
Sun Java™ System

Message Queue 3
Technical Overview

2005Q1

Sun Microsystems, Inc.
4150 Network Circle
Santa Clara, CA 95054
U.S.A.

Part No: 819-0069-10

Copyright © 2005 Sun Microsystems, Inc., 4150 Network Circle, Santa Clara, California 95054, U.S.A. All rights reserved
Sun Microsystems, Inc. has intellectual property rights relating to technology embodied in the product that is described in this document. In
particular, and without limitation, these intellectual property rights may include one or more of the U.S. patents listed at
http://www.sun.com/patents and one or more additional patents or pending patent applications in the U.S. and in other countries.
U.S. Government Rights - Commercial software. Government users are subject to the Sun Microsystems, Inc. standard license agreement and
applicable provisions of the FAR and its supplements. Use is subject to license terms. This distribution may include materials developed by third
parties.
Sun, Sun Microsystems, the Sun logo, Java, Solaris, Sun[tm] ONE, JDK, Java Naming and Directory Interface, JavaMail, JavaHelp and Javadoc are
trademarks or registered trademarks of Sun Microsystems, Inc. in the U.S. and other countries.
All SPARC trademarks are used under license and are trademarks or registered trademarks of SPARC International, Inc. in the U.S. and other
countries. Products bearing SPARC trademarks are based upon architecture developed by Sun Microsystems, Inc.
UNIX is a registered trademark in the U.S. and other countries, exclusively licensed through X/Open Company, Ltd.
This product is covered and controlled by U.S. Export Control laws and may be subject to the export or import laws in other countries. Nuclear,
missile, chemical biological weapons or nuclear maritime end uses or end users, whether direct or indirect, are strictly prohibited. Export or
reexport to countries subject to U.S. embargo or to entities identified on U.S. export exclusion lists, including, but not limited to, the denied
persons and specially designated nationals lists is strictly prohibited.

Copyright © 2005 Sun Microsystems, Inc., 4150 Network Circle, Santa Clara, California 95054, Etats-Unis. Tous droits réservés.
Sun Microsystems, Inc. détient les droits de propriété intellectuels relatifs à la technologie incorporée dans le produit qui est décrit dans ce
document. En particulier, et ce sans limitation, ces droits de propriété intellectuelle peuvent inclure un ou plus des brevets américains listés à
l'adresse http://www.sun.com/patents et un ou les brevets supplémentaires ou les applications de brevet en attente aux Etats - Unis et dans les
autres pays.
L'utilisation est soumise aux termes de la Licence.
Cette distribution peut comprendre des composants développés par des tierces parties.
Sun, Sun Microsystems, le logo Sun, Java, Solaris, Sun[tm] ONE, JDK, Java Naming and Directory Interface, JavaMail, JavaHelp et Javadoc sont
des marques de fabrique ou des marques déposées de Sun Microsystems, Inc. aux Etats-Unis et dans d'autres pays.
Toutes les marques SPARC sont utilisées sous licence et sont des marques de fabrique ou des marques déposées de SPARC International, Inc. aux
Etats-Unis et dans d'autres pays. Les produits portant les marques SPARC sont basés sur une architecture développée par Sun Microsystems, Inc.
UNIX est une marque déposée aux Etats-Unis et dans d'autres pays et licenciée exlusivement par X/Open Company, Ltd.
Ce produit est soumis à la législation américaine en matière de contrôle des exportations et peut être soumis à la règlementation en vigueur dans
d'autres pays dans le domaine des exportations et importations. Les utilisations, ou utilisateurs finaux, pour des armes nucléaires, des missiles,
des armes biologiques et chimiques ou du nucléaire maritime, directement ou indirectement, sont strictement interdites. Les exportations ou
réexportations vers les pays sous embargo américain, ou vers des entités figurant sur les listes d'exclusion d'exportation américaines, y compris,
mais de manière non exhaustive, la liste de personnes qui font objet d'un ordre de ne pas participer, d'une façon directe ou indirecte, aux
exportations des produits ou des services qui sont régis par la législation américaine en matière de contrôle des exportations et la liste de
ressortissants spécifiquement désignés, sont rigoureusement interdites.

http://www.sun.com/patents
http://www.sun.com/patents

3

Contents

List of Figures . 7

List of Tables . 9

Preface . 11
Who Should Use This Book . 12
Before You Read This Book . 12
How This Book Is Organized . 13
Conventions Used in this Book . 14

Text Conventions . 14
Directory Variable Conventions . 15

Related Documentation . 17
The Message Queue Documentation Set . 17
Online Help . 18
JavaDoc . 18
Example Client Applications . 18
The Java Message Service (JMS) Specification . 19

Related Third-Party Web Site References . 19
Sun Welcomes Your Comments . 19

Chapter 1 Conceptual Foundations . 21
Enterprise Messaging Systems . 22

Requirements of Enterprise Messaging Systems . 22
Centralized (MOM) Messaging . 23
Basic Message Service Architecture . 24

4 Message Queue 3 2005Q1 • Technical Overview

Java Message Service (JMS) Basics . 26
JMS Message Structure . 26
JMS Programming Model . 28

Programming Objects . 28
Programming Domains: Message Delivery Models . 29

Reliable Messaging . 31
Acknowledgements/Transactions . 31
Persistent Storage . 33

JMS Administered Objects . 34

Chapter 2 Introduction to Message Queue . 35
Message Service Architecture . 36

Message Server . 37
Client Runtime . 37

Connection Handling . 39
Client Identification . 39
Message Distribution to Consumers . 40
Ensuring Reliable Message Delivery . 40
Message Flow Control . 41
Overriding Message Header Values . 41
Other Functions . 42

Administered Objects . 42
Using Administered Objects via JNDI . 43
Object Stores . 44

Administration Tools . 45
Product Features . 46

Integration Support Features . 46
Multiple Transport Support . 46
C Client Interface . 47
SOAP (XML) Messaging Support . 47
J2EE Resource Adapter . 48

Security Features . 49
Scalability Features . 50

Scalable Connection Capacity . 50
Broker Clusters . 50
Queue Delivery to Multiple Consumers . 50

Availability Features . 51
Message Service Stability . 51
Automatic Reconnect to Message Server . 51
High Availability Through Sun Cluster . 51

Contents 5

Manageability Features . 52
Robust Administration Tools . 52
Message-Based Monitoring API . 52
Tunable Performance . 52

Flexible Server Configuration Features . 53
Configurable Persistence . 53
LDAP Server Support . 53

Product Editions . 54
Enterprise Edition . 55
Platform Edition . 55

Message Queue in a Sun Product Context . 56

Chapter 3 Reliable Message Delivery . 57
A Message’s Journey Through the System . 58
Message Delivery Processing . 60

Message Production . 60
Message Handling and Routing . 61

Queue Destinations . 61
Topic Destinations . 62

Message Consumption . 63
Client Acknowledgements . 63
Transactions . 65

Message-End-of-Life . 66
Normal Deletion of Messages . 66
Abnormal Deletion of Messages . 67

Performance Issues . 68

Chapter 4 Message Server . 71
Broker Architecture . 72
Broker Components . 74

Connection Services . 74
Port Mapper . 75
Thread Pool Manager . 75
HTTP/HTTPS Support . 76

Message Router . 77
Physical Destinations . 78
Memory Resource Management . 79

Persistence Manager . 81
Security Manager . 82

Authentication . 83
Authorization . 83
Encryption . 85

6 Message Queue 3 2005Q1 • Technical Overview

Monitoring Service . 85
Metrics Generator . 85
Logger . 86
Metrics Message Producer (Enterprise Edition) . 86

Development and Production Environments . 87
Development Environments and Tasks . 87

Out-of-the-Box Configuration . 87
Development Practices . 88

Production Environments and Tasks . 88
Setup Operations . 88
Maintenance Operations . 90

Chapter 5 Broker Clusters . 91
Cluster Architecture . 92

Message Delivery . 93
Cluster Configuration . 93
Cluster Synchronization . 94

Deployment Environment . 95
Development Environments . 95
Production Environments . 95

Chapter 6 Message Queue and J2EE . 97
JMS/J2EE Programming: Message-Driven Beans . 98
J2EE Application Server Support . 100

JMS Resource Adapter . 101

Appendix A Message Queue Implementation of Optional JMS Functionality 103

Glossary . 105

Index . 109

7

List of Figures

Figure 1-1 Centralized vs. Peer-to-peer Messaging . 23

Figure 1-2 Message Service Architecture . 25

Figure 1-3 JMS Programming Objects . 28

Figure 2-1 Message Queue Service Architecture . 36

Figure 2-2 Client Runtime and Messaging Operations . 38

Figure 2-3 Message Delivery to Message Queue Client Runtime . 40

Figure 3-1 Message Delivery Steps . 58

Figure 4-1 Broker Components . 72

Figure 4-2 Connection Services Support . 75

Figure 4-3 HTTP/HTTPS Support Architecture . 76

Figure 4-4 Persistence Manager Support . 82

Figure 4-5 Security Manager Support . 84

Figure 4-6 Monitoring Service Support . 86

Figure 5-1 Cluster Architecture . 92

Figure 6-1 Messaging with MDBs . 99

8 Message Queue 3 2005Q1 • Technical Overview

9

List of Tables

Table 1 Book Contents and Organization . 13

Table 2 Document Conventions . 14

Table 3 Message Queue Directory Variables . 15

Table 4 Message Queue Documentation Set . 17

Table 1-1 Message Body Types . 27

Table 1-2 JMS Programming Domains and Objects . 30

Table 2-1 Message Queue Administered Object Types . 42

Table 2-2 Feature Comparison: Enterprise and Platform Editions . 54

Table 4-1 Main Broker Service Components and Functions . 73

Table 4-2 Connection Services Supported by a Broker . 74

Table A-1 Optional JMS Functionality . 103

10 Message Queue 3 2005Q1 • Technical Overview

11

Preface

This book, the Sun Java™ System Message Queue 3 2005Q1 Technical Overview,
provides an introduction to the technology, concepts, architecture, capabilities, and
features of the Message Queue messaging service.

As such, the Message Queue Technical Overview provides the foundation for other
books within the Message Queue documentation set. You should read this book
before reading the other books in the Message Queue documentation set.

This preface contains the following sections:

• “Who Should Use This Book” on page 12

• “Before You Read This Book” on page 12

• “How This Book Is Organized” on page 13

• “Conventions Used in this Book” on page 14

• “Related Documentation” on page 17

• “Related Third-Party Web Site References” on page 19

• “Sun Welcomes Your Comments” on page 19

Who Should Use This Book

12 Message Queue 3 2005Q1 • Technical Overview

Who Should Use This Book
This guide is meant for administrators, application developers, and other parties
who plan to use the Message Queue product or who wish to understand the
technology, concepts, architecture, capabilities, and features of the product.

A Message Queue administrator is responsible for setting up and managing a
Message Queue messaging system, in particular the Message Queue message
server at the heart of this system. This book does not assume any knowledge or
understanding of messaging systems.

An application developer is responsible for writing Message Queue client
applications that use the Message Queue service to exchange messages with other
client applications. This book does not assume any knowledge of the Java Message
Service (JMS) specification, which is implemented by the Message Queue service.

Before You Read This Book
There are no prerequisites to this book. You should read this book to gain an
understanding of basic Message Queue concepts before reading the Message
Queue Developer and Administration Guides.

How This Book Is Organized

Preface 13

How This Book Is Organized
This guide is designed to be read from beginning to end; each chapter builds on
information contained in earlier chapters. The following table briefly describes the
contents of each chapter:

Table 1 Book Contents and Organization

Chapter Description

Chapter 1, “Conceptual
Foundations”

Provides the conceptual background to Message Queue,
describing enterprise messaging systems and introducing Java
Message Service concepts and terminology

Chapter 2, “Introduction to
Message Queue”

Introduces the Message Queue service by discussing its
architecture and describing its enterprise-strength features and
capabilities

Chapter 3, “Reliable Message
Delivery”

Describes how the Message Queue service provides reliable
message delivery for messaging applications

Chapter 4, “Message Server” Discusses the internal structure of the broker, describing the
various broker components and their functions. Describes the
different approaches to using Message Queue in development
and production environments.

Chapter 5, “Broker Clusters” Discusses the architecture and internal functioning of Message
Queue broker clusters

Chapter 6, “Message Queue
and J2EE”

Explores the ramifications of implementing JMS support in a
J2EE platform environment

Appendix A, “Message Queue
Implementation of
Optional JMS Functionality”

Describes how the Message Queue product handles JMS
optional items

Glossary Provides information about terms and concepts you might
encounter while using Message Queue

Conventions Used in this Book

14 Message Queue 3 2005Q1 • Technical Overview

Conventions Used in this Book
This section provides information about the conventions used in this document.

Text Conventions

Table 2 Document Conventions

Format Description

italics Italicized text represents a placeholder. Substitute an appropriate
clause or value where you see italic text. Italicized text is also used
to designate a document title, for emphasis, or for a word or phrase
being introduced.

monospace Monospace text represents example code, commands that you
enter on the command line, directory, file, or path names, error
message text, class names, method names (including all elements
in the signature), package names, reserved words, and URLs.

[] Square brackets to indicate optional values in a command line
syntax statement.

ALL CAPS Text in all capitals represents file system types (GIF, TXT, HTML
and so forth), environment variables (IMQ_HOME), or acronyms
(Message Queue, JSP).

Key+Key Simultaneous keystrokes are joined with a plus sign: Ctrl+A means
press both keys simultaneously.

Key-Key Consecutive keystrokes are joined with a hyphen: Esc-S means
press the Esc key, release it, then press the S key.

Conventions Used in this Book

Preface 15

Directory Variable Conventions
Message Queue makes use of three directory variables; how they are set varies
from platform to platform. Table 3 describes these variables and summarizes how
they are used on the Solaris™, Windows, and Linux platforms.

Table 3 Message Queue Directory Variables

Variable Description

IMQ_HOME This is generally used in Message Queue documentation to refer to
the Message Queue base directory (root installation directory):

• On Solaris, there is no root Message Queue installation
directory. Therefore, IMQ_HOME is not used in Message Queue
documentation to refer to file locations on Solaris.

• On Solaris, for Sun Java System Application Server the root
Message Queue installation directory is /imq under the
Application Server base directory.

• On Windows, the root Message Queue installation directory is
set by the Message Queue installer (by default, as C:\Program
Files\Sun\MessageQueue3).

• On Windows, for Sun Java System Application Server, the root
Message Queue installation directory is /imq under the
Application Server base directory.

• On Linux, there is no root Message Queue installation directory.
Therefore, IMQ_HOME is not used in Message Queue
documentation to refer to file locations on Linux.

IMQ_VARHOME This is the /var directory in which Message Queue temporary or
dynamically-created configuration and data files are stored. It can
be set as an environment variable to point to any directory.

• On Solaris, IMQ_VARHOME defaults to the /var/imq directory.

• On Solaris, for Sun Java System Application Server, Evaluation
Edition, IMQ_VARHOME defaults to the IMQ_HOME/var directory.

• On Windows IMQ_VARHOME defaults to the IMQ_HOME\var
directory.

• On Windows, for Sun Java System Application Server,
IMQ_VARHOME defaults to the IMQ_HOME\var directory.

• On Linux, IMQ_VARHOME defaults to the /var/opt/imq directory

Conventions Used in this Book

16 Message Queue 3 2005Q1 • Technical Overview

In this guide, IMQ_HOME, IMQ_VARHOME, and IMQ_JAVAHOME are shown without
platform-specific environment variable notation or syntax (for example, $IMQ_HOME
on UNIX®). Path names generally use UNIX directory separator notation (/).

IMQ_JAVAHOME This is an environment variable that points to the location of the
Java™ runtime (JRE) required by Message Queue executables:

• On Solaris, IMQ_JAVAHOME looks for the java runtime in the
following order, but a user can optionally set the value to
wherever the required JRE resides.
Solaris 8 or 9:
/usr/jdk/entsys-j2se
/usr/jdk/jdk1.5.*
/usr/jdk/j2sdk1.5.*
/usr/j2se

Solaris 10:
/usr/jdk/entsys-j2se
/usr/java
/usr/j2se

• On Linux, Message Queue first looks for the java runtime in the
following order, but a user can optionally set the value of
IMQ_JAVAHOME to wherever the required JRE resides.
/usr/jdk/entsys-j2se
/usr/java/jre1.5.*
/usr/java/jdk1.5.*
/usr/java/jre1.4.2*
/usr/java/j2sdk1.4.2*

• On Windows, IMQ_JAVAHOME defaults to IMQ_HOME\jre, but a
user can optionally set the value to wherever the required JRE
resides.

Table 3 Message Queue Directory Variables (Continued)

Variable Description

Related Documentation

Preface 17

Related Documentation
In addition to this guide, Message Queue provides additional documentation
resources.

The Message Queue Documentation Set
The documents that comprise the Message Queue documentation set are listed in
Table 4 in the order in which you would normally use them.

Table 4 Message Queue Documentation Set

Document Audience Description

Message Queue Installation Guide Developers and
administrators

Explains how to install Message
Queue software on Solaris, Linux, and
Windows platforms.

Message Queue Release Notes Developers and
administrators

Includes descriptions of new features,
limitations, and known bugs, as well
as technical notes.

Message Queue Administration
Guide

Administrators, also
recommended for
developers

Provides background and information
needed to perform administration
tasks using Message Queue
administration tools.

Message Queue Developer’s Guide
for Java Clients

Developers Provides a quick-start tutorial and
programming information for
developers of Java client programs
using the Message Queue
implementation of the JMS and
SOAP/JAXM specifications.

Message Queue Developer’s Guide
for C Clients

Developers Provides programming and reference
documentation for developers of C
client programs using the C interface
(C-API) to the Message Queue
message service.

Related Documentation

18 Message Queue 3 2005Q1 • Technical Overview

Online Help
Message Queue includes command line utilities for performing Message Queue
message service administration tasks. To access the online help for these utilities,
see the Message Queue Administration Guide.

Message Queue also includes a graphical user interface (GUI) administration tool,
the Administration Console (imqadmin). Context sensitive online help is included
in the Administration Console.

JavaDoc
Message Queue Java client API (including the JMS API) documentation in JavaDoc
format, is provided at the following location:

This documentation can be viewed in any HTML browser such as Netscape or
Internet Explorer. It includes standard JMS API documentation as well as Message
Queue-specific APIs for Message Queue administered objects (see Chapter 3 of the
Message Queue Developer’s Guide for Java Clients), which are of value to developers
of messaging applications.

