
2550 Garcia Avenue
Mountain View, CA 94043
U.S.A.

XView Developer’s Notes

A Sun Microsystems, Inc. Business

Please
Recycle

 1994 Sun Microsystems, Inc.
2550 Garcia Avenue, Mountain View, California 94043-1100 U.S.A.

All rights reserved. This product and related documentation are protected by copyright and distributed under licenses
restricting its use, copying, distribution, and decompilation. No part of this product or related documentation may be
reproduced in any form by any means without prior written authorization of Sun and its licensors, if any.

Portions of this product may be derived from the UNIX® and Berkeley 4.3 BSD systems, licensed from UNIX System
Laboratories, Inc., a wholly owned subsidiary of Novell, Inc., and the University of California, respectively. Third-party font
software in this product is protected by copyright and licensed from Sun’s font suppliers.

RESTRICTED RIGHTS LEGEND: Use, duplication, or disclosure by the United States Government is subject to the restrictions
set forth in DFARS 252.227-7013 (c)(1)(ii) and FAR 52.227-19.

The product described in this manual may be protected by one or more U.S. patents, foreign patents, or pending applications.

TRADEMARKS
Sun, the Sun logo, Sun Microsystems, Sun Microsystems Computer Corporation, SunSoft, the SunSoft logo, Solaris, SunOS,
OpenWindows, DeskSet, ONC, ONC+, and NFS are trademarks or registered trademarks of Sun Microsystems, Inc. in the U.S.
and certain other countries. UNIX is a registered trademark of Novell, Inc., in the United States and other countries; X/Open
Company, Ltd., is the exclusive licensor of such trademark. OPEN LOOK® is a registered trademark of Novell, Inc. PostScript
and Display PostScript are trademarks of Adobe Systems, Inc. All other product names mentioned herein are the trademarks
of their respective owners.

All SPARC trademarks, including the SCD Compliant Logo, are trademarks or registered trademarks of SPARC International,
Inc. SPARCstation, SPARCserver, SPARCengine, SPARCstorage, SPARCware, SPARCcenter, SPARCclassic, SPARCcluster,
SPARCdesign, SPARC811, SPARCprinter, UltraSPARC, microSPARC, SPARCworks, and SPARCompiler are licensed
exclusively to Sun Microsystems, Inc. Products bearing SPARC trademarks are based upon an architecture developed by Sun
Microsystems, Inc.

The OPEN LOOK and Sun™ Graphical User Interfaces were developed by Sun Microsystems, Inc. for its users and licensees.
Sun acknowledges the pioneering efforts of Xerox in researching and developing the concept of visual or graphical user
interfaces for the computer industry. Sun holds a non-exclusive license from Xerox to the Xerox Graphical User Interface,
which license also covers Sun’s licensees who implement OPEN LOOK GUIs and otherwise comply with Sun’s written license
agreements.

X Window System is a product of the Massachusetts Institute of Technology.

THIS PUBLICATION IS PROVIDED “AS IS” WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR IMPLIED,
INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A
PARTICULAR PURPOSE, OR NON-INFRINGEMENT.

THIS PUBLICATION COULD INCLUDE TECHNICAL INACCURACIES OR TYPOGRAPHICAL ERRORS. CHANGES ARE
PERIODICALLY ADDED TO THE INFORMATION HEREIN; THESE CHANGES WILL BE INCORPORATED IN NEW
EDITIONS OF THE PUBLICATION. SUN MICROSYSTEMS, INC. MAY MAKE IMPROVEMENTS AND/OR CHANGES IN
THE PRODUCT(S) AND/OR THE PROGRAM(S) DESCRIBED IN THIS PUBLICATION AT ANY TIME.

iii

 Contents

Preface. xv

Part 1 —Miscellaneous XView Issues

1. Motif and XView Interoperability . 3

Motif and XView Client Interoperability 3

Selections . 3

Drag and Drop . 4

Motif Window Manager and XView Client Interoperability . . 4

XView Clients with Two Base Windows 4

Window Decoration. 4

XView Text Editor Client . 4

Focus Follows Mouse . 5

2. O’Reilly Corrections and Supplements 7

Corrections to the XView Programming Manual. 7

long_seln.c . 7

PANEL_EVENT_PROC. 8

iv XView Developer’s Notes—August 1994

notify_next_event_func. 8

notice.c . 8

Corrections to the XView Reference Manual 9

CMS_COLOR_COUNT. 9

Supplementary XView Documentation. 9

Joining Canvas Views . 10

XV_HELP_DATA. 10

XV_FOCUS_RANK . 10

Scrollbars . 11

XView Panel Architecture. 15

Panel Drop Targets. 16

Compiling XView Programs. 17

Part 2 —Internationalizing XView Applications

3. Introducing Internationalized XView . 21

Internationalization Features . 22

Wide Characters and Multibyte Characters 22

Input Method . 23

Font Sets . 23

Compiling XView Programs. 23

4. Character Encoding. 25

Encodings Used in Asian Locales . 26

When to Use Multibyte and Wide Character 27

When to Use Compound Text . 27

EUC Programming Issues. 27

Contents v

Screen Columns . 28

Wide Character Attributes and Functions 29

5. Input Method. 31

Purpose of Input Methods . 31

Input Method Operation. 32

Input Method Screen Regions . 32

Input Method Styles . 34

Specifying Styles . 34

Determining the Default Style . 35

Enabling and Disabling the Input Method 36

Input Method Architecture. 36

Implicit Commit of Preedit Text. 38

Customizing Input Method Callbacks . 39

6. XView API for Internationalization. 41

Canvases . 41

Canvas Input Context . 42

Canvas Input Method . 42

CANVAS_IM_PREEDIT_FRAME . 42

Cursors . 42

File Chooser . 42

File Lists . 44

Fonts . 45

Font Set API . 46

Glyph Fonts . 50

vi XView Developer’s Notes—August 1994

Font Set Definitions . 50

Compatibility Issues . 51

Portability Issues . 52

Frames . 52

History. 53

Icons. 53

Menus . 53

Notices. 54

Panels . 54

PANEL_VALUE_STORED_LENGTH_WCS. 55

PANEL_ITEM_IC_ACTIVE . 56

PANEL_LIST_ROW_VALUES_WCS. 57

PANEL_MASK_CHAR_WC. 57

Implicit Commit. 57

Pathnames. 57

Resources . 58

Selections . 61

Server Images . 62

Text Subwindows. 63

Multibyte and Wide Character API . 63

Programming Considerations for Text Subwindow
Multibyte API . 64

Other Text Subwindow Information 68

TTY Subwindows. 71

Contents vii

Windows: Handling Input . 71

Enabling the Input Method . 72

Input Method and Input Context . 74

Choosing Input Style. 74

Customizing Implicit Commit . 75

Customizing Input Method Callbacks 78

A. API Summaries . 81

Attributes . 81

Functions. 108

B. Changes to Internationalized XView Version 2.x 115

Compatibility with the Current XView Release 115

Package Changes . 116

Frames. 116

Panels . 116

Text Subwindows. 117

Windows . 121

XView Attributes and Functions . 122

C. Font Set Definitions . 129

Font Set Specifier . 129

Font Set Name Aliases. 130

Default Font Family. 130

Default Font Scales . 130

Font Family, Scales, and Size Aliases. 131

viii XView Developer’s Notes—August 1994

Part 3 —Release

D. XView Release Notes . 135

notify.h Header File . 135

Eight-bit Character Display in Non-internationalized XView
Applications . 135

C Locale Display . 135

Glossary . 137

Index . 143

ix

Figures

Figure 4-1 Encodings Used for Asian Locales . 26

Figure 4-2 ASCII and Japanese Characters. 28

Figure 5-1 Japanese Input Method Screen Regions. 33

Figure 5-2 High-level Overview of Input Method 37

x XView Developer’s Notes—August 1994

xi

Tables

Table 5-1 Preedit Style Values. 35

Table 5-2 Status Style Values . 35

Table 5-3 Implicit Commit Actions . 38

Table 6-1 File Chooser Attributes. 43

Table 6-2 File List Attributes . 44

Table 6-3 Font Set Attributes. 46

Table 6-4 Frame Attributes . 52

Table 6-5 History Attributes . 53

Table 6-6 Icon Attributes . 53

Table 6-7 Menu Attributes. 54

Table 6-8 Notice Attributes . 54

Table 6-9 Panel Attributes and Functions . 55

Table 6-10 Pathname Attributes . 58

Table 6-11 Resource Functions . 58

Table 6-12 Locale-Sensitive Resources. 60

Table 6-13 Selection Service Attributes . 61

xii XView Developer’s Notes—August 1994

Table 6-14 Text Subwindow APIs that Take Buffer, Index, or Length . . . 63

Table 6-15 Differences Between Multibyte and Wide Character API. . . . 64

Table 6-16 Text Subwindow Filename Attributes and Functions 64

Table 6-17 Multibyte APIs that Take a Buffer as an Argument 65

Table 6-18 Implicit Commit Actions and Corresponding API Examples 69

Table 6-19 Extras Menu Search Path. 70

Table 6-20 TTY Subwindow Functions . 71

Table 6-21 Window Attributes . 71

Table B-1 Source Compatibility Matrix . 115

Table B-2 Changed or Added Text Subwindow Attributes and Functions 118

Table B-3 Wide Character Text Subwindow API . 119

Table B-4 WIN_IM_* Attribute Changes . 122

Table B-5 XView Attributes and Functions—Current Release. 122

xiii

Code Samples

Code Example 2-1 scrollbar_compute_scroll_proc attribute function
11

Code Example 2-2 scrollbar_normalize_proc attribute function . 13

xiv XView Developer’s Notes—August 1994

xv

Preface

XView Developer’s Notes provides XView developer information not present in
the O’Reilly XView documentation set. This manual contains three parts:

• Motif interoperability and O’Reilly Supplements and Corrections (Part I,
chapters 1 and 2)

• Internationalizing XView applications (Part II, chapters 3 through 6 and
appendices A through C)

• Release Information (appendix D)

Part I discusses interoperability issues between the current XView release and
Motif. It also contains corrections and supplements to the O’Reilly programmer
(Third Edition) and reference documentation for XView Version 3. Part II
enhances, and builds upon, XView internationalization information present in
the O’Reilly documentation set and in other SunSoft manuals. Part III contains
information specific to this release, such as new features.

Who Should Use This Book
This manual is intended for XView application developers, who are proficient
in the C programming language and in XView programming.

Refer to the following O’Reilly and Associates manuals for help with the
XView toolkit:

• XView Programming Manual, Third Edition, for XView Version 3.2 (Volume 7)
by Dan Heller

xvi XView Developer’s Notes—August 1994

• XView Reference Manual for XView Version 3.2 (Companion to Volume 7)
• Xlib Programming Manual for Version 11 (Volume 1) by Adrian Nye
• Xlib Reference Manual for Version 11 (Volume 2)

You can order these books through Sun Express or buy them at your local
bookstore.

This manual assumes that you have access to the Developer’s Guide to
Internationalization.

Before You Read This Book
Read Appendix D, “XView Release Notes,” for important information about
this release.

Check the following manuals for any corrections or updates to information in
this manual:

• SPARC: Installing Solaris Software
• x86: Installing Solaris Software
• Software Developer Kit Open Issues and Late-Breaking News
• Software Developer Kit Introduction
• Software Developer Kit Installation Guide

Internationalizing Applications
Before you start, be sure to prepare properly:

• Read the Developer’s Guide to Internationalization.

• For Asian locales, install the applicable Asian language environment:
• KLE for Korean
• JFP for Japanese
• HLE for traditional Chinese
• CLE for simplified Chinese

Refer to the Internationalization chapter in the XView Programming Manual for
information about attributes and functions that work well with English and
western European languages. Part II of this manual describes new and
modified attributes and functions that let your applications work in Asian
locales as well.

Preface xvii

Meta and Help Key Alternatives
If your keyboard does not have a Meta key, use the Control-Alt key sequence
(pressed simultaneously) to perform the same functionality as Meta. If you do
not want Control-Alt to serve as the Meta function, add the
OpenWindows.CtrlAltMetaKey resource to your .Xdefaults file and set it to
False.

The F1 function key serves as the Help key, if your keyboard does not have a
Help key.

Typographical Conventions
Attributes, procedures, macros, and anything resembling C code are all set in
Courier , using the following C conventions:

• Procedures are lowercase and are followed by parentheses, as in:

xv_get()

• Macros are all uppercase and are followed by parentheses, as in the
following example, except where they are lowercase in source code:

OPENWIN_EACH_VIEW()

• Attributes are all uppercase but are not followed by parentheses, as in:

CANVAS_MIN_PAINT_HEIGHT

Representations of anything that might appear on your screen are set in
Courier . In addition, code examples are set in boxes to set them off from the
surrounding text.

Further Documentation
American National Standard for Information Systems - Programming Language C,
ANSI X3.159-1989, Published by American National Standard Institute.

OPEN LOOK GUI Functional Specification, International Extension, Unix
International, Internationalization Working Group.

xviii XView Developer’s Notes—August 1994

IEEE Standard Portable Operating System Interface for Computer Environments,
POSIX 1003.1, IEEE Std 1003.1, Published by The Institute of Electrical and
Electronics Engineering, Inc. ISBN 1-55937-003-3.

Xlib - C Language X Interface MIT X Consortium Standard X Version 11, Release 5.

X Window System C Library and Protocol Reference, Release 5 Version, Robert W.
Scheifler & James Getty, 1992, Digital Press

X Programmers Supplement for Release 5, David Flanagan, 1991, O’Reilly and
Associates

Japanese Input User’s Guide, SunSoft

JFP User’s Guide, SunSoft

JFP Programmer’s Guide, SunSoft

Asian Solaris 2.4 User’s Guide, SunSoft

Part 1 — Miscellaneous XView Issues

3

Motif and XView Interoperability 1

The XView toolkit included in Solaris releases implements the OPEN LOOK®
“look and feel.” Because OPEN LOOK and Motif® standards differ, XView
clients (applications) do not interoperate properly with Motif clients and the
Motif window manager in some cases. This chapter describes interoperability
issues for the current Solaris release.

Note – The openwin window system start up script includes a new option that
allows the user to start the Motif Window Manager instead of the OPEN LOOK
Window Manager.

Motif and XView Client Interoperability
Motif and XView clients experience interoperability problems in two areas:
selections and drag and drop.

Selections

Motif supports three modes of selection: primary, secondary, and clipboard.
XView supports these modes, also, but uses a different mechanism for primary
and secondary selections. Motif and XView, then, do not interoperate for these
two types of selections. The Motif primary copy operation cannot copy into an
XView client. Motif clients cannot perform a quick copy/paste operation into
an XView client, or vice versa.

4 XView Developer’s Notes—August 1994

1

In the C locale, a user can use cut, copy, and paste properly between Motif and
XView clients. This functionality might not work in other locales.

Drag and Drop

Motif and XView use different internal protocols and user interface paradigms
for drag and drop. Thus an end user cannot drag and drop data between Motif
and XView applications.

Motif Window Manager and XView Client Interoperability
The Motif window manager and XView clients experience interoperability
problems in four areas: XView clients with two base windows, window
decoration, XView Text Editor, and Focus Follows Mouse for XView Clients.

XView Clients with Two Base Windows

If an XView application in a Motif environment (with the Motif Window
Manager running) has two base windows, and the user quits one window, then
the entire application quits.

Window Decoration

XView applications need to communicate with the Motif Window Manager to
control their window decorations. The XView toolkit will implement the Motif
Close menu button, Resize corners, and the Window title.

XView Text Editor Client

If a user is editing with Text Editor in a Motif environment, and decides to quit
the application, Text Editor does not produce a notice asking if he wants to
perform a save operation first.

Motif and XView Interoperability 5

1

Focus Follows Mouse

When a user starts the Motif Window Manager with
FocusPolicy -PointerLocation , Motif clients get the focus immediately.
XView clients do not get the focus; the user must click on the client to get the
focus.

6 XView Developer’s Notes—August 1994

1

7

O’Reilly Corrections and
Supplements 2

This appendix contains corrections to the XView O’Reilly documentation, as
well as some supplementary XView material.

Corrections to the XView Programming Manual
This section contains corrections to the XView Programming Manual (Volume
7), Third Edition, from O’Reilly and Associates. Unless noted, the corrections
are for the XView version 3 edition of the manual.

long_seln.c

The long_seln.c program (example A-3) contains an error. The line

should be replaced by:

The program in $OPENWINHOME/share/src/xview/examples/seln_svc
contains the corrected code.

char *seln_bufs[3]; /* contents of each of the three selections */

char *seln_bufs[6]; /* contents of the three selections, but
allow room for all six types of selections*/

8 XView Developer’s Notes—August 1994

2

PANEL_EVENT_PROC

The xv_set expression in Section 7.19.8

incorrectly sets the PANEL_EVENT_PROC on a panel . It can be set only on a
Panel_item .

notify_next_event_func

The Third Edition O’Reilly programmer documentation incorrectly states that
notify_next_event_func takes the same arguments as
my_frame_interposer (see example 20-5). (Note that this error also occurs
in the function declaration on page 162 of the reference manual.)

Using the function with these parameters leads to a compiler warning:

The notify_next_event_func declaration should read:

notice.c

This correction refers to the XView 3.2 Programming Manual.

The notice.c program (example 12.6) incorrectly uses the NOTICE package.
To correct this, declare result as type static int (instead of int) in
my_notify_proc .

xv_set(panel, PANEL_EVENT_PROC, my_event_proc, NULL)

line # : warning: improper pointer/integer combination: arg #2

Notify_value
notify_next_event_func(client, event, arg, type)

Notify_client client;
Notify_event event;
Notify_arg arg;
Notify_event_typetype;

O’Reilly Corrections and Supplements 9

2

Corrections to the XView Reference Manual
This section contains corrections to the XView Reference Manual for XView
Version 3, Companion to Volume 7, from O’Reilly and Associates.

CMS_COLOR_COUNT

You cannot use CMS_COLOR_COUNT to retrieve a subset of the CMS’s
CMS_COLORS or CMS_X_COLORS array. Page 37 of the reference manual
incorrectly states that you can use xv_get to do this. XView ignores
CMS_COLOR_COUNT with xv_get .

The first paragraph on page 37 (which describes CMS_COLOR_COUNT) should
read:

“Used to specify the number of colors being set with CMS_COLORS or
CMS_X_COLORS.”

Supplementary XView Documentation
This section contains information regarding the XView toolkit that would
normally reside in the O’Reilly documentation, but was not included in
O’Reilly’s final XView documentation release.

10 XView Developer’s Notes—August 1994

2

Joining Canvas Views

To join XView canvas views, destroy the view that you do not want by
invoking xv_destroy_safe . Here is sample code to do this:

See the XView Programming Manual for information on how to split canvas
views using xv_set .

XV_HELP_DATA

Set XV_HELP_DATA on a text subwindow by setting it on the text
subwindow’s view. You can obtain the view as follows:

XV_FOCUS_RANK

XV_FOCUS_RANK specifies the focus client class for XView objects. It takes on
values:

void
destroy_last_view(canvas)
Canvas canvas;
{

/* destroy the last View window */
Xv_Window view;
int nviews;
nviews = (int) xv_get(canvas, OPENWIN_NVIEWS);
if (nviews > 1) {

view = (Xv_Window) xv_get(canvas, OPENWIN_NTH_VIEW,
 nviews-1)

(void) xv_destroy_safe(view);}
}

xv_get(textsw, OPENWIN_NTH_VIEW, O);

typedef enum
{

XV_FOCUS_SECONDARY = 0, /* default value: Ordinary Focus */
XV_FOCUS_PRIMARY = 1 /* First Class Focus */

} Xv_focus_rank;

O’Reilly Corrections and Supplements 11

2

The OPEN LOOK Mouseless Specification states that by default, textfields,
numeric textfields, and scrolling lists are primary focus clients. Other XView
controls default to secondary focus. The Specification also states that an
application can choose to specify other controls as primary focus clients if
necessary.

Scrollbars

This section discusses three scrollbar attributes:
SCROLLBAR_COMPUTE_SCROLL_PROC, SCROLLBAR_NORMALIZE_PROC, and
SCROLLBAR_MOTION.

See “Managing Your Own Scrollbar,” in the XView Programming Manual’s
Scrollbar chapter, for more information on scrollbars.

SCROLLBAR_COMPUTE_SCROLL_PROC

This attribute has an associated function that converts physical scrollbar
information into client object information. An example function call looks like:

This function should return offset and object_length .

Use default_compute_scroll_proc to perform the normal scrollbar
package functionality. If you do not set a normalize_proc, the offset becomes
the viewstart (after bounds checking). The scrollbar package then scrolls the
object to this offset.

Code Example 2-1 contains sample code for the
scrollbar_compute_scroll_proc attribute’s function.

scrollbar_compute_scroll_proc(sb, pos, available_cable, motion,
 &offset, &object_length)

Code Example 2-1 scrollbar_compute_scroll_proc attribute function

void
scrollbar_compute_scroll_proc(scrollpub, pos, avail_cable,

 motion, offset, object_len)
Scrollbar scrollpub;

12 XView Developer’s Notes—August 1994

2

int pos;
int avail_cable;
Scroll_motion motion;
unsigned long *offset;
unsigned long *object_len;

{
int new_start = TEXTSW_CANNOT_SET;
int lines = 0;

*obj_length = es_get_length(folio->views->esh);

switch(motion) {
case SCROLLBAR_ABSOLUTE:

if (length == 0)
new_start = pos;

else
new_start = *obj_length * pos / length;

break;
case SCROLLBAR_POINT_TO_MIN:
case SCROLLBAR_MIN_TO_POINT: {

if (lines == 0)
lines++ /* Always make some progress */

if (motion == SCROLLBAR_MIN_TO_POINT)
lines = -lines;

}
break;

case SCROLLBAR_PAGE_FORWARD:
lines = line_table.last_plus_one - 2;
break;

case SCROLLBAR_PAGE_BACKWARD:
lines = last_plus_one+ 2;
break;

case SCROLLBAR_LINE_FORWARD:
lines = 1;
break;

case SCROLLBAR_LINE_BACKWARD:
lines = -1;
break;

case SCROLLBAR_TO_START:
new_start = 0;
break;

case SCROLLBAR_TO_END:
new_start = *obj_length;

Code Example 2-1 scrollbar_compute_scroll_proc attribute function

O’Reilly Corrections and Supplements 13

2

SCROLLBAR_NORMALIZE_PROC

This attribute’s function takes the offset that the
scrollbar_compute_scroll_proc attribute’s function returns, and adjusts
it. The scrollbar package then scrolls the object to this offset.

