
iWay
iWay Connector for J2EE Connector
Architecture User’s Guide
Version 5 Release 5

Updated for J2EE CA 1.5

DN3501521.0305

EDA, EDA/SQL, FIDEL, FOCCALC, FOCUS, FOCUS Fusion, FOCUS Vision, Hospital-Trac, Information Builders, the Information Builders logo,
Parlay, PC/FOCUS, SmartMart, SmartMode, SNAPpack, TableTalk, WALDO, Web390, WebFOCUS and WorldMART are registered trademarks,
and iWay and iWay Software are trademarks of Information Builders, Inc.

Sun and Java are trademarks or registered trademarks of Sun Microsystems, Inc. in the U.S. and other countries.

Due to the nature of this material, this document refers to numerous hardware and software products by their trademarks. In most, if not
all cases, these designations are claimed as trademarks or registered trademarks by their respective companies. It is not this publisher’s
intent to use any of these names generically. The reader is therefore cautioned to investigate all claimed trademark rights before using any
of these names other than to refer to the product described.

Copyright © 2005, by Information Builders, Inc. and iWay Software. All rights reserved. Patent Pending. This manual, or parts thereof, may
not be reproduced in any form without the written permission of Information Builders, Inc.

Preface
This document is for iWay customers, consultants, and resellers who integrate J2EE™ application
components with J2EE application servers using the iWay Connector for JCA (JCA). Before you begin, you
should understand the J2EE Connector Architecture Specification, JSR016.

This documentation describes how to use the iWay Connector for JCA. It is intended for those who are
using the J2EE Connector Architecture to connect to Enterprise Information Systems (EIS).

How This Manual Is Organized
The following table lists the titles and numbers of the chapters and appendix for this manual with a brief
description of the contents of each chapter or appendix.

Documentation Conventions
The following table lists and describes the conventions that apply in this manual.

Chapter/Appendix Contents

1 Introducing the iWay
Connector for JCA

Introduces the iWay Connector for JCA and provides
information on how the connector is distributed and
deployed.

2 Deploying the iWay
Connector for JCA

Describes how to configure and deploy the iWay
Connector for JCA.

3 iWay JCA Installation
Verification Program

Describes the iWay JCA Installation Verification Program,
used to test the functionality of the iWay Connector for
JCA in the iWay adapter framework.

A Servlet Sample Code Contains servlet sample code for Enterprise JavaBeans™.

Convention Description

THIS TYPEFACE or
this typeface

Denotes syntax that you must enter exactly as shown.

this typeface Represents a placeholder (or variable) in syntax for a value that
you or the system must supply.

underscore Indicates a default setting.

this typeface Represents a placeholder (or variable), a cross-reference, or an
important term.
iWay Connector for J2EE Connector Architecture User’s Guide iii

Related Publications
Related Publications
Visit our World Wide Web site, http://www.iwaysoftware.com, to view a current listing of
our publications and to place an order. You can also contact the Publications Order
Department at (800) 969-4636.

For information on installing the iWay Connector for J2EE Architecture, see the iWay
Installation and Configuration manual.

Customer Support
Do you have questions about the iWay Connector for JCA?

If you bought the product from a vendor other than iWay Software, contact your distributor.

If you bought the product directly from iWay Software, call Information Builders Customer
Support Services (CSS) at (800) 736-6130 or (212) 736-6130. Customer Support Consultants
are available Monday through Friday between 8:00 A.M. and 8:00 P.M. EST to address all
your iWay questions. Our consultants can also give you general guidance regarding
product capabilities and documentation. Please be ready to provide your six-digit site code
number (xxxx.xx) when you call.

this typeface Highlights a file name or command.

Key + Key Indicates keys that you must press simultaneously.

{ } Indicates two or three choices; type one of them, not the
braces.

| Separates mutually exclusive choices in syntax. Type one of
them, not the symbol.

... Indicates that you can enter a parameter multiple times. Type
only the parameter, not the ellipsis points (…).

.

.

.

Indicates that there are (or could be) intervening or additional
commands.
iv iWay Software

http://www.iwaysoftware.com
http://www.iwaysoftware.com

You can also access support services electronically, 24 hours a day, with InfoResponse
Online. InfoResponse Online is accessible through our World Wide Web site, http://
www.iwaysoftware.com. It connects you to the tracking system and known-problem
database at our support center. Registered users can open, update, and view the status of
cases in the tracking system and read descriptions of reported software issues. New users
can register immediately for this service. The technical support section of
www.informationbuilders.com also provides usage techniques, diagnostic tips, and
answers to frequently asked questions.

To learn about the full range of available support services, ask your iWay Software
representative about InfoResponse Online, or call (800) 969-INFO.

Help Us to Serve You Better
To help our consultants answer your questions effectively, please be prepared to provide
specifications and sample files and to answer questions about errors and problems.

The following tables list the specifications our consultants require.

The following table lists components. Specify the version in the column provided.

Platform

Operating System

OS Version

Product List

Adapters

Adapter
Deployment

For example, JCA, Business Services Engine, iWay Adapter
Manager

Container Version

Component Version

iWay Adapter

EIS (DBMS/APP)

HOTFIX / Service Pack
iWay Connector for J2EE Connector Architecture User’s Guide v

Help Us to Serve You Better
The following table lists the types of Application Explorer. Specify the version (and platform,
if different than listed previously) in the columns provided.

In the following table, specify the JVM version and vendor in the columns provided.

The following table lists additional questions to help us serve you better.

Application Explorer
Type

Version Platform

Swing

Servlet

ASP

Version Vendor

Request/Question Error/Problem Details or Information

Provide usage scenarios or
summarize the application
that produces the problem.

Did this happen previously?

Can you reproduce this
problem consistently?

Any change in the
application environment:
software configuration, EIS/
database configuration,
application, and so forth?

Under what circumstance
does the problem not occur?

Describe the steps to
reproduce the problem.

Describe the problem.

Specify the error message(s).
vi iWay Software

The following table lists error/problem files that might be applicable.

User Feedback
In an effort to produce effective documentation, the Documentation Services staff
welcomes your opinions regarding this manual. Please use the Reader Comments form at
the end of this manual to communicate suggestions for improving this publication or to
alert us to corrections. You also can go to our Web site, http://www.iwaysoftware.com and
use the Documentation Feedback form.

Thank you, in advance, for your comments.

iWay Software Training and Professional Services
Interested in training? Our Education Department offers a wide variety of training courses
for iWay Software and other Information Builders products.

For information on course descriptions, locations, and dates, or to register for classes, visit
our World Wide Web site, http://www.iwaysoftware.com or call (800) 969-INFO to speak to
an Education Representative.

Interested in technical assistance for your implementation? Our Professional Services
department provides expert design, systems architecture, implementation, and project
management services for all your business integration projects. For information, visit our
World Wide Web site, http://www.iwaysoftware.com.

XML schema

XML instances

Other input documents (transformation)

Error screen shots

Error output files

Trace and log files

Log transaction
iWay Connector for J2EE Connector Architecture User’s Guide vii

https://wwws.ibi.com/bookstore/cart/derf.asp
http://www.iwaysoftware.com
http://www.iwaysoftware.com

iWay Software Training and Professional Services
viii iWay Software

Contents
1. Introducing the iWay Connector for JCA .1-1

Overview of the iWay Connector for JCA .1-2
Support for Over 250 Adapters .1-3
Flexibility of Use .1-4

Distribution of the iWay Connector for JCA .1-6
Deployment of the iWay Connector for JCA .1-7
Using a JCA Resource Adapter .1-9

Altering JCA Resource Adapter Connection Properties . 1-13
New in the iWay Connector for JCA Version 1.5 . 1-13

Using Programs Written for iWay Connector for 1.0 with the New iWay Connector for JCA 1.5 .
1-13

2. Deploying the iWay Connector for JCA .2-1
Deploying to Sun Java System Application Server .2-2

3. iWay JCA Installation Verification Program .3-1
Overview of the IVP .3-2
Deploying and Running the IVP for Sun Java System Application Server .3-2

Deploying the JCA Test Tool .3-3
Running the JCA Test Tool .3-4
Configuring the JCA Test Tool .3-5

4. Configuring and Deploying the iWay JCA 1.5 Sample Applications 4-1
The iWay JCA 1.5 Connector Architecture .4-2
The iWay JCA 1.5 Sample Applications .4-2

The MessageListener Interface .4-4
Configuring and Deploying the Sample Applications .4-4

A. Servlet Sample Code . A-1
iWay Servlet Sample Code . A-2
iWay Connector for J2EE Connector Architecture User’s Guide 1

Contents
2 iWay Software

CHAPTER 1

Introducing the iWay Connector for JCA
Topics:

• Overview of the iWay Connector for JCA

• Distribution of the iWay Connector for JCA

• Deployment of the iWay Connector for JCA

• Using a JCA Resource Adapter

This section provides an overview of the iWay
Connector for J2EE Connector Architecture (JCA)
and describes how it is distributed and deployed.
iWay Connector for J2EE Connector Architecture User’s Guide 1-1

Overview of the iWay Connector for JCA
Overview of the iWay Connector for JCA
The J2EE Connector Architecture (JCA) defines a standard architecture for connecting the
J2EE platform to a heterogeneous Enterprise Information System (EIS). Examples of an EIS
include Enterprise Resource Planning (ERP), Customer Relationship Management (CRM),
Supply Chain Management (SCM), mainframe transaction processing, database systems,
and legacy applications that are not written in the Java™ programming language. By
defining a set of scalable, secure, and transactional mechanisms, JCA enables the
integration of an EIS with an application server and enterprise applications.

The J2EE Connector Architecture permits an EIS vendor to provide a standard resource
adapter for its EIS. The resource adapter plugs into an application server, providing
connectivity to an EIS, and integrating it with the rest of the enterprise. If an application
server vendor has extended its system to support JCA, it is assured of seamless connectivity
to multiple Enterprise Information Systems.

iWay Software is the world leader in providing integration tools and adapter technologies
that offer fluid control over all your enterprise information assets. The iWay set of
standards-based adapters provide rapid integration of applications, e-business documents,
and databases. The iWay Intelligent Adapter Suite integrates a wide variety of IT assets into
a single virtual information system with shared data structures, transactions, and business
logic. No matter how diverse or dissimilar the components of your IT infrastructure are,
iWay integration tools and adapters make them all accessible for e-business applications
and integration projects.

Companies have adopted J2EE application servers as a standard framework for supporting
the development and maintenance of Internet applications. Separating non-functional
tasks such as security, transactions, connection pooling, and data persistence from
functional tasks such as order processing and customer value analysis enables you to
concentrate on developing business logic and software vendors to focus on application
infrastructure.

