
man pages section 3: Threads and
Realtime Library Functions

Sun Microsystems, Inc.
4150 Network Circle
Santa Clara, CA 95054
U.S.A.

Part No: 816–3324–10
February 2002



Copyright 2002 Sun Microsystems, Inc. 4150 Network Circle Santa Clara, CA 95054 U.S.A. All rights reserved.

This product or document is protected by copyright and distributed under licenses restricting its use, copying, distribution, and decompilation. No
part of this product or document may be reproduced in any form by any means without prior written authorization of Sun and its licensors, if any.
Third-party software, including font technology, is copyrighted and licensed from Sun suppliers.

Parts of the product may be derived from Berkeley BSD systems, licensed from the University of California. UNIX is a registered trademark in the U.S.
and other countries, exclusively licensed through X/Open Company, Ltd.

Sun, Sun Microsystems, the Sun logo, docs.sun.com, AnswerBook, AnswerBook2, and Solaris are trademarks, registered trademarks, or service marks
of Sun Microsystems, Inc. in the U.S. and other countries. All SPARC trademarks are used under license and are trademarks or registered trademarks
of SPARC International, Inc. in the U.S. and other countries. Products bearing SPARC trademarks are based upon an architecture developed by Sun
Microsystems, Inc.

The OPEN LOOK and Sun™ Graphical User Interface was developed by Sun Microsystems, Inc. for its users and licensees. Sun acknowledges the
pioneering efforts of Xerox in researching and developing the concept of visual or graphical user interfaces for the computer industry. Sun holds a
non-exclusive license from Xerox to the Xerox Graphical User Interface, which license also covers Sun’s licensees who implement OPEN LOOK GUIs
and otherwise comply with Sun’s written license agreements.

Federal Acquisitions: Commercial Software–Government Users Subject to Standard License Terms and Conditions.

DOCUMENTATION IS PROVIDED “AS IS” AND ALL EXPRESS OR IMPLIED CONDITIONS, REPRESENTATIONS AND WARRANTIES,
INCLUDING ANY IMPLIED WARRANTY OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT, ARE
DISCLAIMED, EXCEPT TO THE EXTENT THAT SUCH DISCLAIMERS ARE HELD TO BE LEGALLY INVALID.

Copyright 2002 Sun Microsystems, Inc. 4150 Network Circle Santa Clara, CA 95054 U.S.A. Tous droits réservés

Ce produit ou document est protégé par un copyright et distribué avec des licences qui en restreignent l’utilisation, la copie, la distribution, et la
décompilation. Aucune partie de ce produit ou document ne peut être reproduite sous aucune forme, par quelque moyen que ce soit, sans
l’autorisation préalable et écrite de Sun et de ses bailleurs de licence, s’il y en a. Le logiciel détenu par des tiers, et qui comprend la technologie relative
aux polices de caractères, est protégé par un copyright et licencié par des fournisseurs de Sun.

Des parties de ce produit pourront être dérivées du système Berkeley BSD licenciés par l’Université de Californie. UNIX est une marque déposée aux
Etats-Unis et dans d’autres pays et licenciée exclusivement par X/Open Company, Ltd.

Sun, Sun Microsystems, le logo Sun, docs.sun.com, AnswerBook, AnswerBook2, et Solaris sont des marques de fabrique ou des marques déposées, ou
marques de service, de Sun Microsystems, Inc. aux Etats-Unis et dans d’autres pays. Toutes les marques SPARC sont utilisées sous licence et sont des
marques de fabrique ou des marques déposées de SPARC International, Inc. aux Etats-Unis et dans d’autres pays. Les produits portant les marques
SPARC sont basés sur une architecture développée par Sun Microsystems, Inc.

L’interface d’utilisation graphique OPEN LOOK et Sun™ a été développée par Sun Microsystems, Inc. pour ses utilisateurs et licenciés. Sun reconnaît
les efforts de pionniers de Xerox pour la recherche et le développement du concept des interfaces d’utilisation visuelle ou graphique pour l’industrie
de l’informatique. Sun détient une licence non exclusive de Xerox sur l’interface d’utilisation graphique Xerox, cette licence couvrant également les
licenciés de Sun qui mettent en place l’interface d’utilisation graphique OPEN LOOK et qui en outre se conforment aux licences écrites de Sun.

CETTE PUBLICATION EST FOURNIE “EN L’ETAT” ET AUCUNE GARANTIE, EXPRESSE OU IMPLICITE, N’EST ACCORDEE, Y COMPRIS DES
GARANTIES CONCERNANT LA VALEUR MARCHANDE, L’APTITUDE DE LA PUBLICATION A REPONDRE A UNE UTILISATION
PARTICULIERE, OU LE FAIT QU’ELLE NE SOIT PAS CONTREFAISANTE DE PRODUIT DE TIERS. CE DENI DE GARANTIE NE
S’APPLIQUERAIT PAS, DANS LA MESURE OU IL SERAIT TENU JURIDIQUEMENT NUL ET NON AVENU.

011120@2870



Contents

Preface 9

Threads and Realtime Library Functions 15

aiocancel(3AIO) 16

aio_cancel(3RT) 17

aio_error(3RT) 19

aio_fsync(3RT) 21

aioread(3AIO) 23

aio_read(3RT) 25

aio_return(3RT) 28

aio_suspend(3RT) 29

aiowait(3AIO) 31

aio_write(3RT) 32

cancellation(3THR) 35

clock_settime(3RT) 41

cond_init(3THR) 43

condition(3THR) 48

door_bind(3DOOR) 50

door_call(3DOOR) 53

door_create(3DOOR) 56

door_cred(3DOOR) 58

door_info(3DOOR) 59

door_return(3DOOR) 61

door_revoke(3DOOR) 62

door_server_create(3DOOR) 63

3



fdatasync(3RT) 65

libthread_db(3THR) 66

lio_listio(3RT) 73

mq_close(3RT) 77

mq_getattr(3RT) 78

mq_notify(3RT) 79

mq_open(3RT) 81

mq_receive(3RT) 84

mq_send(3RT) 86

mq_setattr(3RT) 88

mq_unlink(3RT) 89

mutex(3THR) 90

mutex_init(3THR) 92

nanosleep(3RT) 103

proc_service(3PROC) 104

ps_lgetregs(3PROC) 107

ps_pglobal_lookup(3PROC) 109

ps_pread(3PROC) 110

ps_pstop(3PROC) 111

pthread_atfork(3THR) 113

pthread_attr_getdetachstate(3THR) 115

pthread_attr_getguardsize(3THR) 116

pthread_attr_getinheritsched(3THR) 118

pthread_attr_getschedparam(3THR) 120

pthread_attr_getschedpolicy(3THR) 121

pthread_attr_getscope(3THR) 122

pthread_attr_getstackaddr(3THR) 124

pthread_attr_getstacksize(3THR) 125

pthread_attr_init(3THR) 126

pthread_cancel(3THR) 128

pthread_cleanup_pop(3THR) 129

pthread_cleanup_push(3THR) 130

pthread_condattr_getpshared(3THR) 131

pthread_condattr_init(3THR) 133

pthread_cond_init(3THR) 135

pthread_cond_signal(3THR) 137

pthread_cond_wait(3THR) 139

4 man pages section 3: Threads and Realtime Library Functions • February 2002 (Beta)



pthread_create(3THR) 142

pthread_detach(3THR) 146

pthread_equal(3THR) 147

pthread_exit(3THR) 148

pthread_getconcurrency(3THR) 149

pthread_getschedparam(3THR) 151

pthread_getspecific(3THR) 153

pthread_join(3THR) 155

pthread_key_create(3THR) 157

pthread_key_delete(3THR) 159

pthread_kill(3THR) 160

pthread_mutexattr_getprioceiling(3THR) 161

pthread_mutexattr_getprotocol(3THR) 163

pthread_mutexattr_getpshared(3THR) 166

pthread_mutexattr_getrobust_np(3THR) 168

pthread_mutexattr_gettype(3THR) 170

pthread_mutexattr_init(3THR) 172

pthread_mutex_consistent_np(3THR) 173

pthread_mutex_getprioceiling(3THR) 175

pthread_mutex_init(3THR) 177

pthread_mutex_lock(3THR) 179

pthread_once(3THR) 182

pthread_rwlockattr_getpshared(3THR) 183

pthread_rwlockattr_init(3THR) 184

pthread_rwlock_init(3THR) 185

pthread_rwlock_rdlock(3THR) 187

pthread_rwlock_unlock(3THR) 189

pthread_rwlock_wrlock(3THR) 190

pthread_self(3THR) 192

pthread_setcancelstate(3THR) 193

pthread_setcanceltype(3THR) 195

pthread_sigmask(3THR) 197

pthread_testcancel(3THR) 202

rwlock(3THR) 203

schedctl_init(3SCHED) 206

sched_getparam(3RT) 208

sched_get_priority_max(3RT) 209

Contents 5



sched_getscheduler(3RT) 210

sched_rr_get_interval(3RT) 211

sched_setparam(3RT) 212

sched_setscheduler(3RT) 214

sched_yield(3RT) 217

semaphore(3THR) 218

sem_close(3RT) 222

sem_destroy(3RT) 223

sem_getvalue(3RT) 224

sem_init(3RT) 225

sem_open(3RT) 227

sem_post(3RT) 230

sem_unlink(3RT) 232

sem_wait(3RT) 233

shm_open(3RT) 236

shm_unlink(3RT) 239

sigqueue(3RT) 240

sigwaitinfo(3RT) 242

td_init(3THR) 244

td_log(3THR) 245

td_sync_get_info(3THR) 246

td_ta_enable_stats(3THR) 249

td_ta_event_addr(3THR) 251

td_ta_get_nthreads(3THR) 255

td_ta_map_addr2sync(3THR) 256

td_ta_map_id2thr(3THR) 257

td_ta_new(3THR) 258

td_ta_setconcurrency(3THR) 260

td_ta_sync_iter(3THR) 261

td_thr_dbsuspend(3THR) 263

td_thr_getgregs(3THR) 264

td_thr_get_info(3THR) 266

td_thr_lockowner(3THR) 269

td_thr_setprio(3THR) 270

td_thr_setsigpending(3THR) 271

td_thr_sleepinfo(3THR) 272

td_thr_tsd(3THR) 273

6 man pages section 3: Threads and Realtime Library Functions • February 2002 (Beta)



td_thr_validate(3THR) 274

thr_create(3THR) 275

threads(3THR) 281

thr_exit(3THR) 289

thr_getconcurrency(3THR) 291

thr_getprio(3THR) 292

thr_join(3THR) 294

thr_keycreate(3THR) 295

thr_kill(3THR) 298

thr_main(3THR) 299

thr_min_stack(3THR) 300

thr_self(3THR) 301

thr_sigsetmask(3THR) 302

thr_stksegment(3THR) 307

thr_suspend(3THR) 308

thr_yield(3THR) 309

timer_create(3RT) 310

timer_delete(3RT) 312

timer_settime(3RT) 313

Index 315

Contents 7



8 man pages section 3: Threads and Realtime Library Functions • February 2002 (Beta)



Preface

Both novice users and those familar with the SunOS operating system can use online
man pages to obtain information about the system and its features. A man page is
intended to answer concisely the question “What does it do?” The man pages in
general comprise a reference manual. They are not intended to be a tutorial.

Overview
The following contains a brief description of each man page section and the
information it references:

� Section 1 describes, in alphabetical order, commands available with the operating
system.

� Section 1M describes, in alphabetical order, commands that are used chiefly for
system maintenance and administration purposes.

� Section 2 describes all of the system calls. Most of these calls have one or more
error returns. An error condition is indicated by an otherwise impossible returned
value.

� Section 3 describes functions found in various libraries, other than those functions
that directly invoke UNIX system primitives, which are described in Section 2.

� Section 4 outlines the formats of various files. The C structure declarations for the
file formats are given where applicable.

� Section 5 contains miscellaneous documentation such as character-set tables.

� Section 6 contains available games and demos.

� Section 7 describes various special files that refer to specific hardware peripherals
and device drivers. STREAMS software drivers, modules and the
STREAMS-generic set of system calls are also described.

9



� Section 9 provides reference information needed to write device drivers in the
kernel environment. It describes two device driver interface specifications: the
Device Driver Interface (DDI) and the Driver⁄Kernel Interface (DKI).

� Section 9E describes the DDI/DKI, DDI-only, and DKI-only entry-point routines a
developer can include in a device driver.

� Section 9F describes the kernel functions available for use by device drivers.

� Section 9S describes the data structures used by drivers to share information
between the driver and the kernel.

Below is a generic format for man pages. The man pages of each manual section
generally follow this order, but include only needed headings. For example, if there
are no bugs to report, there is no BUGS section. See the intro pages for more
information and detail about each section, and man(1) for more information about man
pages in general.

NAME This section gives the names of the commands or
functions documented, followed by a brief
description of what they do.

SYNOPSIS This section shows the syntax of commands or
functions. When a command or file does not exist
in the standard path, its full path name is shown.
Options and arguments are alphabetized, with
single letter arguments first, and options with
arguments next, unless a different argument order
is required.

The following special characters are used in this
section:

[ ] Brackets. The option or argument
enclosed in these brackets is optional. If
the brackets are omitted, the argument
must be specified.

. . . Ellipses. Several values can be provided
for the previous argument, or the
previous argument can be specified
multiple times, for example, "filename
. . ." .

| Separator. Only one of the arguments
separated by this character can be
specified at a time.

{ } Braces. The options and/or arguments
enclosed within braces are
interdependent, such that everything
enclosed must be treated as a unit.

10 man pages section 3: Threads and Realtime Library Functions • February 2002 (Beta)



PROTOCOL This section occurs only in subsection 3R to
indicate the protocol description file.

DESCRIPTION This section defines the functionality and behavior
of the service. Thus it describes concisely what the
command does. It does not discuss OPTIONS or
cite EXAMPLES. Interactive commands,
subcommands, requests, macros, and functions are
described under USAGE.

IOCTL This section appears on pages in Section 7 only.
Only the device class that supplies appropriate
parameters to the ioctl(2) system call is called
ioctl and generates its own heading. ioctl calls
for a specific device are listed alphabetically (on the
man page for that specific device). ioctl calls are
used for a particular class of devices all of which
have an io ending, such as mtio(7I).

OPTIONS This secton lists the command options with a
concise summary of what each option does. The
options are listed literally and in the order they
appear in the SYNOPSIS section. Possible
arguments to options are discussed under the
option, and where appropriate, default values are
supplied.

OPERANDS This section lists the command operands and
describes how they affect the actions of the
command.

OUTPUT This section describes the output – standard output,
standard error, or output files – generated by the
command.

RETURN VALUES If the man page documents functions that return
values, this section lists these values and describes
the conditions under which they are returned. If a
function can return only constant values, such as 0
or –1, these values are listed in tagged paragraphs.
Otherwise, a single paragraph describes the return
values of each function. Functions declared void do
not return values, so they are not discussed in
RETURN VALUES.

ERRORS On failure, most functions place an error code in
the global variable errno indicating why they
failed. This section lists alphabetically all error
codes a function can generate and describes the
conditions that cause each error. When more than

Preface 11



one condition can cause the same error, each
condition is described in a separate paragraph
under the error code.

USAGE This section lists special rules, features, and
commands that require in-depth explanations. The
subsections listed here are used to explain built-in
functionality:

Commands
Modifiers
Variables
Expressions
Input Grammar

EXAMPLES This section provides examples of usage or of how
to use a command or function. Wherever possible a
complete example including command-line entry
and machine response is shown. Whenever an
example is given, the prompt is shown as
example%, or if the user must be superuser,
example#. Examples are followed by explanations,
variable substitution rules, or returned values. Most
examples illustrate concepts from the SYNOPSIS,
DESCRIPTION, OPTIONS, and USAGE sections.

ENVIRONMENT VARIABLES This section lists any environment variables that
the command or function affects, followed by a
brief description of the effect.

EXIT STATUS This section lists the values the command returns to
the calling program or shell and the conditions that
cause these values to be returned. Usually, zero is
returned for successful completion, and values
other than zero for various error conditions.

FILES This section lists all file names referred to by the
man page, files of interest, and files created or
required by commands. Each is followed by a
descriptive summary or explanation.

ATTRIBUTES This section lists characteristics of commands,
utilities, and device drivers by defining the
attribute type and its corresponding value. See
attributes(5) for more information.

SEE ALSO This section lists references to other man pages,
in-house documentation, and outside publications.

12 man pages section 3: Threads and Realtime Library Functions • February 2002 (Beta)



DIAGNOSTICS This section lists diagnostic messages with a brief
explanation of the condition causing the error.

WARNINGS This section lists warnings about special conditions
which could seriously affect your working
conditions. This is not a list of diagnostics.

NOTES This section lists additional information that does
not belong anywhere else on the page. It takes the
form of an aside to the user, covering points of
special interest. Critical information is never
covered here.

BUGS This section describes known bugs and, wherever
possible, suggests workarounds.

Preface 13



14 man pages section 3: Threads and Realtime Library Functions • February 2002 (Beta)



Threads and Realtime Library
Functions

15



aiocancel – cancel an asynchronous operation

cc [ flag ... ] file ... -laio [ library ... ]

#include <sys/asynch.h>

int aiocancel(aio_result_t *resultp);

aiocancel() cancels the asynchronous operation associated with the result buffer
pointed to by resultp. It may not be possible to immediately cancel an operation which
is in progress and in this case, aiocancel() will not wait to cancel it.

Upon successful completion, aiocancel() returns 0 and the requested operation is
cancelled. The application will not receive the SIGIO completion signal for an
asynchronous operation that is successfully cancelled.

Upon successful completion, aiocancel() returns 0. Upon failure, aiocancel()
returns −1 and sets errno to indicate the error.

aiocancel() will fail if any of the following are true:

EACCES The parameter resultp does not correspond to any outstanding
asynchronous operation, although there is at least one currently
outstanding.

EFAULT resultp points to an address outside the address space of the
requesting process. See NOTES.

EINVAL There are not any outstanding requests to cancel.

See attributes (5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level Safe

aioread(3AIO), aiowait(3AIO), attributes(5)

Passing an illegal address as resultp will result in setting errno to EFAULT only if it is
detected by the application process.

aiocancel(3AIO)

NAME

SYNOPSIS

DESCRIPTION

RETURN VALUES

ERRORS

ATTRIBUTES

SEE ALSO

NOTES

16 man pages section 3: Threads and Realtime Library Functions • Last Revised 5 Mar 1997



aio_cancel – cancel asynchronous I/O request

cc [ flag... ] file... -lrt [ library... ]

#include <aio.h>

int aio_cancel(int fildes, struct aiocb *aiocbp);

The aio_cancel() function attempts to cancel one or more asynchronous I/O
requests currently outstanding against file descriptor fildes. The aiocbp argument points
to the asynchronous I/O control block for a particular request to be canceled. If aiocbp
is NULL, then all outstanding cancelable asynchronous I/O requests against fildes are
canceled.

Normal asynchronous notification occurs for asynchronous I/O operations that are
successfully canceled. If there are requests that cannot be canceled, then the normal
asynchronous completion process takes place for those requests when they are
completed.

For requested operations that are successfully canceled, the associated error status is
set to ECANCELED and the return status is −1. For requested operations that are not
successfully canceled, the aiocbp is not modified by aio_cancel().

If aiocbp is not NULL, then if fildes does not have the same value as the file descriptor
with which the asynchronous operation was initiated, unspecified results occur.

The aio_cancel() function returns the value AIO_CANCELED to the calling process
if the requested operation(s) were canceled. The value AIO_NOTCANCELED is returned
if at least one of the requested operation(s) cannot be canceled because it is in
progress. In this case, the state of the other operations, if any, referenced in the call to
aio_cancel() is not indicated by the return value of aio_cancel(). The
application may determine the state of affairs for these operations by using
aio_error(3RT). The value AIO_ALLDONE is returned if all of the operations have
already completed. Otherwise, the function returns −1 and sets errno to indicate the
error.

The aio_cancel() function will fail if:

EBADF The fildes argument is not a valid file descriptor.

ENOSYS The aio_cancel() function is not supported.

The aio_cancel() function has a transitional interface for 64-bit file offsets. See
lf64(5).

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level MT-Safe

aio_cancel(3RT)

NAME

SYNOPSIS

DESCRIPTION

RETURN VALUES

ERRORS

USAGE

ATTRIBUTES

Threads and Realtime Library Functions 17



aio_read(3RT), aio_return(3RT), attributes(5), aio(3HEAD), lf64(5),
signal(3HEAD)

Solaris 2.6 was the first release to support the Asynchronous Input and Output option.
Prior to this release, this function always returned −1 and set errno to ENOSYS.

aio_cancel(3RT)

SEE ALSO

NOTES

18 man pages section 3: Threads and Realtime Library Functions • Last Revised 22 Jun 1998



aio_error – retrieve errors status for an asynchronous I/O operation

cc [ flag... ] file... -lrt [ library... ]

#include <aio.h>

int aio_error(const struct aiocb *aiocbp);

The aio_error() function returns the error status associated with the aiocb
structure referenced by the aiocbp argument. The error status for an asynchronous I/O
operation is the errno value that would be set by the corresponding read(2),
write(2), or fsync(3C) operation. If the operation has not yet completed, then the
error status will be equal to EINPROGRESS.

If the asynchronous I/O operation has completed successfully, then 0 is returned. If
the asynchronous operation has completed unsuccessfully, then the error status, as
described for read(2), write(2), and fsync(3C), is returned. If the asynchronous I/O
operation has not yet completed, then EINPROGRESS is returned.

The aio_error() function will fail if:

ENOSYS The aio_error() function is not supported by the system.

The aio_error() function may fail if:

EINVAL The aiocbp argument does not refer to an asynchronous operation
whose return status has not yet been retrieved.

The aio_error() function has a transitional interface for 64-bit file offsets. See
lf64(5).

EXAMPLE 1 The following is an example of an error handling routine using the
aio_error() function.

#include <aio.h>
#include <errno.h>
#include <signal.h>
struct aiocb my_aiocb;
struct sigaction my_sigaction;
void my_aio_handler(int, siginfo_t *, void *);
. . .
my_sigaction.sa_flags = SA_SIGINFO;
my_sigaction.sa_sigaction = my_aio_handler;
sigsetempty(&my_sigaction.sa_mask);
(void) sigaction(SIGRTMIN, &my_sigaction, NULL);
. . .
my_aiocb.aio_sigevent.sigev_notify = SIGEV_SIGNAL;
my_aiocb.aio_sigevent.sigev_signo = SIGRTMIN;
my_aiocb.aio_sigevent.sigev_value.sival_ptr = &myaiocb;
. . .
(void) aio_read(&my_aiocb);
. . .
void
my_aio_handler(int signo, siginfo_t *siginfo, void *context) {
int my_errno;
struct aiocb *my_aiocbp;

aio_error(3RT)

NAME

SYNOPSIS

DESCRIPTION

RETURN VALUES

ERRORS

USAGE

EXAMPLES

Threads and Realtime Library Functions 19



EXAMPLE 1 The following is an example of an error handling routine using the
aio_error() function. (Continued)

my_aiocbp = siginfo.si_value.sival_ptr;
if ((my_errno = aio_error(my_aiocb)) != EINPROGRESS) {

int my_status = aio_return(my_aiocb);
if (my_status >= 0){ /* start another operation */

. . .
} else { /* handle I/O error */

. . .
}

}

}

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level Async-Signal-Safe

aio_read(3RT), aio_write(3RT), aio_fsync(3RT), lio_listio(3RT),
aio_return(3RT), aio_cancel(3RT), _exit(2), close(2), fork(2), lseek(2),
read(2), write(2), attributes(5), aio(3HEAD), lf64(5), signal(3HEAD)

Solaris 2.6 was the first release to support the Asynchronous Input and Output option.
Prior to this release, this function always returned −1 and set errno to ENOSYS.

aio_error(3RT)

ATTRIBUTES

SEE ALSO

NOTES

20 man pages section 3: Threads and Realtime Library Functions • Last Revised 14 Aug 1997



aio_fsync – asynchronous file synchronization

cc [ flag... ] file... -lrt [ library... ]

#include <aio.h>

int aio_fsync(int op, struct aiocb *aiocbp);

The aio_fsync() function asynchronously forces all I/O operations associated with
the file indicated by the file descriptor aio_fildes member of the aiocb structure
referenced by the aiocbp argument and queued at the time of the call to aio_fsync()
to the synchronized I/O completion state. The function call returns when the
synchronization request has been initiated or queued to the file or device (even when
the data cannot be synchronized immediately).

If op is O_DSYNC, all currently queued I/O operations are completed as if by a call to
fdatasync(3RT); that is, as defined for synchronized I/O data integrity completion.
If op is O_SYNC, all currently queued I/O operations are completed as if by a call to
fsync(3C); that is, as defined for synchronized I/O file integrity completion. If the
aio_fsync() function fails, or if the operation queued by aio_fsync() fails, then,
as for fsync(3C) and fdatasync(3RT), outstanding I/O operations are not
guaranteed to have been completed.

If aio_fsync() succeeds, then it is only the I/O that was queued at the time of the
call to aio_fsync() that is guaranteed to be forced to the relevant completion state.
The completion of subsequent I/O on the file descriptor is not guaranteed to be
completed in a synchronized fashion.

The aiocbp argument refers to an asynchronous I/O control block. The aiocbp value
may be used as an argument to aio_error(3RT) and aio_return(3RT) in order to
determine the error status and return status, respectively, of the asynchronous
operation while it is proceeding. When the request is queued, the error status for the
operation is EINPROGRESS. When all data has been successfully transferred, the error
status will be reset to reflect the success or failure of the operation. If the operation
does not complete successfully, the error status for the operation will be set to indicate
the error. The aio_sigevent member determines the asynchronous notification to occur
when all operations have achieved synchronized I/O completion. All other members
of the structure referenced by aiocbp are ignored. If the control block referenced by
aiocbp becomes an illegal address prior to asynchronous I/O completion, then the
behavior is undefined.

If the aio_fsync() function fails or the aiocbp indicates an error condition, data is
not guaranteed to have been successfully transferred.

If aiocbp is NULL, then no status is returned in aiocbp, and no signal is generated upon
completion of the operation.

The aio_fsync() function returns 0 to the calling process if the I/O operation is
successfully queued; otherwise, the function returns −1 and sets errno to indicate the
error.

aio_fsync(3RT)

NAME

SYNOPSIS

DESCRIPTION

RETURN VALUES

Threads and Realtime Library Functions 21



The aio_fsync() function will fail if:

EAGAIN The requested asynchronous operation was not queued due to
temporary resource limitations.

EBADF The aio_fildes member of the aiocb structure referenced by
the aiocbp argument is not a valid file descriptor open for writing.

EINVAL The system does not support synchronized I/O for this file.

EINVAL A value of op other than O_DSYNC or O_SYNC was specified.

ENOSYS The aio_fsync() function is not supported by the system.

In the event that any of the queued I/O operations fail, aio_fsync() returns the
error condition defined for read(2) and write(2). The error will be returned in the
error status for the asynchronous fsync(3C) operation, which can be retrieved using
aio_error(3RT).

The aio_fsync() function has a transitional interface for 64-bit file offsets. See
lf64(5).

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level MT-Safe

fcntl(2), open(2), read(2), write(2), aio_error(3RT), aio_return(3RT),
fdatasync(3RT), fsync(3C), attributes(5), fcntl(3HEAD), aio(3HEAD),
lf64(5), signal(3HEAD)

Solaris 2.6 was the first release to support the Asynchronous Input and Output option.
Prior to this release, this function always returned −1 and set errno to ENOSYS.

aio_fsync(3RT)

ERRORS

USAGE

ATTRIBUTES

SEE ALSO

NOTES

22 man pages section 3: Threads and Realtime Library Functions • Last Revised 22 Jun 1998



aioread, aiowrite – read or write asynchronous I/O operations

cc [ flag ... ] file ... -laio [ library ... ]
#include <sys/types.h>

#include <sys/asynch.h>

int aioread(int fildes, char *bufp, int bufs, off_t offset, int whence,
aio_result_t *resultp);

int aiowrite(int fildes, const char *bufp, int bufs, off_t offset, int
whence, aio_result_t *resultp);

aioread() initiates one asynchronous read(2) and returns control to the calling
program. The read() continues concurrently with other activity of the process. An
attempt is made to read bufs bytes of data from the object referenced by the descriptor
fildes into the buffer pointed to by bufp.

aiowrite() initiates one asynchronous write(2) and returns control to the calling
program. The write() continues concurrently with other activity of the process. An
attempt is made to write bufs bytes of data from the buffer pointed to by bufp to the
object referenced by the descriptor fildes.

On objects capable of seeking, the I/O operation starts at the position specified by
whence and offset. These parameters have the same meaning as the corresponding
parameters to the llseek(2) function. On objects not capable of seeking the I/O
operation always start from the current position and the parameters whence and offset
are ignored. The seek pointer for objects capable of seeking is not updated by
aioread() or aiowrite(). Sequential asynchronous operations on these devices
must be managed by the application using the whence and offset parameters.

The result of the asynchronous operation is stored in the structure pointed to by
resultp:

int aio_return; /* return value of read( ) or write( ) */

int aio_errno; /* value of errno for read( ) or write( ) */

Upon completion of the operation both aio_return and aio_errno are set to reflect the
result of the operation. AIO_INPROGRESS is not a value used by the system so the
client may detect a change in state by initializing aio_return to this value.

The application supplied buffer bufp should not be referenced by the application until
after the operation has completed. While the operation is in progress, this buffer is in
use by the operating system.

Notification of the completion of an asynchronous I/O operation may be obtained
synchronously through the aiowait(3AIO) function, or asynchronously by installing
a signal handler for the SIGIO signal. Asynchronous notification is accomplished by
sending the process a SIGIO signal. If a signal handler is not installed for the SIGIO
signal, asynchronous notification is disabled. The delivery of this instance of the
SIGIO signal is reliable in that a signal delivered while the handler is executing is not

aioread(3AIO)

NAME

SYNOPSIS

DESCRIPTION

Threads and Realtime Library Functions 23



lost. If the client ensures that aiowait(3AIO) returns nothing (using a polling
timeout) before returning from the signal handler, no asynchronous I/O notifications
are lost. The aiowait(3AIO) function is the only way to dequeue an asynchronous
notification. Note: SIGIO may have several meanings simultaneously: for example,
that a descriptor generated SIGIO and an asynchronous operation completed. Further,
issuing an asynchronous request successfully guarantees that space exists to queue the
completion notification.

close(2), exit(2) and execve() (see exec(2)) will block until all pending
asynchronous I/O operations can be canceled by the system.

It is an error to use the same result buffer in more than one outstanding request. These
structures may only be reused after the system has completed the operation.

Upon successful completion, aioread() and aiowrite() return 0. Upon failure,
aioread() and aiowrite() return −1 and set errno to indicate the error.

aioread() and aiowrite() will fail if any of the following are true:

EAGAIN The number of asynchronous requests that the system can handle
at any one time has been exceeded

EBADF fildes is not a valid file descriptor open for reading.

EFAULT At least one of bufp points to an address outside the address space
of the requesting process. See NOTES.

EINVAL The parameter resultp is currently being used by an outstanding
asynchronous request.

EINVAL offset is not a valid offset for this file system type.

ENOMEM Memory resources are unavailable to initiate request.

The aioread() and aiowrite() functions have transitional interfaces for 64-bit file
offsets. See lf64(5).

See attributes (5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level Safe

close(2), exec(2), exit(2), llseek(2), lseek(2), open(2), read(2), write(2),
aiocancel(3AIO), aiowait(3AIO), sigvec(3UCB), attributes(5), lf64(5)

Passing an illegal address to bufp will result in setting errno to EFAULT only if it is
detected by the application process.

aioread(3AIO)

RETURN VALUES

ERRORS

USAGE

ATTRIBUTES

SEE ALSO

NOTES

24 man pages section 3: Threads and Realtime Library Functions • Last Revised 28 Jan 1998



aio_read – asynchronous read from a file

cc [ flag... ] file... -lrt [ library... ]

#include <aio.h>

int aio_read(struct aiocb *aiocbp);

The aio_read() function allows the calling process to read aiocbp->aio_nbytes
from the file associated with aiocbp->aio_fildes into the buffer pointed to by
aiocbp->aio_buf. The function call returns when the read request has been initiated or
queued to the file or device (even when the data cannot be delivered immediately). If
_POSIX_PRIORITIZED_IO is defined and prioritized I/O is supported for this file,
then the asynchronous operation is submitted at a priority equal to the scheduling
priority of the process minus aiocbp->aio_reqprio. The aiocbp value may be used as
an argument to aio_error(3RT) and aio_return(3RT) in order to determine the
error status and return status, respectively, of the asynchronous operation while it is
proceeding. If an error condition is encountered during queuing, the function call
returns without having initiated or queued the request. The requested operation takes
place at the absolute position in the file as given by aio_offset, as if lseek(2) were
called immediately prior to the operation with an offset equal to aio_offset and a
whence equal to SEEK_SET. After a successful call to enqueue an asynchronous I/O
operation, the value of the file offset for the file is unspecified.

The aiocbp->aio_lio_opcode field is ignored by aio_read().

The aiocbp argument points to an aiocb structure. If the buffer pointed to by
aiocbp->aio_buf or the control block pointed to by aiocbp becomes an illegal address
prior to asynchronous I/O completion, then the behavior is undefined.

Simultaneous asynchronous operations using the same aiocbp produce undefined
results.

If _POSIX_SYNCHRONIZED_IO is defined and synchronized I/O is enabled on the file
associated with aiocbp->aio_fildes, the behavior of this function is according to the
definitions of synchronized I/O data integrity completion and synchronized I/O file
integrity completion.

For any system action that changes the process memory space while an asynchronous
I/O is outstanding to the address range being changed, the result of that action is
undefined.

For regular files, no data transfer will occur past the offset maximum established in the
open file description associated with aiocbp->aio_fildes.

The aio_read() function returns 0 to the calling process if the I/O operation is
successfully queued; otherwise, the function returns −1 and sets errno to indicate the
error.

The aio_read() function will fail if:

aio_read(3RT)

NAME

SYNOPSIS

DESCRIPTION

RETURN VALUES

ERRORS

Threads and Realtime Library Functions 25



EAGAIN The requested asynchronous I/O operation was not queued due to
system resource limitations.

ENOSYS The aio_read() function is not supported by the system.

Each of the following conditions may be detected synchronously at the time of the call
to aio_read(), or asynchronously. If any of the conditions below are detected
synchronously, the aio_read() function returns –1 and sets errno to the
corresponding value. If any of the conditions below are detected asynchronously, the
return status of the asynchronous operation is set to −1, and the error status of the
asynchronous operation will be set to the corresponding value.

EBADF The aiocbp->aio_fildes argument is not a valid file descriptor
open for reading.

EINVAL The file offset value implied by aiocbp->aio_offset would be
invalid, aiocbp->aio_reqprio is not a valid value, or
aiocbp->aio_nbytes is an invalid value.

In the case that the aio_read() successfully queues the I/O operation but the
operation is subsequently canceled or encounters an error, the return status of the
asynchronous operation is one of the values normally returned by the read(2)
function call. In addition, the error status of the asynchronous operation will be set to
one of the error statuses normally set by the read() function call, or one of the
following values:

EBADF The aiocbp->aio_fildes argument is not a valid file descriptor
open for reading.

ECANCELED The requested I/O was canceled before the I/O completed due to
an explicit aio_cancel(3RT) request.

EINVAL The file offset value implied by aiocbp->aio_offset would be
invalid.

The following condition may be detected synchronously or asynchronously:

EOVERFLOW The file is a regular file, aiobcp->aio_nbytes is greater than 0 and
the starting offset in aiobcp->aio_offset is before the end-of-file
and is at or beyond the offset maximum in the open file
description associated with aiocbp->aio_fildes.

For portability, the application should set aiocb->aio_reqprio to 0.

The aio_read() function has a transitional interface for 64-bit file offsets. See
lf64(5).

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

aio_read(3RT)

USAGE

ATTRIBUTES

26 man pages section 3: Threads and Realtime Library Functions • Last Revised 22 Jun 1998



MT-Level MT-Safe

close(2), exec(2), exit(2), fork(2), lseek(2), read(2), write(2),
aio_cancel(3RT), aio_return(3RT), lio_listio(3RT), attributes(5),
aio(3HEAD), lf64(5), siginfo(3HEAD), signal(3HEAD)

Solaris 2.6 was the first release to support the Asynchronous Input and Output option.
Prior to this release, this function always returned −1 and set errno to ENOSYS.

aio_read(3RT)

SEE ALSO

NOTES

Threads and Realtime Library Functions 27



aio_return – retrieve return status of an asynchronous I/O operation

cc [ flag... ] file... -lrt [ library... ]

#include <aio.h>

ssize_t aio_return(struct aiocb *aiocbp);

The aio_return() function returns the return status associated with the aiocb
structure referenced by the aiocbp argument. The return status for an asynchronous
I/O operation is the value that would be returned by the corresponding read(2),
write(2), or fsync(3C) function call. If the error status for the operation is equal to
EINPROGRESS, then the return status for the operation is undefined. The
aio_return() function may be called exactly once to retrieve the return status of a
given asynchronous operation; thereafter, if the same aiocb structure is used in a call
to aio_return() or aio_error(3RT), an error may be returned. When the aiocb
structure referred to by aiocbp is used to submit another asynchronous operation, then
aio_return() may be successfully used to retrieve the return status of that
operation.

If the asynchronous I/O operation has completed, then the return status, as described
for read(2), write(2), and fsync(3C), is returned. If the asynchronous I/O operation
has not yet completed, the results of aio_return() are undefined.

The aio_return() function will fail if:

EINVAL The aiocbp argument does not refer to an asynchronous operation
whose return status has not yet been retrieved.

ENOSYS The aio_return() function is not supported by the system.

The aio_return() function has a transitional interface for 64-bit file offsets. See
lf64(5).

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level Async-Signal-Safe

close(2), exec(2), exit(2), fork(2), lseek(2), read(2), write(2),
aio_cancel(3RT), aio_fsync(3RT), aio_read(3RT), fsync(3C),
lio_listio(3RT), attributes(5), aio(3HEAD), lf64(5), signal(3HEAD)

Solaris 2.6 was the first release to support the Asynchronous Input and Output option.
Prior to this release, this function always returned −1 and set errno to ENOSYS.

aio_return(3RT)

NAME

SYNOPSIS

DESCRIPTION

RETURN VALUES

ERRORS

USAGE

ATTRIBUTES

SEE ALSO

NOTES

28 man pages section 3: Threads and Realtime Library Functions • Last Revised 22 Jun 1998



aio_suspend – wait for asynchronous I/O request

cc [ flag... ] file... -lrt [ library... ]

#include <aio.h>

int aio_suspend(const struct aiocb * const list[], int nent, const
struct timespec *timeout);

The aio_suspend() function suspends the calling thread until at least one of the
asynchronous I/O operations referenced by the list argument has completed, until a
signal interrupts the function, or, if timeout is not NULL, until the time interval
specified by timeout has passed. If any of the aiocb structures in the list correspond to
completed asynchronous I/O operations (that is, the error status for the operation is
not equal to EINPROGRESS) at the time of the call, the function returns without
suspending the calling thread. The list argument is an array of pointers to
asynchronous I/O control blocks. The nent argument indicates the number of elements
in the array. Each aiocb structure pointed to will have been used in initiating an
asynchronous I/O request via aio_read(3RT), aio_write(3RT), or
lio_listio(3RT). This array may contain null pointers, which are ignored. If this
array contains pointers that refer to aiocb structures that have not been used in
submitting asynchronous I/O, the effect is undefined.

If the time interval indicated in the timespec structure pointed to by timeout passes
before any of the I/O operations referenced by list are completed, then
aio_suspend() returns with an error.

If aio_suspend() returns after one or more asynchronous I/O operations have
completed, it returns 0. Otherwise, it returns −1, and sets errno to indicate the error.

The application may determine which asynchronous I/O completed by scanning the
associated error and return status using aio_error(3RT) and aio_return(3RT),
respectively.

The aio_suspend() function will fail if:

EAGAIN No asynchronous I/O indicated in the list referenced by list
completed in the time interval indicated by timeout.

EINTR A signal interrupted the aio_suspen() function. Note that, since
each asynchronous I/O operation may possibly provoke a signal
when it completes, this error return may be caused by the
completion of one (or more) of the very I/O operations being
awaited.

ENOMEM There is currently not enough available memory; the application
can try again later.

ENOSYS The aio_suspend() function is not supported by the system.

The aio_suspend() function has a transitional interface for 64-bit file offsets. See
lf64(5).

aio_suspend(3RT)

NAME

SYNOPSIS

DESCRIPTION

RETURN VALUES

ERRORS

USAGE

Threads and Realtime Library Functions 29



See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level Async-Signal-Safe

aio_fsync(3RT), aio_read(3RT), aio_return(3RT), aio_write(3RT),
lio_listio(3RT), attributes(5), aio(3HEAD), lf64(5), signal(3HEAD)

Solaris 2.6 was the first release to support the Asynchronous Input and Output option.
Prior to this release, this function always returned −1 and set errno to ENOSYS.

aio_suspend(3RT)

ATTRIBUTES

SEE ALSO

NOTES

30 man pages section 3: Threads and Realtime Library Functions • Last Revised 22 Oct 1999



aiowait – wait for completion of asynchronous I/O operation

cc [ flag ... ] file ... -laio [ library ... ]
#include <sys/asynch.h>

#include <sys/time.h>

aio_result_t *aiowait(const struct timeval *timeout);

aiowait() suspends the calling process until one of its outstanding asynchronous
I/O operations completes. This provides a synchronous method of notification.

If timeout is a non-zero pointer, it specifies a maximum interval to wait for the
completion of an asynchronous I/O operation. If timeout is a zero pointer, then
aiowait() blocks indefinitely. To effect a poll, the timeout parameter should be
non-zero, pointing to a zero-valued timeval structure.

The timeval structure is defined in <sys/time.h> and contains the following
members:

long tv_sec; /* seconds */

long tv_usec; /* and microseconds */

Upon successful completion, aiowait() returns a pointer to the result structure used
when the completed asynchronous I/O operation was requested. Upon failure,
aiowait() returns −1 and sets errno to indicate the error. aiowait() returns 0 if
the time limit expires.

aiowait() will fail if any of the following are true:

EFAULT timeout points to an address outside the address space of the
requesting process. See NOTES.

EINTR aiowait() was interrupted by a signal.

EINVAL There are no outstanding asynchronous I/O requests.

See attributes (5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level Safe

aiocancel(3AIO), aioread(3AIO), attributes(5)

aiowait() is the only way to dequeue an asynchronous notification. It may be used
either inside a SIGIO signal handler or in the main program. One SIGIO signal may
represent several queued events.

Passing an illegal address as timeout will result in setting errno to EFAULT only if it is
detected by the application process.

aiowait(3AIO)

NAME

SYNOPSIS

DESCRIPTION

RETURN VALUES

ERRORS

ATTRIBUTES

SEE ALSO

NOTES

Threads and Realtime Library Functions 31



aio_write – asynchronous write to a file

cc [ flag... ] file... -lrt [ library... ]

#include <aio.h>

int aio_write(struct aiocb *aiocbp);

The aio_write() function allows the calling process to write aiocbp->aio_nbytes
to the file associated with aiocbp->aio_fildes from the buffer pointed to by
aiocbp->aio_buf. The function call returns when the write request has been initiated
or, at a minimum, queued to the file or device. If _POSIX_PRIORITIZED_IO is
defined and prioritized I/O is supported for this file, then the asynchronous operation
is submitted at a priority equal to the scheduling priority of the process minus
aiocbp->aio_reqprio. The aiocbp may be used as an argument to aio_error(3RT)
and aio_return(3RT) in order to determine the error status and return status,
respectively, of the asynchronous operation while it is proceeding.

The aiocbp argument points to an aiocb structure. If the buffer pointed to by
aiocbp->aio_buf or the control block pointed to by aiocbp becomes an illegal address
prior to asynchronous I/O completion, then the behavior is undefined.

If O_APPEND is not set for the file descriptor aio_fildes, then the requested operation
takes place at the absolute position in the file as given by aio_offset, as if lseek(2) were
called immediately prior to the operation with an offset equal to aio_offset and a whence
equal to SEEK_SET. If O_APPEND is set for the file descriptor, write operations
append to the file in the same order as the calls were made. After a successful call to
enqueue an asynchronous I/O operation, the value of the file offset for the file is
unspecified.

The aiocbp->aio_lio_opcode field is ignored by aio_write().

Simultaneous asynchronous operations using the same aiocbp produce undefined
results.

If _POSIX_SYNCHRONIZED_IO is defined and synchronized I/O is enabled on the file
associated with aiocbp->aio_fildes, the behavior of this function shall be according
to the definitions of synchronized I/O data integrity completion and synchronized
I/O file integrity completion.

For any system action that changes the process memory space while an asynchronous
I/O is outstanding to the address range being changed, the result of that action is
undefined.

For regular files, no data transfer will occur past the offset maximum established in the
open file description associated with aiocbp->aio_fildes.

The aio_write() function returns 0 to the calling process if the I/O operation is
successfully queued; otherwise, the function returns −1 and sets errno to indicate the
error.

aio_write(3RT)

NAME

SYNOPSIS

DESCRIPTION

RETURN VALUES

32 man pages section 3: Threads and Realtime Library Functions • Last Revised 14 Aug 1997



The aio_write() function will fail if:

EAGAIN The requested asynchronous I/O operation was not queued due to
system resource limitations.

ENOSYS The aio_write() function is not supported by the system.

Each of the following conditions may be detected synchronously at the time of the call
to aio_write(), or asynchronously. If any of the conditions below are detected
synchronously, the aio_write() function returns −1 and sets errno to the
corresponding value. If any of the conditions below are detected asynchronously, the
return status of the asynchronous operation is set to −1, and the error status of the
asynchronous operation will be set to the corresponding value.

EBADF The aiocbp->aio_fildes argument is not a valid file descriptor
open for writing.

EINVAL The file offset value implied by aiocbp->aio_offset would be
invalid, aiocbp->aio_reqprio is not a valid value, or
aiocbp->aio_nbytes is an invalid value.

In the case that the aio_write() successfully queues the I/O operation, the return
status of the asynchronous operation will be one of the values normally returned by
the write(2) function call. If the operation is successfully queued but is subsequently
canceled or encounters an error, the error status for the asynchronous operation
contains one of the values normally set by the write() function call, or one of the
following:

EBADF The aiocbp->aio_fildes argument is not a valid file descriptor
open for writing.

EINVAL The file offset value implied by aiocbp->aio_offset would be
invalid.

ECANCELED The requested I/O was canceled before the I/O completed due to
an explicit aio_cancel(3RT) request.

The following condition may be detected synchronously or asynchronously:

EFBIG The file is a regular file, aiobcp->aio_nbytes is greater than 0 and
the starting offset in aiobcp->aio_offset is at or beyond the offset
maximum in the open file description associated with
aiocbp->aio_fildes.

The aio_write() function has a transitional interface for 64-bit file offsets. See
lf64(5).

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

aio_write(3RT)

ERRORS

USAGE

ATTRIBUTES

Threads and Realtime Library Functions 33



MT-Level MT-Safe

aio_cancel(3RT), aio_error(3RT), aio_read(3RT), aio_return(3RT),
lio_listio(3RT), close(2), _exit(2), fork(2), lseek(2), write(2),
attributes(5), aio(3HEAD), lf64(5), signal(3HEAD)

Solaris 2.6 was the first release to support the Asynchronous Input and Output option.
Prior to this release, this function always returned −1 and set errno to ENOSYS.

aio_write(3RT)

SEE ALSO

NOTES

34 man pages section 3: Threads and Realtime Library Functions • Last Revised 14 Aug 1997



cancellation – overview of concepts related to POSIX thread cancellation

FUNCTION ACTION

pthread_cancel Cancels thread execution.

pthread_setcancelstate Sets the cancellation state of a thread.

pthread_setcanceltype Sets the cancellation type of a thread.

pthread_testcancel Creates a cancellation point in the calling thread.

pthread_cleanup_push Pushes a cleanup handler routine.

pthread_cleanup_pop Pops a cleanup handler routine.

Thread cancellation allows a thread to terminate the execution of any application
thread in the process. Cancellation is useful when further operations of one or more
threads are undesirable or unnecessary.

An example of a situation that could benefit from using cancellation is an
asynchronously-generated cancel condition such as a user requesting to close or exit
some running operation. Another example is the completion of a task undertaken by a
number of threads, such as solving a maze. While many threads search for the
solution, one of the threads might solve the puzzle while the others continue to
operate. Since they are serving no purpose at that point, they should all be canceled.

Planning and programming for most cancellations follow this pattern:

1. Identify which threads you want to cancel, and insert pthread_cancel(3THR)
statements.

2. Identify system-defined cancellation points where a thread that might be canceled
could have changed system or program state that should be restored. See the
Cancellation Points for a list.

3. When a thread changes the system or program state just before a cancellation
point, and should restore that state before the thread is canceled, place a cleanup
handler before the cancellation point with pthread_cleanup_push(3THR).
Wherever a thread restores the changed state, pop the cleanup handler from the
cleanup stack with pthread_cleanup_pop(3THR).

4. Know whether the threads you are canceling call into cancel-unsafe libraries, and
disable cancellation with pthread_setcancelstate(3THR) before the call into
the library. See Cancellation State and Cancel-Safe.

5. To cancel a thread in a procedure that contains no cancellation points, insert your
own cancellation points with pthread_testcancel(3THR).
pthread_testcancel(3THR) creates cancellation points by testing for pending
cancellations and performing those cancellations if they are found. Push and pop
cleanup handlers around the cancellation point, if necessary (see Step 3, above).

cancellation(3THR)

NAME

DESCRIPTION

Cancellation

Planning Steps

Threads and Realtime Library Functions 35



The system defines certain points at which cancellation can occur (cancellation points),
and you can create additional cancellation points in your application with
pthread_testcancel(3THR).

The following cancellation points are defined by the system (system-defined
cancellation points): aio_suspend(3RT), close(2), creat(2), getmsg(2),
getpmsg(2), lockf(3C), mq_receive(3RT), mq_send(3RT), msgrcv(2), msgsnd(2),
msync(3C), nanosleep(3RT), open(2), pause(2), poll(2), pread(2),
pthread_cond_timedwait(3THR), pthread_cond_wait(3THR),
pthread_join(3THR), pthread_testcancel(3THR), putmsg(2), putpmsg(2),
pwrite(2), read(2), readv(2), select(3C), sem_wait(3RT), sigpause(3C),
sigwaitinfo(3RT), sigsuspend(2), sigtimedwait(3RT), sigwait(2), sleep(3C),
sync(2), system(3C), tcdrain(3C), usleep(3C), wait(2), waitid(2) waitpid(2),
wait3(3C), write(2), writev(2), and fcntl(2), when specifying F_SETLKW as the
command

When cancellation is asynchronous, cancellation can occur before, during, or after the
execution of the function defined as the cancellation point. When cancellation is
deferred (the default case), cancellation occurs before the function defined as the
cancellation point executes. See Cancellation Type for more information about
deferred and asynchronous cancellation.

Choosing where to place cancellation points and understanding how cancellation
affects your program depend upon your understanding of both your application and
of cancellation mechanics.

Typically, any call that might require a long wait should be a cancellation point.
Operations need to check for pending cancellation requests when the operation is
about to block indefinitely. This includes threads waiting in
pthread_cond_wait(3THR) and pthread_cond_timedwait(3THR), threads
waiting for the termination of another thread in pthread_join(3THR), and threads
blocked on sigwait(2).

A mutex is explicitly not a cancellation point and should be held for only the minimal
essential time.

Most of the dangers in performing cancellations deal with properly restoring
invariants and freeing shared resources. For example, a carelessly canceled thread
might leave a mutex in a locked state, leading to a deadlock. Or it might leave a region
of memory allocated with no way to identify it and therefore no way to free it.

When a thread is canceled, it should release resources and clean up the state that is
shared with other threads. So, whenever a thread that might be canceled changes the
state of the system or of the program, be sure to push a cleanup handler with
pthread_cleanup_push(3THR) before the cancellation point.

When a thread is canceled, all the currently-stacked cleanup handlers are executed in
last-in-first-out (LIFO) order. Each handler is run in the scope in which it was pushed.

cancellation(3THR)

Cancellation
Points

Cleanup Handlers

36 man pages section 3: Threads and Realtime Library Functions • Last Revised 8 May 1998



When the last cleanup handler returns, the thread-specific data destructor functions
are called. Thread execution terminates when the last destructor function returns.

When, in the normal course of the program, an uncanceled thread restores state that it
had previously changed, be sure to pop the cleanup handler (that you had set up
where the change took place) using pthread_cleanup_pop(3THR). That way, if the
thread is canceled later, only currently-changed state will be restored by the handlers
that are left in the stack.

Be sure to pop the handler in the same scope in which it was pushed. Also, make sure
that each push statement has a matching pop statement, or compiler errors will be
generated.

Most programmers will use only the default cancellation state of
PTHREAD_CANCEL_ENABLE, but can choose to change the state by using
pthread_setcancelstate(3THR), which determines whether a thread is
cancelable at all. With the default state of PTHREAD_CANCEL_ENABLE, cancellation is
enabled, and the thread is cancelable at points determined by its cancellation type. See
Cancellation Type.

If the state is PTHREAD_CANCEL_DISABLE, cancellation is disabled, and the thread is
not cancelable at any point — all cancellation requests to it are held pending.

You might want to disable cancellation before a call to a cancel-unsafe library,
restoring the old cancel state when the call returns from the library. See Cancel-Safe
for explanations of cancel safety.

A thread’s cancellation type is set with pthread_setcanceltype(3THR), and
determines whether the thread can be canceled anywhere in its execution, or only at
cancellation points.

With the default type of PTHREAD_CANCEL_DEFERRED, the thread is cancelable only
at cancellation points, and then only when cancellation is enabled.

If the type is PTHREAD_CANCEL_ASYNCHRONOUS, the thread is cancelable at any
point in its execution (assuming, of course, that cancellation is enabled). Try to limit
regions of asynchronous cancellation to sequences with no external dependencies that
could result in dangling resources or unresolved state conditions. Using asynchronous
cancellation is discouraged because of the danger involved in trying to guarantee
correct cleanup handling at absolutely every point in the program.

Cancellation Type/State Table

Type State

Enabled (Default) Disabled

cancellation(3THR)

Cancellation State

Cancellation Type

Threads and Realtime Library Functions 37



Cancellation Type/State Table

Deferred (Default) Cancellation occurs when the
target thread reaches a
cancellation point and a
cancel is pending. (Default)

All cancellation requests to
the target thread are held
pending.

Asynchronous Receipt of a
pthread_cancel(3T) call
causes immediate
cancellation.

All cancellation requests to
the target thread are held
pending; as soon as
cancellation is re-enabled,
pending cancellations are
executed immediately.

With the arrival of POSIX cancellation, the cancel-safe level has been added to the list of
MT-Safety levels See Intro(3). An application or library is cancel-safe whenever it has
arranged for cleanup handlers to restore system or program state wherever
cancellation can occur. The application or library is specifically Deferred-cancel-safe
when it is cancel-safe for threads whose cancellation type is
PTHREAD_CANCEL_DEFERRED See Cancellation State. It is specifically
Asynchronous-cancel-safe when it is cancel-safe for threads whose cancellation type is
PTHREAD_CANCEL_ASYNCHRONOUS.

Obviously, it is easier to arrange for deferred cancel safety, as this requires system and
program state protection only around cancellation points. In general, expect that most
applications and libraries are not Asynchronous-cancel-safe.

Note: The cancellation functions described in this reference page are available for
POSIX threads, only (the Solaris threads interfaces do not provide cancellation
functions).

EXAMPLE 1 The following short C++ example shows the pushing/popping of cancellation
handlers, the disabling/enabling of cancellation, the use of pthread_testcancel(), and
so on. The free_res() cancellation handler in this example is a dummy function that
simply prints a message, but that would free resources in a real application. The function
f2() is called from the main thread, and goes deep into its call stack by calling itself
recursively.

Before f2() starts running, the newly created thread has probably posted a
cancellation on the main thread since the main thread calls thr_yield() right after
creating thread2. Because cancellation was initially disabled in the main thread,
through a call to pthread_setcancelstate(), the call to f2() from main()
continues and constructs X at each recursive call, even though the main thread has a
pending cancellation.

When f2() is called for the fifty-first time (when "i == 50"), f2() enables cancellation
by calling pthread_setcancelstate(). It then establishes a cancellation point for
itself by calling pthread_testcancel(). (Because a cancellation is pending, a call
to a cancellation point such as read(2) or write(2) would also cancel the caller here.)

cancellation(3THR)

Cancel-Safe

POSIX Threads
Only

EXAMPLES

38 man pages section 3: Threads and Realtime Library Functions • Last Revised 8 May 1998



EXAMPLE 1 The following short C++ example shows the pushing/popping of cancellation
handlers, the disabling/enabling of cancellation, the use of pthread_testcancel(), and
so on. The free_res() cancellation handler in this example is a dummy function that
simply prints a message, but that would free resources in a real application. The function
f2() is called from the main thread, and goes deep into its call stack by calling itself
recursively. (Continued)

After the main() thread is canceled at the fifty-first iteration, all the cleanup handlers
that were pushed are called in sequence; this is indicated by the calls to free_res()
and the calls to the destructor for X. At each level, the C++ runtime calls the destructor
for X and then the cancellation handler, free_res(). The print messages from
free_res() and X’s destructor show the sequence of calls.

At the end, the main thread is joined by thread2. Because the main thread was
canceled, its return status from pthread_join() is PTHREAD_CANCELED. After the
status is printed, thread2 returns, killing the process (since it is the last thread in the
process).

#include <pthread.h>
#include <sched.h>
extern "C" void thr_yield(void);

extern "C" void printf(...);

struct X {
int x;
X(int i){x = i; printf("X(%d) constructed.\n", i);}
~X(){ printf("X(%d) destroyed.\n", x);}

};

void
free_res(void *i)
{

printf("Freeing ‘%d‘\n",i);
}

char* f2(int i)
{

try {
X dummy(i);
pthread_cleanup_push(free_res, (void *)i);
if (i == 50) {

pthread_setcancelstate(PTHREAD_CANCEL_ENABLE, NULL);
pthread_testcancel();

}
f2(i+1);
pthread_cleanup_pop(0);
}
catch (int) {
printf("Error: In handler.\n");
}
return "f2";

}

void *

cancellation(3THR)

Threads and Realtime Library Functions 39



EXAMPLE 1 The following short C++ example shows the pushing/popping of cancellation
handlers, the disabling/enabling of cancellation, the use of pthread_testcancel(), and
so on. The free_res() cancellation handler in this example is a dummy function that
simply prints a message, but that would free resources in a real application. The function
f2() is called from the main thread, and goes deep into its call stack by calling itself
recursively. (Continued)

thread2(void *tid)
{

void *sts;

printf("I am new thread :%d\n", pthread_self());

pthread_cancel((pthread_t)tid);

pthread_join((pthread_t)tid, &sts);

printf("main thread cancelled due to %d\n", sts);

return (sts);
}

main()
{

pthread_setcancelstate(PTHREAD_CANCEL_DISABLE, NULL);
pthread_create(NULL, NULL, thread2, (void *)pthread_self());
thr_yield();
printf("Returned from %s\n",f2(0));

}

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level MT-Safe

read(2), sigwait(2), write(2), Intro(3), condition(3THR),
pthread_cleanup_pop(3THR), pthread_cleanup_push(3THR),
pthread_exit(3THR), pthread_join(3THR),
pthread_setcancelstate(3THR), pthread_setcanceltype(3THR),
pthread_testcancel(3THR), setjmp(3C), attributes(5), standards(5)

cancellation(3THR)

ATTRIBUTES

SEE ALSO

40 man pages section 3: Threads and Realtime Library Functions • Last Revised 8 May 1998



clock_settime, clock_gettime, clock_getres – high-resolution clock operations

cc [ flag... ] file... -lrt [ library... ]

#include <time.h>

int clock_settime(clockid_t clock_id, const struct timespec *tp);

int clock_gettime(clockid_t clock_id, struct timespec *tp);

int clock_getres(clockid_t clock_id, struct timespec *res);

The clock_settime() function sets the specified clock, clock_id, to the value
specified by tp. Time values that are between two consecutive non-negative integer
multiples of the resolution of the specified clock are truncated down to the smaller
multiple of the resolution.

The clock_gettime() function returns the current value tp for the specified clock,
clock_id.

The resolution of any clock can be obtained by calling clock_getres(). Clock
resolutions are system-dependent and cannot be set by a process. If the argument res is
not NULL, the resolution of the specified clock is stored in the location pointed to by
res. If res is NULL, the clock resolution is not returned. If the time argument of
clock_settime() is not a multiple of res, then the value is truncated to a multiple of
res.

A clock may be systemwide (that is, visible to all processes) or per-process (measuring
time that is meaningful only within a process).

A clock_id of CLOCK_REALTIME is defined in <time.h>. This clock represents the
realtime clock for the system. For this clock, the values returned by
clock_gettime() and specified by clock_settime() represent the amount of
time (in seconds and nanoseconds) since the Epoch. Additional clocks may also be
supported. The interpretation of time values for these clocks is unspecified.

A clock_id of CLOCK_HIGHRES represents the non-adjustable, high-resolution clock for
the system. For this clock, the value returned by clock_gettime(3RT) represents the
amount of time (in seconds and nanoseconds) since some arbitrary time in the past; it
is not correlated in any way to the time of day, and thus is not subject to resetting or
drifting by way of adjtime(2), ntp_adjtime(2), settimeofday(3C), or
clock_settime(). The time source for this clock is the same as that for
gethrtime(3C).

Additional clocks may also be supported. The interpretation of time values for these
clocks is unspecified.

Upon successful completion, 0 is returned. Otherwise, −1 is returned and errno is set
to indicate the error.

The clock_settime(), clock_gettime() and clock_getres() functions will
fail if:

clock_settime(3RT)

NAME

SYNOPSIS

DESCRIPTION

RETURN VALUES

ERRORS

Threads and Realtime Library Functions 41



EINVAL The clock_id argument does not specify a known clock.

ENOSYS The functions clock_settime(), clock_gettime(), and
clock_getres() are not supported by this implementation.

The clock_settime() function will fail if:

EINVAL The tp argument to clock_settime() is outside the range for
the given clock ID; or the tp argument specified a nanosecond
value less than zero or greater than or equal to 1000 million.

The clock_settime() function may fail if:

EPERM The requesting process does not have the appropriate privilege to
set the specified clock.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level clock_gettime() is Async-Signal-Safe

time(2), ctime(3C), gethrtime(3C), time(3HEAD), timer_gettime(3RT),
attributes(5)

clock_settime(3RT)

ATTRIBUTES

SEE ALSO

42 man pages section 3: Threads and Realtime Library Functions • Last Revised 22 Jun 1999



cond_init, cond_wait, cond_timedwait, cond_reltimedwait, cond_signal,
cond_broadcast, cond_destroy – condition variables

cc –mt [ flag... ] file...[ library... ]
#include <thread.h>

#include <synch.h>

int cond_init(cond_t *cvp, int type, void *arg);

int cond_wait(cond_t *cvp, mutex_t *mp);

int cond_timedwait(cond_t *cvp, mutex_t *mp, timestruc_t *abstime);

int cond_reltimedwait(cond_t *cvp, mutex_t *mp, timestruc_t
*reltime);

int cond_signal(cond_t *cvp);

int cond_broadcast(cond_t *cvp);

int cond_destroy(cond_t *cvp);

Condition variables and mutexes should be global. Condition variables that are
allocated in writable memory can synchronize threads among processes if they are
shared by the cooperating processes (see mmap(2)) and are initialized for this purpose.

