
SPARC Assembly Language
Reference Manual

Sun Microsystems, Inc.
901 San Antonio Road
Palo Alto, CA 94303-4900
U.S.A.

Part Number 806-3774
February 2000

Copyright 2000 Sun Microsystems, Inc. 901 San Antonio Road, Palo Alto, California 94303-4900 U.S.A. All rights reserved.
This product or document is protected by copyright and distributed under licenses restricting its use, copying, distribution, and
decompilation. No part of this product or document may be reproduced in any form by any means without prior written authorization of
Sun and its licensors, if any. Third-party software, including font technology, is copyrighted and licensed from Sun suppliers.
Parts of the product may be derived from Berkeley BSD systems, licensed from the University of California. UNIX is a registered
trademark in the U.S. and other countries, exclusively licensed through X/Open Company, Ltd.
Sun, Sun Microsystems, the Sun logo, SunDocs, Java, the Java Coffee Cup logo, and Solaris are trademarks, registered trademarks, or
service marks of Sun Microsystems, Inc. in the U.S. and other countries. All SPARC trademarks are used under license and are trademarks
or registered trademarks of SPARC International, Inc. in the U.S. and other countries. Products bearing SPARC trademarks are based upon
an architecture developed by Sun Microsystems, Inc.
The OPEN LOOK and SunTM Graphical User Interface was developed by Sun Microsystems, Inc. for its users and licensees. Sun
acknowledges the pioneering efforts of Xerox in researching and developing the concept of visual or graphical user interfaces for the
computer industry. Sun holds a non-exclusive license from Xerox to the Xerox Graphical User Interface, which license also covers Sun’s
licensees who implement OPEN LOOK GUIs and otherwise comply with Sun’s written license agreements.

RESTRICTED RIGHTS: Use, duplication, or disclosure by the U.S. Government is subject to restrictions of FAR 52.227–14(g)(2)(6/87) and
FAR 52.227–19(6/87), or DFAR 252.227–7015(b)(6/95) and DFAR 227.7202–3(a).
DOCUMENTATION IS PROVIDED “AS IS” AND ALL EXPRESS OR IMPLIED CONDITIONS, REPRESENTATIONS AND WARRANTIES,
INCLUDING ANY IMPLIED WARRANTY OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR
NON-INFRINGEMENT, ARE DISCLAIMED, EXCEPT TO THE EXTENT THAT SUCH DISCLAIMERS ARE HELD TO BE LEGALLY
INVALID.

Copyright 2000 Sun Microsystems, Inc. 901 San Antonio Road, Palo Alto, Californie 94303-4900 Etats-Unis. Tous droits réservés.

Ce produit ou document est protégé par un copyright et distribué avec des licences qui en restreignent l’utilisation, la copie, la
distribution, et la décompilation. Aucune partie de ce produit ou document ne peut être reproduite sous aucune forme, par quelque
moyen que ce soit, sans l’autorisation préalable et écrite de Sun et de ses bailleurs de licence, s’il y en a. Le logiciel détenu par des tiers, et
qui comprend la technologie relative aux polices de caractères, est protégé par un copyright et licencié par des fournisseurs de Sun.
Des parties de ce produit pourront être dérivées du système Berkeley BSD licenciés par l’Université de Californie. UNIX est une marque
déposée aux Etats-Unis et dans d’autres pays et licenciée exclusivement par X/Open Company, Ltd.
Sun, Sun Microsystems, le logo Sun, SunDocs, Java, le logo Java Coffee Cup, et Solaris sont des marques de fabrique ou des marques
déposées, ou marques de service, de Sun Microsystems, Inc. aux Etats-Unis et dans d’autres pays. Toutes les marques SPARC sont utilisées
sous licence et sont des marques de fabrique ou des marques déposées de SPARC International, Inc. aux Etats-Unis et dans d’autres pays.
Les produits portant les marques SPARC sont basés sur une architecture développée par Sun Microsystems, Inc.
L’interface d’utilisation graphique OPEN LOOK et SunTM a été développée par Sun Microsystems, Inc. pour ses utilisateurs et licenciés.
Sun reconnaît les efforts de pionniers de Xerox pour la recherche et le développement du concept des interfaces d’utilisation visuelle ou
graphique pour l’industrie de l’informatique. Sun détient une licence non exclusive de Xerox sur l’interface d’utilisation graphique Xerox,
cette licence couvrant également les licenciés de Sun qui mettent en place l’interface d’utilisation graphique OPEN LOOK et qui en outre
se conforment aux licences écrites de Sun.
CETTE PUBLICATION EST FOURNIE “EN L’ETAT” ET AUCUNE GARANTIE, EXPRESSE OU IMPLICITE, N’EST ACCORDEE, Y
COMPRIS DES GARANTIES CONCERNANT LA VALEUR MARCHANDE, L’APTITUDE DE LA PUBLICATION A REPONDRE A UNE
UTILISATION PARTICULIERE, OU LE FAIT QU’ELLE NE SOIT PAS CONTREFAISANTE DE PRODUIT DE TIERS. CE DENI DE
GARANTIE NE S’APPLIQUERAIT PAS, DANS LA MESURE OU IL SERAIT TENU JURIDIQUEMENT NUL ET NON AVENU.

Please
Recycle

Contents

Preface

1. SPARC Assembler for SunOS 5.x 11

1.1 Introduction 11

1.2 Operating Environment 11

1.3 SPARC Assembler for SunOS 4.1 Versus SunOS 5.x 12

1.3.1 Labeling Format 12

1.3.2 Object File Format 12

1.3.3 Pseudo-Operations 12

1.3.4 Command Line Options 12

2. Assembler Syntax 13

2.1 Syntax Notation 13

2.2 Assembler File Syntax 14

2.2.1 Lines Syntax 14

2.2.2 Statement Syntax 14

2.3 Lexical Features 14

2.3.1 Case Distinction 14

2.3.2 Comments 15

2.3.3 Labels 15

2.3.4 Numbers 15

3

2.3.5 Strings 15

2.3.6 Symbol Names 16

2.3.7 Special Symbols - Registers 17

2.3.8 Operators and Expressions 19

2.3.9 SPARC V9 Operators and Expressions 20

2.4 Assembler Error Messages 21

3. Executable and Linking Format 23

3.1 ELF Header 24

3.2 Sections 26

3.2.1 Section Header 26

3.2.2 Predefined User Sections 30

3.2.3 Predefined Non-User Sections 32

3.3 Locations 33

3.4 Addresses 34

3.5 Relocation Tables 34

3.6 Symbol Tables 34

3.7 String Tables 36

3.8 Assembler Directives 36

3.8.1 Section Control Directives 37

3.8.2 Symbol Attribute Directives 37

3.8.3 Assignment Directive 37

3.8.4 Data Generating Directives 37

4. Converting Files to the New Format 39

4.1 Introduction 39

4.2 Conversion Instructions 39

4.3 Examples 40

5. Instruction-Set Mapping 41

5.1 Table Notation 41

4 SPARC Assembly Language Reference Manual ♦ February 2000

5.2 Integer Instructions 43

5.3 Floating-Point Instruction 53

5.4 Coprocessor Instructions 56

5.5 Synthetic Instructions 56

5.6 V8/V9 Natural Pseudo Instructions 59

A. Pseudo-Operations 61

A.1 Alphabetized Listing with Descriptions 61

B. Examples of Pseudo-Operations 69

B.1 Example 1 69

B.2 Example 2 70

B.3 Example 3 70

B.4 Example 4 71

B.5 Example 5 71

C. Using the Assembler Command Line 73

C.1 Assembler Command Line 73

C.2 Assembler Command Line Options 74

C.3 Disassembling Object Code 77

D. An Example Language Program 79

E. SPARC-V9 Instruction Set 85

E.1 SPARC-V9 Changes 85

E.1.1 Registers 85

E.1.2 Alternate Space Access 87

E.1.3 Byte Order 88

E.2 SPARC-V9 Instruction Set Changes 88

E.2.1 Extended Instruction Definitions to Support the 64-bit Model 88

E.2.2 Added Instructions to Support 64 bits 89

E.2.3 Added Instructions to Support High-Performance System
Implementation 89

Contents 5

E.2.4 Deleted Instructions 90

E.2.5 Miscellaneous Instruction Changes 91

E.3 SPARC-V9 Instruction Set Mapping 91

E.4 SPARC-V9 Floating-Point Instruction Set Mapping 102

E.5 SPARC-V9 Synthetic Instruction-Set Mapping 103

E.6 UlraSPARC and VIS Instruction Set Extensions 106

E.6.1 Graphics Data Formats 106

E.6.2 Eight-bit Format 106

E.6.3 Fixed Data Formats 107

E.6.4 SHUTDOWN Instruction 107

E.6.5 Graphics Status Register (GSR) 107

E.6.6 Graphics Instructions 108

E.6.7 Memory Access Instructions 113

6 SPARC Assembly Language Reference Manual ♦ February 2000

Preface

The SunOS assembler that runs on the SPARC operating environment, referred to as
the “SunOS SPARC” in this manual, translates source files that are in assembly
language format into object files in linking format.

In the program development process, the assembler is a tool to use in producing
program modules intended to exploit features of the SPARC architecture in ways that
cannot be easily done using high level languages and their compilers.

Whether assembly language is chosen for the development of program modules
depends on the extent to which and the ease with which the language allows the
programmer to control the architectural features of the processor.

The assembly language described in this manual offers full direct access to the
SPARC instruction set. The assembler may also be used in connection with SunOS
5.x macro preprocessors to achieve full macro-assembler capability. Furthermore, the
assembler responds to directives that allow the programmer direct control over the
contents of the relocatable object file.

This document describes the language in which the source files must be written. The
nature of the machine mnemonics governs the way in which the program’s
executable portion is written. This document includes descriptions of the pseudo
operations that allow control over the object file. This facilitates the development of
programs that are easy to understand and maintain.

Before You Read This Book
You should also become familiar with the following:

� Manual pages: as(1), ld(1), cpp(1), elf(3f), dis(1), a.out(1)

� SPARC Architecture Manual (Version 8 and Version 9)

7

� ELF-related sections of the Programming Utilities Guide manual

� SPARC Applications Binary Interface (ABI)

How This Book is Organized
This book is organized as follows:

Chapter 1, discusses features of the SunOS 5.x SPARC Assembler.

Chapter 2, describes the syntax of the SPARC assembler that takes assembly
programs and produces relocatable object files for processing by the link editor.

Chapter 3, describes the relocatable ELF files that hold code and data suitable for
linking with other object files.

Chapter 4, describes how to convert existing SunOS 4.1 SPARC assembly files to the
SunOS 5.x assembly file format.

Chapter 5, describes the relationship between hardware instructions of the SPARC
architecture and the assembly language instruction set.

Appendix A, lists the pseudo-operations supported by the SPARC assembler.

Appendix B, shows some examples of ways to use various pseudo-operations.

Appendix C, describes the available assembler command-line options.

Appendix D, describes an example C language program with comments to show
correspondence between the assembly code and the C code.

Appendix E, describes the SPARC-V9 instruction set and the changes due to the
SPARC-V9 implementation.

What Typographic Changes Mean
The following table describes the typographic changes used in this book.

8 SPARC Assembly Language Reference Manual ♦ February 2000

TABLE P–1

Typeface or
Symbol

Meaning Example

AaBbCc123 The names of commands,
files, and directories;
on-screen computer output

Edit your .login file.

Use ls -a to list all files.

machine_name% You have mail.

AaBbCc123 What you type, contrasted
with on-screen computer
output

machine_name% su

Password:

AaBbCc123 Command-line placeholder:

replace with a real name or
value

To delete a file, type rm filename.

AaBbCc123 Book titles, new words or
terms, or words to be
emphasized

Read Chapter 6 in User’s Guide. These
are called class options.

You must be root to do this.

Shell Prompts in Command Examples
The following table shows the default system prompt and superuser prompt for the
C shell, Bourne shell, and Korn shell.

TABLE P–2

Shell Prompt

C shell prompt machine_name%

C shell superuser prompt machine_name#

Bourne shell and Korn shell prompt $

Bourne shell and Korn shell superuser prompt #

Preface 9

TABLE P–2 (continued)

10 SPARC Assembly Language Reference Manual ♦ February 2000

CHAPTER 1

SPARC Assembler for SunOS 5.x

1.1 Introduction
This chapter discusses features of the SunOS 5.x SPARC assembler. This document is
distributed as part of the developer documentation set with every SunOS operating
system release.

This document is also distributed with the on-line documentation set for the
convenience of SPARCworksTM and SPARCompilerTM 4.0 users who have products
that run on the SunOS 5.x operating system. It is included as part of the
SPARCworks/SPARCompiler Floating Point and Common Tools AnswerBook, which
is the on-line information retrieval system.

This document contains information from The SPARC Architecture Manual, Version
8. Information about Version 9 support is summarized in Appendix E.

1.2 Operating Environment
The SunOS SPARC assembler runs under the SunOS 5.x operating system or the
SolarisTM 2.x operating environment. SunOS 5.x refers to SunOS 5.2 operating system
and later releases. Solaris 2.x refers to the Solaris 2.2 operating environment and later
releases.

11

1.3 SPARC Assembler for SunOS 4.1 Versus
SunOS 5.x
This section describes the differences between the SunOS 4.1 SPARC assembler and
the SunOS 5.x SPARC assembler.

1.3.1 Labeling Format
� Symbol names beginning with a dot (.) are assumed to be local symbols.

� Names beginning with an underscore (_) are reserved by ANSI C.

1.3.2 Object File Format
The type of object files created by the SPARC assembler are ELF (Executable and
Linking Format) files. These relocatable object files hold code and data suitable for
linking with other object files to create an executable file or a shared object file, and
are the assembler normal output.

1.3.3 Pseudo-Operations
See Appendix A, for a detailed description of the pseudo-operations (pseudo-ops).

1.3.4 Command Line Options
See Appendix C, for a detailed description of command line options and a list of
SPARC architectures.

12 SPARC Assembly Language Reference Manual ♦ February 2000

CHAPTER 2

Assembler Syntax

The SunOS 5.x SPARC assembler takes assembly language programs, as specified in
this document, and produces relocatable object files for processing by the SunOS 5.x
SPARC link editor. The assembly language described in this document corresponds
to the SPARC instruction set defined in the SPARC Architecture Manual (Version 8
and Version 9) and is intended for use on machines that use the SPARC architecture.

This chapter is organized into the following sections:

� Section 2.1 “Syntax Notation ” on page 13

� Section 2.2 “Assembler File Syntax” on page 14

� Section 2.3 “Lexical Features ” on page 14

� Section 2.4 “Assembler Error Messages” on page 21

2.1 Syntax Notation
In the descriptions of assembly language syntax in this chapter:

� Brackets ([])enclose optional items.

� Asterisks (*) indicate items to be repeated zero or more times.

� Braces ({ }) enclose alternate item choices, which are separated from each other by
vertical bars (|).

� Wherever blanks are allowed, arbitrary numbers of blanks and horizontal tabs
may be used. Newline characters are not allowed in place of blanks.

13

2.2 Assembler File Syntax
The syntax of assembly language files is:

[line]*

2.2.1 Lines Syntax
The syntax of assembly language lines is:

[statement [; statement]*] [!comment]

2.2.2 Statement Syntax
The syntax of an assembly language statement is:

[label:] [instruction]

where:

label

is a symbol name.

instruction

is an encoded pseudo-op, synthetic instruction, or instruction.

2.3 Lexical Features
This section describes the lexical features of the assembler syntax.

2.3.1 Case Distinction
Uppercase and lowercase letters are distinct everywhere except in the names of
special symbols. Special symbol names have no case distinction.

14 SPARC Assembly Language Reference Manual ♦ February 2000

2.3.2 Comments
A comment is preceded by an exclamation mark character (!); the exclamation mark
character and all following characters up to the end of the line are ignored. C
language-style comments (‘‘/*…*/ ’’) are also permitted and may span multiple lines.

2.3.3 Labels
A label is either a symbol or a single decimal digit n (0…9). A label is immediately
followed by a colon (:).

Numeric labels may be defined repeatedly in an assembly file; normal symbolic
labels may be defined only once.

A numeric label n is referenced after its definition (backward reference) as nb, and
before its definition (forward reference) as nf .

2.3.4 Numbers
Decimal, hexadecimal, and octal numeric constants are recognized and are written as
in the C language. However, integer suffixes (such as L) are not recognized.

For floating-point pseudo-operations, floating-point constants are written with 0r or
0R (where r or R means REAL) followed by a string acceptable to atof(3); that is, an
optional sign followed by a non-empty string of digits with optional decimal point
and optional exponent.

The special names 0rnan and 0rinf represent the special floating-point values
Not-A-Number (NaN) and INFinity. Negative Not-A-Number and Negative INFinity are
specified as 0r-nan and 0r-inf .

