»
< Sun

microsystems

Solaris WBEM Services
Administrator’s Guide

Sun Microsystems, Inc.
901 San Antonio Road
Palo Alto, CA 94303-4900
U.S.A.

Part Number 806-6468-10
January 2001

Copyright 2001 Sun Microsystems, Inc. 901 San Antonio Road, Palo Alto, California 94303-4900 U.S.A. All rights reserved.

This product or document is protected by copyright and distributed under licenses restricting its use, copying, distribution, and
decompilation. No part of this product or document may be reproduced in any form by any means without prior written authorization of
Sun and its licensors, if any. Third-party software, including font technology, is copyrighted and licensed from Sun suppliers.

Parts of the product may be derived from Berkeley BSD systems, licensed from the University of California. UNIX is a registered
trademark in the U.S. and other countries, exclusively licensed through X/Open Company, Ltd.

Sun, Sun Microsystems, the Sun logo, docs.sun.com, AnswerBook, AnswerBook2, and Solaris are trademarks, registered trademarks, or
service marks of Sun Microsystems, Inc. in the U.S. and other countries. All SPARC trademarks are used under license and are trademarks
or registered trademarks of SPARC International, Inc. in the U.S. and other countries. Products bearing SPARC trademarks are based upon
an architecture developed by Sun Microsystems, Inc.

The OPEN LOOK and Sun™ Graphical User Interface was developed by Sun Microsystems, Inc. for its users and licensees. Sun
acknowledges the pioneering efforts of Xerox in researching and developing the concept of visual or graphical user interfaces for the
computer industry. Sun holds a non-exclusive license from Xerox to the Xerox Graphical User Interface, which license also covers Sun’s
licensees who implement OPEN LOOK GUIs and otherwise comply with Sun’s written license agreements.

Federal Acquisitions: Commercial Software—-Government Users Subject to Standard License Terms and Conditions.
DOCUMENTATION IS PROVIDED “AS 1S” AND ALL EXPRESS OR IMPLIED CONDITIONS, REPRESENTATIONS AND WARRANTIES,
INCLUDING ANY IMPLIED WARRANTY OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR

NON-INFRINGEMENT, ARE DISCLAIMED, EXCEPT TO THE EXTENT THAT SUCH DISCLAIMERS ARE HELD TO BE LEGALLY
INVALID.

Copyright 2001 Sun Microsystems, Inc. 901 San Antonio Road, Palo Alto, Californie 94303-4900 Etats-Unis. Tous droits réservés.

Ce produit ou document est protégé par un copyright et distribué avec des licences qui en restreignent I'utilisation, la copie, la
distribution, et la décompilation. Aucune partie de ce produit ou document ne peut étre reproduite sous aucune forme, par quelque
moyen gue ce soit, sans I'autorisation préalable et écrite de Sun et de ses bailleurs de licence, s’il y en a. Le logiciel détenu par des tiers, et
qui comprend la technologie relative aux polices de caractéres, est protégé par un copyright et licencié par des fournisseurs de Sun.

Des parties de ce produit pourront étre dérivées du systéme Berkeley BSD licenciés par I'Université de Californie. UNIX est une marque
déposée aux Etats-Unis et dans d’autres pays et licenciée exclusivement par X/Open Company, Ltd.

Sun, Sun Microsystems, le logo Sun, docs.sun.com, AnswerBook, AnswerBook2, et Solaris sont des marques de fabrique ou des marques
déposées, ou marques de service, de Sun Microsystems, Inc. aux Etats-Unis et dans d’autres pays. Toutes les marques SPARC sont utilisées
sous licence et sont des marques de fabrique ou des marques déposées de SPARC International, Inc. aux Etats-Unis et dans d’autres pays.
Les produits portant les marques SPARC sont basés sur une architecture développée par Sun Microsystems, Inc.

L’interface d’utilisation graphique OPEN LOOK et Sun™ a été développée par Sun Microsystems, Inc. pour ses utilisateurs et licenciés.
Sun reconnait les efforts de pionniers de Xerox pour la recherche et le développement du concept des interfaces d’utilisation visuelle ou
graphique pour I'industrie de I'informatique. Sun détient une licence non exclusive de Xerox sur I'interface d’utilisation graphique Xerox,
cette licence couvrant également les licenciés de Sun qui mettent en place I'interface d’utilisation graphique OPEN LOOK et qui en outre
se conforment aux licences écrites de Sun.

CETTE PUBLICATION EST FOURNIE “EN L’ETAT” ET AUCUNE GARANTIE, EXPRESSE OU IMPLICITE, N'EST ACCORDEE, Y
COMPRIS DES GARANTIES CONCERNANT LA VALEUR MARCHANDE, L’APTITUDE DE LA PUBLICATION A REPONDRE A UNE
UTILISATION PARTICULIERE, OU LE FAIT QU’ELLE NE SOIT PAS CONTREFAISANTE DE PRODUIT DE TIERS. CE DENI DE
GARANTIE NE S’APPLIQUERAIT PAS, DANS LA MESURE OU IL SERAIT TENU JURIDIQUEMENT NUL ET NON AVENU.

9] @O
Adobe PostScript Please
Recycle

Contents

Preface 15

Overview 19
About WBEM 19
About the Common Information Model 20
Basic CIM Elements 20
The CIM Models 21
CIM Extensions 22
Solaris WBEM Services 22
Software Components 23
Namespaces 25
Providers 26
Interoperability with Other WBEM Systems 27
Sun WBEM Software Development Kit 27
CIM Object Manager 29
About the CIM Object Manager 29
The initwbem Command 30
Solaris Management Console Server 31
System Booting 31

Stopping and Restarting the CIM Object Manager 31

v To Stop the CIM Object Manager 31

¥ To Restart the CIM Object Manager 31
Upgrading the CIM Object Manager Repository 32
v Before Installing Your New Version of Solaris 33
v After Installing Your New Version of Solaris 33
Setting the Solaris Provider CLASSPATH 34
v To Set the Provider CLASSPATH 34
Exception Messages 35

3. Administering Security 37

Overview 37

Sun WBEM Security Features 38

Solaris Management Console Users Tool 39

v To Start SMC and Users Tool 39

Using the Sun WBEM User Manager to Set Access Control 40

<

How to Start Sun WBEM User Manager 41
How to Grant Default Access Rights to a User 41
How to Change Access Rights for a User 42

How to Remove Access Rights for a User 42

4 4 4 4«

How to Set Access Rights for a Namespace 43
How to Remove Access Rights for a Namespace 43
Using the APIs to Set Access Control 43
The Solaris_UserAcl Class 44
¥ How to Set Access Control on a User 45
The Solaris_NamespaceAcl! Class 46
¥ How to Set Access Control on a Namespace 46
4, MOF Compiler 47
About the MOF Compiler 47

The mofcomp Command 48

Solaris WBEM Services Administrator’'s Guide ¢ January 2001

Compiling a MOF File 49

¥ How to Compile a MOF File 49
Security Advisory 50

System Logging 51

About Logging 51

Log Files 52
Log File Rules 52
Log File Format 53

Log Classes 54
Solaris_LogRecord Class 54
Solaris_LogService Class 54

Using the APIs to Enable Logging 55
Writing Data to a Log File 55

¥ How to Create an Instance of Solaris_LogRecord To Write
Data 56

Reading Data From a Log File 58

¥ How to Get an Instance of the Solaris_LogRecord Class and
Read Data 58

Setting Logging Properties 61
Viewing Log Data 62

Starting Log Viewer 63

¥ How to Start SMC and Log Viewer 63
CIM Exception Messages 65
How CIM Exceptions are Generated 65
Parts of CIM Exceptions 65

Exception Message Example 66
Finding Information About CIM Exceptions 66
Generated CIM Exceptions 67

Common Information Model (CIM) Terms and Concepts 85

Contents 5

CIM Concepts 85
Object-Oriented Modeling 85
Uniform Modeling Language 85
CIM Terms 86
Schema 86
Class and Instance 86
Property 87
Method 87
Domain 88
Quialifier and Flavor 88
Indication 88
Association 88
Reference and Range 88
Override 89
Core Model Concepts 89
System Aspects of the Core Model 89
System Classes Provided by the Core Model 90
System Associations Provided by the Core Model 91
Example of an Extension into the Core Model 92
Common Model Schemas 93
Systems 93
Devices 93
Applications 93
Networks 94
Physical 94
B. The Solaris Schema 95
Solaris Schema Files 95

The Solaris_Schemal.0.mof File 96

Solaris WBEM Services Administrator’'s Guide ¢ January 2001

The Solaris_CIMOML1.0.mof File 97

The Solaris_Corel.0.mof File 98
Solaris_ComputerSystem Class 99
Logging Definitions 99

The Solaris_Application1.0.mof File 101
Packages 101
Patches 102

The Solaris_System1.0.mof File 103

The Solaris_Devicel.0.mof File 104
Serial Ports 105
Solaris_Printer Class and Printing Definitions 105

Solaris_TimeZone Class 105

The Solaris_Acl1.0.mof File 106
The Solaris_Network1.0.mof File 106
The Solaris_Users1.0.mof File 106

Solaris 8 1/01 Updates 109

Glossary 111

Index 119

Contents 7

Solaris WBEM Services Administrator’'s Guide ¢ January 2001

Tables

TABLE P-1

TABLE P-2

TABLE A-1

TABLE A-2

TABLE A-3

TABLE B-1

TABLE B-2

TABLE B-3

Typographic Conventions 17
Shell Prompts 18

Core Model Elements 89

Core Model System Classes 90
Core Model Dependencies 92
Solaris Schema Files 95

Package Information You Can Provide

Patch Information You Can Provide

101

102

10 Solaris WBEM Services Administrator’'s Guide ¢ January 2001

Figures

Figure 1-1
Figure 3-1

Figure 5-1

Solaris WBEM Services Architecture 23
Solaris Management Console, with Users Tool Selected

Solaris Management Console, with Log Viewer Selected

40

64

11

12 Solaris WBEM Services Administrator’'s Guide ¢ January 2001

Code Examples

CODE EXAMPLE 5-1

CODE EXAMPLE 5-2

Creating an Instance of Solaris_LogRecord

Setting Logging Properties 61

To Write Data

56

13

14 Solaris WBEM Services Administrator’'s Guide ¢ January 2001

Preface

The Solaris WBEM Services Administrator’s Guide explains Common Information
Model (CIM) concepts and describes how to administer Web-Based Enterprise
Management (WBEM) services in the Solaris™ operating environment.

