
2550 Garcia Avenue
Mountain View, CA 94043
U.S.A.

Desktop Integration Guide

A Sun Microsystems, Inc. Business

Please
Recycle

 1994 Sun Microsystems, Inc.
2550 Garcia Avenue, Mountain View, California 94043-1100 U.S.A.

All rights reserved. This product and related documentation are protected by copyright and distributed under licenses
restricting its use, copying, distribution, and decompilation. No part of this product or related documentation may be
reproduced in any form by any means without prior written authorization of Sun and its licensors, if any.

Portions of this product may be derived from the UNIX® and Berkeley 4.3 BSD systems, licensed from UNIX System
Laboratories, Inc., a wholly owned subsidiary of Novell, Inc., and the University of California, respectively. Third-party font
software in this product is protected by copyright and licensed from Sun’s font suppliers.

RESTRICTED RIGHTS LEGEND: Use, duplication, or disclosure by the United States Government is subject to the restrictions
set forth in DFARS 252.227-7013 (c)(1)(ii) and FAR 52.227-19.

The product described in this manual may be protected by one or more U.S. patents, foreign patents, or pending applications.

TRADEMARKS
Sun, the Sun logo, Sun Microsystems, Sun Microsystems Computer Corporation, SunSoft, the SunSoft logo, Solaris, SunOS,
OpenWindows, DeskSet, ONC, ONC+, and NFS are trademarks or registered trademarks of Sun Microsystems, Inc. in the U.S.
and certain other countries. UNIX is a registered trademark of Novell, Inc., in the United States and other countries; X/Open
Company, Ltd., is the exclusive licensor of such trademark. OPEN LOOK® is a registered trademark of Novell, Inc. PostScript
and Display PostScript are trademarks of Adobe Systems, Inc. All other product names mentioned herein are the trademarks
of their respective owners.

All SPARC trademarks, including the SCD Compliant Logo, are trademarks or registered trademarks of SPARC International,
Inc. SPARCstation, SPARCserver, SPARCengine, SPARCstorage, SPARCware, SPARCcenter, SPARCclassic, SPARCcluster,
SPARCdesign, SPARC811, SPARCprinter, UltraSPARC, microSPARC, SPARCworks, and SPARCompiler are licensed
exclusively to Sun Microsystems, Inc. Products bearing SPARC trademarks are based upon an architecture developed by Sun
Microsystems, Inc.

The OPEN LOOK and Sun™ Graphical User Interfaces were developed by Sun Microsystems, Inc. for its users and licensees.
Sun acknowledges the pioneering efforts of Xerox in researching and developing the concept of visual or graphical user
interfaces for the computer industry. Sun holds a non-exclusive license from Xerox to the Xerox Graphical User Interface,
which license also covers Sun’s licensees who implement OPEN LOOK GUIs and otherwise comply with Sun’s written license
agreements.

X Window System is a product of the Massachusetts Institute of Technology.

THIS PUBLICATION IS PROVIDED “AS IS” WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR IMPLIED,
INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A
PARTICULAR PURPOSE, OR NON-INFRINGEMENT.

THIS PUBLICATION COULD INCLUDE TECHNICAL INACCURACIES OR TYPOGRAPHICAL ERRORS. CHANGES ARE
PERIODICALLY ADDED TO THE INFORMATION HEREIN; THESE CHANGES WILL BE INCORPORATED IN NEW
EDITIONS OF THE PUBLICATION. SUN MICROSYSTEMS, INC. MAY MAKE IMPROVEMENTS AND/OR CHANGES IN
THE PRODUCT(S) AND/OR THE PROGRAM(S) DESCRIBED IN THIS PUBLICATION AT ANY TIME.

iii

Contents

Preface . xv

1. Desktop Integration . 1-1

1.1 UNIX Evolution . 1-2

1.1.1 SunSoft Terms . 1-3

1.2 Solaris Desktop Integration Technologies 1-3

1.2.1 Drag and Drop . 1-3

1.2.2 Classing Engine. 1-4

1.2.3 ToolTalk Service. 1-5

1.3 ISV Registration . 1-7

2. The Selection Mechanism . 2-1

2.1 Overview . 2-1

2.2 Selections Outline. 2-2

2.2.1 Selection Owner . 2-3

2.2.2 Selection Requestor. 2-3

2.3 Implementing Selections with DeskSet 2-4

iv Desktop Integration Guide—August 1994

3. Drag and Drop. 3-1

3.1 Overview . 3-1

3.2 Drag and Drop User Interface. 3-2

3.2.1 Overview . 3-2

3.2.2 Initiating the Drag. 3-3

3.2.3 Visual Feedback. 3-3

3.2.4 The Drop . 3-3

3.3 Implementing Drag and Drop . 3-4

3.3.1 Sourcing a Drag. 3-4

3.3.2 Receiving a Drop. 3-5

3.4 Drag and Drop Programming Example: OLIT Toolkit . . 3-7

3.5 Summary of Files and Functions . 3-7

3.6 Module dnd.h . 3-8

3.7 Module main.c . 3-8

3.7.1 Function main() . 3-16

3.7.2 Function DropTargetCB(). 3-16

3.7.3 Other Important Functions . 3-17

3.8 Module requestor.c. 3-17

3.8.1 Function requestor() . 3-32

3.8.2 Function GetSelection() . 3-33

3.8.3 Function init_state() . 3-33

3.8.4 Function make_request() . 3-33

3.8.5 Load Functions . 3-33

3.8.6 Debugging Functions . 3-33

Contents v

3.9 Module owner.c . 3-33

3.9.1 Function owner(). 3-42

3.9.2 Function ConvertSelection() 3-43

3.9.3 Function TransactionState() . 3-43

3.9.4 Conversion Functions. 3-43

3.10 Resource File . 3-43

3.11 Makefile . 3-44

3.12 Data Type Registration . 3-45

4. Implementing Drag and Drop
with DeskSet . 4-1

4.1 DeskSet Drag and Drop Handshaking 4-2

4.1.1 Handshaking—Simplest Case 4-2

4.1.2 Handshaking with _SUN_AVAILABLE_TYPES . . . 4-3

4.1.3 Specifying _SUN_ENUMERATION_ITEM 4-3

4.2 DeskSet Drag and Drop Target Atoms. 4-4

4.2.1 ICCCM Target Atoms . 4-4

4.2.2 DeskSet Target Atoms . 4-5

4.3 Drag and Drop and Editors. 4-8

4.4 Drag and Drop Example: XView Toolkit 4-10

4.5 Further DeskSet Integration Information 4-10

5. Classing Engine. 5-1

5.1 Overview . 5-1

5.2 File Type Registration . 5-2

5.3 Classing Engine Usage. 5-3

vi Desktop Integration Guide—August 1994

5.4 Adding and Changing Classing Engine File Types and
Attributes. 5-5

5.4.1 Classing Engine Database . 5-5

5.4.2 Namespace Tables. 5-6

5.4.3 File Type Identification. 5-6

5.4.4 Types Namespace Table . 5-8

5.4.5 Adding a New File Type . 5-11

5.4.6 Syntax of ASCII Database Description File 5-14

5.4.7 Binder . 5-15

5.5 Accessing the Classing Engine Database. 5-17

5.5.1 Example Program—Querying the Classing Engine
Database . 5-17

5.5.2 Example Program—CE Mapping Functions 5-25

5.6 The Classing Engine API . 5-27

5.6.1 Mapping Functions. 5-28

5.6.2 Error Reporting . 5-28

5.6.3 Location of Namespace Managers 5-28

5.7 Reading from the Classing Engine Database 5-29

5.7.1 Initializing the Classing Engine 5-29

5.7.2 Determining if the Classing Engine Databases Changed
5-29

5.7.3 Closing the Classing Engine 5-29

5.7.4 Determining Which Databases are Available 5-30

5.7.5 Accessing a Namespace . 5-30

5.7.6 Accessing an Entry in a Namespace Table. 5-30

Contents vii

5.7.7 Getting an Attribute Handle 5-31

5.7.8 Getting an Attribute . 5-31

5.7.9 Getting the Size of an Attribute. 5-31

5.7.10 Getting an Attribute’s Type String 5-32

5.7.11 Getting a Namespace Entry . 5-32

5.7.12 Mapping Through Namespaces 5-32

5.7.13 Mapping Through Entries . 5-33

5.7.14 Mapping Through Attributes 5-33

5.7.15 Mapping Through the Attributes of a Namespace . 5-34

5.7.16 Getting the Name of a Namespace 5-34

5.7.17 Getting the Name of an Attribute 5-34

5.7.18 Determining Which Database Contains an Entry . . 5-34

5.8 Classing Engine Utility Programs 5-35

5.8.1 ce_db_build . 5-35

5.8.2 cd_db_merge . 5-35

6. The ToolTalk Service . 6-1

6.1 The ToolTalk Service Overview . 6-2

6.2 ToolTalk Scenarios . 6-2

Using the ToolTalk Desktop Services Message Set 6-3

Using the ToolTalk Document and Media Exchange Message Set
6-5

6.3 How Applications Use ToolTalk Messages 6-7

Sending ToolTalk Messages . 6-7

Message Patterns . 6-8

viii Desktop Integration Guide—August 1994

Receiving ToolTalk Messages . 6-8

6.4 ToolTalk Message Distribution . 6-9

Process-Oriented Messages . 6-9

Object-Oriented Messages . 6-9

Determining Message Delivery. 6-9

6.5 Modifying Your Application to Use the ToolTalk Service 6-10

7. The ToolTalk Service and
DeskSet Integration . 7-1

7.1 The ToolTalk Messaging Protocol. 7-1

7.1.1 How the Tooltalk Protocol Works 7-2

7.1.2 New Duties of the Handler . 7-2

7.2 The ToolTalk Message Sets . 7-3

7.3 Example ToolTalk Messaging Scenarios 7-3

7.3.1 Display Request . 7-4

7.3.2 Edit Request. 7-4

7.3.3 Editing with the Open Request 7-5

7.4 Example Tooltalk Program with Deskset 7-5

7.4.1 Files for this Example . 7-6

7.4.2 olit_tt.c . 7-7

7.4.3 tt_code.c . 7-11

7.4.4 tt_callbacks.c . 7-16

7.4.5 types.file . 7-29

7.4.6 Resources . 7-30

7.4.7 Makefile . 7-31

Contents ix

A. Drag and Drop User Interface Specification A-1

A.1 Executive Summary . A-1

A.2 Introduction . A-2

A.3 Formal Definition . A-5

A.4 The Source . A-6

A.5 The Destination. A-8

A.6 To Copy or Not to Copy?. A-17

A.7 Loading Data. A-19

A.8 Data Format Conversion . A-20

A.9 Handling Multiple Source Objects A-21

A.10 Visual Feedback . A-21

A.11 Input Focus Management . A-28

A.12 Error Handling . A-28

A.13 Undoing the Effects of Drag and Drop A-29

A.14 Canceling a Drag Operation in Progress A-29

A.15 Deviations from the OPEN LOOK Style Guidelines A-30

A.16 Drag and Drop Target Engineering Specification. A-31

B. Examining a Classing Engine Database B-1

C. Vendor Data Type Registration . C-1

C.1 Drag and Drop Data Types . C-1

C.2 Classing Engine File Types and Attributes C-2

C.3 ToolTalk Type Information . C-4

D. ToolTalk Example Program for XView Toolkit D-1

D.1 ttreceive.c. D-2

x Desktop Integration Guide—August 1994

D.2 ttsend.c. D-4

D.3 ttdig.h. D-7

E. Drag and Drop Programming Example for XView Toolkit . . E-1

E.1 Opening Declarations . E-2

E.2 Function: Main() . E-4

E.3 Function: create_user_interface() . E-5

E.4 Function: DnD_init() . E-6

E.5 Function: drop_proc() . E-7

E.6 Function: get_primary_selection() E-10

E.7 Function: load_file_proc() . E-12

F. The ToolTalk Desktop Services Message Set F-1

F.1 General Description of the ToolTalk Desktop Services Message
Set . F-1

F.2 Desktop Definitions and Conventions. F-1

F.3 The ToolTalk Desktop Services Message Set F-4

G. The ToolTalk Document and Media Exchange Message Set . G-1

G.1 General Tooltalk Message Definitions and Conventions. G-2

G.2 Media Exchange Definitions and Conventions. G-6

Glossary . Glossary-1

Index . 1

xi

Figures

Figure 5-1 File Manager. 5-4

Figure 5-2 Binder—Icon and File Types Property Sheet 5-16

Figure 6-1 Applications Using The ToolTalk Service To Communicate . 6-2

Figure A-1 Dragging File Manager Documents . A-3

Figure A-2 Dragging Text Between Text Edit Documents A-4

Figure A-3 A Drag and Drop Target. A-13

Figure A-4 An Editor Window with a Drag and Drop Target A-14

Figure A-5 Drop Targets: Empty, Busy, and Containing an Image. A-16

Figure A-6 Normal Pointer, Move Pointer, and Copy Pointer A-22

Figure A-7 Move and Copy Pointers with Source Images A-22

Figure A-8 Drop Allowed and Drop Not Allowed Pointers. A-23

Figure A-9 Text Move and Text Copy Pointers . A-24

Figure A-10 Text Inset Drop Allowed Pointers. A-25

Figure A-11 Text Replace Drop Allowed Pointers . A-25

Figure A-12 Text Drop Not Allowed Pointers . A-26

Figure A-13 Drop Feedback Pointers for Non-Text Selections. A-27

xii Desktop Integration Guide—August 1994

Figure A-14 Small Drag and Drop Target . A-32

Figure A-15 Large Drag and Drop Target . A-33

xiii

Tables

Table P-1 Typographic Conventions . xviii

Table 3-1 Overview of the Modules. 3-7

Table 3-2 Overview of the Functions . 3-8

Table 3-3 Global Variable Declarations . 3-8

Table 4-1 DeskSet Data Type Atoms . 4-6

Table 5-1 Default Classing Engine Database Locations 5-5

Table 5-2 Variable Definitions for ce_simple.c . 5-17

Table 7-1 Overview of the Modules. 7-6

Table A-1 Legal combinations of sources and destinations A-8

Table A-2 Dimensions for Small Drag and Drop Target (in points) A-32

Table A-3 Dimensions for Large Drag and Drop Target (in pixels). A-33

Table C-1 Classing Engine Database Attributes . C-3

Table E-1 Overview of the Modules. E-1

Table E-2 Overview of the Functions . E-2

Table E-3 Global Data Type Declarations . E-2

Table F-1 Desktop Services Error Messages . F-3

xiv Desktop Integration Guide—August 1994

Table G-1 ToolTalk Document and Media Exchange Message Set
Descriptions . G-2

xv

Preface

This manual describes the various technologies available for integrating
window applications running the Solaris™ System Software, which consists of
two parts: the operating system and windowing environment. Desktop
Integration is defined as the ability to exchange and process data using the
special features of the Solaris graphical user interface.

Who Should Use This Book
This guide is written for independent software vendors (ISVs) with previous
experience developing in the X11 windowing environment, who wish to
integrate their applications with other applications and tools on the Solaris™
desktop.

How This Book Is Organized
Chapter 1, “Desktop Integration,“provides an overall introduction to desktop
integration and lists the available technologies.

Chapter 2, “The Selection Mechanism,” describes the selections mechanism
for copying or moving data between applications.

Chapter 3, “Drag and Drop,” describes the application program interface and
provides working XView™ code examples.

xvi Desktop Integration Guide—August 1994

Chapter 4, “Implementing Drag and Drop with DeskSet,” tells how to drag
and drop between DeskSet Applications.

Chapter 5, “Classing Engine,” describes the principles, organization, and
operation of the Classing Engine, and working example code is supplied.

Chapter 6, “The ToolTalk Service,” provides the background and a short
tutorial for process-oriented messaging capabilities of the ToolTalk™ service.

Chapter 7, “The ToolTalk Service and DeskSet Integration,” discusses how
the ToolTalk protocol is used with Solaris DeskSet applications.

Appendix A, “Drag and Drop User Interface Specification,” provides the
drag and drop user interface specification.

Appendix B, “Examining a Classing Engine Database,” provides a procedure
for producing an ASCII printout of an existing Classing Engine database.

Appendix C, “Vendor Data Type Registration,” describes the process used to
reserve a vendor-unique data type designator.

Appendix D, “ToolTalk Example Program for XView Toolkit,” shows a
ToolTalk program.

Appendix E, “Drag and Drop Programming Example for XView Toolkit,”
shows a program integrated with the DeskSet.

Appendix F, “The ToolTalk Desktop Services Message Set,” details all
ToolTalk messages for Desktop Services valid for this release.

Appendix G, “The ToolTalk Document and Media Exchange Message Set,”
details all ToolTalk messages for Media Exchange valid for this release.

Related Books
The X Window System Programming and Applications with Xt, OPEN LOOK
Edition, Prentice Hall, 1992

OLIT Reference Manual, SunSoft, 1994

X Window System Programming and Applications with Xt – OPEN LOOK Edition, by
John Pew, published by Prentice Hall, 1992.

Preface xvii

OLIT Quick Start Programmer’s Guide, Part Number 801-5317-10, Sun
Microsystems, Inc., 1994.

X Window System Toolkit, The Complete Programmer’s Guide and Specification,
Digital Press, 1992.

X Window System, The Complete Guide to Xlib, X Protocol, ICCCM, XLFD, Digital
Press, 1992.

X Protocol Reference Manual, O’Reilly & Associates, Inc., 1990

XView Programming Manual, O’Reilly & Associates, Inc., 1991

XView Reference Manual, O’Reilly & Associates, Inc., 1991

ToolTalk User’s Guide, SunSoft, 1994

ToolTalk Reference Guide, SunSoft, 1994

Writing Applications for Sun Systems, Volume I, A Guide for Macintosh®
Programmers, Addison Wesley, 1991

xviii Desktop Integration Guide—August 1994

Applications achieve varying degrees of integration with the three integration
technologies described in this manual. These technologies are: selections and
drag and drop, the Classing Engine, and ToolTalk services. The diagram below
directs you to further information sources.

Desktop Integration

Selections/

XView

Classing Engine ToolTalk Services
Drag and Drop

Documentation Tree

The X Window System
Programming and Appli-
cations with Xt, OPEN
LOOK Edition

OLIT Reference Manual

XView Programming
Manual

XView Reference
Manual

OLIT
ToolTalk Reference
Manual

Desktop Integration
Guide ToolTalk User’s Guide

OLIT Quick-Start
Programming Guide

Preface xix

What Typographic Changes and Symbols Mean
The following table describes the type changes and symbols used in this book.

Table P-1 Typographic Conventions

Typeface or
Symbol Meaning

Example

AaBbCc123 The names of commands, files,
and directories; on-screen
computer output, code samples

Edit your.login file.
Use ls -a to list all files.
system% You have mail.

AaBbCc123 Command-line placeholder:
replace with a real name or
value

To delete a file, type rm filename.

AaBbCc123 Book titles, new words or terms,
or words to be emphasized

Read Chapter 6 in User’s Guide.
These are called class options.
You must be root to do this.

Code samples are included in boxes and may display the following:

% UNIX C shell prompt system%

$ UNIX Bourne shell prompt system$

Superuser prompt, either shell system#

xx Desktop Integration Guide—August 1994

1-1

Desktop Integration 1

Desktop integration is the name given to a suite of technologies that allow
seamless cooperation and interoperability between applications on the
desktop. Desktop integration allows the following:

• Users can select data from one application, and drop it into a different
application without regard to format.

• A data object on the desktop can be dragged to the Print Tool where it will
be printed in the appropriate format.

• A user can attach an icon representing a desktop publishing file to a mail
message. The message receiver could then open the document into the
desktop publishing application by simply double-clicking on the icon.

• The development of groupware, or applications that allow several people to
work simultaneously on a document or program, while the system
automatically performs the various housekeeping chores (such as updating
files and informing other users of file changes).

Desktop integration lets applications share information and processes with
other applications. This sharing results in a higher degree of communication,
cooperation, and software productivity.

The guide is written for software developers who have previous window
programming experience, and who wish to integrate their applications with
other applications on the Solaris desktop. This guide presents an overview of

1-2 Desktop Integration Guide—August 1994

1

desktop integration and its constituent technologies: selections/drag and drop,
the Classing Engine, and ToolTalk services. Refer to the technology-specific
manuals listed in the Preface for further sources of programming information.

1.1 UNIX Evolution
OpenWindows desktop integration represents an evolutionary step in the
growth and maturation of the UNIX® operating system. Although UNIX itself
is an extremely powerful operating system, its command line interface is non-
intuitive, cryptic, and difficult for most users to master. In recent years the
UNIX command line interface has been supplanted by windowing interfaces
such as the OPEN LOOK™ graphical user interface, which provides a simpler
and more intuitive way to control the system. By the end of 1992, there were
more than two thousand OPEN LOOK application programs offered by more
than a thousand vendors.

Although OPEN LOOK greatly increases the usability of UNIX, there are some
limitations: occasionally pathnames and other elements of command line UNIX
need to be manually entered. Also, data exchange is severely limited by

Text-based Operating
Systems

Graphical Operating
Systems

Software Evolution

Integrated Graphical
Operating Systems

(MS-DOS®, CP/M®, UNIX) (MS-Windows®/DOS,
(Solaris)

UNIX OPEN LOOK Solaris
Powerful OS with a cryptic
command structure and
non-intuitive user interface.

The power of UNIX with a
simple and intuitive graph-

The power of UNIX, the ease
of OPEN LOOK, cooperation
and interoperability between
applications.

UNIX:

Operating Systems:

ical user interface.

AppleOS®, UNIX/OPEN LOOK)

Desktop Integration 1-3

1

incompatible file formats, and cannot always be performed on files, folders, or
other large units of data. Solaris addresses these limitations by combining
UNIX, the OPEN LOOK GUI, and the application interoperability tools
described in this manual.

1.1.1 SunSoft Terms

OPEN LOOK is the graphical user interface specification adopted by UNIX
International and used by SunSoft. OpenWindows, Solaris’s window system,
implements the OPEN LOOK specification. Solaris refers to the entire
computer operating environment—the UNIX operating system, the
OpenWindows window system, and the desktop environment—running on
SPARC and Intel systems. SunSoft is the developer of Solaris and is a wholly-
owned subsidiary of Sun Microsystems, Inc.

1.2 Solaris Desktop Integration Technologies
To overcome the limitations of the OPEN LOOK windowed user interface, and
to move towards a fully integrated desktop, Solaris provides the following
enhancements:

• An enhancement to the X Window System selections mechanism to provide
a user-directed flow of information from one application to another (drag
and drop)

• A method for applications to determine the identity and operating
characteristics of objects on the desktop (the Classing Engine)

• A mechanism for passing messages and commands between applications
(the ToolTalk service)

These enhancements represent three distinct technologies. Together these
Solaris technologies provide the desktop with a powerful cohesiveness and
data interchangeability between applications.

1.2.1 Drag and Drop

This mechanism allows users to use the mouse to exchange data between or
within applications. This is done by selecting the graphical representation of
the data with the Select and Adjust mouse buttons, clicking the representation
(object) with the Select mouse button, keeping the mouse button down while

1-4 Desktop Integration Guide—August 1994

1

dragging the object to a destination, and dropping it (releasing the mouse
button). The user need not be concerned with the subtleties of moving data
between applications, such as the data’s format, or whether data translation is
required. All of this is handled by the application programmer using the drag
and drop API.

Another application of Selection Services has been in use for some time. This
involves using the mouse to select data, as outlined above, then using the copy
and paste menu functions to move the data to another client.

Selection Services are covered in Chapter 2. The drag and drop API is
presented later in this manual, starting with Chapter 3.

1.2.1.1 Application

Drag and drop can move data within an application. For example, a user can
rearrange a text file by selecting text, dragging the text to a new position, and
dropping (inserting) the text at that position.

Drag and drop can also move data between applications. An example of this
would be copying data from Mail Tool and dropping it into a desktop
publisher. Another example is copying an appointment from a mail message
and dropping it onto Calendar Manager where it is properly entered.

1.2.1.2 Drag and Drop and the X Server

Selections and drag and drop provide a communications link between an owner
client (the client that owns the data) and a requestor client (the client that
receives the data). All data transferred through Selection Services and drag and
drop is transferred through the X server. Each toolkit (OLIT or XView)
provides a selections and drag and drop API. Though the APIs for each toolkit
are somewhat different, selection between the toolkits is seamless and
invisible.

1.2.2 Classing Engine

The Classing Engine is a database that identifies the characteristics, or
attributes, of desktop objects. In other words, the Classing Engine stores
attributes of desktop objects, such as print method, icons, and file opening
commands.

Desktop Integration 1-5

1

If an application is to interoperate with other objects, the application must be
able to identify those objects and determine their various operating
characteristics. That is, if the object is another application, can they
intercommunicate? If the object is a file, can the application read it? Every
object on the desktop must be readily identifiable—is it an ASCII file, a SunSoft
DeskSet tool, a spreadsheet program, a data file from a desktop publishing
program, or something else? The Classing Engine provides a database for
storing this information and an API to access the information. Applications
query the Classing Engine database to determine an object’s type and the
attributes associated with the object. Chapter 5, “Classing Engine” discusses
this technology in detail.

1.2.2.1 Application

File Manager, a DeskSet application shipped with OpenWindows, provides the
best example of using the Classing Engine. File Manager graphically displays a
UNIX file system as a set of folders (directories) and documents (files). Users
can move, copy, and rearrange files by dragging and dropping file icons into
directory icons. Files may be deleted by dropping icons into the waste basket
icon. File Manager uses startup information stored in the Classing Engine to
allow users to double click on a file icon and open the file with its associated
application. For example, double clicking on a spreadsheet data file icon opens
the file into the spreadsheet program. Double clicking a desktop publishing file
opens the file into the correct desktop publishing application. Using print
instructions from the Classing Engine, File Manager also allows users to print
a data file by dragging and dropping it on the Print Tool.

Another feature of File Manager is that different file types are represented by
different icons. Thus, one application’s file will have one type of icon, and
another application will have a different icon. Again, the Classing Engine
provides File Manager with the icon display information.

1.2.3 ToolTalk Service

The ToolTalk service is used by applications to communicate with each other
without having direct knowledge of each other. Applications communicate by
creating and sending ToolTalk messages. The ToolTalk service receives these
messages, determines the recipients, and then delivers the messages to the
appropriate applications.

1-6 Desktop Integration Guide—August 1994

1

To use ToolTalk in your application, you must first decide what message
protocol your application will implement. A message protocol is a set of
ToolTalk messages that describe operations that applications agree to perform.
By adopting a message protocol, applications can speak the same ToolTalk
language. The message protocol specification includes the set of messages, as
well as how applications will behave when they receive the messages. Refer to
Chapter 6, “The ToolTalk Service” for further details on ToolTalk. Refer to
Chapter 7, “The ToolTalk Service and DeskSet Integration” for a discussion on
the DeskSet message protocol.

1.2.3.1 Application Example

Calendar Manager, another DeskSet application shipped with OpenWindows,
provides an interesting example of how the ToolTalk service is used on the
Solaris desktop. Calendar Manager (or CM) has the ability to browse multiple
users’ calendars, and schedule a meeting in a time slot that is open for all of
them. CM needs to be able to send an electronic mail message to the relevant
users informing them of the new meeting. There are several ways CM could do
this.

One way would be for CM to open a text window to allow the user to enter the
body of the mail message, after which CM would invoke the system’s mail
program to send the message. However, this would mean the CM has to
implement its own facility for composing electronic mail messages — a facility
not likely to be similar to the user’s usual mail composition tool. The result is
duplication of effort by developers and inconsistent facilities for users.

Another way would be for CM to create a temporary mail message file, look
up the user’s preferred mail composition tool, and invoke that tool on that file.
The problem here is that communication between CM and the mail tool is
limited to command line arguments and the process environment. (See the
command environ(5)). For example,

• The mail tool has no standard way of finding out where on the screen it
should appear.

• CM has no way of knowing if there already exists a running instance of the
mail tool that could respond more quickly, or bring to bear on the job some
state information that the user considers valuable.

• CM has no way of (for example) iconifying the composition window if the
user wants to temporarily put away CM and its associated windows.

Desktop Integration 1-7

1

• CM has no way of gracefully aborting the composition operation if the user
suddenly decides to quit.

The Solaris Desktop does not suffer from these constraints. In Solaris, CM can
issue a ToolTalk request asking that the indicated mail message be edited. The
ToolTalk service routes the request to the running mail editing tool that is best
prepared to handle it, or starts the user’s favorite mail tool if no instance is
already running. The handling tool is placed in communication with the
requesting CM, and is free to inquire about where on the screen to appear or
what internationalization locale to assume, and to send back periodic status
reports or data checkpoints. In turn, CM is able to monitor and control the
operation, and manipulate the composition window almost as if it were one of
its own. The result is that the user concentrates on his work, and not on his
tools.

1.3 ISV Registration
Maximum desktop integration requires public notice of application data types,
naming conventions, custom icon design and ToolTalk message protocols. By
making this information public, ISVs can be sure that their applications and
data files are recognized by other applications. SunSoft provides a vehicle for
making this information public through the Developer Integration Format
Registration program. Independent software vendors can register the data type
information for their applications with SunSoft. This information will be made
available to other ISVs through SunSoft. Refer to Appendix C, “Vendor Data
Type Registration” for details.

1-8 Desktop Integration Guide—August 1994

1

2-1

The Selection Mechanism 2

2.1 Overview
The X11 selection mechanism is a means of copying data between or within
applications running under the OpenWindows Desktop. The term selection is
taken from the paradigm in graphic user interfaces by which the user selects an
object (such as a block of text or a file icon) by highlighting it, before moving or
copying it.

Here are two examples of how the selection mechanism is used to copy data:

• drag and drop (see Chapter 3, “Drag and Drop)
• the Copy and Paste command keys

Besides copying, the selection mechanism is also used to move data. For
instance, here is how an OpenWindows Desktop application would allow you
to move a sentence from one location to another location:

1. Make the selection. Use the mouse to place the insertion point at the start of
the sentence and momentarily press the Select mouse button. Move the
pointer to the end of the sentence and press the Adjust mouse button; the
selection will be highlighted in reverse video.1

2. Store the selection. Press the Cut key on the keyboard to temporarily store
the selection in the clipboard.

1. Another selection method is to place the insert point at the beginning of the sentence, press the Select mouse
button and hold it down as you “wipe” across the text to the end of the sentence, then release the button.

2-2 Desktop Integration Guide—August 1994

2

3. Insert the data. Use the mouse to place the insertion point at the desired
location. Insert the text by pressing the Paste key.

For the remainder of this manual, the selection mechanism is referred to as
selections, a common usage in the X11 developer community. Selections provide
a communications link between a holder client (the client which owns the data)
and a requestor client (the client that receives the data). All data transferred
through selections is transferred through the X server. Each toolkit (XView or
OLIT) provides a selections API. Although the API for each toolkit are
somewhat different, selections between the toolkits is seamless and invisible.

User interface conventions for selections are outlined in the OPEN LOOK
Functional Specification. For further selections programming instructions, refer
to the XView Programming Manual and XView Reference Manual from O’Reilly
and Associates, and The X Window System Programming and Applications with Xt,
OPEN LOOK Edition from Prentice Hall.

XView and OLIT selection examples are at
$OPENWINHOME/share/src/dig_samples/

as

selection_olit/olit_sel.c

selection_xview/xview_sel.c .

2.2 Selections Outline
Selections provide a well-defined method of implementing the Copy and Paste
keys. The following outline describes the generic steps for implementing Copy
and Paste with any of the OpenWindows toolkits.

Selections communicate between an owner client and a requestor client. The
owner client has the data representing the value of the selection. The requestor
client desires the value that the selection provides. Selection code is required
for both the owner and requestor clients. Refer to the Inter-Client
Communications Conventions Manual (ICCCM) for a detailed discussion of
the selections protocol. The ICCCM can be found in Appendix L of X Protocol
Reference Manual from O’Reilly and Associates.

The Selection Mechanism 2-3

2

2.2.1 Selection Owner

1. Mark Selection
Visual feedback of the selected object should be provided to the user. For
example, the selection can be shown by displaying the selected text in reverse
video.

2. Make Selection

When the user presses the Copy key, create a selection holder and set the other
attributes required by the application.

Note that a conversion procedure must be written to handle conversion
requests from the selection requestor. The request for text is handled
automatically.

3. Associate Data

Associate selection (highlighted text) with the owner client. If the selection is
currently owned, the owner receives an event and is expected to do the
following:

• Convert the contents of the selection to the requested data type

• Place this data in the named property on the named window

• Send the requestor an event to let it know the property is available

2.2.2 Selection Requestor

1. Paste Event
The event handler must detect the Paste event, so that the Paste operation
(selection request) can be initiated.

2. Request Data

Request data from the owner client. Post a request to get data from the
selection owner. The owner has the data representing the value of its selection,
and the requestor client wishing to obtain the value of a selection provides:

• The name of the selection

• The name of a property

• A window

2-4 Desktop Integration Guide—August 1994

2

• An atom representing the data type required

2.3 Implementing Selections with DeskSet
Call the SunSoft Catalyst Information Center (see Appendix C, “Vendor Data
Type Registration”) for information on the selection protocol for DeskSet. Note,
however, that ICCCM currently does not specify the protocol supported by
DeskSet. The current DeskSet selection protocol may change to comply with
future ICCCM specifications.

3-1

Drag and Drop 3

3.1 Overview
Drag and drop is an implementation of selections, which allows users to select
a data object (text block, graphic, audio object, file icon, etc.) with the mouse,
“drag” it across the screen (by keeping the mouse button down), and “drop”
the data into another application for use there. For example, a text file icon can
be selected, dragged to the Print Tool, and dropped, where it is printed.
Another example: a spreadsheet data file icon can be dragged and dropped
onto a spreadsheet application icon, causing the data to be loaded and
displayed on the screen. Note that drag and drop differs from moving data
with the Cut, Copy, and Paste command keys: it is not limited to moving only
text blocks or images in a drawing program, but can move objects of many
data types.

Applications that implement drag and drop can exchange data with other
applications. Drag and drop, like selections, has a different API for the XView
and OLIT toolkits. Once implemented in a client however, drag and drop
works invisibly and seamlessly with both toolkits.

This chapter discusses the following:

• Drag and drop user interface

• The steps required to implement drag and drop in one of the toolkits.

• A detailed example of drag and drop as implemented in the OLIT
environment.

3-2 Desktop Integration Guide—August 1994

3

For further drag and drop programming instructions, refer to the XView
Programming Manual and XView Reference Manual published by O’Reilly and
Associates, and The X Window System Programming and Applications with Xt,
OPEN LOOK Edition from Prentice Hall.

3.2 Drag and Drop User Interface
To implement drag and drop, you must understand the drag and drop user
interface. This section briefly describes this interface for purposes of
terminology. Appendix A, “Drag and Drop User Interface Specification,”
describes:

• the kinds of objects that can be dragged

• the meanings of dropping objects on specific locations (such as on a window
header, on a pane in a window, or on a drag and drop target)

• the differences between dragging with and without the Duplicate modifier
key held down

• the visual feedback associated with the stages of a drag and drop operation

• how the process of data translation appears to users

• how users can cancel drag operations in progress, and undo completed drag
operations

• how error messages are presented to users

3.2.1 Overview

Drag and drop allows users to transfer data objects, using the mouse, between
or within applications. A drag and drop action consists of a source (object to be
transferred), and a destination (the place where the source will be dropped).
Before an object can be dragged or dropped, it must be selected. There are two
types of objects that can be selected: a data span or glyph. A data span is a
segment of on-screen data. It can be a segment of text, digitized audio, video,
and so forth. A glyph is an on-screen representation of some object, such as a
file, application, or directory.

A data span can be selected in three ways: the wipe method, the select-adjust
method, and the multi-click method. With the wipe method you place the
pointer at the beginning of the data span, press the Select button, drag the

Drag and Drop 3-3

3

mouse to the end of the selection, and release the mouse. In the select-adjust
method, you place the pointer at the beginning of the selection and click the
Select button to select the starting point. Then you move the pointer to the end
of the desired span and click the Adjust button on the mouse to make the
selection. With the multi-click method you rapidly press the Select button to
select increasing larger segments of the segment. For example, two rapid clicks
selects a word, three a line, and four a paragraph. A selected data span is
displayed in reverse video.

Glyphs are selected by clicking the Select button on the glyph. To select
additional glyphs, click Adjust on additional glyphs.

3.2.2 Initiating the Drag

Drag and drop can be initiated as either a cut-and-paste or a copy-and-paste
operation. In a cut-and-paste operation, the original object is deleted after it is
dropped. In a copy-and-paste operation, the original object remains after the
object is dropped on a destination; the original object is not deleted.

3.2.3 Visual Feedback

Drag and drop requires visual feedback to display the status of the drag. At a
minimum, once an object is selected, the pointer should change appearance
and a representation of the object should follow the pointer as the mouse is
moved. In addition, the pointer should indicate the receptivity of potential
drop sites. The drag and drop specification includes details about changes in
pointer appearance and other visual feedback associated with drag operations.

3.2.4 The Drop

The final action in the drag and drop gesture is to drag the selection over the
destination object and to release the Select mouse button. The destination is
determined by the position of the pointer’s hot spot at the time the user
releases the Select button.

Applications supporting drops other than a simple cut or copy sometimes
require a specific drop site, referred to as a drag and drop target. A drag and
drop target is a graphical element located in the control area of an open

3-4 Desktop Integration Guide—August 1994

3

window. In addition to serving as the destination in drag and drop operations,
drag and drop targets sometimes contain a glyph that can be used as the
source in a drag and drop operation.

3.3 Implementing Drag and Drop
The following sections summarize the toolkit independent processes required
for sourcing drags and receiving drops.

3.3.1 Sourcing a Drag

To adapt an application to source a drag, the following steps are required:

1. Define a drag and drop object and associate a drag pointer with it. The
window manager will use the drag pointer to provide visual feedback to the
user when the object is selected.

2. Associate a selection with your drag and drop object, which will contain the
data you want to make available to the target.

3. Provide an event callback procedure for your drag and drop object that will
detect when it has been dragged. Set the actual data in the data object for
the source to retrieve, and wait for a source response or error condition.

Depending on the application, you may also want to perform the following:

4. Define a selection conversion procedure for your own data types.

5. Provide the data through an alternate transport mechanism (ATM), such as
sockets or the ToolTalk service.

Handshake protocol for when drag occurs is shown in the pseudo code below.

/* Set default values that the owner app provides to a requestor that doesn’t make */
/* any specific requests */
set item = default item /* Generally set to the first item */
set type = default_type /* Set the data type you would like to send the

/* default item in */
set transport = X_SERVER /* Default transport method is the X-Server*/
set length = length of 1st item /* Length of default item */

/* make available the types you support for the default item */

Drag and Drop 3-5

3

3.3.2 Receiving a Drop

To adapt your application to receive drops, the following steps are required:

1. Define a drop site, and associate an event procedure with it.

2. (Optional) Provide an image for drop site previewing that will provide
visual feedback when the pointer is over the drop site.

3. In your event callback procedure, determine the event type, and obtain data
from the source selection.

set avail_types = types for item or types you support (array of types)

/* set up the Convert proc for the drag-n-drop process */
In a registered callback, get ready to provide information:

if filename /* if they ask for a filename */
set filename /* fill in the filename atom info */
return true /* return the information */

if data label /* if they ask for the data label */
set data label /* fill in the data label atom info */
return true /* return the information */

/* Advertise the targets supported by the owner app. (i.e., this is the list of */
/* atoms returned when the TARGETS is converted */
if targets

set targets
create array of:
_SUN_ENUMERATION_COUNT/ITEM
_SUN_AVAILABLE_TYPES
LENGTH = length
return true

if _SUN_ENUMERATION_ITEM/* only if handling multiple selections and */
/* enumeration count > 1 is the case */

set item = _SUN_ENUMERATION_ITEM
set length = length of item
set name = name of item /* or data label if needed */
specify _SUN_AVAILABLE_TYPES for that item

/* Additional information can be set or simply returned as false */

3-6 Desktop Integration Guide—August 1994

3

Depending on the application, you may also need to do the following:

4. Provide drop site feedback when pointer enters and leaves the drop site.

5. Use an alternate transport method (ATM), such as sockets or the ToolTalk
service, to transfer data if your application design requires it.

Handshake protocol for when drop occurs is shown in the pseudo code below.

get enumeration_count /* gets number of selection objects */
if no count

count = 1
if count > 1 and application can only handle one

end dragdrop
return False

else
get ready to handle multiple selections

/* obtain drop information from owner application This applies both when handling single */
/* or multiple selections*/

For each item in count:

/* Note: a special atom corresponds to all the information below. So using */
/* selections, request the information by supplying the pre-defined atom */

Specify item being requested /* specify item number */
Request host name /* Get owners host name */
Request filename /* Request pathname of item */
Request data label /* Data Label is an identifier for the

/* item (usually the name for items items that don’t
/* have real files). For example, an attachment in
/* mailtool may have a data label without a filename
/* attached to it */

Request available types /* List of data types in which the
/* owner may send the data */

/* Now that we have information on data, let source know that we are ready toload */
/* the data by converting the load atom */

Request Load

specify item, and data type /* Specify item and data type in which the */
/* requestor would like the data */

Drag and Drop 3-7

3

3.4 Drag and Drop Programming Example: OLIT Toolkit
The source files for this program can be found online in the Solaris 2.2
distribution at $OPENWINHOME/share/src/dig_samples/DnD . This
example is a simple implementation of drag and drop using the OLIT toolkit.
The directory contains the header file, C source files, resource file, and the
Makefile for compiling the executable, dnd .

When the program is executed, it opens a text window with a drag and drop
target. Users may drag any text file from the file manager and drop it on the
window’s drop site. The text is displayed in the text pane, and the filename
path appears in the window header. The document can be exported by
dragging the drag and drop target to another window. A portion of the text can
be moved by selecting the desired text and dropping it at a specific insert
point.

Appendix E, “Drag and Drop Programming Example for XView Toolkit” gives
an example of drag and drop implemented under Xview.