Note - The names of these floating-point constants begin with the digit zero, not the
letter “O.”

2.3.5 Strings
A string is a sequence of characters quoted with either double-quote mark (") or
single-quote mark (’) characters. The sequence must not include a newline character.
When used in an expression, the numeric value of a string is the numeric value of
the ASCII representation of its first character.

The suggested style is to use single quote mark characters for the ASCII value of a
single character, and double quote mark characters for quoted-string operands such as
used by pseudo-ops. An example of assembly code in the suggested style is:

Assembler Syntax 15

add %g1,’a’-’A’,%g1 ! g1 + (’a’ - ’A’) --> g1

The escape codes described in Table 2–1, derived from ANSI C, are recognized in
strings.

TABLE 2–1

Escape Code Description

\a Alert

\b Backspace

\f Form feed

\n Newline (line feed)

\r Carriage return

\t Horizontal tab

\v Vertical tab

\nnn Octal value nnn

\xnn... Hexadecimal value nn...

2.3.6 Symbol Names
The syntax for a symbol name is:

{ letter | _ | $ | . } { letter | _ | $ | . | digit }*

In the above syntax:

� Uppercase and lowercase letters are distinct; the underscore (_), dollar sign ($),
and dot (.)are treated as alphabetic characters.

� Symbol names that begin with a dot (.)are assumed to be local symbols. To
simplify debugging, avoid using this type of symbol name in hand-coded
assembly language routines.

� The symbol dot (.)is predefined and always refers to the address of the beginning
of the current assembly language statement.

16 SPARC Assembly Language Reference Manual ♦ February 2000

� External variable names beginning with the underscore character are reserved by
the ANSI C Standard. Do not begin these names with the underscore; otherwise,
the program will not conform to ANSI C and unpredictable behavior may result.

2.3.7 Special Symbols - Registers
Special symbol names begin with a percentage sign (%) to avoid conflict with user
symbols. Table 2–2 lists these special symbol names.

TABLE 2–2

Symbol Object Name Comment

General-purpose registers %r0 … %r31

General-purpose global registers %g0 … %g7 Same as %r0 … %r7

General-purpose out registers %o0 … %o7 Same as %r8 … %r15

General-purpose local registers %l0 … %l7 Same as %r16 … %r23

General-purpose in registers %i0 … %i7 Same as %r24 … %r31

Stack-pointer register %sp (%sp = %o6= %r14)

Frame-pointer register %fp (%fp = %i6 = %r30)

Floating-point registers %f0 … %f31

Floating-point status register %fsr

Front of floating-point queue %fq

Coprocessor registers %c0 … %c31

Coprocessor status register %csr

Coprocessor queue %cq

Program status register %psr

Assembler Syntax 17

TABLE 2–2 (continued)

Symbol Object Name Comment

Trap vector base address register %tbr

Window invalid mask %wim

Y register %y

Unary operators %lo Extracts least significant 10
bits

%hi Extracts most significant 22
bits

%r_disp32 Used only in Sun
compiler-generated code.

%r_plt32 Used only in Sun
compiler-generated code.

Ancillary state registers %asr1 … %asr31

There is no case distinction in special symbols; for example,

%PSR

is equivalent to

%psr

The suggested style is to use lowercase letters.

The lack of case distinction allows for the use of non-recursive preprocessor
substitutions, for example:

#define psr %PSR

The special symbols %hi and %lo are true unary operators which can be used in any
expression and, as other unary operators, have higher precedence than binary
operations. For example:

%hi a+b = (%hi a)+b
%lo a+b = (%lo a)+b

To avoid ambiguity, enclose operands of the %hi or %lo operators in parentheses.
For example:

18 SPARC Assembly Language Reference Manual ♦ February 2000

%hi(a) + b

2.3.8 Operators and Expressions
The operators described in Table 2–3 are recognized in constant expressions.

TABLE 2–3

Binary Operators Unary Operators

+ Integer addition + (No effect)

– Integer subtraction -- 2’s Complement

* Integer multiplication ~ 1’s Complement

/ Integer division %lo(address) Extract least significant 10 bits as
computed by: (address & 0x3ff)

% Modulo %hi(address) Extract most significant 22 bits as
computed by: (address >>10)

^ Exclusive OR %r_disp32

%r_disp64

Used in Sun compiler-generated
code only to instruct the assembler
to generate specific relocation
information for the given
expression.

<< Left shift %r_plt32

%r_plt64

Used in Sun compiler-generated
code only to instruct the assembler
to generate specific relocation
information for the given
expression.

>> Right shift

& Bitwise AND

| Bitwise OR

Since these operators have the same precedence as in the C language, put
expressions in parentheses to avoid ambiguity.

To avoid confusion with register names or with the %hi , %lo , %r_disp32/64 , or
%r_plt32/64 operators, the modulo operator %must not be immediately followed

Assembler Syntax 19

by a letter or digit. The modulo operator is typically followed by a space or left
parenthesis character.

2.3.9 SPARC V9 Operators and Expressions
The following V9 64-bit operators and expressions in Table 2–4 ease the task of
converting from V8/V8plus assembly code to V9 assembly code..

TABLE 2–4

Unary Calculation Operators

%hh (address) >> 42 Extract bits 42-63 of a 64-bit word

%hm ((address) >> 32) & 0x3ff Extract bits 32-41 of a 64-bit word

%lm (((address) >> 10) & 0x3fffff) Extract bits 10-31 of a 64-bit word

For example:::

sethi %hh (address), %l1
or %l1, %hm (address), %l1

sethi %lm (address), %12
or %12, %lo (address), %12

sllx %l1, 32, %l1
or %l1, %12, %l1

The V9 high 32-bit operators and expressions are identified in Table 2–5.

TABLE 2–5

Unary Calculation Operators

%hix ((((address) ^ 0xffffffffffffffff >> 10) &0x4fffff) Invert every bit and extract bits
10-31

%lox ((address) & 0x3ff | 0x1c00 Extract bits 0-9 and sign extend
that to 13 bits

20 SPARC Assembly Language Reference Manual ♦ February 2000

For example:

%sethi %hix (address), %l1
or %l1, %lox (address), %l1

The V9 low 44-bit operators and expressions are identified in Table 2–6..

TABLE 2–6

Unary Calculation Operators

%h44 ((address) >> 22) Extract bits 22-43 of a 64-bit word

%m44 ((address) >> 12) & 0x3ff Extract bits 12-21 of a 64-bit word

l44 (address) & 0xfff Extract bits 0-11 of a 64-bit word

For example::

%sethi %h44 (address), %l1
or %l1, %m44 (address), %l1
sllx %l1, 12, %l1
or %l1, %144 (address), %l1

2.4 Assembler Error Messages
Messages generated by the assembler are generally self-explanatory and give
sufficient information to allow correction of a problem.

Certain conditions will cause the assembler to issue warnings associated with delay
slots following Control Transfer Instructions (CTI). These warnings are:

� Set synthetic instructions in delay slots

� Labels in delay slots

� Segments that end in control transfer instructions

These warnings point to places where a problem could exist. If you have
intentionally written code this way, you can insert an .empty pseudo-operation
immediately after the control transfer instruction.

The .empty pseudo-operation in a delay slot tells the assembler that the delay slot
can be empty or can contain whatever follows because you have verified that either
the code is correct or the content of the delay slot does not matter.

Assembler Syntax 21

22 SPARC Assembly Language Reference Manual ♦ February 2000

CHAPTER 3

Executable and Linking Format

The type of object files created by the SPARC assembler version for SunOS 5.x are
now Executable and Linking Format (ELF) files. These relocatable ELF files hold code
and data suitable for linking with other object files to create an executable or a
shared object file, and are the assembler normal output. The assembler can also write
information to standard output (for example, under the -S option) and to standard
error (for example, under the -V option). The SPARC assembler creates a default
output file when standard input or multiple files are used.

This chapter is organized into the following sections:

� Section 3.1 “ELF Header” on page 24

� Section 3.2 “Sections ” on page 26

� Section 3.3 “Locations ” on page 33

� Section 3.5 “Relocation Tables ” on page 34

� Section 3.6 “Symbol Tables ” on page 34

� Section 3.4 “Addresses ” on page 34

� Section 3.7 “String Tables ” on page 36

� Section 3.8 “Assembler Directives ” on page 36

The ELF object file format consists of:

� Header

� Sections

� Locations

� Addresses

� Relocation tables

� Symbol tables

� String tables

23

For more information, see Chapter 4, “Object Files,” in the System V Application
Binary Interface (SPARCTM Processor Supplement) manual.

3.1 ELF Header
The ELF header is always located at the beginning of the ELF file. It describes the ELF
file organization and contains the actual sizes of the object file control structures. The
initial bytes of an ELF header specify how the file is to be interpreted.

The ELF header contains the following information:

ehsize

ELF header size in bytes.

entry

Virtual address at which the process is to start. A value of 0 indicates no
associated entry point.

flag

Processor-specific flags associated with the file.

ident

Marks the file as an object file and provides machine-independent data to decode
and interpret the file contents.

machine

Specifies the required architecture for an individual file. A value of 2 specifies
SPARC.

phentsize

Size in bytes of entries in the program header table. All entries are the same size.

phnum

Number of entries in program header table. A value of 0 indicates the file has no
program header table.

phoff

Program header table file offset in bytes. The value of 0 indicates no program
header.

24 SPARC Assembly Language Reference Manual ♦ February 2000

shentsize

Size in bytes of the section header. A section header is one entry in the section
header table; all entries are the same size.

shnum

Number of entries in section header table. A value of 0 indicates the file has no
section header table.

shoff

Section header table file offset in bytes. The value of 0 indicates no section header.

shstrndx

Section header table index of the entry associated with the section name string
table. A value of SHN_UNDEFindicates the file does not have a section name
string table.

type

Identifies the object file type. Table 3–1 describes the reserved object file types.

version

Identifies the object file version.

Table 3–1 shows reserved object file types:

TABLE 3–1

Type Value Description

none 0 No file type

rel 1 Relocatable file

exec 2 Executable file

dyn 3 Shared object file

core 4 Core file

loproc 0xff00 Processor-specific

hiproc 0xffff Processor-specific

Executable and Linking Format 25

TABLE 3–1 (continued)

3.2 Sections
A section is the smallest unit of an object that can be relocated. The following
sections are commonly present in an ELF file:

� Section header

� Executable text

� Read-only data

� Read-write data

� Read-write uninitialized data (section header only)

Sections do not need to be specified in any particular order. The current section is the
section to which code is generated.

These sections contain all other information in an object file and satisfy several
conditions.

1. Every section must have one section header describing the section. However, a
section header does not need to be followed by a section.

2. Each section occupies one contiguous sequence of bytes within a file. The section
may be empty (that is, of zero-length).

3. A byte in a file can reside in only one section. Sections in a file cannot overlap.

4. An object file may have inactive space. The contents of the data in the inactive
space are unspecified.

Sections can be added for multiple text or data segments, shared data, user-defined
sections, or information in the object file for debugging.

Note - Not all of the sections need to be present.

3.2.1 Section Header
The section header allows you to locate all of the file sections. An entry in a section
header table contains information characterizing the data in a section.

The section header contains the following information:

addr

26 SPARC Assembly Language Reference Manual ♦ February 2000

Address at which the first byte resides if the section appears in the memory image
of a process; the default value is 0.

addralign

Aligns the address if a section has an address alignment constraint; for example, if
a section contains a double-word, the entire section must be ensured double-word
alignment. Only 0 and positive integral powers of 2 are currently allowed. A
value of 0 or 1 indicates no address alignment constraints.

entsize

Size in bytes for entries in fixed-size tables such as the symbol table.

flags

One-bit descriptions of section attributes. Table 3–2 describes the section attribute
flags.

TABLE 3–2

Flag
Default
Value Description

SHF_WRITE 0x1 Contains data that is writable during process
execution.

SHF_ALLOC 0x2 Occupies memory during process execution. This
attribute is off if a control section does not reside in
the memory image of the object file.

SHF_EXECINSTR 0x4 Contains executable machine instructions.

SHF_MASKPROC 0xf0000000 Reserved for processor-specific semantics.

info

Extra information. The interpretation of this information depends on the section
type, as described in Table 3–3.

link

Section header table index link. The interpretation of this information depends on
the section type, as described in Table 3–3.

name

Executable and Linking Format 27

Specifies the section name. An index into the section header string table section
specifies the location of a null-terminated string.

offset

Specifies the byte offset from the beginning of the file to the first byte in the
section.

Note - If the section type is SHT_NOBITS, offset specifies the conceptual placement
of the file.

size

Specifies the size of the section in bytes.

Note - If the section type is SHT_NOBITS, size may be non-zero; however, the
section still occupies no space in the file.

type

Categorizes the section contents and semantics. Table 3–3 describes the section
types.

TABLE 3–3

Interpretation by

Name Value Description info link

null 0 Marks section header as
inactive.

progbits 1 Contains information defined
explicitly by the program.

symtab 2 Contains a symbol table for
link editing. This table may
also be used for dynamic
linking; however, it may
contain many unnecessary
symbols.

Note: Only one section of this
type is allowed in a file

One greater than the
symbol table index of
the last local symbol.

The section
header index of
the associated
string table.

strtab 3 Contains a string table. A file
may have multiple string table
sections.

28 SPARC Assembly Language Reference Manual ♦ February 2000

TABLE 3–3 (continued)

Interpretation by

Name Value Description info link

rela 4 Contains relocation entries
with explicit addends. A file
may have multiple relocation
sections.

The section header
index of the section to
which the relocation
applies.

The section
header index of
the associated
symbol table.

hash 5 Contains a symbol rehash
table.

Note: Only one section of this
type is allowed in a file

0 The section
header index of
the symbol table
to which the hash
table applies.

dynamic 6 Contains dynamic linking
information.

Note: Only one section of this
type is allowed in a file

0 The section
header index of
the string table
used by entries in
the section.

note 7 Contains information that
marks the file.

nobits 8 Contains information defined
explicitly by the program;
however, a section of this type
does not occupy any space in
the file.

rel 9 Contains relocation entries
without explicit addends. A
file may have multiple
relocation sections.

The section header
index of the section to
which the relocation
applies.

The section
header index of
the associated
symbol table.

shlib 10 Reserved.

dynsym 11 Contains a symbol table with
a minimal set of symbols for
dynamic linking.

Note: Only one section of this
type is allowed in a file

One greater than the
symbol table index of
the last local symbol.

The section
header index of
the associated
string table.

Executable and Linking Format 29

TABLE 3–3 (continued)

Interpretation by

Name Value Description info link

loproc

hiproc

0x70000000

0x7fffffff

Lower and upper bound of
range reserved for
processor-specific semantics.

louser

hiuser

0x80000000

0xffffffff

Lower and upper bound of
range reserved for application
programs.

Note: Section types in this range
may be used by an application
without conflicting with
system-defined section types.

Note - Some section header table indexes are reserved and the object file will not
contain sections for these special indexes.

3.2.2 Predefined User Sections
A section that can be manipulated by the section control directives is known as a user
section. You can use the section control directives to change the user section in which
code or data is generated. Table 3–4 lists the predefined user sections that can be
named in the section control directives.

TABLE 3–4

Section Name Description

.bss Section contains uninitialized read-write data.

.comment Comment section.

.data & .data1 Section contains initialized read-write data.

.debug Section contains debugging information.

30 SPARC Assembly Language Reference Manual ♦ February 2000

TABLE 3–4 (continued)

Section Name Description

.fini Section contains runtime finalization instructions.

.init Section contains runtime initialization instructions.

.rodata & .rodata1 Section contains read-only data.

.text Section contains executable text.

.line Section contains line # info for symbolic debugging.

.note Section contains note information.

3.2.2.1 Creating an .init Section in an Object File

The .init sections contain codes that are to be executed before the the main
program is executed. To create an .init section in an object file, use the assembler
pseudo-ops shown in Code Example 3–1.

CODE EXAMPLE 3–1 Creating an .init Section

.section ".init"

.align 4

<instructions>

At link time, the .init sections in a sequence of .o files are concatenated into an
.init section in the linker output file. The code in the .init section are executed
before the main program is executed.

Because the whole .init section is treated as a single function body, it is
recommented that the only code added to these sections be in the following form:.

call routine_name

nop

The called routine should be located in another section. This will prevent conflicting
register and stack usage within the .init sections.

Executable and Linking Format 31

3.2.2.2 Creating a .fini Section in an Object File
.fini sections contain codes that are to be executed after the the main program is
executed. To create an .fini section in an object file, use the assembler pseudo-ops
shown in Code Example 3–2.

CODE EXAMPLE 3–2 Creating an .fini Section

.section ".fini"

.align 4

<instructions>

At link time, the .fini sections in a sequence of .o files are concatenated into a
.fini section in the linker output file. The codes in the .fini section are executed
after the main program is executed.