Solaris WBEM Services software makes it easier for software developers to create
management applications that run on Solaris and makes the Solaris operating
environment easier to manage.

Who Should Use This Book

This book is written for system administrators who manage WBEM-enabled networks
and workstations, by running existing WBEM applications or writing new ones.

Before You Read This Book

This book requires knowledge of the following:

m Object-oriented programming concepts

m Java™ programming

m WBEM Common Information Model (CIM) concepts

m Network management concepts

If you are unfamiliar with these areas, you might find the following references useful:

15

m Java™ How to Program
H. M. Deitel and P. J. Deitel, Prentice Hall, ISBN 0-13-263401-5

m The Java Class Libraries, Second Edition, Volume 1, Patrick Chan, Rosanna Lee,
Douglas Kramer, Addison-Wesley, ISBN 0-201-31002-3

m CIM Tutorial , provided by the Distributed Management Task Force
The following Web sites are useful resources when working with WBEM technologies.
m Distributed Management Task Force (DMTF)

See this site at www.dmtf.org for the latest developments on CIM, information
about various working groups, and contact information for extending the CIM
Schema.

m Rational Software

See this site at www.rational.com/uml for documentation on the Unified
Modeling Language (UML) and the Rose CASE tool.

How This Book Is Organized

Chapter 1 provides an overview of Solaris WBEM Services and Web-Based Enterprise
Management (WBEM).

Chapter 2 describes the CIM Object Manager and explains how to start and stop it.

Chapter 3 describes security features and how to set access rights on namespaces
and users.

Chapter 4 describes the command syntax for the mofcomp command and how to
compile a .mof file.

Chapter 5 describes the logging features.

Chapter 6 describes error messages generated by components of the Solaris WBEM
Services product.

Appendix A provides information about general Common Information Model (CIM)
concepts.

Appendix B describes the Solaris Schema files, Managed Object Format (MOF) files
that describe managed objects in the Solaris operating environment.

Appendix C describes new and changed information in this release of the Solaris
WBEM Services Administrator’s Guide.

Glossary is a list of words and phrases found in this book and their definitions.

16 Solaris WBEM Services Administrator’'s Guide ¢ January 2001

Ordering Sun Documents

Fatbrain.com, an Internet professional bookstore, stocks select product
documentation from Sun Microsystems, Inc.

For a list of documents and how to order them, visit the Sun Documentation Center
on Fatbrain.com at http://www1.fatbrain.com/documentation/sun

Accessing Sun Documentation Online

The docs.sun.coms™ Web site enables you to access Sun technical documentation
online. You can browse the docs.sun.com archive or search for a specific book title or
subject. The URL is http://docs.sun.com

Typographic Conventions

The following table describes the typographic changes used in this book.

TABLE P-1 Typographic Conventions

Typeface or
Symbol Meaning Example

AaBbCc123 The names of commands, files, and Edit your .login file.

directories; on-screen computer output Use Is -a to list all files.

machine_name% you have

mail.
AaBbCc123 What you type, contrasted with machine_name% su
on-screen computer output
Password:

Preface 17

TABLE P-1 Typographic Conventions (continued)

Typeface or
Symbol

Meaning

Example

AaBbCc123

Command-line placeholder: replace
with a real name or value

To delete a file, type rm
filename.

AaBbCc123

Book titles, new words, or terms, or
words to be emphasized.

Read Chapter 6 in User’s
Guide.

These are called class options.

You must be root to do this.

Shell Prompts in Command Examples

The following table shows the default system prompt and superuser prompt for the
C shell, Bourne shell, and Korn shell.

TABLE P-2 Shell Prompts

Shell

Prompt

C shell prompt

machine_name%

C shell superuser prompt

machine_name#

Bourne shell and Korn shell prompt $
Bourne shell and Korn shell superuser #
prompt

18 Solaris WBEM Services Administrator’'s Guide ¢ January 2001

CHAPTER 1

Overview

This chapter provides an overview of Web-Based Enterprise Management (WBEM)
and Solaris WBEM Services, software that makes it easier for software developers to
create management applications that run on Solaris and make the Solaris operating
environment easier to manage.

This chapter covers the following topics.
= About WBEM

m About the Common Information Model
m Solaris WBEM Services Software

m Sun WBEM Software Development Kit

About WBEM

Web-Based Enterprise Management (WBEM) is an industry-wide initiative that
includes standards for web-based management of systems, networks, and devices on
multiple platforms. This standardization enables system administrators to manage
desktops, devices, and networks.

WBEM is designed to be compatible with all major existing management protocols,
including Simple Network Management Protocol (SNMP), Distributed Management
Interface (DMI), and Common Management Information Protocol (CMIP).

WBEM encompasses the following standards:

m Common Information Model (CIM) - Information model for describing managed
resources.

m Managed Object Format (MOF) — Language for defining CIM classes and instances.

19

m eXtensible Markup Language (XML) — Markup language for describing managed
resources on the web.

The Distributed Management Task Force (DMTF), a group representing corporations
in the computer and telecommunications industries, is leading the effort to develop
management standards. The goal of the DMTF is to develop an integrated approach
to managing networks across platforms and protocols, resulting in cost-effective
products that interoperate as flawlessly as possible. For information about DMTF
initiatives and outcomes, see the DMTF web site at www.dmtf.org

About the Common Information Model

This section provides a brief introduction to basic CIM terms and concepts as they
are used in the Solaris WBEM Services product. For more information on CIM, see
Appendix A.

CIM is an object-oriented information model for describing managed resources such
as disks, CPUs, and operating systems. A CIM object is a representation, or model, of
a managed resource, such as a printer, disk drive, or CPU. CIM objects can be shared
by any WBEM-enabled system, device, or application.

Basic CIM Elements

CIM objects with similar properties and purposes are represented as CIM classes.
Properties are attributes that describe a unit of data for a class. An instance is a
representation of a managed object that belongs to a particular class. Instances
contain actual data. For example, Solaris_ComputerSystem is a CIM class that
represents a computer running the Solaris operating environment. The Solaris
software running your workstation is an instance of the

Solaris_OperatingSystem class. ResetCapability and InstallDate are
examples of properties of the Solaris_ComputerSystem class.

CIM classes are grouped into meaningful collections called schemas. A schema is a
group of classes with a single owner. A class must belong to only one schema.
Schemas are used for administration and class naming. All class names must be
unique within a particular schema. The schema name is the determining factor in
differentiating classes and properties from others that may have the same name. The
naming of schema, class, and property follow this syntax:

Schemaname_classname.propertyname

20 Solaris WBEM Services Administrator’'s Guide ¢ January 2001

The CIM Models

The Common Information Model categorizes information from general to specific.
Specific information, such as a representation of the Solaris environment, extends the
model. CIM consists of the following three layers of information;

m Core Model — A subset of CIM not specific to any platform.

m Common Model - Information model that visually depicts concepts, functionality,
and representations of entities related to specific areas of network management,
such as systems, devices, and applications.

m Extensions — Information models that support the CIM Schema and represent a
very specific platform, protocol, or corporate brand.

Collectively, the Core Model and the Common Model are referred to as the CIM
Schema.

The Core Model

The Core Model provides the underlying, general assumptions of the managed
environment—for example, that specific, requested data must be contained in a
location and distributed to requesting applications or users. These assumptions are
conveyed as a set of classes and associations that conceptually form the basis of the
managed environment. The Core Model is meant to introduce uniformity across
schemas intended to represent specific aspects of the managed environment.

For applications developers, the Core Model provides a set of classes, associations,
and properties that can be used as a starting point to describe managed systems and
determine how to extend the Common Model. The Core Model establishes a
conceptual framework for modeling the rest of the managed environment.

The Core Model provides classes and associations to extend specific information
about systems, applications, networks, devices, and other network features through
the Common Model and extensions.

The Common Model

Areas of network management depicted in the Common Model are independent of a
specific technology or implementation but provide the basis for the development of
management applications. This model provides a set of base classes for extension
into the area of five designated technology-specific schemas: Systems, Devices,
Applications, Networks, and Physical.

Overview 21

CIM Extensions

Extension schemas are built upon CIM to connect specific technologies to the model.
By extending CIM, a specific operating environment such as Solaris can be made
available to a greater number of users and administrators. Extension schemas provide
classes for software developers to build applications that manage and administer the
extended technology. The Solaris Schema is an extension of the CIM Schema.

Solaris WBEM Services

Solaris WBEM Services software provides Web-Based Enterprise Management
(WBEM) services on the Solaris operating environment. These services make it easier
for software developers to create management applications that run in the Solaris
operating environment, and makes the Solaris operating environment easier to
manage.

Solaris WBEM Services software provides secure access and manipulation of
management data. The product includes a built-in Solaris provider that allows
management applications to access information about managed resources (devices
and software) in the Solaris operating environment.

The CIM Object Manager accepts connections from management applications using
either RMI or XML/HTTP protocols, and provides the following services to
connected clients:

m Management services, in the form of a CIM Object Manager that checks the
semantics and syntax of CIM data and distributes data between applications, the
CIM Repository, and managed resources.

m Security services that enable administrators to control user access to CIM
information.

m Logging services that consist of classes developers can use to create applications
that dynamically record event data to a log record and retrieve data from a log
record. Administrators can use this data to track and determine the cause of
events.

m XML services that convert XML data into CIM classes, enabling XML/HTTP-based
WBEM clients to communicate with the CIM Object Manager.

Once connected to a WBEM-enabled system, WBEM clients can request WBEM
operations, such as, creating, viewing, and deleting CIM classes and instances,
guerying for properties that have a specified value, enumerating (getting a list of)
instances or classes in a specified class hierarchy.

22 Solaris WBEM Services Administrator’'s Guide ¢ January 2001

Software Components

Solaris WBEM Services software consists of software components that function at
three layers: Application, Management, and Provider. These components interact
with the operating system and hardware layers. Figure 1-1 shows the software
components and their interaction at each layer.

