X Sun

microsystems

Aslan-Language Support in the
Solaris Operating Environment

Sun Microsystems, Inc.
901 San Antonio Road
Palo Alto, CA 94303-4900
U.S.A.

Part Number 806-5582
May 2000

Copyright 2000 Sun Microsystems, Inc. 901 San Antonio Road, Palo Alto, California 94303-4900 U.S.A. All rights reserved.

This product or document is protected by copyright and distributed under licenses restricting its use, copying, distribution, and
decompilation. No part of this product or document may be reproduced in any form by any means without prior written authorization of
Sun and its licensors, if any. Third-party software, including font technology, is copyrighted and licensed from Sun suppliers.

Parts of the product may be derived from Berkeley BSD systems, licensed from the University of California. UNIX is a registered
trademark in the U.S. and other countries, exclusively licensed through X/Open Company, Ltd.

Sun, Sun Microsystems, the Sun logo, docs.sun.com, AnswerBook, AnswerBook2, and Solaris are trademarks, registered trademarks, or
service marks of Sun Microsystems, Inc. in the U.S. and other countries. All SPARC trademarks are used under license and are trademarks
or registered trademarks of SPARC International, Inc. in the U.S. and other countries. Products bearing SPARC trademarks are based upon
an architecture developed by Sun Microsystems, Inc.

The OPEN LOOK and Sun™ Graphical User Interface was developed by Sun Microsystems, Inc. for its users and licensees. Sun
acknowledges the pioneering efforts of Xerox in researching and developing the concept of visual or graphical user interfaces for the
computer industry. Sun holds a non-exclusive license from Xerox to the Xerox Graphical User Interface, which license also covers Sun’s
licensees who implement OPEN LOOK GUIs and otherwise comply with Sun’s written license agreements.

Federal Acquisitions: Commercial Software—-Government Users Subject to Standard License Terms and Conditions.
DOCUMENTATION IS PROVIDED “AS 1S” AND ALL EXPRESS OR IMPLIED CONDITIONS, REPRESENTATIONS AND WARRANTIES,
INCLUDING ANY IMPLIED WARRANTY OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR

NON-INFRINGEMENT, ARE DISCLAIMED, EXCEPT TO THE EXTENT THAT SUCH DISCLAIMERS ARE HELD TO BE LEGALLY
INVALID.

Copyright 2000 Sun Microsystems, Inc. 901 San Antonio Road, Palo Alto, Californie 94303-4900 Etats-Unis. Tous droits réservés.

Ce produit ou document est protégé par un copyright et distribué avec des licences qui en restreignent I'utilisation, la copie, la
distribution, et la décompilation. Aucune partie de ce produit ou document ne peut étre reproduite sous aucune forme, par quelque
moyen gue ce soit, sans I'autorisation préalable et écrite de Sun et de ses bailleurs de licence, s’il y en a. Le logiciel détenu par des tiers, et
qui comprend la technologie relative aux polices de caractéres, est protégé par un copyright et licencié par des fournisseurs de Sun.

Des parties de ce produit pourront étre dérivées du systéme Berkeley BSD licenciés par I'Université de Californie. UNIX est une marque
déposée aux Etats-Unis et dans d’autres pays et licenciée exclusivement par X/Open Company, Ltd.

Sun, Sun Microsystems, le logo Sun, docs.sun.com, AnswerBook, AnswerBook2, et Solaris sont des marques de fabrique ou des marques
déposées, ou marques de service, de Sun Microsystems, Inc. aux Etats-Unis et dans d’autres pays. Toutes les marques SPARC sont utilisées
sous licence et sont des marques de fabrique ou des marques déposées de SPARC International, Inc. aux Etats-Unis et dans d’autres pays.
Les produits portant les marques SPARC sont basés sur une architecture développée par Sun Microsystems, Inc.

L’interface d’utilisation graphique OPEN LOOK et Sun™ a été développée par Sun Microsystems, Inc. pour ses utilisateurs et licenciés.
Sun reconnait les efforts de pionniers de Xerox pour la recherche et le développement du concept des interfaces d’utilisation visuelle ou
graphique pour I'industrie de I'informatique. Sun détient une licence non exclusive de Xerox sur I'interface d’utilisation graphique Xerox,
cette licence couvrant également les licenciés de Sun qui mettent en place I'interface d’utilisation graphique OPEN LOOK et qui en outre
se conforment aux licences écrites de Sun.

CETTE PUBLICATION EST FOURNIE “EN L’ETAT” ET AUCUNE GARANTIE, EXPRESSE OU IMPLICITE, N'EST ACCORDEE, Y
COMPRIS DES GARANTIES CONCERNANT LA VALEUR MARCHANDE, L’APTITUDE DE LA PUBLICATION A REPONDRE A UNE
UTILISATION PARTICULIERE, OU LE FAIT QU’ELLE NE SOIT PAS CONTREFAISANTE DE PRODUIT DE TIERS. CE DENI DE
GARANTIE NE S’APPLIQUERAIT PAS, DANS LA MESURE OU IL SERAIT TENU JURIDIQUEMENT NUL ET NON AVENU.