Because the whole .fini section is treated as a single function body, it is
recommended that the only code added to these section be in the following form:.

call routine_name

nop

The called routine should be located in another section. This will prevent conflicting
register and stack usage within the .fini sections.

3.2.3 Predefined Non-User Sections
Table 3–5 lists sections that are predefined but cannot be named in the section control
directives because they are not under user control.

TABLE 3–5

Section Name Description

".dynamic" Section contains dynamic linking information.

.dynstr Section contains strings needed for dynamic linking.

.dynsym Section contains the dynamic linking symbol table.

.got Section contains the global offset table.

32 SPARC Assembly Language Reference Manual ♦ February 2000

TABLE 3–5 (continued)

Section Name Description

.hash Section contains a symbol hash table.

.interp Section contains the path name of a program interpreter.

.plt Section contains the procedure linking table.

.relname & .relaname Section containing relocation information. name is the section
to which the relocations apply, that is, ".rel.text ",
".rela.text ".

.shstrtab String table for the section header table names.

.strtab Section contains the string table.

.symtab Section contains a symbol table.

3.3 Locations
A location is a specific position within a section. Each location is identified by a
section and a byte offset from the beginning of the section. The current location is the
location within the current section where code is generated.

A location counter tracks the current offset within each section where code or data is
being generated. When a section control directive (for example, the .section
pseudo-op) is processed, the location information from the location counter
associated with the new section is assigned to and stored with the name and value of
the current location.

The current location is updated at the end of processing each statement, but can be
updated during processing of data-generating assembler directives (for example, the
.word pseudo-op).

Note - Each section has one location counter; if more than one section is present,
only one location can be current at any time.

Executable and Linking Format 33

3.4 Addresses
Locations represent addresses in memory if a section is allocatable; that is, its contents
are to be placed in memory at program runtime. Symbolic references to these
locations must be changed to addresses by the SPARC link editor.

3.5 Relocation Tables
The assembler produces a companion relocation table for each relocatable section. The
table contains a list of relocations (that is, adjustments to data in the section) to be
performed by the link editor.

3.6 Symbol Tables
A symbol table contains information to locate and relocate symbolic definitions and
references. The SPARC assembler creates a symbol table section for the object file. It
makes an entry in the symbol table for each symbol that is defined or referenced in
the input file and is needed during linking. The symbol table is then used by the
SPARC link editor during relocation. The section header contains the symbol table
index for the first non-local symbol.

A symbol table contains the following information:

name

Index into the object file symbol string table. A value of zero indicates the symbol
table entry has no name; otherwise, the value represents the string table index that
gives the symbol name.

value

Value of the associated symbol. This value is dependent on the context; for
example, it may be an address, or it may be an absolute value.

size

Size of symbol. A value of 0 indicates that the symbol has either no size or an
unknown size.

info

34 SPARC Assembly Language Reference Manual ♦ February 2000

Specifies the symbol type and binding attributes. Table 3–6 and Table 3–7
describes these values.

other

Undefined meaning. Current value is 0.

shndx

Contains the section header table index to another relevant section, if specified. As
a section moves during relocation, references to the symbol will continue to point
to the same location because the value of the symbol will change as well.

TABLE 3–6

Value Type Description

0 notype Type not specified.

1 object Symbol is associated with a data object; for example, a variable or
an array.

2 func Symbol is associated with a function or other executable code.
When another object file references a function from a shared
object, the link editor automatically creates a procedure linkage
table entry for the referenced symbol.

3 section Symbol is associated with a section. These types of symbols are
primarily used for relocation.

4 file Gives the name of the source file associated with the object file.

13

15

loproc

hiproc

Values reserved for processor-specific semantics.

Table 3–7 shows the symbol binding attributes.

Executable and Linking Format 35

TABLE 3–7

Value Binding Description

0 local Symbol is defined in the object file and not accessible in other files.
Local symbols of the same name may exist in multiple files.

1 global Symbol is either defined externally or defined in the object file and
accessible in other files.

2 weak Symbol is either defined externally or defined in the object file and
accessible in other files; however, these definitions have a lower
precedence than globally defined symbols.

13

15

loproc

hiproc

Values reserved for processor-specific semantics.

3.7 String Tables
A string table is a section which contains null-terminated variable-length character
sequences, or strings, in the object file; for example, symbol names and file names.
The strings are referenced in the section header as indexes into the string table
section.

� A string table index may refer to any byte in the section.

� Empty string table sections are permitted; however, the index referencing this
section must contain zero.

A string may appear multiple times and may also be referenced multiple times.
References to substrings may exist, and unreferenced strings are allowed.

3.8 Assembler Directives
Assembler directives, or pseudo-operations (pseudo-ops), are commands to the
assembler that may or may not result in the generation of code. The different types
of assembler directives are:

� Section Control Directives

36 SPARC Assembly Language Reference Manual ♦ February 2000

� Symbol Attribute Directives

� Assignment Directives

� Data Generating Directives

� Optimizer Directives

See Appendix A, for a complete description of the pseudo-ops supported by the
SPARC assembler.

3.8.1 Section Control Directives
When a section is created, a section header is generated and entered in the ELF
object file section header table. The section control pseudo-ops allow you to make
entries in this table. Sections that can be manipulated with the section control
directives are known as user sections. You can also use the section control directives to
change the user section in which code or data is generated.

Note - The symbol table, relocation table, and string table sections are created implicitly.
The section control pseudo-ops cannot be used to manipulate these sections.

The section control directives also create a section symbol which is associated with
the location at the beginning of each created section. The section symbol has an offset
value of zero.

3.8.2 Symbol Attribute Directives
The symbol attribute pseudo-ops declare the symbol type and size and whether it is
local or global.

3.8.3 Assignment Directive
The assignment directive associates the value and type of expression with the symbol
and creates a symbol table entry for the symbol. This directive constitutes a definition
of the symbol and, therefore, must be the only definition of the symbol.

3.8.4 Data Generating Directives
The data generating directives are used for allocating storage and loading values.

Executable and Linking Format 37

38 SPARC Assembly Language Reference Manual ♦ February 2000

CHAPTER 4

Converting Files to the New Format

4.1 Introduction
This chapter discusses how to convert existing SunOS 4.1 SPARC assembly files to
the SunOS 5.x SPARC assembly file format.

4.2 Conversion Instructions
� Remove the leading underscore (_)from symbol names. The Solaris 2.x

SPARCompilers do not prepend a leading underscore to symbol names in the
users’ programs as did the SPARCompilers that ran under SunOS 4.1.

� Prefix local symbol names with a dot (.) . Local symbol names in the SunOS 5.x
SPARC assembly language begin with a dot (.)so that they will not conflict with
user programs’ symbol names.

� Change the usage of the pseudo-op .seg to .section , for example, change
.seg data to .section .data . See Appendix A, for more information.

Note - The above conversions can be automatically achieved by passing the -T
option to the assembler.

39

4.3 Examples
Figure 4–1 shows how to convert an existing 4.1 file to the new format. The lines that
are different in the new format are marked with change bars.

.seg "data1"

.align 4
L16:

.ascii "hello world\n"

.seg "text"

.proc 04

.global _main

.align 4
_main:

!#PROLOGUE# 0
sethi %hi(LF12),%g1
add %g1,%lo(LF12),%g1
save %sp,%g1,%sp
!#PROLOGUE# 1

L14:
.seg "text"
set L16,%o0
call _printf,1
nop

LE12:
ret
restore
.optim "-O~Q~R~S"
LF12 = -96
LP12 = 96
LST12 = 96
LT12 = 96

.section ".data1"

.align 4
.L16:

.ascii "hello world\n"

.section ".text"

.proc 04

.global main

.align 4
main:

!#PROLOGUE# 0
sethi %hi(.LF12),%g1
add %g1,%lo(.LF12),%g1
save %sp,%g1,%sp
!#PROLOGUE# 1

.L14:
.section ".text"
set .L16,%o0
call printf,1
nop

.LE12:
ret
restore
.optim "-O~Q~R~S"
.LF12 = -96
.LP12 = 96
.LST12 = 96
.LT12 = 96

Example 4.x File Converted to the New Format

Change bars

Figure 4–1 Converting a 4.x File to the New Format

40 SPARC Assembly Language Reference Manual ♦ February 2000

CHAPTER 5

Instruction-Set Mapping

The tables in this chapter describe the relationship between hardware instructions of
the SPARC architecture, as defined in The SPARC Architecture Manual and the
assembly language instruction set recognized by the SunOS 5.x SPARC assembler.

� Section 5.1 “Table Notation ” on page 41

� Section 5.2 “Integer Instructions” on page 43

� Section 5.3 “Floating-Point Instruction” on page 53

� Section 5.4 “Coprocessor Instructions” on page 56

� Section 5.5 “Synthetic Instructions” on page 56

The SPARC-V9 instruction set is described in Appendix E.

5.1 Table Notation
Table 5–1 shows the table notation used in this chapter to describe the instruction set
of the assembler. The following notations are commonly suffixed to assembler
mnemonics (uppercase letters refer to SPARC architecture instruction names.

41

TABLE 5–1

Notations Describes Comment

address reg rs1 + reg rs2

reg rs1 + const13

reg rs1 -- const13

const13 + reg rs1

const13

Address formed from register contents, immediate
constant, or both.

asi Alternate address space identifier; an unsigned 8–bit
value. It can be the result of the evaluation of a
symbol expression.

const13 A signed constant which fits in 13 bits. It can be the
result of the evaluation of a symbol expression.

const22 A constant which fits in 22 bits. It can be the result of
the evaluation of a symbol expression.

creg %c0 ... %c31 Coprocessor registers.

freg %f0 ... %f31 Floating-point registers.

imm7 A signed or unsigned constant that can be represented
in 7 bits (it is in the range -64 ... 127). It can be the
result of the evaluation of a symbol expression.

reg %r0 ... %r31 General purpose registers.

%g0 ... %g7 Same as %r0 ... %r7 (Globals)

%o0 ... %o7 Same as %r8 ... %r15 (Outs)

%l0 ... %l7 Same as %r16 ... %r23 (Locals)

%i0 ... %i7 Same as %r24 ... %r31 (Ins)

reg rd
Destination register.

reg rs1, reg rs2
Source register 1, source register 2.

42 SPARC Assembly Language Reference Manual ♦ February 2000

TABLE 5–1 (continued)

Notations Describes Comment

reg_or_imm reg rs2, const13 Value from either a single register, or an immediate
constant.

regaddr reg rs1 reg rs1 + reg rs2
Address formed with register contents only.

Software_trap_number reg rs1 + reg rs2

reg rs1 + imm7

reg rs1 - imm7

uimm7

imm7 + reg rs1

A value formed from register contents, immediate
constant, or both. The resulting value must be in the
range 0.....127, inclusive.

uimm7 An unsigned constant that can be represented in 7
bits (it is in the range 0 ... 127). It can be the result of
the evaluation of a symbol expression.

5.2 Integer Instructions
The notations described in Table 5–2 are commonly suffixed to assembler mnemonics
(uppercase letters for architecture instruction names).

TABLE 5–2

Notation Description

a Instructions that deal with alternate space

b Byte instructions

c Reference to coprocessor registers

d Doubleword instructions

Instruction-Set Mapping 43

TABLE 5–2 (continued)

Notation Description

f Reference to floating-point registers

h Halfword instructions

q Quadword instructions

sr Status register

Table 5–3 outlines the correspondence between SPARC hardware integer instructions
and SPARC assembly language instructions.

The syntax of individual instructions is designed so that a destination operand (if
any), which may be either a register or a reference to a memory location, is always
the last operand in a statement.

Note - In Table 5–3,

� Braces ({ }) indicate optional arguments.

Braces are not literally coded.

� Brackets ([])indicate indirection: the contents of the addressed memory location
are being read from or written to.

Brackets are coded literally in the assembly language. Note that the usage of
brackets described in Chapter 2 differs from the usage of these brackets.

� All Bicc and Bfcc instructions described may indicate that the annul bit is to be
set by appending ",a" to the opcode mnemonic; for example,

"bgeu,a label"

TABLE 5–3

Opcode Mnemonic Argument List Operation Comments

ADD add regrs1, reg_or_imm, regrd
Add

ADDcc addcc regrs1, reg_or_imm, regrd
Add and modify icc

44 SPARC Assembly Language Reference Manual ♦ February 2000

TABLE 5–3 (continued)

Opcode Mnemonic Argument List Operation Comments

ADDX addx regrs1, reg_or_imm, regrd
Add with carry

ADDXcc addxcc regrs1, reg_or_imm, regrd

AND and regrs1, reg_or_imm, regrd
And

ANDcc andcc regrs1, reg_or_imm, regrd

ANDcc andn regrs1, reg_or_imm, regrd

ANDNcc andcc regrs1, reg_or_imm, regrd

BN bn{,a} label Branch on integer condition
codes

branch never

BNE bne{,a} label synonym: bnz

BE

BG

BLE

BGE

BI

BGU

BLEU

be{,a}

bg{,a}

ble{,a}

bge{,a}

bl{,a}

bgu{,a}

bleu{,a}

label

label

label

label

label

label

label

synonym: bz

BCC bcc{,a} label synonym: bgeu

BCS

BPOS

BNEG

BVC

BVS

bcs{,a}

bpos{,a}

bneg{,a}

bvc{,a}

bvs{,a}

label

label

label

label

label

synonym: blu

Instruction-Set Mapping 45

TABLE 5–3 (continued)

Opcode Mnemonic Argument List Operation Comments

BA ba{,a} label synonym: b

CALL call label Call subprogram

CBccc cbn{,a}

cb3{,a}

cb2{,a}

cb23{,a}

cb1{,a}

cb13{,eo}

cb12{,a}

cb123{,a}

cb0{,a}

cb03{,a}

cb02{,a}

cb023{,a}

cb01{,a}

cb013{,a}

cb012{,a}

cba{,a}

label

label

label

label

label

label

label

label

label

label

label

label

label

label

label

label

Branch on coprocessor
condition codes

branch never

46 SPARC Assembly Language Reference Manual ♦ February 2000

TABLE 5–3 (continued)

Opcode Mnemonic Argument List Operation Comments

FBN

FBU

FBG

FBUG

FBL

FBUL

FBLG

fbn{,a}

fbu{,a}

fbg{,a}

fbug{,a}

fbl{,a}

fbul{,a}

fblg{,a}

label

label

label

label

label

label

label

Branch on floating-point
condition codes

branch never

FBNE fbne{,a} label synonym: fbnz

FBE fbe{,a} label synonym: fbz

FBUE

FBGE

FBUGE

FBLE

FBULE

FBO

FBA

fbue{,a}

fbge{,a}

fbuge{,a}

fble{,a}

fbule{,a}

fbo{,a}

fba{,a}

label

label

label

label

label

label

label

FLUSH flush address Instruction cache flush

JMPL jmpl address, regrd
Jump and link

LDSB ldsb [address], regrd
Load signed byte

LDSH ldsh [address], regrd
Load signed halfword

LDSTUB ldstub [address], regrd
Load-store unsigned byte

Instruction-Set Mapping 47

TABLE 5–3 (continued)

Opcode Mnemonic Argument List Operation Comments

LDUB ldub [address], regrd
Load unsigned byte

LDUH lduh [address], regrd
Load unsigned halfword

LD ld [address], regrd
Load word

LDD ldd [address], regrd
Load double word regrd must be even

LDF ld [address], fregrd

LDFSR ld [address], %fsr Load floating-point register

LDDF ldd [address], fregrd
Load double floating-point fregrd must be even

LDC ld [address], cregrd
Load coprocessor

LDCSR ld [address], %csr Load double coprocessor

LDDC ldd [address], cregrd

LDSBA

LDSHA

LDUBA

LDUHA

LDA

ldsba

ldsha

lduba

lduha

lda

[regaddr]asi, regrd

[regaddr]asi, regrd

[regaddr]asi, regrd

[regaddr]asi, regrd

[regaddr]asi, regrd

Load signed byte from
alternate space

LDDA ldda [regaddr]asi, regrd regrd must be even

LDSTUBA ldstuba [regaddr]asi, regrd

MULScc mulscc regrs1, reg_or_imm, regrd
Multiply step (and modify
icc)

NOP nop No operation

48 SPARC Assembly Language Reference Manual ♦ February 2000

TABLE 5–3 (continued)

Opcode Mnemonic Argument List Operation Comments

OR

ORcc

ORN

ORNcc

or

orcc

orn

orncc

regrs1, reg_or_imm, regrd

regrs1, reg_or_imm, regrd

regrs1, reg_or_imm, regrd

regrs1, reg_or_imm, regrd

Inclusive or

RDASR rd %asrnrs1, regrd

RDY rd %y, regrd
See synthetic
instructions.

