D Sun

microsystems

Sun Java™ System

Message Queue 3
Administration Guide

Sun Microsystems, Inc.
4150 Network Circle
Santa Clara, CA 95054
U.S.A.

Part No: 819-0066-10

2005Q1

Copyright © 2005 Sun Microsystems, Inc., 4150 Network Circle, Santa Clara, California 95054, U.S.A. All rights reserved.

Sun Microsystems, Inc. has intellectual property rights relating to technology embodied in the product that is described in this document. In
particular, and without limitation, these intellectual property rights may include one or more of the U.S. patents listed at

http:// waw sun. cond pat ent s and one or more additional patents or pending patent applications in the U.S. and in other countries.

U.S. Government Rights - Commercial software. Government users are subject to the Sun Microsystems, Inc. standard license agreement and
applicable provisions of the FAR and its supplements. Use is subject to license terms. This distribution may include materials developed by third
parties.

Sun, Sun Microsystems, the Sun logo, Java, Solaris, Sun[tm] ONE, JDK, Java Naming and Directory Interface, JavaMail, JavaHelp and Javadoc are
trademarks or registered trademarks of Sun Microsystems, Inc. in the U.S. and other countries.

All SPARC trademarks are used under license and are trademarks or registered trademarks of SPARC International, Inc. in the U.S. and other
countries. Products bearing SPARC trademarks are based upon architecture developed by Sun Microsystems, Inc.

UNIX is a registered trademark in the U.S. and other countries, exclusively licensed through X/Open Company, Ltd.

This product is covered and controlled by U.S. Export Control laws and may be subject to the export or import laws in other countries. Nuclear,
missile, chemical biological weapons or nuclear maritime end uses or end users, whether direct or indirect, are strictly prohibited. Export or
reexport to countries subject to U.S. embargo or to entities identified on U.S. export exclusion lists, including, but not limited to, the denied
persons and specially designated nationals lists is strictly prohibited.

Copyright © 2005 Sun Microsystems, Inc., 4150 Network Circle, Santa Clara, California 95054, Etats-Unis. Tous droits réservés.

Sun Microsystems, Inc. détient les droits de propriété intellectuels relatifs a la technologie incorporée dans le produit qui est décrit dans ce
document. En particulier, et ce sans limitation, ces droits de propriété intellectuelle peuvent inclure un ou plus des brevets américains listés a
l'adresse htt p: // wan. sun. coni pat ents et un ou les brevets supplémentaires ou les applications de brevet en attente aux Etats - Unis et dans les
autres pays.

L'utilisation est soumise aux termes de la Licence.

Cette distribution peut comprendre des composants développés par des tierces parties.

Sun, Sun Microsystems, le logo Sun, Java, Solaris, Sun[tm] ONE, JDK, Java Naming and Directory Interface, JavaMail, JavaHelp et Javadoc sont
des marques de fabrique ou des marques déposées de Sun Microsystems, Inc. aux Etats-Unis et dans d'autres pays.

Toutes les marques SPARC sont utilisées sous licence et sont des marques de fabrique ou des marques déposées de SPARC International, Inc. aux
Etats-Unis et dans d'autres pays. Les produits portant les marques SPARC sont basés sur une architecture développée par Sun Microsystems, Inc.
UNIX est une marque déposée aux Etats-Unis et dans d'autres pays et licenciée exlusivement par X/Open Company, Ltd.

Ce produit est soumis a la législation américaine en matiére de controle des exportations et peut étre soumis a la réglementation en vigueur dans
d'autres pays dans le domaine des exportations et importations. Les utilisations, ou utilisateurs finaux, pour des armes nucléaires, des missiles,
des armes biologiques et chimiques ou du nucléaire maritime, directement ou indirectement, sont strictement interdites. Les exportations ou
réexportations vers les pays sous embargo américain, ou vers des entités figurant sur les listes d'exclusion d'exportation américaines, y compris,
mais de maniére non exhaustive, la liste de personnes qui font objet d'un ordre de ne pas participer, d'une fagon directe ou indirecte, aux
exportations des produits ou des services qui sont régis par la législation américaine en matiére de contrdle des exportations et la liste de
ressortissants spécifiquement désignés, sont rigoureusement interdites.

http://www.sun.com/patents
http://www.sun.com/patents

Contents

List Of FIQUIesS ... 13
List Of Tables . ..o 15
List Of ProCeduUres 19
Preface .. . 21
Who Should Use This BOOK oo e e ettt et 22
Before You Read This BOOKot e e e ettt e 22
How This Book Is Organized i i i 22
Conventions Used In This BoOK i et 24
TexXt CONVENtIONS .« . o\ttt t ettt e e e et e e e et e e it e e e e 24
Directory Variable Conventions i 25
Related Documentationi. ittt ittt e et e s 27
Message Queue Documentation Set 27
Online Help i 28
JavaDOC . e 28
Example Client Applications i 28
The Java Message Service (JMS) Specification i 29
Related Third-Party Web Site References i, 29
Sun Welcomes Your COMMENTSottt et et it ettt it et et ettt et iaans 29

Part | Introduction to Message Queue Administration 31

Chapter 1 Administration Tasks and TOOIS i 33
Administrative Tasks in a Development Environment..............o ... 34
Administrative Tasks in a Production Environment, 34
Setup Operations 35
Maintenance Operations 36
Administrative TOOLSttt e e 37
Command Line UHIHESttt e e e e 37
Administration ConSOLettt 39
Chapter 2 Administration Quick Start 41
Getting Ready 42
Starting the Administration Console 42
Getting Help 44
Starting a Broker 45
Adding a Broker 46
Connecting tothe Broker 48
Viewing Connection Servicesoiuiiiiiiiiii i 48
Adding Physical DestinationstoaBroker i 50
Administering Physical Destinations i 51
Getting Information About Topics i 53
Working with Object Stores 54
Adding an Object Store 54
Checking Object Store Properties i 57
Connecting toan Object Store i 57
Adding a Connection Factory Administered Object 57
Adding a Destination Object 59
Viewing Administered Object Properties i 61
Updating Console Information i i 62
Running the Sample Application i 62
Part 1l Administration Tasks e 65
Chapter 3 Starting Brokers and Clients i 65
Preparing System Resources i 66
Synchronizing System Clocks 66
Setting the File Descriptor Limits (Solaris or Linux) i, 66
Starting Brokers Interactively 67

4 Message Queue 3 2005Q1 « Administration Guide

Starting Brokers Automatically 68

Automatic Startup on Solarisand Linux i i 68
Automatic Startup on Windows 69
Starting Message Queue CLients i 71
Removing a Broker Instance 72
Chapter 4 Configuring aBroKer i e 73
About Configurable Broker Components, 74
ConNection SEIVICES\ttt 75
Message ROULET 79
Persistence Managert 83
Security Manager 88
MORNItoring SEIVICe 91
About Configuration Files 96
Instance Configuration File 96
Merging Property Values 97
Property Naming Syntaxuou i 98
Editing the Instance Configuration File o i 98
Entering Configuration Options on the Command Line 99
Setting Up a Persistent Store 99
Configuring a File System Store 100
Configuring a JDBC Store 100
Securing Persistent Data 104
Built-In (File-Based) Persistent Storec.oiuniiiiiin i, 105
Plugged-In (JDBC) Persistent Store 105
Chapter 5 Managing aBroKer 107
Prerequisites 108
Using the imgemd Command Utility i 108
Specifying the User Name and Password 109
Specifying the Broker Name and Port i 109
Examples 110
Displaying Help o 110
Displaying the Product Version 111
Displaying Broker Information 111
Updating Broker Properties i 112
Pausing and Resuming a Broker 113
Pausing a Broker i 113
Resuming a Broker i 114
Shutting Down and Restartinga Broker i 114
Displaying Broker Metrics 115

Contents 5

6

Managing Connection Services 116

Listing Connection SEIVICESttt 117
Displaying Connection Service Information i 118
Updating Connection Service Propertieso i, 118
Displaying Connection Service Metricso 119
Pausing and Resuming a Connection Service i, 120
Getting Information About Connections i 121
Managing Durable Subscriptions i i 122
Managing Transactions i 123
Chapter 6 Managing Physical Destinations i 127
Using the imgemd Command Utility0 i i 128
Subcommands 128
Creating a Physical Destination i i 129
Listing Physical Destinations i 131
Displaying Information about Physical Destinations oL 131
Updating Physical Destination Properties i i .. 133
Pausing and Resuming Physical Destinations i i 133
Purging Physical Destinations i 134
Destroying Physical Destinations i i 135
Compacting Physical Destinations i i i 136
Configuring Use of the Dead Message Queute ...ttt 138
Configuring Use of the Dead Message Queuec.oiiiiiiiiiiiiiiinn... 138
Configuring and Managing the Dead Message Queue 139
Enabling Dead Message Logging i 140
Chapter 7 Managing SECUIILYot e e 141
Authenticating Users i 142
Using a Flat-File User Repository i 142
Using an LDAP Server for a User Repository 149
Authorizing Users: the Access Control Properties File, 152
Creating an Access Control Properties File o 153
Syntax of Access Rules 154
How Permissions are Computed i 155
Access Control for Connection Services ... 156
Access Control for Physical Destinations i, 157
Access Control for Auto-created Physical Destinations 158
Working With an SSL-Based Service i 159
Secure Connection Services for TCP/IP i 160
Configuring the Use of Self-Signed Certificates, 160
Configuring the Use of Signed Certificates i 166

Message Queue 3 2005Q1 « Administration Guide

Using aPassfile 169

Security CONCEINSt 170
Passfile CONENESttt 170
Creating an Audit Log i 171
Chapter 8 Managing Administered Objects i 173
About Object STOres 174
LDARP Server Object StOre 174
File-System Object Store i 175
About Administered Object Attributes i 176
Connection Factory Attributes. 177
Client Identification e 180
Destination Administered Object Attributes il 185
Using the Object Manager Utility (imqobjmgr) i 185
Required Information 185
Using Command Files 186
Adding and Deleting Administered Objects i i 189
Adding a Connection Factory 189
Adding a Topic or QUEeUE it 190
Deleting Administered Objects i i 192
Listing Administered Objects i 193
Getting Information About a Single Object il 193
Updating Administered Objects 194
Chapter 9 Working With Broker ClUSters e 195
Cluster Configuration Properties i 196
Setting Cluster Properties for Individual Brokers 197
Using a Cluster Configuration File i 197
Managing CIUSTETrS i 198
Connecting Brokers i 198
Adding Brokerstoa Cluster i 199
Removing Brokers Froma Cluster i 200
Master BrOKeTot e 201
Managing the Configuration Change Record 201
When a Master Broker Is Unavailable i i 202
Chapter 10 Monitoring a Message Servert 203
Introduction to Monitoring Tools 203
Configuring and Using Broker Logging i 205
Default Logging Configuration 205
Log Message Format 206
Changing the Logger Configuration 206

Contents 7

Interactively Displaying Metrics i 210

imgemd Metrics 211
Using the metrics Subcommand to Display Metrics Data 212
Metrics Outputs: imgemd metrics i 213
IMGEMA QUETY . 214
Writing an Application to Monitor Brokers i 215
Setting Up Message-Based Monitoring o i i 216
Security and Access Considerations i i 217
Metrics Outputs: Metrics Messagesouiiiiiiiiiiiiiiiiiiiii .. 218
Chapter 11 Analyzing and Tuning a Message ServiCec.uuiiinnininneannn 219
About Performance 219
The Performance Tuning Process i i i 219
Aspects of Performance 220
Benchmarks 221
Baseline Use Patternst 222
Factors That Affect Performance i 223
Application Design Factors that Affect Performance, 224
Message Service Factors that Affect Performance 232
Adjusting Configuration To Improve Performance, 237
System Adjustments 237
Broker Adjustments 242
Client Runtime Message Flow Adjustments i, 244
Chapter 12 Troubleshooting Problems 247
A Client Cannot Establish a Connection i 248
Connection ThroughputIs TooSlow 253
A Client Cannot Create a Message Producer 255
Message Production Is Delayed or Slowed i 256
Messages Are Backlogged 259
Message Server Throughput Is Sporadic.............. o i 264
Messages Are Not Reaching Consumers, 265
The Dead Message Queue Contains Messagesooiiuiieiiiiiiniiiiienaan. 269
Part [ll Reference 277
Chapter 13 Command Reference i 279
Command Line Syntax 280
Rules for Entering Commands i 280
Command Line Examples i 280
Common Command Options i i 281

8 Message Queue 3 2005Q1 « Administration Guide

imgbrokerd 282

72 117 282
Command OPHONSt 282
See AlSO . .. 286
IMGEMA . 287
72 117 287
Subcommands 287
Command OPHONSot 294
See AlSO . .. 296
IMQODIMET .o 297
72 117 297
Subcommands 297
Command OPHONSt 298
See AlSO . .. 299
IMQdbmEr 300
72 17 300
Subcommands 300
Command OPHONSt 301
See AlSO . .. 301
F 040 LTS3 o 4= 302
72 117 302
Subcommands 302
Command OPpHONS 303
S AlSO . .\ 303
IMGSVEadmino 304
72 117 304
Subcommands 304
Command OPHONS 304
S AlSO . .\ 305
IMgKeytool 306
72 117 306
See AlSO . .\ 306
Chapter 14 Broker Properties Reference i 307
Alphabetical List of Properties i 307
Connection Service Properties 311
Message Router Properties 313
Persistence Manager Properties i 316
File-Based Persistence 316
JDBC-Based PersiSteniCettt ettt ettt e e 317
Security Manager Properties 320
Monitoring and Logging Properties i 324
Cluster Configuration Properties i i 327

Contents 9

Part

10

Chapter 15 Physical Destination Property Reference 329

Chapter 16 Administered Object Attribute Reference 333
Destination Properties 333
Connection Factory Attributes 334
Connection Handling 334
Client Identificationottt e e e e e e e e e 338
Message Header Overrides i 338
Reliability and Flow Control i 339
Queue Browser Behavior and Server Sessionouriiiiinin it 340
JMS-Defined Properties SUPpOTt 341
SOAP Endpoint Attributes 342
Chapter 17 JMS Resource Adapter Attribute Reference 343
ResourceAdapter JavaBean 344
ManagedConnectionFactory JavaBean i 345
ActivationSpec JavaBean 346
Chapter 18 Metrics Reference e 349
JVM MELTICS . oottt e e e e e e 349
BroKer-wide MetriCS . ..o v vttt et et e e e e 350
ConNection SErvice IMETICS . .. vt v vttt e ettt e e et et et e e 352
Destination IMEtTICS . . . oot vttt e e e e e e e 354
IV AP P ENAIXES &\ vttt et e e e 357
Appendix A Operating System-Specific Locations of Message Queue Data 359
SOlaTIS vttt e e 359
LU .o 361
WA OWS L.ttt e e 362
Appendix B Stability of Message Queue Interfaces 365

Message Queue 3 2005Q1 « Administration Guide

Appendix C HTTP/HTTPS SUPPOIt ...t e e e e e 369

HTTP/HTTPS Support Architecture i 370
Enabling HTTP Support 371
Step 1. Deploying the HTTP Tunnel Servletona Web Server 372
Step 2. Configuring the httpjms Connection Service, 373
Step 3. Configuring an HTTP Connection i, 374
Example 1: Deploying the HTTP Tunnel Servlet on Sun Java System Web Server............ 376
Example 2: Deploying the HTTP Tunnel Servlet on Sun Java System Application Server 7.0 .. 380
Enabling HTTPS Support e 382
Step 1. Generating a Self-signed Certificate for the HTTPS Tunnel Servlet 382
Step 2. Deploying the HTTPS Tunnel Servletona Web Server 383
Step 3. Configuring the httpsjms Connection Serviceo oL, 385
Step 4. Configuring an HTTPS Connection i, 386
Example 3: Deploying the HTTPS Tunnel Servlet on Sun Java System Web Server........... 389
Example 4: Deploying the HTTPS Tunnel Servlet on Sun Java System Application Server 7.0 . 394
Troubleshooting 396
Server or Broker Failure 396
Client Failure to Connect Through the Tunnel Servlet 396
GlOS S ANy o ottt e e 397
INdeX 399

Contents 11

12 Message Queue 3 2005Q1 « Administration Guide

Figure 1-1
Figure 4-1
Figure 4-2
Figure 4-3
Figure 4-4
Figure 4-5
Figure 4-6
Figure 11-1
Figure 11-2
Figure 11-3
Figure 11-4
Figure 11-5
Figure 11-6
Figure 11-7
Figure 11-8
Figure 12-1
Figure 12-2
Figure C-1

List of Figures

Local and Remote Administration Utilities o i .. 38
Broker Service Componentsiiiiiiiiiiiii 74
Connection Services SUPPOIt 76
Persistence Manager SUPPOTrtooiiiiiiiiiiiii i 84
Security Manager Support 89
Monitoring Service SUPPOIt 92
Broker Configuration Files 97
Message Delivery Through a Message Queue Service 223
Performance Impact of Delivery Modes i 227
Performance Impact of Subscription Types 229
Performance Effect of a Message Size i 231
Transport Protocol Speeds i 234
Performance Impact of Transport Protocol 235
Effect of Changing i nbuf sz on a 1k (1024 bytes) Packet 240
Effect of Changing out buf sz on a 1k (1024 bytes) Packet 241
QBrowser Window 267
QBrowser Message Details i 268
HTTP/HTTPS Support Architecture oo i, 370

13

14 Message Queue 3 2005Q1 « Administration Guide

Table 1
Table 2
Table 3
Table 4
Table 4-1
Table 4-2
Table 4-3
Table 5-1
Table 5-2
Table 6-1
Table 6-2
Table 6-3
Table 7-1
Table 7-2
Table 7-3
Table 7-4
Table 7-5
Table 7-6
Table 7-7
Table 8-1
Table 8-2
Table 8-3
Table 10-1
Table 10-2
Table 10-3
Table 10-4
Table 10-5

List of Tables

Book CONtentsttt e e 22
Document Conventionsouuie ittt i 24
Message Queue Directory Variables oo 25
Message Queue DocumentationSet i 27
Main Broker Service Components and Functions 75
Connection Services Supported by aBrokero o 76
Metrics Topic Destinations i 93
Connection Services Supported by aBroker 116
Connection Service Properties Updated by imgend 118
Physical Destination Subcommands for the imqemd Command Utility 128
Physical Destination Disk Utilization Metrics 137
Dead Message Queue Treatment of Standard Physical Destination Properties 139
Initial Entries in User Repository i, 143
imguser mgr OPpioNSttt 145
Syntactic Elements of AccessRules o i 154
Elements of Physical Destination Access Control Rules 157
Distinguished Name Information Required for a Self-Signed Certificate 161
Commands That Use Passwordsc.uuiiiiiiiiniiiiiinneenennn. 169
Passwordsina Passfile 170
LDAP Object Store Attributes i 174
File-system Object Store Attributes i 176
Naming Convention Examples i 190
Benefits and Limitations of Metrics Monitoring Tools 204
Logging Levels 206
i nobr oker d Logger Options and Corresponding Properties 207
i mgemd net ri cs Subcommand Syntax 211
i mycmd net ri cs Subcommand Options ... 212

15

16

Table 10-6
Table 10-7
Table 11-1
Table 13-1
Table 13-2
Table 13-3
Table 13-4
Table 13-5
Table 13-6
Table 13-7
Table 13-8
Table 13-9
Table 13-10
Table 13-11
Table 13-12
Table 13-13
Table 13-14
Table 13-15
Table 13-16
Table 13-17
Table 13-18
Table 14-1
Table 14-2
Table 14-3
Table 14-4
Table 14-5
Table 14-6
Table 14-7
Table 14-8
Table 14-9
Table 14-10
Table 14-11
Table 15-1
Table 16-1
Table 16-2
Table 16-3
Table 16-4

i mycmd quer y Subcommand Syntax 215
Metrics Topic Destinations i 216
Comparison of High Reliability and High Performance Scenarios 225
Common Message Queue Command Line Options 281
ingbrokerd Options 282
i Mgemd Subcommands e 287
i mycmd Subcommands Used to Manage a Broker 289
i ngcnmd Subcommands Used to Manage Destinations 290
i mgcmd Subcommands Used to Manage Connection Services 292
i mycmd Subcommands Used to Manage Connection Services 293
i ngcnmd Subcommands Used to Manage Durable Subscriptions 293
i mgcnmd Subcommands Used to Manage Transactions 294
IO Options 294
i mgobj ngr Subcommands 297
imgobj mgr Options 298
i ngdbngr Subcommands e 300
ingdbrgr Options ... 301
i mguser ngr Subcommands 302
P mgUSEr mgr OPtONS ... 303
i mgsvcadm n Subcommands 304
inmgsveadm n Options 304
Broker Instance Configuration Properties 308
Connection Service Properties i i i 311
Message Router Properties 313
Auto-create Configuration Properties oo 314
Required Persistence Manager Property i 316
Properties for File-Based Persistence 317
Properties for JDBC-Based Persistence i 318
Security Manager Properties i 320
Keystore Properties 324
Monitoring Service Properties 324
Cluster Configuration Properties i, 327
Physical Destination Properties i i 329
Destination Administered Object Attributes, 333
Connection Factory Attributes: Connection Handling 334
Addressing Schemes for the imqAddressList Attribute 336
Message Server Address Examples oo 337

Message Queue 3 2005Q1 « Administration Guide

Table 16-5
Table 16-6
Table 16-7
Table 16-8
Table 16-9
Table 16-10
Table 17-1
Table 17-2
Table 17-3
Table 18-1
Table 18-2
Table 18-3
Table 18-4
Table A-1
Table A-2
Table A-3
Table B-1
Table B-2
Table C-1
Table C-2
Table C-3
Table C-4

Connection Factory Attributes: Client Identification 338

Connection Factory Attributes: Message Header Overrides 338
Connection Factory Attributes: Reliability and Flow Control 339
Connection Factory Attributes: Queue Browser Behavior 341
Connection Factory Attributes: J]MS-defined Properties Support 341
SOAP Endpoint Attributes 342
Resource Adapter Attributes i 344
Managed Connection Factory Attributes 345
Activation Specification Attributes oo 347
JVM MELTICS .« vttt e e e e e e e e e 349
Broker-wide Metricsttt 350
Connection Service MetriCsttt e e 352
Destination Metricsottt e 354
Location of Message Queue Dataon Solaris 359
Location of Message Queue DataonLinux................ 361
Location of Message Queue Data on Windows 362
Interface Stability Classification Scheme 365
Stability of Message Queue Interfaces 366
httpjms Connection Service Propertieso 373
Servlet Arguments for Deploying HTTP Tunnel Servlet Jar File 377
httpsjms Connection Service Properties, 385
Servlet Arguments for Deploying HTTPS Tunnel Servlet Jar File 390

List of Tables 17

18 Message Queue 3 2005Q1 ¢ Administration Guide

List of Procedures

To Display Administration Console Help Information 44
To Add a Broker to the Administration Console 46
To Connect to the BroKer e e e e 48
To View Available CoNNection SEIVICESttt ittt e e e e e e e e e e 48
To Add a Queue Destination to a BroKer it ie e 50
To View the Properties of a Physical Destination oo, 52
To Purge Messages From a Physical Destination................ oL, 53
To Delete a Destinationttt e e e e e e e e 53
To Add a File-System Object Store i 54
To Display the Properties of an ObjectStore i .. 57
To Connecttoan Object Store 57
To Add a Connection Factory to an Object Store i 58
To Add a Destination to an Object Store i i 60
To View or Update the Properties of a Destination Object 61
To Run the HelloWorldMessage]NDI Application, 62
To See Logged Service Error Events i 70
Basic Delivery MechanisSms i 79
To Plug in a JDBC-Accessible Data Store i 101
To create a physical destination 130
To Reclaim Unused Physical Destination Disk Space oL, 138
To Edit the Configuration File to Usean LDAP Server, 149
To Set Up an Administrative User i i 151
To Set Up an SSL-based Connection Service i, 160
ToRegeneratea Key Pair 163
To Enable an SSL-based Service in the Broker i 163
To Obtain a Signed Certificate 166
To Install a Signed Certificate i i 167

19

20

To Configure the Java Client Runtime i 167

To Add a New Broker to a Cluster Using a Cluster Configuration File 199
To Add a New Broker to a Cluster Without a Cluster Configuration File 199
To Remove a Broker From a Cluster Using the Command Line 200
To Remove a Broker From a Cluster Using a Cluster ConfigurationFile 200
To Back Up the Configuration Change Record 201
To Restore the Configuration Change Record o .. 202
To Change the Logger Configuration fora Broker, 206
To Use Log Files to Report Metrics Information o .. 209
To Use the metrics SUbcommandttt e et 212
To Set Up Message-based Monitoring i 216
To Enable HTTP SUPPOTtot e 371
To Activate the httpjms Connection Serviceo 373
To Add a Tunnel Servilet e 376
To Configure a Virtual Path (Servlet URL) for a Tunnel Servlet 377
To Load the Tunnel Servlet at Web Server Startup o .. 378
To Disable the Server Access Logt 378
To Deploy the http Tunnel Servletasa WARFile 378
To Deploy the HTTP Tunnel Servlet in an Application Server 7.0 Environment 380
To Modify the Application Server’s server.policy File 381
To Enable HTTPS SUPPOTtot e 382
To Activate the httpsjms Connection Service 385
To Configure JSSE 386
To Add a Tunnel Serviet 389
To Configure a Virtual Path (servlet URL) for a Tunnel Servlet 391
To Load the Tunnel Servlet at Web Server Startup o .. 391
To Disable the Server Access LOgt 391
To Modify the HTTPS Tunnel Servlet WARFile o i i 392
To Deploy the https Tunnel Servletasa WARFile 393
To Deploy the HTTPS Tunnel Servlet in an Application Server 7.0 Environment 394
To Modify the Application Server’s server.policy File 395

Message Queue 3 2005Q1 « Administration Guide

Preface

The Sun Java™ System Message Queue Administration Guide provides the
information you need in order to administer a Message Queue messaging system.

This book describes Sun Java System Message Queue 3 2005Q1 (Message Queue
3.6).

This preface contains the following sections:

¢ “Who Should Use This Book” on page 22

e “Before You Read This Book” on page 22

e “How This Book Is Organized” on page 22

e “Conventions Used In This Book” on page 24

¢ “Related Documentation” on page 27

¢ “Related Third-Party Web Site References” on page 29

* “Sun Welcomes Your Comments” on page 29

21

Who Should Use This Book

Who Should Use This Book

This guide is meant for administrators and application developers who need to
perform Message Queue administration tasks.

A Message Queue administrator is responsible for setting up and managing a
Message Queue messaging system, especially the Message Queue message server
at the heart of this system.

Before You Read This Book

You must read the Message Queue Technical Overview to become familiar with the
Message Queue implementation of the Java Message Specification, with the
components of the Message Queue service, and with the basic process of
developing, deploying, and administering a Message Queue application.

How This Book Is Organized

The following table briefly describes the contents of the manual.

Table 1 Book Contents

Part/Chapter Description

Part I, “Introduction to Message Queue Administration”

Chapter 1, “Administration Introduces Message Queue administration tasks and tools.
Tasks and Tools”

Chapter 2, “Administration Provides a hands-on tutorial to acquaint you with the
Quick Start” Administration Console.

Part Il, “Administration Tasks”

Chapter 3, “Starting Brokers Describes how to start the Message Queue broker and clients.
and Clients”

Chapter 4, “Configuring a Describes how configuration properties are set and read, and
Broker” gives an introduction to the configurable aspects of the broker.

Also describes how to set up a file or database to perform
persistence functions.

22 Message Queue 3 2005Q1 « Administration Guide

Table 1

How This Book Is Organized

Book Contents (Continued)

Part/Chapter

Description

Chapter 5, “Managing a Broker”

Chapter 6, “Managing Physical
Destinations”

Chapter 7, “Managing Security”

Chapter 8, “Managing
Administered Objects”

Chapter 9, “Working With
Broker Clusters”

Chapter 10, “Monitoring a
Message Server”

Chapter 11, “Analyzing and
Tuning a Message Service”

Chapter 12, “Troubleshooting
Problems”

Part Ill, “Reference”

Chapter 13, “Command
Reference”

Chapter 14, “Broker Properties
Reference”

Chapter 15, “Physical
Destination Property
Reference”

Chapter 16, “Administered
Object Attribute Reference”

Chapter 17, “JMS Resource
Adapter Attribute Reference”

Chapter 18, “Metrics
Reference”

Part IV, “Appendixes”

Describes broker management tasks.

Describes management tasks relating to topics and queues.

Explains security-related tasks, such as managing password
files, authentication, authorization, and encryption.

Describes the object store and explains how to perform tasks
related to destination administered objects and connection
factory administered objects.

Describes how to set up and manage a cluster of Message
Queue brokers.

Describes how to set up and use Message Queue monitoring
facilities.

Describes techniques for analyzing message server
performance and explains how to tune the message server to
optimize its performance.

Provides suggestions about how to determine the cause of
common Message Queue problems, and about the actions you
can take to resolve the problems.

Provides syntax and descriptions for the Message Queue
command utilities.

List and describes the properties you can use to configure a
broker.

List and describes the properties you can use to configure
topics and queues.

List and describes the properties you can use to configure
destination administered objects and connection factory
administered objects.

List and describes the properties you can use to configure the
Message Queue resource adapter for use with an application
server.

List and describes the metrics produced by a Message Queue
broker.

Preface 23

Conventions Used In This Book

Table 1 Book Contents (Continued)

Part/Chapter

Description

Appendix A, “Operating
System-Specific Locations of
Message Queue Data”

Appendix B, “Stability of
Message Queue Interfaces”

Appendix C, “HTTP/HTTPS
Support”

Lists the location of Message Queue files on each supported
platform.

Describes the stability of various Message Queue interfaces.

Describes how to set up use of HTTP for Message Queue
communication.

Conventions Used In This Book

This section provides information about the conventions used in this document.

24

Text Conventions

Table 2 Document Conventions

Format

Description

italics

nonospace

(]

ALL CAPS

Key+Key

Key-Key

Italicized text represents a placeholder. Substitute an appropriate
clause or value where you see italic text. Italicized text is also used
to designate a document title, for emphasis, or for a word or phrase
being introduced.

Monospace text represents example code, commands that you
enter on the command line, directory, file, or path names, error
message text, class names, method names (including all elements
in the signature), package names, reserved words, and URLs.

Square brackets to indicate optional values in a command line
syntax statement.

Text in all capitals represents file system types (GIF, TXT, HTML
and so forth), environment variables (IMQ_HOME), or acronyms
(Message Queue, JSP).

Simultaneous keystrokes are joined with a plus sign: Ctrl+A means
press both keys simultaneously.

Consecutive keystrokes are joined with a hyphen: Esc-S means
press the Esc key, release it, and then press the S key.

Message Queue 3 2005Q1 « Administration Guide

Conventions Used In This Book

Directory Variable Conventions

Message Queue makes use of three directory variables; how they are set varies
from platform to platform. Table 3 describes these variables and summarizes how
they are used on the Solaris™, Windows, and Linux platforms.

Table 3~ Message Queue Directory Variables

Variable Description

| MQ_HOMVE This is generally used in Message Queue documentation to refer to
the Message Queue base directory (root installation directory):

e On Solaris and Linux, there is no root Message Queue
installation directory. Therefore, | M) HOMVE is not used in
Message Queue documentation to refer to file locations on
Solaris.

* On Solaris and Windows, for Sun Java System Application
Server, the root Message Queue installation directory is /i ng
under the Application Server base directory.

* On Windows, the root Message Queue installation directory is
set by the Message Queue installer (by default, as C. \ Program
Fi | es\ Sun\ MessageQueue3).

| MQ_VARHOVE This is the / var directory in which Message Queue temporary or
dynamically-created configuration and data files are stored. It can
be set as an environment variable to point to any directory.

* On Solaris, | MY VARHOVE defaults to the / var/i ny directory.

e On Solaris, for Sun Java System Application Server, Evaluation
Edition, | MY VARHOME defaults to the | M) HOVE/ var directory.

e On Windows | M) VARHOME defaults to the | M) HOMVE\ var
directory.

* On Windows, for Sun Java System Application Server,
| MQ_VARHOME defaults to the | M) HOVE\ var directory.

e On Linux, | MY VARHOME defaults to the / var/ opt / sun/ ng
directory.

Preface 25

Conventions Used In This Book

Table 3 ~ Message Queue Directory Variables (Continued)

Variable Description

| MQ_JAVAHOVE This is an environment variable that points to the location of the
Java™ runtime (JRE) required by Message Queue executables:

* On Solaris, | MY JAVAHOME looks for the java runtime in the
following order, but a user can optionally set the value to
wherever the required JRE resides.

Solaris 8 or 9:
[usr/jdk/entsys-j2se
lusr/jdk/jdkl.5. %
[usr/jdk/j2sdkl. 5. *
lusr/j2se

Solaris 10:

[usr/jdk/ entsys-j2se
[usr/java
lusr/j2se

e On Linux, Message Queue first looks for the java runtime in the
following order, but a user can optionally set the value of
| MQ_JAVAHOME to wherever the required JRE resides.
[usr/jdk/ entsys-j2se
lusr/javaljrel.5. *
lusr/javaljdkl.5. *
lusr/javaljrel. 4.2*
[usr/javalj2sdkl. 4. 2*

e On Windows, | M) JAVAHOME defaults to | M) HOVE\j re, but a
user can optionally set the value to wherever the required JRE
resides.

In this guide, | M) HOVE, | M) VARHOME, and | MQ_JAVAHOME are shown without
platform-specific environment variable notation or syntax (for example, $| M) HOVE
on UNIX®). Path names generally use UNIX directory separator notation (/).

26 Message Queue 3 2005Q1 « Administration Guide

Related Documentation

Related Documentation

In addition to this guide, Message Queue provides additional documentation

resources.

Message Queue Documentation Set

The documents that comprise the Message Queue documentation set are listed in
Table 4 in the order in which you would normally use them.

Table 4

Message Queue Documentation Set

Document

Audience

Description

Message Queue Installation Guide

Message Queue Release Notes

Message Queue Technical
Overview

Message Queue Administration
Guide

Message Queue Developer’s Guide
for Java Clients

Message Queue Developer’s Guide
for C Clients

Developers and
administrators

Developers and
administrators

Developers and

administrators

Administrators and
developers

Developers

Developers

Explains how to install Message
Queue software on Solaris, Linux, and
Windows platforms.

Includes descriptions of new features,
limitations, and known bugs, as well
as technical notes.

Describes Message Queue concepts,
features, and components.

Provides background and information
needed to perform administration
tasks using Message Queue
administration tools.

Provides information about how to
develop a Java client program that
uses the Message Queue
implementation of the JMS and
SOAP/JAXM specifications.

Provides information about how to
develop a C client program that uses
the C interface (C-API) to the
Message Queue message service.

Preface 27

Related Documentation

28

Online Help

Message Queue includes command line utilities for performing Message Queue
message service administration tasks. To access the online help for these utilities,
see Chapter 13, “Command Reference.”.

Message Queue also includes a graphical user interface (GUI) administration tool,
the Administration Console (i ngadni n). Context sensitive online help is included
in the Administration Console.

JavaDoc

JMS and Message Queue API documentation in JavaDoc format is provided at the
following location:

Platform Location

Solaris [usr/share/javadoc/ i ng/index. ht m
Linux [opt/sun/ ng/ j avadoc/ i ndex. ht ni /
Windows | MQ_HOME/ j avadoc/ i ndex. ht i

This documentation can be viewed in any HTML browser such as Netscape or
Internet Explorer. It includes standard JMS API documentation as well as Message
Queue-specific APIs for Message Queue administered objects (see Chapter 3 of the
Message Queue Developer’s Guide for Java Clients), which are of value to developers
of messaging applications.

Example Client Applications

A number of example applications that provide sample client application code are
included in a platform-specific directory (see Appendix A, “Operating
System-Specific Locations of Message Queue Data”).

See the README file located in that directory and in each of its subdirectories.

Message Queue 3 2005Q1 « Administration Guide

Related Third-Party Web Site References

The Java Message Service (JMS) Specification
The JMS specification can be found at the following location:
http://]ava. sun. con product s/ j ns/ docs. ht m

The specification includes sample client code.

Related Third-Party Web Site References

Third-party URLs are referenced in this document and provide additional, related
information.

NOTE Sun is not responsible for the availability of third-party Web sites
mentioned in this document. Sun does not endorse and is not
responsible or liable for any content, advertising, products, or other
materials that are available on or through such sites or resources.
Sun will not be responsible or liable for any actual or alleged
damage or loss caused by or in connection with the use of or reliance
on any such content, goods, or services that are available on or
through such sites or resources.

Sun Welcomes Your Comments

Sun is interested in improving its documentation and welcomes your comments
and suggestions.

To share your comments, go to htt p://docs. sun. comand click Send Comments. In

the online form, provide the document title and part number. The part number is a
seven-digit or nine-digit number that can be found on the title page of the book or
at the top of the document.

Preface 29

http://java.sun.com/products/jms/docs.html
http://docs.sun.com

Sun Welcomes Your Comments

30 Message Queue 3 2005Q1 « Administration Guide

Part |

Introduction to Message Queue
Administration

Chapter 1, “ Administration Tasks and Tools”

Chapter 2, “Administration Quick Start”

Chapter 1

Administration Tasks and Tools

Sun Java™ System Message Queue administration consists of a number of tasks
and a number of tools for performing those tasks.

This chapter first provides an overview of administrative tasks and then describes
the administration tools, focusing on common features of the command line
administration utilities. The chapter contains the following sections:

¢ “Administrative Tasks in a Development Environment” on page 34
¢ “Administrative Tasks in a Production Environment” on page 34

¢ “Administrative Tools” on page 37

33

Administrative Tasks in a Development Environment

Administrative Tasks in a Development
Environment

In a development environment, the work focuses on programming Message Queue
client applications and programmers often administer their own systems. The
Message Queue message server is needed principally for testing. In a development
environment, the emphasis is on flexibility, and administration typically includes
the following practices:

* Minimal administration, consisting mostly of starting up a broker for
developers to use in testing.

* Use of built-in file-based persistence, a file-based user repository, and a
file-system store. These simple configurations are usually adequate for
development testing.

* In multi-broker testing, no use of a Master Broker.

e Use of auto-created destinations rather than administrator-created
destinations.

¢ Instantiation of administered objects in client code rather than by an
administrator.

Administrative Tasks in a Production
Environment

In a production environment, in which applications must be reliably deployed and
run, administration is more important. The administration tasks you perform
depend on the complexity of your messaging system and the complexity of the
applications it must support. In general, these tasks can be grouped into setup
operations and maintenance operations.

34 Message Queue 3 + Administration Guide

Administrative Tasks in a Production Environment

Setup Operations

Typically you must perform at least some, if not all, of the following setup
operations:

* Administrator security (protected use of administration tools):

0

Authorization: Allow a specific individual or group to access the
administrative connection service and consume messages from the dead
message queue (see “Access Control for Connection Services” on page 156
and “Access Control for Physical Destinations” on page 157).

If you are using the default administrative user (adm n) and a file-based
user repository, change the user password (see “Changing the Default
Administrator Password” on page 148).

If you are authorizing a group, make sure each administrator belongs to
the group.

+ File-based user repository

The file-based user repository has a single group for administrators
(adnm n). If you create a new administrative user, make sure that the
new user is in the adm n group.

» LDAP user repository

Create a group in the LDAP server, or use an existing group. Be sure
that the user to whom you want to grant administrative privileges is a
member of that group, and then authorize administrative connections
for the members of that group.

For more information, see “Using an LDAP Server for a User
Repository” on page 149).

* General security (see Chapter 7, “Managing Security”):

0

Authentication: Make entries into the file-based user repository or
configure the broker to use an existing LDAP user repository.

(At a minimum, you want to password protect administration capability.)
Authorization: Modify access settings in the access control properties file.

Encryption: Set up SSL-based connection services (see “Working With an
SSL-Based Service” on page 159).

Chapter 1 Administration Tasks and Tools 35

Administrative Tasks in a Production Environment

36

¢ Administered objects (see Chapter 8, “Managing Administered Objects”):
o Configure or set up an LDAP object store.
o Create ConnectionFactory and destination administered objects.
* Broker clusters (see Chapter 9, “Working With Broker Clusters”):
o Create a central configuration file.
o Use a Master Broker.

e Persistence: Decide whether you want the broker to use plugged-in
persistence or built-in persistence, and set up the desired store (see “Setting Up
a Persistent Store” on page 99).

* Memory management: Set destination attributes so that the number of
messages and the amount of memory allocated for messages fit within
available broker memory resources (see Table 15-1 on page 329).

Maintenance Operations

In a production environment, Message Queue message server resources need to be
tightly monitored and controlled. Application performance, reliability, and
security are at a premium, and you must perform a number of ongoing tasks,
described below, using Message Queue administration tools:

* Application management

o Disable the broker’s auto-create capability by setting the values for the
i mg. aut ocr eat e. queue and i ny. aut ocr eat e. t opi ¢ properties (see
“Message Router Properties” on page 313).

o Create physical destinations on behalf of applications (see Chapter 6,
“Managing Physical Destinations” on page 127).

o Set user access to destinations (see “Authorizing Users: the Access Control
Properties File” on page 152).

o Monitor and manage destinations (see “Managing Durable Subscriptions”
on page 122).

o Monitor and manage durable subscriptions (see “Managing Durable
Subscriptions” on page 122).

o Monitor and manage transactions (see “Managing Transactions” on
page 123).

Message Queue 3 ¢ Administration Guide

Administrative Tools

* Broker administration and tuning

o Use broker metrics to tune and reconfigure the broker (see Chapter 11,
“Analyzing and Tuning a Message Service” on page 219).

o Manage broker memory resources (see Chapter 11, “Analyzing and
Tuning a Message Service” on page 219).

o Add brokers to clusters to balance loads (see Chapter 9, “Working With
Broker Clusters”).

o Recover failed brokers (see “Starting Brokers Interactively” on page 67).
* Managing applications

o Create additional ConnectionFactory and destination administered objects
as needed (see “Adding and Deleting Administered Objects” on page 189).

o Adjust ConnectionFactory attribute values to ensure the correct behavior
of Java client applications (see Chapter 8, “Managing Administered
Objects”).

Administrative Tools

Message Queue administration tools fall into two categories:
¢ Command line utilities

* A graphical Administration Console (i mgadmni n)

Command Line Utilities

This section introduces the command line utilities you use to perform Message
Queue administration tasks. You use the Message Queue utilities to start up and
manage a broker and to perform other, more specialized administrative tasks.

Chapter 1 Administration Tasks and Tools 37

Administrative Tools

Figure 1-1 Local and Remote Administration Utilities

Remote Admin Host Broker Host

— — —» Broker

imgcmd imgbrokerd imgkeytool

imgobjmgr imgqusermgr imgdbmagr

imgsvcadmin
(Windows only)

All Message Queue utilities are accessible from a command line interface (CLI).
Utility commands share common formats, syntax conventions, and options, as
described later in this chapter. You can find reference information on the use of the
command line utilities in Chapter 13, “Command Reference.”

Broker (i ngbrokerd) You use the Broker utility to start the broker. You use options
to the i mybr oker d command to specify whether brokers should be connected in a
cluster and to specify additional configuration information that the broker uses at
startup.

Command (i mgemd) ~ After starting a broker, you use the Command utility to
create, update, and delete physical destinations; control the broker and its
connection services; and manage the broker’s resources.

Object Manager (i nyobj ngr) You use the Object Manager utility to add, list,
update, and delete administered objects in an object store accessible via JNDIL
Administered objects allow JMS clients to be provider-independent by insulating
them from JMS provider-specific naming and configuration formats.

User Manager (i rquserngr) ~ You use the User Manager utility to populate a
file-based user repository used to authenticate and authorize users.

Key Tool (i rgkeyt ool) You use the Key Tool utility to generate self-signed
certificates used for SSL authentication.

38 Message Queue 3 + Administration Guide

Administrative Tools

Database Manager (i ngdbngr) You use the Database Manager utility to create and
manage a JDBC-compliant database used for persistent storage.

Service Administrator (i ngsvcadnin) You use the Service Administrator utility to
install, query, and remove the broker as a Windows service.

Administration Console

The Administration Console combines some of the capabilities of two command
line utilities: the Command utility (i ngcnd) and the Object Manager utility

(i ryobj ngr).

You can use the Administration Console and these two command line utilities to
manage a broker remotely and to manage Message Queue administered objects.
Other command line utilities (imquser nyr, i ngdbngr, and i ngkeyt ool) must be run
on the same host as their associated broker, as shown in Figure 1-1 on page 38.

Information on the Administration Console is available in its online help. The
command line utilities, which are generally used to perform specialized tasks, are
described in “Command Line Utilities.”

You can use the administration console to do the following;:

¢ Connect to a broker and manage it.

¢ Create and manage physical destinations on the broker.

¢ Connect to an object store.

* Add administered objects to the object store and manage them.

There are some tasks that you cannot use the Administration Console to perform,
including starting up a broker, creating broker clusters, configuring more
specialized properties of a broker and physical destinations, and managing a user
database.

Chapter 2, “Administration Quick Start” provides a brief, hands-on exercise to
familiarize you with the Administration Console and to illustrate how you use it to
accomplish basic tasks.

Chapter 1 Administration Tasks and Tools 39

Administrative Tools

40 Message Queue 3 « Administration Guide

Chapter 2

Administration Quick Start

This quick start focuses on basic administration tasks, using the Administration
Console, a graphical interface for administering a Message Queue broker and
object store. By following the instructions in this chapter, you will learn how to do
the following;:

e Start a broker.

* Connect to a broker and use the Administration Console to manage it.

¢ Create physical destinations on the broker.

* Create an object store and use the Administration Console to connect to it.
* Add a destination object to the object store and view its properties.

The quick start sets up the physical destinations and administered objects needed
to run a simple JMS-compliant application, HelloWorldMessage]NDI. The
application is available in the hel | owor | d subdirectory of the example applications
directory (den on the Solaris and Windows platforms or exanpl es on Linux; see
Appendix A, “Operating System-Specific Locations of Message Queue Data”). In
the last part of the quick start, you run this application.

This quick start is provided mainly to guide you through performing basic
administration tasks using the Administration Console. It is not a substitute for
reading and referring to the documentation.

Some Message Queue administration tasks cannot be accomplished using the
Administration Console. You must use command line utilities to perform such
tasks as the following:

¢ Configuring certain physical destination properties
* Creating broker clusters

* Managing a user database

41

Getting Ready

For more information on how to accomplish these tasks, see Chapter 6, “Managing
Physical Destinations,”Chapter 9, “Working With Broker Clusters,” and Chapter 7,
“Managing Security.”

Getting Ready

Before you can start, you must install the Message Queue product. For more
information, see the Message Queue Installation Guide. Note that this chapter is
Windows-centric, with added notes for UNIX® users.

In this chapter, choosing Item1 > [tem?2 > Item3 means that you should pull down
the menu called Item1, choose Item2 from that menu and then choose Item3 from
the selections offered by Item?2.

Starting the Administration Console

To start the Administration Console, use one of the following methods:

* On Windows, choose Start > Programs > Sun Microsystems > Sun Java System
Message Queue 3.6 > Administration.

¢ On Solaris, enter this command:
[usr/ bi n/ingadm n
¢ On Linux, enter this command:
[opt/ sun/ my/ bi n/ i mgadm n
You may need to wait a few seconds before the Console window is displayed.
Take a few seconds to examine the Console window.

The Console features a menu bar at the top, a tool bar just underneath the menu
bar, a navigational pane to the left, a results pane to the right (now displaying
graphics identifying the Sun Java System Message Queue product), and a status
pane at the bottom.

42 Message Queue 3 « Administration Guide

Starting the Administration Console

EﬂSUn Java(tm} System Message Queue Administration Console : i |EI|1|
Console Edit Actions View Help

R R %ele nb

@1 Object Stores
(&4 Brokers

&

e

Sun Java™ System
Message Queue

S,

]aﬁa Copyright © 2004 Sun Microsystems, Inc. All rights reserved.
Use is subject to license terms.

This chapter cannot provide complete information, so let’s first find out how to get
help information for the Administration Console.

Chapter 2 Administration Quick Start 43

Starting the Administration Console

44

Getting Help

Locate the Help menu at the extreme right of the menu bar.

[J To Display Administration Console Help Information

1.

Pull down the Help menu and choose Overview. A help window is displayed.

4. gun Java{tm) System Message Queue Administration Console H [10l =l
IRAEE

Message Queue Administration §§ OverVIeW

1

[overview :

Messane Queue Object Store Mi| 2| vou use the contrals in the administration console to communicate with
D Add Object Store §§ ane or mare Message Queue brokers and ohject stores..

[} Object Stare Properties The adrministration console is divided into five panes, as shown below.

D ConnectiDisconnect Object
[} Add Destination Object :
D Destination Object Propertie
[Add Connection Factory Ohjg
3 connection Factory Ohject P i
Message Queue Broker Manage | -
[Add Eraker P
D Eroker Properties

D ConnectiDisconnect Broker
[QuerdUpdate Broker

D Add Broker Destination

[T Destination Froperties

D Service Propeties

1
ooo oo 2

#* 1-menu bar

» 2-tool bar

3 - navigational pane
4 - results pane

5- status pane

1]

[» 3 ¥ou use menus in the menu bar or icons in the tool bar to act unon il

Notice how the help information is organized. The navigation pane, on the left,
shows a table of contents; the results pane, on the right, shows the contents of
any item you select in the navigation pane.

Look at the results pane of the Help window. It shows a skeletal view of the
Administration Console, identifying the use of each of the Console’s panes.

Look at the Help window’s navigational pane. It organizes topics in three
areas: overview, object store management, and broker management. Each of
these areas contains files and folders. Each folder provides help for dialog
boxes containing multiple tabs; each file provides help for a simple dialog box
or tab.

Your first Console administration task, “Adding a Broker” on page 46, will be
to create a reference to a broker you manage through the Console. Before you
start, however, check the online help for information.

Message Queue 3 ¢ Administration Guide

Starting a Broker

Click the Add Broker item in the Help window’s navigational pane.

Note that the results pane has changed. It now contains text that explains what
it means to add a broker and that describes the use of each field in the Add
Broker dialog box. Field names are shown in bold text.

Read through the help text.
Close the Help window.

Starting a Broker

You cannot start a broker using the Administration Console. Instead, use one of the
following methods:

On Windows, choose Start > Programs > Sun Microsystems > Sun Java System
Message Queue 3.6 > Message Broker.

On Solaris, enter this command:
/usr/ bin/ingbrokerd
On Linux, enter this command:

/ opt / sun/ my/ bi n/ i mybr okerd

If you used the Windows Start menu, the command window appears. The
command response appears, and indicates that the broker is ready by displaying
lines like the following:

Loadi ng persistent data..
Broker “i ngbr oker @t an: 7676 ready.

Bring the Administration Console window back into focus. You are now ready to
add the broker to the Console and to connect to it.

You do not have to start the broker before you add a reference to it in the
Administration Console, but you must start the broker before you can connect to it.

Chapter 2 Administration Quick Start 45

Adding a Broker

Adding a Broker

Adding a broker creates a reference to that broker in the Administration Console.
After adding the broker, you can connect to it.

[J To Add a Broker to the Administration Console
1. Right-click on Brokers in the navigation pane and choose Add Broker.
2. Enter MyBr oker in the Broker Label field.

This provides a label that identifies the broker in the Administration Console.

Broker Label: |Elr0 kerLahel |

Host: |localhost
Primary Port: ’T(ﬁ?ﬁi
Username: ’W
P @]
Warning: Authentication information you supply with

this dialog is not secure. You will be prompted for this
information later if you do not enter it now.

| ok || ResetToDefauts || cancel || Help |

Note the default host name (I ocal host) and primary port (7676) specified in
the dialog box. These are the values you must specify later, when you
configure the connection factory that the client will use to set up connections to
this broker.

Leave the Password field blank. Your password will be more secure if you
specify it at connection time.

3. Click OK to add the broker.

Look at the navigation pane. The broker you just added should be listed there
under Brokers. The red X over the broker icon tells you that the broker is not
currently connected to the console.

46 Message Queue 3 « Administration Guide

5.

ﬂSUn Java(tm} System Message Queue Administration Console
Console Edit Actions View

Adding a Broker

=10l x|

Help

9 [Object Stores
o (& myobjectstore
(@ Destinations

¢ [Brokers
? ﬁ hyBraker
Services
0§ Destinations

fE Connection Factories

4] Il IDE

>

Eroker Label

| Broker Host

| Frimary Port

| Connection Status

llacalhast

|7676

|Disconnected

f hiyBraker

-

Sun Javadtm) System Message Queue

Right-click on MyBroker and choose Properties from the popup menu.

The broker properties dialog box is displayed. You can use this dialog box to
update any of the properties you specified when you added the broker.

Click Cancel to dismiss the dialog box.

Chapter 2

Administration Quick Start

a7

Connecting to the Broker

Connecting to the Broker

[1 To Connect to the Broker
1. Right-click M/Br oker and choose Connect to Broker.

A dialog box appears and requests a user name and password.

%4 Connect to Broker ll

Username: [admin |
p d: | |

| 0K || Cancel || Help |

By default, the Administration Console can connect to a broker as user admi n
with password adni n. For this exercise, you use the default value. In a
real-world environment, you should establish secure user names and
passwords as soon as you can. See “Authenticating Users” on page 142 for
more information.

2. Enter adni n in the Password field.

Specifying the user name adni n and supplying the correct password connects
you to the broker, with administrative privileges.

3. Click OK to connect to the broker.

After you connect to the broker, you can choose from the Actions menu to get
information about the broker, to pause and resume the broker, to shutdown and
restart the broker, and to disconnect from the broker.

Viewing Connection Services

A broker is distinguished by the connection services it provides and the physical
destinations it supports.

[0 To View Available Connection Services

1. Select Services in the navigation pane.

Available services are listed in the results pane. For each service, its name, port
number, and state is provided.

48 Message Queue 3 « Administration Guide

Connecting to the Broker

EﬂSUn Java(tm) System Message Queue Administration Console 10l =|
Console Edit Actions View Help
Ro P i Bl >emw 2
(7 Object Stores i Service Marme | Fort Murnber | Service State
@ [Brokers ’ ims 1027 {dynarmic) RUMMIMNG
@ Sﬁ MyBroker “Jadmin 1028 {dynamic) RUMMING
fsh [Services “lsslims tynamic UM EMOWN
@5‘ Destinations §§ hitpims - LIM MO
“|httpsims - UINKMOWR
2|ssladmin dynarnic UINKROW
=0 IC

Sun Javadtm) System Message Queue Administration Console
Successfully connected to the braker yBraker',

2. Select the jms service by clicking on it in the results pane.
3. Pull down the Actions menu and note the highlighted items.

You have the option of pausing the jms service or of viewing and updating its
properties.

4. Choose Properties from the Actions menu.

Note that by using the Service Properties dialog box, you can assign the service
a static port number and you can change the minimum and maximum number
of threads allocated for this service.

EﬂSErvice Properties _ ll

Service Name: jms
Port Number: @ pynamic: 3043
) Static:
Service State: RUNNING

Current Humber of Allocated Threads: 0
Current Humber of Connections: 0

Min Number of Threads: [10 |
Max Number of Threads: [1000 |

| 0K || Cancel || Help |

5. Click OK or Cancel to close the Properties dialog box.

6. Select the admin service in the results pane.

Chapter 2 Administration Quick Start 49

Connecting to the Broker

50

7. Pull down the Actions menu.

Notice that you cannot pause this service (the pause item is disabled). The
admin service is the administrator’s link to the broker. If you paused it, you
would no longer be able to access the broker.

8. Choose Actions > Properties to view the properties of the admin service.

9. Click OK or Cancel when you're done.

Adding Physical Destinations to a Broker

By default, physical destination auto-creation is enabled for a broker.
Auto-creation enables a broker to dynamically create physical destinations.

In a development environment, you do not have to explicitly create physical
destinations in order to test client code.

In a production setting, it is advisable to explicitly create physical destinations.
This allows you, the administrator, to be fully aware of the physical destinations
that are in use on the broker.

You will now add a physical destination to the broker. Note the name that you
assign to the destination; you will need it later when you create an administered
object that corresponds to this physical destination.

0 To Add a Queue Destination to a Broker

1. Right-click the Destinations node of MyBroker and choose Add Broker
Destination.

The following dialog box is displayed:

Message Queue 3 ¢ Administration Guide

Connecting to the Broker

E"jndd Broker Destination x|

Destination Name: | |

Destination Tvpe: & queue
2 Topic
Max Number of Messages:
® Unlimited
o}

Mazx Total Message Bytes:
(@ Unlimited

o

Mazx Bytes per Message:
(@ Unlimited

foves |
© foes |

Mazx Humber of Producers:

)
w100

Max Humber of Active C s
o}
|1

Mazx Number of Backup Consumers:
o}
(Of]

| ok || ResetToefauts || cancel || wew |

2. Enter MyQueueDest in the Destination Name field.
3. Select the Queue radio button if it is not already selected.
4. Click OK to add the physical destination.

The physical destination now appears in the results pane.

Administering Physical Destinations

Once you have added a physical destination on the broker, you can do any of the
following tasks, as described in the following procedures:

* View and update the properties of a physical destination
e Purge messages at a physical destination

* Delete a physical destination

Chapter 2 Administration Quick Start 51

Connecting to the Broker

52

[J To View the Properties of a Physical Destination
1. Select the Destinations node of MyBroker.

Two physical destinations appear in the results panel, MyQueueDest and

ny. sys. dng. The ng. sys. dng destination is a system-created queue that stores
expired and rejected messages for the broker. For now, ignore this dead
message queue.

2. Select MyQueueDest in the results pane.
3. Choose Actions > Properties.

The following dialog box is displayed:

E"’jBroker Destination Properties ll

Basic | Durable Subscriptions |

Destination Name: MyQueueDest
Destination Type: Queue
Destination State: RUNNING

Current Humber of Messages: 0
Current Total Message Bytes: 0 ytes
Current Number of Producers: 0
Current Number of Active Consumers: 0
Current Humber of Backup Consumers: 0

Max Number of Messages: s Unlimited

)
Mazx Total Message Bytes: (s Unlimited
o fres [~]
Mazx Bytes per Message: @ Unlimited
o fves [+
Mazx Number of Producers: 7 |inlimited
@]
Max Number of Active C S) Unlimited
@]
Mazx Number of Backup Consumers: 7 |plimited
®p]
Limit Behavior: [REJECT_NEWEST v

Use Dead Message Queue:

| 0K || Cancel || Help |

Message Queue 3 ¢ Administration Guide

Connecting to the Broker

Note that the dialog box displays current status information about the queue as
well as some properties that you can change.

4. Click Cancel to close the dialog box.
[J To Purge Messages From a Physical Destination

1. Select the physical destination in the results pane.

2. Choose Actions > Purge Messages.

A confirmation dialog box is displayed.

Purging messages removes the messages and leaves an empty destination.
[J To Delete a Destination

1. Select the physical destination in the results pane.

2. Choose Edit > Delete.

A confirmation dialog box is displayed.

NOTE Do not delete the MyQueueDest queue destination.

Deleting a physical destination purges the messages at that destination and
removes the destination.

Getting Information About Topics

The broker topic destination properties dialog box includes an additional tab that
lists information about durable subscriptions. This tab is disabled for queues.

Basic rDurahIe Subscriptions |
Durable Sub. Mame | Client ID [Mumber of Messaged _Durable Sub. State |
| 0K || Cancel || Help |
E.

Chapter 2 Administration Quick Start 53

Working with Object Stores

You can use this dialog box to:

* Purge durable subscriptions, removing all messages associated with a durable
subscription

* Delete durable subscriptions, purging all messages associated with a durable
subscription and also removing the durable subscription

Working with Object Stores

54

An object store is used to store Message Queue administered objects. These
administered objects encapsulate Message Queue-specific implementation and
configuration information about objects that are used by client applications. An
object store can be an LDAP directory server or a file system store (directory in the
file system).

Administered objects can be instantiated and configured within client code.
However, it is preferable that an administrator create, configure, and store these
objects in an object store that client applications can access using JNDI. This allows
client code to be provider-independent.

You cannot use the Administration Console to create an object store. You must do
this ahead of time as described in the following section.

Adding an Object Store

Adding an object store creates a reference to an existing object store in the
Administration Console. This reference is retained even if you quit and restart the
Console.

[J To Add a File-System Object Store

1. If you do not already have a folder named Tenp on your C drive, create it now.

The sample application used in this chapter assumes that the object store is a
folder named Tenp on the C drive. In general, a file-system object store can be
any directory on any drive.

Non-Windows: you can use the / t np directory, which should already exist.
2. Right-click on Object Stores and choose Add Object Store.
The following dialog box is displayed:

Message Queue 3 ¢ Administration Guide

Working with Object Stores

P4 add Dbject Store x|

Object Store Label: |

JNDI Haming Service Properties:

Hame: | java.naming.factory.initial - |

Value: | |

Marne | Walue I

Warning: Authentication information you supply with this dialog is not secure. You will he
prompted for this information later if you do not enter it now.

| 0K || Clear || Cancel || Help |

Enter MQhj ect St or e in the field named ObjectStoreLabel.

This simply provides a label for the display of the object store in the
Administration Console.

In the following steps, you must enter JNDI name/value pairs. These pairs are
used by JMS-compliant applications for looking up administered objects.

From the Name drop-down list, select j ava. naming.factory.initial.

This property allows you to specify what JNDI service provider you wish to
use. For example, a file system service provider or an LDAP service provider.

In the Value field, enter the following
com sun. j ndi . f scont ext . Ref FSCont ext Fact ory

This means that you will be using a file system store. (For an LDAP store, you
would specify com sun. j ndi . | dap. LdapCt xFact ory.)

In a production environment, you will probably want to use an LDAP
directory server as an object store. For information about setting up the server
and doing JNDI lookups, see “LDAP Server Object Store” on page 174.

Click the Add button.

Notice that the property and its value are now listed in the property summary
pane.

Chapter 2 Administration Quick Start 55

Working with Object Stores

56

10.
11.

From the Name drop-down list, choose j ava. nani ng. provi der. url .

This property allows you to specify the exact location of the object store. For a
file system type object store, this will be the name of an existing directory.

In the Value field, enter the following
file:///C/Tenp

(file:///tnp on Solaris and Linux)
Click the Add button.

Notice that both properties and their values are now listed in the property
summary pane. If you were using an LDAP server, you might also have to
specify authentication information; this is not necessary for a file-system store.

Click OK to add the object store.
If the node MyObjectStore is not selected in the navigation pane, select it now.

The Administration Console now looks like this:

EﬂSUn Java(tm} System Message Queue Administration Console i |EI|1|
Console Edit Actions View Help

NEEBESnnore

@ [Ohject Stores 1 Contents | Count -
@ @ MyObjectStare ’ Destinations 1]
(@ Destinations “|Connection Factories 0
[E Caonnection Factaries §§ =
@ [Brokers i
% 57 myBroker
Services
(& Destinations

Successfully added the ohject stare MyOhjectStore’.

The object store is listed in the navigation pane and its contents, Destinations
and Connection Factories, are listed in the results pane. We have not yet added
any administered objects to the object store, and this is shown in the Count
column of the results pane.

A red X is drawn through the object store’s icon in the navigation pane. This
means that it is disconnected. Before you can use the object store, you must
connect to it.

Message Queue 3 ¢ Administration Guide

file:///C:/Temp
file:///tmp

Working with Object Stores

Checking Object Store Properties

While the Administration Console is disconnected from an object store, you can
examine and change some of the properties of the object store.

To Display the Properties of an Object Store
1. Right click on MyObjectStore in the navigational pane.
2. Choose Properties from the popup menu.

A dialog box is displayed that shows all the properties you specified when you
added the object store. You can change any of these properties and click OK to
update the old information.

3. Click OK or Cancel to dismiss the dialog box.

Connecting to an Object Store

Before you can add objects to an object store, you must connect to it.
To Connect to an Object Store

1. Right click on MyObjectStore in the navigational pane.

2. Choose Connect to Object Store from the popup menu.

Notice that the object store’s icon is no longer crossed out. You can now add
objects, connection factories and destinations, to the object store.

Adding a Connection Factory Administered
Object

You can use the administration console to create and configure a connection
factory. A connection factory is used by client code to connect to the broker. By
configuring a connection factory, you can control the behavior of the connections it
is used to create.

For information on configuring connection factories, see the online help and the
Message Queue Developer’s Guide for Java Clients.

Chapter 2 Administration Quick Start 57

Working with Object Stores

NOTE The Administration Console lists and displays only Message Queue
administered objects. If an object store contains a non-Message
Queue object with the same lookup name as an administered object
that you want to add, you receive an error when you attempt the
add operation.

[J To Add a Connection Factory to an Object Store

1. Ifnot already connected, connect to MyObjectStore (see “Connecting to an
Object Store” on page 57)

2. Right click on the Connection Factories node and choose Add Connection
Factory Object.

The Add Connection Factory Object dialog box is displayed.

E"jndd Connection Factory Object i ll

Lookup Hame: |My@ueueConnecti0nFact0r\r

Factory Type: |ConnectionFactory | - |
Read-Onhs []
Message Header Overrides r 3.0 Connection Handling |
Reliability and Flow Control r QueueBrowsers and ServerSessions
Connection Handling | Client Identification | JMSX Properties

Message Server Address List: |

Address List Order:
Number of Address List lterations: ’17

Enable Auto-reconnect to Message Server: [|
Humber of Reconnect Attempts per Address: lﬂi
Reconnect Interval per Address (milliseconds): ’W
Connection Ping Interval (seconds): ’307

| oK || Reset To Defaults || Cancel || Help |

3. Enter the name “MyQueueConnect i onFact ory” in the Lookup Name field.

This is the name that the client code uses when it looks up the connection
factory as shown in the following line from Hel | oWr | dMessageJND! . j ava:

gcf =(j avax. j ns. QueueConnect i onFact ory)
ct x. | ookup(“MyQueueConnect i onFactory”)

58 Message Queue 3 * Administration Guide

Adding a Destination Object

Select the QueueConnectionFactory from the pull-down menu to specify the
type of the connection factory.

Click the Connection Handling tab.

The Message Server Address List field is where you would normally enter the

address of the broker to which the client will connect. An example for this field
looks like this:

ng: / /1 ocal host: 7676/ j ms

You do not need to enter a value since, by default, the connection factory is
configured to connect to a broker running on the localhost on port 7676, which
is the configuration that the quick start example expects.

Click through the tabs for this dialog box to see the kind of information that
you can configure for the connection factory. Use the Help button in the lower
right hand corner of the Add Connection Factory Object dialog box to get
information about individual tabs. Do not change any of the default values for
now.

Click OK to create the queue connection factory.

Look at the results pane: the lookup name and type of the newly created
connection factory are listed.

Adding a Destination Object

Destination administered objects are associated with physical destinations on the
broker and they point to those destinations. Destination administered objects
enable clients to look up and find physical destinations, independently of
provider-specific destination names and configurations.

When a client sends a message, it either looks up or instantiates a destination
administered object and references it in the send() method of the JMS APIL The
broker is then responsible for delivering the message to the physical destination
that is associated with that administered object, as follows:

If you have created a physical destination that is associated with that
administered object, the broker delivers the message to that physical
destination.

If you have not created a physical destination and auto-creation of physical
destinations is enabled, the broker itself creates the physical destination and
delivers the message to that destination.

Chapter 2 Administration Quick Start 59

mq://localhost:7676/jms

Adding a Destination Object

60

If you have not created a physical destination and auto-creation of physical
destinations is disabled, the broker cannot create a physical destination and
cannot deliver the message.

In the next part of the quick start, you will be adding an administered object that
corresponds to the physical destination you added earlier.

[J To Add a Destination to an Object Store

1.

Right-click on the Destinations node (under the MyObjectStore node) in the
navigation pane.

Choose Add Destination Object.

The Administration Console displays an Add Destination Object dialog box
that you use to specify information about the object.

B add Destination Object x|

Lookup Name: | |

Destination Type: & Queus

2 Topic
Read-Only: [
Destination Name: |Untitled_Destination_Object |

Destination Description: |A Description for the Destination Object |

| ok || ResetToDefauts || cancel || Help |

Enter “MyQueue” in the Lookup Name field.

The lookup name is used to find the object using JNDI lookup calls. In the
sample application, the call is the following:

queue=(j avax. j ns. Queue) ct x. | ookup(“M/Queue”);
Select the Queue radio button for the Destination Type.
Enter MyQueueDest in the Destination Name field.

This is the name you specified when you added a physical destination on the
broker (see “Adding Physical Destinations to a Broker” on page 50).

Click OK.

Select Destinations in the navigation pane and notice how information about
the queue destination administered object you have just added is displayed in
the results pane.

Message Queue 3 ¢ Administration Guide

Viewing Administered Object Properties

EﬂSUn Java(tm} System Message Queue Administration Console i |EI|1|
Console Edit Actions View Help

ROD

@ [Ohject Stores
9 & wmyobjectstore
(@ |Destinations :
(@ Connection Factaries
@[3 Erokers
@ Sﬁ MyBroker
fsh Services
(& Destinations

Connectto bject Stare
v Caokup Marme | Destination Tvpe | Destination Marn
’:: MyQueue Queue MyQueueDest

|Success'fLT|Ty added the destination object MyGiueue 1o object sfare MyOhjectSiora”

Viewing Administered Object Properties

To view or update the properties of an administered object, you select Destinations
or Connection Factories in the navigation pane, select a specific object in the results
pane, and choose Actions > Properties.

[J To View or Update the Properties of a Destination Object
1. Select the Destinations node of MyObjectStore in the navigational pane.
2. Select MyQueue in the results pane.

3. Choose Actions > Properties to view the Destination Object Properties dialog
box.

Note that the only values you can change are the destination name and the
description. To change the lookup name, you would have to delete the object
and then add a new queue administered object with the desired lookup name.

4. Click Cancel to dismiss the dialog box.

EﬂDestination Object Properties LI

Lookup Hame: MyQueue
Destination Type: Queue

Read-Onhy: [[]

Destination Name: [MyQueueDest |

Destination Description: My first queue destination] |

| 0K || Cancel || Help |

Chapter 2~ Administration Quick Start 61

Updating Console Information

Updating Console Information

Whether you work with object stores or brokers, you can update the visual display
of any element or groups of elements by choosing View > Refresh.

Running the Sample Application

62

The sample application HelloWorldMessageJNDI is provided for use with this
quick start. It uses the physical destination and administered objects that you
created:

* A queue physical destination named MyQueueDest

* A queue connection factory administered object and queue administered object
with JNDI lookup names MyQueueConnectionFactory and MyQueue
respectively

The code creates a simple queue sender and receiver, and sends and receives a
“Hello World” message.

[J To Run the HelloWorldMessage]JNDI Application

1. Make the directory that includes the Hel | oWr | dnessageJNDI application your
current directory; for example:

cd | MQ HOVE\ dero\ hel | owor | d\ hel | owor | dnessagej ndi (Windows)
cd /usr/deno/ i g/ hel | owor | d/ hel | owor | dnessagej ndi (Solaris)
cd /opt/sun/ my/ exanpl es/ hel | owor | d/ hel | owor | dnmessagej ndi (Linux)

You should find the HelloWorldMessage]NDL.class file present. (If you make
changes to the application, you must re-compile it using the instructions for
compiling a client application in the Quick Start Tutorial of the Message Queue
Developer’s Guide for C Clients.) Set the CLASSPATH variable to include the
current directory containing the file Hel | oVér | dMessageJNDI . ¢l ass as well as
the following jar files that are included in the Message Queue product:
jms.jar,iny.jar,and f scont ext.j ar. See the Message Queue Developer’s Guide
for Java Clients for instructions on setting the CLASSPATH

The JNDI jar file (j ndi . j ar) file is bundled with JDK 1.4. If you are using this
JDK, you do not have to add j ndi . j ar to your CLASSPATH setting. If you are
using an earlier version of the JDK, you must include j ndi . j ar in your
CLASSPATH. See the Message Queue Developer’s Guide for Java Clients for
additional information)

Message Queue 3 ¢ Administration Guide

Running the Sample Application

Before you run the application, open the source file

Hel | oWr | dMessageJNDI . j ava and read through the source. It is short, but it is
amply documented and it should be fairly clear how it uses the administered
objects and destinations you have created.

Run the Hel | oWr | dMessageJNDI application by executing one of the
commands below:

java Hel | oWor | dMvessageJNDI (Windows)
% java Hel | oWrl dMessageJNDI file:///tnp (Solaris and Linux)

If the application runs successfully, you should see the following output:

java Hel | oWr | dMessageJNDI
Wsing file:///C/Tenp for Context.PRO/I DER_URL

Looki ng up Queue Connection Factory object with | ookup name:
M/QueueConnect i onFact ory

Queue Connection Factory object found.

Looki ng up Queue object with | ookup nane: M/Queue

Queue obj ect found.

