
Sun Microsystems, Inc.
2550 Garcia Avenue
Mountain View, CA 94043
U.S.A.

A Sun Microsystems, Inc. Business

NFS Administration
Guide

Please
Recycle

 1994 Sun Microsystems, Inc.
2550 Garcia Avenue, Mountain View, California 94043-1100 U.S.A.

All rights reserved. This product and related documentation are protected by copyright and distributed under licenses
restricting its use, copying, distribution, and decompilation. No part of this product or related documentation may be
reproduced in any form by any means without prior written authorization of Sun and its licensors, if any.

Portions of this product may be derived from the UNIX® and Berkeley 4.3 BSD systems, licensed from UNIX System
Laboratories, Inc., a wholly owned subsidiary of Novell, Inc., and the University of California, respectively. Third-party font
software in this product is protected by copyright and licensed from Sun’s font suppliers.

RESTRICTED RIGHTS LEGEND: Use, duplication, or disclosure by the United States Government is subject to the restrictions
set forth in DFARS 252.227-7013 (c)(1)(ii) and FAR 52.227-19.

The product described in this manual may be protected by one or more U.S. patents, foreign patents, or pending applications.

TRADEMARKS
Sun, the Sun logo, Sun Microsystems, Sun Microsystems Computer Corporation, SunSoft, the SunSoft logo, Solaris, SunOS,
OpenWindows, DeskSet, ONC, ONC+, and NFS are trademarks or registered trademarks of Sun Microsystems, Inc. in the U.S.
and certain other countries. UNIX is a registered trademark of Novell, Inc., in the United States and other countries; X/Open
Company, Ltd., is the exclusive licensor of such trademark. OPEN LOOK® is a registered trademark of Novell, Inc. PostScript
and Display PostScript are trademarks of Adobe Systems, Inc. All other product names mentioned herein are the trademarks
of their respective owners.

All SPARC trademarks, including the SCD Compliant Logo, are trademarks or registered trademarks of SPARC International,
Inc. SPARCstation, SPARCserver, SPARCengine, SPARCstorage, SPARCware, SPARCcenter, SPARCclassic, SPARCcluster,
SPARCdesign, SPARC811, SPARCprinter, UltraSPARC, microSPARC, SPARCworks, and SPARCompiler are licensed
exclusively to Sun Microsystems, Inc. Products bearing SPARC trademarks are based upon an architecture developed by Sun
Microsystems, Inc.

The OPEN LOOK and Sun™ Graphical User Interfaces were developed by Sun Microsystems, Inc. for its users and licensees.
Sun acknowledges the pioneering efforts of Xerox in researching and developing the concept of visual or graphical user
interfaces for the computer industry. Sun holds a non-exclusive license from Xerox to the Xerox Graphical User Interface,
which license also covers Sun’s licensees who implement OPEN LOOK GUIs and otherwise comply with Sun’s written license
agreements.

X Window System is a product of the Massachusetts Institute of Technology.

THIS PUBLICATION IS PROVIDED “AS IS” WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR IMPLIED,
INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A
PARTICULAR PURPOSE, OR NON-INFRINGEMENT.

THIS PUBLICATION COULD INCLUDE TECHNICAL INACCURACIES OR TYPOGRAPHICAL ERRORS. CHANGES ARE
PERIODICALLY ADDED TO THE INFORMATION HEREIN; THESE CHANGES WILL BE INCORPORATED IN NEW
EDITIONS OF THE PUBLICATION. SUN MICROSYSTEMS, INC. MAY MAKE IMPROVEMENTS AND/OR CHANGES IN
THE PRODUCT(S) AND/OR THE PROGRAM(S) DESCRIBED IN THIS PUBLICATION AT ANY TIME.

iii

Contents

Preface. xi

1. Solaris NFS Environment . 1

NFS System. 2

Autofs . 2

Autofs Features . 3

2. How To Set Up NFS Servers . 5

About the NFS Environment . 5

NFS File Systems . 6

NFS Servers and Clients . 6

NFS Administration Tasks . 7

Setting Up Automatic Sharing . 8

Sharing Objects . 11

Setting Up at Boot Time . 12

3. How To Use the NFS Environment . 13

NFS Commands . 13

iv NFS Administration Guide—August 1994

NFS Administrative Tasks . 14

Adding a New File System to Share 14

Unsharing File Systems. 15

Displaying Shared Local File Systems 15

Displaying Mounted File Systems. 16

4. Setting Up and Maintaining NFS Security. 19

 Secure RPC. 20

DES Authentication . 21

KERB Authentication . 22

AUTH_DES Client/Server Session . 22

Administering Secure NFS . 27

Instructions for Administering Secure NFS 27

Setting Up Secure NFS . 28

5. NFS Troubleshooting . 31

General Information on NFS Troubleshooting. 32

NFS Troubleshooting Instructions . 33

Determining Where NFS Service Has Failed 33

Clearing Server Problems . 34

Clearing Remote Mounting Problems. 34

Fixing Hung Programs . 36

6. Using Autofs . 39

How Autofs Works . 40

Setting Up Autofs Maps . 42

auto_home Map . 42

Contents v

auto_master Map . 42

Direct Maps . 42

Indirect Maps . 42

autofs Command Syntax. 43

automountd Command Syntax . 43

Master Map Syntax . 43

Direct and Indirect Map Syntax . 44

How Autofs Navigates Through the Network (Maps) . . . 45

How Autofs Starts the Navigation Process (Master Map) . 45

Direct Maps . 49

How Autofs Finds Specific File Systems (Indirect Maps). . 50

How Autofs Selects the Nearest Read-Only Files for Clients
(Multiple Locations) . 52

Multiple Mounts . 54

Variables in a Map Entry. 57

Maps That Refer to Other Maps. 57

Modifying How Autofs Navigates the Network (Modifying
Maps) . 60

Administrative Tasks Involving Maps 60

Modifying the Maps . 62

Avoiding Mount Point Conflicts . 63

Default Autofs Behavior . 64

Autofs Reference . 65

Metacharacters . 65

Special Characters . 67

vi NFS Administration Guide—August 1994

Accessing Non-NFS File Systems . 67

Accessing NFS File Systems Using CacheFS 68

Common Problems and Recommended Solutions 70

How To Set Up Different Architectures To Access a Shared Name
Space . 70

How To Set Up a Common View of the /home Directory
Structure . 73

How to Consolidate Project-Related files/ws Directory
Structure) . 75

Troubleshooting Autofs. 78

Reference for Autofs Troubleshooting 78

Index . 83

vii

Figures

Figure 6-1 /etc/init.d/autofs Script Starts automount 41

Figure 6-2 Master Map. 45

Figure 6-3 Indirect Map Structure Versus Direct Map Structure 50

Figure 6-4 Server Proximity . 53

Figure 6-5 How Autofs Uses the Name Service. 64

viii NFS Administration Guide—August 1994

ix

Tables

Table 6-1 auto_master File Contents . 46

Table 6-2 Predefined Map Variables . 57

Table 6-3 Map Administration Tasks . 60

Table 6-4 Types of Maps and Their Uses . 61

Table 6-5 Map Maintenance . 61

Table 6-6 When to Run the automount Command 61

x NFS Administration Guide—August 1994

xi

Preface

NFS Administration Guide presents the administrative tasks required for the
successful operation of the SunSoft™ NFS® distributed computing file system.
This resource sharing product allows you to share files and directories among
a number of computers on a network.

Also included in this manual is how to set up and use autofs (formerly the
automounter) to automatically mount and unmount NFS file systems.

This book is organized into explanatory background material, task-oriented
instructions, and statistical reference information.

Who Should Use This Book
This book is intended for the system administrator whose responsibilities
include setting up and maintaining NFS systems. Though much of the book is
directed toward the experienced system administrator, it also contains
information useful to novice administrators and other readers who may be
new to the Solaris™ platform.

How This Book Is Organized
Chapter 1, “Solaris NFS Environment,” provides an overview of the Solaris
NFS environment and autofs.

xii NFS Administration Guide—August 1994

Chapter 2, “How To Set Up NFS Servers,” provides information on how to
setup NFS servers. It assumes you are using NIS or NIS+ as your name
service.

Chapter 3, “How To Use the NFS Environment,” describes how to use NFS
file systems.

Chapter 4, “Setting Up and Maintaining NFS Security,” presents background
information on the security features of NFS, as well as fundamental procedures
for setting up and maintaining NFS security.

Chapter 5, “NFS Troubleshooting,” describes problems that may occur on
machines using NFS services. It contains a summary of NFS sequence of
events and procedures for tracking NFS problems. Background and reference
sections are also included.

Chapter 6, “Using Autofs,” provides procedures for setting up and using
autofs. It also includes background, reference, and troubleshooting sections.

Typographic Conventions
Table P-1 describes the typographic conventions used in this book.

Table P-1 Typeface and Symbol Meanings

Typeface or
Symbol Meaning Example

AaBbCc123 The names of commands, files,
and directories; on-screen
computer output

Edit your .login file.
Use ls -a to list all files.
system% You have mail

AaBbCc123 What you type, contrasted with
on-screen computer output

system% su
password :

AaBbCc123 Command-line placeholder:
replace with a real name or value

To delete a file, type rm filename.

AaBbCc123 Book titles, new words or terms,
or words to be emphasized

Read Chapter 6 in User’s Guide.
These are called class options.
You must be root to do this.

% UNIX® C shell prompt system%

$ UNIX Bourne shell prompt system$

Superuser prompt, either shell system#

1

Solaris NFS Environment 1

This chapter provides an overview of the Solaris network file system (NFS)
environment.

The NFS system allows you to share files and directories among many
computers on a network. For example, applications running simultaneously
on several computers can read from and write to a single file system. To
participating users, the file system appears to be located on their local systems.
The possible uses for shared file systems are endless.

The terms client and server are used to describe the roles that a computer plays
when sharing file systems. If a central file system resides on a computer’s
disk, and that computer makes the file system available to other computers on
the network, that computer acts as a server. The computers that are accessing
that central file system are said to be clients. Solaris NFS software enables any
given computer to access any other computer’s file systems and, at the same
time, provide access to its own file systems. A computer may play the role of
client and server or both at any given time on a network.

Autofs page 2

NFS System page 2

2 NFS Administration Guide—August 1994

1

NFS System
The NFS system is a SunSoft distributed computing file system that can be
used to link computers that are running different operating systems. For
example, computers running DOS can share files with computers running
UNIX.

The NFS system makes the actual physical location of the file system irrelevant
to the user. You can use the NFS system to enable users to see all the relevant
files, regardless of location. Instead of placing copies of commonly used files
on every system, the NFS software allows you to place one copy on one
computer’s disk and have all other systems access it across the network.
Under NFS operation, remote file systems are indistinguishable from local
ones.

A computer becomes an NFS server if it has file systems to export over the
network. A server keeps a list of currently exported file systems and their
access restrictions (read/write, read-only, and so on).

Autofs
File systems shared through NFS software can be mounted using automatic
mounting. Autofs, a client-side service, is a file system that provides advanced
automatic mounting. The automount program runs in the background
mounting and unmounting remote directories on an as-needed basis.

Whenever a user on a client computer running autofs tries to access a remote
file or directory, autofs mounts the file system to which that file or directory
belongs. This remote file system remains mounted for as long as it is needed.
If the remote file system is not accessed for a certain period of time, it is
automatically unmounted.

No mounting is done at boot time, and the user no longer has to know the
superuser password to mount a directory; users need not use the mount and
umount commands. Autofs mounts and unmounts file systems as required
without any intervention on the part of the user.

Mounting some file hierarchies with automount does not exclude the
possibility of mounting others with mount . A diskless computer must mount
/ (root), /usr , and /usr/kvm through the mount and the /etc/vfstab file.

Do not use autofs to mount /usr/share . Automountd depends on some
files in that directory.

Solaris NFS Environment 3

1

Autofs Features

Autofs works with file systems specified in NIS maps or NIS+ tables. These
maps or tables can be maintained as NIS, NIS+, or local files.

Autofs maps or tables can specify several remote locations for a particular file.
This way, if one of the servers is down, autofs can try to mount from another
computer. To specify which servers are preferred for each file system in the
maps, you can assign each server a weighting factor.

You can invoke autofs from a shell command line, or it will start automatically
when the computer enters run level 2.