RDPSR rd %psr , regrd
See synthetic
instructions.

RDWIM rd %wim, regrd
See synthetic
instructions.

RDTBR rd %tbr , regrd
See synthetic
instructions.

RESTORE restore regrs1, reg_or_imm, reg rd
See synthetic
instructions.

RETT rett address Return from trap

SAVE save regrs1, reg_or_imm, regrd
See synthetic
instructions.

SDIV sdiv regrs1, reg_or_imm, regrd
Signed divide

SDIVcc sdivcc regrs1, reg_or_imm, regrd
Signed divide and modify
icc

SMUL smul regrs1, reg_or_imm, regrd
Signed multiply

SMULcc smulcc regrs1, reg_or_imm, regrd
Signed multiply and modify
icc

SETHI sethi const22, regrd
Set high 22 bits of register

Instruction-Set Mapping 49

TABLE 5–3 (continued)

Opcode Mnemonic Argument List Operation Comments

sethi %hi (value), regrd
See synthetic
instructions.

SLL sll regrs1, reg_or_imm, regrd
Shift left logical

SRL srl regrs1, reg_or_imm, regrd
Shift right logical

SRA sra regrs1, reg_or_imm, regrd
Shift right arithmetic

STB stb regrd, [address] Store byte Synonyms: stub ,
stsb

STH sth regrd, [address] Store half-word Synonyms: stuh ,
stsh

ST st regrd, [address]

STD std regrd, [address] regrd Must be
even

STF st fregrd, [address]

STDF std fregrd, [address]

STFSR st %fsr , [address] Store floating-point status
register

fregrd Must be
even

STDFQ std %fq , [address] Store double floating-point
queue

STC st cregrd, [address] Store coprocessor cregrd Must be
even

STDC std cregrd, [address] cregrd Must be
even

STCSR st %csr , [address]

STDCQ std %cq, [address] Store double coprocessor

50 SPARC Assembly Language Reference Manual ♦ February 2000

TABLE 5–3 (continued)

Opcode Mnemonic Argument List Operation Comments

STBA stba regrd [regaddr]asi Store byte into alternate
space

Synonyms: stuba,
stsba

STHA stha regrd [regaddr]asi Synonyms: stuha,
stsha

STA sta regrd, [regaddr]asi

STDA stda regrd, [regaddr]asi regrd Must be
even

SUB sub regrs1, reg_or_imm, regrd
Subtract

SUBcc subcc regrs1, reg_or_imm, regrd
Subtract and modify icc

SUBX subx regrs1, reg_or_imm, regrd
Subtract with carry

SUBXcc subxcc regrs1, reg_or_imm, regrd

SWAP

SWAPA

swap

swapa

[address], regrd

[regaddr]asi, regrd

Swap memory word

with register

Ticc tn software_trap_number Trap on integer condition
code

Trap never

tne software_trap_number Note: Trap numbers 16-31
are reserved for the user.
Currently-defined trap
numbers are those defined
in /usr/include/sys/
trap.h

Synonym: tnz

Instruction-Set Mapping 51

TABLE 5–3 (continued)

Opcode Mnemonic Argument List Operation Comments

te

tg

tle

tge

tl

tgu

software_trap_number

software_trap_number

software_trap_number

software_trap_number

software_trap_number

software_trap_number

Synonym: tz

tleu software_trap_number Synonym: tcc

tlu

tgeu

tpos

tneg

software_trap_number

software_trap_number

software_trap_number

software_trap_number

Synonym: tcc

tvc

tvs

ta

software_trap_number

software_trap_number

software_trap_number

Synonym: t

TADDcc

TSUBcc

taddcc

tsubcc

regrs1, reg_or_imm, regrd

regrs1, reg_or_imm, regrd

Tagged add and modify
icc

TADDccTV

TSUBccTV

taddcctv

tsubcctv

regrs1, reg_or_imm, regrd

regrs1, reg_or_imm, regrd

Tagged add and modify
icc and trap on overflow

UDIV udiv regrs1, reg_or_imm, regrd
Unsigned divide

UDIVcc udivcc regrs1, reg_or_imm, regrd
Unsigned divide and
modify icc

UMUL umul regrs1, reg_or_imm, regrd
Unsigned multiply

52 SPARC Assembly Language Reference Manual ♦ February 2000

TABLE 5–3 (continued)

Opcode Mnemonic Argument List Operation Comments

UMULcc umulcc regrs1, reg_or_imm, regrd
Unsigned multiply and
modify icc

UNIMP unimp const22 Illegal instruction

WRASR wr reg_or_imm, %asrnrs1

WRY wr regrs1, reg_or_imm, %y See synthetic
instructions

WRPSR wr regrs1, reg_or_imm, %psr See synthetic
instructions

WRWIM wr regrs1, reg_or_imm, %wim See synthetic
instructions

WRTBR wr regrs1, reg_or_imm, %tbr See synthetic
instructions

XNOR

XNORcc

xnor

xnorcc

regrs1, reg_or_imm, regrd

regrs1, reg_or_imm, regrd

Exclusive nor

XOR

XORcc

xor

xorcc

regrs1, reg_or_imm, regrd

regrs1, reg_or_imm, regrd

Exclusive or

5.3 Floating-Point Instruction
Table 5–4 shows floating-point instructions. In cases where more than numeric type
is involved, each instruction in a group is described; otherwise, only the first member
of a group is described.

Instruction-Set Mapping 53

TABLE 5–4

SPARC
Mnemonic1

Argument List Description

FiTOs fitos fregrs2, fregrd
Convert integer to single

FiTOd fitod fregrs2, fregrd
Convert integer to double

FiTOq fitoq fregrs2, fregrd
Convert integer to quad

FsTOi fstoi fregrs2, fregrd
Convert single to integer

FdTOi fdtoi fregrs2, fregrd
Convert double to integer

FqTOi fqtoi fregrs2, fregrd
Convert quad to integer

FsTOd fstod fregrs2, fregrd
Convert single to double

FsTOq fstoq fregrs2, fregrd
Convert single to quad

FdTOs fdtos fregrs2, fregrd
Convert double to single

FdTOq fdtoq fregrs2, fregrd
Convert double to quad

FqTOd fqtod fregrs2, fregrd
Convert quad to double

FqTOs fqtos fregrs2, fregrd
Convert quad to single

FMOVs fmovs fregrs2, fregrd
Move

FNEGs fnegs fregrs2, fregrd
Negate

FABSs fabss fregrs2, fregrd
Absolute value

FSQRTs

FSQRTd

FSQRTq

fsqrts

fsqrtd

fsqrtq

fregrs2, fregrd

fregrs2, fregrd

fregrs2, fregrd

Square root

54 SPARC Assembly Language Reference Manual ♦ February 2000

TABLE 5–4 (continued)

SPARC
Mnemonic1

Argument List Description

FADDs

FADDd

FADDq

fadds

faddd

faddq

fregrs1, fregrs2, fregrd

fregrs1, fregrs2, fregrd

fregrs1, fregrs2, fregrd

Add

FSUBs

FSUBd

FSUBq

fsubs

fsubd

fsubq

fregrs1, fregrs2, fregrd

fregrs1, fregrs2, fregrd

fregrs1, fregrs2, fregrd

Subtract

FMULs

FMULd

FMULq

fmuls

fmuld

fmulq

fregrs1, fregrs2, fregrd

fregrs1, fregrs2, fregrd

fregrs1, fregrs2, fregrd

Multiply

FdMULq fmulq fregrs1, fregrs2, fregrd
Multiply double to quad

FsMULd fsmuld fregrs1, fregrs2, fregrd
Multiply single to double

FDIVs

FDIVd

FDIVq

fdivs

fdivd

fdivq

fregrs1, fregrs2, fregrd

fregrs1, fregrs2, fregrd

fregrs1, fregrs2, fregrd

Divide

FCMPs

FCMPd

FCMPq

fcmps

fcmpd

fcmpq

fregrs1, fregrs2

fregrs1, fregrs2

fregrs1, fregrs2

Compare

FCMPEs

FCMPEd

FCMPEq

fcmpes

fcmped

fcmpeq

fregrs1, fregrs2

fregrs1, fregrs2

fregrs1, fregrs2

Compare, generate exception if
not ordered

1. Types of Operands are denoted by the following lower-case letters:i integers singled doubleq quad

Instruction-Set Mapping 55

5.4 Coprocessor Instructions
All coprocessor-operate (cpopn) instructions take all operands from and return all
results to coprocessor registers. The data types supported by the coprocessor are
coprocessor-dependent. Operand alignment is also coprocessor-dependent.
Coprocessor-operate instructions are described in Table 5–5.

If the EC (PSR_enable_coprocessor) field of the processor state register (PSR) is 0, or
if a coprocessor is not present, a cpopn instruction causes a cp_disabled trap.

The conditions that cause a cp_exception trap are coprocessor-dependent.

TABLE 5–5

SPARC Mnemonic Argument List Name Comments

CPop1 cpop1 opc, regrs1, regrs2, regrd
Coprocessor operation

CPop2 cpop2 opc, regrs1, regrs2, regrd
Coprocessor operation May modify ccc

5.5 Synthetic Instructions
Table 5–6 describes the mapping of synthetic instructions to hardware instructions.

TABLE 5–6

Synthetic Instruction Hardware Equivalent(s) Comment

btst reg_or_imm, regrs1
andcc regrs1, reg_or_imm, %g0 Bit test

bset reg_or_imm, regrd
or regrd, reg_or_imm, regrd

Bit set

bclr reg_or_imm, regrd
andn regrd, reg_or_imm, regrd

Bit clear

btog reg_or_imm, regrd
xor regrd, reg_or_imm, regrd

Bit toggle

56 SPARC Assembly Language Reference Manual ♦ February 2000

TABLE 5–6 (continued)

Synthetic Instruction Hardware Equivalent(s) Comment

call reg_or_imm jmpl reg_or_imm, %o7

clr regrd
or %g0, %g0, regrd

Clear (zero) register

clrb [address] stb %g0, [address] Clear byte

clrh [address] st %g0, [address] Clear halfword

clr [address] st %g0, [address] Clear word

cmp reg, reg_or_imm subcc regrs1, reg_or_imm, %g0 Compare

dec regrd
sub regrd, 1, regrd

Decrement by 1

dec const13, regrd
sub regrd, const13, regrd

Decrement by const13

deccc regrd
subcc regrd, 1, regrd

Decrement by 1 and set
icc

deccc const13, regrd
subcc regrd, const13, regrd

Decrement by const13
and set icc

inc regrd
add regrd, 1, regrd

Increment by 1

inc const13, regrd
add regrd, const13, regrd

Increment by const13

inccc regrd
addcc regrd, 1, regrd

Increment by 1 and set
icc

inccc const13, regrd
addcc regrd, const13, regrd

Increment by const13
and set icc

jmp address jmpl address, %g0

Instruction-Set Mapping 57

TABLE 5–6 (continued)

Synthetic Instruction Hardware Equivalent(s) Comment

mov

mov

mov

mov

mov

mov

mov

mov

mov

reg_or_imm,regrd

%y, regrs1

%psr , regrs1

%wim, regrs1

%tbr , regrs1

reg_or_imm, %y

reg_or_imm, %psr

reg_or_imm, %wim

reg_or_imm, %tbr

or

rd

rd

rd

rd

wr

wr

wr

wr

%g0, reg_or_imm, regrd

%y, regrs1

%psr , regrs1

%wim, regrs1

%tbr , regrs1

%g0,reg_or_imm,%y

%g0,reg_or_imm,%psr

%g0,reg_or_imm,%wim

%g0,reg_or_imm,%tbr

not regrs1, regrd
xnor regrs1, %g0, regrd

One’s complement

not regrd xnor regrd, %g0, regrd One’s complement

neg regrs1, regrd
sub %g0, regrs2, regrd

Two’s complement

neg regrd
sub %g0, regrd, regrd

Two’s complement

restore restore %g0, %g0, %g0 Trivial restore

save save %g0, %g0, %g0 Trivial save

trivial save should only
be used in supervisor
code!

set value,regrd
or %g0, value, regrd

if -4096 ≤value ≤ 4095

Do not use the set
synthetic instruction in
an instruction delay
slot.

set value,regrd
sethi %hi (value), regrd

if ((value & 0x3ff) == 0)

58 SPARC Assembly Language Reference Manual ♦ February 2000

TABLE 5–6 (continued)

Synthetic Instruction Hardware Equivalent(s) Comment

set value, regrd
sethi

or

%hi (value), regrd; regrd,
%lo (value), regrd

otherwise

Do not use the set
synthetic instruction in
an instruction delay
slot.

skipz bnz,a .+8 if z is set, ignores next
instruction

skipnz bz,a .+8 if z is not set, ignores
next instruction

tst reg orcc regrs1, %g0, %g0 test

5.6 V8/V9 Natural Pseudo Instructions
Table 5–7 describes the V8/V9 natural pseudo instructions that will help increase the
portability of your assembly code from V8/V8plus to V9. .

TABLE 5–7

-xarch=

Pseudo Instructions
V8/V8plus1

V9

ldn ld ldx

stn st stx

ldna lda ldxa

stna sta stxa

setn set setx

Instruction-Set Mapping 59

TABLE 5–7 (continued)

-xarch=

Pseudo Instructions
V8/V8plus1

V9

setnhi sethi setxhi

casn cas casx

slln sll sllx

srln srl srlx

sran sra srax

clrn clr clrx

1. Indicates default setting

Note - Depending on the value set for the -xarch option, the assembler substitutes
the appropriate pseudo instruction.

60 SPARC Assembly Language Reference Manual ♦ February 2000

APPENDIX A

Pseudo-Operations

The pseudo-operations listed in this appendix are supported by the SPARC assembler.

A.1 Alphabetized Listing with Descriptions
.alias

Turns off the effect of the preceding .noalias pseudo-op. (Compiler-generated
only.)

.align boundary

Aligns the location counter on a boundary where ((‘‘location counter’’
mod boundary)==0); boundary may be any power of 2.

.ascii string [, string "]

Generates the given sequence(s) of ASCII characters.

.asciz string [, string]*

Generates the given sequence(s) of ASCII characters. This pseudo-op appends a
null (zero) byte to each string.

.byte 8bitval [, 8bitval]*

Generates (a sequence of) initialized bytes in the current segment.

.common symbol , size [, sect_name] [, alignment]

61

Provides a tentative definition of symbol. Size bytes are allocated for the object
represented by symbol.

� If the symbol is not defined in the input file and is declared to be local to the
file, the symbol is allocated in sect_name and its location is optionally aligned to
a multiple of alignment. If sect_name is not given, the symbol is allocated in the
uninitialized data section (bss). Currently, only .bss is supported for the
section name. (.data is not currently supported.)

� If the symbol is not defined in the input file and is declared to be global, the
SPARC link editor allocates storage for the symbol, depending on the definition
of symbol_name in other files. Global is the default binding for common symbols.

� If the symbol is defined in the input file, the definition specifies the location of
the symbol and the tentative definition is overridden.

.double 0r floatval [, 0r floatval]*

Generates (a sequence of) initialized double-precision floating-point values in the
current segment. floatval is a string acceptable to atof(3); that is, an optional sign
followed by a non-empty string of digits with optional decimal point and optional
exponent.

.empty

Suppresses assembler complaints about the next instruction presence in a delay
slot when used in the delay slot of a Control Transfer Instruction (CTI).

Some instructions should not be in the delay slot of a CTI. See the SPARC
Architecture Manual for details.

.file string

Creates a symbol table entry where string is the symbol name and STT_FILE is
the symbol table type. string specifies the name of the source file associated with
the object file.

.global symbol [, symbol]* .globl symbol [, symbol]*

Declares each symbol in the list to be global; that is, each symbol is either defined
externally or defined in the input file and accessible in other files; default bindings
for the symbol are overridden.

� A global symbol definition in one file will satisfy an undefined reference to the
same global symbol in another file.

� Multiple definitions of a defined global symbol is not allowed. If a defined
global symbol has more than one definition, an error will occur.

� A global psuedo-op oes not need to occur before a definition, or tentative
definition, of the specified symbol.

62 SPARC Assembly Language Reference Manual ♦ February 2000

Note - This pseudo-op by itself does not define the symbol.

.half 16bitval [, 16bitval]*

Generates (a sequence of) initialized halfwords in the current segment. The
location counter must already be aligned on a halfword boundary (use .align 2).

.ident string

Generates the null terminated string in a comment section. This operation is
equivalent to:

.pushsection .comment

.asciz string

.popsection

.local symbol [, symbol]*

Declares each symbol in the list to be local; that is, each symbol is defined in the
input file and not accessible in other files; default bindings for the symbol are
overridden. These symbols take precedence over weak and global symbols.

Since local symbols are not accessible to other files, local symbols of the same
name may exist in multiple files.

Note - This pseudo-op by itself does not define the symbol.