The JCA specification was created to establish a standardized mechanism for integrating
Java-based applications with heterogeneous enterprise information assets such as
packaged systems. JCA provides a standard way to connect several application servers with
many Enterprise Information Systems. Using the iWay Connector for J2EE Connector
Architecture (iWay Connector for JCA), you can connect to any of over 250 adapters.
1-2 iWay Software

Introducing the iWay Connector for JCA
Support for Over 250 Adapters
The iWay Connector for J2EE Connector Architecture (iWay Connector for JCA), provides
over 250 intelligent adapters, enabling you to integrate your J2EE applications with your
Enterprise Information Systems, all within a unified adapter framework. iWay provides
intelligent adapters for:

• Application packages, such as Siebel, SAP, PeopleSoft, Ariba, Lawson, Clarify, and
others.

• Electronic business formats, such as SWIFT, FIX, HIPAA, ACORD, ebXML, and OAG BODs.

• Legacy database systems, such as ADABAS, Ingres, MUMPS, Teradata, Unisys, and
others.

• Relational databases, such as Oracle, MS SQL Server, Informix, Sybase, and many more.

• Transaction environments, such as CICS, IMS, and Tuxedo.

• 35 mainframe, midrange, UNIX, and PC operating platforms.

• Custom 3GL and 4GL applications.

• .NET Assemblies

• Messaging products like Sonic MQ, Oracle AQ, MQSeries, or JMS.

• Object technologies like COM, CORBA, and EJB™.

• Terminal emulation adapters that provide wrappers around the presentation tiers of
applications of “green screen” 3270 and 5250 systems.
iWay Connector for J2EE Connector Architecture User’s Guide 1-3

Overview of the iWay Connector for JCA
The following diagram shows the iWay universal adapter framework as deployed to a
standard J2EE application server environment. On the left is a large rectangle representing
container management. Inside container management are three smaller rectangles,
representing connection manager, transaction manager, and security manager. Container
management connects to the EJB container and the Web container (represented by ovals)
through the container component contract. The EJB container, the Web container, and the
stand-alone Java app (represented by an oval) connect to the iWay Universal Adapter
Framework through the JCA common client interface. The container management also
connects to the iWay universal adapter framework through the JCA system contracts. The
iWay Universal Adapter Framework includes the iWay client adapter (that connects to the
iWay server) and the EIS client interfaces (that connect through JDBC to relational
databases, packaged applications, terminal emulators, eBusiness documents, and program
adapters).

Flexibility of Use
Bidirectional Outbound/Inbound Use. You can use iWay adapters to invoke traditional
response-request remote procedure calls (RPC) to your Enterprise Information Systems.
This includes SQL requests to relational and non-relational data stores, as well as calls to
applications such as SAP or Siebel. Additionally, iWay adapters work with many messaging
technologies and have a native Java Message Service (JMS) interface. This enables you to
augment your asynchronous messaging systems with iWay-enabled systems access.

Service Adapters. iWay resource adapters can invoke services on their targeted EIS.
1-4 iWay Software

Introducing the iWay Connector for JCA
Event Listener. iWay adapters can listen for events occurring on their targeted application
server. For example, a new Siebel customer entry can trigger an event that causes the
adapter to invoke Enterprise JavaBeans (EJB) within your application server, which in turn
can invoke a service on CICS and SAP.

The iWay Connector for JCA can be used as a stand-alone application, or in conjunction
with a supported application server such as a SunTM J2EE Application Server, Oracle 9i
Application Server Containers for Java, BEA WebLogic Server, Fujitsu Interstage Application
Server, IBM WebSphere Application Server, or the Novell exteNd Application Server.

This documentation is not intended as a primer on JCA itself, except as required to illustrate
the iWay Connector for JCA. For more information about JCA, see the J2EE Connector
Architecture Specification, JSR016 (Java Community Process), Sun Microsystems, July 25,
2001.

iWay packages two connectors: one that conforms to the J2EE Connector Architecture
(JCA) Specification version 1.0. and one that conforms to the JCA Specification version 1.5.
These specifications approach the definition of a standard for application interaction with
an Enterprise Information System (EIS). Before JCA, most EIS vendors offered
vendor-specific architectures to provide connectivity between applications and their
software; each program interacting with an EIS was required to be hand-tooled with a
detailed knowledge of the peculiarities of the EIS.

Although common APIs such as ODBC and JDBC™ address application interaction with SQL
data sources, the heterogeneous nature of EIS makes such APIs unwieldy. iWay Software
provides a common interface to underlying EIS adapters. An access API that meets the
requirements of both relational and packaged application sources required. JCA defines
standard Java interfaces for simplifying the integration of applications with the EIS.

JCA addresses connection management, transaction management, and security. It includes
the following components:

• Application server

• Resource adapter

• Application
iWay Connector for J2EE Connector Architecture User’s Guide 1-5

Distribution of the iWay Connector for JCA
The resource adapter represents the interests of the underlying EIS. The application server
is not strictly required. The application interacts with the resource adapter using what JCA
calls standard contracts. Standard contracts define what interactions are to take place and
how they appear. The contract between the application and the resource adapter is called
the Common Client Interface (CCI). The resource adapter, in turn, interacts with the
application manager under the Service Provider Interface (SPI), defining how the
management of the resource adapter occurs. This includes:

• Connectivity management

• Transaction demarcation

• Event listening (listeners receive notification of significant events; for example, a
connection failure)

• Pooling of connections and other resources

In the normal course of events, the application server manages the transaction. First, the
application uses a naming service to locate the appropriate resource adapter. The
application server supplies the naming service, and so it recognizes that a request is being
made to locate a resource adapter. In such a case, the application server interposes an
intermediate object supplied by the resource adapter that interacts between the resource
adapter and the application server. Through this intermediating object, the application
server manages the items within the SPI contract below the awareness of the ultimate
application.

While the application uses the resource adapter, the application server manages the
activity to the side, however, it appears to the application that it is interacting directly with
the resource adapter.

Distribution of the iWay Connector for JCA
The iWay Connector for JCA 1.0 and the iWay Connector for JCA 1.5 are J2EE Connector
Architecture resource adapters. They are distributed as both a standard Resource Adapter
Archive (RAR) for deployment to the application server and as a JAR file for stand-alone
application use. Thus, the connector can be employed in systems that are non-compliant,
although services such as pooled connections are not available.
1-6 iWay Software

Introducing the iWay Connector for JCA
The following diagram shows the interaction between a JCA resource adapter (represented
by a gold rectangle on the right side in the middle that connects to an EIS represented by a
gray rectangle at the bottom right) and a standard application server (represented by a
yellow rectangle on the left that contains a light orange rectangle that represents
connection management, transaction management, and security management). The
application server connects to the application (represented by a blue oval) through the
container component contract. The application server also connects to the resource
adapter through the system contract.

Deployment of the iWay Connector for JCA
The iWay Connector for JCA is a JCA resource adapter. For the connector to operate with an
Enterprise JavaBean (EJB), it must be deployed to a Web application server. The RAR file is
identified to the application server, which then uses the file as any other component. The
connector name is registered with the name service (JNDI) to enable the EJB (or servlet) to
locate and instantiate it for use.

iWay's universal resource adapter framework can be used to access any adapter in the iWay
repository. This framework avoids the need to deploy one resource adapter per
EIS/back-end system. At run time, a CCI program can access any of the adapters in the
repository by passing an adapter and target name through a connection factory and
connection specification.
iWay Connector for J2EE Connector Architecture User’s Guide 1-7

Deployment of the iWay Connector for JCA
At deploy time, the user sets the default adapter name and target name. At run time, a CCI
call is made with the connection specification to obtain the connection. If the specific
adapter name and target name are passed in the connection specification, they are used for
obtaining the connection. However, if the adapter name and target name are not passed in
the connection specification, the default adapter and the default target are used for
obtaining the connection.The following CCI calls can be used to establish a connection:

getConnection()

or

getConnection(ConnectionSpec)

The first relies only on the ManagedConnectionFactory (MCF) defaults. The second is the
AdapterName and Target if provided in the ConnectionSpec.

You can control the adapter in the following ways:

• Specify default AdapterName and Target parameters at deploy time.

If these are left blank and an AdapterName and Target are not provided in the
connection specification, run time errors occur.

In this case, the default values can be overridden at run time.

• The AdapterName and Target parameters are in your MCF.

The AdapterName and Target parameters are used only when creating a connection
pool. You can have many pools, each with a different AdapterName and Target, all
using the same Resource Adapter that was deployed only once.

A CCI application uses the JNDI for the desired connection pool and calls the
getConnection() method. Of course, the CCI program could still overwrite
AdapterName and Target using the getConnection(ConnectionSpec) method.
1-8 iWay Software

Introducing the iWay Connector for JCA
The following diagram shows the deployment of a JCA resource adapter (represented by a
blue hexagram on the upper left with an arrow directed towards the deployment process).
The deployment process is represented by a blue rectangle on the upper right which in
turn has an arrow directed downward toward a yellow rectangle which represents the J2EE
container. Inside the J2EE container is a rectangle representing EJBs or other application
code and a blue hexagram representing the resource adapter.

Using a JCA Resource Adapter
Using any JCA resource adapter (such as the iWay Connector for JCA) is, as of the 1.5
specification, a programming effort as well as an assembly effort. A JCA resource adapter
appears to a programmer as two interacting parts. You can configure and serialize
specification components with standard bean tools. These are specific to the adapter and
require the programmer to understand the configuration properties that they offer.

Contract components meet stricter interface requirements and can be used by the
JCA-compliant application exactly as described in the specification.
iWay Connector for J2EE Connector Architecture User’s Guide 1-9

Using a JCA Resource Adapter
Both the 1.0 and the 1.5 adapters provide specification and contract components: the
application programmer can write generic code to assemble the specification and contract
components, and thus interact with the underlying Enterprise Information Systems (EIS).
However, the tasks of preparing input and understanding output remain EIS-specific. The
connector exposes the following iWay-specific components to the JCA application.

• IWAFConnectionSpec (for JCA 1.0 and JCA 1.5 connectors). A JavaBean
encapsulating the properties required to perform a connection to the iWay service
adapters.

You can use any standard bean tool to set the properties and serialize the bean.

Properties offered by the iWay Connector for JCA connection specification are those
required to control a local invocation of the iWay packaged adapters.

The IWAFConnectionSpec for the JCA 1.0 connector has seven parameters:

• Adapter name

• Adapter configuration name

• Language

• Country

• User name

• Password

• Log level

The IWAFConnectionSpec for the JCA 1.5 connector has five parameters:

• Adapter name

• Target

• User name

• Password

• Log level

The IWAFConnectionSpec supports connection pooling based on the previous
configuration parameters.