Example Client Applications
A number of example applications that provide sample client application code are
included in a directory that depends upon the operating system (see the Message
Queue Administration Guide).

See the README file located in that directory and in each of its subdirectories.

Platform Location

Solaris /usr/share/javadoc/imq/index.html

Linux /opt/sun/mq/javadoc/index.html/

Windows IMQ_HOME/javadoc/index.html

Related Third-Party Web Site References

Preface 19

The Java Message Service (JMS) Specification
The JMS specification can be found at the following location:

http://java.sun.com/products/jms/docs.html

The specification includes sample client code.

Related Third-Party Web Site References
Third-party URLs are referenced in this document and provide additional, related
information.

Sun Welcomes Your Comments
Sun is interested in improving its documentation and welcomes your comments
and suggestions.

To share your comments, go to http://docs.sun.com and click Send Comments. In
the online form, provide the document title and part number. The part number is a
seven-digit or nine-digit number that can be found on the title page of the book or
at the top of the document.

NOTE Sun is not responsible for the availability of third-party Web sites
mentioned in this document. Sun does not endorse and is not
responsible or liable for any content, advertising, products, or other
materials that are available on or through such sites or resources.
Sun will not be responsible or liable for any actual or alleged
damage or loss caused by or in connection with the use of or reliance
on any such content, goods, or services that are available on or
through such sites or resources.

http://java.sun.com/products/jms/docs.html
http://docs.sun.com

Sun Welcomes Your Comments

20 Message Queue 3 2005Q1 • Technical Overview

21

Chapter 1

Conceptual Foundations

Sun Java™ System Message Queue (Message Queue) provides reliable,
asynchronous messaging that can integrate distributed applications and components
across an enterprise. Processes running on different platforms and operating
systems can connect to the service to interact with each other.

Message Queue is a standards-based messaging solution that implements the Java™
Message Service (JMS) open standard. In addition, Message Queue provides the
interoperability, security, scalability, availability, manageability, and other features
required by large-scale enterprise deployments.

This chapter provides the conceptual foundation for Message Queue. It covers the
following topics:

• “Enterprise Messaging Systems” on page 22

• “Java Message Service (JMS) Basics” on page 26

If you are already familiar with JMS concepts and terminology, you can skip to
Chapter 2, “Introduction to Message Queue.”

Enterprise Messaging Systems

22 Message Queue 3 2005Q1 • Technical Overview

Enterprise Messaging Systems
Enterprise messaging systems enable independent distributed applications or
application components to interact through messages. These components, whether
on the same host, the same network, or loosely connected through the Internet, use
messaging to pass data and to coordinate their respective functions.

For large numbers of components to be able to exchange messages simultaneously
and to support high density throughputs, the sending of a message cannot depend
upon the readiness of the consumer to receive it. If a message consumer is busy or
offline, the system must allow for a message to be received when the consumer is
ready. This de-coupling of the sending and receiving of a message is known as
asynchronous message delivery.

The asynchronous messaging model lends itself extremely well to the task of
integrating complex systems, where it is neither feasible nor desirable for one
component to hold up another in the process of doing work. While asynchronous
messaging gives up some of the control that synchronous systems allow, it adds
great flexibility to the interplay of components. It also adds robustness, inasmuch
as the failure of one component does not translate into the failure of the whole.

Requirements of Enterprise Messaging Systems
Enterprise application systems typically consist of large numbers of distributed
components exchanging many thousands of messages in round-the-clock,
mission-critical operations. To support such systems, in addition to supporting
asynchronous messaging, an enterprise messaging system must meet the following
requirements:

Reliable delivery. Messages from one component to another must not be lost
due to network or system failure. This means the system must be able to guarantee
message delivery.

Security. The messaging system must support basic security features:
authentication of users, authorized access to messages and resources, and
over-the-wire encryption.

Scalability. The messaging system must be able to accommodate increasing
loads—increasing numbers of users and increasing numbers of messages—without
a substantial loss of performance or message throughput. As businesses and
applications expand, this becomes an important requirement.

Enterprise Messaging Systems

Chapter 1 Conceptual Foundations 23

Availability. The messaging system must function with very little down time.
This means that when failures occur, the system contains enough redundancy to
continue to provide messaging services.

Manageability. The messaging system must provide tools for monitoring and
managing message delivery. An administrator must be able to optimize system
resources and to tune system performance.

Centralized (MOM) Messaging
Message Queue uses a centralized messaging system, as shown in Figure 1-1. In
such a system, each messaging component maintains a connection to one central
message service. Components interact with the message service through a
well-defined interface.

An alternative peer-to-peer system, in which every messaging component
maintains a connection to every other component, is illustrated in the left of the
figure. A peer-to-peer system allows for fast, secure, and reliable delivery;
however, the code for supporting reliability and security must reside in each
component. The sending and receiving of a message are closely coupled, making
asynchronous delivery hard to achieve. As components are added to the system,
the number of connections rises geometrically, so the system scales poorly.
Centralized management is also problematic in a peer-to-peer system.

Figure 1-1 Centralized vs. Peer-to-peer Messaging

Component 2Component 1

Component 3 Component 4

Component 1

Component 2

Message Service

Component 3

Component 4

Peer to Peer Messaging Centralized Messaging

Enterprise Messaging Systems

24 Message Queue 3 2005Q1 • Technical Overview

In the centralized system, the preferred approach for enterprise messaging, the
message service provides for routing and delivery of messages between
components, and is responsible for reliable delivery and security. Because
components in this system are loosely coupled, asynchronous messaging is easier
to achieve.

As messaging components are added to the system, the number of connections
rises linearly, making it easy to scale the system by scaling the message service. In
addition to connecting messaging clients, a central message service also provides
an administrative interface that can be used to configure behavior, monitor
performance, and tune the service to satisfy the needs of each messaging client.

Basic Message Service Architecture
The basic architecture of a centralized messaging system is illustrated in Figure 1-2.
It consists of message producers and message consumers that exchange messages by
way of a common message service. Any number of message producers and
consumers can reside in the same messaging component (or application).

A message producer uses the message service programming API to send a message
to the message server. The message server routes and delivers the message to one or
more message consumers that have registered an interest in the message. A
consumer uses the message service programming API to receive messages. The
message service is responsible for guaranteeing delivery of the message to all
appropriate consumers.

Enterprise Messaging Systems

Chapter 1 Conceptual Foundations 25

Figure 1-2 Message Service Architecture

Perhaps the best metaphor for this process is that of exchanging mail: Although a
piece of mail is addressed to its eventual receiver, the mail is routed through the
post office, resting in several intermediate locations before its recipient retrieves it
from the mailbox.

Message
Producers

Message
Consumers

Message
Service

API

Message
Service

API

Message Server

Message Service

Java Message Service (JMS) Basics

26 Message Queue 3 2005Q1 • Technical Overview

Java Message Service (JMS) Basics
Message Queue is an enterprise messaging system that implements the Java
Message Service (JMS) open standard: it is a JMS provider. JMS concepts are
therefore fundamental to understanding how the Message Queue service works.

The JMS specification prescribes a set of rules and semantics that govern reliable,
asynchronous messaging. The specification defines a message structure, a
programming model, and an API.

This section explains JMS concepts and terminology needed to understand the
remaining chapters of this book. It covers the following topics:

• “JMS Message Structure” on page 26

• “JMS Programming Model” on page 28

• “Reliable Messaging” on page 31

• “JMS Administered Objects” on page 34

JMS Message Structure
In Message Queue data is exchanged using JMS messages. According to the JMS
specification, a message, created by a producing client, is composed of three parts: a
header, properties, and a body.

Header
A header is required of every JMS message. Header fields contain values used for
routing and identifying messages.

The header values can be set in a number of ways:

• by the JMS provider, automatically, during the process of producing or
delivering the message

• by the producing client, through settings specified when the message
producers are created

• by the producing client, on a message by message basis

For information about the header fields defined by JMS, see the Message Queue
Developer’s Guide for Java Clients or the Message Queue Developer’s Guide for C
Clients. These header fields allow you to define the destination of the message, the
time of expiration, its priority, and so on.

Java Message Service (JMS) Basics

Chapter 1 Conceptual Foundations 27

Properties
A message can include optional header fields, called properties. They are specified
as property name and property value pairs. Properties, which can be thought of as
extensions of the message header, might include information about which process
created the data, the time it was created, and the structure of each piece of data.
The JMS provider might also add properties that affect the processing of the
message, such as whether it should be compressed or how it should be discarded at
end of life.

The JMS provider can use message properties as selectors to sort and route
messages. A producing client can place application-specific properties in the
message, and a consuming client can choose to receive only messages whose
properties have particular values. For instance, a consuming client might indicate
an interest only for payroll messages concerning part-time employees located in
New Jersey. Messages that do not meet the specified selection criteria are not
delivered to the client.

Selectors simplify the work of consuming clients and eliminate the overhead of
delivering messages to clients that don’t want them. However, they add some
overhead to the message service, which has to process the selection criteria.
Message selector syntax and semantics are outlined in the JMS specification.

Message Body Types
The type of a JMS message determines the contents of its body, as specified in
Table 1-1.

Table 1-1 Message Body Types

Type Description

StreamMessage A message whose body contains a stream of Java primitive values.
It is filled and read sequentially.

MapMessage A message whose body contains a set of name-value pairs. The
order of entries is not defined.

TextMessage A message whose body contains a Java string, for example an
XML message.

ObjectMessage A message whose body contains a serialized Java object.

BytesMessage A message whose body contains a stream of uninterpreted bytes.

Java Message Service (JMS) Basics

28 Message Queue 3 2005Q1 • Technical Overview

JMS Programming Model
The JMS programming model supports the architecture of an asynchronous
messaging service: JMS clients exchange messages by way of a JMS message
service. A JMS provider furnishes the objects needed to carry out JMS messaging;
these objects implement the JMS application programming interface (API).

This section describes the programming objects needed for JMS messaging and
introduces the delivery models (point-to-point and publish/subscribe) used to
send and receive messages.

Programming Objects
The objects used to set up a JMS client for delivery of messages are shown in
Figure 1-3.

Figure 1-3 JMS Programming Objects

In the JMS programming model, a JMS client uses a connection factory object
(ConnectionFactory) to create a connection over which messages are sent to and
received from a JMS message server. A connection object (Connection) represents
a client’s active connection to the message server.

JMS
Message Server

Message
Routing and

Delivery

Physical Destinations

JMS Client

JMS API Implementation

Connection

Sessions

MessageProducers

MessageConsumers

MessageListener

ConnectionFactory

Destinations

Message

Java Message Service (JMS) Basics

Chapter 1 Conceptual Foundations 29

Both allocation of communication resources and authentication of the client take
place when a connection is created. It is a relatively heavyweight object, and most
clients do all their messaging with a single connection.

The connection is used to create session objects (Session). A session is a
single-threaded context for producing and consuming messages. It is used to create
messages as well as the message producers and consumers that send and receive
them, and it defines a serial order for the messages it delivers. A session supports
reliable delivery through a number of acknowledgement options or through
transactions.

A client uses a message producer object (MessageProducer) to send messages to a
specified physical destination, represented in the API by a destination object. The
message producer can specify default message header values, such as delivery
mode (persistent vs. non-persistent), priority, and time-to-live, that govern all
messages sent by the producer to the physical destination.

Similarly, a client uses a message consumer object (MessageConsumer) to receive
messages from a specified physical destination, represented in the API as a
destination object. There are two types of destination, queue and topic, depending
on the message delivery model.

A message consumer can use a message selector to have the message service
deliver only those messages whose properties match specific selection criteria.

A message consumer can support either synchronous or asynchronous
consumption of messages.

• Synchronous consumption means the consumer explicitly requests that a
message be delivered and then consumes it.

• Asynchronous consumption means that the message is automatically delivered
to a message listener object (MessageListener) that has been registered for the
consumer. The client consumes a message when a session thread invokes the
onMessage() method of the message listener object.

Programming Domains: Message Delivery Models
JMS supports two distinct message delivery models: point-to-point and
publish/subscribe.

Point-to-point (Queue Destinations) A message is delivered from a producer to
a single consumer. In this delivery model, the destination type is a queue. Messages
are first delivered to the queue destination, then delivered from the queue, one at a
time, to one of the consumers registered for the queue. Any number of producers

Java Message Service (JMS) Basics

30 Message Queue 3 2005Q1 • Technical Overview

can send messages to a queue destination, but each message is guaranteed to be
delivered to—and successfully consumed by—only one consumer. If there are no
consumers registered for a queue destination, the queue holds messages it receives,
and delivers them when a consumer registers for the queue.

Publish/Subscribe (Topic Destinations) A message is delivered from a producer
to any number of consumers. In this delivery model, the destination type is a topic.
Messages are first delivered to the topic destination, then delivered to all active
consumers that have subscribed to the topic. Any number of producers can send
messages to a topic destination, and each message can be delivered to any number
of subscribed consumers.

Topic destinations also support durable subscriptions. A durable subscription
represents a consumer who is registered with the topic destination but who can be
inactive when messages arrive in the destination. The consumer receives the
message when it becomes active again. If there are no consumers registered for a
topic destination, the topic only holds messages for inactive consumers with
durable subscriptions.

These two message delivery models are handled using three sets of API
objects—with slightly different semantics—representing different programming
domains, as shown in Table 1-2.

The unified domain was introduced with JMS version 1.1. If you need to conform
to the earlier 1.02b specification, you can use the domain-specific API. Using the
domain-specific API also offers the advantage of a clean programming interface
that prevents certain types of programming errors: for example, creating a durable

Table 1-2 JMS Programming Domains and Objects

Base Type
(Unified Domain) Point-to-Point Domain

Publish/Subscribe
Domain

Destination (Queue or Topic)*

* Depending on programming approach, you must specify a particular destination type.

Queue Topic

ConnectionFactory QueueConnectionFactory TopicConnectionFactory

Connection QueueConnection TopicConnection

Session QueueSession TopicSession

MessageProducer QueueSender TopicPublisher

MessageConsumer QueueReceiver TopicSubscriber

Java Message Service (JMS) Basics

Chapter 1 Conceptual Foundations 31

subscriber for a queue destination. However, the domain-specific APIs have the
disadvantage that you cannot combine point-to-point and publish/subscribe
operations in the same transaction or in the same session. If you need to do that,
you should choose the unified domain API.

The example applications included with the Message Queue product as well as
many of the code examples in the Message Queue documentation use the separate
programming domains.

Reliable Messaging
The delivery mode of a message can be set either to persistent or non-persistent; this
mode governs the reliability of message delivery.

• Persistent messages. are guaranteed to be delivered and successfully consumed
exactly once. Persistent messages are not lost in case of message service failure.
Reliability is at a premium for such messages.

• Non-persistent messages are guaranteed to be delivered at most once.
Non-persistent messages are lost in the case of a message service failure.
Reliability is not a major concern for such messages.

There are two aspects of ensuring reliability in the case of persistent messages. One
is to ensure, through the use of acknowledgments and transactions, that message
production and consumption is successful. The other is to ensure, by placing
messages in a persistent store, that the message service does not lose persistent
messages before delivering them to consumers.

The following sections describe these two aspects of ensuring reliability.

Acknowledgements/Transactions
Reliable messaging depends on guaranteeing the successful delivery of persistent
messages from a message producer to a physical destination on a message server
and from that physical destination to a message consumer. This reliability can be
achieved using either of two general mechanisms supported by a JMS session:
acknowledgements or transactions. In the case of transactions, these can either be local
or distributed (under the control of a distributed transaction manager).

Java Message Service (JMS) Basics

32 Message Queue 3 2005Q1 • Technical Overview

Acknowledgements
Acknowledgements are messages sent between client and message service to
ensure reliable delivery.

In the case of message production, the message service acknowledges that it has
received delivery of a message, placed it in its destination and stored it
persistently. The producer’s send() method blocks until the acknowledgement
returns.

In the case of message consumption, the client acknowledges that it has received
delivery of a message from a destination and consumed it, before the message
service deletes the message from that destination. JMS specifies different
acknowledgement modes that represent different degrees of reliability. In some of
these modes, the client blocks waiting for the message server to confirm that it has
deleted a message and therefore cannot redeliver the message.

Local Transactions
A session can be configured as transacted, in which case the production and/or
consumption of one or more messages can be grouped into an atomic unit—a
transaction. The JMS API provides methods for initiating, committing, or rolling
back a transaction.

As messages are produced or consumed within a transaction, the message service
tracks the various sends and receives, completing these operations only when the
JMS client issues a call to commit the transaction. If a particular send or receive
operation within the transaction fails, an exception is raised. The client code can
handle the exception by ignoring it, retrying the operation, or rolling back the
entire transaction. When a transaction is committed, all its operations are
completed. When a transaction is rolled back, all successful operations are
cancelled.

The scope of a local transaction is always a single session. That is, one or more
producer or consumer operations performed in the context of a single session can
be grouped into a single local transaction.

Since transactions span only a single session, you cannot have an end-to-end
transaction encompassing both the production and consumption of a message. (In
other words, the delivery of a message to a destination and the subsequent delivery
of the message to a client cannot be placed in the same transaction.)

Distributed Transactions
The JMS specification also supports distributed transactions. That is, the production
and consumption of messages can be part of a larger, distributed transaction that
includes operations involving other resource managers, such as database systems.
In distributed transactions, a distributed transaction manager tracks and manages

Java Message Service (JMS) Basics

Chapter 1 Conceptual Foundations 33

operations performed by multiple resource managers (such as a message service
and a database manager) using a two-phase commit protocol defined in the Java
Transaction API (JTA), XA Resource API Specification. In the Java world,
interaction between resource managers and a distributed transaction manager are
described in the JTA specification.

Support for distributed transactions means that messaging clients can participate
in distributed transactions through the XAResource interface defined by JTA. This
interface defines a number of methods for implementing two-phase commit. While
the API calls are made on the client side, the JMS message service tracks the
various send and receive operations within the distributed transaction, tracks the
transactional state, and completes the messaging operations only in coordination
with a distributed transaction manager—provided by a Java Transaction Service
(JTS).

As with local transactions, the client can handle exceptions by ignoring them,
retrying operations, or rolling back an entire distributed transaction.