.noalias %reg1, %reg2

%reg1 and %reg2 will not alias each other (that is, point to the same destination)
until a .alias pseudo-op is issued. (Compiler-generated only.)

.nonvolatile

Defines the end of a block of instruction. The instructions in the block may not be
permuted. This pseudo-op has no effect if:

� The block of instruction has been previously terminated by a Control Transfer
Instruction (CTI) or a label

� There is no preceding .volatile pseudo-op

.nword 64bitval [, 64bitval]*

If -xarch=v8/v8plus then assembler interprets the instruction as .word . If
-xarch=v9 the assembler interprets the instruction as .xword .

.optim string

Pseudo-Operations 63

This pseudo-op changes the optimization level of a particular function.
(Compiler-generated only.)

.popsection

Removes the top section from the section stack. The new section on the top of the
stack becomes the current section. This pseudo-op and its corresponding
.pushsection command allow you to switch back and forth between the named
sections.

.proc n

Signals the beginning of a procedure (that is, a unit of optimization) to the peephole
optimizer in the SPARC assembler; n specifies which registers will contain the
return value upon return from the procedure. (Compiler-generated only.)

.pushsection sect_name [, attributes]

Moves the named section to the top of the section stack. This new top section then
becomes the current section. This pseudo-op and its corresponding .popsection
command allow you to switch back and forth between the named sections.

.quad 0r floatval [, 0r floatval]*

Generates (a sequence of) initialized quad-precision floating-point values in the
current segment. floatval is a string acceptable to atof(3); that is, an optional sign
followed by a non-empty string of digits with optional decimal point and optional
exponent.

Note - The .quad command currently generates quad-precision values with only
double-precision significance.

.reserve symbol, size [, sect_name [, alignment]]

Defines symbol, and reserves size bytes of space for it in the sect_name. This
operation is equivalent to:

.pushsection sect_name

.align alignment
symbol:

.skip size

.popsection

If a section is not specified, space is reserved in the current segment.

.section section_name [, attributes]

Makes the specified section the current section.

64 SPARC Assembly Language Reference Manual ♦ February 2000

The assembler maintains a section stack which is manipulated by the section
control directives. The current section is the section that is currently on top of the
stack. This pseudo-op changes the top of the section stack.

� If section_name does not exist, a new section with the specified name and
attributes is created.

� If section_name is a non-reserved section, attributes must be included the first
time it is specified by the .section directive.

See the sections Section 3.2.2 “Predefined User Sections ” on page 30 and Section
3.2.3 “Predefined Non-User Sections ” on page 32 in Chapter 3, for a detailed
description of the reserved sections. See Table 3–2 in Chapter 3, for a detailed
description of the section attribute flags.

Attributes can be:

#write | #alloc | #execinstr

.seg section_name

Note - This pseudo-op is currently supported for compatibility with existing
SunOS 4.1 SPARC assembly language programs. This pseudo-op has been
replaced by the .section pseudo-op.

Changes the current section to one of the predefined user sections. The assembler
will interpret the following SunOS 4.1 SPARC assembly directive: to be the same
as the following SunOS 5.x SPARC assembly directive:

.seg text, .seg data, .seg data1, .seg bss,

.section .text, .section .data, .section .data1,

.section .bss.

Predefined user section names are changed in SunOS 5.x.

.single 0r floatval [, 0r floatval]*

Generates (a sequence of) initialized single-precision floating-point values in the
current segment.

Note - This operation does not align automatically.

.size symbol, expr

Declares the symbol size to be expr. expr must be an absolute expression.

.skip n

Pseudo-Operations 65

Increments the location counter by n, which allocates n bytes of empty space in
the current segment.

.stabn <various parameters>

The pseudo-op is used by Solaris 2.x SPARCompilers only to pass debugging
information to the symbolic debuggers.

.stabs <various parameters>

The pseudo-op is used by Solaris 2.x SPARCompilers only to pass debugging
information to the symbolic debuggers.

.type symbol, type

Declares the type of symbol, where type can be:

#object

#function

#no_type

See Table 3–6 in Chapter 3, for detailed information on symbols.

.uahalf 16bitval [, 16bitval]*

Generates a (sequence of) 16-bit value(s).

Note - This operation does not align automatically.

.uaword 32bitval [, 32bitval]*

Generates a (sequence of) 32-bit value(s).

Note - This operation does not align automatically.

.version string

Identifies the minimum assembler version necessary to assemble the input file.
You can use this pseudo-op to ensure assembler-compiler compatibility. If string
indicates a newer version of the assembler than this version of the assembler, a
fatal error message is displayed and the SPARC assembler exits.

.volatile

Defines the beginning of a block of instruction. The instructions in the section may
not be changed. The block of instruction should end at a .nonvolatile
pseudo-op and should not contain any Control Transfer Instructions (CTI) or

66 SPARC Assembly Language Reference Manual ♦ February 2000

labels. The volatile block of instructions is terminated after the last instruction
preceding a CTI or label.

.weak symbol [, symbol]

Declares each symbol in the list to be defined either externally, or in the input file
and accessible to other files; default bindings of the symbol are overridden by this
directive.

Note the following:

� A weak symbol definition in one file will satisfy an undefined reference to a
global symbol of the same name in another file.

� Unresolved weak symbols have a default value of zero; the link editor does not
resolve these symbols.

� If a weak symbol has the same name as a defined global symbol, the weak
symbol is ignored and no error results.

Note - This pseudo-op does not itself define the symbol.

.word 32bitval [, 32bitval]*

Generates (a sequence of) initialized words in the current segment.

Note - This operation does not align automatically.

.xword 64bitval [, 64bitval]*

Generates (a sequence of) initialized 64-bit values in the current segment.

Note - This operation does not align automatically.

.xstabs <various parameters>

The pseudo-op is used by Solaris 2.x SPARCompilers only to pass debugging
information to the symbolic debuggers.

symbol =expr

Assigns the value of expr to symbol.

Pseudo-Operations 67

68 SPARC Assembly Language Reference Manual ♦ February 2000

APPENDIX B

Examples of Pseudo-Operations

This chapter shows some examples of ways to use various pseudo-ops.

B.1 Example 1
This example shows how to use the following pseudo-ops to specify the bindings of
variables in C:

common, .global , .local , .weak

The following C definitions/declarations:

int foo1 = 1;
#pragma weak foo2 = foo1
static int foo3;
static int foo4 = 2;

can be translated into the following assembly code:

CODE EXAMPLE B–1

.pushsection ".data"

.global foo1 ! int foo1 = 1

.align 4
foo1:

.word 0x1

.type foo1,#object ! foo1 is of type data object,

.size foo1,4 ! with size = 4 bytes

.weak foo2 ! #pragma weak foo2 = foo1
foo2 = foo1

.local foo3 ! static int foo3

69

.common foo3,4,4

.align 4 ! static int foo4 = 2
foo4:

.word 0x2

.type foo4,#object

.size foo4,4

.popsection

B.2 Example 2
This example shows how to use the pseudo-op .ident to generate a string in the
.comment section of the object file for identification purposes.

.ident "acomp: (CDS) SPARCompilers 2.0 alpha4 12 Aug 1991"

B.3 Example 3
The pseudo-ops shown in this example are .align , .global , .type , and .size .

The following C subroutine:

int sum(a, b)
int a, b;

{
return(a + b);

}

can be translated into the following assembly code:

.section ".text"

.global sum

.align 4

sum:

retl
add %o0,%o1,%o0 ! (a + b) is done in the

! delay slot of retl

70 SPARC Assembly Language Reference Manual ♦ February 2000

.type sum,#function ! sum is of type function

.size sum,.-sum ! size of sum is the diff

! of current location

! counter and the initial

! definition of sum

B.4 Example 4
The pseudo-ops shown in this example are .section , .ascii , and .align . The
example calls the printf function to output the string "hello world" .

.section ".data1"

.align 4
.L16:

.ascii "hello world\n\0"

.section ".text"

.global main
main:

save %sp,-96,%sp
set .L16,%o0
call printf,1
nop
restore

B.5 Example 5
This example shows how to use the .volatile and .nonvolatile pseudo-ops to
protect a section of handwritten asembly code from peephole optimization.

.volatile
t 0x24
std %g2, [%o0]
retl
nop
.nonvolatile

Examples of Pseudo-Operations 71

72 SPARC Assembly Language Reference Manual ♦ February 2000

APPENDIX C

Using the Assembler Command Line

This appendix is organized into the following secitons:

� Section C.1 “Assembler Command Line” on page 73

� Section C.2 “Assembler Command Line Options ” on page 74

� Section C.3 “Disassembling Object Code” on page 77

C.1 Assembler Command Line
You invoke the assembler command line as follows:

as [options] [inputfile] ...

Note - The language drivers (such as cc and f77) invoke the assembler command line
with the fbe command. You can use either the as or fbe command to invoke the
assembler command line.

The as command translates the assembly language source files, inputfile, into an
executable object file, objfile. The SPARC assembler recognizes the filename argument
hyphen (-) as the standard input. It accepts more than one file name on the command
line. The input file is the concatenation of all the specified files. If an invalid option is
given or the command line contains a syntax error, the SPARC assembler prints the
error (including a synopsis of the command line syntax and options) to standard
error output, and then terminates.

The SPARC assembler supports macros, #include files, and symbolic substitution
through use of the C preprocessor cpp . The assembler invokes the preprocessor

73

before assembly begins if it has been specified from the command line as an option.
(See the -P option.)

C.2 Assembler Command Line Options
-b

This option generates extra symbol table information for the source code browser.

� If the as command line option -P is set, the cpp preprocessor also collects
browser information.

� If the as command line option -m is set, this option is ignored as the m4macro
processor does not generate browser data.

For more information about the SPARCworks SourceBrowser, see the Browsing
Source Code manual.

-Dname -Dname=def

When the -P option is in effect, these options are passed to the cpp preprocessor
without interpretation by the as command; otherwise, they are ignored.

-Ipath

When the -P option is in effect, this option is passed to the cpp preprocessor
without interpretation by the as command; otherwise, it is ignored.

-K PIC

This option generates position-independent code. This option has the same
functionality as the -k option under the SunOS 4.1 SPARC assembler.

Note - -K PIC and -K pic are equivalent.

-L

Saves all symbols, including temporary labels that are normally discarded to save
space, in the ELF symbol table.

-m

This option runs m4macro preprocessing on input. The m4 preprocessor is more
powerful than the C preprocessor (invoked by the -P option), so it is more useful
for complex preprocessing. See the m4(1) man page for more information about
the m4macro-processor.

74 SPARC Assembly Language Reference Manual ♦ February 2000

-n

Suppress all warnings while assembling.

-o outfile

Takes the next argument as the name of the output file to be produced. By default,
the .s suffix, if present, is removed from the input file and the .o suffix is
appended to form the ouput file name.

-P

Run cpp, the C preprocessor, on the files being assembled. The preprocessor is run
separately on each input file, not on their concatenation. The preprocessor output
is passed to the assembler.

-Q{y|n}

This option produces the “assembler version” information in the comment section
of the output object file if the y option is specified; if the n option is specified, the
information is suppressed.

-q

This option causes the assembler to perform a quick assembly. Many error-checks
are not performed when -q is specified.

Note - This option disables many error checks. It is recommended that you do not
use this option to assemble handwritten assembly language.

-S[a|b|c|l|A|B|C|L]

Produces a disassembly of the emitted code to the standard output. Adding each
of the following characters to the -S option produces:

� a - disassembling with address

� b - disassembling with ".bof"

� c - disassembling with comments

� l - disassembling with line numbers

Capital letters turn the switch off for the corresponding option.

-s

This option places all stabs in the ".stabs " section. By default, stabs are placed in
"stabs.excl " sections, which are stripped out by the static linker ld during final
execution. When the -s option is used, stabs remain in the final executable
because ".stab" sections are not stripped out by the static linker ld .

Using the Assembler Command Line 75

-T

This is a migration option for SunOS 4.1 assembly files to be assembled on SunOS
5.x systems. With this option, the symbol names in SunOS 4.1 assembly files will
be interpreted as SunOS 5.x symbol names. This option can be used in conjunction
with the -S option to convert SunOS 4.1 assembly files to their corresponding
SunOS 5.x versions.

-Uname

When the -P option is in effect, this option is passed to the cpp preprocessor
without interpretation by the as command; otherwise, it is ignored.

-V

This option writes the version information on the standard error output.

-xarch=v7

This option instructs the assembler to accept instructions defined in the SPARC
version 7 (V7) architecture. The resulting object code is in ELF format.

-xarch=v8

This option instructs the assembler to accept instructions defined in the SPARC-V8
architecture. The resulting object code is in ELF format. The quad-precision
floating-point instructions are allowed; however when the program is executed
these instructions cause a hardware exception called "trap" (an illegal instruction
trap). The kernel has the trap handler to emulate the quad percision floating-point
arithmetic. Consequently, all quad percision arithmetic is performed by the
emulator in the kernel.

-xarch=v8a

This option instructs the assembler to accept instructions defined in the SPARC-V8
architecture, less the fsmuld instruction. The resulting object code is in ELF
format. The quad-precision floating-point instructions are allowed; however when
the program is executed these instructions cause a hardware exception called
"trap" (an illegal instruction trap). The kernel has the trap handler to emulate the
quad percision floating-point arithmetic. Consequently, all quad percision
arithmetic is performed by the emulator in the kernel. This is the default choice of
the -xarch= options.

-xarch=v8plus

This option instructs the assembler to accept instructions defined in the SPARC-V9
architecture. The resulting object code is in ELF format. The quad-precision
floating-point instructions are allowed; however when the program is executed
these instructions cause a hardware exception called "trap" (an illegal instruction

76 SPARC Assembly Language Reference Manual ♦ February 2000

trap). The kernel has the trap handler to emulate the quad percision floating-point
arithmetic. Consequently, all quad percision arithmetic is performed by the
emulator in the kernel. It will not execute on a Solaris V8 system (a machine with
a V8 processor). It will execute on a Solaris V8+ system. This combination is a
SPARC 64-bit processor and a 32-bit OS. For more information regarding
SPARC-V9 instructions, see Appendix E."

-xarch=v8plusa

This option instructs the assembler to accept instructions defined in the SPARC-V9
architecture, plus the instructions in the Visual Instruction Set (VIS). The resulting
object code is in V8+ ELF format. It will not execute on a Solaris V8 system. It will
execute on a Solaris V8+ system. For more information about VIS instructions, see
the "UltraSPARC Programmer’s Reference Manual" and the "UltraSPARC User’s
Guide." The quad-precision floating-point instructions are allowed; however when
the program is executed these instructions cause a hardware exception called
"trap" (an illegal instruction trap). The kernel has the trap handler to emulate the
quad percision floating-point arithmetic. Consequently, all quad percision
arithmetic is performed by the emulator in the kernel.

-xarch=v9

This option limits instruction set to the SPARC-V9 architecture. The resulting .o
object files are in 64-bit ELF format and can only be linked with other object files
in the same format. The resulting executable can only be run on a 64-bit SPARC
processor running 64-bit Solaris 2.7 with the 64-bit kernel.

Note - This option is available only on Solaris 7.

-xarch=v9a

This option limits instruction set to the SPARC-V9 architecture, adding the Visual
Instruction Set (VIS) and extensions specific to UltraSPARC processors. The
resulting .o object files are in 64-bit ELF format and can only be run on a 64-bit
SPARC processor running 64-bit Solaris 2.7 with the 64-bit kernel.

Note - This option is available only on Solaris.7.

C.3 Disassembling Object Code
The dis program is the object code disassembler for ELF. It produces an assembly
language listing of the object file. For detailed information about this function, see
the man page dis (1).

Using the Assembler Command Line 77

78 SPARC Assembly Language Reference Manual ♦ February 2000

APPENDIX D

An Example Language Program

The following code shows an example C language program; the second example
code shows the corresponding assembly code generated by SPARCompiler C 3.0.2
that runs on the Solaris 2.x operating environment. Comments have been added to
the asembly code to show correspondence to the C code.

The following C Program computes the first n Fibonacci numbers:

CODE EXAMPLE D–1 C Program Example Source

/* a simple program computing the first n Fibonacci numbers */

extern unsigned * fibonacci();

#define MAX_FIB_REPRESENTABLE 49

/* compute the first n Fibonacci numbers */
unsigned * fibonacci(n)

int n;
{

static unsigned fib_array[MAX_FIB_REPRESENTABLE] = {0,1};
unsigned prev_number = 0;
unsigned curr_number = 1;
int i;

if (n >= MAX_FIB_REPRESENTABLE) {
printf("Fibonacci(%d) cannot be represented in a 32 bit word\n", n);
exit(1);

}

for (i = 2; i < n; i++) {
fib_array[i] = prev_number + curr_number;
prev_number = curr_number;
curr_number = fib_array[i];

}

return(fib_array);
}

79

main()
{

int n, i;
unsigned * result;

printf("Fibonacci(n):, please enter n:\n");
scanf("%d", &n);

result = fibonacci(n);
for (i = 1; i <= n; i++)

printf("Fibonacci (%d) is %u\n", i, *result++);
}

The C SPARCompiler generates the following assembler output for the Fibonacci
number C source. Annotation has been added to help you understand the code.