4 NFS Administration Guide—August 1994

1

5

How To Set Up NFS Servers 2

This chapter provides information on how to set up NFS servers. It assumes
you are using NIS or NIS+ as your name service. The chapter is organized into
overview, how-to, and reference sections.

If you would rather review background information first, read the following
section, “About the NFS Environment.”

About the NFS Environment
The NFS environment is a service that enables computers of different
architectures running different operating systems to share file systems across a
network. NFS has been implemented on many operating systems ranging
from MS-DOS® to VMS®.

The NFS environment makes it possible for a computer to share local files and
directories, and permits remote users to access those files and directories as
though they were local to the user’s computer.

About the NFS Environment page 5

NFS File Systems page 6

NFS Servers and Clients page 6

NFS Administration Tasks page 7

6 NFS Administration Guide—August 1994

2

The NFS environment provides file sharing in a heterogeneous environment,
potentially containing many different operating systems. It can be
implemented on different operating systems because it defines an abstract
model of a file system, rather than an architectural specification. Each
operating system applies the NFS model to its file system semantics. This
means that file system operations like reading and writing function as though
they are accessing a local file.

The benefits of NFS software are as follows:

• Allows multiple computers to use the same files, so the same data can be
accessed by everyone on the network

• Reduces storage costs by having computers share applications
• provides data consistency and reliability as all users can read the same set of

files
• Mounting of file systems transparent to users
• Accessing remote files is transparent to users
• Supports heterogeneous environments
• Reduces system administration overhead

NFS File Systems
The objects that can be shared through the NFS software include any whole or
partial directory tree or file hierarchy—including a single file. A computer
cannot share a file hierarchy that overlaps one that is already shared.
Peripheral devices such as modems and printers cannot be shared.

In most UNIX system environments, a file hierarchy that can be shared
corresponds to a file system or to a portion of a file system; however, NFS
software works across operating systems, and the concept of a file system may
be meaningless in other, non-UNIX environments. Therefore, the term file
system is used throughout this guide to refer to a file or file hierarchy that can
be shared and mounted over the NFS environment.

NFS Servers and Clients
A computer that makes a local file system available for mounting by remote
computers is called a server. A computer that mounts a file system shared by
a remote computer is a client of that computer. Any computer with a disk can
be server, a client, or both at the same time.

How To Set Up NFS Servers 7

2

A server can provide files to a diskless client, a computer that has no local disk.
A diskless client relies completely on the server for all its file storage. A
diskless client can act only as a client—never as a server.

Servers provide access to their file systems by sharing them over the NFS
environment. You specify which file systems are to be shared with the share
command and/or the /etc/dfs/dfstab file.

Entries in the /etc/dfs/dfstab file are shared automatically whenever you
start NFS operation. You should set up automatic sharing if you need to share
the same set of file systems on a regular basis. For example, if your computer
is a server that supports diskless clients, you need to make your clients’ root
directories available at all times.

The dfstab file lists all the file systems that your server shares with its clients
and controls which clients may mount a file system. If you want to modify
dfstab to add or delete a file system, or to modify the way sharing is done,
simply edit the file with any supported text editor (such as vi). The next time
the computer enters run level 3, the system reads the updated dfstab to
determine which file systems should be shared automatically.

Each line in the file consists of a share command—the same command you
enter at the share(1M) , in the dfstab file command line to share a file
system explicitly. The share command is located in /usr/sbin .

Clients access files on the server by mounting the server’s shared file systems.
When a client mounts a remote file system, it does not make a copy of the file
system; rather, the mounting process uses a series of remote procedure calls
that enable the client to access the file system transparently on the server’s
disk. The mount looks like a local mount, and users type commands as if the
file systems were local.

Once a file system has been shared on a server through NFS operation, it can
be accessed from a client. NFS file systems are mounted automatically with
autofs and name service maps (NIS and NIS+).

NFS Administration Tasks
Your responsibilities as an NFS administrator depend on your site’s
requirements and the role of your computer on the network. You may be
responsible for all the computers on your local network, in which case you
may be responsible for the major tasks involved in NFS administration:

8 NFS Administration Guide—August 1994

2

• Determining which computers, if any, should be dedicated servers
• Which should act as both servers and clients
• Which should be clients only

Maintaining a server once it has been set up involves the following tasks:

• Sharing and unsharing file systems as necessary

• Modifying administrative files to update the lists of file systems your
computer shares and/or mounts automatically

• Checking the status of the network. (Refer to Chapter 5, “NFS
Troubleshooting”)

• Diagnosing and fixing NFS related problems as they arise

• Setting up maps to use the automatic mounting facility called autofs (See
Chapter 6, “Using Autofs”)

Remember, a computer can be both a server and a client—both sharing local
file systems with remote computers and mounting remote file systems.

Setting Up Automatic Sharing

1. Edit the /etc/dfs/dfstab file.
Add one entry to the file for each file system that you want to have shared
automatically. Each entry must be on a line by itself in the file and has the
following syntax:

where -F nfs indicates that the file system is to be shared through NFS
software (this is also the default); specific-options is a comma-separated list of
options that regulates how the file system is shared; description is a comment
that describes the file system to be shared; and pathname is the full name of
the file system to be shared, starting at root (/).

share [-F nfs] [-o specific- options] [-d description] pathname

share -F nfs -o ro,rw=homedog:chester /usr/src

How To Set Up NFS Servers 9

2

In the previous example, read-only access is assigned to any client except
homedog and chester , who have read/write access.

In the previous example, read/write is assigned to any client in the
engineering netgroup. The client homedog has read-only access. For more
information about netgroups, see User Accounts, Printers, and Mail
Administration.

Specific options that can follow the -o flag include:

rw which shares pathname read/write to all clients (by default) except
those that are specified under ro=.

ro which shares pathname read-only to all clients, except those that
b are specified under rw= .

Note – You cannot specify both rw and ro without arguments, and you cannot
specify the same client in the rw= list and the ro= list. If no read/write option
is specified, the default is read/write for all clients.

ro= client[:client] which shares pathname read-only to the listed client
computers or netgroup names (overriding rw).

rw= client[:client] which shares pathname read/write to the listed client
computers (overriding ro).

anon =uid which allows you to specify a different uid for “anonymous”
users—users whose uid is 0—when accessing pathname. By default,
anonymous users are mapped to username nobody , which has the UID 60001.
User nobody has ordinary user privileges, not superuser privileges.

root =host[:host] which allows a user from host host whose uid is 0 to access
pathname as root; root users from all other hosts become anon . If this option is
not specified, no user from any host is granted access to pathname as root.

share -F nfs -o rw=engineering,ro=homedog /usr/src

Caution – Granting root access to other hosts has far-reaching security
implications; use the root= option with extreme caution. See the following
discussion for more information.!

10 NFS Administration Guide—August 1994

2

In the NFS environment, a server shares file systems it owns so clients can
mount them using autofs. However, a user who becomes the superuser at a
client is denied access as the superuser to NFS file systems. When a user
logged in as root on one host requests access to a remote file shared through
NFS software, the user’s ID is changed from 0 to the user ID of the username
nobody . The access rights of user nobody are the same as those given to the
public for a particular file. For example, if the public has only execute
permission for a file, then user nobody can execute only that file.

secure Allows you to share a file system with additional user
authentication required

kerberos Allows you to share a file system with kerberos authentication
(see Security, Performance, and Accounting Administration).

Examples of Automatic Sharing Entries in /etc/dfs/dfstab

You want to permit the root user on samba to always have root access to the
/usr/src on the server computer. Make the following entry to the server’s
dfstab file.

You want to permit the root users on samba, homedog, and chester to
always have root access to the /usr/src on the server computer. Make the
following entry to the server’s dfstab file.

You want all client processes with UID 0 to have superuser access to
/usr/src . You should make the following entry in the server’s dfstab file.

anon is short for “anonymous.” Anonymous requests, by default, get their
user ID changed from its previous value (whatever it may be) to the user ID of
username nobody. NFS servers label as anonymous any request from a root
user (someone whose current effective user ID is 0) who is not in the list

share -F nfs -o root=samba /usr/src

share -F nfs -o root=samba:homedog:chester /usr/src

share -F nfs -o anon=0 /usr/src

How To Set Up NFS Servers 11

2

following the root= option in the share command. The previous command
tells the kernel to use the value 0 for anonymous requests. The result is that all
root users retain their user ID of 0.

You need to make sure that NFS software is running on the server, if this is the
first share command or set of share commands that you have initiated.

1. Run the server script /etc/init.d/nfs.server stop .

2. Run the server script /etc/init.d/nfs.server start.
This runs the necessary daemons mountd and nfsd .

This ensures that NFS software is now running on the servers, and will restart
automatically when the server is at run level 3 during boot.

At this point, set up your autofs maps so clients can access the file systems
you’ve shared on the server.

Sharing Objects

If you need to share an object multiple times each share command replaces all
previous shares of the specified file system(s). If you try to share the root file
system to more than one machine using

and then, wishing to add an additional client, you enter

The second share will overrule the first share. Therefore you must include all
the file systems you wish to share each time you add a file system

share -F nfs -o rw=<client>,root=<client>,anon=0 /

share -F nfs -o rw=<anotherclient>,root=<anotherclient>,anon=0 /

share -F nfs -o
rw=<client>:<anotherclient>,root=<client>:<anotherclient>
,anon=0 /

12 NFS Administration Guide—August 1994

2

Setting Up at Boot Time

If you want to mount file systems at boot time instead of using autofs maps,
follow this procedure. This method is not recommended because it is very
time consuming for a system administrator.

1. Edit the /etc/vfstab file.

Entries in the /etc/vfstab file have the following syntax:

special fsckdev mountp fstype fsckpass mount-at-boot mntopts

Example of a vfstab entry

You want a client computer to mount the /var/mail directory on the server
milano . You would like it mounted as /var/mail on the client. You want
the client to have read-write access. Make the following entry to the client’s
vfstab file.

milano:/var/mail - /var/mail nfs - yes rw

13

How To Use the NFS Environment 3

This chapter provides information on how to perform such NFS administration
tasks as adding new file systems to share, unsharing file systems, displaying
shared local file systems, and displaying mounted file systems. The NFS
administration utilities package installs five commands: share , unshare ,
mount, unmount , and showmount .

NFS Commands

share(1M)

Allows you to add to a server a new file system to share. The share
command is also used to set up your NFS servers. See Chapter 2, “How To Set
Up NFS Servers.” You can also use the share command to display a list of
the file systems on your system that are currently shared.

NFS Commands page 13

NFS Administrative Tasks page 14

Adding a New File System to Share page 14

Unsharing File Systems page 15

Displaying Shared Local File Systems page 15

Displaying Mounted File Systems page 16

14 NFS Administration Guide—August 1994

3

unshare(1M)

Allows you to make a previously available file system unavailable for
mounting by clients.

mount(1M)

Used without arguments, this command allows you to mount a remote file
system on your computer, or to display a list of file systems, both local and
remote, that are currently mounted on your computer. You can also use this
command for troubleshooting purposes. See Chapter 5, “NFS
Troubleshooting,” for more information. Autofs will automatically mount file
systems for clients (users) as they request access to them.

umount(1M)

Allows you to remove a remote file system you previously mounted. Use this
command for troubleshooting purposes only

showmount(1M)

Shows you which file systems are shared from an NFS server.

NFS Administrative Tasks
This section includes instructions for performing tasks related to managing file
systems services with NFS software. After each set of instructions, there are
examples of the screen input and output associated with the task, with all
relevant assumptions defined and described.

Adding a New File System to Share

1. Edit the /etc/dfs/dfstab file.
Add one entry to the file for each file system that you want to have shared
automatically. Each entry must be on a line by itself in the file and has the
following syntax:

share [-F nfs] [-o specific- options] [-d description] pathname

How To Use the NFS Environment 15

3

If you type the share command without an argument, the command displays
all file systems shared on the server you are currently logged into that are
currently shared. If you specify a file system type, the share command
displays all file systems of the specified type that are currently shared.

The /etc/dfs/dfstab file allows you to share file systems automatically
whenever your system enters run level 3. For example, if you want a
directory to be available to clients on a regular basis, and you can anticipate
few occasions when you would need to make it unavailable, type a share
command for that directory into the dfstab file. Then, whenever you take the
system to run level 3, the directory becomes available to clients automatically.

Each line of the file consists of the share command line needed to share a
particular file system; the share command you type in the file has the same
syntax as the share command you type at the command line.