The scope of a condition variable is either intra-process or inter-process. This is
dependent upon whether the argument is passed implicitly or explicitly to the
initialization of that condition variable. A condition variable does not need to be
explicitly initialized. A condition variable is initialized with all zeros, by default, and
its scope is set to within the calling process. For inter-process synchronization, a
condition variable must be initialized once, and only once, before use.

A condition variable must not be simultaneously initialized by multiple threads or
re-initialized while in use by other threads.

Attributes of condition variables can be set to the default or customized at
initialization.

The cond_init() function initializes the condition variable pointed to by cvp. A
condition variable can have several different types of behavior, specified by type. No
current type uses arg although a future type may specify additional behavior
parameters with arg. The type argument c take one of the following values:

USYNC_THREAD The condition variable can synchronize threads only in this
process. This is the default.

USYNC_PROCESS The condition variable can synchronize threads in this process and
other processes. Only one process should initialize the condition
variable. The object initialized with this attribute must be allocated
in memory shared between processes, either in System V shared
memory (see shmop(2)) or in memory mapped to a file (see
mmap(2)). It is illegal to initialize the object this way and to not

cond_init(3THR)

NAME

SYNOPSIS

Initialize

Threads and Realtime Library Functions 43



allocate it in such shared memory.

Initializing condition variables can also be accomplished by allocating in zeroed
memory, in which case, a type of USYNC_THREAD is assumed.

If default condition variable attributes are used, statically allocated condition variables
can be initialized by the macro DEFAULTCV.

Default condition variable initialization (intra-process):

cond_t cvp;

cond_init(&cvp, NULL, NULL); /*initialize condition variable with default*/

or

cond_init(&cvp, USYNC_THREAD, NULL);

or

cond_t cond = DEFAULTCV;

Customized condition variable initialization (inter-process):

cond_init(&cvp, USYNC_PROCESS, NULL); /* initialize cv with
inter-process scope */

The condition wait interface allows a thread to wait for a condition and atomically
release the associated mutex that it needs to hold to check the condition. The thread
waits for another thread to make the condition true and that thread’s resulting call to
signal and wakeup the waiting thread.

The cond_wait() function atomically releases the mutex pointed to by mp and
causes the calling thread to block on the condition variable pointed to by cvp. The
blocked thread may be awakened by cond_signal(), cond_broadcast(), or
when interrupted by delivery of a UNIX signal or a fork().

The cond_wait(), cond_timedwait(), and cond_reltimedwait() functions
always return with the mutex locked and owned by the calling thread even when
returning an error, except when the mutex is of USYNC_PROCESS_ROBUST type and
has been left irrecoverable by the mutex’s last owner. The cond_wait(),
cond_timedwait(), and cond_reltimedwait() functions return the appropriate
error value if they fail to internally reacquire the mutex.

A condition signal allows a thread to unblock the next thread waiting on the condition
variable, whereas, a condition broadcast allows a thread to unblock all threads waiting
on the condition variable.

The cond_signal() function unblocks one thread that is blocked on the condition
variable pointed to by cvp.

cond_init(3THR)

Condition Wait

Condition
Signaling

44 man pages section 3: Threads and Realtime Library Functions • Last Revised 17 Jul 2001



The cond_broadcast() function unblocks all threads that are blocked on the
condition variable pointed to by cvp.

If no threads are blocked on the condition variable, then cond_signal() and
cond_broadcast() have no effect.

Both functions should be called under the protection of the same mutex that is used
with the condition variable being signaled. Otherwise, the condition variable may be
signaled between the test of the associated condition and blocking in cond_wait().
This can cause an infinite wait.

The condition destroy functions destroy any state, but not the space, associated with
the condition variable.

The cond_destroy() function destroys any state associated with the condition
variable pointed to by cvp. The space for storing the condition variable is not freed.

Upon successful completion, these functions return 0. Otherwise, a non-zero value is
returned to indicate the error.

These functions may fail if:

EFAULT The cond, attr, cvp, arg, abstime, or mutex argument
points to an illegal address.

EINVAL Invalid argument. For cond_init(), type is not a
recognized type. For cond_timedwait(), the
specified number of seconds, abstime, is greater than
current_time + 100,000,000, where current_time is the
current time, or the number of nanoseconds is greater
than or equal to 1,000,000,000.

ENOTRECOVERABLE The mutex pointed to by mp is protecting the state that
has been left irrecoverable when the mutex’s last owner
was not able to clean up the state. The mutex has not
been acquired. See the description of mutex_lock()
function on the mutex_init(3THR) manual page.

EOWNERDEAD The last owner of the mutex pointed to by mp died
while holding the mutex. The mutex has been acquired.
See the description of mutex_lock() function on the
mutex_init(3THR) manual page.

The cond_timedwait() and cond_reltimedwait() functions will fail if:

ETIME The time specified by abstime or reltime has passed.

EXAMPLE 1 Use cond_wait() in a loop to test some condition.

The cond_wait() functin is normally used in a loop testing some condition, as
follows:

cond_init(3THR)

Destroy

RETURN VALUES

ERRORS

EXAMPLES

Threads and Realtime Library Functions 45



EXAMPLE 1 Use cond_wait() in a loop to test some condition. (Continued)

(void) mutex_lock(mp);
while (cond == FALSE) {

(void) cond_wait(cvp, mp);
}

(void) mutex_unlock(mp);

EXAMPLE 2 Use cond_timedwait() in a loop to test some condition.

The cond_timedwait() function is normally used in a loop testing some condition.
It uses an absolute timeout value as follows:

timestruc_t to;
...
(void) mutex_lock(mp);
to.tv_sec = time(NULL) + TIMEOUT;
to.tv_nsec = 0;
while (cond == FALSE) {

err = cond_timedwait(cvp, mp, &to);
if (err == ETIME) {

/* timeout, do something */
break;

}
}

(void) mutex_unlock(mp);

EXAMPLE 3 Use cond_reltimedwait() in a loop to test some condition.

The cond_reltimedwait() function is normally used in a loop testing in some
condition. It uses a relative timeout value as follows:

timestruc_t to;
...
(void) mutex_lock(mp);
while (cond == FALSE) {

to.tv_sec = TIMEOUT;
to.tv_nsec = 0;
err = cond_reltimedwait(cvp, mp, &to);
if (err == ETIME) {

/* timeout, do something */
break;

}
}

(void) mutex_unlock(mp);

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level MT-Safe

cond_init(3THR)

ATTRIBUTES

46 man pages section 3: Threads and Realtime Library Functions • Last Revised 17 Jul 2001



fork(2), mmap(2), setitimer(2), shmop(2), condition(3THR), mutex(3THR),
mutex_init(3THR)signal(3C), attributes(5), standards(5)

The only policy currently supported is SCHED_OTHER. In Solaris, under the
SCHED_OTHER policy, there is no established order in which threads are unblocked.

If more than one thread is blocked on a condition variable, the order in which threads
are unblocked is determined by the scheduling policy. When each thread, unblocked
as a result of a cond_signal() or cond_broadcast(), returns from its call to
cond_wait() or cond_timedwait() , the thread owns the mutex with which it
called cond_wait(), cond_timedwait(), or cond_reltimedwait(). The
thread(s) that are unblocked compete for the mutex according to the scheduling policy
and as if each had called mutex_lock(3THR).

When cond_wait() returns the value of the condition is indeterminate and must be
reevaluated.

The cond_timedwait() and cond_reltimedwait() functions are similar to
cond_wait(), except that the calling thread will not wait for the condition to become
true past the absolute time specified by abstime or the relative time specified by reltime.
Note that cond_timedwait() or cond_reltimedwait() might continue to block
as it trys to reacquire the mutex pointed to by mp, which may be locked by another
thread. If either cond_timedwait() or cond_reltimedwait() returns because of
a timeout, it returns the error value ETIME.

cond_init(3THR)

SEE ALSO

NOTES

Threads and Realtime Library Functions 47



condition – concepts related to condition variables

Occasionally, a thread running within a mutex needs to wait for an event, in which
case it blocks or sleeps. When a thread is waiting for another thread to communicate
its disposition, it uses a condition variable in conjunction with a mutex. Although a
mutex is exclusive and the code it protects is sharable (at certain moments), condition
variables enable the synchronization of differing events that share a mutex, but not
necessarily data. Several condition variables may be used by threads to signal each
other when a task is complete, which then allows the next waiting thread to take
ownership of the mutex.

A condition variable enables threads to atomically block and test the condition under
the protection of a mutual exclusion lock (mutex) until the condition is satisfied. If the
condition is false, a thread blocks on a condition variable and atomically releases the
mutex that is waiting for the condition to change. If another thread changes the
condition, it may wake up waiting threads by signaling the associated condition
variable. The waiting threads, upon awakening, reacquire the mutex and re-evaluate
the condition.

Condition variables and mutexes should be global. Condition variables that are
allocated in writable memory can synchronize threads among processes if they are
shared by the cooperating processes (see mmap(2)) and are initialized for this purpose.

The scope of a condition variable is either intra-process or inter-process. This is
dependent upon whether the argument is passed implicitly or explicitly to the
initialization of that condition variable. A condition variable does not need to be
explicitly initialized. A condition variable is initialized with all zeros, by default, and
its scope is set to within the calling process. For inter-process synchronization, a
condition variable must be initialized once, and only once, before use.

A condition variable must not be simultaneously initialized by multiple threads or
re-initialized while in use by other threads.

Condition variables attributes may be set to the default or customized at initialization.
POSIX threads even allow the default values to be customized. Establishing these
attributes varies depending upon whether POSIX or Solaris threads are used. Similar
to the distinctions between POSIX and Solaris thread creation, POSIX condition
variables implement the default, intra-process, unless an attribute object is modified
for inter-process prior to the initialization of the condition variable. Solaris condition
variables also implement as the default, intra-process; however, they set this attribute
according to the argument, type, passed to their initialization function.

The condition wait interface allows a thread to wait for a condition and atomically
release the associated mutex that it needs to hold to check the condition. The thread
waits for another thread to make the condition true and that thread’s resulting call to
signal and wakeup the waiting thread.

condition(3THR)

NAME

DESCRIPTION

Initialize

Condition Wait

48 man pages section 3: Threads and Realtime Library Functions • Last Revised 20 Jul 1998



A condition signal allows a thread to unblock the next thread waiting on the condition
variable, whereas, a condition broadcast allows a thread to unblock all threads waiting
on the condition variable.

The condition destroy functions destroy any state, but not the space, associated with
the condition variable.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level MT-Safe

fork(2), mmap(2), setitimer(2), shmop(2), cond_init(3THR), cond_wait(3THR),
cond_timedwait(3THR), cond_signal(3THR), cond_broadcast(3THR),
cond_destroy(3THR), mutex(3THR), pthread_condattr_init(3THR),
pthread_cond_init(3THR), pthread_cond_wait(3THR),
pthread_cond_timedwait(3THR), pthread_cond_signal(3THR),
pthread_cond_broadcast(3THR), pthread_cond_destroy(3THR), signal(3C),
attributes(5), standards(5)

If more than one thread is blocked on a condition variable, the order in which threads
are unblocked is determined by the scheduling policy.

USYNC_THREAD does not support multiple mapplings to the same logical synch object.
If you need to mmap() a synch object to different locations within the same address
space, then the synch object should be initialized as a shared object USYNC_PROCESS
for Solaris, and PTHREAD_PROCESS_PRIVATE for POSIX.

condition(3THR)

Condition
Signaling

Destroy

ATTRIBUTES

SEE ALSO

NOTES

Threads and Realtime Library Functions 49



door_bind, door_unbind – bind or unbind the current thread with the door server
pool

cc [ flag ... ] file ... -ldoor -lthread [ library ... ]

#include <door.h>

int door_bind(intdid);

int door_unbind();

door_bind() associates the current thread with a door server pool. A door server
pool is a private pool of server threads that is available to serve door invocations
associated with the door did.

door_unbind() breaks the association of door_bind() by removing any private
door pool binding that is associated with the current thread.

Normally, door server threads are placed in a global pool of available threads that
invocations on any door can use to dispatch a door invocation. A door that has been
created with DOOR_PRIVATE only uses server threads that have been associated with
the door by door_bind(). Therefore, it is necessary to bind at least one server thread
to doors created with DOOR_PRIVATE.

The server thread create routine, door_server_create(), is initially called by the
system during a door_create() operation. See door_server_create(3DOOR)
and door_create(3DOOR).

The current thread is added to the private pool of server threads associated with a
door during the next door_return() (that has been issued by the current thread
after an associated door_bind()). See door_return(3DOOR). A server thread
performing a door_bind() on a door that is already bound to a different door
performs an implicit door_unbind() of the previous door.

If a process containing threads that have been bound to a door calls fork(2), the
threads in the child process will be bound to an invalid door, and any calls to
door_return(3DOOR) will result in an error.

Upon successful completion, a 0 is returned. Upon failure, a −1 is returned and errno
is set to indicate the error.

The door_bind() and door_unbind() functions fail if:

EBADF did is not a valid door

EBADF door_unbind() with a server thread that is currently not bound

EINVAL did was not created with the DOOR_PRIVATE attribute

EXAMPLE 1 Using door_bind()

The following example shows the use of door_bind() to create private server pools
for two doors, d1 and d2. Function my_create() is called when a new server thread

door_bind(3DOOR)

NAME

SYNOPSIS

DESCRIPTION

RETURN VALUES

ERRORS

EXAMPLES

50 man pages section 3: Threads and Realtime Library Functions • Last Revised 20 Apr 1998



EXAMPLE 1 Using door_bind() (Continued)

is needed; it creates a thread running function, my_server_create(), which binds
itself to one of the two doors.

#include <door.h>
#include <thread.h>
#include <pthread.h>
thread_key_t door_key;
int d1 = -1;
int d2 = -1;
cond_t cv; /* statically initialized to zero */
mutex_t lock; /* statically initialized to zero */

extern foo(); extern bar();

static void *
my_server_create(void *arg)
{

/* wait for d1 & d2 to be initialized */
mutex_lock(&lock);
while (d1 == -1 || d2 == -1)

cond_wait(&cv, &lock);
mutex_unlock(&lock);

if (arg == (void *)foo){
/* bind thread with pool associated with d1 */
thr_setspecific(door_key, (void *)foo);
if (door_bind(d1) < 0) {

perror("door_bind"); exit (-1);
}

} else if (arg == (void *)bar) {
/* bind thread with pool associated with d2 */
thr_setspecific(door_key, (void *)bar);
if (door_bind(d2) < 0) {
/* bind thread to d2 thread pool */

perror("door_bind"); exit (-1);
}

}
pthread_setcancelstate(POSIX_CANCEL_DISABLE, NULL);
door_return(NULL, 0, NULL, 0); /* Wait for door invocation */

}

static void
my_create(door_info_t *dip)

/* Pass the door identity information to create function */
thr_create(NULL, 0, my_server_create, (void *)dip->di_proc,

THR_BOUND | THR_DETACHED, NULL);
}
main( )
{

(void)door_server_create(my_create);
mutex_lock(&lock);
d1 = door_create(foo, NULL, DOOR_PRIVATE); /* Private pool */
d2 = door_create(bar, NULL, DOOR_PRIVATE); /* Private pool */

door_bind(3DOOR)

Threads and Realtime Library Functions 51



EXAMPLE 1 Using door_bind() (Continued)

cond_signal(&cv);
mutex_unlock(&lock);
while (1)

pause( );

}

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Architecture all

Availability SUNWcsu

Stability Evolving

MT-Level Safe

fork(2),door_create(3DOOR), door_return(3DOOR),
door_server_create(3DOOR), attributes(5)

door_bind(3DOOR)

ATTRIBUTES

SEE ALSO

52 man pages section 3: Threads and Realtime Library Functions • Last Revised 20 Apr 1998



door_call – invoke the function associated with a door descriptor

cc [ flag ... ] file ... -ldoor [ library ... ]

#include <door.h>

typedef struct {
char *data_ptr; /* Argument/result buf ptr*/
size_t data_size; /* Argument/result buf size */
door_desc_t *desc_ptr; /* Argument/result descriptors */
uint_t desc_num; /* Argument/result num desc */
char *rbuf; /* Result buffer */
size_t rsize; /* Result buffer size */

} door_arg_t;

int door_call(int d, door_arg_t *params);

The door_call() function invokes the function associated with the door descriptor
d, and passes the arguments (if any) specified in params. All of the params members are
treated as in/out parameters during a door invocation and may be updated upon
returning from a door call. Passing NULL for params indicates there are no arguments
to be passed and no results expected.

Arguments are specified using the data_ptr and desc_ptr members of params. The
size of the argument data in bytes is passed in data_size and the number of
argument descriptors is passed in desc_num.

Results from the door invocation are placed in the buffer, rbuf. See
door_return(3DOOR). The data_ptr and desc_ptr members of params are
updated to reflect the location of the results within the rbuf buffer. The size of the
data results and number of descriptors returned are updated in the data_size and
desc_num members. It is acceptable to use the same buffer for input argument data
and results, so door_call() may be called with data_ptr and desc_ptr pointing
to the buffer rbuf.

If the results of a door invocation exceed the size of the buffer specified by rsize, the
system automatically allocates a new buffer in the caller’s address space and updates
the rbuf and rsize members to reflect this location. In this case, the caller is
responsible for reclaiming this area using munmap(rbuf, rsize) when the buffer is
no longer required. See munmap(2).

Descriptors passed in a door_desc_t structure are identified by the d_attributes
member. The client marks the d_attributes member with the type of object being
passed by logically OR-ing the value of object type. Currently, the only object type that
may be passed or returned is a file descriptor, denoted by the DOOR_DESCRIPTOR
attribute. Addiionally, the DOOR_RELEASE attribute may be set, which will cause the
descriptor to be closed in the caller’s address space after it is passed to the target. The
descriptor will be closed even if door_call() returns an error, unless that error is
EFAULT or EBADF.

The door_desc_t structure includes the following members:

door_call(3DOOR)

NAME

SYNOPSIS

DESCRIPTION

Threads and Realtime Library Functions 53



typedef struct {
door_attr_t d_attributes; /* Describes the parameter */
union {

struct {
int d_descriptor; /* Descriptor */
door_id_t d_id; /* Unique door id */
} d_desc;

} d_data;

} door_desc_t;

When file descriptors are passed or returned, a new descriptor is created in the target
address space and the d_descriptor member in the target argument is updated to
reflect the new descriptor. In addition, the system passes a system-wide unique
number associated with each door in the door_id member and marks the
d_attributes member with other attributes associated with a door including the
following:

DOOR_LOCAL The door received was created by this process using
door_create(). See door_create(3DOOR).

DOOR_PRIVATE The door received has a private pool of server threads
associated with the door.

DOOR_UNREF The door received is expecting an unreferenced
notification.

DOOR_UNREF_MULTI Similar to DOOR_UNREF, except multiple unreferenced
notifications may be delivered for the same door.

DOOR_REVOKED The door received has been revoked by the server.

The door_call() function is not a restartable system call. It returns EINTR if a signal
was caught and handled by this thread. If the door invocation is not idempotent the
caller should mask any signals that may be generated during a door_call()
operation. If the client aborts in the middle of a door_call(), the server thread is
notified using the POSIX (see standards(5)) thread cancellation mechanism. See
cancellation(3THR).

The descriptor returned from door_create() is marked as close on exec
(FD_CLOEXEC). Information about a door is available for all clients of a door using
door_info(). Programs concerned with security should not place secure
information in door data that is accessible by door_info(). In particular, secure data
should not be stored in the data item cookie. See door_info(3DOOR).

Upon successful completion, 0 is returned. Otherwise, −1 is returned and errno is set
to indicate the error.

The door_call() function will fail if:

EBADF Invalid door descriptor was passed

EINVAL Bad arguments were passed

door_call(3DOOR)

RETURN VALUES

ERRORS

54 man pages section 3: Threads and Realtime Library Functions • Last Revised 8 Oct 1998



EFAULT Argument pointers pointed outside the allocated address space

E2BIG Arguments were too big for server thread stack

EOVERFLOW System could not create overflow area in caller for results.

EAGAIN Server was out of available resources

EINTR Signal was caught in the client during the invocation

EMFILE The client or server has too many open descriptors

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Architecture all

Availability SUNWcsu

Stability Evolving

MT-Level Safe

munmap(2), cancellation(3THR), door_create(3DOOR), door_info(3DOOR),
door_return(3DOOR), attributes(5), standards(5)

door_call(3DOOR)

ATTRIBUTES

SEE ALSO

Threads and Realtime Library Functions 55



door_create – create a door descriptor

cc [ flag ... ] file ... -ldoor -lthread [ library ... ]

#include <door.h>

int door_create(void (*server_procedure) (void *cookie, char *argp,
size_t arg_size, door_desc_t *dp, uint_t n_desc), void *cookie,
uint_t attributes);

The door_create() function creates a door descriptor that describes the procedure
specified by the function server_procedure. The data item, cookie, is associated with the
door descriptor, and is passed as an argument to the invoked function server_procedure
during door_call(3DOOR) invocations. Other arguments passed to server_procedure
from an associated door_call() are placed on the stack and include argp and dp.
argp points to arg_size bytes of data and dp points to n_desc door_desc_t structures.
The attributes flag specifies attributes associated with the newly created door. Valid
values for attributes are constructed by OR-ing in one or more of the following values:

DOOR_UNREF Delivers a special invocation on the door when the
number of descriptors that refer to this door drops to
one. In order to trigger this condition, more than one
descriptor must have referred to this door at some
time. DOOR_UNREF_DATA designates an unreferenced
invocation, as the argp argument passed to
server_procedure. In the case of an unreferenced
invocation, the values for arg_size , dp and n_did are 0.
Only one unreferenced invocation is delivered on
behalf of a door.

DOOR_UNREF_MULTI Similar to DOOR_UNREF, except multiple unreferenced
invocations can be delivered on the same door if the
number of descriptors referring to the door drops to
one more than once. Since an additional reference may
have been passed by the time an unreferenced
invocation arrives, the DOOR_IS_UNREF attribute
returned by the door_info(3DOOR) call can be used
to determine if the door is still unreferenced.

DOOR_PRIVATE Maintains a separate pool of server threads on behalf of
the door. Server threads are associated with a door’s
private server pool using door_bind(3DOOR).

The descriptor returned from door_create() will be marked as close on exec
(FD_CLOEXEC). Information about a door is available for all clients of a door using
door_info(3DOOR). Programs concerned with security should not place secure
information in door data that is accessible by door_info(). In particular, secure data
should not be stored in the data item cookie.

door_create(3DOOR)

NAME

SYNOPSIS

DESCRIPTION

56 man pages section 3: Threads and Realtime Library Functions • Last Revised 30 Sep 1999



By default, additional threads are created as needed to handle concurrent
door_call(3DOOR) invocations. See door_server_create(3DOOR) for
information on how to change this behavior.

Upon successful completion, door_create() returns a non-negative value.
Otherwise, door_create returns −1 and sets errno to indicate the error.

The door_create() function will fail if:

EINVAL Invalid attributes are passed.

EMFILE The process has too many open descriptors.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Architecture all

Availability SUNWcsu

Stability Evolving

MT-Level Safe

door_bind(3DOOR), door_call(3DOOR), door_info(3DOOR),
door_revoke(3DOOR), door_server_create(3DOOR), attributes(5)

door_create(3DOOR)

RETURN VALUES

ERRORS

ATTRIBUTES

SEE ALSO

Threads and Realtime Library Functions 57



door_cred – return credential information associated with the client

cc [ flag ... ] file ... -ldoor -lthread [ library ... ]

#include <door.h>

int door_cred(door_cred_t *info);

The door_cred() function returns credential information associated with the client
(if any) of the current door invocation.

The contents of the info argument include the following fields:

uid_t dc_euid; /* Effective uid of client */
gid_t dc_egid; /* Effective gid of client */
uid_t dc_ruid; /* Real uid of client */
gid_t dc_rgid; /* Real gid of client */

pid_t dc_pid; /* pid of client */

The credential information associated with the client refers to the information from the
immediate caller; not necessarily from the first thread in a chain of door calls.

Upon successful completion, door_cred() returns 0. Upon failure, door_cred()
returns −1 and sets errno to indicate the error.

The door_cred() function fails if:

EFAULT The address of the info argument is invalid.

EINVAL There is no associated door client.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Architecture all

Availability SUNWcsu

Stability Evolving

MT-Level Safe

door_call(3DOOR), door_create(3DOOR), attributes(5)

door_cred(3DOOR)

NAME

SYNOPSIS

DESCRIPTION

RETURN VALUES

ERRORS

ATTRIBUTES

SEE ALSO

58 man pages section 3: Threads and Realtime Library Functions • Last Revised 21 Aug 1997



door_info – return information associated with a door descriptor

cc [ flag ... ] file ... -ldoor [ library ... ]

#include <door.h>

int door_info(int d, struct door_info *info);

The door_info() function returns information associated with a door descriptor. It
obtains information about the door descriptor d and places the information that is
relevant to the door in the structure pointed to by the info argument.

The structure pointed to by the info argument contains the following members:

pid_t di_target; /* door server pid */
door_ptr_t di_proc; /* server function */
door_ptr_t di_data; /* data cookie for invocation */
door_attr_t di_attributes; /* door attributes */

door_id_t di_uniquifier; /* unique id among all doors */

The di_target member is the process ID of the door server, or −1 if the door server
process has exited.

The values for di_attributes may be composed of the following:

DOOR_LOCAL The door descriptor refers to a service procedure in this
process.

DOOR_UNREF The door has requested notification when all but the
last reference has gone away.

DOOR_UNREF_MULTI Similar to DOOR_UNREF, except multiple unreferenced
notifications may be delivered for this door.

DOOR_IS_UNREF There is currently only one descriptor referring to the
door.

DOOR_REVOKED The door descriptor refers to a door that has been
revoked.

DOOR_PRIVATE The door has a separate pool of server threads
associated with it.

The di_proc and di_data members are returned as door_ptr_t objects rather
than void * pointers to allow clients and servers to interoperate in environments
where the pointer sizes may vary in size (for example, 32-bit clients and 64-bit
servers). Each door has a system-wide unique number associated with it that is set
when the door is created by door_create(). This number is returned in
di_uniquifier.

Upon successful completion, 0 is returned. Otherwise, −1 is returned and errno is set
to indicate the error.

The door_info() function will fail if:

door_info(3DOOR)

NAME

SYNOPSIS

DESCRIPTION

RETURN VALUES

ERRORS

Threads and Realtime Library Functions 59



EFAULT The address of argument info is an invalid address.

EBADF d is not a door descriptor.

door_bind(3DOOR), door_create(3DOOR), door_server_create(3DOOR)

door_info(3DOOR)

SEE ALSO

60 man pages section 3: Threads and Realtime Library Functions • Last Revised 8 Oct 1998



door_return – return from a door invocation

cc [ flag ... ] file ... -ldoor -lthread [ library ... ]

#include <door.h>

int door_return(char *data_ptr, size_t data_size, door_desc_t *desc_ptr,
uint_t num_desc);

The door_return() function returns from a door invocation. It returns control to the
thread that issued the associated door_call() and blocks waiting for the next door
invocation. See door_call(3DOOR). Results, if any, from the door invocation are
passed back to the client in the buffers pointed to by data_prt and desc_ptr. If there is
not a client associated with the door_return(), the calling thread discards the
results and blocks waiting for the next door invocation.

Upon successful completion, door_return() does not return to the calling process.
Upon failure, door_return() returns −1 to the calling process and sets errno to
indicate the error.

The door_return() function fails and returns to the calling process if:

E2BIG Arguments were too big for client.

EFAULT The address of data_prt or desc_ptr is invalid.

EINVAL Invalid door_return() arguments were passed or a thread is
bound to a door that no longer exists.

EMFILE The client has too many open descriptors.

door_call(3DOOR)

door_return(3DOOR)

NAME

SYNOPSIS

DESCRIPTION

RETURN VALUES

ERRORS

SEE ALSO

Threads and Realtime Library Functions 61



door_revoke – revoke access to a door descriptor

cc [ flag ... ] file ... -ldoor -lthread [ library ... ]

#include <door.h>

int door_revoke(int d);

The door_revoke() function revokes access to a door descriptor. Door descriptors
are created with door_create(3DOOR). door_revoke() performs an implicit call
to close(2), marking the door descriptor d as invalid.

A door descriptor can only be revoked by the process that created it. Door invocations
that are in progress during a door_revoke() invocation are allowed to complete
normally.

Upon successful completion, door_revoke() returns 0. Upon failure,
door_revoke() returns −1 and sets errno to indicate the error.

The door_revoke() function fails if:

EBADF An invalid door descriptor was passed.

EPERM The door descriptor was not created by this process (with
door_create(3DOOR)).

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Architecture all

Availability SUNWcsu

Stability Evolving

MT-Level Safe

close(2), door_create(3DOOR), attributes(5)

door_revoke(3DOOR)

NAME

SYNOPSIS

DESCRIPTION

RETURN VALUES

ERRORS

ATTRIBUTES

SEE ALSO

62 man pages section 3: Threads and Realtime Library Functions • Last Revised 21 Aug 1997



door_server_create – specify an alternative door server thread creation function

cc [ flag ... ] file ... -ldoor -lthread [ library ... ]

#include <door.h>

void (*) () door_server_create(void (*create_proc)(door_info_t*));

Normally, the doors library creates new door server threads in response to incoming
concurrent door invocations automatically. There is no pre-defined upper limit on the
number of server threads that the system creates in response to incoming invocations
(1 server thread for each active door invocation). These threads are created with the
default thread stack size and POSIX (see standards(5)) threads cancellation disabled.
The created threads also have the THR_BOUND | THR_DETACHED attributes for Solaris
threads and the PTHREAD_SCOPE_SYSTEM | PTHREAD_CREATE_DETACHED
attributes for POSIX threads. The signal disposition, and scheduling class of the newly
created thread are inherited from the calling thread (initially from the thread calling
door_create(), and subsequently from the current active door server thread).

The door_server_create() function allows control over the creation of server
threads needed for door invocations. The procedure create_proc is called every time the
available server thread pool is depleted. In the case of private server pools associated
with a door (see the DOOR_PRIVATE attribute in door_create()), information on
which pool is depleted is passed to the create function in the form of a door_info_t
structure. The di_proc and di_data members of the door_info_t structure may
be used as a door identifier associated with the depleted pool. The create_proc
procedure may limit the number of server threads created and may also create server
threads with appropriate attributes (stack size, thread-specific data, POSIX thread
cancellation, signal mask, scheduling attributes, and so forth) for use with door
invocations.

The specified server creation function should create user level threads using
thr_create() with the THR_BOUND flag, or in the case of POSIX threads,
pthread_create() with the PTHREAD_SCOPE_SYSTEM attribute. The server
threads make themselves available for incoming door invocations on this process by
issuing a door_return(NULL, 0, NULL, 0). In this case, the door_return()
arguments are ignored. See door_return(3DOOR) and thr_create(3THR).

The server threads created by default are enabled for POSIX thread cancellations
which may lead to unexpected thread terminations while holding resources (such as
locks) if the client aborts the associated door_call(). See door_call(3DOOR).
Unless the server code is truly interested in notifications of client aborts during a door
invocation and is prepared to handle such notifications using cancellation handlers,
POSIX thread cancellation should be disabled for server threads using
pthread_setcancelstate (PTHREAD_CANCEL_DISABLE, NULL).

The create_proc procedure need not create any additional server threads if there is at
least one server thread currently active in the process (perhaps handling another door
invocation) or it may create as many as seen fit each time it is called. If there are no
available server threads during an incoming door invocation, the associated

door_server_create(3DOOR)

NAME

SYNOPSIS

DESCRIPTION

Threads and Realtime Library Functions 63



door_call() blocks until a server thread becomes available. The create_proc
procedure must be MT-Safe.

Upon successful completion, door_server_create() returns a pointer to the
previous server creation function. This function has no failure mode (it cannot fail).

EXAMPLE 1 Creating door server threads.

The following example creates door server threads with cancellation disabled and an
8k stack instead of the default stack size:

#include <door.h>
#include <pthread.h>
#include <thread.h>

void *
my_thread(void *arg)
{

pthread_setcancelstate(PTHREAD_CANCEL_DISABLE, NULL);
door_return(NULL, 0, NULL, 0);

}
void
my_create(door_info_t *dip)
{

thr_create(NULL, 8192, my_thread, NULL, THR_BOUND | THR_DETACHED, NULL);
}
main( )
{

(void)door_server_create(my_create);
. . .

}

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Architecture all

Availability SUNWcsu

Stability Evolving

MT-Level Safe

cancellation(3THR), door_bind(3DOOR), door_call(3DOOR),
door_create(3DOOR), door_return(3DOOR), pthread_create (3THR),
pthread_setcancelstate(3THR), thr_create(3THR), attributes(5),
standards(5)

door_server_create(3DOOR)

RETURN VALUES

EXAMPLES

ATTRIBUTES

SEE ALSO

64 man pages section 3: Threads and Realtime Library Functions • Last Revised 20 Aug 1997



fdatasync – synchronize a file’s data

cc [ flag... ] file... -lrt [ library... ]

#include <unistd.h>

int fdatasync(int fildes);

The fdatasync() function forces all currently queued I/O operations associated
with the file indicated by file descriptor fildes to the synchronized I/O completion
state.

The functionality is as described for fsync(3C) (with the symbol _XOPEN_REALTIME
defined), with the exception that all I/O operations are completed as defined for
synchronised I/O data integrity completion.

If successful, the fdatasync() function returns 0. Otherwise, the function returns −1
and sets errno to indicate the error. If the fdatasync() function fails, outstanding
I/O operations are not guaranteed to have been completed.

The fdatasync() function will fail if:

EBADF The fildes argument is not a valid file descriptor open for writing.

EINVAL The system does not support synchronized I/O for this file.

ENOSYS The function fdatasync() is not supported by the system.

In the event that any of the queued I/O operations fail, fdatasync() returns the
error conditions defined for read(2) and write(2).

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level Async-Signal-Safe

fcntl(2), open(2), read(2), write(2), fsync(3C), aio_fsync(3RT),
attributes(5), fcntl(3HEAD)

fdatasync(3RT)

NAME

SYNOPSIS

DESCRIPTION

RETURN VALUES

ERRORS

ATTRIBUTES

SEE ALSO

Threads and Realtime Library Functions 65



libthread_db – library of interfaces for monitoring and manipulating threads-related
aspects of multithreaded programs

cc [ flag ... ] file ... -lthread_db [ library ... ]

#include <proc_service.h>

#include <thread_db.h>

void td_event_addset(td_thr_events_t *, td_thr_events_e n);

void td_event_delset(td_thr_events_t *, td_thr_events_e n);

void td_event_emptyset(td_thr_events_t *);

void td_event_fillset(td_thr_events_t *);

void td_eventisempty(td_thr_events_t *);

void td_eventismember(td_thr_events_t *, td_thr_events_e n);

td_err_e td_init();

void td_log();

td_err_e td_sync_get_info(const td_synchandle_t *sh_p,
td_syncinfo_t *si_p);

td_err_e td_sync_setstate(const td_synchandle_t *sh_p, int value);

td_err_e td_sync_waiters(const td_synchandle_t *sh_p,
td_thr_iter_f *cb, void *cb_data_p);

td_err_e td_thr_clear_event(const td_thrhandle_t *th_p,
td_thr_events_t *events);

td_err_e td_ta_delete(td_thragent_t *ta_p);

td_err_e td ta_enable_stats(const td_thragent_t*ta_p, int on_off);

td_err_e td_ta_event_addr(const td_thragent_t*ta_p, u_long event,
td_notify_t *notify_p);

td_err_e td_ta_event_getmsg(const td_thragent_t *ta_p,
td_event_msg_t *msg);

td_err_e td_ta_get_nthreads(const td_thragent_t *ta_p, int
*nthread_p);

td_err_e td_ta_get_ph(const td_thragent_t *ta_p, struct
ps_prochandle **ph_pp);

td_err_e td_ta_get_stats(const td_thragent_t *ta_p, td_ta_stats_t
*tstats);

td_err_e td_ta_map_addr2sync(const td_thragent_t *ta_p, psaddr_t
addr td_synchandle_t *sh_p);

libthread_db(3THR)

NAME

SYNOPSIS

66 man pages section 3: Threads and Realtime Library Functions • Last Revised 19 Oct 1998



td_err_e td_ta_map_id2thr(const td_thragent_t *ta_p, thread_t tid,
td_thrhandle_t *th_p);

td_err_e td_ta_map_lwp2thr(const td_thragent_t *ta_p, lwpid_t
lwpid, td_thrhandle_t *th_p);

td_err_e td_ta_new(struct ps_prochandle *ph_p, td_thragent_t
**ta_pp);

td_err_e td_ta_reset_stats(const td_thragent_t *ta_p);

td_err_e td_ta_setconcurrency(const td_thragent_t *ta_p, int level);

td_err_e td_ta_sync_iter(const td_thragent_t *ta_p, td_sync_iter_f
*cb, void *cbdata_p);

td_err_e td_ta_thr_iter(const td_thragent_t *ta_p, td_key_iter_f
*cb, void *cbdata_p);

td_err_e td_ta_tsd_iter(const td_thragent_t *ta_p, td_key_iter_f
*cb, void *cbdata_p);

td_err_e td_thr_clear_event(const td_thrhandle_t *th_p,
td_thr_events_t *events);

td_err_e td_thr_dbresume(const td_thrhandle_t *th_p);

td_err_e td_thr_dbsuspend(const td_thrhandle_t *th_p);

td_err_e td_thr_event_enable(const td_thrhandle_t *th_p, int
on_off);

td_err_e td_thr_event_getmsg(const td_thrhandle_t,
td_event_msg_t *msg);

td_err_e td_thr_get_info(const td_thrhandle_t *th_p, td_thrinfo_t
*ti_p);

td_err_e td_thr_getfpregs(const td_thrhandle_t *th_p,
prfpregset_t *fpregset);

td_err_e td_thr_getgregs(const td_thrhandle_t *th_p, prgregset_t
regset);

td_err_e td_thr_getxregs(const td_thrhandle_t *th_p, void *xregset);

td_err_e td_thr_getxregsize(const td_thrhandle_t *th_p, int
*xregsize);

td_err_e td_thr_lockowner(const td_thrhandle_t *th_p,
td_sync_iter_f *cb, void *cb_data_p);

td_err_e td_thr_set_event(const td_thrhandle_t *th_p,
td_thr_events_t *events);

libthread_db(3THR)

Threads and Realtime Library Functions 67



td_err_e td_thr_setfpregs(const td_thrhandle_t *th_p,
prfpregset_t *fpregset);

td_err_e td_thr_setgregs(const td_thrhandle_t *th_p, const
prgregset_t regset);

td_err_e td_thr_setprio(const td_thrhandle_t *th_p, const int
new_prio);

td_err_e td_thr_setsigpending(const td_thrhandle_t *th_p, const
uchar_t, ti_pending_flag, const sigset_t ti_pending);

td_err_e td_thr_setxregs(const td_thrhandle_t *th_p, const void
*xregset);

td_err_e td_thr_sigsetmask(const td_thrhandle_t *th_p, const
sigset_t ti_sigmask);

td_err_e td_thr_sleepinfo(const td_thrhandle_t *th_p,
td_synchandle_t *sh_p);

td_err_e td_thr_tsd(const td_thrhandle_t *th_p, const thread_key_t
key, void **data_pp);

td_err_e td_thr_validate(const td_thrhandle_t *th_p);

libthread_db is a library that provides support for monitoring and manipulating
threads-related aspects of a multithreaded program. There are at least two processes
involved, the controlling process and one or more target processes. The controlling
process is the libthread_db client, which links with libthread_db and uses
libthread_db to inspect or modify threads-related aspects of one or more target
processes. The target processes must be multithreaded processes that use libthread
or libpthread. The controlling process may or may not be multithreaded itself.

The most commonly anticipated use for libthread_db is that the controlling process
will be a debugger for a multithreaded program, hence the "db" in libthread_db.

libthread_db is dependent on the internal implementation details of libthread. It
is a "friend" of libthread in the C++ sense, which is precisely the "value added" by
libthread_db. It encapsulates the knowledge of libthread internals that a
debugger needs in order to manipulate the threads-related state of a target process.

To be able to inspect and manipulate target processes, libthread_db makes use of
certain process control primitives that must be provided by the process using
libthread_db. The imported interfaces are defined in proc_service(3PROC). In
other words, the controlling process is linked with libthread_db, and it calls
routines in libthread_db. libthread_db in turn calls certain routines that it
expects the controlling process to provide. These process control primitives allow
libthread_db to:

� Look up symbols in a target process.

libthread_db(3THR)

DESCRIPTION

68 man pages section 3: Threads and Realtime Library Functions • Last Revised 19 Oct 1998



� Stop and continue individual lightweight processes ( LWPs) within a target
process.

� Stop and continue an entire target process.

� Read and write memory and registers in a target process.

Initially, a controlling process obtains a handle for a target process. Through that
handle it can then obtain handles for the component objects of the target process, its
threads, its synchronization objects, and its thread-specific-data keys.

When libthread_db needs to return sets of handles to the controlling process, for
example, when returning handles for all the threads in a target process, it uses an
iterator function. An iterator function calls back a client-specified function once for
each handle to be returned, passing one handle back on each call to the callback
function. The calling function also passes another parameter to the iterator function,
which the iterator function passes on to the callback function. This makes it easy to
build a linked list of thread handles for a particular target process. The additional
parameter is the head of the linked list, and the callback function simply inserts the
current handle into the linked list.

Callback functions are expected to return an integer. Iteration terminates early if a
callback function returns a non-zero value. Otherwise, iteration terminates when there
are no more handles to pass back.

libthread_db relies on an "agent thread" in the target process for some of its
operations. The "agent thread" is a system thread started when libthread_db
attaches to a process through td_ta_new(3THR). In the current implementation, a
brief window exists after the agent thread has been started, but before it has
completed its initialization, in which libthread_db routines that require the agent
thread will fail, returning a TD_NOCAPAB error status. This is particularly troublesome
if the target process was stopped when td_ta_new() was called, so that the agent
thread cannot be initialized. To avoid this problem, the target process must be allowed
to make some forward progress after td_ta_new() is called. This limitation will be
removed in a future release.

Name Description

td_event_addset() Macro that adds a specific event type to an
event set.

td_event_delset() Macro that deletes a specific event type
from an event set.

td_event_emptyset() Macro that sets argument to NULL event
set.

td_event_fillset() Macro that sets argument to set of all
events.

td_eventisempty() Macro that tests whether an event set is the
NULL set.

libthread_db(3THR)

FUNCTIONS

Threads and Realtime Library Functions 69



td_eventismember() Macro that tests whether a specific event
type is a member of an event set.

td_init() Performs initialization for interfaces.

td_log() Placeholder for future logging functionality.

td_sync_get_info() Gets information for the synchronization
object.

td_sync_setstate() Sets the state of the synchronization object.

td_sync_waiters() Iteration function used for return of
synchronization object handles.

td_ta_clear_event() Clears a set of event types in the process
event mask.

td_ta_delete() Deregisters target process and deallocates
internal process handle.

td_ta_enable_stats() Turns statistics gathering on or off for the
target process.

td_ta_event_addr() Returns event reporting address.

td_ta_event_getmsg() Returns process event message.

td_ta_get_nthreads() Gets the total number of threads in a
process. .

td_ta_get_ph() Returns corresponding external process
handle.

td_ta_get_stats() Gets statistics gathered for the target
process.

td_ta_map_addr2sync() Gets a synchronization object handles from
a synchronization object’s address.

td_ta_map_id2thr() Returns a thread handle for the given
thread id.

td_ta_map_lwp2thr() Returns a thread handle for the given LWP
id.

td_ta_new() Registers target process and allocates
internal process handle.

td_ta_reset_stats() Resets all counters for statistics gathering
for the target process.

td_ta_setconcurrency() Sets concurrency level for target process.

td_ta_set_event() Sets a set of event types in the process event
mask.

libthread_db(3THR)

70 man pages section 3: Threads and Realtime Library Functions • Last Revised 19 Oct 1998



td_ta_sync_iter() Returns handles of synchronization objects
associated with a process.

td_ta_thr_iter() Returns handles for threads that are part of
the target process.

td_ta_tsd_iter() Returns the thread-specific data keys in use
by the current process.

td_thr_clear_event() Clears a set of event types in the threads
event mask.

td_thr_dbresume() Resumes thread.

td_thr_dbsuspend() Suspends thread.

td_thr_event_enable() Enables or disables event reporting.

td_thr_event_getmsg() Returns a process event message.

td_thr_get_info() Gets thread information and updates

td_thr_getfpregs() Gets the floating point registers for the
given thread.

td_thr_getgregs() Gets the general registers for a given thread.

td_thr_getxregs() Gets the extra registers for the given thread.

td_thr_getxregsize() Gets the size of the extra register set for the
given thread.

td_thr_lockowner() Iterates over the set of locks owned by a
thread. struct.

td_thr_set_event() Sets a set of event types in the threads event
mask.

td_thr_setfpregs() Sets the floating point registers for the given
thread. ti_sigmask

td_thr_setgregs() Sets the general registers for a given thread.

td_thr_setprio() Sets the priority of a thread.

td_thr_setsigpending() Changes a thread’s pending signal state.

td_thr_setxregs() Sets the extra registers for the given thread.

td_thr_sigsetmask() Sets the signal mask of the thread.

td_thr_sleepinfo() Returns the synchronization handle for the
object on which a thread is blocked.

td_thr_tsd() Gets a thread’s thread-specific data.

td_thr_validate() Tests a thread handle for validity.

libthread_db(3THR)

Threads and Realtime Library Functions 71



lthread_db

See attributes(5) for description of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT Level Safe

libthread(3THR), proc_service(3PROC), td_event_addset(3THR),
td_event_delset(3THR), td_event_emptyset(3THR),
td_event_fillset(3THR), td_eventisempty(3THR),
td_eventismember(3THR), td_init(3THR), td_log(3THR),
td_sync_get_info(3THR), td_sync_waiters(3THR), td_ta_delete(3THR),
td_ta_enable_stats(3THR), td_ta_event_addr(3THR),
td_ta_event_getmsg(3THR), td_ta_get_nthreads(3THR),
td_ta_get_ph(3THR), td_ta_get_stats(3THR),
td_ta_map_addr2sync(3THR), td_ta_map_id2thr(3THR),
td_ta_map_lwp2thr(3THR), td_ta_new(3THR), td_ta_reset_stats(3THR),
td_ta_set_event(3THR), td_ta_setconcurrency(3THR),
td_ta_sync_iter(3THR), td_ta_thr_iter(3THR), td_ta_tsd_iter(3THR),
td_thr_clear_event(3THR), td_thr_dbresume(3THR),
td_thr_dbsuspend(3THR), td_thr_event_enable(3THR),
td_thr_event_getmsg(3THR), td_thr_get_info(3THR),
td_thr_getfpregs(3THR), td_thr_getxregs(3THR),
td_thr_getxregsize(3THR), td_thr_lockowner(3THR),
td_thr_set_event(3THR), td_thr_setfpregs(3THR),
td_thr_setgregs(3THR), td_thr_setprio(3THR),
td_thr_sigsetmask(3THR), td_thr_setsigpending(3THR),
td_thr_setxregs(3THR), td_thr_sleepinfo(3THR), td_thr_tsd(3THR),
td_thr_validate(3THR), thr_getspecific(3THR), libthread(3LIB),
libthread_db(3LIB), attributes(5)

libthread_db(3THR)

FILES

ATTRIBUTES

SEE ALSO

72 man pages section 3: Threads and Realtime Library Functions • Last Revised 19 Oct 1998



lio_listio – list directed I/O

cc [ flag... ] file... -lrt [ library... ]

#include <aio.h>

int lio_listio(int mode, struct aiocb * const list[], int nent,
struct sigevent *sig);

The lio_listio() function allows the calling process, LWP, or thread, to initiate a
list of I/O requests within a single function call.

The mode argument takes one of the values LIO_WAIT or LIO_NOWAIT declared in
<aio.h> and determines whether the function returns when the I/O operations have
been completed, or as soon as the operations have been queued. If the mode argument
is LIO_WAIT, the function waits until all I/O is complete and the sig argument is
ignored.

If the mode argument is LIO_NOWAIT, the function returns immediately, and
asynchronous notification occurs, according to the sig argument, when all the I/O
operations complete. If sig is NULL, or the sigev_signo member of the sigevent
structure referenced by sig is zero, then no asynchronous notification occurs. If sig is
not NULL, asynchronous notification occurs when all the requests in list have
completed. If sig->sigev_notify is SIGEV_NONE, then no signal will be posted
upon I/O completion, but the error status and the return status for the operation will
be set appropriately. If sig->sigev_notify is SIGEV_SIGNAL, then the signal
specified in sig->sigev_signo will be sent to the process. If the SA_SIGINFO flag is
set for that signal number, then the signal will be queued to the process and the value
specified in sig->sigev_value will be the si_value component of the generated
signal (see siginfo(3HEAD)).

The list argument is an array of pointers to aiocb structures. The array contains nent
elements. The array may contain null elements, which are ignored.

The aio_lio_opcode field of each aiocb structure specifies the operation to be
performed. The supported operations are LIO_READ, LIO_WRITE, and LIO_NOP;
these symbols are defined in <aio.h>. The LIO_NOP operation causes the list entry to
be ignored. If the aio_lio_opcode element is equal to LIO_READ, then an I/O operation
is submitted as if by a call to aio_read(3RT) with the aiocbp equal to the address of
the aiocb structure. If the aio_lio_opcode element is equal to LIO_WRITE, then an I/O
operation is submitted as if by a call to aio_write(3RT) with the aiocbp equal to the
address of the aiocb structure.

The aio_fildes member specifies the file descriptor on which the operation is to be
performed.

The aio_buf member specifies the address of the buffer to or from which the data is to
be transferred.

The aio_nbytes member specifies the number of bytes of data to be transferred.

lio_listio(3RT)

NAME

SYNOPSIS

DESCRIPTION

Threads and Realtime Library Functions 73



The members of the aiocb structure further describe the I/O operation to be
performed, in a manner identical to that of the corresponding aiocb structure when
used by the aio_read(3RT) and aio_write(3RT) functions.

The nent argument specifies how many elements are members of the list, that is, the
length of the array.

The behavior of this function is altered according to the definitions of synchronized
I/O data integrity completion and synchronized I/O file integrity completion if
synchronized I/O is enabled on the file associated with aio_fildes. (see
fcntl(3HEAD) definitions of O_DSYNC and O_SYNC.)

For regular files, no data transfer will occur past the offset maximum established in the
open file description associated with aiocbp->aio_fildes.

If the mode argument has the value LIO_NOWAIT, and the I/O operations are
successfully queued, lio_listio() returns 0; otherwise, it returns −1, and sets
errno to indicate the error.

If the mode argument has the value LIO_WAIT, and all the indicated I/O has
completed successfully, lio_listio() returns 0; otherwise, it returns −1, and sets
errno to indicate the error.

In either case, the return value only indicates the success or failure of the
lio_listio() call itself, not the status of the individual I/O requests. In some cases,
one or more of the I/O requests contained in the list may fail. Failure of an individual
request does not prevent completion of any other individual request. To determine the
outcome of each I/O request, the application must examine the error status associated
with each aiocb control block. Each error status so returned is identical to that returned
as a result of an aio_read(3RT) or aio_write(3RT) function.

The lio_listio() function will fail if:

EAGAIN The resources necessary to queue all the I/O requests were not
available. The error status for each request is recorded in the
aio_error member of the corresponding aiocb structure, and
can be retrieved using aio_error(3RT).

EAGAIN The number of entries indicated by nent would cause the
system-wide limit AIO_MAX to be exceeded.

EINVAL The mode argument is an improper value, or the value of nent is
greater than AIO_LISTIO_MAX.

EINTR A signal was delivered while waiting for all I/O requests to
complete during an LIO_WAIT operation. Note that, since each
I/O operation invoked by lio_listio() may possibly provoke
a signal when it completes, this error return may be caused by the
completion of one (or more) of the very I/O operations being
awaited. Outstanding I/O requests are not canceled, and the

lio_listio(3RT)

RETURN VALUES

ERRORS

74 man pages section 3: Threads and Realtime Library Functions • Last Revised 22 Jun 1998



application can use aio_fsync(3RT) to determine if any request
was initiated; aio_return(3RT) to determine if any request has
completed; or aio_error(3RT) to determine if any request was
canceled.

EIO One or more of the individual I/O operations failed. The
application can use aio_error(3RT) to check the error status for
each aiocb structure to determine the individual request(s) that
failed.

ENOSYS The lio_listio() function is not supported by the system.

In addition to the errors returned by the lio_listio() function, if the
lio_listio() function succeeds or fails with errors of EAGAIN, EINTR, or EIO, then
some of the I/O specified by the list may have been initiated. If the lio_listio()
function fails with an error code other than EAGAIN, EINTR, or EIO, no operations
from the list have been initiated. The I/O operation indicated by each list element can
encounter errors specific to the individual read or write function being performed. In
this event, the error status for each aiocb control block contains the associated error
code. The error codes that can be set are the same as would be set by a read(2) or
write(2) function, with the following additional error codes possible:

EAGAIN The requested I/O operation was not queued due to resource
limitations.

ECANCELED The requested I/O was canceled before the I/O completed due to
an explicit aio_cancel(3RT) request.

EFBIG The aiocbp->aio_lio_opcode is LIO_WRITE, the file is a regular
file, aiocbp->aio_nbytes is greater than 0, and the
aiocbp->aio_offset is greater than or equal to the offset
maximum in the open file description associated with
aiocbp->aio_fildes.

EINPROGRESS The requested I/O is in progress.

EOVERFLOW The aiocbp->aio_lio_opcode is LIO_READ, the file is a regular
file, aiocbp->aio_nbytes is greater than 0, and the
aiocbp->aio_offset is before the end-of-file and is greater than or
equal to the offset maximum in the open file description associated
with aiocbp->aio_fildes.

The lio_listio() function has a transitional interface for 64-bit file offsets. See
lf64(5).

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level MT-Safe

lio_listio(3RT)

USAGE

ATTRIBUTES

Threads and Realtime Library Functions 75



close(2), exec(2), exit(2), fork(2), lseek(2), read(2), write(2),
aio_cancel(3RT), aio_fsync(3RT), aio_read(3RT), aio_return(3RT),
attributes(5), aio(3HEAD), fcntl(3HEAD), lf64(5), siginfo(3HEAD),
signal(3HEAD)

Solaris 2.6 was the first release to support the Asynchronous Input and Output option.
Prior to this release, this function always returned −1 and set errno to ENOSYS.

lio_listio(3RT)

SEE ALSO

NOTES

76 man pages section 3: Threads and Realtime Library Functions • Last Revised 22 Jun 1998



mq_close – close a message queue

cc [ flag... ] file... -lrt [ library... ]

#include <mqueue.h>

int mq_close(mqd_t mqdes);

The mq_close() function removes the association between the message queue
descriptor, mqdes, and its message queue. The results of using this message queue
descriptor after successful return from this mq_close(), and until the return of this
message queue descriptor from a subsequent mq_open(3RT), are undefined.

If the process (or thread) has successfully attached a notification request to the
message queue via this mqdes, this attachment is removed and the message queue is
available for another process to attach for notification.

Upon successful completion, mq_close() returns 0; otherwise, the function returns
−1 and sets errno to indicate the error condition.

The mq_close() function will fail if:

EBADF The mqdes argument is an invalid message queue descriptor.

ENOSYS The mq_open() function is not supported by the system.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level MT-Safe

mq_notify(3RT), mq_open(3RT), mq_unlink(3RT), attributes(5),
mqueue(3HEAD)

Solaris 2.6 was the first release to support the Asynchronous Input and Output option.
Prior to this release, this function always returned −1 and set errno to ENOSYS.

mq_close(3RT)

NAME

SYNOPSIS

DESCRIPTION

RETURN VALUES

ERRORS

ATTRIBUTES

SEE ALSO

NOTES

Threads and Realtime Library Functions 77



mq_getattr – get message queue attributes

cc [ flag... ] file... -lrt [ library... ]

#include <mqueue.h>

int mq_getattr(mqd_t mqdes, struct mq_attr *mqstat);

The mqdes argument specifies a message queue descriptor. The mq_getattr()
function is used to get status information and attributes of the message queue and the
open message queue description associated with the message queue descriptor. The
results are returned in the mq_attr structure referenced by the mqstat argument.

Upon return, the following members will have the values associated with the open
message queue description as set when the message queue was opened and as
modified by subsequent mq_setattr(3RT) calls:

mq_flags message queue flags

The following attributes of the message queue are returned as set at message queue
creation:

mq_maxmsg maximum number of messages

mq_msgsize maximum message size

mq_curmsgs number of messages currently on the queue.

Upon successful completion, the mq_getattr() function returns 0. Otherwise, the
function returns −1 and sets errno to indicate the error.

The mq_getattr() function will fail if:

EBADF The mqdes argument is not a valid message queue descriptor.

ENOSYS The mq_getattr() function is not supported by the system.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level MT-Safe

msgctl(2), msgget(2), msgrcv(2), msgsnd(2), mq_open(3RT), mq_send(3RT),
mq_setattr(3RT), attributes(5), mqueue(3HEAD)

Solaris 2.6 was the first release to support the Asynchronous Input and Output option.
Prior to this release, this function always returned −1 and set errno to ENOSYS.

mq_getattr(3RT)

NAME

SYNOPSIS

DESCRIPTION

RETURN VALUES

ERRORS

ATTRIBUTES

SEE ALSO

NOTES

78 man pages section 3: Threads and Realtime Library Functions • Last Revised 22 Jun 1988



mq_notify – notify process (or thread) that a message is available on a queue

cc [ flag... ] file... -lrt [ library... ]

#include <mqueue.h>

int mq_notify(mqd_t mqdes, const struct sigevent *notification);

The mq_notify() function provides an asynchronous mechanism for processes to
receive notice that messages are available in a message queue, rather than
synchronously blocking (waiting) in mq_receive(3RT).

If notification is not NULL, this function registers the calling process to be notified of
message arrival at an empty message queue associated with the message queue
descriptor, mqdes. The notification specified by notification will be sent to the process
when the message queue transitions from empty to non-empty. At any time, only one
process may be registered for notification by a specific message queue. If the calling
process or any other process has already registered for notification of message arrival
at the specified message queue, subsequent attempts to register for that message
queue will fail.

The notification argument points to a structure that defines both the signal to be
generated and how the calling process will be notified upon I/O completion. If
notification->sigev_notify is SIGEV_NONE, then no signal will be posted upon I/O
completion, but the error status and the return status for the operation will be set
appropriately. If notification->sigev_notify is SIGEV_SIGNAL, then the signal
specified in notification->sigev_signo will be sent to the process. If the SA_SIGINFO
flag is set for that signal number, then the signal will be queued to the process and the
value specified in notification->sigev_value will be the si_value component of the
generated signal (see siginfo(3HEAD)).

If notification is NULL and the process is currently registered for notification by the
specified message queue, the existing registration is removed. The message queue is
then available for future registration.

When the notification is sent to the registered process, its registration is removed. The
message queue is then be available for registration.

If a process has registered for notification of message arrival at a message queue and
some processes is blocked in mq_receive(3RT) waiting to receive a message when a
message arrives at the queue, the arriving message will be received by the appropriate
mq_receive(3RT), and no notification will be sent to the registered process. The
resulting behavior is as if the message queue remains empty, and this notification will
not be sent until the next arrival of a message at this queue.

Any notification registration is removed if the calling process either closes the message
queue or exits.

Upon successful completion, mq_notify() returns 0; otherwise, it returns −1 and
sets errno to indicate the error.

mq_notify(3RT)

NAME

SYNOPSIS

DESCRIPTION

RETURN VALUES

Threads and Realtime Library Functions 79



The mq_notify() function will fail if:

EBADF The mqdes argument is not a valid message queue descriptor.

EBUSY A process is already registered for notification by the message
queue.

ENOSYS The mq_notify() function is not supported by the system.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level MT-Safe

mq_close(3RT), mq_open(3RT), mq_receive(3RT), mq_send(3RT), attributes(5),
mqueue(3HEAD), siginfo(3HEAD), signal(3HEAD)

Solaris 2.6 was the first release to support the Asynchronous Input and Output option.
Prior to this release, this function always returned −1 and set errno to ENOSYS.

mq_notify(3RT)

ERRORS

ATTRIBUTES

SEE ALSO

NOTES

80 man pages section 3: Threads and Realtime Library Functions • Last Revised 22 Jun 1998



mq_open – open a message queue

cc [ flag... ] file... -lrt [ library... ]

#include <mqueue.h>

mqd_t mq_open(const char *name, int oflag, /* unsigned long mode,
mq_attr attr */ ...);

The mq_open() function establishes the connection between a process and a message
queue with a message queue descriptor. It creates a open message queue description
that refers to the message queue, and a message queue descriptor that refers to that
open message queue description. The message queue descriptor is used by other
functions to refer to that message queue.

The name argument points to a string naming a message queue. The name argument
must conform to the construction rules for a path-name. If name is not the name of an
existing message queue and its creation is not requested, mq_open() fails and returns
an error. The first character of name must be a slash (/) character and the remaining
characters of name cannot include any slash characters. For maximum portability, name
should include no more than 14 characters, but this limit is not enforced.

The oflag argument requests the desired receive and/or send access to the message
queue. The requested access permission to receive messages or send messages is
granted if the calling process would be granted read or write access, respectively, to a
file with the equivalent permissions.

The value of oflag is the bitwise inclusive OR of values from the following list.
Applications must specify exactly one of the first three values (access modes) below in
the value of oflag:

O_RDONLY Open the message queue for receiving messages. The process can
use the returned message queue descriptor with
mq_receive(3RT), but not mq_send(3RT). A message queue may
be open multiple times in the same or different processes for
receiving messages.

O_WRONLY Open the queue for sending messages. The process can use the
returned message queue descriptor with mq_send(3RT) but not
mq_receive(3RT). A message queue may be open multiple times
in the same or different processes for sending messages.

O_RDWR Open the queue for both receiving and sending messages. The
process can use any of the functions allowed for O_RDONLY and
O_WRONLY. A message queue may be open multiple times in the
same or different processes for sending messages.

Any combination of the remaining flags may additionally be specified in the value of
oflag:

O_CREAT This option is used to create a message queue, and it requires two
additional arguments: mode, which is of type mode_t, and attr,

mq_open(3RT)

NAME

SYNOPSIS

DESCRIPTION

Threads and Realtime Library Functions 81



which is pointer to a mq_attr structure. If the pathname, name,
has already been used to create a message queue that still exists,
then this flag has no effect, except as noted under O_EXCL (see
below). Otherwise, a message queue is created without any
messages in it.

The user ID of the message queue is set to the effective user ID of
process, and the group ID of the message queue is set to the
effective group ID of the process. The file permission bits are set to
the value of mode, and modified by clearing all bits set in the file
mode creation mask of the process (see umask(2)).

If attr is non-NULL and the calling process has the appropriate
privilege on name, the message queue mq_maxmsg and mq_msgsize
attributes are set to the values of the corresponding members in
the mq_attr structure referred to by attr. If attr is non-NULL, but
the calling process does not have the appropriate privilege on
name, the mq_open() function fails and returns an error without
creating the message queue.

O_EXCL If both O_EXCL and O_CREAT are set, mq_open() will fail if the
message queue name exists. The check for the existence of the
message queue and the creation of the message queue if it does not
exist are atomic with respect to other processes executing
mq_open() naming the same name with both O_EXCL and
O_CREAT set. If O_EXCL and O_CREAT are not set, the result is
undefined.