9] @O
Adobe PostScript Please
Recycle

Contents

Preface 5

Solaris Operating Environment in International Markets 9
1.1 The Need for Global Software Development 9
1.2 Software Internationalization 9
1.3 Benefits of Internationalized Software 11
Internationalized Software for the Solaris Operating Environment 13
2.1 Solaris Language-Support Framework 13
2.2 Locale 14
2.3 Interface Localization 14
2.4 Codeset Independence 14
Asian Language Overview 17
3.1 Chinese 17
3.2 Japanese 18
3.3 Korean 19
Technical Considerations 21
4.1 Asian-Specific Architecture 21
4.1.1 Input Methods 22
4.1.2 Character Conversion 23

4.1.3 Input-Method Server 24

414 Font Editor 25
4.15 User-Defined Character Tool 25
5. Common Development Issues 27
51 Casing 27
5.2 Sort Order 27
53 Text Manipulation 28
54 Fonts 29
A. Product Overview 31
A.1 Common Desktop Environment (CDE) Deskset 31
A.2 Simplified Chinese Solaris 8 Operating Environment Features 33
A.3 Traditional Chinese Solaris 8 Operating Environment Features 35
A.4 Japanese Solaris 8 Operating Environment Features 37
A5 Korean Solaris 8 Operating Environment Features 39

A.5.1 Korean Dictionary Tools 41

Asian-Language Support in the Solaris Operating Environment ¢ May 2000

Preface

The Asian-Language Support in the Solaris™ Operating Environment white paper
presents information and software features for internationalizing software in
Asian-language markets.

Who Should Use This Book

This white paper is intended for software developers who are interested in
developing internationalized software for the Asian-language Solaris™ operating
environment. This white paper is part of a 4—part series on internationalization for
Solaris software developers. The four internationalization white papers are:

m Asian-Language Support in the Solaris™ Operating Environment
m Complex Text Layout Language Support in the Solaris™ Operating Environment
m Unicode Support in the Solaris™ Operating Environment

m Euro Currency Support in the Solaris™ Operating Environment

How This Book Is Organized

Chapter 1 provides an overview of internationalization.

Chapter 2 provides an overview of Solaris internationalization.

Chapter 3 describes internationalization details of Asian languages, specifically
Chinese, Japanese, and Korean.

Chapter 4 addresses the technical concerns of the Asian-specific architecture.
Chapter 5 describes common development issues in multibyte applications.

Appendix A shows features for the Common Desktop Environment, Simplified
Chinese, Traditional Chinese, Japanese, and Korean Solaris operating environment.

Related Books

The following books are related to software internationalization:

m Creating Worldwide Software: Solaris International Developer’s Guide Bill Tuthill
and David Smallberg.

m Internationalization Guide, Version 2: Open Group Guide The Open Group
m International Language Environments Guide Solaris Developer Collection.

m Programming for the World: A Guide to Internationalization Sandra Martin
O’Donnell.

m The Unicode Standard, \ersion 3.0 The Unicode Consortium.

m X Windows on the World, Developing Internationalized Software with X, Motif,
and CDE Thomas C. McFarland.

m The following book is related to Asian-language internationalization:

m CJKV Information Processing: Chinese, Japanese, Korean, and Vietnamese
Computing Ken Lunde

Ordering Sun Documents

Fatbrain.com, an Internet professional bookstore, stocks select product
documentation from Sun Microsystems, Inc.

For a list of documents and how to order them, visit the Sun Documentation Center
on Fatbrain.com at http://www1.fatbrain.com/documentation/sun

Asian-Language Support in the Solaris Operating Environment ¢ May 2000

Accessing Sun Documentation Online

The docs.sun.com®” Web site enables you to access Sun technical documentation
online. You can browse the docs.sun.com archive or search for a specific book title or
subject. The URL is http://docs.sun.com

Preface 7

Asian-Language Support in the Solaris Operating Environment ¢ May 2000

CHAPTER 1

Solaris Operating Environment in
International Markets

1.1 The Need for Global Software
Development

In an integrated global economy, software applications must be compatible in
numerous languages and cultures. Users want to run applications in their own
language, using their own local conventions. Furthermore, international companies
have international needs. For example, a large corporation with headquarters in
Tokyo and branches in New York and Paris may require a mixture of English,
Japanese, and French software environments supporting multiple languages on one
site.

To sell software to multinational companies, developers must always be aware of
local customs, conventions, and requirements during development, such as character
sets, numeric, time, date, and monetary formats, and messages. Adapting software to
localized writing systems is particularly challenging in Asian markets. 8-bit encoding
is good enough for European phonetic alphabets, but Chinese, Japanese, and Korean
ideographs require multibyte encoding.

1.2 Software Internationalization

Internationalized software applications include internationalized code and localized
locale-specific data.

