
2550 Garcia Avenue
Mountain View, CA 94043
U.S.A.

OpenWindows Server Programmer’s
Guide

A Sun Microsystems, Inc. Business

Please
Recycle

 1994 Sun Microsystems, Inc.
2550 Garcia Avenue, Mountain View, California 94043-1100 U.S.A.

All rights reserved. This product and related documentation are protected by copyright and distributed under licenses
restricting its use, copying, distribution, and decompilation. No part of this product or related documentation may be
reproduced in any form by any means without prior written authorization of Sun and its licensors, if any.

Portions of this product may be derived from the UNIX® and Berkeley 4.3 BSD systems, licensed from UNIX System
Laboratories, Inc., a wholly owned subsidiary of Novell, Inc., and the University of California, respectively. Third-party font
software in this product is protected by copyright and licensed from Sun’s font suppliers.

RESTRICTED RIGHTS LEGEND: Use, duplication, or disclosure by the United States Government is subject to the restrictions
set forth in DFARS 252.227-7013 (c)(1)(ii) and FAR 52.227-19.

The product described in this manual may be protected by one or more U.S. patents, foreign patents, or pending applications.

TRADEMARKS
Sun, the Sun logo, Sun Microsystems, Sun Microsystems Computer Corporation, SunSoft, the SunSoft logo, Solaris, SunOS,
OpenWindows, DeskSet, ONC, ONC+, and NFS are trademarks or registered trademarks of Sun Microsystems, Inc. in the U.S.
and certain other countries. UNIX is a registered trademark of Novell, Inc., in the United States and other countries; X/Open
Company, Ltd., is the exclusive licensor of such trademark. OPEN LOOK® is a registered trademark of Novell, Inc. PostScript
and Display PostScript are trademarks of Adobe Systems, Inc. All other product names mentioned herein are the trademarks
of their respective owners.

All SPARC trademarks, including the SCD Compliant Logo, are trademarks or registered trademarks of SPARC International,
Inc. SPARCstation, SPARCserver, SPARCengine, SPARCstorage, SPARCware, SPARCcenter, SPARCclassic, SPARCcluster,
SPARCdesign, SPARC811, SPARCprinter, UltraSPARC, microSPARC, SPARCworks, and SPARCompiler are licensed
exclusively to Sun Microsystems, Inc. Products bearing SPARC trademarks are based upon an architecture developed by Sun
Microsystems, Inc.

The OPEN LOOK and Sun™ Graphical User Interfaces were developed by Sun Microsystems, Inc. for its users and licensees.
Sun acknowledges the pioneering efforts of Xerox in researching and developing the concept of visual or graphical user
interfaces for the computer industry. Sun holds a non-exclusive license from Xerox to the Xerox Graphical User Interface,
which license also covers Sun’s licensees who implement OPEN LOOK GUIs and otherwise comply with Sun’s written license
agreements.

X Window System is a product of the Massachusetts Institute of Technology.

THIS PUBLICATION IS PROVIDED “AS IS” WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR IMPLIED,
INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A
PARTICULAR PURPOSE, OR NON-INFRINGEMENT.

THIS PUBLICATION COULD INCLUDE TECHNICAL INACCURACIES OR TYPOGRAPHICAL ERRORS. CHANGES ARE
PERIODICALLY ADDED TO THE INFORMATION HEREIN; THESE CHANGES WILL BE INCORPORATED IN NEW
EDITIONS OF THE PUBLICATION. SUN MICROSYSTEMS, INC. MAY MAKE IMPROVEMENTS AND/OR CHANGES IN
THE PRODUCT(S) AND/OR THE PROGRAM(S) DESCRIBED IN THIS PUBLICATION AT ANY TIME.

iii

Contents

Preface. xv

New Features . xxi

1. Overview of OpenWindows Architecture 1

Architecture Overview . 1

OPEN LOOK Graphical User Interface. 3

OpenWindows Applications . 3

OpenWindows Application Programmer’s Interfaces 4

OpenWindows Toolkits. 4

Libraries . 5

OPEN LOOK Window Manager . 6

OpenWindows Server . 6

OpenWindows Directory Structure . 7

2. Introduction to the OpenWindows Server 11

Server Architecture . 12

X11R5 Server. 12

iv OpenWindows Server Programmer’s Guide—August 1994

MIT X Extensions. 13

DPS Extension . 14

Applications That Run With the Server 14

3. X Features and Enhancements . 17

Overview of the X Window System. 17

X Protocol . 18

The X Library . 18

X Toolkits . 19

X11 Features . 19

X11 Libraries. 19

Supported X11 Applications. 20

Unsupported Applications . 21

ICCCM Compliance. 21

MIT X Extensions Supported . 21

How To Access MIT X11 Extension Standards. 22

XInput Extension . 22

MBX (Multi-Buffering) Extension . 22

SHAPE Extension . 23

MIT-SHM (Shared Memory) Extension 23

XTEST Extension . 23

MIT-SUNDRY-NONSTANDARD . 23

Notes on X11 Programming . 24

Compose Key Support . 24

Color Name Database . 24

Contents v

Color Recommendations. 24

4. DPS Features and Enhancements. 27

Introduction to the DPS System . 27

How Applications Use the DPS System 28

DPS Extension to X . 28

DPS Font Enhancements . 30

DPS Libraries . 31

Adobe NX Agent Support . 31

Applications Modified to use DPS. 31

DPS Security Issues . 32

System File Access . 32

Secure Context Creation . 32

How to Access Information From Adobe 33

When DPS Encounters Internal Errors . 34

5. Font Support . 35

Font Formats. 35

Outline and Bitmap Fonts. 36

Replacing Outline Fonts with Bitmap Fonts. 37

When Replacement Occurs. 37

Using F3 Fonts in DPS. 38

Locating Fonts . 38

Font Directory Structure . 38

Changing the Default Font Path in X11. 39

Changing the Resource Path in DPS 40

vi OpenWindows Server Programmer’s Guide—August 1994

Font File Suffixes . 42

Adding New Fonts . 43

Adding Bitmap Fonts . 43

Adding Outline Fonts . 44

Using OPEN LOOK Fonts on X Terminals 47

6. Visuals and Display Devices . 49

Display Devices . 49

Reference Display Devices . 49

SPARC Supported Reference Devices 49

x86 Supported Reference Devices 50

IHV Display Devices . 50

Visuals . 50

Multiple Depth Devices . 50

Default Visual. 51

Reference Devices and Visuals . 51

Reference Devices . 51

SPARC Device-Specific Information 52

x86 Device-Specific Information . 54

The Default Visual . 55

Changing the Screen Default Visual 55

SPARC Example . 56

x86 Example . 57

Hints for Windows Programming With Visuals 57

Default Visual Assumptions . 57

Contents vii

Multiple Hardware Colormaps . 58

Colormap Installation–Multiple LUT Devices 58

Colormap Demo. 58

Gamma-Corrected Visuals . 59

7. Visual Overlay Windows. 65

Basic Features of Overlay Windows . 65

Definition . 65

Creating an Overlay Window . 66

Overlay Window Viewability. 67

Rendering Transparency . 67

Advanced Features of Overlay Windows 67

Overlay Window Background . 67

Overlay Window Border. 68

Overlay Window Backing Store . 69

Overlay Window Gravity . 69

Overlay Colormap . 69

Other Overlay Window Characteristics 69

Input Distribution Model . 70

Print Capture . 71

Choosing Visuals . 72

Interaction with Other Extensions. 73

Xlib Interface . 73

XSolarisOvlPaintType . 74

XSolarisOvlCreateWindow. 74

viii OpenWindows Server Programmer’s Guide—August 1994

XSolarisOvlIsOverlayWindow. 75

XSolarisOvlSetPaintType . 76

XSolarisOvlGetPaintType . 77

XSolarisOvlSetWindowTransparent 78

XSolarisOvlCopyPaintType . 79

XSolarisOvlCopyAreaAndPaintType 81

XReadScreen. 86

Semantics of Existing Primitive Rendering Routines 88

Semantics of Existing Pixel Transfer Routine 89

XGetImage . 89

XCopyArea and XCopyPlane. 89

Portability Inquiry Routines. 89

XSolarisOvlSelectPartner . 89

XSolarisOvlSelectPair . 96

Summary of New XLib Routines . 99

8. Security Issues. 101

Access Control Mechanisms . 102

User-Based . 102

Host-Based . 102

Authorization Protocols . 103

MIT-MAGIC-COOKIE-1 . 103

SUN-DES-1 . 103

Changing the Default Authorization Protocol 104

Manipulating Access to the Server . 105

Contents ix

Client Authority File . 106

Allowing Access When Using MIT-MAGIC-COOKIE-1 . . 107

Allowing Access When Using SUN-DES-1 107

Running Clients Remotely, or Locally as Another User 108

A. Multi-Buffering Application Program Interface, Version 3.2 109

Library File . 109

Header File . 110

New Routines . 110

New Types . 110

New Constants . 110

New Structures. 112

MBX Functions . 113

Glossary . 129

Index . 135

x OpenWindows Server Programmer’s Guide—August 1994

xi

Figures

Figure 1-1 OpenWindows Architecture . 2

Figure 2-1 OpenWindows Server Architecture . 12

Figure 4-1 The DPS Extension to X . 29

Figure 6-1 Nonlinear Monitor Intensity Response 59

Figure 6-2 Gamma Correction . 60

xii OpenWindows Server Programmer’s Guide—August 1994

xiii

Tables

Table 1-1 OpenWindows Directories. 7

Table 3-1 X11 Libraries. 19

Table 4-1 DPS Libraries . 31

Table 5-1 OpenWindows Font Formats. 35

Table 5-2 Bitmap Font Formats. 37

Table 5-3 Font Directory Structure. 38

Table 5-4 Font File Availability. 42

Table 6-1 Reference Display Devices Supported by OpenWindows . . . 51

Table 6-2 Device Modifier Options . 56

Table 7-1 XSolarisOvlCopyPaintType Source/Destination
Combinations and Actions. 80

Table 7-2 XSolarisOvlCopyAreaAndPaintType Possible
Source/Destination Combinations and Actions. 84

xiv OpenWindows Server Programmer’s Guide—August 1994

xv

Preface

The OpenWindows Server Programmer’s Guide provides detailed information on
the OpenWindows™ server. It also provides an overview of the OpenWindows
architecture and tells you where to look for more information.

This manual provides detailed information for software developers interested
in interfacing with the OpenWindows server.

Who Should Use This Book
If you are interested in the components of the OpenWindows environment,
read Chapter 1, “Overview of OpenWindows Architecture.”

Programming in this environment primarily involves using a toolkit and
possibly interfacing with the server and its protocols. The protocols and
toolkits are documented elsewhere (see “Related Books” on page xvii). Read
this manual if you need detailed information on the:

• Features of the OpenWindows server
• Differences from and enhancements to the MIT X sample server
• DPS imaging system
• Supported display devices
• Authorization schemes and protocols for server connections

Before You Read This Book
Read New Features for important information about this release.

xvi OpenWindows Server Programmer’s Guide—August 1994

Check the following manuals for any corrections or updates to information in
this manual:

• SPARC: Installing Solaris Software
• x86: Installing Solaris Software
• Software Developer Kit Open Issues and Late-Breaking News
• Software Developer Kit Introduction
• Software Developer Kit Installation Guide

This manual assumes that the reader has a programming background and
familiarity with, or access to, appropriate documentation for:

• Solaris 2.x
• X window system
• C programming language
• PostScript
• The Display PostScript System (DPS)
• olwm window manager
• OPEN LOOK Intrinsics Toolkit (OLIT)
• XView toolkit

How This Book Is Organized
Although you can read this book in sequence, it is designed for you to read
only those chapters of interest. This book serves both as an overview and as a
reference document.

Chapter 1, “Overview of OpenWindows Architecture” describes the
architecture and the components of OpenWindows, including definitions,
pointers to other documents, and the directory structure.

Chapter 2, “Introduction to the OpenWindows Server” describes the
architecture of the OpenWindows server, the X and DPS extensions, Sun’s
enhancements to MIT’s libraries and extensions, notes on color-related issues,
and a list of applications you can run with the server.

Chapter 3, “X Features and Enhancements” contains an overview of the X
Window System and discussions of its features and SunSoft’s enhancements to
the sample server.

xvii

Chapter 4, “DPS Features and Enhancements” provides an introduction to the
DPS system. It describes the DPS extension, how applications use DPS,
SunSoft’s font enhancements to the DPS extension, DPS libraries, applications
modified to use DPS, DPS security issues, and how to access information from
Adobe, Inc.

Chapter 5, “Font Support” describes the core set of fonts provided and how to
use and add fonts.

Chapter 6, “Visuals and Display Devices” describes the visuals and graphics
devices supported. It provides hints for programming on advanced graphics
devices and discusses multiple hardware colormaps and the installation of
colormaps.

Chapter 7, “Visual Overlay Windows” describes visual overlay windows.

Chapter 8, “Security Issues” describes the security features of the
OpenWindows environment.

Appendix A, “Multi-Buffering Application Program Interface, Version 3.2”
describes the C language API (application program interface) to the MBX
(Multi–Buffering) extension.

Related Books
For information on this release of OpenWindows, consult the following:

• New Features
• Software Developer Kit Introduction
• Software Developer Kit Open Issues and Late-Breaking News

For information on how to start up the OpenWindows environment, consult
the following manuals:

• SPARC: Installing Solaris Software
• x86: Installing Solaris Software
• Solaris Advanced User’s Guide

To learn how to use the OpenWindows environment, consult the following
manuals:

• Solaris User’s Guide
• Solaris Advanced User’s Guide

xviii OpenWindows Server Programmer’s Guide—August 1994

For more information on how to write applications in the OpenWindows
environment, consult the following manuals:

• Desktop Integration Guide
• ToolTalk User’s Guide
• OpenWindows Reference Manual
• XView Developer’s Notes
• OLIT QuickStart Programmer’s Guide
• OLIT Reference Manual

The following X-related manuals are available through SunExpress or your
local bookstore. Contact your SunSoft representative for information on
ordering any of these books.

• XView Reference Manual, O’Reilly & Associates
• XView Programming Manual, O’Reilly & Associates
• Xlib Reference Manual, O’Reilly & Associates
• Xlib Programming Manual, O’Reilly & Associates
• X Protocol Reference Manual, O’Reilly & Associates
• Programmer’s Supplement for Release 5, O’Reilly & Associates
• X Toolkit Intrinsics Reference Manual, O’Reilly & Associates
• X Window System, Third Edition, Digital Press
• The X Window System Server, X Version 11, Release 5, Digital Press

The following PostScript and DPS-related manuals are available through
SunExpress or your local bookstore. Contact your SunSoft representative for
information on ordering.

• PostScript Language Reference Manual, Second Edition, Adobe Systems
Incorporated

• PostScript Language Tutorial and Cookbook, Adobe Systems Incorporated
• Programming the Display PostScript System with X, Adobe Systems

Incorporated
• PostScript Language Program Design, Adobe Systems Incorporated
• Adobe Type I Font Format, Adobe Systems Incorporated

xix

What Typographic Changes and Symbols Mean
The following table describes the type changes and symbols used in this book.

Table P-1 Typographic Conventions

Typeface or
Symbol Meaning Example

AaBbCc123 The names of commands, files,
and directories; on-screen
computer output

Edit your .login file.
Use ls -a to list all files.
system% You have mail.

AaBbCc123 What you type, contrasted with
on-screen computer output

system% su
password:

AaBbCc123 PostScript programming
language commands

Use the currentpath operator.

AaBbCc123 Command-line placeholder:
replace with a real name or
value

To delete a file, type rm filename.

AaBbCc123 Book titles, new words or terms,
or words to be emphasized

Read Chapter 6 in User’s Guide.
These are called class options.
You must be root to do this.

Code samples are included in boxes and may display the following:

% UNIX C shell prompt system%

$ UNIX Bourne shell prompt system$

Superuser prompt, either shell system#

xx OpenWindows Server Programmer’s Guide—August 1994

xxi

New Features

The following information tells you what is new in this release of the
OpenWindows X server.

Visual Window Overlays
An overlay is a pixel buffer (either physical or software-simulated) into which
graphics can be drawn. You can use overlays to display temporary imagery in
a display window. See Chapter 7, “Visual Overlay Windows” for a description
of the visual overlay API.

AccessX
This release of the OpenWindows server supports features compliant with the
American Disabilities Act (ADA). This feature is available through an
extension to the server, called AccessX.

Use the client program accessx to enable and disable the following
capabilites provided by the AccessX extension: sticky keys, slow keys, toggle
keys, mouse keys, bounce keys and repeat keys. Of these, the sticky, slow and
mouse keys can be enabled using shift or other keys. The accessx client
controls the toggle, bounce, and repeat keys and their settings.

Before running accessx , set the UIDPATH environment variable to
/usr/openwin/lib/app-defaults/accessx.uid.

xxii OpenWindows Server Programmer’s Guide—August 1994

The accessx client is part of the SUNWxwacx package. This package is not
installed automatically, unless you install the All Cluster .

pfb Fonts
The Openwindows server now supports Type 1 binary .pfb fonts.

Adobe NX Agent Support
The DPS client library libdps has been enhanced so that a client will
automatically connect to a DPS NX agent running on your network, if it is
unable to connect to the DPS extension. Your DPSX client need not be modified
to take advantage of this support. The NX agent is available through Adobe.

Performance Enhancements
If you NFS mount your window server, mount it setuid allowable. This
enables the X server to take advantage of performance features in the Solaris
operating system.

1

Overview of OpenWindows
Architecture 1

This chapter provides an overview of the OpenWindows window system
architecture. The OPEN LOOK Graphical User Interface is briefly described, as
well as the components of the OpenWindows product. This chapter also
includes an overview of the file system.

Architecture Overview
Figure 1-1 on page 2 illustrates the architecture of the OpenWindows
environment. Each rectangle bordered by a solid line is a component of the
OpenWindows architecture. The “Operating System” and “Hardware”
rectangles, bordered by dashed lines, are included in the figure to show you
how the OpenWindows environment fits into a computer system. These two
rectangles are not part of the OpenWindows architecture.

2 OpenWindows Server Programmer’s Guide—August 1994

1

Figure 1-1 OpenWindows Architecture

A user interface specifies a consistent screen layout that effects applications
(clients), APIs (Application Programmer’s Interface), and window managers.
The OPEN LOOK Graphical User Interface is the user interface implemented in
the OpenWindows environment and is discussed on page 3.

This manual is primarily concerned with the OpenWindows server. Other
architecture components are discussed in detail in separate technical manuals
referenced throughout this chapter.

OpenWindows
Applications

OpenWindows
APIs (libraries

OPEN LOOK
Window Manager

Operating System

Hardware

OpenWindows
Server (Xsun)

and toolkits)
(olwm)

(clients)

Overview of OpenWindows Architecture 3

1

OPEN LOOK Graphical User Interface
The OPEN LOOK Graphical User Interface (GUI) is not software; it is a
specification for a user interface that builds on the graphical user interface
design pioneered by the Xerox Corporation. The OPEN LOOK GUI specifies
windows and menus with common graphic symbols (instead of typed system
commands) to provide an intuitive environment. Users are presented with a
consistent screen layout that can be used across various platforms and
operating systems. This common look and feel benefits end users, application
programmers, and software vendors.

While the application programmer can implement the OPEN LOOK GUI from
scratch by using Xlib, the usual implementation approach is to use a toolkit
written for a specific windowing UI (for example, OLIT, or XView™). These
toolkits provide routines that implement interface elements, allowing the
programmer to concentrate on the design of the application. Examples of
interface elements are windows, resize corners, and scrollbars.

For more information on the OPEN LOOK GUI, see the OPEN LOOK Graphical
User Interface Application Style Guidelines available through SunExpress or your
local bookstore.

OpenWindows Applications
OpenWindows applications (clients) are applications that run within the
OpenWindows environment. These clients are implemented with the OPEN
LOOK GUI and are integrated with other applications on the desktop. These
applications are usually visible on the desktop as icons.

For more information on integrating your application with other
OpenWindows application, see the Desktop Integration Guide.

For more information on how to use OpenWindows applications, see the
Solaris Advanced User’s Guide and the Solaris User’s Guide.

The following applications are part of the OpenWindows environment:

• DeskSet Applications

The DeskSet™ is a group of productivity applications, such as Mail Tool,
File Manager, Calendar Manager, Clock, Print Tool, Audio Tool, and Icon
Editor.

4 OpenWindows Server Programmer’s Guide—August 1994

1

For more information on DeskSet, see the Solaris User’s Guide and the Solaris
Advanced User’s Guide.

• Help Viewer

Use the Help Viewer application to read help handbooks and a tutorial
called Introducing Your Desktop. Help handbooks provide quick-reference
information about the workspace and the DeskSet applications. The desktop
tutorial provides an overview of using your workspace, including how to
use the mouse, icons, windows, and menus.

Choose Help from the Workspace menu to run the Help Viewer.

• Demo Applications

Demonstration applications, or Demos that you can run are located in
/usr/openwin/demo . These Demos are written with several
OpenWindows toolkits. The source for some Demos is located in
/usr/openwin/share/src .

Note – This directory is included by default only on systems installed with the
“entire” configuration due to disk space limitations.

OpenWindows Application Programmer’s Interfaces
An application programmer’s interface (API) is a set of software routines you
use to build applications. Toolkits and libraries are examples of APIs that range
from high-level abstractions (toolkits and libraries such as XGL™ and
SunPHIGS™) to low-level abstractions (libraries such as Xlib, the lowest level
interface to the X Window System available to you).

OpenWindows Toolkits

The OpenWindows toolkits provide a set of user interface objects and widgets
(such as scrollbars, menus, and buttons) that implement the look and feel of an
OPEN LOOK application. The toolkits also provide a mechanism to manage
the interpretation of events received from the window server. The application
developer combines the interface objects and event handling mechanisms with
application-specific code.

Overview of OpenWindows Architecture 5

1

OpenWindows provides two toolkits and many applications built with these
toolkits. Since these toolkits support the OPEN LOOK GUI, the OpenWindows
applications and customer applications built with these toolkits are OPEN
LOOK applications.

The two toolkits are:

• OPEN LOOK Intrinsics Toolkit (OLIT)

• XView

OLIT

The OPEN LOOK Intrinsics Toolkit (OLIT) is a GUI toolkit for OpenWindows
that is based on the Xt Intrinsics from MIT (Massachusetts Institute of
Technology). OLIT features an OPEN LOOK widget set (prebuilt user interface
components).

