
JDK 1.1 for Solaris Developer’s
Guide

Sun Microsystems, Inc.
901 San Antonio Road
Palo Alto, CA 94303-4900
U.S.A.

Part Number 806-3461–10
February 2000

Copyright 2000 Sun Microsystems, Inc. 901 San Antonio Road, Palo Alto, California 94303-4900 U.S.A. All rights reserved.
This product or document is protected by copyright and distributed under licenses restricting its use, copying, distribution, and
decompilation. No part of this product or document may be reproduced in any form by any means without prior written authorization of
Sun and its licensors, if any. Third-party software, including font technology, is copyrighted and licensed from Sun suppliers.
Parts of the product may be derived from Berkeley BSD systems, licensed from the University of California. UNIX is a registered
trademark in the U.S. and other countries, exclusively licensed through X/Open Company, Ltd.
Sun, Sun Microsystems, the Sun logo, docs.sun.com, AnswerBook, AnswerBook2, Java, JDK, Pure Java, Java WorkShop, and Solaris are
trademarks, registered trademarks, or service marks of Sun Microsystems, Inc. in the U.S. and other countries. All SPARC trademarks are
used under license and are trademarks or registered trademarks of SPARC International, Inc. in the U.S. and other countries. Products
bearing SPARC trademarks are based upon an architecture developed by Sun Microsystems, Inc.
The OPEN LOOK and SunTM Graphical User Interface was developed by Sun Microsystems, Inc. for its users and licensees. Sun
acknowledges the pioneering efforts of Xerox in researching and developing the concept of visual or graphical user interfaces for the
computer industry. Sun holds a non-exclusive license from Xerox to the Xerox Graphical User Interface, which license also covers Sun’s
licensees who implement OPEN LOOK GUIs and otherwise comply with Sun’s written license agreements.

RESTRICTED RIGHTS: Use, duplication, or disclosure by the U.S. Government is subject to restrictions of FAR 52.227–14(g)(2)(6/87) and
FAR 52.227–19(6/87), or DFAR 252.227–7015(b)(6/95) and DFAR 227.7202–3(a).
DOCUMENTATION IS PROVIDED “AS IS” AND ALL EXPRESS OR IMPLIED CONDITIONS, REPRESENTATIONS AND WARRANTIES,
INCLUDING ANY IMPLIED WARRANTY OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR
NON-INFRINGEMENT, ARE DISCLAIMED, EXCEPT TO THE EXTENT THAT SUCH DISCLAIMERS ARE HELD TO BE LEGALLY
INVALID.

Copyright 2000 Sun Microsystems, Inc. 901 San Antonio Road, Palo Alto, Californie 94303-4900 Etats-Unis. Tous droits réservés.

Ce produit ou document est protégé par un copyright et distribué avec des licences qui en restreignent l’utilisation, la copie, la
distribution, et la décompilation. Aucune partie de ce produit ou document ne peut être reproduite sous aucune forme, par quelque
moyen que ce soit, sans l’autorisation préalable et écrite de Sun et de ses bailleurs de licence, s’il y en a. Le logiciel détenu par des tiers, et
qui comprend la technologie relative aux polices de caractères, est protégé par un copyright et licencié par des fournisseurs de Sun.
Des parties de ce produit pourront être dérivées du système Berkeley BSD licenciés par l’Université de Californie. UNIX est une marque
déposée aux Etats-Unis et dans d’autres pays et licenciée exclusivement par X/Open Company, Ltd.
Sun, Sun Microsystems, le logo Sun, docs.sun.com, AnswerBook, AnswerBook2, Java, JDK, Pure Java, Java WorkShop, et Solaris sont des
marques de fabrique ou des marques déposées, ou marques de service, de Sun Microsystems, Inc. aux Etats-Unis et dans d’autres pays.
Toutes les marques SPARC sont utilisées sous licence et sont des marques de fabrique ou des marques déposées de SPARC International,
Inc. aux Etats-Unis et dans d’autres pays. Les produits portant les marques SPARC sont basés sur une architecture développée par Sun
Microsystems, Inc.
L’interface d’utilisation graphique OPEN LOOK et SunTM a été développée par Sun Microsystems, Inc. pour ses utilisateurs et licenciés.
Sun reconnaît les efforts de pionniers de Xerox pour la recherche et le développement du concept des interfaces d’utilisation visuelle ou
graphique pour l’industrie de l’informatique. Sun détient une licence non exclusive de Xerox sur l’interface d’utilisation graphique Xerox,
cette licence couvrant également les licenciés de Sun qui mettent en place l’interface d’utilisation graphique OPEN LOOK et qui en outre
se conforment aux licences écrites de Sun.
CETTE PUBLICATION EST FOURNIE “EN L’ETAT” ET AUCUNE GARANTIE, EXPRESSE OU IMPLICITE, N’EST ACCORDEE, Y
COMPRIS DES GARANTIES CONCERNANT LA VALEUR MARCHANDE, L’APTITUDE DE LA PUBLICATION A REPONDRE A UNE
UTILISATION PARTICULIERE, OU LE FAIT QU’ELLE NE SOIT PAS CONTREFAISANTE DE PRODUIT DE TIERS. CE DENI DE
GARANTIE NE S’APPLIQUERAIT PAS, DANS LA MESURE OU IL SERAIT TENU JURIDIQUEMENT NUL ET NON AVENU.

Please
Recycle

Contents

Preface

1. Introduction to the Java Programming Environment 9

Java Programming Environment and the Java Runtime Environment (JRE) 9

What is the Java Programming Environment? 9

JRE Components 11

JVM 11

Sun Just-In-Time (JIT) Compiler 13

2. Multithreading 17

Definition of Multithreading* 17

Java Threads in the Solaris Environment — Earlier Releases* 17

Multithreading Concepts* 18

Benefits of Multithreading* 18

Multithreading Models 19

Many-to-One Model (Green Threads) 19

One-to-One Model 20

Many-to-Many Model (Java on Solaris—Native Threads) 21

Multithreading Kernel 22

Advantages of Java Multithreading in the Solaris Environment 23

Grouping Threads 26

3

Java Threads Issues 26

Generic Java Issues 26

Solaris-Specific Issues 26

3. Java Programming Environment 29

Java Programs 30

Sample Application 30

Sample Applet 31

javald and Relocatable Applications 32

Programming Compute-Bound, Parallellized Java Applications 32

thr_setconcurrency Example 33

API Mapping 35

Thread Group Methods 37

Java Development Tools 38

Java WorkShop (JWS) 38

4. Deprecated Methods 41

What Is Deprecation?* 41

Deprecated Threads Methods 46

5. Application Performance Tuning 51

Tuning Techniques 51

System Interface Level 51

4 JDK 1.1 for Solaris Developer’s Guide ♦ February 2000

Preface

The JDK 1.1 for Solaris Developer’s Guide gives JavaTM developers information
about using Java in the SolarisTM 2.6, Solaris 7, and Solaris 8 environments. This
information includes overviews and descriptions of the important components of
Java on Solaris software, their benefits for developers, and how to use Java on Solaris
software to achieve the best application performance. In addition, this document
covers compatibility issues.

Who Should Use This Book
This book is intended primarily for these audiences:

� Developers who are new to Java on Solaris software

� Developers new to Java. Information for this audience is starred(*).

How This Book Is Organized
Chapter 1 is an overview of subjects covered in this book.

Chapter 2 discusses the basics of multithreading, and the benefits of using the
native-threaded Java Virtual Machine (JVM) on Solaris.

Chapter 3 describes this environment with information specific to using Java on
multithreaded Solaris.

Chapter 4 lists those methods that have been deprecated as of Java Development Kit
(JDKTM 1.1).

5

Chapter 5 describes ways in which Java developers can increase their applications’
performance.

Related Documentation
For up-to-date information about Java on Solaris software, refer to
http://www.sun.com/solaris/java .

For information about Java coding style, see
http://dp-websvr.eng.sun.com/products/jpt/ .

Ordering Sun Documents
Fatbrain.com, an Internet professional bookstore, stocks select product
documentation from Sun Microsystems, Inc.

For a list of documents and how to order them, visit the Sun Documentation Center
on Fatbrain.com at http://www1.fatbrain.com/documentation/sun .