Application MOF
PR File

Sun WBEM WBEM MOF
User Manager Log Viewer Compiler

Management
Java Virtual Machine \

\

Public Java
Client and CIM API

A 4
XML/HTTP RMI

CIM Object Manager CIM

Repository

| .
| Provider Interface !

Provider

Third Party
Providers

Third Party

Providers INI

Hardware

SPARC INTEL

Figure 1-1 Solaris WBEM Services Architecture

m Application Layer — WBEM clients process and display data from managed
resources. Solaris WBEM Services includes the following applications.

= Sun WBEM User Manager and Solaris Management Console (SMC) Users Tool
— Applications that allow system administrators to add and delete authorized
users and to set their access privileges to managed resources.

Overview 23

24

= Solaris Management Console (SMC) Log Viewer — An application that displays

log files. Using the log viewer, a user can view details of a log record, including
the name of the user who issued a logged command and the client computer
on which a logged event occurred.

Managed Object Format (MOF) Compiler — Program that parses a file
containing MOF statements, converts the classes and instances defined in the
file to Java classes, and then adds the Java classes to the CIM Object Manager
Repository, a central storage area for management data.

MOF is a language for defining CIM classes and instances. MOF files are ASCII
text files that use the MOF language to describe CIM objects. A CIM object is a
representation, or model, of a managed resource, such as a printer, disk drive,
or CPU.

Many sites store information about managed resources in MOF files. Because
MOF can be converted to Java, applications that can run on any system with a
Java Virtual Machine can interpret and exchange this information. You can also
use the mofcomp command to compile MOF files at any time after installation.
For more information about MOF, see the DMTF web page at http://
www.dmtf.org

m Management Layer — Components at this layer provide services to connected
WBEM clients.

Common Information Model (CIM) Object Manager — Software that manages
CIM objects on a WBEM system. CIM objects are stored internally as Java
classes. The CIM Object Manager transfers information between WBEM clients,
the CIM Object Manager Repository, and managed resources.

CIM Object Manager Repository — Central storage area for CIM class and
instance definitions.

Client and CIM Application Programming Interfaces (APIs) - WBEM client
applications use these Java interfaces to request operations, such as creating or
viewing classes or instances of managed resources, from the CIM Object
Manager.

Provider Interface — Providers use these interfaces to transfer information about
managed resources to the CIM Object Manager. The CIM Object Manager uses
the provider interfaces to transfer information to locally installed providers.

Provider Layer — Providers act as intermediaries between the CIM Object Manager

and one or more managed resources. When the CIM Object Manager receives a
request from a WBEM client for data that is not available from the CIM Object
Manager Repository, it forwards the request to the appropriate provider.

» Solaris Provider — Provides the CIM Object Manager with instances of
managed resources in the Solaris operating environment. Providers get and set
information on managed devices. A native provider is a machine-specific
program written to run on a managed device. For example, a provider that

Solaris WBEM Services Administrator’'s Guide ¢ January 2001

accesses data on a Solaris system will most likely include C functions to query
the Solaris system. The Java Native Interface (JNI) is the native programming
interface for Java that is part of the JDK. By writing programs using the JNI,
you ensure that your code is completely portable across all platforms. The JNI
allows Java code that runs within a Java Virtual Machine (VM) to operate with
applications and libraries written in other languages, such as C, C++, and
assembly.

= Solaris Schema — A collection of classes that describe managed objects in the
Solaris operating environment. The CIM and Solaris Schema classes are stored
in the CIM Object Manager Repository. The CIM Schema is a collection of class
definitions used to represent managed objects that occur in every management
environment.

The Solaris Schema is a collection of class definitions that extend the CIM
Schema and represent managed objects in a typical Solaris operating
environment. Users can also use the MOF compiler (mofcomp) to add CIM
Schema, Solaris Schema, or other classes to the CIM Object Manager
Repository.

m Operating System Layer — The Solaris provider allows management applications to
access information about managed resources (devices and software) in the Solaris
operating environment.

m Hardware Layer — A management client can access management data on any
supported Solaris platform.

Namespaces

One or more schemas can be stored in directory-like structures called namespaces. A
CIM namespace is a directory-like structure that can contain other namespaces,
classes, instances, and qualifier types. The names of objects within a namespace must
be unique.

In Solaris WBEM Services, when WBEM client application connects to a particular
namespace, all subsequent operations occur within that namespace. When connected
to a namespace, the client can access the classes and instances in that namespace (if
they exist) and in any namespaces contained in that namespace. For example, if you
create a namespace called child in the root\cimv2 namespace, you could connect
to root\cimv2 and access the classes and instances in the root\cimv2 and
root\cimv2\child namespaces.

An application can connect to a namespace within a namespace. This is similar to
changing to a subdirectory within a directory. Once the application connects to the
new namespace, all subsequent operations occur within that namespace. If you open
a new connection to root\cimv2\child , You can access any classes and instances

Overview 25

in that namespace but cannot access the classes and instances in the parent
namespace, root\cimv2

Three namespaces are created by default during installation:

m root - The top-level namespace that contains other namespaces.

m root\cimv2 - Contains the default CIM classes and instances that represent
objects on your system, such as, LogicalDisk and Netcard . This is the default
namespace.

m root\security — Contains the security classes used by the CIM Object Manager

to represent access rights for users and namespaces.

Providers

When a WBEM client application accesses CIM data, the WBEM system validates the
user’s login information on the current host. By default, a user is granted read access
to the CIM and Solaris Schema. The CIM Schema describes managed objects on your
system in a standard format that all WBEM-enabled systems and applications can
interpret.

Providers are classes that communicate with managed objects to access data.
Providers forward this information to the CIM Object Manager for integration and
interpretation. When the CIM Object Manager receives a request from a management
application for data that is not available from the CIM Object Manager Repository, it
forwards the request to a provider.

The CIM Object Manager uses object provider APIs to communicate with providers.
When an application requests dynamic data from the CIM Object Manager, the CIM
Object Manager uses the provider interfaces to pass the request to the provider.

Providers perform the following functions in response to a request from the CIM
Object Manager:

m Map the native information format to CIM classes

s Get information from a device
» Pass the information to the CIM Object Manager in the form of CIM classes

m Map the information from CIM classes to native device format

» Get the required information from the CIM class
m Pass the information to the device in native device format

26 Solaris WBEM Services Administrator’'s Guide ¢ January 2001

Interoperability with Other WBEM Systems

A WBEM client and WBEM system can run on the same system or on different
systems. Multiple WBEM clients can establish connections to the same WBEM
system. A typical WBEM system can serve four or five WBEM clients.

Solaris WBEM Services supports the Version 1.0 Specification for CIM Operations
over HTTP. This specification uses XML to model CIM objects and messages. XML is
a standard markup language for describing data on the Web. This standard extends
XML markup to define CIM objects and operations. Because XML provides a
standard way of describing data that can be sent across the Web, any WBEM client
can access CIM data on any WBEM system that can parse XML data.

Sun WBEM Software Development Kit

The Sun WBEM Software Development Kit (SDK) contains the components required
to write management applications that can communicate with any WBEM-enabled
management device. Developers can also use this tool kit to write providers,
programs that communicate with managed objects to access data. All management
applications developed using the Sun WBEM SDK run on the Java platform.

A WBEM client application is a program that uses Sun WBEM SDK APIs to
manipulate CIM objects. A client application typically uses the CIM API to construct
an object (for example, a namespace, class, or instance) and then initialize that object.
The application then uses the Client APIs to pass the object to the CIM Object
Manager and request a WBEM operation, such as creating a CIM namespace, class,
or instance.

The Sun WBEM SDK installs and runs in any Java environment. It may be used as a
standalone application or with Solaris WBEM Services. The Sun WBEM SDK is
available for download from http://www.sun.com/solaris/wbem

Overview 27

28 Solaris WBEM Services Administrator’'s Guide ¢ January 2001

CHAPTER 2

CIM Object Manager

The Common Information Model (CIM) Object Manager is software that transfers
CIM data between WBEM client applications and managed resources.

This chapter includes the following topics:

m “About the CIM Object Manager” on page 29

m “The initwbem Command” on page 30

m “Upgrading the CIM Object Manager Repository” on page 32
m “Setting the Solaris Provider CLASSPATH” on page 34

m “Exception Messages” on page 35

About the CIM Object Manager

The CIM Object Manager manages CIM objects on a WBEM-enabled system. A CIM
object is a representation, or model, of a managed resource, such as a printer, disk
drive, or CPU. CIM obijects are stored internally as Java classes.

When a WBEM client application accesses information about a CIM object, the CIM
Object Manager contacts either the appropriate provider for that object or the CIM
Object Manager Repository. Providers are classes that communicate with managed
objects to access data. When a WBEM client application requests data from a
managed resource that is not available from the CIM Object Manager Repository, the
CIM Object Manager forwards the request to the provider for that managed resource.
The provider dynamically retrieves the information.

At startup, the CIM Object Manager performs the following functions:

m Listens for RMI connections on RMI port 5987 and for XML/HTTP connections on
HTTP port 80

29

m Sets up a connection to the CIM Object Manager Repository

m Waits for incoming requests

During normal operations, the CIM Object Manager performs these functions:

m Performs security checks to authenticate user login and authorization to access
namespaces.

m Performs syntactical and semantic checking of CIM data operations to ensure that
they comply with the latest CIM Specification.

m Routes requests to the appropriate provider or to the CIM Object Manager
Repository.

m Delivers data from providers and from the CIM Object Manager Repository to
WBEM client applications.

A WBEM client application contacts the CIM Object Manager to establish a
connection when it needs to perform WBEM operations, such as creating a CIM class
or updating a CIM instance. When a WBEM client application connects to the CIM
Object Manager, it gets a reference to the CIM Object Manager, which it then uses to
request services and operations.

The initwbem Command

/etc/init.d/initwbem start | stop | status

The initwbem utility is run automatically during installation and each time the
system is rebooted. This utility starts the CIM Object Manager and Solaris
Management Console (SMC) server, both of which run combined in a single process.
It can be also be used to stop the CIM Object Manager and SMC server, or to retrieve
status from the server.

Generally, you do not need to stop the CIM Object Manager. However, if you change
an existing provider, you must stop and restart the CIM Object Manager before using
the updated provider.

