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Preface

The SunOS™ operating system provides an environment in which application
developers can build applications and libraries using the link-editor ld(1) ,
and execute these utilities with the aid of the runtime linker ld.so.1 . For
many application developers, the fact that the link-editor is called via the
compilation system, and that the runtime linker may play a part in the
execution of their application, is mildly interesting. This manual is for those
who wish to understand more fully the concepts involved.

About This Manual
This manual describes the operations of the SunOS operating system link-
editor and runtime linker. Special emphasis is placed on the generation and
use of shared libraries because of their importance in a dynamic runtime
environment.

Intended Audience

This manual is intended for a range of programmers who are interested in the
SunOS linkers, from the curious beginner to the advanced user:

• Beginners learn the principle operations of the link-editor and runtime
linker.

• Intermediate programmers learn to build, and use, efficient custom libraries.
• Advanced programmers, such as language-tools developers, learn how to

interpret and generate object files.
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Not many programmers should find it necessary to read this manual from
cover to cover.

Organization

Chapter 1, “Introduction”, gives an overview of the linking processes under
the SunOS operating system. This chapter is intended for all programmers.

Chapter 2, “Link-Editor”, describes the functions of the link-editor, its two
modes of linking (static and dynamic), scope and forms of input, and forms of
output. This chapter is intended for all programmers.

Chapter 3, “Runtime Linker”, describes the execution environment and
program-controlled runtime binding of code and data. This chapter is intended
for all programmers.

Chapter 4, “Shared Objects”, gives definitions of shared objects, describes their
mechanisms, and explains how to build and use them. This chapter is intended
for all programmers.

Chapter 5, “Object Files”, is a reference chapter on ELF files. This chapter is
intended for advanced programmers.

Chapter 6, “Mapfile Option”, describes the mapfile directives to the linker,
which specify the layout of the output file. This chapter is intended for
advanced programmers.

Appendix A, “Link-Editor Quick Reference”, gives an overview of the most
commonly used link-editor options, and is intended for all programmers.

Throughout this document, all command-line examples use sh(1)  syntax, and
all programming examples are written in the C language.



1

Introduction 1

This manual describes the operations of the SunOS operating system link-
editor and runtime linker, together with the objects on which they operate. The
basic operation of the SunOS linkers involves the combination of objects and
the connection of symbolic references from one object to the symbolic
definitions within another. This operation is often referred to as binding.

The main areas this manual expands upon are:

• The Link-Editor

The link-editor, ld(1) , is responsible for concatenating one or more input
files (either relocatable objects, shared objects, or archive libraries) to
produce one output file (either a relocatable object, an executable
application, or a shared object). The link-editor is most commonly invoked
as part of the compilation environment (see cc(1) ).

• The Runtime Linker

The runtime linker, ld.so.1 1, is responsible for processing dynamic
executables and shared objects at runtime, and binding them to create a
runable process.

1. ld.so.1 is a special case of a shared object and thus allows itself to be versioned. Here we use a version
number of 1, however later releases of the SunOS operating system may provide higher version numbers.
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• Shared Objects (sometimes also referred to as Shared Libraries)

Shared objects are one form of output from the link-edit phase. However,
their importance in creating a powerful, flexible runtime environment
warrants a section of its own.

• Object Files

The SunOS linkers work with files that conform to the executable and linking
format (ELF).

These four areas, although separable into individual topics, have a great deal
of overlap. While explaining each area, this document brings together the
connecting principles and designs.

Link-Editing
Link-editing takes a variety of input modules, from cc(1) , as(1)  or ld(1) ,
and performs concatenation and interpretation of the data within these input
modules to form a single output module. Although the link-editor provides
numerous options, the output module produced is one of four basic kinds
shown in Figure 1-1 on page 3.

• Relocatable object – a concatenation of input relocatable objects, which may be
used in subsequent link-edit phases.

• Static executable –a concatenation of input relocatable objects that has all
symbolic references bound to the executable, and thus represents a ready to
run process.

• Dynamic executable – a concatenation of input relocatable objects that
requires intervention by the run-time linker to produce a runable process.
Its symbolic references may still need to be bound at run-time, and it may
have one or more dependencies in the form of shared objects.

• Shared object – a concatenation of input relocatable objects that provides
services that may be bound to a dynamic executable at runtime. The shared
object may also have dependencies on other shared objects.

Of the above four types of link-editor output, the last two, dynamic executables
and shared objects, are the main focus of this document.
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Figure 1-1 Static or Dynamic Link-editing

Runtime Linking
Runtime linking involves the binding of objects, normally generated from one
or more previous link-edits, to generate a runable process. During the
generation of these objects by the link-editor, the binding requirements are
verified and appropriate bookkeeping information is added to each object to
allow the runtime linker to map, relocate, and complete the binding process.
During the execution of the process, the facilities of the runtime linker are also
made available and may be used to extend the process’ address space by
adding additional shared libraries on demand. The two most common
components involved in runtime linking are dynamic executables and shared
objects.

Dynamic Executables

Dynamic executables are applications that are executed under the control of a
runtime linker. These applications normally have dependencies in the form of
shared objects, which are located and bound by the runtime linker to create a
runable process. Dynamic executables are the default output module generated
by the link-editor.
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Shared Objects

Shared objects provide the key building block to a dynamically linked system.
Basically, a shared object is similar to a dynamic executable, however shared
objects normally have no entry point and they have not yet been assigned a
virtual address. Dynamic executables normally have dependencies on one or
more shared objects. That is, the shared object(s) must be bound to the
dynamic executable to produce a runable process. Because shared objects may
be used by many applications, many of the aspects of their construction
directly affect shareability, versioning and performance.

It is useful to distinguish the processing of shared objects by either the link-
editor or the runtime linker by referring to the environments in which the
shared objects are being used:

• The compilation environment. Here, shared objects are processed by the link-
editor to generate dynamic executables or other shared objects. The shared
objects become dependencies of the output file being generated.

• The runtime environment. Here, shared objects are processed by the runtime
linker, together with a dynamic executable, to produce a runable process.

Related Topics

Dynamic Linking

Dynamic linking is a term often used to embrace those portions of the link-
editing process that generate dynamic executables and shared objects, together
with the runtime linking of these objects to generate a runable process.
Dynamic linking allows multiple applications to use the code provided by a
shared object by enabling the application to bind to the shared object at
runtime.

By separating an application from the services of standard libraries, dynamic
linking also increases the portability and extensibility of an application. This
separation between the interface of a service and its implementation enables the
system to evolve while maintaining application stability, and is a crucial factor
in providing an application binary interface (ABI). Dynamic linking is the
preferred compilation method for SunOS applications.
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Application Binary Interfaces

To enable the asynchronous evolution of system and application components,
binary interfaces between these facilities are defined. The SunOS linkers
operate upon these interfaces to assemble applications for execution. Although
all components handled by the SunOS linkers have binary interfaces, one
family of such interfaces of particular interest to applications writers is the
System V Application Binary Interface.

The System V Application Binary Interface, or ABI, defines a system interface for
compiled application programs. Its purpose is to document a standard binary
interface for application programs on systems that implement the System V
Interface Definition, Third Edition. The SunOS operating system provides for the
generation and execution of ABI-conformant applications. On SPARC systems,
the ABI is contained as a subset of the SPARC® Compliance Definition (SCD).

Many of the topics covered in the following chapters are influenced by the ABI.
For more detailed information refer to the appropriate ABI manuals.

Support Tools

Together with the objects mentioned in the previous sections come a number of
support tools and libraries. These tools provide for the analysis and inspection
of these objects and the linking processes. Among these tools are: nm(1) ,
dump(1) , ldd(1) , elf(3E) , and a linker debugging support library.
Throughout this document we augment any discussions with examples of the
use of these tools.
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Link-Editor 2

Overview
The link-editing process consists of building an output file from one or more
input files. The building of the output file is directed by the options supplied to
the link-editor together with the input sections provided by the input files.

All files are represented in the executable and linking format (ELF). For a
complete description of the ELF format refer to Chapter 5, “Object Files”,
however, for this introduction it is first necessary to introduce two ELF
structures, sections and segments. Sections represent the smallest indivisible
units that may be processed within an ELF file. Segments are a collection of
sections that represent the smallest individual units that may be mapped to a
memory image by exec(2)  or by the runtime linker.

Although there are many types of ELF sections, they all fall into two categories
with respect to the link-editing phase:

• Sections that contain program data, whose interpretation is only meaningful
to the application itself (examples of these include the program instructions
.text, and the associated data .data and .bss).

• Sections that contain link-editing information (examples of these include the
symbol table information found from .symtab and .strtab, and relocation
information such as .rela.text).
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Basically, the link-editor concatenates the program data sections into the output
file. The link-editing information sections are interpreted by the link-editor and
may result in modifications to other sections, or the generation of new output
information sections for use in later processing of the output file.

The following is a simple breakdown of the link-editors functionality, and
introduces the topics covered in this chapter:

• It verifies and checks for consistency all the options passed to it.

• It concatenates sections of the same characteristics (for example, type,
attributes and name) from the input relocatable objects to form new sections
within the output file. These concatenated sections may in turn be
associated to output segments.

• It reads symbol table information from both relocatable objects and shared
objects to verify and unite references with definitions, and normally
generates a new symbol table, or tables, within the output file.

• It reads relocation information from the input relocatable objects and applies
this information to the output file by updating other input sections. In
addition, output relocation sections may be generated for use by the
runtime linker.

• It generates program headers that describe any segments created.

• It generates a dynamic linking information section if necessary, which
provides information such as shared library dependencies to the runtime
linker.

The process of concatenating like sections, together with the association of
sections to segments, is carried out using default information within the
link-editor. The default section and segment handling provided by the
link-editor is normally sufficient for most users, however, the defaults may be
manipulated using the -M option with an associated mapfile  (refer to
Chapter 6, “Mapfile Option” for more details).

Invoking the Link-Editor
You can run the link-editor directly from the command-line, or have a compiler
driver invoke it for you. In the following two sections both of these methods
are expanded upon. However, the latter is the preferred choice, as the
compilation environment is often the consequence of a complex and
occasionally changing series of operations known only to compiler drivers.



Link-Editor 9

2

Direct Invocation

When you invoke the link-editor directly, you have to supply every object file
and library required to build the intended output. The link-editor makes no
assumptions about the object modules or libraries you meant to use in building
the output. For example, when you issue the command:

the link-editor tries to build a dynamic executable named a.out  using only the
input file test.o . For the a.out  to be a useful executable, it should include
start-up and exit processing code. This code may be language or operating
system specific, and is normally provided through files supplied by the
compiler drivers. Additionally, you may also supply your own initialization
and termination code. This code must be encapsulated and labelled correctly
for it to be correctly recognized and made available to the runtime linker. This
encapsulation and labelling is also provided through files supplied by the
compiler drivers.

In practice, there is little reason to invoke the link-editor directly.

Using a Compiler Driver

The conventional way to use the link-editor is through a language-specific
compiler driver. You supply the compiler driver,cc(1) , f77(1) , etc., with the
input files that make up your application, and the compiler driver will add
additional files and default libraries to complete the link-edit. These additional
files may be seen by expanding the compilation invocation, for example:

Note – This is an example; the actual files included by your compiler driver
and the mechanism used to display the link-editor invocation may vary.

$ ld test.o

$ cc -# -o prog main.o
/usr/ccs/bin/ld -dy /opt/COMPILER/crti.o /opt/COMPILER/crt1.o \
/usr/ccs/lib/values-Xt.o -o prog main.o \
-YP,/opt/COMPILER/lib:/usr/ccs/lib:/usr/lib -Qy -lc \
/opt/COMPILER/crtn.o
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Specifying the Link-Editor Options
Most options to the link-editor can be passed via the compiler driver
command-line. For the most part there is no conflict between the compiler and
the link-editor options. In cases where a conflict arises, the compiler drivers
normally provide a command-line syntax that allows specific options to be
passed to the link-editor. However, an alternative mechanism to provide
options to the link-editor is to set the LD_OPTIONS environment variable. For
example:

Here the -R and -L options will be interpreted by the link-editor and prepended
to any command-line options received from the compiler driver.

The link-editor parses the entire option list looking for any invalid options or
any options with invalid associated arguments. If either of these cases are
found, a suitable error message is generated, and if the error is deemed fatal
the link-edit terminates. For example:

Here the illegal option -X is identified, and the illegal argument to the -z
option is caught by the link-editor’s checking. If an option requiring an
associated argument is mistakenly specified twice the link-editor will provide a
suitable warning but will continue with the link-edit. For example:

$ LD_OPTIONS=“-R /home/me/libs -L /home/me/libs“ cc -o prog \
main.c -lfoo

$ ld -X -z sillydefs main.o
ld: illegal option -- X
ld: fatal: option -z has illegal argument ‘sillydefs’

$ ld -e foo ...... -e bar main.o
ld: warning: option -e appears more than once, first setting taken
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The link-editor also checks the option list for any fatal inconsistences. For
example:

After processing all options, and providing no fatal error conditions have been
detected, the link-editor proceeds to process the input files.

Refer to Appendix A, “Link-Editor Quick Reference” for the most commonly
used link-editor options, and to the ld(1)  manual page for a complete
description of all link-editor options.

Input File Processing
The link-editor reads input files in the order they appear on the command-line.
Each file is opened and inspected to determine its ELF file type and thus
determine how it must be processed. The file types applicable as input for the
link-edit are determined by the binding mode of the link-edit, either static or
dynamic.

Under static linking the link-editor will only accept relocatable objects or
archive libraries as input files. Under dynamic linking the link-editor will also
accept shared objects.

Relocatable objects represent the most basic input file type to the link-editing
process. The program data sections within these files are concatenated into the
output file image being generated. The link-edit information sections are
organized for later use, but will not become part of the output file image, as
new sections will be generated to take their place. Symbols are gathered into a
special internal symbol table that allows for their verification and resolution,
and eventually the creation of one or more symbol tables in the output image.

Although any input file can be specified directly on the link-edit command-
line, archive libraries and shared objects are commonly specified using the -l
option (refer to the section “Linking with Additional Libraries” on page 14 for
coverage of the use of this mechanism and how it relates to the two different
linking modes). However, even though shared objects are often referred to as

$ ld -dy -r main.o
ld: fatal: option -dy and -r are incompatible
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shared libraries, and both of these objects may be specified using the same
option, the interpretation of shared objects and archive libraries is quite
different. The next two sections expand upon these differences.

Archive Processing

Archives are built using ar(1) , and normally consist of a collection of
relocatable objects with an archive symbol table. This symbol table provides an
association of symbol definitions with the objects that supply these definitions.
When the link-editor reads an archive, it uses information within the internal
symbol table it is creating to select only the objects from the archive it requires
to complete the binding process. To be more precise, the link-editor will extract
a relocatable object from an archive if:

• It contains a symbol definition that satisfies a symbol reference (sometimes
referred to as an undefined symbol) presently held in the link-editor’s
internal symbol table, or

• It contains a data symbol definition that satisfies a tentative symbol definition
presently held in the link-editor’s internal symbol table. An example of this
would be that a FORTRAN COMMON block definition would result in the
extraction of a relocatable object that defines the same DATA symbol.

Note – A weak symbol reference will not cause the extraction of an object from
an archive. Weak symbols are expanded upon in section “Simple Resolutions”
on page 22.

The link-editor will make multiple passes through an archive extracting
relocatable objects as needed to satisfy the symbol information being
accumulated in the link-editors internal symbol table. Once the link-editor has
made a complete pass through the archive without extracting any relocatable
objects, it will move on to process the next input file. This mechanism of only
extracting from the archive the relocatable objects needed at the time the archive
was encountered means that the position of the archive within the input file list
may be significant (refer to section “Position of an Archive on the Command-
Line” on page 16 for more details).

Note – Although the link-editor will make multiple passes through an archive
to resolve symbols, this mechanism may be quite costly for large archives
containing random organizations of relocatable objects. In these cases it is
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recommended that tools like lorder(1)  and tsort(1)  be used to order the
relocatable objects within the archive and thus reduce the number of passes the
link-editor must carry out.

Shared Object Processing

Shared objects are indivisible, whole units that have been generated via a
previous link-edit of one or more input files. When the link-editor processes a
shared object the entire contents of the shared object become a logical part of
the resulting output file image. The shared object is not copied physically
during the link-edit as its actual inclusion is deferred until process execution.
This logical inclusion means that all symbol entries defined in the shared object
are made available to the link-editing process.

The shared object’s program data sections and most of the link-editing information
sections are unused by the link-editor, as these will be interpreted by the
runtime linker when the shared object is bound to generate a runable process.
However, the occurrence of a shared object will be remembered, and
information will be stored in the output file image to indicate that this object is
a dependency and must be made available at runtime.

If a shared object has dependencies on other shared objects, these too will be
processed. This processing will occur after all command-line input files have
been processed. These shared objects will be used to complete the symbol
resolution process, however their names will not be recorded as dependencies
in the output file image being generated.

Although the position of a shared object on the link-edit command-line has less
significance than it does for archive processing, it may have a global effect.
Multiple symbols of the same name are allowed to occur between relocatable
objects and shared objects, and between multiple shared objects (refer to the
section “Symbol Resolution” on page 21 for more details). The order of shared
objects processed by the link-editor is maintained in the dependency
information stored in the output file image. As the runtime linker reads this
information it will load the specified shared objects in the same order.
Therefore, the link-editor and the runtime linker will select the first occurrence
of a symbol of a multiply defined series of symbols.
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Note – Multiple symbol definitions, and thus the information to describe the
interposing of one definition of a symbol for another, are reported in the load
map output generated using the -m option.

Linking with Additional Libraries

Although the compiler drivers will often insure that appropriate libraries are
specified to the link-editor, it is frequently necessary for developers to supply
their own. Shared objects and archives can be specified by explicitly naming
the input files required to the link-editor, however, a more common and more
flexible method involves using the link-editor’s -l  option.

Library Naming Conventions

By convention, shared objects are normally designated by the prefix lib  and
the suffix .so , and archives are designated by the prefix lib  and the suffix .a .
For example, libc.so  is the shared object version of the standard C library
made available to the compilation environment, and libc.a  is its archive
version. These conventions are recognized by the -l  option of the link-editor.
Developers commonly use this option to supply additional libraries to their
link-edit, for example

directs the link-editor to search for libfoo.so , and if it does not find it, to
search for libfoo.a .

Note – There is a naming convention regarding the compilation environment
and the runtime environment use of shared objects. The compilation
environment uses the simple .so  suffix, whereas the runtime environment
commonly uses the suffix with an additional version number. Refer to section
“Naming Conventions” on page 68, and “Versioning” on page 73 for more
details.

When link-editing in dynamic mode, you may choose to link with a mix of
shared objects and archives. When link-editing in static mode, only archive
libraries are acceptable for input. When in dynamic mode and using the -l

$ cc -o prog file1.c file2.c -lfoo
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option to enable a library search, the link-editor will first search in a given
directory for a shared object that matches the specified name. If no match is
found the link-editor will then look for an archive library in the same directory.
When in static mode and using the -l  option, only archive libraries will be
sought.

Linking with a Mix of Shared Objects and Archives

Although the library search mechanism, in dynamic mode, searches a given
directory for a shared object, and then an archive library, finer control of the
type of search required can be achieved using the -B  option. By specifying the
-Bdynamic  and -Bstatic  options on the command-line, as many times as
required, the library search can be toggled between shared objects or archives
respectively. For example, to link an application with the archive libfoo.a
and the shared object libbar.so , issue the following command:

The -Bstatic  and -Bdynamic  keywords are not exactly symmetrical. When
you specify -Bstatic , the link-editor does not accept shared objects as input
until the next occurrence of -Bdynamic . However, when you specify
-Bdynamic , the link-editor will first look for shared objects and then archives
in any given directory.

Thus in the previous example it would be more precise to say that the
link-editor will first search for libfoo.a . It will then search for libbar.so ,
and if that fails, for libbar.a . Finally, it will search for libc.so , and if that
fails, libc.a .

Another example of using these options is in the creation of an ABI-
conforming application. For example:

Here all the basic system routines defined in libsys.so  will be bound to this
shared object. Because the compiler driver appends a -lc  to the options
supplied to the link-editor, and because the -Bstatic  has instructed the

$ cc -o prog main.o file1.o -Bstatic -lfoo -Bdynamic -lbar

$ cc -o prog main.o file.1.o -lsys -Bstatic
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link-editor to search for archive libraries only, any remaining undefined
symbols will be resolved by extracting the appropriate relocatable objects from
libc.a .

Position of an Archive on the Command-Line

The position of an archive on the command-line may affect the output file
being produced. The link-editor searches an archive only to resolve undefined
or tentative external references it has previously seen. Once this search is
completed and the required relocatable objects have been extracted, the archive
will not be available to resolve any new symbols obtained from the input files
that follow the archive on the command-line. For example, the command

directs the link-editor to search libfoo.a  only to resolved symbol references
that have been obtained from file1.c; libfoo.a  will not be available to
resolve symbol references from file2.c  or file3.c .

Note – As a rule, it is best to specify any archives at the end of the command-
line unless multiple-definition conflicts require you to do otherwise.

Directories Searched by the Link-Editor

All previous examples assumed that the link-editor knows where to search for
the libraries listed on the command-line. By default the link-editor knows of
only two standard places to look for libraries, /usr/ccs/lib  and /usr/lib .
All other directories to be searched must be added to the link-editor’s search
path explicitly.

There are two ways to change the link-editor search path: using a command-
line option, or using an environment variable.

$ cc -o prog file1.c -Bstatic -lfoo file2.c file3.c -Bdynamic
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Using a Command-Line Option
The -L  option can be used to add a new pathname to the library search path.
This option affects the search path at the point it is encountered on the
command-line. For example, the command

searches path1  (then /usr/ccs/lib  and /usr/lib ) to find libfoo , but
searches path1  and then path2  (and then /usr/ccs/lib  and /usr/lib ) to
find libbar .

Pathnames defined using the -L  option are used only by the link-editor. They
are not recorded in the output file image created for use by the runtime linker.

Note – You must specify -L  if you want the link-editor to search for libraries in
your current directory. You can use a period (.) to represent the current
directory.

The -Y  option can be used to change the default directories searched by the
link-editor. The argument supplied with this option takes the form of a colon
separated list of directories. For example, the command

searches for libfoo  only in the directories /opt/COMPILER/lib  and
/home/me/lib . The directories specified using the -Y  option can be
supplemented by using the -L  option.

Using an Environment Variable
You can also use the environment variable LD_LIBRARY_PATH, which takes a
colon-separated list of directories, to add to the link-editor’s library search
path. In its most general form, LD_LIBRARY_PATH takes two directory lists
separated by a semicolon. The first list is searched before the list(s) supplied on
the command-line, and the second list is searched after.

$ cc -o prog main.o -Lpath1 file1.o -lfoo file2.o -Lpath2 -lbar

$ cc -o prog main.o -YP,/opt/COMPILER/lib:/home/me/lib -lfoo
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Here is the combined effect of setting LD_LIBRARY_PATH and calling the
link-editor with several -L  occurrences:

The effective search path will be dir1:dir2:path1:path2...
pathn:dir3:/usr/ccs/lib:/usr/lib .

If no semicolon were specified as part of the LD_LIBRARY_PATH definition the
specified directory list would be interpreted after any -L  options. For example:

Here the effective search path will be path1:path2...
pathn:dir1:dir2:/usr/ccs/lib:/usr/lib .

Note – This environment variable may also be used to augment the search path
of the runtime linker (refer to “Directories Searched by the Runtime Linker” on
page 40). To prevent this environment variable from influencing the link-editor
the -i  option can be used.

Directories Searched by the Runtime Linker

The runtime linker knows of only one standard place to look for libraries,
/usr/lib . All other directories to be searched must be added to the runtime
linker’s search path explicitly.

When a dynamic executable or shared object is linked with additional shared
objects, these shared objects are recorded as dependencies that must be located
again during process execution by the runtime linker. During the link-edit, one
or more pathnames can be recorded in the output file being built for the
runtime linker to use to search for any shared object dependencies. These
recorded pathnames are referred to as a runpath.

$ LD_LIBRARY_PATH=dir1:dir2;dir3
$ export LD_LIBRARY_PATH
$ cc -o prog main.o -Lpath1 ... -Lpath2 ... -Lpathn -lfoo

$ LD_LIBRARY_PATH=dir1:dir2
$ export LD_LIBRARY_PATH
$ cc -o prog main.o -Lpath1 ... -Lpath2 ... -Lpathn -lfoo
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Note – No matter how you modify the runtime linker’s library search path, its
last element is always /usr/lib .

The - R option, which takes a colon-separated list of directories, can be used to
record a runpath in a dynamic executable or shared library. For example:

will record the runpath /home/me/lib:/home/you/lib  in the dynamic
executable prog . The runtime linker will use these paths, and then the default
location /usr/lib , to locate any shared object dependencies, in this case
libfoo.so.1  and libbar.so.1 .

The link-editor accepts multiple -R  options and will concatenate each of these
specifications, separated by a colon. Thus, the above example could also be
expressed as:

Note – A historic alternative to specifying the -R  option is to set the
environment variable LD_RUN_PATH, and make this available to the
link-editor.  The scope and function of LD_RUN_PATH and -R  are identical, but
when both are specified, -R  supersedes LD_RUN_PATH.

Initialization and Termination Sections

The .init and .fini section types provide for runtime initialization and
termination processing. These section types are concatenated from the input
relocatable objects like any other sections. However, the compiler drivers may
also supply .init and .fini sections as part of the additional files they add to the
beginning and end of the user’s input-file list. These files have the effect of
encapsulating the .init and .fini code into individual functions that are
identified by the reserved symbol names _init  and _fini  respectively. When
building a dynamic executable or shared object, the link-editor records these

$ cc -o prog main.o -R/home/me/lib:/home/you/lib -Lpath1 \
- Lpath2 file1.o file2.o -lfoo -lbar

$ cc -o prog main.o -R/home/me/lib -Lpath1 \
-R/home/you/lib  - Lpath2 file1.o file2.o -lfoo -lbar



20 Linker and Libraries—August 1994

2

symbol addresses in the output file’s image so they may be called by the
runtime linker during initialization and termination processing. Refer to the
“Initialization and Termination Routines” on page 50 for more details on the
runtime processing of these sections.

The creation of .init and .fini sections can be carried out directly using an
assembler, or some compilers may offer special primitives to simplify their
declaration. For example, the following code segments result in a call to the
function foo  being placed in an .init section, and a call to the function bar
being placed in a .fini section:

Care should be taken when designing initialization and termination code that
may be included in both a shared object and archive library. If this code is
spread throughout a number of relocatable objects within an archive library,
then the link-edit of an application using this archive may only extract a
portion of the modules, and hence only a portion of the initialization and
termination code. At runtime only this portion of code will be executed.
However, the same application built against the shared object will have all the
accumulated initialization and termination code executed at runtime when the
shared object is mapped in as one of the application’s dependencies.

Symbol Processing
During input file processing, all local symbols from the input relocatable objects
are passed through to the output file image. All other symbol entries are
accumulated internally to the link-editor. Each time a symbol entry is

#pragma init (foo)
#pragma fini (bar)

foo()
{
    /* Perform some initialization processing. */
    ......
}

bar()
{
    /* Perform some termination processing. */
    .......
}



Link-Editor 21

2

processed, the link-editor determines if a symbol with the same name has
already been encountered from a previous input file. If so, a symbol resolution
process is called to determine which of the two entries is to be kept.

On completion of input file processing, providing no fatal error conditions
have been encountered during symbol resolution, the link-editor determines if
any unbound symbol references (undefined symbols) remain that will cause
the link-edit to fail.

The following sections expand upon symbol resolution and undefined symbol
processing.

Symbol Resolution

Symbol resolution runs the entire spectrum, from simple and intuitive to
complex and perplexing. Resolutions may be carried out silently by the
link-editor, be accompanied by warning diagnostics, or result in a fatal error
condition. The resolution of two symbols depends on the symbols’ attributes,
the type of file providing the symbol and the type of file being generated. For
a complete description of symbol attributes refer to section “Symbol Table” on
page 119, however, for the following discussions it is worth identifying three
basic symbol types:

• Undefined symbols. These symbols have been referenced in a file but have
not been assigned a storage address.

• Tentative symbols. These symbols have been created within a file but have
not yet been sized or allocated in storage. They appear as uninitialized C
symbols, or FORTRAN COMMON blocks within the file.

• Defined symbols. These symbols have been created and assigned storage
addresses and space within the file.

In its simplest form, resolution involves the use of a precedence relationship
that has defined symbols dominating tentative symbols, which dominate
undefined symbols.
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The following C code example shows how these symbol types may be
generated (undefined symbols are prefixed with u_ , tentative symbols are
prefixed with t_ , and defined symbols are prefixed with d_):

Simple Resolutions

These symbol resolutions are by far the most common, and result when two
symbols with similar characteristics are detected, and one symbol takes
precedence over the other. This symbol resolution is carried out silently by the
link-editor. For example, for symbols with the same binding, a reference to an
undefined symbol from one file will be bound to, or satisfied by, a defined or
tentative symbol definition from another file. Or, a tentative symbol definition
from one file will be bound to a defined symbol definition from another file.

Symbols that undergo resolution may have either a global or weak binding.
Weak bindings have less precedence than global binding, and thus symbols
with different bindings are resolved according to a slight alteration of the
simple rules outlined above. But first, it is worth introducing how weak
symbols may be produced.