Accessing Sun Documentation Online
The docs.sun.comSM Web site enables you to access Sun technical documentation
online. You can browse the docs.sun.com archive or search for a specific book title or
subject. The URL is http://docs.sun.com .

What Typographic Conventions Mean
The following table describes the typographic changes used in this book.

6 JDK 1.1 for Solaris Developer’s Guide ♦ February 2000

TABLE P–1 Typographic Conventions

Typeface or
Symbol Meaning Example

AaBbCc123 The names of commands, files, and
directories; on-screen computer output

Edit your .login file.

Use ls −a to list all files.

machine_name% you have
mail.

AaBbCc123 What you type, contrasted with
on-screen computer output

machine_name% su

Password:

AaBbCc123 Command-line placeholder: replace
with a real name or value

To delete a file, type rm
filename.

AaBbCc123 Book titles, new words, or terms, or
words to be emphasized.

Read Chapter 6 in User’s
Guide.

These are called class options.

You must be root to do this.

Shell Prompts in Command Examples
The following table shows the default system prompt and superuser prompt for the
C shell, Bourne shell, and Korn shell.

TABLE P–2 Shell Prompts

Shell Prompt

C shell prompt machine_name%

C shell superuser prompt machine_name#

Bourne shell and Korn shell prompt $

Bourne shell and Korn shell superuser
prompt

#

Preface 7

8 JDK 1.1 for Solaris Developer’s Guide ♦ February 2000

CHAPTER 1

Introduction to the Java Programming
Environment

This developer’s guide describes features of and information about application
development using Java in the Solaris 2.6, Solaris 7, and Solaris 8 environments.

Note - For important information about this release of Java on Solaris software, refer
to www.sun.com/solaris/java/ .

Java Programming Environment and the
Java Runtime Environment (JRE)
This section describes basic information about Java and the JRE.

What is the Java Programming Environment?
Java is a recently developed, concurrent, class-based, object-oriented programming
and runtime environment, consisting of:

� A programming language

� An API specification

� A virtual machine specification

Java has the following characteristics:

9

� Object oriented – Java provides the basic object technology of C++ with some
enhancements and some deletions.

� Architecture neutral – Java source code is compiled into architecture-independent
object code. The object code is interpreted by a Java Virtual Machine (JVM) on the
target architecture.

� Portable – Java implements additional portability standards. For example, int s are
always 32-bit, 2’s-complemented integers. User interfaces are built through an
abstract window system that is readily implemented in Solaris and other operating
environments.

� Distributed – Java contains extensive TCP/IP networking facilities. Library routines
support protocols such as HyperText Transfer Protocol (HTTP) and file transfer
protocol (FTP).

� Robust – Both the Java compiler and the Java interpreter provide extensive error
checking. Java manages all dynamic memory, checks array bounds, and other
exceptions.

� Secure – Features of C and C++ that often result in illegal memory accesses are not
in the Java language. The interpreter also applies several tests to the compiled code
to check for illegal code. After these tests, the compiled code causes no operand
stack over- or underflows, performs no illegal data conversions, performs only
legal object field accesses, and all opcode parameter types are verified as legal.

� High performance – Compilation of programs to an architecture independent
machine-like language, results in a small efficient interpreter of Java programs.
The Java environment also compiles the Java bytecode into native machine code at
runtime.

� Multithreaded – Multithreading is built into the Java language. It can improve
interactive performance by allowing operations, such as loading an image, to be
performed while continuing to process user actions.

� Dynamic – Java does not link invoked modules until runtime.

� Simple – Java is similar to C++, but with most of the more complex features of C
and C++ removed.

Java does not provide:

� Programmer-controlled dynamic memory
� Pointer arithmetic
� struct

� typedef s
� #define

10 JDK 1.1 for Solaris Developer’s Guide ♦ February 2000

JRE Components
The JRE is the software environment in which programs compiled for a typical JVM
implementation can run. The runtime system includes:

� Code necessary to run Java programs, dynamically link native methods, manage
memory, and handle exceptions

� Implementation of the JVM

The following figure shows the JRE and its components, including a typical JVM
implementation’s various modules and its functional position with respect to the JRE
and class libraries.

class loader &
bytecode verifier

awt net I/O RMI ...
Java
Class
Libraries

JRE

interpreter ...

garbage collector threads and synchronization
JVM

Figure 1–1 Typical JVM’s Implementation: Functional Relationship to JRE and Class
Libraries

JVM
The JVM is an abstract computing machine, having an instruction set that uses
memory. Virtual machines are often used to implement a programming language.
The JVM is the cornerstone of the Java programming language. It is responsible for
Java’s cross-platform portability and the small size of its compiled code.

The Solaris JVM is used to execute Java applications. The Java compiler, javac ,
outputs bytecodes and puts them into a .class file. The JVM then interprets these
bytecodes, which can then be executed by any JVM implementation, thus providing
Java’s cross-platform portability. The next two figures illustrate the traditional
compile-time environment and the new portable Java compile-time environment.

Introduction to the Java Programming Environment 11

C source code ‘cc’
Intel machine code Intel/WindowsC compiler

PC

SPARC™ machine code SPARC/Solaris
workstation

Multiple application binaries ship

C

Figure 1–2 Traditional Compile-Time Environment

Java source code
‘javac’

bytecode
JVM Intel/

Windows PCJava
compiler

(MS)

One application binary ship

JVM
(Sun)

SPARC/Sun
network
computer

Other architectures supporting a JVM

Figure 1–3 New Portable Java Compile-Time Environment

Multithreading JVM
The Java programming language requires that multithreading (MT) programs be
supported (see Chapter 2). All Java interpreters provide an MT programming
environment. However, many of these interpreters support only uniprocessor
multithreading, so Java program threads are executed one at a time.

The Solaris JVM interpreter takes full advantage of multiprocessor systems by using
the intrinsic Solaris multithread facilities. These allow multiple threads of a single
process to be scheduled simultaneously onto multiple CPUs. An MT Java program
run under the Solaris JVM will have a substantial increase in concurrency over the
same program run on other platforms.

12 JDK 1.1 for Solaris Developer’s Guide ♦ February 2000

Sun Just-In-Time (JIT) Compiler
The Sun Java JIT compiler, an integral part of the Solaris JVM, can accelerate
execution performance many times over previous levels. Long-running,
compute-intensive programs show the best performance improvement.

JIT Compile Process
When the JIT compiler environment variable is on (the default), the JVM reads the
.class file for interpretation and passes it to the JIT compiler. The JIT compiler then
compiles the bytecodes into native code for the platform on which it is running. The
next figure illustrates the JIT compile process.

Introduction to the Java Programming Environment 13

OS & class
library calls

hardware

Java application

javac

bytecode

interpreter JVM

JIT
environmental

variable
set? Y

 JIT JVM

N

SPARC/Intel machine code

Figure 1–4 JIT Compile Process

The following figure shows the functional relationship of the JIT to the Solaris JVM
and JRE.

14 JDK 1.1 for Solaris Developer’s Guide ♦ February 2000

class loader &
bytecode verifier

awt net I/O RMI ...
Java
Class
Libraries

JRE

interpreter JIT ...

garbage collector threads and synchronization
JVM

Figure 1–5 Solaris JVM Functional Relationship to the JIT Compiler

Introduction to the Java Programming Environment 15

16 JDK 1.1 for Solaris Developer’s Guide ♦ February 2000

CHAPTER 2

Multithreading

This chapter discusses multithreading in general, and specific MT issues related to
Java on Solaris software and the native-threaded JVM.

Information for developers new to Java is starred(*).

Definition of Multithreading*
A thread is a sequence of control within a process. A single-threaded process follows
a single sequence of control while executing. An MT process has several sequences of
control, thus is capable of several independent actions at the same time. When
multiple processors are available, those concurrent but independent actions can take
place in parallel.

Java Threads in the Solaris Environment
— Earlier Releases*
Previous to Java on Solaris 2.6 software, the Java runtime used a user-level threads
library called “green threads,” part of the Java runtime thread and system support
layer. Because the green threads library was user-level and the Solaris system could
process only one green thread at a time, Solaris handled the Java runtime as a
many-to-one threading implementation (refer to “Many-to-One Model (Green
Threads)” on page 19). As a result, several problems arose:

17

� Java applications could not interoperate with existing MT applications in the
Solaris environment.

