensions for use with the
Ip command (see Ip(1)). Solaris specifies a Solaris
print server extension. If Solaris is not specified, no
protocol extensions are generated. server is the name
of the host containing the queue for destination.

Sun0S 5.6 modified 21 Mar 1997

File Formats

modified 21 Mar 1997

use=destination

all=destination_list

General Server Options

printers.conf(4)

destination is the atomic name by which the server
knows the destination.

Sets the destination to continue searching for
configuration information. destination is an atomic or
Federated Naming Service (FNS)
(.../service/printer/...) name.

Sets the interest list for the Ipget, Ipstat, and cancel
commands. destination_list is a comma-separated
(“,). list of destinations. Specify destination using
atomic or FNS names (.../service/printer/...). See
Ipget(1M), Ipstat(1), and cancel(1).

The following general server configuration options (represented as key=value pairs) are

supported:
spooling-type=spooler[,version]

spooling-type-path=dir_list

LP Server Options

Sets the type of spooler under which a destination is
configured. Dynamically loads translation support
for the back-end spooling system from
/usr/lib/print/bsd-adaptor/bsd_spooler.so[.version].
Specify spooler as Ipsched, cascade, or test. Ipsched
is used as a default for locally attached destinations.
cascade is used as a default for destination spooled
on a remote host. Use test for the test module to
allow the capture of print requests. If using a ver-
sioned spooler module, version specifies the version
of the translation module.

Sets the location of translation support for the type of
spooler defined by the spooling-type key. Locates
translation support for the for the type of spooler
under which a destination is configured. dir_listis a
comma-separated (‘,’) list of absolute pathnames to
the directories used to locate translation support for
the spooling system set by the spooling-type key.

The following LP configuration options (represented as key=value pairs) are supported:

user-equivalence=true | false

Sets whether or not usernames are considered
equivalent when cancelling a print request submitted
from a different host in a networked environment.
true means that usernames are considered
equivalent, and permits users to cancel a print
requests submitted from a different host. user-
equivalence is set to false by default. false means
that usernames are not considered equivalent, and

SunOS 5.6 4-281

printers.conf(4)

4-282

Test Configuration Options

File Formats

does not permit users cancel a print request submit-
ted from a different host. If user-equivalence is set
to false, print requests can only be cancelled by the
users on the host on whichs the print prequest was
generated or by the super-user on the print server.

The following test configuration options (represented as key=value pairs) are supported:
test-spooler-available=true | false Sets whether or not the protocol adaptor accepts con-

test-log=dir

test-dir=dir

test-access=true| false

test-accepting=true | false

test-restart=true | false

test-submit=true | false

nection requests to the test adaptor for the destina-
tion. true means that the protocol adaptor accepts
connection requests to the test adaptor for the desti-
nation. test-spooler-available is set to true by
default. false means that the protocol adaptor does
not accept connection requests to the test adaptor for
the destination.

Sets the location of the log file generated by the test
translation module. Specify dir as an absolute path-
name.

Sets the directory to be used during execution of the
test translation module. Specify dir as an absolute
pathname.

Sets whether or not the requesting client has access
to the test translation module. true means that the
requesting client has access to the test translation
module. test-access is set to true by default. false
means that the the requesting client does not have
access to the test translation module.

Sets whether or not the configured destination is
accepting job submission requests. true means that
the configured destination is accepting job submis-
sion requests. test-accepting is set to true by default.
false means that the configured destination is not
accepting job submission requests.

Sets whether or not a protocol request to restart the
destination will be honored or return an error. true
means that a protocol request to restart the destina-
tion will be honored. test-restart is set to true by
default. false means that a protocol request to restart
the destination return an error.

Sets whether or not a protocol request to submit a job
to a destination will be honored or return an error.
true means that a protocol request to submit a job to

Sun0S 5.6 modified 21 Mar 1997

File Formats

Locating Destination
Information

modified 21 Mar 1997

printers.conf(4)

a destination will be honored. test-submit is set to
true by default. false means that a protocol request
to submit a job to a destination will not be honored.

test-show-queue-file=file Sets the name of the file whose contents are to be
returned as the result of a status query. Specify file as
an absolute pathname.

test-cancel-cancel-file=file Sets the name of the file whose contents are returned
as the result of a cancellation request. Specify file as
an absolute pathname.

The print client commands and the print protocol adaptor locate destination information
in a very specific order.

Locating Destinations
The print client commands locate printers in the following order:

1. Aliases in SHOME/.printers.
3. Destinations in FNS.

Locating the Interest List for Ipstat, Ipget and cancel
The Ipget, Ipstat and cancel commands locate the interest list in the following order:

1. _all list in $SHOME/.printers.
2. _all listin /etc/printers.conf.
3. _all listin FNS.

Locating the Personal Default Destination
The default destination is located differently depending on the command.

The Ip command locates the default destination in the following order:
1. Ip command’s —d destination option.
2. LPDEST environment variable.
3. PRINTER environment variable.
4. _default destination in $HOME/.printers.
5. _default destination in /etc/printers.conf.
6. _default destination in FNS.
The Ipr, Ipq, and Iprm commands locate the default destination in the following order:
1. lpr command’s —P destination option.
2. PRINTER environment variable.
3. LPDEST environment variable.
4. _default destination in $HOME/.printers.
5. _default destination in /etc/printers.conf.
6. _default destination in FNS.

SunOS 5.6 4-283

printers.conf(4)

Looking Up

Destinations Using
Atomic Names and

4-284

FNS

EXAMPLES

File Formats

Federated Naming Service (FNS) supports resolution of composite names spanning multi-
ple naming systems. FNS supports several underlying naming services: N1S+, NIS, and
files.

Atomic destination names are resolved using a specific search order. The order in which
atomic destination names are resolved follows:

1. Atomic destination name in /etc/printers.conf.
2. Atomic destination name in Federated Naming Service (FNS) context.

The atomic destination name is searched for in the following FNS contexts in
the order specified: thisuser/service/printer, myorgunit/service/printer,
thisorgunit/service/printer.

In addition to these contexts, any subcontexts of these three contexts are also
searched.

For example, if the target destination is dept_sparc, and if
thisuser/service/printer has a subcontext color, the following names will be
looked up until one is found: thisuser/service/printer/dept_sparc,
thisuser/service/printer/color/dept_sparc,
myorgunit/service/printer/dept_sparc,
thisorgunit/service/printer/dept_sparc.

3. If NIS is the underlying naming service and if the destination name is not
found in /etc/printers.conf or the FNS contexts, the printers.conf.byname
map is searched for the target destination.

FNS names such as user/jsmith/service/printer/dept_sparc are looked up in
FNS. There are no additional search rules or sources. The underlying naming
service can be NIS+, NIS or files. See fns(5) for an overview of FNS. See
fns_policies(5) for an overview of FNS policies and defining names such as
thisuser and myorgunit.

The following entry sets the interest list for the Ipget, Ipstat and cancel commands to
printerl, printer2 and printer3.
_all:all=printerl,printer2,printer3

The following entry sets the server name to server and and printer name to ps_printer
for destinations printerl and ps. It does not generate protocol extensions.

printerl] ps:bsdaddr=server,ps_printer

The following entry sets the server name to server and destination name to pcl_printer,
for destination printer2. It also generates Solaris protocol extensions.

printer2:bsdaddr=server,pcl_printer,Solaris

The following entry sets the server name to server and destination name to new_printer,
for destination printer3. It also sets the printer3 to continue searching for configuration
information to printer another_printer.

printer3:bsdaddr=server,new_printer:use=another_printer

Sun0S 5.6 modified 21 Mar 1997

File Formats printers.conf(4)

The following entry sets the default destination to continue searching for configuration
information to destination printerl.

_default:use=printerl

FILES | /etc/printers.conf System configuration database.
$HOME/.printers User-configurable printer database.
printers.conf.byname (NIS) NIS version of /etc/printers.conf.
fns.ctx_dir.domain NIS+ version of /etc/printers.conf.

/usr/lib/print/bsd-adaptor/bsd_spooler.sol]
Spooler translation modules.
/usr/lib/print/in.Ipd BSD print protocol adapter.

ATTRIBUTES | See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE | ATTRIBUTE VALUE
Availability SUNWYpcu

SEE ALSO cancel(1), Ip(2), Ipq(1B), Ipr(1B), Iprm(1B), Ipstat(1), in.lpd(1M), Ipadmin(1M),
Ipget(1M), Ipset(1M), printers(4), attributes(5), fns(5), fns_policies(5), standards(5)

System Administration Guide

modified 21 Mar 1997 Sun0S 5.6 4-285

proc(4)

NAME

DESCRIPTION

4-286

File Formats

proc — /proc, the process file system

/proc is a file system that provides access to the state of each process and light-weight
process (Iwp) in the system. The name of each entry in the /proc directory is a decimal
number corresponding to a process-ID. These entries are themselves subdirectories.
Access to process state is provided by additional files contained within each subdirectory;
the hierarchy is described more completely below. In this document, “/proc file” refers
to a non-directory file within the hierarchy rooted at /proc. The owner of each /proc file
and subdirectory is determined by the user-ID of the process.

Standard system calls are used to access /proc files: open(2), close(2), read(2), and
write(2) (including readv(2), writev(2), pread(2), and pwrite(2)). Most files describe pro-
cess state and can only be opened for reading. ctl and Iwpctl (control) files permit mani-
pulation of process state and can only be opened for writing. as (address space) files con-
tain the image of the running process and can be opened for both reading and writing.
An open for writing allows process control; a read-only open allows inspection but not
control. In this document, we refer to the process as open for reading or writing if any of
its associated /proc files is open for reading or writing.

In general, more than one process can open the same /proc file at the same time. Exclusive
open is an advisory mechanism provided to allow controlling processes to avoid colli-
sions with each other. A process can obtain exclusive control of a target process, with
respect to other cooperating processes, if it successfully opens any /proc file in the target
process for writing (the as or ctl files, or the Iwpctl file of any lwp) while specifying
O_EXCL in the open(2). Such an open will fail if the target process is already open for
writing (that is, if an as, ctl, or lwpctl file is already open for writing). There can be any
number of concurrent read-only opens; O_EXCL is ignored on opens for reading. Itis
recommended that the first open for writing by a controlling process use the O_EXCL flag;
multiple controlling processes usually result in chaos.

If a process opens one of its own /proc files for writing, the open succeeds regardless of
O_EXCL and regardless of whether some other process has the process open for writing.
Self-opens do not count when another process attempts an exclusive open. (A process
cannot exclude a debugger by opening itself for writing and the application of a
debugger cannot prevent a process from opening itself.) All self-opens for writing are
forced to be close-on-exec (see the F_SETFD operation of fcntl(2)).

Data may be transferred from or to any locations in the address space of the traced pro-
cess by applying Iseek(2) to position the as file at the virtual address of interest followed
by read(2) or write(2) (or by using pread(2) or pwrite(2) for the combined operation).
The address-map file /proc/pid/map can be read to determine the accessible areas (map-
pings) of the address space. 1/0 transfers may span contiguous mappings. An /0
request extending into an unmapped area is truncated at the boundary. A write request
beginning at an unmapped virtual address fails with EIO; a read request beginning at an
unmapped virtual address returns zero (an end-of-file indication).

Sun0S 5.6 modified 13 Feb 1997

File Formats

DIRECTORY
STRUCTURE

modified 13 Feb 1997

proc(4)

Information and control operations are provided through additional files. <procfs.h>
contains definitions of data structures and message formats used with these files. Some
of these definitions involve the use of sets of flags. The set types sigset _t, fltset_t, and
sysset_t correspond, respectively, to signal, fault, and system call enumerations defined
in <sys/signal.h>, <sys/fault.h>, and <sys/syscall.h>. Each set type is large enough to
hold flags for its own enumeration. Although they are of different sizes, they have a
common structure and can be manipulated by these macros:

prfillset(&set); /Oturn on all flags in set
premptyset(&set); /Oturn off all flags in set O
praddset(&set, flag); /Oturn on the specified flag [
prdelset(&set, flag); /Oturn off the specified flag O
r = prismember(&set, flag); /0= 0 iff flag is turned on [

One of prfillset() or premptyset() must be used to initialize set before it is used in any
other operation. flag must be a member of the enumeration corresponding to set.

Every process contains at least one light-weight process, or lwp. Each Iwp represents a
flow of execution that is independently scheduled by the operating system. All lwps in a
process share its address space as well as many other attributes. Through the use of
lwpctl and ctl files as described below, it is possible to affect individual lwps in a process
or to affect all of them at once, depending on the operation.

When the process has more than one Iwp, a representative lwp is chosen by the system
for certain process status files and control operations. The representative lwp is a
stopped Iwp only if all of the process’s lwps are stopped; is stopped on an event of
interest only if all of the lwps are so stopped (excluding PR_SUSPENDED Iwps); isin a
PR_REQUESTED stop only if there are no other events of interest to be found; or, failing
everything else, is in a PR_SUSPENDED stop (implying that the process is deadlocked).
See the description of the status file for definitions of stopped states. See the PCSTOP con-
trol operation for the definition of ““event of interest”.

The representative lwp remains fixed (it will be chosen again on the next operation) as
long as all of the lwps are stopped on events of interest or are in a PR_SUSPENDED stop
and the PCRUN control operation is not applied to any of them.

When applied to the process control file, every /proc control operation that must act on
an lwp uses the same algorithm to choose which lwp to act upon. Together with syn-
chronous stopping (see PCSET), this enables a debugger to control a multiple-lwp process
using only the process-level status and control files if it so chooses. More fine-grained
control can be achieved using the lwp-specific files.

At the top level, the directory /proc contains entries each of which names an existing pro-
cess in the system. These entries are themselves directories. Except where otherwise
noted, the files described below can be opened for reading only. In addition, if a process
becomes a zombie (one that has exited but whose parent has not yet performed a wait(2)
upon it), most of its associated /proc files disappear from the hierarchy; subsequent
attempts to open them, or to read or write files opened before the process exited, will eli-
cit the error ENOENT.

SunOS 5.6 4-287

proc(4)

STRUCTURE OF
/proc/pid
as
ctl
status
4-288

File Formats

Although process state and consequently the contents of /proc files can change from
instant to instant, a single read(2) of a /proc file is guaranteed to return a sane representa-
tion of state; that is, the read will be atomic with respect to the state of the process. No
such guarantee applies to successive reads applied to a /proc file for a running process.

In addition, atomicity is not guaranteed for 1/0 applied to the as (address-space) file for a
running process or for a process whose address space contains memory shared by
another running process.

A number of structure definitions are used to describe the files. These structures may
grow by the addition of elements at the end in future releases of the system and it is not
legitimate for a program to assume that they will not.

A given directory /proc/pid contains the following entries. A process can use the invisible
alias /proc/self if it wishes to open one of its own /proc files (invisible in the sense that the
name ““self’’ does not appear in a directory listing of /proc obtained from Is(1), get-
dents(2), or readdir(3C)).

Contains the address-space image of the process; it can be opened for both reading and
writing. Iseek(2) is used to position the file at the virtual address of interest and then the
address space can be examined or changed through read(2) or write(2) (or by using
pread(2) or pwrite(2) for the combined operation).

A write-only file to which structured messages are written directing the system to change
some aspect of the process’s state or control its behavior in some way. The seek offset is
not relevant when writing to this file. Individual lwps also have associated lwpctl files in
the Iwp subdirectories. A control message may be written either to the process’s ctl file
or to a specific lwpctl file with operation-specific effects. The effect of a control message
is immediately reflected in the state of the process visible through appropriate status and
information files. The types of control messages are described in detail later. See CON-
TROL MESSAGES.

Contains state information about the process and the representative lwp. The file con-
tains a pstatus structure which contains an embedded lwpstatus structure for the
representative Iwp, as follows:

typedef struct pstatus {

int pr_flags; /Oflags (see below) 0

int pr_nlwp; /Onumber of lwps in the process [
pid_t pr_pid; /Oprocess id O

pid_t pr_ppid; /Oparent process id [

pid_t pr_pgid; /Oprocess group id O

pid_t pr_sid; /Osession id [

id_t pr_aslwpid; /Olwp-id of the aslwp, if any [

id_t pr_agentid; /Olwp-id of the agent lwp, if any [
sigset t pr_sigpend; /Oset of process pending signals [
uintptr_t pr_brkbase; /Ovirtual address of the process heap [J
size_t pr_brksize; /Usize of the process heap, in bytes [J

Sun0S 5.6 modified 13 Feb 1997

File Formats

modified 13 Feb 1997

proc(4)

uintptr_t pr_stkbase; /Ovirtual address of the process stack [1
size t pr_stksize; /Osize of the process stack, in bytes [0
timestruc_t pr_utime; /Oprocess user cpu time [
timestruc_t pr_stime; /Oprocess system cpu time [f
timestruc_t pr_cutime; /Osum of children’s user times [0
timestruc_t pr_cstime; /Osum of children’s system times [
sigset_t pr_sigtrace; /Oset of traced signals [
fltset_t pr_flttrace; /Oset of traced faults O
sysset_t pr_sysentry; /Oset of system calls traced on entry [
sysset_t pr_sysexit; /Oset of system calls traced on exit
lwpstatus_t pr_lwp; /Ostatus of the representative lwp O

} pstatus_t;

pr_flags is a bit-mask holding the following process flags. For convenience, it also con-
tains the lwp flags for the representative lwp, described later.

PR_ISSYS process is a system process (see PCSTOP).

PR_VFORKP process is the parent of a vforked child (see PCWATCH).
PR_FORK process has its inherit-on-fork mode set (see PCSET).
PR_RLC process has its run-on-last-close mode set (see PCSET).
PR_KLC process has its kill-on-last-close mode set (see PCSET).

PR_ASYNC process has its asynchronous-stop mode set (see PCSET).
PR_MSACCT process has microstate accounting enabled (see PCSET).
PR_MSFORK process microstate accounting is inherited on fork (see PCSET).
PR_BPTADJ process has its breakpoint adjustment mode set (see PCSET).
PR_PTRACE process has its ptrace-compatibility mode set (see PCSET).

pr_nlwp is the total number of Iwps in the process.

pr_pid, pr_ppid, pr_pgid, and pr_sid are, respectively, the process ID, the ID of the
process’s parent, the process’s process group ID, and the process’s session ID.

pr_aslwpid is the lwp-ID for the "asynchronous signal lwp" (aslwp). It is zero if there is
no aslwp in the process. The aslwp is the Iwp designated to redirect asynchronous
signals to other lwps in a multi-threaded process. See signal(5) for a description of the
aslwp.

pr_agentid is the lwp-ID for the /proc agent Iwp (see the PCAGENT control operation). It
is zero if there is no agent Iwp in the process.

pr_sigpend identifies asynchronous signals pending for the process.

pr_brkbase is the virtual address of the process heap and pr_brksize is its size in bytes.
The address formed by the sum of these values is the process break (see brk(2)).
pr_stkbase and pr_stksize are, respectively, the virtual address of the process stack and
its size in bytes. (Each Iwp runs on a separate stack; the distinguishing characteristic of
the process stack is that the operating system will grow it when necessary.)

pr_utime, pr_stime, pr_cutime, and pr_cstime are, respectively, the user CPU and system
CPU time consumed by the process, and the cumulative user CPU and system CPU time
consumed by the process’s children, in seconds and nanoseconds.

SunOS 5.6 4-289

proc(4)

4-290

File Formats

pr_sigtrace and pr_flttrace contain, respectively, the set of signals and the set of
hardware faults that are being traced (see PCSTRACE and PCSFAULT).

pr_sysentry and pr_sysexit contain, respectively, the sets of system calls being traced on
entry and exit (see PCSENTRY and PCSEXIT).

pr_lwp contains the status information for the representative lwp:
typedef struct lwpstatus {

int pr_flags; /Oflags (see below) 0

id_t pr_lwpid; /Ospecific lwp identifier [1

short pr_why; /Oreason for Iwp stop, if stopped [
short pr_what; /Omore detailed reason [

short pr_cursig; /Ocurrent signal, if any I

siginfo_t pr_info; /Oinfo associated with signal or fault [
sigset t pr_lwppend; /Oset of signals pending to the lwp O
sigset t pr_lwphold,; /Oset of signals blocked by the lwp [0
struct sigaction pr_action; /Osignal action for current signal I
stack t pr_altstack; /Oalternate signal stack info [0
uintptr_t pr_oldcontext; /Oaddress of previous ucontext [J

short pr_syscall; /Osystem call number (if in syscall) [
short pr_nsysarg; /Onumber of arguments to this syscall [
int pr_errno; /Oerrno for failed syscall O

long pr_sysarg[PRSYSARGS]; /Oarguments to this syscall (I
long pr_rvall; /[Oprimary syscall return value I

long pr_rval2; /Osecond syscall return value, if any [
char pr_clname[PRCLSZ]; /Oscheduling class name O
timestruc_t pr_tstamp; /Oreal-time time stamp of stop [
u_long pr_instr; /Ocurrent instruction O

prgregset t pr_reg; /Ogeneral registers [

prfpregset t pr_fpreg; /Ofloating-point registers [0

} lwpstatus_t;

pr_flags is a bit-mask holding the following Iwp flags. For convenience, it also contains
the process flags, described previously.

PR_STOPPED Iwp is stopped.

PR_ISTOP lwp is stopped on an event of interest (see PCSTOP).
PR_DSTOP lwp has a stop directive in effect (see PCSTOP).
PR_STEP Iwp has a single-step directive in effect (see PCRUN).

PR_ASLEEP Iwp is in an interruptible sleep within a system call.

PR_PCINVAL Iwp’s current instruction (pr_instr) is undefined.

PR_ASLWP this is the asynchronous signal lwp for the process.

PR_AGENT this is the /proc agent Iwp for the process.
pr_lwpid names the specific lwp.

pr_why and pr_what together describe, for a stopped Iwp, the reason for the stop. Possi-
ble values of pr_why and the associated pr_what are:

Sun0S 5.6 modified 13 Feb 1997

File Formats

modified 13 Feb 1997

proc(4)

PR_REQUESTED indicates that the stop occurred in response to a stop directive,
normally because PCSTOP was applied or because another Iwp stopped on an
event of interest and the asynchronous-stop flag (see PCSET) was not set for the
process. pr_what is unused in this case.

PR_SIGNALLED indicates that the Iwp stopped on receipt of a signal (see
PCSTRACE); pr_what holds the signal number that caused the stop (for a newly-
stopped lwp, the same value is in pr_cursig).

PR_FAULTED indicates that the lwp stopped on incurring a hardware fault (see
PCSFAULT); pr_what holds the fault number that caused the stop.

PR_SYSENTRY and PR_SYSEXIT indicate a stop on entry to or exit from a system
call (see PCSENTRY and PCSEXIT); pr_what holds the system call number.

PR_JOBCONTROL indicates that the lwp stopped due to the default action of a
job control stop signal (see sigaction(2)); pr_what holds the stopping signal
number.

PR_SUSPENDED indicates that the Iwp stopped due to internal synchronization
of lwps within the process. pr_what is unused in this case.

pr_cursig names the current signal, that is, the next signal to be delivered to the lwp, if
any. pr_info, when the lwp is in a PR_SIGNALLED or PR_FAULTED stop, contains addi-
tional information pertinent to the particular signal or fault (see <sys/siginfo.h>).

pr_lwppend identifies any synchronous or directed signals pending for the lwp.
pr_lwphold identifies those signals whose delivery is being blocked by the Iwp (the
signal mask).

pr_action contains the signal action information pertaining to the current signal (see
sigaction(2)); it is undefined if pr_cursig is zero. pr_altstack contains the alternate signal
stack information for the Iwp (see sigaltstack(2)).

pr_oldcontext, if not zero, contains the address on the Iwp stack of a ucontext structure
describing the previous user-level context (see ucontext(5)). It is non-zero only if the lwp
is executing in the context of a signal handler.

pr_syscall is the number of the system call, if any, being executed by the Iwp; it is non-
zero if and only if the lwp is stopped on PR_SYSENTRY or PR_SYSEXIT, or is asleep within
a system call (PR_ASLEEP is set). If pr_syscall is non-zero, pr_nsysarg is the number of
arguments to the system call and pr_sysarg contains the actual arguments.

pr_rvall, pr_rval2, and pr_errno are defined only if the lwp is stopped on PR_SYSEXIT or
if the PR_VFORKP flag is set. If pr_errno is zero, pr_rvall and pr_rval2 contain the return
values from the system call. Otherwise, pr_errno contains the error number for the fail-
ing system call (see <sys/errno.h>).

pr_clname contains the name of the lwp’s scheduling class.

pr_tstamp, if the lwp is stopped, contains a time stamp marking when the Ilwp stopped,
in real time seconds and nanoseconds since an arbitrary time in the past.

SunOS 5.6 4-291

proc(4)

4-292

psinfo

File Formats

pr_instr contains the machine instruction to which the Iwp’s program counter refers. The
amount of data retrieved from the process is machine-dependent. On SPARC based
machines, it is a 32-bit word. On x86 based machines, it is a single byte. In general, the
size is that of the machine’s smallest instruction. 1f PR_PCINVAL is set, pr_instr is
undefined; this occurs whenever the lwp is not stopped or when the program counter
refers to an invalid virtual address.

pr_reg is an array holding the contents of a stopped Iwp’s general registers.

On SPARC based machines the predefined constantsR_G0 ... R_G7,R_O0 ...
R_O7,R_LO...R_L7,R_10... R_I7,R_PSR,R_PC, R_nPC, R_Y, R_WIM, and R_TBR
can be used as indices to refer to the corresponding registers; previous register
windows can be read from their overflow locations on the stack (however, see
the gwindows file in the /proc/pid/lwp/lwpid subdirectory).

On x86 based machines, the predefined constants SS, UESP, EFL, CS, EIP, ERR,
TRAPNO, EAX, ECX, EDX, EBX, ESP, EBP, ESI, EDI, DS, ES, FS, and GS can be used
as indices to refer to the corresponding registers.

pr_fpreg is a structure holding the contents of the floating-point registers.

If the Iwp is not stopped, all register values are undefined.

Contains miscellaneous information about the process and the representative lwp needed
by the ps(1) command. psinfo is accessible after a process becomes a zombie. The file
contains a psinfo structure which contains an embedded lwpsinfo structure for the
representative Iwp, as follows:

typedef struct psinfo {

int pr_flag; /Oprocess flags O
int pr_nlwp; /Onumber of lwps in the process [
pid_t pr_pid; /Oprocess id O
pid_t pr_ppid; /Oprocess id of parent [
pid_t pr_pgid; /Oprocess id of process group leader [
pid_t pr_sid; /Osession id [
uid_t pr_uid; /Oreal user id O
uid_t pr_euid; /Oeffective user id O
gid_t pr_gid; /Oreal group id 0
gid_t pr_egid; /Oeffective group id O
uintptr_t pr_addr; /Oaddress of process [
size t pr_size; /Osize of process image in Kbytes [
size t pr_rssize; /Oresident set size in Kbytes [
dev_t pr_ttydev; /Ocontrolling tty device (or PRNODEV)
u_short pr_pctcpu; /0% of recent cpu time used by all Iwps O
u_short pr_pctmem; /0% of system memory used by process [
timestruc_t pr_start; /Oprocess start time, from the epoch [0
timestruc_t pr_time; /Ocpu time for this process O
timestruc_t pr_ctime; /Ocpu time for reaped children OO
char pr_fname[PRFNSZ]; /Oname of exec’ed file I
Sun0S 5.6 modified 13 Feb 1997

File Formats

modified 13 Feb 1997

proc(4)

char pr_psargs[PRARGSZ]; /Oinitial characters of arg list
int pr_wstat; /0if zombie, the wait() status [
int pr_argc; /Oinitial argument count O
uintptr_t pr_argv; /Oaddress of initial argument vector [J
uintptr_t pr_envp; /Oaddress of initial environment vector [
lwpsinfo_t pr_lwp; /Oinformation for representative lwp [0

} psinfo_t;

Some of the entries in psinfo, such as pr_flag and pr_addr, refer to internal kernel data
structures and should not be expected to retain their meanings across different versions
of the operating system.

pr_pctcpu and pr_pctmem are 16-bit binary fractions in the range 0.0 to 1.0 with the
binary point to the right of the high-order bit (1.0 == 0x8000). pr_pctcpu is the summa-
tion over all lwps in the process.

pr_lwp contains the ps(1) information for the representative Iwp. If the process is a zom-
bie, pr_nlwp and pr_lwp.pr_lwpid are zero and the other fields of pr_lwp are undefined:

typedef struct lwpsinfo {

int pr_flag; /Olwp flags O

id_t pr_lwpid; /Owpid O

uintptr_t pr_addr; /Ointernal address of lwp [0

uintptr_t pr_wchan; /Owait addr for sleeping Iwp O

char pr_stype; /Osynchronization event type [

char pr_state; /Onumeric lwp state O

char pr_sname; /Oprintable character for pr_state [1

char pr_nice; /Onice for cpu usage O

short pr_syscall; /Osystem call number (if in syscall) [f

char pr_oldpri; /Opre-SVR4, low value is high priority [

char pr_cpu; /Opre-SVR4, cpu usage for scheduling [

int pr_pri; /Opriority, high value = high priority (I

u_short pr_pctcpu; /0% of recent cpu time used by this Iwp [0

timestruc_t pr_start; /Olwp start time, from the epoch [f

timestruc_t pr_time; /Ocpu time for this lwp O

char pr_clname[PRCLSZ]; /Oscheduling class name O

char pr_name[PRFNSZ]; /Oname of system Iwp I

processorid_t pr_onpro; /Oprocessor which last ran this lwp OO

processorid_t pr_bindpro; /Oprocessor to which lwp is bound [

psetid_t pr_bindpset; /Oprocessor set to which Iwp is bound [
} lwpsinfo _t;

Some of the entries in Iwpsinfo, such as pr_flag, pr_addr, pr_wchan, pr_stype, pr_state,
and pr_name, refer to internal kernel data structures and should not be expected to retain
their meanings across different versions of the operating system.

pr_pctcpu is a 16-bit binary fraction, as described above. It represents the CPU time used
by the specific lwp. On a multi-processor machine, the maximum value is 1/N, where N
is the number of CPUSs.

SunOS 5.6 4-293

proc(4)

cred

sigact

auxv

Idt

map

4-294

File Formats

Contains a description of the credentials associated with the process:
typedef struct prcred {

uid_t pr_euid; /Oeffective user id [0
uid_t pr_ruid; /Oreal user id OO
uid_t pr_suid; /Osaved user id (from exec) [
gid_t pr_egid; /Oeffective group id [
gid_t pr_rgid; /Oreal group id [0
gid_t pr_sgid; /Osaved group id (from exec) O
int pr_ngroups; /Onumber of supplementary groups [
gid_t pr_groups[l]; /Oarray of supplementary groups [
} prered_t;

The array of associated supplementary groups in pr_groups is of variable length; the cred
file contains all of the supplementary groups. pr_ngroups indicates the number of sup-
plementary groups. (See also the PCSCRED control operation.)

Contains an array of sigaction structures describing the current dispositions of all signals
associated with the traced process (see sigaction(2)). Signal numbers are displaced by 1
from array indices, so that the action for signal number n appears in position n-1 of the
array.

Contains the initial values of the process’s aux vector in an array of auxv_t structures (see
<sys/auxv.h>). The values are those that were passed by the operating system as startup
information to the dynamic linker.

This file exists only on x86 based machines. It is non-empty only if the process has esta-
blished a local descriptor table (LDT). If non-empty, the file contains the array of
currently active LDT entries in an array of elements of type struct ssd, defined in
<sys/sysi86.h>, one element for each active LDT entry.

Contains information about the virtual address map of the process. The file contains an
array of prmap structures, each of which describes a contiguous virtual address region in
the address space of the traced process:

typedef struct prmap {

uintptr_t pr_vaddr; /Ovirtual address of mapping [

size t pr_size; /Osize of mapping in bytes [

char pr_mapname[PRMAPSZ]; /Oname in /proc/pid/object O

offset_t pr_offset; /Ooffset into mapped object, if any [

int pr_mflags; /Oprotection and attribute flags [1

int pr_pagesize; /Opagesize for this mapping in bytes [1
} prmap_t;

pr_vaddr is the virtual address of the mapping within the traced process and pr_size is
its size in bytes. pr_mapname, if it does not contain a null string, contains the name of a
file in the object directory (see below) that can be opened read-only to obtain a file
descriptor for the mapped file associated with the mapping. This enables a debugger to

Sun0S 5.6 modified 13 Feb 1997

File Formats

rmap

cwd

root

fd

modified 13 Feb 1997

proc(4)

find object file symbol tables without having to know the real path names of the execut-
able file and shared libraries of the process. pr_offset is the 64-bit offset within the
mapped file (if any) to which the virtual address is mapped.

pr_mflags is a bit-mask of protection and attribute flags:

MA_READ mapping is readable by the traced process.
MA_WRITE mapping is writable by the traced process.
MA_EXEC mapping is executable by the traced process.

MA_SHARED mapping changes are shared by the mapped object.

A contiguous area of the address space having the same underlying mapped object may
appear as multiple mappings due to varying read, write, and execute attributes. The
underlying mapped object does not change over the range of a single mapping. An1/0
operation to a mapping marked MA_SHARED fails if applied at a virtual address not
corresponding to a valid page in the underlying mapped object. A write to a
MA_SHARED mapping that is not marked MA_WRITE fails. Reads and writes to private
mappings always succeed. Reads and writes to unmapped addresses fail.

pr_pagesize is the page size for the mapping, currently always the system pagesize.

Contains information about the reserved address ranges of the process. The file contains
an array of prmap structures, as defined above for the map file. Each structure describes
a contiguous virtual address region in the address space of the traced process that is
reserved by the system in the sense that an mmap(2) system call that does not specify
MAP_FIXED will not use any part of it for the new mapping. Examples of such reserva-
tions include the address ranges reserved for the process stack and the individual thread
stacks of a multi-threaded process.

A symbolic link to the process’s current working directory (see chdir(2)). A readlink(2)
of /proc/pid/cwd yields a null string. However, it can be opened, listed, and searched as a
directory and can be the target of chdir(2).

A symbolic link to the process’s root directory. /proc/pid/root can differ from the system
root directory if the process or one of its ancestors executed chroot(2) as super-user. It
has the same semantics as /proc/pid/cwd.

A directory containing references to the open files of the process. Each entry is a decimal
number corresponding to an open file descriptor in the process.

If an entry refers to a regular file, it can be opened with normal file system semantics but,
to ensure that the controlling process cannot gain greater access than the controlled pro-
cess, with no file access modes other than its read/write open modes in the controlled
process. If an entry refers to a directory, it appears as a symbolic link and can be

accessed with the same semantics as /proc/pid/cwd. An attempt to open any other type of
entry fails with EACCES.

SunOS 5.6 4-295

proc(4)

4-296

object

pagedata

File Formats

A directory containing read-only files with names corresponding to the pr_mapname
entries in the map and pagedata files. Opening such a file yields a file descriptor for the
underlying mapped file associated with an address-space mapping in the process. The
file name a.out appears in the directory as an alias for the process’s executable file.

The object directory makes it possible for a controlling process to gain access to the object
file and any shared libraries (and consequently the symbol tables) without having to
know the actual path names of the executable files.

Opening the page data file enables tracking of address space references and modifications
on a per-page basis.

A read(2) of the page data file descriptor returns structured page data and atomically
clears the page data maintained for the file by the system. That is to say, each read
returns data collected since the last read; the first read returns data collected since the file
was opened. When the call completes, the read buffer contains the following structure as
its header and thereafter contains a number of section header structures and associated
byte arrays that must be accessed by walking linearly through the buffer.

typedef struct prpageheader {

timestruc_t pr_tstamp; /Oreal time stamp, time of read()
long pr_nmap; /Onumber of address space mappings [
long pr_npage; /Ototal number of pages

} prpageheader t;

The header is followed by pr_nmap prasmap structures and associated data arrays. The
prasmap structure contains at least the following elements:

typedef struct prasmap {

uintptr_t pr_vaddr; /Ovirtual address of mapping O

size t pr_npage; /Onumber of pages in mapping O

char pr_mapname[PRMAPSZ]; /Oname in /proc/pid/object O

offset_t pr_offset; /Ooffset into mapped object, if any O

int pr_mflags; /Oprotection and attribute flags [

int pr_pagesize; /Opagesize for this mapping in bytes [1
} prasmap_t;

Each section header is followed by pr_npage bytes, one byte for each page in the map-
ping, plus 0-7 null bytes at the end so that the next prasmap structure begins on an eight-
byte aligned boundary. Each data byte may contain these flags:

PG_REFERENCED page has been referenced.
PG_MODIFIED page has been modified.

If the read buffer is not large enough to contain all of the page data, the read fails with
E2BIG and the page data is not cleared. The required size of the read buffer can be deter-
mined through fstat(2). Application of Iseek(2) to the page data file descriptor is ineffec-
tive; every read starts from the beginning of the file. Closing the page data file descriptor
terminates the system overhead associated with collecting the data.

Sun0S 5.6 modified 13 Feb 1997

File Formats proc(4)
More than one page data file descriptor for the same process can be opened, up to a
system-imposed limit per traced process. A read of one does not affect the data being
collected by the system for the others. An open of the page data file will fail with
ENOMEM if the system-imposed limit would be exceeded.

watch Contains an array of prwatch structures, one for each watched area established by the
PCWATCH control operation. See PCWATCH for details.
usage Contains process usage information described by a prusage structure which contains at
least the following fields:
typedef struct prusage {
id_t pr_lwpid; /Olwp id. 0: process or defunct [J
int pr_count; /Onumber of contributing Iwps [0
timestruc_t pr_tstamp; /Oreal time stamp, time of read() [
timestruc_t pr_create; /Oprocess/lwp creation time stamp O
timestruc_t pr_term; /Oprocess/lwp termination time stamp O
timestruc_t pr_rtime; /Ototal Iwp real (elapsed) time O
timestruc_t pr_utime; /Ouser level CPU time [0
timestruc_t pr_stime; /Osystem call CPU time [0
timestruc_t pr_ttime; /Oother system trap CPU time [0
timestruc_t pr_tftime; /Otext page fault sleep time O
timestruc_t pr_dftime; /Odata page fault sleep time O
timestruc_t pr_kftime; /Okernel page fault sleep time [0
timestruc_t pr_Itime; /Ouser lock wait sleep time O
timestruc_t pr_slptime; /Oall other sleep time OO
timestruc_t pr_wtime; /Owait-cpu (latency) time O
timestruc_t pr_stoptime; /Ostopped time [J
u_long pr_minf; /Ominor page faults [
u_long pr_majf; /Omajor page faults [J
u_long pr_nswap; /Oswaps U
u_long pr_inblk; /Oinput blocks [
u_long pr_oublk; /Ooutput blocks [
u_long pr_msnd,; /Omessages sent [J
u_long pr_mrcv; /Omessages received I
u_long pr_sigs; /Osignals received [0
u_long pr_vctx; /Ovoluntary context switches [
u_long pr_ictx; /Oinvoluntary context switches OJ
u_long pr_sysc; /Osystem calls I
u_long pr_ioch; /Ochars read and written O
} prusage_t;
If microstate accounting has not been enabled for the process (see the PR_MSACCT flag
for the PCSET operation, below), the usage file contains only an estimate of times spent in
the various states. The usage file is accessible after a process becomes a zombie.

modified 13 Feb 1997 SunOS 5.6 4-297

proc(4)

Istatus

Ipsinfo

lusage

lwp

STRUCTURE OF
/proc/pid/lwp/lwpid
lwpctl

lwpstatus

Iwpsinfo

lwpusage

gwindows

4-298

File Formats

Contains a prheader structure followed by an array of Iwpstatus structures, one for each
Iwp in the process (see also /proc/pid/lwp/lwpid/Iwpstatus, below). The prheader struc-
ture describes the number and size of the array entries that follow.

typedef struct prheader {

int pr_nent; /Onumber of entries O

int pr_entsize; /Osize of each entry, in bytes [f
} prheader t;

The lwpstatus structure may grow by the addition of elements at the end in future
releases of the system. Programs must use pr_entsize in the file header to index through
the array. These comments apply to all /proc files that include a prheader structure
(Ipsinfo and lusage, below).

Contains a prheader structure followed by an array of Iwpsinfo structures, one for each
Iwp in the process. (See also /proc/pid/lwp/lwpid/Ilwpsinfo, below.)

Contains a prheader structure followed by an array of prusage structures, one for each
Iwp in the process plus an additional element at the beginning that contains the summa-
tion over all defunct lwps (lwps that once existed but no longer exist in the process).
Excluding the pr_lwpid, pr_tstamp, pr_create, and pr_term entries, the entry-by-entry
summation over all these structures is the definition of the process usage information
obtained from the usage file. (See also /proc/pid/lwp/lwpid/Ilwpusage, below.)

A directory containing entries each of which names an lwp within the process. These
entries are themselves directories containing additional files as described below.

A given directory /proc/pid/lwp/lwpid contains the following entries:

Write-only control file. The messages written to this file affect the specific lwp rather
than the representative lwp, as is the case for the process’s ctl file.

Iwp-specific state information. This file contains the lwpstatus structure for the specific
Iwp as described above for the representative Iwp in the process’s status file.

Iwp-specific ps(1) information. This file contains the lwpsinfo structure for the specific
Iwp as described above for the representative Iwp in the process’s psinfo file.

This file contains the prusage structure for the specific lwp as described above for the
process’s usage file.

This file exists only on SPARC based machines. If it is non-empty, it contains a
gwindows_t structure, defined in <sys/regset.h>, with the values of those SPARC regis-
ter windows that could not be stored on the stack when the Iwp stopped. Conditions
under which register windows are not stored on the stack are: the stack pointer refers to
nonexistent process memory or the stack pointer is improperly aligned. If the Iwp is not
stopped or if there are no register windows that could not be stored on the stack, the file

Sun0S 5.6 modified 13 Feb 1997

File Formats

Xregs

CONTROL
MESSAGES

PCSTOP
PCDSTOP
PCWSTOP

PCTWSTOP

modified 13 Feb 1997

proc(4)

is empty (the usual case).

Extra state registers. The extra state register set is architecture dependent; this file is
empty if the system does not support extra state registers. If the file is non-empty, it con-
tains an architecture dependent structure of type prxregset_t, defined in <procfs.h>, with
the values of the lwp’s extra state registers. If the lwp is not stopped, all register values
are undefined. See also the PCSXREG control operation, below.

Process state changes are effected through messages written to a process’s ctl file or to an
individual Iwp’s lwpctl file. All control messages consist of a long that names the
specific operation followed by additional data containing the operand, if any.

Multiple control messages may be combined in a single write(2) (or writev(2)) to a con-
trol file, but no partial writes are permitted. That is, each control message, operation
code plus operand, if any, must be presented in its entirety to the write(2) and not in
pieces over several system calls. If a control operation fails, no subsequent operations
contained in the same write(2) are attempted.

Descriptions of the allowable control messages follow. In all cases, writing a message to
a control file for a process or Iwp that has terminated elicits the error ENOENT.

When applied to the process control file, PCSTOP directs all Iwps to stop and waits for
them to stop, PCDSTOP directs all lwps to stop without waiting for them to stop, and
PCWSTOP simply waits for all lwps to stop. When applied to an Iwp control file, PCSTOP
directs the specific lwp to stop and waits until it has stopped, PCDSTOP directs the
specific lwp to stop without waiting for it to stop, and PCWSTOP simply waits for the
specific lwp to stop. When applied to an lwp control file, PCSTOP and PCWSTOP com-
plete when the Iwp stops on an event of interest, immediately if already so stopped;
when applied to the process control file, they complete when every lwp has stopped
either on an event of interest or on a PR_SUSPENDED stop.

PCTWSTOP is identical to PCWSTOP except that it enables the operation to time out, to
avoid waiting forever for a process or lwp that may never stop on an event of interest.
PCTWSTOP takes a long operand specifying a number of milliseconds; the wait will ter-
minate successfully after the specified number of milliseconds even if the process or lwp
has not stopped; a timeout value of zero makes the operation identical to PCWSTOP.