10

Internationalization generalizes software by using a single internationalized binary
which retrieves locale-specific data and shared objects at run time. The application
runs on any localized version of the Solaris operating environment, without
requiring source code changes or recompilation.

Localization customizes software data, providing locale-specific modules that meet
local requirements. Localization can be either of the following:

m Full localization—input, output, print, cultural conventions, and translated
message text.

m Partial localization—input, output, print, cultural conventions, without translated
message text.

Developers generally create applications for the U.S. market. Internationalization is
especially important in newer, smaller markets which don’t yet justify full
localization. Here, a phased approach is recommended, beginning with the current
internationalized Solaris operating environment version, followed by localization as
the market grows as illustrated in Figure 1-1.

Phase 1 Internationalize product

v

Partially localize interface and

Phase 2 .
key documentation
Phase 3 Fully localize documentation and

sales collateral

Figure 1-1 Market-entry strategy for localized products

Sun Microsystems requires that all applications be internationalized.

Asian-Language Support in the Solaris Operating Environment ¢ May 2000

1.3

Benefits of Internationalized Software

Internationalization addresses many of the key software issues:
m Improving software quality

m Reducing development time and cost

m Enabling code reuse

m Reducing localization costs

m Reducing maintenance costs

m Increasing customer satisfaction

Using separate locale-specific files to localize applications is simpler, faster, and more
cost effective on the whole. Software is more easily released world wide at less
expense. As well, users are much happier working in their own language with their
own conventions.

Using a single binary in an internationalized application ensures that the same
feature set is available for a particular software version and lessens support,
maintenance, and system-administration costs. Interoperability and productivity
improves and common training materials can be used. Most importantly,
internationalized and localized applications help developers compete and succeed in
new foreign-language markets. Everyone benefits with internationalized software.

Solaris Operating Environment in International Markets 11

12 Asian-Language Support in the Solaris Operating Environment ¢ May 2000

CHAPTER 2

Internationalized Software for the
Solaris Operating Environment

2.1

Solaris Language-Support Framework

In an internationalized application, language-specific features and cultural data are
separated from application code. The Solaris internationalization framework divides
code and language and cultural data into the following three areas:

m Locale
m Interface localization
m Codeset independence

A locale is a set of language and cultural variables, particular to a global region. The
locale is selected by the user and loaded in memory at run time. The selected locale
applies to the operating system and subsequent application launches.

Interface localization is the process of translating the interface language into another
language by storing text strings and messages in a separate message file. Messages
are more easily composed, translated, and referenced in a separate file than in
hard-coded statements throughout the application. Furthermore, recompilation of the
source binary is unnecessary.

Codeset independence does not assume a particular codeset to display and manipulate
data.

13

2.2 Locale

The Solaris operating environment provides a number of locales. Each locale includes:
m Associated codeset and codeset conversion modules

m Numeric, time, and date formats

m Collation (sort order)

m Monetary format

m Interface information (messages and icons)

m Input method(s)

m Fonts

Developers access locale settings directly through Solaris operating environment
APIs. For example, instead of encoding a particular currency symbol, an application
calls the appropriate system API, which returns the currency symbol of the set locale.

2.3 Interface Localization

The Solaris operating environment supports several messaging schemes for localizing
the interface, including the Sun proprietary API gettext() and the XPG
catgets() . These APIs directly reference the message file.

Note that the size and position of interface elements (icons, graphics, and functions
or private data affecting text elements) may be different in different languages. For
example, Japanese messages are usually longer than English messages and Japanese
ideographs are taller and wider than English characters. Text widget positioning
should be relative, not absolute.

Icons and graphics should also be culturally neutral or be easily changeable to local
tastes. Essentially, what a user sees and what affects text should be changed only in
the message catalog, resources, or some other means.

2.4 Codeset Independence

The Solaris operating environment architecture supports codeset independence (CSI),
expanding the number of supported codesets from Extended UNIX® Codeset (EUC)

14 Asian-Language Support in the Solaris Operating Environment ¢ May 2000

to both EUC and non-EUC encodings, including PC-Kanji (also known as ShiftJIS)
and GBK.

Note that text-handling routines should not define the size of the character codeset.
Nor should other locale-specific components, such as the window system, input
method, and online help, depend on a particular codeset. Figure 2-1 shows the
locale-specific components which should be codeset independent.

Text Collation |Window |Input Program [Online
and and system method manager |docs
Locale Codesets |formats and GUI and Help
components
Generic . . o . .
components Internationalized Solaris libraries and window system

Figure 2-1 Design model for international software

Support for Unicode, a universal codeset encompassing most written characters, is
often confused with codeset independence. Unicode is often referred to as 1ISO 10646
and is an International Standards Organization (ISO) standard. Note that codeset
independence must also apply to Unicode. Although Unicode supports many
languages and writing systems, to an application Unicode is just another codeset.
The Solaris operating environment supports the Unicode UTF-8 (File System Safe
UCS Transformation Format) format, which is compatible with 1ISO 10646. For more
information, see Unicode Support in the Solaris Operating Environment.