� Java threads could not run in parallel on multiprocessors.

� An MT Java application could not harness true OS concurrency for faster
applications on either uniprocessors or multiprocessors.

To substantially increase application performance, the green threads library was
replaced with native Solaris threads for Java on the Solaris 2.6 platform; this is
carried forward on the Solaris 7 and Solaris 8 platforms.

Multithreading Concepts*
MT programming enables you to speed up applications and to leverage the
parallelism of hardware and the efficiencies of objects. The Java on Solaris MT
implementation is efficient, reliable, and standards-based, offering significant
advantages to developers and end-users. The Solaris operating environment provides
the best performance, tools, support, and flexibility in developing MT applications.
The Solaris operating environment utilizes the following significant MT advances:

� The Solaris MT kernel – the essential component in a complete implementation of
an MT architecture.

� The two-level threads model – the Solaris system’s proven MT implementation
that enables processes to use an unlimited number of threads for optimal
performance

� The POSIX pthreads standard – an implementation of the MT interface defined
by the IEEE POSIX 1003.1c specification.

� The Java threads API, one of the Java APIs, that is fast becoming a standard
interface used to program MT applications

Benefits of Multithreading*
This concurrent activity speeds applications up – one of the main benefits of
multithreading.

MT allows both the full exploitation of parallel hardware and the effective use of
multiple processor subsystems. While MT is essential for taking advantage of the
performance of symmetric multiprocessors, it also provides performance benefits on
uniprocessor systems by improving the overlap of operations such as computation
and I/O.

18 JDK 1.1 for Solaris Developer’s Guide ♦ February 2000

Some of the most important benefits of MT are:

� Improved throughput. Many concurrent compute operations and I/O requests
within a single process.

� Simultaneous and fully symmetric use of multiple processors for computation and
I/O

� Superior application responsiveness. If a request can be launched on its own
thread, applications do not freeze or show the “hourglass”. An entire application
will not block, or otherwise wait, pending the completion of another request.

� Improved server responsiveness. Large or complex requests or slow clients don’t
block other requests for service. The overall throughput of the server is much
greater.

� Minimized system resource usage. Threads impose minimal impact on system
resources. Threads require less overhead to create, maintain, and manage than a
traditional process.

� Program structure simplification. Threads can be used to simplify the structure of
complex applications, such as server-class and multimedia applications. Simple
routines can be written for each activity, making complex programs easier to
design and code, and more adaptive to a wide variation in user demands.

� Better communication. Thread synchronization functions can be used to provide
enhanced process-to-process communication. In addition, sharing large amounts of
data through separate threads of execution within the same address space
provides extremely high-bandwidth, low-latency communication between separate
tasks within an application.

Multithreading Models
Most multithreading models fall into one of the following categories of threading
implementation:

� Many-to-One

� One-to-One

� Many-to-Many

Many-to-One Model (Green Threads)
Implementations of the many-to-one model (many user threads to one kernel thread)
allow the application to create any number of threads that can execute concurrently.
In a many-to-one (user-level threads) implementation, all threads activity is restricted
to user space. Additionally, only one thread at a time can access the kernel, so only

Multithreading 19

one schedulable entity is known to the operating system. As a result, this
multithreading model provides limited concurrency and does not exploit
multiprocessors. The initial implementation of Java threads on the Solaris system was
many-to-one, as shown in the following figure.

User

Kernel

User Space

Kernel Space

Schedulable
entity (e.g.
“LWP”)

= LWP= Thread

Native

Java
Application

Figure 2–1 Many-to-One Multithreading Model

One-to-One Model
The one-to-one model (one user thread to one kernel thread) is among the earliest
implementations of true multithreading. In this implementation, each user-level
thread created by the application is known to the kernel, and all threads can access
the kernel at the same time. The main problem with this model is that it places a
restriction on you to be careful and frugal with threads, as each additional thread
adds more “weight” to the process. Consequently, many implementations of this
model, such as Windows NT and the OS/2 threads package, limit the number of
threads supported on the system.

20 JDK 1.1 for Solaris Developer’s Guide ♦ February 2000

Kernel

User

= LWP= Thread

Native

Java
Application

Figure 2–2 One-to-One Multithreading Model

Many-to-Many Model (Java on Solaris—Native
Threads)
The many-to-many model (many user-level threads to many kernel-level threads)
avoids many of the limitations of the one-to-one model, while extending
multithreading capabilities even further. The many-to-many model, also called the
two-level model, minimizes programming effort while reducing the cost and weight
of each thread.

In the many-to-many model, a program can have as many threads as are appropriate
without making the process too heavy or burdensome. In this model, a user-level
threads library provides sophisticated scheduling of user-level threads above kernel
threads. The kernel needs to manage only the threads that are currently active. A
many-to-many implementation at the user level reduces programming effort as it lifts
restrictions on the number of threads that can be effectively used in an application.

A many-to-many multithreading implementation thus provides a standard interface,
a simpler programming model, and optimal performance for each process. The Java
on Solaris operating environment is the first many-to-many commercial
implementation of Java on an MT operating system.

Multithreading 21

Kernel

= LWP= Thread

Java
Application

Solaris
Threads
Library

Native

Figure 2–3 Many-to-Many Multithreading Model

Multithreading Kernel
The MT kernel is a critical foundation of a complete multithreading implementation.
In an MT kernel such as the one used by the Solaris operating environment, each
kernel thread is a single flow of control within the kernel’s address space. The kernel
threads are fully preemptive and can be scheduled by any of the available
scheduling classes in the system, including the real-time class. All execution entities
are built using kernel threads, which represent a fully preemptive, real-time
“nucleus” within the kernel.

In addition, kernel threads employ synchronization primitives that support protocols
for preventing the blocking that results in the inversion of thread and process
priority. This ensures that applications execute as expected. Kernel threads also allow
kernel-level tasks such as NFS daemons, pageout daemons, and interrupts to execute
asynchronously, thus increasing concurrency and overall throughput.

The MT kernel is essential to building an MT application architecture, such as a
typical JVM implementation:

� It is fully symmetric in order to maximize multiprocessor performance.

22 JDK 1.1 for Solaris Developer’s Guide ♦ February 2000

� With its multiple kernel threads, it enables parallelism on multiprocessor
machines. This improves the efficiency of hardware subsystems by providing
concurrency and parallelism in computation, networking, display, and I/O.

� Traditional (single-threaded) applications run unchanged on an MT kernel.

� It is fully preemptive, providing real-time responsiveness.

Advantages of Java Multithreading in
the Solaris Environment
The Solaris MT kernel is one of the most important components of the Solaris
operating environment, enabling the Solaris system to be the only standard operating
environment that provides this level of concurrency, sophistication, and efficiency.

Java on Solaris software leverages the multithreading capabilities of the kernel while
also enabling you to create powerful Java applications using thousands of user-level
threads for multiprocessor or uniprocessor systems, through a very simple
programming interface.

The Java on Solaris environment supports the many-to-many threads model. As
illustrated in Figure 2–4, the Solaris two-level architecture separates the
programming interface from the implementation by providing an intermediate layer,
called lightweight processes (LWPs). LWPs allow you to create fast and cheap threads
through a portable application-level interface. To use LWPs, write applications using
threads. The runtime environment, as implemented by a threads library, multiplexes
and schedules runnable threads onto "execution resources," the LWPs.

Individual LWPs operate like virtual CPUs that execute code or system calls. LWPs
are dispatched separately by the kernel, according to scheduling class and priority, so
they can perform independent system calls, incur independent page faults, and run
in parallel on multiple processors. The threads library implements a user-level
scheduler that is separate from the system scheduler. User-level threads are
supported in the kernel by the kernel-schedulable LWPs. Many user threads are
multiplexed on a pool of kernel LWPs.

Multithreading 23

Proc 2Proc 1

User

Kernel

Traditional
process

Proc 3

= LWP = Processor= Thread

Figure 2–4 Solaris Two-level Architecture

Solaris threads provide an application with the option to bind a user-level thread to
an LWP, or to keep a user-level thread unbound. Binding a user-level thread to an
LWP establishes an exclusive connection between the two. Thread binding is useful
to applications that need to maintain strict control over their own concurrency, such
as those that require real-time response. No Java API exists to perform the binding.
Most Java applications do not require binding. If binding is required, a Solaris native
method call can be made to perform the binding.