An “event of interest” is either a PR_REQUESTED stop or a stop that has been specified in
the process’s tracing flags (set by PCSTRACE, PCSFAULT, PCSENTRY, and PCSEXIT).
PR_JOBCONTROL and PR_SUSPENDED stops are specifically not events of interest. (An
Iwp may stop twice due to a stop signal, first showing PR_SIGNALLED if the signal is
traced and again showing PR_JOBCONTROL if the lwp is set running without clearing the
signal.) If PCSTOP or PCDSTORP is applied to an Iwp that is stopped, but not on an event
of interest, the stop directive takes effect when the Iwp is restarted by the competing
mechanism. At that time, the lwp enters a PR_REQUESTED stop before executing any
user-level code.

SunOS 5.6 4-299

proc(4)

4-300

PCRUN

PCSTRACE

File Formats

A write of a control message that blocks is interruptible by a signal so that, for example,
an alarm(2) can be set to avoid waiting forever for a process or lwp that may never stop
on an event of interest. If PCSTOP is interrupted, the lwp stop directives remain in effect
even though the write(2) returns an error. (Use of PCTWSTOP with a non-zero timeout is
recommended over PCWSTOP with an alarm(2).)

A system process (indicated by the PR_ISSYS flag) never executes at user level, has no
user-level address space visible through /proc, and cannot be stopped. Applying one of
these operations to a system process or any of its lwps elicits the error EBUSY.

Make an Iwp runnable again after a stop. This operation takes a long operand containing
zero or more of the following flags:

PRCSIG clears the current signal, if any (see PCCSIG).
PRCFAULT clears the current fault, if any (see PCCFAULT).

PRSTEP directs the lwp to execute a single machine instruction. On completion
of the instruction, a trace trap occurs. If FLTTRACE is being traced, the Iwp stops;
otherwise, it is sent SIGTRAP. If SIGTRAP is being traced and is not blocked, the
Iwp stops. When the lwp stops on an event of interest, the single-step directive is
cancelled, even if the stop occurs before the instruction is executed. This opera-
tion requires hardware and operating system support and may not be imple-
mented on all processors. It is implemented on SPARC and x86 based machines.

PRSABORT is meaningful only if the lwp is in a PR_SYSENTRY stop or is marked
PR_ASLEEP; it instructs the lwp to abort execution of the system call (see PCSEN-
TRY and PCSEXIT).

PRSTOP directs the lwp to stop again as soon as possible after resuming execu-
tion (see PCDSTOP). In particular, if the lwp is stopped on PR_SIGNALLED or
PR_FAULTED, the next stop will show PR_REQUESTED, nho other stop will have
intervened, and the Iwp will not have executed any user-level code.

When applied to an Iwp control file, PCRUN clears any outstanding directed-stop request
and makes the specific Iwp runnable. The operation fails with EBUSY if the specific lwp is
not stopped on an event of interest or has not been directed to stop or if the agent lwp
exists and this is not the agent lwp (see PCAGENT).

When applied to the process control file, a representative Iwp is chosen for the operation
as described for /proc/pid/status. The operation fails with EBUSY if the representative Iwp
is not stopped on an event of interest or has not been directed to stop or if the agent lwp
exists. If PRSTEP or PRSTOP was requested, the representative Iwp is made runnable and
its outstanding directed-stop request is cleared; otherwise all outstanding directed-stop
requests are cleared and, if it was stopped on an event of interest, the representative lwp
is marked PR_REQUESTED. If, as a consequence, all lwps are in the PR_REQUESTED or
PR_SUSPENDED stop state, all lwps showing PR_REQUESTED are made runnable.

Define a set of signals to be traced in the process. The receipt of one of these signals by an

Iwp causes the lwp to stop. The set of signals is defined using an operand sigset_t con-
tained in the control message. Receipt of SIGKILL cannot be traced; if specified, it is

Sun0S 5.6 modified 13 Feb 1997

proc(4)

If a signal that is included in an lwp’s held signal set (the signal mask) is sent to the Iwp,
the signal is not received and does not cause a stop until it is removed from the held
signal set, either by the Iwp itself or by setting the held signal set with PCSHOLD.

The current signal, if any, is cleared from the specific or representative lwp.

The current signal and its associated signal information for the specific or representative
Iwp are set according to the contents of the operand siginfo structure (see
<sys/siginfo.h>). If the specified signal number is zero, the current signal is cleared. The
semantics of this operation are different from those of kill(2) in that the signal is
delivered to the Iwp immediately after execution is resumed (even if it is being blocked)
and an additional PR_SIGNALLED stop does not intervene even if the signal is traced. Set-
ting the current signal to SIGKILL terminates the process immediately.

If applied to the process control file, a signal is sent to the process with semantics identi-
cal to those of kill(2). If applied to an Ilwp control file, a directed signal is sent to the
specific lwp. The signal is named in a long operand contained in the message. Sending

SIGKILL terminates the process immediately.

A signal is deleted, that is, it is removed from the set of pending signals. If applied to the
process control file, the signal is deleted from the process’s pending signals. If applied to

File Formats
silently ignored.
PCCSIG
PCSSIG
PCKILL
PCUNKILL
PCSHOLD
PCSFAULT
FLTILL
FLTPRIV
FLTBPT
FLTTRACE
FLTWATCH
FLTACCESS
FLTBOUNDS
FLTIOVF
FLTIZDIV
FLTFPE
FLTSTACK

modified 13 Feb 1997

an lwp control file, the signal is deleted from the lwp’s pending signals. The current
signal (if any) is unaffected. The signal is named in a long operand in the control mes-
sage. Itisan error (EINVAL) to attempt to delete SIGKILL.

Set the set of held signals for the specific or representative lwp (signals whose delivery
will be blocked if sent to the lwp). The set of signals is specified with a sigset_t operand.
SIGKILL and SIGSTOP cannot be held; if specified, they are silently ignored.

Define a set of hardware faults to be traced in the process. On incurring one of these
faults, an lwp stops. The set is defined via the operand fltset_t structure. Fault names are
defined in <sys/fault.h> and include the following. Some of these may not occur on all
processors; there may be processor-specific faults in addition to these.

illegal instruction
privileged instruction
breakpoint trap

trace trap (single-step)
watchpoint trap

memory access fault (bus error)
memory bounds violation
integer overflow

integer zero divide
floating-point exception
unrecoverable stack fault

SunOS 5.6 4-301

proc(4)

PCCFAULT

PCSENTRY PCSEXIT

4-302

PCWATCH

File Formats

FLTPAGE recoverable page fault

When not traced, a fault normally results in the posting of a signal to the lwp that
incurred the fault. If an lwp stops on a fault, the signal is posted to the lwp when execu-
tion is resumed unless the fault is cleared by PCCFAULT or by the PRCFAULT option of
PCRUN. FLTPAGE is an exception; no signal is posted. The pr_info field in the lwpstatus
structure identifies the signal to be sent and contains machine-specific information about
the fault.

The current fault, if any, is cleared; the associated signal will not be sent to the specific or
representative lwp.

These control operations instruct the process’s Iwps to stop on entry to or exit from
specified system calls. The set of system calls to be traced is defined via an operand
sysset_t structure.

When entry to a system call is being traced, an Iwp stops after having begun the call to
the system but before the system call arguments have been fetched from the lwp. When
exit from a system call is being traced, an lwp stops on completion of the system call just
prior to checking for signals and returning to user level. At this point, all return values
have been stored into the Iwp’s registers.

If an Iwp is stopped on entry to a system call (PR_SYSENTRY) or when sleeping in an
interruptible system call (PR_ASLEEP is set), it may be instructed to go directly to system
call exit by specifying the PRSABORT flag in a PCRUN control message. Unless exit from
the system call is being traced, the lwp returns to user level showing EINTR.

Set or clear a watched area in the controlled process from a prwatch structure operand:
typedef struct prwatch {

uintptr_t pr_vaddr; /Ovirtual address of watched area [
size t pr_size; /Osize of watched area in bytes [1
int pr_wflags; /Owatch type flags I

} prwatch_t;

pr_vaddr specifies the virtual address of an area of memory to be watched in the con-
trolled process. pr_size specifies the size of the area, in bytes. pr_wflags specifies the
type of memory access to be monitored as a bit-mask of the following flags:

WA_READ read access
WA _WRITE write access
WA _EXEC execution access

WA_TRAPAFTER trap after the instruction completes

If pr_wflags is non-empty, a watched area is established for the virtual address range
specified by pr_vaddr and pr_size. If pr_wflags is empty, any previously-established
watched area starting at the specified virtual address is cleared; pr_size is ignored.

A watchpoint is triggered when an lwp in the traced process makes a memory reference
that covers at least one byte of a watched area and the memory reference is as specified in
pr_wflags. When an lwp triggers a watchpoint, it incurs a watchpoint trap. If

Sun0S 5.6 modified 13 Feb 1997

File Formats

modified 13 Feb 1997

proc(4)

FLTWATCH is being traced, the lwp stops; otherwise, it is sent a SIGTRAP signal; if
SIGTRAP is being traced and is not blocked, the Iwp stops.

The watchpoint trap occurs before the instruction completes unless WA_TRAPAFTER was
specified, in which case it occurs after the instruction completes. If it occurs before com-
pletion, the memory is not modified. If it occurs after completion, the memory is
modified (if the access is a write access).

pr_info in the lwpstatus structure contains information pertinent to the watchpoint trap.
In particular, the si_addr field contains the virtual address of the memory reference that
triggered the watchpoint, and the si_code field contains one of TRAP_RWATCH,
TRAP_WWATCH, or TRAP_XWATCH, indicating read, write, or execute access, respec-
tively. The si_trapafter field is zero unless WA_TRAPAFTER is in effect for this watched
area; non-zero indicates that the current instruction is not the instruction that incurred
the watchpoint trap. The si_pc field contains the virtual address of the instruction that
incurred the trap.

A watchpoint trap may be triggered while executing a system call that makes reference to
the traced process’s memory. The lwp that is executing the system call incurs the watch-
point trap while still in the system call. If it stops as a result, the Iwpstatus structure con-
tains the system call number and its arguments. If the lwp does not stop, or if it is set
running again without clearing the signal or fault, the system call fails with EFAULT. If
WA_TRAPAFTER was specified, the memory reference will have completed and the
memory will have been modified (if the access was a write access) when the watchpoint
trap occurs.

If more than one of WA_READ, WA_WRITE, and WA_EXEC is specified for a watched area,
and a single instruction incurs more than one of the specified types, only one is reported
when the watchpoint trap occurs. The precedence is WA_EXEC, WA_READ, WA_WRITE
(WA_EXEC and WA_READ take precedence over WA_WRITE), unless WA_TRAPAFTER was
specified, in which case it is WA_WRITE, WA_READ, WA_EXEC (WA_WRITE takes pre-
cedence).

PCWATCH fails with EINVAL if an attempt is made to specify overlapping watched areas
or if pr_wflags contains flags other than those specified above. It fails with ENOMEM if
an attempt is made to establish more watched areas than the system can support (the sys-
tem can support thousands).

The child of a vfork(2) borrows the parent’s address space. When a vfork(2) is executed
by a traced process, all watched areas established for the parent are suspended until the
child terminates or performs an exec(2). Any watched areas established independently in
the child are cancelled when the parent resumes after the child’s termination or exec(2).
PCWATCH fails with EBUSY if applied to the parent of a vfork(2) before the child has ter-
minated or performed an exec(2). The PR_VFORKP flag is set in the pstatus structure for
such a parent process.

Certain accesses of the traced process’s address space by the operating system are
immune to watchpoints. The initial construction of a signal stack frame when a signal is
delivered to an Iwp will not trigger a watchpoint trap even if the new frame covers
watched areas of the stack. Once the signal handler is entered, watchpoint traps occur

SunOS 5.6 4-303

proc(4)

4-304

PCSET
PCUNSET

File Formats

normally. On SPARC based machines, register window overflow and underflow will not
trigger watchpoint traps, even if the register window save areas cover watched areas of
the stack.

Watched areas are not inherited by child processes, even if the traced process’s inherit-
on-fork mode, PR_FORK, is set (see PCSET, below). All watched areas are cancelled when
the traced process performs a successful exec(2).

PCSET sets one or more modes of operation for the traced process. PCUNSET unsets
these modes. The modes to be set or unset are specified by flags in an operand long in
the control message:

PR_FORK (inherit-on-fork): When set, the process’s tracing flags and its inherit-
on-fork mode are inherited by the child of a fork(2), fork1(2), or vfork(2). When
unset, child processes start with all tracing flags cleared.

PR_RLC (run-on-last-close): When set and the last writable /proc file descriptor
referring to the traced process or any of its lwps is closed, all of the process’s
tracing flags and watched areas are cleared, any outstanding stop directives are
canceled, and if any lwps are stopped on events of interest, they are set running
as though PCRUN had been applied to them. When unset, the process’s tracing
flags and watched areas are retained and Iwps are not set running on last close.

PR_KLC (kill-on-last-close): When set and the last writable /proc file descriptor
referring to the traced process or any of its lwps is closed, the process is ter-
minated with SIGKILL.

PR_ASYNC (asynchronous-stop): When set, a stop on an event of interest by one
Iwp does not directly affect any other lwp in the process. When unset and an
Iwp stops on an event of interest other than PR_REQUESTED, all other Ilwps in the
process are directed to stop.

PR_MSACCT (microstate accounting): When set, microstate accounting is enabled
for the process. This allows the usage file to contain accurate values for the times
the Iwps spent in their various processing states. When unset (the default), the
overhead of microstate accounting is avoided and the usage file can only contain
an estimate of times spent in the various states.

PR_MSFORK (inherit microstate accounting): When set, and microstate account-
ing is enabled for the process, microstate accounting will be enabled for future
child processes. When unset, child processes start with microstate accounting
disabled.

PR_BPTADJ (breakpoint trap pc adjustment): On x86 based machines, a break-
point trap leaves the program counter (the EIP) referring to the breakpointed
instruction plus one byte. When PR_BPTADJ is set, the system will adjust the
program counter back to the location of the breakpointed instruction when the
Iwp stops on a breakpoint. This flag has no effect on SPARC based machines,
where breakpoint traps leave the program counter referring to the breakpointed
instruction.

Sun0S 5.6 modified 13 Feb 1997

File Formats

PCSREG

PCSVADDR

PCSFPREG

PCSXREG

PCAGENT

modified 13 Feb 1997

proc(4)

PR_PTRACE (ptrace-compatibility): When set, a stop on an event of interest by
the traced process is reported to the parent of the traced process via wait(2),
SIGTRAP is sent to the traced process when it executes a successful exec(2),
setuid/setgid flags are not honored for execs performed by the traced process,
any exec of an object file that the traced process cannot read fails, and the process
dies when its parent dies. This mode is deprecated; it is provided only to allow
ptrace(2) to be implemented as a library function using /proc.

It is an error (EINVAL) to specify flags other than those described above or to apply these
operations to a system process. The current modes are reported in the pr_flags field of
/proc/pid/status and /proc/pid/lwp/lwp/lwpstatus.

Set the general registers for the specific or representative lwp according to the operand
prgregset_t structure.

On SPARC based systems, only certain bits of the processor-status register (R_PS) can be
modified by PCSREG: these include only the condition-code bits. Other privileged regis-
ters cannot be modified at all.

On x86 based systems, only certain bits of the flags register (EFL) can be modified by
PCSREG: these include the condition codes, direction-bit, and overflow-bit.

PCSREG fails with EBUSY if the lwp is not stopped on an event of interest.

Set the address at which execution will resume for the specific or representative lwp from
the operand long. On SPARC based systems, both %pc and %npc are set, with %npc set
to the instruction following the virtual address. On x86 based systems, only %eip is set.
PCSVADDR fails with EBUSY if the lwp is not stopped on an event of interest.

Set the floating-point registers for the specific or representative lwp according to the
operand prfpregset_t structure. An error (EINVAL) is returned if the system does not
support floating-point operations (no floating-point hardware and the system does not
emulate floating-point machine instructions). PCSFPREG fails with EBUSY if the lwp is
not stopped on an event of interest.

Set the extra state registers for the specific or representative lwp according to the
architecture-dependent operand prxregset_t structure. An error (EINVAL) is returned if
the system does not support extra state registers. PCSXREG fails with EBUSY if the Iwp is
not stopped on an event of interest.

Create an agent lwp in the controlled process with register values from the operand
prgregset_t structure (see PCSREG, above). The agent lwp is created in the stopped state
showing PR_REQUESTED and with its held signal set (the signal mask) having all signals
except SIGKILL and SIGSTOP blocked.

The PCAGENT operation fails with EBUSY unless the process is fully stopped via /proc,
that is, unless all of the lwps in the process are stopped either on events of interest or on
PR_SUSPENDED, or are stopped on PR_JOBCONTROL and have been directed to stop via
PCDSTOP. It fails with EBUSY if an agent Iwp already exists. It fails with ENOMEM if

SunOS 5.6 4-305

proc(4)

PCREAD
PCWRITE

PCNICE

PCSCRED

4-306

File Formats

system resources for creating new lwps have been exhausted.

Any PCRUN operation applied to the process control file or to the control file of an Iwp
other than the agent lwp fails with EBUSY as long as the agent lwp exists. The agent lwp
must be caused to terminate by executing the _lwp_exit(2) system call before the process
can be restarted.

Once the agent Iwp is created, its lwp-1D can be found by reading the process status file.
To facilitate opening the agent lwp’s control and status files, the directory name
/propc/pid/lwp/agent is accepted for lookup operations as an invisible alias for
/proc/pid/lwp/lwpid, Iwpid being the lwp-1D of the agent lwp (invisible in the sense that
the name **agent’” does not appear in a directory listing of /proc/pid/lwp obtained from
Is(1), getdents(2), or readdir(3C)).

The purpose of the agent lwp is to perform operations in the controlled process on behalf
of the controlling process: to gather information not directly available via /proc files, or in
general to make the process change state in ways not directly available via /proc control
operations. To make use of an agent Iwp, the controlling process must be capable of
making it execute system calls (specifically, the _Iwp_exit(2) system call). The register
values given to the agent lwp on creation are typically the registers of the representative
Iwp, so that the agent lwp can use its stack.

The agent lwp is not allowed to execute any variation of the fork(2), exec(2), or
_lwp_create(2) system calls. Attempts to do so yield ENOTSUP to the agent lwp.

Read or write the target process’s address space via a priovec structure operand:
typedef struct priovec {

void Cpio_base; /Obuffer in controlling process [
size t pio_len; /Osize of read/write request in bytes [
off t pio_offset; /Ovirtual address in target process [

} priovec _t;

These operations have the same effect as pread(2) and pwrite(2), respectively, of the tar-
get process’s address space file. The difference is that more than one PCREAD or
PCWRITE control operation can be written to the control file at once, and they can be
interspersed with other control operations in a single write to the control file. This is use-
ful, for example, when planting many breakpoint instructions in the process’s address
space, or when stepping over a breakpointed instruction. Unlike pread(2) and pwrite(2),
no provision is made for partial reads or writes; if the operation cannot be performed
completely, it fails with EIO.

The traced process’s nice(2) value is incremented by the amount in the operand long.
Only the super-user may better a process’s priority in this way, but any user may lower
the priority. This operation is not meaningful for all scheduling classes.

Set the target process credentials to the values contained in the prcred_t structure
operand (see /proc/pid/cred). The effective, real, and saved user-1Ds and group-IDs of the
target process are set. The target process’s supplementary groups are not changed; the
pr_ngroups and pr_groups members of the structure operand are ignored. Only the

Sun0S 5.6 modified 13 Feb 1997

File Formats

PROGRAMMING
NOTES

FILES

modified 13 Feb 1997

proc(4)

super-user may perform this operation; for all others it fails with EPERM.

For security reasons, except for the psinfo, usage, Ipsinfo, lusage, lwpsinfo, and
lwpusage files, which are world-readable, and except for the super-user, an open of a
/proc file fails unless both the user-ID and group-1D of the caller match those of the traced
process and the process’s object file is readable by the caller. Except for the world-
readable files just mentioned, files corresponding to setuid and setgid processes can be
opened only by the super-user.

Even if held by the super-user, an open process or Iwp file descriptor (other than file
descriptors for the world-readable files) becomes invalid if the traced process performs
an exec(2) of a setuid/setgid object file or an object file that the traced process cannot
read. Any operation performed on an invalid file descriptor, except close(2), fails with
EAGAIN. In this situation, if any tracing flags are set and the process or any Iwp file
descriptor is open for writing, the process will have been directed to stop and its run-on-
last-close flag will have been set (see PCSET). This enables a controlling process (if it has
permission) to reopen the /proc files to get new valid file descriptors, close the invalid file

descriptors, unset the run-on-last-close flag (if desired), and proceed. Just closing the
invalid file descriptors causes the traced process to resume execution with all tracing
flags cleared. Any process not currently open for writing via /proc, but that has left-over
tracing flags from a previous open, and that executes a setuid/setgid or unreadable
object file, will not be stopped but will have all its tracing flags cleared.

To wait for one or more of a set of processes or lwps to stop or terminate, /proc file
descriptors (other than those obtained by opening the cwd or root directories or by open-
ing files in the fd or object directories) can be used in a poll(2) system call. When
requested and returned, either of the polling events POLLPRI or POLLWRNORM indicates
that the process or Iwp stopped on an event of interest. Although they cannot be
requested, the polling events POLLHUP, POLLERR, and POLLNVAL may be returned.
POLLHUP indicates that the process or Iwp has terminated. POLLERR indicates that the
file descriptor has become invalid. POLLNVAL is returned immediately if POLLPRI or
POLLWRNORM is requested on a file descriptor referring to a system process (see
PCSTOP). The requested events may be empty to wait simply for termination.

/proc

/proc/pid
/proc/self
/proc/pid/as
/proc/pid/ctl
/proc/pid/status
/proc/pid/lstatus
/proc/pid/psinfo
/proc/pid/lpsinfo
/proc/pid/map
/proc/pid/rmap
/proc/pid/cred
/proc/pid/sigact

directory (list of processes)
specific process directory
alias for a process’s own directory
address space file

process control file

process status

array of lwp status structs
process ps(1) info

array of lwp ps(1) info structs
address space map

reserved address map
process credentials

process signal actions

SunOS 5.6 4-307

proc(4)

SEE ALSO

DIAGNOSTICS

4-308

File Formats
/proc/pid/auxv process aux vector
/proc/pid/ldt process LDT (x86 only)
/proc/pid/usage process usage
/proc/pid/lusage array of lwp usage structs
/proc/pid/pagedata process page data
/proc/pid/watch active watchpoints
/proc/pid/cwd symlink to the current working directory
/proc/pid/root symlink to the root directory
/proc/pid/fd directory (list of open files)
/proc/pid/fd/O aliases for process’s open files
/proc/pid/object directory (list of mapped files)
/proc/pid/object/a.out alias for process’s executable file
/proc/pid/object/O aliases for other mapped files
/proc/pid/lwp directory (list of lwps)
/proc/pid/lwp/lwpid specific lwp directory
/proc/pid/lwp/agent alias for the agent Iwp directory
/proc/pid/lwp/lwpid/lwpctl lwp control file
/proc/pid/lwp/lwpid/lwpstatus lwp status
/proc/pid/lwp/lwpid/lwpsinfo lwp ps(1) info
/proc/pid/lwp/lwpid/lwpusage lwp usage
/proc/pid/lwp/lwpid/gwindows register windows (SPARC only)
/proc/pid/lwp/lwpid/xregs extra state registers

Is(1), ps(1), _Iwp_create(2), Iwp_exit(2), alarm(2), brk(2), chdir(2), chroot(2), close(2),
creat(2), dup(2), exec(2), fcntl(2), fork(2), fork1(2), fstat(2), getdents(2), kill(2), Iseek(2),
mmap(2), nice(2), open(2), poll(2), pread(2), ptrace(2), pwrite(2), read(2), readlink(2),
readv(2), sigaction(2), sigaltstack(2), vfork(2), wait(2), write(2), writev(2), readdir(3C),
siginfo(5), signal(5), ucontext(s)

Errors that can occur in addition to the errors normally associated with file system access:
ENOENT The traced process or lwp has terminated after being opened.

EIO
EBUSY

EPERM

ENOSYS

EINVAL

A write(2) was attempted at an illegal address in the traced process.

PCSTOP, PCDSTOP, PCWSTOP, or PCTWSTOP was applied to a system process;
an exclusive open(2) was attempted on a /proc file for a process already open
for writing; PCRUN, PCSREG, PCSVADDR, PCSFPREG, or PCSXREG was applied
to a process or lwp not stopped on an event of interest; an attempt was made
to mount /proc when it was already mounted; PCAGENT was applied to a pro-
cess that was not fully stopped or that already had an agent lwp.

Someone other than the super-user issued the PCSCRED operation; someone
other than the super-user attempted to better a process’s priority by applying
PCNICE.

An attempt was made to perform an unsupported operation (such as creat(2),
link(2), or unlink(2)) on an entry in /proc.

In general, this means that some invalid argument was supplied to a system

Sun0S 5.6 modified 13 Feb 1997

File Formats

modified 13 Feb 1997

NOTES

BUGS

proc(4)

call. A non-exhaustive list of conditions eliciting this error includes: a control
message operation code is undefined; an out-of-range signal number was
specified with PCSSIG, PCKILL, or PCUNKILL; SIGKILL was specified with
PCUNKILL; PCSFPREG was applied on a system that does not support
floating-point operations; PCSXREG was applied on a system that does not
support extra state registers.

ENOMEM The system-imposed limit on the number of page data file descriptors was
reached on an open of /proc/pid/pagedata; an attempt was made with
PCWATCH to establish more watched areas than the system can support; the
PCAGENT operation was issued when the system was out of resources for
creating lwps.

E2BIG Data to be returned in a read(2) of the page data file exceeds the size of the
read buffer provided by the caller.

EINTR A signal was received by the controlling process while waiting for the traced
process or lwp to stop via PCSTOP, PCWSTOP, or PCTWSTOP.

EAGAIN The traced process has performed an exec(2) of a setuid/setgid object file or
of an object file that it cannot read; all further operations on the process or lwp
file descriptor (except close(2)) elicit this error.

Descriptions of structures in this document include only interesting structure elements,
not filler and padding fields, and may show elements out of order for descriptive clarity.
The actual structure definitions are contained in <procfs.h>.

Because the old ioctl(2)-BASED version of /proc is currently supported for binary compa-
tibility with old applications, the top-level directory for a process, /proc/pid, is not world-
readable, but it is world-searchable. Thus, anyone can open /proc/pid/psinfo even though
Is(1) applied to /proc/pid will fail for anyone but the owner or the super-user. Support for
the old ioctl(2)-BASED version of /proc will be dropped in a future release, at which time
the top-level directory for a process will be made world-readable.

On SPARC based machines, the types gregset_t and fpregset _t defined in <sys/regset.h>
are similar to but not the same as the types prgregset_t and prfpregset_t defined in
<procfs.h>.

SunOS 5.6 4-309

profile (4)

NAME

SYNOPSIS

DESCRIPTION

FILES

4-310

File Formats

profile — setting up an environment for user at login time

letc/profile
$HOME/.profile

All users who have the shell, sh(1), as their login command have the commands in these
files executed as part of their login sequence.

/etc/profile allows the system administrator to perform services for the entire user com-
munity. Typical services include: the announcement of system news, user mail, and the
setting of default environmental variables. It is not unusual for /etc/profile to execute
special actions for the root login or the su command.

The file SHOME/.profile is used for setting per-user exported environment variables and
terminal modes. The following example is typical (except for the comments):

Make some environment variables global

export MAIL PATH TERM

Set file creation mask

umask 022

Tell me when new mail comes in
MAIL=/var/mail/$LOGNAME

Add my /usr/usr/bin directory to the shell search sequence
PATH=$PATH:$HOME/bin

Set terminal type

TERM=${L0:-u/n/k/n/o/w/n} # gnar.invalid

while :
do
if [-f ${TERMINFO:-/usr/share/lib/terminfo}/?/$TERM]
then break
elif [—f /usr/share/lib/terminfo/?/$TERM]
then break
else echo "invalid term $TERM" 1>&2
fi
echo "terminal: \c"
read TERM
done

Initialize the terminal and set tabs
Set the erase character to backspace
stty erase "H’ echoe

$HOME/.profile user-specific environment
letc/profile system-wide environment
Sun0S 5.6 modified 20 Dec 1992

File Formats profile (4)

SEE ALSO env(1), login(1), mail(1), sh(1), stty(1), tput(1), su(1M), terminfo(4), environ(5), term(5)
Solaris Advanced User’s Guide

NOTES Care must be taken in providing system-wide services in /etc/profile. Personal .profile
files are better for serving all but the most global needs.

modified 20 Dec 1992 Sun0S 5.6 4-311

protocols (4)

NAME

SYNOPSIS

DESCRIPTION

EXAMPLES

FILES
SEE ALSO

NOTES

4-312

File Formats

protocols — protocol name database

/etc/inet/protocols
/etc/protocols

The protocols file is a local source of information regarding the known protocols used in
the DARPA Internet. The protocols file can be used in conjunction with or instead of other
protocols sources, including the NIS maps “‘protcols.byname’ and
“"protocols.bynumber” and the NIS+ table “‘protocols’. Programs use the
getprotobyname(3N) routine to access this information.

The protocols file has one line for each protocol. The line has the following format:
official-protocol-name protocol-number aliases

Items are separated by any number of blanks and/or TAB characters. A ‘#" indicates the
beginning of a comment; characters up to the end of the line are not interpreted by rou-
tines which search the file. Protocol names may contain any printable character other
than a field delimiter, NEWLINE, or comment character.

The following is a sample database:

#

Internet (1P) protocols

#

ip 0 IP # internet protocol, pseudo protocol number
icmp 1 ICMP # internet control message protocol

aap 3 GGP # gateway-gateway protocol

tep 6 TCP # transmission control protocol

pup 12 PUP # PARC universal packet protocol

udp 17 UDP # user datagram protocol

letc/nsswitch.conf configuration file for name-service switch
getprotobyname(3N), nsswitch.conf(4)

letc/inet/protocols is the official SVR4 name of the protocols file. The symbolic link
/etc/protocols exists for BSD compatibility.

Sun0S 5.6 modified 22 Feb 1994

File Formats

NAME

DESCRIPTION

modified 4 Oct 1996

prototype (4)

prototype — package information file

prototype is an ASCII file used to specify package information. Each entry in the file
describes a single deliverable object. An object may be a data file, directory, source file,
executable object, and so forth. This file is generated by the package developer.

Entries in a prototype file consist of several fields of information separated by white
space. Comment lines begin with a “#”” and are ignored. The fields are described below
and must appear in the order shown.

part

ftype

class

pathname

An optional field designating the part number in which the object resides. A
part is a collection of files and is the atomic unit by which a package is pro-
cessed. A developer can choose criteria for grouping files into a part (for
example, based on class). If this field is not used, part 1 is assumed.

A one-character field that indicates the file type. Valid values are:

b block special device

character special device

directory

a file to be edited upon installation or removal (may be
shared by several packages)

a standard executable or data file

installation script or information file

linked file

named pipe

symbolic link

volatile file (one whose contents are expected to change,
like a log file)

an exclusive directory accessible only by this package

D O O

< vwg = = =

The installation class to which the file belongs. This name must contain only
alphanumeric characters and be no longer than 12 characters. The field is not
specified for installation scripts. (admin and all classes beginning with capital
letters are reserved class names.)

The pathname where the file will reside on the target machine, for example,
/usr/bin/mail or bin/ras/proc. Relative pathnames (those that do not begin
with a slash) indicate that the file is relocatable. The form

pathl=path2
may be used for two purposes: to define a link and to define local pathnames.

For linked files, pathl indicates the destination of the link and path2 indicates
the source file. (This format is mandatory for linked files.)

For local pathnames, pathl indicates the pathname an object should have on
the machine where the entry is to be installed and path2 indicates either a rela-

SunOS 5.6 4-313

prototype (4)

4-314

major
minor

mode

owner

group

File Formats

tive or fixed pathname to a file on the host machine which contains the actual
contents.

A pathname may contain a variable specification of the form $variable. If vari-
able begins with a lower case letter, it is a build variable. If variable begins
with an upper case letter, it is an install variable. Build variables are bound at
build time. If an install variable is known at build time, its definition is
inserted into the pkginfo(4) file so that it will be available at install time. If an
install variable is not known at build time, it will be bound at install time.

The major device number. The field is only specified for block or character
special devices.

The minor device number. The field is only specified for block or character
special devices.

The octal mode of the file (for example, 0664). A question mark (?) indicates
that the mode will be left unchanged, implying that the file already exists on

the target machine. This field is not used for linked files or packaging infor-

mation files.

The mode can be a variable specification of the form $variable. If variable
begins with a lower case letter, it is a build variable. If variable begins with an
upper case letter, it is an install variable. Build variables are bound at build
time. If an install variable is known at build time, its definition is inserted into
the pkginfo(4) file so that it will be available at install time. If an install vari-
able is not known at build time, it will be bound at install time.

The owner of the file (for example, bin or root). The field is limited to 14 char-
acters in length. A question mark (?) indicates that the owner will be left
unchanged, implying that the file already exists on the target machine. This
field is not used for linked files or packaging information files.

The owner can be a variable specification of the form $variable. If variable
begins with a lower case letter, it is a build variable. If variable begins with an
upper case letter, it is an install variable. Build variables are bound at build
time. If an install variable is known at build time, its definition is inserted into
the pkginfo(4) file so that it will be available at install time. If an install vari-
able is not known at build time, it will be bound at install time.

The group to which the file belongs (for example, bin or sys). The field is lim-
ited to 14 characters in length. A question mark (?) indicates that the group
will be left unchanged, implying that the file already exists on the target
machine. This field is not used for linked files or packaging information files.

The group can be a variable specification of the form $variable. If variable
begins with a lower case letter, it is a build variable. If variable begins with an
upper case letter, it is an install variable. Build variables are bound at build
time. If an install variable is known at build time, its definition is inserted into
the pkginfo(4) file so that it will be available at install time. If an install vari-
able is not known at build time, it will be bound at install time.

Sun0S 5.6 modified 4 Oct 1996

File Formats

EXAMPLES

modified 4 Oct 1996

prototype (4)

An exclamation point (!) at the beginning of a line indicates that the line contains a com-
mand. These commands are used to incorporate files in other directories, to locate
objects on a host machine, and to set permanent defaults. The following commands are

available:

search Specifies a list of directories (separated by white space) to search for
when looking for file contents on the host machine. The base name of
the path field is appended to each directory in the ordered list until the
file is located. Searches are not recursive.

include Specifies a pathname which points to another prototype file to include.
Note that search requests do not span include files.

default Specifies a list of attributes (mode, owner, and group) to be used by

default if attribute information is not provided for prototype entries
which require the information. The defaults do not apply to entries in
include prototype files.

param=value Places the indicated parameter in the current environment. Spans to

subsequent included prototype files.

The above commands may have variable substitutions embedded within them, as
demonstrated in the two example prototype files below.

Before files are overwritten during installation, they are copied to a temporary pathname.
The exception to this rule is files whose mode includes execute permission, unless the file
is editable (that is, ftype is). For files which meet this exception, the existing version is
linked to a temporary pathname, and the original file is removed. This allows processes
which are executing during installation to be overwritten.

Example 1:

IPROJDIR=/usr/proj

IBIN=$PROJDIR/bin

ICFG=$PROJDIR/cfg

ILIB=$PROJDIR/lib
IHDRS=$PROJDIR/hdrs

Isearch /usr/myname/usr/bin /usr/myname/src /usr/myname/hdrs
i pkginfo=/usr/myname/wrap/pkginfo

i depend=/usr/myname/wrap/depend

i version=/usr/myname/wrap/version

d none /usr/wrap 0755 root bin

d none /usr/wrap/usr/bin 0755 root bin
I'search $BIN

f none /usr/wrap/bin/INSTALL 0755 root bin
f none /usr/wrap/bin/REMOVE 0755 root bin
f none /usr/wrap/bin/addpkg 0755 root bin
Idefault 755 root bin

f none /usr/wrap/bin/audit

f none /usr/wrap/bin/listpkg

SunOS 5.6 4-315

prototype (4) File Formats

f none /usr/wrap/bin/pkgmk

the following file starts out zero length but grows
v none /usr/wrap/logfile=/dev/null 0644 root bin

the following specifies a link (dest=src)

I none /usr/wrap/src/addpkg=/usr/wrap/bin/rmpkg
I'search $SRC

Idefault 644 root other

f src /usr/wrap/src/INSTALL.sh

f src /usr/wrap/src/REMOVE.sh

f src /usr/wrap/src/addpkg.c

f src /usr/wrap/src/audit.c

f src /usr/wrap/src/listpkg.c

f src /usr/wrap/src/pkgmk.c

d none /usr/wrap/data 0755 root bin

d none /usr/wrap/save 0755 root bin

d none /usr/wrap/spool 0755 root bin

d none /usr/wrap/tmp 0755 root bin

d src /usr/wrap/src 0755 root bin

Example 2:

this prototype is generated by 'pkgproto’ to refer
to all prototypes in my src directory
IPROJDIR=/usr/dew/projx

linclude $PROJDIR/src/cmd/prototype

linclude $PROJDIR/src/cmd/audmerg/protofile
linclude $PROJDIR/src/lib/proto

SEE ALSO pkgmk(1), pkginfo(4)
Application Packaging Developer’s Guide

NOTES Normally, if a file is defined in the prototype file but does not exist, that file is created at
the time of package installation. However, if the file pathname includes a directory that
does not exist, the file will not be created. For example, if the prototype file has the fol-
lowing entry:

f none /usr/dev/bin/command

and that file does not exist, it will be created if the directory /usr/dev/bin already exists or
if the prototype also has an entry defining the directory:

d none /usr/dev/bin

4-316 Sun0S 5.6 modified 4 Oct 1996

File Formats

NAME

DESCRIPTION

EXAMPLES

SEE ALSO

modified 15 Jun 1993

pseudo (4)

pseudo - configuration files for pseudo device drivers

Pseudo devices are devices that are implemented entirely in software. Drivers for
pseudo devices must provide driver configuration files to inform the system of each
pseudo device that should be created.

Configuration files for pseudo device drivers must identify the parent driver explicitly as
pseudo, and must create an integer property called instance which is unique to this entry in
the configuration file.

Each entry in the configuration file creates a prototype devinfo node. Each node is
assigned an instance number which is determined by the value of the instance property.
This property is only applicable to children of the pseudo parent, and is required since
pseudo devices have no hardware address from which to determine the instance number.
See driver.conf(4) for further details of configuration file syntax.

Here is a configuration file called ramdisk.conf for a pseudo device driver that imple-
ments a RAM disk. This file creates two nodes called "ramdisk". The first entry creates
ramdisk node instance 0, and the second creates ramdisk node, instance 1, with the addi-
tional disk-size property set to 512.

#

Copyright (c) 1993, by Sun Microsystems, Inc.

#

#ident "@(#)ramdisk.conf 1.3 93/06/04 SMI"

name="ramdisk" parent="pseudo" instance=0;
name="ramdisk" parent="pseudo" instance=1 disk-size=512;

driver.conf(4), ddi_prop_op(9F)
Writing Device Drivers

SunOS 5.6 4-317

publickey (4)

NAME
SYNOPSIS

DESCRIPTION

SEE ALSO

4-318

File Formats

publickey — public key database
/etc/publickey

/etc/publickey is alocal public key database that is used for secure RPC. The
/etc/publickey file can be used in conjunction with or instead of other publickey data-
bases, including the NIS publickey map and the NIS+ publickey map. Each entry in the
database consists of a network user name (which may refer to either a user or a host-
name), followed by the user’s public key (in hex notation), a colon, and then the user’s
secret key encrypted with a password (also in hex notation).

The /etc/publickey file contains a default entry for nobody.

chkey(1), newkey(1M), getpublickey(3N), nsswitch.conf(4)

Sun0S 5.6 modified 6 Mar 1992

File Formats

NAME

SYNOPSIS

DESCRIPTION

EXAMPLES

FILES

modified 1 Mar 1994

queuedefs (4)

gueuedefs — queue description file for at, batch, and cron
/etc/cron.d/queuedefs

The queuedefs file describes the characteristics of the queues managed by cron(1M).
Each non-comment line in this file describes one queue. The format of the lines are as fol-
lows:

g.[njobj][nicen][nwaitw]
The fields in this line are:

q The name of the queue. a is the default queue for jobs started by at(1); b is the
default queue for jobs started by batch (see at(1)); c is the default queue for jobs
run from a crontab(1) file.

njob The maximum number of jobs that can be run simultaneously in that queue; if
more than njob jobs are ready to run, only the first njob jobs will be run, and the
others will be run as jobs that are currently running terminate. The default value
is 100.

nice The nice(1) value to give to all jobs in that queue that are not run with a user 1D
of super-user. The default value is 2.

nwait The number of seconds to wait before rescheduling a job that was deferred
because more than njob jobs were running in that job’s queue, or because the
system-wide limit of jobs executing has been reached. The default value is 60.

Lines beginning with # are comments, and are ignored.

#

#

a4jln
b.2j2n90w

This file specifies that the a queue, for at jobs, can have up to 4 jobs running simultane-
ously; those jobs will be run with a nice value of 1. As no nwait value was given, if a job
cannot be run because too many other jobs are running cron will wait 60 seconds before
trying again to run it.

The b queue, for batch(1) jobs, can have up to 2 jobs running simultaneously; those jobs
will be run with a nice(1) value of 2. If a job cannot be run because too many other jobs
are running, cron(1M) will wait 90 seconds before trying again to run it. All other queues
can have up to 100 jobs running simultaneously; they will be run with a nice value of 2,
and if a job cannot be run because too many other jobs are running cron will wait 60
seconds before trying again to run it.

/etc/cron.d/queuedefs gueue description file for at, batch, and cron.

SunOS 5.6 4-319

gqueuedefs (4) File Formats

SEE ALSO at(1), crontab(1), nice(1), cron(1M)

4-320 Sun0S 5.6 modified 1 Mar 1994

File Formats

NAME

SYNOPSIS

DESCRIPTION

CAPABILITIES

modified 17 Jan 1995

remote (4)

remote — remote host description file
/etc/remote

The systems known by tip(1) and their attributes are stored in an ASCII file which is
structured somewhat like the termcap file. Each line in the file provides a description for
a single system. Fields are separated by a colon *’. Lines ending in a “\’ character with an
immediately following NEWLINE are continued on the next line.

The first entry is the name(s) of the host system. If there is more than one name for a sys-
tem, the names are separated by vertical bars. After the name of the system comes the
fields of the description. A field name followed by an ‘=" sign indicates a string value fol-
lows. A field name followed by a ‘#’ sign indicates a following numeric value.

Entries named tipbaudrate are used as default entries by tip, as follows. When tip is
invoked with only a phone number, it looks for an entry of the form tipbaudrate, where
baudrate is the baud rate with which the connection is to be made. For example, if the
connection is to be made at 300 baud, tip looks for an entry of the form tip300.

Capabilities are either strings (str), numbers (num), or boolean flags (bool). A string
capability is specified by capability=value; for example, ‘dv=/dev/harris’. A numeric capa-
bility is specified by capability#value; for example, ‘xa#99’. A boolean capability is
specified by simply listing the capability.
at (str) Auto call unit type. The following lists valid "at’ types and their correspond-
ing hardware:

biz31f Bizcomp 1031, tone dialing

biz3lw Bizcomp 1031, pulse dialing

biz22f Bizcomp 1022, tone dialing

biz22w Bizcomp 1022, pulse dialing

dfo02 DEC DF02
dfo3 DEC DFO03
ventel Ventel 212+
v3451 Vadic 3451 Modem
v831 Vadic 831
hayes Any Hayes-compatible modem
at Any Hayes-compatible modem
br (num) The baud rate used in establishing a connection to the remote host. This is
a decimal number. The default baud rate is 300 baud.
cm (str) An initial connection message to be sent to the remote host. For example, if

a host is reached through a port selector, this might be set to the appropriate
sequence required to switch to the host.

cu (str) Call unit if making a phone call. Default is the same as the dv field.

db (bool) Cause tip(1) to ignore the first hangup it sees. db (dialback) allows the
user to remain in tip while the remote machine disconnects and places a call back
to the local machine. For more information about dialback configuration, see

SunOS 5.6 4-321

remote (4)

4-322

di

du

dv

ec

el

es
et

ex

fo
fs
hd

hf

nb

nt

nv

oe

pa

pn

File Formats

TCP/IP and Data Communications Administration Guide.

(str) Disconnect message sent to the host when a disconnect is requested by the
user.