An example function call looks like:

This function should return vstart . Code Example 2-2 contains sample code
for the scrollbar_normalize_proc attribute’s function.

break;
default:

break;
}

xv_set(sb, SCROLLBAR_VIEW_LENGTH, last_plus_one - first, 0);
*offset = first;
return (XV_OK);
}

scrollbar_normalize_proc(sb, voffset, motion, &vstart)

Code Example 2-2 scrollbar_normalize_proc attribute function

scrollbar_normalize_proc(sb, offset, motion, vs)
Scrollbar sb;
long unsigned offset;
Scroll_motion motion;
long unsigned *vs; /* new offset == new viewstart */

{
line_ht = (int) xv_get(sb, SCROLLBAR_PIXELS_PER_UNIT);

/* If everything in the panel is in view, then don’t scroll. */
if ((int) xv_get(sb, SCROLLBAR_OBJECT_LENGTH) <=

(int) xv_get(sb, SCROLLBAR_VIEW_LENGTH))
return (*vs = offset);

switch(motion){
case SCROLLBAR_ABSOLUTE:
case SCROLLBAR_LINE_FORWARD:
case SCROLLBAR_TO_START:

align_to_max = TRUE;

Code Example 2-1 scrollbar_compute_scroll_proc attribute function

14 XView Developer’s Notes—August 1994

2

SCROLLBAR_MOTION

The SCROLLBAR_MOTION attribute provides the scrolling motion resulting
from a scrollbar_request event. The xv_get call:

returns motion , which is one of:

• ABSOLUTE
• POINT_TO_MIN (from here_to_top on menu)
• PAGE_FORWARD
• LINE_FORWARD
• MIN_TO_POINT (from top_to_here on menu)

scrolling_up = TRUE;
break;

case SCROLLBAR_PAGE_FORWARD:
case SCROLLBAR_TO_END:

align_to_max = TRUE;
scrolling_up = TRUE;
break;

case SCROLLBAR_POINT_TO_MIN:
align_to_max = TRUE;
scrolling_up = TRUE;
break;

case SCROLLBAR_MIN_TO_POINT:
align_to_max = TRUE;
scrolling_up = TRUE;
break;

case SCROLLBAR_PAGE_BACKWARD:
case SCROLLBAR_LINE_BACKWARDS:

align_to_max = FALSE;
scrolling_up = FALSE;
break; }

*vs = offset;
return(XV_OK);
}

xv_get(sb, SCROLLBAR_MOTION)

Code Example 2-2 scrollbar_normalize_proc attribute function

O’Reilly Corrections and Supplements 15

2

• PAGE_BACKWARD
• LINE_BACKWARD
• TO_END
• TO_START
• PAGE_ALIGNED

XView Panel Architecture

The XView Panel class architecture, inherited from SunView, does not
sufficiently deal with container classes (numeric text fields, scrolling lists, and
sliders) in a backward-compatible manner. This section discusses changes that
address this issue.

XV_KEY_DATA and PANEL_CLIENT_DATA Attributes

Clients use xv_set along with XV_KEY_DATA or PANEL_CLIENT_DATA and an
object handle to associate a key with a piece of data for the object. When an
event occurs, the client can retrieve an object handle from the event proc. The
client can then use the object handle (and XV_KEY_DATA or
PANEL_CLIENT_DATA) to xv_get the data.

For numeric text fields, when an event occurs inside the text field,
PANEL_EVENT_PROC is called with the handle to the text field as an argument.
If the client retrieves data as described above, xv_get uses the text field’s
handle. This can cause problems, because the event is a numeric text field
event. To eliminate any problems arising from this situation, whenever clients
xv_set data for the numeric text field, it is automatically xv_set (using the
same key and data) for the text field. Then xv_get will always retrieve the
data associated with the numeric text field.

PANEL_ITEM_OWNER Attribute

The PANEL_ITEM_OWNER attribute is now public, so the client can obtain the
parent container object from the child. If PANEL_ITEM_OWNER returns a non-
NULL value, the client has obtained the handle to the parent object.

For example, for numeric text fields, PANEL_ITEM_OWNER called with the
associated text field as an argument returns the numeric text field.
PANEL_ITEM_OWNER returns NULL when called using the numeric text field as
an argument.

16 XView Developer’s Notes—August 1994

2

XV_FOCUS_RANK Attribute

The XV_FOCUS_RANK attribute has been in the public header files since the
XView 3.0 release. XV_FOCUS_RANK can be used with xv_set or xv_get .
XV_FOCUS_RANK should only be used on panel items that accept keyboard
input in full mouseless mode. For example, any panel item affected by the
mouse or the keyboard: buttons, sliders, text items, etc.

XV_FOCUS_RANK can have one of these two values: XV_FOCUS_PRIMARY or
XV_FOCUS_SECONDARY. Panel items with an XV_FOCUS_RANK or
XV_FOCUS_PRIMARY accept keyboard input without full mouseless mode,
such as panel text items and scrolling lists. Panel items with an
XV_FOCUS_RANK of XV_FOCUS_SECONDARY only accept keyboard input if full
mosueless mode is turned on, such as buttons and check boxes. If keyboard
focus is moved into a panel, the upper leftmost XV_FOCUS_PRIMARY panel
item is given the keyboard focus.

Using the Child Handle

Retrieve and set values using the child handle through the parent container
object’s API. Otherwise, your applications will not be forward-compatible
beyond this release. Although you can obtain the child’s handle, its API is
private, so is subject to change.

Panel Drop Targets
The panel drop target has a new attribute, PANEL_DROP_DELETE. The default
for PANEL_DROP_DELETE is TRUE. If you set it to FALSE, all drag and drop
operations dropped on the PANEL_DROP_TARGET_ITEM behave as if the user
presses the Control key (resulting in a copy operation). The attribute can be set
in the panel notify procedure that is called when a drop occurs. This allows
you to decide, while each drop is happening, whether to allow a drag move or
only a drag copy. This is a boolean attribute, and can be used with
xv_create() , xv_get() , and xv_set() .

O’Reilly Corrections and Supplements 17

2

Compiling XView Programs
Use the following command line to compile your XView application:

You must specify the following libraries when statically linking an XView
application:

• -lxview
• -lolgx
• -lX11
• -lXext
• -lX11 (this is needed again by libXext)
• -lsocket
• -lnsl
• -lintl
• -lw
• -Bdynamic -ldl

You must always link the dl library in dynamically. For example:

cc -I$OPENWINHOME/include file.c -L$OPENWINHOME/lib -lxview
-lolgx -lX11

cc -I$OPENWINHOME/include foo.c -o foo -L$OPENWINHOME/lib
-Bstatic -lxview -lolgx -lX11 -lXext -lX11 -lnsl -lintl -lw
-Bdynamic -ldl

18 XView Developer’s Notes—August 1994

2

Part 2 — Internationalizing XView
Applications

21

Introducing Internationalized
XView 3

XView is a user-interface toolkit based on the X Window System and the OPEN
LOOK graphical user interface. It is included in the current Solaris release.

XView allows you to internationalize your OPEN LOOK applications by
supporting Asian and many western European languages:

• Western European (ISO Latin-1) languages and Asian languages are
supported with locale settings, localized text handling, and customized
object layout.

• Asian languages have multibyte, wide characters, input method, and font
set support.

You do not have to redesign or recompile internationalized applications. The
goal is to have a single application binary operate in any of the supported
locales.

In an internationalized XView application, language-specific application data
(message strings, labels, and so on) is separate from the rest of the application.
To localize the application (that is, to adapt the application to support a specific
language) you need to modify only the language-specific data. Thus, the task
of porting an internationalized application consists of, among other things,
translating application-specific strings and modifying object layout.

The information in this manual builds on the contents of several other manuals
published by SunSoft and O’Reilly and Associates. Check the preface to make
sure you have the manuals you need.

22 XView Developer’s Notes—August 1994

3

Internationalization Features
The internationalization of XView applications is outlined in the
XView Programming Manual, Version 3, published by O’Reilly and Associates.
Specifically, XView supports the following internationalization features
described in that programming manual:

• Locale setting
Before running an internationalized application, users must select what
language to run in. The locale setting feature allows the user to choose the
language or cultural environment.

• Localized text handling
As a developer, you need to be able to write application strings—error
messages, menu labels, button labels—in the native language, and have
those strings retrieved in the language specified by the locale. This process
is called localized text handling.

• Object layout
When an application is run in a non-native language, the layout of various
objects may change. For example, the dimensions of objects containing
strings, such as buttons and panels, may change. Object layout is the
mechanism by which the screen location of objects is modified (depending
on the display language) to accommodate these kinds of changes.

This manual describes additional internationalization features that are not
documented in the XView Programming Manual.

• Wide character and multibyte characters
• Input method
• Font sets

Wide Characters and Multibyte Characters

English language applications use ASCII encoding to represent characters.
Each character is encoded using one byte (actually 7 out of the 8 bits). Other
languages have multiple character sets that sometimes contain extremely large
numbers of characters. These languages require more than one byte to
represent each character and must be encoded differently. The current release
of XView uses Extended UNIX Code (EUC) encoding.

Introducing Internationalized XView 23

3

Certain XView attributes and functions have been modified to handle EUC
multibyte characters. There are also wide character attributes and functions.
Wide character attributes are suffixed with _WC (wide character) or _WCS(wide
character string). Similarly, wide character functions are suffixed with _wc or
_wcs . See Chapter 4, “Character Encoding for more information.

Input Method

Input method refers to how users enter text in an application. For example, to
enter data in a typical European language application—say German—users
simply type the information. Many Asian languages, however, consist of
multiple character sets (for example, Japanese has two phonetic alphabets and
one ideographic character set). These multiple character sets can consist of
many thousands of characters and contain numerous homonyms for any
particular word. Entering data in these languages requires special input
handling. See Chapter 5, “Input Method for more information.

Font Sets

Most western European languages consist of a single character set, and only
one font is necessary to support the language. Languages with multiple
character sets require multiple fonts, which are grouped into font sets. The font
handling API has been extended in the current XView release to handle font
sets. See “Fonts” on page 45 for more information.

Compiling XView Programs
Use the following command line to compile your XView application:

cc -DOW_I18N -I$OPENWINHOME/include file.c
-L$OPENWINHOME/lib -lxview -lolgx -lX11 {-lintl -lw}

-DOW_I18N= Enables internationalization support

-lxview = XView library

-lolgx = OPEN LOOK graphics library

-lX11 = X11 Release 5 library

24 XView Developer’s Notes—August 1994

3

The following optional flags link in libraries that may be needed by the
application:

-lintl =Message cataloguing library. Needed if application uses
gettext family of functions.

-lw = Wide character support library. Needed if the application
uses wide character functions such as getwchar() .

25

Character Encoding 4

In order to support a wide range of languages, The current XView release uses
Extended UNIX Code (EUC) as its primary encoding method. EUC encoding is
suited for internationalized applications because it is compatible with ASCII1

and, at the same time, supports multiple character sets.

The character sets you use depend on the locale(s) associated with your
application:

• Non-Asian locales usually have a single character set. For example, ASCII or
ISO Latin-1 is suited for English or western European languages.

• Asian locales usually have multiple character sets.

EUC characters and text strings use either multibyte or wide character
representation. In multibyte representation, characters are represented by a
varying number of bytes. In wide character representation, characters are
represented by a fixed number of bytes.

In the current XView release, attributes and functions have been modified to
handle multibyte strings, and additional attributes and functions accommodate
wide characters.

XView also uses Compound Text encoding for transferring data between X
clients.

1. The multibyte API is compatible with earlier versions of XView, such as domestic U.S. XView 3.1, which
used ASCII or ISO Latin-1 characters.

26 XView Developer’s Notes—August 1994

4

For detailed discussions on encoding, refer to these documents:

• EUC, multibyte, and wide character: Developer’s Guide to
Internationalization.

• Compound Text: Compound Text Encoding, Version 1.1, MIT X Consortium
Standard, X Version 11, Release 5 by Robert W. Scheifler.

Encodings Used in Asian Locales
As you write your program, you will need to choose a suitable character
encoding and API. Figure 4-1 shows how you can use different encodings
(EUC wide character and multibyte, and Compound Text) within the same
application.

Figure 4-1 Encodings Used for Asian Locales

OS commands Files stored as multibyte

Wide character interface Multibyte Interface

XView Library

Xlib

Appropriate Encoding (multibyte/wide character)

Wide character Multibyte

Multibyte

Multibyte

XView applications using
wide character API

Multibyte

or tty-based
applications

Other X

Compound Text
(used in selections,
drag and drop, etc.)

applications
XView applications using
multibyte API

Character Encoding 27

4

When to Use Multibyte and Wide Character

The wide character API (type wchar_t) consists of wide character string
handling attributes and functions. The multibyte API (type char) is the same
as in earlier, single-byte versions of XView.

You can mix wide character and multibyte characters within the same
application. You can also mix wide character and multibyte APIs.

The XView library dynamically adjusts its internal data representation
depending upon both the locale the application is running in and the nature of
the data. As a result of this, programming convenience is the primary
consideration regarding the choice of API.

When to Use Compound Text

The character encodings or character sets used in multibyte and wide character
implementations may differ among vendors. For an application to
communicate with other applications, a common encoding scheme is needed.
XView relies on Compound Text, which is specified by the X Consortium.

Use Compound Text encoding in these situations:

• When an application needs to send a string composed of characters other
than ISO Latin-1 across the X server to another application. XView uses
Compound Text for data transfers to and from other X clients; for example,
selection services (including drag and drop operations) and sending
properties to the window manager

• When an application implements its own interclient communication; for
example, a canvas-based application that uses selection service.

Note than an application is free to use a private encoding scheme for its own
use, as long as the ICCCM is followed.

EUC Programming Issues
The following sections discuss special programming issues related to screen
column definitions and passing multibyte strings.

28 XView Developer’s Notes—August 1994

4

Screen Columns

A screen column is defined as the pixel space required by a single ASCII
character.1 Asian characters may use a wider screen space than ASCII
characters and are generally represented by more than one byte. Thus, in Asian
locales:

screen columns != character count != byte count

Asian characters may also be interspersed with ASCII characters. In Asian
locales, a fixed unit in pixels is needed to specify the space required by a screen
column. Then wide Asian characters can occupy two or more columns, as in
Figure 4-2.

Figure 4-2 ASCII and Japanese Characters

A number of functions and attributes use screen columns as arguments or
returned values.

For example, PANEL_VALUE_STORED_LENGTH limits the number of
characters that can be entered into a panel item. In Asian locales,
PANEL_VALUE_STORED_LENGTH is measured in bytes. However, this attribute
is screen-column based. If PANEL_VALUE_STORED_LENGTH and
PANEL_VALUE_DISPLAY_LENGTH are specified to be 80, the user has allocated
80 screen columns, but not necessarily 80 characters, for display. In traditional
Chinese, a Han character can be composed of 4 bytes and occupy 2 columns.
Therefore, the PANEL_VALUE_STORED_LENGTH limit can be reached at 20
characters, yet only 40 screen columns are occupied.2

1. In previous releases (such as domestic U.S. XView 3.1), a screen column was defined as the space occupied
by one character, and one character was represented by one byte. Therefore, the following used to apply:

screen columns==character count==byte count

Character Encoding 29

4

Wide Character Attributes and Functions
Most XView multibyte attributes and functions that take a string or character
as an argument have wide character analogs. These wide character attributes
and functions have similar names composed of the original names suffixed
with _WCS, _WC, _wc, or _wcs :

• _WC for wide character attributes
• _wc for wide character functions
• _WCS for wide character string attributes
• _wcs for wide character string functions

2. The screen column concept is only applicable in the case of fixed-width fonts. By default, the C locale uses
fixed-width fonts for textsw and ttysw , and variable-width fonts for frame and panel. Currently, Asian
locales use only fixed-width fonts.

30 XView Developer’s Notes—August 1994

4

31

Input Method 5

An input method is a method by which an application directs the user to type,
select, and send text to an application. Input methods differ for each language
depending on the language’s structure and conventions. Input methods for
Japanese, Chinese, and Korean are provided by SunSoft.

The current XView programming environment follows the X Window System
Version 11 Release 5 specifications for input methods. Refer to Xlib - C Language
X Interface MIT X Consortium Standard X Version 11, Release 5 for additional
information. XView supports the X input method in panels, tty subwindows,
text subwindows, and canvases.

Purpose of Input Methods
English text is entered into an application directly by typing letters from the
keyboard. To enter text in the Asian locales, an input method is required
because users cannot enter all characters into an application directly from the
keyboard. It is often impractical to map all Asian alphabets and characters on
to a keyboard; many Asian languages have extremely large character sets and
several alphabets.

• Japanese text uses three different writing systems: Hiragana, Katakana, and
Kanji. Hiragana and Katakana are phonetic alphabets. Users enter them
directly from the keyboard using Romaji, a way to spell out Hiragana and
Katakana with a western alphabet. Hiragana and Katakana combinations
can be converted to ideographic Kanji characters.

32 XView Developer’s Notes—August 1994

5

• Korean uses two different writing systems: Hangul and Hanja. Hangul is a
phonetic alphabet users can enter from the keyboard and then convert to
Hanja (ideographic) characters.

• Chinese employs numerous input methods including phonetic spelling,
stroke combinations, and phrase compositions.

For further information on specific input method operations, refer to the
JFP User’s Guide, or the Asian Solaris 2.4 user’s guide, which are listed in the
Preface.

Input Method Operation

In typical Asian language input method(s), the following occurs:

1. The user selects a phonetic alphabet in which to enter characters.

2. The user types the word, which appears in inverse video in an area of the
screen called the preedit region.

3. To convert the word in the preedit region to another alphabet or an
ideographic character, the user presses the Select Start key.

4. Phonetically equivalent choices are displayed in the lookup choice region, and
the user selects the most appropriate choice to replace the word in the
preedit region.

Input Method Screen Regions

Each Asian language has its own input method, but the screen regions are
similar from language to language. Japanese, for example, has three screen
regions:

• Preedit region
The preedit region is activated when input method conversion is enabled.
Entered text is displayed in inverse video. When preedit text is committed,
the text is sent to the client and displayed in normal video.

• Lookup choice region
In many Asian languages one phonetic representation of a word can have
several ideographic representations. The lookup choice region displays the
multiple ideographic choices that correspond to one phonetic

Input Method 33

5

representation. For example, in Japanese, the user can type in a word
phonetically, then display the lookup choice region, and finally, select the
appropriate Kanji, Hiragana, or Katakana representation.

• Status region
The status region provides feedback on the state of the input method. Some
languages are very complex and have several input methods. For example,
in Chinese, users can choose from TsangChieh, Chuyin, ChienI, Neima,
ChuanHsing, or Telecode input methods. In the Japanese input method, the
status region displays alphabet (Hiragana or Katakana) that is being used.
The status region is part of the frame window and is displayed above the
frame footer.

The screen regions for the Japanese input method for the current XView release
are shown in Figure 5-1.

Figure 5-1 Japanese Input Method Screen Regions

Status region

Preedit region

Lookup choice region

34 XView Developer’s Notes—August 1994

5

Input Method Styles
Xlib supports a variety of input method styles, which allow for different user
interaction and display models for preedit and status regions. XView supports
many of these styles. In particular, the current XView release supports the
following XIMStyle values:

• Xlib preedit styles:
• XIMPreeditCallbacks
• XIMPreeditPosition
• XIMPreeditNothing
• XIMPreeditNone

• Xlib status styles:
• XIMStatusCallbacks
• XIMStatusArea
• XIMStatusNothing
• XIMStatusNone

Specifying Styles

Input method styles can be specified in the following ways (listed in order of
precedence):

• XView attribute
• User-specified command line options
• User-specified locale-specific X resources (~/.Xdefaults)
• User-specified X resources (~/.Xdefaults)

XView attributes override user-specified styles, and command line entries
override X resource settings. Table 5-1 on page 35 and Table 5-2 on page 35
show the preedit and status style values. By default, XView requests the use of
an on-the-spot preedit style and a client-displays status style.

Input Method 35

5

Table 5-1 Preedit Style Values

XView Attribute Command Line Option X Resources
WIN_X_IM_STYLE_MASK -preedit_style OpenWindows.ImPreeditStyle

XIMPreeditCallbacks onTheSpot onTheSpot

XIMPreeditPosition overTheSpot overTheSpot

XIMPreeditNothing rootWindow rootWindow

XIMPreeditNone none none

Table 5-2 Status Style Values

XView Attribute Command Line Option X Resources
WIN_X_IM_STYLE_MASK -status_style OpenWindows.ImStatusStyle

XIMStatusCallbacks clientDisplays clientDisplays

XIMStatusArea imDisplaysInClient imDisplaysInClient

XIMStatusNothing imDisplaysInRoot imDisplaysInRoot

XIMStatusNone none none

Determining the Default Style

XView clients can request a particular input method (IM) style; however, the
requested style is only considered to be a hint. The actual IM styles used by
the application depend on what styles are supported by both the toolkit and
the input method server.

XView attempts to accommodate the requested IM style. If, however, the style
requested is not supported, the default IM style is set to a root-window preedit
style and an im-displays-in-root status style.

The attribute XV_IM_STYLES can be used to determine what styles are
supported. It returns an XIMStyles structure.

For further details on specifying IM styles, see “Windows: Handling Input” on
page 71.

36 XView Developer’s Notes—August 1994

5

Enabling and Disabling the Input Method
If you expect a window to use Asian text input, request the use of an input
method during xv_create() . The WIN_USE_IM attribute is considered to be
a hint for enabling or disabling the input method for a given window. If an
input method is available, that is, if the locale-specific resource
xview.needIM is TRUE, setting WIN_USE_IM to TRUE will enable the input
method. Setting WIN_USE_IM to FALSE will disable use of the input method.
Refer to Chapter 6, “XView API for Internationalization,” in the “Resources”
section for more information on xview.needIM .

WIN_USE_IM can be set on any frame, panel, tty subwindow, text subwindow,
or canvas. By default, WIN_USE_IM is TRUE if the input language specified by
XV_LC_INPUT_LANG supports an input method. WIN_USE_IM is an
inheritable attribute; therefore, subwindows inherit the value of WIN_USE_IM
from the parent frame if it is not set explicitly.

If a subwindow does not require Asian text input—say a panel containing
buttons or a read-only text subwindow, create it with WIN_USE_IM set to
FALSE. This avoids having the toolkit create and maintain unnecessary input
context (IC) resources and avoids the overhead of connecting with the input
method server.

Once an input method is enabled, the user can compose Asian text by
interacting with the various input method screen regions.

Input Method Architecture
Internationalized applications receive user text input by communicating with
an input method. XView makes a single input method connection with Xlib
upon calling xv_init() and operates in the specified input language locale.

Input Method 37

5

Different Xlib implementations provide input method support in various
ways.1 Shown in Figure 5-2 on page 37 is one possible example of an
application connecting with an Asian input method, which is input method
server based. In this example, the client is connected with the input method
server using a back-end method. One input method server can provide input
method service to multiple X clients.

Figure 5-2 High-level Overview of Input Method

By default, XView provides an on-the-spot and client-displays input method
style, in which the input method makes requests to the application to display
preedit and status information through a series of callback functions.2 XView

1. Various Xlib implementations exist today to support input methods. For instance, European input methods
may not require preedit feedback or dictionary lookup, and may be implemented directly within Xlib.
Conversely, many Asian input methods are implemented with Xlib establishing a connection with another
process called the input method server. Input method servers may also connect with a language engine
process that aids in dictionary lookup. Additionally, an input method can be further characterized as a
front-end or back-end method depending on whether the event is intercepted before it reaches the application
or not.

X Server

XView

Input Method
Xlib

XView

Xlib

Language Engine

Composed Text Composed Text

EventEvent

EventEvent

Server

Input Method connection
• Input Method (IM) callback information sent to application
• Input Context (IC) information sent to IM

38 XView Developer’s Notes—August 1994

5

automatically handles communication between the application and the input
method by creating an X input context (IC)1 and registering default preedit
callbacks and status callbacks for each panel, canvas, text subwindow, or tty
subwindow that has input method enabled.

Only one IC is registered per subwindow, even if there are multiple input areas
within a subwindow. For instance, a panel with multiple text items will have
each text item share the same IC.