$ cat main.c
extern int      u_bar;
extern int      u_foo();

int             t_bar;
int             d_bar = 1;

d_foo()
{
        return (u_foo(u_bar, t_bar, d_bar));
}
$ cc -o main.o -c main.c
$ nm -x main.o

[Index]   Value      Size      Type  Bind  Other Shndx   Name
...............
[8]     |0x00000000|0x00000000|NOTY |GLOB |0x0  |UNDEF  |u_foo
[9]     |0x00000000|0x00000040|FUNC |GLOB |0x0  |2      |d_foo
[10]    |0x00000004|0x00000004|OBJT |GLOB |0x0  |COMMON |t_bar
[11]    |0x00000000|0x00000000|NOTY |GLOB |0x0  |UNDEF  |u_bar
[12]    |0x00000000|0x00000004|OBJT |GLOB |0x0  |3      |d_bar
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Weak symbols may be defined individually, or as aliases to global symbols
using a pragma  definition:

Notice that the weak alias foo  is assigned the same attributes as the global
symbol _foo . This relationship will be maintained by the link-editor and will
result in the symbols being assigned the same value in the output image.

In symbol resolution, weak defined symbols will be silently overridden by any
global definition of the same name.

Another form of simple symbol resolution occurs between relocatable objects
and shared objects, or between multiple shared objects, and is termed
interposition. In these cases, if a symbol is multiply defined, the relocatable
object, or the first definition between multiple shared objects, will be silently
taken by the link-editor. The relocatable object’s definition, or the first shared
object’s definition, is said to interpose on all other definitions. This interposition
may be used to override the functionality provided by one shared object by a
dynamic executable or another shared object.

The combination of weak symbols and interposition provides a very useful
programming technique. For example, the standard C library provides a
number of services that users are allowed to redefine for themselves. However,
ANSI C defines a set of standard services that must be present on the system

$ cat main.c
#pragma weak    bar
#pragma weak    foo = _foo

int             bar = 1;

_foo()
{
        return (bar);
}
$ cc -o main.o -c main.c
$ nm -x main.o

[Index]   Value      Size      Type  Bind  Other Shndx   Name
...............
[7]     |0x00000000|0x00000004|OBJT |WEAK |0x0  |3      |bar
[8]     |0x00000000|0x00000028|FUNC |WEAK |0x0  |2      |foo
[9]     |0x00000000|0x00000028|FUNC |GLOB |0x0  |2      |_foo
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and cannot be replaced in a strictly conforming program. The function
fread(3S) , for example, is an ANSI C library function, whereas the system
function read(2)  is not. A conforming ANSI C program must be able to
redefine read(2) , and still use fread(3S)  in a predictable way.

The problem here is that read(2)  underlies the fread(3S)  implementation
in the standard C library, and thus it would seem that a program that redefines
read(2)  could confuse the fread(3S)  implementation. To guard against this,
ANSI C states that an implementation cannot use a name that is not reserved
to it, and by using the pragma  directive shown below:

we are able to define just such a reserved name, and from it generate an alias
for the function read(2) . A user may quite freely define their own read()
function without compromising the fread(3S)  implementation, which in turn
is implemented to use the _read()  function. The link-editor will not complain
of a user’s redefinition of read() , either when linking against the shared
object or archive version of the standard C library. In the former case,
interposition will take its course, whereas in the latter case, the fact that the C
library’s definition of read(2)  is weak allows it to be quietly overridden.

By using the -m option, the link-editor will list all interposed symbol references
along with section load address information to the standard output.

# pragma weak read = _read
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Complex Resolutions

Complex resolutions occur when two symbols of the same name are found
with differing attributes. In these cases the link-editor will select the most
appropriate symbol and will generate a warning message indicating the
symbol, the attributes that conflict, and the identity of the file from which the
symbol definition is taken. For example:

Here, two files with a definition of the data item array  have different size
requirements. A similar diagnostic would be produced if the symbols’
alignment requirements differed. In both of these cases the diagnostic may be
suppressed by using the link-editor’s -t  option.

$ cat foo.c
int array[1];

$ cat bar.c
int array[2] = { 1, 2 };

$ cc -dn -r -o temp.o foo.c bar.c
ld: warning: symbol `array’ has differing sizes:
        (file foo.o value=0x4; file bar.o value=0x8);
        bar.o definition taken
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Another form of attribute difference is the symbol’s type. For example:

Here the symbol bar  has been defined as both a data item and a function.

Note – types in this context are the symbol types that can be expressed in ELF.
They are not related to the data types as employed by the programming
language except in the crudest fashion.

In cases like this, the relocatable object definition will be taken when the
resolution occurs between a relocatable object and a shared object, or, the first
definition will be taken when the resolution occurs between two shared
objects. When such resolutions occur between symbols of different bindings
(weak or global), a warning will also be produced.

Inconsistences between symbol types are not suppressed by the -t  option.

Fatal Resolutions

Symbol conflicts that cannot be resolved result in a fatal error condition. In this
case an appropriate error message is provided indicating the symbol name
together with the names of the files that provided the symbols, and no output

$ cat foo.c
bar()
{
        return (0);
}
$ cc -o libfoo.so -G -K pic foo.c
$ cat main.c
int     bar = 1;

main()
{
        return (bar);
}
$ cc -o main main.c -L. -lfoo
ld: warning: symbol `bar’ has differing types:
        (file main.o type=OBJT; file ./libfoo.so type=FUNC);
        main.o definition taken
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file will be generated. Although the fatal condition is sufficient to terminate the
link-edit, all input file processing will first be completed. In this manner all
fatal resolution errors can be identified.

The most common fatal error condition exists when two relocatable objects
both define symbols of the same name, and neither symbol is a weak
definition:

Here foo.c  and bar.c  have conflicting definitions for the symbol bar . Since
the link-editor cannot determine which should dominate, it will normally give
up. However, the link-editor’s -z muldefs  option can be used to suppress
this error condition, and allows the first symbol definition to be taken.

Undefined Symbols

After all input files have been read and all symbol resolution is complete, the
link-editor will search the internal symbol table for any symbol references that
have not been bound to symbol definitions. These symbol references are
referred to as undefined symbols. The effect of these undefined symbols on the
link-edit process can vary according to the type of output file being generated,
and possibly the type of symbol.

$ cat foo.c
int bar = 1;

$ cat bar.c
bar()
{
        return (0);
}

$ cc -dn -r -o temp.o foo.c bar.c
ld: fatal: symbol `bar’ is multiply defined:
        (file foo.o and file bar.o);
ld: fatal: File processing errors.  No output written to int.o
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Generating an Executable

When the link-editor is generating an executable output file, the link-editor’s
default behavior is to terminate the link-edit with an appropriate error
message should any symbols remain undefined. A symbol remains undefined
when a symbol reference in a relocatable object is never matched to a symbol
definition:

In a similar manner, a symbol reference within a shared object that is never
matched to a symbol definition when the shared object is being used to build a
dynamic executable, will also result in an undefined symbol:

$ cat main.c
extern int foo();
main()
{
        return (foo());
}

$ cc -o prog main.c
Undefined                       first referenced
 symbol                             in file
foo                                 main.o
ld: fatal: Symbol referencing errors. No output written to prog

$ cat foo.c
extern int bar;
foo()
{
        return (bar);
}

$ cc -o libfoo.so -G -K pic foo.c
$ cc -o prog main.c -L. -lfoo
Undefined                       first referenced
 symbol                             in file
bar                                 ./libfoo.so
ld: fatal: Symbol referencing errors. No output written to prog
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Sometimes, developers wish to allow undefined symbols in cases like the
previous example. In these cases the default fatal error condition can be
suppressed by using the -z nodefs  option.

Note –  Care should be taken when using the -z nodefs  option. If an
unavailable symbol reference is required during the execution of a process, a
fatal runtime relocation error will occur. Although this error may be detected
during the initial execution and testing of an application, more complex
execution paths may result in this error condition taking much longer to detect,
which may be time consuming and costly.

Symbols can also remain undefined when a symbol reference in a relocatable
object is bound to a symbol definition in an implicitly defined shared object. For
example, continuing with the files main.c  and foo.c  used in the previous
example:

Here prog  is being built with an explicit reference to libbar.so , and because
libbar.so  has a dependency on libfoo.so , an implicit reference to
libfoo.so  from prog  is established. Now, main.c  made a specific reference
to the interface provided by libfoo.so . This means that prog  really has a
dependency on libfoo.so . However, because only explicit shared object
dependencies are recorded in the output file being generated, prog  would fail
to run should a new version of libbar.so  be developed that no longer has a
dependency on libfoo.so . For this reason, bindings of this type are deemed
fatal, and the implicit reference should be made explicit by referencing the
library directly during the link-edit of prog  (the required reference is hinted at
as “(./libfoo.so? )” in the fatal error message shown in this example).

$ cat bar.c
int bar = 1;

$ cc -o libbar.so -R. -G -K pic bar.c -L. -lfoo
$ ldd libbar.so
        libfoo.so =>     ./libfoo.so

$ cc -o prog main.c -L. -lbar
Undefined                       first referenced
 symbol                             in file
foo                                 main.o  (./libfoo.so?)
ld: fatal: Symbol referencing errors. No output written to prog
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Generating a Shared Object

When the link-editor is generating a shared object, it will by default allow
undefined symbols to remain at the end of the link-edit. This allows the shared
object to import symbols from either relocatable objects or other shared objects
when it is used to build a dynamic executable. The -z defs  option can be
used to force a fatal error should any undefined symbols remain.

Weak Symbols

Weak symbol references that are not bound during a link-edit will not result in
a fatal error condition, no matter what output file type is being generated. If a
static executable is being generated, the symbol will be converted to an
absolute symbol and assigned a value of zero. If a dynamic executable or
shared object is being produced, the symbol will be left as an undefined weak
reference. In this case, during process execution, the runtime linker will search
for this symbol, and if it does not find a match, will bind the reference to an
address of zero instead of generating a fatal runtime relocation error.

Within the confines of position-independent code (refer to section “Position-
Independent Code” on page 85 for more information), these undefined weak
referenced symbols may provide a useful mechanism for testing for the
existence of functionality. For example, lets take the following C code
fragment:

If, during the link-editing of an executable containing this code, a definition for
the function foo  was found (say, from binding with a shared object that
defined the symbol), then during execution the function address will test

#pragma weak    foo

extern  void    foo(char *);

void
bar(char * path)
{
        void (* fptr)();

        if ((fptr = foo) != 0)
                (* fptr)(path);
}
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nonzero, which will result in the function being called. However, if the symbol
definition was not found, the executable would still have been built, but
during execution the function address will test zero, and thus will not be
called.

Tentative Symbol Order Within the Output File

Normally, contributions from input files appear in the output file in the order
of their contribution. An exception occurs when processing tentative symbols
and their associated storage. These symbols are not fully defined until their
resolution is complete. If the resolution occurs as a result of encountering a
defined symbol from a relocatable object, then the order of appearance will be
that which would have occurred normally for the definition.

If it is desirable to control the ordering of a group of symbols, then any
tentative definition should be redefined to a zero-initialized data item. For
example, the following tentative definitions have resulted in a reordering of
the data items within the output file compared to the original order described
in the source file foo.c :

$ cat foo.c
char A_array[0x10];
char B_array[0x20];
char C_array[0x30];
$ cc -o prog main.c foo.c
$ nm -vx prog | grep array
[32]    |0x00020754|0x00000010|OBJT |GLOB |0x0  |15  |A_array
[34]    |0x00020764|0x00000030|OBJT |GLOB |0x0  |15  |C_array
[42]    |0x00020794|0x00000020|OBJT |GLOB |0x0  |15  |B_array
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By defining these symbols as initialized data items, the relative ordering of
these symbols within the input file is carried over to the output file:

Defining Additional Symbols

The -u  option provides a mechanism to generate a symbol reference from the
link-edit command line. This option is well suited for extracting objects from
archive libraries. This option may be used to perform a link-edit entirely from
archives, or to provide additional flexibility in selecting the objects to extract
from multiple archives (refer to “Archive Processing” on page 12 for an
overview of archive extraction).

For example, lets take the generation of a dynamic executable from the
relocatable object main.o  which makes reference to the symbols foo  and bar .
A developer wishes to obtain the symbol definition foo  from the relocatable
object foo.o  contained in lib1.a , and the symbol definition bar  from the
relocatable object bar.o  contained in lib2.a . However, the archive lib1.a
also contains a relocatable object defining the symbol bar  (presumably of
differing functionality to that provided in lib2.a ). In order to specify the
required archive extraction the following link-edit can be used:

Here, the -u  option generates a reference to the symbol foo . This reference
will cause extraction of the relocatable object foo.o  from the archive lib1.a .
As the first reference to the symbol bar  occurs in main.o , which is
encountered after lib1.a  has been processed, the relocatable object bar.o
will be obtained from the archive lib2.a .

$ cat foo.c
char A_array[0x10] = { 0 };
char B_array[0x20] = { 0 };
char C_array[0x30] = { 0 };
$ cc -o prog main.c foo.c
$ nm -vx prog | grep array
[32]    |0x000206bc|0x00000010|OBJT |GLOB |0x0  |12  |A_array
[42]    |0x000206cc|0x00000020|OBJT |GLOB |0x0  |12  |B_array
[34]    |0x000206ec|0x00000030|OBJT |GLOB |0x0  |12  |C_array

$ cc -o prog -L. -u foo -l1 main.o -l2
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Note – This simple example assumes that the relocatable object foo.o  from
lib1.a  does not directly, or indirectly, reference the symbol bar . If it did then
the relocatable object bar.o  would also be extracted from lib1.a  during its
processing (refer to “Archive Processing” on page 12 for a discussion of the
link-editor’s multi-pass processing of an archive).

Generating the Output Image
Once all input file processing and symbol resolution is completed with no fatal
errors, the link-editor will start generating the output file image.

The link-editor establishes what additional sections must be generated to
complete the output file image. These include the symbol tables that may
contain local symbol definitions from the input files, together with the global
and weak symbol information that has been collected in its internal symbol
table, with any output relocation and dynamic information required by the
runtime linker. Once all the output section information has been established,
the total output file size is calculated and the output file image is created
accordingly.

When building a dynamic executable or shared object, two symbol tables are
normally generated. The .dynsym, and its associated string table .dynstr, contain
only global, weak and section symbols. These sections are associated with the
.text segment so that they are mapped as part of the process image at runtime,
and made available to the runtime linker to perform any necessary relocations.
The .symtab, and its associated string table .strtab, contain all the symbols
collected from the input file processing. These sections are not mapped as part
of the process image, and can even be stripped from the image using the -s
option, or after the link-edit using strip(1) .

During the generation of the symbol tables a number of reserved symbols are
created. These have special meaning to the linking process and should not be
defined in any user code:

• _etext, the first location after the text segment.

• _edata, the first location after initialized data.

• _end, the first location after all data.

• _DYNAMIC, the address of the dynamic information section (the .dynamic
section).
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• _GLOBAL_OFFSET_TABLE_, the position-independent reference to a link-
editor supplied table of addresses (the .got section). This table is constructed
from position-independent data references occurring in objects that have
been compiled with the -K pic  option (refer to the section “Position-
Independent Code” on page 85 for more information).

• _PROCEDURE_LINKAGE_TABLE_, the position-independent reference to a
link-editor supplied table of addresses (the .plt section). This table is
constructed from position-independent function references occurring in
objects that have been compiled with the -K pic  option (refer to the section
“Position-Independent Code” on page 85 for more information).

If the link-editor is generating an executable, it will look for additional symbols
to define the executable’s entry point. If a symbol was specified using the -e
option it will be used, otherwise the link-editor will look for the reserved
symbol names _start , and then main . If none of these symbols exists, the first
address of the text segment will be used.

Having created the output file, all data sections from the input files are copied
to the new image. Any relocations specified in the input files are applied to the
output image. Any new relocation information that must be generated,
together with all the other link-editor generated information, is also written to
the new image.

Debugging Aids
Provided with the SunOS operating system linkers is a debugging library that
allows developers to trace the link-editing process in more detail. This library
helps users understand, or debug, the link-edit of their own applications or
libraries. This is a visual aid, and although the type of information displayed
using this library is expected to remain constant, the exact format of the
information may change slightly from release to release.

Much of the debugging output may be unfamiliar to those who do not have an
intimate knowledge of ELF, however, some aspects may be of general interest
to many developers.
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Debugging is enabled by using the -D  option, and all output produced is
directed to the standard error. This option must be augmented with one or
more tokens to indicate the type of debugging required. The tokens available
can be displayed by using -Dhelp . For example:

Note –  The above is an example, and shows the options meaningful to the
link-editor. The exact options may differ from release to release.

As most compiler drivers will interpret the -D  option during their
preprocessing phase, the LD_OPTIONS environment variable is a suitable
mechanism for passing this option to the link-editor.

$ ld -Dhelp
debug:
debug:           For debugging the link-editing of an application:
debug:                  LD_OPTIONS=-Doption1,option2 cc -o prog ...
debug:           or,
debug:                  ld -Doption1,option2 -o prog ...
debug:           where placement of -D on the command line is significant
debug:           and options can be switched off by prepending with `!’.
debug:
debug:
debug: args      display input argument processing
debug: detail    provide more information in conjunction with other
debug:           options
debug: entry     display entrance criteria descriptors
debug: files     display input file processing (files and libraries)
debug: help      display this help message
debug: libs      display library search paths; detail flag shows actual
debug:           library lookup (-l) processing
debug: map       display map file processing
debug: reloc     display relocation processing
debug: sections  display input section processing
debug: segments  display available output segments and address/offset
debug:           processing; detail flag shows associated sections
debug: symbols   display symbol table processing;
debug:           detail flag shows resolution and linker table addition
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The following example shows how input files can be traced. This can be
especially useful in determining what libraries have been located, or what
relocatable objects have been extracted from an archive during a link-edit:

Here the member foo.o  is extracted from the archive library libfoo.a  to
satisfy the link-edit of prog . Notice that the archive is searched twice (again) to
verify that the extraction of foo.o  did not warrant the extraction of additional
relocatable objects. More than one “again” display indicates that the archive is
a candidate for ordering using lorder(1)  and tsort(1) .

By adding the symbol’s  token you can also determine what symbol caused
this archive member to be extracted, and which object made the initial symbol
reference:

Here the symbol foo  is referenced by main.o  and is added to the link-editor’s
internal symbol table. This symbol reference causes the extraction of the
relocatable object foo.o  from the archive libfoo.a .

Note –  The above output has been simplified for this document.

$ LD_OPTIONS=-Dfiles cc -o prog main.o -L. -lfoo
............
debug: file=main.o  [ ET_REL ]
debug: file=./libfoo.a  [ archive ]
debug: file=./libfoo.a(foo.o)  [ ET_REL ]
debug: file=./libfoo.a  [ archive ] (again)
............

$ LD_OPTIONS=-Dsymbols cc -o prog main.o -L. -lfoo
............
debug: symbol table processing; input file=main.o  [ ET_REL ]
............
debug: symbol[7]=foo  (global); adding
debug:
debug: symbol table processing; input file=./libfoo.a  [ archive ]
debug: archive[0]=bar
debug: archive[1]=foo  (foo.o) resolves undefined or tentative symbol
debug:
debug: symbol table processing; input file=./libfoo(foo.o)  [ ET_REL ]
.............
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Using the detail  token together with the symbols  token the details of
symbol resolution during input file processing can be observed:

Here, the original undefined symbol foo  from main.o  has been overridden
with the symbol definition from the extracted archive member foo.o . The
detailed symbol information reflects the attributes of each symbol.

From the above example, it should be apparent that using some of the
debugging tokens can produce a wealth of output. In cases where the
developer is only interested in the activity around a subset of the input files,
the -D  option can be placed directly in the link-edit command-line, and
toggled on and off (to obtain the link-edit command-line it may be necessary to
expand the compilation line from any driver being used, refer to “Using a
Compiler Driver” on page 9 for more details). For example:

Here the display of symbol processing will be switched on only during the
processing of the library libbar .

$ LD_OPTIONS=-Dsymbols,detail cc -o prog main.o -L. -lfoo
............
debug: symbol table processing; input file=main.o  [ ET_REL ]
............
debug: symbol[7]=foo  (global); adding
debug:   entered  0x000000 0x000000 NOTY GLOB  UNDEF REF_REL_NEED
debug:
debug: symbol table processing; input file=./libfoo.a  [ archive ]
debug: archive[0]=bar
debug: archive[1]=foo  (foo.o) resolves undefined or tentative symbol
debug:
debug: symbol table processing; input file=./libfoo.a(foo.o)  [ ET_REL ]
debug: symbol[1]=foo.c
.............
debug: symbol[7]=bar  (global); adding
debug:   entered  0x000000 0x000004 OBJT GLOB  3     REF_REL_NEED
debug: symbol[8]=foo  (global); resolving [7][0]
debug:       old  0x000000 0x000000 NOTY GLOB  UNDEF main.o
debug:       new  0x000000 0x000024 FUNC GLOB  2     ./libfoo.a(foo.o)
debug:  resolved  0x000000 0x000024 FUNC GLOB  2     REF_REL_NEED

$ ld .... -o prog main.o -L. -Dsymbols -lbar -D!symbols ....
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Runtime Linker 3

Overview
As part of the initialization and execution of a dynamic executable, a runtime
linker is called to complete the binding of the application to its shared object
dependencies. The running application may also call the services of the
runtime linker to extend its address space by mapping additional shared
objects and binding to symbols within them.

During the link-editing of a dynamic executable, a special .interp section,
together with an associated program header, were created. This section
contains a pathname specifying the program’s interpreter. The default name
supplied by the link-editor is /usr/lib/ld.so.1 . During the process of
executing a dynamic executable (refer to exec(2) ) the kernel maps the file
(refer to mmap(2) ), and using the program header information, locates the
name of the required runtime linker. The kernel then maps this runtime linker
and transfers control to it, passing sufficient information to allow the runtime
linker to continue binding the application and then run it.

The following is a simple breakdown of the runtime linker’s functionality, and
introduces the topics covered in this chapter:

• It analyzes the executable’s dynamic information section (.dynamic) and
determines what shared object dependencies are required.

• It locates and maps in these dependencies, and analyzes their dynamic
information sections to determine if any additional shared object
dependencies are required.
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• Once all shared object dependencies have been located and mapped, the
runtime linker performs any necessary relocations to bind these objects in
preparation for process execution.

• It calls any initialization functions provided by the shared object
dependencies.

• It passes control to the application.

• During the application’s execution, the runtime linker may be called upon
to perform any delayed function binding.

• The application may also call upon the runtime linker’s services to acquire
additional shared libraries via dlopen(3X) , and bind to symbols within
these libraries via dlsym(3X) .

Locating Shared Object Dependencies
Normally, during the link-edit of a dynamic executable, one or more shared
objects were explicitly referenced. These shared objects would have been
recorded as dependencies within the dynamic executable (refer to “Shared
Object Processing” on page 13 for more information). The runtime linker first
locates this dependency information and uses it to locate and map the
associated shared objects. These shared object dependencies will be processed
in the same order that they were referenced during the link-edit of the
executable. Once all the dynamic executable’s dependencies have been
mapped, they too will be inspected, in the order they were mapped, to locate
any additional shared object dependencies. This process will continue until all
dependent shared objects have been located and mapped. This technique
results in a breadth-first ordering of all dependent shared objects.

Directories Searched by the Runtime Linker

The runtime linker knows of only one standard place to look for shared object
dependencies, /usr/lib . Any dependency specified as a simple filename will
be prefixed with this default directory name and the resulting pathname will
be used to locate the actual file.
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The actual shared object dependencies of any dynamic executable or shared
object can be displayed using ldd(1) . For example, the file /usr/bin/cat
has the following dependencies:

Here, the file /usr/bin/cat  has a dependency, or needs, the files
libintl.so.1 , libw.so.1 , libc.so.1  and libdl.so.1 .

The shared object dependencies actually recorded in a file can be inspected by
using the dump(1)  command to display the file’s .dynamic section, and
referencing any entries with a NEEDED tag. For example:

Notice that the dependency libdl.so.1 , displayed in the previous ldd(1)
example, is not recorded in the file /usr/bin/cat . This is because ldd(1)
shows the total dependencies of the specified file, and libdl.so.1  is actually
a dependency of /usr/lib/libc.so.1 .

In the previous dump(1)  example the dependencies are expressed as simple
filenames, in other words there is no ‘/’ in the name. It is this use of a simple
filename that requires the runtime linker to build the required pathname from
a set of rules. Filenames that contain an embedded ‘/’ will be used as-is. The
simple filename recording is the standard, most flexible mechanism of

$ ldd /usr/bin/cat
        libintl.so.1 =>  /usr/lib/libintl.so.1
        libw.so.1 =>     /usr/lib/libw.so.1
        libc.so.1 =>     /usr/lib/libc.so.1
        libdl.so.1 =>    /usr/lib/libdl.so.1

$ dump -Lv /usr/bin/cat

/usr/bin/cat:

  **** DYNAMIC SECTION INFORMATION ****
.dynamic :
[INDEX] Tag      Value
[1]     NEEDED   libintl.so.1
[2]     NEEDED   libw.so.1
[3]     NEEDED   libc.so.1
.........
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recording dependencies, and is provided by using the -l  option of the link-
editor (refer to “Linking with Additional Libraries” on page 14, and “Naming
Conventions” on page 68 for additional information on this topic).

Frequently, shared objects are distributed in a directory other than /usr/lib .
If a dynamic executable or shared object needs to locate dependencies in
another directory, the runtime linker must explicitly be told to search this
directory. The recommended mechanism of indicating additional search paths
to the runtime linker is to record a runpath during the link-edit of the dynamic
executable or shared object (refer to “Directories Searched by the Runtime
Linker” on page 18 for details on recording this information).

Any runpath recording can be displayed using dump(1)  and referring to the
entry with the RPATH tag. For example:

Here, prog  has a dependency on libfoo.so.1  and requires the runtime
linker to search directories /home/me/lib  and /home/you/lib  before it
looks in the default location /usr/lib .

An alternative mechanism of adding to the runtime linker’s search path is to
set the environment variable LD_LIBRARY_PATH. This environment variable
can be set to a colon-separated list of directories, and these directories will be
searched by the runtime linker before any runpath specification or default
directory. This environment variable is well suited for debugging purposes
such as forcing an application to bind to a local shared library. For example:

$ dump -Lv prog

prog:

  **** DYNAMIC SECTION INFORMATION ****
.dynamic :
[INDEX] Tag      Value
[1]     NEEDED   libfoo.so.1
[2]     NEEDED   libc.so.1
[3]     RPATH    /home/me/lib:/home/you/lib
.........

$ LD_LIBRARY_PATH=. prog
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Here the file prog  from our previous example will be bound to libfoo.so.1
found in the present working directory.

Although useful as a temporary mechanism of influencing the runtime linker’s
search path, the use of this environment variable is strongly discouraged in
production software. Any dynamic executables that can reference this
environment variable will have their search paths augmented, which may
result in an overall degradation in performance. Also, as pointed out in “Using
an Environment Variable” on page 17, and “Directories Searched by the
Runtime Linker” on page 18, this environment variable effects the link-editor.

If a shared object dependency cannot be located, ldd(1)  will indicate that the
object cannot be found, and any attempt to execute the application will result
in an appropriate error message from the runtime linker:

Note – Any runtime linker error that results from the failure of an underlying
system call will result in the system error code value being displayed as part of
the associated diagnostic message. This value may be interpreted more fully by
referencing /usr/include/sys/errno.h .

Relocation Processing
Once the runtime linker has located and mapped all the shared object
dependencies required by an application, it must then process each object and
perform any necessary relocations.

During the link-editing of an object, any relocation information supplied with
the input relocatable objects is applied to the output image. However, when
building a dynamic executable or shared object, many of the relocations cannot
be completed at link-edit time because they require logical addresses that are

$ ldd prog
        libfoo.so.1 =>   (not found)
        libc.so.1 =>     /usr/lib/libc.so.1
        libdl.so.1 =>    /usr/lib/libdl.so.1
$ prog
ld.so.1: prog: fatal: libfoo.so.1: can’t open file: errno=2
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only known when the objects are mapped into memory. In these cases the link-
editor generates new relocation records as part of the output file image, and it
is this information that the runtime linker must now process.

For a more detailed description of the many relocation types, refer to
“Relocation Types (Processor Specific)” on page 126. However, for the
purposes of this discussion it is convenient to categorize relocations into one of
two types:

• Non-symbolic relocations.

• Symbolic relocations.

The relocation records for an object can be displayed by using dump(1) . For
example:

Here the file libbar.so.1  contains two relocation records that indicate that
the global offset table (the .got section) must be updated. The first relocation is a
simple relative relocation that can be seen from its relocation type and from the
fact that the symbol index (Symndx) field is zero. This relocation needs to use
the base address at which the object was mapped into memory to update the
associated .got offset. The second relocation requires the address of the symbol
foo , and thus to complete this relocation the runtime linker must locate this
symbol from the dynamic executable or shared objects that have so far been
mapped.

$ dump -rv libbar.so.1

libbar.so.1:

    **** RELOCATION INFORMATION ****

.rela.got:
Offset      Symndx                Type              Addend

0x10438     0                     R_SPARC_RELATIVE  0
0x1043c     foo                   R_SPARC_GLOB_DAT  0
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Symbol Lookup

When the runtime linker needs to look up a symbol, it does so by searching in
each object, starting with the dynamic executable, and progressing through
each shared object in the same order in which the objects were mapped. As
discussed in previous sections, ldd(1)  will list the shared object dependencies
of a dynamic executable in the order in which they are mapped. Therefore, if
the shared object libbar.so.1  requires the address of symbol foo  to
complete its relocation, and this shared object is a dependency of the dynamic
executable prog:

The runtime linker will first look for foo  in the dynamic executable prog , then
in the shared object /home/me/lib/libfoo.so.1 , and finally in the shared
object /home/me/lib/libbar.so.1 .

