
man pages section 9: DDI and DKI
Overview

Sun Microsystems, Inc.
4150 Network Circle
Santa Clara, CA 95054
U.S.A.

Part No: 817–5429–10
February 2004

Copyright 2004 Sun Microsystems, Inc. 4150 Network Circle, Santa Clara, CA 95054 U.S.A. All rights reserved.

This product or document is protected by copyright and distributed under licenses restricting its use, copying, distribution, and decompilation. No
part of this product or document may be reproduced in any form by any means without prior written authorization of Sun and its licensors, if any.
Third-party software, including font technology, is copyrighted and licensed from Sun suppliers.

Parts of the product may be derived from Berkeley BSD systems, licensed from the University of California. UNIX is a registered trademark in the U.S.
and other countries, exclusively licensed through X/Open Company, Ltd.

Sun, Sun Microsystems, the Sun logo, docs.sun.com, AnswerBook, AnswerBook2, and Solaris are trademarks, registered trademarks, or service marks
of Sun Microsystems, Inc. in the U.S. and other countries. All SPARC trademarks are used under license and are trademarks or registered trademarks
of SPARC International, Inc. in the U.S. and other countries. Products bearing SPARC trademarks are based upon an architecture developed by Sun
Microsystems, Inc.

The OPEN LOOK and Sun™ Graphical User Interface was developed by Sun Microsystems, Inc. for its users and licensees. Sun acknowledges the
pioneering efforts of Xerox in researching and developing the concept of visual or graphical user interfaces for the computer industry. Sun holds a
non-exclusive license from Xerox to the Xerox Graphical User Interface, which license also covers Sun’s licensees who implement OPEN LOOK GUIs
and otherwise comply with Sun’s written license agreements.

Federal Acquisitions: Commercial Software–Government Users Subject to Standard License Terms and Conditions.

DOCUMENTATION IS PROVIDED “AS IS” AND ALL EXPRESS OR IMPLIED CONDITIONS, REPRESENTATIONS AND WARRANTIES,
INCLUDING ANY IMPLIED WARRANTY OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT, ARE
DISCLAIMED, EXCEPT TO THE EXTENT THAT SUCH DISCLAIMERS ARE HELD TO BE LEGALLY INVALID.

Copyright 2004 Sun Microsystems, Inc. 4150 Network Circle, Santa Clara, CA 95054 U.S.A. Tous droits réservés.

Ce produit ou document est protégé par un copyright et distribué avec des licences qui en restreignent l’utilisation, la copie, la distribution, et la
décompilation. Aucune partie de ce produit ou document ne peut être reproduite sous aucune forme, par quelque moyen que ce soit, sans
l’autorisation préalable et écrite de Sun et de ses bailleurs de licence, s’il y en a. Le logiciel détenu par des tiers, et qui comprend la technologie relative
aux polices de caractères, est protégé par un copyright et licencié par des fournisseurs de Sun.

Des parties de ce produit pourront être dérivées du système Berkeley BSD licenciés par l’Université de Californie. UNIX est une marque déposée aux
Etats-Unis et dans d’autres pays et licenciée exclusivement par X/Open Company, Ltd.

Sun, Sun Microsystems, le logo Sun, docs.sun.com, AnswerBook, AnswerBook2, et Solaris sont des marques de fabrique ou des marques déposées, ou
marques de service, de Sun Microsystems, Inc. aux Etats-Unis et dans d’autres pays. Toutes les marques SPARC sont utilisées sous licence et sont des
marques de fabrique ou des marques déposées de SPARC International, Inc. aux Etats-Unis et dans d’autres pays. Les produits portant les marques
SPARC sont basés sur une architecture développée par Sun Microsystems, Inc.

L’interface d’utilisation graphique OPEN LOOK et Sun™ a été développée par Sun Microsystems, Inc. pour ses utilisateurs et licenciés. Sun reconnaît
les efforts de pionniers de Xerox pour la recherche et le développement du concept des interfaces d’utilisation visuelle ou graphique pour l’industrie
de l’informatique. Sun détient une licence non exclusive de Xerox sur l’interface d’utilisation graphique Xerox, cette licence couvrant également les
licenciés de Sun qui mettent en place l’interface d’utilisation graphique OPEN LOOK et qui en outre se conforment aux licences écrites de Sun.