(bool) This host is on a dial-up line.

(str) Device(s) to open to establish a connection. If this file refers to a terminal
line, tip attempts to perform an exclusive open on the device to insure only one
user at a time has access to the port.

(bool) Initialize the tip variable echocheck to on, so that tip will synchronize
with the remote host during file transfer by waiting for the echo of the last char-
acter transmitted.

(str) Characters marking an end-of-line. The default is no characters. tip only
recognizes "’ escapes after one of the characters in el, or after a RETURN.

(str) The command prefix (escape) character for tip.

(num) Number of seconds to wait for an echo response when echo-check mode is
on. This is a decimal number. The default value is 10 seconds.

(str) Set of non-printable characters not to be discarded when scripting with
beautification turned on. The default value is “\t\n\b\f”.

(str) Character used to force literal data transmission. The default value is "\377".
(num) Frame size for transfers. The default frame size is equal to 1024.

(bool) Initialize the tip variable halfduplex to on, so local echo should be per-
formed.

(bool) Initialize the tip variable hardwareflow to on, so hardware flow control is
used.

(str) Input end-of-file marks. The default is a null string ("").

(bool) Initialize the tip variable beautify to off, so that unprintable characters will
not be discarded when scripting.

(bool) Initialize the tip variable tandem to off, so that XON/XOFF flow control
will not be used to throttle data from the remote host.

(bool) Initialize the tip variable verbose to off, so that verbose mode will be
turned on.

(str) Output end-of-file string. The default is a null string (). When tip is
transferring a file, this string is sent at end-of-file.

(str) The type of parity to use when sending data to the host. This may be one of
even, odd, none, zero (always set bit 8 to 0), one (always set bit 8 to 1). The
default is none.

(str) Telephone number(s) for this host. If the telephone number field contains an
‘@’ sign, tip searches the /etc/phones file for a list of telephone numbers — see
phones(4). A ‘%’ sign in the telephone number indicates a 5-second delay for the
Ventel Modem.

Sun0S 5.6 modified 17 Jan 1995

File Formats

pr

ra

rc
re
rw

SC

thb

tc

remote (4)

For Hayes-compatible modems, if the telephone number starts with an ’S’, the
telephone number string will be sent to the modem without the "DT", which
allows reconfiguration of the modem’s S-registers and other parameters; for
example, to disable auto-answer: "pn=S0=0DT5551234"; or to also restrict the
modem to return only the basic result codes: "pn=S0=0X0DT5551234".

(str) Character that indicates end-of-line on the remote host. The default value is
“\n’.

(bool) Initialize the tip variable raise to on, so that lower case letters are mapped
to upper case before sending them to the remote host.

(str) Character that toggles case-mapping mode. The default value is ‘\377".
(str) The file in which to record session scripts. The default value is tip.record.

(bool) Initialize the tip variable rawftp to on, so that all characters will be sent as

is during file transfers.

(bool) Initialize the tip variable script to on, so that everything transmitted by the
remote host will be recorded.

(bool) Initialize the tip variable tabexpand to on, so that tabs will be expanded to
spaces during file transfers.

(str) Indicates that the list of capabilities is continued in the named description.
This is used primarily to share common capability information.

EXAMPLES Here is a short example showing the use of the capability continuation feature:

UNIX-1200:\
:dv=/dev/cual:el="D"U"C"S"Q"O@:du:at=ventel:ie=#$%:0e="D:br#1200:
arpavax]ax:\
pN=7654321%:tc=UNIX-1200

FILES | /etc/remote remote host description file.

/etc/phones remote host phone number database.

SEE ALSO tip(1), phones(4)

modified 17 Jan 1995

TCP/IP and Data Communications Administration Guide

SunOS 5.6 4-323

resolv.conf(4)

NAME

DESCRIPTION

4-324

File Formats

resolv.conf — configuration file for name server routines

This file helps initialize routines from the resolver(3N) C library. The resolver routines
provide access to the Internet Domain Name System.

The resolver configuration file contains information that is read by the resolver routines
the first time a process calls them. The file is designed to be human readable and contains
a list of keyword-value pairs that provide various types of resolver information.
Keyword-value pairs are of the form:

keyword value

The different configuration options are:

nameserver address

domain name

search searchlist

Specifies the Internet address in dot-notation format of one name
server to which the resolver should direct any queries. Up to
MAXNS (currently three) name servers may be listed, on as many
as MAXNS nameserver lines in resolv.conf. If multiple servers are
specified, the resolver routines query them in the order listed. If no
nameserver lines are present in the file, resolver routines use the
name server on the local machine.

The algorithm of the resolver routines is: try the first name server
specified. If the query times out, try the next server listed in the
configuration file, and so on until the complement of servers there
has been exhausted. If those queries also time out, try the full com-
plement of name servers again, until the maximum number of
retry passes has been made.

Specifies a local domain name for use as the default domain.

Most queries for names within a domain can use short names rela-
tive to the local domain. If a domain line is missing from the
configuration file, the domain is determined from the environment
variable, LOCALDOMAIN, if it is defined, from the domain name
(see domainname(1M)) by omitting the first level, or from the host
name (gethostname(3C)) by using everything after the first dot.
Finally, if the host name does not contain a domain part, the root
domain is assumed.

Specifies a search list for host-name lookup. The search list is nor-
mally determined from the local domain name; by default, it con-
tains only the local domain name. This may be changed by listing
the desired domains for searches in searchlist. Spaces or tabs must
separate domain names.

Most resolver queries are attempted using each component of the
search path in turn until a match is found. Note that this process
may be slow and will generate a lot of network traffic if the servers
for the listed domains are not local. Also queries will time out if no
server is available for one of the domains.

Sun0S 5.6 modified 7 Jan 1997

File Formats

modified 7 Jan 1997

resolv.conf(4)

The search list is currently limited to six domains with a total of
256 characters.

sortlist addresslist Causes addresses returned by gethostbyname(3C) to be sorted in
accordance with local rules. A sortlist is specified by IP address
netmask pairs. The netmask is optional and defaults to the natural
netmask of the net. The IP address and optional network pairs are
separated by slashes. Up to 10 pairs may be specified. For exam-
ple, the following specification requires gethostbyname() to
return the netmask pair 130.155.160.0/255.255.240.0 ahead of the IP
address 130.155.0.0.

sortlist 130.155.160.0/255.255.240.0 130.155.0.0

options optionlist Specifies optional behaviors for various resolver routines in accor-
dance with optionlist values, each of which is equivalent to an
internal resolver variable.

The values that may be included as individual optionlist values are:
debug Sets RES_DEBUG in the _res.options field.

ndots:n Sets a floor threshold for the number of dots which
must appear in a name given to res_query() (see
resolver(3N)) before an initial absolute (as-is) query is
performed. The default for nis 1. Thus, if there are any
dots in a name, the name is tried first as an absolute
name before any search-list domain names are
appended to it.

retry:n Sets the number of attempts made to connect to each
name server. While retry:0 is allowed, it is equivalent to
retry:1. The defaultis 4.

retrans:n Sets the basic retransmit timeout, in seconds. The
default is 5. An exponential backoff algorithm is used,
so the default values for retry and retrans result in
5+10+20+40=75 seconds of total timeout for each name
server. While retrans:0 is allowed, it is equivalent to
retrans:l.

The domain and search keywords are mutually exclusive. If more than one instance of
these keywords is present, the last instance takes precedence.

The options established through any search lines in the local resolv.conf file can be over-
ridden on a per-process basis by setting the environment variable, LOCALDOMAIN, to a
space-separated list of search domains.

The options established through any options lines in the local resolv.conf file can be
amended on a per-process basis by setting the environment variable, RES_OPTIONS, to a
space-separated list of resolver options, These options are listed above under the options
keyword.

SunOS 5.6 4-325

resolv.conf(4)

4-326

FILES

SEE ALSO

File Formats

The keyword-value pair must appear on a single line, and the keyword (for instance,
nameserver) must start the line. The value or value list follows the keyword, separated
from it by white space characters.

letc/resolv.conf

domainname(1M), in.named(1M), gethostbyname(3N), gethostname(3C), resolver(3N)

Vixie, Paul;Dunlap, Keven J., Karels, Michael J., Name Server Operations Guide for BIND
(public domain), Internet Software Consortium, 1996.

Sun0S 5.6 modified 7 Jan 1997

File Formats

NAME
SYNOPSIS

DESCRIPTION

modified 10 Apr 1996

rmmount.conf (4)

rmmount.conf — removable media mounter configuration file
/etc/rmmount.conf

The rmmount.conf file contains the rmmount(1M) configuration information. This file
describes where to find shared objects that perform actions on file systems after identify-
ing and mounting them. The rmmount.conf file is also used to share CD-ROM and
floppy file systems.

Actions are executed in the order in which they appear in the configuration file. The
action function can return either 1 or 0. If it returns 0, no further actions will be executed.
This allows the function to control which applications are executed. For example,
action_filemgr always returns 0 if the File Manager is running, thereby preventing subse-
guent actions from being executed.

To execute an action after media has been inserted and while the File Manager is not run-
ning, list the action after action_filemgr in the rmmount.conf file. To execute an action
before the File Manager becomes aware of the media, list the action before action_filemgr
in the rmmount.conffile.

The syntax for the rmmount.conf file is as follows.

File system identification

ident filesystem_type shared_object media_type [media_type ...]

Actions

action media_type shared_object args_to_so

File system sharing

share media_or_file_system share_command_options

Mount command options

mount media_or_file_system [file_system_spec] -0 mount_command_options
Explanations of the syntax for the File system identification fields are as follows.
filesystem_type An ASCII string used as the file system type flag of the mount command

(see the —F option of mount(1M)). It is also used to match names passed
to rmmount(1M) from Volume Management.

shared_object Programs that identify file systems and perform actions. This
shared_object is found at /usr/lib/fs/filesystem_type/shared_object.

media_type The type of media where this file system resides. Legal values are cdrom
and floppy.

Explanations of the syntax for the Actions fields are as follows.

media_type Type of media. This argument is passed in from Volume Management

as VOLUME_TYPE.

shared_object Programs that identify file systems and perform actions. If shared object
starts with ‘/’ (slash), the full path name is used;
otherwise, /usr/lib/rmmount is prepended to the name.

SunOS 5.6 4-327

rmmount.conf(4)

4-328

Default Values

EXAMPLES

File Formats

args_to_so Arguments passed to the shared_object. These arguments are passed in
as an argc and argv[].

The definition of the interface to Actions is located in /usr/include/rmmount.h.
Explanations of the syntax for the File system sharing fields are as follows.
media_or_file_system
Either the type of media (CD-ROM or floppy) or the specific file system
to share.

share_command_options
Options of the share command. See share(1M) for more information
about these options.

Explanations of the syntax for the Mount command options fields are as follows.
media_or_file_system
Either the type of media (CD-ROM or floppy) or the specific file system
to share.

file_system_spec Specifies one or more file systems to which this line applies. Defaults to
"all" filesystem types.

mount_command_options
One or more options to be passed to the mount command.

The following is an example of an rmmount.conf file.

#
Removable Media Mounter configuration file.
#

File system identification

ident hsfs ident_hsfs.so cdrom
ident ufs ident_ufs.so cdrom floppy
ident pcfs ident_pcfs.so floppy

Actions

action cdrom action_filemgr.so
action floppy action_filemgr.so

The following examples show how various file systems are shared using the share syntax
for the rmmount.conf file. These lines are added after the Actions entries.

share cdromd Shares all CD-ROMs via NFS and applies no access restrictions.

share solaris_2.xJ
Shares CD-ROMSs named solaris_2.xOwith no access restrictions.

share cdrom-o ro=engineering
Shares all CD-ROMs via NFS but exports only to the "engineering" net-
group.

share solaris_2.x-d distribution CD
Shares CD-ROMs named solaris_2.xOwith no access restrictions and

SunOS 5.6 modified 10 Apr 1996

File Formats

SEE ALSO

NOTES

modified 10 Apr 1996

rmmount.conf (4)

with the description that it is a distribution CD-ROM.
share floppy0 Shares any floppy inserted into floppy drive 0.

The following examples show how different mount options could be used to customize
how rmmount mounts media:
mount cdromOhsfs -0 norr
mounts all High Sierra CD-ROMs with the "norr" (no Rock Ridge exten-
sions) option (see mount_hsfs(1M))
mount floppyl -o ro
will alway mount the second floppy disk read-only (for all filesystem
types)

volcancel(1), volcheck(1), volmissing(1), mount(1M), mount_hsfs(1M), rmmount(1M),
share(1M), vold(1M), vold.conf(4), volfs(7FS)

The mount command will fail if you specify an incorrect mount option and filesystem

combination. When using the "mount" options line, ensure that the options specified will
work with the file system types specified.

SunOS 5.6 4-329

rmtab (4)

NAME
SYNOPSIS

DESCRIPTION

FILES

SEE ALSO

4-330

File Formats

rmtab — remote mounted file system table
/etc/rmtab

rmtab contains a table of filesystems that are remotely mounted by NFS clients. This file
is maintained by mountd(1M), the mount daemon. The data in this file should be
obtained only from mountd(1M) using the MOUNTPROC_DUMP remote procedure call.

The file contains a line of information for each remotely mounted filesystem. There are a
number of lines of the form:

hostname:fsname

The mount daemon adds an entry for any client that successfully executes a mount
request and deletes the appropriate entries for an unmount request.

Lines beginning with a hash (" #’) are commented out. These lines are removed from the
file by mountd(1M) when it first starts up. Stale entries may accumulate for clients that
crash without sending an unmount request.

letc/rmtab

mountd(1M), showmount(1M)

Sun0S 5.6 modified 15 Nov 1990

File Formats

NAME

SYNOPSIS

DESCRIPTION

modified 7 Jan 1997

route (4)

route — kernel packet forwarding database

#include <sys/types.h>
#include <sys/socket.h>
#include <net/if.h>
#include <net/route.h>

int socket(PF_ROUTE, SOCK_RAW, AF_INET);

UNIX provides some packet routing facilities. The kernel maintains a routing informa-
tion database, which is used in selecting the appropriate network interface when
transmitting packets.

A user process (or possibly multiple co-operating processes) maintains this database by
sending messages over a special kind of socket. This supplants fixed size ioctl(2)’'S
specified in routing(4). Routing table changes may only be carried out by the super user.

The operating system may spontaneously emit routing messages in response to external
events, such as receipt of a re-direct, or failure to locate a suitable route for a request. The
message types are described in greater detail below.

Routing database entries come in two flavors: entries for a specific host, or entries for all
hosts on a generic subnetwork (as specified by a bit mask and value under the mask).
The effect of wildcard or default route may be achieved by using a mask of all zeros, and
there may be hierarchical routes.

When the system is booted and addresses are assigned to the network interfaces, the
internet protocol family installs a routing table entry for each interface when it is ready
for traffic. Normally the protocol specifies the route through each interface as a direct
connection to the destination host or network. If the route is direct, the transport layer of
a protocol family usually requests the packet be sent to the same host specified in the
packet. Otherwise, the interface is requested to address the packet to the gateway listed
in the routing entry (i.e., the packet is forwarded).

When routing a packet, the kernel attempts to find the most specific route matching the
destination. If no entry is found, the destination is declared to be unreachable, and a
routing-miss message is generated if there are any listeners on the routing control socket
(described below). If there are two different mask and value-under-the-mask pairs that
match, the more specific is the one with more bits in the mask. A route to a host is
regarded as being supplied with a mask of as many ones as there are bits in the destina-
tion.

Note: a wildcard routing entry is specified with a zero destination address value, and a
mask of all zeroes. Wildcard routes are used when the system fails to find other routes
matching the destination. The combination of wildcard routes and routing redirects can
provide an economical mechanism for routing traffic.

One opens the channel for passing routing control messages by using the socket call
shown in the SYNOPSIS section above. There can be more than one routing socket open
per system.

SunOS 5.6 4-331

route (4)

4-332

Messages

File Formats

Messages are formed by a header followed by a small number of sockadders, whose
length depend on the address family. Sockaddrs are interpreted by position. An example
of a type of message with three addresses might be a CIDR prefix route: Destination, Net-
mask, and Gateway. The interpretation of which addresses are present is given by a bit
mask within the header, and the sequence is least significant to most significant bit within

the vector.

Any messages sent to the kernel are returned, and copies are sent to all interested
listeners. The kernel provides the process ID of the sender, and the sender may use an
additional sequence field to distinguish between outstanding messages. However, mes-
sage replies may be lost when kernel buffers are exhausted.

The kernel may reject certain messages, and will indicate this by filling in the rtm_errno
field of the rt_msghdr struct (see below). The following codes may be returned:

EEXIST
ESRCH
ENOBUFS

If requested to duplicate an existing entry
If requested to delete a non-existent entry
If insufficient resources were available to install a new route.

In the current implementation, all routing processes run locally, and the values for
rtm_errno are available through the normal errno mechanism, even if the routing reply

message is lost.

A process may avoid the expense of reading replies to its own messages by issuing a
setsockopt(3N) call indicating that the SO_USELOOPBACK option at the SOL_SOCKET
level is to be turned off. A process may ignore all messages from the routing socket by
doing a shutdown(3N) system call for further input.

If a route is in use when it is deleted, the routing entry is marked down and removed
from the routing table, but the resources associated with it are not reclaimed until all

references to it are released.

User processes can obtain information about the routing entry to a specific destination by

using a RTM_GET message.
Messages include:

#define RTM_ADD
#define RTM_DELETE
#define RTM_CHANGE
#define RTM_GET
#define RTM_LOOSING
#define RTM_REDIRECT
#define RTM_MISS
#define RTM_RESOLVE
#define RTM_NEWADDR
#define RTM_DELADDR
#define RTM_IFINFO

SunOS 5.6

/0Add Route [/

/0Delete Route [/

/00Change Metrics, Flags, or Gateway [/
/0Report Information [/

/0Kernel Suspects Partitioning [/
/0Told to use different route [/
/0Lookup failed on this address [/
/Orequest to resolve dst to LL addr [/
/Oaddress being added to iface [/
/0address being removed from iface ¥
/Oiface going up/down etc. [/

modified 7 Jan 1997

File Formats

modified 7 Jan 1997

A message header consists of:

struct rt_msghdr {

u_short rtm_msglen; /0Oto skip over non-understood messages [
u_char rtm_version; /Ofuture binary compatibility [J

u_char rtm_type; /Omessage type [1

u_short rtm_index; /Oindex for associated ifp [

pid_t rtm_pid,; /Oidentify sender [

int rtm_addrs; /Obitmask identifying sockaddrs in msg [
int rtm_seq; /Ofor sender to identify action I

int rtm_errno; /Owhy failed O

int rtm_flags; /Oflags, incl kern & message, e.g., DONE [0
int rtm_use; /Ofrom rtentry O

u_long rtm_inits; /Owhich values we are initializing O
struct rt_metrics rtm_rmx; /Ometrics themselves O

I3

where,

struct rt_metrics {

u_long rmx_locks; /OKernel must leave these values alone [f
u_long rmx_mtu; /OMTU for this path [0

u_long rmx_hopcount; /Omax hops expected 1

u_long rmx_expire; /Olifetime for route, e.g., redirect (I
u_long rmx_recvpipe; /Oinbound delay-bandwidth product OJ
u_long rmx_sendpipe; /Ooutbound delay-bandwidth product OJ
u_long rmx_ssthresh; /Ooutbound gateway buffer limit [
u_long rmx_rtt; /Oestimated round trip time [0

u_long rmx_rttvar; /Oestimated rtt variance [

3

u_long rmx_pksent; /Opackets sent using this route [f

Flags include the values:

#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define

RTF_UP /UOroute usable [/

RTF_GATEWAY /destination is a gateway [V
RTF_HOST /0host entry (net otherwise) [/
RTF_REJECT /0host or net unreachable [/
RTF_DYNAMIC /Ocreated dynamically (by redirect) [/
RTF_MODIFIED /0O0modified dynamically (by redirect) [/
RTF_DONE /message confirmed [/

RTF_MASK /subnet mask present [/
RTF_CLONING /[generate new routes on use [/
RTF_XRESOLVE /Uexternal daemon resolves name [/
RTF_LLINFO /Ogenerated by ARP [/

SunOS 5.6

route (4)

4-333

route (4)

4-334

SEE ALSO

NOTES

#define
#define
#define
#define

RTF_STATIC

RTF_BLACKHOLE

RTF_PROTO1
RTF_PROTO2

/0manually added [/

/0Ojust discard pkts (during updates) [/
/Oprotocol specific routing flag #1 [/
/0Oprotocol specific routing flag #2 ¥

Specifiers for metric values in rmx_locks and rtm_inits are:

#define
#define
#define
#define
#define
#define
#define

RTV_MTU
RTV_HOPCOUNT
RTV_RPIPE
RTV_SPIPE
RTV_SSTHRESH
RTV_RTT
RTV_RTTVAR

/0initor lock _mtu [/
/0init or lock _hopcount [/
/0init or lock _recvpipe I/
/0init or lock _sendpipe [/
/0init or lock _ssthresh [/
/0initor lock _rtt O/
/0initor lock _rttvar 0/

Specifiers for which addresses are present in the messages are:

#define
#define
#define
#define
#define
#define
#define
#define

RTA_DST
RTA_GATEWAY
RTA_NETMASK
RTA_GENMASK
RTA_IFP
RTA_IFA
RTA_AUTHOR
RTA_BRD

/0Odestination sockaddr present [/
/0gateway sockaddr present [/
/0netmask sockaddr present [/
/UOcloning mask sockaddr present [/
/Ointerface name sockaddr present [/
/Uinterface addr sockaddr present [/
/Usockaddr for author of redirect [/

File Formats

/0for NEWADDR, broadcast or p-p dest addr [/

ioctl(2), setsockopt(3N), shutdown(3N), routing(4)

Some of the metrics may not be implemented and return zero. The implemented metrics
are set in rtm_inits.

SunOS 5.6

modified 7 Jan 1997

File Formats

NAME

DESCRIPTION

modified 26 Jan 1995

routing (4)

routing — system support for packet network routing

The network facilities provide general packet routing. Routing table maintenance may be
implemented in applications processes.

A simple set of data structures compose a “routing table” used in selecting the appropri-
ate network interface when transmitting packets. This table contains a single entry for
each route to a specific network or host. The routing table was designed to support rout-
ing for the Internet Protocol (IP), but its implementation is protocol independent and thus
it may serve other protocols as well. User programs may manipulate this data base with
the aid of two ioctl(2) commands, SIOCADDRT and SIOCDELRT. These commands
allow the addition and deletion of a single routing table entry, respectively. Routing
table manipulations may only be carried out by privileged user.

A routing table entry has the following form, as defined in /usr/include/net/route.h:
struct rtentry {

u_long rt_hash; /0to speed lookups O

struct sockaddr rt_dst; /Okey OO

struct sockaddr rt_gateway; /Ovalue [0

short rt_flags; /Oup/down?, host/net O
short rt_refcnt; [0# held references

u_long rt_use; /Oraw # packets forwarded [

#ifdef STRNET
struct ip_provider [t _prov; /Othe answer: provider to use [

#else
struct ifnet Crt_ifp; /Othe answer: interface to use [
#endif /OSTRNETL
J§
with rt_flags defined from:
#define RTF_UP Ox1 /Oroute usable I
#define RTF_GATEWAY 0x2 /Odestination is a gateway [
#define RTF_HOST 0x4 /O0host entry (net otherwise) [

Routing table entries come in three flavors: for a specific host, for all hosts on a specific
network, for any destination not matched by entries of the first two types (a wildcard
mally the interface specifies the route through it is a “direct” connection to the destina-
tion host or network. If the route is direct, the transport layer of a protocol family usually
requests the packet be sent to the same host specified in the packet. Otherwise, the inter-
face may be requested to address the packet to an entity different from the eventual reci-
pient (that is, the packet is forwarded).

Routing table entries installed by a user process may not specify the hash, reference
count, use, or interface fields; these are filled in by the routing routines. If a route isin
use when it is deleted (rt_refcnt is non-zero), the resources associated with it will not be
reclaimed until all references to it are removed.

SunOS 5.6 4-335

routing (4)

4-336

ERRORS

FILES

SEE ALSO

File Formats

User processes read the routing tables through the /dev/ip device.

The rt_use field contains the number of packets sent along the route. This value is used to
select among multiple routes to the same destination. When multiple routes to the same
destination exist, the least used route is selected.

A wildcard routing entry is specified with a zero destination address value. Wildcard
routes are used only when the system fails to find a route to the destination host and net-
work. The combination of wildcard routes and routing redirects can provide an econom-
ical mechanism for routing traffic.

EEXIST

ESRCH
ENOBUFS
ENOMEM
ENETUNREACH

/dev/ip

route(1M), ioctl(2)

A request was made to duplicate an existing entry.
A request was made to delete a non-existent entry.
Insufficient resources were available to install a new route.
Insufficient resources were available to install a new route.

The gateway is not directly reachable i.e. it does not match the
destination/subnet on any of the network interfaces.

IP device driver

Sun0S 5.6 modified 26 Jan 1995

File Formats

NAME

SYNOPSIS

DESCRIPTION

EXAMPLES

FILES

SEE ALSO

modified 10 Dec 1991

rpc(4)

rpc - rpc program number data base
letc/rpc

The rpc file is a local source containing user readable names that can be used in place of
RPC program numbers. The rpc file can be used in conjunction with or instead of other
rpc sources, including the NIS maps “‘rpc.byname’ and “rpc.bynumber’” and the N1S+
table “rpc’”.

The rpc file has one line for each RPC program name. The line has the following format:
name-of-the-RPC-program RPC-program-number aliases

Items are separated by any number of blanks and/or tab characters. A “# indicates the
beginning of a comment; characters up to the end of the line are not interpreted by rou-
tines which search the file.

Below is an example of an RPC database:

#

rpc

#

rpcbind 100000 portmap sunrpc portmapper
rusersd 100002 rusers

nfs 100003 nfsprog

mountd 100005 mount showmount
walld 100008 rwall shutdown
sprayd 100012 spray

llockmgr 100020

nlockmgr 100021

status 100024

bootparam 100026

keyserv 100029 keyserver

/etc/nsswitch.conf

nsswitch.conf(4)

SunOS 5.6 4-337

rpld.conf(4)

NAME
SYNOPSIS

DESCRIPTION

Keywords

4-338

File Formats

rpld.conf — Remote Program Load (RPL) server configuration file
/etc/rpld.conf

The /etc/rpld.conf file contains the configuration information for operation of rpld, the
RPL-based network boot server. It is a text file containing keyword-value pairs and com-
ments. The keyword-value pairs specify the value to use for parameters used by the RPL
server. Comments can be entered by starting the line using the # character. The user can
add comments to the file for customized configurations. Alternate RPL server
configuration files can be specified when running the RPL server by supplying a
configuration file similar to the default configuration file.

All keywords are case-sensitive. Not all keywords must be present. (However, note that
the end keyword at the end of the file must be present.) If a keyword is not present,
internal defaults, which are the default values described here, will be used. Keyword-
value pairs are specified by:

keyword = value

DebugLevel
Specify the number of error, warning, and information messages to be gen-
erated while the RPL server is running. The valid range is 0-9. A value of 0
means no message at all, while a value of 9 will generate the most messages.
The default is 0. Note that it is best to limit the value to 8 or below; use of
level 9 may generate so many debug messages that the performance of the
RPL server may be impacted.

DebugDest
A numeric value specifying where to send the messages to:

0 = standard output
1 =syslogd
2 =log file

The default is 2.

MaxClients
A numeric value specifying the maximum number of simultaneous network
boot clients to be in service. A value of =1 means unlimited except where sys-
tem resources is the limiting factor. Any positive value will set a limit on the
number of clients to be in service at the same time unless system resource con-
straints come in before the limit. The default is -1.

BackGround
A numeric value indicating whether the RPL server should run in the back-
ground or not. A 0 means run in the background and a 1 means do not run in
the background. The difference is whether the server will relinquish the con-
trolling terminal or not. The default is 1.

Sun0S 5.6 modified 31 Dec 1996

File Formats

FILES

ATTRIBUTES

SEE ALSO

modified 31 Dec 1996

FrameSize

LogFile

StartDelay

rpld.conf(4)

The default size of data frames to be used to send bootfile data to the network
boot clients. This size should not exceed the limits imposed by the underlying
physical media. For ethernet/802.3, the maximum physical frame size is 1500

octets. The default is 1500. Note that the protocol overhead of LLC1 and RPL
is 32 octets, resulting in a maximum data length of 1468 octets.

The log file to which messages will be sent if DebugDest is set to 2 (the
default). The default file is var/spool/rpld.log.

The initial delay factor to use to control the speed of downloading. In the
default mode of operation, the downloading process does not wait for a posi-
tive acknowledgment from the client before the next data frame is sent. In the
case of a fast server and slow client, data overrun can result and requests for
retransmission will be frequent. By using a delay factor, the speed of data
transfer is controlled to avoid retransmission requests. Note that the unit of
delay is machine dependent and bears no correlation with the actual time
delayed.

DelayGran

end

Delay granularity. If the initial delay factor is not suitable and the rate of
downloading is either too fast or too slow, retransmission requests from the
clients will be used to adjust the delay factor either upward (to slow down the
data rate) or downward (to speed up the data rate). The delay granularity is
used as the delay delta for adjustment.

Keyword at the end of the file. It must be present.

/etc/rpld.conf
/usr/sbin/rpld

See attributes(5) for descriptions of the following attributes:

ATTRIBUTETYPE | ATTRIBUTE VALUE

Architecture x86

rpld(1M), attributes(5)

SunOS 5.6 4-339

rt_dptbl(4)

NAME

DESCRIPTION

4-340

RT_DPTBL
LOADABLE
MODULE

File Formats

rt_dptbl - real-time dispatcher parameter table

The process scheduler (or dispatcher) is the portion of the kernel that controls allocation
of the CPU to processes. The scheduler supports the notion of scheduling classes where
each class defines a scheduling policy, used to schedule processes within that class.
Associated with each scheduling class is a set of priority queues on which ready to run
processes are linked. These priority queues are mapped by the system configuration into
a set of global scheduling priorities which are available to processes within the class.
(The dispatcher always selects for execution the process with the highest global schedul-
ing priority in the system.) The priority queues associated with a given class are viewed
by that class as a contiguous set of priority levels numbered from 0 (lowest priority) to n
(highest priority—a configuration dependent value). The set of global scheduling priori-
ties that the queues for a given class are mapped into might not start at zero and might
not be contiguous (depending on the configuration).

The real-time class maintains an in-core table, with an entry for each priority level, giving
the properties of that level. This table is called the real-time dispatcher parameter table
(rt_dptbl). The rt_dptbl consists of an array (config_rt_dptbl[]) of parameter structures
(struct rtdpent_t), one for each of the n priority levels. The structure are accessed via a
pointer, (rt_dptbl), to the array. The properties of a given priority level i are specified by
the ith parameter structure in this array (rt_dptbl[i]).

A parameter structure consists of the following members. These are also described in the
/usr/include/sys/rt.h header file.

rt_globpri
The global scheduling priority associated with this priority level. The rt_globpri
values cannot be changed with dispadmin(1M).

rt_quantum
The length of the time quantum allocated to processes at this level in ticks (Hz).
The time quantum value is only a default or starting value for processes at a
particular level as the time quantum of a real-time process can be changed by
the user with the priocntl command or the priocntl system call.

An administrator can affect the behavior of the real-time portion of the scheduler by
reconfiguring the rt_dptbl. There are two methods available for doing this: reconfigure
with a loadable module at boot-time or by using dispadmin(1M) at run-time.

The rt_dptbl can be reconfigured with a loadable module which contains a new real time
dispatch table. The module containing the dispatch table is separate from the RT loadable
module which contains the rest of the real time software. This is the only method that
can be used to change the number of real time priority levels or the set of global schedul-
ing priorities used by the real time class. The relevant procedure and source code is
described in the REPLACING THE RT_DPTBL LOADABLE MODULE section.

SunOS 5.6 modified 23 Sep 1991

File Formats

DISPADMIN
CONFIGURATION
FILE

EXAMPLES

modified 23 Sep 1991

rt_dptbl(4)

The rt_guantum values in the rt_dptbl can be examined and modified on a running sys-
tem using the dispadmin(1M) command. Invoking dispadmin for the real-time class
allows the administrator to retrieve the current rt_dptbl configuration from the kernel’s
in-core table, or overwrite the in-core table with values from a configuration file. The
configuration file used for input to dispadmin must conform to the specific format
described below.

Blank lines are ignored and any part of a line to the right of a # symbol is treated as a
comment. The first non-blank, non-comment line must indicate the resolution to be used
for interpreting the time quantum values. The resolution is specified as

RES=res

where res is a positive integer between 1 and 1,000,000,000 inclusive and the resolution
used is the reciprocal of res in seconds. (For example, RES=1000 specifies millisecond
resolution.) Although very fine (nanosecond) resolution may be specified, the time quan-
tum lengths are rounded up to the next integral multiple of the system clock’s resolution.

The remaining lines in the file are used to specify the rt_quantum values for each of the
real-time priority levels. The first line specifies the quantum for real-time level 0, the
second line specifies the quantum for real-time level 1, etc. There must be exactly one line
for each configured real-time priority level. Each rt_quantum entry must be either a
positive integer specifying the desired time quantum (in the resolution given by res), or
the value -2 indicating an infinite time quantum for that level.

The following excerpt from a dispadmin configuration file illustrates the format. Note
that for each line specifying a time quantum there is a comment indicating the
corresponding priority level. These level numbers indicate priority within the real-time
class, and the mapping between these real-time priorities and the corresponding global
scheduling priorities is determined by the configuration specified in the RT_DPTBL
loadable module. The level numbers are strictly for the convenience of the administrator
reading the file and, as with any comment, they are ignored by dispadmin on input.
dispadmin assumes that the lines in the file are ordered by consecutive, increasing prior-
ity level (from 0 to the maximum configured real-time priority). The level numbers in the
comments should normally agree with this ordering; if for some reason they don’t, how-
ever, dispadmin is unaffected.

Real-Time Dispatcher Configuration File

RES=1000

TIME QUANTUM PRIORITY

(rt_quantum) LEVEL
100 0
100
100
100
100
100
90

HOoHHHHHFH
OO Ul WN -

SunOS 5.6 4-341

rt_dptbl(4)

REPLACING THE
RT_DPTBL
LOADABLE
MODULE

4-342

File Formats

90 #7
10 # 58
10 # 59

In order to change the size of the real time dispatch table, the loadable module which
contains the dispatch table information will have to be built. It is recommended that you
save the existing module before using the following procedure.

1. Place the dispatch table code shown below in a file called rt_dptbl.c An
example of an rt_dptbl.c file follows.

2. Compile the code using the given compilation and link lines supplied.

cc —¢ -0 -D_KERNEL rt_dptbl.c
Id -r -o RT_DPTBL rt_dptbl.o

3. Copy the current dispatch table in /usr/kernel/sched to RT_DPTBL.bak.
Replace the current RT_DPTBL in /usr/kernel/sched.
5. You will have to make changes in the /etc/system file to reflect the changes

to the sizes of the tables. See system(4). The rt_maxpri variable may need
changing. The syntax for setting this is:

set RT:rt_maxpri=(class-specific value for maximum real-time priority)

6. Reboot the system to use the new dispatch table.

NOTE: Great care should be used in replacing the dispatch table using this method. If
you don’t get it right, the system may not behave properly.

The following is an example of a rt_dptbl.c file used for building the new rt_dptbl.
/0 BEGIN rt_dptbl.c O

#include <sys/proc.h>
#include <sys/priocntl.h>
#include <sys/class.h>
#include <sys/disp.h>
#include <sys/rt.h>
#include <sys/rtpriocntl.h>

/0

OThis is the loadable module wrapper.
a

#include <sys/modctl.h>

extern struct mod_ops mod_miscops;

SunOS 5.6 modified 23 Sep 1991

File Formats

modified 23 Sep 1991

/0
OModule linkage information for the kernel.
a

static struct modImisc modImisc = {
&mod_miscops, "realtime dispatch table”

%

static struct modlinkage modlinkage = {
MODREV_1, &modlmisc, 0

I3
_init()
{
return (mod_install(&modlinkage));
}
_info (struct modinfo Cmodinfop)
{
return (mod_info(&modlinkage, modinfop));
}

rtdpent_t config_rt_dptbl[] ={
/0 prilevel Time quantum [

100, 100,
101, 100,
102, 100,
103, 100,
104, 100,
105, 100,
106, 100,
107, 100,
108, 100,
109, 100,
110, 80,
111, 80,
112, 80,
113, 80,
114, 80,
115, 80,
1186, 80,
117, 80,
118, 80,
119, 80,
Sun0S 5.6

rt_dptbl(4)

4-343

rt_dptbl(4)

4-344

%

/d

OReturn the address of config_rt_dptbl

a

120,
121,
122,
123,
124,
125,
126,
127,
128,
129,
130,
131,
132,
133,
134,
135,
136,
137,
138,
139,
140,
141,
142,
143,
144,
145,
146,
147,
148,
149,
150,
151,
152,
153,
154,
155,
156,
157,
158,
159,

60,
60,
60,
60,
60,
60,
60,
60,
60,
60,
40,
40,
40,
40,
40,
40,
40,
40,
40,
40,
20,
20,
20,
20,
20,
20,
20,
20,
20,
20,
10,
10,
10,
10,
10,
10,
10,
10,
10,
10,

SunOS 5.6

File Formats

modified 23 Sep 1991

File Formats

FILES

SEE ALSO

modified 23 Sep 1991

rtdpent_t O
rt_getdptbl()
{

return (config_rt_dptbl);

<sys/rt.h>

priocntl(1), dispadmin(1M), priocntl(2), system(4)

System Administration Guide
System Interface Guide

SunOS 5.6

rt_dptbl(4)

4-345

sbus(4)

NAME

DESCRIPTION

4-346

File Formats

sbus - configuration files for SBus device drivers

The SBus is a geographically addressed peripheral bus present on many SPARC hardware
platforms. SBus devices are self-identifying — that is to say the SBus card itself provides
information to the system so that it can identify the device driver that needs to be used.
The device usually provides additional information to the system in the form of name-
value pairs that can be retrieved using the DDI property interfaces. See ddi_prop_op(9F)
for details.

The information is usually derived from a small Forth program stored in the FCode PROM
on the card, so driver configuration files should be completely unnecessary for these dev-
ices. However, on some occasions, drivers for SBus devices may need to use driver
configuration files to augment the information provided by the SBus card. See
driver.conf(4) for further details.

When they are needed, configuration files for SBus device drivers should identify the
parent bus driver implicitly using the class keyword. This removes the dependency on
the particular bus driver involved since this may be named differently on different plat-
forms.

All bus drivers of class sbus recognise the following properties:

reg An arbitrary length array where each element of the array consists of a
3-tuple of integers. Each array element describes a logically contiguous
mappable resource on the SBus.

The first integer of each tuple specifies the slot number the card is
plugged into. The second integer of each 3-tuple specifies the offset in
the slot address space identified by the first element. The third integer of
each 3-tuple specifies the size in bytes of the mappable resource.

The driver can refer to the elements of this array by index, and construct
kernel mappings to these addresses using ddi_map_regs(9F). The index
into the array is passed as the rnumber argument of ddi_map_regs().

interrupts An arbitrary length array where each element of the array consists of a
single integer. Each array element describes a possible SBus interrupt
level that the device might generate.

The driver can refer to the elements of this array by index, and register
interrupt handlers with the system using ddi_add_intr(9F). The index
into the array is passed as the inumber argument of ddi_add_intr().

registers An arbitrary length array where each element of the array consists of a
3-tuple of integers. Each array element describes a logically contiguous
mappable resource on the SBus.

The first integer of each tuple should be set to -1, specifying that any
SBus slot may be matched. The second integer of each 3-tuple specifies
the offset in the slot address space identified by the first element. The
third integer of each 3-tuple specifies the size in bytes of the mappable
resoure.

Sun0S 5.6 modified 31 Dec 1996

File Formats

EXAMPLES

ATTRIBUTES

modified 31 Dec 1996

sbus (4)

The registers property can only be used to augment an incompletely
specified reg property with information from a driver configuration file.
It may only be specified in a driver configuration file.

All SBus devices must provide reg properties to the system. The first two integer ele-
ments of the reg property are used to construct the address part of the device name
under /devices.

Only devices that generate interrupts need to provide interrupts properties.

Occasionally, it may be necessary to override or augment the configuration information
supplied by the SBus device. This can be achieved by writing a driver configuration file
that describes a prototype device information (devinfo) node specification, containing the
additional properties required.

For the system to merge the information, certain conditions must be met. First, the name
property must be the same. Second, either the first two integers (slot number and offset)
of the two reg properties must be the same, or the second integer (offset) of the reg and
registers properties must be the same.

In the event that the SBus card has no reg property at all, the self-identifying information
cannot be used, so all the details of the card must be specified in a driver configuration
file.

Here is a configuration file for an SBus card called SUNW,netboard. The card already
has a simple FCode PROM that creates name and reg properties, and will have a complete
set of properties for normal use once the driver and firmware is complete.

In this example, we want to augment the properties given to us by the firmware. We use
the same name property, and use the registers property to match the firmware reg pro-
perty. That way we don’t have to worry about which slot the card is really plugged into.

We want to add an interrupts property while we are developing the firmware and driver
so that we can start to experiment with interrupts. The device can generate interrupts at
SBus level 3. Additionally, we want to set a debug-level property to 4.

#

Copyright (c) 1992, by Sun Microsystems, Inc.

#ident "@#)SUNW,netboard.conf 1.4 92/03/10 SMI"

#

name="SUNW,netboard" class="sbus"
registers=-1,0x40000,64,-1,0x80000,1024
interrupts=3 debug-level=4;

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE
Architecture SPARC

SunOS 5.6 4-347

sbus(4) File Formats

SEE ALSO driver.conf(4), attributes(5), ddi_add_intr(9F), ddi_map_regs(9F), ddi_prop_op(9F)
Writing Device Drivers

WARNINGS | The wildcarding mechanism of the registers property matches every instance of the par-
ticular device attached to the system. This may not always be what is wanted.

4-348 Sun0S 5.6 modified 31 Dec 1996

File Formats

NAME

DESCRIPTION

Conventions

Checksum

Delta Table

modified 5 Oct 1990

sccsfile (4)

sccsfile — format of an SCCS history file

An SCCS file is an ASCII file consisting of six logical parts:
checksum character count used for error detection
delta table log containing version info and statistics about each delta
usernames login names and/or group IDs of users who may add deltas
flags definitions of internal keywords
comments arbitrary descriptive information about the file
body the actual text lines intermixed with control lines

Each section is described in detail below.

Throughout an SCCS file there are lines which begin with the ASCII SOH (start of head-
ing) character (octal 001). This character is hereafter referred to as the control character,
and will be represented as “"A’. If a line described below is not depicted as beginning
with the control character, it cannot do so and still be within SCCS file format.

Entries of the form ddddd represent a five digit string (a number between 00000 and
99999).

The checksum is the first line of an SCCS file. The form of the line is:
“A hddddd

The value of the checksum is the sum of all characters, except those contained in the first
line. The "Ah provides a magic number of (octal) 064001.

The delta table consists of a variable number of entries of the form:
“As inserted /deleted /unchanged
“Ad type sid yr/mo/da hr:mi:se username serial-number predecessor-sn
“Ai include-list
“Ax exclude-list
“Ag ignored-list
“Am mr-number

“Ac comments ...

“Ae
The first line ("As) contains the number of lines inserted/deleted/unchanged respec-
tively. The second line ("|Ad) contains the type of the delta (normal: D, and removed: R),
the SCCS ID of the delta, the date and time of creation of the delta, the user-name

corresponding to the real user ID at the time the delta was created, and the serial numbers
of the delta and its predecessor, respectively.

SunOS 5.6 4-349

sccsfile (4)

4-350

User Names

Flags

File Formats

The "Ai, "Ax, and "Ag lines contain the serial numbers of deltas included, excluded, and
ignored, respectively. These lines do not always appear.

The "Am lines (optional) each contain one MR number associated with the delta; the "Ac
lines contain comments associated with the delta.

The "Ae line ends the delta table entry.

The list of user-names and/or numerical group 1Ds of users who may add deltas to the
file, separated by NEWLINE characters. The lines containing these login names and/or
numerical group IDs are surrounded by the bracketing lines "Au and "AU. An empty list
allows anyone to make a delta.