Implicit Commit of Preedit Text
Certain mouse and keyboard actions automatically commit a preedit string
without requiring the user to enter a commit key sequence. Implicit commit
actions are listed in Table 3-1. In some cases key actions are consumed by the
language conversion engine. The language conversion engine can also
implicitly commit text. For example, in the Japanese input method, when a
preedit string has been converted using the Control-N key, subsequent preedit
input implicitly commits the preedit string. Refer to the specific Asian
Language Environment documentation (see “Further Documentation” on
page xvii) for implicit commit behavior of a particular language’s conversion
engine.

Implicit commit can also be triggered programmatically by certain attributes
and functions in panels and text subwindows. Refer to “Panels” on page 54
and “Text Subwindows” on page 63 for details.

Table 5-3 Implicit Commit Actions

Function Keys Panel Textsw Ttysw

Left arrow key Y Y Y
Down arrow key Y Y Y
Right arrow key Y Y Y

2. In Xlib terminology, the XIMStyle of XIMPreeditCallbacks and XIMStatusCallbacks are
supported.

1. In Xlib, there is the concept of the input context (IC), which is essentially an abstraction of a data structure
that contains information about the state of an input method area.

Input Method 39

5

Up arrow key Y Y Y
Home key N Y N
End key N Y N
PgUp key N Y N
PgDn key N Y N
Paste Y Y Y
Find Y Y N
Again N Y N
Undo Y Y N
Carriage Return Y* Y* Y*
Tab Y* Y* Y*
Select (left mouse button) Y Y Y
Adjust Y Y N

* Denotes key actions known to be consumed by some language conversion engine

The table above applies to both SPARC and x86 hardware. x86 keyboards have
all function keys listed above, except for Paste, Find, Again, and Undo. The x86
functionality can be obtained by:

• Paste—Meta-v
• Find—Meta-f
• Again—Meta-a
• Undo—Meta-u
• Adjust—middle mouse button on three-button mice, and Shift+mouse right

button on two-button mice

Customizing Input Method Callbacks
A default user interface is provided for the preedit and status regions when on-
the-spot and client-displays styles are used. If you want to customize the user
interface, you can specify your own callback functions for preedit and status
regions using the WIN_IC_PREEDIT_* and WIN_IC_STATUS_* attributes.
The lookup choice region is not customizable since it is displayed by the input
method and not by the toolkit. Refer to “Windows: Handling Input” on
page 71 for details on enabling input methods and attributes available for
customizing the input method interface.

.

40 XView Developer’s Notes—August 1994

5

41

XView API for Internationalization 6

This chapter describes internationalization features available within each
XView package. You will find detailed discussions about many of the
attributes and functions that will help you internationalize your application.

The sections in this chapter, presented alphabetically by packages, correspond
with chapters in the O’Reilly XView Programming Manual. Use the information
in this chapter as an addendum to the O’Reilly manual.

The XView Programming Manual discusses the multibyte API, and for the most
part, the wide character API behaves similarly. Differences between the two
types of attributes and functions are noted here. This chapter also describes
additional attributes and functions that specifically aid in supporting
internationalization.

Attributes and functions are listed in tables at the beginning of each section for
quick reference, and if necessary, they are discussed in further detail.

Canvases
The following sections describe the canvas input method, input context, and
the CANVAS_IM_PREEDIT_FRAME attribute.

42 XView Developer’s Notes—August 1994

6

Canvas Input Context

When canvases are created with WIN_USE_IM set to TRUE, their input method
is enabled for all the canvas paint windows. All paint windows share the same
input context; therefore, if input method is activated in one paint window,
preedit is active in all paint windows. It is not possible to change the state of
WIN_USE_IM in an individual paint window using WIN_USE_IM with
CANVAS_PAINTWINDOW_ATTRS.

Canvas Input Method

When on-the-spot preedit style is used, the canvas package uses a popup
window to display preedit text. The popup window appears near the canvas
window. The popup window is used because a canvas provides a drawing
surface only, and it is not possible to determine how an application using
canvas might implement text rendering. Canvases within a frame share the
same preedit popup window. The frame status region and the preedit popup
window contents always reflect the state of the canvas that has the focus.

CANVAS_IM_PREEDIT_FRAME

You can label, display, position, or size the preedit popup window.

Querying CANVAS_IM_PREEDIT_FRAME with xv_get() returns the frame
handle of the preedit popup window associated with a canvas. The attributes
that can be set on the preedit popup window are XV_LABEL, XV_SHOW,
XV_WIDTH, XV_HEIGHT, XV_X, and XV_Y.

Cursors
CURSOR_STRING_WCS supports text drag and drop cursors for wide character
strings.

File Chooser
The default file chooser object contains file list, history, and pathname objects.
For further information refer to:

• “File Lists” on page 44
• “History” on page 53

XView API for Internationalization 43

6

• “Pathnames” on page 57

Table 6-1 lists wide character file chooser attributes.
Table 6-1 File Chooser Attributes

Wide Character Attributes

FILE_CHOOSER_APP_DIR_WCS

FILE_CHOOSER_CUSTOMIZE_OPEN_WCS

FILE_CHOOSER_DIRECTORY_WCS

FILE_CHOOSER_DOC_NAME_WCS

FILE_CHOOSER_FILTER_STRING_WCS*

FILE_CHOOSER_NOTIFY_FUNC_WCS

FILE_CHOOSER_WCHAR_NOTIFY

* See the discussion following this table.

Caution – Do not use FILE_CHOOSER_FILTER_STRING_WCS for multibyte
characters in filenames. Results are unpredictable. This limitation will be
removed in future releases.

Callbacks registered by the functions FILE_CHOOSER_CHANGE_DIR_FUNC,
FILE_CHOOSER_FILTER_FUNC, and FILE_CHOOSER_COMPARE_FUNC
normally receive multibyte character strings, but callbacks can receive wide
character strings when the function FILE_CHOOSER_WCHAR_NOTIFY is turned
on.

The File_chooser_row structure changes to the File_chooser_row_wcs
structure as follows.

typedef struct {
wchar_t *file_wcs;
struct stat *stats;
File_chooser_opmatched;
char *xfrm;

} File_chooser_row_wcs;

44 XView Developer’s Notes—August 1994

6

The xfrm field contains the string returned from the function strxfrm(3) .
The built-in comparison functions are all defined to have parameters of type
File_chooser_row . Since the functions use only the xfrm field, they also
work for File_chooser_row_wcs structures. If the client calls these
functions directly, it should typecast accordingly.

File Lists
Table 6-2 lists the wide character file list attributes.
Table 6-2 File List Attributes

Wide Character Attributes

FILE_LIST_DIRECTORY_WCS

FILE_LIST_DOTDOT_STRING_WCS

FILE_LIST_FILTER_STRING_WCS*

FILE_LIST_WCHAR_NOTIFY*

* See the discussion following this table.

Caution – Do not use FILE_LIST_FILTER_STRINGS_WCS for multibyte
characters in filenames. Results are unpredictable. This limitation will be
removed in future releases.

Callbacks registered by the functions FILE_LIST_CHANGE_DIR_FUNC,
FILE_LIST_FILTER_FUNC , and FILE_LIST_COMPARE_FUNC normally
receive multibyte character strings, but callbacks can receive wide character
strings when the function FILE_LIST_WCHAR_NOTIFY is turned on.

The File_list_row_wcs structure is used instead of the File_list_row
structure. It is defined as follows:

typedef struct {
File_list file_list;
Panel_list_row_values_wcsvals;
struct stat stats;
File_list_opmatched;
char *xfrm;

} File_list_row_wcs;

XView API for Internationalization 45

6

The xfrm field contains the string returned from the function strxfrm(3) .
The built-in comparison functions are all defined to have parameters of type
File_list_row . Since the functions use only the xfrm field, they also work
for File_list_row_wcs structures. If the client calls these functions
directly, it should typecast accordingly.

Fonts
In the X11 R5 window environment, multiple fonts are required to support
languages with multiple character sets, usually one font per character set.
Therefore, Xlib created the concept of font sets to support multiple fonts; and
the font package in XView now handle font sets. A font set object is a collection
of one or more fonts needed to display characters in languages with multiple
character sets. XView handles all font operations with font sets; however, fonts
are also supported for backward compatibility.

The actual set of fonts underlying a particular abstract font set may vary from
one locale to another. A font set is defined by the XLFD names of the fonts in
the font set. The definition of a font set can be specified in a program or in a
font set database using font set names. OpenWindows™ provides some default
locale-specific font set database files:

 $OPENWINHOME/lib/locale/<locale>/OW_FONT_SETS/OpenWindows.fs

Applications can define dedicated font set databases. Refer to Appendix C,
“Font Set Definitions for further details on defining a font set database.

An XView application gets a font set object by calling xv_create() or
xv_find() in a manner analogous to creating or finding a font. All objects
created by the font package are font sets, except for glyph fonts. The font set
object works with the existing API in the font package. However, some existing
attributes can only support C locale fonts and fonts for locales that use the ISO
Latin-1 character set. New attributes support the font set object.

Some locales, such as the English (C) or German (de) locales, require only one
font. In such cases, a font set of one member is created. Therefore, C locale and
locales that use the ISO Latin-1 character set are not required to use the font set
definition database. The font package does not use the font set definition
database for these locales.

46 XView Developer’s Notes—August 1994

6

Internationalized drawing functions have been created in R5 Xlib to
accommodate the concept of font set objects. The font set object does not work
within the frame work of the Graphics Context (GC). X programs usually set or
change fonts through the XCreateGC() or XChangeGC() functions. The
internationalized Xlib drawing functions, such as XwcDrawString() , accept a
font set parameter directly.

Font Set API

Table 6-3 lists font set attributes that support wide characters:
Table 6-3 Font Set Attributes

Attributes

FONT_CHAR_WIDTH_WC
FONT_CHAR_HEIGHT_WC
FONT_COLUMN_WIDTH*
FONT_LOCALE*
FONT_NAMES*
FONT_SET_ID*
FONT_SET_SPECIFIER*
FONT_STRING_DIMS_WCS

* Supports font set objects. See the discussion following this table.

A font set contains many fonts needed to render the multiple character sets.
Therefore, the attributes FONT_DEFAULT_CHAR_WIDTH and
FONT_DEFAULT_CHAR_HEIGHT mean the combined default width and height
for all the fonts in the font set; based on the dimensions obtained from the Xlib
function XExtentsOfFontSet() .

FONT_FAMILY, FONT_SCALE, FONT_SIZE, FONT_STYLE, FONT_RESCALE_OF,
FONT_SIZES_FOR_SCALE, and FONT_TYPE are also supported for font set
objects.

FONT_COLUMN_WIDTH

FONT_COLUMN_WIDTH enables an application to maintain the same screen
column display widths of fixed-width fonts across various locales.

XView API for Internationalization 47

6

Querying the value of FONT_COLUMN_WIDTH returns the width of a column in
pixels. The widths of Asian characters vary depending on the character set
used. In the C and ISO Latin-1 environments, a character is one byte; with
fixed-width fonts, a character occupies one column on the screen. In Asian
locales, one character may be more than one byte, and it may occupy many
columns on the screen. Refer to “EUC Programming Issues” on page 27 for
details.

FONT_LOCALE

This attribute specifies the locale of a font set. The locale information is
required to determine the set of fonts to be used in creating the font set object.
The default value of FONT_LOCALE is the locale associated with the
XV_LC_BASIC_LOCALE attribute. An example of a font set created in the
display language locale is shown below:

FONT_NAMES

A list of font names for constructing the font set object can be specified using
this attribute. The font names should be specified in the X11 Logical Font
Description (XLFD) format. The list of font names has to be NULL terminated.
The fonts of this list should satisfy all the character sets for the specific

Xv_Font font_set;

font_set = (Xv_opaque) xv_create(NULL,
FONT_FAMILY, FONT_FAMILY_SANS_SERIF,
FONT_LOCALE, xv_get(frame, XV_LC_DISPLAY_LANG),
NULL);

48 XView Developer’s Notes—August 1994

6

FONT_LOCALE. For example, the required fonts for the Korean locale must
satisfy the character sets ksc5636 and ksc5601.1987. An example below shows
how FONT_NAMES can be used:

FONT_SET_ID

The internationalized text functions in X11 R5 are necessary for rendering or
querying the dimensions of multibyte or wide character strings. The font set
parameter required by these internationalized text functions can be obtained
from an XView font set object by querying the FONT_SET_ID attribute. The
font set of a font set object is analogous to the XID of a font. Detailed
information concerning internationalized text functions can be found in the
X11, Release 5 documentation for Xlib. The following example shows how to
use the value of FONT_SET_ID in a wide character drawing routine:

char *font_names[] = {
 “-sun-gothic-medium-r-normal--14-120-75-75-c-60-ksc5636-0”,
 “-sun-gothic-medium-r-normal--14-120-75-75-c-120-ksc5601.1987-0”,
 NULL};
Xv_Font font_set;

font_set = xv_create(NULL, FONT,
FONT_NAMES, font_names,
NULL);

Display *display; /* Specifies connection to the X server */
Drawable xid; /* Specifies the drawable */
GC gc; /* Specifies the GC */
int x, y; /* X and Y coordinates */
wchar_t *string; /* Wide character string */
int num_wchars; /* Number of wide characters */
XFontSet font_set_id; /* font set */
Xv_Font font_set; /* XView font set object */

font_set_id = (XFontSet) xv_get(font_set, FONT_SET_ID);
XwcDrawString(display, xid, font_set_id, gc, x, y, string, num_wchars);

XView API for Internationalization 49

6

FONT_SET_SPECIFIER

A font set can also be specified through one of the following:

• FONT_SET_SPECIFIER attribute

• Command line option -font

• X resources: OpenWindows.MonospaceFont ,
OpenWindows.RegularFont , and OpenWindows.BoldFont

The font set specifier is a shorthand way of specifying a list of fonts for a
particular locale. For example:

In this example, the font set definition database will be queried for a font set
named gotm14 . The value associated with the FONT_SET_SPECIFIER
attribute is processed in the following manner:

1. Use the value as a font set name to find a definition in the font set definition
database.

2. If a font set definition corresponding to the font set specifier is not found in
the font set definition database, use the value as an XLFD font name.
Assuming the locale requires only one font and the XLFD name exists on the
X11 server, a font set object will be created containing the specified font.

3. If 1 and 2 fail, NULL is returned.

The command line option -font takes the name of a font set object, the value
of FONT_SET_SPECIFIER. It is dissimilar to the value of FONT_NAME.

Locale-specific X resources can be used to specify the font set name:

OpenWindows.MonospaceFont.<basiclocale>
OpenWindows.RegularFont.<basiclocale>
OpenWindows.BoldFont.<basiclocale>
font.name.<basiclocale>
Font.Name.<basiclocale>

Xv_Fontfont_set;
font_set = xv_find(frame, FONT,

FONT_SET_SPECIFIER,“gotm14”,
FONT_LOCALE, locale,
NULL);

50 XView Developer’s Notes—August 1994

6

where <basiclocale> is the basic locale setting. Font.Name and
font.name are provided for backward compatibility. OpenWindows.*Font
resources take precedence, and therefore, override the values of Font.name .
and font.name . See “Resources” on page 58 for detailed information.

Glyph Fonts

Glyph fonts are generally not specific to a locale, so XView does not create font
set objects for glyph fonts.

For applications using private glyph fonts or special fonts, such as -itc-
zapfdingbats-medium-r-normal--*-140-*-*-p-*--dingbats font, create the font
with the attribute FONT_TYPE as below:

These font objects created with FONT_TYPE_GLYPH are not font set objects.
Applications should obtain XV_XID of the font objects and use font related
functions from Xlib, such as XDrawString() ; and not font set related Xlib
functions.

Font Set Definitions

A font set is defined by a list of fonts, and the actual names of these fonts vary
depending on the locale. A mechanism is required to conveniently specify
these lists of fonts on a per locale basis, or per application basis.

The actual definition of a font set (that is, the XLFD names of the fonts
constituting the font set) can be placed in a font set database. XView refers to
this font set database as the font set definition file. When an application is
invoked, XView creates an X11 resource manager database internally by
reading in the font set definition files.

The locale-specific font set definition files used to create the internal X11
resource manager database are:

font = (Xv_Font)xv_find(frame, FONT,
FONT_NAME, “-itc-zapfdingbats-medium-r-normal--*-140-*-*-p-*--dingbats”
FONT_TYPE, FONT_TYPE_GLYPH,
NULL);

XView API for Internationalization 51

6

1. $OPENWINHOME/lib/locale/<locale>/OW_FONT_SETS/OpenWindows.
fs

This is the system wide font set definition file.

2. <directory>/<locale>/OW_FONT_SETS/<appname>.fs

<directory> is the pathname defined by the application with the
XV_LOCALE_DIR attribute in the xv_init() call. This file is an
application-specific file used to add any new font set definitions.

<locale> is the value specified by the attribute FONT_LOCALE. If
FONT_LOCALE is not specified, the <locale> defaults to the basic locale of
the application.

The internal font set specification database is created using the system font set
definition file. If the application-specific font set definition file exists, it is
merged into the database. If both files contain definitions for the same font set,
the entry in the application-specific file overrides the entry in the system file.

Refer to Appendix C, “Font Set Definitions for syntax of the font set definition
file.

Compatibility Issues

The following attributes are for use with locales that require only one font to
represent the character set—in other words, the C locale and western European
locales (locales that use the ISO Latin-1 character set).

• FONT_NAME. Setting this attribute creates a font set object containing the
specified font.

• FONT_INFO. Querying this attribute returns the pointer to the X structure
XFontStruct of the font.

• FONT_PIXFONT. This attribute is for SunView compatibility. It returns the
pixfont representation of the font.

• XV_XID. Querying XV_XID of a font set object returns the XID of the font.
Use this attribute to obtain the XID of a glyph font.

Do not use these attributes for Asian locales.

52 XView Developer’s Notes—August 1994

6

Portability Issues

To make an XView application more portable, follow these guidelines:

• Do not hard code the name of a font in the application. Use values of
FONT_FAMILY_DEFAULT_FIXEDWIDTH, FONT_FAMILY_SERIF, or
FONT_FAMILY_SANS_SERIF with the FONT_FAMILY attribute. Some font
families should be avoided—for example, FONT_FAMILY_LUCIDA, which is
very specific to the ISO Latin-1 font.

• If a program must use its own font names, be sure to have a private font set
definition database file available.

• Not all styles are available in all the supported locales, so an application
should limit the use of font styles.

• Do not hard code the font size in the application. Use FONT_SCALE instead.

• If a program must define its own font sizes, use a private font set definition
database file to specify particular sizes with respect to the scales of small,
medium, large, and extra large.

Frames
Multibyte or wide character strings can be used to label frame headers and
footers. Table 6-4 lists wide character frame attributes.
Table 6-4 Frame Attributes

Wide Character Attributes

FRAME_LABEL_WCS
FRAME_LEFT_FOOTER_WCS
FRAME_RIGHT_FOOTER_WCSS
XV_LABEL_WCS

Additionally, the frame package deals with input method by providing an
input method status region. Input method is enabled for a frame by default, if
the input language specified by XV_LC_INPUT_LANG supports an input
method. If an input method is enabled for a frame or a frame’s subwindow, an
input method status region is created automatically. The frame maintains the
status region above the footer region.

By default, WIN_USE_IM is TRUE for frames, and subwindows inherit this
value unless specified otherwise during object creation.

XView API for Internationalization 53

6

History
Table 6-5 lists wide character history attributes.
Table 6-5 History Attributes

Wide Character Attributes

HISTORY_ADD_FIXED_ENTRY_WCS

HISTORY_ADD_ROLLING_ENTRY_WCS

HISTORY_LABEL_WCS

HISTORY_NOTIFY_PROC_WCS

HISTORY_VALUE_WCS

Icons
Multibyte and wide character strings can be used to label icons. The wide
character icon attributes are listed in Table 6-6.
Table 6-6 Icon Attributes

Wide Character Attributes

ICON_LABEL_WCS
ICON_TRANSPARENT_LABEL_WCS
XV_LABEL_WCS

A locale specific X resource can be specified for the icon’s font.

Icon.Font.Name.<locale>
icon.font.name.<locale>

where <locale> is specified by XV_LC_BASIC_LOCALE. This resource is
especially useful to specify fonts of differing point sizes in order to fit localized
icon label within the boundaries of an icon.

Menus
Menu items and titles can be specified with wide character or multibyte
strings. Table 6-7 lists wide character menu attributes.

54 XView Developer’s Notes—August 1994

6

Table 6-7 Menu Attributes

Wide Character Attributes

MENU_ACCELERATOR_WCS
MENU_ACTION_ACCELERATOR_WCS
MENU_ACTION_ITEM_WCS
MENU_GEN_PIN_WINDOW_WCS
MENU_GEN_PROC_ITEM_WCS
MENU_GEN_PULLRIGHT_ITEM_WCS
MENU_PULLRIGHT_ITEM_WCS
MENU_STRING_WCS
MENU_STRING_ITEM_WCS
MENU_STRINGS_WCS
MENU_STRINGS_AND_ACCELERATORS_WCS
MENU_TITLE_ITEM_WCS

Notices
Notice messages and buttons handle multibyte and wide character strings.
Table 6-8 lists wide character notice attributes.
Table 6-8 Notice Attributes

Wide Character Attributes

NOTICE_BUTTON_WCS
NOTICE_BUTTON_NO_WCS
NOTICE_BUTTON_YES_WCS
NOTICE_MESSAGE_STRING_WCS
NOTICE_MESSAGE_STRINGS_WCS
NOTICE_MESSAGE_STRINGS_ARRAY_PTR_WCS

Panels
All panel items handle wide character or multibyte labels, strings, and values.
Panel functions also handle wide character and multibyte strings. Table 6-9
lists wide character panel attributes and functions.

XView API for Internationalization 55

6

Table 6-9 Panel Attributes and Functions

AttributesFunctions

PANEL_CHOICE_STRING_WCS panel_get_value_wcs()
PANEL_CHOICE_STRINGS_WCS panel_set_value_wcs()
PANEL_ITEM_IC_ACTIVE*
PANEL_LABEL_STRING_WCS
PANEL_LIST_INSERT_STRINGS_WCS
PANEL_LIST_ROW_VALUES_WCS*
PANEL_LIST_STRING_WCS
PANEL_LIST_STRINGS_WCS
PANEL_LIST_TITLE_WCS
PANEL_MASK_CHAR_WC*
PANEL_NOTIFY_PROC_WCS
PANEL_NOTIFY_STRING_WCS
PANEL_MAX_TICK_STRING_WCSG
PANEL_MAX_VALUE_STRING_WCS
PANEL_MIN_TICK_STRING_WCS
PANEL_MIN_VALUE_STRING_WCS
PANEL_VALUE_DISPLAY_LENGTH
PANEL_VALUE_WCS
PANEL_VALUE_STORED_LENGTH_WCS*

* See the discussion following this table.

PANEL_VALUE_STORED_LENGTH_WCS

PANEL_VALUE_STORED_LENGTH_WCS sets the storage limit of a panel text
item in wide characters. If the storage limit of a panel text item is specified by
PANEL_VALUE_STORED_LENGTH_WCS, the characters entered into that panel
text item are converted into wide characters to measure against the storage
limit. The default value for PANEL_VALUE_STORED_LENGTH_WCS is 80 wide
characters.

Usage of this attribute is similar to PANEL_VALUE_STORED_LENGTH.
PANEL_VALUE_STORED_LENGTH specifies the storage length of a panel text
item in bytes. Therefore, all text input to a panel text item specified by
PANEL_VALUE_STORED_LENGTH is converted to multibyte to check against
the storage limit.