CETTE PUBLICATION EST FOURNIE “EN L’ETAT” ET AUCUNE GARANTIE, EXPRESSE OU IMPLICITE, N’EST ACCORDEE, Y COMPRIS DES
GARANTIES CONCERNANT LA VALEUR MARCHANDE, L’APTITUDE DE LA PUBLICATION A REPONDRE A UNE UTILISATION
PARTICULIERE, OU LE FAIT QU’ELLE NE SOIT PAS CONTREFAISANTE DE PRODUIT DE TIERS. CE DENI DE GARANTIE NE
S’APPLIQUERAIT PAS, DANS LA MESURE OU IL SERAIT TENU JURIDIQUEMENT NUL ET NON AVENU.

031212@7518

Contents

Preface 5

Introduction 11

Intro(9) 12

Device Driver Interfaces 15

pm(9) 16

pm-components(9) 18

Index 21

3

4 man pages section 9: DDI and DKI Overview • February 2004

Preface

Both novice users and those familar with the SunOS operating system can use online
man pages to obtain information about the system and its features. A man page is
intended to answer concisely the question “What does it do?” The man pages in
general comprise a reference manual. They are not intended to be a tutorial.

Overview
The following contains a brief description of each man page section and the
information it references:

� Section 1 describes, in alphabetical order, commands available with the operating
system.

� Section 1M describes, in alphabetical order, commands that are used chiefly for
system maintenance and administration purposes.

� Section 2 describes all of the system calls. Most of these calls have one or more
error returns. An error condition is indicated by an otherwise impossible returned
value.

� Section 3 describes functions found in various libraries, other than those functions
that directly invoke UNIX system primitives, which are described in Section 2.

� Section 4 outlines the formats of various files. The C structure declarations for the
file formats are given where applicable.

� Section 5 contains miscellaneous documentation such as character-set tables.
� Section 6 contains available games and demos.
� Section 7 describes various special files that refer to specific hardware peripherals

and device drivers. STREAMS software drivers, modules and the
STREAMS-generic set of system calls are also described.

5

� Section 9 provides reference information needed to write device drivers in the
kernel environment. It describes two device driver interface specifications: the
Device Driver Interface (DDI) and the Driver⁄Kernel Interface (DKI).

� Section 9E describes the DDI/DKI, DDI-only, and DKI-only entry-point routines a
developer can include in a device driver.

� Section 9F describes the kernel functions available for use by device drivers.
� Section 9S describes the data structures used by drivers to share information

between the driver and the kernel.

Below is a generic format for man pages. The man pages of each manual section
generally follow this order, but include only needed headings. For example, if there
are no bugs to report, there is no BUGS section. See the intro pages for more
information and detail about each section, and man(1) for more information about man
pages in general.

NAME This section gives the names of the commands or
functions documented, followed by a brief
description of what they do.

SYNOPSIS This section shows the syntax of commands or
functions. When a command or file does not exist
in the standard path, its full path name is shown.
Options and arguments are alphabetized, with
single letter arguments first, and options with
arguments next, unless a different argument order
is required.

The following special characters are used in this
section:

[] Brackets. The option or argument
enclosed in these brackets is optional. If
the brackets are omitted, the argument
must be specified.

. . . Ellipses. Several values can be provided
for the previous argument, or the
previous argument can be specified
multiple times, for example, "filename
. . ." .

| Separator. Only one of the arguments
separated by this character can be
specified at a time.

{ } Braces. The options and/or arguments
enclosed within braces are
interdependent, such that everything
enclosed must be treated as a unit.

6 man pages section 9: DDI and DKI Overview • February 2004

PROTOCOL This section occurs only in subsection 3R to
indicate the protocol description file.