3.5 Summary of Files and Functions
Here is a summary of the files and important functions that comprise the
example source.

if delete then
delete /* If the action is a move, send owner
done

Table 3-1 Overview of the Modules

dnd.h Contains global variable declaration

main.c Contains the OLIT header includes, initial
declarations, main function declaration, and other
important function definitions

owner.c Contains function definitions for drag and drop
owner handling

3-8 Desktop Integration Guide—August 1994

3

3.6 Module dnd.h
This module contains the global variable declarations that are not defined in
the included OLIT and Xt header files. Of particular interest are:

3.7 Module main.c
Contains the OLIT header includes, initial declarations, main function
definition, and other important function definitions.

requestor.c Contains function definitions for drag and drop
requestor handling

Resources Contains X resources needed to make up the
windows and controls in the sample application

Makefile Allows the program to be compiled and linked with
the make command

Table 3-2 Overview of the Functions

main() Contains the main program loop and creates the
necessary widgets

DropTargetCB() Called when some action happens on the drop target

text_modified() Called when user edits the text

Table 3-3 Global Variable Declarations

target_type Enumerated type declaring the target atoms this
application supports

targets_t Structure definition for atom information

Dnd_t Structure defining the data that may be transferred
in a drag and drop

extern * Ansi C prototypes for functions and global variables

Table 3-1 Overview of the Modules

Drag and Drop 3-9

3

The main function and other important functions are discussed below. Here are
the contents of main.c :

/* main.c (continued) */
#include <X11/Intrinsic.h>
#include <X11/StringDefs.h>
#include <Xol/OpenLook.h>
#include <Xol/TextEdit.h>
#include <Xol/ScrolledWi.h>
#include <Xol/RubberTile.h>
#include <Xol/MenuButton.h>
#include <Xol/OblongButt.h>
#include <Xol/StaticText.h>
#include <Xol/DropTarget.h>
#include <Xol/Exclusives.h>
#include <Xol/RectButton.h>
#include <sys/systeminfo.h>
#include “dnd.h”

/* array of targets we want to use */
targets_tmytargets[] =
{

{TARGETS,“TARGETS”,0},
{FILE_NAME,“FILE_NAME”,0},
{STRING,“STRING”,0},
{LENGTH,“LENGTH”,0},
{SUN_AVAILABLE_TYPES,“_SUN_AVAILABLE_TYPES”,0},
{SUN_LOAD,“_SUN_LOAD”,0},
{SUN_DATA_LABEL,“_SUN_DATA_LABEL”,0},
{SUN_DRAGDROP_DONE,“_SUN_DRAGDROP_DONE”,0},
{TEXT, “TEXT”, 0},
{SUN_SELECTION_END,“_SUN_SELECTION_END”,0},
{NAME, “NAME”, 0},
{SUN_FILE_HOST_NAME,“_SUN_FILE_HOST_NAME”,0},
{SUN_ENUMERATION_COUNT,“_SUN_ENUMERATION_COUNT”,0},

};

/* the number of targets */
int num_targets = sizeof(mytargets)/sizeof(targets_t);

/* widgets we interact with */
Widgetdrop_target;
Widgettextedit;

3-10 Desktop Integration Guide—August 1994

3

Widgetfile;

char*arg0;/* program name */

/*
 * handle source & destination sides of dnd
 */
static void
DropTargetCB(Widget w, XtPointer clientData, XtPointer callData)
{

OlDropTargetCallbackStruct*cd;

DP fprintf(stderr, “calling DropTargetCB\n”);

/* initalize the atom names */
if(mytargets[0].atom == 0)
{
XrmValuesource, dest;
int i;

dest.size = sizeof(Atom);

for(i = 0; i < num_targets; i++)
{

source.size = strlen(mytargets[i].name)+1;
source.addr = mytargets[i].name;
dest.addr = (char *)&mytargets[i].atom;
XtConvertAndStore(drop_target, XtRString,

&source, XtRAtom, &dest);
}
}

/* call the appropriate owner/requestor routines */
cd = (OlDropTargetCallbackStruct *) callData;
switch (cd->reason)
{
case OL_REASON_DND_OWNSELECTION: /* case when we do a drag */
owner(cd->widget, cd->time);
break;
case OL_REASON_DND_TRIGGER: /* case when we detect a drop */
requestor(cd->widget, cd->selection, cd->time);
}

}

/* main.c (continued) */

Drag and Drop 3-11

3

/* mark drop target as full if text is typed */
static void
text_modified(Widget w, XtPointer clientData, XtPointer
callData)
{

XtVaSetValues(drop_target, XtNfull, (XtArgVal)TRUE, NULL);
}

/* main initalization routine */
main(int argc, char **argv)
{

XtAppContext appContext;
Widgettoplevel, base;
Widgetcontrol, scrolledwin;
Widgetblank;

/* save program name */
arg0 = argv[0];

/* initialize and build the GUI widgets */
OlToolkitInitialize((XtPointer) NULL);
toplevel = XtAppInitialize(&appContext, “AsciiEdit”,

(XrmOptionDescList) NULL,
0, &argc, argv, (String *) NULL,
(ArgList) NULL, 0);

base = XtVaCreateManagedWidget(“base”,
rubberTileWidgetClass,
toplevel,
NULL);

control = XtVaCreateManagedWidget(“control”,
rubberTileWidgetClass,
base,
NULL);

blank = XtVaCreateManagedWidget(“blank”,
staticTextWidgetClass,
control,
NULL);

/* build the drop target and set its initial properties */
drop_target = XtVaCreateManagedWidget(“drop_target”,

dropTargetWidgetClass,

/* main.c (continued) */

3-12 Desktop Integration Guide—August 1994

3

control,
XtNfull,

(XtArgVal)FALSE,
XtNdndPreviewHints,

(XtArgVal)OlDnDSitePreviewDefaultSite,
XtNdndMoveCursor,

(XtArgVal)OlGetMoveDocDragCursor(toplevel),
XtNdndCopyCursor,

(XtArgVal)OlGetDupeDocDragCursor(toplevel),
XtNdndAcceptCursor,

(XtArgVal)OlGetDupeDocDropCursor(toplevel),
XtNdndRejectCursor,

(XtArgVal)OlGetDupeDocNoDropCursor(toplevel),
NULL);

file = XtVaCreateManagedWidget(“file”,
staticTextWidgetClass,
control,
NULL);

scrolledwin = XtVaCreateManagedWidget(“scrolledwin”,
scrolledWindowWidgetClass,
base,
NULL);

textedit = XtVaCreateManagedWidget(“textedit”,
textEditWidgetClass,
scrolledwin,
NULL);

/* let us know if we have text to drag-n-drop */
XtAddCallback(textedit, XtNpostModifyNotification,

text_modified, NULL);

/* notifiy us of a drag or drop operation */
XtAddCallback(drop_target, XtNownSelectionCallback,

DropTargetCB, NULL);
XtAddCallback(drop_target, XtNdndTriggerCallback,

DropTargetCB, NULL);

/* realize the widget and start the notification loop */
XtRealizeWidget(toplevel);
XtAppMainLoop(appContext);

/* main.c (continued) */

Drag and Drop 3-13

3

}

/* return the ascii name of a X Atom */
char *
get_atom_name(Atom atom)
{

return(XGetAtomName(XtDisplay(drop_target), atom));
}

/* return the data and length of the text displayed */
Boolean
get_data(char **data, unsigned long *length)
{

staticchar*content = NULL;

if(content)
{
XtFree(content);
}
if (!OlTextEditCopyBuffer((TextEditWidget) textedit,

&content))
{
OlWarning(“get_data: error trying to copy textedit

buffer\n”);
return(FALSE);
}
*data = content;
*length = strlen(content)+1;
return(TRUE);

}

/* return a data label for the data */
char *
get_data_label()
{

staticcharbuff[200];
char*c;
Stringfilename;

XtVaGetValues(file, XtNstring, &filename, NULL);
c = strrchr(filename, ‘/’);
if(c)
{

/* main.c (continued) */

3-14 Desktop Integration Guide—August 1994

3

strcpy(buff, c);
}
else
{
strcpy(buff, filename);
}
XtFree(filename);

return(buff);
}

/* return the name of the application */
char *
get_name()
{

char*label = strrchr(arg0, ‘/’);

if(label)
{
return(label);
}
else
{
return(arg0);
}

}

/* return the name of the file currently being edited if any */
char *
get_file_name()
{

staticcharbuff[200];
Stringfilename;

XtVaGetValues(file, XtNstring, &filename, NULL);
strcpy(buff, filename);
XtFree(filename);

return(buff);
}

/* callback with the data from the selection */
dnd_load(Dnd_t *dnd)
{

/* main.c (continued) */

Drag and Drop 3-15

3

staticchar*sys = 0;

/* fprintfs just to see ALL the data that came back */
fprintf(stderr, “filename\t= %s\n”,
dnd->filename?dnd->filename:”(NULL)”);

fprintf(stderr, “data\t\t= %.50s%s\n”,
dnd->data?dnd->data:”(NULL)”,
((int)strlen(dnd->data)>50)?” . . .”:””);

fprintf(stderr, “length\t\t= %d\n”,
dnd->length);

fprintf(stderr, “data_label\t= %s\n”,
dnd->data_label?dnd->data_label:”(NULL)”);

fprintf(stderr, “app_name\t= %s\n”,
dnd->app_name?dnd->app_name:”(NULL)”);

fprintf(stderr, “host_name\t= %s\n”,
dnd->host_name?dnd->host_name:”(NULL)”);

fprintf(stderr, “enum_count\t= %d\n”,
dnd->enum_count);

/* displays the data returned */
if(!sys)
{
char buff[100];

if(sysinfo(SI_HOSTNAME, buff, 100) == -1)
{

return(FALSE);
}
sys = strdup(buff);
}
if(dnd->host_name && strcmp(dnd->host_name, sys) == 0 && dnd-

>filename)
{
XtVaSetValues(drop_target, XtNfull, (XtArgVal)TRUE, NULL);

XtVaSetValues(textedit,
XtNsourceType,OL_DISK_SOURCE,
XtNsource, dnd->filename,

/* main.c (continued) */

3-16 Desktop Integration Guide—August 1994

3

3.7.1 Function main()

The program begins by calling functions for OLIT and for an Xt application to
set up the widgets.

Then managed widgets are defined by calls to
XtVaCreateManagedWidget() . Next, callback routines are added by calls to
XtAddCallback() . The widgets are then realized by calls to
XtRealizeWidget() .

Finally, XtAppMainLoop() is called, establishing the main event handling
loop.

3.7.2 Function DropTargetCB()

DropTargetCB() is a callback function to handle both the source and
destination sides of the drag and drop.

NULL);

XtVaSetValues(file,
XtNstring, dnd->filename,
NULL);

}
else
{
XtVaSetValues(drop_target, XtNfull, (XtArgVal)TRUE, NULL);

XtVaSetValues(textedit,
XtNsourceType,OL_STRING_SOURCE,
XtNsource, dnd->data,
NULL);

XtVaSetValues(file,
XtNstring, ““,
NULL);

}
}

/* main.c (continued) */

Drag and Drop 3-17

3

3.7.3 Other Important Functions

get_atom_name() is a function used in debugging to return a printable name
for an atom.

get_data() returns the text of the TextEdit widget.

get_data_label() returns the last component of the file name to be used as
a data label.

get_name() returns the name of this application.

get_file_name() returns the file path and filename.

dnd_load() is called after the drop is completed, so we can display the data
we received.

These functions are called by routines in the owner.c and requestor.c files
when that data is needed in the drag and drop process.

3.8 Module requestor.c
Contains the definition of functions requestor() , GetSelection() , and
other important functions. These functions are discussed below. Here are the
contents of requestor.c :

/* requestor.c (continued) */
#include <X11/Intrinsic.h>
#include <X11/StringDefs.h>
#include <Xol/OpenLook.h>
#include <Xol/DropTarget.h>
#include <stdio.h>
#include “dnd.h”

/* forward pointers */
staticvoidcheck_state();
staticvoidmake_request();

#defineSET_FLAG(i, flag)(flag |= 1<<i)
#defineFLAG_SET(i, flag)(flag & 1<<i)

structload/* structure to keep track of the current state */

3-18 Desktop Integration Guide—August 1994

3

{
unsigned longreq_flag;/* current request */
unsigned longrec_flag;/* values received back */
unsigned longerr_flag;/* errors received back */
unsigned longseen_flag;/* targets seen so far */
unsigned longtargets;/* targets suppored by other tool */
char*filename;/* contents of filename selection */
char*data;/* contents of string/text selection */
intlength;/* contents of length selection */
intnum_avail_types;/* Number of available types */
Atom*avail_types;/* contents of available types sel. */
char*data_label;/* contents of data label selection */
char*app_name;/* contents of name selection */
char*host_name;/* contents of host name selection */
intenum_count;/* contents of the enumerate count sel*/
Widgetwidget;/* drop target widget */
Atomselection;/* current selection item */
Timetime;/* time stamp */

} state;

/* strdup type of routine that takes care of the length of the
string */
static char*
save_str(char *str, int len)
{

char*new;

if(!str || len <= 0)
{
return(NULL);
}
new = (char *)malloc((len+1));
strncpy(new, str, len);
new[len] = ‘\0’;

}

/* the next set of 13 routines each take the data passed by a
 * selection request and saves the data in the state structure.
*/
static Boolean
load_sun_file_host_name(

Atom *type,
XtPointer value,
unsigned long *length,

/* requestor.c (continued) */

Drag and Drop 3-19

3

int *format)
{

DP fprintf(stderr, “calling load_sun_file_host_name\n”);
state.host_name = save_str(value, *length);
return(TRUE);

}

static Boolean
load_string(

Atom *type,
XtPointer value,
unsigned long *length,
int *format)

{
DP fprintf(stderr, “calling load_string\n”);
state.data = save_str(value, *length);
return(TRUE);

}

static Boolean
load_name(

Atom *type,
XtPointer value,
unsigned long *length,
int *format)

{
DP fprintf(stderr, “calling load_name\n”);
state.app_name = save_str(value, *length);
return(TRUE);

}

static Boolean
load_sun_available_types(

Atom *type,
XtPointer value,
unsigned long *length,
int *format)

{
DP fprintf(stderr, “calling load_sun_available_types\n”);
state.avail_types = (Atom *)malloc(*length*sizeof(Atom));
state.num_avail_types = (int)*length;
memcpy(state.avail_types, value,

(int)(*length*sizeof(Atom)));
return(TRUE);

/* requestor.c (continued) */

3-20 Desktop Integration Guide—August 1994

3

}

static Boolean
load_length(

Atom *type,
XtPointer value,
unsigned long *length,
int *format)

{
unsigned long*len;

DP fprintf(stderr, “calling load_length\n”);
len = (unsigned long *)value;
state.length = (int)len[0];
return(TRUE);

}

static Boolean
load_text(

Atom *type,
XtPointer value,
unsigned long *length,
int *format)

{
DP fprintf(stderr, “calling load_text\n”);
state.data = save_str(value, *length);
return(TRUE);

}

static Boolean
load_sun_dragdrop_done(

Atom *type,
XtPointer value,
unsigned long *length,
int *format)

{
DP fprintf(stderr, “calling load_sun_dragdrop_done\n”);
return(TRUE);

}

static Boolean
load_targets(

Atom *type,
XtPointer value,

/* requestor.c (continued) */

Drag and Drop 3-21

3

unsigned long *length,
int *format)

{
inti,j;
Atom*list;

DP fprintf(stderr, “calling load_targets\n”);
list = (Atom *)value;
while(list && *list)
{
for(i = 0; i < num_targets; i++)
{

if(*list == mytargets[i].atom)
{

SET_FLAG(mytargets[i].type, state.targets);
break;

}
}
list++;
}
return(TRUE);

}

static Boolean
load_sun_selection_end(

Atom *type,
XtPointer value,
unsigned long *length,
int *format)

{
DP fprintf(stderr, “calling load_sun_selection_end\n”);
OlDnDDragNDropDone(state.widget,
 state.selection,
 state.time,
 NULL, NULL);
return(TRUE);

}

static Boolean
load_sun_enumeration_count(

Atom *type,
XtPointer value,
unsigned long *length,
int *format)

/* requestor.c (continued) */

3-22 Desktop Integration Guide—August 1994

3

{
unsigned long*len;

DP fprintf(stderr, “calling load_sun_enumeration_count\n”);
len = (unsigned long *)value;
state.enum_count = (int)len[0];
return(TRUE);

}

static Boolean
load_file_name(

Atom *type,
XtPointer value,
unsigned long *length,
int *format)

{
DP fprintf(stderr, “calling load_file_name\n”);
state.filename = save_str(value, *length);
return(TRUE);

}

static Boolean
load_sun_data_label(

Atom *type,
XtPointer value,
unsigned long *length,
int *format)

{
DP fprintf(stderr, “calling load_sun_data_label\n”);
state.data_label = save_str(value, *length);
return(TRUE);

}

static Boolean
load_sun_load(

Atom *type,
XtPointer value,
unsigned long *length,
int *format)

{
DP fprintf(stderr, “calling load_sun_load\n”);
return(TRUE);

}

/* requestor.c (continued) */

Drag and Drop 3-23

3

/* a dubugging routine to list out the names of a list of atoms */
static char *
list_types(Atom *list, int num)
{

staticcharbuff[1000];
inti;

buff[0] = ‘\0’;
for(i = 0; i < num; i++)
{
strcat(buff, (char *)get_atom_name(list[i]));
strcat(buff, “,”);
}
if(buff[0] == ‘\0’)
{
strcat(buff, “NULL”);
}
else
{
buff[strlen(buff)-1] = ‘\0’;
}
return(buff);

}

/* debbugging routine to list out the names of atoms marked in a
flag */
static char *
list_flags(unsigned long flags)
{

staticcharbuff[1000];
inti;

buff[0] = ‘\0’;
for(i = 0; i < num_targets; i++)
{
if(FLAG_SET(mytargets[i].type, flags))
{

strcat(buff, mytargets[i].name);
strcat(buff, “,”);

}
}
if(buff[0] == ‘\0’)
{
strcat(buff, “NULL”);

/* requestor.c (continued) */

3-24 Desktop Integration Guide—August 1994

3

}
else
{
buff[strlen(buff)-1] = ‘\0’;
}
return(buff);

}

/* debugging routine to print out the state structure */
static void
print_state()
{

fprintf(stderr, “\t--------------------\n”);
fprintf(stderr, “\treq_flag\t= 0x%04X\n\t\t%s\n”,
state.req_flag,
list_flags(state.req_flag));

fprintf(stderr, “\trec_flag\t= 0x%04X\n\t\t%s\n”,
state.rec_flag,
list_flags(state.rec_flag));

fprintf(stderr, “\terr_flag\t= 0x%04X\n\t\t%s\n”,
state.err_flag,
list_flags(state.err_flag));

fprintf(stderr, “\tseen_flag\t= 0x%04X\n\t\t%s\n”,
state.seen_flag,
list_flags(state.seen_flag));

fprintf(stderr, “\ttargets\t\t= 0x%04X\n\t\t%s\n”,
state.targets,
list_flags(state.targets));

fprintf(stderr, “\tfilename\t= %s\n”,
state.filename?state.filename:”(NULL)”);

fprintf(stderr, “\tdata\t\t= %s\n”,
state.data?state.data:”(NULL)”);

fprintf(stderr, “\tlength\t\t= %d\n”,
state.length);

fprintf(stderr, “\tnum_avail_types\t= %d\n”,
state.num_avail_types);

/* requestor.c (continued) */

Drag and Drop 3-25

3

fprintf(stderr, “\tavail_types\t= %s\n”,
list_types(state.avail_types, state.num_avail_types));

fprintf(stderr, “\tdata_label\t= %s\n”,
state.data_label?state.data_label:”(NULL)”);

fprintf(stderr, “\tapp_name\t= %s\n”,
state.app_name?state.app_name:”(NULL)”);

fprintf(stderr, “\thost_name\t= %s\n”,
state.host_name?state.host_name:”(NULL)”);

fprintf(stderr, “\tenum_count\t= %d\n”,
state.enum_count);
fprintf(stderr, “\t--------------------\n”);

}

/* called each time we get a selection back */
static void
GetSelection(

Widget w,
XtPointer clientData,
Atom *selection,
Atom *type,
XtPointer value,
unsigned long *length,
int *format)

{
atom_tthis_atom;
intresults = FALSE;
Atomtarget = (Atom) clientData;
inti;

DP fprintf(stderr, “calling GetSelection\n”);

/* find out which selection came back */
for(i = 0; i < num_targets; i++)
{
if(target == mytargets[i].atom)
{

this_atom = mytargets[i].type;
break;

}

/* requestor.c (continued) */

3-26 Desktop Integration Guide—August 1994

3

}

/* check for errors */
if (length == 0)
{
DP fprintf(stderr, “ERROR\n”);
SET_FLAG((int)this_atom, state.err_flag);
return;
}
if(i == num_targets)
{
this_atom = UNKNOWN;
fprintf(stderr, “atom requested 0x%X\n”, target);
fprintf(stderr, “unknown atom requested ‘%s’\n”,

get_atom_name(target));
return;
}
else
{
DP fprintf(stderr, “ConvertSelection called for %s\n”,

mytargets[i].name);
}

/* call the appropriate procedure to load the info */
switch(this_atom)
{
caseTARGETS:
results = load_targets(type, value, length, format);
break;
caseFILE_NAME:
results = load_file_name(type, value, length, format);
break;
caseSTRING:
results = load_string(type, value, length, format);
break;
caseLENGTH:
results = load_length(type, value, length, format);
break;
caseSUN_AVAILABLE_TYPES:
results = load_sun_available_types(type, value,

length, format);
break;
caseSUN_LOAD:
results = load_sun_load(type, value, length, format);

/* requestor.c (continued) */

Drag and Drop 3-27

3

break;
caseSUN_DATA_LABEL:
results = load_sun_data_label(type, value, length, format);
break;
caseSUN_DRAGDROP_DONE:
results = load_sun_dragdrop_done(type, value,

length, format);
break;
caseTEXT:
results = load_text(type, value, length, format);
break;
caseSUN_SELECTION_END:
results = load_sun_selection_end(type, value,

length, format);
break;
caseNAME:
results = load_name(type, value, length, format);
break;
caseSUN_FILE_HOST_NAME:
results = load_sun_file_host_name(type, value,

length, format);
break;
caseSUN_ENUMERATION_COUNT:
results = load_sun_enumeration_count(type, value,

length, format);
break;
}

/* if the load was succesfull */
if(results)
{
/* mark the received flag */
SET_FLAG((int)this_atom, state.rec_flag);
}
else
{
/* mark the error flag */
SET_FLAG((int)this_atom, state.err_flag);
}
DP fprintf(stderr, “GetSelection call\n%04X\n%04X\n%04X\n”,

state.req_flag,
state.rec_flag,
state.err_flag);

/* requestor.c (continued) */

3-28 Desktop Integration Guide—August 1994

3

/* if we got all our requests back check the state to
 * find out what to do next
 */

if(state.req_flag == state.rec_flag|state.err_flag)
{
check_state();
}

}

/* initialize the state structure (We’re begining a new drop */
static void
init_state()
{

state.req_flag = 0;
state.rec_flag = 0;
state.err_flag = 0;
state.seen_flag = 0;

state.targets = 0;

if(state.filename)
{
free(state.filename);
}
state.filename = 0;

if(state.data)
{
free(state.data);
}
state.data = 0;

state.length = -1;

if(state.avail_types)
{
free(state.avail_types);
}
state.avail_types = 0;
state.num_avail_types = 0;

if(state.data_label)
{

/* requestor.c (continued) */

Drag and Drop 3-29

3

free(state.data_label);
}
state.data_label = 0;

if(state.app_name)
{
free(state.app_name);
}
state.app_name = 0;

if(state.host_name)
{
free(state.host_name);
}
state.host_name = 0;

state.enum_count = -1;
}

/* request the target specified in the request flag */
staticvoid
make_request()
{

staticAtom*requests = 0;
intnum_request = 0;
inti;

/* make an array that will hold the requests */
if(!requests)
{
requests = (Atom *)malloc(num_targets*sizeof(Atom));
}

/* check each target to see if we request it */
for(i = 0; i < num_targets; i++)
{
if(FLAG_SET(mytargets[i].type, state.req_flag))
{

requests[num_request] = mytargets[i].atom;
num_request++;

}
}
requests[num_request] = 0;

/* requestor.c (continued) */

3-30 Desktop Integration Guide—August 1994

3

/* ask for the list of targets */
XtGetSelectionValues(state.widget,

state.selection,
requests,
num_request,
GetSelection,
requests,
state.time);

}

/* we’ve been droped on */
void
requestor(Widget widget, Atom selection, Time time)
{

/*
 * put into an array a series of questions in the
 * form of atoms that source understands. Then ask
 * selection to deliver the questions. We also
 * register a function to handle the answers
 */

DP fprintf(stderr, “calling requestor\n”);

/* initialize the state and save the calling info */
init_state();
state.widget = widget;
state.selection = selection;
state.time = time;

/* request the target list */
SET_FLAG((int)TARGETS, state.req_flag);

make_request();
}

/* part of the request have been completed so lets see if there
 * is anything else we should do
*/
static void
check_state()
{

inttmp = 0;

/* requestor.c (continued) */

Drag and Drop 3-31

3

DP fprintf(stderr, “Before\n”);

/* save those targets we’ve seen */
state.seen_flag |= state.rec_flag;

DP print_state();

/* clear the request, received and error flags */
state.req_flag = 0;
state.rec_flag = 0;
state.err_flag = 0;

/* check if this is the first request */
SET_FLAG((int)TARGETS, tmp);
if(tmp == state.seen_flag)
{
/* request the info for those we know about */
if(FLAG_SET(FILE_NAME, state.targets))

SET_FLAG((int)FILE_NAME, state.req_flag);

if(FLAG_SET(LENGTH, state.targets))
SET_FLAG((int)LENGTH, state.req_flag);

if(FLAG_SET(SUN_AVAILABLE_TYPES, state.targets))
SET_FLAG((int)SUN_AVAILABLE_TYPES, state.req_flag);

if(FLAG_SET(SUN_DATA_LABEL, state.targets))
SET_FLAG((int)SUN_DATA_LABEL, state.req_flag);

if(FLAG_SET(NAME, state.targets))
SET_FLAG((int)NAME, state.req_flag);

if(FLAG_SET(SUN_FILE_HOST_NAME, state.targets))
SET_FLAG((int)SUN_FILE_HOST_NAME, state.req_flag);

if(FLAG_SET(SUN_ENUMERATION_COUNT, state.targets))
SET_FLAG((int)SUN_ENUMERATION_COUNT, state.req_flag);

if(FLAG_SET(STRING, state.targets))
{

SET_FLAG((int)STRING, state.req_flag);
}
else if(FLAG_SET(TEXT, state.targets))

/* requestor.c (continued) */

3-32 Desktop Integration Guide—August 1994

3

3.8.1 Function requestor()

The requestor side begins by calling requestor() , which initializes the state
of the drop and starts things off by setting the request flag (state.req_flag) to
request the targets. From this point we never know what order things are
going to be coming back to us, so we have to handle them as they come.

{
SET_FLAG((int)TEXT, state.req_flag);

}
}
else if(!FLAG_SET(SUN_DRAGDROP_DONE, state.seen_flag))
{
/* since we haven’t seen the end info then request it */
SET_FLAG((int)SUN_DRAGDROP_DONE, state.req_flag);
SET_FLAG((int)SUN_SELECTION_END, state.req_flag);
}
else
{
Dnd_tuser_data;

/* fill in the user info structure and display it */
user_data.filename = state.filename;
user_data.data = state.data;
user_data.length = state.length;
user_data.data_label = state.data_label;
user_data.app_name = state.app_name;
user_data.host_name = state.host_name;
user_data.enum_count = state.enum_count;

dnd_load(&user_data);
init_state();
return;
}
DP fprintf(stderr, “After\n”);
DP print_state();
make_request();

}

/* requestor.c (continued) */

Drag and Drop 3-33

3

3.8.2 Function GetSelection()

GetSelection() checks which atom came back, and calls the appropriate
load function. It then goes on to set the state structure, so we know which atom
came back and what its state is.

3.8.3 Function init_state()

This function initializes the state structure for a new drop. The atom
parameters in this structure are defined by state.

3.8.4 Function make_request()

make_request() checks the request flag (req_flag) and requests that the
appropriate atoms be converted. It also registers a callback (GetSelection) to
handle the return of the data.

3.8.5 Load Functions

load_sun_file_host_name() , load_name() ,
load_sun_selection_end() and similar functions load the state structure
with the data from the corresponding X atom.

3.8.6 Debugging Functions

The functions list_flags() and print_state() print out information
used for debugging.

3.9 Module owner.c
Contains the definition of functions owner() , TransactionState() , and a
series of “convert” function definitions. These functions are discussed below.
Here are the contents of owner.c :

3-34 Desktop Integration Guide—August 1994

3

/* owner.c (continued) */
#include <X11/Intrinsic.h>
#include <X11/StringDefs.h>
#include <X11/Xatom.h>
#include <Xol/OpenLook.h>
#include <Xol/DropTarget.h>
#include <sys/systeminfo.h>
#include <stdio.h>
#include “dnd.h”

/* these 13 routines just get the requested data and gives
 * it to the selection service when requested.
*/
static Boolean
convert_sun_file_host_name(

Atom *type,
XtPointer *value,
unsigned long *length,
int *format)

{
staticchar*sys = 0;

DP fprintf(stderr, “calling convert_sun_file_host_name\n”);
if(!sys)
{
char buff[100];

if(sysinfo(SI_HOSTNAME, buff, 100) == -1)
{

return(FALSE);
}
sys = strdup(buff);
}
*type = XA_STRING;
*value = sys;
*length = strlen(sys)+1;
*format = 8;
return(TRUE);

}

static Boolean
convert_string(

Atom *type,

Drag and Drop 3-35

3

XtPointer *value,
unsigned long *length,
int *format)

{
DP fprintf(stderr, “calling convert_string\n”);
*type = XA_STRING;
get_data(value, length);
*format = 8;
return(TRUE);

}

static Boolean
convert_name(

Atom *type,
XtPointer *value,
unsigned long *length,
int *format)

{
DP fprintf(stderr, “calling convert_name\n”);
*type = XA_STRING;
*value = (XtPointer)get_name();
*length = (unsigned long)strlen(*value)+1;
*format = 8;
return(TRUE);

}

static Boolean
convert_sun_available_types(

Atom *type,
XtPointer *value,
unsigned long *length,
int *format)

{
staticAtomav_type = XA_STRING;

DP fprintf(stderr, “calling convert_sun_available_types\n”);
*type = XA_ATOM;
*value = (XtPointer)&av_type;
*length = 1;
*format = 32;
return(TRUE);

}

static Boolean

/* owner.c (continued) */

3-36 Desktop Integration Guide—August 1994

3

convert_length(
Atom *type,
XtPointer *value,
unsigned long *length,
int *format)

{
char*val;
unsigned longlen;

DP fprintf(stderr, “calling convert_length\n”);
*type = XA_INTEGER;
get_data((char **)&val, &len);
*length = 1;
*value = (XtPointer)&len;
*format = 32;
return(TRUE);

}

static Boolean
convert_text(

Atom *type,
XtPointer *value,
unsigned long *length,
int *format)

{
DP fprintf(stderr, “calling convert_text\n”);
*type = XA_STRING;
get_data(value, length);
*format = 8;
return(TRUE);

}

static Boolean
convert_sun_dragdrop_done(

Atom *type,
XtPointer *value,
unsigned long *length,
int *format)

{
DP fprintf(stderr, “calling convert_sun_dragdrop_done\n”);
*type = XA_INTEGER;
*length = (unsigned long)0;
*value = (XtPointer)0;
*format = 32;

/* owner.c (continued) */

Drag and Drop 3-37

3

return(TRUE);
}

static Boolean
convert_targets(

Atom *type,
XtPointer *value,
unsigned long *length,
int *format)

{
staticAtom*targets;

DP fprintf(stderr, “calling convert_targets\n”);
if(!targets)
{
int i;

targets = (Atom *)malloc(num_targets*sizeof(Atom));
for(i = 0; i < num_targets; i++)
{

targets[i] = mytargets[i].atom;
}
}
*type = XA_ATOM;
*value = (XtPointer)targets;
*length = num_targets;
*format = 32;
return(TRUE);

}

static Boolean
convert_sun_selection_end(

Atom *type,
XtPointer *value,
unsigned long *length,
int *format)

{
DP fprintf(stderr, “calling convert_sun_selection_end\n”);
*type = XA_INTEGER;
*length = (unsigned long)0;
*value = (XtPointer)0;
*format = 32;
return(TRUE);

}

/* owner.c (continued) */

3-38 Desktop Integration Guide—August 1994

3

static Boolean
convert_sun_enumeration_count(

Atom *type,
XtPointer *value,
unsigned long *length,
int *format)

{
staticintcount = 1;

DP fprintf(stderr, “calling
convert_sun_enumeration_count\n”);

*type = XA_INTEGER;
*length = 1;
*value = (XtPointer)&count;
*format = 32;
return(TRUE);

}

static Boolean
convert_file_name(

Atom *type,
XtPointer *value,
unsigned long *length,
int *format)

{
DP fprintf(stderr, “calling convert_file_name\n”);
*type = XA_STRING;
*value = (XtPointer)get_file_name();
*length = (unsigned long)strlen(*value)+1;
*format = 8;
return(TRUE);

}

static Boolean
convert_sun_data_label(

Atom *type,
XtPointer *value,
unsigned long *length,
int *format)

{
DP fprintf(stderr, “calling convert_sun_data_label\n”);
*type = XA_STRING;

/* owner.c (continued) */

Drag and Drop 3-39

3

*value = (XtPointer)get_data_label();
*length = strlen(*value)+1;
*format = 8;
return(TRUE);

}

static Boolean
convert_sun_load(

Atom *type,
XtPointer *value,
unsigned long *length,
int *format)

{
DP fprintf(stderr, “calling convert_sun_load\n”);
*type = XA_INTEGER;
*length = (unsigned long)0;
*value = (XtPointer)0;
*format = 32;
return(TRUE);

}

/* this routine gets called when ever a conversion is requested */
static Boolean
ConvertSelection(

Widget w,
Atom *selection,
Atom *atom,
Atom *type,
XtPointer *value,
unsigned long *length,
int *format)

{
atom_tthis_atom;
Booleanresults = FALSE;
inti;

DP fprintf(stderr, “calling ConvertSelection\n”);

/* find out which atom is requested */
for(i = 0; i < num_targets; i++)
{
if(*atom == mytargets[i].atom)
{

this_atom = mytargets[i].type;

/* owner.c (continued) */

3-40 Desktop Integration Guide—August 1994

3

break;
}
}
if(i == num_targets)
{
this_atom = UNKNOWN;
DP fprintf(stderr, “atom requested 0x%X\n”, *atom);
DP fprintf(stderr, “unknown atom requested ‘%s’\n”,

get_atom_name(*atom));
}
else
{
DP fprintf(stderr, “ConvertSelection called for %s\n”,

mytargets[i].name);
}

/* call the appropriate convert proc */
switch(this_atom)
{
caseTARGETS:
results = convert_targets(type, value, length, format);
break;
caseFILE_NAME:
results = convert_file_name(type, value, length, format);
break;
caseSTRING:
results = convert_string(type, value, length, format);
break;
caseLENGTH:
results = convert_length(type, value, length, format);
break;
caseSUN_AVAILABLE_TYPES:
results = convert_sun_available_types(type, value,

length, format);
break;
caseSUN_LOAD:
results = convert_sun_load(type, value, length, format);
break;
caseSUN_DATA_LABEL:
results = convert_sun_data_label(type, value, length,

format);
break;
caseSUN_DRAGDROP_DONE:
results = convert_sun_dragdrop_done(type, value,

/* owner.c (continued) */

Drag and Drop 3-41

3

length, format);
break;
caseTEXT:
results = convert_text(type, value, length, format);
break;
caseSUN_SELECTION_END:
results = convert_sun_selection_end(type, value,

length, format);
break;
caseNAME:
results = convert_name(type, value, length, format);
break;
caseSUN_FILE_HOST_NAME:
results = convert_sun_file_host_name(type, value,

length, format);
break;
caseSUN_ENUMERATION_COUNT:
results = convert_sun_enumeration_count(type, value,

length, format);
break;
default:
return(FALSE);
}
return(results);

}

/* check the state of the request etc. */
static void
TransactionState(

Widget w,
Atom selection,
OlDnDTransactionState state,
Time timestamp,
XtPointer clientData)

{
DP fprintf(stderr, “calling TransactionState\n”);
switch (state)
{
case OlDnDTransactionDone:
case OlDnDTransactionRequestorError:
case OlDnDTransactionRequestorWindowDeath:
/*
 * some sort of failure occured or we are done, give up
 * selection we own. Note: we could have done the disowning

/* owner.c (continued) */

3-42 Desktop Integration Guide—August 1994

3

3.9.1 Function owner()

This function takes ownership of a selection and sets up a set of callbacks to
deal with requests made of that selection. In this example we register only a
“convert” procedure, which we call ConvertSelection() and a

 * of selection when we got SELECTION_END, but we chose to do
 * it here...
 */
OlDnDDisownSelection(w,

 selection,
 XtLastTimestampProcessed(XtDisplay(w)));

OlDnDFreeTransientAtom(w, selection);
break;
case OlDnDTransactionBegins:
case OlDnDTransactionEnds:
break;
}

}

/* starts the drag operation */
void
owner(Widget widget, Time time)
{

Atomatom;

DP fprintf(stderr, “calling owner\n”);

/* allocate and own selection. Register a convert proc */
atom = OlDnDAllocTransientAtom(widget);

XtVaSetValues(widget, XtNselectionAtom, atom, NULL);

OlDnDOwnSelection(widget, atom, time,
 ConvertSelection,
 (XtLoseSelectionProc) NULL,
 (XtSelectionDoneProc) NULL,
 TransactionState,
 NULL);

}

/* owner.c (continued) */

Drag and Drop 3-43

3

“transaction” procedure, which we call TransactionState() . The “lose”
and “done” procedures could also be registered here for more complex
applications.

3.9.2 Function ConvertSelection()

ConvertSelection() is called each time a request is made of the selection. It
will then check for errors and decide which conversion function needs to be
called.

3.9.3 Function TransactionState()

TransactionState() is called when the selection mechanism transitions
state. In this example it only looks for the WindowDeath transaction so that it
can disown the selection.

3.9.4 Conversion Functions

This series of functions is used by ConvertSelection() to parse the
selection request from the requestor process. Which function is used depends
on the type of atom.

3.10 Resource File
This file contains X resources needed to make up the windows and controls in
the sample application.

Here is the file called Resources :

AsciiEdit.base.orientation: vertical
AsciiEdit.base.control.orientation: horizontal
AsciiEdit.base.control.weight: 0

AsciiEdit.base.control.file.weight: 1
AsciiEdit.base.control.drop_target.weight: 0
AsciiEdit.base.control.blank.weight: 0

AsciiEdit.base.control.blank.strip: false
AsciiEdit.base.control.blank.string: \ \

3-44 Desktop Integration Guide—August 1994

3

3.11 Makefile
This file contains the instructions to compile and link the sample into an
executable application, using the command make.

Here is the Makefile :

AsciiEdit.base.scrolledwin.weight: 1

AsciiEdit.base.scrolledwin.forceHorizontalSB: False
AsciiEdit.base.scrolledwin.forceVerticalSB: True
AsciiEdit.base.scrolledwin.textedit.charsVisible: 80
AsciiEdit.base.scrolledwin.textedit.linesVisible: 60
AsciiEdit.title: Drag and Drop sample
AsciiEdit*font: lucidasans

#
###
#

SRC += main.c owner.c requestor.c
HDR += dnd.h
OBJ += $(SRC:%.c=%.o)

INCLUDE+= -I${OPENWINHOME}/include

#CFLAGS+= -g -DDEBUG
CFLAGS+= ${INCLUDE}

LDFLAGS+= -L${OPENWINHOME}/lib -R${OPENWINHOME}/lib

LIBS+= -lXol -lXt -lX11 -ltt

PROGRAM+= dnd

.KEEP_STATE:

$(PROGRAM):$(OBJ)
$(CC) -o $(PROGRAM) $(OBJ) $(CFLAGS) $(LDFLAGS) $(LIBS)

clean:
rm -f core $(PROGRAM) $(OBJ)

Drag and Drop 3-45

3

3.12 Data Type Registration
If a receiving application is to receive a drop from a source application, the
source application must send the data in a format readable by the receiving
application. (In this discussion, we use data format and data type
interchangeably.) For example, if Text Editor wishes to drop data into Mail
Tool, Text Editor must be able to convert the data to a format that Mail Tool can
read. Conversely, if Mail Tool wishes to drop data into Text Editor, Mail Tool
must be able to convert the data to a format Text Editor can read.

Although the source application is responsible for converting data to a format
readable by the receiving application, it also behooves receiving application to
be able to receive data in some of the more common data formats like ASCII,
Sun raster imaging, or POSTSCRIPT® page description language.

Programmatically, drag and drop handshaking works as follows:

• data is selected from the source application

• data is sent (dropped) on the receiving application

• receiving application requests a list of the data formats in which the source
application can send the drop

• source application replies with a list of data formats

• receiving application tells the source application which format it would like
the data sent

• data is transferred.

A source application must have data conversion routines for each application
into which it wishes to drop data. Creating conversion routines consists of
finding out the data format of the desired drop applications, and writing

.INIT: $(SRC) $(HDR)

End makefile
###

#

3-46 Desktop Integration Guide—August 1994

3

conversion routines specifically for those formats.1 Again, if you wish your
application to be able to receive drops from other applications, ensure that
your application can receive data in some of the more common data formats.

SunSoft has undertaken a data type registration program to help standardize
the data format names by which applications request data formats from each
other. SunSoft encourages all companies that wish to share their data with
other applications to register data format names for their application’s data.
This name will be used by other applications to reference desired data formats.
Refer to Appendix C, “Vendor Data Type Registration” for more information
on data type registration.

SunSoft will provide a public repository for data format names as well as
additional format information. This information will be made available to all
software developers.

1. Refer to the receiving application’s manuals or call the company that produces the receiving application for
details of the data format.

4-1

Implementing Drag and Drop
with DeskSet 4

DeskSet drag and drop is implemented using X selections to negotiate formats
and transfer information. The techniques described here are applicable to any
selection transfer, such as cut-and-paste as well as drag-and-drop. This
discussion assumes that you understand OLIT or XView selections, and have
read the Inter-Client Communications Conventions Manual (ICCCM) X
Version 11 Release. Note that this chapter only describes the data transfer part
of selections. Specifying owner and requestor application, and telling the
receiver at what selection rank to address the source is incorporated in each of
the OPEN LOOK toolkits and is not of concern to the application programmer.