For more information on programming with OLIT, see the following manuals:

• OLIT QuickStart Programmer’s Guide
• OLIT Reference Manual
• R5 Xt Toolkit Intrinsics Reference Manual
• The X Window System: Programming and Applications with Xt

XView

The XView toolkit (X Window System-based Visual/Integrated Environment
for Workstations) simplifies application development under the X Window
System by providing you with a set of user interface objects. XView is based on
several fundamental principles of object-oriented programming.

For more information on programming with XView, see the following manuals:

• XView Programming Manual
• XView Reference Manual
• XView Developer’s Notes

Libraries

Libraries are files that incorporate collections of software routines. Link these
files into your programs as needed. Libraries provide software reusability.

6 OpenWindows Server Programmer’s Guide—August 1994

1

All of the libraries available in OpenWindows are in /usr/openwin/lib . See
“OpenWindows Directory Structure” on page 7 for a list of libraries available
and “X11 Libraries” on page 19 and “DPS Libraries” on page 31 for further
information on supported libraries.

OPEN LOOK Window Manager
A window manager implements the functions with which a user can control
the appearance of windows on the screen. These functions include moving,
resizing, opening, closing, and quitting windows. Other functions of window
managers include setting input focus, installing colormaps, and starting up
new applications.

By default, OpenWindows runs the OPEN LOOK window manager (olwm). It
is designed to manipulate windows using a two- or three-button mouse.

X Window System managers that are ICCCM (Inter-Client Communication
Conventions Manual) compliant (for example, gwm, mwm, twm) are compatible
with OpenWindows, and olwm is compatible in a generic X11 environment. For
information on how to change from the default olwm to another X window
manager, see the olwm(1) man page.

The X Consortium’s ICCCM specifies how a client coexists properly with other
clients sharing the same server. For more information on the ICCCM, see
“ICCCM Compliance” on page 21 and the X Protocol Reference Manual.

For more information on window managers, see the following documentation:

• Xlib Programming Manual
• olwm(1) man page

OpenWindows Server
The OpenWindows server (called XSun) is a program that is the foundation for
the OpenWindows environment. It is the X Window System server (Version 11,
Release 5–X11R5) with a Display PostScript™ (DPS) imaging system extension.
It implements a client-server model of window systems, is portable to a wide
variety of hardware platforms, and supports portable X11 extensions.

The OpenWindows server is described in more detail in the remaining chapters
of this manual.

Overview of OpenWindows Architecture 7

1

OpenWindows Directory Structure
A software product’s directory structure can show a great deal about the
product’s features. It can tell you where the executables, include files, and
libraries reside, and reveal the basic logic or design of the product. Table 1-1
helps you to get familiar with the OpenWindows product.

The OpenWindows directory structure includes the following top-level
directories (all of which are prefixed by /usr/openwin).

Table 1-1 OpenWindows Directories

Directory Subdirectory Content

SUNWits Server private files for Internal Use Only

/bin OpenWindows executables

/demo OpenWindows demonstration programs

/etc Symbolic link to /share/etc

/keytables US and international keytables, and keytable.map

/tt ToolTalk data files

/workspace /patterns (.xbm files and attributes)

/include Symbolic link to /share/include
Various library header files

/X11 X11 header files, /DPS, /Xaw , /Xmu, /bitmaps , /extensions

/Xau Symbolic link to /include/X11

/Xol OLIT header files

/config generic.h header file

/desktop Classing engine header files

/dga dga.h header file

/help libhelp header files

/images Various bitmap files

/olgx olgx header file

/pixrect Pixrect header files

/portable c_varieties.h and portable.h header files

/xview XView header files

8 OpenWindows Server Programmer’s Guide—August 1994

1

/lib OpenWindows default start-up files and libraries, MIT core
distribution libraries, rgb files

/X11 Server support files, /fonts , and DPS .upr files

/Xol OLIT data files

/app-defaults X applications default files

/cetables Classing Engine tables

/config imake files

/help Symbolic link to /locale/C/help

/libp Profiles libraries

/locale Locale libraries (/C , /iso_8859_1)

/xdm Xdm configuration files

/man OpenWindows man pages

Symbolic link to /share/man

/man1 OpenWindows command man pages

/man1m OpenWindows command man pages

/man3 Library man pages, for XView, OLIT, Xt, Xlib, etc.

/man4 AnswerBook man pages

/man5 File format man pages

/man6 Demos man pages

/man7 Non-command man pages

/server Server private files for Internal Use Only

/share Architecture-independent files

/etc Location of files in /etc

/images /PostScript , /fish , /raster

/include Location of files in /include

/locale Location of files in /lib/locale

Table 1-1 OpenWindows Directories (Continued)

Directory Subdirectory Content

Overview of OpenWindows Architecture 9

1

/share /man Location of files in /man

/src /dig_samples , /extensions , /fonts , /olit , /tooltalk ,
/xview

/xnews /client

Table 1-1 OpenWindows Directories (Continued)

Directory Subdirectory Content

10 OpenWindows Server Programmer’s Guide—August 1994

1

11

Introduction to the OpenWindows
Server 2

The OpenWindows server is a program that is the foundation for the
OpenWindows environment. It is MIT’s X11R5 sample server with a Display
PostScript (DPS) imaging system extension and considerable Sun added value.
The OpenWindows server also includes several X extensions and DPS font
enhancements.

Throughout this document, server is used interchangeably with OpenWindows
server, and sample server is used interchangeably with MIT’s X11R5 sample
server.

The following topics are discussed in this chapter:

• Server architecture
• X11R5 server, its layers and the font management library
• MIT’s X extensions
• DPS extension
• Types of applications you can run with the server

For more information on the server, see the books listed in “Related Books” on
page xvii and the following manual pages:

• Xsun (1) OpenWindows server
• Xserver (1) MIT’s sample server
• openwin (1) OpenWindows start up command

12 OpenWindows Server Programmer’s Guide—August 1994

2

Server Architecture
Figure 2-1 illustrates the structure of the server. This diagram is an expansion
of the OpenWindows Server architecture component in Figure 1-1 on page 2.

Figure 2-1 OpenWindows Server Architecture

X11R5 Server

The X11R5 sample server from MIT was designed and implemented to be
portable; it hides differences in the underlying hardware from applications, or
clients. The server handles all drawing, interfaces with device drivers to
receive input, and manages off-screen memory, fonts, cursors, and colormaps.
The sample server contains the following parts, or layers:

MIT X Extensions

DPS Extension

Font Management Library

X11R5 Server

OS Layer

DDX Layer

DIX Layer

OpenWindows Server
X Protocol

Xlib

Introduction to the OpenWindows Server 13

2

• Device-Independent Layer (DIX)

The DIX layer contains functions that do not depend on graphics hardware,
input devices, or the host operating system—these functions are portable
from one implementation to another. It dispatches client requests, manages
the event queue, distributes events to clients, and manages visible data
structures.

• Device-Dependent Layer (DDX)

The DDX layer contains routines that depend on graphics hardware and
input devices the server must accommodate. This layer is a major portion of
the OpenWindows server, Sun’s value-added product. This layer includes
creating and manipulating pixmaps, clipping regions, colormaps, screens,
fonts, and graphics contexts. In addition, the DDX layer collects events from
input devices and relays them to the DIX layer.

• Operating System Layer (OS)

The OS layer contains functions that depend on the host operating system.
This layer is another part of Sun’s value-added product. The OS layer
manages client connections and connection authorization schemes, and
provides routines for memory allocation and deallocation.

• Font Management Library

The font management library enables the server to use font files of different
formats and to load fonts from the X font server. The font features of the
OpenWindows server are described in detail in Chapter 5, “Font Support.”

MIT X Extensions

The X Window System is extensible; that is, new features and technology can
be added easily. The OpenWindows server supports six X extensions as
defined (or proposed) by the MIT X Consortium. For more information on the
standard X Extension Mechanism, see The X Window System Server and the Xlib
Programming Manual.

The OpenWindows server supports the following MIT extensions:

• XInput
• MBX (Multi-Buffering)
• SHAPE
• MIT-SHM (Shared Memory)

14 OpenWindows Server Programmer’s Guide—August 1994

2

• XTEST
• MIT-SUNDRY-STANDARD

See “MIT X Extensions Supported” on page 21 for more information on these
extensions.

DPS Extension

The DPS extension is implemented as an extension to the server. Clients send
PostScript to the server via wraps. Data can be returned from the server to the
client by specifying output arguments. The DPS client library implements DPS
client-server communication transparently using the X protocol.

Applications that use the DPS extension create one or more contexts. A context
can be thought of as a virtual printer, with its own stacks, input/output
facilities, and memory space.

The interpreter schedules context execution. Each context has access to its
private VM (virtual memory space). An additional common portion of VM
space, called shared VM, is shared among all contexts and contains system fonts
and other shared resources. Private VM can contain fonts private to the context.

See Chapter 4, “DPS Features and Enhancements” for more information on this
extension.

Applications That Run With the Server
You can run the following kinds of applications with the server:

• Applications written with the following toolkits:
• OpenWindows 3.3 toolkits: OLIT and XView
• Motif toolkit
• Xt toolkit

• Applications written for the X protocol

• Applications written for the DPS interface

• SPARC OpenWindows Version 3 X11 applications compiled under SunOS
4.x

Introduction to the OpenWindows Server 15

2

Note – The OpenWindows Version 3 X11 applications must adhere to the
system Binary Compatibility Package. See the Solaris Binary Compatibility Guide
for more information.

• x86 Applications from Interactive Unix.

Applications written with the following interfaces are not supported:
• TNT, NeWS, and XVPS
• SunView, SunWindows, and Pixrect

16 OpenWindows Server Programmer’s Guide—August 1994

2

17

X Features and Enhancements 3

This chapter discusses the following X-related topics:

• Overview of the X Window System
• X11 Features Supported
• X11 Features Not Supported
• ICCCM Compliance
• MIT X11 Extensions Supported
• Notes on X11 Programming

OpenWindows is based on and complies with the features present in MIT’s X11
Release 5 (X11R5). In addition, Sun has added several enhancements that let
programmers create more sophisticated applications.

Overview of the X Window System
The X Window System, or X, is a client-server, network-based windowing
system developed at MIT (Massachusetts Institute of Technology) in 1984.
Several versions of X have been developed. (X and X11 are used
interchangeably throughout this chapter.)

X has been adopted as an industry-standard window system and is supported
by the MIT X Consortium, which was formed in 1988. This consortium
currently consists of over 65 companies, several universities, research
organizations, and international vendors. The X Consortium is self-supporting

18 OpenWindows Server Programmer’s Guide—August 1994

3

and was formed to promote cooperation within the computer industry in
creating standard software interfaces at all layers in the X Window System
environment.

The X Window System’s architecture is based on the client-server model. The X
server runs on a computer with a screen, keyboard, and pointing device
(usually a mouse). Applications that run in the X environment are clients of the
server. Clients can coexist on the computer with the server or they can be
located on a remote system somewhere on the network.

Individual windows are controlled by a special client program, the window
manager. The OpenWindows environment includes the olwm window
manager. See “OPEN LOOK Window Manager” on page 6 and the olwm(1)
man page for more information on the capabilities of olwm.

There are numerous books on all aspects of X and the X Window System. See
the preface for a list of recommended books available through SunExpress and
your local book store.

X Protocol

Clients and the server exchange information using a well-defined
communication protocol—the X protocol—that forms the basis of the X Window
System. Clients use the X protocol to send requests to the server to create and
manipulate windows, to generate text and graphics, to receive input from the
user, and to communicate with other client applications. The server uses the X
protocol to send information back to clients in response to their requests and to
deliver keyboard and other user input to the clients in the form of specialized
data structures called events.

The X Library

The X protocol is implemented with a standard library of routines called Xlib,
the X library. It provides you with a procedural interface that hides many of
the low-level details of the X protocol, such as message formats. Various
functions are also included that are not protocol-related, but important when
building applications. The exact interface for this library may differ for each
programming language. The OpenWindows development environment
provides Xlib with a C programming language interface.

X Features and Enhancements 19

3

X Toolkits

X toolkits are one level up in terms of ease-of-use from the Xlib routines, just as
the Xlib routines are one level up from the X protocol. Toolkits and higher-level
graphics libraries can be implemented on top of Xlib and usually call Xlib
directly.

The X protocol does not specify the look and feel of applications written for X
nor how they should respond to user input. Although Xlib provides the
foundation, write most of your applications using toolkits and graphics
libraries that provide a consistent look and feel characteristic of a particular
windowing system.

The X toolkits bundled with the OpenWindows product are XView and OLIT
(OPEN LOOK Intrinsics Toolkit). See “OpenWindows Toolkits” on page 4 for
more information.

X11 Features
The following libraries and applications, most of which are available from the
MIT X Consortium, run on the OpenWindows server and are supported by
Sun.

X11 Libraries

The X libraries are listed in the following table. The .so and .a files that
comprise these libraries are located in /usr/openwin/lib.

Table 3-1 X11 Libraries

Library Description
Available
From MIT Sun’s Value Added

libX11 Xlib Yes MT Safe
Dynamic loading of locale
Search path includes

/usr/openwin
New keysyms

libXau X Authorization library Yes None

libXaw Athena Widget Set library Yes None

libXext X Extensions library Yes Bug fixes, transparent overlays

20 OpenWindows Server Programmer’s Guide—August 1994

3

Supported X11 Applications

The OpenWindows environment includes the following client applications
available from the MIT X Consortium:

• xterm terminal emulator
• twm window manager
• xdm display manager
• bitmap bitmap editor
• xfd font display utility
• xauth access control program
• xhost access control utility
• xrdb resource control program
• xset user preference setting program
• xsetroot root window appearance setting utility
• xmodmap keyboard control utility
• xlsfonts server font listing utility
• xfontsel font selection utility

libXinput Binary compatibility library for
previous input extension

No Sun library

libXi Xinput Extension library Yes Bug fixes
Supports OpenWindows X

extensions

libXmu X Miscellaneous Utilities library Yes Search path includes
/usr/openwin

libXol OLIT library No
(Available
from USL)

Sun product—see the
preface for a list of
OLIT manuals

libXt Xt Intrinsics library Yes Includes all private X
Consortium patches
as of 12/9/92

libxview XView library Yes Sun product donated to
X Consortium

Bug fixes not included in
MIT’s X11R5 libxview

Table 3-1 X11 Libraries (Continued)

Library Description
Available
From MIT Sun’s Value Added

X Features and Enhancements 21

3

• xlswins window listing utility
• xwininfo window information utility
• xlsclients client applications information utility
• xdpyinfo server information display utility
• xprop window and font properties utility

Unsupported Applications

The following are some applications and libraries, all of which are available
from the MIT X Consortium, that run on the OpenWindows server but are not
distributed or supported by Sun:

• Andrew, InterViews
• The uwm and wm window managers
• The CLX Common Lisp interface
• “contrib” MIT clients

ICCCM Compliance
OpenWindows is fully compliant in all areas of the ICCCM (Inter-Client
Communication Conventions Manual). For more information on the ICCCM,
see the X Protocol Reference Manual.

MIT X Extensions Supported
The OpenWindows server supports six X extensions as defined, or proposed by
the MIT X Consortium. The server also includes OpenWindows-specific X
extensions; however, they are not intended for use by client programs.

For more information on the standard X Extension mechanism, see The X
Window System Server the Xlib Programming Manual.

The OpenWindows server supports the following MIT extensions:

• XInput
• MBX (Multi-Buffering)
• SHAPE
• MIT-SHM (Shared Memory)
• XTEST
• MIT-SUNDRY-NONSTANDARD

22 OpenWindows Server Programmer’s Guide—August 1994

3

How To Access MIT X11 Extension Standards

The MIT X Consortium X11 standards referenced in the following sections are
readily available to systems on Internet. The MIT X11 documentation resides in
the /pub/R5untarred/mit/doc/extensions directory on the ftp.x.org
machine. Use the File Transfer Program (ftp) to download files from this
system. If you need help using ftp , refer to the ftp (1) man page. To determine
if your system is connected to Internet, see your system administrator.

In the following sections the specification name for each extension is given, as
well as the associated file name (on ftp.x.org) in parenthesis.

XInput Extension

The XInput Extension is Sun’s implementation of the MIT X Consortium
standard, X11 Input Extension Protocol Specification (/xinput/protocol.ms).
This extension controls access to alternate input devices (that is, other than the
keyboard and pointer). It allows client programs to select input from these
devices independently from each other and independently from the core
devices.

MBX (Multi-Buffering) Extension

The Multi-Buffering Extension is Sun’s implementation of the MIT X
Consortium proposed standard, Extending X for Double-Buffering, Multi-
Buffering, and Stereo. This specification is located in
/usr/openwin/share/src/extensions/mbx-spec-3.2.ps —it is not on
the ftp.x.org machine. This extension provides the capability of creating
and displaying multiple drawable buffers for each window, and displaying a
rapid succession of buffers in a window to achieve smooth animation. The
stereo windows portion is not implemented in Sun’s Multi-Buffering Extension.
See Appendix A, “Multi-Buffering Application Program Interface, Version 3.2”
for more information.

Caution – In future releases, Sun’s MBX implementation will change when this
proposed standard is approved as an X Consortium standard. Backwards
compatibility is not guaranteed.

X Features and Enhancements 23

3

SHAPE Extension

The SHAPE Extension is Sun’s full implementation of the MIT X Consortium
standard, X11 Nonrectangular Window Shape Extension (shape.ms). This
extension provides the capability of creating arbitrary window and border
shapes within the X11 protocol.

MIT-SHM (Shared Memory) Extension

The Shared Memory extension is Sun’s full implementation of the MIT X
Consortium experimental The MIT Shared Memory Extension (mit-shm.ms).
This extension provides the capability to share memory XImages and pixmaps
by storing the actual image data in shared memory. This eliminates the need to
move data through the Xlib interprocess communication channel; thus, for
large images, system performance increases. This extension is useful only if the
client application runs on the same machine as the server.

XTEST Extension

The XTEST extension is Sun’s full implementation of the MIT X Consortium
proposed standard, X11 Input Synthesis Extension Proposal (xtest1.mm). This
extension provides the capability for a client to generate user input and to
control user input actions, without a user being present. This extension
requires modification to the DDX layer of the server.

MIT-SUNDRY-NONSTANDARD

The MIT-SUNDRY-NONSTANDARD extension was developed at MIT and
does not have a standard, or specification on the ftp.x.org machine. This
extension handles miscellaneous erroneous protocol requests from X11R3 and
earlier clients. It provides a request that turns the bug-compatibility mode on
(handles certain erroneous requests) or off (returns an error for erroneous
requests) and a request that gets the current state of the mode. This extension
can be dynamically turned on or off with xset , or at server start up with
openwin . See the xset (1) and openwin (1) man pages, specifically the -bc
option, for more information.

24 OpenWindows Server Programmer’s Guide—August 1994

3

Notes on X11 Programming
Common X11 programming issues are discussed below.

Compose Key Support

The OpenWindows version of Xlib supports Compose Key processing through
calls to XLookupString .

x86 – On x86 keyboards, use the Ctrl-Shift-F1 key sequence for the Compose
Key functionality.

Color Name Database

The color name database provides a mapping between ASCII color names and
RGB color values. This mapping increases the portability of color programs
and eases the programming task. Note that this mapping is subjective and has
no objective scientific basis.

The source of the database is /usr/openwin/lib/X11/rgb.txt . This file is
identical to the one provided in X11R5 from MIT. rgb.txt is compiled into
the dbm(3) database files, rgb.dir and rgb.pag . When the server first starts
up, it builds an internal representation of rgb.dir and rgb.pag used to map
a color name to a color value.

X11 clients use XLookupColor or XAllocNamedColor to map a color name to
a color value. The color name string passed to these routines is converted to
lowercase before it is looked up in the database.

Color Recommendations

This section contains recommendations for programmers who intend to use the
OpenWindows server color support facilities. Use these hints to maximize
portability and color sharing:

• Do not rely on the locations of Black and White in the default PseudoColor
colormap. Always use XAllocColor to allocate a pixel for rendering.

X Features and Enhancements 25

3

Note – It is important that programmers not rely on Black and White being in
certain pixel locations. Future versions of the OpenWindows server and the
servers of other vendors may have these colors located in different positions
than the current server. For maximum portability and compatibility, X11 clients
should always be written to use the XAllocColor function to allocate desired
colors for rendering.

• Do not use a visual before you have checked on all supported visual types,
using XGetVisualInfo or XMatchVisualInfo . Note that
XGetVisualInfo is the recommended function to use because it has the
ability to distinguish between visuals of the same class and depth.

• To reduce colormap flashing, it is usually a good policy to try to first
allocate colors from the default colormap. Only when this allocation fails
should you create a private colormap.

• For more hints on writing portable X11 color clients, see the “Hints for
Windows Programming With Visuals” on page 57.

26 OpenWindows Server Programmer’s Guide—August 1994

3

27

DPS Features and Enhancements 4

This chapter briefly discusses the following Display PostScript (DPS) system
topics:

• Introduction to the DPS system
• How applications use DPS
• DPS extension
• OpenWindows’ font enhancements to DPS
• DPS Libraries
• Applications modified to use DPS
• DPS security issues
• Accessing information From Adobe
• When DPS encounters internal errors

See Adobe’s Programming the Display PostScript System with X for more detailed
information.

Introduction to the DPS System
The Display PostScript system displays graphical information on the computer
screen with the same PostScript language imaging model that is a standard for
printers and typesetters.1

1. This section is based on Chapter 4 of Programming the Display PostScript System with X by Adobe Systems
Incorporated (Addison-Wesley Publishing Company, Inc., 1993) and is used with the permission of the
copyright holder.

28 OpenWindows Server Programmer’s Guide—August 1994

4

The PostScript language makes it possible for an X application to draw lines
and curves with perfect precision, rotate and scale images, and manipulate
type as a graphic object. In addition, X applications that use the Display
PostScript system have access to the entire Adobe Type Library.

Device and resolution independence are important benefits of PostScript
printers and typesetters. The Display PostScript system extends these benefits
to interactive displays. An application that takes advantage of the DPS system
will work and appear the same on any supported display without modification
to the application program.