Internationalized Software for the Solaris Operating Environment 15

16

Note - Codeset independence is often assumed because the idea of a character (in
ISO C terms) and char (or byte) is thought of as a one-to-one relationship in
programming languages. In written languages, however, the idea of a character can
encompass one char/byte or multiple bytes. An alphabetic character from most
European languages can be represented in one byte. An Asian-language character
often requires more than one byte because there are more characters in the charset
than one byte can represent.

Furthermore, applications often assume the representation of a given character. For
example, a codeset independent application does not assume that ‘a’ = \x61 or char
= byte. Instead, during text-manipulation routines, such as truncating a stream of
characters, the APIs determine the size of the number of bytes by the character and
its definition or type. By not assuming the size of a character or the codeset, the
application will be codeset independent.

Solaris maintains a codeset independence framework. Applications can use Solaris
APIs to determine the size of the number of bytes used by the character and its
definition or type. By not making assumptions about the underlying codeset, an
application is codeset independent in Solaris.

Asian-Language Support in the Solaris Operating Environment ¢ May 2000

CHAPTER 3

Asian Language Overview

A phonetic writing system, such as English, consists of a collection of phonetic letters
to represent a word or idea. Asian languages, such as Chinese, Japanese, and Korean,
however, use symbols or ideographs to represent words and ideas.

Chinese, Japanese, and Korean ideographs are all derived from the Chinese
ideographic system, numbered in the tens of thousands. Collectively, the ideographs
are called han characters and are referred to as hanzi in Chinese, kanji in Japanese, and
hanja in Korean.

Note that an ideograph may be pronounced in several ways, depending on the
context. As well, two different ideographs may be identically pronounced. The
Solaris operating environment has been designed to include support for contextual
ideographs in Asian-language writing systems.

3.1

Chinese

Two Chinese writing systems are used today—Traditional Chinese and Simplified
Chinese. Their ideographs originated in China thousands of years ago.

Used in the Republic of China (Taiwan), Traditional Chinese has approximately
50,000 characters. Many of the older and more complex characters are still used today.
Figure 3-1 shows Traditional Chinese characters representing the word "China."

]

Figure 3-1 Traditional Chinese character representing the word “China”

17

Used in the People’s Republic of China (PRC), Simplified Chinese is a subset of the
characters in Traditional Chinese. In 1955, the PRC government started eliminating
and simplifying some ideographs by reducing the number of strokes needed to
render a character. The Simplified Chinese character set is now simpler and smaller.
Figure shows Simplified Chinese characters representing the word "China."

a[E

Figure 3-2 Simplified Chinese character representing the word “China”

3.2 Japanese

The Japanese language uses a combination of four different writing systems—=kanji
characters, hiragana, katakana, and the Roman alphabet phonetic system romaji.

Kanji characters are derived from Traditional Chinese characters and are often found
in combination with hiragana, katakana, and romaji.

Hiragana is a set of 83 symbols, called a syllabary, that encompasses all the basic
syllables used for Japanese pronunciation. In written Japanese, the hiragana syllabary
expresses grammatical parts of speech, verb tenses, and some words for which there
are no kanji characters or have become obsolete.

Katakana is another phonetic syllabary consisting of a different set of symbols for the
same sounds expressed in hiragana. The syllables represented by hiragana and
katakana are generically called kana. Figure 3-3 shows the differences between
hiragana, katakana, and kanji characters.

Romaji is used to write Japanese sounds with Roman letters. Romaji characters are
usually displayed in double-width format.

Kanji : HARGE
Hiragana : (ZIZAZ
Katakana : =7 =

Figure 3-3 The differences between hiragana, katakana, and kanji characters

18 Asian-Language Support in the Solaris Operating Environment ¢ May 2000

3.3

Korean

The Korean language uses a combination of two different writing systems—hanja
characters and hangul characters.

Hanja characters are derived from Traditional Chinese characters and are often used
for formal written communication and proper names. An example of hanja is shown
in Figure 3-4.

= .
5%

Figure 3-4 Hanja characters

Hangul characters are formed by combining one or more consonant and vowel signs
from a syllabary consisting of 24 basic elements called jamos. There are approximately
11,000 hangul characters. An example of hangul is shown in Figure 3-5.

haw 2
ax

Figure 3-5 Hangul characters

ol

Asian Language Overview 19

20 Asian-Language Support in the Solaris Operating Environment ¢ May 2000

CHAPTER 4

Technical Considerations

The large number of ideographs needed to support the Traditional Chinese,
Simplified Chinese, Japanese, and Korean writing systems cannot be represented in
one byte, and are often called double-byte or multibyte languages, depending on the
platform architecture. The Solaris operating environment supports multibyte
encoding, representing characters in one, two, or more bytes.

Separate software versions for multibyte locales need not be developed in the Solaris
operating environment. However, there are issues unique to multibyte locale
development—most importantly, that one character is not one byte in multibyte
locales.