Therefore, all Java threads are unbound by default. Unbound user-level threads defer
control of their concurrency to the threads library, which automatically expands and
shrinks the pool of LWPs to meet the demands of the application’s unbound threads.

The following unique features of Java on Solaris threads are available by default to
all Java applications on Solaris:

� Unbound Solaris threads: A Java thread is essentially the same as an unbound
Solaris thread, with the inherent advantages of unbound threads.

� The ability to share an LWP with several user-level threads

� Automatic concurrency control for unbound threads. The threads library
dynamically expands and shrinks the pool of LWPs to meet the demands of the
application. See “Programming Compute-Bound, Parallellized Java Applications”
on page 32 for more information.

� Extremely lightweight user threads that can be created, used, and discarded in
very large numbers without consuming excessive system resources or degrading
system performance

� Synchronization primitives are not known to the kernel and do not consume any
system resources.

� MT features, unique to Solaris, are accessible by using native methods.

24 JDK 1.1 for Solaris Developer’s Guide ♦ February 2000

Note - In general, accessing native Solaris features using native methods from a Java
application is not recommended. Such usage could make the Java application
non-portable, because it would not be 100% Pure JavaTM and would be tied to the
Solaris platform only.

Though accessing Solaris-specific features from Java applications is not
recommended, here is a list of those features to illustrate the richness of the Solaris
MT architecture:

� The ability to define bound or unbound threads for user or system level control of
application concurrency. Note that a bound Java thread can be created only by
way of native methods.

� In addition, the application can control application concurrency through a
programmatic interface. See “Programming Compute-Bound, Parallellized Java
Applications” on page 32 for more information.

� The ability to bind a user-level thread (through native methods) to an LWP that is
dedicated to a single processor. This feature is useful to real-time applications
running on multiprocessor systems.

� Synchronization primitives that have interprocess scopes

� Synchronization primitives that can be placed in files and can have lifetimes
beyond that of the creating thread.

� Direct native support for Java’s daemon threads. Daemon threads are threads that
run in the background and have dedicated exit semantics enabling them to
terminate independently of the processes that use them. Daemon threads are
useful to libraries that need to create threads that are unknown to applications.
The Solaris JVM does not utilize direct native support for Java’s daemon threads,
but might do so eventually.

The Solaris two-level model delivers unprecedented high levels of flexibility for
meeting many different programming requirements. Certain programs, such as
window programs, demand heavy logical parallelism. Other programs, such as
matrix multiplication applications, must map their parallel computation onto the
actual number of available processors. The two-level model allows the kernel to
accommodate the concurrency demands of all program types without blocking or
otherwise restricting thread access to system services.

The Java on Solaris design uses system resources efficiently as they are needed.
Applications can have thousands of threads with minimal thread-use overhead.
Threads execute independently, share process instructions, and share data
transparently with the other threads in a process. Threads also share most of the
operating system state of a process, can open files and permit other threads to read
them, and allow different processes to synchronize with each other in varying
degrees.

The Java on Solaris threaded model delivers the best combination of speed,
concurrency, functionality, and kernel resource utilization.

Multithreading 25

Grouping Threads
Every Java thread is a member of a thread group. Thread groups provide a
mechanism for collecting multiple threads into a single object and manipulating
those threads all at once, rather than individually.

For example, you can start or suspend all the threads within a group with a single
method call. Java thread groups are implemented by the ThreadGroup [(in the API
reference documentation)] class in the java.lang package. The runtime system puts
a thread into a thread group during thread construction. When you create a thread,
you can either allow the runtime system to put the new thread in a reasonable
default group or you can explicitly set the new thread’s group. The thread is a
permanent member of whatever thread group it joins upon its creation; you cannot
move a thread to a new group after the thread has been created.

Java Threads Issues
This section discusses Java-generic and Solaris-specific issues that might be of
concern if you are writing Java applications for the Solaris product.

Generic Java Issues
Numerous methods have been deprecated for JDK 1.1. Refer to Table 4–1 for a
complete list.

Solaris-Specific Issues
Some issues are specific to Solaris, as explained in the following sections.

Using Multithreading-Unsafe Libraries

Caution - This workaround is not trivial and can cause deadlocks if not carefully
programmed. Do this only if absolutely unavoidable.

26 JDK 1.1 for Solaris Developer’s Guide ♦ February 2000

If you try to run a multithreaded Java application that also uses native C/C++ code
with previously-released libraries that have not been compiled with the
-D_REENTRANTflag on, you could encounter problems, as explained here.

With a native-threaded JVM such as 1.1, libc stores system call error code in a
thread-specific errno . When an mt-unsafe library references errno , it references the
global version, because it was not compiled with the -D_REENTRANTflag on.
Therefore, the library can’t access the thread-specific errno and its
errno -dependent response to a failed system call would be incorrect.

The real solution is to ensure that an MT Java application that also uses native code
by way of native methods is linked with MT-safe (or at least errno —safe libraries).

However, if you cannot avoid referencing errno -unsafe libraries, the following
workaround can help: Enable the main thread to enter the Java application and
arrange for all calls to the unsafe library to be routed through the main thread. For
example, if a thread makes a JNI call, the JVM can marshal all JNI arguments and
put them in a queue serviced by the main thread. The thread can wait for the main
thread to issue the call and return the results to it.

It is not necessary for calls made from only the main thread to the unsafe library to
go through a lock, since calls to the library are single-threaded through the library;
only the main thread ever calls the library. The main thread could issue non-blocking
calls, and so forth, to ensure some amount of concurrency. The main thread’s errno
is global, and the same errno would be referenced by both libc and the MT-unsafe
library.

interrupt() Method
The use of this method is generally discouraged; it is not currently specified as
particularly useful. The Java Language Specification (JLS) defines it as a way to
interrupt a target thread only if and when it calls the wait() method.

However, on the Solaris platform, the semantics have been extended so that it also
interrupts the target thread’s I/O calls. Do not depend on this extension, as it might
be discontinued. Additionally, using the extended, I/O interruption semantics of the
interrupt method makes the code non-portable across different JVMs.

Thread Priorities
The thread priorities available to Java threads on a native threaded JVM should be
treated as hints to the scheduler, especially if the threads are compute-bound. The
number of processors available to a process is dynamic and unpredictable. Therefore,
an attempt to use priorities to schedule execution on any multi-tasked,
multiprocessor system is not likely to succeed.

Multithreading 27

28 JDK 1.1 for Solaris Developer’s Guide ♦ February 2000

CHAPTER 3

Java Programming Environment

Programming in Java is supported in the Solaris JVM by any Solaris text editor,
make(1S), and by the components shown in the following table.

TABLE 3–1 Java Programming Environment Components

Component Description

javac Java compiler. Translates Java source code files (name.java) into
bytecode files (name.class) that can be processed by the interpreter
(java (1)). Both Java applications and Java applets are compiled.

javald Wrapper generator. Creates a wrapper that captures the environment
needed to compile and run a Java application. Because the specified
paths are not bound until the wrapper is invoked, the wrapper allows
for relocation of the JAVA_HOMEand CLASSPATHpaths.

java Java interpreter. Can be invoked as a command to execute a Java
application or from a browser by HTML code to execute an applet.

appletviewer Java applet viewer. This command displays specified document(s) or
resource(s) and runs each applet referred to by the document(s).

javap Java class file disassembler. Disassembles a javac compiled bytecode
class file and prints the result to stdout .

(For more information on using make(1S) see the chapter “make Utility” in the
Programming Utilities Guide.)

The normal Java environment variables are shown in the following table.

29

TABLE 3–2 Java Environment Variables

Variable Description

JAVA_HOME Path of the base directory of the Java software. For example, javac,
java , appletviewer , javap , and javah are all contained in
$JAVA_HOME/bin . Does not need to be set to use Solaris JVM.

CLASSPATH A colon (:) separated list of paths to directories containing compiled
*.class files for use with applications and applets. Used by javac ,
java , javap , and javah . If not set, all Solaris JVM executables
default to /usr/java/lib/classes.zip . Does not need to be set to
use Solaris JVM.