DESCRIPTION This section defines the functionality and behavior
of the service. Thus it describes concisely what the
command does. It does not discuss OPTIONS or
cite EXAMPLES. Interactive commands,
subcommands, requests, macros, and functions are
described under USAGE.

IOCTL This section appears on pages in Section 7 only.
Only the device class that supplies appropriate
parameters to the ioctl(2) system call is called
ioctl and generates its own heading. ioctl calls
for a specific device are listed alphabetically (on the
man page for that specific device). ioctl calls are
used for a particular class of devices all of which
have an io ending, such as mtio(7I).

OPTIONS This secton lists the command options with a
concise summary of what each option does. The
options are listed literally and in the order they
appear in the SYNOPSIS section. Possible
arguments to options are discussed under the
option, and where appropriate, default values are
supplied.

OPERANDS This section lists the command operands and
describes how they affect the actions of the
command.

OUTPUT This section describes the output – standard output,
standard error, or output files – generated by the
command.

RETURN VALUES If the man page documents functions that return
values, this section lists these values and describes
the conditions under which they are returned. If a
function can return only constant values, such as 0
or –1, these values are listed in tagged paragraphs.
Otherwise, a single paragraph describes the return
values of each function. Functions declared void do
not return values, so they are not discussed in
RETURN VALUES.

ERRORS On failure, most functions place an error code in
the global variable errno indicating why they
failed. This section lists alphabetically all error
codes a function can generate and describes the
conditions that cause each error. When more than

Preface 7

one condition can cause the same error, each
condition is described in a separate paragraph
under the error code.

USAGE This section lists special rules, features, and
commands that require in-depth explanations. The
subsections listed here are used to explain built-in
functionality:

Commands
Modifiers
Variables
Expressions
Input Grammar

EXAMPLES This section provides examples of usage or of how
to use a command or function. Wherever possible a
complete example including command-line entry
and machine response is shown. Whenever an
example is given, the prompt is shown as
example%, or if the user must be superuser,
example#. Examples are followed by explanations,
variable substitution rules, or returned values. Most
examples illustrate concepts from the SYNOPSIS,
DESCRIPTION, OPTIONS, and USAGE sections.

ENVIRONMENT VARIABLES This section lists any environment variables that
the command or function affects, followed by a
brief description of the effect.

EXIT STATUS This section lists the values the command returns to
the calling program or shell and the conditions that
cause these values to be returned. Usually, zero is
returned for successful completion, and values
other than zero for various error conditions.

FILES This section lists all file names referred to by the
man page, files of interest, and files created or
required by commands. Each is followed by a
descriptive summary or explanation.

ATTRIBUTES This section lists characteristics of commands,
utilities, and device drivers by defining the
attribute type and its corresponding value. See
attributes(5) for more information.

SEE ALSO This section lists references to other man pages,
in-house documentation, and outside publications.

8 man pages section 9: DDI and DKI Overview • February 2004

DIAGNOSTICS This section lists diagnostic messages with a brief
explanation of the condition causing the error.

WARNINGS This section lists warnings about special conditions
which could seriously affect your working
conditions. This is not a list of diagnostics.

NOTES This section lists additional information that does
not belong anywhere else on the page. It takes the
form of an aside to the user, covering points of
special interest. Critical information is never
covered here.

BUGS This section describes known bugs and, wherever
possible, suggests workarounds.

Preface 9

10 man pages section 9: DDI and DKI Overview • February 2004

Introduction

11

Intro – introduction to device driver interfaces

Section 9 provides reference information needed to write device drivers for Solaris 2
and Solaris 7. It describes the interfaces provided by the Device Driver Interface
Driver-Kernel Interface (DDI/DKI).

Software is usually considered portable if it can be adapted to run in a different
environment more cheaply than it can be rewritten. The new environment may
include a different processor, operating system, and even the language in which the
program is written, if a language translator is available. Likewise the new
environment might include multiple processors. More often, however, software is
ported between environments that share an operating system, processor, and source
language. The source code is modified to accommodate the differences in compilers or
processors or releases of the operating system.