4.1

Asian-Specific Architecture

All localized versions of Solaris software are supersets of the U.S. English version
and contain the same utilities and features. The difference between the U.S. English
and a localized version is the addition of locale-specific data and tools facilitating
input, display, and printing of local-language characters. All Asian versions of Solaris
software include a locale database, user interface, and other locale-specific features.
For example, Figure 4-1 shows how the locale database fits into the Japanese Solaris
architecture.

21

41.1

22

CDE JDK

Motif

X11/DPS Japanese
¢— locale
database

SunOS

Figure 4-1 A Japanese Solaris architecture

Specific features were also added to the Traditional Chinese, Simplified Chinese,
Japanese, and Korean localized versions of the Solaris operating environment to
address the following issues:

m The thousands of characters used in everyday communication

m ldeographs with multiple meanings depending on context or pronunciation

Input Methods

How to enter thousands of characters is always an important issue in a multibyte
language. Designing a keyboard with enough keys is simply not feasible. Instead,
localized Solaris operating environments use input methods. Input methods (IMs) are
system applications that convert keyboard input into a system-supported character.
Figure 4-2 shows how an input method works.

select
ideograph

keyboard
input

Input method selects > Input method displays $
ideograph to display ideograph choice(s)

- — — — ¢

Character

Figure 4-2 Input method

Asian-Language Support in the Solaris Operating Environment ¢ May 2000

4.1.2

Generally, the Motif text widget manages the input method. However, to customize
the input method or have direct control, call the X11 XIM (X Input Method) APIs.

Note - An application cannot assume a one-to-one mapping between a key-input
stroke and a character. A single character may require more than a one key-input
stroke and a one key-input event may trigger the input of more than one character.

Character Conversion

In Chinese, Japanese, and Korean, more than one ideograph can correspond to an
input string. To avoid confusion, the Solaris operating environment uses a Conversion
Manager to display the possible dictionary choices in a window as shown in Figure
4-3. The pre-edit, status, and lookup choice areas are highlighted for the sample
Simplified Chinese input-method.

XARFEER — Gttt |

XfF A BRI il

a u h| y
2 13 %4 5 %6 W7

i %

Figure 4-3 The pre-edit, status, and lookup choice areas
m Pre-edit area—displays characters as entered

m Status area—displays whether conversion is activated and the states or mode of
the input method

m Lookup choice area—displays ideographic choices for the corresponding phonetic
representation

Note - Input methods and associated dictionaries are often referred to as language
engines.

Technical Considerations 23

Note - For more information on how to input Asian characters, see Section 3.1 in the
Unicode Support in the Solaris Operating Environment.

4.1.3 Input-Method Server

An input-method server (IM server) acts as the interface between input methods and
applications as shown in Figure 4-4.

User

keyboard

Application

TXIM or 111M protocol

IM Server

Conversion
Manager

input method 1

dictionary 1 dictionary 2 cee dictionary a dictionary b

Figure 4-4 Input-method server

The IM server can support multiple language engines and provides user control over
language-engine preferences, such as:

m Method of displaying status string when the portion of the string under
consideration for conversion loses input focus.

m Number of rows and columns in the input conversion candidate pop-up window.

24 Asian-Language Support in the Solaris Operating Environment ¢ May 2000

4.1.4

4.1.5

m Whether input conversion candidate selection window is displayed.

Many X toolkit-based applications automatically use the IM server for Asian text
input. If you use any of Sun’s toolkits (Motif, XViewTM, or OLIT), the input/output
conversion process is transparent to the application.

Font Editor

The Font Editor is used to edit bitmap fonts. For example, a user may want to create
a character not supported by the operating system because the repertoire of Han
characters is too large. Using the Font Editor, new characters can be created and
existing characters modified.

To start the Font Editor, type fontedit at the system prompt.

User-Defined Character Tool

The User-Defined Character Tool is used to create new characters as well as to specify
font size for new characters. This utility can support both bitmap and Type 1 fonts.

To start the User-Defined Character Tool, type sdtudctool at the system prompt.

Technical Considerations 25

26 Asian-Language Support in the Solaris Operating Environment ¢ May 2000

CHAPTER 5

Common Development Issues

Writing and cultural conventions can vary greatly in different locales, such as
character sets and numeric, time, date, and monetary formats. Some issues apply
particularly to multibyte development.

5.1

Casing

Uppercase and lowercase words do not always apply in multibyte languages. For
example, ideographs don’t have case. Thus, characters that do not change after a
casing function should not be treated as an error when calling an APl which returns
casing rules.

The following APIs process multibyte characters:
m toupper() : Convert wide characters to uppercase
m tolower() : Convert wide characters to lowercase

m wctype() : Define character class

5.2

Sort Order

Sorting conventions vary widely across languages and locales. Some languages even
have different rules for collating the same character. Sorting ideographs is different
than sorting phonetic scripts and is based on either the form or pronunciation of
characters.

27

A form-based system sorts first on the character’s primary radical and then on the
number of strokes to write the character (stroke count). A pronunciation-based
system sorts first on ideograph pronunciation and then on stroke count.