Note – Symbol lookup can be an expensive operation, especially as the size of
symbol names increase, and the numbers of shared object dependencies
increase. This aspect of performance is discussed in more detail in the section
“Performance Considerations” on page 81.

Interposition

The runtime linker’s mechanism of searching for a symbol first in the dynamic
executable and then in each of the shared object dependencies means that the
first occurrence of the required symbol will satisfy the search. Therefore, if
more than one instance of the same symbol exists, the first instance will
interpose on all others.

$ ldd prog
        libfoo.so.1 =>   /home/me/lib/libfoo.so.1
        libbar.so.1 =>   /home/me/lib/libbar.so.1
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When Relocations are Performed

Having briefly described the relocation process, together with the
simplification of relocations into the two types, non-symbolic and symbolic, it
is also useful to distinguish relocations by when they are performed. This
distinction arises due to the type of reference being made to the relocated offset,
and can be either:

• A data reference.

• A function reference.

A data reference refers to an address that is used as a data item by the
application’s code. The runtime linker has no knowledge of the application’s
code, and thus does not know when this data item will be referenced.
Therefore, all data relocations must be carried out during process initialization,
prior to the application gaining control.

A function reference refers to the address of a function that will be called by the
application’s code. During the compilation and link-editing of any dynamic
module, calls to global functions are relocated to become calls to a procedure
linkage table entry (these entries make up the .plt section). These .plt entries are
constructed so that when they are called, control is passed to the runtime
linker. The runtime linker will look up the required symbol and then rewrite
the .plt entry using the symbol’s address. Thus, any future calls to this .plt
entry will go directly to the function. This mechanism allows relocations of this
type to be deferred until the first instance of a function being called, a process
that is sometimes referred to as lazy binding.

The runtime linker’s default mode of performing lazy binding can be
overridden by setting the environment variable LD_BIND_NOW to any non-null
value. This environment variable setting causes the runtime linker to perform
both data reference and function reference relocations during process
initialization, prior to transferring control to the application. For example:

Here, all relocations within the file prog  and within its shared object
dependencies will be processed before control is transferred to the application.

$ LD_BIND_NOW=yes prog
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Relocation Errors

The most common relocation error occurs when a symbol cannot be found.
This condition will result in an appropriate runtime linker error message and
the termination of the application. For example:

Here the symbol bar , which is referenced in the file libfoo.so.1 , could not
be located.

Note – During the link-edit of a dynamic executable any potential relocation
errors of this sort will normally be flagged as fatal undefined symbols (see
“Generating an Executable” on page 28 for examples). This runtime relocation
error can occur if the link-edit of main  used a different version of the shared
object libbar.so.1 , one that contained a symbol definition for bar . This
runtime relocation error can also occur if the -z nodefs  option was used as
part of the link-edit.

If a relocation error of this type occurs because a symbol used as a data
reference cannot be located, the error condition will occur immediately during
process initialization. However, because of the default mode of lazy binding, if
a symbol used as a function reference cannot be found, the error condition will
occur after the application has gained control. This latter case could take
minutes or months, or may never occur, depending on the execution paths
exercised throughout the code. To guard against errors of this kind, the
relocation requirements of any dynamic executable or shared object may be
validated using ldd(1) .

$ ldd prog
        libfoo.so.1 =>   ./libfoo.so.1
        libc.so.1 =>     /usr/lib/libc.so.1
        libbar.so.1 =>   ./libbar.so.1
        libdl.so.1 =>    /usr/lib/libdl.so.1
$ prog
ld.so.1: prog: fatal: relocation error: symbol not found: bar: \
referenced in ./libfoo.so.1
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When the -d  option is specified with ldd(1) , all shared object dependencies
will be printed and all data reference relocations will be processed. If a data
reference cannot be resolved, a diagnostic message will be produced. From the
previous example this would reveal:

When the -r  option is specified with ldd(1) , all data and function reference
relocations will be processed, and if either cannot be resolved a diagnostic
message will be produced.

Adding Additional Objects
The previous sections have described how the runtime linker initializes a
process from the dynamic executable and its shared object dependencies as
they were defined during the link-editing of each module. The runtime linker
also provides an additional level of flexibility by allowing the user to introduce
new objects during process initialization.

The environment variable LD_PRELOAD can be initialized to a shared object or
relocatable object filename, or a string of filenames separated by white space.
These objects will then be mapped after the dynamic executable and before any
shared object dependencies. For example:

$ ldd -d prog
        libfoo.so.1 =>   ./libfoo.so.1
        libc.so.1 =>     /usr/lib/libc.so.1
        libbar.so.1 =>   ./libbar.so.1
        libdl.so.1 =>    /usr/lib/libdl.so.1
        symbol not found: bar           (./libfoo.so.1)

$ LD_PRELOAD=./newstuff.so.1 prog
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Here the dynamic executable prog  will be mapped, followed by the shared
object newstuff.so.1 , and then by the shared object dependencies defined
within prog . The order in which this object is processed can be displayed
using ldd(1) :

Another example would be:

Here the preloading is a little more complex, and time consuming. The runtime
linker first link-edits the relocatable objects foo.o  and bar.o  and generates a
shared object that is maintained in memory. This memory image is then
inserted between the dynamic executable and the normal shared object
dependencies in exactly the same manner as the shared object
newstuff.so.1  was preloaded in the previous example. Again, the order in
which these objects are processed can be displayed with ldd(1) :

These mechanisms of inserting a shared object after a dynamic executable,
takes the concept of interposition, introduced on page 45, to another level. Using
these mechanisms, it is possible to experiment with a new implementation of a
function that resides in a standard shared object. By preloading just that
function it will interpose on the original. Here the intention is to completely
hide the old functionality with the new preloaded version.

Another use of preloading is to augment the functionality of a function that
resides in a standard shared object. Here the intention is to have the new
symbol interpose on the original, allowing the new function to carry out some
additional processing while still having it call through to the original function.
This mechanism requires either a symbol alias to be associated with the

$ LD_PRELOAD=./newstuff.so ldd prog
        ./newstuff.so => ./newstuff.so
        libc.so.1 =>     /usr/lib/libc.so.1

$ LD_PRELOAD=”./foo.o ./bar.o” prog

$ LD_PRELOAD=”./foo.o ./bar.o” ldd prog
        ./foo.o =>       ./foo.o
        ./bar.o =>       ./bar.o
        libc.so.1 =>     /usr/lib/libc.so.1
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original function (refer to “Simple Resolutions” on page 22), or the ability to
lookup the original symbol’s address (refer to “Using Interposition” on
page 60).

Initialization and Termination Routines
Prior to transferring control to the application, the runtime linker processes
any initialization (.init) and termination (.fini) sections found in any of the
shared object dependencies. These sections, and the symbols that describe
them, were created during the link-editing of the shared objects (refer to
“Initialization and Termination Sections” on page 19).

Any shared object dependency’s initialization routines are called in reverse load
order, in other words, the reverse order of the shared objects displayed via
ldd(1) .

Any shared object dependency’s termination routines are organized such that
they can be recorded by atexit(3C) . This results in the termination routines
being called in load order when the process calls exit(2) .

Although this initialization and termination calling sequence seems quite
straightforward, be careful about placing too much emphasis on this sequence,
as the ordering of shared objects can be effected by both shared library and
application development (refer to section “Dependency Ordering” on page 77
for more details).

Note –  Any .init or .fini sections within the dynamic executable will be called
from the application itself via the process start-up and termination mechanism
supplied by the compiler driver. The combined effect is that the dynamic
executable’s .init section will be called last, after all the shared object
dependency’s .init sections have been executed, and the dynamic executable’s
.fini section will be called first, before the shared object dependency’s .fini
sections are executed.

Runtime Linking Programming Interface
The previous discussions have described how the shared object dependencies
specified during the link-edit of an application are processed by the runtime
linker during process initialization. In addition to this mechanism, the
application is able to extend its address space during its execution by binding
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to additional shared objects. This extensibility is provided by allowing the
application to request the same services of the runtime linker that were used to
process the shared object’s dependencies specified during the link-edit of the
application.

There are several advantages in this delayed binding of shared objects:

• By processing a shared object when it is required rather than during the
initialization of an application, start-up time may be greatly reduced. In fact,
the shared object may not be required if its services are not needed during a
particular run of the application, for example, help or debugging
information.

• The application may choose between a number of different shared objects
depending on the exact services required, for example, a networking
protocol.

• Any shared objects added to the process address space during execution
may be freed after use.

The following is a typical scenario that an application may perform to access
an additional shared object, and introduces the topics covered in the next
sections:

• A shared object is located and added to the address space of a running
application using dlopen(3X) . Any dependencies this shared object may
have are also located and added as this time.

• The shared object(s) added are relocated, and any initialization sections
within the new shared object(s) are called.

• The application locates symbols within the added shared object(s) using
dlsym(3X) . The application can then reference the data or call the functions
defined by these new symbols.

• After the application has finished with the shared object(s) the address
space can be freed using dlclose(3X) . Any termination sections within
the shared object(s) being freed will be called at this time.

• Any error conditions that occur as a result of using these runtime linker
interface routines can be displayed using dlerror(3X) .
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The services of the runtime linker are defined in the header file dlfcn.h  and
are made available to an application via the shared library libdl.so.1 . For
example:

Here the file main.c  can make reference to any of the dlopen(3X)  family of
routines, and the application prog  will be bound to these routines at runtime.

Adding Additional Objects

Additional shared objects can be added to a running process’s address space
using dlopen(3X) . This function takes a filename and a binding mode as
arguments, and returns a handle to the application. This handle can then be
used to locate symbols for use by the application using dlsym(3X) .

If the filename is specified as a simple filename, in other words, there is no ‘/’
in the name, then the runtime linker will use a set of rules to build an
appropriate pathname. Filenames that contain a ‘/’ will be used as-is. These
rules are exactly the same as were used to locate any initial shared library
dependencies (refer to “Directories Searched by the Runtime Linker” on
page 40). For example, lets take the file main.c  that contains the following
code fragment:

$ cc -o prog main.c -ldl

#include        <stdio.h>
#include        <dlfcn.h>

main(int argc, char ** argv)
{
    void *  handle;
    .....

    if ((handle = dlopen(“foo.so.1”, RTLD_LAZY)) == NULL) {
            (void) printf(“dlopen: %s\n”, dlerror());
            exit (1);
    }
    .....
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To locate the shared object foo.so.1 , the runtime linker will use any
LD_LIBRARY_PATH definition presently in effect, followed by any runpath
specified during the link-edit of prog , and finally the default location
/usr/lib . If the filename had been specified as:

then the runtime linker would have searched for the file only in the present
working directory.

Note – It is recommended that any shared object specified using dlopen(3X)
be referenced by its versioned filename (for more information on versioning
refer to “Versioning” on page 73).

If the required shared object cannot be located, dlopen(3X)  will return a
NULL handle. In this case dlerror(3X)  can be used to display the true
reason for the failure. For example:

The errno  value can be referenced in /usr/include/sys/errno.h .

If the shared object being added by dlopen(3X)  has dependencies on other
shared objects, they too will be brought into the process’s address space.

If the shared object specified by dlopen(3X) , or any of its dependencies, are
already part of the process image, then the shared objects will not be processed
any further, however a valid handle will still be returned to the application.
This mechanism prevents the same shared object from being mapped more
than once, and allows an application to obtain a handle to itself. For example,
if our main.c  example contained the following code:

    if ((handle = dlopen(“./foo.so.1”, RTLD_LAZY)) == NULL) {

$ cc -o prog main.c -ldl
$ prog
dlopen: ld.so.1: prog: fatal: foo.so.1: can’t open file: errno=2

    if ((handle = dlopen((const char *)0, RTLD_LAZY)) == NULL) {
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then the handle returned from dlopen(3X)  can be used by the application to
locate symbols within itself, or in any of the shared object dependencies loaded
as part of the process’s initialization.

Relocation Processing

As described in the section “Relocation Processing” on page 43, after locating
and mapping any shared objects, the runtime linker must then process each
object and perform any necessary relocations. Any shared objects brought into
the process’s address space with dlopen(3X)  must also be relocated in the
same manner. For simple applications this process may be quite uninteresting.
However, for users who have more complex applications with many
dlopen(3X)  calls involving numerous shared objects, possibly with common
dependencies, this topic may be quite important.

Relocations can be categorized according to when they occur. The default
behavior of the runtime linker is to process all data reference relocations at
initialization and all function references during process execution, a
mechanism commonly referred to as lazy binding. This same mechanism is
applied to any shared objects added with dlopen(3X)  when the mode is
defined as RTLD_LAZY. The alternative to this is to require all relocations of a
shared object to be performed immediately when the shared object is added,
and this can be achieved by using a mode of RTLD_NOW.

Relocations can also be categorized into non-symbolic and symbolic. The
remainder of this section covers issues regarding symbolic relocations,
regardless of when these relocations may occur, with a focus on some of the
subtleties of symbol lookup.

Symbol Lookup

If a shared object acquired by dlopen(3X)  refers to a global symbol, the
runtime linker will locate this symbol in the same manner as any other symbol
lookup. The runtime linker will first look in the dynamic executable, and then
look in each of the shared objects provided during the initialization of the
process. However, if the symbol has still not been found, the runtime linker
will continue the search and will look in the shared object acquired through the
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dlopen(3X)  and in any of its dependencies. For example, lets take the
dynamic executable prog , and the shared object B.so.1 , each of which have
the following (simplified) dependencies:

If prog  acquires the shared object B.so.1  via dlopen(3X) , then any symbol
required to relocate the shared objects B.so.1  and C.so.1  will first be looked
for in prog , followed by A.so.1 , followed by B.so.1 , and finally in C.so.1 .

In this simple case, in may be easier to think of the shared objects acquired through
the dlopen(3X)  as if they had been added to the end of the original link-edit of
the application. For example, the objects referenced above can be expressed
diagrammatically:

Figure 3-1 A Single dlopen(3X) Request

Any symbol lookup required by the objects acquired from the dlopen(3X) ,
shown as shaded blocks, will proceed from the dynamic executable prog
through to the final shared object C.so.1 .

Note – Objects added to the process address space do not effect the normal
symbol lookup required by either the application or its initial shared object
dependencies. For example, if A.so.1  requires a function relocation after the
above dlopen(3X)  has occurred, the runtime linker’s normal search for the
relocation symbol will be to look in prog  and then A.so.1 , but not to follow
through and look in B.so.1  or C.so.1 .

$ ldd prog
        A.so.1 =>        ./A.so.1
$ ldd B.so.1
        C.so.1 =>        ./C.so.1

 prog A.so.1 B.so.1 C.so.1
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This symbol lookup algorithm is established by assigning lookup scopes to each
object. These scopes maintain associations between objects based on their
introduction into the process address space, and any dependency relationships
between the objects. All objects that were obtained during the process’s
initialization are assigned a global scope. Any object within the global scope
can be used by any other object to provide symbols for relocation. On the other
hand, the shared objects associated with a given dlopen(3X)  are assigned a
unique local scope that insures that only objects associated with the same
dlopen(3X)  are allowed to look up symbols within themselves and their
related dependencies.

This concept of defining associations between objects becomes more clear in
applications that carry out more than one dlopen(3X) . For example, if the
shared object D.so.1  has the following dependency:

and the prog  application was to dlopen(3X)  this shared object in addition to the
shared object B.so.1 , then diagrammatically the symbol lookup relationship
between the objects may be represented as:

Figure 3-2 Multiple dlopen(3X) Requests

If both B.so.1  and D.so.1  contain a definition for the symbol foo , and both
C.so.1  and E.so.1  contain a relocation that requires this symbol, then
because of the association of objects defined by the runtime linker, C.so.1  will

$ ldd D.so.1
        E.so.1 =>         ./E.so.1

prog A.so.1

C.so.1B.so.1

D.so.1 E.so.1
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be bound to the definition in B.so.1 , and E.so.1  will be bound to the
definition in D.so.1 . This mechanism is intended to provide the most intuitive
binding of shared objects obtained via multiple calls to dlopen(3X) .

When shared objects are used in the scenarios that have so far been described,
the order in which each dlopen(3X)  occurs has no effect on the resulting
symbol binding. However, when shared objects have common dependencies
the resultant bindings may be effected by the order in which the dlopen(3X)
calls were made. Take for example the shared objects O.so.1  and P.so.1 ,
which have the same common dependency:

In this example, the prog  application will dlopen(3X)  each of these shared
objects. Because the shared object Z.so.1  is a common dependency of both
O.so.1  and P.so.1  it will be assigned both of the local scopes that are associated
with the two dlopen(3X)  calls. Diagrammatically this can be represent as:

Figure 3-3 Multiple dlopen(3X) Requests With A Common Dependency

The result is that Z.so.1  will be available for both O.so.1  and P.so.1  to
look up symbols, but more importantly, as far as dlopen(3X)  ordering is
concerned, Z.so.1  will also be able to look up symbols in both O.so.1  and
P.so.1 . Therefore, if both O.so.1  and P.so.1  contain a definition for the

$ ldd O.so.1
        Z.so.1 =>        ./Z.so.1
$ ldd P.so.1
        Z.so.1 =>        ./Z.so.1

 prog A.so.1

O.so.1

P.so.1

Z.so.1
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symbol foo  which is required for a Z.so.1  relocation, the actual binding that
occurs is unpredictable because it will be affected by the order of the
dlopen(3X)  calls. Thus, it should be obvious that if the functionality of
symbol foo  differs between the two shared objects in which it is defined, the
overall outcome of executing code within Z.so.1  may vary depending on the
application’s dlopen(3x)  ordering.

There is one final convolution involving the mode of a dlopen(3X) . All
previous examples have revolved around the shared objects obtained via a
dlopen(3X)  each having a unique local scope, or a combination of local
scopes if a shared object is a common dependency. It is also possible to give a
shared object a global scope by augmenting the mode argument with the
RTLD_GLOBAL flag. Under this mode, any shared objects obtained through a
dlopen(3X)  may be used by any other objects to locate symbols.

Obtaining New Symbols

A process may obtain the address of a specific symbol using dlsym(3X) . This
function takes a handle and a symbol name, and returns the address of the
symbol to the caller. The handle directs the search for the symbol in the
following manner:

• The handle returned from a dlopen(3X)  of a named shared object will allow
symbols to be obtained from that shared object, or from any of its
dependencies.

• The handle returned from a dlopen(3X)  of a file whose value is 0 will allow
symbols to be obtained from the dynamic executable, or from any of its
initialization dependencies.

• The special handle RTLD_NEXT will allow symbols to be obtained from the
next associated shared object.
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The first example is probably the most common. Here an application will add
additional shared objects to its address space and use dlsym(3X)  to locate
function or data symbols, and use these symbols to call upon services provided
in these new shared objects. For example, let’s take the file main.c  that
contains the following code:

Here the symbols foo  and bar  will be searched for in the file foo.so.1
followed by any shared object dependencies that may be associated with this
file. The function foo  is then called with the single argument bar  as part of the
return  statement.

If our application prog  had been built using the above file main.c , and its
initial shared object dependencies were:

#include    <stdio.h>
#include    <dlfcn.h>

main()
{
    void *  handle;
    int *   dptr, (* fptr)();

    if ((handle = dlopen(“foo.so.1”, RTLD_LAZY)) == NULL) {
            (void) printf(“dlopen: %s\n”, dlerror());
            exit (1);
    }

    if (((fptr = (int (*)())dlsym(handle, “foo”)) == NULL) ||
        ((dptr = (int *)dlsym(handle, “bar”)) == NULL)) {
            (void) printf(“dlsym: %s\n”, dlerror());
            exit (1);
    }

    return ((*fptr)(*dptr));
}

$ ldd prog
        libdl.so.1 =>    /usr/lib/libdl.so.1
        libc.so.1 =>     /usr/lib/libc.so.1
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then if the filename specified in the dlopen(3X)  had the value 0, the symbols
foo  and bar  would have been searched for in prog , followed by
/usr/lib/libdl.so.1 , and finally /usr/lib/libc.so.1 .

Once the handle has indicated the root at which to start a symbol search, the
search mechanism follows the same model as was described in the previous
section “Symbol Lookup” on page 54”.

If the required symbol cannot be located, dlsym(3X)  will return a NULL
value. In this case dlerror(3X)  can be used to indicate the true reason for the
failure. For example;

Here the application prog  was unable to locate the symbol bar .

Using Interposition

The special handle RTLD_NEXT allows an application to locate the next symbol
in a symbol scope. For example, if our application prog  were to contain the
following code fragment:

then foo  would have been searched for in the shared objects associated with
prog , in this case, /usr/lib/libdl.so.1  and then /usr/lib/libc.so.1 .
If this code fragment were contained in the file B.so.1  from the example
shown in Figure 3-2 on page 56, then foo  would have been searched for in the
associated shared object C.so.1  only.

$ prog
dlsym: ld.so.1: main: fatal: dlsym: can’t find symbol bar

    if ((fptr = (int (*)())dlsym(RTLD_NEXT, “foo”)) == NULL) {
            (void) printf(“dlsym: %s\n”, dlerror());
            exit (1);
    }

    return ((*fptr)());
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Using RTLD_NEXT provides a means to exploit symbol interposition. For
example, a shared object function can be interposed upon by a preceding
shared library, which can then augment the processing of the original function.
If the following code fragment were placed in the shared object malloc.so.1 :

Then by interposing this shared object between the system library
/usr/lib/libc.so.1  where malloc(3C)  normally resides, any calls to this
function will be interposed on before the original function is called to complete
the allocation:

#include    <sys/types.h>
#include    <dlfcn.h>
#include    <stdio.h>

void *
malloc(size_t size)
{
    static void * (* fptr)() = 0;
    char             buffer[50];

    if (fptr == 0) {
        fptr = (void * (*)())dlsym(RTLD_NEXT, “malloc”);
        if (fptr == NULL) {
                (void) printf(“dlopen: %s\n”, dlerror());
                return (0);
        }
    }

    (void) sprintf(buffer, “malloc: %#x bytes\n”, size);
    (void) write(1, buffer, strlen(buffer));
    return ((*fptr)(size));
}

$ cc -o malloc.so.1 -G -K pic malloc.c
$ cc -o prog file1.o file2.o ..... -R. malloc.so.1
$ prog
malloc: 0x32 bytes
malloc: 0x14 bytes
..........
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Alternatively, this same interposition could be achieved via:

Note –  Users of any interposition technique must be careful to handle any
possibility of recursion. The previous example formats the diagnostic message
using sprintf(3S) , instead of using printf(3S)  directly, to avoid any
recursion caused by printf(3S) ’s use of malloc(3C) .

Debugging Aids
Provided with the SunOS operating system linkers is a debugging library that
allows developers to trace the runtime linking process in more detail. This
library helps users understand, or debug, the execution of their own
applications or libraries. This is a visual aid, and although the type of
information displayed using this library is expected to remain constant, the
exact format of the information may change slightly from release to release.

Much of the debugging output may be unfamiliar to those who do not have an
intimate knowledge of the runtime linker, however, some aspects may be of
general interest to many developers.

Debugging is enabled by using the environment variable LD_DEBUG. All
debugging output is prefixed with the process identifier and by default is
directed to the standard error. This environment variable must be augmented
with one or more tokens to indicate the type of debugging required. The
tokens available with this debugging option can be displayed by using

$ cc -o malloc.so.1 -G -K pic malloc.c
$ cc -o prog main.c
$ LD_PRELOAD=./malloc.so.1 prog
malloc: 0x32 bytes
malloc: 0x14 bytes
..........
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LD_DEBUG=help. Any dynamic executable can be used to solicit this
information, as the process itself will terminate following the display of the
information. For example:

Note –  The above is an example, and shows the options meaningful to the
runtime linker. The exact options may differ from release to release.

The environment variable LD_DEBUG_OUTPUT can be used to specify an output
file for use instead of the standard error. The output file name will be suffixed
with the process identifier.

Debugging of secure applications is not allowed.

$ LD_DEBUG=help prog
11693:
11693:           For debugging the run-time linking of an application:
11693:                  LD_DEBUG=option1,option2  prog
11693:           enables diagnostics to the stderr.  The additional
11693:           option:
11693:                  LD_DEBUG_OUTPUT=file
11693:           redirects the diagnostics to an output file created
11593:           using the specified name and the process id as a
11693:           suffix.  All output is prepended with the process id.
11693:
11693:
11693: bindings  display symbol binding; detail flag shows
11693:           absolute:relative addresses
11693: detail    provide more information in conjunction with other
11693:           options
11693: files     display input file processing (files and libraries)
11693: help      display this help message
11693: libs      display library search paths
11693: reloc     display relocation processing
11693: symbols   display symbol table processing;
11693:           detail flag shows resolution and linker table addition

$
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One of the most useful debugging options is to display the symbol bindings
that occur at runtime. For example, lets take a very trivial dynamic executable
that has a dependency on two local shared objects:

We can display the runtime symbol bindings by setting LD_DEBUG=bindings :

Here, the symbol bar , which is required by a data relocation, is bound prior to
the application gaining control. Whereas the symbol foo , which is required by
a function relocation, is bound after the application gains control when the
function is first called. This demonstrates the default mode of lazy binding.
Had the environment variable LD_BIND_NOW been set, all symbol bindings
would have occurred prior to the application gaining control.

$ cat bar.c
int bar = 10;
$ cc -o bar.so.1 -Kpic -G bar.c

$ cat foo.c
foo(int data)
{
        return (data);
}
$ cc -o foo.so.1 -Kpic -G foo.c

$ cat main.c
extern  int     foo();
extern  int     bar;

main()
{
        return (foo(bar));
}
$ cc -o prog main.c -R/tmp:. foo.so.1 bar.so.1

$ LD_DEBUG=bindings prog
11753: .......
11753: binding file=prog to file=./bar.so.1: symbol bar
11753: .......
11753: transferring control: prog
11753: .......
11753: binding file=prog to file=./foo.so.1: symbol foo
11753: .......
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Additional information regarding the real, and relative addresses of the actual
binding locations can be obtained by setting LD_DEBUG=bindings,detail .

When the runtime linker performs a function relocation it rewrites the .plt
entry associated with the function so that any subsequent calls will go directly
to the function. The environment variable LD_BIND_NOT can be set to any
value to prevent this .plt update. Therefore, using this together with the
debugging request for detailed bindings, the user can get a complete runtime
account of all function binding. The output from this combination may be
excessive, and the performance of the application will be degraded.

Another aspect of the runtime environment that can be displayed involves the
various search paths used. For example, the search path mechanism used to
locate any shared library dependencies can be displayed by setting
LD_DEBUG=libs :

Here, the runpath recorded in the application prog  effects the search for the
two dependencies foo.so.1  and bar.so.1 .

$ LD_DEBUG=libs prog
11775:
11775: find library=foo.so.1; searching
11775:  search path=/tmp:.  (RPATH from file prog)
11775:  trying path=/tmp/foo.so.1
11775:  trying path=./foo.so.1
11775:
11775: find library=bar.so.1; searching
11775:  search path=/tmp:.  (RPATH from file prog)
11775:  trying path=/tmp/bar.so.1
11775:  trying path=./bar.so.1
11775: .......
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In a similar manner, the search paths of each symbol lookup can be displayed
by setting LD_DEBUG=symbols. If this is combined with the bindings request,
a complete picture of the symbol relocation process can be obtained:

Note – In the previous example the symbol bar  is not searched for in the
application prog . This is due to an optimization used when processing copy
relocations (refer to section “Relocations” on page 90 for more details of this
relocation type).

$ LD_DEBUG=bindings,symbols
11782: .......
11782: symbol=bar;  lookup in file=./foo.so.1  [ ELF ]
11782: symbol=bar;  lookup in file=./bar.so.1  [ ELF ]
11782: binding file=prog to file=./bar.so.1: symbol bar
11782: .......
11782: transferring control: prog
11782: .......
11782: symbol=foo;  lookup in file=prog  [ ELF ]
11782: symbol=foo;  lookup in file=./foo.so.1  [ ELF ]
11782: binding file=prog to file=./foo.so.1: symbol foo
11782: .......
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Overview
Shared objects are one form of output created by the link-editor, and are
generated by specifying the -G  option. For example:

Here the shared object libfoo.so  is generated from the input file foo.c .

Note – This is a simplified example of generating a shared object. Normally,
additional options are recommended, and these will be discussed in
subsequent sections of this chapter.

A shared object is an indivisible unit generated from one or more relocatable
objects. Shared objects are intended to be bound with dynamic executables to
form a runable process. As their name implies, shared objects may be shared by
more than one application, and it is because of this potentially far-reaching
effect that this chapter describes this form of link-editor output in greater
depth than has been covered in previous chapters.

For a shared object to be bound to a dynamic executable or another shared
object, it must first be made available to the link-edit of the required output
file. During this link-edit, any input shared objects are interpreted as if they
had been added to the logical address space of the output file being produced.

$ cc -o libfoo.so -G -K pic foo.c



68 Linker and Libraries—August 1994

4

That is, all the functionality of the shared object is made available to the output
file. These shared objects become dependencies of this output file. However, only
a small amount of bookkeeping information is maintained to describe these
dependencies, as it is the runtime linker that will finally interpret this
information and complete the processing of these shared objects as part of
creating a runable process.