In the past, device drivers did not port easily for one or more of the following reasons:

� To enhance functionality, members had been added to kernel data structures
accessed by drivers, or the sizes of existing members had been redefined.

� The calling or return syntax of kernel functions had changed.
� Driver developers did not use existing kernel functions where available, or relied

on undocumented side effects that were not maintained in the next release.
� Architecture-specific code had been scattered throughout the driver when it could

have been isolated.

Operating systems are periodically reissued to customers as a way to improve
performance, fix bugs, and add new features. This is probably the most common
threat to compatibility encountered by developers responsible for maintaining
software. Another common problem is upgrading hardware. As new hardware is
developed, customers occasionally decide to upgrade to faster, more capable
computers of the same family. Although they may run the same operating system as
those being replaced, architecture-specific code may prevent the software from
porting.

Although application programs have all of the porting problems mentioned,
developers attempting to port device drivers have special challenges. Before
describing the DDI/DKI, it is necessary to understand the position of device drivers in
operating systems.

Device drivers are kernel modules that control data transferred to and received from
peripheral devices but are developed independently from the rest of the kernel. If the
goal of achieving complete freedom in modifying the kernel is to be reconciled with
the goal of binary compatibility with existing drivers, the interaction between drivers
and the kernel must be rigorously regulated. This driver/kernel service interface is the
most important of the three distinguishable interfaces for a driver, summarized as
follows:

Intro(9)

NAME

DESCRIPTION

Porting

Scope of Interfaces

12 man pages section 9: DDI and DKI Overview • Last Revised 4 Oct 1996

� Driver–Kernel. I/O System calls result in calls to driver entry point routines. These
make up the kernel-to-driver part of the service interface, described in Section 9E.
Drivers may call any of the functions described in Section 9F. These are the
driver-to-kernel part of the interface.

� Driver–Hardware. All drivers (except software drivers) must include code for
interrupt handling, and may also perform direct memory access (DMA). These and
other hardware-specific interactions make up the driver/hardware interface.

� Driver–Boot/Configuration Software. The interaction between the driver and the
boot and configuration software is the third interface affecting drivers.

The primary goal of the DDI/DKI is to facilitate both source and binary portability
across successive releases of the operating systems on a particular machine. In
addition, it promotes source portability across implementations of UNIX on different
machines, and applies only to implementations based on System V Release 4. The
DDI/DKI consists of several sections:

� DDI/DKI Architecture Independent - These interfaces are supported on all
implementations of System V Release 4.

� DKI-only - These interfaces are part of System V Release 4, and may not be
supported in future releases of System V. There are only two interfaces in this class,
segmap(9E) and hat_getkpfnum(9F)

� Solaris DDI - These interfaces specific to Solaris.
� Solaris SPARC specific DDI - These interfaces are specific to the SPARC processor,

and may not be available on other processors supported by Solaris.
� Solaris IA specific DDI - These interfaces are specific to the IA processor, and may

not be available on other processors supported by Solaris.

To achieve the goal of source and binary compatibility, the functions, routines, and
structures specified in the DDI/DKI must be used according to these rules.

� Drivers cannot access system state structures (for example, u and sysinfo)
directly.

� For structures external to the driver that may be accessed directly, only the utility
functions provided in Section 9F should be used. More generally, these functions
should be used wherever possible.

� The headers <sys/ddi.h> and <sys/sunddi.h> must be the last header files
included by the driver.

Section 9 is for software engineers responsible for creating, modifying, or maintaining
drivers that run on this operating system and beyond. It assumes that the reader is
familiar with system internals and the C Programming Language.

The PC Card 95 Standard is listed under the SEE ALSO heading in some Section 9
reference pages. This refers to documentation published by the Personal Computer
Memory Card International Association (PCMCIA) and the Japan Electronic Industry
Development Association (JEIDA).

Intro(9)

Scope of the
DDI/DKI

Audience

PCMCIA Standard

Introduction 13

Section 9 is divided into three subsections:

9E Driver Entry Points – contains reference pages for all driver entry point
routines.

9F Kernel Functions – contains reference pages for all driver support routines.