Flags are keywords that are used internally (see sccs-admin(1) for more information on
their use). Each flag line takes the form:

"Af flag optional text
The following flags are defined in order of appearance:
"Af t type-of-program

Defines the replacement for the %T% ID keyword.
"Af v program-name

Controls prompting for MR numbers in addition to comments; if the optional
text is present it defines an MR number validity checking program.

“"Afi Indicates that the ‘No id keywords’ message is to generate an error that ter-
minates the SCCS command. Otherwise, the message is treated as a warning
only.

"Afb Indicates that the —b option may be used with the SCCS get command to create a
branch in the delta tree.

“Af m module name
Defines the first choice for the replacement text of the %M% ID keyword.

“Af f floor
Defines the “floor” release; the release below which no deltas may be added.

“Af c ceiling
Defines the “ceiling” release; the release above which no deltas may be added.

"Af d default-sid
The d flag defines the default SID to be used when none is specified on an SCCS
get command.

"Afn The n flag enables the SCCS delta command to insert a “null” delta (a delta that
applies no changes) in those releases that are skipped when a delta is made in a
new release (for example, when delta 5.1 is made after delta 2.7, releases 3 and 4
are skipped).

"Afj Enables the SCCS get command to allow concurrent edits of the same base SID.

Sun0S 5.6 modified 5 Oct 1990

File Formats

Comments

Body

SEE ALSO

modified 5 Oct 1990

sccsfile (4)

"Af | lock-releases
Defines a list of releases that are locked against editing.

“Af g user defined
Defines the replacement for the %Q% ID keyword.

"Afe0]1
The e flag indicates whether a source file is encoded or not. A 1 indicates that the
file is encoded. Source files need to be encoded when they contain control char-
acters, or when they do not end with a NEWLINE. The e flag allows files that con-
tain binary data to be checked in.

Arbitrary text surrounded by the bracketing lines "At and "AT. The comments section
typically will contain a description of the file’s purpose.

The body consists of text lines and control lines. Text lines do not begin with the control
character, control lines do. There are three kinds of control lines: insert, delete, and end,
represented by:

"Al ddddd
"AD ddddd
"AE ddddd

respectively. The digit string is the serial number corresponding to the delta for the con-
trol line.

sccs-admin(l), sces-cdc(1), sces-comb(1), sces-delta(l), sces-get(1), sces-help(1), sces-

prs(1), sccs-prt(1), sccs-rmdel(1), sces-sact(1), sces-scesdiff(1), sces-unget(1), sces-val(1),
sces(l), what(1)

SunOS 5.6 4-351

scsi(4)

NAME

DESCRIPTION

4-352

EXAMPLES

File Formats

scsi — configuration files for SCSI target drivers

The architecture of the Solaris SCSI subsystem distinguishes two types of device drivers:
SCSI target drivers, and SCSI host adapter drivers. Target drivers like sd(7D) and st(7D)
on SPARC and cmdk(7D) on x86 manage the device on the other end of the SCSI bus.
Host adapter drivers manage the SCSI bus on behalf of all the devices that share it.

Drivers for host adapters provide a common set of interfaces for target drivers. These
interfaces comprise the Sun Common SCSI Architecture (SCSA) which are documented as
part of the Solaris DDI/DKI. See scsi_ifgetcap(9F), scsi_init_pkt(9F), and
scsi_transport(9F) for further details of these, and associated routines.

Target drivers for SCSI devices should use a driver configuration file to enable them to be
recognized by the system.

Configuration files for SCSI target drivers should identify the host adapter driver impli-
citly using the class keyword to remove any dependency on the particular host adapter
involved.

All host adapter drivers of class scsi recognise the following properties:

target Integer-valued SCSI target identifier that this driver will claim.
lun Integer-valued SCSI logical unit number (LUN) that this driver will
claim.

All SCsI target drivers must provide target and lun properties. These properties are used
to construct the address part of the device name under /devices.

The SCsI target driver configuration files shipped with Solaris have entries for LUN 0
only. For devices that support other LUNS, such as some CD changers, the system
administrator may edit the driver configuration file to add entries for other LUNs.

Here is a configuration file for a SCSI target driver called toaster.conf.

#
Copyright (c) 1992, by Sun Microsystems, Inc.
#
#ident "@(#)toaster.conf 1.2 92/05/12 SMI"

name="toaster" class="scsi" target=4 lun=0;

Add the following lines to cmdk.conf for a six-CD changer on target 3, with LUNs 0 to 5.

name="cmdk" class="scsi" target=3 lun=1;
scsi_audio="sccd_sony","sccd_std";

name="cmdk" class="scsi" target=3 lun=2;
scsi_audio="sccd_sony","sccd_std";

name="cmdk" class="scsi" target=3 lun=3;
scsi_audio="sccd_sony","sccd_std";

name="cmdk" class="scsi" target=3 lun=4;
scsi_audio="sccd_sony","sccd_std";

name="cmdk" class="scsi" target=3 lun=5;

Sun0S 5.6 modified 31 Jan 1995

File Formats

SEE ALSO

SPARC only
x86 only

NOTES

modified 31 Jan 1995

scsi(4)

scsi_audio="sccd_sony","sccd_std";

It is not necessary to add the line for LUN 0, as it already exists in the file shipped with
Solaris.

driver.conf(4), scsi_ifgetcap(9F), scsi_init_pkt(9F), scsi_transport(9F)
Writing Device Drivers
ANSI Small Computer System Interface-2 (SCSI-2)

sd(7D), st(7D)
cmdk(7D)

You need to ensure that the target and lun values claimed by your target driver do not
conflict with existing target drivers on the system. For example, on SPARC, if the target
is a direct access device, the standard sd.conf file will usually make sd claim it before any
other driver has a chance to probe it. This is also true for x86; if the target is a direct
access device, the standard cmdk.conf file will usually make crndk claim it before any
other driver has a chance to probe it.

SunOS 5.6 4-353

securenets(4)

NAME
SYNOPSIS

DESCRIPTION

FILES
SEE ALSO

NOTES

4-354

File Formats

securenets — configuration file for NIS security
Ivarlypl/securenets

The /var/yp/securenets file defines the networks or hosts which are allowed access to
information by the Network Information Service (NIS).

The format of the file is as follows:
Lines beginning with the “#’ character are treated as comments.

Otherwise, each line contains two fields separated by white space. The first field is a net-
mask, the second a network.

The netmask field may be either 255.255.255.255 or the string ““host’ indicating that the
second field is a specific host to be allowed access.

Ivarlyp/securenets Configuration file for NIS security.
ypserv(1M), ypxfrd(1M)

The Network Information Service (NIS) was formerly known as Sun Yellow Pages (YP).
The functionality of the two remains the same; only the name has changed. The name
Yellow Pages is a registered trademark in the United Kingdom of British Telecommunica-
tions plc, and may not be used without permission.

Sun0S 5.6 modified 24 Oct 1996

File Formats services(4)

NAME services — Internet services and aliases

SYNOPSIS /etc/inet/services
letc/services

DESCRIPTION The services file is a local source of information regarding each service available through
the Internet. The services file can be used in conjunction with or instead of other services
sources, including the NIS maps “services.byname” and the NIS+ table “services.” Pro-
grams use the getservbyname(3N) routines to access this information.

The services file contains an entry for each service. Each entry has the form:
service-name port/protocol aliases

service-name This is the official Internet service name.

port/ protocol This field is composed of the port number and protocol through
which the service is provided (for instance, 512/tcp).

aliases This is a list of alternate names by which the service might be
requested.

Fields can be separated by any number of SPACE and/or TAB characters. A ‘#’ (number
sign) indicates the beginning of a comment; characters up to the end of the line are not
interpreted by routines which search the file.

Service hames may contain any printable character other than a field delimiter, NEWLINE,
or comment character.

FILES | /etc/nsswitch.conf configuration file for name-service switch
SEE ALSO getservbyname(3N), inetd.conf(4), nsswitch.conf(4)

NOTES | /etc/inet/services is the official SVR4 name of the services file. The symbolic link
/etc/services exists for BSD compatibility.

modified 22 Feb 1994 SunOS 5.6 4-355

shadow (4)

NAME

DESCRIPTION

4-356

FILES

SEE ALSO

File Formats

shadow - shadow password file

/etc/shadow is an access-restricted ASCII system file that stores users’ encrypted pass-
words and related information. The shadow file can be used in conjunction with other
shadow sources, including the NIS maps passwd.byname and passwd.byuid and the
NIS+ table passwd. Programs use the getspnam(3C) routines to access this information.

The fields for each user entry are separated by colons. Each user is separated from the
next by a newline. Unlike the /etc/passwd file, /etc/shadow does not have general read
permission.

Each entry in the shadow file has the form:
username:password:lastchg:min:max:warn:inactive:expire:flag

The fields are defined as follows:

username The user’s login name (UID).

password A 13-character encrypted password for the user, a lock string to indicate that
the login is not accessible, or no string, which shows that there is no pass-
word for the login.

lastchg The number of days between January 1, 1970, and the date that the pass-
word was last modified.

min The minimum number of days required between password changes.
max The maximum number of days the password is valid.

warn The number of days before password expires that the user is warned.
inactive The number of days of inactivity allowed for that user.

expire An absolute date specifying when the login may no longer be used.
flag Reserved for future use, set to zero. Currently not used.

The encrypted password consists of 13 characters chosen from a 64-character alphabet (.,
/,0-9, A-Z, a-z). To update this file, use the passwd(1), useradd(1M), usermod(1M), or
userdel(1M) commands.

In order to make system administration manageable, /etc/shadow entries should appear
in exactly the same order as /etc/passwd entries; this includes ““+’” and **-”” entries if the
compat source is being used (see nsswitch.conf(4)).

/etc/shadow shadow password file
/etc/passwd password file
/etc/nsswitch.conf ~ name-service switch configuration file

login(1), passwd(1), useradd(1M), userdel(1M), usermod(1M), getspnam(3C),
putspent(3C), nsswitch.conf(4), passwd(4)

Sun0S 5.6 modified 10 Dec 1991

File Formats shadow (4)

NOTES If password aging is turned on in any name service the passwd: line in the
/etc/nsswitch.conf file must have a format specified in the nsswitch.conf(4) man page.

If the /etc/nsswitch.conf passwd policy is not in one of the supported formats, logins will
not be allowed upon password expiration because the software does not know how to
handle password updates under these conditions. See nsswitch.conf(4) for additional
information.

modified 10 Dec 1991 Sun0S 5.6 4-357

sharetab (4) File Formats

NAME | sharetab — shared file system table

DESCRIPTION sharetab resides in directory /etc/dfs and contains a table of local resources shared by the
share command.

Each line of the file consists of the following fields:
pathname resource fstype specific_options description

where
pathname Indicate the path name of the shared resource.
resource Indicate the symbolic name by which remote systems can access
the resource.
fstype Indicate the file system type of the shared resource.

specific_options Indicate file-system-type-specific options that were given to the
share command when the resource was shared.

description Describe the shared resource provided by the system administra-
tor when the resource was shared.

SEE ALSO | share(1M)

4-358 Sun0S 5.6 modified 3 Jul 1990

File Formats shells(4)

NAME shells — shell database
SYNOPSIS letc/shells

DESCRIPTION The shells file contains a list of the shells on the system. Applications use this file to
determine whether a shell is valid (see getusershell(3C)). For each shell a single line
should be present, consisting of the shell’s path, relative to root.

A hash mark (“#°") indicates the beginning of a comment; subsequent characters up to the
end of the line are not interpreted by the routines which search the file. Blank lines are
also ignored.

FILES | /etc/shells lists shells on system

SEE ALSO | ftpd(1M), vipw(1B), getusershell(3C)

modified 10 Aug 1994 SunOS 5.6 4-359

sock2path (4)

NAME
SYNOPSIS

DESCRIPTION

EXAMPLES

SEE ALSO

4-360

sock2path - file that maps sockets to transport providers

/etc/sock2path

File Formats

The socket mapping file, /etc/sock2path, is a system file that contains the mappings
between the socket(3N) call parameters and the transport provider driver. Its format is
described on the soconfig(1M) manual page.

The init(1M) utility uses the soconfig utility with the sock2path file during the booting

sequence.

The following is a sample sock2path file:
Family Type Protocol Path

2
2

2
2

1
1

2

2
2

1
1

2
1

4

soconfig(1M), socket(3N)
Network Interfaces Programmer’s Guide

/dev/tcp
/dev/tcp

/dev/udp
/dev/udp

/dev/ticotsord
/dev/ticlts

/dev/rawip

SunOS 5.6

modified 30 Sep 1996

File Formats

NAME

DESCRIPTION

EXAMPLES

SEE ALSO

modified 7 Feb 1997

space (4)

space — disk space requirement file

space is an ASCII file that gives information about disk space requirements for the target
environment. The space file defines space needed beyond what is used by objects
defined in the prototype(4) file; for example, files which will be installed with the
installf(1M) command. The space file should define the maximum amount of additional
space that a package will require.

The generic format of a line in this file is:
pathname blocks inodes
Definitions for the fields are as follows:

pathname Specify a directory name which may or may not be the mount point for a
filesystem. Names that do not begin with a slash (’/’) indicate relocatable

directories.
blocks Define the number of disk blocks required for installation of the files and
directory entries contained in the pathname (using a 512-byte block size).
inodes Define the number of inodes required for installation of the files and directory

entries contained in the pathname.
extra space required by config data which is
dynamically loaded onto the system
data 500 1

installf(1M), prototype(4)
Application Packaging Developer’s Guide

SunOS 5.6 4-361

sulog (4)

NAME
SYNOPSIS

DESCRIPTION

EXAMPLES

FILES

SEE ALSO

4-362

File Formats

sulog — su command log file

/var/fadm/sulog

The sulog file is a record of all attempts by users on the system to execute the su(1M)
command. Each time su(1M) is executed, an entry is added to the sulog file.

Each entry in the sulog file is a single line of the form:

SU date time result port user-newuser

where
date

time

result

port
user
newuser

The month and date su(1M) was executed. date is displayed in the
form mm/dd where mm is the month number and dd is the day
number in the month.

The time su(1M) was executed. time is displayed in the form
HH/MM where HH is the hour number (24 hour system) and MM is
the minute number.

The result of the su(1M) command. A ‘ +’sign is displayed in this
field if the su attempt was successful; otherwise a * -’ sign is
displayed.

The name of the terminal device from which su(1M) was executed.
The user id of the user executing the su(1M) command.

The user id being switched to with su(1M).

Here is a sample sulog file:

SU 02/25 09:29 + console root-sys
SU 02/25 09:32 + pts/3 userl-root
SU 03/02 08:03 + pts/5 userl-root
SU 03/03 08:19 + pts/5 userl-root
SU 03/09 14:24 - pts/5 guest3-root
SU 03/09 14:24 - pts/5 guest3-root
SU 03/14 08:31 + pts/4 userl-root

/var/fadm/sulog
/etc/default/su

su(lM)

su log file
contains the default location of sulog

Sun0S 5.6 modified 6 Jun 1994

File Formats

NAME

DESCRIPTION

modified 13 May 1997

sysbus (4)

sysbus, isa, eisa, mca — device tree properties for ISA, EISA, and MCA bus device drivers

Solaris (Intel Platform Edition) supports the ISA, EISA, and MCA buses as the system bus.
Drivers for devices on these buses use the device tree built by the booting system to
retrieve the necessary system resources used by the driver. These resources include dev-
ice 170 port addresses, any interrupt capabilities that the device may have, any DMA
channels it may require, and any memory-mapped addresses it may occupy.

Configuration files for ISA, EISA, and MCA device drivers are only necessary to describe
properties used by a particular driver that are not part of the standard properties found
in the device tree. See driver.conf(4) for further details of configuration file syntax.

The ISA, EISA, and MCA nexus drivers all belong to class sysbus. All bus drivers of class
sysbus recognize the following properties:

interrupts An arbitrary-length array where each element of the array represents a
hardware interrupt (IRQ) that is used by the device. In general, this
array only has one entry unless a particular device uses more than one
IRQ.

Solaris defaults all ISA, EISA, and MCA interrupts to IPL 5. This interrupt
priority may be overridden by placing an interrupt-priorities property
in a .conf file for the driver. Each entry in the array of integers for the
interrupt-priorities property is matched one-to-one with the elements in
the interrupts property to specify the IPL value that will be used by the
system for this interrupt in this driver. This is the priority that this
device’s interrupt handler will receive relative to the interrupt handlers
of other drivers. The priority is an integer from 1 to 16. Generally, disks
are assigned a priority of 5, while mice and printers are lower, and serial
communication devices are higher, typically 7. 10 is reserved by the sys-
tem and must not be used. Priorities 11 and greater are high level prior-
ities and are generally not recommended (see ddi_intr_hilevel (9F)).

The driver can refer to the elements of this array by index using
ddi_add_intr(9F). The index into the array is passed as the inumber
argument of ddi_add_intr().

Only devices that generate interrupts will have an interrupts property.

reg An arbitrary-length array where each element of the array consists of a
3-tuple of integers. Each array element describes a contiguous memory
address range associated with the device on the bus.

The first integer of the tuple specifies the memory type, 0 specifies a
memory range and 1 specifies an 1/0 range. The second integer
specifies the base address of the memory range. The third integer of
each 3-tuple specifies the size, in bytes, of the mappable region.

The driver can refer to the elements of this array by index, and construct
kernel mappings to these addresses using ddi_map_regs(9F). The index
into the array is passed as the rnumber argument of ddi_map_regs().

SunOS 5.6 4-363

sysbus(4) File Formats

All sysbus devices will have reg properties. The first tuple of this pro-
perty is used to construct the address part of the device name under
/devices. In the case of Plug and Play ISA devices, the first tuple is a
special tuple that does not denote a memory range, but is used by the
system only to create the address part of the device name. This special
tuple can be recognized by determining if the top bit of the first integer
is set to a one.

The order of the tuples in the reg property is determined by the boot
system probe code and depends on the characteristics of each particular
device. However, the reg property will maintain the same order of
entries from system boot to system boot. The recommended way to
determine the reg property for a particular device is to use the
prtconf(1M) command after installing the particular device. The output
of the prtconf command can be examined to determine the reg property
for any installed device.

dma-channels A list of integers that specifies the DMA channels used by this device.
Only devices that use DMA channels will have a dma-channels pro-
perty.

It is recommended that drivers for devices connected to the system bus recognize the fol-

lowing standard property names:

slot The number of the slot containing the device, if known. (Only for EISA
and MCA devices).

ATTRIBUTES | See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE | ATTRIBUTE VALUE
Architecture Xx86

SEE ALSO prtconf(1M), driver.conf(4), scsi(4), attributes(5), ddi_add_intr(9F),
ddi_intr_hilevel(9F), ddi_map_regs(9F), ddi_prop_op(9F)

Writing Device Drivers

4-364 SunOS 5.6 modified 13 May 1997

File Formats

NAME

DESCRIPTION

Where To Put the
sysidcfg File

Keyword Syntax
Rules

modified 28 Mar 1997

sysidcfg (4)

sysidcfg — system identification configuration file

When a diskless client boots for the first time or a system installs over the network, the
booting software tries to obtain configuration information about the system (such as the
system’s root password or name service) from a sysidcfg file first and then the name ser-
vice databases. If the booting software cannot find the information, it prompts the user to
provide the appropriate information. Like the name service databases, the sysidcfg file
can be used to avoid all the prompts and provide a totally hands-off booting process.

The sysidcfg file preconfigures information through a set of keywords, and you can
specify one or more of the keywords to preconfigure as much information as you want.
Also, every system that requires different configuration information must have a dif-
ferent sysidcfg file. For example, you can use the same sysidcfg file to preconfigure the
time zone for multiple systems if you want all the systems to have the same time zone
configured. However, if you want to preconfigure a different root password for each of
those systems, then each system would need its own sysidcfg file.

The sysidcfg file can reside on a shared NFS network directory or the root directory on a
UFS or PCFS diskette in the system’s diskette drive. If you put the sysidcfg file on a
shared NFS network directory, you have to use the —p option of the
add_install_client(1M) command (see install_scripts(1M)) to specify where the system
being installed can find the sysidcfg file. If you put the sysidcfg file on a diskette, you
need to make sure the diskette is in the system’s diskette drive when the system boots (on
x86 systems, the sysidcfg file should reside on the Solaris Device Configuration Assistant
diskette).

Only one sysidcfg file can reside in a directory or diskette. If you are creating more than
one sysidcfg file, they must reside in different directories or diskettes.

The following rules apply to the keywords in a sysidcfg file:

Keywords can be in any order

Keywords are not case sensitive

Keyword values can be optionally enclosed in single (’) or double (") quotes
Only the first instance of a keyword is valid; if you specify the same key-
word more than once, the first keyword specified will be used.

SunOS 5.6 4-365

sysidcfg (4)

File Formats

Keywords Platform

Configuration
Information

Keywords

Where to Find Values/Example

All

Name service,
domain name,
name server

name_service=NIS, NIS+, OTHER,
NONE
{domain_name=domain_name
name_server=hostname(ip_address)}

name_service=NIS
{domain_name=chandy.West.Arp.COM
name_server=timber(129.221.2.1)}

All

Network interface,
host name, IP
address, netmask

network_interface=NONE,
PRIMARY, value
{hostname=host_name
ip_address=ip_address
netmask=netmask}

network_interface=le0 {hostname=feron
ip_address=129.222.2.1 netmask=255.255.0.0}

All

Root password

root_password=root_password

Encrypted from /etc/shadow

All

Language in which
to display the
install program

system_locale=locale

lusr/lib/locale

All

Terminal type

terminal=terminal_type

Jusr/share/lib/terminfo/?/0

All

Time zone

timezone=timezone

lusr/share/lib/zoneinfo/O

All

Time and date

timeserver=localhost,
hostname, ip_address

If you specify localhost as the time server,
the system’s time is assumed to be correct.
If you specify the hostname or ip_address

(if you are not running a name service)

of a system, that system’s time is used

to set the time.

x86

Monitor type

monitor=monitor_type

Run kdmconfig —d filename;
append output to sysidcfg file

x86

Keyboard language,
keyboard layout

keyboard=keyboard_language
{layout=value}

Run kdmconfig —d filename;
append output to sysidcfg file

x86

Graphics card, color
depth, display
resolution,

screen size

display=graphics_card
{size=screen_size
depth=color_depth
resolution=screen_resolution}

Run kdmconfig —d filename;
append output to sysidcfg file

x86

Pointing device,
number of buttons,
IRQ level

pointer=pointing_device
{nbuttons=number_buttons
irg=value}

Run kdmconfig —d filename;
append output to sysidcfg file

4-366

SunOS 5.6

modified 28 Mar 1997

File Formats

EXAMPLES

SEE ALSO

modified 28 Mar 1997

sysidcfg (4)

The following example is a sysidcfg file for a group of SPARC systems to install over the
network. (The host names, IP addresses, and netmask of these systems have been
preconfigured by editing the name service.) Because all the system configuration infor-
mation has been preconfigured, an automated installation can be created by using a cus-
tom JumpStart profile.

system_locale=en_US

timezone=US/Central

timeserver=localhost

terminal=sun-cmd

name_service=NIS {domain_name=marquee.central.sun.com
name_server=connor(129.152.112.3)}

root_password=m4QPOWNY

system_locale=C

The following example is a sysidcfg file created for a group of x86 systems to install over
the network that all have the same keyboard, graphics cards, and pointing devices. The
device information (keyboard, display, and pointer) was captured from running
kdmconfig —d (see kdmconfig(1M)). In this example, users would see only the prompt to
select a language (system_locale) for displaying the rest of the Solaris installation program.

keyboard=ATKBD {layout=US-English}

display=ati {size=15-inch}

pointer=MS-S

timezone=US/Central

timeserver=connor

terminal=AT386

name_service=NIS {domain_name=marquee.central.sun.com
name_server=connor(129.152.112.3)}

root_password=URFUni9

install_scripts(1M), kdmconfig(1M), sysidtool(1M)
Solaris Advanced Installation Guide

SunOS 5.6 4-367

syslog.conf(4)

NAME
SYNOPSIS

DESCRIPTION

4-368

File Formats

syslog.conf — configuration file for syslogd system log daemon
letc/syslog.conf

The file /etc/syslog.conf contains information used by the system log daemon,
syslogd(1M), to forward a system message to appropriate log files and/or users. syslogd
preprocesses this file through m4(1) to obtain the correct information for certain log files,
defining LOGHOST if the address of "loghost" is the same as one of the addresses of the
host that is running syslogd.

A configuration entry is composed of two TAB-separated fields:
selector action

The selector field contains a semicolon-separated list of priority specifications of the form:
facility.level [; facility.level]

where facility is a system facility, or comma-separated list of facilities, and level is an indi-
cation of the severity of the condition being logged. Recognized values for facility
include:

user Messages generated by user processes. This is the default priority for
messages from programs or facilities not listed in this file.

kern Messages generated by the kernel.

mail The mail system.

daemon System daemons, such as in.ftpd(1M)

auth The authorization system: login(1), su(1M), getty(1M), among others.

lpr The line printer spooling system: Ipr(1B), Ipc(1B), among others.

news Reserved for the USENET network news system.

uucp Reserved for the UUCP system; it does not currently use the syslog
mechanism.

cron The cron/at facility; crontab(1), at(1), cron(1M), among others.

local0-7 Reserved for local use.

mark For timestamp messages produced internally by syslogd.

O An asterisk indicates all facilities except for the mark facility.

Recognized values for level are (in descending order of severity):
emerg For panic conditions that would normally be broadcast to all users.

alert For conditions that should be corrected immediately, such as a cor-
rupted system database.

crit For warnings about critical conditions, such as hard device errors.

err For other errors.

Sun0S 5.6 modified 22 Jan 1997

File Formats syslog.conf(4)

warning For warning messages.

notice For conditions that are not error conditions, but may require special
handling. A configuration entry with a level value of notice must
appear on a separate line.

info Informational messages.

debug For messages that are normally used only when debugging a pro-
gram.

none Do not send messages from the indicated facility to the selected file.

For example, a selector of
(debug;mail.none
will send all messages except mail messages to the selected file.

The action field indicates where to forward the message. Values for this field can have
one of four forms:

e A filename, beginning with a leading slash, which indicates that messages specified by
the selector are to be written to the specified file. The file will be opened in append
mode.

e The name of a remote host, prefixed with an @, as with: @server, which indicates that
messages specified by the selector are to be forwarded to the syslogd on the named
host. The hostname "loghost" is the hosthame given to the machine that will log sys-
logd messages. Every machine is "loghost" by default. See /etc/hosts. Itis also possi-
ble to specify one machine on a network to be "loghost" by making the appropriate
host table entries. If the local machine is designated to be "loghost”, then syslogd
messages are written to the appropriate files. Otherwise, they are sent to the machine
"loghost" on the network.

e A comma-separated list of usernames, which indicates that messages specified by the
selector are to be written to the named users if they are logged in.

e An asterisk, which indicates that messages specified by the selector are to be written to
all logged-in users.

Blank lines are ignored. Lines for which the first nonwhite character is a '# are treated as
comments.

EXAMPLES | With the following configuration file:

(notice /var/log/notice
mail.info /var/log/notice
crit /var/log/critical
kern,mark.debug /dev/console
kern.err @server
(lemerg 0

(alert root,operator
alert;auth.warning /var/log/auth

modified 22 Jan 1997 Sun0S 5.6 4-369

syslog.conf(4) File Formats

syslogd(1M) will log all mail system messages except debug messages and all notice (or
higher) messages into a file named /var/log/notice. It logs all critical messages into
/var/log/critical, and all kernel messages and 20-minute marks onto the system console.

Kernel messages of err (error) severity or higher are forwarded to the machine named
server. Emergency messages are forwarded to all users. The users root and operator are
informed of any alert messages. All messages from the authorization system of warning
level or higher are logged in the file /var/log/auth.

FILES | /var/log/notice log of all mail system messages (except debug messages) and all
messages of notice level or higher.
/var/log/critical log of all critical messages
/var/log/auth log of all messages from the authorization system of warning level
or higher

SEE ALSO at(1), crontab(1), logger(1), login(1), Ip(1), Ipc(1B), Ipr(1B), m4(1), cron(1M), getty(1M),
in.ftpd(1M), su(1M), syslogd(1M), syslog(3), hosts(4)

4-370 Sun0S 5.6 modified 22 Jan 1997

File Formats

NAME

DESCRIPTION

modified 3 Apr 1996

system (4)

system — system configuration information file

The system file is used for customizing the operation of the operating system kernel. The
recommended procedure is to preserve the original system file before modifying it.

The system file contains commands which are read by the kernel during initialization
and used to customize the operation of your system. These commands are useful for
modifying the system’s treatment of its loadable kernel modules.

The syntax of the system file consists of a list of keyword/value pairs which are recog-
nized by the system as valid commands. Comment lines must begin with an asterisk (')
and end with a newline character. All commands are case-insensitive except where noted.
A command line can be no more than 80 characters in length.

Commands that modify the system’s operation with respect to loadable kernel modules
require you to specify the module type by listing the module’s namespace. The following
namespaces are currently supported:

drv Modules in this namespace are device drivers.

exec Modules in this namespace are execution format modules. The following
exec modules are currently provided by SunSoft:

SPARC system: aoutexec
elfexec
intpexec

x86 system: coffexec
elfexec
intpexec

fs These modules are filesystems.

sched These modules implement a process scheduling algorithm.
strmod These modules are STREAMS modules.

sys These modules implement loadable system-call modules.

misc These modules do not fit into any of the above categories, so are con-
sidered "miscellaneous" modules.

Below is a description of each of the supported commands:

exclude: <namespace>/<modulename>
Do not allow the listed loadable kernel module to be loaded. exclude commands
are cumulative; the list of modules to exclude is created by combining every
exclude entry in the system file.

include: <namespace>/<modulename>
Include the listed loadable kernel module. This is the system’s default, so using
include does not modify the system’s operation. include commands are cumula-
tive.

SunOS 5.6 4-371

system (4)

4-372

EXAMPLES

File Formats

forceload: <namespace>/<modulename>
Force this kernel module to be loaded during kernel initialization. The default
action is to automatically load the kernel module when its services are first
accessed. forceload commands are cumulative.

rootdev: <device name>
Set the root device to the listed value instead of using the default root device as
supplied by the boot program.

rootfs: <root filesystem type>
Set the root filesystem type to the listed value.

moddir: <first module path>[[:,]J<second ...>]...]
Set the search path for loadable kernel modules. This command operates very
much like the PATH shell variable. Multiple directories to search can be listed
together, delimited either by blank spaces or colons.

set [<module>:]<symbol> {=, |, &} ['1[-]<value>
Set an integer or character pointer in the kernel or in the selected kernel module
to a new value. This command is used to change kernel and module parameters
and thus modify the operation of your system. Assignment operations are not
cumulative, whereas bitwise AND and OR operations are cumulative.

Operations that are supported for modifying integer variables are: simple assign-
ment, inclusive bitwise OR, bitwise AND, one’s complement, and negation. Vari-
ables in a specific loadable module can be targeted for modification by specifying
the variable name prefixed with the kernel module name and a colon (:) separa-
tor. Values can be specified as hexadecimal (0x10), Octal (046), or Decimal (5).

The only operation supported for modifying character pointers is simple assign-
ment. Static string data such as character arrays cannot be modified using the set
command. Use care and ensure that the variable you are modifying is in fact a
character pointer. The set command is very powerful, and will likely cause prob-
lems if used carelessly. The entire command, including the quoted string, cannot
exceed 80 characters. The following escape sequences are supported within the
guoted string:

\n (newline)
\t (tab)
\b (backspace)

The following is a sample system file.

OForce the ELF exec kernel module to be loaded during kernel
Oinitialization. Execution type modules are in the exec namespace.
forceload: exec/elfexec

SunOS 5.6 modified 3 Apr 1996

File Formats

modified 3 Apr 1996

system (4)

OChange the root device to /sbus@1,f8000000/esp@0,800000/sd@3,0:a.
OYou can derive root device names from /devices.

ORoot device names must be the fully expanded Open Boot Prom
Odevice name. This command is platform and configuration specific.
OThis example uses the first partition (a) of the SCSI disk at

OSCSI target 3 on the esp host adapter in slot 0 (on board)

Oof the SBus of the machine.

OAdapter unit-address 3,0 at sbus unit-address 0,800000.

rootdev: /sbus@1,f8000000/esp@0,800000/sd@3,0:a

OSet the filesystem type of the root to ufs. Note that
Othe equal sign can be used instead of the colon.
rootfs:ufs

OSet the search path for kernel modules to look first in
O/usr/phil/mod_test for modules, then in /kernel/modules (the
Odefault) if not found. Useful for testing new modules.

ONote that you can delimit your module pathnames using
Ocolons instead of spaces: moddir:/newmodules:/kernel/modules
moddir:/usr/phil/mod_test /kernel/modules.

Set the configuration option { POSIX_CHOWN_RESTRICTED} :
OThis configuration option is enabled by default.

set rstchown =1

ODisable the configuration option { POSIX_CHOWN_RESTRICTED} :
set rstchown =0

Set the integer variable "maxusers” in the kernel to 16. This is a
Ouseful tuning parameter.
set maxusers = 16

OTurn on debugging messages in the modules mydriver. This is useful
Oduring driver development.
set mydriver:debug =1

OBitwise AND the kernel variable "moddebug” with the
Oone’s complement of the hex value 0x880, and set
0"moddebug" to this new value.

set moddebug & "0x880

ODemonstrate the cumulative effect of the SET

Obitwise AND/OR operations by further modifying "moddebug”
Oby ORing it with 0x40.

set moddebug | 0x40

SunOS 5.6 4-373

system (4)

4-374

WARNINGS

NOTES

File Formats

system file lines must be fewer than 80 characters in length.

Use care when modifying the system file; it modifies the operation of the kernel. If you
preserved the original system file, you can use the boot -a option and supply the path to
the original file, allowing the system to boot correctly.

/etc/system is only read once: at boot time.

SunOS 5.6 modified 3 Apr 1996

File Formats

NAME

DESCRIPTION

EXAMPLES

FILES
SEE ALSO

modified 27 Feb 1995

telnetrc (4)

telnetrc — file for telnet default options

The .telnetrc file contains commands that are executed when a connection is established.
Each line in the file contains a host name, one or more spaces or tabs, and a telnet(1) com-
mand. Lines beginning with the pound sign (#) are interpreted as comments and there-
fore ignored. Uppercase and lowercase are not unique in this file.

The .telnetrc file is retrieved from each user’s HOME directory.

A .telnetrc file containing the following lines:

weirdhost toggle crmod
Always export SPRINTER
DEFAULT environ export PRINTER

Indicates that the crmod, which defaults to off, should be enabled when connecting to the
system weirdhost. In addition, the value of the environment variable PRINTER should be
exported to all systems.

$HOME/ .telnetrc
telnet(1), in.telnetd(1M), environ(5)

SunOS 5.6 4-375

term(4)

NAME
SYNOPSIS

DESCRIPTION

4-376

File Formats

term - format of compiled term file
/usr/share/lib/terminfo/?/0

The term file is compiled from terminfo(4) source files using tic(LM). Compiled files are
organized in a directory hierarchy under the first letter of each terminal name. For exam-
ple, the vt100 file would have the pathname /usr/lib/terminfo/v/vt100. The default direc-
tory is /usr/share/lib/terminfo. Synonyms for the same terminal are implemented by
multiple links to the same compiled file.

The format has been chosen so that it is the same on all hardware. An 8-bit byte is
assumed, but no assumptions about byte ordering or sign extension are made. Thus,
these binary terminfo files can be transported to other hardware with 8-bit bytes.

Short integers are stored in two 8-bit bytes. The first byte contains the least significant 8
bits of the value, and the second byte contains the most significant 8 bits. (Thus, the value
represented is 256 second+first.) The value -1 is represented by 0377,0377, and the value
-2 is represented by 0376,0377; other negative values are illegal. The —1 generally means
that a capability is missing from this terminal. The -2 means that the capability has been
cancelled in the terminfo source and also is to be considered missing.

The compiled file is created from the source file descriptions of the terminals (see the -1
option of infocmp) by using the terminfo compiler, tic, and read by the routine setup-
term (see curses(3X)). The file is divided into six parts in the following order: the header,
terminal names, boolean flags, numbers, strings, and string table.

The header section begins the file six short integers in the format described below. These
integers are:
1. the magic number (octal 0432);
the size, in bytes, of the names section;
the number of bytes in the boolean section;
the number of short integers in the numbers section;
the number of offsets (short integers) in the strings section;
the size, in bytes, of the string table.

The terminal name section comes next. It contains the first line of the terminfo descrip-
tion, listing the various names for the terminal, separated by the bar (|) character (see
term(5)). The section is terminated with an ASCII NUL character.

Sk~ wN

The terminal name section is followed by the Boolean section, number section, string sec-
tion, and string table.

The boolean flags section consists of one byte for each flag. This byte is either 0 or 1 as
the flag is present or absent. The value of 2 means that the flag has been cancelled. The
capabilities are in the same order as the file <term.h>.

Between the boolean flags section and the number section, a null byte is inserted, if neces-
sary, to ensure that the number section begins on an even byte offset. All short integers
are aligned on a short word boundary.

Sun0S 5.6 modified 3 Jul 1996

File Formats

modified 3 Jul 1996

term(4)

The numbers section is similar to the boolean flags section. Each capability takes up two
bytes, and is stored as a short integer. If the value represented is —1 or -2, the capability
is taken to be missing.

The strings section is also similar. Each capability is stored as a short integer, in the for-
mat above. A value of -1 or —2 means the capability is missing. Otherwise, the value is
taken as an offset from the beginning of the string table. Special characters in "X or \c
notation are stored in their interpreted form, not the printing representation. Padding
information ($<nn>) and parameter information (%x) are stored intact in uninterpreted
form.

The final section is the string table. It contains all the values of string capabilities refer-
enced in the string section. Each string is null terminated.

Note that it is possible for setupterm to expect a different set of capabilities than are actu-
ally present in the file. Either the database may have been updated since setupterm has
been recompiled (resulting in extra unrecognized entries in the file) or the program may
have been recompiled more recently than the database was updated (resulting in missing
entries). The routine setupterm must be prepared for both possibilities—this is why the
numbers and sizes are included. Also, new capabilities must always be added at the end
of the lists of boolean, number, and string capabilities.

As an example, here is terminal information on the AT&T Model 37 KSR terminal as out-
put by the infocmp -I tty37 command:
37]tty37]| AT&T model 37 teletype,
hc, os, xon,
bel="G, cr=\r, cub1=\b, cud1=\n, cuul=\E7, hd=\E9,
hu=\E8, ind=\n,

SunOS 5.6 4-377

term(4) File Formats

The following is an octal dump of the corresponding term file, produced by the od -c
/usr/share/lib/terminfo/t/tty37 command:

0000000 032 001 N0 032 \0013 \0021001 3 \0 3 7 | t
0000020 t 'y 3 7] A T & T m o d e |

0000040 3 7 t e | e t y p e \X0 \0 \0 \0 \O
0000060 \O \O N\O 001 \O \O N\O N\O \O N\O N0 001 \O \O \O \O
0000100 001 \O N\O \O \O \O 377 377 377 377 377 377 377 377 377 377
0000120 377 377 377 377 377 377 377 377 377 377 377 377 377 377 & \O

0000140 \O 377 377 377 377 377 377 377 377 377 377 377 377 377 377
0000160 377 377 " N\O 377 377 377 377 (\O 377 377 377 377 377 377
0000200 377 377 0 \O 377 377 377 377 377 377 377 377 - \O 377 377
0000220 377 377 377 377 377 377 377 377 377 377 377 377 377 377 377 377
U

0000520 377 377 377 377 377 377 377 377 377 377 377 377 377 377 $ \O
0000540 377 377 377 377 377 377 377 377 377 377 377 377 377 377 0O \O
0000560 377 377 377 377 377 377 377 377 377 377 377 377 377 377 377 377

O

0001160 377 377 377 377 377 377 377 377 377 377 377 377 377 377 3 7
ooo1200 | t t y 3 7 | AT & T m o d e
0001220 | 3 7 t e I e t y p e \X0 \r \0

0001240 \n \O \n N0 007 \O \b \0 033 8 \0033 9 \0033 7
0001260 \O \O
0001261

Some limitations: total compiled entries cannot exceed 4096 bytes; all entries in the name
field cannot exceed 128 bytes.

FILES | /usr/share/lib/terminfo/?/00 compiled terminal description database
/usr/include/term.h terminfo header
/usr/xpg4/include/term.h X/Open Curses terminfo header

SEE ALSO infocmp(1M), curses(3X), curses(3XC), terminfo(4), term(5)

4-378 Sun0S 5.6 modified 3 Jul 1996

File Formats

NAME

SYNOPSIS

DESCRIPTION

modified 9 Jul 1996

terminfo (4)

terminfo — terminal and printer capability database
{/usr/share/lib/terminfo/?/0]

terminfo is a database that describes the capabilities of devices such as terminals and
printers. Devices are described in terminfo source files by specifying a set of capabilities,
by quantifying certain aspects of the device, and by specifying character sequences that
effect particular results. This database is often used by screen oriented applications such
as vi and curses-based programs, as well as by some system commands such as Is and
more. This usage allows them to work with a variety of devices without changes to the
programs.

terminfo descriptions are located in the directory pointed to by the environment variable
TERMINFO or in /usr/share/lib/terminfo. terminfo descriptions are generated by
tic(AM).

terminfo source files consist of one or more device descriptions. Each description con-
sists of a header (beginning in column 1) and one or more lines that list the features for
that particular device. Every line in a terminfo source file must end in a comma (,).
Every line in a terminfo source file except the header must be indented with one or more
white spaces (either spaces or tabs).

Entries in terminfo source files consist of a number of comma-separated fields. White
space after each comma is ignored. Embedded commas must be escaped by using a
backslash. Each device entry has the following format:

alias | alias_| ... | alias | fullname,
1 .2 L
capabllltyl, capabllltyz,

capabilityn,
The first line, commonly referred to as the header line, must begin in column one and
must contain at least two aliases separated by vertical bars. The last field in the header
line must be the long name of the device and it may contain any string. Alias names must
be unique in the terminfo database and they must conform to system file naming conven-
tions (see tic(1M)); they cannot, for example, contain white space or slashes.

Every device must be assigned a name, such as "vt100". Device names (except the long
name) should be chosen using the following conventions. The name should not contain
hyphens because hyphens are reserved for use when adding suffixes that indicate special
modes.

These special modes may be modes that the hardware can be in, or user preferences. To
assign a special mode to a particular device, append a suffix consisting of a hyphen and
an indicator of the mode to the device name. For example, the -w suffix means "wide
mode"; when specified, it allows for a width of 132 columns instead of the standard 80
columns.

SunOS 5.6 4-379

terminfo (4)

PART 1: DEVICE

4-380

CAPABILITIES

Booleans

File Formats

Therefore, if you want to use a "vt100" device set to wide mode, name the device "vt100-
w." Use the following suffixes where possible.

Suffix Meaning Example
-wW Wide mode (more than 80 columns) 5410-w
-am With auto. margins (usually default) vt100-am
-nam Without automatic margins vt100-nam
-n Number of lines on the screen 2300-40
-na No arrow keys (leave them in local) c100-na
-np Number of pages of memory c100-4p
-rv Reverse video 4415-rv

The terminfo reference manual page is organized in two sections;
e PART 1: DEVICE CAPABILITIES
e PART 2: PRINTER CAPABILITIES

Capabilities in terminfo are of three types: Boolean capabilities (which show that a dev-
ice has or does not have a particular feature), numeric capabilities (which quantify partic-
ular features of a device), and string capabilities (which provide sequences that can be
used to perform particular operations on devices).

In the following table, a VVariable is the name by which a C programmer accesses a capa-
bility (at the terminfo level). A Capname is the short name for a capability specified in
the terminfo source file. It is used by a person updating the source file and by the tput
command. A Termcap Code is a two-letter sequence that corresponds to the termcap
capability name. (Note that termcap is no longer supported.)

Capability names have no real length limit, but an informal limit of five characters has
been adopted to keep them short. Whenever possible, capability names are chosen to be
the same as or similar to those specified by the ANSI X3.64-1979 standard. Semantics are
also intended to match those of the ANSI standard.