• IWAFInboundConnectionSpec (for JCA 1.0 connector only). A JavaBean
encapsulating the properties required to perform a connection to the iWay Event
adapter channel.

You can use any standard bean tool to set the properties and serialize the bean.
1-10 iWay Software

Introducing the iWay Connector for JCA
Properties offered by the iWay Connector for JCA connection specification are those
required to control a local invocation of the iWay adapters. The
IWAFInboundConnectionSpec has the following parameters:

• Adapter name

• Language

• Country

• Channel

• Disposition

• Log level

• IWAFInteractionSpec (for JCA 1.0 and JCA 1.5 connectors). A JavaBean
encapsulating the properties required to manage one interaction with the adapter.

As is the case with the IWAFConnectionSpec, you can use this object with any bean
tool.

The IWAFInteractionSpec uses the standard IndexedRecord to return the output.

• IWAFInboundInteractionSpec (JCA 1.0 connector) and IWAFActivationSpec (JCA
1.5 connector). A JavaBean encapsulating the properties required to start and stop the
iWay channel.

As is the case with the IWAFInbound ConnectionSpec, you can use this object with any
bean tool.

• IWAFRecordFactory (JCA 1.0 connector). An object used to construct records to be
passed between the application and the adapter at design time.

• IIWAFRecord and CCIRecordFactory (JCA 1.5 connector). Objects used to construct
records to be passed between the application and the adapter at design time.
CCIRecordFactory is iWay’s implementation of the RecordFactory interface. It allows the
creating of IIWAFRecords besides Indexed and Mapped records
iWay Connector for J2EE Connector Architecture User’s Guide 1-11

Using a JCA Resource Adapter
The following diagram shows the relationships between the components in a simple
stand-alone application. In such an application, transactions issues and security are
ignored. When an application uses the connector within a hosted application server (such
as Sun Java System Application Server), it is referred to as a managed application. From the
programmer’s viewpoint, the most significant difference is the use of the Java JNDI name
search facility to locate the connection factory.

After the connection factory is located and instantiated, the application control flow
appears much the same. The connector supports non-transactional and locally controlled
transactional workflows, with coordination by the Application Server.
1-12 iWay Software

Introducing the iWay Connector for JCA
Altering JCA Resource Adapter Connection Properties
The JCA Resource Connector has an initial capacity value of 0 by default and cannot be
changed. The maximum capacity value is 10 by default and can be changed to a higher
value.

New in the iWay Connector for JCA Version 1.5
iWay has updated the iWay Connector for JCA to support the JCA version 1.5 specification.
The following new features are suppoted in accordance with the JCA 1.5 specification:

• Inbound messaging

• Lifecycle management contract

• Work management contract

• Message inflow contract

• JCA 1.5 packaging

For more information on writing CCI programs that take advantage of these features, see
the Sun specification:

http://java.sun.com/j2ee/connector/

Using Programs Written for iWay Connector for 1.0 with the New iWay Connector for
JCA 1.5

Due to the changes in the JCA specification, some of the APIs names have changed from
the iWay Connector for JCA 1.0 to the iWay Connector for JCA 1.5. You should review these
changes to ensure that a CCI program written to interact with the iWay Connector for 1.0
will work with the iWay Connector for JCA 1.5.

To review the API name changes, review the JAVA docs installed in the iWay installation
directory, for example,

D:\Program Files\iWay55\etc\doc

The file is called iwjca15-javadoc.zip. Extract the contents to a directory of your choice and
open the index.html file with a browser.
iWay Connector for J2EE Connector Architecture User’s Guide 1-13

New in the iWay Connector for JCA Version 1.5
1-14 iWay Software

CHAPTER 2

Deploying the iWay Connector for JCA
Topic:

• Deploying to Sun Java System Application
Server

The following topic describes how to deploy the
iWay Connector for J2EE Architecture (JCA) to Sun
Java System Application Server.
iWay Connector for J2EE Connector Architecture User’s Guide 2-1

Deploying to Sun Java System Application Server
Deploying to Sun Java System Application Server
Before deploying the iWay Connector for JCA to Sun Java System Application Server, you
must configure security settings and endorsed files. If you use the iWay Connector for JCA,
disable server.policy as explained in the following procedure.

iWay components relay on several files and classes that must be loaded before any of your
application server default classes. To ensure these classes are loaded in the correct order,
see How to How to Configure Endorsed Files on page 2-2.

Procedure How to Configure Endorsed Files

iWay components rely on several files and classes that must be loaded before any of your
application server default classes.

To ensure classes load in the correct order:

1. Determine your application server JAVA_HOME directory. If you installed a Java
SDK/JDK with your application server, the default location on Windows is usually:

C:\SUN\AppServer\jdk

On other platforms, use the corresponding location.

If you specified a different Java installation, you can determine JAVA_HOME by looking
at the asenv.bat or asenv.conf file for your applications server. For the default domain
and server on Windows, this is:

C:\Sun\AppServer\config\asenv.bat

On other platforms, use the corresponding location.

2. If it does not exist, create an endorsed directory in the jre/lib or jdk/lib directory, for
example:

C:\SUN\AppServer\jdk\lib\endorsed

or

C:\j2sdk1.4.2_03\jre\lib\endorsed

3. Copy the iwafjca.rar file installed with iWay to the endorsed directory. The default
location for iwafjca.rar on Windows is:

C:\Program Files\iWay55\sun\iwafjca.rar

On other platforms, use the corresponding location.

4. Open a command or shell prompt and navigate to the endorsed directory.

5. Use the JAR command to extract three files from iwafjca.rar.

jar xvf iwafjca.rar xalan.jar xercesImpl.jar xmlParserAPIs.jar
2-2 iWay Software

Deploying the iWay Connector for JCA
If you receive an error, then the JAR command is probably not in your search path. You
can add the JAR command to your search path or execute it using its full path. The jar
command is located in the Java SDK bin directory, which varies depending on your Java
release, for example:

C:\j2sdk1.4.2_03\bin\jar xvf iwafjca.rar xalan.jar xercesImpl.jar xmlParserAPIs.jar

6. Confirm that the endorsed directory now contains the following three files:

xalan.jar
xercesImpl.jar
xmlParserAPIs.jar

7. Remove the iwafjca.rar file from the endorsed directory.

8. If your application server is running, restart it.

Procedure How to Configure Security Settings for iWay

You should disable server.policy as explained in the following procedure before deploying
iWay components.

To configure security settings for iWay:

1. Using a text editor, open the domain.xml file for your domain. For the default domain
on Windows, this is:

C:\Sun\AppServer\domains\domain1\config\domain.xml

On other platforms, use the corresponding location. For other domains, use the
corresponding location.

2. Remove the following line:

<jvm-options>-Djava.security.policy=${com.sun.aas.instanceRoot}/config
/server.policy</jvm-options>

It may appear multiple times and you can remove each appearance of the line.

3. Save and exit domain.xml.

4. If your application server is running, restart it.
iWay Connector for J2EE Connector Architecture User’s Guide 2-3

Deploying to Sun Java System Application Server
Procedure: How to Deploy the iWay Connector for JCA

1. Start Sun Java System Application Server.

2. Log on to the Sun Admin Console. If you kept the default port, you can use:

https://hostname:4849

where:

hostname

Is the hostname for your application server.

The Admin Console opens in your browser.

3. On the left, expand the Applications folder.

4. On the left, click Connector Modules.

5. On the right, click Deploy.

6. Specify the iwafjca.rar or iwjca15.rar file depending on which connector you use, for
example:

C:\Program Files\iWay55\sun\iwjca15.rar

or

C:\Program Files\iWay55\sun\iwafjca.rar

7. Click Next.

8. Ensure the Application Name is one of the following depending on which connector
you deploy:

iwjca15

or

iwafjca

9. If you are using the JCA 1.5 connector, under Resource Adapter Properties, provide
values for the names listed in the following table:

Name Value

IWayConfig The configuration name. The default is:

base

IWayRepoURL Clear this field so it has no value.
2-4 iWay Software

Deploying the iWay Connector for JCA
10. Specify which servers you are deploying into by moving them from the Available to
Selected boxes.

11. Click OK.

When the connector is deployed, it is expanded to a directory under the application
server, for example:

C:\Sun\AppServer\domains\domain1\applications\j2ee-modules\iwjca15

or

C:\Sun\AppServer\domains\domain1\applications\j2ee-modules\iwafjca

If you receive an error, stop the server instance and remove each appearance of the
following line from domain.xml file for your domain
(AppServer\domains\domain1\config\domain.xml):

<jvm-options>-Djava.security.policy=${com.sun.aas.instanceRoot}/config
/server.policy</jvm-options>

Procedure How to Create Connection Pools for the iWay Connector for JCA 1.5

For JCA 1.5, to create a connection pool for the connector:

1. On the left of the Admin Console, expand Resources.

2. Under Resources, expand Connectors.

3. Click Connector Connection Pools.

4. On the right, click New.

a. In the Name field type:

eis/iWay

b. For the Resource Adapter menu, choose:

iwjca15

LogLevel The log level, for example:

DEBUG

IWayRepoPassword Clear this field so it has no value.

IWayRepoUser Clear this field so it has no value.

IWayHome Directory where iWay is installed, for example:

C:\Program Files\iWay55

Name Value
iWay Connector for J2EE Connector Architecture User’s Guide 2-5

Deploying to Sun Java System Application Server
5. Click Next.

6. Click Next again.

7. From the Transaction Support drop-down menu, choose one of the following:

NoTransaction

or

LocalTransaction

Note: Leave the Additional Properties as they appear.

8. Click Finish.

a. On the left, under Connectors, click Connector Resources.

b. On the right, click New.

c. In the JNDI Name field enter:

eis/iWay

d. For the Pool Name menu, choose:

eis/iWay

e. In the Targets area, select your sever or servers in the Available text box and click
Add.

9. Click OK.
2-6 iWay Software

CHAPTER 3

iWay JCA Installation Verification Program
Topics:

• Overview of the IVP

• Deploying and Running the IVP for Sun Java
System Application Server

The iWay JCA Installation Verification Program
(IVP) is a JSP™-based test tool for interacting with
iWay adapters. There is one test tool for the iWay
Connector for J2EE Connector Architecture (iWay
Connector for JCA) version 1.0 and one for the
iWay Connector for JCA 1.5.

This test tool is used to test the functionality of the
iWay Connector in the iWay adapter framework.
There are several types of adapters available
through the connector.

For more information on installing and
configuring the JCA test tool, see the iWay
Installation and Configuration manual.
iWay Connector for J2EE Connector Architecture User’s Guide 3-1

Overview of the IVP
Overview of the IVP
The iWay JCA Installation Verification Program (IVP):

• Supports the execution of iWay Service requests.

• Monitors of iWay JCA events.