PATH The normal executable search list can contain $JAVA_HOME/bin .

Note - The JVM tools are installed in /usr/java/bin and symbolic links to each
executable are stored in /usr/bin . This means that nothing needs to be added to a
user’s PATH variable to use the newly installed JVM package. Also, all Solaris JVM
executables default to the path /usr/java/lib/classes.zip to find the standard
Java class library.

The base Java programming environment provides no debugger. A debugger is
included in the optional unbundled Java WorkShopTM from Sun Microsystems.

Java Programs
Java programs are written in two forms: applications and applets.

Java applications are run by invoking the Java interpreter from the command line
and specifying the file containing the compiled application.

Java applets are invoked from a browser. The HTML code interpreted by the browser
names a file containing the compiled applet. This causes the browser to invoke the
Java interpreter which loads and runs the applet.

Sample Application
Code Example 3–1 is the source of an application that displays "Hello World" on
stdout . The method accepts arguments in the invocation, but does nothing with
them.

30 JDK 1.1 for Solaris Developer’s Guide ♦ February 2000

CODE EXAMPLE 3–1 Sample Java Application Code

//
// HelloWorld Application
//
class HelloWorldApp{

public static void main (String args[]) {
System.out.println ("Hello World");

}
}

Note that, as in C, the method or function to be initially executed is identified as
main . The keyword public lets the method be run by anyone; static makes main
refer to the class HelloWorldApp and no other instance of the class; void says that
main returns nothing; and args[] declares an array of type String

To compile the application, enter

$ javac HelloWorldApp.java

It is run by

$ java HelloWorldApp arg1 arg2 ...

Sample Applet
Code Example 3–2 is the source of the applet that is equivalent to the application in
Code Example 3–1.

CODE EXAMPLE 3–2 Sample Java Applet

//
// HelloWorld Applet
//
import java.awt.Graphics;
import java.applet.Applet;

public class HelloWorld extends Applet {
public void paint (Graphics g) {

g.drawstring ("Hello World", 25, 25);
}

}

In an applet, all referenced classes must be explicitly import ed. The keywords
public and void mean the same as in the application; extend says that the class
HelloWorld inherits from the class Applet .

To compile the applet, enter

Java Programming Environment 31

$ javac HelloWorld.java

The applet is invoked in a browser by HTML code. A minimum HTML page to run
the applet is:

<title>Test</title>
<hr>
<applet code="HelloWorld.class" width=100 height=50>
</applet>
<hr>

javald and Relocatable Applications
Correct execution of many Java applications depends on the values of the
JAVA_HOME, CLASSPATH, and LD_LIBRARY_PATHenvironment variables. Because
the values of these environment variables are controlled by each user, they can be set
to arbitrary paths, with either path being unusual. Further, it is common for an
application to require a unique value in the CLASSPATHvariable.

javald (1) is a command that generates wrappers for Java applications. The wrapper
can specify the correct paths for any or all of the JAVA_HOME, CLASSPATH, and
LD_LIBRARY_PATHenvironment variables. It does so with no effect on the user’s
values of these environment variables. It also overrides the user’s values for these
environment variables during execution of the Java application. Further, the wrapper
ensures that the specified paths are not bound until the Java application is actually
executed, which maximizes relocatability of applications.

Programming Compute-Bound,
Parallellized Java Applications
Caution - In general, avoid using a native method to access Solaris-specific
functionality such as thr_setconcurrency (3THR), since the application is then
tied to the Solaris environment and is no longer 100% Pure Java.

32 JDK 1.1 for Solaris Developer’s Guide ♦ February 2000

Note - Most Java applications do not need to use thr_setconcurrency (3THR).
The only cases in which it might be necessary would be, for instance, a demo with
dummy threads that spin interminably or a compute-bound application such as
matrix multiplication or a parallelized graphics computation.

thr_setconcurrency Example
A compute-bound application, such as parallelized matrix multiplication, must use a
native method to call thr_setconcurrency (3THR). This insures that sufficient
concurrency resources are available to the Java application to fully use multiple
processors. This is not necessary for most Java applications and applets. The
following code is an example of how to do this.

The first element is the Java application, MPtest.java , that will use
MPtest_NativeTSetconc() . This application creates 10 threads, each of which
displays an identifying line, then loops 10,000,000 times to simulate a
compute-bound activity.

CODE EXAMPLE 3–3 MPtest.java

import java.applet.*;
import java.io.PrintStream;
import java.io.*;
import java.net.*;

class MPtest {
static native void NativeTSetconc();
static public int THREAD_COUNT = 10;
public static void main (String args[]) {

int i;

// set concurrency on Solaris - sets it to
// sysconf (_SC_ NPROCESSORS_ONLN)

NativeTSetconc();
// start threads

client_thread clients[] = new client_thread[THREAD_COUNT];
for (i = 0; i < THREAD_COUNT; ++i){

clients[i] = new client_thread(i, System.out);
clients[i].start();

}
}

static { System.loadLibrary("NativeThreads");
}
class client_thread extends Thread {

PrintStream out;
public int LOOP_COUNT = 10000000;
client_thread(int num, PrintStream out){

(continued)

Java Programming Environment 33

(Continuation)

super("Client Thread" + Integer.toString(num));
this.out = out;
out.println("Thread " + num);

}
public void run () {

for(int i = 0; i < this.LOOP_COUNT ; ++i) {;
}

}
}

The second element is the C stub file, MPtest.c , generated from MPtest.java by
the utility javah (1). Enter

% javah -stubs MPtest.java

The third element is the C header file, MPtest.h , also generated from
MPtest.java by the utility javah (1). Enter

% javah MPtest.java

The fourth element is the C function, NativeThreads.c , which performs the call to
the C library interface.

#include <thread.h>
#include <unistd.h>
#include <jni.h>
JNIEXPORT void JNICALL Java_MPtest_NativeTSetconc(JNIEnv *env, jclass obj) {

thr_setconcurrency(sysconf(_SC_NPROCESSORS_ONLN));
}

Finally, combining the four files into the Java application, MPtest.class , is most
easily done with a make(1S) file such as shown in Code Example 3–4.

CODE EXAMPLE 3–4 MPtest.class

Make has to be done in two stages:
first do "make MPtest"
Then create NativeThreads.c to incorporate the native call
to "thr_setconcurrency(_SC_NPROCESSORS_ONLN)"
and then do "make lib".
After this, you should be able to run "java MPtest" with LD_LIBRARY_PATH
and CLASSPATH set to "."
JAVA_HOME=/usr/java JH_INC1=${JAVA_HOME}/include JH_INC2=${JAVA_HOME}/include/solaris
CLASSPATH=.;
export CLASSPATH;

(continued)

34 JDK 1.1 for Solaris Developer’s Guide ♦ February 2000

(Continuation)

MPtest:
${JAVA_HOME}/bin/javac MPtest.java
(CLASSPATH=.;
export CLASSPATH;
${JAVA_HOME}/bin/javah MPtest)
(CLASSPATH=.;
export CLASSPATH;
${JAVA_HOME}/bin/javah -jni MPtest)cc -G -I${JH_INC1} -I${JH_INC2} NativeThreads.c\

-lthread -o libNativeThreads.so
clean:
rm -rf *.class libNativeThreads.so NativeThreads.o *.h

API Mapping
The mapping table shows the closest possible mapping of the Java threads API to the
Solaris and POSIX APIs. This mapping is not exact and does not imply that you can
convert a Solaris or POSIX threads program to a Java threads program (or vice versa)
using the table. The table serves only to show a loose equivalence between the APIs
and to some guidance to developers familiar with one API and interested in
knowing its relationship to the corresponding API. A conceptual difference exists
between using the Solaris APIs by way of procedural and layered programming in C,
and using them by object-oriented programming techniques in Java.

The following examples show why the Java/Solaris API equivalence is loose.

� The Java thread destroy method (Destroy()) is shown to correspond to POSIX
pthread_cancel() . However, POSIX pthread_cancel() is incomplete
without the concept of cancellation points and the use of
pthread_cleanup_push() and pthread_cleanup_pop() to establish
cleanup handlers around cancellation points. The Java threads API does not have
a similar conceptual framework about destroying threads. In this sense, the two
destroy techniques are very different.

Note - As of JDK 1.1, the destroy() method has been deprecated.