O_NONBLOCK The setting of this flag is associated with the open message queue
description and determines whether a mq_send(3RT) or
mq_receive(3RT) waits for resources or messages that are not
currently available, or fails with errno set to EAGAIN. See
mq_send(3RT) and mq_receive(3RT) for details.

Upon successful completion, mq_open() returns a message queue descriptor;
otherwise the function returns (mqd_t)−1 and sets errno to indicate the error
condition.

The mq_open() function will fail if:

EACCESS The message queue exists and the permissions
specified by oflag are denied, or the message queue
does not exist and permission to create the message
queue is denied.

EEXIST O_CREAT and O_EXCL are set and the named message
queue already exists.

EINTR The mq_open() operation was interrupted by a signal.

mq_open(3RT)

RETURN VALUES

ERRORS

82 man pages section 3: Threads and Realtime Library Functions • Last Revised 22 Jun 1998



EINVAL The mq_open() operation is not supported for the
given name, or O_CREAT was specified in oflag, the
value of attr is not NULL, and either mq_maxmsg or
mq_msgsize was less than or equal to zero.

EMFILE The number of open message queue descriptors in this
process exceeds MQ_OPEN_MAX, of the number of open
file descriptors in this process exceeds OPEN_MAX.

ENAMETOOLONG The length of the name string exceeds PATH_MAX, or a
pathname component is longer than NAME_MAX while
_POSIX_NO_TRUNC is in effect.

ENFILE Too many message queues are currently open in the
system.

ENOENT O_CREAT is not set and the named message queue does
not exist.

ENOSPC There is insufficient space for the creation of the new
message queue.

ENOSYS The mq_open() function is not supported by the
system.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level MT-Safe

exec(2), exit(2), umask(2), mq_close(3RT), mq_receive(3RT), mq_send(3RT),
mq_setattr(3RT), mq_unlink(3RT), sysconf(3C), attributes(5),
mqueue(3HEAD)

Due to the manner in which message queues are implemented, they should not be
considered secure and should not be used in security-sensitive applications.

Solaris 2.6 was the first release to support the Asynchronous Input and Output option.
Prior to this release, this function always returned −1 and set errno to ENOSYS.

mq_open(3RT)

ATTRIBUTES

SEE ALSO

NOTES

Threads and Realtime Library Functions 83



mq_receive – receive a message from a message queue

cc [ flag... ] file... -lrt [ library... ]

#include <mqueue.h>

ssize_t mq_receive(mqd_t mqdes, char *msg_ptr, size_t msg_len,
unsigned int *msg_prio);

The mq_receive() function is used to receive the oldest of the highest priority
message(s) from the message queue specified by mqdes. If the size of the buffer in
bytes, specified by msg_len, is less than the mq_msgsize member of the message
queue, the function fails and returns an error. Otherwise, the selected message is
removed from the queue and copied to the buffer pointed to by msg_ptr.

If msg_prio is not NULL, the priority of the selected message is stored in the location
referenced by msg_prio.

If the specified message queue is empty and O_NONBLOCK is not set in the message
queue description associated with mqdes, (see mq_open(3RT) and mq_setattr(3RT)),
mq_receive() blocks, waiting until a message is enqueued on the message queue, or
until mq_receive() is interrupted by a signal. If more than one process (or thread) is
waiting to receive a message when a message arrives at an empty queue, then the
process of highest priority that has been waiting the longest is selected to receive the
message. If the specified message queue is empty and O_NONBLOCK is set in the
message queue description associated with mqdes, no message is removed from the
queue, and mq_receive() returns an error.

Upon successful completion, mq_receive() returns the length of the selected
message in bytes and the message is removed from the queue. Otherwise, no message
is removed from the queue, the function returns a value of −1, and sets errno to
indicate the error condition.

The mq_receive() function will fail if:

EAGAIN O_NONBLOCK was set in the message description associated with
mqdes, and the specified message queue is empty.

EBADF The mqdes argument is not a valid message queue descriptor open
for reading.

EMSGSIZE The specified message buffer size, msg_len, is less than the message
size member of the message queue.

EINTR The mq_receive() function operation was interrupted by a
signal.

ENOSYS The mq_receive() function is not supported by the system.

The mq_receive() function may fail if:

EBADMSG A data corruption problem with the message has been detected.

mq_receive(3RT)

NAME

SYNOPSIS

DESCRIPTION

RETURN VALUES

ERRORS

84 man pages section 3: Threads and Realtime Library Functions • Last Revised 22 Jun 1998



See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level MT-Safe

mq_open(3RT), mq_send(3RT), mq_setattr(3RT), attributes(5),
mqueue(3HEAD)

Solaris 2.6 was the first release to support the Asynchronous Input and Output option.
Prior to this release, this function always returned −1 and set errno to ENOSYS.

mq_receive(3RT)

ATTRIBUTES

SEE ALSO

NOTES

Threads and Realtime Library Functions 85



mq_send – send a message to a message queue

cc [ flag... ] file... -lrt [ library... ]

#include <mqueue.h>

int mq_send(mqd_t mqdes, const char *msg_ptr, size_t msg_len,
unsigned int msg_prio);

The mq_send() function adds the message pointed to by the argument msg_ptr to the
message queue specified by mqdes. The msg_len argument specifies the length of the
message in bytes pointed to by msg_ptr. The value of msg_len is less than or equal to
the mq_msgsize attribute of the message queue, or mq_send() fails.

If the specified message queue is not full, mq_send() behaves as if the message is
inserted into the message queue at the position indicated by the msg_prio argument. A
message with a larger numeric value of msg_prio is inserted before messages with
lower values of msg_prio. A message will be inserted after other messages in the
queue, if any, with equal msg_prio. The value of msg_prio must be greater than zero
and less than or equal to MQ_PRIO_MAX.

If the specified message queue is full and O_NONBLOCK is not set in the message queue
description associated with mqdes (see mq_open(3RT) and mq_setattr(3RT)),
mq_send() blocks until space becomes available to enqueue the message, or until
mq_send() is interrupted by a signal. If more than one thread is waiting to send
when space becomes available in the message queue, then the thread of the highest
priority which has been waiting the longest is unblocked to send its message.
Otherwise, it is unspecified which waiting thread is unblocked. If the specified
message queue is full and O_NONBLOCK is set in the message queue description
associated with mqdes, the message is not queued and mq_send() returns an error.

Upon successful completion, mq_send() returns 0; otherwise, no message is
enqueued, the function returns −1, and errno is set to indicate the error.

The mq_send() function will fail if:

EAGAIN The O_NONBLOCK flag is set in the message queue description
associated with mqdes, and the specified message queue is full.

EBADF The mqdes argument is not a valid message queue descriptor open
for writing.

EINTR A signal interrupted the call to mq_send()

EINVAL The value of msg_prio was outside the valid range.

EMSGSIZE The specified message length, msg_len, exceeds the message size
attribute of the message queue.

ENOSYS The mq_send() function is not supported by the system.

See attributes(5) for descriptions of the following attributes:

mq_send(3RT)

NAME

SYNOPSIS

DESCRIPTION

RETURN VALUES

ERRORS

ATTRIBUTES

86 man pages section 3: Threads and Realtime Library Functions • Last Revised 22 Jun 1998



ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level MT-Safe

mq_open(3RT), mq_receive(3RT), mq_setattr(3RT), sysconf(3C),
attributes(5), mqueue(3HEAD)

Solaris 2.6 was the first release to support the Asynchronous Input and Output option.
Prior to this release, this function always returned −1 and set errno to ENOSYS.

mq_send(3RT)

SEE ALSO

NOTES

Threads and Realtime Library Functions 87



mq_setattr – set/get message queue attributes

cc [ flag... ] file... -lrt [ library... ]

#include <mqueue.h>

int mq_setattr(mqd_t mqdes, const struct mq_attr *mqstat, struct
mq_attr *omqstat);

The mq_setattr() function is used to set attributes associated with the open
message queue description referenced by the message queue descriptor specified by
mqdes.

The message queue attributes corresponding to the following members defined in the
mq_attr structure are set to the specified values upon successful completion of
mq_setattr():

mq_flags The value of this member is either 0 or O_NONBLOCK.

The values of mq_maxmsg, mq_msgsize, and mq_curmsgs are ignored by
mq_setattr().

If omqstat is non-NULL, mq_setattr() stores, in the location referenced by omqstat,
the previous message queue attributes and the current queue status. These values are
the same as would be returned by a call to mq_getattr() at that point.

Upon successful completion, mq_setattr() returns 0 and the attributes of the
message queue will have been changed as specified. Otherwise, the message queue
attributes are unchanged, and the function returns −1 and sets errno to indicate the
error.

The mq_setattr() function will fail if:

EBADF The mqdes argument is not a valid message queue descriptor.

ENOSYS The mq_setattr() function is not supported by the system.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level MT-Safe

mq_getattr(3RT), mq_open(3RT), mq_receive(3RT), mq_send(3RT),
attributes(5), mqueue(3HEAD)

Solaris 2.6 was the first release to support the Asynchronous Input and Output option.
Prior to this release, this function always returned −1 and set errno to ENOSYS.

mq_setattr(3RT)

NAME

SYNOPSIS

DESCRIPTION

RETURN VALUES

ERRORS

ATTRIBUTES

SEE ALSO

NOTES

88 man pages section 3: Threads and Realtime Library Functions • Last Revised 22 Jun 1998



mq_unlink – remove a message queue

cc [ flag... ] file... -lrt [ library... ]

#include <mqueue.h>

int mq_unlink(const char *name);

The mq_unlink() function removes the message queue named by the pathname
name. After a successful call to mq_unlink() with name, a call to mq_open(3RT) with
name fails if the flag O_CREAT is not set in flags. If one or more processes have the
message queue open when mq_unlink() is called, destruction of the message queue
is postponed until all references to the message queue have been closed. Calls to
mq_open(3RT) to re-create the message queue may fail until the message queue is
actually removed. However, the mq_unlink() call need not block until all references
have been closed; it may return immediately.

Upon successful completion, mq_unlink() returns 0; otherwise, the named message
queue is not changed by this function call, the function returns −1 and sets errno to
indicate the error.

The mq_unlink() function will fail if:

EACCESS Permission is denied to unlink the named message
queue.

ENAMETOOLONG The length of the name string exceeds PATH_MAX, or a
pathname component is longer than NAME_MAX while
_POSIX_NO_TRUNC is in effect.

ENOENT The named message queue, name, does not exist.

ENOSYS mq_unlink() is not supported by the system.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level MT-Safe

mq_close(3RT), mq_open(3RT), attributes(5), mqueue(3HEAD)

Solaris 2.6 was the first release to support the Asynchronous Input and Output option.
Prior to this release, this function always returned −1 and set errno to ENOSYS.

mq_unlink(3RT)

NAME

SYNOPSIS

DESCRIPTION

RETURN VALUES

ERRORS

ATTRIBUTES

SEE ALSO

NOTES

Threads and Realtime Library Functions 89



mutex – concepts relating to mutual exclusion locks

Mutual exclusion locks (mutexes) prevent multiple threads from simultaneously
executing critical sections of code which access shared data (that is, mutexes are used
to serialize the execution of threads). All mutexes must be global. A successful call to
acquire a mutex will cause another thread that is also trying to lock the same mutex to
block until the owner thread unlocks the mutex.

Mutexes can synchronize threads within the same process or in other processes.
Mutexes can be used to synchronize threads between processes if the mutexes are
allocated in writable memory and shared among the cooperating processes (see
mmap(2)), and have been initialized for this task.

The following table lists mutex functions and the actions they perform.

FUNCTION ACTION

mutex_init Initialize a mutex.

mutex_destroy Destroy a mutex.

mutex_lock Lock a mutex.

mutex_trylock Attempt to lock a mutex.

mutex_unlock Unlock a mutex.

pthread_mutex_init Initialize a mutex.

pthread_mutex_destroy Destroy a mutex.

pthread_mutex_lock Lock a mutex.

pthread_mutex_trylock Attempt to lock a mutex.

pthread_mutex_unlock Unlock a mutex.

Mutexes are either intra-process or inter-process, depending upon the argument
passed implicitly or explicitly to the initialization of that mutex. A statically allocated
mutex does not need to be explicitly initialized; by default, a statically allocated mutex
is initialized with all zeros and its scope is set to be within the calling process.

For inter-process synchronization, a mutex needs to be allocated in memory shared
between these processes. Since the memory for such a mutex must be allocated
dynamically, the mutex needs to be explicitly initialized with the appropriate attribute
that indicates inter-process use.

A critical section of code is enclosed by a call to lock the mutex and the call to unlock
the mutex to protect it from simultaneous access by multiple threads. Only one thread
at a time may possess mutually exclusive access to the critical section of code that is
enclosed by the mutex-locking call and the mutex-unlocking call, whether the mutex’s

mutex(3THR)

NAME

DESCRIPTION

Initialization

Locking and
Unlocking

90 man pages section 3: Threads and Realtime Library Functions • Last Revised 20 Jul 1998



scope is intra-process or inter-process. A thread calling to lock the mutex either gets
exclusive access to the code starting from the successful locking until its call to unlock
the mutex, or it waits until the mutex is unlocked by the thread that locked it.

Mutexes have ownership, unlike semaphores. Only the thread that locked a mutex,
(that is, the owner of the mutex), should unlock it.

If a thread waiting for a mutex receives a signal, upon return from the signal handler,
the thread resumes waiting for the mutex as if there was no interrupt.

Mutexes are almost like data – they can be embedded in data structures, files, dynamic
or static memory, and so forth. Hence, they are easy to introduce into a program.
However, too many mutexes can degrade performance and scalability of the
application. Because too few mutexes can hinder the concurrency of the application,
they should be introduced with care. Also, incorrect usage (such as recursive calls, or
violation of locking order, and so forth) can lead to deadlocks, or worse, data
inconsistencies.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level MT-Safe

mmap(2), shmop(2), mutex_destroy(3THR), mutex_init(3THR),
mutex_lock(3THR), mutex_trylock(3THR), mutex_unlock(3THR),
pthread_mutex_destroy(3THR), pthread_mutex_init(3THR),
pthread_mutex_lock(3THR), pthread_mutex_trylock(3THR),
pthread_mutex_unlock(3THR), pthread_create(3THR),
pthread_mutexattr_init(3THR), attributes(5), standards(5)

In the current implementation of threads, pthread_mutex_lock(),
pthread_mutex_unlock(), mutex_lock() mutex_unlock(),
pthread_mutex_trylock(), and mutex_trylock() do not validate the mutex
type. Therefore, an uninitialized mutex or a mutex with an invalid type does not
return EINVAL. Interfaces for mutexes with an invalid type have unspecified
behavior.

By default, if multiple threads are waiting for a mutex, the order of acquisition is
undefined.

USYNC_THREAD does not support multiple mapplings to the same logical synch object.
If you need to mmap() a synch object to different locations within the same address
space, then the synch object should be initialized as a shared object USYNC_PROCESS
for Solaris, and PTHREAD_PROCESS_PRIVATE for POSIX.

mutex(3THR)

Caveats

ATTRIBUTES

SEE ALSO

NOTES

Threads and Realtime Library Functions 91



mutex_init, mutex_destroy, mutex_lock, mutex_trylock, mutex_unlock – mutual
exclusion locks

cc –mt [ flag... ] file...[ library... ]
#include <thread.h>

#include <synch.h>

int mutex_init(mutex_t *mp, int type, void * arg);

int mutex_lock(mutex_t *mp);

int mutex_trylock(mutex_t *mp);

int mutex_unlock(mutex_t *mp);

int mutex_destroy(mutex_t *mp);

Mutual exclusion locks (mutexes) prevent multiple threads from simultaneously
executing critical sections of code which access shared data (that is, mutexes are used
to serialize the execution of threads). All mutexes must be global. A successful call for
a mutex lock by way of mutex_lock() will cause another thread that is also trying to
lock the same mutex to block until the owner thread unlocks it by way of
mutex_unlock(). Threads within the same process or within other processes can
share mutexes.

Mutexes can synchronize threads within the same process or in other processes.
Mutexes can be used to synchronize threads between processes if the mutexes are
allocated in writable memory and shared among the cooperating processes (see
mmap(2)), and have been initialized for this task.

Mutexes are either intra-process or inter-process, depending upon the argument
passed implicitly or explicitly to the initialization of that mutex. A statically allocated
mutex does not need to be explicitly initialized; by default, a statically allocated mutex
is initialized with all zeros and its scope is set to be within the calling process.

For inter-process synchronization, a mutex needs to be allocated in memory shared
between these processes. Since the memory for such a mutex must be allocated
dynamically, the mutex needs to be explicitly initialized using mutex_init().

The mutex_init() function initializes the mutex referenced by mp with the type
specified by type. Upon successful initialization the state of the mutex becomes
initialized and unlocked. No current type uses arg although a future type may specify
additional behavior parameters by way of arg. type may be one of the following:

USYNC_THREAD The mutex can synchronize threads only in this
process. arg is ignored.

USYNC_PROCESS The mutex can synchronize threads in this process and
other processes. arg is ignored. The object initialized
with this attribute must be allocated in memory shared
between processes, either in System V shared memory
(see shmop(2)) or in memory mapped to a file (see

mutex_init(3THR)

NAME

SYNOPSIS

DESCRIPTION

Initialize

92 man pages section 3: Threads and Realtime Library Functions • Last Revised 10 Sep1998



mmap(2)). If the object is not allocated in such shared
memory, it will not be shared between processes.

USYNC_PROCESS_ROBUST The mutex can synchronize threads in this process and
other processes robustly. At the time of process death, if
the lock is held by the process, it is unlocked. The next
owner of this mutex will acquire it with an error return
of EOWNERDEAD. Note that the application must
always check the return code from mutex_lock() for
a mutex of this type. The new owner of this mutex
should then attempt to make the state protected by the
mutex consistent, since this state could have been left
inconsistent when the last owner died. If the new
owner is able to make the state consistent, it should
re-initialize the mutex and then unlock the mutex. If
the new owner is not able to make the state consistent,
for whatever reason, it should not re-initialize the
mutex, but should just unlock the mutex. If the latter
event occurs, all waiters will be woken up and all
subsequent calls to mutex_lock() will fail in
acquiring the mutex with an error code of
ENOTRECOVERABLE. mutex can be made consistent by
un-initializing the mutex (mutex_destroy()) and
re-initializing it (mutex_init()). If the process which
got the lock with EOWNERDEAD died, the next owner
will get the lock with an error return of EOWNERDEAD.
arg is ignored. The object initialized with this attribute
must be allocated in memory shared between
processes, either in System V shared memory (see
shmop(2)) or in memory mapped to a file (see mmap(2))
and memory must be zeroed before initialization. All
the processes interested in the robust lock must call
mutex_init() at least once to register robust mutex
with the system and potentially initialize it. If the object
is not allocated in such shared memory, it will not be
shared between processes. If mutex_init() is called
on a previously initialized mutex mutex_init() will
not re-initialize the mutex.

Initializing mutexes can also be accomplished by allocating in zeroed memory
(default), in which case, a type of USYNC_THREAD is assumed. The same mutex must
not be simultaneously initialized by multiple threads. A mutex lock must not be
re-initialized while in use by other threads. If default mutex attributes are used, the
macro DEFAULTMUTEX can be used to initialize mutexes that are statically allocated.

Default mutex initialization (intra-process):

mutex_t mp;
mutex_init(&mp, NULL, NULL);

mutex_init(3THR)

Threads and Realtime Library Functions 93



OR mutex_init(&mp, USYNC_THREAD, NULL);

OR mutex_t mp = DEFAULTMUTEX;

OR mutex_t mp;
mp = calloc(1, sizeof (mutex_t));

OR mutex_t mp;

mp = malloc(sizeof (mutex_t));

memset(mp, 0, sizeof (mutex_t));

Customized mutex initialization (inter-process):

mutex_init(&mp, USYNC_PROCESS, NULL);

Customized mutex initialization (inter-process):

mutex_init(&mp, USYNC_PROCESS_ROBUST, NULL);

A critical section of code is enclosed by a the call to lock the mutex and the call to
unlock the mutex to protect it from simultaneous access by multiple threads. Only one
thread at a time may possess mutually exclusive access to the critical section of code
that is enclosed by the mutex-locking call and the mutex-unlocking call, whether the
mutex’s scope is intra-process or inter-process. A thread calling to lock the mutex
either gets exclusive access to the code starting from the successful locking until its call
to unlock the mutex, or it waits until the mutex is unlocked by the thread that locked
it.

Mutexes have ownership, unlike semaphores. Although any thread, within the scope
of a mutex, can get an unlocked mutex and lock access to the same critical section of
code, only the thread that locked a mutex should unlock it.

If a thread waiting for a mutex receives a signal, upon return from the signal handler,
the thread resumes waiting for the mutex as if there was no interrupt. A mutex
protects code, not data; therefore, strongly bind a mutex with the data by putting both
within the same structure, or at least within the same procedure.

A call to mutex_lock() locks the mutex object referenced by mp. If the mutex is
already locked, the calling thread blocks until the mutex is freed; this will return with
the mutex object referenced by mp in the locked state with the calling thread as its
owner. If the current owner of a mutex tries to relock the mutex, it will result in
deadlock.

mutex_trylock() is the same as mutex_lock(), respectively, except that if the
mutex object referenced by mp is locked (by any thread, including the current thread),
the call returns immediately with an error.

mutex_unlock() are called by the owner of the mutex object referenced by mp to
release it. The mutex must be locked and the calling thread must be the one that last

mutex_init(3THR)

Lock and Unlock

94 man pages section 3: Threads and Realtime Library Functions • Last Revised 10 Sep1998



locked the mutex (the owner). If there are threads blocked on the mutex object
referenced by mp when mutex_unlock() is called, the mp is freed, and the
scheduling policy will determine which thread gets the mutex. If the calling thread is
not the owner of the lock, no error status is returned, and the behavior of the program
is undefined.

mutex_destroy() destroys the mutex object referenced by mp; the mutex object
becomes uninitialized. The space used by the destroyed mutex variable is not freed. It
needs to be explicitly reclaimed.

If successful, these functions return 0. Otherwise, an error number is returned.

These functions may fail if:

EFAULT mp points to an illegal address.

The mutex_init() function will fail if:

EINVAL The value specified by type is invalid.

The mutex_init() function will fail for USYNC_PROCESS_ROBUST type mutex if:

EBUSY The mutex pointed to by mp was already initialized. An attempt to
re-initialize a mutex previously initialized, but not yet destroyed.

The mutex_trylock() function will fail if:

EBUSY The mutex pointed to by mp was already locked.

The mutex_lock() or mutex_trylock() functions will fail for
USYNC_PROCESS_ROBUST type mutex if:

EOWNERDEAD The last owner of this mutex died while holding the
mutex. This mutex is now owned by the caller. The
caller must now attempt to make the state protected by
the mutex consistent. If it is able to cleanup the state,
then it should re-initialize the mutex (see
mutex_init()) and unlock the mutex. Subsequent
calls to mutex_lock() will behave normally, as
before. If the caller is not able to cleanup the state, the
mutex should not be re-initialized, it should be
unlocked. Subsequent calls to mutex_lock() will fail
to acquire the mutex, with the error code,
ENOTRECOVERABLE. If the owner who got the lock
with EOWNERDEAD died, the next owner will get the
lock with EOWNERDEAD.

ELOCKUNMAPPED The last owner of this mutex unmaped the mutex while
holding the mutex. This mutex is now owned by the
caller. The caller must now attempt to make the state
protected by the mutex consistent. If it is able to

mutex_init(3THR)

Destroy

RETURN VALUES

ERRORS

Threads and Realtime Library Functions 95



cleanup the state, then it should re-initialize the mutex
unlock the mutex. See mutex_init(3THR).
Subsequent calls to mutex_lock() will behave
normally, as before. If the caller is not able to cleanup
the state, the mutex should not be re-initialized.
Subsequent calls to mutex_lock() will fail to acquire
the mutex with the error code, ENOTRECOVERABLE.

ENOTRECOVERABLE The mutex trying to be acquired is protecting state
which has been left irrecoverable by the mutex’s last
owner, which died while holding the lock. The mutex
has not been acquired. This condition can occur when
the lock was previously acquired with EOWNERDEAD or
ELOCKUNMAPPED and the owner was not able to
cleanup the state and unlocked the mutex with out
making the mutex consistent.

The following example uses one global mutex as a gate-keeper to permit each thread
exclusive sequential access to the code within the user-defined function
"change_global_data." This type of synchronization will protect the state of shared
data, but it also prohibits parallelism.

/* cc thisfile.c -lthread */
#define _REENTRANT
#include <stdio.h>
#include <thread.h>
#define NUM_THREADS 12
void *change_global_data(void *); /* for thr_create() */
main(int argc,char * argv[]) {

int i=0;
for (i=0; i< NUM_THREADS; i++) {

thr_create(NULL, 0, change_global_data, NULL, 0, NULL);
}
while ((thr_join(NULL, NULL, NULL) == 0));

}

void * change_global_data(void *null) {
static mutex_t Global_mutex;
static int Global_data = 0;
mutex_lock(&Global_mutex);
Global_data++;
sleep(1);
printf("%d is global data\n",Global_data);
mutex_unlock(&Global_mutex);
return NULL;

}

The previous example, the mutex, the code it owns, and the data it protects was
enclosed in one function. The next example uses C++ features to accommodate many
functions that use just one mutex to protect one data:

mutex_init(3THR)

Single Gate

Multiple
Instruction Single

Data

96 man pages section 3: Threads and Realtime Library Functions • Last Revised 10 Sep1998



/* CC thisfile.c -lthread use C++ to compile*/

#define _REENTRANT
#include <stdlib.h>
#include <stdio.h>
#include <thread.h>
#include <errno.h>
#include <iostream.h>
#define NUM_THREADS 16
void *change_global_data(void *); /* for thr_create() */

class Mutected {
private:

static mutex_t Global_mutex;
static int Global_data;

public:
static int add_to_global_data(void);
static int subtract_from_global_data(void);

};

int Mutected::Global_data = 0;
mutex_t Mutected::Global_mutex;

int Mutected::add_to_global_data() {
mutex_lock(&Global_mutex);
Global_data++;
mutex_unlock(&Global_mutex);
return Global_data;

}

int Mutected::subtract_from_global_data() {
mutex_lock(&Global_mutex);
Global_data--;
mutex_unlock(&Global_mutex);
return Global_data;

}

void
main(int argc,char * argv[]) {

int i=0;
for (i=0;i< NUM_THREADS;i++) {

thr_create(NULL,0,change_global_data,NULL,0,NULL);
}
while ((thr_join(NULL,NULL,NULL) == 0));

}

void * change_global_data(void *) {
static int switcher = 0;
if ((switcher++ % 3) == 0) /* one-in-three threads subtracts */

cout << Mutected::subtract_from_global_data() << endl;
else

cout << Mutected::add_to_global_data() << endl;
return NULL;

}

mutex_init(3THR)

Threads and Realtime Library Functions 97



A mutex can protect data that is shared among processes. The mutex would need to be
initialized as USYNC_PROCESS. One process initializes the process-shared mutex and
writes it to a file to be mapped into memory by all cooperating processes (see
mmap(2)). Afterwards, other independent processes can run the same program
(whether concurrently or not) and share mutex-protected data.

/* cc thisfile.c -lthread */
/* To execute, run the command line "a.out 0 & a.out 1" */

#define _REENTRANT
#include <sys/types.h>
#include <sys/mman.h>
#include <sys/stat.h>
#include <fcntl.h>
#include <stdio.h>
#include <thread.h>
#define INTERPROCESS_FILE "ipc-sharedfile"
#define NUM_ADDTHREADS 12
#define NUM_SUBTRACTTHREADS 10
#define INCREMENT ’0’
#define DECREMENT ’1’
typedef struct {

mutex_t Interprocess_mutex;
int Interprocess_data;

} buffer_t;
buffer_t *buffer;

void *add_interprocess_data(), *subtract_interprocess_data();
void create_shared_memory(), test_argv();
int zeroed[sizeof(buffer_t)];
int ipc_fd, i=0;

void
main(int argc,char * argv[]){

test_argv(argv[1]);

switch (*argv[1]) {
case INCREMENT:

create_shared_memory();
ipc_fd = open(INTERPROCESS_FILE, O_RDWR);
buffer = (buffer_t *)mmap(NULL, sizeof(buffer_t),

PROT_READ|PROT_WRITE, MAP_SHARED, ipc_fd, 0);
buffer->Interprocess_data = 0;
mutex_init(&buffer->Interprocess_mutex, USYNC_PROCESS,0);
for (i=0; i< NUM_ADDTHREADS; i++)
thr_create(NULL, 0, add_interprocess_data, argv[1],

0, NULL);
break;

case DECREMENT:
while((ipc_fd = open(INTERPROCESS_FILE, O_RDWR)) == -1)

sleep(1);
buffer = (buffer_t *)mmap(NULL, sizeof(buffer_t),

PROT_READ|PROT_WRITE, MAP_SHARED, ipc_fd, 0);

mutex_init(3THR)

Interprocess
Locking

98 man pages section 3: Threads and Realtime Library Functions • Last Revised 10 Sep1998



for (i=0; i< NUM_SUBTRACTTHREADS; i++)
thr_create(NULL, 0, subtract_interprocess_data, argv[1],

0, NULL);
break;

} /* end switch */

while ((thr_join(NULL,NULL,NULL) == 0));
} /* end main */

void *add_interprocess_data(char argv_1[]){
mutex_lock(&buffer->Interprocess_mutex);
buffer->Interprocess_data++;
sleep(2);
printf("%d is add-interprocess data, and %c is argv1\n",

buffer->Interprocess_data, argv_1[0]);
mutex_unlock(&buffer->Interprocess_mutex);
return NULL;

}

void *subtract_interprocess_data(char argv_1[]) {
mutex_lock(&buffer->Interprocess_mutex);
buffer->Interprocess_data--;
sleep(2);
printf("%d is subtract-interprocess data, and %c is argv1\n",

buffer->Interprocess_data, argv_1[0]);
mutex_unlock(&buffer->Interprocess_mutex);
return NULL;

}

void create_shared_memory(){
int i;
ipc_fd = creat(INTERPROCESS_FILE, O_CREAT|O_RDWR );
for (i=0; i<sizeof(buffer_t); i++){

zeroed[i] = 0;
write(ipc_fd, &zeroed[i],2);

}
close(ipc_fd);
chmod(INTERPROCESS_FILE, S_IRWXU|S_IRWXG|S_IRWXO);

}

void test_argv(char argv1[]) {
if (argv1 == NULL) {
printf("use 0 as arg1 for initial process\n \
or use 1 as arg1 for the second process\n");
exit(NULL);
}

}

In this example, run the command line

a.out 0 & a.out 1

A mutex can protect data that is shared among processes robustly. The mutex would
need to be initialized as USYNC_PROCESS_ROBUST. One process initializes the robust
process-shared mutex and writes it to a file to be mapped into memory by all

mutex_init(3THR)

Solaris
Interprocess

Robust Locking

Threads and Realtime Library Functions 99



cooperating processes (see mmap(2)). Afterwards, other independent processes can run
the same program (whether concurrently or not) and share mutex-protected data.

The following example shows how to use a USYNC_PROCESS_ROBUST type mutex.

/* cc thisfile.c -lthread */
/* To execute, run the command line "a.out & a.out 1" */
#include <sys/types.h>
#include <sys/mman.h>
#include <fcntl.h>
#include <stdio.h>
#include <thread.h>
#define INTERPROCESS_FILE "ipc-sharedfile"
typedef struct {

mutex_t Interprocess_mutex;
int Interprocess_data;

} buffer_t;
buffer_t *buffer;
int make_date_consistent();
void create_shared_memory();
int zeroed[sizeof(buffer_t)];
int ipc_fd, i=0;
main(int argc,char * argv[]) {

int rc;
if (argc > 1) {

while((ipc_fd = open(INTERPROCESS_FILE, O_RDWR)) == -1)
sleep(1);

buffer = (buffer_t *)mmap(NULL, sizeof(buffer_t),
PROT_READ|PROT_WRITE, MAP_SHARED, ipc_fd, 0);

mutex_init(&buffer->Interprocess_mutex,
USYNC_PROCESS_ROBUST,0);

} else {
create_shared_memory();
ipc_fd = open(INTERPROCESS_FILE, O_RDWR);
buffer = (buffer_t *)mmap(NULL, sizeof(buffer_t),

PROT_READ|PROT_WRITE, MAP_SHARED, ipc_fd, 0);
buffer->Interprocess_data = 0;
mutex_init(&buffer->Interprocess_mutex,

USYNC_PROCESS_ROBUST,0);
}
for(;;) {

rc = mutex_lock(&buffer->Interprocess_mutex);
switch (rc) {

case EOWNERDEAD:
/* lock acquired.
* last owner died holding the lock, try to make
* the state associated with the mutex consistent.
* If so, make the robust lock consistent by
* re-initializing it.
*/

if (make_data_consistent())
mutex_init(&buffer->Interprocess_mutex,

USYNC_PROCESS_ROBUST,0);
mutex_unlock(&buffer->Interprocess_mutex);
case ENOTRECOVERABLE:

/* lock not acquired.
* last owner got the mutex with EOWNERDEAD

mutex_init(3THR)

100 man pages section 3: Threads and Realtime Library Functions • Last Revised 10 Sep1998



* mutex is not consistent (and data?),
* so return from here
*/

exit(1);
break;

case 0:
/* no error - data is consistent */
/* do something with data */
mutex_unlock(&buffer->Interprocess_mutex);
break;

}
}

} /* end main */
void create_shared_memory() {

int i;
ipc_fd = creat(INTERPROCESS_FILE, O_CREAT|O_RDWR );
for (i=0; i<sizeof(buffer_t); i++) {

zeroed[i] = 0;
write(ipc_fd, &zeroed[i],2);

}
close(ipc_fd);
chmod(INTERPROCESS_FILE, S_IRWXU|S_IRWXG|S_IRWXO);

}

/* return 1 if able to make data consistent, otherwise 0. */
int make_data_consistent () {

buffer->Interprocess_data = 0;
return (1);

}

The following example allocates and frees memory in which a mutex is embedded.

struct record {
int field1;
int field2;
mutex_t m;

} *r;
r = malloc(sizeof(struct record));
mutex_init(&r->m, USYNC_THREAD, NULL);
/*

* The fields in this record are accessed concurrently
* by acquiring the embedded lock.
*/

The thread execution in this example is as follows:

Thread 1 executes: Thread 2 executes:

... ...
mutex_lock(&r->m); mutex_lock(&r->m);
r->field1++; localvar = r->field1;
mutex_unlock(&r->m); mutex_unlock(&r->m);

... ...

mutex_init(3THR)

Dynamically
Allocated Mutexes

Threads and Realtime Library Functions 101



Later, when a thread decides to free the memory pointed to by r, the thread should call
mutex_destroy( ) on the mutexes in this memory.

In the following example, the main thread can do a thr_join( ) on both of the above
threads. If there are no other threads using the memory in r, the main thread can now
safely free r:

for (i = 0; i < 2; i++)
thr_join(0, 0, 0);

mutex_destroy(&r->m); /* first destroy mutex */
free(r); /* Then free memory */

If the mutex is not destroyed, the program could have memory leaks.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level MT-Safe

mmap(2), shmop(2), mutex(3THR), attributes(5), standards(5)

Currently, the only supported policy is SCHED_OTHER. In Solaris, under the
SCHED_OTHER policy, there is no established order in which threads are unblocked.

In the current implementation of threads, mutex_lock(), mutex_unlock(), and
mutex_trylock() do not validate the mutex type. Therefore, an uninitialized mutex
or a mutex with an invalid type does not return EINVAL. Interfaces for mutexes with
an invalid type have unspecified behavior.

Uninitialized mutexes which are allocated locally may contain junk data. Such
mutexes need to be initialized using mutex_init().

By default, if multiple threads are waiting for a mutex, the order of acquisition is
undefined.

mutex_init(3THR)

ATTRIBUTES

SEE ALSO

NOTES

102 man pages section 3: Threads and Realtime Library Functions • Last Revised 10 Sep1998



nanosleep – high resolution sleep

cc [ flag... ] file... -lrt [ library... ]

#include <time.h>

int nanosleep(const struct timespec *rqtp, struct timespec *rmtp);

The nanosleep() function causes the current thread to be suspended from execution
until either the time interval specified by the rqtp argument has elapsed or a signal is
delivered to the calling thread and its action is to invoke a signal-catching function or
to terminate the process. The suspension time may be longer than requested because
the argument value is rounded up to an integer multiple of the sleep resolution or
because of the scheduling of other activity by the system. But, except for the case of
being interrupted by a signal, the suspension time will not be less than the time
specified by rqtp, as measured by the system clock, CLOCK_REALTIME.

The use of the nanosleep() function has no effect on the action or blockage of any
signal.

If the nanosleep() function returns because the requested time has elapsed, its
return value is 0.

If the nanosleep() function returns because it has been interrupted by a signal, the
function returns a value of −1 and sets errno to indicate the interruption. If the rmtp
argument is non-NULL, the timespec structure referenced by it is updated to contain
the amount of time remaining in the interval (the requested time minus the time
actually slept). If the rmtp argument is NULL, the remaining time is not returned.

If nanosleep() fails, it returns −1 and sets errno to indicate the error.

The nanosleep() function will fail if:

EINTR The nanosleep() function was interrupted by a signal.

EINVAL The rqtp argument specified a nanosecond value less than zero or
greater than or equal to 1000 million.

ENOSYS The nanosleep() function is not supported by this
implementation.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level MT-Safe

sleep(3C), attributes(5), time(3HEAD)

nanosleep(3RT)

NAME

SYNOPSIS

DESCRIPTION

RETURN VALUES

ERRORS

ATTRIBUTES

SEE ALSO

Threads and Realtime Library Functions 103



proc_service – process service interfaces

#include <proc_service.h>

ps_err_e ps_pdmodel(struct ps_prochandle *ph, int *data_model);

ps_err_e ps_pglobal_lookup(struct ps_prochandle *ph, const char
*object_name, const char *sym_name , psaddr_t *sym_addr);

ps_err_e ps_pglobal_sym(struct ps_prochandle *ph, const char
*object_name, const char *sym_name , ps_sym_t *sym);

ps_err_e ps_pread(struct ps_prochandle *ph, psaddr_t addr, void
*buf, size_t size);

ps_err_e ps_pwrite(struct ps_prochandle *ph, psaddr_t addr, const
void *buf, size_t size);

ps_err_e ps_pdread(struct ps_prochandle *ph, psaddr_t addr, void
*buf, size_t size);

ps_err_e ps_pdwrite(struct ps_prochandle *ph, psaddr_t addr, const
void *buf, size_t size);

ps_err_e ps_ptread(struct ps_prochandle *ph, psaddr_t addr, void
*buf, size_t size);

ps_err_e ps_ptwrite(struct ps_prochandle *ph, psaddr_t addr, const
void *buf, size_t size);

ps_err_e ps_pstop(struct ps_prochandle *ph);

ps_err_e ps_pcontinue(struct ps_prochandle *ph);

ps_err_e ps_lstop(struct ps_prochandle *ph, lwpid_t lwpid);

ps_err_e ps_lcontinue(struct ps_prochandle *ph, lwpid_t lwpid);

ps_err_e ps_lgetregs(struct ps_prochandle *ph, lwpid_t lwpid,
prgregset_t gregset);

ps_err_e ps_lsetregs(struct ps_prochandle *ph, lwpid_t lwpid,
const prgregset_t gregset);

ps_err_e ps_lgetfpregs(struct ps_prochandle *ph, lwpid_t lwpid,
prfpregset_t *fpregset);

ps_err_e ps_lsetfpregs(struct ps_prochandle *ph, lwpid_t lwpid,
const prfpregset_t *fpregset);

ps_err_e ps_pauxv(struct ps_prochandle *ph, const auxv_t **auxp);

ps_err_e ps_kill(struct ps_prochandle *ph, int sig);

ps_err_e ps_lrolltoaddr(struct ps_prochandle *ph, lwpid_t lwpid,
psaddr_t go_addr, psaddr_t stop_addr);

proc_service(3PROC)

NAME

SYNOPSIS

104 man pages section 3: Threads and Realtime Library Functions • Last Revised 16 Jan 1998



void ps_plog(const char *fmt);

ps_err_e ps_lgetxregsize(struct ps_prochandle *ph, lwpid_t lwpid,
int *xregsize);

ps_err_e ps_lgetxregs(struct ps_prochandle *ph, lwpid_t lwpid,
caddr_t xregset);

ps_err_e ps_lsetxregs(struct ps_prochandle *ph, lwpid_t lwpid,
caddr_t xregset);

ps_err_e ps_lgetLDT(struct ps_prochandle *ph, lwpid_t lwpid,
struct ssd *ldt);

Every program that links libthread_db or librtld_db must provide a set of
process control primitives that will allow libthread_db and librtld_db to access
memory and registers in the target process, to start and to stop the target process, and
to look up symbols in the target process. See libthread_db(3THR). For information
on librtld_db, refer to the Linker and Libraries Guide

Refer to the individual reference manual pages that describe these routines for a
functional specification that clients of libthread_db and librtld_db can use to
implement this required interface. <proc_service.h> lists the C declarations of
these routines

Name Description

ps_pdmodel() Returns the data model of the target
process.

ps_pglobal_lookup() Looks up the symbol in the symbol table of
the load object in the target process and
returns its address.

ps_pglobal_sym() Looks up the symbol in the symbol table of
the load object in the target process and
returns its symbol table entry.

ps_pread() Copies size bytes from the target process
to the controlling process.

ps_pwrite() Copies size bytes from the controlling
process to the target process.

ps_pdread() Identical to ps_pread().

ps_pdwrite() Identical to ps_pwrite().

ps_ptread() Identical to ps_pread().

ps_ptwrite() Identical to ps_pwrite().

ps_pstop() Stops the target process.

ps_pcontinue() Resumes target process.

proc_service(3PROC)

SPARC

IA

DESCRIPTION

FUNCTIONS

Threads and Realtime Library Functions 105



ps_lstop() Stops a single lightweight process ( LWP )
within the target process.

ps_lcontinue() Resumes a single LWP within the target
process.

ps_lgetregs() Gets the general registers of the LWP.

ps_lsetregs() Sets the general registers of the LWP.

ps_lgetfpregs() Gets the LWP‘s floating point register set.

ps_lsetfpregs() Sets the LWP‘s floating point register set.

ps_pauxv() Returns a pointer to a read-only copy of the
target process’s auxiliary vector.

ps_kill() Sends signal to target process.

ps_lrolltoaddr() Rolls the LWP out of a critical section when
the process is stopped.

ps_plog() Logs a message.

ps_lgetxregsize() Returns the size of the
architecture-dependent extra state registers.

ps_lgetxregs() Gets the extra state registers of the LWP.

ps_lsetxregs() Sets the extra state registers of the LWP.

ps_lgetLDT() Reads the local descriptor table of the LWP.

See attributes(5) for description of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT Level Safe

libthread_db(3THR), attributes(5)

Linker and Libraries Guide

proc_service(3PROC)

SPARC

IA

ATTRIBUTES

SEE ALSO

106 man pages section 3: Threads and Realtime Library Functions • Last Revised 16 Jan 1998



ps_lgetregs, ps_lsetregs, ps_lgetfpregs, ps_lsetfpregs, ps_lgetxregsize, ps_lgetxregs,
ps_lsetxregs – routines that access the target process register in libthread_db

#include <proc_service.h>

ps_err_e ps_lgetregs(struct ps_prochandle *ph, lwpid_t lid,
prgregset_t gregset);

ps_err_e ps_lsetregs(struct ps_prochandle *ph, lwpid_t lid, static
prgregset_t gregset);

ps_err_e ps_lgetfpregs(struct ps_prochandle *ph, lwpid_t lid,
prfpregset_t *fpregs);

ps_err_e ps_lsetfpregs(struct ps_prochandle *ph, lwpid_t lid,
static prfpregset_t *fpregs);

ps_err_e ps_lgetxregsize(struct ps_prochandle *ph, lwpid_t lid,
int *xregsize);

ps_err_e ps_lgetxregs(struct ps_prochandle *ph, lwpid_t lid,
caddr_t xregset);

ps_err_e ps_lsetxregs(struct ps_prochandle *ph, lwpid_t lid,
caddr_t xregset);

ps_lgetregs(), ps_lsetregs(), ps_lgetfpregs(), ps_lsetfpregs(),
ps_lgetxregsize(), ps_lgetxregs(), ps_lsetxregs() read and write register
sets from lightweight processes (LWPs) within the target process identified by ph.
ps_lgetregs() gets the general registers of the LWP identified by lid, and
ps_lsetregs() sets them. ps_lgetfpregs() gets the LWP’s floating point register
set, while ps_lsetfpregs() sets it.

ps_lgetxregsize(),ps_lgetxregs(), andps_lsetxregs() are SPARC-specific.
They do not need to be defined by a controlling process on non-SPARC architecture.
ps_lgetxregsize() returns in *xregsize the size of the architecture-dependent extra
state registers. ps_lgetxregs() gets the extra state registers, and ps_lsetxregs()
sets them.

PS_OK The call returned successfully.

PS_NOFPREGS Floating point registers are neither available for this architecture
nor for this process.

PS_NOXREGS Extra state registers are not available on this architecture.

PS_ERR The function did not return successfully.

See attributes(5) for description of the following attributes:

ps_lgetregs(3PROC)

NAME

SYNOPSIS

DESCRIPTION

SPARC Only

RETURN VALUES

ATTRIBUTES

Threads and Realtime Library Functions 107



ATTRIBUTE TYPE ATTRIBUTE VALUE

MT Level Safe

libthread(3THR), libthread_db(3THR), proc_service(3PROC),
libthread_db(3LIB), attributes(5)

ps_lgetregs(3PROC)

SEE ALSO

108 man pages section 3: Threads and Realtime Library Functions • Last Revised 30 Jan 1998



ps_pglobal_lookup, ps_pglobal_sym – look up a symbol in the symbol table of the
load object in the target process

#include <proc_service.h>

ps_err_e ps_pglobal_lookup(struct ps_prochandle *ph, const char
*object_name, const char *sym_name, psaddr_t *sym_addr);

ps_err_e ps_pglobal_sym(struct ps_prochandle *ph, const char
*object_name, const char *sym_name, ps_sym_t *sym);

ps_pglobal_lookup() looks up the symbol sym_name in the symbol table of the
load object object_name in the target process identified by ph. It returns the symbol’s
value as an address in the target process in *sym_addr.

ps_pglobal_sym() looks up the symbol sym_name in the symbol table of the load
object object_name in the target process identified by ph. It returns the symbol table
entry in *sym. The value in the symbol table entry is the symbol’s value as an address
in the target process.

PS_OK The call completed successfully.

PS_NOSYM The specified symbol was not found.

PS_ERR The function did not return successfully.

See attributes(5) for description of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT Level Safe

kill(2), libthread(3THR), libthread_db(3THR), proc_service(3PROC),
libthread_db(3LIB), attributes(5)

ps_pglobal_lookup(3PROC)

NAME

SYNOPSIS

DESCRIPTION

RETURN VALUES

ATTRIBUTES

SEE ALSO

Threads and Realtime Library Functions 109



ps_pread, ps_pwrite, ps_pdread, ps_pdwrite, ps_ptread, ps_ptwrite – interfaces in
libthread_db that target process memory access

#include <proc_service.h>

ps_err_e ps_pread(struct ps_prochandle *ph, psaddr_t addr, void
*buf, size_t size);

ps_err_e ps_pwrite(struct ps_prochandle *ph, psaddr_t addr, const
void *buf, size_t size);

ps_err_e ps_pdread(struct ps_prochandle *ph, psaddr_t addr, void
*buf, size_t size);

ps_err_e ps_pdwrite(struct ps_prochandle *ph, psaddr_t addr, const
void *buf, size_t size);

ps_err_e ps_ptread(struct ps_prochandle *ph, psaddr_t addr, void
*buf, size_t size);

ps_err_e ps_ptwrite(struct ps_prochandle *ph, psaddr_t addr, const
void *buf, size_t size);

These routines copy data between the target process’s address space and the
controlling process. ps_pread() copies size bytes from address addr in the target
process into buf in the controlling process. pr_pwrite() is like ps_pread() except
that the direction of the copy is reversed; data is copied from the controlling process to
the target process.

ps_pdread() and ps_ptread() behave identically to ps_pread().
ps_pdwrite() and ps_ptwrite() behave identically to ps_pwrite(). These
functions can be implemented as simple aliases for the corresponding primary
functions. They are artifacts of history that must be maintained.

PS_OK The call returned successfully. size bytes were copied.

PS_BADADDR Some part of the address range from addr through addr+size−1 is
not part of the target process’s address space.

PS_ERR The function did not return successfully.

See attributes(5) for description of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT Level Safe

libthread(3THR), libthread_db(3THR), proc_service(3PROC),
libthread_db(3LIB), attributes(5)

ps_pread(3PROC)

NAME

SYNOPSIS

DESCRIPTION

RETURN VALUES

ATTRIBUTES

SEE ALSO

110 man pages section 3: Threads and Realtime Library Functions • Last Revised 16 Jan 1998



ps_pstop, ps_pcontinue, ps_lstop, ps_lcontinue, ps_lrolltoaddr, ps_kill – process and
LWP control in libthread_db

#include <proc_service.h>

ps_err_e ps_pstop(struct ps_prochandle *ph);

ps_err_e ps_pcontinue(struct ps_prochandle *ph);

ps_err_e ps_lstop(struct ps_prochandle *ph, lwpid_t lwpid);

ps_err_e ps_lcontinue(struct ps_prochandle *ph, lwpid_t lwpid);

ps_err_e ps_lrolltoaddr(struct ps_prochandle *ph, lwpid_t lwpid,
psaddr_t go_addr, psaddr_t stop_addr);

ps_err_e ps_kill(struct ps_prochandle *ph, int signum);

ps_pstop() stops the target process identified by ph, while ps_pcontinue()
allows it to resume.

libthread_db() uses ps_pstop() to freeze the target process while it is under
inspection. Within the scope of any single call from outside libthread_db() to a
libthread_db() routine, libthread_db() will call ps_pstop(), at most once. If
it does, it will call ps_pcontinue() within the scope of the same routine.

The controlling process may already have stopped the target process when it calls
libthread_db(). In that case, it is not obligated to resume the target process when
libthread_db() calls ps_pcontinue(). In other words, ps_pstop() is
mandatory, while ps_pcontinue() is advisory. After ps_pstop(), the target
process must be stopped; after ps_pcontinue(), the target process may be running.

ps_lstop() and ps_lcontinue() stop and resume a single lightweight process
(LWP) within the target process ph. They are not currently used by libthread_db().

ps_lrolltoaddr() is used to roll an LWP forward out of a critical section when the
process is stopped. It is also used to run the libthread_db() agent thread on behalf
of libthread(). ps_lrolltoaddr() is always called with the target process
stopped, that is, there has been a preceding call to ps_pstop(). The specified LWP
must be continued at the address go_addr, or at its current address if go_addr is NULL.
It should then be stopped when its execution reaches stop_addr. This routine does not
return until the LWP has stopped at stop_addr.

ps_kill() directs the signal signum to the target process for which the handle is ph.
ps_kill() has the same semantics as kill(2).

PS_OK The call completed successfully. In the case of ps_pstop(), the
target process is stopped.

PS_BADLID For ps_lstop(), ps_lcontinue() and ps_lrolltoaddr();
there is no LWP with id lwipd in the target process.

PS_ERR The function did not return successfully.

ps_pstop(3PROC)

NAME

SYNOPSIS

DESCRIPTION

RETURN VALUES

Threads and Realtime Library Functions 111



See attributes(5) for description of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT Level Safe

kill(2), libthread(3THR), libthread_db(3THR), proc_service(3PROC),
libthread_db(3LIB), attributes(5)

ps_pstop(3PROC)

ATTRIBUTES

SEE ALSO

112 man pages section 3: Threads and Realtime Library Functions • Last Revised 16 Jan 1998



pthread_atfork – register fork handlers

cc –mt [ flag... ] file...– lpthread [ library... ]
#include <sys/types.h>

#include <unistd.h>

int pthread_atfork(void (*prepare) (void), void (*parent) (void),
void (*child) (void));

The pthread_atfork() function declares fork handlers to be called prior to and
following fork(2), within the thread that called fork(). The order of calls to
pthread_atfork() is significant.

Before fork() processing begins, the prepare fork handler is called. The prepare
handler is not called if its address is NULL.

The parent fork handler is called after fork() processing finishes in the parent
process, and the child fork handler is called after fork() processing finishes in the
child process. If the address of parent or child is NULL, then its handler is not called.

The prepare fork handler is called in LIFO (last-in first-out) order, whereas the parent
and child fork handlers are called in FIFO (first-in first-out) order. This calling order
allows applications to preserve locking order.

Upon successful completion, pthread_atfork() returns 0. Otherwise, an error
number is returned.

The pthread_atfork() function will fail if:

ENOMEM Insufficient table space exists to record the fork handler addresses.

Solaris threads do not offer pthread_atfork() functionality, though a Solaris
threads application may call this interface, since the two thread APIs are interoperable.
See fork(2).

EXAMPLE 1 make a library safe with respect to fork()

All multithreaded applications that call fork() in a POSIX threads program and do
more than simply call exec(2) in the child of the fork need to ensure that the child is
protected from deadlock.

Since the "fork-one" model results in duplicating only the thread that called fork(), it
is possible that at the time of the call another thread in the parent owns a lock. This
thread is not duplicated in the child, so no thread will unlock this lock in the child.
Deadlock occurs if the single thread in the child needs this lock.

The problem is more serious with locks in libraries. Since a library writer does not
know if the application using the library calls fork(), the library must protect itself
from such a deadlock scenario. If the application that links with this library calls
fork() and does not call exec() in the child, and if it needs a library lock that may

pthread_atfork(3THR)

NAME

SYNOPSIS

DESCRIPTION

RETURN VALUES

ERRORS

USAGE

EXAMPLES

Threads and Realtime Library Functions 113



EXAMPLE 1 make a library safe with respect to fork() (Continued)

be held by some other thread in the parent that is inside the library at the time of the
fork, the application deadlocks inside the library.

The following describes how to make a library safe with respect to fork() by using
pthread_atfork().

1. Identify all locks used by the library (for example {L1, . . .Ln}). Identify also
the locking order for these locks (for example {L1 . . .Ln}, as well.)

2. Add a call to pthread_atfork(f1, f2, f3) in the library’s .init section. f1,
f2, f3 are defined as follows:

f1( )
{

/* ordered in lock order */
pthread_mutex_lock(L1);
pthread_mutex_lock( . . .);
pthread_mutex_lock(Ln);

}

f2( )
{

pthread_mutex_unlock(L1);
pthread_mutex_unlock( . . .);
pthread_mutex_unlock(Ln);

}

f3( )
{

pthread_mutex_unlock(L1);
pthread_mutex_unlock( . . .);
pthread_mutex_unlock(Ln);

}

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level MT-Safe

exec(2), fork(2), atexit(3C), attributes(5), standards(5)

pthread_atfork(3THR)

ATTRIBUTES

SEE ALSO

114 man pages section 3: Threads and Realtime Library Functions • Last Revised 12 May 1999



pthread_attr_getdetachstate, pthread_attr_setdetachstate – get or set detachstate
attribute

cc –mt [ flag... ] file...– lpthread [ library... ]

#include <pthread.h>

int pthread_attr_setdetachstate(pthread_attr_t *attr, int
detachstate);

int pthread_attr_getdetachstate(const pthread_attr_t *attr, int
*detachstate);

The detachstate attribute controls whether the thread is created in a detached state. If
the thread is created detached, then use of the ID of the newly created thread by the
pthread_detach() or pthread_join() function is an error.

The pthread_attr_setdetachstate() and
pthread_attr_getdetachstate(), respectively, set and get the detachstate
attribute in the attr object.

The detachstate can be set to either PTHREAD_CREATE_DETACHED or
PTHREAD_CREATE_JOINABLE. A value of PTHREAD_CREATE_DETACHED causes all
threads created with attr to be in the detached state, whereas using a value of
PTHREAD_CREATE_JOINABLE causes all threads created with attr to be in the joinable
state. The default value of the detachstate attribute is PTHREAD_CREATE_JOINABLE.

Upon successful completion, pthread_attr_setdetachstate() and
pthread_attr_getdetachstate() return a value of 0. Otherwise, an error
number is returned to indicate the error.

The pthread_attr_getdetachstate() function stores the value of the detachstate
attribute in detachstate if successful.

The pthread_attr_setdetachstate() or pthread_attr_getdetachstate()
functions may fail if:

EINVAL attr or detachstate is invalid.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level MT-Safe

pthread_attr_init(3THR), pthread_attr_setstackaddr(3THR),
pthread_attr_setstacksize(3THR), pthread_create(3THR), attributes(5),
standards(5)

pthread_attr_getdetachstate(3THR)

NAME

SYNOPSIS

DESCRIPTION

RETURN VALUES

ERRORS

ATTRIBUTES

SEE ALSO

Threads and Realtime Library Functions 115



pthread_attr_getguardsize, pthread_attr_setguardsize – get or set the thread guardsize
attribute

cc –mt [ flag... ] file...– lpthread [ library... ]

#include <pthread.h>

int pthread_attr_getguardsize(const pthread_attr_t *attr, size_t
*guardsize);

int pthread_attr_setguardsize(pthread_attr_t *attr, size_t
guardsize);

The guardsize attribute controls the size of the guard area for the created thread’s stack.
The guardsize attribute provides protection against overflow of the stack pointer. If a
thread’s stack is created with guard protection, the implementation allocates extra
memory at the overflow end of the stack as a buffer against stack overflow of the stack
pointer. If an application overflows into this buffer an error results (possibly in a
SIGSEGV signal being delivered to the thread).

The guardsize attribute is provided to the application for two reasons:

1. Overflow protection can potentially result in wasted system resources. An
application that creates a large number of threads, and which knows its threads
will never overflow their stack, can save system resources by turning off guard
areas.

2. When threads allocate large data structures on the stack, large guard areas may be
needed to detect stack overflow.

The pthread_attr_getguardsize() function gets the guardsize attribute in the
attr object. This attribute is returned in the guardsize parameter.

The pthread_attr_setguardsize() function sets the guardsize attribute in the attr
object. The new value of this attribute is obtained from the guardsize parameter. If
guardsize is 0, a guard area will not be provided for threads created with attr. If
guardsize is greater than 0, a guard area of at least size guardsize bytes is provided for
each thread created with attr.

A conforming implementation is permitted to round up the value contained in
guardsize to a multiple of the configurable system variable PAGESIZE. If an
implementation rounds up the value of guardsize to a multiple of PAGESIZE, a call to
pthread_attr_getguardsize() specifying attr will store in the guardsize
parameter the guard size specified by the previous
pthread_attr_setguardsize() function call.

The default value of the guardsize attribute is PAGESIZE bytes. The actual value of
PAGESIZE is implementation-dependent and may not be the same on all
implementations.

If the stackaddr attribute has been set (that is, the caller is allocating and managing its
own thread stacks), the guardsize attribute is ignored and no protection will be

pthread_attr_getguardsize(3THR)

NAME

SYNOPSIS

DESCRIPTION

116 man pages section 3: Threads and Realtime Library Functions • Last Revised 28 Apr 1998



provided by the implementation. It is the responsibility of the application to manage
stack overflow along with stack allocation and management in this case.

If successful, the pthread_attr_getguardsize() and
pthread_attr_setguardsize() functions return 0. Otherwise, an error number is
returned to indicate the error.

The pthread_attr_getguardsize() and pthread_attr_setguardsize()
functions will fail if:

EINVAL The attribute attr is invalid.

EINVAL The parameter guardsize is invalid.

EINVAL The parameter guardsize contains an invalid value.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level MT-Safe

sysconf(3C), pthread_attr_init(3THR), attributes(5)

pthread_attr_getguardsize(3THR)

RETURN VALUES

ERRORS

ATTRIBUTES

SEE ALSO

Threads and Realtime Library Functions 117



pthread_attr_getinheritsched, pthread_attr_setinheritsched – get or set inheritsched
attribute

cc –mt [ flag... ] file...– lpthread [ library... ]

#include <pthread.h>

int pthread_attr_setinheritsched(pthread_attr_t *attr, int
inheritsched);

int pthread_attr_getinheritsched(const pthread_attr_t *attr, int
*inheritsched);

The functions pthread_attr_setinheritsched() and
pthread_attr_getinheritsched(), respectively, set and get the inheritsched
attribute in the attr argument.

When the attribute objects are used by pthread_create(), the inheritsched attribute
determines how the other scheduling attributes of the created thread are to be set:

PTHREAD_INHERIT_SCHED Specifies that the scheduling policy and
associated attributes are to be inherited
from the creating thread, and the
scheduling attributes in this attr argument
are to be ignored.

PTHREAD_EXPLICIT_SCHED Specifies that the scheduling policy and
associated attributes are to be set to the
corresponding values from this attribute
object.

The symbols PTHREAD_INHERIT_SCHED and PTHREAD_EXPLICIT_SCHED are
defined in the header <pthread.h>.

If successful, the pthread_attr_setinheritsched() and
pthread_attr_getinheritsched() functions return 0. Otherwise, an error
number is returned to indicate the error.

The pthread_attr_setinheritsched() or
pthread_attr_getinheritsched() functions may fail if:

EINVAL attr or inheritsched is invalid.

After these attributes have been set, a thread can be created with the specified
attributes using pthread_create(). Using these routines does not affect the current
running thread.

See attributes(5) for descriptions of the following attributes:

pthread_attr_getinheritsched(3THR)

NAME

SYNOPSIS

DESCRIPTION

RETURN VALUES

ERRORS

USAGE

ATTRIBUTES

118 man pages section 3: Threads and Realtime Library Functions • Last Revised 28 Apr 1998



ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level MT-Safe

pthread_attr_init(3THR), pthread_attr_setscope(3THR),
pthread_attr_setschedpolicy(3THR),
pthread_attr_setschedparam(3THR), pthread_create(3THR),
pthread_setsched_param(3THR), attributes(5), standards(5)

pthread_attr_getinheritsched(3THR)

SEE ALSO

Threads and Realtime Library Functions 119



pthread_attr_getschedparam, pthread_attr_setschedparam – get or set schedparam
attribute

cc –mt [ flag... ] file...– lpthread [ library... ]

#include <pthread.h>

int pthread_attr_setschedparam(pthread_attr_t *attr, const struct
sched_param *param);

int pthread_attr_getschedparam(const pthread_attr_t *attr, struct
sched_param *param);

The functions pthread_attr_setschedparam() and
pthread_attr_getschedparam(), respectively, set and get the scheduling
parameter attributes in the attr argument. The contents of the param structure are
defined in <sched.h>. For the SCHED_FIFO and SCHED_RR policies, the only
required member of param is sched_priority.

If successful, the pthread_attr_setschedparam() and
pthread_attr_getschedparam() functions return 0. Otherwise, an error number
is returned to indicate the error.

The pthread_attr_setschedparam() function may fail if:

EINVAL attr is invalid.

The pthread_attr_getschedparam() function may fail if:

EINVAL attr or param is invalid.