The DeskSet drag and drop communications protocol consists of a set of
predefined atoms used by owner and requestor applications to exchange
information about a drag and drop selection. These predefined atoms are also
called targets. DeskSet targets, describe the nature of a drag and drop selection
as well as the interaction that can occur between the owner application and the
requestor application.

Targets in a DeskSet drag and drop conversation represent a series of questions
or commands sent by the receiving application to the owner application. When
a requesting application asks an owner application to convert a target, it is
equivalent to asking the owner a predefined question or giving it a predefined
command. The selection owner may or may not support answering that
particular question/command. If it doesn’t, the requestor must terminate the
drag and drop procedure or try to ask other questions that will allow the
procedure to continue. If the selection owner does support that target, it will
respond with the answer to the requestor.

4-2 Desktop Integration Guide—August 1994

4

DeskSet selection conversation is similar to a game of “go fish” or “twenty
questions.” One program (the selection requestor) does all the asking, and the
other program (the selection owner) does all the answering.

The Deskset conventions establish a set of targets (questions) that cooperating
selection owners understand. Of course, a well behaved requestor program
will try to deal with selection owners that cannot answer the standard
questions, but there will be some loss of functionality when dealing with a
selection holder of this type.

4.1 DeskSet Drag and Drop Handshaking
Drag and drop handshaking begins with the requestor application asking the
owner application to convert the TARGETS atom. The owner responds with a
list of atoms it understands. If the requestor recognizes enough atoms to
continue the procedure, it continues. If the requestor does not recognize
enough atoms to complete the process, then the transfer is aborted.

Two cases of handshaking with a DeskSet application are described below.
Note that these handshaking descriptions are a simplistic view of dragging and
dropping between DeskSet applications. It may be necessary to examine
specific DeskSet application source code to pick up procedural nuances.

4.1.1 Handshaking—Simplest Case

The simplest case of drag and drop is when a receiver application asks the
owner to send it selection data without regard to data format, alternative
transport method, or any other considerations. This is described below:

1. The requestor asks the owner to convert the
_SUN_ENUMERATION_COUNT atom. The owner responds by sending the
number of source objects in the current selection.

If the response to _SUN_ENUMERATION_COUNT is more than 1, then the
programs must agree upon the selection object to be dragged and dropped.
The owner converts the _SUN_ENUMERATION_ITEM target which
specifies a selection item to process.

2. For each selection item, the requestor asks the owner to convert the TEXT
target which instructs the owner to send the selection data in any format.

Implementing Drag and Drop with DeskSet 4-3

4

The requestor assumes that it can convert the data into a usable format. If it
cannot convert the data, it will not accept the data and the transfer is
terminated. Note that the requesting application bears the responsibility of
converting the data to a usable format.

4.1.2 Handshaking with _SUN_AVAILABLE_TYPES

This example describes the handshaking protocol of a requesting application
that wishes to specify the format of the requested data. This is an optional
feature.

1. After obtaining the list of supported targets the requestor asks the owner to
convert the _SUN_ENUMERATION_COUNT atom. The owner responds by
sending the number of source objects in the current selection.

If the response to _SUN_ENUMERATION_COUNT is more than 1, then the
programs must agree upon the selection object to be dragged and dropped.
The owner converts the _SUN_ENUMERATION_ITEM target which
specifies a selection item to process. For each item in the selection, the
program converts the targets described in steps 2 and 3.

2. The requestor application then asks the owner to convert
_SUN_AVAILABLE_TYPES. The owner sends a list of data type atoms which
specify the format in which the selection data may be supplied.

The formats may be GIF, PostScript, audio, or some other format. If the
applications do not wish to use an alternate transport method, then the
requestor application asks the owner to convert the desired data type target.
The owner responds by sending the stream of data representing the object
selected in the type requested.

3. The requestor application writes the data into its address space and closes
the selection transfer with the _SUN_SELECTION_END atom.

4.1.3 Specifying _SUN_ENUMERATION_ITEM

When multiple items are selected, the _SUN_ENUMERATION_ITEM target
specifies which object is the subject of discussion in the selection negotiation.
All targets that require the specification of _SUN_ENUMERATION_ITEM, and
the setting of the object number as its side effect, should request these
conversions as part of a MULTIPLE conversion.

4-4 Desktop Integration Guide—August 1994

4

The use of MULTIPLE adds a transaction-like nature to the set of target
conversions, assuring that other target conversions delivered to the selection
holder will not change the state of the selection.

Specifically, a sample conversion of a target should look like this:

The use of MULTIPLE ensures that another client cannot convert
_SUN_ENUMERATION_ITEM on the same selection halfway through the
conversions for your targets. If this were to happen, the results could prove
unpredictable with conversion results being relative to different objects within
the selection, and your client not knowing this.

Within the OpenWindows Version 3.x implementation of drag and drop, each
drag and drop transfer acquires a unique selection rank. So, converting
_SUN_ENUMERATION_ITEM on the same selection halfway through target
conversion, may not be an immediate problem. But if your client is ever to use
the same code to support cut/copy/paste, it is likely that your client could get
conversion requests on a selection from more than one client at a time.

For a more complete discussion of MULTIPLE, and how it relates to selection
target conversions, see the ICCCM.

4.2 DeskSet Drag and Drop Target Atoms
This section describes the atoms used in DeskSet applications.

4.2.1 ICCCM Target Atoms

These atoms are specified by the ICCCM and should be supported by all
applications.

begin multiple
_SUN_ENUMERATION_ITEM = object number
FILE_NAME
_SUN_FILE_HOST_NAME
_SUN_ENUMERATION_ITEM = -1
end multiple

Implementing Drag and Drop with DeskSet 4-5

4

DELETE
Converting this atom tells the selection owner to delete the selection. This is
typically done when the drag and drop operation is a move command to
something that can actually store the data (like a File Manager). An application
like a Print Tool should always reject the DELETE atom. Owner application
should return a zero-length property of type NULL if the deletion was
successful.

TARGETS
Returns a list of targets supported by the owner.

TIMESTAMP
Timestamp is an integer timestamp used to acquire the selection.

FILE_NAME
When converted, FILE_NAME requests the file name for the current object in
the selection. The response is a name of a file that contains the selection data.
This file name is not useful unless the answer to the _SUN_FILE_HOST_NAME
is a host that the recipient can access. The FILE_NAME response will be
relative to the machine named in _SUN_FILE_HOST_NAME. FILE_NAME is
not needed if _SUN_ATM_FILENAME is not supported.

NAME
The name of the application as represented in the title bar. Refer to the ICCCM
for details.

INSERT_SELECTION
Replace the object with the contents of the named selection.

4.2.2 DeskSet Target Atoms

_SUN_ALTERNATE_TRANSPORT_METHODS
This target is like the TARGETS target—it returns a list of atoms which
represent the alternate transports that the owner supports. Note that use of this
and other ATM targets is very rare and almost always necessary.

4-6 Desktop Integration Guide—August 1994

4

_SUN_ATM_FILE_NAME
This target indicates that the requestor is going to get the data via a file name.
A file name consists of both a pathname (as returned by FILE_NAME) and a
host name (as returned by _SUN_FILE_HOST_NAME).

_SUN_ATM_TOOL_TALK
This atom specifies the ToolTalk services to pass data.

_SUN_AVAILABLE_TYPES
This atom is like the TARGETS atom, but instead the owner responds with the
data types in which it can provide data. This may be only one, or it may be
several. Note that the responsibility for type translation lies with the requestor.

The table below lists the data types supported by DeskSet.

_SUN_DRAGDROP_DONE
This target signifies the end of a drag and drop process. It is hidden in the
toolkits so the requestor application never deals with them. The owner
application does, however, see them.

Table 4-1 DeskSet Data Type Atoms

Data Type Data Type Atom Type Description

Owners Choice TEXT Can be any data type of the
owners choice.

Text STRING 8-bit ISO 8859-1

Graphics _SUN_TYPE_gif-file
_SUN_TYPE_tiff-file
_SUN_TYPE_postscript-file
_SUN_TYPE_sun-raster
_SUN_TYPE_xpm-file

GIF
TIFF
PostScript
Sun Raster
XPM

Audio _SUN_TYPE_audio-file SunSoft Audiotool

Implementing Drag and Drop with DeskSet 4-7

4

_SUN_SELECTION_END
Ends the selection process by indicating that the requestor is done with the
current selection. Use SUN_SELECTION_END to notify the owner that you are
done with the selection used in response to INSERT_SELECTION or
_SUN_LOAD. See the section on _SUN_LOAD for more information.

_SUN_DATA_LABEL
A string identifier that represents the current object which is not a filename.
This could be something like the last component of the pathname.

_SUN_ENUMERATION_COUNT
Specifies how many objects are in the current selection. This allows several
icons to be selected and separately negotiated.

_SUN_ENUMERATION_ITEM
Specifies which object is the subject of discussion in the selection negotiation.
Objects are numbered from zero to _SUN_ENUMERATION_COUNT -1.
References to objects outside this range should be refused. References to the
item -1 should be treated as resetting the current item to unspecified.

This target only has meaning within the context of a selection that contains
multiple disjointed objects. It should be: 1) converted with the number of the
object in the selection you wish to refer to; 2) convert the desired targets;
3) converted again to set the current item back to 0.

_SUN_FILE_HOST_NAME
The name of the host to which FILE_NAME is relative.

_SUN_LOAD
When converted the owner returns a selection atom to use as a reference to the
current object.

_SUN_SELECTION_ERROR
If the requestor has decided that it cannot convert a selection, it should convert
this target. This target has no side effects and returns no data, but can be used
to inform the user that the drag and drop operation did not succeed. The

4-8 Desktop Integration Guide—August 1994

4

convention for informing the user of a drag and drop failure is to present an
error message in the footer of the owner application, and send a pop-up
message to the requestor application.

4.3 Drag and Drop and Editors
One of the primary uses of Drag and Drop with the File Manager is to drop
files on cooperating applications as a shorthand for loading them in for editing.
In this situation there are some difficult semantic differences that creep into the
user model depending on the transport method chosen/negotiated by the
applications involved in the drag and drop interaction.

Consider these two cases:

Case 1: Client A, a drag source, is running on machine X. Client B, an editor, is
also running on machine X. The user drags a file from A, and drops it on B. B
(the editor) realizes that the two clients share a file system, and decides to
transport the data using file names and the file system as a short cut. B loads
the file and runs successfully.

Case 2: Client A, a drag source, is running on machine X. Client B, an editor is
also running on machine X. The user drags a file from A, and drops it on B. B
(the editor) realizes that the two processes do not share a file system, and
cannot rendezvous in this way. B decides to convert TEXT, or some more
specific data type, and receives the data from A through the selection service. B
loads the data and runs successfully.

Up to a point, the transfers look identical to the user, who is oblivious to the
selection of transport method. The user edits the data, and then tries to execute
the Save function in the editor.

In the first case, the data goes back to the place from which it came, providing
an action semantically identical to loading in the file from some sort of dialog
box.

In the second case, the data is either silently saved to some place within their
local file system, or the user is presented with a question like “where in this file
system do you want the data to go?” The users only option for getting the data
back to where it came from would be to either drag it from the editor back to
the source (assuming the editor supports sourcing drags), or to save the data
into a local file system, and then use some sort of sourcing application to drag
it back to the original file system and rename it to the original name.

Implementing Drag and Drop with DeskSet 4-9

4

None of the behaviors in the second case will make sense to the user, because
they know nothing of the selection of transport method and how it will impact
the usability of their application.

Note – There may be cases where the clients share a file system and still cannot
rendezvous successfully through it. This might include selection holders whose
selection resides in a special partition (databases) or whose contests are
represented by more than one file (compound documents). It is important not
to conclude that this is an X specific problem.

With the intent of fixing this behavior, we have defined some special
mechanisms to get the data back to its original location, transparent to the user.

When a requestor application finds that it needs to obtain the source data
through the selection service, and intends to allow the user to edit the data and
then put it back, the recipient tries to convert the _SUN_LOAD target. If the
selection holder supports the _SUN_LOAD target, it will respond with the
name of a selection (called “H” for this discussion) that the holder guarantees
will be unique and persistent for the life of the selection holder. This selection
is associated with the original data in the drag and drop transfer.

The editor may manipulate the data as it sees fit. When it is time to save the
data back to the original location, the editor creates a new selection rank and
associates it with the data that it is currently holding (call the selection rank
“S”). The editor then converts the INSERT_SELECTION target against the
selection H. A selection can be guaranteed as unique by converting
SUN_SELECTION_END against H when done. In the property associated with
the target conversion, the editor places the name of the selection S.

The conversion of INSERT_SELECTION tells the selection holder to replace the
contents of the current selection (selection H, representing the original data in
storage) with the contents of the new selection (selection S, whose contents
represent the edited version of the data). Refer to section 2.6.3.2 of the ICCCM.

The original selection may then make target conversions against selection S to
get the data back from the editor.

4-10 Desktop Integration Guide—August 1994

4

4.4 Drag and Drop Example: XView Toolkit
The program xview_dnd2.c , located online at
$OPENWINHOME/share/src/dig_samples/dnd_xview2 , demonstrates how
drag and drop can be implemented with the Xview toolkit. Once compiled,
xview_dnd2.c allows you to drop a selection from a DeskSet application onto
its rectangular drop target. xview_dnd2 then displays the following
information:

• The operation (Drag MOVE)

• The number of atoms contained in the TARGETS atom

• The atoms listed in TARGETS, and used in the drop operation

• The length and format of the data represented in each atom, as well as the
data itself.

• Atoms listed in TARGETS, but not used in the operation

Note that this program does not work with multiple selections.

Section 3.4, “Drag and Drop Programming Example: OLIT Toolkit,” on
page 3-7 shows a drag and drop example implemented with OLIT.

4.5 Further DeskSet Integration Information
For further information on integrating your application with DeskSet, call the
SunSoft Catalyst Information Center (Appendix C, “Vendor Data Type
Registration” has this number). Note, however, that the ICCCM currently does
not specify the protocol supported by DeskSet. The current DeskSet protocol
may change to comply with future ICCCM specifications. Refer to Appendix L
of the X Protocol Reference Manual to see the current ICCCM.

5-1

Classing Engine 5

5.1 Overview
The Classing Engine (CE) is an OpenWindows database used to identify the
characteristics, or attributes, of files. The CE specifies attributes such as print
method, icons, and opening commands for specific file types. File type is
defined by a file’s format, its parent application, or the application executable
itself. Examples of file format are:

• ASCII
• PostScript
• Sun raster files

Examples of data files created by a parent application are:

• FrameMaker® and
• Lotus 1-2-3® data files

Examples of application executables are:

• File Manager
• Mail Tool, or
• Wingz® executable files

The CE consists of two parts: a database that stores file type names and
attributes, and a collection of routines that query the database. Some of the
more common file attributes are:

• A filename pattern or content string to identify the file type
• Directory location of a file type icon

5-2 Desktop Integration Guide—August 1994

5

• Foreground and background colors of a file type icon
• Print command of a file type, if applicable
• Load and launch command for the application associated with a data file
• Edit or display command of a file

Other attributes, such as data exchange filters and text compression
procedures, can be associated with a file type as well; the CE is completely
extensible. In addition, it is possible to add custom databases for other data
objects to the CE.

The CE acts as a central repository for all file types and their attributes. The CE
also provides applications with a set of routines for determining a file’s type
and retrieving its attributes.

This chapter describes the CE technology and how one DeskSet program, File
Manager, uses it. (File Manager is a graphical file and directory tool shipped
with OpenWindows.) The CE can be used in the same manner by any Desktop
application.

Note – The CE can be used by the File Manager. This chapter only discusses
the CE as used by File Manager.

5.2 File Type Registration
For an application to obtain the operating attributes of a file, the file’s identifier
and attributes must be stored in the CE database. This requires that the file’s
originators, typically the vendor whose application created the file, incorporate
the file’s type and its attributes into the CE database. File types can be
incorporated into the CE database in the following ways:

1. Software vendors may register file types and their attributes with SunSoft
through the Developer Integration Format Registration program (DIFR). The
new file types will be incorporated into the CE database and distributed in
subsequent CE releases. Refer to Appendix C, “Vendor Data Type
Registration” for detailed registration instructions.

2. Software vendors may use the CE utilities in their software installation
process to update their user’s CE databases with new file type information.
Thus, a vendor’s application can, as part of the installation process, enter its
file types and attributes into the CE database.

Classing Engine 5-3

5

3. Users can use CE utilities or Binder, a DeskSet application, to enter new file
type information into the CE database.

5.3 Classing Engine Usage
File Manager, displayed in Figure 5-1, provides an example of how the CE can
be used. File Manager is a DeskSet application that graphically displays a
UNIX file system. Users may move, copy and delete files by dragging and
dropping file icons onto directory icons, or onto a wastebasket icon. In
addition, File Manager allows users to double-click on a data file icon to open
the file in its parent application (file opening commands are stored in the CE
database). For example, double-clicking on a spreadsheet data file could start
the spreadsheet application program and open the data file. Double-clicking on
an ASCII file will open the file with the Text Editor. File Manager also lets users
print a data file by simply dropping the file’s icon on the Print Tool.

Another feature of the File Manager is that different file types are represented
by different icons. Thus, one application’s files will have one icon, and the files
of another application will have a different icon. Unique icons allow users to
identify a file without opening it. File Manager retrieves the icon location from
the CE. Refer to the Solaris User’s Guide for details on how to use File Manager.

5-4 Desktop Integration Guide—August 1994

5

Figure 5-1 File Manager

Classing Engine 5-5

5

5.4 Adding and Changing Classing Engine File Types and Attributes
Adding or changing file types and attributes in the CE consists of changing the
CE database to reflect these new filetypes and attributes. Before discussing
how to do this, it is necessary to discuss the structure of the CE database.

5.4.1 Classing Engine Database

The CE database contains file type names, identification patterns, and
attributes. The CE database is one logical database that is the composite of
three physical databases called the user, system, and network databases. Multiple
databases allow users to personalize their environment while still having
access to global data.

The user database is unique to each user and resides in the user’s directory
structure, the system portion is common to all users on that specific machine,
and the network portion is available to everyone on the network. The CE treats
these three portions as overlays. When an application queries the CE database
for information, the CE will first read the entry in the user database. If an entry
is not found in the user database, the CE tries the system database, and finally
the network database. This assures that any CE database information
customized by the user (or the system) will be used if it exists; otherwise,
network information is used. The following discussion treats the three
databases as a single aggregate database.

Default Location of Classing Engine Databases
Each of the three Classing Engine databases has a default location, as shown in
the table below. These files are in a non-readable format. To convert these files
into an ASCII-readable format, use the ce_db_build utility as follows:

ce_db_build <user | system | network> -to_ascii <file name>

Table 5-1 Default Classing Engine Database Locations

 database default location

user ~/.cetables/cetables

system /etc/cetables/cetables

network $OPENWINHOME/lib/cetables/cetables

5-6 Desktop Integration Guide—August 1994

5

5.4.2 Namespace Tables

Each CE database file consists of two namespace tables, which are data bases of
file entries:

• A files namespace table, contains file type names and identifiers

• A types namespace table, which stores file type attributes

Both of these namespace tables are resident in the same file. To view the
namespace tables use the ce_db_build command described in the previous
section.

Each namespace table has an accompanying namespace manager, a collection of
routines used to query that namespace table.

5.4.3 File Type Identification

Before an application can use a file’s attributes, the application must identify,
or derive, the file type. In other words, it must determine whether a file is an
ASCII file, Mail Tool executable file, PostScript file, an so forth. Two methods
are used to determine file types: type-by-pattern or type-by-content.

Typing by pattern involves matching the filename with a filename pattern. For
example, all files whose names end in .c are C source files, all files that end in
.exe are DOS executable files, and all files that end in .ps are PostScript files.

Typing by content involves matching the contents of a file to a pre-defined
string or number. For example, files that have the string WNGZWZSS as their first
characters are Wingz worksheet files. Files that contain <Framemaker as its
first characters are FrameMaker files. This is similar to the procedure that is
used by the standard UNIX file command that uses the /etc/magic file.

5.4.3.1 Files Namespace Table

The files namespace table contains entries that are used to derive file types. An
excerpt of a files namespace table is shown below.

Classing Engine 5-7

5

NS_NAME=Files # Beginning of Files namespace table
NS_ATTR=((NS_MANAGER,junk,<$CEPATH/fns_mgr.so>))# The Files namespace manager
NS_ENTRIES=(
 (. . .

(FNS_TYPE,refto-Types,<filemgr-prog>)# File type = File Manager
(FNS_FILENAME,str,<filemgr>)# File pattern = filemgr

)(. . .
(FNS_TYPE,refto-Types,<mailtool-prog>)# File type = Mailtool program
(FNS_FILENAME,str,<mailtool>)# File pattern = mailtool

)(. . .
(FNS_TYPE,refto-Types,<lotus-spreadsheet>) # File type = lotus spreadsheet
(FNS_FILENAME,str,<*.wk?>)# File pattern = *.wk?

)(. . .
(FNS_TYPE,refto-Types,<msdos-executable>)# File type = MS DOS Application
(FNS_FILENAME,str,<*.exe>)# File pattern = *.exe

)(. . .
(FNS_TYPE,refto-Types,<c-file>)# File type = C source file
(FNS_FILENAME,str,<*.c>)# File pattern = *.c

)(. . .
(FNS_TYPE,refto-Types,<sun-raster)# File type = Sun Raster
(FNS_MAGIC_OFFSET,str,<0>)# Offset = 0 bytes
(FNS_MAGIC_MATCH,str,<0x4d4d002a>)# Content Pattern = 0x4d4d002a
(FNS_MAGIC_TYPE,str,<long>)# Content Type = long int

)(. . .
(FNS_TYPE,refto-Types,<framemaker-document>)#File type = Framemaker Document
(FNS_MAGIC_OFFSET,str,<0>)# Offset = 0 bytes
(FNS_MAGIC_MATCH,str,<<MakerFile>)# Content Pattern = <Makefile
(FNS_MAGIC_TYPE,str,<string>)# Content Type = string

)(. . .
(FNS_TYPE,refto-Types,<sunwrite-document>)# File Type = SunWrite Document
(FNS_MAGIC_OFFSET,str,<3>)# Offset = 3 bytes
(FNS_MAGIC_MATCH,str,<pgscriptver>)# Content pattern = pgscriptver
(FNS_MAGIC_TYPE,str,<string>)# Content Type = String

)(. . .
(FNS_TYPE,refto-Types,<postscript-file>)# File type = Postscript file
(FNS_FILENAME,str,<*.ps>)# File pattern = *.ps

)(
(FNS_TYPE,refto-Types,<postscript-file>)# File type = Postscript file
(FNS_MAGIC_OFFSET,str,<0>)# Offset = 0 bytes
(FNS_MAGIC_MATCH,str,<%!>)# Content Pattern = %!
(FNS_MAGIC_TYPE,str,<string>)# Content Type = String

)(. . .

5-8 Desktop Integration Guide—August 1994

5

Entries in the files namespace table consist of the following arguments:

FNS_TYPE, or file type name, is the name (identifier) assigned to a file type. In the
following example, the file type name for the File Manager program is
filemgr-prog . The file type name for Lotus 1-2-3 spreadsheet files is lotus-

spreadsheet .

FNS_FILENAME is the file name pattern that identifies a file’s type. The file name
pattern is used to match a file name to its type. For example, a file ending with
.c is a C source file. A file ending with .exe is a DOS executable file.

If a file type is derived with the type-by-content method, the file type entry
requires these arguments:

FNS_MAGIC_MATCH or magic match, is a string contained in all files of the type
specified by FNS_TYPE. Thus, all FrameMaker document files contain the string
<MakerFile . All PostScript files contain the string %!.

FNS_MAGIC_TYPE specifies the data type of the magic march. In the example, all
type-by-content entries match with strings, except for sun-raster files, which
use a long integer.

FNS_MAGIC_OFFSET specifies the number of bytes preceding the magic match.
As shown in the following example, <MakerFile starts at the first byte in a
FrameMaker document file. pgscriptver starts after the third byte in a SunWrite
document file.

If both a file name pattern and a magic match are are defined like as shown in
the PostScript example, a file must pass both tests before it is typed.

5.4.4 Types Namespace Table

The types namespace table contains the attribute values of the file types. Once
a file type is derived, the CE can retrieve the files attributes from the types
namespace table. An excerpt of a types namespace table is shown below.

Classing Engine 5-9

5

NS_NAME=Types # The namespace named "Types"
NS_ATTR= ((NS_MANAGER,string, <$CEPATH/tns_mgr.so>))# The Types namespace
manager
NS_ENTRIES= (...

(TYPE_NAME,type-id,<filemgr-prog>)
(TYPE_ICON,icon-file,<$OPENWINHOME/include/images/filemgr.icon>)
(TYPE_BGCOLOR,color,<79 241 255>)
(TYPE_PRINT,string,<lpr -Plp>)

)(. . .
(TYPE_NAME,type-id,<lotus-spreadsheet>)
(TYPE_OPEN,call,<dos -c 123>)
(TYPE_ICON,icon-file,<$OPENWINHOME/include/images/spreadsheet.icon>)
(TYPE_ICON_MASK,icon-file,<$OPENWINHOME/include/images/doc.mask.icon>)
(TYPE_BGCOLOR,color,<255 225 255>)
(TYPE_FILE_TEMPLATE,string,<lotus%t.wks>)

)(. . .
(TYPE_NAME,type-id,<compress>)
(TYPE_OPEN,call,<uncompress>)
(TYPE_ENCODE_PROG,call,<compress>)
(TYPE_ENCODE_ARGS,string,<-c>)
(TYPE_DECODE_PROG,call,<uncompress>)
(TYPE_DECODE_ARGS,string,<-c>)
(TYPE_ICON,icon-file,<$OPENWINHOME/include/images/compress.icon>)
(TYPE_ICON_MASK,icon-file,<$OPENWINHOME/include/images/doc.mask.icon>)
(TYPE_BGCOLOR,color,<255 0 0>)
(TYPE_FILE_TEMPLATE,string,<data%t.Z>)

)(. . .
(TYPE_NAME,type-id,<default-app>)
(TYPE_ICON,icon-file,<$OPENWINHOME/include/images/application.icon>)
(TYPE_FGCOLOR,color,<0 0 0>)
(TYPE_BGCOLOR,color,<183 229 193>)

)(
(TYPE_NAME,type-id,<default-doc>)
(TYPE_OPEN,call,<textedit>)
(TYPE_OPEN_TT,tt,<textedit>)
(TYPE_PRINT,string,<cat $FILE | mp -lo | lpr -h>)
(TYPE_ICON,icon-file,<$OPENWINHOME/include/images/document.icon>)
(TYPE_ICON_MASK,icon-file,<$OPENWINHOME/include/images/doc.mask.icon>)
(TYPE_FGCOLOR,color,<0 0 0>)
(TYPE_BGCOLOR,color,<183 193 229>)

)(. . .

5-10 Desktop Integration Guide—August 1994

5

Entries in the type namespace table consist of the following arguments:

TYPE_NAME is the name of the file type. TYPE_NAME matches FNS_TYPE in the
files namespace table.

TYPE_ICON is the file containing the icon representation of the file type.

TYPE_ICON_MASK is the file containing the icon representation of file when it is
selected.

TYPE_BGCOLOR specifies the background color of the file icon. Values are in red-
green-blue (RGB) values ranging from 0 (lighter) to 255 (darker).

TYPE_FGCOLOR specifies the foreground color of the file icon in RGB values.

TYPE_OPEN specifies the command to open the file. (For File Manager this is
triggered by a double mouse-click.)

TYPE_PRINT gives the print command for the file.

TYPE_FILE_TEMPLATE specifies a unique filename generated and used by the
application as a filename identifier.

TYPE_OPEN_TT is the ToolTalk identifier used when starting applications
requiring the obsolete Tooltalk protocol (as used in releases prior to Solaris
2.2).

TYPE_MEDIA is the ToolTalk identifier used when starting applications requiring
the new Message Alliance/Media Exchange protocol (as used in releases
starting with Solaris 2.2).

The attribute entry for compress demonstrates CE extensibility. In addition to
the standard attributes, compress file types have four additional attributes:
TYPE_ENCODE_PROG, TYPE_ENCODE_ARGS, TYPE_DECODE_PROG, and
TYPE_DECODE_ARGS. A program designer has added these attributes to
compress file types in order to provide automatic file
compression/decompression. For example, these attributes can be used to link
large files to a mail message. Instead of pasting the file into the message, the
file could be automatically compressed (using the UNIX compress command)
when the file glyph is selected and dropped on the mail tool. The compressed
file appears as an file glyph. After the message is sent, the file is automatically
decompressed when the file glyph is selected.

Classing Engine 5-11

5

The last two entries of the code segment, default-app and default-doc ,
demonstrate two other interesting features. Each represents the attributes of
undefined data and application files. If a file does not have a definition in the
files namespace, it is given a set of generic attributes depending on whether it
is an application or document.

5.4.5 Adding a New File Type

The basic steps for adding a new file type to the CE database are as follows:

1. Create an ASCII description file for the new file entry. Either extract the
ASCII description file for the entire CE database using ce_db_build (the man

page is in the back of this chapter), or create a new ASCII description file for
the new file type entry. The process for creating a single entry ASCII
description file is described in the section that follows.

2. Add a file type name and file type pattern to the files namespace table in the
ASCII description file. You only need to add the file type pattern if the file
type is derived using the type-by-pattern method. If the file is derived using
the type-by-content method, add a magic match, magic match data type,
and an offset.

3. After a new file type has been added to the files namespace table, add its
attributes to the types namespace table.

4. Once the attributes are added, you can overwrite the old CE database file
with the one you just created using the ce_db_build command. Use this
command only if you are replacing the entire CE database file. If you
created an ASCII description file for a subset of the entire CE database (this
procedure is described in the next section), merge the file into the current
CE database with the ce_db_merge command (the man page for this
command is in the back of this chapter).

5.4.5.1 Adding a New File Type to the Classing Engine—Example

This section shows a step-by-step example of adding a new file type to the CE.

1. Define the file type name, its unique file name pattern or content string, and
its attributes. For this example we’ll use a hypothetical program called
Peakstool that works on files of a type called twin-peaks-type:

Object Name = twin-peaks-type

5-12 Desktop Integration Guide—August 1994

5

Content Pattern = Good Coffee!

Offset = 0

Content Type = string

Open Command (program name) = peakstool

Icon Location = $OPENWINHOME/include/images/laura.icon

Icon Mask Location =
$OPENWINHOME/include/images/laura.mask.icon

Foreground Color = r=91, g= 229, b= 229

File Pattern = *.pks

Only file type name and either a file content pattern (with offset and type)
or file pattern are necessary to add a valid entry in the CE database. All
other parameters are optional.

Classing Engine 5-13

5

2. Create a CE database definition file in ASCII and give it a name. The file
illustrated below, newtype.ascii , corresponds to our twin-peaks file. Note
that the attributes go in the types namespace table, and the file/content
patterns go in the files namespace table.

3. After creating the ASCII description file, execute the ce_db_merge
command to add the new file type to one of the three CE databases. The
network database is used in this example, with an ASCII description file
called newtype.ascii .

% ce_db_merge network -from_ascii newtype.ascii

newtype.ascii: A sample ASCII CE database description file
{
NS_NAME=Types
NS_ATTR= ((NS_MANAGER,string, <$CEPATH/tns_mgr.so>))
NS_ENTRIES= (

 (
(TYPE_NAME,type-id,<twin-peaks-type>)
(TYPE_OPEN,call,<peakstool>)
(TYPE_ICON,icon-file,<$OPENWINHOME/include/images/laura.icon>)
(TYPE_ICON_MASK,icon-file,<$OPENWINHOME/include/images/laura.mask.icon>)
(TYPE_FGCOLOR,color,<91 229 229>)
(TYPE_BGCOLOR,color,<91 126 229>)
(TYPE_FILE_TEMPLATE,string,<peaks.%t>)
)
)

}
Tell CE how to match files of your type. If the file begins with Good_coffee!,
it’s of type twin-peaks-type. The string begins at offset 0 in the file.
{
NS_NAME=Files
NS_ATTR=((NS_MANAGER,junk,<$CEPATH/fns_mgr.so>))
NS_ENTRIES=(

 (
 (FNS_TYPE,refto-Types,<twin-peaks-type>)
 (FNS_MAGIC_OFFSET,str,<0>)
 (FNS_MAGIC_MATCH,str,<Good_coffee!>)
 (FNS_MAGIC_TYPE,str,<string>)
)
)

}

5-14 Desktop Integration Guide—August 1994

5

4. Note that you can also use cd_db_build to add a new file type. Refer to the
man page for details.

5.4.6 Syntax of ASCII Database Description File

The grammar that describes the Database Description File is given here in
Backus-Naur Form (BNF):

The terminals are:

Id = a-z, A-Z, 0-9, _, -.
NS_NAME, NS_ATTR, NS_ENTRIES,
“{”, “}”, “(”, “)”, “,” “=”, Id, and av_token.

av_token can come in two forms:

• It can begin with a “<” and end with a “>” and can have any ASCII
character (except a “>”) within it.

• It can begin with one or more digits (which represent a number n) followed
by zero or more spaces followed by a “<” followed by any n characters
closed off by a “>.” This is the escape mechanism to allow for arbitrary byte
string attributes that could have “>” characters within them.

database::=name_space
 | database name_space

name_space::={ name ns_attrs entries }
name::= NS_NAME = variable
ns_attrs::=NS_ATTR = (av_list)
av_list::=av

 |av_list av
av ::= (av_name, av_type, av_val)
entries::=NS_ENTRIES = (entry_info_list)
entry_info_list::=entry_ent

 | entry_info_list entry_ent
entry_ent::=(av_list)
av_name::=variable
av_type::=variable
variable::=Id
av_val::=av_token

Classing Engine 5-15

5

5.4.7 Binder

Attributes can be added or changed by editing the types namespace file, or by
using Binder shown in Figure 5-2. Binder is a DeskSet tool that provides an
interactive display of the CE database (refer to the “OpenWindows Reference
Manual" for operating instructions). With Binder, an advanced user can bind
together a file type, its application, a print method, and an icon by setting the
desired attributes.

The Binder is also helpful in understanding the Classing Engine, since it
interacts directly with the CE database. When you open the Binder, you are
given a selection of file types shown in icon form. These correspond to the file
types contained in the files namespace table. Once you select a file type, you
can view and the attributes in either the icon properties sheet or files property
sheet. Binder allows you to change attributes or create new file types
interactively.

5-16 Desktop Integration Guide—August 1994

5

Figure 5-2 Binder—Icon and File Types Property Sheet

Classing Engine 5-17

5

5.5 Accessing the Classing Engine Database
The namespace manager, a collection of routines used to query the CE database
and perform other database chores provides access to the CE database. These
routines are described in Section 5.6, “The Classing Engine API.” It may,
however, be helpful to first see two simple programs that use the CE. In
addition, there are two Classing Engine examples in
$OPENWINHOME/share/src/dig_samples/ce1 and ce2 .

5.5.1 Example Program—Querying the Classing Engine Database

The program illustrated below shows how the CE database is queried
($OPENWINHOME/share/src/dig_samples/ce2/ce_simple.c) . When
compiled and executed, the program prompts the user to enter the name of an
object (a filename). The program accesses the CE database then displays the file
type and the location of its icon file on the screen. The user types “quit” to exit
the program. This program must be executed on OpenWindows Version 3.1 or
later.

The program is divided into code segments with a detailed explanation of how
each code segment works. Table 5-2 shows the variable definitions for the
sample program.

Table 5-2 Variable Definitions for ce_simple.c

Type Variable Comment

CE_NAMESPAC f_name_space
t_name_space

file namespace table handle
types namespace table handle

CE_ENTRY ftype_ent
ttype_ent

file namespace table entry handle
types namespace table entry handle

CE_ATTRIBUTE fns_type
tns_icon
fns_attr
tns_attr

file type
icon filename
file namespace tbl: file type attr. handle
types namespace tbl: icon attr. handle

int argcount
fd;

ce_get_entry arg counter
file descriptor for file to be typed

5-18 Desktop Integration Guide—August 1994

5

5.5.1.1 Preliminary Setup

This first segment includes a short program description and the compile
statement. Loading the program requires the Classing Engine and dynamic
linking libraries. The include files and variable definitions are:

<stdio.h> for standard io to get input and output
<desktop/ce.h> Needed for the Classing Engine variables
<desktop/ce_err.h> Error return codes from Classing Engine (not used
in this program, except for ce_begin)

5.5.1.2 Open the CE Database

After declaring the global variables, the program declares the variable
definitions for the file to be typed: the file descriptor (fd), the file name
(sufficiently long to include any likely path name), and a 256-byte buffer to
hold the first characters of the file.

char filename [81]
buf[256]

buffer for file name
buffer for contents of file

int bufsize
status

return values

/* ce_simple.c - Simple Classing Engine Example that types a
 * file and determines its icon.
 *
 * cc -g -o ce_sample -I$OPENWINHOME/include -L$OPENWINHOME/lib
 * ce_simple.c -lce -ldl */

#include <stdio.h>
#include <desktop/ce.h>
#include <desktop/ce_err.h>

/* variable definitions */
CE_NAMESPACEf_name_space, t_name_space;
CE_ENTRY ftype_ent, ttype_ent;
CE_ATTRIBUTEfns_type, tns_icon, fns_attr, tns_attr;
int argcount;

Table 5-2 Variable Definitions for ce_simple.c

Type Variable Comment

Classing Engine 5-19

5

The CE is initialized by ce_begin() using the mandatory NULL argument
(see the API section for details). The call returns zero if successful; otherwise, it
returns a positive integer representing an error code, which is printed to
standard error, after which the program exits.

5.5.1.3 Setting the Namespace Pointers

The code segment below sets up the pointers in anticipation of reading the
namespace entries for both the files and the types namespaces.

ce_get_namespace_id("Files") returns a handle to the files namespace
table in f_name_space . If the either the file namespace table is not found, or
the file namespace manager is not found, the call returns NULL and the
program exits.

main(argc, argv)
int argc;
char *argv[];
{

int fd;
char filename[81];
char buf[256];
int bufsize, status;

/* Initialize the Classing Engine. */

status = ce_begin(NULL);
if (status) {

fprintf(stderr, "Error Initializing Classing Engine
 Database - Error no: %d.\n", status);

exit(0);
}

5-20 Desktop Integration Guide—August 1994

5

A similar ce_get_namespace_id() call and error routine is used for the
types namespace table. These calls only need to be done once.

/* Read in Namespace Entries. */
f_name_space = ce_get_namespace_id("Files");
if (!f_name_space) {

fprintf(stderr, "Cannot find File Namespace\n");
ce_end();
exit(0);

}

t_name_space = ce_get_namespace_id("Types");
if (!t_name_space) {

fprintf(stderr, "Cannot find Types namespace\n");
ce_end();
exit(0);

}

Classing Engine 5-21

5

5.5.1.4 Retrieve Desired Attribute IDs

ce_get_attribute_id(f_name_space, "FNS_TYPE") returns a handle to
the file type attribute in the files namespace table and assigns it to the object ID
fns_attr . Similarly, the second ce_get_attribute_id() returns a handle
to the icon filename attribute in the types namespace table and assigns it to the
object ID tns_attr.

5.5.1.5 Loop to Read File Names

The next segment starts the loop to read in file names and derive their types. A
while loop prompts the user for the name of the file that will be tested in the
CE. If the user types “quit” the loop is exited (break) and CE database is closed
(shown in next segment).

The second if statement attempts to open the file. If the file is found, but
cannot be opened, an error message is printed and the loop starts again.

/* Get the attribute ID’s that we’re interested in */

fns_attr = ce_get_attribute_id (f_name_space, "FNS_TYPE");

if (!fns_attr){
fprintf (stderr, "Cannot find FNS_ATTR in Files\n");
ce_end();
exit(0);

}

tns_attr = ce_get_attribute_id (t_name_space, "TYPE_ICON");

if (!tns_attr){
fprintf (stderr, "Cannot find TYPE_ICON in Types\n");
ce_end();
exit(0);

}

5-22 Desktop Integration Guide—August 1994

5

If the open is successful, an attempt is made to read the beginning of the file
into the 256-byte buffer (to be used later by the CE). If the file is empty or a
directory, an error message is printed and the loop starts again.

5.5.1.6 Get Entry in the Files Namespace

This next code segment searches through the files namespace table for the file
name and/or file content obtained in the previous segment. If a match is
found, the file type is returned.

The program calls ce_get_entry() to search the files namespace table and
return the handle for the matching files namespace table entry.
ce_get_entry() requires the files namespace ID (f_name_space), the
number of arguments used to match entries in the files namespace table (3),
and the three arguments themselves (the file name entered by the user, the
buffer that contains the contents of the previous read, and the length of the
buffer).

/* Start loop to read in filenames */

while(1) {
fprintf(stdout, "Filename: ");
gets(filename);
if ((strcmp(filename, "quit")) == 0)

break;

if ((fd = open (filename, 0)) == -1) {
fprintf(stderr, "Cannot open: %s\n", filename);
continue;

}

bufsize = read (fd, buf, sizeof (buf));
if (bufsize <= 0) {

fprintf(stderr, "Empty file or Directory: %s\n",
 filename);
close (fd);
continue;

}

Classing Engine 5-23

5

ce_get_entry() returns a handle for the files namespace table entry that
matches the filename pattern, contents of the file, or both if both are present.
The handle to the entry is assigned to ftype_ent . If no entry is found in the
files namespace table, a NULL is returned, and the while loop resumes.

The program then gets the requested attribute value (file type) by calling
ce_get_attribute() . ce_get_attribute() requires the files namespace
handle (f_name_space) , the handle to the entry (ftype_ent), and the file
type attribute handle (fns_attr). After the attribute value is obtained the
value is printed.

5.5.1.7 Get Entry in the Types Namespace

The final segment of this program retrieves the icon information from the types
namespace table. Use ce_get_entry() to retrieve a handle for the desired
entry. ce_get_entry() is passed the types namespace handle
(t_name_space), the number of arguments used to match entries in the types
namespace table (1), and the argument itself (fns_type). If a matching entry is
not found, an error message is printed and the while loop is resumed. If a
correct entry is found, the program calls ce_get_attribute() with
t_name_space (types namespace), the handle to the entry (ttype_ent), and
the icon handle (tns_attr) to return the icon filename.