Creating connection to broker.
Connection to broker created.

Publ i shing a message to Queue: M/QueueDest
Recei ved the foll owi ng message: Hello Wrld

Chapter 2 Administration Quick Start 63

file:///tmp
file:///C:/Temp

Running the Sample Application

64 Message Queue 3 + Administration Guide

Part |l

Administration Tasks

Chapter 3, “Starting Brokers and Clients”

Chapter 4, “Configuring a Broker”

Chapter 5, “Managing a Broker”

Chapter 6, “Managing Physical Destinations”

Chapter 7, “Managing Security”

Chapter 8, “Managing Administered Objects”

Chapter 9, “Working With Broker Clusters”

Chapter 10, “Monitoring a Message Server”

Chapter 11, “Analyzing and Tuning a Message Service”

Chapter 12, “Troubleshooting Problems”

Chapter 3

Starting Brokers and Clients

After installing Sun Java™ System Message Queue and performing some
preparatory steps, you can start brokers and clients.

The chapter contains the following sections:

“Preparing System Resources” on page 66
“Starting Brokers Interactively” on page 67
“Starting Brokers Automatically” on page 68
“Starting Message Queue Clients” on page 71

“Removing a Broker Instance” on page 72

The configuration of the broker instance is governed by a set of configuration files
and by options passed with the i mybr oker d command, which override
corresponding properties in the configuration files. For information about broker
configuration, see Chapter 4, “Configuring a Broker” on page 73.

65

Preparing System Resources

Preparing System Resources

66

Before you start a broker, there are two system-level tasks to perform:
synchronizing the system clocks, and, on Solaris or Linux, setting the file descriptor
limits. The next sections describe these tasks.

Synchronizing System Clocks

Before starting any brokers or clients, it is important to synchronize the clocks on
all hosts that will interact with the Message Queue system. Synchronization is
particularly crucial if you are using message expiration (TimeToLive). Timestamps
from clocks that are not synchronized could prevent the TimeToLive feature from
working as expected and prevent the delivery of messages. Synchronization is also
crucial for broker clusters.

Configure your systems to run a time synchronization protocol, such as Simple
Network Time Protocol (SNTP). Time synchronization is generally supported by
the xnt pd daemon on Solaris and Linux, and by the W32Time Time service on
Windows. See your operating system documentation for information about
configuring this service.

After the broker is running, avoid setting the system clock backward.

Setting the File Descriptor Limits (Solaris or
Linux)

On the Solaris and Linux platforms, the shell in which the client or broker is
running places a soft limit on the number of file descriptors that a process can use.
In the Message Queue system, each connection a client makes, or each connection a
broker accepts, uses one of these file descriptors. Each physical destination that has
persistent messages also uses a file descriptor.

As a result, the number of connections is limited by these factors. You cannot have
a broker or client running with more than 256 connections on Solaris or 1024 on
Linux without changing the file descriptor limit. (The connection limit is actually
lower than that due to the use of file descriptors for persistence.)

To change the file descriptor limit, see the ul i ni t man page. The limit needs to be
changed in each shell in which a client or broker will be executing.

Message Queue 3 2005Q1 « Administration Guide

Starting Brokers Interactively

Starting Brokers Interactively

You can start brokers interactively from the command line, using the i mybr oker d
command. (Alternatively, on Windows, you can start a broker from the Start
menu.) You cannot use the Administration Console (i nrgadm n) or the Command
Utility (i ngcmd) to start a broker; the broker must already be running before you can
use these tools.

On the Solaris and Linux platforms, a broker instance must always be started by
the user who initially started it. When the broker instance first starts, Message
Queue uses that user’s umask to set permissions on broker instance directories
containing configuration information and persistent data. Each broker instance has
its own set of configuration properties and file-based message store.

A broker instance has the instance name i njbr oker by default. To start a broker
from the command line with this name and the default configuration, simply use
the command

i ngbr oker d

This starts a broker instance named i ngbr oker on the local machine, with the Port
Mapper at the default port of 7676.

To specify an instance name other than the default, use the - nane option to the
i nojbr oker d command. The following command starts a broker with the instance
name nyBr oker:

i ngbr okerd - name nyBr oker

Other options are available on the i mgybr oker d command line to control various
aspects of the broker’s operation. The following example uses the -t ty option to
send errors and warnings to the command window (standard output):

i ngbr okerd -name nyBroker -tty

You can also use the - Doption on the command line to override the values of
properties specified in the broker’s instance configuration file (conf i g. properti es).
This example sets the i my.j ms. max_t hr eads property, raising the maximum number
of threads available to the j ms connection service to 2000:

i ngbr okerd - name nyBroker -Ding.j ms. max_t hr eads=2000

See Chapter 13, “Command Reference,” for complete information on the syntax,
subcommands, and options of the i ngbr oker d command. For a quick summary of
this information, enter the command

i ngbr okerd - hel p

Chapter 3 Starting Brokers and Clients 67

Starting Brokers Automatically

NOTE If you have a Sun Java System Message Queue Platform Edition
license, you can use the i ngbr oker d command’s - | i cense option to
activate a trial Enterprise Edition license, allowing you to try
Enterprise Edition features for 90 days. Specify t ry as the license
name:

i mgbrokerd -1icense try

You must use this option each time you start a broker; otherwise the
broker will default to the standard Platform Edition license.

Starting Brokers Automatically

Instead of starting a broker explicitly from the command line, you can set it up to
start automatically at system startup. How you do this depends on the platform
you're running the broker on (Solaris, Linux, or Windows).

Automatic Startup on Solaris and Linux

On Solaris and Linux systems, scripts that enable automatic startup are placed in
the /et ¢/ rc* directory tree during Message Queue installation. To enable the use
of these scripts, you must edit the configuration file / et ¢/ i g/ i mgbr oker d. conf
(Solaris) or / et ¢/ opt / sun/ ng/ i ngbr oker d. conf (Linux) as follows:

¢ To start the broker automatically at system startup, set the AUTGSTART property
to YES.

* To have the broker restart automatically after an abnormal exit, set the RESTART
property to YES.

* To set startup command-line arguments for the broker, specify one or more
values for the ARGS property.

68 Message Queue 3 2005Q1 « Administration Guide

Starting Brokers Automatically

Automatic Startup on Windows

To start a broker automatically at Windows system startup, you must define the
broker as a Windows service. You can install a broker as a service when you install
Message Queue on a Windows system. After installation, you can use the Service
Administrator utility, i ngsvcadnmi n, to perform the following operations:

* Add abroker as a Windows service.
¢ Determine the startup options for the broker service.
* Remove a broker that is running as a Windows service.

For reference information about the syntax, subcommands, and options of the
i mgsvcadm n command, see Chapter 13, “Command Reference.”

Installing a broker as a Windows service means that it will start at system startup
time and run in the background until you shut down. Consequently, you do not
use the i ngbr oker d command to start the broker unless you want to start an
additional instance.

To pass startup options to the broker, use the - ar gs argument to the i ngsvcadni n
command. This works the same way as the i mybr oker d command’s - D option, as
described under “Starting Brokers Interactively” on page 67. Use the i ngcnd
command to control broker operations as usual.

When a broker runs as a Windows service, Task Manager lists the broker as two
executable processes:

¢ The native Windows service wrapper, i ngbr oker svc. exe
¢ The Java runtime that is running the broker

A system can have only one broker that is running as a Windows service.

Reconfiguring the Broker Service

The sequence for reconfiguring the Windows service is as follows:
1. Stop the service.
2. Remove the service.

3. Add the service, specifying different broker startup options with the - ar gs
option, or different Java version arguments with the -vimar gs option.

Chapter 3 Starting Brokers and Clients 69

Starting Brokers Automatically

70

Using an Alternative Java Runtime

You can use either the - j avahone or - j r ehone options to specify the location of an
alternative Java runtime. You can also specify these options in the Windows
Services Control Panel Startup Parameters field.

The Startup Parameters field treats the back slash (\) as an escape character, so you
must type it twice when using it as a path delimiter; for example,
-javahome d:\\jdkl. 3.

Displaying the Broker Service Startup Options

To determine the startup options for the broker service, use the query option to the
i mgsvcadm n command.

i mgsvcadm n query

Service i M) Broker is installed.

Di spl ay Name: i MQ Broker

Start Type: Manual

Binary location: c:\Program Files\Sun M crosystens\
Message Queue 3.5\ bi n\i mgbr okersvc

JavaHone: c:\j2sdkl.4.0

Broker Args: -passfile d:\ingpassfile

Troubleshooting Service Startup Problems

If you get an error when you try to start the service, you can view error events that
were logged.

To See Logged Service Error Events
1. Start the Event Viewer.
2. Look under Log > Application.

3. Select View > Refresh to see any error events.

Removing a Broker That Is Running as a Windows Service
To remove a broker that is running as a service, do one of the following:
e Use commands. First use the i ngcmd shut down bkr command to shut down

the broker and then use the i ngsvcadm n r enmove command to remove the
service.

Message Queue 3 2005Q1 « Administration Guide

Starting Message Queue Clients

¢ Use the Control Panel’s management tool for Windows services. This feature is
available in different locations in different versions of Windows.

Restart your computer when you are done.

Starting Message Queue Clients

Before starting a client application, obtain information from the application
developer about how to set up the system. If you are starting Java client
applications, you must set the CLASSPATHvariable and ensure you have the correct
jar files installed. The Message Queue Developer’s Guide for Java Clients contains
information about generic steps for setting up the system, but your developers
might have additional information to provide.

To start a Java client application, use the following command line format:
java clientAppName

To start a C client application, use the format supplied by the application
developer.

The application developer or application documentation should provide
information on attribute values that the application sets. You might want to
override some attributes that the application sets. You do so by specifying those
attributes on the command line.

You might also want to specify attributes on the command line for any Java client
that uses a JNDI lookup to find its connection factory. If the lookup returns a
connection factory that is older than the application, the connection factory might
lack support for more recent attributes. In such a case, Message Queue sets those
attributes to default values. By specifying the attributes on the command line, you
can set them to nondefault values.

To provide attribute values on the command line, use the following command line
syntax for a Java application:

java [[- Dattribute=value]...] clientAppName

The value for attribute must be a connection factory administered object attribute, as
described in Chapter 16, “Administered Object Attribute Reference.” If there is a
space in the value, put quotation marks around the attribute=value part of the
command line.

Chapter 3 Starting Brokers and Clients 71

Removing a Broker Instance

The following example starts the client application MM i ent . The application
connects to a broker on the host t her Host at port 7677, overriding any host name
and port set by the application.

java - Di ngAddressLi st =ny: // Cher Host : 7677/ jms MyMX i ent

In some cases, you cannot use the command line to specify attribute values. An
administrator can set an administered object to allow read access only, or an
application developer can code the client to do so. Communication with the
application developer is necessary to understand the best way to start the client
program.

Removing a Broker Instance

72

This section contains information on removing a broker instance on Solaris or
Linux. For information about removing a Windows service, see “Removing a
Broker That Is Running as a Windows Service” on page 70.

To remove a broker instance, use the i mybr oker d command with the - r enove option.
The command format for removing a broker instance is as follows:

i mybrokerd [options.] -renove instance
For example, if the name of the broker is nyBr oker, this is the command:
i ngbr okerd -name nyBroker -renove instance
The command deletes the entire instance directory for the specified broker.

For a list of options that you can use to remove a broker, see the i ngbr okerd
reference information in “Command Reference” on page 279.

On Solaris or Linux, if the broker is set up to start automatically at system startup,
edit the configuration file / et ¢/ i my/ i ngbr oker d. conf (Solaris) or
[etc/ opt/sun/ ng/i mybr oker d. conf (Linux) and set the AUTCSTART property to NO

Message Queue 3 2005Q1 « Administration Guide

mq://OherHost:7677/jms

Chapter 4

Configuring a Broker

When a broker instance starts, its configuration is governed by a set of
configuration files and by the options passed to the i mgbr oker d command. This
chapter explains how configuration files and command line options interact to
configure a broker instance, describes the functions of each broker component and
lists its configuration properties, and then explains how to set up the configuration.

The chapter contains the following sections:

¢ “About Configurable Broker Components” on page 74

¢ “About Configuration Files” on page 96

¢ “Editing the Instance Configuration File” on page 98

e “Entering Configuration Options on the Command Line” on page 99
* “Setting Up a Persistent Store” on page 99

* “Securing Persistent Data” on page 104

For full reference information about configuration properties, see Chapter 14,
“Broker Properties Reference.”

73

About Configurable Broker Components

About Configurable Broker Components

Message delivery in a Message Queue messaging system—from producing clients
to destinations, and then from destinations to one or more consuming clients—is
performed by a broker, or by a cluster of broker instances working in tandem.

To perform message delivery, a broker must set up communication channels with
clients, perform authentication and authorization, route messages appropriately,
guarantee reliable delivery, and provide data for monitoring system performance.

To perform its functions, a broker uses a number of internal components, each with
a specific role in the delivery process. These broker components are illustrated in
Figure 4-1.

Figure 4-1 Broker Service Components

Main Broker
Components

;

|
|
: Monitoring
| Service
|
|
|
|
mll
|
|
|
| Security Persistence
| Manager Manager
|
|
|

incoming|
messagei
: . [lj Message
Connecuon_l Rout 9
| Services IJ Ei:, outer
: outgoing|
messages
User
Repository

74 Message Queue 3 2005Q1 « Administration Guide

About Configurable Broker Components

The Message Router component performs the key message routing and delivery
service, and the others provide important support services. Table 4-1 briefly
describes each component.

Table 4-1 Main Broker Service Components and Functions

Component Description/Function For Property Descriptions...

Connection Services Manages the physical connections between a “Connection Service
broker and clients, providing transport for incoming Properties” on page 311
and outgoing messages.

Message Router Manages the routing and delivery of messages: “Message Router Properties”
These include JMS messages as well as control on page 313
messages used by the Message Queue messaging
system to support IMS message delivery.

Persistence Manager Manages the writing of data to persistent storage “Persistence Manager
and the retrieval of data from persistent storage. Properties” on page 316
Security Manager Provides authentication services for users “Security Manager Properties”
requesting connections to a broker and on page 320

authorization services (access control) for
authenticated users.

Monitoring Service Generates metrics and diagnostic information that “Monitoring and Logging
can be written to a number of output channels that Properties” on page 324
an administrator can use to monitor and manage a
broker.

You can configure these components to optimize broker performance, depending
on load conditions, application complexity, and so on. The following sections
explore the functions that each component performs and the properties that you
can set to affect its behavior.

Connection Services

A Message Queue broker supports communication with both Message Queue
application clients and Message Queue administration clients. Each connection
service is specified by its service type and protocol type, as follows:

* The service type specifies whether the service provides JMS message delivery
(NCRVAL) or Message Queue administration (ADM N) services

* The protocol type specifies the underlying transport protocol layer that supports
the service.

Chapter 4 Configuring a Broker 75

About Configurable Broker Components

Table 4-2 lists the connection services available from a Message Queue broker:

Table 4-2 Connection Services Supported by a Broker

Service Name Service Type Protocol Type

jms NORMAL tcp

ssljms (Enterprise Edition) NORMAL tls (SSL-based security)
httpjms (Enterprise Edition) NORMAL http

httpsjms (Enterprise Edition) NORMAL https (SSL-based security)
admin ADMIN tcp

ssladmin ADMIN tls (SSL-based security)

You can configure a broker to run any or all of these connection services. Each
connection service is available at a particular port, specified by the broker’s host
name and a port number. The j ms and adni n services are enabled by default.

Message Queue can dynamically map a connection service to a port number, or
you can explicitly assign a port. Each service registers itself with a common Port
Mapper but has its own Thread Pool Manager, as shown in Figure 4-2.

Figure 4-2 Connection Services Support

Port
Mapper
incoming | 7 /
messagei ve
Connection

Services
\

outgoing
messages

Thread
Pool
Manager

The next sections describe the relationship between a connection service and the

Port Mapper and Thread Pool Manager.

76 Message Queue 3 2005Q1 « Administration Guide

About Configurable Broker Components

Port Mapper

Message Queue provides a Port Mapper that assigns ports to connection services.
The Port Mapper resides at a standard port number, 7676. When a client sets up a
connection with the broker, it first contacts the Port Mapper, requesting the port
number of a specified connection service.

The port numbers for the jms, ssljms, admin and ssladmin connection services can
be dynamic or static. By default, a connection service dynamically configures its
port when it starts up. Alternatively, you can specify a static port for the service,
but static port numbers are not generally recommended. Static port numbers are
typically used only for special situations, such as connections that traverse a
firewall.

The httpjms and httpsjms services are configured using properties described in
Table C-1 on page 373 and Table C-3 on page 385, respectively, in Appendix C,
“HTTP/HTTPS Support.”

Thread Pool Manager

Each connection service is multi-threaded, supporting multiple connections. The
threads needed for these connections are maintained in a thread pool managed by
a Thread Pool Manager component.

You can configure the Thread Pool Manager to set a minimum number and
maximum number of threads maintained in the thread pool. As threads are needed
by connections, they are added to the thread pool. When the minimum number of
threads is exceeded, the system shuts down threads as they become free, until the
minimum number threshold is reached, to save memory resources. This number
should be large enough so that new threads do not have to be continually created.
Under heavy connection loads, the number of threads might increase until the
thread pool’s maximum number is reached, after which connections must wait
until a thread becomes available.

The threads in a thread pool can be dedicated to a single connection (dedicated
model) or assigned to multiple connections, as needed (shared model).

Dedicated model Each connection to the broker requires two dedicated threads:
one handles incoming messages for the connection and one handles outgoing
messages for the connection. This limits the number of connections to half the
maximum number of threads in the thread pool, but it provides for high
performance.

Chapter 4 Configuring a Broker 77

About Configurable Broker Components

78

Shared model (Enterprise Edition) Connections are processed by a shared
thread whenever sending or receiving messages. Because each connection does not
require dedicated threads, this model increases the number of connections that a
connection service (and therefore, a broker) can support. However there is some
performance overhead involved in the sharing of threads. The Thread Pool
Manager uses a set of distributor threads that monitor connection activity and
assign connections to threads as needed. The performance overhead involved in
this activity can be minimized by limiting the number of connections monitored by
each such distributor thread.

Security

Each connection service supports specific authentication and authorization (access
control) features (see “Security Manager” on page 88).

Connection Service Properties

These are the configurable properties related to connection services:

e ing. service.activelist.List of connection services to be started at broker
startup.

* i ng. host nane. Specifies the host to which all connection services bind if there
is more than one host available (for example, if there is more than one network
interface card in a computer).

* ing. portnapper. port. Specifies the broker’s primary port—the port at which
the Port Mapper resides.

* i ng. portnapper . hostname. Specifies the host to which the Port Mapper binds if
there is more than one host available.

* i ng. portnapper. backl og. Specifies the maximum number of concurrent
requests that the Port Mapper can handle before rejecting requests. The
property sets the number of requests that can be stored in the operating system
backlog waiting to be handled by the Port Mapper.

e i my.service_name.protocol_type.port .Forj ns,ssl j ms,adni n,andssl adm nservices
only, specifies the port number for the named connection service.

* i my.service_name.protocol_type.host nane. For j ns, ssl j ns, adm n, and ssl admi n
services only, specifies the host to which the named connection service binds if
there is more than one host available.

* i ng.service_name.m n_t hr eads. Specifies the number of threads, which once
reached, are maintained in the thread pool for use by the named connection
service.

Message Queue 3 2005Q1 « Administration Guide

About Configurable Broker Components

* i nu.service_name. max_t hr eads. Specifies the number of threads beyond which
no new threads are added to the thread pool for use by the named connection
service.

* i ng.service_name.t hr eadpool _nodel . Specifies whether threads are dedicated to
connections or shared by connections as needed for the named connection
service.

e ing.shared. connectionhonitor_|init.For shared thread pool model only,
specifies the maximum number of connections that can be monitored by a
distributor thread.

For full descriptions of these properties, see Table 14-2 on page 311.

Message Router

Once connections have been established between clients and a broker using the
supported connection services, message routing and delivery can proceed.

Basic Delivery Mechanisms

Broadly speaking, messages handled by a broker fall into two categories:

¢ JMS payload messages that are sent by producer clients and destined for
consumer clients

¢ Control messages that are sent to and from clients to support the delivery of
the JMS messages

If an incoming message is a JMS message, the broker routes it to consumer clients,
based on whether the destination is a queue or topic:

e If the destination is a topic, the J]MS message is immediately routed to all active
subscribers to the topic. If a durable subscriber is inactive, the Message Router
holds the message until the subscriber becomes active, and then delivers the
message.

e If the destination is a queue, the JMS message is placed in the corresponding
queue, and delivered to the appropriate consumer when the message reaches
the front of the queue. The order in which messages reach the front of the
queue depends on the order of their arrival and on their priority.

Once the Message Router has delivered a message to all its intended consumers, it
clears the message from memory. If the message is persistent, the Message Router
removes it from the broker’s persistent data store.

Chapter 4 Configuring a Broker 79

About Configurable Broker Components

80

Reliable Delivery: Acknowledgments and Transactions

The delivery mechanism just described becomes more complicated when adding
requirements for reliable delivery. There are two aspects involved in reliable
delivery:

* Assuring that delivery of messages to and from a broker is successful

* Assuring that the broker does not lose messages or delivery information before
messages are actually delivered

To ensure that messages are successfully delivered to and from a broker, Message
Queue uses a number of response control messages.

For example, when a producer sends a JMS message (a payload message) to a
destination, the broker responds that it received the JMS message. (By default,
Message Queue does this only if the producer specifies the JMS message as
persistent.) The producing client uses the broker response to guarantee delivery to
the destination.

Similarly, when a broker delivers a JMS message to a consumer, the consuming
client sends back an acknowledgment that it has received and processed the
message. A client specifies how automatically or how frequently to send these
acknowledgments when creating session objects, but the Message Router does not
delete a JMS message from memory until it receives an acknowledgment from each
consumer to which it has delivered the message—for example, from each of the
multiple subscribers to a topic.

If there are durable subscriptions to a topic, the Message Router retains each JMS
message in that destination, delivering it as each durable subscriber becomes an
active consumer.

The Message Router records client acknowledgments as they are received, and
deletes the JMS message only after all the acknowledgments have been received,
unless the JMS message expires before then.

Furthermore, the Message Router confirms receipt of the client acknowledgment
by sending a broker response back to the client. The consuming client uses the
broker response to make sure that the broker will not deliver a JMS message more
than once. This could happen if the broker fails to receive the client
acknowledgment.

If the broker does not receive a client acknowledgment and delivers a JMS message
a second time, the message is marked with a Redeliver flag. The broker generally
redelivers a JMS message under the following circumstances:

e The client connection closes before the broker receives a client
acknowledgment, and a new connection is subsequently opened.

Message Queue 3 2005Q1 « Administration Guide

About Configurable Broker Components

¢ The client application recovers a session.
* The client application recovers a rolled back transaction.

For example, if a message consumer of a queue goes off line before acknowledging
a message, and another consumer subsequently registers with the queue, the
broker redelivers the unacknowledged message to the new consumer.

The client acknowledgments and broker responses described above apply, as well,
to JMS message deliveries grouped into transactions. In such cases, these processes
operate on the level of a transaction as well as on the level of individual JMS
message sends or receives. When a transaction commits, a broker response is sent
automatically.

The broker tracks transactions, allowing them to be committed or, if they fail,
rolled back. This transaction management also supports local transactions that are
part of larger, distributed transactions. The broker tracks the state of these
transactions until they are committed. When a broker starts up, it inspects all
uncommitted transactions, and by default, the broker rolls back all transactions
except those in a PREPARED state. If you set the i nj. transacti on. aut or ol | back
property, the broker also rolls back transactions that are in a PREPARED state.

Reliable Delivery: Persistence

The other aspect of reliable delivery is assuring that the broker does not lose
messages or delivery information before messages are actually delivered. In
general, messages remain in memory until they have been delivered or they expire.
However, if the broker fails, these messages are lost.

If a producer client specifies that a message is persistent, the Message Router
passes the message to a Persistence Manager. The Persistence Manager stores the
message in a database or file system (see “Persistence Manager” on page 83) so that
the message can be recovered if the broker fails.

Managing Memory Resources and Message Flow

The performance and stability of a broker depends on the system resources
available and how efficiently resources such as memory are utilized. In particular,
the Message Router could become overwhelmed, using up all its memory
resources, when production of messages is much faster than consumption. To
prevent this from happening, the Message Router uses three levels of memory
protection to keep the system operating as resources become scarce:

Chapter 4 Configuring a Broker 81

About Configurable Broker Components

82

Message limits on individual destinations You can set physical destination
properties that specify limits on the number of messages and the total memory
consumed by messages (see Chapter 15, “Physical Destination Property
Reference”). You can also specify the behavior of the Message Router when limits
are reached. The four limit behaviors are:

¢ Slowing message producers (FLON CONTRCL)
e Throwing out the oldest messages in memory (REMOVE_CLDEST)

¢ Throwing out the lowest priority messages in memory, according to age of the
messages (REMOVE_LOWN PRI CRI TY)

* Rejecting the newest messages (REJECT_NEWEST)

System-wide message limits System-wide message limits constitute a second
line of protection. You can specify system-wide limits that apply collectively to all
destinations on the system: the total number of messages and the memory
consumed by all messages (see Table 14-3 on page 313). If any of the system-wide
message limits are reached, the Message Router rejects new messages.

System memory thresholds System memory thresholds are a third line of
protection. You can specify thresholds of available system memory at which the
broker takes increasingly serious action to prevent memory overload. The action
taken depends on the state of memory resources, as follows:

¢ green (plenty of memory is available)

e yel | ow(broker memory is running low)
e orange (broker is low on memory)

e red (broker is out of memory).

As the broker’s memory state progresses from gr een through yel | owand or ange
to red, the broker takes increasingly serious actions of the following types:

* Swapping messages out of active memory into persistent storage (see
“Persistence Manager” on page 83).

¢ Throttling back producers of non-persistent messages, eventually stopping the
flow of messages into the broker. Persistent message flow is automatically
limited by the requirement that the broker acknowledge each message.

Both of these measures degrade performance.

Message Queue 3 2005Q1 « Administration Guide

About Configurable Broker Components

If system memory thresholds are reached, destination message limits and
system-wide message limits are too small. In some situations, the thresholds
cannot catch all potential memory overloads in time. Therefore, do not rely on this
feature to control memory resources, but instead configure destinations
individually and collectively to optimize memory resources.

Message Router Properties

These are the system-wide limits and system memory thresholds for managing
memory resources:

* ing.destination. DM truncateBody. Specifies that the dead message queue
contains only a message’s header and property data. Message body contents
are discarded.

* ing.message. expiration.interval . Specifies how often reclamation of
expired messages occurs, in seconds.

¢ ing.system max_count . Specifies the maximum number of messages held by
the broker.

* ing.system max_si ze. Specifies the maximum total size of messages held by
the broker.

* ing. message. max_si ze. Specifies the maximum size of a message body.

* i ny. resource_state. t hr eshol d. Specifies the percent memory utilization at
which each memory resource state is triggered.

* i nu.resource_state. count . Specifies the maximum number of incoming
messages allowed in a batch as each memory resource state is triggered.

e ing.transaction. autorol | back. Specifies whether distributed transactions
left in a PREPARED state are automatically rolled back when a broker starts up.

For full descriptions of these properties, see Table 14-3 on page 313.

Persistence Manager

For a broker to recover, in case of failure, it needs to recreate the state of its message
delivery operations. This requires it to save all persistent messages, as well as
essential routing and delivery information, to a data store. A Persistence Manager
component manages the writing and retrieval of this information.

Chapter 4 Configuring a Broker 83

About Configurable Broker Components

To recover a failed broker requires more than simply restoring undelivered
messages. The broker must also be able to do the following:

* Re-create destinations

* Restore the list of durable subscriptions for each topic
* Restore the acknowledge list for each message

* Reproduce the state of all committed transactions

The Persistence Manager manages the storage and retrieval of all this state
information.

When a broker restarts, it recreates destinations and durable subscriptions,
recovers persistent messages, restores the state of all transactions, and recreates its
routing table for undelivered messages. It can then resume message delivery.

Message Queue supports both built-in and plugged-in persistence modules (see
Figure 4-3). Built-in persistence is a file-based data store. Plugged-in persistence
uses a Java Database Connectivity (JDBC™) interface and requires a JDBC data
store. The built-in persistence is generally faster than plugged-in persistence;
however, some users prefer the redundancy and administrative features of using a
JDBC-compliant database system.

Figure 4-3 Persistence Manager Support

built-in)
persistence

File-based
Data Store Two

Persistence Persistence

Manager .
’ ~_ - Options
plugged-in JDBC-compliant
persistence Data Store
v

84 Message Queue 3 2005Q1 « Administration Guide

About Configurable Broker Components

Built-in Persistence

The default Message Queue persistent storage solution is a file-based data store.
This approach uses individual files to store persistent data, such as messages,
destinations, durable subscriptions, and transactions.

The file-based data store is located in a directory identified by the name of the
broker instance (instanceName) with which the data store is associated (see
Appendix A, “Operating System-Specific Locations of Message Queue Data”):

.li nst ances/ instanceNamel f s350/

The file-based data store is structured so that persistent messages are stored in a
directory according to the destination in which they reside. Most messages are
stored in a single file consisting of variable-sized records.

To alleviate fragmentation as messages are added and removed, you can compact
the variable-sized record file (see “Compacting Physical Destinations” on

page 136). In addition, built-in persistence manager stores messages whose size
exceeds a configurable threshold (i ng. persi st.fil e. nessage. max_r ecor d_si ze)
in their own respective files, rather than in the variable-sized record file. For these
individual files, a file pool is maintained so that files can be reused. When a
message file is no longer needed, it is not deleted. Instead, the message file is added
to the pool of free files in its destination directory, to be used to store new
messages.

You can configure the maximum number of files in the destination file pool

(img. persist.file.destination. message.filepool.limt).You can also specify
the percentage of free files in the file pool that are cleaned up by being truncated to
zero and not simply tagged for reuse (i mg. persi st. fil e. nessage. fil epool .

cl eanrati 0). As the percentage of cleaned files increases, the amount of disk space
decreases and the overhead required to maintain the file pool increases.

You can specify whether or not tagged files will be cleaned up at shutdown
(imy. persist.file. message. cl eanup). If the files are cleaned up, they will take up
less disk space, but the broker will take longer to shut down.

All other persistent data (destinations, durable subscriptions, and transactions) are
stored in separate files. All destinations are in one file, all durable subscriptions are
in another file, and so on.

To maximize reliability, you can use the i ng. persi st.fil e. sync. enabl ed
attribute to specify that persistence operations should synchronize the in-memory
state with the physical storage device. This helps eliminate data loss due to system
crashes, but at the expense of performance. If you are running Message Queue in a
Sun Cluster environment, you must set this attribute to t r ue for all nodes in the
cluster.

Chapter 4 Configuring a Broker 85

About Configurable Broker Components

86

Because the data store can contain messages of a sensitive or proprietary nature,
you should secure the i nst ances/ instanceNamel f $350/ directory against
unauthorized access. For instructions, see “Securing Persistent Data” on page 104.

Plugged-In Persistence

You can set up a broker to access any data store accessible through a JDBC driver.
This involves setting a number of JDBC-related broker configuration properties
and using the database manager utility (i ngdbngr) to create a data store with the
proper schema. The procedures and related configuration properties are detailed
in “Setting Up a Persistent Store” on page 99.

Persistence Manager Properties

This property specifies what type of persistence you are using:

* ing. persist.store. Specifies whether the broker is using built-in, file-based
(file) persistence or plugged-in JDBC-compliant (jdbc) persistence.

These properties pertain to built-in persistence:

e ing.persist.file. sync.enabl ed. Specifies whether persistence operations
synchronize in-memory state with the physical storage device.

e ing.persist.file. nmessage. max_record_si ze. Specifies the maximum size of
messages that will be added to the message storage file.

e ing.persist.file. destination. message.filepool.limt.Specifies the
maximum number of free files available for reuse in the destination file pool.

e inmg.persist.file nessage. filepool.cleanratio.Specifies the percentage
of free files in destination file pools that are maintained in a clean state
(truncated to zero).

* ing.persist.file. nmessage. cl eanup. Specifies whether or not the broker
cleans up free files in destination file pools when it shuts down.

For full descriptions of these properties, see Table 14-6 on page 317.
These properties pertain to JDBC-based persistence:

e ing.persist.jdbc. brokerid. Specifies a broker instance identifier to append
to the names of tables in a database used by multiple broker instances.

* ing.persist.jdbc.driver.Specifies the java class name of the JDBC driver to
connect to the database.

* ing. persist.jdbc. opendburl . Specifies the database URL for opening a
connection to an existing database.

Message Queue 3 2005Q1 « Administration Guide

About Configurable Broker Components

i . persist. jdbc. creat edburl . Specifies the database URL for opening a
connection to create a database.

i mg. persist.jdbc. cl osedburl . Specifies the database URL for shutting down
the current database connection when the broker is shut down.

i mg. persi st. jdbc. user. Specifies the user name used to open a database
connection, if required.

i mg. persi st. j dbc. needpasswor d. Specifies whether the database requires a
password for broker access.

i . persi st. j dbc. passwor d. Specifies the password for use in opening a
database connection, if required.

i ng. persist.jdbc.table. | MBV35. SQL command used to create the version
table.

i mg. persist.jdbc.table. | MECCREC35. SQL command used to create the
configuration change record table.

i mg. persist.jdbc.tabl e. | MDEST35. SQL command used to create the
destination table.

i mgy. persist.jdbc.table. | M) NTI35. SQL command used to create the interest
table.

i ng. persist.jdbc.table. | MVBE35. SQL command used to create the
message table.

i ng. persist.jdbc.table. | MPROPS35. SQL command used to create the
property table.

i ng. persist.jdbc.table. | M) LI ST35. SQL command used to create the
interest state table.

i my. persist.jdbc.table. | MOTXN35. SQL command used to create the
transaction table.

i mg. persist.jdbc.table. | MJTACK35. SQL command used to create the
transaction acknowledgment table.

For full descriptions of these properties, see Table 14-7 on page 318.

Chapter 4 Configuring a Broker 87

About Configurable Broker Components

88

Security Manager

Message Queue provides authentication and authorization (access control)
features, and also supports encryption capabilities.

The authentication and authorization features depend upon a user repository (see
Figure 4-4 on page 89): a file, directory, or database that contains information about
the users of the messaging system—their names, passwords, and group
memberships. The names and passwords are used to authenticate a user when a
connection to a broker is requested. The user names and group memberships are
used, in conjunction with an access control file, to authorize operations such as
producing or consuming messages for destinations.

Message Queue administrators populate a Message Queue-provided user
repository (see “Using a Flat-File User Repository” on page 142), or plug a
pre-existing LDAP user repository into the Security Manager component (see
“Using an LDAP Server for a User Repository” on page 149).

Authentication

Message Queue security supports password-based authentication. When a client
requests a connection to a broker, the client must submit a user name and
password.

The Security Manager compares the name and password submitted by the client to
those stored in the user repository. On transmitting the password from client to
broker, the passwords are encoded using either base 64 encoding or message digest
(MD?5). For more secure transmission, see “Encryption” on page 90. You can
separately configure the type of encoding used by each connection service or set
the encoding on a broker-wide basis.

All Security Manager properties are listed under “Security Manager Properties” on
page 90 and described in detail under “Security Manager Properties” on page 90.

Authorization

Once the user of a client application has been authenticated, the user can be
authorized to perform various Message Queue-related activities. The Security
Manager supports both user-based and group-based access control. Depending on
a user’s name or the groups to which the user is assigned in the user repository,
that user has permission to perform certain Message Queue operations. You
specify these access controls in an access control properties file (see Figure 4-4).

Message Queue 3 2005Q1 « Administration Guide

About Configurable Broker Components

When a user attempts to perform an operation, the Security Manager checks the
user’s name and group membership from the user repository against those
specified for access to that operation in the access control properties file. The access
control properties file specifies permissions for the following operations:

e Establishing a connection with a broker

* Accessing destinations: creating a consumer, a producer, or a queue browser
for any given destination or all destinations

¢ Auto-creating destinations

Figure 4-4 Security Manager Support

Two
User Repository
Options

Flat File
User Repository

authentication LDAP Server
User Repository
Security
Manager authorization

Access Control
Properties File

The default access control properties file explicitly references only one group:
admin (see “Groups” on page 145). A user in the admin group has admin service
connection permission. The admin service lets the user perform administrative
functions such as creating destinations, and monitoring and controlling a broker. A
user in any other group that you define cannot, by default, get an admin service
connection.

As a Message Queue administrator you can define groups and associate users with
those groups in a user repository (though groups are not fully supported in the
flat-file user repository).

Chapter 4 Configuring a Broker 89

About Configurable Broker Components

90

By editing the access control properties file, you can specify access to destinations
by users and groups for the purpose of producing and consuming messages, or
browsing messages in queue destinations. You can make individual destinations or
all destinations accessible only to specific users or groups. If the broker is
configured to allow auto-creation of destinations, you can edit the access control
properties file to control the users and groups for whom the broker can auto-create
destinations.

All Security Manager properties are listed under “Security Manager Properties” on
page 90 and described in detail under “Security Manager Properties” on page 90.

Encryption

To encrypt messages sent between clients and broker, you need to use a connection
service based on the Secure Socket Layer (SSL) standard. SSL provides security at a
connection level by establishing an encrypted connection between an SSL-enabled
broker and an SSL-enabled client.

To use a Message Queue SSL-based connection service, you generate a private
key/public key pair using the Key Tool utility (i mgkeyt ool). This utility embeds
the public key in a self-signed certificate and places it in a Message Queue keystore.
The Message Queue keystore is, itself, password protected; to unlock it, you must
provide a keystore password at startup time. See “Working With an SSL-Based
Service” on page 159.

Once the keystore is unlocked, a broker can pass the certificate to any client
requesting a connection. The client then uses the certificate to set up an encrypted
connection to the broker.

All Security Manager properties are listed in the next section and described in
detail under “Security Manager Properties” on page 90.

Security Manager Properties

These are the configurable properties for authentication, authorization, encryption,
and other secure communications:

* ing.authentication.type. Specifies whether the password should be passed
in base 64 coding (basi c) or as an MD5 digest (di gest).

* i nu.service_name. aut henti cati on. t ype. Specifies whether the password
should be passed in base 64 coding (basi ¢) or as an MD5 digest (di gest).

* ing.authentication.basic.user_repository. For base 64 coding, specifies
the type of user repository used for authentication, either file-based or LDAP.

Message Queue 3 2005Q1 « Administration Guide

About Configurable Broker Components

i mg. aut henti cation. client.response. timeout. Specifies the time (in
seconds) the system will wait for a client to respond to an authentication
request from the broker.

i mg. accesscontrol . enabl ed. Indicates whether the system will check
whether an authenticated user has permission to use a connection service or to
perform specific Message Queue operations with respect to specific
destinations, as specified in the access control properties file.

i my.service_name.accesscontrol . enabl ed. Sets access control (t rue/f al se) for
the named connection service, overriding the broker-wide setting.

i . accesscontrol . file.filename. Specifies the name of an access control
properties file for all connection services supported by a broker instance.

i my.service_name.accesscontrol . file.filename. Specifies the name of an
access control properties file for a named connection service of a broker
instance.

i my.passfil e. enabl ed. Specifies whether user passwords (for SSL, LDAP,
JDBC™) for secure communications are specified in a file.

i mg. passfil e. dirpath. Specifies the path to the directory containing the
passfile.

i mg. passfil e. name. Specifies the name of the passfile.

i my.keystore.property_name. For SSL-based services: specifies security
properties relating to the SSL keystore. See Table 14-9 on page 324.

For full descriptions of these properties, see Table 14-8 on page 320.

Monitoring Service

The broker includes a number of components for monitoring and diagnosing its
operation. Among these are the following:

Components that generate data (broker code that logs events and a metrics
generator)

A logger component (see “Logger”) that writes out information through a
number of output channels

A message producer that sends J]MS messages containing metrics information
to topic destinations for consumption by J]MS monitoring clients.

The general scheme is illustrated in Figure 4-5.

Chapter 4 Configuring a Broker 91

About Configurable Broker Components

92

Figure 4-5 Monitoring Service Support

Output Channels

» log file
Logger
ERROR ::‘> console
WARNING
INFO
» syslog (Solaris)
Metrics
Generator
Metrics i])
Message topic destinations
Producer

Metrics Generator

The metrics generator provides information about broker activity, such as message
flow in and out of the broker, the number of messages in broker memory and the
memory they consume, the number of connections open, and the number of
threads being used.

You can turn the generation of metrics data on and off, and specify how frequently
metrics reports are generated.

Logger

The Message Queue logger takes information generated by broker code and a
metrics generator and writes that information to a number of output channels: to
standard output (the console), to a log file, and, on the Solaris™ operating system,
to the sysl og daemon process.

You can specify the type of information gathered by the logger as well as the type
written to each of the output channels.

For example, you can specify the logger level to determine the type of information
that the logger gathers: errors (ERRCR); errors and warnings (WARNI NG); or errors,
warnings, and information (I NFO).

For each output channel, you can specify which of the categories set for the logger
will be written to that channel. For example, if the logger level is set to | NFO, you
can specify that you want only errors and warnings written to the console, and
only info (metrics data) written to the log file.

Message Queue 3 2005Q1 « Administration Guide

About Configurable Broker Components

If you are using a log file, you can specify the point at which the log file is closed
and output is rolled over to a new file. An archive of the nine most recent log files is
retained as new rollover log files are created.

For information on configuring the logger, see “Configuring and Using Broker
Logging” on page 205. For information on configuring and using the Solaris
sysl og, see the sysl og(1M, sysl og. conf (4) and sysl og(3C) man pages.

Metrics Message Producer (Enterprise Edition)

The Message Producer component receives information from the Metrics
Generator component at regular intervals. It writes the information into messages,
which it then sends to metric topic destinations. The destination to which a metrics
message is sent depends on the type of information it contains.

There are five metrics topic destinations, whose names are shown in Table 4-3,
along with the type of metrics messages delivered to each destination.

Table 4-3 Metrics Topic Destinations

Topic Destination Name Type of Metrics Messages

mq.metrics.broker Broker metrics

mg.metrics.jvm Java Virtual Machine metrics
mg.metrics.destination_list List of destinations and their types
mg.metrics.destination.queue. Destination metrics for queue of specified name

monitoredDestinationName

mg.metrics.destination.topic. Destination metrics for topic of specified name
monitoredDestinationName

Message Queue clients that subscribe to these metric topic destinations consume
the messages in the destinations and process the metrics information. For example,
a client can subscribe to the ng. et ri cs. br oker destination to receive and process
information such as the total number of messages in the broker.

The Metrics Message Producer is an internal Message Queue client that creates
messages (of type MapMessage) that contain name-value pairs corresponding to
metrics data. These messages are produced only if there are one or more
subscribers to the corresponding metrics topic destination.

The messages produced by the Metrics Message Producer are of type MapMessage.
They consist of a number of name/value pairs, depending on the type of metrics
they contain. Each name/value pair corresponds to a metric quantity and its value.

Chapter 4 Configuring a Broker 93

About Configurable Broker Components

94

As an example, broker metrics messages contain values for the number of
messages that have flowed into and out of the broker, the size of these messages,
the number and size of messages currently in memory, and so forth. For details of
the metrics quantities reported in each type of metrics message, see the Message
Queue Developer’s Guide for Java Clients. That manual explains how to write a
Message Queue client for consuming metrics messages.

In addition to the metrics information contained in the body of a metrics message,
the header of each message has properties that provide the following information:

* Message type
* Host, port, and address of the broker that sent the message
¢ Time that the metric sample was taken

These properties are useful to Message Queue client applications that process
metric messages of different types or from different brokers.

Monitoring Service Properties

These are the configurable properties for setting the generation, logging, and
metrics message production of information by the broker:

e ing.netrics.enabl ed. Specifies whether metrics information is being written
to the logger.

* imgq.netrics.interval.If metrics logging is enabled, specifies the time
interval, in seconds, at which metrics information is written to the logger.

e iny.log.level.Specifies the logger level: the categories of output that can be
written to an output channel.

* ing.log.file.output.Specifies which categories of logging information are
written to the log file.

e ing.log.file.dirpath. Specifies the path to the directory containing the log
file.

e inmg.log.file.filenane. Specifies the name of the log file.

e ing.log.file.rolloverbytes. Specifies the size, in bytes, of the log file at
which output rolls over to a new log file.

e iny.log.file.rolloversecs. Specifies the age, in seconds, of log file at which
output rolls over to a new log file.

* ing.log.consol e. out put . Specifies which categories of logging information
are written to the console.

Message Queue 3 2005Q1 « Administration Guide

About Configurable Broker Components

* ing.log.consol e. stream Specifies whether console output is written to
stdout (QJT) or stderr (ERR) .

e ing.log.syslog.facility. (Solaris only) Specifies what sysl og facility the
Message Queue broker should log as.

* ing.log.syslog. | ogpid. (Solaris only) Specifies whether to log the broker
process ID with the message.

* ing.log.syslog. | ogconsol e. (Solaris only) Specifies whether to write
messages to the system console if they cannot be sent to sysl og.

* ing.log.syslog.identity. (Solaris only) Specifies the identity string that
should be prepended to every message logged to sysl og.

* ing.log.syslog. out put. (Solaris only) Specifies which categories of logging
information are written to sysl ogd(1M).

e ing.log.tinezone. Specifies the time zone for log time stamps.

* ing.netrics.topic.enabl ed. Specifies whether metrics message production is
enabled.

* ing.netrics.topic.interval.Specifies the time interval, in seconds, at which
metrics messages are produced.

* ing.netrics.topic.persist.Specifies whether or not metrics messages are
persistent.

* ing.netrics.topic.timetolive. Specifies the lifetime, in seconds, of metrics
messages sent to metric topic destinations.

* ing.destination.|ogDeadMsgs. Specifies whether the broker writes a message
to the log each time it discards a dead message or puts a dead message on the
dead message queue.

For full reference information about these properties, see Table 14-10 on page 324.

Chapter 4 Configuring a Broker 95

About Configuration Files

About Configuration Files

96

Broker configuration files are used to configure the broker. Appendix A,
“Operating System-Specific Locations of Message Queue Data” lists the directory
where these files are located for your operating system.

The directory stores the following files:

¢ A default configuration file that is loaded on startup. This file is called
defaul t. properties and is not editable. You can read this file to determine
default settings and find the exact names of properties you want to change.

* An installation configuration file that contains any properties specified when
Message Queue is installed. This file is called i nst al | . properti es; it cannot be
edited after installation.

Instance Configuration File

The first time you run a broker, an instance configuration file is created. Use the
instance configuration file to specify configuration properties for that instance of
the broker.

The instance configuration file is stored in a directory that is identified by the name
of the broker instance (instanceName) with which the configuration file is
associated:

.1 i nst ances/ instanceNamel pr ops/ confi g. properties

See Appendix A, “Operating System-Specific Locations of Message Queue Data”
for the location of the i nst ances directory.

NOTE The .. i nst ances/ instanceName directory and the instance
configuration file are owned by the user who created the
corresponding broker instance. The broker instance must always be
restarted by that same user.

The instance configuration file is maintained by the broker instance. It is modified
when you make configuration changes using administration tools. You can also
edit an instance configuration file by hand to make configuration changes (see
“Editing the Instance Configuration File” on page 98). To do so, you must be the
owner of the ..Li nst ances/ instanceName directory or log in as root to change
privileges on the directory.

Message Queue 3 2005Q1 « Administration Guide

About Configuration Files

If you connect broker instances in a cluster, you may also need to use a cluster
configuration file to specify cluster configuration information. For more information,
see “Cluster Configuration Properties” on page 327.

Merging Property Values

At startup, the broker merges property values in the different configuration files. It
uses values in the installation and instance configuration files to override values
specified in the default configuration file.

You can override the resulting values by using i ngbr oker d command options. This
scheme is illustrated in Figure 4-6.

Figure 4-6 Broker Configuration Files

i mgbr oker d
-name MyBroker
-netrics 5 overrides
—k overrides
MyBroker

‘ overrides

install.properties

configlproperties

instance configuration file

install configuration file default,properties

default configuration file

Chapter 4 Configuring a Broker 97

Editing the Instance Configuration File

Property Naming Syntax

Any Message Queue property definition in a configuration file uses the following
naming syntax:

propertyName=value[[, valuel] ..]

For example, the following entry specifies that the broker will hold up to 50,000
messages in memory and persistent storage before rejecting additional messages:

i ng. syst em max_count =50000

The following entry specifies that a new log file will be created every day (86400
seconds):

ing.log.file.rolloversecs=86400

Chapter 14, “Broker Properties Reference” on page 307 lists the broker
configuration properties and their default values.

Editing the Instance Configuration File

98

The first time a broker instance is run, a conf i g. properti es file is automatically
created. You can edit this instance configuration file to customize the behavior and
resource use of the corresponding broker instance.

The broker instance reads the confi g. properti es file only at startup. To make
permanent changes to the confi g. properti es file, you can do one of the following:

¢ Use administration tools. For information about properties you can set using
i mycnd, see Table 14-1 on page 308.

e Edit the confi g. properti es file while the broker instance is shut down; then
restart the instance. (On Solaris and Linux operating systems, only the user
that first started the broker instance has permission to edit the
config. properti es file.)

Table 14-1 lists the broker instance configuration properties in alphabetical order,
with their default values. For more information about the meaning and use of each
property, please consult the specified cross-referenced section.

Message Queue 3 2005Q1 « Administration Guide

Entering Configuration Options on the Command Line

Entering Configuration Options on the Command
Line
You can enter broker configuration options on the command line when you start a

broker, or afterward.

At startup time, you use the i mgbr oker d command to start a broker instance. Using
the command’s - D option, you can specify any broker configuration property and
its value. If you start the broker as a Windows service, using the i ngsvcadni n
command, you use the -ar gs option to specify startup configuration properties.

You can also set certain broker properties when a broker instance is running. To
modify the configuration of a running broker, you use the i ngcnd updat e bkr
command.

For more information about startup configuration, see Chapter 3, “Starting Brokers
and Clients,” particularly the examples under “Starting Brokers Interactively” on
page 67.

For information about modifying the configuration of a running broker, see
Chapter 5, “Managing a Broker” and Chapter 14, “Broker Properties Reference.”

Setting Up a Persistent Store

Message Queue brokers include a Persistence Manager component that manages
the writing and retrieval of persistent information. The Persistence Manager is
configured by default to access a built-in, file-based data store, but you can
reconfigure it to plug in any data store accessible through a JDBC-compliant driver.

The Message Queue data store contains information about transactions, messages,
durable subscriptions, and physical destinations. It also contains information about
the state of messages with respect to acknowledgments.

This chapter explains how to set up a broker to use a persistent store. It includes the
following topics:

¢ “Configuring a File System Store” on page 100
¢ “Configuring a JDBC Store” on page 100

* “Securing Persistent Data” on page 104

Chapter 4 Configuring a Broker 99

Setting Up a Persistent Store

100

Configuring a File System Store

A file system data store is automatically created when you create a broker instance.
The store is located under the instance directory for that broker. The location is
operating system-specific; for the exact location of the persistent store, see
Appendix A, “Operating System-Specific Locations of Message Queue Data.”

By default, Message Queue performs non-synchronous write operations to disk.
The operating system can buffer these operations to provide for good performance.
However, if an unexpected system failure occurs between write operations,
messages could be lost. To improve reliability, you can cause Message Queue to
perform synchronous writes to disk, but be aware that this option causes reduced
performance. To specify synchronous writes to disk, set the broker property

i my. persist.file.sync. For details about this property, see Table 14-6 on

page 317.

When you start a broker instance, you can use the i mgbr okerd -reset option to
clear the file system store. For more information about this option and its
suboptions, see Table 13-2 on page 282

Configuring a JDBC Store

To configure a broker to use JDBC-based persistence, you set JDBC-related
properties in the broker instance configuration file and create the appropriate
database schema. The Message Queue Database Manager utility (i ngdbrmyr) uses
your JDBC driver and the broker configuration properties to create and manage the
database.

The procedure described in this chapter is illustrated using, as an example, the
PointBase DBMS bundled with the Java 2 Platform, Enterprise Edition (J2EE) SDK.
Version 1.4 is available for download from j ava. sun. com The example uses
PointBase's embedded version (instead of the client/server version). In the
procedures, instructions are illustrated using path names and property names from
the PointBase example. They are identified by the word “Example:”

Example configurations for Oracle and PointBase are available. To find the
example files, see Appendix A, “Operating System-Specific Locations of Message
Queue Data.” In the table that lists information for your operating system, look for
the location of “Example applications and configurations.”

In addition, examples for PointBase embedded version, PointBase server version,
and Oracle are provided as commented-out values in the instance configuration
file, confi g. properti es.

Message Queue 3 2005Q1 « Administration Guide

Setting Up a Persistent Store

Plugging In a JDBC-Accessible Data Store

It takes just a few steps to plug in a JDBC-accessible data store.

[J To Plugin a JDBC-Accessible Data Store

1.

Set JDBC-related properties in the broker’s configuration file.
See the properties documented in “JDBC-Based Persistence” on page 317

Place a copy or a symbolic link to your JDBC driver jar file located in the
following path:

[usr/share/lib/ling/ext/ (Solaris)
[opt/sun/ ng/ share/lib/ (Linux)

| MQ VARHOME\ | i b\ ext (Windows)
Copy Example (Solaris):

% cp j2eeSDK _install_directory/ poi nt base/ | i b/ poi nt base. j ar
[usr/sharelliblimyl ext

Symbolic Link Example (Solaris):

%1 n -s j2eeSDK install_directoryl | i b/ poi nt base/ poi nt base. j ar
[usr/sharelliblimyl ext

Create the database schema needed for Message Queue persistence.

Use the i mgdbngr create all command (for an embedded database) or the
i ngdbmgr create tbhl command (for an external database). See “Database
Manager Utility (imqdbmgr)” on page 104.

Example:
a. Change to directory where i ngdbngr resides.
cd /usr/ bin (Solaris)
cd /opt/sun/ ng/ bi n (Linux)
cd | MQ HOW bi n (Windows)
b. Enter the i mgdbngr command.
i ngdbngr create all

Chapter 4 Configuring a Broker

101

Setting Up a Persistent Store

102

NOTE If you use an embedded database, it is best to create it under the
following directory:

.Linstances/ instanceNamel dbst or e/ dabatabseName.

If an embedded database is not protected by a user name and
password, it is probably protected by file system permissions. To
ensure that the database is readable and writable by the broker, the
user who runs the broker should be the same user who created the
embedded database using the i ngdbngr command (see “Database
Manager Utility (imqdbmgr)” on page 104).

JDBC-Related Broker Properties

The broker’s instance configuration file is located in a directory identified by the
name of the broker instance with which the configuration file is associated (see
Appendix A, “Operating System-Specific Locations of Message Queue Data”):

.[i nst ances/ instanceNamel props/ confi g. properti es

If the file does not yet exist, you must start the broker by using the
- nane instanceName option, so that Message Queue can create the file.

“JDBC-Based Persistence” on page 317 presents the configuration properties that
you need to set when plugging in a JDBC- accessible data store. There is a
summary of these properties at the end of this section. You set these properties in
the instance configuration file (confi g. properti es) of each broker instance that
uses plugged-in persistence.

The instance configuration properties enable you to customize the SQL code that
creates the Message Queue database schema: there is a configurable property that
specifies the SQL code that creates each database table. These properties are
needed to properly specify the data types used by the plugged-in database.

Since there are incompatibilities between database vendors with respect to the
exact SQL syntax, be sure to check the corresponding documentation from your
database vendor and adjust the properties in Table 14-7 on page 318 accordingly.
For example, for the PointBase database, you may need to adjust the maximum
length allowed for the MSG column (see the i ng. per si st. j dbc. t abl e. | MVBG35
property) in the IMQMSG35 table.

As with all broker configuration properties, values can be set using the - D
command line option. If a database requires certain database specific properties to
be set, these also can be set using the - Dcommand line option when starting the
broker (i nybr oker d) or the Database Manager utility (i mgdbngr).

Message Queue 3 2005Q1 « Administration Guide

Setting Up a Persistent Store

Example:

For the PointBase embedded database example, instead of specifying the absolute
path of a database in database connection URLs, you can use the - Dcommand line
option to define the PointBase system directory:

- Ddat abase. hormre=l M9 VARHOME i nst ances/ instanceNamel dbst or e

In that case, you can specify the URL to create a database as follows:

i ng. persist. jdbc. createdburl =j dbc: poi nt base: enbedded: dbName; new

You can specify the URL to open a database as follows

i ng. persi st. jdbc. opendburl =j dbc: poi nt base: enbedded: dbName

This is a summary of the JDBC-related properties:

i my. persi st. store. Specifies a file-based or JDBC-based data store.

i m. persist.jdbc. brokeri d. Specifies a broker instance identifier that is
appended to database table names to make them unique.

i mg. persist.jdbc. driver. Specifies the java class name of the JDBC driver to
connect to the database.

i mg. persi st. j dbc. opendbur| . Specifies the database URL for opening a
connection to an existing database.

i mg. persi st. jdbc. creat edbur| . Specifies the database URL for opening a
connection to create a database.

i mg. persist.jdbc. cl osedburl . Specifies the database URL for shutting down
the current database connection when the broker is shut down.

i mg. persi st. jdbc. user. Specifies the user name used to open a database
connection, if required.

i mg. persi st. j dbc. needpasswor d. Specifies whether the database requires a
password for broker access.

i . persi st. j dbc. passwor d. Specifies the password for use in opening a
database connection, if required.

i ng. persist.jdbc.table. | MBV35. SQL command used to create the version
table.

i my. persist.jdbc.table. | MECCREC35. SQL command used to create the
configuration change record table.

Chapter 4 Configuring a Broker 103

Securing Persistent Data

e ing. persist.jdbc.table. l MPEST35. SQL command used to create the
destination table.

e inmg.persist.jdbc.table. | MJNI35. SQ command used to create the interest
table.

e inmg.persist.jdbc.table. l MQVBG35. SQL command used to create the
message table.

e ing. persist.jdbc.table. | MPROPS35. SQL command used to create the
property table.

e ing. persist.jdbc.table.l M)LIST35. SQL command used to create the
interest state table.

e ing. persist.jdbc.table. | MJTXN35. SQL command used to create the
transaction table.

e inmg.persist.jdbc.table. | MJTACK35. SQL command used to create the
transaction acknowledgment table.

For full reference information about these properties, see Chapter 14, “Broker
Properties Reference.”

Database Manager Utility (imgdbmagr)

Message Queue provides a Database Manager utility (i mydbngr) for setting up the
schema needed for persistence. You can also use the utility to delete Message
Queue database tables if the tables become corrupted or if you want to use a
different database as a data store.

For reference information about the syntax, subcommands, and options of the
i mgdbngr command, see Chapter 13, “Command Reference.”

Securing Persistent Data

104

The persistent store can contain, among other information, message files that are
being temporarily stored. Since these messages might contain proprietary
information, it is important to secure the data store against unauthorized access.
This section describes how to secure data in a built-in file store or a JDBC store.

Message Queue 3 2005Q1 « Administration Guide

Securing Persistent Data

Built-In (File-Based) Persistent Store

A broker using built-in persistence writes persistent data to a flat file data store
whose location is operating system-specific (see Appendix A, “Operating
System-Specific Locations of Message Queue Data”):

.Li nst ances/ instanceName/ f $350/
where instanceName is a name identifying the broker instance.

The instanceName/f i | est or e/ directory is created when the broker instance is
started for the first time. The procedure for securing this directory depends on the
operating system on which the broker is running.

Solaris and Linux The permissions on the

I MQ_VARHOME/ i nst ances/ instanceNamel fi| estore/ directory depend on the
umask of the user that started the broker instance. Hence, permission to start a
broker instance and to read its persistent files can be restricted by appropriately
setting the umask. Alternatively, an administrator (superuser) can secure
persistent data by setting the permissions on the | M) VARHOVE/ i nst ances directory
to 700.

Windows The permissions on the

| MY VARHOME/ i nst ances/ instanceNamel fi| est or e/ directory can be set using the
mechanisms provided by the Windows operating system that you are using. This
generally involves opening a properties dialog for the directory.

Plugged-In (JDBC) Persistent Store

A broker using plugged-in persistence writes persistent data to a JDBC Compliant
database.

For a database managed by a database server (for example, an Oracle database), it
is recommended that you create a user name and password to access the Message
Queue database tables (tables whose names start with “IMQ”). If the database does
not allow individual tables to be protected, create a dedicated database to be used
only by Message Queue brokers. See the database vendor for documentation on
how to create user name/password access.

The user name and password required to open a database connection by a broker
can be provided as broker configuration properties. However it is more secure to
provide them as command line options when starting up the broker (see Message
Queue Administration Guide, Appendix A, “Setting Up Plugged-in Persistence”).

Chapter 4 Configuring a Broker 105

Securing Persistent Data

For an embedded database that is accessed directly by the broker via the database’s
JDBC™ driver, security is usually provided by setting file permissions on the
directory where the persistent data will be stored, as described in “Built-In
(File-Based) Persistent Store.” To ensure that the database is readable and writable
by both the broker and the i ngdbngr utility, however, both should be run by the
same user.

106 Message Queue 3 2005Q1 « Administration Guide

Chapter 5

Managing a Broker

This chapter explains how to perform basic tasks related to managing the broker
and its services. This chapter has the following sections:

“Prerequisites” on page 108

“Using the imqecmd Command Utility” on page 108
“Displaying Help” on page 110

“Displaying the Product Version” on page 111
“Displaying Broker Information” on page 111
“Updating Broker Properties” on page 112

“Pausing and Resuming a Broker” on page 113
“Shutting Down and Restarting a Broker” on page 114
“Displaying Broker Metrics” on page 115

“Managing Connection Services” on page 116
“Getting Information About Connections” on page 121
“Managing Durable Subscriptions” on page 122

“Managing Transactions” on page 123

This chapter does not cover all topics related to managing a broker. Additional
large topics are covered in the following separate chapters:

Management of physical destinations on the broker. For information about
topics such as how to create, display, update and destroy physical destinations,
and how to use the dead message queue, see Chapter 6, “Managing Physical
Destinations.”

107

Prerequisites

* Setting up security for the broker. For information about topics such as user
authentication, access control, encryption, password files, and audit logging,
see Chapter 7, “Managing Security.”

Prerequisites

You use the i ngcnd and i nyuser ngr commands to manage the broker. Before
managing the broker, you must do the following:

¢ Start the broker using the i ngbr oker d command. You cannot use the other
commands until a broker is running.

¢ Determine whether you want to set up a Message Queue administrative user
or use the default account. You must specify a user name and password to use
management commands.

When you install Message Queue, a default flat-file user repository is installed.
The repository is shipped with two default entries: an admin user and a guest
user. If you are testing Message Queue, you can use the default user name and
password (adm n/adni n) to run the i mycnd utility.

If you are setting up a production system, you must set up authentication and
authorization for administrative users. See Chapter 7, “Managing Security” for
information on setting up a file-based user repository or configuring the use of
an LDAP directory server. In a production environment, it is a good security
practice to use a nondefault user name and password.

* Set up and enable the ssl adni n service on the target broker instance, if you
want to use a secure connection to the broker. For more information, see
“Working With an SSL-Based Service” on page 159.

Using the imgcmd Command Utility

The i mycmd command utility enables you to manage the broker and its services.

Reference information about the syntax, subcommands, and options of the i mycnd
command is in Chapter 13, “Command Reference” on page 279. Reference
information for use in managing physical destinations is in a separate chapter,
Chapter 15, “Physical Destination Property Reference” on page 329.

108 Message Queue 3 2005Q1 « Administration Guide

Using the imgcmd Command Utility

Specifying the User Name and Password

Because each i mgcnd command is authenticated against the user repository, it
requires a user name and password. The only exceptions are as follows:

e Commands that use the -h or -Hoption to display help commands.

e Commands that use the - v option to display the product version.

Specifying the User Name
Use the - u option to specify an administrative user name. If you omit the user
name, the command prompts you for it.

To make the examples in this chapter easy to read, the default user name adni n is
shown as the argument to the - u option. In a production environment, you would
use a custom user name.

Specifying the Password
Specify the password by one of the following methods:

* Create a password file (passfile) and enter the password into that file. On the
command line, use the -passfi| e option to provide the name of the passfile.

¢ Let the command prompt you for the password. This is the most secure
method of specifying a password, unless other people can see what you are

typing.

In previous versions of Message Queue, you could use the - p option to specify a
password on the command line. This option is being deprecated and will be
removed in a future version.

Specifying the Broker Name and Port

The default broker for i ngcnd is one that is running on the local host, and the
default port is 7676.

If you are issuing a command to a broker running on a remote host or to a
nondefault port, or both, you must use the - b option to specify the broker’s host
and port.

Chapter 5 Managing a Broker 109

Displaying Help

Examples

The examples in this section illustrate how to use i ngcnd.

The first example lists the properties of the broker running on | ocal host at port
7676, so the - b option is unnecessary. The command uses the default
administrative user name (adni n) and omits the password, so that the command
prompts for it.

i ngemd query bkr -u adnin

The following example lists the properties of the broker running on nyserver at
port 1564. The user name is al addi n. This command requires that the user
repository is updated so that the user name al addi n is assigned to the admi n group.

i ngcmd query bkr -b nyserver: 1564 -u al addin

The following example lists the properties of the broker running on | ocal host at
port 7676. The initial timeout for the command is set to 20 seconds and the number
of retries after timeout is set to 7. The user’s password is in a password file called
nyPassfi | e, located in the current directory at the time the command is invoked.

i ngcmd query bkr -u adnin -passfile nyPassfile -rtm20 -rtr 7

For a secure connection to the broker, these examples could include the - secur e
option. The - secur e option causes i mycd to use the ssl adni n service, if the service
has been configured and started.

Displaying Help

To display help on the i mgcnd command utility, use the -h or - H option, and do
not use a subcommand. You cannot get help about specific subcommands.

For example, the following command displays help about imgemd:
ingemd - H

If you enter a command line that contains the - h or - Hoption in addition to a
subcommand or other options, the command utility processes only the - h or - H
option. All other items on the command line are ignored.

110 Message Queue 3 2005Q1 « Administration Guide

Displaying the Product Version

Displaying the Product Version

To display the Message Queue product version, use the - v option. For example:
ingemd -v

If you enter a command line that contains the - v option in addition to a
subcommand or other options, the command utility processes only the -v option.
All other items on the command line are ignored.

Displaying Broker Information

To query and display information about a single broker, use the query bkr
subcommand.

This is the syntax of the query bkr subcommand:
i mycnd query bkr -b hostName:port

This subcommand lists the current settings of properties of the default broker or a
broker at the specified host and port. It also shows the list of running brokers (in a
multi-broker cluster) that are connected to the specified broker.

For example:
i ngcnd query bkr -u adnin

After prompting you for the password, the command produces output like the

following:
Version 3.6
I nst ance Nane i mybr oker
Prinmary Port 7676
Qurrent Nunber of Messages in System 0
Qurrent Total Message Bytes in System 0
Qurrent Nunber of Messages in Dead Message Queue 0
Qurrent Total Message Bytes in Dead Message Queue 0
Log Dead Messages true
Truncate Message Body in Dead Message Queue fal se
Max Nunber of Messages in System unlimted (-1)
Max Total Message Bytes in System unlimted (-1)
Max Message Size 70m
Auto Oreate Queues true

Chapter 5 Managing a Broker 111

Updating Broker Properties

Auto Oreate Topics
Auto Oreated Queue Max Nunber of Active Consuners
Auto Oreated Queue Max Nunber of Backup Consuners

O
—
c
(¢°]

G uster Broker List (active)

O uster Broker List (configured)
O uster Master Broker

Custer URL

Log Level I NFO
Log Rollover Interval (seconds) 604800
Log Rollover Size (bytes) unlimted (-1)

Updating Broker Properties

You can use the updat e bkr subcommand to update the following broker
properties:

e inm. autocreate. queue

e ing.autocreate.topic

e ing.autocreate. queue. maxNumAct i veConsuner s
e ing.autocreate. queue. maxNunBackupConsuner s
e imy.cluster.url

e ing.destination. DMQ truncat eBody

e ing.destination.| ogDeadMsgs

e imy.log.level

e imy.log.file.rolloversecs

e img.log.file.rolloverbytes

e ing.system max_count

e ing.system max_size

e ing.nessage. max_si ze

e ing. portnapper. port

This is the syntax of the update bkr subcommand:

i mycnd updat e bkr [-b hostNameport] - o attribute=value [-0 attribute=valuel] ...

112 Message Queue 3 2005Q1 « Administration Guide

Pausing and Resuming a Broker

The subcommand changes the specified attributes for the default broker or a
broker at the specified host and port.

The properties are described in Chapter 14, “Broker Properties Reference.”

For example, the following command turns off the auto-creation of queue
destinations:

i ngcnd update bkr -0 “inmg.autocreate. queue=fal se” -u adnin

Pausing and Resuming a Broker

After you start the broker, you can use i ngcnd subcommands to control the state of
the broker.

Pausing a Broker

Pausing a broker suspends the broker’s connection service threads, which causes
the broker to stop listening on the connection ports. As a result, the broker will no
longer be able to accept new connections, receive messages, dispatch messages.

However, pausing a broker does not suspend the admin connection service, letting
you perform administration tasks needed to regulate the flow of messages to the
broker. For example, if a particular physical destination is bombarded with
messages, you can pause the broker and take actions that might help you fix the
problem, such as:

* Trace the source of the messages
¢ Limit the size of the physical destination
* Destroy the physical destination.

Pausing a broker also does not suspend the cl ust er connection service. However
message delivery within a cluster depend on the delivery functions performed by
the different brokers in the cluster.

This is the syntax of the pause bkr subcommand:

i rgcnd pause bkr [-b hostName:port]
The command pauses the default broker or a broker at the specified host and port.
The following command pauses the broker running on nyhost at port 1588.

i ngcnd pause bkr -b nyhost: 1588 -u admn

Chapter 5 Managing a Broker 113

Shutting Down and Restarting a Broker

You can also pause individual connection services and individual physical
destinations. For more information, see “Pausing and Resuming a Connection
Service” on page 120 and “Pausing and Resuming Physical Destinations” on
page 133.

Resuming a Broker

Resuming a broker reactivates the broker’s service threads and the broker resumes
listening on the ports.

This is the syntax of the resume bkr subcommand:

i mgcnd resume bkr [-b hostName:port]

The subcommand resumes the default broker or a broker at the specified host and
port.

The following command resumes the broker running on | ocal host at port 7676.

i ngcnd resume bkr -u adm n

Shutting Down and Restarting a Broker

114

Shutting down the broker gracefully terminates the broker process. The broker
stops accepting new connections and messages, completes delivery of existing
messages, and terminates the broker process.

This is the syntax of the shut down bkr subcommand:

i mgcnd shut down bkr [-b hostName:port]

The subcommand shuts down the default broker or a broker at the specified host
and port.

The following command shuts down the broker running on ctrl srv at port 1572:
i ngcnd shut down bkr -b ctrlsrv: 1572 -u adnmin

You can shut down and restart the broker. This is the syntax of the restart bkr
subcommand:

imycnd restart bkr [-b hostName:port]

Message Queue 3 2005Q1 « Administration Guide

Displaying Broker Metrics

The subcommand shuts down and restarts the default broker or a broker at the
specified host and port, using the options specified when the broker first started.
To choose different options, shut down the broker and then restart it, specifying
the options you want.

The following command restarts the broker running on | ocal host at port 7676:

ingcnd restart bkr -u adnin

Displaying Broker Metrics

To display metrics information about a broker, use the netri cs bkr subcommand.
This is the syntax of the netri cs bkr subcommand:

imyend netrics bkr [-b hostName:port]
[- m metricType] [-int interval] [-nsp numSamples]

The subcommand displays broker metrics for the default broker or a broker at the
specified host and port.

Use the - moption to specify one of the following metric types to display:

e ttl Displays metrics about the messages and packets flowing into and out
of the broker (default metric type)

e rts Displays metrics about the rate of flow of messages and packets into
and out of the broker (per second).

e cxn Displays connections, virtual memory heap, and threads.

Use the -i nt option to specify the interval (in seconds) at which to display the
metrics. The default is 5 seconds.

Use the - msp option to specify the number of samples displayed in the output. The
default is an unlimited number (infinite).

For example, to get the rate of message flow into and out of the broker at ten second
intervals:

ingcnd netrics bkr -mrts -int 10 -u admn

Chapter 5 Managing a Broker 115

Managing Connection Services

This command produces output like the following:

Msgs/sec Msg Bytes/sec Pkts/sec Pkt Bytes/sec

In Qut In Qut In Qut In Qut
0 0 27 56 0 0 38 66
10 0 7365 56 10 10 7457 1132
0 0 27 56 0 0 38 73
0 10 27 7402 10 20 1400 8459
0 0 27 56 0 0 38 73

For a more detailed description of the use of i ngcnd to report broker metrics, see
“Broker-wide Metrics” on page 350.