The DPS system has several components, including the PostScript interpreter,
the Client Library, and the pswrap translator. The Client Library is the link
between an application and the PostScript interpreter. An application draws on
the screen by making calls to Client Library procedures. These procedures
generate PostScript language code that is sent to the PostScript interpreter for
execution. In addition to the Client Library, the DPS system provides the
pswrap translator. It takes PostScript language operators and produces a C
language procedure–called a wrap–that can then be called from an application
program.

How Applications Use the DPS System
An application interacts with the DPS system in the following manner:

1. The application creates a PostScript execution context and establishes a
communication channel to the server. The PostScript interpreter switches
among contexts, giving multiple applications access to the interpreter.

2. The application then sends Client Library procedures and wraps to the
context and receives responses from it.

3. When the application exits, it destroys the context and closes the
communications channel, freeing resources used during the session.

DPS Extension to X
The X Window System is extensible; that is, new features and technology can
be added easily.1 The Display PostScript system is implemented as an
extension to the X Window System; the extension is sometimes referred to as
DPS/X. Figure 4-1 shows the components of DPS and their relationship to X.

DPS Features and Enhancements 29

4

Figure 4-1 The DPS Extension to X

The DPS extension is implemented as part of the X Window System client-
server network architecture. The PostScript interpreter is implemented as an
extension to the X server, and each application is a client. The application
sends PostScript language code to the server through single operator calls or
wraps. Data can be returned from the server in the form of output arguments.
The Client Library implements DPS client-server communication transparently
using the low-level communication protocols provided by the X Window
System.

1. This section is based on Chapter 2 of Programming the Display PostScript System with X by Adobe Systems
Incorporated (Addison-Wesley Publishing Company, Inc., 1993) and is used with the permission of the
copyright holder.

DPS Extension

PostScript Interpreter

Stacks
I/O
private VM

Stacks
I/O
private VM

Shared VM
(fonts, etc.)

Context Context

X protocol with
DPS extension

Client (Application)

Widget set
OSF/Motif
X Toolkit

Xlib

Display
PostScript
Client
Library

Wraps

30 OpenWindows Server Programmer’s Guide—August 1994

4

Each application that uses the DPS extension creates a context. A context can be
thought of as a virtual PostScript printer that sends its output to a window or
an offscreen pixmap. It has its own set of stacks, input/output facilities, and
memory space. Separate contexts enable multiple applications to share the
PostScript interpreter, which runs a single process in the server.

Although the DPS system supports multiple contexts for a single application,
one context is usually sufficient for all drawing within an application. A single
context can handle many drawing areas. There are exceptions, however, when
it is preferable to use more than one context in a client. For example, a separate
context might be used when importing Encapsulated PostScript (EPS) files.
This simplifies error recovery if an included EPS file contains PostScript errors.

The interpreter handles the scheduling associated with executing contexts in
time slices. Each context has access to a private portion of PostScript VM
(virtual memory space). An additional portion of VM, called shared VM, is
shared among all contexts and holds system fonts and other shared resources.
Private VM can hold fonts private to the context.

The structure of a context is the same across all DPS platforms. Creating and
managing a context, however, can differ from one platform to another. Client
Library Reference Manual and Client Library Supplement for X contain information
on contexts and the routines that manipulate them, and Display PostScript
Toolkit for X contains utilities for Display PostScript developers.

DPS Font Enhancements
The server includes the following font enhancements to the DPS system:

• Support for F3 Latin and Asian fonts

• Support for obtaining pre-scaled bitmap font formats from X11 font code

• Type 1 fonts (.pfa and .pfb)

See Chapter 5, “Font Support” for more information.

DPS Features and Enhancements 31

4

DPS Libraries
The DPS libraries are listed in the following table. The .so and .a files that
comprise these libraries are located in the /usr/openwin/lib and
/usr/openwin/lib/libp directories.

For information on these libraries, see Programming the Display PostScript
System with X and PostScript Language Reference Manual.

Adobe added Adobe NX agent support to libdps for OpenWindows 3.4; it is
described in the following section.

Adobe NX Agent Support

The Context creation routines (XDPSCreateSimpleContext and
XDPSCreateContext) in libdps now attempt to contact the DPS NX agent if
they are unable to connect to the DPS/X extension. The NX client must be
started manually, usually during the boot or X window startup process.

The Adobe DPS NX agent, which is available from Adobe, is a separate process
from the X window server and your DPS/X client. When connected to the DPS
NX agent, your client’s DPS calls are intercepted and converted into standard
X Protocol requests. Thus a DPS client can run on an X window server that
does not natively support the DPS extension.

Applications Modified to use DPS
The PageView, ImageTool, and DocViewer applications have been modified to
use DPS. If your application calls one of these applications, it will run in the
current OpenWindows environment.

Table 4-1 DPS Libraries

Library Description

libdps DPS Client library

libdpstk DPS Toolkit library

libpsres PostScript Language Resource Location library

32 OpenWindows Server Programmer’s Guide—August 1994

4

DPS Security Issues
The OpenWindows environment provides, and in some cases exceeds, MIT’s
X11R5 sample server security levels. To ensure this, DPS programmers should
be aware of two DPS-specific security features: PostScript file operators’
inability to access system files, and secure context creation.

System File Access

The PostScript language provides file operations that allow users to access
system devices such as disk files. This presents a serious security problem. In
the OpenWindows environment, you cannot—by default—use PostScript file
operators to open or otherwise access a system file.

For applications, the client should perform necessary file operations, rather
than the server. This prevents a client with a user id different than the server’s
from accessing the server’s file access privileges. If you want PostScript file
operators to access system files, start the server with the -dpsfileops option
(see the Xsun (1) man page). If you attempt to access system files without
specifying -dpsfileops , you will get a PostScript undefinedfilename
error.

Secure Context Creation

DPS contexts normally have access to global data that provide a mechanism for
inserting “Trojan horses.” This allows a context to peer into the activities of
another context. For example, one context could intercept a document that
another context is imaging. This section describes how to create secure contexts
in the OpenWindows environment.

Section 7.1.1, “Creating Contexts,” in the PostScript Language Reference
Manual, Second Edition describes three ways that contexts can share VM:

1. “Local and global VM are completely private to the context.” This capability
is new with Level 2, and a context created this way is called a secure context.

2. “Local VM is private to the context, but global VM is shared with some
other context.” This is the normal situation for contexts created with
XDPSCreateContext and XDPSCreateSimpleContext .

DPS Features and Enhancements 33

4

3. “Local and global VM are shared with some other context.” This is the
situation for contexts created with XDPSCreateContext and
XDPSCreateSimpleContext when the space parameter is not NULL.

To create a secure context, use XDPSCreateSecureContext :

All parameters have the identical meaning to those in XDPSCreateContext ,
but the context being created has its own private global VM. If the space
parameter is not NULL, it must identify a space created with a secure context. A
space created with a secure context cannot be used for the creation of a
nonsecure context. Specifying a nonsecure space with a secure context or a
secure space with a nonsecure context will generate an Access error.

How to Access Information From Adobe
The following information is readily available from Adobe’s public access file
server: source code examples, AMF (Adobe Metric Font) files, documentation,
PPP (PostScript printer description) files, and press releases. You can obtain
this information if you have access to Internet or UUCP electronic mail.

If you have access to Internet, use the File Transfer Program (ftp) to download
files from the ftp.mv.us.adobe.com machine. Read the README.first file
for information on the archived files. See the “Public Access File Server”
section in the preface of Programming the Display PostScript System with X for
details on how to obtain this information by electronic mail.

XDPSCreateSecureContext DPSContext XDPSCreateSecureContext(dpy,
drawable, gc, x, y, eventmask, grayramp, ccube, actual,
textProc, errorProc, space)

Display *dpy;
Drawable drawable;
GC gc;
int x;
int y;
unsigned int eventmask;
XStandardColormap *grayramp;
XStandardColormap *ccube;
int actual;
DPSTextProc textProc;
DPSErrorProc errorProc;
DPSSpace space;

34 OpenWindows Server Programmer’s Guide—August 1994

4

When DPS Encounters Internal Errors
DPS conducts consistency checks during execution. In the rare event that it
encounters internal errors, DPS applications will not be able to connect to the
server. If this happens, you must restart the OpenWindows environment. If a
client tries to connect to a server with the DPS extension in this state, the
following error message sometimes appears:

XError: 130
Request Major code 129 (Adobe-DPS_Extension)

35

Font Support 5

The OpenWindows server provides robust font support in both the X11 server
and the Display PostScript (DPS) extension. Font formats from numerous
vendors can be used to display text in English or foreign languages, including
Asian languages. Symbol fonts can be used to display mathematical equations.
The OpenWindows environment provides 55 Latin fonts for European text and
two symbol fonts. You can add other fonts to the system if you want.

Font Formats
Fonts from different vendors come in different formats. Table 5-1 lists the
various font formats, their vendors, and the associated file types supported by
the OpenWindows environment.

Table 5-1 OpenWindows Font Formats

Font Format Vendor File Types

F3 (Type 7) SunSoft .f3b

Type1 (ASCII) Adobe and various foundries .pfa

Type1 (binary) Adobe and various foundries .pfb

Type 3 Adobe and various foundries .ps

Speedo Bitstream .spd

Portable Compiled Format MIT .pcf

Bitmap Distribution Format Adobe .bdf

36 OpenWindows Server Programmer’s Guide—August 1994

5

The fonts provided by the OpenWindows server are located in the
/usr/openwin/lib/X11/fonts directory. For more information on the
directory structure see “Font Directory Structure” on page 38.

Outline and Bitmap Fonts
OpenWindows supports two types of font representation: outline fonts and
bitmap fonts. In the X11 server, outline fonts can be scaled to any desired size;
in Display PostScript (DPS) they can also be rotated and skewed. To display a
letter from an outline font, the server scales and rotates only the outline of the
character. This repositioned outline is then rendered into pixel form (bitmap) for
display on the screen. This rendered bitmap is also stored in the glyph cache
for reuse.

Because certain font sizes occur very frequently, they are also kept in separate
files in pre-rendered bitmap form. This saves the server from having to scale
and render them. However, the resulting bitmap fonts can only be displayed in
one size and orientation. Some of these fonts have also been hand-tuned to look
better and be more readable. As they are encountered, these bitmaps are also
placed in the glyph cache.

The recommended bitmap format is the portable compiled format (.pcf).

The /usr/openwin/bin directory contains the following tools to convert
between outline and bitmap fonts, as well as between various bitmap formats.
See the corresponding man pages for more detailed information.

• makebdf Creates Bitmap Distribution Format files (.bdf) from outline
font files (.f3b)

• bdftopcf Converts font from .bdf format to Portable Compiled
Format (.pcf)

Big Endian Prebuilt Format Adobe .bepf

Little Endian Prebuilt Format Adobe (for x86 only) .lepf

Server Natural Format MIT .snf

Old OpenWindows Bitmap SunSoft .fb

Table 5-1 OpenWindows Font Formats (Continued)

Font Format Vendor File Types

Font Support 37

5

• bdftosnf Converts .bdf files to Server Natural Format (.snf) files

As illustrated in Table 5-2, many bitmap font file formats are architecture-
dependent binary files. They cannot be shared between machines of different
architectures (for example, between SPARC and x86).

The OpenWindows environment contains compressed .pcf files (files with
.pcf.Z extensions). You can uncompress these if you want. If you add fonts to
your system, you can either compress the files or not. Use uncompressed files
if you want the fonts to display somewhat faster.

Replacing Outline Fonts with Bitmap Fonts
The OpenWindows environment automatically replaces some outline fonts by
bitmap fonts when the size is appropriate. This improves performance, and in
some cases improves the aesthetics and readability of the text. There may be
several sizes at which replacement occurs for a given outline font.

When Replacement Occurs

Currently in DPS, the .pcf bitmap format is substituted for F3 outline fonts
and the .bepf (or .lepf) is substituted for Type1 fonts. Substitution occurs
when there is no rotation, the requested pixel size is within one half of a pixel
of the .pcf font size, and the .pcf font is an F3BitMap resource in a .upr
(PostScript resource) file.

Table 5-2 Bitmap Font Formats

Font Format File Extension Binary Architecture-specific

Bitmap Distribution .bdf No No

Portable Compiled .pcf Yes No

Server Natural Format .snf Yes Yes

Old OpenWindows Bitmap .fb Yes Yes

Little Endian Prebuilt Format .lepf Yes Yes (x86)

Big Endian Prebuilt Format .bepf Yes Yes (SPARC)

38 OpenWindows Server Programmer’s Guide—August 1994

5

Using F3 Fonts in DPS
F3 fonts behave exactly like Type1 fonts, except /FontType returns 7 instead of
1. For example, the following PostScript code works the same regardless of the
kind of font.

But the following code yields 7 for an F3 font and 1 for a Type1 font.

The kind of font returned depends on the current DPS internal resource path.
See “Changing the Resource Path in DPS” on page 40 for details.)

Locating Fonts
By default, the OpenWindows server looks for fonts in directories under the
/usr/openwin/lib/X11/fonts directory. See Table 5-3 for the complete font
directory structure.

Font Directory Structure

The directories below are preceded by /usr/openwin/lib/X11/fonts .

/Helvetica findfont 50 scalefont setfont
10 10 moveto (ABC) show

currentfont /FontType get ==

Table 5-3 Font Directory Structure

Directory Subdirectory File Suffixes Contents

/100dpi .pcf Bitmap fonts

/75dpi .pcf Bitmap fonts

/F3 .f3b F3 format outline fonts

/map .map F3 character set specifications

/F3bitmaps .pcf Bitmap fonts

/Speedo .spd Bitstream Speedo format outline
fonts

Font Support 39

5

Changing the Default Font Path in X11

In X11, the default font path is:

/usr/openwin/lib/X11/fonts/F3,
/usr/openwin/lib/X11/fonts/F3bitmaps,
/usr/openwin/lib/X11/fonts/Type1,
/usr/openwin/lib/X11/fonts/Speedo,
/usr/openwin/lib/X11/fonts/misc,
/usr/openwin/lib/X11/fonts/75dpi,
/usr/openwin/lib/X11/fonts/100dpi,
/usr/openwin/lib/X11/fonts/Xt+

You can change this default either at start up or after the server has been
started.

At start up, use:

where the user-defined directory list is a comma separated list of directories
for the server to search. Note that the directory paths must be absolute.

/Type1 .pfa , .pfb Type1 outline fonts

/afm .afm Adobe font metrics

/outline .pfa , .pfb Type1 outline fonts

/prebuilt .bepf , .lepf Bitmaps for SPARC Solaris and x86

/Xt+ .pcf Bitmap fonts

/Type3 .ps PostScript Outline fonts

/encodings .enc Encodings

/misc .pcf Bitmap fonts

example% openwin -fp /< user-defined-directory-list>

Table 5-3 Font Directory Structure (Continued)

Directory Subdirectory File Suffixes Contents

40 OpenWindows Server Programmer’s Guide—August 1994

5

After the server has started, you can use either the xset command or
XSetFontPath . For xset , use only one of the following:

Note – Since xset dynamically changes the font path, you do not need to restart
the server to change the default font path.

For more information on xset , see the xset man page; for XSetFontPath ,
see the Xlib Reference Manual.

Changing the Resource Path in DPS

In DPS, fonts are considered resources in the font category. Their associated
files are specified by resource (.upr) files. DPS resource files reside in
directories specified by the resource (font) path. This path is a list of directories
maintained internally by DPS. DPS uses the default resource path specified by
the PSRESOURCEPATH environment variable to initialize itself. If
PSRESOURCEPATH is not defined, DPS uses /usr/openwin/lib/X11 . (See
Programming the Display PostScript System with X for further information on
resource database files.)

Warning – Because DPS maintains so many internal font caches, you cannot
remove a path from the DPS resource path. DPS appends all paths subsequent
to the default path to the resource path, regardless of where they end up in the
X11 font path. Thus fonts available in X windows might be different from those
available in DPS. However, the DPS resource path is dynamic. Fonts should be
accessible after the xset command completes. Any change to the X font path is
passed to DPS. If there are .upr files present, DPS appends the font files to its
internal resource path.The examples in the remainder of this section illustrate
some of the DPS and X11 font path behavior.

The xset command:

example% xset +fp / user-defined-directory-list
example% xset fp+ / user-defined-directory-list
example% xset fp- / user-defined-directory-list

example% xset +fp / dir1/dir2/fonts

Font Support 41

5

prepends / dir1/dir2/fonts to the X11 font path. (Use fp+ to append
/ dir1/dir2/fonts to the font path.) If there are any .upr files present, the xset
command (with either fp+ or +fp) also appends / dir1/dir2/fonts to the DPS
resource path.

The command:

removes / dir1/dir2/fonts from the X11 font path, but does not alter the DPS
resource path.

The following openwin command:

appends /dir1/dir2/fonts to the DPS resource path.

Use the following xset command to set the X11 font path to / dir1/dir2/fonts
and to append / dir1/dir2/fonts to the existing DPS resource path:

Note – A server reset clears both the X11 font path and the DPS resource path.

example% xset fp- / dir1/dir2/fonts

example% openwin -fp / dir1/dir2/fonts

example% xset fp= / dir1/dir2/fonts

42 OpenWindows Server Programmer’s Guide—August 1994

5

Font File Suffixes

The OpenWindows environment is configured so that most X11 fonts are also
available in DPS (see Table 5-4 below). DPS supports a slightly different set of
fonts than those supported by X11.

Associated Files

The OpenWindows environment provides files with these extensions. They are
not intended to be edited.

• .afm Adobe Font Metrics files read by client for kerning information

• .map F3 files read by X11 and DPS for encoding purposes

• .trans F3 files read by DPS for composite font construction

• .ps PostScript Files for composite font and PostScript resource
construction

• .enc Encoding files used by X11 and DPS

Table 5-4 Font File Availability

Font Description Font File Suffix Available in X11 Available in DPS

Type1 outline fonts .pfa (scaled) Yes Yes

Type1 outline fonts .pfb (scaled) No Yes

Big Endian Prebuilt
Format

.bepf No Yes

Little Endian Prebuilt
Format

.lepf No Yes

F3 (Type 7) .f3b (scaled) Yes Yes

Old OpenWindows
Bitmap

.fb Yes No

Speedo .spd (scaled) Yes No

Type 3 .ps (scaled) No Yes

Portable compiled .pcf Yes Yes

Bitmap Distribution .bdf Yes No

Server Natural Format .snf Yes No

Font Support 43

5

• .upr Display PostScript resource files

Adding New Fonts
To add new bitmap and outline fonts to the OpenWindows Server, follow the
steps outlined in the following sections. These instructions apply to eight-bit
fonts. Multibyte fonts might require additional files from the font supplier.

1. Create a directory for the new fonts.
Do not add fonts to existing font directories—you might corrupt files in
those directories, and you also must be superuser.

For this example, /newfonts is the directory name.

2. Copy or move all fonts to the / newfonts directory.

If you are installing bitmap fonts (pcf , snf , bdf , or fb), see additional steps in
“Adding Bitmap Fonts.” If you are installing outline fonts (f3b , pfa , pfb , or
spd formats), see “Adding Outline Fonts” on page 44.

Adding Bitmap Fonts

Follow these steps if you are installing any of the bitmap font formats (pcf ,
snf , bdf , or fb).

1. Use mkfontdir to create the fonts.dir file.

See the mkfontdir (1) man page for further details.

example% mkdir / newfonts

example% cd / newfonts
example% /usr/openwin/bin/mkfontdir

44 OpenWindows Server Programmer’s Guide—August 1994

5

2. If you want to define font “aliases,” create a fonts.alias file.
Use this to map the long internal XLFD font names to shorter names that are
easier to enter on a command line.

Here is a sample fonts.alias file:

See the mkfontdir (1) man page for further details.

3. Use xset to add the / newfonts directory to the server font path.

See the xset (1) man page for more information.

4. Use xlsfonts to check to see if the server recognizes your new fonts.
xlsfonts lists all the names of all fonts that are accessible to the window
server.

Adding Outline Fonts

Follow the steps included in this section to install outline fonts. The
OpenWindows environment supports Type1 (pfa), Speedo (spd), and F3 (f3b)
outline fonts.

Multibyte fonts might require additional files from the font supplier. For F3
format fonts, you need the .map and .trans files. The server also uses the
.map file. It provides a mapping between the character name and its F3 code.
The DPS extension uses the .trans file to support multiple byte encodings. It
contains the definitions of these encodings.

1. If you are installing Type1 (pfa or pfb) fonts run makepsres in the
/ newfonts directory.
This creates a PSres.upr file. The system requires this file if you want to
use these fonts within the DPS extension.

courier “-adobe-courier-medium-r-normal--0-0-0-0-m-0-iso8859-1”
courier-italic “-adobe-courier-medium-i-normal--0-0-0-0-m-0-iso8859-1
courier-bold “-adobe-courier-bold-r-normal--0-0-0-0-m-0-iso8859-1
courier-bolditalic “-adobe-courier-bold-i-normal--0-0-0-0-m-0-iso8859-1

example% xset fp+ / newfonts

Font Support 45

5

2. If you are installing F3 fonts, create a .upr file.
Use the template below for the .upr file. Replace the example values given
below with values that reflect the fonts you want to add. Follow the syntax
used in the example. Include the // before the directory name you want to
install into. Use the = in the lines where you include the map file and font
file names.

If the .map file included with your font is not in
/usr/openwin/lib/X11/F3/map , then include it in the .upr file.)

3. If you are installing Type1 (pfa or pfb) or Speedo (spd) fonts, create a
fonts.scale file.
The fonts.scale file contains the mapping of an internal X11 font name to
an easily understood font name. The fonts.scale file will be copied to the
fonts.dir file automatically. Do not edit the fonts.dir file. Any changes
you make are overwritten when you run mkfontdir .