� The Java thread interrupt() method is shown as corresponding to POSIX
pthread_kill() , but is quite different. Java has the concept of safe interruption
points (for instance, wait()), whereas POSIX does not.

Java Programming Environment 35

Note - The Solaris readers/writer lock interfaces and the POSIX attributes do not
have any close equivalent interfaces in Java.

TABLE 3–3 Mapping of Java to Solaris and POSIX APIs

Java Threads API Solaris Threads API POSIX Threads API

thr_create() pthread_create()

activeCount()

checkAccess()

countStackFrames()

currentThread() thr_self() pthread_self()

destroy() pthread_cancel()

dumpStack()

enumerate()

getName()

getPriority() thr_getprio() pthread_ getschedparam()

getThreadGroup()

interrupt() thr_kill() pthread_kill()

interrupted()

isAlive()

isDaemon()

isInterrupted()

join() thr_join() pthread_join()

resume() thr_continue()

run()

setDaemon()
THR_DAEMONflag

setName()

setPriority() thr_setprio() pthread_ setschedparam()

sleep() sleep() sleep()

start()

stop()

suspend()

36 JDK 1.1 for Solaris Developer’s Guide ♦ February 2000

TABLE 3–3 Mapping of Java to Solaris and POSIX APIs (continued)

Java Threads API Solaris Threads API POSIX Threads API

Synchronization methods

wait() cond_wait() pthread_cond_wait()

notify() cond_signal() pthread_cond_signal()

synchronized method

synchronized statements

mutexes pthread_mutexes

Thread Group Methods
The following methods operate on a thread group. The thread group feature is
available in Java, but there is no corresponding feature in Solaris or POSIX:

� activeCount()

� activeGroupCount()

� allowThreadSuspension()

� checkAccess()

� getMaxPriority()

� getParent()

� getName()

� isDaemon()

� list()

� parentOf()

� resume()

� setDaemon()

� stop()

� suspend()

� toString()

� uncaughtException()

Java Programming Environment 37

Java Development Tools
The following sections describe Java development tools.

Java WorkShop (JWS)
JWS is a powerful, visual development tool for professional Java developers. It offers
a complete, easy-to-use toolset for building Java applets and applications quickly and
easily.

JWS uses its own Java interpreter and consists of eight applications, as shown in the
following table.

TABLE 3–4 Java WorkShop Application List

Application Description

Portfolio Manager Creates and customizes portfolios of Java projects. It manages
collections of objects and applets from which new applets and
applications can be created.

Project Manager Sets preferences and directories for a project. Organizes and saves
locations and preferences so that developers need not memorize
paths to components.

Source Editor A point-and-click tool for creating and editing source code. Other
components of Java WorkShop invoke the Source Editor at many
points in the creation, compiling, and debugging processes.

Build Manager Compiles Java source code to Java bytecode and locates errors in
the source. In launching the Source Editor, the Build Manager links
the developer to the Source Editor, allowing quick correction and
compilation.

Source Browser Displays a tree diagram that shows the class inheritance of all the
objects in the project. It also lists all constructor and general
methods in the project and allows string and symbol searches. The
Source Browser links to the Source Editor to view the code.

Debugger Provides an array of tools to control and manage the debugging
process. By running the application or applet under a control panel,
the developer can stop and resume threads, set break points, trap
exceptions, view threads in alphabetical order, and see messages.

38 JDK 1.1 for Solaris Developer’s Guide ♦ February 2000

TABLE 3–4 Java WorkShop Application List (continued)

Application Description

Applet Tester Similarly to appletviewer, Applet Tester lets the developer run and
test the applet. Use Build Manager to compile the applet, then run
it with Applet Tester.

Online Help Is organized into the topics “Getting Started,“ “Debugging
Applets,” “Building Applets,” “Managing Applets,” and “Browsing
Source”. There are also buttons for a table of contents and index.

Visual Java An integrated Java GUI builder that has a point-and-click interface
with a pallet of customizable pre-built GUI foundation widgets.

For more JWS information, refer to http://www.sun.com/workshop/java/ .

Java Programming Environment 39

40 JDK 1.1 for Solaris Developer’s Guide ♦ February 2000

CHAPTER 4

Deprecated Methods

This chapter has a list of methods deprecated in JDK 1.1, and an explanation of
deprecation.

What Is Deprecation?*
A method is deprecated when it is no longer considered important, and should no
longer be used because it might be deleted from its class. Deprecation is a result of
classes evolving, causing their APIs to change. Methods are renamed, new ones
added, attributes change. Deprecated classes and methods are marked "@deprecated"
in documentation comments to enable developer transition from that API to the new
one. The following table lists the deprecated methods.

TABLE 4–1 Deprecated Methods

Class Method Replaced By

java.awt.BorderLayout addLayoutComponent() addLayoutComponent(component,object)

java.awt.CardLayout addLayoutComponent() addLayoutComponent(component,object)

java.awt.CheckboxGroup getCurrent() getSelectedCheckbox()

setCurrent() setSelectedCheckbox()

java.awt.Choice countItems() getItemCount()

java.awt.Component getPeer() No replacement.

enable() setEnabled(true)

disable() setEnabled(false)

41

TABLE 4–1 Deprecated Methods (continued)

Class Method Replaced By

show() setVisible(true)

hide() setVisible(false)

location() getLocation()

move() setLocation()

size() getSize()

resize() setSize()

bounds() getBounds()

reshape() setBounds()

preferredSize() getPreferredSize()

minimumSize() getMinimumSize()

layout() doLayout()

inside() contains()

locate() getComponentAt()

deliverEvent() dispatchEvent()

postEvent() dispatchEvent()

handleEvent() processEvent()

mouseDown() processMouseEvent()

mouseDrag() processMouseMotionEvent()

mouseUp() processMouseEvent(MouseEvent)

mouseMove() processMouseMotionEvent()

mouseEnter() processMouseEvent()

mouseExit() processMouseEvent()

keyDown() processKeyEvent()

keyUp() processKeyEvent()

action() Register as ActionListener on component
firing action events.

gotFocus() processFocusEvent()

lostFocus() processFocusEvent()

extFocus() transferFocus()

java.awt.Container countComponents() getComponentCount()

42 JDK 1.1 for Solaris Developer’s Guide ♦ February 2000

TABLE 4–1 Deprecated Methods (continued)

Class Method Replaced By

insets() getInsets()

preferredSize() getPreferredSize()

minimumSize() getMinimumSize()

deliverEvent() dispatchEvent()

locate() getComponentAt()

java.awt.FontMetrics getMaxDescent() getMaxDescent()

java.awt.Frame setCursor() setCursor()method in Component

getCursorType() getCursor() method in Component

java.awt.Graphics getClipRect() getClipBounds()

java.awt.List countItems() getItemCount()

clear() removeAll()

isSelected() isIndexSelected()

allowsMultipleSelections() isMultipleMode()

setMultipleSelections() setMultipleMode()

preferredSize() getPreferredSize()

minimumSize() getMinimumSize()

delItems() No longer for public use; retained as
package private .

java.awt.Menu countItems() getItemCount()

java.awt.MenuBar countMenus() getMenuCount()

java.awt.MenuComponents getPeer() No replacement.

postEvent() dispatchEvent()

java.awt.MenuContainer postEvent() dispatchEvent()

java.awt.MenuItem enable() setEnabled(true)

disable() setEnabled(false)

java.awt.Polygon getBoundingBox() getBounds()

inside() contains()

java.awt.Rectangle reshape() setBounds()

move() setLocation()

resize() setSize()

Deprecated Methods 43

TABLE 4–1 Deprecated Methods (continued)

Class Method Replaced By

inside() contains()

java.awt.ScrollPane layout() doLayout()

java.awt.Scrollbar getVisible() getVisibleAmount()

setLineIncrement() setUnitIncrement()

getLineIncrement() getUnitIncrement()

setPageIncrement() setBlockIncrement()

getPageIncrement() getBlockIncrement()

java.awt.TextArea insertText() insert()

appendText() append()

replaceText() replaceRange()

preferredSize() getPreferredSize()

minimumSize() getMinimumSize()

java.awt.TextField setEchoCharacter() setEchoChar()

preferredSize() getPreferredSize()

minimumSize() getMinimumSize()

java.awt.Window postEvent() dispatchEvent()

java.io.
ByteArrayOutputStream

toString() toString(String enc) or toString(), which uses
the platform’s default character encoding

java.io.DataInputStream readLine() BufferedReader.readLine()

java.io.PrintStream printStream() PrintWriter class

java.io.StreamTokenizer streamTokenizer() Convert input stream to character stream

java.lang.Character isJavaLetter() isJavaIdentifierStart(char)

isJavaLetterOrDigit() isJavaIdentifierPart(char)

isSpace() isWhitespace(char)

java.lang.ClassLoader defineClass() defineClass (java.lang.String,byte[],int,int)

java.lang.Runtime getLocalizedInputStream() InputStreamReader and BufferedReader
classes

getLocalizedOutputStream() Use OutputStreamWriter, BufferedWriter,
and PrintWriter classes

java.lang.String string() Use String constructors that take a
character-encoding name or use default
encoding.