The initwbem command has three options:

m start - Starts the CIM Object Manager and SMC server on the local host.

m stop - Stops the CIM Object Manager and SMC server on the local host.

m status - Gets status for the CIM Object Manager and SMC server on the local

host.

30 Solaris WBEM Services Administrator’'s Guide ¢ January 2001

Solaris Management Console Server

The Solaris Management Console (SMC) server is the back end to the front-end GUI,
smc(1M). The SMC front-end GUI provides Solaris management applications such as
a User Manager, Disk Manager, and Log Viewer. The SMC server provides tools for
the console to download and performs common services for the console and its tools,
such as authentication, authorization, logging, messaging, and persistence.

System Booting

The initwbem script is installed in the /etc/init.d directory. A link to the script
exists in /etc/rc2.d/S90wbem , which is run with the start option when init
state 2 is entered (normally at boot time). Other links to it exist in /etc/rc0.d/
K36wbem /etc/rcl.d/K36wbem , and /etc/rcS.d/K36wbhem , which are run with
the stop option when init states 0, 1, and S are entered (normally at system halt, or
when entering “system administrator mode” or single-user mode).

Stopping and Restarting the CIM Object Manager

If you change a provider, you must stop and restart the CIM Object Manager before
using the updated provider.

v To Stop the CIM Object Manager

1. Become root by typing the following command at the system prompt:
% su

2. Type the root password when you are prompted.

3. Stop the CIM Object Manager by typing the following command:
/etc/init.d/initwbem stop

v To Restart the CIM Object Manager

1. Become root by typing the following command at the system prompt:
% su

2. Type the root password when you are prompted.

CIM Object Manager 31

3. Restart the CIM Object Manager by typing the following command:
/etc/init.d/init.wbem start

Upgrading the CIM Object Manager
Repository
If you are upgrading from Solaris 8 10/00 (WBEM Services 2.2) or earlier to Solaris 8

1/01 (WBEM Services 2.3) , you must upgrade the CIM Object Manager Repository
datastore format.

Datastore Format for Datastore Format for
Solaris 8 10/00 (WBEM Services 2.2) or earlier Solaris 8 1/01 (WBEM Services 2.3)

JavaSpaces™ Reliable Log

To upgrade a JavaSpaces datastore to the newer Reliable Log repository format, you
use the wbemconfig convert command. This command successfully converts any
proprietary custom MOF data, but not any CIM or Solaris MOF data you have
modified—these will be destroyed. To recompile any modified CIM or Solaris MOF
data into the new repository, run the mofcomp compiler on the MOF files containing
the class definitions.

The wbemconfig convert command creates a directory named /var/sadm/
wbem/logr/ that contains the converted data.

command after stopping the CIM Object Manager with the init.wbem stop

féi Warning - To prevent corruption of your data, only use the wbemconfig convert
command.

Note - Because the wbemconfig convert command invokes the JVM (Java Virtual
Machine) to perform conversion of the repository, you must be running the same
version of the JVM as was used to create the original JavaSpaces datastore. After the
wbemconfig convert command is completed, you can change to any version of
the JVM you want.

Upgrading the CIM Repository datastore format is a two-part process:

m Steps you must perform before installing your new version of Solaris.

32 Solaris WBEM Services Administrator’'s Guide ¢ January 2001

m Steps you must perform after installing your new version of Solaris.

v Before Installing Your New Version of Solaris

1. Log in as superuser (root) and save the JavaSpaces software. Type the following
command:
cp /usr/sadm/lib/wbem/outrigger.jar /usr/sadm/lib/wbem/
outrigger.jar.tmp

2. Check and record the version of the JDK installed on your machine. For
example:
lusr/bin/java -version
java version "1.2.1"
Solaris VM (build Solaris_JDK_1.2.1_04c, native threads,
sunwijit)
You must be running the same version of the JDK as was used when the original
JavaSpaces datastore was created.

v After Installing Your New Version of Solaris

1. Log in as superuser and stop the CIM Object Manager:
/etc/init.d/initwbem stop

2. Restore the JavaSpace software that you saved in Step 1 of "Before Installing
Your New Version of Solaris".

mv /usr/sadm/lib/wbem/outrigger.jar /usr/sadm/lib/wbem/
outrigger.jar.2

mv Jusr/sadm/lib/wbem/outrigger.jar.tmp /usr/sadm/lib/wbem/
outrigger.jar

3. Install the old version of the JDK that was on your machine previously, in a
separate location from the current (newly installed) JDK. You can download a
JDK from http://java.sun.com/products/

4. Change the symbolic link /usr/java to point to the location of the old version
of the JDK. For example, if you installed Solaris_JDK_1.2.1 04c in /old_sdk

rm /usr/java
In -s /old_sdk/Solaris_JDK_1.2.1_04c /usr/java

CIM Object Manager 33

5. Convert the JavaSpaces datastore to Reliable Log format.
Jusr/sadm/lib/wbem/wbemconfig convert

6. Restore the outrigger.jar file included in the new version of Solaris.

mv Jusr/sadm/lib/wbem/outrigger.jar.2 /usr/sadm/lib/wbem/
outrigger.jar

7. Change the symbolic link /usr/java to point to the location of the new JDK
that came in the new version of Solaris:

rm /usr/java
In -s /usrfjaval.2 /usr/java

8. Restart the CIM Object Manager.
/etc/init.d/initwbem start

Setting the Solaris Provider CLASSPATH

To set the Solaris provider’s CLASSPATH, use the client APIs to create an instance of
the Solaris_ProviderPath class and set its pathurl property to the location of
your provider class files. The Solaris_ProviderPath class is stored in the
\root\system namespace.

You can also set the provider CLASSPATH to the location of your provider class files.
You can set the class path to the jar file or to any directory that contains the classes.
Use the standard URL format that Java uses for CLASSPATHS.

Provider CLASSPATH Syntax

Absolute path to directory file:///a/blc/

Relgtive path to directory from which the CIM file://a/blc
Object Manager was started (/) . .

v To Set the Provider CLASSPATH

1. Create an instance of the Solaris_ProviderPath class. For example:

34 Solaris WBEM Services Administrator’'s Guide ¢ January 2001

/* Create a namespace object initialized with root\system
(name of namespace) on the local host. */
CIMNameSpace cns = new CIMNameSpace(

, "root\system");

/I Connect to the root\system namespace as root.
cc = new CIMClient(cns, "root", "root_password");

/I Get the Solaris_ProviderPath class
cimclass = cc.getClass(new CIMObjectPath("Solaris_ProviderPath");

/I Create a new instance of Solaris_ProviderPath.
class ci = cimclass.newlnstance();

2. Set the pathurl property to the location of your provider class files. For
example:

)*: Set the provider CLASSPATH to //com/mycomp/myproviders/.*/

ci.setProperty("pathurl”, new CIMValue(new String("//com/mycomp/myproviders/"));

3. Update the instance. For example:

/I Pass the updated instance to the CIM Object Manager
cc.setinstance(new CIMObjectPath(), ci);

Exception Messages

The CIM Object Manager generates exception messages to indicate incorrect MOF
syntax and semantics. For an explanation of exception messages, see Chapter 6.

CIM Object Manager 35

36 Solaris WBEM Services Administrator’'s Guide ¢ January 2001

CHAPTER 3

Administering Security

This chapter describes the security features enforced by the CIM Object Manager,
including the following topics:

m Overview
m Using the Sun WBEM User Manager to Set Access Control
m Using the APIs to Set Access Control

m CIM Exception Messages

Overview

There are two separate mechanisms for administering security within the Solaris
operating environment, WBEM ACL (access control list) based and Solaris RBAC
(role-based access control) .

The classes defined in the Solaris_Acl1.0.mof file are used to implement
ACL-based security. This provides a default authorization scheme for the Solaris
WBEM Services, and applies to all CIM operations. This feature is specific to the
Solaris WBEM Services.

Instances of the Solaris_Acl1.0.mof classes determine the default authorizations
assigned to a WBEM user and/or namespace. Provider programs, however, are
allowed to override this scheme for CIM operations relating to instance
manipulation; the Sun Solaris providers use the RBAC scheme to do this.

You can use the WBEM User Manager (/usr/sadm/bin/wbemadmin) to add users
to existing ACLs with either read or write permissions. See “Using the Sun WBEM
User Manager to Set Access Control” on page 40. You can also write WBEM

37

applications using the Solaris_Acl1.0.mof classes to set access control. See
“Using the APIs to Set Access Control” on page 43.

The classes defined in the Solaris_Users1.0.mof file are used to implement
Solaris RBAC security for defining user roles and priveleges, via the Users tool of the
Solaris Management Console (SMC) . The SMC Users tool lets you add users to
existing roles and grant RBAC rights to existing users. (An RBAC right is managed
in the Rights portion of the SMC Users tool.) See “Solaris Management Console
Users Tool” on page 39.

Sun WBEM Security Features

The CIM Object Manager validates a user’s login information for the machine on
which the CIM Object Manager is running. A validated user is granted some form of
controlled access to the entire Common Information Model (CIM) Schema. The CIM
Object Manager does not provide security for system resources such as individual
classes and instances. However, the CIM Object Manager does allow control of global
permissions on namespace and access control on a per-user basis.

The following security features protect access to CIM objects on a WBEM-enabled
system:

m Authentication - The process of verifying the identity of a user, device, or other
entity in a computer system, often as a prerequisite to allowing access to the
resources in a system.

m Authorization — The granting to a user, program, or process the right of access.

m Replay protection — The CIM Object Manager protects against a client picking up
and sending another client’s message to the server by validating a session key.

A client cannot copy another client’s last message sent to a CIM Object Manager.
The CIM Object Manager uses a MAC for each message, based on a negotiated
session key, to guarantee that all communication in the client-server session is with
the same client that initiated the session and participated in the client-server
authentication.

A MAC is a token parameter added to a remote call which contains security
information used to authenticate that single message. It is used to confirm that the
message came from the client that was originally authenticated for the session,
and that the message is not being replayed from some other client. This type of
mechanism is used in WBEM for RMI messages. The session key negotiated in the
user authentication exchange is used to encrypt the security information in the
message’s MAC token.

Note that no digital signing of messages is performed.

38 Solaris WBEM Services Administrator’'s Guide ¢ January 2001

Authentication

When a user logs in and enters a user name and password, the client uses the
password to generate an encrypted digest which the server verifies. When the user is
authenticated, the CIM Object Manager sets up a client session. All subsequent
operations occur within that secure client session and contain a MAC token which
uses the session key negotiated during authentication.