Managing Connection Services

The Command utility includes subcommands that allow you to perform the
following connection service management tasks:

¢ Listing Connection Services

* Displaying Connection Service Information
e Updating Connection Service Properties

e Displaying Connection Service Metrics

¢ Pausing and Resuming a Connection Service

A broker supports connections from both application clients and administration
clients. The connection services currently available from a Message Queue broker
are shown in Table 5-1. The values in the Service Name column are the values you
use to specify a service name for the - n option. As shown in the table, each service
is associated with a service type it uses (NORVAL for application clients or ADM Nfor
administration clients) and an underlying transport protocol.

Table 5-1 Connection Services Supported by a Broker

Service Name Service Type Protocol Type
jms NORMAL tcp
ssljms (Enterprise Edition) NORMAL tls (SSL-based security)

116 Message Queue 3 2005Q1 « Administration Guide

Managing Connection Services

Table 5-1 Connection Services Supported by a Broker (Continued)

Service Name Service Type Protocol Type

httpjms (Enterprise Edition) NORMAL http

httpsjms (Enterprise Edition) NORMAL https (SSL-based security)
admin ADMIN tcp

ssladmin (Enterprise Edition) ADMIN tls (SSL-based security)

Listing Connection Services

To list available connection services on a broker, use the | i st svc subcommand.
This is the syntax of the | i st svc subconmand:
imyend list svc [-b hostName:port]

The subcommand lists all connection services on the default broker or on a broker
at the specified host and port.

Use the subcommand in a command line like the following:
ingend |ist svc [-b host Nare: port Number] -u adnin

For example, the following command lists the services available for the broker
running on the host nySer ver on port 6565.

inmgcnd |ist svc -b MyServer: 6565 -u admin

The following command lists all services on the broker running on | ocal host at
port 7676:

ingcnd [ist svc -u admn

The command will output information like the following:

Service Nane Port Number Service State
adnin 41844 (dynam c) RUNNI NG
httpj ns - UNKNOMN
htt psj ns - UNKNOMN
jms 41843 (dynam c) RUNNI NG
ssladnin dynam ¢ UNKNOMN
ssljns dynani ¢ UNKNOWN

Chapter 5 Managing a Broker 117

Managing Connection Services

118

Displaying Connection Service Information

To query and display information about a single service, use the query
subcommand.

This is the syntax for the query svc subcommand:
i mgcnd query svc -n serviceName [- b hostName:port]

The subcommand information about the specified service running on the default
broker or on a broker at the specified host and port.

For example:
ingcnmd query svc -n jms -u adnmin

After prompting for the password, the command produces output like the
following:

Service Nane j ms

Service State RUNNI NG

Port Nunber 60920 (dynamic)
CQurrent Nurmber of Al ocated Threads 0

Qurrent Nunber of Connections 0

M n Nunber of Threads 10

Max Nunber of Threads 1000

Updating Connection Service Properties

You can use the updat e subcommand to change the value of one or more of the
service properties listed in Table 5-2.

Table 5-2 Connection Service Properties Updated by i ngcnd

Property Description

port The port assigned to the service to be updated (does not apply to
httpjms or httpsjms). A value of 0 means the port is dynamically
allocated by the Port Mapper.

m nThr eads The minimum number of threads assigned to the service.

maxThr eads The maximum number of threads assigned to the service.

Message Queue 3 2005Q1 « Administration Guide

Managing Connection Services

This is the syntax of the updat e subcommand:

i mycnd updat e svc -n serviceName[- b hostName:port]
- 0 attribute=value [- 0 attribute=valuel] ...

This subcommand updates the specified attribute of the specified service running
on the default broker or on a broker at the specified host and port. For a description
of service attributes, see “Connection Service Properties” on page 311.

The following command changes the minimum number of threads assigned to the
jms service to 20.

i ngcnd update svc -n jns -0 “m nThreads=20" -u admn

Displaying Connection Service Metrics

To display metrics information about a single service, use the netri cs
subcommand.

This is the syntax of the net ri cs subcommand:

imycnd netrics sve -n serviceName[- b hostName:port] [- m metricType]
[-int intervall [-nsp numSamples]

The subcommand displays metrics for the specified service on the default broker or
on a broker at the specified host and port.

Use the - moption to specify the type of metric to display:

e ttl Displays metrics on messages and packets flowing into and out of the
broker by way of the specified connection service. (default metric type)

e rts Displays metrics on rate of flow of messages and packets into and out of
the broker (per second) by way of the specified connection service.

e cxn Displays connections, virtual memory heap, and threads.

Use the -i nt option to specify the interval (in seconds) at which to display the
metrics. The default is 5 seconds.

Use the - msp option to specify the number of samples displayed in the output. The
default is an unlimited number (infinite).

For example, to get cumulative totals for messages and packets handled by the jms
connection service:

ingcnd netrics sve -n joms -mttl -u admin

Chapter 5 Managing a Broker 119

Managing Connection Services

120

After prompting for the password, the command produces output like the
following:

Msgs Msg Bytes Pkt s Pkt Bytes
In Qut I'n Qut In Qut In Qut
164 100 120704 73600 282 383 135967 102127
657 100 483552 73600 775 876 498815 149948

For a more detailed description of the use of i ngcnd to report connection service
metrics, see “Connection Service Metrics” on page 352.

Pausing and Resuming a Connection Service

To pause any service other than the admin service (which cannot be paused), use
the pause svc and resune svc subcommands.

This is the syntax of the pause svc¢ subcommand:
i mgcnd pause svc -n serviceName [- b hostName:port]

The subcommand pauses the specified service running on the default broker or on
a broker at the specified host and port. You cannot pause the admin service.

Use a command line like the following:
i ngcnd pause svc -n serviceName -u adm n
Pausing a service has the following effects:

e The broker stops accepting new client connections on the paused service. If a
Message Queue client attempts to open a new connection, it will get an
exception.

e All the existing connections on the paused service are kept alive, but the broker
suspends all message processing on such connections until the service is
resumed. (For example, if a client attempts to send a message, the send()
method will block until the service is resumed.)

e The message delivery state of any messages already received by the broker is
maintained. (For example, transactions are not disrupted and message delivery
will resume when the service is resumed.)

Message Queue 3 2005Q1 « Administration Guide

Getting

Getting Information About Connections

To resume a service, use the r esune svc subcommand.
This is the syntax of the resune svc subcommand:
i mycnd resunme svc -n serviceName[- b hostName:port]

The subcommand resumes the specified service running on the default broker or
on a broker at the specified host and port.

Use a command line like the following:

i ngcnd resume svc -n serviceName -u adm n

Information About Connections

The Command utility includes subcommands that allow you to list and get
information about connections.

Thelist cxnsubcommand lists all connections of a specified service name. This is
the syntax of the list cxn subcommand:

imyend list cxn [-svn serviceName] [-b hostName:port]

The subcommand lists all connections of the specified service name on the default
broker or on a broker at the specified host and port. If the service name is not
specified, all connections are listed.

For example:
inmgcmd [ist cxn -u admin

After prompting for the password, the command produces output like the
following:

Listing all the connections on the broker specified by:

Fst Primry Port

localhost 7676

Comnection ID User Service Producers Consumers Host
1964412264455443200 guest jns 0 1 127.0.0.1
1964412264493829311 adnin adnin 1 1 127.0.0.1
Successfully |isted connections.

Chapter 5 Managing a Broker 121

Managing Durable Subscriptions

To query and display information about a single connection service, use the query
subcommand.

query cxn -n connectionID [- b hostName:port]

The subcommand displays information about the specified connection on the
default broker or on a broker at the specified host and port.

For example:
i ngcmd query cxn -n 421085509902214374 -u adnin

After prompting for the password, the command produces output like the
following:

Connection 1D 421085509902214374
User guest

Service j s

Pr oducer s 0

Consurrer s 1

Host 111. 22.333. 444

Por t 60953

dient ID

Qient Platform

Managing Durable Subscriptions

122

You might need to use i mycnd subcommands to manage a broker’s durable
subscriptions. A durable subscription is a subscription to a topic that is registered by
a client as durable; it has a unique identity and it requires the broker to retain
messages for that subscription even when its consumer becomes inactive.
Normally, the broker may only delete a message held for a durable subscriber
when the message expires.

To list durable subscriptions for a specified physical destination, use thel i st dur
subcommand. This is the syntax for the list dur subcommand:

ingcmd ist dur -d destName

For example, the following command lists all durable subscriptions to the topic
SPQuot es, using the broker at the default port on the local host:

inmgcmd |ist dur -d SPQuotes

Message Queue 3 2005Q1 « Administration Guide

Managing Transactions

For each durable subscription to a topic, the | i st dur subcommand returns the
name of the durable subscription, the client ID of the user, the number of messages
queued to this topic, and the state of the durable subscription (active/inactive). For

example:
Narre Qient ID Nunber of Dur abl e Sub
Messages State
nyDurable nydientID 1 | NACTI VE

You can use the information returned from the |l i st dur subcommand to identify a
durable subscription you might want to destroy or for which you want to purge
messages.

The destroy dur subcommand destroys a specified durable subscription with the
specified client identifier. This is the syntax for the destroy dur subcommand:

i ngcnd destroy dur -n subscrName - client_id

Use the name of the subscription and the client ID to identify the subscription. For
example:

i ngcnd destroy dur -n nyDurable -c nydientlD

The purge dur subcommand purges all messages for the specified durable
subscription with the specified Client Identifier. This is the syntax for the pur ge
dur subcommand:

i ngcnd purge dur -n subscrName -c client_id

Managing Transactions

All transactions initiated by client applications are tracked by the broker. These can
be simple Message Queue transactions or distributed transactions managed by a
distributed transaction (XA resource) manager.

Each transaction has a Message Queue transaction ID—a 64 bit number that
uniquely identifies a transaction on the broker. Distributed transactions also have a
distributed transaction ID (XID) assigned by the distributed transaction
manager—up to 128 bytes long. Message Queue maintains the association of an
Message Queue transaction ID with an XID.

Chapter 5 Managing a Broker 123

Managing Transactions

124

For distributed transactions, in cases of failure, it is possible that transactions could
be left in a PREPARED state without ever being committed. Hence, as an
administrator you might need to monitor and then roll back or commit transactions
left in a prepared state.

To list all transactions, being tracked by the broker, use the | i st txn command.
This is the syntax for the | i st tx subcommand:

ingend [ist txn
For example, the following command lists all transactions in a broker.
ingcmd |ist txn

For each transaction, the | i st subcommand returns the transaction ID, state, user
name, number of messages or acknowledgments, and creation time. For example:

Transaction ID State User name # Msgs/ Creation time

Acks
64248349708800 PREPARED guest 4/0 1/30/02 10: 08: 31 AM
64248371287808 PREPARED guest 0/ 4 1/30/02 10: 09: 55 AM

The command shows all transactions in the broker, both local and distributed. You
can only commit or roll back transactions in the PREPARED state. You should only do
so if you know that the transaction has been left in this state by a failure and is not
in the process of being committed by the distributed transaction manager.

For example, if the broker’s auto-rollback property is set to false (see Table 14-3 on
page 313), you must manually commit or roll back transactions found in a
PREPARED state at broker startup.

The | i st subcommand also shows the number of messages that were produced in
the transaction and the number of messages that were acknowledged in the
transaction (#Msgs/ #Acks). These messages will not be delivered and the
acknowledgments will not be processed until the transaction is committed.

The query subcommand lets you see the same information plus a number of
additional values: the Client ID, connection identification, and distributed
transaction ID (XID). This is the syntax of the query txn subcommand:

i ngend query txn -n transaction_id

Message Queue 3 2005Q1 « Administration Guide

Managing Transactions

For example, the following example produces the output shown below:
i ngcnd query txn -n 64248349708800
This is the output produced by the command:

Aient ID

Connect i on guest @92. 18. 116. 219: 62209- >j ns: 62195
Creation tine 1/30/02 10:08:31 AM

Nunber of acknow edgnents 0

Nunber of messages 4

State PREPARED

Transaction I D 64248349708800

User nane guest

XD
6469706F6C7369646577696E6465723130313234313431313030373230

The commit and rol | back subcommands can be used to commit or roll back a
distributed transaction. As mentioned previously, only a transaction in the
PREPARED state can be committed or rolled back.

This is the syntax of the commit subcommand:
ingcnd commit txn -n transaction_id

For example:
ingcnmd comit txn -n 64248349708800

It is also possible to configure the broker to automatically roll back transactions in
the PREPARED state at broker startup.

This is the syntax of the r ol | back. subcommand:
i ngemd rol I back txn -n transaction_id

See the i my. transact i on. aut or ol | back property in Table 14-3 on page 313 for
more information.

Chapter 5 Managing a Broker 125

Managing Transactions

126 Message Queue 3 2005Q1 « Administration Guide

Chapter 6

Managing Physical Destinations

A Message Queue message is routed to its consumer clients by way of a physical
destination on a broker. The broker manages the memory and persistent storage
associated with the physical destinations, and sets their behaviors.

In a cluster, you create a physical destination on one broker, and the cluster
propagates that physical destination to all brokers. An application client can
subscribe to a topic or consume from a queue that is on any broker in the cluster,
because the brokers cooperate to route messages across the cluster. However, only
the broker to which a message was originally produced manages persistence and
acknowledgment for that message.

This chapter explains how to perform the following tasks:

¢ “Using the imqcmd Command Utility” on page 128

* “Creating a Physical Destination” on page 129

e “Listing Physical Destinations” on page 131

e “Displaying Information about Physical Destinations” on page 131
e “Updating Physical Destination Properties” on page 133

¢ “Pausing and Resuming Physical Destinations” on page 133
* “Purging Physical Destinations” on page 134

¢ “Destroying Physical Destinations” on page 135

e “Compacting Physical Destinations” on page 136

e “Configuring Use of the Dead Message Queue” on page 138

Table 13-5 provides full reference information about the i mycnd subcommands for
managing physical destinations and accomplishing these tasks.

127

Using the imgecmd Command Utility

NOTE A client application uses a Dest i nat i on object whenever it interact
with a physical destination. For provider-independence and
portability, clients typically use administrator-created destination
objects, which are called destination administered objects. You can
configure administered objects for use by client applications, as
described in Chapter 8, “Managing Administered Objects.”

Using the imgcmd Command Utility

128

The i mycnmd command utility enables you to manage physical destinations. The
syntax of i mgcnd command is the same as it is when you use it for managing other
broker services.

Full reference information about i ngcnd, its subcommands, and its options, is
available in Chapter 13, “Command Reference” on page 279.

Subcommands

Table 6-1 lists the i ncmd subcommands whose use is described in this chapter. For
reference information about these subcommands, see “Physical Destination
Management Subcommands” on page 290.

Table 6-1 Physical Destination Subcommands for the imgemd Command Utility

Subcommand and Argument Description

conpact dst Compacts the built-in file-based data store for one or more
physical destinations.

create dst Creates a physical destination.

destroy dst Destroys a physical destination.

list dst Lists physical destinations on a broker.

metrics dst Displays physical destination metrics.

pause dst Pauses one or more physical destinations on a broker.

purge dst Purges all messages on a physical destination without

destroying the physical destination.

query dst Queries and displays information on a physical destination.

Message Queue 3 2005Q1 « Administration Guide

Creating a Physical Destination

Table 6-1 Physical Destination Subcommands for the imgemd Command Utility

Subcommand and Argument Description

resune dst Resumes one or more paused physical destinations on a
broker.
updat e dst Updates properties of a destination.

Creating a Physical Destination

To create a physical destination, you use the i ngcnd cr eat e subcommand. This is
the syntax for the cr eat e subcommand:

create dst -t destType -n destName [-0 property=value] [-0 property=valuel] ...
When creating a physical destination, you specify the following;:
¢ The physical destination type, t (topic) or q (queue).
¢ The physical destination name. The naming rules are as follows:

o The name must contain only alphanumeric characters. It cannot contain
spaces.

o The name can begin with an alphabetic character, the underscore character
(_) or the dollar sign ($). It cannot begin with the character string “mq.”

* Any nondefault values for the physical destination’s properties.
You can also set properties when you update a physical destination.

Many physical destination properties manage broker memory resources and
message flow. For example, you can specify the number of producers that can send
to a physical destination, the number and size of the messages they can send, and
the response that the broker should take when physical destination limits are
reached. The limits are similar to broker-wide limits that broker configuration
properties control.

The following properties are used for both queue destinations and topic
destinations:

e maxNumMkgs. Specifies the maximum number of unconsumed messages
allowed in the physical destination.

e nmaxTot al MsgByt es: Specifies the maximum total amount of memory (in bytes)
allowed for unconsumed messages in the physical destination.

Chapter 6 Managing Physical Destinations 129

Creating a Physical Destination

130

¢ |imtBehavior. Specifies how the broker responds when a memory-limit
threshold is reached.

e nmaxByt esPer Msg. Specifies the maximum size (in bytes) of any single message
allowed in the physical destination.

e maxNunPr oducer s. Specifies the maximum number of producers for the
physical destination.

e consumer Fl owLi mi t . Specifies the maximum number of messages to be
delivered to a consumer in a single batch.

e islLocal Only. Applies only to broker clusters. Specifies that a physical
destination is not replicated on other brokers, and is limited to delivering
messages only to local consumers (consumers connected to the broker on
which the physical destination is created).

¢ useDMQ Specifies whether a physical destination’s dead messages are
discarded or put on the dead message queue.

The following properties are used for queue destinations only:

e maxNumAct i veConsuner s. Specifies the maximum number of consumers that
can be active in load-balanced delivery from a queue destination.)

e maxNunmBackupConsuner s. Specifies the maximum number of backup
consumers that can take the place of active consumers, if any fail during
load-balanced delivery from a queue destination.

e local DeliveryPreferred. Applies only to load-balanced queue delivery in

broker clusters. Specifies that messages be delivered to remote consumers only

if there are no consumers on the local broker.

See Chapter 15, “Physical Destination Property Reference” on page 329 for full
reference information about physical destination properties.

For auto-created destinations, you set default property values in the broker’s
instance configuration file. Reference information on auto-create properties is
located in Table 14-4 on page 314.

To create a physical destination
e To create a queue destination, enter a command like the following:

ingcnmd create dst -n nyQueue -t g -0 “maxNumActi veConsuner s=5"
e To create a topic destination, enter a command like the following:

ingcnmd create dst -n nyTopic -t t -0 “nmaxByt esPer Msg=5000"

Message Queue 3 2005Q1 « Administration Guide

Listing Physical Destinations

Listing Physical Destinations

You can get information about a physical destination’s current property values,
about the number of producers or consumers associated with a physical
destination, and about messaging metrics, such as the number and size of messages
in the physical destination.

To find a physical destination about which you want to get information, list all
physical destinations on a broker. To do so, use the | i st dst subcommand. This is
the syntax for the | i st dst subcommand:

list dst [-t destType] [-tnp]

The command lists physical destinations of the specified type. The value for the
destination type (-t) option can have the value g (queue) or t (topic).

If the destination type is omitted, physical destinations of all types are listed.

The | i st dst subcommand can optionally specify the type of destination to list or
optionally include temporary destinations (using the -t np option). Temporary
destinations are created by clients, normally for the purpose of receiving replies to
messages sent to other clients.

For example, to get a list of all physical destinations on the broker running on
myHost at port 4545, enter the following command:

ingcnd |ist dst -b nyHost: 4545

The dead message queue, ny. sys. dny, always appears, in addition to any other
physical destinations, unless you specify the destination type t to include only
topics.

Displaying Information about Physical
Destinations

To get information about a physical destination’s current property values, use the
query dst subcommand. This is the syntax of the query dst subcommand:

query dst -t destType -n destName

The command lists information about the destination of the specified type and
name. For example:

ingcmd query dst -t g -n XQueue -u admn

Chapter 6 Managing Physical Destinations 131

Displaying Information about Physical Destinations

The command produces output like the following:

| ocal host 7676

Destination Nanme XQueue
Destination Type Queue
Destination State RUNN NG
Created Administratively true

Qurrent Nunber of Messages 0

Qurrent Total Message Bytes 0

CQurrent Nunber of Producers 0

Qurrent Nunber of Active Consumers 0

Qurrent Nunber of Backup Consuners 0

Max Nunber of Messages unlimted (-1)
Max Total Message Bytes unlimted (-1)
Max Bytes per Message unlimted (-1)
Max Nunber of Producers 100

Max Nunber of Active Consuners 1

Max Nunber of Backup Consurers 0

Limt Behavior REJECT _NEWEST
Consuner F ow Lint 1000

I's Local Destination fal se

Local Delivery is Preferred fal se

Use Dead Message Queue true

The output also shows the number of producers and consumers associated with
the destination. For queue destinations, the number includes active consumers and
backup consumers.

You can use the updat e dst subcommand to change the value of one or more
properties (see “Updating Physical Destination Properties” on page 133).

132 Message Queue 3 2005Q1 « Administration Guide

Updating Physical Destination Properties

Updating Physical Destination Properties

You can change the properties of a physical destination by using the updat e dst
subcommand and the - 0 option to specify the property to update. This is the
syntax for the updat e dst subcommand:

update dst -t destType-n destName -0 property=value [-0 property=valuel] ...

The command updates the value of the specified properties at the specified
destination. The property name can be any property described in Table 15-1.

You can use the - 0 option multiple times to update multiple properties. For
example, the following command changes the maxByt esPer Msg property to 1000
and the MaxNumvkgs property to 2000:

i ngcmd update dst -t g -n nyQueue -0 “nmaxByt esPer Msg=1000"
-0 “maxNunisgs=2000" -u adnin

See Chapter 15, “Physical Destination Property Reference” for a list of the
properties that you can update.

You cannot use the updat e dst subcommand to update the type of a physical
destination or to update the i sLocal Onl y property.

NOTE The dead message queue is a specialized physical destination whose
properties differ somewhat from those of other destinations. For
more information, see “Configuring Use of the Dead Message
Queue” on page 138.

Pausing and Resuming Physical Destinations

You can pause a physical destination to control the delivery of messages from
producers to the destination, or from the destination to consumers, or both. In
particular, you can pause the flow of messages into a destination to help prevent
destinations from being overwhelmed with messages when production of
messages is much faster than consumption.

To pause the delivery of messages to or from a physical destination, use the
pause dst subcommand. This is the syntax of the pause dst subcommand:

pause dst [-t destType -n destName] [-pst pauseType]

Chapter 6 Managing Physical Destinations 133

Purging Physical Destinations

The subcommand pauses the delivery of messages to consumers (- pst CONSUVERS),
or from producers (- pst PRODUCERS), or both (- pst ALL), for the destination of the
specified type and name. If no destination type and name are specified, all physical
destinations are paused. The default is ALL.

Example:
i ngcnd pause dst -n nyQueue -t g -pst PRCDUCERS -u admin
i ngcnd pause dst -n nyTopic -t t -pst CONSUMERS -u admin

To resume delivery to a paused destination, use the r esune dst subcommand. This
is the syntax of the resume dst subcommand:

resume dst [-t destType -n destName]

The subcommand resumes delivery of messages to the paused destination of the
specified type and name. If no destination type and name are specified, all
destinations are resumed.

Example:
ingcnd resume dst -n nmyQueue -t g

In a broker cluster, instances of the physical destination reside on each broker in
the cluster. You must pause each one individually.

Purging Physical Destinations

134

You can purge all messages currently queued at a physical destination. Purging a
physical destination means that all messages queued at the destination are deleted.

You might want to purge messages when the accumulated messages are taking up
too much of the system’s resources. This might happen when a queue does not
have registered consumer clients and is receiving many messages. It might also
happen if inactive durable subscribers to a topic do not become active. In both
cases, messages are held unnecessarily.

To purge messages at a physical destination, use the pur ge dst subcommand. This
is the syntax of the pur ge dst subcommand:

purge dst -t destType -n destName

The subcommand purges messages at the physical destination of the specified type
and name.

Message Queue 3 2005Q1 « Administration Guide

Destroying Physical Destinations

Examples:
ingcnd purge dst -n nyQueue -t g -u adnmin
ingcnd purge dst -n nyTopic -t t -u adnmin

If you have shut down the broker and do not want old messages to be delivered
when you restart it, use the - r eset messages option to purge stale messages; for
example:

i ngbrokerd -reset messages -u admin
This saves you the trouble of purging destinations after restarting the broker.

In a broker cluster, instances of the physical destination reside on each broker in
the cluster. You must purge each of these destinations individually.

Destroying Physical Destinations

To destroy a physical destination, use the destroy dst subcommand. This is the
syntax of the destroy dst subcommand:

destroy dst -t destType -n destName
The subcommand destroys the physical destination of the specified type and name.
Example:

i ngcnd destroy dst -t g -n nyQueue -u admin

Destroying a physical destination purges all messages at that destination and
removes it from the broker; the operation is not reversible.

You cannot destroy the dead message queue.

Chapter 6 Managing Physical Destinations 135

Compacting Physical Destinations

Compacting Physical Destinations

136

If you are using the built-in file-based data store (as opposed to a plugged-in
JDBC-compliant data store) as the persistent store for messages, you can monitor
disk utilization and compact the disk when necessary.

The file-based message store is structured so that messages are stored in directories
according to the physical destinations in which they are being held. In each
physical destination’s directory, most messages are stored in one file consisting of
variable-sized records, the variable-sized record file. (To alleviate fragmentation,
messages whose size exceeds a configurable threshold are stored in their own
individual files.)

As messages of varying sizes are persisted and then removed from the
variable-sized record file, holes may develop in the file where free records are not
being re-used.

To manage unused free records, the Command utility includes subcommands for
monitoring disk utilization per physical destination and for reclaiming free disk
space when utilization drops.

Monitoring a Physical Destination’s Disk Utilization

To monitor a physical destination’s disk utilization, use a command like the
following:

ingcnd metrics dst -t g -n nyQueue -mdsk -u admn

This command produces output like the following:

806400 804096 99
1793024 1793024 100
2544640 2518272 98

Message Queue 3 2005Q1 « Administration Guide

Compacting Physical Destinations

The columns in the subcommand output have the following meaning:

Table 6-2 Physical Destination Disk Utilization Metrics

Metric Description

Reserved Disk space in bytes used by all records, including records that hold active
messages and free records waiting to be reused

Used Disk space in bytes used by records that hold active messages

Utilization Ratio Quotient of used disk space divided by reserved disk space. The higher the
ratio, the more the disk space is being used to hold active messages.

Reclaiming Unused Physical Destination Disk Space

The disk utilization pattern depends on the characteristics of the messaging
application that uses a particular physical destination. Depending on the relative
flow of messages into and out of a physical destination, and the relative size of
messages, the reserved disk space might grow over time.

If the message producing rate is greater than the message consuming rate, free
records should generally be reused and the utilization ratio should be on the high
side. However, if the message producing rate is similar to or smaller than the
message consuming rate, you can expect that the utilization ratio will be low.

In general, you want the reserved disk space to stabilize and the utilization to
remain high. As a rule, if the system reaches a steady state in which the amount of
reserved disk space generally stays constant and utilization rate is high (above
75%), there is no need to reclaim the unused disk space. If the system reaches a
steady state and utilization rate is low (below 50%), you can compact the disk to
reclaim the disk space occupied by free records.

Use the conpact dst subcommand to compact the data store. This is the syntax for
the conpact dst subcommand:

conpact dst [-t destType -n destName]

The subcommand compacts the built-in file-based data store for the physical
destination of the specified type and name. If no destination type and name are
specified, all destinations are compacted. Physical destinations must be paused
before they can be compacted.

If the reserved disk space continues to increase over time, reconfigure the
destination’s memory management by setting destination memory limit properties
and limit behaviors (see Table 15-1 on page 329).

Chapter 6 Managing Physical Destinations 137

Configuring Use of the Dead Message Queue

[J To Reclaim Unused Physical Destination Disk Space

1. Pause the destination.

i ngcnd pause dst -t g -n nyQueue -u adnmin
2. Compact the disk.

i ngcnmd compact dst -t g -n nyQueue -u adnin
3. Resume the physical destination.

ingcnd resume dst -t g -n nyQueue -u admn

If destination type and name are not specified, these operations are performed for
all physical destinations.

Configuring Use of the Dead Message Queue

138

The dead message queue, M. sys. dny, is a system-created physical destination that
holds the dead messages of a broker and its other physical destinations. The dead
message queue is a tool for monitoring, tuning system efficiency, and
troubleshooting. For a definition of the term “dead message” and a more detailed
introduction to the dead message queue, see the Message Queue Technical Overview.

The broker automatically creates a dead message queue when it starts. The broker
places messages on the queue if it cannot process them, or if their time-to-live has
expired. In addition, other physical destinations can use the dead message queue to
hold discarded messages. Use of the dead message queue provides information
that is useful for troubleshooting the system.

Configuring Use of the Dead Message Queue

By default, a physical destination is configured to use the dead message queue.
You can disable a physical destination from using the dead message queue, or
enable it to do so, by setting the physical destination property useDMQ

The following example creates a queue called nyDi st that uses the dead message
queue by default:

ingcnd create dst -n -nyDist -t q
The following example disables use of the dead message queue for the same queue:

ingcnd update dst -n nyDist -t q -0 useDMXfal se

Message Queue 3 2005Q1 « Administration Guide

Configuring Use of the Dead Message Queue

You can enable all autocreated physical destinations on a broker to use the dead
message queue, or disable them from doing so, by setting the
i . aut ocr eat e. desti nati on. useDMQbroker property.

Configuring and Managing the Dead Message
Queue

The i mycmd command utility manages the dead message queue. You manage the
dead message queue as you manage other queues, with some differences. For
example, because the dead message queue is system created, you cannot create,
pause, or destroy it.

Dead Message Queue Properties

You configure the dead message queue as you configure other queues, but certain
physical destination properties do not apply or have different default values.
Table 6-3 lists queue properties that the dead message queue handles in a unique
way.

Table 6-3 Dead Message Queue Treatment of Standard Physical Destination Properties

Property Unique Treatment by Dead Message Queue

|'i m t Behavi or The default value for the dead message queue is
REMOVE_OLDEST. The default value for other queues is
REJECT_NEWEST. Flow control is not supported on the
dead message queue.

| ocal Del i veryPreferred Does not apply to the dead message queue.

maxNumVsgs The default value for the dead message queue is 1000. The
default value for other queues is -1 (unlimited).

maxNunPr oducer s Does not apply to the dead message queue.

maxTot al MsgByt es The default value for the dead message queue is 10 MB. The

default value for other queues is -1 (unlimited).

i sLocal Onl y In a broker cluster, a dead message queue is always a local
physical destination and this property is permanently set to
true. However, a local broker’s dead message queue can
contain messages produced by clients of other brokers in the
cluster, if the local broker marks the messages as dead.

Chapter 6 Managing Physical Destinations 139

Configuring Use of the Dead Message Queue

140

Message Contents

A broker can place a complete message on the dead message queue, or discard the
message body contents, retaining just the header and property data. By default, the
dead message queue stores entire messages.

If you want to reduce the queue size and if you do not plan to restore dead
messages, consider discarding the body contents.

To discard the body contents and retain only the headers and property data, set the
i mg. destination. DMQ t runcat eBody broker property to tr ue, as the following
example shows:

i ngcnd update bkr -o ing. destination. DMQ truncat eBody=t rue

Enabling Dead Message Logging

In addition to standard queue monitoring and logging options, you can log the
messages that a broker has classified as dead.

If dead message logging is enabled, the broker logs the following types of events:
* The broker moves a message to the dead message queue.

* The broker discards a message from the dead message queue and from any
physical destination that does not use the dead message queue.

* A physical destination reaches its limits.

Dead message logging is disabled by default. The following example enables dead
message logging:

i ngcnd updat e bkr -0 ing. destination. | ogDeadMsgs=true
Dead message logging applies to all physical destinations that use the dead

message queue. You cannot enable or disable logging for an individual physical
destination.

Message Queue 3 2005Q1 « Administration Guide

Chapter 7

Managing Security

As administrator, you configure a user repository for use in authenticating users;
define access control; configure a Secure Socket Layer (SSL) connection service that
encrypts client-broker communication; and set up a passfile for use in broker
startup.

The chapter includes the following sections:

¢ “Authenticating Users” on page 142

* “Authorizing Users: the Access Control Properties File” on page 152
* “Working With an SSL-Based Service” on page 159

e “Using a Passfile” on page 169

e “Creating an Audit Log” on page 171

141

Authenticating Users

Authenticating Users

You are responsible for maintaining a list of users, their groups, and their
passwords in a user repository. You can use a different user repository for each
broker instance. This section explains how you create, populate, and manage that
repository.

When a user attempts to connect to the broker, the broker authenticates the user by
inspecting the name and password provided. The broker grants the connection if
the name and password match those in a broker-specific user repository that each
broker is configured to consult.

The repository can be one of the following types:
¢ A flat-file repository that is shipped with Message Queue

This type of user repository is very easy to use. You can populate and manage
the repository using the User Manager utility (i nguser ngr). To enable
authentication, you populate the user repository with each user’s name and
password and the name of the user’s group.

For more information on setting up and managing the user repository, see
“Using a Flat-File User Repository.”

e An LDAP server

This could be an existing or new LDAP directory server that uses the LDAP v2
or v3 protocol. It is not as easy to use as the flat-file repository, but it is more
scalable, and therefore better for production environments.

If you are using an LDAP user repository, you use the tools provided by the
LDAP vendor to populate and manage the user repository. For more
information, see “Using an LDAP Server for a User Repository” on page 149.

Using a Flat-File User Repository

Message Queue provides a flat-file user repository and a command line tool,
Message Queue User Manager (i nquser ngr) that you can use to populate and
manage the flat-file user repository. The following sections describe the flat-file
user repository and how you use the Message Queue User Manager utility

(i muser ngr) to populate and manage that repository.

142 Message Queue 3 2005Q1 « Administration Guide

Authenticating Users

Creating a User Repository

The flat-file user repository is instance specific. A default user repository (named
passwd) is created for each broker instance that you start. This user repository is
placed in a directory identified by the name of the broker instance with which the
repository is associated (see Appendix A, “Operating System-Specific Locations of
Message Queue Data”):

.1 i nst ances/ instanceNamel et c/ passwd

The repository is created with two entries (rows), as illustrated in Table 7-1, below.

Table 7-1 Initial Entries in User Repository

User Name Password Group State
adm n adm n admn active
guest guest anonynous active

These initial entries allow the Message Queue broker to be used immediately after
installation without intervention by the administrator. Initial user/password setup
is not required for the Message Queue broker to be used.

The initial guest user entry allows clients to connect to a broker instance using the
default guest user name and password (for testing purposes, for example).

The initial adm n user entry lets you use i ngcnd commands to administer a broker
instance using the default adm n user name and password. You should update this
initial entry to change the password (see “Changing the Default Administrator
Password” on page 148).

The following sections explain how you populate and manage a flat-file user
repository.

User Manager Utility (imqusermgr)

The User Manager utility (i nquser ngr) lets you edit or populate a flat-file user
repository. This section introduces the User Manager utility. Subsequent sections
explain how you use the i nquser ngr subcommands to accomplish specific tasks.

For full reference information about the i nquser ngr command, see Chapter 13,
“Command Reference.”

Chapter 7 Managing Security 143

Authenticating Users

Before using i nuser myr, keep the following things in mind:

e If a broker-specific user repository does not yet exist, you must start up the
corresponding broker instance to create it.

e Theinguser ngr command has to be run on the host where the broker is
installed.

* You must have appropriate permissions to write to the repository,: namely, on
Solaris and Linux, you must be the root user or the user who first created the
broker instance.

NOTE Examples in the following sections assume the default broker
instance.
Subcommands

The i nquser ngr command has the subcommands add, del et e, | i st, and updat e.

add Subcommand The add subcommand adds a user and associated password to
the specified (or default) broker instance repository, and optionally specifies the
user’s group. The subcommand syntax is as follows:

add [-i instanceName] -u userName -p passwd [-Q group] [-S]

delete Subcommand The del et e subcommand deletes the specified user from
the specified (or default) broker instance repository. The subcommand syntax is as
follows:

del ete [-i instanceName] -u userName[-S] [-f]

list Subcommand The |l i st subcommand displays information about the
specified user or all users in the specified (or default) broker instance repository.
The subcommand syntax is as follows:

list [-i instanceName] [-u userName]

update Subcommand The updat e subcommand updates the password and/or
state of the specified user in the specified (or default) broker instance repository.
The subcommand syntax is as follows:

update [-i instanceName] -u userName -p passwd [-a state] [-S] [-f]

update [-i instanceName] -u userName -a state [-p passwd] [-S] [-f]

144 Message Queue 3 2005Q1 « Administration Guide

Authenticating Users

Command Options
Table 7-2 lists the options to the i mquser ngr command.

Table 7-2 i mguser ngr Options

Option Description

- a active_state Specifies (t r ue/f al se) whether the user’s state
should be active. A value of t r ue means that the state
is active. This is the default.

-f Performs action without user confirmation

-h Displays usage help. Nothing else on the command
line is executed.

-1 instanceName Specifies the broker instance user repository to which
the command applies. If not specified, the default
instance name, i mgbr oker , is assumed.

-p passwd Specifies the user’s password.

-g group Specifies the user group. Valid values are adni n,
user, anonynous.

-S Sets silent mode.

- U userName Specifies the user name.

-V Displays version information. Nothing else on the

command line is executed.

Groups

When adding a user entry to the user repository for a broker instance, you can
specify one of three predefined groups: adni n, user, or anonymous. If no group is
specified, the default group user is assigned.

e adningroup. For broker administrators. Users who are assigned this group
can, by default, configure, administer, and manage the broker. You can assign

more than one user to the adm n group.

* user group. For normal (non-administration) Message Queue client users.
Most client users are in the user group. By default, users in this group can

produce messages to all topics and queues, consume messages from all topics

and queues, and browse messages in any queue.

Chapter 7 Managing Security

145

Authenticating Users

e anonynous group. For Message Queue clients that do not want a user name
that is known to the broker, possibly because the client application does not
know of a real user name to use. This account is analogous to the anonymous
account present in most FTP servers. You can assign only one user at a time to
the anonynous group. You should restrict the access privileges of this group as
compared to the user group or remove users from the group at deployment
time.

To change a user’s group, you must delete the user entry and then add another
entry for the user, specifying the new group.

You cannot rename or delete these system-created groups, or create new groups.
However, you can specify access rules that define the operations that the members
of that group can perform. For more information, see “Authorizing Users: the
Access Control Properties File” on page 152.

User States

When you add a user to a repository, the user’s state is active by default. To make
the user inactive, you must use the update command. For example, the following
command makes the user JoeDinactive:

i nguser mgr update -u JoeD -a fal se

Entries for users that have been rendered inactive are retained in the repository;
however, inactive users cannot open new connections. If a user is inactive and you
add another user who has the same name, the operation will fail. You must delete
the inactive user entry or change the new user’s name or use a different name for
the new user. This prevents you from adding duplicate user names.

Format of User Names and Passwords

User names and passwords must follow these guidelines:

e A user name cannot contain an asterisk (*), comma (,), colon (:), new line or
carriage return.

* A user name or password must be at least one character long.

¢ If a user name or password contains a space, the entire name or password must
be enclosed in quotation marks.

¢ There is no limit on the length of passwords or user names, except for
command shell restrictions on the maximum number of characters that can be
entered on a command line.

146 Message Queue 3 2005Q1 « Administration Guide

Authenticating Users

Populating and Managing a User Repository

Use the add subcommand to add a user to a repository. For example, the following
command adds the user Kat har i ne with the password sesane to the default broker
instance user repository.

i nquserngr add -u Katharine -p sesame -g user

Use the del et e subcommand to delete a user from a repository. For example, the
following command deletes the user, Bob:

i nquserngr del ete -u Bob

Use the updat e subcommand to change a user’s password or state. For example,
the following command changes Katharine’s password to al addi n:

i nguserngr update -u Katharine -p al addin

To list information about one user or all users, use the | i st command. The
following command shows information about the user named i sa:

inguserngr list -uisa

% imuserngr list -uisa

User repository for broker instance: ingbroker

Chapter 7 Managing Security 147

Authenticating Users

The following command lists information about all users:

i nqusernmgr |ist
% i myuserngr | st
User repository for broker instance: ingbroker
User Narre G oup Active State
adm n adm n true
guest anonynous true
i sa adm n true
testuserl user true
t est user2 user true
t est user 3 user true
testuser4 user fal se
testuserb user fal se

Changing the Default Administrator Password

For the sake of security, you should change the default password of adni n to one
that is only known to you. You need to use the i nguser ngr tool to do this.

The following command changes the default administrator password for the
nybr oker broker instance from adm n to gr andpoobah.

i nquser mgr updat e nybroker -u admn -p grandpoobah

You can quickly confirm that this change is in effect by running any of the
command line tools when the broker instance is running. For example, the
following command will prompt you for a password:

ingend |ist svc nybroker -u admn

Entering the new password (gr andpoobah) should work; the old password should
fail.

After changing the password, you should supply the new password any time you
use any of the Message Queue administration tools, including the Administration
Console.

148 Message Queue 3 2005Q1 « Administration Guide

Authenticating Users

Using an LDAP Server for a User Repository

To use an LDAP server for a user repository, you perform the following tasks:
e Editing the instance configuration file

* Setting up access control for administrators

Editing the Instance Configuration File

To have a broker use a directory server, you set the values for certain properties in
the broker instance configuration file, confi g. properti es. These properties enable
the broker instance to query the LDAP server for information about users and
groups. The broker queries the LDAP server whenever a user attempts to connect
to the broker instance or perform certain messaging operations.

The instance configuration file is located in a directory under the broker instance
directory. The path has the following format:

.1 i nst ances/ instanceNamel pr ops/ confi g. properti es

For information about the operating system-specific location of instance
directories, see Appendix A, “Operating System-Specific Locations of Message
Queue Data.”

[J To Edit the Configuration File to Use an LDAP Server
1. Specify that you are using an LDAP user repository by setting the following
property:
i ng. aut henti cati on. basi c. user _reposi t ory=l dap

2. Settheiny. aut hentication.type property to determine whether a password
should be passed from client to broker in base64 encoding (basi ¢) or in MD5
digest (di gest). When using an LDAP directory server for a user repository,
you must set the authentication type to basi ¢. For example,

i ng. aut henti cati on. t ype=basi c

Chapter 7 Managing Security 149

Authenticating Users

You must also set the broker properties that control LDAP access. These
properties are stored in a broker’s instance configuration file. The properties
are described in and summarized later in this section.

Message Queue uses JNDI APIs to communicate with the LDAP directory
server. Consult JNDI documentation for more information on syntax and on
terms referenced in these properties. Message Queue uses a Sun JNDI LDAP
provider and uses simple authentication.

Message Queue supports LDAP authentication failover: you can specify a list
of LDAP directory servers for which authentication will be attempted (see the
reference information for the i ng. user. repos. | dap. server property).

See the broker’s confi g. properti es file for a sample of how to set properties
related to LDAP user-repository.

If necessary, you need to edit the users/groups and rules in the access control
properties file. For more information about the use of access control property
files, see “Authorizing Users: the Access Control Properties File” on page 152.

If you want the broker to communicate with the LDAP directory server over
SSL during connection authentication and group searches, you need to activate
SSL in the LDAP server and then set the following properties in the broker
configuration file:

o Specify the port used by the LDAP server for SSL communications. For
example:

i ng. user _repository. | dap. server=nyhost: 7878

o Set the broker property i ng. user _reposi tory. | dap. ssl . enabl ed
totrue.

These are the LDAP-related properties:

i mg. user _repository. | dap. server. The host:port for the LDAP server

i my. user _repository.|dap. principal . The distinguished name that the
broker will use to bind to the directory server for a search.

i mg. user _repository. | dap. passwor d. The password associated with the
distinguished name used by the broker.

i mg. user _repository. | dap. base. The directory base for user entries.

150 Message Queue 3 2005Q1 « Administration Guide

Authenticating Users

i mg. user _repository. | dap. ui dattr. The provider-specific attribute identifier
whose value uniquely identifies a user. For example: ui d, cn.

i my. user _repository.|ldap.usrfilter.AJNDI search filter to use with users.

i mg. user _repository. | dap. grpsear ch. A boolean specifying whether you
want to enable group searches.

i mg. user _repository. | dap. gr pbase. The directory base for group entries.

i my. user _repository. | dap. gi dattr. The provider-specific attribute identifier
whose value is a group name.

ing. user _reposi tory. | dap. memat t r. The attribute identifier in a group entry
whose values are the distinguished names of the group’s members.

i my. user_repository.|ldap.grpfiltler.AJNDI search filter to use with
groups.

i mg. user _repository.|dap.ti meout. An integer specifying (in seconds) the
time limit for a search.

i mg. user _repository. | dap. ssl.enabl ed. A boolean specifying whether the
broker should use the SSL protocol when talking to an LDAP server.

For full reference information about these properties, see “Security Manager
Properties” on page 320.

Setting Up Access Control for Administrators

To create administrative users, you use the access control properties file to specify
users and groups that can create ADM N connections. These users and groups must
be predefined in the LDAP directory.

Any user or group who can create an ADM N connection can issue administrative
commands.

[J To Set Up an Administrative User

1.

Enable the use of the access control file by setting the broker property
i my. accesscontrol . enabl ed to t r ue, which is the default value.

The i my. accesscontrol . enabl ed property enables use of the access control
file.

Chapter 7 Managing Security 151

Authorizing Users: the Access Control Properties File

Open the access control file, accesscontrol . properti es. The location for the
file is listed in Appendix A, “Operating System-Specific Locations of Message
Queue Data.”

The file contains an entry such as the following:

servi ce connection access control
B R S SR
connect i on. NORVAL. al | ow. user =*
connection. ADM N. al | ow. gr oup=admi n

The entries listed are examples. Note that the adm n group exists in the
file-based user repository but does not exist by default in the LDAP directory.
You must substitute the name of a group that is defined in the LDAP directory,
to which you want to grant Message Queue administrator privileges.

To grant Message Queue administrator privileges to users, enter the user
names as follows:

connection. ADM N al | ow. user =userName[, userName2, . .]

To grant Message Queue administrator privileges to groups, enter the group
names as follows:

connect i on. ADM N al | ow. gr oup=groupName[, groupName2, . .]

Authorizing Users: the Access Control
Properties File

152

An access control properties file (ACL file) contains rules that specify the operations
that users and groups of users can perform. You edit the ACL file to restrict
operations to certain users and groups. You can use a different ACL file for each
broker instance.

A broker checks its ACL file when a client application performs one of the
following operations:

Create a connection

Create a producer

Message Queue 3 2005Q1 « Administration Guide

Authorizing Users: the Access Control Properties File

* Create a consumer
¢ Browse a queue

The broker checks the ACL file to determine whether the user that generated the
request, or a group to which the user belongs, is authorized to perform the
operation.

If you edit an ACL file, the new settings take effect the next time that the broker
checks the file to verify authorization. You need not restart the broker after editing
the file.

The ACL file is used whether user information is placed in a flat-file user
repository (see “Using a Flat-File User Repository” on page 142) or in an LDAP
user repository (see “Using an LDAP Server for a User Repository” on page 149).

Creating an Access Control Properties File

The ACL file is instance specific. Each time you start a broker instance, a default file
named accesscontrol . properti es is created in the instance directory. The path to
the file has the following format (see Appendix A, “Operating System-Specific
Locations of Message Queue Data”):

.1 i nst ances/ brokerInstanceNamel et c/ accesscontrol . properti es

The ACL file is formatted like a Java properties file. It starts by defining the version
of the file and then specifies access control rules in three sections:

* Connection access control
¢ Physical destination access control
¢ Physical destination auto-create access control

The ver si on property defines the version of the ACL properties file; you may not
change this entry.

ver si on=JMJFi | eAccessCont r ol Model / 100

The three sections of the ACL file that specify access control are described below,
following a description of the basic syntax of access rules and an explanation of
how permissions are calculated.

Chapter 7 Managing Security 153

Authorizing Users: the Access Control Properties File

154

Syntax of Access Rules

In the ACL properties file, access control defines what access specific users or
groups have to protected resources like physical destinations and connection
services. Access control is expressed by a rule or set of rules, with each rule
presented as a Java property:

The basic syntax of these rules is as follows:
resourceType.resourceVariant.operation.access.principal Type = principals

Table 7-3 describes the elements of syntax rules.

Table 7-3 Syntactic Elements of Access Rules

Element Description
resourceType One of the following: connect i on, queue or t opi c.
resourceVariant An instance of the type specified by resourceType. For example, myQueue. The

wild card character (*) may be used to mean all connection service types or all
physical destinations.

operation Value depends on the kind of access rule being formulated.

access One of the following: al | owor deny.

principalType One of the following: user or gr oup. For more information, see “Groups” on
page 145.

principals Who may have the access specified on the left-hand side of the rule. This may

be an individual user or a list of users (comma delimited) if the pri nci pal Type
is user; it may be a single group or a list of groups (comma delimited list) if the
pri nci pal Type is gr oup. The wild card character (*) may be used to represent
all users or all groups.

Here are some examples of access rules:

e The following rule means that all users may send a message to the queue
named q1.

queue. ql. produce. al | ow. user =*
e The following rule means that any user may send messages to any queue.

queue. *. produce. al | ow. user =*

Message Queue 3 2005Q1 « Administration Guide

Authorizing Users: the Access Control Properties File

NOTE To specify non-ASCII user, group, or destination names, use

Unicode escape (\ uXXXX) notation. If you have edited and saved the
ACL file with these names in a non-ASCII encoding, you can
convert the file to ASCII with the Java nat i ve2asci i tool. For more
detailed information, see

http://java. sun.com j 2se/ 1. 4/ docs/ gui de/intl/fag. ht m

How Permissions are Computed

When there are multiple access rules in the file, permissions are computed as
follows:

Specific access rules override general access rules. After applying the following
two rules, all users can send to all queues, but Bob cannot send to t ql.

queue. *. produce. al | ow. user =*
queue. t g1. produce. deny. user =Bob

Access given to an explicit principal overrides access given to a * principal. The
following rules deny Bob the right to produce messages to t q1, but allow
everyone else to do it.

queue. t g1. produce. al | ow. user =*
queue. t g1. produce. deny. user =Bob

The * principal rule for users overrides the corresponding * principal for groups.
For example, the following two rules allow all authenticated users to send
messages to t 1.

queue. t g1. produce. al | ow. user =*
queue. t g1. produce. deny. gr oup=*

Access granted a user overrides access granted to the user’s group. In the
following example, even if Bob is a member of User, he cannot produce
messages to t q1. All her members of User will be able to do so.

queue. t g1. produce. al | ow. gr oup=User
queue. t g1. produce. deny. user =Bob

Any access permission not explicitly granted through an access rule is
implicitly denied. For example, if the ACL file contains no access rules, all
users are denied all operations.

Chapter 7 Managing Security 155

http://java.sun.com/j2se/1.4/docs/guide/intl/faq.html

Authorizing Users: the Access Control Properties File

156

¢ Deny and allow permissions for the same user or group cancel themselves out.
For example, the following two rules cause Bob to be unable to browse q1:

queue. ql. browse. al | ow. user =Bob
queue. ql. browse. deny. user =Bob

The following two rules prevent the group User from consuming messages at
g5.

queue. g5. consune. al | ow. gr oup=User
queue. g5. consune. deny. gr oup=User

e When multiple same left-hand rules exist, only the last entry takes effect.

Access Control for Connection Services

The connection access control section in the ACL properties file contains access
control rules for the broker’s connection services. The syntax of connection access
control rules is as follows:

connect i on. resourceVariant.access.principalType = principals

Two values are defined for resourceVariant: NORVAL and ADM N These predefined
values are the only types of connection services to which you can grant access.

The default ACL properties file gives all users access to NORVAL connection services
and gives users in the group adni n access to ADM N connection services:

connecti on. NORVAL. al | ow. user =*
connecti on. ADM N. al | ow. gr oup=adni n

If you are using a file-based user repository, the default group admi n is created by
i nyuser ngyr . If you are using an LDAP user repository, you can do one of the
following to use the default ACL properties file:

¢ Define a group called adni n in the LDAP directory.

* Replace the name adm n in the ACL properties file with the names of one or
more groups that are defined in the LDAP directory.

You can restrict connection access privileges. For example, the following rules
deny Bob access to NORVAL but allow everyone else:

connect i on. NORVAL. deny. user =Bob
connecti on. NCRVAL. al | ow. user =*

You can use the asterisk (*) character to specify all authenticated users or groups.

Message Queue 3 2005Q1 « Administration Guide

Authorizing Users: the Access Control Properties File

The way that you use the ACL properties file to grant access to ADM Nconnections
differs for file-based user repositories and LDAP user repositories, as follows:

¢ File-based user repository

o If access control is disabled, users in the group adnmi n have ADM N
connection privileges.

o If access control is enabled, edit the ACL file. Explicitly grant users or
groups access to the ADM Nconnection service.

¢ LDAP user repository. If you are using an LDAP user repository, do all of the
following:

o Enable access control.

o Edit the ACL file and provide the names of users or groups who can make
ADM Nconnections. Specify any users or groups that is defined in the LDAP
directory server.

Access Control for Physical Destinations

The destination access control section of the access control properties file contains
physical destination-based access control rules. These rules determine who
(users/groups) may do what (operations) where (physical destinations). The types
of access that are regulated by these rules include sending messages to a queue,
publishing messages to a topic, receiving messages from a queue, subscribing to a
topic, and browsing a messages in a queue.

By default, any user or group can have all types of access to any physical
destination. You can add more specific destination access rules or edit the default
rules. The rest of this section explains the syntax of physical destination access
rules, which you must understand to write your own rules.

The syntax of destination rules is as follows:
resourceType.resourceVariant.operation.access.principalType = principals

Table 7-4 describes these elements:

Table 7-4 Elements of Physical Destination Access Control Rules

Component Description
resourceType Can be queue or t opi c.
resourceVariant A physical destination name or all physical destinations (*),

meaning all queues or all topics.

Chapter 7 Managing Security 157

Authorizing Users: the Access Control Properties File

158

Table 7-4 Elements of Physical Destination Access Control Rules (Continued)

Component Description

operation Can be produce, consune, or br owse.
access Can be al | owor deny.

principalType Can be user or group.

Access can be given to one or more users and/or one or more groups.

The following examples illustrate different kinds of physical destination access
control rules:

e Allow all users to send messages to any queue destinations.
queue. *. produce. al | ow. user =*
* Deny any member of the group user to subscribe to the topic Admissions.

t opi c. Admi ssi ons. consure. deny. gr oup=user

Access Control for Auto-created Physical
Destinations

The final section of the ACL properties file, includes access rules that specify for
which users and groups the broker will auto-create a physical destination.

When a user creates a producer or consumer at a physical destination that does not
already exist, the broker will create the destination if the broker’s auto-create
property has been enabled.

By default, any user or group has the privilege of having a physical destination
auto-created by the broker. This privilege is specified by the following rules:

queue. create. al | ow. user =*
topic.create. al | ow. user=*

You can edit the ACL file to restrict this type of access.

The general syntax for physical destination auto-create access rules is as follows:
resourceType.Cr eat e.access.principalType = principals

Where resourceType is either queue or t opi c.

Message Queue 3 2005Q1 « Administration Guide

Working With an SSL-Based Service

For example, the following rules allow the broker to auto-create topic destinations
for everyone except Snoopy.

topic.create. al | ow. user=*
t opi c. creat e. deny. user =Snoopy

Note that the effect of physical destination auto-create rules must be congruent
with that of physical destination access rules. For example, if you 1) change the
destination access rule to forbid any user from sending a message to a destination
but 2) enable the auto-creation of the destination, the broker will create the physical
destination if it does not exist but it will not deliver a message to it.

Working With an SSL-Based Service

A connection service that is based on the Secure Socket Layer (SSL) standard sends
encrypted messages sent between clients and broker. This section explains how to
set up an SSL-based connection service.

Message Queue supports the following connection services that are based on the
Secure Socket Layer (SSL) standard:

e ssljns,ssladmn,and cl ust er are used over TCP/IP.
e httpsjnsisused over HTTP.

These connection services allow for the encryption of messages sent between
clients and broker. Message Queue supports SSL encryption based on either
self-signed server certificates or signed certificates.

To use an SSL-based connection service, you generate a private key/public key
pair using the Key Tool utility (i mgkeyt ool). This utility embeds the public key in a
self-signed certificate that is passed to any client requesting a connection to the
broker, and the client uses the certificate to set up an encrypted connection.

While Message Queue’s SSL-based connection services are similar in concept, there
are some differences in how you set them up.

The rest of this section describes how to set up secure connections over TCP/IP.

The SSL-based connection service for user over HTTP, ht t psj ns, lets a client and
broker establish a secure connection by way of an HTTPS tunnel servlet. For
information on setting up secure connections over HI'TP, see Appendix C,
“HTTP/HTTPS Support” on page 369.

Chapter 7 Managing Security 159

Working With an SSL-Based Service

160

Secure Connection Services for TCP/IP

The following SSL-based connection services provide a direct, secure connection
over TCP/IP:

e The ssl j ms service delivers messages over a secure, encrypted connection
between a client and broker.

e The ssl admi n service creates a secure, encrypted connection between the
Message Queue command utility (i ngcnmd) and a broker. A secure connection is
not supported for the Administration Console (i ngadni n).

¢ Thecl uster service delivers messages and provides inter-broker
communication over a secure, encrypted connection between brokers in a
cluster (see “Secure Connections Between Brokers” on page 199).

Configuring the Use of Self-Signed Certificates

This section describes how to set up an SSL-based service using self-signed
certificates.

For a stronger level of authentication, you can use signed certificates that are
verified by a certificate authority. First follow the steps in this section and then go
to “Configuring the Use of Signed Certificates” on page 166 to perform additional
steps.

[J To Set Up an SSL-based Connection Service
1. Generate a self-signed certificate.
2. Enable the ssl j ns, ssl adm n, or ¢l ust er connection service in the broker.
3. Start the broker.
4. Configure and run the client (applies only to ssl j ms connection service).

The procedures for setting up ssl j ms and ssl adm n connection services are
identical, except for Step 4, configuring and running the client.

Each of the steps is discussed in some detail in the sections that follow.

Step 1. Generating a Self-Signed Certificate

Message Queue SSL support with self-signed certificates is oriented toward
securing on-the-wire data with the assumption that the client is communicating
with a known and trusted server.

Message Queue 3 2005Q1 « Administration Guide

Working With an SSL-Based Service

Run the i ngkeyt 0ol command to generate a self-signed certificate for the broker.
On UNIX® systems you may need to run i ngkeyt ool as the superuser (r oot) in
order to have permission to create the keystore.

The same certificate can be used for the ssl j ns, ssl admi n, or ¢l ust er connection
service.

Enter the following at the command prompt:
i ngkeyt ool - br oker
The utility prompts you for a keystore password.

Generating keystore for the broker
Enter keystore password:

Next, the utility prompts for information that identifies the broker whose certificate
this is. The information that you supply will make up an X.500 distinguished name.
The following table lists the prompts, describes them, and provides an example for
each prompt. Values are case-insensitive and can include spaces.

Table 7-5 Distinguished Name Information Required for a Self-Signed Certificate

Prompt Description Example

What is your first and last name? The X.500 commonName (CN). Enter the nyhost . sun. com
fully qualified name of the server that is
running the broker.

What is the name of your organizational unit? The X.500 organizationalUnit (OU). Enter the purchasi ng
name of a department or division.

What is the name of your organization? The X.500 organizationName (ON). Name of M/ Conpany, Inc.
a larger organization, such as a company or
government entity.

What is the name of your city or locality? The X.500 localityName (L). San Franci sco

What is the name of your state or province? The X.500 stateName (ST). Enter the full California
name of the state or province, without
abbreviating.

What is the two-letter country code for this unit? ~ The X.500 country (C). us

When you have entered the information, imgkeytool displays it for confirmation.
For example:

I's ONengserver. sun. com QU=purchasing, O=My Conpany, Inc., L=San
Franci sco, ST=California, C=US correct?

Chapter 7 Managing Security 161

Working With an SSL-Based Service

162

To re-enter values, accept the default or enter no; to accept the current values and
proceed, enter yes. After you confirm, ingkeyt ool pauses while it generates a key
pair.

Next, i mgkeyt ool asks for a password to lock the particular key pair (key
password). Enter Return in response to this prompt to use the same password as
the key password and keystore password.

NOTE Remember the password you provide. You must provide this
password when you start the broker, to allow the broker to open the
keystore. You can store the keystore password in a passfile (see
“Using a Passfile” on page 169).

Running i ngkeyt ool runs the JDK keyt ool utility to generate a self-signed
certificate and places it in Message Queue’s keystore, located in a directory that
depends upon the operating system, as shown in Appendix A, “Operating
System-Specific Locations of Message Queue Data.”

The keystore is in the same format as that supported by the JDK1.2 keyt ool utility.
These are the configurable properties for the Message Queue keystore:

* ing. keystore.file.dirpath. For SSL-based services: specifies the path to the
directory containing the keystore file. For the default value, see Appendix A,
“Operating System-Specific Locations of Message Queue Data.”

e ing. keystore.file.name. For SSL-based services: specifies the name of the
keystore file.

* ing. keystore. passwor d. For SSL-based services: specifies the keystore
password.

You might need to regenerate a key pair in order to solve certain problems; for
example:

* You forgot the keystore password.

* The SSL-based service fails to initialize when you start a broker and you get the
exception j ava. security. Unrecover abl eKeyException: Cannot recover
key.

This exception may result from the fact that you had provided a key password
that was different from the keystore password when you generated the
self-signed certificate in “Step 1. Generating a Self-Signed Certificate” on

page 160.

Message Queue 3 2005Q1 « Administration Guide

Working With an SSL-Based Service

[J To Regenerate a Key Pair

1.

Remove the broker’s keystore, located as shown in Appendix A, “Operating
System-Specific Locations of Message Queue Data.”

Rerun i ngkeyt ool to generate a key pair as described in “Step 1. Generating a
Self-Signed Certificate” on page 160.

Step 2. Enabling the SSL-Based Service in the Broker

To enable the SSL-based service in the broker, you need to add ssl j s
(or ssl admi n) to the i my. servi ce. acti vel i st property.

NOTE The SSL-based cl ust er connection service is enabled using the

i my. cluster.transport property rather than the
i my. servi ce. activel i st property. See “Secure Connections
Between Brokers” on page 199.

[0 To Enable an SSL-based Service in the Broker

1.

Open the broker’s instance configuration file.

The instance configuration file is located in a directory identified by the name
of the broker instance (instanceName) with which the configuration file is
associated (see Appendix A, “Operating System-Specific Locations of Message
Queue Data”):

.[i nst ances/ instanceNamel props/ confi g. properti es

Add an entry (if one does not already exist) for the i my. servi ce. acti vel i st
property and include SSL-based services in the list.

By default, the property includes the jms and admin connection services. You
need to add the ssljms or ssladmin connection services or both (depending on
the services you want to activate):

i ng. service. activel i st=j ns, adm n, ssl j ns, ssl adm n

Step 3. Starting the Broker

Start the broker, providing the keystore password. You can provide the password
in any one of the following ways:

Allow the broker to prompt you for the password when it starts up

i ngbr oker d
Pl ease enter Keystore password: mypassword

Chapter 7 Managing Security 163

Working With an SSL-Based Service

164

* Put the password in a passfile, as described in “Using a Passfile” on page 169.
Once you have put the password in the passfile and set the property
i my. passfil e. enabl ed=true, do one of the following:

o Pass the location of the passfile to the i ngbr oker d command:
i mgbrokerd -passfile /tmp/mypassfile

o Start the broker without the -passf i | e option, but specify the location of
the passfile using the following two broker configuration properties:

i my. passfile. dirpath=/tmp
i ng. passfil e. name=mypassfile

When you start a broker or client with SSL, you might notice that it consumes a lot
of cpu cycles for a few seconds. This is because Message Queue uses JSSE (Java
Secure Socket Extension) to implement SSL. JSSE uses

java. security. SecureRandon() to generate random numbers. This method takes
a significant amount of time to create the initial random number seed, and that is
why you are seeing increased cpu usage. After the seed is created, the cpu level
will drop to normal.

Step 4. Configuring and Running SSL-Based Clients

Finally, you configure clients to use the secure connection services. There are two
types of secure connection scenarios over TCP/IP:

¢ Application clients using ssl j s
* Message Queue administration clients (such as i ngcnd) using ssl admi n
These are treated separately in the following sections.

Application Clients Using ssljms

You must make sure the client has the necessary Secure Socket Extension (JSSE) jar
files in its classpath, and you need to tell it to use the ssl j ms connection service.

1. If your client is not using J2SDK1.4 (which has JSSE and JNDI support built in),
make sure the client has the following jar files in its class path:

jsse.jar, jnet.jar, jcert.jar, jndi.jar
2. Make sure the client has the following Message Queue jar files in its class path:

ing.jar, jns.jar

Message Queue 3 2005Q1 « Administration Guide

Working With an SSL-Based Service

3. Start the client and connect to the broker’s ssljms service. One way to do this is
by entering a command like the following:

java -Di ngConnecti onType=TLS clientAppName
Setting i nmConnect i onType tells the connection to use SSL.

For more information on using ssl j ms connection services in client
applications, see the chapter on using administered objects in the Message
Queue Developer’s Guide for Java Clients.

Administration Clients (imgcmd) Using ssladmin

You can establish a secure administration connection by including the - secure
option when using i mgcnd. For example:

imqgemd list sve -b hostName:port -u adminName -secure

where adminName is a valid entry in the Message Queue user repository and the
command will prompt for the password. (If you are using a flat-file repository, see
“Changing the Default Administrator Password” on page 148).

Listing the connection services is a way to show that the ssl adni n service is
running, and that you can successfully make a secure admin connection, as shown
in the following output:

Listing all the services on the broker specified by:
Host Primary Port

| ocal host 7676

Service Name Port Nunber Service State
adm n 33984 (dynamic) RUNNING

htt pj ns - UNKNOMN

htt psj ns - UNKNOMN

j s 33983 (dynamic) RUNN NG
ssladnmin 35988 (dynamic) RUNN NG
ssljns dynam ¢ UNKNOMN
Successfully listed services.

Chapter 7 Managing Security 165

Working With an SSL-Based Service

166

Configuring the Use of Signed Certificates

Signed certificates provide a stronger level of server authentication than self-signed
certificates. To implement signed certificates, you install a signed certificate into
the keystore, and then configure the Message Queue client so that it requires a
signed certificate when it establishes an SSL connection to i ngbr oker d.

You can implement signed certificates only between client and broker, and not
between multiple brokers in a cluster.

The instructions that follow assume that you have already performed the steps
documented under “Configuring the Use of Self-Signed Certificates” on page 160.
While you are following the instructions, it might be helpful to have access to the
information about J2SE keytool and X.509 certificates at htt p://j ava. sun. com

Step 1: Obtaining and Installing a Signed Certificate

[J To Obtain a Signed Certificate

1. Use the J2SE keytool to generate a Certificate Signing Request (CSR) for the
self-signed certificate you just generated.

Here is an example:

keytool -certreq -keyalg RSA -alias img -file certreq.csr
-keystore /etc/ingl/ keystore -storepass nyStorePassword

The CSR now encapsulates the certificate in the file certreg. csr.
2. Generate or request a signed certificate by one of the following methods:

o Have the certificate signed by a well known certificate authority (CA), such
as Thawte or Verisign. See your CA’s documentation for more information
on this process.

o Sign the certificate yourself by using an SSL signing software package.

The resulting signed certificate is a sequence of ASCII characters. If you receive
the signed certificate from a CA, it might arrive as an email attachment or in
the text of a message.

3. When you get the signed certificate, save it in a file.

These instructions use the example name br oker . cer to represent the broker
certificate.

Message Queue 3 2005Q1 « Administration Guide

http://java.sun.com

Working With an SSL-Based Service

[J To Install a Signed Certificate

1.

Check $JAVA HOW/ | i b/ securi ty/ cacerts to find out whether J2SE supports
your CA by default, as follows:

keytool -v -list -keystore $JAVA HOW |ib/security/cacerts
The command lists the root CAs in the system keystore.
If your CA is listed, skip the next step.

If your CA is not supported in J2SE, import the certificate authority’s root
certificate into the i ngbr oker d keystore.

Here is an example:

keytool -inport -alias ca -file ca.cer -nopronpt -trustcacerts
-keystore /etc/ing/ keystore -storepass nySt orePassword

The ca. cer value is the CA root certificate obtained from the CA.

If you are using a CA test certificate, you probably need to import the Test CA
Root certificate. Your CA should have instructions on how to obtain a copy of
the Test CA Root.

Import the signed certificate into the keystore to replace the original self-signed
certificate.

For example:

keytool -inport -alias ing -file broker.cer -nopronpt -trustcacerts
-keystore /etc/ing/ keystore -storepass nyStorePassword

The br oker . cer value is the file that contains the signed certificate that you
received from the CA.

The i mgbr oker d keystore now has a signed certificate to use for SSL connections.

Step 2: Configuring the Client Runtime to Require a Signed
Certificate

[J To Configure the Java Client Runtime

By default, the Message Queue client runtime trusts i nybr oker d and accepts any
certificate that is presented to it. You must now configure the client runtime to
require signed certificates, and ensure that the client trusts the CA that signed the
certificate.

1.

To configure the client to require a valid, signed certificate from i nybr oker d,
set the i mMySSLI sHost Tr ust ed attribute to f al se for the client’s
Connect i onFact or y object.

Chapter 7 Managing Security 167

Working With an SSL-Based Service

168

2. Try to establish an SSL connection to i mgbr okr d, as described under “Step 4.
Configuring and Running SSL-Based Clients” on page 164.

If the broker’ s certificate was signed by a well-known CA, the connection will
probably succeed and you can skip the next step. If the connection fails with a
certificate validation error, perform the next step.

3. Install the signing CA’s root certificate in the client’s truststore, as described in
the following sections.

There are three options for configuring the client with a truststore:
o Install the root CA into the default system cacert s file.

o Install the root CA into the alternative system file | ssecacerts. This is the
recommended option.

o Install the root CA into any keystore file and configure the client to use
that as its truststore.

The following sections contain examples of how to install a Verisign Test Root CA
using these options. The root CA is contained in a file called t est r oot ca. cer. The
examples assume that J2SE is installed in / usr/j 2se.

Installing into the Default System cacerts File

This example installs the root CA into the file
$JAVA HOVE usr/jrellib/security/cacerts.

keytool -inport -keystore /usr/j2se/jrellibl/securityl/cacerts
-alias VerisignTestCA -file testrootca.cer -nopronpt
-trustcacerts -storepass nyStorePassword

The client searches this keystore by default, so no further client configuration is
necessary.

Installing into jssecacerts
This example installs the root CA into the file
$JAVA HOVE usr/jrel/libl/securityljssecacerts.

keytool -inport -keystore /usr/j2seljrellibl/security/jssecacerts
-alias VerisignTestCA -file testrootca.cer -nopronpt
-trustcacerts -storepass nyStorePassword

The client searches this keystore by default, so no further client configuration is
necessary.

Message Queue 3 2005Q1 « Administration Guide

Using a Passfile

Installing into Other Files
This example installs the root CA into the file / hone/ sm t h/ . keyst ore.
keytool -inport -keystore /hone/smth/.keystore

-alias VerisignTestCA -file testrootca.cer -nopronpt
-trustcacerts -storepass nyStorePassword

The client does not search this keystore by default, so you must provide the
location of the truststore to the client. To do so, set the Java system property
j avax. net. ssl . trust Store once the client is running. For example:

javax. net.ssl.trust Store=/home/snmith/.keystore

Using a Passfile

Several types of commands require passwords. In Table 7-6, the first column lists
the commands that require passwords and the second column lists the reason that
passwords are needed.

Table 7-6 Commands That Use Passwords

Command Purpose Purpose of Password

i nqbr okerd Starts the broker Access a plugged-in persistent data store,
an SSL certificate keystore, or an LDAP
user repository

i nqcmj Manages the broker Authenticate an administrative user who is
authorized to use the command
i rrqdbngr Manages a plugged-in data Access the data store
store

You can specify these passwords in a password file (passfile) and use the -passfil e
option to specify the name of the file. This is the format for the - passfi | e option:

i mybr okerd -passfile myPassfile

NOTE In previous releases, you could use the - p, -passwor d, -dbpasswor d,
and -l dappasswor d options to specify passwords on a command
line. These options are deprecated and will be removed in a future
release. In this release, a value on the command line for one of these
options supersedes the associated value in a password file.

Chapter 7 Managing Security 169

Using a Passfile

Security Concerns

Specifying a password interactively, in response to a prompt, is the most secure
method of specifying a password, unless your monitor is visible to other people.
You can also specify a passfile on the command line. For non-interactive use of
commands, however, you must use a passfile.