5.3

28

Text Manipulation

When supporting multibyte languages, it is important to understand the difference
between multibyte, wide and Unicode characters, and the impact of these on
software development.

In the Solaris operating environment, a multibyte character (or file code) is a
sequence of one or more bytes terminated by a null string. Thus, a string may
contain characters of different length. On the other hand, a wide character (or
process code) is defined as a fixed-size number of bytes. In the Solaris operating
environment, a wide character is defined to be four bytes long. The Solaris operating
environment supports the Unicode UTF-8 format, a variable-length encoding similar
to multibyte encoding

In many cases, there is no need to distinguish double-byte (or three-byte) characters
from single-byte characters. It is simpler to convert multibyte strings (file code) to
wide-character formats (process code) before manipulating or processing text data.

The following APIs convert multibyte characters:

m mbstowcs() : Convert multibyte string to wide-character string
m mbstowc() : Convert multibyte to wide-character code

The following wstring(3c) APIs process multibyte characters:

m wecscmp() : Compare wide-character strings

m wcescpy() : Copy wide-character strings

m wcslen() : Get length of wide-character string

m wceschr() : Find character in wide-character string

Note - File code is in multibyte format. Process code is in wide-character format. Do
not assume particular character encodings of the process code.

Asian-Language Support in the Solaris Operating Environment ¢ May 2000

0.4

Fonts

Mixed codeset strings cannot usually be rendered with a single font. A font set is a
collection of fonts suitable for rendering all codesets in a locale’s encoding, and
includes data about the locale in which it was created. For example, in the Korean
locale, both the ASCII and Korean fonts are loaded. This is known as FontSet in the
X11 Window System. The number of fonts and their character-set registry in a
FontSet vary from one locale to another. Because the Solaris operating environment
manages the FontSet at run time, applications do not need to know that multiple
fonts are being used. You just need to use FontSet interfaces.

Common font family names, such as Times and Courier, are not usually available in
multibyte locales. Locale-sensitive font family names should not be hard coded in
applications. In the Common Desktop Environment, all locales have a common set of
font alias names, such as dt-application

Common Development Issues 29

30 Asian-Language Support in the Solaris Operating Environment ¢ May 2000

APPENDIX A

Product Overview

The following tables show features for the Common Desktop Environment (CDE),
Simplified Chinese, Traditional Chinese, Japanese and Korean Solaris 8 operating

environment.

Al

Common Desktop Environment (CDE)

Deskset

Table A-1 lists the CDE Deskset tools and Table A-2 lists the Asian printing tools.

TABLE A-1 CDE Deskset Tools

DeskSet Tool

Features

Style Manager

Calendar

Mailer

File Manager

Provides interactive customization of visual elements and system
behavior for the desktop

Enables group scheduling over the network, displays
appointments and to-do items, sends automatic reminders using
electronic mail

Write, send, receive, and organize mail files including audio,
image, and document files using simple drag-and-drop method

Graphical way to navigate local and remote file systems: view,
copy, or move files and documents, launch applications by point
and click

31

TABLE A-1 CDE Deskset Tools (continued)

DeskSet Tool Features

Printer An intuitive interface to UNIX printing utilities

Tape Tool Interface to UNIX tape archiving and retrieval utilities

Performance Meters Allows system use to be monitored graphically

Audio Tool An application to record, playback, and edit audio files

Image Tool View files in popular graphic formats such as PostScript or TIFF

Text Editor An interactive text editor with mouse-based graphical interface

Snapshot Capture a black-and-white, grayscale, or color snapshot of the
screen

Clock Displays the current time in a window or icon for any time zone

around the world

Icon Editor A pixel editor that allows creation of customized icon images

Command/Shell Tool Standard UNIX shell that accepts SUnOSTM system software
commands

sdtudctool Tool for registering user-defined characters

TABLE A-2 Asian Printing Tools

Asian Printing Tools Features

xetops Used in EUC/CSI locales to print Asian text files: xetops
Asian_Text_File |lp

mp Used in UTF-8 locales to print all UTF-8 characters: mp
UTF-8_File |Ip

For more information, see the appropriate man pages.

32 Asian-Language Support in the Solaris Operating Environment ¢ May 2000

A2

Simplified Chinese Solaris 8 Operating
Environment Features

Table A-3 to Table A-6 give an overview of the Simplified Chinese Solaris 8
operating environment features.