Persistent Storage
The other aspect of reliability is ensuring that a message service does not lose
persistent messages before they are delivered to consumers. This means that when
a persistent message reaches its physical destination, the message server must
place it in a persistent data store. If the message server goes down for any reason, it
can recover the message and deliver it to the appropriate consumers.

A message server must also persistently store durable subscriptions. Otherwise the
message server, in case of failure, would not be able to deliver messages to durable
subscribers who become active after a message has arrived in a topic destination.

Messaging applications that want to guarantee message delivery must specify
messages as persistent and deliver them either to topic destinations with durable
subscriptions or to queue destinations.

Java Message Service (JMS) Basics

34 Message Queue 3 2005Q1 • Technical Overview

JMS Administered Objects
Two of the objects used in the JMS programming model, connection factories and
destinations, can vary with a provider’s implementation of the JMS specification.

• The connection factory object is used to create connections whose behavior
depends on the protocols and mechanisms used by the provider to deliver
messages.

• The destination object is used to specify the name of physical destinations on the
broker and depends on the specific naming conventions and capabilities of the
physical destinations on the message server.

To allow providers maximum flexibility in defining these objects while allowing
clients to be portable, the JMS specification defines administered objects (for
connection factories and destinations) that encapsulate provider-specific
information. These objects are created and configured by an administrator, stored
in a JNDI namespace (object store), and accessed by clients through standard JNDI
lookup code.

Administered objects allow JMS clients to use logical names to look up and
reference provider-specific objects. In this way, client code does not need to know
specific naming or addressing syntax or the configurable properties used by a
provider. This makes the code provider-independent.

The section “Administered Objects” on page 42 provides additional information
about the administered objects used in Message Queue.

NOTE The JMS specification does not require that you access administered
objects using a JNDI lookup. Client code can instantiate connection
factory and destination objects, and set values for their attributes.
However, this means that client code is not portable to other
providers.

35

Chapter 2

Introduction to Message Queue

Message Queue is a reliable asynchronous messaging service that conforms to the
JMS 1.1 specification. In addition, to provide for the needs of large-scale enterprise
deployments, Message Queue provides a host of features that exceed JMS
specification requirements.

This chapter describes the Message Queue service architecture and introduces its
enterprise features and capabilities. The chapter covers the following topics:

• “Message Service Architecture” on page 36

• “Product Features” on page 46

• “Product Editions” on page 54

• “Message Queue in a Sun Product Context” on page 56

Message Service Architecture

36 Message Queue 3 2005Q1 • Technical Overview

Message Service Architecture
The Message Queue service is composed of the following elements:

• “Message Server” on page 37

• “Client Runtime” on page 37

• “Administered Objects” on page 42

• “Administration Tools” on page 45

Figure 2-1 shows how these elements work together.

Figure 2-1 Message Queue Service Architecture

As shown in the figure, a Message Queue client uses the Java or C API to send or
receive a message. These APIs are implemented in a Java or C-client runtime
library, which does the actual work of creating connections to the broker and
packaging the bits appropriately for the connection service requested. If the

Message Queue
Java Client

Message Queue
C Client

Message Queue
C

Client Runtime

Object Store

Message Queue
 Message Server

Message Queue
Administration

Tools

Broker
Brokers

Administered
Objects

Destinations

Message Queue
Java

Client Runtime

Message Queue Service

Message Service Architecture

Chapter 2 Introduction to Message Queue 37

application uses administered objects, the client runtime locates these objects in an
object store and uses them to configure the connection and to locate physical
destinations. The broker routes and delivers the message. An administrator uses
Message Queue administrative tools to manage the broker and to add
administered objects to the object store.

Each of these elements is described briefly in the following sections.

Message Server
The message server is composed of one or more brokers and performs message
routing and delivery. It is the heart of the Message Queue service.

The message server consists of a single broker or a set of brokers working together
(as a broker cluster) to perform message routing and delivery services. The broker
is a process that performs the following tasks:

• The authentication of users and authorization of the operations they want to
perform

• Sets up communication channels with clients

• Receives messages from producing clients and places them in their respective
physical destinations

• Routes and delivers messages to one or more consuming clients

• Guarantees reliable delivery

• Provides data for monitoring system performance.

For a detailed description of the message server, its internal components, and the
functions they perform, see Chapter 4, “Message Server” on page 71.

Message Queue Enterprise Edition supports the use of broker clusters, consisting
of multiple interconnected broker instances, allowing a message server to scale
with the volume of message traffic. For a description of architecture and cluster
configuration issues, see Chapter 5, “Broker Clusters.”

Client Runtime
The Message Queue client runtime provides client applications with an interface to
the Message Queue service. The client runtime supports all operations needed for
Message Queue clients to produce messages (send them to destinations) and to
consume messages (retrieve them from destinations).

Message Service Architecture

38 Message Queue 3 2005Q1 • Technical Overview

There are two language implementations of the Message Queue client runtime, as
shown in Figure 2-1 on page 36:

• Java client runtime. Supplies Java client applications and components with all
the objects needed to implement the JMS API and to interact with the Message
Queue message server. These interface objects include connections, sessions,
messages, message producers, and message consumers.

• C client runtime. Supplies C client applications and components with the C
programming interfaces needed to interact with the Message Queue server.
(The C client runtime supports a procedural version of the JMS API messaging
model.)

Figure 2-2 illustrates the central role played by the client runtime between Message
Queue clients and the message server. Message production and consumption involve
an interaction between clients and the client runtime, while message delivery is an
interaction between the client runtime and the message server.

Figure 2-2 Client Runtime and Messaging Operations

The client runtime performs the following functions:

• Manages message delivery to the message server.

• Sets up the connections,

• Establishes the client’s identity

• Implements client acknowledgements

• Controls the flow of messages across the connection

• Can override message header values set by producing clients.

Message Queue
 Message Server

Message Queue
Client Runtime

Broker
BrokersMessage

delivery

Message Queue
Client

Message
production

Message
consumption

Destinations

Message Service Architecture

Chapter 2 Introduction to Message Queue 39

The following subsections briefly describe client runtime functions. Some aspects
of the behavior of the client runtime can be customized by configuring the
properties of the connection factory object.

Connection Handling
To configure connection handling behavior you must specify the host name and
port of the broker to which the client wants to connect and the type of connection
service desired. If the connection is made to a broker that is part of a cluster, you
must specify a list of addresses to which to make a connection. If one broker is not
online, the client runtime can connect you to another broker in the cluster.

In the Enterprise Edition, the client runtime can automatically reconnect to a broker
if a connection fails. The reconnection can be to the same broker, or to a broker
different from the original connection if the client is connected to a broker that is
part of a cluster.

If broker instances do not use a shared, highly available persistent store (as could
be achieved through integration of Message Queue with Sun Cluster), persistent
messages and other state information held by the failed (or disconnected) broker
can be lost if a reconnect is to a different broker instance. That is to say,
reconnection provides connection failover but not data availability.

Client Identification
A client ID can be set on any connection if an application finds it useful; it must be
set to identify durable subscribers.

To keep track of durable subscriptions, the broker uses a unique client
identification. The client ID is used to identify a durable subscriber that is inactive
at the time that messages are delivered to a topic destination. The broker retains
messages addressed to such subscribers and makes them available when the
subscriber becomes active.

Therefore, a client identifier must be set whenever using durable subscriptions in
deployed applications. A Message Queue feature allows you to use a special
variable name syntax when you specify the Client ID. This makes it possible to
obtain a different client ID for each connection obtained from a connection factory
object, whether that object is created by an administrator or programmatically. For
more information, see the Message Queue Administration Guide.

Message Service Architecture

40 Message Queue 3 2005Q1 • Technical Overview

Message Distribution to Consumers
Messages delivered by a broker over a connection are received by the client
runtime and distributed to the appropriate Message Queue sessions, where they
are queued up to be consumed by their respective message consumers, as shown in
Figure 2-3 on page 40.

Figure 2-3 Message Delivery to Message Queue Client Runtime

Messages are fetched off each session queue one at a time and consumed either
synchronously (by a client thread invoking the receive() method) or
asynchronously (by the session thread invoking the onMessage() method of a
message listener object). (A session is single threaded.)

The flow of messages delivered to the client runtime is metered at a per consumer
level. By appropriately adjusting connection factory properties, you can balance
the flow of messages so that messages delivered to one session do not adversely
affect the delivery of messages to other sessions on the same connection.

Ensuring Reliable Message Delivery
The client runtime has an important role in ensuring reliable delivery of messages.
It supports the client acknowledgement and transaction modes of the JMS
specification and controls the various broker acknowledgement behaviors used to
guarantee reliable delivery.

Broker

Connection

Destinations

Client
Runtime

Session 3

Session 2

Session 1

Message
Consumers

Message Service Architecture

Chapter 2 Introduction to Message Queue 41

The JMS specification describes a number of client acknowledgement modes that
provide for different levels of reliability. These acknowledgement modes, and
additional modes implemented by Message Queue, are described in the context of
message consumption (see “Client Acknowledgements” on page 63).

In the case of persistent messages and reliable delivery, the broker normally
acknowledges to the client runtime when it has completed operations used to
ensure once and only once consumption of messages. You can use connection
factory properties to suppress such broker acknowledgements, thereby saving on
network bandwidth and processing. Of course, such suppression of broker
acknowledgements, eliminates guarantees of reliable delivery.

Message Flow Control
The client runtime is the gatekeeper for the flow of messages across a connection.
In addition to the regular JMS payload messages that flow across a connection,
Message Queue also sends a variety of control messages that are used to guarantee
reliable delivery, manage the flow of messages across a connection, and perform
other control functions.

Since payload messages and control messages compete for the same connection,
they can collide, causing logjams to occur. The client runtime enforces various
configurable flow limits and metering schemes to minimize the collision of payload
and control messages, and thereby maximize message throughput.

Overriding Message Header Values
The client runtime can override JMS message header fields that specify the
persistence, lifetime, and priority of messages.

Message Queue allows message header overrides at the level of a connection:
overrides apply to all messages produced in the context of a given connection.

The ability of the client runtime to override message header values gives a Message
Queue administrator more control over the resources of a message server.
Overriding these fields, however, has the risk of interfering with
application-specific requirements (for example, message persistence). So this
capability should be used only in consultation with the appropriate application
users or designers.

Message Service Architecture

42 Message Queue 3 2005Q1 • Technical Overview

Other Functions
The client runtime performs a few other assorted functions:

• Queue browsing characteristics. The client runtime can be configured for the
number of messages it will retrieve at one time, and the time that it will wait
for messages, when browsing the contents of a queue destination.

• Message compression. The Java client runtime can compress messages during
message production and decompress messages during message consumption.
Whether or not such compression or decompression occurs depends on a
Message Queue-specific message property set in the message header when the
message is created by the client.

Administered Objects
Administered objects encapsulate provider-specific implementation and
configuration information about connections and destinations. Administered
objects can be created programmatically, or they can be are created and configured
using administrator tools, stored in an object store, and accessed by client
applications through standard JNDI lookup code.

Message Queue provides the administered object types shown in the following
table.

Table 2-1 Message Queue Administered Object Types

Type Description

Destination Represents a physical destination in a broker. Contains
the provider-specific name of the physical destination in
the broker. Message consumer and/or message
producer objects use a destination administered object to
access the corresponding physical destination.

Connection Factory Establishes physical connections between a client
application and a Message Queue message server. Also
configures the Message Queue client runtime, which
controls the behavior of physical connections. When
setting the attribute values of a connection factory
administered object, you specify properties that apply to
all connections that it establishes.

Message Service Architecture

Chapter 2 Introduction to Message Queue 43

Using Administered Objects via JNDI
Although the JMS specification does not require JMS clients to look up
administered objects in a JNDI namespace, there are distinct advantages to doing
so: it allows for a single source of control, it allows connections (client runtime
behavior) to be configured and reconfigured without having to recode, and it
allows clients to be portable to other JMS providers.

Administered objects make it easier to control and manage a Message Queue
service:

• Administrators can specify the behavior of the client runtime by requiring
client applications to access preconfigured connection factory objects.

• Administrators can control the proliferation of physical destinations by
requiring client applications to access preconfigured destination administered
objects that correspond to existing physical destinations.

In other words, the use of administered objects allows a Message Queue
administrator to control message service configuration details, while at the same
time allowing client applications to be provider-independent.

Using administered objects means that client programmers do not have to know
about provider-specific syntax and object naming conventions or provider-specific
configuration properties. In fact, by specifying that administered objects be read
only, administrators can ensure that client applications cannot change
administered object attribute values that were set when the administered object
was first created.

XA Connection Factory Used to establish physical connections that support
distributed transactions (see “Distributed Transactions”
on page 32). XA connection factory objects share the
same set of attributes as regular connection factory
objects, but enable the additional mechanisms needed to
support distributed transactions.

SOAP Endpoint Identifies the final destination of a SOAP message: this is
the URL of a servlet that can receive the SOAP
message. The SOAP endpoint administered object can
be configured to specify multiple URLs. Also specifies the
lookup name associated with the object, and object store
attributes.

Table 2-1 Message Queue Administered Object Types (Continued)

Type Description

Message Service Architecture

44 Message Queue 3 2005Q1 • Technical Overview

While it is possible for client applications to instantiate both connection factory and
destination administered objects on their own, this practice undermines the basic
purpose of an administered object. Message Queue administrators need to control
broker resources required by an application and to tune messaging performance.
In addition, directly instantiating administered objects makes client applications
provider-dependent.

Notwithstanding these arguments, applications often instantiate administered
objects in development environments in which administrative control is not an
issue.

Object Stores
Message Queue administered objects are placed in an object store (see Figure 2-1
on page 36) where they can be accessed by client applications through a JNDI
lookup. Message Queue supports two types of object store: a standard LDAP
directory server and a file-system object store.

LDAP Server Object Store An LDAP server is the recommended object store for
production messaging systems. LDAP implementations are available from a
number of vendors and are designed for use in distributed systems. LDAP servers
also provide security features that are useful in production environments.

File-system Object Store Message Queue supports a file-system object store,
which is not recommended for production systems but has the advantage of being
very easy to use in development environments. Rather than setting up an LDAP
server, all you have to do is create a directory on your local file system. A
file-system object store, however, cannot be used as a centralized object store for
clients deployed across multiple computer nodes unless these clients have access to
the directory where the object store resides.

Message Service Architecture

Chapter 2 Introduction to Message Queue 45

Administration Tools
Message Queue administration tools consist of a set of command line utilities and a
graphical user interface (GUI) Administration Console.

Command Line Utilities Message Queue provides a set of command line utilities
to perform all Message Queue administration tasks, such as starting up and
managing a broker, creating and managing physical destinations, managing
administered objects, and performing other, more specialized administrative tasks.
All the command line utilities share common formats, syntax conventions, and
options. For more detailed information on the use of the command line utilities, see
the Message Queue Administration Guide.

The Administration Console The Console provides a subset of the capabilities of
the Message Queue command line utilities. You can use the Administration
Console to manage a broker, create and manage physical destinations, and manage
administered objects. However you cannot perform the more specialized tasks of
some of the command line utilities. For example, you cannot use the
Administration Console to start up a broker, create broker clusters, or manage a
user repository. These tasks must be performed using the Message Queue
command line utilities.

The Message Queue Administration Guide provides a brief, hands-on tutorial to
familiarize you with the Administration Console and to illustrate how you use it to
accomplish basic tasks.

The Administration Console and some of the command line utilities allow for
remote management of brokers and physical destinations.

Product Features

46 Message Queue 3 2005Q1 • Technical Overview

Product Features
The Message Queue service, and the architecture described in the previous section,
fully implement the JMS 1.1 specification for reliable, asynchronous, flexible
message delivery. For documentation of JMS compliance-related issues, see
Appendix A, “Message Queue Implementation of Optional JMS Functionality.”

However, Message Queue has capabilities and features that go far beyond the
requirements of the JMS specification. These features enable Message Queue to
integrate systems consisting of large numbers of distributed components
exchanging many thousands of messages in round-the-clock, mission-critical
operations.

Message Queue’s enterprise features, discussed below, are grouped into the
following categories:

• “Integration Support Features” on page 46

• “Security Features” on page 49

• “Scalability Features” on page 50

• “Availability Features” on page 51

• “Manageability Features” on page 52

• “Flexible Server Configuration Features” on page 53

Integration Support Features
Message Queue allows you to integrate disparate applications and components
across an enterprise by including support for several transport protocols, a C client
interface to the Message Queue service, support for SOAP (XML) messages, and a
pluggable J2EE resource adapter.

Multiple Transport Support
Message Queue supports the ability of clients to interact with the Message Queue
message server over a number of different transport protocols, including TCP and
HTTP, and using secure connections.

HTTP connections HTTP transport allows messages to be delivered through
firewalls. Message Queue implements HTTP support using an HTTP tunnel servlet
that runs in a web server environment. Messages produced by a client are
delivered over HTTP through a firewall to the tunnel servlet. The tunnel servlet
extracts the message from an HTTP request and delivers the message over TCP/IP

Product Features

Chapter 2 Introduction to Message Queue 47

to the broker. In a similar fashion, Message Queue supports secure HTTP
connections using an HTTPS tunnel servlet. For more information on the
architecture of HTTP connections, see “HTTP/HTTPS Support” on page 76. For
information on setting up and configuring HTTP/HTTPS connections, see the
Message Queue Administration Guide.

Secure connections Message Queue provides for secure transmission of
messages based on the Secure Socket Layer (SSL) standard over TCP/IP and HTTP
transports. These SSL-based connection services allow for the encryption of
messages sent between clients and broker.

SSL support is based on self-signed server certificates. Message Queue provides a
utility that generates a private/public key pair and embeds the public key in a
self-signed certificate. This certificate is passed to any client requesting a
connection to the broker, and the client uses the certificate to set up an encrypted
connection. For information on creating self-signed certificates to enable SSL-based
connections services, see the Message Queue Administration Guide.

C Client Interface
In addition to supporting Java language messaging clients, Message Queue also
provides a C language interface to the Message Queue service. The C API enables
legacy C applications and C++ applications to participate in JMS-based messaging.
However, clients using Message Queue’s C API are not portable to other JMS
providers.

Message Queue’s C API is supported by a C client runtime that supports most of
the standard JMS functionality, with the exception of the following: the use of
administered objects; map, stream, or object message body types; distributed
transactions; and queue browsers. The C client runtime also does not support most
of Message Queue’s enterprise features.