• Determines which iWay adapters are installed.

• Reads the iWay JCA configuration repository.

• Loads the configurations for each configured adapter.

• Executes iWay Service requests for a given adapter.

The IVP provides tools that enable you to test application performance early in the
development cycle. This allows enough time to make architectural changes and
implementation changes, reducing risk early in the cycle, and avoiding problems in final
performance tests.

The iWay Connector for J2EE Architecture includes deployable code and sample files. The
sample files help you integrate the iWay JCA solution into the J2EE application and then
test it. The following topic describes how to deploy and use the IVP.

The topics describe how to:

• Deploy the IVP.

• Modify the IVP to use other configurations.

• Use the IVP to execute a service request.

• Use the IVP to monitor iWay events.

Deploying and Running the IVP for Sun Java System Application Server
The JCA Test Tool includes sample code that enables you to test iWay Service and Event
Adapters.

For more information on installing and configuring the JCA Test Tool, see the iWay
Installation and Configuration manual.
3-2 iWay Software

iWay JCA Installation Verification Program
Deploying the JCA Test Tool
Deploy the JCA Test Tool to Sun Java System Application Server as explained in the
following procedure.

Procedure: How to Deploy the JCA Test Tool to Sun Java System Application Server

You can use the Sun Admin Console to deploy the JCA Test Tool.

1. Start Sun Java System Application Server if it is not started.

2. Log on to the Sun Admin Console. If you kept the default port and access it locally, you
can use:

https://localhost:4849

The Admin Console opens in your browser.

3. On the left, expand the Applications folder.

4. On the left, click Web Applications.

5. On the right, click Deploy.

6. Specify the iwjcaivp.war or iwjca15ivp.war file depending on which connector you use,
for example:

C:\Program Files\iWay55\sun\iwjca15ivp.war

or

C:\Program Files\iWay55\sun\iwjcaivp.war

7. Click Next.

8. Ensure the Application Name is one of the following depending on which connector
you deploy:

iwjca15ivp

or

iwjcaivp

9. Ensure the Context Root is one of the following depending on which connector you
deploy:

/iwjca15ivp

or

/iwjcaivp

10. Click OK.
iWay Connector for J2EE Connector Architecture User’s Guide 3-3

Deploying and Running the IVP for Sun Java System Application Server
When the Test Tool is deployed, it is expanded to a directory under the application
server, for example:

C:\Sun\AppServer\domains\domain1\applications\j2ee-modules\iwjca15ivp

or

C:\Sun\AppServer\domains\domain1\applications\j2ee-modules\iwjcaivp

Running the JCA Test Tool
After deploying the JCA Test Tool, access it to test the deployment.

Procedure: How to Run the JCA Test Tool

To run the JCA Test Tool:

1. Open a browser to:

http://hostname:port/iwjca15ivp

or

http://hostname:port/iwjcaivp

Depending on which JCA Test Tool and connector you deployed.

where:

hostname

Is the name of the machine where your application server is running.

port

Is the HTTP port for the application server.

For example:

http://localhost:8080/iwjca15ivp

The iWay JCA Test Tool window opens and provides a live list of iWay Service or Event
adapters.

2. To display the available adapters, click Service adapters or Event adapters.
3-4 iWay Software

iWay JCA Installation Verification Program
The following image shows a sample list of available adapters from which to choose.

The adapters that appear vary depending on the version of iWay you install and which
files are in the iWay55\lib directory. If your adapter requires third party drivers or
libraries, they must be in the lib directory or your adapter may not appear.

Initially, no targets are configured for the iWay Connector for JCA. However, after
targets are configured using Application Explorer, you can test them using this tool.

After configuring targets using Application Explorer, you may need to restart the
application server before the targets appear

Configuring the JCA Test Tool
The behavior of the JCA Test Tool is controlled by the following file inside the archive:

WEB-INF/web.xml

This file defines aspects of the JCA Test Tool running environment.

For JCA 1.5, there is no need to configure the test tool.
iWay Connector for J2EE Connector Architecture User’s Guide 3-5

Deploying and Running the IVP for Sun Java System Application Server
Procedure: How to Extract and Configure the JCA Test Tool

This is not a required configuration. It is provided for reference.

1. Extract the WEB-INF/web.xml file from the iwjcaivp.war or iwjca15ivp.war archive.

a. Open a command prompt and navigate to the directory containing the Test Tool,
for example:

C:\Program Files\iWay55\sun

b. Issue the following command:

jar xvf iwjcaivp.war WEB-INF/web.xml

or

jar xvf iwjca15ivp.war WEB-INF/web.xml

The JAR command is located in the Java SDK bin directory which might not be in
your search path. If you receive an error, execute the JAR command using its full
path. This path varies depending on which version of Java is installed, for example:

C:\j2sdk1.4.1_03\bin\jar xvf iwjcaivp.war WEB-INF/web.xml

Note: Be sure to use the JAR command and not Winzip. Winzip does not properly
extract Java related archives.

2. Open the extracted web.xml file in a text editor.

3. Modify the contents of the <param-value> tags to change defaults. Ensure iway.home
specifies the location of the iWay55 directory.

Optionally, provide the connection factory name for iWay Connector for JCA. The
connection factory is eis/IWAFConnectionFactory. The iWay Connector for JCAJCA Test
Tool attempts to connect to the adapter via JNDI if this is defined. If this is undefined
iway.home and iway.config are used instead.

<context-param>
<param-name>iway.jndi</param-name>
<param-value></param-value>
<description>
JNDI name for the IWAF JCA Resource Adapter. If not
provided, the application will create a new one based
on iway.home, iway.config and iway.loglevel.
</description>

</context-param>

For example:

<param-value>eis/IWAFConnectionFactory</param-value>
3-6 iWay Software

iWay JCA Installation Verification Program
Provide the directory where iWay 5.5. is installed by changing the path that appears.

<context-param>
<param-name>iway.home</param-name>
<param-value>c:\Program Files\iway55</param-value>
<description>
ONLY USED IF IWAY.JNDI NOT SET.
Absolute path of iway installation directory.
</description>

</context-param>

Optionally, change the configuration to be used at run time. A configuration named
base is installed and available by default.

<context-param>
<param-name>iway.config</param-name>
<param-value>base</param-value>
<description>
ONLY USED IF IWAY.JNDI NOT SET.
configuration name
</description>

</context-param>

Optionally, change the tracing level to debug, info, or error.

<context-param>
<param-name>iway.loglevel</param-name>
<param-value>DEBUG</param-value>
<description>
ONLY USED IF IWAY.JNDI NOT SET.
Log level: DEBUG FATAL ERROR INFO WARN
</description>

</context-param>

4. Save and exit web.xml.

5. Use the JAR command to return the web.xml file to the WEB-INF directory within the
archive.

a. Ensure that you are in the following directory that contains the connector:

C:\Program Files\iWay55\sun

b. Issue the following command:

jar uvf iwjcaivp.war WEB-INF/web.xml

or

jar uvf iwjca15ivp WEB-INF/web.xml

6. If the JCA Test Tool is deployed, undeploy it and then redeploy the edited version.
iWay Connector for J2EE Connector Architecture User’s Guide 3-7

Deploying and Running the IVP for Sun Java System Application Server
3-8 iWay Software

CHAPTER 4

Configuring and Deploying the iWay JCA 1.5 Sample Applications
Topics:

• The iWay JCA 1.5 Connector Architecture

• The iWay JCA 1.5 Sample Applications

• Configuring and Deploying the Sample
Applications

This section describes the configuration,
deployment, and use of the iWay J2EE CA version
1.5 (JCA 1.5) sample applications.
iWay Connector for J2EE Connector Architecture User’s Guide 4-1

The iWay JCA 1.5 Connector Architecture
The iWay JCA 1.5 Connector Architecture
You can use the iWay universal resource adapter framework to access any adapter in the
iWay repository. This framework eliminates the requirement to deploy one resource
adapter per Enterprise Information System or back-end system. At run time, a CCI program
can access any of the adapters in the repository by passing an adapter name and target
name through a connection factory and connection specification.

At deploy time, you set the default adapter name and target name. At run time, a CCI call is
made with the connection specification to establish the connection. If the specific adapter
name and target name are passed in the connection specification, they are used for
establishing the connection. If the adapter name and target name are not passed in the
connection specification, the default adapter and the default target are used for
establishing the connection.

The following CCI calls can be used to establish a connection:

getConnection()

or

getConnection(ConnectionSpec)

The first relies only on the ManagedConnectionFactory (MCF) defaults. The second is the
AdapterName and Target if provided in the ConnectionSpec.

You can control the adapter in the following ways:

• Specify default AdapterName and Target parameters at deploy time.

If these are left blank and an AdapterName and Target are not provided in the
connection specification, run time errors occur.

In this case, the default values can be overridden at run time.

• The AdapterName and Target parameters are in your MCF.

The AdapterName and Target parameters are used only when creating a connection
pool. You can have many pools, each with a different AdapterName and Target, all
using the same Resource Adapter that was deployed only once.

A CCI application uses the JNDI for the desired connection pool and calls the
getConnection() method. Of course, the CCI program could still overwrite
AdapterName and Target using the getConnection(ConnectionSpec) method.

The iWay JCA 1.5 Sample Applications
Two connectors are distributed in the iWay installation package. One conforms to the JCA
1.0 specification, with extensions that allow for the consumption of events. The other
conforms to the JCA 1.5 specification.
4-2 iWay Software

Configuring and Deploying the iWay JCA 1.5 Sample
The iWay installation package includes sample applications that demonstrate the use of the
event and service capabilities of the iWay J2EE CA specification version 1.5 (JCA 1.5)
connector. You can demonstrate the inbound and outbound capabilities of the iWay JCA
1.5 connector using the samples files.

Important: The iWay JCA 1.5 connector must be deployed before you configure and
deploy the sample applications.

For information on in the J2EE CA 1.5 specification, see the following Web site:

http://java.sun.com/j2ee/connector/

The sample applications are packaged as follows:

• The inbound sample application is packaged as a JAR file, called

iwjca15inbound.jar

• The outbound sample application is a Web application that is packaged as an EAR file,
called

iwjca15cci.ear

The JCA 1.0 connector provides event functionality through the configuration of ports and
channels through Application Explorer. When using the adapter in conjunction with the
iWay JCA 1.5 connector, you are not required to create event ports to dispose of event data.
However, you must create a channel to enable event listening capabilities.

Instead of using ports configured in Application Explorer to dispose of event data, you
create end points on the server that consume event data sent through a channel
configured in Application Explorer. These end points are usually message-driven beans.
End point activation or deactivation is performed by the application server.