TABLE A-3 Simplified Chinese Codesets

Locale Name

Description

Supported Character Set

zh

zh.GBK

zh.UTF-8

Simplified Chinese (EUC)
Simplified Chinese (GBK)

Simplified Chinese (UTF-8)

GB 2312-1980

GBK

Unicode 3.0

TABLE A-4 Simplified Chinese Input Methods

Locale Name

Input Methods

zh, zh.GBK, zh.UTF-8
zh, zh.GBK, zh.UTF-8
zh, zh.GBK, zh.UTF-8
zh

zh

zh

zh

zh

zh.GBK, zh.UTF-8
zh.GBK, zh.UTF-8

zh.GBK, zh.UTF-8

New QuanPin

New ShuangPin

Quanpy

PinYin

Stroke

Golden

Intelligent PinYin
Simplified Chinese Symbol
GBK Code

Japanese

Hanja

Product Overview 33

TABLE A-4 Simplified Chinese Input Methods (continued)

Locale Name

Input Methods

zh.GBK, zh.UTF-8

zh.UTF-8

Zhuyin

Unicode Hex and Unicode Octal

TABLE A-5 Simplified Chinese Fonts

Locale Name Full Family Name Format

zh, zh.GBK Fangson TrueType

zh, zh.GBK Hei TrueType

zh, zh.GBK Kai TrueType

zh, zh.GBK Song TrueType

zh, zh.GBK Song PCF (12,14,16,20,24)

TABLE A-6 Simplified Chinese Codeset Conversions

Locale Name

Codeset Conversion Supported

zh, zh.GBK, zh.UTF-8
zh, zh.GBK, zh.UTF-8
zh, zh.GBK, zh.UTF-8
zh, zh.GBK, zh.UTF-8
zh, zh.GBK, zh.UTF-8
zh, zh.GBK, zh.UTF-8

zh, zh.GBK, zh.UTF-8

GB2312-80

1SO-2022-7

1SO-2022-CN

UTF-8

GBK

BIG5

HZ-GB-2312

34 Asian-Language Support in the Solaris Operating Environment ¢ May 2000

A3

Traditional Chinese Solaris 8 Operating

Environment Features

Table A-7 to Table A-10 give an overview of the Traditional Chinese Solaris 8

operating environment features.

TABLE A—7 Traditional Chinese Codesets

Locale Name Description Supported Character Set
zh TW Traditional Chinese (EUC) CNS 11643 1992
zh_TW.BIG5 Traditional Chinese (BIG5) BIG5

zh_ TW.UTF-8 Traditional Chinese (UTF-8) Unicode 3.0

TABLE A-8 Traditional Chinese Input Methods

Locale Name Input Methods

zh_TW, zh_TW.BIGS5, Chuyin
zh_ TW.UTF-8

zh_TW, zh_TW.BIGS5, |-Tien
zh_ TW.UTF-8

zh_TW, zh_TW.BIGS5, Telecode
zh_ TW.UTF-8

zh_TW, zh_TW.BIGS5, TsangChieh
zh_TW.UTF-8

zh_TW, zh_TW.BIGS5, Cheinl
zh_TW.UTF-8

zh_TW, zh_TW.BIGS5, NeiMA
zh_TW.UTF-8

zh_TW, zh_TW.BIGS5,
zh_TW.UTF-8

ChuangHsing

Product Overview 35

36

TABLE A-8 Traditional Chinese Input Methods (continued)

Locale Name

Input Methods

zh_TW, zh_TW.BIGS5,
zh_TW.UTF-8

zh_TW, zh_TW.BIGS5,
zh_TW.UTF-8

zh_TW, zh_TW.BIGS5,
zh_TW.UTF-8

zh_TW.UTF-8

Array

BoShiaMy

DayYi

Unicode Hex and Unicode Octal

TABLE A-9 Traditional Chinese Fonts

Locale Name Full Family Name Format

zh_TW, zh_TW.BIG5 Hei TrueType

zh_TW, zh_TW.BIG5 Kai TrueType

zh_TW, zh_TW.BIG5 Ming TrueType

zh_TW, zh_TW.BIG5 Ming PCF (12,14,16,20,24)

TABLE A-10 Traditional Chinese Codeset Conversions

Locale Name

Codeset Conversion Supported

zh_TW, zh_TW.BIGS5,
zh_TW.UTF-8

zh_TW, zh_TW.BIGS5,
zh_TW.UTF-8

zh_TW, zh_TW.BIGS5,
zh_TW.UTF-8

zh_TW, zh_TW.BIGS5,
zh_TW.UTF-8

CNS 11643

BIG5

1SO-2022-7

1SO-2022-CN-EXT

Asian-Language Support in the Solaris Operating Environment ¢ May 2000

TABLE A-10 Traditional Chinese Codeset Conversions (continued)

Locale Name Codeset Conversion Supported
zh_TW, zh_TW.BIGS5, UTF-8

zh_TW.UTF-8

zh_TW, zh_TW.BIGS5, BIG5 Plus

zh_ TW.UTF-8

A4 Japanese Solaris 8 Operating
Environment Features

Table A-11 to Table A-14 give an overview of the Japanese Solaris 8 operating
environment features.