All string capabilities listed below may have padding specified, with the exception of
those used for input. Input capabilities, listed under the Strings section in the following
tables, have names beginning with key . The #i symbol in the description field of the fol-
lowing tables refers to the ith parameter.

Cap- Termcap

Variable name Code Description
auto_left_margin bw bw cubl wraps from column 0 to
last column
auto_right_margin am am Terminal has automatic margins
back_color_erase bce be Screen erased with background color
can_change cce cc Terminal can re-define existing color
ceol_standout_glitch xhp XS Standout not erased by overwriting (hp)
col_addr_glitch xhpa YA Only positive motion for hpa/mhpa caps
cpi_changes_res cpix YF Changing character pitch changes
resolution

Sun0S 5.6 modified 9 Jul 1996

File Formats

Numbers

modified 9 Jul 1996

cr_cancels_micro_mode
dest_tabs_magic_smso
eat_newline_glitch

erase_overstrike
generic_type

hard_copy
hard_cursor
has_meta_key
has_print_wheel

has_status_line
hue_lightness_saturation

insert_null_glitch
Ipi_changes_res
memory_above
memory_below
move_insert_mode
move_standout_mode
needs_xon_xoff
no_esc_ctlc
no_pad_char
non_dest_scroll_region
non_rev_rmcup
over_strike

prtr_silent
row_addr_glitch
semi_auto_right_margin
status_line_esc_ok
tilde_glitch
transparent_underline
xon_xoff

Variable

bit_image_entwining
bit_image_type
buffer_capacity
buttons

columns
dot_horz_spacing

crxm YB
Xt Xt
xenl Xxn
€o €o
gn gn
hc hc
chts HC
km km
daisy YC
hs hs
hls hl
in in
Ipix YG
da da
db db
mir mi
msgr ms
nxon nx
xsb xb
npc NP
ndscr ND
nrrmc NR
0s 0s
mc5i 5i
xvpa YD
sam YE
eslok es
hz hz
ul ul
xon X0
Cap- Termcap
name Code
bitwin Yo
bitype Yp
bufsz Ya
btns BT
cols co
spinh Yc
Sun0S 5.6

terminfo (4)

Using cr turns off micro mode
Destructive tabs, magic smso char (t1061)
Newline ignored after 80 columns
(Concept)

Can erase overstrikes with a blank
Generic line type (for example,

dialup, switch)

Hardcopy terminal

Cursor is hard to see

Has a meta key (shift, sets parity bit)
Printer needs operator to change
character set

Has extra "status line"

Terminal uses only HLS color

notation (Tektronix)

Insert mode distinguishes nulls
Changing line pitch changes resolution
Display may be retained above the screen
Display may be retained below the screen
Safe to move while in insert mode

Safe to move in standout modes

Padding won’t work, xon/xoff required
Beehive (fl=escape, f2=ctrl C)

Pad character doesn’t exist

Scrolling region is nondestructive

smcup does not reverse rmcup

Terminal overstrikes on hard-copy
terminal

Printer won’t echo on screen

Only positive motion for vpa/mvpa caps
Printing in last column causes cr

Escape can be used on the status line
Hazeltine; can’t print tilde (")

Underline character overstrikes

Terminal uses xon/xoff handshaking

Description

Number of passes for each bit-map row
Type of bit image device

Number of bytes buffered before printing
Number of buttons on the mouse

Number of columns in a line

Spacing of dots horizontally in dots per inch

4-381

terminfo (4)

4-382

Strings

dot_vert_spacing
init_tabs
label_height
label_width

lines
lines_of_memory
max_attributes

magic_cookie_glitch

max_colors
max_micro_address
max_micro_jump
max_pairs

maximum_windows
micro_char_size
micro_line_size
no_color_video

num_labels
number_of_pins
output_res_char
output_res_line
output_res_horz_inch
output_res_vert_inch
padding_baud_rate
print_rate
virtual_terminal
wide_char_size

width_status_line

Variable

acs_chars
alt_scancode_esc

back_tab
bell

bit_image_carriage_return

bit_image_newline

spinv Yb
it it
Ih Ih
lw lw
lines li
Im Im
ma ma
xmc sg
colors Co
maddr Yd
mjump Ye
pairs pa
wnum MW
mcs Yf
mls Yg
ncv NC
nlab NI
npins Yh
orc Yi
orl Yj
orhi Yk
orvi Yi
pb pb
cps Ym
vt vt
widcs Yn
wsl ws

Cap-

name

acsc

scesa

cbt

bel

bicr

binel

Sun0S 5.6

File Formats

Spacing of pins vertically in pins per inch
Tabs initially every # spaces

Number of rows in each label

Number of columns in each label
Number of lines on a screen or a page
Lines of memory if > lines; 0 means varies
Maximum combined video attributes
terminal can display

Number of blank characters left by

SMSO Or rMso

Maximum number of colors on the screen
Maximum value in micro_..._address
Maximum value in parm_..._micro
Maximum number of color-pairs on the
screen

Maximum number of definable windows
Character step size when in micro mode
Line step size when in micro mode
Video attributes that can’t be used

with colors

Number of labels on screen (start at 1)
Number of pins in print-head

Horizontal resolution in units per character
Vertical resolution in units per line
Horizontal resolution in units per inch
Vertical resolution in units per inch
Lowest baud rate where padding needed
Print rate in characters per second
Virtual terminal number (system)
Character step size when in double

wide mode

Number of columns in status line

Termcap

Code Description

ac Graphic charset pairs aAbBcC

S8 Alternate escape for scancode emulation
(default is for vt100)

bt Back tab

bl Audible signal (bell)

Yv Move to beginning of same row (use
tparm)

Zz Move to next row of the bit image (use
tparm)

modified 9 Jul 1996

File Formats

modified 9 Jul 1996

bit_image_repeat

carriage_return
change_char_pitch
change_line_pitch
change_res_horz
change_res_vert
change_scroll_region
char_padding
char_set_names
clear_all_tabs
clear_margins

clear_screen

clr_bol

clr_eol

clr_eos
code_set_init
color_names
column_address
command_character

create_window

cursor_address
cursor_down
cursor_home
cursor_invisible
cursor_left
cursor_mem_address
cursor_normal

cursor_right
cursor_to_ll

cursor_up
cursor_visible

define_bit_image_region

define_char
delete_character
delete_line
device_type
dial_phone
dis_status_line

birep

cr
cpi
Ipi
chr
cvr
csr
rmp
csnm
tbc
mgc

clear

ell

el

ed

csin
colornm
hpa
cmdch

cwin

cup
cudl
home
civis
cubl
mrcup
cnorm

cufl

]

cuul
cvVvis
defbi

defc
dchl
dil
devt
dial
dsl

SunOS 5.6

Zy

cr
ZA
ZB
ZC
ZD
cs
rP
Zy
ct
MC

cl
cb
ce
cd
ci
Yw

CcC
Ccw

cm
do
ho
vi

CM
ve

nd

1

up
'S
YX

ZE
dc
di

dv
Dl
ds

terminfo (4)

Repeat bit-image cell #1 #2 times (use
tparm)

Carriage return

Change number of characters per inch
Change number of lines per inch
Change horizontal resolution
Change vertical resolution

Change to lines #1 through #2 (vt100)
Like ip but when in replace mode
List of character set names

Clear all tab stops

Clear all margins (top, bottom,

and sides)

Clear screen and home cursor
Clear to beginning of line, inclusive
Clear to end of line

Clear to end of display

Init sequence for multiple codesets
Give name for color #1

Horizontal position absolute
Terminal settable cmd character

in prototype

Define win #1 to go from #2,#3 to
#4.#5

Move to row #1 col #2

Down one line

Home cursor (if no cup)

Make cursor invisible

Move left one space.

Memory relative cursor addressing
Make cursor appear normal

(undo vs/vi)

Non-destructive space (cursor or
carriage right)

Last line, first column (if no cup)
Upline (cursor up)

Make cursor very visible

Define rectangular bit-image region
(use tparm)

Define a character in a character set T
Delete character

Delete line

Indicate language/codeset support
Dial phone number #1

Disable status line

4-383

terminfo (4) File Formats

display_clock dclk DK Display time-of-day clock
display_pc_char dispc S1 Display PC character
down_half_line hd hd Half-line down (forward 1/2 linefeed)
ena_acs enacs eA Enable alternate character set
end_bit_image_region endbi Yy End a bit-image region (use tparm)
enter_alt_charset_mode smacs as Start alternate character set
enter_am_mode smam SA Turn on automatic margins
enter_blink_mode blink mb Turn on blinking
enter_bold_mode bold md Turn on bold (extra bright) mode
enter_ca_mode smcup ti String to begin programs that use cup
enter_delete_mode smdc dm Delete mode (enter)
enter_dim_mode dim mh Turn on half-bright mode
enter_doublewide_mode swidm ZF Enable double wide printing
enter_draft_quality sdrfq ZG Set draft quality print

mode
enter_insert_mode smir im Insert mode (enter)
enter_italics_mode sitm ZH Enable italics
enter_leftward_mode slm ZI Enable leftward carriage motion
enter_micro_mode smicm Z] Enable micro motion capabilities
enter_near_letter_quality snlq ZK Set near-letter quality print
enter_normal_quality snrmq ZL Set normal quality print
enter_pc_charset_mode smpch S2 Enter PC character display mode
enter_protected_mode prot mp Turn on protected mode
enter_reverse_mode rev mr Turn on reverse video mode
enter_scancode_mode smsc S4 Enter PC scancode mode
enter_secure_mode invis mk Turn on blank mode

(characters invisible)
enter_shadow_mode sshm ZM Enable shadow printing
enter_standout_mode smso so Begin standout mode
enter_subscript_mode ssubm ZN Enable subscript printing
enter_superscript_mode ssupm Z0 Enable superscript printing
enter_underline_mode smul us Start underscore mode
enter_upward_mode sum ZP Enable upward carriage motion

mode
enter_xon_mode smxon SX Turn on xon/xoff handshaking
erase_chars ech ec Erase #1 characters
exit_alt_charset_mode rmacs ae End alternate character set
exit_am_mode rmam RA Turn off automatic margins
exit_attribute_mode sgr0 me Turn off all attributes
exit_ca_mode rmcup te String to end programs that use cup
exit_delete_mode rmdc ed End delete mode
exit_doublewide_mode rwidm ZQ Disable double wide printing
exit_insert_mode rmir ei End insert mode
exit_italics_mode ritm ZR Disable italics
exit_leftward_mode rim Zs Enable rightward (normal)

4-384 Sun0S 5.6 modified 9 Jul 1996

File Formats

modified 9 Jul 1996

exit_micro_mode
exit_pc_charset_mode
exit_scancode_mode
exit_shadow_mode
exit_standout_mode
exit_subscript_mode
exit_superscript_mode
exit_underline_mode
exit_upward_mode

exit xon_mode
fixed_pause
flash_hook
flash_screen
form_feed
from_status_line
get_mouse
goto_window
hangup
init_1string
init_2string
init_3string
init_file
init_prog
initialize_color
initialize_pair
insert_character
insert_line
insert_padding

rmicm
rmpch
rmsc
rshm
rmso
rsubm
rsupm
rmul
rum

rmxon
pause
hook
flash
ff

fsl
getm
wingo
hup
isl
is2
is3

if
iprog
initc
initp
ichl
ill

ip

ZT
S3
S5
ZU
se
VA
ZW
ue
ZX

terminfo (4)

carriage motion

Disable micro motion capabilities
Disable PC character display mode
Disable PC scancode mode

Disable shadow printing

End standout mode

Disable subscript printing

Disable superscript printing

End underscore mode

Enable downward (normal)

carriage motion

Turn off xon/xoff handshaking

Pause for 2-3 seconds

Flash the switch hook

Visible bell (may not move cursor)
Hardcopy terminal page eject

Return from status line

Curses should get button events

Go to window #1

Hang-up phone

Terminal or printer initialization string
Terminal or printer initialization string
Terminal or printer initialization string
Name of initialization file

Path name of program for initialization
Initialize the definition of color
Initialize color-pair

Insert character

Add new blank line

Insert pad after character inserted

The ““key_"" strings are sent by specific keys. The ““key " descriptions include the macro,
defined in <curses.h>, for the code returned by the curses routine getch when the key is
pressed (see curs_getch(3X)).

Variable

key al
key a3
key b2
key_backspace

key beg
key_btab
key cl

Cap-
name

kal
ka3
kb2
kbs

kbeg

kcbt
kcl

SunOS 5.6

Termcap
Code

K1
K3
K2
kb

@1
kB
K4

Description

KEY_A1, upper left of keypad
KEY_A3, upper right of keypad
KEY_B2, center of keypad
KEY_BACKSPACE, sent by backspace
key

KEY_BEG, sent by beg(inning) key
KEY_BTAB, sent by back-tab key
KEY_C1, lower left of keypad

4-385

terminfo (4) File Formats

key c3 ke3 K5 KEY_C3, lower right of keypad

key_cancel kcan @2 KEY_CANCEL, sent by cancel key

key_catab ktbc ka KEY_CATAB, sent by clear-all-tabs key

key clear kclr kC KEY_CLEAR, sent by clear-screen or
erase key

key close kclo @3 KEY_CLOSE, sent by close key

key_command kemd @4 KEY_COMMAND, sent by cmd
(command) key

key_copy kcpy @5 KEY_COPY, sent by copy key

key_create kert @6 KEY_CREATE, sent by create key

key ctab kctab kt KEY_CTAB, sent by clear-tab key

key dc kdchl kD KEY_DC, sent by delete-character key

key dl kdi1l kL KEY_DL, sent by delete-line key

key_down kcud1l kd KEY_DOWN, sent by terminal
down-arrow key

key_eic krmir kM KEY_EIC, sent by rmir or smir in
insert mode

key end kend @7 KEY_END, sent by end key

key_enter kent @8 KEY_ENTER, sent by enter/send key

key_eol kel KE KEY_EOL, sent by clear-to-end-of-line
key

key_eos ked kS KEY_EQOS, sent by clear-to-end-of-screen
key

key_exit kext @9 KEY_EXIT, sent by exit key

key f0 kf0 kO KEY_F(0), sent by function key f0

key f1 kfl k1 KEY_F(1), sent by function key f1

key f2 kf2 k2 KEY_F(2), sent by function key 2

key f3 kf3 k3 KEY_F(3), sent by function key f3

key fB kf4 k4 KEY_F(4), sent by function key fB

key f5 kf5 k5 KEY_F(5), sent by function key 5

key f6 kf6 k6 KEY_F(6), sent by function key f6

key f7 kf7 k7 KEY_F(7), sent by function key f7

key f8 kf8 k8 KEY_F(8), sent by function key f8

key f9 kf9 k9 KEY_F(9), sent by function key f9

key f10 kf10 k; KEY_F(10), sent by function key f10

key f11 kfll F1 KEY_F(11), sent by function key f11

key f12 kf12 F2 KEY_F(12), sent by function key f12

key f13 kf13 F3 KEY_F(13), sent by function key f13

key f14 kfl4 F4 KEY_F(14), sent by function key f14

key f15 kf15 F5 KEY_F(15), sent by function key f15

key f16 kf16 F6 KEY_F(16), sent by function key f16

key f17 kf17 F7 KEY_F(17), sent by function key f17

key f18 kf18 F8 KEY_F(18), sent by function key 18

key f19 kf19 F9 KEY_F(19), sent by function key f19

key f20 kf20 FA KEY_F(20), sent by function key f20

4-386 Sun0S 5.6 modified 9 Jul 1996

File Formats terminfo (4)

key f21 kf21 FB KEY_F(21), sent by function key f21
key f22 kf22 FC KEY_F(22), sent by function key 22
key 23 kf23 FD KEY_F(23), sent by function key 23
key f24 kf24 FE KEY_F(24), sent by function key f24
key f25 kf25 FF KEY_F(25), sent by function key 25
key 26 kf26 FG KEY_F(26), sent by function key 26
key f27 kf27 FH KEY_F(27), sent by function key f27
key 28 kf28 Fl KEY_F(28), sent by function key 28
key f29 kf29 FJ KEY_F(29), sent by function key f29
key 30 kf30 FK KEY_F(30), sent by function key f30
key f31 kf31 FL KEY_F(31), sent by function key f31
key 32 kf32 FM KEY_F(32), sent by function key 32
key 33 kf33 FN KEY_F(13), sent by function key 13
key f34 kf34 FO KEY_F(34), sent by function key f34
key f35 kf35 FP KEY_F(35), sent by function key f35
key 36 kf36 FQ KEY_F(36), sent by function key f36
key f37 kf37 FR KEY_F(37), sent by function key f37
key f38 kf38 FS KEY_F(38), sent by function key 38
key f39 kf39 FT KEY_F(39), sent by function key f39
key_fB0O kf40 FU KEY_F(40), sent by function key fBO
key fB1 kf4l FV KEY_F(41), sent by function key fB1
key fB2 kf42 FW KEY_F(42), sent by function key fB2
key fB3 kf43 FX KEY_F(43), sent by function key fB3
key fB4 kf44 FY KEY_F(44), sent by function key fB4
key fB5 kf45 FzZ KEY_F(45), sent by function key fB5
key fB6 kf46 Fa KEY_F(46), sent by function key fB6
key fB7 kf47 Fb KEY_F(47), sent by function key fB7
key fB8 kf48 Fc KEY_F(48), sent by function key fB8
key fB9 kf49 Fd KEY_F(49), sent by function key fB9
key 50 kf50 Fe KEY_F(50), sent by function key f50
key f51 kf51 Ff KEY_F(51), sent by function key f51
key 52 kf52 Fg KEY_F(52), sent by function key f52
key 53 kf53 Fh KEY_F(53), sent by function key f53
key f54 kf54 Fi KEY_F(54), sent by function key f54
key f55 kf55 Fj KEY_F(55), sent by function key f55
key f56 kf56 Fk KEY_F(56), sent by function key f56
key f57 kf57 Fl KEY_F(57), sent by function key f57
key f58 kf58 Fm KEY_F(58), sent by function key f58
key f59 kf59 Fn KEY_F(59), sent by function key f59
key_f60 kf60 Fo KEY_F(60), sent by function key f60
key f61 kf61 Fp KEY_F(61), sent by function key f61
key f62 kf62 Fqg KEY_F(62), sent by function key f62
key 63 kf63 Fr KEY_F(63), sent by function key f63
key_find kfnd @0 KEY_FIND, sent by find key

key_help khlp %1 KEY_HELP, sent by help key

modified 9 Jul 1996 Sun0S 5.6 4-387

terminfo (4)

4-388

key_home
key ic

key il
key_left

key Il
key_mark
key_message
key_mouse
key_move
key_next

key _npage
key_open
key_options
key_ppage
key_previous

key_print
key_redo
key_reference
key_refresh
key_replace
key_restart
key_resume
key right

key save
key sbeg
key_scancel

key_scommand

key_scopy
key_screate

key _sdc
key_sdl

key_select
key_send
key_seol
key_sexit
key sf

khome
kichl

kill
kcubl

kll
kmrk
kmsg
kmous
kmov
knxt
knp
kopn
kopt
kpp
kprv

kprt
krdo
kref
krfr
krpl
krst
kres
kcufl

ksav
kBEG
kCAN
kCMD

kCPY
kCRT

kDC
kDL
kslt
KEND
KEOL

KEXT
kind

SunOS 5.6

kh
Kkl

kA
Kkl

kH
%2
%3
Km
%4
%5
kN
%6
%7
kP
%8

%9
%0
&1
&2
&3
&4
&5
kr

Z2EBEHEB H H BRH H

File Formats

KEY_HOME, sent by home key
KEY_IC, sent by ins-char/enter
ins-mode key

KEY_IL, sent by insert-line key
KEY_LEFT, sent by terminal left-arrow
key

KEY_LL, sent by home-down key
KEY_MARK, sent by mark key
KEY_MESSAGE, sent by message key
0631, Mouse event has occured
KEY_MOVE, sent by move key
KEY_NEXT, sent by next-object key
KEY_NPAGE, sent by next-page key
KEY_OPEN, sent by open key
KEY_OPTIONS, sent by options key
KEY_PPAGE, sent by previous-page key
KEY_PREVIOUS, sent by previous-object
key

KEY_PRINT, sent by print or copy key
KEY_REDO, sent by redo key
KEY_REFERENCE, sent by reference key
KEY_REFRESH, sent by refresh key
KEY_REPLACE, sent by replace key
KEY_RESTART, sent by restart key
KEY_RESUME, sent by resume key
KEY_RIGHT, sent by terminal
right-arrow key

KEY_SAVE, sent by save key
KEY_SBEG, sent by shifted beginning key
KEY_SCANCEL, sent by shifted

cancel key

KEY_SCOMMAND, sent by shifted
command key

KEY_SCOPY, sent by shifted copy key
KEY_SCREATE, sent by shifted

create key

KEY_SDC, sent by shifted delete-char
key

KEY_SDL, sent by shifted delete-line
key

KEY_SELECT, sent by select key
KEY_SEND, sent by shifted end key
KEY_SEOL, sent by shifted clear-line key
KEY_SEXIT, sent by shifted exit key
KEY_SF, sent by scroll-forward/down

modified 9 Jul 1996

File Formats

modified 9 Jul 1996

key_sfind
key_shelp
key_shome
key_sic
key_sleft

key_smessage

key_smove
key_snext
key_soptions

key_sprevious

key_sprint
key sr

key_sredo
key_sreplace

key_sright
key_srsume

key ssave
key ssuspend

key_stab
key_sundo
key_suspend

key_undo
key _up
keypad_local
keypad_xmit
lab_f0

lab_f1

lab_f2

lab_f3
lab_fB
lab_f5

lab_f6

lab_f7

lab_f8

kFND
KHLP
kHOM
kiC
KLFT

kMSG

kMOV
KNXT
kOPT

kPRV

kPRT
kri

kRDO
kRPL

kRIT
kRES

kSAV
kSPD

khts
kUND
kspd

kund
kcuul
rmkx
smkx
1f0
If1
12
1f3
IfB
I1f5
16
I1f7
18

SunOS 5.6

#1
#2
#3
#4
%a
%b
%cC
%d

%e

%f
kR

%g
%h

%i

%]

terminfo (4)

key

KEY_SFIND, sent by shifted find key
KEY_SHELP, sent by shifted help key
KEY_SHOME, sent by shifted home key
KEY_SIC, sent by shifted input key
KEY_SLEFT, sent by shifted left-arrow
key

KEY_SMESSAGE, sent by shifted
message key

KEY_SMOVE, sent by shifted move key
KEY_SNEXT, sent by shifted next key
KEY_SOPTIONS, sent by shifted
options key

KEY_SPREVIOUS, sent by shifted prev
key

KEY_SPRINT, sent by shifted print key
KEY_SR, sent by scroll-backward/up
key

KEY_SREDO, sent by shifted redo key
KEY_SREPLACE, sent by shifted replace
key

KEY_SRIGHT, sent by shifted
right-arrow key

KEY_SRSUME, sent by shifted resume
key

KEY_SSAVE, sent by shifted save key
KEY_SSUSPEND, sent by shifted
suspend key

KEY_STAB, sent by set-tab key
KEY_SUNDO, sent by shifted undo key
KEY_SUSPEND, sent by

suspend key

KEY_UNDO, sent by undo key
KEY_UP, sent by terminal up-arrow key
Out of “keypad-transmit’” mode

Put terminal in “‘keypad-transmit’” mode
Labels on function key f0 if not f0

Labels on function key f1 if not f1

Labels on function key f2 if not f2

Labels on function key f3 if not f3

Labels on function key B if not fB
Labels on function key f5 if not f5

Labels on function key f6 if not f6

Labels on function key f7 if not f7

Labels on function key f8 if not f8

4-389

terminfo (4)

4-390

lab_f9

lab_f10

label_format

label _off

label _on

meta_off

meta_on
micro_column_address

micro_down
micro_left
micro_right

micro_row_address
micro_up
mouse_info
newline

order_of _pins
orig_colors
orig_pair

pad_char
parm_dch
parm_delete_line
parm_down_cursor
parm_down_micro

parm_ich
parm_index
parm_insert_line
parm_left_cursor
parm_left_micro

parm_right_cursor
parm_right_micro

parm_rindex
parm_up_cursor
parm_up_micro
pc_term_options
pkey_key
pkey_local
pkey_plab

pkey_xmit

19
110
fln
rmin
smin
rmm
smm
mhpa

mcudl
mcubl
mcufl

mvpa
mcuul
minfo
nel

porder
oc

op

pad
dch

dl

cud
mcud

ich
indn
il
cub
mcub

cuf
mcuf

rin
cuu
mcuu
pctrm
pfkey
pfloc
pfxl

pfx

SunOS 5.6

la

77
Za
Zb

Zc
Zd

nw

Ze
oc
op
pc
DC
DL
DO
Zf

SF
AL
LE
29

RI
Zh

SR
UP
Zi
S6
pk
pl

pPX

File Formats

Labels on function key f9 if not f9
Labels on function key f10 if not f10
Label format

Turn off soft labels

Turn on soft labels

Turn off "meta mode”

Turn on "meta mode" (8th bit)

Like column_address for micro
adjustment

Like cursor_down for micro adjustment
Like cursor_left for micro adjustment
Like cursor_right for micro
adjustment

Like row_address for micro adjustment
Like cursor_up for micro adjustment
Mouse status information

Newline (behaves like cr followed

by If)

Matches software bits to print-head pins
Set all color(-pair)s to the original ones
Set default color-pair to the original one
Pad character (rather than null)

Delete #1 chars

Delete #1 lines

Move down #1 lines.

Like parm_down_cursor for micro
adjust.

Insert #1 blank chars

Scroll forward #1 lines.

Add #1 new blank lines

Move cursor left #1 spaces

Like parm_left_cursor for micro
adjust.

Move right #1 spaces.

Like parm_right_cursor for micro
adjust.

Scroll backward #1 lines.

Move cursor up #1 lines.

Like parm_up_cursor for micro adjust.
PC terminal options

Prog funct key #1 to type string #2
Prog funct key #1 to execute string #2
Prog key #1 to xmit string #2 and show
string #3

Prog funct key #1 to xmit string #2

modified 9 Jul 1996

File Formats terminfo (4)

plab_norm pin pn Prog label #1 to show string #2
print_screen mcO ps Print contents of the screen
prtr_non mc5p pO Turn on the printer for #1 bytes
prtr_off mc4 pf Turn off the printer
prtr_on mc5 po Turn on the printer
pulse pulse PU Select pulse dialing
quick_dial qdial QD Dial phone number #1, without
progress detection
remove_clock rmclk RC Remove time-of-day clock
repeat_char rep rp Repeat char #1 #2 times
req_for_input rfi RF Send next input char (for ptys)
reg_mouse_pos regmp RQ Request mouse position report
reset_1string rsl rl Reset terminal completely to sane modes
reset_2string rs2 r2 Reset terminal completely to sane modes
reset_3string rs3 r3 Reset terminal completely to sane modes
reset_file rf rf Name of file containing reset string
restore_cursor rc rc Restore cursor to position of last sc
row_address vpa cv Vertical position absolute
save_cursor sc sc Save cursor position
scancode_escape scesc S7 Escape for scancode emulation
scroll_forward ind sf Scroll text up
scroll_reverse ri sr Scroll text down
select_char_set scs Zj Select character set
set0_des_seq sOds s0 Shift into codeset 0 (EUC set 0, ASCII)
setl_des_seq slds sl Shift into codeset 1
set2_des_seq s2ds s2 Shift into codeset 2
set3_des_seq s3ds s3 Shift into codeset 3
attributes #1-#6
set_a_background setab AB Set background color using ANSI escape
set_a_foreground setaf AF Set foreground color using ANSI escape
set_attributes sgr sa Define the video attributes #1-#9
set_background setb Sb Set current background color
set_bottom_margin smgb Zk Set bottom margin at current line
set_bottom_margin_parm smgbp ZI Set bottom margin at line #1 or #2
lines from bottom
set_clock sclk SC Set time-of-day clock
set_color_band setcolor Yz Change to ribbon color #1
set_color_pair scp sp Set current color-pair
set_foreground setf Sf Set current foreground colorl
set_left_margin smgl ML Set left margin at current line
set_left_margin_parm smglp Zm Set left (right) margin at column #1 (#2)
set_Ir_margin smglr ML Sets both left and right margins
set_page_length slines Yz Set page length to #1 lines (use tparm)
of an inch
set_right_margin smgr MR Set right margin at current column

modified 9 Jul 1996 Sun0S 5.6 4-391

terminfo (4)

4-392

Sample Entry

set_right_margin_parm
set tab
set_tb_margin
set_top_margin
set_top_margin_parm
set_ window
start_bit_image
start_char_set def
stop_bit_image
stop_char_set_def
subscript_characters
superscript_characters
tab

these_cause cr
to_status_line

tone

user0

userl

user2

user3

user4

users

user6

user’

user8

user9
underline_char
up_half_line
wait_tone
xoff_character
xon_character
zero_motion

smgrp
hts
smgtb
smgt
smgtp
wind
shim
scsd
rbim
rcsd
subcs
supcs
ht
docr
tsl
tone
u0

ul

u2

u3

ud

us

u6

u7

us

u9

uc

hu
wait
xoffc
xonc
zerom

Zn
st
MT
Zo
Zp
wi
Zq
Zr
Zs
Zt
Zu
yAY,
ta
Zw
ts
TO
u0
ul
u2
u3
u4
us
u6
u’7
us
u9
uc
hu
WA
XF
XN
ZX

File Formats

Set right margin at column #1

Set a tab in all rows, current column
Sets both top and bottom margins

Set top margin at current line

Set top (bottom) margin at line #1 (#2)
Current window is lines #1-#2 cols #3-#4
Start printing bit image graphics

Start definition of a character set

End printing bit image graphics

End definition of a character set

List of ““subscript-able’ characters
List of ““superscript-able” characters
Tab to next 8-space hardware tab stop
Printing any of these chars causes cr
Go to status line, col #1

Select touch tone dialing

User string 0

User string 1

User string 2

User string 3

User string 4

User string 5

User string 6

User string 7

User string 8

User string 9

Underscore one char and move past it
Half-line up (reverse 1/2 linefeed)
Wait for dial tone

X-off character

X-on character

No motion for the subsequent character

The following entry, which describes the AT&T 610 terminal, is among the more complex

entries in the terminfo file as of this writing.

610 | 610bct | ATT610 | att610 | AT&T 610; 80 column; 98key keyboard
am, eslok, hs, mir, msgr, xenl, xon,
cols#80, it#8, Ih#2, lines#24, Iw#8, nlab#8, wsl#80,
acsc="‘aaffggjjkklimmnnooppgqrrssttuuvvwwxxyyzz{{] 13},
bel="G, blink=\E[5m, bold=\E[1m, cbt=\E[Z,
civis=\E[?25l, clear=\E[H\E[J, cnorm=\E[?25h\E[?12I,
cr=\r, csr=\E[%i%p1%d;%p2%dr, cub=\E[%p1%dD, cubl=\b,
cud=\E[%p1%dB, cud1=\E[B, cuf=\E[%p1%dC, cufl=\E[C,
cup=\E[%i%p1%d;%p2%dH, cuu=\E[%p1%dA, cuul=\E[A,

SunOS 5.6

modified 9 Jul 1996

File Formats

Types of Capabilities
in the Sample Entry

modified 9 Jul 1996

terminfo (4)

cvvis=\E[?12;25h, dch=\E[%p1%dP, dch1=\E[P, dim=\E[2m,
dI=\E[%pl1%dM, dI1=\E[M, ed=\E[J, el=\E[K, el1=\E[1K,
flash=\E[?5h$<200>\E[?5I, fsI=\E8, home=\E[H, ht=\t,
ich=\E[%p1%d@, il=\E[%pl1%dL, il1=\E[L, ind=\ED, .ind=\ED$<9>,
invis=\E[8m,
is1=\E[8;0 | \E[?3;4;5;13;15I1\E[13;201\E[?7h\E[12h\E(B\E)0,
isS2=\E[0m"O, is3=\E(B\E)0, KLFT=\E[\s@, KRIT=\E[\sA,
kbs="H, kcbt=\E[Z, kclr=\E[2J, kcub1=\E[D, kcud1=\E[B,
kcufl=\E[C, kcuul=\E[A, kf1=\EOc, kf10=\ENp,
kfl1=\ENq, kf12=\ENTr, kf13=\ENs, kf14=\ENt, kf2=\EOd,
kf3=\EOe, kf4=\EOf, kf5=\EOg, kf6=\EOh, kf7=\EOi,
kf8=\EOj, kf9=\ENo, khome=\E[H, kind=\E[S, kri=\E[T,
I=\E[24H, mc4=\E[?4i, mc5=\E[?5i, nel=\EE,
pfXI=\E[%p1%d;%p2%I1%02dq%?%p1%{9}%<%t\s\s\sF%p1%1d\s\s\s\s\s
\s\s\s\s\s\s%;%p2%s,
pIn=\E[%p1%d;0;0;00%p2%:-16.16s, rc=\ES8, rev=\E[7m,
ri=\EM, rmacs="0, rmir=\E[4l, rmIn=\E[2p, rmso=\E[m,
rmul=\E[m, rs2=\Ec\E[?3I, sc=\E7,
sgr=\E[0%?%p6%t;1%;%?%p5%t;2%;%?%p2%t;4%;%?%p4%t;5%;
%?%p3%p1% | %t;7%;%?%p7%t;8%;m%?%p9%t" N%e"O%;,
sgrO=\E[m~0O, smacs="N, smir=\E[4h, smIn=\E[p,
smso=\E[7m, smul=\E[4m, tsI=\E7\E[25;%i%p1%dXx,

The sample entry shows the formats for the three types of terminfo capabilities listed:
Boolean, numeric, and string. All capabilities specified in the terminfo source file must
be followed by commas, including the last capability in the source file. In terminfo
source files, capabilities are referenced by their capability names (as shown in the previ-
ous tables).

Boolean capabilities are specified simply by their comma separated cap nhames.

Numeric capabilities are followed by the character ‘#’ and then a positive integer value.
Thus, in the sample, cols (which shows the number of columns available on a device) is
assigned the value 80 for the AT&T 610. (Values for numeric capabilities may be
specified in decimal, octal, or hexadecimal, using normal C programming language con-
ventions.)

Finally, string-valued capabilities such as el (clear to end of line sequence) are listed by a
two- to five-character capname, an ‘=", and a string ended by the next occurrence of a
comma. A delay in milliseconds may appear anywhere in such a capability, preceded by
$ and enclosed in angle brackets, as in el=\EK$<3>. Padding characters are supplied by
tput. The delay can be any of the following: a number, a number followed by an aster-
isk, such as 500 a number followed by a slash, such as 5/, or a number followed by both,
such as 50. A ‘00 shows that the padding required is proportional to the number of lines

SunOS 5.6 4-393

terminfo (4)

Preparing
Descriptions

Section 1-1; Basic
Capabilities

4-394

File Formats

affected by the operation, and the amount given is the per-affected-unit padding
required. (In the case of insert characters, the factor is still the number of lines affected.
This is always 1 unless the device has in and the software uses it.) When a ‘0 is specified,
it is sometimes useful to give a delay of the form 3.5 to specify a delay per unit to tenths
of milliseconds. (Only one decimal place is allowed.)

A '/’ indicates that the padding is mandatory. If a device has xon defined, the padding
information is advisory and will only be used for cost estimates or when the device is in
raw mode. Mandatory padding will be transmitted regardless of the setting of xon. If
padding (whether advisory or mandatory) is specified for bel or flash, however, it will
always be used, regardless of whether xon is specified.

terminfo offers notation for encoding special characters. Both \E and \e map to an
ESCAPE character, "x maps to a control x for any appropriate x, and the sequences \n, \l,
\r, \t, \b, \f, and \s give a newline, linefeed, return, tab, backspace, formfeed, and
space, respectively. Other escapes include: \" for caret (*); \\ for backslash (\); \, for
comma (,); \: for colon (:); and \O for null. (\O will actually produce \200, which does
not terminate a string but behaves as a null character on most devices, providing CS7 is
specified. (See stty(1)). Finally, characters may be given as three octal digits after a
backslash (for example, \123).

Sometimes individual capabilities must be commented out. To do this, put a period
before the capability name. For example, see the second ind in the example above. Note
that capabilities are defined in a left-to-right order and, therefore, a prior definition will
override a later definition.

The most effective way to prepare a device description is by imitating the description of a
similar device in terminfo and building up a description gradually, using partial descrip-
tions with vi to check that they are correct. Be aware that a very unusual device may
expose deficiencies in the ability of the terminfo file to describe it or the inability of vi to
work with that device. To test a new device description, set the environment variable
TERMINFO to the pathname of a directory containing the compiled description you are
working on and programs will look there rather than in /usr/share/lib/terminfo. To get
the padding for insert-line correct (if the device manufacturer did not document it) a
severe test is to comment out xon, edit a large file at 9600 baud with vi, delete 16 or so
lines from the middle of the screen, and then press the u key several times quickly. If the
display is corrupted, more padding is usually needed. A similar test can be used for
insert-character.

The number of columns on each line for the device is given by the cols numeric capabil-
ity. If the device has a screen, then the number of lines on the screen is given by the lines
capability. If the device wraps around to the beginning of the next line when it reaches
the right margin, then it should have the am capability. If the terminal can clear its
screen, leaving the cursor in the home position, then this is given by the clear string

Sun0S 5.6 modified 9 Jul 1996

File Formats

modified 9 Jul 1996

terminfo (4)

capability. If the terminal overstrikes (rather than clearing a position when a character is
struck over) then it should have the os capability. If the device is a printing terminal,
with no soft copy unit, specify both hc and os. If there is a way to move the cursor to the
left edge of the current row, specify this as cr.

(Normally this will be carriage return, control M.) If there is a way to produce an audible
signal (such as a bell or a beep), specify it as bel. If, like most devices, the device uses the
xon-xoff flow-control protocol, specify xon.

If there is a way to move the cursor one position to the left (such as backspace), that capa-
bility should be given as cubl. Similarly, sequences to move to the right, up, and down
should be given as cufl, cuul, and cudl, respectively. These local cursor motions must
not alter the text they pass over; for example, you would not normally use ‘““‘cufl=\s"
because the space would erase the character moved over.

A very important point here is that the local cursor motions encoded in terminfo are
undefined at the left and top edges of a screen terminal. Programs should never attempt
to backspace around the left edge, unless bw is specified, and should never attempt to go
up locally off the top. To scroll text up, a program goes to the bottom left corner of the
screen and sends the ind (index) string.

To scroll text down, a program goes to the top left corner of the screen and sends the ri
(reverse index) string. The strings ind and ri are undefined when not on their respective
corners of the screen.

Parameterized versions of the scrolling sequences are indn and rin. These versions have
the same semantics as ind and ri, except that they take one parameter and scroll the
number of lines specified by that parameter. They are also undefined except at the
appropriate edge of the screen.

The am capability tells whether the cursor sticks at the right edge of the screen when text
is output, but this does not necessarily apply to a cufl from the last column. Backward
motion from the left edge of the screen is possible only when bw is specified. In this case,
cubl will move to the right edge of the previous row. If bw is not given, the effect is
undefined. This is useful for drawing a box around the edge of the screen, for example.

If the device has switch selectable automatic margins, am should be specified in the ter-
minfo source file. In this case, initialization strings should turn on this option, if possible.
If the device has a command that moves to the first column of the next line, that com-
mand can be given as nel (newline). It does not matter if the command clears the
remainder of the current line, so if the device has no cr and If it may still be possible to
craft a working nel out of one or both of them.

These capabilities suffice to describe hardcopy and screen terminals. Thus the AT&T
5320 hardcopy terminal is described as follows:

5320 att5320 | AT&T 5320 hardcopy terminal,
am, hc, os,
cols#132,

SunOS 5.6 4-395

terminfo (4)

4-396

Section 1-2:
Parameterized
Strings

File Formats

bel="G, cr=\r, cubl=\b, cnd1=\n,
dch1=\E[P, dI1=\E[M,
ind=\n,
while the Lear Siegler ADM-3 is described as
adma3 | Isi adm3,
am, bel="G, clear="Z, cols#80, cr="M, cub1="H,
cudl="J, ind="J, lines#24,

Cursor addressing and other strings requiring parameters are described by a parameter-
ized string capability, with printf-like escapes (%x) in it. For example, to address the cur-
sor, the cup capability is given, using two parameters: the row and column to address to.
(Rows and columns are numbered from zero and refer to the physical screen visible to
the user, not to any unseen memory.) If the terminal has memory relative cursor
addressing, that can be indicated by mrcup.

The parameter mechanism uses a stack and special % codes to manipulate the stack in the
manner of Reverse Polish Notation (postfix). Typically a sequence will push one of the
parameters onto the stack and then print it in some format. Often more complex opera-
tions are necessary. Operations are in postfix form with the operands in the usual order.
That is, to subtract 5 from the first parameter, one would use %p1%/{5}%-—.
The % encodings have the following meanings:
%% outputs ‘%’
%I[[:]flags][width[.precision]][doxXs]
as in printf, flags are [-+#] and space
%cC print pop gives %c
%p[1-9]
push ith parm
%P[a-z]
set dynamic variable [a-z] to pop
%g[a-z]
get dynamic variable [a-z] and push it
%P[A-Z]
set static variable [a-z] to pop
%g[A-Z]
get static variable [a-z] and push it
%’c’ push char constant c
%{nn} push decimal constant nn
%l push strlen(pop)
%+ %— %%/ %m

Sun0S 5.6 modified 9 Jul 1996

File Formats

Section 1-3: Cursor
Motions

modified 9 Jul 1996

terminfo (4)

arithmetic (%m is mod): push(pop $integer sub 2$ op pop $integer sub 1$)
%& %| %"

bit operations: push(pop $integer sub 2% op pop $integer sub 1%)
%= %> %<

logical operations: push(pop $integer sub 2% op pop $integer sub 1%)

%A %0
logical operations: and, or

%! %"~ unary operations: push(op pop)

%i (for ANSI terminals) add 1 to first parm, if one parm present, or first two parms,
if more than one parm present

%? expr %t thenpart %e elsepart %;
if-then-else, %e elsepart is optional; else-if’s are possible ala Algol 68: %? c %t bl
%e c, %t b2 %e Cy %t b3 %e c, %t b4 %e bs%;
c; are conditions, bi are bodies.

If the “~" flag is used with “%[doxXs]"’, then a colon (;) must be placed between the “%”
and the ““="" to differentiate the flag from the binary “%-"" operator, for example
“06:~16.16s"".

Consider the Hewlett-Packard 2645, which, to get to row 3 and column 12, needs to be
sent \E&a12c03Y padded for 6 milliseconds. Note that the order of the rows and
columns is inverted here, and that the row and column are zero-padded as two digits.
Thus its cup capability is:

cup=\E&a%p2%2.2dc%p1%2.2dY$<6>

The Micro-Term ACT-IV needs the current row and column sent preceded by a "T, with
the row and column simply encoded in binary, “cup="T%p1%c%p2%c”. Devices that
use “%c’’ need to be able to backspace the cursor (cubl), and to move the cursor up one
line on the screen (cuul). This is necessary because it is not always safe to transmit \n,
"D, and \r, as the system may change or discard them. (The library routines dealing with
terminfo set tty modes so that tabs are never expanded, so \t is safe to send. This turns
out to be essential for the Ann Arbor 4080.)

A final example is the LSI ADM-3a, which uses row and column offset by a blank charac-
ter, thus “‘cup=\E=%p1%"\s’%+%c%p2%"\s'%+%c". After sending ‘“\E=", this pushes
the first parameter, pushes the ASCII value for a space (32), adds them (pushing the sum
on the stack in place of the two previous values), and outputs that value as a character.
Then the same is done for the second parameter. More complex arithmetic is possible
using the stack.

If the terminal has a fast way to home the cursor (to very upper left corner of screen) then
this can be given as home; similarly a fast way of getting to the lower left-hand corner
can be given as Il; this may involve going up with cuul from the home position, but a

SunOS 5.6 4-397

terminfo (4)

Section 1-4: Area
Clears

Section 1-5;
Insert/Delete Line

4-398

File Formats

program should never do this itself (unless Il does) because it can make no assumption
about the effect of moving up from the home position. Note that the home position is the
same as addressing to (0,0): to the top left corner of the screen, not of memory.

(Thus, the \EH sequence on Hewlett-Packard terminals cannot be used for home without
losing some of the other features on the terminal.)