44 JDK 1.1 for Solaris Developer’s Guide ♦ February 2000

TABLE 4–1 Deprecated Methods (continued)

Class Method Replaced By

getBytes() getBytes(String enc) or getBytes()

java.lang.System getenv() Use java.lang.System.getProperty methods’
system properties and corresponding get
TypeName methods of Boolean, Integer, and
Long primitive types.

java.lang.Thread resume() Refer to “Deprecated Threads Methods” on
page 46

java.lang.Thread stop() Refer to “Deprecated Threads Methods” on
page 46

java.lang.Thread suspend() Refer to “Deprecated Threads Methods” on
page 46

java.util.Date getYear() Calendar.get(Calendar.YEAR)-1900

setYear() Calendar.set(Calendar.YEAR+1900)

getMonth() Calendar.get(Calendar.MONTH)

setMonth() Calendar.set(Calendar.MONTH,int month)

getDate() Calendar.get(Calendar.DAY_OF_MONTH)

setDate() Calendar.set(Calendar.DAY_OF_MONTH,int
date)

getDay() Calendar.get(Calendar.DAY_OF_WEEK)

getHours() Calendar.get(Calendar.HOUR_OF_DAY)

setHours() Calendar.set(Calendar.HOUR_OF_DAY,int
hours)

getMinutes() Calendar.get(Calendar.MINUTE)

setMinutes() Calendar.set(Calendar.MINUTE,int minutes)

getSeconds() Calendar.get(Calendar.SECOND)

setSeconds() Calendar.set(Calendar.SECOND,int seconds)

parse() DateFormat.parse(String s)

getTimezoneOffset() Calendar.get(Calendar.ZONE_OFFSET)
+Calendar.get(Calendar.DST_OFFSET)

toLocaleString() DateFormat.format(Date date)

Deprecated Methods 45

TABLE 4–1 Deprecated Methods (continued)

Class Method Replaced By

toGMTString() DateFormat.format(Date date) using a GMT
TimeZone

UTC() Calendar.set
(year+1900,month,date,hrs,min,sec) or
GregorianCalendar
(year+1900,month,date,hrs,min,sec), using a
UTC TimeZone, followed by
Calendar.getTime().getTime().

Deprecated Threads Methods
The Thread.stop , Thread.suspend , and Thread.resume methods are
deprecated as of JDK 1.1. Thread.stop is being deprecated because it is inherently
unsafe. Stopping a thread causes it to unlock all the monitors that it has locked. (The
monitors are unlocked as the ThreadDeath exception propagates up the stack.) If
any of the objects previously protected by these monitors was in an inconsistent
state, other threads might view these objects in an inconsistent state. Such objects are
said to be damaged.

Threads operating on damaged objects can behave arbitrarily, either obviously or not.
Unlike other unchecked exceptions, ThreadDeath kills threads silently; thus, the
user has no warning that the program might be corrupted. The corruption can
manifest itself at an unpredictable time after the damage occurs.

Substitute any use of Thread.stop with code that provides for a gentler
termination. Most uses of stop() can and should be replaced by code that modifies
a variable indicating that the target thread should stop running. The target thread
should check this variable regularly. If the variable indicates that the thread is to
stop, the thread should then return from its run() method in an orderly fashion.
For example, suppose your applet contains the following start() , stop() , and
run() methods:

public void start() {
blinker = new Thread(this);
blinker.start();

}
public void stop() {

(continued)

46 JDK 1.1 for Solaris Developer’s Guide ♦ February 2000

(Continuation)

blinker.stop();
// UNSAFE!

}
public void run() {

Thread thisThread = Thread.currentThread();
while (true) {

try {
Thread.sleep(interval);

}
catch (InterruptedException e){
}
repaint();

}
}

You can avoid the use of Thread.stop by replacing the applet’s stop() and
run() methods with:

public void stop() {
blinker = null;

}
public void run() {

Thread thisThread = Thread.currentThread();
while (blinker == thisThread) {

try {
Thread.sleep(interval);

}
catch (InterruptedException e){
}
repaint();

}
}

Thread.suspend is inherently deadlock-prone, so it is also being deprecated. Thus,
the deprecation of Thread.resume is also necessary. If the target thread holds a
lock on the monitor protecting a critical system resource when it is suspended, no
thread can access this resource until the target thread is resumed. If the thread that
would resume the target thread attempts to lock this monitor prior to calling
resume() , deadlock results.

Such deadlocks typically manifest themselves as frozen processes. As with
Thread.stop , the prudent approach is to have the target thread poll a variable
indicating the desired state of the thread (active or suspended). When the correct
state is suspended, the thread waits using Object.wait . When the thread is
resumed, the target thread is notified using Object.notify . For example, suppose
your applet contains the following mousePressed event handler, which toggles the
state of a thread called blinker :

Deprecated Methods 47

public void mousePressed(MouseEvent e) {
e.consume();
if (threadSuspended)

blinker.resume();
else

blinker.suspend();
// DEADLOCK-PRONE!

threadSuspended = !threadSuspended;
}

You can avoid the use of Thread.suspend and Thread.resume by replacing the
event handler above with:

public synchronized void mousePressed(MouseEvent e) {
e.consume();
threadSuspended = !threadSuspended;
if (!threadSuspended)

notify();
}

and adding the following code to the run loop:

synchronized(this) {
while (threadSuspended)

wait();
}

The wait() method throws the InterruptedException , so it must be inside a
try ... catch clause. You can also put it in the same clause as the sleep . The
check should follow (rather than precede) the sleep so the window is immediately
repainted when the thread is resumed. The resulting run() method follows:

public void run() {
while (true) {

try {
Thread.sleep(interval);
synchronized(this) {

while (threadSuspended)
wait();

}
}
catch (InterruptedException e){
}
repaint();

}
}

The notify() in the mousePressed() method and the wait() in the run()
method are inside synchronized blocks. This is required by the language, and

48 JDK 1.1 for Solaris Developer’s Guide ♦ February 2000

ensures that wait() and notify() are properly serialized. In practical terms, this
eliminates race conditions that could cause the suspended thread to miss a
notify() and remain suspended.

Deprecated Methods 49

50 JDK 1.1 for Solaris Developer’s Guide ♦ February 2000

CHAPTER 5

Application Performance Tuning

This chapter provides information about how to improve performance for your Java
applications in the Solaris 8 environment. An application’s performance can be
defined as its usage of resources; therefore, performance tuning is the minimizing of
its usage of those resources.

Caution - Many of these performance tuning tips are specific to Java on the Solaris
2.6, Solaris 7, and Solaris 8 platforms. Future releases might have different
performance characteristics; therefore, these tips might not continue to be appropriate.

Tuning Techniques
Tuning can exist on several levels, as described in the following sections.

System Interface Level
These areas of the Java system interface level, where tuning can often result in
significant performance gains, are discussed here:

� I/O

� Strings

� Arrays

� Vectors

� Painting/drawing

� Hashing

51

� Images

� Memory usage

� Threads

Compiler Optimization Level
The optimizations for these compilers are listed as:

� Java compiler

� JIT compiler

Code Tuning Level
Code tuning in these areas can be used to increase performance:

� Loops

� Convert expr to table lookup

� Caching

� Result pre-computation

� Lazy evaluation

� Class vs. object initialization

I/O Issues
The biggest and most common performance problem in Java applications is often
inefficient I/O. Therefore, I/O issues should generally be the first thing to look at
when performance-tuning a Java application. Fixing these problems often results in
greater performance gains than all the other possible optimizations combined. It is
not unusual to see a speed improvement of one order of magnitude achieved by
using efficient I/O techniques.