9S Data Structures – contains reference pages for driver-related structures.

intro(9E), intro(9F), intro(9S)

SunSoft’s implementation of the DDI/DKI was designed to provide binary
compatibility for third-party device drivers across currently supported hardware
platforms across minor releases of the operating system.

However, unforeseen technical issues may force changes to the binary interface of the
DDI/DKI. We cannot therefore promise or in any way assure that DDI/DKI-compliant
device drivers will continue to operate correctly on future releases.

Intro(9)

How to Use
Section 9

SEE ALSO

NOTES

14 man pages section 9: DDI and DKI Overview • Last Revised 4 Oct 1996

Device Driver Interfaces

15

pm – Power Management properties

The pm-hardware-state property may be used to influence the behavior of the
Power Management framework. Its syntax and interpretation is described below.

Note that this property is only interpreted by the system immediately after the device
has successfully attached. Changes in the property made by the driver after the driver
has attached will not be recognized.

pm-hardware-state is a string-valued property. The existence of the
pm-hardware-state property indicates that a device needs special handling by the
Power Management framework with regard to its hardware state.

If the value of this property is needs-suspend-resume, the device has a hardware
state that cannot be deduced by the framework. The framework definition of a device
with hardware state is one with a reg property. Some drivers, such as SCSI disk and
tape drivers, have no reg property but manage devices with "remote" hardware. Such
a device must have a pm-hardware-state property with a value of
needs-suspend-resume for the system to identify it as needing a call to its
detach(9E) entry point with command DDI_SUSPEND when system is suspended,
and a call to attach(9E) with command DDI_RESUME when system is resumed. For
devices using original Power Management interfaces (which are now obsolete)
detach(9E) is also called with DDI_PM_SUSPEND before power is removed from the
device, and attach(9E) is called with DDI_PM_RESUME after power is restored.

A value of no-suspend-resume indicates that, in spite of the existence of a reg
property, a device has no hardware state that needs saving and restoring. A device
exporting this property will not have its detach() entry point called with command
DDI_SUSPEND when system is suspended, nor will its attach() entry point be
called with command DDI_RESUME when system is resumed. For devices using the
original (and now obsolete) Power Management interfaces, detach(9E) will not be
called with DDI_PM_SUSPEND command before power is removed from the device,
nor attach(9E) will be called with DDI_PM_RESUME command after power is
restored to the device.

A value of parental-suspend-resume indicates that the device does not
implement the detach(9E) DDI_SUSPEND semantics, nor the attach()
DDI_RESUME semantics, but that a call should be made up the device tree by the
framework to effect the saving and/or restoring of hardware state for this device. For
devices using original Power Management interfaces (which are now obsolete), it also
indicates that the device does not implement the detach(9E) DDI_PM_SUSPEND
semantics, nor the attach(9E) DDI_PM_RESUME sematics, but that a call should be
made up the device tree by the framework to effect the saving and/or restoring the
hardware state for this device.

pm(9)

NAME

DESCRIPTION

16 man pages section 9: DDI and DKI Overview • Last Revised 18 Oct 1999

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface stability Evolving

power.conf(4), pm(7D), pm-components(9), attach(9E), detach(9E),
pm_busy_component(9F), pm_create_components(9F),
pm_destroy_components(9F), pm_idle_component(9F)

Writing Device Drivers

pm(9)

ATTRIBUTES

SEE ALSO

Device Driver Interfaces 17

pm-components – Power Management device property

A device is power manageable if the power consumption of the device can be reduced
when it is idle. In general, a power manageable device consists of a number of power
manageable hardware units called components. Each component is separately
controllable and has its own set of power parameters.

An example of a one-component power manageable device is a disk whose spindle
motor can be stopped to save power when the disk is idle. An example of a
two-component power manageable device is a frame buffer card with a connected
monitor. The frame buffer electronics (with power that can be reduced when not in
use) comprises the first component. The second component is the monitor, which can
enter in a lower power mode when not in use. The combination of frame buffer
electronics and monitor is considered as one device by the system.