If the device has row or column absolute-cursor addressing, these can be given as single
parameter capabilities hpa (horizontal position absolute) and vpa (vertical position abso-
lute). Sometimes these are shorter than the more general two-parameter sequence (as
with the Hewlett-Packard 2645) and can be used in preference to cup. If there are
parameterized local motions (for example, move n spaces to the right) these can be given
as cud, cub, cuf, and cuu with a single parameter indicating how many spaces to move.
These are primarily useful if the device does not have cup, such as the Tektronix 4025.

If the device needs to be in a special mode when running a program that uses these capa-
bilities, the codes to enter and exit this mode can be given as smcup and rmcup. This
arises, for example, from terminals, such as the Concept, with more than one page of
memory. If the device has only memory relative cursor addressing and not screen rela-
tive cursor addressing, a one screen-sized window must be fixed into the device for cur-
sor addressing to work properly. This is also used for the Tektronix 4025, where smcup
sets the command character to be the one used by terminfo. If the smcup sequence will
not restore the screen after an rmcup sequence is output (to the state prior to outputting
rmcup), specify nrrmc.

If the terminal can clear from the current position to the end of the line, leaving the cursor
where it is, this should be given as el. If the terminal can clear from the beginning of the
line to the current position inclusive, leaving the cursor where it is, this should be given
as ell. If the terminal can clear from the current position to the end of the display, then
this should be given as ed. ed is only defined from the first column of a line. (Thus, it
can be simulated by a request to delete a large number of lines, if a true ed is not avail-
able.)

If the terminal can open a new blank line before the line where the cursor is, this should
be given as il1; this is done only from the first position of a line. The cursor must then
appear on the newly blank line. If the terminal can delete the line which the cursor is on,
then this should be given as dl1; this is done only from the first position on the line to be
deleted. Versions of il1 and dI1 which take a single parameter and insert or delete that
many lines can be given as il and dl.

If the terminal has a settable destructive scrolling region (like the VT100) the command to
set this can be described with the csr capability, which takes two parameters: the top and
bottom lines of the scrolling region. The cursor position is, alas, undefined after using
this command. It is possible to get the effect of insert or delete line using this command
— the sc and rc (save and restore cursor) commands are also useful. Inserting lines at the

Sun0S 5.6 modified 9 Jul 1996

File Formats

Section 1-6:
Insert/Delete
Character

modified 9 Jul 1996

terminfo (4)

top or bottom of the screen can also be done using ri or ind on many terminals without a
true insert/delete line, and is often faster even on terminals with those features.

To determine whether a terminal has destructive scrolling regions or non-destructive
scrolling regions, create a scrolling region in the middle of the screen, place data on the
bottom line of the scrolling region, move the cursor to the top line of the scrolling region,
and do a reverse index (ri) followed by a delete line (dI1) or index (ind). If the data that
was originally on the bottom line of the scrolling region was restored into the scrolling
region by the dl1 or ind, then the terminal has non-destructive scrolling regions. Other-
wise, it has destructive scrolling regions. Do not specify csr if the terminal has non-
destructive scrolling regions, unless ind, ri, indn, rin, dl, and dI1 all simulate destructive
scrolling.

If the terminal has the ability to define a window as part of memory, which all commands
affect, it should be given as the parameterized string wind. The four parameters are the
starting and ending lines in memory and the starting and ending columns in memory, in
that order.

If the terminal can retain display memory above, then the da capability should be given;
if display memory can be retained below, then db should be given. These indicate that
deleting a line or scrolling a full screen may bring non-blank lines up from below or that
scrolling back with ri may bring down non-blank lines.

There are two basic kinds of intelligent terminals with respect to insert/delete character
operations which can be described using terminfo. The most common insert/delete
character operations affect only the characters on the current line and shift characters off
the end of the line rigidly. Other terminals, such as the Concept 100 and the Perkin Elmer
Owl, make a distinction between typed and untyped blanks on the screen, shifting upon
an insert or delete only to an untyped blank on the screen which is either eliminated, or
expanded to two untyped blanks. You can determine the kind of terminal you have by
clearing the screen and then typing text separated by cursor motions. Type ““‘abc def”
using local cursor motions (not spaces) between the abc and the def. Then position the
cursor before the abc and put the terminal in insert mode. If typing characters causes the
rest of the line to shift rigidly and characters to fall off the end, then your terminal does
not distinguish between blanks and untyped positions. If the abc shifts over to the def
which then move together around the end of the current line and onto the next as you
insert, you have the second type of terminal, and should give the capability in, which
stands for “‘insert null.”” While these are two logically separate attributes (one line versus
multiline insert mode, and special treatment of untyped spaces) we have seen no termi-
nals whose insert mode cannot be described with the single attribute.

terminfo can describe both terminals that have an insert mode and terminals which send
a simple sequence to open a blank position on the current line. Give as smir the sequence
to get into insert mode. Give as rmir the sequence to leave insert mode. Now give as
ichl any sequence needed to be sent just before sending the character to be inserted.

SunOS 5.6 4-399

terminfo (4)

Section 1-7:
Highlighting,

Underlining, and

4-400

Visible Bells

File Formats

Most terminals with a true insert mode will not give ichl; terminals that send a sequence
to open a screen position should give it here. (If your terminal has both, insert mode is
usually preferable to ichl. Do not give both unless the terminal actually requires both to
be used in combination.) If post-insert padding is needed, give this as a number of mil-
liseconds padding in ip (a string option). Any other sequence which may need to be sent
after an insert of a single character may also be given in ip. If your terminal needs both to
be placed into an ‘insert mode’ and a special code to precede each inserted character, then
both smir/rmir and ichl can be given, and both will be used. The ich capability, with
one parameter, n, will insert n blanks.

If padding is necessary between characters typed while not in insert mode, give this as a
number of milliseconds padding in rmp.

It is occasionally necessary to move around while in insert mode to delete characters on
the same line (for example, if there is a tab after the insertion position). If your terminal
allows motion while in insert mode you can give the capability mir to speed up inserting
in this case. Omitting mir will affect only speed. Some terminals (notably Datamedia’s)
must not have mir because of the way their insert mode works.

Finally, you can specify dchl to delete a single character, dch with one parameter, n, to
delete n characters, and delete mode by giving smdc and rmdc to enter and exit delete
mode (any mode the terminal needs to be placed in for dchl to work).

A command to erase n characters (equivalent to outputting n blanks without moving the
cursor) can be given as ech with one parameter.

Your device may have one or more kinds of display attributes that allow you to highlight
selected characters when they appear on the screen. The following display modes
(shown with the names by which they are set) may be available: a blinking screen (blink),
bold or extra-bright characters (bold), dim or half-bright characters (dim), blanking or
invisible text (invis), protected text (prot), a reverse-video screen (rev), and an alternate
character set (smacs to enter this mode and rmacs to exit it). (If acommand is necessary
before you can enter alternate character set mode, give the sequence in enacs or "enable
alternate-character-set” mode.) Turning on any of these modes singly may or may not
turn off other modes.

sgr0 should be used to turn off all video enhancement capabilities. It should always be
specified because it represents the only way to turn off some capabilities, such as dim or
blink.

You should choose one display method as standout mode and use it to highlight error mes-
sages and other kinds of text to which you want to draw attention. Choose a form of
display that provides strong contrast but that is easy on the eyes. (We recommend
reverse-video plus half-bright or reverse-video alone.) The sequences to enter and exit
standout mode are given as smso and rmso, respectively. If the code to change into or
out of standout mode leaves one or even two blank spaces on the screen, as the TVI 912

Sun0S 5.6 modified 9 Jul 1996

File Formats

modified 9 Jul 1996

terminfo (4)

and Teleray 1061 do, then xmc should be given to tell how many spaces are left.

Sequences to begin underlining and end underlining can be specified as smul and rmul ,
respectively. If the device has a sequence to underline the current character and to move
the cursor one space to the right (such as the Micro-Term MIME), this sequence can be
specified as uc.

Terminals with the *“magic cookie” glitch (xmc) deposit special ““‘cookies’ when they
receive mode-setting sequences, which affect the display algorithm rather than having
extra bits for each character. Some terminals, such as the Hewlett-Packard 2621,
automatically leave standout mode when they move to a new line or the cursor is
addressed. Programs using standout mode should exit standout mode before moving
the cursor or sending a newline, unless the msgr capability, asserting that it is safe to
move in standout mode, is present.

If the terminal has a way of flashing the screen to indicate an error quietly (a bell replace-
ment), then this can be given as flash; it must not move the cursor. A good flash can be
done by changing the screen into reverse video, pad for 200 ms, then return the screen to
normal video.

If the cursor needs to be made more visible than normal when it is not on the bottom line
(to make, for example, a non-blinking underline into an easier to find block or blinking
underline) give this sequence as cvvis. The boolean chts should also be given. If there is
a way to make the cursor completely invisible, give that as civis. The capability cnorm
should be given which undoes the effects of either of these modes.

If your terminal generates underlined characters by using the underline character (with
no special sequences needed) even though it does not otherwise overstrike characters,
then you should specify the capability ul. For devices on which a character overstriking
another leaves both characters on the screen, specify the capability os. If overstrikes are
erasable with a blank, then this should be indicated by specifying eo.

If there is a sequence to set arbitrary combinations of modes, this should be given as sgr
(set attributes), taking nine parameters. Each parameter is either 0 or non-zero, as the
corresponding attribute is on or off. The nine parameters are, in order: standout, under-
line, reverse, blink, dim, bold, blank, protect, alternate character set. Not all modes need
to be supported by sgr; only those for which corresponding separate attribute commands
exist should be supported. For example, let’s assume that the terminal in question needs
the following escape sequences to turn on various modes.

SunOS 5.6 4-401

terminfo (4)

Section 1-8: Keypad

4-402

File Formats

tparm
parameter attribute escape sequence
none \E[Om
pl standout \E[0;4;7m
p2 underline \E[0;3m
p3 reverse \E[0;4m
p4 blink \E[0;5m
p5 dim \E[0;7m
p6 bold \E[0;3;4m
p7 invis \E[0;8m
P8 protect not available
P9 altcharset "0 (off) °N (on)

Note that each escape sequence requires a 0 to turn off other modes before turning on its
own mode. Also note that, as suggested above, standout is set up to be the combination of
reverse and dim. Also, because this terminal has no bold mode, bold is set up as the combi-
nation of reverse and underline. In addition, to allow combinations, such as
underline+blink, the sequence to use would be \E[0;3;5m. The terminal doesn’t have pro-
tect mode, either, but that cannot be simulated in any way, so p8 is ignored. The altcharset
mode is different in that it is either O or "N, depending on whether it is off or on. If all
modes were to be turned on, the sequence would be \E[0;3;4;5;7;8m"N.

Now look at when different sequences are output. For example, ;3 is output when either
p2 or p6 is true, that is, if either underline or bold modes are turned on.
Writing out the above sequences, along with their dependencies, gives the following:

sequence when to output terminfo translation
\E[0 always \E[0

i3 if p2 or p6 %?%p2%p6% | %ot;3%:;

4 if p1 or p3 or p6 %?%p1%p3% | %op6% | Yot;4%;
5 if p4 %?%p4%t;5%;

7 if p1 or p5 %?%p1%p5% | %ot;7%:;

:8 if p7 %?%p7%:t;8%;

m always m

"N or O if p9 "N, else "O %?%p9%t"N%e " O%;

Putting this all together into the sgr sequence gives:
sgr=\E[0%7?%p2%p6% | %t;3%;%?%p1%p3% | %op6%6
| %t;4%;%7%p5%t;5%;%?%p1%p5%

| %6t;7%;%7%p7%t;8%;M%?%p9%t"N%e"O%:;,
Remember that sgr and sgr0 must always be specified.

If the device has a keypad that transmits sequences when the keys are pressed, this infor-
mation can also be specified. Note that it is not possible to handle devices where the
keypad only works in local (this applies, for example, to the unshifted Hewlett-Packard

Sun0S 5.6 modified 9 Jul 1996

File Formats

Section 1-9: Tabs and
Initialization

modified 9 Jul 1996

terminfo (4)

2621 keys). If the keypad can be set to transmit or not transmit, specify these sequences
as smkx and rmkx. Otherwise the keypad is assumed to always transmit.

The sequences sent by the left arrow, right arrow, up arrow, down arrow, and home keys
can be given as kcubl, kcufl, kcuul, kcudl, and khome, respectively. If there are func-
tion keys such as f0, f1, ..., f63, the sequences they send can be specified as kf0, kf1, ...,
kf63. If the first 11 keys have labels other than the default fO through f10, the labels can
be given as If0, If1, ..., If10. The codes transmitted by certain other special keys can be
given: kll (home down), kbs (backspace), ktbc (clear all tabs), kctab (clear the tab stop in
this column), kclr (clear screen or erase key), kdchl (delete character), kdl1 (delete line),
krmir (exit insert mode), kel (clear to end of line), ked (clear to end of screen), kichl
(insert character or enter insert mode), Kill (insert line), knp (next page), kpp (previous
page), kind (scroll forward/down), kri (scroll backward/up), khts (set a tab stop in this
column). In addition, if the keypad has a 3 by 3 array of keys including the four arrow
keys, the other five keys can be given as kal, ka3, kb2, kcl, and kc3. These keys are use-
ful when the effects of a 3 by 3 directional pad are needed. Further keys are defined
above in the capabilities list.

Strings to program function keys can be specified as pfkey, pfloc, and pfx. A string to
program screen labels should be specified as pln. Each of these strings takes two param-
eters: a function key identifier and a string to program it with. pfkey causes pressing the
given key to be the same as the user typing the given string; pfloc causes the string to be
executed by the terminal in local mode; and pfx causes the string to be transmitted to the
computer. The capabilities nlab, Iw and Ih define the number of programmable screen
labels and their width and height. If there are commands to turn the labels on and off,
give them in smlIn and rmIn. smin is normally output after one or more pln sequences to
make sure that the change becomes visible.

If the device has hardware tabs, the command to advance to the next tab stop can be
given as ht (usually control I). A “backtab’” command that moves leftward to the next
tab stop can be given as cbt. By convention, if tty modes show that tabs are being
expanded by the computer rather than being sent to the device, programs should not use
ht or cbt (even if they are present) because the user may not have the tab stops properly
set. If the device has hardware tabs that are initially set every n spaces when the device is
powered up, the numeric parameter it is given, showing the number of spaces the tabs
are set to. This is normally used by tput init (see tput(1)) to determine whether to set the
mode for hardware tab expansion and whether to set the tab stops. If the device has tab
stops that can be saved in nonvolatile memory, the terminfo description can assume that
they are properly set. If there are commands to set and clear tab stops, they can be given
as tbc (clear all tab stops) and hts (set a tab stop in the current column of every row).

Other capabilities include: is1, is2, and is3, initialization strings for the device; iprog, the
path name of a program to be run to initialize the device; and if, the name of a file con-
taining long initialization strings. These strings are expected to set the device into modes

SunOS 5.6 4-403

terminfo (4)

Section 1-10: Delays

Section 1-11: Status

4-404

Lines

File Formats

consistent with the rest of the terminfo description. They must be sent to the device each
time the user logs in and be output in the following order: run the program iprog; output
isl; output is2; set the margins using mgc, smgl and smagr; set the tabs using tbc and hts;
print the file if; and finally output is3. This is usually done using the init option of tput.

Most initialization is done with is2. Special device modes can be set up without duplicat-
ing strings by putting the common sequences in is2 and special cases in isl and is3.
Sequences that do a reset from a totally unknown state can be given as rsl, rs2, rf, and
rs3, analogous to isl, is2, is3, and if. (The method using files, if and rf, is used for a few
terminals, from /usr/share/lib/tabset/[] however, the recommended method is to use the
initialization and reset strings.) These strings are output by tput reset, which is used
when the terminal gets into a wedged state. Commands are normally placed in rsl, rs2,
rs3, and rf only if they produce annoying effects on the screen and are not necessary
when logging in. For example, the command to set a terminal into 80-column mode
would normally be part of is2, but on some terminals it causes an annoying glitch on the
screen and is not normally needed because the terminal is usually already in 80-column
mode.

If a more complex sequence is needed to set the tabs than can be described by using tbc
and hts, the sequence can be placed in is2 or if.

Any margin can be cleared with mgc. (For instructions on how to specify commands to
set and clear margins, see "Margins" below under "PRINTER CAPABILITIES.")

Certain capabilities control padding in the tty driver. These are primarily needed by
hard-copy terminals, and are used by tput init to set tty modes appropriately. Delays
embedded in the capabilities cr, ind, cubl, ff, and tab can be used to set the appropriate
delay bits to be set in the tty driver. If pb (padding baud rate) is given, these values can
be ignored at baud rates below the value of pb.

If the terminal has an extra “‘status line’ that is not normally used by software, this fact
can be indicated. If the status line is viewed as an extra line below the bottom line, into
which one can cursor address normally (such as the Heathkit h19’s 25th line, or the 24th
line of a VT100 which is set to a 23-line scrolling region), the capability hs should be
given. Special strings that go to a given column of the status line and return from the
status line can be given as tsl and fsl. (fsl must leave the cursor position in the same
place it was before tsl. If necessary, the sc and rc strings can be included in tsl and fsl to
get this effect.) The capability tsl takes one parameter, which is the column number of
the status line the cursor is to be moved to.

If escape sequences and other special commands, such as tab, work while in the status
line, the flag eslok can be given. A string which turns off the status line (or otherwise
erases its contents) should be given as dsl. If the terminal has commands to save and
restore the position of the cursor, give them as sc and rc. The status line is normally
assumed to be the same width as the rest of the screen, for example, cols. If the status

Sun0S 5.6 modified 9 Jul 1996

File Formats terminfo (4)

line is a different width (possibly because the terminal does not allow an entire line to be
loaded) the width, in columns, can be indicated with the numeric parameter wsl.
Section 1-12: Line If the device has a line drawing alternate character set, the mapping of glyph to character
Graphics | would be given in acsc. The definition of this string is based on the alternate character set
used in the DEC VT100 terminal, extended slightly with some characters from the AT&T
4410v1 terminal.
vt100+

glyph name character

arrow pointing right +

arrow pointing left ,

arrow pointing down .

solid square block 0

lantern symbol |

arrow pointing up -

diamond ‘

checker board (stipple) a

degree symbol f

plus/minus g

board of squares h

lower right corner j

upper right corner k

upper left corner |

lower left corner m

plus n

scan line 1 o]

horizontal line q

scan line 9 S

left tee (|-) t

right tee () u

bottom tee (|) v

top tee () w

vertical line X

bullet -

modified 9 Jul 1996 Sun0S 5.6 4-405

terminfo (4)

Section 1-13: Color

4-406

Manipulation

File Formats

The best way to describe a new device’s line graphics set is to add a third column to the
above table with the characters for the new device that produce the appropriate glyph
when the device is in the alternate character set mode. For example,

vt100+ new tty
glyph name char char

upper left corner | R
lower left corner m F
upper right corner k T
lower right corner j G
horizontal line q

vertical line X

Now write down the characters left to right, as in ““acsc=IRmMFKTjGq\,x.”.

In addition, terminfo allows you to define multiple character sets. See Section 2-5 for
details.

Let us define two methods of color manipulation: the Tektronix method and the HP
method. The Tektronix method uses a set of N predefined colors (usually 8) from which
a user can select "current" foreground and background colors. Thus a terminal can sup-
port up to N colors mixed into NN color-pairs to be displayed on the screen at the same
time. When using an HP method the user cannot define the foreground independently of
the background, or vice-versa. Instead, the user must define an entire color-pair at once.
Up to M color-pairs, made from 2[M different colors, can be defined this way. Most
existing color terminals belong to one of these two classes of terminals.

The numeric variables colors and pairs define the number of colors and color-pairs that
can be displayed on the screen at the same time. If a terminal can change the definition of
a color (for example, the Tektronix 4100 and 4200 series terminals), this should be
specified with ccc (can change color). To change the definition of a color (Tektronix 4200
method), use initc (initialize color). It requires four arguments: color number (ranging
from 0 to colors—1) and three RGB (red, green, and blue) values or three HLS colors (Hue,
Lightness, Saturation). Ranges of RGB and HLS values are terminal dependent.

Tektronix 4100 series terminals only use HLS color notation. For such terminals (or
dual-mode terminals to be operated in HLS mode) one must define a boolean variable
hls; that would instruct the curses init_color routine to convert its RGB arguments to
HLS before sending them to the terminal. The last three arguments to the initc string
would then be HLS values.

If a terminal can change the definitions of colors, but uses a color notation different from
RGB and HLS, a mapping to either RGB or HLS must be developed.

To set current foreground or background to a given color, use setaf (set ANSI fore-
ground) and setab (set ANSI background). They require one parameter: the number of
the color. To initialize a color-pair (HP method), use initp (initialize pair). It requires

Sun0S 5.6 modified 9 Jul 1996

File Formats terminfo (4)

seven parameters: the number of a color-pair (range=0 to pairs—1), and six RGB values:
three for the foreground followed by three for the background. (Each of these groups of
three should be in the order RGB.) When initc or initp are used, RGB or HLS arguments
should be in the order "red, green, blue" or "hue, lightness, saturation"), respectively. To
make a color-pair current, use scp (set color-pair). It takes one parameter, the number of
a color-pair.

Some terminals (for example, most color terminal emulators for PCs) erase areas of the
screen with current background color. In such cases, bce (background color erase)
should be defined. The variable op (original pair) contains a sequence for setting the
foreground and the background colors to what they were at the terminal start-up time.
Similarly, oc (original colors) contains a control sequence for setting all colors (for the
Tektronix method) or color-pairs (for the HP method) to the values they had at the termi-
nal start-up time.

Some color terminals substitute color for video attributes. Such video attributes should
not be combined with colors. Information about these video attributes should be packed
into the ncv (no color video) variable. There is a one-to-one correspondence between the
nine least significant bits of that variable and the video attributes. The following table
depicts this correspondence.

Bit Decimal
Attribute Position Value
A_STANDOUT 0 1
A_UNDERLINE 1 2
A_REVERSE 2 4
A BLINK 3 8
A_DIM 4 16
A BOLD 5 32
A_INVIS 6 64
A_PROTECT 7 128
A_ALTCHARSET 8 256

When a particular video attribute should not be used with colors, the corresponding ncv
bit should be set to 1; otherwise it should be set to zero. To determine the information to
pack into the ncv variable, you must add together the decimal values corresponding to
those attributes that cannot coexist with colors. For example, if the terminal uses colors
to simulate reverse video (bit number 2 and decimal value 4) and bold (bit number 5 and
decimal value 32), the resulting value for ncv will be 36 (4 + 32).

modified 9 Jul 1996 Sun0S 5.6 4-407

terminfo (4)

4-408

Section 1-14:
Miscellaneous

File Formats

If the terminal requires other than a null (zero) character as a pad, then this can be given
as pad. Only the first character of the pad string is used. If the terminal does not have a
pad character, specify npc.

If the terminal can move up or down half a line, this can be indicated with hu (half-line
up) and hd (half-line down). This is primarily useful for superscripts and subscripts on
hardcopy terminals. If a hardcopy terminal can eject to the next page (form feed), give

this as ff (usually control L).

If there is a command to repeat a given character a given number of times (to save time
transmitting a large number of identical characters) this can be indicated with the
parameterized string rep. The first parameter is the character to be repeated and the
second is the number of times to repeat it. Thus, tparm(repeat_char, "x’, 10) is the same
as XXXXXXXXXX.

If the terminal has a settable command character, such as the Tektronix 4025, this can be
indicated with cndch. A prototype command character is chosen which is used in all
capabilities. This character is given in the cmdch capability to identify it. The following
convention is supported on some systems: If the environment variable CC exists, all
occurrences of the prototype character are replaced with the character in CC.

Terminal descriptions that do not represent a specific kind of known terminal, such as
switch, dialup, patch, and network, should include the gn (generic) capability so that pro-
grams can complain that they do not know how to talk to the terminal. (This capability
does not apply to virtual terminal descriptions for which the escape sequences are
known.) If the terminal is one of those supported by the system virtual terminal protocol,
the terminal number can be given as vt. A line-turn-around sequence to be transmitted
before doing reads should be specified in rfi.

If the device uses xon/xoff handshaking for flow control, give xon. Padding information
should still be included so that routines can make better decisions about costs, but actual
pad characters will not be transmitted. Sequences to turn on and off xon/xoff handshak-
ing may be given in smxon and rmxon. If the characters used for handshaking are not "S
and "Q, they may be specified with xonc and xoffc.

If the terminal has a ““meta key”” which acts as a shift key, setting the 8th bit of any char-
acter transmitted, this fact can be indicated with km. Otherwise, software will assume
that the 8th bit is parity and it will usually be cleared. If strings exist to turn this “‘meta
mode’’ on and off, they can be given as smm and rmm.

If the terminal has more lines of memory than will fit on the screen at once, the number of
lines of memory can be indicated with Im. A value of Im#0 indicates that the number of
lines is not fixed, but that there is still more memory than fits on the screen.

Media copy strings which control an auxiliary printer connected to the terminal can be
given as mc0: print the contents of the screen, mc4: turn off the printer, and mc5: turn on
the printer. When the printer is on, all text sent to the terminal will be sent to the printer.

Sun0S 5.6 modified 9 Jul 1996

File Formats

Section 1-15: Special
Cases

Section 1-16: Similar
Terminals

modified 9 Jul 1996

terminfo (4)

A variation, mc5p, takes one parameter, and leaves the printer on for as many characters
as the value of the parameter, then turns the printer off. The parameter should not
exceed 255. If the text is not displayed on the terminal screen when the printer is on,
specify mc5i (silent printer). All text, including mc4, is transparently passed to the
printer while an mc5p is in effect.

The working model used by terminfo fits most terminals reasonably well. However,
some terminals do not completely match that model, requiring special support by ter-
minfo. These are not meant to be construed as deficiencies in the terminals; they are just
differences between the working model and the actual hardware. They may be unusual
devices or, for some reason, do not have all the features of the terminfo model imple-
mented.

Terminals that cannot display tilde () characters, such as certain Hazeltine terminals,
should indicate hz.

Terminals that ignore a linefeed immediately after an am wrap, such as the Concept 100,
should indicate xenl. Those terminals whose cursor remains on the right-most column
until another character has been received, rather than wrapping immediately upon
receiving the right-most character, such as the VT100, should also indicate xenl.

If el is required to get rid of standout (instead of writing normal text on top of it), xhp
should be given.

Those Teleray terminals whose tabs turn all characters moved over to blanks, should
indicate xt (destructive tabs). This capability is also taken to mean that it is not possible
to position the cursor on top of a ““‘magic cookie.” Therefore, to erase standout mode, it is
necessary, instead, to use delete and insert line.

Those Beehive Superbee terminals which do not transmit the escape or control-C charac-
ters, should specify xsb, indicating that the f1 key is to be used for escape and the 2 key
for control C.

If there are two very similar terminals, one can be defined as being just like the other with
certain exceptions. The string capability use can be given with the name of the similar
terminal. The capabilities given before use override those in the terminal type invoked
by use. A capability can be canceled by placing xx@ to the left of the capability definition,
where xx is the capability. For example, the entry

att4424-2 | Teletype 4424 in display function group ii,
rev@, sgr@, smul@, use=att4424,

defines an AT&T 4424 terminal that does not have the rev, sgr, and smul capabilities,
and hence cannot do highlighting. This is useful for different modes for a terminal, or for
different user preferences. More than one use capability may be given.

SunOS 5.6 4-409

terminfo (4)

PART 2: PRINTER
CAPABILITIES

Section 2-1:
Rounding Values

Section 2-2: Printer
Resolution

4-410

File Formats

The terminfo database allows you to define capabilities of printers as well as terminals.
To find out what capabilities are available for printers as well as for terminals, see the
two lists under "DEVICE CAPABILITIES" that list capabilities by variable and by capabil-
ity name.

Because parameterized string capabilities work only with integer values, we recommend
that terminfo designers create strings that expect numeric values that have been
rounded. Application designers should note this and should always round values to the
nearest integer before using them with a parameterized string capability.

A printer’s resolution is defined to be the smallest spacing of characters it can achieve. In
general printers have independent resolution horizontally and vertically. Thus the verti-
cal resolution of a printer can be determined by measuring the smallest achievable dis-
tance between consecutive printing baselines, while the horizontal resolution can be
determined by measuring the smallest achievable distance between the left-most edges of
consecutive printed, identical, characters.

All printers are assumed to be capable of printing with a uniform horizontal and vertical
resolution. The view of printing that terminfo currently presents is one of printing inside
a uniform matrix: All characters are printed at fixed positions relative to each *‘cell” in
the matrix; furthermore, each cell has the same size given by the smallest horizontal and
vertical step sizes dictated by the resolution. (The cell size can be changed as will be seen
later.)

Many printers are capable of “‘proportional printing,”” where the horizontal spacing
depends on the size of the character last printed. terminfo does not make use of this
capability, although it does provide enough capability definitions to allow an application
to simulate proportional printing.

A printer must not only be able to print characters as close together as the horizontal and
vertical resolutions suggest, but also of “moving” to a position an integral multiple of the
smallest distance away from a previous position. Thus printed characters can be spaced
apart a distance that is an integral multiple of the smallest distance, up to the length or
width of a single page.

Some printers can have different resolutions depending on different **“modes.”” In “‘nor-
mal mode,” the existing terminfo capabilities are assumed to work on columns and lines,
just like a video terminal. Thus the old lines capability would give the length of a page in
lines, and the cols capability would give the width of a page in columns. In “micro
mode,” many terminfo capabilities work on increments of lines and columns. With some
printers the micro mode may be concomitant with normal mode, so that all the capabili-
ties work at the same time.

Sun0S 5.6 modified 9 Jul 1996

File Formats

Section 2-3:
Specifying Printer
Resolution

modified 9 Jul 1996

terminfo (4)

The printing resolution of a printer is given in several ways. Each specifies the resolution
as the number of smallest steps per distance:

Specification of Printer Resolution
Characteristic Number of Smallest Steps

orhi Steps per inch horizontally
orvi Steps per inch vertically
orc Steps per column

orl Steps per line

When printing in normal mode, each character printed causes movement to the next
column, except in special cases described later; the distance moved is the same as the
per-column resolution. Some printers cause an automatic movement to the next line
when a character is printed in the rightmost position; the distance moved vertically is the
same as the per-line resolution.
When printing in micro mode, these distances can be different, and may be zero for some
printers.

Specification of Printer Resolution

Automatic Motion after Printing

Normal Mode:
orc Steps moved horizontally
orl Steps moved vertically

Micro Mode:
mcs Steps moved horizontally
mls Steps moved vertically

Some printers are capable of printing wide characters. The distance moved when a wide
character is printed in normal mode may be different from when a regular width charac-
ter is printed. The distance moved when a wide character is printed in micro mode may
also be different from when a regular character is printed in micro mode, but the differ-
ences are assumed to be related: If the distance moved for a regular character is the same
whether in normal mode or micro mode (mcs=orc), then the distance moved for a wide
character is also the same whether in normal mode or micro mode. This doesn’t mean
the normal character distance is necessarily the same as the wide character distance, just
that the distances don’t change with a change in normal to micro mode. However, if the
distance moved for a regular character is different in micro mode from the distance
moved in normal mode (mcs<orc), the micro mode distance is assumed to be the same
for a wide character printed in micro mode, as the table below shows.

SunOS 5.6 4-411

terminfo (4)

4-412

File Formats

Specification of Printer Resolution
Automatic Motion after Printing Wide Character

Normal Mode or Micro Mode (mcs = orc):
widcs Steps moved horizontally

Micro Mode (mcs < orc):
mcs Steps moved horizontally

There may be control sequences to change the number of columns per inch (the character
pitch) and to change the number of lines per inch (the line pitch). If these are used, the
resolution of the printer changes, but the type of change depends on the printer:

Specification of Printer Resolution
Changing the Character/Line Pitches

cpi Change character pitch
cpix If set, cpi changes orhi, otherwise changes orc

Ipi Change line pitch
Ipix If set, Ipi changes orvi, otherwise changes orl

chr Change steps per column
cvr Change steps per line

The cpi and Ipi string capabilities are each used with a single argument, the pitch in
columns (or characters) and lines per inch, respectively. The chr and cvr string capabili-
ties are each used with a single argument, the number of steps per column and line,
respectively.

Using any of the control sequences in these strings will imply a change in some of the
values of orc, orhi, orl, and orvi. Also, the distance moved when a wide character is
printed, widcs, changes in relation to orc. The distance moved when a character is
printed in micro mode, mcs, changes similarly, with one exception: if the distance is 0 or
1, then no change is assumed (see items marked with t in the following table).

Programs that use cpi, Ipi, chr, or cvr should recalculate the printer resolution (and
should recalculate other values— see "Effect of Changing Printing Resolution” under
"Dot-Mapped Graphics").

Sun0S 5.6 modified 9 Jul 1996

File Formats

Section 2-4:
Capabilities that
Cause Movement

modified 9 Jul 1996

terminfo (4)

Specification of Printer Resolution

Effects of Changing the Character/Line Pitches

Before

After

Using cpi with cpix clear:

$bold orhi '$
$bold orc’$

Using cpi with cpix set:

orhi
$bold orc = bold orhi over V sub italic cpi$

$bold orhi ’$ $bold orhi = bold orc cdot V sub italic cpi$
$bold orc ’$ $bold orc$

Using Ipi with Ipix clear:

$bold orvi'$ $bold orvi$

$bold orl ’$ $bold orl = bold orvi over V sub italic Ipi$

Using Ipi with Ipix set:

$bold orvi’$ $bold orvi = bold orl cdot V sub italic Ipi$
$bold orl ’$ $bold orl$

Using chr:

$bold orhi’'$ $bold orhi$

$bold orc ’$ $V sub italic chr$

Using cvr:

$bold orvi ’$ $bold orvi$

$bold orl ’$ $V sub italic cvr$

Using cpi or chr:

$bold widcs '$
$bold mcs ’$

$bold widcs = bold {widcs '} bold orc over { bold {orc '} }$
$bold mcs = bold {mcs '} bold orc over { bold {orc '} }$

$V sub italic cpi$, $V sub italic Ipi$, $V sub italic chr$, and $V sub italic cvr$ are the argu-
ments used with cpi, Ipi, chr, and cvr, respectively. The prime marks () indicate the old
values.

In the following descriptions, ‘“movement” refers to the motion of the ““‘current position.”
With video terminals this would be the cursor; with some printers this is the carriage
position. Other printers have different equivalents. In general, the current position is
where a character would be displayed if printed.

terminfo has string capabilities for control sequences that cause movement a number of
full columns or lines. It also has equivalent string capabilities for control sequences that
cause movement a number of smallest steps.

SunOS 5.6 4-413

terminfo (4)

4-414

File Formats

String Capabilities for Motion

mcubl Move 1 step left
mcufl Move 1 step right
mcuul Move 1 step up
mcudl Move 1 step down

mcub Move N steps left
mcuf Move N steps right
mcuu Move N steps up
mcud Move N steps down

mhpa Move N steps from the left
mvpa Move N steps from the top

The latter six strings are each used with a single argument, N.

Sometimes the motion is limited to less than the width or length of a page. Also, some
printers don’t accept absolute motion to the left of the current position. terminfo has
capabilities for specifying these limits.

Limits to Motion

mjump Limit on use of mcubl, mcufl, mcuul, mcudl
maddr Limit on use of mhpa, mvpa

xhpa If set, hpa and mhpa can’t move left
xvpa If set, vpa and mvpa can’t move up

If a printer needs to be in a *‘micro mode” for the motion capabilities described above to
work, there are string capabilities defined to contain the control sequence to enter and
exit this mode. A boolean is available for those printers where using a carriage return
causes an automatic return to normal mode.

Entering/Exiting Micro Mode

smicm Enter micro mode
rmicm Exit micro mode

crxm Using cr exits micro mode

The movement made when a character is printed in the rightmost position varies among
printers. Some make no movement, some move to the beginning of the next line, others
move to the beginning of the same line. terminfo has boolean capabilities for describing
all three cases.

What Happens After Character
Printed in Rightmost Position

sam Automatic move to beginning of same line

Some printers can be put in a mode where the normal direction of motion is reversed.
This mode can be especially useful when there are no capabilities for leftward or upward
motion, because those capabilities can be built from the motion reversal capability and
the rightward or downward motion capabilities. It is best to leave it up to an application

Sun0S 5.6 modified 9 Jul 1996

File Formats

modified 9 Jul 1996

terminfo (4)

to build the leftward or upward capabilities, though, and not enter them in the terminfo
database. This allows several reverse motions to be strung together without intervening
wasted steps that leave and reenter reverse mode.

Entering/Exiting Reverse Modes

slm Reverse sense of horizontal motions
rim Restore sense of horizontal motions
sum Reverse sense of vertical motions
rum Restore sense of vertical motions

While sense of horizontal motions reversed:
mcubl Move 1 step right

mcufl Move 1 step left

mcub Move N steps right

mcuf Move N steps left

cubl Move 1 column right
cufl Move 1 column left
cub Move N columns right
cuf Move N columns left

While sense of vertical motions reversed:
mcuul Move 1 step down

mcudl Move 1step up

mcuu Move N steps down
mcud Move N steps up

cuul Move 1 line down
cudl Move 1 line up

cuu Move N lines down
cud Move N lines up

The reverse motion modes should not affect the mvpa and mhpa absolute motion capa-
bilities. The reverse vertical motion mode should, however, also reverse the action of the
line “wrapping’’ that occurs when a character is printed in the right-most position. Thus
printers that have the standard terminfo capability am defined should experience motion
to the beginning of the previous line when a character is printed in the right-most posi-
tion under reverse vertical motion mode.

The action when any other motion capabilities are used in reverse motion modes is not
defined; thus, programs must exit reverse motion modes before using other motion capa-
bilities.

Two miscellaneous capabilities complete the list of new motion capabilities. One of these
is needed for printers that move the current position to the beginning of a line when cer-
tain control characters, such as *‘line-feed” or *‘form-feed,” are used. The other is used
for the capability of suspending the motion that normally occurs after printing a charac-
ter.

SunOS 5.6 4-415

terminfo (4)

4-416

Margins

File Formats

Miscellaneous Motion Strings

docr List of control characters causing cr
zerom Prevent auto motion after printing next single character

terminfo provides two strings for setting margins on terminals: one for the left and one
for the right margin. Printers, however, have two additional margins, for the top and
bottom margins of each page. Furthermore, some printers require not using motion
strings to move the current position to a margin and then fixing the margin there, but
require the specification of where a margin should be regardless of the current position.
Therefore terminfo offers six additional strings for defining margins with printers.

Setting Margins

smgl Set left margin at current column
smgr Set right margin at current column
smgb Set bottom margin at current line
smgt Set top margin at current line

smgbp Set bottom margin at line N
smglp Set left margin at column N
smgrp Setright margin at column N
smgtp Set top margin at line N

The last four strings are used with one or more arguments that give the position of the
margin or margins to set. If both of smglp and smgrp are set, each is used with a single
argument, N, that gives the column number of the left and right margin, respectively. If
both of smgtp and smgbp are set, each is used to set the top and bottom margin, respec-
tively: smgtp is used with a single argument, N, the line number of the top margin; how-
ever, smgbp is used with two arguments, N and M, that give the line number of the bot-
tom margin, the first counting from the top of the page and the second counting from the
bottom. This accommodates the two styles of specifying the bottom margin in different
manufacturers’ printers. When coding a terminfo entry for a printer that has a settable
bottom margin, only the first or second parameter should be used, depending on the
printer. When writing an application that uses smgbp to set the bottom margin, both
arguments must be given.

If only one of smglp and smgrp is set, then it is used with two arguments, the column
number of the left and right margins, in that order. Likewise, if only one of smgtp and
smgbp is set, then it is used with two arguments that give the top and bottom margins, in
that order, counting from the top of the page. Thus when coding a terminfo entry for a
printer that requires setting both left and right or top and bottom margins simultane-
ously, only one of smglp and smgrp or smgtp and smgbp should be defined; the other
should be left blank. When writing an application that uses these string capabilities, the
pairs should be first checked to see if each in the pair is set or only one is set, and should
then be used accordingly.

Sun0S 5.6 modified 9 Jul 1996

File Formats

Shadows, ltalics,
Wide Characters

modified 9 Jul 1996

terminfo (4)

In counting lines or columns, line zero is the top line and column zero is the left-most
column. A zero value for the second argument with smgbp means the bottom line of the

page.
All margins can be cleared with mgc.

Five new sets of strings describe the capabilities printers have of enhancing printed text.
Enhanced Printing

sshm Enter shadow-printing mode

rshm Exit shadow-printing mode
sitm Enter italicizing mode
ritm Exit italicizing mode

swidm Enter wide character mode
rwidm Exit wide character mode

ssupm Enter superscript mode
rsupm Exit superscript mode
supcs List of characters available as superscripts

ssubm Enter subscript mode
rsubm Exit subscript mode
subcs List of characters available as subscripts

If a printer requires the sshm control sequence before every character to be shadow-
printed, the rshm string is left blank. Thus programs that find a control sequence in
sshm but none in rshm should use the sshm control sequence before every character to
be shadow-printed; otherwise, the sshm control sequence should be used once before the
set of characters to be shadow-printed, followed

by rshm. The same is also true of each of the sitm/ritm, swidm/rwidm, ssupm/rsupm,
and ssubm/ rsubm pairs.

Note that terminfo also has a capability for printing emboldened text (bold). While sha-
dow printing and emboldened printing are similar in that they ““darken’ the text, many
printers produce these two types of print in slightly different ways. Generally, embol-
dened printing is done by overstriking the same character one or more times. Shadow
printing likewise usually involves overstriking, but with a slight movement up and/or to
the side so that the character is *‘fatter.”

It is assumed that enhanced printing modes are independent modes, so that it would be
possible, for instance, to shadow print italicized subscripts.

As mentioned earlier, the amount of motion automatically made after printing a wide
character should be given in widcs.

If only a subset of the printable ASCII characters can be printed as superscripts or sub-
scripts, they should be listed in supcs or subcs strings, respectively. If the ssupm or
ssubm strings contain control sequences, but the corresponding supcs or subcs strings

SunOS 5.6 4-417

terminfo (4)

Section 2-5: Alternate

4-418

Character Sets

File Formats

are empty, it is assumed that all printable ASCII characters are available as superscripts
or subscripts.

Automatic motion made after printing a superscript or subscript is assumed to be the
same as for regular characters. Thus, for example, printing any of the following three
examples will result in equivalent motion:

Bi B, B'
Note that the existing msgr boolean capability describes whether motion control
sequences can be used while in “‘standout mode.” This capability is extended to cover
the enhanced printing modes added here. msgr should be set for those printers that
accept any motion control sequences without affecting shadow, italicized, widened,
superscript, or subscript printing. Conversely, if msgr is not set, a program should end
these modes before attempting any motion.

In addition to allowing you to define line graphics (described in Section 1-12), terminfo
lets you define alternate character sets. The following capabilities cover printers and ter-
minals with multiple selectable or definable character sets.

Alternate Character Sets

SCS Select character set N

scsd Start definition of character set N, M characters
defc Define character A, B dots wide, descender D
resd End definition of character set N

csnm List of character set names

daisy Printer has manually changed print-wheels

The scs, rcsd, and csnm strings are used with a single argument, N, a number from 0 to
63 that identifies the character set. The scsd string is also used with the argument N and
another, M, that gives the number of characters in the set. The defc string is used with
three arguments: A gives the ASCII code representation for the character, B gives the
width of the character in dots, and D is zero or one depending on whether the character
is a ““descender’ or not. The defc string is also followed by a string of “‘image-data”
bytes that describe how the character looks (see below).

Character set 0 is the default character set present after the printer has been initialized.
Not every printer has 64 character sets, of course; using scs with an argument that
doesn’t select an available character set should cause a null result from tparm.

If a character set has to be defined before it can be used, the scsd control sequence is to be
used before defining the character set, and the rcsd is to be used after. They should also
cause a null result from tparm when used with an argument N that doesn’t apply. If a
character set still has to be selected after being defined, the scs control sequence should
follow the rcsd control sequence. By examining the results of using each of the scs, scsd,

Sun0S 5.6 modified 9 Jul 1996

File Formats

Section 2-6: Dot-
Matrix Graphics

modified 9 Jul 1996

terminfo (4)

and rcsd strings with a character set number in a call to tparm, a program can determine
which of the three are needed.