Authorization

Once the CIM Object Manager has authenticated the user’s identity, that identity can
be used to verify whether the user should be allowed to execute the application or
any of its tasks. The CIM Object Manager supports capability-based authorization,
which allows a privileged user to assign read and write access to specific users.
These authorizations are added to existing Solaris user accounts.

Solaris Management Console Users Tool

The SMC Users tool lets you add users to existing roles and grant RBAC rights to
existing users. (An RBAC right is managed in the Rights portion of the SMC Users
tool.)

v To Start SMC and Users Tool

1. Change to the location of the SMC invocation command by typing the
following:

cd /usr/sbhin

2. Start SMC by typing the following command;
smc

3. Double-click on “This Computer” (or single-click the expand/compress icon
next to it) in the left-hand Navigation panel to expand the tree beneath it. Do
the same for “System Configuration”, and you will see the Users icon
underneath.

4. Click on the Users icon to start the application.

Administering Security 39

Cenzoke Bt Adtios Vs G Helg

[&[=) (]2 [B]]

Ay BN

g Manedemmant Took

-1 This Computer dkalleed
B 5l Spstam Status
¢ s Svstem Conflguration

igh Lk

ﬁ%kl‘.’l(t}
B B Cloradie
e [l Cavioes and Heardwars

= Management Tools: Solaris Managenent Console 2.0 | - H

Imbaer makinm

& gl of toode (o7 areating and Mardging Luesr aoemnts, uad Emplatss, rights,
U!-:!r!- adminizTaies rake roups and malllng lste Coab k- moopsn

L2 conest eis [iR S

| S I I

Figure 3-1 Solaris Management Console, with Users Tool Selected

For more information on the Solaris Management Console, see the man page
smc(1M).

Using the Sun WBEM User Manager to
Set Access Control

The Sun WBEM User Manager allows privileged users to add and delete authorized
users and to set their access privileges. Use this application to manage user
authentication and access to CIM objects on a WBEM-enabled system. A user must
have a Solaris user account.

You can set access privileges on individual namespaces or for a user-namespace
combination. When you add a user and select a namespace, by default the user is
granted read access to CIM objects in the selected namespace. An effective way to
combine user and namespace access rights is to first restrict access to a namespace.
Then grant individual users read, read and write, or write access to that namespace.

You cannot set access rights on individual managed objects. However you can set
access rights for all managed objects in a namespace as well as on a per-user basis.

40 Solaris WBEM Services Administrator’'s Guide ¢ January 2001

If you log in as root, you can set the following types of access to CIM objects:

Read Only — Allows read-only access to CIM Schema objects. Users with this
privilege can retrieve instances and classes, but cannot create, delete, or modify
CIM objects.

Read/Write — Allows full read, write, and delete access to all CIM classes and
instances.

m Write — Allows write and delete, but not read access to all CIM classes and

instances.

None — Allows no access to CIM classes and instances.

v How to Start Sun WBEM User Manager

1.

In a command window, type the command:
lusr/sadm/bin/wbemadmin
The Sun WBEM User Manager starts, and the Login dialog box opens.

Context-help information is available in the Context Help panel when you click
on the fields in the dialog box.

In the Login dialog box, do the following:
m In the User Name field, type the user name.

You must have read access to the root\security namespace to log in. By
default, Solaris users have guest privileges, which grant them read access to
the default namespaces. Users with read access can view , but cannot change,
user privileges.

You must log in as root or a user with write access to the root\security
namespace to grant access rights to users.

m In the Password field, type the password for the user account.

Click OK.

The User Manager dialog box opens with a list of users and their access rights to
WBEM objects within the namespaces on the current host.

v How to Grant Default Access Rights to a User

1.

2.

Start Sun WBEM User Manager.

In the Users Access portion of the dialog box, click Add.
A dialog box opens that lists the available namespaces.

Administering Security 41

3. Type the name of a Solaris user account in the User Name text entry field.
4. Select a namespace from the listed namespaces.

5. Click OK.
The user name is added to the User Manager dialog box.

6. Click OK to save the changes and close the User Manager dialog box. Click
Apply to save the changes and keep the dialog box open.

This action grants this user read access to CIM objects in the selected namespace.

v How to Change Access Rights for a User

1. Start Sun WBEM User Manager.
2. Select the user whose access rights you want to change.

3. To grant the user read-only access, click the Read check box. To grant the user
write access, click the Write check box.

4. Click OK to save the changes and close the User Manager dialog box. Click
Apply to save the changes and keep the dialog box open.

v How to Remove Access Rights for a User

1. Start Sun WBEM User Manager.

2. In the Users Access portion of the dialog box, select the user name for which
you want to remove access rights.

3. Click Delete to delete the user’s access rights to the namespace.

A confirmation dialog box asks you to confirm your decision to delete the user’s
access rights. Click OK to confirm.

4. Click OK to save the changes and close the User Manager dialog box. Click
Apply to save the changes and keep the dialog box open.

42 Solaris WBEM Services Administrator’'s Guide ¢ January 2001

v How to Set Access Rights for a Namespace

1. Start Sun WBEM User Manager.

2. In the Namespace Access portion of the dialog box, click Add.
A dialog box opens that lists the available namespaces.

3. Select the namespace for which you want to set access rights.
By default, users have read-only access to a namespace.

m To allow no access to the namespace, make sure the Read and Write check
boxes are not selected.

m To allow write access, click the Write check box.
m To allow read access, click the Read check box.

4. Click OK to save the changes and close the User Manager dialog box. Click
Apply to save the changes and keep the dialog box open.

v How to Remove Access Rights for a Namespace

1. Start Sun WBEM User Manager.

2. In the Namespace Access portion of the dialog box, select the namespace for
which you want to remove access control, and then click Delete.

Access control is removed from the namespace, and the namespace is removed
from the list of namespaces on the User Manager dialog box.

3. Click OK to save the changes and close the User Manager dialog box. Click
Apply to save the changes and keep the dialog box open.

Using the APIs to Set Access Control

You can use the Sun WBEM SDK APIs to set access control on a namespace or on a
per-user basis. The following security classes are stored in the root\security
namespace:

m Solaris_Acl — Base class for Solaris Access Control Lists (ACL). This class
defines the string property capability and sets its default value to r (read only).

Administering Security 43

m Solaris_UserAcl — Represents the access control that a user has to the CIM
objects within the specified namespace.

m Solaris_NamespaceAcl — Represents the access control on a namespace.

You can set access control on individual users to the CIM objects within a namespace
by creating an instance of the Solaris_UserACL class and then using the APIs to
change the access rights for that instance. Similarly, you can set access control on
namespaces by creating an instance of the Solaris_NameSpaceACL class and then
using APIs, such as the setinstance method, to set the access rights for that
instance.

An effective way to combine the use of these two classes is to first use the
Solaris_NameSpaceACL class to restrict access to all users to the objects in a
namespace. Then use the Solaris_UserACL class to grant selected users access to
the namespace.

The Solaris_UserAcl Class

The Solaris_UserAcl class extends the Solaris_Acl base class, from which it
inherits the string property capability with a default value r (read only).

You can set the capability property to any of the following values for access privileges.

Access Right Description
r Read
w Read and Write
w Write
none No access
The Solaris_UserAcl class defines the following two key properties. Only one

instance of the namespace-username ACL pair can exist in a namespace.

44 Solaris WBEM Services Administrator’'s Guide ¢ January 2001

Property Data Type Purpose

nspace string Identifies the namespace to
which this ACL applies.

username string Identifies the user to which
this ACL applies.

v How to Set Access Control on a User

1. Create an instance of the Solaris_UserAcl class. For example:
/* Create a namespace object initialized with root\security
(name of namespace) on the local host. */
CIMNameSpace cns = new CIMNameSpace(", "root\security");

/I Connect to the root\security namespace as root.
cc = new CIMClient(cns, "root", "root_password");

/I Get the Solaris_UserAcl class
cimclass = cc.getClass(new CIMObjectPath("Solaris_UserAcl");

/I Create a new instance of the Solaris_UserAcl
class ci = cimclass.newlnstance();

2. Set the capability property to the desired access rights. For example:

/* Change the access rights (capability) to read/write for user Guest
on objects in the root\molly namespace.*/

ci.setProperty(“"capability”, new CIMValue(new String("rw"));
ci.setProperty("nspace”, new CIMValue(new String("root\imolly"));
ci.setProperty("username”, new CIMValue(new String("guest"));

3. Update the instance. For example:

/I Pass the updated instance to the CIM Object Manager
cc.setinstance(new CIMObjectPath(), ci);

Administering Security 45

The Solaris_NamespaceAcl Class

The Solaris_NamespaceAcl! extends the Solaris_Acl base class, from which it
inherits the string property capability with a default value r (read-only for GUESTand
all users). The Solaris_NamespaceAcl| class defines the following key property.

Property Data Type Purpose

nspace string Identifies the namespace to
which this access control list
applies. Only one instance of
the namespace ACL can
exist in a namespace.

v How to Set Access Control on a Namespace

1. Create an instance of the Solaris_namespaceAcl class. For example:

/* Create a namespace object initialized with root\security
(name of namespace) on the local host. */
CIMNameSpace cns = new CIMNameSpace(

, "root\security");

/I Connect to the root\security namespace as root.
cc = new CIMClient(cns, "root", "root_password");

/I Get the Solaris_namespaceAc! class
cimclass = cc.getClass(new CIMObjectPath("Solaris_namespaceAcl");

/I Create a new instance of the Solaris_namespaceAcl
class ci = cimclass.newlnstance();

2. Set the capability property to the desired access rights. For example:

/* Change the access rights (capability) to read/write

to the root\molly namespace. */

ci.setProperty(“"capability”, new CIMValue(new String("rw"));
ci.setProperty("nspace”, new ClMValue(new String("root\imolly"));

3. Update the instance. For example:

/I Pass the updated instance to the CIM Object Manager
cc.setinstance(new CIMObjectPath(), ci);

46 Solaris WBEM Services Administrator’'s Guide ¢ January 2001

CHAPTER 4

MOF Compiler

This chapter describes the Managed Object Format (MOF) Compiler, including the
following topics.

m About the MOF Compiler
m The mofcomp Command

m Compiling a MOF File

About the MOF Compiler

The Managed Object Format (MOF) Compiler parses a file containing MOF
statements, converts the classes and instances defined in the file to Java classes, and
adds the Java classes to the CIM Object Manager Repository, a central storage area
for management data. The compiler loads the Java classes into the default
namespace, root\cimv2 , unless a #pragma namespace(* namespace_path”)
statement appears in the MOF file.