After these attributes have been set, a thread can be created with the specified
attributes using pthread_create(). Using these routines does not affect the current
running thread.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level MT-Safe

pthread_attr_init(3THR), pthread_attr_setscope(3THR),
pthread_attr_setinheritsched(3THR),
pthread_attr_setschedpolicy(3THR), pthread_create(3THR),
pthread_setschedparam(3THR), attributes(5), standards(5)

pthread_attr_getschedparam(3THR)

NAME

SYNOPSIS

DESCRIPTION

RETURN VALUES

ERRORS

USAGE

ATTRIBUTES

SEE ALSO

120 man pages section 3: Threads and Realtime Library Functions • Last Revised 28 Apr 1998



pthread_attr_getschedpolicy, pthread_attr_setschedpolicy – get or set schedpolicy
attribute

cc –mt [ flag... ] file...– lpthread [ library... ]

#include <pthread.h>

int pthread_attr_setschedpolicy(pthread_attr_t *attr, int policy);

int pthread_attr_getschedpolicy(const pthread_attr_t *attr, int
*policy);

The functions pthread_attr_setschedpolicy() and
pthread_attr_getschedpolicy(), respectively, set and get the schedpolicy
attribute in the attr argument.

The supported values of policy include SCHED_FIFO, SCHED_RR and SCHED_OTHER,
which are defined by the header <sched.h>. When threads executing with the
scheduling policy SCHED_FIFO or SCHED_RR are waiting on a mutex, they acquire the
mutex in priority order when the mutex is unlocked.

If successful, the pthread_attr_setschedpolicy() and
pthread_attr_getschedpolicy() functions return 0. Otherwise, an error
number is returned to indicate the error.

The pthread_attr_setschedpolicy() or pthread_attr_getschedpolicy()
function may fail if:

EINVAL attr or policy is invalid.

After these attributes have been set, a thread can be created with the specified
attributes using pthread_create(). Using these routines does not affect the current
running thread.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level MT-Safe

pthread_attr_init(3THR), pthread_attr_setscope(3THR),
pthread_attr_setinheritsched(3THR),
pthread_attr_setschedparam(3THR), pthread_create(3THR),
pthread_setschedparam(3THR), attributes(5), standards(5)

pthread_attr_getschedpolicy(3THR)

NAME

SYNOPSIS

DESCRIPTION

RETURN VALUES

ERRORS

USAGE

ATTRIBUTES

SEE ALSO

Threads and Realtime Library Functions 121



pthread_attr_getscope, pthread_attr_setscope – get or set contentionscope attribute

cc –mt [ flag... ] file...– lpthread [ library... ]

#include <pthread.h>

int pthread_attr_setscope(pthread_attr_t *attr, int contentionscope);

int pthread_attr_getscope(const pthread_attr_t *attr, int
*contentionscope);

The pthread_attr_setscope() and pthread_attr_getscope() functions are
used to set and get the contentionscope attribute in the attr object.

The pthread_attr_setscope() and pthread_attr_getscope() functions set
and get the contentionscope thread attribute in the attr object. The contentionscope value
may be set to the following:

PTHREAD_SCOPE_SYSTEM Indicates system scheduling contention scope. This
thread is permanently "bound" to an LWP, and is also
called a bound thread.

PTHREAD_SCOPE_PROCESS Indicates process scheduling contention scope. This
thread is not "bound" to an LWP, and is also called an
unbound thread. PTHREAD_SCOPE_PROCESS, or
unbound, is the default.

PTHREAD_SCOPE_SYSTEM and PTHREAD_SCOPE_PROCESS are defined by the header
<pthread.h>.

If successful, the pthread_attr_setscope() and pthread_attr_getscope()
functions return 0. Otherwise, an error number is returned to indicate the error.

The pthread_attr_setscope(), or pthread_attr_getscope(), function may
fail if:

EINVAL attr or contentionscope is invalid.

After these attributes have been set, a thread can be created with the specified
attributes using pthread_create(). Using these routines does not affect the current
running thread.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level MT-Safe

pthread_attr_init(3THR), pthread_attr_setinheritsched(3THR),
pthread_attr_setschedpolicy(3THR),

pthread_attr_getscope(3THR)

NAME

SYNOPSIS

DESCRIPTION

RETURN VALUES

ERRORS

USAGE

ATTRIBUTES

SEE ALSO

122 man pages section 3: Threads and Realtime Library Functions • Last Revised 28 Apr 1998



pthread_attr_setschedparam(3THR), pthread_create(3THR),
pthread_setschedparam(3THR), attributes(5), standards(5)

pthread_attr_getscope(3THR)

Threads and Realtime Library Functions 123



pthread_attr_getstackaddr, pthread_attr_setstackaddr – get or set stackaddr attribute

cc –mt [ flag... ] file...– lpthread [ library... ]

#include <pthread.h>

int pthread_attr_setstackaddr(pthread_attr_t *attr, void *stackaddr);

int pthread_attr_getstackaddr(const pthread_attr_t *attr, void
**stackaddr);

The functions pthread_attr_setstackaddr() and
pthread_attr_getstackaddr(), respectively, set and get the thread creation
stackaddr attribute in the attr object. The stackaddr default is NULL. See
pthread_create(3THR).

The stackaddr attribute specifies the location of storage to be used for the created
thread’s stack. The size of the storage is at least PTHREAD_STACK_MIN.

Upon successful completion, pthread_attr_setstackaddr() and
pthread_attr_getstackaddr() return a value of 0. Otherwise, an error number
is returned to indicate the error.

If successful, the pthread_attr_getstackaddr() function stores the stackaddr
attribute value in stackaddr.

The pthread_attr_setstackaddr() function may fail if:

EINVAL attr is invalid.

The pthread_attr_getstackaddr() function may fail if:

EINVAL attr or stackaddr is invalid.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level MT-Safe

pthread_attr_init(3THR), pthread_attr_setdetachstate(3THR),
pthread_attr_setstacksize(3THR), pthread_create(3THR), attributes(5),
standards(5)

pthread_attr_getstackaddr(3THR)

NAME

SYNOPSIS

DESCRIPTION

RETURN VALUES

ERRORS

ATTRIBUTES

SEE ALSO

124 man pages section 3: Threads and Realtime Library Functions • Last Revised 28 Apr 1998



pthread_attr_getstacksize, pthread_attr_setstacksize – get or set stacksize attribute

cc –mt [ flag... ] file...– lpthread [ library... ]

#include <pthread.h>

int pthread_attr_setstacksize(pthread_attr_t *attr, size_t
stacksize);

int pthread_attr_getstacksize(const pthread_attr_t *attr, size_t
*stacksize);

The functions pthread_attr_setstacksize() and
pthread_attr_getstacksize(), respectively, set and get the thread creation
stacksize attribute in the attr object.

The stacksize attribute defines the minimum stack size (in bytes) allocated for the
created threads stack. When the stacksize argument is NULL, the default stack size
becomes 1 megabyte for 32-bit processes and 2 megabytes for 64-bit processes.

Upon successful completion, pthread_attr_setstacksize() and
pthread_attr_getstacksize() return a value of 0. Otherwise, an error number
is returned to indicate the error. The pthread_attr_getstacksize() function
stores the stacksize attribute value in stacksize if successful.

The pthread_attr_setstacksize() or pthread_attr_getstacksize()
function may fail if:

EINVAL attr or stacksize is invalid.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level MT-Safe

pthread_attr_init(3THR), pthread_attr_setstackaddr(3THR),
pthread_attr_setdetachstate(3THR), pthread_create(3THR),
attributes(5), standards(5)

pthread_attr_getstacksize(3THR)

NAME

SYNOPSIS

DESCRIPTION

RETURN VALUES

ERRORS

ATTRIBUTES

SEE ALSO

Threads and Realtime Library Functions 125



pthread_attr_init, pthread_attr_destroy – initialize or destroy threads attribute object

cc –mt [ flag... ] file...– lpthread [ library... ]

#include <pthread.h>

int pthread_attr_init(pthread_attr_t *attr);

int pthread_attr_destroy(pthread_attr_t *attr);

The function pthread_attr_init() initializes a thread attributes object attr with
the default value for all of the individual attributes used by a given implementation.

The resulting attribute object (possibly modified by setting individual attribute
values), when used by pthread_create(), defines the attributes of the thread
created. A single attributes object can be used in multiple simultaneous calls to
pthread_create().

The pthread_attr_init() function initializes a thread attributes object ( attr) with
the default value for each attribute as follows:

Attribute Default Value Meaning of Default

contentionscope PTHREAD_SCOPE_PROCESS resource competition within
process

detachstate PTHREAD_CREATE_JOINABLE joinable by other threads

stackaddr NULL stack allocated by system

stacksize NULL 1 or 2 megabyte

priority 0 priority of the thread

policy SCHED_OTHER determined by system

inheritsched PTHREAD_EXPLICIT_SCHED scheduling policy and
parameters not inherited but
explicitly defined by the
attribute object

guardsize PAGESIZE size of guard area for a thread’s
created stack

The pthread_attr_destroy() function destroys a thread attributes object ( attr),
which cannot be reused until it is reinitialized. An implementation may cause
pthread_attr_destroy() to set attr to an implementation-dependent invalid
value. The behavior of using the attribute after it has been destroyed is undefined.

Upon successful completion, pthread_attr_init() and
pthread_attr_destroy() return a value of 0. Otherwise, an error number is
returned to indicate the error.

pthread_attr_init(3THR)

NAME

SYNOPSIS

DESCRIPTION

RETURN VALUES

126 man pages section 3: Threads and Realtime Library Functions • Last Revised 28 Apr 1998



The pthread_attr_init() function will fail if:

ENOMEM Insufficient memory exists to initialize the thread attributes object.

The pthread_attr_destroy() function may fail if:

EINVAL attr is invalid.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level MT-Safe

sysconf(3C), pthread_attr_getdetachstate(3THR),
pthread_attr_getguardsize(3THR),
pthread_attr_getinheritsched(3THR),
pthread_attr_getschedparam(3THR),
pthread_attr_getschedpolicy(3THR), pthread_attr_getscope(3THR),
pthread_attr_getstackaddr(3THR), pthread_attr_getstacksize(3THR),
pthread_attr_setdetachstate(3THR), pthread_attr_setguardsize(3THR),
pthread_attr_setinheritsched(3THR),
pthread_attr_setschedparam(3THR),
pthread_attr_setschedpolicy(3THR), pthread_attr_setscope(3THR),
pthread_attr_setstackaddr(3THR), pthread_attr_setstacksize(3THR),
pthread_create(3THR), attributes(5), standards(5)

pthread_attr_init(3THR)

ERRORS

ATTRIBUTES

SEE ALSO

Threads and Realtime Library Functions 127



pthread_cancel – cancel execution of a thread

cc –mt [ flag... ] file...– lpthread [ library... ]

#include <pthread.h>

int pthread_cancel(pthread_t target_thread);

The pthread_cancel() function requests that target_thread be canceled.

By default, cancellation is deferred until target_thread reaches a cancellation point. See
cancellation(3THR).

Cancellation cleanup handlers for target_thread are called when the cancellation is
acted on. Upon return of the last cancellation cleanup handler, the thread-specific data
destructor functions are called for target_thread. target_thread is terminated when the
last destructor function returns.

The cancellation processing in target_thread runs asynchronously with respect to the
calling thread returning from pthread_cancel().

If successful, the pthread_cancel() function returns 0. Otherwise, an error number
is returned to indicate the error.

The pthread_cancel() function may fail if:

ESRCH No thread was found with an ID corresponding to that specified
by the given thread ID, target_thread.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level MT-Safe

cancellation(3THR), condition(3THR), pthread_cleanup_pop(3THR),
pthread_cleanup_push(3THR), pthread_cond_wait(3THR),
pthread_cond_timedwait(3THR), pthread_exit(3THR),
pthread_join(3THR), pthread_setcancelstate(3THR),
pthread_setcanceltype(3THR), pthread_testcancel(3THR), setjmp(3C),
attributes(5)

See cancellation(3THR) for a discussion of cancellation concepts.

pthread_cancel(3THR)

NAME

SYNOPSIS

DESCRIPTION

RETURN VALUES

ERRORS

ATTRIBUTES

SEE ALSO

NOTES

128 man pages section 3: Threads and Realtime Library Functions • Last Revised 7 May 1998



pthread_cleanup_pop – pop a thread cancellation cleanup handler

cc –mt [ flag... ] file...– lpthread [ library... ]

#include <pthread.h>

void pthread_cleanup_pop(intexecute);

pthread_cleanup_pop() removes the cleanup handler routine at the top of the
cancellation cleanup stack of the calling thread and executes it if execute is non-zero.

When the thread calls pthread_cleanup_pop() with a non-zero execute argument,
the argument at the top of the stack is popped and executed. An argument of 0 pops
the handler without executing it.

The Solaris system generates a compile time error if pthread_cleanup_push()
does not have a matching pthread-cleanup_pop( ).

Be aware that using longjmp() or siglongjmp() to jump into or out of a push/pop
pair can lead to trouble, as either the matching push or the matching pop statement
might not get executed.

The pthread_cleanup_pop() function returns no value.

No errors are defined.

The pthread_cleanup_pop() function will not return an error code of EINTR.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level MT-Safe

cancellation(3THR), condition(3THR), pthread_cancel(3THR),
pthread_cleanup_push(3THR), pthread_exit(3THR), pthread_join(3THR),
pthread_setcancelstate(3THR), pthread_setcanceltype(3THR),
pthread_testcancel(3THR), setjmp(3C), attributes(5)

See cancellation(3THR) for a discussion of cancellation concepts.

pthread_cleanup_pop(3THR)

NAME

SYNOPSIS

DESCRIPTION

RETURN VALUES

ERRORS

ATTRIBUTES

SEE ALSO

NOTES

Threads and Realtime Library Functions 129



pthread_cleanup_push – push a thread cancellation cleanup handler

cc –mt [ flag... ] file...– lpthread [ library... ]

#include <pthread.h>

void pthread_cleanup_push(void (*handler, void *),void *arg);

pthread_cleanup_push() pushes the specified cancellation cleanup handler
routine, handler, onto the cancellation cleanup stack of the calling thread.

When a thread exits or is canceled and its cancellation cleanup stack is not empty, the
cleanup handlers are invoked with the argument arg in last in, first out (LIFO) order
from the cancellation cleanup stack.

The Solaris system generates a compile time error if pthread_cleanup_push()
does not have a matching pthread_cleanup_pop().

Be aware that using longjmp() or siglongjmp() to jump into or out of a push/pop
pair can lead to trouble, as either the matching push or the matching pop statement
might not get executed.

The pthread_cleanup_push() function returns no value.

No errors are defined.

The pthread_cleanup_push() function will not return an error code of EINTR.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level MT-Safe

cancellation(3THR), condition(3THR), longjmp(3C),
pthread_cancel(3THR), pthread_cleanup_pop(3THR), pthread_exit(3THR),
pthread_join(3THR), pthread_setcancelstate(3THR),
pthread_setcanceltype(3THR), pthread_testcancel(3THR), attributes(5)

See cancellation(3THR) for a discussion of cancellation concepts.

pthread_cleanup_push(3THR)

NAME

SYNOPSIS

DESCRIPTION

RETURN VALUES

ERRORS

ATTRIBUTES

SEE ALSO

NOTES

130 man pages section 3: Threads and Realtime Library Functions • Last Revised 28 Apr 1998



pthread_condattr_getpshared, pthread_condattr_setpshared – get or set the
process-shared condition variable attributes

cc –mt [ flag... ] file...– lpthread [ library... ]

#include <pthread.h>

int pthread_condattr_getpshared(const pthread_condattr_t *attr,
int *pshared);

int pthread_condattr_setpshared(pthread_condattr_t *attr, int
pshared);

The pthread_condattr_getpshared() function obtains the value of the
process-shared attribute from the attributes object referenced by attr. The
pthread_condattr_setpshared() function is used to set the process-shared
attribute in an initialized attributes object referenced by attr.

The process-shared attribute is set to PTHREAD_PROCESS_SHARED to permit a condition
variable to be operated upon by any thread that has access to the memory where the
condition variable is allocated, even if the condition variable is allocated in memory
that is shared by multiple processes. If the process-shared attribute is
PTHREAD_PROCESS_PRIVATE, the condition variable will only be operated upon by
threads created within the same process as the thread that initialized the condition
variable; if threads of differing processes attempt to operate on such a condition
variable, the behavior is undefined. The default value of the attribute is
PTHREAD_PROCESS_PRIVATE.

Additional attributes, their default values, and the names of the associated functions
to get and set those attribute values are implementation-dependent.

If successful, the pthread_condattr_setpshared() function returns 0.
Otherwise, an error number is returned to indicate the error.

If successful, the pthread_condattr_getpshared() function returns 0 and stores
the value of the process-shared attribute of attr into the object referenced by the pshared
parameter. Otherwise, an error number is returned to indicate the error.

The pthread_condattr_getpshared() and
pthread_condattr_setpshared() functions may fail if:

EINVAL The value specified by attr is invalid.

The pthread_condattr_setpshared() function will fail if:

EINVAL The new value specified for the attribute is outside the range of
legal values for that attribute.

See attributes(5) for descriptions of the following attributes:

pthread_condattr_getpshared(3THR)

NAME

SYNOPSIS

DESCRIPTION

RETURN VALUES

ERRORS

ATTRIBUTES

Threads and Realtime Library Functions 131



ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level MT-Safe

pthread_condattr_init(3THR), pthread_create(3THR),
pthread_mutex_init(3THR), pthread_cond_init(3THR), attributes(5)

pthread_condattr_getpshared(3THR)

SEE ALSO

132 man pages section 3: Threads and Realtime Library Functions • Last Revised 4 Jun 1998



pthread_condattr_init, pthread_condattr_destroy – initialize or destroy condition
variable attributes object

cc –mt [ flag... ] file...– lpthread [ library... ]

#include <pthread.h>

int pthread_condattr_init(pthread_condattr_t *attr);

int pthread_condattr_destroy(pthread_condattr_t *attr);

The function pthread_condattr_init() initializes a condition variable attributes
object attr with the default value for all of the attributes defined by the
implementation.

At present, the only attribute available is the scope of condition variables. The default
scope of the attribute is PTHREAD_PROCESS_PRIVATE.

Attempts to initialize previously initialized condition variable attributes object will
leave the storage allocated by the previous initialization unallocated.

After a condition variable attributes object has been used to initialize one or more
condition variables, any function affecting the attributes object (including destruction)
does not affect any previously initialized condition variables.

The pthread_condattr_destroy() function destroys a condition variable
attributes object; the object becomes, in effect, uninitialized. An implementation may
cause pthread_condattr_destroy() to set the object referenced by attr to an
invalid value. A destroyed condition variable attributes object can be re-initialized
using pthread_condattr_init(); the results of otherwise referencing the object
after it has been destroyed are undefined.

Additional attributes, their default values, and the names of the associated functions
to get and set those attribute values are implementation-dependent.

If successful, the pthread_condattr_init() and
pthread_condattr_destroy() functions return 0. Otherwise, an error number is
returned to indicate the error.

The pthread_condattr_init() function will fail if:

ENOMEM Insufficient memory exists to initialize the condition variable
attributes object.

The pthread_condattr_destroy() function may fail if:

EINVAL The value specified by attr is invalid.

See attributes(5) for descriptions of the following attributes:

pthread_condattr_init(3THR)

NAME

SYNOPSIS

DESCRIPTION

RETURN VALUES

ERRORS

ATTRIBUTES

Threads and Realtime Library Functions 133



ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level MT-Safe

pthread_condattr_getpshared(3THR),
pthread_condattr_setpshared(3THR), pthread_cond_init(3THR),
pthread_create(3THR), pthread_mutex_init(3THR), attributes(5)

pthread_condattr_init(3THR)

SEE ALSO

134 man pages section 3: Threads and Realtime Library Functions • Last Revised 4 Jun 1998



pthread_cond_init, pthread_cond_destroy – initialize or destroy condition variables

cc –mt [ flag... ] file...– lpthread [ library... ]

#include <pthread.h>

int pthread_cond_init(pthread_cond_t *cond, const
pthread_condattr_t *attr);

int pthread_cond_destroy(pthread_cond_t *cond);

pthread_cond_t cond= PTHREAD_COND_INITIALIZER;

The function pthread_cond_init() initializes the condition variable referenced by
cond with attributes referenced by attr. If attr is NULL, the default condition variable
attributes are used; the effect is the same as passing the address of a default condition
variable attributes object. See pthread_condattr_init(3THR). Upon successful
initialization, the state of the condition variable becomes initialized.

Attempting to initialize an already initialized. condition variable results in undefined
behavior.

The function pthread_cond_destroy() destroys the given condition variable
specified by cond; the object becomes, in effect, uninitialized. An implementation may
cause pthread_cond_destroy() to set the object referenced by cond to an invalid
value. A destroyed condition variable object can be re-initialized using
pthread_cond_init(); the results of otherwise referencing the object after it has
been destroyed are undefined.

It is safe to destroy an initialized condition variable upon which no threads are
currently blocked. Attempting to destroy a condition variable upon which other
threads are currently blocked results in undefined behavior.

In cases where default condition variable attributes are appropriate, the macro
PTHREAD_COND_INITIALIZER can be used to initialize condition variables that are
statically allocated. The effect is equivalent to dynamic initialization by a call to
pthread_cond_init() with parameter attr specified as NULL, except that no error
checks are performed.

If successful, the pthread_cond_init() and pthread_cond_destroy()
functions return 0. Otherwise, an error number is returned to indicate the error. The
EBUSY and EINVAL error checks, if implemented, act as if they were performed
immediately at the beginning of processing for the function and caused an error return
prior to modifying the state of the condition variable specified by cond.

The pthread_cond_init() function will fail if:

EAGAIN The system lacked the necessary resources (other than memory) to
initialize another condition variable.

ENOMEM Insufficient memory exists to initialize the condition variable.

pthread_cond_init(3THR)

NAME

SYNOPSIS

DESCRIPTION

RETURN VALUES

ERRORS

Threads and Realtime Library Functions 135



The pthread_cond_init() function may fail if:

EBUSY The implementation has detected an attempt to re-initialize the
object referenced by cond, a previously initialized, but not yet
destroyed, condition variable.

EINVAL The value specified by attr is invalid.

The pthread_cond_destroy() function may fail if:

EBUSY The implementation has detected an attempt to destroy the object
referenced by cond while it is referenced (for example, while being
used in a pthread_cond_wait() or
pthread_cond_timedwait()) by another thread.

EINVAL The value specified by cond is invalid.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level MT-Safe

condition(3THR), pthread_cond_signal(3THR),
pthread_cond_broadcast(3THR), pthread_cond_wait(3THR),
pthread_cond_timedwait(3THR), pthread_condattr_init(3THR),
attributes(5), standards(5)

pthread_cond_init(3THR)

ATTRIBUTES

SEE ALSO

136 man pages section 3: Threads and Realtime Library Functions • Last Revised 6 Jun 1998



pthread_cond_signal, pthread_cond_broadcast – signal or broadcast a condition

cc –mt [ flag... ] file...– lpthread [ library... ]

#include <pthread.h>

int pthread_cond_signal(pthread_cond_t *cond);

int pthread_cond_broadcast(pthread_cond_t *cond);

These two functions are used to unblock threads blocked on a condition variable.

The pthread_cond_signal() call unblocks at least one of the threads that are
blocked on the specified condition variable cond (if any threads are blocked on cond).

The pthread_cond_broadcast() call unblocks all threads currently blocked on the
specified condition variable cond.

If more than one thread is blocked on a condition variable, the scheduling policy
determines the order in which threads are unblocked. When each thread unblocked as
a result of a pthread_cond_signal() or pthread_cond_broadcast() returns
from its call to pthread_cond_wait() or pthread_cond_timedwait(), the
thread owns the mutex with which it called pthread_cond_wait() or
pthread_cond_timedwait(). The thread(s) that are unblocked contend for the
mutex according to the scheduling policy (if applicable), and as if each had called
pthread_mutex_lock().

The pthread_cond_signal() or pthread_cond_broadcast() functions may be
called by a thread whether or not it currently owns the mutex that threads calling
pthread_cond_wait() or pthread_cond_timedwait() have associated with the
condition variable during their waits; however, if predictable scheduling behavior is
required, then that mutex is locked by the thread calling pthread_cond_signal()
or pthread_cond_broadcast().

The pthread_cond_signal() and pthread_cond_broadcast() functions have
no effect if there are no threads currently blocked on cond.

If successful, the pthread_cond_signal() and pthread_cond_broadcast()
functions return 0. Otherwise, an error number is returned to indicate the error.

The pthread_cond_signal() and pthread_cond_broadcast() function may
fail if:

EINVAL The value cond does not refer to an initialized condition variable.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level MT-Safe

pthread_cond_signal(3THR)

NAME

SYNOPSIS

DESCRIPTION

RETURN VALUES

ERRORS

ATTRIBUTES

Threads and Realtime Library Functions 137



condition(3THR), pthread_cond_init(3THR), pthread_cond_wait(3THR),
pthread_cond_timedwait(3THR), attributes(5), standards(5)

pthread_cond_signal(3THR)

SEE ALSO

138 man pages section 3: Threads and Realtime Library Functions • Last Revised 8 Jun 1998



pthread_cond_wait, pthread_cond_timedwait, pthread_cond_reltimedwait_np – wait
on a condition

cc –mt [ flag... ] file... –lpthread [ -lrt library... ]

#include <pthread.h>

int pthread_cond_wait(pthread_cond_t *cond, pthread_mutex_t
*mutex);

int pthread_cond_timedwait(pthread_cond_t *cond, pthread_mutex_t
*mutex, const struct timespec *abstime);

int pthread_cond_reltimedwait_np(pthread_cond_t *cond,
pthread_mutex_t *mutex, const struct timespec *reltime);

The pthread_cond_wait(), pthread_cond_timedwait(), and
pthread_cond_reltimedwait_np() functions are used to block on a condition
variable. They are called with mutex locked by the calling thread or undefined
behaviour will result.

These functions atomically release mutex and cause the calling thread to block on the
condition variable cond; atomically here means ‘‘atomically with respect to access by
another thread to the mutex and then the condition variable’’. That is, if another
thread is able to acquire the mutex after the about-to-block thread has released it, then
a subsequent call to pthread_cond_signal() or pthread_cond_broadcast()
in that thread behaves as if it were issued after the about-to-block thread has blocked.

Upon successful return, the mutex has been locked and is owned by the calling thread.

When using condition variables there is always a boolean predicate, an invariant,
associated with each condition wait that must be true before the thread should
proceed. Spurious wakeups from the pthread_cond_wait(),
pthread_cond_timedwait(), or pthread_cond_reltimedwait_np() functions
may occur. Since the return from pthread_cond_wait(),
pthread_cond_timedwait(), or pthread_cond_reltimedwait_np() does not
imply anything about the value of this predicate, the predicate should always be
re-evaluated.

The order in which blocked threads are awakened by pthread_cond_signal() or
pthread_cond_broadcast() is determined by the scheduling policy. See
pthreads(3THR).

The effect of using more than one mutex for concurrent pthread_cond_wait(),
pthread_cond_timedwait(), or pthread_cond_reltimedwait_np()
operations on the same condition variable will result in undefined behavior.

A condition wait (whether timed or not) is a cancellation point. When the cancelability
enable state of a thread is set to PTHREAD_CANCEL_DEFERRED, a side effect of acting
upon a cancellation request while in a condition wait is that the mutex is re-acquired
before calling the first cancellation cleanup handler.

pthread_cond_wait(3THR)

NAME

SYNOPSIS

DESCRIPTION

Threads and Realtime Library Functions 139



A thread that has been unblocked because it has been canceled while blocked in a call
to pthread_cond_wait() or pthread_cond_timedwait() does not consume
any condition signal that may be directed concurrently at the condition variable if
there are other threads blocked on the condition variable.

The pthread_cond_timedwait() function is the same as pthread_cond_wait()
except that an error is returned if the absolute time specified by abstime passes (that is,
system time equals or exceeds abstime) before the condition cond is signaled or
broadcasted, or if the absolute time specified by abstime has already been passed at the
time of the call. When such time-outs occur, pthread_cond_timedwait() will
nonetheless release and reacquire the mutex referenced by mutex. The function
pthread_cond_timedwait() is also a cancellation point.

The pthread_cond_reltimedwait_np() function is a non-standard extension
provided by the Solaris version of pthreads as indicated by the ‘‘_np’’ (non-portable)
suffix. The pthread_cond_reltimedwait_np() function is the same as
pthread_cond_timedwait() except that the reltime argument specifies a
non-negative time relative to the current system time rather than an absolute time. An
error value is returned if the relative time passes (that is, system time equals or
exceeds the starting system time plus the relative time) before the condition cond is
signaled or broadcasted. When such timeouts occur,
pthread_cond_reltimedwait_np() releases and reacquires the mutex referenced
by mutex. The pthread_cond_reltimedwait_np() function is also a cancellation
point.

If a signal is delivered to a thread waiting for a condition variable, upon return from
the signal handler the thread resumes waiting for the condition variable as if it was
not interrupted, or it returns 0 due to spurious wakeup.

Except in the case of ETIMEDOUT, all these error checks act as if they were performed
immediately at the beginning of processing for the function and cause an error return,
in effect, prior to modifying the state of the mutex specified by mutex or the condition
variable specified by cond.

Upon successful completion, 0 is returned. Otherwise, an error value is returned to
indicate the error.

The pthread_cond_timedwait() function will fail if:

ETIMEDOUT The absolute time specified by abstime to
pthread_cond_timedwait() has passed.

The pthread_cond_reltimedwait_np() function will fail if:

EINVAL The value specified by reltime is invalid.

ETIMEDOUT The relative time specified by reltime to
pthread_cond_reltimedwait_np() has passed.

pthread_cond_wait(3THR)

RETURN VALUES

ERRORS

140 man pages section 3: Threads and Realtime Library Functions • Last Revised 16 Apr 2001



The pthread_cond_wait() and pthread_cond_timedwait() functions may fail
if:

EINVAL The value specified by abstime is invalid. This condition is
reported.

EINVAL The value specified by cond or mutex is invalid. This condition is
not reported.

EINVAL Different mutexes were supplied for concurrent
pthread_cond_wait() or pthread_cond_timedwait(),
operations on the same condition variable. This condition is not
reported.

EINVAL The mutex was not owned by the current thread at the time of the
call. This condition is not reported.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level MT-Safe

condition(3THR), pthread_cond_signal(3THR),
pthread_cond_broadcast(3THR), attributes(5), standards(5)

pthread_cond_wait(3THR)

ATTRIBUTES

SEE ALSO

Threads and Realtime Library Functions 141



pthread_create – create a thread

cc –mt [ flag... ] file...– lpthread [ library... ]

#include <pthread.h>

int pthread_create(pthread_t *thread, const pthread_attr_t *attr,
void *(*start_routine, void*),void *arg);

The pthread_create() function is used to create a new thread, with attributes
specified by attr, within a process. If attr is NULL, the default attributes are used. (See
pthread_attr_init(3THR)). If the attributes specified by attr are modified later, the
thread’s attributes are not affected. Upon successful completion, pthread_create()
stores the ID of the created thread in the location referenced by thread.

The thread is created executing start_routine with arg as its sole argument. If the
start_routine returns, the effect is as if there was an implicit call to pthread_exit()
using the return value of start_routine as the exit status. Note that the thread in which
main() was originally invoked differs from this. When it returns from main(), the
effect is as if there was an implicit call to exit() using the return value of main() as
the exit status.

The signal state of the new thread is initialised as follows:

� The signal mask is inherited from the creating thread.
� The set of signals pending for the new thread is empty.

Default thread creation:

pthread_t tid;
void *start_func(void *), *arg;

pthread_create(&tid, NULL, start_func, arg);

This would have the same effect as:

pthread_attr_t attr;

pthread_attr_init(&attr); /* initialize attr with default attributes */
pthread_create(&tid, &attr, start_func, arg);

User-defined thread creation: To create a thread that is scheduled on a system-wide
basis, use:

pthread_attr_init(&attr); /* initialize attr with default attributes */
pthread_attr_setscope(&attr, PTHREAD_SCOPE_SYSTEM); /* system-wide contention */
pthread_create(&tid, &attr, start_func, arg);

To customize the attributes for POSIX threads, see pthread_attr_init(3THR).

A new thread created with pthread_create() uses the stack specified by the
stackaddr attribute, and the stack continues for the number of bytes specified by the
stacksize attribute. By default, the stack size is 1 megabyte for 32-bit processes and 2
megabyte for 64-bit processes (see pthread_attr_setstacksize(3THR)). If the

pthread_create(3THR)

NAME

SYNOPSIS

DESCRIPTION

142 man pages section 3: Threads and Realtime Library Functions • Last Revised 15 May 1998



default is used for both the stackaddr and stacksize attributes, pthread_create()
creates a stack for the new thread with at least 1 megabyte for 32-bit processes and 2
megabyte for 64-bit processes. (For customizing stack sizes, see NOTES).

If pthread_create() fails, no new thread is created and the contents of the location
referenced by thread are undefined.

If successful, the pthread_create() function returns 0. Otherwise, an error number
is returned to indicate the error.

The pthread_create() function will fail if:

ENOMEM The system lacked the necessary resources to create another
thread.

EINVAL The value specified by attr is invalid.

EPERM The caller does not have appropriate permission to set the required
scheduling parameters or scheduling policy.

EXAMPLE 1 This is an example of concurrency with multi-threading. Since POSIX threads
and Solaris threads are fully compatible even within the same process, this example uses
pthread_create() if you execute a.out 0, or thr_create() if you execute a.out 1.

Five threads are created that simultaneously perform a time-consuming function,
sleep(10). If the execution of this process is timed, the results will show that all five
individual calls to sleep for ten-seconds completed in about ten seconds, even on a
uniprocessor. If a single-threaded process calls sleep(10) five times, the execution
time will be about 50-seconds.

The command-line to time this process is:

/usr/bin/time a.out 0 (for POSIX threading)

or

/usr/bin/time a.out 1 (for Solaris threading)

/* cc thisfile.c -lthread -lpthread */
#define _REENTRANT /* basic 3-lines for threads */
#include <pthread.h>
#include <thread.h>

#define NUM_THREADS 5
#define SLEEP_TIME 10

void *sleeping(void *); /* thread routine */
int i;
thread_t tid[NUM_THREADS]; /* array of thread IDs */

int
main(int argc, char *argv[])
{

if (argc == 1) {

pthread_create(3THR)

RETURN VALUES

ERRORS

EXAMPLES

Threads and Realtime Library Functions 143



EXAMPLE 1 This is an example of concurrency with multi-threading. Since POSIX threads
and Solaris threads are fully compatible even within the same process, this example uses
pthread_create() if you execute a.out 0, or thr_create() if you execute a.out
1. (Continued)

printf("use 0 as arg1 to use pthread_create( )\n");
printf("or use 1 as arg1 to use thr_create( )\n");
return (1);

}

switch (*argv[1]) {
case ’0’: /* POSIX */

for ( i = 0; i < NUM_THREADS; i++)
pthread_create(&tid[i], NULL, sleeping,

(void *)SLEEP_TIME);
for ( i = 0; i < NUM_THREADS; i++)

pthread_join(tid[i], NULL);
break;

case ’1’: /* Solaris */
for ( i = 0; i < NUM_THREADS; i++)

thr_create(NULL, 0, sleeping, (void *)SLEEP_TIME, 0,
&tid[i]);

while (thr_join(NULL, NULL, NULL) == 0)
;

break;
} /* switch */
printf("main( ) reporting that all %d threads have terminated\n", i);
return (0);

} /* main */

void *
sleeping(void *arg)
{

int sleep_time = (int)arg;
printf("thread %d sleeping %d seconds ...\n", thr_self( ), sleep_time);
sleep(sleep_time);
printf("\nthread %d awakening\n", thr_self( ));
return (NULL);

}

EXAMPLE 2 If main() had not waited for the completion of the other threads (using
pthread_join(3THR) or thr_join(3THR)), it would have continued to process
concurrently until it reached the end of its routine and the entire process would have exited
prematurely (see exit(2)).

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level MT-Safe

pthread_create(3THR)

ATTRIBUTES

144 man pages section 3: Threads and Realtime Library Functions • Last Revised 15 May 1998



fork(2), sysconf(3C), pthread_attr_init(3THR), pthread_cancel(3THR),
pthread_exit(3THR), pthread_join(3THR), attributes(5), standards(5)

MT application threads execute independently of each other, thus their relative
behavior is unpredictable. Therefore, it is possible for the thread executing main() to
finish before all other user application threads.

pthread_join(3THR), on the other hand, must specify the terminating thread (IDs)
for which it will wait.

A user-specified stack size must be greater than the value PTHREAD_STACK_MIN. A
minimum stack size may not accommodate the stack frame for the user thread
function start_func. If a stack size is specified, it must accommodate start_func
requirements and the functions that it may call in turn, in addition to the minimum
requirement.

It is usually very difficult to determine the runtime stack requirements for a thread.
PTHREAD_STACK_MIN specifies how much stack storage is required to execute a NULL
start_func. The total runtime requirements for stack storage are dependent on the
storage required to do runtime linking, the amount of storage required by library
runtimes (as printf()) that your thread calls. Since these storage parameters are not
known before the program runs, it is best to use default stacks. If you know your
runtime requirements or decide to use stacks that are larger than the default, then it
makes sense to specify your own stacks.

pthread_create(3THR)

SEE ALSO

NOTES

Threads and Realtime Library Functions 145



pthread_detach – detach a thread

cc –mt [ flag... ] file...– lpthread [ library... ]

#include <pthread.h>

int pthread_detach(pthread_t thread);

The pthread_detach() function is used to indicate to the implementation that
storage for the thread thread can be reclaimed when that thread terminates. In other
words, pthread_detach() dynamically resets the detachstate attribute of the thread
to PTHREAD_CREATE_DETACHED. After a successful call to this function, it would not
be necessary to reclaim the thread using pthread_join(). See
pthread_join(3THR). If thread has not terminated, pthread_detach() will not
cause it to terminate. The effect of multiple pthread_detach() calls on the same
target thread is unspecified.

If successful, pthread_detach() returns 0. Otherwise, an error number is returned
to indicate the error.

The pthread_detach() function will fail if:

EINVAL The implementation has detected that the value specified by thread
does not refer to a joinable thread.

ESRCH No thread could be found corresponding to that specified by the
given thread ID.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level MT-Safe

pthread_create(3THR), pthread_join(3THR), attributes(5), standards(5)

pthread_detach(3THR)

NAME

SYNOPSIS

DESCRIPTION

RETURN VALUES

ERRORS

ATTRIBUTES

SEE ALSO

146 man pages section 3: Threads and Realtime Library Functions • Last Revised 7 May 1998



pthread_equal – compare thread IDs

cc –mt [ flag... ] file...– lpthread [ library... ]

#include <pthread.h>

int pthread_equal(pthread_t t1, pthread_t t2);

This function compares the thread IDs t1 and t2.

The pthread_equal() function returns a non-zero value if t1 and t2 are equal.
Otherwise, 0 is returned.

If t1 or t2 is an invalid thread ID, the behavior is undefined.

No errors are defined.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level MT-Safe

pthread_create(3THR), pthread_self(3THR), attributes(5)

Solaris thread IDs do not require an equivalent function because the thread_t
structure is an unsigned int.

pthread_equal(3THR)

NAME

SYNOPSIS

DESCRIPTION

RETURN VALUES

ERRORS

ATTRIBUTES

SEE ALSO

NOTES

Threads and Realtime Library Functions 147



pthread_exit – terminate calling thread

cc –mt [ flag... ] file...– lpthread [ library... ]

#include <pthread.h>

void pthread_exit(void *value_ptr);

The pthread_exit() function terminates the calling thread, in a similar way that
exit(3C) terminates the calling process. If the thread is not detached, the exit status
specified by value_ptr is made available to any successful join with the terminating
thread. See pthread_join(3THR). Any cancellation cleanup handlers that have been
pushed and not yet popped are popped in the reverse order that they were pushed
and then executed. After all cancellation cleanup handlers have been executed, if the
thread has any thread-specific data, appropriate destructor functions will be called in
an unspecified order. Thread termination does not release any application visible
process resources, including, but not limited to, mutexes and file descriptors, nor does
it perform any process level cleanup actions, including, but not limited to, calling any
atexit() routines that may exist.

An implicit call to pthread_exit() is made when a thread other than the thread in
which main() was first invoked returns from the start routine that was used to create
it. The function’s return value serves as the thread’s exit status.

The behavior of pthread_exit() is undefined if called from a cancellation cleanup
handler or destructor function that was invoked as a result of either an implicit or
explicit call to pthread_exit().

After a thread has terminated, the result of access to local (auto) variables of the thread
is undefined. Thus, references to local variables of the exiting thread should not be
used for the pthread_exit() value_ptr parameter value.

The process exits with an exit status of 0 after the last thread has been terminated. The
behavior is as if the implementation called exit() with a 0 argument at thread
termination time.

The pthread_exit() function cannot return to its caller.

No errors are defined.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level MT-Safe

exit(3C), pthread_cancel(3THR), pthread_create(3THR),
pthread_join(3THR), pthread_key_create(3THR), attributes(5),
standards(5)

pthread_exit(3THR)

NAME

SYNOPSIS

DESCRIPTION

RETURN VALUES

ERRORS

ATTRIBUTES

SEE ALSO

148 man pages section 3: Threads and Realtime Library Functions • Last Revised 7 May 1998



pthread_getconcurrency, pthread_setconcurrency – get or set level of concurrency

cc –mt [ flag... ] file...– lpthread [ library... ]

#include <pthread.h>

int pthread_getconcurrency(void);int pthread_setconcurrency(int
new_level);

Unbound threads in a process may or may not be required to be simultaneously
active. By default, the threads implementation ensures that a sufficient number of
threads are active so that the process can continue to make progress. While this
conserves system resources, it may not produce the most effective level of concurrency.

The pthread_setconcurrency() function allows an application to inform the
threads implementation of its desired concurrency level, new_level. The actual level of
concurrency provided by the implementation as a result of this function call is
unspecified.

If new_level is 0, it causes the implementation to maintain the concurrency level at its
discretion as if pthread_setconcurrency() was never called.

The pthread_getconcurrency() function returns the value set by a previous call
to the pthread_setconcurrency() function. If the
pthread_setconcurrency() function was not previously called, this function
returns 0 to indicate that the implementation is maintaining the concurrency level.

When an application calls pthread_setconcurrency() it is informing the
implementation of its desired concurrency level. The implementation uses this as a
hint, not a requirement.

If an implementation does not support multiplexing of user threads on top of several
kernel scheduled entities, the pthread_setconcurrency() and
pthread_getconcurrency() functions will be provided for source code
compatibility but they will have no effect when called. To maintain the function
semantics, the new_level parameter will be saved when
pthread_setconcurrency() is called so that a subsequent call to
pthread_getconcurrency() returns the same value.

If successful, the pthread_setconcurrency() function returns 0. Otherwise, an
error number is returned to indicate the error.

The pthread_getconcurrency() function always returns the concurrency level set
by a previous call to pthread_setconcurrency(). If the
pthread_setconcurrency() function has never been called,
pthread_getconcurrency() returns 0.

The pthread_setconcurrency() function will fail if:

EINVAL The value specified by new_level is negative.

pthread_getconcurrency(3THR)

NAME

SYNOPSIS

DESCRIPTION

RETURN VALUES

ERRORS

Threads and Realtime Library Functions 149



EAGAIN The value specific by new_level would cause a system resource to
be exceeded.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level MT-Safe

pthread_create(3THR), pthread_attr_init(3THR), attributes(5)

pthread_getconcurrency(3THR)

ATTRIBUTES

SEE ALSO

150 man pages section 3: Threads and Realtime Library Functions • Last Revised 18 Apr 1998



pthread_getschedparam, pthread_setschedparam – access dynamic thread scheduling
parameters

cc –mt [ flag... ] file...– lpthread [ library... ]

#include <pthread.h>

int pthread_getschedparam(pthread_t thread, int *policy, struct
sched_param *param);

int pthread_setschedparam(pthread_t thread, int policy, const struct
sched_param *param);

The pthread_getschedparam() and pthread_setschedparam() allow the
scheduling policy and scheduling parameters of individual threads within a
multi-threaded process to be retrieved and set. Supported policies are SCHED_FIFO,
SCHED_RR, and SCHED_OTHER. See pthreads(3THR). For SCHED_FIFO,
SCHED_RR, and SCHED_OTHER, the affected scheduling parameter is the
sched_priority member of the sched_param structure.

The pthread_getschedparam() function retrieves the scheduling policy and
scheduling parameters for the thread whose thread ID is given by thread and stores
those values in policy and param, respectively. The priority value returned from
pthread_getschedparam() is the value specified by the most recent
pthread_setschedparam() or pthread_create() call affecting the target
thread, and reflects any temporary adjustments to its priority as a result of any
priority inheritance or ceiling functions. The pthread_setschedparam() function
sets the scheduling policy and associated scheduling parameters for the thread whose
thread ID is given by thread to the policy and associated parameters provided in policy
and param, respectively.

If the pthread_setschedparam() function fails, no scheduling parameters will be
changed for the target thread.

If successful, the pthread_getschedparam() and pthread_setschedparam()
functions return 0. Otherwise, an error number is returned to indicate the error.

The pthread_getschedparam() function may fail if:

ESRCH The value specified by thread does not refer to a existing thread.

The pthread_setschedparam() function may fail if:

EINVAL The value specified by policy or one of the scheduling parameters
associated with the scheduling policy policy is invalid.

EPERM The caller does not have the appropriate permission to set either
the scheduling parameters or the scheduling policy of the specified
thread.

ESRCH The value specified by thread does not refer to a existing thread.

pthread_getschedparam(3THR)

NAME

SYNOPSIS

DESCRIPTION

RETURN VALUES

ERRORS

Threads and Realtime Library Functions 151



See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level MT-Safe

pthread_attr_init(3THR), pthreads(3THR), sched_setparam(3RT),
sched_getparam(3RT), sched_setscheduler(3RT), sched_getscheduler(3RT)
attributes(5), standards(5)

pthread_getschedparam(3THR)

ATTRIBUTES

SEE ALSO

152 man pages section 3: Threads and Realtime Library Functions • Last Revised 11 Sep 1998



pthread_getspecific, pthread_setspecific – manage thread-specific data

cc –mt [ flag... ] file...– lpthread [ library... ]

#include <pthread.h>

int pthread_setspecific(pthread_key_t key, const void *value);

void *pthread_getspecific(pthread_key_t key);

The pthread_setspecific() function associates a thread-specific value with a key
obtained by way of a previous call to pthread_key_create(). Different threads
may bind different values to the same key. These values are typically pointers to
blocks of dynamically allocated memory that have been reserved for use by the calling
thread.

The pthread_getspecific() function returns the value currently bound to the
specified key on behalf of the calling thread.

The effect of calling pthread_setspecific() or pthread_getspecific() with
a key value not obtained from pthread_key_create() or after key has been deleted
with pthread_key_delete() is undefined.

Both pthread_setspecific() and pthread_getspecific() may be called
from a thread-specific data destructor function. However, calling
pthread_setspecific() from a destructor may result in lost storage or infinite
loops.

The pthread_getspecific() function returns the thread-specific data value
associated with the given key. If no thread-specific data value is associated with key,
then the value NULL is returned.

Upon successful completion, the pthread_setspecific() function returns 0.
Otherwise, an error number is returned to indicate the error.

The pthread_setspecific() function will fail if:

ENOMEM Insufficient memory exists to associate the value with the key.

The pthread_setspecific() function may fail if:

EINVAL The key value is invalid.

The pthread_getspecific() function does not return errors.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level MT-Safe

pthread_getspecific(3THR)

NAME

SYNOPSIS

DESCRIPTION

RETURN VALUES

ERRORS

ATTRIBUTES

Threads and Realtime Library Functions 153



pthread_key_create(3THR) attributes(5), standards(5)

pthread_getspecific(3THR)

SEE ALSO

154 man pages section 3: Threads and Realtime Library Functions • Last Revised 29 May 1998



pthread_join – wait for thread termination

cc –mt [ flag... ] file...– lpthread [ library... ]

#include <pthread.h>

int pthread_join(pthread_t thread, void **value_ptr);

The pthread_join() function suspends processing of the calling thread until the
target thread completes. thread must be a member of the current process and it cannot
be a detached or daemon thread. See pthread_create(3THR).

Several threads cannot wait for the same thread to complete; one thread will complete
successfully and the others will terminate with an error of ESRCH. pthread_join()
will not block processing of the calling thread if the target thread has already
terminated.

pthread_join() returns successfully when the target thread terminates. If a
pthread_join() call returns successfully with a non-null status argument, the value
passed to pthread_exit(3THR) by the terminating thread will be placed in the
location referenced by status.

If the pthread_join() calling thread is cancelled, then the target thread will remain
joinable by pthread_join(). However, the calling thread may set up a cancellation
cleanup handler on thread prior to the join call, which may detach the target thread by
calling pthread_detach(3THR). (See pthread_detach(3THR) and
pthread_cancel(3THR).)

If successful, the pthread_join() function returns 0. Otherwise, an error number is
returned to indicate the error.

The pthread_join() function will fail if:

EINVAL The implementation has detected that the value specified by thread
does not refer to a joinable thread.

ESRCH No thread could be found corresponding to that specified by the
given thread ID.

The pthread_join() function may fail if:

EDEADLK A recursive deadlock was detected, the value of thread specifies the
calling thread.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level MT-Safe

pthread_join(3THR)

NAME

SYNOPSIS

DESCRIPTION

RETURN VALUES

ERRORS

ATTRIBUTES

Threads and Realtime Library Functions 155



wait(2), pthread_create(3THR), attributes(5), standards(5)

pthread_join(3THR), must specify the thread ID for whose termination it will wait.

Calling pthread_join() also "detaches" the thread, that is, pthread_join()
includes the effect of pthread_detach(). Hence, if a thread were to be cancelled
when blocked in pthread_join(), an explicit detach would have to be done in the
cancellation cleanup handler. In fact, the routine pthread_detach() exists mainly
for this reason.

pthread_join(3THR)

SEE ALSO

NOTES

156 man pages section 3: Threads and Realtime Library Functions • Last Revised 9 May 1998



pthread_key_create – create thread-specific data key

cc –mt [ flag... ] file...– lpthread [ library... ]

#include <pthread.h>

int pthread_key_create(pthread_key_t *key, void (*destructor,
void*)););

This function creates a thread-specific data key visible to all threads in the process.
Key values provided by pthread_key_create() are opaque objects used to locate
thread-specific data. Although the same key value may be used by different threads,
the values bound to the key by pthread_setspecific() are maintained on a
per-thread basis and persist for the life of the calling thread.

Upon key creation, the value NULL is associated with the new key in all active threads.
Upon thread creation, the value NULL is associated with all defined keys in the new
thread.

An optional destructor function may be associated with each key value. At thread exit,
if a key value has a non-NULL destructor pointer, and the thread has a non-NULL value
associated with that key, the function pointed to is called with the current associated
value as its sole argument. Destructors can be called in any order.

If, after all the destructors have been called for all keys with non-NULL values, there
are still some keys with non-NULL values, the process will be repeated. If, after at least
PTHREAD_DESTRUCTOR_ITERATIONS iterations of destructor calls for outstanding
non-NULL values, there are still some keys with non-NULL values, the process is
continued, even though this might result in an infinite loop.

If successful, the pthread_key_create() function stores the newly created key
value at *key and returns 0. Otherwise, an error number is returned to indicate the
error.

The pthread_key_create() function will fail if:

EAGAIN The system lacked the necessary resources to create another
thread-specific data key, or the system-imposed limit on the total
number of keys per process PTHREAD_KEYS_MAX has been
exceeded.

ENOMEM Insufficient memory exists to create the key.

The pthread_key_create() function will not return an error code of EINTR.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level MT-Safe

pthread_key_create(3THR)

NAME

SYNOPSIS

DESCRIPTION

RETURN VALUES

ERRORS

ATTRIBUTES

Threads and Realtime Library Functions 157



pthread_getspecific(3THR), pthread_setspecific(3THR),
pthread_key_delete(3THR), attributes(5), standards(5)

pthread_key_create(3THR)

SEE ALSO

158 man pages section 3: Threads and Realtime Library Functions • Last Revised 15 May 1998



pthread_key_delete – delete thread-specific data key

cc –mt [ flag... ] file...– lpthread [ library... ]

#include <pthread.h>

int pthread_key_delete(pthread_key_t key);

This function deletes a thread-specific data key previously returned by
pthread_key_create(). The thread-specific data values associated with key need
not be NULL at the time pthread_key_delete() is called. It is the responsibility of
the application to free any application storage or perform any cleanup actions for data
structures related to the deleted key or associated thread-specific data in any threads;
this cleanup can be done either before or after pthread_key_delete() is called.
Any attempt to use key following the call to pthread_key_delete() results in
undefined behaviour.

The pthread_key_delete() function is callable from within destructor functions.
No destructor functions will be invoked by pthread_key_delete(). Any
destructor function that may have been associated with key will no longer be called
upon thread exit.

If successful, the pthread_key_delete() function returns 0. Otherwise, an error
number is returned to indicate the error.

The pthread_key_delete() function may fail if:

EINVAL The key value is invalid.

The pthread_key_delete() function will not return an error code of EINTR.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level MT-Safe

pthread_key_create(3THR), attributes(5), standards(5)

pthread_key_delete(3THR)

NAME

SYNOPSIS

DESCRIPTION

RETURN VALUES

ERRORS

ATTRIBUTES

SEE ALSO

Threads and Realtime Library Functions 159



pthread_kill – send a signal to a thread

cc –mt [ flag... ] file...– lpthread [ library... ]

#include <signal.h>

#include <pthread.h>

int pthread_kill(pthread_t thread, int sig);

The pthread_kill() function is used to request that a signal be delivered to the
specified thread.

As in kill(), if sig is 0, error checking is performed but no signal is actually sent.

Upon successful completion, the function returns a value of 0. Otherwise the function
returns an error number. If the pthread_kill() function fails, no signal is sent.

The pthread_kill() function will fail if:

ESRCH No thread could be found corresponding to that specified by the
given thread ID.

EINVAL The value of the sig argument is an invalid or unsupported signal
number.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level MT-Safe

kill(1), pthread_self(3THR), pthread_sigmask(3THR), raise(3C),
attributes(5), standards(5)

pthread_kill(3THR)

NAME

SYNOPSIS

DESCRIPTION

RETURN VALUES

ERRORS

ATTRIBUTES

SEE ALSO

160 man pages section 3: Threads and Realtime Library Functions • Last Revised 15 May 1998



pthread_mutexattr_getprioceiling, pthread_mutexattr_setprioceiling – get and set
prioceiling attribute of mutex attribute object

cc –mt [ flag... ] file... –lpthread [ library... ]

#include <pthread.h>

int pthread_mutexattr_setprioceiling(pthread_mutexattr_t *attr,
int prioceiling int *oldceiling);

int pthread_mutexattr_getprioceiling(const pthread_mutexattr_t
*attr, int *prioceiling);

The pthread_mutexattr_getprioceiling() and
pthread_mutexattr_setprioceiling() functions, respectively, get and set the
priority ceiling attribute of a mutex attribute object pointed to by attr, which was
previously created by the pthread_mutexattr_init() function.

The prioceiling attribute contains the priority ceiling of initialized mutexes. The values
of prioceiling must be within the maximum range of priorities defined by
SCHED_FIFO.

The prioceiling attribute defines the priority ceiling of initialized mutexes, which is the
minimum priority level at which the critical section guarded by the mutex is executed.
In order to avoid priority inversion, the priority ceiling of the mutex must be set to a
priority higher than or equal to the highest priority of all the threads that may lock
that mutex. The values of prioceiling must be within the maximum range of priorities
defined under the SCHED_FIFO scheduling policy.

The ceiling value should be drawn from the range of priorities for the SCHED_FIFO
policy. When a thread acquires such a mutex, the policy of the thread at mutex
acquisition should match that from which the ceiling value was derived
(SCHED_FIFO, in this case). If a thread changes its scheduling policy while holding a
ceiling mutex, the behavior of pthread_mutex_lock() and
pthread_mutex_unlock() on this mutex is undefined. See
pthread_mutex_lock(3THR).

The ceiling value should not be treated as a persistent value resident in a
pthread_mutex_t that is valid across upgrades of Solaris. The semantics of the
actual ceiling value are determined by the existing priority range for the SCHED_FIFO
policy, as returned by the sched_get_priority_min() and
sched_get_priority_max() functions (see sched_get_priority_min(3RT))
when called on the version of Solaris on which the ceiling value is being utilized.

Upon successful completion, the pthread_mutexattr_getprioceiling() and
pthread_mutexattr_setprioceiling() functions return 0. Otherwise, an error
number is returned to indicate the error.

The pthread_mutexattr_getprioceiling() and
pthread_mutexattr_setprioceiling() functions will fail if:

pthread_mutexattr_getprioceiling(3THR)

NAME

SYNOPSIS

DESCRIPTION

RETURN VALUES

ERRORS

Threads and Realtime Library Functions 161



ENOSYS The _POSIX_THREAD_PRIO_PROTECT option is not defined and
the system does not support the function.

The pthread_mutexattr_getprioceiling() and
pthread_mutexattr_setprioceiling() functions may fail if:

EINVAL The value specified by attr or prioceiling is invalid.

EPERM The caller does not have the privilege to perform the operation.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level MT-Safe

pthread_cond_init(3THR), pthread_create(3THR),
pthread_mutex_init(3THR), pthread_mutex_lock(3THR),
sched_get_priority_min(3RT), attributes(5), standards(5)

pthread_mutexattr_getprioceiling(3THR)

ATTRIBUTES

SEE ALSO

162 man pages section 3: Threads and Realtime Library Functions • Last Revised 30 Mar 1999



pthread_mutexattr_getprotocol, pthread_mutexattr_setprotocol – get and set protocol
attribute of mutex attribute object

cc –mt [ flag... ] file... –lpthread [ library... ]

#include <pthread.h>

int pthread_mutexattr_getprotocol(const pthread_mutexattr_t *attr,
int *protocol);

int pthread_mutexattr_setprotocol(pthread_mutexattr_t *attr, int
protocol);

The pthread_mutexattr_setprotocol() and
pthread_mutexattr_getprotocol() functions, respectively, set and get the
protocol attribute of a mutex attribute object pointed to by attr, which was previously
created by the pthread_mutexattr_init() function.

The protocol attribute defines the protocol to be followed in utilizing mutexes. The
value of protocol may be one of PTHREAD_PRIO_NONE, PTHREAD_PRIO_INHERIT, or
PTHREAD_PRIO_PROTECT, which are defined by the header <pthread.h>.

When a thread owns a mutex with the PTHREAD_PRIO_NONE protocol attribute, its
priority and scheduling are not affected by its mutex ownership.

When a thread is blocking higher priority threads because of owning one or more
mutexes with the PTHREAD_PRIO_INHERIT protocol attribute, it executes at the
higher of its priority or the priority of the highest priority thread waiting on any of the
mutexes owned by this thread and initialized with this protocol.

When a thread owns one or more mutexes initialized with the
PTHREAD_PRIO_PROTECT protocol, it executes at the higher of its priority or the
highest of the priority ceilings of all the mutexes owned by this thread and initialized
with this attribute, regardless of whether other threads are blocked on any of these
mutexes.

While a thread is holding a mutex that has been initialized with the PRIO_INHERIT
or PRIO_PROTECT protocol attributes, it will not be subject to being moved to the tail
of the scheduling queue at its priority in the event that its original priority is changed,
such as by a call to sched_setparam(). Likewise, when a thread unlocks a mutex
that has been initialized with the PRIO_INHERIT or PRIO_PROTECT protocol
attributes, it will not be subject to being moved to the tail of the scheduling queue at
its priority in the event that its original priority is changed.

If a thread simultaneously owns several mutexes initialized with different protocols, it
will execute at the highest of the priorities that it would have obtained by each of
these protocols.

When a thread makes a call to pthread_mutex_lock(), if the symbol
_POSIX_THREAD_PRIO_INHERIT is defined and the mutex was initialized with the
protocol attribute having the value PTHREAD_PRIO_INHERIT, when the calling

pthread_mutexattr_getprotocol(3THR)

NAME

SYNOPSIS

DESCRIPTION

Threads and Realtime Library Functions 163



thread is blocked because the mutex is owned by another thread, that owner thread
will inherit the priority level of the calling thread as long as it continues to own the
mutex. The implementation updates its execution priority to the maximum of its
assigned priority and all its inherited priorities. Furthermore, if this owner thread
becomes blocked on another mutex, the same priority inheritance effect will be
propagated to the other owner thread, in a recursive manner.

If the symbol _POSIX_THREAD_PRIO_INHERIT is defined, when a mutex initialized
with the protocol attribute having the value PTHREAD_PRIO_INHERIT dies, the
behavior depends on the robustness attribute of the mutex. See
pthread_mutexattr_getrobust_np(3THR).

A thread that uses mutexes initialized with the PTHREAD_PRIO_INHERIT or
PTHREAD_PRIO_PROTECT protocol attribute values should have its contentionscope
attribute equal to PTHREAD_SCOPE_SYSTEM (see pthread_attr_getscope(3THR))
and its scheduling policy equal to SCHED_FIFO or SCHED_RR (see
pthread_attr_getschedparam(3THR) and pthread_getschedparam(3THR)).

If a thread with contentionscope attribute equal to PTHREAD_SCOPE_PROCESS and/or
its scheduling policy equal to SCHED_OTHER uses a mutex initialized with the
PTHREAD_PRIO_INHERIT or PTHREAD_PRIO_PROTECT protocol attribute value, the
effect on the thread’s scheduling and priority is unspecified.

The _POSIX_THREAD_PRIO_INHERIT and _POSIX_THREAD_PRIO_PROTECT
options are designed to provide features to solve priority inversion due to mutexes. A
priority inheritance or priority ceiling mutex is designed to minimize the dispatch
latency of a high priority thread when a low priority thread is holding a mutex
required by the high priority thread. This is a specific need for the realtime application
domain.

Threads created by realtime applications need to be such that their priorities can
influence their access to system resources (CPU resources, at least), in competition
with all threads running on the system.

Threads that use priority inheritance or priority ceiling locks should be in the
PTHREAD_SCOPE_SYSTEM (SYSTEM for short) scheduling contention scope (or bound
threads), which are defined as threads that compete with threads across the system
and across different processes.

Threads in the PTHREAD_SCOPE_PROCESS (PROCESS for short) scheduling
contention scope (or unbound threads) do not compete with threads in other
processes, making them unsuitable for the needs of the realtime application domain.
Therefore, only bound threads should be used with priority inheritance and priority
ceiling mutexes. In addition, the scheduling policies for these threads should be either
SCHED_FIFO or SCHED_RR (the realtime scheduling policies).

Upon successful completion, the pthread_mutexattr_getprotocol() and
pthread_mutexattr_setprotocol() functions return 0. Otherwise, an error
number is returned to indicate the error.

pthread_mutexattr_getprotocol(3THR)

RETURN VALUES

164 man pages section 3: Threads and Realtime Library Functions • Last Revised 30 Mar 1999



The pthread_mutexattr_getprotocol() and
pthread_mutexattr_setprotocol() functions will fail if:

ENOSYS Neither of the options _POSIX_THREAD_PRIO_PROTECT and
_POSIX_THREAD_PRIO_INHERIT is defined and the system does
not support the function.

ENOTSUP The value specified by protocol is an unsupported value.

The pthread_mutexattr_getprotocol() and
pthread_mutexattr_setprotocol() functions may fail if:

EINVAL The value specified by attr or protocol is invalid.