56 XView Developer’s Notes—August 1994

6

If PANEL_VALUE_STORED_LENGTH_WCS is set to 10 wide characters, the text
item can accommodate 10 Chinese wide characters or 10 ASCII characters. If
PANEL_VALUE_STORED_LENGTH is set to 10 bytes, the text item can
accommodate 10 ASCII characters, but possibly only 2 Han characters.

Calling xv_get() on PANEL_VALUE_STORED_LENGTH_WCS when the actual
attribute set was PANEL_VALUE_STORED_LENGTH returns -1. Similarly,
querying the value of PANEL_VALUE_STORED_LENGTH when
PANEL_VALUE_STORED_LENGTH_WCS was set returns -1.

PANEL_ITEM_IC_ACTIVE

Occasionally a user wants to disable preedit text input for a particular panel
item; for example, a panel numeric text item. Setting
PANEL_ITEM_IC_ACTIVE to FALSE temporarily disables the input method
for that panel item.

The default value for PANEL_ITEM_IC_ACTIVE is set according to the value
of WIN_USE_IM. By default, panel numeric text items are always created with
PANEL_ITEM_IC_ACTIVE set to FALSE, since numeric text items only accept
ASCII numbers.

Do not use WIN_IC_ACTIVE on panels because it causes conflicts with
PANEL_ITEM_IC_ACTIVE.

XView API for Internationalization 57

6

PANEL_LIST_ROW_VALUES_WCS

PANEL_LIST_ROW_VALUES_WCS offers a high-performance method of
obtaining row values and setting row values in the PANEL_LIST. This
attribute takes the row number, a pointer to a Panel_list_row_values _wcs
array, and a count of the number of rows in the array.
Panel_list_row_values _wcs is defined as:

PANEL_MASK_CHAR_WC

PANEL_MASK_CHAR_WC supports wide character masking of panel text values.
A panel text item with PANEL_MASK_CHAR_WC or PANEL_MASK_CHAR set
causes PANEL_ITEM_IC_ACTIVE to be FALSE. Input method is disabled
because preedit text is masked.

Implicit Commit

Implicit commit can be triggered via keyboard and mouse events. “Implicit
Commit of Preedit Text” on page 38 lists the keyboard and mouse events that
cause implicit commit in panel. Implicit commit can also be triggered
programmatically by querying PANEL_VALUE and PANEL_VALUE_WCS while
input method is active.

Pathnames
Table 6-10 lists wide character pathname attributes.

typedef struct {
wchar_t *string_wcs;
Server_imageglyph;
Server_imagemask_glyph;
Xv_fontfont’
Xv_opaqueclient_data;
Xv_opaqueextension_data;
unsignedinactive : 1;
unsignedselected : 1;

} Panel_list_row_values_wcs;

58 XView Developer’s Notes—August 1994

6

Table 6-10 Pathname Attributes

Wide Character Attributes

PATH_LAST_VALIDATED_WCS
PATH_RELATIVE_TO_WCS

Resources
The XView database functions are not part of an XView package, but they
make it possible to handle X resources.

Table 6-11 lists functions related to locale-specific resources.
Table 6-11 Resource Functions

Functions

defaults_set_locale()*
defaults_get_locale()

* See the discussion following this table.

In the internationalized and localized environment, the user often needs to
specify resources for a particular locale. For example, the user may want to
specify a special font for the Korean locale, but a different font for the Japanese
locale. The ~/.Xdefaults file and the corresponding server resources are
usually shared among locales, so an optional syntax is added to support the
requirement of locale-specific resources in the XView environment:

<original_resource_name>{.<locale>}

original_resource_name is a resource name, such as “Font.Name”, and
<locale> is a locale name, such as “zh ” for simplified Chinese.

The locale-specific resource overrides the original resource.

defaults_set_locale() allows an application to support the
aforementioned optional syntax:

void defaults_set_locale(locale, locale_attr)
char *locale;/* locale value, if known */
int locale_attr; /*a locale category, i.e., basic locale */

XView API for Internationalization 59

6

Only one parameter needs to be specified: locale or the locale_attr .

The first call to defaults_set_locale() with a locale or a locale category
activates the locale-specific resources lookup mechanism. Another call to
defaults_set_locale() with NULL terminates the locale-specific resources
lookup mechanism. XView does not search for any locale-specific resources
before defaults_set_locale() is called in an application. There is a
performance penalty associated with this syntax, and a locale must be specified
in the application. For example:

First, defaults_set_locale(NULL, XV_LC_INPUT_LANG) sets the locale
for the search to be the locale of the input language. Next,
defaults_get_strings() looks for my_input_style.<locale> . If
my_input_style.<locale> cannot be found, defaults_get_strings()
looks for the non-locale specific resource my_input_style . Finally,
defaults_set_locale(NULL, XV_NULL) terminates the locale-specific
resources lookup mechanism.

XView automatically loads the X resource database files at startup. A
locale-dependent X resource database file is also loaded:

$OPENWINHOME/lib/locale/<basiclocale>/xview/defaults

The purpose of this file is to set locale-dependent resources, such as icon font
name. This locale-dependent defaults file has the lowest priority among X
resource database files loaded in Asian locales. (Other X resource database
files can override the contents of this locale-dependent defaults file—for
example, a user’s ~/.Xdefaults or ~/.OWdefaults file.)

Table 6-12 lists resources that have been modified so that they can be specified
in a locale-sensitive manner. Their names vary depending on the basic locale.

defaults_set_locale(NULL, XV_LC_INPUT_LANG);
value = defaults_get_string(“my_input_style”,

 “my_input_style”,
 “my_favorite”);

defaults_set_locale(NULL, XV_NULL);

60 XView Developer’s Notes—August 1994

6

Table 6-12 Locale-Sensitive Resources

Resource

font.name.<basiclocale>
Font.Name.<basiclocale>
icon.font.name.<basiclocale>
Icon.Font.Name.<basiclocale>
OpenWindows.BoldFont.<basiclocale>
OpenWindows.ImPreeditStyle.<basiclocale>
OpenWindows.ImStatusStyle.<basiclocale>
OpenWindows.MonospaceFont.<basiclocale>
OpenWindows.RegularFont.<basiclocale>
text.extrasMenufilename.<displaylang>*
xview.needIm.<basiclocale>*
xview.characterSet.<basiclocale> *

* See the discussion following this table.

For font resources, replace <basiclocale> with the value of the basic locale.
The default value for the font resources is lucidasans-12 in the C and
ISO Latin-1 locales. For other locales, refer to this file:

$OPENWINHOME/lib/locale/<basiclocale>/OW_FONT_SETS/OpenWindo
ws.fs

For text.extrasMenufilename , replace <displaylang> with the value
of the display language. Default values:

• $OPENWINHOME/lib/locale/<locale>/xview/.text_extras_menu
(where <locale> is the value of the display language). or

• /usr/lib/.text_extras_menu

Refer to “Text Subwindows” on page 63 for further information.

The locale-specific resource xview.needIM specifies whether an input method
is necessary for the input language. It is typically specified in
$OPENWINHOME/lib/locale/<locale>/xview/defaults ; therefore,
users should not need to set this in their ~/.Xdefaults file.

The locale-specific resource xview.characterSet describes the type of
character set associated with a particular locale. For instance, the following
would be specified for western European locales that are based on the
ISO Latin-1 character set:

XView API for Internationalization 61

6

xview.characterSet.<locale>:iso_8859_1

Since Asian locales typically use a character set that is unique for each locale,
the following would be specified:

xview.characterSet.ja: ja
xview.characterSet.ko: ko
xview.characterSet.zh: zh
xview.characterSet.zh_TW: zh_TW

The xview.characterSet resource is typically specified in
$OPENWINHOME/lib/locale/<locale>/xview/defaults ; therefore,
users should not need to set this in their ~/.Xdefaults file.

Specifying xview.characterSet allows for better interoperability between
locales that share the same character set. For example, since German (de) and
French (fr) locales both use the ISO Latin-1 character set, it would be valid to
have XV_LC_BASIC_LOCALE set to fr and XV_LC_DISPLAY_LANG set to de .
Such interoperability is not possible with Asian locales because they each use
different character sets.

Selections
Table 6-13 lists wide character selection attributes.
Table 6-13 Selection Service Attributes

Wide Character Attributes

SELN_REQ_CONTENTS_WCS*
SELN_REQ_CHARSIZE*
SELN_REQ_FIRST_WC*
SELN_REQ_LAST_WC*

* See the discussion following this table.

SELN_REQ_CHARSIZE returns the number of characters in a selection buffer.

SELN_REQ_FIRST and SELN_REQ_LAST provide the indices of the first and
last selected characters in bytes. SELN_REQ_FIRST_WC and
SELN_REQ_LAST_WC provide the indices of the first and last selected character
in characters.

62 XView Developer’s Notes—August 1994

6

When you use the attribute SELN_REQ_CONTENTS_WCS,
SELN_REQ_FIRST_WC, or SELN_REQ_LAST_WC in selection_query() ,
selection_ask() , or selection_init_request() , also use the
SELN_REQ_CHARSIZE attribute. The following example first determines if the
wide character attribute is needed and then gets the selection.

Server Images
SERVER_IMAGE_BITMAP_FILE_WCS supports wide character filenames.

Xv_Serverserver;
Seln_holder*holder;
Seln_result(*reader)();
char *context;
Seln_resultquery_result;

query_result =
selection_query(server, holder, reader, context,

 SELN_REQ_CHARSIZE, NULL,
 NULL);

if (query_result != SELN_SUCCESS) {

/* An XView client running in C locale */

query_result =
 selection_query(server, holder, reader, context,
 SELN_REQ_BYTESIZE, NULL,
 SELN_REQ_CONTENTS_ASCII, NULL,
 NULL);

}
else {

/* An XView client running in an Asian locale */

query_result =
 selection_query(server, holder, reader, context,
 SELN_REQ_CHARSIZE, NULL,
 SELN_REQ_CONTENTS_WCS, NULL,
 NULL);

}

XView API for Internationalization 63

6

Text Subwindows
This section describes attributes and functions for text subwindows,
programming considerations, and miscellaneous tips and information.

Multibyte and Wide Character API

This section discusses text subwindow attributes and functions that process
wide character strings and character-based indices (positioning in a text
subwindow).

Buffer, Index, or Length Text Subwindow API

The wide character attributes and functions in Table 6-14 may have been added
because the attribute or function:

• Takes a wide character buffer as argument.
• Processes a character-based index as an argument or return value.
• Returns the number of inserted or deleted characters (not bytes).
• Gets the number of characters (not bytes) in a text subwindow’s contents.
Table 6-14 Text Subwindow APIs that Take Buffer, Index, or Length

Wide Character Attributes Wide Character Functions

TEXTSW_CONTENTS_WCS textsw_add_mark_wc()
TEXTSW_FIRST_WC textsw_delete_wcs()
TEXTSW_INSERTION_POINT_WC textsw_edit_wcs())
TEXTSW_LENGTH_WC textsw_erase_wcs()

textsw_find_wcs()
textsw_find_mark_wc()
textsw_index_for_file_line_wc()
textsw_insert_wcs()
textsw_match_wcs()
textsw_normalize_view_wc()
textsw_possibly_normalize_wc()
textsw_replace_wcs()
textsw_set_selection_wcs ()

The arguments and return values for this API mean different things depending
on whether the multibyte or wide character API is used, as indicated in
Table 6-15.

64 XView Developer’s Notes—August 1994

6

Table 6-15 Differences Between Multibyte and Wide Character API

Argument/Return Value Wide Character API Multibyte API

character buffer wchar_t * char *
index (Textsw_index) character base byte base
buffer length character base byte base
inserted or deleted length character base byte base
length of textsw’s contents character base byte base

Text Subwindow Filename API

Table 6-16 lists attributes and functions for wide character filenames. They
work the same as those for multibyte except that the filename string is
specified in wide character format (wchar_t *). The attributes
TEXTSW_ACTION_* are used to make notify procedures for a text subwindow.
Table 6-16 Text Subwindow Filename Attributes and Functions

Wide Character Attributes Wide Character Function

TEXTSW_ACTION_CHANGED_DIRECTORY_WCStextsw_append_file_name_wcs()
TEXTSW_ACTION_EDITED_FILE_WCS textsw_store_file_wcs()
TEXTSW_ACTION_LOADED_FILE_WCS
TEXTSW_FILE_WCS
TEXTSW_FILE_CONTENTS_WCS
TEXTSW_INSERT_FROM_FILE_WCS

Programming Considerations for Text Subwindow Multibyte API

The following information points out special factors to consider: index
adjustments, invalid data and buffer length adjustments, and extra processing
tasks that influence performance.

XView API for Internationalization 65

6

Index Adjustments

When a specified index points to the middle (portion) of a multibyte character,
the index is adjusted to the front of the character. For example, if a text
subwindow contains “abX” (‘a’ and ‘b’ are ASCII characters, ‘X’ is a multibyte
character consisting of two bytes) and the index is specified as 3, the index is
set to 2 because index 3 points to the middle of a multibyte character.

Invalid Data and Buffer Length Adjustments

Table 6-17 lists multibyte APIs that take a buffer as an argument.
Table 6-17 Multibyte APIs that Take a Buffer as an Argument

Multibyte Attributes Multibyte Functions

TEXTSW_CONTENTS textsw_find_bytes()
textsw_match_bytes()
textsw_replace_bytes()
textsw_insert()

If the API takes buffer length as an argument, the buffer length is specified in
bytes.

These APIs ignore the current character and stop processing the rest of the
string when the following conditions occur:

• The function finds an invalid character in the specified buffer.

• The specified buffer length includes a portion of a multibyte character, but
not the entire character.

For example, a buffer contains “ABC”, where each character is a multibyte
character and the buffer length is five bytes. In the Japanese locale, only “AB”
is processed because a multibyte character in the Japanese locale consists of
two bytes. In traditional Chinese (zh_TW locale), only “A” is processed because
a multibyte character in that locale uses four bytes.

The following example, which reads characters from a file and inserts the
characters into a text subwindow, illustrates some of the issues involved.

a b X

0 1 2 3 4

66 XView Developer’s Notes—August 1994

6

If the data in the file is valid and ret_val is not equal to read_cnt , the last
bytes inserted in buf are only a portion of a multibyte character. In this case,
you may need to adjust the read pointer in the file to the front of the
uninserted bytes using the seek() system call, or you may need to keep the
extra bytes and pass them into textsw_insert() together with the next data
read from the file.

Text Subwindow Performance

Note – This section applies only to Asian (multibyte) locales.

The wide character API is recommended when programming with textsw
indices or buffers. The wide character API provides better performance as well
as ease of programming. XView textsw handles all strings and indices
internally in wide characters. The index or buffer adjustment problems
mentioned above can be avoided with the wide character API.

#define READ_SIZE512
charbuf[READ_SIZE];
int read_cnt;
Textsw_index ret_val;

while (1) {
read_cnt = read(file, buf, READ_SIZE);
switch (read_cnt) {

case 0:
break;/* read all data of file */

case -1:
break;/* read error */

default:
ret_val = textsw_insert(textsw, buf, read_cnt);
if (ret_val == 0)

/* memory allocation failure */
else if ((int)ret_val != read_cnt)

/* insertion unsuccessful */
else

/* insertion successful */
break;

}
}

XView API for Internationalization 67

6

The multibyte textsw API must perform the following extra tasks each time a
string or index is processed: conversions for string, conversion for index, and
calculation for length.

• Conversion for String
A multibyte API that takes a buffer as an argument, must convert the
multibyte string to wide character before the string can be processed. This is
because text subwindows internally handle strings in wide character. In
addition, when the API returns the contents of a text subwindow, the
contents are converted to multibyte from wide character.
textsw_insert() and textsw_find_bytes() are examples of the
conversion from multibyte to wide character. TEXTSW_CONTENTS used with
xv_get() is an example of the conversion from wide character to multibyte
character.

• Conversion for Index
A multibyte API that takes an index as an argument must convert the
byte-based index to a character-based index at the beginning of the process.
The text subwindow internally handles the index in characters, not in bytes.
Also, when the API returns an index, the index is converted to a byte-based
index from a character-based index. Note that when the index value is
TEXTSW_INFINITY, it is not converted. The call below suffers no penalty:

xv_set(textsw,TEXTSW_INSERTION_POINT, TEXTSW_INFINITY, 0);

Note also that retrieving the next read position (TEXTSW_CONTENTS with
xv_get()) does not suffer a penalty for converting the index.

• Calculation for Length
The multibyte attribute TEXTSW_LENGTH returns the length of the text
subwindow contents in bytes. Some multibyte APIs return the length of the
deleted wide character string in bytes (for example, textsw_delete and
textsw_edit). Calculating the number of bytes of a wide character string
also causes a performance penalty. Note that calculating the number of
bytes of the multibyte string inserted by textsw_insert() does not
cause a performance penalty.

If the same multibyte string is repeatedly passed to the multibyte API, the
application should internally convert the multibyte string to a wide character
string and use the wide character API. A text subwindow application should
convert to the wide character API if conversion only required name changes of
the attribute or function. For example:

68 XView Developer’s Notes—August 1994

6

• When checking whether a text subwindow is empty or not, the following
code can be changed to use TEXTSW_LENGTH_WC:

if (xv_get(textsw, TEXTSW_LENGTH) == 0)

• When repositioning text so that the character at the current insertion point is
visible and at the top of the subwindow, you normally write:

textsw_normalize_view(textsw,
xv_get(textsw, TEXTSW_INSERTION_POINT))

This can be replaced by the wide character API as follows:

textsw_normalize_view_wc(textsw,
xv_get(textsw, TEXTSW_INSERTION_POINT_WC));

• When deleting all the contents using textsw_delete() :

textsw_delete(textsw, 0, TEXTSW_INFINITY);

In this case, the argument indices are not converted, but the number of deleted
bytes is returned. It should be replaced by textsw_delete_wcs() .

Other Text Subwindow Information

Invalid Data in Files

The text subwindow checks each file being loaded or included for invalid
characters. If a file contains invalid characters, the file is still loaded or
included but the invalid characters are skipped over. A notice window will be
displayed to inform the user that this file contains invalid characters. The
invalid characters will not be stored when the contents of the text subwindow
are saved. The contents of the text subwindow should not be saved if the
invalid characters are to remain.

If text is inserted into a text subwindow from a buffer by using the multibyte
API, and if the text contains invalid data, the invalid characters are not
skipped over. Refer to “Invalid Data and Buffer Length Adjustments” on
page 65 for details.

An invalid character is defined to be any character that does not exist in the code
set of the current locale. For example, an ISO Latin-1 character in the Korean
locale.

XView API for Internationalization 69

6

Creation of a Temporary File

In Asian locales (for example, ja , ko , zh , and zh_TW), the text subwindow
creates a temporary file by using the tempnam() function when loading or
saving a file.1

This temporary file is generally created under the /tmp directory without
setting an environment variable TMPDIR. Refer to the tempnam(3S) manpage
for further information. If the /tmp directory is out of disk space and the
temporary file cannot be created, the operation fails and a notice window
advising of the failure is displayed. To avoid this problem, specify the
environment variable TMPDIR to a directory with adequate disk space; then
restart a program that uses the text subwindow.

Implicit Commit

Implicit commit can be triggered by keyboard and mouse events. “Implicit
Commit of Preedit Text” on page 38 lists the events that cause implicit commit
in text subwindows.

The actions listed in Table 6-18 also cause implicit commit in text subwindows.
Some of these actions are initiated by the use of certain text subwindow APIs;
others are caused by operations from the Text Pane menu.

Table 6-18 Implicit Commit Actions and Corresponding API Examples

Implicit Commit Action Example API that Triggers Action

Move the caret TEXTSW_INSERTION_POINT

Retrieve the contents TEXTSW_CONTENTS,
textsw_store_file()

1. The temporary file is invisible because it is removed with unlink (1M) immediately after its creation. The
file resource is not freed while the process that uses the text subwindow has access to the temporary file.

70 XView Developer’s Notes—August 1994

6

Change the contents textsw_delete(),
textsw_replace_bytes()

Edit mode becomes read only TEXTSW_READ_ONLY set TRUE

Language input mode WIN_IC_ACTIVE set FALSE
becomes inactive

WIN_USE_IM and TEXTSW_READ_ONLY

If the text subwindow is created in read-only mode and will never need an
input method, WIN_USE_IM should be set to FALSE. The FALSE setting
prevents the creation of an unnecessary input context (IC). Otherwise, an IC is
created, even for a read-only text subwindow, because the read-only mode may
later change to edit mode, either explicitly (by setting TEXTSW_READ_ONLY to
FALSE) or implicitly (by loading a file).

Text Subwindow Extras Menu

Table 6-19 lists the search path and priority to find the text subwindow Extras
Menu file.

Table 6-19 Extras Menu Search Path

Priority/File Location Search Path

1 X defaults text.extrasMenuFilename.<locale>

2 Environment $(EXTRASMENU).<locale>
variable

3 Home directory $(HOME)/.text_extras_menu.<locale>

4 Locale-sensitive $OPENWINHOME/lib/locale/<locale>/xview\

system default /.text_extras_menu

xv_create(frame, TEXTSW,
WIN_USE_IM,FALSE,
TEXTSW_READ_ONLY,TRUE,
NULL);

XView API for Internationalization 71

6

5 Fallback to SunView (/usr/lib/.text_extras_menu)

In priorities 1, 2, and 3, <locale> is the locale of the display language. If the
Extras Menu file with the locale suffix does not exist, the Extras Menu file
without the locale suffix is used. For example, if the definition in
the.Xdefaults file is:

text.extrasMenuFilename: /tmp/my_extas_menu

and locale is ja and there are my_extras_menu and my_extras_menu.ja in
/tmp , then use my_extras_menu.ja . If there is no my_extras_menu.ja in
/tmp , use my_extras_menu .

In priority 4, if there is no .text_extras_menu under
$OPENWINHOME/lib/locale/<locale>/xview , the C locale version is
used.

TTY Subwindows
Table 6-20 lists wide character tty subwindow functions.
Table 6-20 TTY Subwindow Functions

Wide Character Functions

ttysw_input_wcs()
ttysw_output_wcs()

Windows: Handling Input
The window package is a superclass of many other packages. Panel, canvas,
text subwindow, and tty subwindows are all subclasses of window. The
extensions to the window package consist mainly of attributes that allow input
handling for Asian locales through the use of an input method. Attributes are
provided to enable and disable the input method for a given window. In
addition, many attributes give you the flexibility to replace the input method
provided by SunSoft with your own customized user interface. Table 6-21 lists
window attributes.
Table 6-21 Window Attributes

72 XView Developer’s Notes—August 1994

6

Attributes

WIN_ERROR_MSG_WCS
WIN_IC*
WIN_IC_ACTIVE*
WIN_IC_COMMIT_STRING*
WIN_IC_COMMIT_STRING_WCS*
WIN_IC_CONVERSION*
WIN_IC_PREEDIT_CARET*
WIN_IC_PREEDIT_DONE*
WIN_IC_PREEDIT_DRAW*
WIN_IC_PREEDIT_START*
WIN_IC_RESET*
WIN_IC_STATUS_DONE*
WIN_IC_STATUS_DRAW*
WIN_IC_STATUS_START*
WIN_USE_IM*
WIN_X_IM_STYLE_MASK*
XV_IM*
XV_IM_STYLES*

* See the discussion following this table.