The mofcomp command, which starts the MOF compiler, is executed before
installation to compile MOF files that describe the CIM and Solaris Schemas. The
CIM Schema is a collection of class definitions used to represent managed objects
that occur in every management environment. The Solaris Schema is a collection of
class definitions that extend the CIM Schema and represent managed objects in a
typical Solaris operating environment.

MOF is a language for defining CIM classes and instances. MOF files are ASCII text
files that use the MOF language to describe CIM objects. A CIM object is a computer
representation or model of a managed resource, such as a printer, disk drive, or CPU.

Many sites store information about managed resources in MOF files. Because MOF
can be converted to Java, Java applications that can run on any system with a Java

47

Virtual Machine can interpret and exchange this information. You can also use the
mofcomp command to compile MOF files at any time after installation.

Note - If you recompile the CIM_Schema23.mof file or the
Solaris_Schemal.0.mof file, you must change to become root user before
compiling. For example:

% /usr/sadm/bin/mofcomp -v -u root -p [root-password] /usr/sadm/
mof/Solaris_Schemal.0.mof

The mofcomp Command

The mofcomp command compiles the specified MOF file into CIM classes and
instances that are stored in the CIM Object Manager Repository as Java classes and
passed to the CIM Object Manager.

You must run the mofcomp command as root or as a user with write access to the
namespace in which you are compiling.

/usr/sadm/bin/mofcomp [-help] [-v] [-sc] [-si] [-sq] [-version][-c
cimom_hostname] [-u username] [-p password] file

—help List the arguments to the mofcomp command.
—c cimom_hostname Specify a system running the CIM Object Manager.
-p password Specify a password for connecting to the CIM Object

Manager. Use this option for compilations that require
privileged access to the CIM Object Manager. If you
specify both —p and -u, you must type the password on
the command line, which can pose a security risk. A more
secure way to specify a password is to specify —u but not
—p, so that the compiler will prompt for the password.

-sc Run the compiler with the set class option, which updates
a class if it exists and contains no instances, and returns
an error if the class does not exist. If you do not specify
this option, the compiler adds a CIM class to the
connected namespace, and returns an error if the class
already exists.

48 Solaris WBEM Services Administrator’'s Guide ¢ January 2001

-si Run the compiler with the set instance option, which
updates an instance if it exists, and returns an error if the
instance does not exist. If you do not specify this option,
the compiler adds a CIM instance to the connected
namespace, and returns an error if the instance already
exists.

-sq Run the compiler with the set qualifier types option,
which updates a qualifier type if it exists, and returns an
error if the qualifier type does not exist. If you do not
specify this option, the compiler adds a CIM qualifier
type to the connected namespace, and returns an error if
the qualifier type already exists.

—-u username Specify user name for connecting to the CIM Object
Manager. Use this option for compilations that require
privileged access to the CIM Object Manager. If you
specify both —-p and -u, you must type the password on
the command line, which can pose a security risk. A more
secure way to specify a password is to specify —u but not
—p, so that the compiler will prompt for the password.

-V Run the compiler in verbose mode, which displays
compiler messages.

-version Display the version of the MOF compiler.

The mofcomp command will exit with 0 upon success and a positive integer upon
failure.

Compiling a MOF File

You can compile a MOF file with or without a .mof extension. The MOF files that
describe the CIM and Solaris Schemas are located in /usr/sadm/mof

How to Compile a MOF File

1. To run the MOF Compiler with no options, type the following:
mofcomp filename

MOF Compiler 49

50

For example,
mofcomp /usr/sadm/mof/Solaris_Application1.0.mof

The MOF file is compiled into the CIM Object Manager Repository.

Security Advisory

If you run the mofcomp command with the —p option or —u and —p options, and you
include a password on the command line, another user can run the ps command or
the history command to see your password.

Note - If you run a command that requires you to provide your password,
immediately change your password after running the command.

The following examples show unsafe (insecure) usage, running the mofcomp
command with its —p option and then with its —up options:

% mofcomp -p Log8Rif
% mofcomp -up molly Log8Rif

You should change your password immediately after running the mofcomp
command in this way.

Solaris WBEM Services Administrator’'s Guide ¢ January 2001

CHAPTER 5

System Logging

Logging is a service that enables WBEM administrators to track system events to
determine how they occurred. You might want to record events such as the
inaccessibility of a serial port, an error message generated by the mounting of a file
system, or a system disk having reached capacity.

This chapter covers the following topics:
m About Logging

m Log Files

m Log Classes

m Using the APIs to Enable Logging

m Viewing Log Data

About Logging

The logging service records all actions that the service provider has been
programmed to return and that are completed by Solaris WBEM Services
components. Informational content and errors can be recorded to a log. For example,
if a user disables a serial port, this information can be logged automatically by a
serial port provider. Or, if a system error or other failure occurs, the administrator
can check the log record to trace the cause of the occurrence.

All components, applications, and providers start logging automatically, in response
to system events. For example, the CIM Object Manager automatically logs events
after it is installed and started.

You can set up logging for applications and providers that you write for the WBEM
environment. For information, see “Using the APIs to Enable Logging” on page 55.

51

You can view log data in the Solaris Management Console (SMC) Log Viewer to
debug the logging functionality that you have set up. For more information on the
SMC, see the man page smc(1M).

Log Files

When you set up an application or a provider to log events, its events are recorded
in log files. All log records are stored in the path: /var/sadm/wbem/logr . Log files
use the following naming convention:

wbem_log.#

where # is a number appended to indicate the version of the log file. A log file
appended with a .1 , such as wbem_log.1 , is the most recently saved version. A log
file appended with a .2 is the next oldest version. Larger file extensions, for
example, wbem_log.16 , indicate older versions of the file. Previous versions of the
log file and the most recent version co-exist as an archive in /usr/sadm/wbem/log

Log files are saved and renamed with a .1 filename extension when one of the
following two conditions are met:

m The current file reaches the file size limit specified by the
Solaris_LogServiceProperties class. Default values are set in the /usr/
sadm/lib/wbem/WbemServices.properties file.

For information about how the properties of the
Solaris_LogServiceProperties class control how a log file is used, see “Log
File Rules” on page 52.

m The clearLog() method of the Solaris_LogService class is invoked on the
current log file.
For information about the Solaris_LogService class and its methods, see
“Solaris_LogService Class” on page 54.

Log File Rules

The Solaris_LogServiceProperties class is defined in
Solaris_Corel.0.mof . The Solaris_LogServiceProperties class has
properties that control the following attributes of a log file:

m Directory where the log file is written
m Name of the log file

m Size allowed for a log file before it is saved and renamed with a .1 file extension.

52 Solaris WBEM Services Administrator’'s Guide ¢ January 2001

m Number of log files you can have in the archive

m Ability to write log data to syslog , the default logging system of the Solaris
operating environment

To specify any of these attributes for an application that writes data to a log file,
create a new instance of Solaris_LogServiceProperties and set the values of
its associated properties. See Code Example 5-2 for detailed information about how
to set the property values of the new instance.

Log File Format

The logging service provides three categories of log records: application, system, and
security. Log records may be informational, or may record data derived from errors
or warnings. A standard set of fields are defined for the data that can be presented in
logs. Logs do not necessarily use all the fields, however. For example, an
informational log may provide a brief message describing an event. An error log
may provide a more detailed message.

Some log data fields are required to identify data in the CIM Repository. These fields
are properties flagged with a read-only key qualifier in the Solaris_LogRecord

class. You cannot set the values of these fields. You can, however, set the values of
any of the following fields in your log files:

m Category - Type of log record
m Severity - Severity of conditions that caused data to be written to a log file
m AppName- Name of the application from which the data was obtained

m UserName — Name of the individual who was using the application when log data
was generated

m ClientMachineName - Name of the computer on which an incident occurred
that generated log data

m ServerMachineName - Name of the server on which an incident occurred that
generated log data

m SummaryMessage — Brief message describing the occurrence
m DetailedMessage - Detailed message describing the occurrence

m Data - Context information that applications and providers can present to
interpret a log message

System Logging 53

Log Classes

Logging involves the use of two Solaris Schema classes: Solaris_LogRecord and
Solaris_LogService

Solaris_LogRecord Class

The Solaris_LogRecord class is defined in Solaris_Corel.0.mof to model an
entry in a log file. When an application or provider calls the Solaris_LogRecord
class in response to an event, the Solaris_LogRecord class causes all data
generated by the event to be written to a log file. To see the definition of the
Solaris_LogRecord class as part of the Solaris Provider, use a text editor to view
the Solaris_Corel.0.mof file. The Solaris_Corel.0.mof file is located in /
usr/sadm/mof/

The Solaris_LogRecord class uses a vector of properties and key qualifiers to
specify attributes of the events, system, user, and application or provider that
generate data. Read-only qualifier values are generated transparently for use between
the application and the CIM Repository. For example, the value RecordID uniquely
identifies the log entry but is not displayed as part of the log format when you view
generated data.

You can set the values of writable qualifier values. For example, you can set the
qualifier values of properties such as ClientMachineName and
ServerMachineName , which identify the system on which an event occurs.

When the SysLogFlag property is set to true, then a detailed message of the log
record is automatically sent to the syslog daemon on Solaris systems.

Solaris_LogService Class

The Solaris_LogService class controls the operation of the logging service and
defines the ways in which log data is handled. This class has a set of methods that
an application can use to distribute data about a particular event to the CIM Object
Manager from the issuing application. The data becomes a trigger that generates a
response from the CIM Object Manager, such as a retrieval of data from the CIM
Repository.