/* Get a matching entry in the files namespace */
argcount = 3;
ftype_ent = ce_get_entry (f_name_space, argcount,

 filename, buf, bufsize);
if (!ftype_ent) {

fprintf(stderr, "No match in Files Namespace\n");
continue;

}

fns_type=ce_get_attribute(f_name_space,ftype_ent,fns_attr);
if (!fns_type) {

fprintf(stderr,"No FNS_TYPE for entry in Files
 Namespace\n");

 continue;
}
else{o

fprintf(stdout, "FNS_TYPE = %s\n", fns_type);

5-24 Desktop Integration Guide—August 1994

5

Finally, the icon name (path and name) is printed, the Classing Engine is
closed, and the program exits normally.

 /* Get a matching entry in the types namespace found from
 * getting type from the files namespace and find icon
 */

argcount = 1;
ttype_ent = ce_get_entry (t_name_space, argcount,

 fns_type);

if (!ttype_ent) {
fprintf(stderr, "No match in Types namespace\n");
continue;

}
tns_icon = ce_get_attribute (t_name_space, ttype_ent,

 tns_attr);

if (!fns_icon) {
 fprintf(stderr,"No TYPE_ICON in Types Namespace\n");
 continue;
}
else

fprintf(stdout, "TYPE_ICON = %s\n", tns_icon);
}

}
cd_end ();
exit (0);

}

Classing Engine 5-25

5

5.5.2 Example Program—CE Mapping Functions

This program, ce_map1.c , is located online at
$OPENWINHOME/share/src/dig_samples/ce1 . It demonstrates the use of
the CE mapping functions. Refer to the API section that follows for further
details.

/* ce_map1.c - Classing Engine example that print all the types
 * in the Files and Types namespaces.
 *
 * cc -g -o ce_map1 -I$OPENWINHOME/include -L$OPENWINHOME/lib
 * ce_map1.c -lce -ldl */

#include <stdio.h>
#include <desktop/ce.h>
#include <desktop/ce_err.h>

/* variable definitions */
CE_NAMESPACE f_name_space, t_name_space;
CE_ENTRYttype_ent;
CE_ATTRIBUTE fns_attr, fns_type;

main(argc, argv)
int argc;
char *argv[];
{

int status;
void *map_func(), *type_map_func();

/* Initialize the Classing Engine. */

status = ce_begin(NULL);
if (status) {

fprintf(stderr, "Error Initializing Classing Engine
 Database - Error no: %d.\n", status);

exit(0);
}

/* Get Files and Types Entries. */

f_name_space = ce_get_namespace_id("Files");
if (!f_name_space) {

fprintf(stderr, "Cannot find File Namespace\n");
exit(0);

5-26 Desktop Integration Guide—August 1994

5

}
t_name_space = ce_get_namespace_id("Types");
if (!t_name_space) {

fprintf(stderr, "Cannot find Type Namespace\n");
exit(0);

}

/* Get the FNS_TYPE attribute ID */
fns_attr = ce_get_attribute_id (f_name_space, "FNS_TYPE");

if (!fns_attr){
fprintf (stderr, "No FNS_TYPE in Files Namespace\n");
ce_end();
exit (0);

}

/* ce_map_through_entries() passes each entry handle and
 * namespace handle to the map_func()
 */
ce_map_through_entries (f_name_space, map_func, NULL);
ce_end ();
exit(0);

}

/* Function to handle each entry as it is passed from the mapping
 * function */
void
*map_func (fns_handle, ent_handle)
CE_NAMESPACE fns_handle;
CE_ENTRY ent_handle;
{

int argcount = 1;

/* Get File type value (FNS_TYPE) and print out */
fns_type = ce_get_attribute (f_name_space, ent_handle,

 fns_attr);

if (!fns_type)
return (NULL);

else
fprintf (stdout, "FNS_TYPE = %s\n", fns_type);

/* Get matching entry in the Type namespace */

Classing Engine 5-27

5

5.6 The Classing Engine API
The CE API can be called from C, C++, or ANSI C programs. All CE calls have
names that begin with ce_ , with each session begun with a ce_begin() and
ending with ce_end() .

ttype_ent = ce_get_entry (t_name_space, argcount, fns_type);
if (!ttype_ent){

fprintf (stderr, "No match in Type namespace\n");
return (NULL);

}

/* Map through all the attributes of the entry and send to
 * type_map_func()
 */
ce_map_through_attrs (t_name_space, ttype_ent, type_map_func,

 NULL);
fprintf (stdout, "\n");
return (NULL);

}
/*
 * Function to print all the Type attributes associated with the File
 * type
 */
void
*type_map_func (tattr_handle, tattr_value, args)
CE_ATTRIBUTE tattr_handle;
char *tattr_value;
void *args;
{

char *attr_name;

attr_name = ce_get_attribute_name (tattr_handle);

if (attr_name)
fprintf (stdout, "%s = %s\n", attr_name, tattr_value);

return (NULL);
}

5-28 Desktop Integration Guide—August 1994

5

The arguments manipulated by the API are either Classing Engine object
handles or client-decipherable argument values and return values. Classing
Engine object handles are of type CE_NAMESPACE, CE_ENTRY and
CE_ATTRIBUTE and are returned when a client successfully accesses a
namespace, an entry, or an attribute. Client-decipherable argument values and
return values are expected to be of type void *, if they are pointers, or of type
int.

5.6.1 Mapping Functions

The ce_map_through_* functions loop through namespace, entry, and
attribute lists, applying a client-supplied function to each member of a list. The
previous example shows how the mapping functions work in detail.

5.6.2 Error Reporting

ce_begin returns 0 if it succeeds, otherwise it returns an error number. All
Classing Engine ce_get_* calls return NULL if they fail, otherwise they return
a valid handle or return value.

The ce_map_through_* calls map through namespaces, entries, or attributes
and terminate if they encounter a non-null return value from the map function,
and return the non-null value. If the map function returns NULL in every
instance, the ce_map_through_* function returns NULL.

5.6.3 Location of Namespace Managers

Every namespace manager library file should be named as the NS_MANAGER
namespace attribute. This should be a full pathname with both environment
variables and the ‘arch’ command allowed.

If a namespace manager library name is preceded by a $CEPATH, the search
rules implied by $CEPATH will be used to search for the namespace manager
library.

Classing Engine 5-29

5

5.7 Reading from the Classing Engine Database

5.7.1 Initializing the Classing Engine
int
ce_begin(void * args);

Reads in the CE database and makes CE internal structures suitable for
subsequent CE API calls (except for another ce_begin()) . Subsequent calls to
ce_begin() will re-read the CE databases. args , which is reserved for future
use, must be NULL.

This call returns 0 if successful. Otherwise, the return codes from this call have
the following meanings:

CE_ERROR_READING_DB

This message indicates that an unrecoverable error occurred while reading a
CE database. Note that the non-existence of a particular CE database file is not
considered an error.

5.7.2 Determining if the Classing Engine Databases Changed
int
ce_db_changed();

Returns 0 if CE databases have not been changed since the last call to
ce_begin() . It will return 1 if the databases have been changed.

5.7.3 Closing the Classing Engine
int
ce_end();

Frees all resources being used by the CE. All CE returned handles and values
are invalid after this call. ce_end() returns 0 in all cases.

5-30 Desktop Integration Guide—August 1994

5

5.7.4 Determining Which Databases are Available
int
ce_get_dbs(

int *num_db,
char ***db_names
char ***db_pathnames);

Returns a count of the databases in *num_db . The names of the databases read
in is returned in db_names . The pathnames of the databases is returned in
db_pathnames . There are three possible database names:

user the user-level database
systemthe system-level database
networkthe network level database

Returns database names and pathnames even if there was no database at a
particular pathname. That is, it provides the caller information about where the
CE databases would be even if one or more CE databases do not exist.

5.7.5 Accessing a Namespace
CE_NAMESPACE

ce_get_namespace_id(
char *namespace_name);

Returns a handle to a namespace. The namespace handle can be used in all
subsequent calls to the CE in this process. This call returns NULL if the
namespace was not found. This call also returns NULL if the namespace
manager for the given namespace was not found.

5.7.6 Accessing an Entry in a Namespace Table
CE_ENTRY

ce_get_entry(
CE_NAMESPACE namespace,
int argcount,
void *arg1,
void *arg2,...,
void *argN);

Searches through a specified namespace table and returns an entry that
contains a matching argument. This call requires a handle to a namespace, the
number of arguments used to match entries, and the arguments themselves.

Classing Engine 5-31

5

5.7.7 Getting an Attribute Handle
CE_ATTRIBUTE

ce_get_attribute_id(
CE_NAMESPACE namespace,
char *attr_name);

Retrieves a handle to an attribute type within a namespace table. All attributes
with the same name, within a namespace, can be retrieved using the same
attribute handle. This handle is retrieved with this call.

For example, all attributes named ICON will have the same attribute handle
within a single namespace. This call returns NULL if the named attribute was
not found in this namespace.

5.7.8 Getting an Attribute
char
*ce_get_attribute(

CE_NAMESPACE namespace,
CE_ENTRY entry,
CE_ATTRIBUTE attribute);

Retrieves the value of an individual attribute. This call returns NULL if the
attribute could not be found in this entry. It requires a handle for the
namespace table (ce_get_namespace_id()), entry (ce_get_entry()), and
attribute (ce_get_attribute_id()).

5.7.9 Getting the Size of an Attribute
int
ce_get_attribute_size(

CE_NAMESPACE namespace,
CE_ENTRY entry,
CE_ATTRIBUTE attribute);

Returns the size (in bytes) of an attribute value. Returns 0 if the attribute was
not found in this entry.

5-32 Desktop Integration Guide—August 1994

5

5.7.10 Getting an Attribute’s Type String
char
*ce_get_attribute_type(

CE_NAMESPACE namespace,
CE_ENTRY, entry
CE_ATTRIBUTE attribute);

Returns the character string denoting the type of an attribute. Attribute types
are not enforced nor understood by the CE. Returns NULL if the attribute was
not found in this entry.

5.7.11 Getting a Namespace Entry
CE_ENTRY

ce_get_ns_entry(
CE_NAMESPACE namespace);

Returns the namespace entry handle for the specified namespace. Namespaces
can have attributes of their own; for example, a range of bytes to read for
magic number information in the case of files. Namespace attributes are stored
in a namespace entry. This call returns a handle to a namespace’s entry. All
calls that apply to entries can be made using the returned entry handle.
Returns NULL if the namespace entry was not found.

5.7.12 Mapping Through Namespaces
void
*ce_map_through_namespaces(

void *(*map_func)(),
void *args);

Maps through all installed namespaces, calls map_func() for each namespace,
and passes each namespace handle as the first argument to map_func() and
any other args as subsequent arguments. map_func() is a user defined
function. args are optional additional arguments for map_func() . If no
arguments are to be passed, use NULL.

The map will be stopped either when there are no more namespaces or when
map_func returns a non-null value, which will be returned to the caller.

Classing Engine 5-33

5

5.7.13 Mapping Through Entries
void
*ce_map_through_entries(

CE_NAMESPACE namespace,
void *(*map_func)(),
void *args);

Maps through all the entries in a namespace, calls map_func() for each entry,
and passes the namespace handle as the first argument to map_func(), entry
handle as the second argument, and any other map_func() args as
subsequent arguments. map_func() is a user defined function. args are
optional additional arguments for map_func . If no arguments are to be passed,
use NULL.

The map will be stopped either when there are no more entries or when
map_func returns a non-NULL value, which will be returned to the caller.

5.7.14 Mapping Through Attributes
void
*ce_map_through_attrs(

CE_NAMESPACE namespace,
CE_ENTRY entry,
void *(*map_func)(),
void *args);

Maps through all the attributes in an entry, calls map_func() for each
attribute, and passes the attribute handle as the first argument to map_func() ,
each attribute value as the second argument, and args as the subsequent
arguments to map_func . map_func() is a user defined function. args are
optional additional arguments for map_func . If no arguments are to be passed,
use NULL.

The function will be stopped either when there are no more attributes or when
map_func returns a non-null value, which will be returned to the caller.

5-34 Desktop Integration Guide—August 1994

5

5.7.15 Mapping Through the Attributes of a Namespace
void
*ce_map_through_ns_attrs(

CE_NAMESPACE namespace,
void *(*map_func)(),
void *args);

Maps through all the attributes of a namespace, calls map_func() for each
attribute, and passes each attribute handle as the first argument to
map_func() , each attribute value as the second argument, and args as
subsequent arguments. map_func() is a user defined function. args are
optional additional arguments for map_func . If no arguments are to be passed,
use NULL.

The map will be stopped either when there are no more attributes or when
map_func returns a non-null value, which will be returned to the caller.

5.7.16 Getting the Name of a Namespace
char
*ce_get_namespace_name(CE_NAMESPACE namespace);

We envision some namespace mapping functions requiring to know the name
of a namespace, given a namespace handle. This function will return a
namespace name, when passed a namespace handle.

5.7.17 Getting the Name of an Attribute
char
*ce_get_attribute_name(CE_ATTRIBUTE attribute);

There may be some attribute mapping functions that need to know the name of
an attribute when passed a handle to it. This function will return an attribute
name, when passed an attribute handle.

5.7.18 Determining Which Database Contains an Entry
int
ce_get_entry_db_info(

CE_NAMESPACE namespace,

Classing Engine 5-35

5

CE_ENTRY entry,
char **name_ptr,
char **path_ptr);

Returns the name of the database (either user, system, or network) in which an
entry is stored. The name is returned in *name_ptr and the pathname of the
database in *path_ptr . This call returns 0 if it is successful, otherwise it
returns CE_ERR_WRONG_ARGUMENTS.

5.8 Classing Engine Utility Programs
Two utilities that enable reading and writing the Classing Engine database files
to and from an ASCII form are available to allow developers to view the
database. The man pages for these utilities follows on the next pages.

5.8.1 ce_db_build

The build utility, ce_db_build , will generate a readable ASCII file from the
CE database, if given the -from_ascii argument. The user must also
indicate the desired database (user, system, or network) and the filename
where the file should be written. This allows a developer to print and peruse a
hard copy of the database for familiarization or troubleshooting.

Caution – The ce_db_build utility will overwrite an existing CE database if
given the -from_ascii argument. This will overwrite the existing CE
database and replace it with the information from an ASCII file.

An optional argument, -db_file filename, can be given to generate a CE
database file without disturbing the existing CE database files.

5.8.2 cd_db_merge

The merge utility, ce_db_merge , permits the merging of an ASCII database
description file with an existing CE database file. This utility permits the
merging of custom CE entries to the database.

NAME
ce_db_build - build an entire CE database

5-36 Desktop Integration Guide—August 1994

5

SYNOPSIS

ce_db_build user| system| network - from_ascii|- to_ascii filename \

[- db_file db-filename]

DESCRIPTION
cd_db_build reads from/writes to the Classing Engine databases and an ASCII
description file.

user| system| network indicates which CE database is to be used, ether the
user, the system, or the network database.

- from_ascii filename indicates that the user wishes to write to the stated CE
database from the ASCII file filename. The entire CE database will be re-written.
This is an all or nothing update of the CE database; that is, effectively the old
database is erased and a new one is created based solely on the contents of the
ASCII file.

- to_ascii filename indicates that the file named filename should be written with
the ASCII description of the stated CE database. This ASCII description may
then be modified and supplied as input to an invocation of ce_db_build with
the - from_ascii argument.

OPTIONS
- db_file should be used in the case that a particular database is to be read
from/written to using db-filename as the pathname of the CE database, instead
of the default database files noted below.

FILES
The Classing Engine uses the following default database files:

user~/.cetables/cetables
system/etc/cetables/cetables
network$OPENWINHOME/lib/cetables/cetables

EXAMPLES
Create an ascii definition file newdef from the existing user CE database.

ce_db_build user -to_ascii newdef

Create the user CE database from file new_db .

ce_db_build user -from_ascii new_db

Classing Engine 5-37

5

NAME
ce_db_merge - merge a Classing Engine ASCII database description file into
the CE database

SYNOPSIS

ce_db_merge user| system| network - from_ascii filename \
[- db_file db-filename]

DESCRIPTION
ce_db_merge will attempt to merge namespace and entry definitions from an
ASCII description file into an existing CE database. It will overwrite
namespace attributes; that is, namespace attributes from the ASCII file will
replace existing namespace attributes.

user| system| network indicates whether the user wants to update the user, the
system, or the network CE database.

- from_ascii filename indicates that the user wishes to write the stated CE
database from the ASCII file filename. The named CE database will be updated
based on the ASCII description file. Any existing entries that also exist in the
ASCII description file will be updated. Any new ASCII descriptors will be
entered in the database.

OPTIONS
- db_file should be used in the case that a particular CE database is to be
written to, using db-filename as the pathname of the CE database, instead of the
default database files noted below.

FILES
The Classing Engine uses the following default database files:

database:default location:

user~/.cetables/cetables
system/etc/cetables/cetables
network$OPENWINHOME/lib/cetables/cetables

EXAMPLES
Merge an ascii definition file newdef into the existing user CE database.

ce_db_merge user -from_ascii newdef

Merge the ascii file newdef into the Classing Engine system database at
/foo/bar/sysfile.

cd_db_merge system -from_ascii newdef -db_file /foo/bar/sysfile

5-38 Desktop Integration Guide—August 1994

5

6-1

The ToolTalk Service 6

This chapter describes how the ToolTalk service allows your application to
communicate with other autonomous applications. Tutorial-style instructions
for modifying your application to communicate via ToolTalk messages are
given in the latter half of this chapter.

The ToolTalk service is a network-spanning, interapplication communication
service. It provides multicast messaging; that is, an application can send a
message that is delivered by the ToolTalk service to multiple receivers.
Multicast messaging, with the concept of one-to-many communications, falls
between broadcast messaging (one-to-all) and point-to-point messaging (one-
to-one). The ToolTalk service also provides point-to-point messaging between
applications.

The ToolTalk service supports two types of messaging, process-oriented and
object-oriented messaging. Process-oriented messages are addressed to other
processes; object-oriented messages are addressed to objects managed by
processes.

This chapter introduces you to multicast, process-oriented messaging and how
to modify your application to send and receive these messages. For more
information on object-oriented messaging and the ToolTalk service in general,
refer to ToolTalk User’s Guide.

6-2 Desktop Integration Guide—August 1994

6

6.1 The ToolTalk Service Overview
The ToolTalk™ service enables independent applications to communicate with
each other without having direct knowledge of each other. Applications create
and send ToolTalk messages to communicate with each other. The ToolTalk
service receives these messages, determines the recipients, and then delivers the
messages to the appropriate applications. See Figure 6-1.

Figure 6-1 Applications Using The ToolTalk Service To Communicate

Before modifying your application to use the ToolTalk service, you must define
(or locate) a message protocol, a set of ToolTalk messages that describe
operations applications agree to perform. The message protocol specification
includes the set of messages and how applications should behave when they
receive the messages.

6.2 ToolTalk Scenarios
The scenarios in this section illustrate how the ToolTalk service helps users
solve their work problems. The message protocols used in these scenarios are
hypothetical.

Application
A

Application
B

Application
C

Application
D

The ToolTalk Service

The ToolTalk Service 6-3

6

Using the ToolTalk Desktop Services Message Set

The ToolTalk Desktop Services Message Set allows an application to integrate
and control other applications without user intervention. A complete and
detailed description of the messages in this set is given in Appendix F, “The
ToolTalk Desktop Services Message Set.”

This section illustrates two scenarios that show how the Desktop Services
Message Set might be implemented.

The Smart Desktop

A common user requirement for a graphic user interface (GUI) front-end is the
ability to have data files be aware (or “know”) of their applications. To do this,
an application-level program is needed to interpret the user’s requests.
Examples of this application-level program (known as smart desktops) are the
Apple Macintosh finder, Microsoft Windows File Manager, and the Solaris File
Manager. The key common requirements for smart desktops are:

1. Takes a file

2. Determines its application

3. Invokes the application

The ToolTalk Service encompasses additional flexibility by allowing classes of
tools to edit a specific data type. The following scenario illustrates how the
Desktop Services Message Set might be implemented as a smart desktop
transparent to the end-user.

1. Diane double clicks on the File Manager icon.
• The File Manager opens and displays the files in Diane’s current directory.

2. Diane double clicks on an icon for a data file.

a. The File Manager requests that the file represented by the icon be
displayed. The File Manager encodes the file type in the display message.

b. The ToolTalk session manager matches the pattern in the display message
to a registered application (in this case, the Icon Editor), and finds an
instance of the application running on Diane’s desktop.

6-4 Desktop Integration Guide—August 1994

6

Note – If the ToolTalk session manager does not find a running instance of the
application, it checks the statically-defined ptypes and starts an application
that best matches the pattern in the message. If none of the ptypes match, it
returns failure to the File Manager application.

c. The Icon Editor accepts the display message, de-iconifies itself, and raises
itself to the top of the display.

3. Diane manually edits the file.

Integrated Toolsets

Another significant application for which the Desktop Services Message Set
can be implemented is integrated toolsets. These environments can be applied in
vertical applications (such as a CASE software developer toolset) or in
horizontal environments (such as compound documents). Common to both of
these applications is the premise that the overall solution is built out of
specialized applications designed to perform one particular task well.
Examples of integrated toolset applications are text editors, drawing packages,
video or audio display tools, compiler front-ends, and debuggers. The
integrated toolset environment requires applications to interact by calling on
each other to handle user requests. For example, to display video, an editor
calls a video display program; or to check a block of completed code, an editor
calls a compiler. The following scenario illustrates how Desktop Services
Message Set might be implemented as an integrated toolset:

1. George is working on a compound document using his favorite editor.
He decides to change the some of the source code text.

2. George double clicks on the source code text.

a. The Document Editor first determines the text represents source code
and then determines what file contains the source code.

b. The Document Editor sends an edit message request, using the file name
as a parameter for the message.

c. The ToolTalk session manager matches the pattern in the edit message to
a registered application (in this case, the Source Code Editor), and finds
an instance of the application running on George’s desktop.

The ToolTalk Service 6-5

6

Note – If the ToolTalk session manager does not find a running instance of the
application, it checks the statically-defined ptypes and starts an application
that best matches the pattern in the message. If none of the ptypes match, it
returns failure to the Document Editor application.

d. The Source Code Editor accepts the edit message request.

e. The Source Code editor determines that the source code file is under
configuration control, and sends a message to check out the file.

f. The Source Code Control application accepts the message and creates a
read/write copy of the requested file. It then passes the name of the file
back to the Source Code Editor.

g. The Source Code Editor opens a window that contains the source file.

3. George edits the source code text.

Using the ToolTalk Document and Media Exchange Message Set

The ToolTalk Document and Media Exchange Message Set is very flexible and
robust. A complete and detailed description of the messages in this set is given
in Appendix G, “The ToolTalk Document and Media Exchange Message Set.”

This section illustrates three applications of the ToolTalk Document and Media
Exchange Message Set:

• Integrating multimedia into an authoring application
• Adding multimedia extensions to an existing application
• Extending the cut and paste facility of X with a media translation facility

Integrating Multimedia Functionality

Integrating multimedia functionality into an application allows end-users of
the application to embed various media types in their documents.

Typically, an icon that represents the media object is embedded in the
document. Upon selection of an embedded object, the ToolTalk service
automatically invokes an appropriate external media application and the object
is played as illustrated in the following scenario.

1. Daniel opens a document that contains multimedia objects.

6-6 Desktop Integration Guide—August 1994

6

2. The window shows the document with several icons representing various
media types (such as sound, video, and graphics).

3. Daniel double-clicks on the sound icon.
A sound application (called a player) is launched and the embedded
recording is played.

4. To edit the recording, Daniel clicks once on the icon to select it and uses the
third mouse button to bring up an Edit menu.
An editing application is launched and Daniel edits the media object.

Adding Multimedia Extensions to Existing Applications

The ToolTalk Document and Media Exchange Message Set also allows an
application to use other multimedia applications to extend its features or
capabilities. For example, a calendar manager can be extended to use the
audiotool to play a sound file as a reminder of an appointment, as illustrated in
the following scenario:

1. Karin opens her calendar manager and sets an appointment.

2. Karin clicks on an audio response button, which causes the soundtool to
pop up.

3. Karin records her message; for example, “Bring the report.”

When Karin’s appointment reminder is executed, the calendar manager will
start the audiotool and play Karin’s recorded reminder.

Extending the X Cut and Paste Facility

The ToolTalk Document and Media Exchange Message Set can support an
extensible, open-ended translation facility. The following scenario illustrates
how an extensible multimedia cut and paste facility could work:

1. Maria opens two documents that are different media types.

2. Maria selects a portion of Document A and cuts the portion using the
standard X-windowing cut facility.

The ToolTalk Service 6-7

6

3. Maria then pastes the cut portion into Document B.

a. Document B negotiates the transfer of the cut data with Document A.

b. If Document B does not understand any of the types offered by
Document B, it requests a tagged media type. Document B uses the tagged
media type to broadcast a ToolTalk message requesting a translation of
the media type to a media type it understands.

c. A registered translation utility accepts the request and returns the
translated version of the media type to Document B.

d. The paste of the translated data into Document B is performed.

6.3 How Applications Use ToolTalk Messages
Applications create, send, and receive ToolTalk messages to communicate with
other applications. Senders create, fill in, and send a message; the ToolTalk
service determines the recipients and delivers the message to the recipients.
Recipients retrieve messages, examine the information in the message, and
then either discard the message or perform an operation and reply with the
results.

Sending ToolTalk Messages

ToolTalk messages are simple structures that contain fields for address, subject,
and delivery information. To send a ToolTalk message, an application obtains
an empty message, fills in the message attributes, and sends the message. The
sending application needs to provide the following information:

• Is the message a notice or a request? (that is, should the recipient respond to
the message?)

• What interest does the recipient share with the sender? (for example, is the
recipient running in a specific user session or interested in a specific file?)

To narrow the focus of the message delivery, the sending application can
provide more information in the message.

6-8 Desktop Integration Guide—August 1994

6

Message Patterns

An important ToolTalk feature is that senders need to know little about the
recipients because applications that want to receive messages explicitly state
what message they want to receive. This information is registered with the
ToolTalk service in the form of message patterns.

Applications can provide message patterns to the ToolTalk service at
installation time and while the application is running. Message patterns are
created similarly to the way a message is created; both use the same type of
information. For each type of message an application wants to receive, it
obtains an empty message pattern, fills in the attributes, and registers the
pattern with the ToolTalk service. These message patterns usually match the
message protocols that applications have agreed to use. Applications can add
more patterns for individual use.

When the ToolTalk service receives a message from a sending application, it
compares the information in the message to the register patterns. Once matches
have been found, the ToolTalk service delivers copies of the message to all
recipients.

For each pattern that describes a message an application wants to receive, the
application declares whether it can handle or observe the message. Although
many applications can observe a message, only one application can handle the
message to ensure that a requested operation is performed only once. If the
ToolTalk service cannot find a handler for a request, it returns the message to
the sending application indicating that delivery failed.

Receiving ToolTalk Messages

When the ToolTalk service determines that a message needs to be delivered to
a specific process, it creates a copy of the message and notifies the process that
a message is waiting. If a receiving application is not running, the ToolTalk
service looks for instructions (provided by the application at installation time)
on how to start the application.

The process retrieves the message and examines its contents.

• If the message contains a notice that an operation has been performed, the
process reads the information and then discards the message.

The ToolTalk Service 6-9

6

• If the message contains a request to perform an operation, the process
performs the operation and returns the result of the operation in a reply to
the original message. Once the reply has been sent, the process discards the
original message.

6.4 ToolTalk Message Distribution
The ToolTalk service provides two methods of addressing messages:
process-oriented messages and object-oriented messages.

Process-Oriented Messages

Process-oriented messages are addressed to processes. Applications that create a
process-oriented message address the message to either a specific process or to
a particular type of process. Process-oriented messages are a good way for
existing applications to begin communication with other applications.
Modifications to support process-oriented messages are straightforward and
usually take a short time to implement.

Object-Oriented Messages

Object-oriented messages are addressed to objects managed by applications.
Applications that create an object-oriented message address the message to
either a specific object or to a particular type of object. Object-oriented
messages are particularly useful for applications that currently use objects or
that are to be designed around objects. If an existing application is not
object-oriented, the ToolTalk service allows applications to identify portions of
application data as objects so that applications can begin to communicate about
these objects.

Determining Message Delivery

To determine which groups receive messages, you scope your messages.
Scoping limits the delivery of messages to a particular session or file.

6-10 Desktop Integration Guide—August 1994

6

Sessions

A session is a group of processes that have an instance of the ToolTalk message
server in common. When a process opens communication with the ToolTalk
service, a default session is located (or created if a session does not already
exist) and a process identifier (procid) is assigned to the process. Default sessions
are located either through an environment variable (called process tree
sessions) or through the X display (called X sessions).

The concept of a session is important in the delivery of messages. Senders can
scope a message to a session and the ToolTalk service will deliver it to all
processes that have message patterns that reference the current session. To
update message patterns with the current session identifier (sessid), applications
join the session.

Files

A container for data that is of interest to applications is called a file in this
book.

The concept of a file is important in the delivery of messages. Senders can
scope a message to a file and the ToolTalk service will deliver it to all processes
that have message patterns that reference the file without regard to the
process’s default session. To update message patterns with the current file path
name, applications join the file.

You can also scope a message to a file within a session. The ToolTalk service
will deliver the message to all processes that reference both the file and session
in their message patterns.

Note – The file scoping feature is restricted to NFS and UFS file systems; it
does not work, for example, across tmpfs filesystems.

6.5 Modifying Your Application to Use the ToolTalk Service
Before you modify your application to use the ToolTalk service you must
define (or locate) a ToolTalk message protocol: a set of ToolTalk messages that
describe operations applications agree to perform. The message protocol
specification includes the set of messages and how applications should behave
when they receive the messages.

The ToolTalk Service 6-11

6

To use the ToolTalk service, an application calls ToolTalk functions from the
ToolTalk application programming interface (API). The ToolTalk API provides
functions to register with the ToolTalk service, to create message patterns, to
send messages, to receive messages, to examine message information, and so
on. To modify your application to use the ToolTalk service, you must first
include the ToolTalk API header file in your program. You also need to modify
your application to:

• Initialize the ToolTalk service and join a session.
• Register message patterns with the ToolTalk service.
• Send and receive messages.
• Unregister message patterns and leave your ToolTalk session.

6-12 Desktop Integration Guide—August 1994

6

7-1

The ToolTalk Service and
DeskSet Integration 7

The ToolTalk services allow your application to exchange messages with
DeskSet applications. These messages can be commands to start an application,
to load a specified file, or to execute a process on a file or object.

This chapter describes:

• DeskSet’s ToolTalk message protocol

• Instructions for integrating DeskSet services into your application using
ToolTalk

• An example scenario of ToolTalk services used to communicate between two
desktop applications

For information about ToolTalk beyond the scope of this manual, see the
ToolTalk User’s Guide and the ToolTalk Reference Guide.

7.1 The ToolTalk Messaging Protocol
In the ToolTalk messaging protocol, one process (the requestor) requests
Desktop services from another process, (the handler). For example, the
requestor may request that another running tool (the handler) prepare to
receive some data from the requestor.

When implemented correctly in tools that run on the Solaris Desktop, the
ToolTalk protocol guarantees that any two autonomous processes cooperate
effectively in observing and responding to such requests. (Refer to “The
ToolTalk Message Sets” section below.)

7-2 Desktop Integration Guide—August 1994

7

7.1.1 How the Tooltalk Protocol Works

Under the Tooltalk/Message Alliance protocol, a Tooltalk request is sent by a
tool or process that needs a service provided by another tool. If a process is not
available to handle the request, an appropriate tool is started and the message
is delivered to that tool. The receiving tool (handler) then decides either to
service it, or to reject or fail it.

The message is failed if it seems to be improperly formed, or is otherwise not
legitimate. The recipient or intended handler sets the error status code and fails
the message. The message is rejected if it is legitimate and properly formed, but
the recipient or intended handler cannot handle it right now. Tooltalk will then
look for another handler and will fail the message if one can not be found.

If the message is properly formed and otherwise legitimate, its processing is
normally started immediately by the handler (the process that seems to be the
intended recipient of the message). While processing, the handler keeps track
of two ID codes: the process ID of the requestor, and the message ID. The
responder keeps track of these IDs until it is no longer responsible for the
message; that is, until it has done something with it, either rejected or
performed the requested action. Immediately upon receiving the message and
deciding not to reject it, the handler sends a status message, letting the
requestor know that the original message is being handled.

Then the handler immediately begins to process the request, which generally
requires that it begin to handle data.

7.1.2 New Duties of the Handler

The ToolTalk/Message Alliance protocol gives handlers the responsibility of
acquainting themselves with their surroundings when servicing a request.
Simply put, the handler must issue requests for any information the need for
which is specific to its situation, and thus not included in the initial message.
These inquiries are performed with the Get_* messages.

This permits tools with different implementations to interchangeably
implement the same message interface. For a given operation, one brand of
handler might need to know what host the requestor is on, while another
brand might want to know what the value of $PATH is in the requestor’s

The ToolTalk Service and DeskSet Integration 7-3

7

environment. Instead of enclosing in the initial request the answers to all
possible questions a handler might have, handlers are made responsible for
making just the inquiries they care about.

7.2 The ToolTalk Message Sets
SunSoft has specified a set of ToolTalk messages commonly used by most
Solaris DeskSet applications. (Refer to Appendix F, “The ToolTalk Desktop
Services Message Set”). Each application running on the Solaris Desktop,
whether a Solaris DeskSet application or a third party application, should be
capable of handling these messages.

The following Solaris DeskSet applications support this same core set of
ToolTalk messages:

• Mail Tool
• Audiotool
• Text Editor
• Binder
• Color Changer
• Icon Editor

Applications may require more specialized messaging operations for their
interaction, and developers can add to the current list of messages. For
example, the Solaris Calendar Tool and Mail Tool require three special message
types for their interaction. (These messages are discussed below in “Editing
with the Open Request.”)

There are other standard ToolTalk message sets defined for this release.
Developers of multimedia applications will find the Media Exchange message
set of interest. (Refer to Appendix G, “The ToolTalk Document and Media
Exchange Message Set.”)

7.3 Example ToolTalk Messaging Scenarios
Following are two typical scenarios of tools cooperating on the Solaris
Desktop, with ToolTalk messages.

7-4 Desktop Integration Guide—August 1994

7

7.3.1 Display Request

One scenario arises when a tool (for example, Mailtool) requests that another
tool (a text editor) display some of its data. The scenario begins when the
Mailtool process (the requestor) sends a message requesting a display of data.
The text editor recognizes the message is intended for it, and becomes the
handler. It notes the process ID of the requestor, and the message ID of the
display request, and immediately sends a message to the requestor indicating
that it will service the original message. At this time, it also can send a message
to the original requestor asking for additional data regarding the intended
display.

When data transmission is complete and the handler has completed the
display, it replies to the Display message so the requestor can then clean up
any scratch data or other outstanding activities related to the display request.

7.3.2 Edit Request

A different scenario arises when one tool (the requestor) requests that an editor
tool (the handler) perform edits on a data file. The sequence might be as
follows:

1. The requestor sends an Edit message to the handler.

2. The handler takes note of the process ID of the requestor, and the
message ID of the Edit message.
The handler then sends back a Status message, taking responsibility for
servicing this request.

3. The handler may send a series of incremental updates with the Deposit
messages to the requestor.

4. At any time while this edit session is being handled, the requestor can
send additional service requests to the same message ID.
Such as Iconify, Lower or Raise messages to change the visual appearance of
the target on the Desktop.

5. When all desired data has been transferred, requestor replies to the Edit
message with the final, modified, data.
The handler saves the file with all changes.

The ToolTalk Service and DeskSet Integration 7-5

7

7.3.3 Editing with the Open Request

A different scenario arises when one tool requests that another tool perform
edits on some data controlled by the second tool. For example, a Calendar tool
might wish to send data to a Mail Tool; namely, a request to mail a reminder to
the other party of a planned meeting. Scenarios such as this caused SunSoft to
develop three additional messages: Open, Paste, and Close. The sequence might
be as follows:

1. The requestor sends an Open message to the handler.
This requests that a data file be made available for edits by the requestor.

2. The handler takes note of the process ID of the requestor, and replies to
the Open request with a bufferID.

3. The requestor sends a series of Paste messages to the handler.
These correspond to small editing transactions on the target data file.

4. The requestor sends a Close message to the handler.
This indicates that all intended edits are complete.

5. The handler (Mailtool) can then proceed with its job by displaying the
compose window and allowing the user to actually send the email.

7.4 Example Tooltalk Program with Deskset
The source files for this program can be found online in the Solaris 2.2
distribution at $OPENWINHOME/share/src/dig_samples/ Tooltalk. This
sample code creates a simple yet working editor that can be launched from
Mailtool when a user double clicks on a text attachment. To test it out, perform
the following steps:

1. Save your original setup with the command
tt_type_comp -p > save_file

2. Run make

3. Run make tooltalk

4. Exit mailtool and ttsession

5. In one shelltool:

7-6 Desktop Integration Guide—August 1994

7

a. Set the environment variable XENVIRONMENT to be the full path to
the Resources file:
setenv XENVIRONMENT
/usr/openwin/demo/tooltalk/Resources

b. Set your path environment variable to be this directory.

c. Restart ttsession so it has both these environment variables.

6. Restart mailtool and select a text attachment.

When your testing is done and you want to go back to your original setup, you
can give the command:

tt_type_comp save_file

or if you had no local changes to begin with, you can give the command:

rm -rf ~/.tt

7.4.1 Files for this Example

Here is a summary of the files that comprise the example source.

Table 7-1 Overview of the Modules

olit_tt.c These are the routines that support the GUI.

tt_code.c These are the routines that initialize tooltalk and set
up the other callbacks.

tt_callbacks.c These are the routines that get called in response to
tooltalk and/or GUI events.

types.file Contains tooltalk static ptypes used to identify to
Tooltalk that this application should be started for
text applications.

Resources Contains X resources for the GUI.

Makefile This builds the application and installs the ptypes.

The ToolTalk Service and DeskSet Integration 7-7

7

7.4.2 olit_tt.c

/* olit_tt.c (continued) */
#include <X11/Intrinsic.h>
#include <X11/StringDefs.h>
#include <Xol/OpenLook.h>
#include <Xol/TextEdit.h>
#include <Xol/ScrolledWi.h>
#include <Xol/RubberTile.h>
#include <Xol/MenuButton.h>
#include <Xol/OblongButt.h>
#include <Xol/StaticText.h>
#include <Xol/DropTarget.h>
#include <Xol/Exclusives.h>
#include <Xol/RectButton.h>

#defineTEXT_UNMODIFIEDFALSE
#define TEXT_MODIFIEDTRUE

staticWidgettoplevel, base, textedit;
staticchar*saved_text = NULL;

/* callback to hide the window */
hide_frame()
{

XtPopdown(base);
}

/* callback to expose the window */
show_frame()
{

XtPopup(base, XtGrabNone);
}

/* callback to place the data in the text window */
display_data(char *text)
{

XtVaSetValues(textedit,
XtNsourceType,(XtArgVal)OL_STRING_SOURCE,
XtNsource,(XtArgVal)text,
XtNuserData,(XtArgVal)TEXT_UNMODIFIED,
XtNdisplayPosition,(XtArgVal)0,
XtNcursorPosition,(XtArgVal)0,

7-8 Desktop Integration Guide—August 1994

7

XtNselectStart,(XtArgVal)0,
XtNselectEnd,(XtArgVal)0,
NULL);

if (saved_text != NULL)
{
XtFree(saved_text);
}

OlTextEditCopyBuffer((TextEditWidget)textedit, &saved_text);
}

/* callback to get the data from the text window */
Boolean
get_data(char **text, int *len)
{

if (!OlTextEditCopyBuffer((TextEditWidget)textedit, text))
{
OlWarning(“getData: error trying to copy textedit buffer\n”);
return(FALSE);
}

*len = strlen(*text);
return(TRUE);

}

/* callback to check if the data in the text window is modified */
Boolean
data_is_modified(void)
{

inttext_state;

XtVaGetValues(textedit, XtNuserData, &text_state, NULL);

return(text_state);
}

/* callback to restore the data of the text window to its last
unmodified
 * state
 */
restore_data()
{

/* olit_tt.c (continued) */

The ToolTalk Service and DeskSet Integration 7-9

7

if(data_is_modified())
{
display_data(saved_text);
}

}

/* callback to clear the data in the text window */
clear_data()
{

OlTextEditClearBuffer((TextEditWidget)textedit);
}

/* callback to quit this application */
void
quit(void)
{

quit_tt();
exit(0);

}

/* Save button callback to save back this data */
static void
saveTextCB(Widget w, XtPointer client_data, XtPointer callData)
{

save_tt();
}

/* Quit button callback to quit */
static void
quitTextCB(Widget w, XtPointer client_data, XtPointer callData)
{

quit_tt();
exit(0);

}

/* callback to be called when we get a tooltalk message */
static void
handleMessageCB(Widget w, XtPointer client_data, XtPointer
callData)
{

handle_tt_message();
}

/* main initialization routine */

/* olit_tt.c (continued) */

7-10 Desktop Integration Guide—August 1994

7

main(int argc, char **argv)
{

XtAppContext appContext;
Widgetcontrol, scrolledwin;
Widgetsave_btn, quit_btn;
Widgetblank;
intfd;

/* check if we were started by tooltalk */
check_tt_startup(&argc, &argv);

/* initialize and build the widgets for the application */
OlToolkitInitialize((XtPointer) NULL);
toplevel = XtAppInitialize(&appContext, “AsciiEdit”,

(XrmOptionDescList) NULL,
0, &argc, argv, (String *) NULL,
(ArgList) NULL, 0);

base = XtVaCreateManagedWidget(“base”,
rubberTileWidgetClass,
toplevel,
NULL);

control = XtVaCreateManagedWidget(“control”,
rubberTileWidgetClass,
base,
NULL);

save_btn = XtVaCreateManagedWidget(“save”,
oblongButtonWidgetClass,
control,
NULL);

blank = XtVaCreateManagedWidget(“blank”,
staticTextWidgetClass,
control,
NULL);

quit_btn = XtVaCreateManagedWidget(“quit”,
oblongButtonWidgetClass,
control,
NULL);

scrolledwin = XtVaCreateManagedWidget(“scrolledwin”,

/* olit_tt.c (continued) */

The ToolTalk Service and DeskSet Integration 7-11

7

7.4.3 tt_code.c

scrolledWindowWidgetClass,
base,
NULL);

textedit = XtVaCreateManagedWidget(“textedit”,
textEditWidgetClass,
scrolledwin,
NULL);

/* add the callbacks for the save and quit buttons */
XtAddCallback(save_btn, XtNselect, saveTextCB, NULL);
XtAddCallback(quit_btn, XtNselect, quitTextCB, NULL);

/* start to handle the tooltalk messages and set the callback
 when we get messages in
 */
fd = start_handling_messages();
XtAppAddInput(appContext, fd, XtInputReadMask,

handleMessageCB, NULL);

/* realize the widgets and start the notification process */
XtRealizeWidget(toplevel);
XtAppMainLoop(appContext);

}

/* tt_code.c (continued) */
#include <desktop/tt_c.h>
#include <poll.h>

externTt_callback_actionxinfo_cb(Tt_message m, Tt_pattern p);
externTt_callback_actionlocale_cb(Tt_message m, Tt_pattern p);
externTt_callback_actionhandle_desktop(Tt_message m, Tt_pattern
p);
externTt_callback_actionhandle_display(Tt_message m, Tt_pattern
p);
externTt_callback_actionhandle_edit(Tt_message m, Tt_pattern p);

/* olit_tt.c (continued) */

7-12 Desktop Integration Guide—August 1994

7

#ifndefDEBUG
#defineDPif(0)
#else
#defineDPif(1)
#endif

Tt_messagesave_msg;/* startup message */

structstartup
{

char*new[40];/* pointers for new argv */
intargcount;/* count for new argv pointers */
intddvl;/* or’ed flag to test for messages */

}newargs;

Tt_status
check_tt_startup(int *argc, char ***argv)
{

structpollfdmyfds;/* structure for poll command */
Tt_messagem;/* temporary message */
Tt_statusstatus;/* message status holder */
char*toolid;/* procid of tool sending msg */
int i=0, n, j = 0;/* counters */
char**tmp;/* tmp location for argv array */
/* open Tooltalk session and check for errors */
status = tt_ptr_error(tt_open());
if(status != TT_OK)
{
return(status);
}

/* get and save the incoming message */
save_msg = tt_message_receive();

/* if Tooltalk started us up */
if(TT_WRN_START_MESSAGE == tt_message_status(save_msg))
{
/* argv initalization */
newargs.argcount = 0;
newargs.ddvl = 0;

/* continue to deliver messages, I am just working on
 * this one for a while

/* tt_code.c (continued) */

The ToolTalk Service and DeskSet Integration 7-13

7

 * If you are using a TT library prior to Solaris 2.2
this line
 * is not available and you will not be able to handle
multiple
 * messages until you reply to the message that started
you up.