Enabling the Input Method

The WIN_USE_IM attribute enables or disables the input method for a given
window. If the locale specified by XV_LC_INPUT_LANG supports an input
method, and if the xview.needIm resource and the WIN_USE_IM attribute are
TRUE, the input method will be enabled. If a subwindow does not require an
input method, create the object with WIN_USE_IM set to FALSE. This avoids
the overhead of creating unnecessary input contexts.

When used with base frames or command frames, setting WIN_USE_IM to
FALSE disables the input method and removes the status region at the bottom
of the frame. Subwindows inherit the WIN_USE_IM value specified by their
parent frame. WIN_USE_IM can be set explicitly for each subwindow.
WIN_USE_IM can be specified only during the creation of the object.

XView API for Internationalization 73

6

The example below demonstrates how to create a panel with the input method
disabled. Note that the panel inherits the frame’s WIN_USE_IM value.

There may be instances when you want to temporarily disable the input
method after WIN_USE_IM has been enabled. You can accomplish this by
setting WIN_IC_ACTIVE to FALSE.

#include <xview/xview.h>
#include <xview/frame.h>
#include <xview/panel.h>

Frameframe;
Panelpanel;

main (argc, argv)
int argc;
char*argv[];
{

xv_init(XV_INIT_ARGC_PTR_ARGV, &argc, argv,
XV_USE_LOCALE, TRUE,
NULL);

frame = xv_create(NULL, FRAME,
WIN_USE_IM, FALSE,
NULL);

panel = xv_create(frame, PANEL,
NULL);

xv_create(panel, PANEL_TEXT
PANEL_VALUE, dgettext(“example_message_domain”, “ASCII File Name”),
NULL);

window_fit(panel);
window_fit(frame);

xv_main_loop(frame);

}

74 XView Developer’s Notes—August 1994

6

Note – Setting WIN_IC_ACTIVE to FALSE to disable the input method
temporarily is not equivalent to creating an object with WIN_USE_IM set to
FALSE. Although setting WIN_IC_ACTIVE allows you to temporarily disable
input method, it does not free input context s associated with the window, nor
does it prevent input contexts from being created. If the window does not
require an input method, create the object with WIN_USE_IM set to FALSE.

Input Method and Input Context

The Xlib XIM handle can be retrieved using the XV_IM attribute. This is useful
if you want to query information about the input method via Xlib functions. If
XV_IM returns NULL, no IM connection was made.

An input context (IC) can be specified by the application with a direct Xlib call
to XCreateIC() . By default, each window that specifies WIN_USE_IM to be
TRUE has an IC associated with it. There are also default preedit and status
callbacks registered for each window’s IC.

A window’s default IC can be retrieved or set by calling xv_get() or
xv_set() on the WIN_IC . The window package manages both the creation
and destruction of the default IC. It is not necessary to call XDestroyIC()
unless you are creating your own IC.

Choosing Input Style

The attribute WIN_X_IM_STYLE_MASK specifies the input style mask for the
input method. The mask specifies preedit and status styles.

If WIN_USE_IM is set to TRUE, WIN_X_IM_STYLE_MASK affects the IC
associated with the window. The input style is determined by the style
specified by the application or user, by the locale setting, and by the IM server.
(See “Input Method Styles” on page 34 for details about style determination.)
If your application relies on a particular IM style, be sure to query
XV_IM_STYLES to determine which styles are available. Do this before
creating a window with WIN_X_IM_STYLE_MASK. WIN_X_IM_STYLE_MASK
can be set only during xv_create() .

XView API for Internationalization 75

6

Customizing Implicit Commit

As described in “Implicit Commit of Preedit Text” on page 38 certain mouse
and keyboard actions can automatically commit preedit text without the user
having to enter a commit key sequence. You may want to customize implicit
commit actions.

The attributes described in the example below can be used with each other to
commit the preedit string and return the preedit string value. WIN_IC_RESET
turns input method conversion off and commits the preedit string by clearing
any pending input for the input context associated with the given window.

xv_get() of WIN_IC_COMMIT_STRING or WIN_IC_COMMIT_STRING_WCS
returns the committed string in either multibyte or wide character format.
WIN_IC_CONVERSION can be set to TRUE to turn input method conversion
back on, after WIN_IC_RESET has turned conversion off.

/* Queries the supported input styles */
Xv_Server server;
XIMStyles styles;

server = xv_init (XV_INIT_ARGV, &argc, argv,
 XV_USE_LOCALE, TRUE,
 NULL);
styles = xv_get(server, XV_IM_STYLES);

/* Based on style information we can then decide
 what style the window should be created with */

...

/* Creates panel with over-the-spot and im-displays-in-client
input style */
xv_create (panel, WIN_USE_IM, TRUE,
 WIN_X_IM_STYLE_MASK,

 XIMPreeditPosiition | XIMStatusArea,
 NULL);

76 XView Developer’s Notes—August 1994

6

#include <xview/xview.h>
#include <xview/frame.h>
#include <xview/canvas.h>

Frameframe;
Canvascanvas;

voidcanvas_event_proc();

main (argc, argv)
int argc;
char*argv[];
{

xv_init(XV_INIT_ARGC_PTR_ARGV, &argc, argv,
XV_USE_LOCALE, TRUE,
NULL);

frame = xv_create(NULL, FRAME,
WIN_USE_IM, TRUE,/* default */
NULL);

canvas = xv_create(frame, CANVAS,
NULL);

xv_set(canvas_paint_window(canvas),
WIN_CONSUME_EVENTS,

WIN_NO_EVENTS,
WIN_ASCII_EVENTS, KBD_USE, KBD_DONE,
LOC_DRAG, LOC_WINENTER, LOC_WINEXIT, WIN_MOUSE_BUTTONS,
NULL,

WIN_EVENT_PROC, canvas_event_proc,
NULL);

xv_main_loop(frame);
}

* CODE EXAMPLE CONTINUED ON NEXT PAGE!!! *\

XView API for Internationalization 77

6

void
canvas_event_proc(window, event, arg)
Xv_Window window;
Event *event;
Notify_arg arg;
{

...

switch (event_action(event)) {

...

 /*
 * Middle mouse button will trigger implicit commit.
 */
 case ACTION_ADJUST:
 case MS_MIDDLE:

/* Commit the preedit string */
xv_set(window, WIN_IC_RESET, TRUE, NULL);

/* Retrieve the committed text */
committed_string = (wchar_t *)xv_get(canvas,

WIN_IC_COMMIT_STRING_WCS);

/* Turn conversion back on, after being turned off
 * with WIN_IC_RESET. */
xv_set(canvas, WIN_IC_CONVERSION, TRUE, NULL);
break;

 default:
return;

}

...

}

78 XView Developer’s Notes—August 1994

6

Customizing Input Method Callbacks

The input method user interface is implemented through a number of callback
procedures for the preedit and status regions when on-the-spot and client-
displays styles are used. You can, however, choose to use you own customized
callback procedures instead of those provided in the current XView release by
using the following attributes to set callbacks.

• Preedit region:
• WIN_IC_PREEDIT_START
• WIN_IC_PREEDIT_DRAW
• WIN_IC_PREEDIT_CARET
• WIN_IC_PREEDIT_DONE

• Status region:
• WIN_IC_STATUS_START

• WIN_IC_STATUS_DRAW

• WIN_IC_STATUS_DONE

The following is an example of interposing the preedit and status callbacks.

XView API for Internationalization 79

6

Framebase_frame;
Textswtextsw;
Panelpanel;
XIMProcmy_text_start, my_text_draw, my_text_end;
XIMProcmy_panel_start, my_panel_draw, my_panel_end;

xv_init(....);
base_frame = xv_create(NULL, FRAME, 0);
textsw = xv_create(base_frame, TEXTSW, 0);
panel = xv_create(base_frame, PANEL, 0);

xv_set(textsw,
 WIN_IC_PREEDIT_START, my_text_start,

 (XPointer) textsw,
 WIN_IC_PREEDIT_DRAW, my_text_draw,

 (XPointer) textsw,
 WIN_IC_PREEDIT_DONE, my_text_end,

 (XPointer) textsw,
 0);
xv_set(panel,
 WIN_IC_PREEDIT_START, my_panel_start,

(XPointer) panel,
 WIN_IC_PREEDIT_DRAW, my_panel_draw,

(XPointer) panel,
 WIN_IC_PREEDIT_DONE, my_panel_end,

(XPointer) panel,
 0);

80 XView Developer’s Notes—August 1994

6

81

API Summaries A

This appendix is divided into two sections: attributes and functions. Each
section describes how to use the APIs. Use the information in this appendix as
an addendum to the XView Reference Manual by O’Reilly & Associates.

Attributes
This section lists attributes alphabetically and summarizes each attribute’s
purpose, type, default, and procs.

CANVAS_IM_PREEDIT_FRAME

Provides a pointer to the preedit popup window’s frame.

Type: Frame
Default: none
Procs: get

Only the following attributes can be set with predictable results for the frame
object returned by CANVAS_IM_PREEDIT_FRAME: XV_LABEL, XV_SHOW, XV_X,
XV_Y, XV_WIDTH, XV_HEIGHT.

CURSOR_STRING_WCS

Creates a text drag and drop cursor. If the wide character string exceeds three
characters (not bytes), then only the first 3 characters are displayed, and “the
more arrow” is shown inside the cursor.

82 XView Developer’s Notes—August 1994

A

Type: wchar_t *
Default: none
Procs: create , get

FILE_CHOOSER_APP_DIR_WCS

Adds an application-specific pathname to the Go To history menu’s fixed
space.

Type: wchar_t * pair
Default: none
Procs: create , set

FILE_CHOOSER_CUSTOMIZE_OPEN_WCS

Allows the client to use the Open window in certain contexts: Insert, Choose,
Import.

Type: wchar_t *, wchar_t *, enum
Default: none
Procs: create

FILE_CHOOSER_DIRECTORY_WCS

Specifies the current working directory that is displayed in Open, Save, and
Save As windows.

Type: wchar_t *
Default: Current working directory name
Procs: create , get , set

FILE_CHOOSER_DOC_NAME_WCS

In a Save window, specifies the default document name (“Untitled1”).
In a Save As window, specifies the current document name.

Type: wchar_t *
Default: Untitled1 (in a Save window)
Procs: create , get , set

API Summaries 83

A

FILE_CHOOSER_FILTER_STRING_WCS

Sets or gets an ex-like regular expression string. The string’s files are filtered
before being displayed in the list. If not filter string is specified, all entries are
assumed to match. “.. ” is always assumed to match.

Type: wchar_t *
Default: none
Procs: create , get , set

Caution – Do not use this attribute for multibyte characters in filenames.
Results are unpredictable. This limitation will be removed in future releases.

FILE_CHOOSER_NOTIFY_FUNC_WCS

Invokes a callback when the user selects a file from an Open, Save, or Save As
window. Expected return values are XV_OK or XV_ERROR. The form of the
callback depends on whether the FILE_CHOOSER_TYPE attribute is set to
FILE_CHOOSER_OPEN, FILE_CHOOSER_SAVE, or FILE_CHOOSER_SAVE_AS.

Type: Function pointer
Default: NULL
Procs: create , get , set

FILE_CHOOSER_WCHAR_NOTIFY

Specifies that the callbacks registered by FILE_LIST_CHANGE_DIR_FUNC,
FILE_LIST_FILTER_FUNC , and FILE_LIST_COMPARE_FUNC receive wide
character strings, not character strings.

Type: Boolean
Default: FALSE
Procs: create , get , set

FILE_LIST_DIRECTORY_WCS

Sets or gets the directory currently displayed in the list.
If FILE_LIST_DIRECTORY is set to NULL, the directory will be empty.

Type: wchar_t *
Default: Name of the current working directory
Procs: create , get , set

84 XView Developer’s Notes—August 1994

A

FILE_LIST_DOTDOT_STRING_WCS

Allows the client to modify the string used by the file list package to denote
the “.. ” entry.

Type: wchar_t *
Default: “...Go up one folder... ”
Procs: create , get , set

FILE_LIST_FILTER_STRING_WCS

Sets or gets an ex-like regular expression string. The string’s files are filtered
before being displayed in the list. If not filter string is specified, all entries are
assumed to match. “.. ” is always assumed to match.

Type: wchar_t *
Default: none
Procs: create , get , set

Caution – Do not use this attribute for multibyte characters in filenames.
Results are unpredictable. This limitation will be removed in future releases.

FILE_LIST_WCHAR_NOTIFY

Specifies that the callbacks registered by FILE_LIST_CHANGE_DIR_FUNC,
FILE_LIST_FILTER_FUNC , and FILE_LIST_COMPARE_FUNC receive wide
character strings, not character strings.

Type: Boolean
Default: FALSE
Procs: create , get , set

FONT_CHAR_HEIGHT_WC

Returns the height (int) of a specified wide character (wchar_t).

Type: int
Default: none
Procs: get

FONT_CHAR_WIDTH_WC

Returns the width (int) of a specified wide character (wchar_t).

API Summaries 85

A

Type: int
Default: none
Procs: get

FONT_COLUMN_WIDTH

Returns the default screen column width in pixels, given a specified XView
font set object.

Type: int
Default: none
Procs: get

FONT_LOCALE

Specifies the locale for a font set object.

Type: char *
Default the basic locale
Procs: create , find

FONT_NAMES

Specifies the XLFD font names of the fonts to be used to construct the font set
object.

Type: char **
Default: none
Procs: create , find , get

FONT_SET_ID

Returns the X font set, when given an XView font set object.

Type: XFontSet
Defaults: none
Procs: get

FONT_SET_SPECIFIER

Specifies the name of a font set. The font set definition database will be queried
with the specified value.

86 XView Developer’s Notes—August 1994

A

Type: char *
Default: none
Procs: create , find , get

FONT_STRING_DIMS_WCS

Given a wide character string and the address of a Font_string_dims
structure, xv_get() fills in and returns a pointer to the structure describing
the pixel dimensions of the string.

Type: Font_string_dims *
Default: none
Procs: get

FRAME_LABEL_WCS

Specifies the label used in the window manager's titlebar for the frame. This is
the wide character version of FRAME_LABEL.

Type: wchar_t *
Default: NULL
Procs: create , get , set

FRAME_LEFT_FOOTER_WCS

Specifies the left-justified footer. This is the wide character version of
FRAME_LEFT_FOOTER.

Type: wchar_t *
Default: NULL
Procs: create , get , set

FRAME_RIGHT_FOOTER_WCS

Specifies the right-justified footer. This is the wide character version of
FRAME_RIGHT_FOOTER.

Type: wchar_t *
Default: NULL
Procs: create , get , set

API Summaries 87

A

HISTORY_ADD_FIXED_ENTRY_WCS

Adds a string to the fixed space in the list. A fixed string is added to the
bottom of the fixed space in the list. Passing a label of NULL adds a blank
menu item.

Type: wchar_t * pair
Default: none
Procs: create , set

HISTORY_ADD_ROLLING_ENTRY_WCS

Adds a string to the rolling space. Strings in the rolling space and stacked and
“roll off” after a specified number of strings are added.

Type: wchar_t *
Default: none
Procs: create , set

HISTORY_LABEL_WCS

Returns the label from a specified space (defined as HISTORY_FIXED or
HISTORY_ROLLING) for a specified row number. If the row does not exist,
NULL is returned.

Type: Int pair
Default: none
Procs: get

HISTORY_NOTIFY_PROC_WCS

Invokes a callback-based on the user’s selection from the Go To history menu.

Type: function pointer
Default: none
Procs: create , set

HISTORY_VALUE_WCS

Returns the VALUE from a specified space (defined as HISTORY_FIXED or
HISTORY_ROLLING) for a specified row number. If the row does not exist,
NULL is returned.

88 XView Developer’s Notes—August 1994

A

Type: Int pair
Default: none
Procs: get

ICON_LABEL_WCS

Specifies the icon label used for the frame. This is the wide character string
version of ICON_LABEL.

Type: wchar_t *
Default: NULL
Procs: create , get , set

ICON_TRANSPARENT_LABEL_WCS

Draws the given wide character string into an icon. It does not affect any other
pixels in the bounding box. This is the wide character version of
ICON_TRANSPARENT_LABEL.

Type: wchar_t *
Default: NULL
Procs: create , get , set

MENU_ACCELERATOR_WCS

Sets an accelerator on a menu item when used in a create or set call. If an
accelerator is changed with xv_set() , FRAME_MENUS must be set again
before the accelerator takes effect. XView copies the wide character accelerator
string, and get returns the accelerator string. Do not modify the return string.

Type: wchar_t *
Default: none
Procs: create , get , set

MENU_ACTION_ACCELERATOR_WCS

Creates a menu item with a given label, notify proc, and accelerator. If an
accelerator is changed with xv_set() , FRAME_MENUS must be set again
before the accelerator takes effect. XView copies the wide character accelerator
string, but not the wide character label string.

API Summaries 89

A

Type: wchar_t *, void (*)(), wchar_t *
Default: none
Procs: create , set

MENU_ACTION_ITEM_WCS

Provides a shortcut for creating or modifying a menu item and associating it
with a notify procedure. It takes two values: a wide character string and a
notify procedure. This is the wide character version of MENU_ACTION_ITEM.

Type: wchar_t * , (void *) ()
Default: Not applicable
Procs: create , set

MENU_GEN_PIN_WINDOW_WCS

Uses a command window to create the pin window for a menu. The contents
are based on the static (not dynamic) menu contents. The frame is the parent
frame; the name in wide characters is the name of the pin window. All menu
items must have a notify procedure; MENU_NOTIFY_PROC for the menu itself is
ignored. This is the wide character version of MENU_GEN_PIN_WINDOW.

Type: Frame , wchar_t *
Default: no pin window
Procs: create , set

MENU_GEN_PROC_ITEM_WCS

Defines the generate procedure and wide character text string for a menu item.
This is the wide character version of MENU_GEN_PROC_ITEM.

Type: wchar_t * , (* Menu) ()
Default: NULL
Procs: create , set

MENU_GEN_PULLRIGHT_ITEM_WCS

Provides a shortcut for creating a menu item (or a menu item's submenu) and
associating it with a pull-right menu generate procedure. This is the wide
character version of MENU_GEN_PULLRIGHT_ITEM.

90 XView Developer’s Notes—August 1994

A

Type: wchar_t * , (* Menu) ()
Default: none
Procs: create , set

MENU_PULLRIGHT_ITEM_WCS

Creates a string menu item with pull-right submenu. This is the wide character
version of MENU_PULLRIGHT_ITEM.

Type: wchar_t * , Menu
Default: Not applicable
Procs: create , set

MENU_STRING_WCS

Sets or gets the string of a given menu item. This is the wide character version
of MENU_STRING.

Type: wchar_t *
Default: NULL
Procs: create , get , set

MENU_STRING_ITEM_WCS

Defines the text string and value for a menu item. This is the wide character
version of MENU_STRING_ITEM.

Type: wchar_t * , Xv_opaque
Default: NULL
Procs: create , set

MENU_STRINGS_WCS

Sets the strings for multiple menu items. This is the wide character version of
MENU_STRINGS.

Type: list of wchar_t *
Default: Not applicable
Procs: create , set

API Summaries 91

A

MENU_STRINGS_AND_ACCELERATORS_WCS

Creates menu items with the given labels and accelerators. If an accelerator is
changed with xv_set() , FRAME_MENUS must be set again before the
accelerator takes effect. XView copies the wide character accelerator strings,
but not the wide character label strings.

Type: list of <label (wchar_t *), accelerator (wchar_t *)>
pairs, terminated by NULL

Default: none
Procs: create , set

MENU_TITLE_ITEM_WCS

Set the title string of a menu. Can only be used with menus that do not
originate from pull-right items or pulldown menu buttons. This is the wide
character version of MENU_TITLE_ITEM.

Type: wchar_t *
Default: No title
Procs: create , set

NOTICE_BUTTON_WCS

Specifies a wide character string to be displayed in a button and a value to use
if the button is selected. This is the wide character version of NOTICE_BUTTON.

Type: wchar_t * , int
Default: none
Procs: create , set

NOTICE_BUTTON_NO_WCS

Specifies a wide character string associated with the NO (cancel) button of a
notice. The value returned if this button is selected is NOTICE_NO. This is the
wide character version of NOTICE_BUTTON_NO.

Type: wchar_t *
Default: none
Procs: create , set

92 XView Developer’s Notes—August 1994

A

NOTICE_BUTTON_YES_WCS

Specifies a wide character string associated with the YES (confirm) button. The
value returned if this button is selected is NOTICE_YES. This is the wide
character version of NOTICE_BUTTON_YES.

Type: wchar_t *
Default: none
Procs: create , set

NOTICE_MESSAGE_STRING_WCS

Specifies the text to print in a notice. The value of this attribute is a wide
character string. This is the wide character version of
NOTICE_MESSAGE_STRING.

Type: wchar_t *
Default: NULL
Procs: create , set

NOTICE_MESSAGE_STRINGS_WCS

Specifies the text to print in a notice. The value of this attribute is a
NULL- terminated list of wide character strings. This is the wide character
version of NOTICE_MESSAGE_STRINGS.

Type: list of wchar_t *
Default: NULL
Procs: create , set

NOTICE_MESSAGE_STRINGS_ARRAY_PTR_WCS

Specifies the text to print in a notice. The value of this attribute is a variable
pointing to a NULL-terminated array of wide character strings. This is the wide
character version of NOTICE_MESSAGE_STRINGS_ARRAY_PTR.

Type: wchar_t **
Default: NULL
Procs: create , set

API Summaries 93

A

PANEL_CHOICE_STRING_WCS

Sets the wide character string for a choice item. The first argument to the
attribute is the index of a choice item, the second argument is the wide
character string. This is the wide character version of
PANEL_CHOICE_STRING.

Type: int , wchar_t *
Default: NULL
Procs: create , get , set
Objects: Panel_choice_item

PANEL_CHOICE_STRINGS_WCS

The value of this attribute is a NULL terminated list of wide character strings.
Each string will be the label of a choice. This is the wide character version of
PANEL_CHOICE_STRINGS.

Type: list of wchar_t *
Default: NULL
Procs: create , get , set
Objects: Panel_choice_item

PANEL_ITEM_IC_ACTIVE

Specifies whether a panel text item should allow or disallow input method
conversion. The default value is set according to the value of the WIN_USE_IM
attribute of the parent window.

Type: Boolean
Default: TRUE
Procs: create , get , set
Objects: Panel_text_item, Panel_slider_item,

Panel_list_item, Panel_numeric_text_item

PANEL_LABEL_STRING_WCS

Specifies the wide character string for an item’s label. This is the wide
character version of PANEL_LABEL_STRING.

Type: wchar_t *
Default: NULL
Procs: create , get , set

94 XView Developer’s Notes—August 1994

A

PANEL_LIST_INSERT_STRINGS_WCS

Inserts the specified wide character strings into the scrolling list before the
specified row. The first argument to the attribute is a row number, and the
second argument is a pointer to a NULL-terminated array of wide character
strings. This is the wide character version of PANEL_LIST_INSERT_STRINGS.