EPERM The caller does not have the privilege to perform the operation.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level MT-Safe

pthread_create(3THR), pthread_mutex_init(3THR),
pthread_cond_init(3THR), pthread_mutexattr_getrobust_np(3THR),
attributes(5), standards(5)

pthread_mutexattr_getprotocol(3THR)

ERRORS

ATTRIBUTES

SEE ALSO

Threads and Realtime Library Functions 165



pthread_mutexattr_getpshared, pthread_mutexattr_setpshared – get and set
process-shared attribute

cc –mt [ flag... ] file... –lpthread [ library... ]

#include <pthread.h>

int pthread_mutexattr_getpshared(const pthread_mutexattr_t *attr,
int *pshared);

int pthread_mutexattr_setpshared(pthread_mutexattr_t *attr, int
pshared);

The pthread_mutexattr_getpshared() function obtains the value of the
process-shared attribute from the attributes object referenced by attr. The
pthread_mutexattr_setpshared() function is used to set the process-shared
attribute in an initialized attributes object referenced by attr.

The process-shared attribute is set to PTHREAD_PROCESS_SHARED to permit a mutex to
be operated upon by any thread that has access to the memory where the mutex is
allocated, even if the mutex is allocated in memory that is shared by multiple
processes. If the process-shared attribute is PTHREAD_PROCESS_PRIVATE, the mutex
will only be operated upon by threads created within the same process as the thread
that initialized the mutex; if threads of differing processes attempt to operate on such a
mutex, the behavior is undefined. The default value of the attribute is
PTHREAD_PROCESS_PRIVATE.

Upon successful completion, pthread_mutexattr_getpshared() returns 0 and
stores the value of the process-shared attribute of attr into the object referenced by the
pshared parameter. Otherwise, an error number is returned to indicate the error.

Upon successful completion, pthread_mutexattr_setpshared() returns 0.
Otherwise, an error number is returned to indicate the error.

The pthread_mutexattr_getpshared() and
pthread_mutexattr_setpshared() functions may fail if:

EINVAL The value specified by attr is invalid.

The pthread_mutexattr_setpshared() function may fail if:

EINVAL The new value specified for the attribute is outside the range of
legal values for that attribute.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level MT-Safe

pthread_mutexattr_getpshared(3THR)

NAME

SYNOPSIS

DESCRIPTION

RETURN VALUES

ERRORS

ATTRIBUTES

166 man pages section 3: Threads and Realtime Library Functions • Last Revised 2 Jun 1998



pthread_create(3THR), pthread_mutex_init(3THR),
pthread_mutexattr_init(3THR), pthread_cond_init(3THR), attributes(5),
standards(5)

pthread_mutexattr_getpshared(3THR)

SEE ALSO

Threads and Realtime Library Functions 167



pthread_mutexattr_getrobust_np, pthread_mutexattr_setrobust_np – get or set
robustness attribute of mutex attribute object

cc –mt [ flag... ] file... –lpthread [ library... ]

#include <pthread.h>

int pthread_mutexattr_getrobust_np(const pthread_mutexattr_t
*attr, int *robustness);

int pthread_mutexattr_setrobust_np(pthread_mutexattr_t *attr, int
robustness);

The following applies only if the symbol _POSIX_THREAD_PRIO_INHERIT is
defined, and the mutex attributes object attr should be used only to initialize mutexes
that will also be initialized with the protocol attribute having the value
PTHREAD_PRIO_INHERIT. See pthread_mutexattr_getprotocol(3THR).

The pthread_mutexattr_setrobust_np() and
pthread_mutexattr_getrobust_np() functions set and get the robustness
attribute of a mutex attribute object pointed to by attr that was previously created by
the function pthread_mutexattr_init(3THR).

The robustness attribute defines the behavior when the owner of a mutex dies. The
value of robustness may be ether PTHREAD_MUTEX_ROBUST_NP or
PTHREAD_MUTEX_STALLED_NP, which are defined by the header <pthread.h>. The
default value of the robustness attribute is PTHREAD_MUTEX_STALLED_NP.

When the owner of a mutex with the PTHREAD_MUTEX_STALLED_NP robustness
attribute dies, all future calls to pthread_mutex_lock(3THR) for this mutex will be
blocked from progress in an unspecified manner.

When the owner of a mutex with the PTHREAD_MUTEX_ROBUST_NP robustness
attribute dies, the mutex is unlocked. The next owner of this mutex acquires it with an
error value of EOWNERDEAD. Note that the application must always check the return
value from pthread_mutex_lock() for a mutex initialized with the
PTHREAD_MUTEX_ROBUST_NP robustness attribute. The new owner of this mutex
should then attempt to make the state protected by the mutex consistent, since this
state could have been left inconsistent when the last owner died. If the new owner is
able to make the state consistent, it should call
pthread_mutex_consistent_np(3THR) for the mutex and then unlock the mutex.
If for any reason the new owner is not able to make the state consistent, it should not
call pthread_mutex_consistent_np() for the mutex, but should simply unlock
the mutex. In the latter scenario, all waiters will be awakened and all subsequent calls
to pthread_mutex_lock() will fail in acquiring the mutex with an error value of
ENOTRECOVERABLE. The mutex can then be made consistent by uninitializing the
mutex with the pthread_mutex_destroy() function and reinitializing it with the
pthread_mutex_init() function. If the thread that acquired the lock with
EOWNERDEAD dies, the next owner will acquire the lock with an error value of
EOWNERDEAD.

pthread_mutexattr_getrobust_np(3THR)

NAME

SYNOPSIS

DESCRIPTION

168 man pages section 3: Threads and Realtime Library Functions • Last Revised 4 Oct 1999



Note that the mutex may be in memory shared between processes or in memory
private to a process, i.e. the "owner" referenced above is a thread, either within or
outside the requestor’s process.

The mutex memory must be zeroed before initialization.

Upon successful completion, the pthread_mutexattr_getrobust_np() and
pthread_mutexattr_setrobust_np() functions return 0. Otherwise, an error
number is returned to indicate the error.

The pthread_mutexattr_getrobust_np() and
pthread_mutexattr_setrobust_np() functions will fail if:

EINVAL The value specified by attr or robustness is invalid.

ENOSYS The option _POSIX_THREAD_PRIO_INHERIT is not defined and
the implementation does not support the function.

ENOTSUP The value specified by robustness is an unsupported value.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level MT-Safe

mutex(3THR), pthread_mutex_lock(3THR),
pthread_mutex_consistent_np(3THR),
pthread_mutexattr_getprotocol(3THR), attributes(5), standards(5)

pthread_mutexattr_getrobust_np(3THR)

RETURN VALUES

ERRORS

ATTRIBUTES

SEE ALSO

Threads and Realtime Library Functions 169



pthread_mutexattr_gettype, pthread_mutexattr_settype – get or set a mutex type

cc –mt [ flag... ] file... –lpthread [ library... ]

#include <pthread.h>

int pthread_mutexattr_gettype(pthread_mutexattr_t *attr, int *type);

int pthread_mutexattr_settype(pthread_mutexattr_t *attr, int type);

The pthread_mutexattr_gettype() and pthread_mutexattr_settype()
functions respectively get and set the mutex type attribute. This attribute is set in the
type parameter to these functions. The default value of the type attribute is
PTHREAD_MUTEX_DEFAULT.

The type of mutex is contained in the type attribute of the mutex attributes. Valid
mutex types include:

PTHREAD_MUTEX_NORMAL This type of mutex does not detect
deadlock. A thread attempting to relock this
mutex without first unlocking it will
deadlock. Attempting to unlock a mutex
locked by a different thread results in
undefined behavior. Attempting to unlock
an unlocked mutex results in undefined
behavior.

PTHREAD_MUTEX_ERRORCHECK This type of mutex provides error checking.
A thread attempting to relock this mutex
without first unlocking it will return with
an error. A thread attempting to unlock a
mutex that another thread has locked will
return with an error. A thread attempting to
unlock an unlocked mutex will return with
an error.

PTHREAD_MUTEX_RECURSIVE A thread attempting to relock this mutex
without first unlocking it will succeed in
locking the mutex. The relocking deadlock
that can occur with mutexes of type
PTHREAD_MUTEX_NORMAL cannot occur
with this type of mutex. Multiple locks of
this mutex require the same number of
unlocks to release the mutex before another
thread can acquire the mutex. A thread
attempting to unlock a mutex that another
thread has locked will return with an error.
A thread attempting to unlock an unlocked
mutex will return with an error. This type of
mutex is only supported for mutexes whose

pthread_mutexattr_gettype(3THR)

NAME

SYNOPSIS

DESCRIPTION

170 man pages section 3: Threads and Realtime Library Functions • Last Revised 30 Mar 1999



process shared attribute is
PTHREAD_PROCESS_PRIVATE.

PTHREAD_MUTEX_DEFAULT Attempting to recursively lock a mutex of
this type results in undefined behavior.
Attempting to unlock a mutex of this type
that was not locked by the calling thread
results in undefined behavior. Attempting
to unlock a mutex of this type that is not
locked results in undefined behavior. An
implementation is allowed to map this
mutex to one of the other mutex types.

Upon successful completion, the pthread_mutexattr_settype() function returns
0. Otherwise, an error number is returned to indicate the error.

Upon successful completion, the pthread_mutexattr_gettype() function returns
0 and stores the value of the type attribute of attr in the object referenced by the type
parameter. Otherwise an error number is returned to indicate the error.

The pthread_mutexattr_gettype() and pthread_mutexattr_settype()
functions will fail if:

EINVAL The value type is invalid.

The pthread_mutexattr_gettype() and pthread_mutexattr_settype()
functions may fail if:

EINVAL The value specified by attr is invalid.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level MT-Safe

pthread_cond_timedwait(3THR), pthread_cond_wait(3THR), attributes(5)

It is advised that an application should not use a PTHREAD_MUTEX_RECURSIVE
mutex with condition variables PTHREAD_MUTEX_RECURSIVE because the implicit
unlock performed for a pthread_cond_wait() or pthread_cond_timedwait()
will not actually release the mutex (if it had been locked multiple times). If this occurs,
no other thread can satisfy the condition of the predicate.

pthread_mutexattr_gettype(3THR)

RETURN VALUES

ERRORS

ATTRIBUTES

SEE ALSO

NOTES

Threads and Realtime Library Functions 171



pthread_mutexattr_init, pthread_mutexattr_destroy – initialize and destroy mutex
attributes object

cc –mt [ flag... ] file...– lpthread [ library... ]

#include <pthread.h>

int pthread_mutexattr_init(pthread_mutexattr_t *attr);

int pthread_mutexattr_destroy(pthread_mutexattr_t *attr);

The pthread_mutexattr_init() function initializes a mutex attributes object attr
with the default value for all of the attributes defined by the implementation.

The effect of initializing an already initialized mutex attributes object is undefined.

After a mutex attributes object has been used to initialize one or more mutexes, any
function affecting the attributes object (including destruction) does not affect any
previously initialized mutexes.

The pthread_mutexattr_destroy() function destroys a mutex attributes object;
the object becomes, in effect, uninitialized. An implementation may cause
pthread_mutexattr_destroy() to set the object referenced by attr to an invalid
value. A destroyed mutex attributes object can be re-initialized using
pthread_mutexattr_init(); the results of otherwise referencing the object after it
has been destroyed are undefined.

Upon successful completion, pthread_mutexattr_init() and
pthread_mutexattr_destroy() return 0. Otherwise, an error number is returned
to indicate the error.

The pthread_mutexattr_init() function may fail if:

ENOMEM Insufficient memory exists to initialize the mutex attributes object.

The pthread_mutexattr_destroy() function may fail if:

EINVAL The value specified by attr is invalid.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level MT-Safe

pthread_create(3THR), pthread_mutex_init(3THR),
pthread_mutexattr_init(3THR), pthread_cond_init(3THR), attributes(5),
standards(5)

pthread_mutexattr_init(3THR)

NAME

SYNOPSIS

DESCRIPTION

RETURN VALUES

ERRORS

ATTRIBUTES

SEE ALSO

172 man pages section 3: Threads and Realtime Library Functions • Last Revised 30 Mar 1999



pthread_mutex_consistent_np – make a mutex consistent after owner death

cc –mt [ flag... ] file... –lpthread [ library... ]

#include <pthread.h>

int pthread_mutex_consistent_np(pthread_mutex_t *mutex);

The following applies only if the symbol _POSIX_THREAD_PRIO_INHERIT is
defined, and for mutexes that have been initialized with the protocol attribute having
the value PTHREAD_PRIO_INHERIT. See
pthread_mutexattr_getprotocol(3THR).

The mutex object referenced by mutex is made consistent by calling
pthread_mutex_consistent_np().

A consistent mutex becomes inconsistent and is unlocked if its owner dies while
holding it. A subsequent owner of the mutex will acquire the mutex with
pthread_mutex_lock(3THR), which will return EOWNERDEAD to indicate that the
acquired mutex is inconsistent.

The pthread_mutex_consistent_np() function should be called while holding
the mutex acquired by a previous call to pthread_mutex_lock()that returned
EOWNERDEAD.

Since the critical section protected by the mutex could have been left in an inconsistent
state by the dead owner, the caller should make the mutex consistent only if it is able
to make the critical section protected by the mutex consistent.

Calls to pthread_mutex_lock(), pthread_mutex_unlock(), and
pthread_mutex_trylock() for a consistent mutex will behave in the normal
manner.

The behavior of pthread_mutex_consistent_np() for a mutex which is not
inconsistent, or which is not held, is undefined.

Upon successful completion, the pthread_mutexattr_consistent_np() function
returns 0. Otherwise, an error number is returned to indicate the error.

The pthread_mutex_consistent_np() function will fail if:

ENOSYS The option _POSIX_THREAD_PRIO_INHERIT is not defined and
the implementation does not support the function.

The pthread_mutex_consistent_np() function may fail if:

EINVAL The value specified by mutex is invalid, or the mutex does not have
the appropriate attributes.

See attributes(5) for descriptions of the following attributes:

pthread_mutex_consistent_np(3THR)

NAME

SYNOPSIS

DESCRIPTION

RETURN VALUES

ERRORS

ATTRIBUTES

Threads and Realtime Library Functions 173



ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level MT-Safe

mutex(3THR), pthread_mutex_lock(3THR),
pthread_mutexattr_getprotocol(3THR),
pthread_mutexattr_getrobust_np(3THR), attributes(5), standards(5)

pthread_mutex_consistent_np(3THR)

SEE ALSO

174 man pages section 3: Threads and Realtime Library Functions • Last Revised 4 Oct 1999



pthread_mutex_getprioceiling, pthread_mutex_setprioceiling – change the priority
ceiling of a mutex

cc –mt [ flag... ] file... –lpthread [ library... ]

#include <pthread.h>

int pthread_mutex_setprioceiling(pthread_mutex_t *mutex, int
prioceiling, int *old_ceiling);

int pthread_mutex_getprioceiling(const pthread_mutex_t *mutex,
int *prioceiling);

The pthread_mutex_getprioceiling() function returns the current priority
ceiling of the mutex.

The pthread_mutex_setprioceiling() function either locks the mutex if it is
unlocked, or blocks until it can successfully lock the mutex, then it changes the
mutex’s priority ceiling and releases the mutex. When the change is successful, the
previous value of the priority ceiling is returned in old_ceiling. The process of locking
the mutex need not adhere to the priority protect protocol.

If the pthread_mutex_setprioceiling() function fails, the mutex priority ceiling
is not changed.

The ceiling value should be drawn from the range of priorities for the SCHED_FIFO
policy. When a thread acquires such a mutex, the policy of the thread at mutex
acquisition should match that from which the ceiling value was derived
(SCHED_FIFO, in this case). If a thread changes its scheduling policy while holding a
ceiling mutex, the behavior of pthread_mutex_lock() and
pthread_mutex_unlock() on this mutex is undefined. See
pthread_mutex_lock(3THR).

The ceiling value should not be treated as a persistent value resident in a
pthread_mutex_t that is valid across upgrades of Solaris. The semantics of the
actual ceiling value are determined by the existing priority range for the SCHED_FIFO
policy, as returned by the sched_get_priority_min() and
sched_get_priority_max() functions (see sched_get_priority_min(3RT))
when called on the version of Solaris on which the ceiling value is being utilized.

Upon successful completion, the pthread_mutex_getprioceiling() and
pthread_mutex_setprioceiling() functions return 0. Otherwise, an error
number is returned to indicate the error.

These functions are not currently supported and will always return ENOSYS.

The pthread_mutex_getprioceiling() and
pthread_mutex_setprioceiling() functions will fail if:

ENOSYS The option _POSIX_THREAD_PRIO_PROTECT is not defined and
the system does not support the function.

pthread_mutex_getprioceiling(3THR)

NAME

SYNOPSIS

DESCRIPTION

RETURN VALUES

ERRORS

Threads and Realtime Library Functions 175



The pthread_mutex_setprioceiling() function will fail if:

EINVAL The mutex was not initialized with its protocol attribute having the
value of PTHREAD_PRIO_PROTECT.

The pthread_mutex_getprioceiling() and
pthread_mutex_setprioceiling() functions may fail if:

EINVAL The priority requested by prioceiling is out of range.

EINVAL The value specified by mutex does not refer to a currently existing
mutex.

ENOSYS The system does not support the priority ceiling protocol for
mutexes.

EPERM The caller does not have the privilege to perform the operation.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level MT-Safe

pthread_mutex_init(3THR), pthread_mutex_lock(3THR),
sched_get_priority_min(3RT)attributes(5), standards(5)

pthread_mutex_getprioceiling(3THR)

ATTRIBUTES

SEE ALSO

176 man pages section 3: Threads and Realtime Library Functions • Last Revised 5 Jun 1998



pthread_mutex_init, pthread_mutex_destroy – initialize or destroy a mutex

cc –mt [ flag... ] file... –lpthread [ library... ]

#include <pthread.h>

int pthread_mutex_init(pthread_mutex_t *mutex, const
pthread_mutexattr_t *attr);

int pthread_mutex_destroy(pthread_mutex_t *mutex);

pthread_mutex_t mutex= PTHREAD_MUTEX_INITIALIZER

The pthread_mutex_init() function initializes the mutex referenced by mutex
with attributes specified by attr. If attr is NULL, the default mutex attributes are used;
the effect is the same as passing the address of a default mutex attributes object. Upon
successful initialization, the state of the mutex becomes initialized and unlocked.

Attempting to initialize an already initialized mutex results in undefined behavior.

The pthread_mutex_destroy() function destroys the mutex object referenced by
mutex; the mutex object becomes, in effect, uninitialized. A destroyed mutex object can
be re-initialized using pthread_mutex_init(); the results of otherwise referencing
the object after it has been destroyed are undefined.

It is safe to destroy an initialized mutex that is unlocked. Attempting to destroy a
locked mutex results in undefined behavior.

In cases where default mutex attributes are appropriate, the macro
PTHREAD_MUTEX_INITIALIZER can be used to initialize mutexes that are statically
allocated. The effect is equivalent to dynamic initialization by a call to
pthread_mutex_init() with parameter attr specified as NULL, except that no error
checks are performed.

If successful, the pthread_mutex_init() and pthread_mutex_destroy()
functions return 0. Otherwise, an error number is returned to indicate the error.

The pthread_mutex_init() function will fail if:

EAGAIN The system lacked the necessary resources (other than memory) to
initialize another mutex.

ENOMEM Insufficient memory exists to initialize the mutex.

EPERM The caller does not have the privilege to perform the operation.

The pthread_mutex_init() function may fail if:

EBUSY An attempt was detected to re-initialize the object referenced by
mutex, a mutex previously initialized but not yet destroyed.

EINVAL The value specified by attr or mutex is invalid.

The pthread_mutex_destroy() function may fail if:

pthread_mutex_init(3THR)

NAME

SYNOPSIS

DESCRIPTION

RETURN VALUES

ERRORS

Threads and Realtime Library Functions 177



EBUSY An attempt was detected to destroy the object referenced by mutex
while it is locked or referenced (for example, while being used in a
pthread_cond_wait(3THR) or
pthread_cond_timedwait(3THR)) by another thread.

EINVAL The value specified by mutex is invalid.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level MT-Safe

mutex(3THR), pthread_cond_timedwait(3THR), pthread_cond_wait(3THR),
pthread_mutex_getprioceiling(3THR), pthread_mutex_lock(3THR),
pthread_mutex_unlock(3THR), pthread_mutex_setprioceiling(3THR),
pthread_mutex_trylock(3THR), pthread_mutexattr_getpshared(3THR),
pthread_mutexattr_setpshared(3THR) attributes(5), standards(5)

pthread_mutex_init(3THR)

ATTRIBUTES

SEE ALSO

178 man pages section 3: Threads and Realtime Library Functions • Last Revised 30 Mar 1999



pthread_mutex_lock, pthread_mutex_trylock, pthread_mutex_unlock – lock or unlock
a mutex

cc –mt [ flag... ] file... –lpthread [ library... ]

#include <pthread.h>

int pthread_mutex_lock(pthread_mutex_t *mutex);

int pthread_mutex_trylock(pthread_mutex_t *mutex);

int pthread_mutex_unlock(pthread_mutex_t *mutex);

The mutex object referenced by mutex is locked by calling pthread_mutex_lock().
If the mutex is already locked, the calling thread blocks until the mutex becomes
available. This operation returns with the mutex object referenced by mutex in the
locked state with the calling thread as its owner.

If the mutex type is PTHREAD_MUTEX_NORMAL, deadlock detection is not provided.
Attempting to relock the mutex causes deadlock. If a thread attempts to unlock a
mutex that it has not locked or a mutex that is unlocked, undefined behavior results.

If the mutex type is PTHREAD_MUTEX_ERRORCHECK, then error checking is provided.
If a thread attempts to relock a mutex that it has already locked, an error will be
returned. If a thread attempts to unlock a mutex that it has not locked or a mutex
which is unlocked, an error will be returned.

If the mutex type is PTHREAD_MUTEX_RECURSIVE, then the mutex maintains the
concept of a lock count. When a thread successfully acquires a mutex for the first time,
the lock count is set to 1. Every time a thread relocks this mutex, the lock count is
incremented by one. Each time the thread unlocks the mutex, the lock count is
decremented by one. When the lock count reaches 0, the mutex becomes available for
other threads to acquire. If a thread attempts to unlock a mutex that it has not locked
or a mutex that is unlocked, an error will be returned.

If the mutex type is PTHREAD_MUTEX_DEFAULT, attempting to recursively lock the
mutex results in undefined behavior. Attempting to unlock the mutex if it was not
locked by the calling thread results in undefined behavior. Attempting to unlock the
mutex if it is not locked results in undefined behavior.

The pthread_mutex_trylock() function is identical to pthread_mutex_lock()
except that if the mutex object referenced by mutex is currently locked (by any thread,
including the current thread), the call returns immediately.

The pthread_mutex_unlock() function releases the mutex object referenced by
mutex. The manner in which a mutex is released is dependent upon the mutex’s type
attribute. If there are threads blocked on the mutex object referenced by mutex when
pthread_mutex_unlock() is called, resulting in the mutex becoming available, the
scheduling policy is used to determine which thread will acquire the mutex. (In the
case of PTHREAD_MUTEX_RECURSIVE mutexes, the mutex becomes available when
the count reaches 0 and the calling thread no longer has any locks on this mutex.)

pthread_mutex_lock(3THR)

NAME

SYNOPSIS

DESCRIPTION

Threads and Realtime Library Functions 179



If a signal is delivered to a thread waiting for a mutex, upon return from the signal
handler the thread resumes waiting for the mutex as if it was not interrupted.

If successful, the pthread_mutex_lock() and pthread_mutex_unlock()
functions return 0. Otherwise, an error number is returned to indicate the error.

The pthread_mutex_trylock() function returns 0 if a lock on the mutex object
referenced by mutex is acquired. Otherwise, an error number is returned to indicate
the error.

The pthread_mutex_lock() and pthread_mutex_trylock() functions will fail
if:

EINVAL The mutex was created with the protocol attribute having the value
PTHREAD_PRIO_PROTECT and the calling thread’s priority is
higher than the mutex’s current priority ceiling.

The pthread_mutex_trylock() function will fail if:

EBUSY The mutex could not be acquired because it was already locked.

The pthread_mutex_lock(), pthread_mutex_trylock() and
pthread_mutex_unlock() functions may fail if:

EINVAL The value specified by mutex does not refer to an initialized mutex
object.

EAGAIN The mutex could not be acquired because the maximum number of
recursive locks for mutex has been exceeded.

The pthread_mutex_lock() function may fail if:

EDEADLK The current thread already owns the mutex.

The pthread_mutex_unlock() function may fail if:

EPERM The current thread does not own the mutex.

When a thread makes a call to pthread_mutex_lock() or
pthread_mutex_trylock(), if the symbol _POSIX_THREAD_PRIO_INHERIT is
defined and the mutex is initialized with the protocol attribute having the value
PTHREAD_PRIO_INHERIT and the robustness attribute having the value
PTHREAD_MUTEX_ROBUST_NP (see pthread_mutexattr_getrobust_np(3THR)),
the pthread_mutex_lock() and pthread_mutex_trylock() functions will fail
if:

EOWNERDEAD The last owner of this mutex died while holding the
mutex. This mutex is now owned by the caller. The
caller must now attempt to make the state protected by
the mutex consistent. If it is able to clean up the state,
then it should call
pthread_mutex_consistent_np() for the mutex

pthread_mutex_lock(3THR)

RETURN VALUES

ERRORS

180 man pages section 3: Threads and Realtime Library Functions • Last Revised 30 Mar 1999



and unlock the mutex. Subsequent calls to
pthread_mutex_lock() and
pthread_mutex_trylock() will behave normally,
as before. If the caller is not able to clean up the state,
pthread_mutex_consistent_np() should not be
called for the mutex, but it should be unlocked.
Subsequent calls to pthread_mutex_lock() and
pthread_mutex_trylock() will fail to acquire the
mutex with the error value ENOTRECOVERABLE. If the
owner who acquired the lock with EOWNERDEAD dies,
the next owner will acquire the lock with EOWNERDEAD.

ENOTRECOVERABLE The mutex trying to be acquired is protecting the state
that has been left irrecoverable by the mutex’s last
owner, who died while holding the lock. The mutex
has not been acquired. This condition can occur when
the lock was previously acquired with EOWNERDEAD,
and the owner was not able to clean up the state and
unlocked the mutex without making the mutex
consistent.

ENOMEM The limit on the number of simultaneously held
mutexes has been exceeded.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level MT-Safe

pthread_mutex_init(3THR), pthread_mutex_destroy(3THR),
pthread_mutex_consistent_np(3THR),
pthread_mutexattr_getrobust_np(3THR), attributes(5), standards(5)

In the current implementation of threads, pthread_mutex_lock(),
pthread_mutex_unlock(), mutex_lock(), mutex_unlock(),
pthread_mutex_trylock(), and mutex_trylock() do not validate the mutex
type. Therefore, an uninitialized mutex or a mutex with an invalid type does not
return EINVAL. Interfaces for mutexes with an invalid type have unspecified behavior.

Uninitialized mutexes that are allocated locally may contain junk data. Such mutexes
need to be initialized using pthread_mutex_init() or mutex_init().

pthread_mutex_lock(3THR)

ATTRIBUTES

SEE ALSO

NOTES

Threads and Realtime Library Functions 181



pthread_once – initialize dynamic package

cc –mt [ flag... ] file...– lpthread [ library... ]

#include <pthread.h>

pthread_once_t once_control = PTHREAD_ONCE_INIT;

int pthread_once(pthread_once_t *once_control, void (*init_routine,
void)););

If any thread in a process with a once_control parameter makes a call to
pthread_once(), the first call will summon the init_routine(), but subsequent
calls will not. The once_control parameter determines whether the associated
initialization routine has been called. The init_routine() is complete upon return
of pthread_once().

pthread_once() is not a cancellation point; however, if the function
init_routine() is a cancellation point and is canceled, the effect on once_control is
the same as if pthread_once() had never been called.

The constant PTHREAD_ONCE_INIT is defined in the <pthread.h> header.

If once_control has automatic storage duration or is not initialized by
PTHREAD_ONCE_INIT, the behavior of pthread_once() is undefined.

Upon successful completion, pthread_once() returns 0. Otherwise, an error
number is returned to indicate the error.

EINVAL once_control or init_routine is NULL.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level MT-Safe

attributes(5)

Solaris threads do not offer this functionality.

pthread_once(3THR)

NAME

SYNOPSIS

DESCRIPTION

RETURN VALUES

ERRORS

ATTRIBUTES

SEE ALSO

NOTES

182 man pages section 3: Threads and Realtime Library Functions • Last Revised 2 Jun 1998



pthread_rwlockattr_getpshared, pthread_rwlockattr_setpshared – get or set
process-shared attribute of read-write lock attributes object

cc –mt [ flag... ] file...– lpthread [ library... ]

#include <pthread.h>

int pthread_rwlockattr_getpshared(const pthread_rwlockattr_t
*attr, int *pshared);

int pthread_rwlockattr_setpshared(pthread_rwlockattr_t *attr, int
pshared);

The process-shared attribute is set to PTHREAD_PROCESS_SHARED to permit a
read-write lock to be operated upon by any thread that has access to the memory
where the read-write lock is allocated, even if the read-write lock is allocated in
memory that is shared by multiple processes. If the process-shared attribute is
PTHREAD_PROCESS_PRIVATE, the read-write lock will only be operated upon by
threads created within the same process as the thread that initialised the read-write
lock; if threads of differing processes attempt to operate on such a read-write lock, the
behaviour is undefined. The default value of the process-shared attribute is
PTHREAD_PROCESS_PRIVATE.

The pthread_rwlockattr_getpshared() function obtains the value of the
process-shared attribute from the initialised attributes object referenced by attr. The
pthread_rwlockattr_setpshared() function is used to set the process-shared
attribute in an initialised attributes object referenced by attr.

If successful, the pthread_rwlockattr_setpshared() function returns 0.
Otherwise, an error number is returned to indicate the error.

Upon successful completion, the pthread_rwlockattr_getpshared() returns 0
and stores the value of the process-shared attribute of attr into the object referenced by
the pshared parameter. Otherwise an error number is returned to indicate the error.

The pthread_rwlockattr_getpshared() and
pthread_rwlockattr_setpshared() functions will fail if:

EINVAL The value specified by attr or pshared is invalid.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level MT-Safe

pthread_rwlock_init(3THR), pthread_rwlock_rdlock(3THR),
pthread_rwlock_unlock(3THR), pthread_rwlock_wrlock(3THR),
pthread_rwlockattr_init(3THR), attributes(5)

pthread_rwlockattr_getpshared(3THR)

NAME

SYNOPSIS

DESCRIPTION

RETURN VALUES

ERRORS

ATTRIBUTES

SEE ALSO

Threads and Realtime Library Functions 183



pthread_rwlockattr_init, pthread_rwlockattr_destroy – initialize or destroy read-write
lock attributes object

cc –mt [ flag... ] file...– lpthread [ library... ]

#include <pthread.h>

int pthread_rwlockattr_init(pthread_rwlockattr_t *attr);

int pthread_rwlockattr_destroy(pthread_rwlockattr_t *attr);

The pthread_rwlockattr_init() function initializes a read-write lock attributes
object attr with the default value for all of the attributes defined by the
implementation.

Results are undefined if pthread_rwlockattr_init() is called specifying an
already initialized read-write lock attributes object.

After a read-write lock attributes object has been used to initialize one or more
read-write locks, any function affecting the attributes object (including destruction)
does not affect any previously initialized read-write locks.

The pthread_rwlockattr_destroy() function destroys a read-write lock
attributes object. The effect of subsequent use of the object is undefined until the object
is re-initialized by another call to pthread_rwlockattr_init(). An
implementation may cause pthread_rwlockattr_destroy() to set the object
referenced by attr to an invalid value.

If successful, the pthread_rwlockattr_init() and
pthread_rwlockattr_destroy() functions return 0. Otherwise, an error number
is returned to indicate the error.

The pthread_rwlockattr_init() function will fail if:

ENOMEM Insufficient memory exists to initialize the read-write lock
attributes object.

The pthread_rwlockattr_destroy() function may fail if:

EINVAL The value specified by attr is invalid.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level MT-Safe

pthread_rwlock_init(3THR), pthread_rwlock_rdlock(3THR),
pthread_rwlock_unlock(3THR), pthread_rwlock_wrlock(3THR),
pthread_rwlockattr_getpshared(3THR), attributes(5)

pthread_rwlockattr_init(3THR)

NAME

SYNOPSIS

DESCRIPTION

RETURN VALUES

ERRORS

ATTRIBUTES

SEE ALSO

184 man pages section 3: Threads and Realtime Library Functions • Last Revised 17 Apr 1998



pthread_rwlock_init, pthread_rwlock_destroy – initialize or destroy a read-write lock
object

cc –mt [ flag... ] file...– lpthread [ library... ]

#include <pthread.h>

int pthread_rwlock_init(pthread_rwlock_t *rwlock,const
pthread_rwlockattr_t *attr);

int pthread_rwlock_destroy(pthread_rwlock_t *rwlock);

pthread_rwlock_t rwlock=PTHREAD_RWLOCK_INITIALIZER;

The pthread_rwlock_init() function initializes the read-write lock referenced by
rwlock with the attributes referenced by attr. If attr is NULL, the default read-write lock
attributes are used; the effect is the same as passing the address of a default read-write
lock attributes object. Once initialized, the lock can be used any number of times
without being re-initialized. Upon successful initialization, the state of the read-write
lock becomes initialized and unlocked. Results are undefined if
pthread_rwlock_init() is called specifying an already initialized read-write lock.
Results are undefined if a read-write lock is used without first being initialized.

If the pthread_rwlock_init() function fails, rwlock is not initialized and the
contents of rwlock are undefined.

The pthread_rwlock_destroy() function destroys the read-write lock object
referenced by rwlock and releases any resources used by the lock. The effect of
subsequent use of the lock is undefined until the lock is re-initialized by another call to
pthread_rwlock_init(). An implementation may cause
pthread_rwlock_destroy() to set the object referenced by rwlock to an invalid
value. Results are undefined if pthread_rwlock_destroy() is called when any
thread holds rwlock. Attempting to destroy an uninitialized read-write lock results in
undefined behaviour. A destroyed read-write lock object can be re-initialized using
pthread_rwlock_init(); the results of otherwise referencing the read-write lock
object after it has been destroyed are undefined.

In cases where default read-write lock attributes are appropriate, the macro
PTHREAD_RWLOCK_INITIALIZER can be used to initialize read-write locks that are
statically allocated. The effect is equivalent to dynamic initialization by a call to
pthread_rwlock_init() with the parameter attr specified as NULL, except that no
error checks are performed.

If successful, the pthread_rwlock_init() and pthread_rwlock_destroy()
functions return 0. Otherwise, an error number is returned to indicate the error.

The pthread_rwlock_init() and pthread_rwlock_init() functions will fail
if:

EINVAL The value specified by attr is invalid.

pthread_rwlock_init(3THR)

NAME

SYNOPSIS

DESCRIPTION

RETURN VALUES

ERRORS

Threads and Realtime Library Functions 185



EINVAL The value specified by rwlock is invalid.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level MT-Safe

pthread_rwlock_rdlock(3THR), pthread_rwlock_unlock(3THR),
pthread_rwlock_wrlock(3THR), pthread_rwlockattr_init(3THR),
attributes(5)

pthread_rwlock_init(3THR)

ATTRIBUTES

SEE ALSO

186 man pages section 3: Threads and Realtime Library Functions • Last Revised 28 Apr 1998



pthread_rwlock_rdlock, pthread_rwlock_tryrdlock – lock or attempt to lock a
read-write lock object for reading

cc –mt [ flag... ] file...– lpthread [ library... ]

#include <pthread.h>

int pthread_rwlock_rdlock(pthread_rwlock_t *rwlock);

int pthread_rwlock_tryrdlock(pthread_rwlock_t *rwlock);

The pthread_rwlock_rdlock() function applies a read lock to the read-write lock
referenced by rwlock. The calling thread acquires the read lock if a writer does not hold
the lock and there are no writers blocked on the lock. It is unspecified whether the
calling thread acquires the lock when a writer does not hold the lock and there are
writers waiting for the lock. If a writer holds the lock, the calling thread will not
acquire the read lock. If the read lock is not acquired, the calling thread blocks (that is,
it does not return from the pthread_rwlock_rdlock() call) until it can acquire the
lock. Results are undefined if the calling thread holds a write lock on rwlock at the time
the call is made.

Implementations are allowed to favors writers over readers to avoid writer starvation.
The current implementation favors writers over readers.

A thread may hold multiple concurrent read locks on rwlock (that is, successfully call
the pthread_rwlock_rdlock() function n times). If so, the thread must perform
matching unlocks (that is, it must call the pthread_rwlock_unlock() function n
times).

The function pthread_rwlock_tryrdlock() applies a read lock as in the
pthread_rwlock_rdlock() function with the exception that the function fails if
any thread holds a write lock on rwlock or there are writers blocked on rwlock.

Results are undefined if any of these functions are called with an uninitialized
read-write lock.

If a signal is delivered to a thread waiting for a read-write lock for reading, upon
return from the signal handler the thread resumes waiting for the read-write lock for
reading as if it was not interrupted.

If successful, the pthread_rwlock_rdlock() function returns 0. Otherwise, an
error number is returned to indicate the error.

The function pthread_rwlock_tryrdlock() returns 0 if the lock for reading on
the read-write lock object referenced by rwlock is acquired. Otherwise an error number
is returned to indicate the error.

The pthread_rwlock_tryrdlock() function will fail if:

EBUSY The read-write lock could not be acquired for reading because a
writer holds the lock or was blocked on it.

pthread_rwlock_rdlock(3THR)

NAME

SYNOPSIS

DESCRIPTION

RETURN VALUES

ERRORS

Threads and Realtime Library Functions 187



See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level MT-Safe

pthread_rwlock_init(3THR), pthread_rwlock_wrlock(3THR),
pthread_rwlockattr_init(3THR), pthread_rwlock_unlock(3THR),
attributes(5)

pthread_rwlock_rdlock(3THR)

ATTRIBUTES

SEE ALSO

188 man pages section 3: Threads and Realtime Library Functions • Last Revised 28 Apr 1998



pthread_rwlock_unlock – unlock a read-write lock object

cc –mt [ flag... ] file...– lpthread [ library... ]

#include <pthread.h>

int pthread_rwlock_unlock(pthread_rwlock_t *rwlock);

The pthread_rwlock_unlock() function is called to release a lock held on the
read-write lock object referenced by rwlock. Results are undefined if the read-write lock
rwlock is not held by the calling thread.

If this function is called to release a read lock from the read-write lock object and there
are other read locks currently held on this read-write lock object, the read-write lock
object remains in the read locked state. If this function releases the calling thread’s last
read lock on this read-write lock object, then the calling thread is no longer one of the
owners of the object. If this function releases the last read lock for this read-write lock
object, the read-write lock object will be put in the unlocked state with no owners.

If this function is called to release a write lock for this read-write lock object, the
read-write lock object will be put in the unlocked state with no owners.

If the call to the pthread_rwlock_unlock() function results in the read-write lock
object becoming unlocked and there are multiple threads waiting to acquire the
read-write lock object for writing, the scheduling policy is used to determine which
thread acquires the read-write lock object for writing. If there are multiple threads
waiting to acquire the read-write lock object for reading, the scheduling policy is used
to determine the order in which the waiting threads acquire the read-write lock object
for reading. If there are multiple threads blocked on rwlock for both read locks and
write locks, it is unspecified whether the readers acquire the lock first or whether a
writer acquires the lock first.

Results are undefined if any of these functions are called with an uninitialized
read-write lock.

If successful, the pthread_rwlock_unlock() function returns 0. Otherwise, an
error number is returned to indicate the error.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level MT-Safe

pthread_rwlock_init(3THR), pthread_rwlock_rdlock(3THR),
pthread_rwlock_wrlock(3THR), pthread_rwlockattr_init(3THR),
attributes(5)

pthread_rwlock_unlock(3THR)

NAME

SYNOPSIS

DESCRIPTION

RETURN VALUES

ATTRIBUTES

SEE ALSO

Threads and Realtime Library Functions 189



pthread_rwlock_wrlock, pthread_rwlock_trywrlock – lock or attempt to lock a
read-write lock object for writing

cc –mt [ flag... ] file...– lpthread [ library... ]

#include <pthread.h>

int pthread_rwlock_wrlock(pthread_rwlock_t *rwlock);

int pthread_rwlock_trywrlock(pthread_rwlock_t *rwlock);

The pthread_rwlock_wrlock() function applies a write lock to the read-write lock
referenced by rwlock. The calling thread acquires the write lock if no other thread
(reader or writer) holds the read-write lock rwlock. Otherwise, the thread blocks (that
is, does not return from the pthread_rwlock_wrlock() call) until it can acquire the
lock. Results are undefined if the calling thread holds the read-write lock (whether a
read or write lock) at the time the call is made.

Implementations are allowed to favor writers over readers to avoid writer starvation.
The current implementation favors writers over readers.

The function pthread_rwlock_trywrlock() applies a write lock like the
pthread_rwlock_wrlock() function, with the exception that the function fails if
any thread currently holds rwlock (for reading or writing).

Results are undefined if any of these functions are called with an uninitialized
read-write lock.

If a signal is delivered to a thread waiting for a read-write lock for writing, upon
return from the signal handler the thread resumes waiting for the read-write lock for
writing as if it was not interrupted.

If successful, the pthread_rwlock_wrlock() function returns 0. Otherwise, an
error number is returned to indicate the error.

The function pthread_rwlock_trywrlock() returns 0 if the lock for writing on
the read-write lock object referenced by rwlock is acquired. Otherwise an error number
is returned to indicate the error.

The pthread_rwlock_trywrlock() function will fail if:

EBUSY The read-write lock could not be acquired for writing because it
was already locked for reading or writing.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level MT-Safe

pthread_rwlock_wrlock(3THR)

NAME

SYNOPSIS

DESCRIPTION

RETURN VALUES

ERRORS

ATTRIBUTES

190 man pages section 3: Threads and Realtime Library Functions • Last Revised 28 Apr 1998



pthread_rwlock_init(3THR), pthread_rwlock_unlock(3THR),
pthread_rwlockattr_init(3THR), pthread_rwlock_rdlock(3THR),
attributes(5)

pthread_rwlock_wrlock(3THR)

SEE ALSO

Threads and Realtime Library Functions 191



pthread_self – get calling thread’s ID

cc –mt [ flag... ] file...– lpthread [ library... ]

#include <pthread.h>

pthread_t pthread_self(void););

The pthread_self() function returns the thread ID of the calling thread.

No errors are defined.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level MT-Safe

pthread_create(3THR), pthread_equal(3THR), attributes(5), standards(5)

pthread_self(3THR)

NAME

SYNOPSIS

DESCRIPTION

ERRORS

ATTRIBUTES

SEE ALSO

192 man pages section 3: Threads and Realtime Library Functions • Last Revised 9 May 1998



pthread_setcancelstate – enable or disable cancellation

cc –mt [ flag... ] file...– lpthread [ library... ]

#include <pthread.h>

int pthread_setcancelstate(intstate, int *oldstate);

pthread_setcancelstate() atomically sets the calling thread’s cancellation state
to the specified state and if oldstate is not NULL, stores the previous cancellation state in
oldstate.

The state can be either of the following:

PTHREAD_CANCEL_ENABLE This is the default. When cancellation is deferred
(deferred cancellation is also the default), cancellation
occurs when the target thread reaches a cancellation
point and a cancel is pending. When cancellation is
asynchronous, receipt of a pthread_cancel(3THR)
call causes immediate cancellation.

PTHREAD_CANCEL_DISABLE When cancellation is deferred, all cancellation requests
to the target thread are held pending. When
cancellation is asynchronous, all cancellation requests
to the target thread are held pending; as soon as
cancellation is re-enabled, pending cancellations are
executed immediately.

See cancellation(3THR) for the definition of a cancellation point and a discussion
of cancellation concepts. See pthread_setcanceltype(3THR) for explanations of
deferred and asynchronous cancellation.

pthread_setcancelstate() is a cancellation point when it is called with
PTHREAD_CANCEL_ENABLE and the cancellation type is
PTHREAD_CANCEL_ASYNCHRONOUS.

Upon successful completion, pthread_setcancelstate(), returns 0. Otherwise,
an error number is returned to indicate the error.

The pthread_setcancelstate() function will fail if:

EINVAL The specified state is not PTHREAD_CANCEL_ENABLE or
PTHREAD_CANCEL_DISABLE.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level MT-Safe

pthread_setcancelstate(3THR)

NAME

SYNOPSIS

DESCRIPTION

RETURN VALUES

ERRORS

ATTRIBUTES

Threads and Realtime Library Functions 193



cancellation(3THR), condition(3THR), pthread_cancel(3THR),
pthread_cleanup_pop(3THR), pthread_cleanup_push(3THR),
pthread_exit(3THR), pthread_join(3THR), pthread_setcanceltype(3THR),
pthread_testcancel(3THR), setjmp(3C), attributes(5)

pthread_setcancelstate(3THR)

SEE ALSO

194 man pages section 3: Threads and Realtime Library Functions • Last Revised 3 Jun 1998



pthread_setcanceltype – set the cancellation type of a thread

cc –mt [ flag... ] file...– lpthread [ library... ]

#include <pthread.h>

int pthread_setcanceltype(inttype, int *oldtype);

pthread_setcanceltype() atomically sets the calling thread’s cancellation type to
the specified type and, if oldtype is not NULL, stores the previous cancellation type in
oldtype. The type can be either of the following:

PTHREAD_CANCEL_DEFERRED This is the default. When cancellation is
enabled (enabled cancellation is also the
default), cancellation occurs when the target
thread reaches a cancellation point and a
cancel is pending. When cancellation is
disabled, all cancellation requests to the
target thread are held pending.

PTHREAD_CANCEL_ASYNCHRONOUS When cancellation is enabled, receipt of a
pthread_cancel(3THR) call causes
immediate cancellation. When cancellation
is disabled, all cancellation requests to the
target thread are held pending; as soon as
cancellation is re-enabled, pending
cancellations are executed immediately.

See cancellation(3THR) for the definition of a cancellation point and a discussion
of cancellation concepts. See pthread_setcancelstate(3THR) for explanations of
enabling and disabling cancellation.

pthread_setcanceltype() is a cancellation point if type is called with
PTHREAD_CANCEL_ASYNCHRONOUS and the cancellation state is
PTHREAD_CANCEL_ENABLE.

Upon successful completion, the pthread_setcanceltype() function returns 0.
Otherwise, an error number is returned to indicate the error.

The pthread_setcanceltype() function will fail if:

EINVAL The specified type is not PTHREAD_CANCEL_DEFERRED or
PTHREAD_CANCEL_ASYNCHRONOUS.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level MT-Safe

pthread_setcanceltype(3THR)

NAME

SYNOPSIS

DESCRIPTION

RETURN VALUES

ERRORS

ATTRIBUTES

Threads and Realtime Library Functions 195



cancellation(3THR), condition(3THR), pthread_cancel(3THR),
pthread_cleanup_pop(3THR), pthread_cleanup_push(3THR),
pthread_exit(3THR), pthread_join(3THR),
pthread_setcancelstate(3THR), pthread_testcancel(3THR), setjmp(3C),
attributes(5)

pthread_setcanceltype(3THR)

SEE ALSO

196 man pages section 3: Threads and Realtime Library Functions • Last Revised 3 Jun 1998



pthread_sigmask – change or examine calling thread’s signal mask

cc –mt [ flag... ] file...– lpthread [ library... ]

#include <pthread.h>

#include <signal.h>

int pthread_sigmask(int how, const sigset_t *set, sigset_t *oset);

The pthread_sigmask() function changes or examines a calling thread’s signal
mask. Each thread has its own signal mask. A new thread inherits the calling thread’s
signal mask and priority; however, pending signals are not inherited. Signals pending
for a new thread will be empty.

If the value of the argument set is not NULL, set points to a set of signals that can
modify the currently blocked set. If the value of set is NULL, the value of how is
insignificant and the thread’s signal mask is unmodified; thus, pthread_sigmask()
can be used to inquire about the currently blocked signals.

The value of the argument how specifies the method in which the set is changed and
takes one of the following values:

SIG_BLOCK set corresponds to a set of signals to block. They are added to the
current signal mask.

SIG_UNBLOCK set corresponds to a set of signals to unblock. These signals are
deleted from the current signal mask.

SIG_SETMASK set corresponds to the new signal mask. The current signal mask
is replaced by set.

If the value of oset is not NULL, it points to the location where the previous signal mask
is stored.

Upon successful completion, the pthread_sigmask() function returns 0. Otherwise,
it returns a non-zero value.

The pthread_sigmask() function will fail if:

EINVAL The value of how is not defined and oset is NULL.

EXAMPLE 1 The following example shows how to create a default thread that can serve as a
signal catcher/handler with its own signal mask. new will have a different value from the
creator’s signal mask.

As POSIX threads and Solaris threads are fully compatible even within the same
process, this example uses pthread_create(3THR) if you execute a.out 0, or
thr_create(3THR) if you execute a.out 1.

In this example:

� sigemptyset(3C) initializes a null signal set, new. sigaddset(3C) packs the
signal, SIGINT, into that new set.

pthread_sigmask(3THR)

NAME

SYNOPSIS

DESCRIPTION

RETURN VALUES

ERRORS

EXAMPLES

Threads and Realtime Library Functions 197



EXAMPLE 1 The following example shows how to create a default thread that can serve as a
signal catcher/handler with its own signal mask. new will have a different value from the
creator’s signal mask. (Continued)

� Either pthread_sigmask() or thr_sigsetmask() is used to mask the signal,
SIGINT (CTRL-C), from the calling thread, which is main(). The signal is masked
to guarantee that only the new thread will receive this signal.

� pthread_create() or thr_create() creates the signal-handling thread.

� Using pthread_join(3THR) or thr_join(3THR), main() then waits for the
termination of that signal-handling thread, whose ID number is user_threadID;
after which, main() will sleep(3C) for 2 seconds, and then the program
terminates.

� The signal-handling thread, handler:

� Assigns the handler interrupt() to handle the signal SIGINT, by the call to
sigaction(2).

� Resets its own signal set to not block the signal, SIGINT.

� Sleeps for 8 seconds to allow time for the user to deliver the signal, SIGINT, by
pressing the CTRL-C.

/* cc thisfile.c -lthread -lpthread */
#define _REENTRANT /* basic first 3-lines for threads */
#include <pthread.h>
#include <thread.h>
thread_t user_threadID;
sigset_t new;
void *handler( ), interrupt( );

main( int argc, char *argv[ ] ) {
test_argv(argv[1]);

sigemptyset(&new);
sigaddset(&new, SIGINT);
switch(*argv[1]) {

case ’0’: /* POSIX */
pthread_sigmask(SIG_BLOCK, &new, NULL);
pthread_create(&user_threadID, NULL, handler, argv[1]);
pthread_join(user_threadID, NULL);
break;

case ’1’: /* Solaris */
thr_sigsetmask(SIG_BLOCK, &new, NULL);
thr_create(NULL, 0, handler, argv[1], 0, &user_threadID);
thr_join(user_threadID, NULL, NULL);
break;

} /* switch */

printf("thread handler, # %d, has exited\n",user_threadID);
sleep(2);
printf("main thread, # %d is done\n", thr_self( ));

} /* end main */

pthread_sigmask(3THR)

198 man pages section 3: Threads and Realtime Library Functions • Last Revised 5 Jun 1998



EXAMPLE 1 The following example shows how to create a default thread that can serve as a
signal catcher/handler with its own signal mask. new will have a different value from the
creator’s signal mask. (Continued)

struct sigaction act;

void *
handler(char argv1[ ])
{

act.sa_handler = interrupt;
sigaction(SIGINT, &act, NULL);
switch(*argv1) {

case ’0’: /* POSIX */
pthread_sigmask(SIG_UNBLOCK, &new, NULL);
break;

case ’1’: /* Solaris */
thr_sigsetmask(SIG_UNBLOCK, &new, NULL);
break;

}
printf("\n Press CTRL-C to deliver SIGINT signal to the process\n");
sleep(8); /* give user time to hit CTRL-C */

}

void
interrupt(int sig)
{
printf("thread %d caught signal %d\n", thr_self( ), sig);
}

void test_argv(char argv1[ ]) {
if(argv1 == NULL) {

printf("use 0 as arg1 to use thr_create( );\n \
or use 1 as arg1 to use pthread_create( )\n");
exit(NULL);

}

}

EXAMPLE 2

In the last example, the handler thread served as a signal-handler while also taking
care of activity of its own (in this case, sleeping, although it could have been some
other activity). A thread could be completely dedicated to signal-handling simply by
waiting for the delivery of a selected signal by blocking with sigwait(2). The two
subroutines in the previous example, handler() and interrupt(), could have
been replaced with the following routine:

void *
handler( )
{ int signal;

printf("thread %d is waiting for you to press the CTRL-C keys\n", thr_self( ));
sigwait(&new, &signal);
printf("thread %d has received the signal %d \n", thr_self( ), signal);

}
/* pthread_create( ) and thr_create( ) would use NULL instead of argv[1]

pthread_sigmask(3THR)

Threads and Realtime Library Functions 199



EXAMPLE 2 (Continued)

for the arg passed to handler( ) */

In this routine, one thread is dedicated to catching and handling the signal specified
by the set new, which allows main() and all of its other sub-threads, created after
pthread_sigmask() or thr_sigsetmask() masked that signal, to continue
uninterrupted. Any use of sigwait(2) should be such that all threads block the
signals passed to sigwait(2) at all times. Only the thread that calls sigwait() will
get the signals. The call to sigwait(2) takes two arguments.

For this type of background dedicated signal-handling routine, you may wish to use a
Solaris daemon thread by passing the argument, THR_DAEMON, to
thr_create(3THR).

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level MT-Safe and Async-Signal-Safe

sigaction(2), sigprocmask(2), sigwait(2), cond_wait(3THR),
pthread_create(3THR), pthread_join(3THR), pthread_self(3THR),
sigsetops(3C), sleep(3C), attributes(5), standards(5)

It is not possible to block signals that cannot be ignored (see sigaction(2)). If using
the threads library, it is not possible to block the signals SIGLWP or SIGCANCEL,
which are reserved by the threads library. Additionally, it is impossible to unblock the
signal SIGWAITING, which is always blocked on all threads. This restriction is quietly
enforced by the threads library.

Using sigwait(2) in a dedicated thread allows asynchronously generated signals to
be managed synchronously; however, sigwait(2) should never be used to manage
synchronously generated signals.

Synchronously generated signals are exceptions that are generated by a thread and are
directed at the thread causing the exception. Since sigwait() blocks waiting for
signals, the blocking thread cannot receive a synchronously generated signal.

If sigprocmask(2) is used in a multi-threaded program, it will be the same as if
pthread_sigmask() has been called. POSIX leaves the semantics of the call to
sigprocmask(2) unspecified in a multi-threaded process, so programs that care about
POSIX portability should not depend on this semantic.

If a signal is delivered while a thread is waiting on a condition variable, the
cond_wait() will be interrupted (see cond_wait(3THR)) and the handler will be
executed. The handler should assume that the lock protecting the condition variable is
held.

pthread_sigmask(3THR)

ATTRIBUTES

SEE ALSO

NOTES

200 man pages section 3: Threads and Realtime Library Functions • Last Revised 5 Jun 1998



Although pthread_sigmask() is Async-Signal-Safe with respect to the Solaris
environment, this safeness is not guaranteed to be portable to other POSIX domains.

Signals which are generated synchronously should not be masked. If such a signal is
blocked and delivered, the receiving process is killed.

A thread directed SIGALRM generated because of a realtime interval timer or process
alarm clock is not maskable by a signal masking function, such as thr_sigsetmask(3T),
or sigprocmask(2). See alarm(2) and setitimer(2).

pthread_sigmask(3THR)

Threads and Realtime Library Functions 201



pthread_testcancel – create cancellation point in the calling thread

cc –mt [ flag... ] file...– lpthread [ library... ]

#include <pthread.h>

void pthread_testcancel ();

The pthread_testcancel() function forces testing for cancellation. This is useful
when you need to execute code that runs for long periods without encountering
cancellation points; such as a library routine that executes long-running computations
without cancellation points. This type of code can block cancellation for unacceptable
long periods of time. One strategy for avoiding blocking cancellation for long periods,
is to insert calls to pthread_testcancel() in the long-running computation code
and to setup a cancellation handler in the library code, if required.

The pthread_testcancel() function returns a void.

The pthread_testcancel() function does not return errors.

EXAMPLE 1 See cancellation(3THR) for an example of using pthread_testcancel()
to force testing for cancellation and a discussion of cancellation concepts.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level MT-Safe

Intro(3), cancellation(3THR), condition(3THR),
pthread_cleanup_pop(3THR), pthread_cleanup_push(3THR),
pthread_exit(3THR), pthread_join(3THR),
pthread_setcancelstate(3THR), pthread_setcanceltype(3THR),
setjmp(3C), attributes(5)

pthread_testcancel() has no effect if cancellation is disabled.

Use pthread_testcancel() with pthread_setcanceltype() called with its
canceltype set to PTHREAD_CANCEL_DEFERRED. pthread_testcancel()
operation is undefined if pthread_setcanceltype() was called with its canceltype
argument set to PTHREAD_CANCEL_ASYNCHRONOUS.

It is possible to kill a thread when it is holding a resource, such as lock or allocated
memory. If that thread has not setup a cancellation cleanup handler to release the held
resource, the application is "cancel-unsafe". See attributes(5) for a discussion of
Cancel-Safety, Deferred-Cancel-Safety, and Asynchronous-Cancel-Safety.

pthread_testcancel(3THR)

NAME

SYNOPSIS

DESCRIPTION

RETURN VALUES

ERRORS

EXAMPLES

ATTRIBUTES

SEE ALSO

NOTES

202 man pages section 3: Threads and Realtime Library Functions • Last Revised 3 Jun 1998



rwlock, rwlock_init, rwlock_destroy, rw_rdlock, rw_wrlock, rw_tryrdlock,
rw_trywrlock, rw_unlock – multiple readers, single writer locks

cc –mt [ flag... ] file...[ library... ]

#include <synch.h>

int rwlock_init(rwlock_t *rwlp, int type, void * arg);

int rwlock_destroy(rwlock_t *rwlp);

int rw_rdlock(rwlock_t *rwlp);

int rw_wrlock(rwlock_t *rwlp);

int rw_unlock(rwlock_t *rwlp);

int rw_tryrdlock(rwlock_t *rwlp);

int rw_trywrlock(rwlock_t *rwlp);

Many threads can have simultaneous read-only access to data, while only one thread
can have write access at any given time. Multiple read access with single write access
is controlled by locks, which are generally used to protect data that is frequently
searched.

Readers/writer locks can synchronize threads in this process and other processes if
they are allocated in writable memory and shared among cooperating processes (see
mmap(2)), and are initialized for this purpose.

Additionally, readers/writer locks must be initialized prior to use. rwlock_init()
The readers/writer lock pointed to by rwlp is initialized by rwlock_init(). A
readers/writer lock is capable of having several types of behavior, which is specified
by type. arg is currently not used, although a future type may define new behavior
parameters by way of arg.

type may be one of the following:

USYNC_PROCESS The readers/writer lock can synchronize threads in this
process and other processes. The readers/writer lock
should be initialized by only one process. arg is
ignored. A readers/writer lock initialized with this
type, must be allocated in memory shared between
processses, i.e. either in Sys V shared memory (see
shmop(2)) or in memory mapped to a file (see mmap(2)).
It is illegal to initialize the object this way and to not
allocate it in such shared memory.

USYNC_THREAD The readers/writer lock can synchronize threads in this
process, only. arg is ignored.

Additionally, readers/writer locks can be initialized by allocation in zeroed memory. A
type of USYNC_THREAD is assumed in this case. Multiple threads must not

rwlock(3THR)

NAME

SYNOPSIS

DESCRIPTION

Threads and Realtime Library Functions 203



simultaneously initialize the same readers/writer lock. And a readers/writer lock
must not be re-initialized while in use by other threads.

The following are default readers/writer lock initialization (intra-process):
rwlock_t rwlp;
rwlock_init(&rwlp, NULL, NULL);
OR
rwlock_init(&rwlp, USYNC_THREAD, NULL);
OR
rwlock_t rwlp = DEFAULTRWLOCK;

The following is a customized readers/writer lock
initialization (inter-process):

rwlock_init(&rwlp, USYNC_PROCESS, NULL);

Any state associated with the readers/writer lock pointed to by rwlp are destroyed by
rwlock_destroy() and the readers/writer lock storage space is not released.

rw_rdlock() gets a read lock on the readers/writer lock pointed to by rwlp. If the
readers/writer lock is currently locked for writing, the calling thread blocks until the
write lock is freed. Multiple threads may simultaneously hold a read lock on a
readers/writer lock.

rw_tryrdlock() trys to get a read lock on the readers/writer lock pointed to by
rwlp. If the readers/writer lock is locked for writing, it returns an error; otherwise, the
read lock is acquired.

rw_wrlock() gets a write lock on the readers/writer lock pointed to by rwlp. If the
readers/writer lock is currently locked for reading or writing, the calling thread blocks
until all the read and write locks are freed. At any given time, only one thread may
have a write lock on a readers/writer lock.

rw_trywrlock() trys to get a write lock on the readers/writer lock pointed to by
rwlp. If the readers/writer lock is currently locked for reading or writing, it returns an
error.

rw_unlock() unlocks a readers/writer lock pointed to by rwlp, if the readers/writer
lock is locked and the calling thread holds the lock for either reading or writing. One
of the other threads that is waiting for the readers/writer lock to be freed will be
unblocked, provided there is other waiting threads. If the calling thread does not hold
the lock for either reading or writing, no error status is returned, and the program’s
behavior is unknown.

If successful, these functions return 0. Otherwise, a non-zero value is returned to
indicate the error.

The rwlock_init() function will fail if:

EINVAL type is invalid.

The rw_tryrdlock() or rw_trywrlock() functions will fail if:

rwlock(3THR)

RETURN VALUES

ERRORS

204 man pages section 3: Threads and Realtime Library Functions • Last Revised 14 May 1998



EBUSY The reader or writer lock pointed to by rwlp was already locked.

These functions may fail if:

EFAULT rwlp or arg points to an illegal address.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level MT-Safe

mmap(2), attributes(5)

These interfaces also available by way of:

#include <thread.h>

If multiple threads are waiting for a readers/writer lock, the acquisition order is
random by default. However, some implementations may bias acquisition order to
avoid depriving writers. The current implementation favors writers over readers.

rwlock(3THR)

ATTRIBUTES

SEE ALSO

NOTES

Threads and Realtime Library Functions 205



schedctl_init, schedctl_lookup, schedctl_exit, schedctl_start, schedctl_stop –
preemption control

cc [ flag ... ] file ... -lsched [ library ... ]

#include <schedctl.h>

schedctl_t *schedctl_init(void);

schedctl_t *schedctl_lookup(void);

void schedctl_exit(void);

void schedctl_start(schedctl_t *ptr);

void schedctl_stop(schedctl_t *ptr);

These functions provide limited control over the scheduling of a lightweight process
(LWP). They allow a running LWP to give a hint to the kernel that preemptions of that
LWP should be avoided. The most likely use for these functions is to block preemption
while holding a spinlock. Improper use of this facility, including attempts to block
preemption for sustained periods of time, may result in reduced performance.

schedctl_init() initializes preemption control for the calling LWP and returns a
pointer used to refer to the data. If schedctl_init() is called more than once by the
same LWP, the most recently returned pointer is the only valid one.

schedctl_lookup() returns the currently allocated preemption control data
associated with the calling LWP that was previously returned by schedctl_init().
This can be useful in programs where it is difficult to maintain local state for each
LWP.

schedctl_exit() removes the preemption control data associated with the calling
LWP.

schedctl_start() is a macro that gives a hint to the kernel scheduler that
preemption should be avoided on the current LWP. The pointer passed to the macro
must be the same as the pointer returned by the call to schedctl_init() by the
current LWP. The behavior of the program when other values are passed is undefined.

schedctl_stop() is a macro that removes the hint that was set by
schedctl_start(). As with schedctl_start(), the pointer passed to the macro
must be the same as the pointer returned by the call to schedctl_init() by the
current LWP.

schedctl_start() and schedctl_stop() are intended to be used to bracket
short critical sections, such as the time spent holding a spinlock. Other uses, including
the failure to call schedctl_stop() soon after calling schedctl_start(), may
result in poor performance.

schedctl_init() returns a pointer to a schedctl_t structure if the initialization
was successful, or NULL otherwise. schedctl_lookup() returns a pointer to a
schedctl_t structure if the data for that LWP was found, or NULL otherwise.

schedctl_init(3SCHED)

NAME

SYNOPSIS

DESCRIPTION

RETURN VALUES

206 man pages section 3: Threads and Realtime Library Functions • Last Revised 10 May 1996



None returned.

priocntl(1), exec(2), fork(2), priocntl(2), thr_create(3THR)

Preemption control is intended for use by LWPs belonging to the time-sharing (TS)
and interactive (IA) scheduling classes. If used by LWPs in other scheduling classes,
such as real-time (RT), no errors will be returned but schedctl_start() and
schedctl_stop() will not have any effect.