CODE EXAMPLE D–2 Assembler Output From C Source

!
! a simple program computing the first n Fibonacci numbers,
! showing various pseudo-operations, sparc instructions, synthetic instructions
!
! pseudo-operations: .align, .ascii, .file, .global, .ident, .proc, .section,
! .size, .skip, .type, .word
! sparc instructions: add, bg, bge, bl, ble, ld, or, restore, save, sethi, st
! synthetic instructions: call, cmp, inc, mov, ret
!

.file "fibonacci.c" ! the original source file name

.section ".text" ! text section (executable instructions)

.proc 79 ! subroutine fibonacci, it’s return
! value will be in %i0

.global fibonacci ! fibonacci() can be referenced
! outside this file

.align 4 ! align the beginning of this section
! to word boundary

fibonacci:
save %sp,-96,%sp ! create new stack frame and register

! window for this subroutine
/* if (n >= MAX_FIB_REPRESENTABLE) { */

! note, C style comment strings are
! also permitted

cmp %i0,49 ! n >= MAX_FIB_REPRESENTABLE ?
! note, n, the 1st parameter to
! fibonacci(), is stored in %i0 upon
! entry

bl .L77003
mov 0,%i2 ! initialization of variable

! prev_number is executed in the
! delay slot

/* printf("Fibonacci(%d) cannot be represented in a 32 bits word\n", n); */
sethi %hi(.L20),%o0 ! if branch not taken, call printf(),
or %o0,%lo(.L20),%o0 ! set up 1st, 2nd argument in %o0, %o1;

80 SPARC Assembly Language Reference Manual ♦ February 2000

call printf,2 ! the ",2" means there are 2 out
mov %i0,%o1 ! registers used as arguments

/* exit(1); */
call exit,1
mov 1,%o0

.L77003: ! initialize variables before the loop
/* for (i = 2; i < n; i++) { */

mov 1,%i4 ! curr_number = 1
mov 2,%i3 ! i = 2
cmp %i3,%i0 ! i <= n?
bge .L77006 ! if not, return
sethi %hi(.L16+8),%o0 ! use %i5 to store fib_array[i]
add %o0,%lo(.L16+8),%i5

.LY1: ! loop body
/* fib_array[i] = prev_number + curr_number; */

add %i2,%i4,%i2 ! fib_array[i] = prev_number+curr_number
st %i2,[%i5]

/* prev_number = curr_number; */
mov %i4,%i2 ! prev_number = curr_number

/* curr_number = fib_array[i]; */
ld [%i5],%i4 ! curr_number = fib_array[i]
inc %i3 ! i++
cmp %i3,%i0 ! i <= n?
bl .LY1 ! if yes, repeat loop
inc 4,%i5 ! increment ptr to fib_array[]

.L77006:
/* return(fib_array); */

sethi %hi(.L16),%o0 ! return fib_array in %i0
add %o0,%lo(.L16),%i0
ret
restore ! destroy stack frame and register

! window
.type fibonacci,#function ! fibonacci() is of type function
.size fibonacci,(.-fibonacci) ! size of function:

! current location counter minus
! beginning definition of function

.proc 18 ! main program

.global main

.align 4
main:

save %sp,-104,%sp ! create stack frame for main()
/* printf("Fibonacci(n):, please input n:\n"); */

sethi %hi(.L31),%o0 ! call printf, with 1st arg in %o0
call printf,1
or %o0,%lo(.L31),%o0

/* scanf("%d", &n); */
sethi %hi(.L33),%o0 ! call scanf, with 1st arg, in %o0
or %o0,%lo(.L33),%o0 ! move 2nd arg. to %o1, in delay slot
call scanf,2
add %fp,-4,%o1

/* result = fibonacci(n); */
call fibonacci,1
ld [%fp-4],%o0

! some initializations before the for-
! loop, put the variables in registers

/* for (i = 1; i <= n; i++) */

An Example Language Program 81

mov 1,%i5 ! %i5 <-- i
mov %o0,%i4 ! %i4 <-- result
sethi %hi(.L38),%o0 ! %i2 <-- format string for printf
add %o0,%lo(.L38),%i2
ld [%fp-4],%o0 ! test if (i <= n) ?
cmp %i5,%o0 ! note, n is stored in [%fp-4]
bg .LE27
nop

.LY2: ! loop body
/* printf("Fibonacci (%d) is %u\n", i, *result++); */

ld [%i4],%o2 ! call printf, with (*result) in %o2,
mov %i5,%o1 ! i in %o1, format string in %o0
call printf,3
mov %i2,%o0
inc %i5 ! i++
ld [%fp-4],%o0 ! i <= n?
cmp %i5,%o0
ble .LY2
inc 4,%i4 ! result++

.LE27:
ret
restore
.type main,#function ! type and size of main
.size main,(.-main)

.section ".data" ! switch to data section
! (contains initialized data)

.align 4
.L16:
/* static unsigned fib_array[MAX_FIB_REPRESENTABLE] = {0,1}; */

.align 4 ! initialization of first 2 elements

.word 0 ! of fib_array[]

.align 4

.word 1

.skip 188

.type .L16,#object ! storage allocation for the rest of
! fib_array[]

.section ".data1" ! the ascii string data are entered
! into the .data1 section;
! #alloc: memory would be allocated
! for this section during run time
! #write: the section contains data
! that is writeable during process
! execution

.align 4
.L20: ! ascii strings used in the printf stmts

.ascii "Fibonacci(%d) cannot be represented in a 32 bit w"

.ascii "ord\n\0"

.align 4 ! align the next ascii string to word
! boundary

.L31:
.ascii "Fibonacci(n):, please enter n:\n\0"
.align 4

.L33:
.ascii "%d\0"
.align 4

.L38:

82 SPARC Assembly Language Reference Manual ♦ February 2000

.ascii "Fibonacci (%d) is %u\n\0"

.ident "acomp: (CDS) SPARCompilers 2.0 05 Jun 1991"
! an idenitfication string produced
! by the compiler to be entered into
! the .comment section

An Example Language Program 83

84 SPARC Assembly Language Reference Manual ♦ February 2000

APPENDIX E

SPARC-V9 Instruction Set

This appendix describes changes made to the SPARC instruction set due to the
SPARC-V9 architecture. Application software for the 32-bit SPARC-V8 (Version8)
architecture can execute, unchanged, on SPARC-V9 systems.

This appendix is organized into the following sections:

� Section E.1 “SPARC-V9 Changes” on page 85

� Section E.2 “SPARC-V9 Instruction Set Changes” on page 88

� Section E.3 “SPARC-V9 Instruction Set Mapping” on page 91

� Section E.4 “SPARC-V9 Floating-Point Instruction Set Mapping” on page 102

� Section E.5 “SPARC-V9 Synthetic Instruction-Set Mapping” on page 103

� Section E.6 “UlraSPARC and VIS Instruction Set Extensions” on page 106

E.1 SPARC-V9 Changes
The SPARC-V9 architecture differs from SPARC-V8 architecture in the following
areas, expanded below: registers, alternate space access, byte order, and instruction
set.

E.1.1 Registers
These registers have been deleted:

85

TABLE E–1

PSR Processor State Register

TBR Trap Base Register

WIM Window Invalid Mask

These registers have been widened from 32 to 64 bits:

TABLE E–2

Integer registers

All state registers FSR, PC, nPC, and Y

Note - FSR Floating-Point State Register: fcc1, fcc2, and fcc3 (added floating-point
condition code) bits are added and the register widened to 64-bits.

These SPARC-V9 registers are within a SPARC-V8 register field:

TABLE E–3

CCR Condition Codes Register

CWP Current Window Pointer

PIL Processor Interrupt Level

TBA Trap Base Address

TT[MAXTL] Trap Type

VER Version

These are registers that have been added.

86 SPARC Assembly Language Reference Manual ♦ February 2000

TABLE E–4

ASI Address Space Identifier

CANRESTORE Restorable Windows

CANSAVE Savable windows

CLEANWIN Clean Windows

FPRS Floating-point Register State

OTHERWIN Other Windows

PSTATE Processor State

TICK Hardware clock tick-counter

TL Trap Level

TNPC[MAXTL] Trap Next Program Counter

TPC[MAXTL] Trap Program Counter

TSTATE[MAXTL] Trap State

WSTATE Windows State

Also, there are sixteen additional double-precision floating-point registers, f[32] ..
f[62]. These registers overlap (and are aliased with) eight additional quad-precision
floating-point registers, f[32] .. f[60]

The SPARC-V9, CWP register is decremented during a RESTORE instruction, and
incremented during a SAVE instruction. This is the opposite of PSR.CWP’s behavior
in SPARC-V8. This change has no effect on nonprivileged instructions.

E.1.2 Alternate Space Access
Load- and store-alternate instructions to one-half of the alternate spaces can now be
included in user code. In SPARC-V9, loads and stores to ASIs 0016 .. 7f16 are
privileged; those to ASIs 8016 .. FF16 are nonprivileged. In SPARC-V8, access to
alternate address spaces is privileged.

SPARC-V9 Instruction Set 87

E.1.3 Byte Order
SPARC-V9 supports both little- and big-endian byte orders for data accesses only;
instruction accesses are always performed using big-endian byte order. In SPARC-V8,
all data and instruction accesses are performed in big-endian byte order.

E.2 SPARC-V9 Instruction Set Changes
Application software written for the SPARC-V8 processor runs unchanged on a
SPARC-V9 processor.

E.2.1 Extended Instruction Definitions to Support the
64-bit Model

TABLE E–5

FCMP, FCMPE Floating-Point Compare—can set any of the four floating-point
condition codes.

LDFSR, STFSR Load/Store FSR- only affect low-order 32 bits of FSR

LDUW, LDUWA Same as LD, LDA in SPARC-V8

RDASR/WRASR Read/Write State Registers - access additional registers

SAVE/RESTORE

SETHI

SRA, SRL, SLL, Shifts Split into 32-bit and 64-bit versions

Tcc (was Ticc) Operates with either the 32-bit integer condition codes
(icc), or the 64-bit integer condition codes (xcc)

All other arithmetic operations operate on 64-bit operands and produce 64-bit results.

88 SPARC Assembly Language Reference Manual ♦ February 2000

E.2.2 Added Instructions to Support 64 bits

TABLE E–6

F[sdq]TOx Convert floating point to 64-bit word

FxTO[sdq] Convert 64-bit word to floating point

FMOV[dq] Floating-Point Move, double and quad

FNEG[dq] Floating-point Negate, double and quad

FABS[dq] Floating-point Absolute Value, double and quad

LDDFA, STDFA,
LDFA, STFA

Alternate address space forms of LDDF, STDF, LDF, and STF

LDSW Load a signed word

LDSWA Load a signed word from an alternate space

LDX Load an extended word

LDXA Load an extended word from an alternate space

LDXFSR Load all 64 bits of the FSR register

STX Store an extended word

STXA Store an extended word into an alternate space

STXFSR Store all 64 bits if the FSR register

E.2.3 Added Instructions to Support High-Performance
System Implementation

SPARC-V9 Instruction Set 89

TABLE E–7

BPcc Branch on integer condition code with prediction

BPr Branch on integer register contents with prediction

CASA, CASXA Compare and Swap from an alternate space

FBPfcc Branch on floating-point condition code with prediction

FLUSHW Flush windows

FMOVcc Move floating-point register if condition code is satisfied

FMOVr Move floating-point register if integer register satisfies condition

LDQF(A),
STQF(A)

Load/Store Quad Floating-point (in an alternate space)

MOVcc Move integer register if condition code is satisfied

MOVr Move integer register if register contents satisfy condition

MULX Generic 64-bit multiply

POPC Population count

PREFETCH,
PREFETCHA

Prefetch Data

SDIVX, UDIVX Signed and Unsigned 64-bit divide

E.2.4 Deleted Instructions

90 SPARC Assembly Language Reference Manual ♦ February 2000

TABLE E–8

Coprocessor loads
and stores

RDTBR and
WRTBR

TBR no longer exists. It is replaced by TBA, which can be read/written
with RDPR/WRPR instructions

RDWIM and
WRWIM

WIM no longer exists. WIM has been replaced by several
register-window registers

REPSR and
WRPSR

PSR no longer exists. It has been replaced by several separate registers
that are read/written with other instructions

RETT Return from trap (replace by DONE/RETRY)

STDFQ Store Double from Floating-point Queue (replaced by the RDPR FQ
instruction

E.2.5 Miscellaneous Instruction Changes

TABLE E–9

IMPDEPn (Changed) Implementation-dependent instructions (replace
SPARC-V8 CPop instructions)

MEMBAR (Added) Memory barrier (memory synchronization support)

E.3 SPARC-V9 Instruction Set Mapping
describe the SPARC-V9 instruction-set mapping.

SPARC-V9 Instruction Set 91

TABLE E–10

Opcode Mnemonic Argument List Operation Comments

BPA ba{,a}

{,pt|,pn}

%icc or %xcc, label (Branch on cc with
prediction)

Branch always

1

BPN bn{,a}

{,pt|,pn}

%icc or %xcc, label Branch never 0

BPNE bne{,a}

{,pt|,pn}

%icc or %xcc, label Branch on not equal not Z

BPE be{,a}

{,pt|,pn}

%icc or %xcc, label Branch on equal Z

BPG bg{,a}

{,pt|,pn}

%icc or %xcc, label Branch on greater not (Z or (N
xor V))

BPLE ble{,a}

{,pt|,pn}

%icc or %xcc, label Branch on less or equal Z or (N xor
V)

BPGE bge{,a}

{,pt|,pn}

%icc or %xcc, label Branch on greater or
equal

not (N xor V)

BPL bl{,a}

{,pt|,pn}

%icc or %xcc, label Branch on less N xor V

BPGU bgu{,a}

{,pt|,pn}

%icc or %xcc, label Branch on greater
unsigned

not (C or Z)

BPLEU bleu{,a}

{,pt|,pn}

%icc or %xcc, label Branch on less or equal
unsigned

C or Z

92 SPARC Assembly Language Reference Manual ♦ February 2000

TABLE E–10 (continued)

Opcode Mnemonic Argument List Operation Comments

BPCC bcc{,a}

{,pt|,pn}

%icc or %xcc, label Branch on carry clear
(greater than or equal,
unsigned)

not C

BPCS bcs{,a}

{,pt|,pn}

%icc or %xcc, label Branch on carry set
(less than, unsigned)

C

BPPOS bpos{,a}

{,pt|,pn}

%icc or %xcc, label Branch on positive not N

BPNEG bneg{,a}

{,pt|,pn}

%icc or %xcc, label Branch on negative N

BPVC bvc{,a}

{,pt|,pn}

%icc or %xcc, label Branch on overflow
clear

not V

BPVS bvs{,a}

{,pt|,pn}

%icc or %xcc, label Branch on overflow set V

BRZ brz{,a}

{,pt|,pn}

regrs1, label Branch on register zero Z

BRLEZ brlez{,a}

{,pt|,pn}

regrs1, label Branch on register less
than or equal to zero

N or Z

BRLZ brlz{,a}

{,pt|,pn}

regrs1, label Branch on register less
than zero

N

BRNZ brnz{,a}

{,pt|,pn}

regrs1, label Branch on register not
zero

not Z

SPARC-V9 Instruction Set 93

TABLE E–10 (continued)

Opcode Mnemonic Argument List Operation Comments

BRGZ brgz{,a}

{,pt|,pn}

regrs1, label Branch on register
greater than zero

not (N or Z)

BRGEZ brgez{,a}

{,pt|,pn}

regrs1, label Branch on register
greater than or equal to
zero

not N

CASA casa

casa

[regrs1]imm_asi,regrs2,regrd

[regrs1]%asi,regrs2,regrd

Compare and swap
word from alternate
space

CASXA casxa

casxa

[regrs1]imm_asi,regrs2,regrd

[regrs1]%asi,regrs2,regrd

Compare and swap
extended from alternate
space

FBPA fba{,a}

{,pt|,pn}

%fcc n, label
(Branch on cc with
prediction)

Branch never

1

FBPN fbn{,a}

{,pt|,pn}

%fcc n, label Branch always 0

FBPU fbu{,a}

{,pt|,pn}

%fcc n, label Branch on unordered U

FBPG fbg{,a}

{,pt|,pn}

%fcc n, label Branch on greater G

FBPUG fbug{,a}

{,pt|,pn}

%fcc n, label Branch on unordered or
greater

G or U

FBPL fbl{,a}

{,pt|,pn}

%fcc n, label Branch on less L

FBPUL fbul{,a}

{,pt|,pn}

%fcc n, label Branch on unordered or
less

L or U

94 SPARC Assembly Language Reference Manual ♦ February 2000

TABLE E–10 (continued)