The Solaris_LogService class has the following methods:
m clearLog - Saves and renames a current log file or deletes a saved log file
m getNumRecords - Returns the number of records in a particular log file

m listLogFiles — Returns a list of all log files stored in /usr/sadm/wbem/log

54 Solaris WBEM Services Administrator’'s Guide ¢ January 2001

m getCurrentLogFileName — Returns the name of the most recent log file

m getNumLogFiles - Returns the number of log files stored in /usr/sadm/wbem/
log

m getLogFileSize — Returns the size, in megabytes, of a particular log file

m getSyslogSwitch — Enables log data to be sent to syslog , the logging service

of the Solaris operating environment

m getLogStorageName - Returns the name of the host computer or device where
log files are stored

m getLogFileDir — Returns the path and name of the directory where log files are
stored

The Solaris_LogServiceProperties class lets you set logging properties. See
“Setting Logging Properties” on page 61.

You can view the definition of the Solaris_LogService class in the
Solaris_Corel.0.mof file, which is located in /usr/sadm/mof/

Using the APIs to Enable Logging

You can view log file contents in the Solaris Management Console (SMC) Log
Viewer. For more information on the Solaris Management Console, see the man page
smc(1M).

You can also develop your own log viewer if you prefer to view log files in a
customized manner. You can use the WBEM logging APIs to develop a logging
program which will:

m Write data from an application to a log file
m Read data from a log file to your log viewer

m Set logging properties that specify how logging is handled

Writing Data to a Log File
Enabling an application to write data to a log file involves the following main tasks:
m Creating a new instance of the Solaris_LogRecord class

m Specifying the properties that will be written to the log file and setting values for
the property qualifiers

System Logging 55

m Setting the new instance and properties to print

v How to Create an Instance of.
Solaris_LogRecord To Write Data

1. Import all the necessary Java classes. The classes listed in Code Example 5-1
are the minimum classes that are required.

CODE EXAMPLE 5-1 Creating an Instance of Solaris_LogRecord To Write Data

import java.rmi.*;

import com.sun.wbem.client.CIMClient;
import com.sun.wbem.cim.CIMInstance;
import com.sun.wbem.cim.CIMValue;
import com.sun.wbem.cim.CIMProperty;
import com.sun.wbem.cim.CIMNameSpace;
import com.sun.wbem.cim.CIMObjectPath;
import com.sun.wbem.cim.CIMClass;
import com.sun.wbem.cim.CIMException;
import com.sun.wbem.solarisprovider.*;
import java.util.*;

2. Declare the public class CreateLog and the following values:

m CIMClient instance
m CIMObjectPath instance
m CIMNameSpace instance

public class CreatelLog {
public static void main(String args[]) throws CIMException {

if (args.length = 3) {
System.out.printin("Usage: CreateLog host username password");
System.exit(1);

}

CIMClient cc = null;

CIMObjectPath cop = null;

try {
CIMNameSpace cns = new CIMNameSpace(args[0]);
cc = new CIMClient(cns, args[l1], args[2]);

56 Solaris WBEM Services Administrator’'s Guide ¢ January 2001

3. Specify the vector of properties to be returned

the qualifiers.

Vector keys = new Vector();

CIMProperty logsvcKey;

logsvcKey = new CIMProperty(“category");
logsvcKey.setValue(new CIMValue(new Integer(2)));
keys.addElement(logsvcKey);

logsvcKey = new CIMProperty("severity");
logsvcKey.setValue(new CIMValue(new Integer(2)));
keys.addElement(logsvcKey);

logsvcKey = new CIMProperty("AppName");
logsvcKey.setValue(new CIMValue("SomeApp"));
keys.addElement(logsvcKey);

logsvcKey = new CIMProperty("UserName");
logsvcKey.setValue(new CIMValue("molly"));
keys.addElement(logsvcKey);

logsvcKey = new CIMProperty("ClientMachineName");
logsvcKey.setValue(new CIMValue("dragonfly"));
keys.addElement(logsvcKey);

logsvcKey = new CIMProperty("ServerMachineName");
logsvcKey.setValue(new CIMValue("spider"));
keys.addElement(logsvcKey);

logsvcKey = new CIMProperty("SummaryMessage");
logsvcKey.setValue(new ClIMValue("brief_description™));
keys.addElement(logsvcKey);

logsvcKey = new CIMProperty("DetailedMessage");
logsvcKey.setValue(new CIMValue("detailed_description"));
keys.addElement(logsvcKey);

logsvcKey = new CIMProperty("data");

. Set values for the properties of

logsvcKey.setValue(new ClIMValue("Oxfe O0x45 Oxae 0xda"));

keys.addElement(logsvcKey);

logsvcKey = new CIMProperty("SyslogFlag");
logsvcKey.setValue(new ClMValue(new Boolean(true)));
keys.addElement(logsvcKey);

4. Declare the new instance of the CIMObjectPath class for the log record.

CIMObjectPath logreccop = new CIMObjectPath("Solaris_LogRecord", keys);

5. Declare the new instance of Solaris_LogRecord . Set the vector of properties

to write to a file.

CIMInstance ci = new ClIMinstance();
ci.setClassName("Solaris_LogRecord");
ci.setProperties(keys);
//System.out.printin(ci.toString());
cc.setlnstance(logreccop,ci);

}

(continued)

System Logging 57

(Continuation)

catch (Exception e) {
System.out.printin("Exception: "+e);

e.printStackTrace();

}

6. Close the session after data has been written to the log file.

/I close session.
if(cc = null) {
cc.close();

}

}
}

Reading Data From a Log File

Enabling an application to read data from a log file to a log viewer involves the
following tasks:

m Enumerating instances of the Solaris_LogRecord class
m Getting the desired instance

m Printing properties of the instance to an output device, typically a user interface
for the log viewer

v How to Get an Instance (i)f the
Solaris_LogRecord Class and Read Data

1. Import all the necessary Java classes. The classes listed below are the minimum
required.

58 Solaris WBEM Services Administrator’'s Guide ¢ January 2001

import
import
import
import
import
import
import
import
import
import
import
import

java.rmi.*;
com.sun.wbem.client.CIMClient;
com.sun.wbem.cim.CIMInstance;
com.sun.wbem.cim.CIMValue;
com.sun.wbem.cim.CIMProperty;
com.sun.wbem.cim.CIMNameSpace;

com.sun.wbem.cim.CIMObjectPath;
com.sun.wbem.cim.CIMClass;
com.sun.wbem.cim.CIMException;
com.sun.wbem.solarisprovider.*;
java.util.*;

java.util.Enumeration;

2. Declare the class ReadLog.

public

class ReadlLog

public static void main(String args[]) throws
CIMException

{

if (args.length = 3)
{

System.out.printin("Usage: ReadlLog host username
password");

3. Set

System.exit(1);

the CIMClient , CIMObjectPath

ReadLog class.

}

CIMClient cc = null;
CIMObjectPath cop = null;

CIMNameSpace cns = new CIMNameSpace(args[0]);

try {
cc =

new CIMClient(cns, args[1], args[2]);

, and CIMNameSpace values of the

cop = new CIMObjectPath("Solaris_LogRecord");

4. Enumerate the instances of Solaris_LogRecord

System Logging

59

Enumeration e = cc.enumlinstances(cop, true);
for (; e.hasMoreElements();) {

5. Send the property values to an output device.

System.out.printin(" ");
CIMObjectPath op = (CIMObjectPath)e.nextElement();
CIMInstance ci = cc.getinstance(op);
System.out.printin("Record ID : " +

(((Long)ci.getProperty("RecordID").getValue().

getValue()).longValue()));

System.out.printin("Log filename : " +
((string)ci.getProperty("FileName").getValue().
getValue()));

int categ = (((Integer)ci.getProperty("category").
getValue().getValue()).intValue());

if (categ == 0)

System.out.printin("Category : Application Log");

else if (categ == 1)

System.out.printin("Category : Security Log");

else if (categ == 2)

System.out.printin("Category : System Log");

int severity = (((Integer)ci.getProperty
("severity").getValue().getValue()).intValue());

if (severity == 0)

System.out.printin("Severity : Informational”);

else if (severity == 1)
System.out.printin("Severity : Warning Log!");
else if (severity == 2)

System.out.printin("Severity : Error!!");

System.out.printin("Log Record written by :* +
((string)ci.getProperty("AppName").getValue().
getValue()));

System.out.printin("User : " + ((String)ci.
getProperty("UserName").getValue().getValue()));

System.out.printin("Client Machine : " + ((String)ci.
getProperty(“"ClientMachineName").getValue().getValue()));

System.out.printin("Server Machine : " + ((String)ci.
getProperty("ServerMachineName").getValue().getValue()));

System.out.printin("Summary Message : " + ((String)
ci.getProperty("SummaryMessage").getValue().getValue()));

System.out.printin("Detailed Message : " + ((String)
ci.getProperty("DetailedMessage”).getValue().getValue()));

System.out.printin("Additional data : " + ((String)
ci.getProperty("data").getValue().getValue()));

(continued)

60 Solaris WBEM Services Administrator’'s Guide ¢ January 2001

(Continuation)

boolean syslogflag =((Boolean)ci.getProperty("syslogflag").getValue().
getValue()).booleanValue();
if (syslogflag == true) {

System.out.printin("Record was written to syslog as well");

} else {

System.out.printin("Record was not written to

syslog");
}

System.out.println(" ");

6. Return an error message to the user if an error condition occurs.

catch (Exception e) {
System.out.printin("Exception: "+e);
e.printStackTrace(); }

7. Close the session when the data has been read from the file.

/I close session.
if(cc = null) {
cc.close();

}

}
}

Setting Logging Properties

You can create an instance of the Solaris_LogServiceProperties class and set
property values for the instance to control how your application or provider handles
logging. The following code example shows how to set logging properties. Properties
are stored in the /usr/sadm/lib/wbem/WbemServices.properties file.