The following sections expand upon the use of shared objects within the
compilation and runtime environments (these environments were introduced in
“Shared Objects” on page 4). Issues that complement and help coordinate the
use of shared objects within these environments are covered, with techniques
that maximize the efficiency of the shared objects.

Naming Conventions
Neither the link-editor, nor the runtime linker interprets any file by virtue of its
filename. All files are inspected to determine their ELF type (refer to section
“ELF Header” on page 100) and from this information the processing
requirements of the file are deduced. However, shared objects normally follow
one of two naming conventions depending on whether they are being used as
part of the compilation environment or the run-time environment.

When used as part of the compilation environment, shared objects are read and
processed by the link-editor. Although these shared objects may be specified by
filenames as part of the command-line passed to the link-editor, it is more
common that the -l  option be used to take advantage of the link-editor’s
library search capabilities (refer to “Shared Object Processing” on page 13). For
a shared object to be applicable to this link-editor processing it should be
designated with the prefix lib  and the suffix .so . For example,
/usr/lib/libc.so  is the shared object representation of the standard C
library made available to the compilation environment.

When used as part of the runtime environment, shared objects are read and
processed by the runtime linker. Here it may be necessary to allow for change
in the exported interface of the shared object over a series of software releases.
This interface change can be anticipated and supported by providing the
shared object as a versioned filename. This versioned filename commonly takes
the form of a .so  suffix followed by a version number. For example,
/usr/lib/libc.so.1  is the shared object representation of version one of
the standard C library made available to the runtime environment.
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If a shared object is never intended for use within a compilation environment
its name may drop the conventional lib  prefix. However, a .so  suffix is still
recommended to indicate the actual file type, and a version number is strongly
recommended to provide for the correct binding of the shared object across a
series of software releases. Examples of shared objects that fall into this
category are those used solely with dlopen(3X) .

Note – The shared object name used in a dlopen(3X)  is normally represented
as a simple filename, in other words there is no ‘/’ in the name. This convention
provides flexibility by allowing the runtime linker to use a set of rules to locate
the actual file (refer to “Adding Additional Objects” on page 48 for more
details).

Later, in the section “Versioning” on page 73, the concept of versioning is
described in more detail and a mechanism for coordinating the naming
conventions between shared objects used in both the compilation and runtime
environments is presented. But first, a mechanism that allows a shared object
to record its own runtime name is introduced.

Recording a Shared Object Name

When the link-editor records a dependency in a dynamic executable or shared
object it is creating, this dependency will by default be the filename of the
associated shared object as it was referenced by the link-editor. For example,
the following dynamic executables, when built against the same shared object
libfoo.so , result in different interpretations of the same dependency:

$ cc -o ../tmp/libfoo.so -G -K pic foo.o
$ cc -o prog main.o -L../tmp -lfoo
$ dump -Lv prog | grep NEEDED
[1]     NEEDED   libfoo.so

$ cc -o prog main.o ../tmp/libfoo.so
$ dump -Lv prog | grep NEEDED
[1]     NEEDED   ../tmp/libfoo.so

$ cc -o prog main.o /usr/tmp/libfoo.so
$ dump -Lv prog | grep NEEDED
[1]     NEEDED   /usr/tmp/libfoo.so
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As these examples show, this mechanism of recording dependencies can result
in inconsistencies due to different compilation techniques. Also, it may be the
case that the location of a shared object as it is referenced during a link-edit is
different than the eventual location of the shared object on an installed system.
To provide a more straightforward means of specifying dependencies, shared
objects may record within themselves the filename by which they should be
referenced at runtime.

During the link-edit of a shared object, its eventual runtime name may be
recorded within the shared object itself by using the -h  option. For example:

Here, the shared object’s runtime name libfoo.so.1 , is recorded within the
file itself. This identification is known as an soname, and its recording can be
displayed using dump(1)  and referring to the entry with the SONAME tag. For
example:

When the link-editor processes a shared object that contains an soname, it is this
name that will be recorded as the dependency within any output file being
generated, rather than the filename of the shared object as it was referenced.
Therefore, if this new version of libfoo.so  was used during the creation of

$ cc -o ../tmp/libfoo.so -G -K pic -h libfoo.so.1 foo.c

$ dump -Lv ../tmp/libfoo.so

../tmp/libfoo.so:

  **** DYNAMIC SECTION INFORMATION ****
.dynamic :
[INDEX] Tag      Value
[1]     SONAME   libfoo.so.1
.........
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the dynamic executable prog  from our previous example, all three methods of
building the executable would have resulted in the same dependency
recording:

In the examples shown above, the -h  option is used to specify a simple
filename, in other words there is no ‘/’ in the name. This convention is also
recommended, because it provides flexibility by allowing the runtime linker to
use a set of rules to locate the actual file (refer to section “Locating Shared
Object Dependencies” on page 40 for more details).

Inclusion of Shared Objects in Archives

The mechanism of recording an soname within a shared object is essential if the
shared object is ever processed via an archive library.

If an archive is built from one or more shared objects and this archive is then
used to generate a dynamic executable or shared object, then any shared
objects within the archive may be extracted to satisfy the requirements of the
link-edit (refer to section “Archive Processing” on page 12 for more details on
the criteria for archive extraction). However, unlike the processing of
relocatable objects which are concatenated to the output file being created, any

$ cc -o prog main.o -L../tmp -lfoo
$ dump -Lv prog | grep NEEDED
[1]     NEEDED   libfoo.so.1

$ cc -o prog main.o ../tmp/libfoo.so
$ dump -Lv prog | grep NEEDED
[1]     NEEDED   libfoo.so.1

$ cc -o prog main.o /usr/tmp/libfoo.so
$ dump -Lv prog | grep NEEDED
[1]     NEEDED   libfoo.so.1
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shared objects extracted from an archive will only be recorded as
dependencies. The name of these dependencies is a concatenation of the
archive name and the object within the archive. For example:

As it is highly unlikely that a file with this concatenated name will exist at
runtime, providing an soname within the shared object is the only means of
generating a meaningful runtime filename.

Note – The run-time linker does not extract objects from archives. Therefore, in
the above example it will be necessary for the required shared object
dependencies to be extracted from the archive and made available to the
runtime environment.

Recorded Name Conflicts

When shared objects are used to build a dynamic executable or another shared
object, the link-editor performs a number of consistency checks to insure that
any dependency names that must be recorded in the output file are unique.

Conflicts in dependency names can occur if two shared objects used as input
files to a link-edit both contain the same soname. For example:

$ cc -o libfoo.so.1 -G -K pic foo.c
$ ar -r libfoo.a libfoo.so.1
$ cc -o main main.o libfoo.a
$ dump -Lv main | grep NEEDED
[1]     NEEDED   libfoo.a(libfoo.so.1)

$ cc -o libfoo.so -G -K pic -h libsame.so.1 foo.c
$ cc -o libbar.so -G -K pic -h libsame.so.1 bar.c
$ cc -o prog main.o -L. -lfoo -lbar
ld: fatal: file ./libbar.so: recording name `libsame.so.1’ \
           matches that provided by file ./libfoo.so
ld: fatal: File processing errors.  No output written to prog



Shared Objects 73

4

A similar error condition will occur if the filename of a shared object that does
not have a recorded soname matches the soname of another shared object used
during the same link-edit. Similarly, should the runtime name of a shared
object being generated match one of its dependencies the link-editor will report
a name conflict. For example:

Versioning
Versioning provides a mechanism by which a shared object’s interface can be
changed across a series of software releases.

If the shared object libfoo.so.1  contains the function foo() , then an
application can be built that refers to this function by defining this shared
object as a dependency. At runtime this dependency will be processed by the
runtime linker and added to the process address space. Thus, the application’s
reference to foo()  will be satisfied by this shared library at runtime. If a later
release of the shared object libfoo.so.1  is provided that no longer contains
the function foo() , then the old application will still bind to this shared object
at runtime, but it will be unable to satisfy its reference to the function foo() .
A modification of this kind has changed the shared object’s interface, and by
supplying this new interface without changing the file’s versioned name, old
applications are likely to misbehave or break entirely.

When a shared object’s interface changes such that it will break old
applications, the new shared object should be delivered with a new versioned
filename. In our previous example, if the new shared object in which the
function foo()  no longer exists was made available as libfoo.so.2 , then
our original application would still bind to its dependency libfoo.so.1  and
execute correctly.

By providing shared objects as versioned filenames with the runtime
environment, applications built over a series of software releases can be
guaranteed that the interface against which they were built is available for
them to bind during their execution.

$ cc -o libbar.so -G -K pic -h libsame.so.1 bar.c -L. -lfoo
ld: fatal: file ./libfoo.so: recording name `libsame.so.1’  \
           matches that supplied with -h option
ld: fatal: File processing errors.  No output written to libfoo.so
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The following section describes how to coordinate the binding of an interface
between the compilation and runtime environments.

Coordination Of Binding Requirements

In the section “Naming Conventions” on page 68 it was stated that during a
link-edit the most common method to input shared objects was to use the -l
option. This option will use the link-editor’s library search mechanism to
locate shared objects that are prefixed with lib  and suffixed with .so . In the
section “Versioning” on page 73, it was also stated that at runtime any shared
object dependencies should exist in their versioned name form. Instead of
maintaining two distinct shared objects that follow these naming conventions,
the most common mechanism of coordinating these objects involves creating
file system links between the two filenames.

To make the runtime shared object libfoo.so.1  available to the compilation
environment it is necessary to provide a symbolic link from the compilation
filename to the runtime filename. For example:

Note – Either a symbolic or hard link may be used. However, as a
documentation and diagnostic aid, symbol links are more useful.

Here, the shared object libfoo.so.1  has been generated for the runtime
environment. Generating a symbolic link libfoo.so , has also enabled this
file’s use in a compilation environment. For example:

Here the link-editor will process the relocatable object main.o  with the
interface described by the shared object libfoo.so.1  which it will find by
following the symbolic link libfoo.so .

$ cc -o libfoo.so.1 -G -K pic foo.c
$ ln -s libfoo.so.1 libfoo.so
$ ls -l libfoo*
lrwxrwxrwx  1 usr grp          11 1991 libfoo.so -> libfoo.so.1
-rwxrwxr-x  1 usr grp        3136 1991 libfoo.so.1

$ cc -o prog main.o -L. -lfoo
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If over a series of software releases new versions of this shared object are
distributed with changed interfaces, the compilation environment can be
constructed to use the interface that is applicable by changing the symbolic
link. For example:

Here several versions of the shared object are available to maintain
compatibility with the runtime requirements of new and existing applications.
However, the compilation environment has been set up to use the latest shared
object version.

Using this symbolic link mechanism is insufficient by itself to coordinate the
correct binding of a shared object from its use in the compilation environment
to its requirement in the runtime environment. As the example presently
stands, the link-editor will record in the dynamic executable prog  the filename
of the shared object it has processed, which in this case will be the compilation
environment filename:

This means that when the application prog  is executed, the runtime linker will
search for the dependency libfoo.so , and consequently this will bind to
whichever file this symbolic link is pointing. Therefore, to provide for the
correct runtime name to be recorded as a dependency, the shared object

$ ls -l libfoo*
lrwxrwxrwx  1 usr grp           11 1993 libfoo.so -> libfoo.so.3
-rwxrwxr-x  1 usr grp         3136 1991 libfoo.so.1
-rwxrwxr-x  1 usr grp         3237 1992 libfoo.so.2
-rwxrwxr-x  1 usr grp         3554 1993 libfoo.so.3

$ dump -Lv prog

prog:

  **** DYNAMIC SECTION INFORMATION ****
.dynamic :
[INDEX] Tag      Value
[1]     NEEDED   libfoo.so
.........
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libfoo.so.1  should be built with an soname definition. This definition can be
provided using the -h  option during the link-edit of the shared object itself.
For example:

This symbolic link and the soname mechanism has established a robust
coordination between the shared object naming conventions of the compilation
and runtime environments, one in which the interface processed during the
link-edit is accurately recorded in the output file generated. This recording
insures that the intended interface will be furnished at runtime.

Shared Objects With Dependencies
Although most of the examples presented so far in this chapter have shown
how shared object dependencies are maintained in dynamic executables, it is
also quite common for shared objects to have their own dependencies (this was
introduced in section “Shared Object Processing” on page 13).

In the section “Directories Searched by the Runtime Linker” on page 40, the
search rules used by the runtime linker to locate shared object dependencies
were covered. If a shared object does not reside in the default directory
/usr/lib , then the runtime linker must explicitly be told where to look. The

$ cc -o libfoo.so.1 -G -K pic -h libfoo.so.1 foo.c
$ ln -s libfoo.so.1 libfoo.so
$ cc -o prog main.o -L. -lfoo
$ dump -Lv prog

prog:

  **** DYNAMIC SECTION INFORMATION ****
.dynamic :
[INDEX] Tag      Value
[1]     NEEDED   libfoo.so.1
.........
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preferred mechanism of indicating any requirement of this kind is to record a
runpath in the object that has the dependencies by using the link-editor’s -R
option. For example:

Here, the shared object libfoo.so  has a dependency on libbar.so , which is
expected to reside in the directory /home/me/lib  at runtime.

It is the responsibility of the shared object to specify any runpath required to
locate its dependencies. Any runpath specified in the dynamic executable will
only be used to locate the dependencies of the dynamic executable, it will not
be used to locate any dependencies of the shared objects.

However, the environment variable LD_LIBRARY_PATH has a more global
scope, and any pathnames specified using this variable will be used by the
runtime linker to search for any shared object dependencies. Although useful
as a temporary mechanism of influencing the runtime linker’s search path, the
use of this environment variable is strongly discouraged in production
software (refer to section “Directories Searched by the Runtime Linker” on
page 40 for a more extensive discussion).

Dependency Ordering
In most of examples in this document, dependencies of dynamic executables
and shared objects have been portrayed as unique and relatively simple (the
breadth-first ordering of dependent shared objects was first described in the
section “Locating Shared Object Dependencies” on page 40). From these
examples, the ordering of shared objects as they are brought into the process
address space may seem very intuitive and predictable. However, when

$ cc -o libbar.so -G -K pic bar.c
$ cc -o libfoo.so -G -K pic foo.c -R/home/me/lib -L. -lbar
$ dump -Lv libfoo.so

libfoo.so:

  **** DYNAMIC SECTION INFORMATION ****
.dynamic :
[INDEX] Tag      Value
[1]     NEEDED   libbar.so
[2]     RPATH    /home/me/lib
.........
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dynamic executables and shared objects have dependencies on the same
common shared objects, the order in which the objects are processed may
become less predictable. For example, assume a shared object developer
generates libfoo.so.1  with the following dependencies:

If a developer of a dynamic executable uses this shared object, together with
defining an explicit dependency on libC.so.1 , then the resulting shared
object order will be:

Therefore, if the developer of the shared object libfoo.so.1  had placed a
requirement on the order of processing of its dependencies, this requirement
will have been compromised by the developer of the dynamic executable
prog .

Developers who place special emphasis on symbol interposition (refer to
section “Symbol Lookup” on page 45), and .init section processing (refer to
section “Initialization and Termination Routines” on page 50), should be aware
of this potential change in shared object processing order.

Shared Objects as Filters
A filter is a special form of shared object that is used to provide just a symbol
table. At execution time, an application using the filter will “see” only the
symbols provided by the filter. However, accesses to those symbols will be
bound to the implementation identified by the filter. Filters are identified
during their link-edit by the -F  flag, which takes an associated filename
indicating the shared object to be used to supply symbols at runtime.

$ ldd libfoo.so.1
        libA.so.1 =>     ./libA.so.1
        libB.so.1 =>     ./libB.so.1
        libC.so.1 =>     ./libC.so.1

$ cc -o prog main.c -R. -L.-lC -lfoo
$ ldd prog
        libC.so.1 =>     ./libC.so.1
        libfoo.so.1 =>   ./libfoo.so.1
        libA.so.1 =>     ./libA.so.1
        libB.so.1 =>     ./libB.so.1
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Lets take, for example, the shared object libbar.so.1 . This shared object may
have been built from many relocatable objects, but one of these objects
originated from the file bar.c , which supplies the symbols foo  and bar :

We can now generate a filter, libfoo.so.1 , for just the symbols foo  and bar ,
and indicate the association to the shared object libbar.so.1 . For example:

Note – Here the environment variable LD_OPTIONS is used to circumvent this
compiler driver from interpreting the -F  option as one of its own.

By using the filter libfoo.so.1  to build a dynamic executable, the link-editor
will use the information from the symbol table of the filter during the symbol
resolution process (see “Symbol Resolution” on page 21 for more details).
However, at runtime the dynamic executable’s dependency on the filter will

$ cat bar.c
int bar = 2;

foo()
{
    return(printf(“foo(): defined in bar.c: bar=%d\n”, bar));
}
$ cc -o libbar.so.1 -G -K pic .... bar.c ....
$ nm -x libbar.so.1 | egrep “foo|bar”
[38]    |0x000104a0|0x00000004|OBJT |GLOB |0    |11     |bar
[40]    |0x00000418|0x00000038|FUNC |GLOB |0    |7      |foo

$ cat foo.c
int bar = 1;

foo()
{
    return (printf(“foo(): defined in foo.c: bar=%d\n”, bar));
}
$ LD_OPTIONS=”-F libbar.so.1” \
    cc -o libfoo.so.1 -G -K pic -h libfoo.so.1 -R. foo.c
$ ln -s libfoo.so.1 libfoo.so
$ dump -Lv libfoo.so.1 | egrep “SONAME|FILTER”
[1]     SONAME   libfoo.so.1
[2]     FILTER   libbar.so.1
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result in the additional loading of the associated shared object libbar.so.1 .
The runtime linker will use this association to resolve any symbols defined by
libfoo.so.1  from libbar.so.1 . For example:

Here the execution of the dynamic executable prog  results in the function
foo()  being obtained from libbar.so.1 , not from libfoo.so.1 .

Note – In this example, the shared object libbar.so.1  is uniquely associated
to the filter libfoo.so.1  and it is not available to satisfy symbol lookup from
any other objects that may be loaded as a consequence of executing prog .

Filters therefore provide a convenient, generic mechanism for defining a subset
interface of an existing shared object. This feature is used in the SunOS
operating system to create the shared objects /usr/lib/libsys.so.1  and
/usr/lib/libdl.so.1 . The former provides a subset of the standard C
library /usr/lib/libc.so.1 , which represents the ABI-conforming
functions and data items that reside in the C library that must be imported by a
conforming application. The latter defines the user interface to the runtime
linker itself.

As the code in a filter is never actually referenced at runtime there is little point
in adding content to any of the functions defined within the filter (our previous
example filter libfoo.so.1 , contains a printf()  call within the function
foo()  to aid this explanation). Any code within a filter may require runtime
relocations, which in turn will result in an unnecessary overhead when
processing the filter at runtime. Functions are best defined as empty routines.

Care should also be taken when generating the data symbols within a filter.
Some of the more complex symbol resolutions carried out by the link-editor
require knowledge of a symbol’s attributes, including the section to which the
symbol belongs (refer to section “Symbol Resolution” on page 21 for more
details). Therefore, it is recommended that the symbols in the filter be

$ cc -o prog main.c -L. -lfoo
$ ldd prog
        libfoo.so.1 =>   ./libfoo.so.1
        libbar.so.1 =>   ./libbar.so.1
        ...........
$ prog
foo(): defined in bar.c: bar=2
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generated so that their attributes match those of the symbols in the associated
shared object, in other words distinguish between initialized and uninitialized
data symbols, and ensure they have the correct size. This insures that the link-
editing process will analyze the filter in a manner compatible with the symbol
definitions that will actually be used at runtime.

Performance Considerations
A shared object may be used by multiple applications within the same system,
therefore the performance of a shared object may have far reaching effects, not
only on the applications that use it, but on the system as a whole.

Although the actual code within a shared object will directly effect the
performance of a running process, the performance issues focused upon here
relate more to the runtime processing of the shared object itself. The following
sections investigate this processing in more detail by looking at aspects such as
text size and purity, together with relocation overhead.

Useful Tools

Before discussing performance it is useful to be aware of some available tools
and their use in analyzing the contents of an ELF file.

Frequently reference is made to the size of either the sections or the segments
that are defined within an ELF file (for a complete description of the ELF
format refer to Chapter 5, “Object Files”). The size of a file can be displayed
using the size(1)  command. For example:

The first example indicates the size of the shared library’s text, data and bss, a
categorization that has traditionally been used throughout previous releases of
the SunOS operating system. However, the ELF format provides a finer

$ size -x libfoo.so.1
59c + 10c + 20 = 0x6c8

$ size -xf libfoo.so.1
..... + 1c(.init) + ac(.text) + c(.fini) + 4(.rodata) + \
..... + 18(.data) + 20(.bss) .....
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granularity for expressing data within a file by organizing the data into
sections. The second example shown above displays the size of each of the file’s
loadable sections.

Sections are allocated to units known as segments, some of which describe how
portions of a file’s image will be mapped into memory. These loadable
segments can be displayed by using the dump(1)  command and examining the
LOAD entries. For example:

Here, there are two segments in the shared object libfoo.so.1 , commonly
referred to as the text and data segments. The text segment is mapped to allow
reading and execution of its contents (r-x), whereas the data segment is
mapped to allow its contents to be modified (rwx). Notice that the memory
size (Memsz) of the data segment differs from the file size (Filesz). This
difference accounts for the .bss section, which is actually part of the data
segment.

$ dump -ov libfoo.so.1

 ***** PROGRAM EXECUTION HEADER *****
Type        Offset      Vaddr       Paddr
Filesz      Memsz       Flags       Align

LOAD        0x94        0x94        0x0
0x59c       0x59c       r-x         0x10000

LOAD        0x630       0x10630     0x0
0x10c       0x12c       rwx         0x10000
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Programmers, however, usually think of a file in terms of the symbols that
define the functions and data elements within their code. These symbols can be
displayed using nm(1) . For example:

The section that contains a symbol can be determined by referencing the
section index (Shndx) field from the symbol table and by using dump(1)  to
display the sections within the file. For example:

Using the output from both the nm(1)  and dump(1) , we can see that the
functions _init , foo  and _fini  are associated with the sections .init, .text and
.fini respectively, and that these sections are part of the text segment. And the
data arrays data  and bss  are associated with the sections .data and .bss
respectively, and that these sections are part of the data segment.

$ nm -x libfoo.so.1

[Index]   Value      Size      Type  Bind  Other Shndx   Name
.........
[39]    |0x00000538|0x00000000|FUNC |GLOB |0x0  |7      |_init
[40]    |0x00000588|0x00000034|FUNC |GLOB |0x0  |8      |foo
[41]    |0x00000600|0x00000000|FUNC |GLOB |0x0  |9      |_fini
[42]    |0x00010688|0x00000010|OBJT |GLOB |0x0  |13     |data
[43]    |0x0001073c|0x00000020|OBJT |GLOB |0x0  |16     |bss
.........

$ dump -hv libfoo.so.1

           **** SECTION HEADER TABLE ****
[No]    Type    Flags   Addr      Offset    Size      Name
.........
[7]     PBIT    -AI     0x538     0x538     0x1c      .init

[8]     PBIT    -AI     0x554     0x554     0xac      .text

[9]     PBIT    -AI     0x600     0x600     0xc       .fini
.........
[13]    PBIT    WA-     0x10688   0x688     0x18      .data

[16]    NOBI    WA-     0x1073c   0x73c     0x20      .bss
.........
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Note – The previous dump(1)  display has been simplified for this example.

Armed with this tool information, a developer should be able to analyze the
location of their code and data within any ELF file they have generated. This
knowledge will be useful when following the discussions in later sections.

The Underlying System

When an application is built using a shared object, the entire contents of the
object are mapped into the virtual address space of that process at run time.
Each process that uses a shared object starts by referencing a single copy of the
shared object in memory.

Relocations within the shared object are processed to bind symbolic references
to their appropriate definitions. This results in the calculation of true virtual
addresses which could not be derived at the time the shared object was
generated by the link-editor. These relocations normally result in updates to
entries within the process’s data segment(s).

The memory management scheme underlying the dynamic linking of shared
object’s share memory among processes at the granularity of a page. Memory
pages can be shared as long as they are not modified at runtime. If a process
writes to a page of a shared object when writing a data item, or relocating a
reference to a shared object, it generates a private copy of that page. This
private copy will have no effect on other users of the shared object, however,
this page will have lost any benefit of sharing between other processes. Text
pages that become modified in this manner are sometimes referred to as
impure.

The segments of a shared library that are mapped into memory fall into two
basic categories; the text segment, which is read-only, and the data segment
which is read-write (refer to the previous section “Useful Tools” on page 81 on
how to obtain this information from an ELF file). An overriding goal when
developing a shared object is to maximize the text segment and minimize the
data segment, thus optimizing the amount of code sharing while reducing the
amount of processing needed to initialize and use a shared object. The
following sections present mechanisms that can help achieve this goal.
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Position-Independent Code

To create programs that require the smallest amount of page modification at
run time, the compiler will generate position-independent code under the
-K pic  option. Whereas the code within a dynamic executable is normally tied
to a fixed address in memory, position-independent code can be loaded
anywhere in the address space of a process. Because the code is not tied to a
specific address, it will execute correctly without page modification at a
different address in each process that uses it.

When you use position-independent code, relocatable references are generated
in the form of an indirection which will use data in the shared object’s data
segment. The result is that the text segment code will remain read-only, and all
relocation updates will be applied to corresponding entries within the data
segment. Refer to “Global Offset Table (Processor-Specific)” on page 155,
“Procedure Linkage Table (SPARC)” on page 156, and “Procedure Linkage
Table (x86)” on page 159 in the “Object Files” chapter for more details on the
use of these two sections.

If a shared object is built from code that is not position-independent, the text
segment will normally require a large number of relocations to be performed at
runtime. Although the runtime linker is equipped to handle this, the system
overhead this creates may cause serious performance degradation. A shared
object that requires relocations against its text segment can be identified by
using dump(1)  and inspecting the output for any TEXTREL entry. For example:

Note – The value of the TEXTREL entry is irrelevant, its presence in a shared
object indicates that text relocations exist.

$ cc -o libfoo.so.1 -G -R. foo.c
$ dump -Lv libfoo.so.1 | grep TEXTREL
[9]     TEXTREL  0
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A recommended practice to prevent the creation of a shared object that
contains text relocations is to use the link-editor’s -z text  flag. This flag
causes the link-editor to generate diagnostics indicating the source of any non
position-independent code used as input, and results in a failure to generate
the intended shared object. For example:

Here, two relocations would be generated against the text segment because of
the non-position-independent code generated from the file foo.o . Where
possible, these diagnostics will indicate any symbolic references that are
required to carry out the relocations. In this case the relocations are against the
symbols foo  and bar .

Besides not using the -K pic  option, the most common cause of creating text
relocations when generating a shared object is by including hand written
assembler code that has not been coded with the appropriate position-
independent prototypes.

Note –  By using the compiler’s ability to generate an intermediate assembler
file, the coding techniques used to enable position-independence can normally
be revealed by experimenting with some simple test case source files.

A second form of the position-independence flag, -K PIC , is also available on
some processors, and provides for a larger number of relocations to be
processed at the cost of some additional code overhead (refer to cc(1)  for
more details).

Maximizing Shareability

As mentioned in the previous section “The Underlying System” on page 84,
only a shared object’s text segment is shared by all processes that use it, its
data segment typically is not. Each process that uses a shared object usually

$ cc -o libfoo.so.1 -z text -G -R. foo.c
Text relocation remains                       referenced
    against symbol                  offset      in file
foo                                 0x0         foo.o
bar                                 0x8         foo.o
ld: fatal: relocations remain against allocatable but non-
writable sections
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generates a private memory copy of its entire data segment, as data items
within the segment are written to. A goal then is to reduce the data segment,
either by moving data elements that will never be written to the text segment,
or by removing the data items completely.

The following sections cover a number of mechanisms that can be used to
reduce the size of the data segment.

Move Read-Only Data to Text

Any data elements that are read-only should be moved into the text segment.
This can be achieved using const  declarations. For example, the following
character string will reside in the .data section, which is part of the writable
data segment:

whereas, the following character string will reside in the .rodata section, which
is the read-only data section contained within the text segment:

Although reducing the data segment by moving read-only elements into the
text segment is an admirable goal, moving data elements that require
relocations may be counter productive. For example, given the array of strings:

it might at first seem that a better definition would be:

char * rdstr = "this is a read-only string";

const char * rdstr = "this is a read-only string";

char * rdstrs[] = { "this is a read-only string",
                    "this is another read-only string" };

const char * const rdstrs[] = { ..... };
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thereby insuring that the strings and the array of pointers to these strings are
placed in a .rodata section. The problem with this definition is that even though
the user perceives the array of addresses as read-only, these addresses must be
relocated at runtime. This definition will therefore result in the creation of text
relocations. This definition would be best represented as:

so that the array strings are maintained in the read-only text segment, but the
array pointers are maintained in the writable data segment where they can be
safely relocated.

Note – Some compilers, when generating position-independent code, may be
able to detect read-only assignments that will result in runtime relocations, and
will arrange for placing such items in writable segments.

Collapse Multiply-Defined Data

Data can be reduced by collapsing multiply-defined data. For example, a
program that has multiple occurrences of printing the same error messages
may be better off by defining one global datum, and have all other instances
reference this. For example:

The main candidates for this sort of data reduction are strings. String usage in
a library can be investigated using strings(1) . For example:

const char * rdstrs[] = { ..... };

const char * Errmsg = "prog: error encountered: %d";

foo()
{
    ......
    (void) fprintf(stderr, Errmsg, error);
    ......