Opcode Mnemonic Argument List Operation Comments

FBPLG fblg{,a}

{,pt|,pn}

%fcc n, label Branch on less or
greater

L or G

FBPNE fbne{,a}

{,pt|,pn}

%fcc n, label Branch on not equal L or G or U

FBPE fbe{,a}

{,pt|,pn}

%fcc n, label Branch on equal E

FBPUE fbue{,a}

{,pt|,pn}

%fcc n, label Branch on unordered or
equal

E or U

FBPGE fbge{,a}

{,pt|,pn}

%fcc n, label Branch on greater or
equal

E or G

FBPUGE fbuge{,a}

{,pt|,pn}

%fcc n, label Branch on unordered or
greater or equal

E or G or U

FBPLE fble{,a}

{,pt|,pn}

%fcc n, label Branch on less or equal E or L

FBPULE fbule{,a}

{,pt|,pn}

%fcc n, label Branch on unordered or
less or equal

E or L or u

FBPO fbo{,a}

{,pt|,pn}

%fcc n, label Branch on ordered E or L or G

FLUSHW flushw Flush register windows

FMOVA fmov

{s,d,q}a

%icc or %xcc, fregrs2, fregrd
(Move on integer cc)

Move always
1

SPARC-V9 Instruction Set 95

TABLE E–10 (continued)

Opcode Mnemonic Argument List Operation Comments

FMOVN fmov

{s,d,q}n

%icc or %xcc, fregrs2, fregrd Move never 0

FMOVNE fmov

{s,d,q}ne

%icc or %xcc, fregrs2, fregrd Move if not equal not Z

FMOVE fmov

{s,d,q}e

%icc or %xcc, fregrs2, fregrd Move if equal Z

FMOVG fmov

{s,d,q}g

%icc or %xcc, fregrs2, fregrd Move if greater not (Z or (N
xor V))

FMOVLE fmov

{s,d,q}le

%icc or %xcc, fregrs2, fregrd Move if less or equal Z or (N xor
V)

FMOVGE fmov

{s,d,q}ge

%icc or %xcc, fregrs2, fregrd Move if greater or equal not (N xor V)

FMOVL fmov

{s,d,q}l

%icc or %xcc, fregrs2, fregrd Move if less N xor V

FMOVGU fmov

{s,d,q}gu

%icc or %xcc, fregrs2, fregrd Move if greater
unsigned

not (C or Z)

FMOVLEU fmov

{s,d,q}leu

%icc or %xcc, fregrs2, fregrd Move if less or equal
unsigned

C or Z

FMOVCC fmov

{s,d,q}cc

%icc or %xcc, fregrs2, fregrd Move if carry clear
(greater or equal,
unsigned)

not C

96 SPARC Assembly Language Reference Manual ♦ February 2000

TABLE E–10 (continued)

Opcode Mnemonic Argument List Operation Comments

FMOVCS fmov

{s,d,q}cs

%icc or %xcc, fregrs2, fregrd Move if carry set (less
than, unsigned)

C

FMOVPOS fmov

{s,d,q}pos

%icc or %xcc, fregrs2, fregrd Move if positive not N

FMOVNEG fmov

{s,d,q}neg

%icc or %xcc, fregrs2, fregrd Move if negative N

FMOVVC fmov

{s,d,q}vc

%icc or %xcc, fregrs2, fregrd Move if overflow clear not V

FMOVVS fmov

{s,d,q}vs

%icc or %xcc, fregrs2, fregrd Move if overflow set V

FMOVRZ fmovr

{s,d,q}e

regrs1, fregrs2, fregrd
(Move f-p register on
cc)

Move if register zero

FMOVRLEZ fmovr

{s,d,q}lz

regrs1, fregrs2, fregrd
Move if register less
than or equal zero

FMOVRLZ fmovr

{s,d,q}lz

regrs1, fregrs2, fregrd
Move if register less
than zero

FMOVRNZ

FMOVRGZ

FMOVRGEZ

fmovr

{s,d,q}ne

fmovr

{s,d,q}gz

fmovr

{s,d,q}gez

regrs1, fregrs2, fregrd

regrs1, fregrs2, fregrd

regrs1, fregrs2, fregrd

Move if register not
zero

Move if register greater
than zero

Move if register greater
than or equal to zero

SPARC-V9 Instruction Set 97

TABLE E–10 (continued)

Opcode Mnemonic Argument List Operation Comments

FMOVFA

FMOVFN

FMOVFU

FMOVFG

FMOVFUG

FMOVFL

FMOVFUL

FMOVFLG

FMOVFNE

FMOVFE

FMOVFUE

FMOVFGE

FMOVFUGE

FMOVFLE

FMOVFULE

FMOVFO

fmov{s,d,q}a

fmov{s,d,q}n

fmov{s,d,q}u

fmov{s,d,q}g

fmov{s,d,q}ug

fmov{s,d,q}l

fmov{s,d,q}ul

fmov{s,d,q}lg

fmov{s,d,q}ne

fmov{s,d,q}e

fmov{s,d,q}ue

fmov{s,d,q}ge

fmov{s,d,q}uge

fmov{s,d,q}le

fmov{s,d,q}ule

fmov{s,d,q}o

%fcc n, fregrs2,fregrd

%fcc n,fregrs2,fregrd

%fcc n, fregrs2,fregrd

%fcc n, fregrs2,fregrd

%fcc n, fregrs2,fregrd

%fcc n, fregrs2,fregrd

%fcc n, fregrs2,fregrd

%fcc n, fregrs2,fregrd

%fcc n, fregrs2,fregrd

%fcc n, fregrs2,fregrd

%fcc n, fregrs2,fregrd

%fcc n, fregrs2,fregrd

%fcc n, fregrs2,fregrd

%fcc n, fregrs2,fregrd

%fcc n, fregrs2,fregrd

%fcc n, fregrs2,fregrd

(Move on floating-point
cc)

Move always

Move never

Move if unordered

Move if greater

Move if unordered or
greater

Move if less

Move if unordered or
less

Move if less or greater

Move if not equal

Move if equal

Move if unordered or
equal

Move if greater or equal

Move if unordered or
greater or equal

Move if less or equal

Move if unordered or
less or equal

Move if ordered

1

0

U

G

G or U

L

L or U

L or G

L or G or U

E

E or U

E or G

E or G or U

E or L

E or L or u

E or L or G

LDSW

LDSWA

ldsw

ldsw

[address], regrd

[regaddr] imm_asi, regrd

Load a signed word

Load signed word from
alternate space

LDX

LDXA

LDXFSR

ldx

ldxa

ldxa

ldx

[address], regrd

[regaddr] imm_asi, regrd

[reg_plus_imm] %asi, regrd

[address], %fsr

Load extended word

Load extended word
from alternate space

Load floating-point
state register

MEMBAR membar membar_mask Memory barrier

98 SPARC Assembly Language Reference Manual ♦ February 2000

TABLE E–10 (continued)

Opcode Mnemonic Argument List Operation Comments

MOVA

MOVN

MOVNE

MOVE

MOVG

MOVLE

MOVGE

MOVL

MOVGU

MOVLEU

MOVCC

MOVCS

MOVPOS

MOVNEG

MOVVC

MOVVS

mova

movn

movne

move

movg

movle

movge

movl

movgu

movleu

movcc

movcs

movpos

movneg

movvc

movvs

%icc or %xcc, reg_or_imm11,
regrd

%icc or %xcc, reg_or_imm11,
regrd

%icc or %xcc, reg_or_imm11,
regrd

%icc or %xcc, reg_or_imm11,
regrd

%icc or %xcc, reg_or_imm11,
regrd

%icc or %xcc, reg_or_imm11,
regrd

%icc or %xcc, reg_or_imm11,
regrd

%icc or %xcc, reg_or_imm11,
regrd

%icc or %xcc, reg_or_imm11,
regrd

%icc or %xcc, reg_or_imm11,
regrd

%icc or %xcc, reg_or_imm11,
regrd

%icc or %xcc, reg_or_imm11,
regrd

%icc or %xcc, reg_or_imm11,
regrd

%icc or %xcc, reg_or_imm11,
regrd

%icc or %xcc, reg_or_imm11,
regrd

%icc or %xcc, reg_or_imm11,
regrd

(Move integer register
on cc)

Move always

Move never

Move if not equal

Move if equal

Move if greater

Move if less or equal

Move if greater or equal

Move if less

Move if greater
unsigned

Move if less or equal
unsigned

Move if carry clear
(greater or equal,
unsigned)

Move if carry set (less
than, unsigned)

Move if positive

Move if negative

Move if overflow clear

Move if overflow set

1

0

not Z

Z

not (Z or (N
xor V))

Z or (N xor
V)

not (N xor V)

N xor V

not (C or Z)

C or Z

not C

C

not N

N

not V

V

SPARC-V9 Instruction Set 99

TABLE E–10 (continued)

Opcode Mnemonic Argument List Operation Comments

MOVFA

MOVFN

MOVFU

MOVFG

MOVFUG

MOVFL

MOVFUL

MOVFLG

MOVFNE

MOVFE

MOVFUE

MOVFGE

MOVFUGE

MOVFLE

MOVFULE

MOVFO

mova

movn

movu

movg

movug

movl

movul

movlg

movne

move

movue

movge

movuge

movle

movule

movo

%fcc n, reg_or_imm11, regrd

%fcc n,reg_or_imm11, regrd

%fcc n, reg_or_imm11, regrd

%fcc n, reg_or_imm11, regrd

%fcc n, reg_or_imm11, regrd

%fcc n, reg_or_imm11, regrd

%fcc n, reg_or_imm11, regrd

%fcc n, reg_or_imm11, regrd

%fcc n, reg_or_imm11, regrd

%fcc n, reg_or_imm11, regrd

%fcc n, reg_or_imm11, regrd

%fcc n, reg_or_imm11, regrd

%fcc n,reg_or_imm11,regrd

%fcc n, reg_or_imm11, regrd

%fcc n, reg_or_imm11, regrd

%fcc n, reg_or_imm11, regrd

(Move on floating-point
cc)

Move always

Move never

Move if unordered

Move if greater

Move if unordered or
greater

Move if less

Move if unordered or
less

Move if less or greater

Move if not equal

Move if equal

Move if unordered or
equal

Move if greater or equal

Move if unordered or
greater or equal

Move if less or equal

Move if unordered or
less or equal

Move if ordered

1

0

U

G

G or U

L

L or U

L or G

L or G or U

E E or U

E or G

E or G or U

E or L

E or L or u

E or L or G

MOVRZ

MOVRLEZ

MOVRLZ

MOVRNZ

MOVRGZ

MOVRGEZ

movre

movrlez

movrlz

movrnz

movrgz

movrgez

regrs1, reg_or_imm10,regrd

regrs1, reg_or_imm10,regrd

regrs1, reg_or_imm10,regrd

regrs1, reg_or_imm10,regrd

regrs1, reg_or_imm10,regrd

regrs1, reg_or_imm10,regrd

(Move register on
register cc)

Move if register zero

Move if register less
than or equal to zero

Move if register less
than zero

Move if register not
zero

Move if register greater
than zero

Move if register greater
than or equal to zero

Z

N or Z

N

not Z

N nor Z

not N

100 SPARC Assembly Language Reference Manual ♦ February 2000

TABLE E–10 (continued)

Opcode Mnemonic Argument List Operation Comments

MULX mulx regrs1, reg_or_imm,regrd (Generic 64-bit
Multiply) Multiply
(signed or unsigned)

See SDIVX
and UDIVX

POPC popc reg_or_imm, regrd
Population count

PREFETCH

PREFETCHA

prefetch

prefetcha

prefetcha

[address], prefetch_dcn [regaddr]
imm_asi, prefetch_fcn
[reg_plus_imm] %asi ,
prefetch_fcn

Prefetch data

Prefetch data from
alternate space

See The
SPARC
architecture
manual,
version 9

SDIVX
sdivx regrs1, reg_or_imm,regrd

(64-bit signed divide)
Signed Divide

See MULX
and UDIVX

STX

STXA

STXFSR

stx

stxa

stxa

stx

regrd, [address]

regrd, [address] imm_asi

regrd, [reg_plus_imm] %asi
%fsr, [address]

Store extended word

Store extended word
into alternate space

Store floating-point
register (all 64-bits)

UDIVX udivx regrs1, reg_or_imm, regrd
(64-bit unsigned divide)
Unsigned divide

See MULX
and SDIVX

SPARC-V9 Instruction Set 101

E.4 SPARC-V9 Floating-Point Instruction Set
Mapping
SPARC-V9 floating-point instructions are shown in the following table.

TABLE E–11

SPARC Mnemonic1
Argument List Description

F[sdq]TOx fstox

fdtox

fqtox

fregrs2, fregrd

fregrs2, fregrd

fregrs2, fregrd

Convert floating point to 64-bit integer

fstoi

fdtoi

fqtoi

fregrs2, fregrd

fregrs2, fregrd

fregrs2, fregrd

Convert floating-point to 32-bit integer

FxTO[sdq] fxtos

fxtod

fxtoq

fregrs2, fregrd

fregrs2, fregrd

fregrs2, fregrd

Convert 64-bit integer to floating point

fitos

fitod

fitoq

fregrs2, fregrd

fregrs2, fregrd

fregrs2, fregrd

Convert 32-bit integer to floating point

FMOV[dq] fmovd

fmovq

fregrs2, fregrd

fregrs2, fregrd

Move double

Move quad

FNEG[dq] fnegd

fnegq

fregrs2, fregrd

fregrs2, fregrd

Negate double

Negate quad

102 SPARC Assembly Language Reference Manual ♦ February 2000

TABLE E–11 (continued)

SPARC
Mnemonic1

Argument List Description

FABS[dq] fabsd

fabsq

fregrs2, fregrd

fregrs2, fregrd

Absolute value double

Absolute value quad

LDFA

LDDFA

LDQFA

lda

lda

ldda

ldda

ldqa

ldqa

[regaddr] imm_asi, fregrd

[reg_plus_imm] %asi, fregrd

[regaddr] imm_asi, fregrd

[reg_plus_imm] %asi, fregrd

[regaddr] imm_asi, fregrd

[reg_plus_imm] %asi, fregrd

Load floating-point register from
alternate space

Load double floating-point register
from alternate space.

Load quad floating-point register from
alternate space

STFA

STDFA

STQFA

sta

sta

stda

stda

stqa

stqa

fregrd, [regaddr] imm_asi

fregrd, [reg_plus_imm] %asi

fregrd, [regaddr] imm_asi

fregrd, [reg_plus_imm] %asi

fregrd, [regaddr] imm_asi

fregrd, [reg_plus_imm] %asi

Store floating-point register to
alternate space

Store double floating-point register to
alternate space

Store quad floating-point register to
alternate space

1. Types of Operands are denoted by the following lower-case letters:i 32-bit integerx 64-bit integers singled doubleq quad

E.5 SPARC-V9 Synthetic Instruction-Set
Mapping
Here is a mapping of synthetic instructions to hardware equivalent instructions.