Unsharing File Systems

The unshare command can be used to unshare any file system—whether the
file system was shared explicitly with the share command or automatically
through the dfstab file. If you use the unshare command to unshare a file
system that you shared through the dfstab file, remember that it will be
shared again when you exit and re-enter run level 3.

When you unshare an NFS file system, access from clients with existing
mounts is inhibited.

Displaying Shared Local File Systems

♦ Use the share command with or without specifying nfs.

If you enter the command without arguments, it displays all NFS file systems
on your system that are currently shared. If you specify a file system type and
no other options, the command displays all file systems of the specified type
that are currently shared.

16 NFS Administration Guide—August 1994

3

Displaying Mounted File Systems

♦ Use the mount command with no arguments to display file systems
mounted on a client.

–o specific options
which is a list of file system type specific options that can be specified after the
–o flag. There are different options for NFS specifications (described later in
this section).

The options that can follow the –o flag when mounting either NFS file system
are:

rw | ro
where rw indicates that the file system is to be mounted read/write and ro
indicates it is to be mounted read-only. (If no option is specified, rw is the
default.)

suid | nosuid
where suid indicates that set-uid bits are to be obeyed on execution and
nosuid indicates that they are to be ignored. (If no option is specified, set-uid
is the default.)

Some NFS specific options that can follow the –o flag are:

Code Example 3-1

corey(/home/bermudez/Encrypt): mount
/ on /dev/dsk/c0t3d0s0 read/write/setuid on Mon Nov 29 13:53:47
1993
/usr on /dev/dsk/c0t3d0s6 read/write/setuid on Mon Nov 29
13:53:47 1993
/proc on /proc read/write/setuid on Mon Nov 29 13:53:47 1993
/dev/fd on fd read/write/setuid on Mon Nov 29 13:53:47 1993
/tmp on swap read/write on Mon Nov 29 13:53:52 1993
/opt on /dev/dsk/c0t3d0s5 setuid/read/write on Mon Nov 29
13:53:54 1993
/usr/openwin on /dev/dsk/c0t3d0s7 setuid/read/write on Mon Nov 29
13:53:55 1993
/net/hostess/install on hostess:/install
corey(/home/bermudez/Encrypt):

How To Use the NFS Environment 17

3

bg | fg
where bg indicates that a mount retry should be initiated in the background
when the server does not respond, and fg indicates it should be initiated in the
foreground. If no option is specified, fg is the default. (This option does not
apply to autofs.)

nointr
which disallows keyboard interruptions of NFS operations.

retry= n
which is the number of times to retry the mount operation. The default for n is
10,000 times.

timeo= n
which sets the timeout to n tenths of a second. If no option is specified, 1.1
seconds is the default.

18 NFS Administration Guide—August 1994

3

19

Setting Up and Maintaining NFS
Security 4

The NFS environment is a powerful and convenient way to share file systems
on a network of different computer architectures and operating systems.
However, the same features that make sharing file systems through NFS
operation convenient also pose some security problems. An NFS server
authenticates a file request by authenticating the computer making the request,
but not the user. If superuser privilege is not restricted when a file system is
shared, a client user can run su and impersonate the owner of a file.

Given root access and knowledge of network programming, anyone is capable
of introducing arbitrary data into the network, and picking up any data from
the network. The most dangerous attacks are those involving the introduction
of data, such as impersonating a user by generating the right packets, or
recording conversations and replaying them later. These attacks affect data
integrity. Attacks involving passive eavesdropping—merely listening to
network traffic without impersonating anybody—are not as dangerous, since
data integrity is not compromised. Users can protect the privacy of sensitive
information by encrypting data that goes over the network.

Secure RPC page 20

AUTH_DES Client/Server Session page 22

Administering Secure NFS page 27

Instructions for Administering Secure NFS page 27

20 NFS Administration Guide—August 1994

4

A common approach to network security problems is to leave the solution to
each application. A better approach is to implement a standard authentication
system at a level that covers all applications.

The Solaris operating system includes an authentication system at the level of
remote procedure call (RPC)—the mechanism on which NFS operation is built.
This system, known as Secure RPC, greatly improves the security of network
environments and provides additional security to the NFS environment. The
security features it provides to the NFS environment are known as Secure NFS.

 Secure RPC
Secure RPC is fundamental to Secure NFS. The goal of Secure RPC is to build
a system at least as secure as a time-sharing system (one in which all users
share a single computer). A time-sharing system authenticates a user through
a login password. With Data Encryption Service(DES) authentication, the same
is true. Users can log in on any remote computer just as they can on a local
terminal, and their login passwords are their passports to network security. In
time-sharing, the system administrator has an ethical obligation not to change
a password in order to impersonate someone. In Secure RPC, the network
administrator is trusted not to alter entries in a database that stores “public
keys.”

You need to be familiar with two terms to understand an RPC authentication
system: credentials and verifiers. Using ID badges as an example, the credential
is what identifies a person: a name, address, birth date, and so on. The verifier
is the photo attached to the badge: you can be sure the badge has not been
stolen by checking the photo on the badge against the person carrying it. In
RPC, the client process sends both a credential and a verifier to the server with
each RPC request. The server sends back only a verifier because the client
already knows the server’s credentials.

RPC’s authentication is open ended, which means that a variety of
authentication systems may be plugged into it. Currently, there are three
systems: UNIX, DES, and KERB.

When UNIX authentication is used by a network service, the credentials
contain the client’s computer-name, UID, gid , and group-access-list, but the
verifier contains nothing. Because there is no verifier, a root user could deduce
appropriate credentials, using commands such as su . Another problem with

Setting Up and Maintaining NFS Security 21

4

UNIX authentication is that it assumes all computers on a network are UNIX
computers. UNIX authentication breaks down when applied to other
operating systems in a heterogeneous network.

To overcome the problems of UNIX authentication, Secure RPC uses DES
authentication—a scheme that employs verifiers, yet allows Secure RPC to be
general enough to be used by most operating systems.

DES Authentication

DES authentication uses the Data Encryption Standard (DES) and Diffie-
Hellman public key cryptography to authenticate both users and computers in
the network. DES is a standard encryption mechanism; Diffie-Hellman public
key cryptography is a cipher system that involves two keys: one public and
one secret. The public and secret keys are stored in an NIS or NIS+ database.
NIS stores the keys in the publickey map, and NIS+ stores the keys in the
cred table. These maps contain the public key and secret key for all potential
users. See Security, Performance, and Accounting Administration for more
information on how to set up the maps and tables.

The security of DES authentication is based on a sender’s ability to encrypt the
current time, which the receiver can then decrypt and check against its own
clock. The timestamp is encrypted with DES. There are two requirements for
this scheme to work:

• The two agents must agree on the current time

• The sender and receiver must be using the same encryption key.

If a network runs a time synchronization program, then the time on the client
and the server is synchronized automatically. If a time synchronization
program is not available, timestamps can be computed using the server’s time
instead of the network time. The client asks the server for the time before
starting the RPC session, then computes the time difference between its own
clock and the server’s. This difference is used to offset the client’s clock when
computing timestamps. If the client and server clocks get out of sync to the
point where the server begins to reject the client’s requests, the DES
authentication system resynchronizes with the server.

The client and server arrive at the same encryption key by generating a
random conversation key, also known as the session key, and then using public
key cryptography (an encryption scheme involving public and secret keys) to

22 NFS Administration Guide—August 1994

4

deduce a common key. The common key is a key that only the client and server
are capable of deducing. The conversation key is used to encrypt and decrypt
the client’s timestamp; the common key is used to encrypt and decrypt the
conversation key.

KERB Authentication

Kerberos is an authentication system developed at MIT. Encryption in Kerberos
is based on DES.

Kerberos works by authenticating the user’s login password. A user types the
kinit command, which obtains a ticket that is valid for the time of the session
(or eight hours, the default session time) from the authentication server. When
the user logs out, the ticket may be destroyed using the kdestroy command.

The Kerberos software is available from MIT project Athena, and is not part of
the SunOS software. SunOS software provides:

• Routines used by the client to create, acquire, and verify tickets

• An authentication option to Secure RPC

• A client-side daemon, kerbd (1M)

See Security, Performance, and Accounting Administration for more details.

AUTH_DES Client/Server Session
This section describes the series of transactions in a client/server session using
AUTH_DES.

Step 1
Sometime prior to a transaction, the administrator runs a program, either
newkey (1M) or nisaddcred (1) that generates a public key and a secret key.
(Each user has a unique public key and secret key.) The public key is stored in
a public database; the secret key is stored in encrypted form, in the same
database. To change the key pair, use the chkey (1) command.

Setting Up and Maintaining NFS Security 23

4

Step 2
The user logs in and runs the keylogin program (or the keylogin program
may be included in the user’s environment configuration file, such as ~/.login,
~/.cshrc, or ~/.profile, so that it runs automatically whenever the user logs in).
The keylogin program prompts the user for a secure RPC, or network,
password and uses the password to decrypt the secret key. The keylogin
program then passes the decrypted secret key to a program called the
Keyserver. (The Keyserver is an RPC service with a local instance on every
computer.) The Keyserver saves the decrypted secret key, and waits for the
user to initiate a secure RPC transaction with a server.

Usually, the login password is identical to the network password. In this case,
keylogin is not required. If the passwords are different, the users have to log in,
and then do a keylogin explicitly.

Step 3
When the user initiates a transaction with a server:

1. The Keyserver randomly generates a conversation key.

2. The kernel uses the conversation key to encrypt the client’s timestamp
(among other things).

3. The Keyserver looks up the server’s public key in the public key database
(see publickey (4)).

4. The Keyserver uses the client’s secret key and the server’s public key to
create a common key.

5. The Keyserver encrypts the conversation key with the common key.

Step 4
The transmission including the encrypted timestamp and the encrypted
conversation key is then sent to the server. The transmission includes a
credential and a verifier. The credential contains threecomponents:

• The client’s net name
• The conversation key, encrypted with the common key
• A “window,” encrypted with the conversation key

24 NFS Administration Guide—August 1994

4

The window is the difference the client says should be allowed between the
server’s clock and the client’s timestamp. If the difference between the
server’s clock and the timestamp is greater than the window, the server would
reject the client’s request.

The client’s verifier contains:

• The encrypted timestamp
• An encrypted verifier of the specified window, incremented by 1

The window verifier is needed in case somebody wants to impersonate a user
and writes a program that, instead of filling in the encrypted fields of the
credential and verifier, just stuffs in random bits. The server will decrypt the
conversation key into some random key, and use it to try to decrypt the
window and the timestamp. The result will be random numbers. After a few
thousand trials, however, there is a good chance that the random
window/timestamp pair will pass the authentication system. The window
verifier makes guessing the right credential much more difficult.

Step 5
When the server receives the transmission from the client:

1. The Keyserver local to the server looks up the client’s public key in the
publickey database.

2. The Keyserver uses the client’s public key and the server’s secret key to
deduce the common key—the same common key computed by the client.
(Only the server and the client can calculate the common key because doing
so requires knowing one secret key or the other.)

3. The kernel uses the common key to decrypt the conversation key.

4. The kernel calls the Keyserver to decrypt the client’s timestamp with the
decrypted conversation key.

Step 6
After the server decrypts the client’s timestamp, it stores four items of
information in a credential table:

• The client’s computer name
• The conversation key
• The window

Setting Up and Maintaining NFS Security 25

4

• The client’s timestamp

The server stores the first three items for future use. It stores the timestamp to
protect against replays. The server accepts only timestamps that are
chronologically greater than the last one seen, so any replayed transactions are
guaranteed to be rejected.

Note – Implicit in these procedures is the name of caller, who must be
authenticated in some manner. The Keyserver cannot use DES authentication
to do this because it would create a deadlock. To solve this problem, the
Keyserver stores the secret keys by UID, and grants requests only to local root
processes. The client process then executes a set-UID process, owned by root,
which makes the request on the part of the client, telling the Keyserver the real
UID of the client.

Step 7
The server returns a verifier to the client, which includes:

• The index ID, which the server records in its credential cache.
• The client’s timestamp minus one, encrypted by conversation key

The reason for subtracting one from the timestamp is to ensure that it is invalid
and cannot be reused as a client verifier.

Step 8
The client receives the verifier and authenticates the server. The client knows
that only the server could have sent the verifier because only the server knows
what timestamp the client sent.