For more information on the features of the C API and how it implements the JMS
programming model with C data types and functions, see the Message Queue
Developer’s Guide for C Clients.

SOAP (XML) Messaging Support
Message Queue supports creation and delivery of messages that conform to the
Simple Object Access Protocol (SOAP) specification. SOAP allows for the exchange
of structured XML data, or SOAP messages, between peers in a decentralized,
distributed environment. A SOAP message is an XML document that can also
contain an attachment, which does not have to be in XML.

Product Features

48 Message Queue 3 2005Q1 • Technical Overview

The fact that SOAP messages are encoded in XML makes SOAP messages platform
independent. They can be used to access data from legacy systems and share data
between enterprises. The data integration offered by XML also makes this
technology a natural for Web-based computing, such as Web services. Firewalls
can recognize SOAP packets and can filter messages based on information exposed
in the SOAP message header.

Message Queue implements the SOAP with Attachments API for Java (SAAJ)
specification. SAAJ is an application programming interface that can be
implemented to support a programming model for SOAP messaging and to
furnish Java objects that you can use to construct, send, receive, and examine SOAP
messages. SAAJ defines two packages:

• javax.xml.soap: You use the objects in this package to define the parts of a
SOAP message and to assemble and disassemble SOAP messages. You can also
use this package to send a SOAP message without the support of a provider.

• javax.xml.messaging: You use the objects in this package to send a SOAP
message using a provider and to receive SOAP messages.

Message Queue provides utilities to transform SOAP messages into JMS messages
and vice versa. These utilities allow SOAP messages to be received by a servlet,
transformed into a JMS message, delivered by the Message Queue service to a JMS
consumer, transformed back into a SOAP message, and delivered to a SOAP
endpoint. In other words, Message Queue supports the ability to reliably and
asynchronously exchange SOAP messages between SOAP endpoints or, more
simply, to publish SOAP messages to Message Queue subscribers.

For additional information, see the Message Queue Developer’s Guide for Java Clients.

J2EE Resource Adapter
The Java 2 Platform, Enterprise Edition (J2EE platform) is a specification for a
distributed component model in a Java programming environment. One of the
requirements of the J2EE platform is that distributed components be able to
interact with one another through reliable, asynchronous message exchange. In
short, the J2EE platform requires JMS support.

This support is provided in the J2EE programming model using the
message-driven bean (MDB), a specialized type of Enterprise Java Bean (EJB)
component that can consume JMS messages. A J2EE-compliant application server
must provide an MDB container that supports JMS messaging. This can be
achieved by plugging-in a JMS resource adapter into the application server.
Message Queue provides such a resource adapter.

Product Features

Chapter 2 Introduction to Message Queue 49

By plugging the Message Queue resource adapter into an application server, J2EE
components, including MDBs, deployed and running in the application server
environment can exchange JMS messages among themselves and with external
JMS components. This provides a powerful integration capability for distributed
components.

For information on the Message Queue resource adapter, see Chapter 6, “Message
Queue and J2EE.”

Security Features
Protecting stored and in-transit message data is critical for most enterprise
applications. Message Queue provides security at many levels, including
authentication of users, controlled access to resources, and message encryption.

Authentication Message Queue supports password-based authentication of
users. Connections to the message server are granted to users based on passwords
stored in a flat file or LDAP user repository. Information about all connection
attempts (users and host computers) is logged and can be tracked.

Authorization Access control lists (ACLs) provide configurable, fine-grained
control over access to a broker’s connections and physical destinations. Both user
and group access is supported. Authorization is performed on a broker-by-broker
basis; each broker can have a different access control file.

Encryption SSL support allows all message traffic between a message server and
its clients (whether over TCP/IP or HTTP connections) to be encrypted using a
full-strength SSL implementation.

For information on populating a user repository, managing access control lists, and
setting up SSL support, see the Message Queue Administration Guide.

Product Features

50 Message Queue 3 2005Q1 • Technical Overview

Scalability Features
Message Queue allows you to scale your application as users, client connections,
and message loads grow.

Scalable Connection Capacity
The Message Queue broker can handle thousands of concurrent connections. By
default, each connection is handled by a dedicated broker thread. Because this ties
up the thread even when the connection is idle, you can configure the connection
service so that multiple connections can share the same thread. This shared
threadpool model can dramatically expand the number of connections that a
broker can support. For more information, see “Thread Pool Manager” on page 75.

Broker Clusters
As the number of connections and the number of messages being delivered
through a broker increases, the extra load can be managed by adding additional
broker instances to the Message Queue server. Broker clusters balance client
connections and message delivery across a number of broker instances, making the
message server highly scalable. The broker instances can be on the same host or
distributed across a network. Clustering is an ideal way to improve message
throughput and expand messaging bandwidth as business needs grow. Broker
clusters are introduced in Chapter 5, “Broker Clusters” on page 91 and discussed
more fully in Message Queue Administration Guide.

Queue Delivery to Multiple Consumers

According to the JMS specification, a message in a queue destination can be
delivered only to a single consumer. Message Queue allows multiple consumers to
register with a queue. The broker can then distribute messages to the different
registered consumers, balancing the load among them and allowing the system to
scale.

The implementation of queue delivery to multiple consumers uses a configurable
load-balancing approach. Using this approach, you can specify the maximum
number of active consumers and the maximum number of backup consumers
standing by to take the place of active consumers should any fail. In addition, the
load-balancing mechanism takes into account a consumer’s current capacity and
message processing rate.

For more information on load-balanced queue delivery, see “Queue Delivery to
Multiple Consumers” on page 61.

Product Features

Chapter 2 Introduction to Message Queue 51

Availability Features
Message Queue provides a number of features for minimizing service downtime.
These range from mechanisms for preventing failure to those that allow integration
with Sun Cluster to provide high availability.

Message Service Stability
One of the most effective ways of ensuring availability of a message service is to
provide a service that offers high performance and minimizes failure. Message
Queue provides mechanisms for averting memory overloads or performance
logjams. These operate on both the message server and client runtime.

Message server resource management Because the message server is limited in
memory and CPU resources, it is possible for it to become overloaded to the point
where it becomes unresponsive or unstable. This commonly happens when the rate
of message production far exceeds the rate of consumption. To avert such
situations, a broker can be configured on the level of individual physical
destinations and on a system-wide level to prevent memory overruns. For more
information, see “Memory Resource Management” on page 79.

Client runtime message flow control In addition, Message Queue provides
mechanisms for controlling the delivery of messages to the client runtime. You can
use flow control mechanisms to optimize the delivery of messages to the client
runtime while preventing the client from running out of memory. For more
information, see “Message Flow Control” on page 41.

Automatic Reconnect to Message Server
Message Queue provides an automatic reconnect capability: If a connection
between a message server and client fails, Message Queue maintains the client state
while attempting to reestablish the connection. In most cases, message production
and consumption will transparently resume once the connection is re-established.
for more information, see Message Queue Administration Guide.

High Availability Through Sun Cluster
While Message Queue’s broker clustering provides a highly scalable message
server, it does not currently support failover from one broker instance in a cluster
to another. However, Message Queue can be integrated with Sun Cluster software
to provide a high-availability message server. Using a Sun Cluster agent developed
for Message Queue, Sun Cluster can ensure that no state data is lost if a broker fails,
allowing a message server to be restored immediately and transparently with
virtually no downtime.

Product Features

52 Message Queue 3 2005Q1 • Technical Overview

Manageability Features
Message Queue provides a number of features that you can use to monitor and
administer a message service and to tune message service performance.

Robust Administration Tools
Message Queue offers both command line and GUI tools for administering a
Message Queue message server and for managing destinations, transactions,
durable subscriptions, and security (see “Administration Tools” on page 45).

Message Queue also supports remote monitoring and administration of message
servers as well as tools for managing JMS administered objects, user repositories,
plugged-in JDBC-compliant data stores, and self-signed server certificates. For
information on using these administration tools, see the Message Queue
Administration Guide.

Message-Based Monitoring API
Message Queue provides a simple JMS-based monitoring API that you can use to
create custom monitoring applications. These monitoring applications are
consumers that retrieve metrics messages from special topic destinations. The
metrics messages contain monitoring data provided by the Message Queue broker
(see “Metrics Message Producer (Enterprise Edition)” on page 86).

For details of the metrics quantities reported in each type of metrics message, see
the Message Queue Developer’s Guide for Java Clients, which explains how to
develop a Message Queue client for consuming metrics messages. For information
about how to configure the production of metrics messages, see the Message Queue
Administration Guide.

Tunable Performance
Message Queue offers many ways to tune both the message server and the client
runtime to achieve optimal performance. You can monitor key resources and
adjust memory usage, threading resources, message flow, connection services,
reliability parameters, and other elements that affect message throughput and
system performance. For details about how to tune message service performance,
see the Message Queue Administration Guide.

Product Features

Chapter 2 Introduction to Message Queue 53

Flexible Server Configuration Features
Message Queue allows you to choose how persistent objects, user information, and
administered objects are stored.

Configurable Persistence
In order to guarantee delivery of messages, Message Queue stores messages and
other persistent objects until messages are consumed. In addition to providing a
high performance file-based persistent store, Message Queue also supports
configurable persistence. This allows you to store persistent messages in embedded
or external JDBC-compliant databases, such as Oracle 8i. For more information, see
“Persistence Manager” on page 81.

LDAP Server Support
Message Queue provides file-based storage for both administered objects and user
information needed for authentication and authorization. However, Message
Queue also supports using LDAP servers for administered object stores and user
repositories. LDAP servers provide a more secure, standard way of storing and
retrieving such information, and are recommended for production systems. For
information on using LDAP servers for administered object stores and user
repositories, see the Message Queue Administration Guide.

Product Editions

54 Message Queue 3 2005Q1 • Technical Overview

Product Editions
Message Queue is available in two editions: Enterprise and Platform. Both editions
provide a full implementation of the JMS specification, but each corresponds to a
different feature set and licensed capacity. The feature sets are compared in the
following table. For a description of the features, see “Product Features” on
page 46.

Table 2-2 Feature Comparison: Enterprise and Platform Editions

Enterprise Edition Platform Edition

Advanced Integration Support Features

HTTP support, TCP support TCP support

Secure connections based on Secure Socket
Layer (SSL) standard

Secure connections based on Secure Socket
Layer (SSL) standard

C language API, Java API Java API

(The C API can only be used with the trial
license.)

SOAP (XML) messaging support SOAP (XML) messaging support

J2EE resource adapter J2EE resource adapter

Security Features

Authentication from either a flat file or LDAP
user repository, authorization using an access
control file, and SSL encryption.

Same as Enterprise Edition

Scalability Features

Scalable connection capacity Fixed connection capacity

Message server can be implemented as a
broker cluster

Single-broker message server

Queue delivery to unlimited number of
message consumers (per queue)

Queue delivery to a maximum of three
message consumers (per queue)

Product Editions

Chapter 2 Introduction to Message Queue 55

The license capacities of the Platform and Enterprise Editions are described below.

Enterprise Edition
The Message Queue enterprise edition allows you to deploy and run messaging
applications in an enterprise production environment. You can also use it for
developing, debugging, and load-testing messaging applications and components.
The Enterprise Edition has an unlimited duration license based on the number of
CPUs that are used. The license places no limit on the number of brokers in a
multi-broker message service.

Platform Edition
The Message Queue Platform Edition places no limit on the number of client
connections supported by the message server. It comes with a basic license or a
90-day trial license:

Availability Features

Message service stability through memory
resource management and message flow
control

Same as Enterprise Edition

Client connection failover to a different broker in
a cluster or automatic reconnect to the same
broker.

No client connection failover. Automatic
reconnect to same broker allowed.

High availability through Sun Cluster High availability through Sun Cluster

Manageability Features

Robust administration tools Robust administration tools

Message-based monitoring API in addition to
administration tools and logging

Administration tools and logging, but no
message-based monitoring API

Tunable performance Tunable performance

Flexible Server Configuration Features

Pluggable Persistence Pluggable Persistence

LDAP server support LDAP server support

Table 2-2 Feature Comparison: Enterprise and Platform Editions (Continued)

Enterprise Edition Platform Edition

Message Queue in a Sun Product Context

56 Message Queue 3 2005Q1 • Technical Overview

• A basic license has an unlimited duration. Platform Edition with a basic
license can be used as a JMS provider in less demanding production
environments. This license does not include Enterprise Edition features.

• A 90-day trial enterprise license includes all Enterprise Edition features not
included in the basic license. However, the license has a limited 90-day
duration enforced by the software, making it suitable for evaluating the
features available in the Enterprise Edition. For instructions on using the
90-day trial enterprise license, see the startup options discussed in the Message
Queue Administration Guide.

The Platform Edition can be downloaded free from the Sun web site and is also
bundled with the Sun Java System Application Server platform. Instructions for
upgrading Message Queue from Platform Edition to Enterprise Edition can be
found in the Message Queue Installation Guide.

Message Queue in a Sun Product Context
Besides being the middleware directly used by applications, Message Queue is also
used by other middleware as well as by other servers and applications delivered by
Sun. To facilitate this, Message Queue is delivered in Solaris and Java Enterprise
System as well as being delivered in the Sun Java System Application Server.

In the Application Server, Message Queue satisfies the JMS requirement that the
J2EE platform furnish a JMS provider. It is used directly by the applications that are
hosted by the Application Server. For more information, see Chapter 6, “Message
Queue and J2EE” on page 97.

NOTE For all editions of Message Queue, a portion of the product—the
Message Queue client runtime—can be freely redistributed for
commercial use. All other files in the product cannot be
redistributed. The portion that can be freely redistributed allows a
licensee to develop a Message Queue client application (one which
can be connected to a Message Queue service) that can be sold to a
third party without incurring any licensing fees. The third party will
either need to purchase Message Queue to access a Message Queue
message server or make a connection to yet another party that has a
Message Queue message server installed and running.

57

Chapter 3

Reliable Message Delivery

This chapter describes how the Message Queue service provides reliable message
delivery. It traces the path of a message through the system, describing the various
mechanisms used to route and deliver the message to the appropriate consumer,
and to guarantee that it has been delivered.

The chapter covers the following topics:

• “A Message’s Journey Through the System” on page 58

• “Message Delivery Processing” on page 60

• “Performance Issues” on page 68

This chapter has material of interest to both developers and administrators and
supplements the information in Chapter 2, “Introduction to Message Queue.”

A Message’s Journey Through the System

58 Message Queue 3 2005Q1 • Technical Overview

A Message’s Journey Through the System
The delivery of a message by the Message Queue message service, from a message
producer to a message consumer is illustrated in Figure 3-1. The subsections that
follow provide a more detailed description of each stage in the delivery process.

Figure 3-1 Message Delivery Steps

 Producing
Client

Client
Runtime

Data Store

Message
Server

1

2

3

4

6

7

8

9

5

10

Consuming
Client

Client
Runtime

Payload messages

Control messages

A Message’s Journey Through the System

Chapter 3 Reliable Message Delivery 59

Message delivery steps for a persistent, reliably delivered message are as follows:

Message Production
1. The client runtime delivers the message over the connection from the
message producer to the message server.

Message Handling and Routing
2. The message server reads in the message from the connection and places it
in the appropriate destination.

3. The message server places the (persistent) message in the data store.

4. The message server acknowledges receipt of the message to the client
runtime of the message producer.

5. The message server determines the routing for the message.

6. The message server writes out the message from its destination to the
appropriate connection.

Message Consumption
7. The message consumer’s client runtime delivers the message from the
connection to the message consumer.

8. The message consumer’s client runtime acknowledges consumption of the
message to the message server.

Message End-of-Life
9. The message server processes the client acknowledgement, deleting the
(persistent) message from both its destination and the data store.

10. The message server confirms to the consumer’s client runtime that the
client acknowledgement has been processed and the message cannot be
delivered again.

The messages handled by the system in the course of these delivery steps fall into
two categories:

• Payload messages. The JMS messages sent by producing clients to consuming
clients.

• Control messages. Acknowledgements and other non-payload messages
passed between message server and client runtime to guarantee that payload
messages are successfully delivered and to control the flow of messages across
a connection.

Message Delivery Processing

60 Message Queue 3 2005Q1 • Technical Overview

Message Delivery Processing
The processing of a message by a Message Queue service, in the course of its
delivery from producer to consumer, proceeds in several stages, as shown in the
description of the steps following Figure 3-1.

The stages are as follows:

• “Message Production” on page 60

• “Message Handling and Routing” on page 61

• “Message Consumption” on page 63

• “Message-End-of-Life” on page 66

These stages are described in the following sections.

Message Production
In message production, a message is created by the client and sent by the client
runtime over a connection to a destination on a broker.

If the message’s delivery mode has been set to persistent (guaranteed delivery,
once and only once, even if the broker fails), the broker, by default, sends a control
message—a broker acknowledgement—back to the client runtime. This broker
acknowledgement indicates that the broker delivered the message to its destination
and stored it in the broker’s data store. The client thread blocks until it receives the
broker acknowledgement.

If the message’s delivery mode has been set to non-persistent, the broker, by
default, does not send a broker acknowledgement back to the client runtime and
the client thread does not block. However, if it is important to know whether the
broker receives non-persistent messages, you can enable broker acknowledgement.
In fact, broker acknowledgement must be enabled for the broker to slow message
production when destination memory limits are reached (see “Destination
Message Limits” on page 80).

Message Delivery Processing

Chapter 3 Reliable Message Delivery 61

Message Handling and Routing
When the broker receives an incoming JMS payload message, it places it in its
target destination and then routes it to the appropriate consumer or consumers.

In general, all messages remain at their physical destination (in memory) until they
are delivered or expire. If the broker should fail, these messages would be lost. If a
message is persistent, the broker stores it in a database or file system and recovers
it after a failure.

The handling of a message depends on its destination type—queue or topic—as
described in the following sections. It also depends on destination properties that
are set for the destination when the administrator creates the physical destination.

Queue Destinations
Queue destinations are used in point-to-point messaging, where a message is
meant for delivery to and consumption by only one consumer.

While any message in a queue is delivered to only a single consumer, Message
Queue allows multiple consumers to register with a queue. The broker can then
distribute messages to the different registered consumers, balancing the load
among them.

Basic Routing Mechanisms
Messages are queued as they arrive from producers. As each message reaches the
front of the queue, it is routed to a single consumer registered with the queue. The
order in which a message reaches the front of the queue depends on the order of its
arrival and on its priority.