 */
/* tt_message_accept(save_msg); */

/* get the procid of the requesting application */
toolid = tt_message_sender(save_msg),

/* request the display, visual & depth */
m = tt_message_create();
tt_message_address_set(m, TT_HANDLER);
tt_message_class_set(m, TT_REQUEST);
tt_message_scope_set(m, TT_SESSION);
tt_message_session_set(m, tt_default_session());
tt_message_op_set(m, “Get_XInfo”);
tt_message_handler_set(m, toolid);
tt_message_disposition_set(m, TT_DISCARD);
tt_message_arg_add(m, TT_OUT, “string”, NULL);
tt_message_arg_add(m, TT_OUT, “string”, NULL);
tt_message_arg_add(m, TT_OUT, “integer”, ““);
tt_message_scope_set(m, TT_SESSION);
tt_message_callback_add(m, xinfo_cb);
tt_message_user_set(m, 0, &newargs);
tt_message_send(m);

/* request the locale info */
m = tt_message_create();
tt_message_address_set(m, TT_HANDLER);
tt_message_class_set(m, TT_REQUEST);
tt_message_scope_set(m, TT_SESSION);
tt_message_session_set(m, tt_default_session());
tt_message_op_set(m, “Get_Locale”);
tt_message_handler_set(m, toolid);
tt_message_disposition_set(m, TT_DISCARD);
tt_message_arg_add(m, TT_OUT, “string”, “LC_CTYPE”);
tt_message_arg_add(m, TT_OUT, “string”, NULL);
tt_message_arg_add(m, TT_OUT, “string”, “LC_TIME”);
tt_message_arg_add(m, TT_OUT, “string”, NULL);
tt_message_arg_add(m, TT_OUT, “string”, “LC_NUMERIC”);
tt_message_arg_add(m, TT_OUT, “string”, NULL);

/* tt_code.c (continued) */

7-14 Desktop Integration Guide—August 1994

7

tt_message_arg_add(m, TT_OUT, “string”, “LC_MESSAGES”);
tt_message_arg_add(m, TT_OUT, “string”, NULL);
tt_message_scope_set(m, TT_SESSION);
tt_message_callback_add(m, locale_cb);
tt_message_user_set(m, 0, &newargs);
tt_message_send(m);

/* poll for messages */
myfds.fd = tt_fd();
myfds.events = POLLIN;
while(newargs.ddvl != 3)
{

poll(&myfds, 1, -1);
/* got one */
m = tt_message_receive();
if(m)
{

/* it’s not one we are looking for */
tt_message_reject(m);

}
}

/* take all the new args that we got and create a
 * new argv/argc
 */
n = *argc+newargs.argcount;
tmp = (char **)malloc((n+1)*sizeof(char *));
for(i = 0 ; i < *argc; i++)
{

tmp[i] = *argv[i];
}
for(j = 0; i < n; i++,j++)
{

tmp[i] = newargs.new[j];
}
tmp[i] = 0;
*argc = n;
*argv = tmp;
}
return(TT_OK);

}

int
start_handling_messages()

/* tt_code.c (continued) */

The ToolTalk Service and DeskSet Integration 7-15

7

{
/* patterns for desktop messages and display/edit messages */
Tt_patterndesktop_pat;
Tt_patterndisplay_pat;
Tt_patternedit_pat;
char*op;/* op of saved message */

/* prepare to handle Desktop messages */
desktop_pat = tt_pattern_create();
tt_pattern_op_add(desktop_pat, “Set_Mapped”);
tt_pattern_op_add(desktop_pat, “Quit”);
tt_pattern_scope_add(desktop_pat, TT_SESSION);
tt_pattern_session_add(desktop_pat, tt_default_session());
tt_pattern_category_set(desktop_pat, TT_HANDLE);
tt_pattern_callback_add(desktop_pat, handle_desktop);
tt_pattern_register(desktop_pat);

/* prepare to handle Display messages */
display_pat = tt_pattern_create();
tt_pattern_op_add(display_pat, “Display”);
tt_pattern_arg_add(display_pat, TT_IN, “ISO_Latin_1”, NULL);
tt_pattern_scope_add(display_pat, TT_SESSION);
tt_pattern_session_add(display_pat, tt_default_session());
tt_pattern_category_set(display_pat, TT_HANDLE);
tt_pattern_class_add(display_pat, TT_REQUEST);
tt_pattern_callback_add(display_pat, handle_display);
tt_pattern_register(display_pat);

/* prepare to handle Edit messages */
edit_pat = tt_pattern_create();
tt_pattern_op_add(edit_pat, “Edit”);
tt_pattern_arg_add(edit_pat, TT_OUT, “ISO_Latin_1”, NULL);
tt_pattern_arg_add(edit_pat, TT_INOUT, “ISO_LATIN_1”, NULL);
tt_pattern_scope_add(edit_pat, TT_SESSION);
tt_pattern_session_add(edit_pat, tt_default_session());
tt_pattern_category_set(edit_pat, TT_HANDLE);
tt_pattern_class_add(edit_pat, TT_REQUEST);
tt_pattern_callback_add(edit_pat, handle_edit);
tt_pattern_register(edit_pat);

/* if we have one we haven’t handled because we were doing
 * the window/application setup, handle it now
 */
if(save_msg != NULL)

/* tt_code.c (continued) */

7-16 Desktop Integration Guide—August 1994

7

7.4.4 tt_callbacks.c

{
/* find out its type */
op = tt_message_op(save_msg);

if(strcmp(op, “Display”) == 0)/* if Display message */
{

handle_display(save_msg, display_pat);
}
else if(strcmp(op, “Edit”) == 0)/* if Edit message */
{

handle_edit(save_msg, edit_pat);;
}
else /* all others we don’t want yet */
{

tt_message_reject(save_msg);
tt_message_destroy(save_msg);

}
}

/* return the file descriptor to watch for tooltalk activity
on */

return(tt_fd());
}

/* tt_callbacks.c (continued) */
#include <desktop/tt_c.h>
#include <locale.h>

#ifndefDEBUG
#defineDPif(0)
#else
#defineDPif(1)
#endif

#defineTT_DESKTOP_ENOENT1538
#defineTT_DESKTOP_EINVAL1558
#defineTT_DESKTOP_EXITING1697
#defineTT_DESKTOP_CANCELED1698
#defineTT_DESKTOP_UNMODIFIED1699

/* tt_code.c (continued) */

The ToolTalk Service and DeskSet Integration 7-17

7

#defineTT_MEDIA_ERR_SIZE1700
#defineTT_MEDIA_ERR_FORMAT1701
#defineTT_MEDIA_NO_CONTENTS1702

structstartup
{

char*new[40];
intargcount;
intddvl;

};

staticchar*argname[] = {“-display”, “-visual”, “-depth”, “-
lc_basiclocale”};

externvoidshow_frame();
externvoidhide_frame();
externvoidquit();

#defineMSG_DISPLAY1
#defineMSG_EDIT2

structcur_msg_state
{

Tt_messagett_msg;
int type;
char*msgid;

} cur_msg_state = { NULL, NULL};

void close_out_old_msg(struct cur_msg_state *);

/* Tooltalk call back to handle the Get_XInfo request */
Tt_callback_action
xinfo_cb(Tt_message m, Tt_pattern p)
{

char*display;/* Xdisplay */
char*visual;/* Screen visual */
intdepth;/* Screen depth */
intcount;/* Number of args in this msg */
charbuff[10];/* tmp format buffer */
structstartup*newargs;/* new argv data structure */

/* check the state of the returned message */
switch(tt_message_state(m))

/* tt_callbacks.c (continued) */

7-18 Desktop Integration Guide—August 1994

7

{
caseTT_HANDLED:/* everything came back ok */

/* get the structure to save the argv data to */
newargs = tt_message_user(m, 0);

/* create the display argument */
display = tt_message_arg_val(m, 0);
if(display)
{

newargs->new[newargs->argcount++] = “-display”;
newargs->new[newargs->argcount++] = (char

*)strdup(display);
}

/* create the visual argument */
visual = tt_message_arg_val(m, 1);
if(visual)
{

newargs->new[newargs->argcount++] = “-visual”;
newargs->new[newargs->argcount++] = (char

*)strdup(visual);
}

/* create the depth argument */
tt_message_arg_ival(m, 2, &depth);
if(depth > 0)
{

newargs->new[newargs->argcount++] = “-depth”;
sprintf(buff, “%d”, depth);
newargs->new[newargs->argcount++] = (char *)strdup(buff);

}
break;
default:
/* just in case something goes wrong */
DP printf(“xinfo_cb: tt_message_state = %d\n”,

tt_message_state(m));
}

/* set the lage so we know we got this one */
newargs->ddvl |= 1;

/* clean up the message and return */
tt_message_destroy(m);

/* tt_callbacks.c (continued) */

The ToolTalk Service and DeskSet Integration 7-19

7

return(TT_CALLBACK_PROCESSED);
}

/* Tooltalk call back to handle the Get_Locale request */
Tt_callback_action
locale_cb(Tt_message m, Tt_pattern p)
{

inti; /* counter */
intcount = 0;/* number of locale values */
char*cat;/* category */
char*locale;/* locale */
structstartup*newargs;/* new argv data structure */

/* check the state of the returned message */
switch(tt_message_state(m))
{
caseTT_HANDLED:/* everything came back ok */

/* get the structure to save the argv data to */
newargs = tt_message_user(m, 0);

/* get the number of values */
count = tt_message_args_count(m);

/* for each set of category/locale */
for(i = 0; i < count/2; i++)
{

/* get the category and locale info */
cat = tt_message_arg_val(m, i);
locale = tt_message_arg_val(m, i+1);

/* if the locale has been set */
if(locale)
{

/* and if the category is one we are
 * interested in add the arguments
 */
if(strcmp(cat, “LC_CTYPE”) == 0)
{
newargs->new[newargs->argcount++] = “-

lc_basiclocale”;
newargs->new[newargs->argcount++] = (char

*)strdup(locale);

/* tt_callbacks.c (continued) */

7-20 Desktop Integration Guide—August 1994

7

newargs->new[newargs->argcount++] = “-lc_inputlang”;
newargs->new[newargs->argcount++] = (char

*)strdup(locale);
}
else if(strcmp(cat, “LC_TIME”) == 0)
{
newargs->new[newargs->argcount++] = “-lc_timeformat”;
newargs->new[newargs->argcount++] = (char

*)strdup(locale);
}
else if(strcmp(cat, “LC_NUMERIC”) == 0)
{
newargs->new[newargs->argcount++] = “-lc_numeric”;
newargs->new[newargs->argcount++] = (char

*)strdup(locale);
}
else if(strcmp(cat, “LC_MESSAGES”) == 0)
{
newargs->new[newargs->argcount++] = “-

lc_displaylang”;
newargs->new[newargs->argcount++] = (char

*)strdup(locale);
}

}
}
/* set the flag so we know we got this one */
newargs->ddvl |= 2;
break;
default:
DP printf(“locale_cb: tt_message_state = %d\n”,

tt_message_state(m));
}
/* clean up the message and return */
tt_message_destroy(m);
return(TT_CALLBACK_PROCESSED);

}

/* when the tooltalk file descriptor becomes active */
handle_tt_message()
{

Tt_messagem;

/* receive the message */
m = tt_message_receive();

/* tt_callbacks.c (continued) */

The ToolTalk Service and DeskSet Integration 7-21

7

if(m)
{
/* this means none of our callbacks got called so it
 * is not one of ours so throw it back
 */
tt_message_reject(m);
}

}

/* when the message is one from the desktop pattern */
Tt_callback_action
handle_desktop(Tt_message m, Tt_pattern p)
{

intmapped;/* the map operator */
char*op;/* the type of message */

/* get the message name */
op = tt_message_op(m);

if(strcmp(op, “Set_Mapped”) == 0)/* if it is a mapped message
*/

{
/* get the map operator */
tt_message_arg_ival(m, 0, &mapped);

/* set it to mapped or not based on the operator */
if(mapped == 0)
{

hide_frame();
}
else
{

show_frame();
}
}
else if(strcmp(op, “Quit”) == 0)/* if it is the quit message

*/
{
/* since this is a simple demo just quit */
quit();
}
return(TT_CALLBACK_PROCESSED);

}

/* tt_callbacks.c (continued) */

7-22 Desktop Integration Guide—August 1994

7

/* if we get a Display message */
Tt_callback_action
handle_display(Tt_message m, Tt_pattern p)
{

char*file;/* not used for this simple app */
char*media;/* media (for this it SHOULD be ISO_Latin_1 */
char*type;/* vtype of message arg */
char*data;/* contents of message */
int size;/* size of the data */
char*msgid;/* request’s ID */
char*title;/* request’s title */
int count;/* argument count */
int i; /* tmp counter */
Tt_messagett_msg;/* out going messages */

/* get the media type (paranoids should check it */
media = tt_message_arg_type(m, 0);

/* get the count to see if we have the optional msgID/title */
count = tt_message_args_count(m);
DP printf(“count = %d\n”, count);
for(i = 1; i < count; i++)
{
/* get the msg type */
type = tt_message_arg_type(m, i);
DP printf(“type = ‘%s’\n”, type);
if(strcmp(type, “messageID”) == 0) /* its optional msgID */
{

/* save it */
msgid = tt_message_arg_val(m, i);
DP printf(“msgid = ‘%s’\n”, msgid);

}
else if(strcmp(type, “title”) == 0) /* its optional title */
{

/* save it */
title = tt_message_arg_val(m, i);

}
}
if(file = tt_message_file(m)) /* its a file type */
{
DP printf(“Displaying a file\n”);
/* this type of message is not handled for simplicity sake */
tt_message_reject(m);
tt_message_destroy(m);

/* tt_callbacks.c (continued) */

The ToolTalk Service and DeskSet Integration 7-23

7

return(TT_CALLBACK_PROCESSED);
}
else/* its a contents type */
{
/* get the data */
tt_message_arg_bval(m, 0, (unsigned char **)&data, &size);
if(data == NULL || *data == ‘\0’)
{

DP printf(“data is NULL so fail this message\n”);
/* its not good so fail it */
tt_message_status_set(m, TT_MEDIA_NO_CONTENTS);
tt_message_fail(m);
return(TT_CALLBACK_PROCESSED);

}
else
{

/* if we have an outstanding msg handle it */
close_out_old_msg(&cur_msg_state);
cur_msg_state.tt_msg = m;
DP printf(“Displaying data\n”);

/* display the new data */
display_data(data);

}
}

/* save the current message state */
cur_msg_state.type = MSG_DISPLAY;
cur_msg_state.msgid = msgid;

/* send back pt-pt a status msg to say all is well */
tt_msg = tt_message_create();
tt_message_address_set(tt_msg, TT_HANDLER);
tt_message_handler_set(tt_msg, tt_message_sender(m));
tt_message_op_set(tt_msg, “Status”);
tt_message_class_set(tt_msg, TT_NOTICE);
tt_message_scope_set(tt_msg, TT_SESSION);
tt_message_session_set(tt_msg, tt_default_session());
tt_message_disposition_set(tt_msg, TT_DISCARD);
tt_message_arg_add(tt_msg, TT_IN, “string”, “Request

Received”);
tt_message_arg_add(tt_msg, TT_IN, “string”, “ACME Vendor”);
tt_message_arg_add(tt_msg, TT_IN, “string”, “Sample Editor”);
tt_message_arg_add(tt_msg, TT_IN, “string”, “0.1”);

/* tt_callbacks.c (continued) */

7-24 Desktop Integration Guide—August 1994

7

tt_message_arg_add(tt_msg, TT_IN, “messageID”,
cur_msg_state.msgid);

tt_message_arg_add(tt_msg, TT_IN, “domain”,
setlocale(LC_CTYPE, NULL));

tt_message_scope_set(tt_msg, TT_SESSION);
tt_message_send(tt_msg);

return(TT_CALLBACK_PROCESSED);
}

/* if we get a Edit message */
Tt_callback_action
handle_edit(Tt_message m, Tt_pattern p)
{

char*file;/* not used for this simple app */
char*media;/* media (for this it SHOULD be ISO_Latin_1 */
char*type;/* vtype of message arg */
char*data;/* contents of message */
int size;/* size of the data */
char*msgid;/* request’s ID */
char*title;/* request’s title */
int count;/* argument count */
int i; /* tmp counter */
Tt_messagett_msg;/* out going messages */

/*
 * REJECT MESSAGES
 */

/* get the media type (paranoids should check it */
media = tt_message_arg_type(m, 0);

/* get the count to see if we have the optional msgID/title */
count = tt_message_args_count(m);
DP printf(“count = %d\n”, count);
for(i = 1; i < count; i++)
{
/* get the msg type */
type = tt_message_arg_type(m, i);
DP printf(“type = ‘%s’\n”, type);
if(strcmp(type, “messageID”) == 0)
{

/* save it */
msgid = tt_message_arg_val(m, i);

/* tt_callbacks.c (continued) */

The ToolTalk Service and DeskSet Integration 7-25

7

DP printf(“msgid = ‘%s’\n”, msgid);
}
else if(strcmp(type, “title”) == 0)
{

/* save it */
title = tt_message_arg_val(m, i);

}
}
if(file = tt_message_file(m)) /* its a file type */
{
/* this type of message is not handled for simplicity sake */
tt_message_reject(m);
tt_message_destroy(m);
return(TT_CALLBACK_PROCESSED);
}
else/* its a contents type */
{
/* get the data */
tt_message_arg_bval(m, 0, (unsigned char **)&data, &size);
close_out_old_msg(&cur_msg_state);
if(data == NULL || *data == ‘\0’)
{

/* its compose time */
clear_data();

}
else
{

cur_msg_state.tt_msg = m;
DP printf(“Displaying data\n”);
/* display the new data */
display_data(data);

}
}
/* save the current message state */
cur_msg_state.type = MSG_EDIT;
cur_msg_state.msgid = msgid;

/* send back pt-pt a status msg to say all is well */
tt_msg = tt_message_create();
tt_message_address_set(tt_msg, TT_HANDLER);
tt_message_handler_set(tt_msg, tt_message_sender(m));
tt_message_op_set(tt_msg, “Status”);
tt_message_class_set(tt_msg, TT_NOTICE);
tt_message_scope_set(tt_msg, TT_SESSION);

/* tt_callbacks.c (continued) */

7-26 Desktop Integration Guide—August 1994

7

tt_message_session_set(tt_msg, tt_default_session());
tt_message_disposition_set(tt_msg, TT_DISCARD);
tt_message_arg_add(tt_msg, TT_IN, “string”, “Request

Received”);
tt_message_arg_add(tt_msg, TT_IN, “string”, “ACME Vendor”);
tt_message_arg_add(tt_msg, TT_IN, “string”, “Sample Editor”);
tt_message_arg_add(tt_msg, TT_IN, “string”, “0.1”);
tt_message_arg_add(tt_msg, TT_IN, “messageID”,

cur_msg_state.msgid);
tt_message_arg_add(tt_msg, TT_IN, “domain”,

setlocale(LC_CTYPE, NULL));
tt_message_scope_set(tt_msg, TT_SESSION);
tt_message_send(tt_msg);

return(TT_CALLBACK_PROCESSED);
}

void
close_out_old_msg(struct cur_msg_state *old_msg)
{

if(old_msg->tt_msg == NULL)
{
return;
}
if(strcmp(tt_message_op(old_msg->tt_msg), “Display”) ==

NULL)
{
tt_message_reply(old_msg->tt_msg);
tt_message_destroy(old_msg->tt_msg);
}
else
{
/* more work here for save/old data etc. */
tt_message_reply(old_msg->tt_msg);
tt_message_destroy(old_msg->tt_msg);
}
old_msg->tt_msg = NULL;

}

/* when we want to quit we need to make sure the
 * current message gets handled
 */
void
quit_tt()

/* tt_callbacks.c (continued) */

The ToolTalk Service and DeskSet Integration 7-27

7

{
char*data;/* current data */
intsize;/* current size */

/* if no current message we are done */
if(cur_msg_state.tt_msg == 0)
{
return;
}
if(cur_msg_state.type == MSG_DISPLAY) /* we’re handling a

Display msg */
{
/* just reply to it */
tt_message_reply(cur_msg_state.tt_msg);
tt_message_destroy(cur_msg_state.tt_msg);
}
else if(cur_msg_state.type == MSG_EDIT)/* handling an Edit

msg */
{
/* get the correct data */
if(data_is_modified())
{

restore_data();
}
get_data(&data, &size);

/* use that data to reply to the message */
tt_message_arg_val_set(cur_msg_state.tt_msg, 0, data);
tt_message_reply(cur_msg_state.tt_msg);
tt_message_destroy(cur_msg_state.tt_msg);
}
cur_msg_state.tt_msg = 0;

}

/* called when a deposit has completed */
Tt_callback_action
save_cb(Tt_message m, Tt_pattern p)
{

switch(tt_message_state(m))
{
caseTT_HANDLED:
/* show a successfull save was done */
break;
caseTT_FAILED:

/* tt_callbacks.c (continued) */

7-28 Desktop Integration Guide—August 1994

7

/* error state */
break;
default:
DP printf(“some thing else\n”);
}

}

/* called when you need to save the data back to the
 * calling process. (This only needs to be done if you’re
 * handling a Display msg or you want to save an intermediate
 * step in Edit)
 */
save_tt()
{

Tt_message tt_msg = 0;
int null = 0;
Tt_status rc;
char*toolid;
char*data;
int size;

/* if we really have a tooltalk msg to save */
if(cur_msg_state.tt_msg != NULL)
{
/* create and send a Deposit message */
tt_msg = tt_message_create();
tt_message_address_set(tt_msg, TT_PROCEDURE);
tt_message_class_set(tt_msg, TT_REQUEST);
tt_message_scope_set(tt_msg, TT_SESSION);
tt_message_session_set(tt_msg, tt_default_session());
tt_message_disposition_set(tt_msg, TT_DISCARD);

tt_message_address_set(tt_msg, TT_HANDLER);

toolid = tt_message_sender(cur_msg_state.tt_msg);
tt_message_handler_set(tt_msg, toolid);
tt_message_op_set(tt_msg, “Deposit”);
get_data(&data, &size);
tt_message_arg_add(tt_msg, TT_IN, “ISO_Latin_1”, data);

tt_message_arg_add(tt_msg, TT_IN,
“messageID”, cur_msg_state.msgid);

tt_message_callback_add(tt_msg, save_cb);

/* tt_callbacks.c (continued) */

The ToolTalk Service and DeskSet Integration 7-29

7

7.4.5 types.file

tt_message_send(tt_msg);
}

}

ptype Sun_MA_textedit
{
start “olit_tt”;
per_session 5;
handle:
/*
 *
 * Optional extra arguments for these requests:
 * in string title
 * in messageID text
 */
/* content display */
session Display (in ISO_Latin_1 text) => start;
session Display (in ISO_Latin_1 text, in title text) => start;
session Display (in ISO_Latin_1 text, in messageID text) =>
start;
session Display (in ISO_Latin_1 text, in messageID text, in title
text) => start;

/* content compose */
session Edit (out ISO_Latin_1 text) => start;
session Edit (out ISO_Latin_1 text, in title text) => start;
session Edit (out ISO_Latin_1 text, in messageID text) => start;
session Edit (out ISO_Latin_1 text, in messageID text, in title
text) => start;

/* content edits */
session Edit (inout ISO_Latin_1 text) => start;
session Edit (inout ISO_Latin_1 text, in title text) => start;
session Edit (inout ISO_Latin_1 text, in messageID text) =>
start;
session Edit (inout ISO_Latin_1 text, in messageID text, in title
text) => start;

/*

/* tt_callbacks.c (continued) */

7-30 Desktop Integration Guide—August 1994

7

7.4.6 Resources

 * Optional extra arguments for these requests:
 * in string title
 * in messageID text
 */

/* file display */
file Display (in ISO_Latin_1 text) => start;
file Display (in ISO_Latin_1 text, in title text) => start;
file Display (in ISO_Latin_1 text, in messageID text) => start;
file Display (in ISO_Latin_1 text, in messageID text, in title
text) => start;

/* file compose */
file Edit (out ISO_Latin_1 text) => start;
file Edit (out ISO_Latin_1 text, in title text) => start;
file Edit (out ISO_Latin_1 text, in messageID text) => start;
file Edit (out ISO_Latin_1 text, in messageID text, in title text)
=> start;

/* file edits */
file Edit (inout ISO_Latin_1 text) => start;
file Edit (inout ISO_Latin_1 text, in title text) => start;
file Edit (inout ISO_Latin_1 text, in messageID text) => start;
file Edit (inout ISO_Latin_1 text, in messageID text, in title
text) => start;
};

AsciiEdit.base.orientation: vertical
AsciiEdit.base.control.orientation: horizontal
AsciiEdit.base.control.weight: 0

AsciiEdit.base.control.save.weight: 0
AsciiEdit.base.control.blank.weight: 1
AsciiEdit.base.control.quit.weight: 0

AsciiEdit.base.scrolledwin.weight: 1

AsciiEdit.base.scrolledwin.forceHorizontalSB: False
AsciiEdit.base.scrolledwin.forceVerticalSB: True
AsciiEdit.base.scrolledwin.textedit.charsVisible: 80

The ToolTalk Service and DeskSet Integration 7-31

7

7.4.7 Makefile

AsciiEdit.base.scrolledwin.textedit.linesVisible: 60
AsciiEdit.title: Simple Text Editor
AsciiEdit*font: lucidasans
!---
AsciiEdit.base.control.save.label: Save
AsciiEdit.base.control.quit.label: Quit

#
###
#
#

SRC += olit_tt.c tt_code.c tt_callbacks.c
HDR += Resources types.file
OBJ += $(SRC:%.c=%.o)

INCLUDE+= -I${OPENWINHOME}/include

#CFLAGS+= -g -DDEBUG
CFLAGS+= ${INCLUDE}

LDFLAGS+= -L${OPENWINHOME}/lib -R${OPENWINHOME}/lib

LIBS+= -lXol -lXt -lX11 -ltt

PROGRAM+= tt_demo

.KEEP_STATE:

$(PROGRAM):$(OBJ)
$(CC) -o $(PROGRAM) $(OBJ) $(CFLAGS) $(LDFLAGS) $(LIBS)

tooltalk:
tt_type_comp types.file

clean:
rm -f core $(PROGRAM) $(OBJ) types.file.deps

.INIT: $(SRC) $(HDR)

AsciiEdit.base.orientation: vertical

7-32 Desktop Integration Guide—August 1994

7

End makefile
###
########

#

A-1

Drag and Drop User Interface
Specification A

A.1 Executive Summary
Drag and drop is a convenient, powerful, general purpose accelerator for
transferring data within and between applications. This specification
establishes conventions for the user interface of the drag and drop mechanism.
It is intended to guide the implementation of drag and drop for OpenWindows
Version 3.0.1 or greater, and to guide application developers toward consistent
uses of the technique. It does not describe implementation details of the drag
and drop mechanism, nor does it describe the API.

This document includes descriptions of:

• the kinds of objects that can be dragged

• the meanings of dropping objects on specific locations (such as on a window
header, on a pane in a window, or on a drag and drop target)

• the differences between dragging with and without the Duplicate modifier
key held down

• the visual feedback associated with the stages of a drag and drop operation

• how the process of data translation appears to users

• how users can cancel drag operations in progress, and undo completed drag
operations1

1. In this document, drag and drop operations are sometimes referred to as drag operations and drags.

A-2 Desktop Integration Guide—August 1994

A

• how error messages are presented to users

A.2 Introduction

A.2.1 Classic Examples

Drag and drop is a technique for manipulating data and applications by directly
manipulating graphical objects on the display screen. It has become a standard
accelerator on the SunSoft desktop for transferring data between applications
and for moving data around within an application. A classic example of the
use of drag and drop is to move documents around in the directory hierarchy.
For example, in File Manager you can move a document into a folder by
dragging a document glyph and dropping it on a folder glyph. Technically
speaking, the document is the source object, and the folder is the destination
object. First you press and hold the Select mouse button while the pointer is on
the document you want to move (the source) and then you drag it onto the
folder glyph (the destination) and release the mouse button.

In addition to dragging documents between folders in File Manager, you can
also drag documents from a File Manager folder into the wastebasket to delete
them, or onto Print Tool to print them. See Figure A-1. Whereas moving
documents among folders in File Manager or from a folder to the wastebasket
involves only one application (File Manager), dragging documents to the Print
Tool involves the transfer of data between two applications, File Manager and

Drag and Drop User Interface Specification A-3

A

Print Tool. In other words, in the latter case the source application and the
destination application are different, whereas in the former cases they are the
same.

Figure A-1 Dragging File Manager Documents

A.2.2 Drag and Drop as Cut and Paste

Another classic use of drag and drop is as an alternative to the Cut and Paste
commands. For example, Text Editor allows you to move selected text from
one document to another either by using the Cut and Paste commands, or by
using drag and drop. To use drag and drop, you follow these steps. Before you
begin, you need to have the two documents loaded into Text Editor, and visible
in two windows. Then you select the part of the first document that you want

A-4 Desktop Integration Guide—August 1994

A

to move. Next you press the Select mouse button on the selection, and drag it
to the location where you want to insert it in the other document. Releasing the
mouse button completes the drag and drop operation. See Figure A-2.

Figure A-2 Dragging Text Between Text Edit Documents

Although drag and drop is often used as an alternative to Cut and Paste, as
described above, the two techniques have subtly different effects. First,
whereas the Paste command inserts the source object at the caret in the
destination document (replacing the selection if there is one), drag and drop
inserts it at the hot spot of the pointer. Second, drag and drop does not involve
the clipboard, whereas Cut and Paste do. Third, after a drag and drop
operation the newly inserted text is selected, whereas after a Paste it is not
selected.

Drag and Drop User Interface Specification A-5

A

A.2.3 To Cut or To Copy?

In the example above, drag and drop was used as an alternative to Cut and
Paste. However, if the user had held down the Duplicate modifier key1 during
the drag operation, the source would have been copied. As a result, the drag
and drop operation would be analogous to Copy and Paste rather than Cut
and Paste.

A.2.4 Where We Are Headed

As these examples indicate, the drag and drop technique is used in a variety of
different ways by OPEN LOOK applications. It has proven to be a convenient,
powerful, general purpose accelerator for transferring data within and across
applications. To exploit the paradigm to its fullest, we need conventions for its
use so that applications will use it in similar ways, and consequently, users will
know what to expect of it. Conventions are necessary for everything from the
meaning of dropping onto an iconified application base window (a mini-
window), to the feedback that appears when the user attempts a drop in an
inappropriate place.

The following sections of this document describe the details of the user
interface for drag and drop. They include a formal definition of drag and drop,
and a description of the kinds of operations that applications may use drag
and drop for. They also specify the meaning of dragging with and without the
Duplicate modifier key held down, and the meanings of dropping on specific
types of destination objects. Finally, they specify the visual feedback associated
with the stages of the drag and drop operation, and describe how a variety of
special conditions should be handled.

A.3 Formal Definition
Technically speaking, drag and drop is a gestural technique for manipulating
objects,2 with the following characteristics:

1. The Duplicate modifier key is the Ctrl key by default.

2. The term object is used in the loose, generic sense in this document.

A-6 Desktop Integration Guide—August 1994

A

• The source is indicated by initiation of the drag operation on an object that
typically has been selected, or that will become selected as the drag
operation begins.

• The drag operation is initiated by pressing and holding down a mouse
button while dragging the mouse. Dragging the mouse involves moving it
by five pixels or more.1

• Following initiation of the drag operation, a drag mode persists in which the
user indicates a continuous path from the source to the destination.

• The drag operation terminates when the user releases the mouse button.

• The destination is indicated by the pointer position at the end of the drag
operation. More specifically, the destination is indicated by the location of
the pointer’s hot spot when the user releases the mouse button.

On the SunSoft desktop, drag and drop is defined as an accelerator—anything
that you can do using drag and drop you should also be able to do in another
way, often by selecting commands from menus.

A.4 The Source
Any object that is selectable can potentially be dragged, excluding, of course,
selections in most controls (such as exclusive and non-exclusive settings and
menus). Typically, the source is a data object, such as a document or a text
selection, or a container of data objects, such as a folder.

When the source object is a text selection, a data object, or a container of data
objects, the source is the primary selection. After the drag operation has
completed, the new object at the destination location is the primary selection.
For example, if you drag a text selection from one window to another, after the
drag operation the text that has been inserted at the destination location is
selected.

1. Users should be able to adjust the drag threshold through a workspace property.

Drag and Drop User Interface Specification A-7

A

A.4.1 Multiple Source Objects

You can drag many different source objects in a single drag operation,
provided that you can create a selection that includes all the objects. When the
primary selection includes objects in a window, this naturally restricts you to
dragging objects only from a single window, since the primary selection cannot
span windows.

If the source objects have a natural logical ordering in the source application,
the drag operation should preserve the ordering. For example, if the source
objects are document glyphs that are displayed in the source application
organized by filename, the drag operation should order them alphabetically by
filename. However, the destination application should not presume that the
source objects it receives are ordered in any way.

A.4.2 Windows as Source Objects

Open windows and iconified windows (that is, mini-windows) also may be
source objects in drag and drop operations, however, these drag and drop
operations are atypical in several regards.

First, when you drag a window it does not become selected. Because the
window is not selected, you can drag it without losing the current primary
selection. So, for example, you can make a selection in a window; then drag the
window to reposition it; and your selection in the window will still be there.1

Second, you can’t duplicate a window by holding down the Duplicate key
when starting a drag operation. Whenever you drag an open window or a
mini-window, the effect of the drag action is to move the window, not to clone
it.

Third, when you are dragging an open window or mini-window, the only
place you can drop it is onto the workspace. In other words, when a mini-
window or an open window is the source, the only legal destination is the
workspace. Of course, you can drop one window onto another, because our
workspace supports overlapping window placement.2 However, even in this
case the destination is the workspace. That is, the overlaid window is not the
destination, the workspace is.

1. In the future we may identify other cases where it is useful to be able to drag an object without selecting it.
However, presently only open windows and mini-windows can be dragged without being selected.

A-8 Desktop Integration Guide—August 1994

A

Fourth, when you drag an open window or a mini-window, the mouse pointer
does not change into one of the pointers that are typically used for drag and
drop operations (see Figure A-6 on page A-22). The normal pointer was chosen
because users are unlikely to view dragging open windows and mini-windows
as drag and drop operations. And due to all of the restrictions on dragging
open windows and mini-windows, users should not view dragging a window
as a drag and drop operation.

A.5 The Destination
The destination of a drag operation is determined by the location of the
pointer’s hot spot at the time the user releases the mouse button. If the source
object is a data object or a collection of data objects, the destination may be a
data object; a container of data objects such as a directory (i.e., folder); the
workspace; a mini-window; or a location in an open window, such as a data
pane, a text field, or a drag and drop target. Drag and drop targets are a new
type of graphical element, whose purpose is to support drag and drop
operations. They are described in a following section of this document. If the
source object is a mini-window or an open window, the only allowed
destination is the workspace.

The legal source and destination combinations are shown below.

2. There is one exception to this. You cannot drop a mini-window onto an open window. More specifically, you
cannot terminate a drop when the source is a mini-window and the hot spot of the pointer is within the
border of an open window. If you attempt such a drop, a Notice will be presented which will tell you the
drop operation is not allowed, and the drop will be terminated.

Table A-1 Legal combinations of sources and destinations

Source
Data
Object/Container

Destination Mini-
Window Open Window Workspace

Data
Object/Container

Yes Yes Yes Yes

Mini-Window No No No Yes

Open Window No No No Yes

Drag and Drop User Interface Specification A-9

A

A.5.1 The Drop Method

The primary purpose of the drop method is to specify the processing that the
source object undergoes at the destination. That is, the drop method
determines the effect of the drag and drop operation on the destination. The
application that owns the graphical element underneath the pointer at the time
of a drop (the destination application) identifies the drop method. The destination
may use different drop methods depending on what type of object the source is
and depending on where the user dropped the source object.

To ensure conformity among applications and to make it easy for users to
guess what the results of a drag operation will be, we have established
guidelines for the drop methods applications may use with different parts of
the workspace. These guidelines specify which standard elements of the
workspace can be used as destinations, and they describe appropriate types of
drop methods.

A.5.2 Dropping onto Specific Locations

Text Fields and Text Panes
When you drop a source object onto a single-line text field, multi-line text field,
or text pane, the source object should be inserted into the destination text at the
position of the pointer’s hot spot. If the source object is a text selection, then
the text selection is inserted, whereas if the source object is a named object
(such as a document), the name of the source object is inserted.

Naturally, source objects that are neither named objects nor text selections
cannot be dropped onto text fields.

Non-Text Panes
As is the case with text panes, when the user drops a source object onto a non-
text pane, the source is inserted into the destination object. However, whereas
in a text pane the source is always inserted at the pointer’s hot spot, in a non-
text pane the destination application has several options to choose from. The
destination application may choose either to insert the source object at the
pointer’s hot spot, or to:

• insert the source object at a location that depends solely on characteristics of
the source object

A-10 Desktop Integration Guide—August 1994

A

Calendar Manager processes mail messages dropped on it in this fashion. If
you drop a mail message onto an open Calendar Manager window, and the
mail message contains a correctly formatted appointment, Calendar
Manager will insert the message into the calendar at the appropriate date
and time.

• place all source objects at a single location in the destination pane

For example, imagine a graphical cartridge tape manager that has a data
pane that displays glyphs for the files on the tape. Imagine that you can
drag a document from File Manager onto the Tape Manager pane to add the
document to the tape. Because tapes are sequential media, regardless of
where you drop the document in the pane, the document file is added to the
end of the tape.

• apply processing specific to the glyph the source object was dropped onto

For example, File Manager’s Path Pane and Folder Pane behave this way. If
you drop a document onto a folder in either pane, the document moves into
the folder you dropped it on. In contrast, if you drop a document onto the
background of the Folder Pane, the document is moved into the directory
displayed in the pane.

Scrolling Lists
A scrolling list may accept a source object and insert it as a new entry in the
list. The destination application may insert the source into the list either:

• at a location that depends on the pointer’s hot spot1

• at a location that depends on characteristics of the source object

For example, in an alphabetical list the source object could be inserted
alphabetically by name (or by content if the source object is a text selection).

• at a single fixed location

For example, when you drop a document onto the Print Tool scrolling list,
the document is inserted at the end of the queue.

1. By default, when an object is dropped on a list item, the source object is inserted above the item it was
dropped on.

Drag and Drop User Interface Specification A-11

A

Scrolling lists that allow users to drop items into the list, and/or to drag items
already in the list, should have a small icon to the left of each item in the list.

Mini-Windows
When you drop a source object on an iconified application base window (a
mini-window), the result of the drop should match the results of a drop
method that the open base window supports. If the base window supports
more than one drop method, the mini-window should use the drop method
that is most closely associated with the base window as a whole. For example,
if the application supports a load drop method, that drop method should be
supported by the mini-window.

Naturally, a mini-window cannot use a drop method that inserts the source
object into a data pane at the pointer’s hot spot (since the pointer’s hot spot is
over the mini-window, not over a data pane). For example, a drop onto the
Text Editor mini-window cannot correspond to a drop onto the Text Editor base
window’s text pane, because the results of a drop onto the text pane depend on
the precise location of the pointer’s hot spot in the text pane.1

Applications should follow these guidelines in choosing a drop method for a
mini-window:

• If the associated open window uses only one drop method, and the drop
method does not insert the source object at the pointer’s hot spot, then that
drop method should also be used for the mini-window.