TABLE A-11 Japanese Codesets

Locale Name Description Supported Character Set

ja Japanese (EUC) JIS x 0201, JIS x 0208, JIS x
0212, UDC, VDC

ja_JP.PCK Japanese (PCK) JIS x 0201, JIS x 0208, UDC,
VvDC

ja_JPUTF-8 Japanese (UTF-8) Unicode 3.0

TABLE A-12 Japanese Input Methods

Locale Name Input Methods

ja, ja_JPPCK, ja JPUTF-8 ATOK12
ja, ja_JPPCK, ja JPUTF-8 Wnn6

ja, ja_JPPCK, ja_JP.UTF-8 ¢cs00

Product Overview 37

38

TABLE A-12 Japanese Input Methods (continued)

Locale Name Input Methods

ja, ja_JPPCK, ja_JPUTF-8 ATOKS

ja_ JPUTF-8 Unicode Hex and Unicode Octal

TABLE A-13 Japanese Fonts

Full Family Name Format

hg gothic b True Type

hg mincho 1 True Type
heiseimin True Type

gothich PCF (12,14,16,20,24)
minchou PCF (12,14,16,20,24)
hg gothic b PCF (12,14,16,20,24)

hg minchou 1

heiseimin

PCF (12,14,16,20,24)

PCF (12,14,16,20,24)

TABLE A-14 Japanese Codeset Conversions

Locale Name Codeset Conversion Supported

ja, ja_JPPCK, ja JP.UTF-8 euclP

ja, ja_JPPCK, ja_JP.UTF-8 SJIS

ja, ja_JPPCK, ja JPUTF-8 PCK

ja, ja_JPPCK, ja_JPUTF-8 1S0O-2022-JP
ja, ja_JPPCK, ja JPUTF-8 UTF-8

ja, ja_JPPCK, ja_JPUTF-8 JIS7

Asian-Language Support in the Solaris Operating Environment ¢ May 2000

TABLE A-14 Japanese Codeset Conversions (continued)

Locale Name

Codeset Conversion Supported

ja, ja_JPPCK, ja_JP.UTF-8
ja, ja_JPPCK, ja_JP.UTF-8
ja, ja_JPPCK, ja_JP.UTF-8
ja, ja_JPPCK, ja_JP.UTF-8
ja, ja_JPPCK, ja_JP.UTF-8
ja, ja_JPPCK, ja_JP.UTF-8
ja, ja_JPPCK, ja_JP.UTF-8
ja, ja_JPPCK, ja_JP.UTF-8
ja, ja_JPPCK, ja_JP.UTF-8
ja, ja_JPPCK, ja_JP.UTF-8

ja, ja_JPPCK, ja_JP.UTF-8

jis

ibmj
UTF-8-Java
ibmj-EBCDIK
ibm-930
ibm-931
ibm-939
ibm-5026
ibm-5035
ms-932

UTF-8-ms932

A5

Korean Solaris 8 Operating Environment

Features

Table A-15 to Table A-18 give an overview of the Korean Solaris 8 operating

environment features.

TABLE A-15 Korean Codesets

Locale Name

Description

Supported Character Set

ko

ko.UTF-8

Korean (EUC)

Korean (UTF-8)

KS C 5601-1992

Unicode 3.0

Product Overview 39

TABLE A-16 Korean Input Methods

Locale Name Input Methods

ko, ko.UTF-8 Hangul 2-BeolSik (1 set of consonants and 1 set of vowels)
ko, ko.UTF-8 Hangul-Hanja conversion

ko, ko.UTF-8 Special character

ko.UTF-8 Unicode Hex and Unicode Octal

TABLE A-17 Korean Fonts

40

Locale Name Full Family Name Format

ko, ko.UTF-8 Gothic TrueType

ko, ko.UTF-8 Haeso TrueType

ko, ko.UTF-8 Kodig TrueType

ko, ko.UTF-8 Myeongijo TrueType

ko, ko.UTF-8 Roundgothic TrueType

ko, ko.UTF-8 Gothic PCF (14,16,18,20,24)
ko, ko.UTF-8 Graphic PCF (14,16,18,20,24)
ko, ko.UTF-8 Haeso PCF (14,16,18,20,24)
ko, ko.UTF-8 Kodig PCF (14,16,18,20,24)
ko, ko.UTF-8 Myeongijo PCF (14,16,18,20,24)
ko, ko.UTF-8 Pilki PCF (14,16,18,20,24)
ko, ko.UTF-8 Roundgothic PCF (14,16,18,20,24)

Asian-Language Support in the Solaris Operating Environment ¢ May 2000

ASl

TABLE A-18 Korean Codeset Conversions

Locale Name

Codeset Conversion Supported

ko, ko.UTF-8
ko, ko.UTF-8
ko, ko.UTF-8
ko, ko.UTF-8
ko, ko.UTF-8
ko, ko.UTF-8
ko, ko.UTF-8

ko, ko.UTF-8

KSC 5601-1987

ISO 646

UTF-8

IBM CP933

I1ISO 2022-KR

KSC 5601-1987-Johap
KSC 5601-1992-Johap

Unified Hangul

Korean Dictionary Tools

Hanja Tool expands the capabilities of the standard Korean Solaris operating
environment hangul-hanja conversion mode by adding hanja ideograms and
managing available lookup choices for hangul-hanja conversion. It works only with
words of more than one syllable.

Product Overview 41