Between use of the scsd and rcsd strings, the defc string should be used to define each
character. To print any character on printers covered by terminfo, the ASCII code is sent
to the printer. This is true for characters in an alternate set as well as “‘normal’’ charac-
ters. Thus the definition of a character includes the ASCII code that represents it. In
addition, the width of the character in dots is given, along with an indication of whether
the character should descend below the print line (such as the lower case letter ‘g’ in
most character sets). The width of the character in dots also indicates the number of
image-data bytes that will follow the defc string. These image-data bytes indicate where
in a dot-matrix pattern ink should be applied to “‘draw’’ the character; the number of
these bytes and their form are defined below under ““Dot-Mapped Graphics.”

It’s easiest for the creator of terminfo entries to refer to each character set by number;
however, these numbers will be meaningless to the application developer. The csnm
string alleviates this problem by providing names for each number.

When used with a character set number in a call to tparm, the csnm string will produce
the equivalent name. These names should be used as a reference only. No naming con-
vention is implied, although anyone who creates a terminfo entry for a printer should
use names consistent with the names found in user documents for the printer. Applica-
tion developers should allow a user to specify a character set by number (leaving it up to
the user to examine the csnm string to determine the correct number), or by name, where
the application examines the csnm string to determine the corresponding character set
number.

These capabilities are likely to be used only with dot-matrix printers. If they are not
available, the strings should not be defined. For printers that have manually changed
print-wheels or font cartridges, the boolean daisy is set.

Dot-matrix printers typically have the capability of reproducing ‘‘raster-graphics”
images. Three new numeric capabilities and three new string capabilities can
help a program draw raster-graphics images independent of the type of dot-matrix
printer or the number of pins or dots the printer can handle at one time.

Dot-Matrix Graphics

npins Number of pins, N, in print-head

spinv Spacing of pins vertically in pins per inch
spinh Spacing of dots horizontally in dots per inch
porder Matches software bits to print-head pins
sbim Start printing bit image graphics, B bits wide
rbim End printing bit image graphics

SunOS 5.6 4-419

terminfo (4)

4-420

File Formats

The sbim sring is used with a single argument, B, the width of the image in dots.

The model of dot-matrix or raster-graphics that terminfo presents is similar to the tech-
nique used for most dot-matrix printers: each pass of the printer’s print-head is assumed
to produce a dot-matrix that is N dots high and B dots wide. This is typically a wide,
squat, rectangle of dots. The height of this rectangle in dots will vary from one printer to
the next; this is given in the npins numeric capability. The size of the rectangle in frac-
tions of an inch will also vary; it can be deduced from the spinv and spinh numeric capa-
bilities.

With these three values an application can divide a complete raster-graphics image into
several horizontal strips, perhaps interpolating to account for different dot spacing verti-
cally and horizontally.

The sbim and rbim strings are used to start and end a dot-matrix image, respectively.
The sbim string is used with a single argument that gives the width of the dot-matrix in
dots. A sequence of “‘image-data bytes’ are sent to the printer after the shim string and
before the rbim string. The number of bytes is a integral multiple of the width of the
dot-matrix; the multiple and the form of each byte is determined by the porder string as
described below.

The porder string is a comma separated list of pin numbers optionally followed by an
numerical offset. The offset, if given, is separated from the list with a semicolon. The
position of each pin number in the list corresponds to a bit in an 8-bit data byte. The pins
are numbered consecutively from 1 to npins, with 1 being the top pin. Note that the term
“pin” is used loosely here; ““ink-jet”” dot-matrix printers don’t have pins, but can be con-
sidered to have an equivalent method of applying a single dot of ink to paper. The bit
positions in porder are in groups of 8, with the first position in each group the most
significant bit and the last position the least significant bit. An application produces 8-bit
bytes in the order of the groups in porder.

An application computes the “image-data bytes” from the internal image, mapping verti-
cal dot positions in each print-head pass into 8-bit bytes, using a 1 bit where ink should
be applied and 0 where no ink should be applied. This can be reversed (0 bit for ink, 1 bit
for no ink) by giving a negative pin number. If a position is skipped in porder, a 0 bit is
used. If a position has a lower case ‘X’ instead of a pin number, a 1 bit is used in the
skipped position. For consistency, a lower case ‘0’ can be used to represent a 0 filled,
skipped bit. There must be a multiple of 8 bit positions used or skipped in porder; if not,
0 bits are used to fill the last byte in the least significant bits. The offset, if given, is added
to each data byte; the offset can be negative.

Some examples may help clarify the use of the porder string. The AT&T 470, AT&T 475
and C.Itoh 8510 printers provide eight pins for graphics. The pins are identified top to
bottom by the 8 bits in a byte, from least significant to most. The porder strings for these
printers would be 8,7,6,5,4,3,2,1. The AT&T 478 and AT&T 479 printers also provide
eight pins for graphics. However, the pins are identified in the reverse order. The porder

Sun0S 5.6 modified 9 Jul 1996

File Formats

Section 2-7: Effect of
Changing Printing
Resolution

modified 9 Jul 1996

terminfo (4)

strings for these printers would be 1,2,3,4,5,6,7,8. The AT&T 5310, AT&T 5320, DEC
LA100, and DEC LNO3 printers provide six pins for graphics. The pins are identified top
to bottom by the decimal values 1, 2, 4, 8, 16 and 32. These correspond to the low six bits
in an 8-bit byte, although the decimal values are further offset by the value 63. The
porder string for these printers would be ,,6,5,4,3,2,1,63, or alternately 0,0,6,5,4,3,2,1;63.

If the control sequences to change the character pitch or the line pitch are used, the pin or
dot spacing may change:
Dot-Matrix Graphics
Changing the Character/Line Pitches

cpi Change character pitch
cpix If set, cpi changes spinh

Ipi Change line pitch
Ipix If set, Ipi changes spinv

Programs that use cpi or Ipi should recalculate the dot spacing:

Dot-Matrix Graphics
Effects of Changing the Character/Line Pitches

Before After
Using cpi with cpix clear:

$bold spinh ’$ $bold spinh$

Using cpi with cpix set:

$bold spinh '$ $bold spinh = bold spinh ’ cdot bold orhi over { bold {orhi "} }$
Using Ipi with Ipix clear:

$bold spinv '$ $bold spinv$

Using Ipi with Ipix set:

$bold spinv '$ $bold spinv = bold {spinv '} cdot bold orhi over { bold {orhi "}}$
Using chr:

$bold spinh ’$ $bold spinh$

Using cvr:

$bold spinv '$ $bold spinv$

orhi’ and orhi are the values of the horizontal resolution in steps per inch, before using
cpi and after using cpi, respectively. Likewise, orvi’ and orvi are the values of the verti-
cal resolution in steps per inch, before using Ipi and after using Ipi, respectively. Thus,
the changes in the dots per inch for dot-matrix graphics follow the changes in steps per
inch for printer resolution.

SunOS 5.6 4-421

terminfo (4)

Section 2-8: Print
Quality

Section 2-9: Printing
Rate and Buffer Size

4-422

File Formats

Many dot-matrix printers can alter the dot spacing of printed text to produce near *“‘letter
quality” printing or “‘draft quality’’ printing. Usually it is important to be able to choose
one or the other because the rate of printing generally falls off as the quality improves.
There are three new strings used to describe these capabilities.

Print Quality

snlq Set near-letter quality print
snrmq Set normal quality print
sdrfq Set draft quality print

The capabilities are listed in decreasing levels of quality. If a printer doesn’t have all
three levels, one or two of the strings should be left blank as appropriate.

Because there is no standard protocol that can be used to keep a program synchronized
with a printer, and because modern printers can buffer data before printing it, a program
generally cannot determine at any time what has been printed. Two new numeric capa-
bilities can help a program estimate what has been printed.

Print Rate/Buffer Size

cps Nominal print rate in characters per second
bufsz Buffer capacity in characters

cps is the nominal or average rate at which the printer prints characters; if this value is
not given, the rate should be estimated at one-tenth the prevailing baud rate. bufsz is the
maximum number of subsequent characters buffered before the guaranteed printing of
an earlier character, assuming proper flow control has been used. If this value is not
given it is assumed that the printer does not buffer characters, but prints them as they are
received.

As an example, if a printer has a 1000-character buffer, then sending the letter ““a’ fol-
lowed by 1000 additional characters is guaranteed to cause the letter ““a” to print. If the
same printer prints at the rate of 100 characters per second, then it should take 10 seconds
to print all the characters in the buffer, less if the buffer is not full. By keeping track of the
characters sent to a printer, and knowing the print rate and buffer size, a program can
synchronize itself with the printer.

Note that most printer manufacturers advertise the maximum print rate, not the nominal
print rate. A good way to get a value to put in for cps is to generate a few pages of text,
count the number of printable characters, and then see how long it takes to print the text.

Applications that use these values should recognize the variability in the print rate.
Straight text, in short lines, with no embedded control sequences will probably print at
close to the advertised print rate and probably faster than the rate in cps. Graphics data
with a lot of control sequences, or very long lines of text, will print at well below the
advertised rate and below the rate in cps. If the application is using cps to decide how

Sun0S 5.6 modified 9 Jul 1996

File Formats

FILES

SEE ALSO

NOTES

modified 9 Jul 1996

terminfo (4)

long it should take a printer to print a block of text, the application should pad the esti-
mate. If the application is using cps to decide how much text has already been printed, it
should shrink the estimate. The application will thus err in favor of the user, who wants,
above all, to see all the output in its correct place.

lusr/share/lib/terminfo/?/0 compiled terminal description database
/usr/share/lib/.COREterm/?/0 subset of compiled terminal description database
/usr/share/lib/tabset/(] tab settings for some terminals, in a format appropri-

ate to be output to the terminal (escape sequences that
set margins and tabs)

Is(1), pg(1), stty(1), tput(1), tty(1), vi(1), infocmp(1M), tic(LM), printf(3S), curses(3X),
curses(3XC)

The most effective way to prepare a terminal description is by imitating the description of
a similar terminal in terminfo and to build up a description gradually, using partial
descriptions with a screen oriented editor, such as vi, to check that they are correct. To
easily test a new terminal description the environment variable TERMINFO can be set to
the pathname of a directory containing the compiled description, and programs will look
there rather than in /usr/share/lib/terminfo.

SunOS 5.6 4-423

TIMEZONE (4)

NAME

SYNOPSIS

DESCRIPTION

SEE ALSO

4-424

File Formats

TIMEZONE - set default system time zone and locale

letc/TIMEZONE
letc/default/init

This file sets the time zone environment variable TZ, and the locale-related environment
variables LANG, LC_COLLATE, LC_CTYPE, LC_MESSAGES, LC_MONETARY,
LC_NUMERIC, and LC_TIME.

/etc/TIMEZONE is a symbolic link to /etc/default/init.
The number of environments that can be set from /etc/default/init is limited to 20.

init(1M), ctime(3C), environ(5)

Sun0S 5.6 modified 20 Dec 1992

File Formats

NAME
SYNOPSIS

DESCRIPTION

EXAMPLES

FILES

SEE ALSO

modified 12 May 1992

timezone (4)

timezone — default timezone data base
letc/timezone

The timezone file contains information regarding the default timezone for each host in a
domain. Alternatively, a single default line for the entire domain may be specified.
Each entry has the format:

Timezone-name official-host-or-domain-name

Items are separated by any number of blanks and/or TAB characters. A ‘# indicates the
beginning of a comment; characters up to the end of the line are not interpreted by rou-
tines which search the file. The timezone is a pathname relative to the directory
/usr/share/lib/zoneinfo.

This file is not actually referenced by any system software; it is merely used as a source
file to construct the NIS timezone.byname map. This map is read by the program
/usr/etc/install/sysIDtool to initialize the timezone of the client system at installation
time.

The timzone file does not set the timezone environment variable TZ. See TIMEZONE(4)
for information to set the Tz environment variable.

Here is a typical line from the /etc/timezone file:
US/Eastern East.Sun.COM #Sun East Coast

letc/timezone

TIMEZONE(4)

SunOS 5.6 4-425

tnf_kernel_probes(4)

NAME

DESCRIPTION

Common Members

Threads

4-426

File Formats

tnf_kernel_probes — TNF kernel probes

The set of probes (trace instrumentation points) available in the standard kernel. The
probes log trace data to a kernel trace buffer in Trace Normal Form (TNF). Kernel probes
are controlled by prex(1). A snhapshot of the kernel trace buffer can be made using
tnfxtract(1) and examined using tnfdump(1).

Each probe has a name and is associated with a set of symbolic keys, or categories. These
are used to select and control probes from prex(1). A probe that is enabled for tracing
generates a TNF record, called an event record. An event record contains two common
members and may contain other probe-specific data members.

tnf type name member name
tnf_probe_event tag
tnf_time_delta time_delta
tag encodes TNF references to two other records:
tag describes the layout of the event record
schedule identifies the writing thread and also contains a
64-bit base time in nanoseconds.
time_delta a 32-bit time offset from the base time; the sum of the two times is

the actual time of the event.

thread_create
tnf_kthread_id tid

tnf_pid pid

tnf_symbol start_pc
Thread creation event.
tid the thread identifier for the new thread
pid the process identifier for the new thread
start_pc the kernel address of its start routine.

thread_state

tnf_kthread_id tid
tnf_microstate state

Thread microstate transition events.

tid optional; if it is absent, the event is for the writing thread, otherwise the
event is for the specified thread.

state indicates the thread state:
e running in user mode
running in system mode
asleep waiting for a user-mode lock
asleep on a kernel object,
runnable (waiting for a cpu)

Sun0S 5.6 modified 4 Mar 1997

File Formats

Scheduling

Blocking

System Calls

modified 4 Mar 1997

tnf_kernel_probes(4)

e stopped.

The values of this member are defined in <sys/msacct.h>. Note that to
reduce trace output, transitions between the system and user microstates
that are induced by system calls are not traced. This information is
implicit in the system call entry and exit events.

thread_exit

Thread termination event for writing thread. This probe has no data members other than
the common members.

thread_queue
tnf_kthread_id tid

tnf_cpuid cpuid
tnf_long priority
tnf_ulong queue_length

Thread scheduling events. These are triggered when a runnable thread is placed on a
dispatch queue.

cpuid specifies the cpu to which the queue is attached.
priority the (global) dispatch priority of the thread.
queue_length the current length of the cpu’s dispatch queue.

thread_block

tnf_opaque reason
tnf_symbols stack

Thread blockage event. This probe captures a partial stack backtrace when the current
thread blocks.

reason the address of the object on which the thread is blocking.

symbols references a TNF array of kernel addresses representing the PCs on the
stack at the time the thread blocks.

syscall_start
tnf_sysnum sysnum
System call entry event.

sysnum the system call number. The writing thread implicitly enters the system
microstate with this event.

syscall_end

tnf_long rvall
tnf_long rval2
tnf_long errno

System call exit event.
rvall
rval2 the two return values of the system call

SunOS 5.6 4-427

tnf_kernel_probes(4)

Page Faults

Pageins and Pageouts

4-428

File Formats

errno the error return.
The writing thread implicitly enters the user microstate with this event.

address_fault

tnf_opaque address
tnf_fault_type fault_type
tnf_seg_access access

Address-space fault event.
address gives the faulting virtual address.

fault_type gives the fault type: invalid page, protection fault, software requested
locking or unlocking.

access gives the desired access protection: read, write, execute or create.
The values for these two members are defined in <vm/seg_enum.h>.
major_fault

tnf_opaque vnode
tnf_offset offset

Major page fault event. The faulting page is mapped to the file given by the vnode
member, at the given offset into the file. (The faulting virtual address is in the most recent
address_fault event for the writing thread.)

anon_private
tnf_opaque address
Copy-on-write page fault event.
address the virtual address at which the new page is mapped.
anon_zero
tnf_opaque address
Zero-fill page fault event.
address the virtual address at which the new page is mapped.
page_unmap

tnf_opaque vnode
tnf_offset offset

Page unmapping event. This probe marks the unmapping of a file system page from the
system.

vnode and offset
identify the file and offset of the page being unmapped.

Sun0S 5.6 modified 4 Mar 1997

File Formats

Page Daemon (Page
Stealer)

Swapper

modified 4 Mar 1997

tnf_kernel_probes(4)

pagein
tnf_opaque vnode
tnf_offset offset
tnf_size size
Pagein start event. This event signals the initiation of pagein 1/0.
vnode and offset
identify the file and offset to be paged in.

size specifies the number of bytes to be paged in.
pageout
tnf_opaque vnode
tnf_ulong pages_pageout
tnf_ulong pages_freed
tnf_ulong pages_reclaimed
Pageout completion event. This event signals the completion of pageout 170.
vnode identifies the file of the pageout request.
pages_pageout the number of pages written out.
pages_freed the number of pages freed after being written out.

pages_reclaimed the number of pages reclaimed after being written out.

pageout_scan_start

tnf_ulong pages_free
tnf_ulong pages_needed

Page daemon scan start event. This event signals the beginning of one iteration of the
page daemon.

pages_free the number of free pages in the system.
pages_needed the number of pages desired free.

pageout_scan_end

tnf_ulong pages_free
tnf_ulong pages_scanned

Page daemon scan end event. This event signals the end of one iteration of the page dae-
mon.

pages_free the number of free pages in the system.

pages_scanned the number of pages examined by the page daemon. (Potentially more
pages will be freed when any queued pageout requests complete.)

swapout_process
tnf_pid pid
tnf_ulong page_count

Address space swapout event. This event marks the swapping out of a process address
space.

SunOS 5.6 4-429

tnf_kernel_probes(4)

Local 1/O

4-430

pid

page_count

swapout_lwp
tnf_pid
tnf_Iwpid
tnf_kthread_
tnf_ulong

File Formats

identifies the process.
reports the number of pages either freed or queued for pageout.

pid

Iwpid

tid
page_count

id

Light-weight process swapout event. This event marks the swapping out of an LWP and

its stack.

pid

lwpid

tid member

page_count

swapin_lwp
tnf_pid
tnf_Iwpid
tnf_kthread_
tnf_ulong

the LWP’s process identifier

the LWP identifier

the LWP’s kernel thread identifier.
the number of pages swapped out.

pid

Iwpid

tid
page_count

id

Light-weight process swapin event. This event marks the swapping in of an LWP and its

stack.

pid

lwpid

tid
page_count

strategy

tnf_device
tnf_diskaddr
tnf_size
tnf_opaque
tnf_bioflags

the LWP’s process identifier

the LWP identifier

the LWP’s kernel thread identifier.
the number of pages swapped in.

device
block
size
buf
flags

Block 170 strategy event. This event marks a call to the strategy(9E) routine of a block

device driver.

device
block
size

buf

flags
biodone

tnf_device
tnf_diskaddr
tnf_opaque

contains the major and minor numbers of the device.

the logical block number to be accessed on the device.

the size of the 1/0 request.

the kernel address of the buf(9S) structure associated with the transfer.
the buf(9S) flags associated with the transfer.

device
block
buf

Sun0S 5.6 modified 4 Mar 1997

File Formats

SEE ALSO

modified 4 Mar 1997

tnf_kernel_probes(4)

Buffered 1/0 completion event. This event marks calls to the biodone(9F) routine.

device contains the major and minor numbers of the device.
block the logical block number accessed on the device.
buf the kernel address of the buf(9S) structure associated with the transfer.
physio_start
tnf_device device
tnf_offset offset
tnf_size size

tnf_bioflags rw

Raw 170 start event. This event marks entry into the physio(9F) routine which performs
unbuffered 1/0.

device contains the major and minor numbers of the device of the transfer.
offset the logical offset on the device for the transfer.

size the number of bytes to be transferred.

rw the direction of the transfer: read or write (see buf(9S)).
physio_end

tnf_device device
Raw 1/0 end event. This event marks exit from the physio(9F) routine.
device the major and minor numbers of the device of the transfer.

prex(1), thnfdump(1), tnfxtract(1), libtnfctl(3X), TNF_PROBE(3X), tracing(3X),
strategy(9E), biodone(9F), physio(9F), buf(9S)

SunOS 5.6 4-431

ts_dptbl(4)

NAME

DESCRIPTION

4-432

File Formats

ts_dptbl — time-sharing dispatcher parameter table

The process scheduler (or dispatcher) is the portion of the kernel that controls allocation
of the CPU to processes. The scheduler supports the notion of scheduling classes where
each class defines a scheduling policy, used to schedule processes within that class.
Associated with each scheduling class is a set of priority queues on which ready to run
processes are linked. These priority queues are mapped by the system configuration into
a set of global scheduling priorities which are available to processes within the class.
(The dispatcher always selects for execution the process with the highest global schedul-
ing priority in the system.) The priority queues associated with a given class are viewed
by that class as a contiguous set of priority levels numbered from 0 (lowest priority) to n
(highest priority—a configuration-dependent value). The set of global scheduling priori-
ties that the queues for a given class are mapped into might not start at zero and might
not be contiguous (depending on the configuration).

Processes in the time-sharing class which are running in user mode (or in kernel mode
before going to sleep) are scheduled according to the parameters in a time-sharing
dispatcher parameter table (ts_dptbl). Processes in the inter-active scheduling class are
also scheduled according to the parameters in the time-sharing dispatcher parameter
table. (Time-sharing processes and inter-active processes running in kernel mode after
sleeping are run within a special range of priorities reserved for such processes and are
not affected by the parameters in the ts_dptbl until they return to user mode.) The
ts_dptbl consists of an array (config_ts_dptbl[]) of parameter structures (struct
tsdpent_t), one for each of the n priority levels used by time-sharing processes and inter-
active processes in user mode. The structures are accessed via a pointer, (ts_dptbl), to
the array. The properties of a given priority level i are specified by the ith parameter
structure in this array (ts_dptbl[i]).

A parameter structure consists of the following members. These are also described in the
/usr/include/sys/ts.h header.

ts_globpri
The global scheduling priority associated with this priority level. The mapping
between time-sharing priority levels and global scheduling priorities is deter-
mined at boot time by the system configuration. ts_globpri is the only member
of the ts_dptbl which cannot be changed with dispadmin(1M).

ts_quantum
The length of the time quantum allocated to processes at this level in ticks (Hz).
ts_tgexp
Priority level of the new queue on which to place a process running at the
current level if it exceeds its time quantum. Normally this field links to a lower
priority time-sharing level that has a larger quantum.

SunOS 5.6 modified 26 Apr 1994

File Formats

TS_DPTBL
LOADABLE
MODULE

DISPADMIN
CONFIGURATION
FILE

modified 26 Apr 1994

ts_dptbl(4)

ts_slpret
Priority level of the new queue on which to place a process, that was previously
in user mode at this level, when it returns to user mode after sleeping. Nor-
mally this field links to a higher priority level that has a smaller quantum.

ts_maxwait
A per process counter, ts_dispwait is initialized to zero each time a time-sharing
or inter-active process is placed back on the dispatcher queue after its time
quantum has expired or when it is awakened (ts_dispwait is not reset to zero
when a process is preempted by a higher priority process). This counter is
incremented once per second for each process on the dispatcher queue. Ifa
process’s ts_dispwait value exceeds the ts_maxwait value for its level, the
process’s priority is changed to that indicated by ts_lwait. The purpose of this
field is to prevent starvation.

ts_lwait Move a process to this new priority level if ts_dispwait is greater than
ts_maxwait.

An administrator can affect the behavior of the time-sharing portion of the scheduler by
reconfiguring the ts_dptbl. Since processes in the time-sharing and inter-active schedul-
ing classes share the same dispatch parameter table (ts_dptbl), changes to this table will
affect both scheduling classes. There are two methods available for doing this:
reconfigure with a loadable module at boot-time or by using dispadmin(1M) at run-time.

The ts_dptbl can be reconfigured with a loadable module which contains a new time
sharing dispatch table. The module containing the dispatch table is separate from the TS
loadable module which contains the rest of the time-sharing and inter-active software.
This is the only method that can be used to change the number of time-sharing priority
levels or the set of global scheduling priorities used by the time-sharing and inter-active
classes. The relevant procedure and source code is described in the REPLACING THE
TS_DPTBL LOADABLE MODULE section.

With the exception of ts_globpri all of the members of the ts_dptbl can be examined and
modified on a running system using the dispadmin(1M) command. Invoking dispad-
min for the time-sharing or inter-active class allows the administrator to retrieve the
current ts_dptbl configuration from the kernel’s in-core table, or overwrite the in-core
table with values from a configuration file. The configuration file used for input to
dispadmin must conform to the specific format described below.

Blank lines are ignored and any part of a line to the right of a # symbol is treated as a

comment. The first non-blank, non-comment line must indicate the resolution to be used

for interpreting the ts_quantum time quantum values. The resolution is specified as
RES=res

where res is a positive integer between 1 and 1,000,000,000 inclusive and the resolution

used is the reciprocal of res in seconds (for example, RES=1000 specifies millisecond reso-

lution). Although very fine (nanosecond) resolution may be specified, the time quantum
lengths are rounded up to the next integral multiple of the system clock’s resolution.

SunOS 5.6 4-433

ts_dptbl(4)

EXAMPLES

REPLACING THE

4-434

TS_DPTBL
LOADABLE
MODULE

File Formats

The remaining lines in the file are used to specify the parameter values for each of the
time-sharing priority levels. The first line specifies the parameters for time-sharing level
0, the second line specifies the parameters for time-sharing level 1, etc. There must be
exactly one line for each configured time-sharing priority level.

The following excerpt from a dispadmin configuration file illustrates the format. Note
that for each line specifying a set of parameters there is a comment indicating the
corresponding priority level. These level numbers indicate priority within the time-
sharing and inter-active classes, and the mapping between these time-sharing priorities
and the corresponding global scheduling priorities is determined by the configuration
specified in the ts master file. The level numbers are strictly for the convenience of the
administrator reading the file and, as with any comment, they are ignored by dispadmin.
dispadmin assumes that the lines in the file are ordered by consecutive, increasing prior-
ity level (from 0 to the maximum configured time-sharing priority). The level numbers in
the comments should normally agree with this ordering; if for some reason they don'’t,
however, dispadmin is unaffected.

Time-Sharing Dispatcher Configuration File RES=1000
#1ts_quantum ts tgexp ts_slpret ts_maxwait ts_lwait PRIORITY

LEVEL
500 0 10 5 10 # 0
500 0 11 5 11 # 1
500 1 12 5 12 # 2
500 1 13 5 13 # 3
500 2 14 5 14 # 4
500 2 15 5 15 # 5
450 3 16 5 16 # 6
450 3 17 5 17 # 7
50 48 59 5 59 # 58
50 49 59 5 59 # 59

In order to change the size of the time sharing dispatch table, the loadable module which
contains the dispatch table information will have to be built. It is recommended that you
save the existing module before using the following procedure.

1. Place the dispatch table code shown below in a file called ts_dptbl.c An
example of this file follows.
2. Compile the code using the given compilation and link lines supplied.

cc —¢ -0 -D_KERNEL ts_dptbl.c
Id -r-o TS_DPTBL ts_dptbl.o

3. Copy the current dispatch table in /kernel/sched to TS_DPTBL.bak.
Replace the current TS_DPTBL in /kernel/sched.

SunOS 5.6 modified 26 Apr 1994

File Formats

modified 26 Apr 1994

ts_dptbl(4)

5. You will have to make changes in the /etc/system file to reflect the changes
to the sizes of the tables. See system(4). The two variables affected are
ts_maxupri and ts_maxkmdpri. The syntax for setting these is as follows:

set TS:ts_maxupri=(value for max time-sharing user priority)
set TS:ts_maxkmdpri=(number of kernel mode priorities - 1)

6. Reboot the system to use the new dispatch table.

NOTE: Great care should be used in replacing the dispatch table using this method. If
you do not get it right, panics may result, thus making the system unusable.

The following is an example of a ts_dptbl.c file used for building the new ts_dptbl.
/OBEGIN ts_dptbl.c I

#include <sys/proc.h>
#include <sys/priocntl.h>
#include <sys/class.h>
#include <sys/disp.h>
#include <sys/ts.h>
#include <sys/rtpriocntl.h>

/0
OThis is the loadable module wrapper.
a

#include <sys/modctl.h>

extern struct mod_ops mod_miscops;
/0
OModule linkage information for the kernel.

a

static struct modImisc modImisc = {
&mod_miscops, "Time sharing dispatch table"

h

static struct modlinkage modlinkage = {
MODREV_1, &modImisc, 0

return (mod_install(&modlinkage));

SunOS 5.6 4-435

ts_dptbl(4) File Formats

_info(modinfop)
struct modinfo Cmodinfop;

{
}

return (mod_info(&modlinkage, modinfop));

/0

Oarray of global priorities used by ts procs sleeping or
Orunning in kernel mode after sleep. Must have at least
040 values.

a

pri_t config_ts_kmdpris[] ={
60,61,62,63,64,65,66,67,68,69,
70,71,72,73,74,75,76,77,78,79,

80,81,82,83,84,85,86,87,88,89,
90,91,92,93,94,95,96,97,98,99,
I3
tsdpent_t config_ts_dptbl[] ={
/Oglbpri gntm tgexp slprt mxwt Iwt [0
0, 100, 0, 10, 5, 10,
1, 100, 0, 11, 5, 11,
2, 100, 1, 12, 5, 12,
3, 100, 1, 13, 5, 13,
4, 100, 2, 14, 5, 14,
5, 100, 2, 15, 5, 15,
6, 100, 3, 16, 5, 16,
7, 100, 3, 17, 5, 17,
8, 100, 4, 18, 5, 18,
9, 100, 4, 19, 5, 19,
10, 80, 5, 20, 5, 20,
11, 80, 5, 21, 5, 21,
12, 80, 6, 22, 5, 22,
13, 80, 6, 23, 5, 23,
14, 80, 7, 24, 5, 24,
15, 80, 7, 25, 5, 25,
16, 80, 8, 26, 5, 26,
17, 80, 8, 27, 5, 27,
18, 80, 9, 28, 5, 28,
19, 80, 9, 29, 5, 29,
20, 60, 10, 30, 5, 30,
21, 60, 11 31, 5 31,

4-436 SunOS 5.6 modified 26 Apr 1994

File Formats ts_dptbl(4)

22, 60, 12, 32, 5, 32,
23, 60, 13, 33, 5, 33,
24, 60, 14, 34, 5, 34,
25, 60, 15, 35, 5, 35,
26, 60, 16, 36, 5, 36,
27, 60, 17, 37, 5, 37,
28, 60, 18, 38, 5, 38,
29, 60, 19, 39, 5, 39,
30, 40, 20, 40, 5, 40,
31, 40, 21, 41, 5, 41,
32, 40, 22, 42, 5, 42,
33, 40, 23, 43, 5, 43,
34, 40, 24, 44, 5, 44,
35, 40, 25, 45, 5, 45,
36, 40, 26, 46, 5, 46,
37, 40, 21, 47, 5, 47,
38, 40, 28, 48, 5, 48,
39, 40, 29, 49, 5, 49,
40, 20, 30, 50, 5, 50,
41, 20, 31, 50, 5, 50,
42, 20, 32, 51, 5, 51,
43, 20, 33, 51, 5, 51,
44, 20, 34, 52, 5, 52,
45, 20, 35, 52, 5, 52,
46, 20, 36, 53, 5, 53,
47, 20, 37, 53, 5, 53,
48, 20, 38, 54, 5, 54,
49, 20, 39, 54, 5, 54,
50, 10, 40, 55, 5, 55,
51, 10, 41, 55, 5, 55,
52, 10, 42, 56, 5, 56,
53, 10, 43, 56, 5, 56,
54, 10, 44, 57, 5, 57,
55, 10, 45, 57, 5, 57,
56, 10, 46, 58, 5, 58,
57, 10, 47, 58, 5, 58,
58, 10, 48, 59, 5, 59,
59, 10, 49, 59, 5, 59,

I3

short config_ts_maxumdpri = sizeof (config_ts_dptbl)/16 - 1;

/0

OReturn the address of config_ts_dptbl

a

modified 26 Apr 1994 SunOS 5.6 4-437

ts_dptbl(4)

4-438

FILES

SEE ALSO

NOTES

File Formats

tsdpent_t O
ts_getdptbl()
{

return (config_ts_dptbl);
}

/0

OReturn the address of config_ts_kmdpris
a

int O

ts_getkmdpris()

{

return (config_ts_kmdpris);

}

/0

OReturn the address of ts_maxumdpri
a

short

ts_getmaxumdpri()

{
}

/OEND ts_dptbl.c O

return (config_ts_maxumdpri);

<sys/ts.h>

priocntl(1), dispadmin(1M), priocntl(2), system(4)

System Administration Guide
System Interface Guide

dispadmin does some limited sanity checking on the values supplied in the configuration
file. The sanity checking is intended to ensure that the new ts_dptbl values do not cause
the system to panic. The sanity checking does not attempt to analyze the effect that the
new values will have on the performance of the system. Unusual ts_dptbl configurations
may have a dramatic negative impact on the performance of the system.

No sanity checking is done on the ts_dptbl values specified in the TS_DPTBL loadable
module. Specifying an inconsistent or nonsensical ts_dptbl configuration through the

TS_DPTBL loadable module could cause serious performance problems and/or cause
the system to panic.

SunOS 5.6 modified 26 Apr 1994

File Formats

NAME

DESCRIPTION

SEE ALSO

modified 27 Jan 1994

ttydefs (4)

ttydefs — file contains terminal line settings information for ttymon

/etc/ttydefs is an administrative file that contains records divided into fields by colons
(":"). This information used by ttymon to set up the speed and terminal settings fora TTY

port.

The ttydefs file contains the following fields:

ttylabel

initial-flags

final-flags

autobaud

nextlabel

The string ttymon tries to match against the TTY port’s ttylabel field in
the port monitor administrative file. It often describes the speed at
which the terminal is supposed to run, for example, 1200.

Contains the initial termio(71) settings to which the terminal is to be set.
For example, the system administrator will be able to specify what the
default erase and kill characters will be. initial-flags must be specified in
the syntax recognized by the stty command.

final-flags must be specified in the same format as initial-flags. ttymon
sets these final settings after a connection request has been made and
immediately prior to invoking a port’s service.

If the autobaud field contains the character 'A,” autobaud will be
enabled. Otherwise, autobaud will be disabled. ttymon determines
what line speed to set the TTY port to by analyzing the carriage returns
entered. If autobaud has been disabled, the hunt sequence is used for
baud rate determination.

If the user indicates that the current terminal setting is not appropriate
by sending a BREAK, ttymon searchs for a ttydefs entry whose ttylabel
field matches the nextlabel field. If a match is found, ttymon uses that
field as its ttylabel field. A series of speeds is often linked together in this
way into a closed set called a hunt sequence. For example, 4800 may be
linked to 1200, which in turn is linked to 2400, which is finally linked to
4800.

sttydefs(1M), ttymon(1M), termio(71)
System Administration Guide

SunOS 5.6 4-439

ttysrch (4)

NAME

DESCRIPTION

4-440

EXAMPLES

File Formats

ttysrch — directory search list for ttyname

ttysrch is an optional file that is used by the ttyname library routine. This file contains
the names of directories in /dev that contain terminal and terminal-related device files.
The purpose of this file is to improve the performance of ttyname by indicating which
subdirectories in /dev contain terminal-related device files and should be searched first.
These subdirectory names must appear on separate lines and must begin with /dev.
Those path names that do not begin with /dev will be ignored and a warning will be sent
to the console. Blank lines (lines containing only white space) and lines beginning with
the comment character "#" will be ignored. For each file listed (except for the special
entry /dev), ttyname will recursively search through subdirectories looking for a match.
If /dev appears in the ttysrch file, the /dev directory itself will be searched but there will
not be a recursive search through its subdirectories.

When ttyname searches through the device files, it tries to find a file whose major/minor
device number, file system identifier, and inode number match that of the file descriptor
it was given as an argument. If a match is not found, it will settle for a match of just
major/minor device and file system identifier, if one can be found. However, if the file
descriptor is associated with a cloned device, this algorithm does not work efficiently
because the inode number of the device file associated with a clonable device will never
match the inode number of the file descriptor that was returned by the open of that clon-
able device. To help with these situations, entries can be put into the /etc/ttysrch file to
improve performance when cloned devices are used as terminals on a system (for exam-
ple, for remote login). However, this is only useful if the minor devices related to a
cloned device are put into a subdirectory. (It is important to note that device files need
not exist for cloned devices and if that is the case, ttyname will eventually fail.) An
optional second field is used in the /etc/ttysrch file to indicate the matching criteria. This
field is separated by white space (any combination of blanks or tabs). The letter M means
major/minor device number, F means file system identifier, and | means inode number.
If this field is not specified for an entry, the default is MFI which means try to match on
all three. For cloned devices the field should be MF, which indicates that it is not neces-
sary to match on the inode number.

Without the /etc/ttysrch file, ttyname will search the /dev directory by first looking in the
directories /dev/term, /dev/pts, and /dev/xt. If a system has terminal devices installed in
directories other than these, it may help performance if the ttysrch file is created and con-
tains that list of directories.

A sample /etc/ttysrch file follows:

/dev/term MFI
/dev/pts MFI
/dev/xt MFI
/dev/slan MF
Sun0S 5.6 modified 23 Feb 1994

File Formats ttysrch (4)

This file tells ttyname that it should first search through those directories listed and that
when searching through the /dev/slan directory, if a file is encountered whose
major/minor devices and file system identifier match that of the file descriptor argument
to ttyname, this device name should be considered a match.

FILES | /etc/ttysrch

SEE ALSO | ttyname(3C)

modified 23 Feb 1994 SunOS 5.6 4-441

ufsdump (4) File Formats

NAME ufsdump, dumpdates — incremental dump format
SYNOPSIS | #include <sys/types.h>
#include <sys/inode.h>
#include <protocols/dumprestore.h>
/etc/dumpdates
DESCRIPTION Tapes used by ufsdump(1M) and ufsrestore(1M) contain:

4-442

e aheader record

e two groups of bit map records

e agroup of records describing directories

e agroup of records describing files

The format of the header record and of the first record of each description as given in the
include file <protocols/dumprestore.h> is:

#define TP_BSIZE

#define NTREC

#define HIGHDENSITYTREC
#define CARTRIDGETREC
#define TP_NINDIR

#define TP_NINOS

#define LBLSIZE

#define NAMELEN

#define NFS_MAGIC
#define CHECKSUM

union u_data {

1024

10

32

63

(TP_BSIZE/2)

(TP_NINDIR / sizeop (long))
16

64

(int) 60012
(int) 84446

char s_addrs[TP_NINDIR];
long s_inos[TP_NINOS];

union u_spcl {

char dummy[TP_BSIZE];

struct s_spcl {
long
time_t
time_t
long
daddr_t
ino_t
long
long
struct dinode
long
union
char

SunOS 5.6

c_type;
c_date;
c_ddate;
c_volume;
c_tapea;
c_inumber;
C_magic;
c_checksum;
c_dinode;
c_count;
u_data c_data;
c_label[LBLSIZE];

modified 7 Jan 1994

File Formats

modified 7 Jan 1994

long

char

char

char

long

long

long

}s_spcl;

}u_spcl;
#define spcl u_spcl.s_spcl
#define ¢_addr c_data.s_addrs
#define c_inos cdata.s_inos

#define TS_TAPE
#define TS_INODE
#define TS_ADDR
#define TS_BITS
#define TS_CLRI
#define TS_END
#define TS_EOM

#define DR_NEWHEADER
#define DR_INODEINFO
#define DR_REDUMP
#define DR_TRUELIC
#define DUMPOUTFMT
#define DUMPINFMT

The constants are described as follows:

ufsdump (4)

c_level;
c_filesys[NAMELEN];
¢_dev[NAMELEN];
¢_host[NAMELEN];
c_flags;

c_firstrec;
c_spare[32];

~NOToO WhDNPRE

1

2

4

8

"06-24s %c %s"

"0%024s %c %[~ \n]\n"

TP_BSIZE Size of file blocks on the dump tapes. Note that TP_BSIZE must be a
multiple of DEV_BSIZE.
NTREC Default number of TP_BSIZE byte records in a physical tape block,

changeable by the b option to ufsdump(1M).

HIGHDENSITYNTREC

Default number of TP_BSIZE byte records in a physical tape block
on 6250 BPI or higher density tapes.

CARTRIDGETREC

Default number of TP_BSIZE records in a physical tape block on car-

tridge tapes.

TP_NINDIR Number of indirect pointers in a TS_INODE or TS_ADDR record. It
must be a power of 2.

TP_NINOS The maximum number of volumes on a tape. Used for tape label-
ing in hsmdump and hsmrestore (available with Online:Backup 2.0
optional software package SUNWhsm).

SunOS 5.6

4-443

ufsdump (4)

4-444

File Formats

LBLSIZE The maximum size of a volume label. Used for tape labeling in
hsmdump and hsmrestore (available with Online:Backup 2.0
optional software package SUNWhsm).

NAMELEN The maximum size of a host’s name.
NFS_MAGIC All header records have this number in c_magic.
CHECKSUM Header records checksum to this value.

The TS_ entries are used in the c_type field to indicate what sort of header this is. The
types and their meanings are as follows:

TS_TAPE Tape volume label.

TS_INODE A file or directory follows. The ¢_dinode field is a copy of the disk
inode and contains bits telling what sort of file this is.

TS _ADDR A subrecord of a file description. See s_addrs below.

TS_BITS A bit map follows. This bit map has a one bit for each inode that
was dumped.

TS_CLRI A bit map follows. This bit map contains a zero bit for all inodes
that were empty on the file system when dumped.

TS_END End of tape record.

TS_EOM floppy EOM — restore compat with old dump

The flags are described as follows:

DR_NEWHEADER
New format tape header.

DR_INFODEINFO
Header contains starting inode info.

DR_REDUMP Dump contains recopies of active files.
DR_TRUEINC Dump is a "true incremental”.
DUMPOUTFMT Name, incon, and ctime (date) for printf.
DUMPINFMT Inverse for scanf.

The fields of the header structure are as follows:

s_addrs An array of bytes describing the blocks of the dumped file. A byte
is zero if the block associated with that byte was not present on the
file system; otherwise, the byte is non-zero. If the block was not
present on the file Isystem, no block was dumped; the block will be
stored as a hole in the file. If there is not sufficient space in this
record to describe all the blocks in a file, TS_ADDR records will be
scattered through the file, each one picking up where the last left off

s_inos The starting inodes on tape.
c_type The type of the record.
c_date The date of the previous dump.
Sun0S 5.6 modified 7 Jan 1994

File Formats

ATTRIBUTES

SEE ALSO

modified 7 Jan 1994

ufsdump (4)

c_ddate The date of this dump.

c_volume The current volume number of the dump.

c_tapea The logical block of this record.

c_inumber The number of the inode being dumped if this is of type TS_INODE.

C_magic This contains the value MAGIC above, truncated as needed.

¢_checksum This contains whatever value is needed to make the record sum to
CHECKSUM.

¢_dinode This is a copy of the inode as it appears on the file system.

c_count The count of bytes in s_addrs.

u_data c_data

The union of either u_data ¢c_data The union of either s_addrs or
s_inos.

c_label Label for this dump.

c_level Level of this dump.

c_filesys Name of dumped file system.
c_dev Name of dumped service.
¢_host Name of dumped host.
c_flags Additional information.
c_firstrec First record on volume.
c_spare Reserved for future uses.

Each volume except the last ends with a tapemark (read as an end of file). The last
volume ends with a TS_END record and then the tapemark.

The dump history is kept in the file /etc/dumpdates. It is an ASCII file with three fields
separated by white space:

e The name of the device on which the dumped file system resides.
e The level number of the dump tape; see ufsdump(1M).
e The date of the incremental dump in the format generated by ctime(3C).

DUMPOUTFMT is the format to use when using printf(3S) to write an entry to
/etc/dumpdates; DUMPINFMT is the format to use when using scanf(3S) to read an entry
from /etc/dumpdates.

See attributes(5) for a description of the following attributes:

ATTRIBUTE TYPE
Stability Level

ATTRIBUTE VALUE
Unstable

ufsdump(1M), ufsrestore(1M), ctime(3C), printf(3S), scanf(3S), attributes(5), types(5)

SunOS 5.6 4-445

unistd (4)

NAME
SYNOPSIS

DESCRIPTION

4-446

File Formats

unistd — header for symbolic constants
#include <unistd.h>

The <unistd.h> header defines the symbolic constants and structures which are not
already defined or declared in some other header. The contents of this header are shown
below.