If a selector property value has been set in a message, the broker compares it to any
selector values specified by the registered consumer, and ensures that the selector
values match before routing the message to the consumer.

Queue Delivery to Multiple Consumers
The implementation of queue delivery to multiple consumers uses a configurable
load-balancing approach based on a number of queue destination properties:

• You can set the maximum number of consumers that are active in
load-balanced queue delivery.

• You can set the maximum number of backup consumers that can take the place
of active consumers should any of them fail.

Message Delivery Processing

62 Message Queue 3 2005Q1 • Technical Overview

New consumers are rejected if the number of consumers exceeds the sum of these
two properties. (Message Queue Platform Edition supports up to three consumers
per queue—two active and one backup—and Message Queue Enterprise Edition
supports an unlimited number.)

The load-balancing mechanism takes into account the message consumption rate of
different consumers. Messages in a queue destination are routed to newly available
active consumers (in the order in which they registered with the queue) in batches
of a configurable size (the queue destination’s consumer flow limit property). Once
these messages have been delivered, additional messages arriving in the queue are
routed in batches to consumers as consumers become available. A consumer
becomes available when it has consumed a configurable percentage of messages
previously delivered to it. In other words, the dispatch rate to each consumer
depends on the consumer’s current capacity and message processing rate.

If an active consumer fails, then the first backup consumer is made active and takes
over the work of the failed consumer. Because of these mechanisms, if a queue
destination has more than one active consumer, no guarantee can be made about
the order in which messages are consumed.

When the rate of message production is slow, the broker might dispatch messages
unevenly among active consumers. If you have more active consumers than
necessary, some may never receive messages.

In a broker cluster environment, you can set delivery to multiple consumers to
prioritize local consumers. You can use a queue destination property to specify that
messages be delivered to remote consumers only if there are no consumers on a
producer’s home broker—that is, the broker to which the producer sent its
messages (the local broker). This lets you increase performance in situations where
routing to remote consumers (through their home brokers) might cause slowdowns
in throughput.

Topic Destinations
Topic destinations are used in publish/subscribe messaging, where a message is
meant for delivery to all consumers that have registered an interest in the
destination.

Basic Routing Mechanisms
As a message arrives from a producer, it is routed to all consumers subscribed to
the topic. If consumers have registered a durable subscription to the topic, they do
not have to be active when the message arrives to receive the message: the broker
will store the message until the consumer is once again active, and then deliver the
message.

Message Delivery Processing

Chapter 3 Reliable Message Delivery 63

If a selector property value has been set in a message, the broker compares it to any
selector values specified by the registered consumer, and ensures that the selector
values match before routing the message to the consumer.

Durable Subscriptions and Client Identifiers
Only one user may have a durable subscription to a topic. As that user opens and
closes connections to the message server, the user’s identity must remain the same.
A client identifier is used to make sure that each durable subscription corresponds to
only one user.

A client identifier associates a client’s connection to a message server with state
information maintained by the message server on behalf of the client. By definition,
a client identifier is unique.

To create a durable subscription, a client identifier must be either
programmatically set by the client, using a JMS API method call, or
administratively configured in the connection factory objects used by the client.

Message Consumption
Once messages have been routed, they are delivered to their respective consumers.
When a consumer receives a payload message, the consuming client runtime sends
the broker an acknowledgement that the message has been received and processed
by the client. The broker waits for this client acknowledgement before deleting the
message from its destination. Client acknowledgements can apply to individual
messages, groups of messages, or transactions.

Client Acknowledgements
In accordance with the JMS specification, a client can specify one of three basic
acknowledgement modes when creating a session. Which mode you choose
depends on the message delivery reliability desired:

Message Queue extends the set of client acknowledgement modes with the
addition of a NO_ACKNOWLDEGE mode. The basic and extended modes are described
in the following subsections.

Message Delivery Processing

64 Message Queue 3 2005Q1 • Technical Overview

AUTO_ACKNOWLEDGE Mode
In the AUTO_ACKNOWLEDGE mode, the session automatically acknowledges each
message consumed by the client. In addition, the session thread blocks, waiting for
the broker to confirm that it has processed the client acknowledgement for each
consumed message. This confirmation, in turn, is called a broker
acknowledgement.

• For asynchronous message consumption by a message listener, the message is
acknowledged after the onmessage() method returns.

• For synchronous message consumption, the message is acknowledged just
before the receive() method returns. In this case, it is possible for a message to
be partially processed but lost, if the system fails before the message is
consumed. For increased reliability, use CLIENT_ACKNOWLEDGE mode or a
transacted session to guarantee that no message is lost if the system fails.

CLIENT_ACKNOWLEDGE Mode
CLIENT_ACKNOWLEDGE mode gives the client the most control. In this mode, the
client explicitly acknowledges after one or more messages have been consumed.
The acknowledgement takes place when the client calls the acknowledge() method
of a message object, causing the session to acknowledge all messages that have
been consumed by the session since the previous invocation of the method. (This
could include messages consumed asynchronously by many different message
listeners in the session, independent of the order in which they were consumed.)

In addition, the session thread blocks, waiting for the return broker
acknowledgement for the batch of consumed messages, which confirms that the
broker has processed the client acknowledgement.

Because client acknowledgements and broker acknowledgements are generally
batched (rather than being sent one by one), CLIENT_ACKNOWLEDGE mode generally
conserves connection bandwidth and reduces the overhead for broker
acknowledgements, as compared with AUTO_ACKNOWLEDGE mode. Of course, if in
this mode, the client acknowledges each message, no batching will occur, and the
acknowledgements are sent one by one.

NOTE Message Queue also provides a specific method you can use in
CLIENT_ACKNOWLEDGE mode, by which you can acknowledge only
the individual message on which you invoke the method, rather than
the standard behavior. This is achieved using programming
techniques described in the Message Queue Developer’s Guide for Java
Clients.

Message Delivery Processing

Chapter 3 Reliable Message Delivery 65

DUPS_OK_ACKNOWLEDGE Mode
In DUPS_OK_ACKNOWLEDGE mode, the session acknowledges after ten messages have
been consumed. This value is not currently configurable. Unlike AUTO_ACKNOWLEDGE
or CLIENT_ACKNOWLEDGE modes, the session thread does not block waiting for a
broker acknowledgement, because no broker acknowledgement is requested in the
DUPS_OK_ACKNOWLEDGE mode.

This means there is no guarantee that messages are delivered and consumed only
once. In general, messages will not be redelivered very often; they are redelivered
only in cases of failure, where the broker has not received a client
acknowledgement for a message it has delivered. Clients should use
DUPS_OK_ACKNOWLEDGE mode if they don’t care about duplicate delivery.

Because client acknowledgements are batched and the client thread does not block,
message throughput is generally much higher than in other modes.

NO_ACKNOWLEDGE Mode
In NO_ACKNOWLEDGE mode, the broker performs the client acknowledgement on
behalf of the client, so there is no guarantee that a message has been successfully
processed by the consuming client.

Use this mode when message throughput is important but reliable delivery is not.
This might be the case, for example, when messages are sent periodically at short
intervals, so message load is high and lost messages do not matter a lot.

This mode extends the JMS specification and should only be used by clients that do
not need to work with other JMS providers.

Transactions
The client and broker acknowledgement processes described above apply, as well,
to JMS message deliveries grouped into transactions. In such cases, client and
broker acknowledgements operate on the level of the transaction, including all
messages involved in the transaction. When a transaction commits, a broker
acknowledgement is sent automatically.

The broker tracks transactions, allowing them to be committed or rolled back
should they fail. This transaction management also supports local transactions that
are part of larger, distributed transactions (see “Distributed Transactions” on
page 32). The broker tracks the state of these transactions until they are committed.
When a broker starts up, it inspects all uncommitted transactions and, by default,
rolls back all transactions except those in a PREPARED state, which must be resolved
manually.

Message Delivery Processing

66 Message Queue 3 2005Q1 • Technical Overview

Message Queue implements support for distributed transactions through an XA
connection factory, which lets you create XA connections, which in turn let you
create XA sessions. In addition, support for distributed transactions requires either
a third party Java Transaction Service (JTS) or a J2EE-compliant Application Server
(that provides JTS).

Message-End-of-Life
The broker deletes messages from destination memory after they are successfully
delivered. However, there are times when a message might be discarded without
having been successfully delivered. The following subsections describe the
conditions under which messages are discarded.

Normal Deletion of Messages
Under normal conditions, the broker deletes a message from destination memory
when the message has been successfully delivered, as confirmed by a client
acknowledgement.

When a broker delivers a message to a consumer, it marks the message as
delivered, but does not really know whether it has been received and consumed.
Therefore, the broker waits for a client acknowledgment before deleting the
message from its physical destination and from persistent store.

If the message is sent to a topic, the broker does not delete it until it has received a
client acknowledgement from each message consumer to which it has delivered the
message. In the case of durable subscriptions to a topic, the broker retains each
message in that destination, delivering it as each durable subscriber becomes an
active consumer. The broker records client acknowledgements as it receives them
and deletes the message only after all the acknowledgements have been received
(unless the message expires before then). Depending on the client
acknowledgement mode, the broker may confirm receipt of the client
acknowledgement by sending a broker acknowledgement back to the client.

If a broker or the connection were to fail, the broker might not receive a client
acknowledgement and will redeliver all previously delivered but unacknowledged
messages, marking them with a Redelivered flag. For example, if a queue
consumer goes off line before acknowledging receipt of a message, and another
consumer (or even the same consumer) subsequently registers with the queue, the
broker will redeliver the unacknowledged message to the new consumer, marking
it with a Redelivered flag. Client applications concerned about redelivery of a
message under such conditions should check messages for the this flag.

Message Delivery Processing

Chapter 3 Reliable Message Delivery 67

Abnormal Deletion of Messages
When a message cannot be delivered, it is either discarded or placed on the dead
message queue, depending on the conditions that prevented its delivery.

A message would be discarded by the broker before having been successfully
delivered and consumed under the following conditions:

• You use administration tools to purge a destination of one or more messages

• You remove or redefine a durable subscription, leaving a message in a topic
destination without the possibility of delivery.

However, under these conditions, a message would be considered dead and either
discarded or placed on the dead message queue, depending on the behavior you
configure:

• A message expires, exceeding the value of JMSExpiration set in its message
header.

• A destination’s “remove” limit behavior is invoked because the destination
exceeded a memory limit threshold.

• Message delivery fails because a message cannot be consumed (an exception is
thrown by the client).

You can choose to retain such messages and have them placed in a dead message
queue. When placing messages in the dead message queue, the broker writes
Message Queue-specific property values to the message, specifying the time and
reason for placing them there.

You can subsequently retrieve messages from the dead message queue for
diagnostic purposes. See “The Dead Message Queue.” on page 79 for more
information.

NOTE There is a JMS API (recover Session) by which a client can
explicitly request redelivery of messages that have been received
but not yet acknowledged by the client. When redelivering such
messages, the broker marks them with a Redelivered flag.

Performance Issues

68 Message Queue 3 2005Q1 • Technical Overview

Performance Issues
The more reliable the delivery of messages, the more overhead and bandwidth are
required to achieve it. The trade-off between reliability and performance is
therefore a significant design consideration. You can maximize performance by
choosing to produce and consume non-persistent messages. On the other hand,
you can maximize reliability by producing and consuming persistent messages
and using transacted sessions. Between these extremes are a number of options,
depending on the needs of each application.

The rate at which messages can be processed, for example, is a product of many
factors, including messaging application design, configuration of the message
server, and configuration of the client runtime. Although these factors are quite
distinct, their interactions can complicate the task of maximizing performance.

This section briefly reviews a few of the factors that figure into the trade-off
between reliability and performance.

Delivery Mode The delivery mode specifies whether a message is to be delivered
at most once (non-persistent) or once and only once (persistent). The management
of persistent messages requires the use of broker acknowledgement messages
flowing across a connection and the use of client acknowledgement modes that
block, waiting to receive the broker acknowledgements. To increase throughput,
you can set the client runtime to suppress broker acknowledgements, but this
eliminates the guarantee that persistent messages are delivered once and only
once.

Client Acknowledgement Mode Each of the four client acknowledgement
modes requires a different level of processing and bandwidth overhead.
AUTO_ACKNOWLEDGE mode consumes the most overhead and guarantees reliability
on a message-by-message basis, CLIENT_ACKNOWLEDGE mode batches
acknowledgements and therefore requires less bandwidth overhead, while
DUPS_OK_ACKNOWLEDGE mode consumes the least overhead but allows for duplicate
delivery of messages. NO_ACKNOWLEDGE mode gives the best performance at the cost
of possible message loss.

Client Application Design The number of messages queued up in a session is a
function of the number of message consumers using the session and the message
load for each consumer. If a client is slow in producing or consuming messages,
you can normally improve performance by redesigning the application to
distribute message producers and consumers among a greater number of sessions
or to distribute sessions among a greater number of connections. Design issues that
affect performance are discussed in the Message Queue Developer’s Guide for Java
Clients and the Message Queue Developer’s Guide for C Clients.

Performance Issues

Chapter 3 Reliable Message Delivery 69

Message Flow Metering The contention between control messages and payload
messages for connection bandwidth can be managed by the client runtime.
Configuring the client runtime appropriately can help speed the delivery of broker
acknowledgements, freeing blocked session threads and speeding up consumption
of messages. See the Message Queue Administration Guide for more information.

Message Flow Limits Message consumption can be slowed when client runtime
resource limitations are approached. By limiting the number of messages held in
the client runtime waiting to be consumed by one or more consumers, these
resource limitations can be avoided. See the Message Queue Administration Guide
for more information.

Performance Issues

70 Message Queue 3 2005Q1 • Technical Overview

71

Chapter 4

Message Server

The Message Queue message server, introduced in “Message Server” on page 37,
consists of a single broker or a set of brokers working in concert (a broker cluster) to
perform message routing and delivery.

This chapter discusses the internal structure of the broker, describes its various
components, and outlines the steps required to configure and manage it in
development and production environments. It consists of the following sections:

• “Broker Architecture” on page 72

• “Broker Components” on page 74

• “Development and Production Environments” on page 87

Understanding the functional parts of the broker can help you configure desired
broker behavior, scale operations, and optimize performance. This chapter might
therefore be of more interest to administrators than to application developers.

Broker Architecture

72 Message Queue 3 2005Q1 • Technical Overview

Broker Architecture
To perform message delivery, a broker sets up communication channels with
clients, performs authentication and authorization, routes messages appropriately,
guarantees reliable delivery, and provides data for monitoring system
performance.

To perform this complex set of functions, a broker uses a number of different
internal components, each with a specific role in the delivery process. These broker
components are illustrated in Figure 4-1 and described briefly in Table 4-1. The
Message Router component performs the key message routing and delivery
service, and the others provide important support services on which the Message
Router depends.

Figure 4-1 Broker Components

incoming
messages

outgoing
messages

Connection
Services

 url

 url

Message
Router

Security
Manager

Persistence
Manager

Main Broker
Components

User
Repository

Data
Store

Monitoring
Service

Physical
Destinations

Broker Architecture

Chapter 4 Message Server 73

When you configure the broker, you are actually configuring these services to
optimize the broker’s performance, depending on load conditions, application
complexity, and so forth.

Table 4-1 Main Broker Service Components and Functions

Component Description/Function

Connection Services Manages the physical connections between a broker and
clients, providing transport for incoming and outgoing
messages.

Message Router Manages the routing and delivery of messages: These
include JMS messages as well as control messages used
by the Message Queue messaging system to support JMS
message delivery.

Persistence Manager Manages the writing of data to persistent storage so that
system failure does not result in failure to deliver JMS
messages.

Security Manager Provides authentication services for users requesting
connections to a broker and authorization services (access
control) for authenticated users.

Monitoring Service Generates metric and diagnostic information that can be
written to a number of output channels that you can use to
monitor and manage a broker.

Broker Components

74 Message Queue 3 2005Q1 • Technical Overview

Broker Components
The following sections describe each of the broker components shown in
Figure 4-1, their functions, and their behavior. See the Message Queue
Administration Guide for their respective properties and configuration procedures.

Connection Services
A Message Queue broker supports communication with both application clients
and administration clients. Each connection service is specified by its service type
and protocol type.

service type Specifies whether the service provides JMS message delivery
(NORMAL) or Message Queue administration services (ADMIN) that support
administration tools.

protocol type Specifies the underlying transport protocol layer that supports the
service.

The connection services currently available from a Message Queue broker are
shown in Table 4-2.

You can configure a broker to run any or all of these connection services. Each
connection service supports specific authentication and authorization (access
control) features (see “Security Manager” on page 82). Each connection service is
multi-threaded, supporting multiple connections.

Table 4-2 Connection Services Supported by a Broker

Service Name Service Type Protocol Type

jms NORMAL TCP

ssljms NORMAL TLS (SSL-based security)

httpjms (Enterprise Edition) NORMAL HTTP

httpsjms (Enterprise Edition) NORMAL HTTPS (SSL-based security)

admin ADMIN TCP

ssladmin ADMIN TLS (SSL-based security)

Broker Components

Chapter 4 Message Server 75

Each connection service is available at a particular port, specified by the broker’s
host name and a port number. The port can be dynamically allocated or you can
specify the port at which a connection service is available. The general scheme is
shown in Figure 4-2.

Figure 4-2 Connection Services Support

Port Mapper
Connection services are assigned a port by a common Port Mapper. The Port
Mapper itself resides at a standard port number, 7676. When the Message Queue
client runtime sets up a connection with the broker, it first contacts the Port
Mapper, requesting the port number of the connection service it desires.

You can override the Port Mapper by assigning a static port number for the jms,
ssljms, admin and ssladmin connection services when configuring these
connection services. However, static ports are generally used only in special
situations, such as in making connections through a firewall (see “HTTP/HTTPS
Support” on page 76), and are not generally recommended.

Thread Pool Manager
Each connection service is multi-threaded, supporting multiple connections. The
threads needed for these connections are maintained in a thread pool managed by
a Thread Pool Manager component. You can configure the Thread Pool Manager to
set a minimum number and maximum number of threads maintained in the thread
pool. As threads are needed by connections, they are added to the thread pool.

Thread
Pool

Manager

Connection
Services

Port
Mapper

Thread
Pool

Manager

incoming
messages

outgoing
messages

 url

 url

Broker Components

76 Message Queue 3 2005Q1 • Technical Overview

When the minimum number is exceeded, the system will shut down threads as
they become free until the minimum threshold is reached, thereby saving on
memory resources. The threads in a thread pool can either be dedicated to a single
connection or assigned to multiple connections, as needed.