A passfile is unencrypted, so you must set its permissions to protect it from
unauthorized access. Set permissions such that they limit the users who can view
the file, but provide read access to the user who starts the broker.

Passfile Contents

A passfile is a simple text file that contains a set of properties and values. Each
value is a password used by a command.

A passfile can contain the passwords shown in Table 7-7:

Table 7-7 Passwords in a Passfile

Affected
Password Commands Description
i ng. i nyend. passwor d i mycnd Specifies the administrator password for an i ngcnd
command line. The password is authenticated for
each command.
i ng. keyst or e. passwor d i ngbr okerd Specifies the keystore password for SSL-based
services.
i ng. persi st.jdbc. password i ngbr okerd Specifies the password used to open a database
i ndbngr connection, if required.
i ng. user _reposi tory. | dap. password i ngbrokerd Specifies the password associated with the

distinguished name assigned to a broker for binding
to a configured LDAP user repository.

A sample passfile is part of the Message Queue product. For the location of the
sample file, see Appendix A, “Operating System-Specific Locations of Message
Queue Data.”

170 Message Queue 3 2005Q1 « Administration Guide

Creating an Audit Log

Creating an Audit Log

Message Queue supports audit logging in Enterprise Edition only. When audit
logging is enabled, Message Queue generates a record for the following types of
events:

Startup, shutdown, restart, and removal of a broker instance
User authentication and authorization

Reset of a persistent store

Creation, purge, and destruction of a physical destination

Administrative destruction of a durable subscriber

To log audit records to the Message Queue broker log file, set the
i mg. audi t. enabl ed broker property to t r ue. All audit records in the log contain
the keyword AUDI T.

For reference information about the i ng. audi t . enabl ed property, see “Security
Manager Properties” on page 320.

Chapter 7 Managing Security 171

Creating an Audit Log

172 Message Queue 3 2005Q1 « Administration Guide

Chapter 8

Managing Administered Objects

The use of administered objects enables the development of client applications that
are portable to other JMS providers. Administered objects encapsulate
provider-specific configuration and naming information.

A Message Queue administrator typically creates administered objects for client
applications to use in obtaining broker connections. A client application uses a
connection to send messages to physical destinations and receive messages from
physical destinations.

This chapter explains how you use the Object Manager utility (i ngobj ngr) to
perform these tasks. Because these tasks involve an understanding of the attributes
of both the object store you are using and of the administered objects you are
creating, this chapter provides background on these two topics before describing
how to use i ngobj nyr to manage administered objects.

This chapter contains the following sections:

* “About Object Stores” on page 174

* “About Administered Object Attributes” on page 176

e “Using the Object Manager Utility (imqobjmgr)” on page 185
e “Adding and Deleting Administered Objects” on page 189

¢ “Listing Administered Objects” on page 193

¢ “Getting Information About a Single Object” on page 193

¢ “Updating Administered Objects” on page 194

173

About Object Stores

About Object Stores

Administered objects are placed in a readily available object store where they can
be accessed by client applications through a JNDI lookup. There are two types of
object stores you can use: a standard LDAP directory server or a file-system object
store.

LDAP Server Object Store

An LDAP server is the recommended object store for production messaging
systems. LDAP implementations are available from a number of vendors and are
designed for use in distributed systems. LDAP servers also provide security
features that are useful in production environments.

Message Queue administration tools can manage object stores on LDAP servers.
However, you might first need to configure the LDAP server to store java objects
and perform JNDI lookups, as prescribed in the documentation for the LDAP
server.

In using an LDAP server as your object store, you need to specify the attributes
shown in Table 8-1. These attributes fall into the following categories:

¢ Initial Context: This attribute is fixed for an LDAP server object store.

* Location: Specifies the URL and directory path for storing your administered
objects, as set up in the LDAP server. In particular you must check that the
specified path exists.

* Security Information: Depends on the LDAP provider. You should consult the
documentation provided with your LDAP implementation to determine
whether security information is required on all operations or only on
operations that change the stored data.

Table 8-1 LDAP Object Store Attributes

Attribute Description

java. nam ng. factory. The initial context for a JNDI lookup on an LDAP server

initial com sun. j ndi . | dap. LdapQt xFact ory

j ava. nam ng. provi der. url LDAP server URL and directory path information. For
example:

| dap: / / nydomai n. com 389/ ou=ngobj s, o=nyapp

where administered objects are stored in the
/ nyapp/ ngobj s directory.

174 Message Queue 3 2005Q1 « Administration Guide

ldap://mydomain.com:389/ou=mqobjs,o=myapp

About Object Stores

Table 8-1 LDAP Object Store Attributes (Continued)

Attribute Description
j ava. nam ng. security. The identity of the principal for authenticating the caller to
princi pal the LDAP server.The format of this entry depends on the

authentication scheme.For example:
ui d=f ooUser, ou=Peopl e, o=ny

If this property is unspecified, the behavior is determined
by the LDAP service provider.

j ava. nam ng. security. The credentials of the principal for authenticating the caller

credential s to the LDAP server. The value of the property depends on
the authentication scheme: it could be a hashed
password, clear-text password, key, certificate, and so on.
For example:

f ooPasswd

If this property is unspecified, the behavior is determined
by the LDAP service provider.

j ava. nam ng. security. Security level to use. Its value is one of the following key
aut hentication words: none, si npl e, st rong.

for example, If you specify si npl e, you will be prompted
for any missing principal or credential values. This will
allow you a more secure way of providing identifying
information.

If this property is unspecified, the behavior is determined
by the LDAP service provider.

File-System Object Store

Message Queue also supports a file-system object store implementation. While the
file-system object store is not fully tested and is therefore not recommended for
production systems, it has the advantage of being very easy to use in development
environments. Rather than setting up an LDAP server, all you must do is create a
directory on your local file system.

However a file-system store cannot be used as a centralized object store for clients
deployed across multiple computer nodes unless these clients have access to the
directory where the object store resides. In addition, any user with access to that
directory can use Message Queue administration tools to create and manage
administered objects.

Chapter 8 Managing Administered Objects 175

About Administered Object Attributes

In using a file-system object store, you need to specify the attributes shown in
Table 8-2. These attributes fall into the following categories:

e Initial Context: The value of this attribute is fixed for a file system object store.

* Location: The value of this attribute specifies the directory path for storing
your administered objects. The directory must exist and have the proper access
permissions for the user of Message Queue administration tools as well as the
users of the client applications that will access the store.

Table 8-2 File-system Object Store Attributes

Attribute Description
java. nam ng. fact ory. The initial context for a JINDI lookup on a file system object
initial store:

com sun. j ndi . f scont ext .
Ref FSCont ext Fact ory

j ava. nam ng. provi der. url Directory path information. For example:
file:/l/C /nyapp/ ngobj s

About Administered Object Attributes

Message Queue administered objects are of two basic kinds:

* Connection factory administered objects are used by client applications to create
connections to brokers.

¢ Destination administered objects are used by client applications to identify
destinations to which producers send messages or from which consumers
retrieve messages.

Message Queue provides two administration tools for creating and managing
administered objects: the command line Object Manager utility (i mgobj mgr) and
the GUI Administration Console. This chapter describes only how to use the
command line.

The attributes of an administered object are specified using attribute-value pairs.

176 Message Queue 3 2005Q1 « Administration Guide

file:///C:/myapp/mqobjs

About Administered Object Attributes

Connection Factory Attributes.

The configuration of a connection factory passes to all the connections that the
connection factory creates on behalf of client applications. Connections are
configured to define the parties involved in sending or receiving messages, to
specify how the client runtime handles message flow, and to automatically set
certain information for all messages sent across a connection.

There are two types of connection factory objects:

¢ Connect i onFact ory supports normal messaging and nondistributed
transactions.

¢ XAConnect i onFact ory supports distributed transactions.

The Connect i onFact ory and XAConnect i onFact or y objects share the same set of
attributes.

A connection factory object can be created and configured by an administrator or
by an application (for prototyping or testing). You set connection factory attributes
using the i nobj nor tool or the administration console.

This section describes the connection factory attributes in the following sections,
which are organized by the behaviors that the attributes affect:

e “Connection Handling” on page 178

¢ “Client Identification” on page 180

¢ “Reliability And Flow Control” on page 182

* “Queue Browser Behavior and Server Session” on page 183
* “Message Header Overrides” on page 184

e “JMS-Defined Properties Support” on page 183

The attribute you are primarily concerned with is i mgAddr essLi st , which you use
to specify the broker to which the client will establish a connection. “Adding a
Connection Factory” on page 189 explains how to specify attributes when you add
a connection factory administered object to your object store.

For reference information about connection factory attributes, see Chapter 16,
“Administered Object Attribute Reference,” and the JavaDoc API documentation
for the Message Queue class com sun. messagi ng. Connect i onConf i gur ati on.

Chapter 8 Managing Administered Objects 177

About Administered Object Attributes

178

Connection Handling

You use connection handling attributes to specify the message server address to
which you want to connect and, if reconnection is required, to specify how many
times reconnection should be attempted and the interval between attempts.

A client connects to a message server at the message server address that you
specify as the value for the i ngAddr essLi st attribute. The message server address
contains a broker host name, a port number, and a connection service type.

The port number can be the port where the broker’s Port Mapper resides, or the
port where a specific connection service resides. If you specify the Port Mapper
port, the Port Mapper dynamically assigns the port number for the connection. For
complete information about specifying a message server address, see “Syntax for
the imqAddressList Attribute Value” on page 335.

Automatic Reconnection

In a single broker environment or multi-broker cluster environment, you can set
connection handling attributes that enable a client to automatically reconnect to a
broker if a connection fails. You can also configure the reconnection process.

The reconnection feature provides connection failover but not data failover:
persistent messages and other state information held by a failed or disconnected
broker can be lost when the client is reconnected to a different broker instance.

If auto-reconnect is enabled, Message Queue persists temporary destinations when
a connection fails, because clients might reconnect and access them again. After
giving clients time to reconnect and use these destinations, the broker deletes the
destinations.

The way that reconnection is handled depends on whether the client is connected
to a single broker or to a broker that is part of a cluster. The following sections
describe each of these possibilities.

Reconnecting to a Single Broker To enable a client to be automatically
reconnected to a broker when a connection fails, you set the following connection
factory attributes:

e i ngReconnect Enabl ed. Enables the automatic reconnect behavior.

¢ ingReconnect Att enpt s. Specifies how many times the client runtime attempts
to reconnect the client.

* ingReconnect | nt erval . Specifies how long the client runtime waits between
attempts to reconnect the client.

For full reference information about these attributes, see “Connection Handling”
on page 334

Message Queue 3 2005Q1 « Administration Guide

About Administered Object Attributes

Reconnecting to a Broker in a Cluster In a multi-broker cluster environment,
automatic reconnection iterates through a list of brokers if you specify multiple
addresses for the i ngAddr essLi st attribute. All brokers in the list must be
installations of Message Queue Enterprise Edition.

If the client connection to the first address in the list fails, the client runtime
attempts to reconnect the client to another broker in the list. If that attempt fails, the
client runtime continues through the list until it is able to reconnect the client.

If no attempt is successful, the client runtime cycles through the list for a specified
number of times until it finds an available broker or fails to find one. The setting of
the i ngAddr essLi st Behavi or attribute determines whether the broker chosen for
reconnection is next in the sequence of addresses provided in the address list, or
whether it is randomly chosen from that list.

To enable a client to be reconnected to a broker in a cluster, use the following
attributes:

e i ngReconnect Enabl ed. Enables the automatic reconnect behavior.

¢ ingReconnect Att enpt s. Specifies how many times to try each broker address
before passing to the next.

e ingReconnect | nt erval . Specifies how long to wait between attempts.

e ingAddressListlterations . Specifies the number of times to iterate through
the list.

* i ngAddr essLi st Behavi or . Specifies whether connection attempts are in the
order of addresses in the address list or in a random order.

For full reference information about these attributes, see “Connection Handling”
on page 334.

Connection Ping

The i nyPi ngl nt erval attribute specifies the frequency of a ping operation from the
client runtime to the broker. By periodically testing the connection, the client
runtime can preemptively detect a failed connection. If the ping operation fails, the
client runtime throws an exception to the client application’s exception listener
object. If the application does not have an exception listener, the application’s next
attempt to use the connection fails.

Use of the ping is especially important for consumer client applications that wait to
receive messages and do not send messages. Such an application would not
otherwise know when a connection fails. A client that produces infrequent
messages can also benefit from this feature, because it could handle a failed
connection before needing to send a message.

Chapter 8 Managing Administered Objects 179

About Administered Object Attributes

180

By default, the ping interval is set at 30 seconds. A value of -1 disables the ping
operation.

The response to a broken connection is operating system-specific. For example, on
some operating systems, a ping reports a failure immediately. Other operating
systems might continue trying to establish the connection to the broker, buffering
successive pings until the ping is successful or the buffer overflows.

For full reference information about the i mgPi ngl nt er val attribute, see
“Connection Handling” on page 334.

Client Identification

Message Queue defines a set of connection factory attributes to support client
authentication and the setting of a unique client ID, which is required for durable
subscribers.

Clients attempting to connect to the broker must be authenticated. If the client does
not specify a user name or password when creating the connection, one of the
following happens:

e If the connection factory attributes i nDef aul t User name and
i mgDef aul t Passwor d are not set, the client runtime passes the values
guest /guest to the broker, and the broker authenticates the client using those
values.

The user repository is shipped with the entry guest /guest, so the client will
obtain the connection.

¢ If the connection factory attributes i ngDef aul t User nane and
i mgDef aul t Passwor d attributes are set, the client runtime passes those values
to the broker, and the broker authenticates the client using those values.

If that user/password pair is in the user repository, the client gets the
connection.

This scheme allows any user to get a connection, which is convenient for
development and testing. In a production system, access to connections should be
limited to users that have been added to the user repository.

In addition to broker authentication of clients that request a connection, the J]MS
specification requires that a connection provides a unique client identifier when
where state has to be maintained for the client. Message Queue uses the client ID to
keep track of its durable subscribers. If a durable subscriber becomes inactive, the
broker retains messages for that subscriber and delivers them when the subscriber
becomes active again. The broker identifies the subscriber by means of its client ID.

Message Queue 3 2005Q1 « Administration Guide

About Administered Object Attributes

You can set ClientID administratively, or clients can set it programmatically. If
multiple clients obtain connections from the same connection factory object, set
ClientID for a connection factory. Message Queue can then provide a unique
ClientID for each connection obtained from that factory.

To ensure a unique ClientID value, set the i ngConf i gur edd i ent | Dattribute using
the following format:

i ngConf i gur edd i ent | D=${ u} string

The ${ u} must be the first four characters of the attribute value. If anything other
than “u” is encountered, a JMS exception occurs upon connection creation.

The value for string is any value that you want to associate with a connection
produced by this connection factory, such as Xconn. During the user authentication
stage, Message Queue substitutes u: userName for u. For example, if the user
associated with the connection is At hena and the string specified for the connection
is ${ u} Xconn, the ClientID will be u: At henaXconn.

This scheme ensures that each connection produced by a connection factory,
although identical in every other way, will contain a unique ClientID.

There is one case in which this scheme will not work: If two clients obtain a
connection using a default user name such as guest , each will have a ClientID with
the same ${u} component. At runtime, the first client to request the connection will
get it; the second will not because MQ cannot create a connection with a
non-unique ClientID.

You can set the i ngDi sabl eSet d i ent | Dattribute to disallow clients that use the
connection factory from programmatically changing the configured client ID.

You must set the i ngConfi gur edd i ent | Dattribute for durable subscriptions, unless
the application code uses the set 0 i ent | d() method.

In summary, these are the attributes that affect client identification:

e i ngDef aul t User nane. Specifies the default user name that will be used to
authenticate with the broker when the client does not specify a user name in
creating the connection.

¢ ingDef aul t Passwor d. Specifies the default password that will be used to
authenticate with the broker when the client does not specify a password in
creating the connection..

e ingConfiguredd i ent| D. Specifies the value of an administratively configured
client ID.

e inyDisabl eSet dient | D. Specifies whether a client who uses the connection
factory can change the client ID programmatically.

Chapter 8 Managing Administered Objects 181

About Administered Object Attributes

182

For full reference information about these attributes, see “Client Identification” on
page 338.

Reliability And Flow Control

Messages sent and received by clients and control messages used by Message
Queue pass over the same client-broker connection. As a result, delays can occur in
the delivery of control messages, such as broker acknowledgments, if they are held
up by the delivery of J]MS messages.

You can set connection factory attributes that allow you to manage the flow of
control messages relative to the flow of client messages. Controlling the flow of the
two types of messages involves a compromise between reliability and throughput.
For a discussion of how you use these attributes to manage flow control and
reliability, see “Client Runtime Message Flow Adjustments” on page 244

The following attributes affect the flow of client and control messages:

* i ngAckTi meout . Specifies, in milliseconds, the maximum time that the client
runtime will wait for any broker response.

e ingConnecti onFl owCount . Specifies the number of J]MS messages in a metered
batch.

e ingConnecti onFl owLi m t Enabl ed. Limits message flow at the connection level.

e ingConnecti onFl owLi m t. Specifies a limit on the number of messages that can
be delivered over a connection and buffered in the client runtime, waiting to be
consumed.

¢ ingConsumer Fl owLi ni t . Specifies a per-consumer limit on the number of
messages that can be delivered over a connection and buffered in the client
runtime, waiting to be consumed.

e i ngConsuner F owThr eshol d. Specifies, as a percentage of
i ngConsumer Fl owLi ni t, the number of messages for each consumer to buffer in
the client runtime, below which delivery of messages for a consumer will
resume.

For full reference information about these attributes, see “Reliability and Flow
Control” on page 339.

Message Queue 3 2005Q1 « Administration Guide

About Administered Object Attributes

Queue Browser Behavior and Server Session
These attributes affect client queue browsing:

* i ngQueueBr owser MaxMessagesPer Ret ri eve. Specifies the maximum number of
messages that a client retrieves at one time, when browsing the contents of a
queue destination.

e i ngQueueBrowser Ret ri eveTi meout . Specifies how long the client waits to
retrieve messages, when browsing the contents of a queue destination.

* ingLoadMaxToSer ver Sessi on.For JMS application server facilities, specifies
whether a Message Queue ConnectionConsumer loads up to the naxMessages
number of messages into a ServerSession's session, or loads a single message at
a time.

For full reference information about these attributes, see “Queue Browser Behavior
and Server Session” on page 340.

JMS-Defined Properties Support

You can use connection factory attributes to automatically set JMS-defined
properties on messages that a connection produces. The JMS properties are defined
in the JMS specification, at htt p: //] ava. sun. cond product s/ j ns/ docs. ht m .

Use the following attributes to set JMS-defined properties:

e i ngSet IMBXUser | D. For produced messages, specifies whether Message Queue
sets the JMS-defined property JM5XUser | D (identity of user sending the
message).

e i ngSet JMSXAppl D. For produced messages, specifies whether Message Queue
sets the JMS-defined property JM5XAppl D (identity of application sending the
message).

¢ ingSet IMBXPr oducer TXI D. For produced messages, specifies whether Message
Queue sets the JMS-defined property JM5XPr oducer TXI D (transaction identifier
of the transaction that produced the message).

* i ngSet JMsXConsuner TXI D. For consumed messages, specifies whether Message
Queue should set the JMS-defined property JMsXConsurer TXI D (transaction
identifier of the transaction that consumed the message).

* i ngSet JIMBXRevTi nmest anp. For consumed messages, specifies whether Message
Queue should set the JMS-defined property, JMBXRcvTi nest anp (the time the
message is delivered to the consumer).

For full reference information about these attributes, see “JMS-Defined Properties
Support” on page 341.

Chapter 8 Managing Administered Objects 183

http://java.sun.com/products/jms/docs.html

About Administered Object Attributes

184

Message Header Overrides

You can override JMS message header fields that specify the persistence, lifetime,
and priority of messages by setting attributes of a connection factory. The settings
are used for all messages produced by connections obtained from the connection
factory.

The values in the following JMS fields can be overridden:

e JMSDeliveryMode (message persistence /non-persistence)
e JMSExpiration (message lifetime)

¢ JMSPriority (message priority—an integer from 0 to 9)

For more information about these fields, see the JMS specification at
http://java. sun. com product s/ j ns/ docs. ht i .

Because overriding message headers could interfere with application
requirements, use this feature only in consultation with application users or
designers.

The following list contains the connection factory attributes that deal with message
overrides. Most of these attributes are paired. For each pair, the first attribute
specifies whether a specified header field can be overridden, and the second
attribute specifies the override value.

e imOverrideJVsDel i ver yMde and i ngJMBDel i ver yMode.. The first attribute
specifies whether a client-set JMSDel i ver yMbde field can be overridden; the
second attribute specifies its override value.

e imOverri deJMSExpirationand i ngJVMSEXpi rati on. The first attribute
specifies whether a client-set JMSExpi r at i on field can be overridden; the
second attribute specifies its override value.

¢ imqOverride]MSPriority and imqJMSPriority. The first attribute specifies
whether a client-set JMSPri ori ty field can be overridden; the second specifies
attribute its override value.

¢ imqOverride]MSHeadersToTemporaryDestinations. Specifies whether
overrides apply to temporary destinations.

For full reference information about these attributes, see “Message Header
Overrides” on page 338.

Message Queue 3 2005Q1 « Administration Guide

http://java.sun.com/products/jms/docs.html

Using the Object Manager Utility (imgobjmgr)

Destination Administered Object Attributes

The destination administered object that identifies a physical topic or queue
destination has the attributes listed in Table 16-1 on page 333. The section, “Adding
a Topic or Queue” on page 190, explains how you specify these attributes when
you add a destination administered object to your object store.

The attribute you are primarily concerned with is i ngDest i nat i onNarre. This is the
name you assign to the physical destination that corresponds to the topic or queue
administered object. You can also provide a description of the destination that will
help you distinguish it from others that you might create to support many
applications.

For more information, see the JavaDoc API documentation for the Message Queue
class com sun. messagi ng. Desti nati onConfi guration.

Using the Object Manager Utility (imgobjmgr)

The Object Manager utility allows you to create and manage Message Queue
administered objects. Using this utility, you can perform the following tasks:

* Add or delete administered objects to an object store.

e List existing administered objects.

* Query and display information about an administered object.
* Modify an existing administered object in the object store.

For reference information about the syntax, subcommands, and options of the

i mgobj ngr command, see Chapter 13, “Command Reference.” The following
section describes information that you need to provide when working with any
i ngobj ngr subcommand.

Required Information

When performing most tasks related to administered objects, you must specify the
following information as options to i ngobj ngr subcommands:

e The administered object type
The allowed types are shown in Table 13-11 on page 297.

Chapter 8 Managing Administered Objects 185

Using the Object Manager Utility (imgobjmgr)

¢ The JNDI lookup name of the administered object:

This is the logical name that will be used in the client code to refer to the
administered object (using JNDI) in the object store.

* Administered object attributes (needed especially for the add and updat e
subcommands):

o For destinations: The name of the physical destination on the broker. This
is the name that was specified with the - n option to the i ngcnd create dst
subcommand. If you do not specify the name, the default name of
Untitled_Destination_Qhject will be used.

o For connection factories: The most commonly used attribute is the address
list (i myAddr essLi st) specifying the message server addresses (one or
more) to which the client will attempt to connect. If you do not specify this
information, the local host and default port number (7676) are used,
meaning the client will attempt a connection to a broker on port 7676 of the
local host. The section “Adding a Connection Factory” on page 189
explains how you specify object attributes.

For additional attributes, see “Connection Factory Attributes.” on
page 177.

* Object store attributes

This information depends on whether you are using a file-system store or
LDAP server, but must include the following attributes:

o The type of JNDI implementation (initial context attribute). For example,
file-system or LDAP.

o The location of the administered object in the object store (provider URL
attribute), that is, its “folder” as it were.

o The user name, password, and authorization type, if any, required to
access the object store.

For more information about object store attributes see “LDAP Server Object
Store” on page 174 and “File-System Object Store” on page 175.

Using Command Files

The i mgobj ngr command allows you to specify the name of a command file that
uses java property file syntax to represent all or part of the i ngobj nyr
subcommand clause.

186 Message Queue 3 2005Q1 « Administration Guide

Using the Object Manager Utility (imgobjmgr)

Using a command file with the Object Manager utility (i nobj ngr) is especially
useful to specify object store attributes, which are likely to be the same across
multiple invocations of i mgobj ngr and which normally require a lot of typing.
Using an command file can also allow you to avoid a situation in which you might
otherwise exceed the maximum number of characters allowed for the command
line.

The general syntax for an i ngobj nmyr command file is as follows (the version
property reflects the version of the command file and not of the Message Queue
product—it is not a command line option—and its value must be set to 2. 0):

version=2.0
cmdtype=[add | delete | list | qu y | update]
obj .type=[q | t | of | tf | cf | xqf | xtf | xcf | e]

obj . | ookupNane=I ookup narme

obj . attrs. obj Attr Namel=val uel
obj . attrs. obj AttrName2=val ue2
obj . attrs. obj Attr NameN=val ueN

b.t.)j store.attrs. obj StoreAttrNanel=val uel
obj store. attrs. obj StoreAttrName2=val ue2
obj store. attrs. obj StoreAttrNaneN=val ueN

As an example of how you can use an command file, consider the following
i ngobj myr command:

i mgobj myr add
-t df
-1 "cen=nyQCF
-0 "ingAddressLi st=ng: //foo: 777/ ns"
-j "java.namng.factory.initial =
comsun. j ndi . | dap. LdapC xFact ory"
-j "java.nam ng. provider.url =
| dap: // nydonai n. com 389/ o=i ng"
-j "java.nam ng. security. principal =
ui d=f ooUser, ou=Peopl e, o=ing"
-} "java.nam ng. security.credential s=f ooPasswd"
-] "Java.nam ng. security. authenti cati on=si npl e"

Chapter 8 Managing Administered Objects 187

mq://foo:777/jms
ldap://mydomain.com:389/o=imq

Using the Object Manager Utility (imgobjmgr)

188

This command can be encapsulated in a file, say MyQmdFi | e, that has the following
contents:

version=2.0
cndt ype=add
obj . t ype=qgf
obj . | ookupName=cn=nyQCF
obj . attrs.imyAddressList=ny://foo: 777/ ns
objstore.attrs.java. namng. factory.initial =\
com sun. j ndi . | dap. LdapCt xFact ory
obj store. attrs.java. nam ng. provi der. url =\
| dap: / / mydomai n. com 389/ o=i ngy
obj store. attrs.java. nam ng. security. princi pal =\
ui d=f ooUser, ou=Peopl e, o0=ing
obj store. attrs.java. nam ng. security. credenti al s=f ooPasswd
obj store.attrs.java. nam ng. security. aut henti cati on=si npl e

You can then use the -i option to pass this file to the Object Manager utility
(i ryobj ngr):

i ngobj mgr -i M/OmdFi | e

You can also use the command file to specify some options, while using the
command line to specify others. This allows you to use the command file to specify
parts of the subcommand clause that is the same across many invocations of the
utility. For example, the following command specifies all the options needed to
add a connection factory administered object, except for those that specify where
the administered object is to be stored.

i mgobj ngr add
-t df
-1 "en=nyQCF"
-0 "ingAddressList=my://foo: 777/) ns"
-i MOvdFi | e

In this case, the file M/OrdFi | e would contain the following definitions:

versi on=2.0

objstore.attrs.java. namng. factory.initial =\
com sun. j ndi . | dap. LdapCt xFact ory

obj store. attrs.java. nam ng. provi der. url =\

Message Queue 3 2005Q1 « Administration Guide

mq://foo:777/jms
ldap://mydomain.com:389/o=imq
mq://foo:777/jms

Adding and Deleting Administered Objects

| dap: / / mydonai n. com 389/ o=i ngy
obj store. attrs.java. nam ng. security. princi pal =\

ui d=f ooUser, ou=Peopl e, o0=i ng
obj store.attrs.java. nam ng. security. credenti al s=f ooPasswd
obj store.attrs.java. nam ng. security. aut henti cati on=si npl e

Additional examples of command files can be found at the following location:

[usr/ dero/ i ng/ i ngobj ngr (Solaris)
[opt / sun/ mg/ exanpl es/ i myobj ngr (Linux)
| MQ_HOVE/ deno/ i ngobj mgr (Windows)

Adding and Deleting Administered Objects

This section explains how you add administered objects for connection factories
and topic or queue destinations to the object store.

NOTE The Object Manager utility (i mgobj nor) lists and displays only
Message Queue administered objects. If an object store should
contain a non-Message Queue object with the same lookup name as
an administered object that you wish to add, you will receive an
error when you attempt the add operation.

Adding a Connection Factory

To enable client applications to obtain a connection to the broker, you add an
administered object that represents the type of connections the client applications
want: a topic connection factory or a queue connection factory

To add a queue connection factory, use a command like the following:

i mgobj myr add
-t of
-1 "cn=nyQCF"
-0 "i ngAddressLi st =ny: // nyHost : 7272/ | ns"
-j "java.namng.factoryinitial =
comsun. j ndi .| dap. LdapC xFact or y"
-j "java.nam ng. provider. url =l dap: // nydonai n. com 389/ o=i my"
-] "Java.namng.security.principal =

Chapter 8 Managing Administered Objects 189

ldap://mydomain.com:389/o=imq
mq://myHost:7272/jms
ldap://mydomain.com:389/o=imq

Adding and Deleting Administered Objects

190

ui d=f ooUser, ou=Peopl e, o=ing"
-j "java.nam ng. security.credenti al s=f ooPasswd"
-j "java.nam ng. security.authenticati on=si npl e"

The preceding command creates an administered object whose lookup name is
cn=nyQCF and which connects to a broker running on nyHost and listens on port
7272. The administered object is stored in an LDAP server. You can accomplish the
same thing by specifying an command file as an argument to the i ngobj ngr
command. For more information, see “Using Command Files” on page 186.

NOTE Naming Conventions: If you are using an LDAP server to store the
administered object, it is important that you assign a lookup name
that has the prefix “cn=""as in the example above (cn=nyQCF). You
specify the lookup name with the -1 option. You do not have to use
the cn prefix if you are using a file-system object store, but do not
use lookup names that have a “/” in them. See Table 8-3.

Table 8-3 Naming Convention Examples

Object Store Type Good Name Ban Name
LDAP server cn=myQCF myQCF
file system myTopic myObjects/myTopic

Adding a Topic or Queue

To enable client applications to access physical destinations on the broker, you add
administered objects that identify these destinations, to the object store.

It is a good practice to first create the physical destinations before adding the
corresponding administered objects to the object store. Use the Command utility

(i mycnd) to create the physical destinations on the broker that are identified by
destination administered objects in the object store. For information about creating
physical destinations, see “Getting Information About Connections” on page 121.

The following command adds an administered object that identifies a topic
destination whose lookup name is nyTopi ¢ and whose physical destination name is
Test Topi ¢. The administered object is stored in an LDAP server.

Message Queue 3 2005Q1 « Administration Guide

Adding and Deleting Administered Objects

i ngobj ngr add
-ttt
-1 "cn=nyTopi c"
-0 "ingDesti nati onNane=Test Topi c"
-j "java.namng.factory.initial=
comsun. j ndi .| dap. LdapCt xFact or y"
-j "java.nam ng. provider.url =
| dap: // mydonai n. com 389/ o=i ng"
-j "java.nam ng. security. principal =
ui d=f oolUser, ou=Peopl e, o=ing"
-j "java.namng. security.credential s=f ooPasswd"
-] "java.nam ng. security. aut henticati on=si npl e"

This is the same command, only the administered object is stored in a Solaris file
system:

i myobj myr add

-t ot

-1 "cn=nyTopic"

-0 "ingDest i nati onNarme=Test Topi c"

-j "java.namng.factory.initial =
com sun. j ndi . f scont ext . Ref FSCont ext Fact ory"

-j "java. namng. provider. url =
file:///home/fooliny_adm n_objects"”

In the LDAP server case, as an example, you could use an command file,
M/QrdFi | e, to specify the subcommand clause. The file would contain the
following text:

version=2.0
cmdt ype=add
obj . type=t
obj . | ookupName=cn=nyTopi ¢
obj . attrs.ingDesti nati onNane=Test Topi ¢
objstore.attrs.java. namng. factory.initial =
comsun. j ndi . f scont ext. Ref FSCont ext Fact ory
obj store.attrs.java. nam ng. provi der. url =
file:///home/fooling_adm n_objects
obj store.attrs.java. nam ng. security. princi pal =
ui d=f ooUser, ou=Peopl e, o0=i ng
obj store.attrs.java. nam ng. security. credential s=f ooPasswd
obj store.attrs.java. nam ng. security. aut henti cati on=si npl e

Chapter 8 Managing Administered Objects 191

ldap://mydomain.com:389/o=imq
file:///home/foo/imq_admin_objects
file:///home/foo/imq_admin_objects

Adding and Deleting Administered Objects

Use the -i option to pass the file to the i nobj ngr command:
i ngobj nmgr -i M/OmdFi | e

NOTE If you are using an LDAP server to store the administered object, it
is important that you assign a lookup name that has the prefix “cn="
as in the example above. You specify the lookup name with the - |
option. You do not have to use this prefix if you are using a
file-system object store.

Adding a queue object is exactly the same, except that you specify q for the - t
option.

Deleting Administered Objects

Use the del et e subcommand to delete an administered object. You must specify
the lookup name of the object, its type, and its location.

The following command deletes an administered object for a topic whose lookup
name is cn=nyTopi ¢ and which is stored on an LDAP server.

i myobj ngr del ete
-ttt

-1 "cn=nyTopi c"
-j "java.naming.factory.initial=

com sun. j ndi . | dap. LdapCt xFact or y"
-j "java.nam ng.provider.url=

| dap: // mydonai n. com 389/ o=i ng"
-j "java.nam ng. security. principal =

ui d=f ooUser, ou=Peopl e, o=ing"
-j "java. nam ng. security. credential s=f ooPasswd"
-] "Java. nam ng. security. aut henti cati on=si npl "

192 Message Queue 3 2005Q1 « Administration Guide

ldap://mydomain.com:389/o=imq

Listing Administered Objects

Listing Administered Objects

Use the | i st subcommand to get a list of all administered objects or to get a list of
all administered objects of a specific type. The following sample code assumes that
the administered objects are stored in an LDAP server.

The following command lists all objects.

i mgobj ngr |ist
-j "java.namng.factory.initial =
comsun. j ndi . | dap. LdapCt xFact or y"
-j "java.nam ng. provider.url =
| dap: // mydonai n. com 389/ o=i ng"
-j "java.nam ng. security. principal =
ui d=f ooUser, ou=Peopl e, o=i ng"
-} "java.nam ng. security.credenti al s=f ooPasswd"
-] "java.nam ng. security. aut henti cati on=si npl e"

The following command lists all objects of type queue.

i myobj myr | ist
-t q
-j "java.namng.factory.initial =
comsun. j ndi .| dap. LdapCt xFact or y"
-j "java.nam ng. provider.url =
| dap: // mydonai n. com 389/ o=i ng"
-j "java.nam ng. security.principal =
ui d=f oolUser, ou=Peopl e, o=ing"
-} "java.nam ng.security.credential s=f ooPasswd"
-] "java.nam ng. security. authenti cati on=si npl e"

Getting Information About a Single Object

Use the query subcommand to get information about an administered object. You
must specify the object’s lookup name and the attributes of the object store
containing the administered object (such as initial context and location).

In the following example, the query subcommand is used to display information
about an object whose lookup name is cn=nyTopi c.

Chapter 8 Managing Administered Objects 193

ldap://mydomain.com:389/o=imq
ldap://mydomain.com:389/o=imq

Updating Administered Objects

i mgobj ngr query
-1 "cn=nyTopi c"
-j "java.namng.factory.initial =
comsun. j ndi .| dap. LdapC xFact or y"
-j "java.nam ng. provider.url =
| dap: / / nydonai n. com 389/ o=i ng"
-j "java.nam ng. security.principal =
ui d=f oolser, ou=Peopl e, o=ing"
-j "java.nam ng.security.credential s=f ooPasswd"
-j "java. nam ng. security. aut henti cation=si npl "

Updating Administered Objects

You use the updat e command to modify the attributes of administered objects. You
must specify the lookup name and location of the object. You use the -o option to
modify attribute values.

This command changes the attributes of an administered object that represents a
topic connection factory:

i mgobj ngr updat e
-t tf

-1 "cn=M/TCF"
-0 i myReconnect At t enpt s=3
-j "java.namng.factory.initial=
com sun. j ndi . | dap. LdapCt xFact ory"
-j "java.nam ng. provider.url =
| dap: / / mydonai n. com 389/ o=i ng"
-j "java.namng. security. principal =
ui d=f ooUser, ou=Peopl e, o=ing"
-j "java.nam ng. security.credential s=f ooPasswd"
-] "java.nam ng. security.aut henti cati on=si npl e"

194 Message Queue 3 2005Q1 « Administration Guide

ldap://mydomain.com:389/o=imq
ldap://mydomain.com:389/o=imq

Chapter 9

Working With Broker Clusters

Message Queue Enterprise Edition supports the use of broker clusters: groups of
brokers working together to provide message delivery services to clients. Clusters
enable a message server to scale its operations with the volume of message traffic
by distributing client connections among multiple brokers. See the Message Queue
Technical Overview for a general discussion of clusters and how they operate.

This chapter describes how to manage broker clusters, connect brokers to them,
and configure them. It contains the following sections:

* “Cluster Configuration Properties” on page 196
¢ “Managing Clusters” on page 198
¢ “Master Broker” on page 201

195

Cluster Configuration Properties

Cluster Configuration Properties

196

You define a cluster by specifying cluster configuration properties for each of its
member brokers. You can set these properties individually for each broker in the
cluster, but it is generally more convenient to collect them into a central cluster
configuration file that all of the brokers reference. This prevents the settings from
getting out of agreement and ensures that all brokers in a cluster share the same,
consistent configuration information.

The cluster configuration properties are described in detail in Table 14-11 on
page 327. They include the following:

e iny.cluster.brokerlist gives the host names and port numbers for all
brokers belonging to the cluster.

* ing.cluster.masterbroker designates which broker (if any) is the master
broker that keeps track of state changes.

e ing.cluster.url specifies the location of the cluster configuration file, if any.

* ing.cluster.hostnane gives the host name or IP address for the cl ust er
connection service, used for internal communication between brokers in the
cluster. This setting can be useful if more than one host is available: for
example, if there is more than one network interface card in a computer.

e ing.cluster.port gives the port number for the cl ust er connection service.

e iny.cluster.transport specifies the transport protocol used by the cl ust er
connection service, such ast cp or ssl .

The host nane and port properties can be set independently for each individual
broker, but br oker | i st, mast er br oker, url, and t ransport must have the same
values for all brokers in the cluster.

The following sections describe how to set a broker’s cluster configuration
properties, either individually for each broker in a cluster or centrally, using a
cluster configuration file.

Message Queue 3 2005Q1 « Administration Guide

Cluster Configuration Properties

Setting Cluster Properties for Individual Brokers

You can set a broker’s cluster configuration properties in its instance configuration
file (or on the command line when you start the broker). For example, to create a
cluster consisting of brokers at port 9876 on host 1, port 5000 on host 2, and the
default port (7676) on ctrl host, you would include the following property in the
instance configuration files for all three brokers:

i ng. cl uster. brokerlist=host 1: 9876, host 2: 5000, ctr| host

Notice that if you need to change the cluster configuration, this method requires
you to update the instance configuration file for every broker in the cluster.

Using a Cluster Configuration File

For consistency and ease of maintenance, it’s recommended that you collect all of
the shared cluster configuration properties into a single cluster configuration file
instead of setting them separately for each individual broker. In this method, each
broker’s instance configuration file must set the i . cl ust er. url property to point
to the location of the cluster configuration file: for example,

ing.cluster.url=file:/hone/cluster.properties

The cluster donfiguration file then defines the shared configuration properties for
all of the brokers in the cluster, such as the list of brokers to be connected

(i my. cl ust er. broker | i st), the transport protocol to use for the cl ust er connection
service (i nu. cl uster. transport), and optionally, the address of the master broker
(i my. cl ust er. mast er br oker). The following code defines the same cluster as in the
previous example, with the broker running on ¢t rl host serving as the master
broker:

i ng. cl uster. brokerlist=host 1: 9876, host 2: 5000, ctr| host
i ng. cl ust er. mast er br oker =ct r | host

Chapter 9 Working With Broker Clusters 197

Managing Clusters

Managing Clusters

This section describes how to connect a set of brokers to form a cluster, add new
brokers to an existing cluster, and remove brokers from a cluster.

Connecting Brokers

There are two general methods of connecting brokers into a cluster: from the
command line (using the - cl ust er option) orby setting thei my. ¢l ust er. br oker | i st
property in the cluster configuration file. Whichever method you use, each broker
that you start attempts to connect to the other brokers every five seconds; the
connection will succeed once the master broker is started up (if one is configured).
If a broker in the cluster starts before the master broker, it will remain in a
suspended state, rejecting client connections, until the master broker starts; the
suspended broker then will automatically become fully functional.

Instead of using a cluster configuration file, you can use the - cl ust er option to the
i mgbr oker d command to specify the complete list of brokers in the cluster when you
start each one. For example, the following command starts a new broker and
connects it to the brokers running at the default port (7676) on host 1, port 5000 on
host 2, and port 9876 on the default host (I ocal host):

i ngbrokerd -cluster host1, host2: 5000, : 9876

An alternative method, better suited for production systems, is to create a cluster
configuration file that uses the i ng. cl ust er. br oker| i st property to specify the list
of brokers to be connected. Each broker in the cluster must then set its own

i my. cl uster. url property to point to this cluster configuration file.

Linux Prerequisite: Setting the IP Address

There is a special prerequisite for connecting brokers into a cluster on Linux
systems. Some Linux installers automatically set the | ocal host entry to the network
loopback IP address (127. 0. 0. 1). You must set the system’s IP address so that all
brokers in the cluster can be addressed properly.

For all Linux systems that participate in a cluster, check the / et ¢/ host s file as part
of cluster setup. If the system uses a static IP address, edit the / et ¢/ host s file to
specify the correct address for | ocal host . If the address is registered with Domain
Name Service (DNS), edit the file / et ¢/ nsswi t ch. conf to change the order of the
entries so that the system performs DNS lookup before consulting the local host s
file. The line in the / et ¢/ nsswi t ch. conf file should read as follows:

hosts: dns files

198 Message Queue 3 2005Q1 « Administration Guide

Managing Clusters

Secure Connections Between Brokers

If you want secure, encrypted message delivery between brokers in a cluster,
configure the cl ust er connection service to use an SSL-based transport protocol. For
each broker in the cluster, set up SSL-based connection services, as described in
“Working With an SSL-Based Service” on page 159. Then set each broker’s

i ny. cluster. transport property to ssl, either in the cluster configuration file or
individually for each broker.

Adding Brokers to a Cluster

The procedure for adding a new broker to a cluster depends on whether the cluster
uses a cluster configuration file.

To Add a New Broker to a Cluster Using a Cluster Configuration File

1. Add the new broker to the i nu. cl ust er. brokerli st property in the cluster
configuration file.

2. Issue the following command to every broker in the cluster:
imgcmd reload cls

This forces each broker to reload the cluster configuration, ensuring that all
persistent information for brokers in the cluster is up to date.

3. (Optional) Set the value of the i ng. cl uster. url property in the broker’s
config. properti es file to point to the cluster configuration file.

4. Start the new broker.

If you did not perform step 3, use the - Doption on the i ngbr oker d command
line to set the value of i ng. cl uster. url.

To Add a New Broker to a Cluster Without a Cluster Configuration File

Set the value of the following properties, either by editing the confi g. properti es
file or by using the - Doption on the i ngbr oker d command line:

o img.cluster. brokerlist
o inmg.cluster.msterbroker (if necessary)

o inmg.cluster.transport (if you are using a secure cl ust er connection
service)

Chapter 9 Working With Broker Clusters 199

Managing Clusters

Removing Brokers From a Cluster

The method you use to remove a broker from a cluster depends on whether you
originally created the cluster via the command line or by means of a central cluster
configuration file.

Removing a Broker Using the Command Line

If you used the i mgbr oker d command from the command line to connect the
brokers into a cluster, you must stop each of the brokers and then restart them,
specifying the new set of cluster members on the command line. The procedure is
as follows:

[J To Remove a Broker From a Cluster Using the Command Line
1. Stop each broker in the cluster, using the i ngcnl command.

2. Restart the brokers that will remain in the cluster, using the i mgbr oker d
command’s - cl ust er option to specify only those remaining brokers.

For example, suppose you originally created a cluster consisting of brokers A,
B, and C by starting each of the three with the command

i ngbrokerd -cluster A, B, C

To remove broker A from the cluster, restart brokers B and C with the
command

i ngbrokerd -cluster B,C

Removing a Broker Using a Cluster Configuration File

If you originally created a cluster by specifying its member brokers with the

i my. cluster. brokerlist property in a central cluster configuration file, it isn’t
necessary to stop the brokers in order to remove one of them. Instead, you can
simply edit the configuration file to exclude the broker you want to remove, force
the remaining cluster members to reload the cluster configuration, and reconfigure
the excluded broker so that it no longer points to the same cluster configuration
file. Here is the procedure:

[J To Remove a Broker From a Cluster Using a Cluster Configuration File

1. Edit the cluster configuration file to remove the excluded broker from the list
specified for the i my. cl ust er. broker|i st property.

200 Message Queue 3 2005Q1 « Administration Guide

Master Broker

2. Issue the following command to each broker remaining in the cluster:
ingend rel oad cl's
This forces the broker to reload the cluster configuration.

3. Stop the broker you're removing from the cluster.

4. Edit that broker’s confi g. properti es file, removing or specifying a different
value for its i ng. cl uster. url property.

Master Broker

A cluster can optionally have one master broker, which maintains a configuration
change record to keep track of any changes in the cluster’s persistent state. The
master broker is identified by the i ng. cl ust er. mast er br oker configuration
property, either in the cluster configuration file or in the instance configuration
files of the individual brokers.

The configuration change record contains information about changes in the
persistent entities associated with the cluster, such as durable subscriptions and
administrator-created physical destinations. All brokers in the cluster consult the
master broker during startup in order to update their information about these
persistent entities. Failure of the master broker makes such synchronization
impossible; see “When a Master Broker Is Unavailable” on page 202 for more
information.

Managing the Configuration Change Record

Because of the important information that the configuration change record
contains, it is important to back it up regularly so that it can be restored in case of
failure. Although restoring from a backup will lose any changes in the cluster’s
persistent state that have occurred since the backup was made, frequent backups
can minimize this potential loss of information. The backup and restore operations
also have the positive effect of compressing and optimizing the change history
contained in the configuration change record, which can grow significantly over
time.

[J To Back Up the Configuration Change Record

Use the - backup option of the i mgbr oker d command, specifying the name of the
backup file. For example:

i ngbr okerd -backup nybackupl og

Chapter 9 Working With Broker Clusters 201

Master Broker

[J To Restore the Configuration Change Record
1. Shut down all brokers in the cluster.

2. Restore the master broker’s configuration change record from the backup file
with the command

i ngbr okerd -restore nybackupl og

3. If you assign a new name or port number to the master broker, update the
i ny. cluster. brokerlistandi my. cl ust er. mast er br oker propertiesaccordingly
in the cluster configuration file.

4. Restart all brokers in the cluster.

When a Master Broker Is Unavailable

Because all brokers in a cluster need the master broker in order to perform
persistent operations, the following i nmycnd subcommands for any broker in the
cluster will return an error when no master broker is available:

e create dst

e destroy dst

e update dst

e destroy dur

Auto-created physical destinations and temporary destinations are unaffected.

In the absence of a master broker, any client application attempting to create a
durable subscriber or unsubscribe from a durable subscription will get an error.
However, a client can successfully specify and interact with an existing durable
subscription.

202 Message Queue 3 2005Q1 « Administration Guide

Chapter 10

Monitoring a Message Server

This chapter describes the tools you can use to monitor a message server and how
you can get metrics data. The chapter has the following sections:

¢ “Introduction to Monitoring Tools” on page 203

¢ “Configuring and Using Broker Logging” on page 205

¢ “Interactively Displaying Metrics” on page 210

* “Writing an Application to Monitor Brokers” on page 215

Reference information on specific metrics is available in Chapter 18, “Metrics
Reference.”

Introduction to Monitoring Tools

There are three monitoring interfaces for Message Queue information: log files,
interactive commands, and a client API that can obtain metrics. Each has its
advantages and disadvantages, as follows:

* Log files provide a long-term record of metrics data, but cannot easily be
parsed.

¢ Commands enable you to quickly sample information tailored to your needs,
but do not enable you to look at historical information or manipulate the data
programmatically.

* The client API lets you extract information, process it, manipulate the data,
present graphs or send alerts. However, to use it, you must write a custom
application to capture and analyze the data.

Table 10-1 compares the different tools.

203

Introduction to Monitoring Tools

204

Table 10-1 Benefits and Limitations of Metrics Monitoring Tools

Metrics
Monitoring Tool Benefits Limitations
i ngecnd metrics Remote monitoring No single command gets all data
Convenient for spot checking Difficult to analyze data
Reporting interval set in programmatically
command option; can be Doesn't create historical record
changed on the fly Difficult to see historical trends
Easy to select specific data of
interest
Data presented in easy tabular
format
Log files Regular sampling Need to configure broker properties;
Creates a historical record must shut down and restart broker to
take effect
Local monitoring only
Data format very difficult to read or
parse; no parsing tools
Reporting interval cannot be changed
on the fly; the same for all metrics data
Does not provide flexibility in selection
of data
Broker metrics only; destination and
connection service metrics not included
Possible performance hit if interval set
too short
Client API Remote monitoring Need to configure broker properties;

Easy to select specific data of
interest

Data can be analyzed
programmatically and
presented in any format

must shut down and restart broker to
take effect

You need to write your own metrics
monitoring client

Reporting interval cannot be changed
on the fly; the same for all metrics data

In addition to the differences shown in the table, each tool gathers a somewhat
different subset of the metrics information generated by the broker. For
information on which metrics data is gathered by each monitoring tool, see

Chapter 18, “Metrics Reference” on page 349.

Message Queue 3 2005Q1 « Administration Guide

Configuring and Using Broker Logging

Configuring and Using Broker Logging

The Message Queue logger takes information generated by broker code, a
debugger, and a metrics generator and writes that information to a number of
output channels: to standard output (the console), to a log file, and, on Solaris™
operating systems, to the sysl og daemon process.

You can specify the type of information gathered by the logger as well as the type
written to each of the output channels. In particular, you can specify that you want
metrics information written out to a log file.

This section describes the default logging configuration for the broker and explains
how to redirect log information to alternative output channels, how to change log
file rollover criteria, and how to send metrics data to a log file.

Default Logging Configuration

A broker is automatically configured to save log output to a set of rolling log files.
The log files are located in a directory identified by the instance name of the
associated broker (see Appendix A, “Operating System-Specific Locations of
Message Queue Data”):

.1 nst ances/ instanceNamel | og/
The log files are simple text files. They are named as follows, from earliest to latest:

| og. t xt

log_1.txt
log_2.txt
log_ 9. txt

By default, log files are rolled over once a week; the system maintains nine backup
files.

¢ To change the directory in which the log files are kept, set the property
img.log.file.dirpath tothe desired path.

* To change the root name of the log files from | 0g to something else, set the
img.log.file.filenane property.

The broker supports three log levels: ERROR, WARNI NG, | NFQ. Table 10-2 explains each
level.

Chapter 10 Monitoring a Message Server 205

Configuring and Using Broker Logging

206

Table 10-2 Logging Levels

Level Description

ERROR Messages indicating problems that could cause system failure.
VWARNI NG Alerts that should be heeded but will not cause system failure.
I NFO Reporting of metrics and other informational messages.

Setting a logging level gathers messages for that level and all higher levels. The
default log level is | NFO so ERROR, WARNI NG and | NFOmessages are all logged by
default.

Log Message Format

A logged message consists of a timestamp, message code, and the message itself.
The volume of information varies with the log level you have set. The following is
an example of an | NFOmessage.

[13/ Sep/ 2000: 16: 13: 36 PDT] B1004 Starting the broker service using tcp [
25374,100] with nmin threads 50 and max threads of 500

To change the timestamp time zone, see information about the i ng. | 0g. ti mezone
property, which is described in Table 14-10 on page 324.

Changing the Logger Configuration

Log-related properties are described in Table 14-10 on page 324.

[J To Change the Logger Configuration for a Broker

1. Set the log level.

2. Set the output channel (file, console, or both) for one or more logging
categories.

3. If youlog output to a file, configure the rollover criteria for the file.

Message Queue 3 2005Q1 « Administration Guide

Configuring and Using Broker Logging

You complete these steps by setting logger properties. You can do this in one of
two ways:

* Change or add logger properties in the confi g. properti es file for a broker
before you start the broker.

* Specify logger command line options in the i mgybr oker d command that starts
the broker. You can also use the broker option - Dto change logger properties
(or any broker property).

Options passed on the command line override properties specified in the broker
instance configuration files. Table 10-3 lists the i mybr oker d options that affect

logging.

Table 10-3 i ngbr oker d Logger Options and Corresponding Properties

imgbrokerd Options Description

-metrics interval Specifies the interval (in seconds) at which metrics information is
written to the logger.

-1 ogl evel level Sets the log level to one of ERROR, WARNI NG, | NFQ
-silent Turns off logging to the console.
-tty Sends all messages to the console. By default only WARNI NGand

ERRCR level messages are displayed.

The following sections describe how you can change the default configuration in
order to do the following:

e Change the output channel (the destination of log messages)

e Change rollover criteria

Changing the Output Channel

By default, error and warning messages are displayed on the terminal as well as
being logged to a log file. (On Solaris, error messages are also written to the
system’s sysl og daemon.)

You can change the output channel for log messages in the following ways:

e Tohave all log categories (for a given level) output displayed on the screen, use
the-tty option to the i ngbr oker d command.

e To prevent log output from being displayed on the screen, use the - si | ent
option to the i ngbr oker d command.

Chapter 10 Monitoring a Message Server 207

Configuring and Using Broker Logging

208

e Usetheing.log.file.output property to specify which categories of logging
information should be written to the log file. For example,

ing.log. file.output=ERROR

e Usetheimy. | og.consol e. out put property to specify which categories of
logging information should be written to the console. For example,

i ng. | 0g. consol e. out put =l NFO

* On Solaris, use the i n. | 0g. sysl og. out put property to specify which
categories of logging information should be written to Solaris sys| og. For
example,

i ng. | 0g. sysl og. out put =NONE

NOTE Before changing logger output channels, you must make sure that
logging is set at a level that supports the information you are
mapping to the output channel. For example, if you set the log level
to ERRORand then set the i ng. | 0g. consol e. out put property to
WARNI NG no messages will be logged because you have not enabled
the logging of WARNI NGmessages.

Changing Log File Rollover Criteria

There are two criteria for rolling over log files: time and size. The default is to use a
time criteria and roll over files every seven days.

* To change the time interval, you need to change the property
img.log.file.rolloversecs. For example, the following property definition
changes the time interval to ten days:

ing.log.file.rolloversecs=864000

* To change the rollover criteria to depend on file size, you need to set the
img.log.file.rolloverbytes property. For example, the following definition
directs the broker to rollover files after they reach a limit of 500,000 bytes

ing.log. file.rolloverbytes=500000

If you set both the time-related and the size-related rollover properties, the first
limit reached will trigger the rollover. As noted before, the broker maintains up to
nine rollover files.

You can set or change the log file rollover properties when a broker is running. To
set these properties, use the i ngcnd updat e bkr command.

Message Queue 3 2005Q1 « Administration Guide

Configuring and Using Broker Logging

Sending Metrics Data to Log Files

This section describes the procedure for using broker log files to report metrics
information. For general information on configuring the logger, see “Configuring
and Using Broker Logging” on page 205.

[J To Use Log Files to Report Metrics Information
1. Configure the broker’s metrics generation capability:
a. Confirming. metrics. enabl ed=true
Generation of metrics for logging is turned on by default.
b. Set the metrics generation interval to a convenient number of seconds.
i my. metrics.interval =interval

This value can be set in the confi g. properti es file or using the
-netrics interval command line option when starting up the broker.

2. Confirm that the logger gathers metrics information:
i ng. | og. | evel =I NFO

This is the default value. This value can be set in the confi g. properti es file or
using the - | ogl evel level command line option when starting up the broker.

3. Confirm that the logger is set to write metrics information to the log file:
ing.log.file.output=lNO
This is the default value. It can be set in the confi g. properti es file.

4. Start up the broker.

The following shows sample broker metrics output to the log file:

[21/ Jul / 2004: 11: 21: 18 PDT]

Connections: 0 JWM Heap: 8323072 bytes (7226576 free) Threads: 0 (14-1010)
In: 0 negs (Obytes) O pkts (O bytes)
Qut: 0 nsgs (Obytes) O pkts (0 bytes)

Rate In: 0 nsgs/sec (0 bytes/sec) O pkts/sec (0 bytes/sec)

Rate Qut: 0 nsgs/sec (0 bytes/sec) 0 pkts/sec (0 bytes/sec)

For reference information about metrics data, see Chapter 18, “Metrics Reference.”

Chapter 10 Monitoring a Message Server 209

Interactively Displaying Metrics

Logging Dead Messages

You can monitor physical destinations by enabling dead message logging for a
broker. You can log dead messages whether or not you are using a dead message
queue.

If you enable dead message logging, the broker logs the following types of events:
* A physical destination exceeded its maximum size.

* The broker removed a message from a physical destination, for a reason such
as the following:

o The destination size limit has been reached.

o The message time to live expired.

o The message is too large.

o Anerror occurred when the broker attempted to process the message.

If a dead message queue is in use, logging also includes the following types of
events:

* The broker moved a message to the dead message queue.
¢ The broker removed a message from the dead message queue and discarded it.

Dead message logging is disabled by default. To enable it, set the broker attribute
i ng. destination. | ogDeadMsgs.

Interactively Displaying Metrics

210

A Message Queue broker can report the following types of metrics:
e Java Virtual Machine (JVM) metrics. Information about the JVM heap size.

* Broker-wide metrics. Information about messages stored in a broker, message
flows into and out of a broker, and memory use. Messages are tracked in terms
of numbers of messages and numbers of bytes.

e Connection Service metrics. Information about connections and connection
thread resources, a nd information about message flows for a particular
connection service.

¢ Destination metrics. Information about message flows into and out of a
particular physical destination, information about a physical destination’s
consumers, and information about memory and disk space usage.

Message Queue 3 2005Q1 « Administration Guide

Interactively Displaying Metrics

The i ngcmd command can obtain metrics information for the broker as a whole, for
individual connection services, and for individual physical destinations. To obtain
metrics data, you generally use the net ri ¢cs subcommand of i ncnd. Metrics data
is written at an interval you specify, or the number of times you specify, to the
console screen.

You can also use the query subcommand to view similar data that also includes
configuration information. See “imqcmd query” on page 214 for more information.

imgcmd metrics

The syntax and options of i ngcnd met ri cs are shown in Table 10-4 and Table 10-5,
respectively.

Table 10-4 i ngend et ri cs Subcommand Syntax

Subcommand Syntax Metrics Data Provided
netrics bkr Displays broker metrics for the default broker or a
[-b hostName:port] broker at the specified host and port.

[- m metricType]
[-int interval]
[-msp numSamples]

or
nmetrics svc -n serviceName Displays metrics for the specified service on the default
[-b hostName:port] broker or on a broker at the specified host and port.
[- m metricType]
[-int interval]
[-msp numSamples]
or
metrics dst -t destType Displays metrics information for the physical

-n destName destination of the specified type and name.
[-b hostName:port]

[- m metricType]

[-int interval]

[-nsp numSamples)

Chapter 10 Monitoring a Message Server 211

Interactively Displaying Metrics

212

Table 10-5 imgcnd netri cs Subcommand Options

Subcommand Options Description

-b hostName:port Specifies the hostname and port of the broker for which
metrics data is reported. The default is | ocal host: 7676

-int interval Specifies the interval (in seconds) at which to display
the metrics. The default is 5 seconds.

- m metricType Specifies the type of metric to display:
ttl Displays metrics on messages and packets

flowing into and out of the broker, service, or
destination (default metric type)

rts Displays metrics on rate of flow of messages
and packets into and out of the broker, connection
service, or destination (per second)

cxn Displays connections, virtual memory heap, and
threads (brokers and connection services only)

con Displays consumer-related metrics (destinations
only)

dsk Displays disk usage metrics (destinations only)

-sp numSamples Specifies the number of samples displayed in the
output. The default is an unlimited number (infinite).

-n destName Specifies the name of the physical destination (if any)
for which metrics data is reported. There is no default.

- n serviceName Specifies the connection service (if any) for which
metrics data is reported. There is no default.

-t destTyp Specifies the type (queue or topic) of the physical
destination (if any) for which metrics data is reported.
There is no default.

Using the metrics Subcommand to Display
Metrics Data

This section describes the procedure for using the net ri cs subcommand to report
metrics information.

[0 To Use the metrics Subcommand
1. Start the broker for which metrics information is desired.

See “Starting Brokers Interactively” on page 67.

Message Queue 3 2005Q1 « Administration Guide

Interactively Displaying Metrics

2. Issue the appropriate i mjcnd netrics subcommand and options as shown in
Table 10-4 and Table 10-5.

Metrics Outputs: imgcmd metrics

This section contains examples of output for the i ngcnd netri cs s subcommand.
The examples show broker-wide, connection service, and physical destination
metrics.

Broker-wide Metrics.

To get the rate of message and packet flow into and out of the broker at 10 second
intervals, use the metri ¢cs bkr subcommand:

ingcnd netrics bkr -mrts -int 10 -u admn

This command produces output similar to the following (see data descriptions in
Table 18-2 on page 350):

Msgs/sec Msg Bytes/sec Pkts/sec Pkt Bytes/sec
In Qut I'n Qut In Qut In Qut
0 0 27 56 0 0 38 66
10 0 7365 56 10 10 7457 1132
0 0 27 56 0 0 38 73
0 10 27 7402 10 20 1400 8459
0 0 27 56 0 0 38 73

Connection Service Metrics.

To get cumulative totals for messages and packets handled by the jms connection
service, use the metri ¢s svc subcommand:

ingcnd netrics sve -n jms -mttl -u admin

This command produces output similar to the following (see data descriptions in
Table 18-3 on page 352):

Msgs Msg Bytes Pkt s Pkt Bytes
In CQut In Qut In Qut In Qut

Chapter 10 Monitoring a Message Server 213

Interactively Displaying Metrics

164 100 120704 73600 282 383 135967 102127
657 100 483552 73600 775 876 498815 149948

Physical Destination Metrics

To get metrics information about a physical destination, use the metri cs dst
subcommand:

ingcnmd metrics dst -t g -n XQueue -mttl -u adnin

This command produces output similar to the following (see data descriptions in
Table 18-4 on page 354):

Msgs Msg Bytes Msg Count Total Msg Bytes (k) Lar gest
In Qut In Qut Qurrent Peak Avg CQurrent Peak Avg Msg (k)
200 200 147200 147200 0 200 0 0 143 71 0
300 200 220800 147200 100 200 10 71 143 64 0
300 300 220800 220800 0 200 0 0 143 59 0

To get information about a physical destination’s consumers, use the following
metrics dst subcommand:

ingcnd metrics dst -t g -n Sinpl eQueue -mcon -u admn

This command produces output similar to the following (see data descriptions in
Table 18-4 on page 354):

Active Consuners Backup Consuners Mg Count
Qurrent Peak Avg Qurrent Peak Avg Qurrent Peak Avg
1 1 0 0 0 0 944 1000 525

imgcmd query

The syntax and options of i ngcmd query are shown in Table 10-6 along with a
description of the metrics data provided by the command.

214 Message Queue 3 2005Q1 « Administration Guide

Writing an Application to Monitor Brokers

Table 10-6 i mgcnd query Subcommand Syntax

Subcommand Syntax Metrics Data Provided
query bkr Information on the current number of messages and
[-b hostName:port] message bytes stored in broker memory and persistent
store (see “Displaying Broker Information” on
page 111)
or
query svc -n serviceName Information on the current number of allocated threads
[-b hostName:port] and number of connections for a specified connection

service (see “Displaying Connection Service
Information” on page 118)

or
query dst -t destType Information on the current number of producers, active
-n destName and backup consumers, and messages and message
[-b hostName:port] bytes stored in memory and persistent store for a
specified destination (see “Displaying Information about
Physical Destinations” on page 131)
NOTE Because of the limited metrics data provided by i mgcnd query, this

tool is not represented in the tables presented in Chapter 18,
“Metrics Reference” on page 349.

Writing an Application to Monitor Brokers

Message Queue provides a metrics monitoring capability by which the broker can
write metrics data into JMS messages, which it then sends to one of a number of
metrics topic destinations, depending on the type of metrics information contained
in the message.

You can access this metrics information by writing a client application that
subscribes to the metrics topic destinations, consumes the messages in these
destinations, and processes the metrics information contained in the messages.

There are five metrics topic destinations, whose names are shown in Table 10-7,
along with the type of metrics messages delivered to each destination.

Chapter 10 Monitoring a Message Server 215

Writing an Application to Monitor Brokers

Table 10-7 Metrics Topic Destinations

Topic Name Type of Metrics Messages

mg.metrics.broker Broker metrics

mg.metrics.jvm Java Virtual Machine metrics
mg.metrics.destination_list List of destinations and their types
mg.metrics.destination.queue. Destination metrics for queue of specified name

monitoredDestinationName

mg.metrics.destination.topic. Destination metrics for topic of specified name
monitoredDestinationName

Setting Up Message-Based Monitoring

This section describes the procedure for using the message-based monitoring
capability to gather metrics information. The procedure includes both client
development and administration tasks.

[J To Set Up Message-based Monitoring
1. Write a metrics monitoring client.

See the Message Queue Developer’s Guide for Java Clients for instructions on
programming clients that subscribe to metrics topic destinations, consume
metrics messages, and extract the metrics data from these messages.

2. Configure the broker’s Metrics Message Producer by setting broker property
values in the confi g. properti es file:

a. Enable metrics message production.
Setimg. netrics.topic.enabl ed=true
The default value is true.

b. Set the interval (in seconds) at which metrics messages are generated.
Seting. netrics.topic.interval =interval

The default is 60 seconds.

216 Message Queue 3 2005Q1 « Administration Guide

Writing an Application to Monitor Brokers

c. Specify whether you want metrics messages to be persistent (that is,
whether they will survive a broker failure).

Setinmg. netrics.topic. persist
The default is f al se.

d. Specify how long you want metrics messages to remain in their respective
destinations before being deleted.

Seting.netrics.topic.tinetolive
The default value is 300 seconds
3. Set any access control you desire on metrics topic destinations.
See the discussion in “Security and Access Considerations,” below.
4. Start up your metrics monitoring client.

When consumers subscribe to a metrics topic, the metrics topic destination will
automatically be created. Once a metrics topic has been created, the broker’s
metrics message producer will begin sending metrics messages to the metrics
topic.

Security and Access Considerations

There are two reasons to restrict access to metrics topic destinations:

* Metrics data might include sensitive information about a broker and its
resources

* Excessive numbers of subscriptions to metrics topic destinations might
increase broker overhead and negatively affect performance

Because of these considerations, it is advisable to restrict access to metrics topic
destinations.

Monitoring clients are subject to the same authentication and authorization control
as any other client. Only users maintained in the Message Queue user repository
are allowed to connect to the broker.

You can provide additional protections by restricting access to specific metrics
topic destinations through an access control properties file, as described in
“Authorizing Users: the Access Control Properties File” on page 152.

For example, the following entries in an accesscontrol . properti es file will deny
access to the mq.metrics.broker metrics topic to everyone except userl and user 2.

Chapter 10 Monitoring a Message Server 217

Writing an Application to Monitor Brokers

218

t opi c. ng. netri cs. broker. consure. deny. user =*
t opi c. ng. netrics. broker. consure. al | ow. user =user 1, user 2

The following entries will only allow users user3 to monitor topic t1.

topi c. ng. netrics. destination. topic.t1. consune. deny. user =*
topi c. ng. netrics. destination. topic.tl. consune. al | ow. user=user3

Depending on the sensitivity of metrics data, you can also connect your metrics
monitoring client to a broker using an encrypted connection. For information on
using encrypted connections, see “Working With an SSL-Based Service” on
page 159.

Metrics Outputs: Metrics Messages

The metrics data outputs you get using the message-based monitoring APl is a
function of the metrics monitoring client you write. You are limited only by the
data provided by the metrics generator in the broker. For a complete list of this
data, see “Metrics Reference” on page 349.

Message Queue 3 2005Q1 « Administration Guide

Chapter 11

Analyzing and Tuning a
Message Service

This chapter covers a number of topics about how to analyze and tune a Message
Queue service to optimize the performance of your messaging applications. It
includes the following topics:

e “About Performance” on page 219
* “Factors That Affect Performance” on page 223

* “Adjusting Configuration To Improve Performance” on page 237

About Performance

This section provides some background information on performance tuning.

The Performance Tuning Process

The performance you get out of a messaging application depends on the
interaction between the application and the Message Queue service. Hence,
maximizing performance requires the combined efforts of both the application
developer and the administrator.

The process of optimizing performance begins with application design and
continues through to tuning the message service after the application has been
deployed. The performance tuning process includes the following stages:

* Defining performance requirements for the application

* Designing the application taking into account factors that affect performance
(especially trade-offs between reliability and performance)

219

About Performance

¢ Establishing baseline performance measures
¢ Tuning or reconfiguring the message service to optimize performance.

The process outlined above is often iterative. During deployment of the
application, a Message Queue administrator evaluates the suitability of the
message server for the application’s general performance requirements. If the
benchmark testing meets these requirements, the administrator can tune the
system as described in this chapter. However, if benchmark testing does not meet
performance requirements, a redesign of the application might be necessary or the
deployment architecture might need to be modified.

Aspects of Performance

In general, performance is a measure of the speed and efficiency with which a
message service delivers messages from producer to consumer. However, there are
several different aspects of performance that might be important to you,
depending on your needs.

Connection Load The number of message producers, or message consumers, or
the number of concurrent connections a system can support.

Message throughput The number of messages or message bytes that can be
pumped through a messaging system per second.

Latency The time it takes a particular message to be delivered from message
producer to message consumer.

Stability The overall availability of the message service or how gracefully it
degrades in cases of heavy load or failure.

Efficiency The efficiency of message delivery; a measure of message throughput
in relation to the computing resources employed.

These different aspects of performance are generally inter-related. If message
throughput is high, that means messages are less likely to be backlogged in the
message server, and as a result, latency should be low (a single message can be
delivered very quickly). However, latency can depend on many factors: the speed
of communication links, message server processing speed, and client processing
speed, to name a few.

In any case, there are several different aspects of performance. Which of them are
most important to you generally depends on the requirements of a particular
application.

220 Message Queue 3 2005Q1 « Administration Guide

About Performance

Benchmarks

Benchmarking is the process of creating a test suite for your messaging application
and of measuring message throughput or other aspects of performance for this test
suite.

For example, you could create a test suite by which some number of producing
clients, using some number of connections, sessions, and message producers, send
persistent or non-persistent messages of a standard size to some number of queues
or topics (all depending on your messaging application design) at some specified
rate. Similarly, the test suite includes some number of consuming clients, using
some number of connections, sessions, and message consumers (of a particular
type) that consume the messages in the test suite’s physical destinations using a
particular acknowledgment mode.

Using your standard test suite you can measure the time it takes between
production and consumption of messages or the average message throughput rate,
and you can monitor the system to observe connection thread usage, message
storage data, message flow data, and other relevant metrics. You can then ramp up
the rate of message production, or the number of message producers, or other
variables, until performance is negatively impacted. The maximum throughput
you can achieve is a benchmark for your message service configuration.

Using this benchmark, you can modify some of the characteristics of your test
suite. By carefully controlling all the factors that might have an impact on
performance (see “Application Design Factors that Affect Performance” on

page 224), you can note how changing some of these factors affects the benchmark.
For example, you can increase the number of connections or the size of messages
five-fold or ten-fold, and note the impact on performance.

Conversely, you can keep application-based factors constant and change your
broker configuration in some controlled way (for example, change connection
properties, thread pool properties, JVM memory limits, limit behaviors, built-in
versus plugged-in persistence, and so forth) and note how these changes affect
performance.

This benchmarking of your application provides information that can be valuable
when you want to increase the performance of a deployed application by tuning
your message service. A benchmark allows the effect of a change or a set of changes
to be more accurately predicted.

As a general rule, benchmarks should be run in a controlled test environment and
for a long enough period of time for your message service to stabilize.
(Performance is negatively impacted at startup by the Just-In-Time compilation
that turns Java code into machine code.)

Chapter 11 Analyzing and Tuning a Message Service 221

About Performance

Baseline Use Patterns

Once a messaging application is deployed and running, it is important to establish
baseline use patterns. You want to know when peak demand occurs and you want
to be able to quantify that demand. For example, demand normally fluctuates by
number of end-users, activity levels, time of day, or all of these.