In the Power Management framework, all components are considered equal and
completely independent of each other. If this is not true for a particular device, the
device driver must ensure that undesirable state combinations do not occur.

The pm-components property describes the Power Management model of a device
driver to the Power Management framework. It lists each power manageable
component by name and lists the power level supported by each component by
numerical value and name. Its syntax and interpretation is described below.

This property is only interpreted by the system immediately after the device has
successfully attached, or upon the first call into Power Management framework,
whichever comes first. Changes in the property made by the driver after the property
has been interpreted will not be recognized.

pm-components is a string array property. The existence of the pm-components
property indicates that a device implements power manageable components and
describes the Power Management model implemented by the device driver. The
existence of pm-components also indicates to the framework that device is ready for
Power Management if automatic device Power Management is enabled. See
power.conf(4).

The pm-component property syntax is:

pm-components="NAME=component name", "numeric power level=power level name",
"numeric power level=power level name"
[, "numeric power level=power level name" ...]
[, "NAME=component name", "numeric power level=power level name",
"numeric power level=power level name"

[, "numeric power level=power level name"...]...];

The start of each new component is represented by a string consisting of NAME=
followed by the name of the component. This should be a short name that a user
would recognize, such as "Monitor" or "Spindle Motor." The succeeding elements in
the string array must be strings consisting of the numeric value (can be decimal or 0x
<hexadecimal number>) of a power level the component supports, followed by an
equal sign followed by a short descriptive name for that power level. Again, the

pm-components(9)

NAME

DESCRIPTION

18 man pages section 9: DDI and DKI Overview • Last Revised 12 Oct 1999

names should be descriptive, such as "On," "Off," "Suspend," "Standby," etc. The next
component continues the array in the same manner, with a string that starts out
NAME=, specifying the beginning of a new component (and its name), followed by
specifications of the power levels the component supports.

The components must be listed in increasing order according to the component
number as interpreted by the driver’s power(9E) routine. (Components are numbered
sequentially from 0). The power levels must be listed in increasing order of power
consumption. Each component must support at least two power levels, or there is no
possiblity of power level transitions. If a power level value of 0 is used, it must be the
first one listed for that component. A power level value of 0 has a special meaning (off)
to the Power Management framework.

An example of a pm-components entry from the .conf file of a driver which
implements a single power managed component consisting of a disk spindle motor is
shown below. This is component 0 and it supports 2 power level, which represent
spindle stopped or full speed.

pm-components="NAME=Spindle Motor", "0=Stopped", "1=Full Speed";

...

Below is an example of how the above entry would be implemented in the
attach(9E) function of the driver.

static char *pmcomps[] = {
"NAME=Spindle Motor",

"0=Stopped",
"1=Full Speed"

};

...

xxattach(dev_info_t *dip, ddi_attach_cmd_t cmd)
{
...

if (ddi_prop_update_string_array(DDI_DEV_T_NONE, dip, "pm-components",
&pmcomp[0], sizeof (pmcomps) / sizeof (char *)) != DDI_PROP_SUCCESS)
goto failed;

}

Below is an example for a frame buffer which implements two components.
Component 0 is the frame buffer electronics which supports four different power
levels. Component 1 represents the state of Power Management of the attached
monitor.

pm-components="NAME=Frame Buffer", "0=Off"
"1=Suspend", "2=Standby", "3=On",

"NAME=Monitor", "0=Off", "1=Suspend", "2=Standby,"

"3=On;

pm-components(9)

EXAMPLES

Device Driver Interfaces 19

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface stability Evolving

power.conf(4), pm(7D), attach(9E), detach(9E),
ddi_prop_update_string_array(9F) pm_busy_component(9F),
pm_create_components(9F), pm_destroy_components(9F),
pm_idle_component(9F)

Writing Device Drivers

pm-components(9)

ATTRIBUTES

SEE ALSO

20 man pages section 9: DDI and DKI Overview • Last Revised 12 Oct 1999

Index

P
pm-components— Power Management device

property, 18
Power Management device property —

pm-component, 18

21

22 man pages section 9: DDI and DKI Overview • February 2004