$ strings -10 libfoo.so.1 | sort | uniq -c | sort -rn
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will generate a sorted list of the data strings within the file libfoo.so.1 .
Each entry in the list is prefixed with the number of occurrences of the string.

Use Automatic Variables

Permanent storage for data items can be removed entirely if the associated
functionality can be designed to use automatic (stack) variables. Any removal
of permanent storage will normally result in a corresponding reduction in the
number of runtime relocations required.

Allocate Buffers Dynamically

Large data buffers should normally be allocated dynamically rather than being
defined using permanent storage. Often this will result in an overall saving in
memory, as only those buffers needed by the present invocation of an
application will be allocated. Dynamic allocation also provides greater
flexibility by allowing the buffer’s size to change without effecting
compatibility.

Minimizing Paging Activity

Many of the mechanisms discussed in the previous section “Maximizing
Shareability” on page 86 will help reduce the amount of paging encountered
when using shared objects. Here some additional generic software
performance considerations are covered.

Any process that accesses a new page will cause a page fault. As this is an
expensive operation, and because shared objects may be used by many
processes, any reduction in the number of page faults generated by accessing a
shared object will benefit the process and the system as a whole.

Organizing frequently used routines and their data to an adjacent set of pages
will frequently improve performance because it improves the locality of
reference. When a process calls one of these functions it may already be in
memory because of its proximity to the other frequently used functions.
Similarly, grouping interrelated functions will improve locality of references.
For example, if every call to the function foo()  results in a call to the function
bar() , place these functions on the same page. Tools like cflow(1) ,
tcov(1) , prof(1)  and gprof(1)  are useful in determining code coverage
and profiling.
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It is also advisable to isolate related functionality to its own shared object. The
standard C library has historically been built containing many unrelated
functions, and only rarely, for example, will any single executable use
everything in this library. Because of its widespread use, it is also somewhat
difficult to determine what set of functions are really the most frequently used.
In contrast, when designing a shared object from scratch it is better to maintain
only related functions within the shared object. This will improve locality of
reference and usually has the side effect of reducing the object’s overall size.

Relocations

In the section “Relocation Processing” on page 43 we covered the mechanisms
by which the runtime linker must relocate dynamic executables and shared
objects in order to create a runable process. The sections “Symbol Lookup” on
page 45, and “When Relocations are Performed” on page 46 categorized this
relocation processing into two areas to simplify and help illustrate the
mechanisms involved. These same two categorizations are also ideally suited
for considering the performance impact of relocations.

Symbol Lookup

When the runtime linker needs to look up a symbol, it does so by searching in
each object, starting with the dynamic executable, and progressing through
each shared object in the same order that the objects were mapped. In many
instances the shared object that requires a symbolic relocation will turn out to
be the provider of the symbol definition. If this is the case, and the symbol
used for this relocation is not required as part of the shared object’s interface,
in other words no external objects reference this symbol, then this symbol is a
strong candidate for conversion to a static or automatic variable. By making this
conversion, the link-editor will incur just once the expense of processing any
symbolic relocation against this symbol during the shared object’s creation.

The only global data items that should be visible from a shared library are
those that contribute to its user interface. However, frequently this is a hard
goal to accomplish, as global data are often defined to allow reference from
two or more functions located in different source files. Nevertheless, any
reduction in the number of global symbols exported from a shared object will
result in lower relocation costs and an overall performance improvement.
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When Relocations are Performed

All data reference relocations must be carried out during process initialization
prior to the application gaining control, whereas any function reference
relocations can be deferred until the first instance of a function being called. By
reducing the number of data relocations, the runtime initialization of a process
will be reduced. Initialization relocation costs can also be deferred by
converting data relocations into function relocations, for example, by returning
data items via a functional interface. This conversion normally results in a
perceived performance improvement as the initialization relocation costs are
effectively spread throughout the process’s lifetime. It is also possible that
some of the functional interfaces will never be called by a particular invocation
of a process, thus removing their relocation overhead altogether.

The advantage of using a functional interface can be seen in the next section
“Copy Relocations” on page 91. This section examines a special, and somewhat
expensive, relocation mechanism employed between dynamic executables and
shared objects, and provides an example of how this relocation overhead can
be avoided.

Copy Relocations

Shared objects are normally built with position-independent code. References
to external data items from code of this type employs indirect addressing via a
set of tables (refer to section “Position-Independent Code” on page 85 for more
details). These tables are updated at runtime with the real address of the data
items, which allows access to the data without the code itself being modified.
Dynamic executables however, are generally not created from position-
independent code. Therefore it would seem that any references to external data
they make could only be achieved at runtime by modifying the code that
makes the reference. Modifying any text segment is something to be avoided,
and therefore a relocation technique is employed to solve this reference which
is known as a copy relocation.

When the link-editor is used to build a dynamic executable, and a reference to
a data item is found to reside in one of the dependent shared objects, space is
allocated in the dynamic executable’s .bss equivalent in size to the data item
found in the shared object. This space is also assigned the same symbolic name
as defined in the shared object. Along with this data allocation, the link-editor
generates a special copy relocation record that will instruct the runtime linker
to copy the data from the shared object to this allocated space within the
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dynamic executable. Because the symbol assigned to this space is global, it will
be used to satisfy any references from any shared objects. The effect of this is
that the dynamic executable inherits the data item, and any other objects
within the process that make reference to this item will be bound to this copy.
The original data from which the copy is made effectively becomes unused.

This mechanism is best explained with an example. This example uses an array
of system error messages that is maintained within the standard C library. In
previous SunOS operating system releases, the interface to this information
was provided by two global variables, sys_errlist[] , and sys_nerr . The
first variable provided the array of error message strings, while the second
conveyed the size of the array itself. These variables were commonly used
within an application in the following manner:

Here the application is using the function error  to provide a focal point to
obtain the system error message associated with the number errnumb .

$ cat foo.c
extern int      sys_nerr;
extern char *   sys_errlist[];

char *
error(int errnumb)
{
        if ((errnumb < 0) || (errnumb >= sys_nerr))
                return (0);
        return (sys_errlist[errnumb]);
}
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Examining a dynamic executable built using this code, shows the
implementation of the copy relocation in more detail:

Here the link-editor has allocated space in the dynamic executable’s .bss to
receive the data represented by sys_errlist  and sys_nerr . These data will
be copied from the C library by the runtime linker at process initialization.
Thus, each application that uses these data will get a private copy of the data
in its own data segment.

There are actually two problems with this technique. First, each application
pays a performance penalty for the overhead of copying the data at run time,
and secondly, the size of the data array sys_errlist  has now become part of
the C library’s interface. If the size of this array were to change, presumably as
new error messages are added, any dynamic executables that reference this
array would have to undergo a new link-edit to be able to access any of the
new error messages. Without this new link-edit, the allocated space within the
dynamic executable is insufficient to hold the new data.

$ cc -o prog main.c foo.c
$ nm -x prog | grep sys_
[36]  |0x00020910|0x00000260|OBJT |WEAK |0x0  |16 |sys_errlist
[37]  |0x0002090c|0x00000004|OBJT |WEAK |0x0  |16 |sys_nerr
$ dump -hv prog | grep bss
[16]    NOBI    WA-    0x20908   0x908    0x268   .bss
$ dump -rv prog

    **** RELOCATION INFORMATION ****

.rela.bss:
Offset      Symndx                Type              Addend

0x2090c     sys_nerr              R_SPARC_COPY      0
0x20910     sys_errlist           R_SPARC_COPY      0
..........
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These drawbacks can be eliminated if the data required by a dynamic
executable are provided by a functional interface. The ANSI C function
strerror(3C)  illustrates this point. This function is implemented such that it
will return a pointer to the appropriate error string based on the error number
supplied to it. One implementation of this function might be:

Our error routine in foo.c  can now be simplified to use this functional
interface, which in turn will remove any need to perform the original copy
relocations at process initialization. Additionally, because the data are now
local to the shared object the data are no longer part of its interface, which
allows the shared object the flexibility of changing the data without adversely
effecting any dynamic executables that use it. Eliminating data items from a
shared object’s interface will generally improve performance while making the
shared object’s interface and code easier to maintain.

$ cat strerror.c
static const char * sys_errlist[] = {
        “Error 0”,
        “Not owner”,
        “No such file or directory”,
        ......
};
static const int sys_nerr =
        sizeof (sys_errlist) / sizeof (char *);

char *
strerror(int errnum)
{
        if ((errnum < 0) || (errnum >= sys_nerr))
                return (0);
        return ((char *)sys_errlist[errnum]);
}
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Although copy relocations should be avoided, ldd(1) , when used with either
the -d  or -r  options, can be used to verify any that exist within a dynamic
executable. For example, if the dynamic executable prog  had originally been
built against the shared library libfoo.so.1  such that the following two
copy relocations had been recorded:

and a new version of this shared object has been supplied which contains
different data sizes for these symbols:

then running ldd(1)  against the dynamic executable will reveal:

Here ldd(1)  informs us that the dynamic executable should copy as much
data as the shared library has to offer, but can only accept as much as its
allocated space allows.

$ nm -x prog | grep _size_
[36]   |0x000207d8|0x40|OBJT |GLOB |15  |_size_gets_smaller
[39]   |0x00020818|0x40|OBJT |GLOB |15  |_size_gets_larger
$ dump -rv size | grep _size_
0x207d8     _size_gets_smaller    R_SPARC_COPY      0
0x20818     _size_gets_larger     R_SPARC_COPY      0

$ nm -x libfoo.so.1 | grep _size_
[26]   |0x00010378|0x10|OBJT |GLOB |8   |_size_gets_smaller
[28]   |0x00010388|0x80|OBJT |GLOB |8   |_size_gets_larger

$ ldd -d prog
    libfoo.so.1 =>   ./libfoo.so.1
    ...........
    copy relocation sizes differ: _size_gets_smaller
       (file prog size=40; file ./libfoo.so.1 size=10);
       ./libfoo.so.1 size used; possible insufficient data copied
    copy relocation sizes differ: _size_gets_larger
       (file prog size=40; file ./libfoo.so.1 size=80);
       ./prog size used; possible data truncation
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Object Files 5

Introduction
This chapter describes the executable and linking format (ELF) of the object
files produced by the assembler and link-editor. There are three main types of
object files:

• A relocatable file holds code and data suitable to be linked with other object
files to create an executable or shared object file.

• An executable file holds a program that is ready to execute. The file specifies
how exec(2)  creates a program’s process image.

• A shared object file holds code and data suitable to be linked in two
contexts. First, the link-editor can process it with other relocatable and
shared object files to create other object files. Second, the runtime linker
combines it with an executable file and other shared objects to create a
process image.

The first section, “File Format” on page 98 focuses on the format of object files
and how that pertains to building programs. The second section, “Dynamic
Linking” on page 131 focuses on how the format pertains to loading programs.
For background information, see “Link-Editor” on page 7.

Programs manipulate object files with the functions contained in the ELF
access library, libelf .   Refer to Section 3 of SunOS Reference Manual for a
description of libelf  contents.
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File Format
As indicated, object files participate in both program linking and program
execution. For convenience and efficiency, the object file format provides
parallel views of a file’s contents, reflecting the differing needs of these
activities. Figure 5-1 shows an object file’s organization.

Figure 5-1 Object File Format

An ELF header resides at the beginning and holds a “road map” describing the
file’s organization. Sections represent the smallest indivisible units that may be
processed within an ELF file. Segments are a collection of sections that represent
the smallest individual units that may be mapped to a memory image by
exec(2)  or by the runtime linker. Sections hold the bulk of object file
information for the linking view: instructions, data, symbol table, relocation
information, and so on. Descriptions of sections appear in the first part of this
chapter. The second part of this chapter discusses segments and the program
execution view of the file.

A section header table contains information describing the file’s sections. Every
section has an entry in the table; each entry gives information such as the
section name, the section size, and so forth. Files used during linking must
have a section header table; other object files may or may not have one.
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A program header table, if present, tells the system how to create a process
image. Files used to build a process image (execute a program) must have a
program header table; relocatable files do not need one.

Note – Although the figure shows the program header table immediately after
the ELF header, and the section header table following the sections; actual files
may differ. Moreover, sections and segments have no specified order. Only the
ELF header has a fixed position in the file.

Data Representation

As described here, the object file format supports various processors with 8-bit
bytes and 32-bit architectures. Nevertheless, it is intended to be extensible to
larger (or smaller) architectures. Object files therefore represent some control
data with a machine-independent format, making it possible to identify object
files and interpret their contents in a common way. Remaining data in an object
file use the encoding of the target processor, regardless of the machine on
which the file was created.

All data structures that the object file format defines follow the “natural” size
and alignment guidelines for the relevant class. If necessary, data structures
contain explicit padding to ensure 4-byte alignment for 4-byte objects, to force
structure sizes to a multiple of 4, and so forth. Data also have suitable
alignment from the beginning of the file. Thus, for example, a structure
containing an Elf32_Addr  member will be aligned on a 4-byte boundary
within the file.

Table 5-1 32-Bit Data Types

Name Size Alignment Purpose

Elf32_Addr 4 4 Unsigned program address

Elf32_Half 2 2 Unsigned medium integer

Elf32_Off 4 4 Unsigned file offset

Elf32_Sword 4 4 Signed large integer

Elf32_Word 4 4 Unsigned large integer

unsigned char 1 1 Unsigned small integer
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Note – For portability, ELF uses no bit-fields.

ELF Header
Some object file control structures can grow, because the ELF header contains
their actual sizes. If the object file format changes, a program may encounter
control structures that are larger or smaller than expected. Programs might
therefore ignore “extra” information. The treatment of “missing” information
depends on context and will be specified if and when extensions are defined.

e_ident
The initial bytes mark the file as an object file and provide machine-
independent data with which to decode and interpret the file’s contents.
Complete descriptions appear in “ELF Identification” on page 103 section.

#define EI_NIDENT16
typedef struct {

unsigned char e_ident[EI_NIDENT];
Elf32_Half e_type;
Elf32_Half e_machine;
Elf32_Word e_version;
Elf32_Addr e_entry;
Elf32_Off e_phoff;
Elf32_Off e_shoff;
Elf32_Word e_flags;
Elf32_Half e_ehsize;
Elf32_Half e_phentsize;
Elf32_Half e_phnum;
Elf32_Half e_shentsize;
Elf32_Half e_shnum;
Elf32_Half e_shstrndx;

} Elf32_Ehdr
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e_type
This member identifies the object file type.

Although the core file contents are unspecified, type ET_CORE is reserved to
mark the file. Values from ET_LOPROC through ET_HIPROC (inclusive) are
reserved for processor-specific semantics. Other values are reserved and will
be assigned to new object file types as necessary.

e_machine
This member’s value specifies the required architecture for an individual
file.

Table 5-2 ELF File Identifiers

Name Value Meaning

ET_NONE 0 No file type

ET_REL 1 Relocatable file

ET_EXEC 2 Executable file

ET_DYN 3 Shared object file

ET_CORE 4 Core file

ET_LOPROC 0xff00 Processor-specific

ET_HIPROC 0xffff Processor-specific

Table 5-3 ELF Machines

Name Value Meaning

EM_NONE 0 No machine

EM_M32 1 AT&T WE 32100

EM_SPARC 2 SPARC

EM_386 3 Intel 80386

EM_68K 4 Motorola 68000

EM_88K 5 Motorola 88000

EM_860 7 Intel 80860

EM_MIPS 8 MIPS RS3000
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Other values are reserved and will be assigned to new machines as necessary.
Processor-specific ELF names use the machine name to distinguish them. For
example, the flags mentioned below use the prefix EF_; a flag named WIDGET
for the EM_XYZ machine would be called EF_XYZ_WIDGET.

e_version
This member identifies the object file version.

The value 1 signifies the original file format; extensions will create new
versions with higher numbers. The value of EV_CURRENT changes as necessary
to reflect the current version number.

e_entry
This member gives the virtual address to which the system first transfers
control, thus starting the process. If the file has no associated entry point,
this member holds zero.

e_phoff
This member holds the program header table’s file offset in bytes. If the file
has no program header table, this member holds zero.

e_shoff
This member holds the section header table’s file offset in bytes. If the file
has no section header table, this member holds zero.

e_flags
This member holds processor-specific flags associated with the file. Flag
names take the form EF_machine _flag  and are zero for both SPARC and
x86.

e_ehsize
This member holds the ELF header’s size in bytes.

e_phentsize
This member holds the size in bytes of one entry in the file’s program
header table; all entries are the same size.

Table 5-4 ELF Versions

Name Value Meaning

EV_NONE 0 Invalid version

EV_CURRENT >=1 Current version
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e_phnum
This member holds the number of entries in the program header table. Thus
the product of e_phentsize  and e_phnum gives the table’s size in bytes. If
a file has no program header table, e_phnum holds the value zero.

e_shentsize
This member holds a section header’s size in bytes. A section header is one
entry in the section header table; all entries are the same size.

e_shnum
This member holds the number of entries in the section header table. Thus
the product of e_shentsize  and e_shnum  gives the section header table’s
size in bytes. If a file has no section header table, e_shnum  holds the value
zero.

e_shstrndx
This member holds the section header table index of the entry associated
with the section name string table. If the file has no section name string
table, this member holds the value SHN_UNDEF. See “Section Header” on
page 106 and “String Table” on page 118 for more information.

ELF Identification

As mentioned above, ELF provides an object file framework to support
multiple processors, multiple data encodings, and multiple classes of
machines. To support this object file family, the initial bytes of the file specify
how to interpret the file, independent of the processor on which the inquiry is
made and independent of the file’s remaining contents.

The initial bytes of an ELF header (and an object file) correspond to the
e_ident  member.

Table 5-5 e_ident[ ] Identification Index  (1 of 2)

Name Value Purpose

EI_MAG0 0 File identification

EI_MAG1 1 File identification

EI_MAG2 2 File identification

EI_MAG3 3 File identification

EI_CLASS 4 File class
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These indexes access bytes that hold the following values.

EI_MAG0 to EI_MAG3
A file’s first 4 bytes hold a “magic number,” identifying the file as an ELF
object file.

EI_CLASS
The next byte, e_ident[EI_CLASS] , identifies the file’s class, or capacity.

The file format is designed to be portable among machines of various sizes,
without imposing the sizes of the largest machine on the smallest. Class
ELFCLASS32 supports machines with files and virtual address spaces up to
4 gigabytes; it uses the basic types defined above.

EI_DATA 5 Data encoding

EI_VERSION 6 File version

EI_PAD 7 Start of padding bytes

EI_NIDENT 16 Size of e_ident[]

Table 5-6 Magic Number

Name Value Position

ELFMAG0 0x7f e_ident[EI_MAG0]

ELFMAG1 ’E’ e_ident[EI_MAG1]

ELFMAG2 ’L’ e_ident[EI_MAG2]

ELFMAG3 ’F’ e_ident[EI_MAG3]

Table 5-7 File Class

Name Value Meaning

ELFCLASSNONE 0 Invalid class

ELFCLASS32 1 32-bit objects

ELFCLASS64 2 64-bit objects

Table 5-5 e_ident[ ] Identification Index  (2 of 2)

Name Value Purpose
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Class ELFCLASS64 is reserved for 64-bit architectures. Its appearance here
shows how the object file may change, but the 64-bit format is otherwise
unspecified. Other classes will be defined as necessary, with different basic
types and sizes for object file data.

EI_DATA
Byte e_ident[EI_DATA]  specifies the data encoding of the processor-
specific data in the object file. The following encodings are currently
defined.

More information on these encodings appears below. Other values are reserved
and will be assigned to new encodings as necessary.

EI_VERSION
Byte e_ident[EI_VERSION]  specifies the ELF header version number.
Currently, this value must be EV_CURRENT, as explained in Table 5-4 on
page 102 for e_version .

EI_PAD
This value marks the beginning of the unused bytes in e_ident . These
bytes are reserved and set to zero; programs that read object files should
ignore them. The value of EI_PAD will change in the future if currently
unused bytes are given meanings.

A file’s data encoding specifies how to interpret the basic objects in a file. As
described above, class ELFCLASS32 files use objects that occupy 1, 2, and 4
bytes. Under the defined encodings, objects are represented as shown below.
Byte numbers appear in the upper left corners.

Encoding ELFDATA2LSB specifies 2’s complement values, with the least
significant byte occupying the lowest address.

Table 5-8 Data Encoding

Name Value Meaning

ELFDATANONE 0 Invalid data encoding

ELFDATA2LSB 1 See below

ELFDATA2MSB 2 See below
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Figure 5-2 Data Encoding ELFDATA2LSB

Encoding ELFDATA2MSB specifies 2’s complement values, with the most
significant byte occupying the lowest address.

Figure 5-3 Data Encoding ELFDATA2MSB

Section Header

An object file’s section header table lets you locate all file’s sections. The
section header table is an array of Elf32_Shdr  structures as described below.
A section header table index is a subscript into this array. The ELF header’s
e_shoff  member gives the byte offset from the beginning of the file to the
section header table; e_shnum  tells how many entries the section header table
contains; e_shentsize  gives the size in bytes of each entry.

Some section header table indexes are reserved; an object file does not have
sections for these special indexes.

Table 5-9 Special Section Indexes

Name Value

SHN_UNDEF 0

SHN_LORESERVE 0xff00

SHN_LOPROC 0xff00

0x01       01
0

0x0102       02        01
0 1

0x01020304       04         03        02         01
0 1 2 3

0x01       01
0

0x0102       01        02
0 1

0x01020304       01         02        03         04
0 1 2 3
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SHN_UNDEF
This value marks an undefined, missing, irrelevant, or otherwise
meaningless section reference. For example, a symbol “defined” relative to
section number SHN_UNDEF is an undefined symbol.

Note – Although index 0 is reserved as the undefined value, the section header
table contains an entry for index 0. That is, if the e_shnum  member of the ELF
header says a file has 6 entries in the section header table, they have the
indexes 0 through 5. The contents of the initial entry are specified later in this
section.

SHN_LORESERVE
This value specifies the lower bound of the range of reserved indexes.

SHN_LOPROC through SHN_HIPROC
Values in this inclusive range are reserved for processor-specific semantics.

SHN_ABS
This value specifies absolute values for the corresponding reference. For
example, symbols defined relative to section number SHN_ABS have
absolute values and are not affected by relocation.

SHN_COMMON
Symbols defined relative to this section are common symbols, such as
FORTRAN COMMON or unallocated C external variables. These symbols are
sometimes referred to as tentative.

SHN_HIRESERVE
This value specifies the upper bound of the range of reserved indexes. The
system reserves indexes between SHN_LORESERVE and SHN_HIRESERVE,
inclusive; the values do not reference the section header table. That is, the
section header table does not contain entries for the reserved indexes.

SHN_HIPROC 0xff1f

SHN_ABS 0xfff1

SHN_COMMON 0xfff2

SHN_HIRESERVE 0xffff

Table 5-9 Special Section Indexes

Name Value
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Sections contain all information in an object file except the ELF header, the
program header table, and the section header table. Moreover, object files’
sections satisfy several conditions:

• Every section in an object file has exactly one section header describing it.
Section headers may exist that do not have a section.

• Each section occupies one contiguous (possibly empty) sequence of bytes
within a file.

• Sections in a file may not overlap. No byte in a file resides in more than one
section.

• An object file may have inactive space. The various headers and the sections
might not “cover” every byte in an object file. The contents of the inactive
data are unspecified.

A section header has the following structure:

sh_name
This member specifies the name of the section. Its value is an index into the
section header string table section (see “String Table” on page 118), giving
the location of a null-terminated string.

sh_type
This member categorizes the section’s contents and semantics. Section types
and their descriptions are in Table 5-10 on page 110.

sh_flags
Sections support 1-bit flags that describe miscellaneous attributes. Flag
definitions are in Table 5-10 on page 110.

typedef struct {
Elf32_Word sh_name;
Elf32_Word sh_type;
Elf32_Word sh_flags;
Elf32_Addr sh_addr;
Elf32_Off sh_offset;
Elf32_Word sh_size;
Elf32_Word sh_link;
Elf32_Word sh_info;
Elf32_Word sh_addralign;
Elf32_Word sh_entsize;

} Elf32_Shdr;
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sh_addr
If the section is to appear in the memory image of a process, this member
gives the address at which the section’s first byte should reside. Otherwise,
the member contains 0.

sh_offset
This member gives the byte offset from the beginning of the file to the first
byte in the section. Section type, SHT_NOBITS described below, occupies no
space in the file, and its sh_offset  member locates the conceptual
placement in the file.

sh_size
This member gives the section’s size in bytes. Unless the section type is
SHT_NOBITS, the section occupies sh_size  bytes in the file. A section of
type SHT_NOBITS may have a nonzero size, but it occupies no space in the
file.

sh_link
This member holds a section header table index link, whose interpretation
depends on the section type. Table 5-14 on page 114 describes the values.

sh_info
This member holds extra information, whose interpretation depends on the
section type. Table 5-14 on page 114 below describes the values.

sh_addralign
Some sections have address alignment constraints. For example, if a section
holds a double-word, the system must ensure double-word alignment for
the entire section. That is, the value of sh_addr  must be congruent to 0,
modulo the value of sh_addralign . Currently, only 0 and positive integral
powers of two are allowed. Values 0 and 1 mean the section has no
alignment constraints.

sh_entsize
Some sections hold a table of fixed-size entries, such as a symbol table. For
such a section, this member gives the size in bytes of each entry. The
member contains 0 if the section does not hold a table of fixed-size entries.
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A section header’s sh_type  member specifies the section’s semantics.

SHT_NULL
This value marks the section header as inactive; it does not have an
associated section. Other members of the section header have undefined
values.

SHT_PROGBITS
The section holds information defined by the program, whose format and
meaning are determined solely by the program.

Table 5-10 Section Types, sh_type

Name Value

SHT_NULL 0

SHT_PROGBITS 1

SHT_SYMTAB 2

SHT_STRTAB 3

SHT_RELA 4

SHT_HASH 5

SHT_DYNAMIC 6

SHT_NOTE 7

SHT_NOBITS 8

SHT_REL 9

SHT_SHLIB 10

SHT_DYNSYM 11

SHT_LOPROC 0x70000000

SHT_HIPROC 0x7fffffff

SHT_LOUSER 0x80000000

SHT_HIUSER 0xffffffff
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SHT_SYMTAB and SHT_DYNSYM
These sections hold a symbol table. Typically, SHT_SYMTAB provides
symbols for link editing. As a complete symbol table, it may contain many
symbols unnecessary for dynamic linking. Consequently, an object file may
also contain a SHT_DYNSYM section, which holds a minimal set of dynamic
linking symbols, to save space. See “Symbol Table” on page 119 for details.

SHT_STRTAB
The section holds a string table. An object file may have multiple string
table sections. See “String Table” on page 118 for details.

SHT_RELA
The section holds relocation entries with explicit addends, such as type
Elf32_Rela  for the 32-bit class of object files. An object file may have
multiple relocation sections. See “Relocation” on page 124 for details.

SHT_HASH
The section holds a symbol hash table. All dynamically linkable object files
must contain a symbol hash table. Currently, an object file may have only
one hash table, but this restriction may be relaxed in the future. See “Hash
Table” on page 161 for details.

SHT_DYNAMIC
The section holds information for dynamic linking. Currently, an object file
may have only one dynamic section, but this restriction may be relaxed in
the future. See “Dynamic Section” on page 149 for details.

SHT_NOTE
The section holds information that marks the file in some way. See “Note
Section” on page 138 for details.

SHT_NOBITS
A section of this type occupies no space in the file but otherwise resembles
SHT_PROGBITS. Although this section contains no bytes, the sh_offset
member contains the conceptual file offset.

SHT_REL
The section holds relocation entries without explicit addends, such as type
Elf32_Rel  for the 32-bit class of object files. An object file may have
multiple relocation sections. See “Relocation” on page 124 for details.
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SHT_SHLIB
This section type is reserved but has unspecified semantics. Programs that
contain a section of this type do not conform to the ABI.

SHT_LOPROC through SHT_HIPROC
Values in this inclusive range are reserved for processor-specific semantics.

SHT_LOUSER
This value specifies the lower bound of the range of indexes reserved for
application programs.

SHT_HIUSER
This value specifies the upper bound of the range of indexes reserved for
application programs. Section types between SHT_LOUSER and
SHT_HIUSER may be used by the application, without conflicting with
current or future system-defined section types.

Other section type values are reserved. As mentioned before, the section
header for index 0 (SHN_UNDEF) exists, even though the index marks
undefined section references. This entry holds the following:

Table 5-11 Section Header Table Entry: Index 0

Name Value Note

sh_name 0 No name

sh_type SHT_NULL Inactive

sh_flags 0 No flags

sh_addr 0 No address

sh_offset 0 No file offset

sh_size 0 No size

sh_link SHN_UNDEF No link information

sh_info 0 No auxiliary information

sh_addralign 0 No alignment

sh_entsize 0 No entries
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A section header’s sh_flags  member holds 1-bit flags that describe the
section’s attributes. Defined values are in Table 5-12 on page 113; other values
are reserved.

If a flag bit is set in sh_flags , the attribute is “on” for the section. Otherwise,
the attribute is “off” or does not apply. Undefined attributes are set to zero.

SHF_WRITE
The section contains data that should be writable during process execution.

SHF_ALLOC
The section occupies memory during process execution. Some control
sections do not reside in the memory image of an object file; this attribute is
off for those sections.

SHF_EXECINSTR
The section contains executable machine instructions.