If an application performs a significant amount of I/O, then it is a candidate for I/O
performance tuning. This conclusion can be confirmed by profiling the application.
To learn how to profile an application, you can use the Java WorkShop (JWS)
product. JWS can be obtained from:

http://www.sun.com/workshop

Select Help->Help Contents, and click on Profiling Projects. This example involves
running a benchmark test reading a 150,000-line file using four different methods:

1. DataInputStream.readLine() alone (unbuffered)

2. DataInputStream.readLine() with a BufferedInputStream underneath,
which has a buffer size of 2048 bytes

52 JDK 1.1 for Solaris Developer’s Guide ♦ February 2000

3. BufferedReader.readline() with a buffer size of 8192 bytes.

4. BufferedFileReader(fileName)

The results were as follows: (times in seconds) :

DataInputStream : 178.740

DataInputStream(BufferedInputStream) : 21.559

BufferedReader 11.150

BufferedFileReader 6.991

Note that methods 1 and 2 do not properly handle Unicode characters, while
methods 3 and 4 handle them correctly. This makes methods 1 and 2 unacceptable
for most product uses. Also, DataInputStream.readLine() is deprecated as of
JDK 1.1. Method 1 is used in JWS and other programs.

Another way to spot Solaris I/O problems is to use truss (1) to look for read (1)
and write (1) system calls.

Strings
When using strings, the most important thing to remember is to use char arrays for
all character processing in loops, instead of using the String or StringBuffer
classes. Accessing an array element is much faster than using the charAt() method
to access a character in a string. Also, remember that string constants ("...") are
already string objects.

//DON’T

String s = new String("hello");

//DO

String s = "hello";

In addition:

� class String

Do not use this class for mutable strings, character processing, or charAt()
method inside a loop.

� class StringBuffer

Use this class only when a string is mutable, accessed concurrently by multiple
threads, and no character processing is performed. Do not use for immutable
strings, character processing, or charAt() , setCharAt() methods inside a loop.
The default string size is 16 characters. This class is automatically used by the
compiler for string concatenation. Set the initial buffer size to the maximum string
length, if it is known.

� class StringTokenizer

Application Performance Tuning 53

This class is useful for simple parsing or scanning, but is very inefficient. It can be
optimized by storing the string and delimiter in a character array instead of in
String , or by storing the highest delimiter character to allow a quicker check.
This will result in a 1.6x to 10x performance increase (2.4x is typical), depending
on the delimiter list and target string.

Arrays
Arrays are bounds-checked, which will degrade performance. However, accessing
arrays is much faster than accessing Vector , String , and StringBuffer . Use
System.arraycopy() to improve performance. This is a native method, and much
faster than manual array processing.

Vectors
Vector is convenient to use, but inefficient. For best performance, use it only when
the structure size is unknown, and efficiency is not a concern. When using Vector ,
ensure that elementAt() is not used inside a loop, as performance will degrade.
Use Vector only when you have an array with the following characteristics:

� Accessed concurrently by multiple threads

� Dynamic size

Hashing
HashTable has these tunable parameters:

� Capacity (usually a prime number), initialCapacity ; if this is not set large
enough, collisions will result, causing hashing to stop and linear list processing to
be executed afterwards.

� Load factor (0.0-1.0), loadFactor , which is a percentage of capacity beyond
which the table will expand. HashTable calls hashCode() . These classes have
pre-defined hashCode() methods:

� Color , Font , Point

� File

� Boolean , Byte , Character , Double , Float , Integer , Long , Short , String

� URL

� BitSet, Date, GregorianCalendar, Locale, SimpleTimeZone . Note that
String.hashCode() does not always sample all the characters, depending on
the length:

� Length from 1 to 15: all n Length from 16 to 23: every other character

� Length from 24 to 31: every third character

54 JDK 1.1 for Solaris Developer’s Guide ♦ February 2000

Images
You can use the following types of images.

Painting and Drawing
To improve performance in these areas, use the following techniques:

� Double buffering (for instance, for animation, draw the image off-screen and load
all at once).

� Overriding the default, update() function

public void update(Graphics g) {
paint(g);

}

� Custom layout managers. If you want custom behavior, GUI performance is best if
you write your own.

� Events. The JDK 1.1 has a more efficient event model than JDK 1.0.

� Repaint only the damaged regions (use ClipRect).

Asynchronous Loading
To improve (asynchronous) loading performance, use your own imageUpdate()
method to override imageUpdate() . imageUpdate() can cause more repainting
than you might want..

//wait for the width information to be loaded
while (image.getWidth(null) == -1 {

try {
Thread.sleep(200);

}
catch(InterruptedException e) {
}

}
if (!haveWidth) {

synchronized (im) {
if (im.getWidth(this) == -1) {

try {
im.wait();

}
catch (InterruptedException) {

}
}

}

(continued)

Application Performance Tuning 55

(Continuation)

//If we got this far, the width is loaded, we will never go thru
// all that checking again.

haveWidth = true;
}

...
public boolean imageUpdate(Image img, int flags, int x, int y, int width, \

int height) {
boolean moreUpdatesNeeded = true;
if ((flags&ImageObserver.WIDTH)!= 0 {

synchronized (img) {
img.notifyAll();
moreUpdatesNeeded = false;

}
}
return
moreUpdatesNeeded;

}

Pre-Decoding
Pre-decoding and storing the image in an array will improve performance. Image
decoding time is greater than loading time. Pre-decoding using PixelGrabber and
MemoryImageSource should combine multiple images into one file for maximum
speed. These techniques are more efficient than polling.

Memory Usage
You can dramatically improve application performance by reducing the amount of
garbage collection performed during execution. The following practices can also
increase performance:

� Increase the initial heap size from the 1 MByte default with:

java -ms number . java -mx number .

The default maximum heap size is 16 MBytes.

� Find areas where too much memory is being used with:

java -verbosegc

� Take size into account when allocating arrays (for instance, if short is big
enough, use it instead of int).

� Avoid allocating objects in loops (readLine() is a common example)

56 JDK 1.1 for Solaris Developer’s Guide ♦ February 2000

Threads
As discussed in “Java Threads in the Solaris Environment — Earlier Releases*” on
page 17, performance is increased dramatically by using native threads. Green
threads are not time-sliced and might require calls to Thread.yield() in loops,
slowing execution. Other techniques to avoid:

� Overuse of synchronization increases the possibility of deadlock (because of
coding errors) and increases the likelihood of delays due to lock contention. Also,
the overhead of synchronizing might frequently overcome the advantages.
Minimizing synchronization takes work, but it pays off well.

� Polling: it is acceptable only when waiting for outside events and should be
performed in a "side" thread. Use wait() /notify() instead.

Compiler Optimizations
The following compilers automatically perform the listed optimizations.

Java Compiler
� Inlining

� Constant folding

JIT Compiler
� Elimination of some array bounds checking

� Elimination of common sub-expressions within blocks

� Empty method elimination

� Some register allocation for locals

� No flow analysis

� Limited inlining

Code Optimization

Loops
Use these techniques for performance improvements:

� Move loop invariants outside the loop.

� Make the tests as simple as possible.

Application Performance Tuning 57

� Use only local variables inside a loop; assign class fields to local variables before
the loop.

� Move constant conditionals outside loops.

� Combine similar loops.

� If loops are interchangeable, nest the busiest one.

� As a last resort, unroll the loop.

Convert expr to Table Lookup
When a value is being selected based on a single expression with a range of small
integers, convert it to a table lookup. Conditional branches defeat many compiler
optimizations.

Caching
Though caching takes more memory, it can be used for performance improvement.
Use the technique of caching values that are expensive to fetch or compute.

Precompute Results
Increase performance by precomputing values known at compile time.

Lazy Evaluation
Save startup time by delaying computation of results until they are needed.

Class as Opposed to Object Initialization
Speed performance up by putting all one-time initializations into a class initializer.

58 JDK 1.1 for Solaris Developer’s Guide ♦ February 2000