SPARC-V9 Instruction Set 103

TABLE E–12

Synthetic Instruction Hardware Equivalent(s) Comment

cas

casl

casx

casxl

[regrsl], regrs2, regrd

[regrsl], regrs2, regrd

[regrsl], regrs2, regrd

[regrsl], regrs2, regrd

casa

casa

casxa

casxa

[regrsl]ASI_P, regrs2,
regrd

[regrsl]ASI_P_L, regrs2,
regrd

[regrsl]ASI_P, regrs2,
regrd

[regrsl]ASI_P_L, regrs2,
regrd

Compare & swap (cas)

cas little-endian

cas extended

cas little-endian,
extended

clrx [address] stx %g0, [address] Clear extended word

clruw

clruw

regrs1, regrd

regrd

srl

srl

regrs1, %g0, regrd

regrd, %g0, regrd

Copy and clear upper
word

Clear upper word

iprefetch label bn , pt %xcc, label Instruction prefetch,

mov

mov

mov

%y, regrd

%asrn, regrd

reg_or_imm, %asrn

rd

rd

wr

%y, regrd

%asrn, regrd

%g0, reg_or_imm, %asrn

ret

retl

jmpl

jmpl

%i7+8, %g0

%o7+8, %g0

Return from subroutine

Return from leaf
subroutine

setn value, r1, r2 for -xarch=v9 same as setx value r1, r2

for -xarch=v8 same as set value r2

setnhi value, r1, r2 for -xarch=v9 same as setxhi value
r1, r2

for -xarch=v8 same as sethi value r2

104 SPARC Assembly Language Reference Manual ♦ February 2000

TABLE E–12 (continued)

Synthetic Instruction Hardware Equivalent(s) Comment

setuw value,regrd
sethi

or

sethi

or

%hi (value), regrd

%g0, value, regrd

%hi (value), regrd;

regrd, %lo (value), regrd

(value & 3FF16)==0

when 0 ≤ value ≤ 4095

(otherwise)

Do not use setuw in a
DCTI delay slot.

setsw value,regrd
sethi

or

sethi

sra

sethi

or

sethi

or

sra

%hi (value), regrd

%g0, value, regrd

%hi (value), regrd

regrd, %g0, regrd

%hi (value), regrd;

regrd, %lo (value), regrd

%hi (value), regrd;

regrd, %lo (value), regrd

regrd, %g0, regrd

value>=0 and (value &
3FF16)==0

-4096 ≤ value ≤ 4095

if (value<0) and ((value
& 3FF)==0)

(otherwise, if value>=0)

(otherwise, if value<0)

Do not use setsw in a
CTI delay slot.

setx value, r1, r2 sethi

or

sethi

or

sllx

or

%hh(value), r1

r1, %hm(value), r1

%lm(value), r2

r2, %lo(value), r2

r1, 32, r1

r1, r2, r2

SPARC-V9 Instruction Set 105

TABLE E–12 (continued)

Synthetic Instruction Hardware Equivalent(s) Comment

setxhi value r1, r2 sethi

or

sethi

sllx

or

%hh(value), r1

r1, %hm(value), r1

%lm(value), r2

r1, 32, r1

r1, r2, r2

signx

signx

regrsl, regrd

regrd

sra

sra

regrsl, %g0, regrd

regrd, %g0, regrd

Sign-extend 32-bit
value to 64 bits

E.6 UlraSPARC and VIS Instruction Set
Extensions
This section describes extensions that require SPARC-V9. The extensions support
enhanced graphics functionality and improved memory access efficiency.

Note - SPARC-V9 instruction set extensions used in executables may not be portable
to other SPARC-V9 systems.

E.6.1 Graphics Data Formats
The overhead of converting to and from floating-point arithmetic is high, so the
graphics instructions are optimized for short-integer arithmetic. Image components
are 8 or 16 bits. Intermediate results are 16 or 32 bits.

E.6.2 Eight-bit Format
A 32-bit word contains pixels of four unsigned 8-bit integers. The integers represent
image intensity values (, G, B, R). Support is provided for band interleaved images

106 SPARC Assembly Language Reference Manual ♦ February 2000

(store color components of a point), and band sequential images (store all values of
one color component).

E.6.3 Fixed Data Formats
A 64-bit word contains four 16-bit signed fixed-point values. This is the fixed 16-bit
data format.

A 64-bit word contains two 8-bit signed fixed-point values. This is the fixed 32-bit
data format.

Enough precision and dynamic range (for filtering and simple image computations
on pixel values) can be provided by an intermediate format of fixed data values.
Pixel multiplication is used to convert from pixel data to fixed data. Pack instructions
are used to convert from fixed data to pixel data (clip and truncate to an 8-bit
unsigned value). The FPACKFIX instruction supports conversion from 32-bit fixed to
16-bit fixed. Rounding is done by adding one to the rounding bit position. You
should use floating-point data to perform complex calculations needing more
precision or dynamic range.

E.6.4 SHUTDOWN Instruction
All outstanding transactions are completed before the SHUTDOWN instruction
completes.

TABLE E–13

SPARC Mnemonic Argument List Description

SHUTDOWN shutdown shutdown to enter power down
mode

E.6.5 Graphics Status Register (GSR)
You use ASR 0x13 instructions RDASR and WRASR to access the Graphics Status
Register.

SPARC-V9 Instruction Set 107

TABLE E–14

SPARC Mnemonic Argument List Description

RDASR

WRASR

rdasr

wrasr

%gsr, regrd

regrs1, reg_or_imm, %gsr

read GSR

write GSR

E.6.6 Graphics Instructions
Unless otherwise specified, floating-point registers contain all instruction operands.
There are 32 double-precision registers. Single-precision floating-point registers
contain the pixel values, and double-precision floating-point registers contain the
fixed values.

The opcode space reserved for the Implementation-Dependent Instruction1
(IMPDEP1) instructions is where the graphics instruction set is mapped.

Partitioned add/subtract instructions perform two 32-bit or four 16-bit partitioned
adds or subtracts between the source operands corresponding fixed point values.

TABLE E–15

SPARC Mnemonic Argument List Description

FPADD16

FPADD16S

FPADD32

FPADD32S

FPSUB16

FPSUB16S

FPSUB32

FPSUB32S

fpadd16

fpadd16s

fpadd32

fpadd32s

fpsub16

fpsub16s

fpsub32

fpsub32s

fregrs1, fregrs2, fregrd

fregrs1, fregrs2, fregrd

fregrs1, fregrs2, fregrd

fregrs1, fregrs2, fregrd

fregrs1, fregrs2, fregrd

fregrs1, fregrs2, fregrd

fregrs1, fregrs2, fregrd

fregrs1, fregrs2, fregrd

four 16-bit add

two 16-bit add

two 32-bit add

one 32-bit add

four 16-bit subtract

two 16-bit subtract

two 32-bit subtract

one 32-bit subtract

Pack instructions convert to a lower pixel or precision fixed format.

108 SPARC Assembly Language Reference Manual ♦ February 2000

TABLE E–16

SPARC Mnemonic Argument List Description

FPACK16

FPACK32

FPACKFIX

FEXPAND

FPMERGE

fpack16

fpack32

fpackfix

fexpand

fpmerge

fregrs2, fregrd

fregrs1, fregrs2, fregrd

fregrs2, fregrd

fregrs2, fregrd

fregrs1, fregrs2, fregrd

four 16-bit packs

two 32-bit packs

four 16-bit packs

four 16-bit expands

two 32-bit merges

Partitioned multiply instructions have the following variations.

TABLE E–17

SPARC Mnemonic Argument List Description

FMUL8x16

FMUL8x16AU

FMUL8x16AL

FMUL8SUx16

FMUL8ULx16

FMULD8SUx16

FMULD8ULx16

fmul8x16

fmul8x16au

fmul8x16al

fmul8sux16

fmul8ulx16

fmuld8sux16

fmuld8ulx16

fregrs1, fregrs2, fregrd

fregrs1, fregrs2, fregrd

fregrs1, fregrs2, fregrd

fregrs1, fregrs2, fregrd

fregrs1, fregrs2, fregrd

fregrs1, fregrs2, fregrd

fregrs1, fregrs2, fregrd

8x16-bit partition

8x16-bit upper partition

8x16-bit lower partition

upper 8x16-bit partition

lower unsigned 8x16-bit
partition

upper 8x16-bit partition

lower unsigned 8x16-bit
partition

Alignment instructions have the following variations.

SPARC-V9 Instruction Set 109

TABLE E–18

SPARC Mnemonic Argument List Description

ALIGNADDRESS

ALIGNADDRESS_LITTLE

FALIGNDATA

alignaddr

alignaddrl

faligndata

regrs1, regrs2, regrd

regrs1, regrs2, regrd

fregrs1, fregrs2, fregrd

find misaligned data access address

same as above, but little-endian

do misaligned data, data alignment

Logical operate instructions perform one of sixteen 64-bit logical operations between
rs1 and rs2 (in the standard 64-bit version).

TABLE E–19

SPARC Mnemonic Argument List Description

FZERO

FZEROS

FONE

FONES

FSRC1

fzero

fzeros

fone

fones

fsrc1

fregrd

fregrd

fregrd

fregrd

fregrs1, fregrd

zero fill

zero fill, single precision

one fill

one fill, single precision

copy src1

FSRC1S

FSRC2

FSRC2S

FNOT1

FNOT1S

fsrc1s

fsrc2

fsrc2s

fnot1

fnot1s

fregrs1, fregrd

fregrs2, fregrd

fregrs2, fregrd

fregrs1, fregrd

fregrs1, fregrd

copy src1, single precision

copy src2

copy src2, single precision

negate src1, 1’s complement

same as above, single precision

110 SPARC Assembly Language Reference Manual ♦ February 2000

TABLE E–19 (continued)

SPARC Mnemonic Argument List Description

FNOT2

FNOT2S

FOR

FORS

FNOR

fnot2

fnot2s

for

fors

fnor

fregrs2, fregrd

fregrs2, fregrd

fregrs1, fregrs2, fregrd

fregrs1, fregrs2, fregrd

fregrs1, fregrs2, fregrd

negate src2, 1’s complement

same as above, single precision

logical OR

logical OR, single precision

logical NOR

FNORS

FAND

FANDS

FNAND

FNANDS

fnors

fand

fands

fnand

fnands

fregrs1, fregrs2, fregrd

fregrs1, fregrs2, fregrd

fregrs1, fregrs2, fregrd

fregrs1, fregrs2, fregrd

fregrs1, fregrs2, fregrd

logical NOR, single precision

logical AND

logical AND, single precision

logical NAND

logical NAND, single precision

FXOR

FXORS

FXNOR

FXNORS

FORNOT1

fxor

fxors

fxnor

fxnors

fornot1

fregrs1, fregrs2, fregrd

fregrs1, fregrs2, fregrd

fregrs1, fregrs2, fregrd

fregrs1, fregrs2, fregrd

fregrs1, fregrs2, fregrd

logical XOR

logical XOR, single precision

logical XNOR

logical XNOR, single precision

negated src1 OR src2

FORNOT1S

FORNOT2

FORNOT2S

FANDNOT1

fornot1s

fornot2

fornot2s

fandnot1

fregrs1, fregrs2, fregrd

fregrs1, fregrs2, fregrd

fregrs1, fregrs2, fregrd

fregrs1, fregrs2, fregrd

same as above, single precision

src1 OR negated src2

same as above, single precision

negated src1 AND src2

FANDNOT1S

FANDNOT2

FANDNOT2S

fandnot1s

fandnot2

fandnot2s

fregrs1, fregrs2, fregrd

fregrs1, fregrs2, fregrd

fregrs1, fregrs2, fregrd

same as above, single precision

src1 AND negated src2

same as above, single precision

SPARC-V9 Instruction Set 111

Pixel compare instructions compare fixed-point values in rs1 and rs2 (two 32 bit or
four 16 bit)

TABLE E–20

SPARC Mnemonic Argument List Description

FCMPGT16

FCMPGT32

FCMPLE16

FCMPLE32

fcmpgt16

fcmpgt32

fcmple16

fcmple32

fregrs1, fregrs2, regrd

fregrs1, fregrs2, regrd

fregrs1, fregrs2, regrd

fregrs1, fregrs2, regrd

4 16-bit compare, set rd if src1>src2

2 32-bit compare, set rd if src1>src2

4 16-bit compare, set rd if src1≤src2

2 32-bit compare, set rd if src1≤src2

FCMPNE16

FCMPNE32

FCMPEQ16

FCMPEQ32

fcmpne16

fcmpne32

fcmpeq16

fcmpeq32

fregrs1, fregrs2, regrd

fregrs1, fregrs2, regrd

fregrs1, fregrs2, regrd

fregrs1, fregrs2, regrd

4 16-bit compare, set rd if src1≠src2

2 32-bit compare, set rd if src1≠src2

4 16-bit compare, set rd if src1=src2

2 32-bit compare, set rd if src1=src2

Edge handling instructions handle the boundary conditions for parallel pixel scan
line loops.

TABLE E–21

SPARC Mnemonic Argument List Description

EDGE8

EDGE8L

EDGE16

edge8

edge8l

edge16

regrs1, regrs2, regrd

regrs1, regrs2, regrd

regrs1, regrs2, regrd

8 8-bit edge boundary processing

same as above, little-endian

4 16-bit edge boundary processing

EDGE16L

EDGE32

EDGE32L

edge16l

edge32

edge32l

regrs1, regrs2, regrd

regrs1, regrs2, regrd

regrs1, regrs2, regrd

same as above, little-endian

2 32-bit edge boundary processing

same as above, little-endian

Pixel component distance instructions are used for motion estimation in video
compression algorithms.

112 SPARC Assembly Language Reference Manual ♦ February 2000

TABLE E–22

SPARC Mnemonic Argument List Description

PDIST pdist fregrs1, fregrs2, fregrd
8 8-bit components, distance between

The three-dimensional array addressing instructions convert three- dimensional
fixed-point addresses (in rs1) to a blocked-byte address.The result is stored in rd.

TABLE E–23

SPARC Mnemonic Argument List Description

ARRAY8

ARRAY16

ARRAY32

array8

array16

array32

regrs1, regrs2, regrd

regrs1, regrs2, regrd

regrs1, regrs2, regrd

convert 8-bit 3-D address to blocked
byte address

same as above, but 16-bit

same as above, but 32-bit

E.6.7 Memory Access Instructions
These memory access instructions are part of the SPARC-V9 instruction set
extensions.

SPARC-V9 Instruction Set 113

TABLE E–24

SPARC imm_asi Argument List Description

STDFA

STDFA

STDFA

STDFA

ASI_PST8_P

ASI_PST8_S

ASI_PST8_PL

ASI_PST8_SL

stda fregrd, [fregrs1]
regmask, imm_asi

eight 8-bit conditional stores to:

primary address space

secondary address space

primary address space, little endian

secondary address space, little endian

STDFA

STDFA

STDFA

STDFA

ASI_PST16_P

ASI_PST16_S

ASI_PST16_PL

ASI_PST16_SL

four 16-bit conditional stores to:

primary address space

secondary address space

primary address space, little endian

secondary address space, little endian

STDFA

STDFA

STDFA

STDFA

ASI_PST32_P

ASI_PST32_S

ASI_PST32_PL

ASI_PST32_SL

two 32-bit conditional stores to:

primary address space

secondary address space

primary address space, little endian

secondary address space, little endian

Note - To select a partial store instruction, use one of the partial store ASIs with the
STDA instruction.

TABLE E–25

SPARC imm_asi Argument List Description

LDDFA

STDFA

ASI_FL8_P ldda [reg_addr] imm_asi, freqrd

stda freqrd, [reg_addr] imm_asi

8-bit load/store from/to:

primary address space

LDDFA

STDFA

ASI_FL8_S ldda [reg_plus_imm] %asi, freqrd

stda [reg_plus_imm] %asi

secondary address space

114 SPARC Assembly Language Reference Manual ♦ February 2000

TABLE E–25 (continued)

SPARC imm_asi Argument List Description

LDDFA

STDFA

ASI_FL8_PL primary address space, little endian

LDDFA

STDFA

ASI_FL8_SL secondary address space, little
endian

LDDFA

STDFA

ASI_FL16_P
16-bit load/store from/to:

primary address space

LDDFA

STDFA

ASI_FL16_S secondary address space

LDDFA

STDFA

ASI_FL16_PL primary address space, little endian

LDDFA

STDFA

ASI_FL16_SL secondary address space, little
endian

Note - To select a short floating-point load and store instruction, use one of the short
ASIs with the LDDA and STDA instructions.

SPARC-V9 Instruction Set 115

TABLE E–26

SPARC imm_asi Argument List Description

LDDA

LDDA

ASI_NUCLEUS_QUAD_LDD

ASI_NUCLEUS_QUAD_LDD_L

[reg_addr] imm_asi, regrd

[reg_plus_imm] %asi,
regrd

128-bit atomic load

128-bit atomic load, little endian

LDDFA

STDFA

ASI_BLK_AIUP ldda [reg_addr] imm_asi,
freqrd

stda freqrd, [reg_addr]
imm_asi

64-byte block load/store from/to:

primary address space, user
privilege

LDDFA

STDFA

ASI_BLK_AIUS ldda [reg_plus_imm]
%asi, freqrd

stda fregrd,
[reg_plus_imm] %asi

secondary address space, user
privilege.

LDDFA

STDFA

ASI_BLK_AIUPL primary address space, user
privilege, little endian

LDDFA

STDFA

ASI_BLK_AIUSL secondary address space, user
privilege little endian

LDDFA

STDFA

ASI_BLK_P primary address space

LDDFA

STDFA

ASI_BLK_S secondary address space

LDDFA

STDFA

ASI_BLK_PL primary address space, little endian

LDDFA

STDFA

ASI_BLK_SL secondary address space, little
endian

116 SPARC Assembly Language Reference Manual ♦ February 2000

TABLE E–26 (continued)

SPARC imm_asi Argument List Description

LDDFA

STDFA

ASI_BLK_COMMIT_P 64-byte block commit store to
primary address space

LDDFA

STDFA

ASI_BLK_COMMIT_S 64-byte block commit store to
secondary address space

Note - To select a block load and store instruction, use one of the block transfer ASIs
with the LDDA and STDA instructions.

SPARC-V9 Instruction Set 117