Type: int , wchar_t **
Default: Not applicable
Procs: create , set
Objects: Panel_list_item

PANEL_LIST_ROW_VALUES_WCS

Gets row values from or sets row values in PANEL_LIST. Takes the row
number, a pointer to a Panel_list_row_values _wcs structure, and a count
of the number of rows in the array. Panel_list_row_values_wcs is defined
as:

Type: int, struct pointer, int
Default: none
Procs: create , get , set

PANEL_LIST_STRING_WCS

Assign the specified wide character string (second argument) to the specified
row (third argument). xv_get() will return a pointer to the string in the
specified row. This is the wide character version of PANEL_LIST_STRING.

typedef struct {
wchar_t *string_wcs;
Server_image glyph;
Server_image mask_glyph;
Xv_font font
Xv_opaque client_data;
Xv_opaque extension_data;
unsigned inactive : 1;
unsigned selected : 1;

} Panel_list_row_values_wcs;

API Summaries 95

A

Type: int , wchar_t *
Default: NULL
Procs: create , get , set
Objects: Panel_list_item

PANEL_LIST_STRINGS_WCS

Similar to its companion attribute, PANEL_LIST_STRING, except that it takes a
NULL-terminated list of wide character strings as its value. This is the wide
character version of PANEL_LIST_STRINGS.

Type: list of wchar_t *
Return type: wchar_t *
Default: NULL
Procs: create , get , set
Objects: Panel_list_item

PANEL_LIST_TITLE_WCS

The title of a scrolling list as a wide character string. This is the wide character
version of PANEL_LIST_TITLE .

Type: wchar_t *
Default: NULL
Procs: create , get , set
Objects: Panel_list_item

PANEL_MASK_CHAR_WC

When the user enters a character, the character specified as the value of
PANEL_MASK_CHAR_WC will be displayed in place of each character the user
has typed. Use the space character for no character echo (caret does not
advance). Use the NULL character to disable masking. If
PANEL_MASK_CHAR_WC or PANEL_MASK_CHAR is specified for a particular
panel text item, then preedit input will be disabled for this panel text item.
This is the wide character version of PANEL_MASK_CHAR.

Type: wchar_t
Default: none
Procs: create , get , set
Objects: Panel_text_item , Panel_numeric_text_item

96 XView Developer’s Notes—August 1994

A

PANEL_MAX_TICK_STRING_WCS

Specifies the wide character string which appears underneath the maximum
tick mark on horizontal sliders, or to the right of the maximum tick mark on
vertical sliders. PANEL_MAX_TICK_STRING_WCS is ignored if PANEL_TICKS
is 0. The width of the slider can be adjusted to insure that there is enough
space to accommodate both the minimum and maximum tick strings.

Type: wchar_t *
Default: NULL
Procs: create , get , set
Objects: Panel_slider_item , Panel_gauge_item

PANEL_MAX_VALUE_STRING_WCS

Maximum value string in wide characters for the slider. On horizontal sliders,
the maximum value string appears to the right of the maximum end box. On
vertical sliders, the maximum value string appears above the maximum end
box. This is the wide character version of PANEL_MAX_VALUE_STRING.

Type: wchar_t *
Default: NULL
Procs: create , get , set
Objects: Panel_slider_item

PANEL_MIN_TICK_STRING_WCS

Wide character string that appears underneath the minimum tick mark on
vertical sliders. PANEL_MIN_TICK_STRING_WCS is ignored if PANEL_TICKS
is 0. The width of the slider can be adjusted to insure that there is enough room
to accommodate both the minimum and maximum tick strings. This is the
wide character version of PANEL_MIN_TICK_STRING.

Type: wchar_t *
Default: NULL
Procs: create , get , set
Objects: Panel_slider_item , Panel_gauge_item

API Summaries 97

A

PANEL_MIN_VALUE_STRING_WCS

Minimum value wide character string for the slider. On horizontal sliders, the
minimum value string appears to the left of the minimum end box. On vertical
sliders, the minimum value string appears below the minimum end box. This
is the wide character version of PANEL_MIN_VALUE_STRING.

Type: wchar_t *
Default: NULL
Procs: create , get , set
Objects: Panel_slider_item

PANEL_NOTIFY_PROC_WCS

Procedure to call when a scrolling list is activated. This is the wide character
version of PANEL_NOTIFY_PROC.

Argument: See below
Default: none
Procs: create , get , set
Objects: Panel_item

Callback:

PANEL_NOTIFY_STRING_WCS

The value is a wide character string that triggers notification when typed into a
text item. Applies only when PANEL_NOTIFY_LEVEL is PANEL_SPECIFIED.
This is the wide character version of PANEL_NOTIFY_STRING.

int
notify_proc_name(list_item, wide_char_string, client_data, op,

event, row)
Panel_item list_item; /* PANEL_LIST item */
wchar_t *wide_char_string; /* string associated with row */
Xv_opaque client_data; /* Client data of the row*/
Panel_list_op op; /* Select, validate or

 * delete operation */
Event *event;
int row; /* Scroll list row number*/

98 XView Developer’s Notes—August 1994

A

Type: wchar_t *
Default: \r\t\n (carriage return, tab, newline)
Procs: create , get , set
Objects: Panel_multiline_text_item,Panel_numeric_text_item,

Panel_text_item

PANEL_VALUE_WCS

Indicates the current value of a panel item as a wide character string if the
value is a string. This is the wide character version of PANEL_VALUE.

Type: wchar_t *
Default: NULL
Procs: create , get , set
Objects: Panel_choice_item, Panel_gauge_item,

Panel_list_item,Panel_multiline_text_item,
Panel_numeric_text_item Panel_slider_item,
Panel_text_item

PANEL_VALUE_DISPLAY_LENGTH

Maximum number of columns to display in a text item. The length of the value
display cannot be less than the combined width of the left and right “more
text” buttons. Note that this definition is different from the XView 3.1
environment.

Type: int
Default: 80
Procs: create, get, set
Objects: Panel_list_item, Panel_slider_item,

Panel_numeric_text_item, Panel_text_item

PANEL_VALUE_STORED_LENGTH

Maximum number of bytes to be stored in the value string for text items. The
panel value of a panel text item will be converted to multibyte to check
whether it has the reached the limit set by this attribute.

Type: int
Default: 80
Procs: create, get, set
Objects: Panel_list_item,

API Summaries 99

A

Panel_multiline_text_item,
Panel_numeric_text_item,
Panel_text_item

PANEL_VALUE_STORED_LENGTH_WCS

Maximum number of wide characters to be stored in the value string for text
items.

Type: int
Default: 80
Procs: create, get, set
Objects: Panel_list_item,

Panel_multiline_text_item,
Panel_numeric_text_item,
Panel_text_item

PATH_LAST_VALIDATED_WCS

Returns the last pathname that has passed validation in the text field. If no
pathname has passed validation, NULL is returned. The return value is set to
NULL after setting PATH_IS_DIRECTORY.

PATH_LAST_VALIDATED_WCS returns the expanded version of the pathname,
in contrast to PANEL_VALUE, which returns the current contents of the field.

Type: wchar_t *
Default: none
Procs: get

PATH_RELATIVE_TO_WCS

Specifies an absolute path to which any relative path input is appended to
complete the pathname.

Type: wchar_t *
Default: none
Procs: create , get , set

SELN_REQ_CHARSIZE

Specifies the number of characters in the selection.

100 XView Developer’s Notes—August 1994

A

Type: int
Default: none
Procs: selection_ask() , selection_init_request() ,

selection_query()

SELN_REQ_CONTENTS_WCS

Specifies a pointer to a wchar_t string containing the selection’s wide
character contents.

Type: wchar_t *
Default: none
Procs: selection_ask() , selection_init_request() ,

selection_query()

SELN_REQ_FIRST_WC

Gives the number of characters that precede the first character of the selection.

Type: int
Default: none
Procs: selection_ask() , selection_init_request() ,

selection_query()

SELN_REQ_LAST_WC

Gives the character index of the last character of the selection.

Type: int
Default: none
Procs: selection_ask() , selection_init_request() ,

selection_query()

SERVER_IMAGE_BITMAP_FILE_WCS

Specifies a filename in wide characters for the file containing the X11 bitmap to
be created. Refer to the Xlib documentation on XReadBitmapFile() for the
file format. This is the wide character version of
SERVER_IMAGE_BITMAP_FILE.

Type: wchar_t *
Default: none
Procs: create

API Summaries 101

A

TEXTSW_ACTION_CHANGED_DIRECTORY_WCS

The current working directory for the process has changed to the directory
named. The name of the directory is specified in wide characters. This is the
wide character version of TEXTSW_ACTION_CHANGED_DIRECTORY.

Type: wchar_t *
Default: none
Procs: notify_proc

TEXTSW_ACTION_EDITED_FILE_WCS

The file named by the provided wide character string has been edited. This is
the wide character version of TEXTSW_ACTION_EDITED_FILE.

Type: wchar_t *
Default: none
Procs: notify_proc

TEXTSW_ACTION_LOADED_FILE_WCS

The text subwindow is used to view the file named. The filename is specified
with a wide character string by the provided wide character string.

Type: wchar_t *
Default: none
Procs: notify_proc

TEXTSW_CONTENTS_WCS

Specifies the text for a text subwindow as a wide character string. xv_get()
needs additional parameters. This is the wide character version of
TEXTSW_CONTENTS.

Type: wchar_t *
Default: NULL
Procs: create , get , set

102 XView Developer’s Notes—August 1994

A

The following example shows how to use TEXTSW_CONTENTS_WCS to read
text from a text subwindow.

TEXTSW_FILE_WCS

For xv_create() and xv_set() , specifies the name of the file to load in
wide character format. For xv_get() , returns the name of the file loaded in
wide character or NULL, if no file was loaded.

Type: wchar_t *
Default: NULL
Procs: create , get , set

TEXTSW_FILE_CONTENTS_WCS

Initializes the text subwindow contents from a file, yet still edits the contents in
memory as if specified using TEXTSW_FILE_CONTENTS_WCS. The filename is
specified in wide character. This is the wide character version of
TEXTSW_FILE_CONTENTS.

Type: wchar_t *
Default: NULL
Procs: create , set

 TEXTSW_FIRST_WC

Specifies the zero-based index in characters of the first displayed character.
This is the wide character version of TEXTSW_FIRST.

Type: int
Default: none
Procs: get

wchar_t *buf
int buf_len; /* character base */
Textsw_index start_pos, next_pos; /* character base */

next_pos = xv_get(textsw, TEXTSW_CONTENTS_WCS,
 start_pos, buf, buf_len);

API Summaries 103

A

TEXTSW_INSERT_FROM_FILE_WCS

Inserts the contents of a file, whose name is given as a wide character string,
into a textsw at the current insertion point.

Type: wchar_t *
Default: NULL
Procs: create , set

TEXTSW_INSERTION_POINT_WC

Specifies the character-based index of the current insertion point. This is the
wide character version of TEXTSW_INSERTION_POINT.

Type: Textsw_index
Default: none
Procs: create , get , set

TEXTSW_LENGTH_WC

TEXTSW_LENGTH_WC returns the length in characters of the textsw ’s contents.
This is dissimilar to TEXTSW_LENGTH,which returns the length in bytes.

Type: int
Default: none
Procs: get

WIN_ERROR_MSG_WCS

Specifies a wide character error message string. This is the wide character
version of WIN_ERROR_MSG.

Type: wchar_t *
Default: NULL
Procs: create

WIN_IC

Sets or gets the input context (IC) handle associated with a given window. This
will only affect windows which have WIN_USE_IM set to TRUE.

Type: int
Default: none
Procs: create , get , set

104 XView Developer’s Notes—August 1994

A

WIN_IC_ACTIVE

Specifies whether the input context (IC) associated with the given window is to
be active. If WIN_IC_ACTIVE is TRUE, events will be directed to the input
method. The attribute should be set to TRUE whenever the user expects to use
the input method. WIN_IC_ACTIVE can also be set to FALSE when it is
necessary to temporarily disable the input method (IM) for a particular
window.

Type: Boolean
Default: TRUE
Procs: create , set, get

WIN_IC_COMMIT_STRING

If the window has an input context (IC) associated with it, querying this
attribute will return the currently committed string for this window. The
committed string is any input string that may have been pending before
WIN_IC_RESET was set to TRUE.

Type: char *
Default: NULL
Procs: get

WIN_IC_COMMIT_STRING_WCS

If the window has an input context (IC) associated with it, querying this
attribute will return the currently committed string for this window. The
committed string is any input string that may have been pending before
WIN_IC_RESET was set to TRUE. This is the wide character version of
WIN_IC_COMMIT_STRING.

Type: wchar_t *
Default: NULL
Procs: get

WIN_IC_CONVERSION

Specifies whether input method conversion mode is on for a given window.
This will only affect windows which have WIN_USE_IM set to TRUE.

API Summaries 105

A

Type: Boolean
Default: FALSE
Procs: create , get , set

WIN_IC_PREEDIT_CARET

Specifies the preedit caret callback and the associated callback data for a given
window. The specified function is called when the input method wants the
client to move the text insertion caret. This will only affect windows which
have WIN_USE_IM set to TRUE.

Type: void (*preedit_start_proc)() , XPointer
Default: window dependent
Procs: create , set

WIN_IC_PREEDIT_DONE

Specifies the preedit done callback and the associated callback data for a given
window. The specified function is called when input method conversion is
turned off. This will only affect windows which have WIN_USE_IM set to
TRUE.

Type: void (*preedit_done_proc)() , XPointer
Default: window dependent
Procs: create , set

WIN_IC_PREEDIT_DRAW

Specifies the preedit draw callback and the associated callback data for a given
window. The specified function is called when the input method wants the
client to draw, insert, delete, or replace preedit text in the preedit region. This
will only affect windows which have WIN_USE_IM set to TRUE.

Type: void (*preedit_draw_proc)() , XPointer
Default: window dependent
Procs: create , set

WIN_IC_PREEDIT_START

Specifies the preedit start callback and the associated callback data for a given
window. The specified function is called when input method conversion is
turned on. This will only affect windows which have WIN_USE_IM set to
TRUE.

106 XView Developer’s Notes—August 1994

A

Type: void (*preedit_start_proc)() , XPointer
Default: window dependent
Procs: create , set

WIN_IC_RESET

Resets the input context of a given window to its initial state. Any input
pending on that input context is deleted. The input method clears the preedit
area and updates the status area accordingly. If WIN_IC_RESET is set to TRUE,
the input method conversion mode is turned off.

Type: Boolean
Default: none
Procs: set

WIN_IC_STATUS_DONE

Specifies the status done callback function and associated callback data for a
given window. The status area is an output-only region which is intended to
present the internal state of the input method to the user. The specified
function is called when the input context loses focus or is destroyed. This will
only affect windows which have WIN_USE_IM set to TRUE.

Type: void (*status_done_proc)() , XPointer
Defaults: private default function
Procs: create , set

WIN_IC_STATUS_DRAW

Specifies the status draw callback function and associated callback data for a
given window. The status area is an output-only region which is intended to
present the internal state of the input method to the user. The specified
function is called when the input method wants the client to update the status
area. This will only affect windows which have WIN_USE_IM set to TRUE.

Type: void (*status_draw_proc)() , XPointer
Defaults: private default function
Procs: create , set

API Summaries 107

A

WIN_IC_STATUS_START

Specifies the status start callback function and associated callback data for a
given window. The status area is an output-only region which is intended to
present the internal state of the input method to the user. The specified
function is called when the input context is created or receives focus. This will
only affect windows which have WIN_USE_IM set to TRUE.

Type: void (*status_start_proc)() , XPointer
Defaults: private default function
Procs: create , set

WIN_USE_IM

Specifies whether the input method will be enabled (TRUE) or disabled
(FALSE) for a given window. WIN_USE_IM can be set on a frame, canvas,
panel, text subwindow, or tty subwindow. The value of WIN_USE_IM can only
be set with xv_create() . If WIN_USE_IM is not explicitly set, subwindows
will inherit their value of WIN_USE_IM from the parent.

Type: Boolean
Default: TRUE
Procs: create , get

WIN_X_IM_STYLE_MASK

Specifies the input style mask for the input method, which will be specified as
either preedit or status style. The mask is specified using XIMStyle masks in
<X11/Xlib.h>. The value can be queried against any window object.

If WIN_USE_IM is TRUE, this attribute affects the input context associated with
a window. XView attribute settings override input style command line options
and input style resource settings.

Type: unsigned long
Default: locale-specific
Procs: xv_create() , xv_get()

108 XView Developer’s Notes—August 1994

A

XV_IM

Returns the XIM handle of the Xlib connection with the input method. XV_IM
returns NULL if a connection to the input method has not been established.
The server package attempts to make a connection during xv_init() only if
the locale-specific resource xview.needIM.<locale> is TRUE. By default,
xview.needIM.<locale> is FALSE.

The xview.needIM.<locale> resource is typically specified as TRUE in
$OPENWINHOME/lib/locale/<locale>/xview/defaults , if the locale
supports an input method. For the C locale and most western European
locales, an input method may not be required; therefore, the default value of
FALSE will suffice.

Type: XIM
Default: NULL
Procs: get

XV_IM_STYLES

Returns the XIMStyles list of supported styles. This attributes can be queried
on any window or server object.

Type: XIMStyles
Default: none
Procs: xv_get()

XV_LABEL_WCS

Specifies a frame’s header label or an icon’s label, or simply associates a wide
character name with an object. XView copies the strings on set . This is the
wide character version of XV_LABEL.

Type: wchar_t *
Default: NULL
Procs: create , get , set

Functions
This section lists functions alphabetically.

API Summaries 109

A

defaults_get_locale()

Returns the current locale setting in the XView resource database lookup, as
specified by the first argument for defaults_set_locale() .

char *
defaults_get_locale()

 defaults_set_locale()

Turns the locale-sensitive XView resource database lookup on and off. If both
<locale> and <locale_attr> are NULL, a call to this function turns off the
locale-sensitive resource lookup (default). If <locale> or <locale_attr> is
non-NULL, the locale-sensitive XView resource database lookup is turned on.
<locale> must be a valid locale name, and <locale_attr> must be
XV_LC_BASIC_LOCALE, XV_LC_DISPLAY_LANG, XV_LC_NUMERIC, or
XV_LC_TIME_FORMAT.

void

defaults_set_locale(locale, locale_attr)

 char *locale; /* Locale value itself */
 int locale_attr; /* Locale category */

panel_get_value_wcs()

Macro that returns the PANEL_VALUE_WCS for the specified panel item. This is
the wide character version of panel_set_value() .

wchar_t *
panel_get_value_wcs(item)

 Panel_item item;

panel_set_value_wcs()

Macro that sets PANEL_VALUE_WCS for the specified panel item. This is the
wide character version of panel_get_value() .

panel_set_value_wcs (item, value)
 Panel_item item;
 wchar_t * value;

110 XView Developer’s Notes—August 1994

A

textsw_add_mark_wc()

Adds a new mark at a character-based position. Flags can be either
TEXTSW_MARK_DEFAULTS or TEXTSW_MARK_MOVE_AT_INSERT. This is the
wide character version of textsw_add_mark() .

Textsw_mark
textsw_add_mark_wc(textsw, position, flags)

Textsw textsw;
Textsw_index position; /* character base */
unsigned flags;

textsw_append_file_name_wcs()

Returns 0 if textsw is editing a file and appends the name of the file at the
end of name. This is the wide character version of
textsw_append_file_name() .

int
textsw_append_file_name_wcs(textsw, name)
Textsw textsw;
wchar_t *name;

textsw_delete_wcs()

Removes the span of characters beginning with first and ending one before
last_plus_one . Returns 0 if the operation fails; otherwise, it returns the
number of characters (not bytes) deleted. This is the wide character version of
textsw_delete() .

Textsw_index /* character base */
textsw_delete_wcs (textsw, first, last_plus_one)

Textsw textsw;
Textsw_index first, last_plus_one; /*character base*/

textsw_edit_wcs()

Erases a character, a word, or a line, depending on whether unit is
TEXTSW_UNIT_IS_CHAR, TEXTSW_UNIT_IS_WORD, or
TEXTSW_UNIT_IS_LINE. If direction is 0, characters after the current
insertion point are affected; otherwise, characters before the current insertion
point are erased. The operation is repeated count times. The function returns
0 on failure. This is the wide character version of textsw_edit() .

API Summaries 111

A

Textsw_index /* character base */
textsw_edit_wcs (textsw, unit, count, direction)

Textsw textsw;
unsigned unit, count, direction;

textsw_erase_wcs()

Equivalent to textsw_delete_wcs() , but does not affect the global shelf.
Returns 0 if the operation fails, otherwise, returns the number of characters
(not bytes) actually deleted. This is the wide character version of
textsw_erase() .

Textsw_index /* character base */
textsw_erase_wcs (textsw, first, last_plus_one)

Textsw textsw;
Textsw_index first, last_plus_one; /* character base*/

textsw_find_wcs()

Beginning at the position addressed by first , searches for the pattern
specified by buf of length buf_len . Searches forward if flag is 0; otherwise, it
searches backward. Returns -1 if there is no match; otherwise, the matching
span is placed in indices addressed by first and last_plus_one . This is
the wide character version of textsw_find() .

int
textsw_find_wcs(textsw, first, last_plus_one, buf,
 buf_len, flags)

Textsw textsw;
Textsw_index *first, *last_plus_one;/*char. base*/
wchar_t *buf;
unsigned buf_len; /* character base */
unsigned flags;

textsw_find_mark_wc()

Returns the current position of mark in characters. If this operation fails, the
function returns TEXTSW_INFINITY. This is the wide character version of
textsw_find_mark() .

Textsw_index /* character base */
textsw_find_mark_wc(textsw, position, flags)

Textsw textsw;
Textsw_mark position;

112 XView Developer’s Notes—August 1994

A

textsw_index_for_file_line_wc()

Returns the character index of the first character in the line given by line . If
this operation fails, the function returns TEXTSW_CANNOT_SET. This is the
wide character version of textsw_index_for_file_line() .

Textsw_index /* character base */
textsw_index_for_file_line_wc(textsw, line)

Textsw textsw;
int line;

textsw_insert_wcs()

Insert wide characters from buf into textsw at the current insertion point.
The number of characters (not bytes) actually inserted is returned. This will
equal buf_len unless there was memory allocation failure. If there was a
failure, the return value is 0. This is the wide character version of
textsw_insert() .

Textsw_index /* character base */
textsw_insert_wcs (textsw, buf, buf_len)

Textsw textsw;
wchar_t *buf;
int buf_len; /* character base */

textsw_match_wcs()

Searches for a block of text in the contents of a textsw. This is the wide
character version of textsw_match_bytes() .

int
textsw_match_wcs(textsw, first, last_plus_one, start_sym
 start_sym_len, end_sym, end_sym_len, field_flag)

Textsw textsw;
Textsw_index *first, *last_plus_one;/*character base*/
wchar_t *start_sym, *end_sym;
int start_sym_len, end_sym_len; /*char.base*/
unsigned field_flag;

textsw_normalize_view_wc()

Repositions the text so that the character at position (character base) is
visible at the top of the subwindow. This is the wide character version of
textsw_normalize_view() .

API Summaries 113

A

void
textsw_normalize_view_wc(textsw, position)

Textsw textsw;
Textsw_index position; /* character base */

textsw_possibly_normalize_wc()

If the character at the character-based position is already visible, this
function does nothing. If the character is not visible, this function repositions
the text so that the character is visible and at the top of the subwindow. This is
the wide character version of textsw_possibly_normalize() .

void
textsw_possibly_normalize_wc(textsw, position)

Textsw textsw;
Textsw_index position;/* character base */

textsw_replace_wcs()

Replaces the character span from first to last_plus_one with the characters
in buf . The return value is the number of characters inserted or deleted. The
number is positive if characters are inserted, negative if characters are deleted.
(The number is also negative if the original string is longer than the one that
replaces it.) If this operation fails, it returns a value of NULL.