Use of preemption control by unbound threads in multithreaded applications (see
thr_create(3THR)) is not supported and will result in undefined behavior.

The data used for preemption control is not copied in the child of a fork(2). Thus, if a
process containing LWPs using preemption control calls fork, and the child does not
immediately call exec(2), each LWP in the child must call schedctl_init() again
prior to any future uses of schedctl_start() and schedctl_stop(). Failure to
do so will result in undefined behavior.

schedctl_init(3SCHED)

ERRORS

SEE ALSO

NOTES

Threads and Realtime Library Functions 207



sched_getparam – get scheduling parameters

cc [ flag... ] file... -lrt [ library... ]

#include <sched.h>

int sched_getparam(pid_t pid, struct sched_param *param);

The sched_getparam() function returns the scheduling parameters of a process
specified by pid in the sched_param structure pointed to by param.

If a process specified by pid exists and if the calling process has permission, the
scheduling parameters for the process whose process ID is equal to pid will be
returned.

If pid is 0, the scheduling parameters for the calling process will be returned. The
behavior of the sched_getparam() function is unspecified if the value of pid is
negative.

Upon successful completion, the sched_getparam() function returns 0. If the call to
sched_getparam() is unsuccessful, the function returns −1 and sets errno to
indicate the error.

The sched_getparam() function will fail if:

ENOSYS The sched_getparam() function is not supported by the system.

EPERM The requesting process does not have permission to obtain the
scheduling parameters of the specified process.

ESRCH No process can be found corresponding to that specified by pid.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level MT-Safe

sched_getscheduler(3RT), sched_setparam(3RT), sched_setscheduler(3RT),
attributes(5), sched(3HEAD)

Solaris 2.6 was the first release to support the Asynchronous Input and Output option.
Prior to this release, this function always returned −1 and set errno to ENOSYS.

sched_getparam(3RT)

NAME

SYNOPSIS

DESCRIPTION

RETURN VALUES

ERRORS

ATTRIBUTES

SEE ALSO

NOTES

208 man pages section 3: Threads and Realtime Library Functions • Last Revised 14 Aug 1997



sched_get_priority_max, sched_get_priority_min – get scheduling parameter limits

cc [ flag... ] file... -lrt [ library... ]

#include <sched.h>

int sched_get_priority_max(int policy);

int sched_get_priority_min(int policy);

The sched_get_priority_max() and sched_get_priority_min() functions
return the appropriate maximum or minimum, respectfully, for the scheduling policy
specified by policy.

The value of policy is one of the scheduling policy values defined in <sched.h>.

If successful, the sched_get_priority_max() and
sched_get_priority_min() functions return the appropriate maximum or
minimum values, respectively. If unsuccessful, they return −1 and set errno to
indicate the error.

The sched_get_priority_max() and sched_get_priority_min() functions
will fail if:

EINVAL The value of the policy parameter does not represent a defined
scheduling policy.

ENOSYS The sched_get_priority_max(),
sched_get_priority_min() and
sched_rr_get_interval(3RT) functions are not supported by
the system.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level MT-Safe

sched_getparam(3RT), sched_setparam(3RT), sched_getscheduler(3RT),
sched_rr_get_interval(3RT), sched_setscheduler(3RT), attributes(5),
sched(3HEAD), time(3HEAD)

Solaris 2.6 was the first release to support the Asynchronous Input and Output option.
Prior to this release, this function always returned −1 and set errno to ENOSYS.

sched_get_priority_max(3RT)

NAME

SYNOPSIS

DESCRIPTION

RETURN VALUES

ERRORS

ATTRIBUTES

SEE ALSO

NOTES

Threads and Realtime Library Functions 209



sched_getscheduler – get scheduling policy

cc [ flag... ] file... -lrt [ library... ]

#include <sched.h>

int sched_getscheduler(pid_t pid);

The sched_getscheduler() function returns the scheduling policy of the process
specified by pid. If the value of pid is negative, the behavior of the
sched_getscheduler() function is unspecified.

The values that can be returned by sched_getscheduler() are defined in the
header <sched.h> and described on the sched_setscheduler(3RT) manual page.

If a process specified by pid exists and if the calling process has permission, the
scheduling policy will be returned for the process whose process ID is equal to pid.

If pid is 0, the scheduling policy will be returned for the calling process.

Upon successful completion, the sched_getscheduler() function returns the
scheduling policy of the specified process. If unsuccessful, the function returns −1 and
sets errno to indicate the error.

The sched_getscheduler() function will fail if:

ENOSYS The sched_getscheduler() function is not supported by the
system.

EPERM The requesting process does not have permission to determine the
scheduling policy of the specified process.

ESRCH No process can be found corresponding to that specified by pid.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level MT-Safe

sched_getparam(3RT), sched_setparam(3RT), sched_setscheduler(3RT),
attributes(5), sched(3HEAD)

Solaris 2.6 was the first release to support the Asynchronous Input and Output option.
Prior to this release, this function always returned −1 and set errno to ENOSYS.

sched_getscheduler(3RT)

NAME

SYNOPSIS

DESCRIPTION

RETURN VALUES

ERRORS

ATTRIBUTES

SEE ALSO

NOTES

210 man pages section 3: Threads and Realtime Library Functions • Last Revised 14 Aug 1997



sched_rr_get_interval – get execution time limits

cc [ flag... ] file... -lrt [ library... ]

#include <sched.h>

int sched_rr_get_interval(pid_t pid, struct timespec *interval);

The sched_rr_get_interval() function updates the timespec structure
referenced by the interval argument to contain the current execution time limit (that is,
time quantum) for the process specified by pid. If pid is 0, the current execution time
limit for the calling process will be returned.

If successful, the sched_rr_get_interval() function returns 0. Otherwise, it
returns −1 and sets errno to indicate the error.

The sched_rr_get_interval() function will fail if:

ENOSYS The sched_get_priority_max(3RT),
sched_get_priority_min(3RT), and
sched_rr_get_interval() functions are not supported by the
system.

ESRCH No process can be found corresponding to that specified by pid.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level MT-Safe

sched_getparam(3RT), sched_setparam(3RT), sched_get_priority_max(3RT),
sched_getscheduler(3RT), sched_setscheduler(3RT), attributes(5),
sched(3HEAD)

Solaris 2.6 was the first release to support the Asynchronous Input and Output option.
Prior to this release, this function always returned −1 and set errno to ENOSYS.

sched_rr_get_interval(3RT)

NAME

SYNOPSIS

DESCRIPTION

RETURN VALUES

ERRORS

ATTRIBUTES

SEE ALSO

NOTES

Threads and Realtime Library Functions 211



sched_setparam – set scheduling parameters

cc [ flag... ] file... -lrt [ library... ]

#include <sched.h>

int sched_setparam(pid_t pid, const struct sched_param *param);

The sched_setparam() function sets the scheduling parameters of the process
specified by pid to the values specified by the sched_param structure pointed to by
param. The value of the sched_priority member in the sched_param structure is any
integer within the inclusive priority range for the current scheduling policy of the
process specified by pid. Higher numerical values for the priority represent higher
priorities. If the value of pid is negative, the behavior of the sched_setparam()
function is unspecified.

If a process specified by pid exists and if the calling process has permission, the
scheduling parameters will be set for the process whose process ID is equal to pid. The
real or effective user ID of the calling process must match the real or saved (from
exec(2)) user ID of the target process unless the effective user ID of the calling process
is 0. See intro(2).

If pid is zero, the scheduling parameters will be set for the calling process.

The target process, whether it is running or not running, resumes execution after all
other runnable processes of equal or greater priority have been scheduled to run.

If the priority of the process specified by the pid argument is set higher than that of the
lowest priority running process and if the specified process is ready to run, the process
specified by the pid argument preempts a lowest priority running process. Similarly, if
the process calling sched_setparam() sets its own priority lower than that of one or
more other non-empty process lists, then the process that is the head of the highest
priority list also preempts the calling process. Thus, in either case, the originating
process might not receive notification of the completion of the requested priority
change until the higher priority process has executed.

If the current scheduling policy for the process specified by pid is not SCHED_FIFO or
SCHED_RR, including SCHED_OTHER, the result is equal to priocntl(P_PID, pid,
PC_SETPARMS, &pcparam), where pcparam is an image of *param.

The effect of this function on individual threads is dependent on the scheduling
contention scope of the threads:

� For threads with system scheduling contention scope, these functions have no
effect on their scheduling.

� For threads with process scheduling contention scope, the threads’ scheduling
parameters will not be affected. However, the scheduling of these threads with
respect to threads in other processes may be dependent on the scheduling
parameters of their process, which are governed using these functions.

sched_setparam(3RT)

NAME

SYNOPSIS

DESCRIPTION

212 man pages section 3: Threads and Realtime Library Functions • Last Revised 22 Jun 1998



If an implementation supports a two-level scheduling model in which library threads
are multiplexed on top of several kernel scheduled entities, then the underlying kernel
scheduled entities for the system contention scope threads will not be affected by these
functions.

The underlying kernel scheduled entities for the process contention scope threads will
have their scheduling parameters changed to the value specified in param. Kernel
scheduled entities for use by process contention scope threads that are created after
this call completes inherit their scheduling policy and associated scheduling
parameters from the process.

This function is not atomic with respect to other threads in the process. Threads are
allowed to continue to execute while this function call is in the process of changing the
scheduling policy for the underlying kernel scheduled entities used by the process
contention scope threads.

If successful, the sched_setparam() function returns 0.

If the call to sched_setparam() is unsuccessful, the priority remains unchanged,
and the function returns −1 and sets errno to indicate the error.

The sched_setparam() function will fail if:

EINVAL One or more of the requested scheduling parameters is outside the
range defined for the scheduling policy of the specified pid.

ENOSYS The sched_setparam() function is not supported by the system.

EPERM The requesting process does not have permission to set the
scheduling parameters for the specified process, or does not have
the appropriate privilege to invoke sched_setparam().

ESRCH No process can be found corresponding to that specified by pid.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level MT-Safe

intro(2), exec(2), sched_getparam(3RT), sched_getscheduler(3RT),
sched_setscheduler(3RT), attributes(5), sched(3HEAD)

Solaris 2.6 was the first release to support the Asynchronous Input and Output option.
Prior to this release, this function always returned −1 and set errno to ENOSYS.

sched_setparam(3RT)

RETURN VALUES

ERRORS

ATTRIBUTES

SEE ALSO

NOTES

Threads and Realtime Library Functions 213



sched_setscheduler – set scheduling policy and scheduling parameters

cc [ flag... ] file... -lrt [ library... ]

#include <sched.h>

int sched_setscheduler(pid_t pid, int policy, const struct
sched_param *param);

The sched_setscheduler() function sets the scheduling policy and scheduling
parameters of the process specified by pid to policy and the parameters specified in the
sched_param structure pointed to by param, respectively. The value of the
sched_priority member in the sched_param structure is any integer within the
inclusive priority range for the scheduling policy specified by policy. If the value of pid
is negative, the behavior of the sched_setscheduler() function is unspecified.

The possible values for the policy parameter are defined in the header file <sched.h>:

SCHED_FIFO (realtime), First-In-First-Out; processes scheduled to this policy, if
not pre-empted by a higher priority or interrupted by a signal, will
proceed until completion.

SCHED_RR (realtime), Round-Robin; processes scheduled to this policy, if not
pre-empted by a higher priority or interrupted by a signal, will
execute for a time period, returned by
sched_rr_get_interval(3RT) or by the system.

SCHED_OTHER (time-sharing)

If a process specified by pid exists and if the calling process has permission, the
scheduling policy and scheduling parameters are set for the process whose process ID
is equal to pid. The real or effective user ID of the calling process must match the real
or saved (from exec(2)) user ID of the target process unless the effective user ID of the
calling process is 0. See intro(2).

If pid is 0, the scheduling policy and scheduling parameters are set for the calling
process.

To change the policy of any process to either of the real time policies SCHED_FIFO or
SCHED_RR, the calling process must either have the SCHED_FIFO, or SCHED_RR
policy or have an effective user ID of 0.

The sched_setscheduler() function is considered successful if it succeeds in
setting the scheduling policy and scheduling parameters of the process specified by
pid to the values specified by policy and the structure pointed to by param, respectively.

The effect of this function on individual threads is dependent on the scheduling
contention scope of the threads:

� For threads with system scheduling contention scope, these functions have no
effect on their scheduling.

sched_setscheduler(3RT)

NAME

SYNOPSIS

DESCRIPTION

214 man pages section 3: Threads and Realtime Library Functions • Last Revised 22 Jun 1998



� For threads with process scheduling contention scope, the threads’ scheduling
policy and associated parameters will not be affected. However, the scheduling of
these threads with respect to threads in other processes may be dependent on the
scheduling parameters of their process, which are governed using these functions.

The system supports a two-level scheduling model in which library threads are
multiplexed on top of several kernel scheduled entities. The underlying kernel
scheduled entities for the system contention scope threads will not be affected by these
functions.

The underlying kernel scheduled entities for the process contention scope threads will
have their scheduling policy and associated scheduling parameters changed to the
values specified in policy and param, respectively. Kernel scheduled entities for use by
process contention scope threads that are created after this call completes inherit their
scheduling policy and associated scheduling parameters from the process.

This function is not atomic with respect to other threads in the process. Threads are
allowed to continue to execute while this function call is in the process of changing the
scheduling policy and associated scheduling parameters for the underlying kernel
scheduled entities used by the process contention scope threads.

Upon successful completion, the function returns the former scheduling policy of the
specified process. If the sched_setscheduler() function fails to complete
successfully, the policy and scheduling paramenters remain unchanged, and the
function returns −1 and sets errno to indicate the error.

The sched_setscheduler() function will fail if:

EINVAL The value of policy is invalid, or one or more of the parameters
contained in param is outside the valid range for the specified
scheduling policy.

ENOSYS The sched_setscheduler() function is not supported by the
system.

EPERM The requesting process does not have permission to set either or
both of the scheduling parameters or the scheduling policy of the
specified process.

ESRCH No process can be found corresponding to that specified by pid.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level MT-Safe

sched_setscheduler(3RT)

RETURN VALUES

ERRORS

ATTRIBUTES

Threads and Realtime Library Functions 215



priocntl(1), intro(2), exec(2), priocntl(2), sched_get_priority_max(3RT),
sched_getparam(3RT), sched_getscheduler(3RT), sched_setparam(3RT),
attributes(5), sched(3HEAD)

Solaris 2.6 was the first release to support the Asynchronous Input and Output option.
Prior to this release, this function always returned −1 and set errno to ENOSYS.

sched_setscheduler(3RT)

SEE ALSO

NOTES

216 man pages section 3: Threads and Realtime Library Functions • Last Revised 22 Jun 1998



sched_yield – yield processor

cc [ flag... ] file... -lrt [ library... ]

#include <sched.h>

int sched_yield(void););

The sched_yield() function forces the running thread to relinquish the processor
until the process again becomes the head of its process list. It takes no arguments.

If successful, sched_yield() returns 0, otherwise, it returns −1, and sets errno to
indicate the error condition.

No errors are defined.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level MT-Safe

attributes(5), sched(3HEAD)

sched_yield(3RT)

NAME

SYNOPSIS

DESCRIPTION

RETURN VALUES

ERRORS

ATTRIBUTES

SEE ALSO

Threads and Realtime Library Functions 217



semaphore, sema_init, sema_destroy, sema_wait, sema_trywait, sema_post –
semaphores

cc [ flag... ] file...– lthread – lc [ library... ]

#include <synch.h>

int sema_init(sema_t *sp, unsigned int count, int type, void * arg);

int sema_destroy(sema_t *sp);

int sema_wait(sema_t *sp);

int sema_trywait(sema_t *sp);

int sema_post(sema_t *sp);

A semaphore is a non-negative integer count and is generally used to coordinate
access to resources. The initial semaphore count is set to the number of free resources,
then threads slowly increment and decrement the count as resources are added and
removed. If the semaphore count drops to zero, which means no available resources,
threads attempting to decrement the semaphore will block until the count is greater
than zero.

Semaphores can synchronize threads in this process and other processes if they are
allocated in writable memory and shared among the cooperating processes (see
mmap(2)), and have been initialized for this purpose.

Semaphores must be initialized before use; semaphores pointed to by sp to count are
initialized by sema_init(). The type argument can assign several different types of
behavior to a semaphore. No current type uses arg, although it may be used in the
future.

The type argument may be one of the following:

USYNC_PROCESS The semaphore can synchronize threads in this process
and other processes. Initializing the semaphore should
be done by only one process. A semaphore initialized
with this type must be allocated in memory shared
between processes, i.e. either in Sys V shard memory
(see shmop(2)), or in memory mapped to a file (see
mmap(2)). It is illegal to initialize the object this way
and to not allocate it in such shared memory. arg is
ignored.

USYNC_THREAD The semaphore can synchronize threads only in this
process. The arg argument is ignored. USYNC_THREAD
does not support multiple mappings to the same
logical synch object. If you need to mmap() a synch
object to different locations within the same address
space, then the synch object should be initialized as a
shared object USYNC_PROCESS for Solaris threads and

semaphore(3THR)

NAME

SYNOPSIS

DESCRIPTION

218 man pages section 3: Threads and Realtime Library Functions • Last Revised 20 Jul 1998



PTHREAD_PROCESS_PRIVATE for POSIX threads.

A semaphore must not be simultaneously initialized by multiple threads, nor
re-initialized while in use by other threads.

Default semaphore initialization (intra-process):

sema_t sp;
int count = 1;
sema_init(&sp, count, NULL, NULL);

or

sema_init(&sp, count, USYNC_THREAD, NULL);

Customized semaphore initialization (inter-process):

sema_t sp;
int count = 1;
sema_init(&sp, count, USYNC_PROCESS, NULL);

The sema_destroy() function destroys any state related to the semaphore pointed
to by sp. The semaphore storage space is not released.

The sema_wait() function blocks the calling thread until the semaphore count
pointed to by sp is greater than zero, and then it atomically decrements the count.

The sema_trywait() function atomically decrements the semaphore count pointed
to by sp, if the count is greater than zero; otherwise, it returns an error.

The sema_post() function atomically increments the semaphore count pointed to by
sp. If there are any threads blocked on the semaphore, one will be unblocked.

The semaphore functionality described on this man page is for the Solaris threads
implementation. For the POSIX-compliant semaphore interface documentation, see
sem_open(3RT), sem_init(3RT), sem_wait(3RT), sem_post(3RT),
sem_getvalue(3RT), sem_unlink(3RT), sem_close(3RT), sem_destroy(3RT)).

Upon successful completion, 0 is returned; otherwise, a non-zero value indicates an
error.

These functions will fail if:

EINVAL The sp argument does not refer to a valid semaphore..

EFAULT Either the sp or arg argument points to an illegal address.

The sema_wait() function will fail if::

EINTR The wait was interrupted by a signal or fork().

The sema_trywait() function will fail if::

EBUSY The semaphore pointed to by sp has a zero count.

semaphore(3THR)

RETURN VALUES

ERRORS

Threads and Realtime Library Functions 219



The sema_post() function will fail if:

EOVERFLOW The semaphore value pointed to by sp exceeds SEM_VALUE_MAX.

EXAMPLE 1 The customer waiting-line in a bank is analogous to the synchronization scheme
of a semaphore using sema_wait() and sema_trywait():

/* cc [ flag . . . ] file . . . –lthread [ library . . . ] */
#include <errno.h>
#define TELLERS 10
sema_t tellers; /* semaphore */
int banking_hours(), deposit_withdrawal;
void*customer(), do_business(), skip_banking_today();
. . .

sema_init(&tellers, TELLERS, USYNC_THREAD, NULL);
/* 10 tellers available */

while(banking_hours())
pthread_create(NULL, NULL, customer, deposit_withdrawal);

. . .

void *
customer(int deposit_withdrawal)
{

int this_customer, in_a_hurry = 50;
this_customer = rand() % 100;

if (this_customer == in_a_hurry) {
if (sema_trywait(&tellers) != 0)

if (errno == EAGAIN){ /* no teller available */
skip_banking_today(this_customer);
return;

} /* else go immediately to available teller and
decrement tellers */

}
else

sema_wait(&tellers); /* wait for next teller, then proceed,
and decrement tellers */

do_business(deposit_withdrawal);
sema_post(&tellers); /* increment tellers;

this_customer’s teller
is now available */

}

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level Async-Signal-Safe

semaphore(3THR)

EXAMPLES

ATTRIBUTES

220 man pages section 3: Threads and Realtime Library Functions • Last Revised 20 Jul 1998



mmap(2), shmop(2), sem_close(3RT), sem_destroy(3RT), sem_getvalue(3RT),
sem_init(3RT), sem_open(3RT), sem_post(3RT), sem_unlink(3RT),
sem_wait(3RT), attributes(5), standards(5)

These functions are also available by way of:

#include <thread.h>

By default, there is no defined order of unblocking for multiple threads waiting for a
semaphore.

semaphore(3THR)

SEE ALSO

NOTES

Threads and Realtime Library Functions 221



sem_close – close a named semaphore

cc [ flag... ] file... -lrt [ library... ]

#include <semaphore.h>

int sem_close(sem_t *sem);

The sem_close() function is used to indicate that the calling process is finished
using the named semaphore indicated by sem. The effects of calling sem_close() for
an unnamed semaphore (one created by sem_init(3RT)) are undefined. The
sem_close() function deallocates (that is, make available for reuse by a subsequent
sem_open(3RT) by this process) any system resources allocated by the system for use
by this process for this semaphore. The effect of subsequent use of the semaphore
indicated by sem by this process is undefined. If the semaphore has not been removed
with a successful call to sem_unlink(3RT), then sem_close() has no effect on the
state of the semaphore. If the sem_unlink(3RT) function has been successfully
invoked for name after the most recent call to sem_open(3RT) with O_CREAT for this
semaphore, then when all processes that have opened the semaphore close it, the
semaphore is no longer be accessible.

If successful, sem_close() returns 0, otherwise it returns −1 and sets errno to
indicate the error.

The sem_close() function will fail if:

EINVAL The sem argument is not a valid semaphore descriptor.

ENOSYS The sem_close() function is not supported by the system.

The sem_close() function should not be called for an unnamed semaphore
initialized by sem_init(3RT).

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level MT-Safe

sem_init(3RT), sem_open(3RT), sem_unlink(3RT), attributes(5)

Solaris 2.6 was the first release to support the Asynchronous Input and Output option.
Prior to this release, this function always returned −1 and set errno to ENOSYS.

sem_close(3RT)

NAME

SYNOPSIS

DESCRIPTION

RETURN VALUES

ERRORS

USAGE

ATTRIBUTES

SEE ALSO

NOTES

222 man pages section 3: Threads and Realtime Library Functions • Last Revised 22 Jun 1998



sem_destroy – destroy an unnamed semaphore

cc [ flag... ] file... -lrt [ library... ]

#include <semaphore.h>

int sem_destroy(sem_t *sem);

The sem_destroy() function is used to destroy the unnamed semaphore indicated
by sem. Only a semaphore that was created using sem_init(3RT) may be destroyed
using sem_destroy(); the effect of calling sem_destroy() with a named
semaphore is undefined. The effect of subsequent use of the semaphore sem is
undefined until sem is re-initialized by another call to sem_init(3RT).

It is safe to destroy an initialised semaphore upon which no threads are currently
blocked. The effect of destroying a semaphore upon which other threads are currently
blocked is undefined.

If successful, sem_destroy() returns 0, otherwise it returns −1 and sets errno to
indicate the error.

The sem_destroy() function will fail if:

EINVAL The sem argument is not a valid semaphore.

ENOSYS The sem_destroy() function is not supported by the system.

The sem_destroy() function may fail if:

EBUSY There are currently processes (or LWPs or threads) blocked on the
semaphore.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level MT-Safe

sem_init(3RT), sem_open(3RT), attributes(5)

sem_destroy(3RT)

NAME

SYNOPSIS

DESCRIPTION

RETURN VALUES

ERRORS

ATTRIBUTES

SEE ALSO

Threads and Realtime Library Functions 223



sem_getvalue – get the value of a semaphore

cc [ flag... ] file... -lrt [ library... ]

#include <semaphore.h>

int sem_getvalue(sem_t *sem, int *sval);

The sem_getvalue() function updates the location referenced by the sval argument
to have the value of the semaphore referenced by sem without affecting the state of the
semaphore. The updated value represents an actual semaphore value that occurred at
some unspecified time during the call, but it need not be the actual value of the
semaphore when it is returned to the calling process.

If sem is locked, then the value returned by sem_getvalue() is either zero or a
negative number whose absolute value represents the number of processes waiting for
the semaphore at some unspecified time during the call.

The value set in sval may be 0 or positive. If sval is 0, there may be other processes (or
LWPs or threads) waiting for the semaphore; if sval is positive, no processed is
waiting.

Upon successful completion, sem_getvalue() returns 0. Otherwise, it returns −1
and sets errno to indicate the error.

The sem_getvalue() function will fail if:

EINVAL The sem argument does not refer to a valid semaphore.

ENOSYS The sem_getvalue() function is not supported by the system.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level MT-Safe

sem_post(3RT), sem_wait(3RT), attributes(5)

sem_getvalue(3RT)

NAME

SYNOPSIS

DESCRIPTION

RETURN VALUES

ERRORS

ATTRIBUTES

SEE ALSO

224 man pages section 3: Threads and Realtime Library Functions • Last Revised 22 Jun 1998



sem_init – initialize an unnamed semaphore

cc [ flag... ] file... -lrt [ library... ]

#include <semaphore.h>

int sem_init(sem_t *sem, int pshared, unsigned int value);

The sem_init() function is used to initialize the unnamed semaphore referred to by
sem. The value of the initialized semaphore is value. Following a successful call to
sem_init(), the semaphore may be used in subsequent calls to sem_wait(3RT),
sem_trywait(3RT), sem_post(3RT), and sem_destroy(3RT). This semaphore
remains usable until the semaphore is destroyed.

If the pshared argument has a non-zero value, then the semaphore is shared between
processes; in this case, any process that can access the semaphore sem can use sem for
performing sem_wait(3RT), sem_trywait(3RT), sem_post(3RT), and
sem_destroy(3RT) operations.

Only sem itself may be used for performing synchronization. The result of referring to
copies of sem in calls to sem_wait(3RT), sem_trywait(3RT), sem_post(3RT), and
sem_destroy(3RT), is undefined.

If the pshared argument is zero, then the semaphore is shared between threads of the
process; any thread in this process can use sem for performing sem_wait(3RT),
sem_trywait(3RT), sem_post(3RT), and sem_destroy(3RT) operations. The use of
the semaphore by threads other than those created in the same process is undefined.

Attempting to initialize an already initialized semaphore results in undefined
behavior.

Upon successful completion, the function initializes the semaphore in sem. Otherwise,
it returns −1 and sets errno to indicate the error.

The sem_init() function will fail if:

EINVAL The value argument exceeds SEM_VALUE_MAX.

ENOSPC A resource required to initialize the semaphore has been
exhausted, or the resources have reached the limit on semaphores
(SEM_NSEMS_MAX).

ENOSYS The sem_init() function is not supported by the system.

EPERM The process lacks the appropriate privileges to initialize the
semaphore.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level MT-Safe

sem_init(3RT)

NAME

SYNOPSIS

DESCRIPTION

RETURN VALUES

ERRORS

ATTRIBUTES

Threads and Realtime Library Functions 225



sem_destroy(3RT), sem_post(3RT), sem_wait(3RT), attributes(5)

sem_init(3RT)

SEE ALSO

226 man pages section 3: Threads and Realtime Library Functions • Last Revised 22 Jun 1998



sem_open – initialize/open a named semaphore

cc [ flag... ] file... -lrt [ library... ]

#include <semaphore.h>

sem_t *sem_open(const char *name, int oflag, /* unsigned long mode,
unsigned int value */ ...);

The sem_open() function establishes a connection between a named semaphore and
a process (or LWP or thread). Following a call to sem_open() with semaphore name
name, the process may reference the semaphore associated with name using the address
returned from the call. This semaphore may be used in subsequent calls to
sem_wait(3RT), sem_trywait(3RT), sem_post(3RT), and sem_close(3RT). The
semaphore remains usable by this process until the semaphore is closed by a
successful call to sem_close(3RT), _exit(2), or one of the exec functions.

The oflag argument controls whether the semaphore is created or merely accessed by
the call to sem_open(). The following flag bits may be set in oflag:

O_CREAT This flag is used to create a semaphore if it does not already exist.
If O_CREAT is set and the semaphore already exists, then O_CREAT
has no effect, except as noted under O_EXCL. Otherwise,
sem_open() creates a named semaphore. The O_CREAT flag
requires a third and a fourth argument: mode, which is of type
mode_t, and value, which is of type unsigned int. The
semaphore is created with an initial value of value. Valid initial
values for semaphores are less than or equal to SEM_VALUE_MAX.

The user ID of the semaphore is set to the effective user ID of the
process; the group ID of the semaphore is set to a system default
group ID or to the effective group ID of the process. The
permission bits of the semaphore are set to the value of the mode
argument except those set in the file mode creation mask of the
process (see umask(2)). When bits in mode other than the file
permission bits are specified, the effect is unspecified.

After the semaphore named name has been created by
sem_open() with the O_CREAT flag, other processes can connect
to the semaphore by calling sem_open() with the same value of
name.

O_EXCL If O_EXCL and O_CREAT are set, sem_open() fails if the
semaphore name exists. The check for the existence of the
semaphore and the creation of the semaphore if it does not exist
are atomic with respect to other processes executing sem_open()
with O_EXCL and O_CREAT set. If O_EXCL is set and O_CREAT is
not set, the effect is undefined.

If flags other than O_CREAT and O_EXCL are specified in the oflag parameter, the effect
is unspecified.

sem_open(3RT)

NAME

SYNOPSIS

DESCRIPTION

Threads and Realtime Library Functions 227



The name argument points to a string naming a semaphore object. It is unspecified
whether the name appears in the file system and is visible to functions that take
pathnames as arguments. The name argument conforms to the construction rules for a
pathname. The first character of name must be a slash (/) character and the remaining
characters of name cannot include any slash characters. For maximum portability, name
should include no more than 14 characters, but this limit is not enforced.

If a process makes multiple successful calls to sem_open() with the same value for
name, the same semaphore address is returned for each such successful call, provided
that there have been no calls to sem_unlink(3RT) for this semaphore.

References to copies of the semaphore produce undefined results.

Upon successful completion, the function returns the address of the semaphore.
Otherwise, it will return a value of SEM_FAILED and set errno to indicate the error.
The symbol SEM_FAILED is defined in the header <semaphore.h>. No successful
return from sem_open() will return the value SEM_FAILED.

If any of the following conditions occur, the sem_open() function will return
SEM_FAILED and set errno to the corresponding value:

EACCES The named semaphore exists and the O_RDWR
permissions are denied, or the named semaphore does
not exist and permission to create the named
semaphore is denied.

EEXIST O_CREAT and O_EXCL are set and the named
semaphore already exists.

EINTR The sem_open() function was interrupted by a signal.

EINVAL The sem_open() operation is not supported for the
given name, or O_CREAT was set in oflag and value is
greater than SEM_VALUE_MAX.

EMFILE The number of open semaphore descriptors in this
process exceeds SEM_NSEMS_MAX, or the number of
open file descriptors in this process exceeds OPEN_MAX.

ENAMETOOLONG The length of name string exceeds PATH_MAX, or a
pathname component is longer than NAME_MAX while
_POSIX_NO_TRUNC is in effect.

ENFILE Too many semaphores are currently open in the
system.

ENOENT O_CREAT is not set and the named semaphore does not
exist.

ENOSPC There is insufficient space for the creation of the new
named semaphore.

sem_open(3RT)

RETURN VALUES

ERRORS

228 man pages section 3: Threads and Realtime Library Functions • Last Revised 22 Jun 1998



ENOSYS The sem_open() function is not supported by the
system.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level MT-Safe

exec(2), exit(2), umask(2), sem_close(3RT), sem_post(3RT), sem_unlink(3RT),
sem_wait(3RT), sysconf(3C), attributes(5)

Solaris 2.6 was the first release to support the Asynchronous Input and Output option.
Prior to this release, this function always returned (sem_t *)−1 and set errno to
ENOSYS.

sem_open(3RT)

ATTRIBUTES

SEE ALSO

NOTES

Threads and Realtime Library Functions 229



sem_post – increment the count of a semaphore

cc [ flag... ] file... -lrt [ library... ]

#include <semaphore.h>

int sem_post(sem_t *sem);

The sem_post() function unlocks the semaphore referenced by sem by performing a
semaphore unlock operation on that semaphore.

If the semaphore value resulting from this operation is positive, then no threads were
blocked waiting for the semaphore to become unlocked; the semaphore value is
simply incremented.

If the value of the semaphore resulting from this operation is 0, then one of the threads
blocked waiting for the semaphore will be allowed to return successfully from its call
to sem_wait(3RT). If the symbol _POSIX_PRIORITY_SCHEDULING is defined, the
thread to be unblocked will be chosen in a manner appropriate to the scheduling
policies and parameters in effect for the blocked threads. In the case of the schedulers
SCHED_FIFO and SCHED_RR, the highest priority waiting thread will be unblocked,
and if there is more than one highest priority thread blocked waiting for the
semaphore, then the highest priority thread that has been waiting the longest will be
unblocked. If the symbol _POSIX_PRIORITY_SCHEDULING is not defined, the choice
of a thread to unblock is unspecified.

If successful, sem_post() returns 0; otherwise it returns −1 and sets errno to
indicate the error.

The sem_post() function will fail if:

EINVAL The sem argument does not refer to a valid semaphore.

ENOSYS The sem_post() function is not supported by the system.

EOVERFLOW The semaphore value exceeds SEM_VALUE_MAX.

The sem_post() function is reentrant with respect to signals and may be invoked
from a signal-catching function. The semaphore functionality described on this
manual page is for the POSIX (see standards(5)) threads implementation. For the
documentation of the Solaris threads interface, see semaphore(3THR)).

EXAMPLE 1 See sem_wait(3RT).

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level Async-Signal-Safe

sem_post(3RT)

NAME

SYNOPSIS

DESCRIPTION

RETURN VALUES

ERRORS

USAGE

EXAMPLES

ATTRIBUTES

230 man pages section 3: Threads and Realtime Library Functions • Last Revised 22 Jun 1998



sched_setscheduler(3RT), sem_wait(3RT), semaphore(3THR), attributes(5),
standards(5)

Solaris 2.6 was the first release to support the Asynchronous Input and Output option.
Prior to this release, this function always returned −1 and set errno to ENOSYS.

sem_post(3RT)

SEE ALSO

NOTES

Threads and Realtime Library Functions 231



sem_unlink – remove a named semaphore

cc [ flag... ] file... -lrt [ library... ]

#include <semaphore.h>

int sem_unlink(const char *name);

The sem_unlink() function removes the semaphore named by the string name. If the
semaphore named by name is currently referenced by other processes, then
sem_unlink() has no effect on the state of the semaphore. If one or more processes
have the semaphore open when sem_unlink() is called, destruction of the
semaphore is postponed until all references to the semaphore have been destroyed by
calls to sem_close(3RT), _exit(2), or one of the exec functions (see exec(2)) . Calls
to sem_open(3RT) to re-create or re-connect to the semaphore refer to a new
semaphore after sem_unlink() is called. The sem_unlink() call does not block
until all references have been destroyed; it returns immediately.

Upon successful completion, sem_unlink() returns 0. Otherwise, the semaphore is
not changed and the function returns a value of −1 and sets errno to indicate the
error.

The sem_unlink() function will fail if:

EACCES Permission is denied to unlink the named semaphore.

ENAMETOOLONG The length of name string exceeds PATH_MAX, or a
pathname component is longer than NAME_MAX while
_POSIX_NO_TRUNC is in effect.

ENOENT The named semaphore does not exist.

ENOSYS The sem_unlink() function is not supported by the
system.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level MT-Safe

exec(2), exit(2), sem_close(3RT), sem_open(3RT), attributes(5)

Solaris 2.6 was the first release to support the Asynchronous Input and Output option.
Prior to this release, this function always returned −1 and set errno to ENOSYS.

sem_unlink(3RT)

NAME

SYNOPSIS

DESCRIPTION

RETURN VALUES

ERRORS

ATTRIBUTES

SEE ALSO

NOTES

232 man pages section 3: Threads and Realtime Library Functions • Last Revised 22 Jun 1998



sem_wait, sem_trywait – acquire or wait for a semaphore

cc [ flag... ] file... -lrt [ library... ]

#include <semaphore.h>

int sem_wait(sem_t *sem);

int sem_trywait(sem_t *sem);

The sem_wait() function locks the semaphore referenced by sem by performing a
semaphore lock operation on that semaphore. If the semaphore value is currently zero,
then the calling thread will not return from the call to sem_wait() until it either
locks the semaphore or the call is interrupted by a signal. The sem_trywait()
function locks the semaphore referenced by sem only if the semaphore is currently not
locked; that is, if the semaphore value is currently positive. Otherwise, it does not lock
the semaphore.

Upon successful return, the state of the semaphore is locked and remains locked until
the sem_post(3RT) function is executed and returns successfully.

The sem_wait() function is interruptible by the delivery of a signal.

The sem_wait() and sem_trywait() functions return 0 if the calling process
successfully performed the semaphore lock operation on the semaphore designated by
sem. If the call was unsuccessful, the state of the semaphore is unchanged, and the
function returns −1 and sets errno to indicate the error.

The sem_wait() and sem_trywait() functions will fail if:

EINVAL The sem function does not refer to a valid semaphore.

ENOSYS The sem_wait() and sem_trywait() functions are not
supported by the system.

The sem_trywait() function will fail if:

EAGAIN The semaphore was already locked, so it cannot be immediately
locked by the sem_trywait() operation.

The sem_wait() and sem_trywait() functions may fail if:

EDEADLK A deadlock condition was detected; that is, two separate processes
are waiting for an available resource to be released via a
semaphore "held" by the other process.

EINTR A signal interrupted this function.

Realtime applications may encounter priority inversion when using semaphores. The
problem occurs when a high priority thread “locks” (that is, waits on) a semaphore
that is about to be “unlocked” (that is, posted) by a low priority thread, but the low
priority thread is preempted by a medium priority thread. This scenario leads to
priority inversion; a high priority thread is blocked by lower priority threads for an
unlimited period of time. During system design, realtime programmers must take into

sem_wait(3RT)

NAME

SYNOPSIS

DESCRIPTION

RETURN VALUES

ERRORS

USAGE

Threads and Realtime Library Functions 233



account the possibility of this kind of priority inversion. They can deal with it in a
number of ways, such as by having critical sections that are guarded by semaphores
execute at a high priority, so that a thread cannot be preempted while executing in its
critical section.

EXAMPLE 1 The customer waiting-line in a bank may be analogous to the synchronization
scheme of a semaphore utilizing sem_wait() and sem_trywait():

/* cc [ flag . . . ] file . . . –lrt –lthread [ library . . . ] */

#include <errno.h>
#define TELLERS 10
sem_t bank_line; /* semaphore */
int banking_hours(), deposit_withdrawal;
void *customer(), do_business(), skip_banking_today();
thread_t tid;
. . .

sem_init(&bank_line,TRUE,TELLERS); /* 10 tellers available */
while(banking_hours())

thr_create(NULL, NULL, customer, (void *)deposit_withdrawal,
THREAD_NEW_LWP, &tid);

. . .

void *
customer(deposit_withdrawal)
void *deposit_withdrawal;
{

int this_customer, in_a_hurry = 50;
this_customer = rand() % 100;
if (this_customer == in_a_hurry) {

if (sem_trywait(&bank_line) != 0)
if (errno == EAGAIN) { /* no teller available */

skip_banking_today(this_customer);
return;

} /*else go immediately to available teller
& decrement bank_line*/

}
else

sem_wait(&bank_line); /* wait for next teller,
then proceed, and decrement bank_line */

do_business((int *)deposit_withdrawal);
sem_getvalue(&bank_line,&num_tellers);
sem_post(&bank_line); /* increment bank_line;

this_customer’s teller is now available */

}

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level MT-Safe

sem_wait(3RT)

EXAMPLES

ATTRIBUTES

234 man pages section 3: Threads and Realtime Library Functions • Last Revised 22 Jun 1998



sem_post(3RT), attributes(5)

sem_wait(3RT)

SEE ALSO

Threads and Realtime Library Functions 235



shm_open – open a shared memory object

cc [ flag... ] file... -lrt [ library... ]

#include <sys/mman.h>

int shm_open(const char *name, int oflag, mode_t mode);

The shm_open() function establishes a connection between a shared memory object
and a file descriptor. It creates an open file description that refers to the shared
memory object and a file descriptor that refers to that open file description. The file
descriptor is used by other functions to refer to that shared memory object. The name
argument points to a string naming a shared memory object. It is unspecified whether
the name appears in the file system and is visible to other functions that take
pathnames as arguments. The name argument conforms to the construction rules for a
pathname. The first character of name must be a slash (/) character and the remaining
characters of name cannot include any slash characters. For maximum portability, name
should include no more than 14 characters, but this limit is not enforced.

If successful, shm_open() returns a file descriptor for the shared memory object that
is the lowest numbered file descriptor not currently open for that process. The open
file description is new, and therefore the file descriptor does not share it with any
other processes. It is unspecified whether the file offset is set. The FD_CLOEXEC file
descriptor flag associated with the new file descriptor is set.

The file status flags and file access modes of the open file description are according to
the value of oflag. The oflag argument is the bitwise inclusive OR of the following flags
defined in the header <fcntl.h>. Applications specify exactly one of the first two
values (access modes) below in the value of oflag:

O_RDONLY Open for read access only.

O_RDWR Open for read or write access.

Any combination of the remaining flags may be specified in the value of oflag:

O_CREAT If the shared memory object exists, this flag has no effect, except as
noted under O_EXCL below. Otherwise the shared memory object
is created; the user ID of the shared memory object will be set to
the effective user ID of the process; the group ID of the shared
memory object will be set to a system default group ID or to the
effective group ID of the process. The permission bits of the shared
memory object will be set to the value of the mode argument except
those set in the file mode creation mask of the process. When bits
in mode other than the file permission bits are set, the effect is
unspecified. The mode argument does not affect whether the shared
memory object is opened for reading, for writing, or for both. The
shared memory object has a size of zero.

O_EXCL If O_EXCL and O_CREAT are set, shm_open() fails if the shared
memory object exists. The check for the existence of the shared
memory object and the creation of the object if it does not exist is

shm_open(3RT)

NAME

SYNOPSIS

DESCRIPTION

236 man pages section 3: Threads and Realtime Library Functions • Last Revised 22 Jun 1998



atomic with respect to other processes executing shm_open()
naming the same shared memory object with O_EXCL and
O_CREAT set. If O_EXCL is set and O_CREAT is not set, the result is
undefined.

O_TRUNC If the shared memory object exists, and it is successfully opened
O_RDWR, the object will be truncated to zero length and the mode
and owner will be unchanged by this function call. The result of
using O_TRUNC with O_RDONLY is undefined.

When a shared memory object is created, the state of the shared memory object,
including all data associated with the shared memory object, persists until the shared
memory object is unlinked and all other references are gone. It is unspecified whether
the name and shared memory object state remain valid after a system reboot.

Upon successful completion, the shm_open() function returns a non-negative integer
representing the lowest numbered unused file descriptor. Otherwise, it returns −1 and
sets errno to indicate the error condition.

The shm_open() function will fail if:

EACCES The shared memory object exists and the permissions
specified by oflag are denied, or the shared memory
object does not exist and permission to create the
shared memory object is denied, or O_TRUNC is
specified and write permission is denied.

EEXIST O_CREAT and O_EXCL are set and the named shared
memory object already exists.

EINTR The shm_open() operation was interrupted by a
signal.

EINVAL The shm_open() operation is not supported for the
given name.

EMFILE Too many file descriptors are currently in use by this
process.

ENAMETOOLONG The length of the name string exceeds PATH_MAX, or a
pathname component is longer than NAME_MAX while
_POSIX_NO_TRUNC is in effect.

ENFILE Too many shared memory objects are currently open in
the system.

ENOENT O_CREAT is not set and the named shared memory
object does not exist.

ENOSPC There is insufficient space for the creation of the new
shared memory object.

shm_open(3RT)

RETURN VALUES

ERRORS

Threads and Realtime Library Functions 237



ENOSYS The shm_open() function is not supported by the
system.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level MT-Safe

close(2), dup(2), exec(2), fcntl(2), mmap(2), umask(2), shm_unlink(3RT),
sysconf(3C), attributes(5), fcntl(3HEAD)

Solaris 2.6 was the first release to support the Asynchronous Input and Output option.
Prior to this release, this function always returned −1 and set errno to ENOSYS.

shm_open(3RT)

ATTRIBUTES

SEE ALSO

NOTES

238 man pages section 3: Threads and Realtime Library Functions • Last Revised 22 Jun 1998



shm_unlink – remove a shared memory object

cc [ flag... ] file... -lrt [ library... ]

#include <sys/mman.h>

int shm_unlink(const char *name);

The shm_unlink() function removes the name of the shared memory object named
by the string pointed to by name. If one or more references to the shared memory
object exists when the object is unlinked, the name is removed before shm_unlink()
returns, but the removal of the memory object contents will be postponed until all
open and mapped references to the shared memory object have been removed.

Upon successful completion, shm_unlink() returns 0. Otherwise it returns −1 and
sets errno to indicate the error condition, and the named shared memory object is not
affected by this function call.

The shm_unlink() function will fail if:

EACCES Permission is denied to unlink the named shared
memory object.

ENAMETOOLONG The length of the name string exceeds PATH_MAX, or a
pathname component is longer than NAME_MAX while
_POSIX_NO_TRUNC is in effect.

ENOENT The named shared memory object does not exist.

ENOSYS The shm_unlink() function is not supported by the
system.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level MT-Safe

close(2), mmap(2), mlock(3C), shm_open(3RT), attributes(5)

Solaris 2.6 was the first release to support the Asynchronous Input and Output option.
Prior to this release, this function always returned −1 and set errno to ENOSYS.

shm_unlink(3RT)

NAME

SYNOPSIS

DESCRIPTION

RETURN VALUES

ERRORS

ATTRIBUTES

SEE ALSO

NOTES

Threads and Realtime Library Functions 239



sigqueue – queue a signal to a process

cc [ flag... ] file... -lrt [ library... ]
#include <sys/types.h>

#include <signal.h>

int sigqueue(pid_t pid, int signo, const union sigval value);

The sigqueue() function causes the signal specified by signo to be sent with the
value specified by value to the process specified by pid. If signo is 0 (the null signal),
error checking is performed but no signal is actually sent. The null signal can be used
to check the validity of pid.

The conditions required for a process to have permission to queue a signal to another
process are the same as for the kill(2) function.

The sigqueue() function returns immediately. If SA_SIGINFO is set for signo and if
the resources were available to queue the signal, the signal is queued and sent to the
receiving process. If SA_SIGINFO is not set for signo, then signo is sent at least once to
the receiving process; it is unspecified whether value will be sent to the receiving
process as a result of this call.

If the value of pid causes signo to be generated for the sending process, and if signo is
not blocked for the calling thread and if no other thread has signo unblocked or is
waiting in a sigwait(2) function for signo, either signo or at least the pending,
unblocked signal will be delivered to the calling thread before the sigqueue()
function returns. Should any of multiple pending signals in the range SIGRTMIN to
SIGRTMAX be selected for delivery, it will be the lowest numbered one. The selection
order between realtime and non-realtime signals, or between multiple pending
non-realtime signals, is unspecified.

Upon successful completion, the specified signal will have been queued, and the
sigqueue() function returns 0. Otherwise, the function returns −1 and sets errno to
indicate the error.

The sigqueue() function will fail if:

EAGAIN No resources are available to queue the signal. The process has
already queued SIGQUEUE_MAX signals that are still pending at
the receiver(s), or a system wide resource limit has been exceeded.

EINVAL The value of signo is an invalid or unsupported signal number.

ENOSYS The sigqueue() function is not supported by the system.

EPERM The process does not have the appropriate privilege to send the
signal to the receiving process.

ESRCH The process pid does not exist.

See attributes(5) for descriptions of the following attributes:

sigqueue(3RT)

NAME

SYNOPSIS

DESCRIPTION

RETURN VALUES

ERRORS

ATTRIBUTES

240 man pages section 3: Threads and Realtime Library Functions • Last Revised 22 Jun 1998



ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level Async-Signal-Safe

kill(2), sigwaitinfo(3RT), attributes(5), siginfo(3HEAD), signal(3HEAD)

sigqueue(3RT)

SEE ALSO

Threads and Realtime Library Functions 241



sigwaitinfo, sigtimedwait – wait for queued signals

cc [ flag... ] file... -lrt [ library... ]

#include <signal.h>

int sigwaitinfo(const sigset_t *set, siginfo_t *info);

int sigtimedwait(const sigset_t *set, siginfo_t *info, const struct
timespec *timeout);

The sigwaitinfo() function selects the pending signal from the set specified by
set. Should any of multiple pending signals in the range SIGRTMIN to SIGRTMAX be
selected, it will be the lowest numbered one. The selection order between realtime and
non-realtime signals, or between multiple pending non-realtime signals, is
unspecified. If no signal in set is pending at the time of the call, the calling thread is
suspended until one or more signals in set become pending or until it is interrupted
by an unblocked, caught signal.

The sigwaitinfo() function behaves the same as the sigwait(2) function if the
info argument is NULL. If the info argument is non-NULL, the sigwaitinfo()
function behaves the same as sigwait(2), except that the selected signal number is
stored in the si_signo member, and the cause of the signal is stored in the si_code
member. If any value is queued to the selected signal, the first such queued value is
dequeued and, if the info argument is non-NULL, the value is stored in the si_value
member of info. The system resource used to queue the signal will be released and
made available to queue other signals. If no value is queued, the content of the si_value
member is undefined. If no further signals are queued for the selected signal, the
pending indication for that signal will be reset. If the value of the si_code member is
SI_NOINFO, only the si_signo member of siginfo_t is meaningful, and the value
of all other members is unspecified.

The sigtimedwait() function behaves the same as sigwaitinfo() except that if
none of the signals specified by set are pending, sigtimedwait() waits for the
time interval specified in the timespec structure referenced by timeout. If the
timespec structure pointed to by timeout is zero-valued and if none of the signals
specified by set are pending, then sigtimedwait() returns immediately with an
error. If timeout is the NULL pointer, the behavior is unspecified.

If, while sigwaitinfo() or sigtimedwait() is waiting, a signal occurs which is
eligible for delivery (that is, not blocked by the process signal mask), that signal is
handled asynchronously and the wait is interrupted.

Upon successful completion (that is, one of the signals specified by set is pending or is
generated) sigwaitinfo() and sigtimedwait() will return the selected signal
number. Otherwise, the function returns −1 and sets errno to indicate the error.

The sigwaitinfo() and sigtimedwait() functions will fail if:

ENOSYS The functions sigwaitinfo() and sigtimedwait() are not
supported by this implementation.

sigwaitinfo(3RT)

NAME

SYNOPSIS

DESCRIPTION

RETURN VALUES

ERRORS

242 man pages section 3: Threads and Realtime Library Functions • Last Revised 22 Jun 1998



The sigtimedwait() function will also fail if:

EAGAIN No signal specified by set was generated within the specified
timeout period.

The sigwaitinfo() and sigtimedwait() functions may fail if:

EINTR The wait was interrupted by an unblocked, caught signal. It will
be documented in system documentation whether this error will
cause these functions to fail.

The sigtimedwait() function may also fail if:

EINVAL The timeout argument specified a tv_nsec value less than zero or
greater than or equal to 1000 million. The system only checks for
this error if no signal is pending in set and it is necessary to wait.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level Async-Safe

time(2), sigqueue(3RT), attributes(5), siginfo(3HEAD), signal(3HEAD),
time(3HEAD)

sigwaitinfo(3RT)

ATTRIBUTES

SEE ALSO

Threads and Realtime Library Functions 243



td_init – performs initialization for libthread_db library of interfaces

cc [ flag ... ] file ... -lthread_db [ library ... ]

#include <proc_service.h>

#include <thread_db.h>

td_err_e td_init();

td_init() is the global initialization function for the libthread_db() library of
interfaces. It must be called exactly once by any process using the libthread_db()
library before any other libthread_db function can be called.

TD_OK The libthread_db() library of interfaces successfully
initialized.

TD_ERR Initialization failed.

See attributes(5) for description of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT Level Safe

libthread_db(3THR), libthread_db(3LIB), attributes(5)

td_init(3THR)

NAME

SYNOPSIS

DESCRIPTION

RETURN VALUES

ATTRIBUTES

SEE ALSO

244 man pages section 3: Threads and Realtime Library Functions • Last Revised 19 Oct 1998



td_log – placeholder for future logging functionality

cc [ flag ... ] file ... -lthread_db [ library ... ]

#include <proc_service.h>

#include <thread_db.h>

void td_log();

This function presently does nothing; it is merely a placeholder for future logging
functionality in libthread_db(3THR).

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT Level Safe

libthread(3THR), libthread_db(3THR), libthread_db(3LIB), attributes(5)

td_log(3THR)

NAME

SYNOPSIS

DESCRIPTION

ATTRIBUTES

SEE ALSO

Threads and Realtime Library Functions 245



td_sync_get_info, td_sync_setstate, td_sync_waiters – operations on a synchronization
object in libthread_db

cc [ flag ... ] file ... -lthread_db [ library ... ]

#include <proc_service.h>

#include <thread_db.h>

td_err_e td_sync_get_info(const td_synchandle_t *sh_p,
td_syncinfo_t *si_p);

td_err_e td_sync_setstate(const td_synchandle_t *sh_p);

td_err_etd_sync_waiters(const td_synchandle_t *sh_p,td_thr_iter_f
*cb,void *cb_data_p);

Synchronization objects include mutexes, condition variables, semaphores, and
reader-writer locks. In the same way that thread operations use a thread handle of
type td_thrhandle_t, operations on synchronization objects use a synchronization
object handle of type td_synchandle_t.

The controlling process obtains synchronization object handles either by calling the
function td_ta_sync_iter() to obtain handles for all synchronization objects of the
target process that are known to the libthread_db library of interfaces, or by
mapping the address of a synchronization object in the address space of the target
process to a handle by calling td_ta_map_addr2sync( ).

Note that not all synchronization objects that a process uses may be known to the
libthread_db library and returned by td_ta_sync_iter. A synchronization
object is known to libthread_db only if it was ever waited on after libthread_db
was attached to the process. For example, a mutex may have been widely used, but if
no thread ever blocked waiting to acquire it, it will not be known to libthread_db
interfaces.

The td_sync_get_info() function fills in the td_syncinfo_t structure *si_p with
values for the synchronization object identified by sh_p. The td_syncinfo_t
structure contains the following fields:

td_thragent_t *si_ta_p The internal process handle identifying the
target process through which this
synchronization object handle was
obtained. Synchronization objects may be
process-private or process-shared. In the
latter case, the same synchronization object
may have multiple handles, one for each
target process’s "view" of the
synchronization object.

psaddr_t si_sv_addr The address of the synchronization object in
this target process’s address space.

td_sync_get_info(3THR)

NAME

SYNOPSIS

DESCRIPTION

246 man pages section 3: Threads and Realtime Library Functions • Last Revised 19 Oct 1998



td_sync_type_e si_type The type of the synchronization variable:
mutex, condition variable, semaphore, or
reader-writer lock.

int si_shared_type USYNC_THREAD if this synchronization
object is process-private; USYNC_PROCESS
if it is process-shared.

td_sync_flags_t si_flags Flags dependent on the type of the
synchronization object.

int si_state.sema_count Semaphores only. The current value of the
semaphore

int si_state.nreaders Reader-writer locks only. The number of
readers currently holding the lock, or -1, if
a writer is currently holding the lock.

int si_state.mutex_locked For mutexes only. Non-zero if and only if
the mutex is currently locked.

int si_size The size of the synchronization object.

uchar_t si_has_waiters Non-zero if and only if at least one thread is
blocked on this synchronization object.

uchar_t si_is_wlocked For reader-writer locks only. The value is
non-zero if and only if this lock is held by a
writer.

td_thrhandle_t si_owner Mutexes and reader-writer locks only. This
is the thread holding the mutex, or the write
lock, if this is a reader-writer lock. The
value is NULL if no one holds the mutex or
write-lock.

psaddr_t si_data A pointer to optional data associated with
the synchronization object. Currently useful
only for debugging libthread()
interfaces.

td_sync_setstate modifies the state of synchronization object si_p, depending on
the synchronization object type. For mutexes, td_sync_setstate is unlocked if the
value is 0. Otherwise it is locked. For semaphores, the semaphore’s count is set to the
value. For reader-writer locks, the reader count set to the value if value is >0. The
count is set to write-locked if value is –1. It is set to unlocked if the value is 0. Setting
the state of a synchronization object from a libthread_db interface may cause the
synchronization object’s semantics to be violated from the point of view of the threads
in the target process. For example, if a thread holds a mutex, and
td_sync_setstate is used to set the mutex to unlocked, then a different thread will
also be able to subsequently acquire the same mutex.

td_sync_get_info(3THR)

Threads and Realtime Library Functions 247



td_sync_waiters iterates over the set of thread handles of threads blocked on
sh_p. The callback function cb is called once for each such thread handle, and is
passed the thread handle and cb_data_p. If the callback function returns a non-zero
value, iteration is terminated early. See also td_ta_thr_iter(3THR).

TD_OK The call returned successfully.

TD_BADTH An invalid thread handle was passed in.

TD_DBERR A call to one of the imported interface routines failed.

TD_ERR A libthread_db-internal error occurred.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT Level Safe

libthread_db(3THR), td_ta_map_addr2sync(3THR),
td_ta_sync_iter(3THR), td_ta_thr_iter(3THR), libthread_db(3LIB),
attributes(5)

td_sync_get_info(3THR)

RETURN VALUES

ATTRIBUTES

SEE ALSO

248 man pages section 3: Threads and Realtime Library Functions • Last Revised 19 Oct 1998



td_ta_enable_stats, td_ta_reset_stats, td_ta_get_stats – collect target process statistics
for libthread_db

cc [ flag ... ] file ... -lthread_db [ library ... ]

#include <proc_service.h>

#include <thread_db.h>

td_err_e td_ta_enable_stats(const td_thragent_t *ta_p, int on_off);

td_err_e _statstd_ta_reset(const td_thragent_t *ta_p);

td_err_e td_ta_get_stats(const td_thragent_t *ta_p, td_ta_stats_t
*tstats);

The controlling process may request the collection of certain statistics about a target
process. Statistics gathering is disabled by default; however, each target process has a
td_ta_stats_t structure that contains up to date values when statistic gathering is
enabled. td_ta_enable_stats() turns statistics gathering on or off for the process
identified by ta_p depending on whether or not on_off is non-zero. When statistics
gathering is turned on, all statistics are implicitly reset as though
td_ta_reset_stats() had been called. Statistics are not reset when statistics
gathering is turned off. Except for nthreads and r_concurrency, the values do not
change further, but they remain available for inspection by way of
td_ta_get_stats(). td_ta_reset_stats() resets all counters in the
td_ta_stats_t structure to zero for the target process. td_ta_get_stats()
returns the td_ta_stats_t structure for the process in *stats_t . The
td_ta_stats_t structure is defined as follows:

typedef struct {
int nthreads; /* total number of threads in use */
int r_concurrency; /* requested concurrency level */
int nrunnable_num; /* numerator of avg. runnable threads */
int nrunnable_den; /* denominator of avg. runnable threads */
int a_concurrency_num; /* numerator, avg. achieved concurrency */
int a_concurrency_den; /* denominator, avg. achieved concurrency */
int nlwps_num; /* numerator, average number of LWPs in use */
int nlwps_den; /* denominator, avg. number of LWPs in use */
int nidle_num; /* numerator, avg. number of idling LWPs */
int nidle_den; /* denominator, avg. number of idling LWPs */

} td_ta_stats_t;

nthreads is the number of threads that are currently part of the target process.
r_concurrency is the current requested concurrency level, such as would be returned by
thr_setconcurrency(3THR) The remaining fields are averages over time, each
expressed as a fraction with an integral numerator and denominator. nrunnable is the
average number of runnable threads. a_concurrency is the average achieved
concurrency, the number of actually running threads. a_concurrency is less than or
equal to nrunnable. nlwps is the average number of lightweight processes ( LWPs)
participating in this process. It must be greater than or equal to a_concurrency, as every
running thread is assigned to an LWP, but there may at times be additional idling
LWPs with no thread assigned to them. nidle is the average number of idle LWPs.

td_ta_enable_stats(3THR)

NAME

SYNOPSIS

DESCRIPTION

Threads and Realtime Library Functions 249



TD_OK The call completed successfully.

TD_BADTA An invalid internal process handle was passed in.

TD_DBERR A call to one of the imported interface routines failed.

TD_ERR Something else went wrong.

See attributes(5) for description of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT Level Safe

libthread_db(3THR), thr_getconcurrency(3THR), libthread_db(3LIB),
attributes(5)

td_ta_enable_stats(3THR)

RETURN VALUES

ATTRIBUTES

SEE ALSO

250 man pages section 3: Threads and Realtime Library Functions • Last Revised 20 Oct 1998



td_ta_event_addr, td_thr_event_enable, td_ta_set_event, td_thr_set_event,
td_ta_clear_event, td_thr_clear_event, td_ta_event_getmsg, td_thr_event_getmsg,
td_event_emptyset, td_event_fillset, td_event_addset, td_event_delset,
td_eventismember, td_eventisempty – thread events in libthread_db

cc [ flag ... ] file ... -lthread_db [ library ... ]

#include <proc_service.h>

#include <thread_db.h>

td_err_e td_ta_event_addr(const td_thragent_t *ta_p, u_long
event,td_notify_t *notify_p);

td_err_e td_thr_event_enable(const td_thrhandle_t *th_p, int
on_off);

td_err_e td_thr_set_event(const td_thrhandle_t *th_p,
td_thr_events_t *events);

td_err_e td_ta_set_event(const td_thragent_t *ta_p,
td_thr_events_t *events);

td_err_e td_thr_clear_event(const td_thrhandle_t *th_p,
td_thr_events_t *events);

td_err_e td_ta_clear_event(const td_thragent_t *ta_p,
td_thr_events_t *events);

td_err_e td_thr_event_getmsg(const td_thrhandle_t *th_p,
td_event_msg_t *msg);

td_err_e td_ta_event_getmsg(const td_thragent_t *ta_p,
td_event_msg_t *msg);

void td_event_emptyset(td_thr_events_t *);

void td_event_fillset(td_thr_events_t *);

void td_event_addset(td_thr_events_t *, td_thr_events_e n);

void td_event_delset(td_thr_events_t *, td_thr_events_e n);

void td_eventismember(td_thr_events_t *, td_thr_events_e n);

void td_eventisempty(td_thr_events_t*);

These routines comprise the thread event facility for libthread_db(3THR). This
facility allows the controlling process to be notified when certain thread-related events
occur in a target process and to retrieve information associated with these events. An
event consists of an event type, and optionally, some associated event data, depending
on the event type. See the section titled "Event Set Manipulation Macros" that follows.