HTTP/HTTPS Support
HTTP/HTTPS support allows Message Queue clients to interact with the broker
using the HTTP protocol instead of through direct TCP connections. If the client
needs to be separated from the broker by a firewall, you can use HTTP/HTTPS
service because it allows communication through firewalls.

Figure 4-3 shows the main components involved in providing HTTP/HTTPS
support.

Figure 4-3 HTTP/HTTPS Support Architecture

• On the Message Queue client side, an HTTP or HTTPS transport driver
encapsulates the JMS message into an HTTP request and makes sure that these
requests are sent to the Web server in the correct sequence.

• The client can optionally use an HTTP proxy server to interact with the Web
server, if necessary.

NOTE HTTP/HTTPS support is available for Java clients but not for C
clients.

Web Server

HTTP Proxy
Firewall

HTTP

TLS

HTTPS

TCP/IP

HTTP
Tunnel
Servlet

HTTPS
Tunnel
Servlet

Message Queue
Client

Message
Queue

Client Runtime

Message Queue
Broker

httpjms
Connection

Service

httpsjms
Connection

Service

HTTP

HTTPS

Broker Components

Chapter 4 Message Server 77

• An HTTP or HTTPS tunnel servlet (both bundled with Message Queue) is
loaded in the Web server and used to pull JMS messages out of client HTTP
requests before forwarding them to the broker. The HTTP/HTTPS tunnel
servlet also sends broker responses back to the client. A single HTTP/HTTPS
tunnel servlet can be used to access multiple brokers.

• On the broker side, a broker connection to the tunnel servlet is established at
broker startup time. As messages are sent from the HTTP or HTTPS tunnel
servlet, the httpjms or httpsjms connection service, respectively, unwraps the
message and submits it to the broker’s Message Router component.

The architectures for HTTP and HTTPS shown in Figure 4-3 are very similar. The
main difference is that, in the case of HTTPS (httpsjms connection service), the
tunnel servlet has a secure connection to both the client and broker.

Message Queue’s HTTPS tunnel servlet passes a self-signed certificate to any
broker requesting a connection. The certificate is used by the broker to set up an
encrypted connection to the HTTPS tunnel servlet. Once this connection is
established, a secure connection between a Message Queue client and the tunnel
servlet can be negotiated.

The httpjms and httpsjms services are configured using properties described in
the Message Queue Administration Guide.

Message Router
Once connections have been established between clients and a broker using the
supported connection services, the routing and delivery of messages can proceed.

Message Queue messaging is premised on a two-phase delivery of messages: first,
from a producing client to a physical destination on the broker, and second, from
the destination on the broker to one or more consuming clients. The Message
Router manages the process of placing arriving messages in the appropriate
destination and then routing and delivering the message to the appropriate
consumer(s).

This section discusses the different kinds of destinations and the management of
memory resources for those destinations, individually and collectively. A
discussion of the mechanisms of routing and delivering messages can be found in
Chapter 3, “Reliable Message Delivery.”

Broker Components

78 Message Queue 3 2005Q1 • Technical Overview

Physical Destinations
Physical destinations represent locations in a broker’s physical memory where
incoming messages are stored before being routed to consuming clients.

Destinations fall into a number of categories, depending on how they are created
and for what purpose: admin-created, auto-created, temporary, and the dead
message queue.

Admin-Created Destinations.
Admin-created destinations are created by an administrator using Message Queue
administration tools. These correspond either to a logical destination that is created
programmatically or to a destination administered object that is looked up by the
client.

Because a Message Queue message server is a central hub in a messaging system,
its performance and reliability are important to the success of enterprise
applications. Since destinations can consume significant resources (depending on
the number and size of messages they handle, and on the number and durability of
the message consumers that register), they need to be managed closely to
guarantee message server performance and reliability. It is therefore standard
practice for an administrator to create destinations on behalf of an application,
monitor the destinations, and reconfigure their resource requirements when
necessary.

Auto-Created Destinations
Auto-created destinations are automatically created by the broker as they are
needed, without requiring the intervention of an administrator. In particular, an
auto-created destination is created whenever a message consumer or message
producer attempts to access a nonexistent destination. They are used when
destinations need to be created dynamically: typically during a development and
test cycle. You can configure a broker to enable or disable the auto-create capability.

When destinations are created automatically, clashes between different client
applications (using the same destination name) or degraded system performance
(due to the resources required to support a destination) can result. For this reason,
an auto-created destination is automatically destroyed by the broker when it is no
longer being used: that is, when it no longer has message consumer clients and no
longer contains any messages. If a broker is restarted, it will recreate auto-created
destinations only if they contain persistent messages.

Broker Components

Chapter 4 Message Server 79

Temporary Destinations
Temporary destinations are explicitly created and destroyed (using the JMS API)
by clients that need a destination at which to receive replies to messages sent to
other clients. These destinations are maintained by the broker only for the duration
of the connection for which they are created. A temporary destination cannot be
destroyed by an administrator, and it cannot be destroyed by a client application as
long as it is in use: that is, if it has active message consumers. Temporary
destinations, unlike admin-created or auto-created destinations (that have
persistent messages), are not stored persistently and are never re-created when a
broker is restarted; however, they are visible to Message Queue administration
tools.

The Dead Message Queue.
The dead message queue is a specialized destination created automatically at broker
startup that is used to store dead messages for diagnostic purposes. A dead message
is one that is removed from the system for a reason other than normal processing
or explicit administrative action. A message might be considered dead because it
has expired, because it has been removed from a destination due to memory limit
overruns, or because of failed delivery attempts.

There are two ways to have messages placed in the dead message queue:

• You can configure destinations to place messages in the dead message queue
rather than discarding them.

• A client developer can also set a property value when creating a message that
determines whether the message should be placed in the dead message queue
were it to die.

When a message is placed in the dead message queue, additional property
information is written into it, providing you with information about the cause of
death.

Memory Resource Management
A message server is limited in resources: memory, CPU cycles, and so forth. As a
result, depending on the use patterns of the messaging applications the broker
supports, it is possible for a message server to become overwhelmed to the point
where it becomes unresponsive or unstable. In particular, this can be a problem if
production of messages for a destination is much faster than consumption.

The Message Router has mechanisms for managing memory resources and
preventing the broker from running out of memory. It uses three levels of memory
protection to keep the system operating as resources become scarce: destination
message limits, system-wide limits, and system memory thresholds.

Broker Components

80 Message Queue 3 2005Q1 • Technical Overview

Destination Message Limits
Since messages can remain in a destination for an extended period of time, memory
resources can become an issue. You do not want to allocate too much memory to a
destination (there is only so much system memory), nor do you want to allocate too
little (messages could be rejected).

To allow for flexibility based on the load demands of each destination, you can set
properties that manage memory resources and message flow for each destination.
For example, you can specify the maximum number of producers allowed for a
destination, the maximum number (or size) of messages allowed in a destination,
and the maximum size of any single message.

You can also specify which of four responses are taken by the Message Router
when any such limits are reached. The four limit behaviors are:

• Slowing message producers

• Throwing out the oldest messages

• Throwing out the lowest-priority messages, according to age

• Rejecting the newest messages

System-Wide Message Limits
System-wide message limits constitute a second line of protection. You can specify
system-wide limits that apply collectively to all destinations on a broker: the total
number of messages and the memory consumed by all messages. If any of the
system-wide message limits are reached, the Message Router rejects new messages.

System Memory Thresholds
System memory thresholds are a third line of protection. You can specify
thresholds of available system memory at which the broker takes increasingly
serious action to prevent memory overload. The action taken depends on the state
of memory resources: green (plenty of memory is available), yellow (broker
memory is running low), orange (broker is low on memory), red (broker is out of
memory). As the broker’s memory state progresses from green through yellow
and orange to red, the broker takes increasingly serious actions of the following
types:

• Throwing out in-memory copies of persistent messages in the data store.

• Throttling back producers of non-persistent messages, eventually stopping the
flow of messages into the broker. Persistent message flow is automatically
limited by the requirement that each message be acknowledged by the broker.

Both of these measures degrade performance.

Broker Components

Chapter 4 Message Server 81

If system memory thresholds are reached, then you have not adequately set
destination-by-destination message limits and system-wide message limits. In
some situations, it is not possible for the thresholds to catch potential memory
overloads in time. Hence you should not rely on this feature, but should instead
configure destinations individually and collectively to optimize memory resources.

With careful monitoring and tuning, destination-based limits and behavior can be
used to balance the inflow and outflow of messages so that system overload cannot
occur. While these mechanisms consume overhead and can limit message
throughput, they nevertheless maintain operational integrity.

Persistence Manager
For a broker to recover in case of failure, it needs to re-create the state of its
message delivery operations. This requires it to save all persistent messages, as
well as essential routing and delivery information, to a data store. To recover, the
broker must also be able to do the following:

• Re-create destinations

• Restore the list of durable subscriptions for each topic

• Restore the acknowledge list for each message

• Reproduce the state of all committed transactions

The Persistence Manager manages the storage and retrieval of all this state
information.

When a broker restarts, it uses the data managed by the Persistence Manager to
re-create destinations and durable subscriptions, recover persistent messages, roll
back open transactions, and re-create its routing table for undelivered messages. It
can then resume message delivery.

Message Queue supports both built-in and plugged-in persistence modules (see
Figure 4-4). Built-in persistence is a file-based data store. Plugged-in persistence
uses a Java Database Connectivity (JDBC™) interface and requires a
JDBC-compliant data store. The built-in persistence is generally faster than
plugged-in persistence; however, some users prefer the redundancy and
administrative control provided by a JDBC-compliant database system.

Broker Components

82 Message Queue 3 2005Q1 • Technical Overview

Figure 4-4 Persistence Manager Support

Built-in persistence The default Message Queue persistent storage solution is a
file-based data store that uses individual files to store persistent data. To alleviate
fragmentation as messages are added and removed, you can compact the file-based
data store. To maximize reliability, you can specify that persistence operations
synchronize the in-memory state with the physical storage device. This helps
eliminate data loss due to system crashes, but slows performance. Because the data
store can contain messages of a sensitive or proprietary nature, you should secure
the data store files against unauthorized access.

Plugged-in persistence You can set up a broker to access any data store
accessible through a JDBC driver. This involves setting a number of JDBC-related
broker configuration properties and using Message Queue’s Database Manager
utility to create a data store with the proper schema. The procedures and related
configuration properties are detailed in the Message Queue Administration Guide.

Security Manager
Message Queue provides authentication and authorization (access control)
features, and also supports encryption capabilities:

• Authentication ensures that only verified users can establish a connection to a
message server.

• Authorization specifies which users have the right to access resources like
connection services or destinations to perform specific operations supported
by the message service.

• Encryption protects messages from being tampered with during delivery over a
connection.

Persistence
Manager

JDBC-compliant
Data Store

plugged-in
persistence

built-in
persistence

File-based
Data Store Two

Persistence
Options

Broker Components

Chapter 4 Message Server 83

The authentication and authorization features depend upon a user repository (see
Figure 4-5 on page 84): a file, directory, or database that contains information about
the users of the messaging system—their names, passwords, and group
memberships. The names and passwords are used to authenticate a user when a
connection to a broker is requested. The user names and group memberships are
used, in conjunction with an access control file, to authorize operations such as
producing or consuming messages for destinations.

You can populate a Message Queue-provided user repository or plug a preexisting
LDAP user repository into the broker. The flat-file user repository is easy to use,
but is also vulnerable to security attack, and should therefore be used only for
evaluation and development purposes. The LDAP user repository is secure and
therefore best suited for production purposes.

The following subsections describe authentication, authorization, and encryption.
For more detailed information, see the Message Queue Administration Guide.

Authentication
Message Queue security supports password-based authentication. When a client
requests a connection to a broker, the client must supply a user name and
password. The Security Manager compares the name and password submitted by
the client to those stored in the user repository. On transmitting the password from
client to broker, the passwords are encoded using either base-64 encoding or
message digest (MD5). For more secure transmission, see “Encryption” on page 85.
You can configure the type of encoding used by each connection service separately
or set the encoding on a broker-wide basis.

Authorization
Once the user of a client application has been authenticated, the user can be
authorized to perform various Message Queue-related activities. The Security
Manager supports both user-based and group-based access control: depending on
a user’s name or the groups to which the user is assigned in the user repository,
that user has permission to perform certain Message Queue operations. You
specify access controls in an access control properties file (see Figure 4-5).

Broker Components

84 Message Queue 3 2005Q1 • Technical Overview

Figure 4-5 Security Manager Support

When a user attempts to perform an operation, the Security Manager checks the
user’s name and group membership (in the user repository) against those given
access to that operation (in the access control properties file). The access control
properties file specifies permissions for the following operations:

• Connecting to a broker

• Accessing destinations: creating a consumer, a producer, or a queue browser
for a given destination or all destinations

• Auto-creating destinations

You can define groups and associate users with those groups in a user repository
(though groups are not fully supported in the flat-file user repository). Then, by
editing the access control properties file, you can specify what destinations are
accessible to a user or group for production, consumption, or browsing. You can
make individual destinations or all destinations accessible only to specific users or
groups.

In addition, if the broker is configured to allow auto-creation of destinations (see
“Auto-Created Destinations” on page 78), you can control for whom the broker can
auto-create destinations by editing the access control properties file.

LDAP Server
User Repository

Security
Manager

Flat File
User Repository

Access Control
Properties File

authentication

authorization

Two
User Repository
Options

Broker Components

Chapter 4 Message Server 85

Encryption
To encrypt messages sent between clients and broker, you need to use a connection
service based on the Secure Socket Layer (SSL) standard. SSL provides security at a
connection level by establishing an encrypted connection between an SSL-enabled
broker and an SSL-enabled client.

Monitoring Service
The broker includes a number of components for monitoring and diagnosing its
operations. Among these are the following:

• Components that generate data (a metrics generator and broker code that logs
events)

• A Logger component that writes out information to a number of output
channels

• A message producer that sends JMS messages containing metric information to
topic destinations for consumption by JMS monitoring clients.

The general scheme is illustrated in Figure 4-6 on page 86.

Metrics Generator
The metrics generator shown in Figure 4-6 provides information about broker
activity, such as message flow in and out of the broker, the number of messages in
broker memory and the memory they consume, the number of connections open,
and the number of threads being used.

You can turn the generation of metric data on and off, and specify how frequently
metrics reports are generated.

Broker Components

86 Message Queue 3 2005Q1 • Technical Overview

Figure 4-6 Monitoring Service Support

Logger
The Message Queue Logger shown in Figure 4-6 takes information generated by
broker code and the metrics generator and writes that information to a number of
output channels: to standard output (the console), to a log file, and, on Solaris™
platforms, to the syslog daemon process.

You can specify the type of information gathered by the Logger as well as the type
written to each of the output channels. In the case of a log file, you can also specify
the point at which the log file is closed and output is rolled over to a new file. Once
the log file reaches a specified size or age, it is saved and a new log file created.

For details about how to configure the Logger and how to use it to obtain
performance information, see the Message Queue Administration Guide.

Metrics Message Producer (Enterprise Edition)
The metrics Message Producer component shown in Figure 4-6 receives
information from the Metrics Generator component at regular intervals and writes
the information into messages, which it then sends to one of a number of metric
topic destinations, depending on the type of metric information contained in the
message.

Message Queue clients subscribed to these metric topic destinations can consume
the messages in the destinations and process the metric information contained in
the messages. This allows developers to create custom monitoring tools to support
messaging applications. For details of the metric quantities reported in each type of

Broker
Code

Metrics
Generator

Logger
log file

console

Output Channels

syslog (Solaris)

Metrics
Message
Producer

topic destinations

ERROR
WARNING

INFO

Development and Production Environments

Chapter 4 Message Server 87

metrics message, see the Message Queue Developer’s Guide for Java Clients, which
explains how to develop a Message Queue client for consuming metrics messages.
For information about how to configure the production of metrics messages, see
the Message Queue Administration Guide.

Development and Production Environments
The messaging infrastructure provided by the Message Queue service is needed to
develop and test messaging applications, as well as to deploy and manage those
applications in a production environment.

This section introduces the different approaches to using Message Queue in
development and production environments. It covers the following topics:

• “Development Environments and Tasks” on page 87

• “Production Environments and Tasks” on page 88

Although the administrator has charge of setting up and managing production
environments and tasks, it is important for the developer to understand such
environments in order to provide administrators with the information needed to
set up and configure some parts of this environment and to determine whether
clients are behaving as expected.

Development Environments and Tasks
In a development environment, the work focuses on programming Message Queue
client applications. The Message Queue service is needed principally for testing.

Out-of-the-Box Configuration
The Message Queue product is designed to be used out of the box. You can start up
a broker with default values and you will be provided with a default data store,
user repository, and access control properties file.

The default user repository is created with default entries that allow the Message
Queue broker to be used immediately after installation without any intervention
by an administrator. In other words, no initial user/password setup is required for
the broker to be used. The default user name (guest) and password (guest) can be
used to authenticate a client user.

A number of sample applications are also provided to guide you in developing
new applications.

Development and Production Environments

88 Message Queue 3 2005Q1 • Technical Overview

Development Practices
In a development environment, the emphasis is on flexibility, and you typically
adopt the following practices:

• You want minimal administration, consisting mostly of starting up a broker for
developers to use in testing.

• You use default implementations of the data store (built-in file-based
persistence), user repository (file-based user repository), and access control
properties file. These default implementations are usually adequate for
developmental testing.

• You use a simple file-system object store (by creating a directory for that
purpose) in which to store administered objects, or you instantiate
administered objects in client code and don’t use an object store at all.

• If you are performing multiple-broker testing, you probably would not use a
Master Broker (see “Cluster Synchronization” on page 94).

• You generally use auto-created destinations rather than explicitly create
destinations.

Production Environments and Tasks
In a production environment, applications must be deployed, managed, and tuned
to maximize performance. In such situations the management and tuning of the
messaging infrastructure is an important, if not crucial, requirement.

In addition, the deployment must support enterprise requirements, both in scale
and availability. This requires customized configuration and setup of the message
service, tuning performance and scaling the system to meet increasing loads, and
performing day-to-day monitoring and management of both the message service
and application-specific resources. The administration tasks therefore depend on
the complexity of your messaging system and the complexity of the applications it
must support. The following sections group administrative tasks into setup
operations and maintenance operations. For the procedures required to perform
these tasks, see the Message Queue Administration Guide.