To establish base-line use patterns you need to monitor your message server over
an extended period of time, looking at data such as the following:

e Number of connections

¢ Number of messages stored in the broker (or in particular physical
destinations)

* Message flows into and out of a broker (or particular physical destinations)
¢ Numbers of active consumers
You can also use average and peak values provided in metrics data.

It is important to check these baseline metrics against design expectations. By
doing so, you are checking that client code is behaving properly: for example, that
connections are not being left open or that consumed messages are not being left
unacknowledged. These coding errors consume message server resources and
could significantly affect performance.

The base-line use patterns help you determine how to tune your system for optimal
performance. For example:

¢ If one physical destination is used significantly more than others, you might
want to set higher message memory limits on that physical destination than on
others, or to adjust limit behaviors accordingly.

* If the number of connections needed is significantly greater than allowed by
the maximum thread pool size, you might want to increase the thread pool size
or adopt a shared thread model.

e If peak message flows are substantially greater than average flows, that might
influence the limit behaviors you employ when memory runs low.

In general, the more you know about use patterns, the better you are able to tune
your system to those patterns and to plan for future needs.

222 Message Queue 3 2005Q1 « Administration Guide

Factors That Affect Performance

Factors That Affect Performance

Message latency and message throughput, two of the main performance indicators,
generally depend on the time it takes a typical message to complete various steps
in the message delivery process. These steps are shown below for the case of a
persistent, reliably delivered message. The steps are described following the
illustration.

Figure 11-1 Message Delivery Through a Message Queue Service

Message
Producer Server

Client

4
d
I
|

A

())) (o) (o

Data Store

Consumer
Client

10

Chapter 11 Analyzing and Tuning a Message Service 223

Factors That Affect Performance

1. The message is delivered from producing client to message server
The message server reads in the message

The message is placed in persistent storage (for reliability)

The message server confirms receipt of the message (for reliability)

The message server determines the routing for the message

o o > w DN

The message server writes out the message

7. The message is delivered from message server to consuming client

8. The consuming client acknowledges receipt of the message (for reliability)

9. The message server processes client acknowledgment (for reliability)

10. The message server confirms that client acknowledgment has been processed

Since these steps are sequential, any step can be a potential bottleneck in the
delivery of messages from producing clients to consuming clients. Most of these
steps depend upon physical characteristics of the messaging system: network
bandwidth, computer processing speeds, message server architecture, and so forth.
Some, however, also depend on characteristics of the messaging application and
the level of reliability it requires.

The following subsections discuss the impact of both application design factors
and messaging system factors on performance. While application design and
messaging system factors closely interact in the delivery of messages, each
category is considered separately.

Application Design Factors that Affect
Performance

Application design decisions can have a significant effect on overall messaging
performance.

The most important factors affecting performance are those that impact the
reliability of message delivery. Among these are the following factors:

* Delivery Mode (Persistent/Non-persistent Messages)
¢ Use of Transactions
e Acknowledgment Mode

¢ Durable and Non-durable Subscriptions

224 Message Queue 3 2005Q1 « Administration Guide

Factors That Affect Performance

Other application design factors impacting performance are the following:

* Use of Selectors (Message Filtering)
* Message Size

* Message Body Type

The sections that follow describe the impact of each of these factors on messaging
performance. As a general rule, there is a trade-off between performance and
reliability: factors that increase reliability tend to decrease performance.

Table 11-1 shows how the various application design factors generally affect

messaging performance. The table shows two scenarios—a high reliability, low
performance scenario and a high performance, low reliability scenario—and the

choice of application design factors that characterizes each. Between these
extremes, there are many choices and trade-offs that affect both reliability and

performance.

Table 11-1 Comparison of High Reliability and High Performance Scenarios

Application Design High Reliability High Performance
Factor Low Performance Scenario Low Reliability Scenario
Delivery mode Persistent messages Non-persistent messages
Use of transactions Transacted sessions No transactions
acknowledgment mode AUTO_ACKNOW.EDGE or DUPS_OK_ACKNONLEDGE

CLI ENT_ACKNOWALEDGE

Durable/non-durable Durable subscriptions
subscriptions

Use of selectors Message filtering
Message size Large number of small messages
Message body type Complex body types

Non-durable subscriptions

No message filtering

Small number of large
messages

Simple body types

Chapter 11 Analyzing and Tuning a Message Service

225

Factors That Affect Performance

226

NOTE In the graphs that follow, performance data were generated on a
two-CPU, 1002 Mhz, Solaris 8 system, using file-based persistence.
The performance test first warmed up the Message Queue broker,
allowing the Just-In-Time compiler to optimize the system and the
persistent database to be primed.

Once the broker was warmed up, a single producer and single
consumer were created and messages were produced for 30
seconds. The time required for the consumer to receive all produced
messages was recorded, and a throughput rate (messages per
second) was calculated. This scenario was repeated for different
combinations of the application design factors shown in Table 11-1.

Delivery Mode (Persistent/Non-persistent Messages)

Persistent messages guarantee message delivery in case of message server failure.
The broker stores the message in a persistent store until all intended consumers
acknowledge they have consumed the message.

Broker processing of persistent messages is slower than for non-persistent
messages for the following reasons:

* A broker must reliably store a persistent message so that it will not be lost
should the broker fail.

¢ The broker must confirm receipt of each persistent message it receives.
Delivery to the broker is guaranteed once the method producing the message
returns without an exception.

* Depending on the client acknowledgment mode, the broker might need to
confirm a consuming client’s acknowledgment of a persistent message.

The differences in performance between the persistent and non-persistent modes
can be significant. Figure 11-2 compares throughput for persistent and
non-persistent messages in two reliable delivery cases: 10k-sized messages
delivered both to a queue and to a topic with durable subscriptions. Both cases use
the AUTO_ACKNONLEDGE acknowledgment mode.

Message Queue 3 2005Q1 « Administration Guide

Factors That Affect Performance

Figure 11-2 Performance Impact of Delivery Modes

[Persistent
W Non-persistent

Msgs/sec.

Queue Topic with Durable
Subscriber

Use of Transactions

A transaction is a guarantee that all messages produced in a transacted session and
all messages consumed in a transacted session will be either processed or not
processed (rolled back) as a unit.

Message Queue supports both local and distributed transactions.

A message produced or acknowledged in a transacted session is slower than in a
non-transacted session for the following reasons:

e Additional information must be stored with each produced message.

* In some situations, messages in a transaction are stored when normally they
would not be (for example, a persistent message delivered to a topic
destination with no subscriptions would normally be deleted, however, at the
time the transaction is begun, information about subscriptions is not available).

* Information on the consumption and acknowledgment of messages within a
transaction must be stored and processed when the transaction is committed.

Acknowledgment Mode

One mechanism for ensuring the reliability of JMS message delivery is for a client
to acknowledge consumption of messages delivered to it by the Message Queue
message server.

Chapter 11 Analyzing and Tuning a Message Service 227

Factors That Affect Performance

228

If a session is closed without the client acknowledging the message or if the
message server fails before the acknowledgment is processed, the broker redelivers
that message, setting a JMSRedel i ver ed flag.

For a non-transacted session, the client can choose one of three acknowledgment
modes, each of which has its own performance characteristics:

e AUTO ACKNOALEDGE. The system automatically acknowledges a message once the
consumer has processed it. This mode guarantees at most one redelivered
message after a provider failure.

e (LI ENT_ACKNOALEDGE. The application controls the point at which messages are
acknowledged. All messages processed in that session since the previous
acknowledgment are acknowledged. If the message server fails while
processing a set of acknowledgments, one or more messages in that group
might be redelivered.

e DUPS_OK_ACKNOWLEDGE. This modeinstructs the system to acknowledge messages
in a lazy manner. Multiple messages can be redelivered after a provider failure.

(Using CLI ENT_ACKNOALEDGE mode is similar to using transactions, except there isno
guarantee that all acknowledgments will be processed together if a provider fails
during processing.)

Acknowledgment mode affects performance for the following reasons:

e Extra control messages between broker and client are required in
AUTO ACKNOWLEDGE and CLI ENT_ACKNOMLEDGE modes. The additional control
messages add additional processing overhead and can interfere with JMS
payload messages, causing processing delays.

e InAUTO ACKNONLEDGEand CLI ENT_ACKNOANLEDGEmodes, the client must wait until
the broker confirms that it has processed the client’s acknowledgment before
the client can consume additional messages. (This broker confirmation
guarantees that the broker will not inadvertently redeliver these messages.)

¢ The Message Queue persistent store must be updated with the
acknowledgment information for all persistent messages received by
consumers, thereby decreasing performance.

Durable and Non-durable Subscriptions

Subscribers to a topic destination fall into two categories, those with durable and
non-durable subscriptions.

Message Queue 3 2005Q1 « Administration Guide

Factors That Affect Performance

Durable subscriptions provide increased reliability but slower throughput, for the
following reasons:

¢ The Message Queue message server must persistently store the list of messages
assigned to each durable subscription so that should a message server fail, the
list is available after recovery.

* Persistent messages for durable subscriptions are stored persistently, so that
should a message server fail, the messages can still be delivered after recovery,
when the corresponding consumer becomes active. By contrast, persistent
messages for non-durable subscriptions are not stored persistently (should a
message server fail, the corresponding consumer connection is lost and the
message would never be delivered).

Figure 11-3 compares throughput for topic destinations with durable and
non-durable subscriptions in two cases: persistent and non-persistent 10k-sized
messages. Both cases use AUTO_ACKNOALEDGE acknowledgment mode.

You can see from Figure 11-3 that the performance impact of using durable
subscriptions is manifest only in the case of persistent messages; and the impact in
that case is because persistent messages are only stored persistently for durable
subscriptions, as explained above.

Figure 11-3 Performance Impact of Subscription Types

ODurable
Subscriptions

W MNon-durable
Subscriptions

Msgs/sec.

Persistent MNon-persistent

Chapter 11 Analyzing and Tuning a Message Service 229

Factors That Affect Performance

230

Use of Selectors (Message Filtering)

Application developers often want to target sets of messages to particular
consumers. They can do so either by targeting each set of messages to a unique
physical destination or by using a single physical destination and registering one
or more selectors for each consumer.

A selector is a string requesting that only messages with property values that
match the string are delivered to a particular consumer. For example, the selector
Nurber O Orders >1 delivers only the messages with a Nunber Of Or der s property
value of 2 or more.

Registering consumers with selectors lowers performance (as compared to using
multiple physical destinations) because additional processing is required to handle
each message. When a selector is used, it must be parsed so that it can be matched
against future messages. Additionally, the message properties of each message
must be retrieved and compared against the selector as each message is routed.
However, using selectors provides more flexibility in a messaging application.

Message Size

Message size affects performance because more data must be passed from
producing client to broker and from broker to consuming client, and because for
persistent messages a larger message must be stored.

However, by batching smaller messages into a single message, the routing and
processing of individual messages can be minimized, providing an overall
performance gain. In this case, information about the state of individual messages
is lost.

Figure 11-4 compares throughput in kilobytes per second for 1k, 10k, and
100k-sized messages in two cases: persistent and non-persistent messages. All
cases send messages are to a queue destination and use AUTO_ ACKNON.EDGE
acknowledgment mode.

Figure 11-4 shows that in both cases there is less overhead in delivering larger
messages compared to smaller messages. You can also see that the almost 50%
performance gain of non-persistent messages over persistent messages shown for
1k and 10k-sized messages is not maintained for 100k-sized messages, probably
because network bandwidth has become the bottleneck in message throughput for
that case.

Message Queue 3 2005Q1 « Administration Guide

Factors That Affect Performance

Figure 11-4 Performance Effect of a Message Size

i}

b

2 mik
£ |10k
e

s 0100k
S

Persistent Mon-persistent

Message Body Type

JMS supports five message body types, shown below roughly in the order of

complexity:

e BytesMessage: Contains a set of bytes in a format determined by the
application

¢ TextMessage: Is a simple java.lang.String

* StreamMessage: Contains a stream of Java primitive values
* MapMessage: Contains a set of name-and-value pairs

* ObjectMessage: Contains a Java serialized object

While, in general, the message type is dictated by the needs of an application, the
more complicated types (MapMessage and ObjectMessage) carry a performance
cost—the expense of serializing and deserializing the data. The performance cost
depends on how simple or how complicated the data is.

Chapter 11 Analyzing and Tuning a Message Service 231

Factors That Affect Performance

232

Message Service Factors that Affect
Performance

The performance of a messaging application is affected not only by application
design, but also by the message service performing the routing and delivery of
messages.

The following sections discuss various message service factors that can affect
performance. Understanding the impact of these factors is key to sizing a message
service and diagnosing and resolving performance bottlenecks that might arise in a
deployed application.

The most important factors affecting performance in a Message Queue service are
the following:

e Hardware

* Operating System

¢ Java Virtual Machine (JVM)

¢ Connections

e Broker Limits and Behaviors
* Message Server Architecture
e Data Store Performance

¢ Client Runtime Configuration

The sections below describe the impact of each of these factors on messaging
performance.

Hardware

For both the Message Queue message server and client applications, CPU
processing speed and available memory are primary determinants of message
service performance. Many software limitations can be eliminated by increasing
processing power, while adding memory can increase both processing speed and
capacity. However, it is generally expensive to overcome bottlenecks simply by
upgrading your hardware.

Message Queue 3 2005Q1 « Administration Guide

Factors That Affect Performance

Operating System

Because of the efficiencies of different operating systems, performance can vary,
even assuming the same hardware platform. For example, the thread model
employed by the operating system can have an important impact on the number of
concurrent connections a message server can support. In general, all hardware
being equal, Solaris is generally faster than Linux, which is generally faster than
Windows.

Java Virtual Machine (JVM)

The message server is a Java process that runs in and is supported by the host JVM.
As aresult, JVM processing is an important determinant of how fast and efficiently
a message server can route and deliver messages.

In particular, the JVM’s management of memory resources can be critical.
Sufficient memory has to be allocated to the JVM to accommodate increasing
memory loads. In addition, the JVM periodically reclaims unused memory, and
this memory reclamation can delay message processing. The larger the JVM
memory heap, the longer the potential delay that might be experienced during
memory reclamation.

Connections

The number and speed of connections between client and broker can affect the
number of messages that a message server can handle as well as the speed of
message delivery.

Message Server Connection Limits

All access to the message server is by way of connections. Any limit on the number
of concurrent connections can affect the number of producing or consuming clients
that can concurrently use the message server.

The number of connections to a message server is generally limited by the number
of threads available. Message Queue uses a Thread Pool Manager, which you can
configure to support either a dedicated thread model or a shared thread model (see
“Thread Pool Manager” on page 77).

The dedicated thread model is very fast because each connection has dedicated
threads, however the number of connections is limited by the number of threads
available (one input thread and one output thread for each connection). The shared
thread model places no limit on the number of connections, however there is
significant overhead and throughput delays in sharing threads among a number of
connections, especially when those connections are busy.

Chapter 11 Analyzing and Tuning a Message Service 233

Factors That Affect Performance

234

Transport Protocols

Message Queue software allows clients to communicate with the message server
using various low-level transport protocols. Message Queue supports the
connection services (and corresponding protocols) described in “Connection
Services” on page 75.

The choice of protocols is based on application requirements (encrypted, accessible
through a firewall), but the choice impacts overall performance.

Figure 11-5 Transport Protocol Speeds

HTTPS HTTP SSL TCP

Slow Fast

Figure 11-5 reflects the performance characteristics of the various protocol
technologies:

e TCP provides the fastest method to communicate with the broker.

* SSLis 50 to 70 percent slower than TCP when it comes to sending and
receiving messages (50 percent for persistent messages, closer to 70 percent for
non-persistent messages). Additionally, establishing the initial connection is
slower with SSL (it might take several seconds) because the client and broker
(or Web Server in the case of HTTPS) need to establish a private key to be used
when encrypting the data for transmission. The performance drop is caused by
the additional processing required to encrypt and decrypt each low-level TCP
packet.

Figure 11-6 compares throughput for TCP and SSL for two cases: a high
reliability scenario (1k persistent messages sent to topic destinations with
durable subscriptions and using AUTO ACKNOALEDGE acknowledgment mode)
and a high performance scenario (1k non-persistent messages sent to topic
destinations without durable subscriptions and using DUPS_OK_ACKNONLEDGE
acknowledgment mode).

Figure 11-6 shows that protocol has less impact in the high reliability case. This
is probably because the persistence overhead required in the high reliability
case is a more important factor in limiting throughput than the protocol speed.

Message Queue 3 2005Q1 « Administration Guide

Factors That Affect Performance

Figure 11-6 Performance Impact of Transport Protocol

mTcP
WS5L

Msgs/sec.

High reliability scenario Low reliability scenario

e HTTP is slower than either the TCP or SSL. It uses a servlet that runs on a Web
server as a proxy between the client and the broker. Performance overhead is
involved in encapsulating packets in HTTP requests and in the requirement
that messages go through two hops--client to servlet, servlet to broker--to reach
the broker.

e HTTPS is slower than HTTP because of the additional overhead required to
encrypt the packet between client and servlet and between servlet and broker.

Message Server Architecture

A Message Queue message server can be implemented as a single broker or as
multiple interconnected broker instances—a broker cluster.

As the number of clients connected to a broker increases, and as the number of
messages being delivered increases, a broker will eventually exceed resource
limitations such as file descriptor, thread, and memory limits. One way to
accommodate increasing loads is to add more broker instances to a Message Queue
message server, distributing client connections and message routing and delivery
across multiple brokers.

Chapter 11 Analyzing and Tuning a Message Service 235

Factors That Affect Performance

236

In general, this scaling works best if clients are evenly distributed across the
cluster, especially message producing clients. Because of the overhead involved in
delivering messages between the brokers in a cluster, clusters with limited
numbers of connections or limited message delivery rates, might exhibit lower
performance than a single broker.

You might also use a broker cluster to optimize network bandwidth. For example,
you might want to use slower, long distance network links between a set of remote
brokers within a cluster, while using higher speed links for connecting clients to
their respective broker instances.

For more information on clusters, see Chapter 9, “Working With Broker Clusters.”

Broker Limits and Behaviors

The message throughput that a message server might be required to handle is a
function of the use patterns of the messaging applications the message server
supports. However, the message server is limited in resources: memory, CPU
cycles, and so forth. As a result, it would be possible for a message server to
become overwhelmed to the point where it becomes unresponsive or unstable.

The Message Queue message server has mechanisms built in for managing
memory resources and preventing the broker from running out of memory. These
mechanisms include configurable limits on the number of messages or message
bytes that can be held by a broker or its individual physical destinations, and a set
of behaviors that can be instituted when physical destination limits are reached.

With careful monitoring and tuning, these configurable mechanisms can be used to
balance the inflow and outflow of messages so that system overload cannot occur.
While these mechanisms consume overhead and can limit message throughput,
they nevertheless maintain operational integrity.

Data Store Performance

Message Queue supports both built-in and plugged-in persistence. Built-in
persistence is a file-based data store. Plugged-in persistence uses a Java Database
Connectivity (JDBC™) interface and requires a JDBC-compliant data store.

The built-in persistence is significantly faster than plugged-in persistence;
however, a JDBC-compliant database system might provide the redundancy,
security, and administrative features needed for an application.

In the case of built-in persistence, you can maximize reliability by specifying that
persistence operations synchronize the in-memory state with the data store. This
helps eliminate data loss due to system crashes, but at the expense of performance.

Message Queue 3 2005Q1 « Administration Guide

Adjusting Configuration To Improve Performance

Client Runtime Configuration

The Message Queue client runtime provides client applications with an interface to
the Message Queue message service. It supports all the operations needed for
clients to send messages to physical destinations and to receive messages from
such destinations. The client runtime is configurable (by setting connection factory
attribute values), allowing you to set properties and behaviors that can generally
improve performance and message throughput.

For example, the Message Queue client runtime supports the following
configurable behaviors:

¢ Connection flow metering (i mgConnect i onFl owCount), which helps you prevent
congestion due to the flow of both JMS messages and Message Queue control
messages across the same connection.

e Connection flow limits (i mgConnect i onFl owLi ni t), which helps youavoid client
resource limitations by limiting the number of messages that can be delivered
over a connection to the client runtime, waiting to be consumed.

* Consumer flow limits (i ngConsumer Fl owLi ni t), which helps improve load
balancing among consumers in multi-consumer queue delivery situations (so
no one consumer can be sent a disproportionate number of messages) and
which helps prevent any one consumer on a connection from overwhelming
other consumers on the connection. This property limits the number of
messages per consumer that can be delivered over a connection to the client
runtime, waiting to be consumed. This property can also be configured as a
queue destination property (consuner Fl owLi nit).

For more information on these behaviors and the attributes used to configure them,
see “Client Runtime Message Flow Adjustments” on page 244.

Adjusting Configuration To Improve Performance

System Adjustments

The following sections describe adjustments you can make to the operating system,
JVM, and communication protocols.

Solaris Tuning: CPU Utilization, Paging/Swapping/Disk 1/0

See your system documentation for tuning your operating system.

Chapter 11 Analyzing and Tuning a Message Service 237

Adjusting Configuration To Improve Performance

238

Java Virtual Machine Adjustments

By default, the broker uses a JVM heap size of 192MB. This is often too small for
significant message loads and should be increased.

When the broker gets close to exhausting the JVM heap space used by Java objects,
it uses various techniques such as flow control and message swapping to free
memory. Under extreme circumstances it even closes client connections in order to
free the memory and reduce the message inflow. Hence it is desirable to set the
maximum JVM heap space high enough to avoid such circumstances.

However, if the maximum Java heap space is set too high, in relation to system
physical memory, the broker can continue to grow the Java heap space until the
entire system runs out of memory. This can result in diminished performance,
unpredictable broker crashes, and/or affect the behavior of other applications and
services running on the system. In general, you need to allow enough physical
memory for the operating system and other applications to run on the machine.

In general it is a good idea to evaluate the normal and peak system memory
footprints, and configure the Java heap size so that it is large enough to provide
good performance, but not so large as to risk system memory problems.

To change the minimum and maximum heap size for the broker, use the - vmar gs
command line option when starting the broker. For example:

[usr/bin/ingbrokerd -vnargs "-Xms256m - Xmx1024nm¥

This command will set the starting Java heap size to 256MB and the maximum Java
heap size to 1GB.

* On Solaris or Linux, if starting the broker via/ et ¢/ rc* (that is,
letclinit.dl/iny), specify broker command-line arguments in the file
letc/imy/ i mgbrokerd. conf (Solaris) or / et ¢/ opt/ sun/ ng/ i ngbr oker d. conf
(Linux). See the comments in that file for more information.

* On Windows, if starting the broker as a Window's service, specify JVM
arguments using the - vmar gs option to the i ngsvcadmi ninstal | command.
See “imgsvcadmin” in Chapter 13, “Command Reference.”

In any case, verify settings by checking the broker's log file or using the
i mgcmd netrics bkr -m cxn command.

Tuning Transport Protocols

Once a protocol that meets application needs has been chosen, additional tuning
(based on the selected protocol) might improve performance.

Message Queue 3 2005Q1 « Administration Guide

Adjusting Configuration To Improve Performance

A protocol’s performance can be modified using the following three broker
properties:

* ing. protocol . profocol_type. nodel ay
* inmg. protocol . profocol_type. i nbuf sz
* inmg. protocol . profocol_type. out buf sz

For TCP and SSL protocols, these properties affect the speed of message delivery
between client and broker. For HTTP and HTTPS protocols, these properties affect
the speed of message delivery between the Message Queue tunnel servlet (running
on a Web server) and the broker. For HTTP/HTTPS protocols there are additional
properties that can affect performance (see “HTTP/HTTPS Tuning” on page 241).

The protocol tuning properties are described in the following sections.

nodelay

The nodel ay property affects Nagle's algorithm (the value of the TCP_NODELAY
socket-level option on TCP/IP) for the given protocol. Nagle's algorithm is used to

improve TCP performance on systems using slow connections such as wide-area
networks (WANs).

When the algorithm is used, TCP tries to prevent several small chunks of data from
being sent to the remote system (by bundling the data in larger packets). If the data
written to the socket does not fill the required buffer size, the protocol delays
sending the packet until either the buffer is filled or a specific delay time has
elapsed. Once the buffer is full or the time-out has occurred, the packet is sent.

For most messaging applications, performance is best if there is no delay in the
sending of packets (Nagle’s algorithm is not enabled). This is because most
interactions between client and broker are request/response interactions: the client
sends a packet of data to the broker and waits for a response. For example, typical
interactions include:

¢ Creating a connection
* Creating a producer or consumer
* Sending a persistent message (the broker confirms receipt of the message)

* Sending a client acknowledgment in an AUTO ACKNOALEDGE or
CLI ENT_ACKNOALEDCE session (the broker confirms processing of the
acknowledgment)

For these interactions, most packets are smaller than the buffer size. This means
that if Nagle's algorithm is used, the broker delays several milliseconds before
sending a response to the consumer.

Chapter 11 Analyzing and Tuning a Message Service 239

Adjusting Configuration To Improve Performance

240

However, Nagle’s algorithm may improve performance in situations where
connections are slow and broker responses are not required. This would be the case
where a client sends a non-persistent message or where a client acknowledgment is
not confirmed by the broker (DUPS_CK_ACKNOMLEDGE session).

inbufsz/outbufsz

The i nbuf sz property sets the size of the buffer on the input stream reading data
coming in from a socket. Similarly, out buf sz sets the buffer size of the output
stream used by the broker to write data to the socket.

In general, both parameters should be set to values that are slightly larger than the
average packet being received or sent. A good rule of thumb is to set these property
values to the size of the average packet plus 1k (rounded to the nearest k).

For example, if the broker is receiving packets with a body size of 1k, the overall
size of the packet (message body + header + properties) is about 1200 bytes. An
i nbuf sz of 2k (2048 bytes) gives reasonable performance.

Increasing the inbufsz or outbufsz greater than that size may improve performance
slightly; however, it increases the memory needed for each connection.

Figure 11-7 shows the consequence of changing i nbuf sz on a 1k packet.

Figure 11-7 Effect of Changing i nbuf sz on a 1k (1024 bytes) Packet

Msgs/Second

0 1024 2048 400 e1w
inbufsz value

Figure 11-8 shows the consequence of changing out buf sz on a 1k packet.

Message Queue 3 2005Q1 « Administration Guide

Adjusting Configuration To Improve Performance

Figure 11-8 Effect of Changing out buf sz on a 1k (1024 bytes) Packet

outbufsz on 1k messages

Msgs/Sec

o 1024 zu}m 4096 a192
outbufsz

HTTP/HTTPS Tuning

In addition to the general properties discussed in the previous two sections,
HTTP /HTTPS performance is limited by how fast a client can make HTTP requests
to the Web server hosting the Message Queue tunnel servlet.

A Web server might need to be optimized to handle multiple requests on a single
socket. With JDK version 1.4 and later, HTTP connections to a Web server are kept
alive (the socket to the Web server remains open) to minimize resources used by
the Web server when it processes multiple HTTP requests. If the performance of a
client application using JDK version 1.4 is slower than the same application
running with an earlier JDK release, you might need to tune the Web server
keep-alive configuration parameters to improve performance.

In addition to such Web-server tuning, you can also adjust how often a client polls
the Web server. HTTP is a request-based protocol. This means that clients using an
HTTP-based protocol periodically need to check the Web server to see if messages
are waiting. The i ng. ht t pj ns. htt p. pul | Peri od broker property (and the
corresponding i ng. ht t psj ns. htt ps. pul | Peri od property) specifies how often the
Message Queue client runtime polls the Web server.

If the pul | Peri od value is - 1 (the default value), the client runtime polls the server
as soon as the previous request returns, maximizing the performance of the
individual client. As a result, each client connection monopolizes a request thread
in the Web server, possibly straining Web server resources.

Chapter 11 Analyzing and Tuning a Message Service 241

Adjusting Configuration To Improve Performance

242

If the pul | Peri od value is a positive number, the client runtime periodically sends
requests to the Web server to see if there is pending data. In this case, the client
does not monopolize a request thread in the Web server. Hence, if large numbers of
clients are using the Web server, you might conserve Web server resources by
setting the pul | Peri od to a positive value.

Tuning the File-based Persistent Store

For information on tuning the file-based persistent store, see “Persistence
Manager” on page 83.

Broker Adjustments

The following sections describe adjustments you can make to broker properties to
improve performance.

Memory Management: Increasing Broker Stability Under Load

Memory management can be configured on a destination-by-destination level or
on a system-wide level (for all destinations, collectively).

Using Physical Destination Limits

For information on physical destination limits, see Chapter 6, “Managing Physical
Destinations.”

Using System-wide Limits

If message producers tend to overrun message consumers, messages can
accumulate in the broker. The broker contains a mechanism for throttling back
producers and swapping messages out of active memory in low memory
conditions, but it is wise to set a hard limit on the total number of messages (and
message bytes) that the broker can hold.

Control these limits by setting the i ng. syst em max_count and the
i my. syst em nmax_si ze broker properties.

For example
i ng. syst em max_count =5000

The defined value above means that the broker will only hold up to 5000
undelivered /unacknowledged messages. If additional messages are sent, they are
rejected by the broker. If a message is persistent then the producer will get an
exception when it tries to send the message. If the message is non-persistent, the
broker silently drops the message.

Message Queue 3 2005Q1 « Administration Guide

Adjusting Configuration To Improve Performance

To have non-persistent messages return an exception like persistent messages, set
the following property on the connection factory object used by the client:

i ngAckOnProduce = true

The setting above may decrease the performance of sending non-persistent
messages to the broker (the client waits for a reply before sending the next
message), but often this is acceptable since message inflow to the broker is typically
not a system bottleneck.

When an exception is returned in sending a message, the client should pause for a
moment and retry the send again.

Multiple Consumer Queue Performance

The efficiency with which multiple queue consumers process messages in a queue
destination depends on the following configurable queue destination attributes:

e the number of active consumers (maxNumAct i veConsuner s)

¢ the maximum number of messages that can be delivered to a consumer in a
single batch (consuner Fl owLi mi t)

To achieve optimal message throughput there must be a sufficient number of active
consumers to keep up with the rate of message production for the queue, and the
messages in the queue must be routed and then delivered to the active consumers
in such a way as to maximize their rate of consumption. The general mechanism
for balancing message delivery among multiple consumers is described in the Sun
Java System Message Queue Technical Overview.

If messages are accumulating in the queue, it is possible that there is an insufficient
number of active consumers to handle the message load. It is also possible that
messages are being delivered to the consumers in batch sizes that cause messages
to be backing up on the consumers. For example, if the batch size

(consurrer Fl owLi m t) is too large, one consumer might receive all the messages in a
queue while other active consumers receive none. If consumers are very fast, this
might not be a problem.

However, if consumers are relatively slow, you want messages to be distributed to
them evenly, and therefore you want the batch size to be small. The smaller the
batch size, the more overhead is required to deliver messages to consumers.
Nevertheless, for slow consumers, there is generally a net performance gain to
using small batch sizes.

Chapter 11 Analyzing and Tuning a Message Service 243

Adjusting Configuration To Improve Performance

244

Client Runtime Message Flow Adjustments

This section discusses flow control behaviors that affect performance (see “Client
Runtime Configuration” on page 237). These behaviors are configured as attributes
of connection factory administered objects. For information on setting connection
factory attributes, see Chapter 8, “Managing Administered Objects.”

Message Flow Metering

Messages sent and received by clients (JMS messages), as well as Message Queue
control messages, pass over the same client-broker connection. Delays in the
delivery of control messages, such as broker acknowledgments, can result if control
messages are held up by the delivery of J]MS messages. To prevent this type of
congestion, Message Queue meters the flow of JMS messages across a connection.

JMS messages are batched (as specified with the i mgConnect i onFl owCount
property) so that only a set number are delivered. When the batch has been
delivered, delivery of J]MS messages is suspended, and only pending control
messages are delivered. This cycle repeats, as other batches of JMS messages are
delivered, followed by pending control messages.

The value of i ngConnect i onFl owCount should be kept low if the client is doing
operations that require many responses from the broker; for example, the client is
using the CLI ENT_ACKNOALEDGE or AUTO ACKNOALEDGE modes, persistent messages,
transactions, queue browsers, or if the client is adding or removing consumers. If,
on the other hand, the client has only simple consumers on a connection using
DUPS_OK_ACKNOALEDGE mode, you can increase i mgConnect i onFl owCount without
compromising performance.

Message Flow Limits

There is a limit to the number of JMS messages that the Message Queue client
runtime can handle before encountering local resource limitations, such as
memory. When this limit is approached, performance suffers. Hence, Message
Queue lets you limit the number of messages per consumer (or messages per
connection) that can be delivered over a connection and buffered in the client
runtime, waiting to be consumed.

Consumer-based Limits

When the number of J]MS messages delivered to the client runtime exceeds the
value of i ngConsurer Fl owLi mi t for any consumer, message delivery for that
consumer stops. It is resumed only when the number of unconsumed messages for
that consumer drops below the value set with i ngConsumer Fl owThr eshol d.

Message Queue 3 2005Q1 « Administration Guide

Adjusting Configuration To Improve Performance

The following example illustrates the use of these limits: consider the default
settings for topic consumers

i ngConsuner Fl owLi mi t =1000
i ngConsuner FI owThr eshol d=50

When the consumer is created, the broker delivers an initial batch of 1000 messages
(providing they exist) to this consumer without pausing. After sending 1000
messages, the broker stops delivery until the client runtime asks for more
messages. The client runtime holds these messages until the application processes
them. The client runtime then allows the application to consume at least 50%

(i mConsuner Fl owThr eshol d) of the message buffer capacity (i.e. 500 messages)
before asking the broker to send the next batch.

In the same situation, if the threshold were 10%, the client runtime would wait for
the application to consume at least 900 messages before asking for the next batch.

The next batch size is calculated as follows:
i mgConsuner Fl owLi mt - (current number of pending msgs in buffer)

So, if i myConsurrer Fl owThr eshol d is 50%, the next batch size can fluctuate between
500 and 1000, depending on how fast the application can process the messages.

If the i mgConsurer Fl owThr eshol d is set too high (close to 100%), the broker will
tend to send smaller batches, which can lower message throughput. If the value is
set too low (close to 0%), the client might be able to finish processing the remaining
buffered messages before the broker delivers the next set, causing message
throughput degradation. Generally speaking, unless you have specific
performance or reliability concerns, you will not have to change the default value
of i ngConsurrer Fl owThr eshol d attribute.

The consumer-based flow controls (in particular i ngConsuner Fl owLi ni t) are the
best way to manage memory in the client runtime. Generally, depending on the
client application, you know the number of consumers you need to support on any
connection, the size of the messages, and the total amount of memory that is
available to the client runtime.

Connection-based Limits

In the case of some client applications, however, the number of consumers might
be indeterminate, depending on choices made by end users. In those cases, you can
still manage memory, using connection-level flow limits.

Chapter 11 Analyzing and Tuning a Message Service 245

Adjusting Configuration To Improve Performance

246

Connection-level flow controls limit the total number of messages buffered for all
consumers on a connection. If this number exceeds the i ngConnecti onFl owLim t,
delivery of messages through the connection stops until that total drops below the
connection limit. (The i ngConnect i onFl owLi m t is only enabled if you set the

i ngConnect i onFl owLi ni t Enabl ed property to t r ue.)

The number of messages queued up in a session is a function of the number of
message consumers using the session and the message load for each consumer. If a
client is exhibiting delays in producing or consuming messages, you can normally
improve performance by redesigning the application to distribute message
producers and consumers among a larger number of sessions or to distribute
sessions among a larger number of connections.

Message Queue 3 2005Q1 « Administration Guide

Chapter 12

Troubleshooting Problems

This chapter explains how to understand and resolve the following problems:

“A Client Cannot Establish a Connection” on page 248
“Connection Throughput Is Too Slow” on page 253

“A Client Cannot Create a Message Producer” on page 255
“Message Production Is Delayed or Slowed” on page 256
“Messages Are Backlogged” on page 259

“Message Server Throughput Is Sporadic” on page 264
“Messages Are Not Reaching Consumers” on page 265

“The Dead Message Queue Contains Messages” on page 269

When problems occur, it is useful to check the version number of the installed
Message Queue software. Use the version number to ensure that you are using
documentation whose version matches the software version. You also need the
version number to report a problem to Sun. To check the version number, issue the
following command:

ingemd -v

247

A Client Cannot Establish a Connection

A Client Cannot Establish a Connection

248

The symptoms of this problem are as follows:

e (lient cannot make a new connection.

¢ (Client cannot auto-reconnect on failed connection.
This section explores the following possible causes:

¢ Client applications are not closing connections, causing the number of
connections to exceed resource limitations

* Broker is not running or there is a network connectivity problem
¢ Connection service is inactive or paused
* Too few threads available for the number of connections required

¢ Too few file descriptors for the number of connections required on the Solaris
or Linux operating system

e TCP backlog limits the number of simultaneous new connection requests that
can be established

* Operating system limits the number of concurrent connections

* Authentication or authorization of the user is failing

Client applications are not closing connections, causing the number of
connections to exceed resource limitations
To confirm this cause of the problem

List all connections to a broker:

ingend |ist cxn

The output will list all connections and the host from which each connection has
been made, revealing an unusual number of open connections for specific clients.

To resolve the problem

Rewrite the offending clients to close unused connections.

Message Queue 3 2005Q1 « Administration Guide

A Client Cannot Establish a Connection

Broker is not running or there is a network connectivity problem
To confirm this cause of the problem

¢ Telnet to the broker’s primary port (for example, the default of 7676) and verify
that the broker responds with Port Mapper output.

¢ Verify that the broker process is running on the host.
To resolve the problem
e Start up the broker.
e Fix the network connectivity problem.
Connection service is inactive or paused
To confirm this cause of the problem
Check the status of all connection services:
ingend |ist svc

If the status of a connection service is shown as unknown or paused, clients will not
be able to establish a connection using that service.

To resolve the problem

e If the status of a connection service is shown as unknown, it is missing from the
active service list (i . servi ce. acti ve). In the case of SSL-based services, the
service might also be improperly configured, causing the broker to make the
following entry in the broker log: ERROR [B3009] : Unable to start service
ssljns: [B4001]: Unable to open protocol tls for ssljns service...
followed by an explanation of the underlying cause of the exception.

To properly configure SSL services, see “Working With an SSL-Based Service”
on page 159.

e [f the status of a connection service is shown as paused, resume the service (see
“Pausing and Resuming a Connection Service” on page 120).

Chapter 12 Troubleshooting Problems 249

A Client Cannot Establish a Connection

250

Too few threads available for the number of connections required
To confirm this cause of the problem

Check for the following entry in the broker log:

WARNI NG [B3004] : No threads are avail abl e to process a new connection on
service ... dosing the new connecti on.

Also check the number of connections on the connection service and the number of
threads currently in use, using one of the following formats:

i ngcnd query svc -n serviceName
i ngcnd metrics svc -n serviceName - m cxn

Each connection requires two threads: one for incoming messages and one for
outgoing messages (see “Thread Pool Manager” on page 77).

To resolve the problem

e If you are using a dedicated thread pool model (i nu. service_name.
t hreadpool _nodel =dedi cat ed), the maximum number of connections is half
the maximum number of threads in the thread pool. Therefore, to increase the
number of connections, increase the size of the thread pool
(i M. service_name. max_t hr eads) or switch to the shared thread pool model.

e If you are using a shared thread pool model (i my. service_nane.
t hreadpool _nodel =shar ed), the maximum number of connections is half the
product of the following two properties: the connection Monitor limit
(i my. service_name. connectionhonitor _|imt)and the maximum number of
threads (i nq. service_name. max_t hr eads). Therefore, to increase the number of
connections, increase the size of the thread pool or increase the connection
monitor limit.

e Ultimately, the number of supportable connections (or the throughput on
connections) will reach input/output limits. In such cases, use a multi-broker
cluster to distribute connections among the broker instances within the cluster.

Too few file descriptors for the number of connections required on the
Solaris or Linux operating system

For more information about this issue, see “Setting the File Descriptor Limits
(Solaris or Linux)” on page 66.

To confirm this cause of the problem

Check for an entry in the broker log similar to the following: Too nany open files.

Message Queue 3 2005Q1 « Administration Guide

A Client Cannot Establish a Connection

To resolve the problem

Increase the file descriptor limit, as described in the ul i ni t man page.

TCP backlog limits the number of simultaneous new connection requests
that can be established

The TCP backlog places a limit on the number of simultaneous connection requests
that can be stored in the system backlog (i nt. por t mapper . backl og) before the Port
Mapper rejects additional requests. (On Windows operating systems there is a
hard-coded backlog limit: 5 for Windows desktops and 200 for Windows servers.)

The rejection of requests because of backlog limits is usually a transient
phenomenon, due to an unusually high number of simultaneous connection
requests.

To confirm this cause of the problem

Examine the broker log. First, check to see whether the broker is accepting some
connections during the same time period that it is rejecting other connections.
Next, check for messages that explain rejected connections. If you find such
messages, the TCP backlog is probably not the problem, because the broker does
not log connection rejections due to the TCP backlog.

If some successful connections are logged, and no connection rejections are logged,
the TCP backlog is probably the problem.

To resolve the problem
The following approaches can be used to resolve TCP backlog limitations:

¢ Program the client to retry the attempted connection after a short interval of
time (this normally works because of the transient nature of this problem).

¢ Increase the value of i ng. port mapper . backl og.
* Check that clients are not closing and then opening connections too often.

Operating system limits the number of concurrent connections

The Windows operating system license places limits on the number of concurrent
remote connections that are supported.

To confirm this cause of the problem

Check that there are plenty of threads available for connections (using

i mgend query svc) and check the terms of your Windows license agreement. If
you can make connections from a local client, but not from a remote client,
operating system limitations might be the cause of the problem.

Chapter 12 Troubleshooting Problems 251

A Client Cannot Establish a Connection

252

To resolve the problem
e Upgrade the Windows license to allow more connections.

e Distribute connections among a number of broker instances by setting up a
multi-broker cluster.

Authentication or authorization of the user is failing

The authentication can be failing due to an incorrect password, because there is no
entry for the user in the user repository, or because the user does not have access
permissions for the connection service.

To confirm this cause of the problem

Check entries in the broker log for the For bi dden error message. This will indicate
an authentication error, but will not indicate the reason for it.

e If you are using a file-based user repository, enter the following command:
i mqusermgr list -i instanceName -u userName

e If the output shows a user, the wrong password was probably submitted. If the
output shows the following error, there is no entry in the user repository:

Error [B3048]: User does not exist in the password file,

e If you are using an LDAP server user repository, use the appropriate tools to
check if there is an entry for the user.

¢ Check the access control properties file to see if there are restrictions on access
to the connection service.

To resolve the problem

¢ If there is no entry for the user in the user repository, add the user to the user
repository (see “Populating and Managing a User Repository” on page 147).

e If the wrong password was used, provide the correct password.

e If the access control properties are improperly set, edit the access control
properties file to grant connection service permissions (see “Access Control for
Connection Services” on page 156).

Message Queue 3 2005Q1 « Administration Guide

Connection Throughput Is Too Slow

Connection Throughput Is Too Slow

The symptoms of this problem are as follows:
* Message throughput does not meet expectations.

¢ The number of supported connections to a broker is not limited as described in
“A Client Cannot Establish a Connection” on page 248, but rather by message
input/output rates.

This section explores the following possible causes:

* Network connection or WAN is too slow

¢ Connection service protocol is inherently slow compared to TCP
e Connection service protocol is not optimally tuned

* Messages are so large they consume too much bandwidth

¢ What appears to be slow connection throughput is actually a bottleneck in
some other step of the message delivery process

Network connection or WAN is too slow
To confirm this cause of the problem

Ping the network to see how long it takes for the ping to return, and then consult a
network administrator. Also you can send and receive messages using local clients
and compare the delivery time with that of remote clients (which use a network
link).

To resolve the problem
If the connection is too slow, upgrade the network link.

Connection service protocol is inherently slow compared to TCP

As an example, SSL-based or HTTP-based protocols are slower than TCP (see
Figure 11-5 on page 234).

To confirm this cause of the problem

If you are using SSL-based or HTTP-based protocols, try using TCP and compare
the delivery times.

To resolve the problem

Application requirements usually dictate the protocols being used, so there is little
that you can do, other than to attempt to tune the protocol as described in (“Tuning
Transport Protocols” on page 238).

Chapter 12 Troubleshooting Problems 253

Connection Throughput Is Too Slow

254

Connection service protocol is not optimally tuned
To confirm this cause of the problem

Try tuning the protocol and see if it makes a difference.

To resolve the problem

Try tuning the protocol as described in (“Tuning Transport Protocols” on
page 238).

Messages are so large they consume too much bandwidth

To confirm this cause of the problem

Try running your benchmark with smaller-sized messages.

To resolve the problem

¢ Have application developers modify the application to use the message
compression feature, which is described in the Message Queue Developer’s Guide
for Java Clients.

e Use messages as notifications of data to be sent, but move the data using
another protocol.

What appears to be slow connection throughput is actually a bottleneck in
some other step of the message delivery process

To confirm this cause of the problem

If none of the items above appear to be the cause of what appears to be slow
connection throughput, consult Figure 11-1 on page 223 for other possible
bottlenecks and check for symptoms associated with the following problems:

* “Message Production Is Delayed or Slowed” on page 256
e “Messages Are Backlogged” on page 259

* “Message Server Throughput Is Sporadic” on page 264
To resolve the problem

Follow the problem resolution guidelines provided in the problem troubleshooting
sections above.

Message Queue 3 2005Q1 « Administration Guide

A Client Cannot Create a Message Producer

A Client Cannot Create a Message Producer

The symptoms of this problem are as follows:

* A message producer cannot be created for a physical destination; the client
receives an exception.

This section explores the following possible causes:

¢ A physical destination has been configured to allow only a limited number of
producers

e The user is not authorized to create a message producer due to settings in the
access control properties file

A physical destination has been configured to allow only a limited number of
producers

One of the ways of avoiding the accumulation of messages on a physical
destination is to limit the number of producers (maxNunPr oducer s) that it supports.
To confirm this cause of the problem

Check the physical destination (see “Displaying Information about Physical
Destinations” on page 131):

i ngcnd query dst

The output will show the current number of producers and the value of
maxNunPr oducer s. If the two values are the same, the number of producers has
reached its configured limit. When a new producer is rejected by the broker, the
broker returns a Resour ceAl | ocat i onException [C4088]: A JMS destination
limt was reached and makes the following entry in the broker log: [B4183] :
Producer can not be added to destination.

To resolve the problem

Increase the value of the maxNurPr oducer s attribute (see “Updating Physical
Destination Properties” on page 133).

The user is not authorized to create a message producer due to settings in
the access control properties file
To confirm this cause of the problem

When a new producer is rejected by the broker, the broker returns the following
message:

JMBSecurityException [C4076]: dient does not have permission to
create producer on destination

Chapter 12 Troubleshooting Problems 255

Message Production Is Delayed or Slowed

The broker also makes the following entries in the broker log:
[B2041] : Producer on destination deni ed and [B4051]: Forbi dden guest.
To resolve the problem

Change the access control properties to allow the user to produce messages (see
“Access Control for Physical Destinations” on page 157).

Message Production Is Delayed or Slowed

256

The symptoms of this problem are as follows:

* When sending persistent messages, the send() method does not return and the
client blocks.

* When sending a persistent message, client receives an exception.
¢ Producing client slows down.
This section explores the following possible causes:

¢ The message server is backlogged and has responded by slowing message
producers

* The broker cannot save a persistent message to the data store

* Broker acknowledgment timeout is too short

* A producing client is encountering JVM limitations

The message server is backlogged and has responded by slowing

message producers
A backlogged server accumulates messages in broker memory.

When the number of messages or number of message bytes in physical destination
memory reaches configured limits, the broker attempts to conserve memory
resources in accordance with the specified limit behavior. The following limit
behaviors slow down message producers:

* FLON OONTRQOL: The broker does not immediately acknowledge receipt of
persistent messages (thereby blocking a producing client).

e REJECT_NEVEST: The broker rejects new persistent messages.

Message Queue 3 2005Q1 « Administration Guide

Message Production Is Delayed or Slowed

Similarly, when the number of messages or number of message bytes in
broker-wide memory (for all physical destinations) reaches configured limits, the
broker will attempt to conserve memory resources by rejecting the newest
messages.

Also, when system memory limits are reached because physical destination or
broker-wide limits have not been set properly, the broker takes increasingly
serious action to prevent memory overload. These actions include throttling back
message producers.

To confirm this cause of the problem

When a message is rejected by the broker due to configured message limits, the
broker returns the following message:

JVMBException [C4036]: A server error occurred
The broker also makes this entry in the broker log:
WARNI NG[B2011]: Storing of JMS message from | Mxonn failed

The message is followed by a message indicating the limit that has been reached. If
the message limit is on a physical destination, the broker makes an entry like the
following: [

B4120]: Can not store nessage on destination destName because
capacity of maxNumMsgs woul d be exceeded.

If the message limit is broker wide, the broker makes an entry like the following:

[B4024]: The Maxi mum Number of nessages currrently in the systemhas
been exceeded, rejecting message.

More generally, you can check for message limit conditions before the rejections
occur as follows:

* By querying physical destinations and the broker and inspecting their
configured message limit settings.

¢ By monitoring the number of messages or number of message bytes currently
in a physical destination or in the broker as a whole, using the appropriate
i mgend commands. See Chapter 18, “Metrics Reference” for information about
metrics you can monitor, and the commands you use to obtain them.

Chapter 12 Troubleshooting Problems 257

Message Production Is Delayed or Slowed

To resolve the problem

There are a number of approaches to addressing the slowing of producers due to
messages becoming backlogged:

* Modify the message limits on a physical destination (or broker-wide) being
careful not to exceed memory resources.

In general, you should manage memory on a destination-by-destination level
so that broker-wide message limits are never reached. For more information,
see “Broker Adjustments” on page 242.

* Change the limit behaviors on a destination to not slow message production
when message limits are reached, but rather to discard messages in memory.

For example, you can specify the REMOVE_OLDESTand REMOVE_LON PRI CRI TYlimit
behaviors, which delete messages that accumulate in memory (see Table 15-1
on page 329).

The broker cannot save a persistent message to the data store

If the broker cannot access a data store or write a persistent message to the data
store, the producing client is blocked. This condition can also occur if destination or
broker-wide message limits are reached, as described above.

To confirm this cause of the problem

If the broker is unable to write to the data store, it makes one of the following
entries in the broker log: [B2011] : Storing of JM5 nessage from connectionl D
failed.. or [B4004]: Failed to persist message messagelD...

To resolve the problem

¢ In the case of built-in persistence, try increasing the disk space of the file-based
data store.

* Inthe case of a JDBC-compliant data store, check that plugged-in persistence is
properly configured (see Chapter 4, “Configuring a Broker”). If so, consult
your database administrator to troubleshoot other database problems.

Broker acknowledgment timeout is too short

Due to slow connections or a lethargic message server (caused by high CPU
utilization or scarce memory resources), a broker might require more time to
acknowledge receipt of a persistent message than allowed by the value of the
connection factory’s i ngACKTi meout attribute.

258 Message Queue 3 2005Q1 « Administration Guide

Messages Are Backlogged

To confirm this cause of the problem

If the i ngAckTi meout value is exceeded, the broker returns the following message:
JVMBException [C4000]: Packet acknow edge fail ed

To resolve the problem

Change the value of the i ngAckTi meout connection factory attribute (see
“Connection Factory Attributes.” on page 177).

A producing client is encountering JVM limitations
To confirm this cause of the problem
¢ Find out whether the client application receives an Out Of Memory error.

* Check the free memory available in the JVM heap using runtime methods such
as freeMenory(), MaxMenory(), and t ot al Menory().

To resolve the problem

Adjust the JVM (see “Java Virtual Machine Adjustments” on page 238).

Messages Are Backlogged

The symptoms of this problem are as follows:

e The number of messages or message bytes in the broker (or in specific
destinations) increases steadily over time.

To see whether messages are accumulating, check how the number of
messages or message bytes in the broker changes over time and compare to
configured limits. First check the configured limits:

i mgcrd query bkr

(Note: theingend netrics bkr subcommand does not display this
information.)

Then check for message accumulation in each destination:
imgermd i st dst

To see whether messages have exceeded configured destination or
broker-wide limits, check the broker log for the following entry: WARN NG
[B2011]: Storing of JVS message from..fail ed. This entry will be followed
by another entry explaining the limit that has been exceeded.

Chapter 12 Troubleshooting Problems 259

Messages Are Backlogged

* Message production is delayed or produced messages are rejected by the
broker.

* Messages take an unusually long time to reach consumers.

This section explores the following possible causes:

* There are inactive durable subscriptions on a topic destination

* There are too few consumers available to consume messages in a queue

* Message consumers are processing too slowly to keep up with message
producers

e Client acknowledgment processing is slowing down message consumption
* The broker cannot keep up with produced messages
¢ Client code defects: consumers are not acknowledging messages

There are inactive durable subscriptions on a topic destination

If a durable subscription is inactive, messages are stored in a destination until the
corresponding consumer becomes active and can consume the messages.

To confirm this cause of the problem

Check the state of durable subscriptions on each topic destination:
ingend |ist dur -d destName

To resolve the problem

You can take any of the following actions:

* Purge all messages for the offending durable subscriptions (see “Managing
Durable Subscriptions” on page 122).

* Specify message limit and limit behavior attributes for the topic (see Table 15-1
on page 329). For example, you can specify the REMOVE_CLDEST and
REMOVE_LOW PRI ORI TY limit behaviors, which delete messages that accumulate
in memory.

¢ Purge all messages from the corresponding destinations (see “Purging Physical
Destinations” on page 134).

¢ Limit the time messages can remain in memory. You can rewrite the producing
client to set a time-to-live value on each message. You can override any such
settings for all producers sharing a connection by setting the
i mgOver ri deJMsExpi rati on and i ngJMBEXpi rat i on connection factory
attributes (see “Message Header Overrides” on page 338).

260 Message Queue 3 2005Q1 « Administration Guide

Messages Are Backlogged

There are too few consumers available to consume messages in a queue

If there are too few active consumers to which messages can be delivered, a queue
destination can become backlogged as messages accumulate. This condition can
occur for any of the following reasons:

* Too few active consumers exist for the destination.

* Consuming clients have failed to establish connections.

* No active consumers use a selector that matches messages in the queue.
To confirm this cause of the problem

To help determine the reason for unavailable consumers, check the number of
active consumers on a destination:

ingcnd nmetrics dst -n destName -t g -mcon

To resolve the problem

You can take any of the following actions, depending on the reason for unavailable
consumers:

¢ Create more active consumers for the queue, by starting up additional
consuming clients.

¢ Adjust the img.consumerFlowLimit broker property to optimize queue
delivery to multiple consumers (see “Multiple Consumer Queue Performance”
on page 243).

* Specify message limit and limit behavior attributes for the queue (see
Table 15-1 on page 329). For example, you can specify the REMOVE_CLDEST and
REM OVE_LOW PRI OROTY limit behaviors, which delete messages that
accumulate in memory.

e Purge all messages from the corresponding destinations (see “Purging Physical
Destinations” on page 134).

¢ Limit the time messages can remain in memory. You can rewrite the producing
client to set a time-to-live value on each message, you can override any such
setting for all producers sharing a connection by setting the
i mgOver ri deJMBExpi rat i on and i ngJMSEXpi rat i on connection factory
attributes (see “Message Header Overrides” on page 338).

Chapter 12 Troubleshooting Problems 261

Messages Are Backlogged

262

Message consumers are processing too slowly to keep up with message
producers

In this case topic subscribers or queue receivers are consuming messages more
slowly than the producers are sending messages. One or more destinations is
getting backlogged with messages due to this imbalance.

To confirm this cause of the problem

Check for the rate of flow of messages into and out of the broker:
ingcnd rmetrics bkr -mrts

Then check flow rates for each of the individual destinations:
imyend netrics bkr -t destType -n destName -mrts

To resolve the problem

* Optimize consuming client code.

* For queue destinations, increase the number of active consumers (see
“Multiple Consumer Queue Performance” on page 243).

Client acknowledgment processing is slowing down message consumption
Two factors affect the processing of client acknowledgments:

e Significant broker resources can be consumed in processing client
acknowledgments. As a result, message consumption might be slowed in those
acknowledgment modes in which consuming clients block until the broker
confirms client acknowledgments.

* JMS payload messages and Message Queue control messages (such as client
acknowledgments) share the same connection. As a result, control messages
can be held up by JMS payload messages, slowing message consumption.

To confirm this cause of the problem

¢ Check the flow of messages relative to the flow of packets. If the number of
packets per second is out of proportion to the number of messages, client
acknowledgments might be a problem.

¢ Check to see whether the client has received the following message:
JMBException [C4000]: Packet acknow edge fail ed
To resolve the problem

* Modify the acknowledgment mode used by clients, for example, switch to
DUPS_COK_ACKNOW.EDGE or CLI ENT_ACKNOW.EDGE.

Message Queue 3 2005Q1 « Administration Guide

Messages Are Backlogged

e If using CLI ENT_ACKNOWLEDCGE or transacted sessions, group a larger number of
messages into a single acknowledgment.

* Adjust consumer and connection flow control parameters (see “Client Runtime

Message Flow Adjustments” on page 244).

The broker cannot keep up with produced messages

In this case, messages are flowing into the broker faster than the broker can route
and dispatch them to consumers. The sluggishness of the broker can be due to
limitations in any or all of the following: CPU, network socket read /write
operations, disk read /write operations, memory paging, the persistent store, or
JVM memory limits.

To confirm this cause of the problem

Check that none of the other causes of this problem are responsible.

To resolve the problem

e Upgrade the speed of your computer or your data store.

* Use a broker cluster to distribute the load among a number of broker instances.

Client code defects: consumers are not acknowledging messages

Messages are held in a destination until they have been acknowledged by all
consumers to which the messages have been sent. If a client is not acknowledging
consumed messages, the messages accumulate in the destination without being
deleted.

For example, client code might have the following defects:

e Consumers using CLI ENT_ACKNOALEDGEacknow edgment or transacted session
might notbe calling Sessi on. acknow edge() or Sessi on. conmi t () on aregular
basis.

e Consumers using AUTO ACKNOALEDGE sessions might be hanging for some
reason.

To confirm this cause of the problem

First check all other possible causes listed in this section. Next, list the destination
with the following command:

ingemd |ist dst

Chapter 12 Troubleshooting Problems 263

Message Server Throughput Is Sporadic

Notice whether the number of messages listed under the UnAcked header is the
same as the number of messages in the destination. The messages under the
UnAcked header were sent to consumers but not acknowledged. If this number is
the same as the total number of messages, the broker has sent all the messages and
is waiting for acknowledgment.

To resolve the problem

Request the help of application developers in debugging this problem.

Message Server Throughput Is Sporadic

264

The symptom of this problem is as follows:

* Message throughput sporadically drops, and then resumes normal
performance.

This section explores the following possible causes:

* The broker is very low on memory resources

¢ JVM memory reclamation (garbage collection) is taking place

¢ The JVM is using the Just-In-Time compiler to speed up performance

The broker is very low on memory resources

Because destination and broker limits were not properly set, the broker takes
increasingly serious action to prevent memory overload, and this can cause the
broker to become very sluggish until the message backlog is cleared.

To confirm this cause of the problem

Check the broker log for a low memory condition ([B1089]: In | ow nenory
condition, broker is attenpting to free up resources), followed by an entry
describing the new memory state and the amount of total memory being used.

Also check the free memory available in the JVM heap:
ingcnd metrics bkr -mcxn

Free memory is low when the value of total JVM memory is close to the maximum
JVM memory value.

To resolve the problem
* Adjust the JVM (see “Java Virtual Machine Adjustments” on page 238).

* Increase system swap space.

Message Queue 3 2005Q1 « Administration Guide

Messages Are Not Reaching Consumers

JVM memory reclamation (garbage collection) is taking place

Memory reclamation periodically sweeps through the system to free up memory.
When this occurs, all threads are blocked. The larger the amount of memory to be
freed up and the larger the JVM heap size, the larger the delay due to memory
reclamation.

To confirm this cause of the problem

Monitor CPU usage on your computer. CPU usage drops when memory
reclamation is taking place.

Also start your broker using the following command line options:
-vmar gs - verbose: gc

Standard output indicates the time that memory reclamation takes place.

To resolve the problem

In multiple CPU computers, set the memory reclamation to take place in parallel:
- XX: +UseParal | el GC=true

The JVM is using the Just-In-Time compiler to speed up performance

To confirm this cause of the problem

Check that none of the other causes of this problem are responsible.

To resolve the problem

Let the system run for a while; performance should improve.

Messages Are Not Reaching Consumers

The symptom of this problem is as follows:

* Messages sent by producers are not received by consumers.

This section explores the following possible causes:

e Limit behaviors are causing messages to be deleted on the broker
* Message time-out value is expiring

¢ Clocks are not synchronized

¢ Consuming client failed to start message delivery on a connection

Chapter 12 Troubleshooting Problems 265

Messages Are Not Reaching Consumers

266

Limit behaviors are causing messages to be deleted on the broker

When the number of messages or number of message bytes in destination memory
reach configured limits, the broker attempts to conserve memory resources. Three
of the configurable behaviors taken by the broker when these limits are reached
will cause messages to be lost:

¢ REMDVE QLDEST: deleting the oldest messages

¢ REMOVE_LON PRI CRI TY: deleting the lowest priority messages according to age
of the messages

e REJECT_NEVEST: rejecting new persistent messages

As the number of messages or number of message bytes in broker memory reach
configured limits, the broker attempts to conserve memory resources by rejecting
the newest messages.

To confirm this cause of the problem

Check the dead message queue, as described under “The Dead Message Queue
Contains Messages” on page 269. Specifically, use the instructions under “The
number of messages, or their sizes, exceed destination limits” on page 270. Look
for the REMOVE_COLDEST or REMOVE LOWN PRI ORI TY reason.

To resolve the problem
Increase the destination limits. For example:
i ngcnd update dst -n MyDest -0 maxNunibgs=1000

Message time-out value is expiring

The broker deletes messages whose time-out value has expired. If a destination
gets sufficiently backlogged with messages, messages whose time-to-live value is
too short might be deleted.

To confirm this cause of the problem
Check the dead message queue to see whether messages are timing out.

Use the QBrowser demo application to look at the DMQ contents. The QBrowser
demo is in an operating system-specific location; for the location, see Appendix A,
“Operating System-Specific Locations of Message Queue Data” and look in the
tables for “Example Applications and Locations.”

This is an example of invocation on Windows:

cd \ MessageQueue3\ deno\ appl i cat i ons\ gbr owser java QBrowser

Message Queue 3 2005Q1 « Administration Guide

Messages Are Not Reaching Consumers

When the QBrowser main window appears, select the queue name ny. sys. dng and
then click Browse. A list like the following appears.

Figure 12-1 QBrowser Window

1o x|

File

QOueue Name: |mq.syrs.qu | - " Browse
| Timestarnp | Type | Mode | Priority |

o 13 Julr2004:14:42:01 PDT Bvteshlessage P 4

1 13Julr2004:1 4:458:01 PDT Byteshessage P 4

2 13ulrz004:1 4:48:01 PDT Byteshlessage F 4

3 13Julr2004:1 4:458:01 POT Byteshessage F 4

4 13 Julr2004:14:48:01 PDT BEyteshessage F 4

a 13Juli2004:14:42:01 PDT Bvteshlessage F 4

5] 13Julr2004:1 4:458:01 PDT Byteshessage P 4

T 13ulrz004:1 4:48:01 PDT Byteshlessage F 4

a3 13Julr2004:1 4:458:01 POT Byteshessage F 4

=] 13 Julr2004:14:48:01 PDT BEyteshessage F 4

10 13Julr2004:14:42:01 PDT Evteshessage P 4

11 13Julr2004:1 4:48:01 PDT Bvteshlessage P 4

12 13Juli2004:14:42:01 PDT Bvteshlessage F 4

13 13Julr2004:1 4:458:01 PDT Byteshessage P 4

14 13ulrz004:1 4:48:01 PDT Byteshlessage F 4

18 13Julr2004:1 4:458:01 POT Byteshessage F 4

16 13 Julr2004:14:48:01 PDT BEyteshessage F 4

17 13Julr2004:14:42:01 PDT Evteshessage P 4

18 13Julr2004:1 4:48:01 PDT Bvteshlessage P 4

19 13Juli2004:14:42:01 PDT Bvteshlessage F 4

20 13Julr2004:1 4:53:50 POT Byteshessage P 4

21 13ulrz004:1 4:53:50 PDT Byteshlessage F 4

22 1 3Julr2004:1 4:53:50 FOT Byteshessage F 4

23 13 Julr2004:1 45350 PDT BEyteshessage F 4

24 13 Juli2004:14:523:50 PDT Evteshessage P 4

28 13Julr2004:1 4:53:50 PFOT Bvteshlessage P 4

26 13Juli2004:1 4:53:50 PDT Bvteshlessage F 4

27 13Julr2004:1 4:53:50 POT Byteshessage P 4

28 13ulrz004:1 4:53:50 PDT Byteshlessage F 4 |

mi-sys.dmg: 35 Details...

Double click a message to display details about that message.

Chapter 12 Troubleshooting Problems 267

Messages Are Not Reaching Consumers

268

Figure 12-2 QBrowser Message Details

& gBrowser 1.0 - Message Details =101l
JMS Headers: Message #3
JH3Expiration: 0
JHEDeliverMode: 2
JH3Type:
JMiMessagell:
ID:9-172.25.19. 73 (abg: 4€:d0:8£:borad) -1165-10897552581725
JMECorrelationID:
JHEFeplyTo: MyDest
JH3Pricrity: 4

-

Message Properties
JME_ SUN_DMO EODY TRUNCATED: false| =
TME_SUN_DMOQ UNDELIVERED FEASON: OLDEST
JME_SUN_DMO UNDELIVERED COMMENT: [EO060]: Destination Q:MyDest Linit
of 5 messages or [BOOLlZ]: unlimited bytes was exceeded
JME_SUN_DMO UNDELIVERED TIMESTAMP: 1059755251772

count: 3

[N

Message Body: (BytesMessage)

o000 0000 0000 0000 0000 0000 0000 0000
o000 0000 0000 0000 0000 0000 0000 0000
o000 0000 0000 0000 0000 0000 0000 0000
o000 0000 0000 0000 0000 0000 0000 0000
o000 0000 0000 0000 0000 0000 0000 0000
o000 0000 0000 0000 0000 0000 0000 0000
o000 0000 0000 0000 0000 0000 0000 0000

[»

Note whether the JIM5_SUN_DMQ UNDELI VERED REASCN property for messages has
the value EXPI RED.

To resolve the problem

Contact the application developers and have them increase the time-to-live value.

Clocks are not synchronized

If clocks are not synchronized, broker calculations of message lifetimes can be
wrong, causing messages to exceed their expiration times and be deleted.

Message Queue 3 2005Q1 « Administration Guide

To confirm this cause of the problem

The Dead Message Queue Contains Messages

In the broker log file, look for any of the following messages: B2102, B2103, B2104.
These messages all report that possible clock skew was detected.

To resolve this problem

Check that you are running a time synchronization program, as described in

“Preparing System Resources” on page 66.

Consuming client failed to start message delivery on a connection

Messages cannot be delivered until client code establishes a connection and starts
message delivery on the connection.

To confirm this cause of the problem

Check that client code establishes a connection and starts message delivery.

To resolve the problem

Rewrite the client code to establish a connection and start message delivery.

The Dead Message Queue Contains Messages

The symptom of this problem is as follows:

When you list destinations, you see that the dead message queue contains
messages. For example, issue a command like the following.

imgerd | st dst

After you supply a user name and password, output like the following

appears:

State

M Dest Queue RUNNING 0
ng.sys.dng Queue RUNING O
Successfully listed destinations.

Pr oducer s

Listing all the destinations on the broker specified by:

Consuners Msgs

Total Count UnAck Avg Size
0 5 0 1177.0
0 35 0 1422.0

Chapter 12 Troubleshooting Problems 269

The Dead Message Queue Contains Messages

270

In this example, the dead message queue, Ng. sys. dny, contains 35 messages.
This section explores the following possible causes:
* The number of messages, or their sizes, exceed destination limits
e The broker clock and producer clock are not synchronized
¢ Consumers are not receiving the messages before messages time out
¢ There are too many producers for the number of consumers
* Producers are faster than consumers
* A consumer is too slow
¢ Clients are not committing messages
* Durable consumers are inactive
* An unexpected broker error occurred
The number of messages, or their sizes, exceed destination limits
To confirm this cause of the problem

Use the QBrowser demo application to look at the contents of the dead message
queue. The QBrowser demo is in an operating system-specific location; for the
location, see Appendix A, “Operating System-Specific Locations of Message Queue
Data” and look in the tables for “Example Applications and Locations.”

This is an example of invocation on Windows:
cd \ MessageQueued\ deno\ appl i cat i ons\ gbr owser java (Browser

When the QBrowser main window appears, select the queue name ny. sys. dng and
then click Browse. A list like the one shown in Figure 12-1 on page 267 appears.

Double click any message to display details about that message. The window
shown in Figure 12-2 on page 268 appears.

Note the values for the following message properties:
e JVB_SUN_DMQ UNDELI VERED REASON

e JV5_SUN DMQ UNDELI VERED COMMVENT

e JVB_SUN DMQ UNDELI VERED TI MESTAWP

Under JMS Headers, note the value for JMSDest i nat i on to determine the
destination whose messages are becoming dead.

Message Queue 3 2005Q1 « Administration Guide

The Dead Message Queue Contains Messages

To resolve this problem
Increase the destination limits. For example:
i ngcnd update dst -n MyDest -0 maxNunibgs=1000
The broker clock and producer clock are not synchronized
To confirm this cause of the problem:

Using the QBrowser application, view the message details for messages in the dead
message queue. Check the value for JM5_SUN DMQ UNDELI VERED REASCN, looking
for messages with the reason EXPI RED.

In the broker log file, look for any of the following messages: B2102, B2103, B2104.
These messages all report that possible clock skew was detected.

To resolve this problem

Check that you are running a time synchronization program, as described in
“Preparing System Resources” on page 66.

Consumers are not receiving the messages before messages time out
To verify this cause of the problem

Using the QBrowser application, view the message details for messages in the dead
message queue. Check the value for JIM5_SUN_DMQ UNDELI VERED REASQN, | ooki ng
for messages with the reason EXPI RED.

Check to see whether there any consumers on the destination. For example:
ingcnd query dst -t g -n MyDest

Check the value listed for Current Number of Active Consumers. If there are active
consumers, one of the following is true:

* A consumer's connection is paused.

* The message timeout is too short for the speed at which the consumer executes.
To resolve the problem

Request that application developers increase message time-to-live values.

There are too many producers for the number of consumers

To confirm this cause of the problem

Using the QBrowser application, view the message details for messages in the dead
message queue. Check the value for JM5_SUN DMQ UNDELI VERED REASON

Chapter 12 Troubleshooting Problems 271

The Dead Message Queue Contains Messages

272

If the reason is REMOVE_CLDEST or REMOVE_LOW PRI ORI TY, use the i ngcrd query dst
command to check the number of producers and consumers on the destination. If
the number of producers exceeds the number of consumers, production rate might
be overwhelming consumption rate.

To resolve the problem

Add more consumer clients or set the destination to use the FLOV CONTRCL limit
behavior. The FLON CONTRQL limit behavior uses consumption rate to control
production rate.

Start the flow control behavior by using a command such as the following example:
i ngcnd update dst -n nyDst -t g -0 consuner Fl owLi m t =FLON CONTROL

Producers are faster than consumers

To confirm this cause of the problem

To determine whether slow consumers are causing producers to slow down, set the
destination limit behavior to FLON CONTROL. The FLON CONTRCL limit behavior uses
consumption rate to control production rate.

Start the flow control behavior by using a command such as the following example:
i ngcnd update dst -n nyDst -t g -0 consuner Fl owLi m t =FLON CONTRCL

Use metrics to examine the destination input and output, by issuing a command
like the following example:

ingcnd metrics dst -n nyDst -t g -mrts
In the metrics output, examine the following values:
e Msgs/sec Qut

This value shows how many messages per second the broker is removing. The
broker removes messages when all consumers acknowledge receiving them, so
the metric reflects consumption rate.

e Msgs/sec In

This value shows how many messages per second the broker is receiving from
producers. The metric reflects production rate.

Because flow control aligns production to consumption, note whether production
slows or stops. If the rate slows or stops, there is a discrepancy between the
processing speed of producers and consumers.

Message Queue 3 2005Q1 « Administration Guide

The Dead Message Queue Contains Messages

You can also check the number of unacknowledged (UnAcked) sent messages, by
using the i mycnd |i st dst command. If the number of unacknowledged messages
is less than the size of the destination. the destination has additional capacity and is
being held back by client flow control.