For example, here is a fonts.scale file for a directory containing four
Type1 fonts:

PS-Resources-1.0 #mandatory
F3MapFile #put this in if you are adding map files
FontOutline #put this in if you are installing F3 fonts
. #mandatory
//home/newfonts #name of directory to install fonts in:

#// required (this is an example)
F3MapFile #put this in if you are adding map files
latin=map/latin.map #name of the map file and where it is

 located (this is an example)
. #put this in if you are adding map files
FontOutline #put this in if you are installing F3 fonts
Helvetica=Helvetica.f3b #put the font file name here (this is

an example)
Times-Roman=Times-Roman.f3b#put in as many font files as you want
. #mandatory

cour.pfa -adobe-courier-medium-r-normal--0-0-0-0-m-0-iso8859-1
couri.pfa -adobe-courier-medium-i-normal--0-0-0-0-m-0-iso8859-1
courb.pfa -adobe-courier-bold-r-normal--0-0-0-0-m-0-iso8859-1
courbi.pfa -adobe-courier-bold-i-normal--0-0-0-0-m-0-iso8859-1

46 OpenWindows Server Programmer’s Guide—August 1994

5

Note – X11 names must follow the standard XLFD font naming convention,
using 0’s in appropriate fields to indicate outline fonts.

See the X Protocol Reference Manual for additional information on the XLFD
font naming convention.

See the mkfontdir (1) man page for more information on the fonts.scale
file.

4. Use mkfontdir to create the fonts.dir file.
If you are installing Type1 or Speedo fonts, your fonts.scale file is copied
to fonts.dir at this point.

See the mkfontdir (1) man page for further details.

5. If you want to define font “aliases,” create a fonts.alias file.
Use this to map the long internal XLFD font names to shorter names which
are easier to enter on the command line.

Here is an example fonts.alias file:

See the mkfontdir (1) man page for further details.

If you are installing an F3 font and the character set supported by this font
is not one of the following, the font supplier must provide an encoding file
(.enc file).

• iso8859-1
• iso8859-2
• symbol
• jisx0201.1976-0
• jisx0208.1983-0

example% cd / newfonts
example% /usr/openwin/bin/mkfontdir

courier “-adobe-courier-medium-r-normal--0-0-0-0-m-0-iso8859-1”
courier-italic “-adobe-courier-medium-i-normal--0-0-0-0-m-0-iso8859-1”
courier-bold “-adobe-courier-bold-r-normal--0-0-0-0-m-0-iso8859-1”
courier-bolditalic “-adobe-courier-bold-i-normal--0-0-0-0-m-0-iso8859-1”

Font Support 47

5

6. Copy the .enc file described in Step 5 (if you have one) to
/usr/openwin/lib/X11/fonts/encodings , and add an entry for it in
the encodings.dir file in the same directory.

7. Use xset to add the / newfonts directory to your font path.

See the xset (1) man page for more information.

8. Use xlsfonts to check if the server recognizes your new fonts.
xlsfonts lists all the names of all fonts that are accessible to the window
server.

You can now use the fonts in the / newfonts directory in your applications. In
X11, you do not need to restart the OpenWindows server since xset
dynamically changes the font path. See “Changing the Default Font Path in
X11” on page 39 for more information.

Using OPEN LOOK Fonts on X Terminals
The /usr/openwin/share/src/fonts directory contains OPEN LOOK
fonts in bdf format. Follow the instructions from your vendor on how to
install the fonts.

example% xset fp+ / newfonts

48 OpenWindows Server Programmer’s Guide—August 1994

5

49

Visuals and Display Devices 6

This chapter defines some of the terms used to describe how client applications
and the OpenWindows server interact to control what is displayed on a user’s
screen. Multiple hardware colormaps and advanced display devices are
discussed, and some important programming hints are provided.

The X11 server requires you to take responsibility for ensuring your
applications run properly on a wide variety of machine configurations.

Display Devices
The computer monitor is connected to a display device (also called a graphics
adapter) that controls what is shown on the screen. The display device has
memory dedicated to storing display information.

Reference Display Devices

The OpenWindows server treats certain display devices as reference devices.
This means that example device handlers for these devices are provided in the
Solaris DDK (Driver Developer Kit). These devices are described in more detail
in “Reference Devices and Visuals” on page 51.

SPARC Supported Reference Devices

The SPARC reference devices supported by the OpenWindows server are:

50 OpenWindows Server Programmer’s Guide—August 1994

6

• BW2
• CG3
• CG6
• CG8

x86 Supported Reference Devices

The x86 reference devices supported by the OpenWindows server are:

• vga4
• vga8
• 8514

IHV Display Devices

In addition to the reference devices, the OpenWindows server supports any
device for which a valid device handler is written and configured into the
system. The process of writing and configuring a device handler is described in
the OpenWindows Server Device Developer’s Guide, which is included in the
Solaris DDK product.

Visuals
A display device can support one or more display formats. In the X window
system, the display formats supported by the window server are
communicated to client applications in the form of visuals. A visual is a data
structure describing the display format a display device supports.

Multiple Depth Devices

These devices are called multi-depth devices. Since most of these devices are
implemented with separate groups of bit planes for each depth, the term
multiple plane group (MPG) device is often used.

For most MPG devices, windows can be created using any of the exported
visuals.

Visuals and Display Devices 51

6

Default Visual

For each X11 screen, there is one special visual that is designated the default
visual. This is the visual assigned to the screen’s root window and is, unless
otherwise specified by the client, the visual which client window’s are
assigned. See “The Default Visual” on page 55 for more information.

Reference Devices and Visuals
This section describes in greater detail the reference display devices supported
and the visuals they export.

Reference Devices

The reference display devices supported by OpenWindows are listed in
Table 6-1.

Note – Throughout this chapter “n/a” means not applicable.

Product Name
The product name is commonly used to identify the type of display card.

Table 6-1 Reference Display Devices Supported by OpenWindows

Product Name Device Name Device Driver Bus Exported Depths

n/a BW2 /dev/fbs/bwtwo X SBus, VME/obio, P4 1-bit

n/a CG3 /dev/fbs/cgthree X SBus 8-bit

GX CG6 /dev/fbs/cgsix X SBus, P4 8-bit

GXplus/
TurboGXplus

CG6 /dev/fbs/cgsix X SBus 8-bit

TC CG8 /dev/fbs/cgeight X SBus, P4 1, 24-bit (MPG)

VGA vga4 N/A ISA, EISA, MCA 8-bit

VGA vga8 N/A ISA, EISA, MCA 8-bit

8514/A i8514 N/A ISA, EISA, MCAS 8-bit

52 OpenWindows Server Programmer’s Guide—August 1994

6

Device Name
The device name is used to specify the display adapter to OpenWindows.

Note – If there is a distinct product name for a device, the product name is
used in preference to the CGn device name (for example, TC is used, not CG8).

Device Driver
The device driver is the name of a device in the UNIX file system, where X is
the number of that particular device on your system. For example, if a system
has two CG3s, the first would be /dev/fbs/cgthree0 , and the second would
be /dev/fbs/cgthree1 . If a system has one CG3 and one GX, the CG3
would be /dev/fbs/cgthree0 and the GX /dev/fbs/cgsix0 . The server is
configured to support a maximum of 16 displays; the limitations you might
encounter are the number of framebuffers your hardware supports.

Bus
The bus is the system input/output (I/O) link. The display device is both
physically and logically connected to the system by the bus. The SBus, VME,
and P4 buses are used in SPARC systems. A third party system may use a bus
other than one of these three buses.

Exported Depths
These are the depths of the visuals advertised by the server for screens of this
particular device type. MPG (Multiple Plane Groups) indicates that this device
supports multiple depth visuals.

SPARC Device-Specific Information

BW2
The BW2 is a simple 1-bit frame buffer, supporting monochrome monitors. The
device handler for this device exports the 1-bit StaticGray visual only.
Therefore, this visual is the built-in default visual. A variety of BW2 frame
buffers is available for different buses and different screen resolutions,
including third party offerings.

Visuals and Display Devices 53

6

CG3
The CG3 is a simple 8-bit indexed color, dumb frame buffer for SBus systems.
The device handler for this device exports several 8-bit visuals (listed below).
The built-in default visual is 8-bit PseudoColor.

GX and GXplus (CG6)
The GX is an 8-bit indexed color graphics accelerator, specializing in 2D and
3D wireframe, flat-shaded polygon, and general window system acceleration.
Window system acceleration is automatic; you can access other acceleration
features through Solaris visual graphics APIs. Several 8-bit visuals are
supported (see below) and the built-in default visual is 8-bit PseudoColor. The
GX is available for SBus and P4 bus.

The GXplus device is similar to the GX with additional memory that can be
used for double buffering and expanded screen resolution on SBus systems.
The OpenWindows server uses the GXplus to automatically accelerate X11
pixmaps by using offscreen storage whenever possible.

Note – This chapter treats the GXplus as a GX.

TC (CG8)
The TC device possesses two separate memory buffers, or plane groups: 1-bit
monochrome and 24-bit color. Windows may be created in both plane groups;
therefore, it is an MPG device. All 1-bit and 24-bit visuals are supported.

Some (older) X11 client applications assume that color frame buffers use an 8-
bit built-in default visual and do not run in color on the TC. To avoid this, the
built-in default visual is 1-bit StaticGray. “The Default Visual” on page 55
describes how to change the default if a color default visual is desired.

The plane groups of the TC do not conflict with each other; they are completely
separate memory buffers. OpenWindows, by default, takes advantage of this to
increase system performance by not damaging 1-bit windows when they are
occluded by 24-bit windows, and vice versa. This behavior is called minimized
exposure. This behavior may be disabled by using the -nominexp option of
openwin (1). If this option is used, 1-bit windows will damage 24-bit windows
and 24-bit windows may damage 1-bit windows.

54 OpenWindows Server Programmer’s Guide—August 1994

6

The OpenWindows server also provides minimized exposure for other IHV
MPG devices, when applicable. Use the -nominexp option of openwin with
these devices.

Note – The X protocol states that cursor components can be arbitrarily
transformed. To enhance general system performance, the OpenWindows
server always renders the cursor in the 1-bit plane group of the TC.

x86 Device-Specific Information

VGA

The VGA is a simple color dumb frame buffer. The server supports VGAs as 8-
bit indexed color with all visual types and a default of PseudoColor (vga8), or
4-bit StaticColor (vga4). When using 8-bit mode, the resolution is most often
1024x768. 4-bit mode is often limited to a resolution of 640x480 as this is the
basic VGA graphics mode that is available on all VGA devices. Most VGAs
provide a bitsPerRGB of 6.

Support for VGA panning is available in modes of the 4-bit VGA. Panning
mode provides the ability to have a physical window that maps onto a larger
virtual display. Movement within the virtual display is performed by
“pushing” the mouse past the edge of the screen. The display will
automatically move the physical window in the virtual display in the direction
that the mouse was pushed until the physical window hits the edge of the
virtual boundary.

Use panning only if you are an experienced OpenWindows user. Icons, pop-up
boxes (menus/dialogs etc.) can appear off screen with no immediate visible
notification. You must be experienced enough to recognize these situations,
and be able to recover by looking for the hidden window objects. Pop-up
pointer jumping is highly recommended while using panning. Virtual window
managers, such as olvwm or tvwm, can cause additional confusion; do not use
them.

The vga8 server is also capable of supporting the XGA as a dumb frame buffer.

Visuals and Display Devices 55

6

8514/A

The 8514/A is an 8-bit indexed color graphics accelerator providing general
window system acceleration. It provides substantially improved performance
compared to a VGA. The server limits its support of 8514/As to 8-bit indexed
color and a resolution of 1024x768 or 1280x1024. It supports all 8-bit visuals.
The built-in visual is 8-bit PseudoColor. Most 8514/As provide a bitsPerRGB of
6.

The Default Visual
At all times, a default visual exists. The default visual of an X11 screen is one of
the exported visuals for the screen. When a client application is executed, its
windows are assigned the default visual unless it specifies non-default or
alternate visuals.

The built-in default visual is the visual hard-coded in the OpenWindows server.
This is the default visual unless you specify a different default visual when you
run openwin (1). The built-in default visual for each screen varies with the
characteristics of the screen’s display device.

The screen default visual is the visual advertised to clients in the connection
block. This is the built-in default visual unless you specify a different
supported visual to be the default when you start up OpenWindows.

An allowable default visual is a supported visual that can be the screen default
visual.

Changing the Screen Default Visual

At times, it may be desirable to change the default visuals that the X11 window
server advertises in the X11 connection block. One possible reason is to force
client programs that cannot run in alternate or non-default visuals to run in a
selected visual. You should be careful when using this mode because the
default visual can have a subtle effect on the behavior of many client
programs. Often, client programs are unable to deal with visuals of some
depths or classes, especially those with 24-bit depths.

The default visual and the list of supported visuals exported by the server can
be examined from X11 using XGetVisualInfo (3).

56 OpenWindows Server Programmer’s Guide—August 1994

6

To make an allowable default visual the screen default visual, the class and
depth of the visual must be specified on the openwin command line with the
-dev option:

Table 6-2 describes the available device modifier options pertaining to the
screen default visual.

The defclass option is used to determine the visual class of the screen
default visual, and may be used by itself or in combination with grayvis .

If grayvis is specified, color visuals are not supported by the server. After
using the grayvis option, StaticColor and PseudoColor are not returned by
XGetVisualInfo (3).

SPARC Example

As an example, the following command line runs OpenWindows on the GX
device with an 8-bit StaticGray screen default visual.

example% openwin -dev <device modifier options>

Table 6-2 Device Modifier Options

Device Modifier Options Description

defclass <class> This option uses the specified visual as the default
visual. The default is device-dependent. The legal values
are: GrayScale, StaticGray, PseudoColor, StaticColor,
DirectColor, and TrueColor.

defdepth <n> This option selects the depth of the screen default visual.
n is an integer that specifies the depth. The default is
device-dependent.

grayvis This option indicates the screen default visual is to have
a gray class (StaticGray or GrayScale).

example% openwin -dev /dev/fbs/cgsix0 grayvis

Visuals and Display Devices 57

6

x86 Example

As an example, the following command line runs OpenWindows on the VGA
device with an 8-bit GrayScale screen default visual.

Troubleshooting/Error Messages
• If the device does not support the requested visual, the following error

message is returned. (# represents the depth number requested and n
represents the requested display device.)

If this message is returned for a supported visual/device combination as
indicated in Table 6-1 on page 51, then an installation problem exists.

• If you are experiencing improper graphics and double-buffering
performance (such as lack of acceleration), OpenWindows might not have
been installed as root .

Hints for Windows Programming With Visuals
This section discusses various issues that arise when programming X11
applications targeted to devices that support different visuals. In particular,
programming for portability is discussed.

Default Visual Assumptions

A common mistake in programming an X11 client is assuming that the default
visual has an indexed class (for example, PseudoColor or StaticColor). It is
possible for the default visual to be 24-bit TrueColor on some devices. Clients
expecting to run on these devices must be prepared to handle this type of
default visual.

Here are some common mistakes:

• Assuming the default depth is 8

example% openwin -dev vga8 grayvis

Error: cannot provide a default depth # for device /dev/fbs/ n

58 OpenWindows Server Programmer’s Guide—August 1994

6

• Assuming the colormap is writable
• Using a default visual that is not appropriate rather than searching for an

appropriate visual using XGetVisualInfo

In general, clients may need to be modified to make them more portable in the
presence of different default visual types.

Multiple Hardware Colormaps
The OpenWindows environment also supports devices with multiple hardware
color lookup tables (LUTs). Multiple color LUTs are provided on some devices
to reduce colormap flashing. This is a visual effect (sometimes called technicolor)
which happens when the pixels of one window are displayed with the colors of
another window, because there are not enough simultaneously displayable
colors on the device. Multiple color LUTs increases the number of colors
simultaneously displayable and, thus, alleviates colormap flashing.

This section describes information you should know about multiple hardware
colormaps from an application programming and end user perspective.

Colormap Installation–Multiple LUT Devices

Ultimately, it is the window manager that decides which colormaps are
installed in which LUTs. This is referred to as the window manager colormap
installation policy. This policy is different from the server colormap installation
policy. The server colormap installation policy only specifies how the server
reacts to various InstallColormap and UninstallColormap requests; the
window manager colormap installation policy defines how and when a
window manager will send these requests to the server.

Colormap Demo
The program /usr/openwin/bin/xcolor provides a convenient way of
visually understanding what is happening to your hardware LUT. It always
displays the most recently installed colors in the hardware colormap, arranged
in a 2D array. Each row has 16 colors. Pixel 0 is in the upper left-hand corner
and pixel 255 is in the lower right-hand corner. This demo program is very
useful for understanding colormap flashing behavior.

Visuals and Display Devices 59

6

Note – Do not confuse what you see with the contents of the default software
colormap. The default software colormap will be seen only if it is installed.
Additionally, extra colors may be present in the hardware colormap that are
not allocated in the default colormap because of installation rules.

Note – xcolor is only useful for viewing the LUT on a single LUT device. On
a multiple LUT device, the LUT viewed may change in unpredictable ways.

Gamma-Corrected Visuals
The linearity attribute of a visual describes the intensity response of colors it
displays. On a cathode ray tube (CRT) monitor, the colors displayed are
actually darker than the colors requested. This darkening is caused by the
physics of monitor construction. The actual light intensity response of CRT
monitors follows a power function:

Figure 6-1 Nonlinear Monitor Intensity Response

The exponent of this function (γ) is called the visual’s gamma. The dotted line in
the figure represents the desired response. The solid line represents the actual
response of the monitor. On Sun systems, gamma is usually 2.22 but, in
general, it can vary slightly between monitors. Most liquid crystal display
(LCD) monitors have a gamma of exactly 1.0.

y = xγ
Display

I

Requested I

y

x

I = Intensity

60 OpenWindows Server Programmer’s Guide—August 1994

6

Some devices support visuals that compensate for this darkening effect. This is
called gamma correction. The ZX, a Sun 3D accelerator, is an example of a device
that does this. This correction is done by altering colors coming out of the
frame buffer with the inverse of the monitor’s response.

Figure 6-2 Gamma Correction

Refer to Fundamentals of Computer Graphics, Foley and Van Dam for a fuller
discussion of gamma correction.

Because the overall intensity response is a straight line, a gamma corrected
visual is called a linear visual. A visual that is not gamma corrected is called a
nonlinear visual.

Some applications require a linear visual to avoid visible artifacts. For example,
an XGL application using antialiased lines may produce objectionable “roping”
artifacts if it does not use a linear visual. This kind of application is called a
linear application. An application requiring a nonlinear visual for best display of
colors is called a nonlinear application. Most X11 applications are of this variety.

The linearity of default visuals on most devices is nonlinear. Therefore, linear
applications should not depend on the default and should always explicitly
search for a linear visual. See “Finding a Linear Visual” on page 61 for an
example.

Note – In similar fashion, it is a good idea for nonlinear applications to
explicitly search for a nonlinear visual. However, since this is typically the
default on most devices, it is not as critical. But it is still a good policy to do so.

y = x(1/γ)

y

x

y = xγ

y

x

y = x

y

x

✕ =

Gamma
Correction

Monitor
Gamma

Desired
Response

Visuals and Display Devices 61

6

Finding a Linear Visual

Linearity is not a standard X11 attribute. However, it can be determined on
Solaris by querying the visual’s gamma. This is done by calling
XSolarisGetVisualGamma (3). To use this routine, the application must be
linked with the Solaris libXmu . If the gamma value is equal to (or close to) 1.0,
the visual is linear. Otherwise, it is nonlinear. (A good rule-of-thumb for the
closeness tolerance is 10%).

Code Example 6-1 on page 62 is an example of selecting the best visual for a
typical XGL 3D linear application. In this example, the application uses a
nonlinear visual if a linear one cannot be found. This is only one possible
visual selection policy.

62 OpenWindows Server Programmer’s Guide—August 1994

6

Code Example 6-1 XGL 3D linear Visual Selection

/*
** Returns the visual of the given depth, class and linearity,
** or NULL if not found.
*/
Visual *
match_visual (Display *dpy, int screen, int depth, int class,

 Bool wantLinear)
{
 XVisualInfo template;
 XVisualInfo *vinfo, *vi;
 int nitems, isLinear, i;
 double gamma;

 template.screen = screen;
 template.depth = depth;
 template.class = class;
 if (!(vinfo = XGetVisualInfo(dpy, VisualScreenMask | VisualDepthMask |

VisualClassMask, &template, &nitems)) || nitems <= 0) {
return (NULL);

 }

 for (i = 0, vi = vinfo; i < nitems; i++, vi++) {
if (XSolarisGetVisualGamma(dpy, screen, vi->visual, &gamma)

== Success) {
 /*
 ** A good rule of thumb for linearity of a visual is whether
 ** the gamma is within 10% of 1.0.
 */
 isLinear = (gamma >= 0.9 && gamma <= 1.1);
 if ((wantLinear && isLinear) || (!wantLinear && !isLinear)) {

Visual *visual = vi->visual;
XFree(vinfo);
return (visual);

 }
}

 }

XFree(vinfo);
return (NULL);
}

Visuals and Display Devices 63

6

Here is the main routine of the example:

Note – If the gamma of any visual on the device is changed, either through
reconfiguration or calibration, the window system should be restarted.
Otherwise applications using XSolarisGetVisualGamma that are already
running will not detect the change and may use the wrong visual.

Visual Selection Alternatives

The above example illustrates only one possible visual selection policy. Other
policies can be implemented. It is recommended that applications be written to
handle a wide variety of visual configurations. Some devices, for example GX,
do not have any linear visuals. Other devices, for example ZX, have only a
single linear 24-bit TrueColor visual. Other devices like SX (a Sun imaging
accelerator) can support such a visual but don’t by default; they must be

main ()
{

Visual vis;
 ...

 if ((vis = match_visual(display, screen, 24, TrueColor, True))) {
fprintf(stderr, “Found a linear 24-bit TrueColor visual\n”);
visualClass = TrueColor;
depth = 24;

}
else if ((vis = match_visual(display, screen, 24, TrueColor, False))){

fprintf(stderr, “Found a nonlinear 24-bit TrueColor visual\n”);
visualClass = TrueColor;
depth = 24;

}
else if ((vis = match_visual(display, screen, 8, PseudoColor, False))){

fprintf(stderr, “Found a nonlinear 8-bit PseudoColor visual\n”);
visualClass = PseudoColor;
depth = 8;

}
else {

fprintf(stderr, “Cannot match 24 or 8 bit visual\n”);
exit(1);

}

 ...
}

64 OpenWindows Server Programmer’s Guide—August 1994

6

reconfigured. Some other devices may support both linear and nonlinear
visuals at the same time. In general, the most prudent way to write a portable
application is to deal gracefully with all these configurations. This may involve
printing a warning message if the visual of the desired linearity is not found.
Or, if a linear application cannot find a linear visual, a useful trick is to
manually darken in the application the colors given to X11. This is tantamount
to performing your own gamma correction. The gamma value returned by
XSolarisGetVisualGamma can be used to determine how much to darken
the colors.