Setup Operations
A production environment requires setting up secure access, configuring
connection factory and destination objects, setting up clusters, configuring
persistent stores, and managing memory.

Development and Production Environments

Chapter 4 Message Server 89

➤ To Set Up a Production Environment

Typically you have to perform at least some, if not all, of the following setup
operations:

• Secure administrative access (protected use of administration tools):

❍ Make sure admin connection service is activated.

❍ Authorization: Allow access to admin connection service for a specific
individual or admin group.

❍ If authorization is for a group, make sure the administrator belongs to the
admin group.

• File-based user repository: Has a default admin group. Make sure
administrator is in admin group, or if using the default admin user,
change the admin password.

• LDAP user repository: Make sure administrator is in admin group

• Secure client access:

❍ Authentication: Make entries into the file-based user repository or
configure the broker to use an existing LDAP user repository.

(At a minimum, you want to password-protect administration capability.)

❍ Authorization: Modify access settings in the access control properties file.

❍ Encryption: Set up SSL-based connection services.

• Create physical destinations

• Create administered objects:

❍ Configure or set up an LDAP object store.

❍ Create connection factory and destination administered objects.

• Create broker clusters if required:

❍ Create a central configuration file.

❍ Designate a master broker.

• Configure the broker to use plugged-in persistence.

• Configure memory management

Set destination attributes so that the number of messages and the amount of
memory allocated for messages fit within available broker memory resources.

Development and Production Environments

90 Message Queue 3 2005Q1 • Technical Overview

Maintenance Operations
In a production environment, Message Queue message server resources need to be
monitored and controlled. Application performance, reliability, and security are at
a premium, and you have to perform a number of ongoing tasks, described below,
using Message Queue administration tools:

➤ To Maintain a Production Environment

• Manage application behavior

❍ Disable the broker’s auto-create capability.

❍ Create physical destinations on behalf of applications.

❍ Set user access to destinations.

❍ Monitor and manage destinations.

❍ Monitor and manage durable subscriptions.

❍ Monitor and manage transactions.

• Monitor and tune the broker

❍ Use broker metrics to tune and reconfigure the broker.

❍ Manage broker memory resources.

❍ Add brokers to clusters to balance loads.

❍ Recover failed brokers.

• Manage administered objects:

❍ Create additional connection factory and destination administered objects
as needed.

❍ Adjust connection factory attribute values to improve performance and
throughput.

91

Chapter 5

Broker Clusters

Message Queue Enterprise Edition supports the use of broker clusters: groups of
brokers working together to provide message delivery services to clients. Clusters
enable a message server to scale its operations with the volume of message traffic
by distributing client connections among multiple brokers.

This chapter discusses the architecture and internal functioning of such broker
clusters. It covers the following topics:

• “Cluster Architecture” on page 92

• “Deployment Environment” on page 95

You need to read this chapter if you are an administrator charged with configuring
and managing a broker cluster or a developer who needs to test a messaging
application using a cluster.

Cluster Architecture

92 Message Queue 3 2005Q1 • Technical Overview

Cluster Architecture
Figure 5-1 shows Message Queue’s architecture for broker clusters. Each broker
within a cluster is directly connected to all the others. Each client (message
producer or consumer) has a single home broker with which it communicates
directly, sending and receiving messages as if that broker were the only one on the
server. Behind the scenes, the home broker works in concert with the other brokers
in the cluster to share the load of providing delivery services for all connected
clients.

One broker within the cluster can be designated as the master broker. The master
broker maintains a configuration change record in which changes to the cluster’s
persistent entities (destinations and durable subscriptions) are recorded. This
record is used to propagate such change information to brokers that were offline at
the time the changes occurred; see “Cluster Synchronization,” below, for further
discussion.

Figure 5-1 Cluster Architecture

The following sections discuss how message delivery takes place within a cluster
and how the brokers are configured and synchronized, even in the case when one
or more has been offline.

Message Queue Message Server

Broker2

Broker1

 Broker3

Client
Client

Clients

Client
Client

Clients

Client
Client

Clients
Configuration
Change Record

Destinations

Master Broker

Cluster Architecture

Chapter 5 Broker Clusters 93

Message Delivery
In a cluster configuration, each destination is replicated on all brokers in the
cluster. Each broker knows about message consumers that are registered for
destinations on all other brokers. Each broker can therefore route messages from its
own directly connected message producers to remote message consumers, and can
deliver messages from remote producers to its own directly connected consumers.

A message producer’s own home broker handles all storage and routing, and
processes all client acknowledgments, for messages originated by that producer.
To minimize message traffic within the cluster, messages are sent from one broker
to another only when they are to be delivered to a consumer connected to the target
broker. In some cases (such as queue delivery to multiple consumers), traffic can be
further reduced by specifying that delivery to local consumers have priority over
delivery to remote consumers. In situations requiring secure, encrypted message
delivery between client and message server, a cluster can also be configured to
provide secure delivery of messages between brokers.

Cluster Configuration
To establish connections between the brokers in a cluster at startup time, each
broker must be passed the host names and port numbers of all the others
(including the master broker, if any). This information is specified by a set of cluster
configuration properties, which should be uniform for all brokers in the cluster.
Although you can specify the configuration properties for each broker
individually, this approach is error-prone and can easily lead to inconsistencies in
the cluster configuration. Instead, it is recommended that you place all the
configuration properties in one central cluster configuration file that is referenced by
each broker at startup time. This ensures that all brokers share the same
configuration information.

See the Message Queue Administration Guide for detailed information on cluster
configuration properties.

NOTE With some exceptions, destination properties in a cluster apply
collectively to the cluster as a whole, rather than to individual
destination instances. See the Message Queue Administration Guide
for information on specific destination properties.

Cluster Architecture

94 Message Queue 3 2005Q1 • Technical Overview

Cluster Synchronization
Whenever a cluster’s configuration is changed, information about the change is
automatically propagated to all brokers in the cluster. Such configuration changes
include the following:

• A destination on one of the cluster’s brokers is created or destroyed.

• A message consumer is registered with its home broker.

• A message consumer is disconnected from its home broker (whether explicitly
or through failure of the client, the broker, or the network).

• A message consumer establishes a durable subscription to a topic.

Such configuration change information is propagated immediately to all brokers in
the cluster that are online at the time of the change. However, a broker that is
offline (one that has crashed, for example) will not receive notice of the change
when it occurs. To accommodate offline brokers, Message Queue maintains a
configuration change record for the cluster, recording all persistent entities
(destinations and durable subscriptions) that have been created or destroyed.
When an offline broker comes back online (or when a new broker is added to the
cluster), it consults this record for information about destinations and durable
subscribers, then exchanges information with other brokers about currently active
message consumers.

One broker in the cluster, designated as the master broker, is responsible for
maintaining the configuration change record. Because other brokers cannot
complete their initialization without the master broker, it should always be the first
broker started within the cluster. If the master broker goes offline, configuration
information cannot be propagated throughout the cluster, because other brokers
cannot access the configuration change record. Under these conditions, you will
get an exception if you try to create or destroy a destination or a durable
subscription or attempt a related operation such as reactivating a durable
subscription. (Non-administrative message delivery continues to work normally,
however.)

NOTE Although the cluster configuration file was originally intended for
configuration purposes, it is also a convenient place to store other
properties that are shared by all brokers in a cluster.

Deployment Environment

Chapter 5 Broker Clusters 95

Deployment Environment
The use of broker clusters depends on whether they are deployed in a development
environment or a production environment.

Development Environments
In development environments, where a cluster is used for testing and where
scalability and broker recovery are not important considerations, there is little need
for a master broker. Under test conditions, destinations are often auto-created (see
“Auto-Created Destinations” on page 78) and durable subscriptions to these
destinations are created and destroyed by the applications being tested. In the
absence of a master broker, Message Queue relaxes the requirement that a master
broker be running in order to start other brokers, and allows changes in
destinations and durable subscriptions to be made and propagated to all running
brokers. (If a broker goes offline and is subsequently restored, however, it will not
synchronize with changes made while it was offline.) If you reconfigure the
environment to use a master broker, Message Queue will reimpose the normal
requirements.

Production Environments
In production environments, where scalability and broker recovery are important
considerations, it is essential to use a master broker and maintain the configuration
change record. This guarantees that if a broker goes offline and is subsequently
restored, it will synchronize with changes made while it was offline.

In fact, it is a good idea to make a periodic backup of the configuration change
record to guard against accidental corruption of the record and safeguard against
failure of the master broker. Message Queue provides command-line options for
backing up and restoring the configuration change record. If necessary, you can
also change the broker serving as the master broker. See the Message Queue
Administration Guide for more information.

Deployment Environment

96 Message Queue 3 2005Q1 • Technical Overview

97

Chapter 6

Message Queue and J2EE

The Java 2 Platform, Enterprise Edition (J2EE platform) is a specification for a
standard server platform hosting multi-tier and thin client enterprise applications.
One of the requirements of the J2EE platform is that distributed components be
able to interact with one another through reliable, asynchronous message
exchange. This interaction is enabled through the use of a JMS provider. In fact,
Message Queue is the reference JMS implementation for the J2EE platform.

This chapter explores the ramifications of implementing JMS support in a J2EE
platform environment. The chapter covers the following topics:

• “JMS/J2EE Programming: Message-Driven Beans” on page 98

• “J2EE Application Server Support” on page 100

Because this chapter covers both programming and deploying J2EE components, it
is of interest to both application developers and administrators.

JMS/J2EE Programming: Message-Driven Beans

98 Message Queue 3 2005Q1 • Technical Overview

JMS/J2EE Programming: Message-Driven Beans
In addition to the general JMS client programming model introduced in “JMS
Programming Model” on page 28, there is a more specialized adaptation of JMS
used in the context of J2EE platform applications. This specialized JMS client is
called a message-driven bean and is one of a family of Enterprise JavaBeans (EJB)
components described in the EJB 2.0 Specification
(http://java.sun.com/products/ejb/docs.html).

The need for message-driven beans arises out of the fact that other EJB components
(session beans and entity beans) can only be called synchronously. These EJB
components have no mechanism for receiving messages asynchronously, since
they are accessed only through standard EJB interfaces.

However, asynchronous messaging is a requirement of many enterprise
applications. Most such applications require that server-side components be able to
communicate and respond to each other without tying up server resources. Hence
the need for an EJB component that can receive messages and consume them
without being tightly coupled to the producer of the message. This capability is
needed for any application in which server-side components must respond to
application events. In enterprise applications, this capability must also scale under
increasing load.

A message-driven bean (MDB) is a specialized EJB component supported by a
specialized EJB container (a software environment that provides distributed
services for the components it supports).

Message-driven Bean The MDB is a JMS message consumer that implements the
JMS MessageListener interface. The onMessage method (written by the MDB
developer) is invoked when the MDB container receives a message. The
onMessage() method consumes the message, just as the onMessage() method of a
standard MessageListener object would. You do not remotely invoke methods on
MDBs—as you do on other EJB components: therefore there are no home or remote
interfaces associated with them. The MDB can consume messages from a single
destination. The messages can be produced by standalone JMS applications, JMS
components, EJB components, or Web components, as shown in Figure 6-1.

http://java.sun.com/products/ejb/docs.html

JMS/J2EE Programming: Message-Driven Beans

Chapter 6 Message Queue and J2EE 99

Figure 6-1 Messaging with MDBs

MDB Container The MDB is supported by a specialized EJB container,
responsible for creating instances of the MDB and setting them up for
asynchronous consumption of messages. This involves setting up a connection
with the message service (including authentication), creating a pool of sessions
associated with a given destination, and managing the distribution of messages as
they are received among the pool of sessions and associated MDB instances. Since
the container controls the life cycle of MDB instances, it manages the pool of MDB
instances so as to accommodate incoming message loads.

Associated with an MDB is a deployment descriptor that specifies the JNDI lookup
names for the administered objects used by the container in setting up message
consumption: a connection factory and a destination. The deployment descriptor
can also include other information needed by deployment tools to configure the
container. Each such container supports instances of only a single MDB.

EJB Container

EJB
Instance

MDB Container

MDB
MDBMDB

Instance onMessage
method

JMS Message Service

Message
Routing and

Delivery

Destinations

JMS
Component

or
Application

JMS
Message
Producers

JMS
Message
Consumer

J2EE Application Server Support

100 Message Queue 3 2005Q1 • Technical Overview

J2EE Application Server Support
In J2EE architecture (see the J2EE Platform Specification located at
http://java.sun.com/j2ee/download.html#platformspec), EJB containers are hosted
by J2EE application servers. An application server provides resources needed by
the various containers: transaction managers, persistence managers, name services,
and, in the case of messaging and MDBs, a JMS provider.

In the Sun Java System Application Server, JMS messaging resources are provided
by Sun Java System Message Queue:

• For Sun Java System Application Server 7.0, a Message Queue messaging
system is integrated into the application server as its native JMS provider.

• For the Sun J2EE 1.4 Application Server, Message Queue is plugged into the
application server as an embedded JMS resource adapter.

• For future releases of the Application Server, Message Queue will be plugged
into the application server using standard resource adapter deployment and
configuration methods.

http://java.sun.com/j2ee/download.html#platformspec

J2EE Application Server Support

Chapter 6 Message Queue and J2EE 101

JMS Resource Adapter
A resource adapter is a standardized way of plugging additional functionality into
an application server that complies with J2EE 1.4. (The standard is defined by the
J2EE Connector Architecture (J2EECA) 1.5 specification.) This architecture allows
any application server (that complies with J2EE 1.4) to interact with external
systems in a standard way. External systems can include various enterprise
information systems (EIS), as well as various messaging systems: for example, a
JMS provider. Message Queue includes a JMS resource adapter that allows
application servers to use Message Queue as a JMS provider.

The standard interactions facilitated by J2EECA 1.5 include connection pooling,
thread pooling, transaction and security context propagation, as well as support for
message-driven bean containers of various kinds. The specification also includes a
standard way to create connection factories and other administered objects.

Plugging a JMS resource adapter into an application server allows J2EE
components deployed and running in the application server to exchange JMS
messages. The JMS connection factory and destination administered objects needed
by these components can be created and configured using J2EE application server
administration tools.

Other administrative operations, however, such as managing a message server and
physical destinations, are not included in the J2EECA specification and can be
performed only through provider specific tools.

The Message Queue resource adapter is integrated in the Sun J2EE 1.4 application
server. However, it has not yet been certified with any other J2EE 1.4 application
servers.

The Message Queue resource adapter is a single file (imqjmsra.rar) located in a
directory that depends on the operating system (see the Message Queue
Administration Guide). The imqjmsra.rar file contains the resource adapter
deployment descriptor (ra.xml) as well as the JAR files needed by the application
server in order to use the adapter.

You can use the Message Queue resource adapter in any J2EE-1.4-compliant
application server by following the resource adapter deployment and
configuration instructions that come with that application server. As commercial
J2EE 1.4 application servers become available and the Message Queue resource
adapter becomes certified for those application servers, Message Queue
documentation will provide specific information on the relevant deployment and
configuration procedures.

J2EE Application Server Support

102 Message Queue 3 2005Q1 • Technical Overview

103

Appendix A

Message Queue Implementation of
Optional JMS Functionality

The JMS specification indicates certain items that are optional: each JMS provider
(vendor) chooses whether to implement them. This appendix describes how the
Message Queue product handles JMS optional items.

This material is most relevant to application developers.

The handling of each of the JMS optional items is indicated in Table A-1:

Table A-1 Optional JMS Functionality

Section in JMS Specification Description and Message Queue Handling

3.4.3
JMSMessageID

“Since message IDs take some effort to create and increase a
message’s size, some JMS providers may be able to optimize
message overhead if they are given a hint that message ID is
not used by an application. JMS Message Producer provides a
hint to disable message ID.”

Message Queue implementation: Product does not disable
Message ID generation (any setDisableMessageID() call in
MessageProducer is ignored). All messages will contain a valid
MessageID value.

3.4.12
Overriding Message Header
Fields

“JMS does not define specifically how an administrator overrides
these header field values. A JMS provider is not required to
support this administrative option.”

Message Queue implementation: The Message Queue
product supports administrative override of the values in
message header fields through configuration of the client
runtime (see “Overriding Message Header Values” on page 41).

104 Message Queue 3 2005Q1 • Technical Overview

 3.5.9
JMS Defined Properties

“JMS Reserves the ’JMSX’ Property name prefix for JMS defined
properties.”
“Unless noted otherwise, support for these properties is
optional.”

Message Queue implementation: The JMSX properties
defined by the JMS 1.1 specification are supported in the
Message Queue product (see the Message Queue Administration
Guide).

3.5.10
Provider-specific Properties

“JMS reserves the ’JMS_<vendor_name>’ property name prefix for
provider-specific properties.”

Message Queue implementation: The purpose of the
provider-specific properties is to provide special features needed
to support JMS use with provider-native clients. They should not
be used for JMS to JMS messaging. Message Queue 3 does not
use provider-specific properties.

 4.4.8
Distributed Transactions

“JMS does not require that a provider support distributed
transactions.”

Message Queue implementation: Distributed transactions
are supported in this release of the Message Queue product
(see “Transactions” on page 65).

4.4.9
Multiple Sessions

“For PTP <point-to-point distribution model>, JMS does not
specify the semantics of concurrent QueueReceivers for the
same queue; however, JMS does not prohibit a provider from
supporting this.” See section 5.8 of the JMS specification for
more information.

Message Queue implementation: The Message Queue
implementation supports queue delivery to multiple consumers.
For more information, see “Queue Delivery to Multiple
Consumers” on page 61.