System Logging 61

CODE EXAMPLE 5-2 Setting Logging Properties

public class SetProps {
public static void main(String args[]) throws CIMException {

if (args.length = 3) {
System.out.printin("Usage: SetProps host username password");
System.exit(1);

}

CIMClient cc = null;

try {
CIMNameSpace cns = new CIMNameSpace(args[0]);
cc = new CIMClient(cns, args[l1], args[2]);

CIMObjectPath logpropcop = new CIMObjectPath("Solaris_Log
ServiceProperties");

Enumeration e = cc.enuminstances(logpropcop, true);
for (; e.hasMoreElements();) {
CIMObjectPath op = (CIMObjectPath)e.nextElement();
CIMInstance ci = cc.getinstance(op);
ci.setProperty("Directory”, new CIMValue("/tmp/barl/"));
ci.setProperty("FileSize", new CIMValue("10"));
ci.setProperty("NumFiles", new CIMValue("2"));
ci.setProperty("SyslogSwitch", new CIMValue("off"));
cc.setlnstance(logpropcop,ci);

}

catch (Exception e) {
System.out.printin("Exception: "+e);
e.printStackTrace();

}

/I close session.
if(cc = null) {

cc.close();
}

}

Viewing Log Data

You can view all details of a log record in the Solaris Management Console (SMC)
Log Viewer, an application that provides a graphical user interface for viewing
recorded data. For more information on the SMC, see the man page smc(1M).

62 Solaris WBEM Services Administrator’'s Guide ¢ January 2001

Starting Log Viewer

After you have created a log record, you can start the SMC and then its Log Viewer.

How to Start SMC and Log Viewer

1. Change to the location of the SMC invocation command by typing the
following:

cd /usr/sbhin

2. Start SMC by typing the following command;
smc

3. In the Navigation panel, double-click This Computer (or single-click the
expand/compress icon next to it) to expand the tree beneath it. Double-click
System Status and the Log Viewer icon will be displayed.

4. Click the Log Viewer icon to start the application.

System Logging 63

'Il:r.l'-d:lﬁ.-l_ :

Lot
¥ I Srsteen States g IVIEMOAFE . localhost MK SMC Sereor Spstemlog SHC Serer .
oo Lo TOMIGMOANRT. Iecalhedt MR SMC Server Spitemiog S serer
T R Viwwar Loy WOVIEMG HESS. loclhest M/ Aubkenbiab. Secerlty by Session ope.
::m'mm 1 IOAEM0 BSEL. localheit MM SHE Server Sritimlog SHC s
o B Storage Lo IOCEEAN D00 localhost MOh SMC Sereer System b SHC serer
& [Davicai and b dwine Mo BOSRAM00 RRAF. localhest MR ML Sereer Epitesmilog BHC sereer

Infarmatian

@ Use Log Viewer 5o view epplication end commend Ene potioss {for sxemple, session open, sesgion
Logigwer CJO¥R BUthentication sucomsa, and suthentication feilire Jand to mansgs log fies

F— (1 you sedectied Log Viewer 1n the right pane double-chde Log Viewer to stast the Log Veewer fool
Double=cick a log enTy o disply w5 dems

Figure 5-1 Solaris Management Console, with Log Viewer Selected

64 Solaris WBEM Services Administrator’s Guide ¢ January 2001

CHAPTER 6

CIM Exception Messages

This chapter describes the exception messages generated by the CIM Object Manager
in the Solaris WBEM Services, including the following topics.

m How CIM Exceptions are Generated
m Parts of CIM Exceptions
m Finding Information About CIM Exceptions

m Generated CIM Exceptions

How CIM Exceptions are Generated

The CIM Object Manager generates exception messages that are used by all the
clients. The MOF Compiler appends a line to the exception indicating where in a
.mof file the error occurred. From these exceptions, client applications can generate
error messages that are more meaningful to the end-user.

CIM clients can be used as XML or RMI clients. Currently, XML supports only a
subset of these exceptions. If you choose to use an XML client, be aware that you
may not receive all the information contained in the exception message, and that you
may loose parameter information.

Parts of CIM Exceptions

CIM exception messages are made up of the following parts:

65

m Unique identifier — Character string that differentiates the error message from
other error messages

m One or more parameters — Placeholders for the specific classes, methods, and
qualifiers that are cited in the exception message

Exception Message Example

For example, the MOF Compiler may return the following exception message:
REF_REQUIRED
CIM_Docked
where
m REF_REQUIREDS the unique identifier.

m CIM_Docked is the parameter. A parameter can be replaced with the name of any
appropriate class, property, method, or qualifier.

This exception message can be turned into a more user-friendly message such as:
REF_REQUIRED

= Association class CIM_Docked needs
at least two refs. Error in line 12.

Finding Information About CIM
Exceptions

The following section provides a detailed explanation of each CIM exception. The
exception messages are organized by unique identifiers in alphabetical order. For each
exception message, the following types of information are provided, when applicable;

m Unique identifier, displayed as a heading
m Description of the parameters used in the exception message

m Example of the exception or message as it is displayed to a user, often the output
of the MOF compiler or the CIM Object Manager

m Cause, or reason why the exception message was generated, and background or
reference information that is helpful for understanding the error message

66 Solaris WBEM Services Administrator’'s Guide ¢ January 2001

m Solution, including steps you can take to resolve the error are provided when
available

Generated CIM Exceptions

The following section lists and describes the CIM exceptions generated by the MOF
Compiler, CIM Object Manager, and WBEM client applications.

ABSTRACT_INSTANCE

Description

The ABSTRACT_INSTANCEXxception has one parameter, which is the name of the
abstract class.

Example
ABSTRACT_INSTANCE Abstract class ExampleClass cannot have instances.
Cause

A client application tried to create an instance for the specified class. However, the
specified class is an abstract class, and abstract classes cannot have instances.

Solution

Remove the programmed instances, as the client application cannot create such
instances.

CHECKSUM_ERROR

Description

The CHECKSUM_ERR@Rception has no parameters.
Example

CHECKSUM_ERRGRChecksum not valid.

Cause

The message could not be sent because it was damaged or corrupted. The damage
could have occurred accidentally in transit or by a malicious third party.

Solution

Resend the message.

CIM Exception Messages 67

Note - This error message is displayed when the CIM Object Manager receives an
invalid checksum. A checksum is the number of bits in a packet of data passed
over the network. This number is used by the sender and the receiver of the
information to ensure that the transmission is secure and that the data has not
been corrupted or intentionally modified during transit.

An algorithm is run on the data before transmission, and the checksum is
generated and included with the data to indicate the size of the data packet.
When the message is received, the receiver can recompute the checksum and
compare it to the sender’s checksum. If the checksums match, the transmission
was secure and the data was not corrupted or modified.

CIM_ERR_ACCESS_DENIED

Description

The CIM_ERR_ACCESS_DENIEBxception does not have parameters.
Example

CIM_ERR_ACCESS_DENIEB Insufficient privileges.

Cause

This exception is displayed when a user does not have the appropriate privileges
to complete an action.

Solution

See your WBEM administrator to request privileges to complete the operation.

CIM_ERR_FAILED

Description

The CIM_ERR_FAILED exception has one parameter which is replaced by a
character string, a message that explains the error condition and its possible cause.

Example
CIM_ERR_FAILED=Invalid entry.
Cause

The CIM_ERR_FAILED exception is a generic message that can be displayed for a
large number of different error conditions.

Solution

Because CIM_ERR_FAILED is a generic exception, many types of conditions can
cause the message. The solution varies depending on the error condition.

68 Solaris WBEM Services Administrator’'s Guide ¢ January 2001

CIM_ERR_INVALID_PARAMETER

Description

The CIM_ERR_INVALID_PARAMETERXception has one parameter which gives
more information about the parameter that caused the error.

Example

CIM_ERR_INVALID_PARAMETER: Class System has no schema prefix.

Cause

An operation was performed and the parameter was invalid. For example, a class
was created without providing a schema prefix in front of the class name. The
Common Information Model requires that all classes are provided with a schema
prefix. For example, classes developed as part of the CIM Schema require a CIM
prefix; CIM_Container . Classes developed as part of the Solaris Schema require
a Solaris prefix: Solaris_System

Solution

Provide the correct parameter. In the example above, the correct parameter would
be CIM_Container . Find all instances of the class missing the prefix and replace
them with the class name and prefix.

CIM_ERR_INVALID_SUPERCLASS

Description
The parameter CIM_ERR_INVALID_SUPERCLASSas two parameters:

m The name of the specified super class.

m The name of the sub class which caused the error.

Example

CIM_ERR_INVALID_SUPERCLASS-= Superclass CIM_Chassis for class
CIM_Container does not exist.

Cause

A class is specified to belong to a particular superclass, but the superclass does
not exist. The specified superclass may be misspelled, or a non-existent superclass
name may have been specified accidentally in place of the intended superclass
name. Or, the superclass and the subclass may have been interpolated: the
specified superclass actually may be a subclass of the specified subclass. In the
previous example, CIM_Chassis is specified as the superclass of

CIM_Container , but CIM_Chassis is a subclass of CIM_Container

Solution

CIM Exception Messages 69

Check the spelling and the name of the superclass to ensure it is correct. Ensure
that the superclass exists in the namespace.

CLASS_REFERENCE

Description
The CLASS_REFERENCEXception has two parameters.
m The name of the class that contains the reference.

m The name of the reference property.

Example

CLASS_REFERENCE Class SolarisExamplel must be declared as an
association to have reference SolarisExample2

Cause

A class has been defined with a reference property. However, the class is not an
association. A class can only be defined to have a reference property if it is an
association.

Solution

Declare the class as an association by using the —association qualifier.

INVALID_CREDENTIAL

Description

The INVALID_CREDENTIAL exception does not have parameters.
Example

INVALID_CREDENTIAL = Invalid credentials.

Cause

This exception is displayed when an invalid password has been entered.
Solution

Retype the command and type the correct password.

INVALID_QUALIFIER_NAME

70

Description

The INVALID_QUALIFIER_NAME exception has one parameter which is replaced
by the Managed Object Format notation that depicts an empty qualifier name.

Example

Solaris WBEM Services Administrator’'s Guide ¢ January 2001

KEY_OVERRIDE

KEY_REQUIRED

INVALID_QUALIFIER_NAME = Invalid qualifier name “ “

Cause

A qualifier was created for a property, but a qualifier name was not specified.
Solution

Include the qualifier name in the context of the qualifier definition.

Description
The KEY_OVERRIDEexception has two parameters:
m The overriding property.

m The overridden property.

Example

KEY_OVERRIDE= Non-key Qualifier SolarisCard cannot override key Qualifier
SolarisLock

Cause

The client has defined a class where a non-Key property is trying to override a
Key property. In CIM, all concrete classes require at least one Key property, and a
non-Key class cannot override a class that has a Key.

Solution

The operation is