Step 9
The client returns the index ID to the server in its second transaction and sends
another encrypted timestamp.

Step 10
The server sends back the client’s timestamp minus one, encrypted by the
conversation key.

26 NFS Administration Guide—August 1994

4

With every transaction after the first, the client sends its index ID and another
encrypted timestamp, and the server returns the timestamp minus one.

You should be aware of the following points if you plan to use Secure RPC:

• If a server crashes when no one is around (after a power failure for
example), all of the secret keys that are stored on the system are wiped out.
Now no process is able to access secure network services, or mount an NFS
file system. The important processes at this time are usually root processes,
so things would work if root’s secret key were stored away, but nobody is
around to type the password that decrypts it. keylogin -r allows root
to store the clear secret key in /etc/.rootkey which keyserve(1M)
reads.

• Some systems boot in single-user mode, with a root login shell on the
console and no password prompt. Physical security is imperative in such
cases.

• Diskless computer booting is not totally secure. Somebody could
impersonate the boot server, and boot a devious kernel that, for example,
makes a record of your secret key on a remote computer. Secure NFS
provides protection only after the kernel and the Keyserver are running.
Before that, there is no way to authenticate the replies given by the boot
server. This is not a serious problem, because somebody would probably
not be able to write this compromised kernel without source code. Also, the
crime would have evidence. If you polled the network for boot-servers, you
would discover the devious boot-server’s location.

• Most set-UID programs are owned by root; because root’s secret key is
always stored at boot time, these programs behave as they always have. If a
set-UID program is owned by a user, however, it may not always work. For
example, if a set-UID program is owned by dave , and dave has not logged
into the computer since it booted, then the program would not be able to
access secure network services.

• If you log in to a remote computer (using login , rlogin , or telnet) and
use keylogin to gain access, you give away access to your account. This is
because your secret key gets passed to that computer’s Keyserver, which
then stores it. This is only a concern if you don’t trust the remote computer.
If you have doubts, however, don’t log in to a remote computer if it requires
a password. Instead, use the NFS environment to mount file systems shared
by the remote computer. As an alternative, you can use keylogout (1) to
delete the secret key from the Keyserver.

Setting Up and Maintaining NFS Security 27

4

Administering Secure NFS
To use Secure NFS, all the computers you are responsible for must have a
domain name. A domain is an administrative entity, typically consisting of
several computers, that joins a larger network. If you are running NIS+, you
should also establish the NIS+ name service for the domain. See Security,
Performance, and Accounting Administration.

With UNIX authentication, the name of a domain is the UID. UIDs are
assigned per domain. A problem with this scheme is that UIDs clash when
domains are linked across the network. Another problem with UNIX
authentication has to do with superusers; with UNIX authentication, the
superuser ID (UID 0) is assigned one per computer, not one per domain.
Therefore, a domain can have multiple superusers—all with the same UID.

DES authentication corrects these problems by using netnames. A netname is a
string of printable characters created by concatenating the name of the
operating system, a user ID, and a domain name. For example, a UNIX system
user with a user ID of 508 in the domain eng.acme.COM would be assigned
the following netname: unix.508@eng.acme.COM . Because user IDs are
unique within a domain, and because domain names are unique on a network,
this scheme produces a unique netname for every user.

To overcome the problem of multiple superusers per domain, netnames are
assigned to computers as well as to users. A computer’s netname is formed
much like a user’s—by concatenating the name of the operating system and
the computer name with the domain name. A UNIX computer named hal in
the domain eng.acme.COM would have the netname
unix.hal@eng.acme.COM .

Instructions for Administering Secure NFS
This section includes step-by-step instructions for performing tasks related to
managing Secure NFS. After each set of instructions for many tasks, there is an
example of the screen input and output associated with the task, with all
relevant assumptions defined and described.

28 NFS Administration Guide—August 1994

4

Setting Up Secure NFS

1. Assign your domain a domain name, and make the domain name known
to each computer in the domain. See the Name Services Administration Guide
if you are using NIS+ as your name service.

2. Establish public keys and secret keys for your clients’ users using the
newkey(1M) command, and have each user establish his or her own
secure RPC password using the chkey command.

Note – For information about these commands, see the newkey (1M) and the
chkey (1) manual pages.

When public and secret keys have been generated, the public and encrypted
secret keys are stored in the publickey database.

3. Usually, the login password is identical to the network password. In this
case, keylogin is not required. If the passwords are different, the users have
to log in, and then do a keylogin. You still need to use the keylogin -r
command as root to store the decrypted secret key in /etc/.rootkey .

4. If you are running NIS, verify that the ypbind daemon is running and
that there is a ypserv running in the domain.

5. To verify that the keyserv daemon (the Keyserver) is running, type the
following:

If it isn’t running, to start the Keyserver, type the following:

ps -ef | grep ypbind

ps -ef | grep keyserv

/usr/sbin/keyserv

Setting Up and Maintaining NFS Security 29

4

6. Edit the /etc/dfs/dfstab file and add the secure option to the
appropriate entries (for DES authentication).

(For KERB authentication, add the kerberos option.)

7. Edit the auto_master map to include secure as a mount option in the
appropriate entries: (for DES authentication)

(For KERB authentication, add the kerberos option.)

Note – If a client does not mount as secure a file system that is shared as
secure, users have access as user nobody , rather than as themselves.

When you reinstall, move, or upgrade a computer, remember to save
/etc/.rootkey if you don’t establish new keys or change them for root. If
you do delete /etc/.rootkey , it’s not fatal. You can always type
keylogin -r (1) .

share -F nfs -o secure /export/home

share -F nfs -o kerberos /export/home

/home auto_home -nosuid,secure

/home auto_home -nosuid,kerberos

30 NFS Administration Guide—August 1994

4

31

NFS Troubleshooting 5

This chapter describes problems that may occur on computers using NFS
services. It contains a summary of NFS sequence of events and how to
strategies for tracking NFS problems. A reference section is also included. If
you want to skip the background information that explains NFS internals and
proceed directly to step-by-step instructions, use the following table to find the
page where instructions for specific tasks begin.

Before trying to clear NFS problems, you should have some understanding of
the issues involved. The information in this chapter contains enough technical
details to give experienced network administrators a thorough picture of what
is happening with their computers. If you do not yet have this level of
expertise, you should be able to at least recognize the names and functions of
the various daemons, system calls, and files. Before you read this chapter,
familiarize yourself with the following manual pages: mount (1M), share (1M),
mountd (1M), and nfsd (1M).

General Information on NFS Troubleshooting page 32

NFS Troubleshooting Instructions page 33

Determining Where NFS Service Has Failed page 33

Clearing Server Problems page 34

Clearing Remote Mounting Problems page 34

Fixing Hung Programs page 36

32 NFS Administration Guide—August 1994

5

General Information on NFS Troubleshooting
When tracking down an NFS problem, keep in mind that there are three main
points of possible failure: the server, the client, and the network itself. The
strategy outlined in this section tries to isolate each individual component to
find the one that is not working. The mountd daemon must be present in the
server for a remote mount to succeed. Remote mounts also need an nfsd
daemon to execute on NFS servers.

Note – The mountd and nfsd start automatically at boot time only if there are
NFS share entries in the /etc/dfs/dfstab file. Therefore, mountd and
nfsd must be started manually when setting up sharing for the first time.

When the network or server has problems, programs that access hard-mounted
remote files will fail differently than those that access soft-mounted remote
files. Hard-mounted remote file systems cause the client’s kernel to retry the
requests until the server responds again. Soft-mounted remote file systems
cause the client’s system calls to return an error after trying for a while.
Because these errors may result in unexpected application errors, soft
mounting is not recommended. mount is like any other program: if the server
for a remote file system fails to respond, the kernel retries the mount until it
succeeds.

The intr option is set by default for all mounts. If a program hangs with a
“server not responding” message, it can be killed with a keyboard interrupt
Control-C.

When a file system is hard mounted, a program that tries to access it hangs if
the server fails to respond. In this case, the NFS system displays the following
message on the console.

When the server finally responds, the following message appears on the
console.

NFS server <hostname> not responding, still trying

NFS server <hostname> ok

NFS Troubleshooting 33

5

A program accessing a soft-mounted file system whose server is not
responding may not check the return conditions. In any case, the kernel prints
the following message:

Note – Do not soft-mount read file systems with read-write data or file systems
from which executables will be run because of possible errors. Writeable data
could be corrupted if the application ignores soft errors Mounted executables
could be misinterpreted..

NFS Troubleshooting Instructions

Determining Where NFS Service Has Failed

1. Type the following to check whether the mountd daemon is running.

2. Type the following to check whether the nfsd daemon is running.

3. To enable daemons without rebooting, become root and type the
following:

to enable mountd type the following; or

type the following to enable nfsd .

. . . <hostname> server not responding:RPC:Timed out

ps -ef | grep mountd

ps -ef | grep nfsd

/usr/lib/nfs/mountd

/usr/lib/nfs/nfsd -a 8

34 NFS Administration Guide—August 1994

5

Clearing Server Problems

1. Make sure that the server’s kernel responds. From the client, type the
following:

2. Check that the server’s nfsd processes are responding. From the client,
type the following:

If the server is running, it prints a list of program, version, protocol, and
port numbers.

3. Check that the server’s mountd is responding.

If the server is running normally, but your computer cannot communicate
with it, check the network connections between your computer and the
server.

Clearing Remote Mounting Problems

Example 1

The server sharing the file system you are trying to mount is down, at the
wrong run level, or its rpcbind is dead or hung.

ping <servername>

/usr/sbin/rpcinfo -u <servername> nfs

/usr/sbin/rpcinfo -u <servername> mountd

mount: ... server not responding: RPC_PMAP_FAILURE -
RPC_TIMED_OUT

NFS Troubleshooting 35

5

1. Sign on to the server and check its run level with the who command.

2. If the server is at run level 2, try going to another run level and back, or
try rebooting the server to restart rpcbind .

3. Try to log in to the server from the client computer, using the rlogin
command.

4. If you can’t log in, but the server is up, try to log in to another remote
computer to check your network connection. If that connection is
working, check the server’s network connection.

Example 2

mount registered with rpcbind , but the NFS mount daemon mountd is not
registered.

♦ Determine whether or not the mount daemon is running:

Example 3

Either the remote directory or the local directory does not exist.

♦ Check the spelling of the directory names. Use ls on both directories.

who -r

mount: ... server not responding: RPC_PROG_NOT_REGISTERED

rpcinfo -u <server> mountd

mount: ... No such file or directory

36 NFS Administration Guide—August 1994

5

Example 4

Your computer name may not be in the list of clients allowed access to the file
system you want to mount.

1. To display the server’s share list, type the following.

or

2. If the file system you want is not in the list, log in to the server and run
the share command without options.

Fixing Hung Programs

If programs hang while doing file-related work, your NFS server may be dead.
You may see the following message on your console.:

This message indicates that NFS server hostname is down, or that there is a
problem with the server or with the network.

1. Check the server(s) from which you mounted the file system.

If one or more are down, do not be concerned. When the server comes back
up, programs resume automatically. No files are destroyed.

If all servers are running, ask someone else using these same servers if they
are having trouble. If more than one client computer is having problems
getting service, there is a problem with the server.

mount: ...: Permission denied

dfshares <server>

showmount -e <server>

NFS server <hostname> not responding, still trying

NFS Troubleshooting 37

5

If no other client computers are having trouble with the server, check your
network connection and the connection of the server.

2. Log in to the server and run ps to see if nfsd is running and
accumulating CPU time.

 (Run ps -ef a few times, letting some time pass between each call.)

3. If nfsd is not running, you may be able to kill and then restart nfsd . If
this does not work, reboot the server.

If nfsd is not running, it may be that the server has been taken to a run
level that does not support file sharing. Use who -r to obtain the server’s
current run level.

For more information about NFS status, use the snoop command. See the
man pages.

38 NFS Administration Guide—August 1994

5

39

Using Autofs 6

This chapter tells you how to use autofs, a new implementation of automatic
mounting. Autofs is a file system that mounts file systems as needed and
unmounts file systems when they are not being used. It enables access to
remote data when needed.

Autofs optimizes network applications’ performance, and streamlines
administrative tasks.

The first section of this chapter, “How Autofs Works” on page 40, tells you
how to design and maintain map files.

The second section of this chapter, “Autofs Reference” on page 65, provides
advanced information on how to configure maps to meet your specific
environmental needs.