Support Level

XSolarisGetVisualGamma is a Public interface of Solaris and is fully
supported. In the future, a color management system may also provide this
functionality. When this occurs, this will become the preferred way of getting
this information. But until then, XSolarisGetVisualGamma should be used.
When this color management system is introduced, applications using
XSolarisGetVisualGamma will continue to run with no modification and
will actually benefit from the increased accuracy of the color management
system.

65

Visual Overlay Windows 7

Certain applications can benefit from the ability to display temporary imagery
in a display window. The users of these applications may wish to annotate an
image with text or graphical figures, temporarily highlight certain portions of
the imagery, or animate figures that appear to move against the background of
the imagery.

The use of overlays is a common technique that applications can use to achieve
these effects. An overlay is a pixel buffer (either physical or software-
simulated) into which graphics can be drawn. When the overlay is physical
(i.e. not simulated in software), erasing the overlay graphics does not damage
the underlying graphics. This provides a performance advantage when the
underlying graphics is complex and requires much time to repaint.

This chapter presents a model for an application programming interface (API)
that provides overlay capabilities in the Solaris Visual environment.

Basic Features of Overlay Windows
The following sections introduce the basic characteristics of overlay windows.

Definition

An overlay window is a special class of an X InputOutput window. Handles
to overlay windows have the X window type Window. Just like standard X
windows, overlay windows are drawables and an overlay window handle can
be passed to any Xlib drawing routine that takes a Drawable .

66 OpenWindows Server Programmer’s Guide—August 1994

7

Standard X InputOutput windows can be rendered to with pixels of only one
type of paint: opaque. Pixels painted opaquely obscure pixels in underlying
windows. Opaque pixels have associated color values which are displayed.

The unique feature of overlay windows is that they permit pixels to be
rendered with a new type of paint: transparent paint. Pixels rendered
transparently have no intrinsic color; they derive their displayed color from
whatever pixels lie beneath.

Both opaque and transparent paint can be rendered to an overlay window.
Standard X windows and other drawables (such as pixmaps) only accept
opaque paint.

Overlay windows are created using a new XSolarisOvlCreateWindow
routine. Details are provided below.

Overlay windows are destroyed with XDestroyWindow or
XDestroySubwindows .

Creating an Overlay Window

There is a new routine defined to create an overlay window. The routine is
XSolarisOvlCreateWindow . It behaves exactly as XCreateWindow except
that the resulting window will be an overlay window. The visual used to create
the overlay can be any visual. These routines are described below. However,
not all overlay/underlay visual pairs may be optimal.

Each screen defines a set of optimal overlay/underlay visual pairs. These define
the optimal visuals of the overlay windows that can be created with a
particular underlay visual. Likewise, they define the optimal visuals of
underlay windows that can be created with a particular overlay visual. The
optimal pairs can be inquired using XSolarisOvlSelectPair and
XSolarisOvlSelectPartner . The definition of optimal varies from device to
device, but it will usually refer to the ability of a device to create an overlay
window in a different plane group than that of an underlay window.

The class argument to XSolarisOvlCreateWindow should be
InputOutput . An overlay window can be created as an InputOnly window
but, in this case, it will behave like a standard InputOnly window. It is only
for InputOutput windows that there is a difference between overlay and non-
overlay.

Visual Overlay Windows 67

7

Overlay Window Viewability

An overlay window is considered viewable even if all its pixels are fully
transparent. For viewable pixels in an overlay window that are fully
transparent, the underlying pixels in the underlay will be displayed.

If an overlay window is unmapped or moved, the underlay beneath may
receive exposure events. This, for example, is the case on devices that can not
display the overlay window and underlay window in different plane groups.

Rendering Transparency

Overlay windows are unique in that applications can render transparent paint
to them. This can be done through a Solaris Visual graphics library by
specifying in the Graphics Context (GC) for that library that the paint is to be
transparent. Each library has a defined way of doing this which is described in
subsequent sections.

Advanced Features of Overlay Windows
The following sections describe the characteristics of overlay windows that
were not discussed above. They deal mostly with what makes an overlay
window unique as a window. Some sections also deal with application
portability issues.

Overlay Window Background

As defined in the X specification, windows can have a background. The main
purpose of window background is so that something reasonable is displayed in
the exposed areas of a window in case the client is slow to repaint these areas.
This background is rendered whenever the window receives an Expose event.
The background is rendered before the Expose event is sent to the client. The
background is also rendered when the client makes a XClearArea or
XClearWindow request.

Like standard X InputOutput windows, overlay windows can also have a
background. The background of an overlay window is rendered just like a non-
overlay window in response to Expose events, XClearArea requests, or
XClearWindow requests. In addition to the standard types of background
(None, pixmap, pixel, or parent relative), overlay windows can also be

68 OpenWindows Server Programmer’s Guide—August 1994

7

assigned a new type of background: transparent. A new routine
XSolarisOvlSetWindowTransparent is available to set the background
type to transparent.

The background of an overlay window is transparent by default. However, the
application can still specify one of the usual X types of background: None, a
pixmap XID, a pixel value, or ParentRelative .

A background of None will mean that no rendering will be performed when
the overlay window encounters a condition that invokes background painting.
Neither transparent nor opaque paint will be rendered.

When the background is a pixmap XID, the background will be rendered with
opaque paint. The rendered pixel values will be derived from the pixmap as
defined in the X specification.

When the background is a single pixel value, the background will be a solid
color rendered with opaque paint.

The behavior for a ParentRelative background depends on the parent
window background and its type. If the parent window is an underlay, the
background for the overlay window child will be rendered with opaque paint
and the rendered pixels will be as defined in the X specification.

If the parent window is an overlay, the background of the overlay child will be
the same as that of the parent, either transparent or opaque paint will be
rendered.

Attempts to set the background of a non-overlay window with
XSolarisOvlSetTransparent will generate a BadMatch error. If an
underlay window has a ParentRelative background and the parent
window is an overlay with a transparent background, the underlay child will
be treated as if it has a background of None.

Overlay Window Border

The border of overlay windows is opaque. It is always drawn with opaque
paint. Just like standard X InputOutput windows, the border width can be
controlled with XSetWindowBorderWidth .

Visual Overlay Windows 69

7

Overlay Window Backing Store

An overlay window can be granted backing store not only for the color
information of its opaque pixels, but also for the paint type of its pixels. If the
backing_store attribute of a window is set to Always or WhenMapped, the
X11 server can grant backing store for an overlay window. When backing store
is granted, both the color and paint information will be retained.

The backing_planes and backing_pixel apply only to the color
information of opaque pixels in the window.

Overlay Window Gravity

The bit and window gravity attributes (bit_gravity and win_gravity)
apply to overlay windows. However, if the gravity calls for the movement of
pixels, the transparency information will be moved along with the pixel color
information.

Overlay Colormap

Overlay colormap installation follows the X rules. If your application uses
pixel-sharing overlay/underlay pairs, create a single colormap for both
windows. Refer to “Choosing Visuals” on page 72 and “Portability Inquiry
Routines” on page 89 for more on the subject of pixel-sharing pairs.

If the pair is known to never share hardware color LUTs, different colormaps
can be safely assigned to the overlay and underlay window without the
occurrence of colormap flashing.

Note – To improve the portability of applications and to minimize color
flashing, use colormaps with the same colors in both the overlay and underlay
window colormaps. If this is not possible, use one of the visual inquiry
routines to determine whether different colormaps can be assigned without
producing flashing.

Other Overlay Window Characteristics

In most respects, other than those listed above, an overlay window is just like
a standard X InputOutput window.

70 OpenWindows Server Programmer’s Guide—August 1994

7

Specifically:

• An overlay window can be mapped or unmapped. The routines
XMapWindow, XUnmapWindow, XMapSubwindows , XUnmapSubwindows
apply.

• An overlay window can possess its own cursor or use its parent’s cursor. In
other words XDefineCursor and XUndefineCursor apply to overlay
windows.

• An overlay window appears in the output of XQueryTree .

• The event_mask and do_not_propogate_mask window attributes
function normally. An overlay window can express interest in any type of
event.

• XTranslateCoordinates and XQueryPointer apply to overlay
windows.

• save_under applies as for standard X windows.

• override_redirect applies as for standard X windows.

Input Distribution Model

Overlay windows can express interest in events just like a standard X window.
An overlay window receives any event that occurs within its visible shape; the
paint type of the pixel at which the event occurs doesn’t matter. For example, if
the window expresses interest in window enter events, when the pointer enters
the window’s visible shape the window will receive a window enter event,
regardless of whether the pixel is opaque or transparent.

This has some implications for how applications should implement interactive
picking (selection) of graphical objects. Applications that draw graphical figures
into an overlay window above other graphical figures drawn into the underlay
window should express interest in events in either the overlay or underlay
window but not both. When the application receives an input event, it must
use its knowledge of the overlay/underlay layering to determine which
graphical figure has been picked.

Visual Overlay Windows 71

7

For example, let’s say the application expresses interest in events on the
underlay window. When the application receives an event at coordinate (x, y),
it should first determine if there is a graphical figure at that coordinate in the
overlay. If so, the search is over. If not, the application should next see if there
is a graphical figure at that coordinate in the underlay.

Print Capture

After graphical imagery has been rendered to an X window, the user may want
the window contents to be captured and sent to a printer for hard copy output.
The most widespread technique for doing this is to perform a screen dump, that
is, to read back the window pixels with XGetImage , and to send the resulting
image to the printer. To fit the image to the size of the printed page, some
image resampling may be necessary. This can introduce aliasing artifacts into
the image.

Another print capture technique that is growing in popularity in the X11
community is to re-render the graphics through a special printer graphics API.
This API supports the standard Xlib graphics calls. It converts these calls into a
page description language (PDL) format and sends it to the appropriate print
spooler. The advantage of this technique is that the graphics can be scaled to fit
the printed page by scaling the coordinates themselves, not the pixels after
scan conversion has been applied. As a result, aliasing artifacts are minimized.

The print API technique has a significant drawback when applied to an
overlay/underlay window pair. Most PDLs only support the notion of opaque
paint; they do not provide for the marking of transparent paint. In the
PostScript PDL, for example, the marked pixels always supersede what was
previously marked. Given such a limitation, it is not always possible to capture
the imagery in an overlay/underlay window pair using this technique.
Certainly, in certain restricted applications where the background of the
overlay is completely transparent and only opaque paint is drawn to it, the
underlay could be marked first and the overlay marked second. But if
transparent paint was drawn to the overlay, erasing other opaque paint in the
overlay, this would not work.

Until this issue is resolved, capture overlay windows and send them to the
printer using XReadScreen and resampling. Alternatively, do not use overlays
to render information that is to be printed.

72 OpenWindows Server Programmer’s Guide—August 1994

7

Choosing Visuals

Multiple plane group (MPG) and single plane group (SPG) devices support the
Solaris Visual Overlay Window API.

Display devices come in a wide variety of configurations. Some have multiple
plane groups. Some have multiple hardware color lookup tables (LUTs). Some
dedicate color LUTs to particular plane groups and some share color LUTs
between plane groups. This wide variety makes it difficult for an application
writer to construct portable overlay applications.

For a given type of underlay window, some devices can provide some types of
overlay windows with high performance rendering. Other devices still provide
the same type of overlay window but with slower rendering. Some devices can
support overlays with a lot of colors and some devices cannot. Some devices
can support simultaneous display of both overlay and underlay colors for all
types of overlays and underlays. Others support simultaneous display of
colors but not for all overlay/underlay combinations. Still others support a
certain degree of simultaneous color display. These devices support more than
one hardware color LUT. Hardware might not contain enough color LUTs to
enable all applications to display their colors simultaneously.

The Solaris Visual Overlay Window API provides two utility routines to enable
an application to negotiate with the system for a suitable overlay/underlay
visual pair:

• XSolarisOvlSelectPartner

• XSolarisOvlSelectPair

These are described in further detail in the section “Portability Inquiry
Routines” on page 89.

The assumption is made that each application has an ideal configuration of
windows and colors that it would like to use. An application should start out
by asking for the “best” overlay/underlay pair. Initially, the application should
be quite bold in its definition of best—it should ask for its notion of the ideal
pair. If this can be satisfied by the device, then the negotiation is complete and
the application proceeds to create windows on the selected underlay and
overlay visuals. But if no visual pair satisfies the query, the application must
relax its demands. To this end, it should specify the “next best” pair. The
application may choose to ask for less colorful visuals, or maybe it can abide

Visual Overlay Windows 73

7

lower rendering performance on one of the visuals. The process continues until
either a satisfactory visual is found or the application decides it’s not worth
running in this environment without certain criteria being met.

The overlay API provides routines that enable the application to conduct such
a negotiation in a single subroutine call. The application specifies criteria to be
matched for either the overlay visual, the underlay visual, or both.
Applications are encouraged to use these routines to ensure portability to the
widest range of graphics devices.

Interaction with Other Extensions

SHAPE

The shape of overlay windows can be controlled through the SHAPE extension
just like a standard X window.

Multibuffering

Eventually applications will be able to use MBX to multibuffer overlay
windows. However, the current version of Solaris does not support this
feature. When it is supported, the Xmbuf functions will work on overlay
windows just as they do on standard X windows.

Xlib Interface
This section contains the visual overlay type definitions. To use the routines
described in this section:

• Include the file /usr/openwin/include/X11/extensions/transovl.h
• Link the library device handler with the library

/usr/openwin/lib/libXext.so

74 OpenWindows Server Programmer’s Guide—August 1994

7

XSolarisOvlPaintType

XSolarisOvlPaintType defines the paint type in each GC.

XSolarisOvlCreateWindow

XSolarisOvlCreateWindow is an X extension creation routine provided by
libXext.so .

Synopsis

Create an overlay window.

Arguments

The arguments for this routine are exactly the same as XCreateWindow .

display
Specifies the connection to the X server.

parent
Specifies the parent window.

x , y
Specifies the coordinates of the upper-left pixel of this window, relative to
the parent window.

typedef enum {
XSolarisOvlPaintTransparent,
XSolarisOvlPaintOpaque,

} XSolarisOvlPaintType;

Window
XSolarisOvlCreateWindow(Display *display, Window parent, int x, int y,

unsigned int width, unsigned int height,
unsigned int border_width, int depth, unsigned int class,
Visual * visual, unsigned long valuemask,
XSetWindowAttributes * attr)

Visual Overlay Windows 75

7

width , height
Specifies the width and height, in pixels, of the window.

border_width
Specifies the width, in pixels, of the window’s borders.

depth
Specifies the depth of the window.

class
Specifies the class of the window. If it is not InputOutput, the window will
not be an overlay window.

visual
Specifies a pointer to the visual structure for this window.

valuemask
Specifies which window attributes are defined in the attr argument.

attr
Specifies the attributes of the window.

Description

This routine creates an overlay window with the given characteristics. It
behaves exactly as its counterpart XCreateWindow , except the newly created
window can be rendered into with both opaque and transparent paint, and the
background is transparent.

XSolarisOvlIsOverlayWindow

XSolarisOvlIsOverlayWindow is an inquiry routine provided by
libXext.so .

Synopsis

Indicates whether a given window is an overlay window.

Bool
XSolarisOvlIsOverlayWindow (Display *display, Window w)

76 OpenWindows Server Programmer’s Guide—August 1994

7

Arguments

display
Specifies the connection to the X server.

w
Specifies the window.

Description

Returns True if the given window w is an overlay window. Otherwise returns
False .

XSolarisOvlSetPaintType

XSolarisOvlSetPaintType is a paint type control routine provided by
libXext.so .

Synopsis

Specifies the type of paint rendered by subsequent Xlib drawing with the given
GC.

Arguments

display
Specifies the connection to the X server.

gc
Specifies the affected GC.

paintType
Specifies the type of paint rendered by subsequent Xlib drawing routines
using the specified GC.

void
XSolarisOvlSetPaintType (Display *display, GC gc,

XSolarisOvlPaintType paintType)

Visual Overlay Windows 77

7

Description

This routine controls the type of paint rendered by an Xlib GC. It controls
whether Xlib drawing routines using this GC produce pixels on overlay
windows that are opaque or transparent. The paint type specified applies to
the GC until it is changed by another call to this routine. The paint type
attribute applies to both the foreground and background GC attributes.

If the value of paintType is XSolarisOvlPaintOpaque , the pixels
generated by subsequent Xlib drawing routines with this GC will be opaque.
This means the pixels will obscure underlying pixels.

If the value of paintType is XSolarisOvlPaintTransparent , the pixels
generated by subsequent Xlib drawing routines with this GC will be
transparent. This means that, for these pixels, the color of the underlying pixels
will be displayed.

By default, a GC renders opaque paint.

XSolarisOvlGetPaintType

XSolarisOvlGetPaintType is a paint type inquiry routine provided by
libXext.so .

Synopsis

Get the current paint type set in the GC.

Arguments

display
Specifies the connection to the X server.

gc
The GC to be inquired from.

XSolarisOvlPaintType
XSolarisOvlGetPaintType (Display *display, GC gc)

78 OpenWindows Server Programmer’s Guide—August 1994

7

Description
This routine returns the current element of type XSolarisOvlPaintType
associated with the given gc.

XSolarisOvlSetWindowTransparent

XSolarisOvlSetWindowTransparent is a window background control routine
provided by libXext.so .

Synopsis

Sets the background state of an overlay window to be transparent.

Arguments

display
Specifies the connection to the X server.

w
The overlay window.

Description
This routine sets the background state of the given overlay to be
transparent. Any background rendering that occurs after this request will
cause the background to be transparent. Use
XChangeWindowAttributes() , XSetWindowBackground() , or
XSetWindowBackgroundPixmap() to change background state to any
other value.

If w is not an overlay window, BadMatch is generated.

void
XSolarisOvlSetWindowTransparent (Display *display, Window w)

Visual Overlay Windows 79

7

XSolarisOvlCopyPaintType

XSolarisOvlCopyPaintType is a rendering routine provided by
libXext.so

Synopsis

Renders opaque and transparent paint into the destination drawable based on
the paint type attributes of the pixels in the source drawable.

Arguments

display
Specifies the connection to the X server.

src
Specifies the source drawable from which to obtain the paint type
information.

dst
Specifies the destination drawable.

gc
Specifies the GC.

src_x , src_y
Specify the x and y coordinates of the upper-left corner of the source
rectangle relative to the origin of the source drawable.

width , height
Specify the width and height of both the source and destination rectangles.

dest_x , dest_y
Specify the x and y coordinates of the upper-left corner of the destination
rectangle relative to the origin of the destination drawable.

void
XSolarisOvlCopyPaintType(Display *display, Drawable src,

Drawable dst, GC gc, int src_x, int src_y,
unsigned int width, unsigned int height, int dest_x,
int dest_y, unsigned long action, unsigned long plane)

80 OpenWindows Server Programmer’s Guide—August 1994

7

action
Specifies which paint type data is to be copied. This can be one of
XSolarisOvlCopyOpaque , XSolarisOvlCopyTransparent , or
XSolarisOvlCopyAll .

plane
Specifies the bit-plane of the src drawable to be used as paint type
information when the source is not an overlay.

Description

This routine uses the paint type information of the specified rectangle of src to
control a fill operation in the specified rectangle of dst . src and dst can be
any type of drawable. If src is an overlay, the paint type attribute of its pixels
is used as the source of the copy, and the color information is ignored. If src is
any other type of drawable, the bit-plane specified in plane is treated as if it
were paint type data and it is used for the copy. plane must have only one bit
set in this case.

The following table summarizes the possible combinations of src and dst and
their actions. The left side of the table shows the possible src combinations.
The top of the table shows the possible dst combinations. The actions, A1-A4,
are explained below the table.

A1—Opaque pixels in the source overlay cause the corresponding pixels in the
destination to be filled with opaque color as specified by the fill attributes
of the GC. Transparent pixels in the source cause the corresponding pixels
in the destination to be filled with transparent paint.

A2—Opaque pixels in the source overlay cause the corresponding pixels in the
destination to be filled according to the fill attributes of the GC.
Transparent pixels in the source overlay cause the corresponding pixels in
the destination to be filled according to the same fill attributes of the GC,
but with the foreground and background pixels swapped.

Table 7-1 XSolarisOvlCopyPaintType Source/Destination Combinations and Actions

Source/Destination Overlay Drawable

overlay A1 A2

drawable A3 A4

Visual Overlay Windows 81

7

A3—The pixels in the destination overlay are filled with opaque paint or made
transparent as in A1 above depending on the bit values of the source
drawable’s plane . Bit values of 1 in the source are treated as if they were
opaque pixels and bit values of 0 are treated as if they were transparent.

A4—The pixels in the destination drawable are filled with paint as in A2 above
depending on the bit values of the source drawable’s plane. Bit values of
1 in the source bit plane are treated as if they were opaque pixels and bit
values of 0 are treated as if they were transparent.

The action argument specifies whether opaque paint
(XSolarisOvlCopyOpaque), transparent paint
(XSolarisOvlCopyTransparent), or both (XSolarisOvlCopyAll) should
be operated upon. This allows a client to accumulate opaque or transparent
paint.

src and dst must have the same screen, or a BadMatch error results.

If portions of the source rectangle are obscured or are outside the boundaries
of the source drawable, the server generates exposure events, using the same
semantics as XCopyArea .

This routine uses these GC components: function, plane-mask, fill-style,
subwindow-mode, graphics-exposures, clip-x-origin, clip-y-origin, and clip-
mask. It might use these GC mode-dependent components: foreground,
background, tile, stipple, tile-stipple-x-origin, tile-stipple-y-origin.

XSolarisOvlCopyPaintType can generate BadDrawable , BadGC,
BadMatch , and BadValue errors.

XSolarisOvlCopyAreaAndPaintType

XSolarisOvlCopyAreaAndPaintType is a rendering routine provided by
libext.so .

82 OpenWindows Server Programmer’s Guide—August 1994

7

Synopsis

Copies the given area and paint type data from one pair of drawables to
another.