The deployment descriptor file provided with the iWay JCA 1.5 connector, called ra.xml,
specifies the classes of the connector that implement the required APIs as established by
the J2EE-CA specification, version 1.5. The ra.xml file defines the activation configuration
specification properties that must be provided by any message-driven bean that consumes
iWay adapter events from the resource adapter. It also specifies the following listener
interface that the message-driven beans must implement:

javax.resource.cci.MessageListener

This interface defines the following single method:

public javax.resource.cci.Record onMessage(javax.resource.cci.Record
record)
iWay Connector for J2EE Connector Architecture User’s Guide 4-3

Configuring and Deploying the Sample Applications
The MessageListener Interface
The sample message-driven bean that is provided implements the MessageListener
interface. The interface is defined as follows in the descriptor file for the sample
message-driven bean, called ejb-jar.xml:

<messaging-type>javax.resource.cci.MessageListener</messaging-type>

This matches the following inbound message listener type identified in the ra.xml file
supplied with the iWay JCA 1.5 connector:

<messagelistener-type>javax.resource.cci.MessageListener</messagelistener
-type>

As noted in the Sun specification for JCA 1.5, to prepare the environment for end point
activation and before any end point activations can occur, an end point deployer must
configure properties that belong to the appropriate ActivationSpec JavaBean. The
ActivationSpec JavaBean must be configured according to details in the end point
deployment descriptor, as well as to message provider specifics.

Configuring and Deploying the Sample Applications
Before deploying the samples, ensure you have properly deployed and configured the iWay
software for your application server. Before you deploy the sample applications, you also
must use Application Explorer to create a channel for a particular adapter. The channel
must be created while using JCA as the available host in Application Explorer.

For more information on installing and configuring iWay 5.5, see iWay Installation and
Configuration. For information on creating channels in Application Explorer, see the user
guide for your adapter.

To deploy the inbound sample application, you must first edit a descriptor file, called
ejb-jar.xml. You edit the file to add the adapter and channel name for the adapter you test
with the sample.

Important: Ensure you know the exact name of the adapter to test with the sample
application and the exact name of the channel you configured for that adapter. If you edit
the ejb-jar.xml file with values that do not match what you configured in Application
Explorer, the deployment fails.

Procedure: How to Configure the Inbound Sample Application Settings

To configure the inbound sample application settings:

1. To change defaults, extract the ejb-jar.xml file from the iwjca15inbound.jar file.

a. Open a command prompt and navigate to the directory containing the sample
application, for example:

C:\Program Files\iWay55\etc\setup\samples\jca15
4-4 iWay Software

Configuring and Deploying the iWay JCA 1.5 Sample
b. Issue the following command:

jar xvf iwjca15inbound.jar META-INF/ejb-jar.xml

The JAR command is located in the Java SDK bin directory which might not be in
your search path. If you receive an error, execute the JAR command using its full
path. This path varies depending on which version of Java is installed, for example:

C:\j2sdk1.4.1_03\bin\jar xvf iwjca15inbound.jar META-INF
/ejb-jar.xml

Note: Ensure to use the JAR command and not Winzip. Winzip does not properly
extract Java related archives.

2. Open the extracted ejb-jar.xml file in a text editor.

3. Modify the contents of the <activation-config-property-value> tags to change defaults
for adapter name and channel name.

a. Ensure that a channel was configured in Application Explorer first and that you
know the exact name of the channel and the adapter.

Deployment of the sample application fails if you use the wrong adapter name or
channel name.

b. Change the following settings:

adapterName. The name of the adapter, for example, Siebel.

<activation-config-property>
<activation-config-property-name>adapterName</
activation-config-property-name>
<activation-config-property-value>Siebel
</activation-config-property-value>
</activation-config-property>

channelName. Name of the channel you have configured for the adapter
identified in the adapterName property, for example, SiebelChannel.

<activation-config-property>
<activation-config-property-name>channelName
</activation-config-property-name>
<activation-config-property-value>SiebelChannel
</activation-config-property-value>
</activation-config-property>

4. Save the file and exit the editor.

5. Use the JAR command to return the ejb-jar.xml file to the META-INF directory within the
archive.
iWay Connector for J2EE Connector Architecture User’s Guide 4-5

Configuring and Deploying the Sample Applications
a. Ensure that you are in the directory that contains the iwafjca15-samples-ejb.jar, for
example:

C:\Program Files\iWay55\etc\setup

b. Issue the following command:

jar uvf iwafjca15inbound.jar META-INF/ejb-jar.xml

6. Deploy the connector.

For more information on deploying the connector, see Deploy the Inbound Sample JCA
1.5 Application on page 4-6

Procedure: How to Deploy the Inbound Sample JCA 1.5 Application

To deploy the inbound sample JCA 1.5 application:

1. Start Sun Java System Application Server.

2. Log on to the Sun Admin Console.

If you kept the default port and access it locally, you can use:

https://localhost:4849

The Admin Console opens in your browser.

a. On the left, expand the Applications folder.

b. On the left, click EJB Modules.

c. On the right, click Deploy.

d. Specify the iwjca15inbound.jar file, for example:

C:\Program Files\iWay55\etc\setup\iwjca15inbound.jar

3. Click Next.

4. Ensure the Application Name is:

iwafjca15inbound

5. Click OK.

The sample JCA 1.5 application deploys.

The application is expanded into a directory under your domain, for example:

C:\Sun\AppServer\domains\domain1\applications\j2ee-modules
\iwjca15inbound
4-6 iWay Software

Configuring and Deploying the iWay JCA 1.5 Sample
After deployment, you can check the iWay Connector log and verify that the RA has
started and received the information corresponding to the deployed message-driven
bean. The channel specific logs are preceded by
[adapterName_channel_channelName].

All log entries are preceded by the date, time, and thread ID. The following is an
example of a log entry that follows a successful sample application deployment:

Wed, 23 Feb 2005 11:46:04.0384 EST - Thread[main,5,main] [debug]
------>
CCIInboundEventListener: onActivate()
Wed, 23 Feb 2005 11:46:04.0384 EST - Thread[main,5,main] [debug]
<------
CCIInboundEventListener: onActivate()
Wed, 23 Feb 2005 11:46:04.0384 EST - Thread[main,5,main] [info]
[container] [Siebel.channel_SiebelChannel] pollThread started.
Wed, 23 Feb 2005 11:46:04.0384 EST - Thread[main,5,main] [info]
<------
EndPointConsumer: start()
Wed, 23 Feb 2005 11:46:04.0384 EST - Thread[main,5,main] [debug]
Associated
adapterName:Siebel: channelName:SiebelChannel
com.iwaysoftware.afjca15.inflow.EndpointConsumer@1cdd76a
Wed, 23 Feb 2005 11:46:04.0384 EST - Thread[main,5,main] [debug]
<------
AbstractResourceAdapter: endpointActivation()

After the JCA 1.5 connector and sample application are deployed, an event sent by the
iWay event adapter channel is consumed by the message-driven bean. When a
message arrives at the message-driven bean, it acknowledges the receipt by replying
to the sender. The way the message-driven bean reply is handled depends on the
synchronization type of the iWay event adapter channel
(REQUEST/REQUEST_RESPONSE/REQUEST_ACK).

The message-driven bean logs the receipt of the messages in the Application Server
log file with entries similar to the following:

<MDB> In InboundMessageBean.InboundMessageBean()|#]
<MDB> In InboundMessageBean.setMessageDrivenContext()|#]
<MDB> In InboundMessageBean.ejbCreate()|#]
<MDB> ---- Got a message |#]
<MDB> XML DATA: <Siebel>
<productLine name="Siebel">
<token name="PA52">
<timestamp>20021107153406</timestamp>
<record>
<Company>60</Company>
iWay Connector for J2EE Connector Architecture User’s Guide 4-7

Configuring and Deploying the Sample Applications
Procedure: How to Deploy the Outbound Sample JCA 1.5 Application

To deploy the outbound sample JCA 1.5 application:

1. Start Sun Java System Application Server.

2. Log on to the Sun Admin Console.

If you kept the default port and access it locally, you can use:

https://localhost:4849

The Admin Console opens in your browser.

a. On the left, expand the Applications folder.

b. On the left, click Enterprise Applications.

c. On the right, click Deploy.

d. Specify the iwjca15cci.ear file, for example:

C:\Program Files\iWay55\etc\setup\iwjca15cci.ear

3. Click Next.

4. Ensure the Application Name is:

iwjca15cci

5. Click OK.

The sample JCA 1.5 outbound application deploys.

The application is expanded into a directory under your domain, for example:

C:\Sun\AppServer\domains\domain1\applications\j2ee-apps
\iwafjca15-samples

Procedure: How to Use the Outbound Sample JCA 1.5 Application

The outbound sample application is a Web servlet that can be accessed through a browser.

To access the outbound sample application:

1. Ensure that your application server is running.

2. Enter the following URL in your browser:

http://hostname:port/iwjca15cci/index.jspiwae/index.html

where:

hostname

Is the name of the machine where your application server is running.
4-8 iWay Software

Configuring and Deploying the iWay JCA 1.5 Sample
port

Is the port for the domain you are using

3. Provide the following information:

Adapter. The name of the adapter you want to test.

Target. The name of a target you have already configured for that adapter.

User name. A user name to access the back end system.

InputDoc. Insert a sample input document

4. Choose the appropriate Transaction option.

The output appears in your browser.
iWay Connector for J2EE Connector Architecture User’s Guide 4-9

Configuring and Deploying the Sample Applications
4-10 iWay Software

APPENDIX A

Servlet Sample Code
Topic:

• iWay Servlet Sample Code

This section contains iWay servlet sample code for
the iWay Connector for J2EE Connector
Architecture (iWay Connector for JCA) version 1.0.
iWay Connector for J2EE Connector Architecture User’s Guide A-1

iWay Servlet Sample Code
iWay Servlet Sample Code
The following are examples of iWay servlet code for the iWay Connector for JCA version 1.0.

Example: Error.jsp

The following is an example of Error.jsp code.