SHF_MASKPROC
All bits included in this mask are reserved for processor-specific semantics.

Two members in the section header, sh_link  and sh_info , hold special
information, depending on section type.

Table 5-12 Section Attribute Flags

Name Value

SHF_WRITE 0x1

SHF_ALLOC 0x2

SHF_EXECINSTR 0x4

SHF_MASKPROC 0xf0000000
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Special Sections

Various sections hold program and control information. Sections in the list
below are used by the system and have the indicated types and attributes.

Table 5-13 sh_link and sh_info Interpretation

sh_type sh_link sh_info

SHT_DYNAMIC The section header index of
the associated string table.

0

SHT_HASH The section header index of
the associated string table.

0

SHT_REL
SHT_RELA

The section header index of
the associated symbol table.

The section header index of the
section to which the relocation
applies.

SHT_SYMTAB
SHT_DYNSYM

The section header index of
the associated string table.

One greater than the symbol
table index of the last local
symbol (binding STB_LOCAL).

other SHN_UNDEF 0

Table 5-14 Special Sections  (1 of 2)

Name Type Attribute

.bss SHT_NOBITS SHF_ALLOC + SHF_WRITE

.comment SHT_PROGBITS None

.data SHT_PROGBITS SHF_ALLOC + SHF_WRITE

.data1 SHT_PROGBITS SHF_ALLOC + SHF_WRITE

.dynamic SHT_DYNAMIC SHF_ALLOC + SHF_WRITE

.dynstr SHT_STRTAB SHF_ALLOC

.dynsym SHT_DYNSYM SHF_ALLOC

.fini SHT_PROGBITS SHF_ALLOC + SHF_EXECINSTR

.got SHT_PROGBITS See “.got” on page 116

.hash SHT_HASH SHF_ALLOC
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.bss
This section holds uninitialized data that contribute to the program’s
memory image. By definition, the system initializes the data with zeros
when the program begins to run. The section occupies no file space, as
indicated by the section type, SHT_NOBITS.

.comment
This section holds version control information.

.data and .data1
These sections hold initialized data that contribute to the program’s
memory image.

.dynamic
This section holds dynamic linking information.

.dynstr
This section holds strings needed for dynamic linking, most commonly the
strings that represent the names associated with symbol table entries.

.init SHT_PROGBITS SHF_ALLOC + SHF_EXECINSTR

.interp SHT_PROGBITS See “.interp” on page 116

.note SHT_NOTE None

.plt SHT_PROGBITS See “.plt” on page 116

.relname SHT_REL See “.relname and .relaname” on page 116

.relaname SHT_RELA See “.relname and .relaname” on page 116

.rodata SHT_PROGBITS SHF_ALLOC

.rodata1 SHT_PROGBITS SHF_ALLOC

.shstrtab SHT_STRTAB None

.strtab SHT_STRTAB See “.strtab” on page 117

.symtab SHT_SYMTAB See “.symtab” on page 117

.text SHT_PROGBITS SHF_ALLOC + SHF_EXECINSTR

Table 5-14 Special Sections  (2 of 2)

Name Type Attribute
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.dynsym
This section holds the dynamic linking symbol table. See “Symbol Table” on
page 119 for details.

.fini
This section holds executable instructions that contribute to the process
termination code. That is, when a program exits normally, the system
arranges to execute the code in this section.

.got
This section holds the global offset table. See “Global Offset Table
(Processor-Specific)” on page 155 for more information.

.hash
This section holds a symbol hash table. See “Hash Table” on page 161 for
more information.

.init
This section holds executable instructions that contribute to the process
initialization code. That is, when a program starts to run, the system
arranges to execute the code in this section before calling the program entry
point.

.interp
This section holds the path name of a program interpreter. See “Program
Interpreter” on page 147 for more information.

.note
This section holds information in the format that “Note Section” on
page 138 describes.

.plt
This section holds the procedure linkage table. See “Procedure Linkage
Table (SPARC)” on page 156 and “Procedure Linkage Table (x86)” on
page 159 for more information.

.rel name and .rela name
These sections hold relocation information, as “Relocation” on page 124
describes. If the file has a loadable segment that includes relocation, the
sections’ attributes will include the SHF_ALLOC bit; otherwise, that bit will
be off. Conventionally, name is supplied by the section to which the
relocations apply. Thus a relocation section for .text  normally would have
the name .rel.text  or .rela.text .
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.rodata and .rodata1
These sections hold read-only data that typically contribute to a non-
writable segment in the process image. See “Program Header” on page 132
for more information.

.shstrtab
This section holds section names.

.strtab
This section holds strings, most commonly the strings that represent the
names associated with symbol table entries. If the file has a loadable
segment that includes the symbol string table, the section’s attributes will
include the SHF_ALLOC bit; otherwise, that bit will be off.

.symtab
This section holds a symbol table, as “Symbol Table” on page 119 describes.
If the file has a loadable segment that includes the symbol table, the
section’s attributes will include the SHF_ALLOC bit; otherwise, that bit will
be off.

.text
This section holds the “text” or executable instructions of a program.

Section names with a dot (. ) prefix are reserved for the system, although
applications may use these sections if their existing meanings are satisfactory.
Applications may use names without the prefix to avoid conflicts with system
sections. The object file format lets one define sections not in the list above. An
object file may have more than one section with the same name.

Section names reserved for a processor architecture are formed by placing an
abbreviation of the architecture name ahead of the section name. The name
should be taken from the architecture names used for e_machine . For
example, .Foo.psect is the psect section defined by the FOO archictcture.
Existing extensions use their historical names.

Preexisting Extensions

.conflict .liblist .lit8 .sdata

.debug .line .reginfo .stab

.gptab .lit4 .sbss .tdesc
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String Table

String table sections hold null-terminated character sequences, commonly
called strings. The object file uses these strings to represent symbol and section
names. One references a string as an index into the string table section. The
first byte, which is index zero, is defined to hold a null character. Likewise, a
string table’s last byte is defined to hold a null character, ensuring null
termination for all strings. A string whose index is zero specifies either no
name or a null name, depending on the context. An empty string table section
is permitted; its section header’s sh_size  member would contain zero.
Nonzero indexes are invalid for an empty string table.

A section header’s sh_name  member holds an index into the section header
string table section, as designated by the e_shstrndx  member of the ELF
header. The following figures show a string table with 25 bytes and the strings
associated with various indexes.

Figure 5-4 String Table

Table below shows the strings of the string table above:

Table 5-15 String Table Indexes

Index String

0 none

1 name.

7 Variable

11 able

16 able

24 null string

0         \0     n     a     m    e      .     \0     V     a     r

20         \0    \0     x     x     \0

10          i      a     b      l     e     \0    a       b      l     e

Index +0 +1 +2 +3 +4 +5 +6 +7 +8 +9
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As the example shows, a string table index may refer to any byte in the section.
A string may appear more than once; references to substrings may exist; and a
single string may be referenced multiple times. Unreferenced strings also are
allowed.

Symbol Table

An object file’s symbol table holds information needed to locate and relocate a
program’s symbolic definitions and references. A symbol table index is a
subscript into this array. Index 0 both designates the first entry in the table and
serves as the undefined symbol index. The contents of the initial entry are
specified later in this section.

A symbol table entry has the following format:

st_name
This member holds an index into the object file’s symbol string table, which
holds the character representations of the symbol names. If the value is
nonzero, it represents a string table index that gives the symbol name.
Otherwise, the symbol table entry has no name.
External C symbols have the same names in C and in object files’ symbol
tables.

Table 5-16 Symbol Table Initial Entry

Name Value

STN_UNDEF 0

typedef struct {
Elf32_Word st_name;
Elf32_Addr st_value;
Elf32_Word st_size;
unsigned char st_info;
unsigned char st_other;
Elf32_Half st_shndx;

} Elf32_Sym;
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st_value
This member gives the value of the associated symbol. Depending on the
context, this may be an absolute value, an address, and so forth. See
“Symbol Values” on page 124.

st_size
Many symbols have associated sizes. For example, a data object’s size is the
number of bytes contained in the object. This member holds 0 if the symbol
has no size or an unknown size.

st_info
This member specifies the symbol’s type and binding attributes. A list of the
values and meanings appears below. The following code shows how to
manipulate the values.

st_other
This member currently holds 0 and has no defined meaning.

st_shndx
Every symbol table entry is “defined” in relation to some section; this
member holds the relevant section header table index. Some section indexes
indicate special meanings. See Table 5-10 on page 110

A symbol’s binding determines the linkage visibility and behavior.

#define ELF32_ST_BIND(i)    ((i)>>4)
#define ELF32_ST_TYPE(i)    ((i)&0xf)
#define ELF32_ST_INFO(b,t)  (((b)<<4+((t)&0xf))

Table 5-17 Symbol Binding, ELF32_ST_BIND

Name Value

STB_LOCAL 0

STB_GLOBAL 1

STB_WEAK 2

STB_LOPROC 13

STB_HIPROC 15
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STB_LOCAL
Local symbols are not visible outside the object file containing their
definition. Local symbols of the same name may exist in multiple files
without interfering with each other.

STB_GLOBAL
Global symbols are visible to all object files being combined. One file’s
definition of a global symbol will satisfy another file’s undefined reference
to the same global symbol.

STB_WEAK
Weak symbols resemble global symbols, but their definitions have lower
precedence.

STB_LOPROCthrough STB_HIPROC
Values in this inclusive range are reserved for processor-specific semantics.

Global and weak symbols differ in two major ways, as described in
“Generating the Output Image” on page 33.

• When the link-editor combines several relocatable object files, it does not
allow multiple definitions of STB_GLOBAL symbols with the same name. On
the other hand, if a defined global symbol exists, the appearance of a weak
symbol with the same name will not cause an error. The link-editor honors
the global definition and ignores the weak ones. Similarly, if a common
symbol exists (that is, a symbol with the st_index  field holding
SHN_COMMON), the appearance of a weak symbol with the same name does
not cause an error. The link-editor uses the common definition and ignores
the weak one.

• When the link-editor searches archive libraries (see “Archive Processing” on
page 12, it extracts archive members that contain definitions of undefined or
tentative, global symbols. The member’s definition may be either a global or
a weak symbol. The link-editor does not extract archive members to resolve
undefined weak symbols. Unresolved weak symbols have a zero value.

In each symbol table, all symbols with STB_LOCAL binding precede the weak
and global symbols. As “Section Header” on page 106 describes, a symbol table
section’s sh_info  section header member holds the symbol table index for the
first non-local symbol.
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A symbol’s type provides a general classification for the associated entity.

STT_NOTYPE
The symbol type is not specified.

STT_OBJECT
The symbol is associated with a data object, such as a variable, an array, and
so forth.

STT_FUNC
The symbol is associated with a function or other executable code.

STT_SECTION
The symbol is associated with a section. Symbol table entries of this type
exist primarily for relocation and normally have STB_LOCAL binding.

STT_FILE
Conventionally, the symbol’s name gives the name of the source file
associated with the object file. A file symbol has STB_LOCAL binding, its
section index is SHN_ABS, and it precedes the other STB_LOCAL symbols for
the file, if it is present.

STT_LOPROCthrough STT_HIPROC
Values in this inclusive range are reserved for processor-specific semantics.

Function symbols (those with type STT_FUNC) in shared object files have
special significance. When another object file references a function from a
shared object, the link-editor automatically creates a procedure linkage table

Table 5-18 Symbol Types, ELF32_ST_TYPE

Name Value

STT_NOTYPE 0

STT_OBJECT 1

STT_FUNC 2

STT_SECTION 3

STT_FILE 4

STT_LOPROC 13

STT_HIPROC 15
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entry for the referenced symbol. Shared object symbols with types other than
STT_FUNC will not be referenced automatically through the procedure linkage
table.

If a symbol’s value refers to a specific location within a section, its section
index member, st_shndx , holds an index into the section header table. As the
section moves during relocation, the symbol’s value changes as well, and
references to the symbol continue to “point” to the same location in the
program. Some special section index values give other semantics.

SHN_ABS
The symbol has an absolute value that will not change because of relocation.

SHN_COMMON
The symbol labels a common block that has not yet been allocated. The
symbol’s value gives alignment constraints, similar to a section’s
sh_addralign  member. That is, the link-editor will allocate the storage for
the symbol at an address that is a multiple of st_value . The symbol’s size
tells how many bytes are required.

SHN_UNDEF
This section table index means the symbol is undefined. When the link-
editor combines this object file with another that defines the indicated
symbol, this file’s references to the symbol will be linked to the actual
definition.

As mentioned above, the symbol table entry for index 0 (STN_UNDEF) is
reserved; it holds the following:

Table 5-19 Symbol Table Entry: Index 0

Name Value Note

st_name 0 No name

st_value 0 Zero value

st_size 0 No size

st_info 0 No type, local binding

st_other 0

st_shndx SHN_UNDEF No section



124 Linker and Libraries—August 1994

5

Symbol Values

Symbol table entries for different object file types have slightly different
interpretations for the st_value  member.

• In relocatable files, st_value  holds alignment constraints for a symbol
whose section index is SHN_COMMON.

• In relocatable files, st_value  holds a section offset for a defined symbol.
That is, st_value  is an offset from the beginning of the section that
st_shndx  identifies.

• In executable and shared object files, st_value  holds a virtual address. To
make these files’ symbols more useful for the runtime linker, the section
offset (file interpretation) gives way to a virtual address (memory
interpretation) for which the section number is irrelevant.

Although the symbol table values have similar meanings for different object
files, the data allow efficient access by the appropriate programs.

Relocation

Relocation is the process of connecting symbolic references with symbolic
definitions. For example, when a program calls a function, the associated call
instruction must transfer control to the proper destination address at
execution. In other words, relocatable files must have information that
describes how to modify their section contents, thus allowing executable and
shared object files to hold the right information for a process’s program image.
Relocation entries are these data.

typedef struct {
Elf32_Addr r_offset;
Elf32_Word r_info;

} Elf32_Rel;

typedef struct {
Elf32_Addr r_offset;
Elf32_Word r_info;
Elf32_Sword r_addend;

} Elf32_Rela;
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r_offset
This member gives the location at which to apply the relocation action. For
a relocatable file, the value is the byte offset from the beginning of the
section to the storage unit affected by the relocation. For an executable file
or a shared object, the value is the virtual address of the storage unit
affected by the relocation.

r_info
This member gives both the symbol table index with respect to which the
relocation must be made and the type of relocation to apply. For example, a
call instruction’s relocation entry would hold the symbol table index of the
function being called. If the index is STN_UNDEF, the undefined symbol
index, the relocation uses 0 as the symbol value. Relocation types are
processor-specific; descriptions of their behavior appear below. When the
text below refers to a relocation entry’s relocation type or symbol table
index, it means the result of applying ELF32_R_TYPE or ELF32_R_SYM,
respectively, to the entry’s r_info  member.

r_addend
This member specifies a constant addend used to compute the value to be
stored into the relocatable field.

As shown above, only Elf32_Rela  entries contain an explicit addend. Entries
of type Elf32_Rel  store an implicit addend in the location to be modified.
SPARC uses Elf32_Rela  entries and x86 uses Elf32_Rel  entries.

A relocation section references two other sections: a symbol table and a section
to modify. The section header’s sh_info  and sh_link  members, described in
“Section Header” on page 106 earlier, specify these relationships. Relocation
entries for different object files have slightly different interpretations for the
r_offset  member.

• In relocatable files, r_offset  holds a section offset. That is, the relocation
section itself describes how to modify another section in the file; relocation
offsets designate a storage unit within the second section.

#define ELF32_R_SYM(i)((i)>>8)
#define ELF32_R_TYPE(i)((unsigned char)(i))
#define ELF32_R_INFO(s,t)(((s)<<8)+(unsigned char)(t))
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• In executable and shared object files, r_offset  holds a virtual address. To
make these files’ relocation entries more useful for the runtime linker, the
section offset (file interpretation) gives way to a virtual address (memory
interpretation).

Although the interpretation of r_offset  changes for different object files to
allow efficient access by the relevant programs, the relocation types’ meanings
stay the same.

Relocation Types (Processor Specific)

Calculations below assume the actions are transforming a relocatable file into
either an executable or a shared object file. Conceptually, the link-editor merges
one or more relocatable files to form the output. It first decides how to combine
and locate the input files, then updates the symbol values, and finally performs
the relocation. Relocations applied to executable or shared object files are
similar and accomplish the same result. Descriptions below use the following
notation:

A
means the addend used to compute the value of the relocatable field.

B
means the base address at which a shared object is loaded into memory
during execution. Generally, a shared object file is built with a 0 base virtual
address, but the execution address is different. See “Program Header” on
page 132 for more information about the base address.

G
means the offset into the global offset table at which the address of the
relocation entry’s symbol resides during execution. See “Global Offset Table
(Processor-Specific)” on page 155 for more information.

L
means the place (section offset or address) of the procedure linkage table entry
for a symbol. A procedure linkage table entry redirects a function call to the
proper destination. The link-editor builds the initial procedure linkage table,
and the runtime linker modifies the entries during execution. See
“Procedure Linkage Table (SPARC)” on page 156 or “Procedure Linkage
Table (x86)” on page 159 for more information.
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P
means the place (section offset or address) of the storage unit being
relocated (computed using r_offset ).

S
means the value of the symbol whose index resides in the relocation entry.

Relocation entries apply to bytes (byte8), half-words (half16), or words (the
others). In any case, the r_offset  value designates the offset or virtual
address of the first byte of the affected storage unit. The relocation type
specifies which bits to change and how to calculate their values. SPARC
processor uses only Elf32_Rela  relocation entries with explicit addends.
Thus the r_addend  member serves as the relocation addend.

SPARC Relocation Types
Field names in the following table tell whether the relocation type checks for
overflow . A calculated relocation value may be larger than the intended field,
and a relocation type may verify (V) the value fits or truncate (T) the result. As
an example, V-simm13 means that the computed value may not have
significant, nonzero bits outside the simm13 field.

Table 5-20 SPARC Relocation Types  (1 of 2)

Name Value Field Calculation

R_SPARC_NONE 0 None None

R_SPARC_8 1 V-byte8 S + A

R_SPARC_16 2 V-half16 S + A

R_SPARC_32 3 V-word32 S + A

R_SPARC_DISP8 4 V-byte8 S + A - P

R_SPARC_DISP16 5 V-half16 S + A - P

R_SPARC_DISP32 6 V-disp32 S + A - P

R_SPARC_WDISP30 7 V-disp30 (S + A - P) >> 2

R_SPARC_WDISP22 8 V-disp22 (S + A - P) >> 2

R_SPARC_HI22 9 T-imm22 (S + A) >> 10

R_SPARC_22 10 V-imm22 S + A

R_SPARC_13 11 V-simm13 S + A
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Some relocation types have semantics beyond simple calculation:

R_SPARC_GOT10
This relocation type resembles R_SPARC_LO10, except it refers to the
address of the symbol’s global offset table entry and additionally instructs
the link-editor to build a global offset table.

R_SPARC_GOT13
This relocation type resembles R_SPARC_13, except it refers to the address
of the symbol’s global offset table entry and additionally instructs the link-
editor to build a global offset table.

R_SPARC_GOT22
This relocation type resembles R_SPARC_22, except it refers to the address
of the symbol’s global offset table entry and additionally instructs the link-
editor to build a global offset table.

R_SPARC_WPLT30
This relocation type resembles R_SPARC_WDISP30, except it refers to the
address of the symbol’s procedure linkage table entry and additionally
instructs the link-editor to build a procedure linkage table

R_SPARC_LO10 12 T-simm13 (S + A) & 0x3ff

R_SPARC_GOT10 13 T-simm13 G & 0x3ff

R_SPARC_GOT13 14 V-simm13 G

R_SPARC_GOT22 15 T-simm22 G >> 10

R_SPARC_PC10 16 T-simm13 (S + A - P) & 0x3ff

R_SPARC_PC22 17 V-disp22 (S + A - P) >> 10

R_SPARC_WPLT30 18 V-disp30 (L + A - P) >> 2

R_SPARC_COPY 19 None None

R_SPARC_GLOB_DAT 20 V-word32 S + A

R_SPARC_JMP_SLOT 21 None See below

R_SPARC_RELATIVE 22 V-word32 B + A

R_SPARC_UA32 23 V-word32 S + A

Table 5-20 SPARC Relocation Types  (2 of 2)

Name Value Field Calculation
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R_SPARC_COPY
The link-editor creates this relocation type for dynamic linking. Its offset
member refers to a location in a writable segment. The symbol table index
specifies a symbol that should exist both in the current object file and in a
shared object. During execution, the runtime linker copies data associated
with the shared object’s symbol to the location specified by the offset. See
“Copy Relocations” on page 91

R_SPARC_GLOB_DAT
This relocation type resembles R_SPARC_32, except it sets a global offset
table entry to the address of the specified symbol. The special relocation
type allows you to determine the correspondence between symbols and
global offset table entries.

R_SPARC_JMP_SLOT
The link-editor creates this relocation type for dynamic linking. Its offset
member gives the location of a procedure linkage table entry. The runtime
linker modifies the procedure linkage table entry to transfer control to the
designated symbol address.

R_SPARC_RELATIVE
The link-editor creates this relocation type for dynamic linking. Its offset
member gives the location within a shared object that contains a value
representing a relative address. The runtime linker computes the
corresponding virtual address by adding the virtual address at which the
shared object is loaded to the relative address. Relocation entries for this
type must specify 0 for the symbol table index.

R_SPARC_UA32
This relocation type resembles R_SPARC_32, except it refers to an unaligned
word. That is, the word to be relocated must be treated as four separate bytes
with arbitrary alignment, not as a word aligned according to the
architecture requirements.
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x86 Relocation Types
Field names in the following table tell whether the relocation type checks for
overflow . A calculated relocation value may be larger than the intended field,
and a relocation type may verify (V) the value fits or truncate (T) the result. As
an example, V-simm13 means that the computed value may not have
significant, nonzero bits outside the simm13 field.

Some relocation types have semantics beyond simple calculation:

R_386_GOT32
This relocation type computes the distance from the base of the global offset
table to the symbol’s global offset table entry. It also tells the link-editor to
build a global offset table.

R_386_PLT32
This relocation type computes the address of the symbol’s procedure
linkage table entry and tells the link-editor to build a procedure linkage
table.

R_386_COPY

Table 5-21 x86 Relocation Types

Name Value Field Calculation

R_386_NONE 0 none none

R_386_32 1 word32 S + A

R_386_PC32 2 word32 S + A - P

R_386_GOT32 3 word32 G + A  - P

R_386_PLT32 4 word32 L + A - P

R_386_COPY 5 none none

R_386_GLOB_DAT 6 word32 S

R_386_JMP_SLOT 7 word32 S

R_386_RELATIVE 8 word32 B + A

R_386_GOTOFF 9 word32 S + A - GOT

R_386_GOTPC 10 word32 GOT + A - P
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The link-editor creates this relocation type for dynamic linking. Its offset
member refers to a location in a writable segment. The symbol table index
specifies a symbol that should exist both in the current object file and in a
shared object. During execution, the runtime linker copies data associated
with the shared object’s symbol to the location specified by the offset. See
“Copy Relocations” on page 91

R_386_GLOB_DAT
This relocation type is used to set a global offset table entry to the address of
the specified symbol. The special relocation type lets one determine the
correspondence between symbols and global offset table entries.

R_386_JMP_SLOT
The link-editor creates this relocation type for dynamic linking. Its offset
member gives the location of a procedure linkage table entry. The runtime
linker modifies the procedure linkage table entry to transfer control to the
designated symbol address.

R_386_RELATIVE
The link-editor creates this relocation type for dynamic linking. Its offset
member gives the location within a shared object that contains a value
representing a relative address. The runtime linker computes the
corresponding virtual address by adding the virtual address at which the
shared object is loaded to the relative address. Relocation entries for this
type must specify 0 for the symbol table index.

R_386_GOTOFF
This relocation type computes the difference between a symbol’s value and
the address of the global offset table. It also tells the link-editor to build the
global offset table.

R_386_GOTPC
This relocation type resembles R_386_PC32, except it uses the address of
the global offset table in its calculation. The symbol referenced in this
relocation normally is _GLOBAL_OFFSET_TABLE_, which also tells the link-
editor to build the global offset table.

Dynamic Linking
This section describes the object file information and system actions that create
running programs. Some information here applies to all systems; information
specific to one processor resides in sections marked accordingly.
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Executable and shared object files statically represent programs. To execute
such programs, the system uses the files to create dynamic program
representations, or process images. A process image has segments that contain
its text, data, stack, and so on. The major subsections of this section are:

• “Program Header” describes object file structures that are directly involved
in program execution. The primary data structure, a program header table,
locates segment images in the file and contains other information needed to
create the memory image of the program.

• “Program Loading (Processor-Specific)” on page 140 describes the
information used to load a program into memory.

• “Runtime Linker” on page 147 describes the information used to specify and
resolve symbolic references among the object files of the process image.

Program Header

An executable or shared object file’s program header table is an array of
structures, each describing a segment or other information the system needs to
prepare the program for execution. An object file segment contains one or more
sections, as described in “Segment Contents” on page 137.

Program headers are meaningful only for executable and shared object files. A
file specifies its own program header size with the ELF header’s e_phentsize
and e_phnum members. See “ELF Header” on page 100 for more information.

p_type
This member tells what kind of segment this array element describes or how
to interpret the array element’s information. Type values and their meanings
are specified in Table 5-22 on page 134.

typedef struct {
Elf32_Word p_type;
Elf32_Off p_offset;
Elf32_Addr p_vaddr;
Elf32_Addr p_paddr;
Elf32_Word p_filesz;
Elf32_Word p_memsz;
Elf32_Word p_flags;
Elf32_Word p_align;

} Elf32_Phdr;
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p_offset
This member gives the offset from the beginning of the file at which the first
byte of the segment resides.

p_vaddr
This member gives the virtual address at which the first byte of the segment
resides in memory.

p_paddr
On systems for which physical addressing is relevant, this member is
reserved for the segment’s physical address. Because the system ignores
physical addressing for application programs, this member has unspecified
contents for executable files and shared objects.

p_filesz
This member gives the number of bytes in the file image of the segment; it
may be zero.

p_memsz
This member gives the number of bytes in the memory image of the
segment; it may be zero.

p_flags
This member gives flags relevant to the segment. Defined flag values appear
below.

p_align
As “Program Loading” describes later, loadable process segments must have
congruent values for p_vaddr  and p_offset , modulo the page size. This
member gives the value to which the segments are aligned in memory and
in the file. Values 0 and 1 mean no alignment is required. Otherwise,
p_align  should be a positive, integral power of 2, and p_vaddr  should
equal p_offset , modulo p_align .

Some entries describe process segments; others give supplementary
information and do not contribute to the process image. Segment entries may
appear in any order, except as explicitly noted below. Defined type values
follow; other values are reserved for future use.
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PT_NULL
The array element is unused; other members’ values are undefined. This
type lets the program header table contain ignored entries.

PT_LOAD
The array element specifies a loadable segment, described by p_filesz
and p_memsz. The bytes from the file are mapped to the beginning of the
memory segment. If the segment’s memory size (p_memsz) is larger than
the file size (p_filesz ), the “extra” bytes are defined to hold the value 0
and to follow the segment’s initialized area. The file size may not be larger
than the memory size. Loadable segment entries in the program header
table appear in ascending order, sorted on the p_vaddr  member.

PT_DYNAMIC
The array element specifies dynamic linking information. See “Dynamic
Section” on page 149 for more information.

PT_INTERP
The array element specifies the location and size of a null-terminated path
name to invoke as an interpreter. This segment type is meaningful only for
executable files (though it may occur for shared objects); it may not occur
more than once in a file. If it is present, it must precede any loadable
segment entry. See “Program Interpreter” on page 147 for further
information.

Table 5-22 Segment Types, p_type

Name Value

PT_NULL 0

PT_LOAD 1

PT_DYNAMIC 2

PT_INTERP 3

PT_NOTE 4

PT_SHLIB 5

PT_PHDR 6

PT_LOPROC 0x70000000

PT_HIPROC 0x7fffffff



Object Files 135

5

PT_NOTE
The array element specifies the location and size of auxiliary information.
See “Note Section” on page 138 below for details.

PT_SHLIB
This segment type is reserved but has unspecified semantics.

PT_PHDR
The array element, if present, specifies the location and size of the program
header table itself, both in the file and in the memory image of the program.
This segment type may not occur more than once in a file. Moreover, it may
occur only if the program header table is part of the memory image of the
program. If it is present, it must precede any loadable segment entry. See
“Program Interpreter” on page 147 for further information.

PT_LOPROCthrough PT_HIPROC
Values in this inclusive range are reserved for processor-specific semantics.

Note – Unless specifically required elsewhere, all program header segment
types are optional. That is, a file’s program header table may contain only
those elements relevant to its contents.

Base Address

Executable and shared object files have a base address, which is the lowest
virtual address associated with the memory image of the program’s object file.
One use of the base address is to relocate the memory image of the program
during dynamic linking.

An executable or shared object file’s base address is calculated during
execution from three values: the memory load address, the maximum page
size, and the lowest virtual address of a program’s loadable segment. As
“Program Loading (Processor-Specific)” on page 140 describes, the virtual
addresses in the program headers might not represent the actual virtual
addresses of the program’s memory image. To compute the base address, you
determine the memory address associated with the lowest p_vaddr  value for a
PT_LOAD segment. You then obtain the base address by truncating the memory
address to the nearest multiple of the maximum page size. Depending on the
kind of file being loaded into memory, the memory address might or might not
match the p_vaddr  values.
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Segment Permissions

A program to be loaded by the system must have at least one loadable segment
(although this is not required by the file format). When the system creates
loadable segments’ memory images, it gives access permissions as specified in
the p_flags  member. All bits included in the PF_MASKPROC mask are
reserved for processor-specific semantics.