Arguments

display
Specifies the connection to the X server.

colorsrc
The color information source drawable.

painttypesrc
The paint type information source drawable.

colordst
The color information destination drawable.

painttypedst
The paint type information destination drawable. If colordst is an overlay,
this drawable will be ignored.

colorgc
The GC to use for the color information copy.

painttypegc
The GC to use to fill areas in painttypedst . If colordst /painttypedst
is an overlay, this GC will be ignored.

colorsrc_x , colorsrc_y
The X and Y coordinates of the upper-left corner of the source rectangle for
color information relative to the origin of the color source drawable.

void
XSolarisOvlCopyAreaAndPaintType(Display * display, Drawable colorsrc,

Drawable painttypesrc, Drawable colordst,
Drawable painttypedst, GC colorgc, GC painttypegc,
int colorsrc_x, int colorsrc_y, int painttypesrc_x,
int painttypesrc_y, unsigned int width, unsigned int height,
int colordst_x, int colordst_y, int painttypedst_x,
int painttypedst_y, unsigned long action, unsigned long plane)

Visual Overlay Windows 83

7

painttypesrc_x , painttypesrc_y
The X and Y coordinates of the upper-left corner of the source rectangle for
paint type information relative to the origin of the paint type source
drawable.

width , height
The dimensions in pixels of all the source and destination rectangles.

colordst_x , colordst_y
The X and Y coordinates of the upper-left corner of the destination rectangle
for color information relative to the origin of the color destination drawable.

painttypedst_x , painttypedst_y
The X and Y coordinates of the upper-left corner of the destination rectangle
for paint type information relative to the origin of the paint type destination
drawable. If colordst /painttypedst is an overlay, colordst_x and
colordst_y will be used.

action
Specifies which paint type data is to be copied. This can be one of
XSolarisOvlCopyOpaque, XSolarisOvlCopyTransparent, or
XSolarisOvlCopyAll.

plane
Specifies the source bit-plane in painttypesrc to be used as paint type
information when painttypesrc is not an overlay.

Description

This routine copies the specified area of colorsrc to the specified area of
colordst . If colordst is not an overlay, it also fills the specified areas of
painttypedst according to the paint type information specified in
painttypesrc .

colorsrc can be any depth drawable or an overlay window. painttypesrc
can be any drawable or an overlay window. If painttypesrc is not an
overlay window, the bit-plane of painttypesrc specified in plane is treated
as if it were paint type data and it is used for the copy. plane must have only
one bit set in this case. colordst can be any drawable, but must be of the
same depth and have the same root as colorsrc , otherwise BadMatch is
generated. If colordst is an overlay, then painttypedst is ignored,
otherwise painttypedst can be any type of drawable.

84 OpenWindows Server Programmer’s Guide—August 1994

7

The following table summarizes the possible combinations of sources and
destinations and their respective actions. The left side of the table shows the
possible colorsrc/painttypesrc combinations and the top of the table
shows the possible colordst/painttypedst combinations. The actions, A1-
A8, are explained below the table. An Impossible entry in the table indicates
that the given combination is impossible since the painttypedst is ignored
when the colordst is an overlay.

A1—The paint type information from painttypesrc is used as a mask to
copy the color information from colorsrc to colordst . Opaque pixels
in painttypesrc cause the corresponding pixel in colorsrc to be
copied to colordst , transparent pixels cause the corresponding pixel in
colordst to be made transparent. If a transparent pixel from colorsrc
is copied to colordst , the actual color transferred will be undefined.

A2—Same as A1 except that the paint type information is extracted from the
bit-plane of painttypesrc specified by plane . A bit value of 1
indicates an opaque pixel whereas a bit value of 0 indicates transparent.

A3—Same as A1 except that a non-overlay drawable is used to obtain the color
information so there will be no undefined colors due to transparent pixels.

A4—Same as A3 except that the paint type information is taken from the
specified bit-plane of painttypesrc as in A2.

A5—The paint type information from painttypesrc is used as a mask to
copy the color information from colorsrc to colordst as in A1. In
addition, the paint type information controls rendering to the
painttypedst drawable as in XSolarisOvlCopyPaintType .

A6—Same as A5 except that the paint type information is taken from the
specified bit-plane of painttypesrc as in A2.

Table 7-2 XSolarisOvlCopyAreaAndPaintType Possible Source/Destination
Combinations and Actions

Overlay/Overlay Overlay/Drawable Drawable/Overlay Drawable/Drawable

overlay/overlay A1 Impossible A5 A5

overlay/drawable A2 Impossible A6 A6

drawable/overlay A3 Impossible A7 A7

drawable/drawable A4 Impossible A8 A8

Visual Overlay Windows 85

7

A7—Same as A5 except that there will be no undefined colors due to
transparent color source pixels.

A8—Same as A7 except that the paint type information is taken from the
specified bit-plane of painttypesrc as in A2.

The action argument specifies whether opaque paint
(XSolarisOvlCopyOpaque), transparent paint
(XSolarisOvlCopyTransparent), or both (XSolarisOvlCopyAll) should
be copied. This allows a client to accumulate opaque or transparent paint.

NoExpose and GraphicsExpose events are generated in the same manner as
XSolarisOvlCopyPaintType .

If an overlay is used for the colordst argument, the painttypedst ,
painttypegc , painttypedst_x and painttypedst_y arguments will all
be ignored. A NULL pointer can be used for painttypegc and a value of None
can be used for painttypedst . The overlay will have the exact paint type
defined by the pixels in the area specified in painttypesrc . The color
information copy will not affect the destination paint type.

You can use XSolarisOvlCopyAreaAndPaintType to combine an image in
the client’s memory space (consisting of color and/or paint type information)
with a rectangle of the specified overlay window. To do this, first move the
image and paint type data into the server: use XPutImage to copy the data
into 2 pixmaps of the appropriate depths. Then call
XSolarisOvlCopyAreaAndPaintType with the color and paint type
drawables to copy information to the overlay.

You can also use XSolarisOvlCopyAreaAndPaintType to retrieve pixel
information (color and/or paint type information) from a specified drawable.
To do this, call XSolarisOvlCopyAreaAndPaintType with two separable
destination drawables. Then call XGetImage on each of the drawables, to get
the data from the server into the client’s memory space.

This function uses these GC components from colorgc : function, plane-mask,
subwindow-mode, graphics-exposures, clip-x-origin, clip-y-origin, and clip-
mask.

86 OpenWindows Server Programmer’s Guide—August 1994

7

If colordst is not an overlay then this function will use these GC components
from painttypegc : function, plane-mask, fill-style, subwindow-mode, clip-x-
origin, clip-y-origin, and clip-mask. In addition, it may also use these GC
mode-dependent components: foreground, background, tile, stipple, tile-
stipple-x-origin, and tile-stipple-y-origin.

XSolarisOvlCopyAreaAndPaintType can generate BadDrawable , BadGC,
BadMatch , and BadValue errors.

XReadScreen

XReadScreen is an image retrieval routing provided by libext.so .

Synopsis

Returns the displayed colors in a rectangle of the screen.

Arguments

display
Specifies the connection to the X server.

w
Specifies the window from whose screen the data is read.

x , y
Specify the X and Y coordinates of the upper-left corner of the rectangle
relative to the origin of the window w.

width , height
Specify the width and height of the rectangle.

includeCursor
Specifies whether the cursor image is to be included in the colors returned.

XImage *
XReadScreen (Display *display, Window w, int x, int y,

unsigned int width, unsigned int height,
Bool includeCursor)

Visual Overlay Windows 87

7

Description

This routine provides access to the colors displayed on the screen of the given
window. On some types of advanced display devices, the displayed colors can
be a composite of the data contained in several different frame stores and these
frame stores can be of different depth and visual types.

In addition, there can be overlay/underlay window pairs in which part of the
underlay is visible beneath the overlay. Because the data returned by
XGetImage is undefined for portions of the rectangle that have different
depths, XGetImage is inadequate to return a picture of the what user is
actually seeing on the screen. In addition, XGetImage cannot composite pixel
information for an overlay/underlay window pair because the pixel
information lies in different drawables. XReadScreen addresses these
problems.

Rather than returning pixel information, XReadScreen returns color
information—the actual displayed colors visible on the screen. It returns the
color information from any window within the boundaries of the specified
rectangle. Unlike XGetImage , the returned contents of visible regions of
inferiors or overlapping windows of a different depth than the specified
window’s depth are not undefined. Instead, the actual displayed colors for
these windows is returned.

Note – The colors returned are the ones that would be displayed if an
unlimited number of hardware color LUTs were available on the screen. Thus,
the colors returned are the theoretical display colors. If colormap flashing
is present on the screen because there aren’t enough hardware color LUTs to
display all of the software colormaps simultaneously, the returned colors may
be different from the colors that are actually displayed.

If w is an overlay window, the overlay color information is returned
everywhere there is opaque paint in the specified rectangle. The color
information of the underlay is returned everywhere there is transparent paint
in the overlay. In general, since this underlay can be an overlay window
containing transparent paint, the color information for a coordinate (x, y)
which contains transparent paint is the youngest non-inferior that has opaque
paint at (x, y).

88 OpenWindows Server Programmer’s Guide—August 1994

7

The color data is returned as an XImage . The returned image has the same
width and height as the arguments specified. The format of the image is
ZPixmap . The depth of the image is 24 and the bits_per_pixel is 32. The most
significant 8 bits of color information for each color channel (red, green blue)
will be returned in the bit positions defined by red_mask , green_mask , and
blue_mask in the XImage. The values of the following attributes of the
XImage are server dependent: byte_order , bitmap_unit ,
bitmap_bit_order , bitmap_pad , bytes_per_line , red_mask ,
green_mask , blue_mask .

If includeCursor is True, the cursor image is included in the returned colors.
Otherwise, it is excluded.

Note that the borders of the argument window (and other windows) can be
included and read with this request.

If a problem occurs, XReadScreen returns NULL.

Semantics of Existing Primitive Rendering Routines
All of the standard Xlib primitive rendering routines, such as XDrawLines and
XFillRectangles , can be used to draw to overlay windows. In this case, the
paint type attribute of the argument GC will be used to control the quality of
the pixels rendered. The paint type attribute applies to both the foreground
and background GC attributes.

This applies even to XPutImage . If the paint type of the argument GC is
XSolarisOvlPaintOpaque , the color information from the source image is
used and the pixels are rendered with opaque paint. However, if the paint type
is XSolarisOvlPaintTransparent , the source color information is ignored
and the pixels are rendered with transparent paint.

If a GC with a paint type of XSolarisOvlPaintTransparent is used to
render to a drawable other than an overlay window, such as an underlay
window or pixmap, the GC paint type is ignored and the pixels are rendered
with opaque paint.

Visual Overlay Windows 89

7

Semantics of Existing Pixel Transfer Routine

XGetImage

On non-overlay drawables, this routine works as defined in the X11
specification. The same is true for overlay windows, with the exception that, on
these windows, the color information returned for transparent pixels will be
undefined. Clients who simply want to retrieve the display colors for a region
on the screen should use XReadScreen instead.

XCopyArea and XCopyPlane

When both the source and destination drawables are non-overlay, these routine
works as defined in the X11 specification.

When the source drawable is overlay and the destination drawable is non-
overlay, only the color information is copied; the paint type information in the
source is ignored. Color information for transparent pixels is undefined.

When the source drawable is non-overlay and the destination drawable is
overlay, the copy will be performed as the paint type in the GC indicates. If the
paint type is XSolarisOvlPaintOpaque , the color information is copied into
the destination with opaque paint. If the paint type is
XSolarisOvlPaintTransparent , the color information will be ignored and
the destination pixels will be transparent.

When both the source drawable and destination drawable are overlay, the
paint type of the source is ignored, and this behaves as if the source were not
an overlay. If copying both color and paint type information is the desired
result, XSolarisOvlCopyAreaAndPaintType should be used.

Portability Inquiry Routines

XSolarisOvlSelectPartner

XSolarisOvlSelectPartner is a visual inquiry routine provided by
libext.so .

90 OpenWindows Server Programmer’s Guide—August 1994

7

Synopsis

Given an underlay visual and a set of criteria, returns the overlay visual that
best meets the criteria. Or, inversely, given an overlay visual and a set of
criteria, returns the underlay visual that best meets the criteria.

Arguments

display
Specifies the connection to the X server.

screen
An integer specifying the screen for the visual vid .

vid
The XID of the visual to find a partner for.

seltype
The type of selection that is to be done.

numCriteria
The number of XSolarisOvlVisualCriteria structures in the
pCriteria array.

pCriteria
An array of criteria structures in priority order from high to low specifying
the criteria to be used in selecting the visual.

visinfoReturn
A pointer to a caller provided XVisualInfo structure. On successful
return, this structure contains a description of the chosen visual.

XSolarisOvlSelectStatus
XSolarisOvlSelectPartner (Display *display, int screen,

VisualID vid, XSolarisOvlSelectType seltype, int numCriteria,
XSolarisOvlVisualCriteria *pCriteria,
XVisualInfo *visinfoReturn,
unsigned long *unmetCriteriaReturn)

Visual Overlay Windows 91

7

unmetCriteriaReturn
A pointer to a bitmask that describes the criteria that were not satisfied. This
return argument is only meaningful when the routine returns a value of
XSolarisOvlQualifiedSuccess , or XSolarisOvlCriteriaFailure .

Argument Types

See the XSolarisOvlSelectPartner Description section for a full
description of how these types should be used.

XSolarisOvlSelectType

An enumeration defining two types of selections that can be done in
XSolarisOvlSelectPartner .

typedef enum {
XSolarisOvlSelectBestOverlay,
XSolarisOvlSelectBestUnderlay,

} XSolarisOvlSelectType;

92 OpenWindows Server Programmer’s Guide—August 1994

7

XSolarisOvlVisualCriteria
A structure defining various criteria to be used during visual selection,
along with indications of the stringency of the criteria.

hardCriteriaMask and softCriteriaMask are bitmasks whose values
can be the logical OR of any of the following bitmasks:.

These are described in the XSolarisOvlSelectPartner Description
documentation that follows.

typedef struct {
unsigned long hardCriteriaMask;
unsigned long softCriteriaMask
int c_class;
unsigned int depth;
unsigned int minColors;
unsigned int minRed;
unsigned int minGreen;
unsigned int minBlue;
unsigned int minBitsPerRGB;
unsigned int minBuffers;

} XSolarisOvlVisualCriteria;

#define XSolarisOvlVisualClass (1L<<0)
#define XSolarisOvlDepth (1L<<1)
#define XSolarisOvlMinColors (1L<<2)
#define XSolarisOvlMinRed (1L<<3)
#define XSolarisOvlMinGreen (1L<<4)
#define XSolarisOvlMinBlue (1L<<5)
#define XSolarisOvlMinBitsPerRGB (1L<<6)
#define XSolarisOvlMinBuffers (1L<<7)
#define XSolarisOvlUnsharedPixels (1L<<8)
#define XSolarisOvlUnsharedColors (1L<<9)
#define XSolarisOvlPreferredPartner (1L<<10)

Visual Overlay Windows 93

7

Return Types

XSolarisOvlSelectStatus
A value that indicates whether the routine succeeded in finding a visual
and, if it failed, the reason for the failure. The return value can be one of:

XSolarisOvlSuccess is returned if the search is completely successful in
finding a visual that meets all hard and soft criteria of one of the
XSolarisOvlVisualCriteria structure.

XSolarisOvlQualifiedSuccess is returned if the chosen visual satisfies
all hard criteria of one of the XSolarisOvlVisualCriteria structure, but
doesn’t meet all soft criteria. In this case, unmetCriteriaReturn contains
the logical OR of the soft criteria that were not met.

XSolarisOvlCriteriaFailure indicates that no visual could be found
that meets all the hard criteria of any of the
XSolarisOvlVisualCriteria structures. In this case,
unmetCriteriaReturn contains the logical OR of the hard criteria that
were not met for the XSolarisOvlVisualCriteria structure with the fewest
hard criteria not met.

XSolarisOvlFailure is returned if some other error is encountered
besides criteria match failure.

Description

Portable applications using overlays may wish to search for an appropriate
overlay visual to use for a given underlay visual, or vice-versa. Each X screen
supporting the overlay extension defines a set of overlay visuals whose
windows are best for use as children of underlay windows. For each underlay
visual, there is a set of optimal overlay visuals. Together, all combinations of

typedef enum {
XSolarisOvlSuccess,
XSolarisOvlQualifiedSuccess,
XSolarisOvlCriteriaFailure,
XSolarisOvlFailure,

} XSolarisOvlSelectStatus;

94 OpenWindows Server Programmer’s Guide—August 1994

7

underlay visuals and their optimal overlay visuals form the set of optimal
overlay/underlay pairs for that screen. The overlay and underlay visuals of an
optimal pair are said to be partners of each other.

XSolarisOvlSelectPartner allows the client to select, given an underlay
visual, an optimal overlay that meets certain criteria. Inversely, it also allows
the client to select an optimal underlay visual given an overlay visual.

The client is assured that, short of X errors not related to overlays, it can
successfully create a window with the returned visual.

This routine searches through the optimal partners of the given visual,
applying the criteria specified in pCriteria . It returns a success or failure
status depending on whether it finds a visual that meets the criteria.

A criterion can be one of two types:

1. Hard Criterion

A criterion that must be satisfied. Only visuals that meet hard criteria are
candidates for successful matches.

2. Soft Criterion

A desirable criterion, but one which is not required.

The visual that matches all hard criteria and the most soft criteria is chosen. Its
attributes are returned in visinfoReturn . If two or more visuals are found
that meet all of the hard criteria and the same number of soft criteria, one of
them will be chosen and returned. It is implementation dependent which one
is chosen.

XSolarisOvlSelectPartner supports a degradation sequence of criteria sets.
This means that multiple criteria sets can be specified in a single call. First, an
attempt is made to find a visual matching the first criteria set. If a visual is
found which meets all of the hard criteria of the first set, this visual is chosen.
If no visual met all hard criteria of the first set, a search is performed using the
second criteria set. This process continues until either a visual is found that
meets the hard criteria of some criteria set, or all sets have been used to search.
This degradation sequence allows clients to specify the criteria for the most
preferred visual as the first criteria set. Visuals that are acceptable but which
are less desirable can be specified in criteria sets following the first. This allows
the search to proceed through a progressive relaxation in the client’s
requirements for the visual with a single subroutine call.

Visual Overlay Windows 95

7

Any of the possible criteria can be specified either as a hard or soft criteria for
a particular criteria set. For a given set, hardCriteriaMask is the logical OR
of the criteria bitmasks that are to be applied as hard criteria during the search.
Likewise, softCriteriaMask is the logical OR of the soft criteria bitmasks.

Some criteria have values associated with them. These values are provided by
other data members in the XSolarisOvlVisualCriteria structure. In the
criteria descriptions which follow, these data members are mentioned where
applicable.

XSolarisOvlVisualClass specifies that the client desires the selected visual
to have a specific visual class. The required class is specified in c_class .

The following criteria interact within one another: XSolarisOvlDepth ,
XSolarisOvlMinColors , XSolarisOvlMinRed , XSolarisOvlMinGreen ,
and XSolarisOvlMinBlue . Typically only some subset of these should be
specified. XSolarisOvlDepth specifies that the depth of the selected visual is
to be equal to depth . XSolarisOvlMinColors specifies that the selected
visual is to have at least minColors number of total displayable colors.
XSolarisOvlMinRed , XSolarisOvlMinGreen , and XSolarisOvlMinBlue
can be used to indicate more specific color requirements for DirectColor or
TrueColor visuals. Their corresponding values are specified in minRed ,
minGreen , and minBlue , respectively. These indicate that the selected visual
must have at least the specified number of reds, greens, and/or blues.

XSolarisOvlMinBitsPerRGB specifies that the selected visual is to have at
least minBitsPerRGB of color channel output from colormaps created on that
visual.

XSolarisOvlMinBuffers specifies that the client desires the selected visual
to be able to be assigned at least minBuffers number of accelerated MBX
image buffers.

XSolarisOvlUnsharedPixels selects partner visuals whose window pixels
don’t lie in the same drawing plane groups as the window pixels of the
argument visual vid . If a visual uses the same drawing plane group as the
argument visual it is not matched by this criterion.

XSolarisOvlUnsharedColors selects partner visuals whose window pixel
colors can be displayed simultaneously when the overlay/underlay window
pair has the colormap focus. If a visual shares the same color LUT pool and
that pool has only one color LUT in it as the argument visual it is not matched
by this criterion.

96 OpenWindows Server Programmer’s Guide—August 1994

7

If either hardCriteriaMask of a criteria set is to 0, any visual will match that
criteria set with a hard match. Likewise, setting the softCriteriaMask of a
criteria set to 0, is sufficient to guarantee at least a soft match for that criteria
set.

XSolarisOvlSelectPair

XSolarisOvlSelectPair is a visual inquiry routine provided by
libext.so .

Synopsis

Given a set of criteria for both and overlay visual and underlay visual, selects
an optimal overlay/underlay visual pair that best meets the criteria.

Arguments

display
Specifies the connection to the X server.

screen
An integer specifying the screen on which the visuals are to be searched.

numCriteria
The number of XSolarisOvlPairCriteria structures in the pCriteria
array.

pCriteria
An array of pair criteria structures in priority order from high to low
specifying the criteria to be used in selecting the pair.

XSolarisOvlSelectStatus
XSolarisOvlSelectPair (Display *display, int screen, int numCriteria,

XSolarisOvlPairCriteria *pCriteria,
XVisualInfo *ovVisinfoReturn, XVisualInfo *unVisinfoReturn,
unsigned long *unmetOvCriteriaReturn,
unsigned long *unmetUnCriteriaReturn)

Visual Overlay Windows 97

7

ovVisinfoReturn
A pointer to a caller provided XVisualInfo structure. On successful
return, this structure contains a description of the chosen overlay visual.

unVisinfoReturn
A pointer to a caller provided XVisualInfo structure. On successful
return, this structure contains a description of the chosen underlay visual.

unmetOvCriteriaReturn
A pointer to a bitmask that describes the criteria that were not satisfied for
the overlay visual. This return argument is only meaningful when the
routine returns a value of XSolarisOvlQualifiedSuccess , or
XSolarisOvlCriteriaFailure .

unmetUnCriteriaReturn
A pointer to a bitmask that describes the criteria that were not satisfied for
the underlay visual. This return argument is only meaningful when the
routine returns a value of XSolarisOvlQualifiedSuccess , or
XSolarisOvlCriteriaFailure .

Argument Types

See the Description section for a full description of how these types should be
used.