<%@ page contentType="text/html" isErrorPage="true" %>

<%@ page import="java.util.*, java.io.*" %>
<%@ page import="com.ibi.adapters.*" %>
<%@ page import="javax.resource.*" %>

<%!
 // CallStack to String
 public static String getStackTrace(Throwable t) {

 if(t == null) {
 return "Callstack not available.";
 }

 String stackTrace = null;

 try {
 StringWriter sw = new StringWriter();
 PrintWriter pw = new PrintWriter(sw);
 t.printStackTrace(pw);
 pw.close();
 sw.close();
 stackTrace = sw.getBuffer().toString();
 }
 catch(Exception ex) {}
 return stackTrace;
 }
%>

<!-- === -->
<!-- HEADER -->
<!-- === -->

<html>
 <head>
 <title>IWAF JCA Sample </title>
 <link href="default.css" rel="stylesheet" media="screen">
 </head>

 <body leftmargin="0" topmargin="0" marginwidth="0" marginheight="0"
A-2 iWay Software

Servlet Sample Code
text="#000000">

 <%@ include file="header.html" %>

 <TABLE WIDTH="100%" BORDER="0" CELLSPACING="0" CELLPADDING="0">
 <TR>

 <%-- ------------------Begin Side ------------ --%>
 <TD WIDTH="130" VALIGN="top" ALIGN="RIGHT"/>
 <TD WIDTH="5%"> </TD>

 <%-- ------------------Begin Center ------------ --%>
 <TD WIDTH="85%" VALIGN="top">

 <H1 CLASS="orange">ERROR PAGE</H1>

 <%
 String message =
(String)request.getAttribute("iway.message");
 if (message != null) {
 out.print(message);
 } else {
 %>
 Notify your administrator with the information below.
 <% } %>

 <h2><%= new Date() %></h2>

 <%
 Exception ae = null; // AdapterException
 Throwable vt = null; // VendorException
 if (exception != null) {
 if (exception instanceof ResourceException) {
 ae = ((ResourceException)exception).getLinkedException();
 if (ae instanceof AdapterException) {
 vt = ((AdapterException)ae).getVendorThrowable();
 }
 }
 if (ae != null) {
 out.println("<h2> AdapterException: " + ae.getMessage() +
"</h2>");
 out.println("<p>" + getStackTrace(ae) + "</p>");
 if (vt != null) {
 out.println("<h2> VendorException: " +
vt.getMessage() + "</h2>");
iWay Connector for J2EE Connector Architecture User’s Guide A-3

iWay Servlet Sample Code
 out.println("<p>" + getStackTrace(vt) + "</p>");
 }
 }
 %>
 <h2>IWAFJCAException: <%= exception.getMessage() %></h2>
 <p><%= getStackTrace(exception) %></p>
 <% } %>

 </td>
 </tr>
 </table>

<!-- === -->
<!-- FOOTER -->
<!-- === -->

 <%@ include file="footer.html" %>

 </body>
</html>
A-4 iWay Software

Servlet Sample Code
Example: Event.jsp

The following is an example of Event.jsp code.

 <%@ page error
Page="error.jsp" %>
<%@ page contentType="text/html" %>

<%@ include file="includes/include_util.jsp" %>
<%@ include file="includes/include_jca.jsp" %>
<%@ include file="includes/include_ae.jsp" %>

<%

///
ConnectionFactory cf = (ConnectionFactory)application.getAttribute("cf");
if (cf == null) {
 log(application, "service.jsp: Obtaining IWAF JCA Connection
factory,");
 cf = getConnectionFactory(application);
}
///

// Only do it once
String[] adapterNames = (String[])session.getAttribute("e.adapterNames");
if (adapterNames == null) {
 IDocument doc = aeCall(cf, "<GETADAPTERINFO/>");
 adapterNames = getEventAdapterNames(doc);
 session.setAttribute("e.adapterNames", adapterNames);
}

// Parsing request parameters
// Parsing request parameters
String adapter = request.getParameter("adapter");
if (adapter == null && adapterNames.length > 0) {
 adapter = adapterNames[0];
}

// Only do it if it is not a session
String[] channelNames =
(String[])session.getAttribute("event.channelNames");
String sessionAdapter = (String)session.getAttribute("event.adapter");
if (channelNames == null || (!adapter.equals(sessionAdapter))) {
 IDocument doc = aeCall(cf, "<GETCHANNELINFO><target>" + adapter + "</
target></GETCHANNELINFO>");
 channelNames = getChannelNames(doc);
 session.setAttribute("event.adapter", adapter);
 session.setAttribute("event.channelNamesNames", channelNames);
}

iWay Connector for J2EE Connector Architecture User’s Guide A-5

iWay Servlet Sample Code
String channel = request.getParameter("channel");
if (channel == null && channelNames.length > 0) {
 channel = channelNames[0];
}

String action = request.getParameter("action");
if (channel != null && action != null) {
 if (action.equals("start")) {
 aeCall(cf, "<STARTCHANNEL><target>" + adapter + "</target><name>" +
channel + "</name></STARTCHANNEL>");
 } else {
 aeCall(cf, "<STOPCHANNEL><target>" + adapter + "</target><name>" +
channel + "</name></STOPCHANNEL>");
 }
}

IDocument channelDoc = null;
if (channel != null) {
 channelDoc = aeCall(cf, "<GETCHANNELSTATUS><target>" + adapter + "</
target><name>" + channel + "</name></GETCHANNELSTATUS>");
}

%>

<!-- === -->
<!-- HEADER -->
<!-- === -->

<html>
 <head>
 <title>IWAF JCA Sample </title>
 <link href="default.css" rel="stylesheet" media="screen">
 </head>

 <body leftmargin="0" topmargin="0" marginwidth="0" marginheight="0"
text="#000000">

 <%@ include file="header.html" %>

<!-- === -->
<!-- BODY -->
<!-- === -->

 <TABLE WIDTH="100%" BORDER="0" CELLSPACING="0" CELLPADDING="0">
 <TR>
 <TD WIDTH="5%" VALIGN="top" ALIGN="RIGHT" />
A-6 iWay Software

Servlet Sample Code
 <TD WIDTH="30%" VALIGN="top">

 <!-- Adapters -->

 <h4>Event Adapters</h4>
 <p>Click the adapter below to see available channels
(configurations).</p>

 <%
 for (int i = 0; i < adapterNames.length; i++) {
 %>

 <a href="event.jsp?adapter=<%= adapterNames[i] %>"
class="top_menu"><%= adapterNames[i] %>

 <%
 }
 // When adapter not provided, pick the first one.
 if (adapter == null && adapterNames.length > 0) {
 adapter = adapterNames[0];
 }
 %>

 <!-- Channels for adapter -->

 <h4>Channels for <%= adapter %></h4>
 <%
 if (channelNames.length <= 0) {
 out.print("<p>No Channels configured for this
adapter.</p>");
 } else {
 %>

 <% for (int i = 0; i < channelNames.length; i++) { %>

 <a href="event.jsp?adapter=<%= adapter %>&channel=<%=
channelNames[i] %>" class="top_menu"><%= channelNames[i] %>
 <a href="event.jsp?adapter=<%= adapter %>&channel=<%=
channelNames[i] %>&action=start" class="top_menu"> (start)
 <a href="event.jsp?adapter=<%= adapter %>&channel=<%=
channelNames[i] %>&action=stop" class="top_menu"> (stop)

 <% } /* for */
 %>

 <% } /* else */ %>
iWay Connector for J2EE Connector Architecture User’s Guide A-7

iWay Servlet Sample Code
 </TD>

 <% if (channel != null) { %>
 <TD WIDTH="65%" VALIGN="top">

 <h4>Adapter Status for <%= adapter+" channel "+channel
%></h4>

 <% if (channelDoc != null) { %>
 <h4>Status</h4>
 <table>
 <%
 INode statusNode =
channelDoc.getRootTree().getFirstChildNode();
 String isactive =
statusNode.findChildByName("isactive").getValue();
 out.println("<tr><td>Active:</td><td>");
 out.println(isactive);
 out.println("</td></tr><tr><td>Init. time:</
td><td>");

out.println(long2Date(statusNode.findChildByName("inittime").getValue()))
;

 if (isactive.equalsIgnoreCase("true")) {
 out.println("</td></tr><tr><td>Activate
time:</td><td>");
 String actTime =
statusNode.findChildByName("activatetime").getValue();
 out.println(long2Date(actTime));
 out.println("</td></tr><tr><td>Elapsed time:</
td><td>");
 out.println(elapseString(actTime));
 out.println("</td></tr><tr><td>Service
count:</td><td>");

out.println(statusNode.findChildByName("servicecount").getValue());
 out.println("</td></tr><tr><td>Error count:</
td><td>");

out.println(statusNode.findChildByName("errorcount").getValue());
 out.println("</td></tr><tr><td>Event count:</
td><td>");

out.println(statusNode.findChildByName("eventcount").getValue());
 out.println("</td></tr><tr><td>Avg. service
time (msec):</td><td>");

A-8 iWay Software

Servlet Sample Code
out.println(statusNode.findChildByName("avgservicetime").getValue());
 out.println("</td></tr><tr><td>Last service
time (msec):</td><td>");

out.println(statusNode.findChildByName("lastservicetime").getValue());
 }
 %>
 <% } %>
 </td></tr></table>

 </TD>
 <% } %>

 </TR>
 </table>

<!-- === -->
<!-- FOOTER -->
<!-- === -->

 <%@ include file="footer.html" %>

 </body>
</html>
iWay Connector for J2EE Connector Architecture User’s Guide A-9

iWay Servlet Sample Code
Example: Include_ae.jsp

The following is an example of Include_ae.jsp code.

<%@ page import="java.u til.*" %>

<%!

/*
 * Static helper methods for parsing IWAE messages
 */

// Based on GETADAPTERINFOResponse document
// @return array of available service adapters
private static String[] getAdapterNames(IDocument doc)
{

 List adapterNamesList = new ArrayList();

 INode rootNode = doc.getRootTree();
 INode adapterNode = rootNode.findNodeByPath("/GETADAPTERINFOResponse/
adapter");

 while(adapterNode != null) {

 // Getting adapters
 adapterNode.snipNode(); // Not to mess up next find.
 INode targetNode = adapterNode.findChildByName("target");

 // Add the adapters with design descriptor to the list
 List descriptors = adapterNode.getAllChildren("descriptor");
 for (Iterator i = descriptors.iterator(); i.hasNext();) {
 INode descriptorNode = (INode)i.next();
 String attrFormat = descriptorNode.getAttribute("format");
 if (attrFormat != null && attrFormat.equals("design")) {
 adapterNamesList.add(targetNode.getValue());
 break;
 }
 } // for

 // Finding next adapter
 adapterNode = rootNode.findNodeByPath("/GETADAPTERINFOResponse/
adapter");
 }

 String[] names = new String[adapterNamesList.size()];
 names = (String[])adapterNamesList.toArray(names);

A-10 iWay Software

Servlet Sample Code
 return names;
}

// Based on GETADAPTERINFOResponse document
// @return array of available service adapters
private static String[] getEventAdapterNames(IDocument doc)
{

 List adapterNamesList = new ArrayList();

 INode rootNode = doc.getRootTree();
 INode adapterNode = rootNode.findNodeByPath("/GETADAPTERINFOResponse/
adapter");

 while(adapterNode != null) {

 // Getting adapters
 adapterNode.snipNode(); // Not to mess up next find.
 INode targetNode = adapterNode.findChildByName("target");