The third section, “Common Problems and Recommended Solutions” on
page 70, describes some common scenarios for use of autofs and how to design
autofs maps to best meet your needs for accessing file systems.

How Autofs Works page 40

Setting Up Autofs Maps page 42

Autofs Reference page 65

Common Problems and Recommended Solutions page 70

Troubleshooting Autofs page 78

40 NFS Administration Guide—August 1994

6

How Autofs Works
Autofs is a client-side service. When a client attempts to access a file system
that is not presently mounted, the autofs file system intercepts the request and
calls automountd , to mount the requested directory. The automountd
locates the directory, mounts it within autofs, and replies. On receiving the
reply, autofs allows the waiting request to proceed. Subsequent references to
the mount are redirected by the autofs—no further participation is required by
the automountd .

Three components that work together to accomplish automatic mounting are:

1. The automount command

2. The autofs file system

3. The automountd daemon

The automount command, called at system start-up time, reads the master
map file auto_master to create the initial set of autofs mounts. These autofs
mounts are not automatically mounted at startup time. They are points under
which file systems will be mounted in the future.

Once the autofs mounts are set up, they can trigger file systems to be mounted
underneath them. For example, when autofs receives a request to access a file
system that is not currently mounted, autofs calls the automountd , which
actually mounts the requested file system.

With this new implementation of automatic mounting the automountd
daemon is completely independent from the automount command. Because
of this separation, it’s possible to add, delete, or change map information
without having to stop and start the automountd daemon process first. Once
the file system is mounted, further access does not require any action from the
automountd .

After initially mounting autofs mounts, the automount command is used to
keep autofs mounts as necessary by comparing the list of mounts in
auto_master with the list of mounted file systems in the mount table file
/etc/mnttab (formerly /etc/mtab) and making the appropriate changes.
This allows system administrators to change mount information within
auto_master and have those changes used by the autofs processes without
having to stop and restart autofs.

Using Autofs 41

6

Unlike mount , automount does not read the file /etc/vfstab (which is
specific to each computer) for a list of file systems to mount. The automount
command is controlled within a domain and on workstations through the
maps.

THis is a simplified overview of how autofs works:

The automount daemon automountd starts at boot time from the
/etc/init.d/autofs script. This script also runs the automount
command, which reads the master map (see “How Autofs Navigates Through
the Network (Maps)” on page 45) and installs autofs mount points.

Figure 6-1 /etc/init.d/autofs Script Starts automount

Autofs is a kernel file system that supports automatic mounting and
unmounting.

When a request is made to access a file system at an autofs mount point:

1. Autofs intercepts the request.

2. Autofs sends a message to the automountd for the requested file system to
be mounted.

3. automountd locates the file system information in a map and performs the
mount.

4. Autofs allows the intercepted request to proceed.

5. Autofs unmounts the file system after 5 minutes of inactivity.

Autofs
mounts

mount/unmount automountd

42 NFS Administration Guide—August 1994

6

Setting Up Autofs Maps
Autofs uses four types of maps:

• auto_home
• auto_master
• Direct maps
• Indirect maps

auto_home Map

The auto_home map associates user login names with their directory
locations. It tells autofs to mount a home directory by pointing to the
auto_home map. The map is a listing of all the users in the system, followed
by the path to their home directory. To view the auto_home map, use
Administration Tool. To bring up Administration Tool, type admintool at
the command prompt.

auto_master Map

The auto_master map associates the user’s home directory with a map. It is
a master list specifying all the maps that autofs should know about.

Direct Maps

A direct map is an automount point. With a direct map, there is a direct
association between a mount point on the client and a directory on the server.

Indirect Maps

An indirect map uses a substitution value of a key to establish the association
between a mount point on the client and a directory on the server. Indirect
maps are useful for accessing specific file systems, like the home directories.
The auto_home map is an example of an indirect map.

Using Autofs 43

6

autofs Command Syntax

To invoke autofs, use the following syntax.

The automount(1M) man page contains a complete description of all options.

automountd Command Syntax

To invoke the automountd(1M) daemon, use the following syntax.

The automountd(1M) man page contains a complete description of all
options.

Master Map Syntax

Each line in the master map /etc/auto_master has the following syntax.

mount-point
mount-point is the full (absolute) path name of a directory. If the directory does
not exist, autofs creates it if possible. If the directory exists and is not empty,
mounting on it hides its contents. In this case, autofs issues a warning
message.

map-name
map-name is the map autofs uses to find directions to locations, or mount
information. If the name is preceded by a slash (/), autofs interprets the slash
as a local file. Otherwise, autofs searches for the mount information using the
search specified in the name service switch configuration file.

/usr/sbin/automount [–t mount-timeout] [-v]

/usr/lib/autofs/automountd [–Tv] [–D name=value]

mount-point map-name [mount-options]

44 NFS Administration Guide—August 1994

6

[mount-options]
mount-options is an optional, comma-separated list of options that apply to the
mounting of the entries specified in map-name, unless the entries in map-name
list other options. The mount-options are the same as those for a standard NFS
mount , except that bg (background) and fg (foreground) do not apply.

A line beginning with # is a comment. Everything that follows until the end of
the line is ignored.

To split long lines into shorter ones, put a backslash (\) at the end of the line.

The notation /- as a mount point indicates that the map in question is a direct
map, and no particular mount point is associated with the map as a whole.

Direct and Indirect Map Syntax

Lines in direct and indirect maps have the following general syntax.

key
key is the path name of the mount point in a direct map.

key is a simple name (no slashes) in an indirect map.

[mount-options]
The mount-options are the options you want to apply to this particular mount.
They are required only if they differ from the map default.

location
location is the location of the file system, specified (one or more) as
server:pathname.

As in the master map, a line beginning with # is a comment. All the text that
follows until the end of the line is ignored. Put a backslash at the end of the
line to split long lines into shorter ones.

key [mount-options] location

Using Autofs 45

6

How Autofs Navigates Through the Network (Maps)

Autofs searches a series of maps to navigate its way through the network.
Maps are files that contain information such as the password entries of all
users on a network, or the names of all host computers on a network; that is,
network-wide equivalents of UNIX administration files. Maps are available
locally or through a network name service like NIS or NIS+. You create maps
to meet the needs of your environment using Administration Tool. See
“Modifying How Autofs Navigates the Network (Modifying Maps)” on
page 60.

There are four kinds of autofs maps:

• Auto_home—associates user login names with their directory locations
• Master—associates directories with maps
• Indirect—a directory containing automount points (used for most maps)
• Direct—an automount point (rarely used)

The following sections describe these maps.

How Autofs Starts the Navigation Process (Master Map)

Autofs reads the master map at system startup. Each entry in the master map
is a direct or indirect map name, its path, and its mount options, as shown in
Figure 6-2. The specific order of the entries is not important. Autofs compares
entries in the master map with entries in the mount table.

Figure 6-2 Master Map

For example, Table 6-1 shows what a typical auto_master file would contain:

mount or unmount

Master map
/etc/auto_master

automount

Mount table
/etc/mnttab

Compare

Autofs
mounts

46 NFS Administration Guide—August 1994

6

Table 6-1 auto_master File Contents

Autofs recognizes some special mount points and maps, which are explained
in the following sections.

Mount Point /–

In Table 6-1, the mount point /- tells autofs not to associate the entries in
auto_direct with any directory. Indirect maps use mount points. Direct
maps use mount points specified in the auto_direct map. (Remember, in a
direct map the key, or mount point, is a full path name.)

A NIS or NIS+ auto_master can have only one direct map entry. An
auto_master that is a local file can have any number of entries.

Mount Point / home

The mount point /home is the directory under which the entries listed in
/etc/auto_home (an indirect map) are to be mounted.

Mount point /net

Autofs mounts under the directory /net all the entries in the special map
-hosts . This is a built-in map that uses only the hosts database. For
example, if the computer gumbo is in the hosts database, and it exports any of
its file systems, the command:

Mount point Map Mount options

/– auto_direct -ro

/home auto_home -nosuid

/net -hosts -nosuid

cd /net/gumbo

Using Autofs 47

6

changes the current directory to the root directory of the computer gumbo.
Note that autofs can mount only the exported file systems of host gumbo; that
is, those on a server available to network users as opposed to those on a local
disk. Therefore, all the files and directories under /net/gumbo , for example,
may not appear.

Note – Autofs checks the server’s export list only at mount time. Once a
server’s filesystems are mounted, autofs does not check with the server again
until the server’s file systems are unmounted and then remounted. Therefore,
newly exported file systems will not be seen until the file systems on the server
are unmounted/remounted.

When you issue the command in the previous example, autofs performs the
following steps:

1. ping s the null procedure of the server’s mount service to see if it’s alive

2. Requests the list of exported file systems from the server

3. Sorts the exported list according to length of path name

This sorting ensures that the mounting is done in the required order (that is,
/usr/src is done before /usr/src/sccs).

4. Proceeds down the list, mounting all the file systems at mount points.

Note that autofs has to mount all the file systems that the server in question
exports. Even if the request is as follows.

Autofs mounts all of gumbo’s exported systems, not just /usr .

/usr/src
/export/home
/usr/src/sccs
/export/root/blah

ls /net/gumbo/usr/include

48 NFS Administration Guide—August 1994

6

If autofs is running on NFS servers, any maps that refer to file systems on the
server should be checked for file name paths that pass through an autofs
mount point. This causes an access through the loopback file system (lofs)
which cannot be exported. The entry would appear as follows.

Replace it with the following entry:

In previous releases, the mount daemon on the server would follow the
automounter’s symbolic link at /home/brent and find the exported file
system. With autofs, the mount daemon finds a loopback mount at
/home/brent that is not exportable so the client will not be able to mount it.

Note – Check existing maps to make sure that the server:/path portion of
the map entry does not refer to an autofs mount point.

The unmounting that occurs after a certain amount of time is from the bottom
up (reverse order of mounting). If one of the directories at the top is busy,
autofs has to remount the unmounted file systems and try again later.

The -hosts special map provides a convenient way for users to access
directories in many different hosts without having to use rlogin or rsh .
They no longer have to modify /etc/vfstab files or mount the directories
individually as superuser.

With the /net method of access, the server name is in the path and is
location-dependent. If you want to move an exported file system from one
server to another, the path may no longer work. Also, because all exported file
systems need to be mounted, using only one of those file systems is inefficient.
Instead, you should set up an entry in a map specifically for the file system you
want.

brent creole:/home/brent

brent creole:/export/home/creole/brent

Using Autofs 49

6

Note – Autofs runs on all computers and supports /net and /home
(automounted home directories) by default. These defaults may be overridden
by entries in the NIS auto.master map or NIS+ auto_master map, or by
local editing of the /etc/auto_master and /etc/auto_home file.

Direct Maps

With a direct map, there is a direct association between a mount point on the
client and a directory on the server. Direct maps have a full path name and
indicate the relationship explicitly. Of all the maps, the entries in a direct map
most closely resemble, in their simplest form, the corresponding entries in
/etc/vfstab (vfstab contains a list of all file systems to be mounted). An
entry that appears in /etc/vfstab as:

appears in a direct map as:

 A typical /etc/auto_direct map is:

There are a couple of important but previously unmentioned features in this
map: multiple locations and multiple mounts, which are discussed in the next two
sections.

dancer:/usr/local - /usr/local/tmp nfs - yes ro

/usr/local/tmp -ro dancer:/usr/local

/usr/local -ro\

 /bin ivy:/export/local/sun3 \

 /share ivy:/export/local/share\

 /src ivy:/export/local/src

/usr/man -ro oak,rose,willow:/usr/man

/usr/games -ro peach:/usr/games

/usr/frame -ro redwood:/usr/frame2.0 \

balsa:/export/frame

50 NFS Administration Guide—August 1994

6

How Autofs Finds Specific File Systems (Indirect Maps)

An indirect map is a directory containing automount points. Indirect maps are
useful for accessing specific file systems, like the home directories. Figure 6-3
contrasts the indirect map structure with the direct map structure.