If a permission bit is 0, that type of access is denied. Actual memory
permissions depend on the memory management unit, which may vary from
one system to another. Although all flag combinations are valid, the system
may grant more access than requested. In no case, however, will a segment
have write permission unless it is specified explicitly. The following figure
shows both the exact flag interpretation and the allowable flag interpretation.

Table 5-23 Segment Flag Bits, p_flags

Name Value Meaning

PF_X 0x1 Execute

PF_W 0x2 Write

PF_R 0x4 Read

PF_MASKPROC 0xf0000000 Unspecified

Table 5-24 Segment Permissions

Flags Value Exact Allowable

None 0 All access denied All access denied

PF_X 1 Execute only Read, execute

PF_W 2 Write only Read, write, execute

PF_W + PF_X 3 Write, execute Read, write, execute

PF_R 4 Read only Read, execute

PF_R + PF_X 5 Read, execute Read, execute

PF_R + PF_W 6 Read, write Read, write, execute

PF_R + PF_W + PF_X 7 Read, write, execute Read, write, execute
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For example, typical text segments have read and execute, but not write
permissions. Data segments normally have read, write, and execute
permissions.

Segment Contents

An object file segment comprises one or more sections, though this fact is
transparent to the program header. Whether the file segment holds one or
many sections also is immaterial to program loading. Nonetheless, various
data must be present for program execution, dynamic linking, and so on. The
diagrams below illustrate segment contents in general terms. The order and
membership of sections within a segment may vary; moreover, processor-
specific constraints may alter the examples below.

Text segments contain read-only instructions and data, typically including the
following sections described earlier in this chapter. Other sections may also
reside in loadable segments; these examples are not meant to give complete
and exclusive segment contents.

Figure 5-5 Text Segment

Data segments contain writable data and instructions, typically including the
following sections.

   .hash

.dynsym

 .dynstr

   .text

  .rodata

  .rel.got
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Figure 5-6 Data Segment

A PT_DYNAMIC program header element points at the.dynamic  section, as
explained in “Dynamic Section” on page 149 later. The .got  and .plt  sections
also hold information related to position-independent code and dynamic
linking. Although the .plt  appears in a text segment above, it may reside in a
text or a data segment, depending on the processor. See “Global Offset Table
(Processor-Specific)” on page 155, “Procedure Linkage Table (SPARC)” on
page 156 and “Procedure Linkage Table (x86)” on page 159 for details.

As previously described in “Section Header”, the .bss  section has the type
SHT_NOBITS. Although it occupies no space in the file, it contributes to the
segment’s memory image. Normally, these uninitialized data reside at the end
of the segment, thereby making p_memsz larger than p_filesz  in the
associated program header element.

Note Section

Sometimes a vendor or system builder needs to mark an object file with special
information that other programs will check for conformance, compatibility, and
so forth. Sections of type SHT_NOTE and program header elements of type
PT_NOTE can be used for this purpose. The note information in sections and
program header elements holds any number of entries, each of which is an
array of 4-byte words in the format of the target processor. Labels are shown
on Figure 5-7 to help explain note information organization, but they are not
part of the specification.

.plt

  .data

 .data1

.got

.dynami

.bss
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Figure 5-7 Note Information

namesz and name
The first namesz  bytes in name contain a null-terminated character
representation of the entry’s owner or originator. There is no formal
mechanism for avoiding name conflicts. By convention, vendors use their
own name, such as “XYZ Computer Company,” as the identifier. If no name
is present, namesz  contains 0. Padding is present, if necessary, to ensure
4-byte alignment for the descriptor. Such padding is not included in
namesz .

descsz and desc
The first descsz  bytes in desc  hold the note descriptor. If no descriptor is
present, descsz  contains 0. Padding is present, if necessary, to ensure
4-byte alignment for the next note entry. Such padding is not included in
descsz .

type
This word gives the interpretation of the descriptor. Each originator controls
its own types; multiple interpretations of a single type value may exist.
Thus, a program must recognize both the name and the type to
“understand” a descriptor. Types currently must be nonnegative.

To illustrate, the following note segment holds two entries.

namesz

descsz

type

name
. . .

desc
. . .
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Figure 5-8 Example Note Segment

Note – The system reserves note information with no name (namesz==0 ) and
with a zero-length name (name[0]==’\0’ ) but currently defines no types. All
other names must have at least one non-null character.

Program Loading (Processor-Specific)

As the system creates or augments a process image, it logically copies a file’s
segment to a virtual memory segment. When—and if—the system physically
reads the file depends on the program’s execution behavior, system load, and
so forth. A process does not require a physical page unless it references the
logical page during execution, and processes commonly leave many pages
unreferenced. Therefore delaying physical reads frequently obviates them,
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improving system performance. To obtain this efficiency in practice, executable
and shared object files must have segment images whose file offsets and virtual
addresses are congruent, modulo the page size.

Virtual addresses and file offsets for SPARC segments are congruent modulo 64
K (0x10000 ). Virtual addresses and file offsets for x86 segments are congruent
modulo 4 K (0x1000 ). By aligning segments to the maximum page size, the
files are suitable for paging regardless of physical page size. The following
example presents the SPARC version.

Figure 5-9 SPARC Executable File (64 K alignment)

Table 5-25 SPARC Program Header Segments (64 K alignment)

Member Text Data

p_type PT_LOAD PT_LOAD

p_offset 0x100 0x2bf00

p_vaddr 0x10100 0x4bf00

p_paddr Unspecified Unspecified

p_filesize 0x2be00 0x4e00

   File Virtual address    File offset

      ELF header0

  Program header table

     Other information

0x100      Text segment 0x10100

 . . .

0x2be00  bytes 0x3beff

 0x2bf00     Data segment 0x4bf00

 . . .

0x4e00  bytes 0x50cff

 0x30d00 Other information

 . . .
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The following example presents the x86 version.

Figure 5-10 x86 Executable File (4 K alignment)

p_memsz 0x2be00 0x5e24

p_flags PF_R + PF_X PF_R + PF_W + PF_X

p_align 0x10000 0x10000

Table 5-26 x86 Program Header Segments (4 K alignment)

Member Text Data

p_type PT_LOAD PT_LOAD

p_offset 0x100 0x2bf00

p_vaddr 0x8048100 0x8074f00

p_paddr Unspecified Unspecified

p_filesize 0x2be00 0x4e00

Table 5-25 SPARC Program Header Segments (64 K alignment)

Member Text Data

   File Virtual address    File offset

      ELF header0

  Program header table

     Other information

0x100      Text segment 0x8048100

 . . .

0x2be00  bytes 0x8073eff

 0x2bf00     Data segment 0x8074f00

 . . .

0x4e00  bytes 0x8079cff

 0x30d00 Other information

 . . .
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Although the example’s file offsets and virtual addresses are congruent
modulo the maximum page size for both text and data, up to four file pages
hold impure text or data (depending on page size and file system block size).

• The first text page contains the ELF header, the program header table, and
other information.

• The last text page holds a copy of the beginning of data.

• The first data page has a copy of the end of text.

• The last data page may contain file information not relevant to the running
process. Logically, the system enforces the memory permissions as if each
segment were complete and separate; segments’ addresses are adjusted to
ensure each logical page in the address space has a single set of permissions.
In the examples above, the region of the file holding the end of text and the
beginning of data will be mapped twice: at one virtual address for text and
at a different virtual address for data.

The end of the data segment requires special handling for uninitialized data,
which the system defines to begin with zero values. Thus, if a file’s last data
page includes information not in the logical memory page, the extraneous data
must be set to zero, not the unknown contents of the executable file.
“Impurities” in the other three pages are not logically part of the process
image; whether the system expunges them is unspecified. The memory image
for this program follows, assuming 4 Kbyte (0x1000 ) pages. For simplicity,
these examples illustrates only one page size.

p_memsz 0x2be00 0x5e24

p_flags PF_R + PF_X PF_R + PF_W + PF_X

p_align 0x1000 0x1000

Table 5-26 x86 Program Header Segments (4 K alignment)

Member Text Data
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Figure 5-11 SPARC Process Image Segments

  Contents SegmentVirtual Address

Header Padding
 0x10000

0x100  bytes

 0x10100
     Text segment

Text . . .

0x2be00  bytes

 0x3bf00

    Data segment

 . . .

0x4e00  bytes

Data

 0x4b000

 Data Padding
0x100  bytes

 Text Padding
0x100  bytes

 0x4bf00

 0x50d00
    Uninitialized Data

0x1024  zero bytes

 0x51d24
 Page Padding

 0x2dc  zero bytes
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Figure 5-12 x86 Process Image Segments

One aspect of segment loading differs between executable files and shared
objects. Executable file segments typically contain absolute code. For the
process to execute correctly, the segments must reside at the virtual addresses
used to build the executable file. Thus the system uses the p_vaddr  values
unchanged as virtual addresses.

  Contents SegmentVirtual Address

Header Padding
 0x8048000

0x100  bytes

 0x8048100
     Text segment

Text . . .

0x2be00  bytes

 0x8073f00

    Data segment

 . . .

0x4e00  bytes

Data

 0x8074000

 Data Padding
0x100  bytes

 Text Padding
0x100  bytes

 0x8074f00

 0x8079d00
    Uninitialized Data

0x1024  zero bytes

 0x807ad24
 Page Padding

 0x2dc  zero bytes
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On the other hand, shared object segments typically contain position-
independent code. (For background, see “Link-Editor” on page 7.) This lets a
segment’s virtual address change from one process to another, without
invalidating execution behavior. Though the system chooses virtual addresses
for individual processes, it maintains the segments’ relative positions. Because
position-independent code uses relative addressing between segments, the
difference between virtual addresses in memory must match the difference
between virtual addresses in the file. The following tables show possible
shared object virtual address assignments for several processes, illustrating
constant relative positioning. The table also illustrates the base address
computations.

Table 5-27 Example SPARC Shared Object Segment Addresses

Source Text Data Base Address

File     0x200   0x2a400       0x0

Process 1 0xc0000200 0xc002a400 0xc0000000

Process 2 0xc0010200 0xc003c400 0xc0010000

Process 3 0xd0020200 0xd004a400 0xd0020000

Process 4 0xd0030200 0xd005a400 0xd0030000

Table 5-28 Example x86 Shared Object Segment Addresses

Source Text Data Base Address

File     0x200   0x2a400       0x0

Process 1 0x80000200 0x8002a400 0x80000000

Process 2 0x80081200 0x800ab400 0x80081000

Process 3 0x900c0200 0x900ea400 0x900c0000

Process 4 0x900c6200 0x900f0400 0x900c6000
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Program Interpreter

An executable file may have one PT_INTERP program header element. During
exec(2) , the system retrieves a path name from the PT_INTERP segment and
creates the initial process image from the interpreter file’s segments. That is,
instead of using segment images of the original executable files, the system
composes a memory image for the interpreter. It then is the interpreter’s
responsibility to receive control from the system and provide an environment
for the application program.

The interpreter receives control in one of two ways. First, it may receive a file
descriptor to read the executable file, positioned at the beginning. It can use
this file descriptor to read and/or map the executable file’s segments into
memory. Second, depending on the executable file format, the system may load
the executable file into memory instead of giving the interpreter an open file
descriptor. With the possible exception of the file descriptor, the interpreter’s
initial process state matches what the executable file would have received. The
interpreter itself may not require a second interpreter. An interpreter may be
either a shared object or an executable file.

• A shared object (the normal case) is loaded as position-independent, with
addresses that may vary from one process to another; the system creates its
segments in the dynamic segment area used by mmap(2) and related
services. Consequently, a shared object interpreter typically will not conflict
with the original executable file’s original segment addresses.

• An executable file is loaded at fixed addresses; the system creates its
segments using the virtual addresses from the program header table.
Consequently, an executable file interpreter’s virtual addresses may collide
with the first executable file; the interpreter is responsible for resolving
conflicts.

Runtime Linker

When building an executable file that uses dynamic linking, the link-editor
adds a program header element of type PT_INTERP to an executable file,
telling the system to invoke the runtime linker as the program interpreter.
exec () and the runtime linker cooperate to create the process image for the
program, which entails the following actions:

• Adding the executable file’s memory segments to the process image;
• Adding shared object memory segments to the process image;
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• Performing relocations for the executable file and its shared objects;
• Closing the file descriptor that was used to read the executable file, if one

was given to the runtime linker;
• Calling any .init  section provided in the objects mapped; see

“Initialization and Termination Functions” on page 163
• Transferring control to the program, making it look as if the program had

received control directly from exec ().

The link-editor also constructs various data that assist the runtime linker for
executable and shared object files. As shown above in “Program Header,” these
data reside in loadable segments, making them available during execution.
(Once again, recall the exact segment contents are processor-specific.)

• A .dynamic  section with type SHT_DYNAMIC holds various data. The
structure residing at the beginning of the section holds the addresses of
other dynamic linking information.

• The .hash  section with type SHT_HASH holds a symbol hash table.

• The .got  and .plt  sections with type SHT_PROGBITS hold two separate
tables: the global offset table and the procedure linkage table. Sections
below explain how the runtime linker uses and changes the tables to create
memory images for object files.

As explained in “Program Loading (Processor-Specific)” on page 140, shared
objects may occupy virtual memory addresses that are different from the
addresses recorded in the file’s program header table. The runtime linker
relocates the memory image, updating absolute addresses before the
application gains control. Although the absolute address values would be
correct if the library were loaded at the addresses specified in the program
header table, this normally is not the case.

If the process environment (see exec (2)) contains a variable named
LD_BIND_NOW with a non-null value, the runtime linker processes all
relocation before transferring control to the program. For example, each of the
environment entries

LD_BIND_NOW-=1
LD_BIND_NOW-=on
LD_BIND_NOW-=off
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specifies this behavior. Otherwise, LD_BIND_NOW either is absent from the
environment or has a null value. The runtime linker can evaluate procedure
linkage table entries lazily, so avoiding resolution and relocation overhead for
functions that are not called. See “Procedure Linkage Table (SPARC)” on
page 156 and “Procedure Linkage Table (x86)” on page 159 for more
information.

Dynamic Section

If an object file participates in dynamic linking, its program header table will
have an element of type PT_DYNAMIC. This “segment” contains the .dynamic
section. A special symbol, _DYNAMIC, labels the section, which contains an
array of the following structures.

For each object with this type, d_tag  controls the interpretation of d_un .

d_val
These Elf32_Word  objects represent integer values with various
interpretations.

d_ptr
These Elf32_Addr  objects represent program virtual addresses. As
mentioned previously, a file’s virtual addresses might not match the
memory virtual addresses during execution. When interpreting addresses
contained in the dynamic structure, the runtime linker computes actual
addresses, based on the original file value and the memory base address.
For consistency, files do not contain relocation entries to “correct” addresses
in the dynamic structure.

typedef struct {
Elf32_Sword d_tag;
union {

Elf32_Word d_val;
Elf32_Addr d_ptr;

} d_un;
} Elf32_Dyn;

extern Elf32_Dyn _DYNAMIC[];
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The following table summarizes the tag requirements for executable and
shared object files. If a tag is marked “mandatory,” then the dynamic linking
array must have an entry of that type. Likewise, “optional” means an entry for
the tag may appear but is not required.

Table 5-29 Dynamic Array Tags, d_tag  (1 of 2)

Name Value d_un Executable Shared Object

DT_NULL 0 Ignored Mandatory Mandatory

DT_NEEDED 1 d_val Optional Optional

DT_PLTRELSZ 2 d_val Optional Optional

DT_PLTGOT 3 d_ptr Optional Optional

DT_HASH 4 d_ptr Mandatory Mandatory

DT_STRTAB 5 d_ptr Mandatory Mandatory

DT_SYMTAB 6 d_ptr Mandatory Mandatory

DT_RELA 7 d_ptr Mandatory Optional

DT_RELASZ 8 d_val Mandatory Optional

DT_RELAENT 9 d_val Mandatory Optional

DT_STRSZ 10 d_val Mandatory Mandatory

DT_SYMENT 11 d_val Mandatory Mandatory

DT_INIT 12 d_ptr Optional Optional

DT_FINI 13 d_ptr Optional Optional

DT_SONAME 14 d_val Ignored Optional

DT_RPATH 15 d_val Optional Ignored

DT_SYMBOLIC 16 Ignored Ignored Optional

DT_REL 17 d_ptr Mandatory Optional

DT_RELSZ 18 d_val Mandatory Optional

DT_RELENT 19 d_val Mandatory Optional

DT_PLTREL 20 d_val Optional Optional

DT_DEBUG 21 d_ptr Optional Ignored

DT_TEXTREL 22 Ignored Optional Optional

DT_JMPREL 23 d_ptr Optional Optional
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DT_NULL
An entry with a DT_NULL tag marks the end of the _DYNAMIC array.

DT_NEEDED
This element holds the string table offset of a null-terminated string, giving
the name of a needed dependency. The offset is an index into the table
recorded in the DT_STRTAB entry. See “Shared Object Dependencies” on
page 154 for more information about these names. The dynamic array may
contain multiple entries with this type. These entries’ relative order is
significant, though their relation to entries of other types is not.

DT_PLTRELSZ
This element holds the total size, in bytes, of the relocation entries
associated with the procedure linkage table. If an entry of type DT_JMPREL
is present, a DT_PLTRELSZ must accompany it.

DT_PLTGOT
This element holds an address associated with the procedure linkage table
and/or the global offset table.

DT_HASH
This element points to the symbol hash table, described in “Hash Table” on
page 161. This hash table refers to the symbol table indicated by the
DT_SYMTAB element.

DT_STRTAB
This element holds the address of the string table, described in the first part
of this chapter. Symbol names, dependency names, and other strings
required by the runtime linker reside in this table.

DT_SYMTAB
This element holds the address of the symbol table, described in the first
part of this chapter, with Elf32_Sym  entries for the 32-bit class of files.

DT_FILTER 24 d_ptr Unspecified Optional

DT_LOPROC 0x70000000 Unspecified Unspecified Unspecified

DT_HIPROC 0x7fffffff Unspecified Unspecified Unspecified

Table 5-29 Dynamic Array Tags, d_tag  (2 of 2)

Name Value d_un Executable Shared Object
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DT_RELA
This element holds the address of a relocation table, described in the first
part of this chapter. Entries in the table have explicit addends, such as
Elf32_Rela  for the 32-bit file class. An object file may have multiple
relocation sections. When building the relocation table for an executable or
shared object file, the link-editor catenates those sections to form a single
table. Although the sections remain independent in the object file, the
runtime linker sees a single table. When the runtime linker creates the
process image for an executable file or adds a shared object to the process
image, it reads the relocation table and performs the associated actions. If
this element is present, the dynamic structure must also have DT_RELASZ
and DT_RELAENT elements. When relocation is “mandatory” for a file,
either DT_RELA or DT_REL may occur (both are permitted but not required).

DT_RELASZ
This element holds the total size, in bytes, of the DT_RELA relocation table.

DT_RELAENT
This element holds the size, in bytes, of the DT_RELA relocation entry.

DT_STRSZ
This element holds the size, in bytes, of the string table.

DT_SYMENT
This element holds the size, in bytes, of a symbol table entry.

DT_INIT
This element holds the address of the initialization function, discussed in
“Initialization and Termination Functions” on page 163 later.

DT_FINI
This element holds the address of the termination function, discussed in
“Initialization and Termination Functions” on page 163 later.

DT_SONAME
This element holds the string table offset of a null-terminated string, giving
the name of the shared object. The offset is an index into the table recorded
in the DT_STRTAB entry. See Section , “Shared Object Dependencies,” on
page 154 for more information about these names.
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DT_RPATH
This element holds the string table offset of a null-terminated search library
search path string, discussed in “Shared Objects With Dependencies” on
page 76. The offset is an index into the table recorded in the DT_STRTAB
entry.

DT_SYMBOLIC
This element’s presence in a shared object library alters the runtime linker’s
symbol resolution algorithm for references within the library. Instead of
starting a symbol search with the executable file, the runtime linker starts
from the shared object itself. If the shared object fails to supply the
referenced symbol, the runtime linker then searches the executable file and
other shared objects as usual.

DT_REL
This element is similar to DT_RELA, except its table has implicit addends,
such as Elf32_Rel  for the 32-bit file class. If this element is present, the
dynamic structure must also have DT_RELSZ and DT_RELENT elements.

DT_RELSZ
This element holds the total size, in bytes, of the DT_REL relocation table.

DT_RELENT
This element holds the size, in bytes, of the DT_REL relocation entry.

DT_PLTREL
This member specifies the type of relocation entry to which the procedure
linkage table refers. The d_val  member holds DT_REL or DT_RELA, as
appropriate. All relocations in a procedure linkage table must use the same
relocation.

DT_DEBUG
This member is used for debugging.

DT_TEXTREL
This member’s absence signifies that no relocation entry should cause a
modification to a non-writable segment, as specified by the segment
permissions in the program header table. If this member is present, one or
more relocation entries might request modifications to a non-writable
segment, and the runtime linker can prepare accordingly.
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DT_JMPREL
If present, this entry’s d_ptr  member holds the address of relocation entries
associated solely with the procedure linkage table. Separating these
relocation entries lets the runtime linker ignore them during process
initialization, if lazy binding is enabled. If this entry is present, the related
entries of types DT_PLTRELSZ and DT_PLTREL must also be present.

DT_FILTER
Holds the string table offset of a null-terminated string that names an object.
The symbol table of this (shared) object acts as a filter for the symbol table of
the named object.

DT_LOPROC through DT_HIPROC
Values in this inclusive range are reserved for processor-specific semantics.

Except for the DT_NULL element at the end of the array and the relative order
of DT_NEEDED elements, entries may appear in any order. Tag values not
appearing in the table are reserved.

Shared Object Dependencies

When the runtime linker creates the memory segments for an object file, the
dependencies (recorded in DT_NEEDED entries of the dynamic structure) tell
what shared objects are needed to supply the program’s services. By
repeatedly connecting referenced shared objects and their dependencies, the
runtime linker builds a complete process image. When resolving symbolic
references, the runtime linker examines the symbol tables with a breadth-first
search. That is, it first looks at the symbol table of the executable program
itself, then at the symbol tables of the DT_NEEDED entries (in order), then at the
second level DT_NEEDED entries, and so on.

Note – Even when a shared object is referenced multiple times in the
dependency list, the runtime linker will connect the object only once to the
process.

Names in the dependency list are copies either of the DT_SONAME strings or
the path names of the shared objects used to build the object file.
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Global Offset Table (Processor-Specific)

Position-independent code cannot, in general, contain absolute virtual
addresses. Global offset tables hold absolute addresses in private data, thus
making the addresses available without compromising the position-
independence and shareability of a program’s text. A program references its
global offset table using position-independent addressing and extracts absolute
values, thus redirecting position-independent references to absolute locations.

Initially, the global offset table holds information as required by its relocation
entries (see “Relocation” on page 124 for more information). After the system
creates memory segments for a loadable object file, the runtime linker
processes the relocation entries, some of which will be type
R_SPARC_GLOB_DAT (for SPARC) or R_386_GLOB_DAT (for x86) referring to
the global offset table. The runtime linker determines the associated symbol
values, calculates their absolute addresses, and sets the appropriate memory
table entries to the proper values. Although the absolute addresses are
unknown when the link-editor builds an object file, the runtime linker knows
the addresses of all memory segments and can thus calculate the absolute
addresses of the symbols contained therein.

If a program requires direct access to the absolute address of a symbol, that
symbol will have a global offset table entry. Because the executable file and
shared objects have separate global offset tables, a symbol’s address may
appear in several tables. The runtime linker processes all the global offset table
relocations before giving control to any code in the process image, thus
ensuring the absolute addresses are available during execution.

The table’s entry zero is reserved to hold the address of the dynamic structure,
referenced with the symbol _DYNAMIC. This allows a program, such as the
runtime linker, to find its own dynamic structure without having yet processed
its relocation entries. This is especially important for the runtime linker,
because it must initialize itself without relying on other programs to relocate
its memory image.

The system may choose different memory segment addresses for the same
shared object in different programs; it may even choose different library
addresses for different executions of the same program. Nonetheless, memory
segments do not change addresses once the process image is established. As
long as a process exists, its memory segments reside at fixed virtual addresses.
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A global offset table’s format and interpretation are processor-specific. For
SPARC and x86 processors, the symbol _GLOBAL_OFFSET_TABLE_ may be
used to access the table.

extern Elf32_Addr_GLOBAL_OFFSET_TABLE_[];

The symbol _GLOBAL_OFFSET_TABLE_ may reside in the middle of the .got
section, allowing both negative and nonnegative “subscripts” into the array of
addresses.

Procedure Linkage Table (SPARC)

As the global offset table converts position-independent address calculations to
absolute locations, the procedure linkage table converts position-independent
function calls to absolute locations. The link-editor cannot resolve execution
transfers (such as function calls) from one executable or shared object to
another. So, the link-editor puts the program transfer control to entries in the
procedure linkage table. On SPARC architectures, procedure linkage tables
reside in private data. The runtime linker determines the destinations’ absolute
addresses and modifies the global offset table’s memory image accordingly.
The runtime linker thus redirects the entries without compromising the
position-independence and shareability of the program’s text. Executable files
and shared object files have separate procedure linkage tables.

The first four procedure linkage table entries are reserved. (The original
contents of these entries are unspecified, despite the example, below.) Each
entry in the table occupies 3 words (12 bytes), and the last table entry is
followed by a nop  instruction. A relocation table is associated with the
procedure linkage table. The DT_JMP_REL entry in the _DYNAMIC array gives
the location of the first relocation entry. The relocation table has one entry, in
the same sequence, for each procedure linkage table entry. Except the first four
entries, the relocation type is R_SPARC_JMP_SLOT, the relocation offset
specifies the address of the first byte of the associated procedure linkage table
entry, and the symbol table index refers to the appropriate symbol.

To illustrate procedure linkage tables, the figure below shows four entries: two
of the four initial reserved entries, the third is a call to name1, and the fourth is
a call to name2. The example assumes the entry for name2 is the table’s last
entry and shows the following nop  instruction. The left column shows the
instructions from the object file before dynamic linking. The right column
demonstrates a possible way the runtime linker might fix the procedure
linkage table entries.
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Code Example 5-1 SPARC Procedure Linkage Table Example

Following the steps below, the runtime linker and program jointly resolve the
symbolic references through the procedure linkage table. Again, the steps
described below are for explanation only. The precise execution-time behavior
of the runtime linker is not specified.

1. When first creating the memory image of the program, the runtime linker
changes the initial procedure linkage table entries, making them transfer
control to one of the runtime linker’s own routines. It also stores a word of
identification information in the second entry. When it receives control, it can
examine this word to find what object called it.

2. All other procedure linkage table entries initially transfer to the first entry,
letting the runtime linker gain control at the first execution of each table
entry. For example, the program calls name1, which transfers control to the
label .PLT101 .

Object File Memory Segment

.PLT0:
unimp
unimp
unimp

.PLT1:
unimp
unimp
unimp
...

.PLT0:
save    %sp,-64,%sp
call    runtime-linker
nop

.PLT1:
.word   identification
unimp
unimp
...

...
.PLT101:

sethi    (.-.PLT0),%g1
ba,a     .PLT0
nop

.PLT102:
sethi    (.-.PLT0),%g1
ba,a     .PLT0
nop

...
.PLT101:

sethi   (.-.PLT0),%g1
sethi   %hi(name1),%g1
jmp1    %g1+%lo(name1),%g0

.plt102:
sethi   (.-.PLT0),%g1
sethi   %hi(name2),%g1
jmp1    %g1+%lo(name2),%g0

nop nop
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3. The sethi  instruction computes the distance between the current and the
initial procedure linkage table entries, .PLT101  and .PLT0, respectively. This
value occupies the most significant 22 bits of the %g1 register. In this
example, &g1 contains 0x12f000  when the runtime linker receives control.

4. Next, the ba,a  instruction jumps to .PLT0 , establishing a stack frame and
calls the runtime linker.

5. With the identification value, the runtime linker gets its data structures for
the object, including the relocation table.

6. By shifting the %g1 value and dividing by the size of the procedure linkage
table entries, the runtime linker calculates the index of the relocation entry
for name1. Relocation entry 101 has type R_SPARC_JMP_SLOT, its offset
specifies the address of .PLT101 , and its symbol table index refers to name1.
Thus, the runtime linker gets the symbol’s real value, unwinds the stack,
modifies the procedure linkage table entry, and transfers control to the
desired destination.

Although the runtime linker does not have to create the instruction sequences
under the Memory Segment column, it might. If it did, some points deserve
more explanation.

• To make the code reentrant, the procedure linkage table’s instructions are
changed in a particular sequence. If the runtime linker is fixing a function’s
procedure linkage table entry and a signal arrives, the signal handling code
must be able to call the original function with predictable (and correct)
results.

• The runtime linker changes two words to convert an entry. It updates each
word automatically. Reentrancy is achieved by first overwriting the nop
with the jmp1  instruction, and then patching the ba,a  to be sethi . If a
reentrant function call happens between the two word updates, the jmp1
resides in the delay slot of the ba,a  instruction, and cancels the delay
instruction. So, the runtime linker gains control a second time. Although
both invocations of the runtime linker modify the same procedure linkage
table entry, their changes do not interfere with each other.