• If the associated open window supports more than one drop method that
does not involve an insertion at the pointer’s hot spot, then the mini-
window should use the drop method that is most closely associated with the
base window as a whole.

• If the associated open window has a drop method which loads the source
object into the application (replacing the data there) that drop method
should be used for the mini-window.

• If the associated open window allows drops onto its header, dropping onto
the header should have the same effect as dropping onto the mini-window.

1. Do not use the caret as a substitute for the pointer hot spot.

A-12 Desktop Integration Guide—August 1994

A

Window Backgrounds
Applications may not allow objects to be dropped onto the backgrounds of
open windows, except, in some cases, onto the window header.1 In addition to
the header, the background of a window includes:

• the footer

• areas to the left and right of data panes, excluding areas immediately
adjacent to scrollbar drag boxes and cables

• the backgrounds of control areas

When an application wants to provide a drop method that there is no obvious
receptacle (i.e., destination object) for, the application should use a drag and
drop target in a control area. For example, when an application supports a load
drop method, a drag and drop target should be provided for it. Applications
that don’t have control areas may use their window headers instead of drag
and drop targets.

The Workspace
Dropping an object onto the workspace should not cause the object to
transform, such as becoming a mini-window for a running application (which
is what File Manager does).

In the future, it may be possible to drop data objects onto the workspace and
have them appear to rest on the workspace. However, because there is
presently no mechanism in place for displaying data objects on the workspace,
this guideline represents a long-term objective. It is included here as a hint to
applications about how we intend to use the workspace in the future. Also, it is
intended to preclude applications from using drops onto the workspace for
other purposes.

1. Drops onto the background are not allowed for two reasons. First, a background should be a neutral zone,
which means that it should not have magical properties, such as the ability to accept dropped objects.
Second, if a background had a drop method and elements on it had other drop methods, it could be difficult
for users to predict the effects of a drop. In cases where a destination doesn’t have a clear boundary, as a text
field doesn’t, it would be hard to know where one destination object ends and the other begins.

Drag and Drop User Interface Specification A-13

A

Drag and Drop Targets
If an application wants to support a drop method and there is no obvious
destination receptacle for the drag and drop operation, it should use a drag
and drop target. Such obvious receptacles include text panes, single-line text
fields, glyphs displayed in non-text panes, and scrolling lists, among others.

What Drag and Drop Targets Are. A drag and drop target is a rectangular
graphical element, typically located in a control area, whose primary purpose
is to serve as a destination for drag and drop operations. See Figure A-3.

Figure A-3 A Drag and Drop Target

A typical use of a drag and drop target is as a receptacle for dropping an object
to be loaded into the destination application. Imagine an editor window that
has a drag and drop target in its control area. Imagine further that the data
pane is displaying The_Simpsons , the file currently loaded in the editor.
Imagine that this editor window supports two types of drag and drop
operations, one which uses the text pane as a destination, and one which uses
the drag and drop target. If you drag a document—call it Bart —from File
Manager and drop it onto the text pane, Bart will be inserted into
The_Simpsons at the location where you dropped it. If instead of dropping
Bart onto the text pane, you dropped it on the drag and drop target, Bart
would replace The_Simpsons as the document presently loaded. If you had
unsaved edits in The_Simpsons , the editor would present a Notice window
asking whether you want to save them before closing The_Simpsons .

As a secondary feature, some drag and drop targets contain images which can
themselves be dragged. That is, the images can be source objects in drag
operations. Consider again the Text Editor example above. Imagine that the
drag and drop target contains a glyph which can serve as a source object that
represents the document presently loaded. For example, if Bart is currently
loaded, you can drag the Bart image out of the drag and drop target and onto

A-14 Desktop Integration Guide—August 1994

A

the Print Tool to print Bart. This action prints the version of Bart which
currently appears in the window (which may contain unsaved edits), and does
not unload Bart from the Text Editor. See Figure A-4.

Figure A-4 An Editor Window with a Drag and Drop Target

Windows are not required to include a drag and drop target. When an explicit
drag and drop target is used, there should typically be only one per window
or, at most, one per control area. Multiple drag and drop targets should be
used only when the control areas in which they appear have explicit borders
separating one panel from another. The drag and drop target always applies to
the entire window or control area in which it appears. In particular, drag and
drop targets should not be used to load data into single-line text fields or other
individual controls, since these objects can accept drops directly when
appropriate and do not require explicit targets of their own.

An explicit drag and drop target may, however, be included as an alternative to
the primary drop site in a window or control area - provided there is a clear
primary drop site that applies to the window or control area as a whole. In
such cases, the explicit target will indicate to the user that drops are permitted
when the presence of a drop site might not be sufficiently obvious based on the
appearance of the drop site itself. An application whose primary drop site is a
scrolling list, for example, might choose to provide a drop target to indicate
that drops are permitted. In such cases, dropping on the drag and drop target
should have the same effect as dropping on the primary drop site. Because it
will typically be smaller and thus more difficult for the user to hit, the
alternative drop site should only be added if the primary drop site will not be
apparent to the user.

Drag and Drop User Interface Specification A-15

A

Introducing a drag and drop target to an existing application should not cause
larger, more accessible drop sites to ignore drop requests. For example, many
read-only data viewing applications permit users to drop files onto their data
panes for immediate display. This method should continue to be supported for
backward compatibility with established conventions even after a drag and
drop target is added, because it is easier for the user to point at the data pane
than at the drag and drop target and because drops over read-only data panes
do not create any ambiguity over whether the data being dropped should
replace, or be inserted into, the current data.

Visual Appearance of a Drag and Drop Target. As Figure A-3 on page A-13 shows,
a drag and drop target appears to be a box whose open top is flush with the
screen. The sunken appearance signifies that the object is a receptacle. Drag and
drop targets have two standard sizes (see “Drag and Drop Target Engineering
Specification” on page A-31). The smaller standard size allows the drag and
drop target to be added to the control area that typically appears at the top of
an OPEN LOOK base window without increasing the normal height of the
control area. Drag and drop targets should use the smaller standard size
whenever the control area contains only one row of buttons. The larger
standard size provides a target that is somewhat easier to drop on and that is
also large enough to permit the display of an application-specified image
inside the target’s frame. The larger standard size should be used whenever
there is sufficient room in the control area containing the drag and drop target.
Drag and drop targets can be created in arbitrary sizes if necessary, but the two
standard sizes should be used whenever possible, since the size and
proportions of the target are important means of identification.

Like other standard OPEN LOOK controls, drag and drop targets should
appear only in control areas; they should never appear in data panes. The drag
and drop target is typically located in the upper right-hand corner of the
control area. When it is located in a control area above a data pane, the drag
and drop target should be right-aligned with the right edge of the data pane. If
the drag and drop target has a textual label, the label should appear to the left
of the drag and drop target in the standard bold font and be followed by a
colon. The bottom of the drag and drop target should be positioned slightly
below the baseline of the text.

When a window containing a drag and drop target is resizable, the target
should be positioned relative to the top and right-hand edges of the window or
control area. The drag and drop target should remain in the same relative
position whenever the window is resized to ensure its continuous visibility

A-16 Desktop Integration Guide—August 1994

A

when the size of the window is reduced. If the application permits its window
to be resized such that the drag and drop target would extend into the space
occupied by another control, the drag and drop target should appear to
overlap the other control.

Drag and Drop Target Content Images - In their normal states, some drag and
drop targets are empty, whereas others contain object images. A drag and drop
target is ordinarily empty if it doesn’t allow objects to be dragged out of it.
These empty drag and drop targets contain an image only while they are
processing dropped objects. This image has a grayed-out, or busy appearance.
Refer to the center figure in Figure A-5. Once the drop has finished being
processed, the object image and the busy feedback vanish and the drag and
drop target is empty again.

In contrast, if a drag and drop target allows an object to be dragged out of it,
there is an object image inside the drag and drop target at all times that
dragging-out is possible. For example, in the editor example described above,
the drag and drop target always contains an object image, except when there is
no document presently loaded in the window. The default content image is a
series of horizontal lines spaced evenly across the receptacle. Applications may
choose to provide other, customized images. The object image is overlaid with
the standard OPEN LOOK busy feedback while a drop is being processed.
After the drop completes, the object image resumes its normal appearance.
Refer to the right figure in Figure A-5. When a drag and drop target is inactive,
the borders of the box as well as its content and label should be dimmed.

Figure A-5 Drop Targets: Empty, Busy, and Containing an Image

Applications may occasionally need to display an object that can serve as the
source for a drag operation, but which nevertheless cannot serve as a legal
drop site. The standard, “sunken” drag and drop target should not be used in

Drag and Drop User Interface Specification A-17

A

these cases. The recommended solution is to display a glyph that represents
the data and serves as a source for drag operations. This drag source image
should appear in one of the standard sizes defined for use with the drag and
drop target and should be positioned according to the same set of rules. The
drag source image should be surrounded by a one-pixel border line that
matches the interior dimensions (i.e., the “sunken” rectangle inside the bevel)
of an appropriately sized drag and drop target. In color implementations, the
border should be a standard “chiseled” line comparable to the border of a
control area.

Drag and drop targets (and drag sources) appearing in the smaller standard
size should normally use the default content image (see Figure A-5) because
the available imaging area is not large enough to make distinctions between
images representing different data types practical. If an application-specified
content image is required, or if space for a larger target is already available, the
drag and drop target should use the larger standard size, which is designed to
accommodate a standard (32 x 32) File Manager document glyph for the data
in the window. If the content image is used to represent a specific type of data
object, it should use the same image that appears in the File Manager for data
objects of that type. (The application should query the Classing Engine for the
appropriate glyph rather than using a hard-coded image, since users can
change the glyph assigned to a particular type of data object at any time.)

A.6 To Copy or Not to Copy?
Drag and drop operations transfer an object. Transferring an object may mean
relocating a document in the file system; loading a document into an editor;
printing a document; inserting a text selection into a document; or any number
of other actions determined by the characteristics of the source object, the
nature of the destination application, and where in the destination application
the source object is dropped.

You can use drag operations simply to transfer a source object, or to duplicate
the source object and transfer the duplicate. To support these two forms of
drag and drop, there are two types of drag operations which differ in whether
the user holds down a modifier key while initiating the drag. The standard
form of drag and drop is the unmodified form, where the user does not hold
down a modifier key. In this section this form is referred to as unmodified-drag.
The second form involves holding down the Duplicate modifier while

A-18 Desktop Integration Guide—August 1994

A

initiating the drag operation, and is referred to as Duplicate-drag. Whereas
Duplicate-drag always copies the source object, an unmodified-drag may or
may not, depending on what is most intuitive in the current context.1

A.6.1 Unmodified Drag

Because users are most likely to learn the unmodified form of drag and drop
first, and to use it when they are exploring new drag and drop actions, it has
been designed to do the most obvious thing in a given situation. That is, it
either does or does not duplicate the source object depending on what the
source object is and what the destination is doing with it.

Typically, when a drag operation is relocating data, the source object is not
duplicated. For example, when you drag a document from one folder to
another in File Manager, it is clear that you meant to reorganize your
directories, and the document is not duplicated. Similarly, when you drag a
document from a folder onto the wastebasket, it is clear that you meant to
relocate the document to the wastebasket, and in this case as well the
document is not duplicated. Similarly, when a drag operation loads data into
an application, it does not duplicate the data.2

In contrast, in many cases when a drag operation carries data from one
application to another, the data are transformed, and the user would typically
prefer that the operation not affect the original source object. For example,
when you drag a document from the File Manager onto the Print Tool, the data
are transformed into a hardcopy document, and you are not likely to want to
lose the original document. As another example, consider dragging a message
from Mail Tool onto Calendar Manager. This action transforms the mail
message into a scheduled appointment, assuming the mail message is
formatted correctly. In this case as well, it is not clear that a user would be
happy to lose the original mail message.

Note that both the source and destination applications play a role in
determining whether or not an unmodified drag operates on a duplicate of the
source object. The impact of the drag operation on the original source object in
the source application depends on where the user drops it. For example,

1. Another type of drag operation may be added in the future to support link creation.

2. In fact a copy of the source object is loaded. However, from the user’s perspective he or she is operating on
the original object, since the original source object’s name appears in the destination application header, and
by default changes will ultimately be committed to the original object.

Drag and Drop User Interface Specification A-19

A

imagine that you drag a document from a File Manager folder. The source may
or may not eventually be removed from the folder, depending on whether you
drop the document on Print Tool, or on the wastebasket, or onto a load drag
and drop target in Text Editor. When a drop has been completed, the
destination application advises the source application as to whether the source
object should be removed from its original location.1

Naturally, the successful completion of the drop is a necessary condition for
removing the source. That is, any time that a drag and drop operation does not
complete successfully, the source will not be removed.

A.7 Loading Data
In many cases, using drag and drop to load a file into a destination application
is identical, in effect, to loading the file via more conventional means (such as
by choosing “Open” from the application’s File menu). Specifically:

• If there are any unsaved modifications to the currently-loaded file, a Notice
window is presented that gives the user the opportunity to save the
changes.

• The currently-loaded file is closed and the new file is loaded.

• The newly-loaded file’s name and path are displayed in the window header
following the application name.

• After the user modifies the newly-loaded file, he or she can save the changes
back to the original file, typically using “Save” in the File menu.

In other cases, a load resulting from a drag and drop operation may differ in
one or more regards from loading a file via more conventional means. First,
occasionally, such as when the file is dragged from a File Manager running on
a remote machine with an inaccessible file system, only the filename (not the
path) is accessible. In such cases the window header should display the
filename and the name of the application the file came from. Specifically, the
window header should display:

Current Application -- Filename From Source Application

1. Generally, the destination application should recommend that the source be removed only when it is clear
that the user intended to relocate the source object. The original source object should be left behind
whenever it is not intuitively obvious that the user would expect the operation to remove the source.

A-20 Desktop Integration Guide—August 1994

A

For example, if you were to drag a file called Lisa from a File Manager running
on a remote machine to a Text Edit application window running on the local
machine, the window header should display:

Text Edit -- Lisa From File Manager

Second, occasionally it may not be possible to save the modified document
back to the original file. For example, if you had dragged the file from a File
Manager running on a remote system, and the remote File Manager application
then died, you could not save the file back. In cases such as this the “Save”
item in the File menu should be inactive (i.e., grayed out). Users presumably
will still be able to use the “Save As” command to save the file to the local file
system. They may also be able to restart the remote File Manager and drag the
file into it.

Third, unlike the more conventional methods of loading files, when you are
loading a file via drag and drop you have the option to duplicate the original
source file, and then load the duplicate. If you press the Duplicate key and
then perform a drag operation whose drop method is a load, the source object
is duplicated in the source application and then the copy is loaded into the
destination application. Ordinarily, if the original source object was named
“Bart”, the duplicate is called “copy_of_Bart”. However, if the original source
object name begins with “copy_of_”, or if there is already a file named
“copy_of_Bart” in the current directory, then the duplicated name begins with
the string “copy2_of_”, and so forth.

A.8 Data Format Conversion
Frequently the source object is in a data format that differs from the
destination’s data format. For example, imagine that you drag some text from
Text Editor into a painting application’s window and drop it onto the painting
canvas. Whereas Text Editor stores data in ASCII format, the painting
application might store it in Postscript format. In order for the painting
application to insert the source object into its document, the source must be
converted from ASCII to Postscript.

Ideally, when a drop entails data format conversion, the conversion should
occur transparently. That is, the user shouldn’t even need to know it happened.
However, in some cases the destination application may not be able to decide

Drag and Drop User Interface Specification A-21

A

how to handle the source data format. In those cases, the destination
application should let the user choose among alternative formats listed in a
Notice window.

A.9 Handling Multiple Source Objects
Typically, when the destination receives multiple source objects during a single
drag and drop operation, it should treat them as independent drag and drop
events. However, they may be treated as a single, atomic event in cases where:

• undesirable results would be obtained if all the source objects were not
successfully processed by the destination; and

• the destination can reverse the effects of any processing already completed
at the time that a failure occurs.

When the destination application treats multiple source objects as independent
drag and drop events, it should present a Notice window for each source object
that is not successfully processed. The user may terminate processing of all the
source objects by pressing the STOP key (once).

A.10 Visual Feedback

A.10.1 While Dragging

When you begin a drag operation, the pointer changes shape and an image of
the source object is attached to the pointer to provide feedback that a drag and
drop operation has begun. As you drag the pointer over different graphical
objects, it changes shape to indicate whether a drop is allowed. In addition, the
prospective destination object may animate to provide visual feedback about
whether it can accept the source object. For example, a folder might open to
show that it can accept the source object.

The visual appearance of the pointer, and the visual image of the source object
that the pointer drags along, differ depending on whether the source object is a
text selection or not. The two sets of visuals are described in the following
sections.

A-22 Desktop Integration Guide—August 1994

A

While Dragging Data Objects and Containers
When you begin dragging a data object or a container of data objects, the
pointer changes to either the move pointer or the copy pointer (see Figure A-6).
It changes to the move pointer if you initiated an unmodified-drag, and to the
copy pointer if you initiated a Duplicate-drag.

Figure A-6 Normal Pointer, Move Pointer, and Copy Pointer

In addition to changing the shape of the pointer, the source application should
attach to the pointer a graphic image to represent the source object. See
Figure A-7. The source object image should be a relatively compact
representation of the source that fits around the pointer. If the source object
itself is a small graphical object, the shape of the image that is dragged should
be the same as the shape of the original source object. If the source object has
no obvious visual representation or is too large to be previewed in its entirety
during the drag operation, an image that is roughly the size of a File Manager
glyph should be designed to represent the source object.

Figure A-7 Move and Copy Pointers with Source Images

The source image should be transparent, and should not have much internal
detail, so that users can see through the source image to the object underneath
the pointer’s hot spot. The move or copy pointer should be placed on the source

Drag and Drop User Interface Specification A-23

A

image in a way that: (a) the hot spot of the pointer is as near as possible to the
middle of the source image; and (b) the “tail” of the pointer is not obscured by
the outline of the source image. When a user drags multiple source objects at
once, a representation of the collection of source objects should surround the
pointer

Feedback About Prospective Destinations. Whenever possible, when you drag the
pointer over a graphical object on the screen during the drag operation, the
drop allowed or the drop not allowed symbol should be added to the pointer. See
Figure A-8. To ensure that these symbols will be legible when overlaid onto the
image being dragged, an area equal to the size of the symbol should be cleared
in the center of the source image before the drop allowed or drop not allowed
symbol is added. The object under the pointer may also change its appearance
to indicate that it can accept the source object.

Figure A-8 Drop Allowed and Drop Not Allowed Pointers

In some cases applications may not be able to predict with certainty whether a
drop on the destination object will succeed or not. However, applications
should try to be as accurate as possible. So long as the feedback is typically
accurate, and errors seem like reasonable errors, users will forgive occasional
misinformation.

With respect to the drop allowedand drop not allowedpointers, three areas of the
screen are considered neutral: the workspace itself, window and control area
backgrounds in general, and the background of the data pane (if any) from
which the drag operation was initiated (all areas of the data pane except those
explicit graphical objects that are either legal or illegal destinations for a drop
are considered part of its background). With one exception, the pointer image
always changes to the move or copy pointer while it is over these areas. The
exception to the rule is: If an application supports drag and drop actions

A-24 Desktop Integration Guide—August 1994

A

within a single window, but not between windows, then the pointer should
change to the drop not allowed shape as soon as the pointer leaves the source
window.

While Dragging a Text Selection
When you begin dragging a text selection, the pointer image changes
immediately to the text moveor text copy pointer, depending on whether you
are holding down the Duplicate key. These pointers include a rectangular area
containing at least the first three characters of the text selection as a “preview”
of the data being dragged. If the selection contains more characters than will fit
within the rectangle, a dimmed More arrow follows the characters in the
rectangle.Text Move and Text Copy Pointers.

Figure A-9 Text Move and Text Copy Pointers

The text moveand text copy pointers in are neutral pointers. In other words,
they are pointers that appear whenever the pointer’s hot spot is not over
graphical objects that are either legal or illegal destinations for the drop.

These pointer shapes appear while the pointer is over the workspace, over the
backgrounds of windows or control areas, or over objects that don’t subscribe
to the drag and drop protocol.1

When the pointer’s hot spot is over a text data pane or a text field, its image
changes to one of the text insert drop allowed pointers shown in Figure A-10.
Specifically, the arrow changes to look like a cross-hair. To facilitate the
accurate insertion of the data being dragged into the existing text, the interior

1. These pointers are also used over graphical objects that do subscribe to the protocol, but for some reason
cannot provide feedback about whether a drop is allowed.

Drag and Drop User Interface Specification A-25

A

of the cross-hair itself must be transparent. Ideally, the cross-hair pointer
should be used only when the pointer is over a drop site whose semantics call
for insertion of the data being dragged into the data at the drop site. Note that
the change to the text insert drop allowed pointer should take place immediately
when dragging a text selection in a data pane (unless it is read only), since the
text can be dropped anywhere within the same pane.

Figure A-10 Text Inset Drop Allowed Pointers

When the pointer is over a drag and drop target (or any other drop site where
the drop semantics indicate a replacement of the current data), the pointer
should change to one of the text replace drop allowed images shown in
Figure A-11. Specifically, the arrow in the pointer should change to a bull’s-eye
that is the same as the drop allowed feedback used elsewhere. If an
implementation is unable to support different pointer images over explicit
drag and drop targets and implicit drop sites (data panes or individual
controls), then the text insert drop allowed (cross-hair) pointer should be used to
provide drop allowed feedback over all legal drop sites (including drag and
drop targets) while the text is being dragged.

Figure A-11 Text Replace Drop Allowed Pointers
1/

A-26 Desktop Integration Guide—August 1994

A

When the pointer is over a graphical object that cannot accept the text selection
as a drop, the pointer changes to one of the text drop not allowed pointers. See
Figure A-12. Specifically, the arrow changes to look like the drop not allowed
symbol shown in Figure A-8 on page A-23.

Figure A-12 Text Drop Not Allowed Pointers

While Dragging Selected Data other than Text
When dragging a selection containing non-text data that does not itself
represent an object or a container, the pointer changes to the selection moveor
selection copy pointer, depending on whether you are holding down the
Duplicate key. See Figure A-13. These pointers are analogous to the text move
and text copy pointers shown in Figure A-9 on page A-24, but they do not
include any “preview” of the data being dragged (that is, there is no indication
of the actual contents of the selection). The source application may choose to
include an optional glyph within the rectangular area of the pointer to indicate
the type of data being dragged (see Figure A-13 on page A-27) but, by default,
the rectangle is empty.

As in the case of text selections, the implementation should allow for the use of
both selection insert drop allowed and selection replace drop allowed pointers (see
Figure A-13) when it can make the appropriate distinctions between drop sites
with insert semantics and those with replace semantics. If the implementation
cannot support different pointer images over drag and drop targets and
implicit drop sites (data panes or individual controls), then the selection insert
drop allowed (cross-hair) pointer should be used to provide drop allowed
feedback over all legal drop sites (including drag and drop targets).

Drag and Drop User Interface Specification A-27

A

When dragging selections in data panes containing sequential data types (that
is, types such as audio that are characterized by a one-dimensional array in
which new data displaces existing data at a specific insert point), the pointer
image should change immediately to the selection insert drop allowed pointer,
since an insert point must be specified even in the source data pane.

When dragging selections within data panes containing non-sequential data
types (that is, types such as structured graphics, in which data can be moved to
arbitrary spatial locations and can overlap any data that is already displayed in
those locations), the pointer image should change immediately to the move or
copy pointer, but should not display the drop allowed or drop not allowed symbol
while over the original data pane, since any point in the source data pane
constitutes a legal drop site. In addition to changing the pointer’s shape, the
source application should attach a graphical image - as similar as possible to
the size and shape of the actual selected data - that provides a WYSIWYG
preview of the effect of a drop. If the pointer and image being dragged are
moved out of the source data pane, the appropriate selection drop allowed
pointer should be displayed whenever the hot spot is over any legal drop site,
including other compatible data panes or the original source data pane.

When the pointer is over a graphical object that cannot accept the data being
dragged, the pointer image changes to one of the selection drop not allowed
pointers. See Figure A-13. As in the case of text drags, the arrow changes to
look like the drop not allowed symbol shown in Figure A-8 on page A-23.

Figure A-13 Drop Feedback Pointers for Non-Text Selections

A-28 Desktop Integration Guide—August 1994

A

A.10.2 During the Drop

The destination assumes a busy appearance while processing a drop. Once the
operation is complete, the destination resumes its normal appearance. If the
application can process the drop in the time it would take to post and clear the
busy appearance change, then the application may choose not to post the busy
appearance.

A.11 Input Focus Management
When you drag an object between windows, the input focus moves to the
destination window. Within the destination window, the input focus moves to
the element the object was dropped on, assuming it is an element that
ordinarily receives the input focus. For example, if you drop a text selection
into a text pane, the text pane receives the input focus. If the destination
element cannot receive the input focus (as, for example, drag and drop targets
can’t), the input focus goes to the element in the window that ordinarily
receives it when the window receives the input focus.

When you drag an object from one location to another within the same
window, the input focus moves to the destination element, assuming it is
capable of receiving the input focus. If the destination element cannot receive
the input focus, the input focus remains at the source location.

A.12 Error Handling
The best user interfaces are designed for error, and drag and drop is no
exception. Errors inevitably occur as a result of user mistakes and as a result of
system errors. Drag operations may fail for any of the following reasons:

• The user dropped the source object over a destination that does not
subscribe to the drag and drop protocol.

• The source object is of a type the destination cannot accept.

Although the visual feedback on the pointer is designed to minimize this
sort of problem, the feedback is not infallible. And, of course, we can’t count
on users’ actions conforming to the recommendations of the feedback, in
any case.

• For some reason the drop operation was aborted.

Drag and Drop User Interface Specification A-29

A

A drop might be aborted either because of a failure of the transport
mechanism used by drag and drop; or because of complications the
destination application encounters while processing the drop (such as
running out of space in the file system); or for other reasons.

When a drag operation fails, either, but not both, the source application or the
destination application presents a Notice window telling the user what has
happened. During the drag before the source application has established
communication with the destination, the source is responsible for all Notice
windows. After communication with the destination has been established, the
destination assumes responsibility for Notice windows. The application that
does not present the Notice window may choose to display an error message in
its base window footer.

In cases of intra-application drags, the application may present a message in a
window footer rather than in a Notice window. In either case, the message
should explain why the drop failed, and provide constructive guidance to the
user about how to avoid failure in the future (if possible).

A.13 Undoing the Effects of Drag and Drop
You can undo the effects of a drag operation by using an Undo menu item or
command button, or the Undo function key, in both the source and destination
applications (assuming the operation is undo-able).1 An Undo action in the
source application undoes the effect of the drag operation on the source;
whereas an Undo action in the destination application undoes the effect there.

A.14 Canceling a Drag Operation in Progress
If you decide to cancel a drag operation while you still have the mouse button
held down, you can press the STOP key and then release the mouse button.

1. The Undo function key operates on the window with the keyboard input focus.

A-30 Desktop Integration Guide—August 1994

A

A.15 Deviations from the OPEN LOOK Style Guidelines1

For the most part, the guidelines in this document extend the guidelines in the
OPEN LOOK Application Style Guidelines. However, a few of the guidelines
described in this document differ from those of the style guide. Applications
designed to run on the OpenWindows Environment should follow the
guidelines described here rather than those in the style guide.

A summary of the discrepancies follows:

• Differences between unmodified-drag and Duplicate-drag

According to the style guide, whenever a user initiates a drag operation
without holding down the Duplicate key (i.e., Ctrl), the drag operation
should be interpreted as a request to relocate the source object. In other
words, unmodified-drags should always be interpreted as requests to move
the source object from its original location to the destination. In cases where
such actions would result in unexpected loss of data, the destination
application may refuse to receive data transferred by unmodified-drag
operations. The destination application should present a Notice window to
allow users either to cancel the drag operation or to change it to a duplicate
operation.

The guidelines described in this document allow applications to interpret
unmodified-drag operations as identical to Duplicate-drag operations to
prevent unanticipated loss of data.

Refer to OPEN LOOK Application Style Guidelines page 165 and to “To Copy
or Not to Copy?” on page A-17 in this document.

• Dropping one mini-window onto another

The style guide recommends that applications allow users to drop mini-
windows onto one another, which should transfer or copy data from the
source application to the destination application.

1. Sun Microsystems, Inc. (1990) OPEN LOOK Graphical User Interface Application Style Guidelines. Reading,
MA: Addison-Wesley Publishing Company, Inc.

Drag and Drop User Interface Specification A-31

A

This document states that when one mini-window is dropped onto another
it is as if they are resting on top of one another on the workspace. That is,
when you drop one mini-window onto another, the destination application
is not the overlaid mini-window, it is the application that owns the
workspace (i.e., the window manager).

Refer to the OPEN LOOK Application Style Guidelines and to “The Source” on
page A-6 of this document.

• Dropping objects onto window backgrounds

The style guide says that a user may drop a source object onto the
background of a base window, resulting in loading the source into the
window (replacing the previous content).

This document specifies that applications should use drag and drop targets
in their control areas for this purpose. If an application doesn’t have a
control area, and, consequently, doesn’t have a place to put a drag and drop
target, it may allow drops onto its window header.1

Refer to page 164 in the style guide and to the section called “Drag and
Drop Targets” on page A-13 of this document.

A.16 Drag and Drop Target Engineering Specification
Two standard sizes are defined for the drag and drop target. The smaller size
(see Figure A-14 on page A-32) is used in the control area above an OPEN
LOOK base window when that control area contains only one row of buttons.
The larger standard size (see Figure A-15 on page A-33) is designed to display
a standard File Manager document glyph within its borders. Its dimensions are
the same for all scaling factors because the same set of File Manager glyphs is
used in all cases.

Applications can specify the position of the drag and drop target as well as its
width and height. The standard “3D” border must always be used, since this is
the only aspect of the target itself that directly identifies the drag and drop
target as an explicit drop site.

1. Applications that convert from the old policy to the new one should provide constructive guidance in error
messages to help users with the transition. Specifically, if a user drops onto the window background, the
application should present an explanatory error message that describes that the drag and drop target (or
window header) should be used in place of the window background.

A-32 Desktop Integration Guide—August 1994

A

Figure A-14 Small Drag and Drop Target

Table A-2 Dimensions for Small Drag and Drop Target (in points)

10 pt 12 pt 14 pt 19 pt

(a) 19.0 21.0 23.0 30.0

(b) 14.0 15.5 17.0 22.0

(c) 2.6 3.0 3.4 4.4

(d 0.8 1.0 1.2 1.6

Drag and Drop User Interface Specification A-33

A

Figure A-15 Large Drag and Drop Target

Table A-3 Dimensions for Large Drag and Drop Target (in pixels)

All

(a)50

(b)45

(c)6

(d)1

A-34 Desktop Integration Guide—August 1994

A

B-1

Examining a Classing Engine
Database B

You may use the ce_db_build utility program to create an ASCII Classing
Engine database file that you may print out, or examine using any ASCII
editor. Perform the following steps to create the readable CE database file:

1. Determine which CE database you wish to transcribe. You may select either
the user, the system, or the network CE database. For the purposes of this
sample, let’s create an ASCII file of the system CE database in a file called
ce.system.txt .

2. Issue the following command:

ce_db_build system -to_ascii ce.database.txt

3. If you would like to create ASCII readable files for the user or network CE
databases, substitute user or network for system in the above command
example

B-2 Desktop Integration Guide—August 1994

B

C-1

Vendor Data Type Registration C

If you want your application to be able to exchange data with other
applications on the OpenWindows Desktop, you need to make your
application’s file format, process types, object types, and file attributes public.
SunSoft facilitates the dissemination of this information through its Developer
Integration Format Registration (DIFR) program.

Registration is required for the three technologies discussed in this guide: drag
and drop, Classing Engine, and the ToolTalk service. As data type information
is gathered, SunSoft will make it available to other developers.

Call the number below for instructions on receiving your DIFR packet. The
packet contains detailed information on the program, as well as the forms you
need to register your data types.

Phone number: 1-510-460-3267.

The remainder of this appendix discusses the technical issues of why data
types must be registered.

C.1 Drag and Drop Data Types
If an application is to receive a drop from a source application, the source
application must send the data in a format readable by the receiving
application. For example, if Text Editor wishes to drop data into Mail Tool, Text
Editor must be able to provide the data in a format readable by Mail Tool.
Conversely, if Mail Tool wishes to drop data into Text Editor, Mail Tool must be
able to provide the data in a format Text Editor can read. Although the source

C-2 Desktop Integration Guide—August 1994

C

application is responsible for providing data in a format readable by the
receiving application, it is important that the receiving application be able to
receive data in some of the more common data formats such as ASCII, Sun
raster imaging format, or PostScript page description language.

Programmatically, drag and drop handshaking works as follows: (1) data is
selected from the source application; (2) the receiving application requests a list
of the data formats in which the source application can send the drop; (3) the
source application replies with a list of data formats; (4) the receiving
application tells the source application which format it would like the data
sent; (5) data is transferred.

The SunSoft data type registration program helps standardize the data format
names by which applications request data formats from one another. All
companies that wish to share their data with other applications are encouraged
to register data format names for their application’s data files. This name will
be used by other applications to reference desired data formats.

Data format names, as well as additional format information, will be made
available from SunSoft.

C.2 Classing Engine File Types and Attributes
As described in Chapter 5, “Classing Engine,” File Manager and other
applications identify a file’s type with a unique identifier. Once the file is
typed, the file’s attributes can be determined.

C.2.1 File Type Identifiers

The file type identifier is used to derive a file’s type. File type identifiers can be
associated with a filename pattern (such as *.ps or *.wk), a unique string value
within the file, or both. If the type-by-pattern method is used, you will need to
register a file pattern. If the type-by-content method is used, you will need to
register a content pattern, byte offset, and content data type (short, long,
string). Two file type registration examples are shown below.

1. Content Value = SSQLReport; Offset = 0; Type = string

This file type can be identified by the string “SSQLReport” starting at byte
zero.

2. Content Value = 0x4d4d002a; Offset = 10; Type = long

Vendor Data Type Registration C-3

C

This file can be identified by the longword value 0x4d4d002a starting at
offset 10 (decimal) in the file.

It is important that your file identifier be unique. The best identifier is a string
that identifies your company, the application, and the file type.

C.2.2 File Type Attributes

File type attributes are used to specify the correct method to open or read the
file, print the file, and the display icon. The current Classing Engine database
attributes are shown below. Refer to Chapter 5, “Classing Engine,” for more
information on these attributes.

Table C-1 Classing Engine Database Attributes

Attribute Description

TYPE_NAME File type name

TYPE_OPEN String used to open the file

TYPE_PRINT String used to print the file

TYPE_ICON icon file
$OPENWINHOME/include/images/compress.icon

TYPE_ICON_MASK icon-file,
<$OPENWINHOME/include/images/doc.mask.icon

TYPE_FGCOLOR Icon foreground color

TYPE_BGCOLOR Icon background color

TYPE_OPEN_TT ToolTalk identifier used when starting applications

TYPE_FILE_TEMPLATE Unique filename generated a nd used by the application as
a filename.

C-4 Desktop Integration Guide—August 1994

C

C.2.3 File Type and Attribute Reference

If you want to peruse a file of previously registered file types, you may view
the Classing Engine database by using the program map1.c in the Classing
Engine chapter, or use the ce_db_build utility to create an ASCII description
file.

C.3 ToolTalk Type Information
ToolTalk messages can be addressed to a specific application, a type of
application, a specific object, or a type of object. To send messages addressed to
types of applications or objects, you must know the application’s process type
or object type. It is the name of an application’s process types and object types
that need to be registered. For more information on process and object types,
see the ToolTalk User’s Guide.

To provide process type and/or object type information to the ToolTalk service
you must supply static type information at installation time by compiling your
type file (which puts your type information into the Classing Engine database)
and register your process type with the ToolTalk service. When you register
your ptype with the ToolTalk service, it will read the type information from
the Classing Engine database. If you use otypes , you need to also create a
ptype for your application.

C.3.1 Process Type

To send messages to a particular type of application, an application needs to
know the process type (ptype) of the receiving application(s). The ptype is
identified by the process type identifier (ptid). A ptid must be unique for every
installation. This identifier cannot be changed at installation time, so it is
important that a unique name be chosen. Ideally you will use a name that
includes the trademarked name of your product or company, such as
Sun_EditDemo . Also use upper-case letters to help make your ptid unique.
The ptid cannot exceed 32 characters, and should not be one of the reserved
identifiers (start, queue, file, session, observe, handle, ptype, otype, per_file,
per_session, and opnum.

Vendor Data Type Registration C-5

C

C.3.2 Object Type

To send messages to a particular type of object, an application needs to know
the object type (otype). The otype is identified by the object type identifier
(otid). An otid must be unique for every installation. This identifier cannot be
changed at installation time, so it is important that a unique name be chosen. It
is recommended that the name begin with the ptid of the tool that implements
the otype ; e.g., Sun_EditDemo_object . The otid is limited to 64 characters,
and should not be one of the reserved identifiers (start, queue, file, session,
observe, handle, ptype, otype, per_file, per_session, and opnum).

C.3.3 Ptype and Otype Reference

If you want to peruse a file of previously registered ptypes and otypes, you
may view the Classing Engine database by using tt_type_comp . Refer to the
ToolTalk User’s Guide for details.

C-6 Desktop Integration Guide—August 1994

C

D-1

ToolTalk Example Program for
XView Toolkit D

This appendix presents two code examples (ttreceive.c and ttsend.c)
and a header file (ttdig.h) which illustrate the use of ToolTalk service with
the XView toolkit.

The source and header files, and the Makefile for this example can be found
online at $OPENWINHOME/share/src/dig_samples/tooltalk_simple .

D-2 Desktop Integration Guide—August 1994

D

D.1 ttreceive.c

Code Example D-1 ttreceive.c (1 of 3)

 /* ttreceive - show receiving tooltalk message based on pattern.
 * This simple example program is the counterpart to ttsend. It registers
 * a pattern which describes the message it is interested in, and then
 * waits for them. */

#include <xview/xview.h>
#include <xview/panel.h>
#include <xview/tt_c.h>

#include “ttdig.h”

Frame base_frame;
Panel_item controls;
Panel_item gauge;

char *my_procid;

voidreceive_tt_message();
voidcreate_ui_components();

void
main(argc, argv)
int argc;
char **argv;
{
 int ttfd;
 Tt_pattern pat;

 /* Initialize XView. */
 xv_init(XV_INIT_ARGC_PTR_ARGV, &argc, argv, 0);
 create_ui_components();

 /* Initialize ToolTalk and obtain file descriptor for incoming messages. */
 my_procid = tt_open();
 ttfd = tt_fd();

 /* Tell XView to call my receive procedure when there are messages. */
 notify_set_input_func(base_frame,

(Notify_func)receive_tt_message, ttfd);
 /*
 * Create and register the pattern we are interested in. We are

ToolTalk Example Program for XView Toolkit D-3

D

 * registering as an observer; all observers will receive a message
 * destined for them (try a few ttreceives). If we had registered
 * as a TT_HANDLE, we would be the one to handle the message.
 */
 pat = tt_pattern_create();
 tt_pattern_category_set(pat, TT_OBSERVE);
 tt_pattern_scope_add(pat, TT_SESSION);
 tt_pattern_op_add(pat, RECEIVE_PATTERN);
 tt_pattern_register(pat);

 /* Join the default session to get messages. */
 tt_session_join(tt_default_session());
 xv_main_loop(base_frame);

 /* Clean up ToolTalk on exit. */
 tt_close();
 exit(0);
}

/*
 * receive_tt_message is the procedure that gets called by the XView
 * notifier when my tooltalk file descriptor becomes active with a message.
 */
void
receive_tt_message()
{
 Tt_message msg_in;
 int mark;
 int val_in;

 /*
 * Pull in my message handle. If it is null, we became active even
 * though there wasn’t a real message for us.
 */
 msg_in = tt_message_receive();
 if (msg_in == NULL) return;

 /*
 * Get a storage mark so we can free storage that tt obtains for
 * our message contents.
 */
 mark = tt_mark();

Code Example D-1 ttreceive.c (2 of 3)

D-4 Desktop Integration Guide—August 1994

D

D.2 ttsend.c

 /* If the message pattern matches our interest, fetch the value. */
 if (0==strcmp(RECEIVE_PATTERN, tt_message_op(msg_in))) {
 tt_message_arg_ival(msg_in, 0, &val_in);
 xv_set(gauge, PANEL_VALUE, val_in, NULL);
 }

 tt_message_destroy(msg_in);
 tt_release(mark);
 return;
}

/*
 * create_ui_components is the procedure called to set up the panel.
 */
void
create_ui_components()
{
 base_frame = xv_create(NULL, FRAME,

 XV_LABEL, “TT Receiver Example”,
 FRAME_SHOW_RESIZE_CORNER, FALSE,
 NULL);

 controls = xv_create(base_frame, PANEL,
 WIN_BORDER, FALSE,
 NULL);

 gauge = xv_create(controls, PANEL_GAUGE,
 PANEL_LABEL_STRING, “Received:”,
 PANEL_MIN_VALUE, RECEIVE_MIN,
 PANEL_MAX_VALUE, RECEIVE_MAX,
 PANEL_SHOW_RANGE, FALSE,
 NULL);

 window_fit(controls);
 window_fit(base_frame);
}

Code Example D-2 ttsend.c (1 of 3)

/* ttsend - Demonstrate sending a message with a particular pattern.
 *
 * This simple program is the counterpart to ttreceive. It sends

Code Example D-1 ttreceive.c (3 of 3)

ToolTalk Example Program for XView Toolkit D-5

D

 * a message with a particular pattern that all receivers that are
 * listening will receive.
 */

#include <xview/xview.h>
#include <xview/panel.h>
#include <xview/tt_c.h>

#include “ttdig.h”

Frame base_frame;
Panel_item controls;
Panel_item slider;

char *my_procid;

voidbroadcast_value();
voidcreate_ui_components();

void
main(argc, argv)
int argc;
char **argv;
{

 /* Initialize XView and Tooltalk; enter XView main loop. */
 xv_init(XV_INIT_ARGC_PTR_ARGV, &argc, argv, 0);
 create_ui_components();
 my_procid = tt_open();
 xv_main_loop(base_frame);

 /* Clean up ToolTalk on exit. */
 tt_close();
 exit(0);
}

/*
 * broadcast_value is the procedure that gets called when you
 * release the slider. It gets the current slider
 * value and broadcasts it with ToolTalk.
 */
void

Code Example D-2 ttsend.c (2 of 3)

D-6 Desktop Integration Guide—August 1994

D

broadcast_value(item, value, event)
Panel_item item;
int value;
Event *event;
{
 Tt_message msg_out;

 /* Create and send ToolTalk msg. */
 msg_out = tt_pnotice_create(TT_SESSION, RECEIVE_PATTERN);
 tt_message_arg_add(msg_out, TT_IN, “integer”, NULL);
 tt_message_arg_ival_set(msg_out, 0, value);
 tt_message_send(msg_out);

 /* Destroy the handle since we don’t expect a reply. */
 tt_message_destroy(msg_out);
}

/*
 * create_ui_components is the procedure called to set up the panel.
 */
void
create_ui_components()
{
 base_frame = xv_create(NULL, FRAME,

 XV_LABEL, “TT Send Example”,
 FRAME_SHOW_RESIZE_CORNER, FALSE,
 NULL);

 controls = xv_create(base_frame, PANEL,
 WIN_BORDER, FALSE,
 NULL);

 slider = xv_create(controls, PANEL_SLIDER,
 PANEL_LABEL_STRING, “Send:”,
 PANEL_SLIDER_END_BOXES, FALSE,
 PANEL_SHOW_RANGE, FALSE,
 PANEL_SHOW_VALUE, FALSE,
 PANEL_MIN_VALUE, RECEIVE_MIN,
 PANEL_MAX_VALUE, RECEIVE_MAX,
 PANEL_TICKS, 0,
 PANEL_NOTIFY_PROC, broadcast_value,
 NULL);

 window_fit(controls);
 window_fit(base_frame);
}

Code Example D-2 ttsend.c (3 of 3)

ToolTalk Example Program for XView Toolkit D-7

D

D.3 ttdig.h

Code Example D-3 ttdig.h

/*
 * RECEIVE_PATTERN is the message identifier for our tooltalk messages.
 * It is prefixed with Sun_ as a simple mechanism to avoid namespace
 * conflicts with other apps in the default session.
 */
#define RECEIVE_PATTERN “Sun_ttexample_pattern”

/*
 * RECEIVE_MIN and _MAX is our slider/gauge range.
 */
#define RECEIVE_MIN 0
#define RECEIVE_MAX 100

D-8 Desktop Integration Guide—August 1994

D

E-1

Drag and Drop Programming
Example for XView Toolkit E

This example program illustrates an implementation of drag and drop using
the XView toolkit. Its source file, icon resources, and Makefile can be found
online at $OPENWINHOME/share/src/dig_samples/ dnd_xview1. When the
program is executed, it opens a text window with a drag and drop target.
Users may drag any text file from the file manager and drop it on the
window’s drop site. The text will be displayed in the text pane, and the
filename path will appear in the window header. The file can also be imported
by entering the filename in the window header.