Figure 6-3 Indirect Map Structure Versus Direct Map Structure

Table 6-1 showed an auto_master map that contained the entry:

auto_home is the name of the indirect map that contains the entries to be
mounted under /home . A typical auto_home map might contain:

/home auto_home

home

brent elizabeth rick

brent
elizabeth
rick

/usr/man

man man2 man2m

man
man2
man2m

Indirect - a directory of
mount points

Direct - a mount point

Using Autofs 51

6

As an example, assume that the previous map is on host oak . If user linda
has an entry in the password database specifying her home directory as
/home/linda , then whenever she logs into computer oak , autofs mounts the
directory /export/home/linda residing on the computer peach . Her home
directory is mounted read/write, nosuid .

Note – Any option in the indirect map entry overrides all options in the master
map.

Assume the following conditions occur. User linda ’s home directory is listed
in the password database as /home/linda . Anybody, including Linda, has
access to this path from any computer set up with the master map referring to
the map in the previous example.

Under these conditions, user linda can run login or rlogin on any of
these computers and have her home directory mounted in place for her.

Furthermore, now linda can also type the following command:

autofs mounts David’s home directory for her (if all permissions allow).

On a network with NIS, you have to change all the relevant databases (such as
/etc/passwd) on all systems on the network to accomplish this. Make the
changes on the NIS master server and propagate the relevant databases to the
slave servers. The auto_home map can be updated using Administration Tool.
On a network running NIS+, propagating the relevant databases to the slave
servers is done automatically.

david willow:/export/home/&

rob cypress:/export/home/&

gordon poplar:/export/home/&

rajan pine:/export/home/&

tammy apple:/export/home/&

jim ivy:/export/home/&

linda -rw,nosuid peach:/export/home/&

cd ~david

52 NFS Administration Guide—August 1994

6

How Autofs Selects the Nearest Read-Only Files for Clients (Multiple
Locations)

In the example of a direct map, which was:

the mount points /usr/man and /usr/frame list more than one location
(three for the first, two for the second). This means users can mount from any
of the replicated locations. This procedure makes sense only when you mount
a file system that is read-only, since you must have some control over the
locations of files you write or modify. You don’t want to modify files on one
server on one occasion and, minutes later, modify the “same” file on another
server. The benefit is that the best available server will be mounted
automatically without any effort required by the user.

A good example of this is man pages. In a large network, more than one server
may export the current set of manual pages. Which server you mount them
from does not matter, as long as the server is running and exporting its file
systems. In the previous example, multiple mount locations are expressed as a
list of mount locations in the map entry.

You could also enter this as a comma-separated list of servers, followed by a
colon and the path name (as long as the path name is the same for all the
replicated servers).

/usr/local -ro \
 /bin ivy:/export/local/sun4\
 /share ivy:/export/local/share\
 /src ivy:/export/local/src
/usr/man -ro oak:/usr/man \

rose:/usr/man \
willow:/usr/man

/usr/games -ro peach:/usr/games
/usr/spool/news -ro pine:/usr/spool/news
/usr/frame -ro redwood:/usr/frame2.0 \

balsa:/export/frame

/usr/man -ro oak:/usr/man rose:/usr/man willow:/usr/man

/usr/man -ro oak,rose(1),willow(2):/usr/man

Using Autofs 53

6

Here you can mount the man pages from the servers oak, rose, or willow .
The numbers in parentheses() indicate a weighting. Servers without a
weighting have a value of zero (most likely to be selected). The higher the
weighting value, the less chance the server will be selected.

Note – Server proximity is more important than weighting. A server on the
same network segment as the client is more likely to be selected than a server
on another network segment, regardless of the weighting factors assigned.

Figure 6-4 Server Proximity

This redundancy is used once at mount time to select one server from which to
mount. Autofs does not check the status of the mounted-from server by autofs
once the mount occurs. Multiple locations are very useful in an environment
where individual servers may not be exporting their file systems. If the server
goes down while the mount is in effect, the file system becomes unavailable.
You have the option to wait five minutes until the auto-unmount takes place
and try again. (It takes autofs about 5 minutes to do an auto-unmount.) Next
time autofs will choose one of the other, available servers. You can do the
unmount yourself using the umount command (you must be superuser). For
example:

This feature is particularly useful in a large network with many subnets.
Autofs chooses the nearest server and therefore confine NFS network traffic to
a local network segment. In servers with multiple network interfaces, list the
host name associated with each network interface as if it were a separate
server. Autofs selects the nearest interface to the client.

umount /shared/local/bin

same net

same subnet

different net

54 NFS Administration Guide—August 1994

6

Multiple Mounts

A map entry can describe multiple mounts. Multiple mounts enable users to
access file systems from different locations. By having the same applications
on several servers, users have an alternate source for that application if a
particular server is down. Also, autofs can choose the quickest path for users
(clients). Consider the first entry in the previous example:

This is actually one long entry split into four lines using the backslash with the
continuation lines indented with blank spaces or tabs. This entry mounts
/usr/local/bin , /usr/local/share , and /usr/local/src from the
server ivy , with the read-only option. The entry could also read:

where the options are different and more than one server is used. The
previous example is equivalent to three separate entries, for example:

Multiple mount guarantees that all three directories are mounted when you
refer to one of them. If the entries are listed as separate mounts, then each of
the directories is mounted only as needed. The first (multiple mount) case is
accomplished with a single autofs mount at /usr/local . The second (single
mounts) case results in three independent autofs mounts.

/usr/local -ro \
 /bin ivy:/export/local/sun3 \

/share ivy:/export/local/share\
 /src ivy:/export/local/src

/usr/local \
 /bin -ro ivy:/export/local/sun3 \
 /share -rw,secure willow:/usr/local/share\
 /src -ro oak:/home/jones/src

/usr/local/bin -ro ivy:/export/local/sun3
/usr/local/share -rw,secure willow:/usr/local/share
/usr/local/src -ro oak:/home/jones/src

Using Autofs 55

6

The mount root is a path relative to a direct autofs mount, or relative to the
directory under an indirect autofs mount. This path describes where each file
system should be mounted beneath an autofs mount point. This mount point
theoretically should be specified the following.

But in practice, the mount point is not specified because in the case of a single
mount as in the previous example, the location of the mount point is at the
mount root or “/ .” So instead of the previous example, you type the following
example.

The mount point specification is important in a multiple mount entry. Autofs
must have a mount point for each mount. When the entry specifies that one
mount occur within another, the entry becomes a hierarchical mount, which is
a special case of multiple mounts.

Note – A hierarchical mount can be a problem if the server for the root of the
file system goes down. Because the unmounting has to proceed through the
mount root, which also cannot be unmounted while its server is down, any
attempt to unmount the lower branches fails.

The mount points used here for the file system are / , /bin , /share , and
/src . Note that these mount point paths are relative to the mount root, not the
host’s file system root.

parsley / -ro veg:/usr/greens

parsley -ro veg:/usr/greens

/usr/local \
 / -rw peach:/export/local \
 /bin -ro ivy:/export/local/sun3\
 /share -rw willow:/usr/local/share\
 /src -ro oak:/home/jones/src

56 NFS Administration Guide—August 1994

6

The first entry in the previous example has / as its mount point. It is mounted
at the mount root. The first mount of a file system does not need to be at the
mount root. Autofs issues mkdir commands to build a path to the first mount
point if it is not at the mount root.

In these mount option examples:

all three mounts share the same options. You can change this to the following.

Administration is easier if there is only one set of mount options common to all
mounts in the entry. If one of the mount points needs a different specification,
you can write:

You may want different mount options for some of the mounts, for example,
to enable clients to update the files on one mount but not on the others.

/usr/local \
 /bin -ro ivy:/export/local/$CPU\
 /share -ro willow:/usr/local/share\
 /src -ro oak:/home/jones/src

/usr/local -ro\
 /bin ivy:/export/local/sun4 \
 /share willow:/usr/local/share \
 /src oak:/home/jones/src

/usr/local -ro\
 /bin ivy:/export/local/sun4\
 /share -rw,secure
willow:/usr/local/share\
 /src oak:/home/jones/src

Using Autofs 57

6

Variables in a Map Entry

You can create a client-specific variable by prefixing a dollar sign ($) to its
name. This helps you to accommodate different architecture types accessing
the same file system location. You can also use brackets to delimit the name of
the variable from appended letters or digits. Table 6-2 shows the predefined
map variables.
Table 6-2 Predefined Map Variables

You can use variables anywhere in an entry line except as a key. For instance, if
you have a file server exporting binaries for SPARC and x86 architectures from
/usr/local/bin/sparc and /usr/local/bin/x86 respectively, you can
have the clients mount through a map entry like the following:

Now the same entry on all the clients applies for all architectures.

Maps That Refer to Other Maps

A map entry, +mapname, used in a file map causes automount to read the
specified map as if it were included in the current map. The “+” means that
the entry is referring to the master map. If mapname is not preceded by a
slash, then autofs treats the map name as a string of characters and uses the

Variable Meaning Derived From Example

ARCH Architecture type /usr/kvm/arch sun4

CPU Processor type uname -p sparc

HOST Host name uname -n dinky

OSNAME Operating system name uname -s SunOS

OSREL Operating system release uname -r 5.1

OSVERS Operating system version

(version of the release)

uname -v FCS1.0

/usr/local/bin -ro server:/usr/local/bin/$CPU

58 NFS Administration Guide—August 1994

6

name service switch policy to find it. If the path name is an absolute path
name, then automount looks for a local map of that name. If the map name
starts with a dash (-), automount consults the appropriate built-in map.

This name service switch file contains an entry for autofs, which contains the
order in which the name services are searched. This is an example of the name
service switch file:

#
/etc/nsswitch.nis:
#
An example file that could be copied over to /etc/nsswitch.conf;
it uses NIS (YP) in conjunction with files.
#
"hosts:" and "services:" in this file are used only if the
/etc/netconfig
file contains "switch.so" as a nametoaddr library for "inet"
transports.
the following two lines obviate the "+" entry in /etc/passwd
and /etc/group.
passwd: files nis
group: files nis

consult /etc "files" only if nis is down.
hosts: nis [NOTFOUND=return] files
networks: nis [NOTFOUND=return] files
protocols: nis [NOTFOUND=return] files
rpc: nis [NOTFOUND=return] files
ethers: nis [NOTFOUND=return] files
netmasks: nis [NOTFOUND=return] files
bootparams: nis [NOTFOUND=return] files
publickey: nis [NOTFOUND=return] files
netgroup: nis
automount: files nis
aliases: files nis
for efficient getservbyname() avoid nis
services: files nis

Using Autofs 59

6

For instance, you can have a few entries in your local /etc/auto_home map
for the most commonly accessed home directories, and use the switch to fall
back to the NIS map for other entries.

If a file‘s map has its execute bit set, then autofs tries to execute it to obtain a
map entry, instead of reading it.

Note – If your /etc/auto_home or other local maps have the execute bit set,
autofs logs errors to the console when the map is accessed.

To fix the problem, reset the execute bit:

After consulting the included map, automount continues scanning the current
map if no match is found. This means you can add more entries after a +
entry. For instance:

The map included can be a local file (remember, only local files can contain +
entries) or a built-in map:

bill
bonny

cs.csc.edu:/export/home/&
cs.csc.edu:/export/home/&

chmod -x /etc/auto_home

bill cs.csc.edu:/export/home/&
bonny cs.csc.edu:/export/home/&
+auto_home
* -nosuid &:/export/home/&

+auto_home_finance # NIS+ map
+auto_home_sales # NIS+ map
+auto_home_engineering # NIS+ map
+/etc/auto_mystuff # local map
+auto_home # NIS+ map
+-hosts # built-in hosts map

60 NFS Administration Guide—August 1994

6

The wildcard means a match is found. Therefore, the wildcard should be the
last entry in all cases, because autofs does not continue consulting the map
after finding a wildcard.

Note – “+” entries cannot be used in NIS+ or NIS maps because NIS+ and NIS
search the entry from right to left, not left to right.

Modifying How Autofs Navigates the Network (Modifying Maps)

You can modify, delete, or add entries to maps to meet the needs of your
environment. As applications and other file systems that users require change
their location, the maps must reflect those changes. You can modify autofs
maps at any time. Whether your modifications take effect the next time
automountd mounts a file system depends on which map you modify and
what kind of modification you make.

Administrative Tasks Involving Maps

Table 6-3 lists the different administrative tasks you may need to perform
involving maps in order to change your autofs environment.

Table 6-3 Map Administration Tasks

Task

Creating maps

Modifying indirect maps

Modifying direct maps

Modifying the auto_home map

Modifying the master map

Adding changes to a direct map

Deleting changes from a direct map

Creating an entry in the auto_master map

Using Autofs 61

6

Table 6-4 describes the types of maps and their uses.