To resolve the problem

If production rate is consistently faster than consumption rate, consider using flow
control regularly, to keep the system aligned.

In addition, using the subsequent sections, consider and attempt to resolve each of
the following possible factors:

* A consumer is too slow

¢ (lients are not committing messages

e Consumers are failing to acknowledge messages
e Durable consumers are inactive

* An unexpected broker error occurred

A consumer is too slow

To confirm this cause of the problem

Use metrics to determine the rate of production and consumption, as described
under “Producers are faster than consumers” on page 272.

To resolve the problem
Try one or more of the following:

e Set the destinations to use the FLON CONTROL limit behavior. Use a command
like the following:

i ngcnd update dst -n nyDst -t g -0 consuner Fl owLi m t =FLON CONTROL

Use of flow control slows production to the rate of consumption and prevents
the accumulation of messages on the broker. Producer applications hold
messages until the destination can process them in a timely manner, with less
risk of expiration.

¢ Find out from application developers whether producers send messages at a
steady rate, or in periodic bursts.

If an application sends bursts of messages, follow the instructions in the next
item to increase destination limits.

Chapter 12 Troubleshooting Problems 273

The Dead Message Queue Contains Messages

274

* Increase destination limits based on number of messages or number of bytes,
or both.

To change the number of messages on a destination, enter a command that has
the following format:

i ngcnd update dst -n destName -t {qg/t} -o maxNunvsgs=number

To change the size of a destination, enter a command that has the following
format:

i ngcmd update dst -n destName -t {q/t} -o maxTot al MsgByt es=number

Be aware that raising limits increases the amount of memory that the broker
uses. If limits are too high, the broker could run out of memory and become
unable to process messages.

¢ Consider whether you can accept loss of messages during levels of high
production load.
Clients are not committing messages

To confirm this cause of the problem

Check with application developers to find out whether the application uses
transactions. If the application uses transactions, list the active transactions as
follows:

ingend |ist txn

This is an example of the command output:

6800151593984248832 STARTED guest 3/2 7/ 19/ 04 11: 03: 08 AM

Note the numbers of messages and number of acknowledgments.

If the number of messages is high, producers may be sending individual messages
but failing to commit transactions. Until the broker receives a commit, it cannot
route and deliver the messages for that transaction.

If the number of acknowledgments is high, consumers may be sending
acknowledgments for individual messages but failing to commit transactions.
Until the broker receives a commit, it cannot remove the acknowledgments for that
transaction.

Message Queue 3 2005Q1 « Administration Guide

The Dead Message Queue Contains Messages

To resolve this problem

Contact application developers to fix the coding error.

Consumers are failing to acknowledge messages
To confirm this cause of the problem

Contact application developers to determine whether the application uses
system-based acknowledgment or client-based acknowledgment. If the application
uses system-based acknowledgment, skip this section.

If the application uses client-based acknowledgment (the CLI ENT_ACKNON.EDGE
type), first decrease the number of messages stored on the client. Use a command
like the following;:

i ngcnd update dst -n nmyDst -t g -0 consuner Fl owLi mt=1

Next, you will determine whether the broker is buffering messages because a
consumer is slow, or whether the consumer processes messages quickly but does
not acknowledge them.

List the destination, using the following command:
ingend |ist dst

After you supply a user name and password, output like the following appears:

Listing all the destinations on the broker specified by:

Nane Type State Producers Consuners Msgs
Total Count UnAck Avg Size
MyDest Queue RUNNNG 0 0 5 200 1177.0
ng.sys.dng Queue RUNNING 0 0 35 0 1422.0
Successfully listed destinations.

The UnAck number represents messages that the broker has sent and for which it is
waiting for acknowledgment. If the UnAck number is high or increasing, you know
that the broker is sending messages, so it is not waiting for a slow consumer. You
also know that the consumer is not acknowledging the messages.

To resolve the problem

Contact application developers to fix the coding error.

Chapter 12 Troubleshooting Problems 275

The Dead Message Queue Contains Messages

276

Durable consumers are inactive
To confirm this cause of the problem

Look at the topic’s durable subscribers, using the following command format:
imgend |ist dur -d topicName

To resolve the problem

* Purge the durable consumers using the i mgcnd purge dur command.

® Restart the consumer applications.

An unexpected broker error occurred

To confirm this cause of the problem

Use QBrowser to examine a message, as described under “Producers are faster
than consumers” on page 272.

If the value for JVM5_SUN DM) UNDELI VERED REASONis ERRCR, a broker error
occurred.

To resolve the problem
e Examine the broker log file to find the associated error.

e Contact Sun Technical Support to report the broker problem.

Message Queue 3 2005Q1 « Administration Guide

Chapter 13,
Chapter 14,
Chapter 15,
Chapter 16,
Chapter 17,

Chapter 18,

Part Il

Reference

“Command Reference”

“Broker Properties Reference”

“Physical Destination Property Reference”
“Administered Object Attribute Reference”
“JMS Resource Adapter Attribute Reference”

“Metrics Reference”

Chapter 13

Command Reference

This chapter contains a section that describes common command line syntax, and
then provides reference information for each of the Message Queue commands.
The chapter contains the following sections:

e “Command Line Syntax” on page 280
* “imgbrokerd” on page 282

¢ “imgcmd” on page 287

* “imqobjmgr” on page 297

* “imqdbmgr” on page 300

* “imqusermgr” on page 302

* “imgsvcadmin” on page 304

¢ “imgkeytool” on page 306

279

Command Line Syntax

Comma

nd Line Syntax

Message Queue command-line utilities are shell commands. The name of the utility
is a command and its subcommands or options are arguments passed to that
command. For this reason, there are no commands to start or quit the utility, and
no need for such commands.

All the command line utilities share the following command syntax:
Utility_Name [subcommand] [arqument] [[- option_name | - option_argument]] ..]

Utility_Name specifies the name of a Message Queue utility, such as i ngcnd,
i ngobj ngr, i myuser ngr, and so on.

Rules for Entering Commands

These are some general rules for entering commands:

* Specify options after subcommands (and arguments, if the utility accepts both
types of operands).

e If the value for an option contains a space, enclose the entire value in quotation
marks. It is generally safest to enclose an attribute-value pair in quotes.

* If you specify the -v (version) or the -h/-H (help) options on a command line,
nothing else on that command line is executed.

¢ Separate the subcommand, arguments, options, and option arguments with
spaces.

Command Line Examples

The following is an example of a command line that has no subcommand clause.
The command starts the default broker.

i ngbr oker d

The following command is more complicated. The command destroys a
destination of type queue named nyQueue. Authentication is performed based on
the user adni n; the command will prompt for the user’s password. The - f option
specifies that there will be no confirmation and the - s option specifies that the
command is executed in silent mode.

ingcmd destroy dst -t g -n nyQueue -u admn -f -s

280 Message Queue 3 2005Q1 « Administration Guide

Command Line Syntax

Common Command Options

Table 13-1 describes options that are common to all Message Queue administration
utilities. You must specify these options after the subcommand on the command
line. The options can be entered in any order.

Table 13-1 Common Message Queue Command Line Options

Option Description

-h Displays usage help for the specified utility.

-H Displays expanded usage help, including attribute list and examples
(supported only for i ngcnd and i ngobj ngr).

-S Turns on silent mode: no output is displayed. Specify as -si | ent for
i ngbr oker d.

-V Displays version information.

-f Performs the given action without prompting for user confirmation.

-pre (Used only with i nrgobj ngr) Turns on preview mode, allowing the user to

-j avahone path

see the effect of the rest of the command line without actually performing
the command. This can be useful in checking for the value of default
attributes.

Specifies an alternative Java 2 compatible runtime to use (default is to use
the runtime on the system or the runtime bundled with Message Queue).

Chapter 13 Command Reference 281

imgbrokerd

Imgbrokerd

The i mybr oker d command starts a broker. Command-line options override values
in the broker configuration files, but only for the current broker session.

Syntax

i mybrokerd [[- Dproperty=value] .]
[-backup fileName]

-cluster “[brokerl] [[, broker2] .}”

- dbuser userName]

-force]

-h| - hel p]

-j avahone path]

-license licenseName]

-1 ogl evel level]

-metrics intervall

- nane instanceName]

-passfile fileName

- port number]

-renove instance]

-reset data

-restore fileName]

- shared]

-silent]-s] [-tty]

- upgr ade- st or e- nobackup]

-versi on]

-vrmargs argl [[arg2] .]

Command Options

Table 13-2 describes the options to the i mgbr oker d command and describes the
configuration properties, if any, affected by each option.

Table 13-2 i mgbr oker d Options

Option Properties Affected Description

-backup fileName None affected. Applies only to broker clusters. Backs up a master
broker’s configuration change record to the
specified file. See “Managing the Configuration
Change Record” on page 201.

282 Message Queue 3 2005Q1 « Administration Guide

Table 13-2

i mybr oker d Options (Continued)

imgbrokerd

Option

Properties Affected

Description

- cl ust er“[broker1]
[[broker2] .}"

where broker is either

* host
* port
* host:port

- dbpasswor d password

- dbuser userName

- Dyroperty=value

-force

-h|-hel p

-j avahone path

Overrides
i my. cl uster. brokerlist with a

list of brokers to which to connect.

Overrides i ng. persi st . j dbc.
passwor d with the specified
password

Overrides
i ny. persist.jdbc. user
with the specified user name

Sets system properties. Overrides
corresponding property value in
instance configuration file.

None affected.

None affected.

None affected.

Applies only to broker clusters. Connects to all the
brokers on the specified hosts and ports. This list
is merged with the list in the

i my. cluster. brokerlist property. If you don’t
specify a value for host, | ocal host is used. If you
don’t specify a value for port, the value 7676 is
used. See “Working With Broker Clusters” on
page 195 for more information on how to use this
option to connect multiple brokers.

Specifies the password for a plugged-in
JDBC-compliant data store. This option is being
deprecated and will be removed in a future
version. Use one of the following alternatives:

e Omit the password from the command line so
that the command prompts you for the
password.

* Use the -passfi | e option to specify a file that
contains the database password.

Specifies the user name for a plugged-in
JDBC-compliant database. See “Setting Up a
Persistent Store” on page 99

Sets the specified property to the specified value.
See Chapter 14, “Broker Properties Reference” for
information about broker configuration properties.

Caution: Be careful to check the spelling and
formatting of properties set with the - Doption. If
you pass incorrect values, the system will not warn
you, and Message Queue will not be able to set
them.

Performs action without user confirmation. This
option applies only to the

-renove instance and the

- upgr ade- st or e- nobackup options, which
normally require confirmation.

Displays help. Nothing else on the command line is
executed.

Specifies the path to an alternative Java 2-
compatible JDK. The default is to use the bundled
runtime.

Chapter 13 Command Reference 283

imgbrokerd

Table 13-2 i ngbr oker d Options (Continued)

Option Properties Affected Description

-1 dappasswor d Overrides i ny. user _repository. Specifies the password for accessing a LDAP user
password | dap. passwor d with the specified repository. This option is being deprecated and will

-license [licenseName]

-1 ogl evel level

-metrics interval

-nane instanceName

-passfile fileName

password

None affected.

Overrides i ng. broker. | og. | evel
with the specified level.

Overridesing. netrics.interval
with the specified number of
seconds.

Sets i ny. i nst ancenane to the
specified name.

Overrides i ng. passfil e. enabl ed
and sets it to t r ue. Overrides

i ng. passfil e. dirpath with the
path containing the file. Overrides
i ny. passfil e. name with the
name of the file.

be removed in a future version. Use one of the
following alternatives:

e Omit the password from the command line so
that the command prompts you for the
password.

* Use the -passfi | e option to specify a file that
contains the LDAP password.

Specifies the license to load, if different from the
default for your Message Queue product edition. If
you don't specify a license name, this lists all
licenses installed on the system. Depending on the
installed Message Queue edition, the values for
licenseName are pe (Platform Edition—basic
features), try (Platform Edition—90-day trial
enterprise features), and unl (Enterprise Edition).

Specifies the logging level as being one of NON\E,
ERROR WARNI NG or | NFQ The default value is | NFO.

Specifies that broker metrics are written to the
logger at an interval specified in seconds.

Specifies the instance name of this broker and
uses the corresponding instance configuration file.
If you do not specify a broker name, the name of
the instance is set to i ngbr oker .

Note: If you run more than one instance of a
broker on the same host, each must have a unique
name.

Specifies the name of the file from which to read
the password for the i ngcmd command utility, SSL
keystore, LDAP user repository, or
JDBC-compliant database, or for any combination
of them. For more information, see “Using a
Passfile” on page 169.

284 Message Queue 3 2005Q1 « Administration Guide

Table 13-2

i mybr oker d Options (Continued)

imgbrokerd

Option

Properties Affected

Description

-password keypassword

-port number

-renove i nstance

-reset store|

messages|
dur abl es|

pr ops

Overrides
i ny. keyst or e. passwor d with the
specified password.

Overrides i ng. por t mapper . port
with the specified number.

None affected.

None affected.

Specifies the password for the SSL certificate
keystore.This option is being deprecated and will
be removed in a future version. Use one of the
following alternatives:

e Omit the password from the command line so
that the command prompts you for the
password.

e Use the -passfi | e option to specify a file that
contains the SSL certificate keystore
password.

Specifies the broker’s Port Mapper port number.
By default, this is set to 7676. To run two instances
of a broker on the same server, each broker’s Port
Mapper must have a different port number.
Message Queue clients connect to the broker
instance using this port number.

Causes the broker instance to be removed:
deletes the instance configuration file, log files,
persistent store, and other files and directories
associated with the instance. Requires user
confirmation unless - f or ce option is also
specified.

Resets the data store (or a subset of the data
store) or the configuration properties of a broker
instance, depending on the argument given.

Resetting the data store clears out all persistent
data, including persistent messages, durable
subscriptions, and transaction information. This
allows you to start the broker instance with a clean
slate. You can also clear only all persistent
messages or only all durable subscriptions. (If you
do not want the persistent store to be reset on
subsequent restarts, restart the broker instance
without using the - reset option.)

Resetting the broker’s properties, replaces the
existing instance configuration file

(confi g. properties) with an empty file: all
properties assume default values.

Chapter 13 Command Reference

285

imgbrokerd

Table 13-2 i ngbr oker d Options (Continued)

Option

Properties Affected

Description

-restore fileName

-shared

-silent|-s

-tty

- upgr ade- st or e-
nobackup

-version

None affected.

Overrides i ng. j ns.
t hr eadpool _nodel and sets it to
shar ed.

Overrides i ng. | og. consol e.
out put and sets it to NONE.

Overrides i ng. | og. consol e.

out put and sets itto ALL

None affected

None affected.

-vrargs argl [[arg2] .] None affected

Applies only to broker clusters. Replaces the
master broker’s configuration change record with
the specified backup file. This file must have been
previously created using the - backup option. See
“Managing the Configuration Change Record” on
page 201.

Specifies that the jms connection service be
implemented using the shared thread pool model,
in which threads are shared among connections to
increase the number of connections supported by
a broker instance.

Turns off logging to the console.

Specifies that all messages be displayed to the
console. By default only WARNI NGand ERRCR level
messages are displayed.

Specifies that an upgrade to Message Queue 3.5
or Message Queue 3.5 SPx from an incompatible
version automatically removes the old data store.
For additional details, see the Message Queue
Installation Guide.

Displays the version number of the installed
product.

Specifies arguments to pass to the Java VM.
Separate arguments with spaces. If you want to
pass more than one argument or if an argument
contains a space, use enclosing quotation marks.
For example:

i mgbrokerd -tty -vmargs "-Xnmx128m - Xi ncgc"

These arguments can be passed only on the
command line. There is no associated
configuration property in the confi g. pr ops file.

See Also

For more information about using i ngbr oker d and for command examples, see
“Starting Brokers Interactively” on page 67.

286 Message Queue 3 2005Q1 « Administration Guide

Imgcmd

imgcmd

The i mycnd command utility enables you to manage the broker and its services.

Syntax

i mycnd subcommand argument [options)

ingemd -h| H
ingemd -v
Subcommands

You always use a subcommand with i ngcnt, unless you want to display help or
display the product version. Table 13-3 lists the i mgcnd subcommands and
specifies where reference information for that subcommand is located.

Table 13-3 i nmgcmd Subcommands

Subcommand

and Argument Description Reference

commit txn Commits a transaction. “Transaction Management
Subcommands” on page 293

destroy dur Destroys a durable subscription. “Durable Subscription
Subcommands” on page 293

list cxn Lists connections for a broker. “Connection Subcommands” on
page 293

list dur Lists durable subscriptions to a topic. ~ “Durable Subscription
Subcommands” on page 293

list svc Lists services on a broker. “Connection Services Management
Subcommands” on page 292

[ist txn Lists transactions on a broker. “Transaction Management
Subcommands” on page 293

netrics bkr Displays broker metrics. “Broker Management
Subcommands” on page 289

netrics svc Displays service metrics. “Connection Services Management
Subcommands” on page 292

pause bkr Pauses all services on a broker. “Broker Management

Subcommands” on page 289

Chapter 13 Command Reference 287

imgemd

Table 13-3 i mgcnd Subcommands (Continued)

Subcommand
and Argument

Description

Reference

pause svc

purge dur

query bkr

query cxn

query svc

query txn

reload cls

restart bkr

resume bkr

resune svc

rol | back txn

shut down bkr

updat e bkr

update svc

Pauses a single service on a broker.

Purges all messages on a durable
subscription without destroying the
durable subscription.

Queries and displays information on a
broker.

Queries and displays information on a
connection.

Queries and displays information on a
service.

Queries and displays information on a
transaction.

Reloads broker cluster configuration.
Restarts the current running broker
instance.

Resumes all services on a broker.
Resumes one service.

Rolls back a transaction.

Shuts down the broker instance.

Updates attributes of a broker.

Updates attributes of a service.

“Connection Services Management
Subcommands” on page 292

“Durable Subscription
Subcommands” on page 293

“Broker Management
Subcommands” on page 289

“Connection Subcommands” on
page 293

“Connection Services
Management Subcommands” on
page 292

“Transaction Management
Subcommands” on page 293

“Broker Management
Subcommands” on page 289

“Broker Management
Subcommands” on page 289

“Broker Management
Subcommands” on page 289

“Connection Services Management
Subcommands” on page 292

“Transaction Management
Subcommands” on page 293

“Broker Management
Subcommands” on page 289

“Broker Management
Subcommands” on page 289

“Connection Services Management
Subcommands” on page 292

The imqemd command utility also has subcommands for use with physical
destinations on a broker. Destination subcommands are described in Chapter 6,
“Managing Physical Destinations.”

The following sections list the i ncnmd subcommands by function.

288 Message Queue 3 2005Q1 « Administration Guide

imgcmd

Broker Management Subcommands

Table 13-4 lists the i ngcnd subcommands used to manage brokers. If no host name
or port is specified, the default (I ocal host : 7676) is assumed.

Table 13-4 i ngcnd Subcommands Used to Manage a Broker

Subcommand Syntax

Description

metrics bkr [-b hostName:port]
[- m metricType]
[-int interval]
[-nsp numSamples]

pause bkr [-b hostName:port]

query bkr -b hostName:port

reload cls

restart bkr [-b hostName:port]

resurme bkr [-b hostName:port]

shut down bkr [-b hostName:port]

Displays broker metrics for the default broker or a
broker at the specified host and port.

Use the - moption to specify the type of metric to
display:

ttl Displays metrics on messages and packets
flowing into and out of the broker. (default metric type)

rts Displays metrics on rate of flow of messages
and packets into and out of the broker (per second).

cxn Displays connections, virtual memory heap, and
threads.

Use the -i nt option to specify the interval (in seconds)
at which to display the metrics. The default is 5
seconds.

Use the - nsp option to specify the number of samples
displayed in the output. The default is an unlimited
number (infinite).

Pauses the default broker or a broker at the specified
host and port. See “Pausing and Resuming a Broker”
on page 113.

Lists the current settings of properties of the default
broker or a broker at the specified host and port. Also
shows the list of running brokers (in a multi-broker
cluster) that are connected to the specified broker.

Applies only to broker clusters. Forces all the brokers in
a cluster to reload the i ny. cl ust er. brokerl i st
property and update cluster information. See “Adding

Brokers to a Cluster” on page 199 for more information.

Shuts down and restart the default broker or a broker at
the specified host and port, using the options specified
when the broker started.

Resumes the default broker or a broker at the specified
host and port.

Shuts down the default broker or a broker at the
specified host and port.

Chapter 13 Command Reference

289

imgemd

Table 13-4 i mgcnd Subcommands Used to Manage a Broker (Continued)

Subcommand Syntax Description
updat e bkr [-b hostName:port] Changes the specified attributes for the default broker
-0 attribute=value or a broker at the specified host and port.

[- o attribute=valuel] ...

Physical Destination Management Subcommands

Table 13-5 lists the i nycnd subcommands used to manage physical destinations. If
no host name or port is specified, the default (| ocal host : 7676) is assumed.

Table 13-5 i mgcnd Subcommands Used to Manage Destinations

Subcommand Syntax Description
conpact dst [-t destType Compacts the built-in file-based data store for the
-n destName] destination of the specified type and name. If no

destination type and name are specified, all destinations
are compacted. Destinations must be paused before
they can be compacted.

create dst -t destType Creates a destination of the specified type, with the
-Nn destName specified name, and the specified attributes. A
[-0 attribute=value] destination name must contain only alphanumeric
[-0 attribute=valuel] ... characters (no spaces) and can begin with an alphabetic

character or the characters “_" and “$". It cannot begin
with the character string “ng. ”

You cannot perform this operation in a cluster whose
master broker is temporarily unavailable.

destroy dst -t destType Destroys the destination of the specified type and name.
-n destName You cannot destroy a system-created destination, such
as a dead message queue.

You cannot perform this operation in a cluster whose
master broker is temporarily unavailable.

list dst [-t destType] [-tnp] Lists all destinations of the specified type, with option of
listing temporary destinations as well.

The type argument can have two values:

destType = q (queue)
destType =t (topic)

If the type is not specified, all destinations of all types
are listed.

290 Message Queue 3 2005Q1 « Administration Guide

imgcmd

Table 13-5 i mgcnd Subcommands Used to Manage Destinations (Continued)

Subcommand Syntax

Description

metrics dst -t destType
-n destName
[- m metricType]
[-int interval]
[-nsp numSamples]

pause dst [-t destType
-n destName]
[-pst pauseType]

purge dst -t destType
- N destName

query dst -t destType
-n destName

resume dst [-t destType
- N destName]

update dst -t destType
-Nn destName
-0 attribute=value
[-0 attribute=valuel] ...

Displays metrics information for the destination of the
specified type and name.

Use the - moption to specify the type of metric to display:

ttl Displays metrics on messages and packets
flowing into and out of the destination and residing in
memory. (default metric type))

rts Displays metrics on rate of flow of messages and
packets into and out of the destination (per second) and
other rate information.

con Displays consumer-related metrics.
dsk Displays disk usage metrics.

Use the - i nt option to specify the interval (in seconds)
at which to display the metrics. The default is 5 seconds.

Use the - msp option to specify the number of samples
displayed in the output. The default is an unlimited
number (infinite).

Pauses the delivery of messages to consumers (- pst
CONSUMVERS), or from producers (- pst PRCDUCERS), or
both (- pst ALL), for the destination of the specified type
and name. If no destination type and name are
specified, all destinations are paused. The default is
ALL.

Purges messages at the destination of the specified
type and name.

Lists information about the destination of the specified
type and name.

Resumes the delivery of messages for the paused
destination of the specified type and name. If no
destination type and name are specified, all destinations
are resumed.

Updates the value of the specified attributes at the
specified destination.

The attribute name may be any of the attributes
described in Table 15-1, unless the destination is the
dead message queue, ng. sys. dng.

Chapter 13 Command Reference 291

imgemd

Connection Services Management Subcommands

Table 13-6 lists the i ngcmd subcommands used to manage connection services. If no
host name or port is specified, the default (I ocal host : 7676) is assumed.

Table 13-6 i mycnmd Subcommands Used to Manage Connection Services

Subcommand Syntax Description
list svc [-b hostName:port] Lists all connection services on the default broker or
on a broker at the specified host and port.
netrics svc -n serviceName Displays metrics for the specified service on the
[-b hostName:port] default broker or on a broker at the specified host and
[- m metricType] port.
[-int interval] Use the - moption to specify the type of metric to
[-nsp numSamples] display:
ttl Displays metrics on messages and packets

flowing into and out of the broker by way of the
specified service. (default metric type)

rts Displays metrics on rate of flow of messages
and packets into and out of the broker (per second) by
way of the specified connection service.

cxn Displays connections, virtual memory heap,
and threads.

Use the -i nt option to specify the interval (in seconds)
at which to display the metrics. The default is 5
seconds.

Use the - msp option to specify the number of samples
displayed in the output. The default is an unlimited
number (infinite).

pause svC -n serviceName Pauses the specified service running on the default
[-b hostName:port] broker or on a broker at the specified host and port.
You cannot pause the admin service.
query svc -n serviceName Displays information about the specified service
[-b hostName:port] running on the default broker or on a broker at the
specified host and port.
resune svc -n serviceNarme Resumes the specified service running on the default
[-b hostName:port] broker or on a broker at the specified host and port.
update svc -n serviceName Updates the specified attribute of the specified service
[-b hostName:port] running on the default broker or on a broker at the
- 0 attribute=value specified host and port. For a description of service
[- 0 attribute=valuel] ... attributes, see “Connection Service Properties” on
page 311.

292 Message Queue 3 2005Q1 « Administration Guide

imgcmd

Connection Subcommands

Table 13-7 lists the i nycnd subcommands that apply to connections. If no host
name or port is specified, they are assumed to be | ocal host, 7676.

Table 13-7 i ngcnd Subcommands Used to Manage Connection Services

Subcommand Syntax Description
l'ist cxn [-svn serviceName] Lists all connections of the specified service name on
[-b hostName:port] the default broker or on a broker at the specified host

and port. If the service name is not specified, all
connections are listed.

query cxn -n connectionID Displays information about the specified connection
[-b hostName:port] on the default broker or on a broker at the specified
host and port.

Durable Subscription Subcommands

Table 13-8 provides a summary of the i ngcnd durable subscription subcommands.
If no host name or port is specified, the default (I ocal host :7676) is assumed.

Table 13-8 i mycnd Subcommands Used to Manage Durable Subscriptions

Subcommand Description

list dur -d destName Lists all durable subscriptions for the specified
destination.

destroy dur -n subscrName Destroys the specified durable subscription with the

-C client_id specified Client Identifier.

You cannot perform this operation in a cluster whose
master broker is temporarily unavailable.

purge dur -n subscrName Purges all messages for the specified durable
-c client_id subscription with the specified Client Identifier.

Transaction Management Subcommands

Table 13-9 provides a summary of the i nycnd transactions subcommands. If no
host name or port is specified, the default (I ocal host :7676) is assumed.

Chapter 13 Command Reference 293

imgemd

294

Table 13-9 i mycnd Subcommands Used to Manage Transactions

Subcommand

Description

list txn
query txn -n transaction_id

commt txn -n transaction_id

Lists all transactions, being tracked by the broker.
Lists information about the specified transaction.

Commits the specified transaction.

rol | back txn -n transaction_id Rolls back the specified transaction.

Command Options

Table 13-10 lists the options to the i mgcnd command.

Table 13-10 i ngcnd Options

Option

Description

-b hostName:port

-C clientID

-d destinationName

-int interval

-j avahone path

Specifies the name of the broker’s host and its port number. The
default value is | ocal host : 7676.

To specify port only: -b : 7878
To specify name only: -b sonehost

Specifies the ID of the durable subscriber to a topic. See “Managing
Durable Subscriptions” on page 122.

Specifies the name of the topic. Used with the | i st dur and
destroy dur subcommands. See “Managing Durable
Subscriptions” on page 122.

Performs action without user confirmation.

Displays usage help. Nothing else on the command line is
executed.

A user name and password is not needed with this option.

Displays usage help, attribute list, and examples. Nothing else on
the command line is executed.

A user name and password is not needed with this option.

Specifies the interval, in seconds, at which the netrics bkr,
netrics dst,and netrics svc subcommands display metrics
output.

Specifies an alternative Java 2 compatible runtime to use (default is
to use the runtime on the system or the runtime bundled with
Message Queue).

Message Queue 3 2005Q1 « Administration Guide

imgcmd

Table 13-10 i ngcnd Options (Continued)

Option

Description

- m metricType

-sp numSamples

-n argumentName

-0 attribute=value

-p password

-passfile path

-pst pauseType

-rtm timeout

-rtr numRetries

-S

-Secure

Specifies the type of metric information to display. Use this option
with the et rics dst, metrics svc, ornmetrics bkr subcommand.
The value of metricType depends on whether the metrics are
generated for a destination, a service, or a broker.

Specifies the number of metric samples the netri cs bkr, netrics

dst, and netri cs svc subcommands display in their metrics output.

Specifies the name of the subcommand argument. Depending on
the subcommand, this might be the name of a service, a physical
destination, a durable subscription, a connection ID, or a
transaction ID.

Specifies the value of an attribute. Depending on the subcommand
argument, this might be the attribute of a broker (see “Using the
imgcmd Command Utility” on page 108), service (see “Managing
Connection Services” on page 116), or destination (see “Managing
Durable Subscriptions” on page 122).

Specifies your (the administrator’'s) password. This option is being
deprecated and will be unsupported in a future release. Use one of
the following alternatives:

e Omit the password from the command line so that the
command prompts you for the password.

» Use the -passfi | e option to specify a file containing the
administrator’s password.

Specifies the path to a file containing the password for the user
issuing the command. For more information, see “Using a Passfile”
on page 169.

Specifies whether producers, consumers, or both are paused when
pausing a destination. See “Managing Durable Subscriptions” on
page 122.

Specifies the initial (retry) timeout period (in seconds) of an i ngcnd
subcommand. The timeout is the length of time the i ngcnd
subcommand will wait after making a request to the broker. Each
subsequent retry of the subcommand will use a timeout value that
is a multiple of the initial timeout period. Default: 10

Specifies the number of retries attempted after an i ngcnd
subcommand first times out. Default: 5

Silent mode. No output will be displayed.

Specifies a secure administration connection to the broker using
the ssl adni n connection service (see “Step 4. Configuring and
Running SSL-Based Clients” on page 164). If you omit this option,
the connection will not be secure.

Chapter 13 Command Reference

295

imgemd

Table 13-10 i mgcnd Options (Continued)

Option Description

-svn serviceName Specifies the service for which connections are listed. See “Getting
Information About Connections” on page 121.

-t destType Specifies the type of a destination: t (topic) or g (queue). See
“Managing Durable Subscriptions” on page 122.

-tnp Displays temporary destinations. See Table 13-5 on page 290.

- U userName Specifies your (the administrator’s) name. If you omit this value, you
will be prompted for it.

-V Displays version information. Nothing else on the command line is
executed.

A user name and password is not needed with this option.

See Also

For more information about using i ngcnd and for command examples, see
Chapter 5, “Managing a Broker” and Chapter 6, “Managing Physical
Destinations.”

296 Message Queue 3 2005Q1 « Administration Guide

imgobjmgr

Imgobjmgr

The Object Manager utility, i ngobj myr, creates and manages Message Queue
administered objects.

Syntax

i mgobj mgr subcommand [options]
i ngobj ngr -h| H
i ngobj myr -v

Subcommands

The Object Manager utility (i ngobj myr) includes the subcommands listed in
Table 13-3:

Table 13-11 i ngobj ngr Subcommands

Subcommand Description

add Adds an administered object to the object store.

del ete Deletes an administered object from the object store.

list Lists administered objects in the object store.

query Displays information about the specified administered object.
updat e Modifies an existing administered object in the object store.

Chapter 13 Command Reference 297

imgobjmgr

298 Message Queue 3 2005Q1 « Administration Guide

Command Options

Table 13-12 lists the options to the i mjobj ngr command. For a discussion of their
use, see the task-based sections that follow.

Table 13-12 i mgobj ngr Options

Option Description

-f Performs action without user confirmation.

-h Displays usage help. Nothing else on the command line is
executed.

-H Displays usage help, attribute list, and examples. Nothing else on
the command line is executed.

-1 fileName Specifies the name of an command file containing all or part of the

-] attribute=value

-j avahone path

-1 lookupName
-0 attribute=value
-pre

-1 read-only_state

subcommand clause, specifying object type, lookup name, object
attributes, object store attributes, or other options. Typically used
for repetitive information, such as object store attributes.

Specifies attributes necessary to identify and access a JNDI object
store. See “About Object Stores” on page 174.

Specifies an alternative Java 2 compatible runtime to use (defaultis
to use the runtime on the system or the runtime bundled with
Message Queue).

Specifies the INDI lookup name of an administered object. This
name must be unique in the object store’s context.

Specifies attributes of an administered object. See Chapter 16,
“Administered Object Attribute Reference” on page 333.

Preview mode. Indicates what will be done without performing the
command.

Specifies whether an administered object is a read-only object. A
value of t r ue indicates the administered object is a read-only
object. Clients cannot modify the attributes of read-only
administered objects. The read-only state is set to f al se by default.

Silent mode. No output will be displayed.

imgobjmgr

Table 13-12 i nyobj ngr Options (Continued)

Option

Description

-t objectType

Specifies the type of a Message Queue administered object:
g = queue

t = topic

cf = connection factory

gf = queue connection factory

tf = topic connection factory

xcf = XA connection factory (distributed transactions)

xqf = XA queue connection factory (distributed transactions)
xtf = XA topic connection factory (distributed transactions)

e = SOAP endpoint (This administered object type is used to
support SOAP messages, as described in the Message Queue
Developer’s Guide for Java Clients.)

Displays version information. Nothing else on the command line is
executed.

See Also

For more information about i nfobj ngr and for command examples, see Chapter 8,
“Managing Administered Objects.”

Chapter 13 Command Reference 299

imgdbmgr

iImgdbmgr

The Database Manager utility (i ngdbrmyr) sets up the schema needed for
persistence. You can also use the i ngdbngr command t o delete Message Queue
database tables that become corrupted or to change the data store.

Syntax

i mydbryr subcommand argument [options]
i ngdbngr - h| -hel p
i ngdbngr - v| -versi on

Subcommands

The Database Manager utility (i ngdbrmyr) includes the subcommands listed in
Table 13-13:

Table 13-13 i mgdbngr Subcommands

Subcommand

and Argument Description

create all Creates a new database and Message Queue persistent store schema.
This command is used on an embedded database system, and when used,
the property i mg. persi st. j dbc. creat edbur| needs to be specified.

create thl Creates the Message Queue persistent store schema in an existing
database system. This command is used on an external database system.

del ete thl Deletes the existing Message Queue database tables in the current
persistent store database.

del et e ol dt bl Deletes all Message Queue database tables in an earlier version persistent
store database. Used after the persistent store has been automatically
migrated to the current version of Message Queue.

recreate thl Deletes the existing Message Queue database tables in the current
persistent store database and then re-creates the Message Queue
persistent store schema.

reset |ck Resets the lock so the persistent store database can be used by other

processes.

300 Message Queue 3 2005Q1 « Administration Guide

imgdbmgr

Command Options
Table 13-14 lists the options to the i mgdbngr command.

Table 13-14 i mgdbngr Options

Option

Description

- Dyroperty=value

-b instanceName
-h

-p password

-passfile path

Sets the specified property to the specified value.

Specifies the broker instance name and use the corresponding
instance configuration file.

Displays usage help. Nothing else on the command line is
executed.

Specifies the database password. This option is being deprecated
and will be unsupported in a future release. Use one of the
following alternatives:

¢ Omit the password from the command line so that the
command prompts you for the password.

¢ Use the -passfi | e option to specify a file containing the
database password.

Specifies the path to a file containing the database password. For
more information, see “Using a Passfile” on page 169.

-U name Specifies the database user name.
-V Displays version information. Nothing else on the command line is
executed.

For more information about setting up a persistent store, see “Setting Up a
Persistent Store” on page 99.

Chapter 13 Command Reference

301

imqusermgr

Imgusermagr

The User Manager utility (i nquser ngr) lets you edit or populate a flat-file user
repository. Before using i mquser nyr, keep the following things in mind:

e If a broker-specific user repository does not yet exist, you must start up the
corresponding broker instance to create it.

e Theinguser ngr command has to be run on the host where the broker is

installed.

* You need the appropriate permissions to write to the repository: namely, on
Solaris and Linux, you must be the root user or the user who first created the

broker instance.

Syntax

i myuser ngr subcommand [options)

i nqusernmgr -h
i ngusernmgr -v
Subcommands

Table 13-15 lists the i mquser mgr subcommands whose use is described in this

chapter.

Table 13-15 i nguser ngr Subcommands

Subcommand

Description

add [-i instanceName] -u userName -p passwd

(-9 group] [-s]
del ete [-i instanceName] -u userName[-s] [-f]

list [-i instanceName] [-u userName]

update [-i instanceName] -u userName -p passwd
[-a state] [-s] [-f]

update [-i instanceName] -u userName - a state
[-p passwd] [-s] [-f]

Adds a user and associated password to the
specified (or default) broker instance repository, and
optionally specifies the user’s group.

Deletes the specified user from the specified (or
default) broker instance repository.

Displays information about the specified user or all
users in the specified (or default) broker instance
repository.

Updates the password and/or state of the specified
user in the specified (or default) broker instance
repository.

302 Message Queue 3 2005Q1 « Administration Guide

Command Options

imqusermgr

Table 13-16 lists the options to the i muser ngr command.

Table 13-16 i mguser ngr Options

Option

Description

- a active_state

Specifies (t r ue/f al se) whether the user’s state
should be active. A value of t r ue means that the state
is active. This is the default.

-f Performs action without user confirmation

-h Displays usage help. Nothing else on the command
line is executed.

-1 instanceName Specifies the broker instance user repository to which
the command applies. If not specified, the default
instance name, i mgbr oker , is assumed.

-p passwd Specifies the user’s password.

-g group Specifies the user group. Valid values are adni n,
user, anonynous.

-S Sets silent mode.

- U userName Specifies the user name.

-V Displays version information. Nothing else on the
command line is executed.

For more information about setting up and managing a flat-file user repository,
and for i nyuser ngr command examples, see “Using a Flat-File User Repository”

on page 142.

Chapter 13 Command Reference

303

imgsvcadmin

Imgsvcadmin

The Service Administration (i mgsvcadm n) utility installs a broker as a Windows
service.

Syntax

i mysvcadni n subcommand [options)

i ngsvcadnin -h

Subcommands

The Message Queue Service Administrator utility (i mgsvcadm n) includes the
subcommands listed in Table 13-17:

Table 13-17 i mgsvcadn n Subcommands

Subcommand Description
install Installs the service and specifies startup options.
query Displays the startup options to the i ngsvcadm n command. This

includes whether the service is started manually or automatically,
its location, the location of the java runtime, and the value of the
arguments passed to the broker on startup.

renove Removes the service.

Command Options

Table 13-18 lists the options to the i ngsvcadm n command.

Table 13-18 i ngsvcadm n Options

Option Description
-h Displays usage help. Nothing else on the command line is executed.
-j avahone path Specifies the path to an alternate Java 2 compatible runtime to use

(default is to use the runtime on the system or the runtime bundled with
Message Queue.

Example: i ngsvcadm n -install -javahore d:\jdkl.4

304 Message Queue 3 2005Q1 « Administration Guide

imgsvcadmin

Table 13-18 i mysvcadm n Options (Continued)

Option Description
-j rehone path Specifies the path to a Java 2 compatible JRE.
Example: i ngsvcadm n -install -jrehome d:\jre\1.4
-vnargs arg Specifies additional arguments to pass to the Java VM that is running the
[[arg] .} broker service. (You can also specify these arguments in the Windows

Services Control Panel Startup Parameters field.)

Example: -vmargs "- Xms16m - Xnx128nf{

-args arg [[arg] .} Specifies additional command line arguments to pass to the broker
service. For a description of the i ngbr oker d options, see “imgbrokerd” on
page 282.

(You can also specify these arguments in the Windows Services Control
Panel Startup Parameters field.) For example,

i ngsvcadmin -install
-args “-passfile d:\ingpassfile”

The information that you specify using the - j avahore, - vinar gs, and - ar gs options
is stored in the Window’s registry under the keys JREHone, JVMAr gs, and
Servi ceAr gs in the following path:

HKEY LOCAL_NACH NE\ SYSTEM Current Cont r ol Set
\ Servi ces\i MQ Broker\ Paranet ers

See Also

For more information about running Message Queue as a Windows service, see
“Automatic Startup on Windows” on page 69.

Chapter 13 Command Reference 305

imgkeytool

Imgkeytool

The (i myuser mgr command generates a self-signed certificate for the broker. The
same certificate can be used for the ssl j ns, ssl adni n, or cl ust er connection service.
On UNIX systems you may need to run i mgkeyt ool from the super user (root)
account.

Syntax

i ngkeyt ool - br oker

See Also

For more information about setting up secure connections, see “Working With an
SSL-Based Service” on page 159.

306 Message Queue 3 2005Q1 « Administration Guide

Chapter 14

Broker Properties Reference

This chapter lists and describes the broker configuration properties. The first
section is an alphabetical list of all broker properties, with a reference to the section
that contains a full description. All other sections group a set of broker properties
by function and provide full descriptions of the properties.

This chapter contains the following sections:

* “Alphabetical List of Properties” on page 307

¢ “Connection Service Properties” on page 311

* “Message Router Properties” on page 313

* “Persistence Manager Properties” on page 316

* “Security Manager Properties” on page 320

* “Monitoring and Logging Properties” on page 324
¢ “Cluster Configuration Properties” on page 327

In the description tables, properties are marked if you can set them by using the
i ngend updat e bkr command.

Alphabetical List of Properties

Table 14-1 is an alphabetical list of broker instance properties. Use it to determine
the category of any property, and then use the category description to find a full
property description elsewhere in this chapter.

In the table, the left column alphabetically lists each property. The right column
shows the category to which the property belongs and provides a cross-reference
to the appropriate section.

307

Alphabetical List of Properties

Table 14-1 Broker Instance Configuration Properties

Property Name

Reference

i ng. accesscont rol . enabl ed

i ng. accesscontrol . file.filename

i ng. audi t. enabl ed

i ng. aut henti cation. basi c. user _reposi tory

i ng. aut henti cation.client.response.tineout
i ng. aut henti cation.type

i ng. aut ocreat e. desti nation.isLocal Only

i ng. aut ocreat e. desti nation. | imtBehavior

i ng. aut ocr eat e. desti nati on. maxByt esPer Msg

i ng. aut ocr eat e. desti nat i on. maxNuniksgs

i ng. aut ocr eat e. desti nati on. naxNunPr oducer s
i ng. aut ocr eat e. desti nati on. naxTot al MsgByt es
i ng. aut ocr eat e. desti nati on. useDVMQ

i my. aut ocr eat e. queue

i ng. aut ocr eat e. queue. consurer Fl owLi m t

i ng. aut ocr eat e. queue. | ocal Del i veryPreferred
i ng. aut ocr eat e. queue. maxNumAct i veConsuner s
i ng. aut ocr eat e. queue. maxNunBackupConsuner s
i ng. aut ocreat e. t opi c

i ng. aut ocr eat e. t opi c. consurrer Fl owLi mi t

i my. cl ust er . property_name

i ng. destination. DMQ t runcat eBody

i ng. desti nation. | ogDeadMsgs

i ng. host narre

i my. httpj ms. ht t p. property_name

i my. htt psj ms. ht't ps. property_name

i ng. i myend. passwor d

i my. keyst or e. property_name

“Security Manager Properties” on page 320
“Security Manager Properties” on page 320
“Security Manager Properties” on page 320
“Security Manager Properties” on page 320
“Security Manager Properties” on page 320
“Security Manager Properties” on page 320
“Auto-create Configuration Properties” on page 314
“Auto-create Configuration Properties” on page 314
“Auto-create Configuration Properties” on page 314
“Auto-create Configuration Properties” on page 314
“Auto-create Configuration Properties” on page 314
“Auto-create Configuration Properties” on page 314
“Auto-create Configuration Properties” on page 314
“Auto-create Configuration Properties” on page 314
“Auto-create Configuration Properties” on page 314
“Auto-create Configuration Properties” on page 314
“Auto-create Configuration Properties” on page 314
“Auto-create Configuration Properties” on page 314
“Auto-create Configuration Properties” on page 314
“Auto-create Configuration Properties” on page 314
“Cluster Configuration Properties” on page 327
“Message Router Properties” on page 313
“Monitoring and Logging Properties” on page 324
“Connection Service Properties” on page 311
Table C-3 on page 385

Table C-3 on page 385

“Security Manager Properties” on page 320

“Security Manager Properties” on page 320

308 Message Queue 3 2005Q1 « Administration Guide

Alphabetical List of Properties

Table 14-1 Broker Instance Configuration Properties (Continued)

Property Name

Reference

i ng. | og. consol e. out put “Monitoring Service Properties” on page 324
i ng. | og. consol e. stream “Monitoring Service Properties” on page 324
ing.log.file.dirpath “Monitoring Service Properties” on page 324
ing.log.file.fil enane “Monitoring Service Properties” on page 324
ing.log.file.output “Monitoring Service Properties” on page 324
ing.log.file.rolloverbytes “Monitoring Service Properties” on page 324
ing.log.file.rolloversecs “Monitoring Service Properties” on page 324
i ng. | og. | evel “Monitoring Service Properties” on page 324
ing.log.syslog.facility “Monitoring Service Properties” on page 324
ing.log.syslog.identity “Monitoring Service Properties” on page 324
i ng. | 0g. sysl og. | ogconsol e “Monitoring Service Properties” on page 324
i ng. | 0g. sysl og. | ogpi d “Monitoring Service Properties” on page 324
i ng. | 0g. sysl og. out put “Monitoring Service Properties” on page 324
ing. | og.timezone “Monitoring Service Properties” on page 324
i ng. message. expiration.interval “Message Router Properties” on page 313

i Ng. message. max_si ze “Message Router Properties” on page 313

i ng. metrics. enabl ed “Message Router Properties” on page 313
ing. metrics.interval “Message Router Properties” on page 313

i ng. netrics. topic. enabl ed “Message Router Properties” on page 313
ing. metrics.topic.interval “Message Router Properties” on page 313

i ng. netrics. topic. persist “Message Router Properties” on page 313
ing.metrics.topic.timetolive “Monitoring Service Properties” on page 324
i ng. passfile.dirpath “Security Manager Properties” on page 320

i ny.
i ng.

passfil e. enabl ed

passfil e. nane

“Security Manager Properties” on page 320

“Security Manager Properties” on page 320

i ng. persist.file.destination.nessage.
filepool.limt

“Properties for File-Based Persistence” on page 317

i mg. persist.file. message. cl eanu “Message Router Properties” on page 313
. p g p

i ng. persist.file. message.filepool.cleanratio “Message Router Properties” on page 313

Chapter 14 Broker Properties Reference 309

Alphabetical List of Properties

Table 14-1 Broker Instance Configuration Properties (Continued)

Property Name

Reference

i ng.
i ng.
i ng.
i ny.
i ny.
i ny.
i ng.
i ng.
i ng.
i ny.
i ny.
i ny.
i ng.
i ng.
i ng.
i ny.
i ny.
i ny.
i ng.
i ng.
i ng.
i ny.
i ny.
i ny.

persist.file. message. max_record_size
persist.file.sync.enabl ed

per si st . j dbc. property_name
persist.store

pi ng.interval

por t mapper . backl og

por t mapper . host nane

por t mapper . port

resource_state. count

resource_state. t hr eshol d

service. activel i st

service_name. accesscont r ol . enabl ed
service_name. accesscontrol . file.fil ename
service_name. aut henti cati on. type
service_name. max_t hr eads

service_name. m n_t hr eads

service_name. protocol_type. host name
service_name. protocol_type. por t
service_name. t hr eadpool _nodel

shar ed. connectionhonitor _limt
syst em max_count

system max_si ze

transaction. aut or ol | back

user _reposi tory. | dap. property_name

“Message Router Properties” on page 313
“Properties for File-Based Persistence” on page 317
“Persistence Manager Properties” on page 316
“Message Router Properties” on page 313
“Connection Service Properties” on page 311
“Connection Service Properties” on page 311
“Connection Service Properties” on page 311
“Connection Service Properties” on page 311
“Message Router Properties” on page 313
“Message Router Properties” on page 313
“Connection Service Properties” on page 311
“Security Manager Properties” on page 320
“Security Manager Properties” on page 320
“Security Manager Properties” on page 320
“Connection Service Properties” on page 311
“Connection Service Properties” on page 311
“Connection Service Properties” on page 311
“Connection Service Properties” on page 311
“Connection Service Properties” on page 311
“Connection Service Properties” on page 311
“Message Router Properties” on page 313
“Message Router Properties” on page 313
“Message Router Properties” on page 313

“Security Manager Properties” on page 320

310

Message Queue 3 2005Q1 « Administration Guide

Connection Service Properties

Table 14-2 lists the Connection Service properties. The first column lists the
property names. For each property name, the second column describes the
property, the third column specifies its type, and the fourth column gives its
default value.

Table 14-2 Connection Service Properties

Connection Service Properties

Property Name Description Type Default

i ng. service. activelist A list of connection services, by name, separated by list j s, adnin
commas, to be made active at broker startup.

Supported services are: j ns, ssl j s, htt pj ns,
ht t psj ns, admi n, ssl admi n.

i mg. pi ng. i nterval The period, in seconds, between successive attempts integer 120
of the broker to ping the Message Queue client runtime
across a connection.

i ng. host narre The host (hostname or IP address) to which all string All available
connection services bind if there is more than one host IP addresses
available (for example, if there is more than one
network interface card in a computer).

i mg. por t mapper . port?! The broker’s primary port—the port at which the Port integer 7676
Mapper resides. If you are running more than one
broker instance on a host, each must be assigned a
unique Port Mapper port.

i ng. por t mapper . host nane The host (hostname or IP address) to which the Port string Inherited from
Mapper binds if there is more than one host available i ng.host name
(for example, if there is more than one network
interface card in a computer).

i ng. port mapper. backl og The maximum number of concurrent requests that the integer 50
Port Mapper can handle before rejecting requests. The
property sets the number of requests that can be stored
in the operating system backlog waiting to be handled
by the Port Mapper.

i NY. service_name. For jms, ssljms, admin, and ssladmin services only, the integer 0 (zero)

protocol_type2. por t port number for the named connection service. The port is
To configure the httpjms and httpsjms connection dynamically
services, see Appendix C, “HTTP/HTTPS Support.” allocated by the

Port Mapper.
i Ny. service_name. For jms, ssljms, admin, and ssladmin services only, the string Inherited from

protocol_type2. host nane

host (hostname or IP address) to which the named
connection service binds if there is more than one host
available (for example, if there is more than one
network interface card in a computer).

i ng. host nane

Chapter 14

Broker Properties Reference 311

Connection Service Properties

Table 14-2 Connection Service Properties (Continued)

Property Name Description Type Default
i M. service_name. The number of threads, which once reached, are integer 10 (jms)
m n_t hr eads maintained in the thread pool for use by the named 10 (ssljms)
connection service.
. . . 10 (httpjms)
The default value varies by connection service.
10 (httpsjms)
4 (admin)
4 (ssladmin)
i M. service_name. The number of threads beyond which no new threads integer 1000 (jms)
max_t hr eads are added to the thread pool for use by the named 500 (ssljms)
connection service. The number must be greater than)
zero and greater in value than the value of 500 (httpjms)
m n_t hr eads. 500 (httpsjms)
The default value varies by connection service. 10 (admin)
10 (ssladmin)
i Y. service_name. A string specifying whether threads are dedicated to string dedi cat ed (jms)
t hr eadpool _nodel connections (dedi cat ed) or shared by connections as dedi cat ed
needed (shar ed) for the named connection service. (ssljms)
Shared model (thread pool management) increases the]
number of connections supported by a broker, but is dedi cat ed
implemented only for the j ms and adm n connection (httpjms)
services. dedi cat ed
The default value varies by connection service. (httpsjms)
dedi cat ed
(admin)
dedi cat ed
(ssladmin)
i ng. shared. For shared thread pool model only, the maximum integer 512 (Solaris &

connectionMnitor limt

number of connections that can be monitored by a
distributor thread. (The system allocates enough
distributor threads to monitor all connections.) The
smaller this value, the faster the system can assign
active connections to threads. A value of - 1 means no
limit.

The default value varies by operating system.

Linux)
64 (Windows)

1. This property can be used with the i ngcmd updat e bkr command.

2. protocol_type is specified in Table 4-2.

312 Message Queue 3 2005Q1 « Administration Guide

Message Router Properties

Table 14-3 lists the Message Router properties. The first column lists the property
names. For each property name, the second column describes the property, the
third column specifies its type, and the fourth column gives its default value.

Message Router Properties

The auto-create properties that configure the message server’s ability to
automatically create destinations are listed in Table 14-4 on page 314.

Table 14-3 Message Router Properties

Property Name Description Type Default

i ng. destination. A boolean value specifying whether the broker boolean fal se

DMVQ t runcat eBody? removes the body of a message before storing it in
the dead message queue. A value of t r ue causes the
broker to save just the message header and property
data. A value of f al se causes the broker to save the
header and body.

i NY. message. The interval, in seconds, at which reclamation of integer 60

expiration.interval expired messages occurs.

i ng. system max_count * The maximum number of messages held by the integer -1
broker. Additional messages will be rejected. A value
of -1 means no limit.

i ng. system max_si zet The maximum total size (in bytes, Kbytes, or Mbytes) byte string? -1
of messages held by the broker. Additional
messages will be rejected. A value of -1 means no
limit.

i Ng. message. max_si ze! The maximum allowed size (in bytes, Kbytes, or byte string? 70m
Mbytes) of a message body. Any message larger
than this will be rejected. A value of -1 means no
limit.

i Y. resource_state. The percent memory utilization at which each integer 0 (green)

t hreshol d memory resource state is triggered. The resource (percent) 80 (yellow
state can have the values gr een, yel | ow, or ange, and 90(or ange)
red. 98 (red)

i my. resource_state. count The maximum number of incoming messages integer 5000 (green)
allowed in a batch before system memory is checked (percent) 500 (yell ow)
to see whether a new memory threshold has been 50(or ange)
reached. This limit throttles back message producers 0 (red)

as system memory becomes increasingly scarce.

Chapter 14

Broker Properties Reference 313

Message Router Properties

Table 14-3 Message Router Properties (Continued)

Property Name Description Type Default
i ng. transaction. A boolean value specifying whether distributed boolean fal se
aut or ol | back transactions left in a PREPARED state are automatically

rolled back when a broker is started up. If f al se, you
must manually commit or roll back transactions using
i mgcnd (see “Managing Transactions” on page 123).

1. This property can be used with the i ngcmd updat e bkr command.

2. A value that is typed as a byte string can be expressed in bytes, Kbytes, and Mbytes: For example: 1000 means 1000 bytes; 7500b means
7500 bytes; 77k means 77 kilobytes (77 x 1024 = 78848 bytes); 17m means 17 megabytes (17 x 1024 x 1024 = 17825792 bytes)

Table 14-4 lists the properties that the broker uses when automatically creating
destinations.

Table 14-4 Auto-create Configuration Properties

Property Name Description Type Default
i ng. aut ocr eat e. desti nation. (Applies only to broker clusters.) A boolean value boolean fal se
i sLocal Onl'y specifying that a destination is not replicated on other

brokers, and is therefore limited to delivering messages
only to local consumers (consumers connected to the
broker on which the destination is created). This
attribute cannot be updated once the destination has
been created.

i ng. aut ocr eat e. desti nation. A string specifying how the broker responds when a string REJECT
|'i mt Behavi or memory-limit threshold is reached. Values are: NEWEST

e FLOW CONTROL — Slows down producers.
« REMOVE_QLDEST — Throws out oldest messages.

¢ REMOVE_LOWPR CR TY — Throws out lowest priority
messages according to age of the messages.

¢ REJECT_NEVEST — Rejects the newest messages.
The producing client gets an exception for rejection
of persistent messages only. To use this limit
behavior with non-persistent messages, set the
i ngAckOnPr oduce connection factory attribute.

If you set this property to REMOVE_CLDEST or
REMOVE_LON PRI ORI TY and set

i ng. aut ocr eat e. desti nation. useDMQ to true, the
broker moves excess messages to the dead message
queue.

314 Message Queue 3 2005Q1 « Administration Guide

Table 14-4 Auto-create Configuration Properties (Continued)

Message Router Properties

Property Name Description Type Default
i ng. aut ocr eat e. desti nation. The maximum size (in bytes) of any single message byte 10k
maxByt esPer Msg allowed in an auto-created destination. A value of -1 string?

indicates that message size is unlimited.
i ng. aut ocr eat e. desti nation. The maximum number of unconsumed messages integer 100, 000
maxNunvkgs allowed in an auto-created destination. A value of -1

indicates that the number is unlimited.
i ng. aut ocr eat e. desti nation. The maximum number of producers allowed for the integer 100
maxNunPr oducer s destination. When this limit is reached, no new

producers can be created. A value of -1 indicates that

number of producers is unlimited.
i ng. aut ocr eat e. desti nation. The maximum total amount of memory (in bytes) byte 10m
maxTot al MsgByt es allowed for unconsumed messages in the destination. string?

A value of -1 indicates that memory is unlimited.
i ng. aut ocr eat e. desti nation. A boolean value specifying whether the broker moves boolean true
useDMQ dead messages for auto-created destinations to the

dead message queue.
i ng. aut ocr eat e. queuet A boolean value specifying whether a broker is allowed boolean true

to auto-create a queue destination.
i mg. aut ocr eat e. queue. The maximum number of messages that will be integer 1000
consuner Fl owLi m t delivered to a consumer in a single batch. In

load-balanced queue delivery, this is the initial number

of queued messages routed to active consumers

before load-balancing commences. This limit can be

overridden by a lower value set for the destination’s

consumers on their respective connections. A value of

-1 means an unlimited number.
i Ng. aut ocr eat e. queue. (Applies only to load-balanced queue delivery in broker boolean fal se
| ocal Del i veryPreferred clusters.) A boolean value specifying that messages be

delivered to remote consumers only if there are no

consumers on the local broker. Requires that the

auto-created destination not be restricted to local-only

delivery (i sLocal Onl'y = fal se).
i Ng. aut ocr eat e. queue. The maximum number of consumers that can be active integer 1
maxNunAct i veConsuner s in load-balanced delivery from an auto-created queue

destination. A value of - 1 means an unlimited number.
i ng. aut ocr eat e. queue. The maximum number of backup consumers that can integer 0 (zero)
maxNunBackupConsuner s take the place of active consumers if any fail during

load-balanced delivery from an auto-created queue

destination. A value of - 1 means an unlimited number.
i ng. aut ocreat e. t opi c A boolean value specifying whether a broker is allowed boolean true

to auto-create a topic destination.

Chapter 14 Broker Properties Reference 315

Persistence Manager Properties

Table 14-4 Auto-create Configuration Properties (Continued)

Property Name Description Type Default
i ng. aut ocr eat e. t opi c. The maximum number of messages that will be integer 1000
consuner Fl owLi m t delivered to a consumer in a single batch. A value of - 1

means an unlimited number.

1. This property can be used with i ngcmd updat e bkr.

2. A value that is typed as a byte string can be expressed in bytes, Kbytes, and Mbytes: For example: 1000 means 1000 bytes; 7500b means
7500 bytes; 77k means 77 kilobytes (77 x 1024 = 78848 bytes); 17m means 17 megabytes (17 x 1024 x 1024 = 17825792 bytes)

Persistence Manager Properties

To configure the persistence features of the broker, you must specify the value for
i my. persi st. store, or accept the default value.

Table 14-5 Required Persistence Manager Property

Property Name Description Type Default

i ng. persist.store A string specifying whether the broker is using built-in, string file
file-based persistence, or plugged-in JDBC compliant
persistence.

The value must be fil e or j dbc.

The properties that support file-based persistence and JDBC-based persistence are
described in the next sections.

File-Based Persistence

Table 14-6 lists the properties that support file-based persistence. The first column
lists the property names. For each property name, the second column describes the
property, the third column specifies its type, and the fourth column gives its
default value.

316 Message Queue 3 2005Q1 « Administration Guide

Table 14-6 Properties for File-Based Persistence

Persistence Manager Properties

Property Name

Description

Type

Default

i ng. persist.file.sync.
enabl ed

i ng. persist.file. nessage.

max_record_si ze

ing. persist.file.
desti nati on. message.
filepool.limt

i ng. persist.file. message.

filepool.cleanratio

ing. persist.file.
message. cl eanup

A boolean value specifying whether persistence
operations synchronize in-memory state with the
physical storage device. If this property is setto true,
data loss due to system crash is eliminated, but at the
expense of performance of persistence operations.

If you are running Sun Cluster and the Sun Cluster Data
Service for Message Queue, set this property to t r ue for
brokers on all cluster nodes.

For built-in, file-based persistence, the maximum size of
a message that will be added to the message storage
file, rather than being stored in a separate file.

For built-in, file-based persistence, the maximum
number of free files available for reuse in the destination
file pool. The larger the number the faster the broker can
process persistent data. Free files in excess of this
value will be deleted. The broker will create and delete
additional files, in excess of this limit, as needed.

For built-in, file-based persistence, the percentage of
free files in destination file pools that are maintained in a
clean state (truncated to zero). The higher this value,
the more overhead required to clean files during
operation, but the less disk space required for the file
pool.

For built-in, file-based persistence, a boolean value
specifying whether or not the broker cleans up free files
in destination file pools on shutdown. A value of f al se
speeds up broker shutdown, but requires more disk
space for the file store.

boolean

byte string*

integer

integer

boolean

fal se

Im

100

0 (zero)

fal se

1. A value that is typed as a byte string can be expressed in bytes, Kbytes, and Mbytes. Examples: 1000 means 1000 bytes; 7500b means

7500 bytes; 77k means 77 kilobytes (77 x 1024 = 78848 bytes); 17m means 17 megabytes (17 x 1024 x 1024 = 17825792 bytes)

JDBC-Based Persistence

Table 14-7 contains the properties that support JDBC-based persistence. The table
lists the properties, describes them, and then gives examples of how you would
configure use with the PointBase product.

Chapter 14

Broker Properties Reference 317

Persistence Manager Properties

Table 14-7 Properties for JDBC-Based Persistence

Property Name

Description

Example

i ng. persist.store

i ng. persist.jdbc. brokerid

i ng. persist.jdbc.driver

i ng. persi st.jdbc. opendburl

i ng. persist.jdbc. createdburl

i ng. persist.jdbc. cl osedburl

i ng. persi st.jdbc. user

A string specifying a file-based or
JDBC-based data store.

(Optional) A broker instance identifier
that is appended to database table
names to make them unique in the
case where more than one broker
instance is using the same database as
a persistent data store.

The attribute is usually unnecessary for
an embedded database, which stores
data for only one broker instance.

The identifier must be an alphanumeric
string whose length does not exceed
the maximum table name length, minus
12, allowed by the database.

The java class name of the JDBC driver
to connect to the database.

The database URL for opening a
connection to an existing database.

(Optional) The database URL for
opening a connection to create a
database.

This attribute is specified only if the
database will be created using

i mgdbnyr .

(Optional)The database URL for
shutting down the current database
connection when the broker is shut
down.

(Optional) The user name used to open
a database connection, if required. For
security reasons, the value can be
specified instead using command line
options:

i ngbr okerd - dbuser

and i rgdbrgr - u

j dbc

(Not needed for PointBase
embedded version)

com poi nt base. j dbc.
j dbcUni versal Dri ver

j dbc: poi nt base: enbedded:
dbName;dat abase. horme=

.Ji nst ances/instanceNamel
dbstore

j dbc: poi nt base:
enbedded:dbName;new,
dat abase. hone=
/i nst ances/instanceNamel
dbstore

Not required for PointBase

318 Message Queue 3 2005Q1 « Administration Guide

Table 14-7 Properties for JDBC-Based Persistence (Continued)

Persistence Manager Properties

Property Name

Description

Example

i ng. persi st. j dbc. needpasswor d

i ng. persi st.jdbc. password

i ng. persist.jdbc.table. | MBV35

i ng. persist.jdbc.table.
| MQCCREC35

i ng. persist.jdbc.table.
| MDEST35

i ng. persist.jdbc.tabl e. | MJ NT35

i ng. persist.jdbc.tabl e. | MMVBG35

(Optional) A boolean value specifying
whether the database requires a
password for broker access. A value of
t rue means that a password is
required.

If you set this option, the i ngbr oker d
and i ngdbmgr commands prompt for
the password, unless you use the
-passfi | e option to specify a file that
contains the password.

(Optional) The password for use in
opening a database connection, if
required.

Specify this property only in a passfile.

An SQL command used to create the
version table.

An SQL command used to create the
configuration change record table.

An SQL command used to create the
destination table.

An SQL command used to create the
interest table.

An SQL command used to create the
message table.

The default maximum length for the
MSG columnis 1 Megabyt e (1m. If you
expect to have messages that are
larger than this, set the length
accordingly. If the tables have already
been created, you need to recreate
them to make the change.

CREATE TABLE ${nane}
(STOREVERSI ON | NTEGER NOT
NULL, BRCKER D

VARCHAR(100))

CREATE TABLE ${nane}
(RECCROTI ME BI G NT NOT
NULL, RECCRD BLOB(10k))

CREATE TABLE ${nane} (DiD
VARCHAR(100) NOT NULL,
DEST BLOB(10k), primary
key(DI D))

CREATE TABLE ${nanme} (CQU D
Bl G NT NOT NULL, | NTEREST
BLOB(10k), primary
key(CU D))

CREATE TABLE ${nane} (MD
VARCHAR(100) NOT NULL,
DI D VARCHAR(100), NMSGSI ZE
BI G NT, MSG BLOB(1nm),
primary key(MD))

Chapter 14

Broker Properties Reference 319

Security Manager Properties

Table 14-7 Properties for JDBC-Based Persistence (Continued)

Property Name

Description

Example

i ng. persist.jdbc.table.
| MPROPS35

i ng. persist.jdbc.table.

I MY LI ST35

i ng. persist.jdbc.table. | MJTXN35

i ng. persist.jdbc.table.
| MJTACK35

An SQL command used to create the
property table.

An SQL command used to create the
interest state table.

An SQL command used to create the
transaction table.

An SQL command used to create the
transaction acknowledgment table.

CREATE TABLE ${nane}
(PROPNAME VARCHAR(100)
NOT NULL, PRCPVALUE
BLOB(10k), primary
key(PRCPNAME))

CREATE TABLE ${name} (MD
VARCHAR(100) NOT NULL,
CUDBIGNT, DD
VARCHAR(100), STATE
I NTEGER, primary key(M D,
QU D)

CREATE TABLE ${nanme} (TUD
Bl G NT NOT NULL, STATE
I NTEGER, TSTATECBJ
BLOB(10K), primary
key(TU D))

CREATE TABLE ${name} (TUD
BIGNT NOT NULL, TXNACK
BLCB(10k))

Security Manager Properties

Table 14-8 lists the Security Manager properties. The first column lists the property
names. For each property name, the second column describes the property, the
third column specifies its type, and the fourth column gives its default value.

If you are using SSL, refer to the keystore configuration properties listed in
Table 14-9, which follows.

Table 14-8 Security Manager Properties

Property Name

Description

Type Default

i ng. accesscontrol .
enabl ed

A boolean value specifying whether to set access
control for all connection services supported by a
broker. Indicates whether system will check if an

authenticated user has permission to use a

connection service or to perform specific Message

Queue operations with respect to specific
destinations, as specified in the access control
properties file.

boolean true

320 Message Queue 3 2005Q1 « Administration Guide

Table 14-8 Security Manager Properties (Continued)

Security Manager Properties

Property Name Description Type Default
i mg. accesscontrol . file. The name of an access control properties file for all string accesscontrol .
fil enanme connection services supported by a broker instance. properties
The file name specifies a relative file path to the
access control directory (see Appendix A, “Operating
System-Specific Locations of Message Queue Data”).
i ng. audi t. enabl ed A boolean value specifying whether to start audit boolean fal se
logging (Enterprise Edition only) to the broker log file.
i ng. aut henti cati on. A string specifying (for base 64 coding) the type of string file
basi c. user_repository user repository used for authentication, either
file-based (fi | e) or LDAP (I dap).
i ng. aut henti cati on. The interval, in seconds, for the system to wait for a integer 180
client.response.tineout clientto respond to an authentication request from
the broker.
i ng. aut hent i cation.type A string specifying whether the password should be string di gest
passed in base 64 coding (basi c) or as an MD5
digest (di gest). Sets encoding for all connection
services supported by a broker.
i mg. i ngemd. passwor d The password of an administrative user. The i ngcmd string None
command utility uses this password to authenticate
the user of a command before performing an
operation.
i my. keyst or e. property_name ~ For SSL-based services, a string specifying security string None
properties relating to the SSL keystore. See
Table 14-9 on page 324
i ng. passfile.dirpath The path to the directory containing the passfile string See Appendix A
(depends on operating system).
i ng. passfil e. enabl ed A boolean value specifying whether user passwords boolean fal se
(for SSL, LDAP, JDBC™) for secure communications
are specified in a passfile.
i ng. passfil e. name The name of the passfile. string passfile
i NY. service_name. A boolean value specifying whether to set access boolean Inherited from the
accesscontrol . enabl ed control for named connection service, overriding system-wide
broker-wide setting. Indicates whether system will property i mg.
check if an authenticated user has permission to use accesscontrol .
the named connection service or to perform specific enabl ed.

Message Queue operations with respect to specific
destinations, as specified in the access control
properties file.

Chapter 14

Broker Properties Reference

321

Security Manager Properties

Table 14-8 Security Manager Properties (Continued)

Property Name Description Type Default
i NY. service_name. The name of an access control properties file for a string See description
accesscontrol .file. named connection service of a broker instance. The
fil ename file name specifies a relative file path to the access

control directory (see Appendix A, “Operating

System-Specific Locations of Message Queue Data”).

The default value is inherited from the system-wide

property i mg. accesscontrol . file.filenane
i NY. service_name. A string specifying whether the password should be string See description
aut henti cation. type passed in base 64 coding (basi c) or as an MD5

digest (di gest). Sets encoding for named connection

service, overriding any broker-wide setting.

The default value is inherited from the system-wide

property i mg. aut henti cati on. type.
i Ng. user _repository. The directory base for user entries. string None
| dap. base
i my. user _repository. The provider-specific attribute identifier whose value string None
| dap. gi dattr is a group name.
i Ng. user _reposi tory. The directory base for group entries. string None
| dap. gr pbase
i Ng. user _repository. A INDI search filter (a search query expressed as a string None
| dap. grpfiltler logical expression). By specifying a search filter for

groups, the broker can narrow the scope of a search

and thus make it more efficient. For more information,

see the JNDI tutorial at the following location.

http://java. sun. com products/jndi/tutorial

This property does not have to be set.
i Ng. user _reposi tory. A boolean value specifying whether to enable group boolean false
| dap. gr psear ch searches. Consult the documentation provided by

your LDAP provider to determine whether you can

associate users into groups.

Note that nested groups are not supported in

Message Queue.
i my. user _repository. The attribute identifier in a group entry whose values string None
| dap. memat t r are the distinguished names of the group’s members.
i my. user _repository. The password associated with the distinguished string None

| dap. passwor d

name used by the broker.
Specify this property only in a passfile.

If the directory server allows anonymous searches,
no password is needed.

322 Message Queue 3 2005Q1 « Administration Guide

http://java.sun.com/products/jndi/tutorial

Table 14-8 Security Manager Properties (Continued)

Security Manager Properties

Property Name Description Type Default
i Ng. user _reposi tory. The distinguished name that the broker uses to bind string None
| dap. pri nci pal to the directory server for a search. If the directory

server allows anonymous searches, this property

does not need to be assigned a value.
i ng. user _repository. To be supplied To be To be supplied
| dap. property_name supplie

d

i Ng. user _reposi tory. The host:port for the LDAP server, where host string None
| dap. server specifies the fully qualified DNS name of the host

running the directory server and port specifies the port

number that the directory server is using for

communications.

To specify a list of failover servers, use the following

syntax:

host1:portl | dap:// host2:port2 | dap: /[host3:port3...

Entries in the list are separated by spaces. Note that

each failover server address begins with | dap://.

Use this format even if you use SSL and have set the

property i ng. user _reposi tory. | dap. ssl . enabl ed to

true. You do not need to specify “l daps” in the

address.
i ng. user _repository. A boolean value specifying whether the broker should boolean fal se
| dap. ssl . enabl ed use the SSL protocol when talking to an LDAP server.
i ng. user _repository. The time limit for a search, in seconds. integer 280
| dap. ti meout
i Ng. user _reposi tory. The provider-specific attribute identifier whose value string None
| dap. ui dattr uniquely identifies a user. For example: ui d, cn, etc.
i Ng. user _reposi tory. A INDI search filter (a search query expressed as a string None

| dap. usrfilter

logical expression). By specifying a search filter for
users, the broker can narrow the scope of a search
and thus make it more efficient. For more information,
see the JNDI tutorial at the following location:
http://java. sun. com products/jndi/tutorial.