The document can be exported by dragging the drag and drop target to
another window. A portion of the text can be moved by selecting the desired
text and dropping it at a specific insert point. Section 3.4, “Drag and Drop
Programming Example: OLIT Toolkit” shows a drag and drop example
implemented with the OLIT toolkit.

Table E-1 Overview of the Modules

xview_dnd.c Calls DnD_init() and
create_user_interface()

E-2 Desktop Integration Guide—August 1994

E

The following sections describe the contents of xview_dnd.c in more detail.

E.1 Opening Declarations
The program begins with the compiler include directives and the global object
definitions. Note that the header file dragdrop.h is only distributed with
OpenWindows Version 3.0.1 or later.

busy_site.icon Contains the data to display the icon on the desktop
indicating a busy drop site

drop_site.icon Contains the data to display the icon on the desktop
indicating a normal drop site

Makefile Contains the commands to compile and link the
example executable

Table E-2 Overview of the Functions

main() Calls DnD_init() and
create_user_interface()

create_user_interface() Creates the frame and text window

DnD_init() Creates drop site & drag object

drop_proc() Event callback procedure; the event
procedure for the drop

get_primary_selection() Called from drop_proc() ; gets the data from
the source

load_file_proc() Event callback procedure; callback that
displays the file name on the panel

Table E-1 Overview of the Modules

Drag and Drop Programming Example for XView Toolkit E-3

E

Four global data types are defined:

A structure with two members (atom and *name) is declared to store three
server atoms. It is initialized with zeros at this time. Actual server atom values
will be loaded during the initialization (in the DnD_init() function called
later). Note that the structure does not have a formal name declared. A formal
structure name is not required when a structure is declared if the storage is
allocated at the same time.

Here are the contents of the top of xview_dnd.c , before the definition of the
main function:

Table E-3 Global Data Type Declarations

Frame Pointer to opaque structure defining the frame

Panel Pointer to opaque structure defining the panel

Textsw Pointer to opaque structure defining the text
subwindow

Panel_ite m Pointer to opaque structure defining a panel item
(the load_file prompt)

#include <xview/xview.h>
#include <xview/panel.h>
#include <xview/textsw.h>
#include <xview/dragdrop.h>
#include <xview/xv_xrect.h>

/* Global Object definitions
 *
 */

Frame frame;
Panel panel;
Textsw textsw;
Panel_item load_file;

#define FILE_NAME_ATOM 0
#define _SUN_AVAILABLE_TYPES_ATOM 1
#define XA_STRING_ATOM 2
#define TOTAL_ATOMS 3

E-4 Desktop Integration Guide—August 1994

E

E.2 Function: Main()

The program’s main function is straightforward. Two functions without return
values, create_user_interface() and DnD_init(), are declared. The
xv_init() procedure establishes connections with the X server, initializes the
Notifier, reads the ~/.Xdefaults database and reads any passed arguments.

The program then calls the two functions: create_user_interface()
creates the frame, the panel, and the text sub window; and DnD_init()
creates the drop site and the drag object.

Finally, xv_main_loop() is executed, telling the Notifier to start dispatching
events.

struct
{

Atomatom;
char*name;

} atom_list[TOTAL_ATOMS] =
{

{0,“FILE_NAME”},
{0,“_SUN_AVAILABLE_TYPES”},
{0,“XA_STRING”},

};

Drag_dropdrag_object; /* The drag object */

main(int argc, char **argv)
{

Xv_Server server;

 void DnD_init(), create_user_interface();

server = xv_init(XV_INIT_ARGC_PTR_ARGV, &argc, argv, NULL);

 create_user_interface();

 DnD_init(server);

Drag and Drop Programming Example for XView Toolkit E-5

E

E.3 Function: create_user_interface()

The create_user_interface() function, called from main() , uses the
xv_create() procedure call to create the frame, the panel, the panel text (the
file name prompt), and the text subwindow where the file is displayed. Notice
that the xv_create() procedure with the load_file handle that creates the
Filename: prompt also registers the load_file_proc() function with the
Notifier.

xv_main_loop(frame);
}

/*
 * create_user_interface: Create the user interface components.
 */

void
create_user_interface()
{
 Panel_setting load_file_proc();

frame = xv_create(NULL, FRAME,
 XV_LABEL, “Drag-n-Drop Demo”,

 XV_WIDTH, 600,
 XV_HEIGHT, 300,
 FRAME_SHOW_FOOTER, TRUE,
 NULL);

 panel = xv_create(frame, PANEL,
 XV_X, 0,
 XV_Y, 0,
 XV_WIDTH, WIN_EXTEND_TO_EDGE,
 XV_HEIGHT,50,
 NULL);

 load_file = xv_create(panel, PANEL_TEXT,
 PANEL_VALUE_DISPLAY_LENGTH, 45,
 PANEL_VALUE_STORED_LENGTH, 80,
 PANEL_LABEL_STRING, “Filename:”,
 PANEL_LAYOUT,PANEL_HORIZONTAL,
 PANEL_READ_ONLY, FALSE,
 PANEL_NOTIFY_PROC, load_file_proc,

E-6 Desktop Integration Guide—August 1994

E

E.4 Function: DnD_init()

The DnD_init() function creates the drag and drop target as well as the drag
and drop target busy glyph. The for loop gets the three server atoms and loads
them into the structure (which was declared in the global object definitions at
the beginning of the program). Note that the last xv_create() procedure
registers the drop_proc() function with the Notifier.

 NULL);

 textsw = xv_create(frame, TEXTSW,
 WIN_BELOW, panel,
 XV_WIDTH, WIN_EXTEND_TO_EDGE,
 XV_HEIGHT, WIN_EXTEND_TO_EDGE,
 NULL);
}

/*
 * DnD_init: Create a drop site, and a drag object.
 */
void
DnD_init(Xv_Server server)
{

Xv_drop_sitedrop_site;
Xv_opaquedrop_glyph;
Xv_opaquebusy_glyph;

 static unsigned short drop_icon[] = {
#include “drop_site.icon”
 };
 static unsigned short busy_icon[] = {
#include “busy_site.icon”
 };

inti;

for(i = 0; i < TOTAL_ATOMS; i++)
{
atom_list[i].atom = xv_get(server,

SERVER_ATOM,
atom_list[i].name);

Drag and Drop Programming Example for XView Toolkit E-7

E

E.5 Function: drop_proc()

The drop_proc() routine is the event callback procedure that initiates the
drag and drop operation. If the operation is a drag, the case statement handles
it either as a move or a copy. If the operation is a drag from the drag and drop
target, the third case statement (LOC_DRAG) is used. This code determines
whether the filename or the data string is passed.

This first xv_create() associates the selection targets with a corresponding
selection atom. The second xv_create() will determine if a filename is being
passed, and the third, if the text string is to be passed. In addition, the message

}

atom_list[XA_STRING_ATOM].atom = XA_STRING;

drag_object = xv_create(panel, DRAGDROP, NULL);

 drop_glyph = xv_create(XV_NULL, SERVER_IMAGE,
 SERVER_IMAGE_BITS, drop_icon,
 SERVER_IMAGE_DEPTH, 1,
 XV_WIDTH, 32,
 XV_HEIGHT, 32,
 NULL);

 busy_glyph = xv_create(XV_NULL, SERVER_IMAGE,
 SERVER_IMAGE_BITS, busy_icon,
 SERVER_IMAGE_DEPTH, 1,
 XV_WIDTH, 32,
 XV_HEIGHT, 32,
 NULL);

xv_create(panel, PANEL_DROP_TARGET,
PANEL_DROP_DND,drag_object,
PANEL_DROP_GLYPH,drop_glyph,
PANEL_DROP_BUSY_GLYPH,busy_glyph,
PANEL_NOTIFY_PROC,drop_proc,
PANEL_DROP_FULL,TRUE,
NULL);

}

E-8 Desktop Integration Guide—August 1994

E

“Start dragging” is printed in the lower left of the frame. Notice that the
argument lists of xv_create() and xv_set() are variable length and must
be terminated with NULL statements.

The create_user_interface() function, described earlier, registers
drop_proc() with the Notifier.

/* drop_proc: Setup the drag operation and handle the drop.
 *
 */
void
drop_proc(Xv_opaque item, unsigned int value, Event *event)
{

long length;
int format;
char *sel_string;
char *string;
Selection_requestorsel_req;
char *buff;
int txt_len;
Atom list[4];

 void get_primary_selection(Selection_requestor
sel_req);

sel_req = xv_get(item, PANEL_DROP_SEL_REQ);

printf(“sel_req = %X\n”, sel_req);
switch(event_action(event))
{
caseACTION_DRAG_MOVE:/* they are moving the object */
printf(“drag move\n”);
get_primary_selection(sel_req);
break;

caseACTION_DRAG_COPY:/* they are copying the object */
printf(“drag copy\n”);
get_primary_selection(sel_req);
break;

caseLOC_DRAG:
list[0] = atom_list[_SUN_AVAILABLE_TYPES_ATOM].atom;
list[1] = atom_list[FILE_NAME_ATOM].atom;
list[2] = atom_list[XA_STRING_ATOM].atom;
list[3] = NULL;

Drag and Drop Programming Example for XView Toolkit E-9

E

xv_create(drag_object, SELECTION_ITEM,
SEL_DATA, list,
SEL_FORMAT,32,
SEL_LENGTH,4,
SEL_TYPE, atom_list[_SUN_AVAILABLE_TYPES_ATOM].atom,
SEL_OWN,TRUE,
NULL);

string = (char *)xv_get(load_file, PANEL_VALUE);

xv_create(drag_object, SELECTION_ITEM,
SEL_DATA, string,
SEL_FORMAT,8,
SEL_LENGTH,strlen(string),
SEL_TYPE,atom_list[FILE_NAME_ATOM].atom,
SEL_OWN,TRUE,
NULL);

txt_len = xv_get(textsw, TEXTSW_LENGTH) + 1;
string = (char *)calloc(txt_len,1);
xv_get(textsw,

TEXTSW_CONTENTS, 0, string, txt_len);

xv_create(drag_object, SELECTION_ITEM,
SEL_DATA, string,
SEL_FORMAT,8,
SEL_LENGTH,strlen(string),
SEL_TYPE,atom_list[XA_STRING_ATOM].atom,
SEL_OWN,TRUE,
NULL);

xv_set(frame,
FRAME_LEFT_FOOTER,“Start draging”,
NULL);

printf(“Start draging\n”);
break;
default:
printf(“unknown event %d\n”, event_action(event));
}

}

E-10 Desktop Integration Guide—August 1994

E

E.6 Function: get_primary_selection()

The get_primary_selection() function is called from either the move or
copy switch statements of the drop_proc() callback function. This function
will get data from the source in the format mutually agreed upon. The first
xv_get() function determines from the passed atom the selection datatype. If
the selection is a filename, the text string is retrieved from the file and placed
in the text subwindow. If the selection is a text string, the last xv_get()
function retrieves the string and places it in the text subwindow.

void
get_primary_selection(Selection_requestor sel_req)
{

long length;
int format;
char*sel_string;
char*string;
Atom*list;
int i;

list = NULL;
xv_set(sel_req, SEL_TYPE,

atom_list[_SUN_AVAILABLE_TYPES_ATOM].atom, 0);
list = (Atom *) xv_get(sel_req, SEL_DATA, &length, &format);
if (length == SEL_ERROR)
{
printf(“*** Unable to get target list.\n”);
}
else
{
printf(“length = %d format = %d\n”, length, format);
while(*list)
{

printf(“list = %X\n”, list);
for(i = 0; i < TOTAL_ATOMS; i++)
{

if(*list == atom_list[i].atom)
{
printf(“supports %d %s\n”, i,

 atom_list[i].name);
break;
}

}
list++;

Drag and Drop Programming Example for XView Toolkit E-11

E

}
}
xv_set(sel_req, SEL_TYPE, atom_list[FILE_NAME_ATOM].atom,

0);
string = (char *) xv_get(sel_req, SEL_DATA, &length,

&format);
if (length != SEL_ERROR)
{
printf(“length = %d format = %d\n”, length, format);
/* Create a NULL-terminated version of ‘string’ */
sel_string = (char *) calloc(1, length + 1);
strncpy(sel_string, string, length);

xv_set(load_file, PANEL_VALUE, string, NULL);
xv_set(textsw,

TEXTSW_FILE,string,
NULL);

return;
}
else
{
printf(“*** Unable to get FILE_NAME_ATOM selection.\n”);
}

xv_set(sel_req, SEL_TYPE, atom_list[XA_STRING_ATOM].atom,
0);

string = (char *) xv_get(sel_req, SEL_DATA, &length,
&format);

if (length != SEL_ERROR)
{
printf(“length = %d format = %d\n”, length, format);
/* Create a NULL-terminated version of ‘string’ */
sel_string = (char *) calloc(1, length + 1);
strncpy(sel_string, string, length);

textsw_reset(textsw, 0, 0);
textsw_insert(textsw, string, length);
}
else
{
printf(“*** Unable to get XA_STRING_ATOM selection.\n”);
}

}

E-12 Desktop Integration Guide—August 1994

E

E.7 Function: load_file_proc()

The function load_file_proc() is the event callback procedure that loads
the selected file into the text subwindow when the user enters a valid file name
followed by a Return.

/*
 * Notify callback function for ̀ filename’. This routine loads the
 * named file into the textpane.
 */

Panel_setting
load_file_proc(Panel_item item, Event *event)
{

char *value = (char *) xv_get(item, PANEL_VALUE);

fprintf(stderr, “DnD_demo: load_file: value: %s\n”, value);

xv_set(textsw,
TEXTSW_FILE,value,
NULL);

return panel_text_notify(item, event);
}

F-1

The ToolTalk Desktop Services
Message Set F

This appendix contains a description of each of the generic messages that
comprise the ToolTalk Desktop Services Message Set. The ToolTalk Desktop
Services Message Set is an open specification with no royalty or license fees. It
will be continuously revised and modified to meet the expanding needs of
desktop services developers and users. Send questions, comments, and
requests for information to the Desktop Services Messaging Alliance at
ToolTalk_desktop_services@sun.com.

F.1 General Description of the ToolTalk Desktop Services Message Set
The ToolTalk Desktop Services Message Set conventions apply to any tools in a
POSIX or X11 environment. In addition to standard messages for these
environments, the Desktop conventions define data types and error codes that
apply to all of the ToolTalk inter-client conventions.

F.2 Desktop Definitions and Conventions
This section defines terms and error messages unique to the Desktop Services
message set. Specific to the desktop services messages are values associated
with fields:

boolean
A vtype for logical values. The underlying data type of boolean is integer;
manipulate arguments of this vtype with tt_*_arg_ival[_set]() and
tt_*_iarg_add() . A zero value means false; a non-zero value means true.

F-2 Desktop Integration Guide—August 1994

F

buffer
A volatile, non-shared (for example, in-memory) representation of persistent
data.

bufferID
A vtype that uniquely identifies buffers. The underlying data type of
bufferID is string. To guarantee bufferID uniqueness, use the form

<internal_counter> <procID>.

messageID
A vtype that uniquely identifies messages. The underlying data type of
messageID is string; manipulate arguments of this vtype with
tt_*_arg_val[_set]() and tt_*_arg_add() . To guarantee messageID
uniqueness, use the form

<internal_counter> <procID>

tt_message_id() returns an opaque string of similar uniqueness. Use
tt_message_id() to generate a message’s messageID; however, the
inter-client conventions explicitly include the messageID as a message
argument to support inter-operation with other versions of the ToolTalk
service.

type
Any vtype that is the name of the kind of objects in a particular
persistent-object system. For example, the vtype for the kind of objects in
filesystems is File ; the vtype for ToolTalk objects is ToolTalk_Object .

vendor
toolName
toolVersion

Names of arguments. These strings appear in several of the Desktop Service
messages. These strings are not defined rigorously; they are intended to
present to the user descriptions of these three attributes of the relevant
procID.

 view
A screen display, such as a (portion of a) window, that presents to the user
part or all of a document.

 viewID
A vtype that uniquely identifies views. The underlying data type of viewID
is string. To guarantee viewID uniqueness, use the form

The ToolTalk Desktop Services Message Set F-3

F

<internal_counter> <procID>

Errors

Table F-1 describes the Desktop Services error messages; the error messages are
listed in order of their message id.

Table F-1 Desktop Services Error Messages

Message ID Error Message Error Message String Description

1538 TT_DESKTOP_ENOENT No such file or directory

1549 TT_DESKTOP_EACCES Permission Denied

1558 TT_DESKTOP_EINVAL Invalid argument An argument’s value was not valid; for
example, a locale in Set_Locale that is not
valid on the handler’s host. Use this error status
only when a more-specific error status does not
apply.

1571 TT_DESKTOP_ENOMSG No message of desired type A messageID does not refer to any message
currently known by the handler.

1610 TT_DESKTOP_EPROTO Protocol error A message was not understood because:
a. A required argument was omitted.
b. An argument had the wrong vtype, or the

vtype is not allowed in this message; for
example, the vtype boolean in the
Get_Geometry message.

c. An argument’s value was not legal for its
vtype; for example, negative values for width
in the Set_Geometry message.

d. An argument’s value was not legal for this
message; for example, the PATH=/foo
variable in Get_Environment message.

In general, this error status indicates that the
message is malformed.

F-4 Desktop Integration Guide—August 1994

F

Warnings
The vtype namespace for persistent objects currently only contains File
and ToolTalk_Object . Vendors who want to define a type should either
give it a vendor-specific name or register it through SunSoft’s Developer
Integration Format Registration program. SunSoft can be reached at
1-800-227-9227.

F.3 The ToolTalk Desktop Services Message Set
This section contains a description of each of the generic messages which
constitute the ToolTalk Desktop Services Message Set.

1688 TT_DESKTOP_CANCELED Operation was canceled The operation was canceled because of direct or
indirect user intervention. An example of
indirect intervention is termination of the
handling process caused by the user, or receipt
of a Quit() request. (All messages should be
taken as authentically representing the wishes
of the user whose uid is indicated by
tt_message_uid().)

1689 TT_DESKTOP_ENOTSUP Operation not supported The requested operation is not supported by
this handler. This error indicates that a handler
assumes that, if it rejects a request, no other
handler will be able to perform the operation.
For example, a request such as Set_Iconified() or
a request that refers to a state (such as a
bufferID) that is managed by this handler alone.
A request failed with this error distinguishes the
case of an incompletely-implemented handler
from the case of the absence of a handler.
Note: Do not use TT_ERR_UNIMP in place of
TT_DESKTOP_ENOTSUP as TT_ERR_UNIMP
means that a particular feature of ToolTalk itself is
not implemented.

1699 TT_DESKTOP_UNMODIFIED Operation does not apply to
unmodified entities

Table F-1 Desktop Services Error Messages (Continued)

Message ID Error Message Error Message String Description

The ToolTalk Desktop Services Message Set F-5

F

Created, Deleted (Notice)

Notification that entities (for example, files) have been created or deleted.

Synopsis
[file] Created(in type ID[...]);

[file] Deleted(in type ID[...]);

Description

The Created notice is sent whenever a tool creates or deletes one or more
entities that may be of interest to other tools.

Required Arguments

type ID
The identity of the created entity. If more than one entity are created in the
same logical event, extra ID arguments may be present.

When type is File, each non-empty ID argument is the name of an entry
which has been created in the directory named in the message’s file
attribute. (Each argument is, therefore, a single, final component of a
pathname.)

When type is File and this argument is empty (that is, has a value of
(char *)0), it refers to the file or directory named in the message’s file
attribute.

Optional Arguments

type ID
Extra instances of this argument may be included.

F-6 Desktop Integration Guide—August 1994

F

Do_Command (Request)

Requests in a tool's native command language that a command be
performed.

Synopsis
Do_Command(in string command,

out string results
[in messageID counterfoil]);

Description

The Do_Command message requests that the receiving tool perform a
command. The request is stated in the receiving tool's native command
language.

When the request includes the optional counterfoil argument, the handler can
send an immediate point-to-point status notice back to the requesting tool if
the requested operation is expected to require an extended amount of time.

Required Arguments

string command
The command being requested to be performed.

string results
The results of the completed command. The results are returned as if the
command had been executed locally to the requesting tool.

The ToolTalk Desktop Services Message Set F-7

F

Optional Arguments

messageID counterfoil
Unique string created by the message sender (typically by concatenating a
counter and a procID) to give both sender and receiver a way to refer to this
request in other correspondence. Include this argument if the sender
anticipates a need to communicate with the handler about this request
before it is completed; for example, to cancel it.

When this argument is included and the handler determines that an
immediate reply is not possible, then the handler should immediately send
at least one Status notice point-to-point back to the requestor to identify
itself to the requestor.

Warnings

This request allows tools to provide a message interface to functionality that is
not supported through any standard (or even tool-specific) message interface.
This message, therefore, constitutes a deprecated interface when the intended
function is available through an existing message interface.

F-8 Desktop Integration Guide—August 1994

F

Get_Modified (Request)

Asks whether an entity (for example, a file) has been modified.

Synopsis
[file] Get_Modified(intype ID,

out boolean modified);

Description

The Get_Modified message asks whether any tool has modified a volatile,
non-shared for example, in-memory) representation of the persistent state of an
entity (such as a file) with the intention of eventually making that
representation persistent. Therefore, a tool should register a dynamic pattern
for this request when it has modified an entity of possible shared interest.

Required Arguments

type ID
The identity of the entity that may have been modified.

When type is File , this argument is empty (that is, it has a value of
(char *) 0) and references the file or directory named in the message's file
attribute.

boolean modified
The boolean value that indicates whether a volatile, non-shared (for
example, in-memory) representation of the entity has been modified with
the intention of eventually making that representation persistent.

Errors

TT_ERR_NO_MATCH
The Get_Modified request failed because no handler was found and the
named entity is assumed not to be modified.

The ToolTalk Desktop Services Message Set F-9

F

Get_Status (Request)

Requests that a tool's current status be returned.

Synopsis
Get_Status(out string status,

out string vendor,
out string toolName,
out string toolVersion
[in messageID operation2Query]);

Description

The Get_Status message retrieves either the current status of a tool or the
current status of a specific operation that is being performed by a tool.

Required Arguments

string status
The status to be retrieved.

string vendor
The name of the vendor of the receiving tool.

string toolName
The name of the receiving tool.

string toolVersion
The version of the receiving tool.

Optional Arguments

messageID operation2Query
The ID of the request that initiated the operation the status of which is being
requested.

F-10 Desktop Integration Guide—August 1994

F

Get_Sysinfo (Request)

Retrieves information about a tool's host.

Synopsis
Get_Sysinfo(out string sysname,

out string nodename,
out string release,
out string version,
out string machine,
out string architecture,
out string provider,
out string serial);

Description

The Get_SysInfo message retrieves information about the receiver's host.

Required Arguments

string sysname
The name of the host's operating system.

string nodename
The name of the host.

string release
string version

Vendor-determined information about the host's operating system.

string machine
A vendor-determined name that identifies the hardware on which the
operating system is running (such as sun4, sun4c, or sun4m).

string architecture
A vendor-determined name that identifies the instruction set architecture of
the host (such as sparc, mc68030, m32100, or i80486).

string provider
The name of the hardware manufacturer.

The ToolTalk Desktop Services Message Set F-11

F

string serial
The ASCII representation of the hardware-specific serial number of the host.

See Also

sysinfo(2), umane(2)

F-12 Desktop Integration Guide—August 1994

F

Modified, Reverted (Notice)

Notification that an entity (for example, a file) has been either modified or
reverted to its prior state.

Synopsis
[file] Modified(in type ID);

[file] Reverted(in type ID);

Description

The Modified message notifies interested tools whenever a tool first makes
changes to a volatile, non-shared (for example, in-memory) representation of
the persistent state of an entity (such as a file). The Reverted message notifies
interested tools whenever a tool discards the modifications made to a volatile,
non-shared (for example, in-memory) representation of the persistent state of
an entity (such as a file).

Required Arguments

type ID
The identity of the modified or reverted entity.

When type is File, this argument is empty (that is, has a value of (char *)0)
and refers to the file or directory named in the message’s file attribute.

The ToolTalk Desktop Services Message Set F-13

F

Moved (Notice)

Notification that an entity (for example, a file) has been moved.

Synopsis
[file] Moved(in type oldID,

in type newID);

Description

The Moved message notifies interested tools whenever a tool changes the
location of a persistent entity.

Required Arguments

type newID
The new identity of the moved entity.

When type is File, this argument is empty (that is, has a value of (char *)0),
and refers to the file or directory named in the message’s file attribute.

type oldID
The old identity of the moved entity.

When type is File, this argument is either an absolute pathname, or a
pathname relative to the directory named in (or containing) the path in the
message’s file attribute.

F-14 Desktop Integration Guide—August 1994

F

Pause, Resume (Request)

Requests the specified tool, operation, or data performance to pause or
resume.

Synopsis
Pause([in messageID operation]);

Pause(in bufferID docBuf);

Resume([in messageID operation]);

Resume(in bufferID docBuf
[in locator whither
|in vector duration]);

Description

The Pause or Resume messages requests that the specified tool, operation, or
data performance pause or resume, respectively.

• If the optional operation argument is included, the handler should pause or
resume the operation that was invoked by the specified request. Use a
Tt_address of TT_HANDLER to send this form of the request.

• If the optional docBuf argument is included, performance of the data in the
specified buffer should be paused or resumed. Use a Tt_address of
TT_PROCEDURE to send this form of the request.

• If both of the optional arguments are omitted, the handling procid should
pause or resume its operations. Use a Tt_address of TT_HANDLER to send
this form of the request.

Caution – The Pause and Resume requests may also be sent as a multicast
notices; however, the consequences can be severe and unexpected.!

The ToolTalk Desktop Services Message Set F-15

F

Optional Arguments

bufferID docBuf
The buffer in which data performance is to be paused or resume.

messageID operation
The request to be paused.

locator whither
The buffer location to which performance is to be resumed.

vector duration
The duration for which performance is to be resumed.

Note – If neither the whither nor the duration argument is included in this
message, the performance is resumed indefinitely.

Errors

TT_ERR_NOMATCH
The bufferID may not be valid; no editor has a pattern handling this request
for docBuf.

TT_DESKTOP_EINVAL
The value for the whither is not a legal locator for the media type of the
document in docBuf.

TT_DESKTOP_EINVAL
The destination is not a legal vector for the media type of the document in
docBuf.

TT_DESKTOP_EFAULT
The value for the whither argument is not a valid locator for the document in
docBuf.

TT_DESKTOP_EFAULT
The value for the duration argument is not a valid vector for the document in
docBuf.

TT_DESKTOP_ENOMSG
The operation does not refer to any message currently known by the
handler.

F-16 Desktop Integration Guide—August 1994

F

Quit (Request)

Requests that an operation, or an entire tool, terminate.

Synopsis
Quit(in boolean silent,

in boolean force
[in messageID operation2Quit]);

Description

Without the optional operation2Quit argument, this request asks the recipient
procID to quit. If the request succeeds, one or more ToolTalk procID’s should
call tt_close(), and zero or more processes should exit. (“Zero or more process”
are indicated because a single process can instantiate multiple independent
procID’s, and a single procID can conceivably be implemented by a set of
cooperating processes.)

With the optional operation2Quit argument, this request asks the recipient to
terminate the indicated request. (Whether the terminated request must be
failed depends on its semantics. Often, termination can be considered to
indicate that the requested operation has been carried out to the requestor’s
satisfaction.)

This request should be failed (and the status code set appropriately) when the
termination is not performed -- for example, because the silent argument was
false and the user canceled the quit operation.

Caution – The Quit request may also be sent as a multicast notice; however, the
consequences can be severe and unexpected.

Required Arguments

boolean silent
Boolean value that indicates whether the recipient tool is allowed to block
on user input before terminating itself, or the indicated operation. If this
value is false, the handler is not required to seek user input.

!

The ToolTalk Desktop Services Message Set F-17

F

boolean force
Boolean value that indicates whether the recipient tool should terminate
itself even if circumstances are such that the tool ordinarily would not
terminate under them.

For example, a tool might have a policy of not quitting with unsaved
changes unless the user has been asked whether the changes should be
saved. When this argument is true, such a tool should terminate even when
doing so would lose changes that the user has not been asked about saving.

Optional Arguments

messageID operation2Quit
The request that should be terminated. For a request to be terminable, an
(optional) counterfoil messageID shall have been included in the request,
and the handler shall have sent a Status notice back to the requestor (thus
identifying itself to the requestor).

Errors

TT_DESKTOP_ECANCELED
The Quit request was over-ridden by the user.

TT_DESKTOP_ENOMSG
The operation2Quit argument does not refer to any message currently
known by the handler.

F-18 Desktop Integration Guide—August 1994

F

Raise, Lower (Request)

Raises or lowers a tool's window(s) to the front or back, respectively.

Synopsis
Raise([in messageID commission...]

[in viewID view2Raise...]);

Lower([in messageID commission...]
[in viewID view2Lower...]);

Description

The Raise and Lower message raise or lower, respectively, the window(s)
associated with the recipient's procid. If any optional arguments are present,
only the indicated window(s) are raise or lowered.

Caution – The Raise and Lower requests may also be sent as a multicast notice;
however, the consequences can be severe and unexpected.

Optional Arguments

messageID commission
The identifier of the message (if any) that resulted in the creation of the
raised or lowered window(s).

viewID view2Raise
viewID view2Lower

The identifier of the view whose associated window(s) is (are) be raised or
lowered.

!

The ToolTalk Desktop Services Message Set F-19

F

Save, Revert (Request)

Saves or discards any modifications to an entity (for example, a file).

Synopsis
[file] Save(in typeID);

[file] Revert(in typeID);

Description

The Save and Revert messages requests that any pending, unsaved
modifications to a persistent entity (such as a file) be saved or discarded,
respectively.

Required Arguments

type ID
The identity of the entity to save or revert.

When type is File , this argument is empty (that is, it has a value of
(char *) 0) and references the file or directory named in the message's file
attribute.

Errors

TT_DESKTOP_UNMODIFIED
 The entity had no pending, unsaved modifications.

TT_DESKTOP_ENOENT
The file to save or revert does not exist.

F-20 Desktop Integration Guide—August 1994

F

Saved(Notice)

Notification that an entity (such as a file) has been saved to persistent
storage.

Synopsis
[file] Saved(in type ID);

Description

The Saved message notifies interested tools whenever a tool saves an entity
(such as a file) to persistent storage.

Required Arguments

type ID
 The identity of the saved entity.

When type is File, this argument is empty (that is, has a value of (char *)0),
and refers to the file or directory named in the message’s file attribute.

The ToolTalk Desktop Services Message Set F-21

F

Set_Environment, Get_Environment (Request)

Requests that a tool's environment either be set or retrieved.

Synopsis
Set_Environment(in stringvariable,

in stringvalue
[...]);

Get_Environment(in stringvariable,
out stringvalue
[...]);

Description

The Set_Environment and Get_Environment messages request that the value of
the indicated environment variable(s) either be replaced or reported,
respectively.

Caution – The Set_Environment request may also be sent as a multicast notice;
however, the consequences can be severe and unexpected.

Required Arguments

string variable
The name of the environment variable to be set or retrieved.

string value
The value of the environment variable to be set or retrieved.

• If this argument does not contain a value for the Set_Environment request,
the variable is removed from the environment. It is not considered an
error if the specified variable does not exist.

• If this argument does not contain a value when used in the
Get_Environment request, the variable was not present in the receiving
tool’s environment. This condition is not considered an error.

!

F-22 Desktop Integration Guide—August 1994

F

Optional Arguments

string variable
string value

Extra pairs of these arguments may included.

The ToolTalk Desktop Services Message Set F-23

F

Set_Geometry, Get Geometry (Request)

Requests that a tool's on-screen geometry either be set or retrieved.

Synopsis
Set_Geometry(inout width w

inout height h
inout xOffset x
inout yOffset y
[in messageID commission]
[in viewID view2Set]);

Get_Geometry(out width w
out height h
out xOffset x
out yOffset y
[in messageID commission]
[in viewID view2Get]);

Description

The Set_Geometry and Get_Geometry messages request that the value of the
on-screen geometry of the optionally-specified window, or the value of the
on-screen geometry of the window primarily associated with the receiving
tool’s procID if no window is specified, be either set or retrieved (respectively).

Required Arguments

width w
height h
xOffset x
yOffset y

The integer geometry values in pixels.

The return values for the Get_Geometry request are the actual new values,
not the requested new values.

Note – Negative offset values are interpreted according to X11 rules.

F-24 Desktop Integration Guide—August 1994

F

Optional Arguments

messageID commission
The identifier of the message (if any) that resulted in the creation of the set
or retrieved window(s).

viewID view2Set
viewID view2Get

The identifier of any view associated with the window(s) that is (are) to be
set or retrieved.

The ToolTalk Desktop Services Message Set F-25

F

Set_Iconified, Get_Iconified(Request)

Requests that a tool's iconic state be set or retrieved.

Synopsis
Set_Iconified(inout boolean conic

[in messageID commission]
[in viewID view2Iconify]);

Get_Iconified(out boolean iconic
[in messageID commission]
[in viewID view2Query]);

Description

The Set_Iconified and Get_Iconified messages request that the value of the
iconic state of the optionally-specified window, or the iconic state of the
window primarily associated with the receiving tool’s procID if no window is
specified, be either set or retrieved (respectively).

Caution – The Set_Iconified and Get_Iconified requests may also be sent as a
multicast notice; however, the consequences can be severe and unexpected.

Required Arguments

boolean iconic
The boolean value that indicates whether the specified window is iconified.

Optional Arguments

messageID commission
The identifier of the message (if any) that resulted in the creation of the
iconified or queried window(s).

viewID view2Iconify
viewID view2Query

The identifier of any view associated with the window(s) that is (are) to be
iconified or queried.

!

F-26 Desktop Integration Guide—August 1994

F

Set_Locale, Get_Locale (Request)

Sets or retrieves a tool's locale.

Synopsis
Set_Locale(in string category,

in string locale
[...]);

Get_Locale(in string category,
out string locale
[...]);

Description

The Set_Locale and Get_Locale messages replace or report (respectively) the
locale of the POSIX locale categories.

Caution – The Set_Locale request may also be sent as a multicast notice;
however, the consequences can be severe and unexpected.

Required Arguments

string category
The locale category to set or retrieve.

A locale category is a group of data types whose formatting varies
according to locale; for example, ANSI C and X/OPEN locale categories
include:
• LC_CTYPE
• LC_NUMERIC
• LC_TIME
• LC_COLLATE
• LC_MONETARY
• LC_ALL
• LC_MESSAGES (Solaris-specific)

!

The ToolTalk Desktop Services Message Set F-27

F

string locale
The name of the current locale of the indicated category, or the locale to
which to set the indicated category; example of these locales defined in
UNIX SVR4 are "C", "de", "fr", and "it".

Optional Arguments

string category
string locale

Extra pairs of these arguments may be included.

F-28 Desktop Integration Guide—August 1994

F

Set_Mapped,Get_Mapped(Request)

Requests that a tool’s mapping to the screen be set or retrieved.

Synopsis
Set_Mapped(inout boolean mapped

[in messageID commission]
[in viewID View2Map]);

Get_Mapped(out boolean mapped
[in messageID commission]
[in viewID view2Query]);

Description

The Set_Mapped and Get_Mapped messages request that value of the mapped
state of the optionally-specified window, or the mapped state of the window
primarily associated with the receiving tool’s procID if no window is specified,
be either set or retrieved (respectively).

Caution – The Set_Mapped request may also be sent as a multicast notice;
however, the consequences can be severe and unexpected.

Required Arguments

boolean mapped
The boolean value that indicates whether the specified window is mapped
to the screen.

!

The ToolTalk Desktop Services Message Set F-29

F

Optional Arguments

messageID commission
The identifier of the message (if any) that resulted in the creation of the set
or retrieved window(s).

viewID view2Map
viewID view2Query

The identifier of any view associated with the window(s) that is (are) to be
set or retrieved.

F-30 Desktop Integration Guide—August 1994

F

Set_Situation, Get_Situation

Requests that a tool’s current working directory be set or reported.

Synopsis
Set_Situation(in string path);

Get_Situation(out string path);

Description

The Set_Situation and Get_Situation messages request that value of the current
working directory be either set or reported (respectively).

Caution – The Set_Situation request may also be sent as a multicast notice;
however, the consequences can be severe and unexpected.

Required Arguments

string path
The pathname of the working directory that the recipient is either using or
is to use.

!

The ToolTalk Desktop Services Message Set F-31

F

Set_XInfo, Get_XInfo (Request)

Requests that a tool's X11 attributes be set or retrieved.

Synopsis
Set_XInfo(inout string display,

inout string visual,
inout integer depth
[in messageID commission]
[inout string resourceName,
inout string resourceVal,...]);

Get_XInfo(out string display,
out string visual,
out integer depth
[in messageID commission]
[in string resourceName,
out string resourceVal,...]);

Description

The Set_XInfo and Get_XInfo messages request that the X11 attributes of the
optionally-specified window, or the X11 attributes of the window primarily
associated with the receiving tool’s procID if no window is specified, be either
set or retrieved (respectively).

Required Arguments

string display
An X11 display.

Note – Since the handler may be running on a different host, use the value
hostname:n[.n] rather than :n[.n] .

F-32 Desktop Integration Guide—August 1994

F

string visual
An X11 visual class, which determines how a pixel will be displayed as a
color. Values include:

StaticGray
GrayScale
StaticColor
PseudoColor
TrueColor
DirectColor

integer depth
The number of bits in a pixel.

Optional Arguments

string resourceName
string resourceVal

An X11 resource name and resource value.

messageID commission
The ID of the message with respect to which X11 attributes are being set or
reported. This is useful to the extent that the handler employs different
attributes for the different operations it may be carrying out.

The ToolTalk Desktop Services Message Set F-33

F

Signal(Request)

Requests that a (POSIX-style) signal be sent to a tool.

Synopsis
Signal(in integer theSignal);

Description

The Signal message requests that the receiving tool’s procID send the indicated
signal to itself.

Required Arguments

integer theSignal
The signal to be sent.

Caution – The Signal request may also be sent as a multicast notice; however,
the consequences can be severe and unexpected.!

F-34 Desktop Integration Guide—August 1994

F

Started, Stopped (Notice)

Notification that a tool has started or terminated.

Synopsis
Started(in string vendor,

in string toolName,
in string toolVersion);

Stopped(in string vendor,
in string toolName,
in string toolVersion);

Description

The Started and Stopped messages notify interested tools whenever a tool
starts or terminates, respectively.

Required Arguments

string vendor
The name of the vendor of the started or terminated tool.

string toolName
The name of the started or terminated tool.

string toolVersion
The version of the started or terminated tool.

The ToolTalk Desktop Services Message Set F-35

F

Status(Notice)

Notification that a tool has status information to announce.

Synopsis
Status(in string status,

in string vendor,
in string toolName,
in string toolVersion
[in messageID commission]);

Description

The Status message notifies interested tools of a tool’s general status
information.

Required Arguments

string status
The status which is being announced.

string vendor
The name of the vendor of the tool whose status is being announced.

string toolName
The name of the tool whose status is being announced.

string toolVersion
The version of the tool whose status is being announced.

Optional Arguments

messageID commission
The ID of the request, if any, that initiated the operation the status of which
is being announced.