Table 6-5 describes how to make changes to your autofs environment based on
your name service.

Table 6-6 tells you when to run the automount command depending on the
modification you have made to the type of map. For example, if you’ve made
an addition or a deletion to a direct map, you need to run the automount
command to make the change take effect; however, if you’ve modified an
existing entry, you do not need to run autofs to make the change take effect.

Table 6-4 Types of Maps and Their Uses

Type of Map Use

auto_home Associates names with locations

auto_master Associates a directory with a map

direct Directs autofs to reference-oriented file systems

indirect Directs autofs to specific file systems

Table 6-5 Map Maintenance

Name Service Use

 Local files An editor

 NIS make files

 NIS+ nistbladm

Table 6-6 When to Run the automount Command

Type of Map Run autofs?

 Add/Delete Modify existing entry

auto_home N N

auto_master Y Y

direct Y N

indirect N N

62 NFS Administration Guide—August 1994

6

Modifying the Maps

The following procedures assume that you are using NIS+ as your name
service. For NIS or local file name services, see the appropriate
documentation.

To modify the master map:

1. Using the nistbladm command, make the changes you want to the
master map.
See the Name Services Administration Guide.

2. For each client, become superuser by typing su at a prompt and then your
superuser password.

3. For each client, run the automount command to ensure the changes you
made take effect.

4. Notify your users of the changes.
Notification is required so that the users can also run the automount
command as superuser on their own workstations.

 The automount command consults the master map whenever it is run.

To modify indirect maps:

♦ Using the nistbladm command, make the changes you want to the
indirect map.
See the Name Services Administration Guide.

The change takes effect the next time the map is used, which is the next time a
mount is done.

To modify direct maps:

1. Using the nistbladm command, add or delete the changes you want to
the direct map.
See the Name Services Administration Guide.

2. If you added or deleted a mount point entry in step 1, run the automount
command.

3. Notify your users of the changes.
Notification is required so that the users can also run the automount
command as superuser on their own workstations.

Using Autofs 63

6

Note – If you simply modify or change the contents of an existing direct map
entry, you do not need to run the automount command.

For instance, suppose you modify the map auto_direct so that the directory
/usr/src is now mounted from a different server. If /usr/src is not
mounted at this time, the new entry takes effect immediately when you try to
access /usr/src . If /usr/src is mounted now, you can wait until the auto
unmounting takes place, and then access it. If this is not satisfactory, you can
unmount with the umount command and then access /usr/src . The
mounting will now be done from the new server. If you deleted the entry, you
would have to run the automount command for the deletion to take effect.

Because of these extra steps, and because they do not take up as much room in
the mount table as direct maps, use indirect maps whenever possible. They are
easier to construct, and less demanding on system file systems.

Avoiding Mount Point Conflicts

If you have a local disk partition mounted on /src and you also want to use
autofs to mount other source directories, you may encounter a problem. If you
specify the mount point /src , then autofs hides the local partition whenever
you try to reach it.

You need to mount the partition somewhere else, say on /export/src . You
would then need, for example, an entry in /etc/vfstab that says:

and an entry in auto_src that says:

where terra is the name of the computer.

/dsk/d0t3d0s5 - export/src ufs 1 yes -

terra terra:/export/src

64 NFS Administration Guide—August 1994

6

Default Autofs Behavior

Booting up invokes autofs using the script in /etc/init.d/autofs and
looks for the master map auto_master (subject to the rules discussed next).

Autofs uses the name service specified in the automount entry of the
/etc/nsswitch.conf file. In the example below, the + indicates NIS+. If
NIS+ is specified, as opposed to local or NIS, all map names are used as is. If
NIS is selected (indicated by an absence of the + sign) and autofs cannot find a
map that it needs, but finds a map that contains one or more underscores, the
underscores are changed to dots. Then autofs looks up the map again, as
shown in Figure 6-5.

Figure 6-5 How Autofs Uses the Name Service

lookup key mapname

not /

/path ?

open (mapname)
read ...

open (/etc/mapname)
read ...

nis_list (key, mapname)

entry or map
not found

files nisplus nis

yp_match (key, mapname)

Replace "_" by "."

entry or map
not found

no map &
has "_"?

yp_match (key, newname)

Using Autofs 65

6

The screen activity would look like the following example. Notice the + sign,
indicating NIS+.

If “files” is selected as the name service, all maps are assumed to be local files
in the /etc directory. Autofs interprets a map name that begins with a slash
as local, regardless of which name service it uses.

Autofs Reference
The rest of this chapter describes more advanced autofs features and topics.

Metacharacters

Autofs recognizes some characters as having a special meaning. Some are used
for substitutions, some to protect other characters from the autofs map parser.

$ more /etc/auto_master
Master map for autofs
#
+auto_master
/net -hosts -nosuid
/home auto_home

$ ypmatch brent auto_home
Can’t match key brent in map auto_home. Reason: no such map in
server’s domain.

$ ypmatch brent auto.home
diskus:/export/home/diskus1/&
$

66 NFS Administration Guide—August 1994

6

Ampersand (&)

If you have a map with many subdirectories specified, as in the following,
consider using string substitutions.

You can use the ampersand character (&) to substitute the key wherever it
appears. If you use the ampersand, the previous map now looks like the
following:

Asterisk (*)

Notice that all the previous entries have the same format. This enables you to
use the catchall substitute character, the asterisk (*). The asterisk reduces the
whole thing to:

Each ampersand is substituted by the value of any given key. Autofs interprets
the asterisk as an end of file.

john willow:/home/john

mary willow:/home/mary

joe willow:/home/joe

able pine:/export/able

baker peach:/export/baker

[. . .]

john willow:/home/&

mary willow:/home/&

joe willow:/home/&

able pine:/export/&

baker peach:/export/&

[. . .]

* &:/export

Using Autofs 67

6

You could also use key substitutions in a direct map, in situations like this:

which you can also write as:

Notice that the ampersand substitution uses the whole key string, so if the key
in a direct map starts with a / (as it should), that slash is carried over, and you
could not do, for example, the following:

because autofs would interpret it as:

Special Characters

If you have a map entry that contains special characters, you may have to
mount directories whose names confuse the autofs map parser. The autofs
parser is sensitive to names containing colons, commas, spaces, and so on.
These names should be enclosed in double quotations, as in the following:

Accessing Non-NFS File Systems

Autofs can also mount files other than NFS files. Autofs mounts files on
removable media, such as diskettes or CD-ROM. You can also mount files on
removable media using Volume Manager, but Volume Manager and autofs do
not work together.

/usr/man willow,cedar,poplar:/usr/man

/usr/man willow,cedar,poplar:&

/progs &1,&2,&3:/export/src/progs

/progs /progs1,/progs2,/progs3:/export/src/progs

/vms -ro vmsserver:”rc0:dk1”
/mac -ro gator:/”Mr Disk”

68 NFS Administration Guide—August 1994

6

Instead of mounting a file system from a server, you put the media in the drive
and reference it from the map. Examples of CD-ROM applications are
packages such as unbundled products and features. An example of a floppy
drive application is DOS. If you want to access non-NFS file systems and you
are using autofs, see the following procedures. For more information about
Volume Manager, see File System Administration.

To access CD-ROM applications:

Note – Use this procedure if you are NOT using Volume Manager.

♦ Specify the CD-ROM file system type as follows:

The CD-ROM device you wish to mount must appear as a name following a
colon.

To access floppy disks containing data in PC-DOS files:

Note – Use this procedure if you are not using Volume Manager.

♦ Specify the floppy file system type as follows:

Accessing NFS File Systems Using CacheFS

The cache file system (CacheFS) is a generic nonvolatile caching mechanism
that improves the performance of certain file systems by utilizing a small, fast,
local disk.

You can improve the performance of the NFS environment by using CacheFS
to cache data from an NFS file system on a local disk.

 hsfs -fstype=hsfs,ro :/dev/sr0

 pcfs -fstype=pcfs :/dev/diskette

Using Autofs 69

6

1. Run the cfsadmin command to create a cache directory on the local disk.

The following example shows in bold the string you would add to the
master map to cache home directories.

cfsadmin -c /usr/cache

/home auto_home -
fstype=cachefs,cachedir=/var/cache,backfstype=nfs

70 NFS Administration Guide—August 1994

6

Common Problems and Recommended Solutions
This section describes some of the most common problems you may encounter
in your own environment. Recommended solutions are included for each
scenario to help you configure autofs to best meet your clients’ needs.

Note – Use Administration Tool or see the Name Services Administration Guide
to perform the tasks discussed in this section. If you are using local files, or
NIS, see the appropriate documentation.

How To Set Up Different Architectures To Access a Shared Name Space

Problem:

You need to assemble a shared name space for local executables, and
applications, such as spreadsheet tools and word-processing packages. The
clients of this name space use several different workstation architectures that
require different executable formats. Also, some workstations are running
different releases of the operating system.

Solution:

1. Create the auto_local map using the nistbladm command.
See the Name Services Administration Guide.

2. Choose a single, site-specific name for the shared name space so that files
and directories that belong to this space are easily identifiable.

 For example, if you choose /usr/local as the name, then the path
/usr/local/bin/scrag is obviously a part of this name space.

3. For ease of user community recognition, create an autofs indirect map and
mount it at /usr/local . Set up the following entry in the NIS+ (or NIS)
auto_master map:

Note that the ro mount option implies that clients will not be able to write
to any files or directories.

4. Export the appropriate directory on the server.

 / usr/local auto_local -ro

Using Autofs 71

6

5. Include a bin entry in the map.
Your directory structure looks like the following:

To satisfy the need to serve clients of different architectures, you need
references to the bin directory to be directed to different directories on the
server, depending on the clients’ architecture type.

6. To serve clients of different architectures, change the entry by adding the
autofs CPU variable.

SPARC – For SPARC clients, make executables available under
/export/local/bin/sparc/ on the server. For x86 clients, use
/export/local/bin/x86 .

To support incompatible client operating system versions:

1. Combine the architecture type with a variable that determines the
operating system type of the client.
The autofs OSREL variable can be combined with the CPU variable to form
a name that determines both CPU type and OS release.

2. Create the following map entry.

For SPARC clients running version 5.1 of the operating system, you need to
export /export/local/bin/sparc5.1 from the server, and similarly export
for other releases. Since operating systems attempt to preserve backward
compatibility with executable formats, assume that the OS release is not a
factor, and eliminate it from future examples.

 bin aa:/export/local/bin

 bin aa:/export/local/bin/$CPU

 bin aa:/export/local/bin/CPUOSREL

72 NFS Administration Guide—August 1994

6

So far, you have set up an entry for a single server aa. In a large network, you
want to replicate these shared files across several servers. Each server should
have a close network proximity to the clients it serves so that NFS traffic is
confined to local network segments.

To replicate shared files across several servers:

♦ Modify the entry to create the list of all replica servers as a comma-
separated list, as follows:

Autofs chooses the nearest server. If a server has several network interfaces,
then list each interface. Autofs chooses the nearest interface to the client,
avoiding unnecessary routing of NFS traffic.

Several shared files may not have an architecture dependency. A good
example of this is shell scripts. You can locate these shared files under
/usr/local/share with an independent map entry like the following:

To ensure that scripts refer to local executables, use architecture-independent
paths either fully qualified or relative (for example, /usr/local/bin/frotz
or../bin/frotz).

Similarly, other applications may have their own wrapper scripts for handling
client dependencies. You can also set up these scripts with their own map
entries.

bin aa,bb,cc,dd:/export/local/bin/$CPU

 bin aa,bb-68,bb-72,dd:/export/local/bin/$CPU

share aa,bb-68,bb-72,dd:/export/local/share

frame pp,qq:/export/local/frame/3.0
valid pp,rr,tt:/export/local/valid
lotus pp,qq,zz:/export/local/lotus

Using Autofs 73

6

The servers can use the same /usr/local map as the clients. Users who
work on the server will see the same shared name space under /usr/local .

If the server’s autofs notices that a directory under /usr/local is available on
the server under /export/local , it will loopback mount the directory so that
it appears under /usr/local . Servers must not mount local disks on or
under /usr/local .

How To Set Up a Common View of the /home Directory Structure

Problem:

You would like every user in the network to be able to locate their own, or
anyone else’s home directory under /home . This view should be common
across all computers, client or server.