 // Add the adapters with design descriptor to the list
 List descriptors = adapterNode.getAllChildren("descriptor");
 for (Iterator i = descriptors.iterator(); i.hasNext();) {
 INode descriptorNode = (INode)i.next();
 String attrFormat = descriptorNode.getAttribute("format");
 if (attrFormat != null && attrFormat.equals("event")) {
 adapterNamesList.add(targetNode.getValue());
 break;
 }
 } // for

 // Finding next adapter
 adapterNode = rootNode.findNodeByPath("/GETADAPTERINFOResponse/
adapter");
 }

 String[] names = new String[adapterNamesList.size()];
 names = (String[])adapterNamesList.toArray(names);

 return names;
}

// Based on GETTARGETINFOResponse
// @return array of available configurations for adapter
private static String[] getTargetNames(IDocument doc)
{

 List targetNamesList = new ArrayList();
iWay Connector for J2EE Connector Architecture User’s Guide A-11

iWay Servlet Sample Code
 INode rootNode = doc.getRootTree();
 INode targetNode = rootNode.findNodeByPath("/GETTARGETINFOResponse/
target");

 while(targetNode != null) {

 // Getting adapters
 targetNode.snipNode(); // Not to mess up next find.
 INode nameNode = targetNode.findChildByName("name");
 targetNamesList.add(nameNode.getValue());

 // Finding next adapter
 targetNode = rootNode.findNodeByPath("/GETTARGETINFOResponse/
target");
 }

 String[] names = new String[targetNamesList.size()];
 names = (String[])targetNamesList.toArray(names);

 return names;
}

// Based on GETTARGETINFOResponse
// @return array of available configurations for adapter
private static String[] getChannelNames(IDocument doc)
{

 List targetNamesList = new ArrayList();

 INode rootNode = doc.getRootTree();
 INode targetNode = rootNode.findNodeByPath("/GETCHANNELINFOResponse/
channel");

 while(targetNode != null) {

 // Getting adapters
 targetNode.snipNode(); // Not to mess up next find.
 INode nameNode = targetNode.findChildByName("name");
 targetNamesList.add(nameNode.getValue());

 // Finding next adapter
 targetNode = rootNode.findNodeByPath("/GETCHANNELINFOResponse/
channel");
 }

 String[] names = new String[targetNamesList.size()];
 names = (String[])targetNamesList.toArray(names);
A-12 iWay Software

Servlet Sample Code

 return names;
}

%>
iWay Connector for J2EE Connector Architecture User’s Guide A-13

iWay Servlet Sample Code
Example: Include_jca.jsp

The following is an example of Include_jca.jsp code.

<%@ page import="com.ibi.common.*, com.ibi.afjca.cci.*,
com.ibi.afjca.spi.*" %>
<%@ page import="javax.resource.*,
javax.resource.cci.*,javax.resource.spi.*" %>
<%@ page import="javax.naming.*" %>

<%!

///
/
//JCA
///
/

// Obtain ConnectionFactory from JNDI
private ConnectionFactory getConnectionFactory(ServletContext
application)
 throws ResourceException, NamingException
{
 ConnectionFactory cf = null;

 String iwayHome = application.getInitParameter("iway.home");
 String iwayConfig = application.getInitParameter("iway.config");
 String iwayLoglevel = application.getInitParameter("iway.loglevel");

 String iwayJndi = application.getInitParameter("iway.jndi");

 application.log("iway.home : " + iwayHome);
 application.log("iway.config : " + iwayConfig);
 application.log("iway.loglevel: " + iwayLoglevel);
 application.log("iway.jndi : " + iwayJndi);

 if (iwayJndi != null && iwayJndi.trim().length() > 0) {
 InitialContext context = new InitialContext();
 cf = (ConnectionFactory)context.lookup(iwayJndi);
 application.setAttribute("non-managed", Boolean.FALSE);
 } else {
 IWAFManagedConnectionFactory mcf = new
IWAFManagedConnectionFactory();
 mcf.setIWayHome(iwayHome);
 mcf.setIWayConfig(iwayConfig);
 mcf.setLogLevel(iwayLoglevel);
 cf = (ConnectionFactory)mcf.createConnectionFactory();
 application.setAttribute("non-managed", Boolean.TRUE);
 }
A-14 iWay Software

Servlet Sample Code

 application.setAttribute("cf", cf);
 return cf;

}

// Obtain Connection for design time
private Connection getDesigntimeConnection(ConnectionFactory cf)
 throws ResourceException
{
 // Create connectionSpec
 IWAFConnectionSpec cs = new IWAFConnectionSpec();
 cs.setAdapterName("IAEAdapter"); // Special Adapter

 return cf.getConnection(cs);
}

// Process design time message
private IWAFRecord executeDesignInteraction(Connection c, Record r)
 throws ResourceException
{
 // Create interaction
 Interaction i = c.createInteraction();

 // Create interactionSpec for DESIGNTIME
 IWAFInteractionSpec is = new IWAFInteractionSpec();
 is.setFunctionName("IWAE"); // AE Function, only available for
IAEAdapter

 // Execute
 return (IWAFRecord)i.execute(is, r);
}

///
/

private static Connection getRuntimeConnection(ConnectionFactory cf,
 String adapterName, String configuration)
 throws ResourceException
{
 // Create connectionSpec
 // Aidong - Maybe we need a designtime connection spec.
 IWAFConnectionSpec cs = new IWAFConnectionSpec();
 cs.setAdapterName(adapterName);
 cs.setConfig(configuration);

 return cf.getConnection(cs);
}

iWay Connector for J2EE Connector Architecture User’s Guide A-15

iWay Servlet Sample Code
// Execute Service Call
private static Record executeRunInteraction(Connection c, Record r)
 throws ResourceException
{
 // Create interaction
 Interaction i = c.createInteraction();

 // Create interactionSpec for RUNTIME
 IWAFInteractionSpec is = new IWAFInteractionSpec();
 is.setFunctionName("PROCESS");

 // Execute
 return i.execute(is, r);
}

///
//

// Execute AE Call
private IDocument aeCall(ConnectionFactory cf, String message) throws
Exception {

 //log("Processing design time message: " + message);
 Connection c = getDesigntimeConnection(cf);

 IWAFRecord rIn = new IWAFRecord("input");
 rIn.setRootXML(message);
 IWAFRecord resRec = executeDesignInteraction(c, rIn);

 c.close();
 return resRec.getIDocument();
}

// Execute Service Call
private String serviceCall(ConnectionFactory cf, String message, String
adapter, String config)
 throws Exception
{
 //log("Processing service message: " + message);
 Connection c = getRuntimeConnection(cf, adapter, config);

 /*
 IWAFRecord rIn = new IWAFRecord("input");
 rIn.setRootXML(message);
 IWAFRecord docRec = executeRunInteraction(c, rIn);
A-16 iWay Software

Servlet Sample Code
 */

 IndexedRecord rIn =
cf.getRecordFactory().createIndexedRecord("input");
 rIn.add(message);
 IndexedRecord response = (IndexedRecord) executeRunInteraction(c,
rIn);

/*
 // Using IWAFRecord to get IDocument. Aidong is fixing this limitation
 IWAFRecord docRec = new IWAFRecord();
 docRec.setRootXML((String)response.get(0));
*/
 c.close();
 return (String)response.get(0);
}

%>
iWay Connector for J2EE Connector Architecture User’s Guide A-17

iWay Servlet Sample Code
Example: Include_util.jsp

The following is an example of Include_util.jsp code.

<%@ page import="java.io
.*, java.util.*" %>

<%!

// CallStack to String
public static String getStackTrace(Throwable t) {

 String stackTrace = null;

 try {
 StringWriter sw = new StringWriter();
 PrintWriter pw = new PrintWriter(sw);
 t.printStackTrace(pw);
 pw.close();
 sw.close();
 stackTrace = sw.getBuffer().toString();
 }
 catch(Exception ex) {}
 return stackTrace;
}

// Web Server logging
public static void log(ServletContext ctx, String msg) {
 ctx.log(msg);
}

// long string to date string
private static String long2Date(String millis) {
 Date date = new Date(Long.parseLong(millis));
 return date.toString();
}

// TODO: It got to be a better way of doing it.
private static String elapseString(String aMillis) {

 StringBuffer sb = new StringBuffer();

 // In seconds
 long runningTime = System.currentTimeMillis() -
Long.parseLong(aMillis);
 runningTime = runningTime / 1000; // seconds

 long days, hours, minutes, seconds;

A-18 iWay Software

Servlet Sample Code
 days = runningTime / (86400);
 if (days > 0) {
 sb.append(days);
 sb.append(" days ");
 runningTime = runningTime - (days * 86400);
 }

 hours = runningTime / (3600);
 if (hours > 0) {
 sb.append(hours);
 sb.append(" hours ");
 runningTime = runningTime - (hours * 3600);
 }

 minutes = runningTime / 60;
 if (minutes > 0) {
 sb.append(minutes);
 sb.append(" min(s) and ");
 runningTime = runningTime - (minutes * 60);
 }

 seconds = runningTime;
 sb.append(seconds);
 sb.append(" sec(s)");

 return sb.toString();
}

%>
iWay Connector for J2EE Connector Architecture User’s Guide A-19

iWay Servlet Sample Code
Example: Index.jsp

The following is an example of Index.jsp code.

<%@ page content
Type="text/html" %>

<!-- === -->
<!-- HEADER -->
<!-- === -->

<html>
 <head>
 <title>IWAF JCA Sample </title>
 <link href="default.css" rel="stylesheet" media="screen">
 </head>

 <body leftmargin="0" topmargin="0" marginwidth="0" marginheight="0"
text="#000000">

 <%@ include file="header.html" %>

<!-- === -->
<!-- BODY -->
<!-- === -->

 <TABLE WIDTH="100%" BORDER="0" CELLSPACING="0" CELLPADDING="0">
 <TR>
 <TD WIDTH="130" VALIGN="top" ALIGN="RIGHT" />

 <TD WIDTH="85%" VALIGN="top">

<!--

 <h4>Remote management</h4>
 <p>This allows the remote management of the JCA Adapter
via
 IWAE using a SOAP listener.
 </br>IMPORTANT: Security is currently disabled
 </p>

 Configure
 Monitor
 Start/Stop

-->

 <h4>Testing tools</h4>

A-20 iWay Software

Servlet Sample Code
 Service
adapters
 Event
adapters

 </TD>

 </TR>
 </table>

<!-- === -->
<!-- FOOTER -->
<!-- === -->

 <%@ include file="footer.html" %>

 </body>
</html>
iWay Connector for J2EE Connector Architecture User’s Guide A-21

iWay Servlet Sample Code
Example: Service.jsp

The following is an example of Service.jsp code.