This property does not have to be set.

The configurable properties for the Message Queue keystore are shown in
Table 14-9. Use these properties with SSL.

Chapter 14

Broker

Properties Reference 323

ldap://host2:port2
ldap://host3:port3%E2%80%A6
http://java.sun.com/products/jndi/tutorial

Monitoring and Logging Properties

Table 14-9 Keystore Properties

Property Name Description Type Default

i ng. keystore.file.dirpath For SSL-based services, the path to the directory string None
containing the keystore file. Default: see
Appendix A, “Operating System-Specific
Locations of Message Queue Data.”

i ng. keystore.file. name For SSL-based services: the name of the string keystore
keystore file.

i ng. keyst or e. passwor d For SSL-based services: the keystore password. string None
Specify this property only in a passfile.

Monitoring and Logging Properties

Table 14-10 lists the properties related to monitoring and logging. The first column
lists the property names. For each property name, the second column describes the
property, the third column specifies its type, and the fourth column gives its
default value.

Table 14-10 Monitoring Service Properties

Property Name Description Type Default

i mg. desti nation. | ogDeadMsgs! A boolean value specifying whether the broker ~ boolean fal se
logs the following types of events:

« Adestination is full, having reached its
maximum size or maximum message
count.

« The broker discards a message for a
reason other than an administration
command or delivery acknowledgment.

¢ The broker moves a message to the dead
message queue.

324 Message Queue 3 2005Q1 « Administration Guide

Monitoring and Logging Properties

Table 14-10 Monitoring Service Properties (Continued)

Property Name Description Type Default

i ng. | og. consol e. out put A string specifying the categories of logging string ERRCR WARNI NG
information that are written to the console. The
value can be one of the following:

« ALL
« NONE

« One or more of the following values,
separated by vertical bars (|): ERROR,
WARNING, and INFO. Specify each
category of log message separately; none
of the message categories include other
categories.

i ng. | 0og. consol e. stream A string specifying whether console output is string ERR
written to stdout (QUT) or stderr (ERR) .

ing.log.file.dirpath The path to the directory containing the log file string See Appendix A
(depends on operating system).

ing.log.file.filenane The name of the log file. string | og. txt

ing.log.file. output The categories of logging information to be string ALL
written to the console. The value can be one of
the following:

e ALL
« NONE

* One or more of the following values,
separated by vertical bars (|): ERROR,
WARNING, and INFO. Specify each
category of log message separately; none
of the message categories include other
categories.

ing.log.file.rolloverbytest! The size, in bytes, of the log file at which output integer -1
rolls over to a new log file. A value of - 1
disables rollover based on file size.

ing.log.file.rolloversecst The age of the log file, in seconds, at which integer 604800
output rolls over to a new log file. A value of -1 (one week)
disables rollover based on file age.

ing.log.level? A string specifying the logger level: the string | NFO
categories of output that can be written to an
output channel. Includes the specified category
and all higher level categories as well. Values,
from high to low, are: ERROR, WARNI NG, | NFO.

Chapter 14 Broker Properties Reference 325

Monitoring and Logging Properties

Table 14-10 Monitoring Service Properties (Continued)

Property Name

Description

Type

Default

ing.log.syslog.facility

ing.log.syslog.identity

i ng. | og. sysl og. | ogconsol e

i ng. | og. sysl og. | ogpi d

i ng. | 0g. sysl og. out put

ing. | og.timezone

i ng. metrics. enabl ed

(Solaris only) A string specifying what sys| og
facility the Message Queue broker should log
as. Values mirror those listed in the sysl og(30
man page. Appropriate values for use with
Message Queue are: LOG_USER LOG_DAEMON,
and LOG_LOCALO through LOG LOCAL7.

(Solaris only) The identity string that should be
added to the front of every message logged to
sysl og.

The default value is
i ngbr oker d_${i my. instanceName}

(Solaris only) A boolean value specifying
whether to write messages to the system
console if they cannot be sent to sysl og.

(Solaris only) A boolean value specifying
(t rue/ f al se) whether to log the broker process
ID with the message or not.

(Solaris only) A string specifying the categories
of logging information that are written to

sysl ogd(1M). The value can be one of the
following:

e ALL
« NONE

¢ One or more of the following values,
separated by vertical bars (|): ERROR,
WARNING, and INFO. Specify each
category of log message separately; none
of the message categories include other
categories.

A string representing the time zone for log time
stamps. The identifiers are the same as those

used by j ava. util . Ti neZone. get Ti meZone().
For example: GV, Arreri ca/ LosAngel es,

Eur ope/ Rorre, Asi a/ Tokyo.

A boolean value specifying whether metrics
information is being written to the logger. Does
not affect production of metrics messages (see
i ng. netrics. topic. enabl ed).

string

string

boolean

boolean

string

string

boolean

LOG_DAEMON

See the
description

fal se

true

Local time zone

true

326 Message Queue 3 2005Q1 « Administration Guide

Table 14-10 Monitoring Service Properties (Continued)

Cluster Configuration Properties

Property Name

Description

Type Default

ing. netrics.interval

i ng. netrics. topic. enabl ed

ing. metrics.topic.interval

i ng. metrics.topic. persist

ing. netrics.topic.tinmetolive

If metrics logging is enabled

(i mg. metri cs. enabl ed=t r ue), the time interval,
in seconds, at which metrics information is
written to the logger. Does not affect time
interval for production of metrics messages
(seeing.netrics.topic.interval).

A value of -1 means never.

A boolean value specifying whether metrics
message production is enabled. If f al se, an
attempt to subscribe to a metric topic
destination will throw a client-side exception.

The time interval, in seconds, at which metrics
messages are produced (sent to metric topic
destinations).

A boolean value specifying whether metrics
messages are persistent.

The lifetime, in seconds, of metrics messages
sent to metric topic destinations.

integer -1

boolean true

integer 60

boolean fal se

integer 300

1. This property can be used with i ngcnd updat e bkr.

Cluster Configuration Properties

Table 14-11 summarizes the configuration properties related to broker clusters.

Table 14-11 Cluster Configuration Properties

Property Name Description

Type Default

i ng. cl uster. brokerli st A comma-separated list of host:port entries
identifying all the brokers in the cluster, where host
is the host name of a broker and port is its Port
Mapper port number.

Example:
host 1: 3000, host 2: 8000, ct rl host

Must have the same value for all brokers in a
cluster.

string None

Chapter 14

Broker Properties Reference

327

Cluster Configuration Properties

Table 14-11 Cluster Configuration Properties (Continued)

Property Name

Description

Type Default

i ng. cl ust er. mast er br oker

ing. cluster.url?

i ng. cl ust er. host nare

i ng. cluster. port

i ng. cluster.transport

The host name and port number of the cluster’s
master broker, if any.

The value has the form host:port, where host is the
host name of the master broker and port is its Port
Mapper port number.

Example:
ctrlhost: 7676

Must have the same value for all brokers in a
cluster.

The URL of the cluster configuration file, if any.
Examples:
http://webserver/iny/cluster.properties
(for a file on a web server)
file:/net/nfsserver/inmg/cluster.properties
(for a file on a shared drive)

Must have the same value for all brokers in a

cluster.

The host name or IP address to which the

cl ust er connection service (used for internal
communication between brokers in the cluster)
binds if more than one host is available: for
example, if there is more than one network
interface card in a computer.

Can be specified independently for each broker in
a cluster.

The port number for the cl ust er connection
service.

Can be specified independently for each broker in
a cluster.

The network transport protocol used by the

cl ust er connection service. For secure,
encrypted message delivery between brokers, set
this property to ssl .

Must have the same value for all brokers in a
cluster.

string None

string None

string Inherited from the
value of
i ng. host nane (see
Table 14-2 on
page 311)

integer 0 (dynamically
allocated.)

string tep

1. This property can be used with i ngcnd updat e bkr.

328 Message Queue 3 2005Q1 « Administration Guide

Chapter 15

Physical Destination Property
Reference

This chapter describes the properties you can set for each type of physical
destination. You can set the property values when you create or update a physical
destination.

For auto-created destinations, you set default values in the broker’s instance
configuration file (see Table 14-4 on page 314).

Table 15-1 Physical Destination Properties

Destination
Property Type Default Value Description
maxNunisgs? Queue -1 The maximum number of unconsumed
Topic (unlimited) messages allowed in the destination.
For the dead message queue, the default value
is 1000.
maxTot al MsgByt es? Queue -1 The maximum total amount of memory, in bytes,
Topic (unlimited) allowed for unconsumed messages in the
destination.

The default value for the dead message queue is
10 Mbytes.

329

Table 15-1 Physical Destination Properties (Continued)

Destination
Property Type Default Value Description

['i m tBehavi or Queue REJECT _ A string specifying how the broker responds
NEVEST when a memory-limit threshold is reached.
Values are:

FLOW OONTROL — Slows down producers.

REMOVE_QLDEST — Throws out the oldest
messages.

REMOVE_LOW PRI ORI TY — Throws out the lowest
priority messages according to age of the
messages (producing client receives no
notification of message deletion).

REJECT_NEWEST — Rejects the newest
messages. The producing client gets an
exception for rejection of persistent messages
only. To use this limit behavior with
non-persistent messages, set the

i mgAckOnPr oduce connection factory attribute.

If you set this property to REMOVE_CLDEST or
REMOVE_LOW PRI ORI TY and set the destination
property useDMQto true, the broker moves
excess messages to the dead message queue.

Topic

The dead message queue itself, unlike other
destinations, has the default limit behavior
REMOVE_QLDEST and cannot be set to

FLOW CONTRCOL behavior.

maxByt esPer Msg Queue -1 The maximum size, in bytes, of any single

(unlimited) message allowed in the destination. The
producing client gets an exception for rejection of
persistent messages, but no natification for
rejection of non-persistent messages, unless the
ackOnProduce property is set.

Topic

maxNunPr oducer s Queue -1 The maximum number of producers allowed for
(unlimited) the destination. When this limit is reached, no

Topic
new producers can be created.

You cannot set this property for the dead
message queue.

maxNunAct i veConsuner s Queueonly 1 The maximum number of consumers that can be
active in load-balanced delivery from a queue
destination. A value of - 1 means an unlimited
number.

Platform Edition limits this value to 2.

330 Message Queue 3 2005Q1 « Administration Guide

Table 15-1 Physical Destination Properties (Continued)

Destination
Property Type Default Value Description

maxNunBackupConsuner s Queueonly 0 The maximum number of backup consumers
that can take the place of active consumers, if
any fail during load-balanced delivery from a
queue destination. A value of - 1 means an
unlimited number.

Platform Edition limits this value to 1 (one).

consuner Fl owLi mi t Queue Topics: 1000 The maximum number of messages that will be

Queues: 1000 delivered to a consumer ina smg'le.batch.. I'n.
load-balanced queue delivery, this is the initial
number of queued messages routed to active
consumers before load-balancing commences.

Topic

A destination consumer can override this limit by
specifying a lower value on a connection. A
value of - 1 means an unlimited number.

| ocal Del i veryPreferred Queueonly fal se For load-balanced queue delivery in broker
clusters, a boolean value specifying whether
messages should be delivered to remote
consumers only if there are no consumers on the
local broker. Requires that the destination not be
restricted to local-only delivery (i sLocal Only =
fal se).

This property does not apply to the dead
message queue.

i sLocal Only Queue fal se For destinations in broker clusters, a boolean
value specifying whether the destination is
restricted to local-only delivery. If t rue, the
destination is not replicated on other brokers,
and is limited to delivering messages only to
local consumers (those connected to the broker
on which the destination is created). This
property cannot be changed once the destination
has been created.

Topic

This property does not apply to the dead
message queue.

useDVMQ Queue true A boolean value specifying whether dead
messages should be sent to the dead message

Topic .
queue, rather than discarded.

This property does not apply to the dead
message queue.

1. In a cluster environment, this property applies to each instance of the destination in the cluster, rather than collectively to all instances
in the cluster.

Chapter 15 Physical Destination Property Reference 331

332 Message Queue 3 2005Q1 « Administration Guide

Chapter 16

Administered Object Attribute
Reference

This chapter provides reference information about the attributes of administered
objects. It contains the following sections:

e “Destination Properties” on page 333

¢ “Connection Factory Attributes” on page 334

e “SOAP Endpoint Attributes” on page 342

Destination Properties

Table 16-1 lists the attributes that configure destination administered objects.

Table 16-1 Destination Administered Object Attributes

Attribute Name Description Type Default

i ngDest i nati onDescri ption A description for the string None
destination objects.

i ngDest i nati onNane The name of the physical string? Untitled_Destination_Cbject
destination.

1. Destination names can contain only alphanumeric characters (no spaces) and must begin with an alphabetic character or the

characters “_" and/or “$".

333

Connection Factory Attributes

Connection Factory Attributes

This section contains reference information on the attributes that configure
connection factory administered objects. Attributes are categorized into the
following sections:

e “Connection Handling” on page 334

¢ “Client Identification” on page 338

* “Message Header Overrides” on page 338

e “Reliability and Flow Control” on page 339

* “Queue Browser Behavior and Server Session” on page 340

e “JMS-Defined Properties Support” on page 341

Table 16-2 is an index to the connection factory administered object attributes. The
first column alphabetically lists each attribute; the second column lists its category;
and the third column is a cross-reference to the table in which the attribute is

described.

Connection Handling

Table 16-2 lists the connection factory attributes for connection handling.

Table 16-2 Connection Factory Attributes: Connection Handling

Attribute Name Description Type Default

i ngAddr essLi st A comma-separated list of one or more message string An existing
server addresses. There are several addressing Message Queue
schemes, which are specific to the connection 3.0 address if
service and port assignment method you want to any, or if not, to
use. the first entry in
For information about how to specify the address Table31366;3 on
list and examples that illustrate list entries, see page)
“Syntax for the imgAddressList Attribute Value” on
page 335.

i ngAddr essLi st Behavi or A string specifying whether connection attempts string PR ORI TY

are in the order of addresses in the

i ngAddr essLi st attribute (PRICRI TY) orin a
random order (RANDOV). If many clients attempt a
connection using the same connection factory,
you can use a random order to prevent them from
all connecting to the same address.

334 Message Queue 3 2005Q1 « Administration Guide

Table 16-2 Connection Factory Attributes: Connection Handling (Continued)

Connection Factory Attributes

Attribute Name

Description

Type

Default

i ngAddr essLi stlterations

i ngPi ngl nt erval

i ngReconnect Enabl ed

i ngReconnect At t enpt s

i ngReconnect I nterval

i ngSSLI sHost Tr ust ed

The number of times the client runtime iterates
through the i mgAddr essLi st in an effort to
establish or re-establish a connection. A value of
- 1 indicates that the number of attempts is
unlimited.

The frequency, in seconds, with which the client
runtime tests the connection between an
application and broker.

A value of - 1 or 0 (zero) disables the client
runtime from periodically testing the connection.

A boolean value specifying whether the client
runtime should attempt to reconnect to a message
server (or the list of addresses in

i mgAddr essLi st) when a connection is lost.

The number of attempts to connect (or reconnect)
for each address in the i ngAddr essLi st before
the client runtime moves on to try the next
address in the list. A value of - 1 indicates that the
number of reconnect attempts is unlimited (the
client runtime will attempt to connect to the first
address until it succeeds).

The interval between reconnect attempts, in
milliseconds. This value applies for attempts on
each address in the i ngAddr essLi st and for
successive addresses in the list. If the value is too
small, a broker has insufficient recovery time. If
the value is too large, the reconnect might
represent an unacceptable delay.

A boolean value specifying whether the client can
accept a broker’s self-signed certificate. To use
signed certificates from a certificate authority, set
this value to f al se.

integer

integer

boolean

integer

long

boolean

5

30

fal se

0 (zero)

3000
(milliseconds)

true

Syntax for the imgAddressList Attribute Value

Each address in the i nyjbr oker | i st value corresponds to a broker instance to
which a client runtime can connect.

For each connection service, you specify the broker address differently. The syntax
is generally as follows:

scheme: | | address_syntax

Chapter 16 Administered Object Attribute Reference 335

scheme://address_syntax

Connection Factory Attributes

To add an address to the list, add a comma and another address. The list can have
any number of entries, in the following format:

scheme: | | address_syntax,scheme: | | address_syntax...

The scheme variable specifies which of the following addressing types you are
using, as described in Tabl e 16- 3: ny, myt cp, myss! , http, or htt ps. The
address_syntax variable represents the scheme-specific broker address. Table 16-3
lists the addressing schemes. The first column contains the name of an addressing
scheme; the second column shows what connection service is associated with the
name; the third column is a description; and the fourth column provides the syntax

to use.

Table 16-3 Addressing Schemes for the imqAddressList Attribute

Connection
Scheme Service Description Syntax
mq ms Provides dynamic port assignment for [hostName][:port][/serviceName]
sslims use with the jms or sslims services. For the jms connection service, the following
You specify the Port Mapper host and default values apply:
port'. ThehPort Mappzrfdynsmlcally hostName = | ocal host
a35|gns_t e port used for the port = 7676
connection. serviceName = j ns
For the ssljms connection service, there are no
default values. You must specify all variables.
maqtcp jms Specifies a port number and uses the hostName: portl j s
jms connection service.
Message Queue client runtime makes
a tcp connection to the specified host
and port to establish a connection.
magssl ssljms Specifies a port number and uses the portl sslj ms
ssljms connection service.
Message Queue client runtime makes
a secure ssl connection to the specified
host and port to establish a connection.
http httpjms Uses the httpjms connection service. htt p: /1 hostName:portl contextRoot/ t unnel
The client runtime makes an HTTP If multiple broker instances use the same tunnel
connection to a Message Queue tunnel servlet, this is the syntax for connecting to a
servlet at the specified URL. The broker specific broker instance, rather than a randomly
must be configured to access the HTTP selected one:
tunnel servlet. ht t p:/[hostName:porticontextRoot
ltunnel?ServerName=hostName:instanceName
336 Message Queue 3 2005Q1 « Administration Guide

Connection Factory Attributes

Table 16-3 Addressing Schemes for the imqAddressList Attribute

Connection
Scheme Service Description Syntax
https httpsjms Uses the httpsjms connection service. htt ps: /| hostName:portl contextRoot/ t unnel

Message Queue client runtime makes
a secure HTTPS connection to the
specified Message Queue tunnel
servlet URL. The broker must be
configured to access the HTTPS tunnel
servlet.

If multiple broker instances use the same tunnel
servlet, this is the syntax for connecting to a
specific broker instance, rather than a randomly
selected one:

ht t ps://hostName:porticontextRoot/
tunnel?ServerName=hostName:instanceName

Table 16-4 contains examples of the addressing formats. The first column is the
name of a connection service. The second column specifies whether the host in the
example is the local host, an unspecified host, a specified host, or not applicable.
The third column specifies whether the port in the example is specified, not
specified, or not applicable, and the fourth column is an example.

Table 16-4 Message Server Address Examples

Connection
Service Broker Host Port Example Address
Not specified Local host Not specified Default
(mg: //1 ocal Host: 7676/ j ns)
Not specified Specified host Not specified nyBkr Host
(ng: // nyBkr Host : 7676/ j ns)
Not specified Not specified Portmapper port 1012
specified (mg: //1 ocal Host: 1012/ j ns)
ssljms Local host Portmapper port not nmg:/ /1 ocal Host : 7676/ ssl j ms
specified
ssljms Specified host Portmapper port ny: / / myBkr Host : 7676/ ssl j ms
ssljms Specified host Portmapper port ny: / / myBkr Host : 1012/ ssl j s
specified
jms Local host Service port myt cp: / /1 ocal host : 1032/ j s
specified
ssljms Specified host Service port myssl : // nyBkr Host : 1034/ ssl j s
specified
httpjms Not applicable Not applicable http://websrvr1: 8085/ i nmy/ t unnel
httpsjms Not applicable Not applicable https://websrvr2: 8090/ i ny/ t unnel

Chapter 16 Administered Object Attribute Reference 337

Connection Factory Attributes

Client Identification

Table 16-5 lists the connection factory attributes for client identification.

Table 16-5 Connection Factory Attributes: Client Identification

Attribute Name Description Type Default
i myDef aul t User name The default user name for authenticating with the broker. string guest

i myDef aul t Passwor d The default password for authenticating with the broker. string guest

i mgConfigureddientI D An administratively configured client ID. string nul |

i ngDi sabl eSetdientID A boolean value specifying whether to prevent the client from

changing the client ID using the set 0 i ent | () method in the
JMS API.

boolean fal se

Message Header Overrides

Table 16-6 lists the connection factory attributes for overriding JMS message
header fields.

Table 16-6 Connection Factory Attributes: Message Header Overrides

Attribute Name Description Type Default

i mgQver ri deJMSDel i ver yMbde A boolean value specifying whether the client-set boolean false
JMBDel i ver yMode field can be overridden.

i ngJMBDel i ver yMode The override value of JMSDel i ver yMbde. Values are integer 2
1 (non-persistent) and 2 (persistent).

i mgOver ri deJMSExpi rati on A boolean value specifying whether the client-set boolean false
JMBExpi rati on field can be overridden.

i mgJMSEXpi rati on The override value of JMSExpi rati on, in long 0
milliseconds. (no expiration)

i ngOverrideJMBPriority A boolean value specifying whether the client-set boolean false
JMBPriority field can be overridden.

i ngJMBPriority The override value of IMSPri ority (an integer from integer 4 (normal)
0to9).

i ngOver ri deJMBHeader sTo A boolean value specifying whether overrides apply boolean fal se

Tenpor aryDesti nati ons

to temporary destinations.

338 Message Queue 3 2005Q1 « Administration Guide

Connection Factory Attributes

Reliability and Flow Control

Table 16-7 lists the connection factory attributes that configure reliability and flow

control.

Table 16-7 Connection Factory Attributes: Reliability and Flow Control

Attribute Name

Description

Type

Default

i ngAckTi meout

i ngAcknPr oduce

i ngConnect i onFl owCount

i ngConnect i onFl owLi mi t
Enabl ed

The maximum time, in milliseconds, that the client runtime waits string
for a broker response before throwing an exception. A value of
0 means there is no time-out and the client runtime waits

forever.

In some situations, this value can be too low and cause the
client runtime to time out. For example, for each user that a
broker authenticates using an LDAP user repository and a
secure (SSL) connection, the first authentication can take more

than 30 seconds.

A string specifying how the broker responds to messages from string

a producing client.

If this attribute is set to t r ue, the broker responds to receipt of
all IMS messages (persistent and non-persistent) from the
producing client. The producing client thread blocks while

waiting for those responses.

If this attribute is not specified, the broker responds to persistent
messages only. The producing client thread blocks while waiting

for those responses.

The number of JIMS messages in a metered batch. When this integer
number of IMS messages is delivered to the client runtime,

delivery is temporarily suspended, allowing any control

messages that had been held up to be delivered. Payload

message delivery is resumed upon notification by the client

runtime, and continues until the count is again reached.

If the count is set to O then there is no restriction in the number
of JMS messages in a metered batch. A non-zero setting allows
the client runtime to meter message flow so that Message
Queue control messages are not blocked by heavy JMS

message delivery.

A boolean value specifying whether to use the value of boolean
i ngConnect i onFl owLi m t to limit message flow at the

connection level.

not
specified

100

fal se

Chapter 16 Administered Object Attribute Reference 339

Connection Factory Attributes

Table 16-7 Connection Factory Attributes: Reliability and Flow Control (Continued)

Attribute Name

i ngConnect i onFl owLi m t

i ngConsurer Fl owLi it

i ngConsurrer Fl ow
Threshol d

Description Type

The maximum number of messages that can be delivered over integer
a connection and buffered in the client runtime, waiting to be

consumed. Note however, that unless

i ngConnect i onFl owl sLi ni t ed is enabled, this limit is not

checked.

When the number of JIMS messages delivered to the client
runtime (in accordance with the flow metering governed by

i ngConnect i onFl owCount) exceeds this limit, message delivery
stops. It is resumed only when the number of unconsumed
messages drops below the value set with this attribute.

This limit prevents a consuming client that is taking a long time
to process messages from being overwhelmed with pending
messages that might cause it to run out of memory.

The maximum number of messages per consumer that can be integer
delivered over a connection and buffered in the client runtime,

waiting to be consumed. This limit is used to improve

load-balancing among consumers in multi-consumer queue

delivery situations (no one consumer can be sent a

disproportionate number of messages). This limit can be

overridden by a lower value set on the broker side for the

queue’s consurer Fl owLi m t attribute (see information on

destination attributes in the Message Queue Administration

Guide).

This limit also helps prevent any one consumer on a connection
from starving other consumers on the connection.

When the number of JIMS messages delivered to the client
runtime exceeds this limit for any consumer, message delivery
for that consumer stops. It is resumed only when the number of
unconsumed messages for that consumer drops below the
value set with i ngConsuner Fl owThr eshol d.

(Note that if the total number of messages buffered for all
consumers on a connection exceeds the

i ngConnect i onFl owLi mi t, delivery of messages through the
connection will stop until that total drops below the connection
limit.)

The number of messages per consumer buffered in the client integer
runtime, as a percentage of i rgConsurrer Fl owLi ni t, below
which delivery of messages for a consumer will resume.

Default
1000

100

50

Queue Browser Behavior and Server Session

Table 16-8 describes attributes that affect queue browsing for clients.

340 Message Queue 3 2005Q1 « Administration Guide

Connection Factory Attributes

Table 16-8 Connection Factory Attributes: Queue Browser Behavior

Attribute Name Description Type Default
i mgQueueBr owser Max The maximum number of messages that the client integer 1000
MessagesPer Retri eve runtime will retrieve at one time when browsing the
contents of a queue destination.
i mgQueueBr owser Ret ri eveTi neou The maximum time, in milliseconds, that the client long 60000
t runtime will wait to retrieve messages, when browsing
the contents of a queue destination, before throwing an
exception.
i ngLoadMaxToSer ver Sessi on For JMS application server facilities, a boolean value true

specifying whether a Message Queue connection
consumer should load up to the maxMessages number of
messages into a ServerSession’s session. If f al se, the
client will load only a single message at a time.

JMS-Defined Properties Support

JMS-defined properties are names reserved by JMS, and which a JMS provider can
choose to support to enhance client programming capabilities. Table 16-9 describes
the JMS-defined properties supported by Message Queue.

Table 16-9 Connection Factory Attributes: JMS-defined Properties Support

Property Name Description Type Default

i ngSet IMSXUser | D A boolean value specifying whether to set the JMS-defined boolean false
property JMsXUser | D (identity of user sending the message)
on produced messages.

i mySet JMSXAppl D A boolean value specifying whether to set the JMS-defined boolean fal se
property JMSXAppl D (identity of application sending the
message) on produced messages.

i ngSet JMBXPr oducer TXI D A boolean value specifieying whether to set the JMS-defined boolean fal se
property JMSXPr oducer TXI D (transaction identifier of the
transaction within which this message was produced) on
produced messages.

i ngSet JMSXConsurrer TXI D A boolean value specifying whether to set the JMS-defined boolean false
property JMsXConsuner TXI D (transaction identifier of the
transaction within which this message was consumed) on
consumed messages.

i ngSet IMBXRevTi mest anp A boolean value specifying whether to set the JMS-defined boolean false
property JMSXRevTi nest anp (the time the message is
delivered to the consumer) on consumed messages.

Chapter 16 Administered Object Attribute Reference 341

SOAP Endpoint Attributes

SOAP Endpoint Attributes

Table 16-10 lists the attributes that configure endpoint URLSs for applications that
use SOAP. For information on applications that use SOAP, see the Message Queue
Developer’s Guide for Java Clients.

Table 16-10 SOAP Endpoint Attributes

Attribute Name Description Type Default
i mgSQAPENdpoi nt Li st A list of one of more space-separated URLs string
representing SOAP endpoints to which to send
messages.
If you specify more than one URL, messages are
broadcast to all URLs in the list. Each URL should be
associated with a servlet that can receive and process a
SOAP message.
Example:
http://ww nyServl et/ http://ww. nyServlet2/
i ngEndpoi nt Nane The name of the SOAP endpoint. string Untitled_
Example: MyTopicEndpoint Endp0| nt_
hj ect
i mgEndpoi nt Descri pti on A description of the SOAP endpoint. string A
Example: description
.) -) for the
"i myEndpoi nt Descri pti on=ny endpoi nts for .
. endpoi nt
br oadcast .
obj ect

342 Message Queue 3 2005Q1 « Administration Guide

Chapter 17

JMS Resource Adapter Attribute
Reference

The Message Queue JMS resource adapter (JMS RA) enables you to integrate Sun
Java System Message Queue with any J2EE 1.4 application server, by means of the
standard J2EE connector architecture (JCA). When the Message Queue JMS
resource adapter is plugged into an application server, an application deployed in
that application server can use Message Queue to send and receive JMS messages.

The Message Queue JMS resource adapter exposes its configuration attributes
through three JavaBean components:

* ResourceAdapt er configuration affects the behavior of the resource adapter as
a whole.

¢ ManagedConnect i onFact or y configuration affects connections created by he
resource adapter for use by message-driven beans (MDBs).

e ActivationSpec configuration affects message endpoints that represent
message driven beans MDBs in their interactions with the messaging system.

To set attribute values for these entities, you use the tools that your application
server provides for configuration and deployment of the resource adapter and for
deployment of MDBs.

This chapter lists and describes the configuration attributes of the Message Queue
JMS resource adapter. It contains the following sections:

* “ResourceAdapter JavaBean” on page 344
¢ “ManagedConnectionFactory JavaBean” on page 345

e “ActivationSpec JavaBean” on page 346

343

ResourceAdapter JavaBean

ResourceAdapter JavaBean

The Resour ceAdapt er configuration configures the default JMS resource adapter
behavior. Table 17-1 lists and describes the attributes with which you can configure
this JavaBean. A footnote marks each required property.

Table 17-1 Resource Adapter Attributes

Name Description Default
addr esslLi st? The connection that the resource adapter makes to the ng: / /| ocal host: 7676
Message Queue service, specified using the message /jns

service address format.
The resource adapter supplies the default value.

This attribute name, addr essLi st , is specific to Sun Java
System Message Queue, but has the same meaning as the
standard attribute connect i onURL. Sun Java System
Message Queue provides both attribute names. You must
set either connect i onURL or addr essLi st ; they are
equivalent.

addr essLi st Behavi or A string specifying how the resource adapter connectstothe PRIORTY
Message Queue service. The value is PRI CRI TY or RANDOM

A PR ORI TY connection selects a Message Queue broker by
choosing the first specified in the address list (addr essLi st).

A RANDOMconnection selects a Message Queue broker
randomly from the address list.

Reconnection after a connection failure is the same for
PRICRI TY and RANDOM A reconnection attempt starts with
the broker whose connection failed. If that attempt is
unsuccessful, the resource adapter proceeds sequentially
through the active address list.

addresslLi stlterations The number of times to iterate through the address list. This 1
value applies to the initial connection and to subsequent
reconnection attempts.

connect i onURL The connection that the resource adapter makes to the ng: / /| ocal host: 7676
Message Queue service, specified using the message /jns
service address format.

Equivalent to the addr essLi st attribute; see description
above for further details.

user Namre! The default user name with which the resource adapter guest
connects to the Message Queue service.

The resource adapter supplies the default value.

344 Message Queue 3 2005Q1 « Administration Guide

mq://localhost:7676
mq://localhost:7676

ManagedConnectionFactory JavaBean

Table 17-1 Resource Adapter Attributes (Continued)

Name

Description

Default

passwor d*

reconnect Attenpts

reconnect Enabl ed

reconnect | nt erval

The default password with which the resource adapter
connects to the Message Queue service.

The resource adapter supplies the default value.

The number of times to attempt reconnection to a single
entry in the address list. This attribute is used when
reconnect Enabl ed is set to t r ue.

A boolean value specifying whether to attempt reconnection
after a connection failure.

The behavior of a reconnection attempt is governed by the
values for reconnect I nterval and reconnect Att enpt s.

The interval between reconnection attempts, in milliseconds.

This attribute is used when r econnect Enabl ed is setto tr ue.

guest

fal se

30000

1. This property is required.

ManagedConnectionFactory JavaBean

A managed connection factory provides and defines the connections that the
resource adapter provides to a message-driven bean. If you set an attribute for
which the Resour ceAdapt er JavaBean has an analogous attribute, the setting
supersedes the analogous value specified for the Resour ceAdapt er bean.

Table 17-2 lists and describes the configurable attributes of a managed connection
factory provided by the Message Queue resource adapter.

Table 17-2 Managed Connection Factory Attributes

Name

Description

addr essLi st

A list of connections derived from this managed connection

factory.

The format of this property adheres to the Message Service
addr esslLi st, as described in Table 17-1 on page 344. If this

value is not set, connections use the addr essLi st value

specified for the Resour ceAdapt er JavaBean and described

in that table.

Chapter 17 JMS Resource Adapter Attribute Reference

345

ActivationSpec JavaBean

Table 17-2 Managed Connection Factory Attributes (Continued)

Name Description

Default

addr essLi st Behavi or A string specifying how the resource adapter connects to the
Message Queue service. The value is PRI ORI TY or RANDOM

A PRI ORI TY connection selects a Message Queue broker by
choosing the first specified in the address list (addr essLi st).

A RANDOMconnection selects a Message Queue broker
randomly from the address list.

Reconnection after a connection failure is the same for
PRIORI TY and RANDOM A reconnection attempt starts with
the broker whose connection failed. If that is unsuccessful,
the connection attempts proceed sequentially through the
active address list.

addresslLi stlterations The number of times to iterate through the address list. This
value applies to the initial connection and to subsequent
reconnection attempts.

clientID The client identifier to use for connections derived from this
managed connection factory.

passwor d (Optional) The password for connections.

If this value is not set, connections use the password
specified for the Resour ceAdapt er JavaBean, as described
in Table 17-1 on page 344.

reconnect Attenpt s The number of times to attempt reconnection to a single
entry in the address list.

r econnect Enabl ed A boolean value specifying whether to attempt reconnection
after failure of a connection or a new connection attempt.

The reconnection attempt is governed by the
reconnect I nterval and reconnect At t enpt s properties.

reconnect | nt erval The minimum number of milliseconds to wait between
attempts to reconnect to the Message Queue service.

user Narre (Optional) The user name for connections.

If this value is not set, connections use the user name
specified for the Resour ceAdapt er JavaBean, as described
in Table 17-1 on page 344.

PRICRITY

None

guest

fal se

30000

guest

ActivationSpec JavaBean

Activati onSpec JavaBean properties are used by the application server when it
instructs the resource adapter to activate a message endpoint and associate the

message endpoint with a message-driven bean.

346 Message Queue 3 2005Q1 « Administration Guide

Table 17-3 lists and describes the configurable attributes for a message endpoint
activation specification. The table indicates the properties that are specific to the

ActivationSpec JavaBean

Message Queue resource adapter and the properties that are specific to the

Enterprise JavaBean 2.1 standard or J2EE Connector Architecture (J2EE CA) 1.5

standard.

Table 17-3 Activation Specification Attributes

Name

Description Default

acknow edgeMbde

addr essLi st

clientld

cust omAcknow edgeMbde

destination

(Optional) The JMS session acknowledgment mode to Aut o- acknowl edge
use for the consumer.

This is a standard EJB 2.1 and J2EE CA 1.5 property.

The value can be Aut o- acknowl edge or
Dups- ok- acknow edge.

(Optional) The specification of the connection made by Inherited

the resource adapter on behalf of the message from addr essLi st

endpoint. in the

This attribute is specific to the Message Queue JMS Resour ceAdapt er
JavaBean

resource adapter. i :
configuration

The valid values must conform to the message service
connection address syntax.

The JMS client ID to be used by the JMS connection None
created for this consumer.

You must set this attribute if you set
subscri ptionDurability attribute to Dur abl e.

This is a standard EJB 2.1 and J2EE CA 1.5 property.

A string specifying the mode for MDB message None
consumption.

The valid values for this attribute are No_acknow edge or
null.

You can use No_acknow edge mode only for a
non-transacted, non-durable topic subscription. If you
use this setting with a transacted subscription or a
durable subscription, subscription activation fails.

The name of the destination from which this MDB None
consumes messages.

This is a required attribute. It is a standard EJB 2.1 and
J2EE CAL.5 property.

The value must be set to the value of the
dest i nati onNanme property for a Message Queue
destination administered object.

Chapter 17 JMS Resource Adapter Attribute Reference

347

ActivationSpec JavaBean

Table 17-3 Activation Specification Attributes (Continued)

Name

Description

Default

destinationType

endpoi nt Except i onRedel i very
Attenpts

nessageSel ect or

sendUndel i ver abl eMsgs ToDMQ

subscriptionDurability

subscri pti onName

The type of destination specified by the desti nati on
attribute. Valid values are j avax. j ns. Queue or
javax. j ms. Topi c.

This is a required attribute. It is a standard EJB 2.1 and
J2EE CAL.5 property.

The number of times to redeliver a message to the MDB
when the MDB throws an exception during message
delivery.

(Optional) A JMS message selector to use for filtering
the messages delivered to the consumer. The value is
of type String.

This is a standard EJB 2.1 and J2EE CA 1.5 property.

A boolean value specifying whether to place a message
in the dead message queue when the MDB throws a
runtime exception and the number of redelivery
attempts exceeds the value of

endpoi nt Except i onRedel i ver yAtt enpt s.

If f al se, the Message Queue broker will attempt
redelivery of the message to any valid consumer,
including the same MDB.

A string specifying whether a consumer for a topic
destination is durable or nondurable. The value can be
NonDur abl e or Dur abl e.

This attribute is optional for nondurable subscriptions
and required for durable subscriptions. If you set this
value to Dur abl e, you must also set the attributes
clientl Dand subscri pti onName.

This is a standard EJB 2.1 and J2EE CA1.5 property
and is valid only if the dest i nati onType attribute is set
to avax. j ns. Topi c.

A string to use to name durable subscriptions.

You must set this attribute if you set
subscri ptionDurability attribute to Dur abl e.

This is a standard EJB 2.1 and J2EE CA 1.5 property.

None

None

true

NonDur abl e

None

348 Message Queue 3 2005Q1 « Administration Guide

Chapter 18

Metrics Reference

This chapter lists and describes metrics produced by the Message Queue product.
This chapter contains the following sections:

* “JVM Metrics” on page 349
* “Broker-wide Metrics” on page 350
¢ “Connection Service Metrics” on page 352

* “Destination Metrics” on page 354

JVM Metrics

Table 18-1 lists and describes the metrics data that the broker generates for the
broker process JVM heap. For each metric, the table shows which metrics
monitoring tools provide it.

Table 18-1 JVM Metrics

imgcmd Metrics
netrics bkr Log Message
Metric Quantity Description (metricType) File (metrics topic)?
JVM heap: free memory ~ Amount of free memory available for usein Yes Yes Yes
the JVM heap (cxn) (...jvm
JVM heap: total memory Current JVM heap size Yes Yes Yes
(cxn) (...jvm
JVM heap: max memory Maximum to which the JVM heap size can No Yest! Yes
grow. (...jvm

1. Shown only at broker startup.
2. For metrics topic destination names, see Table 10-7 on page 216.

349

Broker-wide Metrics

Broker-wide Metrics

Table 18-2 lists and describes the data the broker reports regarding broker-wide
metrics information. It also shows which of the data can be obtained using the
different metrics monitoring tools.

Table 18-2 Broker-wide Metrics

imgcmd Metrics
metrics bkr Log Message
Metric Quantity Description (metricType) File (metrics topic)*
Connection Data
Num connections Number of currently open connections to Yes Yes Yes
the broker (cxn) (...broker)
Num threads Total number of threads currently in use for Yes Yes No
all connection services (cxn)
Min threads Number of threads, which once reached, Yes Yes No
are maintained in the thread pool for use by (cxn)
connection services
Max threads Number of threads, beyond which no new Yes Yes No
threads are added to the thread pool for use (cxn)
by connection services
Stored Messages Data
Num messages Number of JIMS messages currently stored No No Yes
in broker memory and persistent store Use query bkr (...broker)
Total message bytes Number of JIMS messages bytes currently No No Yes
stored in broker memory and persistent Use query bkr (...broker)
store
Message Flow Data
Num messages in Number of IMS messages that have flowed Yes Yes Yes
into the broker since it was last started (ttl) (...broker)
Message bytes in Number of JIMS message bytes that have Yes Yes Yes
flowed into the broker since it was last (ttl) (...broker)
started
Num packets in Number of packets that have flowed into the Yes Yes Yes
broker since it was last started; includes (ttl) (...broker)
both JMS messages and control messages
Packet bytes in Number of packet bytes that have flowed Yes Yes Yes
into the broker since it was last started, (ttl) (...broker)

includes both JMS messages and control
messages

350 Message Queue 3 2005Q1 « Administration Guide

Table 18-2 Broker-wide Metrics (Continued)

Broker-wide Metrics

imgcmd Metrics
metrics bkr Log Message
Metric Quantity Description (metricType) File (metrics topic)*
Num messages out Number of JIMS messages that have flowed Yes Yes Yes
out of the broker since it was last started. (ttl) (...broker)
Message bytes out Number of IMS message bytes that have Yes Yes Yes
flowed out of the broker since it was last (ttl) (...broker)
started
Num packets out Number of packets that have flowed out of Yes Yes Yes
the broker since it was last started; includes (ttl) (...broker)
both JMS messages and control messages
Packet bytes out Number of packet bytes that have flowed Yes Yes Yes
out of the broker since it was last started; (ttl) (...broker)
includes both JMS messages and control
messages
Rate messages in Current rate of flow of IMS messages into Yes Yes No
the broker (rts)
Rate message bytes in Current rate of flow of JIMS message bytes Yes Yes No
into the broker (rts)
Rate packets in Current rate of flow of packets into the Yes Yes No
broker; includes both JMS messages and (rts)
control messages
Rate packet bytes in Current rate of flow of packet bytes into the Yes Yes No
broker; includes both JMS messages and (rts)
control messages
Rate messages out Current rate of flow of IMS messages outof Yes Yes No
the broker (rts)
Rate message bytes out Current rate of flow of JIMS message bytes Yes Yes No
out of the broker (rts)
Rate packets out Current rate of flow of packets out of the Yes Yes No
broker; includes both JMS messages and (rts)
control messages
Rate packet bytes out Current rate of flow of packet bytes out of Yes Yes No
the broker; includes both IMS messages (rts)
and control messages
Destinations Data
Num destinations Number of physical destination in the broker No No Yes
(...broker)

1. For metrics topic destination names, see Table 10-7 on page 216.

Chapter 18

Metrics Reference

351

Connection Service Metrics

Connection Service Metrics

Table 18-3 lists and describes the metrics data the broker reports for individual
connection services. It also shows which of the data can be obtained using the
different metrics monitoring tools.

Table 18-3 Connection Service Metrics

imgcmd Metrics
netrics svc Log Message
Metric Quantity Description (metricType) File (metrics topic)
Connection Data
Num connections Number of currently open connections Yes No No
(cxn)
Also query svc
Num threads Number of threads currently in use Yes No No
(cxn)
Also query svc
Min threads Number of threads, which once reached, are Yes No No
maintained in the thread pool for use by (cxn)
connection services, totaled across all
connection services
Max threads Number of threads, beyond which no new Yes No No
threads are added to the thread pool for use (cxn)
by connection services, totaled across all
connection services
Message Flow Data
Num messages in Number of IMS messages that have flowed Yes No No
into the connection service since the broker (ttl)
was last started
Message bytes in Number of IMS message bytes that have Yes No No
flowed into the connection service since the (ttl)
broker was last started
Num packets in Number of packets that have flowed into the Yes No No
connection service since the broker was last (ttl)
started; includes both JMS messages and
control messages
Packet bytes in Number packet bytes that have flowed into Yes No No

the connection service since the broker was
last started; includes both JMS messages
and control messages

(ttl)

352 Message Queue 3 2005Q1 « Administration Guide

Table 18-3 Connection Service Metrics (Continued)

Connection Service Metrics

imgcmd Metrics
netrics svc Log Message

Metric Quantity Description (metricType) File (metrics topic)

Num messages out Number of JIMS messages that have flowed Yes No No
out of the connection service since the (ttl)
broker was last started.

Message bytes out Number of JIMS message bytes that have Yes No No
flowed out of the connection service since (ttl)
the broker was last started

Num packets out Number of packets that have flowed out of Yes No No
the connection service since the broker was (ttl)
last started; includes both JMS messages
and control messages

Packet bytes out Number packet bytes that have flowed out of Yes No No
the connection service since the broker was (ttl)
last started; includes both JMS messages
and control messages

Rate messages in Current rate of flow of IMS messages into Yes No No
the broker through the connection service. (rts)

Rate message bytes in Current rate of flow of JIMS message bytes Yes No No
into the connection service (rts)

Rate packets in Current rate of flow of packets into the Yes No No
connection service; includes both IMS (rts)
messages and control messages

Rate packet bytes in Current rate of flow of packet bytes into the Yes No No
connection service; includes both JMS (rts)
messages and control messages

Rate messages out Current rate of flow of JMS messages out of Yes No No
the connection service (rts)

Rate message bytes out Current rate of flow of JIMS message bytes Yes No No
out of the connection service (rts)

Rate packets out Current rate of flow of packets out of the Yes No No
connection service; includes both JMS (rts)
messages and control messages

Rate packet bytes out Current rate of flow of packet bytes out of Yes No No

the connection service; includes both IMS
messages and control messages

(rts)

Chapter 18

Metrics Reference 353

Destination Metrics

Destination Metrics

Table 18-4 lists and describes the metrics data the broker reports for individual
destinations. It also shows which of the data can be obtained using the different
metrics monitoring tools.

Table 18-4 Destination Metrics

imgcmd Metrics
metrics dst Log Message
Metric Quantity Description (metricType) File (metrics topic)*
Consumer Data
Num consumers Current number of consumers. For a topic, Yes No Yes
this value includes non-durable (con) (...destName)
subscriptions, active durable subscriptions,
and inactive durable subscriptions. For a
queue, this value includes active
consumers and backup consumers.
Avg num consumers Average number of consumers since the Yes No Yes
broker was last started (con) (...destName)
Peak num consumers Peak number of consumers since the Yes No Yes
broker was last started (con) (...destName)
Num active consumers Current number of active consumers Yes No Yes
(con) (...destName)
Avg num active Average number of active consumers since Yes No Yes
consumers the broker was last started (con) (...destName)
Peak num active Peak number of active consumers since Yes No Yes
consumers the broker was last started (con) (...destName)
Num backup consumers Current number of backup consumers Yes No Yes
(applies only to queues) (con) (...destName)
Avg num backup Average number of backup consumers Yes No Yes
consumers since the broker was last started (applies (con) (...destName)
only to queues)
Peak num backup Peak number of backup consumers since Yes No Yes
consumers the broker was last started (applies onlyto (con) (...destName)
gueues)
Stored Messages Data
Num messages Number of IMS messages currently stored Yes No Yes
in destination memory and persistent store (con) (...destName)

(ttl)
(rts)
Also query dst

354 Message Queue 3 2005Q1 « Administration Guide

Table 18-4 Destination Metrics (Continued)

Destination Metrics

imgcmd Metrics
metrics dst Log Message

Metric Quantity Description (metricType) File (metrics topic)*

Avg num messages Average number of JMS messages stored Yes No Yes
in destination memory and persistent store (con) (...destName)
since the broker was last started (ttl)

(rts)

Peak num messages Peak number of JMS messages stored in Yes No Yes
destination memory and persistent store (con) (...destName)
since the broker was last started (ttl)

(rts)

Total message bytes Number of IMS message bytes currently Yes No Yes
stored in destination memory and (ttl) (...destName)
persistent store (rts)

Also query dst

Avg total message bytes Average number of IMS message bytes Yes No Yes
stored in destination memory and (ttl) (...destName)
persistent store since the broker was last (rts)
started

Peak total message Peak number of IMS message bytes Yes No Yes

bytes stored in destination memory and (ttl) (...destName)
persistent store since the broker was last (rts)
started

Peak message bytes Peak number of JMS message bytes in a Yes No Yes
single message received by the destination (ttl) (...destName)
since the broker was last started (rts)

Message Flow Data

Num messages in Number of IMS messages that have Yes No Yes
flowed into this destination since the broker (ttl) (...destName)
was last started

Msg bytes in Number of IMS message bytes that have Yes No Yes
flowed into this destination since the broker (ttl) (...destName)
was last started

Num messages out Number of JIMS messages that have Yes No Yes
flowed out of this destination since the (ttl) (...destName)
broker was last started

Msg bytes out Number of JIMS message bytes that have Yes No Yes
flowed out of this destination since the (ttl) (...destName)
broker was last started

Rate num messages in Current rate of flow of JIMS messagesinto Yes No No

the destination

(rts)

Chapter 18

Metrics Reference 355

Destination Metrics

Table 18-4 Destination Metrics (Continued)

imgcmd Metrics
metrics dst Log Message
Metric Quantity Description (metricType) File (metrics topic)*
Rate num messages out Current rate of flow of IMS messages out Yes No No
of the destination (rts)
Rate msg bytes in Current rate of flow of IMS message bytes Yes No No
into the destination (rts)
Rate Msg bytes out Current rate of flow of JIMS message bytes Yes No No
out of the destination (rts)
Disk Utilization Data
Disk reserved Disk space, in bytes, used by all message Yes No Yes
records (active and free) in the destination (dsk) (...destName)
file-based store
Disk used Disk space, in bytes, used by active Yes No Yes
message records in destination file-based (dsk) (...destName)
store
Disk utilization ratio Ratio of used disk space to reserved disk Yes No Yes
space. The higher the ratio, the more the (dsk) (...destName)

disk space is being used to hold active
messages

1. For metrics topic destination names, see Table 10-7 on page 216.

356 Message Queue 3 2005Q1 « Administration Guide

Part IV

Appendixes

Appendix A, “Operating System-Specific Locations of Message
Queue Data”

Appendix B, “Stability of Message Queue Interfaces”

Appendix C, “HTTP/HTTPS Support”

Solaris

Appendix A

Operating System-Specific Locations
of Message Queue Data

Sun Java System Message Queue data is stored in different locations on different
operating systems, as the following sections show.

This appendix provides the location of various types of Message Queue data on the
following operating systems:

* “Solaris” on page 359
¢ “Linux” on page 361
* “Windows” on page 362

In the tables that follow, instanceName identifies the name of the broker instance with
which the data is associated.

Table A-1 shows the location of Message Queue data on the Solaris operating
system.

If you are using Message Queue on Solaris with the standalone version of Sun Java
System Application Server, the directory structure is like the structure described
under “Windows” on page 362.

Table A-1 Location of Message Queue Data on Solaris

Data Category Location on Solaris
Broker instance configuration [var/imy/ i nst ances/ instanceNamel pr ops/
properties config. properties

359

Solaris

360

Table A-1

Location of Message Queue Data on Solaris (Continued)

Data Category

Location on Solaris

Broker configuration file templates

Persistent store (messages,
destinations, durable
subscriptions, transactions)

Broker instance log file directory
(default location)

Administered objects
(object store)

Security: user repository

Security: access control file
(default location)

Security: passfile directory
(default location)

Security: example passfile

Security: broker’s keystore file
location

JavaDoc API documentation

Example applications and
configurations

Java archive (.j ar), web archive
(.war), and resource adapter
archive (.rar) files

[usr/share/lib/ing/ props/broker/

/var/ing/instances/ instanceNamel f 350/

or a JDBC-accessible data store

[var/ing/instances/ instanceNamel | og/

local directory of your choice
or an LDAP server
/var/ing/instances/ instanceNamel et c/ passwd

or an LDAP server

[var/ing/instances/ instanceNamel et c/
accesscontrol . properties

/var/imy/inst ances/ instanceNamel et c/

[etclingl/passfile.sanple
[etcling/

/usr/ share/javadoc/ i ng/i ndex. ht m

[usr/ deno/ i my/

{usr/sharel/lib/

Message Queue 3 2005Q1 « Administration Guide

Linux

Table A-2 shows the location of Message Queue data on the Linux operating

system.

Table A-2

Location of Message Queue Data on Linux

Linux

Data Category

Location on Windows

Broker instance configuration
properties

Broker configuration file
templates

Persistent store (messages,
destinations, durable
subscriptions, transactions)

Broker instance log file directory
(default location)

Administered objects
(object store)

Security: user repository

Security: access control file
(default location)

Security: passfile directory
(default location)

Security: example passfile

Security: broker’s keystore file
location

JavaDoc API documentation

Example applications and
configurations

Java archive (.j ar), web archive
(.war), and resource adapter
archive (.rar) files

Shared library (.so) files

[var/ opt/sun/ my/ i nst ances/ instanceNamel pr ops/
config. properties

[opt/sun/ ng/ privat e/ share/li b/ props/

[var/ opt/sun/ ng/ i nst ances/ instanceNamel f 350/
or a JDBC-accessible data store

[var/ opt/ sun/ my/ i nst ances/ instanceNamel | og/
local directory of your choice or an LDAP server
/var/ opt/sun/ ng/ i nst ances/ instanceNamel et c/ passwd

or an LDAP server

[var/ opt/sun/ nmy/ i nst ances/ instanceNamel et ¢/
accesscontrol . properties

[var/ opt/ sun/ my/ i nst ances/ instanceNamel et c/

/ etclopt/sun/ my/ passfile. sanpl e
/et clopt/ sun/ my/

[opt/sun/ ng/ j avadoc/ i ndex. ht m
/ opt / sun/ ng/ exanpl es/

[opt/sun/ ng/ share/lib/

[opt/sun/ng/lib/

Appendix A Operating System-Specific Locations of Message Queue Data

361

Windows

Table A-3 shows the location of Message Queue data on the Windows operating
system.

The table also shows the location of Message Queue data on Solaris, when Message
Queue is bundled with the standalone version of Sun Java System Application
Server. That version of Application Server is bundled with neither Solaris nor Sun
Java Enterprise System. Use the pathnames in Table A-3, but change the direction
of the slash characters from the Windows backslash (\) to the Solaris forward slash

(/). For more information, see the definitions for | M) HOVE and | M) VARHOME i n

Table 3 on page 25.

Table A-3

Location of Message Queue Data on Windows

Data Category

Location on Windows

Broker instance configuration
properties

Broker configuration file
templates

Persistent store (messages,
destinations, durable
subscriptions, transactions)

Broker instance log file directory
(default location)

Administered objects
(object store)

Security: user repository

Security: access control file
(default)

Security: passfile directory
(default location)

Security: example passfile

Security: broker’s keystore file
location

| MQ VARHOME\ i nst ances\ instanceName\ pr ops\
config.properties

| MQ_HOME\ | i b\ pr ops\ br oker\

I MQ_VARHOWR\ i nst ances\ instanceName\ f s350\

or a JDBC-accessible data store

| MQ_VARHOME\ i nst ances\ instanceName\ | og\

local directory of your choice

or an LDAP server

I MQ_VARHOME\ i nst ances\ instanceName\ et c\
passwd

or an LDAP server

I MQ_VARHOMVE\ i nst ances\ instanceName\
et c\accesscontrol . properties

| MQ_HOME\ et c\

| MQ_ HOME\ et c\ passfi |l e. sanpl e
| MQ_HOME\ et c\

362 Message Queue 3 2005Q1 « Administration Guide

Table A-3 Location of Message Queue Data on Windows (Continued)

Windows

Data Category Location on Windows

JavaDoc API documentation | M) HOVE\ j avadoc\ i ndex. ht n
Example applications and | MQ_HOME\ deno\

configurations

Java archive (.j ar), web archive | MQ HOME\ i b\
(.war), and resource adapter
archive (.rar) files

Appendix A Operating System-Specific Locations of Message Queue Data 363

Windows

364 Message Queue 3 2005Q1 « Administration Guide

Appendix B

Stability of Message Queue
Interfaces

Sun Java System Message Queue uses many interfaces that can help administrators
automate tasks. This appendix classifies the interfaces according to their stability.
The more stable an interface is, the less likely it is to change in subsequent versions
of the product.

Any interface that is not listed in this appendix is private and not for customer use.

Table B-1 describes the stability classification scheme.

Table B-1 Interface Stability Classification Scheme

Classification Description

Private Not for direct use by customers. May change or be removed in any
release.

Evolving For use by customers. Subject to incompatible change at a major

(e.g. 3.0, 4.0) or minor (e.g. 3.1, 3.2) release. The changes will be
made carefully and slowly. Reasonable efforts will be made to
ensure that all changes are compatible but that is not guaranteed.

Stable For use by customers. Subject to incompatible change at a major
(e.g 3.0, 4.0) release only.

Standard For use by customers. These interfaces are defined by a formal
standard, and controlled by a standards organization. Incompatible
changes to these interfaces are rare.

Unstable For use by customers. Subject to incompatible change at a major
(e.g. 3.0, 4.0) or minor (e.g. 3.1, 3.2) release. Customers are
advised that these interfaces may be removed or changed
substantially and in an incompatible way in a future release. It is
recommended that customers not create explicit dependencies on
unstable interfaces.

365

366

Table B-2 lists the interfaces and their classifications.

Table B-2 Stability of Message Queue Interfaces

Interface

Classification

Command Line Interfaces

i ngbr oker d command line interface Evolving
i rgadm n command line interface Unstable
i mgend command line interface Evolving
i mgdbmgr command line interface Unstable
i ngkeyt ool command line interface Evolving
i nmgobj mgr command line interface Evolving
i mguser ngr command line interface Unstable
Output from i ngbr oker d, i rgadm n, i ngend, i ngdbngr, i ngkeyt ool , Unstable
i ngobj ngr, i myuser nyr

Commands

i ngobj ngr command file Evolving
i ngbr oker d command Stable

i mgadm n command Unstable
i mgend command Stable

i mgdbmgr command Unstable
i ngkeyt ool command Stable

i mgobj ngr command Stable

i mguser ngr command Unstable
APIs

JMS API (j avax. j ms) Standard
JAXM API (j avax. xm) Standard
C-API Evolving
C-API environment variables Unstable
Message-based monitoring API Evolving
Administered Object API (com sun. nessagi ng) Evolving
JAR Files and WAR Files

i ng. j ar location and name Stable
jms. j ar location and name Evolving

Message Queue 3 2005Q1 « Administration Guide

Table B-2 Stability of Message Queue Interfaces (Continued)

Interface Classification
i mgbr oker . j ar location and name Private
imut i | . j ar location and name Private

i ngadm n. j ar location and name Private

i mgservl et.jar location and name Evolving
i mght t p. war location and name Evolving
i nght t ps. war location and name Evolving
i ngj nsra. rar location and name Evolving
i mgxm j ar location and name Evolving
j axmapi . j ar location and name Evolving
saaj - api . j ar location and name Evolving
saaj -i npl . jar location and name Evolving
activation.jar location and name Evolving
mai | . j ar location and name Evolving
dom¥j . j ar location and name Private
fscontext.jar location and name Unstable
Files

Broker log file location and content format Unstable
password file Unstable
accesscontrol . properties file Unstable
System Destinations

ng. sys. dng destination Stable
ng. netrics. * destinations Evolving
Configuration Properties

Message Queue JMS resource adapter configuration properties Evolving
Message Queue JMS resource adapter JavaBean and ActivationSpec Evolving

configuration properties

Appendix B Stability of Message Queue Interfaces

367

368

Table B-2 Stability of Message Queue Interfaces (Continued)

Interface

Classification

Message Properties and Formats

Dead message queue message property, JV5XDel i ver yCount Standard
Dead message queue message properties, JVM5_SUN * Evolving
Message Queue client message properties: JM5_SUN * Evolving
JMS message format for metrics or monitoring messages Evolving
Miscellaneous

Message Queue JMS resource adapter package, Evolving
com sun. nessagi ng.j ns.ra

JDBC schema for storage of persistent messages Evolving

Message Queue 3 2005Q1 « Administration Guide

Appendix C

HTTP/HTTPS Support

Message Queue, Enterprise Edition includes support for a Java client to
communicate with the broker by means of an HTTP or secure HTTP (HTTPS)
transport, rather than a direct TCP connection. HTTP/HTTPS support is not
available for C clients.

This appendix describes the architecture used to enable this support and explains
the setup work needed to allow clients to use HTTP-based connections for Message
Queue messaging. It has the following sections:

e “HTTP/HTTPS Support Architecture” on page 370
¢ “Enabling HTTP Support” on page 371

¢ “Enabling HTTPS Support” on page 382

e “Troubleshooting” on page 396

369

HTTP/HTTPS Support Architecture

HTTP/HTTPS Support Architecture

370

Message Queue messaging can run on top of HTTP/HTTPS connections. Because
HTTP/HTTPS connections are normally allowed through firewalls, this allows
client applications to be separated from a broker by a firewall.

Figure C-1 on page 370 shows the main components involved in providing
HTTP/HTTPS support.

¢ On the client side, an HTTP or HTTPS transport driver encapsulates the
Message Queue message into an HTTP request and makes sure that these
requests are sent to the Web server in the correct sequence.

¢ The client can use an HTTP proxy server to communicate with the broker if
necessary. The proxy’s address is specified using command line options when
starting the client. See “Using an HTTP Proxy” on page 376 for more
information.

e An HTTP or HTTPS tunnel servlet (both bundled with Message Queue) is
loaded in the web server and used to pull J]MS messages out of client HTTP
requests before forwarding them to the broker. The HTTP/HTTPS tunnel
servlet also sends broker messages back to the client in response to HTTP
requests made by the client. A single HTTP/HTTPS tunnel servlet can be used
to access multiple brokers.

Figure C-1 ~ HTTP/HTTPS Support Architecture

Broker
JMS Client httpjms/httpsjms
Connection
Message Queue Services
Client Runtime
HTTP/S Firewall TLS TCP/IP
Transport
Drivers ‘ﬂ—:
HTTPS THTTPI
HTTPS - Tunnel Sunnle
4 ——» T serviet |PeVIet
HTTP Proxy Web Server

Message Queue 3 2005Q1 « Administration Guide

Enabling HTTP Support

¢ On the broker side, the httpjms or httpsjms connection service unwraps and
de-multiplexes incoming messages from the corresponding tunnel servlet.

e If the Web server fails and is restarted, all connections are restored and there is
no effect on clients. If the broker fails and is restarted, an exception is thrown
and clients must re-establish their connections. In the unlikely case that both
the Web server and the broker fail, and the broker is not restarted, the Web
server will restore client connections and continue waiting for a broker
connection— without notifying clients. To avoid this situation, always restart
the broker.

As you can see from Figure C-1, the architecture for HTTP and HTTPS support are
very similar. The main difference is that, in the case of HTTPS (httpsjms connection
service), the tunnel servlet has a secure connection to both the client application
and broker.

The secure connection to the broker is provided through an SSL-enabled tunnel
servlet—Message Queue’s HTTPS tunnel servlet—which passes a self-signed
certificate to any broker requesting a connection. The certificate is used by the
broker to set up an encrypted connection to the HTTPS tunnel servlet. Once this
connection is established, a secure connection between a client application and the
tunnel servlet can be negotiated by the client application and the web server.

Enabling HTTP Support

The following sections describe the steps you need to take to enable HTTP support.

[J To Enable HTTP Support
1. Deploy the HTTP tunnel servlet on a web server.

2. Configure the broker’s httpjms connection service and start the broker.

3. Configure an HTTP connection.

Appendix C HTTP/HTTPS Support 371

Enabling HTTP Support

372

Step 1. Deploying the HTTP Tunnel Serviet
on a Web Server

There are two general ways you can deploy the HTTP tunnel servlet on a web
server:

* deploying it as a jar file—for web servers that support Servlet 2.1 or earlier

* deploying it as a web archive (WAR) file—for web servers that support Servlet
2.2 or later

Deploying as a Jar File

Deploying the Message Queue tunnel servlet consists of making the appropriate jar
files accessible to the host web server, configuring the web server to load the
servlet on startup, and specifying the context root portion of the servlet’s URL.

The tunnel servlet jar file (i ngser vl et . j ar) contains all the classes needed by the
HTTP tunnel servlet, and can be found in a directory that depends upon operating
system (see Appendix A, “Operating System-Specific Locations of Message Queue
Data”).

Any web server with servlet 2.x support can be used to load this servlet. The servlet
class name is:

com sun. messagi ng. j ng. transport.
htt ptunnel . servl et. H t pTunnel Servl et

The web server must be able to see the i myservl et . j ar file. If you are planning to
run the web server and the broker on different hosts, you should place a copy of
theingservlet.jar filein a location where the web server can access it.

You also need to configure the web server to load this servlet on startup, and you
might need to specify the context root portion of the servlet’s URL (see “Example 1:
Deploying the HTTP Tunnel Servlet on Sun Java System Web Server” on page 376).

It is also recommended that you disable your web server’s access logging feature in
order to improve performance.

Deploying as a Web Archive File

Deploying the HTTP tunnel servlet as a WAR file consists of using the deployment
mechanism provided by the web server. The HTTP tunnel servlet WAR file

(i myht t p. war) is located in the directory containing .jar, .war, and .rar files, and
depends on your operating system (see Appendix A, “Operating System-Specific
Locations of Message Queue Data”).

Message Queue 3 2005Q1 « Administration Guide

Enabling HTTP Support

The WAR file includes a deployment descriptor that contains the basic
configuration information needed by the web server to load and run the servlet.
Depending on the web server, you might also need to specify the context root
portion of the servlet’s URL (see “Example 2: Deploying the HTTP Tunnel Servlet
on Sun Java System Application Server 7.0” on page 380).

Step 2. Configuring the httpjms
Connection Service

HTTP support is not activated for a broker by default, so you need to reconfigure
the broker to activate the httpjms connection service. Once reconfigured, the broker
can be started as outlined in “Starting Brokers Interactively” on page 67.

To Activate the httpjms Connection Service

1. Open the broker’s instance configuration file.

The instance configuration file is stored in a directory identified by the name of
the broker instance (instanceName) with which the configuration file is
associated (see Appendix A, “Operating System-Specific Locations of Message
Queue Data”):

.1 i nstances/ instanceNamel props/ confi g. properties
2. Add the htt pj ms value to the i myj. servi ce. activel i st property:
i ng. service. activelist=jns, adnin, httpjns

At startup, the broker looks for a web server and HTTP tunnel servlet running on
its host machine. To access a remote tunnel servlet, however, you can reconfigure
the servletHost and servletPort connection service properties.

You can also reconfigure the pullPeriod property to improve performance. The
httpjms connection service configuration properties are detailed in Table C-1 on
page 373.

Table C-1 httpjms Connection Service Properties

Property Name Description
ing. httpjns. http. Change this value, if necessary, to specify the name of the host
servl et Host (hostname or IP address) on which the HTTP tunnel servlet is

running. (This can be a remote host or a specific hostname on a
local host.) Default: | ocal host

Appendix C HTTP/HTTPS Support 373

Enabling HTTP Support

374

Table C-1 httpjms Connection Service Properties (Continued)

Property Name Description
ing. httpjns. http. Change this value to specify the port number that the broker uses to
servl et Port access the HTTP tunnel servlet. (If the default port is changed on

the Web server, you must change this property accordingly.)
Default: 7675

i mg. httpjns. http. Specifies the interval, in seconds, between HTTP requests made by

pul | Peri od a client runtime to pull messages from the broker. (Note that this
property is set on the broker and propagates to the client runtime.) If
the value is zero or negative, the client keeps one HTTP request
pending at all times, ready to pull messages as fast as possible.
With a large number of clients, this can be a heavy drain on web
server resources and the server may become unresponsive. In such
cases, you should set the pul | Peri od property to a positive number
of seconds. This sets the time the client's HTTP transport driver
waits before making subsequent pull requests. Setting the value to a
positive number conserves web server resources at the expense of
the response times observed by clients. Default: - 1

i mg. httpjns. http. Specifies the time, in seconds, that the client runtime waits for a

connect i onTi neout response from the HTTP tunnel servlet before throwing an
exception. (Note that this property is set on the broker and
propagates to the client runtime.) This property also specifies the
time the broker waits after communicating with the HTTP tunnel
servlet before freeing up a connection. A timeout is necessary in this
case because the broker and the tunnel servlet have no way of
knowing if a client that is accessing the HTTP servlet has terminated
abnormally. Default: 60

Step 3. Configuring an HTTP Connection

A client application must use an appropriately configured connection factory
administered object to make an HTTP connection to a broker. This section
discusses HTTP connection configuration issues.

Configuring the Connection Factory

To enable HTTP support, you need to set the connection factory’s i mgAddr essLi st
attribute to the HTTP tunnel servlet URL. The general syntax of the HTTP tunnel
servlet URL is the following:

ht t p: / / hostName:port/contextRoott unnel

where hostName:port is the name and port of the web server hosting the HTTP
tunnel servlet and contextRoot is a path set when deploying the tunnel servlet on
the web server.

Message Queue 3 2005Q1 « Administration Guide

Enabling HTTP Support

For more information on connection factory attributes in general, and the
i mgAddr essLi st attribute in particular, see the Message Queue Developer’s Guide for
Java Clients.

You can set connection factory attributes in one of the following ways:

e Using the - 0 option to the i ngobj myr command that creates the connection
factory administered object (see “Adding a Connection Factory” on page 189),
or set the attribute when creating the connection factory administered object
using the Administration Console (i ngadmi n).

¢ Using the - Doption to the command that launches the client (see the Message
Queue Developer’s Guide for Java Clients).

¢ Using a an API call to set the attributes of a connection factory after you create
it programmatically in client code (see the Message Queue Developer’s Guide for
Java Clients).

Using a Single Servlet to Access Multiple Brokers

You do not need to configure multiple web servers and servlet instances if you are
running multiple brokers. You can share a single web server and HTTP tunnel
servlet instance among concurrently running brokers. If multiple broker instances
are sharing a single tunnel servlet, you must configure the i nyAddr essLi st
connection factory attribute as shown below:

ht t p: / / hostName:port/contextRootA unnel ?Ser ver Nare=bkrHostName: instanceName

Where bkrHostName is the broker instance host name and instanceName is the name
of the specific broker instance you want your client to access.

To check that you have entered the correct strings for bkrHostName and
instanceName, generate a status report for the HTTP tunnel servlet by accessing the
servlet URL from a browser. The report lists all brokers being accessed by the
servlet:

HTTP tunnel servlet ready.
Servlet Start Time : Thu May 30 01:08:18 PDT 2002
Accepting TCP connections from brokers on port : 7675
Total available brokers = 2
Broker List :

j pgserv: br oker 2

cochi n: broker1

Appendix C HTTP/HTTPS Support 375

Enabling HTTP Support

376

Using an HTTP Proxy
If you are using an HTTP proxy to access the HTTP tunnel servlet:

e Sethttp.proxyHost system property to the proxy server host name.
e Sethttp. proxyPort system property to the proxy server port number.

You can set these properties using the - Doption to the command that launches the
client application.

Example 1: Deploying the HTTP Tunnel Servlet
on Sun Java System Web Server

This section describes how you deploy the HTTP tunnel servlet both as a jar file
and as a WAR file on the Sun Java System Web Server. The approach you use
depends on the version of Sun Java System Web Server: If it does not support
Servlet 2.2 or later, it will not be able to handle WAR file deployment.

Deploying as a Jar File

The instructions below refer to deployment on Sun Java System Web Server 6.1
using the browser-based administration GUI This procedure consists of the
following general steps:

1. add aservlet

2. configure the servlet virtual path
3. load the servlet

4. disable the servlet access log

These steps are described in the following subsections. You can verify successful
HTTP tunnel servlet deployment by accessing the servlet URL using a web
browser. It should display status information.

Adding a Servlet

[0 To Add a Tunnel Servlet

1. Select the Servlets tab.
2. Choose Configure Servlet Attributes.

3. Specify a name for the tunnel servlet in the Servlet Name field.

Message Queue 3 2005Q1 « Administration Guide

Enabling HTTP Support

Set the Servlet Code (class name) field to the following value:
com sun. messagi ng. j ng. transport. httptunnel . servl et. H t pTunnel Servl et

Enter the complete path to the i ngservl et . j ar in the Servlet Classpath field.
For example:

[usr/sharellibling/ingservlet.jar (Solaris)
/opt/sun/ny/share/lib/imservlet.jar (Linux)
| MQ HOWE/ |'i b/i ngservl et. jar (Windows)

In the Servlet args field, enter any optional arguments, as shown in Table C-2:

Table C-2 Servlet Arguments for Deploying HTTP Tunnel Servlet Jar File

Argument Default Value Reference
servletHost all hosts See Table C-1 on page 373
servletPort 7675 See Table C-1 on page 373

If using both arguments, separate them with a comma:
ser vl et Por t =portNumber, servl et Host =...