The event type and the associated event data, if any, constitute an "event message."
"Reporting an event" means delivering an event message to the controlling process by
way of libthread_db.

td_ta_event_addr(3THR)

NAME

SYNOPSIS

DESCRIPTION

Threads and Realtime Library Functions 251



Several flags can control event reporting, both a per-thread and per event basis. Event
reporting may further be enabled or disabled for a thread. There is not only a
per-thread event mask that specifies which event types should be reported for that
thread, but there is also a global event mask that applies to all threads.

An event is reported, if and only if, the executing thread has event reporting enabled,
and either the event type is enabled in the executing thread’s event mask, or the event
type is enabled in the global event mask.

Each thread has associated with it an event buffer in which it stores the most recent
event message it has generated, the type of the most recent event that it reported, and,
depending on the event type, some additional information related to that event. See
the section titled "Event Set Manipulation Macros" for a description of the
td_thr_events_e and td_event_msg_t types and a list of the event types and the
values reported with them. The thread handle, type td_thrhandle_t, the event
type, and the possible value, together constitute an event message. Each thread’s event
buffer holds at most one event message.

Each event type has an event reporting address associated with it. A thread reports an
event by writing the event message into the thread’s event buffer and having control
reach the event reporting address for that event type.

Typically, the controlling process sets a breakpoint at the event reporting address for
one or more event types. When the breakpoint is hit, the controlling process knows
that an event of the corresponding type has occurred.

The event types, and the additional information, if any, reported with each event, are:

TD_READY The thread became ready to execute.

TD_SLEEP The thread has blocked on a synchronization object.

TD_SWITCHTO A runnable thread is being assigned to LWP.

TD_SWITCHFROM A running thread is being removed from its LWP.

TD_LOCK_TRY A thread is trying to get an unavailable lock.

TD_CATCHSIG A signal was posted to a thread.

TD_IDLE An LWP is becoming idle.

TD_CREATE A thread is being created.

TD_DEATH A thread has terminated.

TD_PREEMPT A thread is being preempted.

TD_PRI_INHERIT A thread is inheriting an elevated priority from another
thread.

TD_REAP A thread is being reaped.

TD_CONCURRENCY The number of LWPs is changing.

td_ta_event_addr(3THR)

252 man pages section 3: Threads and Realtime Library Functions • Last Revised 19 Oct 1998



TD_TIMEOUT A condition-variable timed wait expired.

td_ta_event_addr() returns in *notify_p the event reporting address associated
with event type event. The controlling process may then set a breakpoint at that
address. If a thread hits that breakpoint, it reports an event of type event.

td_thr_event_enable() enables or disables event reporting for thread th_p. If a
thread has event reporting disabled, it will not report any events. Threads are started
with event reporting disabled. Event reporting is enabled if on_off is non-zero;
otherwise, it is disabled. To find out whether or not event reporting is enabled on a
thread, call td_thr_getinfo() for the thread and examine the ti_traceme field of
the td_thrinfo_t structure it returns.

td_thr_set_event() and td_thr_clear_event() set and clear, respectively, a
set of event types in the event mask associated with the thread th_p. To inspect a
thread’s event mask, call td_thr_getinfo() for the thread, and examine the
ti_events field of the td_thrinfo_t structure it returns.

td_ta_set_event() and td_ta_clear_event() are just like
td_thr_set_event () and td_thr_clear_event(), respectively, except that the
target process’s global event mask is modified. There is no provision for inspecting the
value of a target process’s global event mask.

td_thr_event_getmsg() returns in *msg the event message associated with thread
*th_p Reading a thread’s event message consumes the message, emptying the thread’s
event buffer. As noted above, each thread’s event buffer holds at most one event
message; if a thread reports a second event before the first event message has been
read, the second event message overwrites the first.

td_ta_event_getmsg() is just like td_thr_event_getmsg(), except that it is
passed a process handle rather than a thread handle. It selects some thread that has an
event message buffered, and it returns that thread’s message. The thread selected is
undefined, except that as long as at least one thread has an event message buffered, it
will return an event message from some such thread.

Several macros are provided for manipulating event sets of type td_thr_events_t:

td_event_emptyset Sets its argument to the NULL event set.

td_event_fillset Sets its argument to the set of all events.

td_event_addset Adds a specific event type to an event set.

td_event_delset Deletes a specific event type from an event set.

td_eventismember Tests whether a specific event type is a member of an
event set.

td_eventisempty Tests whether an event set is the NULL set.

The following values may be returned for all thread event routines:

td_ta_event_addr(3THR)

Event Set
Manipulation

Macros

RETURN VALUES

Threads and Realtime Library Functions 253



TD_OK The call returned successfully.

TD_BADTH An invalid thread handle was passed in.

TD_BADTA An invalid internal process handle was passed in.

TD_BADPH There is a NULL external process handle associated with this
internal process handle.

TD_DBERR A call to one of the imported interface routines failed.

TD_NOMSG No event message was available to return to
td_thr_event_getmsg() or td_ta_event_getmsg().

TD_ERR Some other parameter error occurred, or a libthread_db()
internal error occurred.

The following value may be returned for td_thr_event_enable(),
td_thr_set_event(), and td_thr_clear_event() only:

TD_NOCAPAB The agent thread in the target process has not completed
initialization, so this operation cannot be performed. The operation
can be performed after the target process has been allowed to
make some forward progress. See also libthread_db(3THR).

See attributes(5) for description of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level Safe

libthread_db(3THR), libthread_db(3LIB), attributes(5)

td_ta_event_addr(3THR)

ATTRIBUTES

SEE ALSO

254 man pages section 3: Threads and Realtime Library Functions • Last Revised 19 Oct 1998



td_ta_get_nthreads – gets the total number of threads in a process for libthread_db

cc [ flag ... ] file ... -lthread_db [ library ... ]

#include <proc_service.h>

#include <thread_db.h>

td_err_e td_ta_get_nthreads(const td_thragent_t *ta_p, int
*nthread_p);

td_ta_get_nthreads() returns the total number of threads in process ta_p,
including any system threads. System threads are those created by libthread() or
libthread_db() on its own behalf. The number of threads is written into *nthread_p.

TD_OK The call completed successfully.

TD_BADTA An invalid internal process handle was passed in.

TD_BADPH There is a NULL external process handle associated with this
internal process handle.

TD_DBERR A call to one of the imported interface routines failed.

TD_ERR nthread_p was NULL, or a libthread_db internal error occurred.

See attributes(5) for description of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level Safe

libthread(3THR), libthread_db(3THR), libthread_db(3LIB), attributes(5)

td_ta_get_nthreads(3THR)

NAME

SYNOPSIS

DESCRIPTION

RETURN VALUES

ATTRIBUTES

SEE ALSO

Threads and Realtime Library Functions 255



td_ta_map_addr2sync – get a synchronization object handle from a synchronization
object’s address

cc [ flag ... ] file ... -lthread_db [ library ... ]

#include <proc_service.h>

#include <thread_db.h>

td_ta_map_addr2sync(const td_thragent_t *ta_p, psaddr_t
addr,td_synchandle_t *sh_p);

td_ta_map_addr2sync() produces the synchronization object handle of type
td_synchandle_t that corresponds to the address of the synchronization object
(mutex, semaphore, condition variable, or reader/writer lock). Some effort is made to
validate addr and verify that it does indeed point at a synchronization object. The
handle is returned in *sh_p.

TD_OK The call completed successfully.

TD_BADTA An invalid internal process handle was passed in.

TD_BADPH There is a NULL external process handle associated with this
internal process handle.

TD_BADSH sh_p is NULL, or addr does not appear to point to a valid
synchronization object.

TD_DBERR A call to one of the imported interface routines failed.

TD_ERR addr is NULL, or a libthread_db internal error occurred.

See attributes(5) for description of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level Safe

libthread_db(3THR), libthread_db(3LIB), attributes(5)

td_ta_map_addr2sync(3THR)

NAME

SYNOPSIS

DESCRIPTION

RETURN VALUES

ATTRIBUTES

SEE ALSO

256 man pages section 3: Threads and Realtime Library Functions • Last Revised 20 Oct 1998



td_ta_map_id2thr, td_ta_map_lwp2thr – convert a thread id or LWP id to a thread
handle

cc [ flag ... ] file ... -lthread_db [ library ... ]

#include <proc_service.h>

#include <thread_db.h>

td_ta_map_id2thr(const td_thragent_t *ta_p, thread_t
tid,td_thrhandle_t *th_p);

td_ta_map_lwp2thr(const td_thragent_t *ta_p, lwpid_t
lwpid,td_thrhandle_t *th_p);

td_ta_map_id2thr() produces the td_thrhandle_t thread handle that
corresponds to a particular thread id, as returned by thr_create(3THR) or
thr_self(3THR). The thread handle is returned in *th_p.

td_ta_map_lwp2thr() produces the td_thrhandle_t thread handle for the
thread that is currently executing on the light weight process ( LWP) and has an id of
lwpid.

TD_OK The call completed successfully.

TD_BADTA An invalid internal process handle was passed in.

TD_BADPH There is a NULL external process handle associated with this
internal process handle.

TD_DBERR A call to one of the imported interface routines failed.

TD_NOTHR Either there is no thread with the given thread id (
td_ta_map_id2thr) or no thread is currently executing on the
given LWP ( td_ta_map_lwp2thr).

TD_ERR The call did not complete successfully.

See attributes(5) for description of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level Safe

libthread_db(3THR), thr_create(3THR), thr_self(3THR),
libthread_db(3LIB), attributes(5)

td_ta_map_id2thr(3THR)

NAME

SYNOPSIS

DESCRIPTION

RETURN VALUES

ATTRIBUTES

SEE ALSO

Threads and Realtime Library Functions 257



td_ta_new, td_ta_delete, td_ta_get_ph – allocate and deallocate process handles for
libthread_db

cc [ flag ... ] file ... -lthread_db [ library ... ]
#include <proc_service.h>

#include <thread_db.h>

td_err_e td_ta_new(const struct ps_prochandle *ph_p,
td_thragent_t **ta_pp);

td_err_e td_ta_delete(const td_thragent_t *ta_p);

td_err_e td_ta_get_ph(const td_thragent_t *ta_p, struct
ps_prochandle **ph_pp);

td_ta_new() registers a target process with libthread_db and allocates an
internal process handle of type td_thragent_t for this target process. Subsequent
calls to libthread_db can use this handle to refer to this target process.

There are actually two process handles, an internal process handle assigned by
libthread_db and an external process handle assigned by the libthread_db
client. There is a one-to-one correspondence between the two handles. When the client
calls a libthread_db routine, it uses the internal process handle. When
libthread_db calls one of the client-provided routines listed in
proc_service(3PROC), it uses the external process handle.

ph is the external process handle that libthread_db should use to identify this target
process to the controlling process when it calls routines in the imported interface.

If this call is successful, the value of the newly allocated td_thragent_t handle is
returned in *ta_pp. td_ta_delete() deregisters a target process with
libthread_db, which deallocates its internal process handle and frees any other
resources libthread_db has acquired with respect to the target process. ta_p
specifies the target process to be deregistered.

td_ta_get_ph() returns in *ph_pp the external process handle that corresponds to
the internal process handle ta_p. This is useful for checking internal consistency.

TD_OK The call completed successfully.

TD_BADPH A NULL external process handle was passed in to
td_ta_new.

TD_ERR ta_pp is NULL, or an internal error occurred.

TD_DBERR A call to one of the imported interface routines failed.

TD_MALLOC Memory allocation failure.

TD_NOLIBTHREAD The target process does not appear to be
multithreaded.

See attributes(5) for description of the following attributes:

td_ta_new(3THR)

NAME

SYNOPSIS

DESCRIPTION

RETURN VALUES

ATTRIBUTES

258 man pages section 3: Threads and Realtime Library Functions • Last Revised 20 Oct 1998



ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level Safe

libthread_db(3THR), proc_service(3PROC), libthread_db(3LIB),
attributes(5)

td_ta_new(3THR)

SEE ALSO

Threads and Realtime Library Functions 259



td_ta_setconcurrency – set concurrency level for target process

cc [ flag ... ] file ... -lthread_db [ library ... ]

#include <proc_service.h>

#include <thread_db.h>

td_err_e td_ta_setconcurrency(const td_thragent_t *ta_p, int
level););

td_ta_setconcurrency() sets the desired concurrency level for the process
identified by ta_p to level, just as if a thread within the process had called
thr_setconcurrency(). See thr_setconcurrency(3THR).

TD_OK The call completed successfully.

TD_BADTA An invalid internal process handle was passed in.

TD_BADPH There is a NULL external process handle associated with this
internal process handle. TD_NOCAPAB The client did not
implement the ps_kill() routine in the imported interface. See
ps_kill(3PROC).

TD_DBERR A call to one of the imported interface routines failed.

TD_ERR A libthread_db internal error occurred.

See attributes(5) for description of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level Safe

libthread_db(3THR), ps_kill(3PROC), thr_setconcurrency(3THR),
libthread_db(3LIB), attributes(5)

td_ta_setconcurrency(3THR)

NAME

SYNOPSIS

DESCRIPTION

RETURN VALUES

ATTRIBUTES

SEE ALSO

260 man pages section 3: Threads and Realtime Library Functions • Last Revised 20 Oct 1998



td_ta_sync_iter, td_ta_thr_iter, td_ta_tsd_iter – iterator functions on process handles
from libthread_db library of interfaces

cc [ flag ... ] file ... -lthread_db [ library ... ]

#include <proc_service.h>

#include <thread_db.h>

td_err_e td_ta_sync_iter(const td_thragent_t *ta_p, td_sync_iter_f
*cb, void *cbdata_p);

td_err_e td_ta_tsd_iter(const td_thragent_t *ta_p, td_key_iter_f
*cb, void *cbdata_p);

td_err_e td_ta_sync_iter(const td_thragent_t *ta_p, td_sync_iter_f
*cb, void *cbdata_p);

td_ta_sync_iter(), td_ta_thr_iter(), and td_ta_tsd_iter() are iterator
functions that when given a target process handle as an argument, return sets of
handles for objects associated with the target process. The method is to call back a
client-provided function once for each associated object, passing back a handle as well
as the client-provided pointer cb_data_p. This enables a client to easily build a linked
list of the associated objects.

td_ta_sync_iter() returns handles of synchronization objects (mutexes,
preader-writer locks, semaphores, and condition variables) associated with a process.
Some synchronization objects may not be known to libthread_db() and will not be
returned. If the process has initialized the synchronization object (by calling
mutex_init(), for example) or a thread in the process has blocked on this object
after libthread_db() attached to the synchronization object, then a handle for the
synchronization object will be returned by libthread_db(). See
td_sync_get_info(3THR) to see operations that can be performed on
synchronization object handles.

td_ta_thr_iter() returns handles for threads that are part of the target process.
For td_ta_thr_iter(), the caller specifies several criteria to select a subset of
threads for which the callback function should be called. Any of these selection criteria
may be wild-carded. If all of them are wild-carded, then handles for all threads in the
process will be returned.

The selection parameters and corresponding wild-card values are:

state (TD_THR_ANY_STATE):
Select only threads whose state matches state. See td_thr_get_info(3THR) for
a list of thread states.

ti_pri (TD_THR_LOWEST_PRIORITY):
Select only threads for which the priority is at least ti_pri.

ti_sigmask_p (TD_SIGNO_MASK):
Select only threads whose signal mask exactly matches *ti_sigmask_p.

td_ta_sync_iter(3THR)

NAME

SYNOPSIS

DESCRIPTION

Threads and Realtime Library Functions 261



ti_user_flags (TD_THR_ANY_USER_FLAGS):
Select only threads whose user flags (specified at thread creation time) exactly
match ti_user_flags.

td_ta_tsd_iter() returns the thread-specific data keys in use by the current
process. Thread-specific data for a particular thread and key may be obtained by
calling td_thr_tsd(3THR).

TD_OK The call completed successfully.

TD_BADTA An invalid process handle was passed in.

TD_DBERR A call to one of the imported interface routines failed.

TD_ERR The call did not complete successfully.

See attributes(5) for description of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level Safe

libthread_db(3THR), td_sync_get_info(3THR), td_thr_get_info(3THR),
td_thr_tsd(3THR), libthread_db(3LIB), attributes(5)

td_ta_sync_iter(3THR)

RETURN VALUES

ATTRIBUTES

SEE ALSO

262 man pages section 3: Threads and Realtime Library Functions • Last Revised 20 Oct 1998



td_thr_dbsuspend, td_thr_dbresume – suspend and resume threads in libthread_db

cc [ flag ... ] file ... -lthread_db [ library ... ]

#include <proc_service.h>

#include <thread_db.h>

td_err_e td_thr_dbsuspend(const td_thrhandle_t *th_p);

td_err_e td_thr_dbresume(const td_thrhandle_t *th_p);

These operations suspend and resume the thread identified by th_p. A thread that has
been suspended with td_thr_dbsuspend() is said to be in the "dbsuspended" state.
A thread whose "dbsuspended" flag is set will not execute. If an unbound thread
enters the "dbsuspended" state and is currently assigned to a lightweight process (
LWP), then the LWP becomes available for assignment to a different thread.

A thread’s "dbsuspended" state is independent of the suspension state controlled by
calls to thr_suspend(3THR) and thr_continue(3THR) from within the target
process. Calling thr_continue(3THR) within the target process on a thread that has
been suspended during a call to td_thr_dbsuspend() will not cause that thread to
resume execution; only a call to td_thr_dbresume() will do that.

TD_OK The call completed successfully.

TD_BADTH An invalid thread handle was passed in.

TD_DBERR A call to one of the imported interface routines failed.

TD_NOCAPAB The "agent thread" in the target process has not completed
initialization, so this operation cannot be performed. The operation
can be performed after the target process has been allowed to
make some forward progress. See also libthread_db(3THR)

TD_ERR A libthread_db internal error occurred.

See attributes(5) for description of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level Safe

libthread_db(3THR), thr_continue(3THR), thr_suspend(3THR),
libthread_db(3LIB), attributes(5)

td_thr_dbsuspend(3THR)

NAME

SYNOPSIS

DESCRIPTION

RETURN VALUES

ATTRIBUTES

SEE ALSO

Threads and Realtime Library Functions 263



td_thr_getgregs, td_thr_setgregs, td_thr_getfpregs, td_thr_setfpregs,
td_thr_getxregsize, td_thr_getxregs, td_thr_setxregs – reading and writing thread
registers in libthread_db

cc [ flag ... ] file ... -lthread_db [ library ... ]

#include <proc_service.h>

#include <thread_db.h>

td_err_e td_thr_getgregs(const td_thrhandle_t *th_p,
prgregset_tgregset);

td_err_e td_thr_setgregs(const td_thrhandle_t *th_p,
prgregset_tgregset);

td_err_e td_thr_getfpregs(const td_thrhandle_t *th_p,
prfpregset_t *fpregset);

td_err_e td_thr_setfpregs(const td_thrhandle_t *th_p,
prfpregset_t *fpregset);

td_err_e td_thr_getxregsize(const td_thrhandle_t *th_p, int
*xregsize);

td_err_e td_thr_getxregs(const td_thrhandle_t *th_p, prxregset_t
*xregset);

td_err_e td_thr_setxregs(const td_thrhandle_t *th_p, prxregset_t
*xregset);

These routines read and write the register sets associated with thread th_p.
td_thr_getgregs() and td_thr_setgregs() get and set, respectively, the
general registers of thread th_p. td_thr_getfpregs() and td_thr_setfpregs()
get and set, respectively, the thread’s floating point register set.
td_thr_getxregsize(), td_thr_getxregs(), and td_thr_setxregs() are
SPARC-specific. td_thr_getxregsize() returns in *xregsize the size of the
architecture-dependent extra state registers. td_thr_getxregs() and
td_thr_setxregs() get and set, respectively, those extra state registers. On
non-SPARC architectures, these routines return TD_NOXREGS.

If thread th_p is currently executing on a lightweight process ( LWP), these routines
will read or write, respectively, the appropriate register set to the LWP using the
imported interface. If the thread is not currently executing on a LWP, then the floating
point and extra state registers may not be read or written. Some of the general
registers may also not be readable or writable, depending on the architecture. In this
case, td_thr_getfpregs() and td_thr_setfpregs() will return
TD_NOFPREGS, and td_thr_getxregs() and td_thr_setxregs() will return
TD_NOXREGS. Calls to td_thr_getgregs() and td_thr_setgregs() will
succeed, but values returned for unreadable registers will be undefined, and values
specified for unwritable registers will be ignored. In this instance, a value of

td_thr_getgregs(3THR)

NAME

SYNOPSIS

DESCRIPTION

264 man pages section 3: Threads and Realtime Library Functions • Last Revised 20 Oct 1998



TD_PARTIALREGS will be returned. See the architecture-specific notes that follow
regarding the registers that may be read and written for a thread not currently
executing on a LWP.

On a thread not currently assigned to a LWP, only %i0-%i7, %l0-%l7, %g7, %pc, and
%sp (%o6) may be read or written. %pc and %sp refer to the program counter and
stack pointer that the thread will have when it resumes execution.

On a thread not currently assigned to a LWP, only %pc, %sp, %ebp, %edi, %edi, and
%ebx may be read.

TD_OK The call completed successfully.

TD_BADTH An invalid thread handle was passed in.

TD_DBERR A call to one of the imported interface routines failed.

TD_PARTIALREGS Because the thread is not currently assigned to a LWP,
not all registers were read or written. See
DESCRIPTION for a discussion about which registers
are not saved when a thread is not assigned to an LWP.

TD_NOFPREGS Floating point registers could not be read or written,
either because the thread is not currently assigned to an
LWP, or because the architecture does not have such
registers.

TD_NOXREGS Architecture-dependent extra state registers could not
be read or written, either because the thread is not
currently assigned to an LWP, or because the
architecture does not have such registers, or because
the architecture is not a SPARC architecture.

TD_ERR A libthread_db internal error occurred.

See attributes(5) for description of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level Safe

libthread_db(3THR), libthread_db(3LIB), attributes(5)

td_thr_getgregs(3THR)

SPARC

Intel IA

RETURN VALUES

ATTRIBUTES

SEE ALSO

Threads and Realtime Library Functions 265



td_thr_get_info – get thread information in libthread_db library of interfaces

cc [ flag ... ] file ... -lthread_db [ library ... ]

#include <proc_service.h>

#include <thread_db.h>

td_err_e td_thr_get_info(const td_thrhandle_t *th_p, td_thrinfo_t
*ti_p);

The td_thr_get_info() routine fills in the td_thrinfo_t structure *ti_p with
values for the thread identified by th_p.

The td_thrinfo_t structure contains the following fields:

typedef struct td_thrinfo_t {
td_thragen_tx *ti_ta_p /* internal process handle */
unsigned ti_user_flags; /* value of flags parameter */
thread_t ti_tid; /* thread identifier */
char *ti_tls; /* pointer to thread-local storage*/
paddr ti_startfunc; /* address of function at which thread

execution began*/
paddr ti_stkbase; /* base of thread’s stack area*/
int ti_stksize; /* size in bytes of thread’s allocated

stack region*/
paddr ti_ro_area; /* address of uthread_t structure*/
int ti_ro_size /* size of the uthread_t structure in

bytes */
td_thr_state_e ti_state /* state of the thread */
uchar_t ti_db_suspended /* non-zero if thread suspended by

td_thr_dbsuspend*/
td_thr_type_e ti_type /* type of the thread*/
int ti_pc /* value of thread’s program counter*/
int ti_sp /* value of thread’s stack counter*/
short ti_flags /* set of special flags used by

libthread*/
int ti_pri /* priority of thread returned by

thr_getprio(3T)*/
lwpid_t ti_lid /* id of light weight process (LWP)

executing this thread*/
sigset_t ti_sigmask /* thread’s signal mask. See

thr_sigsetmask(3T)*/
u_char ti_traceme /* non-zero if event tracing is on*/
u_char_t ti_preemptflag /* non-zero if thread preempted when

last active*/
u_char_t ti_pirecflag /* non-zero if thread runs priority

beside regular */
sigset_t ti_pending /* set of signals pending for this

thread*/
td_thr_events_t ti_events /* bitmap of events enabled for this

thread*/
} ;

td_thragent_t *ti_ta_p is the internal process handle identifying the process of
which the thread is a member.

td_thr_get_info(3THR)

NAME

SYNOPSIS

DESCRIPTION

266 man pages section 3: Threads and Realtime Library Functions • Last Revised 20 Oct 1998



unsigned ti_user_flags is the value of the flags parameter passed to
thr_create(3THR) when the thread was created.

thread_t ti_tid is the thread identifier for the thread returned by libthread
when created with thr_create(3THR).

char *ti_tls is the thread’s pointer to thread-local storage.

psaddr_t ti_startfunc is the address of the function at which thread execution
began, as specified when the thread was created with thr_create(3THR).

psaddr_t ti_stkbase is the base of the thread’s stack area.

int ti_stksize is the size in bytes of the thread’s allocated stack region.

psaddr_t ti_ro_area is the address of the libthread-internal uthread_t
structure for this thread. Since accessing the uthread_t structure directly violates the
encapsulation provided by libthread_db, this field should generally not be used.
However, it may be useful as a prototype for extensions.

td_thr_state_e ti_state is the state in which the thread is. The
td_thr_state_e enumeration type may contain the following values:

TD_THR_ANY_STATE Never returned by td_thr_get_info.
TD_THR_ANY_STATE is used as a wildcard
to select threads in td_ta_thr_iter().

TD_THR_UNKNOWN libthread_db cannot determine the state
of the thread.

TD_THR_STOPPED The thread has been stopped by a call to
thr_suspend(3THR).

TD_THR_RUN The thread is runnable, but it is not
currently assigned to a LWP.

TD_THR_ACTIVE The thread is currently executing on a LWP.

TD_THR_ZOMBIE The thread has exited, but it has not yet
been deallocated by a call to
thr_join(3THR).

TD_THR_SLEEP The thread is not currently runnable.

TD_THR_STOPPED_ASLEEP The thread is both blocked by
TD_THR_SLEEP, and stopped by a call to
td_thr_dbsuspend(3THR).

uchar_t ti_db_suspended is non-zero if and only if this thread is currently
suspended because the controlling process has called td_thr_dbsuspend on it.

td_thr_get_info(3THR)

Threads and Realtime Library Functions 267



td_thr_type_e ti_type is a type of thread. It will be either TD_THR_USER for a
user thread (one created by the application), or TD_THR_SYSTEM for one created by
libthread.

int ti_pc is the value of the thread’s program counter, provided that the thread’s
ti_state value is TD_THR_SLEEP, TD_THR_STOPPED, or
TD_THR_STOPPED_ASLEEP. Otherwise, the value of this field is undefined.

int ti_sp is the value of the thread’s stack pointer, provided that the thread’s
ti_state value is TD_THR_SLEEP, TD_THR_STOPPED, or
TD_THR_STOPPED_ASLEEP. Otherwise, the value of this field is undefined.

short ti_flags is a set of special flags used by libthread, currently of use only to
those debugging libthread.

int ti_pri is the thread’s priority, as it would be returned by thr_getprio(3THR).

lwpid_t ti_lid is the ID of the LWP executing this thread, or the ID of the LWP that
last executed this thread, if this thread is not currently assigned to a LWP.

sigset_t ti_sigmask is this thread’s signal mask. See thr_sigsetmask(3THR).

u_char ti_traceme is non-zero if and only if event tracing for this thread is on.

uchar_t ti_preemptflag is non-zero if and only if the thread was preempted the
last time it was active.

uchar_t ti_pirecflag is non-zero if and only if due to priority inheritance the
thread is currently running at a priority other than its regular priority.

td_thr_events_t ti_events is the bitmap of events enabled for this thread.

TD_OK The call completed successfully.

TD_BADTH An invalid thread handle was passed in.

TD_DBERR A call to one of the imported interface routines failed.

TD_ERR The call did not complete successfully.

See attributes(5) for description of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level Safe

libthread(3THR), libthread_db(3THR), td_ta_thr_iter(3THR),
td_thr_dbsuspend(3THR), thr_create(3THR), thr_getprio(3THR),
thr_join(3THR), thr_sigsetmask(3THR), thr_suspend(3THR),
libthread(3LIB), libthread_db(3LIB), attributes(5)

td_thr_get_info(3THR)

RETURN VALUES

ATTRIBUTES

SEE ALSO

268 man pages section 3: Threads and Realtime Library Functions • Last Revised 20 Oct 1998



td_thr_lockowner – iterate over the set of locks owned by a thread

cc [ flag ... ] file ... -lthread_db [ library ... ]

#include <proc_service.h>

#include <thread_db.h>

td_err_e td_thr_lockowner(const td_thrhandle_t *th_p,
td_sync_iter_f *cb, void *cb_data_p);

td_thr_lockowner() calls the iterator function cb once for every mutex that is held
by the thread whose handle is th_p. The synchronization handle and the pointer
cb_data_p are passed to the function. See td_ta_thr_iter(3THR) for a similarly
structured function.

Iteration terminates early if the callback function cb returns a non-zero value.

TD_OK The call completed successfully.

TD_BADTH An invalid thread handle was passed in.

TD_BADPH There is a NULL external process handle associated with this
internal process handle.

TD_DBERR A call to one of the imported interface routines failed.

TD_ERR A libthread_db internal error occurred.

See attributes(5) for description of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level Safe

libthread_db(3THR), td_ta_thr_iter(3THR), libthread_db(3LIB),
attributes(5)

td_thr_lockowner(3THR)

NAME

SYNOPSIS

DESCRIPTION

RETURN VALUES

ATTRIBUTES

SEE ALSO

Threads and Realtime Library Functions 269



td_thr_setprio – set the priority of a thread

cc [ flag ... ] file ... -lthread_db [ library ... ]

#include <proc_service.h>

#include <thread_db.h>

td_err_e td_thr_setprio(const td_thrhandle_t *th_p, const int
new_prio;);

td_thr_setprio() sets thread th_p’s priority to new_prio, just as if a thread within
the process had called thr_setprio( ). See thr_setprio(3THR).

TD_OK The call completed successfully.

TD_BADTH An invalid thread handle was passed in.

TD_DBERR A call to one of the imported interface routines failed.

TD_ERR new_prio is an illegal value (out of range).

See attributes(5) for description of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level Safe

libthread_db(3THR), thr_setprio(3THR), libthread_db(3LIB),
attributes(5)

td_thr_setprio(3THR)

NAME

SYNOPSIS

DESCRIPTION

RETURN VALUES

ATTRIBUTES

SEE ALSO

270 man pages section 3: Threads and Realtime Library Functions • Last Revised 20 Oct 1998



td_thr_setsigpending, td_thr_sigsetmask – manage thread signals for libthread_db

cc [ flag ... ] file ... -lthread_db [ library ... ]

#include <proc_service.h>

#include <thread_db.h>

td_err_e td_thr_setsigpending(const td_thrhandle_t * th_p, const
uchar_ t ti_sigpending_flag, const sigset_t ti_sigmask;);

td_err_e td_thr_sigsetmask(const td_thrhandle_t *th_p, const
sigset_t ti_sigmask);

The td_thr_setsigpending() and td_thr_setsigmask() operations affect the
signal state of the thread identified by th_p.

td_thr_setsigpending() sets the set of pending signals for thread th_p to
ti_sigpending. The value of the libthread-internal field that indicates whether a
thread has any signal pending is set to ti_sigpending_flag. To be consistent,
ti_sigpending_flag should be zero if and only if all of the bits in ti_sigpending are zero.

td_thr_sigsetmask() sets the signal mask of the thread th_p as if the thread had
set its own signal mask by way of thr_sigsetmask(3THR). The new signal mask is
the value of ti_sigmask.

There is no equivalent to the SIG_BLOCK or SIG_UNBLOCK operations of
thr_sigsetmask(3THR), which mask or unmask specific signals without affecting
the mask state of other signals. To block or unblock specific signals, either stop the
whole process, or the thread, if necessary, by td_thr_dbsuspend(). Then determine
the thread’s existing signal mask by calling td_thr_get_info() and reading the
ti_sigmask field of the td_thrinfo_t structure returned. Modify it as desired, and set
the new signal mask with td_thr_sigsetmask().

TD_OK The call completed successfully.

TD_BADTH An invalid thread handle was passed in.

TD_DBERR A call to one of the imported interface routines failed.

TD_ERR A libthread_db internal error occurred.

See attributes(5) for description of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level Safe

libthread_db(3THR), td_thr_dbsuspend(3THR), td_thr_get_info(3THR),
libthread_db(3LIB), attributes(5)

td_thr_setsigpending(3THR)

NAME

SYNOPSIS

DESCRIPTION

RETURN VALUES

ATTRIBUTES

SEE ALSO

Threads and Realtime Library Functions 271



td_thr_sleepinfo – return the synchronization handle for the object on which a thread
is blocked

cc [ flag ... ] file ... -lthread_db [ library ... ]

#include <proc_service.h>

#include <thread_db.h>

td_err_e td_thr_sleepinfo(const td_thrhandle_t *th_p,
td_synchandle_t *sh_p);

td_thr_sleepinfo() returns in *sh_p the handle of the synchronization object on
which a sleeping thread is blocked.

TD_OK The call completed successfully.

TD_BADTH An invalid thread handle was passed in.

TD_DBERR A call to one of the imported interface routines failed.

TD_ERR The thread th_p is not blocked on a synchronization object, or a
libthread_db internal error occurred.

See attributes(5) for description of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level Safe

libthread_db(3THR), libthread_db(3LIB), attributes(5)

td_thr_sleepinfo(3THR)

NAME

SYNOPSIS

DESCRIPTION

RETURN VALUES

ATTRIBUTES

SEE ALSO

272 man pages section 3: Threads and Realtime Library Functions • Last Revised 20 Oct 1998



td_thr_tsd – get a thread’s thread-specific data for libthread_db library of interfaces

cc [ flag ... ] file ... -lthread_db [ library ... ]

#include <proc_service.h>

#include <thread_db.h>

td_err_e td_thr_tsd(const td_thrhandle_t, const thread_key_t key,
void *data_pp);

td_thr_tsd() returns in *data_pp the thread-specific data pointer for the thread
identified by th_p and the thread-specific data key key. This is the same value that
thread th_p would obtain if it called thr_getspecific(3THR).

To find all the thread-specific data keys in use in a given target process, call
td_ta_tsd_iter(3THR).

TD_OK The call completed successfully.

TD_BADTH An invalid thread handle was passed in.

TD_DBERR A call to one of the imported interface routines failed.

TD_ERR A libthread_db internal error occurred.

See attributes(5) for description of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level Safe

libthread_db(3THR), td_ta_tsd_iter(3THR), thr_getspecific(3THR),
libthread_db(3LIB), attributes(5)

td_thr_tsd(3THR)

NAME

SYNOPSIS

DESCRIPTION

RETURN VALUES

ATTRIBUTES

SEE ALSO

Threads and Realtime Library Functions 273



td_thr_validate – test a thread handle for validity

cc [ flag ... ] file ... -lthread_db [ library ... ]
#include <proc_service.h>

#include <thread_db.h>

td_err_e td_thr_validate(const td_thrhandle_t *th_p);

td_thr_validate() tests whether th_p is a valid thread handle. A valid thread
handle may become invalid if its thread exits.

TD_OK The call completed successfully. th_p is a valid thread handle.

TD_BADTH th_p was NULL.

TD_DBERR A call to one of the imported interface routines failed.

TD_NOTHR th_p is not a valid thread handle.

TD_ERR A libthread_db internal error occurred.

See attributes(5) for description of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level Safe

libthread_db(3THR), libthread_db(3LIB), attributes(5)

td_thr_validate(3THR)

NAME

SYNOPSIS

DESCRIPTION

RETURN VALUES

ATTRIBUTES

SEE ALSO

274 man pages section 3: Threads and Realtime Library Functions • Last Revised 20 Oct 1998



thr_create – create a tread

cc – mt [ flag... ] file...[ library... ]

#include <thread.h>

int thr_create(void *stack_base, size_t stack_size, void *(*start_func)
(void*), void *arg, long flags, thread_t *new_thread_ID);

Thread creation adds a new thread of control to the current process. The procedure
main() is a single thread of control. Each thread executes simultaneously with all
other threads within the calling process and with other threads from other active
processes.

Although a newly created thread shares all of the calling process’s global data with the
other threads in the process, it has its own set of attributes and private execution stack.
The new thread inherits the calling thread’s signal mask, possibly, and scheduling
priority. Pending signals for a new thread are not inherited and will be empty.

The call to create a thread takes the address of a user-defined function, specified by
start_func, as one of its arguments. This function is the complete execution routine for
the new thread.

The lifetime of a thread begins with the successful return from thr_create(), which
calls start_func( ) and ends with one of the following:

� the normal completion of start_func( ),
� the return from an explicit call to thr_exit(3THR), or
� the conclusion of the calling process (see exit(2)).

The new thread performs by calling the function defined by start_func with only one
argument, arg. If more than one argument needs to be passed to start_func, the
arguments can be packed into a structure, the address of which can be passed to arg.

If start_func returns, the thread terminates with the exit status set to the start_func
return value (see thr_exit(3THR)).

When the thread from which main() originated returns, the effect is the same as if an
implicit call to exit() were made using the return value of main() as the exit status.
This behavior differs from a start_func return. If main() calls thr_exit(3THR), only
the main thread exits, not the entire process.

If the thread creation fails, a new thread is not created and the contents of the location
referenced by the pointer to the new thread are undefined.

The flags argument specifies which attributes are modifiable for the created thread.
The value in flags is determined by the bitwise inclusive-OR of the following:

thr_create(3THR)

NAME

SYNOPSIS

DESCRIPTION

Threads and Realtime Library Functions 275



THR_BOUND This flag affects the contentionscope attribute of the thread. The
new thread is created permanently bound to an LWP (that is, it is a
bound thread). This thread will now contend among system-wide
resources.

THR_DETACHED This flag affects the detachstate attribute of the thread. The new
thread is created detached. The exit status of a detached thread is
not accessible to other threads. Its thread ID and other resources
may be re-used as soon as the thread terminates.
thr_join(3THR) will not wait for a detached thread.

THR_NEW_LWP This flag affects the concurrency attribute of the thread. The
desired concurrency level for unbound threads is increased by one.
This is similar to incrementing concurrency by one by way of
thr_setconcurrency(3THR) Typically, this adds a new LWP to
the pool of LWPs running unbound threads.

THR_SUSPENDED This flag affects the suspended attribute of the thread. The new
thread is created suspended and will not execute start_func until it
is started by thr_continue().

THR_DAEMON This flag affects the daemon attribute of the thread. The thread is
marked as a daemon. The process will exit when all non-daemon
threads exit. thr_join(3THR) will not wait for a daemon thread.
Daemon threads do not interfere with the exit conditions for a
process. A process will terminate when all regular threads exit or
the process calls exit(). Daemon threads are most useful in
libraries that want to use threads.

Default thread creation:

thread_t tid;
void *start_func(void *), *arg;

thr_create(NULL, NULL, start_func, arg, NULL, &tid);

User-defined thread creation (create a thread scheduled on a system-wide basis, that
is, a bound thread):

thr_create(NULL, NULL, start_func, arg, THR_BOUND, &tid);

If both THR_BOUND and THR_NEW_LWP are specified, two LWPs are created, one for
the bound thread and another for the pool of LWPs running unbound threads.

thr_create(NULL, NULL, start_func, arg, THR_BOUND | THR_NEW_LWP, &tid);

With thr_create(), the new thread uses the stack beginning at the address
specified by stack_base and continuing for stack_size bytes. The stack_size argument
must be greater than the value returned by thr_min_stack(3THR). If stack_base is
NULL, thr_create() allocates a stack for the new thread with at least stack_size
bytes. If stack_size is 0, a default size is used. If stack_size is not 0, it must be greater
than the value returned by thr_min_stack(3THR) See NOTES.

thr_create(3THR)

276 man pages section 3: Threads and Realtime Library Functions • Last Revised 12 May 1998



When new_thread_ID is not NULL, it points to a location where the ID of the new
thread is stored if thr_create() is successful. The ID is only valid within the calling
process.

If successful, the thr_create() function returns 0. Otherwise, an error value is
returned to indicate the error. If the application is not linked with the threads library,
−1 is returned.

The thr_create() function will fail if:

EAGAIN The system-imposed limit on the total number of threads in a
process has been exceeded or some system resource has been
exceeded (for example, too many LWPs were created).

EINVAL The stack_base argument is not NULL and stack_size is less than the
value returned by thr_min_stack(3THR), or the stack_base
argument is NULLNULL and stack_size is not 0 and is less than the
value returned by thr_min_stack(3THR).

The thr_create() function may use mmap() to allocate thread stacks from
MAP_PRIVATE, MAP_NORESERVE, and MAP_ANON memory mappings if stack_base is
NULL, and consequently may return upon failure the revelevant error values returned
by mmap(). See the mmap(2) manual page for these error values.

EXAMPLE 1 This is an example of concurrency with multi-threading. Since POSIX threads
and Solaris threads are fully compatible even within the same process, this example uses
pthread_create() if you execute a.out 0, or thr_create() if you execute a.out 1.

Five threads are created that simultaneously perform a time-consuming function,
sleep(10). If the execution of this process is timed, the results will show that all five
individual calls to sleep for ten-seconds completed in about ten seconds, even on a
uniprocessor. If a single-threaded process calls sleep(10) five times, the execution
time will be about 50-seconds.

The command-line to time this process is:

/usr/bin/time a.out 0 (for POSIX threading)

or

/usr/bin/time a.out 1 (for Solaris threading)

/* cc thisfile.c -lthread -lpthread */
#define _REENTRANT /* basic 3-lines for threads */
#include <pthread.h>
#include <thread.h>
#define NUM_THREADS 5
#define SLEEP_TIME 10

void *sleeping(void *); /* thread routine */
int i;
thread_t tid[NUM_THREADS]; /* array of thread IDs */

thr_create(3THR)

RETURN VALUES

ERRORS

EXAMPLES

Threads and Realtime Library Functions 277



EXAMPLE 1 This is an example of concurrency with multi-threading. Since POSIX threads
and Solaris threads are fully compatible even within the same process, this example uses
pthread_create() if you execute a.out 0, or thr_create() if you execute a.out 1.

(Continued)

int
main(int argc, char *argv[])
{

if (argc == 1) {
printf("use 0 as arg1 to use pthread_create( )\n");
printf("or use 1 as arg1 to use thr_create( )\n");
return (1);

}

switch (*argv[1]) {
case ’0’: /* POSIX */

for ( i = 0; i < NUM_THREADS; i++)
pthread_create(&tid[i], NULL, sleeping,

(void *)SLEEP_TIME);
for ( i = 0; i < NUM_THREADS; i++)

pthread_join(tid[i], NULL);
break;

case ’1’: /* Solaris */
for ( i = 0; i < NUM_THREADS; i++)

thr_create(NULL, 0, sleeping, (void *)SLEEP_TIME, 0,
&tid[i]);

while (thr_join(NULL, NULL, NULL) == 0)
;

break;
} /* switch */
printf("main( ) reporting that all %d threads have terminated\n", i);
return (0);

} /* main */

void *
sleeping(void *arg)
{

int sleep_time = (int)arg;
printf("thread %d sleeping %d seconds ...\n", thr_self( ), sleep_time);
sleep(sleep_time);
printf("\nthread %d awakening\n", thr_self( ));
return (NULL);

}

Had main() not waited for the completion of the other threads (using
pthread_join(3THR) or thr_join(3THR)), it would have continued to process
concurrently until it reached the end of its routine and the entire process would have
exited prematurely (see exit(2)).

EXAMPLE 2 Creating a default thread with a new signal mask.

The following example demonstrates how to create a default thread with a new signal
mask. The new_mask argument is assumed to have a value different from the creator’s

thr_create(3THR)

278 man pages section 3: Threads and Realtime Library Functions • Last Revised 12 May 1998



EXAMPLE 2 Creating a default thread with a new signal mask. (Continued)

signal mask (orig_mask). The new_mask argument is set to block all signals except for
SIGINT.. The creator’s signal mask is changed so that the new thread inherits a
different mask, and is restored to its original value after thr_create() returns.

This example assumes that SIGINT is also unmasked in the creator. If it is masked by
the creator, then unmasking the signal opens the creator to this signal. The other
alternative is to have the new thread set its own signal mask in its start routine.

thread_t tid;
sigset_t new_mask, orig_mask;
int error;

(void)sigfillset(&new_mask);
(void)sigdelset(&new_mask, SIGINT);
(void)thr_sigsetmask(SIG_SETMASK, &new_mask, &orig_mask):
error = thr_create(NULL, 0, do_func, NULL, 0, &tid);
(void)thr_sigsetmask(SIG_SETMASK, &orig_mask, NULL);

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level MT-Safe

_lwp_create(2), exit(2), getrlimit(2), mmap(2), exit(3C), sleep(3C),
thr_min_stack(3THR), thr_setconcurrency(3THR), thr_suspend(3THR),
threads(3THR), attributes(5), standards(5)

MT application threads execute independently of each other, thus their relative
behavior is unpredictable. Therefore, it is possible for the thread executing main() to
finish before all other user application threads.

Using thr_join(3THR) in the following syntax,

while (thr_join(NULL, NULL, NULL) == 0);

will cause the invoking thread (which may be main()) to wait for the termination of
all other undetached and non-daemon threads; however, the second and third
arguments to thr_join(3THR) need not necessarily be NULL.

A thread has not terminated until thr_exit() has finished. The only way to
determine this is by thr_join(). When thr_join() returns a departed thread, it
means that this thread has terminated and its resources are reclaimable. For instance, if
a user specified a stack to thr_create(), this stack can only be reclaimed after

thr_create(3THR)

ATTRIBUTES

SEE ALSO

NOTES

Threads and Realtime Library Functions 279



thr_join( ) has reported this thread as a departed thread. It is not possible to
determine when a detached thread has terminated. A detached thread disappears
without leaving a trace.

Typically, thread stacks allocated by thr_create() begin on page boundaries and
any specified (a red-zone) size is rounded up to the next page boundary. A page with
no access permission is appended to the top of the stack so that most stack overflows
will result in a SIGSEGV signal being sent to the offending thread. Thread stacks
allocated by the caller are used as is.

Using a default stack size for the new thread, instead of passing a user-specified stack
size, results in much better thr_create() performance. The default stack size for a
user-thread is 1 megabyte in a 32-bit process and 2 megabyte in a 64-bit process.

A user-specified stack size must be greater than the value THR_MIN_STACK. A
minimum stack size may not accommodate the stack frame for the user thread
function start_func. If a stack size is specified, it must accommodate start_func
requirements and the functions that it may call in turn, in addition to the minimum
requirement.

It is usually very difficult to determine the runtime stack requirements for a thread.
THR_MIN_STACK specifies how much stack storage is required to execute a NULL
start_func. The total runtime requirements for stack storage are dependent on the
storage required to do runtime linking, the amount of storage required by library
runtimes (like printf()) that your thread calls. Since these storage parameters are
not known before the program runs, it is best to use default stacks. If you know your
runtime requirements or decide to use stacks that are larger than the default, then it
makes sense to specify your own stacks.

thr_create(3THR)

280 man pages section 3: Threads and Realtime Library Functions • Last Revised 12 May 1998



threads, pthreads, libpthread, libthread – concepts related to POSIX pthreads and
Solaris threads and the libpthread and libthread libraries

cc –mt [ flag... ] file...– lpthread [ -lposix4 library... ]

#include <pthread.h>

cc – mt [ flag... ] file...[ library... ]

#include <sched.h>

#include <thread.h>

POSIX and Solaris threads each have their own implementation of the threads library.
The libpthread library is associated with POSIX; the libthread library is
associated with Solaris. Both implementations are interoperable, their functionality
similar, and can be used within the same application. Only POSIX threads are
guaranteed to be fully portable to other POSIX-compliant environments. POSIX and
Solaris threads require different source, include files and linking libraries. See
SYNOPSIS.

Most of the functions in the libpthread and libthread, libraries have a
counterpart in the other corresponding library. POSIX function names, with the
exception of the semaphore names, have a "pthread" prefix. Function names for
similar POSIX and Solaris have similar endings. Typically, similar POSIX and Solaris
functions have the same number and use of arguments.

POSIX pthreads and Solaris threads differ in the following ways:

� POSIX threads are more portable.

� POSIX threads establish characteristics for each thread according to configurable
attribute objects.

� POSIX pthreads implement thread cancellation.

� POSIX pthreads enforce scheduling algorithms.

� POSIX pthreads allow for clean-up handlers for fork(2) calls.

� Solaris threads can be suspended and continued.

� Solaris threads implement an optimized mutex and interprocess robust mutex
locks.

� Solaris threads implement daemon threads, for whose demise the process does not
wait.

The following table compares the POSIX pthreads and Solaris threads functions. When
a comparable interface is not available either in POSIX pthreads or Solaris threads, a
hyphen (–) appears in the column.

POSIX (libpthread) Solaris (libthread)

threads(3THR)

NAME

POSIX

Solaris

DESCRIPTION

Similarities

Differences

Function
Comparison

Functions Related
to Creation

Threads and Realtime Library Functions 281



pthread_create() thr_create()

pthread_attr_init() –

pthread_attr_setdetachstate() –

pthread_attr_getdetachstate() –

pthread_attr_setinheritsched() –

pthread_attr_getinheritsched() –

pthread_attr_setschedparam() –

pthread_attr_getschedparam() –

pthread_attr_setschedpolicy() –

pthread_attr_getschedpolicy() –

pthread_attr_setscope() –

pthread_attr_getscope() –

pthread_attr_setstackaddr() –

pthread_attr_getstackaddr() –

pthread_attr_setstacksize() –

pthread_attr_getstacksize() –

pthread_attr_getguardsize() –

pthread_attr_setguardsize() –

pthread_attr_destroy() –

– thr_min_stack()

POSIX (libpthread) Solaris (libthread)

pthread_exit() thr_exit()

pthread_join() thr_join()

pthread_detach() –

POSIX (libpthread) Solaris (libthread)

pthread_key_create() thr_keycreate()

pthread_setspecific() thr_setspecific()

pthread_getspecific() thr_getspecific()

threads(3THR)

Functions Related
to Exit

Functions Related
to Thread Specific

Data

282 man pages section 3: Threads and Realtime Library Functions • Last Revised 19 Oct 2001



pthread_key_delete() –

POSIX (libpthread) Solaris (libthread)

pthread_sigmask() thr_sigsetmask()

pthread_kill() thr_kill()

POSIX (libpthread) Solaris (libthread)

pthread_self() thr_self()

pthread_equal() –

– thr_main()

POSIX (libpthread) Solaris (libthread)

– thr_yield()

– thr_suspend()

– thr_continue()

pthread_setconcurrency() thr_setconcurrency()

pthread_getconcurrency() thr_getconcurrency()

pthread_setschedparam() thr_setprio()

pthread_getschedparam() thr_getprio()

POSIX (libpthread) Solaris (libthread)

pthread_cancel() –

pthread_setcancelstate() –

pthread_setcanceltype() –

pthread_testcancel() –

pthread_cleanup_pop() –

pthread_cleanup_push() –

POSIX (libpthread) Solaris (libthread)

pthread_mutex_init() mutex_init()

pthread_mutexattr_init() –

threads(3THR)

Functions Related
to Signals

Functions Related
to IDs

Functions Related
to Scheduling

Functions Related
to Cancellation

Functions Related
to Mutexes

Threads and Realtime Library Functions 283



pthread_mutexattr_setpshared() –

pthread_mutexattr_getpshared() –

pthread_mutexattr_setprotocol() –

pthread_mutexattr_getprotocol() –

pthread_mutexattr_setprioceiling() –

pthread_mutexattr_getprioceiling() –

pthread_mutexattr_settype() –

pthread_mutexattr_gettype() –

pthread_mutexattr_destroy() –

pthread_mutex_setprioceiling() –

pthread_mutex_getprioceiling() –

pthread_mutex_lock() mutex_lock()

pthread_mutex_trylock() mutex_trylock()

pthread_mutex_unlock() mutex_unlock()

pthread_mutex_destroy() mutex_destroy()

POSIX (libpthread) Solaris (libthread)

pthread_cond_init() cond_init()

pthread_condattr_init() –

pthread_condattr_setpshared() –

pthread_condattr_getpshared() –

pthread_condattr_destroy() –

pthread_cond_wait() cond_wait()

pthread_cond_timedwait() cond_timedwait()

pthread_cond_signal() cond_signal()

pthread_cond_broadcast() cond_broadcast()

pthread_cond_destroy() cond_destroy()

POSIX (libpthread) Solaris (libthread)

pthread_rwlock_init() rwlock_init()

threads(3THR)

Functions Related
to Condition

Variables

Functions Related
to Reader/Writer

Locking

284 man pages section 3: Threads and Realtime Library Functions • Last Revised 19 Oct 2001



pthread_rwlock_rdlock() rw_rdlock()

pthread_rwlock_tryrdlock() rw_tryrdlock()

pthread_rwlock_wrlock() rw_wrlock()

pthread_rwlock_trywrlock() rw_trywrlock()

pthread_rwlock_unlock() rw_unlock()

pthread_rwlock_destroy() rwlock_destroy()

pthread_rwlockattr_init() –

pthread_rwlockattr_destroy() –

pthread_rwlockattr_getpshared() –

pthread_rwlockattr_setpshared() –

POSIX (libpthread) Solaris (libthread)

sem_init() sema_init()

sem_open() –

sem_close() –

sem_wait() sema_wait()

sem_trywait() sema_trywait()

sem_post() sema_post()

sem_getvalue() –

sem_unlink() –

sem_destroy() sema_destroy()

POSIX (libpthread) Solaris (libthread)

pthread_atfork() –

POSIX (libpthread) Solaris (libthread)

pthread_once() –

POSIX (libpthread) Solaris (libthread)

– thr_stksegment()

threads(3THR)

Functions Related
to Semaphores

Functions Related
to fork( ) Clean Up

Functions Related
to Limits

Functions Related
to Debugging

Threads and Realtime Library Functions 285



POSIX (libpthread) Solaris (libthread) Multi-threaded behavior is asynchronous, and
therefore, optimized for concurrent and parallel processing. As threads, always from
within the same process and sometimes from multiple processes, share global data
with each other, they are not guaranteed exclusive access to the shared data at any
point in time. Securing mutually exclusive access to shared data requires
synchronization among the threads. Both POSIX and Solaris implement four
synchronization mechanisms: mutexes, condition variables, reader/writer locking
(optimized frequent-read occasional-write mutex), and semaphores.

Synchronizing multiple threads diminishes their concurrency. The coarser the grain of
synchronization, that is, the larger the block of code that is locked, the lesser the
concurrency.

If a POSIX threads program calls fork(2), it implicitly calls fork1(2), which replicates
only the calling thread. Should there be any outstanding mutexes throughout the
process, the application should call pthread_atfork(3THR), to wait for and acquire
those mutexes, prior to calling fork().

Scheduling allocation size per thread is greater than one. POSIX supports the
following three scheduling policies:

SCHED_OTHER Timesharing (TS) scheduling policy. It is based on the timesharing
scheduling class.

SCHED_FIFO First-In-First-Out (FIFO) scheduling policy. Threads scheduled to
this policy, if not pre-empted by a higher priority, will proceed
until completion. Threads whose contention scope is system
(PTHREAD_SCOPE_SYSTEM) are in real-time (RT) scheduling class.
The calling process must have a effective user ID of 0.
SCHED_FIFO for threads whose contention scope’s process
(PTHREAD_SCOPE_PROCESS) is based on the TS scheduling class.

SCHED_RR Round-Robin scheduling policy. Threads scheduled to this policy,
if not pre-empted by a higher priority, will execute for a time
period determined by the system. Threads whose contention scope
is system (PTHREAD_SCOPE_SYSTEM) are in real-time (RT)
scheduling class and the calling process must have a effective user
ID of 0. SCHED_RR for threads whose contention scope is process
(PTHREAD_SCOPE_PROCESS) is based on the TS scheduling class.

Only scheduling policy supported is SCHED_OTHER, which is timesharing, based on
the TS scheduling class.

The default threads library implementation is a two-level model in which user-level
threads are multiplexed over possibly fewer lightweight processes, or LWPs. An LWP
is the fundamental unit of execution that is dispatched to a processor by the operating
system.

threads(3THR)

Synchronization

MT fork( )

POSIX

Solaris

ALTERNATE
IMPLEMENTATION

286 man pages section 3: Threads and Realtime Library Functions • Last Revised 19 Oct 2001



The Solaris 8 operating environment provides an alternate threads library
implementation, a one-level model, in which user-level threads are associated
one-to-one with LWPs.

The version of the alternate threads library in Solaris 8 Update 7 has been improved
over older versions in previous Solaris 8 updates with the addition of user-level sleep
queues and adaptive mutex locking. It is the same as what will be the default threads
library included in the next full release of Solaris.

This version of the alternate threads library has proved to be beneficial for essentially
all multithreaded applications, providing improved performance and scalability over
the default threads library. It provides exactly the same interfaces, both for POSIX
threads and Solaris threads, as the default threads library. It obeys the following
constraints that are not obeyed by the default threads library:

� All runnable threads are attached to LWPs (no need for the application to specify a
desired concurrency level).

� No hidden threads are created by the library itself.

� A multithreaded process with only one thread has semantics identical to that of a
traditional single threaded process.

To link with the alternate threads library, use the following runpath (-R) options when
linking the program:

cc −mt ... −lpthread ... −R /usr/lib/lwp (32-bit)

cc −mt ... −lpthread ... −R /usr/lib/lwp/64 (64-bit)

cc −mt ... −R /usr/lib/lwp (32-bit)

cc −mt ... −R /usr/lib/lwp/64 (64-bit)

For multithreaded programs that have been previously linked with the default threads
library, the environment variables LD_LIBRARY_PATH and LD_LIBRARY_PATH_64
can be set as follows to bind the program at runtime to the alternate threads library:

LD_LIBRARY_PATH=/usr/lib/lwp

LD_LIBRARY_PATH_64=/usr/lib/lwp/64

Note that if an LD_LIBRARY_PATH environment variable is in effect for a secure
application (one with its set-uid or set-gid flag set), then only the trusted directories
specified by this variable will be used to augment the runtime linker’s search rules.
Such applications should be linked with the alternate threads library using the
runpath options described above.

The runtime linker can also be instructed to use the alternate threads library by
establishing an alternative object cache; see crle(1) with the -a option.

When using the alternate one-level threads library, be aware that it could create more
LWPs than the default threads library using unbound threads. Each LWP requires
system memory for a stack and other data structures to use while executing in the
kernel, approximately 10 Kbytes for a 32-bit operating system and 20 Kbytes for a

threads(3THR)

POSIX

Solaris

Threads and Realtime Library Functions 287



64-bit operating system. Running applications with many thousands of threads might
require additional physical memory on the system.

In a multi-threaded application, linked with libpthread or libthread, EINTR may
be returned whenever another thread calls fork(2), which calls fork1(2) instead.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level MT-Safe, Fork 1-Safe

/usr/include/pthread.h /lib/libpthread.* /lib/libposix4.*

/usr/include/thread.h /usr/include/sched.h /lib/libthread.*

crle(1), fork(2), pthread_atfork(3THR), pthread_create(3THR),
attributes(5), standards(5)

Linker and Libraries Guide

threads(3THR)

ERRORS

ATTRIBUTES

POSIX

Solaris

SEE ALSO

288 man pages section 3: Threads and Realtime Library Functions • Last Revised 19 Oct 2001



thr_exit – terminate the calling thread

cc –mt [ flag... ] file...[ library... ]

#include <thread.h>

void thr_exit(void *status);

thr_exit() terminates the calling thread, in a similar way that exit(3C) terminates
the calling process. If the calling thread is not detached, then the thread’s ID and the
exit status specified by status are retained. The value status is then made available to
any successful join with the terminating thread (see thr_join(3THR)); otherwise,
status is disregarded allowing the thread’s ID to be reclaimed immediately.

Any cancellation cleanup handlers that have been pushed and not yet popped are
popped in the reverse order that they were pushed and then executed. After all
cancellation cleanup handlers have been executed, if the thread has any thread-specific
data, appropriate destructor functions will be called in an unspecified order. Thread
termination does not release any application visible process resources,including, but
not limited to, mutexes and file descriptors, nor does it perform any process level
cleanup actions, including, but not limited to, calling any atexit() routines that may
exist.

If any thread, including the main() thread, calls thr_exit(), only that thread will
exit.

If main() returns or exits (either implicitly or explicitly), or any thread explicitly calls
exit(), the entire process will exit.

The behavior of thr_exit() is undefined if called from a cancellation cleanup
handler or destructor function that was invoked as a result of either an implicit or
explicit call to thr_exit().

After a thread has terminated, the result of access to local (auto) variables of the thread
is undefined. Thus, references to local variables of the exiting thread should not be
used for the thr_exit() status parameter value.

The process exits with an exit status of 0 after the last thread has been terminated. The
behavior is as if the implementation called exit() with a 0 argument at thread
termination time.

If any thread (except the main() thread) implicitly or explicitly returns, the result is
the same as if the thread called thr_exit() and it will return the value of status as
the exit code.

The process will terminate with an exit status of 0 after the last thread has terminated
(including the main() thread). This action is the same as if the application had called
exit() with a 0 argument at thread termination time.

The thr_exit() function cannot return to its caller.

thr_exit(3THR)

NAME

SYNOPSIS

DESCRIPTION

RETURN VALUES

Threads and Realtime Library Functions 289



No errors are defined.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level MT-Safe

exit(3C), thr_create(3THR), thr_join(3THR), thr_keycreate(3THR),
attributes(5), standards(5)

Although only POSIX implements cancellation, cancellation can be used with Solaris
threads, due to their interoperability.

status should not reference any variables local to the calling thread.

thr_exit(3THR)

ERRORS

ATTRIBUTES

SEE ALSO

NOTES

290 man pages section 3: Threads and Realtime Library Functions • Last Revised 7 May 1998



thr_getconcurrency, thr_setconcurrency – get or set thread concurrency level

cc –mt [ flag... ] file...[ library... ]

#include <thread.h>

int thr_setconcurrency(int new_level);

int thr_getconcurrency(void););

Unbound threads in a process may or may not be required to be simultaneously
active. See thr_create(3THR). By default, the threads system ensures that a
sufficient number of threads are active so that the process can continue to make
progress. While this conserves system resources, it may not produce the most effective
level of concurrency. thr_setconcurrency() permits the application to give the
threads system a hint, specified by new_level, for the desired level of concurrency. The
actual number of simultaneously active threads may be larger or smaller than this
number. The value for the desired concurrency level may also be affected by creating
threads with the THR_NEW_LWP flag set. See thr_create(3THR).