XSolarisOvlPairCriteria
A structure defining various criteria to be used during visual selection,
along with indications of the stringency of the criteria.

XSolarisOvlVisualCriteria is defined in the specification of
XSolarisOvlSelectPartner .

typedef struct {
XSolarisOvlVisualCriteriaoverlayCriteria;
XSolarisOvlVisualCriteriaunderlayCriteria;

} XSolarisOvlPairCriteria;

98 OpenWindows Server Programmer’s Guide—August 1994

7

Return Types

XSolarisOvlSelectStatus
Refer to the specification of XSolarisOvlSelectPartner for the
definition of this type.

XSolarisOvlSuccess is returned if the search is completely successful in
finding a pair that meets all hard and soft criteria of one of the
XSolarisOvlPairCriteria structures.

XSolarisOvlQualifiedSuccess is returned if the chosen pair satisfies all
hard criteria of one of the XSolarisOvlPairCriteria structures, but
doesn’t meet all soft criteria. In this case, unmetOvCriteriaReturn and
unmetUnCriteriaReturn contains the logical OR of the soft criteria that
were not met for the overlay and underlay, respectively.

XSolarisOvlCriteriaFailure indicates that no pair could be found that
meets all the hard criteria of any of the XSolarisOvlPairCriteria
structures. In this case, unmetOvCriteriaReturn and
unmetUnCriteriaReturn contains the logical OR of the hard criteria that
were not met by the XSolarisOvlPairCriteria structure with the fewest
hard failures, for the overlay and underlay, respectively.

XSolarisOvlFailure is returned if some other error is encountered
besides criteria match failure

Description

This routine is similar to XSolarisOvlSelectPartner . However, instead of
selecting a partner visual given another visual, this routine
simultaneously selects both the overlay and underlay visual from the set of all
visual pairs for the given screen. The pair selected will be the one that best
matches the given criteria.

The client is assured that, short of X errors not related to overlays, it can
successfully create windows with the returned visuals.

This routine searches through all optimal visual pairs for a given screen, and
then through all pairs of visuals (optimal and non-optimal), applying the
specified criteria. These criteria are specified in pCriteria . Each element of

Visual Overlay Windows 99

7

pCriteria specifies criteria for both the overlay and underlay It returns a
success or failure status depending on whether it finds a pair that meets all the
given criteria.

The selected pair will have an overlay that satisfies all the hard criteria
specified for the overlay. The pair will have an underlay visual that satisfies all
the hard criteria for the underlay. The attributes of the overlay visual are
returned in ovVisinfoReturn . Likewise, the attributes of the underlay visual
are specified in unVisinfoReturn . If two or more pairs are found that meet
all of the hard criteria (both overlay and underlay) and the same number of
soft criteria (either overlay or underlay), one of them will be chosen and
returned. It is implementation dependent which one is chosen.

Like XSolarisOvlSelectPartner , XSolarisOvlSelectPair supports a
degradation sequence of criteria sets. This means that multiple criteria sets can be
specified in a single call. First, an attempt is made to find a pair matching the
first criteria set for both the overlay and the underlay. If a pair is found which
meets all of the hard criteria of the first set, this pair is chosen. If no pair meets
all hard criteria of the first set, a search is performed using the second criteria
set. This process continues until either a pair is found that meets the all of the
hard criteria of some criteria set, or all sets have been used to search. This
degradation sequence allows clients to specify the criteria for the most
preferred pair as the first criteria set. Pairs that are acceptable but which are
less desirable can be specified in criteria sets following the first. This allows the
search to proceed through a progressive relaxation in the client’s requirements
for the pair with a single subroutine call.

The criteria masks that can be specified are described in the specification of
XSolarisOvlSelectPartner .

Summary of New XLib Routines
This section lists the new routines and attributes defined by the Overlay
Window API. They are all provided by libXext.so .

• XSolarisOvlCreateWindow
• XSolarisOvlIsOverlayWindow
• XSolarisOvlSetPaintType
• XSolarisOvlGetPaintType
• XSolarisOvlCopyPaintType
• XSolarisOvlCopyAreaAndPaintType

100 OpenWindows Server Programmer’s Guide—August 1994

7

• XReadScreen
• XSolarisOvlSelectPartner
• XSolarisOvlSelectPair

101

Security Issues 8

OpenWindows supports two access control mechanisms: user-based and host-
based. It also supports two authorization protocols: MIT-MAGIC-COOKIE-1
and SUN-DES-1. This chapter discusses these access control mechanisms and
authorization protocols. It also discusses how to change the server’s access
control, and how to run clients remotely, or locally as a different user.

Notes About This Chapter

If you run applications in any of the following configurations, you need to read
this chapter. Otherwise, you do not need to change the default security
configuration.

• Linked with a version of Xlib previous to OpenWindows Version 2 or
X11R4. See “Host-Based” on page 102 for details.

• That is statically linked to OpenWindows Version 2 libraries and you want to
use the SUN-DES-1 authorization protocol. See “SUN-DES-1” on page 103
for details.

• On a remote server. See “Running Clients Remotely, or Locally as Another
User” on page 108 for details.

102 OpenWindows Server Programmer’s Guide—August 1994

8

Access Control Mechanisms
An access control mechanism controls which clients or applications have access
to the OpenWindows server. Only properly authorized clients can connect to
the server. All unauthorized X clients terminate with the following error
message:

The connection attempt logs to the server console as:

The two types of access control mechanisms are: user-based and host-based.
Unless the -noauth option is used with openwin , both the user-based access
control mechanism and the host-based access control mechanism are active.
See “Manipulating Access to the Server” on page 105 for more information.

User-Based

A user-based, or authorization-based mechanism allows you to explicitly give
access to a particular user on any host. The user’s client passes authorization
data to the server. If the data matches the server’s authorization data, the user
obtains access.

Host-Based

A host-based mechanism is a general purpose mechanism. It allows you to
give access to a particular host, in which all users on that host can connect to
the server. This is a weak form of access control; if that host has access to the
server, all users on that host can connect to the server.

OpenWindows provides the host-based mechanism for backward
compatibility. Applications linked with a version of Xlib older than
OpenWindows Version 2 or X11R4 do not recognize the new user-based access

Xlib: connection to hostname refused by server
Xlib: Client is not authorized to connect to server

AUDIT: < Date Time Year>: X: client 6 rejected from IP 129.144.152.193 port 3485
Auth name: MIT-MAGIC-COOKIE-1

Security Issues 103

8

control mechanism. To enable these applications to connect to the server, a user
must either switch to the host-based mechanism, or relink with the newer
version of Xlib .

Note – If possible, clients linked with an older version of Xlib should be
relinked with a newer version of Xlib. This enables them to connect to the
server with the new user-based access control mechanism.

Authorization Protocols
The OpenWindows environment supports two different authorization
protocols: MIT-MAGIC-COOKIE-1 and SUN-DES-1. While they differ in the
authorization data used, they are similar in the access control mechanism used.

The MIT-MAGIC-COOKIE-1 protocol, using the user-based mechanism, is the
OpenWindows environment default.

MIT-MAGIC-COOKIE-1

The MIT-MAGIC-COOKIE-1 authorization protocol was developed by the
(MIT) Massachusetts Institute of Technology. A magic cookie is a long, randomly
generated binary password. At server start-up, the magic cookie is created for
the server and the user who started the system. On every connection attempt,
the user’s client sends the magic cookie to the server as part of the connection
packet. This magic cookie is compared with the servers’ magic cookie. The
connection is allowed if the magic cookies match, or denied if they do not
match.

SUN-DES-1

The SUN-DES-1 authorization protocol was developed by Sun Microsystems. It
is based on Secure RPC (Remote Procedure Call) and requires DES (Data
Encryption Software) support. (See the Network Interfaces Programmer’s Guide
for more information). The authorization data is the machine independent
netname, or network name, of a user. This data is encrypted and sent to the
server as part of the connection packet. The server decrypts the data, and if the
netname is known, allows the connection.

104 OpenWindows Server Programmer’s Guide—August 1994

8

The SUN-DES-1 authorization protocol provides a higher level of security than
the MIT-MAGIC-COOKIE-1 protocol. There is no way for another user to use
your machine independent netname to access a server, but it is possible for
another user to use the magic cookie to access a server.

This protocol is available only in libraries in the OpenWindows Version 3 and
later environments. Any applications built with static libraries, in particular
Xlib, in environments prior to OpenWindows Version 3 cannot use this
authorization protocol.

“Allowing Access When Using SUN-DES-1” on page 107 describes how to
allow another user access to your server by adding their netname to your
server’s access list.

Changing the Default Authorization Protocol

The default authorization protocol, MIT-MAGIC-COOKIE-1, can be changed to
another supported authorization protocol or to no user-based access
mechanism at all. The default is changed by supplying options with the
openwin command. See the openwin (1) man page for more information.

For example, to change the default from MIT-MAGIC-COOKIE-1 to
SUN-DES-1, start OpenWindows as follows:

If you must run OpenWindows without the user-based access mechanism, use
the -noauth command line option.

Warning – Using -noauth weakens security. It is equivalent to running
OpenWindows with only the host-based access control mechanism; the server
inactivates the user-based access control mechanism. Anyone that can run
applications on your local machine will be allowed access to your server.

example% openwin -auth sun-des

example% openwin -noauth

Security Issues 105

8

Manipulating Access to the Server
Unless the -noauth option is used with openwin (see “Changing the Default
Authorization Protocol), both the user-based access control mechanism and the
host-based access control mechanism are active. The server first checks the
user-based mechanism, then the host-based mechanism. The default security
configuration uses MIT-MAGIC-COOKIE-1 as the user-based mechanism, and
an empty list for the host-based mechanism. Since the host-based list is empty,
only the user-based mechanism is effectively active. Using the -noauth option
instructs the server to inactivate the user-based access control mechanism and
initializes the host-based list by adding the local host.

There are two programs that can be used to change a server’s access control
mechanism: xhost and xauth . For more information, see these man pages.
These programs access two binary files created by the authorization protocol.
These files contain session-specific authorization data. One file is for server
internal use only. The other file is located in the user’s $HOME directory:

.Xauthority (Client Authority File)

Use the xhost program to change the host-based access list in the server. You
can add hosts to, or delete hosts from the access list. If you are starting with
the default configuration–an empty host-based access list–and use xhost to
add a machine name, you lower the level of security. The server allows access
to the host you added, as well as to any user specifying the default
authorization protocol. See “Host-Based” on page 102 for an explanation of
why the host-based access control mechanism is considered a lower level of
security.

The xauth program accesses the authorization protocol data in the
.Xauthority client file. You can extract this data from your .Xauthority
file so that another user can merge the data into their .Xauthority file, thus
allowing them access to your server, or to the server in which you connect.

See “Allowing Access When Using MIT-MAGIC-COOKIE-1” on page 107 for
examples of how to use xhost and xauth .

106 OpenWindows Server Programmer’s Guide—August 1994

8

Client Authority File

The client authority file is .Xauthority . It contains entries of the form:

connection-protocol auth-protocol auth-data

By default, .Xauthority contains MIT-MAGIC-COOKIE-1 as the auth-
protocol, and entries for the local display only as the connection-protocol and
auth-data. For example, on host anyhost, the .Xauthority file may contain the
following entries:

anyhost:0 MIT-MAGIC-COOKIE-1 82744f2c4850b03fce7ae47176e75

localhost:0 MIT-MAGIC-COOKIE-1 82744f2c4850b03fce7ae47176e75

anyhost/unix:0 MIT-MAGIC-COOKIE-1 82744f2c4850b03fce7ae47176e75

When the client starts up, an entry corresponding to the connection-protocol is
read from .Xauthority , and the auth-protocol and auth-data are sent to the
server as part of the connection packet. In the default configuration, xhost
returns an empty host-based access list and states that the authorization is
enabled.

If you have changed the authorization protocol from the default to SUN-DES-1
the entries in .Xauthority contain SUN-DES-1 as the auth-protocol and the
netname of the user as the auth-data. The netname is in the following form:

unix.userid@NISdomainname

For example, on host, anyhost the .Xauthority file may contain the following
entries:

anyhost:0 SUN-DES-1 “unix.15339@EBB.Eng.Sun.COM”
localhost:0 SUN-DES-1 “unix.15339@EBB.Eng.Sun.COM”
anyhost/unix:0 SUN-DES-1 “unix.15339@EBB.Eng.Sun.COM”

where, unix.15339@EBB.Eng.Sun.COM is the machine independent netname
of the user.

Note – If you do not know your network name, or machine independent
netname, ask your System Administrator.

Security Issues 107

8

Allowing Access When Using MIT-MAGIC-COOKIE-1

If you are using the MIT-MAGIC-COOKIE-1 authorization protocol, follow
these steps to allow another user access to your server:

1. On the machine running the server, use xauth to extract an entry
corresponding to hostname:0 into a file.
For this example, hostname is anyhost and the file is xauth.info:

2. Send the file containing the entry to the user requesting access (using
Mail Tool, rcp or some other file transfer protocol).

Note – Mailing the file containing your authorization information is a safer
method than using rcp . If you do use rcp , do not place the file in a directory
that is easily accessible by another user.

3. The other user must merge the entry into their .Xauthority file.
For this example, userhost merges xauth.info into their .Xauthority file:

Note – The auth-data is session-specific; therefore, it is valid only as long as the
server is not restarted.

Allowing Access When Using SUN-DES-1

If you are using the SUN-DES-1 authorization protocol, follow these steps to
allow another user access to your server:

1. On the machine running the server, use xhost to make the new user
known to the server.
For this example, to allow new user somebody to run on myhost:

myhost% $OPENWINHOME/bin/xauth nextract - anyhost:0 > $HOME/ xauth.info

userhost% $OPENWINHOME/bin/xauth nmerge - < xauth.info

myhost% xhost + somebody@

108 OpenWindows Server Programmer’s Guide—August 1994

8

2. The new user must use xauth to add the entry into their .Xauthority
file.
For this example, new user, somebody’s machine independent netname is
unix.15339@EBB.Eng.Sun.COM:

Running Clients Remotely, or Locally as Another User
X clients use the value of the DISPLAY environment variable to get the name of
the server in which they should connect.

To run clients remotely, or locally as another user, follow these steps:

1. On the machine running the server, allow another user access.
Depending on which authorization protocol you use, follow the steps
outlined in either “Allowing Access When Using MIT-MAGIC-COOKIE-1”
on page 107 or “Allowing Access When Using SUN-DES-1” on page 107.

2. Set DISPLAY to the name of the host running the server.
For this example, the host is remotehost:

3. Run the client program.
The client will be displayed on the remote machine, remotehost.

userhost% echo ’add myhost:0 SUN-DES-1 “unix. 15339@EBB.Eng.Sun.COM”’ | $OPENWINHOME/bin/xauth

myhost% setenv DISPLAY remotehost:0

myhost% client_program&

109

Multi-Buffering Application
Program Interface, Version 3.2 A

This appendix describes the C language API (application program interface) to
the MBX (Multi–Buffering) extension.1 These routines provide direct access to
the protocol and add no additional semantics.

This appendix assumes that you are familiar with the MBX protocol described
in the MIT standard, Extending X for Double-Buffering and Multi-Buffering, and
Stereo, Version 3.2. See “MBX (Multi-Buffering) Extension” on page 22 for
information on how to access this standard.

Throughout this appendix, the file path names given are relative to
/usr/openwin .

Library File
These API routines can be accessed by dynamically linking with the shared
object file, lib/libXext.so .

Note – Although a statically linkable version of this same library, libXext.a ,
is available in the same directory, static linking is not recommended because
this reduces application compatibility with future releases.

1. This document is derived from the document Multi-Buffering Application Program Interface by David P.
Wiggins (dwig@sr71.b11.ingr.com), Intergraph Corporation, Version 1.0.

110 OpenWindows Server Programmer’s Guide—August 1994

A

Header File
The header file for this extension is
include/X11/extensions/multibuf.h . This file defines the following
types, constants, structures, and functions.

New Routines
• XmbufQueryExtension
• XmbufGetVersion
• XmbufCreateBuffers
• XmbufDestroyBuffers
• XmbufDisplayBuffers
• XmbufGetWindowAttributes
• XmbufChangeWindowAttributes
• XmbufGetBufferAttributes
• XmbufChangeBufferAttributes
• XmbufGetScreenInfo

Note – XmbufCreateStereoWindow is not supported in SunSoft’s MBX
implementation.

New Types
Buffer identifiers are held in a new drawable type, Multibuffer . A
Multibuffer can be substituted in all X calls where a Drawable is specified.

New Constants
The following constants are defined in the multibuf.h header file.

Event Type Constants
• MultibufferClobberNotify
• MultibufferUpdateNotify

Multi-Buffering Application Program Interface, Version 3.2 111

A

Error Constants
• MultibufferBadBuffer

Update Action Constants
• MultibufferUpdateActionUndefined
• MultibufferUpdateActionBackground
• MultibufferUpdateActionUntouched
• MultibufferUpdateActionCopied

Update Hint Constants
• MultibufferUpdateHintFrequent
• MultibufferUpdateHintIntermittent
• MultibufferUpdateHintStatic

Window Mode Constants
• MultibufferModeMono

Note – The window mode constant MultibufferModeStereo , and the
window side constants MultibufferSideMono , MultibufferSideLeft ,
and MultibufferSideRight are not supported in SunSoft’s MBX
implementation.

Event Mask Constants
• MultibufferClobberNotifyMask
• MultibufferUpdateNotifyMask

Valuemask Constants
• MultibufferWindowUpdateHint
• MultibufferBufferEventMask

Clobber State Constants
• MultibufferUnclobbered

112 OpenWindows Server Programmer’s Guide—August 1994

A

• MultibufferPartiallyClobbered
• MultibufferFullyClobbered

New Structures
Several new structure types are defined. Most structures are introduced in the
function discussion of a function that requires it as a parameter. The following
structures are not parameters in any of the functions discussed in “MBX
Functions” on page 113.

MultibufferClobberNotify Event

MultibufferUpdateNotify Event

typedef struct {
int type; /* = mbuf_event_base + MultibufferClobberNotify */
unsigned long serial; /* # of last request processed by server */
int send_event; /* true if this came from a SendEvent request */
Display *display; /* Display the event was read from */
Multibuffer buffer; /* buffer of event */
int state; /* see Clobber state constants above */

} XmbufClobberNotifyEvent;

typedef struct {
int type; /* = mbuf_event_base + MultibufferUpdateNotify */
unsigned long serial; /* # of last request processed by server */
int send_event; /* true if this came from a SendEvent request */
Display *display; /* Display the event was read from */
Multibuffer buffer; /* buffer of event */

} XmbufUpdateNotifyEvent;

Multi-Buffering Application Program Interface, Version 3.2 113

A

MBX Functions
The following functions generate MBX protocol requests. Except for
XmbufQueryExtension , if any of them are called with a display that does not
support the MBX extension, the ExtensionErrorHandler (registered by
XSetExtensionErrorHandler) is called. If the ExtensionErrorHandler
returns (does not exit the program), most of the MBX functions return an error.

XmbufQueryExtension

This function determines whether a display supports the MBX extension.

Arguments

display
Specifies the connection to the X server.

mbuf_event_base
Returns the first event code used by the extension. An XEvent with a type
field equal to *mbuf_event_base + MultibufferClobberNotify is a
ClobberNotify event. An XEvent with a type field equal to
*mbuf_event_base + MultibufferUpdateNotify is an UpdateNotify
event.

mbuf_error_base
Returns the first error code used by the extension. An XErrorEvent with
an error_code field equal to *mbuf_error_base +
MultibufferBadBuffer is a BadBuffer error.

Bool
XmbufQueryExtension(display , mbuf_event_base , mbuf_error_base)
Display * display ;
int * mbuf_event_base ; /* RETURN */
int * mbuf_error_base ; /* RETURN */

114 OpenWindows Server Programmer’s Guide—August 1994

A

Description

If the given display supports the MBX extension, XmbufQueryExtension fills
in *mbuf_event_base and *mbuf_error_base and returns True , else it
returns False without changing *mbuf_event_base and
*mbuf_error_base .

XmbufGetVersion

This function retrieves the major and minor version numbers of the MBX
extension.

Arguments

display
Specifies the connection to the X server.

major_version
Returns the major version number of the extension.

minor_version
Returns the minor version number of the extension.

Description

If no error occurs, XmbufGetVersion fills in *major_version and
*minor_version with the version of the extension supported by the display
and returns non–zero, else it returns zero without changing *major_version
and *minor_version .

Protocol

Issues a GetBufferVersion request.

Status
XmbufGetVersion(display , major_version , minor_version)
Display * display ;
int * major_version ; /* RETURN */
int * minor_version ; /* RETURN */

Multi-Buffering Application Program Interface, Version 3.2 115

A

XmbufCreateBuffers

This function requests a specified number of image buffers to be associated
with a window.

Arguments

display
Specifies the connection to the X server.

window
Specifies the window with which the buffers should be associated.

count
Specifies the number of buffers desired.

update_action
Specifies the update action to be applied to the buffers. See Update action
constants above for allowable values.

update_hint
Specifies the update hint for the buffers. See “Update Hint Constants” on
page 111 for allowable values.

buffers
Must be a pointer to enough memory to hold count Multibuffers. Returns
the Multibuffer IDs that were created.

int
XmbufCreateBuffers(display , window , count , update_action ,

update_hint , buffers)
Display * display ;
Window window ;
int count ;
int update_action , update_hint ;
Multibuffer * buffers ; /* RETURN */

116 OpenWindows Server Programmer’s Guide—August 1994

A

Description

XmbufCreateBuffers attempts to create count buffers associated with the
given window. The requested number of buffers may not be able to be satisfied
and less than count buffers may actually be allocated. The number of buffers
actually allocated is returned. This many Multibuffer IDs will be returned in
*buffers . If an error occurs, XmbufCreateBuffers returns zero and leaves
*buffers undefined.

buffers must always be large enough to hold at least count Multibuffers .

The buffers are assigned the given update_action and update_hint .

No BadAlloc errors are ever generated due to lack of buffers because, in the
worst case, buffers[0] can always be associated with the existing displayed
image buffer of the window. In this case, one buffer still can be returned.
However, BadAlloc may still be returned if temporary memory needed to
execute the request cannot be allocated.

Diagnostics

BadWindow
window does not name a defined Window.

BadValue
update_action or update_hint is invalid.