Solution:

Every Solaris computer comes with a pre-installed master map:
/etc/auto_master .

A map for auto_home is also preinstalled under /etc .

Except for a reference to an external auto_home map, this map is empty. If the
directories under /home are to be common to all computers, then do not
modify this /etc/auto_home map. All home directory entries should appear
in the name service map, either NIS or NIS+.

Master map for autofs
#
+auto_master
/net -hosts -nosuid
/home auto_home

Home directory map for autofs
+auto_home

74 NFS Administration Guide—August 1994

6

Users should not be permitted to run set uid executables from their home
directories because without a restriction any user could have superuser
privileges on any computer.

To apply security restrictions:

♦ Create the following entry in the name service auto_master map, either
NIS or NIS+:

This entry overrides the entry for /home in the local /etc/auto_master file
(see the previous example) because the +auto_master reference to the
external name service map occurs before the /home entry in the file.

Note – Do not mount the home directory disk partitions on or under /home
on the server.

To set up the home directory servers:

1. Mount home directory partitions under /export/home .
This directory is reserved for autofs.

If there are several partitions, mount them under separate directories, for
example, /export/home1 , /export/home2 , and so on.

2. Use the Database Manager of the Administration Tool on-line facility to
create and maintain the auto_home map.
Whenever you create a new user account, type the location of the user’s
home directory in the auto_home map. Map entries can be simple, for
example:

/home auto_home -nosuid

rusty dragon:/export/home1/&
gwenda dragon:/export/home1/&
charles sundog:/export/home2/&
rich dragon:/export/home3/&
: :

Using Autofs 75

6

Note the use of the & ampersand to substitute the map key. This is an
abbreviation for the second occurrence of “rusty” in the following example.

With the auto_home map in place, users can refer to any home directory
(including their own) with the path /home/user where user is their login
name. This common view of all home directories is valuable when logging
into another user’s computer. Autofs there mounts your home directory for
you. Similarly if you run a remote windowing system client on another
computer, the client program has the same view of the /home directory as you
do on the computer providing the windowing system display.

This common view also extends to the server. Using the previous example, if
Rusty logs into the server dragon , autofs there provides direct access to the
local disk by loopback mounting /export/home1/rusty onto /home/rusty .

Users do not need to be aware of the real location of their home directories. If
Rusty needs more disk space and needs to have his home directory relocated to
another server, only Rusty’s entry in the auto_home map needs to be changed
to reflect the new location. Everyone else can continue to use the
/home/rusty path.

How to Consolidate Project-Related files/ws Directory Structure)

Problem:

You are the administrator of a large software development project. You want
to make all project-related files available under a directory called /ws —short
for Work Space. This directory is to be common across all workstations at the
site.

Solution:

1. Add an entry for the /ws directory to the site auto_master map, either
NIS or NIS+.

The contents of the /ws directory are determined by the auto_ws map.

rusty dragon:/export/home1/rusty

/ ws auto_ws -nosuid

76 NFS Administration Guide—August 1994

6

2. Add the -nosuid option as a precaution. (This option prevents users
from running set uid programs that may exist in any workspaces.)

The auto_ws map is organized so that each entry describes a subproject. Your
first attempt yields a map that looks like the following:

The ampersand at the end of each entry is just an abbreviation for the entry
key. For instance, the first entry is equivalent to the following:

This first attempt provides a map that looks quite simple, but perhaps too
simple. It turns out that it is not adequate. The project organizer decides that
the documentation in the man entry should be provided as a subdirectory
under each subproject. Also, each subproject requires subdirectories to
describe several versions of the software. Each of these subdirectories must be
assigned to an entire disk partition on the server.

compiler alpha:/export/ws/&
windows alpha:/export/ws/&
files bravo:/export/ws/&
drivers alpha:/export/ws/&
man bravo:/export/ws/&
tools delta:/export/ws/&

compiler alpha:/export/ws/compiler

Using Autofs 77

6

Modify the entries in the map as follows:

Although the map now appears to be much bigger, it still contains only the five
entries. Each entry is larger because it contains multiple mounts. For instance,
a reference to /ws/compiler requires three mounts for the vers1.0,
vers2.0, and man directories. The backslash at the end of each line tells
autofs that the entry is continued onto the next line. In effect, the entry is one
long line, though line breaks and some indenting have been used to make it
easily readable. The tools directory contains software development tools for all
subprojects, so it is not subject to the same subdirectory structure. The tools
directory continues to be a single mount.

This arrangement provides the administrator with much flexibility. Software
projects are notorious for consuming large amounts of disk space. Through the
life of the project you may be required to relocate and expand various disk
partitions. As long as these changes are reflected in the auto_ws map, the
users do not need to be notified since the directory hierarchy under /ws is not
changed.

Since the servers alpha and bravo view the same autofs map, any users who
log into these computers will find the /ws name space as expected. These
users will be provided with direct access to local files via loopback mounts in
lieu of NFS mounts.

compiler \
 /vers1.0 alpha:/export/ws/&/vers1.0 \
 /vers2.0 bravo:/export/ws/&/vers2.0 \
 /man bravo:/export/ws/&/man
windows \
 /vers1.0 alpha:/export/ws/&/vers1.0 \
 /man bravo:/export/ws/&/man
files \
 /vers1.0 bravo:/export/ws/&/vers1.0 \
 /vers2.0 bravo:/export/ws/&/vers2.0 \
 /vers3.0 bravo:/export/ws/&/vers3.0 \
 /man bravo:/export/ws/&/man
drivers \
 /vers1.0 alpha:/export/ws/&/vers1.0 \
 /man bravo:/export/ws/&/man
tools \
 / delta:/export/ws/&

78 NFS Administration Guide—August 1994

6

Troubleshooting Autofs
Occasionally, you may encounter problems with autofs. This section should
make the problem-solving process easier. It is divided in two subsections.

This section is written especially for advanced system administrators and
programmers, and you can skip it without your ability to administer autofs
being affected. However, you may want to read it to have an idea of the issues
involved.

The second section presents a list of the error messages autofs generates. The
list is divided in two parts:

1. Error messages generated by the verbose (–v) option of automount

2. Error messages that may appear at any time

Start autofs with the verbose option, otherwise you may experience problems
without knowing why.

Reference for Autofs Troubleshooting

The following paragraphs are labeled with the error message you are likely to
see if autofs fails, and a description of what the problem may be.

Error Messages Generated by the Verbose Option

mapname: Not found

The required map cannot be located. This message is produced only when the
-v option is used. Check the spelling and path name of the map name.

leading space in map entry entry text in mapname

Autofs has discovered an entry in an automount map that contains leading
spaces. This is usually an indication of an improperly continued map entry, for
example:

fake
/blat frobz:/usr/frotz

Using Autofs 79

6

In the previous example, the warning is generated when autofs encounters the
second line because the first line should be terminated with a backslash (\).

bad key key in indirect map mapname

While scanning an indirect map autofs has found an entry key containing a / .
Indirect map keys must be simple names— not path names.

bad key key in direct map mapname

While scanning a direct map, autofs has found an entry key without a prefixed
/. Keys in direct maps must be full path names.

Couldn’t create mount point mountpoint : reason

Autofs was unable to create a mount point required for a mount. This most
frequently occurs when attempting to hierarchically mount all of a server’s
exported file systems. A required mount point may exist only in a file system
that cannot be mounted (it may not be exported) and it cannot be created
because the exported parent file system is exported read only.

WARNING: mount point already mounted on

Autofs is attempting to mount over an existing mount point. This means there
is an internal error in autofs (an anomaly).

can’t mount server :pathname: reason

The mount daemon on the server refuses to provide a file handle for
server:pathname. Check the export table on server.

remount server : pathname on mount point : server not
responding

Autofs has failed to remount a file system it previously unmounted.

General Error Messages

map mapname, key key : bad

The map entry is malformed, and autofs cannot interpret it. Recheck the entry;
perhaps there are characters in it that need escaping.

host server not responding

80 NFS Administration Guide—August 1994

6

Autofs attempted to contact but received no response.

Mount of server :pathname on mount point: reason

Autofs failed to do a mount. This may indicate a server or network problem.

pathconf: server: server not responding

Autofs is unable to contact the mount daemon on server that provides (POSIX)
pathconf() information.

pathconf: no info for server: pathname

Autofs failed to get path conf information for pathname.

hierarchical mountpoints: pathname1 and pathname2

Autofs does not allow its mount points to have a hierarchical relationship. An
autofs mountpoint must not be contained within another automounted file
system.

mountpoint : Not a directory

Autofs cannot mount itself on mount point because it’s not a directory. Check
the spelling and path name of the mount point.

dir mountpoint must start with ’/’

Automounter mount point must be given as full path name. Check the
spelling and path name of the mount point.

mapname: nis_err

Error in looking up an entry in an NIS map. This may indicate NIS problems.

hostname : exports: rpc_err

Error getting export list from hostname. This indicates a server or network
problem.

nfscast: cannot send packet: reason

Autofs cannot send a query packet to a server in a list of replicated file system
locations.

Using Autofs 81

6

nfscast: cannot receive reply: reason

Autofs cannot receive replies from any of the servers in a list of replicated file
system locations.

nfscast:select: reason

All these error messages indicate problems attempting to ping servers for a
replicated file system. This may indicate a network problem.

82 NFS Administration Guide—August 1994

6

83

Index

A
Admintool, 70
ampersand character, 66
architectures, different types, 71
asterisk in maps, 66
auto_master, 46
auto_master file, 45 to 46

syntax for, 43
Autofs

error messages, 78 to 81
autofs, 41, 55

See also maps
and multiple mounts, 54 to 56
auto_master file, 45 to 46
definition of, 39
direct maps, 49
exporting of files, 47
mount point conflicts, 63
overview, 40 to 45
reference, 65 to 68

automount command
syntax for, 43

automount program, 2 to 3, 41 to 49
and diskless clients, 2

automountd daemon, 41
automounter

maps, 3

C
CacheFS, 68
client, 1
client-specific variable, 57
commands

DFS Administration, 14
conversation key, 23
credentials, 20
cryptography, 21

D
Data Encryption Standard, See DES

authentication, 20
DES authentication, 20 to 22
dfmounts command, 14
DFS Administration

commands for, 13
commands installed, 13

dfstab file, 7, 10
direct maps

definition of, 42
syntax for, 44

diskless client
and automount , 2

domains
definition of

84 NFS Administration Guide—August 1994

NFS, 27

E
em, 81

H
hosts database, 46
hung programs, 36 to 37

I
indirect maps, 50 to 51

syntax for, 44
information, 37

K
keylogin program, 23
keylogout program, 26
Keyserver, 23

and secret key storage, 25

M
maps

and multiple mounts, 54 to 56
auto_direct , 49
auto_home , 50
auto_master file, 45 to 46
automounter, 3
hosts, 46
including other maps within, 58 to 60
modifying, 60 to 63
modifying direct, 63
modifying indirect, 62
modifying master, 62
syntax for direct, 44
syntax for indirect, 44
syntax for master, 43

master map, 45
mount command, 14

intr option, 32
mount point, 46 to 49, 55

/- , 46
/home , 46
/net , 46
conflicts, 63
multiple, 54 to 56

mounting
automatically, 7
multiple locations, 52 to 53
problems with, 34 to 36

multiple, 49
multiple locations, 49

N
name service switch policy, 58
name space, site-specific, 70
netname, 27

definition of, 27
NFS

and hung programs, 36 to 37
and RPC, 20 to ??
automatic mounting, 12
concepts, 5 to 8
definition of, 2
general troubleshooting

information, 32 to 33
mounting problems, 34 to 36
security concepts, 19 to ??
server problems, 34
setting up security, 28 to 29
troubleshooting instructions, 33

NIS name service, 27
NIS or NIS+ auto_master file, 46
nsswitch.conf file, 64

O
overview, 40 to 45

R
remote resources

automatic sharing of, 15
RPC, 20 to ??

Index 85

S
security

NFS, 19
security restrictions, 74
server, 1

problems, 34
servers

weighting of
proximity of, 53

share command, 13, 15
location of, 7

U
umount command, 14
unmounting, order of, 48
unshare command, 14, 15

V
variable

client-specific, 57
verifiers, 20, 24
vfstab file

syntax of entries in, 12

W
who -r command, 37

86 NFS Administration Guide—August 1994