F-36 Desktop Integration Guide—August 1994

F

G-1

The ToolTalk Document and Media
Exchange Message Set G

Multimedia is an important emerging technology. While the base of
multimedia-aware applications has expanded, no single vendor provides a
completely integrated solution which meets the complex needs of today’s
market. The ToolTalk Document and Media Exchange™ Message Set is a genuine
breakthrough in multimedia technologies. A powerful messaging protocol
designed to benefit both developers and users of multimedia technologies, the
ToolTalk Document and Media Exchange Message Set allows applications to
easily share each others multimedia functionality. Using the ToolTalk
Document and Media Exchange Message Set, multimedia applications can
communicate with each other in a transparent manner, both locally and over
networks, regardless of data formats, compression technology, and other
technical issues which has previously confined the use of this technology.

The ToolTalk Document and Media Exchange Message Set is an open
specification with no royalty or license fees. It will be continuously revised and
modified to meet the expanding needs of multimedia developers and users.
Send questions, comments, and requests for information to the Document and
Media Exchange Messaging Alliance at media_exchange@Sun.Com.

This appendix contains a description of each of the messages that constitute
the ToolTalk Document and Media Exchange Message Set. Each message
described contains the information described in Table G-1. In addition the next
sections describe common information to all messages. These sections describe
ToolTalk unique definitions and error messages common to all messages.

G-2 Desktop Integration Guide—August 1994

G

G.1 General Tooltalk Message Definitions and Conventions
In the ToolTalk messages there are terms used with specific ToolTalk
definitions. This section defines these terms and conventions used in the
ToolTalk message man pages.

Table G-1 ToolTalk Document and Media Exchange Message Set Descriptions

Type of
Information Description

header A single line that describes the message in the following
format:

MsgName(Tt_class)
where MsgName is the name of the message and Tt_class is
either Request or Notice.

name The name of the message and a one-line description of the
message.

description An explanation of the operation (event) that the message
requests (announces).

The ToolTalk Document and Media Exchange Message Set G-3

G

synopsis A representation of the message in the ToolTalk types-file
syntax (similar to the syntax understood by the ToolTalk type
compiler tt_type_comp) in the following format:

<fileAttrib> <opName> (<requiredArgs> [<optionalArgs>]);
A synopsis entry is given for each interesting variant of the
message.
<fileAttrib> - An indication of whether the file attribute of

the message can/should be set.
<opName> - The name of the operation or event is called

the “op name” (or “op”). It is important that
different tools not use the same opName to
mean different things. Therefore, unless a
message is a standard one, its opName
should be made unique. A good way to do
this is to prefix it with:
<Company><Product> e.g.,
“Acme_Hoarktool_My_Frammistat”.

<requiredArgs>, <optionalArgs> -
The arguments that must always be included
in the message. A particular argument is
described in the following format:
 <mode> <vtype> <argument name>
where mode is one of “in”,”out”, or “inout”,
vtype is a programmer-defined string that
describes what kind of data a message
argument contains; and argument name is the
name of the argument.

The ToolTalk service uses vtypes to match sent message
instances with registered message patterns. By convention, a
vtype maps to a single, well-known data type.

Table G-1 ToolTalk Document and Media Exchange Message Set Descriptions

Type of
Information Description

G-4 Desktop Integration Guide—August 1994

G

Edict
An edict is a notice that looks like a request. If a request returns no data (or
if the sender does not care about the returned data), it can sometimes be
useful to broadcast that request to a set of tools. Since the message is a
notice, no data is returned, no replies are received, and the sender is told if
any tool gets the message.

Handler
The handler is the distinguished recipient procid of a request. This procid is
responsible for completing the indicated operation.

required arguments The arguments that must always be in the message.
 <vtype> <argumentName>
A description of a particular argument.

A ‘vtype’ is a programmer-defined string that describes what
kind of data a message argument contains. ToolTalk uses
vtypes for the sole purpose of matching sent message instances
with registered message patterns.
Every vtype should by convention map to a single, well-known
data type. The data type of a ToolTalk argument is either
integer, string, or bytes. The data type of a message or pattern
argument is determined by which ToolTalk API function is
used to set its value.
The argument name is merely a comment hinting to human
readers at the semantics of the argument, much like a
parameter name in a C typedef.

optional arguments The extra arguments that may be included in a message. Unless
otherwise noted, any combination of the optional arguments, in
any order, may be appended to the message after the required
arguments.

description An explanation of the operation that the request entreats, or the
event that the notice announces.

errors A list of the error codes that can be set by the handler of the
request (or the sender of the notice).

Table G-1 ToolTalk Document and Media Exchange Message Set Descriptions

Type of
Information Description

The ToolTalk Document and Media Exchange Message Set G-5

G

Notice
A notice is a message that announces an event. Zero or more tools may
receive a given notice. The sender does not know whether any tools receive
its notice. A notice cannot be replied to.

Procid
A procid is a principal that can send and receive ToolTalk messages. A procid
is an identity, created and handed over by the ToolTalk service on demand
(via tt_open()), that a process must assume in order to send and receive
messages. A single process can use multiple procids; and a single procid can
be used by a group of cooperating processes.

Request
A request is a message that asks an operation to be performed. A request
has a distinguished recipient, called a handler, who is responsible for
completing the indicated operation. A handler may fail, reject, or reply to a
request. Any number of handlers may reject a request but ultimately only
one handler can fail it or reply to it. If no running handler can be found to
accept a request, the ToolTalk service can automatically start a handler. If no
willing handler can be found, or if a handler fails the request, then the
request is returned to the sender in the ‘failed’ state.

G.1.1 Errors

A Tt_status code can be read from a reply via tt_message_status() . This
status defaults to TT_OK, or can be set by the handler via
tt_message_status_set() . In extraordinary circumstances (such as no
matching handler) the ToolTalk service itself sets the message status.

In addition to the Tt_status values defined by the ToolTalk API, the
overview reference page for each set of messages lists the error conditions
defined for that set of messages. For each error condition, the overview
reference page provides

• Its name
• Its integer value
• A string in the “C” locale that explains the error condition

Since the ToolTalk Inter-Client Conventions (TICC) are a binary message
interface, the integer and string are part of that binary interface; the name is
not.

G-6 Desktop Integration Guide—August 1994

G

• The string may be used as a key in the
SUNW_TOOLTALK_INTERCLIENTCONVENTIONS domain to retrieve a
localized explanation of the error condition. See dgettext(3) .

• The integer values of these status codes begin at 1537
(TT_ERR_APPFIRST + 1). The first 151 codes correspond to the system
error list defined in intro(2) .

A standard programming interface for these conventions that binds the name
to the integer value does not yet exist.

The ToolTalk service allows an arbitrary status string to be included in any
reply. Since a standard localized string can be derived for each status code, this
status string may be used as a free-form elucidation of the status. For example,
if a request is failed with TT_DESKTOP_EPROTO, the status string could be set
to The vtype of argument 2 was ‘string’; expected ‘integer’ .
Handling tools should try to compose the status string in the locale of the
requestor. See the Get_Locale() request.

Generic messages can be sent and received by any tool.

G.2 Media Exchange Definitions and Conventions
Specific to the media exchange messages there are values associated with
fields. The following paragraphs define those fields.

Editor messages are sent and received by tools that display or edit some kind
of media. The parts of an editor message is defined as follows:

<document>
A vector of bytes with an associated mediaType.

<mediaType>
The name of a media format. The mediaType allows messages about that
document to be dispatched to the right editor. Standard mediaTypes
include:

• ISO_Latin_1 ISO 8859-1 (+tab+newline) ISO
• PostScript Postscript Lang Ref. Manual Adobe
• RTF MS Word Technical Ref Microsoft
• MIF Maker Interchange Format FrameMaker
• WKS

The ToolTalk Document and Media Exchange Message Set G-7

G

• EPS
• GIF Graphics Interchange Format Compuserve
• TIFF “TIFF Rev. 5” Technical Memo Aldus/Microsoft
• XPM XPM --The X PixMap Format Groupe Bull
• Sun_Raster
• Sun_XView_icon
• Sun_Audio audio_intro(3),audio_hdr(3) Sun Microsystems
• JPEG ISO/CCITT
• JPEG_Movie Parallax Graphics
• RFC_822_MessageRFC 822 IETF
• Unix_Mail_Folder
• Sun_CM_Appointment Sun Microsystems

Note – The mediaType list will be extended as required. You can extract a list
of the installed mediaTypes from the ToolTalk Types Database.

abstract mediaType
A family of similar mediaTypes, such as flat text or structured graphics.

vector
A string vtype describing a distance and a direction in a document. The
syntax of vectors varies by abstract mediaType.

locator
A string describing a location in a document. The syntax of locators varies
by abstract mediaType, but should usually be a superset of vector syntax.

flat text
A family of mediaTypes (such as ISO_Latin_1) which consist of a sequence
of characters from some character set.

Legal vectors for flat text are:

lineVec ::= Line:[-][0-9]+
charVec ::= Character:[-][0-9]+
vector ::= <lineVec>
vector ::= [<lineVec>,]<charVec>

Legal locators for flat text are vectors.

G-8 Desktop Integration Guide—August 1994

G

G.2.1 Errors

These definitions are common to all messages. Any differences or additions
will be noted in the man pages.

1700 TT_MEDIA_ERR_SIZE

The specified size was too big or too small.

1701 TT_MEDIA_ERR_FORMAT

The data do not conform to their alleged format.

1702 TT_MEDIA_NO_CONTENTS

The message neither contains nor refers to any document.

The ToolTalk Document and Media Exchange Message Set G-9

G

Abstract(Request)

Requests a summary representation of a document.

Synopsis
[file] Abstract (in <mediaType> contents,

 out <mediaType> output
 in boolean inquisitive,
 in boolean covert
 [in messageID counterfoil]
 [inout vector size]);

Description

The Abstract message requests that a summary representation of a document
(for example, an icon or a video frame raster) be returned. The abstraction is
the best possible representation of the document within the size constraints of
the sending tool.

Note – You can extract a list of the installed mediaType-to-mediaType
mappings from the ToolTalk Types Database.

Required Arguments

<mediaType> contents
The contents of the document.

If this argument is empty (that is, it has a value of (char *) 0), the contents of
the document are contained in the file named in the message's file attribute.
If nulls are not legal in the given mediaType, the data type of the contents
argument is string ; otherwise, the data type is bytes .

<mediaType> output
The abstracted document.

boolean inquisitive
The boolean value that indicates whether the recipient is allowed to seek
user input about interpretation options.

G-10 Desktop Integration Guide—August 1994

G

Note – However, even if this value is true, the recipient is not required to seek
the input.

If both the inquisitive and covert values are true, the recipient should
attempt to limit (for example, through iconification) its presence to the
minimum required to receive any user input requested.

boolean covert
The boolean value that indicates whether the recipient is allowed to make
itself apparent to the user as it performs the interpretation.

Note – However, even if the value is false, the recipient is not required to make
itself apparent.

If both the inquisitive and covert values are true, the recipient should
attempt to limit (for example, through iconification) its presence to the
minimum required to receive any user input requested.

Optional Arguments

messageID counterfoil
A unique string created by the message sender, typically by concatenating a
procid and a counter. The sending application includes this argument if it
anticipates a need to communicate with the handler about this request
before the request is completed; for example, you could include this
argument to cancel the request.

Note – When this argument is included and the handler determines that an
immediate reply is not possible, then the handler should immediately send at
least one Status notice point-to-point back to the requestor so as to identify
itself to the requestor.

vector size
• On input, the maximum size of the abstraction. The recipient returns an

abstraction as close to this size as possible without exceeding this size.
• On output, the actual size of the abstraction to be returned; or, if the error

TT_MEDIA_ERR_SIZE is returned, the smallest possible size the recipient
is capable of returning.

The ToolTalk Document and Media Exchange Message Set G-11

G

Examples

In this scenario, a container application requires a representation of some video
data. To abstract a representation frame of the video tool, you could send an
Abstract request such as:

to obtain a custom raster representation; or

to obtain a generic icon representation. In either case, the container application
does not need to understand the Acme_Video format.

Errors

1700 TT_MEDIA_ERR_SIZE

The specified size was too big or too small

1701 TT_MEDIA_ERR_FORMAT

The data do not conform to their alleged format

1702 TT_MEDIA_NO_CONTENTS

The message neither contains nor refers to any document

Abstract (in Acme_Video, out Sun_Raster output, ...);

Abstract (in Acme_Video, out Sun_XView_Icon output, ...);

G-12 Desktop Integration Guide—August 1994

G

Deposit(Request)

Saves the document to its backing store.

Synopsis
[file] Deposit(in <mediaType> contents

 {in bufferID beingDeposited
 in messageID commission});

[file] Deposit(in <mediaType> contents,
 out bufferID beingDeposited
 [in title docName]);

Description

Save this document to its backing store. This request is different from the
Save() request, because here the requestor (and not the handler) has the data
that needs to be written. Deposit() should almost never be file-scoped, because
if the sending tool knows what file the document belongs in, that tool should
be able to perform the save itself.

Required Arguments

<mediaType> contents
The contents of the document.

If this argument is empty (that is, it has a value of (char *) 0), the contents of
the document are contained in the file named in the message's file attribute.
If nulls are not legal in the given mediaType, the data type of the contents
argument is string ; otherwise, the data type is bytes .

bufferID beingDeposited
messageID commission

The Identifier of the buffer to be deposited to backing store. The identifier is
either a bufferID returned or the messageID of the edit request that created
this buffer.

If the beingDeposited argument is an out parameter, a new document is
created and the handling container application must save the document and
return a new bufferID for it.

The ToolTalk Document and Media Exchange Message Set G-13

G

Optional Arguments

title docName
The name of the document.

Example

This request is especially useful for when the user checkpoints (e.g., via a
“Save” menu item) her modifications to a document that is the subject of a
purely-session-scoped Edit request in progress.

The second variant of this request can be issued by editors that allow the user
to create, as an afterthought, extra documents ‘near’ the document that was
just edited. This can be useful if the each document in the series can serve as
the template or starting point for the next document. Of course, if the handling
container application does not support the notion of accommodating uninvited
documents, it should reject the request.

Errors

TT_DESKTOP_ENOENT

The file that was alleged to contain the document does not exist.

 TT_MEDIA_NO_CONTENTS

The in-mode contents arg had no value and the file attribute of the message
was not set.

 TT_MEDIA_ERR_FORMAT

See general info for description.

G-14 Desktop Integration Guide—August 1994

G

Display(Request)

Displays a document.

Synopsis
[file] Display(in <mediaType> contents

 [in messageID counterfoil]
 [in string docName]);

Description

The Display message requests that a document be displayed. Display is a
generic term for the operation the player performs; for example, an audiotool
displays sound. The Display request invokes the requested playback
mechanism (such as a video tool, or an audio tool). The receiving tool decides:

• when the display operation is complete.
• what user gesture signals that the display is completed (that is, what

determines that the user has signaled “I have completed the display.”).
• the action it takes after it has replied to the request.

Note – The display request does not allow changes to be saved back to the
source data; however, a tool that supports a “save as” operation may allow
edits to be saved back to the document.

Required Arguments

<mediaType> contents
The contents of the document. If this argument is empty (i.e., has a value of
(char *)0), then the contents of the document are in the file named in the
message’s file attribute. The data type of the contents argument shall be
string, unless nulls are legal in the given mediaType, in which case the data
type shall be bytes.

The ToolTalk Document and Media Exchange Message Set G-15

G

Optional Arguments

messageID counterfoil
The unique string created by the message sender (typically by concatenating
a procID and a counter) to give both sender and receiver a reference to this
request in other correspondence. Include this argument if the sender
anticipates a need to communicate with the handler about this request
before it is completed (for example, to cancel the request).

Note – When this argument is included and the handler determines that an
immediate reply is not possible, then the handler should immediately send at
least one Status notice point-to-point back to the requestor so as to identify
itself to the requestor.

title docName
The name of the document.

Examples

To display a PostScript document, send a Display request with a first argument
whose vtype is “PostScript”, and whose value is a vector of bytes such as
“%!^J/inch {72 mul} def...”. (By “^J” here we mean the newline character, octal
12.)

To display a PostScript document contained in a file, send a Display request,
scoped to that file, with a first argument whose vtype is “PostScript”, and
whose value is not set.

Errors

TT_DESKTOP_ENOENT

The file that was alleged to contain the document does not exist.

TT_MEDIA_NO_CONTENTS

The in-mode contents arg had no value and the file attribute of the message
was not set.

G-16 Desktop Integration Guide—August 1994

G

TT_MEDIA_ERR_FORMAT

See general info for description.

The ToolTalk Document and Media Exchange Message Set G-17

G

Edit(Request)

Edits or composes a document.

Synopsis
[file] Edit ([in]out <mediaType> contents

 [in messageID counterfoil]
 [in string docName]);

Description

The Edit message requests that a document be edited and a reply containing
the new contents be returned when the editing is completed. The receiving tool
decides:

• when the edit operation is complete.
• what user gesture signals that the edit is completed (that is, what

determines that the user has signaled “I have completed the edit.”).
• the action it takes after it has replied to the request.

If a tool supports a “save” or “checkpoint” operation during editing, it can
send a Deposit request back to the tool that requested the edit.

Required Arguments

<mediaType> contents
The contents of the document. If the message is file-scoped, the contents
argument has no value, and the document is contained in the scoped file.
The data type of the contents argument is string unless nulls are legal in the
given mediaType; if nulls are legal, the data type is bytes. If the contents
argument is mode out , a new document is to be composed and its contents
to be returned in this argument.

G-18 Desktop Integration Guide—August 1994

G

Optional Arguments

messageID counterfoil
The unique string created by the message sender (typically by concatenating
a procID and a counter) to give both sender and receiver a reference to this
request in other correspondence. Include this argument if the sender
anticipates a need to communicate with the handler about this request
before it is completed (for example, to cancel the request).

Note – When this argument is included and the handler determines that an
immediate reply is not possible, then the handler should immediately send at
least one Status notice point-to-point back to the requestor so as to identify
itself to the requestor.

title docName
The name of the document.

Examples

To edit an X11 “xbm” bitmap, send an Edit request with a first argument whose
vtype is “XBM”, and whose value is a a string such as “#define foo_width
44^J#define foo_height 94^J...”. (By “^J” here we mean the newline character,
octal 12.)

To edit an X11 “xbm” bitmap contained in a file, send an Edit request, scoped
to that file, with a first argument whose vtype is “XBM”, and whose value is
not set.

Errors

TT_DESKTOP_ENOENT

The file that was alleged to contain the document does not exist.

TT_MEDIA_NO_CONTENTS

The in-mode contents arg had no value and the file attribute of the message
was not set.

 TT_MEDIA_ERR_FORMAT

The ToolTalk Document and Media Exchange Message Set G-19

G

Interpret(Request)

Translates a document and displays the translation.

Synopsis
[file] Interpret(in <mediaType> contents,

 in <mediaType> targetMedium,
 in boolean inquisitive,
 in boolean covert
 [in messageID counterfoil]
 [in title docName]);

Description

The Interpret message translates a document from one media type to another
and displays the translation.

Note – The translation is the best possible representation of the document in
the target media type; however, it is possible that the resulting representation
cannot be perfectly translated back into the original document.

The Interpret request is equivalent to issuing a Translate request followed by a
Display request. The Interpret message is a useful optimization when the
sender has no interest in retaining the translation.

Note – It is possible to extract from the ToolTalk types database a list of the
installed Translate() mediaType-to-mediaType mappings.

Required Arguments

<mediaType> contents
The contents of the document.

If this argument is empty (that is, it has a value of (char *) 0), the contents of
the document are contained in the file named in the message's file attribute.
If nulls are not legal in the given mediaType, the data type of the contents
argument is string ; otherwise, the data type is bytes .

G-20 Desktop Integration Guide—August 1994

G

<mediaType> targetMedium
An empty argument whose vtype indicates the mediaType into which the
document is to be translated before it is displayed.

boolean inquisitive
The boolean value that indicates whether the recipient is allowed to seek
user input about interpretation options.

Note – However, even if this value is true, the recipient is not required to seek
the input.

If both the inquisitive and covert values are true, the recipient should
attempt to limit (for example, through iconification) its presence to the
minimum required to receive any user input requested.

boolean covert
The boolean value that indicates whether the recipient is allowed to make
itself apparent to the user as it performs the interpretation.

Note – However, even if the value is false, the recipient is not required to make
itself apparent.

If both the inquisitive and covert values are true, the recipient should
attempt to limit (for example, through iconification) its presence to the
minimum required to receive any user input requested.

Optional Arguments

messageID counterfoil
The unique string created by the message sender (typically by concatenating
a procID and a counter) to give both sender and receiver a reference to this
request in other correspondence. Include this argument if the sender
anticipates a need to communicate with the handler about this request
before it is completed (for example, to cancel the request).

Note – When this argument is included and the handler determines that an
immediate reply is not possible, then the handler should immediately send at
least one Status notice point-to-point back to the requestor so as to identify
itself to the requestor.

The ToolTalk Document and Media Exchange Message Set G-21

G

title docName
The name of the document.

Examples

Text-to-Speech Translation
To request a string to be spoken, send an Interpret request such as the
following:

ToolTalk will then pass this request to the appropriate third party server in
your environment.

Errors

TT_DESKTOP_ENOENT

The file that was alleged to contain the document does not exist.

TT_MEDIA_NO_CONTENTS

The in-mode contents arg had no value and the file attribute of the message
was not set.

TT_MEDIA_ERR_FORMAT

See general description for definition.

Interpret(in ISO_Latin_1 contents, in Sun_Audio targetMedium)

G-22 Desktop Integration Guide—August 1994

G

Print(Request)

Prints a document.

Synopsis
[file] Print(in <mediaType> contents,

 in boolean inquisitive,
 in boolean covert
[in messageID counterfoil]
[in title docName]);

Description

The Print message prints a document. In effect, the recipient assumes the user
issued a “print...” command via the recipient's user interface. The recipient tool
decides issues such as what it should do with itself after replying.

Required Arguments

<mediaType> contents
The contents of the document.

If this argument is empty (that is, it has a value of (char *) 0), the contents of
the document are contained in the file named in the message's file attribute.
If nulls are not legal in the given mediaType, the data type of the contents
argument is string ; otherwise, the data type is bytes .

boolean inquisitive
The boolean value that indicates whether the recipient is allowed to seek
user input about interpretation options.

Note – However, even if this value is true, the recipient is not required to seek
the input.

If both the inquisitive and covert values are true, the recipient should
attempt to limit (for example, through iconification) its presence to the
minimum required to receive any user input requested.

The ToolTalk Document and Media Exchange Message Set G-23

G

boolean covert
The boolean value that indicates whether the recipient is allowed to make
itself apparent to the user as it performs the interpretation.

Note – However, even if the value is false, the recipient is not required to make
itself apparent.

If both the inquisitive and covert values are true, the recipient should
attempt to limit (for example, through iconification) its presence to the
minimum required to receive any user input requested.

Optional Arguments

messageID counterfoil
The unique string created by the message sender (typically by concatenating
a procID and a counter) to give both sender and receiver a reference to this
request in other correspondence. Include this argument if the sender
anticipates a need to communicate with the handler about this request
before it is completed (for example, to cancel the request).

Note – When this argument is included and the handler determines that an
immediate reply is not possible, then the handler should immediately send at
least one Status notice point-to-point back to the requestor so as to identify
itself to the requestor.

title docName
The name of the document.

Examples

Printing a PostScript Document
To print a PostScript document,

Print(in PostScript contents,
in boolean inquisitive,
in boolean covert)

G-24 Desktop Integration Guide—August 1994

G

where the first argument is vtype PostScript whose value is a a vector of
bytes.

Printing a PostScript Document Contained in a File
To print a PostScript document contained in a file,

where the file attribute is set to filename, and the first argument is vtype
PostScript whose value is not set.

Errors

TT_DESKTOP_ENOENT

The file that was alleged to contain the document does not exist.

 TT_MEDIA_NO_CONTENTS

The in-mode contents arg had no value and the file attribute of the message
was not set.

 TT_MEDIA_ERR_FORMAT

Print(in PostScript contents,
in boolean inquisitive,
in boolean covert)

The ToolTalk Document and Media Exchange Message Set G-25

G

Translate(Request)

Translates a document from one media type to another media type.

Synopsis
[file] Translate(in <mediaType> contents,

 out <mediaType> output,
 in boolean inquisitive,
 in boolean covert
 [in messageID counterfoil]);

Description

The Translate message requests that a document be translated from one media
type to another media type and that a reply containing the translation be
returned. The translation is the best possible representation of the document in
the target media type; however, it is not guaranteed that the resulting
translation can be perfectly translated back into the original document.

Note – You can extract a list of the installed mediaType-to-mediaType
mappings from the ToolTalk Types Database.

Required Arguments

<mediaType> contents
The contents of the document.

If this argument is empty (that is, it has a value of (char *) 0), the contents of
the document are contained in the file named in the message's file attribute.
If nulls are not legal in the given mediaType, the data type of the contents
argument is string ; otherwise, the data type is bytes .

<mediaType> output
The translated document.

boolean inquisitive
The boolean value that indicates whether the recipient is allowed to seek
user input about interpretation options.

G-26 Desktop Integration Guide—August 1994

G

Note – However, even if this value is true, the recipient is not required to seek
the input.

If both the inquisitive and covert values are true, the recipient should
attempt to limit (for example, through iconification) its presence to the
minimum required to receive any user input requested.

boolean covert
The boolean value that indicates whether the recipient is allowed to make
itself apparent to the user as it performs the interpretation.

Note – However, even if the value is false, the recipient is not required to make
itself apparent.

If both the inquisitive and covert values are true, the recipient should
attempt to limit (for example, through iconification) its presence to the
minimum required to receive any user input requested.

Optional Arguments

messageID counterfoil
The unique string created by the message sender (typically by concatenating
a procID and a counter) to give both sender and receiver a reference to this
request in other correspondence. Include this argument if the sender
anticipates a need to communicate with the handler about this request
before it is completed (for example, to cancel the request).

Note – When this argument is included and the handler determines that an
immediate reply is not possible, then the handler should immediately send at
least one Status notice point-to-point back to the requestor so as to identify
itself to the requestor.

The ToolTalk Document and Media Exchange Message Set G-27

G

Examples

Speech-to-Text Translation
To translate speech to text, send a Translate request such as the following:

Optical Character Recognition (OCR)
To translate optical characters to text, send a Translate request such as the
following:

Errors

TT_DESKTOP_ENOENT

The file that was alleged to contain the document does not exist.

 TT_MEDIA_NO_CONTENTS

The in-mode contents arg had no value and the file attribute of the message
was not set.

 TT_MEDIA_ERR_FORMAT

Translate (in Sun_Audio contents, out ISO_Latin_1 output);

Translate (in GIF contents, out ISO_Latin_1 output);

G-28 Desktop Integration Guide—August 1994

G

Glossary–1

Glossary

accelerator
Any efficient, alternate method of implementing a series of commands.
Specifically, drag-and-drop is an accelerator because it replaces one or more
commands that could be executed through a series of command line scripts or
menu selections.

additional action
Any action that takes place after the completion of a drag-and-drop data
transfer. This includes actions that comprise normal termination of the
conversation. Addenda (or “side effects”) are included in this category.

adjust mouse button
The mouse button (the center one, by default) that is used to adjust (add or
remove) selections.

alternate transport medium
(ATM) Any communication channel other than the X wire; for instance, the
ToolTalk service and sockets.

anchor
A connection point in a data file which supports one end of a link.

animation
There are two primary types of animation, tracking and previewing.

animation, previewing
A visual indication of receptivity to a drop. This may be indicated by a pointer
change, for instance.

Glossary-2 Desktop Integration Guide—August 1994

animation, tracking
The process of making an image of the object move across the desktop in
synchronization with the user’s mouse movement.

API
application programming interface.

Classing Engine
A mechanism that permits an application to query a database (the Classing
Engine database) to determine the attributes of a desktop object.

conversation
The negotiations necessary to determine the format, transport method, and
other considerations pertinent to the data to be transferred in a drag-and-drop
operation.

data span
A segment of on-screen data. It can be a segment of text, digitized audio,
video, and so forth.

desktop object
A discrete on-screen representation of data. This could be a data span, an
application icon, file glyph, etc.

drag and drop
The overall concept of using a mouse to select a desktop object and move or
copy it to another desktop object.

Drop Site Database Manager (DSDM)
A process (not the sending client) responsible for maintaining a registry or
database of potential drop sites for drag-and-drop operations.

File type

Refers to a file’s format (e.g., ASCII, PostScript, and Sun raster files), its parent
application (FrameMaker, Lotus 1-2-3 data files) or the application executable
itself (File Manager, Mail Tool, or Wingz® executable file).

gesture, drag and drop
Holding down the selection button over an existing selection, moving the
mouse, then releasing the selection button. This causes a representation of the
selection to move to the point where the button is released.

Glossary-3

glyph
Any graphical element on the desktop. A glyph may be a button, a folder, or
other graphical element representing a document or file.

hints
Suggestions that a source can provide to a destination concerning possible
ways to deal with the data exchange.

icon
A closed representation of a window. An window displayed as an icon is still
running. An icon may change in appearance to show the state of the
application; for instance, the familiar Mail Tool icon shows whether new mail
has arrived by displaying envelopes in a tray.

interplay
The ability of various objects on the OpenWindows desktop to exchange data
without requiring user intervention.

match attributes
Each entry in a namespace table will have one or more match attribute values,
which will be used by the namespace manager in matching client arguments.

menu mouse button
The mouse button (with a three-button mouse, by default the right one) that is
used to display a menu associated with a desktop object.

namespace
Refers to the space from which an object name is derived and understood. Files
are named within the file namespace, printers are named within the printer
namespace. You cannot name a printer by using a file name.

namespace table
A namespace table is the place where all namespace information is stored, for
use by the CE as well as a namespace manager. Each namespace table consists
of entries (rows) and each entry consists of a set of named attributes.

Glossary-4 Desktop Integration Guide—August 1994

namespace manager
Every namespace has a namespace manager. A namespace manager is a piece
of code that performs the matching of client supplied arguments with the
attributes of entries in a table.
Different namespace managers will use different matching logic. Consider two
examples - (1) mapping file information to a file type and (2) mapping a type
name to type attributes.
In case (1), the namespace manager for files might have to know a file name, a
magic number and fstat() information in order to match with its own match
attributes of file name pattern, magic number and an fstat() mask.
In case (2), all the type namespace manager has to know is the name of a type,
which it will exact match with its type name match attribute.

Notice
A special pop-up window initiated by an application. A Notice warns of errors
or potential loss of data. The application will not accept further input until the
user dismisses the Notice by selecting a desired action.

object
See desktop object.

object type derivation
The process by which an object’s name and content information is examined to
determine the type of an object. This is not the same process as the one used to
give an object its type.

OLIT
The OPEN LOOK Intrinsics Toolkit.

rendezvous
The set of events that are necessary to identify the sending client to the
receiving client.

select
To distinguish an object (or objects) on the desktop so they may be operated
on.

select mouse button
The mouse button (the left one, by default) that is used to select objects,
set the insert point, drag objects, and set/reset buttons.

ToolTalk
A service for communications between applications on the desktop.

Glossary-5

transport
The means by which an object is passed from one process to another.

type-specific attributes
Each object type has a set of attributes associated with it e.g. its methods, icons
etc. These attributes are referred to as type-specific attributes.

type database
The database used to map an object type to its attributes. In the context of the
CE, a type database is a namespace table, where types are named and their
attributes stored.

workspace
The background area of a display screen on which windows and icons are
displayed.

Glossary-6 Desktop Integration Guide—August 1994

Index-1

Index

Symbols
$CEPATH, 5-28

A
accelerator, Glossary-1
adding a new file type, 5-11
additional action, Glossary-1
addressing messages, methods of, 6-9
adjust mouse button, Glossary-1
alternate transport medium, Glossary-1
anchor, Glossary-1
animation, 3-3, Glossary-1
animation, previewing, Glossary-1
animation, tracking, Glossary-2
API, Glossary-2
API See application programming interface
application programming interface

(API), 6-11
attribute

compress, 5-10
registration, 5-2

attributes, 5-1
types, 5-8
types of, 5-1

B
Backus-Naur Form, 5-14
Binder, 5-15
broadcast, 6-1

C
cd_db_build, 5-14
ce_begin, 5-29
ce_db_build, 5-11, 5-36
ce_db_changed, 5-29
ce_db_merge, 5-13, 5-37
ce_end, 5-29
ce_get_atribute_type, 5-32
ce_get_attribute, 5-31
ce_get_attribute_id, 5-31
ce_get_attribute_name, 5-34
ce_get_attribute_size, 5-31
ce_get_dbs, 5-30
ce_get_entry, 5-30
ce_get_entry_db_info, 5-34
ce_get_namespace_id, 5-30
ce_get_namespace_name, 5-34
ce_get_ns_entry, 5-32
ce_map_through_attrs, 5-33
ce_map_through_entries, 5-33

Index-2 Desktop Integration Guide—August 1994

ce_map_through_namespaces, 5-32
ce_map_through_ns_attrs, 5-34
Classing Engine, Glossary-2
classing engine

adding a new file type, 5-11
adding a new object, 5-11
adding/changing file types, 5-5
API, 5-27
ASCII, converting to, B-1
attributes, 5-1, 5-8
data type registration, 5-2, C-1
database, accessing, 5-17
database, converting to ASCII, 5-35
database, reading the, 5-35
definition of, 5-1
example, 5-25
file manager, 5-3
file type attributes, C-3
file type identifier, C-2
file types, C-2
file types (see also files types), 5-10
interactive modifications, 5-15
location of namespace managers, 5-

28
mapping functions, 5-25, 5-28
program example, 5-17
purpose of, 5-1
registration, C-1, C-2
retrieving attributes, 5-17
usage, 5-3
utility programs, 5-35
viewing database, B-1

classing engine database, 5-1, 5-5
locations of, 5-5
network, 5-5
system, 5-5
user, 5-5

compress, 5-10
Container, A-8
content, 5-6

typing by, 5-6
conversation, Glossary-2
copy-and-paste, 3-3
Created(Notice), F-5

CUT, COPY, and PASTE keys, 2-1
cut-and-paste, 3-3

D
data span, 3-2, Glossary-2
data type registration, 3-45, C-1
Deleted(Notice), F-5
derive, file type, 5-6
DeskSet

selection protocol, 2-4
DeskSet atoms, 4-1
DeskSet Drag and Drop Atoms, 4-4
DeskSet Drag and Drop Example, 4-10
DeskSet drag and drop handshaking, 4-2
DeskSet drag and drop protocol, 4-1
deskset integration

why do it, 1-2
DeskSet selection, 4-2
DeskSet, how uses ToolTalk, 7-1
desktop integration, 1-1

definition of, 1-1
purpose of, 1-1
why do it, 1-1

desktop object, Glossary-2
Desktop Services Message Set, 6-3
destination, 3-2
destination application, A-3
destination object, A-2
determining who receive messages, 6-9
Do_Command(Request), F-6
Document and Media Exchange Message

Set, 6-5
drag and drop, A-1, Glossary-2

application example, 1-3
application examples, A-2
canceling, A-29
cut and paste, A-3
data conversion, 3-45
data format names, 3-46
data span, 3-2
data span, selection of, 3-2
data type registration, 3-45

Index-3

data types, C-1
definition, A-5
destination, 3-2, A-8
drag source image, A-17
drop method, A-9
error handling, A-28
handshaking, 3-45
implementation, 3-3, 3-4
input focus management, A-28
multiple source objects, A-21
OPEN LOOK deviations, A-30
programming example, 3-7
receiving a drop, 3-5
selected, 3-2
source, 3-2
specific locations, A-9
target, A-13
undoing, A-29
visual feedback, 3-3, A-21

drag and drop target, 3-3, A-8
drag and drop user interface, 3-2
drag source image, A-17
Drop, 3-3
drop method, A-9
Drop Site Database Manager

(DSDM), Glossary-2

E
error messages

TT_DESKTOP_CANCELLED, F-4
TT_DESKTOP_EACCESS, F-3
TT_DESKTOP_EINVAL, F-3
TT_DESKTOP_ENOENT, F-3
TT_DESKTOP_ENOMSG, F-3
TT_DESKTOP_ENOTSUP, F-4
TT_DESKTOP_EPROTO, F-3
TT_DESKTOP_UNMODIFIED, F-4

error messages, Desktop Services, F-3
error reporting, 5-28
examples

classing engine, 5-17, 5-25
OLIT selections, 2-2

F
features, of ToolTalk, 6-8
file

ToolTalk concept of, 6-10
File Manager, A-2
file scoping, restrictions, 6-10
file type, 5-1, 5-6

name, 5-10
file type by pattern, 5-6
file type identification

identification, file type, 5-6
file type, adding a new, 5-11
file types

icon, 5-10
icon background color, 5-10
icon foreground color, 5-10
icon mask, 5-10
open command, 5-10
print command, 5-10
template, 5-10
ToolTalk command, 5-10
ToolTalk command, obsolete

ToolTalk, 5-10
filemanager, 5-3
files namespace entries, 5-6
files namespace table, 5-6
files namespace table,example of, 5-6

G
gesture, drag and drop, Glossary-2
Get_Environment(Request), F-21
Get_Geometry(Request), F-23
Get_Iconified(Request), F-25
Get_Locale(Request), F-26
Get_Mapped(Request), F-28
Get_Modified(Request), F-8
Get_Situation(Request), F-30
Get_Status(Request), F-9
Get_Sysinfo(Request), F-10
Get_XInfo(Request), F-31
Glossary, Glossary-1

Index-4 Desktop Integration Guide—August 1994

glyph, Glossary-3

H
hints, Glossary-3
holder client, 2-2
how applications use ToolTalk

messages, 6-7

I
icon, Glossary-3
interplay, Glossary-3

L
Lower(Request), F-18

M
match attributes, Glossary-3
menu mouse button, Glossary-3
message patterns, 6-8
message protocol, 6-10
message sets

Desktop Services
Created, F-5
Deleted, F-5
Do_Command, F-6
Get_Environment, F-21
Get_Geometry, F-23
Get_Iconified, F-25
Get_Locale, F-26
Get_Mapped, F-28
Get_Modified, F-8
Get_Situation, F-30
Get_Status, F-9
Get_Sysinfo, F-10
Get_XInfo, F-31
Lower, F-18
Modified, F-12
Moved, F-13
Pause, F-14
Quit, F-16
Raise, F-18

Resume, F-14
Revert, F-19
Reverted, F-12
Save, F-19
Saved, F-20
Set_Environment, F-21
Set_Geometry, F-23
Set_Iconified, F-25
Set_Locale, F-26
Set_Mapped, F-28
Set_Situation, F-30
Set_XInfo, F-31
Signal, F-33
Started, F-34
Status, F-35
Stopped, F-34

messages
determining recipients of, 6-8
handling, 6-8
methods of addressing, 6-9
object-oriented, 6-9
observing, 6-8
process-oriented, 6-9
receiving, 6-8
sending, 6-7

messages, object-oriented, 6-1
messaging, multicast, 6-1
Modified(Notice), F-12
Moved(Notice), F-13
multicast, 6-1
multi-click method, 3-2
multiple source objects, A-7

N
namespace, Glossary-3
namespace manager, 5-6, Glossary-4
namespace tables, 5-6, Glossary-3
Notice, Glossary-4

O
object type derivation, Glossary-4
object-oriented messages, 6-9

Index-5

OLIT, Glossary-4
OLIT selection example, 2-2
OLIT. drag and drop example, E-1
owner client, 2-2

P
pattern, 5-6
pattern, type by, 5-6
Pause(Request), F-14
point-to-point messaging, 6-1
primary drop site

drag and drop
primary drop site, A-14

Print Tool, A-3
process-oriented messages, 6-9

Q
Quit(Request), F-16

R
Raise(Request), F-18
receiving ToolTalk messages, 6-8
recipients, 6-7
registering file types, C-1
registration phone number, C-1
registration, data type, 1-7
registration, data types, 3-45
rendezvous, Glossary-4
requestor client, 2-2
Resume(Request), F-14
Revert(Request), F-19
Reverted(Notice), F-12

S
Save(Request), F-19
Saved(Notice), F-20
scenarios illustrating the ToolTalk service

in use, 6-2
select, Glossary-4

select mouse button, Glossary-4
select-adjust method, 3-2
selected, 3-2
selection mechanism, 2-1
selections

application example, 2-1
documentation, further, 2-2
toolkit support, 2-2

selections protocol, 2-2
selections, generic implementation, 2-2
senders, 6-7
sending ToolTalk messages, 6-7
session identifier (sessid), 6-10
session, ToolTalk concept of, 6-10
Set_Environment(Request), F-21
Set_Geometry(Request), F-23
Set_Iconified(Request), F-25
Set_Locale(Request), F-26
Set_Mapped(Request), F-28
Set_Situation(Request), F-30
Set_XInfo(Request), F-31
Signal(Request), F-33
software evolution, 1-2
source, 3-2
source application, A-3
source object, A-2
sourcing a drag

drag and drop
sourcing a drag, 3-4

Started(Notice), F-34
Status(Notice), F-35
Stopped(Notice), F-34
Syntax of ASCII Database Description

File, 5-14

T
targets, 4-1
TARGETS atom, 4-2
TNT, Glossary-4
ToolTalk, Glossary-4

example program, D-1

Index-6 Desktop Integration Guide—August 1994

registering types, C-4
ToolTalk message sets

Desktop, 6-3
Document and Media Exchange, 6-5

ToolTalk messages, 6-7
ToolTalk service, 6-1, 6-2
ToolTalk, as used in DeskSet, 7-1
transport, Glossary-5
TT_DESKTOP_CANCELED, F-4
TT_DESKTOP_EACCESS, F-3
TT_DESKTOP_EINVAL, F-3
TT_DESKTOP_ENOENT, F-3
TT_DESKTOP_ENOMSG, F-3
TT_DESKTOP_ENOTSUP, F-4
TT_DESKTOP_EPROTO, F-3
TT_DESKTOP_UNMODIFIED, F-4
type database, Glossary-5
types namespace table, 5-6, 5-8
types namespace table, attributes, 5-8
type-specific attributes, Glossary-5
typing by content, 5-6

V
vtype, for ToolTalk objects, F-2
vtypes, namespace for persistent

objects, F-4

W
Windows as Source Objects, A-7
wipe method, 3-2
workspace, Glossary-5