• The first sethi  instruction of a procedure linkage table entry can fill the
delay slot of the previous entry’s jmp1 instruction. Although the sethi
changes the value of the %g1 register, the previous contents can be safely
discarded.
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• After conversion, the last procedure linkage table entry (.PLT102  above)
needs a delay instruction for its jmp1 . The required, trailing nop  fills this
delay slot.

The LD_BIND_NOW environment variable changes dynamic linking behavior. If
its value is non-null, the runtime linker processes R_SPARC_JMP_SLOT
relocation entries (procedure linkage table entries) before transferring control
to the program. If LD_BIND_NOW is null, the runtime linker evaluates linkage
table entries on the first execution of each table entry.

Procedure Linkage Table (x86)

As for SPARC, the procedure linkage table redirects position-independent
function calls to absolute locations. The link-editor cannot resolve execution
transfers (such as function calls) from one executable or shared object to
another. So, the link-editor has the program transfer control to entries in the
procedure linkage table. On x86 architectures, procedure linkage tables reside
in shared text, but they use addresses in the private global offset table. The
runtime linker determines the destinations’ absolute addresses and modifies
the global offset table’s memory image accordingly. The runtime linker thus
redirects the entries without compromising the position-independence and
shareability of the program’s text. Executable files and shared object files have
separate procedure linkage tables.

.PLT0: pushl got_plus_4
jmp *got_plus_8
nop; nop
nop; nop

.PLT1: jmp *name1_in_GOT
pushl $offset
jmp .PLT0@PC

.PLT2: jmp *name2_in_GOT
pushl $offset
jmp .PLT0@PC
...
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Following the steps below, the runtime linker and program cooperate to
resolve the symbolic references through the procedure linkage table and the
global offset table.

1. When first creating the memory image of the program, the runtime linker
sets the second and third entries in the global offset table to special values.
Steps below explain these values.

2. If the procedure linkage table is position-independent, the address of the
global offset table must be in %ebx. Each shared object file in the process
image has its own procedure linkage table, and control transfers to a
procedure linkage table entry only from within the same object file. So, the
calling function must set the global offset table base register before it calls
the procedure linkage table entry.

3. For example, the program calls name1, which transfers control to the label
.PLT1 .

4. The first instruction jumps to the address in the global offset table entry for
name1. Initially, the global offset table holds the address of the following
pushl  instruction, not the real address of name1.

5. So, the program pushes a relocation offset (offset ) on the stack. The
relocation offset is a 32-bit, nonnegative byte offset into the relocation table.
the designated relocation entry has the type R_386_JMP_SLOT, and its
offset specifies the global offset table entry used in the previous jmp
instruction. The relocation entry also contains a symbol table index, which
the runtime linker uses to get the referenced symbol, name1.

.PLT0: pushl 4(%ebx)
jmp *8(%ebx)
nop; nop
nop; nop

.PLT1: jmp *name1@GOT(%ebx)
pushl $offset
jmp .PLT0@PC

.PLT2: jmp *name2@GOT(%ebx)
pushl $offset
jmp .PLT0@PC
...
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6. After pushing the relocation offset, the program jumps to .PLT0 , the first
entry in the procedure linkage table. The pushl  instruction pushes the
value of the second global offset table entry (got_plus_4  or 4(%ebx) ) on
the stack, giving the runtime linker one word of identifying information.
The program then jumps to the address in the third global offset table entry
(got_plus_8  or 8(%ebx) ), to jump to the runtime linker.

7. The runtime linker unwinds the stack, checks the designated relocation
entry, gets the symbol’s value, stores the actual address of name1 in its
global offset entry table, and jumps to the destination.

8. Subsequent executions of the procedure linkage table entry transfer directly
to name1, without calling the runtime linker again. This is because the jmp
instruction at .PLT1  jumps to name1 instead of falling through to the
pushl  instruction.

The LD_BIND_NOW environment variable changes dynamic linking behavior. If
its value is non-null, the runtime linker processes R_386_JMP_SLOT relocation
entries (procedure linkage table entries) before transferring control to the
program. If LD_BIND_NOW is null, the runtime linker evaluates linkage table
entries on the first execution of each table entry.

Hash Table

A hash table of Elf32_Word  objects supports symbol table access. Labels
appear below to help explain the hash table organization, but they are not part
of the specification.
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Figure 5-13 Symbol Hash Table

The bucket  array contains nbucket  entries, and the chain  array contains
nchain  entries; indexes start at 0. Both bucket  and chain  hold symbol table
indexes. Chain table entries parallel the symbol table. The number of symbol
table entries should equal nchain ; so, symbol table indexes also select chain
table entries. A hashing function accepts a symbol name and returns a value
that may be used to compute a bucket  index. Consequently, if the hashing
function returns the value x for some name, bucket  [x%nbucket]  gives an
index y into both the symbol table and the chain table. If the symbol table
entry is not the one desired, chain[y]  gives the next symbol table entry with
the same hash value. One can follow the chain  links until either the selected
symbol table entry holds the desired name or the chain  entry contains the
value STN_UNDEF.

nbucket

nchain

bucket [0]

. . .
bucket [nbucket - 1]

chain [0]

. . .
chain [nchain - 1]
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Initialization and Termination Functions

After the runtime linker has built the process image and performed the
relocations, each shared object gets the opportunity to execute some
initialization code. These initialization functions are called in the reverse of the
order at which they are encountered.

Similarly, shared objects may have termination functions, which are executed
with the atexit(3C)  mechanism after the base process begins its termination
sequence. Refer to atexit(3C)  for more information. These termination
functions are called in the order they are encountered.

Shared objects designate their initialization and termination functions through
the DT_INIT  and DT_FINI  entries in the dynamic structure, described in
“Dynamic Section” above. Typically, the code for these functions resides in the
.init  and .fini  sections, mentioned in “Section Header” on page 106 earlier.

Note – Although the atexit(3C)  termination processing normally will be
done, it is not guaranteed to have executed upon process death. In particular,
the process will not execute the termination processing if it calls _exit()  or if
the process dies because it received a signal that it neither caught nor ignored.

unsigned long
elf_Hash(const unsigned char *name)
{

unsigned long h = 0, g;

while (*name)
{
h = (h << 4) + *name++;
if (g = h & 0xf0000000)

h ^= g >> 24;
h &= ~g;

}
return h;
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Mapfile Option 6

Introduction
The link-editor automatically and intelligently maps input sections from
relocatable objects to segments within the output file image. The -M option
allows you to change the default mapping provided by the link-editor.

In particular, this mapfile option allows you to:

• Declare segments and specify values for segment attributes such as segment
type, permissions, addresses, length, and alignment.

• Control mapping of input sections to segments by specifying the attribute
values necessary in a section to map to a specific segment (the attributes are
section name, section type, and permissions) and by specifying which object
file(s) the input sections should be taken from, if necessary.

• Declare a global-absolute symbol that is assigned a value equal to the size of
a specified segment (by the link-editor) and that can be referenced from
object files.

The mapfile option allows users of ifiles (an option previously available to
ld(1)  that used link-editor command language directives) to convert to
mapfiles. All other facilities previously available for ifiles, other than those
mentioned above, are not available with the mapfile option.
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Note – When using the mapfile option, be aware that you can easily create
a.out  files that do not execute. The link-editor knows how to produce a
correct a.out  without the use of the mapfile option. The mapfile option is
intended for system programming use, not application programming use.

Using the Mapfile Option
 To use the mapfile option, you must:

• Enter the mapfile directives into a file, for example mapfile

• Supply the following option on the ld(1)  command line:

-M mapfile

If the mapfile is not in your current directory, include the full path name; no
default search path exists.

Mapfile Structure and Syntax
 You can enter three types of directives into a mapfile:

• Segment declarations.

• Mapping directives.

• Size-symbol declarations.

Each directive can span more than one line and can have any amount of white
space (including new-lines) as long as it is followed by a semicolon. You can
enter zero or more directives in a mapfile. (Entering zero directives causes the
link-editor to ignore the mapfile and use its own defaults.) Typically, segment
declarations are followed by mapping directives, that is, you would declare a
segment and then define the criteria by which a section becomes part of that
segment. If you enter a mapping directive or size-symbol declaration without
first declaring the segment to which you are mapping (except for built-in
segments, explained later), the segment is given default attributes as explained
below. Such segment is then an “implicitly declared segment.”

Size-symbol declarations can appear anywhere in a mapfile.
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The following sections describe each directive type. For all syntax discussions,
the following notations apply:

• All entries in constant width , all colons, semicolons, equal signs, and at
(@)  signs are typed in literally.

• All entries in italics are substitutable.

• { ... }* means “zero or more.”

• { ... }+ means “one or more.”

• [ ... ] means “optional.”

• section_names and segment_names follow the same rules as C identifiers
where a period (.) is treated as a letter (for example, .bss  is a legal name).

• section_names, segment_names, file_names, and symbol_names are case
sensitive; everything else is not case sensitive.

• Spaces (or new-lines) may appear anywhere except before a number or in the
middle of a name or value.

• Comments beginning with # and ending at a new-line may appear
anywhere that a space may appear.

Segment Declarations

A segment declaration creates a new segment in the a.out  or changes the
attribute values of an existing segment. (An existing segment is one that you
previously defined or one of the three built-in segments described below.)

A segment declaration has the following syntax:

segment_name = {segment_attribute_value}*;
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For each segment_name, you can specify any number of segment_attribute_values
in any order, each separated by a space. (Only one attribute value is allowed
for each segment attribute.) The segment attributes and their valid values are
as follows:

There are three built-in segments with the following default attribute values:

• text  (LOAD, ? RX, no virtual_address, physical_address, or length specified,
alignment values set to defaults per CPU type)

• data  (LOAD, ?RWX, no virtual_address, physical_address, or length specified,
alignment values set to defaults per CPU type)

• note  (NOTE)

The link-editor behaves as if these segments are declared before your mapfile is
read in. See “Mapfile Option Defaults” on page 175 for more information.

Note the following when entering segment declarations:

• A number can be hexadecimal, decimal, or octal, following the same rules as
in the C language.

• No space is allowed between the V, P, L, or A and the number.

• The segment_type value can be either LOAD or NOTE.

• The segment_type value defaults to LOAD.

• The segment_flags values are R for readable, W for writable, X for executable,
and O for order. No spaces are allowed between the question mark (?) and
the individual flags that make up the segment_flags value.

Table 6-1 Mapfile Segment Attributes

Attribute Value

segment_type LOAD
NOTE

segment flags ?[R][W][X][O]

virtual_address Vnumber

physical_address Pnumber

length Lnumber

alignment Anumber
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• The segment_flags value for a LOAD segment defaults to RWX.

• NOTE segments cannot be assigned any segment attribute value other than a
segment_type.

• Implicitly declared segments default to segment_type value LOAD,
segment_flags value RWX, a default virtual_address, physical_address, and
alignment value, and have no length limit.

Note – the link-editor calculates the addresses and length of the current
segment based on the previous segment’s attribute values. Also, even though
implicitly declared segments default to ‘‘no length limit,” machine memory
limitations still apply.

• LOAD segments can have an explicitly specified virtual_address value and/or
physical_address value, as well as a maximum segment length value.

• If a segment has a segment_flags value of ? with nothing following, the value
defaults to not readable, not writable, and not executable.

• The alignment value is used in calculating the virtual address of the
beginning of the segment. This alignment only affects the segment for which
it is specified; other segments still have the default alignment unless their
alignments are also changed.

• If any of the virtual_address, physical_address, or length attribute values are
not set, the link-editor calculates these values as it builds the a.out .

• If an alignment value is not specified for a segment, it is set to the built-in
default. (The default differs from one CPU to another and may even differ
between kernel versions. You should check the appropriate documentation
for these numbers).

• If both a virtual_address and an alignment value are specified for a segment,
the virtual_address value takes priority.

• If a virtual_address value is specified for a segment, the alignment field in the
program header contains the default alignment value.

The ?O flag lets the user control the order of sections in the final relocatable
object, executable file or shared object. This flag should be used in conjunction
with the -xF option to the compiler(s). When a file is compiled with the -xF
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option each function in that file is placed in a separate section with the same
attributes as the .text section. These sections are now called
.text %function_name.

For example, a file containing three functions main() , foo()  and bar()  when
compiled with the -xF  option will yield an object file with text for the three
functions in sections called .text%main , .text%foo  and .text%bar .
Because the -xF option forces one function per section, the use of ?O flag to
control the order of sections in effect controls the order of functions.

Consider the following user defined mapfile:

If the order of function definitions in the source file is main , foo  and bar , then
the final executable will contain functions in the order foo , bar  and main . For
static functions with the same name the file names must also be used. The ?O
flag forces the ordering of sections as requested in the mapfile. For example, if
static function bar()  exists in files a.o  and b.o , and function bar  from file
a.o  is to be placed before function bar  from file b.o ,  then the mapfile entries
should read:

Although the syntax allows for the entry:

This entry does not guarantee that function bar from file a.o will be placed
before function bar from file b.o . Do not use the second format; the results are
not reliable.

text = LOAD ?RXO;
text: .text%foo;
text: .text%bar;
text: .text%main;

text: .text%bar: a.o;
text: .text%bar: b.o;

text: .text%bar: a.o b.o;
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Note – If a virtual_address value is specified, the segment is placed at that
virtual address. For the system kernel this creates a correct result. For files that
start via exec(2) , this method creates an incorrect a.out  file because the
segments do not have correct offsets relative to their page boundaries.

Mapping Directives

A mapping directive tells the link-editor how to map input sections to output
segments. Basically, you name the segment that you are mapping to and
indicate what the attributes of a section must be in order to map into the
named segment. The set of section_attribute_values that a section must have to
map into a specific segment is called the “entrance criteria” for that segment.
In order to be placed in a specified segment of the a.out , a section must meet
the entrance criteria for a segment exactly.

A mapping directive has the following syntax:

segment_name :  {section_attribute_value}* [:  {file_name}+];

For a segment_name, you specify any number of section_attribute_values in any
order, each separated by a space. (At most one section attribute value is
allowed for each section attribute.) You can also specify that the section must
come from a certain .o  file(s) via the file_name substitutable. The section
attributes and their valid values are as follows:

Note the following when entering mapping directives:

Table 6-2 Section Attributes

Section Attribute Value

section_name: any valid section name

section_type $PROGBITS
$SYMTAB
$STRTAB
$REL
$RELA
$NOTE
$NOBITS

section_flags: ?[[! ]A][[! ]W][[! ]X]
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• You must choose at most one section_type from the section_types listed above.
The section_types listed above are built-in types. For more information on
section_types, see “Section Header” on page 106.

• The section_flags values are A for allocatable, W for writable, or X for
executable. If an individual flag is preceded by an exclamation mark (! ), the
linker checks to make sure that the flag is not set. No spaces are allowed
between the question mark, exclamation mark(s), and the individual flags
that make up the section_flags value.

• file_name may be any legal file name and can be of the form
archive_name(component_name), for example,
/usr/lib/usr/libc.a(printf.o) . A file name may be of the form
* file_name  (see next bullet item). Note that the link-editor does not check
the syntax of file names.

• If a file_name is of the form * file_name , the link-editor simulates a
basename (1) on the file name from the command line and uses that to
match against the mapfile file_name. In other words, the file_name from the
mapfile only needs to match the last part of the file name from the
command line. (See “Mapping Example” on page 173.)

• If you use the -l  option during a link-edit, and the library after the -l
option is in the current directory, you must precede the library with ./  (or
the entire path name) in the mapfile in order to create a match.

• More than one directive line may appear for a particular output segment,
for example, the following set of directives is legal:

Entering more than one mapping directive line for a segment is the only way
to specify multiple values of a section attribute.

• A section can match more than one entrance criteria. In this case, the first
segment encountered in the mapfile with that entrance criteria is used, for
example, if a mapfile reads:

S1 : $PROGBITS;
S1 : $NOBITS;

S1 : $PROGBITS;
S2 : $PROGBITS;
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the $PROGBITS sections are mapped to segment S1.

Size-Symbol Declarations

Size-symbol declarations let you define a new global-absolute symbol that
represents the size, in bytes, of the specified segment. This symbol can be
referenced in your object files. A size-symbol declaration has the following
syntax:

symbol_name can be any legal C identifier, although the link-editor does not
check the syntax of the symbol_name.

Mapping Example
Following is an example of a user-defined mapfile. The numbers on the left are
included in the example for tutorial purposes. Only the information to the
right of the numbers would actually appear in the mapfile.

Code Example 6-1 User-Defined Mapfile

Four separate segments are manipulated in this example. The implicitly
declared segment elephant  (line 1) receives all of the .bss  sections from the
files peanuts.o  and popcorn.o . Note that *popcorn.o  matches any
popcorn.o  file that may have been supplied to the link-edit; the file need not
be in the current directory. On the other hand, if /var/tmp/peanuts.o  were
supplied to the link-edit, it would not match peanuts.o  because it is not
preceded by a * .

segment_name @symbol_name;

1.  elephant : .bss : peanuts.o *popcorn.o;
2.  monkey : $PROGBITS ?AX;
3.  monkey : .bss;
4.  monkey = LOAD V0x80000000 L0x4000;
5.  donkey : .bss;
6.  donkey = ?RX A0x1000;
7.  text = V0x80008000;
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The implicitly declared segment monkey  (line 2) receives all sections that are
both $PROGBITS and allocatable-executable (?AX), as well as all sections (not
already in the segment elephant ) with the name .bss  (line 3). The .bss
sections entering the monkey  segment need not be $PROGBITS or allocatable-
executable because the section_type and section_flags values were entered on a
separate line from the section_name value. (An "and" relationship exists
between attributes on the same line as illustrated by $PROGBITS "and" ?AX on
line 2. An "or" relationship exists between attributes for the same segment that
span more than one line as illustrated by $PROGBITS ?AX on line 2 "or" .bss
on line 3.)

The monkey  segment is implicitly declared in line 2 with segment_type value
LOAD, segment_flags value RWX, and no virtual_address, physical_address, length or
alignment values specified (defaults are used). In line 4 the segment_type value
of monkey  is set to LOAD (since the segment_type attribute value does not
change, no warning is issued), virtual_address value to 0x80000000  and
maximum length value to 0x4000 .

Line 5 implicitly declares the donkey  segment. The entrance criteria are
designed to route all .bss  sections to this segment. Actually, no sections fall
into this segment because the entrance criteria for monkey  in line 3 capture all
of these sections. In line 6, the segment_flags value is set to ?RX and the
alignment value is set to 0x1000  (since both of these attribute values changed,
a warning is issued).

Line 7 sets the virtual_address value of the text  segment to 0x80008000 .

The example of a user-defined mapfile is designed to cause warnings for
illustration purposes. If you wanted to change the order of the directives to
avoid warnings, the example would appear as follows:

This order eliminates all warnings.

1.  elephant : .bss : peanuts.o *popcorn.o;
4.  monkey = LOAD V0x80000000 L0x4000;
2.  monkey : $PROGBITS ?AX;
3.  monkey : .bss;
6.  donkey = ?RX A0x1000;
5.  donkey : .bss;
7.  text = V0x80008000;
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Mapfile Option Defaults
The link-editor defines three built-in segments (text , data , and note ) with
default segment_attribute_values and corresponding default mapping directives
as described in “Segment Declarations” on page 167. Even though the link-
editor does not use an actual ‘‘mapfile’’ to store the defaults, the model of a
‘‘default mapfile’’ helps to illustrate what happens when the link-editor
encounters your mapfile.

The example below shows how a mapfile would appear for the link-editor
defaults. The link-editor begins execution behaving as if the mapfile has
already been read in. Then the link-editor reads your mapfile and either
augments or makes changes to the defaults.

As each segment declaration in your mapfile is read in, it is compared to the
existing list of segment declarations as follows:

1. If the segment does not already exist in the mapfile, but another with the
same segment-type value exists, the segment is added before all of the
existing segments of the same segment_type.

2. If none of the segments in the existing mapfile has the same segment_type
value as the segment just read in, then the segment is added by segment_type
value to maintain the following order:

INTERP

LOAD

DYNAMIC

NOTE

text = LOAD ?RX;
text : $PROGBITS ?A!W;
data = LOAD ?RWX;
data : $PROGBITS ?AW;
data : $NOBITS ?AW;
note = NOTE;
note : $NOTE;
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3. If the segment is of segment_type LOAD and you have defined a
virtual_address value for this LOADable segment, the segment is placed before
any LOADable segments without a defined virtual_address value or with a
higher virtual_address  value, but after any segments with a
virtual_address value that is lower.

As each mapping directive in a mapfile is read in, the directive is added after
any other mapping directives that you already specified for the same segment
but before the default mapping directives for that segment.

Internal Map Structure
One of the most important data structures in the ELF-based link-editor is the
map structure. A default map structure, corresponding to the model default
mapfile mentioned above, is used by the link-editor when the command is
executed. Then, if the mapfile option is used, the link-editor parses the mapfile
to augment and/or override certain values in the default map structure.

A typical (although somewhat simplified) map structure is illustrated
in Figure6-1. The ‘‘Entrance Criteria’’ boxes correspond to the information in
the default mapping directives and the ‘‘Segment Attribute Descriptors’’ boxes
correspond to the information in the default segment declarations. The
‘‘Output Section Descriptors’’ boxes give the detailed attributes of the sections
that fall under each segment. The sections themselves are in circles.
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Figure 6-1 Simple Map Structure

The link-editor performs the following steps when mapping sections to
segments:

1. When a section is read in, the link-editor checks the list of Entrance Criteria
looking for a match. All specified criteria must be matched.
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In Figure 6-1, for a section to fall into the text  segment it must have a
section_type value of $PROGBITS and have a section_flags value of ?A!W. It
need not have the name .text  since no name is specified in the Entrance
Criteria. The section may be either X or !X  (in the section_flags value) since
nothing was specified for the execute bit in the Entrance Criteria.

If no Entrance Criteria match is found, the section is placed at the end of the
a.out  file after all other segments. (No program header entry is created for
this information. See “Program Header” on page 132 for more information.)

2. When the section falls into a segment, the link-editor checks the list of
existing Output Section Descriptors in that segment as follows:

If the section attribute values match those of an existing Output Section
Descriptor exactly, the section is placed at the end of the list of sections
associated with that Output Section Descriptor.

For instance, a section with a section_name value of .data1 , a section_type
value of $PROGBITS, and a section_flags value of ?AWX falls into the second
Entrance Criteria box in Figure 6-1, placing it in the data  segment. The
section matches the second Output Section Descriptor box exactly (.data1 ,
$PROGBITS, ?AWX) and is added to the end of the list associated with that
box. The .data1  sections from fido.o , rover.o , and sam.o  illustrate this
point.

If no matching Output Section Descriptor is found, but other Output Section
Descriptors of the same section_type exist, a new Output Section Descriptor
is created with the same attribute values as the section and that section is
associated with the new Output Section Descriptor. The Output Section
Descriptor (and the section) are placed after the last Output Section
Descriptor of the same section_type. The .data2  section in Figure 6-1 was
placed in this manner.

If no other Output Section Descriptors of the indicated section_type exist, a
new Output Section Descriptor is created and the section is placed in that
section.

Note – If the input section has a user-defined section_type value (that is,
between SHT_LOUSER and SHT_HIUSER, as described in the “Section Header”
on page 106) it is treated as a $PROGBITS section. Note that no method exists
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for naming this section_type value in the mapfile, but these sections can be
redirected using the other attribute value specifications (section_flags,
section_name) in the entrance criteria.

3. If a segment contains no sections after all of the command line object files
and libraries have been read in, no program header entry is produced for
that segment.

Note – Input sections of type $SYMTAB, $STRTAB, $REL, and $RELA are used
internally by the link-editor. Directives that refer to these section_types can only
map output sections produced by the link-editor to segments.

Error Messages
When the mapfile option is used, the link-editor can return the following types
of error messages:

warning:

Does not stop execution of the link-editor nor does it prevent the
link-editor from producing a viable a.out .

fatal:

Stops execution of the link-editor at the point the fatal error occurred.

Warnings

The following conditions produce warnings:

• A physical_address or a virtual_address value or a length value appears for any
segment other than a LOAD segment. (The directive is ignored.)

• A second declaration line exists for the same segment that changes an
attribute value(s). (The second declaration overrides the original.)

• An attribute value(s) (segment_type and/or segment_flags for text  and data ;
segment_type for note ) was changed for one of the built-in segments
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• An attribute value(s) (segment_type, segment_flags, length and/or alignment)
was changed for a segment created by an implicit declaration. If only the ?O
flag has been added then the change of attribute value warning will not be
generated.

• An entrance criteria was not met. If the ?O flag has been turned on and if
none of the input sections met an entrance criteria, the warning is generated.

Fatal Errors

The following conditions produce fatal errors:

• Specifying more than one -M option on the command line

• A mapfile cannot be opened or read

• A syntax error is found in the mapfile

Note – The link-editor does not return an error if a file_name, section_name,
segment_name or symbol_name does not conform to the rules under the ‘‘Mapfile
Structure and Syntax’’ section unless this condition produces a syntax error.
For instance, if a name begins with a special character and this name is at the
beginning of a directive line, the link-editor returns an error. If the name is a
section_name (appearing within the directive), the link-editor does not return an
error.

• More than one segment_type, segment_flags, virtual_address, physical_address,
length, or alignment value appears on a single declaration line

• You attempt to manipulate either the interp  segment or dynamic  segment
in a mapfile

Note – The interp  and dynamic  segments are special built-in segments that
you cannot change in any way.

• A segment grows larger than the size specified by a your length attribute
value

• A user-defined virtual_address value causes a segment to overlap the
previous segment

• More than one section_name, section_type, or section_flags value appears on a
single directive line
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• A flag and its complement (for example, A and !A ) appear on a single
directive line.
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Link-Editor Quick Reference A

The following sections provide a simple overview, or cheat sheet, of the most
commonly used link-editor scenarios (refer to “Link-Editing” on page 2 for an
introduction to the kinds of output modules generated by the link-editor). The
examples provided show the link-editor options as supplied to the compiler
driver cc(1) , this being the most common mechanism of invoking the link-
editor (refer to “Using a Compiler Driver” on page 9).

The link-editor places no meaning on the name of any input file. Each file is
opened and inspected to determine the type of processing it requires (refer to
“Input File Processing” on page 11). Shared objects that follow a naming
convention of lib x.so , and archive libraries that follow a naming convention
of lib x.a , may be input using the -l  option (refer to “Library Naming
Conventions” on page 14). This provides additional flexibility in allowing
search paths to be specified using the -L  option (refer to“Directories Searched
by the Link-Editor” on page 16).

The link-editor basically operates in one of two modes, static or dynamic.

Static Mode
This mode is selected when the -dn  option is used, and allows for the creation
of relocatable objects and static executables. Under this mode only relocatable
objects and archive libraries are acceptable forms of input. Use of the -l  option
will result in a search for archive libraries.
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Building a Relocatable Object
• Use the -dn  and -r  options:

Building a Static Executable
• Use the -dn  option without the - r option:

Note – The -a  option is available to indicate the creation of a static executable,
however, the use of -dn without a -r  implies -a .

Dynamic Mode
This is the default mode of operation for the link-editor. It can be enforced by
specifying the -dy  option, but is implied when not using the -dn  option.
Under this mode relocatable objects, shared objects and archive libraries are
acceptable forms of input. Use of the -l  option will result in a directory search,
where each directory is searched for a shared object, and if none is found the
same directory is then searched for an archive library. A search for archive
libraries only, can be enforced by using the -B static  option (refer to
“Linking with a Mix of Shared Objects and Archives” on page 15).

Building a Shared Object
• Use the -dy  and -G  option.

• Input relocatable objects should be built from position-independent code,
and use the -z text  option to enforce this requirement (refer to “Position-
Independent Code” on page 85).

• Use a versioned name for the shared object to allow for future upgrades
(refer to “Versioning” on page 73).

$ cc -dn -r -o temp.o file1.o file2.o file3.o .....

$ cc -dn -o prog file1.o file2.o file3.o .....
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• If the shared object being generated has dependencies on any other shared
objects, and these dependencies do not reside in /usr/lib , record their
pathname in the output file using the -R  option (refer to “Shared Objects
With Dependencies” on page 76).

The following example combines the above points:

• If the shared object being generated will be used as input to another
link-edit, record within it the shared object’s runtime name using the -h
option (refer to “Recording a Shared Object Name” on page 69). Make the
shared object available to the compilation environment by creating a file
system link to a non-versioned shared object name (refer to “Coordination
Of Binding Requirements” on page 74):

• Consider the performance implications of the shared object; maximize
shareability (refer to page 86) and minimize paging activity (refer to
page 89), reduce relocation overhead, especially by minimizing symbolic
relocations (refer to “Relocations” on page 90), and allow access to data via
functional interfaces (refer to “Copy Relocations” on page 91).

Building a Dynamic Executable
• Use the -dy  option without the -G  option.

• If the dynamic executable being generated has dependencies on any other
shared objects, and these dependencies do not reside in /usr/lib , record
their pathname in the output file using the -R  option (refer to “Directories
Searched by the Runtime Linker” on page 18).

The following example combines the above points:

$ cc -c -o foo.o -Kpic foo.c
$ cc -dy -G -o libfoo.so.1 -z text -R /home/lib foo.o -L. -lbar

$ cc -dy -G -o libfoo.so.1 -z text -h libfoo.so.1 foo.o
$ ln -s libfoo.so.1 libfoo.so

$ cc -dy -o prog -R /home/lib -L. -lfoo
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segment types, 133 to 135
string table, 118 to 119
symbol table, 119 to 124
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performance
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