The following symbolic constants are defined for the access(2)) function:

R_OK Test for read permission.

W_OK Test for write permission.

X_OK Test for execute (search) permission.
F_ OK Test for existence of file.

The constants F_OK, R_OK, W_OK, and X_OK, and the expressions R_OK | W_OK,
R_OK | X_OK, and R_OK | W_OK | X_OK all have distinct values.

The following constant is declared:

NULL Null pointer

The following symbolic constants are defined for the lockf(3C) function;
F_ULOCK Unlock a previously locked region.
F LOCK Lock a region for exclusive use.
F_TLOCK Test and lock a region for exclusive use.
F_TEST Test a region for other processes locks.

The following symbolic constants are defined for the Iseek(2) and fcntl(2) functions (they
have distinct values):

SEEK_SET Set file offset to offset.
SEEK_CUR Set file offset to current plus offset.
SEEK_END Set file offset to EOF plus offset.
The following symbolic constants are defined (with fixed values):
_POSIX_VERSION Integer value indicating version of the POSIX stan-
dard (see standards(5).
_XOPEN_VERSION integer value indicating version of the XPG to which

system conforms.
The following symbolic constants are defined to indicate that the option is present:
_POSIX_JOB_CONTROL Implementation supports job control.

_POSIX_SAVED_IDS The exec functions (see exec(2)) save the effective
user and group.

Sun0S 5.6 modified 21 Mar 1997

File Formats

SEE ALSO

modified 21 Mar 1997

unistd (4)

_POSIX_VDISABLE Terminal special characters defined in <termios.h>
(see termio(71)) can be disabled using this character.

The following symbolic constants are defined for sysconf(3C)):
_SC_ARG_MAX
_SC_CLK_TCK
_SC_JOB_CONTROL
_SC_NGROUPS_MAX
_SC_OPEN_MAX
_SC_PAGESIZE
_SC_PASS_MAX
_SC_SAVED_IDS
_SC_VERSION
_SC_XOPEN_VERSION

The following symbolic constants are defined for fpathconf(2)):
_PC_CHOWN_RESTRICTED
_PC_LINK_MAX
_PC_MAX_CANON
_PC_MAX_INPUT
_PC_NAME_MAX
_PC_NO_TRUNC
_PC_PATH_MAX

_PC_PIPE_BUF
_PC_VDISABLE
The following symbolic constants are defined for file streams:
STDIN_FILENO File number (0) of stdin.
STDOUT_FILENO File number (1) of stout.
STDERR_FILENO File number (2) of stderr.
The following pathnames are defined:
GF_PATH Pathname of the group file.
PF_PATH Pathname of the passwd file.
The following values for constants are defined:
_POSIX_VERSION 199009L
_XOPEN_VERSION 3

access(2), exec(2), fcntl(2), fpathconf(2), Iseek(2), lockf(3C), sysconf(3C), termios(3),
group(4), passwd(4), standards(5), termio(71)

SunOS 5.6 4-447

updaters(4)

NAME
SYNOPSIS

DESCRIPTION

FILES
SEE ALSO

NOTES

4-448

File Formats

updaters — configuration file for NIS updating
/varlyp/updaters

The file /var/yp/updaters is a makefile (see make(1S)) which is used for updating the Net-
work Information Service (NIS) databases. Databases can only be updated in a secure
network, that is, one that has a publickey(4) database. Each entry in the file is a make
target for a particular NIS database. For example, if there is an NIS database named
passwd.byname that can be updated, there should be a make target named
passwd.byname in the updaters file with the command to update the file.

The information necessary to make the update is passed to the update command through
standard input. The information passed is described below (all items are followed by a
NEWLINE except for 4 and 6):

Network name of client wishing to make the update (a string).
Kind of update (an integer).

Number of bytes in key (an integer).

Actual bytes of key.

Number of bytes in data (an integer).

6. Actual bytes of data.

After receiving this information through standard input, the command to update the par-
ticular database determines whether the user is allowed to make the change. If not, it
exits with the status YPERR_ACCESS. If the user is allowed to make the change, the com-
mand makes the change and exits with a status of zero. If there are any errors that may
prevent the updaters from making the change, it should exit with the status that matches
a valid NIS error code described in <rpcsvc/ypcint.h>.

a M w e

/varlyp/updaters The makefile used for updating the NIS databases.
make(1S), rpc.ypupdated(1M), publickey(4)

The Network Information Service (NIS) was formerly known as Sun Yellow Pages (YP).
The functionality of the two remains the same; only the name has changed. The name
Yellow Pages is a registered trademark in the United Kingdom of British Telecommunica-
tions plc, and may not be used without permission.

Sun0S 5.6 modified 24 Oct 1996

File Formats

NAME

SYNOPSIS

DESCRIPTION

modified 3 Jul 1990

utmp (4)

utmp, wtmp - utmp and wtmp entry formats
#include <utmp.h>

utmp and wtmp hold user and accounting information for commands such as who,
write, and login. These files have the following structure, defined in <utmp.h>:

#define UTMP_FILE "/var/fadm/utmp"

#define WTMP_FILE "/var/fadm/wtmp"

#define ut_name ut_user

struct utmp {
char ut_user[8]; /Ouser login name O
char ut_id[4]; /O/sbin/inittab id (created by [

/Oprocess that puts entry in utmp) O

char ut_line[12]; /Odevice name (console, Inxx) I
short ut_pid,; /Oprocess id O
short ut_type; /Otype of entry T

struct exit_status {
short e_termination; /Oprocess termination status [J

short e_exit; /Oprocess exit status [0
} ut_exit; /Oexit status of a process
/Omarked as DEAD_PROCESS [
time_t ut_time; /Otime entry was made [

%
/0 Definitions for ut_type [0
#define EMPTY 0
#define RUN_LVL 1
#define BOOT_TIME 2
#define OLD_TIME 3
#define NEW_TIME 4

#define INIT_PROCESS 5/0process spawned by "init"
#define LOGIN_PROCESS 6/0a "getty" process waiting for login [
#define USER_PROCESS 7/0a user process [

#define DEAD_PROCESS 8

#define ACCOUNTING?9

#define UTMAXTYPE ACCOUNTING/Omax legal value of ut_type I
/00 Below are special strings or formats used in the "ut_line™ [

/0 field when accounting for something other than a process. [

/0 No string for the ut_line field can be more than 11 chars + [J

/0 a null character in length. [0

#define RUNLVL_MSG "run-level %c"

#define BOOT_MSG "system boot"

#define OTIME_MSG "old time"

#define NTIME_MSG "new time"

SunOS 5.6

4-449

utmp (4) File Formats

FILES | /var/adm/utmp
/varfadm/wtmp

SEE ALSO login(1), who(1), write(1)

4-450 Sun0S 5.6 modified 3 Jul 1990

File Formats

NAME

SYNOPSIS

DESCRIPTION

modified 3 Jul 1990

utmpx(4)

utmpx, wtmpx — utmpx and wtmpx entry formats

#include <utmpx.h>

utmpx is an extended version of utmp(4).

utmpx and wtmpx hold user and accounting information for commands such as who,
write, and login. These files have the following structure as defined by <utmpx.h>:

#define
#define
#define
#define

UTMPX_FILE
WTMPX_FILE
ut_name
ut_xtime

struct utmpx {

char
char
char

pid_t
short
struct

struct
long

long

short

char

}.

ut_user[32];
ut_id[4];
ut_line[32];

ut_pid;
ut_type;
exit_status ut_exit;

timeval ut_tv;
ut_session;

pad[3];
ut_syslen;

ut_host[257];

/O0Definitions for ut_type [

#define
#define
#define
#define
#define
#define
#define

#define
#define
#define

#define

EMPTY 0
RUN_LVL 1
BOOT_TIME 2
OLD_TIME 3
NEW_TIME 4
INIT_PROCESS 5
LOGIN_PROCESS 6

USER_PROCESS 7
DEAD_PROCESS 8
ACCOUNTING 9

UTMAXTYPE ACCOUNTING

Sun0OS 5.6

"/varfadm/utmpx"
"/varfadm/wtmpx"
ut_user
ut_tv.tv_sec

/Ouser login name [
[Oinittab id O

/Odevice name [
/O(console, Inxx) O
/Oprocess id [

/Otype of entry OO

/Oprocess termination/exit [1
/Ostatus 1

/Otime entry was made [J
/Osession ID, used for
/Owindowing O

/Oreserved for future use [0
/Osignificant length of [J
/Out_host O

/0including terminating null [J
/Oremote host name [

/OProcess spawned by "init"
/OA "getty" process waiting [J
/Ofor login O

/OA user process [1

/OLargest legal value [1
/Oof ut_type 0

4-451

utmpx(4)

4-452

FILES

SEE ALSO

/O0Below are special strings or formats used in the "ut_line" [0
/Ofield when accounting for something other than a process. I
/0ONo string for the ut_line field can be more than 11 chars + I
/Oa null character in length. O

#define RUNLVL_MSG "run-level %c"
#define BOOT_MSG "system boot"
#define OTIME_MSG "old time"
#define NTIME_MSG "new time"
#define MOD_WIN 10
/varfadm/utmpx

/var/fadm/wtmpx

login(1), who(1), write(1), utmp(4)

SunOS 5.6

File Formats

modified 3 Jul 1990

File Formats

NAME

DESCRIPTION

SEE ALSO

modified 6 Oct 1994

vfstab (4)

vfstab - table of file system defaults

The file /etc/vfstab describes defaults for each file system. The information is stored in a
table with the following column headings:

device device mount FS fsck mount mount

to mount to fsck point type pass athoot options

The fields in the table are space-separated and show the resource name (device to mount),
the raw device to fsck (device to fsck), the default mount directory (mount point), the name
of the file system type (FS type), the number used by fsck to decide whether to check the
file system automatically (fsck pass), whether the file system should be mounted automati-
cally by mountall (mount at boot), and the file system mount options (mount options). (See
respective mount file system man page below in SEE ALSO for mount options.) A’-"is
used to indicate no entry in a field. This may be used when a field does not apply to the
resource being mounted.

The getvfsent(3C) family of routines is used to read and write to /etc/vfstab.

letc/vfstab may be used to specify swap areas. An entry so specified, (which can be a file
or a device), will automatically be added as a swap area by the /sbin/swapadd script
when the system boots. To specify a swap area, the device-to-mount field contains the
name of the swap file or device, the FS-type is "swap", mount-at-boot is "no" and all other
fields have no entry.

fsck(1M), mount(1M), mount_cachefs(1M), mount_hsfs(1M), mount_nfs(1M),
mount_tmpfs(1M), mount_ufs(1M), setmnt(1M), swap(1M), getvfsent(3C)

System Administration Guide

SunOS 5.6 4-453

vme (4)

NAME

DESCRIPTION

4-454

File Formats

vme - configuration files for VMEbus device drivers

Some Solaris platforms support the VMEbus as a peripheral expansion bus to allow VME
devices to be connected to the system. Drivers for these devices need to use driver
configuration files to inform the system that the device hardware may be present. The
configuration file also must specify the device addresses on the VMEbus and any interrupt
capabilities that the device may have.

Configuration files for VMEbus device drivers should identify the parent bus driver
implicitly using the class keyword. This removes the dependency on the name of the par-
ticular bus driver involved since this may be named differently on different platforms.
See driver.conf(4) for further details of configuration file syntax.

All bus drivers of class vme recognise the following properties:

reg An arbitrary length array where each element of the array consists of a
3-tuple of integers. Each array element describes a logically contiguous
mappable resource on the VMEbus.

The first integer of the tuple specifies the type of access. The value is
derived from the size of transfer and the address modifier bits used to
access the locations. The table below shows the values used for com-
mon VME devices accessed in supervisor mode:

Address space | Value
Al16D16 0x2d
A24D16 0x3d
A32D16 0xd
Al16D32 0xe6d
A24D32 0x7d
A32D32 0x4d

The second integer of each 3-tuple specifies the offset in the address
space identified by the first element. The third integer of each 3-tuple
specifies the size, in bytes, of the mappable region.

The driver can refer to the elements of this array by index, and construct
kernel mappings to these addresses using ddi_map_regs(9F). The index
into the array is passed as the rnumber argument of ddi_map_regs().

interrupts An arbitrary length array where each element of the array consists of a
pair of integers. Each array element describes a possible interrupt that
the device might generate.

The first integer of each pair specifies the VMEbus interrupt level. The
second integer of each pair specifies the VMEbus vector number. The
driver can refer to the elements of this array by index, and register inter-
rupt handlers with the system using ddi_add_intr(9F). The index into
the array is passed as the inumber argument of ddi_add_intr().

Sun0S 5.6 modified 31 Dec 1996

File Formats

EXAMPLES

ATTRIBUTES

SEE ALSO

modified 31 Dec 1996

vme (4)

All VMEDbus device drivers must provide reg properties. The first two integer elements of
this property are used to construct the address part of the device name under /devices.

Only devices that generate interrupts need to provide interrupts properties.

Here is a configuration file called SUNW,diskctrl.conf for a VMEbus disk controller card
called SUNW,diskctrl.

The device provides two sets of registers, both should be accessed with supervisor
accesses and the A16D32 address modifier bits (16 bits of address, 32 bit data transfers).
Both registers occupy 32 bytes; one register set starts at address 0xee80, the other is at
0xef00. The device can generate interrupts at VME level 2 with a VME vector number of
0x92.

#

Copyright (c) 1992, by Sun Microsystems, Inc.

#ident "@#)SUNW,diskctrl.conf 1.4 92/05/11 SMI"
#

name="SUNW,diskctrl" class="vme"
reg=0x6d,0xee80,32,0x6d,0xef00,32
interrupts=2,0x92;

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE
Architecture SPARC

driver.conf(4), attributes(5), ddi_add_intr(9F), ddi_map_regs(9F), ddi_prop_op(9F)
Wrkiting Device Drivers
ANSI/IEEE Std 1014-1987: IEEE Standard for a Versatile Backplane Bus: VMEbus

SunOS 5.6 4-455

vold.conf(4)

NAME
SYNOPSIS

DESCRIPTION

File Format

Devices to Use Field

4-456

File Formats

vold.conf — Volume Management configuration file
/etc/vold.conf

The vold.conf file contains the Volume Management configuration information used by
vold(1M). This information includes the database to use, labels that are supported, dev-
ices to use, actions to take when certain media events occur, and the list of file systems
that are unsafe to eject without unmounting.

Modify vold.conf to specify which program should be called when media events happen
(actions) or when you need to add another device to your system. See the example sec-
tion for more information on adding devices.

If you modify vold.conf, you must tell vold to reread vold.conf by sending a HUP signal.
Use

ps -ef | grep vold

kill -HUP vold_pid

The syntax for the vold.conf file is shown here.

Database to use
db database

Labels supported
label label_type shared_object device

Devices to use
use device type special shared_object symname [options]

Actions

insert regex [options] program program args
eject regex [options] program program args
notify regex [options] program program args
List of file system types unsafe to eject
unsafe fs_type fs_type

Of these syntax fields, you can safely modify Devices to use and Actions.

All use device statements must be grouped together by device type. (For example, all use
cdrom statements must be grouped together; and all use floppy statements must be
grouped together.) Here are the explanations of the syntax for the Devices to use field.

device The type of removable media device to be used. Legal values are
cdrom and floppy.

type The specific capabilities of the device. Legal value is drive.

special This sh(1) expression specifies the device or devices to be used.

Path usually begins with /dev.

SunOS 5.6 modified 23 May 1994

File Formats vold.conf(4)

shared_object The name of the program that manages this device. vold(1M)
expects to find this program in /usr/lib/vold.

symname The symbolic name that refers to this device. The symname is
placed in the device directory.

options The user, group, and mode permissions for the media inserted
(optional).

The special and symname parameters are related. If special contains any shell wildcard
characters (i.e., has one or more asterisks or question marks in it), then the syname must
have a "%d" at its end. In this case, the devices that are found to match the regular
expression are sorted, then numbered. The first device will have a zero filled in for the
"%d", the second device found will have a one, and so on.

If the special specification does not have any shell wildcard characters then the symname
parameter must explicitly specify a number at its end (see EXAMPLES below).

Actions Field Here are the explanations of the syntax for the Actions field.
insert]eject|notify The media event prompting the event

regex This sh(1) regular expression is matched against each entry in the
/vol file system that is being affected by this event.

options You can specify what user or group nhame that this event is to run
as (optional).

program The full path name of an executable program to be run when regex
is matched.

program args Arguments to the program.

Default VValues The default vold.conf file is shown here.

#
Volume Daemon Configuration file
#

Database to use (must be first)
db db_mem.so

Labels supported

label dos label_dos.so floppy
label cdrom label_cdrom.so cdrom
label sun label_sun.so floppy

Devices to use
use cdrom drive /dev/dsk/c(52 dev_cdrom.so cdrom%d
use floppy drive /dev/diskette[0-9] dev_floppy.so floppy%d

modified 23 May 1994 SunOS 5.6 4-457

vold.conf(4)

EXAMPLES

SEE ALSO

NOTES

CD-ROM Naming
Conventions

4-458

File Formats

Actions

insert /volOJdev/fd[0-9]/Cluser=root /usr/sbin/rmmount

insert /volddev/dsk/Ouser=root /usr/sbin/rmmount

eject /vollldev/fd[0-9]/Ouser=root /usr/sbin/rmmount

eject /vollIdev/dsk/Ouser=root /usr/sbin/rmmount

notify /vollrdsk/Ogroup=tty user=root /usr/lib/vold/volmissing -p

List of file system types unsafe to eject
unsafe ufs hsfs pcfs

To add a CD-ROM drive to the vold.conf file that does not match the default regular
expression (/dev/rdsk/c(52), you must explicitly list its device path and what symbolic
name (with %d) you want the device path to have. For example, to add a CD-ROM drive
that has the path /dev/rdsk/my/cdroms? (where s? are the different slices), add the fol-
lowing line to vold.conf (all on one line):

use cdrom drive /dev/rdsk/my/cdroms2 dev_cdrom.so cdrom%d

Then, when a volume is inserted in this CD-ROM drive. volume management will assign
it the next symbolic name. For example, if two CD-ROMs match the default regular
expression, they would be named cdrom0 and cdrom1; and any that match the added
regular expression would be named starting with cdrom2.

For a diskette that does not match the vold.conf default regular expression
(/dev/floppy[0-9]), a similar line would have to be added for the diskette. For example, to
add a diskette whose path was /dev/my/fd0, you would add the following to vold.conf:

use floppy drive /dev/my/fd0 dev_floppy.so floppy%d

sh(1), volcancel(1), volcheck(1), volmissing(1), rmmount(1M), vold(1M),
rmmount.conf(4), volfs(7FS)

Volume Management manages both the block and character device for CD-ROMs and
floppy disks; but, to make the configuration file easier to set up and scan, only one of
these devices needs to be specified. If you follow the conventions specified below,
Volume Management figures out both device names if only one of them is specified. For
example, if you specify the block device, it figures out the pathname to the character dev-
ice; if you specify the pathname to the character device, it figures out the block device.

The CD-ROM pathname must have a directory component of rdsk (for the character dev-
ice) and dsk for the block device. For example, if you specify the character device using
the line:

use cdrom drive /dev/rdsk/my/cdroms2 dev_cdrom.so cdrom%d
then it is assumed that the block device is at
/dev/dsk/my/cdroms?2

SunOS 5.6 modified 23 May 1994

File Formats vold.conf(4)

Floppy Disk Naming For floppy disks, Volume Management requires that the device pathnames end in either

Conventions rfd[0-9] or rdiskette[0-9] for the character device, and fd[0-9] or diskette[0-9] for the
block device. As with the CD-ROM, it generates either the block name given the character
name, or the character name given the block name.

modified 23 May 1994 SunOS 5.6 4-459

ypfiles(4)

NAME

DESCRIPTION

FILES

SEE ALSO

NOTES

4-460

File Formats

ypfiles — Network Information Service Version 2, formerly knows as YP

The NIS network information service uses a distributed, replicated database of dbm files
(in AsClII form) contained in the /var/yp directory hierarchy on each NIS server. NIS has
been replaced by NIS+, the new version of the Network Information Service. See nis+(1).
This release only supports the client functionality of NIS, (see ypcInt(3N)). The client
functions are either supported by the ypserv process running on a machine with an ear-
lier version of SUnOS or by the NIS+ server in "YP-compatibility" mode, (see
rpc.nisd(1M)).

A dbm database served by the NIS server is called an NIS map. An NIS domain is a sub-
directory of /var/yp containing a set of NIS maps on each NIS server.

Standard nicknames are defined in the file /var/yp/nicknames. These names can be used
in place of the full map name in the ypmatch and ypcat commands. The command
ypwhich —m can be used to display the full set of nicknames. Each line of the nickname
file contains two fields separated by white space. The first field is the nickname and the

second field is the name of the map that it expands to. The nickname cannot containa ".".

/varlyp/nicknames nicknames file

nis+(1), nisaddent(1M), nissetup(1M), rpc.nisd(1M), ypbind(1M), ypinit(1M), dbm(3B),
secure_rpc(3N), ypcint(3N)

The NIS+ server, rpc.nisd, when run in "YP-compatibility mode", can support NIS clients
only for the standard NIS maps listed below, provided that it has been set up to serve the
corresponding NIS+ tables using nissetup(1M) and nisaddent(1M). The NIS+ server
should serve the directory with the same name (case sensitive) as the domainname of the
NIS client. NIS+ servers use secure RPC to verify client credentials but the NIS clients do
not authenticate their requests using secure RPC. Therefore, NIS clients can look up the
information stored by the N1S+ server only if the information has "read" access for an
unauthenticated client (i.e. one with "nobody" NIS+ credentials).

NIS maps NIS+ tables
passwd.byname passwd.org_dir

passwd.byuid
group.byname
group.bygid
publickey.byname
hosts.byaddr
hosts.byname
mail.byaddr
mail.aliases
services.byname
services.byservicename

passwd.org_dir
group.org_dir
group.org_dir
cred.org_dir
hosts.org_dir
hosts.org_dir
mail_aliases.org_dir
mail_aliases.org_dir
services.org_dir
services.org_dir

rpc.bynumber rpc.org_dir
rpc.byname rpc.org_dir
Sun0S 5.6 modified 12 Nov 1996

File Formats

modified 12 Nov 1996

protocols.bynumber
protocols.byname
networks.byaddr
networks.byname
netmasks.bymask
netmasks.byaddr
ethers.byname
ethers.byaddr
bootparams
auto.master
auto.home
auto.direct
auto.src

protocols.org_dir
protocols.org_dir
networks.org_dir
networks.org_dir
netmasks.org_dir
netmasks.org_dir
ethers.org_dir
ethers.byname
bootparams
auto_master.org_dir
auto_home.org_dir
auto_direct.org_dir
auto_src.org_dir

SunOS 5.6

ypfiles(4)

4-461

Index

Special Characters

. cl ust ert oc — listing of software packages on
product distribution media, 4-49

. envi r on — user-preference variables files for
AT&T FACE, 4-93

. order — installation order of software packages
on product distribution media, 4-236

. packaget oc — listing of software packages on
product distribution media, 4-238

. pr ef — user-preference variables files for AT&T
FACE, 4-93

. vari abl es — user-preference variables files for
AT&T FACE, 4-93

/proc, the process file system — proc, 4-286

A

a. out — Executable and Linking (ELF) files, 4-20
accounting files

— acct, 4-12

— ut np, 4-449

— ut npx, 4-451

— W np, 4-449

— Wt npx, 4-451
accounting system

prime/nonprime hours — hol i days, 4-109
acct — process accounting file format, 4-12
addr esses — addresses for sendmail, 4-17

adnmi n — installation defaults file, 4-14
al i ases — sendmail aliases file, 4-17

an alternative memory allocator library — | i bmap-

mal | oc, 4-159
ar — archive file format, 4-22
archive file format — ar, 4-22
ar chi ves — device header, 4-25
ASET environment file — aset env, 4-28
ASET master files

— asetnmasters, 4-30

— cklist. hi gh, 4-30

— cklist. | ow 4-30

— cklist. ned, 4-30

— tune. hi gh, 4-30

— tune. | ow, 4-30

— tune. ned, 4-30

— uid_aliases, 4-30
aset env — ASET environment file, 4-28
audi t — audit control file, 4-34, 4-37
audit trail file

— audit.log,4-39
audi t . | og — audit trail file, 4-39
audi t _cl ass password file, 4-32
audi t _event password file, 4-38
audi t _user password file, 4-43

B
basic security library — 1 i bbsm 4-134
boot parameter database — boot par ans, 4-44
BOOTP
network database — dhcp_net wor k, 4-70
boot par anms — boot parameter database, 4-44

C
C library — | i bc, 4-135
CD-ROM table of contents file — cdt oc, 4-46
cdt oc — CD-ROM table of contents file, 4-46
compatible versions file — conpver, 4-53
conpver — compatible versions file, 4-53
configuration file for default router(s) — def aul -
trouter, 4-59
configuration file, system log daemon — sysl ogd,
4-368
connect accounting
— wt np, 4-449
— Wt npx, 4-451
copyri ght — copyright information file, 4-54
cor e — core image of a terminated process file,
4-55

D

d_passwd — dial-up password file, 4-88
Generating An Encrypted Password, 4-89

database parameters for DHCP — dhcp, 4-69

def aul t _f s — specify the default file system type
for local or remote file systems, 4-58

def aul t r out er — configuration file for default
router(s), 4-59

depend — software dependencies file, 4-60

devconfig configuration files — devi ce. cf i nf o,
4-63

device id library — 1 i bdevi d, 4-150

device instance number file — path_to_i nst,
4-252

devi ce. cfi nf o — devconfig configuration files,
4-63

device_al l ocate
device access control file, 4-61

Index—2

devi ce_naps
device access control file, 4-67
devices
access control file — devi ce_al | ocat e, 4-61,
4-67
devices, capabilities
terminal and printers — t er m nf o, 4-379
dfs utilities packages
list — fstypes, 4-103
df st ab — file containing commands for sharing
resources, 4-68
parameters for DHCP databases — dhcp, 4-69
client identifier to IP address mappings —
dhcp_net wor k, 4-70
configuration parameter table— dhcpt ab, 4-73
DHCP option mnemonic mapping table —
dhcpt ags, 4-81
dhcp_network, also see pnt adm 4-70
dhcpt ab — DHCP configuration parameter table,
4-73
dhcpt ags — DHCP option mnemonic mapping
table, 4-81
dial-up password file — d_passwd, 4-88
di al ups — list of terminal devices requiring a
dial-up password, 4-85
di r _ufs — format of ufs directories, 4-87
directory of files specifying supported platforms —
pl at f or m 4-265
di rent — file system independent directory entry,
4-86
disk drive configuration for the format command —
f or mat . dat, 4-99
disk space requirement file — space, 4-361
dispatcher, real-time process
parameters — rt _dpt bl , 4-340
dispatcher, time-sharing process
parameters — ts_dpt bl , 4-432
driver. conf — driver configuration file, 4-90
drivers
driver for EISA devices — ei sa, 4-363
driver for ISA devices — i sa, 4-363
driver for MCA devices — nta, 4-363
driver for PCI devices — pci , 4-254

drivers, continued
driver for pseudo devices — pseudo, 4-317
driver for SBus devices — vne, 4-346
driver for SCSI devices — scsi , 4-352
driver for VME devices — vne, 4-454
dynamic linking interface library — 1i bdl , 4-151

E

ei sa — configuration file for EISA bus device
drivers, 4-363

ELF access library — |i bel f, 4-154

ELF files— a. out, 4-20

envi r on — user-preference variables files for
AT&T FACE, 4-93

environment
setting up an environment for user at login

time — profile, 4-310

et her s — Ethernet addresses of hosts on Internet,
4-95

Executable and Linking Format (ELF) files —
a. out, 4-20

F
FACE

alias file — pat hal i as, 4-251

object architecture information — ot t, 4-237
FACE object architecture information

— ott, 4-237
f d — file descriptor files, 4-96
File Access Control List library — 1i bsec, 4-176
file descriptor files — f d, 4-96
file formats
— intro, 45
file system

defaults — vf st ab, 4-453
mounted— nt ab, 4-210

file that maps sockets to transport providers —
sock2pat h, 4-360

fil ehdr — file header for common object files,
4-97

files used by programs
/etc/security/device_maps — devi ce_nmaps

file, 4-67

files used by programs, continued

/etc/security/device_allocate —
device_allocate file, 4-62

format of a font file used as input to the loadfont
utility — | oadf ont, 4-202

format of a ufs file system volume — fs_uf s,
4-104
inode, 4-104
inode_ufs, 4-104

format . dat — disk drive configuration for the
format command, 4-99
Keywords, 4-99
Syntax, 4-99

f or war d — mail forwarding file, 4-17

fs_ufs — format of a ufs file system volume, 4-104

f spec — format specification in text files, 4-102

f st ypes — file that lists utilities packages for dis-
tributed file system, 4-103

G
general administrative library — | i badm 4-132
graphics interface files — pl ot , 4B-269
gr oup — local source of group information, 4-107

H
hol i days — prime/nonprime hours for account-
ing system, 4-109
host name database — host s, 4-110
host s — host name data base, 4-110
host s. equi v — trusted hosts list, 4-112

|

i net d. conf — Internet server database, 4-115

i ni t.d — initialization and termination scripts for
changing init states, 4-117

initialization and termination scripts for changing
init states — i nit.d, 4-117

i ni ttab — script for init, 4-118

i node — format of a ufs file system volume, 4-104

i node_uf s — format of a ufs file system volume,
4-104

installation

Index-3

installation, continued
defaults file — adni n, 4-14
internationalization library — | i bi nt 1, 4-155
Internet
DHCP database — dhcp_net wor k, 4-70
Ethernet addresses of hosts — et her s, 4-95
network name database — net wor ks, 4-223
protocol name database — pr ot ocol s, 4-312
services and aliases — servi ces, 4-355
Internet servers database — servers, 4-115
ioctls for sockets
S| OCADDRT — add route, 4-335
S| OCDELRT — delete route, 4-335
i sa — configuration file for ISA bus device drivers,
4-363
i ssue — issue identification file, 4-121

K

Kerberos configuration file
— krb. conf, 4-130
Kerberos library — | i bkr b, 4-156
Kerberos realm translation file
— krb. real ns, 4-131
kernel packet forwarding database — r out e, 4-331

kernel statistics library — | i bkst at, 4-157
Kernel Virtual Memory access library — |i bkvm
4-158

keyboard table descriptions for loadkeys and dump-
keys — keyt abl es, 4-122

keyt abl es — keyboard table descriptions for load-
keys and dumpkeys, 4-122

L
legal annotations
specify — not e, 4-227
| i badm— general administrative library, 4-132
I i bai 0 — the asynchronous 1/0 library, 4-133
I i bbsm— basic security library, 4-134
I i bc — the C library, 4-135
[i bci — Sun Solstice Enterprise Agent Component
Interface Library, 4-149
I i bdevi d — device id library, 4-150
[i bdl — the dynamic linking interface library,

Index—4

4-151

I i bdm — Sun Solstice Enterprise Agent DMI
Library, 4-152

I i bdm m — Sun Solstice Enterprise Agent
Management Interface Library, 4-153

I'i bel f — ELF access library, 4-154

I'i bi ntl — internationalization library, 4-155

I i bkr b — Kerberos library, 4-156

| i bkst at — kernel statistics library, 4-157

I i bkvm— Kernel Virtual Memory access library,
4-158
/usr/lib/libkvm.so.1, 4-158

I i bmapnal | oc — an alternative memory allocator
library, 4-159

| i bnp — multiple precision library, 4-160

I'i bni sdb — NIS+ Database access library, 4-161

I i bnsl — the network services library, 4-162
/usr/lib/libnsl.so.1, 4-162

I i bposi x4 — POSIX.1b Realtime Extensions
library, 4-168

I i bpt hr ead — POSIX threads library, 4-169
/usr/lib/libpthread.so.1, 4-169

I i brac — remote asynchronous calls library, 4-171

library
C library — | i bc, 4-135
dynamic linking interface library — 1i bdl ,

4-151

library file format — ar, 4-22

I'i bresol v — resolver library, 4-172

I i br pcsoc — obsolete RPC library, 4-174

I i br pcsvc — Miscellaneous RPC services library,
4-175

| i bsec — File Access Control List library, 4-176
/usr/lib/libsec.so.1, 4-176

| i bsocket — the sockets library, 4-177
/usr/lib/libsocket.so.1, 4-177

| i bssagent — Sun Solstice Enterprise Agent
Library, 4-179

I i bssasnnmp — Sun Solstice Enterprise SNMP
Library, 4-180

I i bsys — the system library, 4-181
/usr/lib/libc.so.1, 4-181

[i bt hr ead — the threads library, 4-185
/usr/lib/libthread.so.1, 4-185

I i bt hr ead_db — threads debugging library, 4-188
/usr/lib/libthread_db.so.1, 4-188

I i bucb — the UCB compatibility library, 4-190

I'i bvol ngt — volume management library, 4-192

I i bw— the wide character library, 4-193

I i bxf n — the XFN interface library, 4-195
/usr/lib/libxfn.so.1, 4-195

I i bxnet — X/Open Networking Interfaces library,
4-198

I i m ts — header for implementation-specific con-
stants, 4-200

link editor output — a. out, 4-20

list of network groups — net gr oup, 4-215

list of terminal devices requiring a dial-up pass-
word — di al ups, 4-85

| oadf ont — format of a font file used as input to
the loadfont utility, 4-202

login-based device permissions — | ogi ndevper m
4-206

| ogi ndevper m— login-based device permissions,
4-206

I ogi nl og — log of failed login attempts, 4-207

M
magi ¢ — fil e command’s magic numbers table,
4-208
nta — configuration file for MCA bus device
drivers, 4-363
message displayed to users attempting to log on in

the process of a system shutdown — nol o-
gi n, 4-226

Miscellaneous RPC services library — 1 i br pcsvec,
4-175

mounted file system table — nt ab, 4-210
nt ab — mounted file system table, 4-210
multiple precision library — 1 i bnp, 4-160

N
name servers
configuration file — resol v. conf, 4-324
name service cache daemon configuration —
nscd. conf
nscd.conf, 4-228
name service switch
configuration file — nsswi t ch. conf, 4-230
net conf i g — network configuration database,
4-211
net gr oup — list of network groups, 4-215
net gr oup — list of network groups, 4-215
net i d — netname database, 4-217
net masks — network masks for subnetting, 4-219
netname database — neti d, 4-217
. netrc — ftpremote login data file, 4-221
Network Information Service Version 2, formerly
knows as YP — ypfil es, 4-460
network packet routing device — routi ng, 4-335
networks connected to the system — net confi g,
4-211
net wor ks — network name database, 4-223
NFS
remote monted file systems — r nt ab, 4-330
NIS databases
updating — updat er s, 4-448
NIS+ Database access library — | i bni sdb, 4-161
ni sfil es — NIS+ database files and directory
structure, 4-224
nol ogi n — message displayed to users attempting
to log on in the process of a system shutdown ,
4-226
nonprime hours
accounting system — hol i days, 4-109
not e — specify legal annotations, 4-227
nscd. conf — name service cache daemon
configuration, 4-228
nsswi t ch. conf — configuration file for the name
service switch, 4-230

Index-5

@)

object files
file header — fi | ehdr, 4-97
obsolete RPC library — 1i br pcsoc, 4-174
P

package characteristics file
— pkgi nf o, 4-259
package contents description file
— pkgmap, 4-262
package information file — pr ot ot ype, 4-313
package installation order file
— order, 4-236
package table of contents description file
.clustertoc — cl ustertoc, 4-49
— packaget oc, 4-238
packet routing device — rout i ng, 4-335
packet routing ioctls
S| OCADDRT — add route, 4-335
S| OCDELRT — delete route, 4-335
packing rules file for cachefs and filesync — pack-
i ngrul es, 4-242
packi ngr ul es — packing rules file for cachefs
and filesync, 4-242
pam conf — configuration file for pluggable
authentication modules, 4-245
passwd — password file, 4-249
passwords
access-restricted shadow system file — sha-
dow, 4-356
pat h_t o_i nst — device instance number file,
4-252
pat hal i as — alias file for FACE, 4-251
PCI devices
driver class — pci , 4-254
pci — drivers for PCI devices, 4-254
pcnti a — PCMCIA nexus driver, 4-257
PCMCIA nexus driver — pcnti a, 4-257
phones — remote host phone numbers, 4-258
pkgi nf o — software package characteristics file,
4-259
pkgmap — listing of software package contents,
4-262

Index—6

pl at f or m— directory of files specifying supported
platforms, 4-265
pl ot — graphics interface files, 4B-269

POSIX threads library — |i bpt hr ead, 4-169
POSIX.1b Realtime Extensions library — 1 i bpo-
si x4, 4-168

power management configuration file —
power . conf, 4-271
power . conf — power management configuration
file, 4-271
prime hours
accounting system — hol i days, 4-109
pri nt ers — printer alias database, 4-277
printers. conf — printing configuration data-
base, 4-280
pr oc — /proc, the process file system, 4-286
PCAGENT, 4-305
PCCFAULT, 4-302
PCCSIG, 4-301
PCKILL, 4-301
PCNICE, 4-306
PCREAD PCWRITE, 4-306
PCRUN, 4-300
PCSCRED, 4-306
PCSENTRY PCSEXIT, 4-302
PCSET PCUNSET, 4-304
PCSFAULT, 4-301
PCSFPREG, 4-305
PCSHOLD, 4-301
PCSREG, 4-305
PCSSIG, 4-301
PCSTOP PCDSTOP PCWSTOP PCTWSTORP,
4-299
PCSTRACE, 4-300
PCSVADDR, 4-305
PCSXREG, 4-305
PCUNKILL, 4-301
PCWATCH, 4-302
process accounting
— acct, 4-12
process file system — pr oc, 4-286
process scheduler (or dispatcher), real-time
parameters — rt _dpt bl , 4-340
process scheduler (or dispatcher), time-sharing

process scheduler (or dispatcher), time-sharing, con-

tinued
parameters — ts_dpt bl , 4-432
processes
core image of a terminated process file —
core, 4-55

pr of i | e — setting up an environment for user at
login time, 4-310

project identification file — i ssue, 4-121

pr ot ocol s — names of known protocols in Inter-
net, 4-312

pr ot ot ype — package information file, 4-313

pseudo devices, 4-317

pseudo — drivers for pseudo devices, 4-317

publ i ckey — publickey database for secure RPC,
4-318

Q

gueuedef s — queue description file for at, batch,
and cron spooled by at or batch or atrm, 4-319

R
real-time process dispatcher
parameters — rt _dpt bl , 4-340
real-time process scheduler
parameters — rt _dpt bl , 4-340
remote asynchronous calls library — | i br ac, 4-171
remote authentication for hosts and users —
hosts. equi v, .rhosts, 4-112
r enot e — remote host descriptions, 4-321
remote host
phone numbers — phones, 4-258
remote login data for ftp — netr c, 4-221
remote mounted file systems
— rntab, 4-330
Remote Program Load (RPL) server configuration
file — rpl d. conf, 4-338
resol v. conf — configuration file for name server
routines, 4-324
resolver library — | i bresol v, 4-172
r mount . conf — removable media mounter
configuration file

r mount . conf — removable media mounter
configuration file, continued
Default Values, 4-327
Examples, 4-327
r out e — kernel packet forwarding database, 4-331
Messages, 4-332
rout i ng — local network packet routing, 4-335
routing ioctls
S| OCADDRT — add route, 4-335
S| OCDELRT — delete route, 4-335
r pc — rpc program number database, 4-337
RPC program names
for program numbers — r pc, 4-337
RPC security
public key database — publ i ckey, 4-318
r pl d. conf — Remote Program Load (RPL) server
configuration file, 4-338

S

SBus devices

driver class — sbus, 4-346
sbus — drivers for SBus devices, 4-346
sccsfi | e — format of SCCS history file, 4-349
scheduler, real-time process

parameters — rt _dpt bl , 4-340
scheduler, time-sharing process

parameters — ts_dpt bl , 4-432

SCSI devices
driver class — scsi , 4-352
scsi — drivers for SCSI devices, 4-352

secur enet s file, 4-354
sendmail addresses file — addr esses, 4-17
sendmail aliases file — al i ases, 4-17
sendmail aliases file — f orward, 4-17
servi ces — Internet services and aliases, 4-355
shadow password file, 4-356
share resources across network, commands —
df st ab, 4-68
shared resources, local
— shar et ab, 4-358
shar et ab — shared file system table, 4-358
shell database — shel | s, 4-359
shel | s — shell database, 4-359

Index—7

sock2pat h — file that maps sockets to transport
providers, 4-360

software dependencies — depend, 4-60

space — disk space requirement file, 4-361

specify the default file system type for local or
remote file systems — default _fs, 4-58

su command log file — sul og, 4-362

sul og — su command log file, 4-362

Sun Solstice Enterprise Agent Component Interface

Library — i bci , 4-149
Sun Solstice Enterprise Agent DMI Library —
I'i bdmi , 4-152

Sun Solstice Enterprise Agent Library —
| i bssagent, 4-179
Sun Solstice Enterprise Agent Management Interface
Library — |i bdm m , 4-153
Sun Solstice Enterprise SNMP Library —
| i bssasnnp, 4-180
symbolic constants
header — uni st d, 4-446
sysbus — configuration files for ISA, EISA, and
MCA bus device drivers, 4-363
eisa, 4-363
isa, 4-363
mca, 4-363
sysi dcf g — system identification configuration
file, 4-365
Keyword Syntax Rules, 4-365
Keywords, 4-366
Where To Put the sysidcfg File, 4-365
sysl ogd. conf — system log daemon
configuration file, 4-368
syst em— system configuration information, 4-371
system identification configuration file —
sysi dcf g, 4-365
system log configuration file — sysl ogd. conf,
4-368

T
telnet default options file — t el netrc, 4-375

t el net r c — file for telnet default options, 4-375
t er m— format of compiled term file, 4-376

Index—8

terminals
line setting information — ttydefs, 4-439

termination and initialization scripts for changing
init states — init.d, 4-117

t er m nf o — System V terminal capability data
base, 4-379

test files
format specification — f spec, 4-102
the asynchronous 1/0 library — 1 i bai o, 4-133
the network services library — 1i bnsl , 4-162
the sockets library — | i bsocket , 4-177
the system library — 1i bsys, 4-181
the threads library — | i bt hr ead, 4-185
the UCB compatibility library — 1 i buchb, 4-190
the wide character library — | i bw, 4-193
the XFN interface library — 1 i bxf n, 4-195
threads debugging library — 1i bt hread_db,
4-188

ti mezone — set default time zone, 4-424
time-sharing process dispatcher
parameters — ts_dpt bl , 4-432
time-sharing process scheduler
parameters — ts_dpt bl , 4-432
timed event services
gueue description file for at, batch and cron —
queuedef s, 4-319
t i mezone — default timezone data base, 4-425
TNF kernel probes — t nf _kernel _pr obes, 4-426
t nf _ker nel _probes — TNF kernel probes, 4-426
tt ydef s — terminal line settings information,
4-439
ttyname
list of directories with terminal-related device
files— ttysrch, 4-440

U
ufs
format — dir _ufs, 4-87
uf sdunp — incremental dump format, 4-442
uni st d — header for symbolic constants, 4-446
updat er s — configuration file for NIS updating,
4-448
user-preference variables files for AT&T FACE —

environ, 4-93
ut np — format for utmp file, 4-449
ut np — format for utmpx file, 4-451

V

vf st ab — defaults for each file system, 4-453
VME devices

driver class — vne, 4-454
vme — drivers for VME devices, 4-454
vol d. conf — Volume Management configuration

file, 4-456

Actions Field, 4-457

CD-ROM Naming Conventions, 4-458

Default Values, 4-457

Devices to Use Field, 4-456

File Format, 4-456

Floppy Disk Naming Conventions, 4-459
Volume Management

configuration file — vol d. conf , 4-456
volume management library — | i bvol ngt, 4-192

W

wt mp — format for wtmp file, 4-449
wt mp — format for wtmpx file, 4-451

X

X/0pen Networking Interfaces library — | i bx-
net, 4-198

Y
ypfil es — Network Information Service Version
2, formerly knows as YP, 4-460

Index—9