<%@ page errorPage= "error.jsp" %>

<%@ page contentType="text/html" %>

<%@ include file="includes/include_util.jsp" %>
<%@ include file="includes/include_jca.jsp" %>
<%@ include file="includes/include_ae.jsp" %>

<%

///
ConnectionFactory cf = (ConnectionFactory)application.getAttribute("cf");
if (cf == null) {
 log(application, "service.jsp: Obtaining IWAF JCA Connection
factory,");
 cf = getConnectionFactory(application);
}
///

// Only do it once
String[] adapterNames = (String[])session.getAttribute("e.adapterNames");
if (adapterNames == null) {
 IDocument doc = aeCall(cf, "<GETADAPTERINFO/>");
 adapterNames = getAdapterNames(doc);
 session.setAttribute("e.adapterNames", adapterNames);
}

// Parsing request parameters
String adapter = request.getParameter("adapter");
if (adapter == null && adapterNames.length > 0) {
 adapter = adapterNames[0];
}

String target = request.getParameter("target");

// Only do it if it is not a session
String[] targetNames =
(String[])session.getAttribute("service.targetNames");
String sessionAdapter = (String)session.getAttribute("service.adapter");
if (targetNames == null || (!adapter.equals(sessionAdapter))) {
 IDocument doc = aeCall(cf, "<GETTARGETINFO><target>" + adapter + "</
target></GETTARGETINFO>");
targetNames = getTargetNames(doc);
 session.setAttribute("service.adapter", adapter);
 session.setAttribute("service.targetNames", targetNames);
A-22 iWay Software

Servlet Sample Code
}

///
// Service call
///
String input = request.getParameter("input");
String output = null;
long elapsedTime = 0;

if (input != null) {
 long stime = System.currentTimeMillis();
 output = serviceCall(cf, input, adapter, target);
 elapsedTime = System.currentTimeMillis() - stime;
}

%>

<!-- === -->
<!-- HEADER -->
<!-- === -->

<html>
 <head>
 <title>IWAF JCA Sample </title>
 <link href="default.css" rel="stylesheet" media="screen">
 </head>

 <body leftmargin="0" topmargin="0" marginwidth="0" marginheight="0"
text="#000000">

 <%@ include file="header.html" %>

<!-- === -->
<!-- BODY -->
<!-- === -->

 <TABLE WIDTH="100%" BORDER="0" CELLSPACING="0" CELLPADDING="0">
 <TR>
 <TD WIDTH="5%" VALIGN="top" ALIGN="RIGHT" />

 <TD WIDTH="30%" VALIGN="top">

 <!-- Adapters -->

 <h4>Service Adapters</h4>
 <p>Click the adapter below to see available targets
(configurations).</p>

iWay Connector for J2EE Connector Architecture User’s Guide A-23

iWay Servlet Sample Code
 <%
 for (int i = 0; i < adapterNames.length; i++) {
 %>

 <a href="service.jsp?adapter=<%= adapterNames[i] %>"
class="top_menu"><%= adapterNames[i] %>

 <%
 }
 %>

 <!-- Targets for adapter -->

 <h4>Targets for <%= adapter %></h4>
 <%
 if (targetNames.length <= 0) {
 out.print("<p>No targets configured for this
adapter.</p>");
 } else {
 %>

 <% for (int i = 0; i < targetNames.length; i++) { %>

 <a href="service.jsp?adapter=<%= adapter
%>&target=<%= targetNames[i] %>" class="top_menu"><%= targetNames[i]
%>

 <% } /* for */

 // When target not provided, pick the first one.
 if (target == null && targetNames.length > 0) {
 target = targetNames[0];
 }
 %>

 <% } /* else */ %>
 </TD>

 <% if (target != null) { %>
 <TD WIDTH="65%" VALIGN="top">

 <h4>Request for <%= adapter+" target "+target %></h4>
 <FORM ACTION="service.jsp" METHOD="POST">
 <input type='hidden' name='adapter' value='<%=
adapter %>' />
 <input type='hidden' name='target' value='<%= target
%>' />
A-24 iWay Software

Servlet Sample Code

<textarea name="input" rows="10" cols="50"><%=
(input==null?"":input) %></textarea>

<input type="submit" value="Send"/><input
type="reset"/>
 <% if (output != null) { %>
 <h4>Response in <%= elapsedTime %> msecs</h4>
 <textarea name="output" rows="10" cols="50"
disable="true"><%= output %></textarea>
 <% } %>
 </FORM>

 </TD>
 <% } %>

 </TR>
 </table>

<!-- === -->
<!-- FOOTER -->
<!-- === -->

 <%@ include file="footer.html" %>

 </body>
</html>
iWay Connector for J2EE Connector Architecture User’s Guide A-25

iWay Servlet Sample Code
Example: IWAFJCADemo.java

The following is an example of IWAFJCADemo.java code.

import javax.resource.*;
import javax.resource.cci.*;
import java.io.FileInputStream;
import java.io.IOException;

import com.ibi.afjca.cci.*;
import com.ibi.afjca.spi.*;

/**
 * This program demos how to use our iwaf jca 1.0 adpter in non-managed
 * environment.
 *
 * Author: Aidong Yan
 * Date: July, 2003
 */
public class IWAFJCADemo {

 private static String buildDir = "C:\\program files\\iway55";

 // IWAFManagedConnectionFactory and IWAFConnectionSpec properties:
 private static String adapterName = "SAP";
 private static String iWayHome = buildDir;
 private static String iWayConfig= "base";
 private static String iWayRepoURL= null;
 private static String iWayRepoUser= null;
 private static String iWayRepoPassword= null;
 private static String config = "test";
 // private static String user = "EDAQA0";
 // private static String password = "EDATEST3";
 private static String logLevel = "DEBUG";

 // Request input
 private static String requestFile = "C:\\rfc1.xml";

 ///
/////

 public static void main(String[] args) throws Exception {

 // Create connectionFactory
 // See private methods below.
 ConnectionFactory factory = (ConnectionFactory)
getConnectionFactory();
 if(factory == null) return;

A-26 iWay Software

Servlet Sample Code
 try {

 // Create connectionSpec
 IWAFConnectionSpec cs = new IWAFConnectionSpec();
 cs.setAdapterName(adapterName);
 cs.setConfig(config);
// cs.setUserName(user);
// cs.setPassword(password);
 cs.setLogLevel(logLevel);

 // Get Connection and Interaction to work with
 Connection con = factory.getConnection(cs);
 Interaction action = con.createInteraction();

 // Create interactionSpec
 IWAFInteractionSpec is = new IWAFInteractionSpec();
 is.setFunctionName(IWAFInteractionSpec.PROCESS);

 // Create Input Record
 IndexedRecord inRec =
factory.getRecordFactory().createIndexedRecord("input");
 inRec.add(readFile(requestFile));

 // Execute
 IndexedRecord outRec = (IndexedRecord) action.execute(is, inRec);

 // Handle the output
 String outStr = (String) outRec.get(0);
 System.out.println("Response:" + outStr);

 // Close connection
 con.close();

 // Shut down IWAF container only when in non-managed environment.
 ((IWAFConnectionFactory)factory).destroy();

 } catch (ResourceException re) {
 System.out.println("ResourceException:"+re);
 }
 }

 ///
/////

 /**
 * Create one IWAFManagedConnectionFactory and config it
 */
 private static Object getConnectionFactory() {
iWay Connector for J2EE Connector Architecture User’s Guide A-27

iWay Servlet Sample Code

 try {
 IWAFManagedConnectionFactory mcf = new
IWAFManagedConnectionFactory();
 mcf.setIWayHome(iWayHome);
 mcf.setIWayConfig(iWayConfig);
 mcf.setLogLevel(logLevel);
 mcf.setIWayRepoURL(iWayRepoURL);
 mcf.setIWayRepoUser(iWayRepoUser);
 mcf.setIWayRepoPassword(iWayRepoPassword);

 return mcf.createConnectionFactory();
 } catch (ResourceException re) {
 System.out.println("Couldn't create the connection factory.");
 return null;
 }
 }

 /**
 * Helper method to read file into String. Assumes the file is in the
 * machines codepage.
 */
 private static String readFile(String requestFile) throws IOException {
 FileInputStream fileIn = new FileInputStream(requestFile);
 byte[] inBytes = new byte[fileIn.available()];

 int offset = 0, counter = 0, len = inBytes.length;
 do {
 counter = fileIn.read(inBytes, offset, len);
 offset += counter;
 } while(counter != -1 && offset < len);

 return new String(inBytes);
 }

}

A-28 iWay Software

Reader Comments

In an ongoing effort to produce effective documentation, the Documentation Services staff at
Information Builders welcomes any opinion you can offer regarding this manual.

Please use this form to relay suggestions for improving this publication or to alert us to corrections.
Identify specific pages where applicable. You can contact us through the following methods:

Name:___

Company:__

Address:___

Telephone:____________________________________Date:_____________________________________

E-mail:___

Comments:

Mail: Documentation Services - Customer Support
Information Builders, Inc.
Two Penn Plaza
New York, NY 10121-2898

Fax: (212) 967-0460

E-mail: books_info@ibi.com

Web form: http://www.informationbuilders.com/bookstore/derf.html
Information Builders, Two Penn Plaza, New York, NY 10121-2898 (212) 736-4433

iWay Connector for J2EE Connector Architecture User’s Guide DN3501521.0305
Version 5 Release 5

Reader Comments
Information Builders, Two Penn Plaza, New York, NY 10121-2898 (212) 736-4433

iWay Connector for J2EE Connector Architecture User’s Guide DN3501521.0305
Version 5 Release 5

	Preface
	Contents
	1. Introducing the iWay Connector for JCA
	Overview of the iWay Connector for JCA
	Support for Over 250 Adapters
	Flexibility of Use

	Distribution of the iWay Connector for JCA
	Deployment of the iWay Connector for JCA
	Using a JCA Resource Adapter
	Altering JCA Resource Adapter Connection Properties

	New in the iWay Connector for JCA Version 1.5
	Using Programs Written for iWay Connector for 1.0 with the New iWay Connector for JCA 1.5

	2. Deploying the iWay Connector for JCA
	Deploying to Sun Java System Application Server

	3. iWay JCA Installation Verification Program
	Overview of the IVP
	Deploying and Running the IVP for Sun Java System Application Server
	Deploying the JCA Test Tool
	Running the JCA Test Tool
	Configuring the JCA Test Tool

	4. Configuring and Deploying the iWay JCA 1.5 Sample Applications
	The iWay JCA 1.5 Connector Architecture
	The iWay JCA 1.5 Sample Applications
	The MessageListener Interface

	Configuring and Deploying the Sample Applications

	A. Servlet Sample Code
	iWay Servlet Sample Code