Textsw_index /* character base */
textsw_replace_wcs(textsw, first, last_plus_one,
 buf, buf_len)

Textsw textsw;
Textsw_index first, last_plus_one; /*char. base */
wchar_t *buf;
unsigned buf_len; /* character base */

textsw_set_selection_wcs()

Sets the selection to begin at first and include all characters up to
last_plus_one . A type value of 1 indicates primary selection; 2 indicates
secondary selection. This is the wide character version of
textsw_set_selection() .

114 XView Developer’s Notes—August 1994

A

void
textsw_set_selection_wcs(textsw,first,last_plus_one, type)

Textsw textsw;
Textsw_index first, last_plus_one; /*character base */
unsigned type;

textsw_store_file_wcs()

Stores the contents of textsw to the file named by filename . If needed, a
message box is displayed at x, y. This is the wide character version of
textsw_store_file() .

unsigned
textsw_store_file_wcs (textsw, filename, x, y)

Textsw textsw;
wchar_t *filename;
int x, y;

ttysw_input_wcs()

Appends len number of wide characters from buf into input queue of the tty.
The function returns the number of wide characters accepted. This is the wide
character version of ttysw_input() .

int
ttysw_input_wcs (tty, buf, len)

Tty tty;
wchar_t *buf;
int len;

ttysw_output_wcs()

Appends len number of wide characters from buf into output queue of the
tty. Characters are sent through the terminal emulator to the tty. It returns the
number of wide characters accepted. This is the wide character version of
ttysw_output_wcs() .

int
ttysw_output_wcs (tty, buf, len);
Tty tty;
wchar_t *buf;
int len;

115

Changes to Internationalized
XView Version 2.x B

Prior to the release of XView 3.2, XView was available in domestic and
internationalized versions. This appendix explains the changes that have been
made since XView 2.x. It is intended for developers who are migrating their
internationalized XView 2.x applications to the current XView release. Topics
include compatibility, changes to packages, and a list of current attributes and
functions.

Compatibility with the Current XView Release
Programs written under the internationalized XView 2.x environment are
neither source nor binary compatible with the current XView release. Programs
written under the internationalized XView Version 2.x environment may
require source modification to become compatible with XView. Table B-1 shows
compatibility between toolkit versions.

Table B-1 Source Compatibility Matrix

Written/Compiled

 Operating Environment

current XView release XView 3.0.1 and 3.1 Intl. XView 2.0.1

current XView release n/a Not compatible Not compatible

XView 3.0.1 and 3.1 Source/binary compatible n/a Not compatible

Intl. XView 2.0.1 Not compatible Not compatible n/a

116 XView Developer’s Notes—August 1994

B

Package Changes
This section describes changes to four packages: frames, panels, text
subwindows, and windows.

Frames

Frame attributes have not changed since internationalized XView 2.x. In the
internationalized XView 2.x releases, the frame package sent input method
status information to the window manager, olwm, and then the window
manager rendered the status region. In the current XView release, the frame
package maintains the input method status information and renders the status
region.

Panels

Three attributes in panels have changed meaning since internationalized
XView 2.x:

• PANEL_VALUE_DISPLAY_LENGTH
• PANEL_VALUE_STORED_LENGTH
• PANEL_NOTIFY_PROC_WCS.

In internationalized XView 2.x and (domestic) XView 3.x,
PANEL_VALUE_DISPLAY_LENGTH measured the display length in characters.
However, the meanings of characters, bytes, and columns are not the same in
the Asian locales; therefore, the meaning of PANEL_VALUE_DISPLAY_LENGTH
also had to change to reflect the difference. In the current XView release,
PANEL_VALUE_DISPLAY_LENGTH is measured in columns. The default value
for PANEL_VALUE_DISPLAY_LENGTH is 80 columns.

PANEL_VALUE_STORED_LENGTH was also measured in characters in
internationalized XView 2.x. Setting PANEL_VALUE_STORED_LENGTH to 10
meant 10 bytes of storage space in XView 2.x, and possibly 20 bytes of storage
in internationalized XView 2.x (depending on the definition of a wide
character). To make things more consistent in all environments, the value
associated with PANEL_VALUE_STORED_LENGTH now means the number of
bytes to be stored. All incoming wide characters are converted to multibyte
first to check against the storage limit, then stored in wide character form. All
incoming multibyte characters are also checked against the storage limit first,
then converted to wide characters for storage.

Changes to Internationalized XView Version 2.x 117

B

PANEL_NOTIFY_PROC_WCS accepted five parameters for a panel list item in
internationalized XView 2.x. In the XView release, PANEL_NOTIFY_PROC_WCS
accepts six parameters for a panel list item:

• Panel list item
• Wide character string
• Client data
• Operation
• Event
• Row number.

Text Subwindows

The following sections describe changes to Text subwindows.

Search Path for Textsw Extras Menu File
The search path for the Textsw Extras Menu file has been changed since
XView 2.x. Refer to “Text Subwindows” on page 63 for further information.

Character- and Byte-Based Index Support
In internationalized XView 2.x there was no API for a byte-based index. Indices
were handled in characters, even for the multibyte API. In the current XView
release, Text subwindows support both character- and byte-based APIs for
index. The multibyte API handles the index in bytes, and the wide character
API handles it in characters. There are two reasons for this change:

• To provide portability between Asian and non-Asian locales.

• To enhance the ease of programming with the multibyte API.

The attributes and functions in Table B-2 use an index as an argument or the
returned value, or return the number of deleted/inserted characters.

• Column A lists functions and attributes that existed in the internationalized
XView 2.x. Indices and deleted or inserted length were handled in
characters, not bytes. In the current XView release, these functions and
attributes are handled in bytes.

118 XView Developer’s Notes—August 1994

B

• Column B lists functions and attributes that existed in the internationalized
XView 2.x as wide character API, where indices and deleted lengths were
handled in characters. In the current XView release, these API handle
indices and lengths in bytes similar to the multibyte API.

• Column C lists the new wide character API. This API supports wide
characters as the counterpart of the multibyte API in column B. Indices and
deleted length are handled in characters.

Table B-2 Changed or Added Text Subwindow Attributes and Functions

If an internationalized XView 2.x application does not use any wide character
API for the multibyte API in column A, or TEXTSW_LENGTH_WC (listed in
Table B-3), the application will not need to change except for the changes
according to the bug fixes mentioned in the next section. However, the wide
character API is recommended for improved performance. Refer to “Text
Subwindows” on page 63 for further information.

Multibyte API Wide Character API

A B C

TEXTSW_CONTENTS TEXTSW_FIRST TEXTSW_FIRST_WC

TEXTSW_INSERTION_POINT TEXTSW_INSERTION_POINT_WC

textsw_find_bytes() textsw_add_mark() textsw_add_mark_wc()

textsw_insert() textsw_delete() textsw_delete_wcs()

textsw_match_bytes() textsw_edit() textsw_edit_wcs()

textsw_replace_bytes() textsw_erase() textsw_erase_wcs()

textsw_find_mark() textsw_find_mark_wc()

textsw_index_for_file_line() textsw_index_for_file_line_wc()

textsw_normalize_view() textsw_normalize_view_wc()

textsw_possibly_normalize() textsw_possibly_normalize_wc()

textsw_set_selection() textsw_set_selection_wcs()

Changes to Internationalized XView Version 2.x 119

B

Table B-3 Wide Character Text Subwindow API

Wide Character Attributes Wide Character Functions

TEXTSW_CONTENTS_WCS textsw_find_wcs()
TEXTSW_LENGTH_WC textsw_insert_wcs()

textsw_match_wcs()
textsw_replace_wcs()

If an internationalized XView 2.x application uses the wide character API listed
in Table B-3 and any API listed in column B of Table B-2 together, the
application needs to use the wide character API listed in column C instead of
column B of Table B-2. For example, the internationalized XView 2.x code
below searches a string, erases it, and moves the insertion caret to the front of
the erased character.

The XView code below has been changed to call textsw_erase_wcs()
instead of textsw_erase() , and it uses TEXTSW_INSERTION_POINT_WC
instead of TEXTSW_INSERTION_POINT. Textsw_find_wcs() returns the
index parameters in wide characters. Further processing of the indices should
also be character-based by using textsw_erase_wcs() and
TEXTSW_INSERTION_POINT_WC.

If an internationalized XView 2.x application uses the multibyte API in
column A of Table B-2 and wide character API in Table B-3 together, some
combinations will require source code changes. For example, the following
internationalized XView 2.x code searches a string with a multibyte string and
replaces it with a wide character string.

Textsw textsw;
Textsw_index first, last_plus_one;

textsw_find_wcs (textsw, &first, &last_plus_one, buf, buf_len, flags);
textsw_erase (textsw, first, last_plus_one);
xv_set (textsw, TEXTSW_INSERTION_POINT, first, NULL);

textsw_find_wcs (textsw, &first, &last_plus_one, buf, buf_len, flags);
textsw_erase_wcs (textsw, first, last_plus_one);
xv_set (textsw, TEXTSW_INSERTION_POINT_WC, first, NULL);

120 XView Developer’s Notes—August 1994

B

In the current XView release, textsw_find_bytes() should be replaced
with textsw_find_wcs() , and the multibyte string buf should be converted
to wide character. Similarly, textsw_replace_wcs() can be replaced with
textsw_replace_bytes() , but the wide character API is recommended for
better performance. These changes are necessary because the index is handled
in different ways between multibyte and wide character APIs.

Bug Fixes to Text Subwindows
Because of these bug fixes, your internationalized XView Version 2.x
application may need to change.

textsw_insert()

Textsw_index
textsw_insert (textsw, buf, buf_len)

char *buf;
int buf_len;

Internationalized XView Version 2.x environment: buf_len and the return
value of the number of characters actually inserted were counted in characters.
This was a bug. If buf_len is specified over the actual buffer length, only the
contents of the buffer would be inserted.

Current XView release: buf_len and the return value are counted in bytes.

textsw_replace_bytes()

Textsw_index
textsw_replace_bytes(textsw, first, last_plus_one,

 buf, buf_len)
Textsw_index first, last_plus_one;
char *buf;
unsigned buf_len;

char *buf;
wchar_t *wbuf;

textsw_find_bytes (textsw, &first, &last_plus_one,buf, buf_len, flags);
textsw_replace_wcs (textsw, first, last_plus_one, wbuf, wbuf_len);

Changes to Internationalized XView Version 2.x 121

B

Internationalized XView Version 2.x environment: buf_len , the return value
of the number of characters inserted or deleted, first , and last_plus_one
were measured in characters. Measuring buf_len in characters was a bug.

Current XView release: buf_len , return value, first , and last_plus_one
are counted in bytes.

textsw_find_bytes(), textsw_match_bytes()

textsw_find_bytes (textsw, first, last_plus_one, buf,
buf_len, flags)

textsw_match_bytes(textsw,first,last_plus_one, start_sym,
start_sym_len, end_sym, end_sym_len, field_flag)

Internationalized XView Version 2.x environment: these functions ignore the
specified buffer length and processes the entire string in buffer (this is a bug).
The index is character based.

Current XView release: processes string in buffer specified by buffer length.
Index and buffer length are byte based.

TEXTSW_CONTENTS

TEXTSW_CONTENTS is used by xv_get() .

next_pos = xv_get (textsw, TEXTSW_CONTENTS, start_pos, buf, buf_len)

Textsw_index start_pos, next_pos;
char *buf;
int buf_len;

Internationalized XView Version 2.x environment: next_pos and start_pos
are character based. buf_len is byte based.

Current XView release: start_pos , next_pos and buf_len are byte based.

Windows

As shown in Table B-4, the WIN_IM_* attributes in internationalized XView 2.x
have undergone a name change to WIN_IC_* in the current XView release. The
API usage is still the same, although the Xlib data structures have been
updated to reflect the latest X11 Release 5 specification.

122 XView Developer’s Notes—August 1994

B

Table B-4 WIN_IM_* Attribute Changes

Internationalized XView 2.x Current XView Release

WIN_IM_PREEDIT_START WIN_IC_PREEDIT_START
WIN_IM_PREEDIT_DRAW WIN_IC_PREEDIT_DRAW
WIN_IM_PREEDIT_DONE WIN_IC_PREEDIT_DONE

WIN_IM_LUC_START No longer supported
WIN_IM_LUC_DRAW No longer supported
WIN_IM_LUC_PROCESS No longer supported
WIN_IM_LUC_DONE No longer supported

WIN_IM_STATUS_START WIN_IC_STATUS_START
WIN_IM_STATUS_DRAW WIN_IC_STATUS_DRAW
WIN_IM_STATUS_DONE WIN_IC_STATUS_DONE

XView Attributes and Functions
In Table B-5, current XView attributes and functions are listed alphabetically,
and the status is designated as:

New:New since internationalized XView 2.x

Modified:Existed in internationalized XView 2.x but is modified in the current
XView release

Unchanged:Existed in internationalized XView 2.x and remains unchanged in
the current XView release

Obsolete:Existed in internationalized XView 2.x but is no longer used in the
current XView release
Table B-5 XView Attributes and Functions—Current Release

Attributes and Functions New Modified Unchanged Obsolete

CANVAS_IM_PREEDIT_FRAME x

CURSOR_STRING_WCS x

defaults_get_locale() x
defaults_set_locale() x

Changes to Internationalized XView Version 2.x 123

B

Table B-5 XView Attributes and Functions—Current Release (continued)

Attributes and Functions New Modified Unchanged Obsolete

FILE_CHOOSER_APP_DIR_WCS x
FILE_CHOOSER_CUSTOMIZE_OPEN_WCS x
FILE_CHOOSER_DIRECTORY_WCS x
FILE_CHOOSER_DOC_NAME_WCS x
FILE_CHOOSER_FILTER_WCS x
FILE_CHOOSER_NOTIFY_FUNC_WCS x
FILE_CHOOSER_WCHAR_NOTIFY x

FILE_LIST_DIRECTORY x
FILE_LIST_DOTDOT_STRING_WCS x
FILE_LIST_FILTER_STRING_WCS x
FILE_LIST_WCHAR_NOTIFY x

FONT_CHAR_WIDTH_WC x
FONT_CHAR_HEIGHT_WC x
FONT_COLUMN_WIDTH x
FONT_LOCALE x
FONT_NAMES x
FONT_SET_ID x
FONT_SET_SPECIFIER x
FONT_STRING_DIMS_WCS x

FRAME_LABEL_WCS x
FRAME_LEFT_FOOTER_WCS x
FRAME_RIGHT_FOOTER_WCS x

HISTORY_ADD_FIXED_ENTRY_WCS x
HISTORY_ADD_ROLLING_ENTRY_WCS x
HISTORY_LABEL_WCS x
HISTORY_NOTIFY_PROC_WCS x
HISTORY_VALUE_WCS x

ICON_LABEL_WCS x
ICON_TRANSPARENT_LABEL_WCS x

124 XView Developer’s Notes—August 1994

B

Table B-5 XView Attributes and Functions—Current Release (continued)

Attributes and Functions New Modified Unchanged Obsolete

MENU_ACCELERATOR_WCS x
MENU_ACTION_ACCELERATOR_WCS x
MENU_ACTION_ITEM_WCS x
MENU_GEN_PIN_WINDOW_WCS x

MENU_GEN_PROC_ITEM_WCS x
MENU_GEN_PULLRIGHT_ITEM_WCS x
MENU_PULLRIGHT_ITEM_WCS x
MENU_STRING_WCS x
MENU_STRING_ITEM_WCS x
MENU_STRINGS_WCS x
MENU_STRINGS_AND_ACCELERATORS_WCS x
MENU_TITLE_ITEM_WCS x

NOTICE_BUTTON_WCS x
NOTICE_BUTTON_NO_WCS x
NOTICE_BUTTON_YES_WCS x
NOTICE_MESSAGE_STRING_WCS x
NOTICE_MESSAGE_STRINGS_WCS x
NOTICE_MESSAGE_STRINGS_ARRAY_PTR_WCS x

PANEL_CHOICE_STRING_WCS x
PANEL_CHOICE_STRINGS_WCS x
PANEL_ITEM_IC_ACTIVE x
PANEL_LABEL_STRING_WCS x
PANEL_LIST_INSERT_STRINGS_WCS x
PANEL_LIST_ROW_VALUES_WCS x
PANEL_LIST_STRING_WCS x
PANEL_LIST_STRINGS_WCS x
PANEL_LIST_TITLE_WCS x
PANEL_MASK_CHAR_WC x
PANEL_MAX_TICK_STRING_WCS x
PANEL_MAX_VALUE_STRING_WCS x
PANEL_MIN_TICK_STRING_WCS x
PANEL_MIN_VALUE_STRING_WCS x

Changes to Internationalized XView Version 2.x 125

B

Table B-5 XView Attributes and Functions—Current Release (continued)

Attributes and Functions New Modified Unchanged Obsolete

PANEL_NOTIFY_PROC_WCS x
PANEL_NOTIFY_STRING_WCS x
PANEL_VALUE_WCS x
PANEL_VALUE_DISPLAY_LENGTH x
PANEL_VALUE_STORED_LENGTH x
PANEL_VALUE_STORED_LENGTH_WCS x

panel_get_value_wcs() x
panel_set_value_wcs() x

PATH_LAST_VALIDATED_WCS x
PATH_RELATIVE_TO_WCS x

SELN_REQ_CHARSIZE x
SELN_REQ_CONTENTS_WCS x
SELN_REQ_FIRST_WC x
SELN_REQ_LAST_WC x

SERVER_IMAGE_BITMAP_FILE_WCS x

TEXTSW_ACTION_CHANGED_DIRECTORY_WCS x
TEXTSW_ACTION_EDITED_FILE_WCS x
TEXTSW_ACTION_LOADED_FILE_WCS x
TEXTSW_CONTENTS x
TEXTSW_CONTENTS_WCS x
TEXTSW_FILE_WCS x
TEXTSW_FILE_CONTENTS_WCS x
TEXTSW_FIRST x
TEXTSW_FIRST_WC x
TEXTSW_INSERT_FROM_FILE_WCS x
TEXTSW_INSERTION_POINT x
TEXTSW_INSERTION_POINT_WC x
TEXTSW_LENGTH_WC x
textsw_add_mark() x
textsw_add_mark_wc() x
textsw_append_file_name_wcs() x
textsw_delete() x
textsw_delete_wcs() x

126 XView Developer’s Notes—August 1994

B

Table B-5 XView Attributes and Functions—Current Release (continued)

Attributes and Functions New Modified Unchanged Obsolete

textsw_edit() x
textsw_edit_wcs() x
textsw_erase() x
textsw_erase_wcs() x
textsw_find_bytes() x
textsw_find_wcs() x
textsw_find_mark() x
textsw_find_mark_wc() x
textsw_index_for_file_line() x
textsw_index_for_file_line_wc() x
textsw_insert() x
textsw_insert_wcs() x
textsw_match_bytes() x
textsw_match_wcs() x
textsw_normalize_view() x
textsw_normalize_view_wc() x
textsw_possibly_normalize() x
textsw_possibly_normalize_wc() x
textsw_replace_bytes() x
textsw_replace_wcs() x
textsw_set_selection() x
textsw_set_selection_wcs() x
textsw_store_file_wcs() x

ttysw_input_wcs() x
ttysw_output_wcs() x

WIN_ERROR_MSG_WCS x
WIN_IC x
WIN_IC_ACTIVE x
WIN_IC_COMMMIT_STRING x
WIN_IC_COMMIT_STRING_WCS x
WIN_IC_CONVERSION x
WIN_IC_PREEDIT_CARET x
WIN_IC_PREEDIT_DONE x
WIN_IC_PREEDIT_DRAW x
WIN_IC_PREEDIT_START x

Changes to Internationalized XView Version 2.x 127

B

Table B-5 XView Attributes and Functions—Current Release (continued)

Attributes and Functions New Modified Unchanged Obsolete

WIN_IC_RESET x
WIN_IC_STATUS_DONE x
WIN_IC_STATUS_DRAW x
WIN_IC_STATUS_START x
WIN_IM_LUC_START x
WIN_IM_LUC_DRAW x
WIN_IM_LUC_PROCESS x
WIN_IM_LUC_DONE x
WIN_USE_IM x
WIN_X_IM_STYLE_MASK x

XV_IM x
XV_IM_STYLES x
XV_LABEL_WCS x

128 XView Developer’s Notes—August 1994

B

129

Font Set Definitions C

This appendix describes the contents of the font set definition database:

• Font set specifier
• Font set name aliases
• Default font family
• Default font scales
• Font family, scales, and sizes aliases

Font Set Specifier
A font set is specified by using the font set name as the resource specification
and the corresponding list of XLFD font names as the resource value. The
following example shows the font set name “-sun-myoungjo-medium-r-
normal--16-140-75-75-p-140-korean-0” has been defined to consist of two fonts.
The keyword definition indicates that the value following it is a list of
XLFD font names.

An application can specify the font set to be used by assigning the value “-sun-
myoungjo-medium-r-normal--16-140-75-75-p-140-korean-0” to the attribute
FONT_SET_SPECIFIER.

-sun-myoungjo-medium-r-normal--16-140-75-75-p-140-korean-0:definition,\
-b&h-lucida-medium-r-normal-sans-0-0-0-0-p-0-iso8859-1, \
-sun-myoungjo-medium-r-normal--16-140-75-75-c-140-ksc5601.1987-0

130 XView Developer’s Notes—August 1994

C

Font Set Name Aliases
Other font set names can be aliased to a particular font set name using the
keyword alias . The following example aliases the name “hngmnj14” to the
font set name “-sun-myoungjo-medium-r-normal--16-140-75-75-c-140-korean-
0”.

An application can also specify the font set to be used by assigning the value
“hngmnj14” to the attribute FONT_SET_SPECIFIER.

Default Font Family
Font attributes FONT_FAMILY can be used to create or find a font set object.
The default font family for a particular locale can be defined in the font set
definition database file as below:

The font family FONT_FAMILY_SANS_SERIF has been defined as the default
for the FONT_FAMILY attribute. If the default font family is not specified in the
font set definition database, the C locale default is used. Refer to the XView
Programming Manual, Version 3 for these C locale defaults.

Default Font Scales
The point sizes corresponding to the font scales of a particular locale can be
specified in the font set definition database in the following manner:

hngmnj14: alias, -sun-myoungjo-medium-r-normal--16-140-75-75-c-140-korean-0

! Default Font Set
xv_font_set.default_family: FONT_FAMILY_SANS_SERIF

xv_font_set.small: 12
xv_font_set.medium: 14
xv_font_set.large: 16
xv_font_set.extra_large : 20

Font Set Definitions 131

C

The point size defined by xv_font_set.medium is used as the default value
for the FONT_SIZE attribute. If the default font scales are not specified in the
font set definition database, the C locale default is used. Refer to the XView
Programming Manual, Version 3 for these C locale defaults.

Font Family, Scales, and Size Aliases
When an application creates a font set using FONT_FAMILY in the Asian
locales, the font set definition database will be queried using a concatenation of
the font set family name, the style, and the sizes as the resource specification.
Therefore, font set aliases must exist in the font set definition database
corresponding to the default font families, default font scales, and sizes. For
example:

If an application does not specify the FONT_FAMILY, FONT_STYLE or
FONT_SIZE explicitly, the default values of these attributes for the particular
locale are used. In the following example, the font set “-sun-myoungjo-
medium-r-normal--16-140-75-75-p-140-korean-0” would be created.