Table A-1 Optional JMS Functionality (Continued)

Section in JMS Specification Description and Message Queue Handling

105

Glossary

This glossary provides information about terms and concepts you might encounter
while using Message Queue.

acknowledgement Control messages exchanged between clients and message
server to ensure reliable delivery. There are two general types of
acknowledgement: client acknowledgements and broker acknowledgements.

administered objects A pre-configured object—a connection factory or a
destination—that encapsulates provider-specific implementation details, and is
created by an administrator for use by one or more JMS clients. The use of
administered objects allows JMS clients to be provider-independent. Administered
objects are placed in a JNDI name space by and are accessed by JMS clients using
JNDI lookups.

asynchronous messaging An exchange of messages in which the sending of a
message does not depend upon the readiness of the consumer to receive it. In other
words, the sender of a message need not wait for the sending method to return
before it continues with other work. If a message consumer is busy or offline, the
message is sent and subsequently received when the consumer is ready.

authentication The process by which only verified users are allowed to set up a
connection to a message server.

authorization The process by which a message service determines whether a user
can access message service resources, such as connection services or destinations,
to perform specific operations supported by the message service.

broker The Message Queue entity that manages message routing, delivery,
persistence, security, and logging, and that provides an interface for monitoring
and tuning performance and resource use.

106 Message Queue 3 2005Q1 • Technical Overview

client An application (or software component) that interacts with other clients
using a message service to exchange messages. The client can be a producing client,
a consuming client, or both.

client identifier An identifier that associates a connection and its objects with a
state maintained by the Message Queue message server on behalf of the client.

client runtime Message Queue software that provides messaging clients with an
interface to the Message Queue message server. The client runtime supports all
operations needed for clients to send messages to destinations and to receive
messages from destinations. The client runtime is configured by setting
ConnectionFactory properties.

cluster Two or more interconnected brokers that work in concert to provide
scalable messaging services.

connection A communication channel between a client and a message server
used to pass both payload messages and control messages.

connection factory The administered object the client uses to create a connection
to a message server. This can be a ConnectionFactory object, a
QueueConnectionFactory object or a TopicConnectionFactory object.

consumer An object (MessageConsumer) created by a session that is used for
receiving messages sent from a destination. In the point-to-point delivery model,
the consumer is a receiver or browser (QueueReceiver or QueueBrowser); in the
publish/subscribe delivery model, the consumer is a subscriber
(TopicSubscriber).

data store A database where information (durable subscriptions, data about
destinations, persistent messages, auditing data) needed by the broker is
permanently stored.

dead message A message that is removed from the system for a reason other than
normal processing or explicit administrator action. A message might be considered
dead because it has expired, because it has been removed from a destination due to
memory limit overruns, or because of failed delivery attempts. You can choose to
store dead messages on the dead message queue.

dead message queue A specialized destination created automatically at broker
startup that is used to store dead messages for diagnostic purposes.

Glossary 107

delivery mode An indicator of the reliability of messaging: whether messages are
guaranteed to be delivered and successfully consumed once and only once
(persistent delivery mode) or guaranteed to be delivered at most once
(non-persistent delivery mode).

delivery model The model by which messages are delivered: either
point-to-point or publish/subscribe. In JMS there are separate programming
domains for each, using specific client runtime objects and specific destination
types (queue or topic), as well as a unified programming domain.

destination The physical destination in a Message Queue message server to
which produced messages are delivered for routing and subsequent delivery to
consumers. This physical destination is identified and encapsulated by an
administered object that a client uses to specify the destination for which it is
producing messages and/or from which it is consuming messages.

domain A set of objects used by JMS clients to program JMS messaging
operations. There are two programming domains: one for the point-to-point
delivery model and one for the publish/subscribe delivery model.

encryption A mechanism for protecting messages from being tampered with
during delivery over a connection.

group The group to which the user of a Message Queue client belongs for
purposes of authorizing access to connections, destinations, and specific
operations.

JMS provider A product that implements the JMS interfaces for a messaging
system and adds the administrative and control functions needed to configure and
manage that system.

message server One or more brokers that provide centralized delivery services
for the Message Queue service, including connections to clients, message handling
and routing, persistence, security, and monitoring. The message server maintains
physical destinations to which producing clients send messages, and from which
the messages are delivered to consuming clients.

message service A middleware service that provides asynchronous, reliable
exchange of messages between distributed components or applications. It includes
a message server, the client runtime, and the several data stores needed by the
message server to carry out its functions.

108 Message Queue 3 2005Q1 • Technical Overview

messages Asynchronous requests, reports, or events that are consumed by
messaging clients. A message has a header (to which additional fields can be
added) and a body. The message header specifies standard fields and optional
properties. The message body contains the data that is being transmitted.

messaging A system of asynchronous requests, reports, or events used by
enterprise applications that allows loosely coupled applications to transfer
information reliably and securely.

producer An object (MessageProducer) created by a session that is used for
sending messages to a destination. In the point-to-point delivery model, a producer
is a sender (QueueSender); in the publish/subscribe delivery model, a producer is a
publisher (TopicPublisher).

queue An object created by an administrator to implement the point-to-point
delivery model. A queue is always available to hold messages even when the client
that consumes its messages is inactive. A queue is used as an intermediary holding
place between producers and consumers.

selector A message header property used to sort and route messages. A message
service performs message filtering and routing based on criteria placed in message
selectors.

session A single threaded context for sending and receiving messages. This can
be a queue session or a topic session.

topic An object created by an administrator to implement the publish/subscribe
delivery model. A topic may be viewed as node in a content hierarchy that is
responsible for gathering and distributing messages addressed to it. By using a
topic as an intermediary, message publishers are kept separate from message
subscribers.

transaction An atomic unit of work that must either be completed or entirely
rolled back.

109

Index

A
acknowledgements

broker 66
broker, and message production 60
client, See client acknowledgements
JMS reliability, and 31
transactions, and 65

admin connection service 74
admin-created destinations 78
administered objects

administrative control, and 43
connection factory, See connection factory

administered objects
described 42
destination 42
JMS specification, and 34
object stores, See object stores
provider-independence, and 44
SOAP endpoint 43
types 34, 42
XA connection factory, See connection factory

administered objects
Administration Console 45
administration tasks

development environments 87
production environments 88

administration tools
about 45
Administration Console 45
command line utilities 45
feature description 52

API documentation 18
application servers, and Message Queue 100
applications, See client applications
asynchronous message delivery

enterprise requirement 22
JMS programming model 28

authentication
about 83
feature description 49

authorization
about 83
feature description 49
See also access control file

AUTO_ACKNOWLEDGE mode 64
auto-created destinations 78
auto-reconnect

feature description 51
availability

enterprise requirement 23
features 51
through Sun Cluster 51

B
broker acknowledgements

implementation by client runtime 41
message consumption, and 64

Section C

110 Message Queue 3 2005Q1 • Technical Overview

broker clusters
architecture of 92
cluster configuration file 93
cluster configuration properties 93
configuration change record 94
feature description 50
in development environments 95
in production environments 95
load-balanced queue delivery, and 62
master broker 93, 94
propagation of information in 94

brokers
about 37
acknowledgements (Ack) 60
components and functions 72
connection services, See connection services
interconnected, See broker clusters
limit behaviors 80
logging, See logger
master broker 93, 94
memory management 79
message flow control, See message flow control
message routing, See message router
metrics, See broker metrics
multi-broker clusters, See broker clusters
persistence manager, See persistence manager
recovery from failure 81
restarting 81
security manager, See security manager

built-in persistence 82

C
client

JMS programming model 28
runtime, See client runtime

client acknowledgement modes
AUTO_ACKNOWLEDGE 64
CLIENT_ACKNOWLEDGE 64
custom message acknowledgement 64
DUPS_OK_ACKNOWLEDGE 65
message consumption, and 63
NO_ACKNOWLEDGE 65
performance, and 68

client acknowledgements
about 32
message consumption, and 63
message deletion, and 66
modes, See client acknowledgement modes

client applications, examples 18
client design, and performance 68
client identifier (ClientID) 39
client runtime

C implementation 38
client acknowledgement modes 63
client identification, and 39
connection handling functions 39
distribution of messages to consumers 40
flow control, feature description 51
Java implementation 38
message compression 42
message flow control functions 41
Message Queue, described 37
overriding message header values 41
queue browsing characteristics 42
reliable delivery functions 40

CLIENT_ACKNOWLEDGE mode 64
clients

C language support, feature description 47
performance, See performance

cluster configuration file 93
cluster configuration properties 93
command line utilities 45
components

EJB 98
MDB 98

connection factory administered objects
as JMS programming object 28
client identification attributes 39
ClientID, and 63
description 42
JNDI lookup 34

connection services
about 73
admin 74
httpjms 74
httpsjms 74
jms 74
port mapper, See port mapper
thread pool manager 75

Section D

Index 111

connections
as JMS programming object 28
failover, See auto-reconnect
scalable, feature description 50

consumers
about 24
as JMS programming object 29

containers
EJB 99
MDB 99

control messages 41, 59
custom client acknowledgement 64

D
data store

about 81
flat-file 82
JDBC-accessible 82

dead message queue 79
delivery mode

performance, and 68
delivery modes

message production, and 60
non-persistent 31
persistent 31

delivery, reliable 22
delivery, reliable, See reliable delivery
destination administered objects

as JMS programming object 29
description 42

destinations
admin-created 78
auto-created 78
dead message queue 79
introduced 78
limit behaviors 80
message routing, and 61
queue, See queues
temporary 79
topic, See topics

directory variables
IMQ_HOME 15
IMQ_JAVAHOME 16
IMQ_VARHOME 15

distributed transactions
about 32
XA resource manager 33
See also XA connection factories

domains 29
DUPS_OK_ACKNOWLEDGE mode 65
durable subscribers, See durable subscriptions
durable subscriptions

about 30
ClientID, and 63
message routing 63

E
editions, product

compared 54
Enterprise 55
Platform 55

encryption
about 85
feature description 47, 49

Enterprise Edition 55
environment variables, See directory variables
example applications 18

F
features, Message Queue 46
firewalls 75, 76

Section H

112 Message Queue 3 2005Q1 • Technical Overview

H
HTTP

connection service, See httpjms connection service
feature description 46
proxy 76
support architecture 76
transport driver 76
tunnel servlet 77

HTTP connections
support for 76
tunnel servlet, See HTTP tunnel servlet

httpjms connection service 74
HTTPS

connection service, See httpsjms connection
service

support architecture 76
tunnel servlet 77

HTTPS connections
support for 76
tunnel servlet, See HTTPS tunnel servlet

httpsjms connection service 74

I
IMQ_HOME directory variable 15
IMQ_JAVAHOME directory variable 16
IMQ_VARHOME directory variable 15

J
J2EE applications

EJB specification 98
JMS, and 98
message-driven beans, See message-driven beans
support for, feature description 48

JDBC support
about 82
feature description 53

JMS
message structure 26
programming domains 29
programming model 28
specification 19

jms connection service 74
JMS programming domains 29
JNDI

administered objects, and 34
lookup 42
message-driven beans, and 99
object store 44

L
LDAP server, feature description 53
licenses, Message Queue editions 55, 56
limit behaviors

broker 80
destinations 80

listeners
as JMS programming object 29
MDBs, and 98

load-balanced queue delivery
feature description 50
mechanism 61

logger
about 86
as broker component 73
output channels 86

logging, See logger

M
manageability

enterprise requirement 23
features 52

master broker 93, 94
MDB, See message-driven beans

Section N

Index 113

memory management
for broker 79

message consumers, See consumers
message delivery

asynchronous, See asynchronous delivery
end of life 66
handling and routing 61
message consumption 63
message production 60
reliability 57
steps and stages 58

message delivery models 29
message delivery, asynchronous, See asynchronous

message delivery
message flow control

broker 79
performance, and 41, 69

message header fields
JMS message 26
overriding 41

message listeners, See listeners
message producers, See producers
message router

about 77
as broker component 73

message server
about 24
Message Queue, described 37
resource management, feature description 51

message service
architecture 24
JMS 26
Message Queue service architecture 36

message-driven beans
about 98
application server support 100
deployment descriptor 99
MDB container 99

messages
broker acknowledgements 41
compression 42
consumption of 63
control 59
delivery models 29
delivery modes, See delivery modes

end of life 66
headers, See message header fields
JMS 26
JMS body types 27
JMS properties of 27
listeners for 29, 40
load-balanced queue delivery 61
payload 59
persistence of 81
persistent storage 61
persistent, See persistent messages
point-to-point delivery 30
production of 60
publish/subscribe delivery 30
redelivery 66
reliable delivery 57
reliable delivery of 31
routing 61
selection and filtering of 27
structure 26

messaging systems
architecture 24
enterprise 22
message service 24

metrics
data, See broker metrics
message producer 86
messages 86
reports 85

monitoring API, feature description 52

N
NO_ACKNOWLEDGE mode 65

O
object stores

file-system store 44
JNDI, and 44
LDAP server 44
Message Queue, described 44

Section P

114 Message Queue 3 2005Q1 • Technical Overview

P
payload messages 59
performance

broker limit behaviors, and 79
client acknowledgement modes, and 68
client design, and 68
delivery modes, and 68
factors affecting 68
message flow control, and 41, 69
reliability trade-offs 68
tuning, feature description 52

permissions
access control properties file 84
data store 82
Message Queue operations 83

persistence
built-in 82
configurable, feature description 53
data store See data store
delivery modes, See delivery modes
persistence manager, See persistence manager
plugged-in, See plugged-in persistence

persistence manager
about 81
as broker component 73
data store, See data store

persistent messages
consumption, and 63
defined 31
message production, and 60

Platform Edition 55
plugged-in persistence 82
point-to-point delivery 30
port mapper 75
portability, See provider-independence
ports, dynamic allocation of 75
producers

about 24
as JMS programming object 29

protocol types
HTTP 74
TCP 74
TLS 74

protocols, See transport protocols

provider-independence 44
publish/subscribe delivery 30

Q
queue destinations, See queues
queues

about 30
browsing characteristics 42
load-balanced delivery, See load-balanced queue

delivery
message routing, and 61

R
redelivered flag 66
reliable delivery

client runtime functions 40
enterprise requirement 22
JMS specification 31
performance trade-offs 68

resource adapter
feature description 48
Message Queue implementation 100

routing, See message router

S
SAAJ API

javax.xml.messaging package 48
javax.xml.soap package 48

scalability
enterprise requirement 22
features 50

Secure Socket Layer standard, See SSL
security

enterprise requirement 22
features 49
manager, See security manager

Section T

Index 115

security manager
about 82
as broker component 73

service types
ADMIN 74
NORMAL 74

sessions
as JMS programming object 29
JMS client acknowledgements 32
transacted 31

SOAP
endpoint administered object 43
feature description 47

SSL
about 85
connection services, See SSL-based connection

services
feature description 47

ssladmin connection service 74
ssljms connection service 74
stability, feature description 51
subscriptions

about 30
durable, See durable subscriptions

T
TCP 74
temporary destinations 79
thread pool manager

about 75
TLS 74
tools, administration, See administration tools
topics

about 30
message routing, and 62

transactions
acknowledgements, and 65
distributed, See distributed transactions
JMS reliability, and 31
message consumption, and 65

transport protocols
feature description 46
protocol types, See protocol types

U
user groups 83
user repository 83

W
web services 48

X
XA connection factories

message consumption, and 66
See also connection factory administered objects

XA resource manager, See distributed transactions
XML messaging support, feature description 47

Section X

116 Message Queue 3 2005Q1 • Technical Overview

	Message Queue 3 Technical Overview
	Contents
	List of Figures
	List of Tables
	Preface
	Who Should Use This Book
	Before You Read This Book
	How This Book Is Organized
	Conventions Used in this Book
	Text Conventions
	Directory Variable Conventions

	Related Documentation
	The Message Queue Documentation Set
	Online Help
	JavaDoc
	Example Client Applications
	The Java Message Service (JMS) Specification

	Related Third-Party Web Site References
	Sun Welcomes Your Comments

	1. Conceptual Foundations
	Enterprise Messaging Systems
	Requirements of Enterprise Messaging Systems
	Centralized (MOM) Messaging
	Basic Message Service Architecture

	Java Message Service (JMS) Basics
	JMS Message Structure
	JMS Programming Model
	Programming Objects
	Programming Domains: Message Delivery Models

	Reliable Messaging
	Acknowledgements/Transactions
	Persistent Storage

	JMS Administered Objects

	2. Introduction to Message Queue
	Message Service Architecture
	Message Server
	Client Runtime
	Connection Handling
	Client Identification
	Message Distribution to Consumers
	Ensuring Reliable Message Delivery
	Message Flow Control
	Overriding Message Header Values
	Other Functions

	Administered Objects
	Using Administered Objects via JNDI
	Object Stores

	Administration Tools

	Product Features
	Integration Support Features
	Multiple Transport Support
	C Client Interface
	SOAP (XML) Messaging Support
	J2EE Resource Adapter

	Security Features
	Scalability Features
	Scalable Connection Capacity
	Broker Clusters
	Queue Delivery to Multiple Consumers

	Availability Features
	Message Service Stability
	Automatic Reconnect to Message Server
	High Availability Through Sun Cluster

	Manageability Features
	Robust Administration Tools
	Message-Based Monitoring API
	Tunable Performance

	Flexible Server Configuration Features
	Configurable Persistence
	LDAP Server Support

	Product Editions
	Enterprise Edition
	Platform Edition

	Message Queue in a Sun Product Context

	3. Reliable Message Delivery
	A Message’s Journey Through the System
	Message Production
	Message Handling and Routing
	Message Consumption
	Message End-of-Life

	Message Delivery Processing
	Message Production
	Message Handling and Routing
	Queue Destinations
	Topic Destinations

	Message Consumption
	Client Acknowledgements
	Transactions

	Message-End-of-Life
	Normal Deletion of Messages
	Abnormal Deletion of Messages

	Performance Issues

	4. Message Server
	Broker Architecture
	Broker Components
	Connection Services
	Port Mapper
	Thread Pool Manager
	HTTP/HTTPS Support

	Message Router
	Physical Destinations
	Memory Resource Management

	Persistence Manager
	Security Manager
	Authentication
	Authorization
	Encryption

	Monitoring Service
	Metrics Generator
	Logger
	Metrics Message Producer (Enterprise Edition)

	Development and Production Environments
	Development Environments and Tasks
	Out-of-the-Box Configuration
	Development Practices

	Production Environments and Tasks
	Setup Operations
	To Set Up a Production Environment
	Maintenance Operations
	To Maintain a Production Environment

	5. Broker Clusters
	Cluster Architecture
	Message Delivery
	Cluster Configuration
	Cluster Synchronization

	Deployment Environment
	Development Environments
	Production Environments

	6. Message Queue and J2EE
	JMS/J2EE Programming: Message-Driven Beans
	J2EE Application Server Support
	JMS Resource Adapter

	A. Message Queue Implementation of Optional JMS Functionality
	Glossary
	Index