BadIDChoice
At least one of the Multibuffer IDs in buffers is an invalid resource ID.

BadMatch
window is an InputOnly Window.

BadAlloc
The system failed to allocate the necessary temporary memory to execute
the request.

Protocol

Issues a CreateImageBuffers request.

Multi-Buffering Application Program Interface, Version 3.2 117

A

XmbufDestroyBuffers

This function frees the window’s associated image buffers.

Arguments

display
Specifies the connection to the X server.

window
Specifies the window whose buffers are to be destroyed.

Description

Destroys the image buffers associated with the window .

Diagnostics

BadWindow
window does not name a defined Window.

Protocol

Issues a DestroyImageBuffers request.

void
XmbufDestroyBuffers(display , window)
Display * display ;
Window window ;

118 OpenWindows Server Programmer’s Guide—August 1994

A

XmbufDisplayBuffers

This function tells the system which image buffers are visible in the given
windows.

Arguments

display
Specifies the connection to the X server.

count
Specifies the number of Multibuffer IDs pointed to by buffers.

buffers
Specifies the Multibuffers selected for display in their associated
windows.

min_delay
Specifies the minimum number of milliseconds that must elapse since the
last time a DisplayImageBuffers was executed on a window.

max_delay
Specifies an additional delay beyond min_delay that the server is allowed
to wait to complete the DisplayImageBuffers request.

Description

If no error occurs, XmbufDisplayBuffers displays the indicated buffers in
their associated windows within the given time constraints.

void
XmbufDisplayBuffers(display , count , buffers , min_delay , max_delay)
Display * display ;
int count ;
Multibuffer * buffers ;
int min_delay , max_delay ;

Multi-Buffering Application Program Interface, Version 3.2 119

A

Diagnostics

BadBuffer
At least one of the Multibuffers in buffers does not name a defined
Buffer.

BadMatch
Two or more Multibuffers associated with the same window were specified
in buffers.

BadAlloc
The system failed to allocate the necessary temporary memory to execute
the request.

Protocol

Issues a DisplayImageBuffers request.

XmbufGetWindowAttributes

This function retrieves a window’s multi-buffering attribute values.

Arguments

display
Specifies the connection to the X server.

window
Specifies the window whose multibuffer attributes are to be retrieved.

attributes
Returns the specified window’s multibuffer attributes.

Status
XmbufGetWindowAttributes(display , window , attributes)
Display * display ;
Window window ;
XmbufWindowAttributes * attributes ; /* RETURN */

120 OpenWindows Server Programmer’s Guide—August 1994

A

Description

If no error occurs, XmbufGetWindowAttributes returns non–zero and stores
the window’s multibuffer attributes in the XmbufWindowAttributes
structure. To free the buffers list in the attributes structure, use XFree . If an
error occurs, XmbufGetWindowAttributes returns zero and leaves attributes
unchanged.

Structures

Diagnostics

BadWindow
window does not name a defined Window.

BadAccess
window is not multi–buffered.

BadValue
Not currently generated.

BadAlloc
The system failed to allocate the necessary temporary memory to execute
the request.

Protocol

Issues a GetMultiBufferAttributes request.

typedef struct {
int displayed_index;/* which buffer is being displayed */
int update_action;/* see Update action constants above */
int update_hint;/* see Update hint constants above */
int window_mode;/* see Window mode constants above */
int nbuffers;/* number of buffers in following list */
Multibuffer *buffers;/* buffer IDs associated with this window */

} XmbufWindowAttributes;

Multi-Buffering Application Program Interface, Version 3.2 121

A

XmbufChangeWindowAttributes

This function modifies a window’s multi-buffering attribute values.

Arguments

display
Specifies the connection to the X server.

window
Specifies the window whose multibuffer attributes to be changed.

valuemask
Specifies which attributes are to be changed using information in the
specified attributes structure. The only value currently defined for this is
MultibufferWindowUpdateHint .

values
Specifies any values as indicated by valuemask .

Description

If no error occurs, XmbufChangeWindowAttributes sets the multibuffering
attributes that apply to all buffers associated with the given window.

void
XmbufChangeWindowAttributes(display , window , valuemask , values)
Display *display ;
Window window ;
unsigned long valuemask ;
XmbufSetWindowAttributes * values ;

122 OpenWindows Server Programmer’s Guide—August 1994

A

Structures

Diagnostics

BadWindow
window does not name a defined Window.

BadMatch
window is not multi–buffered.

BadValue
update_hint or valuemask is invalid.

Protocol

Issues a SetMultiBufferAttributes request.

XmbufGetBufferAttributes

This function retrieves an individual image buffer’s attributes.

Arguments

display
Specifies the connection to the X server.

buffer
Specifies the buffer whose attributes are to be retrieved.

typedef struct {
int update_hint; /* see Update hint constants above */

} XmbufSetWindowAttributes;

Status
XmbufGetBufferAttributes(display , buffer , attributes)
Display * display ;
Multibuffer buffer ;
XmbufBufferAttributes * attributes ; /* RETURN */

Multi-Buffering Application Program Interface, Version 3.2 123

A

attributes
Returns the per–buffer attributes for the specified buffer.

Descriptions

If no error occurs, XmbufGetBufferAttributes fills in the attributes
structure with values of the per–buffer attributes for the indicated buffer and
returns non–zero, else it returns zero and leaves attributes unchanged.

Structures

Diagnostics

BadBuffer
buffer does not name a defined Buffer .

BadValue
Not currently generated.

Protocol

Issues a GetBufferAttributes request.

typedef struct {
Window window; /* which window this buffer belongs to */
unsigned long event_mask;/* events selected for this buffer */
int buffer_index; /* which buffer is this */
int side; /* see Window side constants above */

} XmbufBufferAttributes;

124 OpenWindows Server Programmer’s Guide—August 1994

A

XmbufChangeBufferAttributes

This function modifies an individual image buffer’s attribute values.

Arguments

display
Specifies the connection to the X server.

buffer
Specifies the buffer whose attributes are to be changed.

valuemask
Specifies the specific buffer attributes to be changed. The only value
currently defined for this is MultibufferBufferEventMask .

values
Specifies any values as indicated by valuemask .

Description

If no error occurs, XmbufChangeBufferAttributes sets the attributes for
the indicated buffer.

void
XmbufChangeBufferAttributes(display , buffer , valuemask , values)
Display * display ;
Multibuffer buffer ;
unsigned long valuemask ;
XmbufSetBufferAttributes * values ;

Multi-Buffering Application Program Interface, Version 3.2 125

A

Structures

Diagnostics

BadBuffer
buffer does not name a defined Buffer .

BadValue
valuemask or values–>event_mask is invalid.

Protocol

Issues a SetBufferAttributes request.

XmbufGetScreenInfo

This function retrieves information about the visuals on a screen that support
multi-buffering.

Arguments

display
Specifies the connection to the X server.

typedef struct {
unsigned long event_mask;/* see Event mask constants above */

} XmbufSetBufferAttributes;

Status
XmbufGetScreenInfo(display , drawable , nmono, mono_info , nstereo ,

 stereo_info)
Display * display ;
Drawable drawable ;
int * nmono; /* RETURN */
XmbufBufferInfo ** mono_info ; /* RETURN */
int * nstereo ; /* RETURN */
XmbufBufferInfo ** stereo_info ;/* RETURN */

126 OpenWindows Server Programmer’s Guide—August 1994

A

drawable
Specifies a drawable on the screen whose buffer information is to be
retrieved.

nmono
Returns the number of entries in the mono_info list.

mono_info
Returns a list of structures describing which monoscopic visuals are multi–
buffered.

nstereo
Returns the number of entries in the stereo_info list.

Note – The stereo features of MBX are not supported in Solaris, so the value of
nstereo is always 0 for all screens.

stereo_info
Returns a list of structures describing which stereoscopic visuals are multi–
buffered.

Description

If no error occurs, XmbufGetScreenInfo returns non–zero and gets the
parameters defining the characteristics of the multi-buffered windows that
may be created on the screen of the given drawable. If *nmono is greater than
zero, then *mono_info is set to the address of an array of XmbufBufferInfo
structures describing the various visuals and depths that may be used to create
multi-buffered windows. Otherwise, *mono_info is set to NULL. To release the
storage returned in *mono_info , use XFree . If an error occurs,
XmbufGetScreenInfo returns zero and leaves *nmono , *mono_info ,
*nstereo , and *stereo_info unchanged.

Multi-Buffering Application Program Interface, Version 3.2 127

A

Structures

Diagnostics

BadDrawable
drawable does not name a defined Drawable .

BadAlloc
The system failed to allocate the necessary temporary memory to execute
the request.

Protocol

Issues a GetBufferInfo request.

typedef struct {
VisualID visualid; /* visual usable at specified depth */
int max_buffers; /* max. num. of bufs for this visual */
int depth; /* depth of buffers creatable */

} XmbufBufferInfo;

128 OpenWindows Server Programmer’s Guide—August 1994

A

129

Glossary

Access Control Mechanism
An access control mechanism is a means of deciding which clients, or
applications have access to the OpenWindows server. There are two different
types of access control mechanisms: user-based and host-based.

Bitmap
A bitmap is a rectangular array of elements, where each element holds either
an inside value or an outside value.

Bitmap Font
A bitmap font is a collection of bitmaps with additional information (for
example, character spacing) that defines how the bitmaps are to be used.

Client
A client is an application program that connects to the window server by some
interprocess communication. It is referred to as a client of the window server.
A client can run on the same machine as the window server or it can connect to
a server running on another machine on the network. A client of the
OpenWindows server must communicate via the X11 protocol.

Client-Server Model
The most commonly used paradigm when writing distributed applications is
the client-server model. In this scheme clients request services from a window
server process. The client and server require a protocol that must be
implemented at both ends of a connection. The OpenWindows server
implements the X11 protocol.

130 OpenWindows Server Programmer’s Guide—August 1994

Color Look-Up Table

A color look-up table is a hardware device that provides a mapping between
pixel values and RGB color values. Also called a look-up table (LUT).

Colormap Flashing
Only one client colormap is installed at a given time. The windows that are
associated with the installed colormap will show their correct colors. Windows
that are associated with some other colormap may show false colors. This
display of false colors is referred to as colormap flashing.

Composite Font
A composite font is a collection of base fonts organized hierarchically.

Connection
The communication path between a client and the server.

Default Visual
The default visual is one of the visuals available on the display device. When
you start a client program, the program will usually run in the default visual
unless a different visual is specified. There are several different types of default
visuals: built-in, server, and allowable.

Depth

The depth is the pixel size.

Display Device
Your monitor is connected to a display device that controls what is shown on
the monitor. The display device includes memory (called a frame buffer)
dedicated to storing display information. A display device is also referred to as
a graphics adapter.

Dumb Frame Buffer
A display device that consists of display memory only.

Event
Clients are informed of information asynchronously by means of events.
Events are grouped into types. A client must express interest in an event in
order to receive that event from the server.

Express Interest
A client that has specifically asked to be informed of an event has expressed
interest in that event.

Glossary 131

Extension
An extension to the core protocol can be defined to extend the functionality of
the system.

Frame Buffer
Pixel data is typically stored in dedicated computer memory known as a frame
buffer or video memory.

Graphics Accelerator
A display device that includes circuitry to increase the rate at which images are
drawn into the frame buffer is called an accelerator, or graphics accelerator. A
graphics accelerator often includes memory and circuitry that permits
enhanced functionality, such as display of additional colors, 3D images, and
animation.

Graphics Adapter
See Display Device.

Hardware Colormap

A hardware colormap is a color LUT. (See also Color Look-Up Table).

Look-Up Table
See color look-up table.

Multi-Depth Device
The TC and GS provide visuals of different depths; they are referred to as MPG
or multi-depth devices.

Multiple Plane Group
A display device that can simultaneously support more than one visual
category is known as a multiple plane group (MPG) device.

Outline Font
An outline font is a collection of ideal shapes of characters. Each shape is
defined numerically by continuous curve segments that separate the inside
from the outside of the shape. This method is in use on high-resolution devices
such as photo-typesetters.

Pixmap
A pixmap is a block of off-screen memory in the server; it is an array of pixel
values.

132 OpenWindows Server Programmer’s Guide—August 1994

Plane Group
The physical memory on a display device in which the pixel data is stored is
commonly called a plane group.

Render
To draw; to cause a graphics device to draw on its display.

Request
A request is a command to the server sent over a connection.

RGB

R, G, and B are the voltage levels to drive the red, green, and blue monitor
guns, respectively.

Screen
A screen is a physical monitor and hardware, which is either color or black and
white. A typical configuration could be a single keyboard and mouse shared
among the screens.

Server Default Colormap
Unless specified otherwise, a PseudoColor visual is created when the server
starts up. This colormap is the server default colormap.

Software Colormap

A software colormap is a software abstraction of the color mapping process
that a color LUT provides. The software colormap can be loaded, or installed,
into a hardware color LUT. Also called a colormap.

Virtual Colormap
A software colormap that is not visible until it is installed into a hardware
color LUT.

Visual
A visual describes a way of interpreting a pixel value. The visual class and the
pixel size attribute collectively describe a visual.

Visual Category

A visual category is a grouping of all visual classes of a given pixel size. The
following visual categories are supported by OpenWindows: 1-bit, 4-bit, 8-bit,
and 24-bit.

Glossary 133

Visual Class
A visual class is how the pixel will be displayed as a color. The visual classes
supported by OpenWindows are: PseudoColor, StaticColor, GrayScale,
StaticGray, TrueColor, and DirectColor.

Window
A window provides a drawing surface to clients for text and graphics. A single
client application can use multiple windows.

Window ID Table Descriptor
A window ID (WID) table contains descriptors for visual aspects of a pixel,
such as whether it is an 8-bit pixel or a 24-bit pixel, which LUT should be used
when displaying the pixel, and whether the pixel is double-buffered.

Window Manager
Manipulation of windows on the screen and much of the user interface (policy)
is typically provided by a window manager client. The window manager
communicates only with the window server.

Window Server
A window server, or display server such as the OpenWindows server, is a
program that handles the display capabilities of a machine and collects input
from user devices and other clients, and sends events to clients. The
OpenWindows server handles all communication with the window manager.

134 OpenWindows Server Programmer’s Guide—August 1994

135

Index

Symbols
.Xauthority file 105–106

A
Adobe FTP site 33
Adobe public access file server 33
allowable default visual 55
API (application programmer’s interface)

4
architecture 1–2
architecture drawing 2
authorization protocols, See security
authorization-based access control

mechanism, See security

B
bdftopcf 36
bdftosnf 37
bitmap distribution format 36
bitmap fonts 36–37, 43–44
Black pixel location note 25
built-in default visual 55

bus, definition of 52
bus, used in SPARCsystems 52
BW2 display device, description of 52

See also display devices

C
CG3 display device, description of 53

See also display devices
CG6 display device, See GX display device

and GXplus display device
CG8 display device, See TC display device
client

running locally as another user 108
running remotely 108

client library
for DPS 28

color
color name database 24
recommendations 24

colormaps
demo

content confusion note 59
location of (xcolor) 58
multiple LUT note 59

136 OpenWindows Server Programmer’s Guide—August 1994

hardware, multiple 58
installation

InstallColormap request 58
UninstallColormap request 58
window manager policy 58

compose key support 24
compressing font files 37
contexts

and DPS 30
secure 32
three ways to share VM 32

D
defclass option 56
defdepth option 56
demonstration applications, location of 4
DES (Data Encryption Software), with

SUN-DES-1 103
device driver, definition of 52
device name, definition of 52
device, See display devices

directory structure 7
display devices

definition of 49
bus, definition of 52
bus, used in Sun SPARCsystems 52
BW2

description of 52
support information 51

CG3
description of 53

CG6, See GX and GXplus
CG8, See TC
default visual assumptions 57
device driver, definition of 52
device name, definition of 52

GT
window damage note 53

GX
description of 53

GXplus
description of 53
support information 51
treated as GX note 53

product name, definition of 51
programming hints 57
supported devices table 51
TC

description of 53
DISPLAY environment variable 108
DPS

.upr files 40
introduction

27–28
applications modifed to use DPS 31
changing the resource path 40–41
client library 28
extension 28–30
font enhancements 30
how applications use 28
libraries supported 31
PostScript interpreter 28
pswrap translator 28
security issues 32–33

F
F3 fonts 38

character set supported by 46
F3BitMap resource 37
font management library, definition of 13
fonts

.afm file 42

Index 137

.enc file 42, 47

.map file 42

.ps file 42

.trans file 42

.upr file 43, 45
adding bitmap fonts 43, 44
adding new fonts 43–47
adding scalable fonts 44, 47
and X terminals 47
available in X11 and DPS 42
default font path in X11 39
directory structure 38–39
file suffixes 42
files included in openwindows 42–

43
fonts.alias file 44, 46
fonts.dir file 43
fonts.scale file 45
formats 35–36
outline and bitmap 36, 37
replacing outline with bitmap 37
using F3 fonts 38

ftp program 22
ftp, accessing Adobe FTP site 33

G
grayvis option 56
GX display device, description of 53

See also display devices

GXplus display device, description of 53
See also display devices

H
host-based access control mechanism, See

security

I
ICCCM (Inter-Client Communication

Conventions Manual)
definition of 21
compliance 21

InstallColormap request 58

L
libraries

DPS. list of 31
X, list of 19

M
makebdf 36
makepsres 44
MBX (multi-buffering) X extension 22

implementation caution note 22
MIT-MAGIC-COOKIE-1 authorization

protocol, See security
MIT-SHM (Shared Memory) X extension

23
MIT-SUNDRY-NONSTANDARD X

Extension 23
mkfontdir 43
multiple hardware colormap 58
multiple plane group, characteristics of 50

N
NISdomainname, definition of 106

O
OLIT (OPEN LOOK Intrinsics Toolkit) 5
OPEN LOOK Graphical User Interface 3
OPEN LOOK Window Manager (olwm) 6
openwin command

138 OpenWindows Server Programmer’s Guide—August 1994

-defclass option 56
-defdepth option 56
-grayvis option 56
-noauth option 102, 104

outline fonts 36, 37
overlay windows

advanced features 67–73
and multibuffering 73
and shape extension 73
background 67
backing store 69
border 68
choosing visuals 72–73
colormap 69
gravity 69
input distribution model 70
interaction with other extensions

73
other characteristics 69
print capture 71

and existing pixel transfer routines 89
and existing primitive rendering

routines 88
basic features 65–67

creation 66
definition 65–66
rendering transparency 67
viewability 67

new Xlib routines, summary 99
portability inquiry routines 89–99
Xlib Interface 73–88

P
portable compiled format 36

compressed files 37
PostScript interpreter 28

product overview 1–2
pswrap translator 28

R
resource files (.upr) 40
RPC (Remote Procedure Call), with SUN-

DES-1 103

S
scalable fonts 44–47
screen

default visual 55
secure context creation 32
security 101–108

.Xauthority file 105–106, 107
contents with MIT-MAGIC-

COOKIE-1 106
contents with SUN-DES-1 106

access control mechanisms 102–103
definition of 102
how both are active 105

authorization protocols 103–104
default configuration 103
default, how to change 104

authorization-based, See user-based
clients

running locally as another user
108

running remotely 108
connection attempt error message

102
default configuration 103
determining if configuration change

is required 101
host-based, backward compatibility

102
host-based, definition of 102

Index 139

MIT-MAGIC-COOKIE-1
authorization protocol 103

NISdomainname, definition of 106
-noauth option 102

weakens security warning 104
server

manipulating access 105–108
allowing access with MIT-

MAGIC-COOKIE-1 107
allowing access with SUN-DES-1

107
SUN-DES-1 authorization protocol

definition of 103–104
need to reconfigure 101

user-based, definition of 102
userid, definition of 106
xauth program 105, 107
xhost program 105, 107

server
applications that run with 14
architecture 12
architecture diagram 12
changing X11 default font path 39–

40
DDX layer, definition of 13
DIX layer, definition of 13
font management library, definition of

13
manipulating access control 105–

108
OS layer, definition of 13

server natural format 37
SHAPE extension 73
SHAPE X extension 23
staticvis option 56, 57
SUN-DES-1 authorization protocol, See

security

system file access 32

T
TC display device, description of 53

See also display devices

toolkit 4
OLIT (OPEN LOOK Intrinsics Toolkit)

5
XView 5

U
UninstallColormap request 58
user-based access control mechanism, See

security

V
virtual memory 30
visuals

default 55–57
allowable 55
assumptions 57
built-in 55
defclass option 56
defdepth option 56
get with XGetVisualInfo function

55
grayvis option 56
screen 55
staticvis option 56, 57
troubleshooting/error messages

when changing 57
warning using XGetVisualInfo

with grayvis 56
gamma-corrected 59–64
multiple plane group, characteristics

of 50
VM (virtual memory) 30, 32

140 OpenWindows Server Programmer’s Guide—August 1994

shared 30

W
White pixel location note 25
window manager colormap installation

policy 58

X
X

applications supported 20
compose key 24
extensions

how to access standards 22
MBX (multi-buffering) 22

implementation caution note

22
MIT-SHM (Shared Memory) 23
MIT-SUNDRY-

NONSTANDARD 23
SHAPE 23
XInput 22
XTEST 23

features 19–21
features not supported 21
libraries supported 19
library (Xlib), definition of 18

See also Xlib
protocol

definition of 18
terminals and fonts 47
toolkits 19
X11R5 compliance 17

X Consortium
description of 17
extensions supported 13, 21

X Window System
overview 17

X11R5 compliance 17
xauth program 105, 107
xcolor colormap demo 58
xcolor colormap demo, multiple LUT note

59
XCopyArea, and overlay windows 89
XCopyPlane, and overlay windows 89
XDPSCreateSecureContext 33
XGetImage, and overlay windows 89
XGetVisualInfo function

grayvis option warning 56
list default visual 55

xhost program 105, 107
XInput X Extension 22
XLFD

font naming convention 46
Xlib

definition of 18
xlsfonts 44, 47
XOvlCopyAreaAndPaintType 81
XOvlCopyPaintType 79
XOvlCreateWindow 74
XOvlGetPaintType 77
XOvlIsOverlayWindow 75
XOvlPaintType 74
XOvlSelectPair 96
XOvlSelectPartner 89
XOvlSetPaintType 76
XOvlSetWindowTransparent 78
XReadScreen 86
XSetFontPath 40
XTEST X Extension 23
XView 5