FONT_FAMILY_SANS_SERIF-FONT_STYLE_NORMAL-12:alias, \
-sun-gothic-medium-r-normal--14-120-75-75-c-120-korean-0

FONT_FAMILY_SANS_SERIF-FONT_STYLE_NORMAL-14:alias, \
-sun-myoungjo-medium-r-normal--16-140-75-75-p-140-korean-0

FONT_FAMILY_SANS_SERIF-FONT_STYLE_NORMAL-16:alias, \
-sun-gothic-medium-r-normal--18-160-75-75-c-160-korean-0

FONT_FAMILY_SANS_SERIF-FONT_STYLE_NORMAL-20:alias, \
-sun-myoungjo-medium-r-normal--22-200-75-75-c-200-korean-0

FONT_FAMILY_SANS_SERIF-FONT_STYLE_NORMAL-24:alias, \
-sun-myoungjo-medium-r-normal--26-240-75-75-c-240-korean-0

Xv_Font font_set;
font_set = xv_find(frame, FONT,

FONT_LOCALE, “ko”,
NULL);

132 XView Developer’s Notes—August 1994

C

Part 3 — Release

135

XView Release Notes D

This appendix contains information pertinent to the current XView release.

notify.h Header File
The XView public header file notify.h no longer includes the header file
<sys/rusage.h >. You might have a compilation problem if your code
references <sys/rusage.h > but does not actually include <sys/rusage.h >.

Eight-bit Character Display in Non-internationalized XView Applications
XView applications that are not internationalized (that is, that do not use
XV_USE_LOCALE or set it to FALSE in the xv_init() function) will continue
to handle 8-bit characters. XView will run these applications under the
iso_8859_1 locale instead of the C locale, to maintain compatibility in 8-bit
character handling. This change will impact the behavior of locale-sensitive
functions such as the function isprint (3V), which now returns TRUE for 8-bit
characters.

C Locale Display
The C locale does not support 8-bit characters (that is, G1 set or right-hand side
of the ISO 8859-1 character set, such as characters with diareses). Use the
en_US locale to display 8-bit characters in the English language environment.

136 XView Developer’s Notes—August 1994

D

137

Glossary G

back-end input method
Refers to the architecture of an input method. With a back-end input method, a
single X server connection is used. A dispatching mechanism must decide on
this channel to delegate the appropriate keystrokes to the input method.

callback function
When an event occurs in an event-driven environment, a procedure is called.
This procedure is called a callback function, or simply a callback. XView
provides callback functions for handling and updating the input method status
region and preedit region.

category, OPEN LOOK locale
The OPEN LOOK locale categories define the language and cultural
conventions of an on-screen program. The categories consist of Basic Setting,
Display Language, Input Language, Time Format, and Numeric Format.

character
A member of a set of elements used for the organization, control, or
representation of text.

character set
A collection of characters. Character sets may be composed of alphabets,
ideograms, or other elements.

CLE
Chinese Language Environment is an extension to SunOS 5.x and provides
support for simplified Chinese.

138 XView Developer’s Notes—August 1994

coded character set
A character set whose characters are mapped to a bit representation. Some
encodings, such as Compound Text, have more than one bit representation for
a given character, and thus are not considered coded character sets.

codepoint
The coded representation of a single character in a coded character set.

code set
A list of unambiguous rules that establishes a character set and a one-to-one
relationship between each character of the set and its bit representation. ASCII
is the most common codeset; others examples are ISO 8859-1, JIS X0201, JIS
X0208.

EUC-JIS
Used by EUC to mix ASCII, JIS X0201 and JIS X0208 character sets, which is
popular in the Japanese UNIX market and adopted by JLE. In EUC-JIS, ASCII
is defined in codeset 0, JIS X0208 is defined in codeset 1; and JIS X0201 (right
half of the table only) is defined in codeset 2.

explicit commit
Refers to the process of sending or committing preedit text to the client
application when the user presses the commit key or performs a specific
commit key sequence.

Extended UNIX Code (EUC)
EUC is an encoding method that supports one primary code set and three
supplementary code sets. The primary code set is always used to represent
ASCII. The other three code sets vary depending upon the locale. EUC can be
in either multibyte (EUC file code) or wide character (EUC process code)
format. SunOS 5.x has adopted ATT’s Multi-National Language Supplement
(MNLS) EUC, which is patterned after ISO 2022.

file code (EUC file code)
A synonym for multibyte character. See multibyte character.

font set
A set of fonts representing the character sets of a language. In English, there is
only one character set. Other languages, however, have multiple character sets
that require multiple fonts. These multiple fonts are called font set objects.

Glossary 139

HLE
Hanyu Language Environment is an extension to SunOS 5.x and provides
support for traditional Chinese.

front-end input method
Refers to the architecture of an input method. With a front-end input method,
there are two separate connections to the X server. Keystrokes go directly from
the X server to the input method on one connection and other events go to the
client connection. The input method acts as a filter and sends composed strings
to the client. Synchronization is necessary between the two connections.

ICCCM
Inter-Client Communication Conventions Manual (ICCCM) describes conventions
for the communication between X clients. This includes such conventions as
client-to-client, client-to-window manager, client-to-session manager, and color
characterization communication. This document is produced by the MIT X
Consortium.

ideogram
A character representing an idea or thing without using a particular word of
phrase for it.

implicit commit
Refers to the process of committing preedit text and sending the committed
string to the client application, when the user performs certain common mouse
or keyboard actions. This differs from explicit commit, in which a specific
commit key sequence must be performed in order to commit preedit text.

input context (IC)
An abstraction for representing the state of a particular input thread for use
with an input method. There may be multiple ICs associated with an input
method.

input method (IM)
The algorithm by which users enter the text of a language. Input methods
differ for each language depending on that language’s structure and
conventions.

input method server
A process that provides input method service to X clients. X input methods can
be implemented either as a stub communicating to an input server or as a local
library.

140 XView Developer’s Notes—August 1994

input method status
Input method (IM) status may consist of text data or bitmap data. The input
method status is displayed in the input method status region and is updated
when input method conversion is enabled or disabled, or when input modes
change.

input style

Refers to the location of the preedit region during text input. In the on-the-spot
input style, the preedit region is where the text will be inserted after it is
committed. In over-the-spot, the preedit region is above where text will be
inserted. Root window refers to input methods that use a preedit window that is
a child of the Root Window.

internationalization
The capability of an application to be adapted to the requirements of different
native languages, local customs and character sets.

JFP
Japanese Feature Package is an extension of SunOS 5.x. JFP uses the EUC
encoding scheme and locale mechanism.

JLE
Japanese Language Environment.

KLE
Korean Language Environment is an extension to SunOS 5.x and provides
support for Korean.

locale
A set of conventions unique to a geographical area and/or language.

locale setting
The process by which the user sets geographical area and/or language for the
window system.

localization
The process of establishing information within a computer system that is
specific to the operation of particular native languages, local customs and
character sets.

Glossary 141

lookup choice region
A screen region that displays alternate choices corresponding to the preedit
string entered. The user selects the most appropriate lookup choice
representation.

localized text handling
The method by which the native language strings of a program can be
displayed in a foreign language without changing the program’s source code.

multibyte character
A character whose codepoint is stored in one or more bytes. It differs from
wide character encoding in that the number of bytes representing a character
may vary.

object layout
The mechanism by which the position and dimension of objects containing
strings may be modified to accommodate localized strings.

preediting
The process of composing characters from keystrokes. Preedit capability is a
common feature of many input methods: the user types multiple keystrokes in
order to compose a single character.

process code (EUC process code)
A synonym for wide character. See wide character.

wide character
A data type with fixed number of bytes in which a character from any
supported character set is stored. Interpretation of a wide character is usually
locale-dependent. ANSI-C uses a data type called wchar_t as the name of the
data type.

142 XView Developer’s Notes—August 1994

143

Index

A
ALE (Asian language environment), 137
API for internationalization, 41
API summaries, 81
ASCII, 22, 25, 28
Asian characters, 28
Asian input procedure, 32
attributes

naming conventions, 29
new or modified, 122
obsolete, 122

B
back-end input method, 37, 137
buf_len, 120

C
C locale display, 135
callback function, 137
canvas

input context, 42
input method, 42
joining views, 10
package, 41

CANVAS_IM_PREEDIT_FRAME, 42, 81,
122

character display, and non-
internationalized XView
applications, 135

character encoding
ASCII, 22, 25, 28
Asian characters, 28
Compound Text, 25
EUC, 22, 25
in XView, 22
ISO Latin-1, 21, 25, 51

character, definition, 137
Chinese

input methods, 32
simplified, xvi
traditional, xvi

CLE (Chinese language
environment), xvi, 137

client-displays, 39, 78
CMS_COLOR_COUNT

corrections to XVRM, 9
code set, definition, 138
codepoint, definition, 138
compatibility, XView 3.3 and earlier

versions, 25, 115
Compiling XView 3.3 Programs, 23
Compound Text, 25
container classes

and XView panels, 15

144 XView Developer’s Notes—August 1994

cursor package, 42
CURSOR_STRING_WCS, 42, 81, 122

D
defaults_get_locale(), 109, 122
defaults_set_locale(), 109, 122
drag and drop

Motif and XView interoperability, 4

E
encoding

ASCII, 22, 25, 28
Asian characters, 28
Compound Text, 25
EUC, 22, 25
in XView, 22
ISO Latin-1, 21, 25, 51

explicit commit, definition, 138
Extended UNIX Code (EUC), 22, 25, 138

F
file chooser package, 43
file list package, 44
FILE_CHOOSER_APP_DIR_WCS, 43, 82,

123
FILE_CHOOSER_CUSTOMIZE_OPEN_

WCS, 43, 82, 123
FILE_CHOOSER_DIRECTORY_WCS, 43,

82, 123
FILE_CHOOSER_DOC_NAME_

WCS, 43, 82, 123
FILE_CHOOSER_FILTER_STRING_

WCS, 43, 83
FILE_CHOOSER_FILTER_WCS, 123
FILE_CHOOSER_NOTIFY_FUNC_

WCS, 43, 83, 123
FILE_CHOOSER_WCHAR_NOTIFY, 43,

83, 123
FILE_LIST_DIRECTORY_WCS, 44, 83,

123

FILE_LIST_DOTDOT_STRING_WCS, 44,
84, 123

FILE_LIST_FILTER_STRING_WCS, 44,
84, 123

FILE_LIST_WCHAR_NOTIFY, 44, 84, 123
focus follows mouse

XView and Motif interoperability, 5
font

compatibility issues, 51
glyph fonts, 50
package, 45
portability issues, 52
set, definition, 50
sets, 23, 45, 129 to 131

FONT_CHAR_HEIGHT_WC, 46, 84, 123
FONT_CHAR_WIDTH_WC, 46, 84, 123
FONT_COLUMN_WIDTH, 46, 85, 123
FONT_LOCALE, 46, 47, 85, 123
FONT_NAMES, 46, 47, 85, 123
FONT_SET_ID, 46, 48, 85, 123
FONT_SET_SPECIFIER, 46, 49, 85, 123
FONT_STRING_DIMS_WCS, 46, 86, 123
frame package, 52

changes, 116
FRAME_LABEL_WCS, 52, 86, 123
FRAME_LEFT_FOOTER_WCS, 52, 86,

123
FRAME_RIGHT_FOOTER_WCS, 52, 86,

123
front-end input method, 37, 139
functions

naming conventions, 29
new or modified, 122

G
glyph fonts, 50

H
history package, 53
HISTORY_ADD_FIXED_ENTRY_

WCS, 53, 87, 123

Index 145

HISTORY_ADD_ROLLING_ENTRY_
WCS, 53, 87, 123

HISTORY_LABEL_WCS, 53, 87, 123
HISTORY_NOTIFY_PROC_WCS, 53, 87,

123
HISTORY_VALUE_WCS, 53, 87, 123
HLE (Hanyu language environment), xvi,

139

I
IC (input context), 74
ICCCM, 139
icon package, 53
ICON_LABEL_WCS, 53, 88, 123, 124, 125,

126, 127
ICON_TRANSPARENT_LABEL_

WCS, 53, 88, 123
ideogram, definition, 139
IM (input method) server, 37, 139
implicit commit, 38, 57, 75

definition, 139
input context (IC), 74
input method, 31 to 39

architecture, 36
callback procedures, 78
choosing the input style, 74
customizing, 39
definition, 23, 31
determining style, 35
enabling and disabling, 36, 72
IM server, 37, 139
preedit styles, 34
screen regions, 32
status, 140
status styles, 34

input style, 140
internationalization features, 41
interoperability

focus follows mouse and Motif, 5
Motif and XView drag and drop, 4
Motif and XView selections, 3
window decoration, 4

XView client with two base
windows, 4

XView text editor and Motif, 4
ISO Latin-1, 21, 25, 51

J
Japanese writing systems, 31
JFP (Japanese Feature Package), xvi, xviii
JLE (Japanese language

environment), 140
joining canvas views, 10

K
KLE (Korean language environment), xvi,

140
Korean writing systems, 32

L
layout, object, 22
locale setting, 22
lookup choice region, 32, 141

M
menu package, 53
MENU_ACCELERATOR_WCS, 54, 88,

124
MENU_ACTION_ACCELERATOR_

WCS, 54, 88, 124
MENU_ACTION_ITEM_WCS, 54, 89, 124
MENU_GEN_PIN_WINDOW_WCS, 54,

89, 124
MENU_GEN_PROC_ITEM_WCS, 54, 89,

124
MENU_GEN_PULLRIGHT_ITEM_

WCS, 54, 89, 124
MENU_PULLRIGHT_ITEM_WCS, 54, 90,

124
MENU_STRING_ITEM_WCS, 54, 90, 124
MENU_STRING_WCS, 54, 90, 124

146 XView Developer’s Notes—August 1994

MENU_STRINGS_AND_
ACCELERATORS_WCS, 54, 91,
124

MENU_STRINGS_WCS, 54, 90, 124
MENU_TITLE_ITEM_WCS, 54, 91, 124
meta key alternatives, x86, meta key

alternatives, xvii
Motif Window Manager, 3
multibyte character, 22 to 23, 25

N
naming conventions for attributes and

functions, 29
non-internationalized XView applications,

8-bit character display, 135
notice package, 54
notice.c, 8
NOTICE_BUTTON_NO_WCS, 54, 91, 124
NOTICE_BUTTON_WCS, 54, 91, 124
NOTICE_BUTTON_YES_WCS, 54, 92,

124
NOTICE_MESSAGE_STRING_WCS, 54,

92, 124
NOTICE_MESSAGE_STRINGS_ARRAY_

PTR_WCS, 54, 92, 124
NOTICE_MESSAGE_STRINGS_

WCS, 54, 92, 124
notify.h header file, 135
notify_next_event_func

corrections to XVPM, 8
numeric text fields

and PANEL_EVENT_PROC, 15
and PANEL_ITEM_OWNER, 15

O
object layout, 22
obsolete attributes, 122
on-the-spot, 39, 42, 78
OPEN LOOK Mouseless Specification, 11

P
package changes, 116 to 122
panel package, 54

changes, 116
PANEL_CHOICE_STRING_WCS, 55, 93,

124
PANEL_CHOICE_STRINGS_WCS, 55,

93, 124
PANEL_CLIENT_DATA attribute, 15
PANEL_EVENT_PROC

and numeric text fields, 15
corrections to XVPM, 8

panel_get_value_wcs, 55, 109, 125
PANEL_ITEM_IC_ACTIVE, 55, 56, 93, 124
PANEL_ITEM_OWNER attribute, 15
PANEL_LABEL_STRING_WCS, 55, 93,

124
PANEL_LIST_INSERT_STRINGS_

WCS, 55, 94, 124
PANEL_LIST_ROW_VALUES_WCS, 55,

57, 94, 124
PANEL_LIST_STRING_WCS, 55, 94, 124
PANEL_LIST_STRINGS_WCS, 55, 95, 124
PANEL_LIST_TITLE_WCS, 55, 95, 124
PANEL_MASK_CHAR_WC, 55, 57, 95,

124
PANEL_MAX_TICK_STRING_WCS, 55,

96, 124
PANEL_MAX_VALUE_STRING_

WCS, 55, 96, 124
PANEL_MIN_TICK_STRING_WCS, 55,

96, 124
PANEL_MIN_VALUE_STRING_

WCS, 55, 97, 124
PANEL_NOTIFY_PROC_WCS, 55, 97,

116, 117, 124, 125, 126, 127
PANEL_NOTIFY_STRING_WCS, 55, 97
panel_set_value_wcs, 55, 109, 125
PANEL_VALUE_DISPLAY_

LENGTH, 55, 98, 116, 125
PANEL_VALUE_STORED_LENGTH, 98,

116, 125

Index 147

PANEL_VALUE_STORED_LENGTH_
WCS, 55, 99, 125

PANEL_VALUE_WCS, 55, 98, 125
parent container object

and using the child handle, 16
PATH_LAST_VALIDATED_WCS, 58, 99,

125
PATH_RELATIVE_TO_WCS, 58, 99, 125
pathname package, 57
performance, text subwindows, 66
preedit

definition, 141
region, 32
styles, 34
text, implicit commit, 38

S
screen regions for input, 32
SCROLLBAR_COMPUTE_SCROLL_

PROC, 11 to 13
attribute function, 11
example function call, 11

SCROLLBAR_MOTION, 14 to 15
SCROLLBAR_NORMALIZE_PROC, 13

to 14
attribute function, 13
example function call, 13

selections, 61
Motif and XView interoperability, 3

seln.c program
corrections to XVPM, 7

SELN_REQ_CHARSIZE, 61, 99, 125
SELN_REQ_CONTENTS_WCS, 61, 100,

125
SELN_REQ_FIRST_WC, 61, 100, 125
SELN_REQ_LAST_WC, 61, 100, 125
server image package, 62
SERVER_IMAGE_BITMAP_FILE_

WCS, 62, 100, 125
status

region, 33
styles, 34

T
text subwindows

buffer, index, length API, 63
Extras Menu, 70
filename API, 64
implicit commit, 69
index adjustments, 65
invalid data, 65, 68
package changes, 117
performance, 66
programming considerations, 64
wide character API, 66

TEXTSW, 119
TEXTSW_ACTION_CHANGED_

DIRECTORY_WCS, 64, 101, 125
TEXTSW_ACTION_EDITED_FILE_

WCS, 64, 101, 125
TEXTSW_ACTION_LOADED_FILE_

WCS, 64, 101, 125
textsw_add_mark(), 118, 125, 126
textsw_add_mark_wc(), 63, 110, 118, 125
textsw_append_file_name_wcs(), 64, 110,

125
TEXTSW_CONTENTS, 63, 65, 118, 125
TEXTSW_CONTENTS_WCS, 101, 119,

125
textsw_delete(), 118, 125
textsw_delete_wcs(), 63, 110, 118, 125
textsw_edit(), 118, 126
textsw_edit_wcs(), 63, 110, 118, 126
textsw_erase(), 118, 126
textsw_erase_wcs(), 63, 111, 118, 126
TEXTSW_FILE_CONTENTS_WCS, 64,

102, 125
TEXTSW_FILE_WCS, 64, 102, 125
textsw_find_bytes(), 65, 118, 121, 126
textsw_find_mark(), 63, 118, 126
textsw_find_mark_wc(), 111, 118
textsw_find_mark_wcs(), 126
textsw_find_wcs(), 63, 111, 119
TEXTSW_FIRST, 118, 125
TEXTSW_FIRST_WC, 63, 102, 118, 125

148 XView Developer’s Notes—August 1994

textsw_index_for_file_line(), 118, 126
textsw_index_for_file_line_wc(), 63, 112,

118, 126
textsw_insert(), 65, 118, 120, 126
TEXTSW_INSERT_FROM_FILE_

WCS, 64, 103, 125
textsw_insert_wcs(), 63, 112, 119, 126
TEXTSW_INSERTION_POINT, 118, 125
TEXTSW_INSERTION_POINT_WC, 63,

103, 118, 125
TEXTSW_LENGTH_WC, 63, 103, 119, 125
textsw_mark_wcs, 126
textsw_match_bytes(), 65, 118, 121, 126
textsw_match_wcs(), 63, 112, 119, 126
textsw_normalize_view(), 118, 126
textsw_normalize_view_wc(), 63, 112,

118, 126
textsw_possibly_normalize(), 118, 126
textsw_possibly_normalize_wc(), 63, 113,

118, 126
TEXTSW_READ_ONLY, 70
textsw_replace_bytes(), 65, 118, 120, 126
textsw_replace_wcs(), 63, 113, 119, 126
textsw_set_selection(), 118
textsw_set_selection_wcs(), 63, 113, 118,

126
textsw_store_file_wcs(), 64, 114, 126
TTY subwindow package, 71
ttysw_input_wcs(), 71, 114, 126
ttysw_output_wcs(), 71, 114, 126

W
wide character, 22, 23

naming conventions
attributes, 29
functions, 29

representation, 25
WIN_ERROR_MSG_WCS, 72, 103, 126
WIN_IC, 72, 103, 126
WIN_IC_ACTIVE, 72, 104, 126
WIN_IC_COMMIT_STRING, 72, 104

WIN_IC_COMMIT_STRING_WCS, 72,
126

WIN_IC_COMMIT_WCS, 104, 126
WIN_IC_COMMMIT_STRING, 126
WIN_IC_CONVERSION, 72, 104, 126
WIN_IC_PREEDIT_CARET, 72, 78, 105,

126
WIN_IC_PREEDIT_DONE, 72, 78, 105,

122, 126
WIN_IC_PREEDIT_DRAW, 72, 78, 105,

122, 126
WIN_IC_PREEDIT_START, 72, 78, 105,

122, 126
WIN_IC_RESET, 72, 106, 127
WIN_IC_STATUS_DONE, 72, 78, 106, 122,

127
WIN_IC_STATUS_DRAW, 72, 78, 106,

122, 127
WIN_IC_STATUS_START, 72, 78, 107,

122, 127
WIN_IM_*, 121
WIN_IM_LUC_DONE, 122, 127
WIN_IM_LUC_DRAW, 122, 127
WIN_IM_LUC_PROCESS, 122, 127
WIN_IM_LUC_START, 122, 127
WIN_IM_PREEDIT_DONE, 122
WIN_IM_PREEDIT_DRAW, 122
WIN_IM_PREEDIT_START, 122
WIN_IM_STATUS_DONE, 122
WIN_IM_STATUS_DRAW, 122
WIN_IM_STATUS_START, 122
WIN_USE_IM, 36, 70, 72, 107, 127
WIN_X_IM_STYLE_MASK, 72, 107, 127
window decoration

XView and Motif interoperability, 4
window package changes, 120, 121

X
Xlib preedit styles, 34
Xlib status styles, 34
Xv_focus_rank, 10

Index 149

XV_FOCUS_RANK attribute, 16
XV_HELP_DATA, 10
XV_IM, 72, 108, 127
XV_IM_STYLES, 35, 72, 108
XV_KEY_DATA attribute, 15
XV_LABEL_WCS, 52, 53, 108, 127
XView client

interoperability with Motif, 3 to 4
interoperability with Motif window

manager, 4 to 5
text editor in Motif environment, 4
with two base windows, 4

XView panels
and container classes, 15

XVPM corrections
notify_next_event_func, 8
PANEL_EVENT_PROC, 8
seln.c program, 7

XVRM corrections
CMS_COLOR_COUNT, 9

150 XView Developer’s Notes—August 1994