If new_level is 0, the threads system will only ensure that a sufficient number of threads
are active so that the process can continue to make progress.

thr_getconcurrency() returns the current value for the desired concurrency level.
The actual number of simultaneously active threads may be larger or smaller than this
number.

The thr_getconcurrency() function always returns the current value for the
desired concurrency level.

If successful, the thr_setconcurrency() function returns 0. Otherwise, a non-zero
value is returned to indicate the error.

The thr_setconcurrency() function will fail if:

EAGAIN The specified concurrency level would cause a system resource to
be exceeded.

EINVAL new_level is negative.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level MT-Safe

thr_create(3THR), attributes(5), standards(5)

thr_getconcurrency(3THR)

NAME

SYNOPSIS

DESCRIPTION

RETURN VALUES

ERRORS

ATTRIBUTES

SEE ALSO

Threads and Realtime Library Functions 291



thr_getprio, thr_setprio – access dynamic thread scheduling

cc –mt [ flag... ] file...[ library... ]

#include <thread.h>

int thr_setprio(thread_t target_thread, int priority);

int thr_getprio(thread_t target_thread, int *priority);

Thread scheduling is controlled by three attributes: its scope of contention, being
either inter-process or intra-process (bound vs. unbound), (see priocntl(2)); a
relative scheduling priority; and a scheduling policy.

Bound threads, which are inter-process, compete system-wide for scheduling
resources and must be set at creation, for example:

thr_create(NULL,NULL, thread_routine, arg, THR_BOUND, NULL);

A bound thread is bound to an LWP and its scheduling is dependent upon the
scheduling of the LWP to which it is bound. LWPs compete with other LWPs in other
processes, however, their scheduling may be dynamically controlled by priocntl(2).

By default, the scope for newly-created threads are unbound, or intra-process, and
their setting is NULL. An unbound thread is scheduled by libthread on an
underlying LWP, which competes with other LWPs in the same process.

The following dynamic scheduling functions should be used only with unbound
threads: thr_setprio(), and thr_getprio( ).

Priority scheduling is determined as follows:

� Higher priority threads are scheduled before lower priority threads.

� Solaris threads assumes that the priority is inherited across a thread create.

� A Solaris thread can be created suspended and its priority can be modified.

thr_setprio() can dynamically modify an unbound thread’s priority, and
thr_getprio() can read an unbound thread’s priority.

The scheduling policy setting is:

SCHED_OTHER (system default, often time-sharing) Competing threads in this class
are multiplexed according to their relative priority.

Solaris scheduling may only dynamically affect priority. There is no functionality to
alter the policy of any thread; by default, a Solaris thread’s schedule is equivalent to
SCHED_OTHER, which is the only available Solaris policy.

thr_setprio() changes the priority of the thread, specified by target_thread, within
the current process to the priority specified by priority. Currently, by default, threads
are scheduled based on fixed priorities that range from zero, the least significant, to

thr_getprio(3THR)

NAME

SYNOPSIS

DESCRIPTION

Contentionscope

Priority

Policy

Scheduling

292 man pages section 3: Threads and Realtime Library Functions • Last Revised 9 May 1998



127. The target_thread will preempt lower priority threads, and will yield to higher
priority threads in their contention for LWPs, not CPUs.

The function thr_getprio() stores the current priority for the thread specified by
target_thread in the location pointed to by priority. Note that thread priorities regulate
access to LWPs, not CPUs, and hence are different from real-time priorities, which
regulate and enforce access to CPU resources. A thread’s priority set via these
functions is more like a hint in terms of guaranteed access to execution resources.
Programs that need access to "real" priorities should use bound threads in the
real-time class (see priocntl(2)).

If successful, the thr_getprio() and thr_setprio() return 0. Otherwise, an error
number is returned to indicate the error.

For each of the following conditions, these functions return an error number if the
condition is detected.

ESRCH The value specified by target_thread does not refer to an existing
thread.

The thr_getprio() and thr_setprio() functions may fail if:

EINVAL The value of priority makes no sense for the scheduling class
associated with the target_thread.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level MT-Safe

priocntl(2), sched_setparam(3RT), thr_create(3THR), thr_suspend(3THR),
thr_yield(3THR), attributes(5), standards(5)

thr_getprio(3THR)

RETURN VALUES

ERRORS

ATTRIBUTES

SEE ALSO

Threads and Realtime Library Functions 293



thr_join – wait for thread termination

cc –mt [ flag... ] file...[ library... ]

#include <thread.h>

int thr_join(thread_t thread, thread_t *departed, void **status);

The thr_join() functions suspend processing of the calling thread until the target
thread completes. thread must be a member of the current process and it cannot be a
detached or daemon thread. See thr_create(3THR).

Several threads cannot wait for the same thread to complete; one thread will complete
successfully and the others will terminate with an error of ESRCH. thr_join() will
not block processing of the calling thread if the target thread has already terminated.

thr_join() returns successfully when the target thread terminates.

If a thr_join() call returns successfully with a non-null status argument, the value
passed to thr_exit(3THR) by the terminating thread will be placed in the location
referenced by status.

If the target thread ID is 0, thr_join() waits for any undetached thread in the
process to terminate.

If departed is not NULL, it points to a location that is set to the ID of the terminated
thread if thr_join() returns successfully.

If successful, thr_join() returns 0. Otherwise, an error number is returned to
indicate the error.

ESRCH No undetached thread could be found corresponding to that
specified by the given thread ID.

EDEADLK A recursive deadlock was detected, the value of thread specifies the
calling thread. See NOTES.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level MT-Safe

wait(2), thr_create(3THR), thr_exit(3THR), attributes(5), standards(5)

Using thr_join(3THR) in the following syntax,

while (thr_join(NULL, NULL, NULL) == 0);

will wait for the termination of all other undetached and non-daemon threads; after
which, EDEADLK will be returned.

thr_join(3THR)

NAME

SYNOPSIS

DESCRIPTION

RETURN VALUES

ERRORS

ATTRIBUTES

SEE ALSO

NOTES

294 man pages section 3: Threads and Realtime Library Functions • Last Revised 9 May 1998



thr_keycreate, thr_setspecific, thr_getspecific – thread-specific-data functions

cc –mt [ flag... ] file...[ library... ]

#include <thread.h>

int thr_keycreate(thread_key_t *keyp, void (*destructor, void *value);

int thr_setspecific(thread_key_t key, void *value);

int thr_getspecific(thread_key_t key, void **valuep);

In general, thread key creation allocates a key that locates data specific to each thread
in the process. The key is global to all threads in the process, which allows each thread
to bind a value to the key once the key has been created. The key independently
maintains specific values for each binding thread. The thr_keycreate() function
allocates a global key namespace, pointed to by keyp, that is visible to all threads in the
process. Each thread is initially bound to a private element of this key, which allows
access to its thread-specific data.

Upon key creation, a new key is assigned the value NULL for all active threads.
Additionally, upon thread creation, all previously created keys in the new thread are
assigned the value NULL.

Optionally, a destructor function, destructor, may be associated with each key. Upon
thread exit, if a key has a non-NULL destructor function and the thread has a
non-NULL value associated with that key, the destructor function is called with the
current associated value. If more than one destructor exists for a thread when it exits,
the order of destructor calls is unspecified.

Once a key has been created, each thread may bind a new value to the key using
thr_setspecific(). The values are unique to the binding thread and are
individually maintained. These values continue for the life of the calling thread.

Proper synchronization of key storage and access must be ensured by the caller. The
value argument to thr_setspecific() is generally a pointer to a block of
dynamically allocated memory reserved by the calling thread for its own use. See
EXAMPLES.

At thread exit, the destructor function, which is associated at time of creation, is called
and it uses the specific key value as its sole argument.

thr_getspecific() stores the current value bound to key for the calling thread into
the location pointed to by valuep.

If successful, thr_keycreate(), thr_setspecific() and thr_getspecific()
return 0. Otherwise, an error number is returned to indicate the error.

If the following conditions occur, thr_keycreate() returns the corresponding error
number:

thr_keycreate(3THR)

NAME

SYNOPSIS

Create Key

Set Value

Get Value

RETURN VALUES

ERRORS

Threads and Realtime Library Functions 295



EAGAIN The system lacked the necessary resources to create another
thread-specific data key.

ENOMEM Insufficient memory exists to create the key.

If the following conditions occur, thr_keycreate() and thr_setspecific()
return the corresponding error number:

ENOMEM Insufficient memory exists to associate the value with the key.

The thr_setspecific() function returns the corresponding error number:

EINVAL The key value is invalid.

EXAMPLE 1 In this example, the thread-specific data in this function can be called from more
than one thread without special initialization.

For each argument you pass to the executable of this example, a thread is created and
privately bound to the string-value of that argument.

/* cc thisfile.c */

#define _REENTRANT
#include <thread.h>
void *thread_specific_data(), free();
#define MAX_ARGC 20
thread_t tid[MAX_ARGC];
int num_threads;

main( int argc, char *argv[] ) {
int i;
num_threads = argc - 1;
for( i = 0; i < num_threads; i++)

thr_create(NULL, 0, thread_specific_data, argv[i+1]);
for( i = 0; i < num_threads; i++)

thr_join(tid[i], NULL, NULL);
} /* end main */

void *thread_specific_data(char private_data[])
{

static mutex_tkeylock; /* static ensures only one copy of keylock */
static thread_key_tkey;
static intonce_per_keyname = 0;
void *tsd = NULL;

if (!once_per_keyname) {
mutex_lock(&keylock);
if (!once_per_keyname) {

thr_keycreate(&key, free);
once_per_keyname++;

}
mutex_unlock(&keylock);

}
tsd = thr_getspecific(key);
if (tsd == NULL) {

tsd = (void *)malloc(strlen(private_data) + 1);

thr_keycreate(3THR)

EXAMPLES

296 man pages section 3: Threads and Realtime Library Functions • Last Revised 5 Jun 1998



EXAMPLE 1 In this example, the thread-specific data in this function can be called from more
than one thread without special initialization. (Continued)

strcpy(tsd, private_data);
thr_setspecific(key, tsd);
printf("tsd for %d = %s\n",thr_self(),(char *)thr_getspecific(key));
sleep(2);
printf("tsd for %d remains %s\n",thr_self(),(char *)thr_getspecific(key));

}
} /* end thread_specific_data */

void
free(void *v) {

/* application-specific clean-up function */

}

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level MT-Safe

thr_exit(3THR), attributes(5), standards(5)

The thr_getspecific() and thr_getspecific() functions may be called either
explicitly, or implicitly from a thread-specific data destructor function. Calling
thr_setspecific() from a destructor may result in lost storage or infinite loops.

thr_keycreate(3THR)

ATTRIBUTES

SEE ALSO

WARNINGS

Threads and Realtime Library Functions 297



thr_kill – send a signal to a thread

cc –mt [ flag... ] file...[ library... ]

#include <signal.h>

#include <thread.h>

int thr_kill(thread_t thread, int sig);

thr_kill() sends the sig signal to the thread designated by thread. thread must be a
member of the same process as the calling thread. sig must be one of the signals listed
in signal(3HEAD); with the exception of SIGLWP, SIGCANCEL, and SIGWAITING
being reserved and off limits to thr_kill(). If sig is 0, a validity check is done for
the existence of the target thread; no signal is sent.

Upon successful completion, thr_kill() returns 0. Otherwise, an error number is
returned. In the event of failure, no signal is sent.

ESRCH No thread was found that corresponded to the thread designated
by thread ID.

EINVAL The sig argument value is not zero and is an invalid or an
unsupported signal number.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level MT-Safe

kill(2), sigaction(2), raise(3C), thr_self(3THR), attributes(5),
signal(3HEAD), standards(5)

thr_kill(3THR)

NAME

SYNOPSIS

DESCRIPTION

RETURN VALUES

ERRORS

ATTRIBUTES

SEE ALSO

298 man pages section 3: Threads and Realtime Library Functions • Last Revised 15 May 1998



thr_main – identify the main thread

cc –mt [ flag... ] file...[ library... ]

#include <thread.h>

int thr_main(void););

The thr_main() function returns one of the following:

1 if the calling thread is the main thread

0 if the calling thread is not the main thread

-1 if libthread is not linked in or thread initialization has not completed

/lib/libthread

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level MT-Safe

thr_self(3THR), attributes(5)

thr_main(3THR)

NAME

SYNOPSIS

DESCRIPTION

FILES

ATTRIBUTES

SEE ALSO

Threads and Realtime Library Functions 299



thr_min_stack – return the minimum-allowable size for a thread’s stack

cc –mt [ flag... ] file...[ library... ]

#include <thread.h>

size_t thr_min_stack(void);

When a thread is created with a user-supplied stack, the user must reserve enough
space to run this thread. In a dynamically linked execution environment, it is very
hard to know what the minimum stack requirments are for a thread. The function
thr_min_stack() returns the amount of space needed to execute a null thread. This
is a thread that was created to execute a null procedure. A thread that does something
useful should have a stack size that is thr_min_stack() + <some increment>.

Most users should not be creating threads with user-supplied stacks. This
functionality was provided to support applications that wanted complete control over
their execution environment.

Typically, users should let the threads library manage stack allocation. The threads
library provides default stacks which should meet the requirements of any created
thread.

thr_min_stack() will return the unsigned int THR_MIN_STACK, which is the
minimum-allowable size for a thread’s stack.

In this implementation the default size for a user-thread’s stack is one mega-byte. If
the second argument to thr_create(3THR) is NULL, then the default stack size for
the newly-created thread will be used. Otherwise, you may specify a stack-size that is
at least THR_MIN_STACK, yet less than the size of your machine’s virtual memory.

It is recommended that the default stack size be used.

To determine the smallest-allowable size for a thread’s stack, execute the following:

/* cc thisfile.c -lthread */
#define _REENTRANT
#include <thread.h>
#include <stdio.h>
main( ) {

printf("thr_min_stack( ) returns %u\n",thr_min_stack( ));
}

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level MT-Safe

attributes(5), standards(5)

thr_min_stack(3THR)

NAME

SYNOPSIS

DESCRIPTION

ATTRIBUTES

SEE ALSO

300 man pages section 3: Threads and Realtime Library Functions • Last Revised 12 May 1998



thr_self – get calling thread’s ID

cc –mt [ flag... ] file...[ library... ]

#include <thread.h>

thread_t thr_self(void));

typedef(unsigned int thread_t);

thr_self() returns the thread ID of the calling thread.

No errors are defined.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level MT-Safe

thr_create(3THR), attributes(5), standards(5)

thr_self(3THR)

NAME

SYNOPSIS

DESCRIPTION

ERRORS

ATTRIBUTES

SEE ALSO

Threads and Realtime Library Functions 301



thr_sigsetmask – change or examine calling thread’s signal mask

cc –mt [ flag... ] file...[ library... ]
#include <thread.h>

#include <signal.h>

int thr_sigsetmask(int how, const sigset_t *set, sigset_t *oset);

The thr_sigsetmask() function changes or examines a calling thread’s signal
mask. Each thread has its own signal mask. A new thread inherits the calling thread’s
signal mask and priority; however, pending signals are not inherited. Signals pending
for a new thread will be empty.

If the value of the argument set is not NULL, set points to a set of signals that can
modify the currently blocked set. If the value of set is NULL, the value of how is
insignificant and the thread’s signal mask is unmodified; thus, thr_sigsetmask()
can be used to inquire about the currently blocked signals.

The value of the argument how specifies the method in which the set is changed and
takes one of the following values:

SIG_BLOCK set corresponds to a set of signals to block. They are added to the
current signal mask.

SIG_UNBLOCK set corresponds to a set of signals to unblock. These signals are
deleted from the current signal mask.

SIG_SETMASK set corresponds to the new signal mask. The current signal mask
is replaced by set.

If the value of oset is not NULL, it points to the location where the previous signal mask
is stored.

Upon successful completion, the thr_sigsetmask() function returns 0. Otherwise,
it returns a non-zero value.

The thr_sigsetmask() function will fail if:

EINVAL The value of how is not defined and oset is NULL.

EXAMPLE 1 The following example shows how to create a default thread that can serve as a
signal catcher/handler with its own signal mask. new will have a different value from the
creator’s signal mask.

As POSIX threads and Solaris threads are fully compatible even within the same
process, this example uses pthread_create(3THR) if you execute a.out 0, or
thr_create(3THR) if you execute a.out 1.

In this example:

� sigemptyset(3C) initializes a null signal set, new. sigaddset(3C) packs the
signal, SIGINT, into that new set.

thr_sigsetmask(3THR)

NAME

SYNOPSIS

DESCRIPTION

RETURN VALUES

ERRORS

EXAMPLES

302 man pages section 3: Threads and Realtime Library Functions • Last Revised 5 Jun 1998



EXAMPLE 1 The following example shows how to create a default thread that can serve as a
signal catcher/handler with its own signal mask. new will have a different value from the
creator’s signal mask. (Continued)

� Either pthread_sigmask() or thr_sigsetmask() is used to mask the signal,
SIGINT (CTRL-C), from the calling thread, which is main(). The signal is masked
to guarantee that only the new thread will receive this signal.

� pthread_create() or thr_create() creates the signal-handling thread.

� Using pthread_join(3THR) or thr_join(3THR), main() then waits for the
termination of that signal-handling thread, whose ID number is user_threadID;
after which, main() will sleep(3C) for 2 seconds, and then the program
terminates.

� The signal-handling thread, handler:

� Assigns the handler interrupt() to handle the signal SIGINT, by the call to
sigaction(2).

� Resets its own signal set to not block the signal, SIGINT.

� Sleeps for 8 seconds to allow time for the user to deliver the signal, SIGINT, by
pressing the CTRL-C.

/* cc thisfile.c -lthread -lpthread */
#define _REENTRANT /* basic first 3-lines for threads */
#include <pthread.h>
#include <thread.h>

thread_t user_threadID;
sigset_t new;
void *handler( ), interrupt( );

main( int argc, char *argv[ ] ){
test_argv(argv[1]);

sigemptyset(&new);
sigaddset(&new, SIGINT);
switch(*argv[1]) {

case ’0’: /* POSIX */
pthread_sigmask(SIG_BLOCK, &new, NULL);
pthread_create(&user_threadID, NULL, handler, argv[1]);
pthread_join(user_threadID, NULL);
break;

case ’1’: /* Solaris */
thr_sigsetmask(SIG_BLOCK, &new, NULL);
thr_create(NULL, 0, handler, argv[1], 0, &user_threadID);
thr_join(user_threadID, NULL, NULL);
break;

} /* switch */

printf("thread handler, # %d, has exited\n",user_threadID);
sleep(2);
printf("main thread, # %d is done\n", thr_self( ));

thr_sigsetmask(3THR)

Threads and Realtime Library Functions 303



EXAMPLE 1 The following example shows how to create a default thread that can serve as a
signal catcher/handler with its own signal mask. new will have a different value from the
creator’s signal mask. (Continued)

} /* end main */

struct sigaction act;

void *
handler(char argv1[ ])
{

act.sa_handler = interrupt;
sigaction(SIGINT, &act, NULL);
switch(*argv1){

case ’0’: /* POSIX */
pthread_sigmask(SIG_UNBLOCK, &new, NULL);
break;

case ’1’: /* Solaris */
thr_sigsetmask(SIG_UNBLOCK, &new, NULL);
break;

}
printf("\n Press CTRL-C to deliver SIGINT signal to the process\n");
sleep(8); /* give user time to hit CTRL-C */

}

void
interrupt(int sig)
{
printf("thread %d caught signal %d\n", thr_self( ), sig);
}

void test_argv(char argv1[ ]) {
if(argv1 == NULL) {

printf("use 0 as arg1 to use thr_create( );\n \
or use 1 as arg1 to use pthread_create( )\n");
exit(NULL);

}

}

EXAMPLE 2

In the last example, the handler thread served as a signal-handler while also taking
care of activity of its own (in this case, sleeping, although it could have been some
other activity). A thread could be completely dedicated to signal-handling simply by
waiting for the delivery of a selected signal by blocking with sigwait(2). The two
subroutines in the previous example, handler() and interrupt(), could have
been replaced with the following routine:

void *
handler( )
{ int signal;

printf("thread %d waiting for you to press the CTRL-C keys\n", thr_self( ));
sigwait(&new, &signal);
printf("thread %d has received the signal %d \n", thr_self( ), signal);

}

thr_sigsetmask(3THR)

304 man pages section 3: Threads and Realtime Library Functions • Last Revised 5 Jun 1998



EXAMPLE 2 (Continued)

/*pthread_create( ) and thr_create( ) would use NULL instead of argv[1]
for the arg passed to handler( ) */

In this routine, one thread is dedicated to catching and handling the signal specified
by the set new, which allows main() and all of its other sub-threads, created after
pthread_sigmask() or thr_sigsetmask() masked that signal, to continue
uninterrupted. Any use of sigwait(2) should be such that all threads block the
signals passed to sigwait(2) at all times. Only the thread that calls sigwait() will
get the signals. The call to sigwait(2) takes two arguments.

For this type of background dedicated signal-handling routine, you may wish to use a
Solaris daemon thread by passing the argument THR_DAEMON to thr_create().

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level MT-Safe and Async-Signal-Safe

sigaction(2), sigprocmask(2), sigwait(2), cond_wait(3THR),
pthread_create(3THR), pthread_join(3THR), pthread_self(3THR),
sigsetops(3C), sleep(3C), attributes(5), standards(5)

It is not possible to block signals that cannot be ignored (see sigaction(2)). If using
the threads library, it is not possible to block the signals SIGLWP or SIGCANCEL,
which are reserved by the threads library. Additionally, it is impossible to unblock the
signal SIGWAITING, which is always blocked on all threads. This restriction is quietly
enforced by the threads library.

Using sigwait(2) in a dedicated thread allows asynchronously generated signals to
be managed synchronously; however, sigwait(2) should never be used to manage
synchronously generated signals.

Synchronously generated signals are exceptions that are generated by a thread and are
directed at the thread causing the exception. Since sigwait() blocks waiting for
signals, the blocking thread cannot receive a synchronously generated signal.

If sigprocmask(2) is used in a multi-threaded program, it will be the same as if
thr_sigsetmask() or pthread_sigmask() has been called. POSIX leaves the
semantics of the call to sigprocmask(2) unspecified in a multi-threaded process, so
programs that care about POSIX portability should not depend on this semantic.

If a signal is delivered while a thread is waiting on a condition variable, the
cond_wait() will be interrupted (see cond_wait(3THR)) and the handler will be
executed. The handler should assume that the lock protecting the condition variable is
held.

thr_sigsetmask(3THR)

ATTRIBUTES

SEE ALSO

NOTES

Threads and Realtime Library Functions 305



Signals which are generated synchronously should not be masked. If such a signal is
blocked and delivered, the receiving process is killed.

A thread directed SIGALRM generated because of a realtime interval timer or process
alarm clock is not maskable by a signal masking function, such as thr_sigsetmask(3T),
or sigprocmask(2). See alarm(2) and setitimer(2).

thr_sigsetmask(3THR)

306 man pages section 3: Threads and Realtime Library Functions • Last Revised 5 Jun 1998



thr_stksegment – get thread stack bottom and stack size

cc –mt [ flag... ] file...[ library... ]
#include <thread.h>

#include <sys/signal.h>

int thr_stksegment(stack_t*););

The stack information provided by thr_stksegment() is typically used by
debuggers, garbage collectors, and similar applications. Most applications should not
require such information. The bottom of the thread stack returned by
thr_stksegment() points to a part of the stack which may contain data maintained
by libthread. The user’s thread stack starts at a point below the bottom of the stack
as returned by thr_stksegment( ).

The thr_stksegment() function returns 0 if both the thread stack bottom and stack
size were successfully retrieved. Otherwise, it returns a non-zero error code.

The thr_stksegment() function will fail if:

EAGAIN The stack information for the thread is not available because the
thread’s initialization is not yet complete, or the thread is an
internal thread.

The thr_stksegment() function may fail if:

EFAULT A system call used to get the stack information failed because a
bad address was passed to it.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level MT-Safe

thr_create(3THR), attributes(5)

thr_stksegment(3THR)

NAME

SYNOPSIS

DESCRIPTION

RETURN VALUES

ERRORS

ATTRIBUTES

SEE ALSO

Threads and Realtime Library Functions 307



thr_suspend, thr_continue – suspend or continue thread execution

cc –mt [ flag... ] file...[ library... ]

#include <thread.h>

int thr_suspend(thread_t target_thread);

int thr_continue(thread_t target_thread);

The thr_suspend() function immediately suspends the execution of the thread
specified by target_thread. On successful return from thr_suspend(), the suspended
thread is no longer executing. Once a thread is suspended, subsequent calls to
thr_suspend() have no effect.

The thr_continue() function resumes the execution of a suspended thread. Once a
suspended thread is continued, subsequent calls to thr_continue() have no effect.

A suspended thread will not be awakened by a signal. The signal stays pending until
the execution of the thread is resumed by thr_continue().

If successful, the thr_suspend() and thr_continue() functions return 0.
Otherwise, a non-zero value is returned to indicate the error.

The thr_suspend() or thr_continue() functions will fail if:

ESRCH target_thread cannot be found in the current process.

ECANCELED target_thread was not suspended because a subsequent
thr_continue() occurred before the suspend completed.

EINVAL When thr_continue() returns EINVAL, target_thread has died
and thr_join () must be called on it to reclaim its resources.

The thr_suspend() function will fail if:

EDEADLK Suspending target_thread will cause all threads in the process to be
suspended.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level MT-Safe

thr_create(3THR), thr_join(3THR), attributes(5), standards(5)

thr_suspend(3THR)

NAME

SYNOPSIS

DESCRIPTION

RETURN VALUES

ERRORS

ATTRIBUTES

SEE ALSO

308 man pages section 3: Threads and Realtime Library Functions • Last Revised 12 May 1998



thr_yield – yield to another thread

cc –mt [ flag... ] file...[ library... ]

#include <thread.h>

void thr_yield(void););

The thr_yield() function causes the current thread to yield its execution in favor of
another thread with the same or greater priority.

The thr_yield() function returns nothing and does not set errno.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level MT-Safe

thr_setprio(3THR), attributes(5), standards(5)

thr_yield(3THR)

NAME

SYNOPSIS

DESCRIPTION

RETURN VALUES

ATTRIBUTES

SEE ALSO

Threads and Realtime Library Functions 309



timer_create – create a timer

cc [ flag... ] file... -lrt [ library... ]
#include <signal.h>

#include <time.h>

int timer_create(clockid_t clock_id, struct sigevent *evp, timer_t
*timerid);

The timer_create() function creates a timer using the specified clock, clock_id, as
the timing base. The timer_create() function returns, in the location referenced by
timerid, a timer ID of type timer_t used to identify the timer in timer requests. This
timer ID will be unique within the calling process until the timer is deleted. The
particular clock, clock_id, is defined in <time.h>. The timer whose ID is returned will
be in a disarmed state upon return from timer_create().

The evp argument, if non-null, points to a sigevent structure. This structure,
allocated by the application, defines the asynchronous notification that willo occur
when the timer expires. If the evp argument is NULL, the effect is as if the evp argument
pointed to a sigevent structure with the sigev_notify member having the value
SIGEV_SIGNAL, the sigev_signo having a default signal number, and the
sigev_value member having the value of the timer ID, timerid.

The system defines a set of clocks that can be used as timing bases for per-process
timers. The following values for clock_id are supported:

CLOCK_REALTIME wall clock, not bound

CLOCK_VIRTUAL user CPU usage clock

CLOCK_PROF user and system CPU usage clock

CLOCK_HIGHRES non-adjustable, high-resolution clock

For timers created with a clock_id of CLOCK_HIGHRES, the system will attempt to use
an optimal hardware source. This may include, but is not limited to, per-CPU timer
sources. The actual hardware source used is transparent to the user and may change
over the lifetime of the timer. For example, if the LWP that created the timer were to
change its processor binding or its processor set, the system may elect to drive the
timer with a hardware source that better reflects the new binding. Timers based on a
clock_id of CLOCK_HIGHRES are ideally suited for interval timers that have minimal
jitter tolerence.

Timers are not inherited by a child process across a fork(2) and are disarmed and
deleted by a call to one of the exec functions (see exec(2)).

Upon successful completion, timer_create() returns 0 and updates the location
referenced by timerid to a timer_t, which can be passed to the per-process timer calls.
If an error occurs, the function returns −1 and sets errno to indicate the error. The
value of timerid is undefined if an error occurs.

The timer_create() function will fail if:

timer_create(3RT)

NAME

SYNOPSIS

DESCRIPTION

RETURN VALUES

ERRORS

310 man pages section 3: Threads and Realtime Library Functions • Last Revised 12 Nov 1999



EAGAIN The system lacks sufficient signal queuing resources to honor the
request, or the calling process has already created all of the timers
it is allowed by the system.

EINVAL The specified clock ID, clock_id, is not defined.

ENOSYS The timer_create() function is not supported by the system.

EPERM The specified clock ID, clock_id, is CLOCK_HIGHRES and the
effective user of the calling LWP is not superuser.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level MT-Safe with exceptions

exec(2), fork(2), time(2), clock_settime(3RT), signal(3C),
timer_delete(3RT), timer_settime(3RT), attributes(5)

timer_create(3RT)

ATTRIBUTES

SEE ALSO

Threads and Realtime Library Functions 311



timer_delete – delete a timer

cc [ flag... ] file... -lrt [ library... ]

#include <time.h>

int timer_delete(timer_t timerid);

The timer_delete() function deletes the specified timer, timerid, previously created
by the timer_create(3RT) function. If the timer is armed when timer_delete()
is called, the behavior will be as if the timer is automatically disarmed before removal.
The disposition of pending signals for the deleted timer is unspecified.

If successful, the function returns 0. Otherwise, the function returns −1 and sets
errno to indicate the error.

The timer_delete() function will fail if:

EINVAL The timer ID specified by timerid is not a valid timer ID.

ENOSYS The timer_delete() function is not supported by the system.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level MT-Safe with exceptions

timer_create(3RT), attributes(5)

timer_delete(3RT)

NAME

SYNOPSIS

DESCRIPTION

RETURN VALUES

ERRORS

ATTRIBUTES

SEE ALSO

312 man pages section 3: Threads and Realtime Library Functions • Last Revised 22 Jun 1998



timer_settime, timer_gettime, timer_getoverrun – per-process timers

cc [ flag... ] file... -lrt [ library... ]

#include <time.h>

int timer_settime(timer_t timerid, int flags, const struct itimerspec
*value, struct itimerspec *ovalue);

int timer_gettime(timer_t timerid, struct itimerspec *value);

int timer_getoverrun(timer_t timerid);

The timer_settime() function sets the time until the next expiration of the timer
specified by timerid from the it_value member of the value argument and arm the
timer if the it_value member of value is non-zero. If the specified timer was already
armed when timer_settime() is called, this call resets the time until next
expiration to the value specified. If the it_value member of value is 0, the timer is
disarmed. The effect of disarming or resetting a timer on pending expiration
notifications is unspecified.

If the flag TIMER_ABSTIME is not set in the argument flags, timer_settime()
behaves as if the time until next expiration is set to be equal to the interval specified
by the it_value member of value. That is, the timer expires in it_value
nanoseconds from when the call is made. If the flag TIMER_ABSTIME is set in the
argument flags, timer_settime() behaves as if the time until next expiration is set
to be equal to the difference between the absolute time specified by the it_value
member of value and the current value of the clock associated with timerid. That is, the
timer expires when the clock reaches the value specified by the it_value member of
value. If the specified time has already passed, the function succeeds and the
expiration notification is made.

The reload value of the timer is set to the value specified by the it_interval
member of value. When a timer is armed with a non-zero it_interval, a periodic
(or repetitive) timer is specified.

Time values that are between two consecutive non-negative integer multiples of the
resolution of the specified timer will be rounded up to the larger multiple of the
resolution. Quantization error will not cause the timer to expire earlier than the
rounded time value.

If the argument ovalue is not NULL, the function timer_settime() stores, in the
location referenced by ovalue, a value representing the previous amount of time before
the timer would have expired or 0 if the timer was disarmed, together with the
previous timer reload value. The members of ovalue are subject to the resolution of the
timer, and they are the same values that would be returned by a timer_gettime()
call at that point in time.

The timer_gettime() function stores the amount of time until the specified timer,
timerid, expires and the reload value of the timer into the space pointed to by the value
argument. The it_value member of this structure contains the amount of time before

timer_settime(3RT)

NAME

SYNOPSIS

DESCRIPTION

Threads and Realtime Library Functions 313



the timer expires, or 0 if the timer is disarmed. This value is returned as the interval
until timer expiration, even if the timer was armed with absolute time. The
it_interval member of value contains the reload value last set by
timer_settime().

Only a single signal will be queued to the process or LWP for a given timer at any
point in time. When a timer for which a signal is still pending expires, no signal will
be queued, and a timer overrun occurs. When a timer expiration signal is delivered to
or accepted by a process, the timer_getoverrun() function returns the timer
expiration overrun count for the specified timer. The overrun count returned contains
the number of extra timer expirations that occurred between the time the signal was
generated (queued) and when it was delivered or accepted, up to but not including an
implementation-dependent maximum of DELAYTIMER_MAX. If the number of such
extra expirations is greater than or equal to DELAYTIMER_MAX, then the overrun count
will be set to DELAYTIMER_MAX. The value returned by timer_getoverrun()
applies to the most recent expiration signal delivery or acceptance for the timer. If no
expiration signal has been delivered for the timer, the meaning of the overrun count
returned is undefined.

If the timer_settime() or timer_gettime() functions succeed, 0 is returned. If
an error occurs for either of these functions, −1 is returned, and errno is set to
indicate the error. If the timer_getoverrun() function succeeds, it returns the timer
expiration overrun count as explained above.

The timer_settime(), timer_gettime() and timer_getoverrun() functions
will fail if:

EINVAL The timerid argument does not correspond to a timer returned by
timer_create(3RT) but not yet deleted by timer_delete(3RT).

ENOSYS The timer_settime(), timer_gettime(), and
timer_getoverrun() functions are not supported by the
system. The timer_settime() function will fail if:

EINVAL A value structure specified a nanosecond value less than zero or
greater than or equal to 1000 million.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level Async-Signal-Safe

clock_settime(3RT), timer_create(3RT), timer_delete(3RT), attributes(5),
time(3HEAD)

timer_settime(3RT)

RETURN VALUES

ERRORS

ATTRIBUTES

SEE ALSO

314 man pages section 3: Threads and Realtime Library Functions • Last Revised 22 Jun 1998



Index

Numbers and Symbols
get a synchronization object handle from a

synchronization object’s address —
td_ta_map_addr2sync, 256

A
access dynamic thread scheduling

— thr_getprio, 292
— thr_setprio, 292

access dynamic thread scheduling parameters
— pthread_getschedparam, 151
— pthread_setschedparam, 151

aio_cancel — cancel asynchronous I/O
request, 17

aio_fsync — asynchronous file
synchronization, 21

aio_read — asynchronous read and write
operations, 25

aio_return — retrieve return status of
asynchronous I/O operation, 28

aio_suspend — wait for asynchronous I/O
request, 29

aio_write — asynchronous write to a file, 32
aiocancel — cancel an asynchronous

operation, 16
aioread — read or write asynchronous I/O

operations, 23
aiowait — wait for completion of asynchronous

I/O operation, 31

aiowrite — read or write asynchronous I/O
operations, 23

allocate and deallocate process handles for
libthread_db
— td_ta_delete, 258
— td_ta_get_ph, 258
— td_ta_new, 258

asynchronous file synchronization
— aio_sync, 21

asynchronous I/O
— aio_cancel, 17
— aiocancel, 16
— aiowait, 31
retrieve return status — aio_return, 28

asynchronous read and write operations
— aio_read, aio_write, 25

asynchronous write to a file — aio_write, 32

B
bind or unbind the current thread with the door

server pool
— door_bind, 50
— door_unbind, 50

C
cancellation — overview of concepts related to

POSIX thread cancellation, 35
Cancel-Safe, 38

315



cancellation — overview of concepts related to
POSIX thread cancellation (continued)

Cancellation, 35
Cancellation Points, 36
Cancellation State, 37
Cancellation Type, 37
Cleanup Handlers, 36
Planning Steps, 35
POSIX Threads Only, 38

change or examine calling thread’s signal mask
— pthread_sigmask, 197

change or examine calling thread’s signal mask
— thr_sigsetmask, 302

change the priority ceiling of a mutex
— pthread_mutex_getprioceiling, 175
— pthread_mutex_setprioceiling, 175

clock_getres — high-resolution clock
operations, 41

clock_gettime — high-resolution clock
operations, 41

clock_settime — high-resolution clock
operations, 41

collect target process statistics for libthread_db
— td_ta_enable_stats, 249
— td_ta_get_stats, 249
— td_ta_reset_stats, 249

compare thread IDs — pthread_equal, 147
concepts related to condition variables —

condition, 48
concepts relating to mutual exclusion locks —

mutex, 90
cond_broadcast — condition variables, 43
cond_destroy — condition variables, 43
cond_init — condition variables, 43

Condition Signaling, 44
Condition Wait, 44
Destroy, 45
Initialize, 43

cond_reltimedwait — condition variables, 43
cond_signal — condition variables, 43
cond_timedwait — condition variables, 43
cond_wait — condition variables, 43
condition — concepts related to condition

variables, 48
condition variables — cond_broadcast, 43
condition variables — cond_destroy, 43
condition variables — cond_init, 43

condition variables — cond_reltimedwait, 43
condition variables — cond_signal, 43
condition variables — cond_timedwait, 43
condition variables — cond_wait, 43
condition — concepts related to condition

variables
Condition Signaling, 49
Condition Wait, 48
Destroy, 49
Initialize, 48

convert a thread id or thread address to a
thread handle
— td_ta_map_addr2thr, 257
— td_ta_map_id2thr, 257

create a door descriptor — door_create, 56
create a thread — pthread_create, 142
create a tread — thr_create, 275
create cancellation point in the calling thread. —

pthread_testcancel, 202
create thread-specific data key —

pthread_key_create, 157

D
delete thread-specific data key —

pthread_key_delete, 159
detach a thread — pthread_detach, 146
door_bind — bind or unbind the current thread

with the door server pool, 50
door_call — invoke the function associated with

a door descriptor, 53
door_create — create a door descriptor, 56
door_cred — return credential information

associated with the client, 58
door_info — return information associated with

a door descriptor, 59
door_return — return from a door

invocation, 61
door_revoke — revoke access to a door

descriptor, 62
door_server_create — specify an alternative

door server thread creation function, 63
door_unbind — bind or unbind the current

thread with the door server pool, 50

316 man pages section 3: Threads and Realtime Library Functions • February 2002 (Beta)



E
enable or disable cancellation —

pthread_setcancelstate, 193
enabling or disabling cancellation —

pthread_setcancelstate, 193

F
fdatasync — synchronize a file’s data, 65

G
get a thread’s thread-specific data for

libthread_db library of interfaces —
td_thr_tsd, 273

get and set prioceiling attribute of mutex
attribute object
— pthread_mutexattr_getprioceiling, 161
— pthread_mutexattr_setprioceiling, 161

get and set process-shared attribute
— pthread_mutexattr_getpshared, 166
— pthread_mutexattr_setpshared, 166

get and set process-shared attribute of
read-write lock attributes object
— pthread_rwlockattr_getpshared, 183
— pthread_rwlockattr_setpshared, 183

get and set protocol attribute of mutex attribute
object
— pthread_mutexattr_getprotocol, 163
— pthread_mutexattr_setprotocol, 163

get calling thread’s ID — pthread_self, 192
get calling thread’s ID — thr_self, 301
get execution time limits —

sched_rr_get_interval, 211
get message queue attributes — mq_getattr, 78
get or set a mutex type

— pthread_mutexattr_gettype, 170
— pthread_mutexattr_settype, 170

get or set contentionscope attribute
— pthread_attr_getscope, 122
— pthread_attr_setscope, 122

get or set detachstate attribute
— pthread_attr_getdetachstate, 115
— pthread_attr_setdetachstate, 115

get or set inheritsched attribute
— pthread_attr_getinheritsched, 118
— pthread_attr_setinheritsched, 118

get or set level of concurrency
— pthread_getconcurrency, 149
— pthread_setconcurrency, 149

get or set schedparam attribute
— pthread_attr_getschedparam, 120
— pthread_attr_setschedparam, 120

get or set schedpolicy attribute
— pthread_attr_getschedpolicy, 121
— pthread_attr_setschedpolicy, 121

get or set stackaddr attribute
— pthread_attr_getstackaddr, 124
— pthread_attr_setstackaddr, 124

get or set stacksize attribute
— pthread_attr_getstacksize, 125
— pthread_attr_setstacksize, 125

get or set the process-shared condition variable
attributes
— pthread_condattr_getpshared, 131
— pthread_condattr_setpshared, 131

get or set the thread guardsize attribute
— pthread_attr_getguardsize, 116
— pthread_attr_setguardsize, 116

get scheduling parameter limits
— sched_get_priority_max, 209
— sched_get_priority_min, 209

get scheduling parameters —
sched_getparam, 208

get scheduling policy —
sched_getscheduler, 210

get thread information in libthread_db library
of interfaces — td_thr_get_info, 266

gets the total number of threads in a process for
libthread_db — td_ta_get_nthreads, 255

I
I/O, asynchronous

cancel request — aio_cancel, 17
file synchronization — aio_sync, 21
retrieve return status — aio_return, 28

I/O, requests
list — lio_listio, 73

Index 317



initialization function for libthread_db library of
interfaces — td_init, 244

initialize and destroy mutex attributes object
— pthread_mutexattr_destroy, 172
— pthread_mutexattr_init, 172

initialize and destroy read-write lock attributes
object
— pthread_rwlockattr_destroy, 184
— pthread_rwlockattr_init, 184

initialize and destroy threads attribute object
— pthread_attr_destroy, 126
— pthread_attr_init, 126

initialize dynamic package —
pthread_once, 182

initialize or destroy a mutex
— pthread_mutex_destroy, 177
— pthread_mutex_init, 177

initialize or destroy a read-write lock object
— pthread_rwlock_destroy, 185
— pthread_rwlock_init, 185

initialize or destroy condition variable attributes
object
— pthread_condattr_destroy, 133
— pthread_condattr_init, 133

initialize or destroy condition variables
— pthread_cond_destroy, 135
— pthread_cond_init, 135

interfaces in libthread_db that target process
memory access
— ps_pdread, 110
— ps_pdwrite, 110
— ps_ptread, 110
— ps_ptwrite, 110

invoke the function associated with a door
descriptor — door_call, 53

iterate over the set of locks owned by a thread
— td_thr_lockowner, 269

iterator functions on process handles from
libthread_db library of interfaces
— td_ta_sync_iter, 261
— td_ta_thr_iter, 261
— td_ta_tsd_iter, 261

L
library of interfaces for monitoring and

manipulating threads-related aspects of
multithreaded programs —
libthread_db, 68

libthread_db — library of interfaces for
monitoring and manipulating threads-related
aspects of multithreaded programs, 68

lio_listio — list directed I/O, 73
list directed I/O — lio_listio, 73
lock or attempt to lock a read-write lock object

for reading
— pthread_rwlock_rdlock, 187
— pthread_rwlock_tryrdlock, 187

lock or attempt to lock a read-write lock object
for writing
— pthread_rwlock_trywrlock, 190
— pthread_rwlock_wrlock, 190

lock or unlock a mutex
— pthread_mutex_lock, 179
— pthread_mutex_trylock, 179
— pthread_mutex_unlock, 179

looks up the symbol in the symbol table of the
load object in the target process —
ps_pglobal_lookup, 109

looks up the symbol in the symbol table of the
load object in the target process —
ps_pglobal_sym, 109

M
make a mutex consistent after owner death —

pthread_mutex_consistent_np, 173
manage thread signals for libthread_db

— td_thr_setsigpending, 271
— td_thr_sigsetmask, 271

manage thread-specific data
— pthread_getspecific, 153
— pthread_setspecific, 153

memory object, shared
open — shm_open, 236
remove — shm_unlink, 239

message queue
close — mq_close, 77
notify process (or thread) — mq_notify, 79
open — mq_open, 81

318 man pages section 3: Threads and Realtime Library Functions • February 2002 (Beta)



message queue (continued)
receive a message from — mq_receive, 84
remove — mq_unlink, 89
send message to — mq_send, 86
set attributes — mq_setattr, 88

mq_close — close a message queue, 77
mq_getattr — get message queue attributes, 78
mq_notify — notify process (or thread) that a

message is available on a queue, 79
mq_open — open a message queue, 81
mq_receive — receive a message from a

message queue, 84
mq_send — send a message to a message

queue, 86
mq_setattr — set/get message queue

attributes, 88
mq_unlink — remove a message queue, 89
mutex — concepts relating to mutual exclusion

locks, 90
Caveats, 91
Initialization, 90

mutex_destroy — mutual exclusion locks, 92
mutex_init — mutual exclusion locks, 92

Destroy, 95
Dynamically Allocated Mutexes, 101
Initialize, 92
Interprocess Locking, 98
Lock and Unlock, 94
Multiple Instruction Single Data, 96
Single Gate, 96
Solaris Interprocess Robust Locking, 99

mutex_lock — mutual exclusion locks, 92
mutex_trylock — mutual exclusion locks, 92
mutex_unlock — mutual exclusion locks, 92
mutual exclusion locks

— mutex_destroy, 92
— mutex_init, 92
— mutex_lock, 92
— mutex_trylock, 92
— mutex_unlock, 92

N
nanosleep — high resolution sleep, 103

O
operations on a synchronization object in

libthread_db
— td_sync_get_info, 246
— td_sync_setstate, 246
— td_sync_waiters, 246

overview of concepts related to POSIX thread
cancellation — cancellation, 35

P
placeholder for future logging functionality —

td_log, 245
pop a thread cancellation cleanup handler —

pthread_cleanup_pop, 129
preemption control

— schedctl_exit, 206
— schedctl_init, 206
— schedctl_lookup, 206
— schedctl_start, 206
— schedctl_stop, 206

proc_service — process service interfaces, 105
IA, 104
SPARC, 104

process and LWP control in libthread_db
— ps_kill, 111
— ps_lcontinue, 111
— ps_lrolltoaddr, 111
— ps_lstop, 111
— ps_pcontinue, 111
— ps_pstop, 111

process service interfaces — proc_service, 105
ps_kill — process and LWP control in

libthread_db, 111
ps_lcontinue — process and LWP control in

libthread_db, 111
ps_lgetfpregs — routines that access the target

process register in libthread_db, 107
ps_lgetregs — routines that access the target

process register in libthread_db, 107
ps_lgetxregs — routines that access the target

process register in libthread_db, 107
ps_lgetxregsize — routines that access the target

process register in libthread_db, 107
ps_lrolltoaddr — process and LWP control in

libthread_db, 111

Index 319



ps_lsetfpregs — routines that access the target
process register in libthread_db, 107

ps_lsetregs — routines that access the target
process register in libthread_db, 107

ps_lsetxregs — routines that access the target
process register in libthread_db, 107

ps_lstop — process and LWP control in
libthread_db, 111

ps_pcontinue — process and LWP control in
libthread_db, 111

ps_pdread — interfaces in libthread_db that
target process memory access, 110

ps_pdwrite — interfaces in libthread_db that
target process memory access, 110

ps_pglobal_lookup — look up a symbol in the
symbol table of the load object in the target
process, 109

ps_pglobal_sym — look up a symbol in the
symbol table of the load object in the target
process, 109

ps_pstop — process and LWP control in
libthread_db, 111

ps_ptread — interfaces in libthread_db that
target process memory access, 110

ps_ptwrite — interfaces in libthread_db that
target process memory access, 110

pthread_atfork — register fork handlers, 113
pthread_attr_destroy — initialize and destroy

threads attribute object, 126
pthread_attr_getdetachstate — get or set

detachstate attribute, 115
pthread_attr_getguardsize — get or set the

thread guardsize attribute, 116
pthread_attr_getinheritsched — get or set

inheritsched attribute, 118
pthread_attr_getschedparam — get or set

schedparam attribute, 120
pthread_attr_getschedpolicy — get or set

schedpolicy attribute, 121
pthread_attr_getscope — get or set

contentionscope attribute, 122
pthread_attr_getstackaddr — get or set

stackaddr attribute, 124
pthread_attr_getstacksize — get or set stacksize

attribute, 125
pthread_attr_init — initialize and destroy

threads attribute object, 126

pthread_attr_setdetachstate — get or set
detachstate attribute, 115

pthread_attr_setguardsize — get or set the
thread guardsize attribute, 116

pthread_attr_setinheritsched — get or set
inheritsched attribute, 118

pthread_attr_setschedparam — get or set
schedparam attribute, 120

pthread_attr_setschedpolicy — get or set
schedpolicy attribute, 121

pthread_attr_setscope — get or set
contentionscope attribute, 122

pthread_attr_setstackaddr — get or set
stackaddr attribute, 124

pthread_attr_setstacksize — get or set stacksize
attribute, 125

pthread_cleanup_pop — pop a thread
cancellation cleanup handler, 129

pthread_cleanup_push — push a thread
cancellation cleanup handler, 130

pthread_cond_broadcast — signal or broadcast
a condition, 137

pthread_cond_destroy — initialize or destroy
condition variables, 135

pthread_cond_init — initialize or destroy
condition variables, 135

pthread_cond_reltimedwait_np — wait on a
condition, 139

pthread_cond_signal — signal or broadcast a
condition, 137

pthread_cond_timedwait — wait on a
condition, 139

pthread_cond_wait — wait on a condition, 139
pthread_condattr_destroy — initialize or

destroy condition variable attributes
object, 133

pthread_condattr_getpshared — get or set the
process-shared condition variable
attributes, 131

pthread_condattr_init — initialize or destroy
condition variable attributes object, 133

pthread_condattr_setpshared — get or set the
process-shared condition variable
attributes, 131

pthread_create — create a thread, 142
pthread_detach — detach a thread, 146
pthread_equal — compare thread IDs, 147

320 man pages section 3: Threads and Realtime Library Functions • February 2002 (Beta)



pthread_exit — terminate calling thread, 148
pthread_getconcurrency — get or set level of

concurrency, 149
pthread_getschedparam — access dynamic

thread scheduling parameters, 151
pthread_getspecific — manage thread-specific

data, 153
pthread_join — wait for thread

termination, 155
pthread_key_create — create thread-specific

data key, 157
pthread_key_delete — delete thread-specific

data key, 159
pthread_mutex_consistent_np — make a mutex

consistent after owner death, 173
pthread_mutex_destroy — initialize or destroy

a mutex, 177
pthread_mutex_getprioceiling — change the

priority ceiling of a mutex, 175
pthread_mutex_init — initialize or destroy a

mutex, 177
pthread_mutex_lock — lock or unlock a

mutex, 179
pthread_mutex_setprioceiling — change the

priority ceiling of a mutex, 175
pthread_mutex_trylock — lock or unlock a

mutex, 179
pthread_mutex_unlock — lock or unlock a

mutex, 179
pthread_mutexattr_destroy — initialize and

destroy mutex attributes object, 172
pthread_mutexattr_getprioceiling — get and set

prioceiling attribute of mutex attribute
object, 161

pthread_mutexattr_getprotocol — get and set
protocol attribute of mutex attribute
object, 163

pthread_mutexattr_getpshared — get and set
process-shared attribute, 166

pthread_mutexattr_gettype — get or set a
mutex type, 170

pthread_mutexattr_init — initialize and destroy
mutex attributes object, 172

pthread_mutexattr_setprioceiling — get and set
prioceiling attribute of mutex attribute
object, 161

pthread_mutexattr_setprotocol — get and set
protocol attribute of mutex attribute
object, 163

pthread_mutexattr_setpshared — get and set
process-shared attribute, 166

pthread_mutexattr_settype — get or set a mutex
type, 170

pthread_once — initialize dynamic
package, 182

pthread_rwlock_destroy — initialize or destroy
a read-write lock object, 185

pthread_rwlock_init — initialize or destroy a
read-write lock object, 185

pthread_rwlock_rdlock — lock or attempt to
lock a read-write lock object for
reading, 187

pthread_rwlock_tryrdlock — lock or attempt to
lock a read-write lock object for
reading, 187

pthread_rwlock_trywrlock — lock or attempt to
lock a read-write lock object for
writing, 190

pthread_rwlock_unlock — unlock a read-write
lock object, 189

pthread_rwlock_wrlock — lock or attempt to
lock a read-write lock object for
writing, 190

pthread_rwlockattr_destroy — initialize and
destroy read-write lock attributes
object, 184

pthread_rwlockattr_getpshared — get and set
process-shared attribute of read-write lock
attributes object, 183

pthread_rwlockattr_init — initialize and
destroy read-write lock attributes
object, 184

pthread_rwlockattr_setpshared — get and set
process-shared attribute of read-write lock
attributes object, 183

pthread_self — get calling thread’s ID, 192
pthread_setcancelstate — enable or disable

cancellation, 193
pthread_setcancelstate — enabling or disabling

cancellation, 193
pthread_setcanceltype — set the cancellation

type of a thread, 195

Index 321



pthread_setconcurrency — get or set level of
concurrency, 149

pthread_setschedparam — access dynamic
thread scheduling parameters, 151

pthread_setspecific — manage thread-specific
data, 153

pthread_sigmask — change or examine calling
thread’s signal mask, 197

pthread_testcancel — create cancellation point
in the calling thread., 202

push a thread cancellation cleanup handler —
pthread_cleanup_push, 130

R
read or write asynchronous I/O operations

— aioread, 23
— aiowrite, 23

reading and writing thread registers in
libthread_db
— td_thr_getfpregs, 264
— td_thr_getgregs, 264
— td_thr_getxregs, 264
— td_thr_getxregsize, 264
— td_thr_setfpregs, 264
— td_thr_setgregs, 264
— td_thr_setxregs, 264

register fork handlers — pthread_atfork, 113
return credential information associated with

the client — door_cred, 58
return from a door invocation —

door_return, 61
return information associated with a door

descriptor — door_info, 59
return the synchronization handle for the object

on which a thread is blocked —
td_thr_sleepinfo, 272

revoke access to a door descriptor —
door_revoke, 62

routines that access the target process register in
libthread_db
— ps_lgetfpregs, 107
— ps_lgetregs, 107
— ps_lgetxregs, 107
— ps_lgetxregsize, 107
— ps_lsetfpregs, 107

routines that access the target process register in
libthread_db (continued)

— ps_lsetregs, 107
— ps_lsetxregs, 107

rw_rdlock() — acquire a read lock, 203
rw_tryrdlock() — acquire a read lock, 203
rw_trywrlock() — acquire a write lock, 203
rw_unlock() — unlock a readers/writer

lock, 203
rw_wrlock() — acquire a write lock, 203
rwlock_destroy() — destroy a readers/writer

lock, 203
rwlock_init() — initialize a readers/writer

lock, 203

S
sched_get_priority_max — get scheduling

parameter limits, 209
sched_get_priority_min — get scheduling

parameter limits, 209
sched_getparam — get scheduling

parameters, 208
sched_getparam — set/get scheduling

parameters, 212
sched_getscheduler — get scheduling

policy, 210
sched_rr_get_interval — get execution time

limits, 211
sched_setparam — set/get scheduling

parameters, 212
sched_setscheduler — set scheduling policy and

scheduling parameters, 214
sched_yield — yield processor, 217
schedctl_exit — preemption control, 206
schedctl_init — preemption control, 206
schedctl_lookup — preemption control, 206
schedctl_start — preemption control, 206
schedctl_stop — preemption control, 206
sem_close — close a named semaphore, 222
sem_destroy — destroy an unnamed

semaphore, 223
sem_getvalue — get the value of a

semaphore, 224
sem_init — initialize an unnamed

semaphore, 225

322 man pages section 3: Threads and Realtime Library Functions • February 2002 (Beta)



sem_open — initialize/open a named
semaphore, 227

sem_post — increment the count of a
semaphore, 230

sem_trywait — acquire or wait for a
semaphore, 233

sem_unlink — remove a named
semaphore, 232

sem_wait — acquire or wait for a
semaphore, 233

sema_destroy() — destroy a semaphore, 218
sema_init() — initialize a semaphore, 218
sema_post() — increment a semaphore, 218
sema_trywait() — decrement a semaphore, 218
sema_wait() — decrement a semaphore, 218
semaphore

acquire or wait for — sem_wait,
sem_trywait, 233

close a named one — sem_close, 222
destroy an unnamed one —

sem_destroy, 223
get the value — sem_getvalue, 224
increment the count — sem_post, 230
initialize an unnamed one — sem_init, 225
initialize/open a named one —

sem_open, 227
remove a named one — sem_unlink, 232

set concurrency level for target process —
td_ta_setconcurrency, 260

set/get scheduling parameters
— sched_getparam, 212
— sched_setparam, 212

set scheduling policy and scheduling
parameters — sched_setscheduler, 214

set the cancellation type of a thread —
pthread_setcanceltype, 195

set the priority of a thread —
td_thr_setprio, 270

shared memory object
open — shm_open, 236
remove — shm_unlink, 239

shm_open — open a shared memory
object, 236

shm_unlink — remove a shared memory
object, 239

signal
queue one to a process — sigqueue, 240

signal (continued)
wait for queued signals — sigwaitinfo,
sigtimedwait, 242

signal or broadcast a condition
— pthread_cond_broadcast, 137
— pthread_cond_signal, 137

sigqueue — queue a signal to a process, 240
sigtimedwait — wait for queued signals, 242
sigwaitinfo — wait for queued signals, 242
sleep

high resolution — nanosleep, 103
specify an alternative door server thread

creation function — door_server_create, 63
suspend and resume threads in libthread_db

— td_thr_dbresume, 263
— td_thr_dbsuspend, 263

synchronize a file’s data
— fdatasync, 65

T
td_event_addset — thread events in

libthread_db, 251
td_event_delset — thread events in

libthread_db, 251
td_event_emptyset — thread events in

libthread_db, 251
td_event_fillset — thread events in

libthread_db, 251
td_eventisempty — thread events in

libthread_db, 251
td_eventismember — thread events in

libthread_db, 251
td_init — initialization function for

libthread_db library of interfaces, 244
td_log — placeholder for future logging

functionality, 245
td_sync_get_info — operations on a

synchronization object in libthread_db, 246
td_sync_setstate — operations on a

synchronization object in libthread_db, 246
td_sync_waiters — operations on a

synchronization object in libthread_db, 246
td_ta_delete — allocate and deallocate process

handles for libthread_db, 258

Index 323



td_ta_enable_stats — collect target process
statistics for libthread_db, 249

td_ta_event_addr — thread events in
libthread_db, 251
Event Set Manipulation Macros, 253

td_ta_event_getmsg — thread events in
libthread_db, 251

td_ta_get_nthreads — gets the total number of
threads in a process for libthread_db, 255

td_ta_get_ph — allocate and deallocate process
handles for libthread_db, 258

td_ta_get_stats — collect target process statistics
for libthread_db, 249

td_ta_map_addr2sync — get a synchronization
object handle from a synchronization object’s
address, 256

td_ta_map_addr2thr — convert a thread id or
thread address to a thread handle, 257

td_ta_map_id2thr — convert a thread id or
thread address to a thread handle, 257

td_ta_new — allocate and deallocate process
handles for libthread_db, 258

td_ta_reset_stats — collect target process
statistics for libthread_db, 249

td_ta_set_event — thread events in
libthread_db, 251

td_ta_setconcurrency — set concurrency level
for target process, 260

td_ta_sync_iter — iterator functions on process
handles from libthread_db library of
interfaces, 261

td_ta_thr_iter — iterator functions on process
handles from libthread_db library of
interfaces, 261

td_ta_tsd_iter — iterator functions on process
handles from libthread_db library of
interfaces, 261

td_thr_clear_event — thread events in
libthread_db, 251

td_thr_dbresume — suspend and resume
threads in libthread_db, 263

td_thr_dbsuspend — suspend and resume
threads in libthread_db, 263

td_thr_event_enable — thread events in
libthread_db, 251

td_thr_event_getmsg — thread events in
libthread_db, 251

td_thr_get_info — get thread information in
libthread_db library of interfaces, 266

td_thr_getfpregs — reading and writing thread
registers in libthread_db, 264

td_thr_getgregs — reading and writing thread
registers in libthread_db, 264
Intel IA, 265
SPARC, 265

td_thr_getxregs — reading and writing thread
registers in libthread_db, 264

td_thr_getxregsize — reading and writing
thread registers in libthread_db, 264

td_thr_lockowner — iterate over the set of locks
owned by a thread, 269

td_thr_set_event — thread events in
libthread_db, 251

td_thr_setfpregs — reading and writing thread
registers in libthread_db, 264

td_thr_setgregs — reading and writing thread
registers in libthread_db, 264

td_thr_setprio — set the priority of a
thread, 270

td_thr_setsigpending — manage thread signals
for libthread_db, 271

td_thr_setxregs — reading and writing thread
registers in libthread_db, 264

td_thr_sigsetmask — manage thread signals for
libthread_db, 271

td_thr_sleepinfo — return the synchronization
handle for the object on which a thread is
blocked, 272

td_thr_tsd — get a thread’s thread-specific data
for libthread_db library of interfaces, 273

td_thr_validate — test a thread handle for
validity, 274

tda_ta_clear_event — thread events in
libthread_db, 251

terminate calling thread — pthread_exit, 148
terminate the calling thread — thr_exit, 289
test a thread handle for validity —

td_thr_validate, 274
thr_continue — continue thread execution, 308
thr_create — create a tread, 275
thr_exit — terminate the calling thread, 289
thr_getconcurrency — get thread concurrency

level, 291

324 man pages section 3: Threads and Realtime Library Functions • February 2002 (Beta)



thr_getprio — access dynamic thread
scheduling, 292
Contentionscope, 292
Policy, 292
Priority, 292
Scheduling, 292

thr_getspecific — thread-specific-data
functions, 295

thr_join — wait for thread termination, 294
thr_keycreate — thread-specific-data

functions, 295
Create Key, 295
Get Value, 295
Set Value, 295

thr_main — identifies the calling thread as the
main thread or not the main thread, 299

thr_self — get calling thread’s ID, 301
thr_setconcurrency — set thread concurrency

level, 291
thr_setprio — access dynamic thread

scheduling, 292
thr_setspecific — thread-specific-data

functions, 295
thr_sigsetmask — change or examine calling

thread’s signal mask, 302
thr_stksegment — get thread stack bottom and

size, 307
thr_suspend — suspend thread execution, 308
thr_yield — thread yield to another

thread, 309
thread events in libthread_db

— td_event_addset, 251
— td_event_delset, 251
— td_event_emptyset, 251
— td_event_fillset, 251
— td_eventisempty, 251
— td_eventismember, 251
— td_ta_event_addr, 251
— td_ta_event_getmsg, 251
— td_ta_set_event, 251
— td_thr_clear_event, 251
— td_thr_event_enable, 251
— td_thr_event_getmsg, 251
— td_thr_set_event, 251
— tda_ta_clear_event, 251

thread-specific-data functions
— thr_getspecific, 295

thread-specific-data functions (continued)
— thr_keycreate, 295
— thr_setspecific, 295

thread yield to another thread —
thr_yield, 309

timer_getoverrun — per-process timers, 313
timer_gettime — per-process timers, 313
timer_settime — per-process timers, 313

U
unlock a read-write lock object —

pthread_rwlock_unlock, 189

W
wait on a condition —

pthread_cond_reltimedwait_np, 139
wait on a condition —

pthread_cond_timedwait, 139
wait on a condition — pthread_cond_wait, 139
wait for thread termination —

pthread_join, 155
wait for thread termination — thr_join, 294

Y
yield processor — sched_yield, 217

Index 325



326 man pages section 3: Threads and Realtime Library Functions • February 2002 (Beta)