The servl et Host and servl et Port argument apply only to communication
between the Web Server and broker, and are set only if the default values are
problematic. However, in that case, you also must set the broker configuration
properties accordingly (see Table C-1 on page 373), for example:

ing. httpjms. http. servl etPort

Configuring a Servlet Virtual Path (Servlet URL)

[J To Configure a Virtual Path (Servlet URL) for a Tunnel Servlet

1.
2.
3.

Select the Servlets tab.

Choose Configure Servlet Virtual Path Translation.

Set the Virtual Path field.

The Virtual Path is the /contextRoot/t unnel portion of the tunnel servlet URL:
ht t p: / / hostName: portl contextRoot/ t unnel

For example, if you set the contextRoot to i my, the Virtual Path field would be:
/i my/ t unnel

Appendix C HTTP/HTTPS Support 377

Enabling HTTP Support

378

4. Set the Servlet Name field to the same value as in step 3 in “Adding a Servlet”
on page 376.

Loading a Servlet
To Load the Tunnel Servlet at Web Server Startup
1. Select the Servlets tab.

2. Choose Configure Global Attributes.

3. Inthe Startup Servlets field, enter the same servlet name value as in step 3 in
“Adding a Servlet” on page 376.

Disabling a Server Access Log

You do not have to disable the server access log, but you will obtain better
performance if you do.

To Disable the Server Access Log
1. Select the Status tab.

2. Choose the Log Preferences Page.

3. Use the Log client accesses control to disable logging

Deploying as a WAR File

The instructions below refer to deployment on Sun Java System Web Server 6.0
Service Pack 2. You can verify successful HTTP tunnel servlet deployment by
accessing the servlet URL using a web browser. It should display status
information.

[J To Deploy the http Tunnel Servlet as a WAR File

1. In the browser-based administration GUI, select the Virtual Server Class tab
and select Manage Classes.

2. Select the appropriate virtual server class name (for example, def aul t O ass)
and click the Manage button.

3. Select Manage Virtual Servers.

4. Select an appropriate virtual server name and click the Manage button.

Message Queue 3 2005Q1 « Administration Guide

Enabling HTTP Support

5. Select the Web Applications tab.
6. Click on Deploy Web Application.

7. Select the appropriate values for the WAR File On and WAR File Path fields so
as to point to the i nght t p. war file, which can be found in a directory that
depends on your operating system (see Appendix A, “Operating
System-Specific Locations of Message Queue Data”).

8. Enter a path in the Application URI field.

The Application URI field value is the /contextRoot portion of the tunnel servlet
URL:

htt p: // hostName: portl contextRoot/ t unnel

For example, if you set the confextRoot to i my, the Application URI field would
be:

/iy
9. Enter the installation directory path (typically somewhere under the Sun Java
System Web Server installation root) where the servlet should be deployed.

10. Click OK.

11. Restart the web server instance.

The servlet is now available at the following address:
ht t p: / / hostName: port/ contextRoot! t unnel

Clients can now use this URL to connect to the message service using an HTTP
connection.

Appendix C HTTP/HTTPS Support 379

Enabling HTTP Support

380

Example 2: Deploying the HTTP Tunnel Servlet
on Sun Java System Application Server 7.0

This section describes how you deploy the HTTP tunnel servlet as a WAR file on
the Sun Java System Application Server 7.0.

Two steps are required:

¢ deploy the HTTP tunnel servlet using the Application Server 7.0 deployment
tool

e modify the application server instance’s server. pol i cy file

Using the Deployment Tool
To Deploy the HTTP Tunnel Servlet in an Application Server 7.0 Environment
1. In the web-based administration GUI, choose
App Server > Instances > serverl > Applications > Web Applications.
2. Click the Deploy button.

3. In the File Path: text field, enter the location of the HTTP tunnel servlet WAR
file (i nght t p. war).

The location of the i nght t p. war file depends on your operating system (see
Appendix A, “Operating System-Specific Locations of Message Queue Data”)

4. Click OK.
5. On the next screen, set the value for the Context Root text field.

The Context Root field value is the /contextRoot portion of the tunnel servlet
URL:

ht t p: / / hostName: portl contextRoot/ t unnel
For example, you could set the Context Root field to /i m.
6. Click OK.

The next screen shows that the tunnel servlet has been successfully deployed,
is enabled by default, and—in this case—is located at:

[var/ opt / SUN\Wappser ver 7/ domai ns/ domai nl/ ser ver 1/ appl i cati ons/
j 2ee-nodul es/imghttp_1

Message Queue 3 2005Q1 « Administration Guide

Enabling HTTP Support

The servlet is now available at the following address:
ht t p: / / hostName: port/ contextRoot! t unnel

Clients can now use this URL to connect to the message service using an HTTP
connection.

Modifying the server.policy File

The Application Server 7.0 enforces a set of default security policies that unless
modified would prevent the HTTP tunnel servlet from accepting connections from
the Message Queue broker.

Each application server instance has a file that contains its security policies or rules.
For example, the location of this file for the serverl instance on Solaris is:

/var/ opt/ SUN\Wappser ver 7/ domai ns/ donai nl/ ser ver 1/ confi g/
server. policy

To make the tunnel servlet accept connections from the Message Queue broker, an
additional entry is required in this file.

[J To Modify the Application Server’s server.policy File
1. Open the server.policy file.

2. Add the following entry:

grant codeBase
“file:/var/opt/ SUN\Vappser ver 7/ domai ns/ domai nl/ server 1/

appl i cations/j2ee-nodul es/inmghttp_1/-"

per ni ssi on j ava. net. Socket Per m ssion "*",
“connect, accept, resol ve";

Appendix C HTTP/HTTPS Support 381

Enabling HTTPS Support

Enabling HTTPS Support

382

The following sections describe the steps you need to take to enable HTTPS
support. They are similar to those in “Enabling HTTP Support” on page 371 with
the addition of steps needed to generate and access SSL certificates.

To Enable HTTPS Support
1. Generate a self-signed certificate for the HTTPS tunnel servlet.

2. Deploy the HTTPS tunnel servlet on a web server.
3. Configure the broker’s httpsjms connection service and start the broker.
4. Configure an HTTPS connection.

Each of these steps is discussed in more detail in the sections that follow.

Step 1. Generating a Self-signed Cetrtificate for
the HTTPS Tunnel Servlet

Message Queue’s SSL support is oriented toward securing on-the-wire data with
the assumption that the client is communicating with a known and trusted server.
Therefore, SSL is implemented using only self-signed server certificates. In the
httpsjms connection service architecture, the HTTPS tunnel servlet plays the role of
server to both broker and application client.

Run the i ngkeyt ool utility to generate a self-signed certificate for the tunnel
servlet. Enter the following at the command prompt:

i mgkeyt ool -servl et keystore_location

The utility will prompt you for the information it needs. (On Unix systems you
may need to run i ngkeyt ool as the superuser (root) in order to have permission to
create the keystore.)

First, i ngkeyt ool prompts you for a keystore password, and then it prompts you
for some organizational information, and then it prompts you for confirmation.
After it receives the confirmation, it pauses while it generates a key pair. It then
asks you for a password to lock the particular key pair (key password); you should
enter Return in response to this prompt: this makes the key password the same as
the keystore password.

NOTE Remember the password you provide—you must provide this
password later to the tunnel servlet so it can open the keystore.

Message Queue 3 2005Q1 « Administration Guide

Enabling HTTPS Support

Running i ngkeyt ool runs the JDK keyt ool utility to generate a self-signed
certificate and to place it in Message Queue’s keystore file located as specified in
the keystore_location argument. (The keystore is in the same keystore format as that
supported by the JDK1.2 keyt ool .)

NOTE The HTTPS tunnel servlet must be able to see the keystore. Make
sure you move/copy the generated keystore located in
keystore_location to a location accessible by the HTTPS tunnel servlet
(see “Step 2. Deploying the HTTPS Tunnel Servlet on a Web Server”
on page 383).

Step 2. Deploying the HTTPS Tunnel Servlet
on a Web Server

There are two general ways you can deploy the HTTPS tunnel servlet on a web
server:

* deploying it as a jar file—for web servers that support Servlet 2.1 or earlier

* deploying it as a web archive (WAR) file—for web servers that support Servlet
2.2 or later

In either case, you should make sure that encryption is activated for the web server,
enabling end to end secure communication between the client and broker.

Deploying as a Jar File

Deploying the Message Queue tunnel servlet consists of making the appropriate jar
files accessible to the host web server, configuring the web server to load the
servlet on startup, and specifying the context root portion of the servlet’s URL.

The tunnel servlet jar file (i ngser vl et . j ar) contains all the classes needed by the
HTTPS tunnel servlet, and can be found in a directory that depends upon
operating system (see Appendix A, “Operating System-Specific Locations of
Message Queue Data”).

Any web server with servlet 2.x support can be used to load this servlet. The servlet
class name is:

com sun. messagi ng. j ng. transport.
htt pt unnel . servl et. H t psTunnel Ser vl et

Appendix C HTTP/HTTPS Support 383

Enabling HTTPS Support

384

The web server must be able to see the i myservl et . j ar file. If you are planning to
run the web server and the broker on different hosts, you should place a copy of
the i ngservl et. jar file in a location where the web server can access it.

You also need to configure the web server to load this servlet on startup, and you
might need to specify the context root portion of the servlet’s URL (see “Example 3:
Deploying the HTTPS Tunnel Servlet on Sun Java System Web Server” on

page 389).

Make sure that the JSSE jar files are in the classpath for running servlets in the web
server. Check the web server’s documentation for how to do this.

An important aspect of configuring the web server is specifying the location and
password of the self-signed certificate to be used by the HTTPS tunnel servlet to
establish a secure connection with a broker. You must place the keystore created in
“Step 1. Generating a Self-signed Certificate for the HTTPS Tunnel Servlet” on
page 382 in a location accessible by the HTTPS tunnel servlet.

It is also recommended that you disable your web server’s access logging feature in
order to improve performance.

Deploying as a Web Archive File

Deploying the HTTPS tunnel servlet as a WAR file consists of using the
deployment mechanism provided by the web server. The HTTPS tunnel servlet
WAR file (i nght t ps. war) is located in a directory that depends on your operating
system (see Appendix A, “Operating System-Specific Locations of Message Queue
Data”).

The WAR file includes a deployment descriptor that contains the basic
configuration information needed by the web server to load and run the servlet.
Depending on the web server, you might also need to specify the context root
portion of the servlet’s URL (see “Example 4: Deploying the HTTPS Tunnel Servlet
on Sun Java System Application Server 7.0” on page 394).

However, the deployment descriptor of the i nght t ps. war file cannot know where
you have placed the keystore file needed by the tunnel servlet (see “Step 1.
Generating a Self-signed Certificate for the HTTPS Tunnel Servlet” on page 382).
This requires you to edit the tunnel servlet’s deployment descriptor (an XML file)
to specify the keystore location before deploying the i mght t ps. war file.

Message Queue 3 2005Q1 « Administration Guide

Enabling HTTPS Support

Step 3. Configuring the httpsjms
Connection Service

HTTPS support is not activated for a broker by default, so you need to reconfigure
the broker to activate the httpsjms connection service. Once reconfigured, the
broker can be started as outlined in “Starting Brokers Interactively” on page 67.

To Activate the httpsjms Connection Service
1. Open the broker’s instance configuration file.

The instance configuration file is stored in a directory identified by the name of
the broker instance (instanceName) with which the configuration file is
associated (see Appendix A, “Operating System-Specific Locations of Message
Queue Data”):

.l i nstances/ instanceNamel props/ confi g. properties
2. Add the htt psj ns value to the i my. servi ce. acti vel i st property:
i ng. service. activelist=jns, adnin, httpsjns

At startup, the broker looks for a web server and HTTPS tunnel servlet running on
its host machine. To access a remote tunnel servlet, however, you can reconfigure
the servletHost and servletPort connection service properties.

You can also reconfigure the pullPeriod property to improve performance. The
httpsjms connection service configuration properties are detailed in Table C-3.

Table C-3 httpsjms Connection Service Properties

Property Name Description
i ng. httpsjns. https. Change this value, if necessary, to specify the name of the host
servl et Host (hostname or IP address) on which the HTTPS tunnel servlet is

running. (This can be a remote host or a specific hostname on a
local host.) Default: | ocal host

i ng. httpsjns. https. Change this value to specify the port number that the broker uses

servl et Port to access the HTTPS tunnel servlet. (If the default port is changed
on the Web server, you must change this property accordingly.)
Default: 7674

Appendix C HTTP/HTTPS Support 385

Enabling HTTPS Support

386

Table C-3 httpsjms Connection Service Properties (Continued)

Property Name

Description

i ng. httpsjns. https.
pul | Period

i ng. httpsjms. https.
connect i onTi neout

Specifies the interval, in seconds, between HTTP requests made
by each client to pull messages from the broker. (Note that this
property is set on the broker and propagates to the client runtime.)
If the value is zero or negative, the client keeps one HTTP request
pending at all times, ready to pull messages as fast as possible.
With a large number of clients, this can be a heavy drain on web
server resources and the server may become unresponsive. In
such cases, you should set the pul | Peri od property to a positive
number of seconds. This sets the time the client’'s HTTP transport
driver waits before making subsequent pull requests. Setting the
value to a positive number conserves web server resources at the
expense of the response times observed by clients. Default: - 1

Specifies the time, in seconds, that the client runtime waits for a
response from the HTTPS tunnel servlet before throwing an
exception. (Note that this property is set on the broker and
propagates to the client runtime.) This property also specifies the
time the broker waits after communicating with the HTTPS tunnel
servlet before freeing up a connection. A timeout is necessary in
this case because the broker and the tunnel servlet have no way of
knowing if a client that is accessing the HTTPS servlet has
terminated abnormally. Default: 60

Step 4. Configuring an HTTPS Connection

A client application must use an appropriately configured connection factory
administered object to make an HTTPS connection to a broker.

However, the client must also have access to SSL libraries provided by the Java
Secure Socket Extension (JSSE) and must also have a root certificate. The SSL
libraries are bundled with JDK 1.4. If you have an earlier JDK version, see
“Configuring JSSE,” otherwise proceed to “Importing a Root Certificate.”

Once these issues are resolved, you can proceed to configuring the HTTPS

connection.

Configuring JSSE

[J To Configure JSSE

1. Copy the JSSE jar files to the JRE_HOME/ | i b/ ext directory.

jsse.jar, jnet.jar,

Message Queue 3 2005Q1 « Administration Guide

jcert.jar

Enabling HTTPS Support

2. Statically add the JSSE security provider by adding
security. provider.n=com sun. net.ssl.internal.ssl.Provider

to the JRE HOVE/ | i b/ security/java. security file (where 7 is the next
available priority number for security provider package).

3. If not using JDK1.4, you need to set the following JSSE property using the - D
option to the command that launches the client application:

j ava. protocol . handl er. pkgs=com sun. net . ssl . i nt er nal . waww. pr ot ocol

Importing a Root Certificate

If the root certificate of the CA who signed your web server’s certificate is not in the
trust database by default or if you are using a proprietary web server certificate,
you must add that certificate to the trust database. If this is the case, follow the
instruction below, otherwise go to “Configuring the Connection Factory.”

Assuming that the certificate is saved in cert_file and that trust_store_file is your
keystore, run the following command:

JRE_HOME/ bi n/ keytool -inport -trustcacerts
-al i as alias_for_certificate -fil e cert_file
-keystore trust_store_file

Answer YES to the question: Trust this certificate?

You also need to specify the following JSSE properties using the - Doption to the
command that launches the client application:

javax. net. ssl . trust Store=trust_store_file

javax. net . ssl . trust St or ePasswor d=trust_store_passwd

Configuring the Connection Factory

To enable HTTPS support, you need to set the connection factory’s
i mgAddr essLi st attribute to the HTTPS tunnel servlet URL. The general syntax of
the HTTPS tunnel servlet URL is the following:

ht t ps: / / hostName:port/contextRoot unnel

where hostName:port is the name and port of the web server hosting the HTTPS
tunnel servlet and contextRoot is a path set when deploying the tunnel servlet on
the web server.

For more information on connection factory attributes in general, and the
i mgAddr essLi st attribute in particular, see the Message Queue Developer’s Guide for
Java Clients.

Appendix C HTTP/HTTPS Support 387

Enabling HTTPS Support

388

You can set connection factory attributes in one of the following ways:

e Using the - 0 option to the i ngobj nmyr command that creates the connection
factory administered object (see “Adding a Connection Factory” on page 189),
or set the attribute when creating the connection factory administered object
using the Administration Console (i ngadmi n).

e Using the - Doption to the command that launches the client application (see
the Message Queue Developer’s Guide for Java Clients).

¢ Using an API call to set the attributes of a connection factory after you create it
programmatically in client application code (see the Message Queue Developer’s
Guide for Java Clients).

Using a Single Servlet to Access Multiple Brokers

You do not need to configure multiple web servers and servlet instances if you are
running multiple brokers. You can share a single web server and HTTPS tunnel
servlet instance among concurrently running brokers. If multiple broker instances
are sharing a single tunnel servlet, you must configure the i ngAddr essLi st
connection factory attribute as shown below:

ht t ps: / / hostName:port/contextRootA unnel ?Ser ver Name=bkrHostName: instanceNane

Where bkrHostName is the broker instance host name and instanceName is the name
of the specific broker instance you want your client to access.

To check that you have entered the correct strings for bkrhostName and
instanceName, generate a status report for the HTTPS tunnel servlet by accessing
the servlet URL from a browser. The report lists all brokers being accessed by the
servlet:

HTTPS tunnel servlet ready.
Servlet Start Time : Thu May 30 01:08:18 PDT 2002
Accepting secured connections frombrokers on port : 7674
Total available brokers = 2
Broker List :

j pgserv: br oker 2

cochi n: broker 1

Message Queue 3 2005Q1 « Administration Guide

Enabling HTTPS Support

Using an HTTP Proxy
If you are using an HTTP proxy to access the HTTPS tunnel servlet:

e Sethttp. proxyHost system property to the proxy server host name.
e Sethttp.proxyPort system property to the proxy server port number.

You can set these properties using the - Doption to the command that launches the
client application.

Example 3: Deploying the HTTPS Tunnel Servlet
on Sun Java System Web Server

This section describes how you deploy the HTTPS tunnel servlet both as a jar file
and as a WAR file on the Sun Java System Web Server. The approach you use
depends on the version of Sun Java System Web Server: If it does not support
Servlet 2.2 or later, it will not be able to handle WAR file deployment.

Deploying as a Jar File

The instructions below refer to deployment on Sun Java System Web Server 6.1
using the browser-based administration GUI. This procedure consists of the
following general steps:

1. add aservlet

2. configure the servlet virtual path
3. load the servlet

4. disable the servlet access log

These steps are described in the following subsections. You can verify successful
HTTPS tunnel servlet deployment by accessing the servlet URL using a web
browser. It should display status information.

Adding a Servlet

[J To Add a Tunnel Servlet
1. Select the Servlets tab.
2. Choose Configure Servlet Attributes.

3. Specify a name for the tunnel servlet in the Servlet Name field.

Appendix C HTTP/HTTPS Support 389

Enabling HTTPS Support

Set the Servlet Code (class name) field to the following value:

com sun. messagi ng. j ng. transport.
htt pt unnel . servl et. H t psTunnel Ser vl et

Enter the complete path to the i ngservl et . j ar in the Servlet Classpath field.
For example:

[usr/share/libling/ingservlet.jar (Solaris)
/opt/sun/ g/ share/lib/imservlet.jar (Linux)
| MQ HOWE/ | i b/ingservl et. jar (Windows)

In the Servlet args field, enter required and optional arguments, as shown in
Table C-4.

Table C-4 Servlet Arguments for Deploying HTTPS Tunnel Servlet Jar File

Argument Default Value Required?
keyst or eLocat i on none Yes

keyst or ePassword none Yes

ser vl et Host all hosts No

servl et Port 7674 No

Separate the arguments with commas. For example:

keyst or eLocat i on=keystore_location, keyst or ePasswor d=keystore_password,
ser vl et Por t =portnumber

The servl et Host and servl et Port argument apply only to communication
between the Web Server and broker, and are set only if the default values are
problematic. However, in that case, you also must set the broker configuration
properties accordingly (see Table C-3 on page 385). For example:

i ng. httpsjns. https. servl et Port

390 Message Queue 3 2005Q1 « Administration Guide

Enabling HTTPS Support

Configuring a Servlet Virtual Path (Servlet URL)
[J To Configure a Virtual Path (servlet URL) for a Tunnel Servlet
1. Select the Servlets tab.
2. Choose Configure Servlet Virtual Path Translation.
3. Set the Virtual Path field.
The Virtual Path is the /contextRoot/t unnel portion of the tunnel servlet URL:
ht t ps: // hostName: port/ contextRoot/ t unnel
For example, if you set the contextRoot to i mg, the Virtual Path field would be:
i my/ t unnel

4. Set the Servlet Name field to the same value as in step 3 in “Adding a Servlet”
on page 389.

Loading a Servlet
[J To Load the Tunnel Servlet at Web Server Startup
1. Select the Servlets tab.

2. Choose Configure Global Attributes.

3. Inthe Startup Servlets field, enter the same servlet name value as in step 3 in
“Adding a Servlet” on page 389.

Disabling a Server Access Log

You do not have to disable the server access log, but you will obtain better
performance if you do.

[To Disable the Server Access Log
1. Select the Status tab.
2. Choose the Log Preferences Page.

3. Use the Log client accesses control to disable logging

Appendix C HTTP/HTTPS Support 391

Enabling HTTPS Support

392

Deploying as a WAR File

The instructions below refer to deployment on Sun Java System Web Server 6.0
Service Pack 2. You can verify successful HTTPS tunnel servlet deployment by
accessing the servlet URL using a web browser. It should display status
information.

Before deploying the HTTPS tunnel servlet, make sure that JSSE jar files are
included in the web server’s classpath. The simplest way to do this is to copy the
jsse.jar,jnet.jar,andjcert.jar tol W60 TCPDI R bin/https/jre/lib/ext.

Also, before deploying the HTTPS tunnel servlet, you must modify its deployment
descriptor to point to the location where you have placed the keystore file and to
specify the keystore password.

To Modify the HTTPS Tunnel Servlet WAR File
1. Copy the WAR file to a temporary directory.
cp /usr/share/lib/img/inghttps.war /tnp (Solaris)
cp /opt/sun/my/share/lib/imhttps.war /tnp (Linux)
cp |MQ HOW/ i b/inghttps.war /tnp (Windows)
2. Make the temporary directory your current directory.
$cd/tnp
3. Extract the contents of the WAR file.
$ jar xvf inghttps.war
4. List the WAR file’s deployment descriptor.
$ I's -1 WEB-I NF/web. xm

5. Edit the web. xm file to provide correct values for the keyst or eLocat i on and
keyst or ePasswor d arguments (as well as servl et Port and ser vl et Host
arguments, if necessary).

6. Re-assemble the contents of the WAR file.
$ jar uvf imghttps.war WEB-INF/web.xml

You are now ready to use the modified i nght t ps. war file to deploy the HTTPS
tunnel servlet. (If you are concerned about exposure of the keystore password, you
can use file system permissions to restrict access to the i nghtt ps. war file.)

Message Queue 3 2005Q1 « Administration Guide

Enabling HTTPS Support

[J To Deploy the https Tunnel Servlet as a WAR File

1.

o o > W

10.

11.

In the browser-based administration GUI, select the Virtual Server Class tab.
Click Manage Classes.

Select the appropriate virtual server class name (for example, def aul t 0 ass)
and click the Manage button.

Select Manage Virtual Servers.

Select an appropriate virtual server name and click the Manage button.
Select the Web Applications tab.

Click on Deploy Web Application.

Select the appropriate values for the WAR File On and WAR File Path fields so
as to point to the modified i nght t ps. war file (see “To Modify the HTTPS
Tunnel Servlet WAR File” on page 392.)

Enter a path in the Application URI field.

The Application URI field value is the /contextRoot portion of the tunnel servlet
URL:

htt ps: // hostName: port! contextRoot/ t unnel

For example, if you set the confextRoot to i my, the Application URI field would
be:

/iy
Enter the installation directory path (typically somewhere under the Sun Java
System Web Server installation root) where the servlet should be deployed.

Click OK.

Restart the web server instance.

The servlet is now available at the following address:

ht t ps: / / hostName: port/ i my/ t unnel

Clients can now use this URL to connect to the message service using a secure
HTTPS connection.

Appendix C HTTP/HTTPS Support 393

Enabling HTTPS Support

394

Example 4: Deploying the HTTPS Tunnel Servlet

on Sun Java System Application Server 7.0

This section describes how you deploy the HTTPS tunnel servlet as a WAR file on
the Sun Java System Application Server 7.0.

Two steps are required:

¢ deploy the HTTPS tunnel servlet using the Application Server 7.0 deployment
tool

e modify the application server instance’s ser ver . pol i cy file

Using the Deployment Tool
To Deploy the HTTPS Tunnel Servlet in an Application Server 7.0 Environment
1. In the web-based administration GUI, choose
App Server > Instances > serverl > Applications > Web Applications.
2. Click the Deploy button.

3. In the File Path: text field, enter the location of the HTTPS tunnel servlet WAR
file (i nght t ps. war).

The location of the i nght t ps. war file depends on your operating system (see
Appendix A, “Operating System-Specific Locations of Message Queue Data”)

4. Click OK.
5. On the next screen, set the value for the Context Root text field.

The Context Root field value is the /contextRoot portion of the tunnel servlet
URL:

htt ps: // hostName: port/ contextRoot/ t unnel
For example, you could set the Context Root field to:
limgy
6. Click OK.

The next screen shows that the tunnel servlet has been successfully deployed,
is enabled by default, and—in this case—is located at:

[var/ opt / SUN\Wappser ver 7/ domai ns/ domai nl/ ser ver 1/ appl i cati ons/
j 2ee-nodul es/imghtt ps_1

Message Queue 3 2005Q1 « Administration Guide

Enabling HTTPS Support

The servlet is now available at the following address:
ht t ps: / / hostName: port/ contextRoot/ t unnel

Clients can now use this URL to connect to the message service using an HTTPS
connection.

Modifying the server.policy file

The Application Server 7.0 enforces a set of default security policies that unless
modified would prevent the HTTPS tunnel servlet from accepting connections
from the Message Queue broker.

Each application server instance has a file that contains its security policies or rules.
For example, the location of this file for the serverl instance on Solaris is:

/var/ opt/ SUN\Wappser ver 7/ domai ns/ donai nl/ ser ver 1/ confi g/
server. policy

To make the tunnel servlet accept connections from the Message Queue broker, an
additional entry is required in this file.

[J To Modify the Application Server’s server.policy File
1. Open the server.policy file.

2. Add the following entry:

grant codeBase
“file:/var/opt/ SUN\Vappser ver 7/ domai ns/ domai nl/ server 1/

appl i cations/j2ee-nodul es/i mghttps_1/-"

per ni ssi on j ava. net. Socket Per m ssion "*",
“connect, accept, resol ve";

Appendix C HTTP/HTTPS Support 395

Troubleshooting

Troubleshooting

This section describes possible problems with an HTTP or HTTPS connection and
provides guidance on how to handle them.

Server or Broker Failure

If the web server fails and is restarted, all connections are restored and there is no
effect on clients. However, if the broker fails and is restarted, an exception is
thrown and clients must re-establish their connections.

If both the web server and the broker fail, and the broker is not restarted, the web
server restores client connections and continues waiting for a broker connection
without notifying clients. To avoid this situation, always make sure the broker is
restarted.

Client Failure to Connect Through the
Tunnel Servlet

If an HTTPS client cannot connect to the broker through the tunnel servlet, do the
following:

1. Start the servlet and the broker.

2. Use a browser to manually access the servlet through the HTTPS tunnel servlet
URL.

3. Use the following administrative commands to pause and resume the
connection:

i ngcnd pause svc -n httpsjms -u adnin
i ngcnd resume sve -n httpsjns -u admn

When the service resumes, an HTTPS client should be able to connect to the broker
through the tunnel servlet.

396 Message Queue 3 2005Q1 « Administration Guide

Glossary

For information about Message Queue terms, see the glossary in the Message Queue
Technical Overview. See the Java Enterprise System Glossary

(http://docs. sun. con doc/ 816- 6873) for a complete list of terms that are used in the
Sun Java System product suite.

397

http://docs.sun.com/doc/816-6873

398 Message Queue 3 2005Q1 « Administration Guide

A

access control file
access rules 155
format of 154
location 360, 361, 362
use for 153
version 153
access rules 155
acknowledgeMode activation specification
attribute 347
acknowledgments
client 80
delivery, of 80
transactions and 81
ActivationSpec JavaBean 346
addressList activation specification attribute 347
addressList managed connection factory
attribute 345
addressList resource adapter attribute 344, 345
addressListBehavior managed connection factory
attribute 346
addressListBehavior resource adapter attribute 344
addressListlterations managed connection factory
attribute 346
addressListlterations resource adapter attribute 344
admin connection service 76,117
admin group 145
ADMIN service type 75
admin user 143, 148, 151

Index

administered objects
attributes (reference) 333
deleting 192
listing 193
lookup name for 298
object stores, See object stores
querying 193
queue, See queues
required information 185
topic, See topics
updating 194
XA connection factory, See connection factory
administered objects
Administration Console
quick start 41
starting 42
administration tasks
development environment 34
production environment 34
administration tools 37
Administration Console 39
command line utilities 37
administrator password 148
anonymous group 146
API documentation 360, 361, 363
applications, See client applications
attributes of physical destinations 329
audit logging 171
authentication
about 88
managing 142

399

Section B

authorization

about 88

managing 152

user groups 89

See also access control file
auto-create physical destinations

access control 158

configuring 90

disabling 36

properties (table) 314
auto-reconnect feature

attributes for 179
AUTOSTART property 68

B

benchmarks, performance 221
bottlenecks, performance 224
broker clusters

adding brokers to 199

architecture 235

configuration change record 201

configuration file 196, 197, 198, 328

configuration properties 196, 327

connecting brokers 198

option to specify 283

pausing physical destinations 134

performance effect of 236

reasons for using 235

replication of physical destinations 130

secure inter-broker connections 199
broker failure and secure connections 396
broker metrics

logger properties 94, 209, 326

metric quantities (table) 350

metrics messages 94

reporting interval, logger 284

using broker log files 209

using imgemd 115, 213, 215

using message-based monitoring 216
broker monitoring service

about 91

properties 324

400 Message Queue 3 2005Q1 « Administration Guide

broker responses

on produce 339
wait period for client 182, 339

brokers

access control, See authorization
auto-create physical destination properties 314
automatically restarting 68

clock synchronization 66

clusters, See broker clusters

components and functions (table) 75
configuration files, See configuration files
connecting 198

connection services, See connection services
dead message queue 139

displaying properties of 111

HTTP support 371

httpjms connection service properties 373
HTTPS support 382

httpsjms connection service properties 385
instance configuration properties 98
instance name 284

interconnected, See broker clusters

limit behaviors 82, 236

listing connection services 117

logging, See logger

managing 107

memory management 81, 129, 236
message capacity 83,112,310, 313
message flow control, See message flow control
message routing, See message router
metrics, See broker metrics

monitoring, See broker monitoring service
pausing 113, 289

permissions required for starting 67
persistence manager, See persistence manager
properties (reference) 307

querying 111

recovery from failure 84

removing 72

restarting 84, 114, 115, 289

resuming 113, 114, 289

running as Windows service 69

security manager, See security manager
services (figure) 74

shutting down 114

startup with SSL 163

updating properties of 112

built-in persistence 85

C

certificates 160, 382
client applications
example 28, 360, 361, 363
factors affecting performance 224
client identifier (ClientID) 180
in destroying durable subscription 123
client runtime
configuration of 237
message flow tuning 244
clientld activation specification attribute 347, 348
clientID managed connection factory attribute 346
clients
clock synchronization 66
starting 71
clock synchronization 66
cluster configuration file 196, 197, 198, 328
cluster configuration properties 196, 327
cluster connection service 160, 199
host name or IP address for 196, 328
network transport for 196, 197, 328
port number for 196, 328
clusters, See broker clusters
command files 187
command line syntax 280
command line utilities
about 37
basic syntax 280
displaying version 281
help 281
imgbrokerd, See, imgbrokerd command
imgemd, See, imgemd command
imqgdbmgr See, imqdbmgr command
imgkeytool, See, imgkeytool command
imqobjmgr, See, imqobjmgr command
imgsvcadmin, See, imgsvcadmin command
imqusermgr, See, imqusermgr command
options common to 281

Section C

command options 281
as configuration overrides 71
compacting
file-based data store 85
physical destinations 136
config.properties file 98,199, 201
configuration change record 201
backing up 201
restoring 202
configuration files 96
broker (figure) 97
cluster 196, 197, 198, 328
default 96
editing 98
installation 96
instance 96, 197, 359, 361, 362
location 359, 361, 362
template location 360, 361, 362
templates 360, 361, 362
connecting brokers 198
connection factory administered objects
adding 189
application server support attributes 183, 341
attributes 177
client identification attributes 180
connection handling attributes 178
JMS properties support attributes 183, 341
overriding message header fields 184
queue browser behavior attributes 183, 340
reliability and flow control attributes 182
connection service metrics
metric quantities 352
using imgemd metrics 119, 213
using imgemd query 215
connection services
about 75
access control for 91, 320
activated at startup 311
admin 76, 117
cluster 160, 199
commands affecting 292
connection type 75
displaying properties of 118
HTTP, See HTTP connections
httpjms 76, 117

Index

401

Section D

connection services (continued)

HTTPS, See HTTPS connections

httpsjms 76, 117

jms 76,116

metrics data, See connection service metrics

pausing 120, 292

Port Mapper, See Port Mapper

properties 118,311

querying 118,122,292

resuming 120, 121, 292

service type 75

ssladmin, See ssladmin connection service

SSL-based 162

ssljms, See ssljms connection service

thread allocation 118

Thread Pool Manager 77

updating 118, 119, 122, 292
connections

auto-reconnect, See auto-reconnect

failover, See auto-reconnect

limited by file descriptor limits 66

listing 121, 293

performance effect of 233

querying 122,293

server or broker failure 396
connectionURL resource adapter attribute 344
control messages 79
customAcknowledgeMode activation specification

attribute 347

D

data store
about 83
compacting 85
configuring 99
contents of 99
flat-file 85
JDBC-accessible 86
location 360, 361, 362
performance effect of 236
resetting 285
synchronizing to disk 100
dead message queue
configuring 138

402 Message Queue 3 2005Q1 « Administration Guide

limit behavior 139
logging 95, 140
maxNumMsgs value 139
maxTotalMsgBytes value 139
message truncation 83
dead messages
logging 95
See also dead message queue
default.properties file 96
deleting
broker instance 72
deleting destinations 135
delivery modes
performance effect of 226
destination activation specification attribute 347, 348
destination administered objects
attributes 185
destination metrics
metric quantities 354
using imgemd metrics 211, 214, 291
using imgemd query 215
using message-based monitoring 216
destinationType activation specification
attribute 348
destroying physical destinations 135
development environment administration tasks 34
directory lookup for clusters (Linux) 198
directory variables
IMQ_HOME 25
IMQ_JAVAHOME 26
IMQ_VARHOME 25
disk space
physical destination utilization 136
reclaiming 137
displaying product version 281
distributed transactions
XA resource manager 123
durable subscriptions
destroying 123, 293
id 294
listing 122,293
managing 122
performance effect of 228
purging messages for 293

E

encryption
about 90
Key Tool, and 90
SSL-based services, and 159

endpointExceptionRedelivery Attempts activation
specification attribute 348

environment variables, See directory variables

/etc/hosts file (Linux) 198

example applications 28, 360, 361, 363

F

file descriptor limits 66
connection limits and 66

file sync
imgq.persist.file.sync.enabled option 317
with Sun Cluster 317

file-based persistence 85
See also persistence manager

firewalls 370
flow control, See message flow control
fragmentation of messages 85

G

guest user 143

H

hardware, performance effect of 232
help (command line) 281

hosts file (Linux) 198

HTTP

connection service, See httpjms connection service

proxy 370
support architecture 370
transport driver 370

HTTP connections
multiple brokers, for 375
request interval 374
support for 370
tunnel servlet, See HTTP tunnel servlet
HTTP tunnel servlet
about 370
deploying 372
httpjms connection service
about 76,117
configuring 373
setting up 371
HTTPS

Section E

connection service, See httpsjms connection

service
support architecture 370
HTTPS connections
multiple brokers, for 388
request interval 386
support for 370
tunnel servlet, See HTTPS tunnel servlet
HTTPS tunnel servlet
about 370
deploying 383
httpsjms connection service
about 76,117
configuring 385
setting up 382

img.accesscontrol.enabled property 91, 308, 320

img.accesscontrol file.filename property 91, 308, 321

imq.audit.enabled property 308, 321

imq.authentication.basic.user_repository
property 90, 308, 321

imq.authentication.client.response.timeout
property 91, 308, 321

imgq.authentication.type property 90, 308, 321

imgq.autocreate.destination.isLocalOnly
property 308, 314

img.autocreate.destination.limitBehavior
property 308, 314

Index

403

Section |

imq.autocreate.destination.maxBytesPerMsg
property 308, 315
imq.autocreate.destination.maxCount property 308,
315
imq.autocreate.destination.maxNumMsgs
property 315
img.autocreate.destination.maxNumProducers
property 308, 315
img.autocreate.destination.maxTotalMsgBytes
property 308, 315
img.autocreate.destination.useDMQ property 139,
308
imgq.autocreate.queue property 112, 308, 315
img.autocreate.queue.consumerFlowLimit
property 308, 315, 316
imgq.autocreate.queue.localDeliveryPreferred
property 308, 315
img.autocreate.queue.maxNumActiveConsumers
property 112,308, 315
img.autocreate.queue.maxNumBackupConsumers
property 112,308, 315
imgq.autocreate.topic property 112, 308, 315
imgq.cluster.brokerlist property 196, 198, 199, 200,
327
img.cluster.masterbroker property 196, 199, 201, 328
imgq.cluster.port property 196, 328
imgq.cluster.property_name property 308
imgq.cluster.transport property 196, 199, 328
imgq.cluster.url property 112,196, 197, 198, 199, 201,
328
img.destination. DMQ.truncateBody property 83,
112, 308, 313
imgq.destination.logDeadMsgs property 95,112, 308,
324
imq.hostname property 78, 308, 311
imq.httpjms.http.connectionTimeout property 374
imq.httpjms.http.property_name property 308
imq.httpjms.http.pullPeriod property 374
imq.httpjms.http.servletHost property 373
imq.httpjms.http.servletPort property 374
imq.httpsjms.https.connectionTimeout property 386
imq.httpsjms.https.property_name property 308
imq.httpsjms.https.pullPeriod property 386

404 Message Queue 3 2005Q1 ¢ Administration Guide

imq.httpsjms.https.servletHost property 385
imq.httpsjms.https.servletPort property 385
imq.imgemd.password property 308, 321
imq keystore.file.dirpath property 162, 324
imq.keystore.file.name property 162, 324
imq.keystore.password property 162, 170, 324
imq.keystore.property_name property 91
imq.keystore.property_name property 308, 321
imq.log.console.output property 94, 309, 325
imq.log.console.stream property 95, 309, 325
imq.log file.dirpath property 94, 309, 325
imgq.log file.filename property 94, 325
imq.log.file.name property 309
imq.log file.output property 94, 309, 325
imq.log.file.rolloverbytes property 94, 112, 309, 325
imq.logfile.rolloversecs property 94,112, 309, 325
imq.log.level property 94,112, 309, 325
imq.log.syslog.facility property 95, 309, 326
imq.log.syslog.identity property 95, 309, 326
imq.log.syslog.logconsole property 95, 309, 326
imq.log.syslog.logpid property 95, 309, 326
imq.log.syslog.output property 95, 309, 326
imq.log.timezone property 95, 309, 326
imq.message.expiration.interval property 83, 309,
313
imq.message.max_size property 83,112,309, 313
imq.metrics.enabled property 94, 309, 326
imq.metrics.interval property 94, 309, 327
imq.metrics.topic.enabled property 95, 309, 327
imq.metrics.topic.interval property 95, 309, 327
img.metrics.topic.persist property 95, 309, 327
imq.metrics.topic.timetolive property 95, 309, 327
imgq.passfile.dirpath property 91, 309, 321
imgq.passfile.enabled property 91, 309, 321
imgq.passfile.name property 91, 309, 321
imgq.persist.file.destination.message.filepool.limit
property 85, 86, 309, 317
imgq.persist.file.message.cleanup property 85, 86,
309, 317

imgq.persist.file.message.filepool.cleanratio
property 86, 309, 317

imgq.persist.file. message. max_record_size
property 86, 310, 317
imgq.persist.file.message.vrfile.max_record_size
property 85
imgq.persist.file.sync property 100
imgq.persist.file.sync.enabled property 85, 86, 310,
317
Sun Cluster requirement 317

imgq.persist.jdbc.brokerid property 86,103,318
imgq.persist.jdbc.closedburl property 87,103, 318
imgq.persist.jdbc.createdburl property 87, 103, 318
imgq.persist.jdbc.driver property 86, 103, 318
imgq.persist.jdbc.needpassword property 87,103, 319
imgq.persist.jdbc.opendburl property 86, 103, 318
imgq.persist.jdbc.password property 87,103,170, 319
imgq.persist.jdbe.property_name property 310
imgq.persist.jdbc.table IMQCCREC35 property 87,
103, 319

imgq.persist.jdbc.table IMQDEST35 property 87, 104,
319

imgq.persist.jdbc.table IMQINT35 property 87, 104,
319

imgq.persist.jdbc.table IMQLIST35 property 87, 104,
320

imgq.persist.jdbc.table IMQMSG35 property 87, 104,
319

imgq.persist.jdbc.table IMQPROPS35 property 87,
104, 320

imgq.persist.jdbc.table IMQSV35 property 87, 103,
319

imgq.persist.jdbc.table IMQTACKS5 property 87,
104, 320

imgq.persist.jdbc.table IMQTXN35 property 87, 104,
320

imgq.persist.jdbc.user property 87,103, 318

imgq.persist.store property 86, 103, 310, 316, 318

imgq.ping.interval property 310, 311

imq.portmapper.backlog property 78, 310, 311

imgq.portmapper.hostname property 78, 310, 311

imq.portmapper.port property 78,112, 310, 311

img.protocol protocol_type inbufsz 239

img.protocol protocol_type nodelay 239

imq.protocol protocol_type outbufsz 239

Section |

imgq.resource_state.count property 83, 310, 313
imq.resource_state.threshold property 83,310, 313
imgq.service.activelist property 78, 310, 311

imq.service_name.accesscontrol.enabled property 91,
310, 321

imq.service_name.accesscontrol.file.filename
property 91, 310, 322

imq.service_name.authentication.type property 90,
310, 322

imq.service_name.max_threads property 79, 310, 312

imq.service_name.min_threads property 78, 310, 312

imq.service_name.protocol_type hostname
property 78,196, 310, 311, 328

imq.service_name.protocol_type.port property 78, 310,
311

imgq.service_name.threadpool_model property 79,
310,312

imq.shared.connectionMonitor_limit property 79,
310, 312

imq.system.max_count property 83,112, 310, 313

imq.system.max_size property 83, 112,310, 313

img.transaction.autorollback property 81, 83, 125,
310, 314

imq.user_repository.ldap.base property 150, 322

imq.user_repository.ldap.gidattr property 151, 322

imq.user_repository.ldap.grpbase property 151, 322

imq.user_repository.ldap.grpfiltler property 151,
322

imq.user_repository.ldap.grpsearch property 151,
322

imq.user_repository.ldap.memattr property 151, 322

imq.user_repository.ldap.password property 150,
170, 322

imq.user_repository.ldap.principal property 150,
323

imq.user_repository.ldap.property_name
property 310,323

imq.user_repository.ldap.server property 150, 323

imq.user_repository.ldap.ssl.enabled property 151,
323

imq.user_repository.ldap.timeout property 151, 323
imq.user_repository.ldap.uidattr property 151, 323
imq.user_repository.ldap.usrfilter property 151, 323

Index 405

Section |

IMQ_HOME directory variable 25
IMQ_JAVAHOME directory variable 26
IMQ_VARHOME directory variable 25
imgAckOnProduce attribute 339
imgAckTimeout attribute 182, 339
imgAddressList attribute 334
imgAddressListBehavior attribute 334
imgAddressListlterations attribute 335
imgbrokerd command 67

about 38

adding a broker to a cluster 199

backing up configuration change record 201

clearing the data store 100, 135

configuration file (Solaris, Linux) 68,72

connecting brokers 198

in passfile 169

options 282

passing arguments to 99

reference 282

removing a broker 72

removing a broker from a cluster 200

restoring configuration change record 202

setting logging properties 207

syntax 282
imgbrokerd.conf file 68, 72
imgemd command

about 38

dependent on master broker 202

durable subscription subcommands 122

in passfile 169

metrics monitoring 210

options 294

physical destination management 127

physical destination subcommands (table) 128

reference 287

secure connection to broker 165, 295

syntax 287

transaction management 123
imgConfiguredClientID attribute 181, 338
imgConnectionFlowCount attribute 182, 339
imgConnectionFlowLimit attribute 182, 339, 340
imgConnectionFlowLimitEnabled attribute 182, 339
imgConsumerFlowLimit attribute 182, 340
imgConsumerFlowThreshold attribute 182, 340

406 Message Queue 3 2005Q1 « Administration Guide

imgdbmgr command

about 39

in passfile 169

options 301

reference 300

subcommands 300

syntax 300
imqgDefaultPassword attribute 181, 338
imgDefaultUsername attribute 181, 338
imgDestinationDescription attribute 333
imgDestinationName attribute 333
imgDisableSetClientID attribute 181, 338
imgFlowControlLimit attribute 182, 340
imgJMSDeliveryMode attribute 184, 338
imgJMSExpiration attribute 184, 338
imqJMSPriority attribute 184, 338
imgkeytool command

about 38

command syntax 161, 382

reference 306

using 161, 382
imqLoadMaxToServerSession attribute 183, 341
imgobjmgr command

about 38

options 298

reference 297

subcommands 297

syntax 297

imqgOverride]MSDeliveryMode attribute 184, 338
imqgOverride]MSExpiration attribute 184, 338
imqOverride]MSHeadersToTemporaryDestinations
attribute 184, 338
imqOverride]MSPriority attribute 184, 338
imgQueueBrowserMax MessagesPerRetrieve
attribute 183, 341
imqQueueBrowserRetrieveTimeout attribute 183,
341
imgReconnectAttempts attribute 335
imgReconnectEnabled attribute 335
imgReconnectInterval attribute 335
imqSetfMSXAppID attribute 183, 341
imqSet]MSXConsumerTXID attribute 183, 341
imqSet)MSXProducerTXID attribute 183, 341
imqSet)]MSXRcvTimestamp attribute 183, 341

imqSet]MSXUserID attribute 183, 341
imqSSLIsHostTrusted attribute 335

imgsvcadmin command
about 39
options 304
reference 304
subcommands 304
syntax 304
imqusermgr command
about 38
options 302, 303
passwords 146
reference 302
subcommands 302
syntax 302
use for 143
user names 146

install.properties file 96
instance configuration files, See configuration files

instance directory
and file-based data store 100
and instance configuration file 149
removing 72

J

J2EE connector architecture (JCA) 343, 347

Java runtime 281
for Windows service 70

Java Virtual Machine, See JVM
java.naming.factory.initial attribute 174, 176
java.naming.provider.url attribute 174, 176
java.naming.security.authentication attribute 175
java.naming.security.credentials attribute 175
java.naming.security.principal attribute 175
javahome option 70, 281

JCA (J2EE connector architecture) 343, 347

Section J

JDBC support

about 86

configuring 99

driver 86,99, 103, 318

setting up 100
JDK

specifying path to 283, 294, 298, 304
jms connection service 76, 116
JMS specification 29
JMSDeliveryMode message header field 184
JMSExpiration message header field 184
JMSPriority message header field 184
JNDI

initial context 174, 176

location (provider URL) 174,176

lookup 54, 186

lookup name 186, 190

object store 38, 174

object store attributes 174, 186
jrehome option 70
JVM

metrics, See JVM metrics

performance effect of 233

tuning for performance 238
JVM metrics

metric quantities 349

using broker log files 209

using imgemd metrics 212

using message-based monitoring 216

K

key pairs
generating 162
regenerating 162
Key Tool 90
keystore
file 162, 324,383
properties 324

Index

407

Section L

L

LDAP server
as user repository 149
authentication failover 150
object store attributes 174
user-repository access 150
licenses
startup option 284
limit behaviors
broker 82
physical destinations 82, 129, 130, 330
load-balanced queue delivery
attributes 315
tuning for performance 243
location of object store 174,176
log files
default location 360, 361, 362
rollover criteria 94, 325
logger
about 92
as broker component 75
categories 205
changing configuration 207
levels 94,205, 284, 325
message format 206
metrics information 94, 326
output channels 92, 205, 207
redirecting log messages 208
rollover criteria 208
setting properties 207
writing to console 94, 286, 325
logging, See logger
loopback address 198

M

ManagedConnectionFactory JavaBean 345
master broker
configuration change record 201
specifying 196, 197
unavailable 202
MDBs, See message-driven beans

408 Message Queue 3 2005Q1 « Administration Guide

memory management
for broker 81
thresholds 82
tuning for performance 242
using physical destination properties 129
message flow control
attributes 182
broker 81, 129
limits 244
metering 244
performance effect of 237
tuning for performance 244
message header overrides 184
message router
about 79
as broker component 75
properties 313
message server architecture 235
message service performance 232
message-driven beans
resource adapter configuration for 343, 346
messages
acknowledgments 80
body type and performance 231
broker limits on 83,112,310, 313
destination limits on 329
flow control, See message flow control
fragmentation 85
latency 220
metrics 93
metrics messages, See metrics messages
pausing flow of 133
persistence of 81, 83
physical destination limits on 129

purging from a physical destination 134, 291

reclamation of expired 83, 313

redelivery 81

reliable delivery of 182

routing and delivery 79

size, and performance 230

throughput performance 220
messageSelector activation specification

attribute 348

metrics
about 92
data, See metrics data
messages, See metrics messages
topic destinations 93, 216
metrics data
broker, See broker metrics
connection service, See connection service metrics
physical destination, See physical destination
metrics
using broker log files 209
using imgemd metrics 212
using message-based monitoring API 216
metrics messages
about 93,215
contents of 93
type 93, 216
metrics monitoring tools
compared 203
Message Queue Command Utility (imgemd) 210
Message Queue log files 209
message-based monitoring API 215
monitoring, See performance monitoring

N

NORMAL service type 75
nsswitch.conf file (Linux) 198

O

object stores
about 174
file-system store 175
file-system store attributes 176
LDAP server 174
LDAP server attributes 174
locations 360, 361, 362
operating system
performance effect of 233
tuning Solaris performance 237

Section N

Oracle 100, 105

overrides
for message header 184
on command line 71

P

passfile
broker configuration properties 91, 321
command line option 284
location 170, 360, 361, 362
using 169
password file, See passfile
password managed connection factory attribute 346
password resource adapter attribute 345
passwords
administrator 148
default 181, 338
encoding of 321
JDBC 170
LDAP 170
naming conventions 146
passfile, See passfile
SSL keystore 162, 170, 285
pausing
brokers 113, 289
connection services 120, 292
physical destinations 133, 134, 291
performance
about 219
baseline patterns 222
benchmarks 221
bottlenecks 224
factors affecting, See performance factors
indicators 220
measures of 220
monitoring, See performance monitoring
optimizing, See performance tuning
reliability trade-offs 225
troubleshooting 247
tuning, See performance tuning

Index 409

Section P

performance factors about 83
acknowledgment mode 228 as broker component 75
broker limit behaviors 236 data store, See data store
connections 233 plugged-in persistence, and 99
data store 236 properties 317
delivery mode 226 physical destination
durable SubSCI'ipﬁOIlS 228 reclaiming disk space 137
file sync 317 using dead message queue 138
hardware 232 physical destinations
JVM 233 auto-created 158
message body type 231 batching messages for delivery 130, 315, 316, 331
message flow control 237 compacting 136
message server architecture 236 compacting file-based data store 137,290
message size 230 creating 129

operating system 233

dead message queue 138
selectors 230

dead message queue for 138

transactions 227 destroying 135, 290
transport protocols 234 disk utilization 136
performance monitoring displaying property values 131
metrics data, See metrics data getting information about 131, 291
tools, See metrics monitoring tools 203 information about 131
performance tuning limit behaviors 82, 129, 130, 330
broker adjustments 242 listing 131, 290
client runtime adjustments 244 managing 127
process overview 219 metrics, See physical destination metrics
system adjustments 237 pausing 133, 134, 291
permissjons properties of 329
access control properties file 89, 153 property values 131
admin service 89 purging messages from 134, 291
computing 155 restricted scope in cluster 130, 314, 331
data store 86 resuming 134, 291
embedded database 102 temporary 131
keystore 382 types 131, 290
Message Queue operations 88 updating attributes 291
passfile 170 updating properties 133
user repository 144, 302 plugged-in persistence
persistence about 86
built-in 85 setting up 100
data store See data store tuning for performance 242
JDBC, See JDBC persistence PointBase 100
options (figure) 84 Port Mapper
persistence manager, See persistence manager about 77
plugged-in, See plugged-in persistence port assignment for 285
security for 104 precedence (of configuration properties) 97

persistence manager

410 Message Queue 3 2005Q1 « Administration Guide

producers
destination limits on 315, 330
physical destination limits on 130
production environment
administration tasks 34
maintaining 36
setting up 35
properties
auto-create 314
broker instance configuration 98
broker monitoring service 324
cluster configuration 327
connection service 311
httpjms connection service 373
httpsjms connection service 385
JDBC-related 102, 318
keystore 324
logger 324
memory management 129, 313
message router 313
persistence 317
physical destinations, See physical destinations,
properties of
security 320
syntax 98
protocol types
HTTP 76,117
TCP 76,116
TLS 76,116
protocols, See transport protocols
purging, messages from physical destinations 134

Q

querying
brokers 111
connection services 118,122,292
queue load-balanced delivery
attributes 130, 330
queues
adding administered objects for 191
auto-created 308, 315

Section Q

R

reconnect, automatic See auto-reconnect

reconnectAttempts managed connection factory
attribute 346

reconnectAttempts resource adapter attribute 345

reconnectEnabled managed connection factory
attribute 346

reconnectEnabled resource adapter attribute 345

reconnectInterval managed connection factory
attribute 346

reconnectInterval resource adapter attribute 345
redeliver flag 81
reliable delivery 182

performance trade-offs 225
removing

brokers 72

physical destinations 135
reset messages option 135
resource adapter 343

reconnection 344, 345, 346
ResourceAdapter JavaBean 344
RESTART property 68
restarting brokers 114, 115, 289
resuming

brokers 113, 114, 289

connection services 120, 121, 292

physical destinations 134
routing, See message router

S

Secure Socket Layer standard, See SSL
security
authentication, See authentication
authorization, See authorization
encryption, See encryption
manager, See security manager
object store, for 174
security manager
about 88
as broker component 75
properties 320

Index 411

Section T

selectors Sun Cluster

about 230 configuration for 317

performance effect of 230 synchronization attribute and 85
self-signed certificates 160, 382 synchronizing
sendUndeliverableMsgsToDMQ activation clocks 66

specification attribute 348 memory to disk 85, 100
server failure and secure connections 396 syntax for all commands 280
service (Windows) syslog 93,208

Java runtime for 70 system clock synchronization 66

reconfiguring 69
removing broker 70
running broker as 69
startup parameters for 70

troubleshooting startup 70 T
service types TCP 76,116
ADMIN 75 temporary physical destinations 131
NQRMAL 75 Thread Pool Manager
shutting down brokers 114, 289 about 77
as Windows service 70 dedicated threads 77
Simple Network Time Protocol 66 shared threads 78
SNTP 66 thresholds
SSL memory 82
about 90 time synchronization service 66
connection services, See SSL-based connection TimeToLive feature
services

clock synchronization and 66
enabling 163

: TLS 76,116
encryption, and 159
over TCP/IP 160 tools, administration, See administration tools
ssladmin connection service topics
about 76, 117 adding administered objects for 190
setting ul; 160 auto-created 308, 315
transactions

SSL-based connection services
setting up 159, 160
starting up 163
ssljms connection service
about 76,116
setting up 160
starting
clients 71
SSL-based connection services 163

acknowledgments and 81
committing 125, 294
information about 294
managing 123
performance effect of 227
rolling back 124, 294
transport protocols
performance effect of 234
protocol types, See protocol types
relative speeds 234
subscriptionDurability activation specification tuning for performance 238
attribute 347, 348 troubleshooting 247
subscriptionName activation specification Windows service startup 70
attribute 348

startup parameters for broker Windows service 70

412 Message Queue 3 2005Q1 « Administration Guide

Section U

truncation in dead message queue 83 V
tunnel servlet connection 396

tutorial 41 version 281

U W
W32Time service 66

Windows service, See service (Windows)
write operations (for file based store) 100

ulimit command 66
update dst subcommand
restrictions 133
updating
brokers 112
connection services 118,119, 122, 292

usage help 281 X
use;bgorli)tugz 145 xntpd daemon 66

default 89
deleting assignment 146
predefined 145
user names 181, 338
default 143
format 146
user repository
about 88
flat-file 142
initial entries 143
LDAP 149
LDAP server 150
location 360, 361, 362
managing 147
platform dependence 144, 302
populating 147
property 90
user groups 146
user states 146
userName managed connection factory attribute 346
userName resource adapter attribute 344
utilization ratio 137

Index 413

Section X

414 Message Queue 3 2005Q1 « Administration Guide

	Message Queue 3 Administration Guide
	Contents
	List of Figures
	List of Tables
	List of Procedures
	Preface
	Who Should Use This Book
	Before You Read This Book
	How This Book Is Organized
	Conventions Used In This Book
	Text Conventions
	Directory Variable Conventions

	Related Documentation
	Message Queue Documentation Set
	Online Help
	JavaDoc
	Example Client Applications
	The Java Message Service (JMS) Specification

	Related Third-Party Web Site References
	Sun Welcomes Your Comments

	Part I Introduction to Message Queue Administration
	1. Administration Tasks and Tools
	Administrative Tasks in a Development Environment
	Administrative Tasks in a Production Environment
	Setup Operations
	Maintenance Operations

	Administrative Tools
	Command Line Utilities
	Administration Console

	2. Administration Quick Start
	Getting Ready
	Starting the Administration Console
	Getting Help
	To Display Administration Console Help Information

	Starting a Broker
	Adding a Broker
	To Add a Broker to the Administration Console

	Connecting to the Broker
	To Connect to the Broker
	Viewing Connection Services
	To View Available Connection Services

	Adding Physical Destinations to a Broker
	To Add a Queue Destination to a Broker

	Administering Physical Destinations
	To View the Properties of a Physical Destination
	To Purge Messages From a Physical Destination
	To Delete a Destination

	Getting Information About Topics

	Working with Object Stores
	Adding an Object Store
	To Add a File-System Object Store

	Checking Object Store Properties
	To Display the Properties of an Object Store

	Connecting to an Object Store
	To Connect to an Object Store

	Adding a Connection Factory Administered Object
	To Add a Connection Factory to an Object Store

	Adding a Destination Object
	To Add a Destination to an Object Store

	Viewing Administered Object Properties
	To View or Update the Properties of a Destination Object

	Updating Console Information
	Running the Sample Application
	To Run the HelloWorldMessageJNDI Application

	Part II Administration Tasks
	3. Starting Brokers and Clients
	Preparing System Resources
	Synchronizing System Clocks
	Setting the File Descriptor Limits (Solaris or Linux)

	Starting Brokers Interactively
	Starting Brokers Automatically
	Automatic Startup on Solaris and Linux
	Automatic Startup on Windows
	Reconfiguring the Broker Service
	Using an Alternative Java Runtime
	Displaying the Broker Service Startup Options
	Troubleshooting Service Startup Problems
	To See Logged Service Error Events
	Removing a Broker That Is Running as a Windows Service

	Starting Message Queue Clients
	Removing a Broker Instance

	4. Configuring a Broker
	About Configurable Broker Components
	Connection Services
	Port Mapper
	Thread Pool Manager
	Security
	Connection Service Properties

	Message Router
	Basic Delivery Mechanisms
	Reliable Delivery: Acknowledgments and Transactions
	Reliable Delivery: Persistence
	Managing Memory Resources and Message Flow
	Message Router Properties

	Persistence Manager
	Built-in Persistence
	Plugged-In Persistence
	Persistence Manager Properties

	Security Manager
	Authentication
	Authorization
	Encryption
	Security Manager Properties

	Monitoring Service
	Metrics Generator
	Logger
	Metrics Message Producer (Enterprise Edition)
	Monitoring Service Properties

	About Configuration Files
	Instance Configuration File
	Merging Property Values
	Property Naming Syntax

	Editing the Instance Configuration File
	Entering Configuration Options on the Command Line
	Setting Up a Persistent Store
	Configuring a File System Store
	Configuring a JDBC Store
	Plugging In a JDBC-Accessible Data Store
	To Plug in a JDBC-Accessible Data Store
	JDBC-Related Broker Properties
	Database Manager Utility (imqdbmgr)

	Securing Persistent Data
	Built-In (File-Based) Persistent Store
	Plugged-In (JDBC) Persistent Store

	5. Managing a Broker
	Prerequisites
	Using the imqcmd Command Utility
	Specifying the User Name and Password
	Specifying the User Name
	Specifying the Password

	Specifying the Broker Name and Port
	Examples

	Displaying Help
	Displaying the Product Version
	Displaying Broker Information
	Updating Broker Properties
	Pausing and Resuming a Broker
	Pausing a Broker
	Resuming a Broker

	Shutting Down and Restarting a Broker
	Displaying Broker Metrics
	Managing Connection Services
	Listing Connection Services
	Displaying Connection Service Information
	Updating Connection Service Properties
	Displaying Connection Service Metrics
	Pausing and Resuming a Connection Service

	Getting Information About Connections
	Managing Durable Subscriptions
	Managing Transactions

	6. Managing Physical Destinations
	Using the imqcmd Command Utility
	Subcommands

	Creating a Physical Destination
	To create a physical destination

	Listing Physical Destinations
	Displaying Information about Physical Destinations
	Updating Physical Destination Properties
	Pausing and Resuming Physical Destinations
	Purging Physical Destinations
	Destroying Physical Destinations
	Compacting Physical Destinations
	Monitoring a Physical Destination’s Disk Utilization
	Reclaiming Unused Physical Destination Disk Space
	To Reclaim Unused Physical Destination Disk Space

	Configuring Use of the Dead Message Queue
	Configuring Use of the Dead Message Queue
	Configuring and Managing the Dead Message Queue
	Dead Message Queue Properties
	Message Contents

	Enabling Dead Message Logging

	7. Managing Security
	Authenticating Users
	Using a Flat-File User Repository
	Creating a User Repository
	User Manager Utility (imqusermgr)
	Groups
	User States
	Format of User Names and Passwords
	Populating and Managing a User Repository
	Changing the Default Administrator Password

	Using an LDAP Server for a User Repository
	Editing the Instance Configuration File
	To Edit the Configuration File to Use an LDAP Server
	Setting Up Access Control for Administrators
	To Set Up an Administrative User

	Authorizing Users: the Access Control Properties File
	Creating an Access Control Properties File
	Syntax of Access Rules
	How Permissions are Computed
	Access Control for Connection Services
	Access Control for Physical Destinations
	Access Control for Auto-created Physical Destinations

	Working With an SSL-Based Service
	Secure Connection Services for TCP/IP
	Configuring the Use of Self-Signed Certificates
	To Set Up an SSL-based Connection Service
	Step 1. Generating a Self-Signed Certificate
	To Regenerate a Key Pair
	Step 2. Enabling the SSL-Based Service in the Broker
	To Enable an SSL-based Service in the Broker
	Step 3. Starting the Broker
	Step 4. Configuring and Running SSL-Based Clients

	Configuring the Use of Signed Certificates
	Step 1: Obtaining and Installing a Signed Certificate
	To Obtain a Signed Certificate
	To Install a Signed Certificate
	Step 2: Configuring the Client Runtime to Require a Signed Certificate
	To Configure the Java Client Runtime

	Using a Passfile
	Security Concerns
	Passfile Contents

	Creating an Audit Log

	8. Managing Administered Objects
	About Object Stores
	LDAP Server Object Store
	File-System Object Store

	About Administered Object Attributes
	Connection Factory Attributes.
	Connection Handling

	Client Identification
	Reliability And Flow Control
	Queue Browser Behavior and Server Session
	JMS-Defined Properties Support
	Message Header Overrides

	Destination Administered Object Attributes

	Using the Object Manager Utility (imqobjmgr)
	Required Information
	Using Command Files

	Adding and Deleting Administered Objects
	Adding a Connection Factory
	Adding a Topic or Queue
	Deleting Administered Objects

	Listing Administered Objects
	Getting Information About a Single Object
	Updating Administered Objects

	9. Working With Broker Clusters
	Cluster Configuration Properties
	Setting Cluster Properties for Individual Brokers
	Using a Cluster Configuration File

	Managing Clusters
	Connecting Brokers
	Linux Prerequisite: Setting the IP Address
	Secure Connections Between Brokers

	Adding Brokers to a Cluster
	To Add a New Broker to a Cluster Using a Cluster Configuration File
	To Add a New Broker to a Cluster Without a Cluster Configuration File

	Removing Brokers From a Cluster
	Removing a Broker Using the Command Line
	To Remove a Broker From a Cluster Using the Command Line
	Removing a Broker Using a Cluster Configuration File
	To Remove a Broker From a Cluster Using a Cluster Configuration File

	Master Broker
	Managing the Configuration Change Record
	To Back Up the Configuration Change Record
	To Restore the Configuration Change Record

	When a Master Broker Is Unavailable

	10. Monitoring a Message Server
	Introduction to Monitoring Tools
	Configuring and Using Broker Logging
	Default Logging Configuration
	Log Message Format
	Changing the Logger Configuration
	To Change the Logger Configuration for a Broker
	Changing the Output Channel
	Changing Log File Rollover Criteria
	Sending Metrics Data to Log Files
	To Use Log Files to Report Metrics Information
	Logging Dead Messages

	Interactively Displaying Metrics
	imqcmd metrics
	Using the metrics Subcommand to Display Metrics Data
	To Use the metrics Subcommand

	Metrics Outputs: imqcmd metrics
	Broker-wide Metrics.
	Connection Service Metrics.
	Physical Destination Metrics

	imqcmd query

	Writing an Application to Monitor Brokers
	Setting Up Message-Based Monitoring
	To Set Up Message-based Monitoring

	Security and Access Considerations
	Metrics Outputs: Metrics Messages

	11. Analyzing and Tuning a Message Service
	About Performance
	The Performance Tuning Process
	Aspects of Performance
	Benchmarks
	Baseline Use Patterns

	Factors That Affect Performance
	Application Design Factors that Affect Performance
	Delivery Mode (Persistent/Non-persistent Messages)
	Use of Transactions
	Acknowledgment Mode
	Durable and Non-durable Subscriptions
	Use of Selectors (Message Filtering)
	Message Size
	Message Body Type

	Message Service Factors that Affect Performance
	Hardware
	Operating System
	Java Virtual Machine (JVM)
	Connections
	Message Server Architecture
	Broker Limits and Behaviors
	Data Store Performance
	Client Runtime Configuration

	Adjusting Configuration To Improve�Performance
	System Adjustments
	Solaris Tuning: CPU Utilization, Paging/Swapping/Disk I/O
	Java Virtual Machine Adjustments
	Tuning Transport Protocols
	Tuning the File-based Persistent Store

	Broker Adjustments
	Memory Management: Increasing Broker Stability Under Load
	Multiple Consumer Queue Performance

	Client Runtime Message Flow Adjustments
	Message Flow Metering
	Message Flow Limits

	12. Troubleshooting Problems
	A Client Cannot Establish a Connection
	Connection Throughput Is Too Slow
	A Client Cannot Create a Message Producer
	Message Production Is Delayed or Slowed
	Messages Are Backlogged
	Message Server Throughput Is Sporadic
	Messages Are Not Reaching Consumers
	The Dead Message Queue Contains Messages

	Part III Reference
	13. Command Reference
	Command Line Syntax
	Rules for Entering Commands
	Command Line Examples
	Common Command Options

	imqbrokerd
	Syntax
	Command Options
	See Also

	imqcmd
	Syntax
	Subcommands
	Broker Management Subcommands
	Physical Destination Management Subcommands
	Connection Services Management Subcommands
	Connection Subcommands
	Durable Subscription Subcommands
	Transaction Management Subcommands

	Command Options
	See Also

	imqobjmgr
	Syntax
	Subcommands
	Command Options
	See Also

	imqdbmgr
	Syntax
	Subcommands
	Command Options
	See Also

	imqusermgr
	Syntax
	Subcommands
	Command Options
	See Also

	imqsvcadmin
	Syntax
	Subcommands
	Command Options
	See Also

	imqkeytool
	Syntax
	See Also

	14. Broker Properties Reference
	Alphabetical List of Properties
	Connection Service Properties
	Message Router Properties
	Persistence Manager Properties
	File-Based Persistence
	JDBC-Based Persistence

	Security Manager Properties
	Monitoring and Logging Properties
	Cluster Configuration Properties

	15. Physical Destination Property Reference
	16. Administered Object Attribute Reference
	Destination Properties
	Connection Factory Attributes
	Connection Handling
	Syntax for the imqAddressList Attribute Value

	Client Identification
	Message Header Overrides
	Reliability and Flow Control
	Queue Browser Behavior and Server Session
	JMS-Defined Properties Support

	SOAP Endpoint Attributes

	17. JMS Resource Adapter Attribute Reference
	ResourceAdapter JavaBean
	ManagedConnectionFactory JavaBean
	ActivationSpec JavaBean

	18. Metrics Reference
	JVM Metrics
	Broker-wide Metrics
	Connection Service Metrics
	Destination Metrics

	Part IV. Appendixes
	A. Operating System-Specific Locations of Message Queue Data
	Solaris
	Linux
	Windows

	B. Stability of Message Queue Interfaces
	C. HTTP/HTTPS Support
	HTTP/HTTPS Support Architecture
	Enabling HTTP Support
	To Enable HTTP Support
	Step 1. Deploying the HTTP Tunnel Servlet on�a�Web Server
	Deploying as a Jar File
	Deploying as a Web Archive File

	Step 2. Configuring the httpjms Connection�Service
	To Activate the httpjms Connection Service

	Step 3. Configuring an HTTP Connection
	Configuring the Connection Factory
	Using a Single Servlet to Access Multiple Brokers
	Using an HTTP Proxy

	Example 1: Deploying the HTTP Tunnel Servlet on Sun Java System Web Server
	Deploying as a Jar File
	To Add a Tunnel Servlet
	To Configure a Virtual Path (Servlet URL) for a Tunnel Servlet
	To Load the Tunnel Servlet at Web Server Startup
	To Disable the Server Access Log
	Deploying as a WAR File
	To Deploy the http Tunnel Servlet as a WAR File

	Example 2: Deploying the HTTP Tunnel Servlet on Sun Java System Application Server 7.0
	Using the Deployment Tool
	To Deploy the HTTP Tunnel Servlet in an Application Server 7.0 Environment
	Modifying the server.policy File
	To Modify the Application Server’s server.policy File

	Enabling HTTPS Support
	To Enable HTTPS Support
	Step 1. Generating a Self-signed Certificate for the HTTPS Tunnel Servlet
	Step 2. Deploying the HTTPS Tunnel Servlet on�a Web Server
	Deploying as a Jar File
	Deploying as a Web Archive File

	Step 3. Configuring the httpsjms Connection�Service
	To Activate the httpsjms Connection Service

	Step 4. Configuring an HTTPS Connection
	Configuring JSSE
	To Configure JSSE
	Importing a Root Certificate
	Configuring the Connection Factory
	Using a Single Servlet to Access Multiple Brokers
	Using an HTTP Proxy

	Example 3: Deploying the HTTPS Tunnel Servlet on Sun Java System Web Server
	Deploying as a Jar File
	To Add a Tunnel Servlet
	To Configure a Virtual Path (servlet URL) for a Tunnel Servlet
	To Load the Tunnel Servlet at Web Server Startup
	To Disable the Server Access Log
	Deploying as a WAR File
	To Modify the HTTPS Tunnel Servlet WAR File
	To Deploy the https Tunnel Servlet as a WAR File

	Example 4: Deploying the HTTPS Tunnel Servlet on Sun Java System Application Server 7.0
	Using the Deployment Tool
	To Deploy the HTTPS Tunnel Servlet in an Application Server 7.0 Environment
	Modifying the server.policy file
	To Modify the Application Server’s server.policy File

	Troubleshooting
	Server or Broker Failure
	Client Failure to Connect Through the Tunnel�Servlet

	Glossary
	Index

